{ // 获取包含Hugging Face文本的span元素 const spans = link.querySelectorAll('span.whitespace-nowrap, span.hidden.whitespace-nowrap'); spans.forEach(span => { if (span.textContent && span.textContent.trim().match(/Hugging\s*Face/i)) { span.textContent = 'AI快站'; } }); }); // 替换logo图片的alt属性 document.querySelectorAll('img[alt*="Hugging"], img[alt*="Face"]').forEach(img => { if (img.alt.match(/Hugging\s*Face/i)) { img.alt = 'AI快站 logo'; } }); } // 替换导航栏中的链接 function replaceNavigationLinks() { // 已替换标记,防止重复运行 if (window._navLinksReplaced) { return; } // 已经替换过的链接集合,防止重复替换 const replacedLinks = new Set(); // 只在导航栏区域查找和替换链接 const headerArea = document.querySelector('header') || document.querySelector('nav'); if (!headerArea) { return; } // 在导航区域内查找链接 const navLinks = headerArea.querySelectorAll('a'); navLinks.forEach(link => { // 如果已经替换过,跳过 if (replacedLinks.has(link)) return; const linkText = link.textContent.trim(); const linkHref = link.getAttribute('href') || ''; // 替换Spaces链接 - 仅替换一次 if ( (linkHref.includes('/spaces') || linkHref === '/spaces' || linkText === 'Spaces' || linkText.match(/^s*Spacess*$/i)) && linkText !== 'PDF TO Markdown' && linkText !== 'PDF TO Markdown' ) { link.textContent = 'PDF TO Markdown'; link.href = 'https://fast360.xyz'; link.setAttribute('target', '_blank'); link.setAttribute('rel', 'noopener noreferrer'); replacedLinks.add(link); } // 删除Posts链接 else if ( (linkHref.includes('/posts') || linkHref === '/posts' || linkText === 'Posts' || linkText.match(/^s*Postss*$/i)) ) { if (link.parentNode) { link.parentNode.removeChild(link); } replacedLinks.add(link); } // 替换Docs链接 - 仅替换一次 else if ( (linkHref.includes('/docs') || linkHref === '/docs' || linkText === 'Docs' || linkText.match(/^s*Docss*$/i)) && linkText !== 'Voice Cloning' ) { link.textContent = 'Voice Cloning'; link.href = 'https://vibevoice.info/'; replacedLinks.add(link); } // 删除Enterprise链接 else if ( (linkHref.includes('/enterprise') || linkHref === '/enterprise' || linkText === 'Enterprise' || linkText.match(/^s*Enterprises*$/i)) ) { if (link.parentNode) { link.parentNode.removeChild(link); } replacedLinks.add(link); } }); // 查找可能嵌套的Spaces和Posts文本 const textNodes = []; function findTextNodes(element) { if (element.nodeType === Node.TEXT_NODE) { const text = element.textContent.trim(); if (text === 'Spaces' || text === 'Posts' || text === 'Enterprise') { textNodes.push(element); } } else { for (const child of element.childNodes) { findTextNodes(child); } } } // 只在导航区域内查找文本节点 findTextNodes(headerArea); // 替换找到的文本节点 textNodes.forEach(node => { const text = node.textContent.trim(); if (text === 'Spaces') { node.textContent = node.textContent.replace(/Spaces/g, 'PDF TO Markdown'); } else if (text === 'Posts') { // 删除Posts文本节点 if (node.parentNode) { node.parentNode.removeChild(node); } } else if (text === 'Enterprise') { // 删除Enterprise文本节点 if (node.parentNode) { node.parentNode.removeChild(node); } } }); // 标记已替换完成 window._navLinksReplaced = true; } // 替换代码区域中的域名 function replaceCodeDomains() { // 特别处理span.hljs-string和span.njs-string元素 document.querySelectorAll('span.hljs-string, span.njs-string, span[class*="hljs-string"], span[class*="njs-string"]').forEach(span => { if (span.textContent && span.textContent.includes('huggingface.co')) { span.textContent = span.textContent.replace(/huggingface.co/g, 'aifasthub.com'); } }); // 替换hljs-string类的span中的域名(移除多余的转义符号) document.querySelectorAll('span.hljs-string, span[class*="hljs-string"]').forEach(span => { if (span.textContent && span.textContent.includes('huggingface.co')) { span.textContent = span.textContent.replace(/huggingface.co/g, 'aifasthub.com'); } }); // 替换pre和code标签中包含git clone命令的域名 document.querySelectorAll('pre, code').forEach(element => { if (element.textContent && element.textContent.includes('git clone')) { const text = element.innerHTML; if (text.includes('huggingface.co')) { element.innerHTML = text.replace(/huggingface.co/g, 'aifasthub.com'); } } }); // 处理特定的命令行示例 document.querySelectorAll('pre, code').forEach(element => { const text = element.innerHTML; if (text.includes('huggingface.co')) { // 针对git clone命令的专门处理 if (text.includes('git clone') || text.includes('GIT_LFS_SKIP_SMUDGE=1')) { element.innerHTML = text.replace(/huggingface.co/g, 'aifasthub.com'); } } }); // 特别处理模型下载页面上的代码片段 document.querySelectorAll('.flex.border-t, .svelte_hydrator, .inline-block').forEach(container => { const content = container.innerHTML; if (content && content.includes('huggingface.co')) { container.innerHTML = content.replace(/huggingface.co/g, 'aifasthub.com'); } }); // 特别处理模型仓库克隆对话框中的代码片段 try { // 查找包含"Clone this model repository"标题的对话框 const cloneDialog = document.querySelector('.svelte_hydration_boundary, [data-target="MainHeader"]'); if (cloneDialog) { // 查找对话框中所有的代码片段和命令示例 const codeElements = cloneDialog.querySelectorAll('pre, code, span'); codeElements.forEach(element => { if (element.textContent && element.textContent.includes('huggingface.co')) { if (element.innerHTML.includes('huggingface.co')) { element.innerHTML = element.innerHTML.replace(/huggingface.co/g, 'aifasthub.com'); } else { element.textContent = element.textContent.replace(/huggingface.co/g, 'aifasthub.com'); } } }); } // 更精确地定位克隆命令中的域名 document.querySelectorAll('[data-target]').forEach(container => { const codeBlocks = container.querySelectorAll('pre, code, span.hljs-string'); codeBlocks.forEach(block => { if (block.textContent && block.textContent.includes('huggingface.co')) { if (block.innerHTML.includes('huggingface.co')) { block.innerHTML = block.innerHTML.replace(/huggingface.co/g, 'aifasthub.com'); } else { block.textContent = block.textContent.replace(/huggingface.co/g, 'aifasthub.com'); } } }); }); } catch (e) { // 错误处理但不打印日志 } } // 当DOM加载完成后执行替换 if (document.readyState === 'loading') { document.addEventListener('DOMContentLoaded', () => { replaceHeaderBranding(); replaceNavigationLinks(); replaceCodeDomains(); // 只在必要时执行替换 - 3秒后再次检查 setTimeout(() => { if (!window._navLinksReplaced) { console.log('[Client] 3秒后重新检查导航链接'); replaceNavigationLinks(); } }, 3000); }); } else { replaceHeaderBranding(); replaceNavigationLinks(); replaceCodeDomains(); // 只在必要时执行替换 - 3秒后再次检查 setTimeout(() => { if (!window._navLinksReplaced) { console.log('[Client] 3秒后重新检查导航链接'); replaceNavigationLinks(); } }, 3000); } // 增加一个MutationObserver来处理可能的动态元素加载 const observer = new MutationObserver(mutations => { // 检查是否导航区域有变化 const hasNavChanges = mutations.some(mutation => { // 检查是否存在header或nav元素变化 return Array.from(mutation.addedNodes).some(node => { if (node.nodeType === Node.ELEMENT_NODE) { // 检查是否是导航元素或其子元素 if (node.tagName === 'HEADER' || node.tagName === 'NAV' || node.querySelector('header, nav')) { return true; } // 检查是否在导航元素内部 let parent = node.parentElement; while (parent) { if (parent.tagName === 'HEADER' || parent.tagName === 'NAV') { return true; } parent = parent.parentElement; } } return false; }); }); // 只在导航区域有变化时执行替换 if (hasNavChanges) { // 重置替换状态,允许再次替换 window._navLinksReplaced = false; replaceHeaderBranding(); replaceNavigationLinks(); } }); // 开始观察document.body的变化,包括子节点 if (document.body) { observer.observe(document.body, { childList: true, subtree: true }); } else { document.addEventListener('DOMContentLoaded', () => { observer.observe(document.body, { childList: true, subtree: true }); }); } })(); ', response.body)\n return response\n\n @asyncio.coroutine\n def view(self, request):\n \"\"\" Debug Toolbar. \"\"\"\n auth = yield from self.authorize(request)\n if not auth:\n raise HTTPForbidden()\n\n request_id = request.match_info.get('request_id')\n state = self.history.get(request_id, None)\n\n response = yield from self.app.ps.jinja2.render(\n 'debugtoolbar/toolbar.html',\n debugtoolbar=self,\n state=state,\n static_path=self.cfg.prefix + 'static',\n panels=state and state.panels or [],\n global_panels=self.global_panels,\n request=state and state.request or None,\n )\n return Response(text=response, content_type='text/html')\n\n @asyncio.coroutine\n def authorize(self, request): # noqa\n \"\"\"Default authorization.\"\"\"\n return True\n\n def authorization(self, func):\n \"\"\"Define a authorization handler.\n\n ::\n debugtoolbar = muffin_debugtoolbar.Plugin()\n debugtoolbar.setup(app)\n\n @debugtoolbar.authorization\n def current_user_is_logged(request):\n user = yield from load_session(request)\n return user\n\n \"\"\"\n self.authorize = to_coroutine(func)\n return func\n\n @asyncio.coroutine\n def sse(self, request):\n \"\"\"SSE.\"\"\"\n response = Response(status=200)\n response.content_type = 'text/event-stream'\n response.text = ''\n active_request_id = request.GET.get('request_id')\n client_last_request_id = str(request.headers.get('Last-Event-Id', 0))\n if self.history:\n last_request_id = next(reversed(self.history))\n if not last_request_id == client_last_request_id:\n data = []\n for _id in reversed(self.history):\n data.append([\n _id, self.history[_id].json, 'active' if active_request_id == _id else ''])\n if data:\n response.text = U_SSE_PAYLOAD.format(last_request_id, json.dumps(data))\n\n return response\n\n @asyncio.coroutine\n\n @asyncio.coroutine\n\n @asyncio.coroutine\n\n\nclass DebugState:\n\n \"\"\" Store debug state. \"\"\"\n\n def __init__(self, app, request):\n \"\"\"Store the params.\"\"\"\n self.request = request\n self.status = 200\n self.panels = [Panel(app, request) for Panel in app.ps.debugtoolbar.cfg.panels]\n\n @property\n def id(self):\n \"\"\"Return state ID.\"\"\"\n return str(id(self))\n\n @property\n def json(self):\n \"\"\"Return JSON.\"\"\"\n return {'method': self.request.method,\n 'path': self.request.path,\n 'scheme': 'http',\n 'status_code': self.status}\n\n @asyncio.coroutine\n def process_response(self, response):\n \"\"\"Process response.\"\"\"\n for panel in self.panels:\n yield from panel.process_response(response)\n"},"input_ids":{"kind":"list like","value":[37811,27509,16984,5657,42636,526,15931,198,11748,30351,952,198,11748,1330,8019,198,11748,20966,21975,355,20966,198,11748,28686,13,6978,355,1034,198,11748,302,198,11748,25064,198,11748,334,27112,198,198,6738,27563,259,1330,357,198,220,220,220,18261,11,36125,43401,11,14626,16922,11,14626,22069,18453,11,284,62,10215,28399,11,14626,1890,37978,8,198,6738,27563,259,13,37390,1330,7308,37233,11,42636,16922,198,6738,27563,259,13,26791,1330,33918,198,198,6738,764,1330,13043,11,3384,4487,198,6738,764,83,18347,10141,13,83,18347,10141,1330,651,62,40546,1891,628,198,2200,62,33,33076,796,302,13,5589,576,7,65,6,27,11139,2618,29,3256,302,13,40,8,198,52,62,50,5188,62,4537,56,35613,796,366,312,25,1391,15,32239,710,1151,25,649,62,25927,59,358,1045,25,1391,16,32239,77,59,77,1,198,22083,40,23988,62,34,3727,1546,796,357,6200,11,25643,11,32591,11,30727,11,32747,11,38369,11,35617,8,628,198,6489,7340,1268,62,13252,2394,796,1034,13,15908,3672,7,404,13,397,2777,776,7,834,7753,834,4008,628,198,31,292,13361,952,13,10215,28399,198,4299,14257,25981,5657,62,27171,1574,62,69,9548,7,1324,11,21360,2599,198,220,220,220,37227,40786,31687,3504,1574,526,15931,198,220,220,220,288,18347,65,796,598,13,862,13,24442,25981,5657,628,220,220,220,2488,292,13361,952,13,10215,28399,198,220,220,220,825,14257,25981,5657,62,27171,1574,7,25927,2599,198,220,220,220,220,220,220,220,37227,34500,4873,284,3586,526,15931,628,220,220,220,220,220,220,220,1303,6822,329,14257,25981,5657,318,9343,329,262,2581,198,220,220,220,220,220,220,220,611,407,288,18347,65,13,37581,13,25616,393,597,7,8899,7,25927,13,6978,13,9688,2032,342,11,288,18347,65,13,37581,13,1069,9152,8,2599,198,220,220,220,220,220,220,220,220,220,220,220,1441,357,88,1164,422,21360,7,25927,4008,628,220,220,220,220,220,220,220,6569,62,4774,11,6569,62,634,796,2581,13,7645,634,13,1136,62,26086,62,10951,10786,431,13292,11537,198,220,220,220,220,220,220,220,329,2583,287,288,18347,65,13,37581,13,4774,82,25,198,220,220,220,220,220,220,220,220,220,220,220,611,20966,13,541,62,21975,7,47960,62,4774,8,287,20966,13,541,62,27349,7,4774,2599,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,2270,198,220,220,220,220,220,220,220,2073,25,198,220,220,220,220,220,220,220,220,220,220,220,1441,357,88,1164,422,21360,7,25927,4008,628,220,220,220,220,220,220,220,1303,20768,1096,257,14257,5219,329,262,2581,198,220,220,220,220,220,220,220,1181,796,31687,9012,7,1324,11,2581,8,198,220,220,220,220,220,220,220,288,18347,65,13,23569,58,5219,13,312,60,796,1181,198,220,220,220,220,220,220,220,4732,62,2032,23640,796,1181,13,37150,62,30281,7,30281,8,628,220,220,220,220,220,220,220,1303,6889,2882,198,220,220,220,220,220,220,220,1949,25,198,220,220,220,220,220,220,220,220,220,220,220,2882,796,7800,422,4732,62,2032,23640,7,30281,7,25927,4008,198,220,220,220,220,220,220,220,220,220,220,220,1181,13,13376,796,2882,13,13376,198,220,220,220,220,220,220,220,2845,14626,16922,355,2859,25,198,220,220,220,220,220,220,220,220,220,220,220,2882,796,2859,198,220,220,220,220,220,220,220,220,220,220,220,1181,13,13376,796,2882,13,13376,628,220,220,220,220,220,220,220,2845,35528,355,2859,25,198,220,220,220,220,220,220,220,220,220,220,220,1303,9363,12854,1891,329,555,38788,6631,198,220,220,220,220,220,220,220,220,220,220,220,1181,13,13376,796,5323,198,220,220,220,220,220,220,220,220,220,220,220,611,407,288,18347,65,13,37581,13,3849,984,62,41194,25,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,5298,198,220,220,220,220,220,220,220,220,220,220,220,256,65,796,651,62,40546,1891,7,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,7508,28,17597,13,41194,62,10951,22784,14267,28,16,11,905,62,30342,62,37805,28,25101,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,8856,62,10057,62,1069,11755,28,17821,11,2859,28,41194,8,198,220,220,220,220,220,220,220,220,220,220,220,288,18347,65,13,1069,11755,58,83,65,13,312,60,796,2581,17816,79,9945,83,62,83,65,20520,796,256,65,198,220,220,220,220,220,220,220,220,220,220,220,329,5739,287,256,65,13,37805,25,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,288,18347,65,13,37805,58,312,7,14535,15437,796,5739,198,220,220,220,220,220,220,220,220,220,220,220,2882,796,18261,7,5239,28,83,65,13,13287,62,12853,7,25927,828,2695,62,4906,11639,5239,14,6494,11537,628,220,220,220,220,220,220,220,1303,37127,2638,18941,12416,290,3359,281,27711,2443,351,257,2792,284,262,2496,13,198,220,220,220,220,220,220,220,611,288,18347,65,13,37581,13,3849,984,62,445,1060,82,290,2882,13,13376,287,23848,40,23988,62,34,3727,1546,3467,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,290,705,14749,6,287,2882,13,50145,25,628,220,220,220,220,220,220,220,220,220,220,220,2882,796,7800,422,598,13,862,13,18594,6592,17,13,13287,7,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,705,24442,25981,5657,14,445,1060,13,6494,3256,2882,28,26209,8,198,220,220,220,220,220,220,220,220,220,220,220,2882,796,18261,7,5239,28,26209,11,2695,62,4906,11639,5239,14,6494,11537,628,220,220,220,220,220,220,220,7800,422,1181,13,14681,62,26209,7,26209,8,628,220,220,220,220,220,220,220,611,318,39098,7,26209,11,18261,8,290,2882,13,11299,62,4906,6624,705,5239,14,6494,6,290,3467,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,4526,62,33,33076,13,12947,7,26209,13,2618,2599,198,220,220,220,220,220,220,220,220,220,220,220,1441,357,88,1164,422,288,18347,65,13,259,752,7,5219,11,2882,4008,628,220,220,220,220,220,220,220,1441,2882,628,220,220,220,1441,14257,25981,5657,62,27171,1574,628,198,4871,42636,7,14881,37233,2599,628,220,220,220,37227,464,13877,7822,526,15931,628,220,220,220,1438,796,705,24442,25981,5657,6,198,220,220,220,26235,796,1391,198,220,220,220,220,220,220,220,705,25616,10354,6407,11,198,220,220,220,220,220,220,220,705,4774,82,10354,37250,16799,13,15,13,15,13,16,6,4357,198,220,220,220,220,220,220,220,705,40290,10354,31051,62,24442,3256,198,220,220,220,220,220,220,220,705,3849,984,62,41194,10354,705,24442,3256,220,1303,14257,14,13812,14,25101,11,198,220,220,220,220,220,220,220,705,3849,984,62,445,1060,82,10354,6407,11,198,220,220,220,220,220,220,220,705,1069,9152,10354,685,4357,198,220,220,220,220,220,220,220,705,6839,1424,10354,685,198,220,220,220,220,220,220,220,220,220,220,220,13043,13,39681,27509,26639,11,198,220,220,220,220,220,220,220,220,220,220,220,13043,13,18453,53,945,27509,26639,11,198,220,220,220,220,220,220,220,220,220,220,220,13043,13,11187,2667,27509,26639,11,198,220,220,220,220,220,220,220,220,220,220,220,13043,13,2898,558,1891,27509,26639,11,198,220,220,220,220,220,220,220,16589,198,220,220,220,220,220,220,220,705,2860,1859,62,6839,1424,10354,685,4357,198,220,220,220,220,220,220,220,705,20541,62,6839,1424,10354,685,198,220,220,220,220,220,220,220,220,220,220,220,13043,13,49,448,274,27509,26639,11,198,220,220,220,220,220,220,220,220,220,220,220,13043,13,38149,27509,26639,11,198,220,220,220,220,220,220,220,220,220,220,220,13043,13,34621,86,3565,27509,26639,11,198,220,220,220,220,220,220,220,220,220,220,220,13043,13,45150,27509,26639,11,198,220,220,220,220,220,220,220,2361,198,220,220,220,1782,628,220,220,220,825,9058,7,944,11,598,2599,198,220,220,220,220,220,220,220,37227,40786,262,13877,290,8335,3586,526,15931,198,220,220,220,220,220,220,220,2208,7,37233,11,2116,737,40406,7,1324,8,628,220,220,220,220,220,220,220,611,705,18594,6592,17,6,407,287,598,13,37390,25,198,220,220,220,220,220,220,220,220,220,220,220,5298,42636,16922,10786,464,13877,4433,337,1648,259,12,41,259,6592,17,13877,6589,2637,8,628,220,220,220,220,220,220,220,2116,13,37581,13,40290,796,2116,13,37581,13,40290,13,81,36311,10786,14,11537,1343,31051,6,198,220,220,220,220,220,220,220,2116,13,37581,13,1069,9152,13,33295,7,944,13,37581,13,40290,8,628,220,220,220,220,220,220,220,1303,31122,14257,25981,5657,24019,198,220,220,220,220,220,220,220,598,13,862,13,18594,6592,17,13,37581,13,28243,62,11379,364,13,33295,7,404,13,22179,7,6489,7340,1268,62,13252,2394,11,705,11498,17041,6,4008,628,220,220,220,220,220,220,220,2116,13,37581,13,6839,1424,15853,1351,7,944,13,37581,13,2860,1859,62,6839,1424,8,198,220,220,220,220,220,220,220,13043,62,796,17635,198,220,220,220,220,220,220,220,329,6103,287,2116,13,37581,13,6839,1424,25,198,220,220,220,220,220,220,220,220,220,220,220,611,318,39098,7,35330,11,965,2599,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,953,11,4808,11,6103,796,6103,13,3911,653,7,10354,11537,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,953,796,1330,8019,13,11748,62,21412,7,4666,8,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,6103,796,5418,7,35330,393,705,27509,26639,3256,953,13,834,11600,834,8,198,220,220,220,220,220,220,220,220,220,220,220,13043,44807,33295,7,35330,8,198,220,220,220,220,220,220,220,2116,13,37581,13,6839,1424,796,13043,62,628,220,220,220,220,220,220,220,1303,31122,14257,25981,5657,9037,3696,198,220,220,220,220,220,220,220,598,13,472,353,13,30238,62,38629,7,45442,43401,7,198,220,220,220,220,220,220,220,220,220,220,220,705,24442,25981,5657,13,12708,3256,198,220,220,220,220,220,220,220,220,220,220,220,2116,13,37581,13,40290,1343,705,12708,14,3256,198,220,220,220,220,220,220,220,220,220,220,220,1034,13,22179,7,6489,7340,1268,62,13252,2394,11,705,12708,6,22305,628,220,220,220,220,220,220,220,598,13,30238,7,944,13,37581,13,40290,1343,705,82,325,3256,1438,11639,24442,25981,5657,13,82,325,6,5769,944,13,82,325,8,198,220,220,220,220,220,220,220,598,13,30238,7,198,220,220,220,220,220,220,220,220,220,220,220,2116,13,37581,13,40290,1343,705,1069,4516,3256,1438,11639,24442,25981,5657,13,1069,4516,6,5769,944,13,1069,4516,8,198,220,220,220,220,220,220,220,598,13,30238,7,198,220,220,220,220,220,220,220,220,220,220,220,2116,13,37581,13,40290,1343,705,41049,3256,1438,11639,24442,25981,5657,13,41049,6,5769,944,13,41049,8,198,220,220,220,220,220,220,220,598,13,30238,7,198,220,220,220,220,220,220,220,220,220,220,220,2116,13,37581,13,40290,1343,705,10459,3256,1438,11639,24442,25981,5657,13,10459,6,5769,944,13,10459,8,198,220,220,220,220,220,220,220,598,13,30238,7,198,220,220,220,220,220,220,220,220,220,220,220,2116,13,37581,13,40290,13,81,36311,10786,14,33809,198,220,220,220,220,220,220,220,220,220,220,220,2116,13,37581,13,40290,11,198,220,220,220,220,220,220,220,220,220,220,220,2116,13,37581,13,40290,1343,705,90,25927,62,312,92,3256,1438,11639,24442,25981,5657,13,25927,6,5769,944,13,1177,8,628,220,220,220,220,220,220,220,598,17816,24442,25981,5657,20520,796,23884,198,220,220,220,220,220,220,220,598,17816,24442,25981,5657,6,7131,6,79,9945,83,62,30001,20520,796,334,27112,13,12303,312,19,22446,33095,198,220,220,220,220,220,220,220,2116,13,23569,796,598,17816,24442,25981,5657,6,7131,6,23569,20520,796,3384,4487,13,18122,7,1120,8,198,220,220,220,220,220,220,220,2116,13,1069,11755,796,598,17816,24442,25981,5657,6,7131,6,1069,11755,20520,796,3384,4487,13,18122,7,1120,8,198,220,220,220,220,220,220,220,2116,13,37805,796,598,17816,24442,25981,5657,6,7131,6,37805,20520,796,3384,4487,13,18122,7,3064,8,628,220,220,220,2488,292,13361,952,13,10215,28399,198,220,220,220,825,923,7,944,11,598,2599,198,220,220,220,220,220,220,220,37227,7253,3586,13,37227,198,220,220,220,220,220,220,220,598,13,27171,86,3565,13,28463,7,15,11,14257,25981,5657,62,27171,1574,62,69,9548,8,198,220,220,220,220,220,220,220,2116,13,20541,62,6839,1424,796,685,26639,7,944,13,1324,8,329,18810,287,2116,13,37581,13,20541,62,6839,1424,60,628,220,220,220,2488,292,13361,952,13,10215,28399,198,220,220,220,825,8677,7,944,11,1181,11,2882,2599,198,220,220,220,220,220,220,220,37227,554,752,31687,16984,5657,2438,284,2882,1767,13,37227,198,220,220,220,220,220,220,220,27711,796,7800,422,2116,13,1324,13,862,13,18594,6592,17,13,13287,7,198,220,220,220,220,220,220,220,220,220,220,220,705,24442,25981,5657,14,259,752,13,6494,3256,198,220,220,220,220,220,220,220,220,220,220,220,9037,62,6978,28,944,13,37581,13,40290,1343,705,12708,3256,198,220,220,220,220,220,220,220,220,220,220,220,50149,62,6371,28,944,13,37581,13,40290,1343,1181,13,312,11,198,220,220,220,220,220,220,220,1267,198,220,220,220,220,220,220,220,27711,796,27711,13,268,8189,7,5219,13,25927,13,354,945,316,393,705,40477,12,23,11537,198,220,220,220,220,220,220,220,2882,13,2618,796,4526,62,33,33076,13,7266,7,6494,1343,275,6,3556,2618,29,3256,2882,13,2618,8,198,220,220,220,220,220,220,220,1441,2882,628,220,220,220,2488,292,13361,952,13,10215,28399,198,220,220,220,825,1570,7,944,11,2581,2599,198,220,220,220,220,220,220,220,37227,31687,16984,5657,13,37227,198,220,220,220,220,220,220,220,6284,796,7800,422,2116,13,9800,1096,7,25927,8,198,220,220,220,220,220,220,220,611,407,6284,25,198,220,220,220,220,220,220,220,220,220,220,220,5298,14626,1890,37978,3419,628,220,220,220,220,220,220,220,2581,62,312,796,2581,13,15699,62,10951,13,1136,10786,25927,62,312,11537,198,220,220,220,220,220,220,220,1181,796,2116,13,23569,13,1136,7,25927,62,312,11,6045,8,628,220,220,220,220,220,220,220,2882,796,7800,422,2116,13,1324,13,862,13,18594,6592,17,13,13287,7,198,220,220,220,220,220,220,220,220,220,220,220,705,24442,25981,5657,14,25981,5657,13,6494,3256,198,220,220,220,220,220,220,220,220,220,220,220,14257,25981,5657,28,944,11,198,220,220,220,220,220,220,220,220,220,220,220,1181,28,5219,11,198,220,220,220,220,220,220,220,220,220,220,220,9037,62,6978,28,944,13,37581,13,40290,1343,705,12708,3256,198,220,220,220,220,220,220,220,220,220,220,220,13043,28,5219,290,1181,13,6839,1424,393,685,4357,198,220,220,220,220,220,220,220,220,220,220,220,3298,62,6839,1424,28,944,13,20541,62,6839,1424,11,198,220,220,220,220,220,220,220,220,220,220,220,2581,28,5219,290,1181,13,25927,393,6045,11,198,220,220,220,220,220,220,220,1267,198,220,220,220,220,220,220,220,1441,18261,7,5239,28,26209,11,2695,62,4906,11639,5239,14,6494,11537,628,220,220,220,2488,292,13361,952,13,10215,28399,198,220,220,220,825,29145,7,944,11,2581,2599,220,1303,645,20402,198,220,220,220,220,220,220,220,37227,19463,19601,526,15931,198,220,220,220,220,220,220,220,1441,6407,628,220,220,220,825,19601,7,944,11,25439,2599,198,220,220,220,220,220,220,220,37227,7469,500,257,19601,21360,13,628,220,220,220,220,220,220,220,7904,198,220,220,220,220,220,220,220,220,220,220,220,14257,25981,5657,796,27563,259,62,24442,25981,5657,13,37233,3419,198,220,220,220,220,220,220,220,220,220,220,220,14257,25981,5657,13,40406,7,1324,8,628,220,220,220,220,220,220,220,220,220,220,220,2488,24442,25981,5657,13,9800,1634,198,220,220,220,220,220,220,220,220,220,220,220,825,1459,62,7220,62,271,62,6404,2004,7,25927,2599,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,2836,796,7800,422,3440,62,29891,7,25927,8,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1441,2836,628,220,220,220,220,220,220,220,37227,198,220,220,220,220,220,220,220,2116,13,9800,1096,796,284,62,10215,28399,7,20786,8,198,220,220,220,220,220,220,220,1441,25439,628,220,220,220,2488,292,13361,952,13,10215,28399,198,220,220,220,825,264,325,7,944,11,2581,2599,198,220,220,220,220,220,220,220,37227,50,5188,526,15931,198,220,220,220,220,220,220,220,2882,796,18261,7,13376,28,2167,8,198,220,220,220,220,220,220,220,2882,13,11299,62,4906,796,705,5239,14,15596,12,5532,6,198,220,220,220,220,220,220,220,2882,13,5239,796,10148,198,220,220,220,220,220,220,220,4075,62,25927,62,312,796,2581,13,18851,13,1136,10786,25927,62,312,11537,198,220,220,220,220,220,220,220,5456,62,12957,62,25927,62,312,796,965,7,25927,13,50145,13,1136,10786,5956,12,9237,12,7390,3256,657,4008,198,220,220,220,220,220,220,220,611,2116,13,23569,25,198,220,220,220,220,220,220,220,220,220,220,220,938,62,25927,62,312,796,1306,7,260,690,276,7,944,13,23569,4008,198,220,220,220,220,220,220,220,220,220,220,220,611,407,938,62,25927,62,312,6624,5456,62,12957,62,25927,62,312,25,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1366,796,17635,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,329,4808,312,287,17687,7,944,13,23569,2599,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1366,13,33295,26933,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,4808,312,11,2116,13,23569,29795,312,4083,17752,11,705,5275,6,611,4075,62,25927,62,312,6624,4808,312,2073,10148,12962,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,611,1366,25,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,2882,13,5239,796,471,62,50,5188,62,4537,56,35613,13,18982,7,12957,62,25927,62,312,11,33918,13,67,8142,7,7890,4008,628,220,220,220,220,220,220,220,1441,2882,628,220,220,220,2488,292,13361,952,13,10215,28399,628,220,220,220,2488,292,13361,952,13,10215,28399,628,220,220,220,2488,292,13361,952,13,10215,28399,628,198,4871,31687,9012,25,628,220,220,220,37227,9363,14257,1181,13,37227,628,220,220,220,825,11593,15003,834,7,944,11,598,11,2581,2599,198,220,220,220,220,220,220,220,37227,22658,262,42287,526,15931,198,220,220,220,220,220,220,220,2116,13,25927,796,2581,198,220,220,220,220,220,220,220,2116,13,13376,796,939,198,220,220,220,220,220,220,220,2116,13,6839,1424,796,685,26639,7,1324,11,2581,8,329,18810,287,598,13,862,13,24442,25981,5657,13,37581,13,6839,1424,60,628,220,220,220,2488,26745,198,220,220,220,825,4686,7,944,2599,198,220,220,220,220,220,220,220,37227,13615,1181,4522,526,15931,198,220,220,220,220,220,220,220,1441,965,7,312,7,944,4008,628,220,220,220,2488,26745,198,220,220,220,825,33918,7,944,2599,198,220,220,220,220,220,220,220,37227,13615,19449,526,15931,198,220,220,220,220,220,220,220,1441,1391,6,24396,10354,2116,13,25927,13,24396,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,705,6978,10354,2116,13,25927,13,6978,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,705,15952,1326,10354,705,4023,3256,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,705,13376,62,8189,10354,2116,13,13376,92,628,220,220,220,2488,292,13361,952,13,10215,28399,198,220,220,220,825,1429,62,26209,7,944,11,2882,2599,198,220,220,220,220,220,220,220,37227,18709,2882,526,15931,198,220,220,220,220,220,220,220,329,6103,287,2116,13,6839,1424,25,198,220,220,220,220,220,220,220,220,220,220,220,7800,422,6103,13,14681,62,26209,7,26209,8,198],"string":"[\n 37811,\n 27509,\n 16984,\n 5657,\n 42636,\n 526,\n 15931,\n 198,\n 11748,\n 30351,\n 952,\n 198,\n 11748,\n 1330,\n 8019,\n 198,\n 11748,\n 20966,\n 21975,\n 355,\n 20966,\n 198,\n 11748,\n 28686,\n 13,\n 6978,\n 355,\n 1034,\n 198,\n 11748,\n 302,\n 198,\n 11748,\n 25064,\n 198,\n 11748,\n 334,\n 27112,\n 198,\n 198,\n 6738,\n 27563,\n 259,\n 1330,\n 357,\n 198,\n 220,\n 220,\n 220,\n 18261,\n 11,\n 36125,\n 43401,\n 11,\n 14626,\n 16922,\n 11,\n 14626,\n 22069,\n 18453,\n 11,\n 284,\n 62,\n 10215,\n 28399,\n 11,\n 14626,\n 1890,\n 37978,\n 8,\n 198,\n 6738,\n 27563,\n 259,\n 13,\n 37390,\n 1330,\n 7308,\n 37233,\n 11,\n 42636,\n 16922,\n 198,\n 6738,\n 27563,\n 259,\n 13,\n 26791,\n 1330,\n 33918,\n 198,\n 198,\n 6738,\n 764,\n 1330,\n 13043,\n 11,\n 3384,\n 4487,\n 198,\n 6738,\n 764,\n 83,\n 18347,\n 10141,\n 13,\n 83,\n 18347,\n 10141,\n 1330,\n 651,\n 62,\n 40546,\n 1891,\n 628,\n 198,\n 2200,\n 62,\n 33,\n 33076,\n 796,\n 302,\n 13,\n 5589,\n 576,\n 7,\n 65,\n 6,\n 27,\n 11139,\n 2618,\n 29,\n 3256,\n 302,\n 13,\n 40,\n 8,\n 198,\n 52,\n 62,\n 50,\n 5188,\n 62,\n 4537,\n 56,\n 35613,\n 796,\n 366,\n 312,\n 25,\n 1391,\n 15,\n 32239,\n 710,\n 1151,\n 25,\n 649,\n 62,\n 25927,\n 59,\n 358,\n 1045,\n 25,\n 1391,\n 16,\n 32239,\n 77,\n 59,\n 77,\n 1,\n 198,\n 22083,\n 40,\n 23988,\n 62,\n 34,\n 3727,\n 1546,\n 796,\n 357,\n 6200,\n 11,\n 25643,\n 11,\n 32591,\n 11,\n 30727,\n 11,\n 32747,\n 11,\n 38369,\n 11,\n 35617,\n 8,\n 628,\n 198,\n 6489,\n 7340,\n 1268,\n 62,\n 13252,\n 2394,\n 796,\n 1034,\n 13,\n 15908,\n 3672,\n 7,\n 404,\n 13,\n 397,\n 2777,\n 776,\n 7,\n 834,\n 7753,\n 834,\n 4008,\n 628,\n 198,\n 31,\n 292,\n 13361,\n 952,\n 13,\n 10215,\n 28399,\n 198,\n 4299,\n 14257,\n 25981,\n 5657,\n 62,\n 27171,\n 1574,\n 62,\n 69,\n 9548,\n 7,\n 1324,\n 11,\n 21360,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 40786,\n 31687,\n 3504,\n 1574,\n 526,\n 15931,\n 198,\n 220,\n 220,\n 220,\n 288,\n 18347,\n 65,\n 796,\n 598,\n 13,\n 862,\n 13,\n 24442,\n 25981,\n 5657,\n 628,\n 220,\n 220,\n 220,\n 2488,\n 292,\n 13361,\n 952,\n 13,\n 10215,\n 28399,\n 198,\n 220,\n 220,\n 220,\n 825,\n 14257,\n 25981,\n 5657,\n 62,\n 27171,\n 1574,\n 7,\n 25927,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 34500,\n 4873,\n 284,\n 3586,\n 526,\n 15931,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 6822,\n 329,\n 14257,\n 25981,\n 5657,\n 318,\n 9343,\n 329,\n 262,\n 2581,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 407,\n 288,\n 18347,\n 65,\n 13,\n 37581,\n 13,\n 25616,\n 393,\n 597,\n 7,\n 8899,\n 7,\n 25927,\n 13,\n 6978,\n 13,\n 9688,\n 2032,\n 342,\n 11,\n 288,\n 18347,\n 65,\n 13,\n 37581,\n 13,\n 1069,\n 9152,\n 8,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1441,\n 357,\n 88,\n 1164,\n 422,\n 21360,\n 7,\n 25927,\n 4008,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 6569,\n 62,\n 4774,\n 11,\n 6569,\n 62,\n 634,\n 796,\n 2581,\n 13,\n 7645,\n 634,\n 13,\n 1136,\n 62,\n 26086,\n 62,\n 10951,\n 10786,\n 431,\n 13292,\n 11537,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 329,\n 2583,\n 287,\n 288,\n 18347,\n 65,\n 13,\n 37581,\n 13,\n 4774,\n 82,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 20966,\n 13,\n 541,\n 62,\n 21975,\n 7,\n 47960,\n 62,\n 4774,\n 8,\n 287,\n 20966,\n 13,\n 541,\n 62,\n 27349,\n 7,\n 4774,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2270,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2073,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1441,\n 357,\n 88,\n 1164,\n 422,\n 21360,\n 7,\n 25927,\n 4008,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 20768,\n 1096,\n 257,\n 14257,\n 5219,\n 329,\n 262,\n 2581,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1181,\n 796,\n 31687,\n 9012,\n 7,\n 1324,\n 11,\n 2581,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 288,\n 18347,\n 65,\n 13,\n 23569,\n 58,\n 5219,\n 13,\n 312,\n 60,\n 796,\n 1181,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 4732,\n 62,\n 2032,\n 23640,\n 796,\n 1181,\n 13,\n 37150,\n 62,\n 30281,\n 7,\n 30281,\n 8,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 6889,\n 2882,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1949,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2882,\n 796,\n 7800,\n 422,\n 4732,\n 62,\n 2032,\n 23640,\n 7,\n 30281,\n 7,\n 25927,\n 4008,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1181,\n 13,\n 13376,\n 796,\n 2882,\n 13,\n 13376,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2845,\n 14626,\n 16922,\n 355,\n 2859,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2882,\n 796,\n 2859,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1181,\n 13,\n 13376,\n 796,\n 2882,\n 13,\n 13376,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2845,\n 35528,\n 355,\n 2859,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 9363,\n 12854,\n 1891,\n 329,\n 555,\n 38788,\n 6631,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1181,\n 13,\n 13376,\n 796,\n 5323,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 407,\n 288,\n 18347,\n 65,\n 13,\n 37581,\n 13,\n 3849,\n 984,\n 62,\n 41194,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 5298,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 256,\n 65,\n 796,\n 651,\n 62,\n 40546,\n 1891,\n 7,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 7508,\n 28,\n 17597,\n 13,\n 41194,\n 62,\n 10951,\n 22784,\n 14267,\n 28,\n 16,\n 11,\n 905,\n 62,\n 30342,\n 62,\n 37805,\n 28,\n 25101,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 8856,\n 62,\n 10057,\n 62,\n 1069,\n 11755,\n 28,\n 17821,\n 11,\n 2859,\n 28,\n 41194,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 288,\n 18347,\n 65,\n 13,\n 1069,\n 11755,\n 58,\n 83,\n 65,\n 13,\n 312,\n 60,\n 796,\n 2581,\n 17816,\n 79,\n 9945,\n 83,\n 62,\n 83,\n 65,\n 20520,\n 796,\n 256,\n 65,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 329,\n 5739,\n 287,\n 256,\n 65,\n 13,\n 37805,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 288,\n 18347,\n 65,\n 13,\n 37805,\n 58,\n 312,\n 7,\n 14535,\n 15437,\n 796,\n 5739,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2882,\n 796,\n 18261,\n 7,\n 5239,\n 28,\n 83,\n 65,\n 13,\n 13287,\n 62,\n 12853,\n 7,\n 25927,\n 828,\n 2695,\n 62,\n 4906,\n 11639,\n 5239,\n 14,\n 6494,\n 11537,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 37127,\n 2638,\n 18941,\n 12416,\n 290,\n 3359,\n 281,\n 27711,\n 2443,\n 351,\n 257,\n 2792,\n 284,\n 262,\n 2496,\n 13,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 288,\n 18347,\n 65,\n 13,\n 37581,\n 13,\n 3849,\n 984,\n 62,\n 445,\n 1060,\n 82,\n 290,\n 2882,\n 13,\n 13376,\n 287,\n 23848,\n 40,\n 23988,\n 62,\n 34,\n 3727,\n 1546,\n 3467,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 290,\n 705,\n 14749,\n 6,\n 287,\n 2882,\n 13,\n 50145,\n 25,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2882,\n 796,\n 7800,\n 422,\n 598,\n 13,\n 862,\n 13,\n 18594,\n 6592,\n 17,\n 13,\n 13287,\n 7,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 705,\n 24442,\n 25981,\n 5657,\n 14,\n 445,\n 1060,\n 13,\n 6494,\n 3256,\n 2882,\n 28,\n 26209,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2882,\n 796,\n 18261,\n 7,\n 5239,\n 28,\n 26209,\n 11,\n 2695,\n 62,\n 4906,\n 11639,\n 5239,\n 14,\n 6494,\n 11537,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 7800,\n 422,\n 1181,\n 13,\n 14681,\n 62,\n 26209,\n 7,\n 26209,\n 8,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 318,\n 39098,\n 7,\n 26209,\n 11,\n 18261,\n 8,\n 290,\n 2882,\n 13,\n 11299,\n 62,\n 4906,\n 6624,\n 705,\n 5239,\n 14,\n 6494,\n 6,\n 290,\n 3467,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 4526,\n 62,\n 33,\n 33076,\n 13,\n 12947,\n 7,\n 26209,\n 13,\n 2618,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1441,\n 357,\n 88,\n 1164,\n 422,\n 288,\n 18347,\n 65,\n 13,\n 259,\n 752,\n 7,\n 5219,\n 11,\n 2882,\n 4008,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1441,\n 2882,\n 628,\n 220,\n 220,\n 220,\n 1441,\n 14257,\n 25981,\n 5657,\n 62,\n 27171,\n 1574,\n 628,\n 198,\n 4871,\n 42636,\n 7,\n 14881,\n 37233,\n 2599,\n 628,\n 220,\n 220,\n 220,\n 37227,\n 464,\n 13877,\n 7822,\n 526,\n 15931,\n 628,\n 220,\n 220,\n 220,\n 1438,\n 796,\n 705,\n 24442,\n 25981,\n 5657,\n 6,\n 198,\n 220,\n 220,\n 220,\n 26235,\n 796,\n 1391,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 705,\n 25616,\n 10354,\n 6407,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 705,\n 4774,\n 82,\n 10354,\n 37250,\n 16799,\n 13,\n 15,\n 13,\n 15,\n 13,\n 16,\n 6,\n 4357,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 705,\n 40290,\n 10354,\n 31051,\n 62,\n 24442,\n 3256,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 705,\n 3849,\n 984,\n 62,\n 41194,\n 10354,\n 705,\n 24442,\n 3256,\n 220,\n 1303,\n 14257,\n 14,\n 13812,\n 14,\n 25101,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 705,\n 3849,\n 984,\n 62,\n 445,\n 1060,\n 82,\n 10354,\n 6407,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 705,\n 1069,\n 9152,\n 10354,\n 685,\n 4357,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 705,\n 6839,\n 1424,\n 10354,\n 685,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 13043,\n 13,\n 39681,\n 27509,\n 26639,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 13043,\n 13,\n 18453,\n 53,\n 945,\n 27509,\n 26639,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 13043,\n 13,\n 11187,\n 2667,\n 27509,\n 26639,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 13043,\n 13,\n 2898,\n 558,\n 1891,\n 27509,\n 26639,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 16589,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 705,\n 2860,\n 1859,\n 62,\n 6839,\n 1424,\n 10354,\n 685,\n 4357,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 705,\n 20541,\n 62,\n 6839,\n 1424,\n 10354,\n 685,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 13043,\n 13,\n 49,\n 448,\n 274,\n 27509,\n 26639,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 13043,\n 13,\n 38149,\n 27509,\n 26639,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 13043,\n 13,\n 34621,\n 86,\n 3565,\n 27509,\n 26639,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 13043,\n 13,\n 45150,\n 27509,\n 26639,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2361,\n 198,\n 220,\n 220,\n 220,\n 1782,\n 628,\n 220,\n 220,\n 220,\n 825,\n 9058,\n 7,\n 944,\n 11,\n 598,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 40786,\n 262,\n 13877,\n 290,\n 8335,\n 3586,\n 526,\n 15931,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2208,\n 7,\n 37233,\n 11,\n 2116,\n 737,\n 40406,\n 7,\n 1324,\n 8,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 705,\n 18594,\n 6592,\n 17,\n 6,\n 407,\n 287,\n 598,\n 13,\n 37390,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 5298,\n 42636,\n 16922,\n 10786,\n 464,\n 13877,\n 4433,\n 337,\n 1648,\n 259,\n 12,\n 41,\n 259,\n 6592,\n 17,\n 13877,\n 6589,\n 2637,\n 8,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13,\n 37581,\n 13,\n 40290,\n 796,\n 2116,\n 13,\n 37581,\n 13,\n 40290,\n 13,\n 81,\n 36311,\n 10786,\n 14,\n 11537,\n 1343,\n 31051,\n 6,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13,\n 37581,\n 13,\n 1069,\n 9152,\n 13,\n 33295,\n 7,\n 944,\n 13,\n 37581,\n 13,\n 40290,\n 8,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 31122,\n 14257,\n 25981,\n 5657,\n 24019,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 598,\n 13,\n 862,\n 13,\n 18594,\n 6592,\n 17,\n 13,\n 37581,\n 13,\n 28243,\n 62,\n 11379,\n 364,\n 13,\n 33295,\n 7,\n 404,\n 13,\n 22179,\n 7,\n 6489,\n 7340,\n 1268,\n 62,\n 13252,\n 2394,\n 11,\n 705,\n 11498,\n 17041,\n 6,\n 4008,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13,\n 37581,\n 13,\n 6839,\n 1424,\n 15853,\n 1351,\n 7,\n 944,\n 13,\n 37581,\n 13,\n 2860,\n 1859,\n 62,\n 6839,\n 1424,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 13043,\n 62,\n 796,\n 17635,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 329,\n 6103,\n 287,\n 2116,\n 13,\n 37581,\n 13,\n 6839,\n 1424,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 318,\n 39098,\n 7,\n 35330,\n 11,\n 965,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 953,\n 11,\n 4808,\n 11,\n 6103,\n 796,\n 6103,\n 13,\n 3911,\n 653,\n 7,\n 10354,\n 11537,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 953,\n 796,\n 1330,\n 8019,\n 13,\n 11748,\n 62,\n 21412,\n 7,\n 4666,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 6103,\n 796,\n 5418,\n 7,\n 35330,\n 393,\n 705,\n 27509,\n 26639,\n 3256,\n 953,\n 13,\n 834,\n 11600,\n 834,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 13043,\n 44807,\n 33295,\n 7,\n 35330,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13,\n 37581,\n 13,\n 6839,\n 1424,\n 796,\n 13043,\n 62,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 31122,\n 14257,\n 25981,\n 5657,\n 9037,\n 3696,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 598,\n 13,\n 472,\n 353,\n 13,\n 30238,\n 62,\n 38629,\n 7,\n 45442,\n 43401,\n 7,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 705,\n 24442,\n 25981,\n 5657,\n 13,\n 12708,\n 3256,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13,\n 37581,\n 13,\n 40290,\n 1343,\n 705,\n 12708,\n 14,\n 3256,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1034,\n 13,\n 22179,\n 7,\n 6489,\n 7340,\n 1268,\n 62,\n 13252,\n 2394,\n 11,\n 705,\n 12708,\n 6,\n 22305,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 598,\n 13,\n 30238,\n 7,\n 944,\n 13,\n 37581,\n 13,\n 40290,\n 1343,\n 705,\n 82,\n 325,\n 3256,\n 1438,\n 11639,\n 24442,\n 25981,\n 5657,\n 13,\n 82,\n 325,\n 6,\n 5769,\n 944,\n 13,\n 82,\n 325,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 598,\n 13,\n 30238,\n 7,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13,\n 37581,\n 13,\n 40290,\n 1343,\n 705,\n 1069,\n 4516,\n 3256,\n 1438,\n 11639,\n 24442,\n 25981,\n 5657,\n 13,\n 1069,\n 4516,\n 6,\n 5769,\n 944,\n 13,\n 1069,\n 4516,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 598,\n 13,\n 30238,\n 7,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13,\n 37581,\n 13,\n 40290,\n 1343,\n 705,\n 41049,\n 3256,\n 1438,\n 11639,\n 24442,\n 25981,\n 5657,\n 13,\n 41049,\n 6,\n 5769,\n 944,\n 13,\n 41049,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 598,\n 13,\n 30238,\n 7,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13,\n 37581,\n 13,\n 40290,\n 1343,\n 705,\n 10459,\n 3256,\n 1438,\n 11639,\n 24442,\n 25981,\n 5657,\n 13,\n 10459,\n 6,\n 5769,\n 944,\n 13,\n 10459,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 598,\n 13,\n 30238,\n 7,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13,\n 37581,\n 13,\n 40290,\n 13,\n 81,\n 36311,\n 10786,\n 14,\n 33809,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13,\n 37581,\n 13,\n 40290,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13,\n 37581,\n 13,\n 40290,\n 1343,\n 705,\n 90,\n 25927,\n 62,\n 312,\n 92,\n 3256,\n 1438,\n 11639,\n 24442,\n 25981,\n 5657,\n 13,\n 25927,\n 6,\n 5769,\n 944,\n 13,\n 1177,\n 8,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 598,\n 17816,\n 24442,\n 25981,\n 5657,\n 20520,\n 796,\n 23884,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 598,\n 17816,\n 24442,\n 25981,\n 5657,\n 6,\n 7131,\n 6,\n 79,\n 9945,\n 83,\n 62,\n 30001,\n 20520,\n 796,\n 334,\n 27112,\n 13,\n 12303,\n 312,\n 19,\n 22446,\n 33095,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13,\n 23569,\n 796,\n 598,\n 17816,\n 24442,\n 25981,\n 5657,\n 6,\n 7131,\n 6,\n 23569,\n 20520,\n 796,\n 3384,\n 4487,\n 13,\n 18122,\n 7,\n 1120,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13,\n 1069,\n 11755,\n 796,\n 598,\n 17816,\n 24442,\n 25981,\n 5657,\n 6,\n 7131,\n 6,\n 1069,\n 11755,\n 20520,\n 796,\n 3384,\n 4487,\n 13,\n 18122,\n 7,\n 1120,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13,\n 37805,\n 796,\n 598,\n 17816,\n 24442,\n 25981,\n 5657,\n 6,\n 7131,\n 6,\n 37805,\n 20520,\n 796,\n 3384,\n 4487,\n 13,\n 18122,\n 7,\n 3064,\n 8,\n 628,\n 220,\n 220,\n 220,\n 2488,\n 292,\n 13361,\n 952,\n 13,\n 10215,\n 28399,\n 198,\n 220,\n 220,\n 220,\n 825,\n 923,\n 7,\n 944,\n 11,\n 598,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 7253,\n 3586,\n 13,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 598,\n 13,\n 27171,\n 86,\n 3565,\n 13,\n 28463,\n 7,\n 15,\n 11,\n 14257,\n 25981,\n 5657,\n 62,\n 27171,\n 1574,\n 62,\n 69,\n 9548,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13,\n 20541,\n 62,\n 6839,\n 1424,\n 796,\n 685,\n 26639,\n 7,\n 944,\n 13,\n 1324,\n 8,\n 329,\n 18810,\n 287,\n 2116,\n 13,\n 37581,\n 13,\n 20541,\n 62,\n 6839,\n 1424,\n 60,\n 628,\n 220,\n 220,\n 220,\n 2488,\n 292,\n 13361,\n 952,\n 13,\n 10215,\n 28399,\n 198,\n 220,\n 220,\n 220,\n 825,\n 8677,\n 7,\n 944,\n 11,\n 1181,\n 11,\n 2882,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 554,\n 752,\n 31687,\n 16984,\n 5657,\n 2438,\n 284,\n 2882,\n 1767,\n 13,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 27711,\n 796,\n 7800,\n 422,\n 2116,\n 13,\n 1324,\n 13,\n 862,\n 13,\n 18594,\n 6592,\n 17,\n 13,\n 13287,\n 7,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 705,\n 24442,\n 25981,\n 5657,\n 14,\n 259,\n 752,\n 13,\n 6494,\n 3256,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 9037,\n 62,\n 6978,\n 28,\n 944,\n 13,\n 37581,\n 13,\n 40290,\n 1343,\n 705,\n 12708,\n 3256,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 50149,\n 62,\n 6371,\n 28,\n 944,\n 13,\n 37581,\n 13,\n 40290,\n 1343,\n 1181,\n 13,\n 312,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1267,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 27711,\n 796,\n 27711,\n 13,\n 268,\n 8189,\n 7,\n 5219,\n 13,\n 25927,\n 13,\n 354,\n 945,\n 316,\n 393,\n 705,\n 40477,\n 12,\n 23,\n 11537,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2882,\n 13,\n 2618,\n 796,\n 4526,\n 62,\n 33,\n 33076,\n 13,\n 7266,\n 7,\n 6494,\n 1343,\n 275,\n 6,\n 3556,\n 2618,\n 29,\n 3256,\n 2882,\n 13,\n 2618,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1441,\n 2882,\n 628,\n 220,\n 220,\n 220,\n 2488,\n 292,\n 13361,\n 952,\n 13,\n 10215,\n 28399,\n 198,\n 220,\n 220,\n 220,\n 825,\n 1570,\n 7,\n 944,\n 11,\n 2581,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 31687,\n 16984,\n 5657,\n 13,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 6284,\n 796,\n 7800,\n 422,\n 2116,\n 13,\n 9800,\n 1096,\n 7,\n 25927,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 407,\n 6284,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 5298,\n 14626,\n 1890,\n 37978,\n 3419,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2581,\n 62,\n 312,\n 796,\n 2581,\n 13,\n 15699,\n 62,\n 10951,\n 13,\n 1136,\n 10786,\n 25927,\n 62,\n 312,\n 11537,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1181,\n 796,\n 2116,\n 13,\n 23569,\n 13,\n 1136,\n 7,\n 25927,\n 62,\n 312,\n 11,\n 6045,\n 8,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2882,\n 796,\n 7800,\n 422,\n 2116,\n 13,\n 1324,\n 13,\n 862,\n 13,\n 18594,\n 6592,\n 17,\n 13,\n 13287,\n 7,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 705,\n 24442,\n 25981,\n 5657,\n 14,\n 25981,\n 5657,\n 13,\n 6494,\n 3256,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 14257,\n 25981,\n 5657,\n 28,\n 944,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1181,\n 28,\n 5219,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 9037,\n 62,\n 6978,\n 28,\n 944,\n 13,\n 37581,\n 13,\n 40290,\n 1343,\n 705,\n 12708,\n 3256,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 13043,\n 28,\n 5219,\n 290,\n 1181,\n 13,\n 6839,\n 1424,\n 393,\n 685,\n 4357,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3298,\n 62,\n 6839,\n 1424,\n 28,\n 944,\n 13,\n 20541,\n 62,\n 6839,\n 1424,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2581,\n 28,\n 5219,\n 290,\n 1181,\n 13,\n 25927,\n 393,\n 6045,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1267,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1441,\n 18261,\n 7,\n 5239,\n 28,\n 26209,\n 11,\n 2695,\n 62,\n 4906,\n 11639,\n 5239,\n 14,\n 6494,\n 11537,\n 628,\n 220,\n 220,\n 220,\n 2488,\n 292,\n 13361,\n 952,\n 13,\n 10215,\n 28399,\n 198,\n 220,\n 220,\n 220,\n 825,\n 29145,\n 7,\n 944,\n 11,\n 2581,\n 2599,\n 220,\n 1303,\n 645,\n 20402,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 19463,\n 19601,\n 526,\n 15931,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1441,\n 6407,\n 628,\n 220,\n 220,\n 220,\n 825,\n 19601,\n 7,\n 944,\n 11,\n 25439,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 7469,\n 500,\n 257,\n 19601,\n 21360,\n 13,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 7904,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 14257,\n 25981,\n 5657,\n 796,\n 27563,\n 259,\n 62,\n 24442,\n 25981,\n 5657,\n 13,\n 37233,\n 3419,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 14257,\n 25981,\n 5657,\n 13,\n 40406,\n 7,\n 1324,\n 8,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2488,\n 24442,\n 25981,\n 5657,\n 13,\n 9800,\n 1634,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 825,\n 1459,\n 62,\n 7220,\n 62,\n 271,\n 62,\n 6404,\n 2004,\n 7,\n 25927,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2836,\n 796,\n 7800,\n 422,\n 3440,\n 62,\n 29891,\n 7,\n 25927,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1441,\n 2836,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13,\n 9800,\n 1096,\n 796,\n 284,\n 62,\n 10215,\n 28399,\n 7,\n 20786,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1441,\n 25439,\n 628,\n 220,\n 220,\n 220,\n 2488,\n 292,\n 13361,\n 952,\n 13,\n 10215,\n 28399,\n 198,\n 220,\n 220,\n 220,\n 825,\n 264,\n 325,\n 7,\n 944,\n 11,\n 2581,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 50,\n 5188,\n 526,\n 15931,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2882,\n 796,\n 18261,\n 7,\n 13376,\n 28,\n 2167,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2882,\n 13,\n 11299,\n 62,\n 4906,\n 796,\n 705,\n 5239,\n 14,\n 15596,\n 12,\n 5532,\n 6,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2882,\n 13,\n 5239,\n 796,\n 10148,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 4075,\n 62,\n 25927,\n 62,\n 312,\n 796,\n 2581,\n 13,\n 18851,\n 13,\n 1136,\n 10786,\n 25927,\n 62,\n 312,\n 11537,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 5456,\n 62,\n 12957,\n 62,\n 25927,\n 62,\n 312,\n 796,\n 965,\n 7,\n 25927,\n 13,\n 50145,\n 13,\n 1136,\n 10786,\n 5956,\n 12,\n 9237,\n 12,\n 7390,\n 3256,\n 657,\n 4008,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 2116,\n 13,\n 23569,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 938,\n 62,\n 25927,\n 62,\n 312,\n 796,\n 1306,\n 7,\n 260,\n 690,\n 276,\n 7,\n 944,\n 13,\n 23569,\n 4008,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 407,\n 938,\n 62,\n 25927,\n 62,\n 312,\n 6624,\n 5456,\n 62,\n 12957,\n 62,\n 25927,\n 62,\n 312,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1366,\n 796,\n 17635,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 329,\n 4808,\n 312,\n 287,\n 17687,\n 7,\n 944,\n 13,\n 23569,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1366,\n 13,\n 33295,\n 26933,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 4808,\n 312,\n 11,\n 2116,\n 13,\n 23569,\n 29795,\n 312,\n 4083,\n 17752,\n 11,\n 705,\n 5275,\n 6,\n 611,\n 4075,\n 62,\n 25927,\n 62,\n 312,\n 6624,\n 4808,\n 312,\n 2073,\n 10148,\n 12962,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 1366,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2882,\n 13,\n 5239,\n 796,\n 471,\n 62,\n 50,\n 5188,\n 62,\n 4537,\n 56,\n 35613,\n 13,\n 18982,\n 7,\n 12957,\n 62,\n 25927,\n 62,\n 312,\n 11,\n 33918,\n 13,\n 67,\n 8142,\n 7,\n 7890,\n 4008,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1441,\n 2882,\n 628,\n 220,\n 220,\n 220,\n 2488,\n 292,\n 13361,\n 952,\n 13,\n 10215,\n 28399,\n 628,\n 220,\n 220,\n 220,\n 2488,\n 292,\n 13361,\n 952,\n 13,\n 10215,\n 28399,\n 628,\n 220,\n 220,\n 220,\n 2488,\n 292,\n 13361,\n 952,\n 13,\n 10215,\n 28399,\n 628,\n 198,\n 4871,\n 31687,\n 9012,\n 25,\n 628,\n 220,\n 220,\n 220,\n 37227,\n 9363,\n 14257,\n 1181,\n 13,\n 37227,\n 628,\n 220,\n 220,\n 220,\n 825,\n 11593,\n 15003,\n 834,\n 7,\n 944,\n 11,\n 598,\n 11,\n 2581,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 22658,\n 262,\n 42287,\n 526,\n 15931,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13,\n 25927,\n 796,\n 2581,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13,\n 13376,\n 796,\n 939,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13,\n 6839,\n 1424,\n 796,\n 685,\n 26639,\n 7,\n 1324,\n 11,\n 2581,\n 8,\n 329,\n 18810,\n 287,\n 598,\n 13,\n 862,\n 13,\n 24442,\n 25981,\n 5657,\n 13,\n 37581,\n 13,\n 6839,\n 1424,\n 60,\n 628,\n 220,\n 220,\n 220,\n 2488,\n 26745,\n 198,\n 220,\n 220,\n 220,\n 825,\n 4686,\n 7,\n 944,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 13615,\n 1181,\n 4522,\n 526,\n 15931,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1441,\n 965,\n 7,\n 312,\n 7,\n 944,\n 4008,\n 628,\n 220,\n 220,\n 220,\n 2488,\n 26745,\n 198,\n 220,\n 220,\n 220,\n 825,\n 33918,\n 7,\n 944,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 13615,\n 19449,\n 526,\n 15931,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1441,\n 1391,\n 6,\n 24396,\n 10354,\n 2116,\n 13,\n 25927,\n 13,\n 24396,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 705,\n 6978,\n 10354,\n 2116,\n 13,\n 25927,\n 13,\n 6978,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 705,\n 15952,\n 1326,\n 10354,\n 705,\n 4023,\n 3256,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 705,\n 13376,\n 62,\n 8189,\n 10354,\n 2116,\n 13,\n 13376,\n 92,\n 628,\n 220,\n 220,\n 220,\n 2488,\n 292,\n 13361,\n 952,\n 13,\n 10215,\n 28399,\n 198,\n 220,\n 220,\n 220,\n 825,\n 1429,\n 62,\n 26209,\n 7,\n 944,\n 11,\n 2882,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 18709,\n 2882,\n 526,\n 15931,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 329,\n 6103,\n 287,\n 2116,\n 13,\n 6839,\n 1424,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 7800,\n 422,\n 6103,\n 13,\n 14681,\n 62,\n 26209,\n 7,\n 26209,\n 8,\n 198\n]"},"ratio_char_token":{"kind":"number","value":2.22282099343955,"string":"2.222821"},"token_count":{"kind":"number","value":4268,"string":"4,268"}}},{"rowIdx":4239,"cells":{"content":{"kind":"string","value":"\nimport numpy as np\nfrom scipy import stats\nimport statsmodels.sandbox.stats.runs as runs\n\n# 18/21 output statistics fully implemented from MATLAB, the other three are either from complex helper functions or MATLAB functions that don't transfer well\n\ndef PH_Walker(y, walkerRule='prop', walkerParams=np.array([])):\n \"\"\"\n\n PH_Walker simulates a hypothetical walker moving through the time domain\n\n the hypothetical particle (or 'walker') moves in response to values of the time series at each point\n\n Outputs from this operation are summaries of the walkers motion, and comparisons of it to the original time series\n\n :param y: the input time series\n :param walkerRule: the kinematic rule by which the walker moves in response to the time series over time\n (i) 'prop': the walker narrows the gap between its value and that of the time series by a given proportion p\n\n (ii) 'biasprop': the walker is biased to move more in one direction; when it is being pushed up by the time\n series, it narrows the gap by a proportion p_{up}, and when it is being pushed down by the\n time series it narrows the gap by a (potentially different) proportion p_{down}. walkerParams = [pup,pdown]\n\n (iii) 'momentum': the walker moves as if it has mass m and inertia\n from the previous time step and the time series acts\n as a force altering its motion in a classical\n Newtonian dynamics framework. [walkerParams = m], the mass.\n\n (iv) 'runningvar': the walker moves with inertia as above, but\n its values are also adjusted so as to match the local\n variance of time series by a multiplicative factor.\n walkerParams = [m,wl], where m is the inertial mass and wl\n is the window length.\n\n :param walkerParams: the parameters for the specified walker, explained above\n\n :return: include the mean, spread, maximum, minimum, and autocorrelation of\n the walker's trajectory, the number of crossings between the walker and the\n original time series, the ratio or difference of some basic summary statistics\n between the original time series and the walker, an Ansari-Bradley test\n comparing the distributions of the walker and original time series, and\n various statistics summarizing properties of the residuals between the\n walker's trajectory and the original time series.\n\n \"\"\"\n\n # ----------------------------------------------------------------------------------------------------------------------------------\n # PRELIMINARIES\n #----------------------------------------------------------------------------------------------------------------------------------\n\n N = len(y)\n\n #----------------------------------------------------------------------------------------------------------------------------------\n # CHECK INPUTS\n #----------------------------------------------------------------------------------------------------------------------------------\n if walkerRule == 'runningvar':\n walkerParams = [1.5, 50]\n if (len(walkerParams) == 0):\n\n if walkerRule == 'prop':\n walkerParams = np.array([0.5])\n if walkerRule == 'biasprop':\n walkerParams = np.array([0.1, 0.2])\n if walkerRule == 'momentum':\n walkerParams = np.array([2])\n if walkerRule == 'runningvar':\n walkerParams = [1.5, 50]\n\n #----------------------------------------------------------------------------------------------------------------------------------\n # (1) WALK\n #----------------------------------------------------------------------------------------------------------------------------------\n\n\n w = np.zeros(N)\n\n if walkerRule == 'prop':\n\n # walker starts at zero and narrows the gap between its position\n # and the time series value at that point by the proportion given\n # in walkerParams, to give the value at the subsequent time step\n if isinstance(walkerParams,list):\n walkerParams = walkerParams[0]\n p = walkerParams\n w[0] = 0\n\n for i in range(1, N):\n w[i] = w[i-1] + p*(y[i-1]-w[i-1])\n\n\n elif walkerRule == 'biasprop':\n # walker is biased in one or the other direction (i.e., prefers to\n # go up, or down). Requires a vector of inputs: [p_up, p_down]\n\n pup = walkerParams[0]\n pdown = walkerParams[0]\n\n w[0] = 0\n\n for i in range (1, N):\n if y[i] > y[i-1]:\n w[i] = w[i-1] + pup*(y[i-1]-w[i-1])\n\n else :\n w[i] = w[i-1] + pdown*(y[i-1]-w[i-1])\n\n elif walkerRule == 'momentum':\n # walker moves as if it had inertia from the previous time step,\n # i.e., it 'wants' to move the same amount; the time series acts as\n # a force changing its motion\n\n m = walkerParams[0] # inertial mass\n\n w[0] = y[0]\n w[1] = y[1]\n\n for i in range(2, N):\n w_inert = w[i-1] + (w[i-1]-w[i-2])\n w[i] = w_inert + (y[i] - w_inert)/m # dissipative term\n #equation of motion (s-s_0 = ut + F/m*t^2)\n #where the 'force' is F is the change in the original time series at the point\n\n elif walkerRule == 'runningvar':\n\n m = walkerParams[0]\n wl = walkerParams[1]\n\n w[0] = y[0]\n w[1] = y[1]\n\n for i in range(2, N):\n w_inert = w[i-1] + (w[i-1]-w[i-2])\n w_mom = w_inert + (y[i] - w_inert)/m #dissipative term from time series\n\n if i > wl:\n w[i] = w_mom * (np.std(y[(i-wl):i]))/np.std(w[(i-wl):i])\n\n else:\n w[i] = w_mom\n\n\n else :\n\n print(\"Error: Unknown method: \" + walkerRule + \" for simulating walker on the time series\")\n\n\n #----------------------------------------------------------------------------------------------------------------------------------\n # (2) STATISITICS ON THE WALK\n #----------------------------------------------------------------------------------------------------------------------------------\n\n out = {} # dictionary for storing variables\n\n # (i) The walk itself -------------------------------------------------------------------------------------------\n\n out['w_mean'] = np.mean(w)\n out['w_median'] = np.median(w)\n out['w_std'] = np.std(w)\n out['w_ac1'] = CO_AutoCorr(w, 1, method='timedomainstat') # this function call in MATLAB uses method='Fourier', but we don't have that case implemented yet in autoCorr, however this seems to output the same thing\n out['w_ac2'] = CO_AutoCorr(w, 2, method='timedomainstat')\n out['w_tau'] = CO_FirstZero(w, 'ac')\n out['w_min'] = np.min(w)\n out['w_max'] = np.max(w)\n out['propzcross'] = sum( np.multiply( w[0:(len(w)-2)], w[1:(len(w)-1)] ) < 0) / (N-1) # np.multiply performs elementwise multiplication like matlab .*\n # differences between the walk at signal\n\n # (ii) Differences between the walk at signal -------------------------------------------------------------------\n\n out['sw_meanabsdiff'] = np.mean(np.abs(y-w))\n out['sw_taudiff'] = CO_FirstZero(y, 'ac') - CO_FirstZero(w, 'ac')\n out['sw_stdrat'] = np.std(w)/np.std(y) # will be thse same as w_std for z-scored signal\n out['sw_ac1rat'] = out['w_ac1']/CO_AutoCorr(y, 1)\n out['sw_minrat'] = min(w)/min(y)\n out['sw_maxrat'] = max(w)/max(y)\n out['sw_propcross'] = sum(np.multiply( w[0:(len(w)-1)] - y[0:(len(y)-1)] , w[1:(len(w))]-y[1:(len(y))]) < 0 )/(N-1) #np.multiply performs elementwise multiplication like matlab .*\n\n ansari = stats.ansari(w, y)\n out['sw_ansarib_pval'] = ansari[1]\n\n\n # r = np.linspace( np.min(np.min(y), np.min(w)), np.max(np.max(y), np.max(w)), 200 )\n # dy = stats.gaussian_kde(y, r)\n\n\n # (iii) looking at residuals between time series and walker\n\n res = w-y\n\n # CLOSEST FUNCTION TO MATLAB RUNSTEST, found in statsmodels.sandbox.stats.runs\n # runstest = runs.runstest_2samp(res, groups=2)\n # out['res_runstest'] = runstest\n\n out['res_acl'] = CO_AutoCorr(res, lag=1)\n\n\n return out\n"},"input_ids":{"kind":"list like","value":[198,11748,299,32152,355,45941,198,6738,629,541,88,1330,9756,198,11748,9756,27530,13,38142,3524,13,34242,13,48381,355,4539,198,198,2,1248,14,2481,5072,7869,3938,9177,422,36775,48780,11,262,584,1115,389,2035,422,3716,31904,5499,393,36775,48780,5499,326,836,470,4351,880,198,198,4299,9370,62,39950,7,88,11,2513,263,31929,11639,22930,3256,2513,263,10044,4105,28,37659,13,18747,26933,12962,2599,198,220,220,220,37227,628,220,220,220,9370,62,39950,985,15968,257,25345,2513,263,3867,832,262,640,7386,628,220,220,220,262,25345,18758,357,273,705,20783,11537,6100,287,2882,284,3815,286,262,640,2168,379,1123,966,628,220,220,220,25235,82,422,428,4905,389,30114,3166,286,262,2513,364,6268,11,290,17909,286,340,284,262,2656,640,2168,628,220,220,220,1058,17143,331,25,262,5128,640,2168,198,220,220,220,1058,17143,2513,263,31929,25,262,479,7749,1512,3896,416,543,262,2513,263,6100,287,2882,284,262,640,2168,625,640,198,220,220,220,220,220,220,220,220,220,220,220,357,72,8,705,22930,10354,262,2513,263,7135,82,262,7625,1022,663,1988,290,326,286,262,640,2168,416,257,1813,9823,279,628,220,220,220,220,220,220,220,220,220,220,220,357,4178,8,705,65,4448,22930,10354,262,2513,263,318,21925,284,1445,517,287,530,4571,26,618,340,318,852,7121,510,416,262,640,198,220,220,220,220,220,220,220,220,220,220,220,2168,11,340,7135,82,262,7625,416,257,9823,279,23330,929,5512,290,618,340,318,852,7121,866,416,262,198,220,220,220,220,220,220,220,220,220,220,220,640,2168,340,7135,82,262,7625,416,257,357,13059,3746,1180,8,9823,279,23330,2902,27422,2513,263,10044,4105,796,685,79,929,11,79,2902,60,628,220,220,220,220,220,220,220,220,220,220,220,357,15479,8,705,32542,298,388,10354,262,2513,263,6100,355,611,340,468,2347,285,290,48482,198,220,220,220,220,220,220,220,220,220,220,220,220,422,262,2180,640,2239,290,262,640,2168,6529,198,220,220,220,220,220,220,220,220,220,220,220,220,355,257,2700,29057,663,6268,287,257,15993,198,220,220,220,220,220,220,220,220,220,220,220,220,17321,666,17262,9355,13,685,20783,10044,4105,796,285,4357,262,2347,13,628,220,220,220,220,220,220,220,220,220,220,220,220,357,452,8,705,20270,7785,10354,262,2513,263,6100,351,48482,355,2029,11,475,198,220,220,220,220,220,220,220,220,220,220,220,220,663,3815,389,635,12328,523,355,284,2872,262,1957,198,220,220,220,220,220,220,220,220,220,220,220,220,24198,286,640,2168,416,257,15082,43058,5766,13,198,220,220,220,220,220,220,220,220,220,220,220,220,2513,263,10044,4105,796,685,76,11,40989,4357,810,285,318,262,29824,498,2347,290,266,75,198,220,220,220,220,220,220,220,220,220,220,220,220,318,262,4324,4129,13,628,220,220,220,1058,17143,2513,263,10044,4105,25,262,10007,329,262,7368,2513,263,11,4893,2029,628,220,220,220,1058,7783,25,2291,262,1612,11,4104,11,5415,11,5288,11,290,1960,420,273,49501,286,198,220,220,220,220,220,220,220,220,220,220,220,262,2513,263,338,22942,11,262,1271,286,41930,1022,262,2513,263,290,262,198,220,220,220,220,220,220,220,220,220,220,220,2656,640,2168,11,262,8064,393,3580,286,617,4096,10638,7869,198,220,220,220,220,220,220,220,220,220,220,220,1022,262,2656,640,2168,290,262,2513,263,11,281,28038,2743,12,30805,1636,1332,198,220,220,220,220,220,220,220,220,220,220,220,14176,262,24570,286,262,2513,263,290,2656,640,2168,11,290,198,220,220,220,220,220,220,220,220,220,220,220,2972,7869,15676,2890,6608,286,262,29598,82,1022,262,198,220,220,220,220,220,220,220,220,220,220,220,2513,263,338,22942,290,262,2656,640,2168,13,628,220,220,220,37227,628,220,220,220,1303,16529,10097,438,198,220,220,220,1303,350,16448,3955,1268,1503,11015,198,220,220,220,1303,10097,10097,438,628,220,220,220,399,796,18896,7,88,8,628,220,220,220,1303,10097,10097,438,198,220,220,220,1303,5870,25171,3268,30076,50,198,220,220,220,1303,10097,10097,438,198,220,220,220,611,2513,263,31929,6624,705,20270,7785,10354,198,220,220,220,220,220,220,220,2513,263,10044,4105,796,685,16,13,20,11,2026,60,198,220,220,220,611,357,11925,7,20783,10044,4105,8,6624,657,2599,628,220,220,220,220,220,220,220,611,2513,263,31929,6624,705,22930,10354,198,220,220,220,220,220,220,220,220,220,220,220,2513,263,10044,4105,796,45941,13,18747,26933,15,13,20,12962,198,220,220,220,220,220,220,220,611,2513,263,31929,6624,705,65,4448,22930,10354,198,220,220,220,220,220,220,220,220,220,220,220,2513,263,10044,4105,796,45941,13,18747,26933,15,13,16,11,657,13,17,12962,198,220,220,220,220,220,220,220,611,2513,263,31929,6624,705,32542,298,388,10354,198,220,220,220,220,220,220,220,220,220,220,220,2513,263,10044,4105,796,45941,13,18747,26933,17,12962,198,220,220,220,220,220,220,220,611,2513,263,31929,6624,705,20270,7785,10354,198,220,220,220,220,220,220,220,220,220,220,220,2513,263,10044,4105,796,685,16,13,20,11,2026,60,628,220,220,220,1303,10097,10097,438,198,220,220,220,1303,357,16,8,370,28082,198,220,220,220,1303,10097,10097,438,628,198,220,220,220,266,796,45941,13,9107,418,7,45,8,628,220,220,220,611,2513,263,31929,6624,705,22930,10354,628,220,220,220,220,220,220,220,1303,2513,263,4940,379,6632,290,7135,82,262,7625,1022,663,2292,198,220,220,220,220,220,220,220,1303,290,262,640,2168,1988,379,326,966,416,262,9823,1813,198,220,220,220,220,220,220,220,1303,287,2513,263,10044,4105,11,284,1577,262,1988,379,262,8840,640,2239,198,220,220,220,220,220,220,220,611,318,39098,7,20783,10044,4105,11,4868,2599,198,220,220,220,220,220,220,220,220,220,220,220,2513,263,10044,4105,796,2513,263,10044,4105,58,15,60,198,220,220,220,220,220,220,220,279,796,2513,263,10044,4105,198,220,220,220,220,220,220,220,266,58,15,60,796,657,628,220,220,220,220,220,220,220,329,1312,287,2837,7,16,11,399,2599,198,220,220,220,220,220,220,220,220,220,220,220,266,58,72,60,796,266,58,72,12,16,60,1343,279,9,7,88,58,72,12,16,45297,86,58,72,12,16,12962,628,198,220,220,220,1288,361,2513,263,31929,6624,705,65,4448,22930,10354,198,220,220,220,220,220,220,220,1303,2513,263,318,21925,287,530,393,262,584,4571,357,72,13,68,1539,26237,284,198,220,220,220,220,220,220,220,1303,467,510,11,393,866,737,26848,257,15879,286,17311,25,685,79,62,929,11,279,62,2902,60,628,220,220,220,220,220,220,220,15552,796,2513,263,10044,4105,58,15,60,198,220,220,220,220,220,220,220,279,2902,796,2513,263,10044,4105,58,15,60,628,220,220,220,220,220,220,220,266,58,15,60,796,657,628,220,220,220,220,220,220,220,329,1312,287,2837,357,16,11,399,2599,198,220,220,220,220,220,220,220,220,220,220,220,611,331,58,72,60,1875,331,58,72,12,16,5974,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,266,58,72,60,796,266,58,72,12,16,60,1343,15552,9,7,88,58,72,12,16,45297,86,58,72,12,16,12962,628,220,220,220,220,220,220,220,220,220,220,220,2073,1058,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,266,58,72,60,796,266,58,72,12,16,60,1343,279,2902,9,7,88,58,72,12,16,45297,86,58,72,12,16,12962,628,220,220,220,1288,361,2513,263,31929,6624,705,32542,298,388,10354,198,220,220,220,220,220,220,220,1303,2513,263,6100,355,611,340,550,48482,422,262,2180,640,2239,11,198,220,220,220,220,220,220,220,1303,1312,13,68,1539,340,705,86,1187,6,284,1445,262,976,2033,26,262,640,2168,6529,355,198,220,220,220,220,220,220,220,1303,257,2700,5609,663,6268,628,220,220,220,220,220,220,220,285,796,2513,263,10044,4105,58,15,60,1303,29824,498,2347,628,220,220,220,220,220,220,220,266,58,15,60,796,331,58,15,60,198,220,220,220,220,220,220,220,266,58,16,60,796,331,58,16,60,628,220,220,220,220,220,220,220,329,1312,287,2837,7,17,11,399,2599,198,220,220,220,220,220,220,220,220,220,220,220,266,62,259,861,796,266,58,72,12,16,60,1343,357,86,58,72,12,16,45297,86,58,72,12,17,12962,198,220,220,220,220,220,220,220,220,220,220,220,266,58,72,60,796,266,62,259,861,1343,357,88,58,72,60,532,266,62,259,861,20679,76,1303,32008,876,3381,198,220,220,220,220,220,220,220,220,220,220,220,1303,4853,341,286,6268,357,82,12,82,62,15,796,3384,1343,376,14,76,9,83,61,17,8,198,220,220,220,220,220,220,220,220,220,220,220,1303,3003,262,705,3174,6,318,376,318,262,1487,287,262,2656,640,2168,379,262,966,628,220,220,220,1288,361,2513,263,31929,6624,705,20270,7785,10354,628,220,220,220,220,220,220,220,285,796,2513,263,10044,4105,58,15,60,198,220,220,220,220,220,220,220,266,75,796,2513,263,10044,4105,58,16,60,628,220,220,220,220,220,220,220,266,58,15,60,796,331,58,15,60,198,220,220,220,220,220,220,220,266,58,16,60,796,331,58,16,60,628,220,220,220,220,220,220,220,329,1312,287,2837,7,17,11,399,2599,198,220,220,220,220,220,220,220,220,220,220,220,266,62,259,861,796,266,58,72,12,16,60,1343,357,86,58,72,12,16,45297,86,58,72,12,17,12962,198,220,220,220,220,220,220,220,220,220,220,220,266,62,32542,796,266,62,259,861,1343,357,88,58,72,60,532,266,62,259,861,20679,76,1303,67,747,541,876,3381,422,640,2168,628,220,220,220,220,220,220,220,220,220,220,220,611,1312,1875,266,75,25,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,266,58,72,60,796,266,62,32542,1635,357,37659,13,19282,7,88,58,7,72,12,40989,2599,72,60,4008,14,37659,13,19282,7,86,58,7,72,12,40989,2599,72,12962,628,220,220,220,220,220,220,220,220,220,220,220,2073,25,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,266,58,72,60,796,266,62,32542,628,198,220,220,220,2073,1058,628,220,220,220,220,220,220,220,3601,7203,12331,25,16185,2446,25,366,1343,2513,263,31929,1343,366,329,985,8306,2513,263,319,262,640,2168,4943,628,198,220,220,220,1303,10097,10097,438,198,220,220,220,1303,357,17,8,15486,1797,2043,19505,6177,3336,370,28082,198,220,220,220,1303,10097,10097,438,628,220,220,220,503,796,23884,1303,22155,329,23069,9633,628,220,220,220,1303,357,72,8,383,2513,2346,16529,22369,6329,628,220,220,220,503,17816,86,62,32604,20520,796,45941,13,32604,7,86,8,198,220,220,220,503,17816,86,62,1150,666,20520,796,45941,13,1150,666,7,86,8,198,220,220,220,503,17816,86,62,19282,20520,796,45941,13,19282,7,86,8,198,220,220,220,503,17816,86,62,330,16,20520,796,7375,62,27722,10606,81,7,86,11,352,11,2446,11639,16514,3836,391,14269,11537,1303,428,2163,869,287,36775,48780,3544,2446,11639,37,280,5277,3256,475,356,836,470,423,326,1339,9177,1865,287,8295,10606,81,11,2158,428,2331,284,5072,262,976,1517,198,220,220,220,503,17816,86,62,330,17,20520,796,7375,62,27722,10606,81,7,86,11,362,11,2446,11639,16514,3836,391,14269,11537,198,220,220,220,503,17816,86,62,83,559,20520,796,7375,62,5962,28667,7,86,11,705,330,11537,198,220,220,220,503,17816,86,62,1084,20520,796,45941,13,1084,7,86,8,198,220,220,220,503,17816,86,62,9806,20520,796,45941,13,9806,7,86,8,198,220,220,220,503,17816,22930,89,19692,20520,796,2160,7,45941,13,16680,541,306,7,266,58,15,37498,11925,7,86,13219,17,8,4357,266,58,16,37498,11925,7,86,13219,16,15437,1267,1279,657,8,1220,357,45,12,16,8,1303,45941,13,16680,541,306,17706,5002,3083,48473,588,2603,23912,764,9,198,220,220,220,1303,5400,1022,262,2513,379,6737,628,220,220,220,1303,357,4178,8,41937,1022,262,2513,379,6737,16529,6329,628,220,220,220,503,17816,2032,62,32604,8937,26069,20520,796,45941,13,32604,7,37659,13,8937,7,88,12,86,4008,198,220,220,220,503,17816,2032,62,83,3885,733,20520,796,7375,62,5962,28667,7,88,11,705,330,11537,532,7375,62,5962,28667,7,86,11,705,330,11537,198,220,220,220,503,17816,2032,62,301,7109,265,20520,796,45941,13,19282,7,86,20679,37659,13,19282,7,88,8,1303,481,307,294,325,976,355,266,62,19282,329,1976,12,1416,1850,6737,198,220,220,220,503,17816,2032,62,330,16,10366,20520,796,503,17816,86,62,330,16,20520,14,8220,62,27722,10606,81,7,88,11,352,8,198,220,220,220,503,17816,2032,62,1084,10366,20520,796,949,7,86,20679,1084,7,88,8,198,220,220,220,503,17816,2032,62,9806,10366,20520,796,3509,7,86,20679,9806,7,88,8,198,220,220,220,503,17816,2032,62,1676,14751,1214,20520,796,2160,7,37659,13,16680,541,306,7,266,58,15,37498,11925,7,86,13219,16,15437,532,331,58,15,37498,11925,7,88,13219,16,15437,837,266,58,16,37498,11925,7,86,4008,45297,88,58,16,37498,11925,7,88,4008,12962,1279,657,1267,29006,45,12,16,8,1303,37659,13,16680,541,306,17706,5002,3083,48473,588,2603,23912,764,9,628,220,220,220,9093,2743,796,9756,13,504,2743,7,86,11,331,8,198,220,220,220,503,17816,2032,62,504,283,571,62,79,2100,20520,796,9093,2743,58,16,60,628,198,220,220,220,1303,374,796,45941,13,21602,10223,7,45941,13,1084,7,37659,13,1084,7,88,828,45941,13,1084,7,86,36911,45941,13,9806,7,37659,13,9806,7,88,828,45941,13,9806,7,86,36911,939,1267,198,220,220,220,1303,20268,796,9756,13,4908,31562,62,74,2934,7,88,11,374,8,628,198,220,220,220,1303,357,15479,8,2045,379,29598,82,1022,640,2168,290,2513,263,628,220,220,220,581,796,266,12,88,628,220,220,220,1303,7852,2640,6465,29397,4177,2849,5390,36775,48780,32494,2257,6465,11,1043,287,9756,27530,13,38142,3524,13,34242,13,48381,198,220,220,220,1303,1057,301,395,796,4539,13,5143,301,395,62,17,82,696,7,411,11,2628,28,17,8,198,220,220,220,1303,503,17816,411,62,5143,301,395,20520,796,1057,301,395,628,220,220,220,503,17816,411,62,37779,20520,796,7375,62,27722,10606,81,7,411,11,19470,28,16,8,628,198,220,220,220,1441,503,198],"string":"[\n 198,\n 11748,\n 299,\n 32152,\n 355,\n 45941,\n 198,\n 6738,\n 629,\n 541,\n 88,\n 1330,\n 9756,\n 198,\n 11748,\n 9756,\n 27530,\n 13,\n 38142,\n 3524,\n 13,\n 34242,\n 13,\n 48381,\n 355,\n 4539,\n 198,\n 198,\n 2,\n 1248,\n 14,\n 2481,\n 5072,\n 7869,\n 3938,\n 9177,\n 422,\n 36775,\n 48780,\n 11,\n 262,\n 584,\n 1115,\n 389,\n 2035,\n 422,\n 3716,\n 31904,\n 5499,\n 393,\n 36775,\n 48780,\n 5499,\n 326,\n 836,\n 470,\n 4351,\n 880,\n 198,\n 198,\n 4299,\n 9370,\n 62,\n 39950,\n 7,\n 88,\n 11,\n 2513,\n 263,\n 31929,\n 11639,\n 22930,\n 3256,\n 2513,\n 263,\n 10044,\n 4105,\n 28,\n 37659,\n 13,\n 18747,\n 26933,\n 12962,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 628,\n 220,\n 220,\n 220,\n 9370,\n 62,\n 39950,\n 985,\n 15968,\n 257,\n 25345,\n 2513,\n 263,\n 3867,\n 832,\n 262,\n 640,\n 7386,\n 628,\n 220,\n 220,\n 220,\n 262,\n 25345,\n 18758,\n 357,\n 273,\n 705,\n 20783,\n 11537,\n 6100,\n 287,\n 2882,\n 284,\n 3815,\n 286,\n 262,\n 640,\n 2168,\n 379,\n 1123,\n 966,\n 628,\n 220,\n 220,\n 220,\n 25235,\n 82,\n 422,\n 428,\n 4905,\n 389,\n 30114,\n 3166,\n 286,\n 262,\n 2513,\n 364,\n 6268,\n 11,\n 290,\n 17909,\n 286,\n 340,\n 284,\n 262,\n 2656,\n 640,\n 2168,\n 628,\n 220,\n 220,\n 220,\n 1058,\n 17143,\n 331,\n 25,\n 262,\n 5128,\n 640,\n 2168,\n 198,\n 220,\n 220,\n 220,\n 1058,\n 17143,\n 2513,\n 263,\n 31929,\n 25,\n 262,\n 479,\n 7749,\n 1512,\n 3896,\n 416,\n 543,\n 262,\n 2513,\n 263,\n 6100,\n 287,\n 2882,\n 284,\n 262,\n 640,\n 2168,\n 625,\n 640,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 357,\n 72,\n 8,\n 705,\n 22930,\n 10354,\n 262,\n 2513,\n 263,\n 7135,\n 82,\n 262,\n 7625,\n 1022,\n 663,\n 1988,\n 290,\n 326,\n 286,\n 262,\n 640,\n 2168,\n 416,\n 257,\n 1813,\n 9823,\n 279,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 357,\n 4178,\n 8,\n 705,\n 65,\n 4448,\n 22930,\n 10354,\n 262,\n 2513,\n 263,\n 318,\n 21925,\n 284,\n 1445,\n 517,\n 287,\n 530,\n 4571,\n 26,\n 618,\n 340,\n 318,\n 852,\n 7121,\n 510,\n 416,\n 262,\n 640,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2168,\n 11,\n 340,\n 7135,\n 82,\n 262,\n 7625,\n 416,\n 257,\n 9823,\n 279,\n 23330,\n 929,\n 5512,\n 290,\n 618,\n 340,\n 318,\n 852,\n 7121,\n 866,\n 416,\n 262,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 640,\n 2168,\n 340,\n 7135,\n 82,\n 262,\n 7625,\n 416,\n 257,\n 357,\n 13059,\n 3746,\n 1180,\n 8,\n 9823,\n 279,\n 23330,\n 2902,\n 27422,\n 2513,\n 263,\n 10044,\n 4105,\n 796,\n 685,\n 79,\n 929,\n 11,\n 79,\n 2902,\n 60,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 357,\n 15479,\n 8,\n 705,\n 32542,\n 298,\n 388,\n 10354,\n 262,\n 2513,\n 263,\n 6100,\n 355,\n 611,\n 340,\n 468,\n 2347,\n 285,\n 290,\n 48482,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 422,\n 262,\n 2180,\n 640,\n 2239,\n 290,\n 262,\n 640,\n 2168,\n 6529,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 355,\n 257,\n 2700,\n 29057,\n 663,\n 6268,\n 287,\n 257,\n 15993,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 17321,\n 666,\n 17262,\n 9355,\n 13,\n 685,\n 20783,\n 10044,\n 4105,\n 796,\n 285,\n 4357,\n 262,\n 2347,\n 13,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 357,\n 452,\n 8,\n 705,\n 20270,\n 7785,\n 10354,\n 262,\n 2513,\n 263,\n 6100,\n 351,\n 48482,\n 355,\n 2029,\n 11,\n 475,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 663,\n 3815,\n 389,\n 635,\n 12328,\n 523,\n 355,\n 284,\n 2872,\n 262,\n 1957,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 24198,\n 286,\n 640,\n 2168,\n 416,\n 257,\n 15082,\n 43058,\n 5766,\n 13,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2513,\n 263,\n 10044,\n 4105,\n 796,\n 685,\n 76,\n 11,\n 40989,\n 4357,\n 810,\n 285,\n 318,\n 262,\n 29824,\n 498,\n 2347,\n 290,\n 266,\n 75,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 318,\n 262,\n 4324,\n 4129,\n 13,\n 628,\n 220,\n 220,\n 220,\n 1058,\n 17143,\n 2513,\n 263,\n 10044,\n 4105,\n 25,\n 262,\n 10007,\n 329,\n 262,\n 7368,\n 2513,\n 263,\n 11,\n 4893,\n 2029,\n 628,\n 220,\n 220,\n 220,\n 1058,\n 7783,\n 25,\n 2291,\n 262,\n 1612,\n 11,\n 4104,\n 11,\n 5415,\n 11,\n 5288,\n 11,\n 290,\n 1960,\n 420,\n 273,\n 49501,\n 286,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 262,\n 2513,\n 263,\n 338,\n 22942,\n 11,\n 262,\n 1271,\n 286,\n 41930,\n 1022,\n 262,\n 2513,\n 263,\n 290,\n 262,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2656,\n 640,\n 2168,\n 11,\n 262,\n 8064,\n 393,\n 3580,\n 286,\n 617,\n 4096,\n 10638,\n 7869,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1022,\n 262,\n 2656,\n 640,\n 2168,\n 290,\n 262,\n 2513,\n 263,\n 11,\n 281,\n 28038,\n 2743,\n 12,\n 30805,\n 1636,\n 1332,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 14176,\n 262,\n 24570,\n 286,\n 262,\n 2513,\n 263,\n 290,\n 2656,\n 640,\n 2168,\n 11,\n 290,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2972,\n 7869,\n 15676,\n 2890,\n 6608,\n 286,\n 262,\n 29598,\n 82,\n 1022,\n 262,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2513,\n 263,\n 338,\n 22942,\n 290,\n 262,\n 2656,\n 640,\n 2168,\n 13,\n 628,\n 220,\n 220,\n 220,\n 37227,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 16529,\n 10097,\n 438,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 350,\n 16448,\n 3955,\n 1268,\n 1503,\n 11015,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 10097,\n 10097,\n 438,\n 628,\n 220,\n 220,\n 220,\n 399,\n 796,\n 18896,\n 7,\n 88,\n 8,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 10097,\n 10097,\n 438,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 5870,\n 25171,\n 3268,\n 30076,\n 50,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 10097,\n 10097,\n 438,\n 198,\n 220,\n 220,\n 220,\n 611,\n 2513,\n 263,\n 31929,\n 6624,\n 705,\n 20270,\n 7785,\n 10354,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2513,\n 263,\n 10044,\n 4105,\n 796,\n 685,\n 16,\n 13,\n 20,\n 11,\n 2026,\n 60,\n 198,\n 220,\n 220,\n 220,\n 611,\n 357,\n 11925,\n 7,\n 20783,\n 10044,\n 4105,\n 8,\n 6624,\n 657,\n 2599,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 2513,\n 263,\n 31929,\n 6624,\n 705,\n 22930,\n 10354,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2513,\n 263,\n 10044,\n 4105,\n 796,\n 45941,\n 13,\n 18747,\n 26933,\n 15,\n 13,\n 20,\n 12962,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 2513,\n 263,\n 31929,\n 6624,\n 705,\n 65,\n 4448,\n 22930,\n 10354,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2513,\n 263,\n 10044,\n 4105,\n 796,\n 45941,\n 13,\n 18747,\n 26933,\n 15,\n 13,\n 16,\n 11,\n 657,\n 13,\n 17,\n 12962,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 2513,\n 263,\n 31929,\n 6624,\n 705,\n 32542,\n 298,\n 388,\n 10354,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2513,\n 263,\n 10044,\n 4105,\n 796,\n 45941,\n 13,\n 18747,\n 26933,\n 17,\n 12962,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 2513,\n 263,\n 31929,\n 6624,\n 705,\n 20270,\n 7785,\n 10354,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2513,\n 263,\n 10044,\n 4105,\n 796,\n 685,\n 16,\n 13,\n 20,\n 11,\n 2026,\n 60,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 10097,\n 10097,\n 438,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 357,\n 16,\n 8,\n 370,\n 28082,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 10097,\n 10097,\n 438,\n 628,\n 198,\n 220,\n 220,\n 220,\n 266,\n 796,\n 45941,\n 13,\n 9107,\n 418,\n 7,\n 45,\n 8,\n 628,\n 220,\n 220,\n 220,\n 611,\n 2513,\n 263,\n 31929,\n 6624,\n 705,\n 22930,\n 10354,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 2513,\n 263,\n 4940,\n 379,\n 6632,\n 290,\n 7135,\n 82,\n 262,\n 7625,\n 1022,\n 663,\n 2292,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 290,\n 262,\n 640,\n 2168,\n 1988,\n 379,\n 326,\n 966,\n 416,\n 262,\n 9823,\n 1813,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 287,\n 2513,\n 263,\n 10044,\n 4105,\n 11,\n 284,\n 1577,\n 262,\n 1988,\n 379,\n 262,\n 8840,\n 640,\n 2239,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 318,\n 39098,\n 7,\n 20783,\n 10044,\n 4105,\n 11,\n 4868,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2513,\n 263,\n 10044,\n 4105,\n 796,\n 2513,\n 263,\n 10044,\n 4105,\n 58,\n 15,\n 60,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 279,\n 796,\n 2513,\n 263,\n 10044,\n 4105,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 266,\n 58,\n 15,\n 60,\n 796,\n 657,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 329,\n 1312,\n 287,\n 2837,\n 7,\n 16,\n 11,\n 399,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 266,\n 58,\n 72,\n 60,\n 796,\n 266,\n 58,\n 72,\n 12,\n 16,\n 60,\n 1343,\n 279,\n 9,\n 7,\n 88,\n 58,\n 72,\n 12,\n 16,\n 45297,\n 86,\n 58,\n 72,\n 12,\n 16,\n 12962,\n 628,\n 198,\n 220,\n 220,\n 220,\n 1288,\n 361,\n 2513,\n 263,\n 31929,\n 6624,\n 705,\n 65,\n 4448,\n 22930,\n 10354,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 2513,\n 263,\n 318,\n 21925,\n 287,\n 530,\n 393,\n 262,\n 584,\n 4571,\n 357,\n 72,\n 13,\n 68,\n 1539,\n 26237,\n 284,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 467,\n 510,\n 11,\n 393,\n 866,\n 737,\n 26848,\n 257,\n 15879,\n 286,\n 17311,\n 25,\n 685,\n 79,\n 62,\n 929,\n 11,\n 279,\n 62,\n 2902,\n 60,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 15552,\n 796,\n 2513,\n 263,\n 10044,\n 4105,\n 58,\n 15,\n 60,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 279,\n 2902,\n 796,\n 2513,\n 263,\n 10044,\n 4105,\n 58,\n 15,\n 60,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 266,\n 58,\n 15,\n 60,\n 796,\n 657,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 329,\n 1312,\n 287,\n 2837,\n 357,\n 16,\n 11,\n 399,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 331,\n 58,\n 72,\n 60,\n 1875,\n 331,\n 58,\n 72,\n 12,\n 16,\n 5974,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 266,\n 58,\n 72,\n 60,\n 796,\n 266,\n 58,\n 72,\n 12,\n 16,\n 60,\n 1343,\n 15552,\n 9,\n 7,\n 88,\n 58,\n 72,\n 12,\n 16,\n 45297,\n 86,\n 58,\n 72,\n 12,\n 16,\n 12962,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2073,\n 1058,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 266,\n 58,\n 72,\n 60,\n 796,\n 266,\n 58,\n 72,\n 12,\n 16,\n 60,\n 1343,\n 279,\n 2902,\n 9,\n 7,\n 88,\n 58,\n 72,\n 12,\n 16,\n 45297,\n 86,\n 58,\n 72,\n 12,\n 16,\n 12962,\n 628,\n 220,\n 220,\n 220,\n 1288,\n 361,\n 2513,\n 263,\n 31929,\n 6624,\n 705,\n 32542,\n 298,\n 388,\n 10354,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 2513,\n 263,\n 6100,\n 355,\n 611,\n 340,\n 550,\n 48482,\n 422,\n 262,\n 2180,\n 640,\n 2239,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 1312,\n 13,\n 68,\n 1539,\n 340,\n 705,\n 86,\n 1187,\n 6,\n 284,\n 1445,\n 262,\n 976,\n 2033,\n 26,\n 262,\n 640,\n 2168,\n 6529,\n 355,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 257,\n 2700,\n 5609,\n 663,\n 6268,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 285,\n 796,\n 2513,\n 263,\n 10044,\n 4105,\n 58,\n 15,\n 60,\n 1303,\n 29824,\n 498,\n 2347,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 266,\n 58,\n 15,\n 60,\n 796,\n 331,\n 58,\n 15,\n 60,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 266,\n 58,\n 16,\n 60,\n 796,\n 331,\n 58,\n 16,\n 60,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 329,\n 1312,\n 287,\n 2837,\n 7,\n 17,\n 11,\n 399,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 266,\n 62,\n 259,\n 861,\n 796,\n 266,\n 58,\n 72,\n 12,\n 16,\n 60,\n 1343,\n 357,\n 86,\n 58,\n 72,\n 12,\n 16,\n 45297,\n 86,\n 58,\n 72,\n 12,\n 17,\n 12962,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 266,\n 58,\n 72,\n 60,\n 796,\n 266,\n 62,\n 259,\n 861,\n 1343,\n 357,\n 88,\n 58,\n 72,\n 60,\n 532,\n 266,\n 62,\n 259,\n 861,\n 20679,\n 76,\n 1303,\n 32008,\n 876,\n 3381,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 4853,\n 341,\n 286,\n 6268,\n 357,\n 82,\n 12,\n 82,\n 62,\n 15,\n 796,\n 3384,\n 1343,\n 376,\n 14,\n 76,\n 9,\n 83,\n 61,\n 17,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 3003,\n 262,\n 705,\n 3174,\n 6,\n 318,\n 376,\n 318,\n 262,\n 1487,\n 287,\n 262,\n 2656,\n 640,\n 2168,\n 379,\n 262,\n 966,\n 628,\n 220,\n 220,\n 220,\n 1288,\n 361,\n 2513,\n 263,\n 31929,\n 6624,\n 705,\n 20270,\n 7785,\n 10354,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 285,\n 796,\n 2513,\n 263,\n 10044,\n 4105,\n 58,\n 15,\n 60,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 266,\n 75,\n 796,\n 2513,\n 263,\n 10044,\n 4105,\n 58,\n 16,\n 60,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 266,\n 58,\n 15,\n 60,\n 796,\n 331,\n 58,\n 15,\n 60,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 266,\n 58,\n 16,\n 60,\n 796,\n 331,\n 58,\n 16,\n 60,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 329,\n 1312,\n 287,\n 2837,\n 7,\n 17,\n 11,\n 399,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 266,\n 62,\n 259,\n 861,\n 796,\n 266,\n 58,\n 72,\n 12,\n 16,\n 60,\n 1343,\n 357,\n 86,\n 58,\n 72,\n 12,\n 16,\n 45297,\n 86,\n 58,\n 72,\n 12,\n 17,\n 12962,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 266,\n 62,\n 32542,\n 796,\n 266,\n 62,\n 259,\n 861,\n 1343,\n 357,\n 88,\n 58,\n 72,\n 60,\n 532,\n 266,\n 62,\n 259,\n 861,\n 20679,\n 76,\n 1303,\n 67,\n 747,\n 541,\n 876,\n 3381,\n 422,\n 640,\n 2168,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 1312,\n 1875,\n 266,\n 75,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 266,\n 58,\n 72,\n 60,\n 796,\n 266,\n 62,\n 32542,\n 1635,\n 357,\n 37659,\n 13,\n 19282,\n 7,\n 88,\n 58,\n 7,\n 72,\n 12,\n 40989,\n 2599,\n 72,\n 60,\n 4008,\n 14,\n 37659,\n 13,\n 19282,\n 7,\n 86,\n 58,\n 7,\n 72,\n 12,\n 40989,\n 2599,\n 72,\n 12962,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2073,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 266,\n 58,\n 72,\n 60,\n 796,\n 266,\n 62,\n 32542,\n 628,\n 198,\n 220,\n 220,\n 220,\n 2073,\n 1058,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3601,\n 7203,\n 12331,\n 25,\n 16185,\n 2446,\n 25,\n 366,\n 1343,\n 2513,\n 263,\n 31929,\n 1343,\n 366,\n 329,\n 985,\n 8306,\n 2513,\n 263,\n 319,\n 262,\n 640,\n 2168,\n 4943,\n 628,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 10097,\n 10097,\n 438,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 357,\n 17,\n 8,\n 15486,\n 1797,\n 2043,\n 19505,\n 6177,\n 3336,\n 370,\n 28082,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 10097,\n 10097,\n 438,\n 628,\n 220,\n 220,\n 220,\n 503,\n 796,\n 23884,\n 1303,\n 22155,\n 329,\n 23069,\n 9633,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 357,\n 72,\n 8,\n 383,\n 2513,\n 2346,\n 16529,\n 22369,\n 6329,\n 628,\n 220,\n 220,\n 220,\n 503,\n 17816,\n 86,\n 62,\n 32604,\n 20520,\n 796,\n 45941,\n 13,\n 32604,\n 7,\n 86,\n 8,\n 198,\n 220,\n 220,\n 220,\n 503,\n 17816,\n 86,\n 62,\n 1150,\n 666,\n 20520,\n 796,\n 45941,\n 13,\n 1150,\n 666,\n 7,\n 86,\n 8,\n 198,\n 220,\n 220,\n 220,\n 503,\n 17816,\n 86,\n 62,\n 19282,\n 20520,\n 796,\n 45941,\n 13,\n 19282,\n 7,\n 86,\n 8,\n 198,\n 220,\n 220,\n 220,\n 503,\n 17816,\n 86,\n 62,\n 330,\n 16,\n 20520,\n 796,\n 7375,\n 62,\n 27722,\n 10606,\n 81,\n 7,\n 86,\n 11,\n 352,\n 11,\n 2446,\n 11639,\n 16514,\n 3836,\n 391,\n 14269,\n 11537,\n 1303,\n 428,\n 2163,\n 869,\n 287,\n 36775,\n 48780,\n 3544,\n 2446,\n 11639,\n 37,\n 280,\n 5277,\n 3256,\n 475,\n 356,\n 836,\n 470,\n 423,\n 326,\n 1339,\n 9177,\n 1865,\n 287,\n 8295,\n 10606,\n 81,\n 11,\n 2158,\n 428,\n 2331,\n 284,\n 5072,\n 262,\n 976,\n 1517,\n 198,\n 220,\n 220,\n 220,\n 503,\n 17816,\n 86,\n 62,\n 330,\n 17,\n 20520,\n 796,\n 7375,\n 62,\n 27722,\n 10606,\n 81,\n 7,\n 86,\n 11,\n 362,\n 11,\n 2446,\n 11639,\n 16514,\n 3836,\n 391,\n 14269,\n 11537,\n 198,\n 220,\n 220,\n 220,\n 503,\n 17816,\n 86,\n 62,\n 83,\n 559,\n 20520,\n 796,\n 7375,\n 62,\n 5962,\n 28667,\n 7,\n 86,\n 11,\n 705,\n 330,\n 11537,\n 198,\n 220,\n 220,\n 220,\n 503,\n 17816,\n 86,\n 62,\n 1084,\n 20520,\n 796,\n 45941,\n 13,\n 1084,\n 7,\n 86,\n 8,\n 198,\n 220,\n 220,\n 220,\n 503,\n 17816,\n 86,\n 62,\n 9806,\n 20520,\n 796,\n 45941,\n 13,\n 9806,\n 7,\n 86,\n 8,\n 198,\n 220,\n 220,\n 220,\n 503,\n 17816,\n 22930,\n 89,\n 19692,\n 20520,\n 796,\n 2160,\n 7,\n 45941,\n 13,\n 16680,\n 541,\n 306,\n 7,\n 266,\n 58,\n 15,\n 37498,\n 11925,\n 7,\n 86,\n 13219,\n 17,\n 8,\n 4357,\n 266,\n 58,\n 16,\n 37498,\n 11925,\n 7,\n 86,\n 13219,\n 16,\n 15437,\n 1267,\n 1279,\n 657,\n 8,\n 1220,\n 357,\n 45,\n 12,\n 16,\n 8,\n 1303,\n 45941,\n 13,\n 16680,\n 541,\n 306,\n 17706,\n 5002,\n 3083,\n 48473,\n 588,\n 2603,\n 23912,\n 764,\n 9,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 5400,\n 1022,\n 262,\n 2513,\n 379,\n 6737,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 357,\n 4178,\n 8,\n 41937,\n 1022,\n 262,\n 2513,\n 379,\n 6737,\n 16529,\n 6329,\n 628,\n 220,\n 220,\n 220,\n 503,\n 17816,\n 2032,\n 62,\n 32604,\n 8937,\n 26069,\n 20520,\n 796,\n 45941,\n 13,\n 32604,\n 7,\n 37659,\n 13,\n 8937,\n 7,\n 88,\n 12,\n 86,\n 4008,\n 198,\n 220,\n 220,\n 220,\n 503,\n 17816,\n 2032,\n 62,\n 83,\n 3885,\n 733,\n 20520,\n 796,\n 7375,\n 62,\n 5962,\n 28667,\n 7,\n 88,\n 11,\n 705,\n 330,\n 11537,\n 532,\n 7375,\n 62,\n 5962,\n 28667,\n 7,\n 86,\n 11,\n 705,\n 330,\n 11537,\n 198,\n 220,\n 220,\n 220,\n 503,\n 17816,\n 2032,\n 62,\n 301,\n 7109,\n 265,\n 20520,\n 796,\n 45941,\n 13,\n 19282,\n 7,\n 86,\n 20679,\n 37659,\n 13,\n 19282,\n 7,\n 88,\n 8,\n 1303,\n 481,\n 307,\n 294,\n 325,\n 976,\n 355,\n 266,\n 62,\n 19282,\n 329,\n 1976,\n 12,\n 1416,\n 1850,\n 6737,\n 198,\n 220,\n 220,\n 220,\n 503,\n 17816,\n 2032,\n 62,\n 330,\n 16,\n 10366,\n 20520,\n 796,\n 503,\n 17816,\n 86,\n 62,\n 330,\n 16,\n 20520,\n 14,\n 8220,\n 62,\n 27722,\n 10606,\n 81,\n 7,\n 88,\n 11,\n 352,\n 8,\n 198,\n 220,\n 220,\n 220,\n 503,\n 17816,\n 2032,\n 62,\n 1084,\n 10366,\n 20520,\n 796,\n 949,\n 7,\n 86,\n 20679,\n 1084,\n 7,\n 88,\n 8,\n 198,\n 220,\n 220,\n 220,\n 503,\n 17816,\n 2032,\n 62,\n 9806,\n 10366,\n 20520,\n 796,\n 3509,\n 7,\n 86,\n 20679,\n 9806,\n 7,\n 88,\n 8,\n 198,\n 220,\n 220,\n 220,\n 503,\n 17816,\n 2032,\n 62,\n 1676,\n 14751,\n 1214,\n 20520,\n 796,\n 2160,\n 7,\n 37659,\n 13,\n 16680,\n 541,\n 306,\n 7,\n 266,\n 58,\n 15,\n 37498,\n 11925,\n 7,\n 86,\n 13219,\n 16,\n 15437,\n 532,\n 331,\n 58,\n 15,\n 37498,\n 11925,\n 7,\n 88,\n 13219,\n 16,\n 15437,\n 837,\n 266,\n 58,\n 16,\n 37498,\n 11925,\n 7,\n 86,\n 4008,\n 45297,\n 88,\n 58,\n 16,\n 37498,\n 11925,\n 7,\n 88,\n 4008,\n 12962,\n 1279,\n 657,\n 1267,\n 29006,\n 45,\n 12,\n 16,\n 8,\n 1303,\n 37659,\n 13,\n 16680,\n 541,\n 306,\n 17706,\n 5002,\n 3083,\n 48473,\n 588,\n 2603,\n 23912,\n 764,\n 9,\n 628,\n 220,\n 220,\n 220,\n 9093,\n 2743,\n 796,\n 9756,\n 13,\n 504,\n 2743,\n 7,\n 86,\n 11,\n 331,\n 8,\n 198,\n 220,\n 220,\n 220,\n 503,\n 17816,\n 2032,\n 62,\n 504,\n 283,\n 571,\n 62,\n 79,\n 2100,\n 20520,\n 796,\n 9093,\n 2743,\n 58,\n 16,\n 60,\n 628,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 374,\n 796,\n 45941,\n 13,\n 21602,\n 10223,\n 7,\n 45941,\n 13,\n 1084,\n 7,\n 37659,\n 13,\n 1084,\n 7,\n 88,\n 828,\n 45941,\n 13,\n 1084,\n 7,\n 86,\n 36911,\n 45941,\n 13,\n 9806,\n 7,\n 37659,\n 13,\n 9806,\n 7,\n 88,\n 828,\n 45941,\n 13,\n 9806,\n 7,\n 86,\n 36911,\n 939,\n 1267,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 20268,\n 796,\n 9756,\n 13,\n 4908,\n 31562,\n 62,\n 74,\n 2934,\n 7,\n 88,\n 11,\n 374,\n 8,\n 628,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 357,\n 15479,\n 8,\n 2045,\n 379,\n 29598,\n 82,\n 1022,\n 640,\n 2168,\n 290,\n 2513,\n 263,\n 628,\n 220,\n 220,\n 220,\n 581,\n 796,\n 266,\n 12,\n 88,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 7852,\n 2640,\n 6465,\n 29397,\n 4177,\n 2849,\n 5390,\n 36775,\n 48780,\n 32494,\n 2257,\n 6465,\n 11,\n 1043,\n 287,\n 9756,\n 27530,\n 13,\n 38142,\n 3524,\n 13,\n 34242,\n 13,\n 48381,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 1057,\n 301,\n 395,\n 796,\n 4539,\n 13,\n 5143,\n 301,\n 395,\n 62,\n 17,\n 82,\n 696,\n 7,\n 411,\n 11,\n 2628,\n 28,\n 17,\n 8,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 503,\n 17816,\n 411,\n 62,\n 5143,\n 301,\n 395,\n 20520,\n 796,\n 1057,\n 301,\n 395,\n 628,\n 220,\n 220,\n 220,\n 503,\n 17816,\n 411,\n 62,\n 37779,\n 20520,\n 796,\n 7375,\n 62,\n 27722,\n 10606,\n 81,\n 7,\n 411,\n 11,\n 19470,\n 28,\n 16,\n 8,\n 628,\n 198,\n 220,\n 220,\n 220,\n 1441,\n 503,\n 198\n]"},"ratio_char_token":{"kind":"number","value":2.6947091685836346,"string":"2.694709"},"token_count":{"kind":"number","value":3043,"string":"3,043"}}},{"rowIdx":4240,"cells":{"content":{"kind":"string","value":"from typing import Dict\n\nSKIP = \"SKIP\"\nUNKNOWN = \"UNKNOWN!\"\n\n\n\ndef detect_change(first: Dict[str, str], second: Dict[str, str],\n compareKeys: [str]) -> bool:\n \"\"\"Detects change between two dictonaries\n\n Args:\n first (Dict[str, str]): First dictionary\n second (Dict[str, str]): Second dictionary\n compareKeys ([type]): Keys to handle comparison\n\n Returns:\n bool: Is there a change ?\n \"\"\"\n for key in compareKeys:\n if key not in second or key not in first:\n return True\n if first[key] != second[key]:\n return True\n return False\n"},"input_ids":{"kind":"list like","value":[6738,19720,1330,360,713,198,198,18831,4061,796,366,18831,4061,1,198,4944,44706,796,366,4944,44706,2474,628,198,198,4299,4886,62,3803,7,11085,25,360,713,58,2536,11,965,4357,1218,25,360,713,58,2536,11,965,4357,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,8996,40729,25,685,2536,12962,4613,20512,25,198,220,220,220,37227,47504,82,1487,1022,734,8633,261,3166,628,220,220,220,943,14542,25,198,220,220,220,220,220,220,220,717,357,35,713,58,2536,11,965,60,2599,3274,22155,198,220,220,220,220,220,220,220,1218,357,35,713,58,2536,11,965,60,2599,5498,22155,198,220,220,220,220,220,220,220,8996,40729,29565,4906,60,2599,26363,284,5412,7208,628,220,220,220,16409,25,198,220,220,220,220,220,220,220,20512,25,1148,612,257,1487,5633,198,220,220,220,37227,198,220,220,220,329,1994,287,8996,40729,25,198,220,220,220,220,220,220,220,611,1994,407,287,1218,393,1994,407,287,717,25,198,220,220,220,220,220,220,220,220,220,220,220,1441,6407,198,220,220,220,220,220,220,220,611,717,58,2539,60,14512,1218,58,2539,5974,198,220,220,220,220,220,220,220,220,220,220,220,1441,6407,198,220,220,220,1441,10352,198],"string":"[\n 6738,\n 19720,\n 1330,\n 360,\n 713,\n 198,\n 198,\n 18831,\n 4061,\n 796,\n 366,\n 18831,\n 4061,\n 1,\n 198,\n 4944,\n 44706,\n 796,\n 366,\n 4944,\n 44706,\n 2474,\n 628,\n 198,\n 198,\n 4299,\n 4886,\n 62,\n 3803,\n 7,\n 11085,\n 25,\n 360,\n 713,\n 58,\n 2536,\n 11,\n 965,\n 4357,\n 1218,\n 25,\n 360,\n 713,\n 58,\n 2536,\n 11,\n 965,\n 4357,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 8996,\n 40729,\n 25,\n 685,\n 2536,\n 12962,\n 4613,\n 20512,\n 25,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 47504,\n 82,\n 1487,\n 1022,\n 734,\n 8633,\n 261,\n 3166,\n 628,\n 220,\n 220,\n 220,\n 943,\n 14542,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 717,\n 357,\n 35,\n 713,\n 58,\n 2536,\n 11,\n 965,\n 60,\n 2599,\n 3274,\n 22155,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1218,\n 357,\n 35,\n 713,\n 58,\n 2536,\n 11,\n 965,\n 60,\n 2599,\n 5498,\n 22155,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 8996,\n 40729,\n 29565,\n 4906,\n 60,\n 2599,\n 26363,\n 284,\n 5412,\n 7208,\n 628,\n 220,\n 220,\n 220,\n 16409,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 20512,\n 25,\n 1148,\n 612,\n 257,\n 1487,\n 5633,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 329,\n 1994,\n 287,\n 8996,\n 40729,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 1994,\n 407,\n 287,\n 1218,\n 393,\n 1994,\n 407,\n 287,\n 717,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1441,\n 6407,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 717,\n 58,\n 2539,\n 60,\n 14512,\n 1218,\n 58,\n 2539,\n 5974,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1441,\n 6407,\n 198,\n 220,\n 220,\n 220,\n 1441,\n 10352,\n 198\n]"},"ratio_char_token":{"kind":"number","value":2.3946360153256707,"string":"2.394636"},"token_count":{"kind":"number","value":261,"string":"261"}}},{"rowIdx":4241,"cells":{"content":{"kind":"string","value":"from . helpers import get_timestamp\n"},"input_ids":{"kind":"list like","value":[6738,764,49385,1330,651,62,16514,27823,198],"string":"[\n 6738,\n 764,\n 49385,\n 1330,\n 651,\n 62,\n 16514,\n 27823,\n 198\n]"},"ratio_char_token":{"kind":"number","value":4,"string":"4"},"token_count":{"kind":"number","value":9,"string":"9"}}},{"rowIdx":4242,"cells":{"content":{"kind":"string","value":"from discord.ext import commands\n\n\n"},"input_ids":{"kind":"list like","value":[6738,36446,13,2302,1330,9729,628,198],"string":"[\n 6738,\n 36446,\n 13,\n 2302,\n 1330,\n 9729,\n 628,\n 198\n]"},"ratio_char_token":{"kind":"number","value":4.375,"string":"4.375"},"token_count":{"kind":"number","value":8,"string":"8"}}},{"rowIdx":4243,"cells":{"content":{"kind":"string","value":"import gym\nimport numpy as np\nfrom PIL import Image\nimport sys\n\nenv = gym.make('Pong-v0')\nenv.reset()\n\ndone = False\ni = 0\nstart = 0\n\nif len(sys.argv) < 3:\n print(\"Usage: collect_pong \")\n exit()\n\ntry:\n games = int(sys.argv[1])\n start = int(sys.argv[2])\n i = start\nexcept:\n print(\"Please provide a valid number for games and start point.\")\n exit()\n\nfor _ in range(games):\n count = 0\n while not done:\n o, r, done, info = env.step(env.action_space.sample())\n count += 1\n # Ignore first 25 frames of the game, since the games starts after this amount.\n if count < 25:\n continue\n img = Image.fromarray(o)\n img.save(\"images/pong_\" + str(i) + \".png\")\n i += 1\n done = False\n env.reset()\n\nprint(\"Saved {} images.\".format(i-start))\nprint(\"Total images: {}\".format(i))\nenv.close()\n"},"input_ids":{"kind":"list like","value":[11748,11550,198,11748,299,32152,355,45941,198,6738,350,4146,1330,7412,198,11748,25064,198,198,24330,796,11550,13,15883,10786,47,506,12,85,15,11537,198,24330,13,42503,3419,198,198,28060,796,10352,198,72,796,657,198,9688,796,657,198,198,361,18896,7,17597,13,853,85,8,1279,513,25,198,220,220,220,3601,7203,28350,25,2824,62,79,506,1279,19966,29,1279,9688,62,4122,29,4943,198,220,220,220,8420,3419,198,198,28311,25,198,220,220,220,1830,796,493,7,17597,13,853,85,58,16,12962,198,220,220,220,923,796,493,7,17597,13,853,85,58,17,12962,198,220,220,220,1312,796,923,198,16341,25,198,220,220,220,3601,7203,5492,2148,257,4938,1271,329,1830,290,923,966,19570,198,220,220,220,8420,3419,198,198,1640,4808,287,2837,7,19966,2599,198,220,220,220,954,796,657,198,220,220,220,981,407,1760,25,198,220,220,220,220,220,220,220,267,11,374,11,1760,11,7508,796,17365,13,9662,7,24330,13,2673,62,13200,13,39873,28955,198,220,220,220,220,220,220,220,954,15853,352,198,220,220,220,220,220,220,220,1303,41032,717,1679,13431,286,262,983,11,1201,262,1830,4940,706,428,2033,13,198,220,220,220,220,220,220,220,611,954,1279,1679,25,198,220,220,220,220,220,220,220,220,220,220,220,2555,198,220,220,220,220,220,220,220,33705,796,7412,13,6738,18747,7,78,8,198,220,220,220,220,220,220,220,33705,13,21928,7203,17566,14,79,506,62,1,1343,965,7,72,8,1343,27071,11134,4943,198,220,220,220,220,220,220,220,1312,15853,352,198,220,220,220,1760,796,10352,198,220,220,220,17365,13,42503,3419,198,198,4798,7203,50,9586,23884,4263,526,13,18982,7,72,12,9688,4008,198,4798,7203,14957,4263,25,23884,1911,18982,7,72,4008,198,24330,13,19836,3419,198],"string":"[\n 11748,\n 11550,\n 198,\n 11748,\n 299,\n 32152,\n 355,\n 45941,\n 198,\n 6738,\n 350,\n 4146,\n 1330,\n 7412,\n 198,\n 11748,\n 25064,\n 198,\n 198,\n 24330,\n 796,\n 11550,\n 13,\n 15883,\n 10786,\n 47,\n 506,\n 12,\n 85,\n 15,\n 11537,\n 198,\n 24330,\n 13,\n 42503,\n 3419,\n 198,\n 198,\n 28060,\n 796,\n 10352,\n 198,\n 72,\n 796,\n 657,\n 198,\n 9688,\n 796,\n 657,\n 198,\n 198,\n 361,\n 18896,\n 7,\n 17597,\n 13,\n 853,\n 85,\n 8,\n 1279,\n 513,\n 25,\n 198,\n 220,\n 220,\n 220,\n 3601,\n 7203,\n 28350,\n 25,\n 2824,\n 62,\n 79,\n 506,\n 1279,\n 19966,\n 29,\n 1279,\n 9688,\n 62,\n 4122,\n 29,\n 4943,\n 198,\n 220,\n 220,\n 220,\n 8420,\n 3419,\n 198,\n 198,\n 28311,\n 25,\n 198,\n 220,\n 220,\n 220,\n 1830,\n 796,\n 493,\n 7,\n 17597,\n 13,\n 853,\n 85,\n 58,\n 16,\n 12962,\n 198,\n 220,\n 220,\n 220,\n 923,\n 796,\n 493,\n 7,\n 17597,\n 13,\n 853,\n 85,\n 58,\n 17,\n 12962,\n 198,\n 220,\n 220,\n 220,\n 1312,\n 796,\n 923,\n 198,\n 16341,\n 25,\n 198,\n 220,\n 220,\n 220,\n 3601,\n 7203,\n 5492,\n 2148,\n 257,\n 4938,\n 1271,\n 329,\n 1830,\n 290,\n 923,\n 966,\n 19570,\n 198,\n 220,\n 220,\n 220,\n 8420,\n 3419,\n 198,\n 198,\n 1640,\n 4808,\n 287,\n 2837,\n 7,\n 19966,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 954,\n 796,\n 657,\n 198,\n 220,\n 220,\n 220,\n 981,\n 407,\n 1760,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 267,\n 11,\n 374,\n 11,\n 1760,\n 11,\n 7508,\n 796,\n 17365,\n 13,\n 9662,\n 7,\n 24330,\n 13,\n 2673,\n 62,\n 13200,\n 13,\n 39873,\n 28955,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 954,\n 15853,\n 352,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 41032,\n 717,\n 1679,\n 13431,\n 286,\n 262,\n 983,\n 11,\n 1201,\n 262,\n 1830,\n 4940,\n 706,\n 428,\n 2033,\n 13,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 954,\n 1279,\n 1679,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2555,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 33705,\n 796,\n 7412,\n 13,\n 6738,\n 18747,\n 7,\n 78,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 33705,\n 13,\n 21928,\n 7203,\n 17566,\n 14,\n 79,\n 506,\n 62,\n 1,\n 1343,\n 965,\n 7,\n 72,\n 8,\n 1343,\n 27071,\n 11134,\n 4943,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1312,\n 15853,\n 352,\n 198,\n 220,\n 220,\n 220,\n 1760,\n 796,\n 10352,\n 198,\n 220,\n 220,\n 220,\n 17365,\n 13,\n 42503,\n 3419,\n 198,\n 198,\n 4798,\n 7203,\n 50,\n 9586,\n 23884,\n 4263,\n 526,\n 13,\n 18982,\n 7,\n 72,\n 12,\n 9688,\n 4008,\n 198,\n 4798,\n 7203,\n 14957,\n 4263,\n 25,\n 23884,\n 1911,\n 18982,\n 7,\n 72,\n 4008,\n 198,\n 24330,\n 13,\n 19836,\n 3419,\n 198\n]"},"ratio_char_token":{"kind":"number","value":2.3609625668449197,"string":"2.360963"},"token_count":{"kind":"number","value":374,"string":"374"}}},{"rowIdx":4244,"cells":{"content":{"kind":"string","value":"import random\n\nmylist = []\n\nfor somethin in range(1,10):\n x = random.randrange(0,9)\n mylist.append(x)\n\nprint(mylist)\n\n\nlast_index=len(mylist)\nprint (\"length of mylist is:\",len(mylist))\nprint (\"first element is:\",mylist[0])\nprint (\"last element is:\",mylist[len(mylist)-1])\n\n \n#is mylist sorted?\nis_mylist_sorted = False\n\nx=0\ny=1\nintermediate=None\n\n#how many switches?\nnumber_of_switches = 0\n\n#bubble sort\nwhile not is_mylist_sorted:\n \n if mylist[x] > mylist[y]:\n intermediate=mylist[x]\n mylist[x]=mylist[y]\n mylist[y]=intermediate\n number_of_switches+=1\n x+=1\n y+=1\n \n if y==last_index:\n x=0\n y=1\n \n if number_of_switches==0:\n is_mylist_sorted = True\n else:\n number_of_switches = 0\n\n\nprint(\"finished\")\nprint(\"is my list sorted?\",is_mylist_sorted)\nprint(\"my list\",mylist)\n\n \n"},"input_ids":{"kind":"list like","value":[11748,4738,198,198,1820,4868,796,17635,198,198,1640,1054,20079,287,2837,7,16,11,940,2599,198,220,220,220,2124,796,4738,13,25192,9521,7,15,11,24,8,198,220,220,220,616,4868,13,33295,7,87,8,198,198,4798,7,1820,4868,8,628,198,12957,62,9630,28,11925,7,1820,4868,8,198,4798,5855,13664,286,616,4868,318,25,1600,11925,7,1820,4868,4008,198,4798,5855,11085,5002,318,25,1600,1820,4868,58,15,12962,198,4798,5855,12957,5002,318,25,1600,1820,4868,58,11925,7,1820,4868,13219,16,12962,628,220,220,220,220,198,2,271,616,4868,23243,30,198,271,62,1820,4868,62,82,9741,796,10352,198,198,87,28,15,198,88,28,16,198,3849,13857,28,14202,198,198,2,4919,867,18225,30,198,17618,62,1659,62,2032,9249,796,657,198,198,2,46176,903,3297,198,4514,407,318,62,1820,4868,62,82,9741,25,198,220,220,220,220,198,220,220,220,611,616,4868,58,87,60,1875,616,4868,58,88,5974,198,220,220,220,220,220,220,220,19898,28,1820,4868,58,87,60,198,220,220,220,220,220,220,220,616,4868,58,87,22241,1820,4868,58,88,60,198,220,220,220,220,220,220,220,616,4868,58,88,22241,3849,13857,198,220,220,220,220,220,220,220,1271,62,1659,62,2032,9249,47932,16,198,220,220,220,2124,47932,16,198,220,220,220,331,47932,16,198,220,220,220,198,220,220,220,611,331,855,12957,62,9630,25,198,220,220,220,220,220,220,220,2124,28,15,198,220,220,220,220,220,220,220,331,28,16,198,220,220,220,220,220,220,220,220,198,220,220,220,220,220,220,220,611,1271,62,1659,62,2032,9249,855,15,25,198,220,220,220,220,220,220,220,220,220,220,220,318,62,1820,4868,62,82,9741,796,6407,198,220,220,220,220,220,220,220,2073,25,198,220,220,220,220,220,220,220,220,220,220,220,1271,62,1659,62,2032,9249,796,657,628,198,4798,7203,43952,4943,198,4798,7203,271,616,1351,23243,35379,271,62,1820,4868,62,82,9741,8,198,4798,7203,1820,1351,1600,1820,4868,8,628,220,220,220,220,198],"string":"[\n 11748,\n 4738,\n 198,\n 198,\n 1820,\n 4868,\n 796,\n 17635,\n 198,\n 198,\n 1640,\n 1054,\n 20079,\n 287,\n 2837,\n 7,\n 16,\n 11,\n 940,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 2124,\n 796,\n 4738,\n 13,\n 25192,\n 9521,\n 7,\n 15,\n 11,\n 24,\n 8,\n 198,\n 220,\n 220,\n 220,\n 616,\n 4868,\n 13,\n 33295,\n 7,\n 87,\n 8,\n 198,\n 198,\n 4798,\n 7,\n 1820,\n 4868,\n 8,\n 628,\n 198,\n 12957,\n 62,\n 9630,\n 28,\n 11925,\n 7,\n 1820,\n 4868,\n 8,\n 198,\n 4798,\n 5855,\n 13664,\n 286,\n 616,\n 4868,\n 318,\n 25,\n 1600,\n 11925,\n 7,\n 1820,\n 4868,\n 4008,\n 198,\n 4798,\n 5855,\n 11085,\n 5002,\n 318,\n 25,\n 1600,\n 1820,\n 4868,\n 58,\n 15,\n 12962,\n 198,\n 4798,\n 5855,\n 12957,\n 5002,\n 318,\n 25,\n 1600,\n 1820,\n 4868,\n 58,\n 11925,\n 7,\n 1820,\n 4868,\n 13219,\n 16,\n 12962,\n 628,\n 220,\n 220,\n 220,\n 220,\n 198,\n 2,\n 271,\n 616,\n 4868,\n 23243,\n 30,\n 198,\n 271,\n 62,\n 1820,\n 4868,\n 62,\n 82,\n 9741,\n 796,\n 10352,\n 198,\n 198,\n 87,\n 28,\n 15,\n 198,\n 88,\n 28,\n 16,\n 198,\n 3849,\n 13857,\n 28,\n 14202,\n 198,\n 198,\n 2,\n 4919,\n 867,\n 18225,\n 30,\n 198,\n 17618,\n 62,\n 1659,\n 62,\n 2032,\n 9249,\n 796,\n 657,\n 198,\n 198,\n 2,\n 46176,\n 903,\n 3297,\n 198,\n 4514,\n 407,\n 318,\n 62,\n 1820,\n 4868,\n 62,\n 82,\n 9741,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 198,\n 220,\n 220,\n 220,\n 611,\n 616,\n 4868,\n 58,\n 87,\n 60,\n 1875,\n 616,\n 4868,\n 58,\n 88,\n 5974,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 19898,\n 28,\n 1820,\n 4868,\n 58,\n 87,\n 60,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 616,\n 4868,\n 58,\n 87,\n 22241,\n 1820,\n 4868,\n 58,\n 88,\n 60,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 616,\n 4868,\n 58,\n 88,\n 22241,\n 3849,\n 13857,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1271,\n 62,\n 1659,\n 62,\n 2032,\n 9249,\n 47932,\n 16,\n 198,\n 220,\n 220,\n 220,\n 2124,\n 47932,\n 16,\n 198,\n 220,\n 220,\n 220,\n 331,\n 47932,\n 16,\n 198,\n 220,\n 220,\n 220,\n 198,\n 220,\n 220,\n 220,\n 611,\n 331,\n 855,\n 12957,\n 62,\n 9630,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2124,\n 28,\n 15,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 331,\n 28,\n 16,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 1271,\n 62,\n 1659,\n 62,\n 2032,\n 9249,\n 855,\n 15,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 318,\n 62,\n 1820,\n 4868,\n 62,\n 82,\n 9741,\n 796,\n 6407,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2073,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1271,\n 62,\n 1659,\n 62,\n 2032,\n 9249,\n 796,\n 657,\n 628,\n 198,\n 4798,\n 7203,\n 43952,\n 4943,\n 198,\n 4798,\n 7203,\n 271,\n 616,\n 1351,\n 23243,\n 35379,\n 271,\n 62,\n 1820,\n 4868,\n 62,\n 82,\n 9741,\n 8,\n 198,\n 4798,\n 7203,\n 1820,\n 1351,\n 1600,\n 1820,\n 4868,\n 8,\n 628,\n 220,\n 220,\n 220,\n 220,\n 198\n]"},"ratio_char_token":{"kind":"number","value":2.062790697674419,"string":"2.062791"},"token_count":{"kind":"number","value":430,"string":"430"}}},{"rowIdx":4245,"cells":{"content":{"kind":"string","value":"import os\r\nimport setuptools\r\ntry: # for pip >= 10\r\n from pip._internal.req import parse_requirements\r\nexcept ImportError: # for pip <= 9.0.3\r\n from pip.req import parse_requirements\r\n\r\nrequirements_path = os.path.join(os.path.dirname(__file__), 'requirements.txt')\r\ninstall_requires = parse_requirements(requirements_path, session='hack')\r\ninstall_requires = [str(ir.req) for ir in install_requires]\r\n\r\nwith open(os.path.join(os.path.dirname(__file__), 'VERSION'), 'r') as f:\r\n version = f.read()\r\n\r\nwith open(os.path.join(os.path.dirname(__file__), 'README.md'), 'r') as f:\r\n long_description = f.read()\r\n\r\nsetuptools.setup(\r\n name='afs2-datasource',\r\n version=version,\r\n description='For AFS developer to access Datasource',\r\n long_description=long_description,\r\n long_description_content_type='text/markdown',\r\n author='WISE-PaaS/AFS',\r\n author_email='stacy.yeh@advantech.com.tw',\r\n packages=setuptools.find_packages(),\r\n install_requires=install_requires,\r\n keywords=['AFS'],\r\n license='Apache License 2.0',\r\n url='https://github.com/stacy0416/afs2-datasource'\r\n)\r\n\r\n# python setup.py bdist_wheel"},"input_ids":{"kind":"list like","value":[11748,28686,201,198,11748,900,37623,10141,201,198,28311,25,1303,329,7347,18189,838,201,198,220,422,7347,13557,32538,13,42180,1330,21136,62,8897,18883,201,198,16341,17267,12331,25,1303,329,7347,19841,860,13,15,13,18,201,198,220,422,7347,13,42180,1330,21136,62,8897,18883,201,198,201,198,8897,18883,62,6978,796,28686,13,6978,13,22179,7,418,13,6978,13,15908,3672,7,834,7753,834,828,705,8897,18883,13,14116,11537,201,198,17350,62,47911,796,21136,62,8897,18883,7,8897,18883,62,6978,11,6246,11639,31153,11537,201,198,17350,62,47911,796,685,2536,7,343,13,42180,8,329,4173,287,2721,62,47911,60,201,198,201,198,4480,1280,7,418,13,6978,13,22179,7,418,13,6978,13,15908,3672,7,834,7753,834,828,705,43717,33809,705,81,11537,355,277,25,201,198,220,2196,796,277,13,961,3419,201,198,201,198,4480,1280,7,418,13,6978,13,22179,7,418,13,6978,13,15908,3672,7,834,7753,834,828,705,15675,11682,13,9132,33809,705,81,11537,355,277,25,201,198,220,890,62,11213,796,277,13,961,3419,201,198,201,198,2617,37623,10141,13,40406,7,201,198,220,1438,11639,1878,82,17,12,19608,292,1668,3256,201,198,220,2196,28,9641,11,201,198,220,6764,11639,1890,317,10652,8517,284,1895,16092,292,1668,3256,201,198,220,890,62,11213,28,6511,62,11213,11,201,198,220,890,62,11213,62,11299,62,4906,11639,5239,14,4102,2902,3256,201,198,220,1772,11639,54,24352,12,47,7252,50,14,8579,50,3256,201,198,220,1772,62,12888,11639,301,1590,13,5948,71,31,13461,3055,13,785,13,4246,3256,201,198,220,10392,28,2617,37623,10141,13,19796,62,43789,22784,201,198,220,2721,62,47911,28,17350,62,47911,11,201,198,220,26286,28,17816,8579,50,6,4357,201,198,220,5964,11639,25189,4891,13789,362,13,15,3256,201,198,220,19016,11639,5450,1378,12567,13,785,14,301,1590,3023,1433,14,1878,82,17,12,19608,292,1668,6,201,198,8,201,198,201,198,2,21015,9058,13,9078,275,17080,62,22001],"string":"[\n 11748,\n 28686,\n 201,\n 198,\n 11748,\n 900,\n 37623,\n 10141,\n 201,\n 198,\n 28311,\n 25,\n 1303,\n 329,\n 7347,\n 18189,\n 838,\n 201,\n 198,\n 220,\n 422,\n 7347,\n 13557,\n 32538,\n 13,\n 42180,\n 1330,\n 21136,\n 62,\n 8897,\n 18883,\n 201,\n 198,\n 16341,\n 17267,\n 12331,\n 25,\n 1303,\n 329,\n 7347,\n 19841,\n 860,\n 13,\n 15,\n 13,\n 18,\n 201,\n 198,\n 220,\n 422,\n 7347,\n 13,\n 42180,\n 1330,\n 21136,\n 62,\n 8897,\n 18883,\n 201,\n 198,\n 201,\n 198,\n 8897,\n 18883,\n 62,\n 6978,\n 796,\n 28686,\n 13,\n 6978,\n 13,\n 22179,\n 7,\n 418,\n 13,\n 6978,\n 13,\n 15908,\n 3672,\n 7,\n 834,\n 7753,\n 834,\n 828,\n 705,\n 8897,\n 18883,\n 13,\n 14116,\n 11537,\n 201,\n 198,\n 17350,\n 62,\n 47911,\n 796,\n 21136,\n 62,\n 8897,\n 18883,\n 7,\n 8897,\n 18883,\n 62,\n 6978,\n 11,\n 6246,\n 11639,\n 31153,\n 11537,\n 201,\n 198,\n 17350,\n 62,\n 47911,\n 796,\n 685,\n 2536,\n 7,\n 343,\n 13,\n 42180,\n 8,\n 329,\n 4173,\n 287,\n 2721,\n 62,\n 47911,\n 60,\n 201,\n 198,\n 201,\n 198,\n 4480,\n 1280,\n 7,\n 418,\n 13,\n 6978,\n 13,\n 22179,\n 7,\n 418,\n 13,\n 6978,\n 13,\n 15908,\n 3672,\n 7,\n 834,\n 7753,\n 834,\n 828,\n 705,\n 43717,\n 33809,\n 705,\n 81,\n 11537,\n 355,\n 277,\n 25,\n 201,\n 198,\n 220,\n 2196,\n 796,\n 277,\n 13,\n 961,\n 3419,\n 201,\n 198,\n 201,\n 198,\n 4480,\n 1280,\n 7,\n 418,\n 13,\n 6978,\n 13,\n 22179,\n 7,\n 418,\n 13,\n 6978,\n 13,\n 15908,\n 3672,\n 7,\n 834,\n 7753,\n 834,\n 828,\n 705,\n 15675,\n 11682,\n 13,\n 9132,\n 33809,\n 705,\n 81,\n 11537,\n 355,\n 277,\n 25,\n 201,\n 198,\n 220,\n 890,\n 62,\n 11213,\n 796,\n 277,\n 13,\n 961,\n 3419,\n 201,\n 198,\n 201,\n 198,\n 2617,\n 37623,\n 10141,\n 13,\n 40406,\n 7,\n 201,\n 198,\n 220,\n 1438,\n 11639,\n 1878,\n 82,\n 17,\n 12,\n 19608,\n 292,\n 1668,\n 3256,\n 201,\n 198,\n 220,\n 2196,\n 28,\n 9641,\n 11,\n 201,\n 198,\n 220,\n 6764,\n 11639,\n 1890,\n 317,\n 10652,\n 8517,\n 284,\n 1895,\n 16092,\n 292,\n 1668,\n 3256,\n 201,\n 198,\n 220,\n 890,\n 62,\n 11213,\n 28,\n 6511,\n 62,\n 11213,\n 11,\n 201,\n 198,\n 220,\n 890,\n 62,\n 11213,\n 62,\n 11299,\n 62,\n 4906,\n 11639,\n 5239,\n 14,\n 4102,\n 2902,\n 3256,\n 201,\n 198,\n 220,\n 1772,\n 11639,\n 54,\n 24352,\n 12,\n 47,\n 7252,\n 50,\n 14,\n 8579,\n 50,\n 3256,\n 201,\n 198,\n 220,\n 1772,\n 62,\n 12888,\n 11639,\n 301,\n 1590,\n 13,\n 5948,\n 71,\n 31,\n 13461,\n 3055,\n 13,\n 785,\n 13,\n 4246,\n 3256,\n 201,\n 198,\n 220,\n 10392,\n 28,\n 2617,\n 37623,\n 10141,\n 13,\n 19796,\n 62,\n 43789,\n 22784,\n 201,\n 198,\n 220,\n 2721,\n 62,\n 47911,\n 28,\n 17350,\n 62,\n 47911,\n 11,\n 201,\n 198,\n 220,\n 26286,\n 28,\n 17816,\n 8579,\n 50,\n 6,\n 4357,\n 201,\n 198,\n 220,\n 5964,\n 11639,\n 25189,\n 4891,\n 13789,\n 362,\n 13,\n 15,\n 3256,\n 201,\n 198,\n 220,\n 19016,\n 11639,\n 5450,\n 1378,\n 12567,\n 13,\n 785,\n 14,\n 301,\n 1590,\n 3023,\n 1433,\n 14,\n 1878,\n 82,\n 17,\n 12,\n 19608,\n 292,\n 1668,\n 6,\n 201,\n 198,\n 8,\n 201,\n 198,\n 201,\n 198,\n 2,\n 21015,\n 9058,\n 13,\n 9078,\n 275,\n 17080,\n 62,\n 22001\n]"},"ratio_char_token":{"kind":"number","value":2.7111650485436893,"string":"2.711165"},"token_count":{"kind":"number","value":412,"string":"412"}}},{"rowIdx":4246,"cells":{"content":{"kind":"string","value":"import pandas as pd\n\n#============== First Round ===================#\n#===============================================#\n \n\n#============== Other Rounds ===================#\n#===============================================#\n"},"input_ids":{"kind":"list like","value":[11748,19798,292,355,279,67,198,198,2,25609,855,3274,10485,36658,855,2,198,2,10052,25609,18604,2,198,220,220,220,220,198,198,2,25609,855,3819,49049,36658,855,2,198,2,10052,25609,18604,2,198],"string":"[\n 11748,\n 19798,\n 292,\n 355,\n 279,\n 67,\n 198,\n 198,\n 2,\n 25609,\n 855,\n 3274,\n 10485,\n 36658,\n 855,\n 2,\n 198,\n 2,\n 10052,\n 25609,\n 18604,\n 2,\n 198,\n 220,\n 220,\n 220,\n 220,\n 198,\n 198,\n 2,\n 25609,\n 855,\n 3819,\n 49049,\n 36658,\n 855,\n 2,\n 198,\n 2,\n 10052,\n 25609,\n 18604,\n 2,\n 198\n]"},"ratio_char_token":{"kind":"number","value":5.136363636363637,"string":"5.136364"},"token_count":{"kind":"number","value":44,"string":"44"}}},{"rowIdx":4247,"cells":{"content":{"kind":"string","value":"\"\"\"\nExercício 03\nPeça ao usuário para digitar 3 valores inteiros e imprima a soma deles.\n\"\"\"\n\nprint('Digite três números inteiros para somá-los:\\n')\nnum1 = int(float(input('Primeiro número: ').replace(',', '.')))\nnum2 = int(float(input('Segundo número: ').replace(',', '.')))\nnum3 = int(float(input('Terceiro número: ').replace(',', '.')))\nsum = num1 + num2 + num3\nprint(f'_____\\nA soma dos valores é: {sum}')\n"},"input_ids":{"kind":"list like","value":[37811,198,3109,2798,8836,66,952,7643,198,6435,50041,257,78,514,84,6557,27250,31215,3100,7940,513,1188,2850,493,20295,4951,304,848,3036,64,257,3870,64,390,829,13,198,37811,198,198,4798,10786,19511,578,491,25792,82,299,21356,647,418,493,20295,4951,31215,3870,6557,12,33280,7479,77,11537,198,22510,16,796,493,7,22468,7,15414,10786,26405,7058,299,21356,647,78,25,705,737,33491,7,3256,3256,705,2637,22305,198,22510,17,796,493,7,22468,7,15414,10786,41030,41204,299,21356,647,78,25,705,737,33491,7,3256,3256,705,2637,22305,198,22510,18,796,493,7,22468,7,15414,10786,15156,344,7058,299,21356,647,78,25,705,737,33491,7,3256,3256,705,2637,22305,198,16345,796,997,16,1343,997,17,1343,997,18,198,4798,7,69,6,29343,59,77,32,3870,64,23430,1188,2850,38251,25,1391,16345,92,11537,198],"string":"[\n 37811,\n 198,\n 3109,\n 2798,\n 8836,\n 66,\n 952,\n 7643,\n 198,\n 6435,\n 50041,\n 257,\n 78,\n 514,\n 84,\n 6557,\n 27250,\n 31215,\n 3100,\n 7940,\n 513,\n 1188,\n 2850,\n 493,\n 20295,\n 4951,\n 304,\n 848,\n 3036,\n 64,\n 257,\n 3870,\n 64,\n 390,\n 829,\n 13,\n 198,\n 37811,\n 198,\n 198,\n 4798,\n 10786,\n 19511,\n 578,\n 491,\n 25792,\n 82,\n 299,\n 21356,\n 647,\n 418,\n 493,\n 20295,\n 4951,\n 31215,\n 3870,\n 6557,\n 12,\n 33280,\n 7479,\n 77,\n 11537,\n 198,\n 22510,\n 16,\n 796,\n 493,\n 7,\n 22468,\n 7,\n 15414,\n 10786,\n 26405,\n 7058,\n 299,\n 21356,\n 647,\n 78,\n 25,\n 705,\n 737,\n 33491,\n 7,\n 3256,\n 3256,\n 705,\n 2637,\n 22305,\n 198,\n 22510,\n 17,\n 796,\n 493,\n 7,\n 22468,\n 7,\n 15414,\n 10786,\n 41030,\n 41204,\n 299,\n 21356,\n 647,\n 78,\n 25,\n 705,\n 737,\n 33491,\n 7,\n 3256,\n 3256,\n 705,\n 2637,\n 22305,\n 198,\n 22510,\n 18,\n 796,\n 493,\n 7,\n 22468,\n 7,\n 15414,\n 10786,\n 15156,\n 344,\n 7058,\n 299,\n 21356,\n 647,\n 78,\n 25,\n 705,\n 737,\n 33491,\n 7,\n 3256,\n 3256,\n 705,\n 2637,\n 22305,\n 198,\n 16345,\n 796,\n 997,\n 16,\n 1343,\n 997,\n 17,\n 1343,\n 997,\n 18,\n 198,\n 4798,\n 7,\n 69,\n 6,\n 29343,\n 59,\n 77,\n 32,\n 3870,\n 64,\n 23430,\n 1188,\n 2850,\n 38251,\n 25,\n 1391,\n 16345,\n 92,\n 11537,\n 198\n]"},"ratio_char_token":{"kind":"number","value":2.3699421965317917,"string":"2.369942"},"token_count":{"kind":"number","value":173,"string":"173"}}},{"rowIdx":4248,"cells":{"content":{"kind":"string","value":"from __future__ import (absolute_import, division, print_function)\n__metaclass__ = type\nimport json\n\nmodule_definition = json.loads(\n \"\"\"{\n \"family\": \"discovery\",\n \"name\": \"discovery_network_device\",\n \"operations\": {\n \"get\": [\n \"get_discovered_network_devices_by_discovery_id\",\n \"get_discovered_devices_by_range\",\n \"get_devices_discovered_by_id\",\n \"get_network_devices_from_discovery\"\n ]\n },\n \"parameters\": {\n \"get_devices_discovered_by_id\": [\n {\n \"name\": \"id\",\n \"required\": true,\n \"type\": \"string\"\n },\n {\n \"name\": \"task_id\",\n \"required\": false,\n \"type\": \"string\"\n },\n {\n \"artificial\": true,\n \"name\": \"count\",\n \"required\": true,\n \"type\": \"boolean\"\n }\n ],\n \"get_discovered_devices_by_range\": [\n {\n \"name\": \"id\",\n \"required\": true,\n \"type\": \"string\"\n },\n {\n \"name\": \"records_to_return\",\n \"required\": true,\n \"type\": \"integer\"\n },\n {\n \"name\": \"start_index\",\n \"required\": true,\n \"type\": \"integer\"\n },\n {\n \"name\": \"task_id\",\n \"required\": false,\n \"type\": \"string\"\n }\n ],\n \"get_discovered_network_devices_by_discovery_id\": [\n {\n \"name\": \"id\",\n \"required\": true,\n \"type\": \"string\"\n },\n {\n \"name\": \"task_id\",\n \"required\": false,\n \"type\": \"string\"\n }\n ],\n \"get_network_devices_from_discovery\": [\n {\n \"name\": \"id\",\n \"required\": true,\n \"type\": \"string\"\n },\n {\n \"name\": \"cli_status\",\n \"required\": false,\n \"type\": \"string\"\n },\n {\n \"name\": \"http_status\",\n \"required\": false,\n \"type\": \"string\"\n },\n {\n \"name\": \"ip_address\",\n \"required\": false,\n \"type\": \"string\"\n },\n {\n \"name\": \"netconf_status\",\n \"required\": false,\n \"type\": \"string\"\n },\n {\n \"name\": \"ping_status\",\n \"required\": false,\n \"type\": \"string\"\n },\n {\n \"name\": \"snmp_status\",\n \"required\": false,\n \"type\": \"string\"\n },\n {\n \"name\": \"sort_by\",\n \"required\": false,\n \"type\": \"string\"\n },\n {\n \"name\": \"sort_order\",\n \"required\": false,\n \"type\": \"string\"\n },\n {\n \"name\": \"task_id\",\n \"required\": false,\n \"type\": \"string\"\n },\n {\n \"artificial\": true,\n \"name\": \"summary\",\n \"required\": true,\n \"type\": \"boolean\"\n }\n ]\n },\n \"responses\": {\n \"get_devices_discovered_by_id\": {\n \"properties\": [\n \"response\",\n \"version\"\n ],\n \"type\": \"object\"\n },\n \"get_discovered_devices_by_range\": {\n \"properties\": [\n \"response\",\n \"version\"\n ],\n \"type\": \"object\"\n },\n \"get_discovered_network_devices_by_discovery_id\": {\n \"properties\": [\n \"response\",\n \"version\"\n ],\n \"type\": \"object\"\n },\n \"get_network_devices_from_discovery\": {\n \"properties\": [\n \"response\",\n \"version\"\n ],\n \"type\": \"object\"\n }\n }\n}\"\"\"\n)\n"},"input_ids":{"kind":"list like","value":[6738,11593,37443,834,1330,357,48546,62,11748,11,7297,11,3601,62,8818,8,198,834,4164,330,31172,834,796,2099,198,11748,33918,198,198,21412,62,46758,796,33918,13,46030,7,198,220,220,220,37227,90,198,220,220,220,366,17989,1298,366,67,40821,1600,198,220,220,220,366,3672,1298,366,67,40821,62,27349,62,25202,1600,198,220,220,220,366,3575,602,1298,1391,198,220,220,220,220,220,220,220,366,1136,1298,685,198,220,220,220,220,220,220,220,220,220,220,220,366,1136,62,15410,2557,62,27349,62,42034,62,1525,62,67,40821,62,312,1600,198,220,220,220,220,220,220,220,220,220,220,220,366,1136,62,15410,2557,62,42034,62,1525,62,9521,1600,198,220,220,220,220,220,220,220,220,220,220,220,366,1136,62,42034,62,15410,2557,62,1525,62,312,1600,198,220,220,220,220,220,220,220,220,220,220,220,366,1136,62,27349,62,42034,62,6738,62,67,40821,1,198,220,220,220,220,220,220,220,2361,198,220,220,220,8964,198,220,220,220,366,17143,7307,1298,1391,198,220,220,220,220,220,220,220,366,1136,62,42034,62,15410,2557,62,1525,62,312,1298,685,198,220,220,220,220,220,220,220,220,220,220,220,1391,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,3672,1298,366,312,1600,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,35827,1298,2081,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,4906,1298,366,8841,1,198,220,220,220,220,220,220,220,220,220,220,220,8964,198,220,220,220,220,220,220,220,220,220,220,220,1391,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,3672,1298,366,35943,62,312,1600,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,35827,1298,3991,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,4906,1298,366,8841,1,198,220,220,220,220,220,220,220,220,220,220,220,8964,198,220,220,220,220,220,220,220,220,220,220,220,1391,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,433,9542,1298,2081,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,3672,1298,366,9127,1600,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,35827,1298,2081,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,4906,1298,366,2127,21052,1,198,220,220,220,220,220,220,220,220,220,220,220,1782,198,220,220,220,220,220,220,220,16589,198,220,220,220,220,220,220,220,366,1136,62,15410,2557,62,42034,62,1525,62,9521,1298,685,198,220,220,220,220,220,220,220,220,220,220,220,1391,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,3672,1298,366,312,1600,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,35827,1298,2081,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,4906,1298,366,8841,1,198,220,220,220,220,220,220,220,220,220,220,220,8964,198,220,220,220,220,220,220,220,220,220,220,220,1391,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,3672,1298,366,8344,3669,62,1462,62,7783,1600,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,35827,1298,2081,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,4906,1298,366,41433,1,198,220,220,220,220,220,220,220,220,220,220,220,8964,198,220,220,220,220,220,220,220,220,220,220,220,1391,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,3672,1298,366,9688,62,9630,1600,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,35827,1298,2081,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,4906,1298,366,41433,1,198,220,220,220,220,220,220,220,220,220,220,220,8964,198,220,220,220,220,220,220,220,220,220,220,220,1391,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,3672,1298,366,35943,62,312,1600,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,35827,1298,3991,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,4906,1298,366,8841,1,198,220,220,220,220,220,220,220,220,220,220,220,1782,198,220,220,220,220,220,220,220,16589,198,220,220,220,220,220,220,220,366,1136,62,15410,2557,62,27349,62,42034,62,1525,62,67,40821,62,312,1298,685,198,220,220,220,220,220,220,220,220,220,220,220,1391,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,3672,1298,366,312,1600,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,35827,1298,2081,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,4906,1298,366,8841,1,198,220,220,220,220,220,220,220,220,220,220,220,8964,198,220,220,220,220,220,220,220,220,220,220,220,1391,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,3672,1298,366,35943,62,312,1600,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,35827,1298,3991,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,4906,1298,366,8841,1,198,220,220,220,220,220,220,220,220,220,220,220,1782,198,220,220,220,220,220,220,220,16589,198,220,220,220,220,220,220,220,366,1136,62,27349,62,42034,62,6738,62,67,40821,1298,685,198,220,220,220,220,220,220,220,220,220,220,220,1391,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,3672,1298,366,312,1600,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,35827,1298,2081,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,4906,1298,366,8841,1,198,220,220,220,220,220,220,220,220,220,220,220,8964,198,220,220,220,220,220,220,220,220,220,220,220,1391,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,3672,1298,366,44506,62,13376,1600,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,35827,1298,3991,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,4906,1298,366,8841,1,198,220,220,220,220,220,220,220,220,220,220,220,8964,198,220,220,220,220,220,220,220,220,220,220,220,1391,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,3672,1298,366,4023,62,13376,1600,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,35827,1298,3991,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,4906,1298,366,8841,1,198,220,220,220,220,220,220,220,220,220,220,220,8964,198,220,220,220,220,220,220,220,220,220,220,220,1391,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,3672,1298,366,541,62,21975,1600,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,35827,1298,3991,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,4906,1298,366,8841,1,198,220,220,220,220,220,220,220,220,220,220,220,8964,198,220,220,220,220,220,220,220,220,220,220,220,1391,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,3672,1298,366,3262,10414,62,13376,1600,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,35827,1298,3991,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,4906,1298,366,8841,1,198,220,220,220,220,220,220,220,220,220,220,220,8964,198,220,220,220,220,220,220,220,220,220,220,220,1391,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,3672,1298,366,13886,62,13376,1600,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,35827,1298,3991,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,4906,1298,366,8841,1,198,220,220,220,220,220,220,220,220,220,220,220,8964,198,220,220,220,220,220,220,220,220,220,220,220,1391,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,3672,1298,366,16184,3149,62,13376,1600,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,35827,1298,3991,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,4906,1298,366,8841,1,198,220,220,220,220,220,220,220,220,220,220,220,8964,198,220,220,220,220,220,220,220,220,220,220,220,1391,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,3672,1298,366,30619,62,1525,1600,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,35827,1298,3991,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,4906,1298,366,8841,1,198,220,220,220,220,220,220,220,220,220,220,220,8964,198,220,220,220,220,220,220,220,220,220,220,220,1391,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,3672,1298,366,30619,62,2875,1600,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,35827,1298,3991,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,4906,1298,366,8841,1,198,220,220,220,220,220,220,220,220,220,220,220,8964,198,220,220,220,220,220,220,220,220,220,220,220,1391,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,3672,1298,366,35943,62,312,1600,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,35827,1298,3991,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,4906,1298,366,8841,1,198,220,220,220,220,220,220,220,220,220,220,220,8964,198,220,220,220,220,220,220,220,220,220,220,220,1391,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,433,9542,1298,2081,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,3672,1298,366,49736,1600,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,35827,1298,2081,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,4906,1298,366,2127,21052,1,198,220,220,220,220,220,220,220,220,220,220,220,1782,198,220,220,220,220,220,220,220,2361,198,220,220,220,8964,198,220,220,220,366,16733,274,1298,1391,198,220,220,220,220,220,220,220,366,1136,62,42034,62,15410,2557,62,1525,62,312,1298,1391,198,220,220,220,220,220,220,220,220,220,220,220,366,48310,1298,685,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,26209,1600,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,9641,1,198,220,220,220,220,220,220,220,220,220,220,220,16589,198,220,220,220,220,220,220,220,220,220,220,220,366,4906,1298,366,15252,1,198,220,220,220,220,220,220,220,8964,198,220,220,220,220,220,220,220,366,1136,62,15410,2557,62,42034,62,1525,62,9521,1298,1391,198,220,220,220,220,220,220,220,220,220,220,220,366,48310,1298,685,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,26209,1600,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,9641,1,198,220,220,220,220,220,220,220,220,220,220,220,16589,198,220,220,220,220,220,220,220,220,220,220,220,366,4906,1298,366,15252,1,198,220,220,220,220,220,220,220,8964,198,220,220,220,220,220,220,220,366,1136,62,15410,2557,62,27349,62,42034,62,1525,62,67,40821,62,312,1298,1391,198,220,220,220,220,220,220,220,220,220,220,220,366,48310,1298,685,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,26209,1600,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,9641,1,198,220,220,220,220,220,220,220,220,220,220,220,16589,198,220,220,220,220,220,220,220,220,220,220,220,366,4906,1298,366,15252,1,198,220,220,220,220,220,220,220,8964,198,220,220,220,220,220,220,220,366,1136,62,27349,62,42034,62,6738,62,67,40821,1298,1391,198,220,220,220,220,220,220,220,220,220,220,220,366,48310,1298,685,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,26209,1600,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,9641,1,198,220,220,220,220,220,220,220,220,220,220,220,16589,198,220,220,220,220,220,220,220,220,220,220,220,366,4906,1298,366,15252,1,198,220,220,220,220,220,220,220,1782,198,220,220,220,1782,198,92,37811,198,8,198],"string":"[\n 6738,\n 11593,\n 37443,\n 834,\n 1330,\n 357,\n 48546,\n 62,\n 11748,\n 11,\n 7297,\n 11,\n 3601,\n 62,\n 8818,\n 8,\n 198,\n 834,\n 4164,\n 330,\n 31172,\n 834,\n 796,\n 2099,\n 198,\n 11748,\n 33918,\n 198,\n 198,\n 21412,\n 62,\n 46758,\n 796,\n 33918,\n 13,\n 46030,\n 7,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 90,\n 198,\n 220,\n 220,\n 220,\n 366,\n 17989,\n 1298,\n 366,\n 67,\n 40821,\n 1600,\n 198,\n 220,\n 220,\n 220,\n 366,\n 3672,\n 1298,\n 366,\n 67,\n 40821,\n 62,\n 27349,\n 62,\n 25202,\n 1600,\n 198,\n 220,\n 220,\n 220,\n 366,\n 3575,\n 602,\n 1298,\n 1391,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 1136,\n 1298,\n 685,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 1136,\n 62,\n 15410,\n 2557,\n 62,\n 27349,\n 62,\n 42034,\n 62,\n 1525,\n 62,\n 67,\n 40821,\n 62,\n 312,\n 1600,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 1136,\n 62,\n 15410,\n 2557,\n 62,\n 42034,\n 62,\n 1525,\n 62,\n 9521,\n 1600,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 1136,\n 62,\n 42034,\n 62,\n 15410,\n 2557,\n 62,\n 1525,\n 62,\n 312,\n 1600,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 1136,\n 62,\n 27349,\n 62,\n 42034,\n 62,\n 6738,\n 62,\n 67,\n 40821,\n 1,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2361,\n 198,\n 220,\n 220,\n 220,\n 8964,\n 198,\n 220,\n 220,\n 220,\n 366,\n 17143,\n 7307,\n 1298,\n 1391,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 1136,\n 62,\n 42034,\n 62,\n 15410,\n 2557,\n 62,\n 1525,\n 62,\n 312,\n 1298,\n 685,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1391,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 3672,\n 1298,\n 366,\n 312,\n 1600,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 35827,\n 1298,\n 2081,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 4906,\n 1298,\n 366,\n 8841,\n 1,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 8964,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1391,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 3672,\n 1298,\n 366,\n 35943,\n 62,\n 312,\n 1600,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 35827,\n 1298,\n 3991,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 4906,\n 1298,\n 366,\n 8841,\n 1,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 8964,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1391,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 433,\n 9542,\n 1298,\n 2081,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 3672,\n 1298,\n 366,\n 9127,\n 1600,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 35827,\n 1298,\n 2081,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 4906,\n 1298,\n 366,\n 2127,\n 21052,\n 1,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1782,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 16589,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 1136,\n 62,\n 15410,\n 2557,\n 62,\n 42034,\n 62,\n 1525,\n 62,\n 9521,\n 1298,\n 685,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1391,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 3672,\n 1298,\n 366,\n 312,\n 1600,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 35827,\n 1298,\n 2081,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 4906,\n 1298,\n 366,\n 8841,\n 1,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 8964,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1391,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 3672,\n 1298,\n 366,\n 8344,\n 3669,\n 62,\n 1462,\n 62,\n 7783,\n 1600,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 35827,\n 1298,\n 2081,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 4906,\n 1298,\n 366,\n 41433,\n 1,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 8964,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1391,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 3672,\n 1298,\n 366,\n 9688,\n 62,\n 9630,\n 1600,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 35827,\n 1298,\n 2081,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 4906,\n 1298,\n 366,\n 41433,\n 1,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 8964,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1391,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 3672,\n 1298,\n 366,\n 35943,\n 62,\n 312,\n 1600,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 35827,\n 1298,\n 3991,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 4906,\n 1298,\n 366,\n 8841,\n 1,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1782,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 16589,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 1136,\n 62,\n 15410,\n 2557,\n 62,\n 27349,\n 62,\n 42034,\n 62,\n 1525,\n 62,\n 67,\n 40821,\n 62,\n 312,\n 1298,\n 685,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1391,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 3672,\n 1298,\n 366,\n 312,\n 1600,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 35827,\n 1298,\n 2081,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 4906,\n 1298,\n 366,\n 8841,\n 1,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 8964,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1391,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 3672,\n 1298,\n 366,\n 35943,\n 62,\n 312,\n 1600,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 35827,\n 1298,\n 3991,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 4906,\n 1298,\n 366,\n 8841,\n 1,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1782,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 16589,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 1136,\n 62,\n 27349,\n 62,\n 42034,\n 62,\n 6738,\n 62,\n 67,\n 40821,\n 1298,\n 685,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1391,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 3672,\n 1298,\n 366,\n 312,\n 1600,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 35827,\n 1298,\n 2081,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 4906,\n 1298,\n 366,\n 8841,\n 1,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 8964,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1391,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 3672,\n 1298,\n 366,\n 44506,\n 62,\n 13376,\n 1600,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 35827,\n 1298,\n 3991,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 4906,\n 1298,\n 366,\n 8841,\n 1,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 8964,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1391,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 3672,\n 1298,\n 366,\n 4023,\n 62,\n 13376,\n 1600,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 35827,\n 1298,\n 3991,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 4906,\n 1298,\n 366,\n 8841,\n 1,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 8964,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1391,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 3672,\n 1298,\n 366,\n 541,\n 62,\n 21975,\n 1600,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 35827,\n 1298,\n 3991,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 4906,\n 1298,\n 366,\n 8841,\n 1,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 8964,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1391,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 3672,\n 1298,\n 366,\n 3262,\n 10414,\n 62,\n 13376,\n 1600,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 35827,\n 1298,\n 3991,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 4906,\n 1298,\n 366,\n 8841,\n 1,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 8964,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1391,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 3672,\n 1298,\n 366,\n 13886,\n 62,\n 13376,\n 1600,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 35827,\n 1298,\n 3991,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 4906,\n 1298,\n 366,\n 8841,\n 1,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 8964,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1391,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 3672,\n 1298,\n 366,\n 16184,\n 3149,\n 62,\n 13376,\n 1600,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 35827,\n 1298,\n 3991,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 4906,\n 1298,\n 366,\n 8841,\n 1,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 8964,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1391,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 3672,\n 1298,\n 366,\n 30619,\n 62,\n 1525,\n 1600,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 35827,\n 1298,\n 3991,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 4906,\n 1298,\n 366,\n 8841,\n 1,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 8964,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1391,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 3672,\n 1298,\n 366,\n 30619,\n 62,\n 2875,\n 1600,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 35827,\n 1298,\n 3991,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 4906,\n 1298,\n 366,\n 8841,\n 1,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 8964,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1391,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 3672,\n 1298,\n 366,\n 35943,\n 62,\n 312,\n 1600,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 35827,\n 1298,\n 3991,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 4906,\n 1298,\n 366,\n 8841,\n 1,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 8964,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1391,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 433,\n 9542,\n 1298,\n 2081,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 3672,\n 1298,\n 366,\n 49736,\n 1600,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 35827,\n 1298,\n 2081,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 4906,\n 1298,\n 366,\n 2127,\n 21052,\n 1,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1782,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2361,\n 198,\n 220,\n 220,\n 220,\n 8964,\n 198,\n 220,\n 220,\n 220,\n 366,\n 16733,\n 274,\n 1298,\n 1391,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 1136,\n 62,\n 42034,\n 62,\n 15410,\n 2557,\n 62,\n 1525,\n 62,\n 312,\n 1298,\n 1391,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 48310,\n 1298,\n 685,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 26209,\n 1600,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 9641,\n 1,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 16589,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 4906,\n 1298,\n 366,\n 15252,\n 1,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 8964,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 1136,\n 62,\n 15410,\n 2557,\n 62,\n 42034,\n 62,\n 1525,\n 62,\n 9521,\n 1298,\n 1391,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 48310,\n 1298,\n 685,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 26209,\n 1600,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 9641,\n 1,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 16589,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 4906,\n 1298,\n 366,\n 15252,\n 1,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 8964,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 1136,\n 62,\n 15410,\n 2557,\n 62,\n 27349,\n 62,\n 42034,\n 62,\n 1525,\n 62,\n 67,\n 40821,\n 62,\n 312,\n 1298,\n 1391,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 48310,\n 1298,\n 685,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 26209,\n 1600,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 9641,\n 1,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 16589,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 4906,\n 1298,\n 366,\n 15252,\n 1,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 8964,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 1136,\n 62,\n 27349,\n 62,\n 42034,\n 62,\n 6738,\n 62,\n 67,\n 40821,\n 1298,\n 1391,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 48310,\n 1298,\n 685,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 26209,\n 1600,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 9641,\n 1,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 16589,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 4906,\n 1298,\n 366,\n 15252,\n 1,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1782,\n 198,\n 220,\n 220,\n 220,\n 1782,\n 198,\n 92,\n 37811,\n 198,\n 8,\n 198\n]"},"ratio_char_token":{"kind":"number","value":1.5498533724340176,"string":"1.549853"},"token_count":{"kind":"number","value":2728,"string":"2,728"}}},{"rowIdx":4249,"cells":{"content":{"kind":"string","value":"# Copyright 2013 The Chromium Authors. All rights reserved.\n# Use of this source code is governed by a BSD-style license that can be\n# found in the LICENSE file.\n\nimport sys\n\nfrom lib.bucket import BUCKET_ID\nfrom lib.subcommand import SubCommand\n\n"},"input_ids":{"kind":"list like","value":[2,15069,2211,383,18255,1505,46665,13,1439,2489,10395,13,198,2,5765,286,428,2723,2438,318,21825,416,257,347,10305,12,7635,5964,326,460,307,198,2,1043,287,262,38559,24290,2393,13,198,198,11748,25064,198,198,6738,9195,13,27041,316,1330,347,16696,2767,62,2389,198,6738,9195,13,7266,21812,1330,3834,21575,628],"string":"[\n 2,\n 15069,\n 2211,\n 383,\n 18255,\n 1505,\n 46665,\n 13,\n 1439,\n 2489,\n 10395,\n 13,\n 198,\n 2,\n 5765,\n 286,\n 428,\n 2723,\n 2438,\n 318,\n 21825,\n 416,\n 257,\n 347,\n 10305,\n 12,\n 7635,\n 5964,\n 326,\n 460,\n 307,\n 198,\n 2,\n 1043,\n 287,\n 262,\n 38559,\n 24290,\n 2393,\n 13,\n 198,\n 198,\n 11748,\n 25064,\n 198,\n 198,\n 6738,\n 9195,\n 13,\n 27041,\n 316,\n 1330,\n 347,\n 16696,\n 2767,\n 62,\n 2389,\n 198,\n 6738,\n 9195,\n 13,\n 7266,\n 21812,\n 1330,\n 3834,\n 21575,\n 628\n]"},"ratio_char_token":{"kind":"number","value":3.6865671641791047,"string":"3.686567"},"token_count":{"kind":"number","value":67,"string":"67"}}},{"rowIdx":4250,"cells":{"content":{"kind":"string","value":"burst_time=[]\r\nprint(\"Enter the number of process: \")\r\nn=int(input())\r\nprint(\"Enter the burst time of the processes: \\n\")\r\nburst_time=list(map(int, input().split()))\r\nwaiting_time=[]\r\navg_waiting_time=0\r\nturnaround_time=[]\r\navg_turnaround_time=0\r\nwaiting_time.insert(0,0)\r\nturnaround_time.insert(0,burst_time[0])\r\nfor i in range(1,len(burst_time)):\r\n waiting_time.insert(i,waiting_time[i-1]+burst_time[i-1])\r\n turnaround_time.insert(i,waiting_time[i]+burst_time[i])\r\n avg_waiting_time+=waiting_time[i]\r\n avg_turnaround_time+=turnaround_time[i]\r\navg_waiting_time=float(avg_waiting_time)/n\r\navg_turnaround_time=float(avg_turnaround_time)/n\r\nprint(\"\\n\")\r\nprint(\"Process\\t Burst Time\\t Waiting Time\\t Turn Around Time\")\r\nfor i in range(0,n):\r\n print(str(i)+\"\\t\\t\"+str(burst_time[i])+\"\\t\\t\"+str(waiting_time[i])+\"\\t\\t\"+str(turnaround_time[i]))\r\n print(\"\\n\")\r\nprint(\"Average Waiting time is: \"+str(avg_waiting_time))\r\nprint(\"Average Turn Arount Time is: \"+str(avg_turnaround_time))"},"input_ids":{"kind":"list like","value":[31961,62,2435,28,21737,201,198,4798,7203,17469,262,1271,286,1429,25,366,8,201,198,77,28,600,7,15414,28955,201,198,4798,7203,17469,262,11173,640,286,262,7767,25,3467,77,4943,201,198,31961,62,2435,28,4868,7,8899,7,600,11,5128,22446,35312,3419,4008,201,198,10247,1780,62,2435,28,21737,201,198,615,70,62,10247,1780,62,2435,28,15,201,198,15344,14145,62,2435,28,21737,201,198,615,70,62,15344,14145,62,2435,28,15,201,198,10247,1780,62,2435,13,28463,7,15,11,15,8,201,198,15344,14145,62,2435,13,28463,7,15,11,31961,62,2435,58,15,12962,201,198,1640,1312,287,2837,7,16,11,11925,7,31961,62,2435,8,2599,201,198,4953,62,2435,13,28463,7,72,11,10247,1780,62,2435,58,72,12,16,48688,31961,62,2435,58,72,12,16,12962,201,198,34217,62,2435,13,28463,7,72,11,10247,1780,62,2435,58,72,48688,31961,62,2435,58,72,12962,201,198,42781,62,10247,1780,62,2435,47932,10247,1780,62,2435,58,72,60,201,198,42781,62,15344,14145,62,2435,47932,15344,14145,62,2435,58,72,60,201,198,615,70,62,10247,1780,62,2435,28,22468,7,615,70,62,10247,1780,62,2435,20679,77,201,198,615,70,62,15344,14145,62,2435,28,22468,7,615,70,62,15344,14145,62,2435,20679,77,201,198,4798,7203,59,77,4943,201,198,4798,7203,18709,59,83,220,30635,3862,59,83,220,39669,3862,59,83,220,6756,16824,3862,4943,201,198,1640,1312,287,2837,7,15,11,77,2599,201,198,3601,7,2536,7,72,47762,1,59,83,59,83,1,10,2536,7,31961,62,2435,58,72,12962,10,1,59,83,59,83,1,10,2536,7,10247,1780,62,2435,58,72,12962,10,1,59,83,59,83,1,10,2536,7,15344,14145,62,2435,58,72,60,4008,201,198,3601,7203,59,77,4943,201,198,4798,7203,26287,39669,640,318,25,43825,2536,7,615,70,62,10247,1780,62,2435,4008,201,198,4798,7203,26287,6756,317,472,429,3862,318,25,43825,2536,7,615,70,62,15344,14145,62,2435,4008],"string":"[\n 31961,\n 62,\n 2435,\n 28,\n 21737,\n 201,\n 198,\n 4798,\n 7203,\n 17469,\n 262,\n 1271,\n 286,\n 1429,\n 25,\n 366,\n 8,\n 201,\n 198,\n 77,\n 28,\n 600,\n 7,\n 15414,\n 28955,\n 201,\n 198,\n 4798,\n 7203,\n 17469,\n 262,\n 11173,\n 640,\n 286,\n 262,\n 7767,\n 25,\n 3467,\n 77,\n 4943,\n 201,\n 198,\n 31961,\n 62,\n 2435,\n 28,\n 4868,\n 7,\n 8899,\n 7,\n 600,\n 11,\n 5128,\n 22446,\n 35312,\n 3419,\n 4008,\n 201,\n 198,\n 10247,\n 1780,\n 62,\n 2435,\n 28,\n 21737,\n 201,\n 198,\n 615,\n 70,\n 62,\n 10247,\n 1780,\n 62,\n 2435,\n 28,\n 15,\n 201,\n 198,\n 15344,\n 14145,\n 62,\n 2435,\n 28,\n 21737,\n 201,\n 198,\n 615,\n 70,\n 62,\n 15344,\n 14145,\n 62,\n 2435,\n 28,\n 15,\n 201,\n 198,\n 10247,\n 1780,\n 62,\n 2435,\n 13,\n 28463,\n 7,\n 15,\n 11,\n 15,\n 8,\n 201,\n 198,\n 15344,\n 14145,\n 62,\n 2435,\n 13,\n 28463,\n 7,\n 15,\n 11,\n 31961,\n 62,\n 2435,\n 58,\n 15,\n 12962,\n 201,\n 198,\n 1640,\n 1312,\n 287,\n 2837,\n 7,\n 16,\n 11,\n 11925,\n 7,\n 31961,\n 62,\n 2435,\n 8,\n 2599,\n 201,\n 198,\n 4953,\n 62,\n 2435,\n 13,\n 28463,\n 7,\n 72,\n 11,\n 10247,\n 1780,\n 62,\n 2435,\n 58,\n 72,\n 12,\n 16,\n 48688,\n 31961,\n 62,\n 2435,\n 58,\n 72,\n 12,\n 16,\n 12962,\n 201,\n 198,\n 34217,\n 62,\n 2435,\n 13,\n 28463,\n 7,\n 72,\n 11,\n 10247,\n 1780,\n 62,\n 2435,\n 58,\n 72,\n 48688,\n 31961,\n 62,\n 2435,\n 58,\n 72,\n 12962,\n 201,\n 198,\n 42781,\n 62,\n 10247,\n 1780,\n 62,\n 2435,\n 47932,\n 10247,\n 1780,\n 62,\n 2435,\n 58,\n 72,\n 60,\n 201,\n 198,\n 42781,\n 62,\n 15344,\n 14145,\n 62,\n 2435,\n 47932,\n 15344,\n 14145,\n 62,\n 2435,\n 58,\n 72,\n 60,\n 201,\n 198,\n 615,\n 70,\n 62,\n 10247,\n 1780,\n 62,\n 2435,\n 28,\n 22468,\n 7,\n 615,\n 70,\n 62,\n 10247,\n 1780,\n 62,\n 2435,\n 20679,\n 77,\n 201,\n 198,\n 615,\n 70,\n 62,\n 15344,\n 14145,\n 62,\n 2435,\n 28,\n 22468,\n 7,\n 615,\n 70,\n 62,\n 15344,\n 14145,\n 62,\n 2435,\n 20679,\n 77,\n 201,\n 198,\n 4798,\n 7203,\n 59,\n 77,\n 4943,\n 201,\n 198,\n 4798,\n 7203,\n 18709,\n 59,\n 83,\n 220,\n 30635,\n 3862,\n 59,\n 83,\n 220,\n 39669,\n 3862,\n 59,\n 83,\n 220,\n 6756,\n 16824,\n 3862,\n 4943,\n 201,\n 198,\n 1640,\n 1312,\n 287,\n 2837,\n 7,\n 15,\n 11,\n 77,\n 2599,\n 201,\n 198,\n 3601,\n 7,\n 2536,\n 7,\n 72,\n 47762,\n 1,\n 59,\n 83,\n 59,\n 83,\n 1,\n 10,\n 2536,\n 7,\n 31961,\n 62,\n 2435,\n 58,\n 72,\n 12962,\n 10,\n 1,\n 59,\n 83,\n 59,\n 83,\n 1,\n 10,\n 2536,\n 7,\n 10247,\n 1780,\n 62,\n 2435,\n 58,\n 72,\n 12962,\n 10,\n 1,\n 59,\n 83,\n 59,\n 83,\n 1,\n 10,\n 2536,\n 7,\n 15344,\n 14145,\n 62,\n 2435,\n 58,\n 72,\n 60,\n 4008,\n 201,\n 198,\n 3601,\n 7203,\n 59,\n 77,\n 4943,\n 201,\n 198,\n 4798,\n 7203,\n 26287,\n 39669,\n 640,\n 318,\n 25,\n 43825,\n 2536,\n 7,\n 615,\n 70,\n 62,\n 10247,\n 1780,\n 62,\n 2435,\n 4008,\n 201,\n 198,\n 4798,\n 7203,\n 26287,\n 6756,\n 317,\n 472,\n 429,\n 3862,\n 318,\n 25,\n 43825,\n 2536,\n 7,\n 615,\n 70,\n 62,\n 15344,\n 14145,\n 62,\n 2435,\n 4008\n]"},"ratio_char_token":{"kind":"number","value":2.3680387409200967,"string":"2.368039"},"token_count":{"kind":"number","value":413,"string":"413"}}},{"rowIdx":4251,"cells":{"content":{"kind":"string","value":"import os\n\nfrom airflow.hooks.base_hook import BaseHook\nfrom airflow.operators.bash_operator import BashOperator\nfrom airflow.utils.decorators import apply_defaults\n\n"},"input_ids":{"kind":"list like","value":[11748,28686,198,198,6738,45771,13,25480,82,13,8692,62,25480,1330,7308,39,566,198,6738,45771,13,3575,2024,13,41757,62,46616,1330,15743,18843,1352,198,6738,45771,13,26791,13,12501,273,2024,1330,4174,62,12286,82,628],"string":"[\n 11748,\n 28686,\n 198,\n 198,\n 6738,\n 45771,\n 13,\n 25480,\n 82,\n 13,\n 8692,\n 62,\n 25480,\n 1330,\n 7308,\n 39,\n 566,\n 198,\n 6738,\n 45771,\n 13,\n 3575,\n 2024,\n 13,\n 41757,\n 62,\n 46616,\n 1330,\n 15743,\n 18843,\n 1352,\n 198,\n 6738,\n 45771,\n 13,\n 26791,\n 13,\n 12501,\n 273,\n 2024,\n 1330,\n 4174,\n 62,\n 12286,\n 82,\n 628\n]"},"ratio_char_token":{"kind":"number","value":3.608695652173913,"string":"3.608696"},"token_count":{"kind":"number","value":46,"string":"46"}}},{"rowIdx":4252,"cells":{"content":{"kind":"string","value":"\"\"\"\nAuthor: Haoyin Xu\n\"\"\"\nimport time\nimport psutil\nimport argparse\nimport numpy as np\nimport torchvision.datasets as datasets\nfrom numpy.random import permutation\nfrom sklearn.tree import DecisionTreeClassifier\nfrom sklearn.ensemble import RandomForestClassifier\nfrom river import tree\nfrom skgarden import MondrianForestClassifier\nfrom sdtf import StreamDecisionForest\n\n\ndef write_result(filename, acc_ls):\n \"\"\"Writes results to specified text file\"\"\"\n output = open(filename, \"w\")\n for acc in acc_ls:\n output.write(str(acc) + \"\\n\")\n\n\ndef prediction(classifier):\n \"\"\"Generates predictions from model\"\"\"\n predictions = classifier.predict(X_test)\n\n p_t = 0\n for i in range(X_test.shape[0]):\n if predictions[i] == y_test[i]:\n p_t += 1\n\n return p_t / X_test.shape[0]\n\n\ndef experiment_dt():\n \"\"\"Runs experiments for Batch Decision Tree\"\"\"\n dt_l = []\n train_time_l = []\n test_time_l = []\n v_m_l = []\n s_m_l = []\n\n dt = DecisionTreeClassifier()\n\n for i in range(500):\n X_t = X_r[: (i + 1) * 100]\n y_t = y_r[: (i + 1) * 100]\n\n # Train the model\n start_time = time.perf_counter()\n dt.fit(X_t, y_t)\n end_time = time.perf_counter()\n train_time_l.append(end_time - start_time)\n\n # Test the model\n start_time = time.perf_counter()\n dt_l.append(prediction(dt))\n end_time = time.perf_counter()\n test_time_l.append(end_time - start_time)\n\n # Check memory\n v_m = psutil.virtual_memory()[2]\n v_m_l.append(v_m)\n s_m = psutil.swap_memory()[3]\n s_m_l.append(s_m)\n\n return dt_l, train_time_l, test_time_l, v_m_l, s_m_l\n\n\ndef experiment_rf():\n \"\"\"Runs experiments for Random Forest\"\"\"\n rf_l = []\n train_time_l = []\n test_time_l = []\n v_m_l = []\n s_m_l = []\n\n rf = RandomForestClassifier()\n\n for i in range(500):\n X_t = X_r[: (i + 1) * 100]\n y_t = y_r[: (i + 1) * 100]\n\n # Train the model\n start_time = time.perf_counter()\n rf.fit(X_t, y_t)\n end_time = time.perf_counter()\n train_time_l.append(end_time - start_time)\n\n # Test the model\n start_time = time.perf_counter()\n rf_l.append(prediction(rf))\n end_time = time.perf_counter()\n test_time_l.append(end_time - start_time)\n\n # Check memory\n v_m = psutil.virtual_memory()[2]\n v_m_l.append(v_m)\n s_m = psutil.swap_memory()[3]\n s_m_l.append(s_m)\n\n return rf_l, train_time_l, test_time_l, v_m_l, s_m_l\n\n\ndef experiment_ht():\n \"\"\"Runs experiments for Hoeffding Tree\"\"\"\n ht_l = []\n train_time_l = []\n test_time_l = []\n v_m_l = []\n s_m_l = []\n\n ht = tree.HoeffdingTreeClassifier(max_size=1000, grace_period=2)\n\n for i in range(X_train.shape[0]):\n X_t = X_r[i]\n y_t = y_r[i]\n\n idx = range(1024)\n X_t = dict(zip(idx, X_t))\n\n start_time = time.perf_counter()\n ht.learn_one(X_t, y_t)\n end_time = time.perf_counter()\n train_time_l.append(end_time - start_time)\n\n if i > 0 and (i + 1) % 100 == 0:\n p_t = 0.0\n start_time = time.perf_counter()\n for j in range(X_test.shape[0]):\n y_pred = ht.predict_one(X_test[j])\n if y_pred == y_test[j]:\n p_t += 1\n ht_l.append(p_t / X_test.shape[0])\n end_time = time.perf_counter()\n test_time_l.append(end_time - start_time)\n\n # Check memory\n v_m = psutil.virtual_memory()[2]\n v_m_l.append(v_m)\n s_m = psutil.swap_memory()[3]\n s_m_l.append(s_m)\n\n # Reformat the train times\n new_train_time_l = []\n for i in range(1, X_train.shape[0]):\n train_time_l[i] += train_time_l[i - 1]\n if i > 0 and (i + 1) % 100 == 0:\n new_train_time_l.append(train_time_l[i])\n train_time_l = new_train_time_l\n\n return ht_l, train_time_l, test_time_l, v_m_l, s_m_l\n\n\ndef experiment_mf():\n \"\"\"Runs experiments for Mondrian Forest\"\"\"\n mf_l = []\n train_time_l = []\n test_time_l = []\n v_m_l = []\n s_m_l = []\n\n mf = MondrianForestClassifier(n_estimators=10)\n\n for i in range(500):\n X_t = X_r[i * 100 : (i + 1) * 100]\n y_t = y_r[i * 100 : (i + 1) * 100]\n\n # Train the model\n start_time = time.perf_counter()\n mf.partial_fit(X_t, y_t)\n end_time = time.perf_counter()\n train_time_l.append(end_time - start_time)\n\n # Test the model\n start_time = time.perf_counter()\n mf_l.append(prediction(mf))\n end_time = time.perf_counter()\n test_time_l.append(end_time - start_time)\n\n # Check memory\n v_m = psutil.virtual_memory()[2]\n v_m_l.append(v_m)\n s_m = psutil.swap_memory()[3]\n s_m_l.append(s_m)\n\n # Reformat the train times\n for i in range(1, 500):\n train_time_l[i] += train_time_l[i - 1]\n\n return mf_l, train_time_l, test_time_l, v_m_l, s_m_l\n\n\ndef experiment_sdt():\n \"\"\"Runs experiments for Stream Decision Tree\"\"\"\n sdt_l = []\n train_time_l = []\n test_time_l = []\n v_m_l = []\n s_m_l = []\n\n sdt = DecisionTreeClassifier()\n\n for i in range(500):\n X_t = X_r[i * 100 : (i + 1) * 100]\n y_t = y_r[i * 100 : (i + 1) * 100]\n\n # Train the model\n start_time = time.perf_counter()\n sdt.partial_fit(X_t, y_t, classes=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9])\n end_time = time.perf_counter()\n train_time_l.append(end_time - start_time)\n\n # Test the model\n start_time = time.perf_counter()\n sdt_l.append(prediction(sdt))\n end_time = time.perf_counter()\n test_time_l.append(end_time - start_time)\n\n # Check memory\n v_m = psutil.virtual_memory()[2]\n v_m_l.append(v_m)\n s_m = psutil.swap_memory()[3]\n s_m_l.append(s_m)\n\n # Reformat the train times\n for i in range(1, 500):\n train_time_l[i] += train_time_l[i - 1]\n\n return sdt_l, train_time_l, test_time_l, v_m_l, s_m_l\n\n\ndef experiment_sdf():\n \"\"\"Runs experiments for Stream Decision Forest\"\"\"\n sdf_l = []\n train_time_l = []\n test_time_l = []\n v_m_l = []\n s_m_l = []\n\n sdf = StreamDecisionForest()\n\n for i in range(500):\n X_t = X_r[i * 100 : (i + 1) * 100]\n y_t = y_r[i * 100 : (i + 1) * 100]\n\n # Train the model\n start_time = time.perf_counter()\n sdf.partial_fit(X_t, y_t, classes=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9])\n end_time = time.perf_counter()\n train_time_l.append(end_time - start_time)\n\n # Test the model\n start_time = time.perf_counter()\n sdf_l.append(prediction(sdf))\n end_time = time.perf_counter()\n test_time_l.append(end_time - start_time)\n\n # Check memory\n v_m = psutil.virtual_memory()[2]\n v_m_l.append(v_m)\n s_m = psutil.swap_memory()[3]\n s_m_l.append(s_m)\n\n # Reformat the train times\n for i in range(1, 500):\n train_time_l[i] += train_time_l[i - 1]\n\n return sdf_l, train_time_l, test_time_l, v_m_l, s_m_l\n\n\n# Prepare CIFAR data\n# Normalize\nscale = np.mean(np.arange(0, 256))\nnormalize = lambda x: (x - scale) / scale\n\n# Train data\ncifar_trainset = datasets.CIFAR10(root=\"../\", train=True, download=True, transform=None)\nX_train = normalize(cifar_trainset.data)\ny_train = np.array(cifar_trainset.targets)\n\n# Test data\ncifar_testset = datasets.CIFAR10(root=\"../\", train=False, download=True, transform=None)\nX_test = normalize(cifar_testset.data)\ny_test = np.array(cifar_testset.targets)\n\nX_train = X_train.reshape(-1, 32 * 32 * 3)\nX_test = X_test.reshape(-1, 32 * 32 * 3)\n\n# Parse classifier choices\nparser = argparse.ArgumentParser()\nparser.add_argument(\"-all\", help=\"all classifiers\", required=False, action=\"store_true\")\nparser.add_argument(\"-dt\", help=\"decision forests\", required=False, action=\"store_true\")\nparser.add_argument(\"-rf\", help=\"random forests\", required=False, action=\"store_true\")\nparser.add_argument(\"-ht\", help=\"hoeffding trees\", required=False, action=\"store_true\")\nparser.add_argument(\"-mf\", help=\"mondrian forests\", required=False, action=\"store_true\")\nparser.add_argument(\n \"-sdt\", help=\"stream decision trees\", required=False, action=\"store_true\"\n)\nparser.add_argument(\n \"-sdf\", help=\"stream decision forests\", required=False, action=\"store_true\"\n)\nargs = parser.parse_args()\n\n# Perform experiments\nif args.all or args.dt:\n dt_acc_l = []\n dt_train_t_l = []\n dt_test_t_l = []\n dt_v_m_l = []\n dt_s_m_l = []\n for i in range(10):\n p = permutation(X_train.shape[0])\n\n X_r = X_train[p]\n y_r = y_train[p]\n\n dt_acc, dt_train_t, dt_test_t, dt_v_m, dt_s_m = experiment_dt()\n dt_acc_l.append(dt_acc)\n dt_train_t_l.append(dt_train_t)\n dt_test_t_l.append(dt_test_t)\n dt_v_m_l.append(dt_v_m)\n dt_s_m_l.append(dt_s_m)\n\n write_result(\"../results/dt/cifar10_acc.txt\", dt_acc_l)\n write_result(\"../results/dt/cifar10_train_t.txt\", dt_train_t_l)\n write_result(\"../results/dt/cifar10_test_t.txt\", dt_test_t_l)\n write_result(\"../results/dt/cifar10_v_m.txt\", dt_v_m_l)\n write_result(\"../results/dt/cifar10_s_m.txt\", dt_s_m_l)\n\nif args.all or args.rf:\n rf_acc_l = []\n rf_train_t_l = []\n rf_test_t_l = []\n rf_v_m_l = []\n rf_s_m_l = []\n for i in range(10):\n p = permutation(X_train.shape[0])\n\n X_r = X_train[p]\n y_r = y_train[p]\n\n rf_acc, rf_train_t, rf_test_t, rf_v_m, rf_s_m = experiment_rf()\n rf_acc_l.append(rf_acc)\n rf_train_t_l.append(rf_train_t)\n rf_test_t_l.append(rf_test_t)\n rf_v_m_l.append(rf_v_m)\n rf_s_m_l.append(rf_s_m)\n\n write_result(\"../results/rf/cifar10_acc.txt\", rf_acc_l)\n write_result(\"../results/rf/cifar10_train_t.txt\", rf_train_t_l)\n write_result(\"../results/rf/cifar10_test_t.txt\", rf_test_t_l)\n write_result(\"../results/rf/cifar10_v_m.txt\", rf_v_m_l)\n write_result(\"../results/rf/cifar10_s_m.txt\", rf_s_m_l)\n\nif args.all or args.ht:\n ht_acc_l = []\n ht_train_t_l = []\n ht_test_t_l = []\n ht_v_m_l = []\n ht_s_m_l = []\n for i in range(10):\n p = permutation(X_train.shape[0])\n\n X_r = X_train[p]\n y_r = y_train[p]\n\n ht_acc, ht_train_t, ht_test_t, ht_v_m, ht_s_m = experiment_ht()\n ht_acc_l.append(ht_acc)\n ht_train_t_l.append(ht_train_t)\n ht_test_t_l.append(ht_test_t)\n ht_v_m_l.append(ht_v_m)\n ht_s_m_l.append(ht_s_m)\n\n write_result(\"../results/ht/cifar10_acc.txt\", ht_acc_l)\n write_result(\"../results/ht/cifar10_train_t.txt\", ht_train_t_l)\n write_result(\"../results/ht/cifar10_test_t.txt\", ht_test_t_l)\n write_result(\"../results/ht/cifar10_v_m.txt\", ht_v_m_l)\n write_result(\"../results/ht/cifar10_s_m.txt\", ht_s_m_l)\n\nif args.all or args.mf:\n mf_acc_l = []\n mf_train_t_l = []\n mf_test_t_l = []\n mf_v_m_l = []\n mf_s_m_l = []\n for i in range(10):\n p = permutation(X_train.shape[0])\n\n X_r = X_train[p]\n y_r = y_train[p]\n\n mf_acc, mf_train_t, mf_test_t, mf_v_m, mf_s_m = experiment_mf()\n mf_acc_l.append(mf_acc)\n mf_train_t_l.append(mf_train_t)\n mf_test_t_l.append(mf_test_t)\n mf_v_m_l.append(mf_v_m)\n mf_s_m_l.append(mf_s_m)\n\n write_result(\"../results/mf/cifar10_acc.txt\", mf_acc_l)\n write_result(\"../results/mf/cifar10_train_t.txt\", mf_train_t_l)\n write_result(\"../results/mf/cifar10_test_t.txt\", mf_test_t_l)\n write_result(\"../results/mf/cifar10_v_m.txt\", mf_v_m_l)\n write_result(\"../results/mf/cifar10_s_m.txt\", mf_s_m_l)\n\nif args.all or args.sdt:\n sdt_acc_l = []\n sdt_train_t_l = []\n sdt_test_t_l = []\n sdt_v_m_l = []\n sdt_s_m_l = []\n for i in range(10):\n p = permutation(X_train.shape[0])\n\n X_r = X_train[p]\n y_r = y_train[p]\n\n sdt_acc, sdt_train_t, sdt_test_t, sdt_v_m, sdt_s_m = experiment_sdt()\n sdt_acc_l.append(sdt_acc)\n sdt_train_t_l.append(sdt_train_t)\n sdt_test_t_l.append(sdt_test_t)\n sdt_v_m_l.append(sdt_v_m)\n sdt_s_m_l.append(sdt_s_m)\n\n write_result(\"../results/sdt/cifar10_acc.txt\", sdt_acc_l)\n write_result(\"../results/sdt/cifar10_train_t.txt\", sdt_train_t_l)\n write_result(\"../results/sdt/cifar10_test_t.txt\", sdt_test_t_l)\n write_result(\"../results/sdt/cifar10_v_m.txt\", sdt_v_m_l)\n write_result(\"../results/sdt/cifar10_s_m.txt\", sdt_s_m_l)\n\nif args.all or args.sdf:\n sdf_acc_l = []\n sdf_train_t_l = []\n sdf_test_t_l = []\n sdf_v_m_l = []\n sdf_s_m_l = []\n for i in range(10):\n p = permutation(X_train.shape[0])\n\n X_r = X_train[p]\n y_r = y_train[p]\n\n sdf_acc, sdf_train_t, sdf_test_t, sdf_v_m, sdf_s_m = experiment_sdf()\n sdf_acc_l.append(sdf_acc)\n sdf_train_t_l.append(sdf_train_t)\n sdf_test_t_l.append(sdf_test_t)\n sdf_v_m_l.append(sdf_v_m)\n sdf_s_m_l.append(sdf_s_m)\n\n write_result(\"../results/sdf/cifar10_acc.txt\", sdf_acc_l)\n write_result(\"../results/sdf/cifar10_train_t.txt\", sdf_train_t_l)\n write_result(\"../results/sdf/cifar10_test_t.txt\", sdf_test_t_l)\n write_result(\"../results/sdf/cifar10_v_m.txt\", sdf_v_m_l)\n write_result(\"../results/sdf/cifar10_s_m.txt\", sdf_s_m_l)\n"},"input_ids":{"kind":"list like","value":[37811,198,13838,25,9398,726,259,33591,198,37811,198,11748,640,198,11748,26692,22602,198,11748,1822,29572,198,11748,299,32152,355,45941,198,11748,28034,10178,13,19608,292,1039,355,40522,198,6738,299,32152,13,25120,1330,9943,7094,198,6738,1341,35720,13,21048,1330,26423,27660,9487,7483,198,6738,1341,35720,13,1072,11306,1330,14534,34605,9487,7483,198,6738,7850,1330,5509,198,6738,1341,70,5872,1330,27328,4484,34605,9487,7483,198,6738,45647,27110,1330,13860,10707,1166,34605,628,198,4299,3551,62,20274,7,34345,11,697,62,7278,2599,198,220,220,220,37227,20257,274,2482,284,7368,2420,2393,37811,198,220,220,220,5072,796,1280,7,34345,11,366,86,4943,198,220,220,220,329,697,287,697,62,7278,25,198,220,220,220,220,220,220,220,5072,13,13564,7,2536,7,4134,8,1343,37082,77,4943,628,198,4299,17724,7,4871,7483,2599,198,220,220,220,37227,8645,689,16277,422,2746,37811,198,220,220,220,16277,796,1398,7483,13,79,17407,7,55,62,9288,8,628,220,220,220,279,62,83,796,657,198,220,220,220,329,1312,287,2837,7,55,62,9288,13,43358,58,15,60,2599,198,220,220,220,220,220,220,220,611,16277,58,72,60,6624,331,62,9288,58,72,5974,198,220,220,220,220,220,220,220,220,220,220,220,279,62,83,15853,352,628,220,220,220,1441,279,62,83,1220,1395,62,9288,13,43358,58,15,60,628,198,4299,6306,62,28664,33529,198,220,220,220,37227,10987,82,10256,329,347,963,26423,12200,37811,198,220,220,220,288,83,62,75,796,17635,198,220,220,220,4512,62,2435,62,75,796,17635,198,220,220,220,1332,62,2435,62,75,796,17635,198,220,220,220,410,62,76,62,75,796,17635,198,220,220,220,264,62,76,62,75,796,17635,628,220,220,220,288,83,796,26423,27660,9487,7483,3419,628,220,220,220,329,1312,287,2837,7,4059,2599,198,220,220,220,220,220,220,220,1395,62,83,796,1395,62,81,58,25,357,72,1343,352,8,1635,1802,60,198,220,220,220,220,220,220,220,331,62,83,796,331,62,81,58,25,357,72,1343,352,8,1635,1802,60,628,220,220,220,220,220,220,220,1303,16835,262,2746,198,220,220,220,220,220,220,220,923,62,2435,796,640,13,525,69,62,24588,3419,198,220,220,220,220,220,220,220,288,83,13,11147,7,55,62,83,11,331,62,83,8,198,220,220,220,220,220,220,220,886,62,2435,796,640,13,525,69,62,24588,3419,198,220,220,220,220,220,220,220,4512,62,2435,62,75,13,33295,7,437,62,2435,532,923,62,2435,8,628,220,220,220,220,220,220,220,1303,6208,262,2746,198,220,220,220,220,220,220,220,923,62,2435,796,640,13,525,69,62,24588,3419,198,220,220,220,220,220,220,220,288,83,62,75,13,33295,7,28764,2867,7,28664,4008,198,220,220,220,220,220,220,220,886,62,2435,796,640,13,525,69,62,24588,3419,198,220,220,220,220,220,220,220,1332,62,2435,62,75,13,33295,7,437,62,2435,532,923,62,2435,8,628,220,220,220,220,220,220,220,1303,6822,4088,198,220,220,220,220,220,220,220,410,62,76,796,26692,22602,13,32844,62,31673,3419,58,17,60,198,220,220,220,220,220,220,220,410,62,76,62,75,13,33295,7,85,62,76,8,198,220,220,220,220,220,220,220,264,62,76,796,26692,22602,13,2032,499,62,31673,3419,58,18,60,198,220,220,220,220,220,220,220,264,62,76,62,75,13,33295,7,82,62,76,8,628,220,220,220,1441,288,83,62,75,11,4512,62,2435,62,75,11,1332,62,2435,62,75,11,410,62,76,62,75,11,264,62,76,62,75,628,198,4299,6306,62,41871,33529,198,220,220,220,37227,10987,82,10256,329,14534,9115,37811,198,220,220,220,374,69,62,75,796,17635,198,220,220,220,4512,62,2435,62,75,796,17635,198,220,220,220,1332,62,2435,62,75,796,17635,198,220,220,220,410,62,76,62,75,796,17635,198,220,220,220,264,62,76,62,75,796,17635,628,220,220,220,374,69,796,14534,34605,9487,7483,3419,628,220,220,220,329,1312,287,2837,7,4059,2599,198,220,220,220,220,220,220,220,1395,62,83,796,1395,62,81,58,25,357,72,1343,352,8,1635,1802,60,198,220,220,220,220,220,220,220,331,62,83,796,331,62,81,58,25,357,72,1343,352,8,1635,1802,60,628,220,220,220,220,220,220,220,1303,16835,262,2746,198,220,220,220,220,220,220,220,923,62,2435,796,640,13,525,69,62,24588,3419,198,220,220,220,220,220,220,220,374,69,13,11147,7,55,62,83,11,331,62,83,8,198,220,220,220,220,220,220,220,886,62,2435,796,640,13,525,69,62,24588,3419,198,220,220,220,220,220,220,220,4512,62,2435,62,75,13,33295,7,437,62,2435,532,923,62,2435,8,628,220,220,220,220,220,220,220,1303,6208,262,2746,198,220,220,220,220,220,220,220,923,62,2435,796,640,13,525,69,62,24588,3419,198,220,220,220,220,220,220,220,374,69,62,75,13,33295,7,28764,2867,7,41871,4008,198,220,220,220,220,220,220,220,886,62,2435,796,640,13,525,69,62,24588,3419,198,220,220,220,220,220,220,220,1332,62,2435,62,75,13,33295,7,437,62,2435,532,923,62,2435,8,628,220,220,220,220,220,220,220,1303,6822,4088,198,220,220,220,220,220,220,220,410,62,76,796,26692,22602,13,32844,62,31673,3419,58,17,60,198,220,220,220,220,220,220,220,410,62,76,62,75,13,33295,7,85,62,76,8,198,220,220,220,220,220,220,220,264,62,76,796,26692,22602,13,2032,499,62,31673,3419,58,18,60,198,220,220,220,220,220,220,220,264,62,76,62,75,13,33295,7,82,62,76,8,628,220,220,220,1441,374,69,62,75,11,4512,62,2435,62,75,11,1332,62,2435,62,75,11,410,62,76,62,75,11,264,62,76,62,75,628,198,4299,6306,62,4352,33529,198,220,220,220,37227,10987,82,10256,329,367,2577,487,12083,12200,37811,198,220,220,220,289,83,62,75,796,17635,198,220,220,220,4512,62,2435,62,75,796,17635,198,220,220,220,1332,62,2435,62,75,796,17635,198,220,220,220,410,62,76,62,75,796,17635,198,220,220,220,264,62,76,62,75,796,17635,628,220,220,220,289,83,796,5509,13,39,2577,487,12083,27660,9487,7483,7,9806,62,7857,28,12825,11,11542,62,41007,28,17,8,628,220,220,220,329,1312,287,2837,7,55,62,27432,13,43358,58,15,60,2599,198,220,220,220,220,220,220,220,1395,62,83,796,1395,62,81,58,72,60,198,220,220,220,220,220,220,220,331,62,83,796,331,62,81,58,72,60,628,220,220,220,220,220,220,220,4686,87,796,2837,7,35500,8,198,220,220,220,220,220,220,220,1395,62,83,796,8633,7,13344,7,312,87,11,1395,62,83,4008,628,220,220,220,220,220,220,220,923,62,2435,796,640,13,525,69,62,24588,3419,198,220,220,220,220,220,220,220,289,83,13,35720,62,505,7,55,62,83,11,331,62,83,8,198,220,220,220,220,220,220,220,886,62,2435,796,640,13,525,69,62,24588,3419,198,220,220,220,220,220,220,220,4512,62,2435,62,75,13,33295,7,437,62,2435,532,923,62,2435,8,628,220,220,220,220,220,220,220,611,1312,1875,657,290,357,72,1343,352,8,4064,1802,6624,657,25,198,220,220,220,220,220,220,220,220,220,220,220,279,62,83,796,657,13,15,198,220,220,220,220,220,220,220,220,220,220,220,923,62,2435,796,640,13,525,69,62,24588,3419,198,220,220,220,220,220,220,220,220,220,220,220,329,474,287,2837,7,55,62,9288,13,43358,58,15,60,2599,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,331,62,28764,796,289,83,13,79,17407,62,505,7,55,62,9288,58,73,12962,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,611,331,62,28764,6624,331,62,9288,58,73,5974,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,279,62,83,15853,352,198,220,220,220,220,220,220,220,220,220,220,220,289,83,62,75,13,33295,7,79,62,83,1220,1395,62,9288,13,43358,58,15,12962,198,220,220,220,220,220,220,220,220,220,220,220,886,62,2435,796,640,13,525,69,62,24588,3419,198,220,220,220,220,220,220,220,220,220,220,220,1332,62,2435,62,75,13,33295,7,437,62,2435,532,923,62,2435,8,628,220,220,220,220,220,220,220,220,220,220,220,1303,6822,4088,198,220,220,220,220,220,220,220,220,220,220,220,410,62,76,796,26692,22602,13,32844,62,31673,3419,58,17,60,198,220,220,220,220,220,220,220,220,220,220,220,410,62,76,62,75,13,33295,7,85,62,76,8,198,220,220,220,220,220,220,220,220,220,220,220,264,62,76,796,26692,22602,13,2032,499,62,31673,3419,58,18,60,198,220,220,220,220,220,220,220,220,220,220,220,264,62,76,62,75,13,33295,7,82,62,76,8,628,220,220,220,1303,17893,265,262,4512,1661,198,220,220,220,649,62,27432,62,2435,62,75,796,17635,198,220,220,220,329,1312,287,2837,7,16,11,1395,62,27432,13,43358,58,15,60,2599,198,220,220,220,220,220,220,220,4512,62,2435,62,75,58,72,60,15853,4512,62,2435,62,75,58,72,532,352,60,198,220,220,220,220,220,220,220,611,1312,1875,657,290,357,72,1343,352,8,4064,1802,6624,657,25,198,220,220,220,220,220,220,220,220,220,220,220,649,62,27432,62,2435,62,75,13,33295,7,27432,62,2435,62,75,58,72,12962,198,220,220,220,4512,62,2435,62,75,796,649,62,27432,62,2435,62,75,628,220,220,220,1441,289,83,62,75,11,4512,62,2435,62,75,11,1332,62,2435,62,75,11,410,62,76,62,75,11,264,62,76,62,75,628,198,4299,6306,62,76,69,33529,198,220,220,220,37227,10987,82,10256,329,27328,4484,9115,37811,198,220,220,220,285,69,62,75,796,17635,198,220,220,220,4512,62,2435,62,75,796,17635,198,220,220,220,1332,62,2435,62,75,796,17635,198,220,220,220,410,62,76,62,75,796,17635,198,220,220,220,264,62,76,62,75,796,17635,628,220,220,220,285,69,796,27328,4484,34605,9487,7483,7,77,62,395,320,2024,28,940,8,628,220,220,220,329,1312,287,2837,7,4059,2599,198,220,220,220,220,220,220,220,1395,62,83,796,1395,62,81,58,72,1635,1802,1058,357,72,1343,352,8,1635,1802,60,198,220,220,220,220,220,220,220,331,62,83,796,331,62,81,58,72,1635,1802,1058,357,72,1343,352,8,1635,1802,60,628,220,220,220,220,220,220,220,1303,16835,262,2746,198,220,220,220,220,220,220,220,923,62,2435,796,640,13,525,69,62,24588,3419,198,220,220,220,220,220,220,220,285,69,13,47172,62,11147,7,55,62,83,11,331,62,83,8,198,220,220,220,220,220,220,220,886,62,2435,796,640,13,525,69,62,24588,3419,198,220,220,220,220,220,220,220,4512,62,2435,62,75,13,33295,7,437,62,2435,532,923,62,2435,8,628,220,220,220,220,220,220,220,1303,6208,262,2746,198,220,220,220,220,220,220,220,923,62,2435,796,640,13,525,69,62,24588,3419,198,220,220,220,220,220,220,220,285,69,62,75,13,33295,7,28764,2867,7,76,69,4008,198,220,220,220,220,220,220,220,886,62,2435,796,640,13,525,69,62,24588,3419,198,220,220,220,220,220,220,220,1332,62,2435,62,75,13,33295,7,437,62,2435,532,923,62,2435,8,628,220,220,220,220,220,220,220,1303,6822,4088,198,220,220,220,220,220,220,220,410,62,76,796,26692,22602,13,32844,62,31673,3419,58,17,60,198,220,220,220,220,220,220,220,410,62,76,62,75,13,33295,7,85,62,76,8,198,220,220,220,220,220,220,220,264,62,76,796,26692,22602,13,2032,499,62,31673,3419,58,18,60,198,220,220,220,220,220,220,220,264,62,76,62,75,13,33295,7,82,62,76,8,628,220,220,220,1303,17893,265,262,4512,1661,198,220,220,220,329,1312,287,2837,7,16,11,5323,2599,198,220,220,220,220,220,220,220,4512,62,2435,62,75,58,72,60,15853,4512,62,2435,62,75,58,72,532,352,60,628,220,220,220,1441,285,69,62,75,11,4512,62,2435,62,75,11,1332,62,2435,62,75,11,410,62,76,62,75,11,264,62,76,62,75,628,198,4299,6306,62,21282,83,33529,198,220,220,220,37227,10987,82,10256,329,13860,26423,12200,37811,198,220,220,220,264,28664,62,75,796,17635,198,220,220,220,4512,62,2435,62,75,796,17635,198,220,220,220,1332,62,2435,62,75,796,17635,198,220,220,220,410,62,76,62,75,796,17635,198,220,220,220,264,62,76,62,75,796,17635,628,220,220,220,264,28664,796,26423,27660,9487,7483,3419,628,220,220,220,329,1312,287,2837,7,4059,2599,198,220,220,220,220,220,220,220,1395,62,83,796,1395,62,81,58,72,1635,1802,1058,357,72,1343,352,8,1635,1802,60,198,220,220,220,220,220,220,220,331,62,83,796,331,62,81,58,72,1635,1802,1058,357,72,1343,352,8,1635,1802,60,628,220,220,220,220,220,220,220,1303,16835,262,2746,198,220,220,220,220,220,220,220,923,62,2435,796,640,13,525,69,62,24588,3419,198,220,220,220,220,220,220,220,264,28664,13,47172,62,11147,7,55,62,83,11,331,62,83,11,6097,41888,15,11,352,11,362,11,513,11,604,11,642,11,718,11,767,11,807,11,860,12962,198,220,220,220,220,220,220,220,886,62,2435,796,640,13,525,69,62,24588,3419,198,220,220,220,220,220,220,220,4512,62,2435,62,75,13,33295,7,437,62,2435,532,923,62,2435,8,628,220,220,220,220,220,220,220,1303,6208,262,2746,198,220,220,220,220,220,220,220,923,62,2435,796,640,13,525,69,62,24588,3419,198,220,220,220,220,220,220,220,264,28664,62,75,13,33295,7,28764,2867,7,21282,83,4008,198,220,220,220,220,220,220,220,886,62,2435,796,640,13,525,69,62,24588,3419,198,220,220,220,220,220,220,220,1332,62,2435,62,75,13,33295,7,437,62,2435,532,923,62,2435,8,628,220,220,220,220,220,220,220,1303,6822,4088,198,220,220,220,220,220,220,220,410,62,76,796,26692,22602,13,32844,62,31673,3419,58,17,60,198,220,220,220,220,220,220,220,410,62,76,62,75,13,33295,7,85,62,76,8,198,220,220,220,220,220,220,220,264,62,76,796,26692,22602,13,2032,499,62,31673,3419,58,18,60,198,220,220,220,220,220,220,220,264,62,76,62,75,13,33295,7,82,62,76,8,628,220,220,220,1303,17893,265,262,4512,1661,198,220,220,220,329,1312,287,2837,7,16,11,5323,2599,198,220,220,220,220,220,220,220,4512,62,2435,62,75,58,72,60,15853,4512,62,2435,62,75,58,72,532,352,60,628,220,220,220,1441,264,28664,62,75,11,4512,62,2435,62,75,11,1332,62,2435,62,75,11,410,62,76,62,75,11,264,62,76,62,75,628,198,4299,6306,62,82,7568,33529,198,220,220,220,37227,10987,82,10256,329,13860,26423,9115,37811,198,220,220,220,264,7568,62,75,796,17635,198,220,220,220,4512,62,2435,62,75,796,17635,198,220,220,220,1332,62,2435,62,75,796,17635,198,220,220,220,410,62,76,62,75,796,17635,198,220,220,220,264,62,76,62,75,796,17635,628,220,220,220,264,7568,796,13860,10707,1166,34605,3419,628,220,220,220,329,1312,287,2837,7,4059,2599,198,220,220,220,220,220,220,220,1395,62,83,796,1395,62,81,58,72,1635,1802,1058,357,72,1343,352,8,1635,1802,60,198,220,220,220,220,220,220,220,331,62,83,796,331,62,81,58,72,1635,1802,1058,357,72,1343,352,8,1635,1802,60,628,220,220,220,220,220,220,220,1303,16835,262,2746,198,220,220,220,220,220,220,220,923,62,2435,796,640,13,525,69,62,24588,3419,198,220,220,220,220,220,220,220,264,7568,13,47172,62,11147,7,55,62,83,11,331,62,83,11,6097,41888,15,11,352,11,362,11,513,11,604,11,642,11,718,11,767,11,807,11,860,12962,198,220,220,220,220,220,220,220,886,62,2435,796,640,13,525,69,62,24588,3419,198,220,220,220,220,220,220,220,4512,62,2435,62,75,13,33295,7,437,62,2435,532,923,62,2435,8,628,220,220,220,220,220,220,220,1303,6208,262,2746,198,220,220,220,220,220,220,220,923,62,2435,796,640,13,525,69,62,24588,3419,198,220,220,220,220,220,220,220,264,7568,62,75,13,33295,7,28764,2867,7,82,7568,4008,198,220,220,220,220,220,220,220,886,62,2435,796,640,13,525,69,62,24588,3419,198,220,220,220,220,220,220,220,1332,62,2435,62,75,13,33295,7,437,62,2435,532,923,62,2435,8,628,220,220,220,220,220,220,220,1303,6822,4088,198,220,220,220,220,220,220,220,410,62,76,796,26692,22602,13,32844,62,31673,3419,58,17,60,198,220,220,220,220,220,220,220,410,62,76,62,75,13,33295,7,85,62,76,8,198,220,220,220,220,220,220,220,264,62,76,796,26692,22602,13,2032,499,62,31673,3419,58,18,60,198,220,220,220,220,220,220,220,264,62,76,62,75,13,33295,7,82,62,76,8,628,220,220,220,1303,17893,265,262,4512,1661,198,220,220,220,329,1312,287,2837,7,16,11,5323,2599,198,220,220,220,220,220,220,220,4512,62,2435,62,75,58,72,60,15853,4512,62,2435,62,75,58,72,532,352,60,628,220,220,220,1441,264,7568,62,75,11,4512,62,2435,62,75,11,1332,62,2435,62,75,11,410,62,76,62,75,11,264,62,76,62,75,628,198,2,43426,327,5064,1503,1366,198,2,14435,1096,198,9888,796,45941,13,32604,7,37659,13,283,858,7,15,11,17759,4008,198,11265,1096,796,37456,2124,25,357,87,532,5046,8,1220,5046,198,198,2,16835,1366,198,66,361,283,62,2213,1299,316,796,40522,13,34,5064,1503,940,7,15763,2625,40720,1600,4512,28,17821,11,4321,28,17821,11,6121,28,14202,8,198,55,62,27432,796,3487,1096,7,66,361,283,62,2213,1299,316,13,7890,8,198,88,62,27432,796,45941,13,18747,7,66,361,283,62,2213,1299,316,13,83,853,1039,8,198,198,2,6208,1366,198,66,361,283,62,9288,2617,796,40522,13,34,5064,1503,940,7,15763,2625,40720,1600,4512,28,25101,11,4321,28,17821,11,6121,28,14202,8,198,55,62,9288,796,3487,1096,7,66,361,283,62,9288,2617,13,7890,8,198,88,62,9288,796,45941,13,18747,7,66,361,283,62,9288,2617,13,83,853,1039,8,198,198,55,62,27432,796,1395,62,27432,13,3447,1758,32590,16,11,3933,1635,3933,1635,513,8,198,55,62,9288,796,1395,62,9288,13,3447,1758,32590,16,11,3933,1635,3933,1635,513,8,198,198,2,2547,325,1398,7483,7747,198,48610,796,1822,29572,13,28100,1713,46677,3419,198,48610,13,2860,62,49140,7203,12,439,1600,1037,2625,439,1398,13350,1600,2672,28,25101,11,2223,2625,8095,62,7942,4943,198,48610,13,2860,62,49140,7203,12,28664,1600,1037,2625,12501,1166,17039,1600,2672,28,25101,11,2223,2625,8095,62,7942,4943,198,48610,13,2860,62,49140,7203,12,41871,1600,1037,2625,25120,17039,1600,2672,28,25101,11,2223,2625,8095,62,7942,4943,198,48610,13,2860,62,49140,7203,12,4352,1600,1037,2625,38979,487,12083,7150,1600,2672,28,25101,11,2223,2625,8095,62,7942,4943,198,48610,13,2860,62,49140,7203,12,76,69,1600,1037,2625,6327,4484,17039,1600,2672,28,25101,11,2223,2625,8095,62,7942,4943,198,48610,13,2860,62,49140,7,198,220,220,220,27444,21282,83,1600,1037,2625,5532,2551,7150,1600,2672,28,25101,11,2223,2625,8095,62,7942,1,198,8,198,48610,13,2860,62,49140,7,198,220,220,220,27444,82,7568,1600,1037,2625,5532,2551,17039,1600,2672,28,25101,11,2223,2625,8095,62,7942,1,198,8,198,22046,796,30751,13,29572,62,22046,3419,198,198,2,35006,10256,198,361,26498,13,439,393,26498,13,28664,25,198,220,220,220,288,83,62,4134,62,75,796,17635,198,220,220,220,288,83,62,27432,62,83,62,75,796,17635,198,220,220,220,288,83,62,9288,62,83,62,75,796,17635,198,220,220,220,288,83,62,85,62,76,62,75,796,17635,198,220,220,220,288,83,62,82,62,76,62,75,796,17635,198,220,220,220,329,1312,287,2837,7,940,2599,198,220,220,220,220,220,220,220,279,796,9943,7094,7,55,62,27432,13,43358,58,15,12962,628,220,220,220,220,220,220,220,1395,62,81,796,1395,62,27432,58,79,60,198,220,220,220,220,220,220,220,331,62,81,796,331,62,27432,58,79,60,628,220,220,220,220,220,220,220,288,83,62,4134,11,288,83,62,27432,62,83,11,288,83,62,9288,62,83,11,288,83,62,85,62,76,11,288,83,62,82,62,76,796,6306,62,28664,3419,198,220,220,220,220,220,220,220,288,83,62,4134,62,75,13,33295,7,28664,62,4134,8,198,220,220,220,220,220,220,220,288,83,62,27432,62,83,62,75,13,33295,7,28664,62,27432,62,83,8,198,220,220,220,220,220,220,220,288,83,62,9288,62,83,62,75,13,33295,7,28664,62,9288,62,83,8,198,220,220,220,220,220,220,220,288,83,62,85,62,76,62,75,13,33295,7,28664,62,85,62,76,8,198,220,220,220,220,220,220,220,288,83,62,82,62,76,62,75,13,33295,7,28664,62,82,62,76,8,628,220,220,220,220,220,220,220,3551,62,20274,7203,40720,43420,14,28664,14,66,361,283,940,62,4134,13,14116,1600,288,83,62,4134,62,75,8,198,220,220,220,220,220,220,220,3551,62,20274,7203,40720,43420,14,28664,14,66,361,283,940,62,27432,62,83,13,14116,1600,288,83,62,27432,62,83,62,75,8,198,220,220,220,220,220,220,220,3551,62,20274,7203,40720,43420,14,28664,14,66,361,283,940,62,9288,62,83,13,14116,1600,288,83,62,9288,62,83,62,75,8,198,220,220,220,220,220,220,220,3551,62,20274,7203,40720,43420,14,28664,14,66,361,283,940,62,85,62,76,13,14116,1600,288,83,62,85,62,76,62,75,8,198,220,220,220,220,220,220,220,3551,62,20274,7203,40720,43420,14,28664,14,66,361,283,940,62,82,62,76,13,14116,1600,288,83,62,82,62,76,62,75,8,198,198,361,26498,13,439,393,26498,13,41871,25,198,220,220,220,374,69,62,4134,62,75,796,17635,198,220,220,220,374,69,62,27432,62,83,62,75,796,17635,198,220,220,220,374,69,62,9288,62,83,62,75,796,17635,198,220,220,220,374,69,62,85,62,76,62,75,796,17635,198,220,220,220,374,69,62,82,62,76,62,75,796,17635,198,220,220,220,329,1312,287,2837,7,940,2599,198,220,220,220,220,220,220,220,279,796,9943,7094,7,55,62,27432,13,43358,58,15,12962,628,220,220,220,220,220,220,220,1395,62,81,796,1395,62,27432,58,79,60,198,220,220,220,220,220,220,220,331,62,81,796,331,62,27432,58,79,60,628,220,220,220,220,220,220,220,374,69,62,4134,11,374,69,62,27432,62,83,11,374,69,62,9288,62,83,11,374,69,62,85,62,76,11,374,69,62,82,62,76,796,6306,62,41871,3419,198,220,220,220,220,220,220,220,374,69,62,4134,62,75,13,33295,7,41871,62,4134,8,198,220,220,220,220,220,220,220,374,69,62,27432,62,83,62,75,13,33295,7,41871,62,27432,62,83,8,198,220,220,220,220,220,220,220,374,69,62,9288,62,83,62,75,13,33295,7,41871,62,9288,62,83,8,198,220,220,220,220,220,220,220,374,69,62,85,62,76,62,75,13,33295,7,41871,62,85,62,76,8,198,220,220,220,220,220,220,220,374,69,62,82,62,76,62,75,13,33295,7,41871,62,82,62,76,8,628,220,220,220,220,220,220,220,3551,62,20274,7203,40720,43420,14,41871,14,66,361,283,940,62,4134,13,14116,1600,374,69,62,4134,62,75,8,198,220,220,220,220,220,220,220,3551,62,20274,7203,40720,43420,14,41871,14,66,361,283,940,62,27432,62,83,13,14116,1600,374,69,62,27432,62,83,62,75,8,198,220,220,220,220,220,220,220,3551,62,20274,7203,40720,43420,14,41871,14,66,361,283,940,62,9288,62,83,13,14116,1600,374,69,62,9288,62,83,62,75,8,198,220,220,220,220,220,220,220,3551,62,20274,7203,40720,43420,14,41871,14,66,361,283,940,62,85,62,76,13,14116,1600,374,69,62,85,62,76,62,75,8,198,220,220,220,220,220,220,220,3551,62,20274,7203,40720,43420,14,41871,14,66,361,283,940,62,82,62,76,13,14116,1600,374,69,62,82,62,76,62,75,8,198,198,361,26498,13,439,393,26498,13,4352,25,198,220,220,220,289,83,62,4134,62,75,796,17635,198,220,220,220,289,83,62,27432,62,83,62,75,796,17635,198,220,220,220,289,83,62,9288,62,83,62,75,796,17635,198,220,220,220,289,83,62,85,62,76,62,75,796,17635,198,220,220,220,289,83,62,82,62,76,62,75,796,17635,198,220,220,220,329,1312,287,2837,7,940,2599,198,220,220,220,220,220,220,220,279,796,9943,7094,7,55,62,27432,13,43358,58,15,12962,628,220,220,220,220,220,220,220,1395,62,81,796,1395,62,27432,58,79,60,198,220,220,220,220,220,220,220,331,62,81,796,331,62,27432,58,79,60,628,220,220,220,220,220,220,220,289,83,62,4134,11,289,83,62,27432,62,83,11,289,83,62,9288,62,83,11,289,83,62,85,62,76,11,289,83,62,82,62,76,796,6306,62,4352,3419,198,220,220,220,220,220,220,220,289,83,62,4134,62,75,13,33295,7,4352,62,4134,8,198,220,220,220,220,220,220,220,289,83,62,27432,62,83,62,75,13,33295,7,4352,62,27432,62,83,8,198,220,220,220,220,220,220,220,289,83,62,9288,62,83,62,75,13,33295,7,4352,62,9288,62,83,8,198,220,220,220,220,220,220,220,289,83,62,85,62,76,62,75,13,33295,7,4352,62,85,62,76,8,198,220,220,220,220,220,220,220,289,83,62,82,62,76,62,75,13,33295,7,4352,62,82,62,76,8,628,220,220,220,220,220,220,220,3551,62,20274,7203,40720,43420,14,4352,14,66,361,283,940,62,4134,13,14116,1600,289,83,62,4134,62,75,8,198,220,220,220,220,220,220,220,3551,62,20274,7203,40720,43420,14,4352,14,66,361,283,940,62,27432,62,83,13,14116,1600,289,83,62,27432,62,83,62,75,8,198,220,220,220,220,220,220,220,3551,62,20274,7203,40720,43420,14,4352,14,66,361,283,940,62,9288,62,83,13,14116,1600,289,83,62,9288,62,83,62,75,8,198,220,220,220,220,220,220,220,3551,62,20274,7203,40720,43420,14,4352,14,66,361,283,940,62,85,62,76,13,14116,1600,289,83,62,85,62,76,62,75,8,198,220,220,220,220,220,220,220,3551,62,20274,7203,40720,43420,14,4352,14,66,361,283,940,62,82,62,76,13,14116,1600,289,83,62,82,62,76,62,75,8,198,198,361,26498,13,439,393,26498,13,76,69,25,198,220,220,220,285,69,62,4134,62,75,796,17635,198,220,220,220,285,69,62,27432,62,83,62,75,796,17635,198,220,220,220,285,69,62,9288,62,83,62,75,796,17635,198,220,220,220,285,69,62,85,62,76,62,75,796,17635,198,220,220,220,285,69,62,82,62,76,62,75,796,17635,198,220,220,220,329,1312,287,2837,7,940,2599,198,220,220,220,220,220,220,220,279,796,9943,7094,7,55,62,27432,13,43358,58,15,12962,628,220,220,220,220,220,220,220,1395,62,81,796,1395,62,27432,58,79,60,198,220,220,220,220,220,220,220,331,62,81,796,331,62,27432,58,79,60,628,220,220,220,220,220,220,220,285,69,62,4134,11,285,69,62,27432,62,83,11,285,69,62,9288,62,83,11,285,69,62,85,62,76,11,285,69,62,82,62,76,796,6306,62,76,69,3419,198,220,220,220,220,220,220,220,285,69,62,4134,62,75,13,33295,7,76,69,62,4134,8,198,220,220,220,220,220,220,220,285,69,62,27432,62,83,62,75,13,33295,7,76,69,62,27432,62,83,8,198,220,220,220,220,220,220,220,285,69,62,9288,62,83,62,75,13,33295,7,76,69,62,9288,62,83,8,198,220,220,220,220,220,220,220,285,69,62,85,62,76,62,75,13,33295,7,76,69,62,85,62,76,8,198,220,220,220,220,220,220,220,285,69,62,82,62,76,62,75,13,33295,7,76,69,62,82,62,76,8,628,220,220,220,220,220,220,220,3551,62,20274,7203,40720,43420,14,76,69,14,66,361,283,940,62,4134,13,14116,1600,285,69,62,4134,62,75,8,198,220,220,220,220,220,220,220,3551,62,20274,7203,40720,43420,14,76,69,14,66,361,283,940,62,27432,62,83,13,14116,1600,285,69,62,27432,62,83,62,75,8,198,220,220,220,220,220,220,220,3551,62,20274,7203,40720,43420,14,76,69,14,66,361,283,940,62,9288,62,83,13,14116,1600,285,69,62,9288,62,83,62,75,8,198,220,220,220,220,220,220,220,3551,62,20274,7203,40720,43420,14,76,69,14,66,361,283,940,62,85,62,76,13,14116,1600,285,69,62,85,62,76,62,75,8,198,220,220,220,220,220,220,220,3551,62,20274,7203,40720,43420,14,76,69,14,66,361,283,940,62,82,62,76,13,14116,1600,285,69,62,82,62,76,62,75,8,198,198,361,26498,13,439,393,26498,13,21282,83,25,198,220,220,220,264,28664,62,4134,62,75,796,17635,198,220,220,220,264,28664,62,27432,62,83,62,75,796,17635,198,220,220,220,264,28664,62,9288,62,83,62,75,796,17635,198,220,220,220,264,28664,62,85,62,76,62,75,796,17635,198,220,220,220,264,28664,62,82,62,76,62,75,796,17635,198,220,220,220,329,1312,287,2837,7,940,2599,198,220,220,220,220,220,220,220,279,796,9943,7094,7,55,62,27432,13,43358,58,15,12962,628,220,220,220,220,220,220,220,1395,62,81,796,1395,62,27432,58,79,60,198,220,220,220,220,220,220,220,331,62,81,796,331,62,27432,58,79,60,628,220,220,220,220,220,220,220,264,28664,62,4134,11,264,28664,62,27432,62,83,11,264,28664,62,9288,62,83,11,264,28664,62,85,62,76,11,264,28664,62,82,62,76,796,6306,62,21282,83,3419,198,220,220,220,220,220,220,220,264,28664,62,4134,62,75,13,33295,7,21282,83,62,4134,8,198,220,220,220,220,220,220,220,264,28664,62,27432,62,83,62,75,13,33295,7,21282,83,62,27432,62,83,8,198,220,220,220,220,220,220,220,264,28664,62,9288,62,83,62,75,13,33295,7,21282,83,62,9288,62,83,8,198,220,220,220,220,220,220,220,264,28664,62,85,62,76,62,75,13,33295,7,21282,83,62,85,62,76,8,198,220,220,220,220,220,220,220,264,28664,62,82,62,76,62,75,13,33295,7,21282,83,62,82,62,76,8,628,220,220,220,220,220,220,220,3551,62,20274,7203,40720,43420,14,21282,83,14,66,361,283,940,62,4134,13,14116,1600,264,28664,62,4134,62,75,8,198,220,220,220,220,220,220,220,3551,62,20274,7203,40720,43420,14,21282,83,14,66,361,283,940,62,27432,62,83,13,14116,1600,264,28664,62,27432,62,83,62,75,8,198,220,220,220,220,220,220,220,3551,62,20274,7203,40720,43420,14,21282,83,14,66,361,283,940,62,9288,62,83,13,14116,1600,264,28664,62,9288,62,83,62,75,8,198,220,220,220,220,220,220,220,3551,62,20274,7203,40720,43420,14,21282,83,14,66,361,283,940,62,85,62,76,13,14116,1600,264,28664,62,85,62,76,62,75,8,198,220,220,220,220,220,220,220,3551,62,20274,7203,40720,43420,14,21282,83,14,66,361,283,940,62,82,62,76,13,14116,1600,264,28664,62,82,62,76,62,75,8,198,198,361,26498,13,439,393,26498,13,82,7568,25,198,220,220,220,264,7568,62,4134,62,75,796,17635,198,220,220,220,264,7568,62,27432,62,83,62,75,796,17635,198,220,220,220,264,7568,62,9288,62,83,62,75,796,17635,198,220,220,220,264,7568,62,85,62,76,62,75,796,17635,198,220,220,220,264,7568,62,82,62,76,62,75,796,17635,198,220,220,220,329,1312,287,2837,7,940,2599,198,220,220,220,220,220,220,220,279,796,9943,7094,7,55,62,27432,13,43358,58,15,12962,628,220,220,220,220,220,220,220,1395,62,81,796,1395,62,27432,58,79,60,198,220,220,220,220,220,220,220,331,62,81,796,331,62,27432,58,79,60,628,220,220,220,220,220,220,220,264,7568,62,4134,11,264,7568,62,27432,62,83,11,264,7568,62,9288,62,83,11,264,7568,62,85,62,76,11,264,7568,62,82,62,76,796,6306,62,82,7568,3419,198,220,220,220,220,220,220,220,264,7568,62,4134,62,75,13,33295,7,82,7568,62,4134,8,198,220,220,220,220,220,220,220,264,7568,62,27432,62,83,62,75,13,33295,7,82,7568,62,27432,62,83,8,198,220,220,220,220,220,220,220,264,7568,62,9288,62,83,62,75,13,33295,7,82,7568,62,9288,62,83,8,198,220,220,220,220,220,220,220,264,7568,62,85,62,76,62,75,13,33295,7,82,7568,62,85,62,76,8,198,220,220,220,220,220,220,220,264,7568,62,82,62,76,62,75,13,33295,7,82,7568,62,82,62,76,8,628,220,220,220,220,220,220,220,3551,62,20274,7203,40720,43420,14,82,7568,14,66,361,283,940,62,4134,13,14116,1600,264,7568,62,4134,62,75,8,198,220,220,220,220,220,220,220,3551,62,20274,7203,40720,43420,14,82,7568,14,66,361,283,940,62,27432,62,83,13,14116,1600,264,7568,62,27432,62,83,62,75,8,198,220,220,220,220,220,220,220,3551,62,20274,7203,40720,43420,14,82,7568,14,66,361,283,940,62,9288,62,83,13,14116,1600,264,7568,62,9288,62,83,62,75,8,198,220,220,220,220,220,220,220,3551,62,20274,7203,40720,43420,14,82,7568,14,66,361,283,940,62,85,62,76,13,14116,1600,264,7568,62,85,62,76,62,75,8,198,220,220,220,220,220,220,220,3551,62,20274,7203,40720,43420,14,82,7568,14,66,361,283,940,62,82,62,76,13,14116,1600,264,7568,62,82,62,76,62,75,8,198],"string":"[\n 37811,\n 198,\n 13838,\n 25,\n 9398,\n 726,\n 259,\n 33591,\n 198,\n 37811,\n 198,\n 11748,\n 640,\n 198,\n 11748,\n 26692,\n 22602,\n 198,\n 11748,\n 1822,\n 29572,\n 198,\n 11748,\n 299,\n 32152,\n 355,\n 45941,\n 198,\n 11748,\n 28034,\n 10178,\n 13,\n 19608,\n 292,\n 1039,\n 355,\n 40522,\n 198,\n 6738,\n 299,\n 32152,\n 13,\n 25120,\n 1330,\n 9943,\n 7094,\n 198,\n 6738,\n 1341,\n 35720,\n 13,\n 21048,\n 1330,\n 26423,\n 27660,\n 9487,\n 7483,\n 198,\n 6738,\n 1341,\n 35720,\n 13,\n 1072,\n 11306,\n 1330,\n 14534,\n 34605,\n 9487,\n 7483,\n 198,\n 6738,\n 7850,\n 1330,\n 5509,\n 198,\n 6738,\n 1341,\n 70,\n 5872,\n 1330,\n 27328,\n 4484,\n 34605,\n 9487,\n 7483,\n 198,\n 6738,\n 45647,\n 27110,\n 1330,\n 13860,\n 10707,\n 1166,\n 34605,\n 628,\n 198,\n 4299,\n 3551,\n 62,\n 20274,\n 7,\n 34345,\n 11,\n 697,\n 62,\n 7278,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 20257,\n 274,\n 2482,\n 284,\n 7368,\n 2420,\n 2393,\n 37811,\n 198,\n 220,\n 220,\n 220,\n 5072,\n 796,\n 1280,\n 7,\n 34345,\n 11,\n 366,\n 86,\n 4943,\n 198,\n 220,\n 220,\n 220,\n 329,\n 697,\n 287,\n 697,\n 62,\n 7278,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 5072,\n 13,\n 13564,\n 7,\n 2536,\n 7,\n 4134,\n 8,\n 1343,\n 37082,\n 77,\n 4943,\n 628,\n 198,\n 4299,\n 17724,\n 7,\n 4871,\n 7483,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 8645,\n 689,\n 16277,\n 422,\n 2746,\n 37811,\n 198,\n 220,\n 220,\n 220,\n 16277,\n 796,\n 1398,\n 7483,\n 13,\n 79,\n 17407,\n 7,\n 55,\n 62,\n 9288,\n 8,\n 628,\n 220,\n 220,\n 220,\n 279,\n 62,\n 83,\n 796,\n 657,\n 198,\n 220,\n 220,\n 220,\n 329,\n 1312,\n 287,\n 2837,\n 7,\n 55,\n 62,\n 9288,\n 13,\n 43358,\n 58,\n 15,\n 60,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 16277,\n 58,\n 72,\n 60,\n 6624,\n 331,\n 62,\n 9288,\n 58,\n 72,\n 5974,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 279,\n 62,\n 83,\n 15853,\n 352,\n 628,\n 220,\n 220,\n 220,\n 1441,\n 279,\n 62,\n 83,\n 1220,\n 1395,\n 62,\n 9288,\n 13,\n 43358,\n 58,\n 15,\n 60,\n 628,\n 198,\n 4299,\n 6306,\n 62,\n 28664,\n 33529,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 10987,\n 82,\n 10256,\n 329,\n 347,\n 963,\n 26423,\n 12200,\n 37811,\n 198,\n 220,\n 220,\n 220,\n 288,\n 83,\n 62,\n 75,\n 796,\n 17635,\n 198,\n 220,\n 220,\n 220,\n 4512,\n 62,\n 2435,\n 62,\n 75,\n 796,\n 17635,\n 198,\n 220,\n 220,\n 220,\n 1332,\n 62,\n 2435,\n 62,\n 75,\n 796,\n 17635,\n 198,\n 220,\n 220,\n 220,\n 410,\n 62,\n 76,\n 62,\n 75,\n 796,\n 17635,\n 198,\n 220,\n 220,\n 220,\n 264,\n 62,\n 76,\n 62,\n 75,\n 796,\n 17635,\n 628,\n 220,\n 220,\n 220,\n 288,\n 83,\n 796,\n 26423,\n 27660,\n 9487,\n 7483,\n 3419,\n 628,\n 220,\n 220,\n 220,\n 329,\n 1312,\n 287,\n 2837,\n 7,\n 4059,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1395,\n 62,\n 83,\n 796,\n 1395,\n 62,\n 81,\n 58,\n 25,\n 357,\n 72,\n 1343,\n 352,\n 8,\n 1635,\n 1802,\n 60,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 331,\n 62,\n 83,\n 796,\n 331,\n 62,\n 81,\n 58,\n 25,\n 357,\n 72,\n 1343,\n 352,\n 8,\n 1635,\n 1802,\n 60,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 16835,\n 262,\n 2746,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 923,\n 62,\n 2435,\n 796,\n 640,\n 13,\n 525,\n 69,\n 62,\n 24588,\n 3419,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 288,\n 83,\n 13,\n 11147,\n 7,\n 55,\n 62,\n 83,\n 11,\n 331,\n 62,\n 83,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 886,\n 62,\n 2435,\n 796,\n 640,\n 13,\n 525,\n 69,\n 62,\n 24588,\n 3419,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 4512,\n 62,\n 2435,\n 62,\n 75,\n 13,\n 33295,\n 7,\n 437,\n 62,\n 2435,\n 532,\n 923,\n 62,\n 2435,\n 8,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 6208,\n 262,\n 2746,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 923,\n 62,\n 2435,\n 796,\n 640,\n 13,\n 525,\n 69,\n 62,\n 24588,\n 3419,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 288,\n 83,\n 62,\n 75,\n 13,\n 33295,\n 7,\n 28764,\n 2867,\n 7,\n 28664,\n 4008,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 886,\n 62,\n 2435,\n 796,\n 640,\n 13,\n 525,\n 69,\n 62,\n 24588,\n 3419,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1332,\n 62,\n 2435,\n 62,\n 75,\n 13,\n 33295,\n 7,\n 437,\n 62,\n 2435,\n 532,\n 923,\n 62,\n 2435,\n 8,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 6822,\n 4088,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 410,\n 62,\n 76,\n 796,\n 26692,\n 22602,\n 13,\n 32844,\n 62,\n 31673,\n 3419,\n 58,\n 17,\n 60,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 410,\n 62,\n 76,\n 62,\n 75,\n 13,\n 33295,\n 7,\n 85,\n 62,\n 76,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 264,\n 62,\n 76,\n 796,\n 26692,\n 22602,\n 13,\n 2032,\n 499,\n 62,\n 31673,\n 3419,\n 58,\n 18,\n 60,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 264,\n 62,\n 76,\n 62,\n 75,\n 13,\n 33295,\n 7,\n 82,\n 62,\n 76,\n 8,\n 628,\n 220,\n 220,\n 220,\n 1441,\n 288,\n 83,\n 62,\n 75,\n 11,\n 4512,\n 62,\n 2435,\n 62,\n 75,\n 11,\n 1332,\n 62,\n 2435,\n 62,\n 75,\n 11,\n 410,\n 62,\n 76,\n 62,\n 75,\n 11,\n 264,\n 62,\n 76,\n 62,\n 75,\n 628,\n 198,\n 4299,\n 6306,\n 62,\n 41871,\n 33529,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 10987,\n 82,\n 10256,\n 329,\n 14534,\n 9115,\n 37811,\n 198,\n 220,\n 220,\n 220,\n 374,\n 69,\n 62,\n 75,\n 796,\n 17635,\n 198,\n 220,\n 220,\n 220,\n 4512,\n 62,\n 2435,\n 62,\n 75,\n 796,\n 17635,\n 198,\n 220,\n 220,\n 220,\n 1332,\n 62,\n 2435,\n 62,\n 75,\n 796,\n 17635,\n 198,\n 220,\n 220,\n 220,\n 410,\n 62,\n 76,\n 62,\n 75,\n 796,\n 17635,\n 198,\n 220,\n 220,\n 220,\n 264,\n 62,\n 76,\n 62,\n 75,\n 796,\n 17635,\n 628,\n 220,\n 220,\n 220,\n 374,\n 69,\n 796,\n 14534,\n 34605,\n 9487,\n 7483,\n 3419,\n 628,\n 220,\n 220,\n 220,\n 329,\n 1312,\n 287,\n 2837,\n 7,\n 4059,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1395,\n 62,\n 83,\n 796,\n 1395,\n 62,\n 81,\n 58,\n 25,\n 357,\n 72,\n 1343,\n 352,\n 8,\n 1635,\n 1802,\n 60,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 331,\n 62,\n 83,\n 796,\n 331,\n 62,\n 81,\n 58,\n 25,\n 357,\n 72,\n 1343,\n 352,\n 8,\n 1635,\n 1802,\n 60,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 16835,\n 262,\n 2746,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 923,\n 62,\n 2435,\n 796,\n 640,\n 13,\n 525,\n 69,\n 62,\n 24588,\n 3419,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 374,\n 69,\n 13,\n 11147,\n 7,\n 55,\n 62,\n 83,\n 11,\n 331,\n 62,\n 83,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 886,\n 62,\n 2435,\n 796,\n 640,\n 13,\n 525,\n 69,\n 62,\n 24588,\n 3419,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 4512,\n 62,\n 2435,\n 62,\n 75,\n 13,\n 33295,\n 7,\n 437,\n 62,\n 2435,\n 532,\n 923,\n 62,\n 2435,\n 8,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 6208,\n 262,\n 2746,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 923,\n 62,\n 2435,\n 796,\n 640,\n 13,\n 525,\n 69,\n 62,\n 24588,\n 3419,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 374,\n 69,\n 62,\n 75,\n 13,\n 33295,\n 7,\n 28764,\n 2867,\n 7,\n 41871,\n 4008,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 886,\n 62,\n 2435,\n 796,\n 640,\n 13,\n 525,\n 69,\n 62,\n 24588,\n 3419,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1332,\n 62,\n 2435,\n 62,\n 75,\n 13,\n 33295,\n 7,\n 437,\n 62,\n 2435,\n 532,\n 923,\n 62,\n 2435,\n 8,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 6822,\n 4088,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 410,\n 62,\n 76,\n 796,\n 26692,\n 22602,\n 13,\n 32844,\n 62,\n 31673,\n 3419,\n 58,\n 17,\n 60,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 410,\n 62,\n 76,\n 62,\n 75,\n 13,\n 33295,\n 7,\n 85,\n 62,\n 76,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 264,\n 62,\n 76,\n 796,\n 26692,\n 22602,\n 13,\n 2032,\n 499,\n 62,\n 31673,\n 3419,\n 58,\n 18,\n 60,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 264,\n 62,\n 76,\n 62,\n 75,\n 13,\n 33295,\n 7,\n 82,\n 62,\n 76,\n 8,\n 628,\n 220,\n 220,\n 220,\n 1441,\n 374,\n 69,\n 62,\n 75,\n 11,\n 4512,\n 62,\n 2435,\n 62,\n 75,\n 11,\n 1332,\n 62,\n 2435,\n 62,\n 75,\n 11,\n 410,\n 62,\n 76,\n 62,\n 75,\n 11,\n 264,\n 62,\n 76,\n 62,\n 75,\n 628,\n 198,\n 4299,\n 6306,\n 62,\n 4352,\n 33529,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 10987,\n 82,\n 10256,\n 329,\n 367,\n 2577,\n 487,\n 12083,\n 12200,\n 37811,\n 198,\n 220,\n 220,\n 220,\n 289,\n 83,\n 62,\n 75,\n 796,\n 17635,\n 198,\n 220,\n 220,\n 220,\n 4512,\n 62,\n 2435,\n 62,\n 75,\n 796,\n 17635,\n 198,\n 220,\n 220,\n 220,\n 1332,\n 62,\n 2435,\n 62,\n 75,\n 796,\n 17635,\n 198,\n 220,\n 220,\n 220,\n 410,\n 62,\n 76,\n 62,\n 75,\n 796,\n 17635,\n 198,\n 220,\n 220,\n 220,\n 264,\n 62,\n 76,\n 62,\n 75,\n 796,\n 17635,\n 628,\n 220,\n 220,\n 220,\n 289,\n 83,\n 796,\n 5509,\n 13,\n 39,\n 2577,\n 487,\n 12083,\n 27660,\n 9487,\n 7483,\n 7,\n 9806,\n 62,\n 7857,\n 28,\n 12825,\n 11,\n 11542,\n 62,\n 41007,\n 28,\n 17,\n 8,\n 628,\n 220,\n 220,\n 220,\n 329,\n 1312,\n 287,\n 2837,\n 7,\n 55,\n 62,\n 27432,\n 13,\n 43358,\n 58,\n 15,\n 60,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1395,\n 62,\n 83,\n 796,\n 1395,\n 62,\n 81,\n 58,\n 72,\n 60,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 331,\n 62,\n 83,\n 796,\n 331,\n 62,\n 81,\n 58,\n 72,\n 60,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 4686,\n 87,\n 796,\n 2837,\n 7,\n 35500,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1395,\n 62,\n 83,\n 796,\n 8633,\n 7,\n 13344,\n 7,\n 312,\n 87,\n 11,\n 1395,\n 62,\n 83,\n 4008,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 923,\n 62,\n 2435,\n 796,\n 640,\n 13,\n 525,\n 69,\n 62,\n 24588,\n 3419,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 289,\n 83,\n 13,\n 35720,\n 62,\n 505,\n 7,\n 55,\n 62,\n 83,\n 11,\n 331,\n 62,\n 83,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 886,\n 62,\n 2435,\n 796,\n 640,\n 13,\n 525,\n 69,\n 62,\n 24588,\n 3419,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 4512,\n 62,\n 2435,\n 62,\n 75,\n 13,\n 33295,\n 7,\n 437,\n 62,\n 2435,\n 532,\n 923,\n 62,\n 2435,\n 8,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 1312,\n 1875,\n 657,\n 290,\n 357,\n 72,\n 1343,\n 352,\n 8,\n 4064,\n 1802,\n 6624,\n 657,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 279,\n 62,\n 83,\n 796,\n 657,\n 13,\n 15,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 923,\n 62,\n 2435,\n 796,\n 640,\n 13,\n 525,\n 69,\n 62,\n 24588,\n 3419,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 329,\n 474,\n 287,\n 2837,\n 7,\n 55,\n 62,\n 9288,\n 13,\n 43358,\n 58,\n 15,\n 60,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 331,\n 62,\n 28764,\n 796,\n 289,\n 83,\n 13,\n 79,\n 17407,\n 62,\n 505,\n 7,\n 55,\n 62,\n 9288,\n 58,\n 73,\n 12962,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 331,\n 62,\n 28764,\n 6624,\n 331,\n 62,\n 9288,\n 58,\n 73,\n 5974,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 279,\n 62,\n 83,\n 15853,\n 352,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 289,\n 83,\n 62,\n 75,\n 13,\n 33295,\n 7,\n 79,\n 62,\n 83,\n 1220,\n 1395,\n 62,\n 9288,\n 13,\n 43358,\n 58,\n 15,\n 12962,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 886,\n 62,\n 2435,\n 796,\n 640,\n 13,\n 525,\n 69,\n 62,\n 24588,\n 3419,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1332,\n 62,\n 2435,\n 62,\n 75,\n 13,\n 33295,\n 7,\n 437,\n 62,\n 2435,\n 532,\n 923,\n 62,\n 2435,\n 8,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 6822,\n 4088,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 410,\n 62,\n 76,\n 796,\n 26692,\n 22602,\n 13,\n 32844,\n 62,\n 31673,\n 3419,\n 58,\n 17,\n 60,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 410,\n 62,\n 76,\n 62,\n 75,\n 13,\n 33295,\n 7,\n 85,\n 62,\n 76,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 264,\n 62,\n 76,\n 796,\n 26692,\n 22602,\n 13,\n 2032,\n 499,\n 62,\n 31673,\n 3419,\n 58,\n 18,\n 60,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 264,\n 62,\n 76,\n 62,\n 75,\n 13,\n 33295,\n 7,\n 82,\n 62,\n 76,\n 8,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 17893,\n 265,\n 262,\n 4512,\n 1661,\n 198,\n 220,\n 220,\n 220,\n 649,\n 62,\n 27432,\n 62,\n 2435,\n 62,\n 75,\n 796,\n 17635,\n 198,\n 220,\n 220,\n 220,\n 329,\n 1312,\n 287,\n 2837,\n 7,\n 16,\n 11,\n 1395,\n 62,\n 27432,\n 13,\n 43358,\n 58,\n 15,\n 60,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 4512,\n 62,\n 2435,\n 62,\n 75,\n 58,\n 72,\n 60,\n 15853,\n 4512,\n 62,\n 2435,\n 62,\n 75,\n 58,\n 72,\n 532,\n 352,\n 60,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 1312,\n 1875,\n 657,\n 290,\n 357,\n 72,\n 1343,\n 352,\n 8,\n 4064,\n 1802,\n 6624,\n 657,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 649,\n 62,\n 27432,\n 62,\n 2435,\n 62,\n 75,\n 13,\n 33295,\n 7,\n 27432,\n 62,\n 2435,\n 62,\n 75,\n 58,\n 72,\n 12962,\n 198,\n 220,\n 220,\n 220,\n 4512,\n 62,\n 2435,\n 62,\n 75,\n 796,\n 649,\n 62,\n 27432,\n 62,\n 2435,\n 62,\n 75,\n 628,\n 220,\n 220,\n 220,\n 1441,\n 289,\n 83,\n 62,\n 75,\n 11,\n 4512,\n 62,\n 2435,\n 62,\n 75,\n 11,\n 1332,\n 62,\n 2435,\n 62,\n 75,\n 11,\n 410,\n 62,\n 76,\n 62,\n 75,\n 11,\n 264,\n 62,\n 76,\n 62,\n 75,\n 628,\n 198,\n 4299,\n 6306,\n 62,\n 76,\n 69,\n 33529,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 10987,\n 82,\n 10256,\n 329,\n 27328,\n 4484,\n 9115,\n 37811,\n 198,\n 220,\n 220,\n 220,\n 285,\n 69,\n 62,\n 75,\n 796,\n 17635,\n 198,\n 220,\n 220,\n 220,\n 4512,\n 62,\n 2435,\n 62,\n 75,\n 796,\n 17635,\n 198,\n 220,\n 220,\n 220,\n 1332,\n 62,\n 2435,\n 62,\n 75,\n 796,\n 17635,\n 198,\n 220,\n 220,\n 220,\n 410,\n 62,\n 76,\n 62,\n 75,\n 796,\n 17635,\n 198,\n 220,\n 220,\n 220,\n 264,\n 62,\n 76,\n 62,\n 75,\n 796,\n 17635,\n 628,\n 220,\n 220,\n 220,\n 285,\n 69,\n 796,\n 27328,\n 4484,\n 34605,\n 9487,\n 7483,\n 7,\n 77,\n 62,\n 395,\n 320,\n 2024,\n 28,\n 940,\n 8,\n 628,\n 220,\n 220,\n 220,\n 329,\n 1312,\n 287,\n 2837,\n 7,\n 4059,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1395,\n 62,\n 83,\n 796,\n 1395,\n 62,\n 81,\n 58,\n 72,\n 1635,\n 1802,\n 1058,\n 357,\n 72,\n 1343,\n 352,\n 8,\n 1635,\n 1802,\n 60,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 331,\n 62,\n 83,\n 796,\n 331,\n 62,\n 81,\n 58,\n 72,\n 1635,\n 1802,\n 1058,\n 357,\n 72,\n 1343,\n 352,\n 8,\n 1635,\n 1802,\n 60,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 16835,\n 262,\n 2746,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 923,\n 62,\n 2435,\n 796,\n 640,\n 13,\n 525,\n 69,\n 62,\n 24588,\n 3419,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 285,\n 69,\n 13,\n 47172,\n 62,\n 11147,\n 7,\n 55,\n 62,\n 83,\n 11,\n 331,\n 62,\n 83,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 886,\n 62,\n 2435,\n 796,\n 640,\n 13,\n 525,\n 69,\n 62,\n 24588,\n 3419,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 4512,\n 62,\n 2435,\n 62,\n 75,\n 13,\n 33295,\n 7,\n 437,\n 62,\n 2435,\n 532,\n 923,\n 62,\n 2435,\n 8,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 6208,\n 262,\n 2746,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 923,\n 62,\n 2435,\n 796,\n 640,\n 13,\n 525,\n 69,\n 62,\n 24588,\n 3419,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 285,\n 69,\n 62,\n 75,\n 13,\n 33295,\n 7,\n 28764,\n 2867,\n 7,\n 76,\n 69,\n 4008,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 886,\n 62,\n 2435,\n 796,\n 640,\n 13,\n 525,\n 69,\n 62,\n 24588,\n 3419,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1332,\n 62,\n 2435,\n 62,\n 75,\n 13,\n 33295,\n 7,\n 437,\n 62,\n 2435,\n 532,\n 923,\n 62,\n 2435,\n 8,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 6822,\n 4088,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 410,\n 62,\n 76,\n 796,\n 26692,\n 22602,\n 13,\n 32844,\n 62,\n 31673,\n 3419,\n 58,\n 17,\n 60,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 410,\n 62,\n 76,\n 62,\n 75,\n 13,\n 33295,\n 7,\n 85,\n 62,\n 76,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 264,\n 62,\n 76,\n 796,\n 26692,\n 22602,\n 13,\n 2032,\n 499,\n 62,\n 31673,\n 3419,\n 58,\n 18,\n 60,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 264,\n 62,\n 76,\n 62,\n 75,\n 13,\n 33295,\n 7,\n 82,\n 62,\n 76,\n 8,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 17893,\n 265,\n 262,\n 4512,\n 1661,\n 198,\n 220,\n 220,\n 220,\n 329,\n 1312,\n 287,\n 2837,\n 7,\n 16,\n 11,\n 5323,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 4512,\n 62,\n 2435,\n 62,\n 75,\n 58,\n 72,\n 60,\n 15853,\n 4512,\n 62,\n 2435,\n 62,\n 75,\n 58,\n 72,\n 532,\n 352,\n 60,\n 628,\n 220,\n 220,\n 220,\n 1441,\n 285,\n 69,\n 62,\n 75,\n 11,\n 4512,\n 62,\n 2435,\n 62,\n 75,\n 11,\n 1332,\n 62,\n 2435,\n 62,\n 75,\n 11,\n 410,\n 62,\n 76,\n 62,\n 75,\n 11,\n 264,\n 62,\n 76,\n 62,\n 75,\n 628,\n 198,\n 4299,\n 6306,\n 62,\n 21282,\n 83,\n 33529,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 10987,\n 82,\n 10256,\n 329,\n 13860,\n 26423,\n 12200,\n 37811,\n 198,\n 220,\n 220,\n 220,\n 264,\n 28664,\n 62,\n 75,\n 796,\n 17635,\n 198,\n 220,\n 220,\n 220,\n 4512,\n 62,\n 2435,\n 62,\n 75,\n 796,\n 17635,\n 198,\n 220,\n 220,\n 220,\n 1332,\n 62,\n 2435,\n 62,\n 75,\n 796,\n 17635,\n 198,\n 220,\n 220,\n 220,\n 410,\n 62,\n 76,\n 62,\n 75,\n 796,\n 17635,\n 198,\n 220,\n 220,\n 220,\n 264,\n 62,\n 76,\n 62,\n 75,\n 796,\n 17635,\n 628,\n 220,\n 220,\n 220,\n 264,\n 28664,\n 796,\n 26423,\n 27660,\n 9487,\n 7483,\n 3419,\n 628,\n 220,\n 220,\n 220,\n 329,\n 1312,\n 287,\n 2837,\n 7,\n 4059,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1395,\n 62,\n 83,\n 796,\n 1395,\n 62,\n 81,\n 58,\n 72,\n 1635,\n 1802,\n 1058,\n 357,\n 72,\n 1343,\n 352,\n 8,\n 1635,\n 1802,\n 60,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 331,\n 62,\n 83,\n 796,\n 331,\n 62,\n 81,\n 58,\n 72,\n 1635,\n 1802,\n 1058,\n 357,\n 72,\n 1343,\n 352,\n 8,\n 1635,\n 1802,\n 60,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 16835,\n 262,\n 2746,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 923,\n 62,\n 2435,\n 796,\n 640,\n 13,\n 525,\n 69,\n 62,\n 24588,\n 3419,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 264,\n 28664,\n 13,\n 47172,\n 62,\n 11147,\n 7,\n 55,\n 62,\n 83,\n 11,\n 331,\n 62,\n 83,\n 11,\n 6097,\n 41888,\n 15,\n 11,\n 352,\n 11,\n 362,\n 11,\n 513,\n 11,\n 604,\n 11,\n 642,\n 11,\n 718,\n 11,\n 767,\n 11,\n 807,\n 11,\n 860,\n 12962,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 886,\n 62,\n 2435,\n 796,\n 640,\n 13,\n 525,\n 69,\n 62,\n 24588,\n 3419,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 4512,\n 62,\n 2435,\n 62,\n 75,\n 13,\n 33295,\n 7,\n 437,\n 62,\n 2435,\n 532,\n 923,\n 62,\n 2435,\n 8,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 6208,\n 262,\n 2746,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 923,\n 62,\n 2435,\n 796,\n 640,\n 13,\n 525,\n 69,\n 62,\n 24588,\n 3419,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 264,\n 28664,\n 62,\n 75,\n 13,\n 33295,\n 7,\n 28764,\n 2867,\n 7,\n 21282,\n 83,\n 4008,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 886,\n 62,\n 2435,\n 796,\n 640,\n 13,\n 525,\n 69,\n 62,\n 24588,\n 3419,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1332,\n 62,\n 2435,\n 62,\n 75,\n 13,\n 33295,\n 7,\n 437,\n 62,\n 2435,\n 532,\n 923,\n 62,\n 2435,\n 8,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 6822,\n 4088,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 410,\n 62,\n 76,\n 796,\n 26692,\n 22602,\n 13,\n 32844,\n 62,\n 31673,\n 3419,\n 58,\n 17,\n 60,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 410,\n 62,\n 76,\n 62,\n 75,\n 13,\n 33295,\n 7,\n 85,\n 62,\n 76,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 264,\n 62,\n 76,\n 796,\n 26692,\n 22602,\n 13,\n 2032,\n 499,\n 62,\n 31673,\n 3419,\n 58,\n 18,\n 60,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 264,\n 62,\n 76,\n 62,\n 75,\n 13,\n 33295,\n 7,\n 82,\n 62,\n 76,\n 8,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 17893,\n 265,\n 262,\n 4512,\n 1661,\n 198,\n 220,\n 220,\n 220,\n 329,\n 1312,\n 287,\n 2837,\n 7,\n 16,\n 11,\n 5323,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 4512,\n 62,\n 2435,\n 62,\n 75,\n 58,\n 72,\n 60,\n 15853,\n 4512,\n 62,\n 2435,\n 62,\n 75,\n 58,\n 72,\n 532,\n 352,\n 60,\n 628,\n 220,\n 220,\n 220,\n 1441,\n 264,\n 28664,\n 62,\n 75,\n 11,\n 4512,\n 62,\n 2435,\n 62,\n 75,\n 11,\n 1332,\n 62,\n 2435,\n 62,\n 75,\n 11,\n 410,\n 62,\n 76,\n 62,\n 75,\n 11,\n 264,\n 62,\n 76,\n 62,\n 75,\n 628,\n 198,\n 4299,\n 6306,\n 62,\n 82,\n 7568,\n 33529,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 10987,\n 82,\n 10256,\n 329,\n 13860,\n 26423,\n 9115,\n 37811,\n 198,\n 220,\n 220,\n 220,\n 264,\n 7568,\n 62,\n 75,\n 796,\n 17635,\n 198,\n 220,\n 220,\n 220,\n 4512,\n 62,\n 2435,\n 62,\n 75,\n 796,\n 17635,\n 198,\n 220,\n 220,\n 220,\n 1332,\n 62,\n 2435,\n 62,\n 75,\n 796,\n 17635,\n 198,\n 220,\n 220,\n 220,\n 410,\n 62,\n 76,\n 62,\n 75,\n 796,\n 17635,\n 198,\n 220,\n 220,\n 220,\n 264,\n 62,\n 76,\n 62,\n 75,\n 796,\n 17635,\n 628,\n 220,\n 220,\n 220,\n 264,\n 7568,\n 796,\n 13860,\n 10707,\n 1166,\n 34605,\n 3419,\n 628,\n 220,\n 220,\n 220,\n 329,\n 1312,\n 287,\n 2837,\n 7,\n 4059,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1395,\n 62,\n 83,\n 796,\n 1395,\n 62,\n 81,\n 58,\n 72,\n 1635,\n 1802,\n 1058,\n 357,\n 72,\n 1343,\n 352,\n 8,\n 1635,\n 1802,\n 60,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 331,\n 62,\n 83,\n 796,\n 331,\n 62,\n 81,\n 58,\n 72,\n 1635,\n 1802,\n 1058,\n 357,\n 72,\n 1343,\n 352,\n 8,\n 1635,\n 1802,\n 60,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 16835,\n 262,\n 2746,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 923,\n 62,\n 2435,\n 796,\n 640,\n 13,\n 525,\n 69,\n 62,\n 24588,\n 3419,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 264,\n 7568,\n 13,\n 47172,\n 62,\n 11147,\n 7,\n 55,\n 62,\n 83,\n 11,\n 331,\n 62,\n 83,\n 11,\n 6097,\n 41888,\n 15,\n 11,\n 352,\n 11,\n 362,\n 11,\n 513,\n 11,\n 604,\n 11,\n 642,\n 11,\n 718,\n 11,\n 767,\n 11,\n 807,\n 11,\n 860,\n 12962,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 886,\n 62,\n 2435,\n 796,\n 640,\n 13,\n 525,\n 69,\n 62,\n 24588,\n 3419,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 4512,\n 62,\n 2435,\n 62,\n 75,\n 13,\n 33295,\n 7,\n 437,\n 62,\n 2435,\n 532,\n 923,\n 62,\n 2435,\n 8,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 6208,\n 262,\n 2746,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 923,\n 62,\n 2435,\n 796,\n 640,\n 13,\n 525,\n 69,\n 62,\n 24588,\n 3419,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 264,\n 7568,\n 62,\n 75,\n 13,\n 33295,\n 7,\n 28764,\n 2867,\n 7,\n 82,\n 7568,\n 4008,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 886,\n 62,\n 2435,\n 796,\n 640,\n 13,\n 525,\n 69,\n 62,\n 24588,\n 3419,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1332,\n 62,\n 2435,\n 62,\n 75,\n 13,\n 33295,\n 7,\n 437,\n 62,\n 2435,\n 532,\n 923,\n 62,\n 2435,\n 8,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 6822,\n 4088,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 410,\n 62,\n 76,\n 796,\n 26692,\n 22602,\n 13,\n 32844,\n 62,\n 31673,\n 3419,\n 58,\n 17,\n 60,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 410,\n 62,\n 76,\n 62,\n 75,\n 13,\n 33295,\n 7,\n 85,\n 62,\n 76,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 264,\n 62,\n 76,\n 796,\n 26692,\n 22602,\n 13,\n 2032,\n 499,\n 62,\n 31673,\n 3419,\n 58,\n 18,\n 60,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 264,\n 62,\n 76,\n 62,\n 75,\n 13,\n 33295,\n 7,\n 82,\n 62,\n 76,\n 8,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 17893,\n 265,\n 262,\n 4512,\n 1661,\n 198,\n 220,\n 220,\n 220,\n 329,\n 1312,\n 287,\n 2837,\n 7,\n 16,\n 11,\n 5323,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 4512,\n 62,\n 2435,\n 62,\n 75,\n 58,\n 72,\n 60,\n 15853,\n 4512,\n 62,\n 2435,\n 62,\n 75,\n 58,\n 72,\n 532,\n 352,\n 60,\n 628,\n 220,\n 220,\n 220,\n 1441,\n 264,\n 7568,\n 62,\n 75,\n 11,\n 4512,\n 62,\n 2435,\n 62,\n 75,\n 11,\n 1332,\n 62,\n 2435,\n 62,\n 75,\n 11,\n 410,\n 62,\n 76,\n 62,\n 75,\n 11,\n 264,\n 62,\n 76,\n 62,\n 75,\n 628,\n 198,\n 2,\n 43426,\n 327,\n 5064,\n 1503,\n 1366,\n 198,\n 2,\n 14435,\n 1096,\n 198,\n 9888,\n 796,\n 45941,\n 13,\n 32604,\n 7,\n 37659,\n 13,\n 283,\n 858,\n 7,\n 15,\n 11,\n 17759,\n 4008,\n 198,\n 11265,\n 1096,\n 796,\n 37456,\n 2124,\n 25,\n 357,\n 87,\n 532,\n 5046,\n 8,\n 1220,\n 5046,\n 198,\n 198,\n 2,\n 16835,\n 1366,\n 198,\n 66,\n 361,\n 283,\n 62,\n 2213,\n 1299,\n 316,\n 796,\n 40522,\n 13,\n 34,\n 5064,\n 1503,\n 940,\n 7,\n 15763,\n 2625,\n 40720,\n 1600,\n 4512,\n 28,\n 17821,\n 11,\n 4321,\n 28,\n 17821,\n 11,\n 6121,\n 28,\n 14202,\n 8,\n 198,\n 55,\n 62,\n 27432,\n 796,\n 3487,\n 1096,\n 7,\n 66,\n 361,\n 283,\n 62,\n 2213,\n 1299,\n 316,\n 13,\n 7890,\n 8,\n 198,\n 88,\n 62,\n 27432,\n 796,\n 45941,\n 13,\n 18747,\n 7,\n 66,\n 361,\n 283,\n 62,\n 2213,\n 1299,\n 316,\n 13,\n 83,\n 853,\n 1039,\n 8,\n 198,\n 198,\n 2,\n 6208,\n 1366,\n 198,\n 66,\n 361,\n 283,\n 62,\n 9288,\n 2617,\n 796,\n 40522,\n 13,\n 34,\n 5064,\n 1503,\n 940,\n 7,\n 15763,\n 2625,\n 40720,\n 1600,\n 4512,\n 28,\n 25101,\n 11,\n 4321,\n 28,\n 17821,\n 11,\n 6121,\n 28,\n 14202,\n 8,\n 198,\n 55,\n 62,\n 9288,\n 796,\n 3487,\n 1096,\n 7,\n 66,\n 361,\n 283,\n 62,\n 9288,\n 2617,\n 13,\n 7890,\n 8,\n 198,\n 88,\n 62,\n 9288,\n 796,\n 45941,\n 13,\n 18747,\n 7,\n 66,\n 361,\n 283,\n 62,\n 9288,\n 2617,\n 13,\n 83,\n 853,\n 1039,\n 8,\n 198,\n 198,\n 55,\n 62,\n 27432,\n 796,\n 1395,\n 62,\n 27432,\n 13,\n 3447,\n 1758,\n 32590,\n 16,\n 11,\n 3933,\n 1635,\n 3933,\n 1635,\n 513,\n 8,\n 198,\n 55,\n 62,\n 9288,\n 796,\n 1395,\n 62,\n 9288,\n 13,\n 3447,\n 1758,\n 32590,\n 16,\n 11,\n 3933,\n 1635,\n 3933,\n 1635,\n 513,\n 8,\n 198,\n 198,\n 2,\n 2547,\n 325,\n 1398,\n 7483,\n 7747,\n 198,\n 48610,\n 796,\n 1822,\n 29572,\n 13,\n 28100,\n 1713,\n 46677,\n 3419,\n 198,\n 48610,\n 13,\n 2860,\n 62,\n 49140,\n 7203,\n 12,\n 439,\n 1600,\n 1037,\n 2625,\n 439,\n 1398,\n 13350,\n 1600,\n 2672,\n 28,\n 25101,\n 11,\n 2223,\n 2625,\n 8095,\n 62,\n 7942,\n 4943,\n 198,\n 48610,\n 13,\n 2860,\n 62,\n 49140,\n 7203,\n 12,\n 28664,\n 1600,\n 1037,\n 2625,\n 12501,\n 1166,\n 17039,\n 1600,\n 2672,\n 28,\n 25101,\n 11,\n 2223,\n 2625,\n 8095,\n 62,\n 7942,\n 4943,\n 198,\n 48610,\n 13,\n 2860,\n 62,\n 49140,\n 7203,\n 12,\n 41871,\n 1600,\n 1037,\n 2625,\n 25120,\n 17039,\n 1600,\n 2672,\n 28,\n 25101,\n 11,\n 2223,\n 2625,\n 8095,\n 62,\n 7942,\n 4943,\n 198,\n 48610,\n 13,\n 2860,\n 62,\n 49140,\n 7203,\n 12,\n 4352,\n 1600,\n 1037,\n 2625,\n 38979,\n 487,\n 12083,\n 7150,\n 1600,\n 2672,\n 28,\n 25101,\n 11,\n 2223,\n 2625,\n 8095,\n 62,\n 7942,\n 4943,\n 198,\n 48610,\n 13,\n 2860,\n 62,\n 49140,\n 7203,\n 12,\n 76,\n 69,\n 1600,\n 1037,\n 2625,\n 6327,\n 4484,\n 17039,\n 1600,\n 2672,\n 28,\n 25101,\n 11,\n 2223,\n 2625,\n 8095,\n 62,\n 7942,\n 4943,\n 198,\n 48610,\n 13,\n 2860,\n 62,\n 49140,\n 7,\n 198,\n 220,\n 220,\n 220,\n 27444,\n 21282,\n 83,\n 1600,\n 1037,\n 2625,\n 5532,\n 2551,\n 7150,\n 1600,\n 2672,\n 28,\n 25101,\n 11,\n 2223,\n 2625,\n 8095,\n 62,\n 7942,\n 1,\n 198,\n 8,\n 198,\n 48610,\n 13,\n 2860,\n 62,\n 49140,\n 7,\n 198,\n 220,\n 220,\n 220,\n 27444,\n 82,\n 7568,\n 1600,\n 1037,\n 2625,\n 5532,\n 2551,\n 17039,\n 1600,\n 2672,\n 28,\n 25101,\n 11,\n 2223,\n 2625,\n 8095,\n 62,\n 7942,\n 1,\n 198,\n 8,\n 198,\n 22046,\n 796,\n 30751,\n 13,\n 29572,\n 62,\n 22046,\n 3419,\n 198,\n 198,\n 2,\n 35006,\n 10256,\n 198,\n 361,\n 26498,\n 13,\n 439,\n 393,\n 26498,\n 13,\n 28664,\n 25,\n 198,\n 220,\n 220,\n 220,\n 288,\n 83,\n 62,\n 4134,\n 62,\n 75,\n 796,\n 17635,\n 198,\n 220,\n 220,\n 220,\n 288,\n 83,\n 62,\n 27432,\n 62,\n 83,\n 62,\n 75,\n 796,\n 17635,\n 198,\n 220,\n 220,\n 220,\n 288,\n 83,\n 62,\n 9288,\n 62,\n 83,\n 62,\n 75,\n 796,\n 17635,\n 198,\n 220,\n 220,\n 220,\n 288,\n 83,\n 62,\n 85,\n 62,\n 76,\n 62,\n 75,\n 796,\n 17635,\n 198,\n 220,\n 220,\n 220,\n 288,\n 83,\n 62,\n 82,\n 62,\n 76,\n 62,\n 75,\n 796,\n 17635,\n 198,\n 220,\n 220,\n 220,\n 329,\n 1312,\n 287,\n 2837,\n 7,\n 940,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 279,\n 796,\n 9943,\n 7094,\n 7,\n 55,\n 62,\n 27432,\n 13,\n 43358,\n 58,\n 15,\n 12962,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1395,\n 62,\n 81,\n 796,\n 1395,\n 62,\n 27432,\n 58,\n 79,\n 60,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 331,\n 62,\n 81,\n 796,\n 331,\n 62,\n 27432,\n 58,\n 79,\n 60,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 288,\n 83,\n 62,\n 4134,\n 11,\n 288,\n 83,\n 62,\n 27432,\n 62,\n 83,\n 11,\n 288,\n 83,\n 62,\n 9288,\n 62,\n 83,\n 11,\n 288,\n 83,\n 62,\n 85,\n 62,\n 76,\n 11,\n 288,\n 83,\n 62,\n 82,\n 62,\n 76,\n 796,\n 6306,\n 62,\n 28664,\n 3419,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 288,\n 83,\n 62,\n 4134,\n 62,\n 75,\n 13,\n 33295,\n 7,\n 28664,\n 62,\n 4134,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 288,\n 83,\n 62,\n 27432,\n 62,\n 83,\n 62,\n 75,\n 13,\n 33295,\n 7,\n 28664,\n 62,\n 27432,\n 62,\n 83,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 288,\n 83,\n 62,\n 9288,\n 62,\n 83,\n 62,\n 75,\n 13,\n 33295,\n 7,\n 28664,\n 62,\n 9288,\n 62,\n 83,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 288,\n 83,\n 62,\n 85,\n 62,\n 76,\n 62,\n 75,\n 13,\n 33295,\n 7,\n 28664,\n 62,\n 85,\n 62,\n 76,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 288,\n 83,\n 62,\n 82,\n 62,\n 76,\n 62,\n 75,\n 13,\n 33295,\n 7,\n 28664,\n 62,\n 82,\n 62,\n 76,\n 8,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3551,\n 62,\n 20274,\n 7203,\n 40720,\n 43420,\n 14,\n 28664,\n 14,\n 66,\n 361,\n 283,\n 940,\n 62,\n 4134,\n 13,\n 14116,\n 1600,\n 288,\n 83,\n 62,\n 4134,\n 62,\n 75,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3551,\n 62,\n 20274,\n 7203,\n 40720,\n 43420,\n 14,\n 28664,\n 14,\n 66,\n 361,\n 283,\n 940,\n 62,\n 27432,\n 62,\n 83,\n 13,\n 14116,\n 1600,\n 288,\n 83,\n 62,\n 27432,\n 62,\n 83,\n 62,\n 75,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3551,\n 62,\n 20274,\n 7203,\n 40720,\n 43420,\n 14,\n 28664,\n 14,\n 66,\n 361,\n 283,\n 940,\n 62,\n 9288,\n 62,\n 83,\n 13,\n 14116,\n 1600,\n 288,\n 83,\n 62,\n 9288,\n 62,\n 83,\n 62,\n 75,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3551,\n 62,\n 20274,\n 7203,\n 40720,\n 43420,\n 14,\n 28664,\n 14,\n 66,\n 361,\n 283,\n 940,\n 62,\n 85,\n 62,\n 76,\n 13,\n 14116,\n 1600,\n 288,\n 83,\n 62,\n 85,\n 62,\n 76,\n 62,\n 75,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3551,\n 62,\n 20274,\n 7203,\n 40720,\n 43420,\n 14,\n 28664,\n 14,\n 66,\n 361,\n 283,\n 940,\n 62,\n 82,\n 62,\n 76,\n 13,\n 14116,\n 1600,\n 288,\n 83,\n 62,\n 82,\n 62,\n 76,\n 62,\n 75,\n 8,\n 198,\n 198,\n 361,\n 26498,\n 13,\n 439,\n 393,\n 26498,\n 13,\n 41871,\n 25,\n 198,\n 220,\n 220,\n 220,\n 374,\n 69,\n 62,\n 4134,\n 62,\n 75,\n 796,\n 17635,\n 198,\n 220,\n 220,\n 220,\n 374,\n 69,\n 62,\n 27432,\n 62,\n 83,\n 62,\n 75,\n 796,\n 17635,\n 198,\n 220,\n 220,\n 220,\n 374,\n 69,\n 62,\n 9288,\n 62,\n 83,\n 62,\n 75,\n 796,\n 17635,\n 198,\n 220,\n 220,\n 220,\n 374,\n 69,\n 62,\n 85,\n 62,\n 76,\n 62,\n 75,\n 796,\n 17635,\n 198,\n 220,\n 220,\n 220,\n 374,\n 69,\n 62,\n 82,\n 62,\n 76,\n 62,\n 75,\n 796,\n 17635,\n 198,\n 220,\n 220,\n 220,\n 329,\n 1312,\n 287,\n 2837,\n 7,\n 940,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 279,\n 796,\n 9943,\n 7094,\n 7,\n 55,\n 62,\n 27432,\n 13,\n 43358,\n 58,\n 15,\n 12962,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1395,\n 62,\n 81,\n 796,\n 1395,\n 62,\n 27432,\n 58,\n 79,\n 60,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 331,\n 62,\n 81,\n 796,\n 331,\n 62,\n 27432,\n 58,\n 79,\n 60,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 374,\n 69,\n 62,\n 4134,\n 11,\n 374,\n 69,\n 62,\n 27432,\n 62,\n 83,\n 11,\n 374,\n 69,\n 62,\n 9288,\n 62,\n 83,\n 11,\n 374,\n 69,\n 62,\n 85,\n 62,\n 76,\n 11,\n 374,\n 69,\n 62,\n 82,\n 62,\n 76,\n 796,\n 6306,\n 62,\n 41871,\n 3419,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 374,\n 69,\n 62,\n 4134,\n 62,\n 75,\n 13,\n 33295,\n 7,\n 41871,\n 62,\n 4134,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 374,\n 69,\n 62,\n 27432,\n 62,\n 83,\n 62,\n 75,\n 13,\n 33295,\n 7,\n 41871,\n 62,\n 27432,\n 62,\n 83,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 374,\n 69,\n 62,\n 9288,\n 62,\n 83,\n 62,\n 75,\n 13,\n 33295,\n 7,\n 41871,\n 62,\n 9288,\n 62,\n 83,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 374,\n 69,\n 62,\n 85,\n 62,\n 76,\n 62,\n 75,\n 13,\n 33295,\n 7,\n 41871,\n 62,\n 85,\n 62,\n 76,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 374,\n 69,\n 62,\n 82,\n 62,\n 76,\n 62,\n 75,\n 13,\n 33295,\n 7,\n 41871,\n 62,\n 82,\n 62,\n 76,\n 8,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3551,\n 62,\n 20274,\n 7203,\n 40720,\n 43420,\n 14,\n 41871,\n 14,\n 66,\n 361,\n 283,\n 940,\n 62,\n 4134,\n 13,\n 14116,\n 1600,\n 374,\n 69,\n 62,\n 4134,\n 62,\n 75,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3551,\n 62,\n 20274,\n 7203,\n 40720,\n 43420,\n 14,\n 41871,\n 14,\n 66,\n 361,\n 283,\n 940,\n 62,\n 27432,\n 62,\n 83,\n 13,\n 14116,\n 1600,\n 374,\n 69,\n 62,\n 27432,\n 62,\n 83,\n 62,\n 75,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3551,\n 62,\n 20274,\n 7203,\n 40720,\n 43420,\n 14,\n 41871,\n 14,\n 66,\n 361,\n 283,\n 940,\n 62,\n 9288,\n 62,\n 83,\n 13,\n 14116,\n 1600,\n 374,\n 69,\n 62,\n 9288,\n 62,\n 83,\n 62,\n 75,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3551,\n 62,\n 20274,\n 7203,\n 40720,\n 43420,\n 14,\n 41871,\n 14,\n 66,\n 361,\n 283,\n 940,\n 62,\n 85,\n 62,\n 76,\n 13,\n 14116,\n 1600,\n 374,\n 69,\n 62,\n 85,\n 62,\n 76,\n 62,\n 75,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3551,\n 62,\n 20274,\n 7203,\n 40720,\n 43420,\n 14,\n 41871,\n 14,\n 66,\n 361,\n 283,\n 940,\n 62,\n 82,\n 62,\n 76,\n 13,\n 14116,\n 1600,\n 374,\n 69,\n 62,\n 82,\n 62,\n 76,\n 62,\n 75,\n 8,\n 198,\n 198,\n 361,\n 26498,\n 13,\n 439,\n 393,\n 26498,\n 13,\n 4352,\n 25,\n 198,\n 220,\n 220,\n 220,\n 289,\n 83,\n 62,\n 4134,\n 62,\n 75,\n 796,\n 17635,\n 198,\n 220,\n 220,\n 220,\n 289,\n 83,\n 62,\n 27432,\n 62,\n 83,\n 62,\n 75,\n 796,\n 17635,\n 198,\n 220,\n 220,\n 220,\n 289,\n 83,\n 62,\n 9288,\n 62,\n 83,\n 62,\n 75,\n 796,\n 17635,\n 198,\n 220,\n 220,\n 220,\n 289,\n 83,\n 62,\n 85,\n 62,\n 76,\n 62,\n 75,\n 796,\n 17635,\n 198,\n 220,\n 220,\n 220,\n 289,\n 83,\n 62,\n 82,\n 62,\n 76,\n 62,\n 75,\n 796,\n 17635,\n 198,\n 220,\n 220,\n 220,\n 329,\n 1312,\n 287,\n 2837,\n 7,\n 940,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 279,\n 796,\n 9943,\n 7094,\n 7,\n 55,\n 62,\n 27432,\n 13,\n 43358,\n 58,\n 15,\n 12962,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1395,\n 62,\n 81,\n 796,\n 1395,\n 62,\n 27432,\n 58,\n 79,\n 60,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 331,\n 62,\n 81,\n 796,\n 331,\n 62,\n 27432,\n 58,\n 79,\n 60,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 289,\n 83,\n 62,\n 4134,\n 11,\n 289,\n 83,\n 62,\n 27432,\n 62,\n 83,\n 11,\n 289,\n 83,\n 62,\n 9288,\n 62,\n 83,\n 11,\n 289,\n 83,\n 62,\n 85,\n 62,\n 76,\n 11,\n 289,\n 83,\n 62,\n 82,\n 62,\n 76,\n 796,\n 6306,\n 62,\n 4352,\n 3419,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 289,\n 83,\n 62,\n 4134,\n 62,\n 75,\n 13,\n 33295,\n 7,\n 4352,\n 62,\n 4134,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 289,\n 83,\n 62,\n 27432,\n 62,\n 83,\n 62,\n 75,\n 13,\n 33295,\n 7,\n 4352,\n 62,\n 27432,\n 62,\n 83,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 289,\n 83,\n 62,\n 9288,\n 62,\n 83,\n 62,\n 75,\n 13,\n 33295,\n 7,\n 4352,\n 62,\n 9288,\n 62,\n 83,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 289,\n 83,\n 62,\n 85,\n 62,\n 76,\n 62,\n 75,\n 13,\n 33295,\n 7,\n 4352,\n 62,\n 85,\n 62,\n 76,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 289,\n 83,\n 62,\n 82,\n 62,\n 76,\n 62,\n 75,\n 13,\n 33295,\n 7,\n 4352,\n 62,\n 82,\n 62,\n 76,\n 8,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3551,\n 62,\n 20274,\n 7203,\n 40720,\n 43420,\n 14,\n 4352,\n 14,\n 66,\n 361,\n 283,\n 940,\n 62,\n 4134,\n 13,\n 14116,\n 1600,\n 289,\n 83,\n 62,\n 4134,\n 62,\n 75,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3551,\n 62,\n 20274,\n 7203,\n 40720,\n 43420,\n 14,\n 4352,\n 14,\n 66,\n 361,\n 283,\n 940,\n 62,\n 27432,\n 62,\n 83,\n 13,\n 14116,\n 1600,\n 289,\n 83,\n 62,\n 27432,\n 62,\n 83,\n 62,\n 75,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3551,\n 62,\n 20274,\n 7203,\n 40720,\n 43420,\n 14,\n 4352,\n 14,\n 66,\n 361,\n 283,\n 940,\n 62,\n 9288,\n 62,\n 83,\n 13,\n 14116,\n 1600,\n 289,\n 83,\n 62,\n 9288,\n 62,\n 83,\n 62,\n 75,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3551,\n 62,\n 20274,\n 7203,\n 40720,\n 43420,\n 14,\n 4352,\n 14,\n 66,\n 361,\n 283,\n 940,\n 62,\n 85,\n 62,\n 76,\n 13,\n 14116,\n 1600,\n 289,\n 83,\n 62,\n 85,\n 62,\n 76,\n 62,\n 75,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3551,\n 62,\n 20274,\n 7203,\n 40720,\n 43420,\n 14,\n 4352,\n 14,\n 66,\n 361,\n 283,\n 940,\n 62,\n 82,\n 62,\n 76,\n 13,\n 14116,\n 1600,\n 289,\n 83,\n 62,\n 82,\n 62,\n 76,\n 62,\n 75,\n 8,\n 198,\n 198,\n 361,\n 26498,\n 13,\n 439,\n 393,\n 26498,\n 13,\n 76,\n 69,\n 25,\n 198,\n 220,\n 220,\n 220,\n 285,\n 69,\n 62,\n 4134,\n 62,\n 75,\n 796,\n 17635,\n 198,\n 220,\n 220,\n 220,\n 285,\n 69,\n 62,\n 27432,\n 62,\n 83,\n 62,\n 75,\n 796,\n 17635,\n 198,\n 220,\n 220,\n 220,\n 285,\n 69,\n 62,\n 9288,\n 62,\n 83,\n 62,\n 75,\n 796,\n 17635,\n 198,\n 220,\n 220,\n 220,\n 285,\n 69,\n 62,\n 85,\n 62,\n 76,\n 62,\n 75,\n 796,\n 17635,\n 198,\n 220,\n 220,\n 220,\n 285,\n 69,\n 62,\n 82,\n 62,\n 76,\n 62,\n 75,\n 796,\n 17635,\n 198,\n 220,\n 220,\n 220,\n 329,\n 1312,\n 287,\n 2837,\n 7,\n 940,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 279,\n 796,\n 9943,\n 7094,\n 7,\n 55,\n 62,\n 27432,\n 13,\n 43358,\n 58,\n 15,\n 12962,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1395,\n 62,\n 81,\n 796,\n 1395,\n 62,\n 27432,\n 58,\n 79,\n 60,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 331,\n 62,\n 81,\n 796,\n 331,\n 62,\n 27432,\n 58,\n 79,\n 60,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 285,\n 69,\n 62,\n 4134,\n 11,\n 285,\n 69,\n 62,\n 27432,\n 62,\n 83,\n 11,\n 285,\n 69,\n 62,\n 9288,\n 62,\n 83,\n 11,\n 285,\n 69,\n 62,\n 85,\n 62,\n 76,\n 11,\n 285,\n 69,\n 62,\n 82,\n 62,\n 76,\n 796,\n 6306,\n 62,\n 76,\n 69,\n 3419,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 285,\n 69,\n 62,\n 4134,\n 62,\n 75,\n 13,\n 33295,\n 7,\n 76,\n 69,\n 62,\n 4134,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 285,\n 69,\n 62,\n 27432,\n 62,\n 83,\n 62,\n 75,\n 13,\n 33295,\n 7,\n 76,\n 69,\n 62,\n 27432,\n 62,\n 83,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 285,\n 69,\n 62,\n 9288,\n 62,\n 83,\n 62,\n 75,\n 13,\n 33295,\n 7,\n 76,\n 69,\n 62,\n 9288,\n 62,\n 83,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 285,\n 69,\n 62,\n 85,\n 62,\n 76,\n 62,\n 75,\n 13,\n 33295,\n 7,\n 76,\n 69,\n 62,\n 85,\n 62,\n 76,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 285,\n 69,\n 62,\n 82,\n 62,\n 76,\n 62,\n 75,\n 13,\n 33295,\n 7,\n 76,\n 69,\n 62,\n 82,\n 62,\n 76,\n 8,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3551,\n 62,\n 20274,\n 7203,\n 40720,\n 43420,\n 14,\n 76,\n 69,\n 14,\n 66,\n 361,\n 283,\n 940,\n 62,\n 4134,\n 13,\n 14116,\n 1600,\n 285,\n 69,\n 62,\n 4134,\n 62,\n 75,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3551,\n 62,\n 20274,\n 7203,\n 40720,\n 43420,\n 14,\n 76,\n 69,\n 14,\n 66,\n 361,\n 283,\n 940,\n 62,\n 27432,\n 62,\n 83,\n 13,\n 14116,\n 1600,\n 285,\n 69,\n 62,\n 27432,\n 62,\n 83,\n 62,\n 75,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3551,\n 62,\n 20274,\n 7203,\n 40720,\n 43420,\n 14,\n 76,\n 69,\n 14,\n 66,\n 361,\n 283,\n 940,\n 62,\n 9288,\n 62,\n 83,\n 13,\n 14116,\n 1600,\n 285,\n 69,\n 62,\n 9288,\n 62,\n 83,\n 62,\n 75,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3551,\n 62,\n 20274,\n 7203,\n 40720,\n 43420,\n 14,\n 76,\n 69,\n 14,\n 66,\n 361,\n 283,\n 940,\n 62,\n 85,\n 62,\n 76,\n 13,\n 14116,\n 1600,\n 285,\n 69,\n 62,\n 85,\n 62,\n 76,\n 62,\n 75,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3551,\n 62,\n 20274,\n 7203,\n 40720,\n 43420,\n 14,\n 76,\n 69,\n 14,\n 66,\n 361,\n 283,\n 940,\n 62,\n 82,\n 62,\n 76,\n 13,\n 14116,\n 1600,\n 285,\n 69,\n 62,\n 82,\n 62,\n 76,\n 62,\n 75,\n 8,\n 198,\n 198,\n 361,\n 26498,\n 13,\n 439,\n 393,\n 26498,\n 13,\n 21282,\n 83,\n 25,\n 198,\n 220,\n 220,\n 220,\n 264,\n 28664,\n 62,\n 4134,\n 62,\n 75,\n 796,\n 17635,\n 198,\n 220,\n 220,\n 220,\n 264,\n 28664,\n 62,\n 27432,\n 62,\n 83,\n 62,\n 75,\n 796,\n 17635,\n 198,\n 220,\n 220,\n 220,\n 264,\n 28664,\n 62,\n 9288,\n 62,\n 83,\n 62,\n 75,\n 796,\n 17635,\n 198,\n 220,\n 220,\n 220,\n 264,\n 28664,\n 62,\n 85,\n 62,\n 76,\n 62,\n 75,\n 796,\n 17635,\n 198,\n 220,\n 220,\n 220,\n 264,\n 28664,\n 62,\n 82,\n 62,\n 76,\n 62,\n 75,\n 796,\n 17635,\n 198,\n 220,\n 220,\n 220,\n 329,\n 1312,\n 287,\n 2837,\n 7,\n 940,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 279,\n 796,\n 9943,\n 7094,\n 7,\n 55,\n 62,\n 27432,\n 13,\n 43358,\n 58,\n 15,\n 12962,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1395,\n 62,\n 81,\n 796,\n 1395,\n 62,\n 27432,\n 58,\n 79,\n 60,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 331,\n 62,\n 81,\n 796,\n 331,\n 62,\n 27432,\n 58,\n 79,\n 60,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 264,\n 28664,\n 62,\n 4134,\n 11,\n 264,\n 28664,\n 62,\n 27432,\n 62,\n 83,\n 11,\n 264,\n 28664,\n 62,\n 9288,\n 62,\n 83,\n 11,\n 264,\n 28664,\n 62,\n 85,\n 62,\n 76,\n 11,\n 264,\n 28664,\n 62,\n 82,\n 62,\n 76,\n 796,\n 6306,\n 62,\n 21282,\n 83,\n 3419,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 264,\n 28664,\n 62,\n 4134,\n 62,\n 75,\n 13,\n 33295,\n 7,\n 21282,\n 83,\n 62,\n 4134,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 264,\n 28664,\n 62,\n 27432,\n 62,\n 83,\n 62,\n 75,\n 13,\n 33295,\n 7,\n 21282,\n 83,\n 62,\n 27432,\n 62,\n 83,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 264,\n 28664,\n 62,\n 9288,\n 62,\n 83,\n 62,\n 75,\n 13,\n 33295,\n 7,\n 21282,\n 83,\n 62,\n 9288,\n 62,\n 83,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 264,\n 28664,\n 62,\n 85,\n 62,\n 76,\n 62,\n 75,\n 13,\n 33295,\n 7,\n 21282,\n 83,\n 62,\n 85,\n 62,\n 76,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 264,\n 28664,\n 62,\n 82,\n 62,\n 76,\n 62,\n 75,\n 13,\n 33295,\n 7,\n 21282,\n 83,\n 62,\n 82,\n 62,\n 76,\n 8,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3551,\n 62,\n 20274,\n 7203,\n 40720,\n 43420,\n 14,\n 21282,\n 83,\n 14,\n 66,\n 361,\n 283,\n 940,\n 62,\n 4134,\n 13,\n 14116,\n 1600,\n 264,\n 28664,\n 62,\n 4134,\n 62,\n 75,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3551,\n 62,\n 20274,\n 7203,\n 40720,\n 43420,\n 14,\n 21282,\n 83,\n 14,\n 66,\n 361,\n 283,\n 940,\n 62,\n 27432,\n 62,\n 83,\n 13,\n 14116,\n 1600,\n 264,\n 28664,\n 62,\n 27432,\n 62,\n 83,\n 62,\n 75,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3551,\n 62,\n 20274,\n 7203,\n 40720,\n 43420,\n 14,\n 21282,\n 83,\n 14,\n 66,\n 361,\n 283,\n 940,\n 62,\n 9288,\n 62,\n 83,\n 13,\n 14116,\n 1600,\n 264,\n 28664,\n 62,\n 9288,\n 62,\n 83,\n 62,\n 75,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3551,\n 62,\n 20274,\n 7203,\n 40720,\n 43420,\n 14,\n 21282,\n 83,\n 14,\n 66,\n 361,\n 283,\n 940,\n 62,\n 85,\n 62,\n 76,\n 13,\n 14116,\n 1600,\n 264,\n 28664,\n 62,\n 85,\n 62,\n 76,\n 62,\n 75,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3551,\n 62,\n 20274,\n 7203,\n 40720,\n 43420,\n 14,\n 21282,\n 83,\n 14,\n 66,\n 361,\n 283,\n 940,\n 62,\n 82,\n 62,\n 76,\n 13,\n 14116,\n 1600,\n 264,\n 28664,\n 62,\n 82,\n 62,\n 76,\n 62,\n 75,\n 8,\n 198,\n 198,\n 361,\n 26498,\n 13,\n 439,\n 393,\n 26498,\n 13,\n 82,\n 7568,\n 25,\n 198,\n 220,\n 220,\n 220,\n 264,\n 7568,\n 62,\n 4134,\n 62,\n 75,\n 796,\n 17635,\n 198,\n 220,\n 220,\n 220,\n 264,\n 7568,\n 62,\n 27432,\n 62,\n 83,\n 62,\n 75,\n 796,\n 17635,\n 198,\n 220,\n 220,\n 220,\n 264,\n 7568,\n 62,\n 9288,\n 62,\n 83,\n 62,\n 75,\n 796,\n 17635,\n 198,\n 220,\n 220,\n 220,\n 264,\n 7568,\n 62,\n 85,\n 62,\n 76,\n 62,\n 75,\n 796,\n 17635,\n 198,\n 220,\n 220,\n 220,\n 264,\n 7568,\n 62,\n 82,\n 62,\n 76,\n 62,\n 75,\n 796,\n 17635,\n 198,\n 220,\n 220,\n 220,\n 329,\n 1312,\n 287,\n 2837,\n 7,\n 940,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 279,\n 796,\n 9943,\n 7094,\n 7,\n 55,\n 62,\n 27432,\n 13,\n 43358,\n 58,\n 15,\n 12962,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1395,\n 62,\n 81,\n 796,\n 1395,\n 62,\n 27432,\n 58,\n 79,\n 60,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 331,\n 62,\n 81,\n 796,\n 331,\n 62,\n 27432,\n 58,\n 79,\n 60,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 264,\n 7568,\n 62,\n 4134,\n 11,\n 264,\n 7568,\n 62,\n 27432,\n 62,\n 83,\n 11,\n 264,\n 7568,\n 62,\n 9288,\n 62,\n 83,\n 11,\n 264,\n 7568,\n 62,\n 85,\n 62,\n 76,\n 11,\n 264,\n 7568,\n 62,\n 82,\n 62,\n 76,\n 796,\n 6306,\n 62,\n 82,\n 7568,\n 3419,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 264,\n 7568,\n 62,\n 4134,\n 62,\n 75,\n 13,\n 33295,\n 7,\n 82,\n 7568,\n 62,\n 4134,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 264,\n 7568,\n 62,\n 27432,\n 62,\n 83,\n 62,\n 75,\n 13,\n 33295,\n 7,\n 82,\n 7568,\n 62,\n 27432,\n 62,\n 83,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 264,\n 7568,\n 62,\n 9288,\n 62,\n 83,\n 62,\n 75,\n 13,\n 33295,\n 7,\n 82,\n 7568,\n 62,\n 9288,\n 62,\n 83,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 264,\n 7568,\n 62,\n 85,\n 62,\n 76,\n 62,\n 75,\n 13,\n 33295,\n 7,\n 82,\n 7568,\n 62,\n 85,\n 62,\n 76,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 264,\n 7568,\n 62,\n 82,\n 62,\n 76,\n 62,\n 75,\n 13,\n 33295,\n 7,\n 82,\n 7568,\n 62,\n 82,\n 62,\n 76,\n 8,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3551,\n 62,\n 20274,\n 7203,\n 40720,\n 43420,\n 14,\n 82,\n 7568,\n 14,\n 66,\n 361,\n 283,\n 940,\n 62,\n 4134,\n 13,\n 14116,\n 1600,\n 264,\n 7568,\n 62,\n 4134,\n 62,\n 75,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3551,\n 62,\n 20274,\n 7203,\n 40720,\n 43420,\n 14,\n 82,\n 7568,\n 14,\n 66,\n 361,\n 283,\n 940,\n 62,\n 27432,\n 62,\n 83,\n 13,\n 14116,\n 1600,\n 264,\n 7568,\n 62,\n 27432,\n 62,\n 83,\n 62,\n 75,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3551,\n 62,\n 20274,\n 7203,\n 40720,\n 43420,\n 14,\n 82,\n 7568,\n 14,\n 66,\n 361,\n 283,\n 940,\n 62,\n 9288,\n 62,\n 83,\n 13,\n 14116,\n 1600,\n 264,\n 7568,\n 62,\n 9288,\n 62,\n 83,\n 62,\n 75,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3551,\n 62,\n 20274,\n 7203,\n 40720,\n 43420,\n 14,\n 82,\n 7568,\n 14,\n 66,\n 361,\n 283,\n 940,\n 62,\n 85,\n 62,\n 76,\n 13,\n 14116,\n 1600,\n 264,\n 7568,\n 62,\n 85,\n 62,\n 76,\n 62,\n 75,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3551,\n 62,\n 20274,\n 7203,\n 40720,\n 43420,\n 14,\n 82,\n 7568,\n 14,\n 66,\n 361,\n 283,\n 940,\n 62,\n 82,\n 62,\n 76,\n 13,\n 14116,\n 1600,\n 264,\n 7568,\n 62,\n 82,\n 62,\n 76,\n 62,\n 75,\n 8,\n 198\n]"},"ratio_char_token":{"kind":"number","value":1.8911488287277318,"string":"1.891149"},"token_count":{"kind":"number","value":7129,"string":"7,129"}}},{"rowIdx":4253,"cells":{"content":{"kind":"string","value":"\"\"\"Text wrapping and filling.\n\"\"\"\n\n# Copyright (C) 1999-2001 Gregory P. Ward.\n# Copyright (C) 2002, 2003 Python Software Foundation.\n# Written by Greg Ward \n\n# Modified by Sophie Kirschner\n# https://github.com/python/cpython/blob/master/Lib/textwrap.py\n# https://github.com/python/cpython/blob/master/LICENSE\n\n__revision__ = \"$Id$\"\n\nimport string, re\n\n# Do the right thing with boolean values for all known Python versions\n# (so this module can be copied to projects that don't depend on Python\n# 2.3, e.g. Optik and Docutils) by uncommenting the block of code below.\n#try:\n# True, False\n#except NameError:\n# (True, False) = (1, 0)\n\n__all__ = ['TextWrapper']\n\n# Hardcode the recognized whitespace characters to the US-ASCII\n# whitespace characters. The main reason for doing this is that in\n# ISO-8859-1, 0xa0 is non-breaking whitespace, so in certain locales\n# that character winds up in string.whitespace. Respecting\n# string.whitespace in those cases would 1) make textwrap treat 0xa0 the\n# same as any other whitespace char, which is clearly wrong (it's a\n# *non-breaking* space), 2) possibly cause problems with Unicode,\n# since 0xa0 is not in range(128).\n_whitespace = '\\t\\n\\x0b\\x0c\\r '\n\nclass TextWrapper:\n \"\"\"\n Object for wrapping/filling text. The public interface consists of\n the wrap() and fill() methods; the other methods are just there for\n subclasses to override in order to tweak the default behaviour.\n If you want to completely replace the main wrapping algorithm,\n you'll probably have to override _wrap_chunks().\n\n Several instance attributes control various aspects of wrapping:\n width (default: 70)\n the maximum width of wrapped lines (unless break_long_words\n is false)\n initial_indent (default: \"\")\n string that will be prepended to the first line of wrapped\n output. Counts towards the line's width.\n subsequent_indent (default: \"\")\n string that will be prepended to all lines save the first\n of wrapped output; also counts towards each line's width.\n expand_tabs (default: true)\n Expand tabs in input text to spaces before further processing.\n Each tab will become 1 .. 8 spaces, depending on its position in\n its line. If false, each tab is treated as a single character.\n replace_whitespace (default: true)\n Replace all whitespace characters in the input text by spaces\n after tab expansion. Note that if expand_tabs is false and\n replace_whitespace is true, every tab will be converted to a\n single space!\n break_long_words (default: true)\n Break words longer than 'width'. If false, those words will not\n be broken, and some lines might be longer than 'width'.\n break_on_hyphens (default: true)\n Allow breaking hyphenated words. If true, wrapping will occur\n preferably on whitespaces and right after hyphens part of\n compound words.\n drop_whitespace (default: true)\n Drop leading and trailing whitespace from lines.\n \"\"\"\n\n # This funky little regex is just the trick for splitting\n # text up into word-wrappable chunks. E.g.\n # \"Hello there -- you goof-ball, use the -b option!\"\n # splits into\n # Hello/ /there/ /--/ /you/ /goof-/ball,/ /use/ /the/ /-b/ /option!\n # (after stripping out empty strings).\n wordsep_re = re.compile(\n r'(\\s+|' # any whitespace\n r'[^\\s\\w]*\\w+[^0-9\\W]-(?=\\w+[^0-9\\W])|' # hyphenated words\n r'(?<=[\\w\\!\\\"\\'\\&\\.\\,\\?])-{2,}(?=\\w))') # em-dash\n\n # This less funky little regex just split on recognized spaces. E.g.\n # \"Hello there -- you goof-ball, use the -b option!\"\n # splits into\n # Hello/ /there/ /--/ /you/ /goof-ball,/ /use/ /the/ /-b/ /option!/\n wordsep_simple_re = re.compile(r'(\\s+)')\n\n\n # -- Private methods -----------------------------------------------\n # (possibly useful for subclasses to override)\n\n def _split(self, text):\n \"\"\"_split(text : string) -> [string]\n\n Split the text to wrap into indivisible chunks. Chunks are\n not quite the same as words; see _wrap_chunks() for full\n details. As an example, the text\n Look, goof-ball -- use the -b option!\n breaks into the following chunks:\n 'Look,', ' ', 'goof-', 'ball', ' ', '--', ' ',\n 'use', ' ', 'the', ' ', '-b', ' ', 'option!'\n if break_on_hyphens is True, or in:\n 'Look,', ' ', 'goof-ball', ' ', '--', ' ',\n 'use', ' ', 'the', ' ', '-b', ' ', option!'\n otherwise.\n \"\"\"\n if self.break_on_hyphens:\n pat = self.wordsep_re\n else:\n pat = self.wordsep_simple_re\n chunks = pat.split(text.decode(\"latin-1\"))\n chunks = list(filter(None, chunks)) # remove empty chunks\n return chunks\n\n def _handle_long_word(self, reversed_chunks, cur_line, cur_len, width):\n \"\"\"_handle_long_word(chunks : [string],\n cur_line : [string],\n cur_len : int, width : int)\n\n Handle a chunk of text (most likely a word, not whitespace) that\n is too long to fit in any line.\n \"\"\"\n # Figure out when indent is larger than the specified width, and make\n # sure at least one character is stripped off on every pass\n if width < 1:\n space_left = 1\n else:\n space_left = width - cur_len\n\n # If we're allowed to break long words, then do so: put as much\n # of the next chunk onto the current line as will fit.\n if self.break_long_words:\n cur_line.append(reversed_chunks[-1][:space_left])\n reversed_chunks[-1] = reversed_chunks[-1][space_left:]\n\n # Otherwise, we have to preserve the long word intact. Only add\n # it to the current line if there's nothing already there --\n # that minimizes how much we violate the width constraint.\n elif not cur_line:\n cur_line.append(reversed_chunks.pop())\n\n # If we're not allowed to break long words, and there's already\n # text on the current line, do nothing. Next time through the\n # main loop of _wrap_chunks(), we'll wind up here again, but\n # cur_len will be zero, so the next line will be entirely\n # devoted to the long word that we can't handle right now.\n \n # Added to consider basic ANSI escape sequences as zero-width\n \n def _wrap_chunks(self, chunks):\n \"\"\"_wrap_chunks(chunks : [string]) -> [string]\n\n Wrap a sequence of text chunks and return a list of lines of\n length 'self.width' or less. (If 'break_long_words' is false,\n some lines may be longer than this.) Chunks correspond roughly\n to words and the whitespace between them: each chunk is\n indivisible (modulo 'break_long_words'), but a line break can\n come between any two chunks. Chunks should not have internal\n whitespace; ie. a chunk is either all whitespace or a \"word\".\n Whitespace chunks will be removed from the beginning and end of\n lines, but apart from that whitespace is preserved.\n \"\"\"\n lines = []\n if self.width <= 0:\n raise ValueError(\"invalid width %r (must be > 0)\" % self.width)\n\n # Arrange in reverse order so items can be efficiently popped\n # from a stack of chucks.\n chunks.reverse()\n\n while chunks:\n\n # Start the list of chunks that will make up the current line.\n # cur_len is just the length of all the chunks in cur_line.\n cur_line = []\n cur_len = 0\n\n # Figure out which static string will prefix this line.\n if lines:\n indent = self.subsequent_indent\n else:\n indent = self.initial_indent\n\n # Maximum width for this line.\n width = self.width - len(indent)\n\n # First chunk on line is whitespace -- drop it, unless this\n # is the very beginning of the text (ie. no lines started yet).\n if self.drop_whitespace and chunks[-1].strip() == '' and lines:\n del chunks[-1]\n\n while chunks:\n l = self._get_chunk_length(chunks[-1])\n\n # Can at least squeeze this chunk onto the current line.\n if cur_len + l <= width:\n cur_line.append(chunks.pop())\n cur_len += l\n\n # Nope, this line is full.\n else:\n break\n\n # The current line is full, and the next chunk is too big to\n # fit on *any* line (not just this one).\n if chunks and self._get_chunk_length(chunks[-1]) > width:\n self._handle_long_word(chunks, cur_line, cur_len, width)\n\n # If the last chunk on this line is all whitespace, drop it.\n if self.drop_whitespace and cur_line and cur_line[-1].strip() == '':\n del cur_line[-1]\n\n # Convert current line back to a string and store it in list\n # of all lines (return value).\n if cur_line:\n lines.append(indent + ''.join(cur_line))\n\n return lines\n\n\n # -- Public interface ----------------------------------------------\n\n def wrap(self, text):\n \"\"\"wrap(text : string) -> [string]\n\n Reformat the single paragraph in 'text' so it fits in lines of\n no more than 'self.width' columns, and return a list of wrapped\n lines. Tabs in 'text' are expanded with string.expandtabs(),\n and all other whitespace characters (including newline) are\n converted to space.\n \"\"\"\n chunks = self._split(text)\n return self._wrap_chunks(chunks)\n\n def fill(self, text):\n \"\"\"fill(text : string) -> string\n\n Reformat the single paragraph in 'text' to fit in lines of no\n more than 'self.width' columns, and return a new string\n containing the entire wrapped paragraph.\n \"\"\"\n return \"\\n\".join(self.wrap(text))\n"},"input_ids":{"kind":"list like","value":[37811,8206,27074,290,12591,13,198,37811,198,198,2,15069,357,34,8,7358,12,14585,20653,350,13,12150,13,198,2,15069,357,34,8,6244,11,5816,11361,10442,5693,13,198,2,22503,416,8547,12150,1279,70,904,31,29412,13,3262,29,198,198,2,40499,416,35331,7385,20601,1008,198,2,3740,1378,12567,13,785,14,29412,14,13155,7535,14,2436,672,14,9866,14,25835,14,5239,37150,13,9078,198,2,3740,1378,12567,13,785,14,29412,14,13155,7535,14,2436,672,14,9866,14,43,2149,24290,198,198,834,260,10178,834,796,17971,7390,3,1,198,198,11748,4731,11,302,198,198,2,2141,262,826,1517,351,25131,3815,329,477,1900,11361,6300,198,2,357,568,428,8265,460,307,18984,284,4493,326,836,470,4745,319,11361,198,2,362,13,18,11,304,13,70,13,13123,1134,290,14432,26791,8,416,8820,434,278,262,2512,286,2438,2174,13,198,2,28311,25,198,2,220,220,220,6407,11,10352,198,2,16341,6530,12331,25,198,2,220,220,220,357,17821,11,10352,8,796,357,16,11,657,8,198,198,834,439,834,796,37250,8206,36918,2848,20520,198,198,2,6912,8189,262,8018,13216,10223,3435,284,262,1294,12,42643,3978,198,2,13216,10223,3435,13,220,383,1388,1738,329,1804,428,318,326,287,198,2,19694,12,3459,3270,12,16,11,657,27865,15,318,1729,12,13395,13216,10223,11,523,287,1728,1957,274,198,2,326,2095,13520,510,287,4731,13,1929,2737,10223,13,220,1874,35570,198,2,4731,13,1929,2737,10223,287,883,2663,561,352,8,787,2420,37150,2190,657,27865,15,262,198,2,976,355,597,584,13216,10223,1149,11,543,318,4084,2642,357,270,338,257,198,2,1635,13159,12,13395,9,2272,828,362,8,5457,2728,2761,351,34371,11,198,2,1201,657,27865,15,318,407,287,2837,7,12762,737,198,62,1929,2737,10223,796,705,59,83,59,77,59,87,15,65,59,87,15,66,59,81,705,198,198,4871,8255,36918,2848,25,198,220,220,220,37227,198,220,220,220,9515,329,27074,14,69,4509,2420,13,220,383,1171,7071,10874,286,198,220,220,220,262,14441,3419,290,6070,3419,5050,26,262,584,5050,389,655,612,329,198,220,220,220,850,37724,284,20957,287,1502,284,25393,262,4277,9172,13,198,220,220,220,1002,345,765,284,3190,6330,262,1388,27074,11862,11,198,220,220,220,345,1183,2192,423,284,20957,4808,37150,62,354,14125,22446,628,220,220,220,12168,4554,12608,1630,2972,7612,286,27074,25,198,220,220,220,220,220,9647,357,12286,25,4317,8,198,220,220,220,220,220,220,220,262,5415,9647,286,12908,3951,357,25252,2270,62,6511,62,10879,198,220,220,220,220,220,220,220,318,3991,8,198,220,220,220,220,220,4238,62,521,298,357,12286,25,366,4943,198,220,220,220,220,220,220,220,4731,326,481,307,3143,1631,284,262,717,1627,286,12908,198,220,220,220,220,220,220,220,5072,13,220,2764,82,3371,262,1627,338,9647,13,198,220,220,220,220,220,8840,62,521,298,357,12286,25,366,4943,198,220,220,220,220,220,220,220,4731,326,481,307,3143,1631,284,477,3951,3613,262,717,198,220,220,220,220,220,220,220,286,12908,5072,26,635,9853,3371,1123,1627,338,9647,13,198,220,220,220,220,220,4292,62,8658,82,357,12286,25,2081,8,198,220,220,220,220,220,220,220,49368,22524,287,5128,2420,284,9029,878,2252,7587,13,198,220,220,220,220,220,220,220,5501,7400,481,1716,352,11485,807,9029,11,6906,319,663,2292,287,198,220,220,220,220,220,220,220,663,1627,13,220,1002,3991,11,1123,7400,318,5716,355,257,2060,2095,13,198,220,220,220,220,220,6330,62,1929,2737,10223,357,12286,25,2081,8,198,220,220,220,220,220,220,220,40177,477,13216,10223,3435,287,262,5128,2420,416,9029,198,220,220,220,220,220,220,220,706,7400,7118,13,220,5740,326,611,4292,62,8658,82,318,3991,290,198,220,220,220,220,220,220,220,6330,62,1929,2737,10223,318,2081,11,790,7400,481,307,11513,284,257,198,220,220,220,220,220,220,220,2060,2272,0,198,220,220,220,220,220,2270,62,6511,62,10879,357,12286,25,2081,8,198,220,220,220,220,220,220,220,12243,2456,2392,621,705,10394,4458,220,1002,3991,11,883,2456,481,407,198,220,220,220,220,220,220,220,307,5445,11,290,617,3951,1244,307,2392,621,705,10394,4458,198,220,220,220,220,220,2270,62,261,62,36362,5135,357,12286,25,2081,8,198,220,220,220,220,220,220,220,22507,7163,5328,831,515,2456,13,1002,2081,11,27074,481,3051,198,220,220,220,220,220,220,220,29203,319,13216,43076,290,826,706,5328,5135,636,286,198,220,220,220,220,220,220,220,13061,2456,13,198,220,220,220,220,220,4268,62,1929,2737,10223,357,12286,25,2081,8,198,220,220,220,220,220,220,220,14258,3756,290,25462,13216,10223,422,3951,13,198,220,220,220,37227,628,220,220,220,1303,770,42958,1310,40364,318,655,262,6908,329,26021,198,220,220,220,1303,2420,510,656,1573,12,29988,381,540,22716,13,220,412,13,70,13,198,220,220,220,1303,220,220,366,15496,612,1377,345,31644,12,1894,11,779,262,532,65,3038,2474,198,220,220,220,1303,30778,656,198,220,220,220,1303,220,220,18435,14,1220,8117,14,1220,438,14,1220,5832,14,1220,2188,1659,12,14,1894,11,14,1220,1904,14,1220,1169,14,1220,12,65,14,1220,18076,0,198,220,220,220,1303,357,8499,37727,503,6565,13042,737,198,220,220,220,1573,325,79,62,260,796,302,13,5589,576,7,198,220,220,220,220,220,220,220,374,6,38016,82,10,91,6,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1303,597,13216,10223,198,220,220,220,220,220,220,220,374,6,58,61,59,82,59,86,60,9,59,86,10,58,61,15,12,24,59,54,60,30420,30,28,59,86,10,58,61,15,12,24,59,54,12962,91,6,220,220,1303,5328,831,515,2456,198,220,220,220,220,220,220,220,374,6,7,30,27,41888,59,86,59,0,7879,43054,59,5,17405,59,11,59,30,12962,12,90,17,11,92,7,30,28,59,86,4008,11537,220,220,1303,795,12,42460,628,220,220,220,1303,770,1342,42958,1310,40364,655,6626,319,8018,9029,13,412,13,70,13,198,220,220,220,1303,220,220,366,15496,612,1377,345,31644,12,1894,11,779,262,532,65,3038,2474,198,220,220,220,1303,30778,656,198,220,220,220,1303,220,220,18435,14,1220,8117,14,1220,438,14,1220,5832,14,1220,2188,1659,12,1894,11,14,1220,1904,14,1220,1169,14,1220,12,65,14,1220,18076,48443,198,220,220,220,1573,325,79,62,36439,62,260,796,302,13,5589,576,7,81,6,38016,82,28988,11537,628,198,220,220,220,1303,1377,15348,5050,20368,24305,198,220,220,220,1303,357,39363,4465,329,850,37724,284,20957,8,628,220,220,220,825,4808,35312,7,944,11,2420,2599,198,220,220,220,220,220,220,220,37227,62,35312,7,5239,1058,4731,8,4613,685,8841,60,628,220,220,220,220,220,220,220,27758,262,2420,284,14441,656,773,452,12843,22716,13,220,609,14125,389,198,220,220,220,220,220,220,220,407,2407,262,976,355,2456,26,766,4808,37150,62,354,14125,3419,329,1336,198,220,220,220,220,220,220,220,3307,13,220,1081,281,1672,11,262,2420,198,220,220,220,220,220,220,220,220,220,6803,11,31644,12,1894,1377,779,262,532,65,3038,0,198,220,220,220,220,220,220,220,9457,656,262,1708,22716,25,198,220,220,220,220,220,220,220,220,220,705,8567,11,3256,705,46083,705,2188,1659,12,3256,705,1894,3256,705,46083,705,438,3256,705,46083,198,220,220,220,220,220,220,220,220,220,705,1904,3256,705,46083,705,1169,3256,705,46083,705,12,65,3256,705,46083,705,18076,13679,198,220,220,220,220,220,220,220,611,2270,62,261,62,36362,5135,318,6407,11,393,287,25,198,220,220,220,220,220,220,220,220,220,705,8567,11,3256,705,46083,705,2188,1659,12,1894,3256,705,46083,705,438,3256,705,46083,198,220,220,220,220,220,220,220,220,220,705,1904,3256,705,46083,705,1169,3256,705,46083,705,12,65,3256,705,46083,3038,13679,198,220,220,220,220,220,220,220,4306,13,198,220,220,220,220,220,220,220,37227,198,220,220,220,220,220,220,220,611,2116,13,9032,62,261,62,36362,5135,25,198,220,220,220,220,220,220,220,220,220,220,220,1458,796,2116,13,4775,325,79,62,260,198,220,220,220,220,220,220,220,2073,25,198,220,220,220,220,220,220,220,220,220,220,220,1458,796,2116,13,4775,325,79,62,36439,62,260,198,220,220,220,220,220,220,220,22716,796,1458,13,35312,7,5239,13,12501,1098,7203,75,10680,12,16,48774,198,220,220,220,220,220,220,220,22716,796,1351,7,24455,7,14202,11,22716,4008,220,1303,4781,6565,22716,198,220,220,220,220,220,220,220,1441,22716,628,220,220,220,825,4808,28144,62,6511,62,4775,7,944,11,17687,62,354,14125,11,1090,62,1370,11,1090,62,11925,11,9647,2599,198,220,220,220,220,220,220,220,37227,62,28144,62,6511,62,4775,7,354,14125,1058,685,8841,4357,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1090,62,1370,1058,685,8841,4357,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1090,62,11925,1058,493,11,9647,1058,493,8,628,220,220,220,220,220,220,220,33141,257,16058,286,2420,357,1712,1884,257,1573,11,407,13216,10223,8,326,198,220,220,220,220,220,220,220,318,1165,890,284,4197,287,597,1627,13,198,220,220,220,220,220,220,220,37227,198,220,220,220,220,220,220,220,1303,11291,503,618,33793,318,4025,621,262,7368,9647,11,290,787,198,220,220,220,220,220,220,220,1303,1654,379,1551,530,2095,318,18818,572,319,790,1208,198,220,220,220,220,220,220,220,611,9647,1279,352,25,198,220,220,220,220,220,220,220,220,220,220,220,2272,62,9464,796,352,198,220,220,220,220,220,220,220,2073,25,198,220,220,220,220,220,220,220,220,220,220,220,2272,62,9464,796,9647,532,1090,62,11925,628,220,220,220,220,220,220,220,1303,1002,356,821,3142,284,2270,890,2456,11,788,466,523,25,1234,355,881,198,220,220,220,220,220,220,220,1303,286,262,1306,16058,4291,262,1459,1627,355,481,4197,13,198,220,220,220,220,220,220,220,611,2116,13,9032,62,6511,62,10879,25,198,220,220,220,220,220,220,220,220,220,220,220,1090,62,1370,13,33295,7,260,690,276,62,354,14125,58,12,16,7131,25,13200,62,9464,12962,198,220,220,220,220,220,220,220,220,220,220,220,17687,62,354,14125,58,12,16,60,796,17687,62,354,14125,58,12,16,7131,13200,62,9464,47715,628,220,220,220,220,220,220,220,1303,15323,11,356,423,284,12201,262,890,1573,16572,13,220,5514,751,198,220,220,220,220,220,220,220,1303,340,284,262,1459,1627,611,612,338,2147,1541,612,1377,198,220,220,220,220,220,220,220,1303,326,10356,4340,703,881,356,16967,262,9647,32315,13,198,220,220,220,220,220,220,220,1288,361,407,1090,62,1370,25,198,220,220,220,220,220,220,220,220,220,220,220,1090,62,1370,13,33295,7,260,690,276,62,354,14125,13,12924,28955,628,220,220,220,220,220,220,220,1303,1002,356,821,407,3142,284,2270,890,2456,11,290,612,338,1541,198,220,220,220,220,220,220,220,1303,2420,319,262,1459,1627,11,466,2147,13,220,7406,640,832,262,198,220,220,220,220,220,220,220,1303,1388,9052,286,4808,37150,62,354,14125,22784,356,1183,2344,510,994,757,11,475,198,220,220,220,220,220,220,220,1303,1090,62,11925,481,307,6632,11,523,262,1306,1627,481,307,5000,198,220,220,220,220,220,220,220,1303,13378,284,262,890,1573,326,356,460,470,5412,826,783,13,198,220,220,220,220,198,220,220,220,1303,10687,284,2074,4096,3537,11584,6654,16311,355,6632,12,10394,198,220,220,220,220,220,220,220,220,198,220,220,220,825,4808,37150,62,354,14125,7,944,11,22716,2599,198,220,220,220,220,220,220,220,37227,62,37150,62,354,14125,7,354,14125,1058,685,8841,12962,4613,685,8841,60,628,220,220,220,220,220,220,220,41028,257,8379,286,2420,22716,290,1441,257,1351,286,3951,286,198,220,220,220,220,220,220,220,4129,705,944,13,10394,6,393,1342,13,220,357,1532,705,9032,62,6511,62,10879,6,318,3991,11,198,220,220,220,220,220,220,220,617,3951,743,307,2392,621,428,2014,220,609,14125,6053,7323,198,220,220,220,220,220,220,220,284,2456,290,262,13216,10223,1022,606,25,1123,16058,318,198,220,220,220,220,220,220,220,773,452,12843,357,4666,43348,705,9032,62,6511,62,10879,33809,475,257,1627,2270,460,198,220,220,220,220,220,220,220,1282,1022,597,734,22716,13,220,609,14125,815,407,423,5387,198,220,220,220,220,220,220,220,13216,10223,26,37941,13,257,16058,318,2035,477,13216,10223,393,257,366,4775,1911,198,220,220,220,220,220,220,220,29290,10223,22716,481,307,4615,422,262,3726,290,886,286,198,220,220,220,220,220,220,220,3951,11,475,5475,422,326,13216,10223,318,17232,13,198,220,220,220,220,220,220,220,37227,198,220,220,220,220,220,220,220,3951,796,17635,198,220,220,220,220,220,220,220,611,2116,13,10394,19841,657,25,198,220,220,220,220,220,220,220,220,220,220,220,5298,11052,12331,7203,259,12102,9647,4064,81,357,27238,307,1875,657,16725,4064,2116,13,10394,8,628,220,220,220,220,220,220,220,1303,943,9521,287,9575,1502,523,3709,460,307,18306,22928,198,220,220,220,220,220,220,220,1303,422,257,8931,286,442,6238,13,198,220,220,220,220,220,220,220,22716,13,50188,3419,628,220,220,220,220,220,220,220,981,22716,25,628,220,220,220,220,220,220,220,220,220,220,220,1303,7253,262,1351,286,22716,326,481,787,510,262,1459,1627,13,198,220,220,220,220,220,220,220,220,220,220,220,1303,1090,62,11925,318,655,262,4129,286,477,262,22716,287,1090,62,1370,13,198,220,220,220,220,220,220,220,220,220,220,220,1090,62,1370,796,17635,198,220,220,220,220,220,220,220,220,220,220,220,1090,62,11925,796,657,628,220,220,220,220,220,220,220,220,220,220,220,1303,11291,503,543,9037,4731,481,21231,428,1627,13,198,220,220,220,220,220,220,220,220,220,220,220,611,3951,25,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,33793,796,2116,13,7266,44399,62,521,298,198,220,220,220,220,220,220,220,220,220,220,220,2073,25,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,33793,796,2116,13,36733,62,521,298,628,220,220,220,220,220,220,220,220,220,220,220,1303,22246,9647,329,428,1627,13,198,220,220,220,220,220,220,220,220,220,220,220,9647,796,2116,13,10394,532,18896,7,521,298,8,628,220,220,220,220,220,220,220,220,220,220,220,1303,3274,16058,319,1627,318,13216,10223,1377,4268,340,11,4556,428,198,220,220,220,220,220,220,220,220,220,220,220,1303,318,262,845,3726,286,262,2420,357,494,13,645,3951,2067,1865,737,198,220,220,220,220,220,220,220,220,220,220,220,611,2116,13,14781,62,1929,2737,10223,290,22716,58,12,16,4083,36311,3419,6624,10148,290,3951,25,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1619,22716,58,12,16,60,628,220,220,220,220,220,220,220,220,220,220,220,981,22716,25,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,300,796,2116,13557,1136,62,354,2954,62,13664,7,354,14125,58,12,16,12962,628,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1303,1680,379,1551,21229,428,16058,4291,262,1459,1627,13,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,611,1090,62,11925,1343,300,19841,9647,25,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1090,62,1370,13,33295,7,354,14125,13,12924,28955,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1090,62,11925,15853,300,628,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1303,39544,11,428,1627,318,1336,13,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,2073,25,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,2270,628,220,220,220,220,220,220,220,220,220,220,220,1303,383,1459,1627,318,1336,11,290,262,1306,16058,318,1165,1263,284,198,220,220,220,220,220,220,220,220,220,220,220,1303,4197,319,1635,1092,9,1627,357,1662,655,428,530,737,198,220,220,220,220,220,220,220,220,220,220,220,611,22716,290,2116,13557,1136,62,354,2954,62,13664,7,354,14125,58,12,16,12962,1875,9647,25,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,2116,13557,28144,62,6511,62,4775,7,354,14125,11,1090,62,1370,11,1090,62,11925,11,9647,8,628,220,220,220,220,220,220,220,220,220,220,220,1303,1002,262,938,16058,319,428,1627,318,477,13216,10223,11,4268,340,13,198,220,220,220,220,220,220,220,220,220,220,220,611,2116,13,14781,62,1929,2737,10223,290,1090,62,1370,290,1090,62,1370,58,12,16,4083,36311,3419,6624,10148,25,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1619,1090,62,1370,58,12,16,60,628,220,220,220,220,220,220,220,220,220,220,220,1303,38240,1459,1627,736,284,257,4731,290,3650,340,287,1351,198,220,220,220,220,220,220,220,220,220,220,220,1303,286,477,3951,357,7783,1988,737,198,220,220,220,220,220,220,220,220,220,220,220,611,1090,62,1370,25,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,3951,13,33295,7,521,298,1343,705,4458,22179,7,22019,62,1370,4008,628,220,220,220,220,220,220,220,1441,3951,628,198,220,220,220,1303,1377,5094,7071,20368,26171,628,220,220,220,825,14441,7,944,11,2420,2599,198,220,220,220,220,220,220,220,37227,37150,7,5239,1058,4731,8,4613,685,8841,60,628,220,220,220,220,220,220,220,17893,265,262,2060,7322,287,705,5239,6,523,340,11414,287,3951,286,198,220,220,220,220,220,220,220,645,517,621,705,944,13,10394,6,15180,11,290,1441,257,1351,286,12908,198,220,220,220,220,220,220,220,3951,13,220,309,8937,287,705,5239,6,389,9902,351,4731,13,11201,392,8658,82,22784,198,220,220,220,220,220,220,220,290,477,584,13216,10223,3435,357,8201,649,1370,8,389,198,220,220,220,220,220,220,220,11513,284,2272,13,198,220,220,220,220,220,220,220,37227,198,220,220,220,220,220,220,220,22716,796,2116,13557,35312,7,5239,8,198,220,220,220,220,220,220,220,1441,2116,13557,37150,62,354,14125,7,354,14125,8,628,220,220,220,825,6070,7,944,11,2420,2599,198,220,220,220,220,220,220,220,37227,20797,7,5239,1058,4731,8,4613,4731,628,220,220,220,220,220,220,220,17893,265,262,2060,7322,287,705,5239,6,284,4197,287,3951,286,645,198,220,220,220,220,220,220,220,517,621,705,944,13,10394,6,15180,11,290,1441,257,649,4731,198,220,220,220,220,220,220,220,7268,262,2104,12908,7322,13,198,220,220,220,220,220,220,220,37227,198,220,220,220,220,220,220,220,1441,37082,77,1911,22179,7,944,13,37150,7,5239,4008,198],"string":"[\n 37811,\n 8206,\n 27074,\n 290,\n 12591,\n 13,\n 198,\n 37811,\n 198,\n 198,\n 2,\n 15069,\n 357,\n 34,\n 8,\n 7358,\n 12,\n 14585,\n 20653,\n 350,\n 13,\n 12150,\n 13,\n 198,\n 2,\n 15069,\n 357,\n 34,\n 8,\n 6244,\n 11,\n 5816,\n 11361,\n 10442,\n 5693,\n 13,\n 198,\n 2,\n 22503,\n 416,\n 8547,\n 12150,\n 1279,\n 70,\n 904,\n 31,\n 29412,\n 13,\n 3262,\n 29,\n 198,\n 198,\n 2,\n 40499,\n 416,\n 35331,\n 7385,\n 20601,\n 1008,\n 198,\n 2,\n 3740,\n 1378,\n 12567,\n 13,\n 785,\n 14,\n 29412,\n 14,\n 13155,\n 7535,\n 14,\n 2436,\n 672,\n 14,\n 9866,\n 14,\n 25835,\n 14,\n 5239,\n 37150,\n 13,\n 9078,\n 198,\n 2,\n 3740,\n 1378,\n 12567,\n 13,\n 785,\n 14,\n 29412,\n 14,\n 13155,\n 7535,\n 14,\n 2436,\n 672,\n 14,\n 9866,\n 14,\n 43,\n 2149,\n 24290,\n 198,\n 198,\n 834,\n 260,\n 10178,\n 834,\n 796,\n 17971,\n 7390,\n 3,\n 1,\n 198,\n 198,\n 11748,\n 4731,\n 11,\n 302,\n 198,\n 198,\n 2,\n 2141,\n 262,\n 826,\n 1517,\n 351,\n 25131,\n 3815,\n 329,\n 477,\n 1900,\n 11361,\n 6300,\n 198,\n 2,\n 357,\n 568,\n 428,\n 8265,\n 460,\n 307,\n 18984,\n 284,\n 4493,\n 326,\n 836,\n 470,\n 4745,\n 319,\n 11361,\n 198,\n 2,\n 362,\n 13,\n 18,\n 11,\n 304,\n 13,\n 70,\n 13,\n 13123,\n 1134,\n 290,\n 14432,\n 26791,\n 8,\n 416,\n 8820,\n 434,\n 278,\n 262,\n 2512,\n 286,\n 2438,\n 2174,\n 13,\n 198,\n 2,\n 28311,\n 25,\n 198,\n 2,\n 220,\n 220,\n 220,\n 6407,\n 11,\n 10352,\n 198,\n 2,\n 16341,\n 6530,\n 12331,\n 25,\n 198,\n 2,\n 220,\n 220,\n 220,\n 357,\n 17821,\n 11,\n 10352,\n 8,\n 796,\n 357,\n 16,\n 11,\n 657,\n 8,\n 198,\n 198,\n 834,\n 439,\n 834,\n 796,\n 37250,\n 8206,\n 36918,\n 2848,\n 20520,\n 198,\n 198,\n 2,\n 6912,\n 8189,\n 262,\n 8018,\n 13216,\n 10223,\n 3435,\n 284,\n 262,\n 1294,\n 12,\n 42643,\n 3978,\n 198,\n 2,\n 13216,\n 10223,\n 3435,\n 13,\n 220,\n 383,\n 1388,\n 1738,\n 329,\n 1804,\n 428,\n 318,\n 326,\n 287,\n 198,\n 2,\n 19694,\n 12,\n 3459,\n 3270,\n 12,\n 16,\n 11,\n 657,\n 27865,\n 15,\n 318,\n 1729,\n 12,\n 13395,\n 13216,\n 10223,\n 11,\n 523,\n 287,\n 1728,\n 1957,\n 274,\n 198,\n 2,\n 326,\n 2095,\n 13520,\n 510,\n 287,\n 4731,\n 13,\n 1929,\n 2737,\n 10223,\n 13,\n 220,\n 1874,\n 35570,\n 198,\n 2,\n 4731,\n 13,\n 1929,\n 2737,\n 10223,\n 287,\n 883,\n 2663,\n 561,\n 352,\n 8,\n 787,\n 2420,\n 37150,\n 2190,\n 657,\n 27865,\n 15,\n 262,\n 198,\n 2,\n 976,\n 355,\n 597,\n 584,\n 13216,\n 10223,\n 1149,\n 11,\n 543,\n 318,\n 4084,\n 2642,\n 357,\n 270,\n 338,\n 257,\n 198,\n 2,\n 1635,\n 13159,\n 12,\n 13395,\n 9,\n 2272,\n 828,\n 362,\n 8,\n 5457,\n 2728,\n 2761,\n 351,\n 34371,\n 11,\n 198,\n 2,\n 1201,\n 657,\n 27865,\n 15,\n 318,\n 407,\n 287,\n 2837,\n 7,\n 12762,\n 737,\n 198,\n 62,\n 1929,\n 2737,\n 10223,\n 796,\n 705,\n 59,\n 83,\n 59,\n 77,\n 59,\n 87,\n 15,\n 65,\n 59,\n 87,\n 15,\n 66,\n 59,\n 81,\n 705,\n 198,\n 198,\n 4871,\n 8255,\n 36918,\n 2848,\n 25,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 9515,\n 329,\n 27074,\n 14,\n 69,\n 4509,\n 2420,\n 13,\n 220,\n 383,\n 1171,\n 7071,\n 10874,\n 286,\n 198,\n 220,\n 220,\n 220,\n 262,\n 14441,\n 3419,\n 290,\n 6070,\n 3419,\n 5050,\n 26,\n 262,\n 584,\n 5050,\n 389,\n 655,\n 612,\n 329,\n 198,\n 220,\n 220,\n 220,\n 850,\n 37724,\n 284,\n 20957,\n 287,\n 1502,\n 284,\n 25393,\n 262,\n 4277,\n 9172,\n 13,\n 198,\n 220,\n 220,\n 220,\n 1002,\n 345,\n 765,\n 284,\n 3190,\n 6330,\n 262,\n 1388,\n 27074,\n 11862,\n 11,\n 198,\n 220,\n 220,\n 220,\n 345,\n 1183,\n 2192,\n 423,\n 284,\n 20957,\n 4808,\n 37150,\n 62,\n 354,\n 14125,\n 22446,\n 628,\n 220,\n 220,\n 220,\n 12168,\n 4554,\n 12608,\n 1630,\n 2972,\n 7612,\n 286,\n 27074,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 9647,\n 357,\n 12286,\n 25,\n 4317,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 262,\n 5415,\n 9647,\n 286,\n 12908,\n 3951,\n 357,\n 25252,\n 2270,\n 62,\n 6511,\n 62,\n 10879,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 318,\n 3991,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 4238,\n 62,\n 521,\n 298,\n 357,\n 12286,\n 25,\n 366,\n 4943,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 4731,\n 326,\n 481,\n 307,\n 3143,\n 1631,\n 284,\n 262,\n 717,\n 1627,\n 286,\n 12908,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 5072,\n 13,\n 220,\n 2764,\n 82,\n 3371,\n 262,\n 1627,\n 338,\n 9647,\n 13,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 8840,\n 62,\n 521,\n 298,\n 357,\n 12286,\n 25,\n 366,\n 4943,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 4731,\n 326,\n 481,\n 307,\n 3143,\n 1631,\n 284,\n 477,\n 3951,\n 3613,\n 262,\n 717,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 286,\n 12908,\n 5072,\n 26,\n 635,\n 9853,\n 3371,\n 1123,\n 1627,\n 338,\n 9647,\n 13,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 4292,\n 62,\n 8658,\n 82,\n 357,\n 12286,\n 25,\n 2081,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 49368,\n 22524,\n 287,\n 5128,\n 2420,\n 284,\n 9029,\n 878,\n 2252,\n 7587,\n 13,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 5501,\n 7400,\n 481,\n 1716,\n 352,\n 11485,\n 807,\n 9029,\n 11,\n 6906,\n 319,\n 663,\n 2292,\n 287,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 663,\n 1627,\n 13,\n 220,\n 1002,\n 3991,\n 11,\n 1123,\n 7400,\n 318,\n 5716,\n 355,\n 257,\n 2060,\n 2095,\n 13,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 6330,\n 62,\n 1929,\n 2737,\n 10223,\n 357,\n 12286,\n 25,\n 2081,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 40177,\n 477,\n 13216,\n 10223,\n 3435,\n 287,\n 262,\n 5128,\n 2420,\n 416,\n 9029,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 706,\n 7400,\n 7118,\n 13,\n 220,\n 5740,\n 326,\n 611,\n 4292,\n 62,\n 8658,\n 82,\n 318,\n 3991,\n 290,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 6330,\n 62,\n 1929,\n 2737,\n 10223,\n 318,\n 2081,\n 11,\n 790,\n 7400,\n 481,\n 307,\n 11513,\n 284,\n 257,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2060,\n 2272,\n 0,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2270,\n 62,\n 6511,\n 62,\n 10879,\n 357,\n 12286,\n 25,\n 2081,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 12243,\n 2456,\n 2392,\n 621,\n 705,\n 10394,\n 4458,\n 220,\n 1002,\n 3991,\n 11,\n 883,\n 2456,\n 481,\n 407,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 307,\n 5445,\n 11,\n 290,\n 617,\n 3951,\n 1244,\n 307,\n 2392,\n 621,\n 705,\n 10394,\n 4458,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2270,\n 62,\n 261,\n 62,\n 36362,\n 5135,\n 357,\n 12286,\n 25,\n 2081,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 22507,\n 7163,\n 5328,\n 831,\n 515,\n 2456,\n 13,\n 1002,\n 2081,\n 11,\n 27074,\n 481,\n 3051,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 29203,\n 319,\n 13216,\n 43076,\n 290,\n 826,\n 706,\n 5328,\n 5135,\n 636,\n 286,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 13061,\n 2456,\n 13,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 4268,\n 62,\n 1929,\n 2737,\n 10223,\n 357,\n 12286,\n 25,\n 2081,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 14258,\n 3756,\n 290,\n 25462,\n 13216,\n 10223,\n 422,\n 3951,\n 13,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 770,\n 42958,\n 1310,\n 40364,\n 318,\n 655,\n 262,\n 6908,\n 329,\n 26021,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 2420,\n 510,\n 656,\n 1573,\n 12,\n 29988,\n 381,\n 540,\n 22716,\n 13,\n 220,\n 412,\n 13,\n 70,\n 13,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 220,\n 220,\n 366,\n 15496,\n 612,\n 1377,\n 345,\n 31644,\n 12,\n 1894,\n 11,\n 779,\n 262,\n 532,\n 65,\n 3038,\n 2474,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 30778,\n 656,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 220,\n 220,\n 18435,\n 14,\n 1220,\n 8117,\n 14,\n 1220,\n 438,\n 14,\n 1220,\n 5832,\n 14,\n 1220,\n 2188,\n 1659,\n 12,\n 14,\n 1894,\n 11,\n 14,\n 1220,\n 1904,\n 14,\n 1220,\n 1169,\n 14,\n 1220,\n 12,\n 65,\n 14,\n 1220,\n 18076,\n 0,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 357,\n 8499,\n 37727,\n 503,\n 6565,\n 13042,\n 737,\n 198,\n 220,\n 220,\n 220,\n 1573,\n 325,\n 79,\n 62,\n 260,\n 796,\n 302,\n 13,\n 5589,\n 576,\n 7,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 374,\n 6,\n 38016,\n 82,\n 10,\n 91,\n 6,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 597,\n 13216,\n 10223,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 374,\n 6,\n 58,\n 61,\n 59,\n 82,\n 59,\n 86,\n 60,\n 9,\n 59,\n 86,\n 10,\n 58,\n 61,\n 15,\n 12,\n 24,\n 59,\n 54,\n 60,\n 30420,\n 30,\n 28,\n 59,\n 86,\n 10,\n 58,\n 61,\n 15,\n 12,\n 24,\n 59,\n 54,\n 12962,\n 91,\n 6,\n 220,\n 220,\n 1303,\n 5328,\n 831,\n 515,\n 2456,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 374,\n 6,\n 7,\n 30,\n 27,\n 41888,\n 59,\n 86,\n 59,\n 0,\n 7879,\n 43054,\n 59,\n 5,\n 17405,\n 59,\n 11,\n 59,\n 30,\n 12962,\n 12,\n 90,\n 17,\n 11,\n 92,\n 7,\n 30,\n 28,\n 59,\n 86,\n 4008,\n 11537,\n 220,\n 220,\n 1303,\n 795,\n 12,\n 42460,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 770,\n 1342,\n 42958,\n 1310,\n 40364,\n 655,\n 6626,\n 319,\n 8018,\n 9029,\n 13,\n 412,\n 13,\n 70,\n 13,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 220,\n 220,\n 366,\n 15496,\n 612,\n 1377,\n 345,\n 31644,\n 12,\n 1894,\n 11,\n 779,\n 262,\n 532,\n 65,\n 3038,\n 2474,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 30778,\n 656,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 220,\n 220,\n 18435,\n 14,\n 1220,\n 8117,\n 14,\n 1220,\n 438,\n 14,\n 1220,\n 5832,\n 14,\n 1220,\n 2188,\n 1659,\n 12,\n 1894,\n 11,\n 14,\n 1220,\n 1904,\n 14,\n 1220,\n 1169,\n 14,\n 1220,\n 12,\n 65,\n 14,\n 1220,\n 18076,\n 48443,\n 198,\n 220,\n 220,\n 220,\n 1573,\n 325,\n 79,\n 62,\n 36439,\n 62,\n 260,\n 796,\n 302,\n 13,\n 5589,\n 576,\n 7,\n 81,\n 6,\n 38016,\n 82,\n 28988,\n 11537,\n 628,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 1377,\n 15348,\n 5050,\n 20368,\n 24305,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 357,\n 39363,\n 4465,\n 329,\n 850,\n 37724,\n 284,\n 20957,\n 8,\n 628,\n 220,\n 220,\n 220,\n 825,\n 4808,\n 35312,\n 7,\n 944,\n 11,\n 2420,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 62,\n 35312,\n 7,\n 5239,\n 1058,\n 4731,\n 8,\n 4613,\n 685,\n 8841,\n 60,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 27758,\n 262,\n 2420,\n 284,\n 14441,\n 656,\n 773,\n 452,\n 12843,\n 22716,\n 13,\n 220,\n 609,\n 14125,\n 389,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 407,\n 2407,\n 262,\n 976,\n 355,\n 2456,\n 26,\n 766,\n 4808,\n 37150,\n 62,\n 354,\n 14125,\n 3419,\n 329,\n 1336,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3307,\n 13,\n 220,\n 1081,\n 281,\n 1672,\n 11,\n 262,\n 2420,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 6803,\n 11,\n 31644,\n 12,\n 1894,\n 1377,\n 779,\n 262,\n 532,\n 65,\n 3038,\n 0,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 9457,\n 656,\n 262,\n 1708,\n 22716,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 705,\n 8567,\n 11,\n 3256,\n 705,\n 46083,\n 705,\n 2188,\n 1659,\n 12,\n 3256,\n 705,\n 1894,\n 3256,\n 705,\n 46083,\n 705,\n 438,\n 3256,\n 705,\n 46083,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 705,\n 1904,\n 3256,\n 705,\n 46083,\n 705,\n 1169,\n 3256,\n 705,\n 46083,\n 705,\n 12,\n 65,\n 3256,\n 705,\n 46083,\n 705,\n 18076,\n 13679,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 2270,\n 62,\n 261,\n 62,\n 36362,\n 5135,\n 318,\n 6407,\n 11,\n 393,\n 287,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 705,\n 8567,\n 11,\n 3256,\n 705,\n 46083,\n 705,\n 2188,\n 1659,\n 12,\n 1894,\n 3256,\n 705,\n 46083,\n 705,\n 438,\n 3256,\n 705,\n 46083,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 705,\n 1904,\n 3256,\n 705,\n 46083,\n 705,\n 1169,\n 3256,\n 705,\n 46083,\n 705,\n 12,\n 65,\n 3256,\n 705,\n 46083,\n 3038,\n 13679,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 4306,\n 13,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 2116,\n 13,\n 9032,\n 62,\n 261,\n 62,\n 36362,\n 5135,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1458,\n 796,\n 2116,\n 13,\n 4775,\n 325,\n 79,\n 62,\n 260,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2073,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1458,\n 796,\n 2116,\n 13,\n 4775,\n 325,\n 79,\n 62,\n 36439,\n 62,\n 260,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 22716,\n 796,\n 1458,\n 13,\n 35312,\n 7,\n 5239,\n 13,\n 12501,\n 1098,\n 7203,\n 75,\n 10680,\n 12,\n 16,\n 48774,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 22716,\n 796,\n 1351,\n 7,\n 24455,\n 7,\n 14202,\n 11,\n 22716,\n 4008,\n 220,\n 1303,\n 4781,\n 6565,\n 22716,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1441,\n 22716,\n 628,\n 220,\n 220,\n 220,\n 825,\n 4808,\n 28144,\n 62,\n 6511,\n 62,\n 4775,\n 7,\n 944,\n 11,\n 17687,\n 62,\n 354,\n 14125,\n 11,\n 1090,\n 62,\n 1370,\n 11,\n 1090,\n 62,\n 11925,\n 11,\n 9647,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 62,\n 28144,\n 62,\n 6511,\n 62,\n 4775,\n 7,\n 354,\n 14125,\n 1058,\n 685,\n 8841,\n 4357,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1090,\n 62,\n 1370,\n 1058,\n 685,\n 8841,\n 4357,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1090,\n 62,\n 11925,\n 1058,\n 493,\n 11,\n 9647,\n 1058,\n 493,\n 8,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 33141,\n 257,\n 16058,\n 286,\n 2420,\n 357,\n 1712,\n 1884,\n 257,\n 1573,\n 11,\n 407,\n 13216,\n 10223,\n 8,\n 326,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 318,\n 1165,\n 890,\n 284,\n 4197,\n 287,\n 597,\n 1627,\n 13,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 11291,\n 503,\n 618,\n 33793,\n 318,\n 4025,\n 621,\n 262,\n 7368,\n 9647,\n 11,\n 290,\n 787,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 1654,\n 379,\n 1551,\n 530,\n 2095,\n 318,\n 18818,\n 572,\n 319,\n 790,\n 1208,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 9647,\n 1279,\n 352,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2272,\n 62,\n 9464,\n 796,\n 352,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2073,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2272,\n 62,\n 9464,\n 796,\n 9647,\n 532,\n 1090,\n 62,\n 11925,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 1002,\n 356,\n 821,\n 3142,\n 284,\n 2270,\n 890,\n 2456,\n 11,\n 788,\n 466,\n 523,\n 25,\n 1234,\n 355,\n 881,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 286,\n 262,\n 1306,\n 16058,\n 4291,\n 262,\n 1459,\n 1627,\n 355,\n 481,\n 4197,\n 13,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 2116,\n 13,\n 9032,\n 62,\n 6511,\n 62,\n 10879,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1090,\n 62,\n 1370,\n 13,\n 33295,\n 7,\n 260,\n 690,\n 276,\n 62,\n 354,\n 14125,\n 58,\n 12,\n 16,\n 7131,\n 25,\n 13200,\n 62,\n 9464,\n 12962,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 17687,\n 62,\n 354,\n 14125,\n 58,\n 12,\n 16,\n 60,\n 796,\n 17687,\n 62,\n 354,\n 14125,\n 58,\n 12,\n 16,\n 7131,\n 13200,\n 62,\n 9464,\n 47715,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 15323,\n 11,\n 356,\n 423,\n 284,\n 12201,\n 262,\n 890,\n 1573,\n 16572,\n 13,\n 220,\n 5514,\n 751,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 340,\n 284,\n 262,\n 1459,\n 1627,\n 611,\n 612,\n 338,\n 2147,\n 1541,\n 612,\n 1377,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 326,\n 10356,\n 4340,\n 703,\n 881,\n 356,\n 16967,\n 262,\n 9647,\n 32315,\n 13,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1288,\n 361,\n 407,\n 1090,\n 62,\n 1370,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1090,\n 62,\n 1370,\n 13,\n 33295,\n 7,\n 260,\n 690,\n 276,\n 62,\n 354,\n 14125,\n 13,\n 12924,\n 28955,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 1002,\n 356,\n 821,\n 407,\n 3142,\n 284,\n 2270,\n 890,\n 2456,\n 11,\n 290,\n 612,\n 338,\n 1541,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 2420,\n 319,\n 262,\n 1459,\n 1627,\n 11,\n 466,\n 2147,\n 13,\n 220,\n 7406,\n 640,\n 832,\n 262,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 1388,\n 9052,\n 286,\n 4808,\n 37150,\n 62,\n 354,\n 14125,\n 22784,\n 356,\n 1183,\n 2344,\n 510,\n 994,\n 757,\n 11,\n 475,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 1090,\n 62,\n 11925,\n 481,\n 307,\n 6632,\n 11,\n 523,\n 262,\n 1306,\n 1627,\n 481,\n 307,\n 5000,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 13378,\n 284,\n 262,\n 890,\n 1573,\n 326,\n 356,\n 460,\n 470,\n 5412,\n 826,\n 783,\n 13,\n 198,\n 220,\n 220,\n 220,\n 220,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 10687,\n 284,\n 2074,\n 4096,\n 3537,\n 11584,\n 6654,\n 16311,\n 355,\n 6632,\n 12,\n 10394,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 198,\n 220,\n 220,\n 220,\n 825,\n 4808,\n 37150,\n 62,\n 354,\n 14125,\n 7,\n 944,\n 11,\n 22716,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 62,\n 37150,\n 62,\n 354,\n 14125,\n 7,\n 354,\n 14125,\n 1058,\n 685,\n 8841,\n 12962,\n 4613,\n 685,\n 8841,\n 60,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 41028,\n 257,\n 8379,\n 286,\n 2420,\n 22716,\n 290,\n 1441,\n 257,\n 1351,\n 286,\n 3951,\n 286,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 4129,\n 705,\n 944,\n 13,\n 10394,\n 6,\n 393,\n 1342,\n 13,\n 220,\n 357,\n 1532,\n 705,\n 9032,\n 62,\n 6511,\n 62,\n 10879,\n 6,\n 318,\n 3991,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 617,\n 3951,\n 743,\n 307,\n 2392,\n 621,\n 428,\n 2014,\n 220,\n 609,\n 14125,\n 6053,\n 7323,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 284,\n 2456,\n 290,\n 262,\n 13216,\n 10223,\n 1022,\n 606,\n 25,\n 1123,\n 16058,\n 318,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 773,\n 452,\n 12843,\n 357,\n 4666,\n 43348,\n 705,\n 9032,\n 62,\n 6511,\n 62,\n 10879,\n 33809,\n 475,\n 257,\n 1627,\n 2270,\n 460,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1282,\n 1022,\n 597,\n 734,\n 22716,\n 13,\n 220,\n 609,\n 14125,\n 815,\n 407,\n 423,\n 5387,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 13216,\n 10223,\n 26,\n 37941,\n 13,\n 257,\n 16058,\n 318,\n 2035,\n 477,\n 13216,\n 10223,\n 393,\n 257,\n 366,\n 4775,\n 1911,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 29290,\n 10223,\n 22716,\n 481,\n 307,\n 4615,\n 422,\n 262,\n 3726,\n 290,\n 886,\n 286,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3951,\n 11,\n 475,\n 5475,\n 422,\n 326,\n 13216,\n 10223,\n 318,\n 17232,\n 13,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3951,\n 796,\n 17635,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 2116,\n 13,\n 10394,\n 19841,\n 657,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 5298,\n 11052,\n 12331,\n 7203,\n 259,\n 12102,\n 9647,\n 4064,\n 81,\n 357,\n 27238,\n 307,\n 1875,\n 657,\n 16725,\n 4064,\n 2116,\n 13,\n 10394,\n 8,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 943,\n 9521,\n 287,\n 9575,\n 1502,\n 523,\n 3709,\n 460,\n 307,\n 18306,\n 22928,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 422,\n 257,\n 8931,\n 286,\n 442,\n 6238,\n 13,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 22716,\n 13,\n 50188,\n 3419,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 981,\n 22716,\n 25,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 7253,\n 262,\n 1351,\n 286,\n 22716,\n 326,\n 481,\n 787,\n 510,\n 262,\n 1459,\n 1627,\n 13,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 1090,\n 62,\n 11925,\n 318,\n 655,\n 262,\n 4129,\n 286,\n 477,\n 262,\n 22716,\n 287,\n 1090,\n 62,\n 1370,\n 13,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1090,\n 62,\n 1370,\n 796,\n 17635,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1090,\n 62,\n 11925,\n 796,\n 657,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 11291,\n 503,\n 543,\n 9037,\n 4731,\n 481,\n 21231,\n 428,\n 1627,\n 13,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 3951,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 33793,\n 796,\n 2116,\n 13,\n 7266,\n 44399,\n 62,\n 521,\n 298,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2073,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 33793,\n 796,\n 2116,\n 13,\n 36733,\n 62,\n 521,\n 298,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 22246,\n 9647,\n 329,\n 428,\n 1627,\n 13,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 9647,\n 796,\n 2116,\n 13,\n 10394,\n 532,\n 18896,\n 7,\n 521,\n 298,\n 8,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 3274,\n 16058,\n 319,\n 1627,\n 318,\n 13216,\n 10223,\n 1377,\n 4268,\n 340,\n 11,\n 4556,\n 428,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 318,\n 262,\n 845,\n 3726,\n 286,\n 262,\n 2420,\n 357,\n 494,\n 13,\n 645,\n 3951,\n 2067,\n 1865,\n 737,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 2116,\n 13,\n 14781,\n 62,\n 1929,\n 2737,\n 10223,\n 290,\n 22716,\n 58,\n 12,\n 16,\n 4083,\n 36311,\n 3419,\n 6624,\n 10148,\n 290,\n 3951,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1619,\n 22716,\n 58,\n 12,\n 16,\n 60,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 981,\n 22716,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 300,\n 796,\n 2116,\n 13557,\n 1136,\n 62,\n 354,\n 2954,\n 62,\n 13664,\n 7,\n 354,\n 14125,\n 58,\n 12,\n 16,\n 12962,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 1680,\n 379,\n 1551,\n 21229,\n 428,\n 16058,\n 4291,\n 262,\n 1459,\n 1627,\n 13,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 1090,\n 62,\n 11925,\n 1343,\n 300,\n 19841,\n 9647,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1090,\n 62,\n 1370,\n 13,\n 33295,\n 7,\n 354,\n 14125,\n 13,\n 12924,\n 28955,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1090,\n 62,\n 11925,\n 15853,\n 300,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 39544,\n 11,\n 428,\n 1627,\n 318,\n 1336,\n 13,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2073,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2270,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 383,\n 1459,\n 1627,\n 318,\n 1336,\n 11,\n 290,\n 262,\n 1306,\n 16058,\n 318,\n 1165,\n 1263,\n 284,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 4197,\n 319,\n 1635,\n 1092,\n 9,\n 1627,\n 357,\n 1662,\n 655,\n 428,\n 530,\n 737,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 22716,\n 290,\n 2116,\n 13557,\n 1136,\n 62,\n 354,\n 2954,\n 62,\n 13664,\n 7,\n 354,\n 14125,\n 58,\n 12,\n 16,\n 12962,\n 1875,\n 9647,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13557,\n 28144,\n 62,\n 6511,\n 62,\n 4775,\n 7,\n 354,\n 14125,\n 11,\n 1090,\n 62,\n 1370,\n 11,\n 1090,\n 62,\n 11925,\n 11,\n 9647,\n 8,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 1002,\n 262,\n 938,\n 16058,\n 319,\n 428,\n 1627,\n 318,\n 477,\n 13216,\n 10223,\n 11,\n 4268,\n 340,\n 13,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 2116,\n 13,\n 14781,\n 62,\n 1929,\n 2737,\n 10223,\n 290,\n 1090,\n 62,\n 1370,\n 290,\n 1090,\n 62,\n 1370,\n 58,\n 12,\n 16,\n 4083,\n 36311,\n 3419,\n 6624,\n 10148,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1619,\n 1090,\n 62,\n 1370,\n 58,\n 12,\n 16,\n 60,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 38240,\n 1459,\n 1627,\n 736,\n 284,\n 257,\n 4731,\n 290,\n 3650,\n 340,\n 287,\n 1351,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 286,\n 477,\n 3951,\n 357,\n 7783,\n 1988,\n 737,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 1090,\n 62,\n 1370,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3951,\n 13,\n 33295,\n 7,\n 521,\n 298,\n 1343,\n 705,\n 4458,\n 22179,\n 7,\n 22019,\n 62,\n 1370,\n 4008,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1441,\n 3951,\n 628,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 1377,\n 5094,\n 7071,\n 20368,\n 26171,\n 628,\n 220,\n 220,\n 220,\n 825,\n 14441,\n 7,\n 944,\n 11,\n 2420,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 37150,\n 7,\n 5239,\n 1058,\n 4731,\n 8,\n 4613,\n 685,\n 8841,\n 60,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 17893,\n 265,\n 262,\n 2060,\n 7322,\n 287,\n 705,\n 5239,\n 6,\n 523,\n 340,\n 11414,\n 287,\n 3951,\n 286,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 645,\n 517,\n 621,\n 705,\n 944,\n 13,\n 10394,\n 6,\n 15180,\n 11,\n 290,\n 1441,\n 257,\n 1351,\n 286,\n 12908,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3951,\n 13,\n 220,\n 309,\n 8937,\n 287,\n 705,\n 5239,\n 6,\n 389,\n 9902,\n 351,\n 4731,\n 13,\n 11201,\n 392,\n 8658,\n 82,\n 22784,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 290,\n 477,\n 584,\n 13216,\n 10223,\n 3435,\n 357,\n 8201,\n 649,\n 1370,\n 8,\n 389,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 11513,\n 284,\n 2272,\n 13,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 22716,\n 796,\n 2116,\n 13557,\n 35312,\n 7,\n 5239,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1441,\n 2116,\n 13557,\n 37150,\n 62,\n 354,\n 14125,\n 7,\n 354,\n 14125,\n 8,\n 628,\n 220,\n 220,\n 220,\n 825,\n 6070,\n 7,\n 944,\n 11,\n 2420,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 20797,\n 7,\n 5239,\n 1058,\n 4731,\n 8,\n 4613,\n 4731,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 17893,\n 265,\n 262,\n 2060,\n 7322,\n 287,\n 705,\n 5239,\n 6,\n 284,\n 4197,\n 287,\n 3951,\n 286,\n 645,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 517,\n 621,\n 705,\n 944,\n 13,\n 10394,\n 6,\n 15180,\n 11,\n 290,\n 1441,\n 257,\n 649,\n 4731,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 7268,\n 262,\n 2104,\n 12908,\n 7322,\n 13,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1441,\n 37082,\n 77,\n 1911,\n 22179,\n 7,\n 944,\n 13,\n 37150,\n 7,\n 5239,\n 4008,\n 198\n]"},"ratio_char_token":{"kind":"number","value":2.5205751115518096,"string":"2.520575"},"token_count":{"kind":"number","value":4034,"string":"4,034"}}},{"rowIdx":4254,"cells":{"content":{"kind":"string","value":"# Copyright 2014 Red Hat, Inc.\n#\n# Licensed under the Apache License, Version 2.0 (the \"License\"); you may\n# not use this file except in compliance with the License. You may obtain\n# a copy of the License at\n#\n# http://www.apache.org/licenses/LICENSE-2.0\n#\n# Unless required by applicable law or agreed to in writing, software\n# distributed under the License is distributed on an \"AS IS\" BASIS, WITHOUT\n# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the\n# License for the specific language governing permissions and limitations\n# under the License.\n\nimport netaddr\nfrom oslo_utils import versionutils\n\nimport nova.conf\nfrom nova import db\nfrom nova import exception\nfrom nova.i18n import _\nfrom nova import objects\nfrom nova.objects import base as obj_base\nfrom nova.objects import fields\n\nCONF = nova.conf.CONF\n\n\n# TODO(berrange): Remove NovaObjectDictCompat\n@obj_base.NovaObjectRegistry.register\n\n\n@obj_base.NovaObjectRegistry.register\n"},"input_ids":{"kind":"list like","value":[2,220,220,220,15069,1946,2297,10983,11,3457,13,198,2,198,2,220,220,220,49962,739,262,24843,13789,11,10628,362,13,15,357,1169,366,34156,15341,345,743,198,2,220,220,220,407,779,428,2393,2845,287,11846,351,262,13789,13,921,743,7330,198,2,220,220,220,257,4866,286,262,13789,379,198,2,198,2,220,220,220,220,220,220,220,220,2638,1378,2503,13,43073,13,2398,14,677,4541,14,43,2149,24290,12,17,13,15,198,2,198,2,220,220,220,17486,2672,416,9723,1099,393,4987,284,287,3597,11,3788,198,2,220,220,220,9387,739,262,13789,318,9387,319,281,366,1921,3180,1,29809,1797,11,42881,198,2,220,220,220,34764,11015,6375,7102,49828,11053,3963,15529,509,12115,11,2035,4911,393,17142,13,4091,262,198,2,220,220,220,13789,329,262,2176,3303,15030,21627,290,11247,198,2,220,220,220,739,262,13789,13,198,198,11748,2010,29851,198,6738,28686,5439,62,26791,1330,2196,26791,198,198,11748,645,6862,13,10414,198,6738,645,6862,1330,20613,198,6738,645,6862,1330,6631,198,6738,645,6862,13,72,1507,77,1330,4808,198,6738,645,6862,1330,5563,198,6738,645,6862,13,48205,1330,2779,355,26181,62,8692,198,6738,645,6862,13,48205,1330,7032,198,198,10943,37,796,645,6862,13,10414,13,10943,37,628,198,2,16926,46,7,527,9521,2599,17220,17711,10267,35,713,40073,198,31,26801,62,8692,13,45,10071,10267,8081,4592,13,30238,628,198,31,26801,62,8692,13,45,10071,10267,8081,4592,13,30238,198],"string":"[\n 2,\n 220,\n 220,\n 220,\n 15069,\n 1946,\n 2297,\n 10983,\n 11,\n 3457,\n 13,\n 198,\n 2,\n 198,\n 2,\n 220,\n 220,\n 220,\n 49962,\n 739,\n 262,\n 24843,\n 13789,\n 11,\n 10628,\n 362,\n 13,\n 15,\n 357,\n 1169,\n 366,\n 34156,\n 15341,\n 345,\n 743,\n 198,\n 2,\n 220,\n 220,\n 220,\n 407,\n 779,\n 428,\n 2393,\n 2845,\n 287,\n 11846,\n 351,\n 262,\n 13789,\n 13,\n 921,\n 743,\n 7330,\n 198,\n 2,\n 220,\n 220,\n 220,\n 257,\n 4866,\n 286,\n 262,\n 13789,\n 379,\n 198,\n 2,\n 198,\n 2,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2638,\n 1378,\n 2503,\n 13,\n 43073,\n 13,\n 2398,\n 14,\n 677,\n 4541,\n 14,\n 43,\n 2149,\n 24290,\n 12,\n 17,\n 13,\n 15,\n 198,\n 2,\n 198,\n 2,\n 220,\n 220,\n 220,\n 17486,\n 2672,\n 416,\n 9723,\n 1099,\n 393,\n 4987,\n 284,\n 287,\n 3597,\n 11,\n 3788,\n 198,\n 2,\n 220,\n 220,\n 220,\n 9387,\n 739,\n 262,\n 13789,\n 318,\n 9387,\n 319,\n 281,\n 366,\n 1921,\n 3180,\n 1,\n 29809,\n 1797,\n 11,\n 42881,\n 198,\n 2,\n 220,\n 220,\n 220,\n 34764,\n 11015,\n 6375,\n 7102,\n 49828,\n 11053,\n 3963,\n 15529,\n 509,\n 12115,\n 11,\n 2035,\n 4911,\n 393,\n 17142,\n 13,\n 4091,\n 262,\n 198,\n 2,\n 220,\n 220,\n 220,\n 13789,\n 329,\n 262,\n 2176,\n 3303,\n 15030,\n 21627,\n 290,\n 11247,\n 198,\n 2,\n 220,\n 220,\n 220,\n 739,\n 262,\n 13789,\n 13,\n 198,\n 198,\n 11748,\n 2010,\n 29851,\n 198,\n 6738,\n 28686,\n 5439,\n 62,\n 26791,\n 1330,\n 2196,\n 26791,\n 198,\n 198,\n 11748,\n 645,\n 6862,\n 13,\n 10414,\n 198,\n 6738,\n 645,\n 6862,\n 1330,\n 20613,\n 198,\n 6738,\n 645,\n 6862,\n 1330,\n 6631,\n 198,\n 6738,\n 645,\n 6862,\n 13,\n 72,\n 1507,\n 77,\n 1330,\n 4808,\n 198,\n 6738,\n 645,\n 6862,\n 1330,\n 5563,\n 198,\n 6738,\n 645,\n 6862,\n 13,\n 48205,\n 1330,\n 2779,\n 355,\n 26181,\n 62,\n 8692,\n 198,\n 6738,\n 645,\n 6862,\n 13,\n 48205,\n 1330,\n 7032,\n 198,\n 198,\n 10943,\n 37,\n 796,\n 645,\n 6862,\n 13,\n 10414,\n 13,\n 10943,\n 37,\n 628,\n 198,\n 2,\n 16926,\n 46,\n 7,\n 527,\n 9521,\n 2599,\n 17220,\n 17711,\n 10267,\n 35,\n 713,\n 40073,\n 198,\n 31,\n 26801,\n 62,\n 8692,\n 13,\n 45,\n 10071,\n 10267,\n 8081,\n 4592,\n 13,\n 30238,\n 628,\n 198,\n 31,\n 26801,\n 62,\n 8692,\n 13,\n 45,\n 10071,\n 10267,\n 8081,\n 4592,\n 13,\n 30238,\n 198\n]"},"ratio_char_token":{"kind":"number","value":3.2688524590163937,"string":"3.268852"},"token_count":{"kind":"number","value":305,"string":"305"}}},{"rowIdx":4255,"cells":{"content":{"kind":"string","value":"from PIL import Image\nfrom PIL.ExifTags import TAGS\nimport exifread\nimport re\n\nimport json\n\ndef get_exif_data(fname):\n \"\"\"Get embedded EXIF data from image file.\"\"\"\n ret = {}\n try:\n img = Image.open(fname)\n if hasattr( img, '_getexif' ):\n exifinfo = img._getexif()\n if exifinfo != None:\n for tag, value in exifinfo.items():\n decoded = TAGS.get(tag, tag)\n ret[decoded] = value\n except IOError:\n print('IOERROR ' + fname)\n return ret\nif __name__ == '__main__':\n fileName = \"1 (36).jpg\"\n # exif = get_exif_data(fileName)\n # print(exif)\n\n read()"},"input_ids":{"kind":"list like","value":[6738,350,4146,1330,7412,198,6738,350,4146,13,3109,361,36142,1330,37801,50,198,11748,409,361,961,198,11748,302,198,198,11748,33918,198,198,4299,651,62,1069,361,62,7890,7,69,3672,2599,198,220,220,220,37227,3855,14553,7788,5064,1366,422,2939,2393,526,15931,198,220,220,220,1005,796,23884,198,220,220,220,1949,25,198,220,220,220,220,220,220,220,33705,796,7412,13,9654,7,69,3672,8,198,220,220,220,220,220,220,220,611,468,35226,7,33705,11,705,62,1136,1069,361,6,15179,198,220,220,220,220,220,220,220,220,220,220,220,409,361,10951,796,33705,13557,1136,1069,361,3419,198,220,220,220,220,220,220,220,220,220,220,220,611,409,361,10951,14512,6045,25,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,329,7621,11,1988,287,409,361,10951,13,23814,33529,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,875,9043,796,37801,50,13,1136,7,12985,11,7621,8,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1005,58,12501,9043,60,796,1988,198,220,220,220,2845,24418,12331,25,198,220,220,220,220,220,220,220,3601,10786,9399,24908,705,1343,277,3672,8,198,220,220,220,1441,1005,198,361,11593,3672,834,6624,705,834,12417,834,10354,198,220,220,220,2393,5376,796,366,16,357,2623,737,9479,1,198,220,220,220,1303,409,361,796,651,62,1069,361,62,7890,7,7753,5376,8,198,220,220,220,1303,3601,7,1069,361,8,628,220,220,220,1100,3419],"string":"[\n 6738,\n 350,\n 4146,\n 1330,\n 7412,\n 198,\n 6738,\n 350,\n 4146,\n 13,\n 3109,\n 361,\n 36142,\n 1330,\n 37801,\n 50,\n 198,\n 11748,\n 409,\n 361,\n 961,\n 198,\n 11748,\n 302,\n 198,\n 198,\n 11748,\n 33918,\n 198,\n 198,\n 4299,\n 651,\n 62,\n 1069,\n 361,\n 62,\n 7890,\n 7,\n 69,\n 3672,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 3855,\n 14553,\n 7788,\n 5064,\n 1366,\n 422,\n 2939,\n 2393,\n 526,\n 15931,\n 198,\n 220,\n 220,\n 220,\n 1005,\n 796,\n 23884,\n 198,\n 220,\n 220,\n 220,\n 1949,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 33705,\n 796,\n 7412,\n 13,\n 9654,\n 7,\n 69,\n 3672,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 468,\n 35226,\n 7,\n 33705,\n 11,\n 705,\n 62,\n 1136,\n 1069,\n 361,\n 6,\n 15179,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 409,\n 361,\n 10951,\n 796,\n 33705,\n 13557,\n 1136,\n 1069,\n 361,\n 3419,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 409,\n 361,\n 10951,\n 14512,\n 6045,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 329,\n 7621,\n 11,\n 1988,\n 287,\n 409,\n 361,\n 10951,\n 13,\n 23814,\n 33529,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 875,\n 9043,\n 796,\n 37801,\n 50,\n 13,\n 1136,\n 7,\n 12985,\n 11,\n 7621,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1005,\n 58,\n 12501,\n 9043,\n 60,\n 796,\n 1988,\n 198,\n 220,\n 220,\n 220,\n 2845,\n 24418,\n 12331,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3601,\n 10786,\n 9399,\n 24908,\n 705,\n 1343,\n 277,\n 3672,\n 8,\n 198,\n 220,\n 220,\n 220,\n 1441,\n 1005,\n 198,\n 361,\n 11593,\n 3672,\n 834,\n 6624,\n 705,\n 834,\n 12417,\n 834,\n 10354,\n 198,\n 220,\n 220,\n 220,\n 2393,\n 5376,\n 796,\n 366,\n 16,\n 357,\n 2623,\n 737,\n 9479,\n 1,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 409,\n 361,\n 796,\n 651,\n 62,\n 1069,\n 361,\n 62,\n 7890,\n 7,\n 7753,\n 5376,\n 8,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 3601,\n 7,\n 1069,\n 361,\n 8,\n 628,\n 220,\n 220,\n 220,\n 1100,\n 3419\n]"},"ratio_char_token":{"kind":"number","value":2.049382716049383,"string":"2.049383"},"token_count":{"kind":"number","value":324,"string":"324"}}},{"rowIdx":4256,"cells":{"content":{"kind":"string","value":"from flask import Flask\nfrom flask_sqlalchemy import SQLAlchemy\nfrom flask_migrate import Migrate\nfrom flask_bootstrap import Bootstrap\nfrom flask_login import LoginManager\nfrom flask_moment import Moment\nfrom flask_mail import Mail\n# from flask_mail_sendgrid import MailSendGrid\nfrom config import Config\nfrom logging.handlers import RotatingFileHandler\nimport logging\nimport os\n\n\ndb = SQLAlchemy()\nmigrate = Migrate()\nbootstrap = Bootstrap()\nlogin = LoginManager()\nmoment = Moment()\nmail = Mail()\n\n\nfrom app import models\n"},"input_ids":{"kind":"list like","value":[6738,42903,1330,46947,198,6738,42903,62,25410,282,26599,1330,16363,2348,26599,198,6738,42903,62,76,42175,1330,337,42175,198,6738,42903,62,18769,26418,1330,18892,26418,198,6738,42903,62,38235,1330,23093,13511,198,6738,42903,62,32542,298,1330,29278,198,6738,42903,62,4529,1330,11099,198,2,422,42903,62,4529,62,21280,25928,1330,11099,25206,41339,198,6738,4566,1330,17056,198,6738,18931,13,4993,8116,1330,18481,803,8979,25060,198,11748,18931,198,11748,28686,628,198,9945,796,16363,2348,26599,3419,198,76,42175,796,337,42175,3419,198,18769,26418,796,18892,26418,3419,198,38235,796,23093,13511,3419,198,32542,298,796,29278,3419,198,4529,796,11099,3419,628,198,6738,598,1330,4981,198],"string":"[\n 6738,\n 42903,\n 1330,\n 46947,\n 198,\n 6738,\n 42903,\n 62,\n 25410,\n 282,\n 26599,\n 1330,\n 16363,\n 2348,\n 26599,\n 198,\n 6738,\n 42903,\n 62,\n 76,\n 42175,\n 1330,\n 337,\n 42175,\n 198,\n 6738,\n 42903,\n 62,\n 18769,\n 26418,\n 1330,\n 18892,\n 26418,\n 198,\n 6738,\n 42903,\n 62,\n 38235,\n 1330,\n 23093,\n 13511,\n 198,\n 6738,\n 42903,\n 62,\n 32542,\n 298,\n 1330,\n 29278,\n 198,\n 6738,\n 42903,\n 62,\n 4529,\n 1330,\n 11099,\n 198,\n 2,\n 422,\n 42903,\n 62,\n 4529,\n 62,\n 21280,\n 25928,\n 1330,\n 11099,\n 25206,\n 41339,\n 198,\n 6738,\n 4566,\n 1330,\n 17056,\n 198,\n 6738,\n 18931,\n 13,\n 4993,\n 8116,\n 1330,\n 18481,\n 803,\n 8979,\n 25060,\n 198,\n 11748,\n 18931,\n 198,\n 11748,\n 28686,\n 628,\n 198,\n 9945,\n 796,\n 16363,\n 2348,\n 26599,\n 3419,\n 198,\n 76,\n 42175,\n 796,\n 337,\n 42175,\n 3419,\n 198,\n 18769,\n 26418,\n 796,\n 18892,\n 26418,\n 3419,\n 198,\n 38235,\n 796,\n 23093,\n 13511,\n 3419,\n 198,\n 32542,\n 298,\n 796,\n 29278,\n 3419,\n 198,\n 4529,\n 796,\n 11099,\n 3419,\n 628,\n 198,\n 6738,\n 598,\n 1330,\n 4981,\n 198\n]"},"ratio_char_token":{"kind":"number","value":3.8248175182481754,"string":"3.824818"},"token_count":{"kind":"number","value":137,"string":"137"}}},{"rowIdx":4257,"cells":{"content":{"kind":"string","value":"'''\nFile: test_conversions.py\nAuthor: Adam Pah\nDescription: \npy.test test ensemble\n'''\nimport pytest\nimport conversions as conv\n\nclass TestConvertTimeseries:\n '''\n Covers the convert_timeseries_to_intervalseries function\n '''\n timeseries = [[0, 2], [2, 3], [5, 3]]\n\n def test_basic(self):\n '''\n Timeseries conversion test.\n '''\n #Set up the answer\n intervalseries = [[0, 2], [1, 3]]\n #Get the intervalseries\n test_intervals = conv.convert_timeseries_to_intervalseries(self.timeseries)\n #Just make sure that these things aren't the same\n assert intervalseries == test_intervals\n\n def test_yaxis_only(self):\n '''\n Timeseries conversion test with the yaxis only\n '''\n #Set up the answer\n intervalseries = [2, 3]\n #Get the intervalseries\n test_intervals = conv.convert_timeseries_to_intervalseries(self.timeseries, yaxis_only=True)\n #Just make sure that these things aren't the same\n assert intervalseries == test_intervals\n\n def test_negative_bounds(self):\n '''\n Test to make sure that system exit happens\n '''\n #Load up the data\n timeseries = [[0, 2], [-2, 3], [4, 3]]\n #Check for the system exit\n with pytest.raises(SystemExit):\n conv.convert_timeseries_to_intervalseries(timeseries, yaxis_only=True)\n"},"input_ids":{"kind":"list like","value":[7061,6,198,8979,25,1332,62,1102,47178,13,9078,198,13838,25,7244,350,993,198,11828,25,220,198,9078,13,9288,1332,34549,198,7061,6,198,11748,12972,9288,198,11748,32626,355,3063,198,198,4871,6208,3103,1851,28595,10640,25,198,220,220,220,705,7061,198,220,220,220,1766,690,262,10385,62,22355,10640,62,1462,62,3849,12786,10640,2163,198,220,220,220,705,7061,198,220,220,220,1661,10640,796,16410,15,11,362,4357,685,17,11,513,4357,685,20,11,513,11907,628,220,220,220,825,1332,62,35487,7,944,2599,198,220,220,220,220,220,220,220,705,7061,198,220,220,220,220,220,220,220,3782,10640,11315,1332,13,198,220,220,220,220,220,220,220,705,7061,198,220,220,220,220,220,220,220,1303,7248,510,262,3280,198,220,220,220,220,220,220,220,20016,10640,796,16410,15,11,362,4357,685,16,11,513,11907,198,220,220,220,220,220,220,220,1303,3855,262,20016,10640,198,220,220,220,220,220,220,220,1332,62,3849,12786,796,3063,13,1102,1851,62,22355,10640,62,1462,62,3849,12786,10640,7,944,13,22355,10640,8,198,220,220,220,220,220,220,220,1303,5703,787,1654,326,777,1243,3588,470,262,976,198,220,220,220,220,220,220,220,6818,20016,10640,6624,1332,62,3849,12786,628,220,220,220,825,1332,62,88,22704,62,8807,7,944,2599,198,220,220,220,220,220,220,220,705,7061,198,220,220,220,220,220,220,220,3782,10640,11315,1332,351,262,331,22704,691,198,220,220,220,220,220,220,220,705,7061,198,220,220,220,220,220,220,220,1303,7248,510,262,3280,198,220,220,220,220,220,220,220,20016,10640,796,685,17,11,513,60,198,220,220,220,220,220,220,220,1303,3855,262,20016,10640,198,220,220,220,220,220,220,220,1332,62,3849,12786,796,3063,13,1102,1851,62,22355,10640,62,1462,62,3849,12786,10640,7,944,13,22355,10640,11,331,22704,62,8807,28,17821,8,198,220,220,220,220,220,220,220,1303,5703,787,1654,326,777,1243,3588,470,262,976,198,220,220,220,220,220,220,220,6818,20016,10640,6624,1332,62,3849,12786,628,220,220,220,825,1332,62,31591,62,65,3733,7,944,2599,198,220,220,220,220,220,220,220,705,7061,198,220,220,220,220,220,220,220,6208,284,787,1654,326,1080,8420,4325,198,220,220,220,220,220,220,220,705,7061,198,220,220,220,220,220,220,220,1303,8912,510,262,1366,198,220,220,220,220,220,220,220,1661,10640,796,16410,15,11,362,4357,25915,17,11,513,4357,685,19,11,513,11907,198,220,220,220,220,220,220,220,1303,9787,329,262,1080,8420,198,220,220,220,220,220,220,220,351,12972,9288,13,430,2696,7,11964,30337,2599,198,220,220,220,220,220,220,220,220,220,220,220,3063,13,1102,1851,62,22355,10640,62,1462,62,3849,12786,10640,7,22355,10640,11,331,22704,62,8807,28,17821,8,198],"string":"[\n 7061,\n 6,\n 198,\n 8979,\n 25,\n 1332,\n 62,\n 1102,\n 47178,\n 13,\n 9078,\n 198,\n 13838,\n 25,\n 7244,\n 350,\n 993,\n 198,\n 11828,\n 25,\n 220,\n 198,\n 9078,\n 13,\n 9288,\n 1332,\n 34549,\n 198,\n 7061,\n 6,\n 198,\n 11748,\n 12972,\n 9288,\n 198,\n 11748,\n 32626,\n 355,\n 3063,\n 198,\n 198,\n 4871,\n 6208,\n 3103,\n 1851,\n 28595,\n 10640,\n 25,\n 198,\n 220,\n 220,\n 220,\n 705,\n 7061,\n 198,\n 220,\n 220,\n 220,\n 1766,\n 690,\n 262,\n 10385,\n 62,\n 22355,\n 10640,\n 62,\n 1462,\n 62,\n 3849,\n 12786,\n 10640,\n 2163,\n 198,\n 220,\n 220,\n 220,\n 705,\n 7061,\n 198,\n 220,\n 220,\n 220,\n 1661,\n 10640,\n 796,\n 16410,\n 15,\n 11,\n 362,\n 4357,\n 685,\n 17,\n 11,\n 513,\n 4357,\n 685,\n 20,\n 11,\n 513,\n 11907,\n 628,\n 220,\n 220,\n 220,\n 825,\n 1332,\n 62,\n 35487,\n 7,\n 944,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 705,\n 7061,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3782,\n 10640,\n 11315,\n 1332,\n 13,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 705,\n 7061,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 7248,\n 510,\n 262,\n 3280,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 20016,\n 10640,\n 796,\n 16410,\n 15,\n 11,\n 362,\n 4357,\n 685,\n 16,\n 11,\n 513,\n 11907,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 3855,\n 262,\n 20016,\n 10640,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1332,\n 62,\n 3849,\n 12786,\n 796,\n 3063,\n 13,\n 1102,\n 1851,\n 62,\n 22355,\n 10640,\n 62,\n 1462,\n 62,\n 3849,\n 12786,\n 10640,\n 7,\n 944,\n 13,\n 22355,\n 10640,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 5703,\n 787,\n 1654,\n 326,\n 777,\n 1243,\n 3588,\n 470,\n 262,\n 976,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 6818,\n 20016,\n 10640,\n 6624,\n 1332,\n 62,\n 3849,\n 12786,\n 628,\n 220,\n 220,\n 220,\n 825,\n 1332,\n 62,\n 88,\n 22704,\n 62,\n 8807,\n 7,\n 944,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 705,\n 7061,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3782,\n 10640,\n 11315,\n 1332,\n 351,\n 262,\n 331,\n 22704,\n 691,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 705,\n 7061,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 7248,\n 510,\n 262,\n 3280,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 20016,\n 10640,\n 796,\n 685,\n 17,\n 11,\n 513,\n 60,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 3855,\n 262,\n 20016,\n 10640,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1332,\n 62,\n 3849,\n 12786,\n 796,\n 3063,\n 13,\n 1102,\n 1851,\n 62,\n 22355,\n 10640,\n 62,\n 1462,\n 62,\n 3849,\n 12786,\n 10640,\n 7,\n 944,\n 13,\n 22355,\n 10640,\n 11,\n 331,\n 22704,\n 62,\n 8807,\n 28,\n 17821,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 5703,\n 787,\n 1654,\n 326,\n 777,\n 1243,\n 3588,\n 470,\n 262,\n 976,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 6818,\n 20016,\n 10640,\n 6624,\n 1332,\n 62,\n 3849,\n 12786,\n 628,\n 220,\n 220,\n 220,\n 825,\n 1332,\n 62,\n 31591,\n 62,\n 65,\n 3733,\n 7,\n 944,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 705,\n 7061,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 6208,\n 284,\n 787,\n 1654,\n 326,\n 1080,\n 8420,\n 4325,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 705,\n 7061,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 8912,\n 510,\n 262,\n 1366,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1661,\n 10640,\n 796,\n 16410,\n 15,\n 11,\n 362,\n 4357,\n 25915,\n 17,\n 11,\n 513,\n 4357,\n 685,\n 19,\n 11,\n 513,\n 11907,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 9787,\n 329,\n 262,\n 1080,\n 8420,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 351,\n 12972,\n 9288,\n 13,\n 430,\n 2696,\n 7,\n 11964,\n 30337,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3063,\n 13,\n 1102,\n 1851,\n 62,\n 22355,\n 10640,\n 62,\n 1462,\n 62,\n 3849,\n 12786,\n 10640,\n 7,\n 22355,\n 10640,\n 11,\n 331,\n 22704,\n 62,\n 8807,\n 28,\n 17821,\n 8,\n 198\n]"},"ratio_char_token":{"kind":"number","value":2.4133790737564325,"string":"2.413379"},"token_count":{"kind":"number","value":583,"string":"583"}}},{"rowIdx":4258,"cells":{"content":{"kind":"string","value":"from django.urls import reverse\n\nfrom extforms.deprecated_forms import SWCEventRequestForm, DCEventRequestForm\nfrom extrequests.models import (\n EventRequest,\n)\nfrom workshops.models import Event, Organization\nfrom workshops.tests.base import TestBase\n\n\n\n"},"input_ids":{"kind":"list like","value":[6738,42625,14208,13,6371,82,1330,9575,198,198,6738,1070,23914,13,10378,31023,62,23914,1330,12672,5222,1151,18453,8479,11,360,5222,1151,18453,8479,198,6738,1070,8897,3558,13,27530,1330,357,198,220,220,220,8558,18453,11,198,8,198,6738,25982,13,27530,1330,8558,11,12275,198,6738,25982,13,41989,13,8692,1330,6208,14881,628,628],"string":"[\n 6738,\n 42625,\n 14208,\n 13,\n 6371,\n 82,\n 1330,\n 9575,\n 198,\n 198,\n 6738,\n 1070,\n 23914,\n 13,\n 10378,\n 31023,\n 62,\n 23914,\n 1330,\n 12672,\n 5222,\n 1151,\n 18453,\n 8479,\n 11,\n 360,\n 5222,\n 1151,\n 18453,\n 8479,\n 198,\n 6738,\n 1070,\n 8897,\n 3558,\n 13,\n 27530,\n 1330,\n 357,\n 198,\n 220,\n 220,\n 220,\n 8558,\n 18453,\n 11,\n 198,\n 8,\n 198,\n 6738,\n 25982,\n 13,\n 27530,\n 1330,\n 8558,\n 11,\n 12275,\n 198,\n 6738,\n 25982,\n 13,\n 41989,\n 13,\n 8692,\n 1330,\n 6208,\n 14881,\n 628,\n 628\n]"},"ratio_char_token":{"kind":"number","value":3.739130434782609,"string":"3.73913"},"token_count":{"kind":"number","value":69,"string":"69"}}},{"rowIdx":4259,"cells":{"content":{"kind":"string","value":"\"\"\"\n Our HADS database gets loaded up with duplicates, this cleans it up.\n\n called from RUN_MIDNIGHT.sh\n\"\"\"\nfrom __future__ import print_function\nimport datetime\nimport sys\n\nimport pytz\nfrom pyiem.util import get_dbconn, utc\n\n\ndef query(sql, args=None):\n \"\"\"\n Do a query and make it atomic\n \"\"\"\n pgconn = get_dbconn('hads')\n hcursor = pgconn.cursor()\n sts = datetime.datetime.now()\n hcursor.execute(\"set work_mem='16GB'\")\n hcursor.execute(sql, args if args is not None else [])\n ets = datetime.datetime.now()\n print(\"%7s [%8.4fs] %s\" % (hcursor.rowcount, (ets - sts).total_seconds(),\n sql))\n hcursor.close()\n pgconn.commit()\n\n\ndef workflow(valid):\n ''' Do the work for this date, which is set to 00 UTC '''\n # Delete schoolnet data, since we created it in the first place!\n tbl = \"raw%s\" % (valid.strftime(\"%Y_%m\"),)\n sql = \"\"\"DELETE from \"\"\" + tbl + \"\"\" WHERE station IN\n (SELECT id from stations WHERE network in ('KCCI','KELO','KIMT')\n )\"\"\"\n query(sql)\n\n # make sure our tmp table does not exist\n query(\"DROP TABLE IF EXISTS tmp\")\n # Extract unique obs to special table\n sql = \"\"\"CREATE table tmp as select distinct * from \"\"\"+tbl+\"\"\"\n WHERE valid BETWEEN %s and %s\"\"\"\n args = (valid, valid + datetime.timedelta(hours=24))\n query(sql, args)\n\n # Delete them all!\n sql = \"\"\"delete from \"\"\"+tbl+\"\"\" WHERE valid BETWEEN %s and %s\"\"\"\n query(sql, args)\n\n sql = \"DROP index IF EXISTS \"+tbl+\"_idx\"\n query(sql)\n sql = \"DROP index IF EXISTS \"+tbl+\"_valid_idx\"\n query(sql)\n\n # Insert from special table\n sql = \"INSERT into \"+tbl+\" SELECT * from tmp\"\n query(sql)\n\n sql = \"CREATE index %s_idx on %s(station,valid)\" % (tbl, tbl)\n query(sql)\n sql = \"CREATE index %s_valid_idx on %s(valid)\" % (tbl, tbl)\n query(sql)\n\n sql = \"DROP TABLE IF EXISTS tmp\"\n query(sql)\n\n\ndef main(argv):\n \"\"\"Go Main Go\"\"\"\n if len(argv) == 4:\n utcnow = utc(int(argv[1]), int(argv[2]), int(argv[3]))\n workflow(utcnow)\n return\n utcnow = datetime.datetime.utcnow()\n utcnow = utcnow.replace(hour=0, minute=0, second=0, microsecond=0,\n tzinfo=pytz.utc)\n # Run for 'yesterday' and 35 days ago\n for day in [1, 35]:\n workflow(utcnow - datetime.timedelta(days=day))\n\n\nif __name__ == '__main__':\n # See how we are called\n main(sys.argv)\n"},"input_ids":{"kind":"list like","value":[37811,198,3954,367,47149,6831,3011,9639,510,351,14184,16856,11,428,20658,340,510,13,628,1444,422,32494,62,44,2389,45,9947,13,1477,198,37811,198,6738,11593,37443,834,1330,3601,62,8818,198,11748,4818,8079,198,11748,25064,198,198,11748,12972,22877,198,6738,12972,26597,13,22602,1330,651,62,9945,37043,11,3384,66,628,198,4299,12405,7,25410,11,26498,28,14202,2599,198,220,220,220,37227,198,220,220,220,2141,257,12405,290,787,340,17226,198,220,220,220,37227,198,220,220,220,23241,37043,796,651,62,9945,37043,10786,71,5643,11537,198,220,220,220,289,66,21471,796,23241,37043,13,66,21471,3419,198,220,220,220,39747,796,4818,8079,13,19608,8079,13,2197,3419,198,220,220,220,289,66,21471,13,41049,7203,2617,670,62,11883,11639,1433,4579,6,4943,198,220,220,220,289,66,21471,13,41049,7,25410,11,26498,611,26498,318,407,6045,2073,685,12962,198,220,220,220,304,912,796,4818,8079,13,19608,8079,13,2197,3419,198,220,220,220,3601,7203,4,22,82,685,4,23,13,19,9501,60,4064,82,1,4064,357,71,66,21471,13,808,9127,11,357,1039,532,39747,737,23350,62,43012,22784,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,44161,4008,198,220,220,220,289,66,21471,13,19836,3419,198,220,220,220,23241,37043,13,41509,3419,628,198,4299,30798,7,12102,2599,198,220,220,220,705,7061,2141,262,670,329,428,3128,11,543,318,900,284,3571,18119,705,7061,198,220,220,220,1303,23520,1524,3262,1366,11,1201,356,2727,340,287,262,717,1295,0,198,220,220,220,256,2436,796,366,1831,4,82,1,4064,357,12102,13,2536,31387,7203,4,56,62,4,76,12340,8,198,220,220,220,44161,796,37227,7206,2538,9328,422,37227,1343,256,2436,1343,37227,33411,4429,3268,198,220,220,220,220,220,220,220,220,220,220,220,220,220,357,46506,4686,422,8985,33411,3127,287,19203,42,4093,40,41707,42,3698,46,41707,42,3955,51,11537,198,220,220,220,220,220,220,220,220,220,220,220,220,220,1267,37811,198,220,220,220,12405,7,25410,8,628,220,220,220,1303,787,1654,674,45218,3084,857,407,2152,198,220,220,220,12405,7203,7707,3185,43679,16876,7788,1797,4694,45218,4943,198,220,220,220,1303,29677,3748,10201,284,2041,3084,198,220,220,220,44161,796,37227,43387,6158,3084,45218,355,2922,7310,1635,422,37227,10,83,2436,10,37811,198,220,220,220,220,220,220,220,33411,4938,38651,8845,1677,4064,82,290,4064,82,37811,198,220,220,220,26498,796,357,12102,11,4938,1343,4818,8079,13,16514,276,12514,7,24425,28,1731,4008,198,220,220,220,12405,7,25410,11,26498,8,628,220,220,220,1303,23520,606,477,0,198,220,220,220,44161,796,37227,33678,422,37227,10,83,2436,10,37811,33411,4938,38651,8845,1677,4064,82,290,4064,82,37811,198,220,220,220,12405,7,25410,11,26498,8,628,220,220,220,44161,796,366,7707,3185,6376,16876,7788,1797,4694,43825,83,2436,10,1,62,312,87,1,198,220,220,220,12405,7,25410,8,198,220,220,220,44161,796,366,7707,3185,6376,16876,7788,1797,4694,43825,83,2436,10,1,62,12102,62,312,87,1,198,220,220,220,12405,7,25410,8,628,220,220,220,1303,35835,422,2041,3084,198,220,220,220,44161,796,366,20913,17395,656,43825,83,2436,10,1,33493,1635,422,45218,1,198,220,220,220,12405,7,25410,8,628,220,220,220,44161,796,366,43387,6158,6376,4064,82,62,312,87,319,4064,82,7,17529,11,12102,16725,4064,357,83,2436,11,256,2436,8,198,220,220,220,12405,7,25410,8,198,220,220,220,44161,796,366,43387,6158,6376,4064,82,62,12102,62,312,87,319,4064,82,7,12102,16725,4064,357,83,2436,11,256,2436,8,198,220,220,220,12405,7,25410,8,628,220,220,220,44161,796,366,7707,3185,43679,16876,7788,1797,4694,45218,1,198,220,220,220,12405,7,25410,8,628,198,4299,1388,7,853,85,2599,198,220,220,220,37227,5247,8774,1514,37811,198,220,220,220,611,18896,7,853,85,8,6624,604,25,198,220,220,220,220,220,220,220,3384,66,2197,796,3384,66,7,600,7,853,85,58,16,46570,493,7,853,85,58,17,46570,493,7,853,85,58,18,60,4008,198,220,220,220,220,220,220,220,30798,7,315,66,2197,8,198,220,220,220,220,220,220,220,1441,198,220,220,220,3384,66,2197,796,4818,8079,13,19608,8079,13,315,66,2197,3419,198,220,220,220,3384,66,2197,796,3384,66,2197,13,33491,7,9769,28,15,11,5664,28,15,11,1218,28,15,11,4580,12227,28,15,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,256,89,10951,28,9078,22877,13,315,66,8,198,220,220,220,1303,5660,329,705,8505,6432,6,290,3439,1528,2084,198,220,220,220,329,1110,287,685,16,11,3439,5974,198,220,220,220,220,220,220,220,30798,7,315,66,2197,532,4818,8079,13,16514,276,12514,7,12545,28,820,4008,628,198,361,11593,3672,834,6624,705,834,12417,834,10354,198,220,220,220,1303,4091,703,356,389,1444,198,220,220,220,1388,7,17597,13,853,85,8,198],"string":"[\n 37811,\n 198,\n 3954,\n 367,\n 47149,\n 6831,\n 3011,\n 9639,\n 510,\n 351,\n 14184,\n 16856,\n 11,\n 428,\n 20658,\n 340,\n 510,\n 13,\n 628,\n 1444,\n 422,\n 32494,\n 62,\n 44,\n 2389,\n 45,\n 9947,\n 13,\n 1477,\n 198,\n 37811,\n 198,\n 6738,\n 11593,\n 37443,\n 834,\n 1330,\n 3601,\n 62,\n 8818,\n 198,\n 11748,\n 4818,\n 8079,\n 198,\n 11748,\n 25064,\n 198,\n 198,\n 11748,\n 12972,\n 22877,\n 198,\n 6738,\n 12972,\n 26597,\n 13,\n 22602,\n 1330,\n 651,\n 62,\n 9945,\n 37043,\n 11,\n 3384,\n 66,\n 628,\n 198,\n 4299,\n 12405,\n 7,\n 25410,\n 11,\n 26498,\n 28,\n 14202,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 2141,\n 257,\n 12405,\n 290,\n 787,\n 340,\n 17226,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 23241,\n 37043,\n 796,\n 651,\n 62,\n 9945,\n 37043,\n 10786,\n 71,\n 5643,\n 11537,\n 198,\n 220,\n 220,\n 220,\n 289,\n 66,\n 21471,\n 796,\n 23241,\n 37043,\n 13,\n 66,\n 21471,\n 3419,\n 198,\n 220,\n 220,\n 220,\n 39747,\n 796,\n 4818,\n 8079,\n 13,\n 19608,\n 8079,\n 13,\n 2197,\n 3419,\n 198,\n 220,\n 220,\n 220,\n 289,\n 66,\n 21471,\n 13,\n 41049,\n 7203,\n 2617,\n 670,\n 62,\n 11883,\n 11639,\n 1433,\n 4579,\n 6,\n 4943,\n 198,\n 220,\n 220,\n 220,\n 289,\n 66,\n 21471,\n 13,\n 41049,\n 7,\n 25410,\n 11,\n 26498,\n 611,\n 26498,\n 318,\n 407,\n 6045,\n 2073,\n 685,\n 12962,\n 198,\n 220,\n 220,\n 220,\n 304,\n 912,\n 796,\n 4818,\n 8079,\n 13,\n 19608,\n 8079,\n 13,\n 2197,\n 3419,\n 198,\n 220,\n 220,\n 220,\n 3601,\n 7203,\n 4,\n 22,\n 82,\n 685,\n 4,\n 23,\n 13,\n 19,\n 9501,\n 60,\n 4064,\n 82,\n 1,\n 4064,\n 357,\n 71,\n 66,\n 21471,\n 13,\n 808,\n 9127,\n 11,\n 357,\n 1039,\n 532,\n 39747,\n 737,\n 23350,\n 62,\n 43012,\n 22784,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 44161,\n 4008,\n 198,\n 220,\n 220,\n 220,\n 289,\n 66,\n 21471,\n 13,\n 19836,\n 3419,\n 198,\n 220,\n 220,\n 220,\n 23241,\n 37043,\n 13,\n 41509,\n 3419,\n 628,\n 198,\n 4299,\n 30798,\n 7,\n 12102,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 705,\n 7061,\n 2141,\n 262,\n 670,\n 329,\n 428,\n 3128,\n 11,\n 543,\n 318,\n 900,\n 284,\n 3571,\n 18119,\n 705,\n 7061,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 23520,\n 1524,\n 3262,\n 1366,\n 11,\n 1201,\n 356,\n 2727,\n 340,\n 287,\n 262,\n 717,\n 1295,\n 0,\n 198,\n 220,\n 220,\n 220,\n 256,\n 2436,\n 796,\n 366,\n 1831,\n 4,\n 82,\n 1,\n 4064,\n 357,\n 12102,\n 13,\n 2536,\n 31387,\n 7203,\n 4,\n 56,\n 62,\n 4,\n 76,\n 12340,\n 8,\n 198,\n 220,\n 220,\n 220,\n 44161,\n 796,\n 37227,\n 7206,\n 2538,\n 9328,\n 422,\n 37227,\n 1343,\n 256,\n 2436,\n 1343,\n 37227,\n 33411,\n 4429,\n 3268,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 357,\n 46506,\n 4686,\n 422,\n 8985,\n 33411,\n 3127,\n 287,\n 19203,\n 42,\n 4093,\n 40,\n 41707,\n 42,\n 3698,\n 46,\n 41707,\n 42,\n 3955,\n 51,\n 11537,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1267,\n 37811,\n 198,\n 220,\n 220,\n 220,\n 12405,\n 7,\n 25410,\n 8,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 787,\n 1654,\n 674,\n 45218,\n 3084,\n 857,\n 407,\n 2152,\n 198,\n 220,\n 220,\n 220,\n 12405,\n 7203,\n 7707,\n 3185,\n 43679,\n 16876,\n 7788,\n 1797,\n 4694,\n 45218,\n 4943,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 29677,\n 3748,\n 10201,\n 284,\n 2041,\n 3084,\n 198,\n 220,\n 220,\n 220,\n 44161,\n 796,\n 37227,\n 43387,\n 6158,\n 3084,\n 45218,\n 355,\n 2922,\n 7310,\n 1635,\n 422,\n 37227,\n 10,\n 83,\n 2436,\n 10,\n 37811,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 33411,\n 4938,\n 38651,\n 8845,\n 1677,\n 4064,\n 82,\n 290,\n 4064,\n 82,\n 37811,\n 198,\n 220,\n 220,\n 220,\n 26498,\n 796,\n 357,\n 12102,\n 11,\n 4938,\n 1343,\n 4818,\n 8079,\n 13,\n 16514,\n 276,\n 12514,\n 7,\n 24425,\n 28,\n 1731,\n 4008,\n 198,\n 220,\n 220,\n 220,\n 12405,\n 7,\n 25410,\n 11,\n 26498,\n 8,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 23520,\n 606,\n 477,\n 0,\n 198,\n 220,\n 220,\n 220,\n 44161,\n 796,\n 37227,\n 33678,\n 422,\n 37227,\n 10,\n 83,\n 2436,\n 10,\n 37811,\n 33411,\n 4938,\n 38651,\n 8845,\n 1677,\n 4064,\n 82,\n 290,\n 4064,\n 82,\n 37811,\n 198,\n 220,\n 220,\n 220,\n 12405,\n 7,\n 25410,\n 11,\n 26498,\n 8,\n 628,\n 220,\n 220,\n 220,\n 44161,\n 796,\n 366,\n 7707,\n 3185,\n 6376,\n 16876,\n 7788,\n 1797,\n 4694,\n 43825,\n 83,\n 2436,\n 10,\n 1,\n 62,\n 312,\n 87,\n 1,\n 198,\n 220,\n 220,\n 220,\n 12405,\n 7,\n 25410,\n 8,\n 198,\n 220,\n 220,\n 220,\n 44161,\n 796,\n 366,\n 7707,\n 3185,\n 6376,\n 16876,\n 7788,\n 1797,\n 4694,\n 43825,\n 83,\n 2436,\n 10,\n 1,\n 62,\n 12102,\n 62,\n 312,\n 87,\n 1,\n 198,\n 220,\n 220,\n 220,\n 12405,\n 7,\n 25410,\n 8,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 35835,\n 422,\n 2041,\n 3084,\n 198,\n 220,\n 220,\n 220,\n 44161,\n 796,\n 366,\n 20913,\n 17395,\n 656,\n 43825,\n 83,\n 2436,\n 10,\n 1,\n 33493,\n 1635,\n 422,\n 45218,\n 1,\n 198,\n 220,\n 220,\n 220,\n 12405,\n 7,\n 25410,\n 8,\n 628,\n 220,\n 220,\n 220,\n 44161,\n 796,\n 366,\n 43387,\n 6158,\n 6376,\n 4064,\n 82,\n 62,\n 312,\n 87,\n 319,\n 4064,\n 82,\n 7,\n 17529,\n 11,\n 12102,\n 16725,\n 4064,\n 357,\n 83,\n 2436,\n 11,\n 256,\n 2436,\n 8,\n 198,\n 220,\n 220,\n 220,\n 12405,\n 7,\n 25410,\n 8,\n 198,\n 220,\n 220,\n 220,\n 44161,\n 796,\n 366,\n 43387,\n 6158,\n 6376,\n 4064,\n 82,\n 62,\n 12102,\n 62,\n 312,\n 87,\n 319,\n 4064,\n 82,\n 7,\n 12102,\n 16725,\n 4064,\n 357,\n 83,\n 2436,\n 11,\n 256,\n 2436,\n 8,\n 198,\n 220,\n 220,\n 220,\n 12405,\n 7,\n 25410,\n 8,\n 628,\n 220,\n 220,\n 220,\n 44161,\n 796,\n 366,\n 7707,\n 3185,\n 43679,\n 16876,\n 7788,\n 1797,\n 4694,\n 45218,\n 1,\n 198,\n 220,\n 220,\n 220,\n 12405,\n 7,\n 25410,\n 8,\n 628,\n 198,\n 4299,\n 1388,\n 7,\n 853,\n 85,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 5247,\n 8774,\n 1514,\n 37811,\n 198,\n 220,\n 220,\n 220,\n 611,\n 18896,\n 7,\n 853,\n 85,\n 8,\n 6624,\n 604,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3384,\n 66,\n 2197,\n 796,\n 3384,\n 66,\n 7,\n 600,\n 7,\n 853,\n 85,\n 58,\n 16,\n 46570,\n 493,\n 7,\n 853,\n 85,\n 58,\n 17,\n 46570,\n 493,\n 7,\n 853,\n 85,\n 58,\n 18,\n 60,\n 4008,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 30798,\n 7,\n 315,\n 66,\n 2197,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1441,\n 198,\n 220,\n 220,\n 220,\n 3384,\n 66,\n 2197,\n 796,\n 4818,\n 8079,\n 13,\n 19608,\n 8079,\n 13,\n 315,\n 66,\n 2197,\n 3419,\n 198,\n 220,\n 220,\n 220,\n 3384,\n 66,\n 2197,\n 796,\n 3384,\n 66,\n 2197,\n 13,\n 33491,\n 7,\n 9769,\n 28,\n 15,\n 11,\n 5664,\n 28,\n 15,\n 11,\n 1218,\n 28,\n 15,\n 11,\n 4580,\n 12227,\n 28,\n 15,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 256,\n 89,\n 10951,\n 28,\n 9078,\n 22877,\n 13,\n 315,\n 66,\n 8,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 5660,\n 329,\n 705,\n 8505,\n 6432,\n 6,\n 290,\n 3439,\n 1528,\n 2084,\n 198,\n 220,\n 220,\n 220,\n 329,\n 1110,\n 287,\n 685,\n 16,\n 11,\n 3439,\n 5974,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 30798,\n 7,\n 315,\n 66,\n 2197,\n 532,\n 4818,\n 8079,\n 13,\n 16514,\n 276,\n 12514,\n 7,\n 12545,\n 28,\n 820,\n 4008,\n 628,\n 198,\n 361,\n 11593,\n 3672,\n 834,\n 6624,\n 705,\n 834,\n 12417,\n 834,\n 10354,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 4091,\n 703,\n 356,\n 389,\n 1444,\n 198,\n 220,\n 220,\n 220,\n 1388,\n 7,\n 17597,\n 13,\n 853,\n 85,\n 8,\n 198\n]"},"ratio_char_token":{"kind":"number","value":2.310377358490566,"string":"2.310377"},"token_count":{"kind":"number","value":1060,"string":"1,060"}}},{"rowIdx":4260,"cells":{"content":{"kind":"string","value":"from django.db import models\n \n"},"input_ids":{"kind":"list like","value":[6738,42625,14208,13,9945,1330,4981,198,220,198],"string":"[\n 6738,\n 42625,\n 14208,\n 13,\n 9945,\n 1330,\n 4981,\n 198,\n 220,\n 198\n]"},"ratio_char_token":{"kind":"number","value":3.1,"string":"3.1"},"token_count":{"kind":"number","value":10,"string":"10"}}},{"rowIdx":4261,"cells":{"content":{"kind":"string","value":"import numpy as np\nimport os\nimport pickle\n#128x128\n \n####################################################\n'''\nInputs 128x128 pixel array\nReturns label where:\nlabel 0 = 1\nlabel 1 = 2\netc\n'''\n'''\nreturns an array of arrays, each one is the data from one image\n'''\n\n###########################################\n\n\n# training Code for class (comment it before running flask app)\n\n#train()\n\n# for filename in os.listdir('[more here]/images'):\n# data = readTrainingData(path + filename)\n# character = data[6]\n# character = np.array(character, dtype='int')\n# for i in range(128):\n# print()\n# for j in range(128):\n# if (character[i][j] == 255):\n# print('*', end =\"\")\n# else:\n# print('7', end =\"\")\n# print()\n# print('------------------------------------------------------------')\n# print()\n# print()\n \n "},"input_ids":{"kind":"list like","value":[11748,299,32152,355,45941,198,11748,28686,198,11748,2298,293,198,2,12762,87,12762,198,220,220,220,220,220,220,220,220,198,29113,14468,4242,198,7061,6,198,20560,82,13108,87,12762,17465,7177,198,35561,6167,810,25,198,18242,657,796,352,198,18242,352,796,362,198,14784,198,7061,6,198,7061,6,198,7783,82,281,7177,286,220,26515,11,1123,530,318,262,1366,422,530,2939,198,7061,6,198,198,29113,7804,21017,628,198,2,3047,6127,329,1398,357,23893,340,878,2491,42903,598,8,198,198,2,27432,3419,198,198,2,329,29472,287,28686,13,4868,15908,10786,58,3549,994,60,14,17566,6,2599,198,2,220,220,220,220,1366,796,1100,44357,6601,7,6978,1343,29472,8,198,2,220,220,220,220,2095,796,1366,58,21,60,198,2,220,220,220,220,2095,796,45941,13,18747,7,22769,11,288,4906,11639,600,11537,198,2,220,220,220,220,329,1312,287,2837,7,12762,2599,198,2,220,220,220,220,220,220,220,220,3601,3419,198,2,220,220,220,220,220,220,220,220,329,474,287,2837,7,12762,2599,198,2,220,220,220,220,220,220,220,220,220,220,220,220,611,357,22769,58,72,7131,73,60,6624,14280,2599,198,2,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,3601,10786,9,3256,886,796,1,4943,198,2,220,220,220,220,220,220,220,220,220,220,220,220,2073,25,198,2,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,3601,10786,22,3256,886,796,1,4943,198,2,220,220,220,220,3601,3419,198,2,220,220,220,220,3601,10786,47232,10541,11537,198,2,220,220,220,220,3601,3419,198,2,220,220,220,220,3601,3419,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,198,220,220,220,220,220,220,220,220,220,220,220,220],"string":"[\n 11748,\n 299,\n 32152,\n 355,\n 45941,\n 198,\n 11748,\n 28686,\n 198,\n 11748,\n 2298,\n 293,\n 198,\n 2,\n 12762,\n 87,\n 12762,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 198,\n 29113,\n 14468,\n 4242,\n 198,\n 7061,\n 6,\n 198,\n 20560,\n 82,\n 13108,\n 87,\n 12762,\n 17465,\n 7177,\n 198,\n 35561,\n 6167,\n 810,\n 25,\n 198,\n 18242,\n 657,\n 796,\n 352,\n 198,\n 18242,\n 352,\n 796,\n 362,\n 198,\n 14784,\n 198,\n 7061,\n 6,\n 198,\n 7061,\n 6,\n 198,\n 7783,\n 82,\n 281,\n 7177,\n 286,\n 220,\n 26515,\n 11,\n 1123,\n 530,\n 318,\n 262,\n 1366,\n 422,\n 530,\n 2939,\n 198,\n 7061,\n 6,\n 198,\n 198,\n 29113,\n 7804,\n 21017,\n 628,\n 198,\n 2,\n 3047,\n 6127,\n 329,\n 1398,\n 357,\n 23893,\n 340,\n 878,\n 2491,\n 42903,\n 598,\n 8,\n 198,\n 198,\n 2,\n 27432,\n 3419,\n 198,\n 198,\n 2,\n 329,\n 29472,\n 287,\n 28686,\n 13,\n 4868,\n 15908,\n 10786,\n 58,\n 3549,\n 994,\n 60,\n 14,\n 17566,\n 6,\n 2599,\n 198,\n 2,\n 220,\n 220,\n 220,\n 220,\n 1366,\n 796,\n 1100,\n 44357,\n 6601,\n 7,\n 6978,\n 1343,\n 29472,\n 8,\n 198,\n 2,\n 220,\n 220,\n 220,\n 220,\n 2095,\n 796,\n 1366,\n 58,\n 21,\n 60,\n 198,\n 2,\n 220,\n 220,\n 220,\n 220,\n 2095,\n 796,\n 45941,\n 13,\n 18747,\n 7,\n 22769,\n 11,\n 288,\n 4906,\n 11639,\n 600,\n 11537,\n 198,\n 2,\n 220,\n 220,\n 220,\n 220,\n 329,\n 1312,\n 287,\n 2837,\n 7,\n 12762,\n 2599,\n 198,\n 2,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3601,\n 3419,\n 198,\n 2,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 329,\n 474,\n 287,\n 2837,\n 7,\n 12762,\n 2599,\n 198,\n 2,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 357,\n 22769,\n 58,\n 72,\n 7131,\n 73,\n 60,\n 6624,\n 14280,\n 2599,\n 198,\n 2,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3601,\n 10786,\n 9,\n 3256,\n 886,\n 796,\n 1,\n 4943,\n 198,\n 2,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2073,\n 25,\n 198,\n 2,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3601,\n 10786,\n 22,\n 3256,\n 886,\n 796,\n 1,\n 4943,\n 198,\n 2,\n 220,\n 220,\n 220,\n 220,\n 3601,\n 3419,\n 198,\n 2,\n 220,\n 220,\n 220,\n 220,\n 3601,\n 10786,\n 47232,\n 10541,\n 11537,\n 198,\n 2,\n 220,\n 220,\n 220,\n 220,\n 3601,\n 3419,\n 198,\n 2,\n 220,\n 220,\n 220,\n 220,\n 3601,\n 3419,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220\n]"},"ratio_char_token":{"kind":"number","value":2.482666666666667,"string":"2.482667"},"token_count":{"kind":"number","value":375,"string":"375"}}},{"rowIdx":4262,"cells":{"content":{"kind":"string","value":"# -*- coding: utf-8 -*-\n\n\"\"\"Python implementation of the StalinSort algorithm.\n\nReferences\n----------\n- :cite:`mathew` : @mathew@mastodon.social (2018/10/26 04:20:16)\n ''I came up with a single pass O(n) sort algorithm I call StalinSort. You\n iterate down the list of elements checking if they're in order. Any element\n which is out of order is eliminated. At the end you have a sorted list.''\n\"\"\"\n\ndef stalinsort(iterable, key=None, ascending=False):\n \"\"\"Sorts iterable according to the single pass O(n) StalinSort algorithm.\n\n Parameters\n ----------\n iterable: iterable object\n\n key: function\n A function of one argument that is used to extract a comparison key\n from each element. Default is None.\n\n Returns\n -------\n survivors: list\n List of surviving elements of iterable.\n \n Example\n -------\n >>>from stalinsort import stalinsort\n >>>a = [3, 2, 5, 7, 1, 3]\n >>>stalinsort(a)\n [3, 2, 1]\n \"\"\"\n\n ascending = False # There is only descent under communism.\n\n if key is not None:\n keys = iterable.apply(key)\n else:\n keys = list(iterable)\n\n survivors = iterable[:1] # I prefer to think in terms of survivors.\n for index, victim in enumerate(iterable[1:]):\n if survivors[-1] >= keys[index + 1]:\n survivors.append(victim)\n \n return survivors\n"},"input_ids":{"kind":"list like","value":[2,532,9,12,19617,25,3384,69,12,23,532,9,12,198,198,37811,37906,7822,286,262,17482,42758,11862,13,198,198,19927,198,35937,198,12,220,220,1058,66,578,25,63,6759,6391,63,1058,2488,6759,6391,31,47616,46457,13,14557,357,7908,14,940,14,2075,8702,25,1238,25,1433,8,198,220,220,220,10148,40,1625,510,351,257,2060,1208,440,7,77,8,3297,11862,314,869,17482,42758,13,921,198,220,220,220,11629,378,866,262,1351,286,4847,10627,611,484,821,287,1502,13,4377,5002,198,220,220,220,543,318,503,286,1502,318,15254,13,1629,262,886,345,423,257,23243,1351,13531,198,37811,198,198,4299,29049,1040,419,7,2676,540,11,1994,28,14202,11,41988,28,25101,2599,198,220,220,220,37227,50,2096,11629,540,1864,284,262,2060,1208,440,7,77,8,17482,42758,11862,13,628,220,220,220,40117,198,220,220,220,24200,438,198,220,220,220,11629,540,25,11629,540,2134,628,220,220,220,1994,25,2163,198,220,220,220,220,220,220,220,317,2163,286,530,4578,326,318,973,284,7925,257,7208,1994,198,220,220,220,220,220,220,220,422,1123,5002,13,15161,318,6045,13,628,220,220,220,16409,198,220,220,220,35656,198,220,220,220,13644,25,1351,198,220,220,220,220,220,220,220,7343,286,16997,4847,286,11629,540,13,198,220,220,220,220,198,220,220,220,17934,198,220,220,220,35656,198,220,220,220,13163,6738,29049,1040,419,1330,29049,1040,419,198,220,220,220,13163,64,796,685,18,11,362,11,642,11,767,11,352,11,513,60,198,220,220,220,13163,7757,1040,419,7,64,8,198,220,220,220,685,18,11,362,11,352,60,198,220,220,220,37227,628,220,220,220,41988,796,10352,1303,1318,318,691,18598,739,27770,13,628,220,220,220,611,1994,318,407,6045,25,198,220,220,220,220,220,220,220,8251,796,11629,540,13,39014,7,2539,8,198,220,220,220,2073,25,198,220,220,220,220,220,220,220,8251,796,1351,7,2676,540,8,628,220,220,220,13644,796,11629,540,58,25,16,60,1303,314,4702,284,892,287,2846,286,13644,13,198,220,220,220,329,6376,11,3117,287,27056,378,7,2676,540,58,16,47715,2599,198,220,220,220,220,220,220,220,611,220,13644,58,12,16,60,18189,8251,58,9630,1343,352,5974,198,220,220,220,220,220,220,220,220,220,220,220,13644,13,33295,7,32433,320,8,198,220,220,220,220,220,220,220,220,220,220,220,220,198,220,220,220,1441,13644,198],"string":"[\n 2,\n 532,\n 9,\n 12,\n 19617,\n 25,\n 3384,\n 69,\n 12,\n 23,\n 532,\n 9,\n 12,\n 198,\n 198,\n 37811,\n 37906,\n 7822,\n 286,\n 262,\n 17482,\n 42758,\n 11862,\n 13,\n 198,\n 198,\n 19927,\n 198,\n 35937,\n 198,\n 12,\n 220,\n 220,\n 1058,\n 66,\n 578,\n 25,\n 63,\n 6759,\n 6391,\n 63,\n 1058,\n 2488,\n 6759,\n 6391,\n 31,\n 47616,\n 46457,\n 13,\n 14557,\n 357,\n 7908,\n 14,\n 940,\n 14,\n 2075,\n 8702,\n 25,\n 1238,\n 25,\n 1433,\n 8,\n 198,\n 220,\n 220,\n 220,\n 10148,\n 40,\n 1625,\n 510,\n 351,\n 257,\n 2060,\n 1208,\n 440,\n 7,\n 77,\n 8,\n 3297,\n 11862,\n 314,\n 869,\n 17482,\n 42758,\n 13,\n 921,\n 198,\n 220,\n 220,\n 220,\n 11629,\n 378,\n 866,\n 262,\n 1351,\n 286,\n 4847,\n 10627,\n 611,\n 484,\n 821,\n 287,\n 1502,\n 13,\n 4377,\n 5002,\n 198,\n 220,\n 220,\n 220,\n 543,\n 318,\n 503,\n 286,\n 1502,\n 318,\n 15254,\n 13,\n 1629,\n 262,\n 886,\n 345,\n 423,\n 257,\n 23243,\n 1351,\n 13531,\n 198,\n 37811,\n 198,\n 198,\n 4299,\n 29049,\n 1040,\n 419,\n 7,\n 2676,\n 540,\n 11,\n 1994,\n 28,\n 14202,\n 11,\n 41988,\n 28,\n 25101,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 50,\n 2096,\n 11629,\n 540,\n 1864,\n 284,\n 262,\n 2060,\n 1208,\n 440,\n 7,\n 77,\n 8,\n 17482,\n 42758,\n 11862,\n 13,\n 628,\n 220,\n 220,\n 220,\n 40117,\n 198,\n 220,\n 220,\n 220,\n 24200,\n 438,\n 198,\n 220,\n 220,\n 220,\n 11629,\n 540,\n 25,\n 11629,\n 540,\n 2134,\n 628,\n 220,\n 220,\n 220,\n 1994,\n 25,\n 2163,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 317,\n 2163,\n 286,\n 530,\n 4578,\n 326,\n 318,\n 973,\n 284,\n 7925,\n 257,\n 7208,\n 1994,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 422,\n 1123,\n 5002,\n 13,\n 15161,\n 318,\n 6045,\n 13,\n 628,\n 220,\n 220,\n 220,\n 16409,\n 198,\n 220,\n 220,\n 220,\n 35656,\n 198,\n 220,\n 220,\n 220,\n 13644,\n 25,\n 1351,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 7343,\n 286,\n 16997,\n 4847,\n 286,\n 11629,\n 540,\n 13,\n 198,\n 220,\n 220,\n 220,\n 220,\n 198,\n 220,\n 220,\n 220,\n 17934,\n 198,\n 220,\n 220,\n 220,\n 35656,\n 198,\n 220,\n 220,\n 220,\n 13163,\n 6738,\n 29049,\n 1040,\n 419,\n 1330,\n 29049,\n 1040,\n 419,\n 198,\n 220,\n 220,\n 220,\n 13163,\n 64,\n 796,\n 685,\n 18,\n 11,\n 362,\n 11,\n 642,\n 11,\n 767,\n 11,\n 352,\n 11,\n 513,\n 60,\n 198,\n 220,\n 220,\n 220,\n 13163,\n 7757,\n 1040,\n 419,\n 7,\n 64,\n 8,\n 198,\n 220,\n 220,\n 220,\n 685,\n 18,\n 11,\n 362,\n 11,\n 352,\n 60,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 628,\n 220,\n 220,\n 220,\n 41988,\n 796,\n 10352,\n 1303,\n 1318,\n 318,\n 691,\n 18598,\n 739,\n 27770,\n 13,\n 628,\n 220,\n 220,\n 220,\n 611,\n 1994,\n 318,\n 407,\n 6045,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 8251,\n 796,\n 11629,\n 540,\n 13,\n 39014,\n 7,\n 2539,\n 8,\n 198,\n 220,\n 220,\n 220,\n 2073,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 8251,\n 796,\n 1351,\n 7,\n 2676,\n 540,\n 8,\n 628,\n 220,\n 220,\n 220,\n 13644,\n 796,\n 11629,\n 540,\n 58,\n 25,\n 16,\n 60,\n 1303,\n 314,\n 4702,\n 284,\n 892,\n 287,\n 2846,\n 286,\n 13644,\n 13,\n 198,\n 220,\n 220,\n 220,\n 329,\n 6376,\n 11,\n 3117,\n 287,\n 27056,\n 378,\n 7,\n 2676,\n 540,\n 58,\n 16,\n 47715,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 220,\n 13644,\n 58,\n 12,\n 16,\n 60,\n 18189,\n 8251,\n 58,\n 9630,\n 1343,\n 352,\n 5974,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 13644,\n 13,\n 33295,\n 7,\n 32433,\n 320,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 198,\n 220,\n 220,\n 220,\n 1441,\n 13644,\n 198\n]"},"ratio_char_token":{"kind":"number","value":2.7292490118577075,"string":"2.729249"},"token_count":{"kind":"number","value":506,"string":"506"}}},{"rowIdx":4263,"cells":{"content":{"kind":"string","value":"import matplotlib.pyplot as plt\nimport numpy as np\nfrom pyfmi import load_fmu\n\nmodel = load_fmu('./PadeSlave.fmu')\n\ninputs = ('inputVariable', lambda t: 5. * np.cos(t))\nsimulation = model.simulate(final_time=30, input=inputs)\n\nplt.plot(simulation['time'], simulation['inputVariable'])\nplt.plot(simulation['time'], simulation['outputVariable'])\n\nplt.legend(['inputVariable', 'outputVariable'])\nplt.xlabel('time')\nplt.show()\n"},"input_ids":{"kind":"list like","value":[11748,2603,29487,8019,13,9078,29487,355,458,83,198,11748,299,32152,355,45941,198,6738,12972,69,11632,1330,3440,62,69,30300,198,198,19849,796,3440,62,69,30300,7,4458,14,47,671,11122,1015,13,69,30300,11537,198,198,15414,82,796,19203,15414,43015,3256,37456,256,25,642,13,1635,45941,13,6966,7,83,4008,198,14323,1741,796,2746,13,14323,5039,7,20311,62,2435,28,1270,11,5128,28,15414,82,8,198,198,489,83,13,29487,7,14323,1741,17816,2435,6,4357,18640,17816,15414,43015,6,12962,198,489,83,13,29487,7,14323,1741,17816,2435,6,4357,18640,17816,22915,43015,6,12962,198,198,489,83,13,1455,437,7,17816,15414,43015,3256,705,22915,43015,6,12962,198,489,83,13,87,18242,10786,2435,11537,198,489,83,13,12860,3419,198],"string":"[\n 11748,\n 2603,\n 29487,\n 8019,\n 13,\n 9078,\n 29487,\n 355,\n 458,\n 83,\n 198,\n 11748,\n 299,\n 32152,\n 355,\n 45941,\n 198,\n 6738,\n 12972,\n 69,\n 11632,\n 1330,\n 3440,\n 62,\n 69,\n 30300,\n 198,\n 198,\n 19849,\n 796,\n 3440,\n 62,\n 69,\n 30300,\n 7,\n 4458,\n 14,\n 47,\n 671,\n 11122,\n 1015,\n 13,\n 69,\n 30300,\n 11537,\n 198,\n 198,\n 15414,\n 82,\n 796,\n 19203,\n 15414,\n 43015,\n 3256,\n 37456,\n 256,\n 25,\n 642,\n 13,\n 1635,\n 45941,\n 13,\n 6966,\n 7,\n 83,\n 4008,\n 198,\n 14323,\n 1741,\n 796,\n 2746,\n 13,\n 14323,\n 5039,\n 7,\n 20311,\n 62,\n 2435,\n 28,\n 1270,\n 11,\n 5128,\n 28,\n 15414,\n 82,\n 8,\n 198,\n 198,\n 489,\n 83,\n 13,\n 29487,\n 7,\n 14323,\n 1741,\n 17816,\n 2435,\n 6,\n 4357,\n 18640,\n 17816,\n 15414,\n 43015,\n 6,\n 12962,\n 198,\n 489,\n 83,\n 13,\n 29487,\n 7,\n 14323,\n 1741,\n 17816,\n 2435,\n 6,\n 4357,\n 18640,\n 17816,\n 22915,\n 43015,\n 6,\n 12962,\n 198,\n 198,\n 489,\n 83,\n 13,\n 1455,\n 437,\n 7,\n 17816,\n 15414,\n 43015,\n 3256,\n 705,\n 22915,\n 43015,\n 6,\n 12962,\n 198,\n 489,\n 83,\n 13,\n 87,\n 18242,\n 10786,\n 2435,\n 11537,\n 198,\n 489,\n 83,\n 13,\n 12860,\n 3419,\n 198\n]"},"ratio_char_token":{"kind":"number","value":2.7115384615384617,"string":"2.711538"},"token_count":{"kind":"number","value":156,"string":"156"}}},{"rowIdx":4264,"cells":{"content":{"kind":"string","value":"# Requirements:\n# - fmtc\n# - nnedi3\n# From:\n# - https://github.com/mawen1250/VapourSynth-script\n# - https://github.com/HomeOfVapourSynthEvolution/mvsfunc\nimport vapoursynth as vs\nimport math\n\n\n\n\n\n\n## Gamma conversion functions from HAvsFunc-r18\n# Convert the luma channel to linear light\n\n# Convert back a clip to gamma-corrected luma\n\n# Apply the inverse sigmoid curve to a clip in linear luminance\n\n# Convert back a clip to linear luminance\n## Gamma conversion functions from HAvsFunc-r18"},"input_ids":{"kind":"list like","value":[2,24422,25,198,2,220,220,532,46996,66,198,2,220,220,532,299,2817,72,18,198,2,3574,25,198,2,220,220,532,3740,1378,12567,13,785,14,76,707,268,1065,1120,14,53,499,454,29934,400,12,12048,198,2,220,220,532,3740,1378,12567,13,785,14,16060,5189,53,499,454,29934,400,15200,2122,14,76,14259,20786,198,11748,38187,454,28869,400,355,3691,198,11748,10688,628,628,628,198,2235,43595,11315,5499,422,367,7355,82,37,19524,12,81,1507,198,2,38240,262,300,7487,6518,284,14174,1657,198,198,2,38240,736,257,10651,284,34236,12,30283,276,300,7487,198,198,2,27967,262,34062,264,17225,1868,12133,284,257,10651,287,14174,29763,590,198,198,2,38240,736,257,10651,284,14174,29763,590,198,2235,43595,11315,5499,422,367,7355,82,37,19524,12,81,1507],"string":"[\n 2,\n 24422,\n 25,\n 198,\n 2,\n 220,\n 220,\n 532,\n 46996,\n 66,\n 198,\n 2,\n 220,\n 220,\n 532,\n 299,\n 2817,\n 72,\n 18,\n 198,\n 2,\n 3574,\n 25,\n 198,\n 2,\n 220,\n 220,\n 532,\n 3740,\n 1378,\n 12567,\n 13,\n 785,\n 14,\n 76,\n 707,\n 268,\n 1065,\n 1120,\n 14,\n 53,\n 499,\n 454,\n 29934,\n 400,\n 12,\n 12048,\n 198,\n 2,\n 220,\n 220,\n 532,\n 3740,\n 1378,\n 12567,\n 13,\n 785,\n 14,\n 16060,\n 5189,\n 53,\n 499,\n 454,\n 29934,\n 400,\n 15200,\n 2122,\n 14,\n 76,\n 14259,\n 20786,\n 198,\n 11748,\n 38187,\n 454,\n 28869,\n 400,\n 355,\n 3691,\n 198,\n 11748,\n 10688,\n 628,\n 628,\n 628,\n 198,\n 2235,\n 43595,\n 11315,\n 5499,\n 422,\n 367,\n 7355,\n 82,\n 37,\n 19524,\n 12,\n 81,\n 1507,\n 198,\n 2,\n 38240,\n 262,\n 300,\n 7487,\n 6518,\n 284,\n 14174,\n 1657,\n 198,\n 198,\n 2,\n 38240,\n 736,\n 257,\n 10651,\n 284,\n 34236,\n 12,\n 30283,\n 276,\n 300,\n 7487,\n 198,\n 198,\n 2,\n 27967,\n 262,\n 34062,\n 264,\n 17225,\n 1868,\n 12133,\n 284,\n 257,\n 10651,\n 287,\n 14174,\n 29763,\n 590,\n 198,\n 198,\n 2,\n 38240,\n 736,\n 257,\n 10651,\n 284,\n 14174,\n 29763,\n 590,\n 198,\n 2235,\n 43595,\n 11315,\n 5499,\n 422,\n 367,\n 7355,\n 82,\n 37,\n 19524,\n 12,\n 81,\n 1507\n]"},"ratio_char_token":{"kind":"number","value":3.018181818181818,"string":"3.018182"},"token_count":{"kind":"number","value":165,"string":"165"}}},{"rowIdx":4265,"cells":{"content":{"kind":"string","value":"# -*- coding: utf-8 -*-\n# Generated by Django 1.9.7 on 2017-03-17 17:29\nfrom __future__ import unicode_literals\n\nfrom django.db import migrations, models\n\n"},"input_ids":{"kind":"list like","value":[2,532,9,12,19617,25,3384,69,12,23,532,9,12,198,2,2980,515,416,37770,352,13,24,13,22,319,2177,12,3070,12,1558,1596,25,1959,198,6738,11593,37443,834,1330,28000,1098,62,17201,874,198,198,6738,42625,14208,13,9945,1330,15720,602,11,4981,628],"string":"[\n 2,\n 532,\n 9,\n 12,\n 19617,\n 25,\n 3384,\n 69,\n 12,\n 23,\n 532,\n 9,\n 12,\n 198,\n 2,\n 2980,\n 515,\n 416,\n 37770,\n 352,\n 13,\n 24,\n 13,\n 22,\n 319,\n 2177,\n 12,\n 3070,\n 12,\n 1558,\n 1596,\n 25,\n 1959,\n 198,\n 6738,\n 11593,\n 37443,\n 834,\n 1330,\n 28000,\n 1098,\n 62,\n 17201,\n 874,\n 198,\n 198,\n 6738,\n 42625,\n 14208,\n 13,\n 9945,\n 1330,\n 15720,\n 602,\n 11,\n 4981,\n 628\n]"},"ratio_char_token":{"kind":"number","value":2.719298245614035,"string":"2.719298"},"token_count":{"kind":"number","value":57,"string":"57"}}},{"rowIdx":4266,"cells":{"content":{"kind":"string","value":"import numpy as np\nimport EZ.stderr as stderr\n\n\n\n\n\n\n\n\n\n"},"input_ids":{"kind":"list like","value":[11748,299,32152,355,45941,198,11748,412,57,13,301,1082,81,355,336,1082,81,628,628,628,628,628],"string":"[\n 11748,\n 299,\n 32152,\n 355,\n 45941,\n 198,\n 11748,\n 412,\n 57,\n 13,\n 301,\n 1082,\n 81,\n 355,\n 336,\n 1082,\n 81,\n 628,\n 628,\n 628,\n 628,\n 628\n]"},"ratio_char_token":{"kind":"number","value":2.5,"string":"2.5"},"token_count":{"kind":"number","value":22,"string":"22"}}},{"rowIdx":4267,"cells":{"content":{"kind":"string","value":"from PyQt5 import QtGui, QtCore, QtWidgets\nfrom collections import namedtuple\nimport time\nimport random\nimport torch\nimport torch.nn as nn\nimport torch.nn.functional as F\nfrom utils import utils\n\nHumanFeedback = namedtuple('HumanFeedback', ['feedback_value'])\nSavedAction = namedtuple('SavedAction', ['state', 'action', 'logprob'])\nSavedActionsWithFeedback = namedtuple('SavedActionsWithFeedback', ['saved_actions', 'final_feedback'])\n\n\n\n\n\n"},"input_ids":{"kind":"list like","value":[6738,9485,48,83,20,1330,33734,8205,72,11,33734,14055,11,33734,54,312,11407,198,6738,17268,1330,3706,83,29291,198,11748,640,198,11748,4738,198,11748,28034,198,11748,28034,13,20471,355,299,77,198,11748,28034,13,20471,13,45124,355,376,198,6738,3384,4487,1330,3384,4487,198,198,20490,18332,1891,796,3706,83,29291,10786,20490,18332,1891,3256,37250,12363,1891,62,8367,6,12962,198,50,9586,12502,796,3706,83,29291,10786,50,9586,12502,3256,37250,5219,3256,705,2673,3256,705,6404,1676,65,6,12962,198,50,9586,32,2733,3152,18332,1891,796,3706,83,29291,10786,50,9586,32,2733,3152,18332,1891,3256,37250,82,9586,62,4658,3256,705,20311,62,12363,1891,6,12962,628,628,628],"string":"[\n 6738,\n 9485,\n 48,\n 83,\n 20,\n 1330,\n 33734,\n 8205,\n 72,\n 11,\n 33734,\n 14055,\n 11,\n 33734,\n 54,\n 312,\n 11407,\n 198,\n 6738,\n 17268,\n 1330,\n 3706,\n 83,\n 29291,\n 198,\n 11748,\n 640,\n 198,\n 11748,\n 4738,\n 198,\n 11748,\n 28034,\n 198,\n 11748,\n 28034,\n 13,\n 20471,\n 355,\n 299,\n 77,\n 198,\n 11748,\n 28034,\n 13,\n 20471,\n 13,\n 45124,\n 355,\n 376,\n 198,\n 6738,\n 3384,\n 4487,\n 1330,\n 3384,\n 4487,\n 198,\n 198,\n 20490,\n 18332,\n 1891,\n 796,\n 3706,\n 83,\n 29291,\n 10786,\n 20490,\n 18332,\n 1891,\n 3256,\n 37250,\n 12363,\n 1891,\n 62,\n 8367,\n 6,\n 12962,\n 198,\n 50,\n 9586,\n 12502,\n 796,\n 3706,\n 83,\n 29291,\n 10786,\n 50,\n 9586,\n 12502,\n 3256,\n 37250,\n 5219,\n 3256,\n 705,\n 2673,\n 3256,\n 705,\n 6404,\n 1676,\n 65,\n 6,\n 12962,\n 198,\n 50,\n 9586,\n 32,\n 2733,\n 3152,\n 18332,\n 1891,\n 796,\n 3706,\n 83,\n 29291,\n 10786,\n 50,\n 9586,\n 32,\n 2733,\n 3152,\n 18332,\n 1891,\n 3256,\n 37250,\n 82,\n 9586,\n 62,\n 4658,\n 3256,\n 705,\n 20311,\n 62,\n 12363,\n 1891,\n 6,\n 12962,\n 628,\n 628,\n 628\n]"},"ratio_char_token":{"kind":"number","value":3.142857142857143,"string":"3.142857"},"token_count":{"kind":"number","value":140,"string":"140"}}},{"rowIdx":4268,"cells":{"content":{"kind":"string","value":"import sys, random, string, time\r\n\r\nrawBoard = ''\r\nmoves = 0\r\n# size -> int\r\n# generate board of size size x size filled with random chars\r\n# @returns none\r\n\r\n# textFile -> string\r\n# loads a board from a text file\r\n# @returns board in 2D list form\r\n\r\n# board -> 2D array\r\n# prints out the bogal board\r\n\r\n# coordinate -> list, board -> 2D list\r\n# @returns list of all possible next positions\r\n\r\n# possibleMoves -> 2D list, usedPath -> 2D list\r\n# @returns the list of all legal moves\r\n\r\n# Function used for setting up all prefix dictionaries.\r\n# This is not run with my program but was created because I'm lazy and\r\n# didn't want to create the prefix dictionaries by hand.\r\n\r\n# board -> 2D list, currPos -> list, path -> 2D list\r\n# boggle board, xy pair current position, path that got to that position\r\n# @returns tuple of the word created and whether it is a real word.\r\n\r\nif __name__ == \"__main__\":\r\n main()"},"input_ids":{"kind":"list like","value":[11748,25064,11,4738,11,4731,11,640,201,198,201,198,1831,29828,796,10148,201,198,76,5241,796,657,201,198,2,2546,4613,493,201,198,2,7716,3096,286,2546,2546,2124,2546,5901,351,4738,34534,201,198,2,2488,7783,82,4844,201,198,201,198,2,2420,8979,4613,4731,201,198,2,15989,257,3096,422,257,2420,2393,201,198,2,2488,7783,82,3096,287,362,35,1351,1296,201,198,201,198,2,3096,4613,362,35,7177,201,198,2,20842,503,262,22922,282,3096,201,198,201,198,2,20435,4613,1351,11,3096,4613,362,35,1351,201,198,2,2488,7783,82,1351,286,477,1744,1306,6116,201,198,201,198,2,1744,44,5241,4613,362,35,1351,11,973,15235,4613,362,35,1351,201,198,2,2488,7783,82,262,1351,286,477,2742,6100,201,198,201,198,2,15553,973,329,4634,510,477,21231,48589,3166,13,201,198,2,770,318,407,1057,351,616,1430,475,373,2727,780,314,1101,16931,290,201,198,2,1422,470,765,284,2251,262,21231,48589,3166,416,1021,13,201,198,201,198,2,3096,4613,362,35,1351,11,1090,81,21604,4613,1351,11,3108,4613,362,35,1351,201,198,2,275,20258,3096,11,2124,88,5166,1459,2292,11,3108,326,1392,284,326,2292,201,198,2,2488,7783,82,46545,286,262,1573,2727,290,1771,340,318,257,1103,1573,13,201,198,201,198,361,11593,3672,834,6624,366,834,12417,834,1298,201,198,220,220,220,1388,3419],"string":"[\n 11748,\n 25064,\n 11,\n 4738,\n 11,\n 4731,\n 11,\n 640,\n 201,\n 198,\n 201,\n 198,\n 1831,\n 29828,\n 796,\n 10148,\n 201,\n 198,\n 76,\n 5241,\n 796,\n 657,\n 201,\n 198,\n 2,\n 2546,\n 4613,\n 493,\n 201,\n 198,\n 2,\n 7716,\n 3096,\n 286,\n 2546,\n 2546,\n 2124,\n 2546,\n 5901,\n 351,\n 4738,\n 34534,\n 201,\n 198,\n 2,\n 2488,\n 7783,\n 82,\n 4844,\n 201,\n 198,\n 201,\n 198,\n 2,\n 2420,\n 8979,\n 4613,\n 4731,\n 201,\n 198,\n 2,\n 15989,\n 257,\n 3096,\n 422,\n 257,\n 2420,\n 2393,\n 201,\n 198,\n 2,\n 2488,\n 7783,\n 82,\n 3096,\n 287,\n 362,\n 35,\n 1351,\n 1296,\n 201,\n 198,\n 201,\n 198,\n 2,\n 3096,\n 4613,\n 362,\n 35,\n 7177,\n 201,\n 198,\n 2,\n 20842,\n 503,\n 262,\n 22922,\n 282,\n 3096,\n 201,\n 198,\n 201,\n 198,\n 2,\n 20435,\n 4613,\n 1351,\n 11,\n 3096,\n 4613,\n 362,\n 35,\n 1351,\n 201,\n 198,\n 2,\n 2488,\n 7783,\n 82,\n 1351,\n 286,\n 477,\n 1744,\n 1306,\n 6116,\n 201,\n 198,\n 201,\n 198,\n 2,\n 1744,\n 44,\n 5241,\n 4613,\n 362,\n 35,\n 1351,\n 11,\n 973,\n 15235,\n 4613,\n 362,\n 35,\n 1351,\n 201,\n 198,\n 2,\n 2488,\n 7783,\n 82,\n 262,\n 1351,\n 286,\n 477,\n 2742,\n 6100,\n 201,\n 198,\n 201,\n 198,\n 2,\n 15553,\n 973,\n 329,\n 4634,\n 510,\n 477,\n 21231,\n 48589,\n 3166,\n 13,\n 201,\n 198,\n 2,\n 770,\n 318,\n 407,\n 1057,\n 351,\n 616,\n 1430,\n 475,\n 373,\n 2727,\n 780,\n 314,\n 1101,\n 16931,\n 290,\n 201,\n 198,\n 2,\n 1422,\n 470,\n 765,\n 284,\n 2251,\n 262,\n 21231,\n 48589,\n 3166,\n 416,\n 1021,\n 13,\n 201,\n 198,\n 201,\n 198,\n 2,\n 3096,\n 4613,\n 362,\n 35,\n 1351,\n 11,\n 1090,\n 81,\n 21604,\n 4613,\n 1351,\n 11,\n 3108,\n 4613,\n 362,\n 35,\n 1351,\n 201,\n 198,\n 2,\n 275,\n 20258,\n 3096,\n 11,\n 2124,\n 88,\n 5166,\n 1459,\n 2292,\n 11,\n 3108,\n 326,\n 1392,\n 284,\n 326,\n 2292,\n 201,\n 198,\n 2,\n 2488,\n 7783,\n 82,\n 46545,\n 286,\n 262,\n 1573,\n 2727,\n 290,\n 1771,\n 340,\n 318,\n 257,\n 1103,\n 1573,\n 13,\n 201,\n 198,\n 201,\n 198,\n 361,\n 11593,\n 3672,\n 834,\n 6624,\n 366,\n 834,\n 12417,\n 834,\n 1298,\n 201,\n 198,\n 220,\n 220,\n 220,\n 1388,\n 3419\n]"},"ratio_char_token":{"kind":"number","value":3.1964912280701756,"string":"3.196491"},"token_count":{"kind":"number","value":285,"string":"285"}}},{"rowIdx":4269,"cells":{"content":{"kind":"string","value":"\nmyFunc(\"That's neat\")\n"},"input_ids":{"kind":"list like","value":[198,1820,37,19524,7203,2504,338,15049,4943,198],"string":"[\n 198,\n 1820,\n 37,\n 19524,\n 7203,\n 2504,\n 338,\n 15049,\n 4943,\n 198\n]"},"ratio_char_token":{"kind":"number","value":2.3,"string":"2.3"},"token_count":{"kind":"number","value":10,"string":"10"}}},{"rowIdx":4270,"cells":{"content":{"kind":"string","value":"import logging\nimport os\n\nfrom netmiko import ConnectHandler\nfrom paramiko import AutoAddPolicy, SSHClient\nfrom routeros_diff.parser import RouterOSConfig\nfrom scp import SCPClient\n\n\n\n\n\n\n"},"input_ids":{"kind":"list like","value":[11748,18931,198,11748,28686,198,198,6738,2010,76,12125,1330,8113,25060,198,6738,5772,12125,1330,11160,4550,36727,11,33825,11792,198,6738,20264,418,62,26069,13,48610,1330,48538,2640,16934,198,6738,629,79,1330,17527,11792,628,628,628,198],"string":"[\n 11748,\n 18931,\n 198,\n 11748,\n 28686,\n 198,\n 198,\n 6738,\n 2010,\n 76,\n 12125,\n 1330,\n 8113,\n 25060,\n 198,\n 6738,\n 5772,\n 12125,\n 1330,\n 11160,\n 4550,\n 36727,\n 11,\n 33825,\n 11792,\n 198,\n 6738,\n 20264,\n 418,\n 62,\n 26069,\n 13,\n 48610,\n 1330,\n 48538,\n 2640,\n 16934,\n 198,\n 6738,\n 629,\n 79,\n 1330,\n 17527,\n 11792,\n 628,\n 628,\n 628,\n 198\n]"},"ratio_char_token":{"kind":"number","value":3.8958333333333335,"string":"3.895833"},"token_count":{"kind":"number","value":48,"string":"48"}}},{"rowIdx":4271,"cells":{"content":{"kind":"string","value":"import pytest_pydocstyle\n\n# https://docs.pytest.org/en/5.2.2/writing_plugins.html#testing-plugins\npytest_plugins = [\"pytester\"]\n\n\n\n\n\n\n\n\n\n\n"},"input_ids":{"kind":"list like","value":[11748,12972,9288,62,79,5173,420,7635,198,198,2,3740,1378,31628,13,9078,9288,13,2398,14,268,14,20,13,17,13,17,14,16502,62,37390,13,6494,2,33407,12,37390,198,9078,9288,62,37390,796,14631,9078,4879,353,8973,628,628,628,628,628,198],"string":"[\n 11748,\n 12972,\n 9288,\n 62,\n 79,\n 5173,\n 420,\n 7635,\n 198,\n 198,\n 2,\n 3740,\n 1378,\n 31628,\n 13,\n 9078,\n 9288,\n 13,\n 2398,\n 14,\n 268,\n 14,\n 20,\n 13,\n 17,\n 13,\n 17,\n 14,\n 16502,\n 62,\n 37390,\n 13,\n 6494,\n 2,\n 33407,\n 12,\n 37390,\n 198,\n 9078,\n 9288,\n 62,\n 37390,\n 796,\n 14631,\n 9078,\n 4879,\n 353,\n 8973,\n 628,\n 628,\n 628,\n 628,\n 628,\n 198\n]"},"ratio_char_token":{"kind":"number","value":2.5555555555555554,"string":"2.555556"},"token_count":{"kind":"number","value":54,"string":"54"}}},{"rowIdx":4272,"cells":{"content":{"kind":"string","value":"from peewee import *\nimport peeweedbevolve\n\nfrom models_data import Tweet, Branch, calldb\n\ndb = calldb()\n\n\ncreate_tables()\n"},"input_ids":{"kind":"list like","value":[6738,613,413,1453,1330,1635,198,11748,613,413,2308,1350,85,6442,198,198,6738,4981,62,7890,1330,18752,11,20551,11,2386,335,65,198,198,9945,796,2386,335,65,3419,628,198,17953,62,83,2977,3419,198],"string":"[\n 6738,\n 613,\n 413,\n 1453,\n 1330,\n 1635,\n 198,\n 11748,\n 613,\n 413,\n 2308,\n 1350,\n 85,\n 6442,\n 198,\n 198,\n 6738,\n 4981,\n 62,\n 7890,\n 1330,\n 18752,\n 11,\n 20551,\n 11,\n 2386,\n 335,\n 65,\n 198,\n 198,\n 9945,\n 796,\n 2386,\n 335,\n 65,\n 3419,\n 628,\n 198,\n 17953,\n 62,\n 83,\n 2977,\n 3419,\n 198\n]"},"ratio_char_token":{"kind":"number","value":2.7954545454545454,"string":"2.795455"},"token_count":{"kind":"number","value":44,"string":"44"}}},{"rowIdx":4273,"cells":{"content":{"kind":"string","value":"import json\nimport base64\nfrom rest_framework import status\nfrom rest_framework.test import APITestCase\nfrom rest_framework.authtoken.models import Token\nfrom .models import User\n\n# Create your tests here.\nACCEPT_STATUS = \"A\"\nREJECT_STATUS = \"R\"\nUNFRIEND_STATUS = \"R\"\n\n\n"},"input_ids":{"kind":"list like","value":[11748,33918,198,11748,2779,2414,198,6738,1334,62,30604,1330,3722,198,6738,1334,62,30604,13,9288,1330,3486,2043,395,20448,198,6738,1334,62,30604,13,18439,30001,13,27530,1330,29130,198,6738,764,27530,1330,11787,198,198,2,13610,534,5254,994,13,198,2246,42006,62,35744,2937,796,366,32,1,198,2200,23680,62,35744,2937,796,366,49,1,198,4944,37,7112,10619,62,35744,2937,796,366,49,1,628,198],"string":"[\n 11748,\n 33918,\n 198,\n 11748,\n 2779,\n 2414,\n 198,\n 6738,\n 1334,\n 62,\n 30604,\n 1330,\n 3722,\n 198,\n 6738,\n 1334,\n 62,\n 30604,\n 13,\n 9288,\n 1330,\n 3486,\n 2043,\n 395,\n 20448,\n 198,\n 6738,\n 1334,\n 62,\n 30604,\n 13,\n 18439,\n 30001,\n 13,\n 27530,\n 1330,\n 29130,\n 198,\n 6738,\n 764,\n 27530,\n 1330,\n 11787,\n 198,\n 198,\n 2,\n 13610,\n 534,\n 5254,\n 994,\n 13,\n 198,\n 2246,\n 42006,\n 62,\n 35744,\n 2937,\n 796,\n 366,\n 32,\n 1,\n 198,\n 2200,\n 23680,\n 62,\n 35744,\n 2937,\n 796,\n 366,\n 49,\n 1,\n 198,\n 4944,\n 37,\n 7112,\n 10619,\n 62,\n 35744,\n 2937,\n 796,\n 366,\n 49,\n 1,\n 628,\n 198\n]"},"ratio_char_token":{"kind":"number","value":3.176470588235294,"string":"3.176471"},"token_count":{"kind":"number","value":85,"string":"85"}}},{"rowIdx":4274,"cells":{"content":{"kind":"string","value":"# -*- coding: utf-8 -*-\n################################################################################\n# Copyright (C) 2009 Travis Shirk \n#\n# This program is free software; you can redistribute it and/or modify\n# it under the terms of the GNU General Public License as published by\n# the Free Software Foundation; either version 2 of the License, or\n# (at your option) any later version.\n#\n# This program is distributed in the hope that it will be useful,\n# but WITHOUT ANY WARRANTY; without even the implied warranty of\n# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n# GNU General Public License for more details.\n#\n# You should have received a copy of the GNU General Public License\n# along with this program; if not, write to the Free Software\n# Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA\n#\n################################################################################\nfrom __future__ import print_function\nimport os\nfrom eyed3 import LOCAL_ENCODING as ENCODING\nfrom eyed3.utils import formatSize, formatTime\nfrom eyed3.utils.console import (printMsg, printError, printWarning, boldText,\n Fore, HEADER_COLOR)\nfrom eyed3.plugins import LoaderPlugin\n\n"},"input_ids":{"kind":"list like","value":[2,532,9,12,19617,25,3384,69,12,23,532,9,12,198,29113,29113,14468,198,2,220,15069,357,34,8,3717,220,19804,911,14232,1279,83,16956,31,79,672,1140,13,785,29,198,2,198,2,220,770,1430,318,1479,3788,26,345,460,17678,4163,340,290,14,273,13096,198,2,220,340,739,262,2846,286,262,22961,3611,5094,13789,355,3199,416,198,2,220,262,3232,10442,5693,26,2035,2196,362,286,262,13789,11,393,198,2,220,357,265,534,3038,8,597,1568,2196,13,198,2,198,2,220,770,1430,318,9387,287,262,2911,326,340,481,307,4465,11,198,2,220,475,42881,15529,34764,56,26,1231,772,262,17142,18215,286,198,2,220,34482,3398,1565,5603,25382,393,376,46144,7473,317,16652,2149,37232,33079,48933,13,220,4091,262,198,2,220,22961,3611,5094,13789,329,517,3307,13,198,2,198,2,220,921,815,423,2722,257,4866,286,262,22961,3611,5094,13789,198,2,220,1863,351,428,1430,26,611,407,11,3551,284,262,3232,10442,198,2,220,5693,11,3457,1539,7863,10857,8474,11,26264,25508,11,6182,11,8779,220,7816,16243,12,12952,22,220,4916,198,2,198,29113,29113,14468,198,6738,11593,37443,834,1330,3601,62,8818,198,11748,28686,198,6738,45320,18,1330,37347,1847,62,24181,3727,2751,355,412,7792,3727,2751,198,6738,45320,18,13,26791,1330,5794,10699,11,5794,7575,198,6738,45320,18,13,26791,13,41947,1330,357,4798,50108,11,3601,12331,11,3601,20361,11,10758,8206,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,4558,11,39837,1137,62,46786,8,198,6738,45320,18,13,37390,1330,8778,263,37233,628],"string":"[\n 2,\n 532,\n 9,\n 12,\n 19617,\n 25,\n 3384,\n 69,\n 12,\n 23,\n 532,\n 9,\n 12,\n 198,\n 29113,\n 29113,\n 14468,\n 198,\n 2,\n 220,\n 15069,\n 357,\n 34,\n 8,\n 3717,\n 220,\n 19804,\n 911,\n 14232,\n 1279,\n 83,\n 16956,\n 31,\n 79,\n 672,\n 1140,\n 13,\n 785,\n 29,\n 198,\n 2,\n 198,\n 2,\n 220,\n 770,\n 1430,\n 318,\n 1479,\n 3788,\n 26,\n 345,\n 460,\n 17678,\n 4163,\n 340,\n 290,\n 14,\n 273,\n 13096,\n 198,\n 2,\n 220,\n 340,\n 739,\n 262,\n 2846,\n 286,\n 262,\n 22961,\n 3611,\n 5094,\n 13789,\n 355,\n 3199,\n 416,\n 198,\n 2,\n 220,\n 262,\n 3232,\n 10442,\n 5693,\n 26,\n 2035,\n 2196,\n 362,\n 286,\n 262,\n 13789,\n 11,\n 393,\n 198,\n 2,\n 220,\n 357,\n 265,\n 534,\n 3038,\n 8,\n 597,\n 1568,\n 2196,\n 13,\n 198,\n 2,\n 198,\n 2,\n 220,\n 770,\n 1430,\n 318,\n 9387,\n 287,\n 262,\n 2911,\n 326,\n 340,\n 481,\n 307,\n 4465,\n 11,\n 198,\n 2,\n 220,\n 475,\n 42881,\n 15529,\n 34764,\n 56,\n 26,\n 1231,\n 772,\n 262,\n 17142,\n 18215,\n 286,\n 198,\n 2,\n 220,\n 34482,\n 3398,\n 1565,\n 5603,\n 25382,\n 393,\n 376,\n 46144,\n 7473,\n 317,\n 16652,\n 2149,\n 37232,\n 33079,\n 48933,\n 13,\n 220,\n 4091,\n 262,\n 198,\n 2,\n 220,\n 22961,\n 3611,\n 5094,\n 13789,\n 329,\n 517,\n 3307,\n 13,\n 198,\n 2,\n 198,\n 2,\n 220,\n 921,\n 815,\n 423,\n 2722,\n 257,\n 4866,\n 286,\n 262,\n 22961,\n 3611,\n 5094,\n 13789,\n 198,\n 2,\n 220,\n 1863,\n 351,\n 428,\n 1430,\n 26,\n 611,\n 407,\n 11,\n 3551,\n 284,\n 262,\n 3232,\n 10442,\n 198,\n 2,\n 220,\n 5693,\n 11,\n 3457,\n 1539,\n 7863,\n 10857,\n 8474,\n 11,\n 26264,\n 25508,\n 11,\n 6182,\n 11,\n 8779,\n 220,\n 7816,\n 16243,\n 12,\n 12952,\n 22,\n 220,\n 4916,\n 198,\n 2,\n 198,\n 29113,\n 29113,\n 14468,\n 198,\n 6738,\n 11593,\n 37443,\n 834,\n 1330,\n 3601,\n 62,\n 8818,\n 198,\n 11748,\n 28686,\n 198,\n 6738,\n 45320,\n 18,\n 1330,\n 37347,\n 1847,\n 62,\n 24181,\n 3727,\n 2751,\n 355,\n 412,\n 7792,\n 3727,\n 2751,\n 198,\n 6738,\n 45320,\n 18,\n 13,\n 26791,\n 1330,\n 5794,\n 10699,\n 11,\n 5794,\n 7575,\n 198,\n 6738,\n 45320,\n 18,\n 13,\n 26791,\n 13,\n 41947,\n 1330,\n 357,\n 4798,\n 50108,\n 11,\n 3601,\n 12331,\n 11,\n 3601,\n 20361,\n 11,\n 10758,\n 8206,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 4558,\n 11,\n 39837,\n 1137,\n 62,\n 46786,\n 8,\n 198,\n 6738,\n 45320,\n 18,\n 13,\n 37390,\n 1330,\n 8778,\n 263,\n 37233,\n 628\n]"},"ratio_char_token":{"kind":"number","value":3.6647398843930636,"string":"3.66474"},"token_count":{"kind":"number","value":346,"string":"346"}}},{"rowIdx":4275,"cells":{"content":{"kind":"string","value":"# -*- coding: utf-8 -*-\n\"\"\"Clothing_Recommender Project .ipynb\n\nAutomatically generated by Colaboratory.\n\nOriginal file is located at\n https://colab.research.google.com/drive/1nw0ewNdkx8o3WULAp2ynhHpbq1kVq7YZ\n\nClean the data and use input\n\"\"\"\n\n## Import and Organize Data ##\n\nimport pandas as pd \nimport numpy as np \nimport matplotlib.pyplot as plt \nfrom sklearn.model_selection import train_test_split\n\n#read clean file (downloaded from Task 1)\ndf=pd.read_csv('CleanedData.csv', sep=',') \n\n#Pivot table (clothingID, age, rating) - Nan is replaced with 0 \ntrain = df.pivot_table(index='Age', columns='ClothingID', values='Rating')\n\n#sort train data\ntrain = train.sort_values('Age', ascending=True)\n\n###Create a greeting \n\nprint(\"Welcome, let us recommend a product for you\")\n\n#Take user input \n\nName =input('Please enter your name: ')\nAge = int(input('Please enter your age: '))\nCID_user = int(input(\"Enter Clothing ID: \")) #90\nwhile CID_user not in train.columns:\n print('Invalid: No data for ID')\n CID_user = int(input(\"Enter valid Clothing ID: \"))\nrating_user = float(input(\"Enter Rating for Clothing ID: \")) #4\n\n##use this later (if user has more than one rating to enter)\n#entries = int(input(\"How many ratings will you enter? \"))\n#for x in range(entries):\n\n#create array with user data \nuserArray = pd.DataFrame().reindex_like(train)\nuserArray.dropna(thresh=1,inplace=True)\nuserArray.loc[Age,CID_user] = rating_user #enter user data \n\nfrom sklearn.metrics.pairwise import nan_euclidean_distances\n\n#find euclidean distance between all rows of train and first row of test *ignores nan\ndistance = np.zeros((0,2)) #create empty array \nfor index, row in train.iterrows(): #iterate through each row of train \n result = float(nan_euclidean_distances([userArray.loc[Age]], [train.loc[index]])) #compute the euclidean distance between two rows, *confirmed it works thru excel\n result_array = [index, result] #place age and distance into an array \n distance = np.append(distance,[result_array],axis= 0) \n\n#convert array to a dataframe\ndfDistance = pd.DataFrame({'Age': distance[:, 0], 'E-Distance': distance[:, 1]})\ndfDistance.head()\n\nk= 5\n#sort by distance, reset the index \ndfDistance = dfDistance.sort_values('E-Distance', ascending=True).head(20)\ndfDistance = dfDistance.reset_index(drop=True) \ndfDistance.drop(dfDistance[dfDistance.index > k-1].index, inplace=True)\ndfDistance.head()\n\n#NOTE: for calculating the predicted rating, could use an IDW Interpolation function shown here https://stackoverflow.com/questions/3104781/inverse-distance-weighted-idw-interpolation-with-python\n#just using mean of each to test a solution, will come back and try more complex/accurate functions later \n\n#assume k of 5####\nk_array = pd.DataFrame().reindex_like(train)\nmeanArray = pd.DataFrame()\n\nfor x in dfDistance['Age']:\n k_array = k_array.append([train.loc[x]]) #make array of the k closest ages\n\nmeanArray = meanArray.append(k_array.mean(),ignore_index = True).transpose()\nmeanArray.dropna(axis=0,inplace=True)\nmeanArray.columns = [\"Mean\"]\nmeanArray = meanArray[meanArray.Mean == 5]\n\nrecommend = list(meanArray.index.values)\nprint(\"recommended ClothingID's are: \")\nprint(recommend)\n\n#feedback, clothingID (choose top 5), department \n#reverse lookup clothingID for department \n# feedback (choose first 3)\n\n"},"input_ids":{"kind":"list like","value":[2,532,9,12,19617,25,3384,69,12,23,532,9,12,198,37811,2601,24834,62,24898,2194,4935,764,541,2047,65,198,198,38062,4142,7560,416,1623,4820,2870,13,198,198,20556,2393,318,5140,379,198,220,220,220,3740,1378,4033,397,13,34033,13,13297,13,785,14,19472,14,16,47516,15,413,45,34388,87,23,78,18,54,6239,25189,17,2047,71,39,40842,80,16,74,53,80,22,56,57,198,198,32657,262,1366,290,779,5128,198,37811,198,198,2235,17267,290,7221,1096,6060,22492,198,198,11748,19798,292,355,279,67,220,198,11748,299,32152,355,45941,220,198,11748,2603,29487,8019,13,9078,29487,355,458,83,220,198,6738,1341,35720,13,19849,62,49283,1330,4512,62,9288,62,35312,198,198,2,961,3424,2393,357,2902,14578,422,15941,352,8,198,7568,28,30094,13,961,62,40664,10786,32657,276,6601,13,40664,3256,41767,28,3256,11537,220,198,198,2,47,45785,3084,357,565,24834,2389,11,2479,11,7955,8,532,18008,318,6928,351,657,220,198,27432,796,47764,13,79,45785,62,11487,7,9630,11639,23396,3256,15180,11639,2601,24834,2389,3256,3815,11639,29321,11537,198,198,2,30619,4512,1366,198,27432,796,4512,13,30619,62,27160,10786,23396,3256,41988,28,17821,8,198,198,21017,16447,257,31933,220,198,198,4798,7203,14618,11,1309,514,4313,257,1720,329,345,4943,198,198,2,12322,2836,5128,220,198,198,5376,796,15414,10786,5492,3802,534,1438,25,705,8,198,23396,796,493,7,15414,10786,5492,3802,534,2479,25,705,4008,198,34,2389,62,7220,796,493,7,15414,7203,17469,48921,4522,25,366,4008,1303,3829,198,4514,327,2389,62,7220,407,287,4512,13,28665,82,25,198,220,3601,10786,44651,25,1400,1366,329,4522,11537,198,220,327,2389,62,7220,796,493,7,15414,7203,17469,4938,48921,4522,25,366,4008,198,8821,62,7220,796,12178,7,15414,7203,17469,12028,329,48921,4522,25,366,4008,1303,19,198,198,2235,1904,428,1568,357,361,2836,468,517,621,530,7955,284,3802,8,198,2,298,1678,796,493,7,15414,7203,2437,867,10109,481,345,3802,30,366,4008,198,2,1640,2124,287,2837,7,298,1678,2599,198,198,2,17953,7177,351,2836,1366,220,198,7220,19182,796,279,67,13,6601,19778,22446,260,9630,62,2339,7,27432,8,198,7220,19182,13,14781,2616,7,400,3447,28,16,11,259,5372,28,17821,8,198,7220,19182,13,17946,58,23396,11,34,2389,62,7220,60,796,7955,62,7220,1303,9255,2836,1366,220,198,198,6738,1341,35720,13,4164,10466,13,24874,3083,1330,15709,62,12496,565,485,272,62,17080,1817,198,198,2,19796,304,36616,485,272,5253,1022,477,15274,286,4512,290,717,5752,286,1332,220,1635,570,2850,15709,198,30246,796,45941,13,9107,418,19510,15,11,17,4008,1303,17953,6565,7177,220,198,1640,6376,11,5752,287,4512,13,2676,8516,33529,220,1303,2676,378,832,1123,5752,286,4512,220,198,220,1255,796,12178,7,12647,62,12496,565,485,272,62,17080,1817,26933,7220,19182,13,17946,58,23396,60,4357,685,27432,13,17946,58,9630,11907,4008,1303,5589,1133,262,304,36616,485,272,5253,1022,734,15274,11,1635,36349,340,2499,33834,27336,198,220,1255,62,18747,796,685,9630,11,1255,60,1303,5372,2479,290,5253,656,281,7177,220,198,220,5253,796,45941,13,33295,7,30246,17414,20274,62,18747,4357,22704,28,657,8,220,198,198,2,1102,1851,7177,284,257,1366,14535,198,7568,45767,796,279,67,13,6601,19778,15090,6,23396,10354,5253,58,45299,657,4357,705,36,12,45767,10354,5253,58,45299,352,60,30072,198,7568,45767,13,2256,3419,198,198,74,28,642,198,2,30619,416,5253,11,13259,262,6376,220,198,7568,45767,796,47764,45767,13,30619,62,27160,10786,36,12,45767,3256,41988,28,17821,737,2256,7,1238,8,198,7568,45767,796,47764,45767,13,42503,62,9630,7,14781,28,17821,8,220,198,7568,45767,13,14781,7,7568,45767,58,7568,45767,13,9630,1875,479,12,16,4083,9630,11,287,5372,28,17821,8,198,7568,45767,13,2256,3419,198,198,2,16580,25,329,26019,262,11001,7955,11,714,779,281,4522,54,4225,16104,341,2163,3402,994,3740,1378,25558,2502,11125,13,785,14,6138,507,14,26717,2857,6659,14,259,4399,12,30246,12,6551,276,12,312,86,12,3849,16104,341,12,4480,12,29412,198,2,3137,1262,1612,286,1123,284,1332,257,4610,11,481,1282,736,290,1949,517,3716,14,4134,15537,5499,1568,220,198,198,2,562,2454,479,286,642,4242,198,74,62,18747,796,279,67,13,6601,19778,22446,260,9630,62,2339,7,27432,8,198,32604,19182,796,279,67,13,6601,19778,3419,198,198,1640,2124,287,47764,45767,17816,23396,6,5974,198,220,479,62,18747,796,479,62,18747,13,33295,26933,27432,13,17946,58,87,11907,8,1303,15883,7177,286,262,479,11706,9337,198,198,32604,19182,796,1612,19182,13,33295,7,74,62,18747,13,32604,22784,46430,62,9630,796,6407,737,7645,3455,3419,198,32604,19182,13,14781,2616,7,22704,28,15,11,259,5372,28,17821,8,198,32604,19182,13,28665,82,796,14631,5308,272,8973,198,32604,19182,796,1612,19182,58,32604,19182,13,5308,272,6624,642,60,198,198,47335,437,796,1351,7,32604,19182,13,9630,13,27160,8,198,4798,7203,47335,1631,48921,2389,338,389,25,366,8,198,4798,7,47335,437,8,198,198,2,12363,1891,11,9528,2389,357,6679,577,1353,642,828,5011,220,198,2,50188,35847,9528,2389,329,5011,220,198,2,7538,357,6679,577,717,513,8,628],"string":"[\n 2,\n 532,\n 9,\n 12,\n 19617,\n 25,\n 3384,\n 69,\n 12,\n 23,\n 532,\n 9,\n 12,\n 198,\n 37811,\n 2601,\n 24834,\n 62,\n 24898,\n 2194,\n 4935,\n 764,\n 541,\n 2047,\n 65,\n 198,\n 198,\n 38062,\n 4142,\n 7560,\n 416,\n 1623,\n 4820,\n 2870,\n 13,\n 198,\n 198,\n 20556,\n 2393,\n 318,\n 5140,\n 379,\n 198,\n 220,\n 220,\n 220,\n 3740,\n 1378,\n 4033,\n 397,\n 13,\n 34033,\n 13,\n 13297,\n 13,\n 785,\n 14,\n 19472,\n 14,\n 16,\n 47516,\n 15,\n 413,\n 45,\n 34388,\n 87,\n 23,\n 78,\n 18,\n 54,\n 6239,\n 25189,\n 17,\n 2047,\n 71,\n 39,\n 40842,\n 80,\n 16,\n 74,\n 53,\n 80,\n 22,\n 56,\n 57,\n 198,\n 198,\n 32657,\n 262,\n 1366,\n 290,\n 779,\n 5128,\n 198,\n 37811,\n 198,\n 198,\n 2235,\n 17267,\n 290,\n 7221,\n 1096,\n 6060,\n 22492,\n 198,\n 198,\n 11748,\n 19798,\n 292,\n 355,\n 279,\n 67,\n 220,\n 198,\n 11748,\n 299,\n 32152,\n 355,\n 45941,\n 220,\n 198,\n 11748,\n 2603,\n 29487,\n 8019,\n 13,\n 9078,\n 29487,\n 355,\n 458,\n 83,\n 220,\n 198,\n 6738,\n 1341,\n 35720,\n 13,\n 19849,\n 62,\n 49283,\n 1330,\n 4512,\n 62,\n 9288,\n 62,\n 35312,\n 198,\n 198,\n 2,\n 961,\n 3424,\n 2393,\n 357,\n 2902,\n 14578,\n 422,\n 15941,\n 352,\n 8,\n 198,\n 7568,\n 28,\n 30094,\n 13,\n 961,\n 62,\n 40664,\n 10786,\n 32657,\n 276,\n 6601,\n 13,\n 40664,\n 3256,\n 41767,\n 28,\n 3256,\n 11537,\n 220,\n 198,\n 198,\n 2,\n 47,\n 45785,\n 3084,\n 357,\n 565,\n 24834,\n 2389,\n 11,\n 2479,\n 11,\n 7955,\n 8,\n 532,\n 18008,\n 318,\n 6928,\n 351,\n 657,\n 220,\n 198,\n 27432,\n 796,\n 47764,\n 13,\n 79,\n 45785,\n 62,\n 11487,\n 7,\n 9630,\n 11639,\n 23396,\n 3256,\n 15180,\n 11639,\n 2601,\n 24834,\n 2389,\n 3256,\n 3815,\n 11639,\n 29321,\n 11537,\n 198,\n 198,\n 2,\n 30619,\n 4512,\n 1366,\n 198,\n 27432,\n 796,\n 4512,\n 13,\n 30619,\n 62,\n 27160,\n 10786,\n 23396,\n 3256,\n 41988,\n 28,\n 17821,\n 8,\n 198,\n 198,\n 21017,\n 16447,\n 257,\n 31933,\n 220,\n 198,\n 198,\n 4798,\n 7203,\n 14618,\n 11,\n 1309,\n 514,\n 4313,\n 257,\n 1720,\n 329,\n 345,\n 4943,\n 198,\n 198,\n 2,\n 12322,\n 2836,\n 5128,\n 220,\n 198,\n 198,\n 5376,\n 796,\n 15414,\n 10786,\n 5492,\n 3802,\n 534,\n 1438,\n 25,\n 705,\n 8,\n 198,\n 23396,\n 796,\n 493,\n 7,\n 15414,\n 10786,\n 5492,\n 3802,\n 534,\n 2479,\n 25,\n 705,\n 4008,\n 198,\n 34,\n 2389,\n 62,\n 7220,\n 796,\n 493,\n 7,\n 15414,\n 7203,\n 17469,\n 48921,\n 4522,\n 25,\n 366,\n 4008,\n 1303,\n 3829,\n 198,\n 4514,\n 327,\n 2389,\n 62,\n 7220,\n 407,\n 287,\n 4512,\n 13,\n 28665,\n 82,\n 25,\n 198,\n 220,\n 3601,\n 10786,\n 44651,\n 25,\n 1400,\n 1366,\n 329,\n 4522,\n 11537,\n 198,\n 220,\n 327,\n 2389,\n 62,\n 7220,\n 796,\n 493,\n 7,\n 15414,\n 7203,\n 17469,\n 4938,\n 48921,\n 4522,\n 25,\n 366,\n 4008,\n 198,\n 8821,\n 62,\n 7220,\n 796,\n 12178,\n 7,\n 15414,\n 7203,\n 17469,\n 12028,\n 329,\n 48921,\n 4522,\n 25,\n 366,\n 4008,\n 1303,\n 19,\n 198,\n 198,\n 2235,\n 1904,\n 428,\n 1568,\n 357,\n 361,\n 2836,\n 468,\n 517,\n 621,\n 530,\n 7955,\n 284,\n 3802,\n 8,\n 198,\n 2,\n 298,\n 1678,\n 796,\n 493,\n 7,\n 15414,\n 7203,\n 2437,\n 867,\n 10109,\n 481,\n 345,\n 3802,\n 30,\n 366,\n 4008,\n 198,\n 2,\n 1640,\n 2124,\n 287,\n 2837,\n 7,\n 298,\n 1678,\n 2599,\n 198,\n 198,\n 2,\n 17953,\n 7177,\n 351,\n 2836,\n 1366,\n 220,\n 198,\n 7220,\n 19182,\n 796,\n 279,\n 67,\n 13,\n 6601,\n 19778,\n 22446,\n 260,\n 9630,\n 62,\n 2339,\n 7,\n 27432,\n 8,\n 198,\n 7220,\n 19182,\n 13,\n 14781,\n 2616,\n 7,\n 400,\n 3447,\n 28,\n 16,\n 11,\n 259,\n 5372,\n 28,\n 17821,\n 8,\n 198,\n 7220,\n 19182,\n 13,\n 17946,\n 58,\n 23396,\n 11,\n 34,\n 2389,\n 62,\n 7220,\n 60,\n 796,\n 7955,\n 62,\n 7220,\n 1303,\n 9255,\n 2836,\n 1366,\n 220,\n 198,\n 198,\n 6738,\n 1341,\n 35720,\n 13,\n 4164,\n 10466,\n 13,\n 24874,\n 3083,\n 1330,\n 15709,\n 62,\n 12496,\n 565,\n 485,\n 272,\n 62,\n 17080,\n 1817,\n 198,\n 198,\n 2,\n 19796,\n 304,\n 36616,\n 485,\n 272,\n 5253,\n 1022,\n 477,\n 15274,\n 286,\n 4512,\n 290,\n 717,\n 5752,\n 286,\n 1332,\n 220,\n 1635,\n 570,\n 2850,\n 15709,\n 198,\n 30246,\n 796,\n 45941,\n 13,\n 9107,\n 418,\n 19510,\n 15,\n 11,\n 17,\n 4008,\n 1303,\n 17953,\n 6565,\n 7177,\n 220,\n 198,\n 1640,\n 6376,\n 11,\n 5752,\n 287,\n 4512,\n 13,\n 2676,\n 8516,\n 33529,\n 220,\n 1303,\n 2676,\n 378,\n 832,\n 1123,\n 5752,\n 286,\n 4512,\n 220,\n 198,\n 220,\n 1255,\n 796,\n 12178,\n 7,\n 12647,\n 62,\n 12496,\n 565,\n 485,\n 272,\n 62,\n 17080,\n 1817,\n 26933,\n 7220,\n 19182,\n 13,\n 17946,\n 58,\n 23396,\n 60,\n 4357,\n 685,\n 27432,\n 13,\n 17946,\n 58,\n 9630,\n 11907,\n 4008,\n 1303,\n 5589,\n 1133,\n 262,\n 304,\n 36616,\n 485,\n 272,\n 5253,\n 1022,\n 734,\n 15274,\n 11,\n 1635,\n 36349,\n 340,\n 2499,\n 33834,\n 27336,\n 198,\n 220,\n 1255,\n 62,\n 18747,\n 796,\n 685,\n 9630,\n 11,\n 1255,\n 60,\n 1303,\n 5372,\n 2479,\n 290,\n 5253,\n 656,\n 281,\n 7177,\n 220,\n 198,\n 220,\n 5253,\n 796,\n 45941,\n 13,\n 33295,\n 7,\n 30246,\n 17414,\n 20274,\n 62,\n 18747,\n 4357,\n 22704,\n 28,\n 657,\n 8,\n 220,\n 198,\n 198,\n 2,\n 1102,\n 1851,\n 7177,\n 284,\n 257,\n 1366,\n 14535,\n 198,\n 7568,\n 45767,\n 796,\n 279,\n 67,\n 13,\n 6601,\n 19778,\n 15090,\n 6,\n 23396,\n 10354,\n 5253,\n 58,\n 45299,\n 657,\n 4357,\n 705,\n 36,\n 12,\n 45767,\n 10354,\n 5253,\n 58,\n 45299,\n 352,\n 60,\n 30072,\n 198,\n 7568,\n 45767,\n 13,\n 2256,\n 3419,\n 198,\n 198,\n 74,\n 28,\n 642,\n 198,\n 2,\n 30619,\n 416,\n 5253,\n 11,\n 13259,\n 262,\n 6376,\n 220,\n 198,\n 7568,\n 45767,\n 796,\n 47764,\n 45767,\n 13,\n 30619,\n 62,\n 27160,\n 10786,\n 36,\n 12,\n 45767,\n 3256,\n 41988,\n 28,\n 17821,\n 737,\n 2256,\n 7,\n 1238,\n 8,\n 198,\n 7568,\n 45767,\n 796,\n 47764,\n 45767,\n 13,\n 42503,\n 62,\n 9630,\n 7,\n 14781,\n 28,\n 17821,\n 8,\n 220,\n 198,\n 7568,\n 45767,\n 13,\n 14781,\n 7,\n 7568,\n 45767,\n 58,\n 7568,\n 45767,\n 13,\n 9630,\n 1875,\n 479,\n 12,\n 16,\n 4083,\n 9630,\n 11,\n 287,\n 5372,\n 28,\n 17821,\n 8,\n 198,\n 7568,\n 45767,\n 13,\n 2256,\n 3419,\n 198,\n 198,\n 2,\n 16580,\n 25,\n 329,\n 26019,\n 262,\n 11001,\n 7955,\n 11,\n 714,\n 779,\n 281,\n 4522,\n 54,\n 4225,\n 16104,\n 341,\n 2163,\n 3402,\n 994,\n 3740,\n 1378,\n 25558,\n 2502,\n 11125,\n 13,\n 785,\n 14,\n 6138,\n 507,\n 14,\n 26717,\n 2857,\n 6659,\n 14,\n 259,\n 4399,\n 12,\n 30246,\n 12,\n 6551,\n 276,\n 12,\n 312,\n 86,\n 12,\n 3849,\n 16104,\n 341,\n 12,\n 4480,\n 12,\n 29412,\n 198,\n 2,\n 3137,\n 1262,\n 1612,\n 286,\n 1123,\n 284,\n 1332,\n 257,\n 4610,\n 11,\n 481,\n 1282,\n 736,\n 290,\n 1949,\n 517,\n 3716,\n 14,\n 4134,\n 15537,\n 5499,\n 1568,\n 220,\n 198,\n 198,\n 2,\n 562,\n 2454,\n 479,\n 286,\n 642,\n 4242,\n 198,\n 74,\n 62,\n 18747,\n 796,\n 279,\n 67,\n 13,\n 6601,\n 19778,\n 22446,\n 260,\n 9630,\n 62,\n 2339,\n 7,\n 27432,\n 8,\n 198,\n 32604,\n 19182,\n 796,\n 279,\n 67,\n 13,\n 6601,\n 19778,\n 3419,\n 198,\n 198,\n 1640,\n 2124,\n 287,\n 47764,\n 45767,\n 17816,\n 23396,\n 6,\n 5974,\n 198,\n 220,\n 479,\n 62,\n 18747,\n 796,\n 479,\n 62,\n 18747,\n 13,\n 33295,\n 26933,\n 27432,\n 13,\n 17946,\n 58,\n 87,\n 11907,\n 8,\n 1303,\n 15883,\n 7177,\n 286,\n 262,\n 479,\n 11706,\n 9337,\n 198,\n 198,\n 32604,\n 19182,\n 796,\n 1612,\n 19182,\n 13,\n 33295,\n 7,\n 74,\n 62,\n 18747,\n 13,\n 32604,\n 22784,\n 46430,\n 62,\n 9630,\n 796,\n 6407,\n 737,\n 7645,\n 3455,\n 3419,\n 198,\n 32604,\n 19182,\n 13,\n 14781,\n 2616,\n 7,\n 22704,\n 28,\n 15,\n 11,\n 259,\n 5372,\n 28,\n 17821,\n 8,\n 198,\n 32604,\n 19182,\n 13,\n 28665,\n 82,\n 796,\n 14631,\n 5308,\n 272,\n 8973,\n 198,\n 32604,\n 19182,\n 796,\n 1612,\n 19182,\n 58,\n 32604,\n 19182,\n 13,\n 5308,\n 272,\n 6624,\n 642,\n 60,\n 198,\n 198,\n 47335,\n 437,\n 796,\n 1351,\n 7,\n 32604,\n 19182,\n 13,\n 9630,\n 13,\n 27160,\n 8,\n 198,\n 4798,\n 7203,\n 47335,\n 1631,\n 48921,\n 2389,\n 338,\n 389,\n 25,\n 366,\n 8,\n 198,\n 4798,\n 7,\n 47335,\n 437,\n 8,\n 198,\n 198,\n 2,\n 12363,\n 1891,\n 11,\n 9528,\n 2389,\n 357,\n 6679,\n 577,\n 1353,\n 642,\n 828,\n 5011,\n 220,\n 198,\n 2,\n 50188,\n 35847,\n 9528,\n 2389,\n 329,\n 5011,\n 220,\n 198,\n 2,\n 7538,\n 357,\n 6679,\n 577,\n 717,\n 513,\n 8,\n 628\n]"},"ratio_char_token":{"kind":"number","value":3.05637707948244,"string":"3.056377"},"token_count":{"kind":"number","value":1082,"string":"1,082"}}},{"rowIdx":4276,"cells":{"content":{"kind":"string","value":"from rtree.index import Rtree\nfrom src.features.helper import *\nimport sys\nimport logging\nimport time\n\n\n\nif __name__ == '__main__':\n train_data = sys.argv[1]\n q_size = int(sys.argv[2])\n main(train_data, q_size)\n"},"input_ids":{"kind":"list like","value":[6738,374,21048,13,9630,1330,371,21048,198,6738,12351,13,40890,13,2978,525,1330,1635,198,11748,25064,198,11748,18931,198,11748,640,628,198,198,361,11593,3672,834,6624,705,834,12417,834,10354,198,220,220,220,4512,62,7890,796,25064,13,853,85,58,16,60,198,220,220,220,10662,62,7857,796,493,7,17597,13,853,85,58,17,12962,198,220,220,220,1388,7,27432,62,7890,11,10662,62,7857,8,198],"string":"[\n 6738,\n 374,\n 21048,\n 13,\n 9630,\n 1330,\n 371,\n 21048,\n 198,\n 6738,\n 12351,\n 13,\n 40890,\n 13,\n 2978,\n 525,\n 1330,\n 1635,\n 198,\n 11748,\n 25064,\n 198,\n 11748,\n 18931,\n 198,\n 11748,\n 640,\n 628,\n 198,\n 198,\n 361,\n 11593,\n 3672,\n 834,\n 6624,\n 705,\n 834,\n 12417,\n 834,\n 10354,\n 198,\n 220,\n 220,\n 220,\n 4512,\n 62,\n 7890,\n 796,\n 25064,\n 13,\n 853,\n 85,\n 58,\n 16,\n 60,\n 198,\n 220,\n 220,\n 220,\n 10662,\n 62,\n 7857,\n 796,\n 493,\n 7,\n 17597,\n 13,\n 853,\n 85,\n 58,\n 17,\n 12962,\n 198,\n 220,\n 220,\n 220,\n 1388,\n 7,\n 27432,\n 62,\n 7890,\n 11,\n 10662,\n 62,\n 7857,\n 8,\n 198\n]"},"ratio_char_token":{"kind":"number","value":2.528735632183908,"string":"2.528736"},"token_count":{"kind":"number","value":87,"string":"87"}}},{"rowIdx":4277,"cells":{"content":{"kind":"string","value":"from app import app\nimport logging\n\nlogging.basicConfig(level=logging.WARNING)\n\nif __name__ == \"__main__\":\n app.debug = True\n app.run()"},"input_ids":{"kind":"list like","value":[6738,598,1330,598,198,11748,18931,198,198,6404,2667,13,35487,16934,7,5715,28,6404,2667,13,31502,8,198,198,361,11593,3672,834,6624,366,834,12417,834,1298,198,220,220,220,598,13,24442,796,6407,198,220,220,220,598,13,5143,3419],"string":"[\n 6738,\n 598,\n 1330,\n 598,\n 198,\n 11748,\n 18931,\n 198,\n 198,\n 6404,\n 2667,\n 13,\n 35487,\n 16934,\n 7,\n 5715,\n 28,\n 6404,\n 2667,\n 13,\n 31502,\n 8,\n 198,\n 198,\n 361,\n 11593,\n 3672,\n 834,\n 6624,\n 366,\n 834,\n 12417,\n 834,\n 1298,\n 198,\n 220,\n 220,\n 220,\n 598,\n 13,\n 24442,\n 796,\n 6407,\n 198,\n 220,\n 220,\n 220,\n 598,\n 13,\n 5143,\n 3419\n]"},"ratio_char_token":{"kind":"number","value":2.764705882352941,"string":"2.764706"},"token_count":{"kind":"number","value":51,"string":"51"}}},{"rowIdx":4278,"cells":{"content":{"kind":"string","value":"# Copyright 2013-2018 Lawrence Livermore National Security, LLC and other\n# Spack Project Developers. See the top-level COPYRIGHT file for details.\n#\n# SPDX-License-Identifier: (Apache-2.0 OR MIT)\n\nfrom spack import *\n\n\nclass RAffypdnn(RPackage):\n \"\"\"The package contains functions to perform the PDNN method\n described by Li Zhang et al.\"\"\"\n\n homepage = \"https://www.bioconductor.org/packages/affypdnn/\"\n git = \"https://git.bioconductor.org/packages/affypdnn.git\"\n\n version('1.50.0', commit='97ff68e9f51f31333c0330435ea23b212b3ed18a')\n\n depends_on('r@3.4.0:3.4.9', when='@1.50.0')\n depends_on('r-affy', type=('build', 'run'))\n"},"input_ids":{"kind":"list like","value":[2,15069,2211,12,7908,13914,45036,3549,2351,4765,11,11419,290,584,198,2,1338,441,4935,34152,13,4091,262,1353,12,5715,27975,38162,9947,2393,329,3307,13,198,2,198,2,30628,55,12,34156,12,33234,7483,25,357,25189,4891,12,17,13,15,6375,17168,8,198,198,6738,599,441,1330,1635,628,198,4871,17926,487,4464,67,20471,7,49,27813,2599,198,220,220,220,37227,464,5301,4909,5499,284,1620,262,14340,6144,2446,198,220,220,220,3417,416,7455,19439,2123,435,526,15931,628,220,220,220,34940,796,366,5450,1378,2503,13,8482,420,40990,13,2398,14,43789,14,2001,4464,67,20471,30487,198,220,220,220,17606,220,220,220,220,220,796,366,5450,1378,18300,13,8482,420,40990,13,2398,14,43789,14,2001,4464,67,20471,13,18300,1,628,220,220,220,2196,10786,16,13,1120,13,15,3256,4589,11639,5607,487,3104,68,24,69,4349,69,25838,2091,66,3070,21288,2327,18213,1954,65,21777,65,18,276,1507,64,11537,628,220,220,220,8338,62,261,10786,81,31,18,13,19,13,15,25,18,13,19,13,24,3256,618,11639,31,16,13,1120,13,15,11537,198,220,220,220,8338,62,261,10786,81,12,2001,88,3256,2099,28,10786,11249,3256,705,5143,6,4008,198],"string":"[\n 2,\n 15069,\n 2211,\n 12,\n 7908,\n 13914,\n 45036,\n 3549,\n 2351,\n 4765,\n 11,\n 11419,\n 290,\n 584,\n 198,\n 2,\n 1338,\n 441,\n 4935,\n 34152,\n 13,\n 4091,\n 262,\n 1353,\n 12,\n 5715,\n 27975,\n 38162,\n 9947,\n 2393,\n 329,\n 3307,\n 13,\n 198,\n 2,\n 198,\n 2,\n 30628,\n 55,\n 12,\n 34156,\n 12,\n 33234,\n 7483,\n 25,\n 357,\n 25189,\n 4891,\n 12,\n 17,\n 13,\n 15,\n 6375,\n 17168,\n 8,\n 198,\n 198,\n 6738,\n 599,\n 441,\n 1330,\n 1635,\n 628,\n 198,\n 4871,\n 17926,\n 487,\n 4464,\n 67,\n 20471,\n 7,\n 49,\n 27813,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 464,\n 5301,\n 4909,\n 5499,\n 284,\n 1620,\n 262,\n 14340,\n 6144,\n 2446,\n 198,\n 220,\n 220,\n 220,\n 3417,\n 416,\n 7455,\n 19439,\n 2123,\n 435,\n 526,\n 15931,\n 628,\n 220,\n 220,\n 220,\n 34940,\n 796,\n 366,\n 5450,\n 1378,\n 2503,\n 13,\n 8482,\n 420,\n 40990,\n 13,\n 2398,\n 14,\n 43789,\n 14,\n 2001,\n 4464,\n 67,\n 20471,\n 30487,\n 198,\n 220,\n 220,\n 220,\n 17606,\n 220,\n 220,\n 220,\n 220,\n 220,\n 796,\n 366,\n 5450,\n 1378,\n 18300,\n 13,\n 8482,\n 420,\n 40990,\n 13,\n 2398,\n 14,\n 43789,\n 14,\n 2001,\n 4464,\n 67,\n 20471,\n 13,\n 18300,\n 1,\n 628,\n 220,\n 220,\n 220,\n 2196,\n 10786,\n 16,\n 13,\n 1120,\n 13,\n 15,\n 3256,\n 4589,\n 11639,\n 5607,\n 487,\n 3104,\n 68,\n 24,\n 69,\n 4349,\n 69,\n 25838,\n 2091,\n 66,\n 3070,\n 21288,\n 2327,\n 18213,\n 1954,\n 65,\n 21777,\n 65,\n 18,\n 276,\n 1507,\n 64,\n 11537,\n 628,\n 220,\n 220,\n 220,\n 8338,\n 62,\n 261,\n 10786,\n 81,\n 31,\n 18,\n 13,\n 19,\n 13,\n 15,\n 25,\n 18,\n 13,\n 19,\n 13,\n 24,\n 3256,\n 618,\n 11639,\n 31,\n 16,\n 13,\n 1120,\n 13,\n 15,\n 11537,\n 198,\n 220,\n 220,\n 220,\n 8338,\n 62,\n 261,\n 10786,\n 81,\n 12,\n 2001,\n 88,\n 3256,\n 2099,\n 28,\n 10786,\n 11249,\n 3256,\n 705,\n 5143,\n 6,\n 4008,\n 198\n]"},"ratio_char_token":{"kind":"number","value":2.6330645161290325,"string":"2.633065"},"token_count":{"kind":"number","value":248,"string":"248"}}},{"rowIdx":4279,"cells":{"content":{"kind":"string","value":"#######################################################################\n\"\"\"\n @author: Emanuele Musumeci (https://github.com/EmanueleMusumeci) \n \n PopulationInitializer abstract class and basic initializer that generates\n a population of random binary strings of a given length\n\n\"\"\"\n#######################################################################\nimport abc\n\nimport numpy as np\nfrom numpy import random\n\n#Base abstract class for population initialization methods, that generate a population for the genetic optimization process\n\n#Generate population of random binary strings of a given length\n\n #Generates a single binary individual\n \n #Generates a population of random binary individuals\n \n\n\n"},"input_ids":{"kind":"list like","value":[29113,29113,4242,21017,198,37811,198,2488,9800,25,412,805,518,293,2629,388,721,72,357,5450,1378,12567,13,785,14,36,805,518,293,10694,388,721,72,8,220,198,220,198,20133,24243,7509,12531,1398,290,4096,4238,7509,326,18616,198,257,3265,286,4738,13934,13042,286,257,1813,4129,198,198,37811,198,29113,29113,4242,21017,198,11748,450,66,198,198,11748,299,32152,355,45941,198,6738,299,32152,1330,4738,198,198,2,14881,12531,1398,329,3265,37588,5050,11,326,7716,257,3265,329,262,8513,23989,1429,198,198,2,8645,378,3265,286,4738,13934,13042,286,257,1813,4129,628,220,220,220,1303,8645,689,257,2060,13934,1981,198,220,220,220,220,220,220,220,220,198,220,220,220,1303,8645,689,257,3265,286,4738,13934,3925,198,220,220,220,220,220,220,220,220,628,198],"string":"[\n 29113,\n 29113,\n 4242,\n 21017,\n 198,\n 37811,\n 198,\n 2488,\n 9800,\n 25,\n 412,\n 805,\n 518,\n 293,\n 2629,\n 388,\n 721,\n 72,\n 357,\n 5450,\n 1378,\n 12567,\n 13,\n 785,\n 14,\n 36,\n 805,\n 518,\n 293,\n 10694,\n 388,\n 721,\n 72,\n 8,\n 220,\n 198,\n 220,\n 198,\n 20133,\n 24243,\n 7509,\n 12531,\n 1398,\n 290,\n 4096,\n 4238,\n 7509,\n 326,\n 18616,\n 198,\n 257,\n 3265,\n 286,\n 4738,\n 13934,\n 13042,\n 286,\n 257,\n 1813,\n 4129,\n 198,\n 198,\n 37811,\n 198,\n 29113,\n 29113,\n 4242,\n 21017,\n 198,\n 11748,\n 450,\n 66,\n 198,\n 198,\n 11748,\n 299,\n 32152,\n 355,\n 45941,\n 198,\n 6738,\n 299,\n 32152,\n 1330,\n 4738,\n 198,\n 198,\n 2,\n 14881,\n 12531,\n 1398,\n 329,\n 3265,\n 37588,\n 5050,\n 11,\n 326,\n 7716,\n 257,\n 3265,\n 329,\n 262,\n 8513,\n 23989,\n 1429,\n 198,\n 198,\n 2,\n 8645,\n 378,\n 3265,\n 286,\n 4738,\n 13934,\n 13042,\n 286,\n 257,\n 1813,\n 4129,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 8645,\n 689,\n 257,\n 2060,\n 13934,\n 1981,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 8645,\n 689,\n 257,\n 3265,\n 286,\n 4738,\n 13934,\n 3925,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 628,\n 198\n]"},"ratio_char_token":{"kind":"number","value":4.41717791411043,"string":"4.417178"},"token_count":{"kind":"number","value":163,"string":"163"}}},{"rowIdx":4280,"cells":{"content":{"kind":"string","value":"\nimport os\nimport subprocess\n\nfrom .utils import checkdir, get_condor_version, requires_command\nfrom .basenode import BaseNode\nfrom .job import Job\n\n\n\ndef _iter_job_args(job):\n \"\"\"\n Iterates over Job args list. Yields the name (and JobArg) for each node\n to be used when adding job to a Dagman (i.e. the name in the\n 'JOB name job_submit_file' line).\n\n Parameters\n ----------\n job : Job\n Job to iterate over. Note that the submit file for job must be built\n prior to using _iter_job_args.\n\n Yields\n ------\n node_name : str\n Node name to use in Dagman object.\n job_arg : JobArg namedtuple\n Job argument object (``arg``, ``name``, ``retry`` attributes).\n \"\"\"\n if not isinstance(job, Job):\n raise TypeError('Expecting a Job object, got {}'.format(type(job)))\n if not getattr(job, '_built', False):\n raise ValueError('Job {} must be built before adding it '\n 'to a Dagman'.format(job.name))\n\n if len(job.args) == 0:\n raise StopIteration\n else:\n for idx, job_arg in enumerate(job):\n arg, name, retry = job_arg\n if name is not None:\n node_name = '{}_{}'.format(job.submit_name, name)\n else:\n node_name = '{}_arg_{}'.format(job.submit_name, idx)\n yield node_name, job_arg\n\n\ndef _get_parent_child_string(node):\n \"\"\"Constructs the parent/child line for node to be added to a Dagman\n \"\"\"\n\n if not isinstance(node, BaseNode):\n raise ValueError('Expecting a Job or Dagman object, '\n 'got {}'.format(type(node)))\n\n parent_string = 'Parent'\n for parent_node in node.parents:\n if isinstance(parent_node, Job) and len(parent_node) > 0:\n for node_name, job_arg in _iter_job_args(parent_node):\n parent_string += ' {}'.format(node_name)\n else:\n parent_string += ' {}'.format(parent_node.submit_name)\n\n child_string = 'Child'\n if isinstance(node, Job) and len(node) > 0:\n for node_name, job_arg in _iter_job_args(node):\n child_string += ' {}'.format(node_name)\n else:\n child_string += ' {}'.format(node.submit_name)\n\n parent_child_string = parent_string + ' ' + child_string\n\n return parent_child_string\n\n\nclass Dagman(BaseNode):\n \"\"\"\n Dagman object consisting of a series of Jobs and sub-Dagmans to manage.\n\n Note that the ``submit`` parameter can be explicitly given or configured\n by setting the ``PYCONDOR_SUBMIT_DIR`` environment variable. An explicitly\n given value for ``submit`` will be used over the environment variable,\n while the environment variable will be used over a default value.\n\n Parameters\n ----------\n name : str\n Name of the Dagman instance. This will also be the name of the\n corresponding error, log, output, and submit files associated with\n this Dagman.\n\n submit : str\n Path to directory where condor dagman submit files will be written\n (defaults to the directory was the Dagman was submitted from).\n\n extra_lines : list or None, optional\n List of additional lines to be added to submit file.\n\n .. versionadded:: 0.1.1\n\n dag : Dagman, optional\n If specified, Dagman will be added to dag as a subdag\n (default is None).\n\n verbose : int, optional\n Level of logging verbosity option are 0-warning, 1-info,\n 2-debugging (default is 0).\n\n Attributes\n ----------\n jobs : list\n The list of jobs for this Dagman instance to manage.\n\n parents : list\n List of parent Jobs and Dagmans. Ensures that Jobs and Dagmans in the\n parents list will complete before this Dagman is submitted to HTCondor.\n\n children : list\n List of child Jobs and Dagmans. Ensures that Jobs and Dagmans in the\n children list will be submitted only after this Dagman has completed.\n \"\"\"\n\n def add_job(self, job):\n \"\"\"Add job to Dagman\n\n Parameters\n ----------\n job : Job\n Job to append to Dagman jobs list.\n\n\n Returns\n -------\n self : object\n Returns self.\n \"\"\"\n self._add_node(job)\n\n return self\n\n def add_subdag(self, dag):\n \"\"\"Add dag to Dagman\n\n Parameters\n ----------\n dag : Dagman\n Subdag to append to Dagman jobs list.\n\n\n Returns\n -------\n self : object\n Returns self.\n \"\"\"\n self._add_node(dag)\n\n return self\n\n def _get_job_arg_lines(self, job, fancyname):\n \"\"\"Constructs the lines to be added to a Dagman related to job\n \"\"\"\n\n if not isinstance(job, Job):\n raise TypeError('Expecting a Job object, got {}'.format(type(job)))\n if not getattr(job, '_built', False):\n raise ValueError('Job {} must be built before adding it '\n 'to a Dagman'.format(job.name))\n\n job_arg_lines = []\n if len(job.args) == 0:\n job_line = 'JOB {} {}'.format(job.submit_name, job.submit_file)\n job_arg_lines.append(job_line)\n else:\n for node_name, job_arg in _iter_job_args(job):\n # Check that '.' or '+' are not in node_name\n if '.' in node_name or '+' in node_name:\n self._has_bad_node_names = True\n\n arg, name, retry = job_arg\n # Add JOB line with Job submit file\n job_line = 'JOB {} {}'.format(node_name, job.submit_file)\n job_arg_lines.append(job_line)\n # Add job ARGS line for command line arguments\n arg_line = 'VARS {} ARGS=\"{}\"'.format(node_name, arg)\n job_arg_lines.append(arg_line)\n # Define job_name variable if there are arg_names for job\n if job._has_arg_names:\n if name is not None:\n job_name = node_name\n else:\n job_name = job.submit_name\n job_name_line = 'VARS {} job_name=\"{}\"'.format(node_name,\n job_name)\n job_arg_lines.append(job_name_line)\n # Add retry line for Job\n if retry is not None:\n retry_line = 'Retry {} {}'.format(node_name, retry)\n job_arg_lines.append(retry_line)\n\n return job_arg_lines\n\n def build(self, makedirs=True, fancyname=True):\n \"\"\"Build and saves the submit file for Dagman\n\n Parameters\n ----------\n makedirs : bool, optional\n If Job directories (e.g. error, output, log, submit) don't exist,\n create them (default is ``True``).\n\n fancyname : bool, optional\n Appends the date and unique id number to error, log, output, and\n submit files. For example, instead of ``dagname.submit`` the submit\n file becomes ``dagname_YYYYMMD_id``. This is useful when running\n several Dags/Jobs of the same name (default is ``True``).\n\n Returns\n -------\n self : object\n Returns self.\n \"\"\"\n if getattr(self, '_built', False):\n self.logger.warning(\n '{} submit file has already been built. '\n 'Skipping the build process...'.format(self.name))\n return self\n\n name = self._get_fancyname() if fancyname else self.name\n submit_file = os.path.join(self.submit, '{}.submit'.format(name))\n self.submit_file = submit_file\n self.submit_name = name\n checkdir(self.submit_file, makedirs)\n\n # Build submit files for all nodes in self.nodes\n # Note: nodes must be built before the submit file for self is built\n for node_index, node in enumerate(self.nodes, start=1):\n if isinstance(node, Job):\n node._build_from_dag(makedirs, fancyname)\n elif isinstance(node, Dagman):\n node.build(makedirs, fancyname)\n else:\n raise TypeError('Nodes must be either a Job or Dagman object')\n\n # Write dag submit file\n self.logger.info('Building DAG submission file {}...'.format(\n self.submit_file))\n lines = []\n parent_child_lines = []\n for node_index, node in enumerate(self.nodes, start=1):\n self.logger.info('Working on {} [{} of {}]'.format(node.name,\n node_index, len(self.nodes)))\n # Build the BaseNode submit file\n if isinstance(node, Job):\n # Add Job variables to Dagman submit file\n job_arg_lines = self._get_job_arg_lines(node, fancyname)\n lines.extend(job_arg_lines)\n elif isinstance(node, Dagman):\n subdag_string = _get_subdag_string(node)\n lines.append(subdag_string)\n else:\n raise TypeError('Nodes must be either a Job or Dagman object')\n # Add parent/child information, if necessary\n if node.hasparents():\n parent_child_string = _get_parent_child_string(node)\n parent_child_lines.append(parent_child_string)\n\n # Add any extra lines to submit file, if specified\n if self.extra_lines:\n lines.extend(self.extra_lines)\n\n # Write lines to dag submit file\n with open(submit_file, 'w') as dag:\n dag.writelines('\\n'.join(lines + ['\\n#Inter-job dependencies'] +\n parent_child_lines))\n\n self._built = True\n self.logger.info('Dagman submission file for {} successfully '\n 'built!'.format(self.name))\n\n return self\n\n @requires_command('condor_submit_dag')\n def submit_dag(self, submit_options=None):\n \"\"\"Submits Dagman to condor\n\n Parameters\n ----------\n submit_options : str, optional\n Options to be passed to ``condor_submit_dag`` for this Dagman\n (see the `condor_submit_dag documentation\n `_\n for possible options).\n\n Returns\n -------\n self : object\n Returns self.\n \"\"\"\n # Construct condor_submit_dag command\n command = 'condor_submit_dag'\n if submit_options is not None:\n command += ' {}'.format(submit_options)\n command += ' {}'.format(self.submit_file)\n submit_dag_proc = subprocess.Popen([command],\n stdout=subprocess.PIPE,\n shell=True)\n # Check that there are no illegal node names for newer condor versions\n condor_version = get_condor_version()\n if condor_version >= (8, 7, 2) and self._has_bad_node_names:\n err = (\"Found an illegal character (either '+' or '.') in the \"\n \"name for a node in Dagman {}. As of HTCondor version \"\n \"8.7.2, '+' and '.' are prohibited in Dagman node names. \"\n \"This means a '+' or '.' character is in a Job name, \"\n \"Dagman name, or the name for a Job argument.\".format(\n self.name))\n raise RuntimeError(err)\n\n # Execute condor_submit_dag command\n out, err = submit_dag_proc.communicate()\n print(out)\n\n return self\n\n @requires_command('condor_submit_dag')\n def build_submit(self, makedirs=True, fancyname=True, submit_options=None):\n \"\"\"Calls build and submit sequentially\n\n Parameters\n ----------\n makedirs : bool, optional\n If Job directories (e.g. error, output, log, submit) don't exist,\n create them (default is ``True``).\n\n fancyname : bool, optional\n Appends the date and unique id number to error, log, output, and\n submit files. For example, instead of ``dagname.submit`` the submit\n file becomes ``dagname_YYYYMMD_id``. This is useful when running\n several Dags/Jobs of the same name (default is ``True``).\n\n submit_options : str, optional\n Options to be passed to ``condor_submit_dag`` for this Dagman\n (see the `condor_submit_dag documentation\n `_\n for possible options).\n\n Returns\n -------\n self : object\n Returns self.\n \"\"\"\n self.build(makedirs, fancyname)\n self.submit_dag(submit_options=submit_options)\n\n return self\n"},"input_ids":{"kind":"list like","value":[198,11748,28686,198,11748,850,14681,198,198,6738,764,26791,1330,2198,15908,11,651,62,17561,273,62,9641,11,4433,62,21812,198,6738,764,12093,268,1098,1330,7308,19667,198,6738,764,21858,1330,15768,628,198,198,4299,4808,2676,62,21858,62,22046,7,21858,2599,198,220,220,220,37227,198,220,220,220,40806,689,625,15768,26498,1351,13,575,1164,82,262,1438,357,392,15768,28100,8,329,1123,10139,198,220,220,220,284,307,973,618,4375,1693,284,257,32167,805,357,72,13,68,13,262,1438,287,262,198,220,220,220,705,41,9864,1438,1693,62,46002,62,7753,6,1627,737,628,220,220,220,40117,198,220,220,220,24200,438,198,220,220,220,1693,1058,15768,198,220,220,220,220,220,220,220,15768,284,11629,378,625,13,5740,326,262,9199,2393,329,1693,1276,307,3170,198,220,220,220,220,220,220,220,3161,284,1262,4808,2676,62,21858,62,22046,13,628,220,220,220,575,1164,82,198,220,220,220,40103,198,220,220,220,10139,62,3672,1058,965,198,220,220,220,220,220,220,220,19081,1438,284,779,287,32167,805,2134,13,198,220,220,220,1693,62,853,1058,15768,28100,3706,83,29291,198,220,220,220,220,220,220,220,15768,4578,2134,357,15506,853,15506,11,7559,3672,15506,11,7559,1186,563,15506,12608,737,198,220,220,220,37227,198,220,220,220,611,407,318,39098,7,21858,11,15768,2599,198,220,220,220,220,220,220,220,5298,5994,12331,10786,3109,35570,257,15768,2134,11,1392,23884,4458,18982,7,4906,7,21858,22305,198,220,220,220,611,407,651,35226,7,21858,11,705,62,18780,3256,10352,2599,198,220,220,220,220,220,220,220,5298,11052,12331,10786,33308,23884,1276,307,3170,878,4375,340,705,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,705,1462,257,32167,805,4458,18982,7,21858,13,3672,4008,628,220,220,220,611,18896,7,21858,13,22046,8,6624,657,25,198,220,220,220,220,220,220,220,5298,13707,29993,341,198,220,220,220,2073,25,198,220,220,220,220,220,220,220,329,4686,87,11,1693,62,853,287,27056,378,7,21858,2599,198,220,220,220,220,220,220,220,220,220,220,220,1822,11,1438,11,1005,563,796,1693,62,853,198,220,220,220,220,220,220,220,220,220,220,220,611,1438,318,407,6045,25,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,10139,62,3672,796,705,90,92,23330,92,4458,18982,7,21858,13,46002,62,3672,11,1438,8,198,220,220,220,220,220,220,220,220,220,220,220,2073,25,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,10139,62,3672,796,705,90,92,62,853,23330,92,4458,18982,7,21858,13,46002,62,3672,11,4686,87,8,198,220,220,220,220,220,220,220,220,220,220,220,7800,10139,62,3672,11,1693,62,853,628,198,4299,4808,1136,62,8000,62,9410,62,8841,7,17440,2599,198,220,220,220,37227,42316,82,262,2560,14,9410,1627,329,10139,284,307,2087,284,257,32167,805,198,220,220,220,37227,628,220,220,220,611,407,318,39098,7,17440,11,7308,19667,2599,198,220,220,220,220,220,220,220,5298,11052,12331,10786,3109,35570,257,15768,393,32167,805,2134,11,705,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,705,23442,23884,4458,18982,7,4906,7,17440,22305,628,220,220,220,2560,62,8841,796,705,24546,6,198,220,220,220,329,2560,62,17440,287,10139,13,23743,25,198,220,220,220,220,220,220,220,611,318,39098,7,8000,62,17440,11,15768,8,290,18896,7,8000,62,17440,8,1875,657,25,198,220,220,220,220,220,220,220,220,220,220,220,329,10139,62,3672,11,1693,62,853,287,4808,2676,62,21858,62,22046,7,8000,62,17440,2599,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,2560,62,8841,15853,705,23884,4458,18982,7,17440,62,3672,8,198,220,220,220,220,220,220,220,2073,25,198,220,220,220,220,220,220,220,220,220,220,220,2560,62,8841,15853,705,23884,4458,18982,7,8000,62,17440,13,46002,62,3672,8,628,220,220,220,1200,62,8841,796,705,16424,6,198,220,220,220,611,318,39098,7,17440,11,15768,8,290,18896,7,17440,8,1875,657,25,198,220,220,220,220,220,220,220,329,10139,62,3672,11,1693,62,853,287,4808,2676,62,21858,62,22046,7,17440,2599,198,220,220,220,220,220,220,220,220,220,220,220,1200,62,8841,15853,705,23884,4458,18982,7,17440,62,3672,8,198,220,220,220,2073,25,198,220,220,220,220,220,220,220,1200,62,8841,15853,705,23884,4458,18982,7,17440,13,46002,62,3672,8,628,220,220,220,2560,62,9410,62,8841,796,2560,62,8841,1343,705,705,1343,1200,62,8841,628,220,220,220,1441,2560,62,9410,62,8841,628,198,4871,32167,805,7,14881,19667,2599,198,220,220,220,37227,198,220,220,220,32167,805,2134,17747,286,257,2168,286,19161,290,850,12,35,363,16221,284,6687,13,628,220,220,220,5740,326,262,7559,46002,15506,11507,460,307,11777,1813,393,17839,198,220,220,220,416,4634,262,7559,47,56,10943,35,1581,62,50,10526,36393,62,34720,15506,2858,7885,13,1052,11777,198,220,220,220,1813,1988,329,7559,46002,15506,481,307,973,625,262,2858,7885,11,198,220,220,220,981,262,2858,7885,481,307,973,625,257,4277,1988,13,628,220,220,220,40117,198,220,220,220,24200,438,198,220,220,220,1438,1058,965,198,220,220,220,220,220,220,220,6530,286,262,32167,805,4554,13,770,481,635,307,262,1438,286,262,198,220,220,220,220,220,220,220,11188,4049,11,2604,11,5072,11,290,9199,3696,3917,351,198,220,220,220,220,220,220,220,428,32167,805,13,628,220,220,220,9199,1058,965,198,220,220,220,220,220,220,220,10644,284,8619,810,1779,273,48924,805,9199,3696,481,307,3194,198,220,220,220,220,220,220,220,357,12286,82,284,262,8619,373,262,32167,805,373,8948,422,737,628,220,220,220,3131,62,6615,1058,1351,393,6045,11,11902,198,220,220,220,220,220,220,220,7343,286,3224,3951,284,307,2087,284,9199,2393,13,628,220,220,220,220,220,220,220,11485,2196,29373,3712,657,13,16,13,16,628,220,220,220,48924,1058,32167,805,11,11902,198,220,220,220,220,220,220,220,1002,7368,11,32167,805,481,307,2087,284,48924,355,257,850,67,363,198,220,220,220,220,220,220,220,357,12286,318,6045,737,628,220,220,220,15942,577,1058,493,11,11902,198,220,220,220,220,220,220,220,5684,286,18931,15942,16579,3038,389,657,12,43917,11,352,12,10951,11,198,220,220,220,220,220,220,220,362,12,24442,2667,357,12286,318,657,737,628,220,220,220,49213,198,220,220,220,24200,438,198,220,220,220,3946,1058,1351,198,220,220,220,220,220,220,220,383,1351,286,3946,329,428,32167,805,4554,284,6687,13,628,220,220,220,3397,1058,1351,198,220,220,220,220,220,220,220,7343,286,2560,19161,290,32167,16221,13,48221,942,326,19161,290,32167,16221,287,262,198,220,220,220,220,220,220,220,3397,1351,481,1844,878,428,32167,805,318,8948,284,22063,623,273,13,628,220,220,220,1751,1058,1351,198,220,220,220,220,220,220,220,7343,286,1200,19161,290,32167,16221,13,48221,942,326,19161,290,32167,16221,287,262,198,220,220,220,220,220,220,220,1751,1351,481,307,8948,691,706,428,32167,805,468,5668,13,198,220,220,220,37227,628,220,220,220,825,751,62,21858,7,944,11,1693,2599,198,220,220,220,220,220,220,220,37227,4550,1693,284,32167,805,628,220,220,220,220,220,220,220,40117,198,220,220,220,220,220,220,220,24200,438,198,220,220,220,220,220,220,220,1693,1058,15768,198,220,220,220,220,220,220,220,220,220,220,220,15768,284,24443,284,32167,805,3946,1351,13,628,198,220,220,220,220,220,220,220,16409,198,220,220,220,220,220,220,220,35656,198,220,220,220,220,220,220,220,2116,1058,2134,198,220,220,220,220,220,220,220,220,220,220,220,16409,2116,13,198,220,220,220,220,220,220,220,37227,198,220,220,220,220,220,220,220,2116,13557,2860,62,17440,7,21858,8,628,220,220,220,220,220,220,220,1441,2116,628,220,220,220,825,751,62,7266,67,363,7,944,11,48924,2599,198,220,220,220,220,220,220,220,37227,4550,48924,284,32167,805,628,220,220,220,220,220,220,220,40117,198,220,220,220,220,220,220,220,24200,438,198,220,220,220,220,220,220,220,48924,1058,32167,805,198,220,220,220,220,220,220,220,220,220,220,220,3834,67,363,284,24443,284,32167,805,3946,1351,13,628,198,220,220,220,220,220,220,220,16409,198,220,220,220,220,220,220,220,35656,198,220,220,220,220,220,220,220,2116,1058,2134,198,220,220,220,220,220,220,220,220,220,220,220,16409,2116,13,198,220,220,220,220,220,220,220,37227,198,220,220,220,220,220,220,220,2116,13557,2860,62,17440,7,67,363,8,628,220,220,220,220,220,220,220,1441,2116,628,220,220,220,825,4808,1136,62,21858,62,853,62,6615,7,944,11,1693,11,14996,3672,2599,198,220,220,220,220,220,220,220,37227,42316,82,262,3951,284,307,2087,284,257,32167,805,3519,284,1693,198,220,220,220,220,220,220,220,37227,628,220,220,220,220,220,220,220,611,407,318,39098,7,21858,11,15768,2599,198,220,220,220,220,220,220,220,220,220,220,220,5298,5994,12331,10786,3109,35570,257,15768,2134,11,1392,23884,4458,18982,7,4906,7,21858,22305,198,220,220,220,220,220,220,220,611,407,651,35226,7,21858,11,705,62,18780,3256,10352,2599,198,220,220,220,220,220,220,220,220,220,220,220,5298,11052,12331,10786,33308,23884,1276,307,3170,878,4375,340,705,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,705,1462,257,32167,805,4458,18982,7,21858,13,3672,4008,628,220,220,220,220,220,220,220,1693,62,853,62,6615,796,17635,198,220,220,220,220,220,220,220,611,18896,7,21858,13,22046,8,6624,657,25,198,220,220,220,220,220,220,220,220,220,220,220,1693,62,1370,796,705,41,9864,23884,23884,4458,18982,7,21858,13,46002,62,3672,11,1693,13,46002,62,7753,8,198,220,220,220,220,220,220,220,220,220,220,220,1693,62,853,62,6615,13,33295,7,21858,62,1370,8,198,220,220,220,220,220,220,220,2073,25,198,220,220,220,220,220,220,220,220,220,220,220,329,10139,62,3672,11,1693,62,853,287,4808,2676,62,21858,62,22046,7,21858,2599,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1303,6822,326,705,2637,393,705,10,6,389,407,287,10139,62,3672,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,611,705,2637,287,10139,62,3672,393,705,10,6,287,10139,62,3672,25,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,2116,13557,10134,62,14774,62,17440,62,14933,796,6407,628,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1822,11,1438,11,1005,563,796,1693,62,853,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1303,3060,449,9864,1627,351,15768,9199,2393,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1693,62,1370,796,705,41,9864,23884,23884,4458,18982,7,17440,62,3672,11,1693,13,46002,62,7753,8,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1693,62,853,62,6615,13,33295,7,21858,62,1370,8,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1303,3060,1693,5923,14313,1627,329,3141,1627,7159,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1822,62,1370,796,705,53,27415,23884,5923,14313,2625,90,36786,4458,18982,7,17440,62,3672,11,1822,8,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1693,62,853,62,6615,13,33295,7,853,62,1370,8,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1303,2896,500,1693,62,3672,7885,611,612,389,1822,62,14933,329,1693,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,611,1693,13557,10134,62,853,62,14933,25,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,611,1438,318,407,6045,25,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1693,62,3672,796,10139,62,3672,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,2073,25,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1693,62,3672,796,1693,13,46002,62,3672,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1693,62,3672,62,1370,796,705,53,27415,23884,1693,62,3672,2625,90,36786,4458,18982,7,17440,62,3672,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1693,62,3672,8,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1693,62,853,62,6615,13,33295,7,21858,62,3672,62,1370,8,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1303,3060,1005,563,1627,329,15768,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,611,1005,563,318,407,6045,25,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1005,563,62,1370,796,705,9781,563,23884,23884,4458,18982,7,17440,62,3672,11,1005,563,8,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1693,62,853,62,6615,13,33295,7,1186,563,62,1370,8,628,220,220,220,220,220,220,220,1441,1693,62,853,62,6615,628,220,220,220,825,1382,7,944,11,285,4335,17062,28,17821,11,14996,3672,28,17821,2599,198,220,220,220,220,220,220,220,37227,15580,290,16031,262,9199,2393,329,32167,805,628,220,220,220,220,220,220,220,40117,198,220,220,220,220,220,220,220,24200,438,198,220,220,220,220,220,220,220,285,4335,17062,1058,20512,11,11902,198,220,220,220,220,220,220,220,220,220,220,220,1002,15768,29196,357,68,13,70,13,4049,11,5072,11,2604,11,9199,8,836,470,2152,11,198,220,220,220,220,220,220,220,220,220,220,220,2251,606,357,12286,318,7559,17821,15506,737,628,220,220,220,220,220,220,220,14996,3672,1058,20512,11,11902,198,220,220,220,220,220,220,220,220,220,220,220,2034,2412,262,3128,290,3748,4686,1271,284,4049,11,2604,11,5072,11,290,198,220,220,220,220,220,220,220,220,220,220,220,9199,3696,13,1114,1672,11,2427,286,7559,67,363,3672,13,46002,15506,262,9199,198,220,220,220,220,220,220,220,220,220,220,220,2393,4329,7559,67,363,3672,62,26314,26314,12038,35,62,312,15506,13,770,318,4465,618,2491,198,220,220,220,220,220,220,220,220,220,220,220,1811,360,3775,14,41,8158,286,262,976,1438,357,12286,318,7559,17821,15506,737,628,220,220,220,220,220,220,220,16409,198,220,220,220,220,220,220,220,35656,198,220,220,220,220,220,220,220,2116,1058,2134,198,220,220,220,220,220,220,220,220,220,220,220,16409,2116,13,198,220,220,220,220,220,220,220,37227,198,220,220,220,220,220,220,220,611,651,35226,7,944,11,705,62,18780,3256,10352,2599,198,220,220,220,220,220,220,220,220,220,220,220,2116,13,6404,1362,13,43917,7,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,705,90,92,9199,2393,468,1541,587,3170,13,705,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,705,50,4106,2105,262,1382,1429,986,4458,18982,7,944,13,3672,4008,198,220,220,220,220,220,220,220,220,220,220,220,1441,2116,628,220,220,220,220,220,220,220,1438,796,2116,13557,1136,62,69,3883,3672,3419,611,14996,3672,2073,2116,13,3672,198,220,220,220,220,220,220,220,9199,62,7753,796,28686,13,6978,13,22179,7,944,13,46002,11,705,90,27422,46002,4458,18982,7,3672,4008,198,220,220,220,220,220,220,220,2116,13,46002,62,7753,796,9199,62,7753,198,220,220,220,220,220,220,220,2116,13,46002,62,3672,796,1438,198,220,220,220,220,220,220,220,2198,15908,7,944,13,46002,62,7753,11,285,4335,17062,8,628,220,220,220,220,220,220,220,1303,10934,9199,3696,329,477,13760,287,2116,13,77,4147,198,220,220,220,220,220,220,220,1303,5740,25,13760,1276,307,3170,878,262,9199,2393,329,2116,318,3170,198,220,220,220,220,220,220,220,329,10139,62,9630,11,10139,287,27056,378,7,944,13,77,4147,11,923,28,16,2599,198,220,220,220,220,220,220,220,220,220,220,220,611,318,39098,7,17440,11,15768,2599,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,10139,13557,11249,62,6738,62,67,363,7,76,4335,17062,11,14996,3672,8,198,220,220,220,220,220,220,220,220,220,220,220,1288,361,318,39098,7,17440,11,32167,805,2599,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,10139,13,11249,7,76,4335,17062,11,14996,3672,8,198,220,220,220,220,220,220,220,220,220,220,220,2073,25,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,5298,5994,12331,10786,45,4147,1276,307,2035,257,15768,393,32167,805,2134,11537,628,220,220,220,220,220,220,220,1303,19430,48924,9199,2393,198,220,220,220,220,220,220,220,2116,13,6404,1362,13,10951,10786,25954,360,4760,14498,2393,23884,986,4458,18982,7,198,220,220,220,220,220,220,220,220,220,220,220,2116,13,46002,62,7753,4008,198,220,220,220,220,220,220,220,3951,796,17635,198,220,220,220,220,220,220,220,2560,62,9410,62,6615,796,17635,198,220,220,220,220,220,220,220,329,10139,62,9630,11,10139,287,27056,378,7,944,13,77,4147,11,923,28,16,2599,198,220,220,220,220,220,220,220,220,220,220,220,2116,13,6404,1362,13,10951,10786,28516,319,23884,685,90,92,286,23884,60,4458,18982,7,17440,13,3672,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,10139,62,9630,11,18896,7,944,13,77,4147,22305,198,220,220,220,220,220,220,220,220,220,220,220,1303,10934,262,7308,19667,9199,2393,198,220,220,220,220,220,220,220,220,220,220,220,611,318,39098,7,17440,11,15768,2599,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1303,3060,15768,9633,284,32167,805,9199,2393,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1693,62,853,62,6615,796,2116,13557,1136,62,21858,62,853,62,6615,7,17440,11,14996,3672,8,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,3951,13,2302,437,7,21858,62,853,62,6615,8,198,220,220,220,220,220,220,220,220,220,220,220,1288,361,318,39098,7,17440,11,32167,805,2599,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,850,67,363,62,8841,796,4808,1136,62,7266,67,363,62,8841,7,17440,8,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,3951,13,33295,7,7266,67,363,62,8841,8,198,220,220,220,220,220,220,220,220,220,220,220,2073,25,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,5298,5994,12331,10786,45,4147,1276,307,2035,257,15768,393,32167,805,2134,11537,198,220,220,220,220,220,220,220,220,220,220,220,1303,3060,2560,14,9410,1321,11,611,3306,198,220,220,220,220,220,220,220,220,220,220,220,611,10139,13,71,5126,1580,82,33529,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,2560,62,9410,62,8841,796,4808,1136,62,8000,62,9410,62,8841,7,17440,8,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,2560,62,9410,62,6615,13,33295,7,8000,62,9410,62,8841,8,628,220,220,220,220,220,220,220,1303,3060,597,3131,3951,284,9199,2393,11,611,7368,198,220,220,220,220,220,220,220,611,2116,13,26086,62,6615,25,198,220,220,220,220,220,220,220,220,220,220,220,3951,13,2302,437,7,944,13,26086,62,6615,8,628,220,220,220,220,220,220,220,1303,19430,3951,284,48924,9199,2393,198,220,220,220,220,220,220,220,351,1280,7,46002,62,7753,11,705,86,11537,355,48924,25,198,220,220,220,220,220,220,220,220,220,220,220,48924,13,8933,20655,10786,59,77,4458,22179,7,6615,1343,37250,59,77,2,9492,12,21858,20086,20520,1343,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,2560,62,9410,62,6615,4008,628,220,220,220,220,220,220,220,2116,13557,18780,796,6407,198,220,220,220,220,220,220,220,2116,13,6404,1362,13,10951,10786,35,363,805,14498,2393,329,23884,7675,705,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,705,18780,0,4458,18982,7,944,13,3672,4008,628,220,220,220,220,220,220,220,1441,2116,628,220,220,220,2488,47911,62,21812,10786,17561,273,62,46002,62,67,363,11537,198,220,220,220,825,9199,62,67,363,7,944,11,9199,62,25811,28,14202,2599,198,220,220,220,220,220,220,220,37227,7004,24883,32167,805,284,1779,273,628,220,220,220,220,220,220,220,40117,198,220,220,220,220,220,220,220,24200,438,198,220,220,220,220,220,220,220,9199,62,25811,1058,965,11,11902,198,220,220,220,220,220,220,220,220,220,220,220,18634,284,307,3804,284,7559,17561,273,62,46002,62,67,363,15506,329,428,32167,805,198,220,220,220,220,220,220,220,220,220,220,220,357,3826,262,4600,17561,273,62,46002,62,67,363,10314,198,220,220,220,220,220,220,220,220,220,220,220,1279,4023,1378,34033,13,6359,13,86,2304,13,15532,14,4352,17561,273,14,805,723,14,14421,14,17561,273,62,46002,62,67,363,13,6494,29,63,62,198,220,220,220,220,220,220,220,220,220,220,220,329,1744,3689,737,628,220,220,220,220,220,220,220,16409,198,220,220,220,220,220,220,220,35656,198,220,220,220,220,220,220,220,2116,1058,2134,198,220,220,220,220,220,220,220,220,220,220,220,16409,2116,13,198,220,220,220,220,220,220,220,37227,198,220,220,220,220,220,220,220,1303,28407,1779,273,62,46002,62,67,363,3141,198,220,220,220,220,220,220,220,3141,796,705,17561,273,62,46002,62,67,363,6,198,220,220,220,220,220,220,220,611,9199,62,25811,318,407,6045,25,198,220,220,220,220,220,220,220,220,220,220,220,3141,15853,705,23884,4458,18982,7,46002,62,25811,8,198,220,220,220,220,220,220,220,3141,15853,705,23884,4458,18982,7,944,13,46002,62,7753,8,198,220,220,220,220,220,220,220,9199,62,67,363,62,36942,796,850,14681,13,47,9654,26933,21812,4357,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,14367,448,28,7266,14681,13,47,4061,36,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,7582,28,17821,8,198,220,220,220,220,220,220,220,1303,6822,326,612,389,645,5293,10139,3891,329,15064,1779,273,6300,198,220,220,220,220,220,220,220,1779,273,62,9641,796,651,62,17561,273,62,9641,3419,198,220,220,220,220,220,220,220,611,1779,273,62,9641,18189,357,23,11,767,11,362,8,290,2116,13557,10134,62,14774,62,17440,62,14933,25,198,220,220,220,220,220,220,220,220,220,220,220,11454,796,5855,21077,281,5293,2095,357,31336,705,10,6,393,705,2637,8,287,262,366,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,3672,329,257,10139,287,32167,805,23884,13,1081,286,22063,623,273,2196,366,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,23,13,22,13,17,11,705,10,6,290,220,705,2637,389,12244,287,32167,805,10139,3891,13,366,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,1212,1724,257,705,10,6,393,705,2637,2095,318,287,257,15768,1438,11,366,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,35,363,805,1438,11,393,262,1438,329,257,15768,4578,526,13,18982,7,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,2116,13,3672,4008,198,220,220,220,220,220,220,220,220,220,220,220,5298,43160,12331,7,8056,8,628,220,220,220,220,220,220,220,1303,8393,1133,1779,273,62,46002,62,67,363,3141,198,220,220,220,220,220,220,220,503,11,11454,796,9199,62,67,363,62,36942,13,10709,5344,3419,198,220,220,220,220,220,220,220,3601,7,448,8,628,220,220,220,220,220,220,220,1441,2116,628,220,220,220,2488,47911,62,21812,10786,17561,273,62,46002,62,67,363,11537,198,220,220,220,825,1382,62,46002,7,944,11,285,4335,17062,28,17821,11,14996,3672,28,17821,11,9199,62,25811,28,14202,2599,198,220,220,220,220,220,220,220,37227,34,5691,1382,290,9199,4726,3746,628,220,220,220,220,220,220,220,40117,198,220,220,220,220,220,220,220,24200,438,198,220,220,220,220,220,220,220,285,4335,17062,1058,20512,11,11902,198,220,220,220,220,220,220,220,220,220,220,220,1002,15768,29196,357,68,13,70,13,4049,11,5072,11,2604,11,9199,8,836,470,2152,11,198,220,220,220,220,220,220,220,220,220,220,220,2251,606,357,12286,318,7559,17821,15506,737,628,220,220,220,220,220,220,220,14996,3672,1058,20512,11,11902,198,220,220,220,220,220,220,220,220,220,220,220,2034,2412,262,3128,290,3748,4686,1271,284,4049,11,2604,11,5072,11,290,198,220,220,220,220,220,220,220,220,220,220,220,9199,3696,13,1114,1672,11,2427,286,7559,67,363,3672,13,46002,15506,262,9199,198,220,220,220,220,220,220,220,220,220,220,220,2393,4329,7559,67,363,3672,62,26314,26314,12038,35,62,312,15506,13,770,318,4465,618,2491,198,220,220,220,220,220,220,220,220,220,220,220,1811,360,3775,14,41,8158,286,262,976,1438,357,12286,318,7559,17821,15506,737,628,220,220,220,220,220,220,220,9199,62,25811,1058,965,11,11902,198,220,220,220,220,220,220,220,220,220,220,220,18634,284,307,3804,284,7559,17561,273,62,46002,62,67,363,15506,329,428,32167,805,198,220,220,220,220,220,220,220,220,220,220,220,357,3826,262,4600,17561,273,62,46002,62,67,363,10314,198,220,220,220,220,220,220,220,220,220,220,220,1279,4023,1378,34033,13,6359,13,86,2304,13,15532,14,4352,17561,273,14,805,723,14,14421,14,17561,273,62,46002,62,67,363,13,6494,29,63,62,198,220,220,220,220,220,220,220,220,220,220,220,329,1744,3689,737,628,220,220,220,220,220,220,220,16409,198,220,220,220,220,220,220,220,35656,198,220,220,220,220,220,220,220,2116,1058,2134,198,220,220,220,220,220,220,220,220,220,220,220,16409,2116,13,198,220,220,220,220,220,220,220,37227,198,220,220,220,220,220,220,220,2116,13,11249,7,76,4335,17062,11,14996,3672,8,198,220,220,220,220,220,220,220,2116,13,46002,62,67,363,7,46002,62,25811,28,46002,62,25811,8,628,220,220,220,220,220,220,220,1441,2116,198],"string":"[\n 198,\n 11748,\n 28686,\n 198,\n 11748,\n 850,\n 14681,\n 198,\n 198,\n 6738,\n 764,\n 26791,\n 1330,\n 2198,\n 15908,\n 11,\n 651,\n 62,\n 17561,\n 273,\n 62,\n 9641,\n 11,\n 4433,\n 62,\n 21812,\n 198,\n 6738,\n 764,\n 12093,\n 268,\n 1098,\n 1330,\n 7308,\n 19667,\n 198,\n 6738,\n 764,\n 21858,\n 1330,\n 15768,\n 628,\n 198,\n 198,\n 4299,\n 4808,\n 2676,\n 62,\n 21858,\n 62,\n 22046,\n 7,\n 21858,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 40806,\n 689,\n 625,\n 15768,\n 26498,\n 1351,\n 13,\n 575,\n 1164,\n 82,\n 262,\n 1438,\n 357,\n 392,\n 15768,\n 28100,\n 8,\n 329,\n 1123,\n 10139,\n 198,\n 220,\n 220,\n 220,\n 284,\n 307,\n 973,\n 618,\n 4375,\n 1693,\n 284,\n 257,\n 32167,\n 805,\n 357,\n 72,\n 13,\n 68,\n 13,\n 262,\n 1438,\n 287,\n 262,\n 198,\n 220,\n 220,\n 220,\n 705,\n 41,\n 9864,\n 1438,\n 1693,\n 62,\n 46002,\n 62,\n 7753,\n 6,\n 1627,\n 737,\n 628,\n 220,\n 220,\n 220,\n 40117,\n 198,\n 220,\n 220,\n 220,\n 24200,\n 438,\n 198,\n 220,\n 220,\n 220,\n 1693,\n 1058,\n 15768,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 15768,\n 284,\n 11629,\n 378,\n 625,\n 13,\n 5740,\n 326,\n 262,\n 9199,\n 2393,\n 329,\n 1693,\n 1276,\n 307,\n 3170,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3161,\n 284,\n 1262,\n 4808,\n 2676,\n 62,\n 21858,\n 62,\n 22046,\n 13,\n 628,\n 220,\n 220,\n 220,\n 575,\n 1164,\n 82,\n 198,\n 220,\n 220,\n 220,\n 40103,\n 198,\n 220,\n 220,\n 220,\n 10139,\n 62,\n 3672,\n 1058,\n 965,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 19081,\n 1438,\n 284,\n 779,\n 287,\n 32167,\n 805,\n 2134,\n 13,\n 198,\n 220,\n 220,\n 220,\n 1693,\n 62,\n 853,\n 1058,\n 15768,\n 28100,\n 3706,\n 83,\n 29291,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 15768,\n 4578,\n 2134,\n 357,\n 15506,\n 853,\n 15506,\n 11,\n 7559,\n 3672,\n 15506,\n 11,\n 7559,\n 1186,\n 563,\n 15506,\n 12608,\n 737,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 611,\n 407,\n 318,\n 39098,\n 7,\n 21858,\n 11,\n 15768,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 5298,\n 5994,\n 12331,\n 10786,\n 3109,\n 35570,\n 257,\n 15768,\n 2134,\n 11,\n 1392,\n 23884,\n 4458,\n 18982,\n 7,\n 4906,\n 7,\n 21858,\n 22305,\n 198,\n 220,\n 220,\n 220,\n 611,\n 407,\n 651,\n 35226,\n 7,\n 21858,\n 11,\n 705,\n 62,\n 18780,\n 3256,\n 10352,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 5298,\n 11052,\n 12331,\n 10786,\n 33308,\n 23884,\n 1276,\n 307,\n 3170,\n 878,\n 4375,\n 340,\n 705,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 705,\n 1462,\n 257,\n 32167,\n 805,\n 4458,\n 18982,\n 7,\n 21858,\n 13,\n 3672,\n 4008,\n 628,\n 220,\n 220,\n 220,\n 611,\n 18896,\n 7,\n 21858,\n 13,\n 22046,\n 8,\n 6624,\n 657,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 5298,\n 13707,\n 29993,\n 341,\n 198,\n 220,\n 220,\n 220,\n 2073,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 329,\n 4686,\n 87,\n 11,\n 1693,\n 62,\n 853,\n 287,\n 27056,\n 378,\n 7,\n 21858,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1822,\n 11,\n 1438,\n 11,\n 1005,\n 563,\n 796,\n 1693,\n 62,\n 853,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 1438,\n 318,\n 407,\n 6045,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 10139,\n 62,\n 3672,\n 796,\n 705,\n 90,\n 92,\n 23330,\n 92,\n 4458,\n 18982,\n 7,\n 21858,\n 13,\n 46002,\n 62,\n 3672,\n 11,\n 1438,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2073,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 10139,\n 62,\n 3672,\n 796,\n 705,\n 90,\n 92,\n 62,\n 853,\n 23330,\n 92,\n 4458,\n 18982,\n 7,\n 21858,\n 13,\n 46002,\n 62,\n 3672,\n 11,\n 4686,\n 87,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 7800,\n 10139,\n 62,\n 3672,\n 11,\n 1693,\n 62,\n 853,\n 628,\n 198,\n 4299,\n 4808,\n 1136,\n 62,\n 8000,\n 62,\n 9410,\n 62,\n 8841,\n 7,\n 17440,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 42316,\n 82,\n 262,\n 2560,\n 14,\n 9410,\n 1627,\n 329,\n 10139,\n 284,\n 307,\n 2087,\n 284,\n 257,\n 32167,\n 805,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 628,\n 220,\n 220,\n 220,\n 611,\n 407,\n 318,\n 39098,\n 7,\n 17440,\n 11,\n 7308,\n 19667,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 5298,\n 11052,\n 12331,\n 10786,\n 3109,\n 35570,\n 257,\n 15768,\n 393,\n 32167,\n 805,\n 2134,\n 11,\n 705,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 705,\n 23442,\n 23884,\n 4458,\n 18982,\n 7,\n 4906,\n 7,\n 17440,\n 22305,\n 628,\n 220,\n 220,\n 220,\n 2560,\n 62,\n 8841,\n 796,\n 705,\n 24546,\n 6,\n 198,\n 220,\n 220,\n 220,\n 329,\n 2560,\n 62,\n 17440,\n 287,\n 10139,\n 13,\n 23743,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 318,\n 39098,\n 7,\n 8000,\n 62,\n 17440,\n 11,\n 15768,\n 8,\n 290,\n 18896,\n 7,\n 8000,\n 62,\n 17440,\n 8,\n 1875,\n 657,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 329,\n 10139,\n 62,\n 3672,\n 11,\n 1693,\n 62,\n 853,\n 287,\n 4808,\n 2676,\n 62,\n 21858,\n 62,\n 22046,\n 7,\n 8000,\n 62,\n 17440,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2560,\n 62,\n 8841,\n 15853,\n 705,\n 23884,\n 4458,\n 18982,\n 7,\n 17440,\n 62,\n 3672,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2073,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2560,\n 62,\n 8841,\n 15853,\n 705,\n 23884,\n 4458,\n 18982,\n 7,\n 8000,\n 62,\n 17440,\n 13,\n 46002,\n 62,\n 3672,\n 8,\n 628,\n 220,\n 220,\n 220,\n 1200,\n 62,\n 8841,\n 796,\n 705,\n 16424,\n 6,\n 198,\n 220,\n 220,\n 220,\n 611,\n 318,\n 39098,\n 7,\n 17440,\n 11,\n 15768,\n 8,\n 290,\n 18896,\n 7,\n 17440,\n 8,\n 1875,\n 657,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 329,\n 10139,\n 62,\n 3672,\n 11,\n 1693,\n 62,\n 853,\n 287,\n 4808,\n 2676,\n 62,\n 21858,\n 62,\n 22046,\n 7,\n 17440,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1200,\n 62,\n 8841,\n 15853,\n 705,\n 23884,\n 4458,\n 18982,\n 7,\n 17440,\n 62,\n 3672,\n 8,\n 198,\n 220,\n 220,\n 220,\n 2073,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1200,\n 62,\n 8841,\n 15853,\n 705,\n 23884,\n 4458,\n 18982,\n 7,\n 17440,\n 13,\n 46002,\n 62,\n 3672,\n 8,\n 628,\n 220,\n 220,\n 220,\n 2560,\n 62,\n 9410,\n 62,\n 8841,\n 796,\n 2560,\n 62,\n 8841,\n 1343,\n 705,\n 705,\n 1343,\n 1200,\n 62,\n 8841,\n 628,\n 220,\n 220,\n 220,\n 1441,\n 2560,\n 62,\n 9410,\n 62,\n 8841,\n 628,\n 198,\n 4871,\n 32167,\n 805,\n 7,\n 14881,\n 19667,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 32167,\n 805,\n 2134,\n 17747,\n 286,\n 257,\n 2168,\n 286,\n 19161,\n 290,\n 850,\n 12,\n 35,\n 363,\n 16221,\n 284,\n 6687,\n 13,\n 628,\n 220,\n 220,\n 220,\n 5740,\n 326,\n 262,\n 7559,\n 46002,\n 15506,\n 11507,\n 460,\n 307,\n 11777,\n 1813,\n 393,\n 17839,\n 198,\n 220,\n 220,\n 220,\n 416,\n 4634,\n 262,\n 7559,\n 47,\n 56,\n 10943,\n 35,\n 1581,\n 62,\n 50,\n 10526,\n 36393,\n 62,\n 34720,\n 15506,\n 2858,\n 7885,\n 13,\n 1052,\n 11777,\n 198,\n 220,\n 220,\n 220,\n 1813,\n 1988,\n 329,\n 7559,\n 46002,\n 15506,\n 481,\n 307,\n 973,\n 625,\n 262,\n 2858,\n 7885,\n 11,\n 198,\n 220,\n 220,\n 220,\n 981,\n 262,\n 2858,\n 7885,\n 481,\n 307,\n 973,\n 625,\n 257,\n 4277,\n 1988,\n 13,\n 628,\n 220,\n 220,\n 220,\n 40117,\n 198,\n 220,\n 220,\n 220,\n 24200,\n 438,\n 198,\n 220,\n 220,\n 220,\n 1438,\n 1058,\n 965,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 6530,\n 286,\n 262,\n 32167,\n 805,\n 4554,\n 13,\n 770,\n 481,\n 635,\n 307,\n 262,\n 1438,\n 286,\n 262,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 11188,\n 4049,\n 11,\n 2604,\n 11,\n 5072,\n 11,\n 290,\n 9199,\n 3696,\n 3917,\n 351,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 428,\n 32167,\n 805,\n 13,\n 628,\n 220,\n 220,\n 220,\n 9199,\n 1058,\n 965,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 10644,\n 284,\n 8619,\n 810,\n 1779,\n 273,\n 48924,\n 805,\n 9199,\n 3696,\n 481,\n 307,\n 3194,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 357,\n 12286,\n 82,\n 284,\n 262,\n 8619,\n 373,\n 262,\n 32167,\n 805,\n 373,\n 8948,\n 422,\n 737,\n 628,\n 220,\n 220,\n 220,\n 3131,\n 62,\n 6615,\n 1058,\n 1351,\n 393,\n 6045,\n 11,\n 11902,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 7343,\n 286,\n 3224,\n 3951,\n 284,\n 307,\n 2087,\n 284,\n 9199,\n 2393,\n 13,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 11485,\n 2196,\n 29373,\n 3712,\n 657,\n 13,\n 16,\n 13,\n 16,\n 628,\n 220,\n 220,\n 220,\n 48924,\n 1058,\n 32167,\n 805,\n 11,\n 11902,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1002,\n 7368,\n 11,\n 32167,\n 805,\n 481,\n 307,\n 2087,\n 284,\n 48924,\n 355,\n 257,\n 850,\n 67,\n 363,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 357,\n 12286,\n 318,\n 6045,\n 737,\n 628,\n 220,\n 220,\n 220,\n 15942,\n 577,\n 1058,\n 493,\n 11,\n 11902,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 5684,\n 286,\n 18931,\n 15942,\n 16579,\n 3038,\n 389,\n 657,\n 12,\n 43917,\n 11,\n 352,\n 12,\n 10951,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 362,\n 12,\n 24442,\n 2667,\n 357,\n 12286,\n 318,\n 657,\n 737,\n 628,\n 220,\n 220,\n 220,\n 49213,\n 198,\n 220,\n 220,\n 220,\n 24200,\n 438,\n 198,\n 220,\n 220,\n 220,\n 3946,\n 1058,\n 1351,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 383,\n 1351,\n 286,\n 3946,\n 329,\n 428,\n 32167,\n 805,\n 4554,\n 284,\n 6687,\n 13,\n 628,\n 220,\n 220,\n 220,\n 3397,\n 1058,\n 1351,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 7343,\n 286,\n 2560,\n 19161,\n 290,\n 32167,\n 16221,\n 13,\n 48221,\n 942,\n 326,\n 19161,\n 290,\n 32167,\n 16221,\n 287,\n 262,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3397,\n 1351,\n 481,\n 1844,\n 878,\n 428,\n 32167,\n 805,\n 318,\n 8948,\n 284,\n 22063,\n 623,\n 273,\n 13,\n 628,\n 220,\n 220,\n 220,\n 1751,\n 1058,\n 1351,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 7343,\n 286,\n 1200,\n 19161,\n 290,\n 32167,\n 16221,\n 13,\n 48221,\n 942,\n 326,\n 19161,\n 290,\n 32167,\n 16221,\n 287,\n 262,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1751,\n 1351,\n 481,\n 307,\n 8948,\n 691,\n 706,\n 428,\n 32167,\n 805,\n 468,\n 5668,\n 13,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 628,\n 220,\n 220,\n 220,\n 825,\n 751,\n 62,\n 21858,\n 7,\n 944,\n 11,\n 1693,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 4550,\n 1693,\n 284,\n 32167,\n 805,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 40117,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 24200,\n 438,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1693,\n 1058,\n 15768,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 15768,\n 284,\n 24443,\n 284,\n 32167,\n 805,\n 3946,\n 1351,\n 13,\n 628,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 16409,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 35656,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 1058,\n 2134,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 16409,\n 2116,\n 13,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13557,\n 2860,\n 62,\n 17440,\n 7,\n 21858,\n 8,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1441,\n 2116,\n 628,\n 220,\n 220,\n 220,\n 825,\n 751,\n 62,\n 7266,\n 67,\n 363,\n 7,\n 944,\n 11,\n 48924,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 4550,\n 48924,\n 284,\n 32167,\n 805,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 40117,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 24200,\n 438,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 48924,\n 1058,\n 32167,\n 805,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3834,\n 67,\n 363,\n 284,\n 24443,\n 284,\n 32167,\n 805,\n 3946,\n 1351,\n 13,\n 628,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 16409,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 35656,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 1058,\n 2134,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 16409,\n 2116,\n 13,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13557,\n 2860,\n 62,\n 17440,\n 7,\n 67,\n 363,\n 8,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1441,\n 2116,\n 628,\n 220,\n 220,\n 220,\n 825,\n 4808,\n 1136,\n 62,\n 21858,\n 62,\n 853,\n 62,\n 6615,\n 7,\n 944,\n 11,\n 1693,\n 11,\n 14996,\n 3672,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 42316,\n 82,\n 262,\n 3951,\n 284,\n 307,\n 2087,\n 284,\n 257,\n 32167,\n 805,\n 3519,\n 284,\n 1693,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 407,\n 318,\n 39098,\n 7,\n 21858,\n 11,\n 15768,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 5298,\n 5994,\n 12331,\n 10786,\n 3109,\n 35570,\n 257,\n 15768,\n 2134,\n 11,\n 1392,\n 23884,\n 4458,\n 18982,\n 7,\n 4906,\n 7,\n 21858,\n 22305,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 407,\n 651,\n 35226,\n 7,\n 21858,\n 11,\n 705,\n 62,\n 18780,\n 3256,\n 10352,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 5298,\n 11052,\n 12331,\n 10786,\n 33308,\n 23884,\n 1276,\n 307,\n 3170,\n 878,\n 4375,\n 340,\n 705,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 705,\n 1462,\n 257,\n 32167,\n 805,\n 4458,\n 18982,\n 7,\n 21858,\n 13,\n 3672,\n 4008,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1693,\n 62,\n 853,\n 62,\n 6615,\n 796,\n 17635,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 18896,\n 7,\n 21858,\n 13,\n 22046,\n 8,\n 6624,\n 657,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1693,\n 62,\n 1370,\n 796,\n 705,\n 41,\n 9864,\n 23884,\n 23884,\n 4458,\n 18982,\n 7,\n 21858,\n 13,\n 46002,\n 62,\n 3672,\n 11,\n 1693,\n 13,\n 46002,\n 62,\n 7753,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1693,\n 62,\n 853,\n 62,\n 6615,\n 13,\n 33295,\n 7,\n 21858,\n 62,\n 1370,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2073,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 329,\n 10139,\n 62,\n 3672,\n 11,\n 1693,\n 62,\n 853,\n 287,\n 4808,\n 2676,\n 62,\n 21858,\n 62,\n 22046,\n 7,\n 21858,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 6822,\n 326,\n 705,\n 2637,\n 393,\n 705,\n 10,\n 6,\n 389,\n 407,\n 287,\n 10139,\n 62,\n 3672,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 705,\n 2637,\n 287,\n 10139,\n 62,\n 3672,\n 393,\n 705,\n 10,\n 6,\n 287,\n 10139,\n 62,\n 3672,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13557,\n 10134,\n 62,\n 14774,\n 62,\n 17440,\n 62,\n 14933,\n 796,\n 6407,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1822,\n 11,\n 1438,\n 11,\n 1005,\n 563,\n 796,\n 1693,\n 62,\n 853,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 3060,\n 449,\n 9864,\n 1627,\n 351,\n 15768,\n 9199,\n 2393,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1693,\n 62,\n 1370,\n 796,\n 705,\n 41,\n 9864,\n 23884,\n 23884,\n 4458,\n 18982,\n 7,\n 17440,\n 62,\n 3672,\n 11,\n 1693,\n 13,\n 46002,\n 62,\n 7753,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1693,\n 62,\n 853,\n 62,\n 6615,\n 13,\n 33295,\n 7,\n 21858,\n 62,\n 1370,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 3060,\n 1693,\n 5923,\n 14313,\n 1627,\n 329,\n 3141,\n 1627,\n 7159,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1822,\n 62,\n 1370,\n 796,\n 705,\n 53,\n 27415,\n 23884,\n 5923,\n 14313,\n 2625,\n 90,\n 36786,\n 4458,\n 18982,\n 7,\n 17440,\n 62,\n 3672,\n 11,\n 1822,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1693,\n 62,\n 853,\n 62,\n 6615,\n 13,\n 33295,\n 7,\n 853,\n 62,\n 1370,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 2896,\n 500,\n 1693,\n 62,\n 3672,\n 7885,\n 611,\n 612,\n 389,\n 1822,\n 62,\n 14933,\n 329,\n 1693,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 1693,\n 13557,\n 10134,\n 62,\n 853,\n 62,\n 14933,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 1438,\n 318,\n 407,\n 6045,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1693,\n 62,\n 3672,\n 796,\n 10139,\n 62,\n 3672,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2073,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1693,\n 62,\n 3672,\n 796,\n 1693,\n 13,\n 46002,\n 62,\n 3672,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1693,\n 62,\n 3672,\n 62,\n 1370,\n 796,\n 705,\n 53,\n 27415,\n 23884,\n 1693,\n 62,\n 3672,\n 2625,\n 90,\n 36786,\n 4458,\n 18982,\n 7,\n 17440,\n 62,\n 3672,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1693,\n 62,\n 3672,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1693,\n 62,\n 853,\n 62,\n 6615,\n 13,\n 33295,\n 7,\n 21858,\n 62,\n 3672,\n 62,\n 1370,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 3060,\n 1005,\n 563,\n 1627,\n 329,\n 15768,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 1005,\n 563,\n 318,\n 407,\n 6045,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1005,\n 563,\n 62,\n 1370,\n 796,\n 705,\n 9781,\n 563,\n 23884,\n 23884,\n 4458,\n 18982,\n 7,\n 17440,\n 62,\n 3672,\n 11,\n 1005,\n 563,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1693,\n 62,\n 853,\n 62,\n 6615,\n 13,\n 33295,\n 7,\n 1186,\n 563,\n 62,\n 1370,\n 8,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1441,\n 1693,\n 62,\n 853,\n 62,\n 6615,\n 628,\n 220,\n 220,\n 220,\n 825,\n 1382,\n 7,\n 944,\n 11,\n 285,\n 4335,\n 17062,\n 28,\n 17821,\n 11,\n 14996,\n 3672,\n 28,\n 17821,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 15580,\n 290,\n 16031,\n 262,\n 9199,\n 2393,\n 329,\n 32167,\n 805,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 40117,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 24200,\n 438,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 285,\n 4335,\n 17062,\n 1058,\n 20512,\n 11,\n 11902,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1002,\n 15768,\n 29196,\n 357,\n 68,\n 13,\n 70,\n 13,\n 4049,\n 11,\n 5072,\n 11,\n 2604,\n 11,\n 9199,\n 8,\n 836,\n 470,\n 2152,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2251,\n 606,\n 357,\n 12286,\n 318,\n 7559,\n 17821,\n 15506,\n 737,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 14996,\n 3672,\n 1058,\n 20512,\n 11,\n 11902,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2034,\n 2412,\n 262,\n 3128,\n 290,\n 3748,\n 4686,\n 1271,\n 284,\n 4049,\n 11,\n 2604,\n 11,\n 5072,\n 11,\n 290,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 9199,\n 3696,\n 13,\n 1114,\n 1672,\n 11,\n 2427,\n 286,\n 7559,\n 67,\n 363,\n 3672,\n 13,\n 46002,\n 15506,\n 262,\n 9199,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2393,\n 4329,\n 7559,\n 67,\n 363,\n 3672,\n 62,\n 26314,\n 26314,\n 12038,\n 35,\n 62,\n 312,\n 15506,\n 13,\n 770,\n 318,\n 4465,\n 618,\n 2491,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1811,\n 360,\n 3775,\n 14,\n 41,\n 8158,\n 286,\n 262,\n 976,\n 1438,\n 357,\n 12286,\n 318,\n 7559,\n 17821,\n 15506,\n 737,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 16409,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 35656,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 1058,\n 2134,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 16409,\n 2116,\n 13,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 651,\n 35226,\n 7,\n 944,\n 11,\n 705,\n 62,\n 18780,\n 3256,\n 10352,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13,\n 6404,\n 1362,\n 13,\n 43917,\n 7,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 705,\n 90,\n 92,\n 9199,\n 2393,\n 468,\n 1541,\n 587,\n 3170,\n 13,\n 705,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 705,\n 50,\n 4106,\n 2105,\n 262,\n 1382,\n 1429,\n 986,\n 4458,\n 18982,\n 7,\n 944,\n 13,\n 3672,\n 4008,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1441,\n 2116,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1438,\n 796,\n 2116,\n 13557,\n 1136,\n 62,\n 69,\n 3883,\n 3672,\n 3419,\n 611,\n 14996,\n 3672,\n 2073,\n 2116,\n 13,\n 3672,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 9199,\n 62,\n 7753,\n 796,\n 28686,\n 13,\n 6978,\n 13,\n 22179,\n 7,\n 944,\n 13,\n 46002,\n 11,\n 705,\n 90,\n 27422,\n 46002,\n 4458,\n 18982,\n 7,\n 3672,\n 4008,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13,\n 46002,\n 62,\n 7753,\n 796,\n 9199,\n 62,\n 7753,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13,\n 46002,\n 62,\n 3672,\n 796,\n 1438,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2198,\n 15908,\n 7,\n 944,\n 13,\n 46002,\n 62,\n 7753,\n 11,\n 285,\n 4335,\n 17062,\n 8,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 10934,\n 9199,\n 3696,\n 329,\n 477,\n 13760,\n 287,\n 2116,\n 13,\n 77,\n 4147,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 5740,\n 25,\n 13760,\n 1276,\n 307,\n 3170,\n 878,\n 262,\n 9199,\n 2393,\n 329,\n 2116,\n 318,\n 3170,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 329,\n 10139,\n 62,\n 9630,\n 11,\n 10139,\n 287,\n 27056,\n 378,\n 7,\n 944,\n 13,\n 77,\n 4147,\n 11,\n 923,\n 28,\n 16,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 318,\n 39098,\n 7,\n 17440,\n 11,\n 15768,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 10139,\n 13557,\n 11249,\n 62,\n 6738,\n 62,\n 67,\n 363,\n 7,\n 76,\n 4335,\n 17062,\n 11,\n 14996,\n 3672,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1288,\n 361,\n 318,\n 39098,\n 7,\n 17440,\n 11,\n 32167,\n 805,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 10139,\n 13,\n 11249,\n 7,\n 76,\n 4335,\n 17062,\n 11,\n 14996,\n 3672,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2073,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 5298,\n 5994,\n 12331,\n 10786,\n 45,\n 4147,\n 1276,\n 307,\n 2035,\n 257,\n 15768,\n 393,\n 32167,\n 805,\n 2134,\n 11537,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 19430,\n 48924,\n 9199,\n 2393,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13,\n 6404,\n 1362,\n 13,\n 10951,\n 10786,\n 25954,\n 360,\n 4760,\n 14498,\n 2393,\n 23884,\n 986,\n 4458,\n 18982,\n 7,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13,\n 46002,\n 62,\n 7753,\n 4008,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3951,\n 796,\n 17635,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2560,\n 62,\n 9410,\n 62,\n 6615,\n 796,\n 17635,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 329,\n 10139,\n 62,\n 9630,\n 11,\n 10139,\n 287,\n 27056,\n 378,\n 7,\n 944,\n 13,\n 77,\n 4147,\n 11,\n 923,\n 28,\n 16,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13,\n 6404,\n 1362,\n 13,\n 10951,\n 10786,\n 28516,\n 319,\n 23884,\n 685,\n 90,\n 92,\n 286,\n 23884,\n 60,\n 4458,\n 18982,\n 7,\n 17440,\n 13,\n 3672,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 10139,\n 62,\n 9630,\n 11,\n 18896,\n 7,\n 944,\n 13,\n 77,\n 4147,\n 22305,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 10934,\n 262,\n 7308,\n 19667,\n 9199,\n 2393,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 318,\n 39098,\n 7,\n 17440,\n 11,\n 15768,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 3060,\n 15768,\n 9633,\n 284,\n 32167,\n 805,\n 9199,\n 2393,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1693,\n 62,\n 853,\n 62,\n 6615,\n 796,\n 2116,\n 13557,\n 1136,\n 62,\n 21858,\n 62,\n 853,\n 62,\n 6615,\n 7,\n 17440,\n 11,\n 14996,\n 3672,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3951,\n 13,\n 2302,\n 437,\n 7,\n 21858,\n 62,\n 853,\n 62,\n 6615,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1288,\n 361,\n 318,\n 39098,\n 7,\n 17440,\n 11,\n 32167,\n 805,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 850,\n 67,\n 363,\n 62,\n 8841,\n 796,\n 4808,\n 1136,\n 62,\n 7266,\n 67,\n 363,\n 62,\n 8841,\n 7,\n 17440,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3951,\n 13,\n 33295,\n 7,\n 7266,\n 67,\n 363,\n 62,\n 8841,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2073,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 5298,\n 5994,\n 12331,\n 10786,\n 45,\n 4147,\n 1276,\n 307,\n 2035,\n 257,\n 15768,\n 393,\n 32167,\n 805,\n 2134,\n 11537,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 3060,\n 2560,\n 14,\n 9410,\n 1321,\n 11,\n 611,\n 3306,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 10139,\n 13,\n 71,\n 5126,\n 1580,\n 82,\n 33529,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2560,\n 62,\n 9410,\n 62,\n 8841,\n 796,\n 4808,\n 1136,\n 62,\n 8000,\n 62,\n 9410,\n 62,\n 8841,\n 7,\n 17440,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2560,\n 62,\n 9410,\n 62,\n 6615,\n 13,\n 33295,\n 7,\n 8000,\n 62,\n 9410,\n 62,\n 8841,\n 8,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 3060,\n 597,\n 3131,\n 3951,\n 284,\n 9199,\n 2393,\n 11,\n 611,\n 7368,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 2116,\n 13,\n 26086,\n 62,\n 6615,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3951,\n 13,\n 2302,\n 437,\n 7,\n 944,\n 13,\n 26086,\n 62,\n 6615,\n 8,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 19430,\n 3951,\n 284,\n 48924,\n 9199,\n 2393,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 351,\n 1280,\n 7,\n 46002,\n 62,\n 7753,\n 11,\n 705,\n 86,\n 11537,\n 355,\n 48924,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 48924,\n 13,\n 8933,\n 20655,\n 10786,\n 59,\n 77,\n 4458,\n 22179,\n 7,\n 6615,\n 1343,\n 37250,\n 59,\n 77,\n 2,\n 9492,\n 12,\n 21858,\n 20086,\n 20520,\n 1343,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2560,\n 62,\n 9410,\n 62,\n 6615,\n 4008,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13557,\n 18780,\n 796,\n 6407,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13,\n 6404,\n 1362,\n 13,\n 10951,\n 10786,\n 35,\n 363,\n 805,\n 14498,\n 2393,\n 329,\n 23884,\n 7675,\n 705,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 705,\n 18780,\n 0,\n 4458,\n 18982,\n 7,\n 944,\n 13,\n 3672,\n 4008,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1441,\n 2116,\n 628,\n 220,\n 220,\n 220,\n 2488,\n 47911,\n 62,\n 21812,\n 10786,\n 17561,\n 273,\n 62,\n 46002,\n 62,\n 67,\n 363,\n 11537,\n 198,\n 220,\n 220,\n 220,\n 825,\n 9199,\n 62,\n 67,\n 363,\n 7,\n 944,\n 11,\n 9199,\n 62,\n 25811,\n 28,\n 14202,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 7004,\n 24883,\n 32167,\n 805,\n 284,\n 1779,\n 273,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 40117,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 24200,\n 438,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 9199,\n 62,\n 25811,\n 1058,\n 965,\n 11,\n 11902,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 18634,\n 284,\n 307,\n 3804,\n 284,\n 7559,\n 17561,\n 273,\n 62,\n 46002,\n 62,\n 67,\n 363,\n 15506,\n 329,\n 428,\n 32167,\n 805,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 357,\n 3826,\n 262,\n 4600,\n 17561,\n 273,\n 62,\n 46002,\n 62,\n 67,\n 363,\n 10314,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1279,\n 4023,\n 1378,\n 34033,\n 13,\n 6359,\n 13,\n 86,\n 2304,\n 13,\n 15532,\n 14,\n 4352,\n 17561,\n 273,\n 14,\n 805,\n 723,\n 14,\n 14421,\n 14,\n 17561,\n 273,\n 62,\n 46002,\n 62,\n 67,\n 363,\n 13,\n 6494,\n 29,\n 63,\n 62,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 329,\n 1744,\n 3689,\n 737,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 16409,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 35656,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 1058,\n 2134,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 16409,\n 2116,\n 13,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 28407,\n 1779,\n 273,\n 62,\n 46002,\n 62,\n 67,\n 363,\n 3141,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3141,\n 796,\n 705,\n 17561,\n 273,\n 62,\n 46002,\n 62,\n 67,\n 363,\n 6,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 9199,\n 62,\n 25811,\n 318,\n 407,\n 6045,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3141,\n 15853,\n 705,\n 23884,\n 4458,\n 18982,\n 7,\n 46002,\n 62,\n 25811,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3141,\n 15853,\n 705,\n 23884,\n 4458,\n 18982,\n 7,\n 944,\n 13,\n 46002,\n 62,\n 7753,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 9199,\n 62,\n 67,\n 363,\n 62,\n 36942,\n 796,\n 850,\n 14681,\n 13,\n 47,\n 9654,\n 26933,\n 21812,\n 4357,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 14367,\n 448,\n 28,\n 7266,\n 14681,\n 13,\n 47,\n 4061,\n 36,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 7582,\n 28,\n 17821,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 6822,\n 326,\n 612,\n 389,\n 645,\n 5293,\n 10139,\n 3891,\n 329,\n 15064,\n 1779,\n 273,\n 6300,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1779,\n 273,\n 62,\n 9641,\n 796,\n 651,\n 62,\n 17561,\n 273,\n 62,\n 9641,\n 3419,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 1779,\n 273,\n 62,\n 9641,\n 18189,\n 357,\n 23,\n 11,\n 767,\n 11,\n 362,\n 8,\n 290,\n 2116,\n 13557,\n 10134,\n 62,\n 14774,\n 62,\n 17440,\n 62,\n 14933,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 11454,\n 796,\n 5855,\n 21077,\n 281,\n 5293,\n 2095,\n 357,\n 31336,\n 705,\n 10,\n 6,\n 393,\n 705,\n 2637,\n 8,\n 287,\n 262,\n 366,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 3672,\n 329,\n 257,\n 10139,\n 287,\n 32167,\n 805,\n 23884,\n 13,\n 1081,\n 286,\n 22063,\n 623,\n 273,\n 2196,\n 366,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 23,\n 13,\n 22,\n 13,\n 17,\n 11,\n 705,\n 10,\n 6,\n 290,\n 220,\n 705,\n 2637,\n 389,\n 12244,\n 287,\n 32167,\n 805,\n 10139,\n 3891,\n 13,\n 366,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 1212,\n 1724,\n 257,\n 705,\n 10,\n 6,\n 393,\n 705,\n 2637,\n 2095,\n 318,\n 287,\n 257,\n 15768,\n 1438,\n 11,\n 366,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 35,\n 363,\n 805,\n 1438,\n 11,\n 393,\n 262,\n 1438,\n 329,\n 257,\n 15768,\n 4578,\n 526,\n 13,\n 18982,\n 7,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13,\n 3672,\n 4008,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 5298,\n 43160,\n 12331,\n 7,\n 8056,\n 8,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 8393,\n 1133,\n 1779,\n 273,\n 62,\n 46002,\n 62,\n 67,\n 363,\n 3141,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 503,\n 11,\n 11454,\n 796,\n 9199,\n 62,\n 67,\n 363,\n 62,\n 36942,\n 13,\n 10709,\n 5344,\n 3419,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3601,\n 7,\n 448,\n 8,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1441,\n 2116,\n 628,\n 220,\n 220,\n 220,\n 2488,\n 47911,\n 62,\n 21812,\n 10786,\n 17561,\n 273,\n 62,\n 46002,\n 62,\n 67,\n 363,\n 11537,\n 198,\n 220,\n 220,\n 220,\n 825,\n 1382,\n 62,\n 46002,\n 7,\n 944,\n 11,\n 285,\n 4335,\n 17062,\n 28,\n 17821,\n 11,\n 14996,\n 3672,\n 28,\n 17821,\n 11,\n 9199,\n 62,\n 25811,\n 28,\n 14202,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 34,\n 5691,\n 1382,\n 290,\n 9199,\n 4726,\n 3746,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 40117,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 24200,\n 438,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 285,\n 4335,\n 17062,\n 1058,\n 20512,\n 11,\n 11902,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1002,\n 15768,\n 29196,\n 357,\n 68,\n 13,\n 70,\n 13,\n 4049,\n 11,\n 5072,\n 11,\n 2604,\n 11,\n 9199,\n 8,\n 836,\n 470,\n 2152,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2251,\n 606,\n 357,\n 12286,\n 318,\n 7559,\n 17821,\n 15506,\n 737,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 14996,\n 3672,\n 1058,\n 20512,\n 11,\n 11902,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2034,\n 2412,\n 262,\n 3128,\n 290,\n 3748,\n 4686,\n 1271,\n 284,\n 4049,\n 11,\n 2604,\n 11,\n 5072,\n 11,\n 290,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 9199,\n 3696,\n 13,\n 1114,\n 1672,\n 11,\n 2427,\n 286,\n 7559,\n 67,\n 363,\n 3672,\n 13,\n 46002,\n 15506,\n 262,\n 9199,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2393,\n 4329,\n 7559,\n 67,\n 363,\n 3672,\n 62,\n 26314,\n 26314,\n 12038,\n 35,\n 62,\n 312,\n 15506,\n 13,\n 770,\n 318,\n 4465,\n 618,\n 2491,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1811,\n 360,\n 3775,\n 14,\n 41,\n 8158,\n 286,\n 262,\n 976,\n 1438,\n 357,\n 12286,\n 318,\n 7559,\n 17821,\n 15506,\n 737,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 9199,\n 62,\n 25811,\n 1058,\n 965,\n 11,\n 11902,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 18634,\n 284,\n 307,\n 3804,\n 284,\n 7559,\n 17561,\n 273,\n 62,\n 46002,\n 62,\n 67,\n 363,\n 15506,\n 329,\n 428,\n 32167,\n 805,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 357,\n 3826,\n 262,\n 4600,\n 17561,\n 273,\n 62,\n 46002,\n 62,\n 67,\n 363,\n 10314,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1279,\n 4023,\n 1378,\n 34033,\n 13,\n 6359,\n 13,\n 86,\n 2304,\n 13,\n 15532,\n 14,\n 4352,\n 17561,\n 273,\n 14,\n 805,\n 723,\n 14,\n 14421,\n 14,\n 17561,\n 273,\n 62,\n 46002,\n 62,\n 67,\n 363,\n 13,\n 6494,\n 29,\n 63,\n 62,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 329,\n 1744,\n 3689,\n 737,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 16409,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 35656,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 1058,\n 2134,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 16409,\n 2116,\n 13,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13,\n 11249,\n 7,\n 76,\n 4335,\n 17062,\n 11,\n 14996,\n 3672,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13,\n 46002,\n 62,\n 67,\n 363,\n 7,\n 46002,\n 62,\n 25811,\n 28,\n 46002,\n 62,\n 25811,\n 8,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1441,\n 2116,\n 198\n]"},"ratio_char_token":{"kind":"number","value":2.2072226999140154,"string":"2.207223"},"token_count":{"kind":"number","value":5815,"string":"5,815"}}},{"rowIdx":4281,"cells":{"content":{"kind":"string","value":"\"\"\"\nModule containing a numpy-like array which supports lazy reading of tiled 2D-image data.\n\"\"\"\nimport abc\nimport dask.array as da\nimport numpy as np\n\n\nclass LazyArray:\n \"\"\"\n An abstract class of a numpy-like array which supports lazy reading of tiled 2D-image data.\n The class represents a custom array container which is compatible with the numpy API.\n For more details please refer to\n https://numpy.org/doc/stable/user/basics.dispatch.html#writing-custom-array-containers.\n\n The class is compatible with napari's image layer which expects a \"numpy-like array\" as\n input which supports indexing and can be converted to a numpy array via np.asarray.\n (ref: https://napari.org/tutorials/fundamentals/image.html#image-data-and-numpy-like-arrays)\n \"\"\"\n __metaclass__ = abc.ABCMeta\n\n def __init__(self, shape, dtype, tile_size):\n \"\"\"\n Initialization method.\n\n :param shape: The shape of the underlying array.\n :param dtype: The type of the underlying array.\n :param tile_size: The size of a single tile by which the image is divided.\n \"\"\"\n assert len(shape) == 2\n self.shape = shape\n self.dtype = dtype\n self.tile_size = tile_size\n self.ndim = 2\n\n @property\n def size(self):\n \"\"\"\n The number of elements in the array.\n \"\"\"\n return self.shape[0] * self.shape[1]\n\n def __array__(self, dtype=None, **kwargs):\n # pylint: disable=W0613\n \"\"\"\n Method used e.g. by numpy to obtain a standard numpy.ndarray.\n \"\"\"\n return np.asarray(self[0:self.shape[0], 0:self.shape[1]])\n\n def __getitem__(self, idx):\n \"\"\"\n Method which implements the support for basic slicing.\n It does not support field access nor advanced indexing.\n Moreover, the start and stop of a slice must be positive integers.\n\n This method is optimized for the napari viewer.\n napari calls self[:] for obtaining the shape, dtype and ndim attributes - not the data.\n To delay reading the underlying data this method does not return a numpy array\n but self when calling self[:].\n To access the underlying data napari calls np.asarray(self).\n \"\"\"\n if not (\n isinstance(idx, slice) or\n (isinstance(idx, tuple) and all(isinstance(i, slice) for i in idx))\n ):\n raise ValueError(\"LazyArray only supports indexing by slices!\")\n\n if (\n idx == slice(None, None, None) or\n idx == (slice(None, None, None), slice(None, None, None))\n ):\n return self\n\n if len(idx) != 2:\n raise Exception(\"Unsupported index!\")\n (y_min, y_max), (x_min, x_max) = [(i.start, i.stop) for i in idx]\n y_off = y_min - (y_min % self.tile_size)\n x_off = x_min - (x_min % self.tile_size)\n\n assert (y_min >= 0) and (y_max >= 0) and (x_min >= 0) & (x_max >= 0)\n\n if y_max % self.tile_size == 0:\n max_y_tiles = (y_max // self.tile_size)\n else:\n max_y_tiles = (y_max // self.tile_size) + 1\n if x_max % self.tile_size == 0:\n max_x_tiles = (x_max // self.tile_size)\n else:\n max_x_tiles = (x_max // self.tile_size) + 1\n\n dask_arrays = []\n for y_tile in range(y_min // self.tile_size, max_y_tiles):\n row_tiles = []\n for x_tile in range(x_min // self.tile_size, max_x_tiles):\n row_tiles.append(\n da.from_delayed(\n self.read_tile(y_tile, x_tile),\n shape=(self.tile_size, self.tile_size), dtype=np.uint8\n )\n )\n dask_arrays.append(row_tiles)\n\n y_max = min(y_max, self.shape[0])\n x_max = min(x_max, self.shape[1])\n return da.block(dask_arrays)[y_min-y_off:y_max-y_off, x_min-x_off:x_max-x_off]\n\n @abc.abstractmethod\n def read_tile(self, y_tile, x_tile):\n \"\"\"\n Abstract method which reads a tile at the position (y_tile, x_tile).\n \"\"\"\n return\n"},"input_ids":{"kind":"list like","value":[37811,198,26796,7268,257,299,32152,12,2339,7177,543,6971,16931,3555,286,256,3902,362,35,12,9060,1366,13,198,37811,198,11748,450,66,198,11748,288,2093,13,18747,355,12379,198,11748,299,32152,355,45941,628,198,4871,406,12582,19182,25,198,220,220,220,37227,198,220,220,220,1052,12531,1398,286,257,299,32152,12,2339,7177,543,6971,16931,3555,286,256,3902,362,35,12,9060,1366,13,198,220,220,220,383,1398,6870,257,2183,7177,9290,543,318,11670,351,262,299,32152,7824,13,198,220,220,220,1114,517,3307,3387,3522,284,198,220,220,220,3740,1378,77,32152,13,2398,14,15390,14,31284,14,7220,14,12093,873,13,6381,17147,13,6494,2,16502,12,23144,12,18747,12,3642,50221,13,628,220,220,220,383,1398,318,11670,351,25422,2743,338,2939,7679,543,13423,257,366,77,32152,12,2339,7177,1,355,198,220,220,220,5128,543,6971,6376,278,290,460,307,11513,284,257,299,32152,7177,2884,45941,13,292,18747,13,198,220,220,220,357,5420,25,3740,1378,77,499,2743,13,2398,14,83,44917,82,14,10990,3263,874,14,9060,13,6494,2,9060,12,7890,12,392,12,77,32152,12,2339,12,3258,592,8,198,220,220,220,37227,198,220,220,220,11593,4164,330,31172,834,796,450,66,13,24694,48526,628,220,220,220,825,11593,15003,834,7,944,11,5485,11,288,4906,11,17763,62,7857,2599,198,220,220,220,220,220,220,220,37227,198,220,220,220,220,220,220,220,20768,1634,2446,13,628,220,220,220,220,220,220,220,1058,17143,5485,25,383,5485,286,262,10238,7177,13,198,220,220,220,220,220,220,220,1058,17143,288,4906,25,383,2099,286,262,10238,7177,13,198,220,220,220,220,220,220,220,1058,17143,17763,62,7857,25,383,2546,286,257,2060,17763,416,543,262,2939,318,9086,13,198,220,220,220,220,220,220,220,37227,198,220,220,220,220,220,220,220,6818,18896,7,43358,8,6624,362,198,220,220,220,220,220,220,220,2116,13,43358,796,5485,198,220,220,220,220,220,220,220,2116,13,67,4906,796,288,4906,198,220,220,220,220,220,220,220,2116,13,40927,62,7857,796,17763,62,7857,198,220,220,220,220,220,220,220,2116,13,358,320,796,362,628,220,220,220,2488,26745,198,220,220,220,825,2546,7,944,2599,198,220,220,220,220,220,220,220,37227,198,220,220,220,220,220,220,220,383,1271,286,4847,287,262,7177,13,198,220,220,220,220,220,220,220,37227,198,220,220,220,220,220,220,220,1441,2116,13,43358,58,15,60,1635,2116,13,43358,58,16,60,628,220,220,220,825,11593,18747,834,7,944,11,288,4906,28,14202,11,12429,46265,22046,2599,198,220,220,220,220,220,220,220,1303,279,2645,600,25,15560,28,54,3312,1485,198,220,220,220,220,220,220,220,37227,198,220,220,220,220,220,220,220,11789,973,304,13,70,13,416,299,32152,284,7330,257,3210,299,32152,13,358,18747,13,198,220,220,220,220,220,220,220,37227,198,220,220,220,220,220,220,220,1441,45941,13,292,18747,7,944,58,15,25,944,13,43358,58,15,4357,657,25,944,13,43358,58,16,11907,8,628,220,220,220,825,11593,1136,9186,834,7,944,11,4686,87,2599,198,220,220,220,220,220,220,220,37227,198,220,220,220,220,220,220,220,11789,543,23986,262,1104,329,4096,49289,13,198,220,220,220,220,220,220,220,632,857,407,1104,2214,1895,4249,6190,6376,278,13,198,220,220,220,220,220,220,220,10968,11,262,923,290,2245,286,257,16416,1276,307,3967,37014,13,628,220,220,220,220,220,220,220,770,2446,318,23392,329,262,25422,2743,19091,13,198,220,220,220,220,220,220,220,25422,2743,3848,2116,58,47715,329,16727,262,5485,11,288,4906,290,299,27740,12608,532,407,262,1366,13,198,220,220,220,220,220,220,220,1675,5711,3555,262,10238,1366,428,2446,857,407,1441,257,299,32152,7177,198,220,220,220,220,220,220,220,475,2116,618,4585,2116,58,25,4083,198,220,220,220,220,220,220,220,1675,1895,262,10238,1366,25422,2743,3848,45941,13,292,18747,7,944,737,198,220,220,220,220,220,220,220,37227,198,220,220,220,220,220,220,220,611,407,357,198,220,220,220,220,220,220,220,220,220,220,220,318,39098,7,312,87,11,16416,8,393,198,220,220,220,220,220,220,220,220,220,220,220,357,271,39098,7,312,87,11,46545,8,290,477,7,271,39098,7,72,11,16416,8,329,1312,287,4686,87,4008,198,220,220,220,220,220,220,220,15179,198,220,220,220,220,220,220,220,220,220,220,220,5298,11052,12331,7203,43,12582,19182,691,6971,6376,278,416,24314,2474,8,628,220,220,220,220,220,220,220,611,357,198,220,220,220,220,220,220,220,220,220,220,220,4686,87,6624,16416,7,14202,11,6045,11,6045,8,393,198,220,220,220,220,220,220,220,220,220,220,220,4686,87,6624,357,48369,7,14202,11,6045,11,6045,828,16416,7,14202,11,6045,11,6045,4008,198,220,220,220,220,220,220,220,15179,198,220,220,220,220,220,220,220,220,220,220,220,1441,2116,628,220,220,220,220,220,220,220,611,18896,7,312,87,8,14512,362,25,198,220,220,220,220,220,220,220,220,220,220,220,5298,35528,7203,3118,15999,6376,2474,8,198,220,220,220,220,220,220,220,357,88,62,1084,11,331,62,9806,828,357,87,62,1084,11,2124,62,9806,8,796,47527,72,13,9688,11,1312,13,11338,8,329,1312,287,4686,87,60,198,220,220,220,220,220,220,220,331,62,2364,796,331,62,1084,532,357,88,62,1084,4064,2116,13,40927,62,7857,8,198,220,220,220,220,220,220,220,2124,62,2364,796,2124,62,1084,532,357,87,62,1084,4064,2116,13,40927,62,7857,8,628,220,220,220,220,220,220,220,6818,357,88,62,1084,18189,657,8,290,357,88,62,9806,18189,657,8,290,357,87,62,1084,18189,657,8,1222,357,87,62,9806,18189,657,8,628,220,220,220,220,220,220,220,611,331,62,9806,4064,2116,13,40927,62,7857,6624,657,25,198,220,220,220,220,220,220,220,220,220,220,220,3509,62,88,62,83,2915,796,357,88,62,9806,3373,2116,13,40927,62,7857,8,198,220,220,220,220,220,220,220,2073,25,198,220,220,220,220,220,220,220,220,220,220,220,3509,62,88,62,83,2915,796,357,88,62,9806,3373,2116,13,40927,62,7857,8,1343,352,198,220,220,220,220,220,220,220,611,2124,62,9806,4064,2116,13,40927,62,7857,6624,657,25,198,220,220,220,220,220,220,220,220,220,220,220,3509,62,87,62,83,2915,796,357,87,62,9806,3373,2116,13,40927,62,7857,8,198,220,220,220,220,220,220,220,2073,25,198,220,220,220,220,220,220,220,220,220,220,220,3509,62,87,62,83,2915,796,357,87,62,9806,3373,2116,13,40927,62,7857,8,1343,352,628,220,220,220,220,220,220,220,288,2093,62,3258,592,796,17635,198,220,220,220,220,220,220,220,329,331,62,40927,287,2837,7,88,62,1084,3373,2116,13,40927,62,7857,11,3509,62,88,62,83,2915,2599,198,220,220,220,220,220,220,220,220,220,220,220,5752,62,83,2915,796,17635,198,220,220,220,220,220,220,220,220,220,220,220,329,2124,62,40927,287,2837,7,87,62,1084,3373,2116,13,40927,62,7857,11,3509,62,87,62,83,2915,2599,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,5752,62,83,2915,13,33295,7,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,12379,13,6738,62,12381,16548,7,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,2116,13,961,62,40927,7,88,62,40927,11,2124,62,40927,828,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,5485,16193,944,13,40927,62,7857,11,2116,13,40927,62,7857,828,288,4906,28,37659,13,28611,23,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1267,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1267,198,220,220,220,220,220,220,220,220,220,220,220,288,2093,62,3258,592,13,33295,7,808,62,83,2915,8,628,220,220,220,220,220,220,220,331,62,9806,796,949,7,88,62,9806,11,2116,13,43358,58,15,12962,198,220,220,220,220,220,220,220,2124,62,9806,796,949,7,87,62,9806,11,2116,13,43358,58,16,12962,198,220,220,220,220,220,220,220,1441,12379,13,9967,7,67,2093,62,3258,592,38381,88,62,1084,12,88,62,2364,25,88,62,9806,12,88,62,2364,11,2124,62,1084,12,87,62,2364,25,87,62,9806,12,87,62,2364,60,628,220,220,220,2488,39305,13,397,8709,24396,198,220,220,220,825,1100,62,40927,7,944,11,331,62,40927,11,2124,62,40927,2599,198,220,220,220,220,220,220,220,37227,198,220,220,220,220,220,220,220,27741,2446,543,9743,257,17763,379,262,2292,357,88,62,40927,11,2124,62,40927,737,198,220,220,220,220,220,220,220,37227,198,220,220,220,220,220,220,220,1441,198],"string":"[\n 37811,\n 198,\n 26796,\n 7268,\n 257,\n 299,\n 32152,\n 12,\n 2339,\n 7177,\n 543,\n 6971,\n 16931,\n 3555,\n 286,\n 256,\n 3902,\n 362,\n 35,\n 12,\n 9060,\n 1366,\n 13,\n 198,\n 37811,\n 198,\n 11748,\n 450,\n 66,\n 198,\n 11748,\n 288,\n 2093,\n 13,\n 18747,\n 355,\n 12379,\n 198,\n 11748,\n 299,\n 32152,\n 355,\n 45941,\n 628,\n 198,\n 4871,\n 406,\n 12582,\n 19182,\n 25,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 1052,\n 12531,\n 1398,\n 286,\n 257,\n 299,\n 32152,\n 12,\n 2339,\n 7177,\n 543,\n 6971,\n 16931,\n 3555,\n 286,\n 256,\n 3902,\n 362,\n 35,\n 12,\n 9060,\n 1366,\n 13,\n 198,\n 220,\n 220,\n 220,\n 383,\n 1398,\n 6870,\n 257,\n 2183,\n 7177,\n 9290,\n 543,\n 318,\n 11670,\n 351,\n 262,\n 299,\n 32152,\n 7824,\n 13,\n 198,\n 220,\n 220,\n 220,\n 1114,\n 517,\n 3307,\n 3387,\n 3522,\n 284,\n 198,\n 220,\n 220,\n 220,\n 3740,\n 1378,\n 77,\n 32152,\n 13,\n 2398,\n 14,\n 15390,\n 14,\n 31284,\n 14,\n 7220,\n 14,\n 12093,\n 873,\n 13,\n 6381,\n 17147,\n 13,\n 6494,\n 2,\n 16502,\n 12,\n 23144,\n 12,\n 18747,\n 12,\n 3642,\n 50221,\n 13,\n 628,\n 220,\n 220,\n 220,\n 383,\n 1398,\n 318,\n 11670,\n 351,\n 25422,\n 2743,\n 338,\n 2939,\n 7679,\n 543,\n 13423,\n 257,\n 366,\n 77,\n 32152,\n 12,\n 2339,\n 7177,\n 1,\n 355,\n 198,\n 220,\n 220,\n 220,\n 5128,\n 543,\n 6971,\n 6376,\n 278,\n 290,\n 460,\n 307,\n 11513,\n 284,\n 257,\n 299,\n 32152,\n 7177,\n 2884,\n 45941,\n 13,\n 292,\n 18747,\n 13,\n 198,\n 220,\n 220,\n 220,\n 357,\n 5420,\n 25,\n 3740,\n 1378,\n 77,\n 499,\n 2743,\n 13,\n 2398,\n 14,\n 83,\n 44917,\n 82,\n 14,\n 10990,\n 3263,\n 874,\n 14,\n 9060,\n 13,\n 6494,\n 2,\n 9060,\n 12,\n 7890,\n 12,\n 392,\n 12,\n 77,\n 32152,\n 12,\n 2339,\n 12,\n 3258,\n 592,\n 8,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 11593,\n 4164,\n 330,\n 31172,\n 834,\n 796,\n 450,\n 66,\n 13,\n 24694,\n 48526,\n 628,\n 220,\n 220,\n 220,\n 825,\n 11593,\n 15003,\n 834,\n 7,\n 944,\n 11,\n 5485,\n 11,\n 288,\n 4906,\n 11,\n 17763,\n 62,\n 7857,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 20768,\n 1634,\n 2446,\n 13,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1058,\n 17143,\n 5485,\n 25,\n 383,\n 5485,\n 286,\n 262,\n 10238,\n 7177,\n 13,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1058,\n 17143,\n 288,\n 4906,\n 25,\n 383,\n 2099,\n 286,\n 262,\n 10238,\n 7177,\n 13,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1058,\n 17143,\n 17763,\n 62,\n 7857,\n 25,\n 383,\n 2546,\n 286,\n 257,\n 2060,\n 17763,\n 416,\n 543,\n 262,\n 2939,\n 318,\n 9086,\n 13,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 6818,\n 18896,\n 7,\n 43358,\n 8,\n 6624,\n 362,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13,\n 43358,\n 796,\n 5485,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13,\n 67,\n 4906,\n 796,\n 288,\n 4906,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13,\n 40927,\n 62,\n 7857,\n 796,\n 17763,\n 62,\n 7857,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13,\n 358,\n 320,\n 796,\n 362,\n 628,\n 220,\n 220,\n 220,\n 2488,\n 26745,\n 198,\n 220,\n 220,\n 220,\n 825,\n 2546,\n 7,\n 944,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 383,\n 1271,\n 286,\n 4847,\n 287,\n 262,\n 7177,\n 13,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1441,\n 2116,\n 13,\n 43358,\n 58,\n 15,\n 60,\n 1635,\n 2116,\n 13,\n 43358,\n 58,\n 16,\n 60,\n 628,\n 220,\n 220,\n 220,\n 825,\n 11593,\n 18747,\n 834,\n 7,\n 944,\n 11,\n 288,\n 4906,\n 28,\n 14202,\n 11,\n 12429,\n 46265,\n 22046,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 279,\n 2645,\n 600,\n 25,\n 15560,\n 28,\n 54,\n 3312,\n 1485,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 11789,\n 973,\n 304,\n 13,\n 70,\n 13,\n 416,\n 299,\n 32152,\n 284,\n 7330,\n 257,\n 3210,\n 299,\n 32152,\n 13,\n 358,\n 18747,\n 13,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1441,\n 45941,\n 13,\n 292,\n 18747,\n 7,\n 944,\n 58,\n 15,\n 25,\n 944,\n 13,\n 43358,\n 58,\n 15,\n 4357,\n 657,\n 25,\n 944,\n 13,\n 43358,\n 58,\n 16,\n 11907,\n 8,\n 628,\n 220,\n 220,\n 220,\n 825,\n 11593,\n 1136,\n 9186,\n 834,\n 7,\n 944,\n 11,\n 4686,\n 87,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 11789,\n 543,\n 23986,\n 262,\n 1104,\n 329,\n 4096,\n 49289,\n 13,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 632,\n 857,\n 407,\n 1104,\n 2214,\n 1895,\n 4249,\n 6190,\n 6376,\n 278,\n 13,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 10968,\n 11,\n 262,\n 923,\n 290,\n 2245,\n 286,\n 257,\n 16416,\n 1276,\n 307,\n 3967,\n 37014,\n 13,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 770,\n 2446,\n 318,\n 23392,\n 329,\n 262,\n 25422,\n 2743,\n 19091,\n 13,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 25422,\n 2743,\n 3848,\n 2116,\n 58,\n 47715,\n 329,\n 16727,\n 262,\n 5485,\n 11,\n 288,\n 4906,\n 290,\n 299,\n 27740,\n 12608,\n 532,\n 407,\n 262,\n 1366,\n 13,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1675,\n 5711,\n 3555,\n 262,\n 10238,\n 1366,\n 428,\n 2446,\n 857,\n 407,\n 1441,\n 257,\n 299,\n 32152,\n 7177,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 475,\n 2116,\n 618,\n 4585,\n 2116,\n 58,\n 25,\n 4083,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1675,\n 1895,\n 262,\n 10238,\n 1366,\n 25422,\n 2743,\n 3848,\n 45941,\n 13,\n 292,\n 18747,\n 7,\n 944,\n 737,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 407,\n 357,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 318,\n 39098,\n 7,\n 312,\n 87,\n 11,\n 16416,\n 8,\n 393,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 357,\n 271,\n 39098,\n 7,\n 312,\n 87,\n 11,\n 46545,\n 8,\n 290,\n 477,\n 7,\n 271,\n 39098,\n 7,\n 72,\n 11,\n 16416,\n 8,\n 329,\n 1312,\n 287,\n 4686,\n 87,\n 4008,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 15179,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 5298,\n 11052,\n 12331,\n 7203,\n 43,\n 12582,\n 19182,\n 691,\n 6971,\n 6376,\n 278,\n 416,\n 24314,\n 2474,\n 8,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 357,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 4686,\n 87,\n 6624,\n 16416,\n 7,\n 14202,\n 11,\n 6045,\n 11,\n 6045,\n 8,\n 393,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 4686,\n 87,\n 6624,\n 357,\n 48369,\n 7,\n 14202,\n 11,\n 6045,\n 11,\n 6045,\n 828,\n 16416,\n 7,\n 14202,\n 11,\n 6045,\n 11,\n 6045,\n 4008,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 15179,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1441,\n 2116,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 18896,\n 7,\n 312,\n 87,\n 8,\n 14512,\n 362,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 5298,\n 35528,\n 7203,\n 3118,\n 15999,\n 6376,\n 2474,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 357,\n 88,\n 62,\n 1084,\n 11,\n 331,\n 62,\n 9806,\n 828,\n 357,\n 87,\n 62,\n 1084,\n 11,\n 2124,\n 62,\n 9806,\n 8,\n 796,\n 47527,\n 72,\n 13,\n 9688,\n 11,\n 1312,\n 13,\n 11338,\n 8,\n 329,\n 1312,\n 287,\n 4686,\n 87,\n 60,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 331,\n 62,\n 2364,\n 796,\n 331,\n 62,\n 1084,\n 532,\n 357,\n 88,\n 62,\n 1084,\n 4064,\n 2116,\n 13,\n 40927,\n 62,\n 7857,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2124,\n 62,\n 2364,\n 796,\n 2124,\n 62,\n 1084,\n 532,\n 357,\n 87,\n 62,\n 1084,\n 4064,\n 2116,\n 13,\n 40927,\n 62,\n 7857,\n 8,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 6818,\n 357,\n 88,\n 62,\n 1084,\n 18189,\n 657,\n 8,\n 290,\n 357,\n 88,\n 62,\n 9806,\n 18189,\n 657,\n 8,\n 290,\n 357,\n 87,\n 62,\n 1084,\n 18189,\n 657,\n 8,\n 1222,\n 357,\n 87,\n 62,\n 9806,\n 18189,\n 657,\n 8,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 331,\n 62,\n 9806,\n 4064,\n 2116,\n 13,\n 40927,\n 62,\n 7857,\n 6624,\n 657,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3509,\n 62,\n 88,\n 62,\n 83,\n 2915,\n 796,\n 357,\n 88,\n 62,\n 9806,\n 3373,\n 2116,\n 13,\n 40927,\n 62,\n 7857,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2073,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3509,\n 62,\n 88,\n 62,\n 83,\n 2915,\n 796,\n 357,\n 88,\n 62,\n 9806,\n 3373,\n 2116,\n 13,\n 40927,\n 62,\n 7857,\n 8,\n 1343,\n 352,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 2124,\n 62,\n 9806,\n 4064,\n 2116,\n 13,\n 40927,\n 62,\n 7857,\n 6624,\n 657,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3509,\n 62,\n 87,\n 62,\n 83,\n 2915,\n 796,\n 357,\n 87,\n 62,\n 9806,\n 3373,\n 2116,\n 13,\n 40927,\n 62,\n 7857,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2073,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3509,\n 62,\n 87,\n 62,\n 83,\n 2915,\n 796,\n 357,\n 87,\n 62,\n 9806,\n 3373,\n 2116,\n 13,\n 40927,\n 62,\n 7857,\n 8,\n 1343,\n 352,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 288,\n 2093,\n 62,\n 3258,\n 592,\n 796,\n 17635,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 329,\n 331,\n 62,\n 40927,\n 287,\n 2837,\n 7,\n 88,\n 62,\n 1084,\n 3373,\n 2116,\n 13,\n 40927,\n 62,\n 7857,\n 11,\n 3509,\n 62,\n 88,\n 62,\n 83,\n 2915,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 5752,\n 62,\n 83,\n 2915,\n 796,\n 17635,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 329,\n 2124,\n 62,\n 40927,\n 287,\n 2837,\n 7,\n 87,\n 62,\n 1084,\n 3373,\n 2116,\n 13,\n 40927,\n 62,\n 7857,\n 11,\n 3509,\n 62,\n 87,\n 62,\n 83,\n 2915,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 5752,\n 62,\n 83,\n 2915,\n 13,\n 33295,\n 7,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 12379,\n 13,\n 6738,\n 62,\n 12381,\n 16548,\n 7,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13,\n 961,\n 62,\n 40927,\n 7,\n 88,\n 62,\n 40927,\n 11,\n 2124,\n 62,\n 40927,\n 828,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 5485,\n 16193,\n 944,\n 13,\n 40927,\n 62,\n 7857,\n 11,\n 2116,\n 13,\n 40927,\n 62,\n 7857,\n 828,\n 288,\n 4906,\n 28,\n 37659,\n 13,\n 28611,\n 23,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1267,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1267,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 288,\n 2093,\n 62,\n 3258,\n 592,\n 13,\n 33295,\n 7,\n 808,\n 62,\n 83,\n 2915,\n 8,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 331,\n 62,\n 9806,\n 796,\n 949,\n 7,\n 88,\n 62,\n 9806,\n 11,\n 2116,\n 13,\n 43358,\n 58,\n 15,\n 12962,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2124,\n 62,\n 9806,\n 796,\n 949,\n 7,\n 87,\n 62,\n 9806,\n 11,\n 2116,\n 13,\n 43358,\n 58,\n 16,\n 12962,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1441,\n 12379,\n 13,\n 9967,\n 7,\n 67,\n 2093,\n 62,\n 3258,\n 592,\n 38381,\n 88,\n 62,\n 1084,\n 12,\n 88,\n 62,\n 2364,\n 25,\n 88,\n 62,\n 9806,\n 12,\n 88,\n 62,\n 2364,\n 11,\n 2124,\n 62,\n 1084,\n 12,\n 87,\n 62,\n 2364,\n 25,\n 87,\n 62,\n 9806,\n 12,\n 87,\n 62,\n 2364,\n 60,\n 628,\n 220,\n 220,\n 220,\n 2488,\n 39305,\n 13,\n 397,\n 8709,\n 24396,\n 198,\n 220,\n 220,\n 220,\n 825,\n 1100,\n 62,\n 40927,\n 7,\n 944,\n 11,\n 331,\n 62,\n 40927,\n 11,\n 2124,\n 62,\n 40927,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 27741,\n 2446,\n 543,\n 9743,\n 257,\n 17763,\n 379,\n 262,\n 2292,\n 357,\n 88,\n 62,\n 40927,\n 11,\n 2124,\n 62,\n 40927,\n 737,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1441,\n 198\n]"},"ratio_char_token":{"kind":"number","value":2.209539121114684,"string":"2.209539"},"token_count":{"kind":"number","value":1866,"string":"1,866"}}},{"rowIdx":4282,"cells":{"content":{"kind":"string","value":"from django.core.management.base import BaseCommand\n\nfrom core.datatools.fail_repeat import FailRepeater\n\n"},"input_ids":{"kind":"list like","value":[6738,42625,14208,13,7295,13,27604,13,8692,1330,7308,21575,198,198,6738,4755,13,19608,265,10141,13,32165,62,44754,1330,18448,47541,729,628],"string":"[\n 6738,\n 42625,\n 14208,\n 13,\n 7295,\n 13,\n 27604,\n 13,\n 8692,\n 1330,\n 7308,\n 21575,\n 198,\n 198,\n 6738,\n 4755,\n 13,\n 19608,\n 265,\n 10141,\n 13,\n 32165,\n 62,\n 44754,\n 1330,\n 18448,\n 47541,\n 729,\n 628\n]"},"ratio_char_token":{"kind":"number","value":3.6551724137931036,"string":"3.655172"},"token_count":{"kind":"number","value":29,"string":"29"}}},{"rowIdx":4283,"cells":{"content":{"kind":"string","value":"from typing import Dict\nimport requests\nfrom config.env import starhubtvplus_app_key, starhubtvplus_client_uuid\n\n"},"input_ids":{"kind":"list like","value":[6738,19720,1330,360,713,198,11748,7007,198,6738,4566,13,24330,1330,3491,40140,14981,9541,62,1324,62,2539,11,3491,40140,14981,9541,62,16366,62,12303,312,628],"string":"[\n 6738,\n 19720,\n 1330,\n 360,\n 713,\n 198,\n 11748,\n 7007,\n 198,\n 6738,\n 4566,\n 13,\n 24330,\n 1330,\n 3491,\n 40140,\n 14981,\n 9541,\n 62,\n 1324,\n 62,\n 2539,\n 11,\n 3491,\n 40140,\n 14981,\n 9541,\n 62,\n 16366,\n 62,\n 12303,\n 312,\n 628\n]"},"ratio_char_token":{"kind":"number","value":3.4242424242424243,"string":"3.424242"},"token_count":{"kind":"number","value":33,"string":"33"}}},{"rowIdx":4284,"cells":{"content":{"kind":"string","value":"#\n# Import section\n#\nimport numpy\n\nfrom syned.beamline.beamline_element import BeamlineElement\nfrom syned.beamline.element_coordinates import ElementCoordinates\nfrom wofry.propagator.propagator import PropagationManager, PropagationElements, PropagationParameters\n\nfrom wofry.propagator.wavefront1D.generic_wavefront import GenericWavefront1D\n\nfrom wofryimpl.propagator.propagators1D.fresnel import Fresnel1D\nfrom wofryimpl.propagator.propagators1D.fresnel_convolution import FresnelConvolution1D\nfrom wofryimpl.propagator.propagators1D.fraunhofer import Fraunhofer1D\nfrom wofryimpl.propagator.propagators1D.integral import Integral1D\nfrom wofryimpl.propagator.propagators1D.fresnel_zoom import FresnelZoom1D\nfrom wofryimpl.propagator.propagators1D.fresnel_zoom_scaling_theorem import FresnelZoomScaling1D\n\n\n#\n# SOURCE========================\n#\n\n\n\n#\n# BEAMLINE========================\n#\n\n\n\n#\n# MAIN FUNCTION========================\n#\n\n\n\n#\n# MAIN========================\n#\n\n\n# main()\nif __name__ == \"__main__\":\n from orangecontrib.esrf.wofry.util.tally import TallyCoherentModes, Tally\n from oasys.util.oasys_util import get_fwhm\n from srxraylib.plot.gol import plot\n #\n #\n #\n # size_at_aperture = 565e-6\n APERTURE = [40.3e-6, 85.1e-6, 145e-6, 1000e-6, -40.3e-6, -85.1e-6, -145e-6, -1000e-6] # [ 5000e-6] # [-40.3e-6, -85.1e-6, -145e-6, -1000e-6] #\n DISTANCE = numpy.linspace(10, 50, 50) # numpy.array([18.4]) # # # 31.19 28.4\n number_of_points = 800 # 800\n\n\n for aperture in APERTURE:\n\n # src1, wf = main(aperture=aperture, distance=18.4168, number_of_points=number_of_points)\n\n filename = \"aperture_h_%g.dat\" % (1e6 * aperture) #<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<\n f = open(filename, 'w')\n\n f.write(\"# S 1 scored data\\n\")\n f.write(\"# N 5\\n\")\n f.write(\"# L distance fwhm total_intensity on_axis_intensity peak_intensity\")\n\n if aperture < 0:\n aperture *= -1\n nmodes = 1\n else:\n nmodes = 10\n\n for i,distance in enumerate(DISTANCE):\n tally = main(aperture=aperture, distance=distance, nmodes=nmodes)\n\n spectral_density = tally.get_spectral_density() # numpy.zeros_like(abscissas)\n abscissas = tally.get_abscissas()\n fwhm, quote, coordinates = get_fwhm(spectral_density, 1e6 * abscissas)\n\n I = spectral_density\n x = abscissas\n\n fwhm, quote, coordinates = get_fwhm(I, x)\n intensity_at_center = I[I.size // 2]\n intensity_total = I.sum() * (x[1] - x[0])\n intensity_peak = I.max()\n\n\n #<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<\n # plot(1e6 * abscissas, spectral_density,\n # legend=[\"From Cross Spectral Density\"],\n # xtitle=\"x [um]\", ytitle=\"Spectral Density\", title=\"D=%g m,FWHM = %g um, a=%g um\" % (distance, fwhm, aperture*1e6))\n\n f.write(\"\\n %g %g %g %g %g \" % (distance, fwhm, intensity_total, intensity_at_center, intensity_peak))\n\n f.close()\n print(\"File %s written to disk\" % filename)\n # tally.save(\"aperture_h_%g.dat\" % (aperture))\n\n\n # main()\n"},"input_ids":{"kind":"list like","value":[2,198,2,17267,2665,198,2,198,11748,299,32152,198,198,6738,827,2817,13,40045,1370,13,40045,1370,62,30854,1330,25855,1370,20180,198,6738,827,2817,13,40045,1370,13,30854,62,37652,17540,1330,11703,7222,585,17540,198,6738,266,1659,563,13,22930,363,1352,13,22930,363,1352,1330,8772,363,341,13511,11,8772,363,341,36,3639,11,8772,363,341,48944,198,198,6738,266,1659,563,13,22930,363,1352,13,19204,8534,16,35,13,41357,62,19204,8534,1330,42044,39709,8534,16,35,198,198,6738,266,1659,563,23928,13,22930,363,1352,13,22930,363,2024,16,35,13,69,411,4954,1330,32732,4954,16,35,198,6738,266,1659,563,23928,13,22930,363,1352,13,22930,363,2024,16,35,13,69,411,4954,62,42946,2122,1330,32732,4954,3103,85,2122,16,35,198,6738,266,1659,563,23928,13,22930,363,1352,13,22930,363,2024,16,35,13,69,430,403,71,30288,1330,39313,403,71,30288,16,35,198,6738,266,1659,563,23928,13,22930,363,1352,13,22930,363,2024,16,35,13,18908,1373,1330,15995,1373,16,35,198,6738,266,1659,563,23928,13,22930,363,1352,13,22930,363,2024,16,35,13,69,411,4954,62,89,4207,1330,32732,4954,57,4207,16,35,198,6738,266,1659,563,23928,13,22930,363,1352,13,22930,363,2024,16,35,13,69,411,4954,62,89,4207,62,1416,4272,62,1169,29625,1330,32732,4954,57,4207,3351,4272,16,35,628,198,2,198,2,311,31033,4770,2559,198,2,628,198,198,2,198,2,9348,2390,24027,4770,2559,198,2,628,198,198,2,198,2,8779,1268,29397,4177,2849,4770,2559,198,2,628,198,198,2,198,2,8779,1268,4770,2559,198,2,628,198,2,1388,3419,198,361,11593,3672,834,6624,366,834,12417,834,1298,198,220,220,220,422,10912,3642,822,13,274,41871,13,86,1659,563,13,22602,13,83,453,1330,309,453,7222,8334,44,4147,11,309,453,198,220,220,220,422,267,292,893,13,22602,13,78,292,893,62,22602,1330,651,62,69,1929,76,198,220,220,220,422,19677,87,2433,8019,13,29487,13,70,349,1330,7110,198,220,220,220,1303,198,220,220,220,1303,198,220,220,220,1303,198,220,220,220,1303,2546,62,265,62,499,861,495,796,642,2996,68,12,21,198,220,220,220,3486,17395,11335,796,685,1821,13,18,68,12,21,11,7600,13,16,68,12,21,11,20299,68,12,21,11,8576,68,12,21,11,532,1821,13,18,68,12,21,11,532,5332,13,16,68,12,21,11,532,18781,68,12,21,11,532,12825,68,12,21,60,1303,685,23336,68,12,21,60,1303,25915,1821,13,18,68,12,21,11,532,5332,13,16,68,12,21,11,532,18781,68,12,21,11,532,12825,68,12,21,60,1303,198,220,220,220,360,8808,19240,796,299,32152,13,21602,10223,7,940,11,2026,11,2026,8,1303,299,32152,13,18747,26933,1507,13,19,12962,1303,220,220,1303,1303,3261,13,1129,2579,13,19,198,220,220,220,1271,62,1659,62,13033,796,10460,1303,10460,628,198,220,220,220,329,32729,287,3486,17395,11335,25,628,220,220,220,220,220,220,220,1303,12351,16,11,266,69,796,1388,7,499,861,495,28,499,861,495,11,5253,28,1507,13,19,14656,11,1271,62,1659,62,13033,28,17618,62,1659,62,13033,8,628,220,220,220,220,220,220,220,29472,796,366,499,861,495,62,71,62,4,70,13,19608,1,4064,357,16,68,21,1635,32729,8,1303,16791,16791,16791,16791,16791,16791,16791,16791,16791,16791,16791,16791,16791,16791,16791,16791,16791,16791,16791,16791,16791,27,198,220,220,220,220,220,220,220,277,796,1280,7,34345,11,705,86,11537,628,220,220,220,220,220,220,220,277,13,13564,7203,2,311,352,7781,1366,59,77,4943,198,220,220,220,220,220,220,220,277,13,13564,7203,2,399,642,59,77,4943,198,220,220,220,220,220,220,220,277,13,13564,7203,2,406,220,5253,220,277,1929,76,220,2472,62,47799,220,319,62,22704,62,47799,220,9103,62,47799,4943,628,220,220,220,220,220,220,220,611,32729,1279,657,25,198,220,220,220,220,220,220,220,220,220,220,220,32729,1635,28,532,16,198,220,220,220,220,220,220,220,220,220,220,220,28642,4147,796,352,198,220,220,220,220,220,220,220,2073,25,198,220,220,220,220,220,220,220,220,220,220,220,28642,4147,796,838,628,220,220,220,220,220,220,220,329,1312,11,30246,287,27056,378,7,35,8808,19240,2599,198,220,220,220,220,220,220,220,220,220,220,220,26767,796,1388,7,499,861,495,28,499,861,495,11,5253,28,30246,11,28642,4147,28,21533,4147,8,628,220,220,220,220,220,220,220,220,220,220,220,37410,62,43337,796,26767,13,1136,62,4443,1373,62,43337,3419,1303,299,32152,13,9107,418,62,2339,7,397,1416,747,292,8,198,220,220,220,220,220,220,220,220,220,220,220,450,1416,747,292,796,26767,13,1136,62,397,1416,747,292,3419,198,220,220,220,220,220,220,220,220,220,220,220,277,1929,76,11,9577,11,22715,796,651,62,69,1929,76,7,4443,1373,62,43337,11,352,68,21,1635,450,1416,747,292,8,628,220,220,220,220,220,220,220,220,220,220,220,314,796,37410,62,43337,198,220,220,220,220,220,220,220,220,220,220,220,2124,796,450,1416,747,292,628,220,220,220,220,220,220,220,220,220,220,220,277,1929,76,11,9577,11,22715,796,651,62,69,1929,76,7,40,11,2124,8,198,220,220,220,220,220,220,220,220,220,220,220,12245,62,265,62,16159,796,314,58,40,13,7857,3373,362,60,198,220,220,220,220,220,220,220,220,220,220,220,12245,62,23350,796,314,13,16345,3419,1635,357,87,58,16,60,532,2124,58,15,12962,198,220,220,220,220,220,220,220,220,220,220,220,12245,62,36729,796,314,13,9806,3419,628,198,220,220,220,220,220,220,220,220,220,220,220,1303,16791,16791,16791,16791,16791,16791,16791,16791,16791,16791,16791,16791,16791,16791,16791,16791,16791,16791,16791,16791,16791,16791,16791,16791,16791,16791,16791,16791,16791,16791,16791,16791,16791,16791,16791,16791,16791,16791,16791,198,220,220,220,220,220,220,220,220,220,220,220,1303,7110,7,16,68,21,1635,450,1416,747,292,11,37410,62,43337,11,198,220,220,220,220,220,220,220,220,220,220,220,1303,220,220,220,220,220,8177,28,14692,4863,6372,13058,1373,360,6377,33116,198,220,220,220,220,220,220,220,220,220,220,220,1303,220,220,220,220,220,220,742,2578,2625,87,685,388,60,1600,331,7839,2625,49738,1373,360,6377,1600,3670,2625,35,28,4,70,285,11,37,12418,44,796,4064,70,23781,11,257,28,4,70,23781,1,4064,357,30246,11,277,1929,76,11,32729,9,16,68,21,4008,628,220,220,220,220,220,220,220,220,220,220,220,277,13,13564,7203,59,77,4064,70,220,4064,70,220,4064,70,220,4064,70,220,4064,70,220,366,4064,357,30246,11,220,277,1929,76,11,220,12245,62,23350,11,220,12245,62,265,62,16159,11,220,12245,62,36729,4008,628,220,220,220,220,220,220,220,277,13,19836,3419,198,220,220,220,220,220,220,220,3601,7203,8979,4064,82,3194,284,11898,1,4064,29472,8,198,220,220,220,220,220,220,220,1303,26767,13,21928,7203,499,861,495,62,71,62,4,70,13,19608,1,4064,357,499,861,495,4008,628,198,220,220,220,1303,1388,3419,198],"string":"[\n 2,\n 198,\n 2,\n 17267,\n 2665,\n 198,\n 2,\n 198,\n 11748,\n 299,\n 32152,\n 198,\n 198,\n 6738,\n 827,\n 2817,\n 13,\n 40045,\n 1370,\n 13,\n 40045,\n 1370,\n 62,\n 30854,\n 1330,\n 25855,\n 1370,\n 20180,\n 198,\n 6738,\n 827,\n 2817,\n 13,\n 40045,\n 1370,\n 13,\n 30854,\n 62,\n 37652,\n 17540,\n 1330,\n 11703,\n 7222,\n 585,\n 17540,\n 198,\n 6738,\n 266,\n 1659,\n 563,\n 13,\n 22930,\n 363,\n 1352,\n 13,\n 22930,\n 363,\n 1352,\n 1330,\n 8772,\n 363,\n 341,\n 13511,\n 11,\n 8772,\n 363,\n 341,\n 36,\n 3639,\n 11,\n 8772,\n 363,\n 341,\n 48944,\n 198,\n 198,\n 6738,\n 266,\n 1659,\n 563,\n 13,\n 22930,\n 363,\n 1352,\n 13,\n 19204,\n 8534,\n 16,\n 35,\n 13,\n 41357,\n 62,\n 19204,\n 8534,\n 1330,\n 42044,\n 39709,\n 8534,\n 16,\n 35,\n 198,\n 198,\n 6738,\n 266,\n 1659,\n 563,\n 23928,\n 13,\n 22930,\n 363,\n 1352,\n 13,\n 22930,\n 363,\n 2024,\n 16,\n 35,\n 13,\n 69,\n 411,\n 4954,\n 1330,\n 32732,\n 4954,\n 16,\n 35,\n 198,\n 6738,\n 266,\n 1659,\n 563,\n 23928,\n 13,\n 22930,\n 363,\n 1352,\n 13,\n 22930,\n 363,\n 2024,\n 16,\n 35,\n 13,\n 69,\n 411,\n 4954,\n 62,\n 42946,\n 2122,\n 1330,\n 32732,\n 4954,\n 3103,\n 85,\n 2122,\n 16,\n 35,\n 198,\n 6738,\n 266,\n 1659,\n 563,\n 23928,\n 13,\n 22930,\n 363,\n 1352,\n 13,\n 22930,\n 363,\n 2024,\n 16,\n 35,\n 13,\n 69,\n 430,\n 403,\n 71,\n 30288,\n 1330,\n 39313,\n 403,\n 71,\n 30288,\n 16,\n 35,\n 198,\n 6738,\n 266,\n 1659,\n 563,\n 23928,\n 13,\n 22930,\n 363,\n 1352,\n 13,\n 22930,\n 363,\n 2024,\n 16,\n 35,\n 13,\n 18908,\n 1373,\n 1330,\n 15995,\n 1373,\n 16,\n 35,\n 198,\n 6738,\n 266,\n 1659,\n 563,\n 23928,\n 13,\n 22930,\n 363,\n 1352,\n 13,\n 22930,\n 363,\n 2024,\n 16,\n 35,\n 13,\n 69,\n 411,\n 4954,\n 62,\n 89,\n 4207,\n 1330,\n 32732,\n 4954,\n 57,\n 4207,\n 16,\n 35,\n 198,\n 6738,\n 266,\n 1659,\n 563,\n 23928,\n 13,\n 22930,\n 363,\n 1352,\n 13,\n 22930,\n 363,\n 2024,\n 16,\n 35,\n 13,\n 69,\n 411,\n 4954,\n 62,\n 89,\n 4207,\n 62,\n 1416,\n 4272,\n 62,\n 1169,\n 29625,\n 1330,\n 32732,\n 4954,\n 57,\n 4207,\n 3351,\n 4272,\n 16,\n 35,\n 628,\n 198,\n 2,\n 198,\n 2,\n 311,\n 31033,\n 4770,\n 2559,\n 198,\n 2,\n 628,\n 198,\n 198,\n 2,\n 198,\n 2,\n 9348,\n 2390,\n 24027,\n 4770,\n 2559,\n 198,\n 2,\n 628,\n 198,\n 198,\n 2,\n 198,\n 2,\n 8779,\n 1268,\n 29397,\n 4177,\n 2849,\n 4770,\n 2559,\n 198,\n 2,\n 628,\n 198,\n 198,\n 2,\n 198,\n 2,\n 8779,\n 1268,\n 4770,\n 2559,\n 198,\n 2,\n 628,\n 198,\n 2,\n 1388,\n 3419,\n 198,\n 361,\n 11593,\n 3672,\n 834,\n 6624,\n 366,\n 834,\n 12417,\n 834,\n 1298,\n 198,\n 220,\n 220,\n 220,\n 422,\n 10912,\n 3642,\n 822,\n 13,\n 274,\n 41871,\n 13,\n 86,\n 1659,\n 563,\n 13,\n 22602,\n 13,\n 83,\n 453,\n 1330,\n 309,\n 453,\n 7222,\n 8334,\n 44,\n 4147,\n 11,\n 309,\n 453,\n 198,\n 220,\n 220,\n 220,\n 422,\n 267,\n 292,\n 893,\n 13,\n 22602,\n 13,\n 78,\n 292,\n 893,\n 62,\n 22602,\n 1330,\n 651,\n 62,\n 69,\n 1929,\n 76,\n 198,\n 220,\n 220,\n 220,\n 422,\n 19677,\n 87,\n 2433,\n 8019,\n 13,\n 29487,\n 13,\n 70,\n 349,\n 1330,\n 7110,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 2546,\n 62,\n 265,\n 62,\n 499,\n 861,\n 495,\n 796,\n 642,\n 2996,\n 68,\n 12,\n 21,\n 198,\n 220,\n 220,\n 220,\n 3486,\n 17395,\n 11335,\n 796,\n 685,\n 1821,\n 13,\n 18,\n 68,\n 12,\n 21,\n 11,\n 7600,\n 13,\n 16,\n 68,\n 12,\n 21,\n 11,\n 20299,\n 68,\n 12,\n 21,\n 11,\n 8576,\n 68,\n 12,\n 21,\n 11,\n 532,\n 1821,\n 13,\n 18,\n 68,\n 12,\n 21,\n 11,\n 532,\n 5332,\n 13,\n 16,\n 68,\n 12,\n 21,\n 11,\n 532,\n 18781,\n 68,\n 12,\n 21,\n 11,\n 532,\n 12825,\n 68,\n 12,\n 21,\n 60,\n 1303,\n 685,\n 23336,\n 68,\n 12,\n 21,\n 60,\n 1303,\n 25915,\n 1821,\n 13,\n 18,\n 68,\n 12,\n 21,\n 11,\n 532,\n 5332,\n 13,\n 16,\n 68,\n 12,\n 21,\n 11,\n 532,\n 18781,\n 68,\n 12,\n 21,\n 11,\n 532,\n 12825,\n 68,\n 12,\n 21,\n 60,\n 1303,\n 198,\n 220,\n 220,\n 220,\n 360,\n 8808,\n 19240,\n 796,\n 299,\n 32152,\n 13,\n 21602,\n 10223,\n 7,\n 940,\n 11,\n 2026,\n 11,\n 2026,\n 8,\n 1303,\n 299,\n 32152,\n 13,\n 18747,\n 26933,\n 1507,\n 13,\n 19,\n 12962,\n 1303,\n 220,\n 220,\n 1303,\n 1303,\n 3261,\n 13,\n 1129,\n 2579,\n 13,\n 19,\n 198,\n 220,\n 220,\n 220,\n 1271,\n 62,\n 1659,\n 62,\n 13033,\n 796,\n 10460,\n 1303,\n 10460,\n 628,\n 198,\n 220,\n 220,\n 220,\n 329,\n 32729,\n 287,\n 3486,\n 17395,\n 11335,\n 25,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 12351,\n 16,\n 11,\n 266,\n 69,\n 796,\n 1388,\n 7,\n 499,\n 861,\n 495,\n 28,\n 499,\n 861,\n 495,\n 11,\n 5253,\n 28,\n 1507,\n 13,\n 19,\n 14656,\n 11,\n 1271,\n 62,\n 1659,\n 62,\n 13033,\n 28,\n 17618,\n 62,\n 1659,\n 62,\n 13033,\n 8,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 29472,\n 796,\n 366,\n 499,\n 861,\n 495,\n 62,\n 71,\n 62,\n 4,\n 70,\n 13,\n 19608,\n 1,\n 4064,\n 357,\n 16,\n 68,\n 21,\n 1635,\n 32729,\n 8,\n 1303,\n 16791,\n 16791,\n 16791,\n 16791,\n 16791,\n 16791,\n 16791,\n 16791,\n 16791,\n 16791,\n 16791,\n 16791,\n 16791,\n 16791,\n 16791,\n 16791,\n 16791,\n 16791,\n 16791,\n 16791,\n 16791,\n 27,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 277,\n 796,\n 1280,\n 7,\n 34345,\n 11,\n 705,\n 86,\n 11537,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 277,\n 13,\n 13564,\n 7203,\n 2,\n 311,\n 352,\n 7781,\n 1366,\n 59,\n 77,\n 4943,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 277,\n 13,\n 13564,\n 7203,\n 2,\n 399,\n 642,\n 59,\n 77,\n 4943,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 277,\n 13,\n 13564,\n 7203,\n 2,\n 406,\n 220,\n 5253,\n 220,\n 277,\n 1929,\n 76,\n 220,\n 2472,\n 62,\n 47799,\n 220,\n 319,\n 62,\n 22704,\n 62,\n 47799,\n 220,\n 9103,\n 62,\n 47799,\n 4943,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 32729,\n 1279,\n 657,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 32729,\n 1635,\n 28,\n 532,\n 16,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 28642,\n 4147,\n 796,\n 352,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2073,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 28642,\n 4147,\n 796,\n 838,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 329,\n 1312,\n 11,\n 30246,\n 287,\n 27056,\n 378,\n 7,\n 35,\n 8808,\n 19240,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 26767,\n 796,\n 1388,\n 7,\n 499,\n 861,\n 495,\n 28,\n 499,\n 861,\n 495,\n 11,\n 5253,\n 28,\n 30246,\n 11,\n 28642,\n 4147,\n 28,\n 21533,\n 4147,\n 8,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37410,\n 62,\n 43337,\n 796,\n 26767,\n 13,\n 1136,\n 62,\n 4443,\n 1373,\n 62,\n 43337,\n 3419,\n 1303,\n 299,\n 32152,\n 13,\n 9107,\n 418,\n 62,\n 2339,\n 7,\n 397,\n 1416,\n 747,\n 292,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 450,\n 1416,\n 747,\n 292,\n 796,\n 26767,\n 13,\n 1136,\n 62,\n 397,\n 1416,\n 747,\n 292,\n 3419,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 277,\n 1929,\n 76,\n 11,\n 9577,\n 11,\n 22715,\n 796,\n 651,\n 62,\n 69,\n 1929,\n 76,\n 7,\n 4443,\n 1373,\n 62,\n 43337,\n 11,\n 352,\n 68,\n 21,\n 1635,\n 450,\n 1416,\n 747,\n 292,\n 8,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 314,\n 796,\n 37410,\n 62,\n 43337,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2124,\n 796,\n 450,\n 1416,\n 747,\n 292,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 277,\n 1929,\n 76,\n 11,\n 9577,\n 11,\n 22715,\n 796,\n 651,\n 62,\n 69,\n 1929,\n 76,\n 7,\n 40,\n 11,\n 2124,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 12245,\n 62,\n 265,\n 62,\n 16159,\n 796,\n 314,\n 58,\n 40,\n 13,\n 7857,\n 3373,\n 362,\n 60,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 12245,\n 62,\n 23350,\n 796,\n 314,\n 13,\n 16345,\n 3419,\n 1635,\n 357,\n 87,\n 58,\n 16,\n 60,\n 532,\n 2124,\n 58,\n 15,\n 12962,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 12245,\n 62,\n 36729,\n 796,\n 314,\n 13,\n 9806,\n 3419,\n 628,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 16791,\n 16791,\n 16791,\n 16791,\n 16791,\n 16791,\n 16791,\n 16791,\n 16791,\n 16791,\n 16791,\n 16791,\n 16791,\n 16791,\n 16791,\n 16791,\n 16791,\n 16791,\n 16791,\n 16791,\n 16791,\n 16791,\n 16791,\n 16791,\n 16791,\n 16791,\n 16791,\n 16791,\n 16791,\n 16791,\n 16791,\n 16791,\n 16791,\n 16791,\n 16791,\n 16791,\n 16791,\n 16791,\n 16791,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 7110,\n 7,\n 16,\n 68,\n 21,\n 1635,\n 450,\n 1416,\n 747,\n 292,\n 11,\n 37410,\n 62,\n 43337,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 220,\n 220,\n 220,\n 220,\n 220,\n 8177,\n 28,\n 14692,\n 4863,\n 6372,\n 13058,\n 1373,\n 360,\n 6377,\n 33116,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 742,\n 2578,\n 2625,\n 87,\n 685,\n 388,\n 60,\n 1600,\n 331,\n 7839,\n 2625,\n 49738,\n 1373,\n 360,\n 6377,\n 1600,\n 3670,\n 2625,\n 35,\n 28,\n 4,\n 70,\n 285,\n 11,\n 37,\n 12418,\n 44,\n 796,\n 4064,\n 70,\n 23781,\n 11,\n 257,\n 28,\n 4,\n 70,\n 23781,\n 1,\n 4064,\n 357,\n 30246,\n 11,\n 277,\n 1929,\n 76,\n 11,\n 32729,\n 9,\n 16,\n 68,\n 21,\n 4008,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 277,\n 13,\n 13564,\n 7203,\n 59,\n 77,\n 4064,\n 70,\n 220,\n 4064,\n 70,\n 220,\n 4064,\n 70,\n 220,\n 4064,\n 70,\n 220,\n 4064,\n 70,\n 220,\n 366,\n 4064,\n 357,\n 30246,\n 11,\n 220,\n 277,\n 1929,\n 76,\n 11,\n 220,\n 12245,\n 62,\n 23350,\n 11,\n 220,\n 12245,\n 62,\n 265,\n 62,\n 16159,\n 11,\n 220,\n 12245,\n 62,\n 36729,\n 4008,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 277,\n 13,\n 19836,\n 3419,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3601,\n 7203,\n 8979,\n 4064,\n 82,\n 3194,\n 284,\n 11898,\n 1,\n 4064,\n 29472,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 26767,\n 13,\n 21928,\n 7203,\n 499,\n 861,\n 495,\n 62,\n 71,\n 62,\n 4,\n 70,\n 13,\n 19608,\n 1,\n 4064,\n 357,\n 499,\n 861,\n 495,\n 4008,\n 628,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 1388,\n 3419,\n 198\n]"},"ratio_char_token":{"kind":"number","value":2.1843349088453747,"string":"2.184335"},"token_count":{"kind":"number","value":1481,"string":"1,481"}}},{"rowIdx":4285,"cells":{"content":{"kind":"string","value":"import unittest\nfrom models import Marker # for Marker.bounding_box_query\nimport datetime\n\n# This tests year 2014 accidents as this is the current example git data for testing\n# Once this changes to another year or to the current year's accidents (as should be) un-comment lines 11,13,15\n# and change both 2014 and 2015 to: %s\n\n\nclass TestQueryFilters(unittest.TestCase):\n \"\"\"\n # cyear = str(datetime.datetime.now().strftime(\"%Y\"))\n global start_date\n start_date = \"01/01/2014\" # % cyear\n global end_date\n end_date = \"01/01/2015\" # % str(int(cyear)-1)\n \"\"\"\n\n\nif __name__ == '__main__':\n unittest.main()\n suite = unittest.TestLoader().loadTestsFromTestCase(TestQueryFilters)\n unittest.TextTestRunner(verbosity=2).run(suite)\n"},"input_ids":{"kind":"list like","value":[11748,555,715,395,198,6738,4981,1330,2940,263,220,1303,329,2940,263,13,7784,278,62,3524,62,22766,198,11748,4818,8079,198,198,2,770,5254,614,1946,17390,355,428,318,262,1459,1672,17606,1366,329,4856,198,2,4874,428,2458,284,1194,614,393,284,262,1459,614,338,17390,357,292,815,307,8,555,12,23893,3951,1367,11,1485,11,1314,198,2,290,1487,1111,1946,290,1853,284,25,4064,82,628,198,4871,6208,20746,11928,1010,7,403,715,395,13,14402,20448,2599,198,220,220,220,37227,198,220,220,220,1303,269,1941,796,965,7,19608,8079,13,19608,8079,13,2197,22446,2536,31387,7203,4,56,48774,198,220,220,220,3298,923,62,4475,198,220,220,220,923,62,4475,796,366,486,14,486,14,4967,1,220,220,220,220,1303,4064,269,1941,198,220,220,220,3298,886,62,4475,198,220,220,220,886,62,4475,796,366,486,14,486,14,4626,1,220,220,220,220,220,220,1303,4064,965,7,600,7,948,451,13219,16,8,198,220,220,220,37227,628,198,361,11593,3672,834,6624,705,834,12417,834,10354,198,220,220,220,555,715,395,13,12417,3419,198,220,220,220,18389,796,555,715,395,13,14402,17401,22446,2220,51,3558,4863,14402,20448,7,14402,20746,11928,1010,8,198,220,220,220,555,715,395,13,8206,14402,49493,7,19011,16579,28,17,737,5143,7,2385,578,8,198],"string":"[\n 11748,\n 555,\n 715,\n 395,\n 198,\n 6738,\n 4981,\n 1330,\n 2940,\n 263,\n 220,\n 1303,\n 329,\n 2940,\n 263,\n 13,\n 7784,\n 278,\n 62,\n 3524,\n 62,\n 22766,\n 198,\n 11748,\n 4818,\n 8079,\n 198,\n 198,\n 2,\n 770,\n 5254,\n 614,\n 1946,\n 17390,\n 355,\n 428,\n 318,\n 262,\n 1459,\n 1672,\n 17606,\n 1366,\n 329,\n 4856,\n 198,\n 2,\n 4874,\n 428,\n 2458,\n 284,\n 1194,\n 614,\n 393,\n 284,\n 262,\n 1459,\n 614,\n 338,\n 17390,\n 357,\n 292,\n 815,\n 307,\n 8,\n 555,\n 12,\n 23893,\n 3951,\n 1367,\n 11,\n 1485,\n 11,\n 1314,\n 198,\n 2,\n 290,\n 1487,\n 1111,\n 1946,\n 290,\n 1853,\n 284,\n 25,\n 4064,\n 82,\n 628,\n 198,\n 4871,\n 6208,\n 20746,\n 11928,\n 1010,\n 7,\n 403,\n 715,\n 395,\n 13,\n 14402,\n 20448,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 269,\n 1941,\n 796,\n 965,\n 7,\n 19608,\n 8079,\n 13,\n 19608,\n 8079,\n 13,\n 2197,\n 22446,\n 2536,\n 31387,\n 7203,\n 4,\n 56,\n 48774,\n 198,\n 220,\n 220,\n 220,\n 3298,\n 923,\n 62,\n 4475,\n 198,\n 220,\n 220,\n 220,\n 923,\n 62,\n 4475,\n 796,\n 366,\n 486,\n 14,\n 486,\n 14,\n 4967,\n 1,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 4064,\n 269,\n 1941,\n 198,\n 220,\n 220,\n 220,\n 3298,\n 886,\n 62,\n 4475,\n 198,\n 220,\n 220,\n 220,\n 886,\n 62,\n 4475,\n 796,\n 366,\n 486,\n 14,\n 486,\n 14,\n 4626,\n 1,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 4064,\n 965,\n 7,\n 600,\n 7,\n 948,\n 451,\n 13219,\n 16,\n 8,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 628,\n 198,\n 361,\n 11593,\n 3672,\n 834,\n 6624,\n 705,\n 834,\n 12417,\n 834,\n 10354,\n 198,\n 220,\n 220,\n 220,\n 555,\n 715,\n 395,\n 13,\n 12417,\n 3419,\n 198,\n 220,\n 220,\n 220,\n 18389,\n 796,\n 555,\n 715,\n 395,\n 13,\n 14402,\n 17401,\n 22446,\n 2220,\n 51,\n 3558,\n 4863,\n 14402,\n 20448,\n 7,\n 14402,\n 20746,\n 11928,\n 1010,\n 8,\n 198,\n 220,\n 220,\n 220,\n 555,\n 715,\n 395,\n 13,\n 8206,\n 14402,\n 49493,\n 7,\n 19011,\n 16579,\n 28,\n 17,\n 737,\n 5143,\n 7,\n 2385,\n 578,\n 8,\n 198\n]"},"ratio_char_token":{"kind":"number","value":2.7781818181818183,"string":"2.778182"},"token_count":{"kind":"number","value":275,"string":"275"}}},{"rowIdx":4286,"cells":{"content":{"kind":"string","value":"# Copyright 2021 Google LLC\n#\n# Licensed under the Apache License, Version 2.0 (the \"License\");\n# you may not use this file except in compliance with the License.\n# You may obtain a copy of the License at\n#\n# http://www.apache.org/licenses/LICENSE-2.0\n#\n# Unless required by applicable law or agreed to in writing, software\n# distributed under the License is distributed on an \"AS IS\" BASIS,\n# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n# See the License for the specific language governing permissions and\n# limitations under the License.\n\nfrom absl.testing import absltest\nfrom learner.brains import tensor_nest\n\nimport tensorflow as tf\n\n\nclass TensorNestTest(absltest.TestCase):\n \"\"\"Tests for the tensor_nest module.\"\"\"\n\n def test_batch_size_valid_nest(self):\n \"\"\"Get the batch size of a nest of tensors with the same batch size.\"\"\"\n nest = {\n 'a': {\n 'b': tf.constant([[1, 2, 3], [4, 5, 6]]),\n 'c': tf.constant([[7, 8, 9, 10], [11, 12, 13, 14]])\n },\n }\n self.assertEqual(2, tensor_nest.batch_size(nest))\n\n def test_batch_size_invalid_nest(self):\n \"\"\"Get the batch size of a nest of tensors with different batch sizes.\"\"\"\n nest = {\n 'a': {\n 'b': tf.constant([[1, 2, 3], [4, 5, 6], [7, 8, 9]]),\n 'c': tf.constant([[7, 8, 9, 10], [11, 12, 13, 14]])\n },\n }\n self.assertRaisesRegex(\n tensor_nest.MismatchedBatchSizeError,\n 'Tensors found in nest with mismatched batch sizes: {\\'a\\'.*}',\n tensor_nest.batch_size, nest)\n\n def test_batch_size_empty_nest(self):\n \"\"\"Get the batch size of an empty tensor nest.\"\"\"\n self.assertIsNone(tensor_nest.batch_size({}))\n\n def test_concatenate_batched(self):\n \"\"\"Test the concatenation of a set of batched tensor nests.\"\"\"\n nests = [\n {\n 'a': {\n 'b': tf.constant([[1, 2], [3, 4]]),\n 'c': tf.constant([[9, 8, 7], [6, 5, 4]]),\n },\n },\n {\n 'a': {\n 'b': tf.constant([[5, 6]]),\n 'c': tf.constant([[3, 2, 1]]),\n },\n },\n ]\n expected = {\n 'a': {\n 'b': tf.constant([[1, 2], [3, 4], [5, 6]]),\n 'c': tf.constant([[9, 8, 7], [6, 5, 4], [3, 2, 1]]),\n },\n }\n tf.nest.assert_same_structure(tensor_nest.concatenate_batched(nests),\n expected, expand_composites=True)\n\n\nif __name__ == '__main__':\n absltest.main()\n"},"input_ids":{"kind":"list like","value":[2,15069,33448,3012,11419,198,2,198,2,49962,739,262,24843,13789,11,10628,362,13,15,357,1169,366,34156,15341,198,2,345,743,407,779,428,2393,2845,287,11846,351,262,13789,13,198,2,921,743,7330,257,4866,286,262,13789,379,198,2,198,2,220,220,220,220,220,2638,1378,2503,13,43073,13,2398,14,677,4541,14,43,2149,24290,12,17,13,15,198,2,198,2,17486,2672,416,9723,1099,393,4987,284,287,3597,11,3788,198,2,9387,739,262,13789,318,9387,319,281,366,1921,3180,1,29809,1797,11,198,2,42881,34764,11015,6375,7102,49828,11053,3963,15529,509,12115,11,2035,4911,393,17142,13,198,2,4091,262,13789,329,262,2176,3303,15030,21627,290,198,2,11247,739,262,13789,13,198,198,6738,2352,75,13,33407,1330,2352,2528,395,198,6738,22454,1008,13,1671,1299,1330,11192,273,62,77,395,198,198,11748,11192,273,11125,355,48700,628,198,4871,309,22854,45,395,14402,7,8937,2528,395,13,14402,20448,2599,198,220,37227,51,3558,329,262,11192,273,62,77,395,8265,526,15931,628,220,825,1332,62,43501,62,7857,62,12102,62,77,395,7,944,2599,198,220,220,220,37227,3855,262,15458,2546,286,257,16343,286,11192,669,351,262,976,15458,2546,526,15931,198,220,220,220,16343,796,1391,198,220,220,220,220,220,220,220,705,64,10354,1391,198,220,220,220,220,220,220,220,220,220,220,220,705,65,10354,48700,13,9979,415,26933,58,16,11,362,11,513,4357,685,19,11,642,11,718,11907,828,198,220,220,220,220,220,220,220,220,220,220,220,705,66,10354,48700,13,9979,415,26933,58,22,11,807,11,860,11,838,4357,685,1157,11,1105,11,1511,11,1478,11907,8,198,220,220,220,220,220,220,220,8964,198,220,220,220,1782,198,220,220,220,2116,13,30493,36,13255,7,17,11,11192,273,62,77,395,13,43501,62,7857,7,77,395,4008,628,220,825,1332,62,43501,62,7857,62,259,12102,62,77,395,7,944,2599,198,220,220,220,37227,3855,262,15458,2546,286,257,16343,286,11192,669,351,1180,15458,10620,526,15931,198,220,220,220,16343,796,1391,198,220,220,220,220,220,220,220,705,64,10354,1391,198,220,220,220,220,220,220,220,220,220,220,220,705,65,10354,48700,13,9979,415,26933,58,16,11,362,11,513,4357,685,19,11,642,11,718,4357,685,22,11,807,11,860,11907,828,198,220,220,220,220,220,220,220,220,220,220,220,705,66,10354,48700,13,9979,415,26933,58,22,11,807,11,860,11,838,4357,685,1157,11,1105,11,1511,11,1478,11907,8,198,220,220,220,220,220,220,220,8964,198,220,220,220,1782,198,220,220,220,2116,13,30493,21762,2696,3041,25636,7,198,220,220,220,220,220,220,220,11192,273,62,77,395,13,44,1042,14265,33,963,10699,12331,11,198,220,220,220,220,220,220,220,705,51,641,669,1043,287,16343,351,32691,14265,15458,10620,25,1391,43054,64,59,4458,9,92,3256,198,220,220,220,220,220,220,220,11192,273,62,77,395,13,43501,62,7857,11,16343,8,628,220,825,1332,62,43501,62,7857,62,28920,62,77,395,7,944,2599,198,220,220,220,37227,3855,262,15458,2546,286,281,6565,11192,273,16343,526,15931,198,220,220,220,2116,13,30493,3792,14202,7,83,22854,62,77,395,13,43501,62,7857,15090,92,4008,628,220,825,1332,62,1102,9246,268,378,62,8664,1740,7,944,2599,198,220,220,220,37227,14402,262,1673,36686,341,286,257,900,286,7365,1740,11192,273,44382,526,15931,198,220,220,220,44382,796,685,198,220,220,220,220,220,220,220,1391,198,220,220,220,220,220,220,220,220,220,220,220,705,64,10354,1391,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,705,65,10354,48700,13,9979,415,26933,58,16,11,362,4357,685,18,11,604,11907,828,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,705,66,10354,48700,13,9979,415,26933,58,24,11,807,11,767,4357,685,21,11,642,11,604,11907,828,198,220,220,220,220,220,220,220,220,220,220,220,8964,198,220,220,220,220,220,220,220,8964,198,220,220,220,220,220,220,220,1391,198,220,220,220,220,220,220,220,220,220,220,220,705,64,10354,1391,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,705,65,10354,48700,13,9979,415,26933,58,20,11,718,11907,828,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,705,66,10354,48700,13,9979,415,26933,58,18,11,362,11,352,11907,828,198,220,220,220,220,220,220,220,220,220,220,220,8964,198,220,220,220,220,220,220,220,8964,198,220,220,220,2361,198,220,220,220,2938,796,1391,198,220,220,220,220,220,220,220,705,64,10354,1391,198,220,220,220,220,220,220,220,220,220,220,220,705,65,10354,48700,13,9979,415,26933,58,16,11,362,4357,685,18,11,604,4357,685,20,11,718,11907,828,198,220,220,220,220,220,220,220,220,220,220,220,705,66,10354,48700,13,9979,415,26933,58,24,11,807,11,767,4357,685,21,11,642,11,604,4357,685,18,11,362,11,352,11907,828,198,220,220,220,220,220,220,220,8964,198,220,220,220,1782,198,220,220,220,48700,13,77,395,13,30493,62,31642,62,301,5620,7,83,22854,62,77,395,13,1102,9246,268,378,62,8664,1740,7,77,3558,828,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,2938,11,4292,62,785,1930,2737,28,17821,8,628,198,361,11593,3672,834,6624,705,834,12417,834,10354,198,220,2352,2528,395,13,12417,3419,198],"string":"[\n 2,\n 15069,\n 33448,\n 3012,\n 11419,\n 198,\n 2,\n 198,\n 2,\n 49962,\n 739,\n 262,\n 24843,\n 13789,\n 11,\n 10628,\n 362,\n 13,\n 15,\n 357,\n 1169,\n 366,\n 34156,\n 15341,\n 198,\n 2,\n 345,\n 743,\n 407,\n 779,\n 428,\n 2393,\n 2845,\n 287,\n 11846,\n 351,\n 262,\n 13789,\n 13,\n 198,\n 2,\n 921,\n 743,\n 7330,\n 257,\n 4866,\n 286,\n 262,\n 13789,\n 379,\n 198,\n 2,\n 198,\n 2,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2638,\n 1378,\n 2503,\n 13,\n 43073,\n 13,\n 2398,\n 14,\n 677,\n 4541,\n 14,\n 43,\n 2149,\n 24290,\n 12,\n 17,\n 13,\n 15,\n 198,\n 2,\n 198,\n 2,\n 17486,\n 2672,\n 416,\n 9723,\n 1099,\n 393,\n 4987,\n 284,\n 287,\n 3597,\n 11,\n 3788,\n 198,\n 2,\n 9387,\n 739,\n 262,\n 13789,\n 318,\n 9387,\n 319,\n 281,\n 366,\n 1921,\n 3180,\n 1,\n 29809,\n 1797,\n 11,\n 198,\n 2,\n 42881,\n 34764,\n 11015,\n 6375,\n 7102,\n 49828,\n 11053,\n 3963,\n 15529,\n 509,\n 12115,\n 11,\n 2035,\n 4911,\n 393,\n 17142,\n 13,\n 198,\n 2,\n 4091,\n 262,\n 13789,\n 329,\n 262,\n 2176,\n 3303,\n 15030,\n 21627,\n 290,\n 198,\n 2,\n 11247,\n 739,\n 262,\n 13789,\n 13,\n 198,\n 198,\n 6738,\n 2352,\n 75,\n 13,\n 33407,\n 1330,\n 2352,\n 2528,\n 395,\n 198,\n 6738,\n 22454,\n 1008,\n 13,\n 1671,\n 1299,\n 1330,\n 11192,\n 273,\n 62,\n 77,\n 395,\n 198,\n 198,\n 11748,\n 11192,\n 273,\n 11125,\n 355,\n 48700,\n 628,\n 198,\n 4871,\n 309,\n 22854,\n 45,\n 395,\n 14402,\n 7,\n 8937,\n 2528,\n 395,\n 13,\n 14402,\n 20448,\n 2599,\n 198,\n 220,\n 37227,\n 51,\n 3558,\n 329,\n 262,\n 11192,\n 273,\n 62,\n 77,\n 395,\n 8265,\n 526,\n 15931,\n 628,\n 220,\n 825,\n 1332,\n 62,\n 43501,\n 62,\n 7857,\n 62,\n 12102,\n 62,\n 77,\n 395,\n 7,\n 944,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 3855,\n 262,\n 15458,\n 2546,\n 286,\n 257,\n 16343,\n 286,\n 11192,\n 669,\n 351,\n 262,\n 976,\n 15458,\n 2546,\n 526,\n 15931,\n 198,\n 220,\n 220,\n 220,\n 16343,\n 796,\n 1391,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 705,\n 64,\n 10354,\n 1391,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 705,\n 65,\n 10354,\n 48700,\n 13,\n 9979,\n 415,\n 26933,\n 58,\n 16,\n 11,\n 362,\n 11,\n 513,\n 4357,\n 685,\n 19,\n 11,\n 642,\n 11,\n 718,\n 11907,\n 828,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 705,\n 66,\n 10354,\n 48700,\n 13,\n 9979,\n 415,\n 26933,\n 58,\n 22,\n 11,\n 807,\n 11,\n 860,\n 11,\n 838,\n 4357,\n 685,\n 1157,\n 11,\n 1105,\n 11,\n 1511,\n 11,\n 1478,\n 11907,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 8964,\n 198,\n 220,\n 220,\n 220,\n 1782,\n 198,\n 220,\n 220,\n 220,\n 2116,\n 13,\n 30493,\n 36,\n 13255,\n 7,\n 17,\n 11,\n 11192,\n 273,\n 62,\n 77,\n 395,\n 13,\n 43501,\n 62,\n 7857,\n 7,\n 77,\n 395,\n 4008,\n 628,\n 220,\n 825,\n 1332,\n 62,\n 43501,\n 62,\n 7857,\n 62,\n 259,\n 12102,\n 62,\n 77,\n 395,\n 7,\n 944,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 3855,\n 262,\n 15458,\n 2546,\n 286,\n 257,\n 16343,\n 286,\n 11192,\n 669,\n 351,\n 1180,\n 15458,\n 10620,\n 526,\n 15931,\n 198,\n 220,\n 220,\n 220,\n 16343,\n 796,\n 1391,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 705,\n 64,\n 10354,\n 1391,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 705,\n 65,\n 10354,\n 48700,\n 13,\n 9979,\n 415,\n 26933,\n 58,\n 16,\n 11,\n 362,\n 11,\n 513,\n 4357,\n 685,\n 19,\n 11,\n 642,\n 11,\n 718,\n 4357,\n 685,\n 22,\n 11,\n 807,\n 11,\n 860,\n 11907,\n 828,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 705,\n 66,\n 10354,\n 48700,\n 13,\n 9979,\n 415,\n 26933,\n 58,\n 22,\n 11,\n 807,\n 11,\n 860,\n 11,\n 838,\n 4357,\n 685,\n 1157,\n 11,\n 1105,\n 11,\n 1511,\n 11,\n 1478,\n 11907,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 8964,\n 198,\n 220,\n 220,\n 220,\n 1782,\n 198,\n 220,\n 220,\n 220,\n 2116,\n 13,\n 30493,\n 21762,\n 2696,\n 3041,\n 25636,\n 7,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 11192,\n 273,\n 62,\n 77,\n 395,\n 13,\n 44,\n 1042,\n 14265,\n 33,\n 963,\n 10699,\n 12331,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 705,\n 51,\n 641,\n 669,\n 1043,\n 287,\n 16343,\n 351,\n 32691,\n 14265,\n 15458,\n 10620,\n 25,\n 1391,\n 43054,\n 64,\n 59,\n 4458,\n 9,\n 92,\n 3256,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 11192,\n 273,\n 62,\n 77,\n 395,\n 13,\n 43501,\n 62,\n 7857,\n 11,\n 16343,\n 8,\n 628,\n 220,\n 825,\n 1332,\n 62,\n 43501,\n 62,\n 7857,\n 62,\n 28920,\n 62,\n 77,\n 395,\n 7,\n 944,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 3855,\n 262,\n 15458,\n 2546,\n 286,\n 281,\n 6565,\n 11192,\n 273,\n 16343,\n 526,\n 15931,\n 198,\n 220,\n 220,\n 220,\n 2116,\n 13,\n 30493,\n 3792,\n 14202,\n 7,\n 83,\n 22854,\n 62,\n 77,\n 395,\n 13,\n 43501,\n 62,\n 7857,\n 15090,\n 92,\n 4008,\n 628,\n 220,\n 825,\n 1332,\n 62,\n 1102,\n 9246,\n 268,\n 378,\n 62,\n 8664,\n 1740,\n 7,\n 944,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 14402,\n 262,\n 1673,\n 36686,\n 341,\n 286,\n 257,\n 900,\n 286,\n 7365,\n 1740,\n 11192,\n 273,\n 44382,\n 526,\n 15931,\n 198,\n 220,\n 220,\n 220,\n 44382,\n 796,\n 685,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1391,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 705,\n 64,\n 10354,\n 1391,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 705,\n 65,\n 10354,\n 48700,\n 13,\n 9979,\n 415,\n 26933,\n 58,\n 16,\n 11,\n 362,\n 4357,\n 685,\n 18,\n 11,\n 604,\n 11907,\n 828,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 705,\n 66,\n 10354,\n 48700,\n 13,\n 9979,\n 415,\n 26933,\n 58,\n 24,\n 11,\n 807,\n 11,\n 767,\n 4357,\n 685,\n 21,\n 11,\n 642,\n 11,\n 604,\n 11907,\n 828,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 8964,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 8964,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1391,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 705,\n 64,\n 10354,\n 1391,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 705,\n 65,\n 10354,\n 48700,\n 13,\n 9979,\n 415,\n 26933,\n 58,\n 20,\n 11,\n 718,\n 11907,\n 828,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 705,\n 66,\n 10354,\n 48700,\n 13,\n 9979,\n 415,\n 26933,\n 58,\n 18,\n 11,\n 362,\n 11,\n 352,\n 11907,\n 828,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 8964,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 8964,\n 198,\n 220,\n 220,\n 220,\n 2361,\n 198,\n 220,\n 220,\n 220,\n 2938,\n 796,\n 1391,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 705,\n 64,\n 10354,\n 1391,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 705,\n 65,\n 10354,\n 48700,\n 13,\n 9979,\n 415,\n 26933,\n 58,\n 16,\n 11,\n 362,\n 4357,\n 685,\n 18,\n 11,\n 604,\n 4357,\n 685,\n 20,\n 11,\n 718,\n 11907,\n 828,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 705,\n 66,\n 10354,\n 48700,\n 13,\n 9979,\n 415,\n 26933,\n 58,\n 24,\n 11,\n 807,\n 11,\n 767,\n 4357,\n 685,\n 21,\n 11,\n 642,\n 11,\n 604,\n 4357,\n 685,\n 18,\n 11,\n 362,\n 11,\n 352,\n 11907,\n 828,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 8964,\n 198,\n 220,\n 220,\n 220,\n 1782,\n 198,\n 220,\n 220,\n 220,\n 48700,\n 13,\n 77,\n 395,\n 13,\n 30493,\n 62,\n 31642,\n 62,\n 301,\n 5620,\n 7,\n 83,\n 22854,\n 62,\n 77,\n 395,\n 13,\n 1102,\n 9246,\n 268,\n 378,\n 62,\n 8664,\n 1740,\n 7,\n 77,\n 3558,\n 828,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2938,\n 11,\n 4292,\n 62,\n 785,\n 1930,\n 2737,\n 28,\n 17821,\n 8,\n 628,\n 198,\n 361,\n 11593,\n 3672,\n 834,\n 6624,\n 705,\n 834,\n 12417,\n 834,\n 10354,\n 198,\n 220,\n 2352,\n 2528,\n 395,\n 13,\n 12417,\n 3419,\n 198\n]"},"ratio_char_token":{"kind":"number","value":2.1701208981001727,"string":"2.170121"},"token_count":{"kind":"number","value":1158,"string":"1,158"}}},{"rowIdx":4287,"cells":{"content":{"kind":"string","value":"\"\"\" Longest Palindromic Subsequence\n\nGiven a string s, find the longest palindromic subsequence's length in s.\n\nA subsequence is a sequence that can be derived from another sequence by\ndeleting some or no elements without changing the order of the remaining elements.\n\n- Example 1:\n - Input: s = \"bbbab\"\n - Output: 4\n - Explanation: One possible longest palindromic subsequence is \"bbbb\".\n- Example 2:\n - Input: s = \"cbbd\"\n - Output: 2\n - Explanation: One possible longest palindromic subsequence is \"bb\".\n- Constraints:\n - 1 <= s.length <= 1000\n - s consists only of lowercase English letters.\n\"\"\"\n\n\n# A Dynamic Programming based Python\n# program for LPS problem Returns the length\n# of the longest palindromic subsequence in seq\n\n\n# Driver program to test above functions\nseq = \"GEEKS FOR GEEKS\"\nn = len(seq)\nprint(\"The length of the LPS is \" + str(lps(seq)))\n\n# This code is contributed by Bhavya Jain"},"input_ids":{"kind":"list like","value":[37811,5882,395,3175,521,398,291,3834,43167,198,198,15056,257,4731,264,11,1064,262,14069,6340,521,398,291,6399,594,338,4129,287,264,13,198,198,32,6399,594,318,257,8379,326,460,307,10944,422,1194,8379,416,198,2934,293,889,617,393,645,4847,1231,5609,262,1502,286,262,5637,4847,13,198,198,12,17934,352,25,198,220,220,220,532,23412,25,264,796,366,11848,65,397,1,198,220,220,220,532,25235,25,604,198,220,220,220,532,50125,341,25,1881,1744,14069,6340,521,398,291,6399,594,318,366,11848,11848,1911,198,12,17934,362,25,198,220,220,220,532,23412,25,264,796,366,66,11848,67,1,198,220,220,220,532,25235,25,362,198,220,220,220,532,50125,341,25,1881,1744,14069,6340,521,398,291,6399,594,318,366,11848,1911,198,12,1482,2536,6003,25,198,220,220,220,532,352,19841,264,13,13664,19841,8576,198,220,220,220,532,264,10874,691,286,2793,7442,3594,7475,13,198,37811,628,198,2,317,26977,30297,1912,11361,198,2,1430,329,406,3705,1917,16409,262,4129,198,2,286,262,14069,6340,521,398,291,6399,594,287,33756,628,198,2,12434,1430,284,1332,2029,5499,198,41068,796,366,38,6500,27015,7473,402,6500,27015,1,198,77,796,18896,7,41068,8,198,4798,7203,464,4129,286,262,406,3705,318,366,1343,965,7,75,862,7,41068,22305,198,198,2,770,2438,318,8639,416,16581,2830,64,449,391],"string":"[\n 37811,\n 5882,\n 395,\n 3175,\n 521,\n 398,\n 291,\n 3834,\n 43167,\n 198,\n 198,\n 15056,\n 257,\n 4731,\n 264,\n 11,\n 1064,\n 262,\n 14069,\n 6340,\n 521,\n 398,\n 291,\n 6399,\n 594,\n 338,\n 4129,\n 287,\n 264,\n 13,\n 198,\n 198,\n 32,\n 6399,\n 594,\n 318,\n 257,\n 8379,\n 326,\n 460,\n 307,\n 10944,\n 422,\n 1194,\n 8379,\n 416,\n 198,\n 2934,\n 293,\n 889,\n 617,\n 393,\n 645,\n 4847,\n 1231,\n 5609,\n 262,\n 1502,\n 286,\n 262,\n 5637,\n 4847,\n 13,\n 198,\n 198,\n 12,\n 17934,\n 352,\n 25,\n 198,\n 220,\n 220,\n 220,\n 532,\n 23412,\n 25,\n 264,\n 796,\n 366,\n 11848,\n 65,\n 397,\n 1,\n 198,\n 220,\n 220,\n 220,\n 532,\n 25235,\n 25,\n 604,\n 198,\n 220,\n 220,\n 220,\n 532,\n 50125,\n 341,\n 25,\n 1881,\n 1744,\n 14069,\n 6340,\n 521,\n 398,\n 291,\n 6399,\n 594,\n 318,\n 366,\n 11848,\n 11848,\n 1911,\n 198,\n 12,\n 17934,\n 362,\n 25,\n 198,\n 220,\n 220,\n 220,\n 532,\n 23412,\n 25,\n 264,\n 796,\n 366,\n 66,\n 11848,\n 67,\n 1,\n 198,\n 220,\n 220,\n 220,\n 532,\n 25235,\n 25,\n 362,\n 198,\n 220,\n 220,\n 220,\n 532,\n 50125,\n 341,\n 25,\n 1881,\n 1744,\n 14069,\n 6340,\n 521,\n 398,\n 291,\n 6399,\n 594,\n 318,\n 366,\n 11848,\n 1911,\n 198,\n 12,\n 1482,\n 2536,\n 6003,\n 25,\n 198,\n 220,\n 220,\n 220,\n 532,\n 352,\n 19841,\n 264,\n 13,\n 13664,\n 19841,\n 8576,\n 198,\n 220,\n 220,\n 220,\n 532,\n 264,\n 10874,\n 691,\n 286,\n 2793,\n 7442,\n 3594,\n 7475,\n 13,\n 198,\n 37811,\n 628,\n 198,\n 2,\n 317,\n 26977,\n 30297,\n 1912,\n 11361,\n 198,\n 2,\n 1430,\n 329,\n 406,\n 3705,\n 1917,\n 16409,\n 262,\n 4129,\n 198,\n 2,\n 286,\n 262,\n 14069,\n 6340,\n 521,\n 398,\n 291,\n 6399,\n 594,\n 287,\n 33756,\n 628,\n 198,\n 2,\n 12434,\n 1430,\n 284,\n 1332,\n 2029,\n 5499,\n 198,\n 41068,\n 796,\n 366,\n 38,\n 6500,\n 27015,\n 7473,\n 402,\n 6500,\n 27015,\n 1,\n 198,\n 77,\n 796,\n 18896,\n 7,\n 41068,\n 8,\n 198,\n 4798,\n 7203,\n 464,\n 4129,\n 286,\n 262,\n 406,\n 3705,\n 318,\n 366,\n 1343,\n 965,\n 7,\n 75,\n 862,\n 7,\n 41068,\n 22305,\n 198,\n 198,\n 2,\n 770,\n 2438,\n 318,\n 8639,\n 416,\n 16581,\n 2830,\n 64,\n 449,\n 391\n]"},"ratio_char_token":{"kind":"number","value":3.2447552447552446,"string":"3.244755"},"token_count":{"kind":"number","value":286,"string":"286"}}},{"rowIdx":4288,"cells":{"content":{"kind":"string","value":"import statistics\ndata = [2.75, 1.75, 1.25, 0.25, 0.5, 1.25, 3.5]\nprint(statistics.mean(data)) # 平均\nprint(statistics.median(data)) # 中央値\nprint(statistics.variance(data)) # 標本標準分散\n"},"input_ids":{"kind":"list like","value":[11748,7869,198,7890,796,685,17,13,2425,11,352,13,2425,11,352,13,1495,11,657,13,1495,11,657,13,20,11,352,13,1495,11,513,13,20,60,198,4798,7,14269,3969,13,32604,7,7890,4008,1303,10263,117,111,161,251,229,198,4798,7,14269,3969,13,1150,666,7,7890,4008,1303,220,40792,13783,106,161,222,97,198,4798,7,14269,3969,13,25641,590,7,7890,4008,1303,10545,101,247,17312,105,162,101,247,162,118,244,26344,228,46763,96,198],"string":"[\n 11748,\n 7869,\n 198,\n 7890,\n 796,\n 685,\n 17,\n 13,\n 2425,\n 11,\n 352,\n 13,\n 2425,\n 11,\n 352,\n 13,\n 1495,\n 11,\n 657,\n 13,\n 1495,\n 11,\n 657,\n 13,\n 20,\n 11,\n 352,\n 13,\n 1495,\n 11,\n 513,\n 13,\n 20,\n 60,\n 198,\n 4798,\n 7,\n 14269,\n 3969,\n 13,\n 32604,\n 7,\n 7890,\n 4008,\n 1303,\n 10263,\n 117,\n 111,\n 161,\n 251,\n 229,\n 198,\n 4798,\n 7,\n 14269,\n 3969,\n 13,\n 1150,\n 666,\n 7,\n 7890,\n 4008,\n 1303,\n 220,\n 40792,\n 13783,\n 106,\n 161,\n 222,\n 97,\n 198,\n 4798,\n 7,\n 14269,\n 3969,\n 13,\n 25641,\n 590,\n 7,\n 7890,\n 4008,\n 1303,\n 10545,\n 101,\n 247,\n 17312,\n 105,\n 162,\n 101,\n 247,\n 162,\n 118,\n 244,\n 26344,\n 228,\n 46763,\n 96,\n 198\n]"},"ratio_char_token":{"kind":"number","value":1.8265306122448979,"string":"1.826531"},"token_count":{"kind":"number","value":98,"string":"98"}}},{"rowIdx":4289,"cells":{"content":{"kind":"string","value":"# Copyright 2021 Joshua Watt \n#\n# SPDX-License-Identifier: MIT\n\n"},"input_ids":{"kind":"list like","value":[2,15069,33448,20700,30263,1279,41,11401,1199,10735,31,14816,13,785,29,198,2,198,2,30628,55,12,34156,12,33234,7483,25,17168,628],"string":"[\n 2,\n 15069,\n 33448,\n 20700,\n 30263,\n 1279,\n 41,\n 11401,\n 1199,\n 10735,\n 31,\n 14816,\n 13,\n 785,\n 29,\n 198,\n 2,\n 198,\n 2,\n 30628,\n 55,\n 12,\n 34156,\n 12,\n 33234,\n 7483,\n 25,\n 17168,\n 628\n]"},"ratio_char_token":{"kind":"number","value":2.9655172413793105,"string":"2.965517"},"token_count":{"kind":"number","value":29,"string":"29"}}},{"rowIdx":4290,"cells":{"content":{"kind":"string","value":"from django.db import models\nfrom django.contrib.auth.models import User\nfrom ckeditor_uploader.fields import RichTextUploadingField\n\n# Create your models here.\n "},"input_ids":{"kind":"list like","value":[6738,42625,14208,13,9945,1330,4981,198,6738,42625,14208,13,3642,822,13,18439,13,27530,1330,11787,198,6738,269,9091,2072,62,25850,263,13,25747,1330,3998,8206,41592,278,15878,198,198,2,13610,534,4981,994,13,198,220,220,220,220],"string":"[\n 6738,\n 42625,\n 14208,\n 13,\n 9945,\n 1330,\n 4981,\n 198,\n 6738,\n 42625,\n 14208,\n 13,\n 3642,\n 822,\n 13,\n 18439,\n 13,\n 27530,\n 1330,\n 11787,\n 198,\n 6738,\n 269,\n 9091,\n 2072,\n 62,\n 25850,\n 263,\n 13,\n 25747,\n 1330,\n 3998,\n 8206,\n 41592,\n 278,\n 15878,\n 198,\n 198,\n 2,\n 13610,\n 534,\n 4981,\n 994,\n 13,\n 198,\n 220,\n 220,\n 220,\n 220\n]"},"ratio_char_token":{"kind":"number","value":3.36734693877551,"string":"3.367347"},"token_count":{"kind":"number","value":49,"string":"49"}}},{"rowIdx":4291,"cells":{"content":{"kind":"string","value":"import os\n\nfrom django import forms\nfrom django.utils.translation import gettext_lazy as _\n\nfrom wagtail.admin.widgets import AdminPageChooser\nfrom wagtail.contrib.redirects.models import Redirect\nfrom wagtail.models import Site\n\n\n\n"},"input_ids":{"kind":"list like","value":[11748,28686,198,198,6738,42625,14208,1330,5107,198,6738,42625,14208,13,26791,13,41519,1330,651,5239,62,75,12582,355,4808,198,198,6738,266,363,13199,13,28482,13,28029,11407,1330,32053,9876,22164,13416,198,6738,266,363,13199,13,3642,822,13,445,1060,82,13,27530,1330,2297,1060,198,6738,266,363,13199,13,27530,1330,14413,628,628],"string":"[\n 11748,\n 28686,\n 198,\n 198,\n 6738,\n 42625,\n 14208,\n 1330,\n 5107,\n 198,\n 6738,\n 42625,\n 14208,\n 13,\n 26791,\n 13,\n 41519,\n 1330,\n 651,\n 5239,\n 62,\n 75,\n 12582,\n 355,\n 4808,\n 198,\n 198,\n 6738,\n 266,\n 363,\n 13199,\n 13,\n 28482,\n 13,\n 28029,\n 11407,\n 1330,\n 32053,\n 9876,\n 22164,\n 13416,\n 198,\n 6738,\n 266,\n 363,\n 13199,\n 13,\n 3642,\n 822,\n 13,\n 445,\n 1060,\n 82,\n 13,\n 27530,\n 1330,\n 2297,\n 1060,\n 198,\n 6738,\n 266,\n 363,\n 13199,\n 13,\n 27530,\n 1330,\n 14413,\n 628,\n 628\n]"},"ratio_char_token":{"kind":"number","value":3.36231884057971,"string":"3.362319"},"token_count":{"kind":"number","value":69,"string":"69"}}},{"rowIdx":4292,"cells":{"content":{"kind":"string","value":"import numpy as np\nimport cv2\nimport copy\nfrom Tkinter import *\nfrom PIL import Image\nfrom PIL import ImageTk\nimport tkFileDialog\n\n\nroot = Tk()\npanelA = None\npanelB = None\nimg = None\nimg2 = None\nimg3 = None\n\nConvolutionLabel = Label(root, text=\"Convolute\").grid(row=0,column=0)\nConv00Entry = Entry(root, bd =5)\nConv01Entry = Entry(root, bd =5)\nConv02Entry = Entry(root, bd =5)\nConv10Entry = Entry(root, bd =5)\nConv11Entry = Entry(root, bd =5)\nConv12Entry = Entry(root, bd =5)\nConv20Entry = Entry(root, bd =5)\nConv21Entry = Entry(root, bd =5)\nConv22Entry = Entry(root, bd =5)\nConv00Entry.grid(row=1,column=0)\nConv01Entry.grid(row=1,column=1)\nConv02Entry.grid(row=1,column=2)\nConv10Entry.grid(row=2,column=0)\nConv11Entry.grid(row=2,column=1)\nConv12Entry.grid(row=2,column=2)\nConv20Entry.grid(row=3,column=0)\nConv21Entry.grid(row=3,column=1)\nConv22Entry.grid(row=3,column=2)\n\nbrightnessLabel = Label(root, text=\"Brightness\").grid(row=4,column=0)\nbrightnessEntry = Entry(root, bd =5)\nbrightnessEntry.grid(row=4,column=1)\ncontrastLabel = Label(root, text=\"Contrast\").grid(row=5,column=0)\ncontrastEntry = Entry(root, bd =5)\ncontrastEntry.grid(row=5,column=1)\n\nzoomOutLabel = Label(root, text=\"ZoomOut\").grid(row=6,column=0)\nzoomOutXEntry = Entry(root, bd =5)\nzoomOutXEntry.grid(row=6,column=1)\nzoomOutYEntry = Entry(root, bd =5)\nzoomOutYEntry.grid(row=6,column=2)\n\nselectImageBtn = Button(root, text=\"Select an image\", command=selectImage).grid(row=0,column=3)\nhorizontalBtn = Button(root, text =\"Flip Horizontally\", command = flipHorizontal).grid(row=1,column=3)\ngrayscaleBtn = Button(root, text =\"Grayscale\", command = grayscale).grid(row=2,column=3)\nhistogramBtn = Button(root, text =\"Generate Histogram\", command = generateHistogram).grid(row=3,column=3)\nbrightnessBtn = Button(root, text =\"Change Brightness\", command = changeBrightness).grid(row=4,column=3)\ncontrastBtn = Button(root, text =\"Change Contrast\", command = changeContrast).grid(row=5,column=3)\nnegativeBtn = Button(root, text =\"Negative\", command = negative).grid(row=6,column=3)\nequalizeBtn = Button(root, text =\"Equalize\", command = equalize).grid(row=7,column=3)\nzoomOutBtn = Button(root, text =\"ZoomOut\", command = zoomOut).grid(row=8,column=3)\nzoomInBtn = Button(root, text =\"ZoomIn\", command = zoomIn).grid(row=9,column=3)\nrotateClockWiseBtn = Button(root, text =\"rotateClockWise\", command = rotateClockWise).grid(row=10,column=3)\nrotateAntiClockWiseBtn = Button(root, text =\"rotateAntiClockWise\", command = rotateAntiClockWise).grid(row=11,column=3)\nconvoluteBtn = Button(root, text =\"Convolute\", command = convolute).grid(row=12,column=3)\n\nroot.mainloop()"},"input_ids":{"kind":"list like","value":[11748,299,32152,355,45941,198,11748,269,85,17,198,11748,4866,198,6738,309,74,3849,1330,1635,198,6738,350,4146,1330,7412,198,6738,350,4146,1330,7412,51,74,198,11748,256,74,8979,44204,628,198,15763,796,309,74,3419,198,35330,32,796,6045,198,35330,33,796,6045,198,9600,796,6045,198,9600,17,796,6045,198,9600,18,796,6045,198,198,3103,85,2122,33986,796,36052,7,15763,11,2420,2625,3103,85,3552,11074,25928,7,808,28,15,11,28665,28,15,8,198,3103,85,405,30150,796,21617,7,15763,11,275,67,796,20,8,198,3103,85,486,30150,796,21617,7,15763,11,275,67,796,20,8,198,3103,85,2999,30150,796,21617,7,15763,11,275,67,796,20,8,198,3103,85,940,30150,796,21617,7,15763,11,275,67,796,20,8,198,3103,85,1157,30150,796,21617,7,15763,11,275,67,796,20,8,198,3103,85,1065,30150,796,21617,7,15763,11,275,67,796,20,8,198,3103,85,1238,30150,796,21617,7,15763,11,275,67,796,20,8,198,3103,85,2481,30150,796,21617,7,15763,11,275,67,796,20,8,198,3103,85,1828,30150,796,21617,7,15763,11,275,67,796,20,8,198,3103,85,405,30150,13,25928,7,808,28,16,11,28665,28,15,8,198,3103,85,486,30150,13,25928,7,808,28,16,11,28665,28,16,8,198,3103,85,2999,30150,13,25928,7,808,28,16,11,28665,28,17,8,198,3103,85,940,30150,13,25928,7,808,28,17,11,28665,28,15,8,198,3103,85,1157,30150,13,25928,7,808,28,17,11,28665,28,16,8,198,3103,85,1065,30150,13,25928,7,808,28,17,11,28665,28,17,8,198,3103,85,1238,30150,13,25928,7,808,28,18,11,28665,28,15,8,198,3103,85,2481,30150,13,25928,7,808,28,18,11,28665,28,16,8,198,3103,85,1828,30150,13,25928,7,808,28,18,11,28665,28,17,8,198,198,29199,1108,33986,796,36052,7,15763,11,2420,2625,41267,1108,11074,25928,7,808,28,19,11,28665,28,15,8,198,29199,1108,30150,796,21617,7,15763,11,275,67,796,20,8,198,29199,1108,30150,13,25928,7,808,28,19,11,28665,28,16,8,198,3642,5685,33986,796,36052,7,15763,11,2420,2625,4264,5685,11074,25928,7,808,28,20,11,28665,28,15,8,198,3642,5685,30150,796,21617,7,15763,11,275,67,796,20,8,198,3642,5685,30150,13,25928,7,808,28,20,11,28665,28,16,8,198,198,89,4207,7975,33986,796,36052,7,15763,11,2420,2625,57,4207,7975,11074,25928,7,808,28,21,11,28665,28,15,8,198,89,4207,7975,55,30150,796,21617,7,15763,11,275,67,796,20,8,198,89,4207,7975,55,30150,13,25928,7,808,28,21,11,28665,28,16,8,198,89,4207,7975,56,30150,796,21617,7,15763,11,275,67,796,20,8,198,89,4207,7975,56,30150,13,25928,7,808,28,21,11,28665,28,17,8,198,198,19738,5159,33,34106,796,20969,7,15763,11,2420,2625,17563,281,2939,1600,3141,28,19738,5159,737,25928,7,808,28,15,11,28665,28,18,8,198,17899,38342,33,34106,796,20969,7,15763,11,2420,796,1,7414,541,6075,12071,453,1600,3141,796,14283,27991,38342,737,25928,7,808,28,16,11,28665,28,18,8,198,2164,592,38765,33,34106,796,20969,7,15763,11,2420,796,1,8642,592,38765,1600,3141,796,1036,592,38765,737,25928,7,808,28,17,11,28665,28,18,8,198,10034,21857,33,34106,796,20969,7,15763,11,2420,796,1,8645,378,5590,21857,1600,3141,796,7716,13749,21857,737,25928,7,808,28,18,11,28665,28,18,8,198,29199,1108,33,34106,796,20969,7,15763,11,2420,796,1,19400,17558,1108,1600,3141,796,1487,41267,1108,737,25928,7,808,28,19,11,28665,28,18,8,198,3642,5685,33,34106,796,20969,7,15763,11,2420,796,1,19400,47011,1600,3141,796,1487,4264,5685,737,25928,7,808,28,20,11,28665,28,18,8,198,31591,33,34106,796,20969,7,15763,11,2420,796,1,32863,876,1600,3141,796,4633,737,25928,7,808,28,21,11,28665,28,18,8,198,40496,1096,33,34106,796,20969,7,15763,11,2420,796,1,36,13255,1096,1600,3141,796,4961,1096,737,25928,7,808,28,22,11,28665,28,18,8,198,89,4207,7975,33,34106,796,20969,7,15763,11,2420,796,1,57,4207,7975,1600,3141,796,19792,7975,737,25928,7,808,28,23,11,28665,28,18,8,198,89,4207,818,33,34106,796,20969,7,15763,11,2420,796,1,57,4207,818,1600,3141,796,19792,818,737,25928,7,808,28,24,11,28665,28,18,8,198,10599,378,44758,54,786,33,34106,796,20969,7,15763,11,2420,796,1,10599,378,44758,54,786,1600,3141,796,23064,44758,54,786,737,25928,7,808,28,940,11,28665,28,18,8,198,10599,378,28795,44758,54,786,33,34106,796,20969,7,15763,11,2420,796,1,10599,378,28795,44758,54,786,1600,3141,796,23064,28795,44758,54,786,737,25928,7,808,28,1157,11,28665,28,18,8,198,42946,3552,33,34106,796,20969,7,15763,11,2420,796,1,3103,85,3552,1600,3141,796,3063,3552,737,25928,7,808,28,1065,11,28665,28,18,8,198,198,15763,13,12417,26268,3419],"string":"[\n 11748,\n 299,\n 32152,\n 355,\n 45941,\n 198,\n 11748,\n 269,\n 85,\n 17,\n 198,\n 11748,\n 4866,\n 198,\n 6738,\n 309,\n 74,\n 3849,\n 1330,\n 1635,\n 198,\n 6738,\n 350,\n 4146,\n 1330,\n 7412,\n 198,\n 6738,\n 350,\n 4146,\n 1330,\n 7412,\n 51,\n 74,\n 198,\n 11748,\n 256,\n 74,\n 8979,\n 44204,\n 628,\n 198,\n 15763,\n 796,\n 309,\n 74,\n 3419,\n 198,\n 35330,\n 32,\n 796,\n 6045,\n 198,\n 35330,\n 33,\n 796,\n 6045,\n 198,\n 9600,\n 796,\n 6045,\n 198,\n 9600,\n 17,\n 796,\n 6045,\n 198,\n 9600,\n 18,\n 796,\n 6045,\n 198,\n 198,\n 3103,\n 85,\n 2122,\n 33986,\n 796,\n 36052,\n 7,\n 15763,\n 11,\n 2420,\n 2625,\n 3103,\n 85,\n 3552,\n 11074,\n 25928,\n 7,\n 808,\n 28,\n 15,\n 11,\n 28665,\n 28,\n 15,\n 8,\n 198,\n 3103,\n 85,\n 405,\n 30150,\n 796,\n 21617,\n 7,\n 15763,\n 11,\n 275,\n 67,\n 796,\n 20,\n 8,\n 198,\n 3103,\n 85,\n 486,\n 30150,\n 796,\n 21617,\n 7,\n 15763,\n 11,\n 275,\n 67,\n 796,\n 20,\n 8,\n 198,\n 3103,\n 85,\n 2999,\n 30150,\n 796,\n 21617,\n 7,\n 15763,\n 11,\n 275,\n 67,\n 796,\n 20,\n 8,\n 198,\n 3103,\n 85,\n 940,\n 30150,\n 796,\n 21617,\n 7,\n 15763,\n 11,\n 275,\n 67,\n 796,\n 20,\n 8,\n 198,\n 3103,\n 85,\n 1157,\n 30150,\n 796,\n 21617,\n 7,\n 15763,\n 11,\n 275,\n 67,\n 796,\n 20,\n 8,\n 198,\n 3103,\n 85,\n 1065,\n 30150,\n 796,\n 21617,\n 7,\n 15763,\n 11,\n 275,\n 67,\n 796,\n 20,\n 8,\n 198,\n 3103,\n 85,\n 1238,\n 30150,\n 796,\n 21617,\n 7,\n 15763,\n 11,\n 275,\n 67,\n 796,\n 20,\n 8,\n 198,\n 3103,\n 85,\n 2481,\n 30150,\n 796,\n 21617,\n 7,\n 15763,\n 11,\n 275,\n 67,\n 796,\n 20,\n 8,\n 198,\n 3103,\n 85,\n 1828,\n 30150,\n 796,\n 21617,\n 7,\n 15763,\n 11,\n 275,\n 67,\n 796,\n 20,\n 8,\n 198,\n 3103,\n 85,\n 405,\n 30150,\n 13,\n 25928,\n 7,\n 808,\n 28,\n 16,\n 11,\n 28665,\n 28,\n 15,\n 8,\n 198,\n 3103,\n 85,\n 486,\n 30150,\n 13,\n 25928,\n 7,\n 808,\n 28,\n 16,\n 11,\n 28665,\n 28,\n 16,\n 8,\n 198,\n 3103,\n 85,\n 2999,\n 30150,\n 13,\n 25928,\n 7,\n 808,\n 28,\n 16,\n 11,\n 28665,\n 28,\n 17,\n 8,\n 198,\n 3103,\n 85,\n 940,\n 30150,\n 13,\n 25928,\n 7,\n 808,\n 28,\n 17,\n 11,\n 28665,\n 28,\n 15,\n 8,\n 198,\n 3103,\n 85,\n 1157,\n 30150,\n 13,\n 25928,\n 7,\n 808,\n 28,\n 17,\n 11,\n 28665,\n 28,\n 16,\n 8,\n 198,\n 3103,\n 85,\n 1065,\n 30150,\n 13,\n 25928,\n 7,\n 808,\n 28,\n 17,\n 11,\n 28665,\n 28,\n 17,\n 8,\n 198,\n 3103,\n 85,\n 1238,\n 30150,\n 13,\n 25928,\n 7,\n 808,\n 28,\n 18,\n 11,\n 28665,\n 28,\n 15,\n 8,\n 198,\n 3103,\n 85,\n 2481,\n 30150,\n 13,\n 25928,\n 7,\n 808,\n 28,\n 18,\n 11,\n 28665,\n 28,\n 16,\n 8,\n 198,\n 3103,\n 85,\n 1828,\n 30150,\n 13,\n 25928,\n 7,\n 808,\n 28,\n 18,\n 11,\n 28665,\n 28,\n 17,\n 8,\n 198,\n 198,\n 29199,\n 1108,\n 33986,\n 796,\n 36052,\n 7,\n 15763,\n 11,\n 2420,\n 2625,\n 41267,\n 1108,\n 11074,\n 25928,\n 7,\n 808,\n 28,\n 19,\n 11,\n 28665,\n 28,\n 15,\n 8,\n 198,\n 29199,\n 1108,\n 30150,\n 796,\n 21617,\n 7,\n 15763,\n 11,\n 275,\n 67,\n 796,\n 20,\n 8,\n 198,\n 29199,\n 1108,\n 30150,\n 13,\n 25928,\n 7,\n 808,\n 28,\n 19,\n 11,\n 28665,\n 28,\n 16,\n 8,\n 198,\n 3642,\n 5685,\n 33986,\n 796,\n 36052,\n 7,\n 15763,\n 11,\n 2420,\n 2625,\n 4264,\n 5685,\n 11074,\n 25928,\n 7,\n 808,\n 28,\n 20,\n 11,\n 28665,\n 28,\n 15,\n 8,\n 198,\n 3642,\n 5685,\n 30150,\n 796,\n 21617,\n 7,\n 15763,\n 11,\n 275,\n 67,\n 796,\n 20,\n 8,\n 198,\n 3642,\n 5685,\n 30150,\n 13,\n 25928,\n 7,\n 808,\n 28,\n 20,\n 11,\n 28665,\n 28,\n 16,\n 8,\n 198,\n 198,\n 89,\n 4207,\n 7975,\n 33986,\n 796,\n 36052,\n 7,\n 15763,\n 11,\n 2420,\n 2625,\n 57,\n 4207,\n 7975,\n 11074,\n 25928,\n 7,\n 808,\n 28,\n 21,\n 11,\n 28665,\n 28,\n 15,\n 8,\n 198,\n 89,\n 4207,\n 7975,\n 55,\n 30150,\n 796,\n 21617,\n 7,\n 15763,\n 11,\n 275,\n 67,\n 796,\n 20,\n 8,\n 198,\n 89,\n 4207,\n 7975,\n 55,\n 30150,\n 13,\n 25928,\n 7,\n 808,\n 28,\n 21,\n 11,\n 28665,\n 28,\n 16,\n 8,\n 198,\n 89,\n 4207,\n 7975,\n 56,\n 30150,\n 796,\n 21617,\n 7,\n 15763,\n 11,\n 275,\n 67,\n 796,\n 20,\n 8,\n 198,\n 89,\n 4207,\n 7975,\n 56,\n 30150,\n 13,\n 25928,\n 7,\n 808,\n 28,\n 21,\n 11,\n 28665,\n 28,\n 17,\n 8,\n 198,\n 198,\n 19738,\n 5159,\n 33,\n 34106,\n 796,\n 20969,\n 7,\n 15763,\n 11,\n 2420,\n 2625,\n 17563,\n 281,\n 2939,\n 1600,\n 3141,\n 28,\n 19738,\n 5159,\n 737,\n 25928,\n 7,\n 808,\n 28,\n 15,\n 11,\n 28665,\n 28,\n 18,\n 8,\n 198,\n 17899,\n 38342,\n 33,\n 34106,\n 796,\n 20969,\n 7,\n 15763,\n 11,\n 2420,\n 796,\n 1,\n 7414,\n 541,\n 6075,\n 12071,\n 453,\n 1600,\n 3141,\n 796,\n 14283,\n 27991,\n 38342,\n 737,\n 25928,\n 7,\n 808,\n 28,\n 16,\n 11,\n 28665,\n 28,\n 18,\n 8,\n 198,\n 2164,\n 592,\n 38765,\n 33,\n 34106,\n 796,\n 20969,\n 7,\n 15763,\n 11,\n 2420,\n 796,\n 1,\n 8642,\n 592,\n 38765,\n 1600,\n 3141,\n 796,\n 1036,\n 592,\n 38765,\n 737,\n 25928,\n 7,\n 808,\n 28,\n 17,\n 11,\n 28665,\n 28,\n 18,\n 8,\n 198,\n 10034,\n 21857,\n 33,\n 34106,\n 796,\n 20969,\n 7,\n 15763,\n 11,\n 2420,\n 796,\n 1,\n 8645,\n 378,\n 5590,\n 21857,\n 1600,\n 3141,\n 796,\n 7716,\n 13749,\n 21857,\n 737,\n 25928,\n 7,\n 808,\n 28,\n 18,\n 11,\n 28665,\n 28,\n 18,\n 8,\n 198,\n 29199,\n 1108,\n 33,\n 34106,\n 796,\n 20969,\n 7,\n 15763,\n 11,\n 2420,\n 796,\n 1,\n 19400,\n 17558,\n 1108,\n 1600,\n 3141,\n 796,\n 1487,\n 41267,\n 1108,\n 737,\n 25928,\n 7,\n 808,\n 28,\n 19,\n 11,\n 28665,\n 28,\n 18,\n 8,\n 198,\n 3642,\n 5685,\n 33,\n 34106,\n 796,\n 20969,\n 7,\n 15763,\n 11,\n 2420,\n 796,\n 1,\n 19400,\n 47011,\n 1600,\n 3141,\n 796,\n 1487,\n 4264,\n 5685,\n 737,\n 25928,\n 7,\n 808,\n 28,\n 20,\n 11,\n 28665,\n 28,\n 18,\n 8,\n 198,\n 31591,\n 33,\n 34106,\n 796,\n 20969,\n 7,\n 15763,\n 11,\n 2420,\n 796,\n 1,\n 32863,\n 876,\n 1600,\n 3141,\n 796,\n 4633,\n 737,\n 25928,\n 7,\n 808,\n 28,\n 21,\n 11,\n 28665,\n 28,\n 18,\n 8,\n 198,\n 40496,\n 1096,\n 33,\n 34106,\n 796,\n 20969,\n 7,\n 15763,\n 11,\n 2420,\n 796,\n 1,\n 36,\n 13255,\n 1096,\n 1600,\n 3141,\n 796,\n 4961,\n 1096,\n 737,\n 25928,\n 7,\n 808,\n 28,\n 22,\n 11,\n 28665,\n 28,\n 18,\n 8,\n 198,\n 89,\n 4207,\n 7975,\n 33,\n 34106,\n 796,\n 20969,\n 7,\n 15763,\n 11,\n 2420,\n 796,\n 1,\n 57,\n 4207,\n 7975,\n 1600,\n 3141,\n 796,\n 19792,\n 7975,\n 737,\n 25928,\n 7,\n 808,\n 28,\n 23,\n 11,\n 28665,\n 28,\n 18,\n 8,\n 198,\n 89,\n 4207,\n 818,\n 33,\n 34106,\n 796,\n 20969,\n 7,\n 15763,\n 11,\n 2420,\n 796,\n 1,\n 57,\n 4207,\n 818,\n 1600,\n 3141,\n 796,\n 19792,\n 818,\n 737,\n 25928,\n 7,\n 808,\n 28,\n 24,\n 11,\n 28665,\n 28,\n 18,\n 8,\n 198,\n 10599,\n 378,\n 44758,\n 54,\n 786,\n 33,\n 34106,\n 796,\n 20969,\n 7,\n 15763,\n 11,\n 2420,\n 796,\n 1,\n 10599,\n 378,\n 44758,\n 54,\n 786,\n 1600,\n 3141,\n 796,\n 23064,\n 44758,\n 54,\n 786,\n 737,\n 25928,\n 7,\n 808,\n 28,\n 940,\n 11,\n 28665,\n 28,\n 18,\n 8,\n 198,\n 10599,\n 378,\n 28795,\n 44758,\n 54,\n 786,\n 33,\n 34106,\n 796,\n 20969,\n 7,\n 15763,\n 11,\n 2420,\n 796,\n 1,\n 10599,\n 378,\n 28795,\n 44758,\n 54,\n 786,\n 1600,\n 3141,\n 796,\n 23064,\n 28795,\n 44758,\n 54,\n 786,\n 737,\n 25928,\n 7,\n 808,\n 28,\n 1157,\n 11,\n 28665,\n 28,\n 18,\n 8,\n 198,\n 42946,\n 3552,\n 33,\n 34106,\n 796,\n 20969,\n 7,\n 15763,\n 11,\n 2420,\n 796,\n 1,\n 3103,\n 85,\n 3552,\n 1600,\n 3141,\n 796,\n 3063,\n 3552,\n 737,\n 25928,\n 7,\n 808,\n 28,\n 1065,\n 11,\n 28665,\n 28,\n 18,\n 8,\n 198,\n 198,\n 15763,\n 13,\n 12417,\n 26268,\n 3419\n]"},"ratio_char_token":{"kind":"number","value":2.564453125,"string":"2.564453"},"token_count":{"kind":"number","value":1024,"string":"1,024"}}},{"rowIdx":4293,"cells":{"content":{"kind":"string","value":"#-------------------------------------------------------------------------------\n# Post processing (color management) related Mari scripts\n# coding: utf-8\n# Copyright (c) 2011 The Foundry Visionmongers Ltd. All Rights Reserved.\n#-------------------------------------------------------------------------------\n\nimport mari, time, PythonQt, os, math\nQtGui = PythonQt.QtGui\nQtCore = PythonQt.QtCore\nocio = mari.utils.ocio\n\n##############################################################################################\n\nGAIN_GROUP_MAX_WIDTH = 312\nFSTOP_MAX_WIDTH = 50\nEXPOSURE_MAX_WIDTH = 102\nGAIN_MAX_WIDTH = 80\nGAMMA_MAX_WIDTH = 200\nTOOLBAR_SPACING = 3\n\ntoolbar = None\n\n #-----------------------------------------------------------------------------------------\n\n #-----------------------------------------------------------------------------------------\n\n #-----------------------------------------------------------------------------------------\n\n #-----------------------------------------------------------------------------------------\n\n #-----------------------------------------------------------------------------------------\n\n #-----------------------------------------------------------------------------------------\n\n #-----------------------------------------------------------------------------------------\n\n #-----------------------------------------------------------------------------------------\n\n #-----------------------------------------------------------------------------------------\n\n #-----------------------------------------------------------------------------------------\n\n #-----------------------------------------------------------------------------------------\n\n #-----------------------------------------------------------------------------------------\n\n #-----------------------------------------------------------------------------------------\n\n #-----------------------------------------------------------------------------------------\n\n #-----------------------------------------------------------------------------------------\n\n #-----------------------------------------------------------------------------------------\n\n #-----------------------------------------------------------------------------------------\n # Widgets:\n #-----------------------------------------------------------------------------------------\n\n #-----------------------------------------------------------------------------------------\n\n #-----------------------------------------------------------------------------------------\n\n #-----------------------------------------------------------------------------------------\n\n #-----------------------------------------------------------------------------------------\n\n #-----------------------------------------------------------------------------------------\n\n #-----------------------------------------------------------------------------------------\n\n #-----------------------------------------------------------------------------------------\n\n #-----------------------------------------------------------------------------------------\n\n #-----------------------------------------------------------------------------------------\n\n #-----------------------------------------------------------------------------------------\n\n #-----------------------------------------------------------------------------------------\n\n #-----------------------------------------------------------------------------------------\n\n #-----------------------------------------------------------------------------------------\n\n #-----------------------------------------------------------------------------------------\n\n #-----------------------------------------------------------------------------------------\n\n #-----------------------------------------------------------------------------------------\n\n #-----------------------------------------------------------------------------------------\n\n #-----------------------------------------------------------------------------------------\n # Metadata:\n #-----------------------------------------------------------------------------------------\n\n #-----------------------------------------------------------------------------------------\n\n #-----------------------------------------------------------------------------------------\n\n\n #-----------------------------------------------------------------------------------------\n # External Connections:\n #-----------------------------------------------------------------------------------------\n\n #-----------------------------------------------------------------------------------------\n\n #-----------------------------------------------------------------------------------------\n\n #-----------------------------------------------------------------------------------------\n\n #-----------------------------------------------------------------------------------------\n\n #-----------------------------------------------------------------------------------------\n\n #-----------------------------------------------------------------------------------------\n # Filter:\n #-----------------------------------------------------------------------------------------\n\n #-----------------------------------------------------------------------------------------\n\n #-----------------------------------------------------------------------------------------\n # Debugging:\n #-----------------------------------------------------------------------------------------\n\n##############################################################################################\n# The following functions CAN'T be part of the toolbar class as a potential bug in PythonQt\n# causes the disconnect function to fail\n\n#-----------------------------------------------------------------------------------------\n\n##############################################################################################\n\nif mari.app.isRunning():\n if not hasattr(mari.gl_render, 'createPostFilterCollection'):\n ocio.printMessage(ocio.MessageType.ERROR, 'This version of Mari does not support the mari.gl_render.createPostFilterCollection API')\n\n else:\n if ocio.config_default is not None:\n toolbar = OcioToolBar()\n\n else:\n # Destroy the OCIO post filter collection if present to prevent the user trying to use it.\n filter_collection = mari.gl_render.findPostFilterCollection('Color Space')\n if filter_collection is not None:\n mari.gl_render.deletePostFilterCollection(filter_collection)\n\n # Destroy the toolbar to prevent the user trying to use it.\n mari.app.deleteToolBar('Color Space')\n"},"input_ids":{"kind":"list like","value":[2,10097,24305,198,2,2947,7587,357,8043,4542,8,3519,29423,14750,198,2,19617,25,3384,69,12,23,198,2,15069,357,66,8,2813,383,4062,563,19009,31059,364,12052,13,220,1439,6923,33876,13,198,2,10097,24305,198,198,11748,1667,72,11,640,11,11361,48,83,11,28686,11,10688,198,48,83,8205,72,220,796,11361,48,83,13,48,83,8205,72,198,48,83,14055,796,11361,48,83,13,48,83,14055,198,420,952,220,220,796,1667,72,13,26791,13,420,952,198,198,29113,29113,14468,7804,4242,2235,198,198,9273,1268,62,46846,62,22921,62,54,2389,4221,796,34465,198,37,2257,3185,62,22921,62,54,2389,4221,220,220,220,220,220,796,2026,198,6369,37997,11335,62,22921,62,54,2389,4221,220,220,796,15143,198,9273,1268,62,22921,62,54,2389,4221,220,220,220,220,220,220,796,4019,198,38,2390,5673,62,22921,62,54,2389,4221,220,220,220,220,220,796,939,198,10468,3535,33,1503,62,4303,2246,2751,220,220,220,220,220,796,513,198,198,25981,5657,220,220,220,220,220,220,220,220,220,220,220,220,220,796,6045,628,220,220,220,1303,10097,22369,12,628,220,220,220,1303,10097,22369,12,628,220,220,220,1303,10097,22369,12,628,220,220,220,1303,10097,22369,12,628,220,220,220,1303,10097,22369,12,628,220,220,220,1303,10097,22369,12,628,220,220,220,1303,10097,22369,12,628,220,220,220,1303,10097,22369,12,628,220,220,220,1303,10097,22369,12,628,220,220,220,1303,10097,22369,12,628,220,220,220,1303,10097,22369,12,628,220,220,220,1303,10097,22369,12,628,220,220,220,1303,10097,22369,12,628,220,220,220,1303,10097,22369,12,628,220,220,220,1303,10097,22369,12,628,220,220,220,1303,10097,22369,12,628,220,220,220,1303,10097,22369,12,198,220,220,220,1303,24801,11407,25,198,220,220,220,1303,10097,22369,12,628,220,220,220,1303,10097,22369,12,628,220,220,220,1303,10097,22369,12,628,220,220,220,1303,10097,22369,12,628,220,220,220,1303,10097,22369,12,628,220,220,220,1303,10097,22369,12,628,220,220,220,1303,10097,22369,12,628,220,220,220,1303,10097,22369,12,628,220,220,220,1303,10097,22369,12,628,220,220,220,1303,10097,22369,12,628,220,220,220,1303,10097,22369,12,628,220,220,220,1303,10097,22369,12,628,220,220,220,1303,10097,22369,12,628,220,220,220,1303,10097,22369,12,628,220,220,220,1303,10097,22369,12,628,220,220,220,1303,10097,22369,12,628,220,220,220,1303,10097,22369,12,628,220,220,220,1303,10097,22369,12,628,220,220,220,1303,10097,22369,12,198,220,220,220,1303,3395,14706,25,198,220,220,220,1303,10097,22369,12,628,220,220,220,1303,10097,22369,12,628,220,220,220,1303,10097,22369,12,628,198,220,220,220,1303,10097,22369,12,198,220,220,220,1303,34579,8113,507,25,198,220,220,220,1303,10097,22369,12,628,220,220,220,1303,10097,22369,12,628,220,220,220,1303,10097,22369,12,628,220,220,220,1303,10097,22369,12,628,220,220,220,1303,10097,22369,12,628,220,220,220,1303,10097,22369,12,628,220,220,220,1303,10097,22369,12,198,220,220,220,1303,25853,25,198,220,220,220,1303,10097,22369,12,628,220,220,220,1303,10097,22369,12,628,220,220,220,1303,10097,22369,12,198,220,220,220,1303,31687,2667,25,198,220,220,220,1303,10097,22369,12,198,198,29113,29113,14468,7804,4242,2235,198,2,383,1708,5499,15628,6,51,307,636,286,262,50149,1398,355,257,2785,5434,287,11361,48,83,198,2,5640,262,22837,2163,284,2038,198,198,2,10097,22369,12,198,198,29113,29113,14468,7804,4242,2235,198,198,361,1667,72,13,1324,13,271,28768,33529,198,220,220,220,611,407,468,35226,7,76,2743,13,4743,62,13287,11,705,17953,6307,22417,36307,6,2599,198,220,220,220,220,220,220,220,267,66,952,13,4798,12837,7,420,952,13,12837,6030,13,24908,11,705,1212,2196,286,29423,857,407,1104,262,1667,72,13,4743,62,13287,13,17953,6307,22417,36307,7824,11537,628,220,220,220,2073,25,198,220,220,220,220,220,220,220,611,267,66,952,13,11250,62,12286,318,407,6045,25,198,220,220,220,220,220,220,220,220,220,220,220,50149,796,440,66,952,25391,10374,3419,628,220,220,220,220,220,220,220,2073,25,198,220,220,220,220,220,220,220,220,220,220,220,1303,19448,262,24775,9399,1281,8106,4947,611,1944,284,2948,262,2836,2111,284,779,340,13,198,220,220,220,220,220,220,220,220,220,220,220,8106,62,43681,796,1667,72,13,4743,62,13287,13,19796,6307,22417,36307,10786,10258,4687,11537,198,220,220,220,220,220,220,220,220,220,220,220,611,8106,62,43681,318,407,6045,25,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1667,72,13,4743,62,13287,13,33678,6307,22417,36307,7,24455,62,43681,8,628,220,220,220,220,220,220,220,220,220,220,220,1303,19448,262,50149,284,2948,262,2836,2111,284,779,340,13,198,220,220,220,220,220,220,220,220,220,220,220,1667,72,13,1324,13,33678,25391,10374,10786,10258,4687,11537,198],"string":"[\n 2,\n 10097,\n 24305,\n 198,\n 2,\n 2947,\n 7587,\n 357,\n 8043,\n 4542,\n 8,\n 3519,\n 29423,\n 14750,\n 198,\n 2,\n 19617,\n 25,\n 3384,\n 69,\n 12,\n 23,\n 198,\n 2,\n 15069,\n 357,\n 66,\n 8,\n 2813,\n 383,\n 4062,\n 563,\n 19009,\n 31059,\n 364,\n 12052,\n 13,\n 220,\n 1439,\n 6923,\n 33876,\n 13,\n 198,\n 2,\n 10097,\n 24305,\n 198,\n 198,\n 11748,\n 1667,\n 72,\n 11,\n 640,\n 11,\n 11361,\n 48,\n 83,\n 11,\n 28686,\n 11,\n 10688,\n 198,\n 48,\n 83,\n 8205,\n 72,\n 220,\n 796,\n 11361,\n 48,\n 83,\n 13,\n 48,\n 83,\n 8205,\n 72,\n 198,\n 48,\n 83,\n 14055,\n 796,\n 11361,\n 48,\n 83,\n 13,\n 48,\n 83,\n 14055,\n 198,\n 420,\n 952,\n 220,\n 220,\n 796,\n 1667,\n 72,\n 13,\n 26791,\n 13,\n 420,\n 952,\n 198,\n 198,\n 29113,\n 29113,\n 14468,\n 7804,\n 4242,\n 2235,\n 198,\n 198,\n 9273,\n 1268,\n 62,\n 46846,\n 62,\n 22921,\n 62,\n 54,\n 2389,\n 4221,\n 796,\n 34465,\n 198,\n 37,\n 2257,\n 3185,\n 62,\n 22921,\n 62,\n 54,\n 2389,\n 4221,\n 220,\n 220,\n 220,\n 220,\n 220,\n 796,\n 2026,\n 198,\n 6369,\n 37997,\n 11335,\n 62,\n 22921,\n 62,\n 54,\n 2389,\n 4221,\n 220,\n 220,\n 796,\n 15143,\n 198,\n 9273,\n 1268,\n 62,\n 22921,\n 62,\n 54,\n 2389,\n 4221,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 796,\n 4019,\n 198,\n 38,\n 2390,\n 5673,\n 62,\n 22921,\n 62,\n 54,\n 2389,\n 4221,\n 220,\n 220,\n 220,\n 220,\n 220,\n 796,\n 939,\n 198,\n 10468,\n 3535,\n 33,\n 1503,\n 62,\n 4303,\n 2246,\n 2751,\n 220,\n 220,\n 220,\n 220,\n 220,\n 796,\n 513,\n 198,\n 198,\n 25981,\n 5657,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 796,\n 6045,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 10097,\n 22369,\n 12,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 10097,\n 22369,\n 12,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 10097,\n 22369,\n 12,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 10097,\n 22369,\n 12,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 10097,\n 22369,\n 12,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 10097,\n 22369,\n 12,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 10097,\n 22369,\n 12,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 10097,\n 22369,\n 12,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 10097,\n 22369,\n 12,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 10097,\n 22369,\n 12,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 10097,\n 22369,\n 12,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 10097,\n 22369,\n 12,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 10097,\n 22369,\n 12,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 10097,\n 22369,\n 12,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 10097,\n 22369,\n 12,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 10097,\n 22369,\n 12,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 10097,\n 22369,\n 12,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 24801,\n 11407,\n 25,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 10097,\n 22369,\n 12,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 10097,\n 22369,\n 12,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 10097,\n 22369,\n 12,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 10097,\n 22369,\n 12,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 10097,\n 22369,\n 12,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 10097,\n 22369,\n 12,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 10097,\n 22369,\n 12,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 10097,\n 22369,\n 12,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 10097,\n 22369,\n 12,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 10097,\n 22369,\n 12,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 10097,\n 22369,\n 12,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 10097,\n 22369,\n 12,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 10097,\n 22369,\n 12,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 10097,\n 22369,\n 12,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 10097,\n 22369,\n 12,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 10097,\n 22369,\n 12,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 10097,\n 22369,\n 12,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 10097,\n 22369,\n 12,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 10097,\n 22369,\n 12,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 3395,\n 14706,\n 25,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 10097,\n 22369,\n 12,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 10097,\n 22369,\n 12,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 10097,\n 22369,\n 12,\n 628,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 10097,\n 22369,\n 12,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 34579,\n 8113,\n 507,\n 25,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 10097,\n 22369,\n 12,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 10097,\n 22369,\n 12,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 10097,\n 22369,\n 12,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 10097,\n 22369,\n 12,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 10097,\n 22369,\n 12,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 10097,\n 22369,\n 12,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 10097,\n 22369,\n 12,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 25853,\n 25,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 10097,\n 22369,\n 12,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 10097,\n 22369,\n 12,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 10097,\n 22369,\n 12,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 31687,\n 2667,\n 25,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 10097,\n 22369,\n 12,\n 198,\n 198,\n 29113,\n 29113,\n 14468,\n 7804,\n 4242,\n 2235,\n 198,\n 2,\n 383,\n 1708,\n 5499,\n 15628,\n 6,\n 51,\n 307,\n 636,\n 286,\n 262,\n 50149,\n 1398,\n 355,\n 257,\n 2785,\n 5434,\n 287,\n 11361,\n 48,\n 83,\n 198,\n 2,\n 5640,\n 262,\n 22837,\n 2163,\n 284,\n 2038,\n 198,\n 198,\n 2,\n 10097,\n 22369,\n 12,\n 198,\n 198,\n 29113,\n 29113,\n 14468,\n 7804,\n 4242,\n 2235,\n 198,\n 198,\n 361,\n 1667,\n 72,\n 13,\n 1324,\n 13,\n 271,\n 28768,\n 33529,\n 198,\n 220,\n 220,\n 220,\n 611,\n 407,\n 468,\n 35226,\n 7,\n 76,\n 2743,\n 13,\n 4743,\n 62,\n 13287,\n 11,\n 705,\n 17953,\n 6307,\n 22417,\n 36307,\n 6,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 267,\n 66,\n 952,\n 13,\n 4798,\n 12837,\n 7,\n 420,\n 952,\n 13,\n 12837,\n 6030,\n 13,\n 24908,\n 11,\n 705,\n 1212,\n 2196,\n 286,\n 29423,\n 857,\n 407,\n 1104,\n 262,\n 1667,\n 72,\n 13,\n 4743,\n 62,\n 13287,\n 13,\n 17953,\n 6307,\n 22417,\n 36307,\n 7824,\n 11537,\n 628,\n 220,\n 220,\n 220,\n 2073,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 267,\n 66,\n 952,\n 13,\n 11250,\n 62,\n 12286,\n 318,\n 407,\n 6045,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 50149,\n 796,\n 440,\n 66,\n 952,\n 25391,\n 10374,\n 3419,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2073,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 19448,\n 262,\n 24775,\n 9399,\n 1281,\n 8106,\n 4947,\n 611,\n 1944,\n 284,\n 2948,\n 262,\n 2836,\n 2111,\n 284,\n 779,\n 340,\n 13,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 8106,\n 62,\n 43681,\n 796,\n 1667,\n 72,\n 13,\n 4743,\n 62,\n 13287,\n 13,\n 19796,\n 6307,\n 22417,\n 36307,\n 10786,\n 10258,\n 4687,\n 11537,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 8106,\n 62,\n 43681,\n 318,\n 407,\n 6045,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1667,\n 72,\n 13,\n 4743,\n 62,\n 13287,\n 13,\n 33678,\n 6307,\n 22417,\n 36307,\n 7,\n 24455,\n 62,\n 43681,\n 8,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 19448,\n 262,\n 50149,\n 284,\n 2948,\n 262,\n 2836,\n 2111,\n 284,\n 779,\n 340,\n 13,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1667,\n 72,\n 13,\n 1324,\n 13,\n 33678,\n 25391,\n 10374,\n 10786,\n 10258,\n 4687,\n 11537,\n 198\n]"},"ratio_char_token":{"kind":"number","value":6.726295210166178,"string":"6.726295"},"token_count":{"kind":"number","value":1023,"string":"1,023"}}},{"rowIdx":4294,"cells":{"content":{"kind":"string","value":"# Copyright (c) Facebook, Inc. and its affiliates.\n#\n# This source code is licensed under the MIT license found in the\n# LICENSE file in the root directory of this source tree.\n\nimport os\nimport shutil\nfrom pathlib import Path\n\nfrom libcst.testing.utils import UnitTest\n\nfrom fixit.common.config import (\n CACHE as CONFIG_CACHE,\n get_lint_config,\n get_rules_for_path,\n)\nfrom fixit.common.utils import (\n dedent_with_lstrip,\n DuplicateLintRuleNameError,\n find_and_import_rule,\n import_rule_from_package,\n LintRuleNotFoundError,\n)\n\n\nDUMMY_PACKAGE: str = \"fixit.common.tests.test_imports_dummy_package\"\nDUMMY_PACKAGE_PATH: Path = Path(__file__).parent / \"test_imports_dummy_package\"\n\nDUPLICATE_DUMMY_PATH: Path = (\n Path(__file__).parent / \"test_imports_dummy_package_with_duplicate_rule\"\n)\n\n# Using dummy config file, test whether the rule import helpers work as expected.\n\n"},"input_ids":{"kind":"list like","value":[2,15069,357,66,8,3203,11,3457,13,290,663,29116,13,198,2,198,2,770,2723,2438,318,11971,739,262,17168,5964,1043,287,262,198,2,38559,24290,2393,287,262,6808,8619,286,428,2723,5509,13,198,198,11748,28686,198,11748,4423,346,198,6738,3108,8019,1330,10644,198,198,6738,9195,66,301,13,33407,13,26791,1330,11801,14402,198,198,6738,4259,270,13,11321,13,11250,1330,357,198,220,220,220,327,2246,13909,355,25626,62,34,2246,13909,11,198,220,220,220,651,62,75,600,62,11250,11,198,220,220,220,651,62,38785,62,1640,62,6978,11,198,8,198,6738,4259,270,13,11321,13,26791,1330,357,198,220,220,220,4648,298,62,4480,62,75,36311,11,198,220,220,220,49821,5344,43,600,31929,5376,12331,11,198,220,220,220,1064,62,392,62,11748,62,25135,11,198,220,220,220,1330,62,25135,62,6738,62,26495,11,198,220,220,220,406,600,31929,3673,21077,12331,11,198,8,628,198,35,5883,26708,62,47,8120,11879,25,965,796,366,13049,270,13,11321,13,41989,13,9288,62,320,3742,62,67,13513,62,26495,1,198,35,5883,26708,62,47,8120,11879,62,34219,25,10644,796,10644,7,834,7753,834,737,8000,1220,366,9288,62,320,3742,62,67,13513,62,26495,1,198,198,35,52,31484,6158,62,35,5883,26708,62,34219,25,10644,796,357,198,220,220,220,10644,7,834,7753,834,737,8000,1220,366,9288,62,320,3742,62,67,13513,62,26495,62,4480,62,646,489,5344,62,25135,1,198,8,198,198,2,8554,31548,4566,2393,11,1332,1771,262,3896,1330,49385,670,355,2938,13,628],"string":"[\n 2,\n 15069,\n 357,\n 66,\n 8,\n 3203,\n 11,\n 3457,\n 13,\n 290,\n 663,\n 29116,\n 13,\n 198,\n 2,\n 198,\n 2,\n 770,\n 2723,\n 2438,\n 318,\n 11971,\n 739,\n 262,\n 17168,\n 5964,\n 1043,\n 287,\n 262,\n 198,\n 2,\n 38559,\n 24290,\n 2393,\n 287,\n 262,\n 6808,\n 8619,\n 286,\n 428,\n 2723,\n 5509,\n 13,\n 198,\n 198,\n 11748,\n 28686,\n 198,\n 11748,\n 4423,\n 346,\n 198,\n 6738,\n 3108,\n 8019,\n 1330,\n 10644,\n 198,\n 198,\n 6738,\n 9195,\n 66,\n 301,\n 13,\n 33407,\n 13,\n 26791,\n 1330,\n 11801,\n 14402,\n 198,\n 198,\n 6738,\n 4259,\n 270,\n 13,\n 11321,\n 13,\n 11250,\n 1330,\n 357,\n 198,\n 220,\n 220,\n 220,\n 327,\n 2246,\n 13909,\n 355,\n 25626,\n 62,\n 34,\n 2246,\n 13909,\n 11,\n 198,\n 220,\n 220,\n 220,\n 651,\n 62,\n 75,\n 600,\n 62,\n 11250,\n 11,\n 198,\n 220,\n 220,\n 220,\n 651,\n 62,\n 38785,\n 62,\n 1640,\n 62,\n 6978,\n 11,\n 198,\n 8,\n 198,\n 6738,\n 4259,\n 270,\n 13,\n 11321,\n 13,\n 26791,\n 1330,\n 357,\n 198,\n 220,\n 220,\n 220,\n 4648,\n 298,\n 62,\n 4480,\n 62,\n 75,\n 36311,\n 11,\n 198,\n 220,\n 220,\n 220,\n 49821,\n 5344,\n 43,\n 600,\n 31929,\n 5376,\n 12331,\n 11,\n 198,\n 220,\n 220,\n 220,\n 1064,\n 62,\n 392,\n 62,\n 11748,\n 62,\n 25135,\n 11,\n 198,\n 220,\n 220,\n 220,\n 1330,\n 62,\n 25135,\n 62,\n 6738,\n 62,\n 26495,\n 11,\n 198,\n 220,\n 220,\n 220,\n 406,\n 600,\n 31929,\n 3673,\n 21077,\n 12331,\n 11,\n 198,\n 8,\n 628,\n 198,\n 35,\n 5883,\n 26708,\n 62,\n 47,\n 8120,\n 11879,\n 25,\n 965,\n 796,\n 366,\n 13049,\n 270,\n 13,\n 11321,\n 13,\n 41989,\n 13,\n 9288,\n 62,\n 320,\n 3742,\n 62,\n 67,\n 13513,\n 62,\n 26495,\n 1,\n 198,\n 35,\n 5883,\n 26708,\n 62,\n 47,\n 8120,\n 11879,\n 62,\n 34219,\n 25,\n 10644,\n 796,\n 10644,\n 7,\n 834,\n 7753,\n 834,\n 737,\n 8000,\n 1220,\n 366,\n 9288,\n 62,\n 320,\n 3742,\n 62,\n 67,\n 13513,\n 62,\n 26495,\n 1,\n 198,\n 198,\n 35,\n 52,\n 31484,\n 6158,\n 62,\n 35,\n 5883,\n 26708,\n 62,\n 34219,\n 25,\n 10644,\n 796,\n 357,\n 198,\n 220,\n 220,\n 220,\n 10644,\n 7,\n 834,\n 7753,\n 834,\n 737,\n 8000,\n 1220,\n 366,\n 9288,\n 62,\n 320,\n 3742,\n 62,\n 67,\n 13513,\n 62,\n 26495,\n 62,\n 4480,\n 62,\n 646,\n 489,\n 5344,\n 62,\n 25135,\n 1,\n 198,\n 8,\n 198,\n 198,\n 2,\n 8554,\n 31548,\n 4566,\n 2393,\n 11,\n 1332,\n 1771,\n 262,\n 3896,\n 1330,\n 49385,\n 670,\n 355,\n 2938,\n 13,\n 628\n]"},"ratio_char_token":{"kind":"number","value":2.8006230529595015,"string":"2.800623"},"token_count":{"kind":"number","value":321,"string":"321"}}},{"rowIdx":4295,"cells":{"content":{"kind":"string","value":"\"\"\"\nAnnounce addresses as they are received from other hosts\n\"\"\"\nimport Queue\n\nimport state\nfrom helper_random import randomshuffle\nfrom network.assemble import assemble_addr\nfrom network.connectionpool import BMConnectionPool\nfrom queues import addrQueue\nfrom threads import StoppableThread\n\n\nclass AddrThread(StoppableThread):\n \"\"\"(Node) address broadcasting thread\"\"\"\n name = \"AddrBroadcaster\"\n"},"input_ids":{"kind":"list like","value":[37811,198,18858,8652,9405,355,484,389,2722,422,584,11453,198,37811,198,11748,4670,518,198,198,11748,1181,198,6738,31904,62,25120,1330,4738,1477,18137,198,6738,3127,13,292,15140,1330,25432,62,29851,198,6738,3127,13,38659,7742,1330,29944,32048,27201,198,6738,43359,1330,37817,34991,198,6738,14390,1330,520,35628,16818,628,198,4871,3060,81,16818,7,1273,35628,16818,2599,198,220,220,220,13538,18109,19667,8,2209,22978,4704,37811,198,220,220,220,1438,796,366,4550,81,30507,17970,1,198],"string":"[\n 37811,\n 198,\n 18858,\n 8652,\n 9405,\n 355,\n 484,\n 389,\n 2722,\n 422,\n 584,\n 11453,\n 198,\n 37811,\n 198,\n 11748,\n 4670,\n 518,\n 198,\n 198,\n 11748,\n 1181,\n 198,\n 6738,\n 31904,\n 62,\n 25120,\n 1330,\n 4738,\n 1477,\n 18137,\n 198,\n 6738,\n 3127,\n 13,\n 292,\n 15140,\n 1330,\n 25432,\n 62,\n 29851,\n 198,\n 6738,\n 3127,\n 13,\n 38659,\n 7742,\n 1330,\n 29944,\n 32048,\n 27201,\n 198,\n 6738,\n 43359,\n 1330,\n 37817,\n 34991,\n 198,\n 6738,\n 14390,\n 1330,\n 520,\n 35628,\n 16818,\n 628,\n 198,\n 4871,\n 3060,\n 81,\n 16818,\n 7,\n 1273,\n 35628,\n 16818,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 13538,\n 18109,\n 19667,\n 8,\n 2209,\n 22978,\n 4704,\n 37811,\n 198,\n 220,\n 220,\n 220,\n 1438,\n 796,\n 366,\n 4550,\n 81,\n 30507,\n 17970,\n 1,\n 198\n]"},"ratio_char_token":{"kind":"number","value":4.03,"string":"4.03"},"token_count":{"kind":"number","value":100,"string":"100"}}},{"rowIdx":4296,"cells":{"content":{"kind":"string","value":"print(\"branches are fun\")"},"input_ids":{"kind":"list like","value":[4798,7203,1671,12140,389,1257,4943],"string":"[\n 4798,\n 7203,\n 1671,\n 12140,\n 389,\n 1257,\n 4943\n]"},"ratio_char_token":{"kind":"number","value":3.5714285714285716,"string":"3.571429"},"token_count":{"kind":"number","value":7,"string":"7"}}},{"rowIdx":4297,"cells":{"content":{"kind":"string","value":"from django import template\n\nregister = template.Library()\n\n@register.filter(name='addcss')\n\n\n\n"},"input_ids":{"kind":"list like","value":[6738,42625,14208,1330,11055,198,198,30238,796,11055,13,23377,3419,198,198,31,30238,13,24455,7,3672,11639,2860,25471,11537,628,628],"string":"[\n 6738,\n 42625,\n 14208,\n 1330,\n 11055,\n 198,\n 198,\n 30238,\n 796,\n 11055,\n 13,\n 23377,\n 3419,\n 198,\n 198,\n 31,\n 30238,\n 13,\n 24455,\n 7,\n 3672,\n 11639,\n 2860,\n 25471,\n 11537,\n 628,\n 628\n]"},"ratio_char_token":{"kind":"number","value":3.5185185185185186,"string":"3.518519"},"token_count":{"kind":"number","value":27,"string":"27"}}},{"rowIdx":4298,"cells":{"content":{"kind":"string","value":"# -*- coding: utf-8 -*-\n\nvars2d = [\n '2m_temperature',\n '10m_u_component_of_wind', '10m_v_component_of_wind',\n 'total_cloud_cover', 'total_precipitation',\n 'toa_incident_solar_radiation',\n 'temperature_850hPa',\n]\n\nvars3d = [\n 'geopotential', 'temperature',\n 'specific_humidity', 'relative_humidity',\n 'u_component_of_wind', 'v_component_of_wind',\n 'vorticity', 'potential_vorticity',\n]\n\ncodes = {\n 'geopotential': 'z',\n 'temperature': 't',\n 'temperature_850hPa': 't',\n 'specific_humidity': 'q',\n 'relative_humidity': 'r',\n 'u_component_of_wind': 'u',\n 'v_component_of_wind': 'v',\n 'vorticity': 'vo',\n 'potential_vorticity': 'pv',\n '2m_temperature': 't2m',\n '10m_u_component_of_wind': 'u10',\n '10m_v_component_of_wind': 'v10',\n 'total_cloud_cover': 'tcc',\n 'total_precipitation': 'tp',\n 'toa_incident_solar_radiation': 'tisr',\n}\n\ncode2var = {\n 'z': 'geopotential',\n 't': 'temperature',\n 'q': 'specific_humidity',\n 'r': 'relative_humidity',\n 'u': 'u_component_of_wind',\n 'v': 'v_component_of_wind',\n 'vo': 'vorticity',\n 'pv': 'potential_vorticity',\n 't2m': '2m_temperature',\n 'u10': '10m_u_component_of_wind',\n 'v10': '10m_v_component_of_wind',\n 'tcc': 'total_cloud_cover',\n 'tp': 'total_precipitation',\n 'tisr': 'toa_incident_solar_radiation',\n}\n\n"},"input_ids":{"kind":"list like","value":[2,532,9,12,19617,25,3384,69,12,23,532,9,12,198,198,85,945,17,67,796,685,198,220,220,220,705,17,76,62,11498,21069,3256,198,220,220,220,705,940,76,62,84,62,42895,62,1659,62,7972,3256,705,940,76,62,85,62,42895,62,1659,62,7972,3256,198,220,220,220,705,23350,62,17721,62,9631,3256,705,23350,62,3866,66,541,3780,3256,198,220,220,220,705,1462,64,62,1939,738,62,82,6192,62,6335,3920,3256,198,220,220,220,705,11498,21069,62,25764,71,28875,3256,198,60,198,198,85,945,18,67,796,685,198,220,220,220,705,469,43372,1843,3256,705,11498,21069,3256,198,220,220,220,705,11423,62,17047,17995,3256,705,43762,62,17047,17995,3256,198,220,220,220,705,84,62,42895,62,1659,62,7972,3256,705,85,62,42895,62,1659,62,7972,3256,198,220,220,220,705,85,419,8467,3256,705,13059,1843,62,85,419,8467,3256,198,60,198,198,40148,796,1391,198,220,220,220,705,469,43372,1843,10354,705,89,3256,198,220,220,220,705,11498,21069,10354,705,83,3256,198,220,220,220,705,11498,21069,62,25764,71,28875,10354,705,83,3256,198,220,220,220,705,11423,62,17047,17995,10354,705,80,3256,198,220,220,220,705,43762,62,17047,17995,10354,705,81,3256,198,220,220,220,705,84,62,42895,62,1659,62,7972,10354,705,84,3256,198,220,220,220,705,85,62,42895,62,1659,62,7972,10354,705,85,3256,198,220,220,220,705,85,419,8467,10354,705,13038,3256,198,220,220,220,705,13059,1843,62,85,419,8467,10354,705,79,85,3256,198,220,220,220,705,17,76,62,11498,21069,10354,705,83,17,76,3256,198,220,220,220,705,940,76,62,84,62,42895,62,1659,62,7972,10354,705,84,940,3256,198,220,220,220,705,940,76,62,85,62,42895,62,1659,62,7972,10354,705,85,940,3256,198,220,220,220,705,23350,62,17721,62,9631,10354,705,83,535,3256,198,220,220,220,705,23350,62,3866,66,541,3780,10354,705,34788,3256,198,220,220,220,705,1462,64,62,1939,738,62,82,6192,62,6335,3920,10354,705,48010,81,3256,198,92,198,198,8189,17,7785,796,1391,198,220,220,220,705,89,10354,705,469,43372,1843,3256,198,220,220,220,705,83,10354,705,11498,21069,3256,198,220,220,220,705,80,10354,705,11423,62,17047,17995,3256,198,220,220,220,705,81,10354,705,43762,62,17047,17995,3256,198,220,220,220,705,84,10354,705,84,62,42895,62,1659,62,7972,3256,198,220,220,220,705,85,10354,705,85,62,42895,62,1659,62,7972,3256,198,220,220,220,705,13038,10354,705,85,419,8467,3256,198,220,220,220,705,79,85,10354,705,13059,1843,62,85,419,8467,3256,198,220,220,220,705,83,17,76,10354,705,17,76,62,11498,21069,3256,198,220,220,220,705,84,940,10354,705,940,76,62,84,62,42895,62,1659,62,7972,3256,198,220,220,220,705,85,940,10354,705,940,76,62,85,62,42895,62,1659,62,7972,3256,198,220,220,220,705,83,535,10354,705,23350,62,17721,62,9631,3256,198,220,220,220,705,34788,10354,705,23350,62,3866,66,541,3780,3256,198,220,220,220,705,48010,81,10354,705,1462,64,62,1939,738,62,82,6192,62,6335,3920,3256,198,92,628],"string":"[\n 2,\n 532,\n 9,\n 12,\n 19617,\n 25,\n 3384,\n 69,\n 12,\n 23,\n 532,\n 9,\n 12,\n 198,\n 198,\n 85,\n 945,\n 17,\n 67,\n 796,\n 685,\n 198,\n 220,\n 220,\n 220,\n 705,\n 17,\n 76,\n 62,\n 11498,\n 21069,\n 3256,\n 198,\n 220,\n 220,\n 220,\n 705,\n 940,\n 76,\n 62,\n 84,\n 62,\n 42895,\n 62,\n 1659,\n 62,\n 7972,\n 3256,\n 705,\n 940,\n 76,\n 62,\n 85,\n 62,\n 42895,\n 62,\n 1659,\n 62,\n 7972,\n 3256,\n 198,\n 220,\n 220,\n 220,\n 705,\n 23350,\n 62,\n 17721,\n 62,\n 9631,\n 3256,\n 705,\n 23350,\n 62,\n 3866,\n 66,\n 541,\n 3780,\n 3256,\n 198,\n 220,\n 220,\n 220,\n 705,\n 1462,\n 64,\n 62,\n 1939,\n 738,\n 62,\n 82,\n 6192,\n 62,\n 6335,\n 3920,\n 3256,\n 198,\n 220,\n 220,\n 220,\n 705,\n 11498,\n 21069,\n 62,\n 25764,\n 71,\n 28875,\n 3256,\n 198,\n 60,\n 198,\n 198,\n 85,\n 945,\n 18,\n 67,\n 796,\n 685,\n 198,\n 220,\n 220,\n 220,\n 705,\n 469,\n 43372,\n 1843,\n 3256,\n 705,\n 11498,\n 21069,\n 3256,\n 198,\n 220,\n 220,\n 220,\n 705,\n 11423,\n 62,\n 17047,\n 17995,\n 3256,\n 705,\n 43762,\n 62,\n 17047,\n 17995,\n 3256,\n 198,\n 220,\n 220,\n 220,\n 705,\n 84,\n 62,\n 42895,\n 62,\n 1659,\n 62,\n 7972,\n 3256,\n 705,\n 85,\n 62,\n 42895,\n 62,\n 1659,\n 62,\n 7972,\n 3256,\n 198,\n 220,\n 220,\n 220,\n 705,\n 85,\n 419,\n 8467,\n 3256,\n 705,\n 13059,\n 1843,\n 62,\n 85,\n 419,\n 8467,\n 3256,\n 198,\n 60,\n 198,\n 198,\n 40148,\n 796,\n 1391,\n 198,\n 220,\n 220,\n 220,\n 705,\n 469,\n 43372,\n 1843,\n 10354,\n 705,\n 89,\n 3256,\n 198,\n 220,\n 220,\n 220,\n 705,\n 11498,\n 21069,\n 10354,\n 705,\n 83,\n 3256,\n 198,\n 220,\n 220,\n 220,\n 705,\n 11498,\n 21069,\n 62,\n 25764,\n 71,\n 28875,\n 10354,\n 705,\n 83,\n 3256,\n 198,\n 220,\n 220,\n 220,\n 705,\n 11423,\n 62,\n 17047,\n 17995,\n 10354,\n 705,\n 80,\n 3256,\n 198,\n 220,\n 220,\n 220,\n 705,\n 43762,\n 62,\n 17047,\n 17995,\n 10354,\n 705,\n 81,\n 3256,\n 198,\n 220,\n 220,\n 220,\n 705,\n 84,\n 62,\n 42895,\n 62,\n 1659,\n 62,\n 7972,\n 10354,\n 705,\n 84,\n 3256,\n 198,\n 220,\n 220,\n 220,\n 705,\n 85,\n 62,\n 42895,\n 62,\n 1659,\n 62,\n 7972,\n 10354,\n 705,\n 85,\n 3256,\n 198,\n 220,\n 220,\n 220,\n 705,\n 85,\n 419,\n 8467,\n 10354,\n 705,\n 13038,\n 3256,\n 198,\n 220,\n 220,\n 220,\n 705,\n 13059,\n 1843,\n 62,\n 85,\n 419,\n 8467,\n 10354,\n 705,\n 79,\n 85,\n 3256,\n 198,\n 220,\n 220,\n 220,\n 705,\n 17,\n 76,\n 62,\n 11498,\n 21069,\n 10354,\n 705,\n 83,\n 17,\n 76,\n 3256,\n 198,\n 220,\n 220,\n 220,\n 705,\n 940,\n 76,\n 62,\n 84,\n 62,\n 42895,\n 62,\n 1659,\n 62,\n 7972,\n 10354,\n 705,\n 84,\n 940,\n 3256,\n 198,\n 220,\n 220,\n 220,\n 705,\n 940,\n 76,\n 62,\n 85,\n 62,\n 42895,\n 62,\n 1659,\n 62,\n 7972,\n 10354,\n 705,\n 85,\n 940,\n 3256,\n 198,\n 220,\n 220,\n 220,\n 705,\n 23350,\n 62,\n 17721,\n 62,\n 9631,\n 10354,\n 705,\n 83,\n 535,\n 3256,\n 198,\n 220,\n 220,\n 220,\n 705,\n 23350,\n 62,\n 3866,\n 66,\n 541,\n 3780,\n 10354,\n 705,\n 34788,\n 3256,\n 198,\n 220,\n 220,\n 220,\n 705,\n 1462,\n 64,\n 62,\n 1939,\n 738,\n 62,\n 82,\n 6192,\n 62,\n 6335,\n 3920,\n 10354,\n 705,\n 48010,\n 81,\n 3256,\n 198,\n 92,\n 198,\n 198,\n 8189,\n 17,\n 7785,\n 796,\n 1391,\n 198,\n 220,\n 220,\n 220,\n 705,\n 89,\n 10354,\n 705,\n 469,\n 43372,\n 1843,\n 3256,\n 198,\n 220,\n 220,\n 220,\n 705,\n 83,\n 10354,\n 705,\n 11498,\n 21069,\n 3256,\n 198,\n 220,\n 220,\n 220,\n 705,\n 80,\n 10354,\n 705,\n 11423,\n 62,\n 17047,\n 17995,\n 3256,\n 198,\n 220,\n 220,\n 220,\n 705,\n 81,\n 10354,\n 705,\n 43762,\n 62,\n 17047,\n 17995,\n 3256,\n 198,\n 220,\n 220,\n 220,\n 705,\n 84,\n 10354,\n 705,\n 84,\n 62,\n 42895,\n 62,\n 1659,\n 62,\n 7972,\n 3256,\n 198,\n 220,\n 220,\n 220,\n 705,\n 85,\n 10354,\n 705,\n 85,\n 62,\n 42895,\n 62,\n 1659,\n 62,\n 7972,\n 3256,\n 198,\n 220,\n 220,\n 220,\n 705,\n 13038,\n 10354,\n 705,\n 85,\n 419,\n 8467,\n 3256,\n 198,\n 220,\n 220,\n 220,\n 705,\n 79,\n 85,\n 10354,\n 705,\n 13059,\n 1843,\n 62,\n 85,\n 419,\n 8467,\n 3256,\n 198,\n 220,\n 220,\n 220,\n 705,\n 83,\n 17,\n 76,\n 10354,\n 705,\n 17,\n 76,\n 62,\n 11498,\n 21069,\n 3256,\n 198,\n 220,\n 220,\n 220,\n 705,\n 84,\n 940,\n 10354,\n 705,\n 940,\n 76,\n 62,\n 84,\n 62,\n 42895,\n 62,\n 1659,\n 62,\n 7972,\n 3256,\n 198,\n 220,\n 220,\n 220,\n 705,\n 85,\n 940,\n 10354,\n 705,\n 940,\n 76,\n 62,\n 85,\n 62,\n 42895,\n 62,\n 1659,\n 62,\n 7972,\n 3256,\n 198,\n 220,\n 220,\n 220,\n 705,\n 83,\n 535,\n 10354,\n 705,\n 23350,\n 62,\n 17721,\n 62,\n 9631,\n 3256,\n 198,\n 220,\n 220,\n 220,\n 705,\n 34788,\n 10354,\n 705,\n 23350,\n 62,\n 3866,\n 66,\n 541,\n 3780,\n 3256,\n 198,\n 220,\n 220,\n 220,\n 705,\n 48010,\n 81,\n 10354,\n 705,\n 1462,\n 64,\n 62,\n 1939,\n 738,\n 62,\n 82,\n 6192,\n 62,\n 6335,\n 3920,\n 3256,\n 198,\n 92,\n 628\n]"},"ratio_char_token":{"kind":"number","value":2.085889570552147,"string":"2.08589"},"token_count":{"kind":"number","value":652,"string":"652"}}},{"rowIdx":4299,"cells":{"content":{"kind":"string","value":"# -*- coding: utf-8 -*-\n\"\"\"\n StepPy\n :copyright: (c) 2016-2017 by Yann Gravrand.\n :license: BSD, see LICENSE for more details.\n\"\"\"\n\nfrom collections import OrderedDict\n\n"},"input_ids":{"kind":"list like","value":[2,532,9,12,19617,25,3384,69,12,23,532,9,12,198,37811,198,220,220,220,5012,20519,198,220,220,220,1058,22163,4766,25,357,66,8,1584,12,5539,416,575,1236,32599,25192,13,198,220,220,220,1058,43085,25,347,10305,11,766,38559,24290,329,517,3307,13,198,37811,198,198,6738,17268,1330,14230,1068,35,713,628],"string":"[\n 2,\n 532,\n 9,\n 12,\n 19617,\n 25,\n 3384,\n 69,\n 12,\n 23,\n 532,\n 9,\n 12,\n 198,\n 37811,\n 198,\n 220,\n 220,\n 220,\n 5012,\n 20519,\n 198,\n 220,\n 220,\n 220,\n 1058,\n 22163,\n 4766,\n 25,\n 357,\n 66,\n 8,\n 1584,\n 12,\n 5539,\n 416,\n 575,\n 1236,\n 32599,\n 25192,\n 13,\n 198,\n 220,\n 220,\n 220,\n 1058,\n 43085,\n 25,\n 347,\n 10305,\n 11,\n 766,\n 38559,\n 24290,\n 329,\n 517,\n 3307,\n 13,\n 198,\n 37811,\n 198,\n 198,\n 6738,\n 17268,\n 1330,\n 14230,\n 1068,\n 35,\n 713,\n 628\n]"},"ratio_char_token":{"kind":"number","value":2.5428571428571427,"string":"2.542857"},"token_count":{"kind":"number","value":70,"string":"70"}}}],"truncated":false,"partial":false},"paginationData":{"pageIndex":42,"numItemsPerPage":100,"numTotalItems":12760182,"offset":4200,"length":100}},"jwt":"eyJhbGciOiJFZERTQSJ9.eyJyZWFkIjp0cnVlLCJwZXJtaXNzaW9ucyI6eyJyZXBvLmNvbnRlbnQucmVhZCI6dHJ1ZX0sImlhdCI6MTc1Nzg0NzA0Niwic3ViIjoiL2RhdGFzZXRzL3l0emkvdGhlLXN0YWNrLWRlZHVwLXB5dGhvbi1maWx0ZXJlZC1kb2NzdHJpbmdzLWdwdDIiLCJleHAiOjE3NTc4NTA2NDYsImlzcyI6Imh0dHBzOi8vaHVnZ2luZ2ZhY2UuY28ifQ.5dPFW2O4hyjA0OGbnoDkQ3SQQ6HGusQ4oLmq87yzxaetSCB5WC11sbXTLQ4wsPgMHfG8MmZzNMYGrePJ-zPaDQ","displayUrls":true},"discussionsStats":{"closed":0,"open":1,"total":1},"fullWidth":true,"hasGatedAccess":true,"hasFullAccess":true,"isEmbedded":false,"savedQueries":{"community":[],"user":[]}}">
content
stringlengths
1
1.04M
input_ids
listlengths
1
774k
ratio_char_token
float64
0.38
22.9
token_count
int64
1
774k
# Prerequisite: directories for "in_strProtRefsDir" and "sparseData2", should not contain any ".txt" file # Output: under sparseData2 directory: target.csv, metaInfo.csv, *.txt import sys import os sys.path.append('../..') import prepLib in_strFastaFilename = '{!s}/data/protein/plos_HumanEKC/HumanEKC_uniprot-reviewed_up000005640_DECOY.fasta'.format(os.environ.get('HOME')) in_strPeptideFilename = '{!s}/data/protein/plos_HumanEKC/HumanEKC_dataset_peptide_identification_plos.txt'.format(os.environ.get('HOME')) in_strProtRefsDir = './protRefs' out_strOutputBaseDir = './sparseData2' protDic, pepDic = prepLib.loadProtPeptideDic(in_strPeptideFilename) prepLib.breakFasta(in_strFastaFilename, in_strProtRefsDir, protDic) listProtRefFileName = prepLib.getProtRefFileNames(in_strProtRefsDir) # match peptides with proteins prepLib.fuRunAllProt(listProtRefFileName, in_strProtRefsDir, out_strOutputBaseDir, protDic) strMetaInfoFilename = '{!s}/metaInfo.csv'.format(out_strOutputBaseDir) prepLib.fuSaveMetaInfo(out_strOutputBaseDir, strMetaInfoFilename, in_strProtRefsDir) pepProbsList = sorted(list(pepDic.values()),key=lambda x: x[0]) pepProbsList = [pepProbsList[i][1:3] for i in range(0,len(pepProbsList))] prepLib.fuSavePepProbsTargetFromList('{!s}/target.csv'.format(out_strOutputBaseDir), pepProbsList)
[ 2, 3771, 27614, 25, 29196, 329, 366, 259, 62, 2536, 19703, 8134, 82, 35277, 1, 290, 366, 82, 29572, 6601, 17, 1600, 815, 407, 3994, 597, 27071, 14116, 1, 2393, 198, 2, 25235, 25, 739, 29877, 6601, 17, 8619, 25, 2496, 13, 40664, 11, 13634, 12360, 13, 40664, 11, 46866, 14116, 198, 198, 11748, 25064, 198, 11748, 28686, 198, 17597, 13, 6978, 13, 33295, 10786, 40720, 492, 11537, 198, 11748, 3143, 25835, 198, 259, 62, 2536, 22968, 64, 35063, 796, 705, 90, 0, 82, 92, 14, 7890, 14, 48693, 14, 489, 418, 62, 20490, 36, 36222, 14, 20490, 36, 36222, 62, 403, 541, 10599, 12, 32974, 62, 929, 20483, 3980, 1821, 62, 41374, 21414, 13, 7217, 64, 4458, 18982, 7, 418, 13, 268, 2268, 13, 1136, 10786, 39069, 6, 4008, 198, 259, 62, 2536, 6435, 457, 485, 35063, 796, 705, 90, 0, 82, 92, 14, 7890, 14, 48693, 14, 489, 418, 62, 20490, 36, 36222, 14, 20490, 36, 36222, 62, 19608, 292, 316, 62, 431, 457, 485, 62, 738, 2649, 62, 489, 418, 13, 14116, 4458, 18982, 7, 418, 13, 268, 2268, 13, 1136, 10786, 39069, 6, 4008, 198, 198, 259, 62, 2536, 19703, 8134, 82, 35277, 796, 705, 19571, 11235, 8134, 82, 6, 198, 448, 62, 2536, 26410, 14881, 35277, 796, 705, 19571, 82, 29572, 6601, 17, 6, 198, 198, 11235, 35, 291, 11, 279, 538, 35, 291, 796, 3143, 25835, 13, 2220, 19703, 6435, 457, 485, 35, 291, 7, 259, 62, 2536, 6435, 457, 485, 35063, 8, 198, 46012, 25835, 13, 9032, 22968, 64, 7, 259, 62, 2536, 22968, 64, 35063, 11, 287, 62, 2536, 19703, 8134, 82, 35277, 11, 1237, 35, 291, 8, 198, 4868, 19703, 8134, 8979, 5376, 796, 3143, 25835, 13, 1136, 19703, 8134, 8979, 36690, 7, 259, 62, 2536, 19703, 8134, 82, 35277, 8, 198, 198, 2, 2872, 34337, 1460, 351, 15568, 198, 46012, 25835, 13, 20942, 10987, 3237, 19703, 7, 4868, 19703, 8134, 8979, 5376, 11, 287, 62, 2536, 19703, 8134, 82, 35277, 11, 503, 62, 2536, 26410, 14881, 35277, 11, 1237, 35, 291, 8, 198, 198, 2536, 48526, 12360, 35063, 796, 705, 90, 0, 82, 92, 14, 28961, 12360, 13, 40664, 4458, 18982, 7, 448, 62, 2536, 26410, 14881, 35277, 8, 198, 46012, 25835, 13, 20942, 16928, 48526, 12360, 7, 448, 62, 2536, 26410, 14881, 35277, 11, 965, 48526, 12360, 35063, 11, 287, 62, 2536, 19703, 8134, 82, 35277, 8, 198, 431, 79, 2964, 1443, 8053, 796, 23243, 7, 4868, 7, 431, 79, 35, 291, 13, 27160, 3419, 828, 2539, 28, 50033, 2124, 25, 2124, 58, 15, 12962, 198, 431, 79, 2964, 1443, 8053, 796, 685, 431, 79, 2964, 1443, 8053, 58, 72, 7131, 16, 25, 18, 60, 329, 1312, 287, 2837, 7, 15, 11, 11925, 7, 431, 79, 2964, 1443, 8053, 4008, 60, 198, 46012, 25835, 13, 20942, 16928, 47, 538, 2964, 1443, 21745, 4863, 8053, 10786, 90, 0, 82, 92, 14, 16793, 13, 40664, 4458, 18982, 7, 448, 62, 2536, 26410, 14881, 35277, 828, 279, 538, 2964, 1443, 8053, 8 ]
2.62
500
import numpy as np import unittest import discretize from SimPEG.maps import Wires from SimPEG.utils import ( mkvc, WeightedGaussianMixture, GaussianMixtureWithPrior, ) from scipy.stats import norm, multivariate_normal if __name__ == "__main__": unittest.main()
[ 11748, 299, 32152, 355, 45941, 198, 11748, 555, 715, 395, 198, 11748, 1221, 1186, 1096, 198, 6738, 3184, 47, 7156, 13, 31803, 1330, 370, 2387, 198, 6738, 3184, 47, 7156, 13, 26791, 1330, 357, 198, 220, 220, 220, 33480, 28435, 11, 198, 220, 220, 220, 14331, 276, 35389, 31562, 44, 9602, 11, 198, 220, 220, 220, 12822, 31562, 44, 9602, 3152, 22442, 11, 198, 8, 198, 6738, 629, 541, 88, 13, 34242, 1330, 2593, 11, 1963, 42524, 62, 11265, 628, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 555, 715, 395, 13, 12417, 3419, 198 ]
2.728155
103
from llvmlite import ir, binding from lang.scope import Scope from collections import defaultdict
[ 6738, 32660, 85, 4029, 578, 1330, 4173, 11, 12765, 198, 6738, 42392, 13, 29982, 1330, 41063, 198, 6738, 17268, 1330, 4277, 11600, 628 ]
4.304348
23
from draftjs_exporter.dom import DOM from wagtail.admin.rich_text.converters import editor_html from wagtail.admin.rich_text.converters.contentstate_models import Entity from wagtail.admin.rich_text.converters.html_to_contentstate import AtomicBlockEntityElementHandler from wagtail.embeds import embeds, format from wagtail.embeds.exceptions import EmbedException # Front-end conversion def media_embedtype_handler(attrs): """ Given a dict of attributes from the <embed> tag, return the real HTML representation for use on the front-end. """ return format.embed_to_frontend_html(attrs['url']) # hallo.js / editor-html conversion class MediaEmbedHandler: """ MediaEmbedHandler will be invoked whenever we encounter an element in HTML content with an attribute of data-embedtype="media". The resulting element in the database representation will be: <embed embedtype="media" url="http://vimeo.com/XXXXX"> """ @staticmethod def get_db_attributes(tag): """ Given a tag that we've identified as a media embed (because it has a data-embedtype="media" attribute), return a dict of the attributes we should have on the resulting <embed> element. """ return { 'url': tag['data-url'], } @staticmethod def expand_db_attributes(attrs): """ Given a dict of attributes from the <embed> tag, return the real HTML representation for use within the editor. """ try: return format.embed_to_editor_html(attrs['url']) except EmbedException: # Could be replaced with a nice error message return '' EditorHTMLEmbedConversionRule = [ editor_html.EmbedTypeRule('media', MediaEmbedHandler) ] # draft.js / contentstate conversion def media_embed_entity(props): """ Helper to construct elements of the form <embed embedtype="media" url="https://www.youtube.com/watch?v=y8Kyi0WNg40"/> when converting from contentstate data """ return DOM.create_element('embed', { 'embedtype': 'media', 'url': props.get('url'), }) class MediaEmbedElementHandler(AtomicBlockEntityElementHandler): """ Rule for building an embed entity when converting from database representation to contentstate """ ContentstateMediaConversionRule = { 'from_database_format': { 'embed[embedtype="media"]': MediaEmbedElementHandler(), }, 'to_database_format': { 'entity_decorators': {'EMBED': media_embed_entity} } }
[ 6738, 4538, 8457, 62, 1069, 26634, 13, 3438, 1330, 24121, 198, 198, 6738, 266, 363, 13199, 13, 28482, 13, 7527, 62, 5239, 13, 1102, 332, 1010, 1330, 5464, 62, 6494, 198, 6738, 266, 363, 13199, 13, 28482, 13, 7527, 62, 5239, 13, 1102, 332, 1010, 13, 11299, 5219, 62, 27530, 1330, 20885, 198, 6738, 266, 363, 13199, 13, 28482, 13, 7527, 62, 5239, 13, 1102, 332, 1010, 13, 6494, 62, 1462, 62, 11299, 5219, 1330, 28976, 12235, 32398, 20180, 25060, 198, 6738, 266, 363, 13199, 13, 20521, 82, 1330, 11525, 82, 11, 5794, 198, 6738, 266, 363, 13199, 13, 20521, 82, 13, 1069, 11755, 1330, 13302, 276, 16922, 628, 198, 2, 8880, 12, 437, 11315, 198, 198, 4299, 2056, 62, 20521, 4906, 62, 30281, 7, 1078, 3808, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 11259, 257, 8633, 286, 12608, 422, 262, 1279, 20521, 29, 7621, 11, 1441, 262, 1103, 11532, 198, 220, 220, 220, 10552, 329, 779, 319, 262, 2166, 12, 437, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 5794, 13, 20521, 62, 1462, 62, 8534, 437, 62, 6494, 7, 1078, 3808, 17816, 6371, 6, 12962, 628, 198, 2, 6899, 78, 13, 8457, 1220, 5464, 12, 6494, 11315, 198, 198, 4871, 6343, 31567, 276, 25060, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 6343, 31567, 276, 25060, 481, 307, 24399, 8797, 356, 8791, 281, 5002, 287, 11532, 2695, 198, 220, 220, 220, 351, 281, 11688, 286, 1366, 12, 20521, 4906, 2625, 11431, 1911, 383, 7186, 5002, 287, 262, 6831, 198, 220, 220, 220, 10552, 481, 307, 25, 198, 220, 220, 220, 1279, 20521, 11525, 4906, 2625, 11431, 1, 19016, 2625, 4023, 1378, 85, 47776, 13, 785, 14, 24376, 55, 5320, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2488, 12708, 24396, 198, 220, 220, 220, 825, 651, 62, 9945, 62, 1078, 7657, 7, 12985, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 11259, 257, 7621, 326, 356, 1053, 5174, 355, 257, 2056, 11525, 357, 13893, 340, 468, 257, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 12, 20521, 4906, 2625, 11431, 1, 11688, 828, 1441, 257, 8633, 286, 262, 12608, 356, 815, 198, 220, 220, 220, 220, 220, 220, 220, 423, 319, 262, 7186, 1279, 20521, 29, 5002, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 6371, 10354, 7621, 17816, 7890, 12, 6371, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 628, 220, 220, 220, 2488, 12708, 24396, 198, 220, 220, 220, 825, 4292, 62, 9945, 62, 1078, 7657, 7, 1078, 3808, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 11259, 257, 8633, 286, 12608, 422, 262, 1279, 20521, 29, 7621, 11, 1441, 262, 1103, 11532, 198, 220, 220, 220, 220, 220, 220, 220, 10552, 329, 779, 1626, 262, 5464, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 5794, 13, 20521, 62, 1462, 62, 35352, 62, 6494, 7, 1078, 3808, 17816, 6371, 6, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 13302, 276, 16922, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 10347, 307, 6928, 351, 257, 3621, 4049, 3275, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 10148, 628, 198, 17171, 6535, 44, 2538, 2022, 276, 3103, 9641, 31929, 796, 685, 198, 220, 220, 220, 5464, 62, 6494, 13, 31567, 276, 6030, 31929, 10786, 11431, 3256, 6343, 31567, 276, 25060, 8, 198, 60, 628, 198, 2, 4538, 13, 8457, 1220, 2695, 5219, 11315, 198, 198, 4299, 2056, 62, 20521, 62, 26858, 7, 1676, 862, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 5053, 525, 284, 5678, 4847, 286, 262, 1296, 198, 220, 220, 220, 1279, 20521, 11525, 4906, 2625, 11431, 1, 19016, 2625, 5450, 1378, 2503, 13, 11604, 13, 785, 14, 8340, 30, 85, 28, 88, 23, 30630, 72, 15, 29767, 70, 1821, 26700, 198, 220, 220, 220, 618, 23202, 422, 2695, 5219, 1366, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 24121, 13, 17953, 62, 30854, 10786, 20521, 3256, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 705, 20521, 4906, 10354, 705, 11431, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 6371, 10354, 25744, 13, 1136, 10786, 6371, 33809, 198, 220, 220, 220, 32092, 628, 198, 4871, 6343, 31567, 276, 20180, 25060, 7, 2953, 10179, 12235, 32398, 20180, 25060, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 14330, 329, 2615, 281, 11525, 9312, 618, 23202, 422, 6831, 10552, 198, 220, 220, 220, 284, 2695, 5219, 198, 220, 220, 220, 37227, 628, 198, 19746, 5219, 13152, 3103, 9641, 31929, 796, 1391, 198, 220, 220, 220, 705, 6738, 62, 48806, 62, 18982, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 705, 20521, 58, 20521, 4906, 2625, 11431, 8973, 10354, 6343, 31567, 276, 20180, 25060, 22784, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 705, 1462, 62, 48806, 62, 18982, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 705, 26858, 62, 12501, 273, 2024, 10354, 1391, 6, 3620, 33, 1961, 10354, 2056, 62, 20521, 62, 26858, 92, 198, 220, 220, 220, 1782, 198, 92, 198 ]
2.79027
925
# Englishクラスをインポートし、nlpオブジェクトを作成 from ____ import ____ nlp = ____ # テキストを処理 doc = ____("I like tree kangaroos and narwhals.") # 「tree kangaroors」のスライスを選択 tree_kangaroos = ____ print(tree_kangaroos.text) # 「tree kangaroos and narwhals」のスライスを選択(「.」は含まない) tree_kangaroos_and_narwhals = ____ print(tree_kangaroos_and_narwhals.text)
[ 2, 3594, 14099, 9263, 8943, 31758, 11482, 6527, 1209, 251, 12045, 230, 22180, 23513, 21283, 79, 20513, 24001, 21091, 24806, 14099, 13298, 31758, 43291, 22755, 238, 198, 6738, 220, 1427, 1330, 220, 1427, 198, 198, 21283, 79, 796, 220, 1427, 198, 198, 2, 14524, 228, 25084, 43302, 31758, 49035, 99, 49426, 228, 198, 15390, 796, 220, 1427, 7203, 40, 588, 5509, 479, 648, 12022, 418, 290, 30083, 1929, 874, 19570, 198, 198, 2, 40283, 21048, 479, 648, 12022, 669, 13700, 5641, 8943, 9263, 11482, 8943, 31758, 34402, 116, 162, 232, 252, 198, 21048, 62, 74, 648, 12022, 418, 796, 220, 1427, 198, 4798, 7, 21048, 62, 74, 648, 12022, 418, 13, 5239, 8, 198, 198, 2, 40283, 21048, 479, 648, 12022, 418, 290, 30083, 1929, 874, 13700, 5641, 8943, 9263, 11482, 8943, 31758, 34402, 116, 162, 232, 252, 171, 120, 230, 13697, 43735, 31676, 28938, 104, 30159, 26945, 18566, 171, 120, 231, 198, 21048, 62, 74, 648, 12022, 418, 62, 392, 62, 23955, 1929, 874, 796, 220, 1427, 198, 4798, 7, 21048, 62, 74, 648, 12022, 418, 62, 392, 62, 23955, 1929, 874, 13, 5239, 8, 198 ]
1.775401
187
from causal_world.task_generators.base_task import BaseTask import numpy as np
[ 6738, 26558, 62, 6894, 13, 35943, 62, 8612, 2024, 13, 8692, 62, 35943, 1330, 7308, 25714, 198, 11748, 299, 32152, 355, 45941, 628, 220, 220, 220, 220 ]
3.111111
27
from telegram import InputMediaPhoto from ..language import get_text from ..database.query import count_occurrence_of_specified_rating from .buttons import ( get_list_of_buttons, tamplate_for_show_a_list_of_products, tamplate_for_show_a_detailed_product)
[ 6738, 573, 30536, 1330, 23412, 13152, 6191, 198, 198, 6738, 11485, 16129, 1330, 651, 62, 5239, 198, 6738, 11485, 48806, 13, 22766, 1330, 954, 62, 13966, 33928, 62, 1659, 62, 23599, 62, 8821, 198, 6738, 764, 4360, 27288, 1330, 357, 198, 220, 220, 220, 651, 62, 4868, 62, 1659, 62, 4360, 27288, 11, 198, 220, 220, 220, 21885, 6816, 62, 1640, 62, 12860, 62, 64, 62, 4868, 62, 1659, 62, 29498, 11, 198, 220, 220, 220, 21885, 6816, 62, 1640, 62, 12860, 62, 64, 62, 15255, 6255, 62, 11167, 8, 628, 628, 628, 628, 628, 628, 628, 628, 628 ]
2.878788
99
# -*- coding: utf-8 -*- # # This file is part of Sequana software # # Copyright (c) 2016-2017 - Sequana Development Team # # File author(s): # Thomas Cokelaer <[email protected]> # # Distributed under the terms of the 3-clause BSD license. # The full license is in the LICENSE file, distributed with this software. # # website: https://github.com/sequana/sequana # documentation: http://sequana.readthedocs.io # ############################################################################## import re import ruamel.yaml import colorlog logger = colorlog.getLogger(__name__) __all__ = ["YamlDocParser"] class YamlDocParser(object): """A simple parser to extract block content to be found in YAML files So as to create tooltips automatically in :ref:`sequanix`, one can comment YAML configuration file with block comments (see developers guide in :ref:`developers` ) Once read and parsed, all block comments before top-level sections are to be found in the dictionary :attr:`sections`. .. doctest:: from sequana import snaketools from sequana.iotools import YamlDocParser module = snaketools.Module('quality_control') r = YamlDocParser(module.config) r.sections['fastqc'] Those lines are removed from the docstring but available as a dictionary """ def __init__(self, filename): """.. rubric:: constructor :param str filename: the YAML file to parse :: # main documentation # block comment section1: - item # block comment section2: # a comment section3: Here, section1 and section2 have block comments but not section3 """ self.filename = filename self.regex_section = re.compile("^[a-z,A-Z,_,0-9]+:") self._specials = ["choice__"] self.sections = {} self._read_data() self._parse_data() def _get_expected_sections(self): """Get the top level keys in the YAML file :return: list of top level sections' names""" with open(self.filename, "r") as fh: data = ruamel.yaml.load(fh.read(), ruamel.yaml.RoundTripLoader) keys = list(data.keys()) return keys def _parse_data(self): """Parse the YAML file to get the block content (comments) before each top-level sections. See doc in the constructor Removes all # so that the block of comments can be interpreted as a standard docstring in Sequanix """ current_block = [] current_section = "docstring" # if we get a line that starts with #, this is a new comment or # part of a block comment. Otherwise, it means the current block # comment has ended. for this in self.data: # Beginning of a new section at top level if self.regex_section.findall(this): name = self.regex_section.findall(this)[0] current_section = name.strip(":") self.sections[current_section] = "".join(current_block) current_block = [] current_section = None elif this.startswith('#'): # a comment at top level current_block.append(this) elif this.strip() == "": # an empty line #this was the main comment, or an isolated comment current_block = [] else: # a non-empty line to skip current_block = [] for key in self._get_expected_sections(): if key not in self.sections.keys(): logger.warning("section %s not dealt by the parsing function" % key) def _get_specials(self, section): """This method extracts data from the docstring Lines such as :: field_choice__ = ["a", "b"] are extracted. Where _choice is a special keyword to be found. """ if section not in self.sections.keys(): logger.warning("%s not found in the yaml " % section) return comments = self.sections[section] specials = {} for line in comments.split("\n"): if "#############" in line: pass elif sum([this in line for this in self._specials]): for special in self._specials: line = line[2:] key, value = line.split("=", 1) key = key.strip().rstrip("__") value = value.strip() specials[key] = list(eval(value)) return specials
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 2, 198, 2, 220, 770, 2393, 318, 636, 286, 24604, 2271, 3788, 198, 2, 198, 2, 220, 15069, 357, 66, 8, 1584, 12, 5539, 532, 24604, 2271, 7712, 4816, 198, 2, 198, 2, 220, 9220, 1772, 7, 82, 2599, 198, 2, 220, 220, 220, 220, 220, 5658, 34723, 5031, 263, 1279, 400, 16911, 13, 1073, 365, 5031, 263, 31, 34274, 333, 13, 8310, 29, 198, 2, 198, 2, 220, 4307, 6169, 739, 262, 2846, 286, 262, 513, 12, 565, 682, 347, 10305, 5964, 13, 198, 2, 220, 383, 1336, 5964, 318, 287, 262, 38559, 24290, 2393, 11, 9387, 351, 428, 3788, 13, 198, 2, 198, 2, 220, 3052, 25, 3740, 1378, 12567, 13, 785, 14, 3107, 2271, 14, 3107, 2271, 198, 2, 220, 10314, 25, 2638, 1378, 3107, 2271, 13, 961, 83, 704, 420, 82, 13, 952, 198, 2, 198, 29113, 29113, 7804, 4242, 2235, 198, 11748, 302, 198, 11748, 7422, 17983, 13, 88, 43695, 198, 198, 11748, 3124, 6404, 198, 6404, 1362, 796, 3124, 6404, 13, 1136, 11187, 1362, 7, 834, 3672, 834, 8, 198, 198, 834, 439, 834, 796, 14631, 56, 43695, 23579, 46677, 8973, 628, 198, 4871, 14063, 75, 23579, 46677, 7, 15252, 2599, 198, 220, 220, 220, 37227, 32, 2829, 30751, 284, 7925, 2512, 2695, 284, 307, 1043, 287, 575, 2390, 43, 3696, 628, 220, 220, 220, 1406, 355, 284, 2251, 2891, 41315, 6338, 287, 1058, 5420, 25, 63, 3107, 272, 844, 47671, 530, 460, 2912, 198, 220, 220, 220, 575, 2390, 43, 8398, 2393, 351, 2512, 3651, 357, 3826, 6505, 5698, 287, 198, 220, 220, 220, 1058, 5420, 25, 63, 16244, 364, 63, 1267, 628, 220, 220, 220, 4874, 1100, 290, 44267, 11, 477, 2512, 3651, 878, 1353, 12, 5715, 9004, 389, 284, 220, 198, 220, 220, 220, 307, 1043, 287, 262, 22155, 1058, 35226, 25, 63, 23946, 44646, 628, 220, 220, 220, 11485, 10412, 395, 3712, 628, 220, 220, 220, 220, 220, 220, 220, 422, 4726, 2271, 1330, 3013, 461, 316, 10141, 198, 220, 220, 220, 220, 220, 220, 220, 422, 4726, 2271, 13, 5151, 10141, 1330, 14063, 75, 23579, 46677, 198, 220, 220, 220, 220, 220, 220, 220, 8265, 796, 3013, 461, 316, 10141, 13, 26796, 10786, 13237, 62, 13716, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 374, 796, 14063, 75, 23579, 46677, 7, 21412, 13, 11250, 8, 198, 220, 220, 220, 220, 220, 220, 220, 374, 13, 23946, 17816, 7217, 80, 66, 20520, 628, 220, 220, 220, 5845, 3951, 389, 4615, 422, 262, 2205, 8841, 475, 1695, 355, 257, 22155, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 29472, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 492, 6437, 1173, 3712, 23772, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 965, 29472, 25, 262, 575, 2390, 43, 2393, 284, 21136, 628, 220, 220, 220, 220, 220, 220, 220, 7904, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1388, 10314, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2512, 2912, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2665, 16, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 2378, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2512, 2912, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2665, 17, 25, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 257, 2912, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2665, 18, 25, 628, 220, 220, 220, 220, 220, 220, 220, 3423, 11, 2665, 16, 290, 2665, 17, 423, 2512, 3651, 475, 407, 2665, 18, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 34345, 796, 29472, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 260, 25636, 62, 5458, 796, 302, 13, 5589, 576, 7203, 61, 58, 64, 12, 89, 11, 32, 12, 57, 11, 62, 11, 15, 12, 24, 48688, 25, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 20887, 82, 796, 14631, 25541, 834, 8973, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 23946, 796, 23884, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 961, 62, 7890, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 29572, 62, 7890, 3419, 628, 220, 220, 220, 825, 4808, 1136, 62, 40319, 62, 23946, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 3855, 262, 1353, 1241, 8251, 287, 262, 575, 2390, 43, 2393, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 1351, 286, 1353, 1241, 9004, 6, 3891, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 351, 1280, 7, 944, 13, 34345, 11, 366, 81, 4943, 355, 277, 71, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 796, 7422, 17983, 13, 88, 43695, 13, 2220, 7, 69, 71, 13, 961, 22784, 7422, 17983, 13, 88, 43695, 13, 22685, 51, 5528, 17401, 8, 198, 220, 220, 220, 220, 220, 220, 220, 8251, 796, 1351, 7, 7890, 13, 13083, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 8251, 628, 220, 220, 220, 825, 4808, 29572, 62, 7890, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 10044, 325, 262, 575, 2390, 43, 2393, 284, 651, 262, 2512, 2695, 357, 15944, 8, 198, 220, 220, 220, 220, 220, 220, 220, 878, 1123, 1353, 12, 5715, 9004, 13, 4091, 2205, 287, 262, 23772, 628, 220, 220, 220, 220, 220, 220, 220, 3982, 5241, 477, 1303, 523, 326, 262, 2512, 286, 3651, 460, 307, 16173, 355, 198, 220, 220, 220, 220, 220, 220, 220, 257, 3210, 2205, 8841, 287, 24604, 272, 844, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1459, 62, 9967, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 1459, 62, 5458, 796, 366, 15390, 8841, 1, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 611, 356, 651, 257, 1627, 326, 4940, 351, 1303, 11, 428, 318, 257, 649, 2912, 393, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 636, 286, 257, 2512, 2912, 13, 15323, 11, 340, 1724, 262, 1459, 2512, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 2912, 468, 4444, 13, 628, 220, 220, 220, 220, 220, 220, 220, 329, 428, 287, 2116, 13, 7890, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 25976, 286, 257, 649, 2665, 379, 1353, 1241, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 260, 25636, 62, 5458, 13, 19796, 439, 7, 5661, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 796, 2116, 13, 260, 25636, 62, 5458, 13, 19796, 439, 7, 5661, 38381, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1459, 62, 5458, 796, 1438, 13, 36311, 7, 2404, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 23946, 58, 14421, 62, 5458, 60, 796, 366, 1911, 22179, 7, 14421, 62, 9967, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1459, 62, 9967, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1459, 62, 5458, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 428, 13, 9688, 2032, 342, 10786, 2, 6, 2599, 220, 220, 220, 1303, 257, 2912, 379, 1353, 1241, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1459, 62, 9967, 13, 33295, 7, 5661, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 428, 13, 36311, 3419, 6624, 366, 1298, 220, 220, 220, 220, 220, 1303, 281, 6565, 1627, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 5661, 373, 262, 1388, 2912, 11, 393, 281, 11557, 2912, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1459, 62, 9967, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 220, 1303, 257, 1729, 12, 28920, 1627, 284, 14267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1459, 62, 9967, 796, 17635, 628, 220, 220, 220, 220, 220, 220, 220, 329, 1994, 287, 2116, 13557, 1136, 62, 40319, 62, 23946, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1994, 407, 287, 2116, 13, 23946, 13, 13083, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 43917, 7203, 5458, 4064, 82, 407, 11829, 416, 262, 32096, 2163, 1, 4064, 1994, 8, 628, 220, 220, 220, 825, 4808, 1136, 62, 20887, 82, 7, 944, 11, 2665, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 1212, 2446, 32139, 1366, 422, 262, 2205, 8841, 628, 220, 220, 220, 220, 220, 220, 220, 26299, 884, 355, 7904, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2214, 62, 25541, 834, 796, 14631, 64, 1600, 366, 65, 8973, 628, 220, 220, 220, 220, 220, 220, 220, 389, 21242, 13, 6350, 4808, 25541, 318, 257, 2041, 21179, 284, 307, 198, 220, 220, 220, 220, 220, 220, 220, 1043, 13, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2665, 407, 287, 2116, 13, 23946, 13, 13083, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 43917, 7203, 4, 82, 407, 1043, 287, 262, 331, 43695, 366, 4064, 2665, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 198, 220, 220, 220, 220, 220, 220, 220, 3651, 796, 2116, 13, 23946, 58, 5458, 60, 198, 220, 220, 220, 220, 220, 220, 220, 38102, 796, 23884, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1627, 287, 3651, 13, 35312, 7203, 59, 77, 1, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 366, 7804, 4242, 2, 1, 287, 1627, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1208, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 2160, 26933, 5661, 287, 1627, 329, 428, 287, 2116, 13557, 20887, 82, 60, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 2041, 287, 2116, 13557, 20887, 82, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1627, 796, 1627, 58, 17, 47715, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1994, 11, 1988, 796, 1627, 13, 35312, 7203, 28, 1600, 352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1994, 796, 1994, 13, 36311, 22446, 81, 36311, 7203, 834, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1988, 796, 1988, 13, 36311, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 38102, 58, 2539, 60, 796, 1351, 7, 18206, 7, 8367, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 38102, 198 ]
2.356749
1,993
'''Tests the websocket middleware in pulsar.apps.ws.''' import unittest import asyncio from pulsar.api import send from pulsar.apps.ws import WebSocket, WS from pulsar.apps.http import HttpClient from pulsar.apps.test import run_test_server from examples.websocket.manage import server
[ 7061, 6, 51, 3558, 262, 2639, 5459, 3504, 1574, 287, 22271, 283, 13, 18211, 13, 18504, 2637, 7061, 198, 11748, 555, 715, 395, 198, 11748, 30351, 952, 198, 198, 6738, 22271, 283, 13, 15042, 1330, 3758, 198, 6738, 22271, 283, 13, 18211, 13, 18504, 1330, 5313, 39105, 11, 25290, 198, 6738, 22271, 283, 13, 18211, 13, 4023, 1330, 367, 29281, 11792, 198, 6738, 22271, 283, 13, 18211, 13, 9288, 1330, 1057, 62, 9288, 62, 15388, 198, 198, 6738, 6096, 13, 732, 1443, 5459, 13, 805, 496, 1330, 4382, 628, 198 ]
3.222222
90
""" """ import app.utils6L.utils6L as utils import logging import os import PySimpleGUI as sg from app.main.views import view_create_link_address from app.model import db_session from app.model.Company import Address, Company from PySimpleGUI.PySimpleGUI import popup_scrolled logger_name = os.getenv("LOGGER_NAME") logger = logging.getLogger(logger_name) NO_COMPANY_ADDRESS = 'No company address' @utils.log_wrap @utils.log_wrap @utils.log_wrap @utils.log_wrap
[ 37811, 198, 37811, 198, 198, 11748, 598, 13, 26791, 21, 43, 13, 26791, 21, 43, 355, 3384, 4487, 198, 198, 11748, 18931, 198, 11748, 28686, 198, 11748, 9485, 26437, 40156, 355, 264, 70, 198, 198, 6738, 598, 13, 12417, 13, 33571, 1330, 1570, 62, 17953, 62, 8726, 62, 21975, 198, 6738, 598, 13, 19849, 1330, 20613, 62, 29891, 198, 6738, 598, 13, 19849, 13, 39154, 1330, 17917, 11, 5834, 198, 198, 6738, 9485, 26437, 40156, 13, 20519, 26437, 40156, 1330, 46207, 62, 1416, 8375, 198, 198, 6404, 1362, 62, 3672, 796, 28686, 13, 1136, 24330, 7203, 25294, 30373, 62, 20608, 4943, 198, 6404, 1362, 796, 18931, 13, 1136, 11187, 1362, 7, 6404, 1362, 62, 3672, 8, 198, 198, 15285, 62, 9858, 47, 31827, 62, 2885, 7707, 7597, 796, 705, 2949, 1664, 2209, 6, 628, 198, 31, 26791, 13, 6404, 62, 37150, 628, 198, 31, 26791, 13, 6404, 62, 37150, 628, 198, 31, 26791, 13, 6404, 62, 37150, 628, 198, 31, 26791, 13, 6404, 62, 37150, 198 ]
2.86747
166
# COUNT CONTAINED PERMUTATIONS # O(M * U + N) time and O(U) space, where M -> length of big string, # U -> number of unique characters in small string, N -> length # of small string. # U is actually a constant since it can't be greater than 26. and # M > N, so M will dissolve N # So, modified complexities: # O(M) time and O(1) space, M -> length of big string
[ 198, 2, 327, 28270, 7102, 30339, 1961, 19878, 44, 3843, 18421, 198, 198, 2, 440, 7, 44, 1635, 471, 1343, 399, 8, 640, 290, 440, 7, 52, 8, 2272, 11, 810, 337, 4613, 4129, 286, 1263, 4731, 11, 198, 2, 471, 4613, 1271, 286, 3748, 3435, 287, 1402, 4731, 11, 399, 4613, 4129, 198, 2, 286, 1402, 4731, 13, 198, 2, 471, 318, 1682, 257, 6937, 1201, 340, 460, 470, 307, 3744, 621, 2608, 13, 290, 220, 198, 2, 337, 1875, 399, 11, 523, 337, 481, 33862, 399, 198, 2, 1406, 11, 9518, 42292, 25, 198, 2, 440, 7, 44, 8, 640, 290, 440, 7, 16, 8, 2272, 11, 337, 4613, 4129, 286, 1263, 4731 ]
3.165217
115
import urllib.request, json print(Users.get_user(Users("INfoUpgradersYT")))
[ 11748, 2956, 297, 571, 13, 25927, 11, 33918, 198, 198, 4798, 7, 14490, 13, 1136, 62, 7220, 7, 14490, 7203, 1268, 6513, 4933, 9744, 364, 56, 51, 1, 22305, 198 ]
2.566667
30
from torch.distributions import constraints from torch.distributions.exponential import Exponential from torch.distributions.transformed_distribution import TransformedDistribution from torch.distributions.transforms import AffineTransform, ExpTransform from torch.distributions.utils import broadcast_all class Pareto(TransformedDistribution): r""" Samples from a Pareto Type 1 distribution. Example:: >>> m = Pareto(torch.tensor([1.0]), torch.tensor([1.0])) >>> m.sample() # sample from a Pareto distribution with scale=1 and alpha=1 tensor([ 1.5623]) Args: scale (float or Tensor): Scale parameter of the distribution alpha (float or Tensor): Shape parameter of the distribution """ arg_constraints = {'alpha': constraints.positive, 'scale': constraints.positive} @property @property @constraints.dependent_property
[ 6738, 28034, 13, 17080, 2455, 507, 1330, 17778, 198, 6738, 28034, 13, 17080, 2455, 507, 13, 11201, 35470, 1330, 5518, 35470, 198, 6738, 28034, 13, 17080, 2455, 507, 13, 7645, 12214, 62, 17080, 3890, 1330, 3602, 12214, 20344, 3890, 198, 6738, 28034, 13, 17080, 2455, 507, 13, 7645, 23914, 1330, 6708, 500, 41762, 11, 5518, 41762, 198, 6738, 28034, 13, 17080, 2455, 507, 13, 26791, 1330, 7025, 62, 439, 628, 198, 4871, 350, 533, 1462, 7, 8291, 12214, 20344, 3890, 2599, 198, 220, 220, 220, 374, 37811, 198, 220, 220, 220, 3409, 2374, 422, 257, 350, 533, 1462, 5994, 352, 6082, 13, 628, 220, 220, 220, 17934, 3712, 628, 220, 220, 220, 220, 220, 220, 220, 13163, 285, 796, 350, 533, 1462, 7, 13165, 354, 13, 83, 22854, 26933, 16, 13, 15, 46570, 28034, 13, 83, 22854, 26933, 16, 13, 15, 60, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 285, 13, 39873, 3419, 220, 1303, 6291, 422, 257, 350, 533, 1462, 6082, 351, 5046, 28, 16, 290, 17130, 28, 16, 198, 220, 220, 220, 220, 220, 220, 220, 11192, 273, 26933, 352, 13, 3980, 1954, 12962, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5046, 357, 22468, 393, 309, 22854, 2599, 21589, 11507, 286, 262, 6082, 198, 220, 220, 220, 220, 220, 220, 220, 17130, 357, 22468, 393, 309, 22854, 2599, 25959, 11507, 286, 262, 6082, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1822, 62, 1102, 2536, 6003, 796, 1391, 6, 26591, 10354, 17778, 13, 24561, 11, 705, 9888, 10354, 17778, 13, 24561, 92, 628, 220, 220, 220, 2488, 26745, 628, 220, 220, 220, 2488, 26745, 628, 220, 220, 220, 2488, 1102, 2536, 6003, 13, 21186, 62, 26745, 198 ]
3.106529
291
from bitmovin.bitmovin_object import BitmovinObject from .s3_output_service import S3 from .gcs_output_service import GCS from .akamai_netstorage_output_service import AkamaiNetStorage from .azure_output_service import Azure from .ftp_output_service import FTP from .sftp_output_service import SFTP from .generic_s3_output_service import GenericS3 from .local_output_service import Local from .s3_role_based_output_service import S3RoleBased
[ 6738, 1643, 76, 709, 259, 13, 2545, 76, 709, 259, 62, 15252, 1330, 4722, 76, 709, 259, 10267, 198, 6738, 764, 82, 18, 62, 22915, 62, 15271, 1330, 311, 18, 198, 6738, 764, 70, 6359, 62, 22915, 62, 15271, 1330, 402, 7902, 198, 6738, 764, 461, 1689, 72, 62, 3262, 35350, 62, 22915, 62, 15271, 1330, 9084, 1689, 72, 7934, 31425, 198, 6738, 764, 1031, 495, 62, 22915, 62, 15271, 1330, 22134, 198, 6738, 764, 701, 79, 62, 22915, 62, 15271, 1330, 45854, 198, 6738, 764, 82, 701, 79, 62, 22915, 62, 15271, 1330, 14362, 7250, 198, 6738, 764, 41357, 62, 82, 18, 62, 22915, 62, 15271, 1330, 42044, 50, 18, 198, 6738, 764, 12001, 62, 22915, 62, 15271, 1330, 10714, 198, 6738, 764, 82, 18, 62, 18090, 62, 3106, 62, 22915, 62, 15271, 1330, 311, 18, 47445, 15001, 628 ]
3.164286
140
#!/usr/bin/env python3 from btcmarkets_api import Market BTC = Market("/market/BTC/AUD/tick", "BTC") LTC = Market("/market/LTC/AUD/tick", "LTC") ETH = Market("/market/ETH/AUD/tick", "ETH") ETC = Market("/market/ETC/AUD/tick", "ETC") XRP = Market("/market/XRP/AUD/tick", "XRP") BCH = Market("/market/BCH/AUD/tick", "BCH") BTC.update_data() LTC.update_data() ETH.update_data() ETC.update_data() XRP.update_data() BCH.update_data()
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 6738, 275, 23047, 34162, 62, 15042, 1330, 5991, 198, 198, 35964, 796, 5991, 7203, 14, 10728, 14, 35964, 14, 48877, 14, 42298, 1600, 366, 35964, 4943, 198, 43, 4825, 796, 5991, 7203, 14, 10728, 14, 43, 4825, 14, 48877, 14, 42298, 1600, 366, 43, 4825, 4943, 198, 20702, 796, 5991, 7203, 14, 10728, 14, 20702, 14, 48877, 14, 42298, 1600, 366, 20702, 4943, 198, 2767, 34, 796, 5991, 7203, 14, 10728, 14, 2767, 34, 14, 48877, 14, 42298, 1600, 366, 2767, 34, 4943, 198, 55, 20031, 796, 5991, 7203, 14, 10728, 14, 55, 20031, 14, 48877, 14, 42298, 1600, 366, 55, 20031, 4943, 198, 2749, 39, 796, 5991, 7203, 14, 10728, 14, 2749, 39, 14, 48877, 14, 42298, 1600, 366, 2749, 39, 4943, 198, 198, 35964, 13, 19119, 62, 7890, 3419, 198, 43, 4825, 13, 19119, 62, 7890, 3419, 198, 20702, 13, 19119, 62, 7890, 3419, 198, 2767, 34, 13, 19119, 62, 7890, 3419, 198, 55, 20031, 13, 19119, 62, 7890, 3419, 198, 2749, 39, 13, 19119, 62, 7890, 3419, 198 ]
2.381215
181
from funcs.concordance import concordance def test_concordance_string(): """ concordance can be called with a string (e.g. a single cell containing a string) """ grams = concordance('Hello world. Hello, my great world! Hello Alice and Bob.', 'world') assert grams == [ ('Hello world'), ('Hello, my great world') ] def test_concordance_array_string(): """ concordance can be called with an array of strings (e.g. a column of cells containing strings) """ grams = concordance(['Hello world.', 'Hello, my great world!', 'Hello Alice and Bob.'], 'world') assert grams == [ ('Hello world'), ('Hello, my great world') ]
[ 6738, 1257, 6359, 13, 1102, 66, 585, 590, 1330, 1673, 585, 590, 628, 198, 4299, 1332, 62, 1102, 66, 585, 590, 62, 8841, 33529, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1673, 585, 590, 460, 307, 1444, 351, 257, 4731, 357, 68, 13, 70, 13, 257, 2060, 2685, 7268, 257, 4731, 8, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 16379, 796, 1673, 585, 590, 10786, 15496, 995, 13, 18435, 11, 616, 1049, 995, 0, 18435, 14862, 290, 5811, 2637, 11, 705, 6894, 11537, 198, 220, 220, 220, 6818, 16379, 6624, 685, 198, 220, 220, 220, 220, 220, 220, 220, 19203, 15496, 995, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 19203, 15496, 11, 616, 1049, 995, 11537, 198, 220, 220, 220, 2361, 198, 198, 4299, 1332, 62, 1102, 66, 585, 590, 62, 18747, 62, 8841, 33529, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1673, 585, 590, 460, 307, 1444, 351, 281, 7177, 286, 13042, 357, 68, 13, 70, 13, 257, 5721, 198, 220, 220, 220, 286, 4778, 7268, 13042, 8, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 16379, 796, 1673, 585, 590, 7, 17816, 15496, 995, 2637, 11, 705, 15496, 11, 616, 1049, 995, 0, 3256, 705, 15496, 14862, 290, 5811, 2637, 4357, 705, 6894, 11537, 198, 220, 220, 220, 6818, 16379, 6624, 685, 198, 220, 220, 220, 220, 220, 220, 220, 19203, 15496, 995, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 19203, 15496, 11, 616, 1049, 995, 11537, 198, 220, 220, 220, 2361, 198 ]
2.738281
256
# -*- coding: utf-8 -*- import numpy as np import cv2 as cv from keras.preprocessing import image from keras.models import model_from_json import click import pandas as pd from keras.layers import Input from keras import models from keras.models import load_model import pyautogui import statistics from PyQt5 import QtWidgets, QtGui from configurar import configurarWindow import sys import configuracoes as cfg import camera import mouse import teclado import matplotlib.pyplot as plt pyautogui.FAILSAFE = False #Captura um posicao padrao da cabeca para que possa #fazer o deslocamento do mouse #ponto de referencia #melhorar #trata imagem da face e faz a predicao #Objetivo: Reconhecer expressões faciais e posição da cabeça # em quadro extraído do vídeo recebido de uma chamada de rotina. #----------------------------- #Objetivo: Determinar a partir de informações fornecidas pelo UC 001 se # ocorreu alguma intenção de ação por parte dos usuários a partir do quadro extraído do vídeo capturado pela webcam. #Realiza emulacao de comando que está associada a expressao #----------------------------- #Objetivo: Identificar a ocorrência de expressões faciais e # movimentos realizados com a cabeça utilizando imagens de vídeos capturadas pela webcam. if __name__== '__main__': mouse_expressions().executar()
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 269, 85, 17, 355, 269, 85, 198, 6738, 41927, 292, 13, 3866, 36948, 1330, 2939, 198, 6738, 41927, 292, 13, 27530, 1330, 2746, 62, 6738, 62, 17752, 198, 11748, 3904, 198, 11748, 19798, 292, 355, 279, 67, 198, 6738, 41927, 292, 13, 75, 6962, 1330, 23412, 198, 6738, 41927, 292, 1330, 4981, 198, 6738, 41927, 292, 13, 27530, 1330, 3440, 62, 19849, 198, 11748, 12972, 2306, 519, 9019, 198, 11748, 7869, 198, 6738, 9485, 48, 83, 20, 1330, 33734, 54, 312, 11407, 11, 33734, 8205, 72, 198, 6738, 4566, 333, 283, 1330, 4566, 333, 283, 27703, 198, 11748, 25064, 198, 11748, 4566, 333, 330, 3028, 355, 30218, 70, 220, 198, 11748, 4676, 198, 11748, 10211, 220, 198, 11748, 573, 565, 4533, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 198, 9078, 2306, 519, 9019, 13, 7708, 4146, 4090, 15112, 796, 10352, 198, 197, 197, 628, 197, 2, 19209, 5330, 23781, 1426, 3970, 78, 14841, 430, 78, 12379, 16212, 31047, 31215, 8358, 1184, 64, 220, 198, 197, 2, 69, 19178, 267, 748, 17946, 3263, 78, 466, 10211, 198, 197, 2, 79, 5957, 390, 6773, 10782, 544, 220, 197, 197, 197, 197, 2, 17694, 17899, 283, 198, 197, 198, 197, 2, 2213, 1045, 3590, 368, 12379, 1986, 304, 277, 1031, 257, 2747, 3970, 78, 628, 198, 197, 2, 5944, 31173, 23593, 25, 23419, 258, 2189, 4911, 127, 113, 274, 1777, 544, 271, 304, 1426, 72, 16175, 28749, 12379, 269, 11231, 50041, 220, 198, 197, 2, 795, 15094, 305, 3131, 8836, 4598, 466, 410, 8836, 2934, 78, 1407, 14065, 78, 390, 334, 2611, 442, 321, 4763, 390, 5724, 1437, 13, 198, 197, 197, 197, 198, 197, 197, 197, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 197, 2, 1783, 32501, 197, 197, 198, 197, 2, 5944, 31173, 23593, 25, 360, 13221, 283, 257, 636, 343, 390, 4175, 64, 16175, 127, 113, 274, 329, 32984, 24496, 16176, 78, 14417, 3571, 16, 384, 220, 198, 197, 2, 267, 10215, 260, 84, 435, 70, 7487, 493, 268, 16175, 28749, 390, 257, 16175, 28749, 16964, 636, 68, 23430, 514, 84, 6557, 380, 418, 257, 636, 343, 466, 15094, 305, 3131, 8836, 4598, 466, 410, 8836, 2934, 78, 3144, 333, 4533, 279, 10304, 49823, 13, 220, 198, 197, 2, 15633, 23638, 795, 377, 330, 5488, 390, 401, 25440, 8358, 1556, 6557, 2570, 4763, 257, 4911, 5488, 628, 198, 197, 2, 1783, 32501, 198, 197, 2, 5944, 31173, 23593, 25, 11440, 811, 283, 257, 267, 10215, 81, 25792, 10782, 544, 390, 4911, 127, 113, 274, 1777, 544, 271, 304, 220, 198, 197, 2, 1409, 3681, 418, 1103, 528, 22484, 401, 257, 269, 11231, 50041, 7736, 528, 25440, 3590, 641, 390, 410, 8836, 2934, 418, 3144, 333, 38768, 279, 10304, 49823, 13, 220, 198, 198, 361, 11593, 3672, 834, 855, 705, 834, 12417, 834, 10354, 198, 197, 35888, 62, 42712, 507, 22446, 18558, 315, 283, 3419 ]
2.123537
769
# -*- coding: utf-8 -*- # Copyright: (c) 2018, Ansible Project # Copyright: (c) 2018, Abhijeet Kasurde <[email protected]> # GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt)
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 198, 2, 15069, 25, 357, 66, 8, 2864, 11, 28038, 856, 4935, 198, 2, 15069, 25, 357, 66, 8, 2864, 11, 2275, 71, 2926, 68, 316, 15035, 2799, 68, 1279, 461, 292, 2799, 68, 31, 445, 5183, 13, 785, 29, 198, 2, 22961, 3611, 5094, 13789, 410, 18, 13, 15, 10, 357, 3826, 27975, 45761, 393, 3740, 1378, 2503, 13, 41791, 13, 2398, 14, 677, 4541, 14, 70, 489, 12, 18, 13, 15, 13, 14116, 8, 628 ]
2.417582
91
import json from .models import URL
[ 11748, 33918, 198, 198, 6738, 764, 27530, 1330, 10289, 628 ]
3.8
10
""" IN PROGRESS:Transliterating Carlo's routine from Fortran Form the B-Matrix and C-Matrix used to convert the coordinates Calcualtes all of the derivaties via finite-difference define starting xyz geometry. convention: atom 1 is is 0 0 0 atom 2 bd 0 0 atom 3 on xy plane """ # import numpy as np # # NATOMS = 10 # maybe need, don't know # INT_COORDS = '' # DELTAX = 0.01 # DELTAY = 0.01 # DELTAZ = 0.01 # # # def compute_bmat(natoms, coords, deltax, deltay, deltaz): # """ compute the bmatrix by central difference # where B_ik = dq_i / dx_k # """ # # b_mat = np.zeros(3*natoms, 3*natoms) # for j in range(3): # for k in range(3): # # # perturb x + dx and x - dx # xpert_xp = 1 # xpert_xn = 1 # _perturb_coordinates(coords, jpert, delta) # # # perturb y + dy and y - dy # xpert_yp = 1 # xpert_yn = 1 # _perturb_coordinates(coords, jpert, delta) # # # perturb z + dz and z - dz # xpert_zp = 1 # xpert_zn = 1 # _perturb_coordinates(coords, jpert, delta) # # # Now calculate the jk component C-Matrix # _calculate_bmat_k_component(b_mat, coords, j, j*k, # x_pert_pp, x_pert_pn, # x_pert_np, x_pert_nn) # # # now update iangsub1 bmat component (whatever this is) # b_mat = _update_bmat(bmat, coords) # # return b_mat # # # def compute_cmat(natoms, coords, deltax, deltay, deltaz): # """ compute the bmatrix by central difference # where C_ijk = d2q_i / (dx_j.dx_k) # """ # # c_mat = np.zeros(3*natoms, 3*natoms, 3*natoms) # for j in range(3): # for k in range(3): # # perturb xj + dxj and xk + dxk # x_pert_pp = _perturb_coordinates(coords, jpert, kpert, d1, d2) # # # perturb xj - dxj and yk + dyk # x_pert_np = _perturb_coordinates(coords, jpert, kpert, d1, d2) # # # perturb xj + dxj and yk - dyk # x_pert_pn = _perturb_coordinates(coords, jpert, kpert, d1, d2) # # # perturb xj - dxj and xk - dxk # x_pert_nn = _perturb_coordinates(coords, jpert, kpert, d1, d2) # # # Now calculate the jk component C-Matrix # _calculate_cmat_k_component(c_mat, coords, j, j*k, # x_pert_pp, x_pert_pn, # x_pert_np, x_pert_nn) # # return c_mat # # # def _perturb_coordinates(coords, jpert, delta1, kpert=None, delta2=None): # """ Generate coordinates that have been perturbed # """ # coords[jpert] += delta1 # coords[kpert] += delta2 # # call update_zmat(natom,natomt,intcoor,bislab,ibconn, # # $ iaconn,idconn,bname,anname,dname,atname,cooxpp,cooypp, # # $ coozpp,xintpp,tauopt,ntau,idummy,ilin_fr,aconnt,bconnt, # # $ dconnt,atomlabel,ifilu) # # return coords # # # def _calculate_bmat_k_component(b_mat, j_idx, coords, delta, # x_pert_p, x_pert_n): # """ Calculate one nine components of B_ij for given __ # """ # # for i, coord in enumerate(coords): # if abs(xpert_p[i] - xpert_np[i]) > 300.0: # if xpert_n[i] < 0.0: # xpert_n[i] += 360.0 # elif xpert_n[i] > 0.0: # xpert_n[i] -= 360.0 # if abs(xpert_p[i] - xpert_n[i]) > 300.0: # raise ValueError( # 'something did not work here: k, j coord', kind, jind, i) # b_mat[i, j_idx] = ( # ((xpert_p[i] - xpert_n[i]) / 2.0) * (1.0 / delta) # ) # # return b_mat # # # def _calculate_cmat_k_component(c_mat, k_idx, coords, delta1, delta2, # x_pert_pp, x_pert_pn, x_pert_np, x_pert_nn): # """ Calculate one nine components of C_ijk for given j # """ # # for i, coord in enumerate(coords): # # if abs(xpert_pp[i] - xpert_np[i]) > 300.0: # if xpert_pp[i] < 0.0: # xpert_pp[i] += 360.0 # elif xpert_pp[i] > 0.0: # xpert_pp[i] -= 360.0 # if abs(xpert_pp[i] - xpert_np[i]) > 300.0: # raise ValueError( # 'something did not work here: k, j coord', # kind, jind, i) # # if abs(xpert_np[i] - xpert_np[i]) > 300.0: # if xpert_pn[i] < 0.0: # xpert_pn[i] += 360.0 # elif xpert_pn[i] > 0.0: # xpert_pn[i] -= 360.0 # if abs(xpert_pp[i] - xpert_pn[i]) > 300.0: # raise ValueError( # 'something did not work here: k, j coord', # kind, jind, i) # # if abs(xpert_np[i] - xpert_nn[i]) > 300.0: # if xpert_nn[i] < 0.0: # xpert_nn[i] += 360.0 # elif xpert_nn[i] > 0.0: # xpert_nn[i] -= 360.0 # if abs(xpert_np[i] - xpert_nn[i]) > 300.0: # raise ValueError( # 'something did not work here: k, j coord', # kind, jind, i) # # c_mat[i, j_idx, k_idx] = ( # xpert_pp[i] - xpert_np[i] - xpert_pn[i] + # (xpert_nn[i] / 4.0) * (1.0 / deltax) * (1.0 / deltaz) # ) # # return c_mat # # # if __name__ == '__main__': # b_mat = compute_bmat(NATOMS, COORDS, DELTAX, DELTAY, DELTAZ) # c_mat = compute_cmat(NATOMS, COORDS, DELTAX, DELTAY, DELTAZ)
[ 37811, 198, 1268, 38688, 49, 7597, 25, 8291, 17201, 803, 40089, 338, 8027, 422, 6401, 2596, 198, 198, 8479, 262, 347, 12, 46912, 290, 327, 12, 46912, 973, 284, 10385, 262, 22715, 198, 198, 9771, 66, 723, 4879, 477, 286, 262, 16124, 265, 444, 2884, 27454, 12, 26069, 1945, 198, 198, 13086, 3599, 2124, 45579, 22939, 13, 198, 1102, 4018, 25, 22037, 352, 318, 318, 657, 657, 657, 198, 37696, 362, 275, 67, 657, 657, 198, 37696, 513, 319, 2124, 88, 6614, 198, 37811, 198, 198, 2, 1330, 299, 32152, 355, 45941, 198, 2, 198, 2, 10149, 2662, 50, 796, 838, 220, 1303, 3863, 761, 11, 836, 470, 760, 198, 2, 17828, 62, 8220, 1581, 5258, 796, 10148, 198, 2, 28163, 5603, 55, 796, 657, 13, 486, 198, 2, 28163, 51, 4792, 796, 657, 13, 486, 198, 2, 28163, 5603, 57, 796, 657, 13, 486, 198, 2, 198, 2, 198, 2, 825, 24061, 62, 65, 6759, 7, 32353, 3150, 11, 763, 3669, 11, 1619, 19290, 11, 1619, 83, 323, 11, 1619, 83, 1031, 2599, 198, 2, 220, 220, 220, 220, 37227, 24061, 262, 275, 6759, 8609, 416, 4318, 3580, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 810, 347, 62, 1134, 796, 288, 80, 62, 72, 1220, 44332, 62, 74, 198, 2, 220, 220, 220, 220, 37227, 198, 2, 198, 2, 220, 220, 220, 220, 275, 62, 6759, 796, 45941, 13, 9107, 418, 7, 18, 9, 32353, 3150, 11, 513, 9, 32353, 3150, 8, 198, 2, 220, 220, 220, 220, 329, 474, 287, 2837, 7, 18, 2599, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 329, 479, 287, 2837, 7, 18, 2599, 198, 2, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 22146, 5945, 2124, 1343, 44332, 290, 2124, 532, 44332, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 11766, 62, 42372, 796, 352, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 11766, 62, 87, 77, 796, 352, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 11766, 5945, 62, 37652, 17540, 7, 1073, 3669, 11, 474, 11766, 11, 25979, 8, 198, 2, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 22146, 5945, 331, 1343, 20268, 290, 331, 532, 20268, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 11766, 62, 4464, 796, 352, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 11766, 62, 2047, 796, 352, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 11766, 5945, 62, 37652, 17540, 7, 1073, 3669, 11, 474, 11766, 11, 25979, 8, 198, 2, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 22146, 5945, 1976, 1343, 288, 89, 290, 1976, 532, 288, 89, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 11766, 62, 89, 79, 796, 352, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 11766, 62, 47347, 796, 352, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 11766, 5945, 62, 37652, 17540, 7, 1073, 3669, 11, 474, 11766, 11, 25979, 8, 198, 2, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2735, 15284, 262, 474, 74, 7515, 327, 12, 46912, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 9948, 3129, 378, 62, 65, 6759, 62, 74, 62, 42895, 7, 65, 62, 6759, 11, 763, 3669, 11, 474, 11, 474, 9, 74, 11, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 62, 11766, 62, 381, 11, 2124, 62, 11766, 62, 21999, 11, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 62, 11766, 62, 37659, 11, 2124, 62, 11766, 62, 20471, 8, 198, 2, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 783, 4296, 1312, 648, 7266, 16, 275, 6759, 7515, 357, 39664, 428, 318, 8, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 275, 62, 6759, 796, 4808, 19119, 62, 65, 6759, 7, 65, 6759, 11, 763, 3669, 8, 198, 2, 198, 2, 220, 220, 220, 220, 1441, 275, 62, 6759, 198, 2, 198, 2, 198, 2, 825, 24061, 62, 66, 6759, 7, 32353, 3150, 11, 763, 3669, 11, 1619, 19290, 11, 1619, 83, 323, 11, 1619, 83, 1031, 2599, 198, 2, 220, 220, 220, 220, 37227, 24061, 262, 275, 6759, 8609, 416, 4318, 3580, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 810, 327, 62, 45961, 796, 288, 17, 80, 62, 72, 1220, 357, 34350, 62, 73, 13, 34350, 62, 74, 8, 198, 2, 220, 220, 220, 220, 37227, 198, 2, 198, 2, 220, 220, 220, 220, 269, 62, 6759, 796, 45941, 13, 9107, 418, 7, 18, 9, 32353, 3150, 11, 513, 9, 32353, 3150, 11, 513, 9, 32353, 3150, 8, 198, 2, 220, 220, 220, 220, 329, 474, 287, 2837, 7, 18, 2599, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 329, 479, 287, 2837, 7, 18, 2599, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 22146, 5945, 2124, 73, 1343, 44332, 73, 290, 2124, 74, 1343, 44332, 74, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 62, 11766, 62, 381, 796, 4808, 11766, 5945, 62, 37652, 17540, 7, 1073, 3669, 11, 474, 11766, 11, 479, 11766, 11, 288, 16, 11, 288, 17, 8, 198, 2, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 22146, 5945, 2124, 73, 532, 44332, 73, 290, 331, 74, 1343, 20268, 74, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 62, 11766, 62, 37659, 796, 4808, 11766, 5945, 62, 37652, 17540, 7, 1073, 3669, 11, 474, 11766, 11, 479, 11766, 11, 288, 16, 11, 288, 17, 8, 198, 2, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 22146, 5945, 2124, 73, 1343, 44332, 73, 290, 331, 74, 532, 20268, 74, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 62, 11766, 62, 21999, 796, 4808, 11766, 5945, 62, 37652, 17540, 7, 1073, 3669, 11, 474, 11766, 11, 479, 11766, 11, 288, 16, 11, 288, 17, 8, 198, 2, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 22146, 5945, 2124, 73, 532, 44332, 73, 290, 2124, 74, 532, 44332, 74, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 62, 11766, 62, 20471, 796, 4808, 11766, 5945, 62, 37652, 17540, 7, 1073, 3669, 11, 474, 11766, 11, 479, 11766, 11, 288, 16, 11, 288, 17, 8, 198, 2, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2735, 15284, 262, 474, 74, 7515, 327, 12, 46912, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 9948, 3129, 378, 62, 66, 6759, 62, 74, 62, 42895, 7, 66, 62, 6759, 11, 763, 3669, 11, 474, 11, 474, 9, 74, 11, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 62, 11766, 62, 381, 11, 2124, 62, 11766, 62, 21999, 11, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 62, 11766, 62, 37659, 11, 2124, 62, 11766, 62, 20471, 8, 198, 2, 198, 2, 220, 220, 220, 220, 1441, 269, 62, 6759, 198, 2, 198, 2, 198, 2, 825, 4808, 11766, 5945, 62, 37652, 17540, 7, 1073, 3669, 11, 474, 11766, 11, 25979, 16, 11, 479, 11766, 28, 14202, 11, 25979, 17, 28, 14202, 2599, 198, 2, 220, 220, 220, 220, 37227, 2980, 378, 22715, 326, 423, 587, 22146, 37694, 198, 2, 220, 220, 220, 220, 37227, 198, 2, 220, 220, 220, 220, 763, 3669, 58, 73, 11766, 60, 15853, 25979, 16, 198, 2, 220, 220, 220, 220, 763, 3669, 58, 74, 11766, 60, 15853, 25979, 17, 198, 2, 220, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 869, 4296, 62, 89, 6759, 7, 32353, 296, 11, 32353, 296, 83, 11, 600, 1073, 273, 11, 65, 3044, 397, 11, 571, 37043, 11, 198, 2, 220, 220, 220, 220, 1303, 720, 220, 220, 220, 220, 1312, 7807, 77, 11, 312, 37043, 11, 65, 3672, 11, 1236, 480, 11, 67, 3672, 11, 265, 3672, 11, 1073, 1140, 381, 11, 1073, 726, 381, 11, 198, 2, 220, 220, 220, 220, 1303, 720, 220, 220, 220, 220, 763, 8590, 381, 11, 87, 600, 381, 11, 83, 559, 8738, 11, 429, 559, 11, 312, 13513, 11, 346, 259, 62, 8310, 11, 7807, 429, 11, 65, 1102, 429, 11, 198, 2, 220, 220, 220, 220, 1303, 720, 220, 220, 220, 220, 288, 1102, 429, 11, 37696, 18242, 11, 361, 346, 84, 8, 198, 2, 198, 2, 220, 220, 220, 220, 1441, 763, 3669, 198, 2, 198, 2, 198, 2, 825, 4808, 9948, 3129, 378, 62, 65, 6759, 62, 74, 62, 42895, 7, 65, 62, 6759, 11, 474, 62, 312, 87, 11, 763, 3669, 11, 25979, 11, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 62, 11766, 62, 79, 11, 2124, 62, 11766, 62, 77, 2599, 198, 2, 220, 220, 220, 220, 37227, 27131, 378, 530, 5193, 6805, 286, 347, 62, 2926, 329, 1813, 11593, 198, 2, 220, 220, 220, 220, 37227, 198, 2, 198, 2, 220, 220, 220, 220, 329, 1312, 11, 6349, 287, 27056, 378, 7, 1073, 3669, 2599, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2352, 7, 87, 11766, 62, 79, 58, 72, 60, 532, 2124, 11766, 62, 37659, 58, 72, 12962, 1875, 5867, 13, 15, 25, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2124, 11766, 62, 77, 58, 72, 60, 1279, 657, 13, 15, 25, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 11766, 62, 77, 58, 72, 60, 15853, 11470, 13, 15, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 2124, 11766, 62, 77, 58, 72, 60, 1875, 657, 13, 15, 25, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 11766, 62, 77, 58, 72, 60, 48185, 11470, 13, 15, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2352, 7, 87, 11766, 62, 79, 58, 72, 60, 532, 2124, 11766, 62, 77, 58, 72, 12962, 1875, 5867, 13, 15, 25, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 18927, 750, 407, 670, 994, 25, 479, 11, 474, 6349, 3256, 1611, 11, 474, 521, 11, 1312, 8, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 275, 62, 6759, 58, 72, 11, 474, 62, 312, 87, 60, 796, 357, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14808, 87, 11766, 62, 79, 58, 72, 60, 532, 2124, 11766, 62, 77, 58, 72, 12962, 1220, 362, 13, 15, 8, 1635, 357, 16, 13, 15, 1220, 25979, 8, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 2, 198, 2, 220, 220, 220, 220, 1441, 275, 62, 6759, 198, 2, 198, 2, 198, 2, 825, 4808, 9948, 3129, 378, 62, 66, 6759, 62, 74, 62, 42895, 7, 66, 62, 6759, 11, 479, 62, 312, 87, 11, 763, 3669, 11, 25979, 16, 11, 25979, 17, 11, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 62, 11766, 62, 381, 11, 2124, 62, 11766, 62, 21999, 11, 2124, 62, 11766, 62, 37659, 11, 2124, 62, 11766, 62, 20471, 2599, 198, 2, 220, 220, 220, 220, 37227, 27131, 378, 530, 5193, 6805, 286, 327, 62, 45961, 329, 1813, 474, 198, 2, 220, 220, 220, 220, 37227, 198, 2, 198, 2, 220, 220, 220, 220, 329, 1312, 11, 6349, 287, 27056, 378, 7, 1073, 3669, 2599, 198, 2, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2352, 7, 87, 11766, 62, 381, 58, 72, 60, 532, 2124, 11766, 62, 37659, 58, 72, 12962, 1875, 5867, 13, 15, 25, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2124, 11766, 62, 381, 58, 72, 60, 1279, 657, 13, 15, 25, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 11766, 62, 381, 58, 72, 60, 15853, 11470, 13, 15, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 2124, 11766, 62, 381, 58, 72, 60, 1875, 657, 13, 15, 25, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 11766, 62, 381, 58, 72, 60, 48185, 11470, 13, 15, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2352, 7, 87, 11766, 62, 381, 58, 72, 60, 532, 2124, 11766, 62, 37659, 58, 72, 12962, 1875, 5867, 13, 15, 25, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 18927, 750, 407, 670, 994, 25, 479, 11, 474, 6349, 3256, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1611, 11, 474, 521, 11, 1312, 8, 198, 2, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2352, 7, 87, 11766, 62, 37659, 58, 72, 60, 532, 2124, 11766, 62, 37659, 58, 72, 12962, 1875, 5867, 13, 15, 25, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2124, 11766, 62, 21999, 58, 72, 60, 1279, 657, 13, 15, 25, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 11766, 62, 21999, 58, 72, 60, 15853, 11470, 13, 15, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 2124, 11766, 62, 21999, 58, 72, 60, 1875, 657, 13, 15, 25, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 11766, 62, 21999, 58, 72, 60, 48185, 11470, 13, 15, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2352, 7, 87, 11766, 62, 381, 58, 72, 60, 532, 2124, 11766, 62, 21999, 58, 72, 12962, 1875, 5867, 13, 15, 25, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 18927, 750, 407, 670, 994, 25, 479, 11, 474, 6349, 3256, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1611, 11, 474, 521, 11, 1312, 8, 198, 2, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2352, 7, 87, 11766, 62, 37659, 58, 72, 60, 532, 2124, 11766, 62, 20471, 58, 72, 12962, 1875, 5867, 13, 15, 25, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2124, 11766, 62, 20471, 58, 72, 60, 1279, 657, 13, 15, 25, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 11766, 62, 20471, 58, 72, 60, 15853, 11470, 13, 15, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 2124, 11766, 62, 20471, 58, 72, 60, 1875, 657, 13, 15, 25, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 11766, 62, 20471, 58, 72, 60, 48185, 11470, 13, 15, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2352, 7, 87, 11766, 62, 37659, 58, 72, 60, 532, 2124, 11766, 62, 20471, 58, 72, 12962, 1875, 5867, 13, 15, 25, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 18927, 750, 407, 670, 994, 25, 479, 11, 474, 6349, 3256, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1611, 11, 474, 521, 11, 1312, 8, 198, 2, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 269, 62, 6759, 58, 72, 11, 474, 62, 312, 87, 11, 479, 62, 312, 87, 60, 796, 357, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 11766, 62, 381, 58, 72, 60, 532, 2124, 11766, 62, 37659, 58, 72, 60, 532, 2124, 11766, 62, 21999, 58, 72, 60, 1343, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 87, 11766, 62, 20471, 58, 72, 60, 1220, 604, 13, 15, 8, 1635, 357, 16, 13, 15, 1220, 1619, 19290, 8, 1635, 357, 16, 13, 15, 1220, 1619, 83, 1031, 8, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 2, 198, 2, 220, 220, 220, 220, 1441, 269, 62, 6759, 198, 2, 198, 2, 198, 2, 611, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 2, 220, 220, 220, 220, 275, 62, 6759, 796, 24061, 62, 65, 6759, 7, 34259, 2662, 50, 11, 7375, 1581, 5258, 11, 28163, 5603, 55, 11, 28163, 51, 4792, 11, 28163, 5603, 57, 8, 198, 2, 220, 220, 220, 220, 269, 62, 6759, 796, 24061, 62, 66, 6759, 7, 34259, 2662, 50, 11, 7375, 1581, 5258, 11, 28163, 5603, 55, 11, 28163, 51, 4792, 11, 28163, 5603, 57, 8, 198 ]
1.706776
3,291
# -------------------------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # -------------------------------------------------------------------------------------------- import json import requests from knack.util import CLIError from azure.cli.command_modules.botservice import adal_authenticator
[ 2, 16529, 1783, 10541, 198, 2, 15069, 357, 66, 8, 5413, 10501, 13, 1439, 2489, 10395, 13, 198, 2, 49962, 739, 262, 17168, 13789, 13, 4091, 13789, 13, 14116, 287, 262, 1628, 6808, 329, 5964, 1321, 13, 198, 2, 16529, 1783, 10541, 198, 198, 11748, 33918, 198, 11748, 7007, 198, 6738, 47868, 13, 22602, 1330, 43749, 12331, 198, 6738, 35560, 495, 13, 44506, 13, 21812, 62, 18170, 13, 42478, 712, 501, 1330, 512, 282, 62, 41299, 26407, 628 ]
6.089744
78
n = int(input()) pieces = {} for _ in range(n): piece, composer, key = input().split("|") pieces[piece] = {'composer': composer, 'key': key} data = input() while not data == "Stop": command = data.split("|") if command[0] == "Add": piece, composer, key = command[1:] if piece in pieces: print(f"{piece} is already in the collection!") else: pieces[piece] = {'composer': composer, 'key': key} print(f"{piece} by {composer} in {key} added to the collection!") elif command[0] == "Remove": piece = command[1] if piece in pieces: del pieces[piece] print(f"Successfully removed {piece}!") else: print(f"Invalid operation! {piece} does not exist in the collection.") elif command[0] == "ChangeKey": piece, new_key = command[1:] if piece in pieces: pieces[piece]['key'] = new_key print(f"Changed the key of {piece} to {new_key}!") else: print(f"Invalid operation! {piece} does not exist in the collection.") data = input() sorted_pieces = sorted(pieces.items(), key=lambda tkvp: (tkvp[0], tkvp[1]['composer'])) for piece, data in sorted_pieces: print(f"{piece} -> Composer: {data['composer']}, Key: {data['key']}")
[ 77, 796, 493, 7, 15414, 28955, 198, 34154, 796, 23884, 628, 198, 1640, 4808, 287, 2837, 7, 77, 2599, 198, 220, 220, 220, 3704, 11, 26777, 11, 1994, 796, 5128, 22446, 35312, 7203, 91, 4943, 198, 220, 220, 220, 5207, 58, 12239, 60, 796, 1391, 6, 785, 1930, 263, 10354, 26777, 11, 705, 2539, 10354, 1994, 92, 628, 198, 7890, 796, 5128, 3419, 198, 198, 4514, 407, 1366, 6624, 366, 19485, 1298, 198, 220, 220, 220, 3141, 796, 1366, 13, 35312, 7203, 91, 4943, 198, 220, 220, 220, 611, 3141, 58, 15, 60, 6624, 366, 4550, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 3704, 11, 26777, 11, 1994, 796, 3141, 58, 16, 47715, 198, 220, 220, 220, 220, 220, 220, 220, 611, 3704, 287, 5207, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 69, 1, 90, 12239, 92, 318, 1541, 287, 262, 4947, 2474, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5207, 58, 12239, 60, 796, 1391, 6, 785, 1930, 263, 10354, 26777, 11, 705, 2539, 10354, 1994, 92, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 69, 1, 90, 12239, 92, 416, 1391, 785, 1930, 263, 92, 287, 1391, 2539, 92, 2087, 284, 262, 4947, 2474, 8, 198, 220, 220, 220, 1288, 361, 3141, 58, 15, 60, 6624, 366, 27914, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 3704, 796, 3141, 58, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 611, 3704, 287, 5207, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1619, 5207, 58, 12239, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 69, 1, 33244, 2759, 4615, 1391, 12239, 92, 2474, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 69, 1, 44651, 4905, 0, 1391, 12239, 92, 857, 407, 2152, 287, 262, 4947, 19570, 198, 220, 220, 220, 1288, 361, 3141, 58, 15, 60, 6624, 366, 19400, 9218, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 3704, 11, 649, 62, 2539, 796, 3141, 58, 16, 47715, 198, 220, 220, 220, 220, 220, 220, 220, 611, 3704, 287, 5207, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5207, 58, 12239, 7131, 6, 2539, 20520, 796, 649, 62, 2539, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 69, 1, 31813, 262, 1994, 286, 1391, 12239, 92, 284, 1391, 3605, 62, 2539, 92, 2474, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 69, 1, 44651, 4905, 0, 1391, 12239, 92, 857, 407, 2152, 287, 262, 4947, 19570, 198, 220, 220, 220, 1366, 796, 5128, 3419, 198, 198, 82, 9741, 62, 34154, 796, 23243, 7, 34154, 13, 23814, 22784, 1994, 28, 50033, 256, 74, 36133, 25, 357, 30488, 36133, 58, 15, 4357, 256, 74, 36133, 58, 16, 7131, 6, 785, 1930, 263, 20520, 4008, 198, 1640, 3704, 11, 1366, 287, 23243, 62, 34154, 25, 198, 220, 220, 220, 3601, 7, 69, 1, 90, 12239, 92, 4613, 29936, 263, 25, 1391, 7890, 17816, 785, 1930, 263, 20520, 5512, 7383, 25, 1391, 7890, 17816, 2539, 20520, 92, 4943 ]
2.29636
577
import insightconnect_plugin_runtime from .schema import LookupAlertInput, LookupAlertOutput, Input, Output, Component # Custom imports below from insightconnect_plugin_runtime.exceptions import PluginException from komand_recorded_future.util.api import Endpoint
[ 11748, 11281, 8443, 62, 33803, 62, 43282, 198, 6738, 764, 15952, 2611, 1330, 6803, 929, 36420, 20560, 11, 6803, 929, 36420, 26410, 11, 23412, 11, 25235, 11, 35100, 198, 198, 2, 8562, 17944, 2174, 198, 6738, 11281, 8443, 62, 33803, 62, 43282, 13, 1069, 11755, 1330, 42636, 16922, 198, 6738, 479, 296, 392, 62, 47398, 62, 37443, 13, 22602, 13, 15042, 1330, 5268, 4122, 628 ]
4.092308
65
#!/usr/bin/env python3 # Copyright (c) 2020-2021 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test indices in conjunction with prune.""" from test_framework.test_framework import BitcoinTestFramework from test_framework.util import ( assert_equal, assert_greater_than, assert_raises_rpc_error, ) if __name__ == '__main__': FeatureIndexPruneTest().main()
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 2, 15069, 357, 66, 8, 12131, 12, 1238, 2481, 383, 6185, 7231, 6505, 198, 2, 4307, 6169, 739, 262, 17168, 3788, 5964, 11, 766, 262, 19249, 198, 2, 2393, 27975, 45761, 393, 2638, 1378, 2503, 13, 44813, 1668, 13, 2398, 14, 677, 4541, 14, 2781, 12, 43085, 13, 10121, 13, 198, 37811, 14402, 36525, 287, 17856, 351, 778, 1726, 526, 15931, 198, 6738, 1332, 62, 30604, 13, 9288, 62, 30604, 1330, 6185, 14402, 21055, 6433, 198, 6738, 1332, 62, 30604, 13, 22602, 1330, 357, 198, 220, 220, 220, 6818, 62, 40496, 11, 198, 220, 220, 220, 6818, 62, 18223, 263, 62, 14813, 11, 198, 220, 220, 220, 6818, 62, 430, 2696, 62, 81, 14751, 62, 18224, 11, 198, 8, 628, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 27018, 15732, 6836, 1726, 14402, 22446, 12417, 3419, 198 ]
3.2
155
from django.contrib.auth.models import User from django.shortcuts import get_object_or_404 from django.views.generic import TemplateView from ...models import Commit, UTopic from ..utils import paginator
[ 6738, 42625, 14208, 13, 3642, 822, 13, 18439, 13, 27530, 1330, 11787, 198, 6738, 42625, 14208, 13, 19509, 23779, 1330, 651, 62, 15252, 62, 273, 62, 26429, 198, 6738, 42625, 14208, 13, 33571, 13, 41357, 1330, 37350, 7680, 198, 198, 6738, 2644, 27530, 1330, 35910, 11, 471, 33221, 198, 6738, 11485, 26791, 1330, 42208, 20900, 628 ]
3.678571
56
from abaqusConstants import * from .ContactProperty import ContactProperty class FluidCavityProperty(ContactProperty): """The FluidCavityProperty object is an interaction property that defines the fluid behavior for a surface-based fluid cavity. The FluidCavityProperty object is derived from the InteractionProperty object. Notes ----- This object can be accessed by: .. code-block:: python import interaction mdb.models[name].interactionProperties[name] The corresponding analysis keywords are: - FLUID BEHAVIOR - CAPACITY - FLUID BULK MODULUS - FLUID DENSITY - FLUID EXPANSION - MOLECULAR WEIGHT """ def __init__(self, name: str, definition: SymbolicConstant = HYDRAULIC, fluidDensity: float = None, molecularWeight: float = None, useExpansion: Boolean = OFF, expansionTempDep: Boolean = OFF, expansionDependencies: int = 0, referenceTemperature: float = 0, expansionTable: tuple = (), useBulkModulus: Boolean = OFF, bulkModulusTempDep: Boolean = OFF, bulkModulusDependencies: int = 0, bulkModulusTable: tuple = (), useCapacity: Boolean = OFF, capacityType: SymbolicConstant = POLYNOMIAL, capacityTempDep: Boolean = OFF, capacityDependencies: int = 0, capacityTable: tuple = ()): """This method creates a FluidCavityProperty object. Notes ----- This function can be accessed by: .. code-block:: python mdb.models[name].FluidCavityProperty Parameters ---------- name A String specifying the interaction property repository key. definition A SymbolicConstant specifying the type of fluid cavity property to be defined. Possible values are HYDRAULIC and PNEUMATIC. The default value is HYDRAULIC. fluidDensity None or a Float specifying the reference fluid density. This argument is applicable only when *definition*=HYDRAULIC, and is required in that case. The default value is None. molecularWeight None or a Float specifying the molecular weight of the ideal gas species. This argument is applicable only when *definition*=PNEUMATIC, and is required in that case. The default value is None. useExpansion A Boolean specifying whether thermal expansion coefficients will be defined. This argument is applicable only when *definition*=HYDRAULIC. The default value is OFF. expansionTempDep A Boolean specifying whether the thermal fluid expansion data will have temperature dependency. This argument is applicable only when *definition*=HYDRAULIC and when *useExpansion*=True. The default value is OFF. expansionDependencies An Int specifying the number of field variable dependencies in the thermal fluid expansion data. This argument is applicable only when *definition*=HYDRAULIC and when *useExpansion*=True. The default value is 0. referenceTemperature A Float specifying the reference temperature for the coefficient of thermal expansion. This argument is applicable only when *definition*=HYDRAULIC, when *useExpansion*=True, and when either *expansionTempDep*=True or when *expansionDependencies* is greater than 0. The default value is 0.0. expansionTable A sequence of sequences of Floats specifying the thermal expansion coefficients. This argument is applicable only when *definition*=HYDRAULIC and when *useExpansion*=True. Each sequence contains the following data: - The mean coefficient of thermal expansion. - Temperature, if the data depend on temperature. - Value of the first field variable, if the data depend on field variables. - Value of the second field variable. - Etc. useBulkModulus A Boolean specifying whether fluid bulk modulus values will be defined. This argument is applicable only when *definition*=HYDRAULIC. The default value is OFF. bulkModulusTempDep A Boolean specifying whether the fluid bulk modulus data will have temperature dependency. This argument is applicable only when *definition*=HYDRAULIC and when *useBulkModulus*=True. The default value is OFF. bulkModulusDependencies An Int specifying the number of field variable dependencies in the fluid bulk modulus data. This argument is applicable only when *definition*=HYDRAULIC and when *useBulkModulus*=True. The default value is 0. bulkModulusTable A sequence of sequences of Floats specifying the fluid bulk modulus values. This argument is applicable only when *definition*=HYDRAULIC and when *useBulkModulus*=True. Each sequence contains the following data: - The fluid bulk modulus. - Temperature, if the data depend on temperature. - Value of the first field variable, if the data depend on field variables. - Value of the second field variable. - Etc. useCapacity A Boolean specifying whether molar heat capacity values will be defined. This argument is applicable only when *definition*=PNEUMATIC. The default value is OFF. capacityType A SymbolicConstant specifying the method to define the molar heat capacity. Possible values are POLYNOMIAL and TABULAR. The default value is POLYNOMIAL. capacityTempDep A Boolean specifying whether the molar heat capacity data will have temperature dependency. This argument is applicable only when *definition*=PNEUMATIC, when *useCapacity*=True, and when *capacityType*=TABULAR. The default value is OFF. capacityDependencies An Int specifying the number of field variable dependencies in the molar heat capacity data. This argument is applicable only when *definition*=PNEUMATIC, when *useCapacity*=True, and when *capacityType*=TABULAR. The default value is 0. capacityTable A sequence of sequences of Floats specifying the molar heat capacity values in the form of a polynomial expression. This argument is applicable only when *definition*=PNEUMATIC, when *useCapacity*=True, and when *capacityType*=POLYNOMIAL. In this form, only one sequence is specified and that sequence contains the following data: - The first molar heat capacity coefficient. - The second molar heat capacity coefficient. - The third molar heat capacity coefficient. - The fourth molar heat capacity coefficient. - The fifth molar heat capacity coefficient. Alternatively, the sequence data may specify the molar heat capacity values at constant pressure for an ideal gas species. This argument is applicable only when *definition*=PNEUMATIC, when *useCapacity*=True, and when *capacityType*=TABULAR. Each sequence contains the following data: - The molar heat capacity at constant pressure. - Temperature, if the data depend on temperature. - Value of the first field variable, if the data depend on field variables. - Value of the second field variable. - Etc. Returns ------- A FluidCavityProperty object. """ super().__init__(name) pass def setValues(self, definition: SymbolicConstant = HYDRAULIC, fluidDensity: float = None, molecularWeight: float = None, useExpansion: Boolean = OFF, expansionTempDep: Boolean = OFF, expansionDependencies: int = 0, referenceTemperature: float = 0, expansionTable: tuple = (), useBulkModulus: Boolean = OFF, bulkModulusTempDep: Boolean = OFF, bulkModulusDependencies: int = 0, bulkModulusTable: tuple = (), useCapacity: Boolean = OFF, capacityType: SymbolicConstant = POLYNOMIAL, capacityTempDep: Boolean = OFF, capacityDependencies: int = 0, capacityTable: tuple = ()): """This method modifies the FluidCavityProperty object. Parameters ---------- definition A SymbolicConstant specifying the type of fluid cavity property to be defined. Possible values are HYDRAULIC and PNEUMATIC. The default value is HYDRAULIC. fluidDensity None or a Float specifying the reference fluid density. This argument is applicable only when *definition*=HYDRAULIC, and is required in that case. The default value is None. molecularWeight None or a Float specifying the molecular weight of the ideal gas species. This argument is applicable only when *definition*=PNEUMATIC, and is required in that case. The default value is None. useExpansion A Boolean specifying whether thermal expansion coefficients will be defined. This argument is applicable only when *definition*=HYDRAULIC. The default value is OFF. expansionTempDep A Boolean specifying whether the thermal fluid expansion data will have temperature dependency. This argument is applicable only when *definition*=HYDRAULIC and when *useExpansion*=True. The default value is OFF. expansionDependencies An Int specifying the number of field variable dependencies in the thermal fluid expansion data. This argument is applicable only when *definition*=HYDRAULIC and when *useExpansion*=True. The default value is 0. referenceTemperature A Float specifying the reference temperature for the coefficient of thermal expansion. This argument is applicable only when *definition*=HYDRAULIC, when *useExpansion*=True, and when either *expansionTempDep*=True or when *expansionDependencies* is greater than 0. The default value is 0.0. expansionTable A sequence of sequences of Floats specifying the thermal expansion coefficients. This argument is applicable only when *definition*=HYDRAULIC and when *useExpansion*=True. Each sequence contains the following data: - The mean coefficient of thermal expansion. - Temperature, if the data depend on temperature. - Value of the first field variable, if the data depend on field variables. - Value of the second field variable. - Etc. useBulkModulus A Boolean specifying whether fluid bulk modulus values will be defined. This argument is applicable only when *definition*=HYDRAULIC. The default value is OFF. bulkModulusTempDep A Boolean specifying whether the fluid bulk modulus data will have temperature dependency. This argument is applicable only when *definition*=HYDRAULIC and when *useBulkModulus*=True. The default value is OFF. bulkModulusDependencies An Int specifying the number of field variable dependencies in the fluid bulk modulus data. This argument is applicable only when *definition*=HYDRAULIC and when *useBulkModulus*=True. The default value is 0. bulkModulusTable A sequence of sequences of Floats specifying the fluid bulk modulus values. This argument is applicable only when *definition*=HYDRAULIC and when *useBulkModulus*=True. Each sequence contains the following data: - The fluid bulk modulus. - Temperature, if the data depend on temperature. - Value of the first field variable, if the data depend on field variables. - Value of the second field variable. - Etc. useCapacity A Boolean specifying whether molar heat capacity values will be defined. This argument is applicable only when *definition*=PNEUMATIC. The default value is OFF. capacityType A SymbolicConstant specifying the method to define the molar heat capacity. Possible values are POLYNOMIAL and TABULAR. The default value is POLYNOMIAL. capacityTempDep A Boolean specifying whether the molar heat capacity data will have temperature dependency. This argument is applicable only when *definition*=PNEUMATIC, when *useCapacity*=True, and when *capacityType*=TABULAR. The default value is OFF. capacityDependencies An Int specifying the number of field variable dependencies in the molar heat capacity data. This argument is applicable only when *definition*=PNEUMATIC, when *useCapacity*=True, and when *capacityType*=TABULAR. The default value is 0. capacityTable A sequence of sequences of Floats specifying the molar heat capacity values in the form of a polynomial expression. This argument is applicable only when *definition*=PNEUMATIC, when *useCapacity*=True, and when *capacityType*=POLYNOMIAL. In this form, only one sequence is specified and that sequence contains the following data: - The first molar heat capacity coefficient. - The second molar heat capacity coefficient. - The third molar heat capacity coefficient. - The fourth molar heat capacity coefficient. - The fifth molar heat capacity coefficient. Alternatively, the sequence data may specify the molar heat capacity values at constant pressure for an ideal gas species. This argument is applicable only when *definition*=PNEUMATIC, when *useCapacity*=True, and when *capacityType*=TABULAR. Each sequence contains the following data: - The molar heat capacity at constant pressure. - Temperature, if the data depend on temperature. - Value of the first field variable, if the data depend on field variables. - Value of the second field variable. - Etc. """ pass
[ 6738, 450, 30188, 385, 34184, 1187, 1330, 1635, 198, 6738, 764, 17829, 21746, 1330, 14039, 21746, 628, 198, 4871, 1610, 27112, 34, 615, 414, 21746, 7, 17829, 21746, 2599, 198, 220, 220, 220, 37227, 464, 1610, 27112, 34, 615, 414, 21746, 2134, 318, 281, 10375, 3119, 326, 15738, 262, 11711, 198, 220, 220, 220, 4069, 329, 257, 4417, 12, 3106, 11711, 31643, 13, 220, 198, 220, 220, 220, 383, 1610, 27112, 34, 615, 414, 21746, 2134, 318, 10944, 422, 262, 4225, 2673, 21746, 2134, 13, 220, 628, 220, 220, 220, 11822, 198, 220, 220, 220, 37404, 198, 220, 220, 220, 770, 2134, 460, 307, 17535, 416, 25, 628, 220, 220, 220, 11485, 2438, 12, 9967, 3712, 21015, 628, 220, 220, 220, 220, 220, 220, 220, 1330, 10375, 198, 220, 220, 220, 220, 220, 220, 220, 285, 9945, 13, 27530, 58, 3672, 4083, 3849, 2673, 2964, 18200, 58, 3672, 60, 628, 220, 220, 220, 383, 11188, 3781, 26286, 389, 25, 628, 220, 220, 220, 532, 9977, 27586, 9348, 7801, 12861, 1581, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 20176, 2246, 9050, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 9977, 27586, 347, 6239, 42, 19164, 6239, 2937, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 9977, 27586, 360, 16938, 9050, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 9977, 27586, 25703, 15037, 2849, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 13070, 2538, 34, 37232, 12887, 9947, 628, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 1438, 25, 965, 11, 6770, 25, 41327, 4160, 3103, 18797, 796, 367, 35755, 3861, 6239, 2149, 11, 11711, 35, 6377, 25, 12178, 796, 6045, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18955, 25844, 25, 12178, 796, 6045, 11, 779, 16870, 5487, 25, 41146, 796, 18562, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7118, 30782, 12156, 25, 41146, 796, 18562, 11, 7118, 35, 2690, 3976, 25, 493, 796, 657, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4941, 42492, 25, 12178, 796, 657, 11, 7118, 10962, 25, 46545, 796, 29994, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 779, 33, 12171, 5841, 23515, 25, 41146, 796, 18562, 11, 11963, 5841, 23515, 30782, 12156, 25, 41146, 796, 18562, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11963, 5841, 23515, 35, 2690, 3976, 25, 493, 796, 657, 11, 11963, 5841, 23515, 10962, 25, 46545, 796, 29994, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 779, 15610, 4355, 25, 41146, 796, 18562, 11, 5339, 6030, 25, 41327, 4160, 3103, 18797, 796, 20634, 40760, 2662, 12576, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5339, 30782, 12156, 25, 41146, 796, 18562, 11, 5339, 35, 2690, 3976, 25, 493, 796, 657, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5339, 10962, 25, 46545, 796, 7499, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 1212, 2446, 8075, 257, 1610, 27112, 34, 615, 414, 21746, 2134, 13, 628, 220, 220, 220, 220, 220, 220, 220, 11822, 198, 220, 220, 220, 220, 220, 220, 220, 37404, 198, 220, 220, 220, 220, 220, 220, 220, 770, 2163, 460, 307, 17535, 416, 25, 628, 220, 220, 220, 220, 220, 220, 220, 11485, 2438, 12, 9967, 3712, 21015, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 285, 9945, 13, 27530, 58, 3672, 4083, 37, 2290, 312, 34, 615, 414, 21746, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 1438, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 317, 10903, 31577, 262, 10375, 3119, 16099, 1994, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 6770, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 317, 41327, 4160, 3103, 18797, 31577, 262, 2099, 286, 11711, 31643, 3119, 284, 307, 5447, 13, 33671, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3815, 389, 367, 35755, 3861, 6239, 2149, 290, 350, 12161, 5883, 1404, 2149, 13, 383, 4277, 1988, 318, 367, 35755, 3861, 6239, 2149, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 11711, 35, 6377, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6045, 393, 257, 48436, 31577, 262, 4941, 11711, 12109, 13, 770, 4578, 318, 9723, 691, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 618, 1635, 46758, 9, 28, 39, 35755, 3861, 6239, 2149, 11, 290, 318, 2672, 287, 326, 1339, 13, 383, 4277, 1988, 318, 6045, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 18955, 25844, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6045, 393, 257, 48436, 31577, 262, 18955, 3463, 286, 262, 7306, 3623, 4693, 13, 770, 4578, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 318, 9723, 691, 618, 1635, 46758, 9, 28, 47, 12161, 5883, 1404, 2149, 11, 290, 318, 2672, 287, 326, 1339, 13, 383, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4277, 1988, 318, 6045, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 779, 16870, 5487, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 317, 41146, 31577, 1771, 18411, 7118, 44036, 481, 307, 5447, 13, 770, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4578, 318, 9723, 691, 618, 1635, 46758, 9, 28, 39, 35755, 3861, 6239, 2149, 13, 383, 4277, 1988, 318, 18562, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 7118, 30782, 12156, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 317, 41146, 31577, 1771, 262, 18411, 11711, 7118, 1366, 481, 423, 5951, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20203, 13, 770, 4578, 318, 9723, 691, 618, 1635, 46758, 9, 28, 39, 35755, 3861, 6239, 2149, 290, 618, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1635, 1904, 16870, 5487, 9, 28, 17821, 13, 383, 4277, 1988, 318, 18562, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 7118, 35, 2690, 3976, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1052, 2558, 31577, 262, 1271, 286, 2214, 7885, 20086, 287, 262, 18411, 11711, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7118, 1366, 13, 770, 4578, 318, 9723, 691, 618, 1635, 46758, 9, 28, 39, 35755, 3861, 6239, 2149, 290, 618, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1635, 1904, 16870, 5487, 9, 28, 17821, 13, 383, 4277, 1988, 318, 657, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 4941, 42492, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 317, 48436, 31577, 262, 4941, 5951, 329, 262, 35381, 286, 18411, 7118, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 770, 4578, 318, 9723, 691, 618, 1635, 46758, 9, 28, 39, 35755, 3861, 6239, 2149, 11, 618, 1635, 1904, 16870, 5487, 9, 28, 17821, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 290, 618, 2035, 1635, 11201, 5487, 30782, 12156, 9, 28, 17821, 393, 618, 1635, 11201, 5487, 35, 2690, 3976, 9, 318, 3744, 621, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 657, 13, 383, 4277, 1988, 318, 657, 13, 15, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 7118, 10962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 317, 8379, 286, 16311, 286, 29075, 1381, 31577, 262, 18411, 7118, 44036, 13, 770, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4578, 318, 9723, 691, 618, 1635, 46758, 9, 28, 39, 35755, 3861, 6239, 2149, 290, 618, 1635, 1904, 16870, 5487, 9, 28, 17821, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5501, 8379, 4909, 262, 1708, 1366, 25, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 383, 1612, 35381, 286, 18411, 7118, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 34467, 11, 611, 262, 1366, 4745, 319, 5951, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 11052, 286, 262, 717, 2214, 7885, 11, 611, 262, 1366, 4745, 319, 2214, 9633, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 11052, 286, 262, 1218, 2214, 7885, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 17906, 66, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 779, 33, 12171, 5841, 23515, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 317, 41146, 31577, 1771, 11711, 11963, 953, 23515, 3815, 481, 307, 5447, 13, 770, 4578, 318, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9723, 691, 618, 1635, 46758, 9, 28, 39, 35755, 3861, 6239, 2149, 13, 383, 4277, 1988, 318, 18562, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 11963, 5841, 23515, 30782, 12156, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 317, 41146, 31577, 1771, 262, 11711, 11963, 953, 23515, 1366, 481, 423, 5951, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20203, 13, 770, 4578, 318, 9723, 691, 618, 1635, 46758, 9, 28, 39, 35755, 3861, 6239, 2149, 290, 618, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1635, 1904, 33, 12171, 5841, 23515, 9, 28, 17821, 13, 383, 4277, 1988, 318, 18562, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 11963, 5841, 23515, 35, 2690, 3976, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1052, 2558, 31577, 262, 1271, 286, 2214, 7885, 20086, 287, 262, 11711, 11963, 953, 23515, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 13, 770, 4578, 318, 9723, 691, 618, 1635, 46758, 9, 28, 39, 35755, 3861, 6239, 2149, 290, 618, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1635, 1904, 33, 12171, 5841, 23515, 9, 28, 17821, 13, 383, 4277, 1988, 318, 657, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 11963, 5841, 23515, 10962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 317, 8379, 286, 16311, 286, 29075, 1381, 31577, 262, 11711, 11963, 953, 23515, 3815, 13, 770, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4578, 318, 9723, 691, 618, 1635, 46758, 9, 28, 39, 35755, 3861, 6239, 2149, 290, 618, 1635, 1904, 33, 12171, 5841, 23515, 9, 28, 17821, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5501, 8379, 4909, 262, 1708, 1366, 25, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 383, 11711, 11963, 953, 23515, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 34467, 11, 611, 262, 1366, 4745, 319, 5951, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 11052, 286, 262, 717, 2214, 7885, 11, 611, 262, 1366, 4745, 319, 2214, 9633, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 11052, 286, 262, 1218, 2214, 7885, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 17906, 66, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 779, 15610, 4355, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 317, 41146, 31577, 1771, 285, 6192, 4894, 5339, 3815, 481, 307, 5447, 13, 770, 4578, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 318, 9723, 691, 618, 1635, 46758, 9, 28, 47, 12161, 5883, 1404, 2149, 13, 383, 4277, 1988, 318, 18562, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 5339, 6030, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 317, 41327, 4160, 3103, 18797, 31577, 262, 2446, 284, 8160, 262, 285, 6192, 4894, 5339, 13, 33671, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3815, 389, 20634, 40760, 2662, 12576, 290, 309, 6242, 37232, 13, 383, 4277, 1988, 318, 20634, 40760, 2662, 12576, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 5339, 30782, 12156, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 317, 41146, 31577, 1771, 262, 285, 6192, 4894, 5339, 1366, 481, 423, 5951, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20203, 13, 770, 4578, 318, 9723, 691, 618, 1635, 46758, 9, 28, 47, 12161, 5883, 1404, 2149, 11, 618, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1635, 1904, 15610, 4355, 9, 28, 17821, 11, 290, 618, 1635, 42404, 6030, 9, 28, 5603, 33, 37232, 13, 383, 4277, 1988, 318, 18562, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 5339, 35, 2690, 3976, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1052, 2558, 31577, 262, 1271, 286, 2214, 7885, 20086, 287, 262, 285, 6192, 4894, 5339, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 13, 770, 4578, 318, 9723, 691, 618, 1635, 46758, 9, 28, 47, 12161, 5883, 1404, 2149, 11, 618, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1635, 1904, 15610, 4355, 9, 28, 17821, 11, 290, 618, 1635, 42404, 6030, 9, 28, 5603, 33, 37232, 13, 383, 4277, 1988, 318, 657, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 5339, 10962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 317, 8379, 286, 16311, 286, 29075, 1381, 31577, 262, 285, 6192, 4894, 5339, 3815, 287, 262, 1296, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 286, 257, 745, 6213, 49070, 5408, 13, 770, 4578, 318, 9723, 691, 618, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1635, 46758, 9, 28, 47, 12161, 5883, 1404, 2149, 11, 618, 1635, 1904, 15610, 4355, 9, 28, 17821, 11, 290, 618, 1635, 42404, 6030, 9, 28, 45472, 40760, 2662, 12576, 13, 554, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 428, 1296, 11, 691, 530, 8379, 318, 7368, 290, 326, 8379, 4909, 262, 1708, 1366, 25, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 383, 717, 285, 6192, 4894, 5339, 35381, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 383, 1218, 285, 6192, 4894, 5339, 35381, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 383, 2368, 285, 6192, 4894, 5339, 35381, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 383, 5544, 285, 6192, 4894, 5339, 35381, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 383, 8150, 285, 6192, 4894, 5339, 35381, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25929, 11, 262, 8379, 1366, 743, 11986, 262, 285, 6192, 4894, 5339, 3815, 379, 6937, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3833, 329, 281, 7306, 3623, 4693, 13, 770, 4578, 318, 9723, 691, 618, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1635, 46758, 9, 28, 47, 12161, 5883, 1404, 2149, 11, 618, 1635, 1904, 15610, 4355, 9, 28, 17821, 11, 290, 618, 1635, 42404, 6030, 9, 28, 5603, 33, 37232, 13, 5501, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8379, 4909, 262, 1708, 1366, 25, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 383, 285, 6192, 4894, 5339, 379, 6937, 3833, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 34467, 11, 611, 262, 1366, 4745, 319, 5951, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 11052, 286, 262, 717, 2214, 7885, 11, 611, 262, 1366, 4745, 319, 2214, 9633, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 11052, 286, 262, 1218, 2214, 7885, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 17906, 66, 13, 220, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 198, 220, 220, 220, 220, 220, 220, 220, 35656, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 317, 1610, 27112, 34, 615, 414, 21746, 2134, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2208, 22446, 834, 15003, 834, 7, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1208, 628, 220, 220, 220, 825, 900, 40161, 7, 944, 11, 6770, 25, 41327, 4160, 3103, 18797, 796, 367, 35755, 3861, 6239, 2149, 11, 11711, 35, 6377, 25, 12178, 796, 6045, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18955, 25844, 25, 12178, 796, 6045, 11, 779, 16870, 5487, 25, 41146, 796, 18562, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7118, 30782, 12156, 25, 41146, 796, 18562, 11, 7118, 35, 2690, 3976, 25, 493, 796, 657, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4941, 42492, 25, 12178, 796, 657, 11, 7118, 10962, 25, 46545, 796, 29994, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 779, 33, 12171, 5841, 23515, 25, 41146, 796, 18562, 11, 11963, 5841, 23515, 30782, 12156, 25, 41146, 796, 18562, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11963, 5841, 23515, 35, 2690, 3976, 25, 493, 796, 657, 11, 11963, 5841, 23515, 10962, 25, 46545, 796, 29994, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 779, 15610, 4355, 25, 41146, 796, 18562, 11, 5339, 6030, 25, 41327, 4160, 3103, 18797, 796, 20634, 40760, 2662, 12576, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5339, 30782, 12156, 25, 41146, 796, 18562, 11, 5339, 35, 2690, 3976, 25, 493, 796, 657, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5339, 10962, 25, 46545, 796, 7499, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 1212, 2446, 953, 6945, 262, 1610, 27112, 34, 615, 414, 21746, 2134, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 6770, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 317, 41327, 4160, 3103, 18797, 31577, 262, 2099, 286, 11711, 31643, 3119, 284, 307, 5447, 13, 33671, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3815, 389, 367, 35755, 3861, 6239, 2149, 290, 350, 12161, 5883, 1404, 2149, 13, 383, 4277, 1988, 318, 367, 35755, 3861, 6239, 2149, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 11711, 35, 6377, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6045, 393, 257, 48436, 31577, 262, 4941, 11711, 12109, 13, 770, 4578, 318, 9723, 691, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 618, 1635, 46758, 9, 28, 39, 35755, 3861, 6239, 2149, 11, 290, 318, 2672, 287, 326, 1339, 13, 383, 4277, 1988, 318, 6045, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 18955, 25844, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6045, 393, 257, 48436, 31577, 262, 18955, 3463, 286, 262, 7306, 3623, 4693, 13, 770, 4578, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 318, 9723, 691, 618, 1635, 46758, 9, 28, 47, 12161, 5883, 1404, 2149, 11, 290, 318, 2672, 287, 326, 1339, 13, 383, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4277, 1988, 318, 6045, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 779, 16870, 5487, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 317, 41146, 31577, 1771, 18411, 7118, 44036, 481, 307, 5447, 13, 770, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4578, 318, 9723, 691, 618, 1635, 46758, 9, 28, 39, 35755, 3861, 6239, 2149, 13, 383, 4277, 1988, 318, 18562, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 7118, 30782, 12156, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 317, 41146, 31577, 1771, 262, 18411, 11711, 7118, 1366, 481, 423, 5951, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20203, 13, 770, 4578, 318, 9723, 691, 618, 1635, 46758, 9, 28, 39, 35755, 3861, 6239, 2149, 290, 618, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1635, 1904, 16870, 5487, 9, 28, 17821, 13, 383, 4277, 1988, 318, 18562, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 7118, 35, 2690, 3976, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1052, 2558, 31577, 262, 1271, 286, 2214, 7885, 20086, 287, 262, 18411, 11711, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7118, 1366, 13, 770, 4578, 318, 9723, 691, 618, 1635, 46758, 9, 28, 39, 35755, 3861, 6239, 2149, 290, 618, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1635, 1904, 16870, 5487, 9, 28, 17821, 13, 383, 4277, 1988, 318, 657, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 4941, 42492, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 317, 48436, 31577, 262, 4941, 5951, 329, 262, 35381, 286, 18411, 7118, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 770, 4578, 318, 9723, 691, 618, 1635, 46758, 9, 28, 39, 35755, 3861, 6239, 2149, 11, 618, 1635, 1904, 16870, 5487, 9, 28, 17821, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 290, 618, 2035, 1635, 11201, 5487, 30782, 12156, 9, 28, 17821, 393, 618, 1635, 11201, 5487, 35, 2690, 3976, 9, 318, 3744, 621, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 657, 13, 383, 4277, 1988, 318, 657, 13, 15, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 7118, 10962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 317, 8379, 286, 16311, 286, 29075, 1381, 31577, 262, 18411, 7118, 44036, 13, 770, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4578, 318, 9723, 691, 618, 1635, 46758, 9, 28, 39, 35755, 3861, 6239, 2149, 290, 618, 1635, 1904, 16870, 5487, 9, 28, 17821, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5501, 8379, 4909, 262, 1708, 1366, 25, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 383, 1612, 35381, 286, 18411, 7118, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 34467, 11, 611, 262, 1366, 4745, 319, 5951, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 11052, 286, 262, 717, 2214, 7885, 11, 611, 262, 1366, 4745, 319, 2214, 9633, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 11052, 286, 262, 1218, 2214, 7885, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 17906, 66, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 779, 33, 12171, 5841, 23515, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 317, 41146, 31577, 1771, 11711, 11963, 953, 23515, 3815, 481, 307, 5447, 13, 770, 4578, 318, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9723, 691, 618, 1635, 46758, 9, 28, 39, 35755, 3861, 6239, 2149, 13, 383, 4277, 1988, 318, 18562, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 11963, 5841, 23515, 30782, 12156, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 317, 41146, 31577, 1771, 262, 11711, 11963, 953, 23515, 1366, 481, 423, 5951, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20203, 13, 770, 4578, 318, 9723, 691, 618, 1635, 46758, 9, 28, 39, 35755, 3861, 6239, 2149, 290, 618, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1635, 1904, 33, 12171, 5841, 23515, 9, 28, 17821, 13, 383, 4277, 1988, 318, 18562, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 11963, 5841, 23515, 35, 2690, 3976, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1052, 2558, 31577, 262, 1271, 286, 2214, 7885, 20086, 287, 262, 11711, 11963, 953, 23515, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 13, 770, 4578, 318, 9723, 691, 618, 1635, 46758, 9, 28, 39, 35755, 3861, 6239, 2149, 290, 618, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1635, 1904, 33, 12171, 5841, 23515, 9, 28, 17821, 13, 383, 4277, 1988, 318, 657, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 11963, 5841, 23515, 10962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 317, 8379, 286, 16311, 286, 29075, 1381, 31577, 262, 11711, 11963, 953, 23515, 3815, 13, 770, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4578, 318, 9723, 691, 618, 1635, 46758, 9, 28, 39, 35755, 3861, 6239, 2149, 290, 618, 1635, 1904, 33, 12171, 5841, 23515, 9, 28, 17821, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5501, 8379, 4909, 262, 1708, 1366, 25, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 383, 11711, 11963, 953, 23515, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 34467, 11, 611, 262, 1366, 4745, 319, 5951, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 11052, 286, 262, 717, 2214, 7885, 11, 611, 262, 1366, 4745, 319, 2214, 9633, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 11052, 286, 262, 1218, 2214, 7885, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 17906, 66, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 779, 15610, 4355, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 317, 41146, 31577, 1771, 285, 6192, 4894, 5339, 3815, 481, 307, 5447, 13, 770, 4578, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 318, 9723, 691, 618, 1635, 46758, 9, 28, 47, 12161, 5883, 1404, 2149, 13, 383, 4277, 1988, 318, 18562, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 5339, 6030, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 317, 41327, 4160, 3103, 18797, 31577, 262, 2446, 284, 8160, 262, 285, 6192, 4894, 5339, 13, 33671, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3815, 389, 20634, 40760, 2662, 12576, 290, 309, 6242, 37232, 13, 383, 4277, 1988, 318, 20634, 40760, 2662, 12576, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 5339, 30782, 12156, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 317, 41146, 31577, 1771, 262, 285, 6192, 4894, 5339, 1366, 481, 423, 5951, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20203, 13, 770, 4578, 318, 9723, 691, 618, 1635, 46758, 9, 28, 47, 12161, 5883, 1404, 2149, 11, 618, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1635, 1904, 15610, 4355, 9, 28, 17821, 11, 290, 618, 1635, 42404, 6030, 9, 28, 5603, 33, 37232, 13, 383, 4277, 1988, 318, 18562, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 5339, 35, 2690, 3976, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1052, 2558, 31577, 262, 1271, 286, 2214, 7885, 20086, 287, 262, 285, 6192, 4894, 5339, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 13, 770, 4578, 318, 9723, 691, 618, 1635, 46758, 9, 28, 47, 12161, 5883, 1404, 2149, 11, 618, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1635, 1904, 15610, 4355, 9, 28, 17821, 11, 290, 618, 1635, 42404, 6030, 9, 28, 5603, 33, 37232, 13, 383, 4277, 1988, 318, 657, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 5339, 10962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 317, 8379, 286, 16311, 286, 29075, 1381, 31577, 262, 285, 6192, 4894, 5339, 3815, 287, 262, 1296, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 286, 257, 745, 6213, 49070, 5408, 13, 770, 4578, 318, 9723, 691, 618, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1635, 46758, 9, 28, 47, 12161, 5883, 1404, 2149, 11, 618, 1635, 1904, 15610, 4355, 9, 28, 17821, 11, 290, 618, 1635, 42404, 6030, 9, 28, 45472, 40760, 2662, 12576, 13, 554, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 428, 1296, 11, 691, 530, 8379, 318, 7368, 290, 326, 8379, 4909, 262, 1708, 1366, 25, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 383, 717, 285, 6192, 4894, 5339, 35381, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 383, 1218, 285, 6192, 4894, 5339, 35381, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 383, 2368, 285, 6192, 4894, 5339, 35381, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 383, 5544, 285, 6192, 4894, 5339, 35381, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 383, 8150, 285, 6192, 4894, 5339, 35381, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25929, 11, 262, 8379, 1366, 743, 11986, 262, 285, 6192, 4894, 5339, 3815, 379, 6937, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3833, 329, 281, 7306, 3623, 4693, 13, 770, 4578, 318, 9723, 691, 618, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1635, 46758, 9, 28, 47, 12161, 5883, 1404, 2149, 11, 618, 1635, 1904, 15610, 4355, 9, 28, 17821, 11, 290, 618, 1635, 42404, 6030, 9, 28, 5603, 33, 37232, 13, 5501, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8379, 4909, 262, 1708, 1366, 25, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 383, 285, 6192, 4894, 5339, 379, 6937, 3833, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 34467, 11, 611, 262, 1366, 4745, 319, 5951, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 11052, 286, 262, 717, 2214, 7885, 11, 611, 262, 1366, 4745, 319, 2214, 9633, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 11052, 286, 262, 1218, 2214, 7885, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 17906, 66, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1208, 198 ]
2.686129
5,515
import re import csv line = [] list2 = [] with open('output2.txt') as f: for i in f: line.append(i) outList = re.findall(r"[-+]?\d*\.\d+|\d+", line[0]) # extracting integers from string list2.append(outList[0]) list2.append(outList[2]) #writing into csv file with open('epoch_loss.csv', 'a') as csvFile: writer = csv.writer(csvFile) writer.writerow(list2) line.clear() list2.clear()
[ 11748, 302, 198, 11748, 269, 21370, 198, 1370, 796, 17635, 198, 4868, 17, 796, 17635, 198, 4480, 1280, 10786, 22915, 17, 13, 14116, 11537, 355, 277, 25, 198, 220, 220, 220, 329, 1312, 287, 277, 25, 198, 220, 220, 220, 220, 197, 1370, 13, 33295, 7, 72, 8, 198, 220, 220, 220, 220, 197, 448, 8053, 796, 302, 13, 19796, 439, 7, 81, 17912, 19529, 60, 30, 59, 67, 9, 17405, 59, 67, 10, 91, 59, 67, 10, 1600, 1627, 58, 15, 12962, 1303, 37895, 37014, 422, 4731, 198, 220, 220, 220, 220, 197, 4868, 17, 13, 33295, 7, 448, 8053, 58, 15, 12962, 198, 220, 220, 220, 220, 197, 4868, 17, 13, 33295, 7, 448, 8053, 58, 17, 12962, 198, 197, 2, 16502, 656, 269, 21370, 2393, 220, 198, 220, 220, 220, 220, 197, 4480, 1280, 10786, 538, 5374, 62, 22462, 13, 40664, 3256, 705, 64, 11537, 355, 269, 21370, 8979, 25, 198, 220, 220, 220, 220, 197, 197, 16002, 796, 269, 21370, 13, 16002, 7, 40664, 8979, 8, 198, 220, 220, 220, 220, 197, 197, 16002, 13, 16002, 322, 7, 4868, 17, 8, 628, 220, 220, 220, 220, 197, 1370, 13, 20063, 3419, 198, 220, 220, 220, 220, 197, 4868, 17, 13, 20063, 3419, 198 ]
2.111111
207
import tornado.web import tornado.gen import json import io import logging import motor from bson.objectid import ObjectId import mickey.userfetcher from mickey.basehandler import BaseHandler
[ 11748, 33718, 13, 12384, 198, 11748, 33718, 13, 5235, 198, 11748, 33918, 198, 11748, 33245, 198, 11748, 18931, 198, 198, 11748, 5584, 198, 198, 6738, 275, 1559, 13, 15252, 312, 1330, 9515, 7390, 198, 11748, 12314, 2539, 13, 7220, 34045, 2044, 198, 6738, 12314, 2539, 13, 8692, 30281, 1330, 7308, 25060, 198 ]
3.730769
52
import os import re # Parses a given input file and returns a list of parameters for all structures.
[ 11748, 28686, 198, 11748, 302, 198, 220, 220, 220, 1303, 23042, 274, 257, 1813, 5128, 2393, 290, 5860, 257, 1351, 286, 10007, 329, 477, 8573, 13, 198 ]
3.888889
27
from eth_account import Account import sha3 import json
[ 6738, 4555, 62, 23317, 1330, 10781, 198, 11748, 427, 64, 18, 198, 11748, 33918, 628, 628, 628, 628, 198 ]
3.368421
19
# This file was automatically generated by SWIG (http://www.swig.org). # Version 2.0.12 # # Do not make changes to this file unless you know what you are doing--modify # the SWIG interface file instead. from sys import version_info if version_info >= (2,6,0): _rpi_pcm_ws281x = swig_import_helper() del swig_import_helper else: import _rpi_pcm_ws281x del version_info try: _swig_property = property except NameError: pass # Python < 2.2 doesn't have 'property'. try: _object = object _newclass = 1 except AttributeError: _newclass = 0 WS2811_TARGET_FREQ = _rpi_pcm_ws281x.WS2811_TARGET_FREQ WS2811_STRIP_RGB = _rpi_pcm_ws281x.WS2811_STRIP_RGB WS2811_STRIP_RBG = _rpi_pcm_ws281x.WS2811_STRIP_RBG WS2811_STRIP_GRB = _rpi_pcm_ws281x.WS2811_STRIP_GRB WS2811_STRIP_GBR = _rpi_pcm_ws281x.WS2811_STRIP_GBR WS2811_STRIP_BRG = _rpi_pcm_ws281x.WS2811_STRIP_BRG WS2811_STRIP_BGR = _rpi_pcm_ws281x.WS2811_STRIP_BGR ws2811_channel_t_swigregister = _rpi_pcm_ws281x.ws2811_channel_t_swigregister ws2811_channel_t_swigregister(ws2811_channel_t) ws2811_t_swigregister = _rpi_pcm_ws281x.ws2811_t_swigregister ws2811_t_swigregister(ws2811_t) ws2811_init = _rpi_pcm_ws281x.ws2811_init ws2811_fini = _rpi_pcm_ws281x.ws2811_fini ws2811_render = _rpi_pcm_ws281x.ws2811_render ws2811_wait = _rpi_pcm_ws281x.ws2811_wait ws2811_led_get = _rpi_pcm_ws281x.ws2811_led_get ws2811_led_set = _rpi_pcm_ws281x.ws2811_led_set # This file is compatible with both classic and new-style classes.
[ 2, 770, 2393, 373, 6338, 7560, 416, 12672, 3528, 357, 4023, 1378, 2503, 13, 2032, 328, 13, 2398, 737, 198, 2, 10628, 362, 13, 15, 13, 1065, 198, 2, 198, 2, 2141, 407, 787, 2458, 284, 428, 2393, 4556, 345, 760, 644, 345, 389, 1804, 438, 4666, 1958, 198, 2, 262, 12672, 3528, 7071, 2393, 2427, 13, 628, 628, 198, 198, 6738, 25064, 1330, 2196, 62, 10951, 198, 361, 2196, 62, 10951, 18189, 357, 17, 11, 21, 11, 15, 2599, 198, 220, 220, 220, 4808, 81, 14415, 62, 79, 11215, 62, 18504, 30368, 87, 796, 1509, 328, 62, 11748, 62, 2978, 525, 3419, 198, 220, 220, 220, 1619, 1509, 328, 62, 11748, 62, 2978, 525, 198, 17772, 25, 198, 220, 220, 220, 1330, 4808, 81, 14415, 62, 79, 11215, 62, 18504, 30368, 87, 198, 12381, 2196, 62, 10951, 198, 28311, 25, 198, 220, 220, 220, 4808, 2032, 328, 62, 26745, 796, 3119, 198, 16341, 6530, 12331, 25, 198, 220, 220, 220, 1208, 1303, 11361, 1279, 362, 13, 17, 1595, 470, 423, 705, 26745, 4458, 198, 198, 28311, 25, 198, 220, 220, 220, 4808, 15252, 796, 2134, 198, 220, 220, 220, 4808, 3605, 4871, 796, 352, 198, 16341, 3460, 4163, 12331, 25, 198, 220, 220, 220, 4808, 3605, 4871, 796, 657, 628, 198, 19416, 2078, 1157, 62, 51, 46095, 62, 37, 2200, 48, 796, 4808, 81, 14415, 62, 79, 11215, 62, 18504, 30368, 87, 13, 19416, 2078, 1157, 62, 51, 46095, 62, 37, 2200, 48, 198, 19416, 2078, 1157, 62, 18601, 4061, 62, 36982, 796, 4808, 81, 14415, 62, 79, 11215, 62, 18504, 30368, 87, 13, 19416, 2078, 1157, 62, 18601, 4061, 62, 36982, 198, 19416, 2078, 1157, 62, 18601, 4061, 62, 27912, 38, 796, 4808, 81, 14415, 62, 79, 11215, 62, 18504, 30368, 87, 13, 19416, 2078, 1157, 62, 18601, 4061, 62, 27912, 38, 198, 19416, 2078, 1157, 62, 18601, 4061, 62, 10761, 33, 796, 4808, 81, 14415, 62, 79, 11215, 62, 18504, 30368, 87, 13, 19416, 2078, 1157, 62, 18601, 4061, 62, 10761, 33, 198, 19416, 2078, 1157, 62, 18601, 4061, 62, 4579, 49, 796, 4808, 81, 14415, 62, 79, 11215, 62, 18504, 30368, 87, 13, 19416, 2078, 1157, 62, 18601, 4061, 62, 4579, 49, 198, 19416, 2078, 1157, 62, 18601, 4061, 62, 11473, 38, 796, 4808, 81, 14415, 62, 79, 11215, 62, 18504, 30368, 87, 13, 19416, 2078, 1157, 62, 18601, 4061, 62, 11473, 38, 198, 19416, 2078, 1157, 62, 18601, 4061, 62, 33, 10761, 796, 4808, 81, 14415, 62, 79, 11215, 62, 18504, 30368, 87, 13, 19416, 2078, 1157, 62, 18601, 4061, 62, 33, 10761, 198, 18504, 2078, 1157, 62, 17620, 62, 83, 62, 2032, 328, 30238, 796, 4808, 81, 14415, 62, 79, 11215, 62, 18504, 30368, 87, 13, 18504, 2078, 1157, 62, 17620, 62, 83, 62, 2032, 328, 30238, 198, 18504, 2078, 1157, 62, 17620, 62, 83, 62, 2032, 328, 30238, 7, 18504, 2078, 1157, 62, 17620, 62, 83, 8, 198, 18504, 2078, 1157, 62, 83, 62, 2032, 328, 30238, 796, 4808, 81, 14415, 62, 79, 11215, 62, 18504, 30368, 87, 13, 18504, 2078, 1157, 62, 83, 62, 2032, 328, 30238, 198, 18504, 2078, 1157, 62, 83, 62, 2032, 328, 30238, 7, 18504, 2078, 1157, 62, 83, 8, 198, 198, 18504, 2078, 1157, 62, 15003, 796, 4808, 81, 14415, 62, 79, 11215, 62, 18504, 30368, 87, 13, 18504, 2078, 1157, 62, 15003, 198, 18504, 2078, 1157, 62, 69, 5362, 796, 4808, 81, 14415, 62, 79, 11215, 62, 18504, 30368, 87, 13, 18504, 2078, 1157, 62, 69, 5362, 198, 18504, 2078, 1157, 62, 13287, 796, 4808, 81, 14415, 62, 79, 11215, 62, 18504, 30368, 87, 13, 18504, 2078, 1157, 62, 13287, 198, 18504, 2078, 1157, 62, 17077, 796, 4808, 81, 14415, 62, 79, 11215, 62, 18504, 30368, 87, 13, 18504, 2078, 1157, 62, 17077, 198, 18504, 2078, 1157, 62, 992, 62, 1136, 796, 4808, 81, 14415, 62, 79, 11215, 62, 18504, 30368, 87, 13, 18504, 2078, 1157, 62, 992, 62, 1136, 198, 18504, 2078, 1157, 62, 992, 62, 2617, 796, 4808, 81, 14415, 62, 79, 11215, 62, 18504, 30368, 87, 13, 18504, 2078, 1157, 62, 992, 62, 2617, 198, 2, 770, 2393, 318, 11670, 351, 1111, 6833, 290, 649, 12, 7635, 6097, 13, 628, 198 ]
2.15043
698
''' Here we consider a controller trained on nearest neighbor for the pendulum environment in OpenAI Gym. The controller is taken from baselines ppo. ''' import gym import numpy as np from gym import spaces from baselines import deepq from baselines.common import set_global_seeds, tf_util as U import gym, logging from baselines import logger import numpy as np import tensorflow as tf from baselines.ppo1 import mlp_policy, pposgd_simple from baselines.ppo1.pposgd_simple import * U.make_session(num_cpu=1).__enter__() env= gym.make('Pendulum-v1') seed = 9699278477418928551 env.seed(seed) num_timesteps=5e6 gym.logger.setLevel(logging.WARN) pi = learn_return(env, policy_fn, max_timesteps=num_timesteps, timesteps_per_batch=2048, clip_param=0.2, entcoeff=0.0, optim_epochs=10, optim_stepsize=3e-4, optim_batchsize=64, gamma=0.99, lam=0.95, ) from scipy.stats import norm # ------------------------------------------------------------------------------ from active_testing import pred_node, max_node, min_node, test_module from active_testing.utils import sample_from rand_nums = [1161003323, 415998644, 4057120664, 1747557171, 2890879164, 2055758971, 2911473105, 618390143, 691777806, 4168149016, 1809706292, 2771371912, 1956477866, 2141514268, 4025209431] # Requirement 1: Find the initial configuration that minimizes the reward # We need only one node for the reward. The reward is a smooth function # given that the closed loop system is deterministic bounds = [(-np.pi, np.pi)] # Bounds on theta bounds.append((-1., 1.)) # Bounds on theta dot bounds.append((7., 9.)) # Bounds on the speed bounds.append((1.5, 2.5)) # Bounds on the torque magnitude smooth_details_r1 = [] random_details_r1 = [] # This set assumes random sampling and checking for r in rand_nums: np.random.seed(r) node0 = pred_node(f=lambda traj: traj[1]['reward']/200 ) TM = test_module(bounds=bounds, sut=lambda x0: sut(500,x0, ead=True), f_tree = node0,init_sample = 60, optimize_restarts=5, exp_weight=10, normalizer=True) TM.initialize() TM.run_BO(140) smooth_details_r1.append([np.sum(TM.f_acqu.GP.Y < -5.), np.sum(TM.f_acqu.GP.Y < -7.5), TM.smooth_min_x,TM.smooth_min_val]) # With cost function np.random.seed(r) node0 = pred_node(f=lambda traj: traj[1]['reward']/200) TM = test_module(bounds=bounds, sut=lambda x0: sut(500,x0, ead=True), f_tree = node0, with_random = True, init_sample = 60, optimize_restarts=5, exp_weight=10, normalizer=True) TM.initialize() TM.run_BO(30) TM.k = 5 TM.run_BO(40) TM.k = 2 TM.run_BO(70) smooth_details_r1.append([np.sum(TM.f_acqu.GP.Y < -5.), np.sum(TM.f_acqu.GP.Y < -7.5), TM.smooth_min_x, TM.smooth_min_val]) random_details_r1.append([np.sum(np.array(TM.random_Y) < -5.), np.sum(np.array(TM.random_Y) < -7.5), TM.rand_min_x, TM.rand_min_val]) print(r, smooth_details_r1[-2], smooth_details_r1[-1], random_details_r1[-1]) rand_nums.append(r) # Requirement 2: Find the initial condition such that the pendulum stabilizes to 0 smooth_details_r2 = [] random_details_r2 = [] # This set assumes random sampling and checking for r in rand_nums: np.random.seed(r) node0 = pred_node(f=lambda traj: pred1(traj)) TM = test_module(bounds=bounds, sut=lambda x0: sut(500,x0, ead=True), f_tree = node0,init_sample = 60, optimize_restarts=5, exp_weight=2, normalizer=True) TM.initialize() TM.run_BO(140) smooth_vals = np.array(TM.f_acqu.find_GP_func()) smooth_details_r2.append([np.sum(smooth_vals < -1.00), np.sum(smooth_vals < -10.0), TM.smooth_min_x,TM.smooth_min_val, TM.smooth_min_loc]) np.random.seed(r) node0_ns = pred_node(f=lambda traj: pred1(traj)) TM_ns = test_module(bounds=bounds, sut=lambda x0: sut(500, x0, ead=True), f_tree=node0_ns, init_sample=60, with_smooth=False, with_ns=True, optimize_restarts=5, exp_weight=10, normalizer=True) TM_ns.initialize() TM_ns.run_BO(30) TM_ns.k = 5 TM_ns.run_BO(40) TM_ns.k = 2 TM_ns.run_BO(70) smooth_details_r2.append([np.sum(TM_ns.ns_GP.Y < -1.00), np.sum(TM_ns.ns_GP.Y < -10.0), TM_ns.ns_min_x, TM_ns.ns_min_val, TM_ns.ns_min_loc]) # With cost function np.random.seed(r) node0_rand = pred_node(f=lambda traj: pred1(traj)) TM_rand = test_module(bounds=bounds, sut=lambda x0: sut(500,x0, ead=True), f_tree = node0_rand, with_random = True, with_smooth=False, init_sample = 60, optimize_restarts=5, exp_weight=10, cost_model = cost_func, normalizer=True) TM_rand.initialize() TM_rand.run_BO(140) random_details_r2.append([np.sum(np.array(TM_rand.random_Y) < -1.0), np.sum(np.array(TM_rand.random_Y) < -10.0), TM_rand.rand_min_x, TM_rand.rand_min_val, TM_rand.rand_min_loc]) print(r, smooth_details_r2[-2], smooth_details_r2[-1],random_details_r2[-1]) # Requirement 3: Find the initial configuration such that it stabilizies to either # 0 or to np.pi smooth_details_r3 = [] ns_details_r3 = [] random_details_r3 = [] # This set assumes random sampling and checking for r in rand_nums: np.random.seed(r) node0 = pred_node(f = lambda traj:pred1(traj)) node1 = pred_node(f = lambda traj:pred2(traj)) node2 = max_node(children=[node0, node1]) TM = test_module(bounds=bounds, sut=lambda x0: sut(500,x0, ead=True), f_tree = node2,init_sample = 60, optimize_restarts=5, exp_weight=2, normalizer=True) TM.initialize() TM.run_BO(140) smooth_vals = np.array(TM.f_acqu.find_GP_func()) smooth_details_r3.append([np.sum(smooth_vals < -1.00), np.sum(smooth_vals < -10.0), TM.smooth_min_x,TM.smooth_min_val, TM.smooth_min_loc]) np.random.seed(r) node0_ns = pred_node(f=lambda traj: pred1(traj)) node1_ns = pred_node(f=lambda traj: pred2(traj)) node2_ns = max_node(children=[node0_ns, node1_ns]) TM_ns = test_module(bounds=bounds, sut=lambda x0: sut(500, x0, ead=True), f_tree=node2_ns, init_sample=60, with_smooth=False, with_ns=True, optimize_restarts=5, exp_weight=2, normalizer=True) TM_ns.initialize() TM_ns.run_BO(140) ns_details_r3.append([np.sum(TM_ns.ns_GP.Y < -1.00), np.sum(TM_ns.ns_GP.Y < -10.0), TM_ns.ns_min_x, TM_ns.ns_min_val, TM_ns.ns_min_loc]) # With cost function np.random.seed(r) node0_rand = pred_node(f=lambda traj: pred1(traj)) node1_rand = pred_node(f=lambda traj: pred2(traj)) node2_rand = max_node(children=[node0_rand, node1_rand]) TM_rand = test_module(bounds=bounds, sut=lambda x0: sut(500,x0, ead=True), f_tree = node2_rand, with_random = True, with_smooth=False, init_sample = 60, optimize_restarts=5, exp_weight=10, cost_model = cost_func, normalizer=True) TM_rand.initialize() TM_rand.run_BO(140) random_details_r3.append([np.sum(np.array(TM_rand.random_Y) < -1.0), np.sum(np.array(TM_rand.random_Y) < -10.0), TM_rand.rand_min_x, TM_rand.rand_min_val, TM_rand.rand_min_loc]) print(r, smooth_details_r3[-1], ns_details_r3[-1],random_details_r3[-1])
[ 7061, 6, 198, 4342, 356, 2074, 257, 10444, 8776, 319, 16936, 4780, 329, 262, 44017, 14452, 198, 38986, 287, 4946, 20185, 31187, 13, 383, 10444, 318, 2077, 422, 1615, 20655, 279, 7501, 13, 198, 7061, 6, 198, 198, 11748, 11550, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 11550, 1330, 9029, 198, 6738, 1615, 20655, 1330, 2769, 80, 198, 6738, 1615, 20655, 13, 11321, 1330, 900, 62, 20541, 62, 325, 5379, 11, 48700, 62, 22602, 355, 471, 198, 11748, 11550, 11, 18931, 198, 6738, 1615, 20655, 1330, 49706, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 11192, 273, 11125, 355, 48700, 198, 6738, 1615, 20655, 13, 16634, 16, 1330, 25962, 79, 62, 30586, 11, 279, 1930, 21287, 62, 36439, 198, 6738, 1615, 20655, 13, 16634, 16, 13, 381, 418, 21287, 62, 36439, 1330, 1635, 198, 198, 52, 13, 15883, 62, 29891, 7, 22510, 62, 36166, 28, 16, 737, 834, 9255, 834, 3419, 198, 24330, 28, 11550, 13, 15883, 10786, 47, 437, 14452, 12, 85, 16, 11537, 198, 28826, 796, 9907, 2079, 25870, 2857, 4524, 23362, 2078, 43697, 198, 24330, 13, 28826, 7, 28826, 8, 198, 22510, 62, 16514, 395, 25386, 28, 20, 68, 21, 198, 198, 1360, 76, 13, 6404, 1362, 13, 2617, 4971, 7, 6404, 2667, 13, 37771, 8, 198, 14415, 796, 2193, 62, 7783, 7, 24330, 11, 2450, 62, 22184, 11, 198, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 16514, 395, 25386, 28, 22510, 62, 16514, 395, 25386, 11, 198, 220, 220, 220, 220, 220, 220, 220, 4628, 395, 25386, 62, 525, 62, 43501, 28, 1238, 2780, 11, 198, 220, 220, 220, 220, 220, 220, 220, 10651, 62, 17143, 28, 15, 13, 17, 11, 920, 1073, 14822, 28, 15, 13, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 6436, 62, 538, 5374, 82, 28, 940, 11, 6436, 62, 9662, 7857, 28, 18, 68, 12, 19, 11, 6436, 62, 43501, 7857, 28, 2414, 11, 198, 220, 220, 220, 220, 220, 220, 220, 34236, 28, 15, 13, 2079, 11, 30592, 28, 15, 13, 3865, 11, 198, 220, 220, 220, 1267, 628, 198, 6738, 629, 541, 88, 13, 34242, 1330, 2593, 198, 198, 2, 16529, 26171, 198, 6738, 4075, 62, 33407, 1330, 2747, 62, 17440, 11, 3509, 62, 17440, 11, 949, 62, 17440, 11, 1332, 62, 21412, 198, 6738, 4075, 62, 33407, 13, 26791, 1330, 6291, 62, 6738, 198, 25192, 62, 77, 5700, 796, 685, 18298, 3064, 2091, 1954, 11, 198, 40643, 34808, 29173, 11, 198, 2319, 3553, 1065, 3312, 2414, 11, 198, 27621, 2425, 3553, 27192, 11, 198, 38902, 2919, 3720, 23237, 11, 198, 1160, 2816, 2425, 4531, 4869, 11, 198, 2808, 1157, 37804, 13348, 11, 198, 718, 1507, 2670, 486, 3559, 11, 198, 8644, 1558, 3324, 37988, 11, 198, 604, 14656, 19442, 27037, 11, 198, 1248, 2931, 35402, 32759, 11, 198, 38703, 19708, 1129, 1065, 11, 198, 24793, 2414, 39761, 2791, 11, 198, 28277, 1314, 1415, 25022, 11, 198, 2319, 1495, 1238, 5824, 3132, 60, 198, 198, 2, 9394, 24615, 352, 25, 9938, 262, 4238, 8398, 326, 10356, 4340, 262, 6721, 198, 2, 775, 761, 691, 530, 10139, 329, 262, 6721, 13, 383, 6721, 318, 257, 7209, 2163, 198, 2, 1813, 326, 262, 4838, 9052, 1080, 318, 2206, 49228, 198, 65, 3733, 796, 685, 32590, 37659, 13, 14415, 11, 45941, 13, 14415, 15437, 1303, 347, 3733, 319, 262, 8326, 198, 65, 3733, 13, 33295, 19510, 12, 16, 1539, 352, 2014, 8, 1303, 347, 3733, 319, 262, 8326, 16605, 198, 65, 3733, 13, 33295, 19510, 22, 1539, 860, 2014, 8, 1303, 347, 3733, 319, 262, 2866, 198, 65, 3733, 13, 33295, 19510, 16, 13, 20, 11, 362, 13, 20, 4008, 1303, 347, 3733, 319, 262, 26415, 14735, 198, 198, 5796, 5226, 62, 36604, 62, 81, 16, 796, 17635, 198, 25120, 62, 36604, 62, 81, 16, 796, 17635, 198, 198, 2, 770, 900, 18533, 4738, 19232, 290, 10627, 198, 1640, 374, 287, 43720, 62, 77, 5700, 25, 198, 220, 220, 220, 45941, 13, 25120, 13, 28826, 7, 81, 8, 198, 220, 220, 220, 10139, 15, 796, 2747, 62, 17440, 7, 69, 28, 50033, 1291, 73, 25, 1291, 73, 58, 16, 7131, 6, 260, 904, 20520, 14, 2167, 1267, 198, 220, 220, 220, 21232, 796, 1332, 62, 21412, 7, 65, 3733, 28, 65, 3733, 11, 264, 315, 28, 50033, 2124, 15, 25, 264, 315, 7, 4059, 11, 87, 15, 11, 304, 324, 28, 17821, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 62, 21048, 796, 10139, 15, 11, 15003, 62, 39873, 796, 3126, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27183, 62, 2118, 5889, 28, 20, 11, 1033, 62, 6551, 28, 940, 11, 3487, 7509, 28, 17821, 8, 198, 220, 220, 220, 21232, 13, 36733, 1096, 3419, 198, 220, 220, 220, 21232, 13, 5143, 62, 8202, 7, 15187, 8, 198, 220, 220, 220, 7209, 62, 36604, 62, 81, 16, 13, 33295, 26933, 37659, 13, 16345, 7, 15972, 13, 69, 62, 43561, 13, 16960, 13, 56, 1279, 532, 20, 12179, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45941, 13, 16345, 7, 15972, 13, 69, 62, 43561, 13, 16960, 13, 56, 1279, 532, 22, 13, 20, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21232, 13, 5796, 5226, 62, 1084, 62, 87, 11, 15972, 13, 5796, 5226, 62, 1084, 62, 2100, 12962, 628, 198, 220, 220, 220, 1303, 2080, 1575, 2163, 198, 220, 220, 220, 45941, 13, 25120, 13, 28826, 7, 81, 8, 198, 220, 220, 220, 10139, 15, 796, 2747, 62, 17440, 7, 69, 28, 50033, 1291, 73, 25, 1291, 73, 58, 16, 7131, 6, 260, 904, 20520, 14, 2167, 8, 198, 220, 220, 220, 21232, 796, 1332, 62, 21412, 7, 65, 3733, 28, 65, 3733, 11, 264, 315, 28, 50033, 2124, 15, 25, 264, 315, 7, 4059, 11, 87, 15, 11, 304, 324, 28, 17821, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 62, 21048, 796, 10139, 15, 11, 351, 62, 25120, 796, 6407, 11, 2315, 62, 39873, 796, 3126, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27183, 62, 2118, 5889, 28, 20, 11, 1033, 62, 6551, 28, 940, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3487, 7509, 28, 17821, 8, 198, 220, 220, 220, 21232, 13, 36733, 1096, 3419, 198, 220, 220, 220, 21232, 13, 5143, 62, 8202, 7, 1270, 8, 198, 220, 220, 220, 21232, 13, 74, 796, 642, 198, 220, 220, 220, 21232, 13, 5143, 62, 8202, 7, 1821, 8, 198, 220, 220, 220, 21232, 13, 74, 796, 362, 198, 220, 220, 220, 21232, 13, 5143, 62, 8202, 7, 2154, 8, 198, 220, 220, 220, 7209, 62, 36604, 62, 81, 16, 13, 33295, 26933, 37659, 13, 16345, 7, 15972, 13, 69, 62, 43561, 13, 16960, 13, 56, 1279, 532, 20, 12179, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45941, 13, 16345, 7, 15972, 13, 69, 62, 43561, 13, 16960, 13, 56, 1279, 532, 22, 13, 20, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21232, 13, 5796, 5226, 62, 1084, 62, 87, 11, 21232, 13, 5796, 5226, 62, 1084, 62, 2100, 12962, 198, 220, 220, 220, 4738, 62, 36604, 62, 81, 16, 13, 33295, 26933, 37659, 13, 16345, 7, 37659, 13, 18747, 7, 15972, 13, 25120, 62, 56, 8, 1279, 532, 20, 12179, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45941, 13, 16345, 7, 37659, 13, 18747, 7, 15972, 13, 25120, 62, 56, 8, 1279, 532, 22, 13, 20, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21232, 13, 25192, 62, 1084, 62, 87, 11, 21232, 13, 25192, 62, 1084, 62, 2100, 12962, 198, 220, 220, 220, 3601, 7, 81, 11, 7209, 62, 36604, 62, 81, 16, 58, 12, 17, 4357, 7209, 62, 36604, 62, 81, 16, 58, 12, 16, 4357, 4738, 62, 36604, 62, 81, 16, 58, 12, 16, 12962, 198, 220, 220, 220, 43720, 62, 77, 5700, 13, 33295, 7, 81, 8, 198, 198, 2, 9394, 24615, 362, 25, 9938, 262, 4238, 4006, 884, 326, 262, 44017, 14452, 14349, 4340, 284, 657, 198, 198, 5796, 5226, 62, 36604, 62, 81, 17, 796, 17635, 198, 25120, 62, 36604, 62, 81, 17, 796, 17635, 628, 198, 2, 770, 900, 18533, 4738, 19232, 290, 10627, 198, 1640, 374, 287, 43720, 62, 77, 5700, 25, 198, 220, 220, 220, 45941, 13, 25120, 13, 28826, 7, 81, 8, 198, 220, 220, 220, 10139, 15, 796, 2747, 62, 17440, 7, 69, 28, 50033, 1291, 73, 25, 2747, 16, 7, 9535, 73, 4008, 198, 220, 220, 220, 21232, 796, 1332, 62, 21412, 7, 65, 3733, 28, 65, 3733, 11, 264, 315, 28, 50033, 2124, 15, 25, 264, 315, 7, 4059, 11, 87, 15, 11, 304, 324, 28, 17821, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 62, 21048, 796, 10139, 15, 11, 15003, 62, 39873, 796, 3126, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27183, 62, 2118, 5889, 28, 20, 11, 1033, 62, 6551, 28, 17, 11, 3487, 7509, 28, 17821, 8, 198, 220, 220, 220, 21232, 13, 36733, 1096, 3419, 198, 220, 220, 220, 21232, 13, 5143, 62, 8202, 7, 15187, 8, 198, 220, 220, 220, 7209, 62, 12786, 796, 45941, 13, 18747, 7, 15972, 13, 69, 62, 43561, 13, 19796, 62, 16960, 62, 20786, 28955, 198, 220, 220, 220, 7209, 62, 36604, 62, 81, 17, 13, 33295, 26933, 37659, 13, 16345, 7, 5796, 5226, 62, 12786, 1279, 532, 16, 13, 405, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45941, 13, 16345, 7, 5796, 5226, 62, 12786, 1279, 532, 940, 13, 15, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21232, 13, 5796, 5226, 62, 1084, 62, 87, 11, 15972, 13, 5796, 5226, 62, 1084, 62, 2100, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21232, 13, 5796, 5226, 62, 1084, 62, 17946, 12962, 628, 220, 220, 220, 45941, 13, 25120, 13, 28826, 7, 81, 8, 198, 220, 220, 220, 10139, 15, 62, 5907, 796, 2747, 62, 17440, 7, 69, 28, 50033, 1291, 73, 25, 2747, 16, 7, 9535, 73, 4008, 198, 220, 220, 220, 21232, 62, 5907, 796, 1332, 62, 21412, 7, 65, 3733, 28, 65, 3733, 11, 264, 315, 28, 50033, 2124, 15, 25, 264, 315, 7, 4059, 11, 2124, 15, 11, 304, 324, 28, 17821, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 62, 21048, 28, 17440, 15, 62, 5907, 11, 2315, 62, 39873, 28, 1899, 11, 351, 62, 5796, 5226, 28, 25101, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 351, 62, 5907, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27183, 62, 2118, 5889, 28, 20, 11, 1033, 62, 6551, 28, 940, 11, 3487, 7509, 28, 17821, 8, 198, 220, 220, 220, 21232, 62, 5907, 13, 36733, 1096, 3419, 198, 220, 220, 220, 21232, 62, 5907, 13, 5143, 62, 8202, 7, 1270, 8, 198, 220, 220, 220, 21232, 62, 5907, 13, 74, 796, 642, 198, 220, 220, 220, 21232, 62, 5907, 13, 5143, 62, 8202, 7, 1821, 8, 198, 220, 220, 220, 21232, 62, 5907, 13, 74, 796, 362, 198, 220, 220, 220, 21232, 62, 5907, 13, 5143, 62, 8202, 7, 2154, 8, 198, 220, 220, 220, 7209, 62, 36604, 62, 81, 17, 13, 33295, 26933, 37659, 13, 16345, 7, 15972, 62, 5907, 13, 5907, 62, 16960, 13, 56, 1279, 532, 16, 13, 405, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45941, 13, 16345, 7, 15972, 62, 5907, 13, 5907, 62, 16960, 13, 56, 1279, 532, 940, 13, 15, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21232, 62, 5907, 13, 5907, 62, 1084, 62, 87, 11, 21232, 62, 5907, 13, 5907, 62, 1084, 62, 2100, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21232, 62, 5907, 13, 5907, 62, 1084, 62, 17946, 12962, 628, 198, 220, 220, 220, 1303, 2080, 1575, 2163, 198, 220, 220, 220, 45941, 13, 25120, 13, 28826, 7, 81, 8, 628, 220, 220, 220, 10139, 15, 62, 25192, 796, 2747, 62, 17440, 7, 69, 28, 50033, 1291, 73, 25, 2747, 16, 7, 9535, 73, 4008, 198, 220, 220, 220, 21232, 62, 25192, 796, 1332, 62, 21412, 7, 65, 3733, 28, 65, 3733, 11, 264, 315, 28, 50033, 2124, 15, 25, 264, 315, 7, 4059, 11, 87, 15, 11, 304, 324, 28, 17821, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 62, 21048, 796, 10139, 15, 62, 25192, 11, 351, 62, 25120, 796, 6407, 11, 351, 62, 5796, 5226, 28, 25101, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2315, 62, 39873, 796, 3126, 11, 27183, 62, 2118, 5889, 28, 20, 11, 1033, 62, 6551, 28, 940, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1575, 62, 19849, 796, 1575, 62, 20786, 11, 3487, 7509, 28, 17821, 8, 198, 220, 220, 220, 21232, 62, 25192, 13, 36733, 1096, 3419, 198, 220, 220, 220, 21232, 62, 25192, 13, 5143, 62, 8202, 7, 15187, 8, 198, 220, 220, 220, 4738, 62, 36604, 62, 81, 17, 13, 33295, 26933, 37659, 13, 16345, 7, 37659, 13, 18747, 7, 15972, 62, 25192, 13, 25120, 62, 56, 8, 1279, 532, 16, 13, 15, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45941, 13, 16345, 7, 37659, 13, 18747, 7, 15972, 62, 25192, 13, 25120, 62, 56, 8, 1279, 532, 940, 13, 15, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21232, 62, 25192, 13, 25192, 62, 1084, 62, 87, 11, 21232, 62, 25192, 13, 25192, 62, 1084, 62, 2100, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21232, 62, 25192, 13, 25192, 62, 1084, 62, 17946, 12962, 198, 220, 220, 220, 3601, 7, 81, 11, 7209, 62, 36604, 62, 81, 17, 58, 12, 17, 4357, 7209, 62, 36604, 62, 81, 17, 58, 12, 16, 4357, 25120, 62, 36604, 62, 81, 17, 58, 12, 16, 12962, 628, 198, 2, 9394, 24615, 513, 25, 9938, 262, 4238, 8398, 884, 326, 340, 14349, 528, 444, 284, 2035, 198, 2, 657, 393, 284, 45941, 13, 14415, 198, 198, 5796, 5226, 62, 36604, 62, 81, 18, 796, 17635, 198, 5907, 62, 36604, 62, 81, 18, 796, 17635, 198, 25120, 62, 36604, 62, 81, 18, 796, 17635, 198, 198, 2, 770, 900, 18533, 4738, 19232, 290, 10627, 198, 1640, 374, 287, 43720, 62, 77, 5700, 25, 198, 220, 220, 220, 45941, 13, 25120, 13, 28826, 7, 81, 8, 198, 220, 220, 220, 10139, 15, 796, 2747, 62, 17440, 7, 69, 796, 37456, 1291, 73, 25, 28764, 16, 7, 9535, 73, 4008, 198, 220, 220, 220, 10139, 16, 796, 2747, 62, 17440, 7, 69, 796, 37456, 1291, 73, 25, 28764, 17, 7, 9535, 73, 4008, 198, 220, 220, 220, 10139, 17, 796, 3509, 62, 17440, 7, 17197, 41888, 17440, 15, 11, 10139, 16, 12962, 198, 220, 220, 220, 21232, 796, 1332, 62, 21412, 7, 65, 3733, 28, 65, 3733, 11, 264, 315, 28, 50033, 2124, 15, 25, 264, 315, 7, 4059, 11, 87, 15, 11, 304, 324, 28, 17821, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 62, 21048, 796, 10139, 17, 11, 15003, 62, 39873, 796, 3126, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27183, 62, 2118, 5889, 28, 20, 11, 1033, 62, 6551, 28, 17, 11, 3487, 7509, 28, 17821, 8, 198, 220, 220, 220, 21232, 13, 36733, 1096, 3419, 198, 220, 220, 220, 21232, 13, 5143, 62, 8202, 7, 15187, 8, 198, 220, 220, 220, 7209, 62, 12786, 796, 45941, 13, 18747, 7, 15972, 13, 69, 62, 43561, 13, 19796, 62, 16960, 62, 20786, 28955, 198, 220, 220, 220, 7209, 62, 36604, 62, 81, 18, 13, 33295, 26933, 37659, 13, 16345, 7, 5796, 5226, 62, 12786, 1279, 532, 16, 13, 405, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45941, 13, 16345, 7, 5796, 5226, 62, 12786, 1279, 532, 940, 13, 15, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21232, 13, 5796, 5226, 62, 1084, 62, 87, 11, 15972, 13, 5796, 5226, 62, 1084, 62, 2100, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21232, 13, 5796, 5226, 62, 1084, 62, 17946, 12962, 628, 220, 220, 220, 45941, 13, 25120, 13, 28826, 7, 81, 8, 198, 220, 220, 220, 10139, 15, 62, 5907, 796, 2747, 62, 17440, 7, 69, 28, 50033, 1291, 73, 25, 2747, 16, 7, 9535, 73, 4008, 198, 220, 220, 220, 10139, 16, 62, 5907, 796, 2747, 62, 17440, 7, 69, 28, 50033, 1291, 73, 25, 2747, 17, 7, 9535, 73, 4008, 198, 220, 220, 220, 10139, 17, 62, 5907, 796, 3509, 62, 17440, 7, 17197, 41888, 17440, 15, 62, 5907, 11, 10139, 16, 62, 5907, 12962, 198, 220, 220, 220, 21232, 62, 5907, 796, 1332, 62, 21412, 7, 65, 3733, 28, 65, 3733, 11, 264, 315, 28, 50033, 2124, 15, 25, 264, 315, 7, 4059, 11, 2124, 15, 11, 304, 324, 28, 17821, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 62, 21048, 28, 17440, 17, 62, 5907, 11, 2315, 62, 39873, 28, 1899, 11, 351, 62, 5796, 5226, 28, 25101, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 351, 62, 5907, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27183, 62, 2118, 5889, 28, 20, 11, 1033, 62, 6551, 28, 17, 11, 3487, 7509, 28, 17821, 8, 198, 220, 220, 220, 21232, 62, 5907, 13, 36733, 1096, 3419, 198, 220, 220, 220, 21232, 62, 5907, 13, 5143, 62, 8202, 7, 15187, 8, 198, 220, 220, 220, 36545, 62, 36604, 62, 81, 18, 13, 33295, 26933, 37659, 13, 16345, 7, 15972, 62, 5907, 13, 5907, 62, 16960, 13, 56, 1279, 532, 16, 13, 405, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45941, 13, 16345, 7, 15972, 62, 5907, 13, 5907, 62, 16960, 13, 56, 1279, 532, 940, 13, 15, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21232, 62, 5907, 13, 5907, 62, 1084, 62, 87, 11, 21232, 62, 5907, 13, 5907, 62, 1084, 62, 2100, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21232, 62, 5907, 13, 5907, 62, 1084, 62, 17946, 12962, 628, 198, 220, 220, 220, 1303, 2080, 1575, 2163, 198, 220, 220, 220, 45941, 13, 25120, 13, 28826, 7, 81, 8, 628, 220, 220, 220, 10139, 15, 62, 25192, 796, 2747, 62, 17440, 7, 69, 28, 50033, 1291, 73, 25, 2747, 16, 7, 9535, 73, 4008, 198, 220, 220, 220, 10139, 16, 62, 25192, 796, 2747, 62, 17440, 7, 69, 28, 50033, 1291, 73, 25, 2747, 17, 7, 9535, 73, 4008, 198, 220, 220, 220, 10139, 17, 62, 25192, 796, 3509, 62, 17440, 7, 17197, 41888, 17440, 15, 62, 25192, 11, 10139, 16, 62, 25192, 12962, 198, 220, 220, 220, 21232, 62, 25192, 796, 1332, 62, 21412, 7, 65, 3733, 28, 65, 3733, 11, 264, 315, 28, 50033, 2124, 15, 25, 264, 315, 7, 4059, 11, 87, 15, 11, 304, 324, 28, 17821, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 62, 21048, 796, 10139, 17, 62, 25192, 11, 351, 62, 25120, 796, 6407, 11, 351, 62, 5796, 5226, 28, 25101, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2315, 62, 39873, 796, 3126, 11, 27183, 62, 2118, 5889, 28, 20, 11, 1033, 62, 6551, 28, 940, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1575, 62, 19849, 796, 1575, 62, 20786, 11, 3487, 7509, 28, 17821, 8, 198, 220, 220, 220, 21232, 62, 25192, 13, 36733, 1096, 3419, 198, 220, 220, 220, 21232, 62, 25192, 13, 5143, 62, 8202, 7, 15187, 8, 198, 220, 220, 220, 4738, 62, 36604, 62, 81, 18, 13, 33295, 26933, 37659, 13, 16345, 7, 37659, 13, 18747, 7, 15972, 62, 25192, 13, 25120, 62, 56, 8, 1279, 532, 16, 13, 15, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45941, 13, 16345, 7, 37659, 13, 18747, 7, 15972, 62, 25192, 13, 25120, 62, 56, 8, 1279, 532, 940, 13, 15, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21232, 62, 25192, 13, 25192, 62, 1084, 62, 87, 11, 21232, 62, 25192, 13, 25192, 62, 1084, 62, 2100, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21232, 62, 25192, 13, 25192, 62, 1084, 62, 17946, 12962, 198, 220, 220, 220, 3601, 7, 81, 11, 7209, 62, 36604, 62, 81, 18, 58, 12, 16, 4357, 36545, 62, 36604, 62, 81, 18, 58, 12, 16, 4357, 25120, 62, 36604, 62, 81, 18, 58, 12, 16, 12962, 628, 198 ]
1.959115
4,158
import re from setuptools import setup, find_packages with open('README.md', 'r', encoding='utf-8') as f: readme = f.read() with open('gforms/__init__.py', encoding='utf-8') as f: version = re.search(r"__version__ = '(.+)'", f.read()).group(1) setup( name='gforms', description='Google Forms wrapper for Python', long_description=readme, long_description_content_type='text/markdown', author='vvd170501', url='https://github.com/vvd170501/python-gforms', classifiers=[ 'Development Status :: 5 - Production/Stable', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 3 :: Only', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', 'Programming Language :: Python :: 3.9', ], packages=['gforms'], version=version, license_files=('LICENSE',), python_requires='>=3.6', install_requires=[ 'beautifulsoup4', 'requests', "typing-extensions;python_version<'3.8'", ], extras_require={ 'dev': [ 'pytest', ] }, )
[ 11748, 302, 198, 6738, 900, 37623, 10141, 1330, 9058, 11, 1064, 62, 43789, 628, 198, 4480, 1280, 10786, 15675, 11682, 13, 9132, 3256, 705, 81, 3256, 21004, 11639, 40477, 12, 23, 11537, 355, 277, 25, 198, 220, 220, 220, 1100, 1326, 796, 277, 13, 961, 3419, 628, 198, 4480, 1280, 10786, 70, 23914, 14, 834, 15003, 834, 13, 9078, 3256, 21004, 11639, 40477, 12, 23, 11537, 355, 277, 25, 198, 220, 220, 220, 2196, 796, 302, 13, 12947, 7, 81, 1, 834, 9641, 834, 796, 29513, 13, 28988, 6, 1600, 277, 13, 961, 3419, 737, 8094, 7, 16, 8, 628, 198, 40406, 7, 198, 220, 220, 220, 1438, 11639, 70, 23914, 3256, 198, 220, 220, 220, 6764, 11639, 11708, 39196, 29908, 329, 11361, 3256, 198, 220, 220, 220, 890, 62, 11213, 28, 961, 1326, 11, 198, 220, 220, 220, 890, 62, 11213, 62, 11299, 62, 4906, 11639, 5239, 14, 4102, 2902, 3256, 198, 220, 220, 220, 1772, 11639, 85, 20306, 1558, 2713, 486, 3256, 198, 220, 220, 220, 19016, 11639, 5450, 1378, 12567, 13, 785, 14, 85, 20306, 1558, 2713, 486, 14, 29412, 12, 70, 23914, 3256, 628, 220, 220, 220, 1398, 13350, 41888, 198, 220, 220, 220, 220, 220, 220, 220, 705, 41206, 12678, 7904, 642, 532, 19174, 14, 1273, 540, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 34156, 7904, 7294, 40, 20010, 1079, 7904, 17168, 13789, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 15167, 2229, 15417, 7904, 11361, 7904, 513, 7904, 5514, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 15167, 2229, 15417, 7904, 11361, 7904, 513, 13, 21, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 15167, 2229, 15417, 7904, 11361, 7904, 513, 13, 22, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 15167, 2229, 15417, 7904, 11361, 7904, 513, 13, 23, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 15167, 2229, 15417, 7904, 11361, 7904, 513, 13, 24, 3256, 198, 220, 220, 220, 16589, 628, 220, 220, 220, 10392, 28, 17816, 70, 23914, 6, 4357, 198, 220, 220, 220, 2196, 28, 9641, 11, 198, 220, 220, 220, 5964, 62, 16624, 28, 10786, 43, 2149, 24290, 3256, 828, 628, 220, 220, 220, 21015, 62, 47911, 11639, 29, 28, 18, 13, 21, 3256, 198, 220, 220, 220, 2721, 62, 47911, 41888, 198, 220, 220, 220, 220, 220, 220, 220, 705, 40544, 4135, 82, 10486, 19, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 8897, 3558, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 366, 774, 13886, 12, 2302, 5736, 26, 29412, 62, 9641, 27, 6, 18, 13, 23, 6, 1600, 198, 220, 220, 220, 16589, 198, 220, 220, 220, 33849, 62, 46115, 34758, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7959, 10354, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 9078, 9288, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 2361, 198, 220, 220, 220, 8964, 198, 8, 198 ]
2.392354
497
import seqcluster.libs.logger as mylog import os from seqcluster.libs.classes import annotation, dbannotation logger = mylog.getLogger("run") def read_gtf_line(cols, field="name"): """parse gtf line to get class/name information""" field = field.lower() try: group = cols[2] attrs = cols[8].split(";") name = [attr.strip().split(" ")[1] for attr in attrs if attr.strip().split(" ")[0].lower().endswith(field)] if not name: name = [attr.strip().split(" ")[1] for attr in attrs if attr.strip().split(" ")[0].lower().endswith("gene_id")] if not name: name = ["None"] biotype = [attr.strip().split(" ")[1] for attr in attrs if attr.strip().split(" ")[0].lower().endswith("biotype")] if biotype: group = biotype[0] c = cols[0] s = int(cols[3]) e = int(cols[4]) st = cols[6] return [c, s, e, st, group, name[0]] except(Exception, e): logger.error(cols) logger.error("File is not in correct format") logger.error("Expect chr source feature start end . strand attributes") logger.error("Attributes are 'gene_name SNCA; gene_id ENSG; '") logger.error("The 3rd column is used as type of small RNA (like miRNA)") logger.error("at least should contains '; *name NAME; '") logger.error(e) raise def _position_in_feature(pos_a, pos_b): """return distance to 3' and 5' end of the feature""" strd = "-" if pos_a[2] in pos_b[2]: strd = "+" if pos_a[2] in "+" and pos_b[2] in "+": lento5 = pos_a[0] - pos_b[1] + 1 lento3 = pos_a[1] - pos_b[1] + 1 if pos_a[2] in "+" and pos_b[2] in "-": lento5 = pos_a[1] - pos_b[0] + 1 lento3 = pos_a[0] - pos_b[1] + 1 if pos_a[2] in "-" and pos_b[2] in "+": lento5 = pos_a[0] - pos_b[1] + 1 lento3 = pos_a[1] - pos_b[0] + 1 if pos_a[2] in "-" and pos_b[2] in "-": lento3 = pos_a[0] - pos_b[0] + 1 lento5 = pos_a[1] - pos_b[1] + 1 else: lento5 = pos_a[0] - pos_b[0] + 1 lento3 = pos_a[1] - pos_b[1] + 1 return lento5, lento3, strd def anncluster(c, clus_obj, db, type_ann, feature_id="name"): """intersect transcription position with annotation files""" id_sa, id_ea, id_id, id_idl, id_sta = 1, 2, 3, 4, 5 if type_ann == "bed": id_sb = 7 id_eb = 8 id_stb = 11 id_tag = 9 ida = 0 clus_id = clus_obj.clus loci_id = clus_obj.loci db = os.path.splitext(db)[0] logger.debug("Type:%s\n" % type_ann) for cols in c.features(): if type_ann == "gtf": cb, sb, eb, stb, db, tag = read_gtf_line(cols[6:], feature_id) else: sb = int(cols[id_sb]) eb = int(cols[id_eb]) stb = cols[id_stb] tag = cols[id_tag] id = int(cols[id_id]) idl = int(cols[id_idl]) if (id in clus_id): clus = clus_id[id] sa = int(cols[id_sa]) ea = int(cols[id_ea]) ida += 1 lento5, lento3, strd = _position_in_feature([sa, ea, cols[id_sta]], [sb, eb, stb]) if db in loci_id[idl].db_ann: ann = annotation(db, tag, strd, lento5, lento3) tdb = loci_id[idl].db_ann[db] tdb.add_db_ann(ida, ann) loci_id[idl].add_db(db, tdb) else: ann = annotation(db, tag, strd, lento5, lento3) tdb = dbannotation(1) tdb.add_db_ann(ida, ann) loci_id[idl].add_db(db, tdb) clus_id[id] = clus clus_obj.clus = clus_id clus_obj.loci = loci_id return clus_obj
[ 11748, 33756, 565, 5819, 13, 8019, 82, 13, 6404, 1362, 355, 616, 6404, 198, 11748, 28686, 198, 198, 6738, 33756, 565, 5819, 13, 8019, 82, 13, 37724, 1330, 23025, 11, 20613, 1236, 14221, 198, 198, 6404, 1362, 796, 616, 6404, 13, 1136, 11187, 1362, 7203, 5143, 4943, 628, 198, 4299, 1100, 62, 13655, 69, 62, 1370, 7, 4033, 82, 11, 2214, 2625, 3672, 1, 2599, 198, 220, 220, 220, 37227, 29572, 308, 27110, 1627, 284, 651, 1398, 14, 3672, 1321, 37811, 198, 220, 220, 220, 2214, 796, 2214, 13, 21037, 3419, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1448, 796, 951, 82, 58, 17, 60, 198, 220, 220, 220, 220, 220, 220, 220, 708, 3808, 796, 951, 82, 58, 23, 4083, 35312, 7203, 26, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 1438, 796, 685, 35226, 13, 36311, 22446, 35312, 7203, 366, 38381, 16, 60, 329, 708, 81, 287, 708, 3808, 611, 708, 81, 13, 36311, 22446, 35312, 7203, 366, 38381, 15, 4083, 21037, 22446, 437, 2032, 342, 7, 3245, 15437, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 1438, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 796, 685, 35226, 13, 36311, 22446, 35312, 7203, 366, 38381, 16, 60, 329, 708, 81, 287, 708, 3808, 611, 708, 81, 13, 36311, 22446, 35312, 7203, 366, 38381, 15, 4083, 21037, 22446, 437, 2032, 342, 7203, 70, 1734, 62, 312, 4943, 60, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 1438, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 796, 14631, 14202, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 3182, 8690, 796, 685, 35226, 13, 36311, 22446, 35312, 7203, 366, 38381, 16, 60, 329, 708, 81, 287, 708, 3808, 611, 708, 81, 13, 36311, 22446, 35312, 7203, 366, 38381, 15, 4083, 21037, 22446, 437, 2032, 342, 7203, 65, 5151, 2981, 4943, 60, 198, 220, 220, 220, 220, 220, 220, 220, 611, 3182, 8690, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1448, 796, 3182, 8690, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 269, 796, 951, 82, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 264, 796, 493, 7, 4033, 82, 58, 18, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 304, 796, 493, 7, 4033, 82, 58, 19, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 336, 796, 951, 82, 58, 21, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 685, 66, 11, 264, 11, 304, 11, 336, 11, 1448, 11, 1438, 58, 15, 11907, 198, 220, 220, 220, 2845, 7, 16922, 11, 304, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 18224, 7, 4033, 82, 8, 198, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 18224, 7203, 8979, 318, 407, 287, 3376, 5794, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 18224, 7203, 3109, 806, 442, 81, 2723, 3895, 923, 886, 764, 37923, 12608, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 18224, 7203, 29021, 389, 705, 70, 1734, 62, 3672, 311, 7792, 32, 26, 9779, 62, 312, 412, 8035, 38, 26, 705, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 18224, 7203, 464, 513, 4372, 5721, 318, 973, 355, 2099, 286, 1402, 25897, 357, 2339, 21504, 27204, 8, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 18224, 7203, 265, 1551, 815, 4909, 705, 26, 1635, 3672, 36751, 26, 705, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 18224, 7, 68, 8, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 628, 198, 4299, 4808, 9150, 62, 259, 62, 30053, 7, 1930, 62, 64, 11, 1426, 62, 65, 2599, 198, 220, 220, 220, 37227, 7783, 5253, 284, 513, 6, 290, 642, 6, 886, 286, 262, 3895, 37811, 198, 220, 220, 220, 965, 67, 796, 366, 21215, 198, 220, 220, 220, 611, 1426, 62, 64, 58, 17, 60, 287, 1426, 62, 65, 58, 17, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 965, 67, 796, 43825, 1, 198, 220, 220, 220, 611, 1426, 62, 64, 58, 17, 60, 287, 43825, 1, 290, 1426, 62, 65, 58, 17, 60, 287, 43825, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 26269, 78, 20, 796, 1426, 62, 64, 58, 15, 60, 532, 1426, 62, 65, 58, 16, 60, 1343, 352, 198, 220, 220, 220, 220, 220, 220, 220, 26269, 78, 18, 796, 1426, 62, 64, 58, 16, 60, 532, 1426, 62, 65, 58, 16, 60, 1343, 352, 198, 220, 220, 220, 611, 1426, 62, 64, 58, 17, 60, 287, 43825, 1, 290, 1426, 62, 65, 58, 17, 60, 287, 27444, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 26269, 78, 20, 796, 1426, 62, 64, 58, 16, 60, 532, 1426, 62, 65, 58, 15, 60, 1343, 352, 198, 220, 220, 220, 220, 220, 220, 220, 26269, 78, 18, 796, 1426, 62, 64, 58, 15, 60, 532, 1426, 62, 65, 58, 16, 60, 1343, 352, 198, 220, 220, 220, 611, 1426, 62, 64, 58, 17, 60, 287, 366, 21215, 290, 1426, 62, 65, 58, 17, 60, 287, 43825, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 26269, 78, 20, 796, 1426, 62, 64, 58, 15, 60, 532, 1426, 62, 65, 58, 16, 60, 1343, 352, 198, 220, 220, 220, 220, 220, 220, 220, 26269, 78, 18, 796, 1426, 62, 64, 58, 16, 60, 532, 1426, 62, 65, 58, 15, 60, 1343, 352, 198, 220, 220, 220, 611, 1426, 62, 64, 58, 17, 60, 287, 366, 21215, 290, 1426, 62, 65, 58, 17, 60, 287, 27444, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 26269, 78, 18, 796, 1426, 62, 64, 58, 15, 60, 532, 1426, 62, 65, 58, 15, 60, 1343, 352, 198, 220, 220, 220, 220, 220, 220, 220, 26269, 78, 20, 796, 1426, 62, 64, 58, 16, 60, 532, 1426, 62, 65, 58, 16, 60, 1343, 352, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 26269, 78, 20, 796, 1426, 62, 64, 58, 15, 60, 532, 1426, 62, 65, 58, 15, 60, 1343, 352, 198, 220, 220, 220, 220, 220, 220, 220, 26269, 78, 18, 796, 1426, 62, 64, 58, 16, 60, 532, 1426, 62, 65, 58, 16, 60, 1343, 352, 198, 220, 220, 220, 1441, 26269, 78, 20, 11, 26269, 78, 18, 11, 965, 67, 628, 198, 4299, 1529, 565, 5819, 7, 66, 11, 537, 385, 62, 26801, 11, 20613, 11, 2099, 62, 1236, 11, 3895, 62, 312, 2625, 3672, 1, 2599, 198, 220, 220, 220, 37227, 3849, 8831, 26955, 2292, 351, 23025, 3696, 37811, 198, 220, 220, 220, 4686, 62, 11400, 11, 4686, 62, 18213, 11, 4686, 62, 312, 11, 4686, 62, 312, 75, 11, 4686, 62, 38031, 796, 352, 11, 362, 11, 513, 11, 604, 11, 642, 198, 220, 220, 220, 611, 2099, 62, 1236, 6624, 366, 3077, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 4686, 62, 36299, 796, 767, 198, 220, 220, 220, 220, 220, 220, 220, 4686, 62, 1765, 796, 807, 198, 220, 220, 220, 220, 220, 220, 220, 4686, 62, 301, 65, 796, 1367, 198, 220, 220, 220, 220, 220, 220, 220, 4686, 62, 12985, 796, 860, 198, 220, 220, 220, 220, 3755, 796, 657, 198, 220, 220, 220, 537, 385, 62, 312, 796, 537, 385, 62, 26801, 13, 2527, 198, 220, 220, 220, 1179, 72, 62, 312, 796, 537, 385, 62, 26801, 13, 75, 1733, 198, 220, 220, 220, 20613, 796, 28686, 13, 6978, 13, 22018, 578, 742, 7, 9945, 38381, 15, 60, 198, 220, 220, 220, 49706, 13, 24442, 7203, 6030, 25, 4, 82, 59, 77, 1, 4064, 2099, 62, 1236, 8, 198, 220, 220, 220, 329, 951, 82, 287, 269, 13, 40890, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2099, 62, 1236, 6624, 366, 13655, 69, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 65, 11, 264, 65, 11, 36649, 11, 336, 65, 11, 20613, 11, 7621, 796, 1100, 62, 13655, 69, 62, 1370, 7, 4033, 82, 58, 21, 25, 4357, 3895, 62, 312, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 65, 796, 493, 7, 4033, 82, 58, 312, 62, 36299, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 36649, 796, 493, 7, 4033, 82, 58, 312, 62, 1765, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 336, 65, 796, 951, 82, 58, 312, 62, 301, 65, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7621, 796, 951, 82, 58, 312, 62, 12985, 60, 198, 220, 220, 220, 220, 220, 220, 220, 4686, 796, 493, 7, 4033, 82, 58, 312, 62, 312, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 4686, 75, 796, 493, 7, 4033, 82, 58, 312, 62, 312, 75, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 611, 357, 312, 287, 537, 385, 62, 312, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 537, 385, 796, 537, 385, 62, 312, 58, 312, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 473, 796, 493, 7, 4033, 82, 58, 312, 62, 11400, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 304, 64, 796, 493, 7, 4033, 82, 58, 312, 62, 18213, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3755, 15853, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26269, 78, 20, 11, 26269, 78, 18, 11, 965, 67, 796, 4808, 9150, 62, 259, 62, 30053, 26933, 11400, 11, 304, 64, 11, 951, 82, 58, 312, 62, 38031, 60, 4357, 685, 36299, 11, 36649, 11, 336, 65, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 20613, 287, 1179, 72, 62, 312, 58, 312, 75, 4083, 9945, 62, 1236, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1529, 796, 23025, 7, 9945, 11, 7621, 11, 965, 67, 11, 26269, 78, 20, 11, 26269, 78, 18, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 256, 9945, 796, 1179, 72, 62, 312, 58, 312, 75, 4083, 9945, 62, 1236, 58, 9945, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 256, 9945, 13, 2860, 62, 9945, 62, 1236, 7, 3755, 11, 1529, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1179, 72, 62, 312, 58, 312, 75, 4083, 2860, 62, 9945, 7, 9945, 11, 256, 9945, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1529, 796, 23025, 7, 9945, 11, 7621, 11, 965, 67, 11, 26269, 78, 20, 11, 26269, 78, 18, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 256, 9945, 796, 20613, 1236, 14221, 7, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 256, 9945, 13, 2860, 62, 9945, 62, 1236, 7, 3755, 11, 1529, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1179, 72, 62, 312, 58, 312, 75, 4083, 2860, 62, 9945, 7, 9945, 11, 256, 9945, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 537, 385, 62, 312, 58, 312, 60, 796, 537, 385, 198, 220, 220, 220, 537, 385, 62, 26801, 13, 2527, 796, 537, 385, 62, 312, 198, 220, 220, 220, 537, 385, 62, 26801, 13, 75, 1733, 796, 1179, 72, 62, 312, 198, 220, 220, 220, 1441, 537, 385, 62, 26801, 628, 198 ]
1.854743
2,024
pattern()
[ 33279, 3419, 198 ]
3.333333
3
from __future__ import absolute_import from __future__ import unicode_literals import collections import inspect import json import os import re from functools import partial import compose
[ 6738, 11593, 37443, 834, 1330, 4112, 62, 11748, 198, 6738, 11593, 37443, 834, 1330, 28000, 1098, 62, 17201, 874, 198, 198, 11748, 17268, 198, 11748, 10104, 198, 11748, 33918, 198, 11748, 28686, 198, 11748, 302, 198, 6738, 1257, 310, 10141, 1330, 13027, 198, 198, 11748, 36664, 628, 628, 628, 628, 198 ]
3.921569
51
import numpy as np from ase.calculators.lj import LennardJones from ase.units import Bohr, Ha from pytest import approx, raises from pygsm.level_of_theories.ase import ASELoT, geom_to_ase, xyz_to_ase from pygsm.level_of_theories.base_lot import LoTError xyz_4x4 = [ ["H", 1.0, 2.0, 3.0], ["He", 4.0, 5.0, 6.0], ["Li", 7.0, 8.0, 9.0], ["Be", 10.0, 11.0, 12.0], ]
[ 11748, 299, 32152, 355, 45941, 198, 6738, 257, 325, 13, 9948, 3129, 2024, 13, 75, 73, 1330, 28423, 446, 25784, 198, 6738, 257, 325, 13, 41667, 1330, 44366, 81, 11, 9398, 198, 6738, 12972, 9288, 1330, 5561, 11, 12073, 198, 198, 6738, 12972, 70, 5796, 13, 5715, 62, 1659, 62, 1169, 1749, 13, 589, 1330, 7054, 3698, 78, 51, 11, 4903, 296, 62, 1462, 62, 589, 11, 2124, 45579, 62, 1462, 62, 589, 198, 6738, 12972, 70, 5796, 13, 5715, 62, 1659, 62, 1169, 1749, 13, 8692, 62, 26487, 1330, 6706, 51, 12331, 198, 198, 5431, 89, 62, 19, 87, 19, 796, 685, 198, 220, 220, 220, 14631, 39, 1600, 352, 13, 15, 11, 362, 13, 15, 11, 513, 13, 15, 4357, 198, 220, 220, 220, 14631, 1544, 1600, 604, 13, 15, 11, 642, 13, 15, 11, 718, 13, 15, 4357, 198, 220, 220, 220, 14631, 32304, 1600, 767, 13, 15, 11, 807, 13, 15, 11, 860, 13, 15, 4357, 198, 220, 220, 220, 14631, 3856, 1600, 838, 13, 15, 11, 1367, 13, 15, 11, 1105, 13, 15, 4357, 198, 60, 628, 628, 628, 628, 198 ]
2.086022
186
from survey.features.page_objects.base import PageObject __author__ = 'mnandri'
[ 6738, 5526, 13, 40890, 13, 7700, 62, 48205, 13, 8692, 1330, 7873, 10267, 198, 198, 834, 9800, 834, 796, 705, 10295, 392, 380, 6, 628, 198 ]
3.192308
26
"""Debug Toolbar Plugin.""" import asyncio import importlib import ipaddress as ip import os.path as op import re import sys import uuid from muffin import ( Response, StaticRoute, HTTPException, HTTPBadRequest, to_coroutine, HTTPForbidden) from muffin.plugins import BasePlugin, PluginException from muffin.utils import json from . import panels, utils from .tbtools.tbtools import get_traceback RE_BODY = re.compile(b'<\/body>', re.I) U_SSE_PAYLOAD = "id: {0}\nevent: new_request\ndata: {1}\n\n" REDIRECT_CODES = (300, 301, 302, 303, 305, 307, 308) PLUGIN_ROOT = op.dirname(op.abspath(__file__)) @asyncio.coroutine def debugtoolbar_middleware_factory(app, handler): """Setup Debug middleware.""" dbtb = app.ps.debugtoolbar @asyncio.coroutine def debugtoolbar_middleware(request): """Integrate to application.""" # Check for debugtoolbar is enabled for the request if not dbtb.cfg.enabled or any(map(request.path.startswith, dbtb.cfg.exclude)): return (yield from handler(request)) remote_host, remote_port = request.transport.get_extra_info('peername') for host in dbtb.cfg.hosts: if ip.ip_address(remote_host) in ip.ip_network(host): break else: return (yield from handler(request)) # Initialize a debugstate for the request state = DebugState(app, request) dbtb.history[state.id] = state context_switcher = state.wrap_handler(handler) # Make response try: response = yield from context_switcher(handler(request)) state.status = response.status except HTTPException as exc: response = exc state.status = response.status except Exception as exc: # Store traceback for unhandled exception state.status = 500 if not dbtb.cfg.intercept_exc: raise tb = get_traceback( info=sys.exc_info(), skip=1, show_hidden_frames=False, ignore_system_exceptions=True, exc=exc) dbtb.exceptions[tb.id] = request['pdbt_tb'] = tb for frame in tb.frames: dbtb.frames[id(frame)] = frame response = Response(text=tb.render_full(request), content_type='text/html') # Intercept http redirect codes and display an html page with a link to the target. if dbtb.cfg.intercept_redirects and response.status in REDIRECT_CODES \ and 'Location' in response.headers: response = yield from app.ps.jinja2.render( 'debugtoolbar/redirect.html', response=response) response = Response(text=response, content_type='text/html') yield from state.process_response(response) if isinstance(response, Response) and response.content_type == 'text/html' and \ RE_BODY.search(response.body): return (yield from dbtb.inject(state, response)) return response return debugtoolbar_middleware class Plugin(BasePlugin): """The plugin implementation.""" name = 'debugtoolbar' defaults = { 'enabled': True, 'hosts': ['127.0.0.1'], 'prefix': '/_debug', 'intercept_exc': 'debug', # debug/display/False, 'intercept_redirects': True, 'exclude': [], 'panels': [ panels.HeaderDebugPanel, panels.RequestVarsDebugPanel, panels.LoggingDebugPanel, panels.TracebackDebugPanel, ], 'additional_panels': [], 'global_panels': [ panels.RoutesDebugPanel, panels.ConfigurationDebugPanel, panels.MiddlewaresDebugPanel, panels.VersionsDebugPanel, ] } def setup(self, app): """Setup the plugin and prepare application.""" super(Plugin, self).setup(app) if 'jinja2' not in app.plugins: raise PluginException('The plugin requires Muffin-Jinja2 plugin installed.') self.cfg.prefix = self.cfg.prefix.rstrip('/') + '/' self.cfg.exclude.append(self.cfg.prefix) # Setup debugtoolbar templates app.ps.jinja2.cfg.template_folders.append(op.join(PLUGIN_ROOT, 'templates')) self.cfg.panels += list(self.cfg.additional_panels) panels_ = [] for panel in self.cfg.panels: if isinstance(panel, str): mod, _, panel = panel.partition(':') mod = importlib.import_module(mod) panel = eval(panel or 'DebugPanel', mod.__dict__) panels_.append(panel) self.cfg.panels = panels_ # Setup debugtoolbar static files app.router.register_route(StaticRoute( 'debugtoolbar.static', self.cfg.prefix + 'static/', op.join(PLUGIN_ROOT, 'static'))) app.register(self.cfg.prefix + 'sse', name='debugtoolbar.sse')(self.sse) app.register( self.cfg.prefix + 'exception', name='debugtoolbar.exception')(self.exception) app.register( self.cfg.prefix + 'execute', name='debugtoolbar.execute')(self.execute) app.register( self.cfg.prefix + 'source', name='debugtoolbar.source')(self.source) app.register( self.cfg.prefix.rstrip('/'), self.cfg.prefix, self.cfg.prefix + '{request_id}', name='debugtoolbar.request')(self.view) app['debugtoolbar'] = {} app['debugtoolbar']['pdbt_token'] = uuid.uuid4().hex self.history = app['debugtoolbar']['history'] = utils.History(50) self.exceptions = app['debugtoolbar']['exceptions'] = utils.History(50) self.frames = app['debugtoolbar']['frames'] = utils.History(100) @asyncio.coroutine def start(self, app): """ Start application. """ app.middlewares.insert(0, debugtoolbar_middleware_factory) self.global_panels = [Panel(self.app) for Panel in self.cfg.global_panels] @asyncio.coroutine def inject(self, state, response): """ Inject Debug Toolbar code to response body. """ html = yield from self.app.ps.jinja2.render( 'debugtoolbar/inject.html', static_path=self.cfg.prefix + 'static', toolbar_url=self.cfg.prefix + state.id, ) html = html.encode(state.request.charset or 'utf-8') response.body = RE_BODY.sub(html + b'</body>', response.body) return response @asyncio.coroutine def view(self, request): """ Debug Toolbar. """ auth = yield from self.authorize(request) if not auth: raise HTTPForbidden() request_id = request.match_info.get('request_id') state = self.history.get(request_id, None) response = yield from self.app.ps.jinja2.render( 'debugtoolbar/toolbar.html', debugtoolbar=self, state=state, static_path=self.cfg.prefix + 'static', panels=state and state.panels or [], global_panels=self.global_panels, request=state and state.request or None, ) return Response(text=response, content_type='text/html') @asyncio.coroutine def authorize(self, request): # noqa """Default authorization.""" return True def authorization(self, func): """Define a authorization handler. :: debugtoolbar = muffin_debugtoolbar.Plugin() debugtoolbar.setup(app) @debugtoolbar.authorization def current_user_is_logged(request): user = yield from load_session(request) return user """ self.authorize = to_coroutine(func) return func @asyncio.coroutine def sse(self, request): """SSE.""" response = Response(status=200) response.content_type = 'text/event-stream' response.text = '' active_request_id = request.GET.get('request_id') client_last_request_id = str(request.headers.get('Last-Event-Id', 0)) if self.history: last_request_id = next(reversed(self.history)) if not last_request_id == client_last_request_id: data = [] for _id in reversed(self.history): data.append([ _id, self.history[_id].json, 'active' if active_request_id == _id else '']) if data: response.text = U_SSE_PAYLOAD.format(last_request_id, json.dumps(data)) return response @asyncio.coroutine @asyncio.coroutine @asyncio.coroutine class DebugState: """ Store debug state. """ def __init__(self, app, request): """Store the params.""" self.request = request self.status = 200 self.panels = [Panel(app, request) for Panel in app.ps.debugtoolbar.cfg.panels] @property def id(self): """Return state ID.""" return str(id(self)) @property def json(self): """Return JSON.""" return {'method': self.request.method, 'path': self.request.path, 'scheme': 'http', 'status_code': self.status} @asyncio.coroutine def process_response(self, response): """Process response.""" for panel in self.panels: yield from panel.process_response(response)
[ 37811, 27509, 16984, 5657, 42636, 526, 15931, 198, 11748, 30351, 952, 198, 11748, 1330, 8019, 198, 11748, 20966, 21975, 355, 20966, 198, 11748, 28686, 13, 6978, 355, 1034, 198, 11748, 302, 198, 11748, 25064, 198, 11748, 334, 27112, 198, 198, 6738, 27563, 259, 1330, 357, 198, 220, 220, 220, 18261, 11, 36125, 43401, 11, 14626, 16922, 11, 14626, 22069, 18453, 11, 284, 62, 10215, 28399, 11, 14626, 1890, 37978, 8, 198, 6738, 27563, 259, 13, 37390, 1330, 7308, 37233, 11, 42636, 16922, 198, 6738, 27563, 259, 13, 26791, 1330, 33918, 198, 198, 6738, 764, 1330, 13043, 11, 3384, 4487, 198, 6738, 764, 83, 18347, 10141, 13, 83, 18347, 10141, 1330, 651, 62, 40546, 1891, 628, 198, 2200, 62, 33, 33076, 796, 302, 13, 5589, 576, 7, 65, 6, 27, 11139, 2618, 29, 3256, 302, 13, 40, 8, 198, 52, 62, 50, 5188, 62, 4537, 56, 35613, 796, 366, 312, 25, 1391, 15, 32239, 710, 1151, 25, 649, 62, 25927, 59, 358, 1045, 25, 1391, 16, 32239, 77, 59, 77, 1, 198, 22083, 40, 23988, 62, 34, 3727, 1546, 796, 357, 6200, 11, 25643, 11, 32591, 11, 30727, 11, 32747, 11, 38369, 11, 35617, 8, 628, 198, 6489, 7340, 1268, 62, 13252, 2394, 796, 1034, 13, 15908, 3672, 7, 404, 13, 397, 2777, 776, 7, 834, 7753, 834, 4008, 628, 198, 31, 292, 13361, 952, 13, 10215, 28399, 198, 4299, 14257, 25981, 5657, 62, 27171, 1574, 62, 69, 9548, 7, 1324, 11, 21360, 2599, 198, 220, 220, 220, 37227, 40786, 31687, 3504, 1574, 526, 15931, 198, 220, 220, 220, 288, 18347, 65, 796, 598, 13, 862, 13, 24442, 25981, 5657, 628, 220, 220, 220, 2488, 292, 13361, 952, 13, 10215, 28399, 198, 220, 220, 220, 825, 14257, 25981, 5657, 62, 27171, 1574, 7, 25927, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 34500, 4873, 284, 3586, 526, 15931, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 6822, 329, 14257, 25981, 5657, 318, 9343, 329, 262, 2581, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 288, 18347, 65, 13, 37581, 13, 25616, 393, 597, 7, 8899, 7, 25927, 13, 6978, 13, 9688, 2032, 342, 11, 288, 18347, 65, 13, 37581, 13, 1069, 9152, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 357, 88, 1164, 422, 21360, 7, 25927, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 6569, 62, 4774, 11, 6569, 62, 634, 796, 2581, 13, 7645, 634, 13, 1136, 62, 26086, 62, 10951, 10786, 431, 13292, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 329, 2583, 287, 288, 18347, 65, 13, 37581, 13, 4774, 82, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 20966, 13, 541, 62, 21975, 7, 47960, 62, 4774, 8, 287, 20966, 13, 541, 62, 27349, 7, 4774, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 357, 88, 1164, 422, 21360, 7, 25927, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 20768, 1096, 257, 14257, 5219, 329, 262, 2581, 198, 220, 220, 220, 220, 220, 220, 220, 1181, 796, 31687, 9012, 7, 1324, 11, 2581, 8, 198, 220, 220, 220, 220, 220, 220, 220, 288, 18347, 65, 13, 23569, 58, 5219, 13, 312, 60, 796, 1181, 198, 220, 220, 220, 220, 220, 220, 220, 4732, 62, 2032, 23640, 796, 1181, 13, 37150, 62, 30281, 7, 30281, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 6889, 2882, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2882, 796, 7800, 422, 4732, 62, 2032, 23640, 7, 30281, 7, 25927, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1181, 13, 13376, 796, 2882, 13, 13376, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 14626, 16922, 355, 2859, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2882, 796, 2859, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1181, 13, 13376, 796, 2882, 13, 13376, 628, 220, 220, 220, 220, 220, 220, 220, 2845, 35528, 355, 2859, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 9363, 12854, 1891, 329, 555, 38788, 6631, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1181, 13, 13376, 796, 5323, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 288, 18347, 65, 13, 37581, 13, 3849, 984, 62, 41194, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 256, 65, 796, 651, 62, 40546, 1891, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7508, 28, 17597, 13, 41194, 62, 10951, 22784, 14267, 28, 16, 11, 905, 62, 30342, 62, 37805, 28, 25101, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8856, 62, 10057, 62, 1069, 11755, 28, 17821, 11, 2859, 28, 41194, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 18347, 65, 13, 1069, 11755, 58, 83, 65, 13, 312, 60, 796, 2581, 17816, 79, 9945, 83, 62, 83, 65, 20520, 796, 256, 65, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 5739, 287, 256, 65, 13, 37805, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 18347, 65, 13, 37805, 58, 312, 7, 14535, 15437, 796, 5739, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2882, 796, 18261, 7, 5239, 28, 83, 65, 13, 13287, 62, 12853, 7, 25927, 828, 2695, 62, 4906, 11639, 5239, 14, 6494, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 37127, 2638, 18941, 12416, 290, 3359, 281, 27711, 2443, 351, 257, 2792, 284, 262, 2496, 13, 198, 220, 220, 220, 220, 220, 220, 220, 611, 288, 18347, 65, 13, 37581, 13, 3849, 984, 62, 445, 1060, 82, 290, 2882, 13, 13376, 287, 23848, 40, 23988, 62, 34, 3727, 1546, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 290, 705, 14749, 6, 287, 2882, 13, 50145, 25, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2882, 796, 7800, 422, 598, 13, 862, 13, 18594, 6592, 17, 13, 13287, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 24442, 25981, 5657, 14, 445, 1060, 13, 6494, 3256, 2882, 28, 26209, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2882, 796, 18261, 7, 5239, 28, 26209, 11, 2695, 62, 4906, 11639, 5239, 14, 6494, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 7800, 422, 1181, 13, 14681, 62, 26209, 7, 26209, 8, 628, 220, 220, 220, 220, 220, 220, 220, 611, 318, 39098, 7, 26209, 11, 18261, 8, 290, 2882, 13, 11299, 62, 4906, 6624, 705, 5239, 14, 6494, 6, 290, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4526, 62, 33, 33076, 13, 12947, 7, 26209, 13, 2618, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 357, 88, 1164, 422, 288, 18347, 65, 13, 259, 752, 7, 5219, 11, 2882, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 2882, 628, 220, 220, 220, 1441, 14257, 25981, 5657, 62, 27171, 1574, 628, 198, 4871, 42636, 7, 14881, 37233, 2599, 628, 220, 220, 220, 37227, 464, 13877, 7822, 526, 15931, 628, 220, 220, 220, 1438, 796, 705, 24442, 25981, 5657, 6, 198, 220, 220, 220, 26235, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 705, 25616, 10354, 6407, 11, 198, 220, 220, 220, 220, 220, 220, 220, 705, 4774, 82, 10354, 37250, 16799, 13, 15, 13, 15, 13, 16, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 705, 40290, 10354, 31051, 62, 24442, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 3849, 984, 62, 41194, 10354, 705, 24442, 3256, 220, 1303, 14257, 14, 13812, 14, 25101, 11, 198, 220, 220, 220, 220, 220, 220, 220, 705, 3849, 984, 62, 445, 1060, 82, 10354, 6407, 11, 198, 220, 220, 220, 220, 220, 220, 220, 705, 1069, 9152, 10354, 685, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 705, 6839, 1424, 10354, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13043, 13, 39681, 27509, 26639, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13043, 13, 18453, 53, 945, 27509, 26639, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13043, 13, 11187, 2667, 27509, 26639, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13043, 13, 2898, 558, 1891, 27509, 26639, 11, 198, 220, 220, 220, 220, 220, 220, 220, 16589, 198, 220, 220, 220, 220, 220, 220, 220, 705, 2860, 1859, 62, 6839, 1424, 10354, 685, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 705, 20541, 62, 6839, 1424, 10354, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13043, 13, 49, 448, 274, 27509, 26639, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13043, 13, 38149, 27509, 26639, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13043, 13, 34621, 86, 3565, 27509, 26639, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13043, 13, 45150, 27509, 26639, 11, 198, 220, 220, 220, 220, 220, 220, 220, 2361, 198, 220, 220, 220, 1782, 628, 220, 220, 220, 825, 9058, 7, 944, 11, 598, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 40786, 262, 13877, 290, 8335, 3586, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 2208, 7, 37233, 11, 2116, 737, 40406, 7, 1324, 8, 628, 220, 220, 220, 220, 220, 220, 220, 611, 705, 18594, 6592, 17, 6, 407, 287, 598, 13, 37390, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 42636, 16922, 10786, 464, 13877, 4433, 337, 1648, 259, 12, 41, 259, 6592, 17, 13877, 6589, 2637, 8, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 37581, 13, 40290, 796, 2116, 13, 37581, 13, 40290, 13, 81, 36311, 10786, 14, 11537, 1343, 31051, 6, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 37581, 13, 1069, 9152, 13, 33295, 7, 944, 13, 37581, 13, 40290, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 31122, 14257, 25981, 5657, 24019, 198, 220, 220, 220, 220, 220, 220, 220, 598, 13, 862, 13, 18594, 6592, 17, 13, 37581, 13, 28243, 62, 11379, 364, 13, 33295, 7, 404, 13, 22179, 7, 6489, 7340, 1268, 62, 13252, 2394, 11, 705, 11498, 17041, 6, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 37581, 13, 6839, 1424, 15853, 1351, 7, 944, 13, 37581, 13, 2860, 1859, 62, 6839, 1424, 8, 198, 220, 220, 220, 220, 220, 220, 220, 13043, 62, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 329, 6103, 287, 2116, 13, 37581, 13, 6839, 1424, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 318, 39098, 7, 35330, 11, 965, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 953, 11, 4808, 11, 6103, 796, 6103, 13, 3911, 653, 7, 10354, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 953, 796, 1330, 8019, 13, 11748, 62, 21412, 7, 4666, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6103, 796, 5418, 7, 35330, 393, 705, 27509, 26639, 3256, 953, 13, 834, 11600, 834, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13043, 44807, 33295, 7, 35330, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 37581, 13, 6839, 1424, 796, 13043, 62, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 31122, 14257, 25981, 5657, 9037, 3696, 198, 220, 220, 220, 220, 220, 220, 220, 598, 13, 472, 353, 13, 30238, 62, 38629, 7, 45442, 43401, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 24442, 25981, 5657, 13, 12708, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 37581, 13, 40290, 1343, 705, 12708, 14, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1034, 13, 22179, 7, 6489, 7340, 1268, 62, 13252, 2394, 11, 705, 12708, 6, 22305, 628, 220, 220, 220, 220, 220, 220, 220, 598, 13, 30238, 7, 944, 13, 37581, 13, 40290, 1343, 705, 82, 325, 3256, 1438, 11639, 24442, 25981, 5657, 13, 82, 325, 6, 5769, 944, 13, 82, 325, 8, 198, 220, 220, 220, 220, 220, 220, 220, 598, 13, 30238, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 37581, 13, 40290, 1343, 705, 1069, 4516, 3256, 1438, 11639, 24442, 25981, 5657, 13, 1069, 4516, 6, 5769, 944, 13, 1069, 4516, 8, 198, 220, 220, 220, 220, 220, 220, 220, 598, 13, 30238, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 37581, 13, 40290, 1343, 705, 41049, 3256, 1438, 11639, 24442, 25981, 5657, 13, 41049, 6, 5769, 944, 13, 41049, 8, 198, 220, 220, 220, 220, 220, 220, 220, 598, 13, 30238, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 37581, 13, 40290, 1343, 705, 10459, 3256, 1438, 11639, 24442, 25981, 5657, 13, 10459, 6, 5769, 944, 13, 10459, 8, 198, 220, 220, 220, 220, 220, 220, 220, 598, 13, 30238, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 37581, 13, 40290, 13, 81, 36311, 10786, 14, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 37581, 13, 40290, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 37581, 13, 40290, 1343, 705, 90, 25927, 62, 312, 92, 3256, 1438, 11639, 24442, 25981, 5657, 13, 25927, 6, 5769, 944, 13, 1177, 8, 628, 220, 220, 220, 220, 220, 220, 220, 598, 17816, 24442, 25981, 5657, 20520, 796, 23884, 198, 220, 220, 220, 220, 220, 220, 220, 598, 17816, 24442, 25981, 5657, 6, 7131, 6, 79, 9945, 83, 62, 30001, 20520, 796, 334, 27112, 13, 12303, 312, 19, 22446, 33095, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 23569, 796, 598, 17816, 24442, 25981, 5657, 6, 7131, 6, 23569, 20520, 796, 3384, 4487, 13, 18122, 7, 1120, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 1069, 11755, 796, 598, 17816, 24442, 25981, 5657, 6, 7131, 6, 1069, 11755, 20520, 796, 3384, 4487, 13, 18122, 7, 1120, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 37805, 796, 598, 17816, 24442, 25981, 5657, 6, 7131, 6, 37805, 20520, 796, 3384, 4487, 13, 18122, 7, 3064, 8, 628, 220, 220, 220, 2488, 292, 13361, 952, 13, 10215, 28399, 198, 220, 220, 220, 825, 923, 7, 944, 11, 598, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 7253, 3586, 13, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 598, 13, 27171, 86, 3565, 13, 28463, 7, 15, 11, 14257, 25981, 5657, 62, 27171, 1574, 62, 69, 9548, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 20541, 62, 6839, 1424, 796, 685, 26639, 7, 944, 13, 1324, 8, 329, 18810, 287, 2116, 13, 37581, 13, 20541, 62, 6839, 1424, 60, 628, 220, 220, 220, 2488, 292, 13361, 952, 13, 10215, 28399, 198, 220, 220, 220, 825, 8677, 7, 944, 11, 1181, 11, 2882, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 554, 752, 31687, 16984, 5657, 2438, 284, 2882, 1767, 13, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 27711, 796, 7800, 422, 2116, 13, 1324, 13, 862, 13, 18594, 6592, 17, 13, 13287, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 24442, 25981, 5657, 14, 259, 752, 13, 6494, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9037, 62, 6978, 28, 944, 13, 37581, 13, 40290, 1343, 705, 12708, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 50149, 62, 6371, 28, 944, 13, 37581, 13, 40290, 1343, 1181, 13, 312, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 27711, 796, 27711, 13, 268, 8189, 7, 5219, 13, 25927, 13, 354, 945, 316, 393, 705, 40477, 12, 23, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 2882, 13, 2618, 796, 4526, 62, 33, 33076, 13, 7266, 7, 6494, 1343, 275, 6, 3556, 2618, 29, 3256, 2882, 13, 2618, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2882, 628, 220, 220, 220, 2488, 292, 13361, 952, 13, 10215, 28399, 198, 220, 220, 220, 825, 1570, 7, 944, 11, 2581, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 31687, 16984, 5657, 13, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 6284, 796, 7800, 422, 2116, 13, 9800, 1096, 7, 25927, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 6284, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 14626, 1890, 37978, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 2581, 62, 312, 796, 2581, 13, 15699, 62, 10951, 13, 1136, 10786, 25927, 62, 312, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 1181, 796, 2116, 13, 23569, 13, 1136, 7, 25927, 62, 312, 11, 6045, 8, 628, 220, 220, 220, 220, 220, 220, 220, 2882, 796, 7800, 422, 2116, 13, 1324, 13, 862, 13, 18594, 6592, 17, 13, 13287, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 24442, 25981, 5657, 14, 25981, 5657, 13, 6494, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14257, 25981, 5657, 28, 944, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1181, 28, 5219, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9037, 62, 6978, 28, 944, 13, 37581, 13, 40290, 1343, 705, 12708, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13043, 28, 5219, 290, 1181, 13, 6839, 1424, 393, 685, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3298, 62, 6839, 1424, 28, 944, 13, 20541, 62, 6839, 1424, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2581, 28, 5219, 290, 1181, 13, 25927, 393, 6045, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 18261, 7, 5239, 28, 26209, 11, 2695, 62, 4906, 11639, 5239, 14, 6494, 11537, 628, 220, 220, 220, 2488, 292, 13361, 952, 13, 10215, 28399, 198, 220, 220, 220, 825, 29145, 7, 944, 11, 2581, 2599, 220, 1303, 645, 20402, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 19463, 19601, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 6407, 628, 220, 220, 220, 825, 19601, 7, 944, 11, 25439, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 7469, 500, 257, 19601, 21360, 13, 628, 220, 220, 220, 220, 220, 220, 220, 7904, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14257, 25981, 5657, 796, 27563, 259, 62, 24442, 25981, 5657, 13, 37233, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14257, 25981, 5657, 13, 40406, 7, 1324, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2488, 24442, 25981, 5657, 13, 9800, 1634, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 825, 1459, 62, 7220, 62, 271, 62, 6404, 2004, 7, 25927, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2836, 796, 7800, 422, 3440, 62, 29891, 7, 25927, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 2836, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 9800, 1096, 796, 284, 62, 10215, 28399, 7, 20786, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 25439, 628, 220, 220, 220, 2488, 292, 13361, 952, 13, 10215, 28399, 198, 220, 220, 220, 825, 264, 325, 7, 944, 11, 2581, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 50, 5188, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 2882, 796, 18261, 7, 13376, 28, 2167, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2882, 13, 11299, 62, 4906, 796, 705, 5239, 14, 15596, 12, 5532, 6, 198, 220, 220, 220, 220, 220, 220, 220, 2882, 13, 5239, 796, 10148, 198, 220, 220, 220, 220, 220, 220, 220, 4075, 62, 25927, 62, 312, 796, 2581, 13, 18851, 13, 1136, 10786, 25927, 62, 312, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 5456, 62, 12957, 62, 25927, 62, 312, 796, 965, 7, 25927, 13, 50145, 13, 1136, 10786, 5956, 12, 9237, 12, 7390, 3256, 657, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 23569, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 938, 62, 25927, 62, 312, 796, 1306, 7, 260, 690, 276, 7, 944, 13, 23569, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 938, 62, 25927, 62, 312, 6624, 5456, 62, 12957, 62, 25927, 62, 312, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 4808, 312, 287, 17687, 7, 944, 13, 23569, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 13, 33295, 26933, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 312, 11, 2116, 13, 23569, 29795, 312, 4083, 17752, 11, 705, 5275, 6, 611, 4075, 62, 25927, 62, 312, 6624, 4808, 312, 2073, 10148, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1366, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2882, 13, 5239, 796, 471, 62, 50, 5188, 62, 4537, 56, 35613, 13, 18982, 7, 12957, 62, 25927, 62, 312, 11, 33918, 13, 67, 8142, 7, 7890, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 2882, 628, 220, 220, 220, 2488, 292, 13361, 952, 13, 10215, 28399, 628, 220, 220, 220, 2488, 292, 13361, 952, 13, 10215, 28399, 628, 220, 220, 220, 2488, 292, 13361, 952, 13, 10215, 28399, 628, 198, 4871, 31687, 9012, 25, 628, 220, 220, 220, 37227, 9363, 14257, 1181, 13, 37227, 628, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 598, 11, 2581, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 22658, 262, 42287, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 25927, 796, 2581, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 13376, 796, 939, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 6839, 1424, 796, 685, 26639, 7, 1324, 11, 2581, 8, 329, 18810, 287, 598, 13, 862, 13, 24442, 25981, 5657, 13, 37581, 13, 6839, 1424, 60, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 4686, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 13615, 1181, 4522, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 965, 7, 312, 7, 944, 4008, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 33918, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 13615, 19449, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 1391, 6, 24396, 10354, 2116, 13, 25927, 13, 24396, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 6978, 10354, 2116, 13, 25927, 13, 6978, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 15952, 1326, 10354, 705, 4023, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 13376, 62, 8189, 10354, 2116, 13, 13376, 92, 628, 220, 220, 220, 2488, 292, 13361, 952, 13, 10215, 28399, 198, 220, 220, 220, 825, 1429, 62, 26209, 7, 944, 11, 2882, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 18709, 2882, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 329, 6103, 287, 2116, 13, 6839, 1424, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7800, 422, 6103, 13, 14681, 62, 26209, 7, 26209, 8, 198 ]
2.222821
4,268
import numpy as np from scipy import stats import statsmodels.sandbox.stats.runs as runs # 18/21 output statistics fully implemented from MATLAB, the other three are either from complex helper functions or MATLAB functions that don't transfer well def PH_Walker(y, walkerRule='prop', walkerParams=np.array([])): """ PH_Walker simulates a hypothetical walker moving through the time domain the hypothetical particle (or 'walker') moves in response to values of the time series at each point Outputs from this operation are summaries of the walkers motion, and comparisons of it to the original time series :param y: the input time series :param walkerRule: the kinematic rule by which the walker moves in response to the time series over time (i) 'prop': the walker narrows the gap between its value and that of the time series by a given proportion p (ii) 'biasprop': the walker is biased to move more in one direction; when it is being pushed up by the time series, it narrows the gap by a proportion p_{up}, and when it is being pushed down by the time series it narrows the gap by a (potentially different) proportion p_{down}. walkerParams = [pup,pdown] (iii) 'momentum': the walker moves as if it has mass m and inertia from the previous time step and the time series acts as a force altering its motion in a classical Newtonian dynamics framework. [walkerParams = m], the mass. (iv) 'runningvar': the walker moves with inertia as above, but its values are also adjusted so as to match the local variance of time series by a multiplicative factor. walkerParams = [m,wl], where m is the inertial mass and wl is the window length. :param walkerParams: the parameters for the specified walker, explained above :return: include the mean, spread, maximum, minimum, and autocorrelation of the walker's trajectory, the number of crossings between the walker and the original time series, the ratio or difference of some basic summary statistics between the original time series and the walker, an Ansari-Bradley test comparing the distributions of the walker and original time series, and various statistics summarizing properties of the residuals between the walker's trajectory and the original time series. """ # ---------------------------------------------------------------------------------------------------------------------------------- # PRELIMINARIES #---------------------------------------------------------------------------------------------------------------------------------- N = len(y) #---------------------------------------------------------------------------------------------------------------------------------- # CHECK INPUTS #---------------------------------------------------------------------------------------------------------------------------------- if walkerRule == 'runningvar': walkerParams = [1.5, 50] if (len(walkerParams) == 0): if walkerRule == 'prop': walkerParams = np.array([0.5]) if walkerRule == 'biasprop': walkerParams = np.array([0.1, 0.2]) if walkerRule == 'momentum': walkerParams = np.array([2]) if walkerRule == 'runningvar': walkerParams = [1.5, 50] #---------------------------------------------------------------------------------------------------------------------------------- # (1) WALK #---------------------------------------------------------------------------------------------------------------------------------- w = np.zeros(N) if walkerRule == 'prop': # walker starts at zero and narrows the gap between its position # and the time series value at that point by the proportion given # in walkerParams, to give the value at the subsequent time step if isinstance(walkerParams,list): walkerParams = walkerParams[0] p = walkerParams w[0] = 0 for i in range(1, N): w[i] = w[i-1] + p*(y[i-1]-w[i-1]) elif walkerRule == 'biasprop': # walker is biased in one or the other direction (i.e., prefers to # go up, or down). Requires a vector of inputs: [p_up, p_down] pup = walkerParams[0] pdown = walkerParams[0] w[0] = 0 for i in range (1, N): if y[i] > y[i-1]: w[i] = w[i-1] + pup*(y[i-1]-w[i-1]) else : w[i] = w[i-1] + pdown*(y[i-1]-w[i-1]) elif walkerRule == 'momentum': # walker moves as if it had inertia from the previous time step, # i.e., it 'wants' to move the same amount; the time series acts as # a force changing its motion m = walkerParams[0] # inertial mass w[0] = y[0] w[1] = y[1] for i in range(2, N): w_inert = w[i-1] + (w[i-1]-w[i-2]) w[i] = w_inert + (y[i] - w_inert)/m # dissipative term #equation of motion (s-s_0 = ut + F/m*t^2) #where the 'force' is F is the change in the original time series at the point elif walkerRule == 'runningvar': m = walkerParams[0] wl = walkerParams[1] w[0] = y[0] w[1] = y[1] for i in range(2, N): w_inert = w[i-1] + (w[i-1]-w[i-2]) w_mom = w_inert + (y[i] - w_inert)/m #dissipative term from time series if i > wl: w[i] = w_mom * (np.std(y[(i-wl):i]))/np.std(w[(i-wl):i]) else: w[i] = w_mom else : print("Error: Unknown method: " + walkerRule + " for simulating walker on the time series") #---------------------------------------------------------------------------------------------------------------------------------- # (2) STATISITICS ON THE WALK #---------------------------------------------------------------------------------------------------------------------------------- out = {} # dictionary for storing variables # (i) The walk itself ------------------------------------------------------------------------------------------- out['w_mean'] = np.mean(w) out['w_median'] = np.median(w) out['w_std'] = np.std(w) out['w_ac1'] = CO_AutoCorr(w, 1, method='timedomainstat') # this function call in MATLAB uses method='Fourier', but we don't have that case implemented yet in autoCorr, however this seems to output the same thing out['w_ac2'] = CO_AutoCorr(w, 2, method='timedomainstat') out['w_tau'] = CO_FirstZero(w, 'ac') out['w_min'] = np.min(w) out['w_max'] = np.max(w) out['propzcross'] = sum( np.multiply( w[0:(len(w)-2)], w[1:(len(w)-1)] ) < 0) / (N-1) # np.multiply performs elementwise multiplication like matlab .* # differences between the walk at signal # (ii) Differences between the walk at signal ------------------------------------------------------------------- out['sw_meanabsdiff'] = np.mean(np.abs(y-w)) out['sw_taudiff'] = CO_FirstZero(y, 'ac') - CO_FirstZero(w, 'ac') out['sw_stdrat'] = np.std(w)/np.std(y) # will be thse same as w_std for z-scored signal out['sw_ac1rat'] = out['w_ac1']/CO_AutoCorr(y, 1) out['sw_minrat'] = min(w)/min(y) out['sw_maxrat'] = max(w)/max(y) out['sw_propcross'] = sum(np.multiply( w[0:(len(w)-1)] - y[0:(len(y)-1)] , w[1:(len(w))]-y[1:(len(y))]) < 0 )/(N-1) #np.multiply performs elementwise multiplication like matlab .* ansari = stats.ansari(w, y) out['sw_ansarib_pval'] = ansari[1] # r = np.linspace( np.min(np.min(y), np.min(w)), np.max(np.max(y), np.max(w)), 200 ) # dy = stats.gaussian_kde(y, r) # (iii) looking at residuals between time series and walker res = w-y # CLOSEST FUNCTION TO MATLAB RUNSTEST, found in statsmodels.sandbox.stats.runs # runstest = runs.runstest_2samp(res, groups=2) # out['res_runstest'] = runstest out['res_acl'] = CO_AutoCorr(res, lag=1) return out
[ 198, 11748, 299, 32152, 355, 45941, 198, 6738, 629, 541, 88, 1330, 9756, 198, 11748, 9756, 27530, 13, 38142, 3524, 13, 34242, 13, 48381, 355, 4539, 198, 198, 2, 1248, 14, 2481, 5072, 7869, 3938, 9177, 422, 36775, 48780, 11, 262, 584, 1115, 389, 2035, 422, 3716, 31904, 5499, 393, 36775, 48780, 5499, 326, 836, 470, 4351, 880, 198, 198, 4299, 9370, 62, 39950, 7, 88, 11, 2513, 263, 31929, 11639, 22930, 3256, 2513, 263, 10044, 4105, 28, 37659, 13, 18747, 26933, 12962, 2599, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 9370, 62, 39950, 985, 15968, 257, 25345, 2513, 263, 3867, 832, 262, 640, 7386, 628, 220, 220, 220, 262, 25345, 18758, 357, 273, 705, 20783, 11537, 6100, 287, 2882, 284, 3815, 286, 262, 640, 2168, 379, 1123, 966, 628, 220, 220, 220, 25235, 82, 422, 428, 4905, 389, 30114, 3166, 286, 262, 2513, 364, 6268, 11, 290, 17909, 286, 340, 284, 262, 2656, 640, 2168, 628, 220, 220, 220, 1058, 17143, 331, 25, 262, 5128, 640, 2168, 198, 220, 220, 220, 1058, 17143, 2513, 263, 31929, 25, 262, 479, 7749, 1512, 3896, 416, 543, 262, 2513, 263, 6100, 287, 2882, 284, 262, 640, 2168, 625, 640, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 72, 8, 705, 22930, 10354, 262, 2513, 263, 7135, 82, 262, 7625, 1022, 663, 1988, 290, 326, 286, 262, 640, 2168, 416, 257, 1813, 9823, 279, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 4178, 8, 705, 65, 4448, 22930, 10354, 262, 2513, 263, 318, 21925, 284, 1445, 517, 287, 530, 4571, 26, 618, 340, 318, 852, 7121, 510, 416, 262, 640, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2168, 11, 340, 7135, 82, 262, 7625, 416, 257, 9823, 279, 23330, 929, 5512, 290, 618, 340, 318, 852, 7121, 866, 416, 262, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 640, 2168, 340, 7135, 82, 262, 7625, 416, 257, 357, 13059, 3746, 1180, 8, 9823, 279, 23330, 2902, 27422, 2513, 263, 10044, 4105, 796, 685, 79, 929, 11, 79, 2902, 60, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 15479, 8, 705, 32542, 298, 388, 10354, 262, 2513, 263, 6100, 355, 611, 340, 468, 2347, 285, 290, 48482, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 422, 262, 2180, 640, 2239, 290, 262, 640, 2168, 6529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 355, 257, 2700, 29057, 663, 6268, 287, 257, 15993, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17321, 666, 17262, 9355, 13, 685, 20783, 10044, 4105, 796, 285, 4357, 262, 2347, 13, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 452, 8, 705, 20270, 7785, 10354, 262, 2513, 263, 6100, 351, 48482, 355, 2029, 11, 475, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 663, 3815, 389, 635, 12328, 523, 355, 284, 2872, 262, 1957, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 24198, 286, 640, 2168, 416, 257, 15082, 43058, 5766, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2513, 263, 10044, 4105, 796, 685, 76, 11, 40989, 4357, 810, 285, 318, 262, 29824, 498, 2347, 290, 266, 75, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 318, 262, 4324, 4129, 13, 628, 220, 220, 220, 1058, 17143, 2513, 263, 10044, 4105, 25, 262, 10007, 329, 262, 7368, 2513, 263, 11, 4893, 2029, 628, 220, 220, 220, 1058, 7783, 25, 2291, 262, 1612, 11, 4104, 11, 5415, 11, 5288, 11, 290, 1960, 420, 273, 49501, 286, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 262, 2513, 263, 338, 22942, 11, 262, 1271, 286, 41930, 1022, 262, 2513, 263, 290, 262, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2656, 640, 2168, 11, 262, 8064, 393, 3580, 286, 617, 4096, 10638, 7869, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1022, 262, 2656, 640, 2168, 290, 262, 2513, 263, 11, 281, 28038, 2743, 12, 30805, 1636, 1332, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14176, 262, 24570, 286, 262, 2513, 263, 290, 2656, 640, 2168, 11, 290, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2972, 7869, 15676, 2890, 6608, 286, 262, 29598, 82, 1022, 262, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2513, 263, 338, 22942, 290, 262, 2656, 640, 2168, 13, 628, 220, 220, 220, 37227, 628, 220, 220, 220, 1303, 16529, 10097, 438, 198, 220, 220, 220, 1303, 350, 16448, 3955, 1268, 1503, 11015, 198, 220, 220, 220, 1303, 10097, 10097, 438, 628, 220, 220, 220, 399, 796, 18896, 7, 88, 8, 628, 220, 220, 220, 1303, 10097, 10097, 438, 198, 220, 220, 220, 1303, 5870, 25171, 3268, 30076, 50, 198, 220, 220, 220, 1303, 10097, 10097, 438, 198, 220, 220, 220, 611, 2513, 263, 31929, 6624, 705, 20270, 7785, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 2513, 263, 10044, 4105, 796, 685, 16, 13, 20, 11, 2026, 60, 198, 220, 220, 220, 611, 357, 11925, 7, 20783, 10044, 4105, 8, 6624, 657, 2599, 628, 220, 220, 220, 220, 220, 220, 220, 611, 2513, 263, 31929, 6624, 705, 22930, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2513, 263, 10044, 4105, 796, 45941, 13, 18747, 26933, 15, 13, 20, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2513, 263, 31929, 6624, 705, 65, 4448, 22930, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2513, 263, 10044, 4105, 796, 45941, 13, 18747, 26933, 15, 13, 16, 11, 657, 13, 17, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2513, 263, 31929, 6624, 705, 32542, 298, 388, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2513, 263, 10044, 4105, 796, 45941, 13, 18747, 26933, 17, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2513, 263, 31929, 6624, 705, 20270, 7785, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2513, 263, 10044, 4105, 796, 685, 16, 13, 20, 11, 2026, 60, 628, 220, 220, 220, 1303, 10097, 10097, 438, 198, 220, 220, 220, 1303, 357, 16, 8, 370, 28082, 198, 220, 220, 220, 1303, 10097, 10097, 438, 628, 198, 220, 220, 220, 266, 796, 45941, 13, 9107, 418, 7, 45, 8, 628, 220, 220, 220, 611, 2513, 263, 31929, 6624, 705, 22930, 10354, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 2513, 263, 4940, 379, 6632, 290, 7135, 82, 262, 7625, 1022, 663, 2292, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 290, 262, 640, 2168, 1988, 379, 326, 966, 416, 262, 9823, 1813, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 287, 2513, 263, 10044, 4105, 11, 284, 1577, 262, 1988, 379, 262, 8840, 640, 2239, 198, 220, 220, 220, 220, 220, 220, 220, 611, 318, 39098, 7, 20783, 10044, 4105, 11, 4868, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2513, 263, 10044, 4105, 796, 2513, 263, 10044, 4105, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 279, 796, 2513, 263, 10044, 4105, 198, 220, 220, 220, 220, 220, 220, 220, 266, 58, 15, 60, 796, 657, 628, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 287, 2837, 7, 16, 11, 399, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 266, 58, 72, 60, 796, 266, 58, 72, 12, 16, 60, 1343, 279, 9, 7, 88, 58, 72, 12, 16, 45297, 86, 58, 72, 12, 16, 12962, 628, 198, 220, 220, 220, 1288, 361, 2513, 263, 31929, 6624, 705, 65, 4448, 22930, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 2513, 263, 318, 21925, 287, 530, 393, 262, 584, 4571, 357, 72, 13, 68, 1539, 26237, 284, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 467, 510, 11, 393, 866, 737, 26848, 257, 15879, 286, 17311, 25, 685, 79, 62, 929, 11, 279, 62, 2902, 60, 628, 220, 220, 220, 220, 220, 220, 220, 15552, 796, 2513, 263, 10044, 4105, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 279, 2902, 796, 2513, 263, 10044, 4105, 58, 15, 60, 628, 220, 220, 220, 220, 220, 220, 220, 266, 58, 15, 60, 796, 657, 628, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 287, 2837, 357, 16, 11, 399, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 331, 58, 72, 60, 1875, 331, 58, 72, 12, 16, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 266, 58, 72, 60, 796, 266, 58, 72, 12, 16, 60, 1343, 15552, 9, 7, 88, 58, 72, 12, 16, 45297, 86, 58, 72, 12, 16, 12962, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 266, 58, 72, 60, 796, 266, 58, 72, 12, 16, 60, 1343, 279, 2902, 9, 7, 88, 58, 72, 12, 16, 45297, 86, 58, 72, 12, 16, 12962, 628, 220, 220, 220, 1288, 361, 2513, 263, 31929, 6624, 705, 32542, 298, 388, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 2513, 263, 6100, 355, 611, 340, 550, 48482, 422, 262, 2180, 640, 2239, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1312, 13, 68, 1539, 340, 705, 86, 1187, 6, 284, 1445, 262, 976, 2033, 26, 262, 640, 2168, 6529, 355, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 257, 2700, 5609, 663, 6268, 628, 220, 220, 220, 220, 220, 220, 220, 285, 796, 2513, 263, 10044, 4105, 58, 15, 60, 1303, 29824, 498, 2347, 628, 220, 220, 220, 220, 220, 220, 220, 266, 58, 15, 60, 796, 331, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 266, 58, 16, 60, 796, 331, 58, 16, 60, 628, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 287, 2837, 7, 17, 11, 399, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 266, 62, 259, 861, 796, 266, 58, 72, 12, 16, 60, 1343, 357, 86, 58, 72, 12, 16, 45297, 86, 58, 72, 12, 17, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 266, 58, 72, 60, 796, 266, 62, 259, 861, 1343, 357, 88, 58, 72, 60, 532, 266, 62, 259, 861, 20679, 76, 1303, 32008, 876, 3381, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 4853, 341, 286, 6268, 357, 82, 12, 82, 62, 15, 796, 3384, 1343, 376, 14, 76, 9, 83, 61, 17, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3003, 262, 705, 3174, 6, 318, 376, 318, 262, 1487, 287, 262, 2656, 640, 2168, 379, 262, 966, 628, 220, 220, 220, 1288, 361, 2513, 263, 31929, 6624, 705, 20270, 7785, 10354, 628, 220, 220, 220, 220, 220, 220, 220, 285, 796, 2513, 263, 10044, 4105, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 266, 75, 796, 2513, 263, 10044, 4105, 58, 16, 60, 628, 220, 220, 220, 220, 220, 220, 220, 266, 58, 15, 60, 796, 331, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 266, 58, 16, 60, 796, 331, 58, 16, 60, 628, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 287, 2837, 7, 17, 11, 399, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 266, 62, 259, 861, 796, 266, 58, 72, 12, 16, 60, 1343, 357, 86, 58, 72, 12, 16, 45297, 86, 58, 72, 12, 17, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 266, 62, 32542, 796, 266, 62, 259, 861, 1343, 357, 88, 58, 72, 60, 532, 266, 62, 259, 861, 20679, 76, 1303, 67, 747, 541, 876, 3381, 422, 640, 2168, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1312, 1875, 266, 75, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 266, 58, 72, 60, 796, 266, 62, 32542, 1635, 357, 37659, 13, 19282, 7, 88, 58, 7, 72, 12, 40989, 2599, 72, 60, 4008, 14, 37659, 13, 19282, 7, 86, 58, 7, 72, 12, 40989, 2599, 72, 12962, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 266, 58, 72, 60, 796, 266, 62, 32542, 628, 198, 220, 220, 220, 2073, 1058, 628, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 12331, 25, 16185, 2446, 25, 366, 1343, 2513, 263, 31929, 1343, 366, 329, 985, 8306, 2513, 263, 319, 262, 640, 2168, 4943, 628, 198, 220, 220, 220, 1303, 10097, 10097, 438, 198, 220, 220, 220, 1303, 357, 17, 8, 15486, 1797, 2043, 19505, 6177, 3336, 370, 28082, 198, 220, 220, 220, 1303, 10097, 10097, 438, 628, 220, 220, 220, 503, 796, 23884, 1303, 22155, 329, 23069, 9633, 628, 220, 220, 220, 1303, 357, 72, 8, 383, 2513, 2346, 16529, 22369, 6329, 628, 220, 220, 220, 503, 17816, 86, 62, 32604, 20520, 796, 45941, 13, 32604, 7, 86, 8, 198, 220, 220, 220, 503, 17816, 86, 62, 1150, 666, 20520, 796, 45941, 13, 1150, 666, 7, 86, 8, 198, 220, 220, 220, 503, 17816, 86, 62, 19282, 20520, 796, 45941, 13, 19282, 7, 86, 8, 198, 220, 220, 220, 503, 17816, 86, 62, 330, 16, 20520, 796, 7375, 62, 27722, 10606, 81, 7, 86, 11, 352, 11, 2446, 11639, 16514, 3836, 391, 14269, 11537, 1303, 428, 2163, 869, 287, 36775, 48780, 3544, 2446, 11639, 37, 280, 5277, 3256, 475, 356, 836, 470, 423, 326, 1339, 9177, 1865, 287, 8295, 10606, 81, 11, 2158, 428, 2331, 284, 5072, 262, 976, 1517, 198, 220, 220, 220, 503, 17816, 86, 62, 330, 17, 20520, 796, 7375, 62, 27722, 10606, 81, 7, 86, 11, 362, 11, 2446, 11639, 16514, 3836, 391, 14269, 11537, 198, 220, 220, 220, 503, 17816, 86, 62, 83, 559, 20520, 796, 7375, 62, 5962, 28667, 7, 86, 11, 705, 330, 11537, 198, 220, 220, 220, 503, 17816, 86, 62, 1084, 20520, 796, 45941, 13, 1084, 7, 86, 8, 198, 220, 220, 220, 503, 17816, 86, 62, 9806, 20520, 796, 45941, 13, 9806, 7, 86, 8, 198, 220, 220, 220, 503, 17816, 22930, 89, 19692, 20520, 796, 2160, 7, 45941, 13, 16680, 541, 306, 7, 266, 58, 15, 37498, 11925, 7, 86, 13219, 17, 8, 4357, 266, 58, 16, 37498, 11925, 7, 86, 13219, 16, 15437, 1267, 1279, 657, 8, 1220, 357, 45, 12, 16, 8, 1303, 45941, 13, 16680, 541, 306, 17706, 5002, 3083, 48473, 588, 2603, 23912, 764, 9, 198, 220, 220, 220, 1303, 5400, 1022, 262, 2513, 379, 6737, 628, 220, 220, 220, 1303, 357, 4178, 8, 41937, 1022, 262, 2513, 379, 6737, 16529, 6329, 628, 220, 220, 220, 503, 17816, 2032, 62, 32604, 8937, 26069, 20520, 796, 45941, 13, 32604, 7, 37659, 13, 8937, 7, 88, 12, 86, 4008, 198, 220, 220, 220, 503, 17816, 2032, 62, 83, 3885, 733, 20520, 796, 7375, 62, 5962, 28667, 7, 88, 11, 705, 330, 11537, 532, 7375, 62, 5962, 28667, 7, 86, 11, 705, 330, 11537, 198, 220, 220, 220, 503, 17816, 2032, 62, 301, 7109, 265, 20520, 796, 45941, 13, 19282, 7, 86, 20679, 37659, 13, 19282, 7, 88, 8, 1303, 481, 307, 294, 325, 976, 355, 266, 62, 19282, 329, 1976, 12, 1416, 1850, 6737, 198, 220, 220, 220, 503, 17816, 2032, 62, 330, 16, 10366, 20520, 796, 503, 17816, 86, 62, 330, 16, 20520, 14, 8220, 62, 27722, 10606, 81, 7, 88, 11, 352, 8, 198, 220, 220, 220, 503, 17816, 2032, 62, 1084, 10366, 20520, 796, 949, 7, 86, 20679, 1084, 7, 88, 8, 198, 220, 220, 220, 503, 17816, 2032, 62, 9806, 10366, 20520, 796, 3509, 7, 86, 20679, 9806, 7, 88, 8, 198, 220, 220, 220, 503, 17816, 2032, 62, 1676, 14751, 1214, 20520, 796, 2160, 7, 37659, 13, 16680, 541, 306, 7, 266, 58, 15, 37498, 11925, 7, 86, 13219, 16, 15437, 532, 331, 58, 15, 37498, 11925, 7, 88, 13219, 16, 15437, 837, 266, 58, 16, 37498, 11925, 7, 86, 4008, 45297, 88, 58, 16, 37498, 11925, 7, 88, 4008, 12962, 1279, 657, 1267, 29006, 45, 12, 16, 8, 1303, 37659, 13, 16680, 541, 306, 17706, 5002, 3083, 48473, 588, 2603, 23912, 764, 9, 628, 220, 220, 220, 9093, 2743, 796, 9756, 13, 504, 2743, 7, 86, 11, 331, 8, 198, 220, 220, 220, 503, 17816, 2032, 62, 504, 283, 571, 62, 79, 2100, 20520, 796, 9093, 2743, 58, 16, 60, 628, 198, 220, 220, 220, 1303, 374, 796, 45941, 13, 21602, 10223, 7, 45941, 13, 1084, 7, 37659, 13, 1084, 7, 88, 828, 45941, 13, 1084, 7, 86, 36911, 45941, 13, 9806, 7, 37659, 13, 9806, 7, 88, 828, 45941, 13, 9806, 7, 86, 36911, 939, 1267, 198, 220, 220, 220, 1303, 20268, 796, 9756, 13, 4908, 31562, 62, 74, 2934, 7, 88, 11, 374, 8, 628, 198, 220, 220, 220, 1303, 357, 15479, 8, 2045, 379, 29598, 82, 1022, 640, 2168, 290, 2513, 263, 628, 220, 220, 220, 581, 796, 266, 12, 88, 628, 220, 220, 220, 1303, 7852, 2640, 6465, 29397, 4177, 2849, 5390, 36775, 48780, 32494, 2257, 6465, 11, 1043, 287, 9756, 27530, 13, 38142, 3524, 13, 34242, 13, 48381, 198, 220, 220, 220, 1303, 1057, 301, 395, 796, 4539, 13, 5143, 301, 395, 62, 17, 82, 696, 7, 411, 11, 2628, 28, 17, 8, 198, 220, 220, 220, 1303, 503, 17816, 411, 62, 5143, 301, 395, 20520, 796, 1057, 301, 395, 628, 220, 220, 220, 503, 17816, 411, 62, 37779, 20520, 796, 7375, 62, 27722, 10606, 81, 7, 411, 11, 19470, 28, 16, 8, 628, 198, 220, 220, 220, 1441, 503, 198 ]
2.694709
3,043
from typing import Dict SKIP = "SKIP" UNKNOWN = "UNKNOWN!" def detect_change(first: Dict[str, str], second: Dict[str, str], compareKeys: [str]) -> bool: """Detects change between two dictonaries Args: first (Dict[str, str]): First dictionary second (Dict[str, str]): Second dictionary compareKeys ([type]): Keys to handle comparison Returns: bool: Is there a change ? """ for key in compareKeys: if key not in second or key not in first: return True if first[key] != second[key]: return True return False
[ 6738, 19720, 1330, 360, 713, 198, 198, 18831, 4061, 796, 366, 18831, 4061, 1, 198, 4944, 44706, 796, 366, 4944, 44706, 2474, 628, 198, 198, 4299, 4886, 62, 3803, 7, 11085, 25, 360, 713, 58, 2536, 11, 965, 4357, 1218, 25, 360, 713, 58, 2536, 11, 965, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8996, 40729, 25, 685, 2536, 12962, 4613, 20512, 25, 198, 220, 220, 220, 37227, 47504, 82, 1487, 1022, 734, 8633, 261, 3166, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 717, 357, 35, 713, 58, 2536, 11, 965, 60, 2599, 3274, 22155, 198, 220, 220, 220, 220, 220, 220, 220, 1218, 357, 35, 713, 58, 2536, 11, 965, 60, 2599, 5498, 22155, 198, 220, 220, 220, 220, 220, 220, 220, 8996, 40729, 29565, 4906, 60, 2599, 26363, 284, 5412, 7208, 628, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 20512, 25, 1148, 612, 257, 1487, 5633, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 329, 1994, 287, 8996, 40729, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1994, 407, 287, 1218, 393, 1994, 407, 287, 717, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 611, 717, 58, 2539, 60, 14512, 1218, 58, 2539, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 6407, 198, 220, 220, 220, 1441, 10352, 198 ]
2.394636
261
from . helpers import get_timestamp
[ 6738, 764, 49385, 1330, 651, 62, 16514, 27823, 198 ]
4
9
from discord.ext import commands
[ 6738, 36446, 13, 2302, 1330, 9729, 628, 198 ]
4.375
8
import gym import numpy as np from PIL import Image import sys env = gym.make('Pong-v0') env.reset() done = False i = 0 start = 0 if len(sys.argv) < 3: print("Usage: collect_pong <games> <start_point>") exit() try: games = int(sys.argv[1]) start = int(sys.argv[2]) i = start except: print("Please provide a valid number for games and start point.") exit() for _ in range(games): count = 0 while not done: o, r, done, info = env.step(env.action_space.sample()) count += 1 # Ignore first 25 frames of the game, since the games starts after this amount. if count < 25: continue img = Image.fromarray(o) img.save("images/pong_" + str(i) + ".png") i += 1 done = False env.reset() print("Saved {} images.".format(i-start)) print("Total images: {}".format(i)) env.close()
[ 11748, 11550, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 350, 4146, 1330, 7412, 198, 11748, 25064, 198, 198, 24330, 796, 11550, 13, 15883, 10786, 47, 506, 12, 85, 15, 11537, 198, 24330, 13, 42503, 3419, 198, 198, 28060, 796, 10352, 198, 72, 796, 657, 198, 9688, 796, 657, 198, 198, 361, 18896, 7, 17597, 13, 853, 85, 8, 1279, 513, 25, 198, 220, 220, 220, 3601, 7203, 28350, 25, 2824, 62, 79, 506, 1279, 19966, 29, 1279, 9688, 62, 4122, 29, 4943, 198, 220, 220, 220, 8420, 3419, 198, 198, 28311, 25, 198, 220, 220, 220, 1830, 796, 493, 7, 17597, 13, 853, 85, 58, 16, 12962, 198, 220, 220, 220, 923, 796, 493, 7, 17597, 13, 853, 85, 58, 17, 12962, 198, 220, 220, 220, 1312, 796, 923, 198, 16341, 25, 198, 220, 220, 220, 3601, 7203, 5492, 2148, 257, 4938, 1271, 329, 1830, 290, 923, 966, 19570, 198, 220, 220, 220, 8420, 3419, 198, 198, 1640, 4808, 287, 2837, 7, 19966, 2599, 198, 220, 220, 220, 954, 796, 657, 198, 220, 220, 220, 981, 407, 1760, 25, 198, 220, 220, 220, 220, 220, 220, 220, 267, 11, 374, 11, 1760, 11, 7508, 796, 17365, 13, 9662, 7, 24330, 13, 2673, 62, 13200, 13, 39873, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 954, 15853, 352, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 41032, 717, 1679, 13431, 286, 262, 983, 11, 1201, 262, 1830, 4940, 706, 428, 2033, 13, 198, 220, 220, 220, 220, 220, 220, 220, 611, 954, 1279, 1679, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 198, 220, 220, 220, 220, 220, 220, 220, 33705, 796, 7412, 13, 6738, 18747, 7, 78, 8, 198, 220, 220, 220, 220, 220, 220, 220, 33705, 13, 21928, 7203, 17566, 14, 79, 506, 62, 1, 1343, 965, 7, 72, 8, 1343, 27071, 11134, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 1312, 15853, 352, 198, 220, 220, 220, 1760, 796, 10352, 198, 220, 220, 220, 17365, 13, 42503, 3419, 198, 198, 4798, 7203, 50, 9586, 23884, 4263, 526, 13, 18982, 7, 72, 12, 9688, 4008, 198, 4798, 7203, 14957, 4263, 25, 23884, 1911, 18982, 7, 72, 4008, 198, 24330, 13, 19836, 3419, 198 ]
2.360963
374
import random mylist = [] for somethin in range(1,10): x = random.randrange(0,9) mylist.append(x) print(mylist) last_index=len(mylist) print ("length of mylist is:",len(mylist)) print ("first element is:",mylist[0]) print ("last element is:",mylist[len(mylist)-1]) #is mylist sorted? is_mylist_sorted = False x=0 y=1 intermediate=None #how many switches? number_of_switches = 0 #bubble sort while not is_mylist_sorted: if mylist[x] > mylist[y]: intermediate=mylist[x] mylist[x]=mylist[y] mylist[y]=intermediate number_of_switches+=1 x+=1 y+=1 if y==last_index: x=0 y=1 if number_of_switches==0: is_mylist_sorted = True else: number_of_switches = 0 print("finished") print("is my list sorted?",is_mylist_sorted) print("my list",mylist)
[ 11748, 4738, 198, 198, 1820, 4868, 796, 17635, 198, 198, 1640, 1054, 20079, 287, 2837, 7, 16, 11, 940, 2599, 198, 220, 220, 220, 2124, 796, 4738, 13, 25192, 9521, 7, 15, 11, 24, 8, 198, 220, 220, 220, 616, 4868, 13, 33295, 7, 87, 8, 198, 198, 4798, 7, 1820, 4868, 8, 628, 198, 12957, 62, 9630, 28, 11925, 7, 1820, 4868, 8, 198, 4798, 5855, 13664, 286, 616, 4868, 318, 25, 1600, 11925, 7, 1820, 4868, 4008, 198, 4798, 5855, 11085, 5002, 318, 25, 1600, 1820, 4868, 58, 15, 12962, 198, 4798, 5855, 12957, 5002, 318, 25, 1600, 1820, 4868, 58, 11925, 7, 1820, 4868, 13219, 16, 12962, 628, 220, 220, 220, 220, 198, 2, 271, 616, 4868, 23243, 30, 198, 271, 62, 1820, 4868, 62, 82, 9741, 796, 10352, 198, 198, 87, 28, 15, 198, 88, 28, 16, 198, 3849, 13857, 28, 14202, 198, 198, 2, 4919, 867, 18225, 30, 198, 17618, 62, 1659, 62, 2032, 9249, 796, 657, 198, 198, 2, 46176, 903, 3297, 198, 4514, 407, 318, 62, 1820, 4868, 62, 82, 9741, 25, 198, 220, 220, 220, 220, 198, 220, 220, 220, 611, 616, 4868, 58, 87, 60, 1875, 616, 4868, 58, 88, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 19898, 28, 1820, 4868, 58, 87, 60, 198, 220, 220, 220, 220, 220, 220, 220, 616, 4868, 58, 87, 22241, 1820, 4868, 58, 88, 60, 198, 220, 220, 220, 220, 220, 220, 220, 616, 4868, 58, 88, 22241, 3849, 13857, 198, 220, 220, 220, 220, 220, 220, 220, 1271, 62, 1659, 62, 2032, 9249, 47932, 16, 198, 220, 220, 220, 2124, 47932, 16, 198, 220, 220, 220, 331, 47932, 16, 198, 220, 220, 220, 198, 220, 220, 220, 611, 331, 855, 12957, 62, 9630, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 28, 15, 198, 220, 220, 220, 220, 220, 220, 220, 331, 28, 16, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1271, 62, 1659, 62, 2032, 9249, 855, 15, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 318, 62, 1820, 4868, 62, 82, 9741, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1271, 62, 1659, 62, 2032, 9249, 796, 657, 628, 198, 4798, 7203, 43952, 4943, 198, 4798, 7203, 271, 616, 1351, 23243, 35379, 271, 62, 1820, 4868, 62, 82, 9741, 8, 198, 4798, 7203, 1820, 1351, 1600, 1820, 4868, 8, 628, 220, 220, 220, 220, 198 ]
2.062791
430
import os import setuptools try: # for pip >= 10 from pip._internal.req import parse_requirements except ImportError: # for pip <= 9.0.3 from pip.req import parse_requirements requirements_path = os.path.join(os.path.dirname(__file__), 'requirements.txt') install_requires = parse_requirements(requirements_path, session='hack') install_requires = [str(ir.req) for ir in install_requires] with open(os.path.join(os.path.dirname(__file__), 'VERSION'), 'r') as f: version = f.read() with open(os.path.join(os.path.dirname(__file__), 'README.md'), 'r') as f: long_description = f.read() setuptools.setup( name='afs2-datasource', version=version, description='For AFS developer to access Datasource', long_description=long_description, long_description_content_type='text/markdown', author='WISE-PaaS/AFS', author_email='[email protected]', packages=setuptools.find_packages(), install_requires=install_requires, keywords=['AFS'], license='Apache License 2.0', url='https://github.com/stacy0416/afs2-datasource' ) # python setup.py bdist_wheel
[ 11748, 28686, 201, 198, 11748, 900, 37623, 10141, 201, 198, 28311, 25, 1303, 329, 7347, 18189, 838, 201, 198, 220, 422, 7347, 13557, 32538, 13, 42180, 1330, 21136, 62, 8897, 18883, 201, 198, 16341, 17267, 12331, 25, 1303, 329, 7347, 19841, 860, 13, 15, 13, 18, 201, 198, 220, 422, 7347, 13, 42180, 1330, 21136, 62, 8897, 18883, 201, 198, 201, 198, 8897, 18883, 62, 6978, 796, 28686, 13, 6978, 13, 22179, 7, 418, 13, 6978, 13, 15908, 3672, 7, 834, 7753, 834, 828, 705, 8897, 18883, 13, 14116, 11537, 201, 198, 17350, 62, 47911, 796, 21136, 62, 8897, 18883, 7, 8897, 18883, 62, 6978, 11, 6246, 11639, 31153, 11537, 201, 198, 17350, 62, 47911, 796, 685, 2536, 7, 343, 13, 42180, 8, 329, 4173, 287, 2721, 62, 47911, 60, 201, 198, 201, 198, 4480, 1280, 7, 418, 13, 6978, 13, 22179, 7, 418, 13, 6978, 13, 15908, 3672, 7, 834, 7753, 834, 828, 705, 43717, 33809, 705, 81, 11537, 355, 277, 25, 201, 198, 220, 2196, 796, 277, 13, 961, 3419, 201, 198, 201, 198, 4480, 1280, 7, 418, 13, 6978, 13, 22179, 7, 418, 13, 6978, 13, 15908, 3672, 7, 834, 7753, 834, 828, 705, 15675, 11682, 13, 9132, 33809, 705, 81, 11537, 355, 277, 25, 201, 198, 220, 890, 62, 11213, 796, 277, 13, 961, 3419, 201, 198, 201, 198, 2617, 37623, 10141, 13, 40406, 7, 201, 198, 220, 1438, 11639, 1878, 82, 17, 12, 19608, 292, 1668, 3256, 201, 198, 220, 2196, 28, 9641, 11, 201, 198, 220, 6764, 11639, 1890, 317, 10652, 8517, 284, 1895, 16092, 292, 1668, 3256, 201, 198, 220, 890, 62, 11213, 28, 6511, 62, 11213, 11, 201, 198, 220, 890, 62, 11213, 62, 11299, 62, 4906, 11639, 5239, 14, 4102, 2902, 3256, 201, 198, 220, 1772, 11639, 54, 24352, 12, 47, 7252, 50, 14, 8579, 50, 3256, 201, 198, 220, 1772, 62, 12888, 11639, 301, 1590, 13, 5948, 71, 31, 13461, 3055, 13, 785, 13, 4246, 3256, 201, 198, 220, 10392, 28, 2617, 37623, 10141, 13, 19796, 62, 43789, 22784, 201, 198, 220, 2721, 62, 47911, 28, 17350, 62, 47911, 11, 201, 198, 220, 26286, 28, 17816, 8579, 50, 6, 4357, 201, 198, 220, 5964, 11639, 25189, 4891, 13789, 362, 13, 15, 3256, 201, 198, 220, 19016, 11639, 5450, 1378, 12567, 13, 785, 14, 301, 1590, 3023, 1433, 14, 1878, 82, 17, 12, 19608, 292, 1668, 6, 201, 198, 8, 201, 198, 201, 198, 2, 21015, 9058, 13, 9078, 275, 17080, 62, 22001 ]
2.711165
412
import pandas as pd #============== First Round ===================# #===============================================# #============== Other Rounds ===================# #===============================================#
[ 11748, 19798, 292, 355, 279, 67, 198, 198, 2, 25609, 855, 3274, 10485, 36658, 855, 2, 198, 2, 10052, 25609, 18604, 2, 198, 220, 220, 220, 220, 198, 198, 2, 25609, 855, 3819, 49049, 36658, 855, 2, 198, 2, 10052, 25609, 18604, 2, 198 ]
5.136364
44
""" Exercício 03 Peça ao usuário para digitar 3 valores inteiros e imprima a soma deles. """ print('Digite três números inteiros para somá-los:\n') num1 = int(float(input('Primeiro número: ').replace(',', '.'))) num2 = int(float(input('Segundo número: ').replace(',', '.'))) num3 = int(float(input('Terceiro número: ').replace(',', '.'))) sum = num1 + num2 + num3 print(f'_____\nA soma dos valores é: {sum}')
[ 37811, 198, 3109, 2798, 8836, 66, 952, 7643, 198, 6435, 50041, 257, 78, 514, 84, 6557, 27250, 31215, 3100, 7940, 513, 1188, 2850, 493, 20295, 4951, 304, 848, 3036, 64, 257, 3870, 64, 390, 829, 13, 198, 37811, 198, 198, 4798, 10786, 19511, 578, 491, 25792, 82, 299, 21356, 647, 418, 493, 20295, 4951, 31215, 3870, 6557, 12, 33280, 7479, 77, 11537, 198, 22510, 16, 796, 493, 7, 22468, 7, 15414, 10786, 26405, 7058, 299, 21356, 647, 78, 25, 705, 737, 33491, 7, 3256, 3256, 705, 2637, 22305, 198, 22510, 17, 796, 493, 7, 22468, 7, 15414, 10786, 41030, 41204, 299, 21356, 647, 78, 25, 705, 737, 33491, 7, 3256, 3256, 705, 2637, 22305, 198, 22510, 18, 796, 493, 7, 22468, 7, 15414, 10786, 15156, 344, 7058, 299, 21356, 647, 78, 25, 705, 737, 33491, 7, 3256, 3256, 705, 2637, 22305, 198, 16345, 796, 997, 16, 1343, 997, 17, 1343, 997, 18, 198, 4798, 7, 69, 6, 29343, 59, 77, 32, 3870, 64, 23430, 1188, 2850, 38251, 25, 1391, 16345, 92, 11537, 198 ]
2.369942
173
from __future__ import (absolute_import, division, print_function) __metaclass__ = type import json module_definition = json.loads( """{ "family": "discovery", "name": "discovery_network_device", "operations": { "get": [ "get_discovered_network_devices_by_discovery_id", "get_discovered_devices_by_range", "get_devices_discovered_by_id", "get_network_devices_from_discovery" ] }, "parameters": { "get_devices_discovered_by_id": [ { "name": "id", "required": true, "type": "string" }, { "name": "task_id", "required": false, "type": "string" }, { "artificial": true, "name": "count", "required": true, "type": "boolean" } ], "get_discovered_devices_by_range": [ { "name": "id", "required": true, "type": "string" }, { "name": "records_to_return", "required": true, "type": "integer" }, { "name": "start_index", "required": true, "type": "integer" }, { "name": "task_id", "required": false, "type": "string" } ], "get_discovered_network_devices_by_discovery_id": [ { "name": "id", "required": true, "type": "string" }, { "name": "task_id", "required": false, "type": "string" } ], "get_network_devices_from_discovery": [ { "name": "id", "required": true, "type": "string" }, { "name": "cli_status", "required": false, "type": "string" }, { "name": "http_status", "required": false, "type": "string" }, { "name": "ip_address", "required": false, "type": "string" }, { "name": "netconf_status", "required": false, "type": "string" }, { "name": "ping_status", "required": false, "type": "string" }, { "name": "snmp_status", "required": false, "type": "string" }, { "name": "sort_by", "required": false, "type": "string" }, { "name": "sort_order", "required": false, "type": "string" }, { "name": "task_id", "required": false, "type": "string" }, { "artificial": true, "name": "summary", "required": true, "type": "boolean" } ] }, "responses": { "get_devices_discovered_by_id": { "properties": [ "response", "version" ], "type": "object" }, "get_discovered_devices_by_range": { "properties": [ "response", "version" ], "type": "object" }, "get_discovered_network_devices_by_discovery_id": { "properties": [ "response", "version" ], "type": "object" }, "get_network_devices_from_discovery": { "properties": [ "response", "version" ], "type": "object" } } }""" )
[ 6738, 11593, 37443, 834, 1330, 357, 48546, 62, 11748, 11, 7297, 11, 3601, 62, 8818, 8, 198, 834, 4164, 330, 31172, 834, 796, 2099, 198, 11748, 33918, 198, 198, 21412, 62, 46758, 796, 33918, 13, 46030, 7, 198, 220, 220, 220, 37227, 90, 198, 220, 220, 220, 366, 17989, 1298, 366, 67, 40821, 1600, 198, 220, 220, 220, 366, 3672, 1298, 366, 67, 40821, 62, 27349, 62, 25202, 1600, 198, 220, 220, 220, 366, 3575, 602, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 1136, 1298, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 1136, 62, 15410, 2557, 62, 27349, 62, 42034, 62, 1525, 62, 67, 40821, 62, 312, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 1136, 62, 15410, 2557, 62, 42034, 62, 1525, 62, 9521, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 1136, 62, 42034, 62, 15410, 2557, 62, 1525, 62, 312, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 1136, 62, 27349, 62, 42034, 62, 6738, 62, 67, 40821, 1, 198, 220, 220, 220, 220, 220, 220, 220, 2361, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 366, 17143, 7307, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 1136, 62, 42034, 62, 15410, 2557, 62, 1525, 62, 312, 1298, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 3672, 1298, 366, 312, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 35827, 1298, 2081, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 1298, 366, 8841, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 3672, 1298, 366, 35943, 62, 312, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 35827, 1298, 3991, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 1298, 366, 8841, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 433, 9542, 1298, 2081, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 3672, 1298, 366, 9127, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 35827, 1298, 2081, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 1298, 366, 2127, 21052, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 16589, 198, 220, 220, 220, 220, 220, 220, 220, 366, 1136, 62, 15410, 2557, 62, 42034, 62, 1525, 62, 9521, 1298, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 3672, 1298, 366, 312, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 35827, 1298, 2081, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 1298, 366, 8841, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 3672, 1298, 366, 8344, 3669, 62, 1462, 62, 7783, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 35827, 1298, 2081, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 1298, 366, 41433, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 3672, 1298, 366, 9688, 62, 9630, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 35827, 1298, 2081, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 1298, 366, 41433, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 3672, 1298, 366, 35943, 62, 312, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 35827, 1298, 3991, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 1298, 366, 8841, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 16589, 198, 220, 220, 220, 220, 220, 220, 220, 366, 1136, 62, 15410, 2557, 62, 27349, 62, 42034, 62, 1525, 62, 67, 40821, 62, 312, 1298, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 3672, 1298, 366, 312, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 35827, 1298, 2081, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 1298, 366, 8841, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 3672, 1298, 366, 35943, 62, 312, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 35827, 1298, 3991, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 1298, 366, 8841, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 16589, 198, 220, 220, 220, 220, 220, 220, 220, 366, 1136, 62, 27349, 62, 42034, 62, 6738, 62, 67, 40821, 1298, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 3672, 1298, 366, 312, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 35827, 1298, 2081, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 1298, 366, 8841, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 3672, 1298, 366, 44506, 62, 13376, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 35827, 1298, 3991, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 1298, 366, 8841, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 3672, 1298, 366, 4023, 62, 13376, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 35827, 1298, 3991, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 1298, 366, 8841, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 3672, 1298, 366, 541, 62, 21975, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 35827, 1298, 3991, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 1298, 366, 8841, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 3672, 1298, 366, 3262, 10414, 62, 13376, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 35827, 1298, 3991, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 1298, 366, 8841, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 3672, 1298, 366, 13886, 62, 13376, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 35827, 1298, 3991, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 1298, 366, 8841, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 3672, 1298, 366, 16184, 3149, 62, 13376, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 35827, 1298, 3991, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 1298, 366, 8841, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 3672, 1298, 366, 30619, 62, 1525, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 35827, 1298, 3991, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 1298, 366, 8841, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 3672, 1298, 366, 30619, 62, 2875, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 35827, 1298, 3991, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 1298, 366, 8841, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 3672, 1298, 366, 35943, 62, 312, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 35827, 1298, 3991, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 1298, 366, 8841, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 433, 9542, 1298, 2081, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 3672, 1298, 366, 49736, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 35827, 1298, 2081, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 1298, 366, 2127, 21052, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 2361, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 366, 16733, 274, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 1136, 62, 42034, 62, 15410, 2557, 62, 1525, 62, 312, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 48310, 1298, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 26209, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 9641, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16589, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 1298, 366, 15252, 1, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 366, 1136, 62, 15410, 2557, 62, 42034, 62, 1525, 62, 9521, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 48310, 1298, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 26209, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 9641, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16589, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 1298, 366, 15252, 1, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 366, 1136, 62, 15410, 2557, 62, 27349, 62, 42034, 62, 1525, 62, 67, 40821, 62, 312, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 48310, 1298, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 26209, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 9641, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16589, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 1298, 366, 15252, 1, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 366, 1136, 62, 27349, 62, 42034, 62, 6738, 62, 67, 40821, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 48310, 1298, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 26209, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 9641, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16589, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 1298, 366, 15252, 1, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 1782, 198, 92, 37811, 198, 8, 198 ]
1.549853
2,728
# Copyright 2013 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import sys from lib.bucket import BUCKET_ID from lib.subcommand import SubCommand
[ 2, 15069, 2211, 383, 18255, 1505, 46665, 13, 1439, 2489, 10395, 13, 198, 2, 5765, 286, 428, 2723, 2438, 318, 21825, 416, 257, 347, 10305, 12, 7635, 5964, 326, 460, 307, 198, 2, 1043, 287, 262, 38559, 24290, 2393, 13, 198, 198, 11748, 25064, 198, 198, 6738, 9195, 13, 27041, 316, 1330, 347, 16696, 2767, 62, 2389, 198, 6738, 9195, 13, 7266, 21812, 1330, 3834, 21575, 628 ]
3.686567
67
burst_time=[] print("Enter the number of process: ") n=int(input()) print("Enter the burst time of the processes: \n") burst_time=list(map(int, input().split())) waiting_time=[] avg_waiting_time=0 turnaround_time=[] avg_turnaround_time=0 waiting_time.insert(0,0) turnaround_time.insert(0,burst_time[0]) for i in range(1,len(burst_time)): waiting_time.insert(i,waiting_time[i-1]+burst_time[i-1]) turnaround_time.insert(i,waiting_time[i]+burst_time[i]) avg_waiting_time+=waiting_time[i] avg_turnaround_time+=turnaround_time[i] avg_waiting_time=float(avg_waiting_time)/n avg_turnaround_time=float(avg_turnaround_time)/n print("\n") print("Process\t Burst Time\t Waiting Time\t Turn Around Time") for i in range(0,n): print(str(i)+"\t\t"+str(burst_time[i])+"\t\t"+str(waiting_time[i])+"\t\t"+str(turnaround_time[i])) print("\n") print("Average Waiting time is: "+str(avg_waiting_time)) print("Average Turn Arount Time is: "+str(avg_turnaround_time))
[ 31961, 62, 2435, 28, 21737, 201, 198, 4798, 7203, 17469, 262, 1271, 286, 1429, 25, 366, 8, 201, 198, 77, 28, 600, 7, 15414, 28955, 201, 198, 4798, 7203, 17469, 262, 11173, 640, 286, 262, 7767, 25, 3467, 77, 4943, 201, 198, 31961, 62, 2435, 28, 4868, 7, 8899, 7, 600, 11, 5128, 22446, 35312, 3419, 4008, 201, 198, 10247, 1780, 62, 2435, 28, 21737, 201, 198, 615, 70, 62, 10247, 1780, 62, 2435, 28, 15, 201, 198, 15344, 14145, 62, 2435, 28, 21737, 201, 198, 615, 70, 62, 15344, 14145, 62, 2435, 28, 15, 201, 198, 10247, 1780, 62, 2435, 13, 28463, 7, 15, 11, 15, 8, 201, 198, 15344, 14145, 62, 2435, 13, 28463, 7, 15, 11, 31961, 62, 2435, 58, 15, 12962, 201, 198, 1640, 1312, 287, 2837, 7, 16, 11, 11925, 7, 31961, 62, 2435, 8, 2599, 201, 198, 4953, 62, 2435, 13, 28463, 7, 72, 11, 10247, 1780, 62, 2435, 58, 72, 12, 16, 48688, 31961, 62, 2435, 58, 72, 12, 16, 12962, 201, 198, 34217, 62, 2435, 13, 28463, 7, 72, 11, 10247, 1780, 62, 2435, 58, 72, 48688, 31961, 62, 2435, 58, 72, 12962, 201, 198, 42781, 62, 10247, 1780, 62, 2435, 47932, 10247, 1780, 62, 2435, 58, 72, 60, 201, 198, 42781, 62, 15344, 14145, 62, 2435, 47932, 15344, 14145, 62, 2435, 58, 72, 60, 201, 198, 615, 70, 62, 10247, 1780, 62, 2435, 28, 22468, 7, 615, 70, 62, 10247, 1780, 62, 2435, 20679, 77, 201, 198, 615, 70, 62, 15344, 14145, 62, 2435, 28, 22468, 7, 615, 70, 62, 15344, 14145, 62, 2435, 20679, 77, 201, 198, 4798, 7203, 59, 77, 4943, 201, 198, 4798, 7203, 18709, 59, 83, 220, 30635, 3862, 59, 83, 220, 39669, 3862, 59, 83, 220, 6756, 16824, 3862, 4943, 201, 198, 1640, 1312, 287, 2837, 7, 15, 11, 77, 2599, 201, 198, 3601, 7, 2536, 7, 72, 47762, 1, 59, 83, 59, 83, 1, 10, 2536, 7, 31961, 62, 2435, 58, 72, 12962, 10, 1, 59, 83, 59, 83, 1, 10, 2536, 7, 10247, 1780, 62, 2435, 58, 72, 12962, 10, 1, 59, 83, 59, 83, 1, 10, 2536, 7, 15344, 14145, 62, 2435, 58, 72, 60, 4008, 201, 198, 3601, 7203, 59, 77, 4943, 201, 198, 4798, 7203, 26287, 39669, 640, 318, 25, 43825, 2536, 7, 615, 70, 62, 10247, 1780, 62, 2435, 4008, 201, 198, 4798, 7203, 26287, 6756, 317, 472, 429, 3862, 318, 25, 43825, 2536, 7, 615, 70, 62, 15344, 14145, 62, 2435, 4008 ]
2.368039
413
import os from airflow.hooks.base_hook import BaseHook from airflow.operators.bash_operator import BashOperator from airflow.utils.decorators import apply_defaults
[ 11748, 28686, 198, 198, 6738, 45771, 13, 25480, 82, 13, 8692, 62, 25480, 1330, 7308, 39, 566, 198, 6738, 45771, 13, 3575, 2024, 13, 41757, 62, 46616, 1330, 15743, 18843, 1352, 198, 6738, 45771, 13, 26791, 13, 12501, 273, 2024, 1330, 4174, 62, 12286, 82, 628 ]
3.608696
46
""" Author: Haoyin Xu """ import time import psutil import argparse import numpy as np import torchvision.datasets as datasets from numpy.random import permutation from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier from river import tree from skgarden import MondrianForestClassifier from sdtf import StreamDecisionForest def write_result(filename, acc_ls): """Writes results to specified text file""" output = open(filename, "w") for acc in acc_ls: output.write(str(acc) + "\n") def prediction(classifier): """Generates predictions from model""" predictions = classifier.predict(X_test) p_t = 0 for i in range(X_test.shape[0]): if predictions[i] == y_test[i]: p_t += 1 return p_t / X_test.shape[0] def experiment_dt(): """Runs experiments for Batch Decision Tree""" dt_l = [] train_time_l = [] test_time_l = [] v_m_l = [] s_m_l = [] dt = DecisionTreeClassifier() for i in range(500): X_t = X_r[: (i + 1) * 100] y_t = y_r[: (i + 1) * 100] # Train the model start_time = time.perf_counter() dt.fit(X_t, y_t) end_time = time.perf_counter() train_time_l.append(end_time - start_time) # Test the model start_time = time.perf_counter() dt_l.append(prediction(dt)) end_time = time.perf_counter() test_time_l.append(end_time - start_time) # Check memory v_m = psutil.virtual_memory()[2] v_m_l.append(v_m) s_m = psutil.swap_memory()[3] s_m_l.append(s_m) return dt_l, train_time_l, test_time_l, v_m_l, s_m_l def experiment_rf(): """Runs experiments for Random Forest""" rf_l = [] train_time_l = [] test_time_l = [] v_m_l = [] s_m_l = [] rf = RandomForestClassifier() for i in range(500): X_t = X_r[: (i + 1) * 100] y_t = y_r[: (i + 1) * 100] # Train the model start_time = time.perf_counter() rf.fit(X_t, y_t) end_time = time.perf_counter() train_time_l.append(end_time - start_time) # Test the model start_time = time.perf_counter() rf_l.append(prediction(rf)) end_time = time.perf_counter() test_time_l.append(end_time - start_time) # Check memory v_m = psutil.virtual_memory()[2] v_m_l.append(v_m) s_m = psutil.swap_memory()[3] s_m_l.append(s_m) return rf_l, train_time_l, test_time_l, v_m_l, s_m_l def experiment_ht(): """Runs experiments for Hoeffding Tree""" ht_l = [] train_time_l = [] test_time_l = [] v_m_l = [] s_m_l = [] ht = tree.HoeffdingTreeClassifier(max_size=1000, grace_period=2) for i in range(X_train.shape[0]): X_t = X_r[i] y_t = y_r[i] idx = range(1024) X_t = dict(zip(idx, X_t)) start_time = time.perf_counter() ht.learn_one(X_t, y_t) end_time = time.perf_counter() train_time_l.append(end_time - start_time) if i > 0 and (i + 1) % 100 == 0: p_t = 0.0 start_time = time.perf_counter() for j in range(X_test.shape[0]): y_pred = ht.predict_one(X_test[j]) if y_pred == y_test[j]: p_t += 1 ht_l.append(p_t / X_test.shape[0]) end_time = time.perf_counter() test_time_l.append(end_time - start_time) # Check memory v_m = psutil.virtual_memory()[2] v_m_l.append(v_m) s_m = psutil.swap_memory()[3] s_m_l.append(s_m) # Reformat the train times new_train_time_l = [] for i in range(1, X_train.shape[0]): train_time_l[i] += train_time_l[i - 1] if i > 0 and (i + 1) % 100 == 0: new_train_time_l.append(train_time_l[i]) train_time_l = new_train_time_l return ht_l, train_time_l, test_time_l, v_m_l, s_m_l def experiment_mf(): """Runs experiments for Mondrian Forest""" mf_l = [] train_time_l = [] test_time_l = [] v_m_l = [] s_m_l = [] mf = MondrianForestClassifier(n_estimators=10) for i in range(500): X_t = X_r[i * 100 : (i + 1) * 100] y_t = y_r[i * 100 : (i + 1) * 100] # Train the model start_time = time.perf_counter() mf.partial_fit(X_t, y_t) end_time = time.perf_counter() train_time_l.append(end_time - start_time) # Test the model start_time = time.perf_counter() mf_l.append(prediction(mf)) end_time = time.perf_counter() test_time_l.append(end_time - start_time) # Check memory v_m = psutil.virtual_memory()[2] v_m_l.append(v_m) s_m = psutil.swap_memory()[3] s_m_l.append(s_m) # Reformat the train times for i in range(1, 500): train_time_l[i] += train_time_l[i - 1] return mf_l, train_time_l, test_time_l, v_m_l, s_m_l def experiment_sdt(): """Runs experiments for Stream Decision Tree""" sdt_l = [] train_time_l = [] test_time_l = [] v_m_l = [] s_m_l = [] sdt = DecisionTreeClassifier() for i in range(500): X_t = X_r[i * 100 : (i + 1) * 100] y_t = y_r[i * 100 : (i + 1) * 100] # Train the model start_time = time.perf_counter() sdt.partial_fit(X_t, y_t, classes=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) end_time = time.perf_counter() train_time_l.append(end_time - start_time) # Test the model start_time = time.perf_counter() sdt_l.append(prediction(sdt)) end_time = time.perf_counter() test_time_l.append(end_time - start_time) # Check memory v_m = psutil.virtual_memory()[2] v_m_l.append(v_m) s_m = psutil.swap_memory()[3] s_m_l.append(s_m) # Reformat the train times for i in range(1, 500): train_time_l[i] += train_time_l[i - 1] return sdt_l, train_time_l, test_time_l, v_m_l, s_m_l def experiment_sdf(): """Runs experiments for Stream Decision Forest""" sdf_l = [] train_time_l = [] test_time_l = [] v_m_l = [] s_m_l = [] sdf = StreamDecisionForest() for i in range(500): X_t = X_r[i * 100 : (i + 1) * 100] y_t = y_r[i * 100 : (i + 1) * 100] # Train the model start_time = time.perf_counter() sdf.partial_fit(X_t, y_t, classes=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) end_time = time.perf_counter() train_time_l.append(end_time - start_time) # Test the model start_time = time.perf_counter() sdf_l.append(prediction(sdf)) end_time = time.perf_counter() test_time_l.append(end_time - start_time) # Check memory v_m = psutil.virtual_memory()[2] v_m_l.append(v_m) s_m = psutil.swap_memory()[3] s_m_l.append(s_m) # Reformat the train times for i in range(1, 500): train_time_l[i] += train_time_l[i - 1] return sdf_l, train_time_l, test_time_l, v_m_l, s_m_l # Prepare CIFAR data # Normalize scale = np.mean(np.arange(0, 256)) normalize = lambda x: (x - scale) / scale # Train data cifar_trainset = datasets.CIFAR10(root="../", train=True, download=True, transform=None) X_train = normalize(cifar_trainset.data) y_train = np.array(cifar_trainset.targets) # Test data cifar_testset = datasets.CIFAR10(root="../", train=False, download=True, transform=None) X_test = normalize(cifar_testset.data) y_test = np.array(cifar_testset.targets) X_train = X_train.reshape(-1, 32 * 32 * 3) X_test = X_test.reshape(-1, 32 * 32 * 3) # Parse classifier choices parser = argparse.ArgumentParser() parser.add_argument("-all", help="all classifiers", required=False, action="store_true") parser.add_argument("-dt", help="decision forests", required=False, action="store_true") parser.add_argument("-rf", help="random forests", required=False, action="store_true") parser.add_argument("-ht", help="hoeffding trees", required=False, action="store_true") parser.add_argument("-mf", help="mondrian forests", required=False, action="store_true") parser.add_argument( "-sdt", help="stream decision trees", required=False, action="store_true" ) parser.add_argument( "-sdf", help="stream decision forests", required=False, action="store_true" ) args = parser.parse_args() # Perform experiments if args.all or args.dt: dt_acc_l = [] dt_train_t_l = [] dt_test_t_l = [] dt_v_m_l = [] dt_s_m_l = [] for i in range(10): p = permutation(X_train.shape[0]) X_r = X_train[p] y_r = y_train[p] dt_acc, dt_train_t, dt_test_t, dt_v_m, dt_s_m = experiment_dt() dt_acc_l.append(dt_acc) dt_train_t_l.append(dt_train_t) dt_test_t_l.append(dt_test_t) dt_v_m_l.append(dt_v_m) dt_s_m_l.append(dt_s_m) write_result("../results/dt/cifar10_acc.txt", dt_acc_l) write_result("../results/dt/cifar10_train_t.txt", dt_train_t_l) write_result("../results/dt/cifar10_test_t.txt", dt_test_t_l) write_result("../results/dt/cifar10_v_m.txt", dt_v_m_l) write_result("../results/dt/cifar10_s_m.txt", dt_s_m_l) if args.all or args.rf: rf_acc_l = [] rf_train_t_l = [] rf_test_t_l = [] rf_v_m_l = [] rf_s_m_l = [] for i in range(10): p = permutation(X_train.shape[0]) X_r = X_train[p] y_r = y_train[p] rf_acc, rf_train_t, rf_test_t, rf_v_m, rf_s_m = experiment_rf() rf_acc_l.append(rf_acc) rf_train_t_l.append(rf_train_t) rf_test_t_l.append(rf_test_t) rf_v_m_l.append(rf_v_m) rf_s_m_l.append(rf_s_m) write_result("../results/rf/cifar10_acc.txt", rf_acc_l) write_result("../results/rf/cifar10_train_t.txt", rf_train_t_l) write_result("../results/rf/cifar10_test_t.txt", rf_test_t_l) write_result("../results/rf/cifar10_v_m.txt", rf_v_m_l) write_result("../results/rf/cifar10_s_m.txt", rf_s_m_l) if args.all or args.ht: ht_acc_l = [] ht_train_t_l = [] ht_test_t_l = [] ht_v_m_l = [] ht_s_m_l = [] for i in range(10): p = permutation(X_train.shape[0]) X_r = X_train[p] y_r = y_train[p] ht_acc, ht_train_t, ht_test_t, ht_v_m, ht_s_m = experiment_ht() ht_acc_l.append(ht_acc) ht_train_t_l.append(ht_train_t) ht_test_t_l.append(ht_test_t) ht_v_m_l.append(ht_v_m) ht_s_m_l.append(ht_s_m) write_result("../results/ht/cifar10_acc.txt", ht_acc_l) write_result("../results/ht/cifar10_train_t.txt", ht_train_t_l) write_result("../results/ht/cifar10_test_t.txt", ht_test_t_l) write_result("../results/ht/cifar10_v_m.txt", ht_v_m_l) write_result("../results/ht/cifar10_s_m.txt", ht_s_m_l) if args.all or args.mf: mf_acc_l = [] mf_train_t_l = [] mf_test_t_l = [] mf_v_m_l = [] mf_s_m_l = [] for i in range(10): p = permutation(X_train.shape[0]) X_r = X_train[p] y_r = y_train[p] mf_acc, mf_train_t, mf_test_t, mf_v_m, mf_s_m = experiment_mf() mf_acc_l.append(mf_acc) mf_train_t_l.append(mf_train_t) mf_test_t_l.append(mf_test_t) mf_v_m_l.append(mf_v_m) mf_s_m_l.append(mf_s_m) write_result("../results/mf/cifar10_acc.txt", mf_acc_l) write_result("../results/mf/cifar10_train_t.txt", mf_train_t_l) write_result("../results/mf/cifar10_test_t.txt", mf_test_t_l) write_result("../results/mf/cifar10_v_m.txt", mf_v_m_l) write_result("../results/mf/cifar10_s_m.txt", mf_s_m_l) if args.all or args.sdt: sdt_acc_l = [] sdt_train_t_l = [] sdt_test_t_l = [] sdt_v_m_l = [] sdt_s_m_l = [] for i in range(10): p = permutation(X_train.shape[0]) X_r = X_train[p] y_r = y_train[p] sdt_acc, sdt_train_t, sdt_test_t, sdt_v_m, sdt_s_m = experiment_sdt() sdt_acc_l.append(sdt_acc) sdt_train_t_l.append(sdt_train_t) sdt_test_t_l.append(sdt_test_t) sdt_v_m_l.append(sdt_v_m) sdt_s_m_l.append(sdt_s_m) write_result("../results/sdt/cifar10_acc.txt", sdt_acc_l) write_result("../results/sdt/cifar10_train_t.txt", sdt_train_t_l) write_result("../results/sdt/cifar10_test_t.txt", sdt_test_t_l) write_result("../results/sdt/cifar10_v_m.txt", sdt_v_m_l) write_result("../results/sdt/cifar10_s_m.txt", sdt_s_m_l) if args.all or args.sdf: sdf_acc_l = [] sdf_train_t_l = [] sdf_test_t_l = [] sdf_v_m_l = [] sdf_s_m_l = [] for i in range(10): p = permutation(X_train.shape[0]) X_r = X_train[p] y_r = y_train[p] sdf_acc, sdf_train_t, sdf_test_t, sdf_v_m, sdf_s_m = experiment_sdf() sdf_acc_l.append(sdf_acc) sdf_train_t_l.append(sdf_train_t) sdf_test_t_l.append(sdf_test_t) sdf_v_m_l.append(sdf_v_m) sdf_s_m_l.append(sdf_s_m) write_result("../results/sdf/cifar10_acc.txt", sdf_acc_l) write_result("../results/sdf/cifar10_train_t.txt", sdf_train_t_l) write_result("../results/sdf/cifar10_test_t.txt", sdf_test_t_l) write_result("../results/sdf/cifar10_v_m.txt", sdf_v_m_l) write_result("../results/sdf/cifar10_s_m.txt", sdf_s_m_l)
[ 37811, 198, 13838, 25, 9398, 726, 259, 33591, 198, 37811, 198, 11748, 640, 198, 11748, 26692, 22602, 198, 11748, 1822, 29572, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 28034, 10178, 13, 19608, 292, 1039, 355, 40522, 198, 6738, 299, 32152, 13, 25120, 1330, 9943, 7094, 198, 6738, 1341, 35720, 13, 21048, 1330, 26423, 27660, 9487, 7483, 198, 6738, 1341, 35720, 13, 1072, 11306, 1330, 14534, 34605, 9487, 7483, 198, 6738, 7850, 1330, 5509, 198, 6738, 1341, 70, 5872, 1330, 27328, 4484, 34605, 9487, 7483, 198, 6738, 45647, 27110, 1330, 13860, 10707, 1166, 34605, 628, 198, 4299, 3551, 62, 20274, 7, 34345, 11, 697, 62, 7278, 2599, 198, 220, 220, 220, 37227, 20257, 274, 2482, 284, 7368, 2420, 2393, 37811, 198, 220, 220, 220, 5072, 796, 1280, 7, 34345, 11, 366, 86, 4943, 198, 220, 220, 220, 329, 697, 287, 697, 62, 7278, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5072, 13, 13564, 7, 2536, 7, 4134, 8, 1343, 37082, 77, 4943, 628, 198, 4299, 17724, 7, 4871, 7483, 2599, 198, 220, 220, 220, 37227, 8645, 689, 16277, 422, 2746, 37811, 198, 220, 220, 220, 16277, 796, 1398, 7483, 13, 79, 17407, 7, 55, 62, 9288, 8, 628, 220, 220, 220, 279, 62, 83, 796, 657, 198, 220, 220, 220, 329, 1312, 287, 2837, 7, 55, 62, 9288, 13, 43358, 58, 15, 60, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 611, 16277, 58, 72, 60, 6624, 331, 62, 9288, 58, 72, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 62, 83, 15853, 352, 628, 220, 220, 220, 1441, 279, 62, 83, 1220, 1395, 62, 9288, 13, 43358, 58, 15, 60, 628, 198, 4299, 6306, 62, 28664, 33529, 198, 220, 220, 220, 37227, 10987, 82, 10256, 329, 347, 963, 26423, 12200, 37811, 198, 220, 220, 220, 288, 83, 62, 75, 796, 17635, 198, 220, 220, 220, 4512, 62, 2435, 62, 75, 796, 17635, 198, 220, 220, 220, 1332, 62, 2435, 62, 75, 796, 17635, 198, 220, 220, 220, 410, 62, 76, 62, 75, 796, 17635, 198, 220, 220, 220, 264, 62, 76, 62, 75, 796, 17635, 628, 220, 220, 220, 288, 83, 796, 26423, 27660, 9487, 7483, 3419, 628, 220, 220, 220, 329, 1312, 287, 2837, 7, 4059, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1395, 62, 83, 796, 1395, 62, 81, 58, 25, 357, 72, 1343, 352, 8, 1635, 1802, 60, 198, 220, 220, 220, 220, 220, 220, 220, 331, 62, 83, 796, 331, 62, 81, 58, 25, 357, 72, 1343, 352, 8, 1635, 1802, 60, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 16835, 262, 2746, 198, 220, 220, 220, 220, 220, 220, 220, 923, 62, 2435, 796, 640, 13, 525, 69, 62, 24588, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 288, 83, 13, 11147, 7, 55, 62, 83, 11, 331, 62, 83, 8, 198, 220, 220, 220, 220, 220, 220, 220, 886, 62, 2435, 796, 640, 13, 525, 69, 62, 24588, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 4512, 62, 2435, 62, 75, 13, 33295, 7, 437, 62, 2435, 532, 923, 62, 2435, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 6208, 262, 2746, 198, 220, 220, 220, 220, 220, 220, 220, 923, 62, 2435, 796, 640, 13, 525, 69, 62, 24588, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 288, 83, 62, 75, 13, 33295, 7, 28764, 2867, 7, 28664, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 886, 62, 2435, 796, 640, 13, 525, 69, 62, 24588, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1332, 62, 2435, 62, 75, 13, 33295, 7, 437, 62, 2435, 532, 923, 62, 2435, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 6822, 4088, 198, 220, 220, 220, 220, 220, 220, 220, 410, 62, 76, 796, 26692, 22602, 13, 32844, 62, 31673, 3419, 58, 17, 60, 198, 220, 220, 220, 220, 220, 220, 220, 410, 62, 76, 62, 75, 13, 33295, 7, 85, 62, 76, 8, 198, 220, 220, 220, 220, 220, 220, 220, 264, 62, 76, 796, 26692, 22602, 13, 2032, 499, 62, 31673, 3419, 58, 18, 60, 198, 220, 220, 220, 220, 220, 220, 220, 264, 62, 76, 62, 75, 13, 33295, 7, 82, 62, 76, 8, 628, 220, 220, 220, 1441, 288, 83, 62, 75, 11, 4512, 62, 2435, 62, 75, 11, 1332, 62, 2435, 62, 75, 11, 410, 62, 76, 62, 75, 11, 264, 62, 76, 62, 75, 628, 198, 4299, 6306, 62, 41871, 33529, 198, 220, 220, 220, 37227, 10987, 82, 10256, 329, 14534, 9115, 37811, 198, 220, 220, 220, 374, 69, 62, 75, 796, 17635, 198, 220, 220, 220, 4512, 62, 2435, 62, 75, 796, 17635, 198, 220, 220, 220, 1332, 62, 2435, 62, 75, 796, 17635, 198, 220, 220, 220, 410, 62, 76, 62, 75, 796, 17635, 198, 220, 220, 220, 264, 62, 76, 62, 75, 796, 17635, 628, 220, 220, 220, 374, 69, 796, 14534, 34605, 9487, 7483, 3419, 628, 220, 220, 220, 329, 1312, 287, 2837, 7, 4059, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1395, 62, 83, 796, 1395, 62, 81, 58, 25, 357, 72, 1343, 352, 8, 1635, 1802, 60, 198, 220, 220, 220, 220, 220, 220, 220, 331, 62, 83, 796, 331, 62, 81, 58, 25, 357, 72, 1343, 352, 8, 1635, 1802, 60, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 16835, 262, 2746, 198, 220, 220, 220, 220, 220, 220, 220, 923, 62, 2435, 796, 640, 13, 525, 69, 62, 24588, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 374, 69, 13, 11147, 7, 55, 62, 83, 11, 331, 62, 83, 8, 198, 220, 220, 220, 220, 220, 220, 220, 886, 62, 2435, 796, 640, 13, 525, 69, 62, 24588, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 4512, 62, 2435, 62, 75, 13, 33295, 7, 437, 62, 2435, 532, 923, 62, 2435, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 6208, 262, 2746, 198, 220, 220, 220, 220, 220, 220, 220, 923, 62, 2435, 796, 640, 13, 525, 69, 62, 24588, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 374, 69, 62, 75, 13, 33295, 7, 28764, 2867, 7, 41871, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 886, 62, 2435, 796, 640, 13, 525, 69, 62, 24588, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1332, 62, 2435, 62, 75, 13, 33295, 7, 437, 62, 2435, 532, 923, 62, 2435, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 6822, 4088, 198, 220, 220, 220, 220, 220, 220, 220, 410, 62, 76, 796, 26692, 22602, 13, 32844, 62, 31673, 3419, 58, 17, 60, 198, 220, 220, 220, 220, 220, 220, 220, 410, 62, 76, 62, 75, 13, 33295, 7, 85, 62, 76, 8, 198, 220, 220, 220, 220, 220, 220, 220, 264, 62, 76, 796, 26692, 22602, 13, 2032, 499, 62, 31673, 3419, 58, 18, 60, 198, 220, 220, 220, 220, 220, 220, 220, 264, 62, 76, 62, 75, 13, 33295, 7, 82, 62, 76, 8, 628, 220, 220, 220, 1441, 374, 69, 62, 75, 11, 4512, 62, 2435, 62, 75, 11, 1332, 62, 2435, 62, 75, 11, 410, 62, 76, 62, 75, 11, 264, 62, 76, 62, 75, 628, 198, 4299, 6306, 62, 4352, 33529, 198, 220, 220, 220, 37227, 10987, 82, 10256, 329, 367, 2577, 487, 12083, 12200, 37811, 198, 220, 220, 220, 289, 83, 62, 75, 796, 17635, 198, 220, 220, 220, 4512, 62, 2435, 62, 75, 796, 17635, 198, 220, 220, 220, 1332, 62, 2435, 62, 75, 796, 17635, 198, 220, 220, 220, 410, 62, 76, 62, 75, 796, 17635, 198, 220, 220, 220, 264, 62, 76, 62, 75, 796, 17635, 628, 220, 220, 220, 289, 83, 796, 5509, 13, 39, 2577, 487, 12083, 27660, 9487, 7483, 7, 9806, 62, 7857, 28, 12825, 11, 11542, 62, 41007, 28, 17, 8, 628, 220, 220, 220, 329, 1312, 287, 2837, 7, 55, 62, 27432, 13, 43358, 58, 15, 60, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1395, 62, 83, 796, 1395, 62, 81, 58, 72, 60, 198, 220, 220, 220, 220, 220, 220, 220, 331, 62, 83, 796, 331, 62, 81, 58, 72, 60, 628, 220, 220, 220, 220, 220, 220, 220, 4686, 87, 796, 2837, 7, 35500, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1395, 62, 83, 796, 8633, 7, 13344, 7, 312, 87, 11, 1395, 62, 83, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 923, 62, 2435, 796, 640, 13, 525, 69, 62, 24588, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 289, 83, 13, 35720, 62, 505, 7, 55, 62, 83, 11, 331, 62, 83, 8, 198, 220, 220, 220, 220, 220, 220, 220, 886, 62, 2435, 796, 640, 13, 525, 69, 62, 24588, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 4512, 62, 2435, 62, 75, 13, 33295, 7, 437, 62, 2435, 532, 923, 62, 2435, 8, 628, 220, 220, 220, 220, 220, 220, 220, 611, 1312, 1875, 657, 290, 357, 72, 1343, 352, 8, 4064, 1802, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 62, 83, 796, 657, 13, 15, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 923, 62, 2435, 796, 640, 13, 525, 69, 62, 24588, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 474, 287, 2837, 7, 55, 62, 9288, 13, 43358, 58, 15, 60, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 331, 62, 28764, 796, 289, 83, 13, 79, 17407, 62, 505, 7, 55, 62, 9288, 58, 73, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 331, 62, 28764, 6624, 331, 62, 9288, 58, 73, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 62, 83, 15853, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 289, 83, 62, 75, 13, 33295, 7, 79, 62, 83, 1220, 1395, 62, 9288, 13, 43358, 58, 15, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 886, 62, 2435, 796, 640, 13, 525, 69, 62, 24588, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1332, 62, 2435, 62, 75, 13, 33295, 7, 437, 62, 2435, 532, 923, 62, 2435, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 6822, 4088, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 410, 62, 76, 796, 26692, 22602, 13, 32844, 62, 31673, 3419, 58, 17, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 410, 62, 76, 62, 75, 13, 33295, 7, 85, 62, 76, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 62, 76, 796, 26692, 22602, 13, 2032, 499, 62, 31673, 3419, 58, 18, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 62, 76, 62, 75, 13, 33295, 7, 82, 62, 76, 8, 628, 220, 220, 220, 1303, 17893, 265, 262, 4512, 1661, 198, 220, 220, 220, 649, 62, 27432, 62, 2435, 62, 75, 796, 17635, 198, 220, 220, 220, 329, 1312, 287, 2837, 7, 16, 11, 1395, 62, 27432, 13, 43358, 58, 15, 60, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 4512, 62, 2435, 62, 75, 58, 72, 60, 15853, 4512, 62, 2435, 62, 75, 58, 72, 532, 352, 60, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1312, 1875, 657, 290, 357, 72, 1343, 352, 8, 4064, 1802, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 649, 62, 27432, 62, 2435, 62, 75, 13, 33295, 7, 27432, 62, 2435, 62, 75, 58, 72, 12962, 198, 220, 220, 220, 4512, 62, 2435, 62, 75, 796, 649, 62, 27432, 62, 2435, 62, 75, 628, 220, 220, 220, 1441, 289, 83, 62, 75, 11, 4512, 62, 2435, 62, 75, 11, 1332, 62, 2435, 62, 75, 11, 410, 62, 76, 62, 75, 11, 264, 62, 76, 62, 75, 628, 198, 4299, 6306, 62, 76, 69, 33529, 198, 220, 220, 220, 37227, 10987, 82, 10256, 329, 27328, 4484, 9115, 37811, 198, 220, 220, 220, 285, 69, 62, 75, 796, 17635, 198, 220, 220, 220, 4512, 62, 2435, 62, 75, 796, 17635, 198, 220, 220, 220, 1332, 62, 2435, 62, 75, 796, 17635, 198, 220, 220, 220, 410, 62, 76, 62, 75, 796, 17635, 198, 220, 220, 220, 264, 62, 76, 62, 75, 796, 17635, 628, 220, 220, 220, 285, 69, 796, 27328, 4484, 34605, 9487, 7483, 7, 77, 62, 395, 320, 2024, 28, 940, 8, 628, 220, 220, 220, 329, 1312, 287, 2837, 7, 4059, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1395, 62, 83, 796, 1395, 62, 81, 58, 72, 1635, 1802, 1058, 357, 72, 1343, 352, 8, 1635, 1802, 60, 198, 220, 220, 220, 220, 220, 220, 220, 331, 62, 83, 796, 331, 62, 81, 58, 72, 1635, 1802, 1058, 357, 72, 1343, 352, 8, 1635, 1802, 60, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 16835, 262, 2746, 198, 220, 220, 220, 220, 220, 220, 220, 923, 62, 2435, 796, 640, 13, 525, 69, 62, 24588, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 285, 69, 13, 47172, 62, 11147, 7, 55, 62, 83, 11, 331, 62, 83, 8, 198, 220, 220, 220, 220, 220, 220, 220, 886, 62, 2435, 796, 640, 13, 525, 69, 62, 24588, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 4512, 62, 2435, 62, 75, 13, 33295, 7, 437, 62, 2435, 532, 923, 62, 2435, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 6208, 262, 2746, 198, 220, 220, 220, 220, 220, 220, 220, 923, 62, 2435, 796, 640, 13, 525, 69, 62, 24588, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 285, 69, 62, 75, 13, 33295, 7, 28764, 2867, 7, 76, 69, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 886, 62, 2435, 796, 640, 13, 525, 69, 62, 24588, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1332, 62, 2435, 62, 75, 13, 33295, 7, 437, 62, 2435, 532, 923, 62, 2435, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 6822, 4088, 198, 220, 220, 220, 220, 220, 220, 220, 410, 62, 76, 796, 26692, 22602, 13, 32844, 62, 31673, 3419, 58, 17, 60, 198, 220, 220, 220, 220, 220, 220, 220, 410, 62, 76, 62, 75, 13, 33295, 7, 85, 62, 76, 8, 198, 220, 220, 220, 220, 220, 220, 220, 264, 62, 76, 796, 26692, 22602, 13, 2032, 499, 62, 31673, 3419, 58, 18, 60, 198, 220, 220, 220, 220, 220, 220, 220, 264, 62, 76, 62, 75, 13, 33295, 7, 82, 62, 76, 8, 628, 220, 220, 220, 1303, 17893, 265, 262, 4512, 1661, 198, 220, 220, 220, 329, 1312, 287, 2837, 7, 16, 11, 5323, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 4512, 62, 2435, 62, 75, 58, 72, 60, 15853, 4512, 62, 2435, 62, 75, 58, 72, 532, 352, 60, 628, 220, 220, 220, 1441, 285, 69, 62, 75, 11, 4512, 62, 2435, 62, 75, 11, 1332, 62, 2435, 62, 75, 11, 410, 62, 76, 62, 75, 11, 264, 62, 76, 62, 75, 628, 198, 4299, 6306, 62, 21282, 83, 33529, 198, 220, 220, 220, 37227, 10987, 82, 10256, 329, 13860, 26423, 12200, 37811, 198, 220, 220, 220, 264, 28664, 62, 75, 796, 17635, 198, 220, 220, 220, 4512, 62, 2435, 62, 75, 796, 17635, 198, 220, 220, 220, 1332, 62, 2435, 62, 75, 796, 17635, 198, 220, 220, 220, 410, 62, 76, 62, 75, 796, 17635, 198, 220, 220, 220, 264, 62, 76, 62, 75, 796, 17635, 628, 220, 220, 220, 264, 28664, 796, 26423, 27660, 9487, 7483, 3419, 628, 220, 220, 220, 329, 1312, 287, 2837, 7, 4059, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1395, 62, 83, 796, 1395, 62, 81, 58, 72, 1635, 1802, 1058, 357, 72, 1343, 352, 8, 1635, 1802, 60, 198, 220, 220, 220, 220, 220, 220, 220, 331, 62, 83, 796, 331, 62, 81, 58, 72, 1635, 1802, 1058, 357, 72, 1343, 352, 8, 1635, 1802, 60, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 16835, 262, 2746, 198, 220, 220, 220, 220, 220, 220, 220, 923, 62, 2435, 796, 640, 13, 525, 69, 62, 24588, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 264, 28664, 13, 47172, 62, 11147, 7, 55, 62, 83, 11, 331, 62, 83, 11, 6097, 41888, 15, 11, 352, 11, 362, 11, 513, 11, 604, 11, 642, 11, 718, 11, 767, 11, 807, 11, 860, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 886, 62, 2435, 796, 640, 13, 525, 69, 62, 24588, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 4512, 62, 2435, 62, 75, 13, 33295, 7, 437, 62, 2435, 532, 923, 62, 2435, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 6208, 262, 2746, 198, 220, 220, 220, 220, 220, 220, 220, 923, 62, 2435, 796, 640, 13, 525, 69, 62, 24588, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 264, 28664, 62, 75, 13, 33295, 7, 28764, 2867, 7, 21282, 83, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 886, 62, 2435, 796, 640, 13, 525, 69, 62, 24588, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1332, 62, 2435, 62, 75, 13, 33295, 7, 437, 62, 2435, 532, 923, 62, 2435, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 6822, 4088, 198, 220, 220, 220, 220, 220, 220, 220, 410, 62, 76, 796, 26692, 22602, 13, 32844, 62, 31673, 3419, 58, 17, 60, 198, 220, 220, 220, 220, 220, 220, 220, 410, 62, 76, 62, 75, 13, 33295, 7, 85, 62, 76, 8, 198, 220, 220, 220, 220, 220, 220, 220, 264, 62, 76, 796, 26692, 22602, 13, 2032, 499, 62, 31673, 3419, 58, 18, 60, 198, 220, 220, 220, 220, 220, 220, 220, 264, 62, 76, 62, 75, 13, 33295, 7, 82, 62, 76, 8, 628, 220, 220, 220, 1303, 17893, 265, 262, 4512, 1661, 198, 220, 220, 220, 329, 1312, 287, 2837, 7, 16, 11, 5323, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 4512, 62, 2435, 62, 75, 58, 72, 60, 15853, 4512, 62, 2435, 62, 75, 58, 72, 532, 352, 60, 628, 220, 220, 220, 1441, 264, 28664, 62, 75, 11, 4512, 62, 2435, 62, 75, 11, 1332, 62, 2435, 62, 75, 11, 410, 62, 76, 62, 75, 11, 264, 62, 76, 62, 75, 628, 198, 4299, 6306, 62, 82, 7568, 33529, 198, 220, 220, 220, 37227, 10987, 82, 10256, 329, 13860, 26423, 9115, 37811, 198, 220, 220, 220, 264, 7568, 62, 75, 796, 17635, 198, 220, 220, 220, 4512, 62, 2435, 62, 75, 796, 17635, 198, 220, 220, 220, 1332, 62, 2435, 62, 75, 796, 17635, 198, 220, 220, 220, 410, 62, 76, 62, 75, 796, 17635, 198, 220, 220, 220, 264, 62, 76, 62, 75, 796, 17635, 628, 220, 220, 220, 264, 7568, 796, 13860, 10707, 1166, 34605, 3419, 628, 220, 220, 220, 329, 1312, 287, 2837, 7, 4059, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1395, 62, 83, 796, 1395, 62, 81, 58, 72, 1635, 1802, 1058, 357, 72, 1343, 352, 8, 1635, 1802, 60, 198, 220, 220, 220, 220, 220, 220, 220, 331, 62, 83, 796, 331, 62, 81, 58, 72, 1635, 1802, 1058, 357, 72, 1343, 352, 8, 1635, 1802, 60, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 16835, 262, 2746, 198, 220, 220, 220, 220, 220, 220, 220, 923, 62, 2435, 796, 640, 13, 525, 69, 62, 24588, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 264, 7568, 13, 47172, 62, 11147, 7, 55, 62, 83, 11, 331, 62, 83, 11, 6097, 41888, 15, 11, 352, 11, 362, 11, 513, 11, 604, 11, 642, 11, 718, 11, 767, 11, 807, 11, 860, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 886, 62, 2435, 796, 640, 13, 525, 69, 62, 24588, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 4512, 62, 2435, 62, 75, 13, 33295, 7, 437, 62, 2435, 532, 923, 62, 2435, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 6208, 262, 2746, 198, 220, 220, 220, 220, 220, 220, 220, 923, 62, 2435, 796, 640, 13, 525, 69, 62, 24588, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 264, 7568, 62, 75, 13, 33295, 7, 28764, 2867, 7, 82, 7568, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 886, 62, 2435, 796, 640, 13, 525, 69, 62, 24588, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1332, 62, 2435, 62, 75, 13, 33295, 7, 437, 62, 2435, 532, 923, 62, 2435, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 6822, 4088, 198, 220, 220, 220, 220, 220, 220, 220, 410, 62, 76, 796, 26692, 22602, 13, 32844, 62, 31673, 3419, 58, 17, 60, 198, 220, 220, 220, 220, 220, 220, 220, 410, 62, 76, 62, 75, 13, 33295, 7, 85, 62, 76, 8, 198, 220, 220, 220, 220, 220, 220, 220, 264, 62, 76, 796, 26692, 22602, 13, 2032, 499, 62, 31673, 3419, 58, 18, 60, 198, 220, 220, 220, 220, 220, 220, 220, 264, 62, 76, 62, 75, 13, 33295, 7, 82, 62, 76, 8, 628, 220, 220, 220, 1303, 17893, 265, 262, 4512, 1661, 198, 220, 220, 220, 329, 1312, 287, 2837, 7, 16, 11, 5323, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 4512, 62, 2435, 62, 75, 58, 72, 60, 15853, 4512, 62, 2435, 62, 75, 58, 72, 532, 352, 60, 628, 220, 220, 220, 1441, 264, 7568, 62, 75, 11, 4512, 62, 2435, 62, 75, 11, 1332, 62, 2435, 62, 75, 11, 410, 62, 76, 62, 75, 11, 264, 62, 76, 62, 75, 628, 198, 2, 43426, 327, 5064, 1503, 1366, 198, 2, 14435, 1096, 198, 9888, 796, 45941, 13, 32604, 7, 37659, 13, 283, 858, 7, 15, 11, 17759, 4008, 198, 11265, 1096, 796, 37456, 2124, 25, 357, 87, 532, 5046, 8, 1220, 5046, 198, 198, 2, 16835, 1366, 198, 66, 361, 283, 62, 2213, 1299, 316, 796, 40522, 13, 34, 5064, 1503, 940, 7, 15763, 2625, 40720, 1600, 4512, 28, 17821, 11, 4321, 28, 17821, 11, 6121, 28, 14202, 8, 198, 55, 62, 27432, 796, 3487, 1096, 7, 66, 361, 283, 62, 2213, 1299, 316, 13, 7890, 8, 198, 88, 62, 27432, 796, 45941, 13, 18747, 7, 66, 361, 283, 62, 2213, 1299, 316, 13, 83, 853, 1039, 8, 198, 198, 2, 6208, 1366, 198, 66, 361, 283, 62, 9288, 2617, 796, 40522, 13, 34, 5064, 1503, 940, 7, 15763, 2625, 40720, 1600, 4512, 28, 25101, 11, 4321, 28, 17821, 11, 6121, 28, 14202, 8, 198, 55, 62, 9288, 796, 3487, 1096, 7, 66, 361, 283, 62, 9288, 2617, 13, 7890, 8, 198, 88, 62, 9288, 796, 45941, 13, 18747, 7, 66, 361, 283, 62, 9288, 2617, 13, 83, 853, 1039, 8, 198, 198, 55, 62, 27432, 796, 1395, 62, 27432, 13, 3447, 1758, 32590, 16, 11, 3933, 1635, 3933, 1635, 513, 8, 198, 55, 62, 9288, 796, 1395, 62, 9288, 13, 3447, 1758, 32590, 16, 11, 3933, 1635, 3933, 1635, 513, 8, 198, 198, 2, 2547, 325, 1398, 7483, 7747, 198, 48610, 796, 1822, 29572, 13, 28100, 1713, 46677, 3419, 198, 48610, 13, 2860, 62, 49140, 7203, 12, 439, 1600, 1037, 2625, 439, 1398, 13350, 1600, 2672, 28, 25101, 11, 2223, 2625, 8095, 62, 7942, 4943, 198, 48610, 13, 2860, 62, 49140, 7203, 12, 28664, 1600, 1037, 2625, 12501, 1166, 17039, 1600, 2672, 28, 25101, 11, 2223, 2625, 8095, 62, 7942, 4943, 198, 48610, 13, 2860, 62, 49140, 7203, 12, 41871, 1600, 1037, 2625, 25120, 17039, 1600, 2672, 28, 25101, 11, 2223, 2625, 8095, 62, 7942, 4943, 198, 48610, 13, 2860, 62, 49140, 7203, 12, 4352, 1600, 1037, 2625, 38979, 487, 12083, 7150, 1600, 2672, 28, 25101, 11, 2223, 2625, 8095, 62, 7942, 4943, 198, 48610, 13, 2860, 62, 49140, 7203, 12, 76, 69, 1600, 1037, 2625, 6327, 4484, 17039, 1600, 2672, 28, 25101, 11, 2223, 2625, 8095, 62, 7942, 4943, 198, 48610, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 27444, 21282, 83, 1600, 1037, 2625, 5532, 2551, 7150, 1600, 2672, 28, 25101, 11, 2223, 2625, 8095, 62, 7942, 1, 198, 8, 198, 48610, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 27444, 82, 7568, 1600, 1037, 2625, 5532, 2551, 17039, 1600, 2672, 28, 25101, 11, 2223, 2625, 8095, 62, 7942, 1, 198, 8, 198, 22046, 796, 30751, 13, 29572, 62, 22046, 3419, 198, 198, 2, 35006, 10256, 198, 361, 26498, 13, 439, 393, 26498, 13, 28664, 25, 198, 220, 220, 220, 288, 83, 62, 4134, 62, 75, 796, 17635, 198, 220, 220, 220, 288, 83, 62, 27432, 62, 83, 62, 75, 796, 17635, 198, 220, 220, 220, 288, 83, 62, 9288, 62, 83, 62, 75, 796, 17635, 198, 220, 220, 220, 288, 83, 62, 85, 62, 76, 62, 75, 796, 17635, 198, 220, 220, 220, 288, 83, 62, 82, 62, 76, 62, 75, 796, 17635, 198, 220, 220, 220, 329, 1312, 287, 2837, 7, 940, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 279, 796, 9943, 7094, 7, 55, 62, 27432, 13, 43358, 58, 15, 12962, 628, 220, 220, 220, 220, 220, 220, 220, 1395, 62, 81, 796, 1395, 62, 27432, 58, 79, 60, 198, 220, 220, 220, 220, 220, 220, 220, 331, 62, 81, 796, 331, 62, 27432, 58, 79, 60, 628, 220, 220, 220, 220, 220, 220, 220, 288, 83, 62, 4134, 11, 288, 83, 62, 27432, 62, 83, 11, 288, 83, 62, 9288, 62, 83, 11, 288, 83, 62, 85, 62, 76, 11, 288, 83, 62, 82, 62, 76, 796, 6306, 62, 28664, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 288, 83, 62, 4134, 62, 75, 13, 33295, 7, 28664, 62, 4134, 8, 198, 220, 220, 220, 220, 220, 220, 220, 288, 83, 62, 27432, 62, 83, 62, 75, 13, 33295, 7, 28664, 62, 27432, 62, 83, 8, 198, 220, 220, 220, 220, 220, 220, 220, 288, 83, 62, 9288, 62, 83, 62, 75, 13, 33295, 7, 28664, 62, 9288, 62, 83, 8, 198, 220, 220, 220, 220, 220, 220, 220, 288, 83, 62, 85, 62, 76, 62, 75, 13, 33295, 7, 28664, 62, 85, 62, 76, 8, 198, 220, 220, 220, 220, 220, 220, 220, 288, 83, 62, 82, 62, 76, 62, 75, 13, 33295, 7, 28664, 62, 82, 62, 76, 8, 628, 220, 220, 220, 220, 220, 220, 220, 3551, 62, 20274, 7203, 40720, 43420, 14, 28664, 14, 66, 361, 283, 940, 62, 4134, 13, 14116, 1600, 288, 83, 62, 4134, 62, 75, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3551, 62, 20274, 7203, 40720, 43420, 14, 28664, 14, 66, 361, 283, 940, 62, 27432, 62, 83, 13, 14116, 1600, 288, 83, 62, 27432, 62, 83, 62, 75, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3551, 62, 20274, 7203, 40720, 43420, 14, 28664, 14, 66, 361, 283, 940, 62, 9288, 62, 83, 13, 14116, 1600, 288, 83, 62, 9288, 62, 83, 62, 75, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3551, 62, 20274, 7203, 40720, 43420, 14, 28664, 14, 66, 361, 283, 940, 62, 85, 62, 76, 13, 14116, 1600, 288, 83, 62, 85, 62, 76, 62, 75, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3551, 62, 20274, 7203, 40720, 43420, 14, 28664, 14, 66, 361, 283, 940, 62, 82, 62, 76, 13, 14116, 1600, 288, 83, 62, 82, 62, 76, 62, 75, 8, 198, 198, 361, 26498, 13, 439, 393, 26498, 13, 41871, 25, 198, 220, 220, 220, 374, 69, 62, 4134, 62, 75, 796, 17635, 198, 220, 220, 220, 374, 69, 62, 27432, 62, 83, 62, 75, 796, 17635, 198, 220, 220, 220, 374, 69, 62, 9288, 62, 83, 62, 75, 796, 17635, 198, 220, 220, 220, 374, 69, 62, 85, 62, 76, 62, 75, 796, 17635, 198, 220, 220, 220, 374, 69, 62, 82, 62, 76, 62, 75, 796, 17635, 198, 220, 220, 220, 329, 1312, 287, 2837, 7, 940, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 279, 796, 9943, 7094, 7, 55, 62, 27432, 13, 43358, 58, 15, 12962, 628, 220, 220, 220, 220, 220, 220, 220, 1395, 62, 81, 796, 1395, 62, 27432, 58, 79, 60, 198, 220, 220, 220, 220, 220, 220, 220, 331, 62, 81, 796, 331, 62, 27432, 58, 79, 60, 628, 220, 220, 220, 220, 220, 220, 220, 374, 69, 62, 4134, 11, 374, 69, 62, 27432, 62, 83, 11, 374, 69, 62, 9288, 62, 83, 11, 374, 69, 62, 85, 62, 76, 11, 374, 69, 62, 82, 62, 76, 796, 6306, 62, 41871, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 374, 69, 62, 4134, 62, 75, 13, 33295, 7, 41871, 62, 4134, 8, 198, 220, 220, 220, 220, 220, 220, 220, 374, 69, 62, 27432, 62, 83, 62, 75, 13, 33295, 7, 41871, 62, 27432, 62, 83, 8, 198, 220, 220, 220, 220, 220, 220, 220, 374, 69, 62, 9288, 62, 83, 62, 75, 13, 33295, 7, 41871, 62, 9288, 62, 83, 8, 198, 220, 220, 220, 220, 220, 220, 220, 374, 69, 62, 85, 62, 76, 62, 75, 13, 33295, 7, 41871, 62, 85, 62, 76, 8, 198, 220, 220, 220, 220, 220, 220, 220, 374, 69, 62, 82, 62, 76, 62, 75, 13, 33295, 7, 41871, 62, 82, 62, 76, 8, 628, 220, 220, 220, 220, 220, 220, 220, 3551, 62, 20274, 7203, 40720, 43420, 14, 41871, 14, 66, 361, 283, 940, 62, 4134, 13, 14116, 1600, 374, 69, 62, 4134, 62, 75, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3551, 62, 20274, 7203, 40720, 43420, 14, 41871, 14, 66, 361, 283, 940, 62, 27432, 62, 83, 13, 14116, 1600, 374, 69, 62, 27432, 62, 83, 62, 75, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3551, 62, 20274, 7203, 40720, 43420, 14, 41871, 14, 66, 361, 283, 940, 62, 9288, 62, 83, 13, 14116, 1600, 374, 69, 62, 9288, 62, 83, 62, 75, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3551, 62, 20274, 7203, 40720, 43420, 14, 41871, 14, 66, 361, 283, 940, 62, 85, 62, 76, 13, 14116, 1600, 374, 69, 62, 85, 62, 76, 62, 75, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3551, 62, 20274, 7203, 40720, 43420, 14, 41871, 14, 66, 361, 283, 940, 62, 82, 62, 76, 13, 14116, 1600, 374, 69, 62, 82, 62, 76, 62, 75, 8, 198, 198, 361, 26498, 13, 439, 393, 26498, 13, 4352, 25, 198, 220, 220, 220, 289, 83, 62, 4134, 62, 75, 796, 17635, 198, 220, 220, 220, 289, 83, 62, 27432, 62, 83, 62, 75, 796, 17635, 198, 220, 220, 220, 289, 83, 62, 9288, 62, 83, 62, 75, 796, 17635, 198, 220, 220, 220, 289, 83, 62, 85, 62, 76, 62, 75, 796, 17635, 198, 220, 220, 220, 289, 83, 62, 82, 62, 76, 62, 75, 796, 17635, 198, 220, 220, 220, 329, 1312, 287, 2837, 7, 940, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 279, 796, 9943, 7094, 7, 55, 62, 27432, 13, 43358, 58, 15, 12962, 628, 220, 220, 220, 220, 220, 220, 220, 1395, 62, 81, 796, 1395, 62, 27432, 58, 79, 60, 198, 220, 220, 220, 220, 220, 220, 220, 331, 62, 81, 796, 331, 62, 27432, 58, 79, 60, 628, 220, 220, 220, 220, 220, 220, 220, 289, 83, 62, 4134, 11, 289, 83, 62, 27432, 62, 83, 11, 289, 83, 62, 9288, 62, 83, 11, 289, 83, 62, 85, 62, 76, 11, 289, 83, 62, 82, 62, 76, 796, 6306, 62, 4352, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 289, 83, 62, 4134, 62, 75, 13, 33295, 7, 4352, 62, 4134, 8, 198, 220, 220, 220, 220, 220, 220, 220, 289, 83, 62, 27432, 62, 83, 62, 75, 13, 33295, 7, 4352, 62, 27432, 62, 83, 8, 198, 220, 220, 220, 220, 220, 220, 220, 289, 83, 62, 9288, 62, 83, 62, 75, 13, 33295, 7, 4352, 62, 9288, 62, 83, 8, 198, 220, 220, 220, 220, 220, 220, 220, 289, 83, 62, 85, 62, 76, 62, 75, 13, 33295, 7, 4352, 62, 85, 62, 76, 8, 198, 220, 220, 220, 220, 220, 220, 220, 289, 83, 62, 82, 62, 76, 62, 75, 13, 33295, 7, 4352, 62, 82, 62, 76, 8, 628, 220, 220, 220, 220, 220, 220, 220, 3551, 62, 20274, 7203, 40720, 43420, 14, 4352, 14, 66, 361, 283, 940, 62, 4134, 13, 14116, 1600, 289, 83, 62, 4134, 62, 75, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3551, 62, 20274, 7203, 40720, 43420, 14, 4352, 14, 66, 361, 283, 940, 62, 27432, 62, 83, 13, 14116, 1600, 289, 83, 62, 27432, 62, 83, 62, 75, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3551, 62, 20274, 7203, 40720, 43420, 14, 4352, 14, 66, 361, 283, 940, 62, 9288, 62, 83, 13, 14116, 1600, 289, 83, 62, 9288, 62, 83, 62, 75, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3551, 62, 20274, 7203, 40720, 43420, 14, 4352, 14, 66, 361, 283, 940, 62, 85, 62, 76, 13, 14116, 1600, 289, 83, 62, 85, 62, 76, 62, 75, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3551, 62, 20274, 7203, 40720, 43420, 14, 4352, 14, 66, 361, 283, 940, 62, 82, 62, 76, 13, 14116, 1600, 289, 83, 62, 82, 62, 76, 62, 75, 8, 198, 198, 361, 26498, 13, 439, 393, 26498, 13, 76, 69, 25, 198, 220, 220, 220, 285, 69, 62, 4134, 62, 75, 796, 17635, 198, 220, 220, 220, 285, 69, 62, 27432, 62, 83, 62, 75, 796, 17635, 198, 220, 220, 220, 285, 69, 62, 9288, 62, 83, 62, 75, 796, 17635, 198, 220, 220, 220, 285, 69, 62, 85, 62, 76, 62, 75, 796, 17635, 198, 220, 220, 220, 285, 69, 62, 82, 62, 76, 62, 75, 796, 17635, 198, 220, 220, 220, 329, 1312, 287, 2837, 7, 940, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 279, 796, 9943, 7094, 7, 55, 62, 27432, 13, 43358, 58, 15, 12962, 628, 220, 220, 220, 220, 220, 220, 220, 1395, 62, 81, 796, 1395, 62, 27432, 58, 79, 60, 198, 220, 220, 220, 220, 220, 220, 220, 331, 62, 81, 796, 331, 62, 27432, 58, 79, 60, 628, 220, 220, 220, 220, 220, 220, 220, 285, 69, 62, 4134, 11, 285, 69, 62, 27432, 62, 83, 11, 285, 69, 62, 9288, 62, 83, 11, 285, 69, 62, 85, 62, 76, 11, 285, 69, 62, 82, 62, 76, 796, 6306, 62, 76, 69, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 285, 69, 62, 4134, 62, 75, 13, 33295, 7, 76, 69, 62, 4134, 8, 198, 220, 220, 220, 220, 220, 220, 220, 285, 69, 62, 27432, 62, 83, 62, 75, 13, 33295, 7, 76, 69, 62, 27432, 62, 83, 8, 198, 220, 220, 220, 220, 220, 220, 220, 285, 69, 62, 9288, 62, 83, 62, 75, 13, 33295, 7, 76, 69, 62, 9288, 62, 83, 8, 198, 220, 220, 220, 220, 220, 220, 220, 285, 69, 62, 85, 62, 76, 62, 75, 13, 33295, 7, 76, 69, 62, 85, 62, 76, 8, 198, 220, 220, 220, 220, 220, 220, 220, 285, 69, 62, 82, 62, 76, 62, 75, 13, 33295, 7, 76, 69, 62, 82, 62, 76, 8, 628, 220, 220, 220, 220, 220, 220, 220, 3551, 62, 20274, 7203, 40720, 43420, 14, 76, 69, 14, 66, 361, 283, 940, 62, 4134, 13, 14116, 1600, 285, 69, 62, 4134, 62, 75, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3551, 62, 20274, 7203, 40720, 43420, 14, 76, 69, 14, 66, 361, 283, 940, 62, 27432, 62, 83, 13, 14116, 1600, 285, 69, 62, 27432, 62, 83, 62, 75, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3551, 62, 20274, 7203, 40720, 43420, 14, 76, 69, 14, 66, 361, 283, 940, 62, 9288, 62, 83, 13, 14116, 1600, 285, 69, 62, 9288, 62, 83, 62, 75, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3551, 62, 20274, 7203, 40720, 43420, 14, 76, 69, 14, 66, 361, 283, 940, 62, 85, 62, 76, 13, 14116, 1600, 285, 69, 62, 85, 62, 76, 62, 75, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3551, 62, 20274, 7203, 40720, 43420, 14, 76, 69, 14, 66, 361, 283, 940, 62, 82, 62, 76, 13, 14116, 1600, 285, 69, 62, 82, 62, 76, 62, 75, 8, 198, 198, 361, 26498, 13, 439, 393, 26498, 13, 21282, 83, 25, 198, 220, 220, 220, 264, 28664, 62, 4134, 62, 75, 796, 17635, 198, 220, 220, 220, 264, 28664, 62, 27432, 62, 83, 62, 75, 796, 17635, 198, 220, 220, 220, 264, 28664, 62, 9288, 62, 83, 62, 75, 796, 17635, 198, 220, 220, 220, 264, 28664, 62, 85, 62, 76, 62, 75, 796, 17635, 198, 220, 220, 220, 264, 28664, 62, 82, 62, 76, 62, 75, 796, 17635, 198, 220, 220, 220, 329, 1312, 287, 2837, 7, 940, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 279, 796, 9943, 7094, 7, 55, 62, 27432, 13, 43358, 58, 15, 12962, 628, 220, 220, 220, 220, 220, 220, 220, 1395, 62, 81, 796, 1395, 62, 27432, 58, 79, 60, 198, 220, 220, 220, 220, 220, 220, 220, 331, 62, 81, 796, 331, 62, 27432, 58, 79, 60, 628, 220, 220, 220, 220, 220, 220, 220, 264, 28664, 62, 4134, 11, 264, 28664, 62, 27432, 62, 83, 11, 264, 28664, 62, 9288, 62, 83, 11, 264, 28664, 62, 85, 62, 76, 11, 264, 28664, 62, 82, 62, 76, 796, 6306, 62, 21282, 83, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 264, 28664, 62, 4134, 62, 75, 13, 33295, 7, 21282, 83, 62, 4134, 8, 198, 220, 220, 220, 220, 220, 220, 220, 264, 28664, 62, 27432, 62, 83, 62, 75, 13, 33295, 7, 21282, 83, 62, 27432, 62, 83, 8, 198, 220, 220, 220, 220, 220, 220, 220, 264, 28664, 62, 9288, 62, 83, 62, 75, 13, 33295, 7, 21282, 83, 62, 9288, 62, 83, 8, 198, 220, 220, 220, 220, 220, 220, 220, 264, 28664, 62, 85, 62, 76, 62, 75, 13, 33295, 7, 21282, 83, 62, 85, 62, 76, 8, 198, 220, 220, 220, 220, 220, 220, 220, 264, 28664, 62, 82, 62, 76, 62, 75, 13, 33295, 7, 21282, 83, 62, 82, 62, 76, 8, 628, 220, 220, 220, 220, 220, 220, 220, 3551, 62, 20274, 7203, 40720, 43420, 14, 21282, 83, 14, 66, 361, 283, 940, 62, 4134, 13, 14116, 1600, 264, 28664, 62, 4134, 62, 75, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3551, 62, 20274, 7203, 40720, 43420, 14, 21282, 83, 14, 66, 361, 283, 940, 62, 27432, 62, 83, 13, 14116, 1600, 264, 28664, 62, 27432, 62, 83, 62, 75, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3551, 62, 20274, 7203, 40720, 43420, 14, 21282, 83, 14, 66, 361, 283, 940, 62, 9288, 62, 83, 13, 14116, 1600, 264, 28664, 62, 9288, 62, 83, 62, 75, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3551, 62, 20274, 7203, 40720, 43420, 14, 21282, 83, 14, 66, 361, 283, 940, 62, 85, 62, 76, 13, 14116, 1600, 264, 28664, 62, 85, 62, 76, 62, 75, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3551, 62, 20274, 7203, 40720, 43420, 14, 21282, 83, 14, 66, 361, 283, 940, 62, 82, 62, 76, 13, 14116, 1600, 264, 28664, 62, 82, 62, 76, 62, 75, 8, 198, 198, 361, 26498, 13, 439, 393, 26498, 13, 82, 7568, 25, 198, 220, 220, 220, 264, 7568, 62, 4134, 62, 75, 796, 17635, 198, 220, 220, 220, 264, 7568, 62, 27432, 62, 83, 62, 75, 796, 17635, 198, 220, 220, 220, 264, 7568, 62, 9288, 62, 83, 62, 75, 796, 17635, 198, 220, 220, 220, 264, 7568, 62, 85, 62, 76, 62, 75, 796, 17635, 198, 220, 220, 220, 264, 7568, 62, 82, 62, 76, 62, 75, 796, 17635, 198, 220, 220, 220, 329, 1312, 287, 2837, 7, 940, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 279, 796, 9943, 7094, 7, 55, 62, 27432, 13, 43358, 58, 15, 12962, 628, 220, 220, 220, 220, 220, 220, 220, 1395, 62, 81, 796, 1395, 62, 27432, 58, 79, 60, 198, 220, 220, 220, 220, 220, 220, 220, 331, 62, 81, 796, 331, 62, 27432, 58, 79, 60, 628, 220, 220, 220, 220, 220, 220, 220, 264, 7568, 62, 4134, 11, 264, 7568, 62, 27432, 62, 83, 11, 264, 7568, 62, 9288, 62, 83, 11, 264, 7568, 62, 85, 62, 76, 11, 264, 7568, 62, 82, 62, 76, 796, 6306, 62, 82, 7568, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 264, 7568, 62, 4134, 62, 75, 13, 33295, 7, 82, 7568, 62, 4134, 8, 198, 220, 220, 220, 220, 220, 220, 220, 264, 7568, 62, 27432, 62, 83, 62, 75, 13, 33295, 7, 82, 7568, 62, 27432, 62, 83, 8, 198, 220, 220, 220, 220, 220, 220, 220, 264, 7568, 62, 9288, 62, 83, 62, 75, 13, 33295, 7, 82, 7568, 62, 9288, 62, 83, 8, 198, 220, 220, 220, 220, 220, 220, 220, 264, 7568, 62, 85, 62, 76, 62, 75, 13, 33295, 7, 82, 7568, 62, 85, 62, 76, 8, 198, 220, 220, 220, 220, 220, 220, 220, 264, 7568, 62, 82, 62, 76, 62, 75, 13, 33295, 7, 82, 7568, 62, 82, 62, 76, 8, 628, 220, 220, 220, 220, 220, 220, 220, 3551, 62, 20274, 7203, 40720, 43420, 14, 82, 7568, 14, 66, 361, 283, 940, 62, 4134, 13, 14116, 1600, 264, 7568, 62, 4134, 62, 75, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3551, 62, 20274, 7203, 40720, 43420, 14, 82, 7568, 14, 66, 361, 283, 940, 62, 27432, 62, 83, 13, 14116, 1600, 264, 7568, 62, 27432, 62, 83, 62, 75, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3551, 62, 20274, 7203, 40720, 43420, 14, 82, 7568, 14, 66, 361, 283, 940, 62, 9288, 62, 83, 13, 14116, 1600, 264, 7568, 62, 9288, 62, 83, 62, 75, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3551, 62, 20274, 7203, 40720, 43420, 14, 82, 7568, 14, 66, 361, 283, 940, 62, 85, 62, 76, 13, 14116, 1600, 264, 7568, 62, 85, 62, 76, 62, 75, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3551, 62, 20274, 7203, 40720, 43420, 14, 82, 7568, 14, 66, 361, 283, 940, 62, 82, 62, 76, 13, 14116, 1600, 264, 7568, 62, 82, 62, 76, 62, 75, 8, 198 ]
1.891149
7,129
"""Text wrapping and filling. """ # Copyright (C) 1999-2001 Gregory P. Ward. # Copyright (C) 2002, 2003 Python Software Foundation. # Written by Greg Ward <[email protected]> # Modified by Sophie Kirschner # https://github.com/python/cpython/blob/master/Lib/textwrap.py # https://github.com/python/cpython/blob/master/LICENSE __revision__ = "$Id$" import string, re # Do the right thing with boolean values for all known Python versions # (so this module can be copied to projects that don't depend on Python # 2.3, e.g. Optik and Docutils) by uncommenting the block of code below. #try: # True, False #except NameError: # (True, False) = (1, 0) __all__ = ['TextWrapper'] # Hardcode the recognized whitespace characters to the US-ASCII # whitespace characters. The main reason for doing this is that in # ISO-8859-1, 0xa0 is non-breaking whitespace, so in certain locales # that character winds up in string.whitespace. Respecting # string.whitespace in those cases would 1) make textwrap treat 0xa0 the # same as any other whitespace char, which is clearly wrong (it's a # *non-breaking* space), 2) possibly cause problems with Unicode, # since 0xa0 is not in range(128). _whitespace = '\t\n\x0b\x0c\r ' class TextWrapper: """ Object for wrapping/filling text. The public interface consists of the wrap() and fill() methods; the other methods are just there for subclasses to override in order to tweak the default behaviour. If you want to completely replace the main wrapping algorithm, you'll probably have to override _wrap_chunks(). Several instance attributes control various aspects of wrapping: width (default: 70) the maximum width of wrapped lines (unless break_long_words is false) initial_indent (default: "") string that will be prepended to the first line of wrapped output. Counts towards the line's width. subsequent_indent (default: "") string that will be prepended to all lines save the first of wrapped output; also counts towards each line's width. expand_tabs (default: true) Expand tabs in input text to spaces before further processing. Each tab will become 1 .. 8 spaces, depending on its position in its line. If false, each tab is treated as a single character. replace_whitespace (default: true) Replace all whitespace characters in the input text by spaces after tab expansion. Note that if expand_tabs is false and replace_whitespace is true, every tab will be converted to a single space! break_long_words (default: true) Break words longer than 'width'. If false, those words will not be broken, and some lines might be longer than 'width'. break_on_hyphens (default: true) Allow breaking hyphenated words. If true, wrapping will occur preferably on whitespaces and right after hyphens part of compound words. drop_whitespace (default: true) Drop leading and trailing whitespace from lines. """ # This funky little regex is just the trick for splitting # text up into word-wrappable chunks. E.g. # "Hello there -- you goof-ball, use the -b option!" # splits into # Hello/ /there/ /--/ /you/ /goof-/ball,/ /use/ /the/ /-b/ /option! # (after stripping out empty strings). wordsep_re = re.compile( r'(\s+|' # any whitespace r'[^\s\w]*\w+[^0-9\W]-(?=\w+[^0-9\W])|' # hyphenated words r'(?<=[\w\!\"\'\&\.\,\?])-{2,}(?=\w))') # em-dash # This less funky little regex just split on recognized spaces. E.g. # "Hello there -- you goof-ball, use the -b option!" # splits into # Hello/ /there/ /--/ /you/ /goof-ball,/ /use/ /the/ /-b/ /option!/ wordsep_simple_re = re.compile(r'(\s+)') # -- Private methods ----------------------------------------------- # (possibly useful for subclasses to override) def _split(self, text): """_split(text : string) -> [string] Split the text to wrap into indivisible chunks. Chunks are not quite the same as words; see _wrap_chunks() for full details. As an example, the text Look, goof-ball -- use the -b option! breaks into the following chunks: 'Look,', ' ', 'goof-', 'ball', ' ', '--', ' ', 'use', ' ', 'the', ' ', '-b', ' ', 'option!' if break_on_hyphens is True, or in: 'Look,', ' ', 'goof-ball', ' ', '--', ' ', 'use', ' ', 'the', ' ', '-b', ' ', option!' otherwise. """ if self.break_on_hyphens: pat = self.wordsep_re else: pat = self.wordsep_simple_re chunks = pat.split(text.decode("latin-1")) chunks = list(filter(None, chunks)) # remove empty chunks return chunks def _handle_long_word(self, reversed_chunks, cur_line, cur_len, width): """_handle_long_word(chunks : [string], cur_line : [string], cur_len : int, width : int) Handle a chunk of text (most likely a word, not whitespace) that is too long to fit in any line. """ # Figure out when indent is larger than the specified width, and make # sure at least one character is stripped off on every pass if width < 1: space_left = 1 else: space_left = width - cur_len # If we're allowed to break long words, then do so: put as much # of the next chunk onto the current line as will fit. if self.break_long_words: cur_line.append(reversed_chunks[-1][:space_left]) reversed_chunks[-1] = reversed_chunks[-1][space_left:] # Otherwise, we have to preserve the long word intact. Only add # it to the current line if there's nothing already there -- # that minimizes how much we violate the width constraint. elif not cur_line: cur_line.append(reversed_chunks.pop()) # If we're not allowed to break long words, and there's already # text on the current line, do nothing. Next time through the # main loop of _wrap_chunks(), we'll wind up here again, but # cur_len will be zero, so the next line will be entirely # devoted to the long word that we can't handle right now. # Added to consider basic ANSI escape sequences as zero-width def _wrap_chunks(self, chunks): """_wrap_chunks(chunks : [string]) -> [string] Wrap a sequence of text chunks and return a list of lines of length 'self.width' or less. (If 'break_long_words' is false, some lines may be longer than this.) Chunks correspond roughly to words and the whitespace between them: each chunk is indivisible (modulo 'break_long_words'), but a line break can come between any two chunks. Chunks should not have internal whitespace; ie. a chunk is either all whitespace or a "word". Whitespace chunks will be removed from the beginning and end of lines, but apart from that whitespace is preserved. """ lines = [] if self.width <= 0: raise ValueError("invalid width %r (must be > 0)" % self.width) # Arrange in reverse order so items can be efficiently popped # from a stack of chucks. chunks.reverse() while chunks: # Start the list of chunks that will make up the current line. # cur_len is just the length of all the chunks in cur_line. cur_line = [] cur_len = 0 # Figure out which static string will prefix this line. if lines: indent = self.subsequent_indent else: indent = self.initial_indent # Maximum width for this line. width = self.width - len(indent) # First chunk on line is whitespace -- drop it, unless this # is the very beginning of the text (ie. no lines started yet). if self.drop_whitespace and chunks[-1].strip() == '' and lines: del chunks[-1] while chunks: l = self._get_chunk_length(chunks[-1]) # Can at least squeeze this chunk onto the current line. if cur_len + l <= width: cur_line.append(chunks.pop()) cur_len += l # Nope, this line is full. else: break # The current line is full, and the next chunk is too big to # fit on *any* line (not just this one). if chunks and self._get_chunk_length(chunks[-1]) > width: self._handle_long_word(chunks, cur_line, cur_len, width) # If the last chunk on this line is all whitespace, drop it. if self.drop_whitespace and cur_line and cur_line[-1].strip() == '': del cur_line[-1] # Convert current line back to a string and store it in list # of all lines (return value). if cur_line: lines.append(indent + ''.join(cur_line)) return lines # -- Public interface ---------------------------------------------- def wrap(self, text): """wrap(text : string) -> [string] Reformat the single paragraph in 'text' so it fits in lines of no more than 'self.width' columns, and return a list of wrapped lines. Tabs in 'text' are expanded with string.expandtabs(), and all other whitespace characters (including newline) are converted to space. """ chunks = self._split(text) return self._wrap_chunks(chunks) def fill(self, text): """fill(text : string) -> string Reformat the single paragraph in 'text' to fit in lines of no more than 'self.width' columns, and return a new string containing the entire wrapped paragraph. """ return "\n".join(self.wrap(text))
[ 37811, 8206, 27074, 290, 12591, 13, 198, 37811, 198, 198, 2, 15069, 357, 34, 8, 7358, 12, 14585, 20653, 350, 13, 12150, 13, 198, 2, 15069, 357, 34, 8, 6244, 11, 5816, 11361, 10442, 5693, 13, 198, 2, 22503, 416, 8547, 12150, 1279, 70, 904, 31, 29412, 13, 3262, 29, 198, 198, 2, 40499, 416, 35331, 7385, 20601, 1008, 198, 2, 3740, 1378, 12567, 13, 785, 14, 29412, 14, 13155, 7535, 14, 2436, 672, 14, 9866, 14, 25835, 14, 5239, 37150, 13, 9078, 198, 2, 3740, 1378, 12567, 13, 785, 14, 29412, 14, 13155, 7535, 14, 2436, 672, 14, 9866, 14, 43, 2149, 24290, 198, 198, 834, 260, 10178, 834, 796, 17971, 7390, 3, 1, 198, 198, 11748, 4731, 11, 302, 198, 198, 2, 2141, 262, 826, 1517, 351, 25131, 3815, 329, 477, 1900, 11361, 6300, 198, 2, 357, 568, 428, 8265, 460, 307, 18984, 284, 4493, 326, 836, 470, 4745, 319, 11361, 198, 2, 362, 13, 18, 11, 304, 13, 70, 13, 13123, 1134, 290, 14432, 26791, 8, 416, 8820, 434, 278, 262, 2512, 286, 2438, 2174, 13, 198, 2, 28311, 25, 198, 2, 220, 220, 220, 6407, 11, 10352, 198, 2, 16341, 6530, 12331, 25, 198, 2, 220, 220, 220, 357, 17821, 11, 10352, 8, 796, 357, 16, 11, 657, 8, 198, 198, 834, 439, 834, 796, 37250, 8206, 36918, 2848, 20520, 198, 198, 2, 6912, 8189, 262, 8018, 13216, 10223, 3435, 284, 262, 1294, 12, 42643, 3978, 198, 2, 13216, 10223, 3435, 13, 220, 383, 1388, 1738, 329, 1804, 428, 318, 326, 287, 198, 2, 19694, 12, 3459, 3270, 12, 16, 11, 657, 27865, 15, 318, 1729, 12, 13395, 13216, 10223, 11, 523, 287, 1728, 1957, 274, 198, 2, 326, 2095, 13520, 510, 287, 4731, 13, 1929, 2737, 10223, 13, 220, 1874, 35570, 198, 2, 4731, 13, 1929, 2737, 10223, 287, 883, 2663, 561, 352, 8, 787, 2420, 37150, 2190, 657, 27865, 15, 262, 198, 2, 976, 355, 597, 584, 13216, 10223, 1149, 11, 543, 318, 4084, 2642, 357, 270, 338, 257, 198, 2, 1635, 13159, 12, 13395, 9, 2272, 828, 362, 8, 5457, 2728, 2761, 351, 34371, 11, 198, 2, 1201, 657, 27865, 15, 318, 407, 287, 2837, 7, 12762, 737, 198, 62, 1929, 2737, 10223, 796, 705, 59, 83, 59, 77, 59, 87, 15, 65, 59, 87, 15, 66, 59, 81, 705, 198, 198, 4871, 8255, 36918, 2848, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 9515, 329, 27074, 14, 69, 4509, 2420, 13, 220, 383, 1171, 7071, 10874, 286, 198, 220, 220, 220, 262, 14441, 3419, 290, 6070, 3419, 5050, 26, 262, 584, 5050, 389, 655, 612, 329, 198, 220, 220, 220, 850, 37724, 284, 20957, 287, 1502, 284, 25393, 262, 4277, 9172, 13, 198, 220, 220, 220, 1002, 345, 765, 284, 3190, 6330, 262, 1388, 27074, 11862, 11, 198, 220, 220, 220, 345, 1183, 2192, 423, 284, 20957, 4808, 37150, 62, 354, 14125, 22446, 628, 220, 220, 220, 12168, 4554, 12608, 1630, 2972, 7612, 286, 27074, 25, 198, 220, 220, 220, 220, 220, 9647, 357, 12286, 25, 4317, 8, 198, 220, 220, 220, 220, 220, 220, 220, 262, 5415, 9647, 286, 12908, 3951, 357, 25252, 2270, 62, 6511, 62, 10879, 198, 220, 220, 220, 220, 220, 220, 220, 318, 3991, 8, 198, 220, 220, 220, 220, 220, 4238, 62, 521, 298, 357, 12286, 25, 366, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 4731, 326, 481, 307, 3143, 1631, 284, 262, 717, 1627, 286, 12908, 198, 220, 220, 220, 220, 220, 220, 220, 5072, 13, 220, 2764, 82, 3371, 262, 1627, 338, 9647, 13, 198, 220, 220, 220, 220, 220, 8840, 62, 521, 298, 357, 12286, 25, 366, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 4731, 326, 481, 307, 3143, 1631, 284, 477, 3951, 3613, 262, 717, 198, 220, 220, 220, 220, 220, 220, 220, 286, 12908, 5072, 26, 635, 9853, 3371, 1123, 1627, 338, 9647, 13, 198, 220, 220, 220, 220, 220, 4292, 62, 8658, 82, 357, 12286, 25, 2081, 8, 198, 220, 220, 220, 220, 220, 220, 220, 49368, 22524, 287, 5128, 2420, 284, 9029, 878, 2252, 7587, 13, 198, 220, 220, 220, 220, 220, 220, 220, 5501, 7400, 481, 1716, 352, 11485, 807, 9029, 11, 6906, 319, 663, 2292, 287, 198, 220, 220, 220, 220, 220, 220, 220, 663, 1627, 13, 220, 1002, 3991, 11, 1123, 7400, 318, 5716, 355, 257, 2060, 2095, 13, 198, 220, 220, 220, 220, 220, 6330, 62, 1929, 2737, 10223, 357, 12286, 25, 2081, 8, 198, 220, 220, 220, 220, 220, 220, 220, 40177, 477, 13216, 10223, 3435, 287, 262, 5128, 2420, 416, 9029, 198, 220, 220, 220, 220, 220, 220, 220, 706, 7400, 7118, 13, 220, 5740, 326, 611, 4292, 62, 8658, 82, 318, 3991, 290, 198, 220, 220, 220, 220, 220, 220, 220, 6330, 62, 1929, 2737, 10223, 318, 2081, 11, 790, 7400, 481, 307, 11513, 284, 257, 198, 220, 220, 220, 220, 220, 220, 220, 2060, 2272, 0, 198, 220, 220, 220, 220, 220, 2270, 62, 6511, 62, 10879, 357, 12286, 25, 2081, 8, 198, 220, 220, 220, 220, 220, 220, 220, 12243, 2456, 2392, 621, 705, 10394, 4458, 220, 1002, 3991, 11, 883, 2456, 481, 407, 198, 220, 220, 220, 220, 220, 220, 220, 307, 5445, 11, 290, 617, 3951, 1244, 307, 2392, 621, 705, 10394, 4458, 198, 220, 220, 220, 220, 220, 2270, 62, 261, 62, 36362, 5135, 357, 12286, 25, 2081, 8, 198, 220, 220, 220, 220, 220, 220, 220, 22507, 7163, 5328, 831, 515, 2456, 13, 1002, 2081, 11, 27074, 481, 3051, 198, 220, 220, 220, 220, 220, 220, 220, 29203, 319, 13216, 43076, 290, 826, 706, 5328, 5135, 636, 286, 198, 220, 220, 220, 220, 220, 220, 220, 13061, 2456, 13, 198, 220, 220, 220, 220, 220, 4268, 62, 1929, 2737, 10223, 357, 12286, 25, 2081, 8, 198, 220, 220, 220, 220, 220, 220, 220, 14258, 3756, 290, 25462, 13216, 10223, 422, 3951, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 1303, 770, 42958, 1310, 40364, 318, 655, 262, 6908, 329, 26021, 198, 220, 220, 220, 1303, 2420, 510, 656, 1573, 12, 29988, 381, 540, 22716, 13, 220, 412, 13, 70, 13, 198, 220, 220, 220, 1303, 220, 220, 366, 15496, 612, 1377, 345, 31644, 12, 1894, 11, 779, 262, 532, 65, 3038, 2474, 198, 220, 220, 220, 1303, 30778, 656, 198, 220, 220, 220, 1303, 220, 220, 18435, 14, 1220, 8117, 14, 1220, 438, 14, 1220, 5832, 14, 1220, 2188, 1659, 12, 14, 1894, 11, 14, 1220, 1904, 14, 1220, 1169, 14, 1220, 12, 65, 14, 1220, 18076, 0, 198, 220, 220, 220, 1303, 357, 8499, 37727, 503, 6565, 13042, 737, 198, 220, 220, 220, 1573, 325, 79, 62, 260, 796, 302, 13, 5589, 576, 7, 198, 220, 220, 220, 220, 220, 220, 220, 374, 6, 38016, 82, 10, 91, 6, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 597, 13216, 10223, 198, 220, 220, 220, 220, 220, 220, 220, 374, 6, 58, 61, 59, 82, 59, 86, 60, 9, 59, 86, 10, 58, 61, 15, 12, 24, 59, 54, 60, 30420, 30, 28, 59, 86, 10, 58, 61, 15, 12, 24, 59, 54, 12962, 91, 6, 220, 220, 1303, 5328, 831, 515, 2456, 198, 220, 220, 220, 220, 220, 220, 220, 374, 6, 7, 30, 27, 41888, 59, 86, 59, 0, 7879, 43054, 59, 5, 17405, 59, 11, 59, 30, 12962, 12, 90, 17, 11, 92, 7, 30, 28, 59, 86, 4008, 11537, 220, 220, 1303, 795, 12, 42460, 628, 220, 220, 220, 1303, 770, 1342, 42958, 1310, 40364, 655, 6626, 319, 8018, 9029, 13, 412, 13, 70, 13, 198, 220, 220, 220, 1303, 220, 220, 366, 15496, 612, 1377, 345, 31644, 12, 1894, 11, 779, 262, 532, 65, 3038, 2474, 198, 220, 220, 220, 1303, 30778, 656, 198, 220, 220, 220, 1303, 220, 220, 18435, 14, 1220, 8117, 14, 1220, 438, 14, 1220, 5832, 14, 1220, 2188, 1659, 12, 1894, 11, 14, 1220, 1904, 14, 1220, 1169, 14, 1220, 12, 65, 14, 1220, 18076, 48443, 198, 220, 220, 220, 1573, 325, 79, 62, 36439, 62, 260, 796, 302, 13, 5589, 576, 7, 81, 6, 38016, 82, 28988, 11537, 628, 198, 220, 220, 220, 1303, 1377, 15348, 5050, 20368, 24305, 198, 220, 220, 220, 1303, 357, 39363, 4465, 329, 850, 37724, 284, 20957, 8, 628, 220, 220, 220, 825, 4808, 35312, 7, 944, 11, 2420, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 62, 35312, 7, 5239, 1058, 4731, 8, 4613, 685, 8841, 60, 628, 220, 220, 220, 220, 220, 220, 220, 27758, 262, 2420, 284, 14441, 656, 773, 452, 12843, 22716, 13, 220, 609, 14125, 389, 198, 220, 220, 220, 220, 220, 220, 220, 407, 2407, 262, 976, 355, 2456, 26, 766, 4808, 37150, 62, 354, 14125, 3419, 329, 1336, 198, 220, 220, 220, 220, 220, 220, 220, 3307, 13, 220, 1081, 281, 1672, 11, 262, 2420, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6803, 11, 31644, 12, 1894, 1377, 779, 262, 532, 65, 3038, 0, 198, 220, 220, 220, 220, 220, 220, 220, 9457, 656, 262, 1708, 22716, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 8567, 11, 3256, 705, 46083, 705, 2188, 1659, 12, 3256, 705, 1894, 3256, 705, 46083, 705, 438, 3256, 705, 46083, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 1904, 3256, 705, 46083, 705, 1169, 3256, 705, 46083, 705, 12, 65, 3256, 705, 46083, 705, 18076, 13679, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2270, 62, 261, 62, 36362, 5135, 318, 6407, 11, 393, 287, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 8567, 11, 3256, 705, 46083, 705, 2188, 1659, 12, 1894, 3256, 705, 46083, 705, 438, 3256, 705, 46083, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 1904, 3256, 705, 46083, 705, 1169, 3256, 705, 46083, 705, 12, 65, 3256, 705, 46083, 3038, 13679, 198, 220, 220, 220, 220, 220, 220, 220, 4306, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 9032, 62, 261, 62, 36362, 5135, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1458, 796, 2116, 13, 4775, 325, 79, 62, 260, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1458, 796, 2116, 13, 4775, 325, 79, 62, 36439, 62, 260, 198, 220, 220, 220, 220, 220, 220, 220, 22716, 796, 1458, 13, 35312, 7, 5239, 13, 12501, 1098, 7203, 75, 10680, 12, 16, 48774, 198, 220, 220, 220, 220, 220, 220, 220, 22716, 796, 1351, 7, 24455, 7, 14202, 11, 22716, 4008, 220, 1303, 4781, 6565, 22716, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 22716, 628, 220, 220, 220, 825, 4808, 28144, 62, 6511, 62, 4775, 7, 944, 11, 17687, 62, 354, 14125, 11, 1090, 62, 1370, 11, 1090, 62, 11925, 11, 9647, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 62, 28144, 62, 6511, 62, 4775, 7, 354, 14125, 1058, 685, 8841, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1090, 62, 1370, 1058, 685, 8841, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1090, 62, 11925, 1058, 493, 11, 9647, 1058, 493, 8, 628, 220, 220, 220, 220, 220, 220, 220, 33141, 257, 16058, 286, 2420, 357, 1712, 1884, 257, 1573, 11, 407, 13216, 10223, 8, 326, 198, 220, 220, 220, 220, 220, 220, 220, 318, 1165, 890, 284, 4197, 287, 597, 1627, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 11291, 503, 618, 33793, 318, 4025, 621, 262, 7368, 9647, 11, 290, 787, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1654, 379, 1551, 530, 2095, 318, 18818, 572, 319, 790, 1208, 198, 220, 220, 220, 220, 220, 220, 220, 611, 9647, 1279, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2272, 62, 9464, 796, 352, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2272, 62, 9464, 796, 9647, 532, 1090, 62, 11925, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 1002, 356, 821, 3142, 284, 2270, 890, 2456, 11, 788, 466, 523, 25, 1234, 355, 881, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 286, 262, 1306, 16058, 4291, 262, 1459, 1627, 355, 481, 4197, 13, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 9032, 62, 6511, 62, 10879, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1090, 62, 1370, 13, 33295, 7, 260, 690, 276, 62, 354, 14125, 58, 12, 16, 7131, 25, 13200, 62, 9464, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17687, 62, 354, 14125, 58, 12, 16, 60, 796, 17687, 62, 354, 14125, 58, 12, 16, 7131, 13200, 62, 9464, 47715, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 15323, 11, 356, 423, 284, 12201, 262, 890, 1573, 16572, 13, 220, 5514, 751, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 340, 284, 262, 1459, 1627, 611, 612, 338, 2147, 1541, 612, 1377, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 326, 10356, 4340, 703, 881, 356, 16967, 262, 9647, 32315, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 407, 1090, 62, 1370, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1090, 62, 1370, 13, 33295, 7, 260, 690, 276, 62, 354, 14125, 13, 12924, 28955, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 1002, 356, 821, 407, 3142, 284, 2270, 890, 2456, 11, 290, 612, 338, 1541, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 2420, 319, 262, 1459, 1627, 11, 466, 2147, 13, 220, 7406, 640, 832, 262, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1388, 9052, 286, 4808, 37150, 62, 354, 14125, 22784, 356, 1183, 2344, 510, 994, 757, 11, 475, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1090, 62, 11925, 481, 307, 6632, 11, 523, 262, 1306, 1627, 481, 307, 5000, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 13378, 284, 262, 890, 1573, 326, 356, 460, 470, 5412, 826, 783, 13, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 10687, 284, 2074, 4096, 3537, 11584, 6654, 16311, 355, 6632, 12, 10394, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 825, 4808, 37150, 62, 354, 14125, 7, 944, 11, 22716, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 62, 37150, 62, 354, 14125, 7, 354, 14125, 1058, 685, 8841, 12962, 4613, 685, 8841, 60, 628, 220, 220, 220, 220, 220, 220, 220, 41028, 257, 8379, 286, 2420, 22716, 290, 1441, 257, 1351, 286, 3951, 286, 198, 220, 220, 220, 220, 220, 220, 220, 4129, 705, 944, 13, 10394, 6, 393, 1342, 13, 220, 357, 1532, 705, 9032, 62, 6511, 62, 10879, 6, 318, 3991, 11, 198, 220, 220, 220, 220, 220, 220, 220, 617, 3951, 743, 307, 2392, 621, 428, 2014, 220, 609, 14125, 6053, 7323, 198, 220, 220, 220, 220, 220, 220, 220, 284, 2456, 290, 262, 13216, 10223, 1022, 606, 25, 1123, 16058, 318, 198, 220, 220, 220, 220, 220, 220, 220, 773, 452, 12843, 357, 4666, 43348, 705, 9032, 62, 6511, 62, 10879, 33809, 475, 257, 1627, 2270, 460, 198, 220, 220, 220, 220, 220, 220, 220, 1282, 1022, 597, 734, 22716, 13, 220, 609, 14125, 815, 407, 423, 5387, 198, 220, 220, 220, 220, 220, 220, 220, 13216, 10223, 26, 37941, 13, 257, 16058, 318, 2035, 477, 13216, 10223, 393, 257, 366, 4775, 1911, 198, 220, 220, 220, 220, 220, 220, 220, 29290, 10223, 22716, 481, 307, 4615, 422, 262, 3726, 290, 886, 286, 198, 220, 220, 220, 220, 220, 220, 220, 3951, 11, 475, 5475, 422, 326, 13216, 10223, 318, 17232, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 3951, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 10394, 19841, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7203, 259, 12102, 9647, 4064, 81, 357, 27238, 307, 1875, 657, 16725, 4064, 2116, 13, 10394, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 943, 9521, 287, 9575, 1502, 523, 3709, 460, 307, 18306, 22928, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 422, 257, 8931, 286, 442, 6238, 13, 198, 220, 220, 220, 220, 220, 220, 220, 22716, 13, 50188, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 981, 22716, 25, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 7253, 262, 1351, 286, 22716, 326, 481, 787, 510, 262, 1459, 1627, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1090, 62, 11925, 318, 655, 262, 4129, 286, 477, 262, 22716, 287, 1090, 62, 1370, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1090, 62, 1370, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1090, 62, 11925, 796, 657, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 11291, 503, 543, 9037, 4731, 481, 21231, 428, 1627, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 3951, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 33793, 796, 2116, 13, 7266, 44399, 62, 521, 298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 33793, 796, 2116, 13, 36733, 62, 521, 298, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 22246, 9647, 329, 428, 1627, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9647, 796, 2116, 13, 10394, 532, 18896, 7, 521, 298, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3274, 16058, 319, 1627, 318, 13216, 10223, 1377, 4268, 340, 11, 4556, 428, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 318, 262, 845, 3726, 286, 262, 2420, 357, 494, 13, 645, 3951, 2067, 1865, 737, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 14781, 62, 1929, 2737, 10223, 290, 22716, 58, 12, 16, 4083, 36311, 3419, 6624, 10148, 290, 3951, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1619, 22716, 58, 12, 16, 60, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 981, 22716, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 300, 796, 2116, 13557, 1136, 62, 354, 2954, 62, 13664, 7, 354, 14125, 58, 12, 16, 12962, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1680, 379, 1551, 21229, 428, 16058, 4291, 262, 1459, 1627, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1090, 62, 11925, 1343, 300, 19841, 9647, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1090, 62, 1370, 13, 33295, 7, 354, 14125, 13, 12924, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1090, 62, 11925, 15853, 300, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 39544, 11, 428, 1627, 318, 1336, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 383, 1459, 1627, 318, 1336, 11, 290, 262, 1306, 16058, 318, 1165, 1263, 284, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 4197, 319, 1635, 1092, 9, 1627, 357, 1662, 655, 428, 530, 737, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 22716, 290, 2116, 13557, 1136, 62, 354, 2954, 62, 13664, 7, 354, 14125, 58, 12, 16, 12962, 1875, 9647, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 28144, 62, 6511, 62, 4775, 7, 354, 14125, 11, 1090, 62, 1370, 11, 1090, 62, 11925, 11, 9647, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1002, 262, 938, 16058, 319, 428, 1627, 318, 477, 13216, 10223, 11, 4268, 340, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 14781, 62, 1929, 2737, 10223, 290, 1090, 62, 1370, 290, 1090, 62, 1370, 58, 12, 16, 4083, 36311, 3419, 6624, 10148, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1619, 1090, 62, 1370, 58, 12, 16, 60, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 38240, 1459, 1627, 736, 284, 257, 4731, 290, 3650, 340, 287, 1351, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 286, 477, 3951, 357, 7783, 1988, 737, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1090, 62, 1370, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3951, 13, 33295, 7, 521, 298, 1343, 705, 4458, 22179, 7, 22019, 62, 1370, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 3951, 628, 198, 220, 220, 220, 1303, 1377, 5094, 7071, 20368, 26171, 628, 220, 220, 220, 825, 14441, 7, 944, 11, 2420, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 37150, 7, 5239, 1058, 4731, 8, 4613, 685, 8841, 60, 628, 220, 220, 220, 220, 220, 220, 220, 17893, 265, 262, 2060, 7322, 287, 705, 5239, 6, 523, 340, 11414, 287, 3951, 286, 198, 220, 220, 220, 220, 220, 220, 220, 645, 517, 621, 705, 944, 13, 10394, 6, 15180, 11, 290, 1441, 257, 1351, 286, 12908, 198, 220, 220, 220, 220, 220, 220, 220, 3951, 13, 220, 309, 8937, 287, 705, 5239, 6, 389, 9902, 351, 4731, 13, 11201, 392, 8658, 82, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 290, 477, 584, 13216, 10223, 3435, 357, 8201, 649, 1370, 8, 389, 198, 220, 220, 220, 220, 220, 220, 220, 11513, 284, 2272, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 22716, 796, 2116, 13557, 35312, 7, 5239, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13557, 37150, 62, 354, 14125, 7, 354, 14125, 8, 628, 220, 220, 220, 825, 6070, 7, 944, 11, 2420, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 20797, 7, 5239, 1058, 4731, 8, 4613, 4731, 628, 220, 220, 220, 220, 220, 220, 220, 17893, 265, 262, 2060, 7322, 287, 705, 5239, 6, 284, 4197, 287, 3951, 286, 645, 198, 220, 220, 220, 220, 220, 220, 220, 517, 621, 705, 944, 13, 10394, 6, 15180, 11, 290, 1441, 257, 649, 4731, 198, 220, 220, 220, 220, 220, 220, 220, 7268, 262, 2104, 12908, 7322, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 37082, 77, 1911, 22179, 7, 944, 13, 37150, 7, 5239, 4008, 198 ]
2.520575
4,034
# Copyright 2014 Red Hat, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import netaddr from oslo_utils import versionutils import nova.conf from nova import db from nova import exception from nova.i18n import _ from nova import objects from nova.objects import base as obj_base from nova.objects import fields CONF = nova.conf.CONF # TODO(berrange): Remove NovaObjectDictCompat @obj_base.NovaObjectRegistry.register @obj_base.NovaObjectRegistry.register
[ 2, 220, 220, 220, 15069, 1946, 2297, 10983, 11, 3457, 13, 198, 2, 198, 2, 220, 220, 220, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 345, 743, 198, 2, 220, 220, 220, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 921, 743, 7330, 198, 2, 220, 220, 220, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 220, 220, 220, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 220, 220, 220, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 42881, 198, 2, 220, 220, 220, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 4091, 262, 198, 2, 220, 220, 220, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 11247, 198, 2, 220, 220, 220, 739, 262, 13789, 13, 198, 198, 11748, 2010, 29851, 198, 6738, 28686, 5439, 62, 26791, 1330, 2196, 26791, 198, 198, 11748, 645, 6862, 13, 10414, 198, 6738, 645, 6862, 1330, 20613, 198, 6738, 645, 6862, 1330, 6631, 198, 6738, 645, 6862, 13, 72, 1507, 77, 1330, 4808, 198, 6738, 645, 6862, 1330, 5563, 198, 6738, 645, 6862, 13, 48205, 1330, 2779, 355, 26181, 62, 8692, 198, 6738, 645, 6862, 13, 48205, 1330, 7032, 198, 198, 10943, 37, 796, 645, 6862, 13, 10414, 13, 10943, 37, 628, 198, 2, 16926, 46, 7, 527, 9521, 2599, 17220, 17711, 10267, 35, 713, 40073, 198, 31, 26801, 62, 8692, 13, 45, 10071, 10267, 8081, 4592, 13, 30238, 628, 198, 31, 26801, 62, 8692, 13, 45, 10071, 10267, 8081, 4592, 13, 30238, 198 ]
3.268852
305
from PIL import Image from PIL.ExifTags import TAGS import exifread import re import json def get_exif_data(fname): """Get embedded EXIF data from image file.""" ret = {} try: img = Image.open(fname) if hasattr( img, '_getexif' ): exifinfo = img._getexif() if exifinfo != None: for tag, value in exifinfo.items(): decoded = TAGS.get(tag, tag) ret[decoded] = value except IOError: print('IOERROR ' + fname) return ret if __name__ == '__main__': fileName = "1 (36).jpg" # exif = get_exif_data(fileName) # print(exif) read()
[ 6738, 350, 4146, 1330, 7412, 198, 6738, 350, 4146, 13, 3109, 361, 36142, 1330, 37801, 50, 198, 11748, 409, 361, 961, 198, 11748, 302, 198, 198, 11748, 33918, 198, 198, 4299, 651, 62, 1069, 361, 62, 7890, 7, 69, 3672, 2599, 198, 220, 220, 220, 37227, 3855, 14553, 7788, 5064, 1366, 422, 2939, 2393, 526, 15931, 198, 220, 220, 220, 1005, 796, 23884, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 33705, 796, 7412, 13, 9654, 7, 69, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 468, 35226, 7, 33705, 11, 705, 62, 1136, 1069, 361, 6, 15179, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 409, 361, 10951, 796, 33705, 13557, 1136, 1069, 361, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 409, 361, 10951, 14512, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 7621, 11, 1988, 287, 409, 361, 10951, 13, 23814, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 875, 9043, 796, 37801, 50, 13, 1136, 7, 12985, 11, 7621, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1005, 58, 12501, 9043, 60, 796, 1988, 198, 220, 220, 220, 2845, 24418, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 9399, 24908, 705, 1343, 277, 3672, 8, 198, 220, 220, 220, 1441, 1005, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 2393, 5376, 796, 366, 16, 357, 2623, 737, 9479, 1, 198, 220, 220, 220, 1303, 409, 361, 796, 651, 62, 1069, 361, 62, 7890, 7, 7753, 5376, 8, 198, 220, 220, 220, 1303, 3601, 7, 1069, 361, 8, 628, 220, 220, 220, 1100, 3419 ]
2.049383
324
from flask import Flask from flask_sqlalchemy import SQLAlchemy from flask_migrate import Migrate from flask_bootstrap import Bootstrap from flask_login import LoginManager from flask_moment import Moment from flask_mail import Mail # from flask_mail_sendgrid import MailSendGrid from config import Config from logging.handlers import RotatingFileHandler import logging import os db = SQLAlchemy() migrate = Migrate() bootstrap = Bootstrap() login = LoginManager() moment = Moment() mail = Mail() from app import models
[ 6738, 42903, 1330, 46947, 198, 6738, 42903, 62, 25410, 282, 26599, 1330, 16363, 2348, 26599, 198, 6738, 42903, 62, 76, 42175, 1330, 337, 42175, 198, 6738, 42903, 62, 18769, 26418, 1330, 18892, 26418, 198, 6738, 42903, 62, 38235, 1330, 23093, 13511, 198, 6738, 42903, 62, 32542, 298, 1330, 29278, 198, 6738, 42903, 62, 4529, 1330, 11099, 198, 2, 422, 42903, 62, 4529, 62, 21280, 25928, 1330, 11099, 25206, 41339, 198, 6738, 4566, 1330, 17056, 198, 6738, 18931, 13, 4993, 8116, 1330, 18481, 803, 8979, 25060, 198, 11748, 18931, 198, 11748, 28686, 628, 198, 9945, 796, 16363, 2348, 26599, 3419, 198, 76, 42175, 796, 337, 42175, 3419, 198, 18769, 26418, 796, 18892, 26418, 3419, 198, 38235, 796, 23093, 13511, 3419, 198, 32542, 298, 796, 29278, 3419, 198, 4529, 796, 11099, 3419, 628, 198, 6738, 598, 1330, 4981, 198 ]
3.824818
137
''' File: test_conversions.py Author: Adam Pah Description: py.test test ensemble ''' import pytest import conversions as conv class TestConvertTimeseries: ''' Covers the convert_timeseries_to_intervalseries function ''' timeseries = [[0, 2], [2, 3], [5, 3]] def test_basic(self): ''' Timeseries conversion test. ''' #Set up the answer intervalseries = [[0, 2], [1, 3]] #Get the intervalseries test_intervals = conv.convert_timeseries_to_intervalseries(self.timeseries) #Just make sure that these things aren't the same assert intervalseries == test_intervals def test_yaxis_only(self): ''' Timeseries conversion test with the yaxis only ''' #Set up the answer intervalseries = [2, 3] #Get the intervalseries test_intervals = conv.convert_timeseries_to_intervalseries(self.timeseries, yaxis_only=True) #Just make sure that these things aren't the same assert intervalseries == test_intervals def test_negative_bounds(self): ''' Test to make sure that system exit happens ''' #Load up the data timeseries = [[0, 2], [-2, 3], [4, 3]] #Check for the system exit with pytest.raises(SystemExit): conv.convert_timeseries_to_intervalseries(timeseries, yaxis_only=True)
[ 7061, 6, 198, 8979, 25, 1332, 62, 1102, 47178, 13, 9078, 198, 13838, 25, 7244, 350, 993, 198, 11828, 25, 220, 198, 9078, 13, 9288, 1332, 34549, 198, 7061, 6, 198, 11748, 12972, 9288, 198, 11748, 32626, 355, 3063, 198, 198, 4871, 6208, 3103, 1851, 28595, 10640, 25, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 1766, 690, 262, 10385, 62, 22355, 10640, 62, 1462, 62, 3849, 12786, 10640, 2163, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 1661, 10640, 796, 16410, 15, 11, 362, 4357, 685, 17, 11, 513, 4357, 685, 20, 11, 513, 11907, 628, 220, 220, 220, 825, 1332, 62, 35487, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 3782, 10640, 11315, 1332, 13, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 7248, 510, 262, 3280, 198, 220, 220, 220, 220, 220, 220, 220, 20016, 10640, 796, 16410, 15, 11, 362, 4357, 685, 16, 11, 513, 11907, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3855, 262, 20016, 10640, 198, 220, 220, 220, 220, 220, 220, 220, 1332, 62, 3849, 12786, 796, 3063, 13, 1102, 1851, 62, 22355, 10640, 62, 1462, 62, 3849, 12786, 10640, 7, 944, 13, 22355, 10640, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 5703, 787, 1654, 326, 777, 1243, 3588, 470, 262, 976, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 20016, 10640, 6624, 1332, 62, 3849, 12786, 628, 220, 220, 220, 825, 1332, 62, 88, 22704, 62, 8807, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 3782, 10640, 11315, 1332, 351, 262, 331, 22704, 691, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 7248, 510, 262, 3280, 198, 220, 220, 220, 220, 220, 220, 220, 20016, 10640, 796, 685, 17, 11, 513, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3855, 262, 20016, 10640, 198, 220, 220, 220, 220, 220, 220, 220, 1332, 62, 3849, 12786, 796, 3063, 13, 1102, 1851, 62, 22355, 10640, 62, 1462, 62, 3849, 12786, 10640, 7, 944, 13, 22355, 10640, 11, 331, 22704, 62, 8807, 28, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 5703, 787, 1654, 326, 777, 1243, 3588, 470, 262, 976, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 20016, 10640, 6624, 1332, 62, 3849, 12786, 628, 220, 220, 220, 825, 1332, 62, 31591, 62, 65, 3733, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 6208, 284, 787, 1654, 326, 1080, 8420, 4325, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 8912, 510, 262, 1366, 198, 220, 220, 220, 220, 220, 220, 220, 1661, 10640, 796, 16410, 15, 11, 362, 4357, 25915, 17, 11, 513, 4357, 685, 19, 11, 513, 11907, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 9787, 329, 262, 1080, 8420, 198, 220, 220, 220, 220, 220, 220, 220, 351, 12972, 9288, 13, 430, 2696, 7, 11964, 30337, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3063, 13, 1102, 1851, 62, 22355, 10640, 62, 1462, 62, 3849, 12786, 10640, 7, 22355, 10640, 11, 331, 22704, 62, 8807, 28, 17821, 8, 198 ]
2.413379
583
from django.urls import reverse from extforms.deprecated_forms import SWCEventRequestForm, DCEventRequestForm from extrequests.models import ( EventRequest, ) from workshops.models import Event, Organization from workshops.tests.base import TestBase
[ 6738, 42625, 14208, 13, 6371, 82, 1330, 9575, 198, 198, 6738, 1070, 23914, 13, 10378, 31023, 62, 23914, 1330, 12672, 5222, 1151, 18453, 8479, 11, 360, 5222, 1151, 18453, 8479, 198, 6738, 1070, 8897, 3558, 13, 27530, 1330, 357, 198, 220, 220, 220, 8558, 18453, 11, 198, 8, 198, 6738, 25982, 13, 27530, 1330, 8558, 11, 12275, 198, 6738, 25982, 13, 41989, 13, 8692, 1330, 6208, 14881, 628, 628 ]
3.73913
69
""" Our HADS database gets loaded up with duplicates, this cleans it up. called from RUN_MIDNIGHT.sh """ from __future__ import print_function import datetime import sys import pytz from pyiem.util import get_dbconn, utc def query(sql, args=None): """ Do a query and make it atomic """ pgconn = get_dbconn('hads') hcursor = pgconn.cursor() sts = datetime.datetime.now() hcursor.execute("set work_mem='16GB'") hcursor.execute(sql, args if args is not None else []) ets = datetime.datetime.now() print("%7s [%8.4fs] %s" % (hcursor.rowcount, (ets - sts).total_seconds(), sql)) hcursor.close() pgconn.commit() def workflow(valid): ''' Do the work for this date, which is set to 00 UTC ''' # Delete schoolnet data, since we created it in the first place! tbl = "raw%s" % (valid.strftime("%Y_%m"),) sql = """DELETE from """ + tbl + """ WHERE station IN (SELECT id from stations WHERE network in ('KCCI','KELO','KIMT') )""" query(sql) # make sure our tmp table does not exist query("DROP TABLE IF EXISTS tmp") # Extract unique obs to special table sql = """CREATE table tmp as select distinct * from """+tbl+""" WHERE valid BETWEEN %s and %s""" args = (valid, valid + datetime.timedelta(hours=24)) query(sql, args) # Delete them all! sql = """delete from """+tbl+""" WHERE valid BETWEEN %s and %s""" query(sql, args) sql = "DROP index IF EXISTS "+tbl+"_idx" query(sql) sql = "DROP index IF EXISTS "+tbl+"_valid_idx" query(sql) # Insert from special table sql = "INSERT into "+tbl+" SELECT * from tmp" query(sql) sql = "CREATE index %s_idx on %s(station,valid)" % (tbl, tbl) query(sql) sql = "CREATE index %s_valid_idx on %s(valid)" % (tbl, tbl) query(sql) sql = "DROP TABLE IF EXISTS tmp" query(sql) def main(argv): """Go Main Go""" if len(argv) == 4: utcnow = utc(int(argv[1]), int(argv[2]), int(argv[3])) workflow(utcnow) return utcnow = datetime.datetime.utcnow() utcnow = utcnow.replace(hour=0, minute=0, second=0, microsecond=0, tzinfo=pytz.utc) # Run for 'yesterday' and 35 days ago for day in [1, 35]: workflow(utcnow - datetime.timedelta(days=day)) if __name__ == '__main__': # See how we are called main(sys.argv)
[ 37811, 198, 3954, 367, 47149, 6831, 3011, 9639, 510, 351, 14184, 16856, 11, 428, 20658, 340, 510, 13, 628, 1444, 422, 32494, 62, 44, 2389, 45, 9947, 13, 1477, 198, 37811, 198, 6738, 11593, 37443, 834, 1330, 3601, 62, 8818, 198, 11748, 4818, 8079, 198, 11748, 25064, 198, 198, 11748, 12972, 22877, 198, 6738, 12972, 26597, 13, 22602, 1330, 651, 62, 9945, 37043, 11, 3384, 66, 628, 198, 4299, 12405, 7, 25410, 11, 26498, 28, 14202, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2141, 257, 12405, 290, 787, 340, 17226, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 23241, 37043, 796, 651, 62, 9945, 37043, 10786, 71, 5643, 11537, 198, 220, 220, 220, 289, 66, 21471, 796, 23241, 37043, 13, 66, 21471, 3419, 198, 220, 220, 220, 39747, 796, 4818, 8079, 13, 19608, 8079, 13, 2197, 3419, 198, 220, 220, 220, 289, 66, 21471, 13, 41049, 7203, 2617, 670, 62, 11883, 11639, 1433, 4579, 6, 4943, 198, 220, 220, 220, 289, 66, 21471, 13, 41049, 7, 25410, 11, 26498, 611, 26498, 318, 407, 6045, 2073, 685, 12962, 198, 220, 220, 220, 304, 912, 796, 4818, 8079, 13, 19608, 8079, 13, 2197, 3419, 198, 220, 220, 220, 3601, 7203, 4, 22, 82, 685, 4, 23, 13, 19, 9501, 60, 4064, 82, 1, 4064, 357, 71, 66, 21471, 13, 808, 9127, 11, 357, 1039, 532, 39747, 737, 23350, 62, 43012, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 44161, 4008, 198, 220, 220, 220, 289, 66, 21471, 13, 19836, 3419, 198, 220, 220, 220, 23241, 37043, 13, 41509, 3419, 628, 198, 4299, 30798, 7, 12102, 2599, 198, 220, 220, 220, 705, 7061, 2141, 262, 670, 329, 428, 3128, 11, 543, 318, 900, 284, 3571, 18119, 705, 7061, 198, 220, 220, 220, 1303, 23520, 1524, 3262, 1366, 11, 1201, 356, 2727, 340, 287, 262, 717, 1295, 0, 198, 220, 220, 220, 256, 2436, 796, 366, 1831, 4, 82, 1, 4064, 357, 12102, 13, 2536, 31387, 7203, 4, 56, 62, 4, 76, 12340, 8, 198, 220, 220, 220, 44161, 796, 37227, 7206, 2538, 9328, 422, 37227, 1343, 256, 2436, 1343, 37227, 33411, 4429, 3268, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 46506, 4686, 422, 8985, 33411, 3127, 287, 19203, 42, 4093, 40, 41707, 42, 3698, 46, 41707, 42, 3955, 51, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 37811, 198, 220, 220, 220, 12405, 7, 25410, 8, 628, 220, 220, 220, 1303, 787, 1654, 674, 45218, 3084, 857, 407, 2152, 198, 220, 220, 220, 12405, 7203, 7707, 3185, 43679, 16876, 7788, 1797, 4694, 45218, 4943, 198, 220, 220, 220, 1303, 29677, 3748, 10201, 284, 2041, 3084, 198, 220, 220, 220, 44161, 796, 37227, 43387, 6158, 3084, 45218, 355, 2922, 7310, 1635, 422, 37227, 10, 83, 2436, 10, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 33411, 4938, 38651, 8845, 1677, 4064, 82, 290, 4064, 82, 37811, 198, 220, 220, 220, 26498, 796, 357, 12102, 11, 4938, 1343, 4818, 8079, 13, 16514, 276, 12514, 7, 24425, 28, 1731, 4008, 198, 220, 220, 220, 12405, 7, 25410, 11, 26498, 8, 628, 220, 220, 220, 1303, 23520, 606, 477, 0, 198, 220, 220, 220, 44161, 796, 37227, 33678, 422, 37227, 10, 83, 2436, 10, 37811, 33411, 4938, 38651, 8845, 1677, 4064, 82, 290, 4064, 82, 37811, 198, 220, 220, 220, 12405, 7, 25410, 11, 26498, 8, 628, 220, 220, 220, 44161, 796, 366, 7707, 3185, 6376, 16876, 7788, 1797, 4694, 43825, 83, 2436, 10, 1, 62, 312, 87, 1, 198, 220, 220, 220, 12405, 7, 25410, 8, 198, 220, 220, 220, 44161, 796, 366, 7707, 3185, 6376, 16876, 7788, 1797, 4694, 43825, 83, 2436, 10, 1, 62, 12102, 62, 312, 87, 1, 198, 220, 220, 220, 12405, 7, 25410, 8, 628, 220, 220, 220, 1303, 35835, 422, 2041, 3084, 198, 220, 220, 220, 44161, 796, 366, 20913, 17395, 656, 43825, 83, 2436, 10, 1, 33493, 1635, 422, 45218, 1, 198, 220, 220, 220, 12405, 7, 25410, 8, 628, 220, 220, 220, 44161, 796, 366, 43387, 6158, 6376, 4064, 82, 62, 312, 87, 319, 4064, 82, 7, 17529, 11, 12102, 16725, 4064, 357, 83, 2436, 11, 256, 2436, 8, 198, 220, 220, 220, 12405, 7, 25410, 8, 198, 220, 220, 220, 44161, 796, 366, 43387, 6158, 6376, 4064, 82, 62, 12102, 62, 312, 87, 319, 4064, 82, 7, 12102, 16725, 4064, 357, 83, 2436, 11, 256, 2436, 8, 198, 220, 220, 220, 12405, 7, 25410, 8, 628, 220, 220, 220, 44161, 796, 366, 7707, 3185, 43679, 16876, 7788, 1797, 4694, 45218, 1, 198, 220, 220, 220, 12405, 7, 25410, 8, 628, 198, 4299, 1388, 7, 853, 85, 2599, 198, 220, 220, 220, 37227, 5247, 8774, 1514, 37811, 198, 220, 220, 220, 611, 18896, 7, 853, 85, 8, 6624, 604, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3384, 66, 2197, 796, 3384, 66, 7, 600, 7, 853, 85, 58, 16, 46570, 493, 7, 853, 85, 58, 17, 46570, 493, 7, 853, 85, 58, 18, 60, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 30798, 7, 315, 66, 2197, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 198, 220, 220, 220, 3384, 66, 2197, 796, 4818, 8079, 13, 19608, 8079, 13, 315, 66, 2197, 3419, 198, 220, 220, 220, 3384, 66, 2197, 796, 3384, 66, 2197, 13, 33491, 7, 9769, 28, 15, 11, 5664, 28, 15, 11, 1218, 28, 15, 11, 4580, 12227, 28, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 256, 89, 10951, 28, 9078, 22877, 13, 315, 66, 8, 198, 220, 220, 220, 1303, 5660, 329, 705, 8505, 6432, 6, 290, 3439, 1528, 2084, 198, 220, 220, 220, 329, 1110, 287, 685, 16, 11, 3439, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 30798, 7, 315, 66, 2197, 532, 4818, 8079, 13, 16514, 276, 12514, 7, 12545, 28, 820, 4008, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1303, 4091, 703, 356, 389, 1444, 198, 220, 220, 220, 1388, 7, 17597, 13, 853, 85, 8, 198 ]
2.310377
1,060
from django.db import models
[ 6738, 42625, 14208, 13, 9945, 1330, 4981, 198, 220, 198 ]
3.1
10
import numpy as np import os import pickle #128x128 #################################################### ''' Inputs 128x128 pixel array Returns label where: label 0 = 1 label 1 = 2 etc ''' ''' returns an array of arrays, each one is the data from one image ''' ########################################### # training Code for class (comment it before running flask app) #train() # for filename in os.listdir('[more here]/images'): # data = readTrainingData(path + filename) # character = data[6] # character = np.array(character, dtype='int') # for i in range(128): # print() # for j in range(128): # if (character[i][j] == 255): # print('*', end ="") # else: # print('7', end ="") # print() # print('------------------------------------------------------------') # print() # print()
[ 11748, 299, 32152, 355, 45941, 198, 11748, 28686, 198, 11748, 2298, 293, 198, 2, 12762, 87, 12762, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 29113, 14468, 4242, 198, 7061, 6, 198, 20560, 82, 13108, 87, 12762, 17465, 7177, 198, 35561, 6167, 810, 25, 198, 18242, 657, 796, 352, 198, 18242, 352, 796, 362, 198, 14784, 198, 7061, 6, 198, 7061, 6, 198, 7783, 82, 281, 7177, 286, 220, 26515, 11, 1123, 530, 318, 262, 1366, 422, 530, 2939, 198, 7061, 6, 198, 198, 29113, 7804, 21017, 628, 198, 2, 3047, 6127, 329, 1398, 357, 23893, 340, 878, 2491, 42903, 598, 8, 198, 198, 2, 27432, 3419, 198, 198, 2, 329, 29472, 287, 28686, 13, 4868, 15908, 10786, 58, 3549, 994, 60, 14, 17566, 6, 2599, 198, 2, 220, 220, 220, 220, 1366, 796, 1100, 44357, 6601, 7, 6978, 1343, 29472, 8, 198, 2, 220, 220, 220, 220, 2095, 796, 1366, 58, 21, 60, 198, 2, 220, 220, 220, 220, 2095, 796, 45941, 13, 18747, 7, 22769, 11, 288, 4906, 11639, 600, 11537, 198, 2, 220, 220, 220, 220, 329, 1312, 287, 2837, 7, 12762, 2599, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 3419, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 329, 474, 287, 2837, 7, 12762, 2599, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 357, 22769, 58, 72, 7131, 73, 60, 6624, 14280, 2599, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 9, 3256, 886, 796, 1, 4943, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 22, 3256, 886, 796, 1, 4943, 198, 2, 220, 220, 220, 220, 3601, 3419, 198, 2, 220, 220, 220, 220, 3601, 10786, 47232, 10541, 11537, 198, 2, 220, 220, 220, 220, 3601, 3419, 198, 2, 220, 220, 220, 220, 3601, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220 ]
2.482667
375
# -*- coding: utf-8 -*- """Python implementation of the StalinSort algorithm. References ---------- - :cite:`mathew` : @[email protected] (2018/10/26 04:20:16) ''I came up with a single pass O(n) sort algorithm I call StalinSort. You iterate down the list of elements checking if they're in order. Any element which is out of order is eliminated. At the end you have a sorted list.'' """ def stalinsort(iterable, key=None, ascending=False): """Sorts iterable according to the single pass O(n) StalinSort algorithm. Parameters ---------- iterable: iterable object key: function A function of one argument that is used to extract a comparison key from each element. Default is None. Returns ------- survivors: list List of surviving elements of iterable. Example ------- >>>from stalinsort import stalinsort >>>a = [3, 2, 5, 7, 1, 3] >>>stalinsort(a) [3, 2, 1] """ ascending = False # There is only descent under communism. if key is not None: keys = iterable.apply(key) else: keys = list(iterable) survivors = iterable[:1] # I prefer to think in terms of survivors. for index, victim in enumerate(iterable[1:]): if survivors[-1] >= keys[index + 1]: survivors.append(victim) return survivors
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 198, 37811, 37906, 7822, 286, 262, 17482, 42758, 11862, 13, 198, 198, 19927, 198, 35937, 198, 12, 220, 220, 1058, 66, 578, 25, 63, 6759, 6391, 63, 1058, 2488, 6759, 6391, 31, 47616, 46457, 13, 14557, 357, 7908, 14, 940, 14, 2075, 8702, 25, 1238, 25, 1433, 8, 198, 220, 220, 220, 10148, 40, 1625, 510, 351, 257, 2060, 1208, 440, 7, 77, 8, 3297, 11862, 314, 869, 17482, 42758, 13, 921, 198, 220, 220, 220, 11629, 378, 866, 262, 1351, 286, 4847, 10627, 611, 484, 821, 287, 1502, 13, 4377, 5002, 198, 220, 220, 220, 543, 318, 503, 286, 1502, 318, 15254, 13, 1629, 262, 886, 345, 423, 257, 23243, 1351, 13531, 198, 37811, 198, 198, 4299, 29049, 1040, 419, 7, 2676, 540, 11, 1994, 28, 14202, 11, 41988, 28, 25101, 2599, 198, 220, 220, 220, 37227, 50, 2096, 11629, 540, 1864, 284, 262, 2060, 1208, 440, 7, 77, 8, 17482, 42758, 11862, 13, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 11629, 540, 25, 11629, 540, 2134, 628, 220, 220, 220, 1994, 25, 2163, 198, 220, 220, 220, 220, 220, 220, 220, 317, 2163, 286, 530, 4578, 326, 318, 973, 284, 7925, 257, 7208, 1994, 198, 220, 220, 220, 220, 220, 220, 220, 422, 1123, 5002, 13, 15161, 318, 6045, 13, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 13644, 25, 1351, 198, 220, 220, 220, 220, 220, 220, 220, 7343, 286, 16997, 4847, 286, 11629, 540, 13, 198, 220, 220, 220, 220, 198, 220, 220, 220, 17934, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 13163, 6738, 29049, 1040, 419, 1330, 29049, 1040, 419, 198, 220, 220, 220, 13163, 64, 796, 685, 18, 11, 362, 11, 642, 11, 767, 11, 352, 11, 513, 60, 198, 220, 220, 220, 13163, 7757, 1040, 419, 7, 64, 8, 198, 220, 220, 220, 685, 18, 11, 362, 11, 352, 60, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 41988, 796, 10352, 1303, 1318, 318, 691, 18598, 739, 27770, 13, 628, 220, 220, 220, 611, 1994, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 8251, 796, 11629, 540, 13, 39014, 7, 2539, 8, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 8251, 796, 1351, 7, 2676, 540, 8, 628, 220, 220, 220, 13644, 796, 11629, 540, 58, 25, 16, 60, 1303, 314, 4702, 284, 892, 287, 2846, 286, 13644, 13, 198, 220, 220, 220, 329, 6376, 11, 3117, 287, 27056, 378, 7, 2676, 540, 58, 16, 47715, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 611, 220, 13644, 58, 12, 16, 60, 18189, 8251, 58, 9630, 1343, 352, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13644, 13, 33295, 7, 32433, 320, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 1441, 13644, 198 ]
2.729249
506
import matplotlib.pyplot as plt import numpy as np from pyfmi import load_fmu model = load_fmu('./PadeSlave.fmu') inputs = ('inputVariable', lambda t: 5. * np.cos(t)) simulation = model.simulate(final_time=30, input=inputs) plt.plot(simulation['time'], simulation['inputVariable']) plt.plot(simulation['time'], simulation['outputVariable']) plt.legend(['inputVariable', 'outputVariable']) plt.xlabel('time') plt.show()
[ 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 12972, 69, 11632, 1330, 3440, 62, 69, 30300, 198, 198, 19849, 796, 3440, 62, 69, 30300, 7, 4458, 14, 47, 671, 11122, 1015, 13, 69, 30300, 11537, 198, 198, 15414, 82, 796, 19203, 15414, 43015, 3256, 37456, 256, 25, 642, 13, 1635, 45941, 13, 6966, 7, 83, 4008, 198, 14323, 1741, 796, 2746, 13, 14323, 5039, 7, 20311, 62, 2435, 28, 1270, 11, 5128, 28, 15414, 82, 8, 198, 198, 489, 83, 13, 29487, 7, 14323, 1741, 17816, 2435, 6, 4357, 18640, 17816, 15414, 43015, 6, 12962, 198, 489, 83, 13, 29487, 7, 14323, 1741, 17816, 2435, 6, 4357, 18640, 17816, 22915, 43015, 6, 12962, 198, 198, 489, 83, 13, 1455, 437, 7, 17816, 15414, 43015, 3256, 705, 22915, 43015, 6, 12962, 198, 489, 83, 13, 87, 18242, 10786, 2435, 11537, 198, 489, 83, 13, 12860, 3419, 198 ]
2.711538
156
# Requirements: # - fmtc # - nnedi3 # From: # - https://github.com/mawen1250/VapourSynth-script # - https://github.com/HomeOfVapourSynthEvolution/mvsfunc import vapoursynth as vs import math ## Gamma conversion functions from HAvsFunc-r18 # Convert the luma channel to linear light # Convert back a clip to gamma-corrected luma # Apply the inverse sigmoid curve to a clip in linear luminance # Convert back a clip to linear luminance ## Gamma conversion functions from HAvsFunc-r18
[ 2, 24422, 25, 198, 2, 220, 220, 532, 46996, 66, 198, 2, 220, 220, 532, 299, 2817, 72, 18, 198, 2, 3574, 25, 198, 2, 220, 220, 532, 3740, 1378, 12567, 13, 785, 14, 76, 707, 268, 1065, 1120, 14, 53, 499, 454, 29934, 400, 12, 12048, 198, 2, 220, 220, 532, 3740, 1378, 12567, 13, 785, 14, 16060, 5189, 53, 499, 454, 29934, 400, 15200, 2122, 14, 76, 14259, 20786, 198, 11748, 38187, 454, 28869, 400, 355, 3691, 198, 11748, 10688, 628, 628, 628, 198, 2235, 43595, 11315, 5499, 422, 367, 7355, 82, 37, 19524, 12, 81, 1507, 198, 2, 38240, 262, 300, 7487, 6518, 284, 14174, 1657, 198, 198, 2, 38240, 736, 257, 10651, 284, 34236, 12, 30283, 276, 300, 7487, 198, 198, 2, 27967, 262, 34062, 264, 17225, 1868, 12133, 284, 257, 10651, 287, 14174, 29763, 590, 198, 198, 2, 38240, 736, 257, 10651, 284, 14174, 29763, 590, 198, 2235, 43595, 11315, 5499, 422, 367, 7355, 82, 37, 19524, 12, 81, 1507 ]
3.018182
165
# -*- coding: utf-8 -*- # Generated by Django 1.9.7 on 2017-03-17 17:29 from __future__ import unicode_literals from django.db import migrations, models
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 2, 2980, 515, 416, 37770, 352, 13, 24, 13, 22, 319, 2177, 12, 3070, 12, 1558, 1596, 25, 1959, 198, 6738, 11593, 37443, 834, 1330, 28000, 1098, 62, 17201, 874, 198, 198, 6738, 42625, 14208, 13, 9945, 1330, 15720, 602, 11, 4981, 628 ]
2.719298
57
import numpy as np import EZ.stderr as stderr
[ 11748, 299, 32152, 355, 45941, 198, 11748, 412, 57, 13, 301, 1082, 81, 355, 336, 1082, 81, 628, 628, 628, 628, 628 ]
2.5
22
from PyQt5 import QtGui, QtCore, QtWidgets from collections import namedtuple import time import random import torch import torch.nn as nn import torch.nn.functional as F from utils import utils HumanFeedback = namedtuple('HumanFeedback', ['feedback_value']) SavedAction = namedtuple('SavedAction', ['state', 'action', 'logprob']) SavedActionsWithFeedback = namedtuple('SavedActionsWithFeedback', ['saved_actions', 'final_feedback'])
[ 6738, 9485, 48, 83, 20, 1330, 33734, 8205, 72, 11, 33734, 14055, 11, 33734, 54, 312, 11407, 198, 6738, 17268, 1330, 3706, 83, 29291, 198, 11748, 640, 198, 11748, 4738, 198, 11748, 28034, 198, 11748, 28034, 13, 20471, 355, 299, 77, 198, 11748, 28034, 13, 20471, 13, 45124, 355, 376, 198, 6738, 3384, 4487, 1330, 3384, 4487, 198, 198, 20490, 18332, 1891, 796, 3706, 83, 29291, 10786, 20490, 18332, 1891, 3256, 37250, 12363, 1891, 62, 8367, 6, 12962, 198, 50, 9586, 12502, 796, 3706, 83, 29291, 10786, 50, 9586, 12502, 3256, 37250, 5219, 3256, 705, 2673, 3256, 705, 6404, 1676, 65, 6, 12962, 198, 50, 9586, 32, 2733, 3152, 18332, 1891, 796, 3706, 83, 29291, 10786, 50, 9586, 32, 2733, 3152, 18332, 1891, 3256, 37250, 82, 9586, 62, 4658, 3256, 705, 20311, 62, 12363, 1891, 6, 12962, 628, 628, 628 ]
3.142857
140
import sys, random, string, time rawBoard = '' moves = 0 # size -> int # generate board of size size x size filled with random chars # @returns none # textFile -> string # loads a board from a text file # @returns board in 2D list form # board -> 2D array # prints out the bogal board # coordinate -> list, board -> 2D list # @returns list of all possible next positions # possibleMoves -> 2D list, usedPath -> 2D list # @returns the list of all legal moves # Function used for setting up all prefix dictionaries. # This is not run with my program but was created because I'm lazy and # didn't want to create the prefix dictionaries by hand. # board -> 2D list, currPos -> list, path -> 2D list # boggle board, xy pair current position, path that got to that position # @returns tuple of the word created and whether it is a real word. if __name__ == "__main__": main()
[ 11748, 25064, 11, 4738, 11, 4731, 11, 640, 201, 198, 201, 198, 1831, 29828, 796, 10148, 201, 198, 76, 5241, 796, 657, 201, 198, 2, 2546, 4613, 493, 201, 198, 2, 7716, 3096, 286, 2546, 2546, 2124, 2546, 5901, 351, 4738, 34534, 201, 198, 2, 2488, 7783, 82, 4844, 201, 198, 201, 198, 2, 2420, 8979, 4613, 4731, 201, 198, 2, 15989, 257, 3096, 422, 257, 2420, 2393, 201, 198, 2, 2488, 7783, 82, 3096, 287, 362, 35, 1351, 1296, 201, 198, 201, 198, 2, 3096, 4613, 362, 35, 7177, 201, 198, 2, 20842, 503, 262, 22922, 282, 3096, 201, 198, 201, 198, 2, 20435, 4613, 1351, 11, 3096, 4613, 362, 35, 1351, 201, 198, 2, 2488, 7783, 82, 1351, 286, 477, 1744, 1306, 6116, 201, 198, 201, 198, 2, 1744, 44, 5241, 4613, 362, 35, 1351, 11, 973, 15235, 4613, 362, 35, 1351, 201, 198, 2, 2488, 7783, 82, 262, 1351, 286, 477, 2742, 6100, 201, 198, 201, 198, 2, 15553, 973, 329, 4634, 510, 477, 21231, 48589, 3166, 13, 201, 198, 2, 770, 318, 407, 1057, 351, 616, 1430, 475, 373, 2727, 780, 314, 1101, 16931, 290, 201, 198, 2, 1422, 470, 765, 284, 2251, 262, 21231, 48589, 3166, 416, 1021, 13, 201, 198, 201, 198, 2, 3096, 4613, 362, 35, 1351, 11, 1090, 81, 21604, 4613, 1351, 11, 3108, 4613, 362, 35, 1351, 201, 198, 2, 275, 20258, 3096, 11, 2124, 88, 5166, 1459, 2292, 11, 3108, 326, 1392, 284, 326, 2292, 201, 198, 2, 2488, 7783, 82, 46545, 286, 262, 1573, 2727, 290, 1771, 340, 318, 257, 1103, 1573, 13, 201, 198, 201, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 201, 198, 220, 220, 220, 1388, 3419 ]
3.196491
285
myFunc("That's neat")
[ 198, 1820, 37, 19524, 7203, 2504, 338, 15049, 4943, 198 ]
2.3
10
import logging import os from netmiko import ConnectHandler from paramiko import AutoAddPolicy, SSHClient from routeros_diff.parser import RouterOSConfig from scp import SCPClient
[ 11748, 18931, 198, 11748, 28686, 198, 198, 6738, 2010, 76, 12125, 1330, 8113, 25060, 198, 6738, 5772, 12125, 1330, 11160, 4550, 36727, 11, 33825, 11792, 198, 6738, 20264, 418, 62, 26069, 13, 48610, 1330, 48538, 2640, 16934, 198, 6738, 629, 79, 1330, 17527, 11792, 628, 628, 628, 198 ]
3.895833
48
import pytest_pydocstyle # https://docs.pytest.org/en/5.2.2/writing_plugins.html#testing-plugins pytest_plugins = ["pytester"]
[ 11748, 12972, 9288, 62, 79, 5173, 420, 7635, 198, 198, 2, 3740, 1378, 31628, 13, 9078, 9288, 13, 2398, 14, 268, 14, 20, 13, 17, 13, 17, 14, 16502, 62, 37390, 13, 6494, 2, 33407, 12, 37390, 198, 9078, 9288, 62, 37390, 796, 14631, 9078, 4879, 353, 8973, 628, 628, 628, 628, 628, 198 ]
2.555556
54
from peewee import * import peeweedbevolve from models_data import Tweet, Branch, calldb db = calldb() create_tables()
[ 6738, 613, 413, 1453, 1330, 1635, 198, 11748, 613, 413, 2308, 1350, 85, 6442, 198, 198, 6738, 4981, 62, 7890, 1330, 18752, 11, 20551, 11, 2386, 335, 65, 198, 198, 9945, 796, 2386, 335, 65, 3419, 628, 198, 17953, 62, 83, 2977, 3419, 198 ]
2.795455
44
import json import base64 from rest_framework import status from rest_framework.test import APITestCase from rest_framework.authtoken.models import Token from .models import User # Create your tests here. ACCEPT_STATUS = "A" REJECT_STATUS = "R" UNFRIEND_STATUS = "R"
[ 11748, 33918, 198, 11748, 2779, 2414, 198, 6738, 1334, 62, 30604, 1330, 3722, 198, 6738, 1334, 62, 30604, 13, 9288, 1330, 3486, 2043, 395, 20448, 198, 6738, 1334, 62, 30604, 13, 18439, 30001, 13, 27530, 1330, 29130, 198, 6738, 764, 27530, 1330, 11787, 198, 198, 2, 13610, 534, 5254, 994, 13, 198, 2246, 42006, 62, 35744, 2937, 796, 366, 32, 1, 198, 2200, 23680, 62, 35744, 2937, 796, 366, 49, 1, 198, 4944, 37, 7112, 10619, 62, 35744, 2937, 796, 366, 49, 1, 628, 198 ]
3.176471
85
# -*- coding: utf-8 -*- ################################################################################ # Copyright (C) 2009 Travis Shirk <[email protected]> # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA # ################################################################################ from __future__ import print_function import os from eyed3 import LOCAL_ENCODING as ENCODING from eyed3.utils import formatSize, formatTime from eyed3.utils.console import (printMsg, printError, printWarning, boldText, Fore, HEADER_COLOR) from eyed3.plugins import LoaderPlugin
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 29113, 29113, 14468, 198, 2, 220, 15069, 357, 34, 8, 3717, 220, 19804, 911, 14232, 1279, 83, 16956, 31, 79, 672, 1140, 13, 785, 29, 198, 2, 198, 2, 220, 770, 1430, 318, 1479, 3788, 26, 345, 460, 17678, 4163, 340, 290, 14, 273, 13096, 198, 2, 220, 340, 739, 262, 2846, 286, 262, 22961, 3611, 5094, 13789, 355, 3199, 416, 198, 2, 220, 262, 3232, 10442, 5693, 26, 2035, 2196, 362, 286, 262, 13789, 11, 393, 198, 2, 220, 357, 265, 534, 3038, 8, 597, 1568, 2196, 13, 198, 2, 198, 2, 220, 770, 1430, 318, 9387, 287, 262, 2911, 326, 340, 481, 307, 4465, 11, 198, 2, 220, 475, 42881, 15529, 34764, 56, 26, 1231, 772, 262, 17142, 18215, 286, 198, 2, 220, 34482, 3398, 1565, 5603, 25382, 393, 376, 46144, 7473, 317, 16652, 2149, 37232, 33079, 48933, 13, 220, 4091, 262, 198, 2, 220, 22961, 3611, 5094, 13789, 329, 517, 3307, 13, 198, 2, 198, 2, 220, 921, 815, 423, 2722, 257, 4866, 286, 262, 22961, 3611, 5094, 13789, 198, 2, 220, 1863, 351, 428, 1430, 26, 611, 407, 11, 3551, 284, 262, 3232, 10442, 198, 2, 220, 5693, 11, 3457, 1539, 7863, 10857, 8474, 11, 26264, 25508, 11, 6182, 11, 8779, 220, 7816, 16243, 12, 12952, 22, 220, 4916, 198, 2, 198, 29113, 29113, 14468, 198, 6738, 11593, 37443, 834, 1330, 3601, 62, 8818, 198, 11748, 28686, 198, 6738, 45320, 18, 1330, 37347, 1847, 62, 24181, 3727, 2751, 355, 412, 7792, 3727, 2751, 198, 6738, 45320, 18, 13, 26791, 1330, 5794, 10699, 11, 5794, 7575, 198, 6738, 45320, 18, 13, 26791, 13, 41947, 1330, 357, 4798, 50108, 11, 3601, 12331, 11, 3601, 20361, 11, 10758, 8206, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4558, 11, 39837, 1137, 62, 46786, 8, 198, 6738, 45320, 18, 13, 37390, 1330, 8778, 263, 37233, 628 ]
3.66474
346
# -*- coding: utf-8 -*- """Clothing_Recommender Project .ipynb Automatically generated by Colaboratory. Original file is located at https://colab.research.google.com/drive/1nw0ewNdkx8o3WULAp2ynhHpbq1kVq7YZ Clean the data and use input """ ## Import and Organize Data ## import pandas as pd import numpy as np import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split #read clean file (downloaded from Task 1) df=pd.read_csv('CleanedData.csv', sep=',') #Pivot table (clothingID, age, rating) - Nan is replaced with 0 train = df.pivot_table(index='Age', columns='ClothingID', values='Rating') #sort train data train = train.sort_values('Age', ascending=True) ###Create a greeting print("Welcome, let us recommend a product for you") #Take user input Name =input('Please enter your name: ') Age = int(input('Please enter your age: ')) CID_user = int(input("Enter Clothing ID: ")) #90 while CID_user not in train.columns: print('Invalid: No data for ID') CID_user = int(input("Enter valid Clothing ID: ")) rating_user = float(input("Enter Rating for Clothing ID: ")) #4 ##use this later (if user has more than one rating to enter) #entries = int(input("How many ratings will you enter? ")) #for x in range(entries): #create array with user data userArray = pd.DataFrame().reindex_like(train) userArray.dropna(thresh=1,inplace=True) userArray.loc[Age,CID_user] = rating_user #enter user data from sklearn.metrics.pairwise import nan_euclidean_distances #find euclidean distance between all rows of train and first row of test *ignores nan distance = np.zeros((0,2)) #create empty array for index, row in train.iterrows(): #iterate through each row of train result = float(nan_euclidean_distances([userArray.loc[Age]], [train.loc[index]])) #compute the euclidean distance between two rows, *confirmed it works thru excel result_array = [index, result] #place age and distance into an array distance = np.append(distance,[result_array],axis= 0) #convert array to a dataframe dfDistance = pd.DataFrame({'Age': distance[:, 0], 'E-Distance': distance[:, 1]}) dfDistance.head() k= 5 #sort by distance, reset the index dfDistance = dfDistance.sort_values('E-Distance', ascending=True).head(20) dfDistance = dfDistance.reset_index(drop=True) dfDistance.drop(dfDistance[dfDistance.index > k-1].index, inplace=True) dfDistance.head() #NOTE: for calculating the predicted rating, could use an IDW Interpolation function shown here https://stackoverflow.com/questions/3104781/inverse-distance-weighted-idw-interpolation-with-python #just using mean of each to test a solution, will come back and try more complex/accurate functions later #assume k of 5#### k_array = pd.DataFrame().reindex_like(train) meanArray = pd.DataFrame() for x in dfDistance['Age']: k_array = k_array.append([train.loc[x]]) #make array of the k closest ages meanArray = meanArray.append(k_array.mean(),ignore_index = True).transpose() meanArray.dropna(axis=0,inplace=True) meanArray.columns = ["Mean"] meanArray = meanArray[meanArray.Mean == 5] recommend = list(meanArray.index.values) print("recommended ClothingID's are: ") print(recommend) #feedback, clothingID (choose top 5), department #reverse lookup clothingID for department # feedback (choose first 3)
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 37811, 2601, 24834, 62, 24898, 2194, 4935, 764, 541, 2047, 65, 198, 198, 38062, 4142, 7560, 416, 1623, 4820, 2870, 13, 198, 198, 20556, 2393, 318, 5140, 379, 198, 220, 220, 220, 3740, 1378, 4033, 397, 13, 34033, 13, 13297, 13, 785, 14, 19472, 14, 16, 47516, 15, 413, 45, 34388, 87, 23, 78, 18, 54, 6239, 25189, 17, 2047, 71, 39, 40842, 80, 16, 74, 53, 80, 22, 56, 57, 198, 198, 32657, 262, 1366, 290, 779, 5128, 198, 37811, 198, 198, 2235, 17267, 290, 7221, 1096, 6060, 22492, 198, 198, 11748, 19798, 292, 355, 279, 67, 220, 198, 11748, 299, 32152, 355, 45941, 220, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 220, 198, 6738, 1341, 35720, 13, 19849, 62, 49283, 1330, 4512, 62, 9288, 62, 35312, 198, 198, 2, 961, 3424, 2393, 357, 2902, 14578, 422, 15941, 352, 8, 198, 7568, 28, 30094, 13, 961, 62, 40664, 10786, 32657, 276, 6601, 13, 40664, 3256, 41767, 28, 3256, 11537, 220, 198, 198, 2, 47, 45785, 3084, 357, 565, 24834, 2389, 11, 2479, 11, 7955, 8, 532, 18008, 318, 6928, 351, 657, 220, 198, 27432, 796, 47764, 13, 79, 45785, 62, 11487, 7, 9630, 11639, 23396, 3256, 15180, 11639, 2601, 24834, 2389, 3256, 3815, 11639, 29321, 11537, 198, 198, 2, 30619, 4512, 1366, 198, 27432, 796, 4512, 13, 30619, 62, 27160, 10786, 23396, 3256, 41988, 28, 17821, 8, 198, 198, 21017, 16447, 257, 31933, 220, 198, 198, 4798, 7203, 14618, 11, 1309, 514, 4313, 257, 1720, 329, 345, 4943, 198, 198, 2, 12322, 2836, 5128, 220, 198, 198, 5376, 796, 15414, 10786, 5492, 3802, 534, 1438, 25, 705, 8, 198, 23396, 796, 493, 7, 15414, 10786, 5492, 3802, 534, 2479, 25, 705, 4008, 198, 34, 2389, 62, 7220, 796, 493, 7, 15414, 7203, 17469, 48921, 4522, 25, 366, 4008, 1303, 3829, 198, 4514, 327, 2389, 62, 7220, 407, 287, 4512, 13, 28665, 82, 25, 198, 220, 3601, 10786, 44651, 25, 1400, 1366, 329, 4522, 11537, 198, 220, 327, 2389, 62, 7220, 796, 493, 7, 15414, 7203, 17469, 4938, 48921, 4522, 25, 366, 4008, 198, 8821, 62, 7220, 796, 12178, 7, 15414, 7203, 17469, 12028, 329, 48921, 4522, 25, 366, 4008, 1303, 19, 198, 198, 2235, 1904, 428, 1568, 357, 361, 2836, 468, 517, 621, 530, 7955, 284, 3802, 8, 198, 2, 298, 1678, 796, 493, 7, 15414, 7203, 2437, 867, 10109, 481, 345, 3802, 30, 366, 4008, 198, 2, 1640, 2124, 287, 2837, 7, 298, 1678, 2599, 198, 198, 2, 17953, 7177, 351, 2836, 1366, 220, 198, 7220, 19182, 796, 279, 67, 13, 6601, 19778, 22446, 260, 9630, 62, 2339, 7, 27432, 8, 198, 7220, 19182, 13, 14781, 2616, 7, 400, 3447, 28, 16, 11, 259, 5372, 28, 17821, 8, 198, 7220, 19182, 13, 17946, 58, 23396, 11, 34, 2389, 62, 7220, 60, 796, 7955, 62, 7220, 1303, 9255, 2836, 1366, 220, 198, 198, 6738, 1341, 35720, 13, 4164, 10466, 13, 24874, 3083, 1330, 15709, 62, 12496, 565, 485, 272, 62, 17080, 1817, 198, 198, 2, 19796, 304, 36616, 485, 272, 5253, 1022, 477, 15274, 286, 4512, 290, 717, 5752, 286, 1332, 220, 1635, 570, 2850, 15709, 198, 30246, 796, 45941, 13, 9107, 418, 19510, 15, 11, 17, 4008, 1303, 17953, 6565, 7177, 220, 198, 1640, 6376, 11, 5752, 287, 4512, 13, 2676, 8516, 33529, 220, 1303, 2676, 378, 832, 1123, 5752, 286, 4512, 220, 198, 220, 1255, 796, 12178, 7, 12647, 62, 12496, 565, 485, 272, 62, 17080, 1817, 26933, 7220, 19182, 13, 17946, 58, 23396, 60, 4357, 685, 27432, 13, 17946, 58, 9630, 11907, 4008, 1303, 5589, 1133, 262, 304, 36616, 485, 272, 5253, 1022, 734, 15274, 11, 1635, 36349, 340, 2499, 33834, 27336, 198, 220, 1255, 62, 18747, 796, 685, 9630, 11, 1255, 60, 1303, 5372, 2479, 290, 5253, 656, 281, 7177, 220, 198, 220, 5253, 796, 45941, 13, 33295, 7, 30246, 17414, 20274, 62, 18747, 4357, 22704, 28, 657, 8, 220, 198, 198, 2, 1102, 1851, 7177, 284, 257, 1366, 14535, 198, 7568, 45767, 796, 279, 67, 13, 6601, 19778, 15090, 6, 23396, 10354, 5253, 58, 45299, 657, 4357, 705, 36, 12, 45767, 10354, 5253, 58, 45299, 352, 60, 30072, 198, 7568, 45767, 13, 2256, 3419, 198, 198, 74, 28, 642, 198, 2, 30619, 416, 5253, 11, 13259, 262, 6376, 220, 198, 7568, 45767, 796, 47764, 45767, 13, 30619, 62, 27160, 10786, 36, 12, 45767, 3256, 41988, 28, 17821, 737, 2256, 7, 1238, 8, 198, 7568, 45767, 796, 47764, 45767, 13, 42503, 62, 9630, 7, 14781, 28, 17821, 8, 220, 198, 7568, 45767, 13, 14781, 7, 7568, 45767, 58, 7568, 45767, 13, 9630, 1875, 479, 12, 16, 4083, 9630, 11, 287, 5372, 28, 17821, 8, 198, 7568, 45767, 13, 2256, 3419, 198, 198, 2, 16580, 25, 329, 26019, 262, 11001, 7955, 11, 714, 779, 281, 4522, 54, 4225, 16104, 341, 2163, 3402, 994, 3740, 1378, 25558, 2502, 11125, 13, 785, 14, 6138, 507, 14, 26717, 2857, 6659, 14, 259, 4399, 12, 30246, 12, 6551, 276, 12, 312, 86, 12, 3849, 16104, 341, 12, 4480, 12, 29412, 198, 2, 3137, 1262, 1612, 286, 1123, 284, 1332, 257, 4610, 11, 481, 1282, 736, 290, 1949, 517, 3716, 14, 4134, 15537, 5499, 1568, 220, 198, 198, 2, 562, 2454, 479, 286, 642, 4242, 198, 74, 62, 18747, 796, 279, 67, 13, 6601, 19778, 22446, 260, 9630, 62, 2339, 7, 27432, 8, 198, 32604, 19182, 796, 279, 67, 13, 6601, 19778, 3419, 198, 198, 1640, 2124, 287, 47764, 45767, 17816, 23396, 6, 5974, 198, 220, 479, 62, 18747, 796, 479, 62, 18747, 13, 33295, 26933, 27432, 13, 17946, 58, 87, 11907, 8, 1303, 15883, 7177, 286, 262, 479, 11706, 9337, 198, 198, 32604, 19182, 796, 1612, 19182, 13, 33295, 7, 74, 62, 18747, 13, 32604, 22784, 46430, 62, 9630, 796, 6407, 737, 7645, 3455, 3419, 198, 32604, 19182, 13, 14781, 2616, 7, 22704, 28, 15, 11, 259, 5372, 28, 17821, 8, 198, 32604, 19182, 13, 28665, 82, 796, 14631, 5308, 272, 8973, 198, 32604, 19182, 796, 1612, 19182, 58, 32604, 19182, 13, 5308, 272, 6624, 642, 60, 198, 198, 47335, 437, 796, 1351, 7, 32604, 19182, 13, 9630, 13, 27160, 8, 198, 4798, 7203, 47335, 1631, 48921, 2389, 338, 389, 25, 366, 8, 198, 4798, 7, 47335, 437, 8, 198, 198, 2, 12363, 1891, 11, 9528, 2389, 357, 6679, 577, 1353, 642, 828, 5011, 220, 198, 2, 50188, 35847, 9528, 2389, 329, 5011, 220, 198, 2, 7538, 357, 6679, 577, 717, 513, 8, 628 ]
3.056377
1,082
from rtree.index import Rtree from src.features.helper import * import sys import logging import time if __name__ == '__main__': train_data = sys.argv[1] q_size = int(sys.argv[2]) main(train_data, q_size)
[ 6738, 374, 21048, 13, 9630, 1330, 371, 21048, 198, 6738, 12351, 13, 40890, 13, 2978, 525, 1330, 1635, 198, 11748, 25064, 198, 11748, 18931, 198, 11748, 640, 628, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 4512, 62, 7890, 796, 25064, 13, 853, 85, 58, 16, 60, 198, 220, 220, 220, 10662, 62, 7857, 796, 493, 7, 17597, 13, 853, 85, 58, 17, 12962, 198, 220, 220, 220, 1388, 7, 27432, 62, 7890, 11, 10662, 62, 7857, 8, 198 ]
2.528736
87
from app import app import logging logging.basicConfig(level=logging.WARNING) if __name__ == "__main__": app.debug = True app.run()
[ 6738, 598, 1330, 598, 198, 11748, 18931, 198, 198, 6404, 2667, 13, 35487, 16934, 7, 5715, 28, 6404, 2667, 13, 31502, 8, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 598, 13, 24442, 796, 6407, 198, 220, 220, 220, 598, 13, 5143, 3419 ]
2.764706
51
# Copyright 2013-2018 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) from spack import * class RAffypdnn(RPackage): """The package contains functions to perform the PDNN method described by Li Zhang et al.""" homepage = "https://www.bioconductor.org/packages/affypdnn/" git = "https://git.bioconductor.org/packages/affypdnn.git" version('1.50.0', commit='97ff68e9f51f31333c0330435ea23b212b3ed18a') depends_on('[email protected]:3.4.9', when='@1.50.0') depends_on('r-affy', type=('build', 'run'))
[ 2, 15069, 2211, 12, 7908, 13914, 45036, 3549, 2351, 4765, 11, 11419, 290, 584, 198, 2, 1338, 441, 4935, 34152, 13, 4091, 262, 1353, 12, 5715, 27975, 38162, 9947, 2393, 329, 3307, 13, 198, 2, 198, 2, 30628, 55, 12, 34156, 12, 33234, 7483, 25, 357, 25189, 4891, 12, 17, 13, 15, 6375, 17168, 8, 198, 198, 6738, 599, 441, 1330, 1635, 628, 198, 4871, 17926, 487, 4464, 67, 20471, 7, 49, 27813, 2599, 198, 220, 220, 220, 37227, 464, 5301, 4909, 5499, 284, 1620, 262, 14340, 6144, 2446, 198, 220, 220, 220, 3417, 416, 7455, 19439, 2123, 435, 526, 15931, 628, 220, 220, 220, 34940, 796, 366, 5450, 1378, 2503, 13, 8482, 420, 40990, 13, 2398, 14, 43789, 14, 2001, 4464, 67, 20471, 30487, 198, 220, 220, 220, 17606, 220, 220, 220, 220, 220, 796, 366, 5450, 1378, 18300, 13, 8482, 420, 40990, 13, 2398, 14, 43789, 14, 2001, 4464, 67, 20471, 13, 18300, 1, 628, 220, 220, 220, 2196, 10786, 16, 13, 1120, 13, 15, 3256, 4589, 11639, 5607, 487, 3104, 68, 24, 69, 4349, 69, 25838, 2091, 66, 3070, 21288, 2327, 18213, 1954, 65, 21777, 65, 18, 276, 1507, 64, 11537, 628, 220, 220, 220, 8338, 62, 261, 10786, 81, 31, 18, 13, 19, 13, 15, 25, 18, 13, 19, 13, 24, 3256, 618, 11639, 31, 16, 13, 1120, 13, 15, 11537, 198, 220, 220, 220, 8338, 62, 261, 10786, 81, 12, 2001, 88, 3256, 2099, 28, 10786, 11249, 3256, 705, 5143, 6, 4008, 198 ]
2.633065
248
####################################################################### """ @author: Emanuele Musumeci (https://github.com/EmanueleMusumeci) PopulationInitializer abstract class and basic initializer that generates a population of random binary strings of a given length """ ####################################################################### import abc import numpy as np from numpy import random #Base abstract class for population initialization methods, that generate a population for the genetic optimization process #Generate population of random binary strings of a given length #Generates a single binary individual #Generates a population of random binary individuals
[ 29113, 29113, 4242, 21017, 198, 37811, 198, 2488, 9800, 25, 412, 805, 518, 293, 2629, 388, 721, 72, 357, 5450, 1378, 12567, 13, 785, 14, 36, 805, 518, 293, 10694, 388, 721, 72, 8, 220, 198, 220, 198, 20133, 24243, 7509, 12531, 1398, 290, 4096, 4238, 7509, 326, 18616, 198, 257, 3265, 286, 4738, 13934, 13042, 286, 257, 1813, 4129, 198, 198, 37811, 198, 29113, 29113, 4242, 21017, 198, 11748, 450, 66, 198, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 299, 32152, 1330, 4738, 198, 198, 2, 14881, 12531, 1398, 329, 3265, 37588, 5050, 11, 326, 7716, 257, 3265, 329, 262, 8513, 23989, 1429, 198, 198, 2, 8645, 378, 3265, 286, 4738, 13934, 13042, 286, 257, 1813, 4129, 628, 220, 220, 220, 1303, 8645, 689, 257, 2060, 13934, 1981, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 8645, 689, 257, 3265, 286, 4738, 13934, 3925, 198, 220, 220, 220, 220, 220, 220, 220, 220, 628, 198 ]
4.417178
163
import os import subprocess from .utils import checkdir, get_condor_version, requires_command from .basenode import BaseNode from .job import Job def _iter_job_args(job): """ Iterates over Job args list. Yields the name (and JobArg) for each node to be used when adding job to a Dagman (i.e. the name in the 'JOB name job_submit_file' line). Parameters ---------- job : Job Job to iterate over. Note that the submit file for job must be built prior to using _iter_job_args. Yields ------ node_name : str Node name to use in Dagman object. job_arg : JobArg namedtuple Job argument object (``arg``, ``name``, ``retry`` attributes). """ if not isinstance(job, Job): raise TypeError('Expecting a Job object, got {}'.format(type(job))) if not getattr(job, '_built', False): raise ValueError('Job {} must be built before adding it ' 'to a Dagman'.format(job.name)) if len(job.args) == 0: raise StopIteration else: for idx, job_arg in enumerate(job): arg, name, retry = job_arg if name is not None: node_name = '{}_{}'.format(job.submit_name, name) else: node_name = '{}_arg_{}'.format(job.submit_name, idx) yield node_name, job_arg def _get_parent_child_string(node): """Constructs the parent/child line for node to be added to a Dagman """ if not isinstance(node, BaseNode): raise ValueError('Expecting a Job or Dagman object, ' 'got {}'.format(type(node))) parent_string = 'Parent' for parent_node in node.parents: if isinstance(parent_node, Job) and len(parent_node) > 0: for node_name, job_arg in _iter_job_args(parent_node): parent_string += ' {}'.format(node_name) else: parent_string += ' {}'.format(parent_node.submit_name) child_string = 'Child' if isinstance(node, Job) and len(node) > 0: for node_name, job_arg in _iter_job_args(node): child_string += ' {}'.format(node_name) else: child_string += ' {}'.format(node.submit_name) parent_child_string = parent_string + ' ' + child_string return parent_child_string class Dagman(BaseNode): """ Dagman object consisting of a series of Jobs and sub-Dagmans to manage. Note that the ``submit`` parameter can be explicitly given or configured by setting the ``PYCONDOR_SUBMIT_DIR`` environment variable. An explicitly given value for ``submit`` will be used over the environment variable, while the environment variable will be used over a default value. Parameters ---------- name : str Name of the Dagman instance. This will also be the name of the corresponding error, log, output, and submit files associated with this Dagman. submit : str Path to directory where condor dagman submit files will be written (defaults to the directory was the Dagman was submitted from). extra_lines : list or None, optional List of additional lines to be added to submit file. .. versionadded:: 0.1.1 dag : Dagman, optional If specified, Dagman will be added to dag as a subdag (default is None). verbose : int, optional Level of logging verbosity option are 0-warning, 1-info, 2-debugging (default is 0). Attributes ---------- jobs : list The list of jobs for this Dagman instance to manage. parents : list List of parent Jobs and Dagmans. Ensures that Jobs and Dagmans in the parents list will complete before this Dagman is submitted to HTCondor. children : list List of child Jobs and Dagmans. Ensures that Jobs and Dagmans in the children list will be submitted only after this Dagman has completed. """ def add_job(self, job): """Add job to Dagman Parameters ---------- job : Job Job to append to Dagman jobs list. Returns ------- self : object Returns self. """ self._add_node(job) return self def add_subdag(self, dag): """Add dag to Dagman Parameters ---------- dag : Dagman Subdag to append to Dagman jobs list. Returns ------- self : object Returns self. """ self._add_node(dag) return self def _get_job_arg_lines(self, job, fancyname): """Constructs the lines to be added to a Dagman related to job """ if not isinstance(job, Job): raise TypeError('Expecting a Job object, got {}'.format(type(job))) if not getattr(job, '_built', False): raise ValueError('Job {} must be built before adding it ' 'to a Dagman'.format(job.name)) job_arg_lines = [] if len(job.args) == 0: job_line = 'JOB {} {}'.format(job.submit_name, job.submit_file) job_arg_lines.append(job_line) else: for node_name, job_arg in _iter_job_args(job): # Check that '.' or '+' are not in node_name if '.' in node_name or '+' in node_name: self._has_bad_node_names = True arg, name, retry = job_arg # Add JOB line with Job submit file job_line = 'JOB {} {}'.format(node_name, job.submit_file) job_arg_lines.append(job_line) # Add job ARGS line for command line arguments arg_line = 'VARS {} ARGS="{}"'.format(node_name, arg) job_arg_lines.append(arg_line) # Define job_name variable if there are arg_names for job if job._has_arg_names: if name is not None: job_name = node_name else: job_name = job.submit_name job_name_line = 'VARS {} job_name="{}"'.format(node_name, job_name) job_arg_lines.append(job_name_line) # Add retry line for Job if retry is not None: retry_line = 'Retry {} {}'.format(node_name, retry) job_arg_lines.append(retry_line) return job_arg_lines def build(self, makedirs=True, fancyname=True): """Build and saves the submit file for Dagman Parameters ---------- makedirs : bool, optional If Job directories (e.g. error, output, log, submit) don't exist, create them (default is ``True``). fancyname : bool, optional Appends the date and unique id number to error, log, output, and submit files. For example, instead of ``dagname.submit`` the submit file becomes ``dagname_YYYYMMD_id``. This is useful when running several Dags/Jobs of the same name (default is ``True``). Returns ------- self : object Returns self. """ if getattr(self, '_built', False): self.logger.warning( '{} submit file has already been built. ' 'Skipping the build process...'.format(self.name)) return self name = self._get_fancyname() if fancyname else self.name submit_file = os.path.join(self.submit, '{}.submit'.format(name)) self.submit_file = submit_file self.submit_name = name checkdir(self.submit_file, makedirs) # Build submit files for all nodes in self.nodes # Note: nodes must be built before the submit file for self is built for node_index, node in enumerate(self.nodes, start=1): if isinstance(node, Job): node._build_from_dag(makedirs, fancyname) elif isinstance(node, Dagman): node.build(makedirs, fancyname) else: raise TypeError('Nodes must be either a Job or Dagman object') # Write dag submit file self.logger.info('Building DAG submission file {}...'.format( self.submit_file)) lines = [] parent_child_lines = [] for node_index, node in enumerate(self.nodes, start=1): self.logger.info('Working on {} [{} of {}]'.format(node.name, node_index, len(self.nodes))) # Build the BaseNode submit file if isinstance(node, Job): # Add Job variables to Dagman submit file job_arg_lines = self._get_job_arg_lines(node, fancyname) lines.extend(job_arg_lines) elif isinstance(node, Dagman): subdag_string = _get_subdag_string(node) lines.append(subdag_string) else: raise TypeError('Nodes must be either a Job or Dagman object') # Add parent/child information, if necessary if node.hasparents(): parent_child_string = _get_parent_child_string(node) parent_child_lines.append(parent_child_string) # Add any extra lines to submit file, if specified if self.extra_lines: lines.extend(self.extra_lines) # Write lines to dag submit file with open(submit_file, 'w') as dag: dag.writelines('\n'.join(lines + ['\n#Inter-job dependencies'] + parent_child_lines)) self._built = True self.logger.info('Dagman submission file for {} successfully ' 'built!'.format(self.name)) return self @requires_command('condor_submit_dag') def submit_dag(self, submit_options=None): """Submits Dagman to condor Parameters ---------- submit_options : str, optional Options to be passed to ``condor_submit_dag`` for this Dagman (see the `condor_submit_dag documentation <http://research.cs.wisc.edu/htcondor/manual/current/condor_submit_dag.html>`_ for possible options). Returns ------- self : object Returns self. """ # Construct condor_submit_dag command command = 'condor_submit_dag' if submit_options is not None: command += ' {}'.format(submit_options) command += ' {}'.format(self.submit_file) submit_dag_proc = subprocess.Popen([command], stdout=subprocess.PIPE, shell=True) # Check that there are no illegal node names for newer condor versions condor_version = get_condor_version() if condor_version >= (8, 7, 2) and self._has_bad_node_names: err = ("Found an illegal character (either '+' or '.') in the " "name for a node in Dagman {}. As of HTCondor version " "8.7.2, '+' and '.' are prohibited in Dagman node names. " "This means a '+' or '.' character is in a Job name, " "Dagman name, or the name for a Job argument.".format( self.name)) raise RuntimeError(err) # Execute condor_submit_dag command out, err = submit_dag_proc.communicate() print(out) return self @requires_command('condor_submit_dag') def build_submit(self, makedirs=True, fancyname=True, submit_options=None): """Calls build and submit sequentially Parameters ---------- makedirs : bool, optional If Job directories (e.g. error, output, log, submit) don't exist, create them (default is ``True``). fancyname : bool, optional Appends the date and unique id number to error, log, output, and submit files. For example, instead of ``dagname.submit`` the submit file becomes ``dagname_YYYYMMD_id``. This is useful when running several Dags/Jobs of the same name (default is ``True``). submit_options : str, optional Options to be passed to ``condor_submit_dag`` for this Dagman (see the `condor_submit_dag documentation <http://research.cs.wisc.edu/htcondor/manual/current/condor_submit_dag.html>`_ for possible options). Returns ------- self : object Returns self. """ self.build(makedirs, fancyname) self.submit_dag(submit_options=submit_options) return self
[ 198, 11748, 28686, 198, 11748, 850, 14681, 198, 198, 6738, 764, 26791, 1330, 2198, 15908, 11, 651, 62, 17561, 273, 62, 9641, 11, 4433, 62, 21812, 198, 6738, 764, 12093, 268, 1098, 1330, 7308, 19667, 198, 6738, 764, 21858, 1330, 15768, 628, 198, 198, 4299, 4808, 2676, 62, 21858, 62, 22046, 7, 21858, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 40806, 689, 625, 15768, 26498, 1351, 13, 575, 1164, 82, 262, 1438, 357, 392, 15768, 28100, 8, 329, 1123, 10139, 198, 220, 220, 220, 284, 307, 973, 618, 4375, 1693, 284, 257, 32167, 805, 357, 72, 13, 68, 13, 262, 1438, 287, 262, 198, 220, 220, 220, 705, 41, 9864, 1438, 1693, 62, 46002, 62, 7753, 6, 1627, 737, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 1693, 1058, 15768, 198, 220, 220, 220, 220, 220, 220, 220, 15768, 284, 11629, 378, 625, 13, 5740, 326, 262, 9199, 2393, 329, 1693, 1276, 307, 3170, 198, 220, 220, 220, 220, 220, 220, 220, 3161, 284, 1262, 4808, 2676, 62, 21858, 62, 22046, 13, 628, 220, 220, 220, 575, 1164, 82, 198, 220, 220, 220, 40103, 198, 220, 220, 220, 10139, 62, 3672, 1058, 965, 198, 220, 220, 220, 220, 220, 220, 220, 19081, 1438, 284, 779, 287, 32167, 805, 2134, 13, 198, 220, 220, 220, 1693, 62, 853, 1058, 15768, 28100, 3706, 83, 29291, 198, 220, 220, 220, 220, 220, 220, 220, 15768, 4578, 2134, 357, 15506, 853, 15506, 11, 7559, 3672, 15506, 11, 7559, 1186, 563, 15506, 12608, 737, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 407, 318, 39098, 7, 21858, 11, 15768, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 5994, 12331, 10786, 3109, 35570, 257, 15768, 2134, 11, 1392, 23884, 4458, 18982, 7, 4906, 7, 21858, 22305, 198, 220, 220, 220, 611, 407, 651, 35226, 7, 21858, 11, 705, 62, 18780, 3256, 10352, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 10786, 33308, 23884, 1276, 307, 3170, 878, 4375, 340, 705, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 1462, 257, 32167, 805, 4458, 18982, 7, 21858, 13, 3672, 4008, 628, 220, 220, 220, 611, 18896, 7, 21858, 13, 22046, 8, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 13707, 29993, 341, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 329, 4686, 87, 11, 1693, 62, 853, 287, 27056, 378, 7, 21858, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1822, 11, 1438, 11, 1005, 563, 796, 1693, 62, 853, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1438, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10139, 62, 3672, 796, 705, 90, 92, 23330, 92, 4458, 18982, 7, 21858, 13, 46002, 62, 3672, 11, 1438, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10139, 62, 3672, 796, 705, 90, 92, 62, 853, 23330, 92, 4458, 18982, 7, 21858, 13, 46002, 62, 3672, 11, 4686, 87, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7800, 10139, 62, 3672, 11, 1693, 62, 853, 628, 198, 4299, 4808, 1136, 62, 8000, 62, 9410, 62, 8841, 7, 17440, 2599, 198, 220, 220, 220, 37227, 42316, 82, 262, 2560, 14, 9410, 1627, 329, 10139, 284, 307, 2087, 284, 257, 32167, 805, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 611, 407, 318, 39098, 7, 17440, 11, 7308, 19667, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 10786, 3109, 35570, 257, 15768, 393, 32167, 805, 2134, 11, 705, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 23442, 23884, 4458, 18982, 7, 4906, 7, 17440, 22305, 628, 220, 220, 220, 2560, 62, 8841, 796, 705, 24546, 6, 198, 220, 220, 220, 329, 2560, 62, 17440, 287, 10139, 13, 23743, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 318, 39098, 7, 8000, 62, 17440, 11, 15768, 8, 290, 18896, 7, 8000, 62, 17440, 8, 1875, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 10139, 62, 3672, 11, 1693, 62, 853, 287, 4808, 2676, 62, 21858, 62, 22046, 7, 8000, 62, 17440, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2560, 62, 8841, 15853, 705, 23884, 4458, 18982, 7, 17440, 62, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2560, 62, 8841, 15853, 705, 23884, 4458, 18982, 7, 8000, 62, 17440, 13, 46002, 62, 3672, 8, 628, 220, 220, 220, 1200, 62, 8841, 796, 705, 16424, 6, 198, 220, 220, 220, 611, 318, 39098, 7, 17440, 11, 15768, 8, 290, 18896, 7, 17440, 8, 1875, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 329, 10139, 62, 3672, 11, 1693, 62, 853, 287, 4808, 2676, 62, 21858, 62, 22046, 7, 17440, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1200, 62, 8841, 15853, 705, 23884, 4458, 18982, 7, 17440, 62, 3672, 8, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1200, 62, 8841, 15853, 705, 23884, 4458, 18982, 7, 17440, 13, 46002, 62, 3672, 8, 628, 220, 220, 220, 2560, 62, 9410, 62, 8841, 796, 2560, 62, 8841, 1343, 705, 705, 1343, 1200, 62, 8841, 628, 220, 220, 220, 1441, 2560, 62, 9410, 62, 8841, 628, 198, 4871, 32167, 805, 7, 14881, 19667, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 32167, 805, 2134, 17747, 286, 257, 2168, 286, 19161, 290, 850, 12, 35, 363, 16221, 284, 6687, 13, 628, 220, 220, 220, 5740, 326, 262, 7559, 46002, 15506, 11507, 460, 307, 11777, 1813, 393, 17839, 198, 220, 220, 220, 416, 4634, 262, 7559, 47, 56, 10943, 35, 1581, 62, 50, 10526, 36393, 62, 34720, 15506, 2858, 7885, 13, 1052, 11777, 198, 220, 220, 220, 1813, 1988, 329, 7559, 46002, 15506, 481, 307, 973, 625, 262, 2858, 7885, 11, 198, 220, 220, 220, 981, 262, 2858, 7885, 481, 307, 973, 625, 257, 4277, 1988, 13, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 1438, 1058, 965, 198, 220, 220, 220, 220, 220, 220, 220, 6530, 286, 262, 32167, 805, 4554, 13, 770, 481, 635, 307, 262, 1438, 286, 262, 198, 220, 220, 220, 220, 220, 220, 220, 11188, 4049, 11, 2604, 11, 5072, 11, 290, 9199, 3696, 3917, 351, 198, 220, 220, 220, 220, 220, 220, 220, 428, 32167, 805, 13, 628, 220, 220, 220, 9199, 1058, 965, 198, 220, 220, 220, 220, 220, 220, 220, 10644, 284, 8619, 810, 1779, 273, 48924, 805, 9199, 3696, 481, 307, 3194, 198, 220, 220, 220, 220, 220, 220, 220, 357, 12286, 82, 284, 262, 8619, 373, 262, 32167, 805, 373, 8948, 422, 737, 628, 220, 220, 220, 3131, 62, 6615, 1058, 1351, 393, 6045, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 7343, 286, 3224, 3951, 284, 307, 2087, 284, 9199, 2393, 13, 628, 220, 220, 220, 220, 220, 220, 220, 11485, 2196, 29373, 3712, 657, 13, 16, 13, 16, 628, 220, 220, 220, 48924, 1058, 32167, 805, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 1002, 7368, 11, 32167, 805, 481, 307, 2087, 284, 48924, 355, 257, 850, 67, 363, 198, 220, 220, 220, 220, 220, 220, 220, 357, 12286, 318, 6045, 737, 628, 220, 220, 220, 15942, 577, 1058, 493, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 5684, 286, 18931, 15942, 16579, 3038, 389, 657, 12, 43917, 11, 352, 12, 10951, 11, 198, 220, 220, 220, 220, 220, 220, 220, 362, 12, 24442, 2667, 357, 12286, 318, 657, 737, 628, 220, 220, 220, 49213, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 3946, 1058, 1351, 198, 220, 220, 220, 220, 220, 220, 220, 383, 1351, 286, 3946, 329, 428, 32167, 805, 4554, 284, 6687, 13, 628, 220, 220, 220, 3397, 1058, 1351, 198, 220, 220, 220, 220, 220, 220, 220, 7343, 286, 2560, 19161, 290, 32167, 16221, 13, 48221, 942, 326, 19161, 290, 32167, 16221, 287, 262, 198, 220, 220, 220, 220, 220, 220, 220, 3397, 1351, 481, 1844, 878, 428, 32167, 805, 318, 8948, 284, 22063, 623, 273, 13, 628, 220, 220, 220, 1751, 1058, 1351, 198, 220, 220, 220, 220, 220, 220, 220, 7343, 286, 1200, 19161, 290, 32167, 16221, 13, 48221, 942, 326, 19161, 290, 32167, 16221, 287, 262, 198, 220, 220, 220, 220, 220, 220, 220, 1751, 1351, 481, 307, 8948, 691, 706, 428, 32167, 805, 468, 5668, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 751, 62, 21858, 7, 944, 11, 1693, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 4550, 1693, 284, 32167, 805, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 1693, 1058, 15768, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15768, 284, 24443, 284, 32167, 805, 3946, 1351, 13, 628, 198, 220, 220, 220, 220, 220, 220, 220, 16409, 198, 220, 220, 220, 220, 220, 220, 220, 35656, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 1058, 2134, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16409, 2116, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 2860, 62, 17440, 7, 21858, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 628, 220, 220, 220, 825, 751, 62, 7266, 67, 363, 7, 944, 11, 48924, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 4550, 48924, 284, 32167, 805, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 48924, 1058, 32167, 805, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3834, 67, 363, 284, 24443, 284, 32167, 805, 3946, 1351, 13, 628, 198, 220, 220, 220, 220, 220, 220, 220, 16409, 198, 220, 220, 220, 220, 220, 220, 220, 35656, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 1058, 2134, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16409, 2116, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 2860, 62, 17440, 7, 67, 363, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 628, 220, 220, 220, 825, 4808, 1136, 62, 21858, 62, 853, 62, 6615, 7, 944, 11, 1693, 11, 14996, 3672, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 42316, 82, 262, 3951, 284, 307, 2087, 284, 257, 32167, 805, 3519, 284, 1693, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 611, 407, 318, 39098, 7, 21858, 11, 15768, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 5994, 12331, 10786, 3109, 35570, 257, 15768, 2134, 11, 1392, 23884, 4458, 18982, 7, 4906, 7, 21858, 22305, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 651, 35226, 7, 21858, 11, 705, 62, 18780, 3256, 10352, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 10786, 33308, 23884, 1276, 307, 3170, 878, 4375, 340, 705, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 1462, 257, 32167, 805, 4458, 18982, 7, 21858, 13, 3672, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 1693, 62, 853, 62, 6615, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 21858, 13, 22046, 8, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1693, 62, 1370, 796, 705, 41, 9864, 23884, 23884, 4458, 18982, 7, 21858, 13, 46002, 62, 3672, 11, 1693, 13, 46002, 62, 7753, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1693, 62, 853, 62, 6615, 13, 33295, 7, 21858, 62, 1370, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 10139, 62, 3672, 11, 1693, 62, 853, 287, 4808, 2676, 62, 21858, 62, 22046, 7, 21858, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 6822, 326, 705, 2637, 393, 705, 10, 6, 389, 407, 287, 10139, 62, 3672, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 705, 2637, 287, 10139, 62, 3672, 393, 705, 10, 6, 287, 10139, 62, 3672, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 10134, 62, 14774, 62, 17440, 62, 14933, 796, 6407, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1822, 11, 1438, 11, 1005, 563, 796, 1693, 62, 853, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3060, 449, 9864, 1627, 351, 15768, 9199, 2393, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1693, 62, 1370, 796, 705, 41, 9864, 23884, 23884, 4458, 18982, 7, 17440, 62, 3672, 11, 1693, 13, 46002, 62, 7753, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1693, 62, 853, 62, 6615, 13, 33295, 7, 21858, 62, 1370, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3060, 1693, 5923, 14313, 1627, 329, 3141, 1627, 7159, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1822, 62, 1370, 796, 705, 53, 27415, 23884, 5923, 14313, 2625, 90, 36786, 4458, 18982, 7, 17440, 62, 3672, 11, 1822, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1693, 62, 853, 62, 6615, 13, 33295, 7, 853, 62, 1370, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2896, 500, 1693, 62, 3672, 7885, 611, 612, 389, 1822, 62, 14933, 329, 1693, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1693, 13557, 10134, 62, 853, 62, 14933, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1438, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1693, 62, 3672, 796, 10139, 62, 3672, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1693, 62, 3672, 796, 1693, 13, 46002, 62, 3672, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1693, 62, 3672, 62, 1370, 796, 705, 53, 27415, 23884, 1693, 62, 3672, 2625, 90, 36786, 4458, 18982, 7, 17440, 62, 3672, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1693, 62, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1693, 62, 853, 62, 6615, 13, 33295, 7, 21858, 62, 3672, 62, 1370, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3060, 1005, 563, 1627, 329, 15768, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1005, 563, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1005, 563, 62, 1370, 796, 705, 9781, 563, 23884, 23884, 4458, 18982, 7, 17440, 62, 3672, 11, 1005, 563, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1693, 62, 853, 62, 6615, 13, 33295, 7, 1186, 563, 62, 1370, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 1693, 62, 853, 62, 6615, 628, 220, 220, 220, 825, 1382, 7, 944, 11, 285, 4335, 17062, 28, 17821, 11, 14996, 3672, 28, 17821, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 15580, 290, 16031, 262, 9199, 2393, 329, 32167, 805, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 285, 4335, 17062, 1058, 20512, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1002, 15768, 29196, 357, 68, 13, 70, 13, 4049, 11, 5072, 11, 2604, 11, 9199, 8, 836, 470, 2152, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2251, 606, 357, 12286, 318, 7559, 17821, 15506, 737, 628, 220, 220, 220, 220, 220, 220, 220, 14996, 3672, 1058, 20512, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2034, 2412, 262, 3128, 290, 3748, 4686, 1271, 284, 4049, 11, 2604, 11, 5072, 11, 290, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9199, 3696, 13, 1114, 1672, 11, 2427, 286, 7559, 67, 363, 3672, 13, 46002, 15506, 262, 9199, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2393, 4329, 7559, 67, 363, 3672, 62, 26314, 26314, 12038, 35, 62, 312, 15506, 13, 770, 318, 4465, 618, 2491, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1811, 360, 3775, 14, 41, 8158, 286, 262, 976, 1438, 357, 12286, 318, 7559, 17821, 15506, 737, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 198, 220, 220, 220, 220, 220, 220, 220, 35656, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 1058, 2134, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16409, 2116, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 651, 35226, 7, 944, 11, 705, 62, 18780, 3256, 10352, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 6404, 1362, 13, 43917, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 90, 92, 9199, 2393, 468, 1541, 587, 3170, 13, 705, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 50, 4106, 2105, 262, 1382, 1429, 986, 4458, 18982, 7, 944, 13, 3672, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 628, 220, 220, 220, 220, 220, 220, 220, 1438, 796, 2116, 13557, 1136, 62, 69, 3883, 3672, 3419, 611, 14996, 3672, 2073, 2116, 13, 3672, 198, 220, 220, 220, 220, 220, 220, 220, 9199, 62, 7753, 796, 28686, 13, 6978, 13, 22179, 7, 944, 13, 46002, 11, 705, 90, 27422, 46002, 4458, 18982, 7, 3672, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 46002, 62, 7753, 796, 9199, 62, 7753, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 46002, 62, 3672, 796, 1438, 198, 220, 220, 220, 220, 220, 220, 220, 2198, 15908, 7, 944, 13, 46002, 62, 7753, 11, 285, 4335, 17062, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 10934, 9199, 3696, 329, 477, 13760, 287, 2116, 13, 77, 4147, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 5740, 25, 13760, 1276, 307, 3170, 878, 262, 9199, 2393, 329, 2116, 318, 3170, 198, 220, 220, 220, 220, 220, 220, 220, 329, 10139, 62, 9630, 11, 10139, 287, 27056, 378, 7, 944, 13, 77, 4147, 11, 923, 28, 16, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 318, 39098, 7, 17440, 11, 15768, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10139, 13557, 11249, 62, 6738, 62, 67, 363, 7, 76, 4335, 17062, 11, 14996, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 318, 39098, 7, 17440, 11, 32167, 805, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10139, 13, 11249, 7, 76, 4335, 17062, 11, 14996, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 5994, 12331, 10786, 45, 4147, 1276, 307, 2035, 257, 15768, 393, 32167, 805, 2134, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 19430, 48924, 9199, 2393, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 6404, 1362, 13, 10951, 10786, 25954, 360, 4760, 14498, 2393, 23884, 986, 4458, 18982, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 46002, 62, 7753, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 3951, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 2560, 62, 9410, 62, 6615, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 329, 10139, 62, 9630, 11, 10139, 287, 27056, 378, 7, 944, 13, 77, 4147, 11, 923, 28, 16, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 6404, 1362, 13, 10951, 10786, 28516, 319, 23884, 685, 90, 92, 286, 23884, 60, 4458, 18982, 7, 17440, 13, 3672, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10139, 62, 9630, 11, 18896, 7, 944, 13, 77, 4147, 22305, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 10934, 262, 7308, 19667, 9199, 2393, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 318, 39098, 7, 17440, 11, 15768, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3060, 15768, 9633, 284, 32167, 805, 9199, 2393, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1693, 62, 853, 62, 6615, 796, 2116, 13557, 1136, 62, 21858, 62, 853, 62, 6615, 7, 17440, 11, 14996, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3951, 13, 2302, 437, 7, 21858, 62, 853, 62, 6615, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 318, 39098, 7, 17440, 11, 32167, 805, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 850, 67, 363, 62, 8841, 796, 4808, 1136, 62, 7266, 67, 363, 62, 8841, 7, 17440, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3951, 13, 33295, 7, 7266, 67, 363, 62, 8841, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 5994, 12331, 10786, 45, 4147, 1276, 307, 2035, 257, 15768, 393, 32167, 805, 2134, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3060, 2560, 14, 9410, 1321, 11, 611, 3306, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 10139, 13, 71, 5126, 1580, 82, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2560, 62, 9410, 62, 8841, 796, 4808, 1136, 62, 8000, 62, 9410, 62, 8841, 7, 17440, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2560, 62, 9410, 62, 6615, 13, 33295, 7, 8000, 62, 9410, 62, 8841, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 3060, 597, 3131, 3951, 284, 9199, 2393, 11, 611, 7368, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 26086, 62, 6615, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3951, 13, 2302, 437, 7, 944, 13, 26086, 62, 6615, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 19430, 3951, 284, 48924, 9199, 2393, 198, 220, 220, 220, 220, 220, 220, 220, 351, 1280, 7, 46002, 62, 7753, 11, 705, 86, 11537, 355, 48924, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 48924, 13, 8933, 20655, 10786, 59, 77, 4458, 22179, 7, 6615, 1343, 37250, 59, 77, 2, 9492, 12, 21858, 20086, 20520, 1343, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2560, 62, 9410, 62, 6615, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 18780, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 6404, 1362, 13, 10951, 10786, 35, 363, 805, 14498, 2393, 329, 23884, 7675, 705, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 18780, 0, 4458, 18982, 7, 944, 13, 3672, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 628, 220, 220, 220, 2488, 47911, 62, 21812, 10786, 17561, 273, 62, 46002, 62, 67, 363, 11537, 198, 220, 220, 220, 825, 9199, 62, 67, 363, 7, 944, 11, 9199, 62, 25811, 28, 14202, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 7004, 24883, 32167, 805, 284, 1779, 273, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 9199, 62, 25811, 1058, 965, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18634, 284, 307, 3804, 284, 7559, 17561, 273, 62, 46002, 62, 67, 363, 15506, 329, 428, 32167, 805, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 3826, 262, 4600, 17561, 273, 62, 46002, 62, 67, 363, 10314, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1279, 4023, 1378, 34033, 13, 6359, 13, 86, 2304, 13, 15532, 14, 4352, 17561, 273, 14, 805, 723, 14, 14421, 14, 17561, 273, 62, 46002, 62, 67, 363, 13, 6494, 29, 63, 62, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1744, 3689, 737, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 198, 220, 220, 220, 220, 220, 220, 220, 35656, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 1058, 2134, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16409, 2116, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 28407, 1779, 273, 62, 46002, 62, 67, 363, 3141, 198, 220, 220, 220, 220, 220, 220, 220, 3141, 796, 705, 17561, 273, 62, 46002, 62, 67, 363, 6, 198, 220, 220, 220, 220, 220, 220, 220, 611, 9199, 62, 25811, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3141, 15853, 705, 23884, 4458, 18982, 7, 46002, 62, 25811, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3141, 15853, 705, 23884, 4458, 18982, 7, 944, 13, 46002, 62, 7753, 8, 198, 220, 220, 220, 220, 220, 220, 220, 9199, 62, 67, 363, 62, 36942, 796, 850, 14681, 13, 47, 9654, 26933, 21812, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14367, 448, 28, 7266, 14681, 13, 47, 4061, 36, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7582, 28, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 6822, 326, 612, 389, 645, 5293, 10139, 3891, 329, 15064, 1779, 273, 6300, 198, 220, 220, 220, 220, 220, 220, 220, 1779, 273, 62, 9641, 796, 651, 62, 17561, 273, 62, 9641, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1779, 273, 62, 9641, 18189, 357, 23, 11, 767, 11, 362, 8, 290, 2116, 13557, 10134, 62, 14774, 62, 17440, 62, 14933, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11454, 796, 5855, 21077, 281, 5293, 2095, 357, 31336, 705, 10, 6, 393, 705, 2637, 8, 287, 262, 366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 3672, 329, 257, 10139, 287, 32167, 805, 23884, 13, 1081, 286, 22063, 623, 273, 2196, 366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 23, 13, 22, 13, 17, 11, 705, 10, 6, 290, 220, 705, 2637, 389, 12244, 287, 32167, 805, 10139, 3891, 13, 366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 1212, 1724, 257, 705, 10, 6, 393, 705, 2637, 2095, 318, 287, 257, 15768, 1438, 11, 366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 35, 363, 805, 1438, 11, 393, 262, 1438, 329, 257, 15768, 4578, 526, 13, 18982, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 3672, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 43160, 12331, 7, 8056, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 8393, 1133, 1779, 273, 62, 46002, 62, 67, 363, 3141, 198, 220, 220, 220, 220, 220, 220, 220, 503, 11, 11454, 796, 9199, 62, 67, 363, 62, 36942, 13, 10709, 5344, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 448, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 628, 220, 220, 220, 2488, 47911, 62, 21812, 10786, 17561, 273, 62, 46002, 62, 67, 363, 11537, 198, 220, 220, 220, 825, 1382, 62, 46002, 7, 944, 11, 285, 4335, 17062, 28, 17821, 11, 14996, 3672, 28, 17821, 11, 9199, 62, 25811, 28, 14202, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 34, 5691, 1382, 290, 9199, 4726, 3746, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 285, 4335, 17062, 1058, 20512, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1002, 15768, 29196, 357, 68, 13, 70, 13, 4049, 11, 5072, 11, 2604, 11, 9199, 8, 836, 470, 2152, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2251, 606, 357, 12286, 318, 7559, 17821, 15506, 737, 628, 220, 220, 220, 220, 220, 220, 220, 14996, 3672, 1058, 20512, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2034, 2412, 262, 3128, 290, 3748, 4686, 1271, 284, 4049, 11, 2604, 11, 5072, 11, 290, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9199, 3696, 13, 1114, 1672, 11, 2427, 286, 7559, 67, 363, 3672, 13, 46002, 15506, 262, 9199, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2393, 4329, 7559, 67, 363, 3672, 62, 26314, 26314, 12038, 35, 62, 312, 15506, 13, 770, 318, 4465, 618, 2491, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1811, 360, 3775, 14, 41, 8158, 286, 262, 976, 1438, 357, 12286, 318, 7559, 17821, 15506, 737, 628, 220, 220, 220, 220, 220, 220, 220, 9199, 62, 25811, 1058, 965, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18634, 284, 307, 3804, 284, 7559, 17561, 273, 62, 46002, 62, 67, 363, 15506, 329, 428, 32167, 805, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 3826, 262, 4600, 17561, 273, 62, 46002, 62, 67, 363, 10314, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1279, 4023, 1378, 34033, 13, 6359, 13, 86, 2304, 13, 15532, 14, 4352, 17561, 273, 14, 805, 723, 14, 14421, 14, 17561, 273, 62, 46002, 62, 67, 363, 13, 6494, 29, 63, 62, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1744, 3689, 737, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 198, 220, 220, 220, 220, 220, 220, 220, 35656, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 1058, 2134, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16409, 2116, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 11249, 7, 76, 4335, 17062, 11, 14996, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 46002, 62, 67, 363, 7, 46002, 62, 25811, 28, 46002, 62, 25811, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 198 ]
2.207223
5,815
""" Module containing a numpy-like array which supports lazy reading of tiled 2D-image data. """ import abc import dask.array as da import numpy as np class LazyArray: """ An abstract class of a numpy-like array which supports lazy reading of tiled 2D-image data. The class represents a custom array container which is compatible with the numpy API. For more details please refer to https://numpy.org/doc/stable/user/basics.dispatch.html#writing-custom-array-containers. The class is compatible with napari's image layer which expects a "numpy-like array" as input which supports indexing and can be converted to a numpy array via np.asarray. (ref: https://napari.org/tutorials/fundamentals/image.html#image-data-and-numpy-like-arrays) """ __metaclass__ = abc.ABCMeta def __init__(self, shape, dtype, tile_size): """ Initialization method. :param shape: The shape of the underlying array. :param dtype: The type of the underlying array. :param tile_size: The size of a single tile by which the image is divided. """ assert len(shape) == 2 self.shape = shape self.dtype = dtype self.tile_size = tile_size self.ndim = 2 @property def size(self): """ The number of elements in the array. """ return self.shape[0] * self.shape[1] def __array__(self, dtype=None, **kwargs): # pylint: disable=W0613 """ Method used e.g. by numpy to obtain a standard numpy.ndarray. """ return np.asarray(self[0:self.shape[0], 0:self.shape[1]]) def __getitem__(self, idx): """ Method which implements the support for basic slicing. It does not support field access nor advanced indexing. Moreover, the start and stop of a slice must be positive integers. This method is optimized for the napari viewer. napari calls self[:] for obtaining the shape, dtype and ndim attributes - not the data. To delay reading the underlying data this method does not return a numpy array but self when calling self[:]. To access the underlying data napari calls np.asarray(self). """ if not ( isinstance(idx, slice) or (isinstance(idx, tuple) and all(isinstance(i, slice) for i in idx)) ): raise ValueError("LazyArray only supports indexing by slices!") if ( idx == slice(None, None, None) or idx == (slice(None, None, None), slice(None, None, None)) ): return self if len(idx) != 2: raise Exception("Unsupported index!") (y_min, y_max), (x_min, x_max) = [(i.start, i.stop) for i in idx] y_off = y_min - (y_min % self.tile_size) x_off = x_min - (x_min % self.tile_size) assert (y_min >= 0) and (y_max >= 0) and (x_min >= 0) & (x_max >= 0) if y_max % self.tile_size == 0: max_y_tiles = (y_max // self.tile_size) else: max_y_tiles = (y_max // self.tile_size) + 1 if x_max % self.tile_size == 0: max_x_tiles = (x_max // self.tile_size) else: max_x_tiles = (x_max // self.tile_size) + 1 dask_arrays = [] for y_tile in range(y_min // self.tile_size, max_y_tiles): row_tiles = [] for x_tile in range(x_min // self.tile_size, max_x_tiles): row_tiles.append( da.from_delayed( self.read_tile(y_tile, x_tile), shape=(self.tile_size, self.tile_size), dtype=np.uint8 ) ) dask_arrays.append(row_tiles) y_max = min(y_max, self.shape[0]) x_max = min(x_max, self.shape[1]) return da.block(dask_arrays)[y_min-y_off:y_max-y_off, x_min-x_off:x_max-x_off] @abc.abstractmethod def read_tile(self, y_tile, x_tile): """ Abstract method which reads a tile at the position (y_tile, x_tile). """ return
[ 37811, 198, 26796, 7268, 257, 299, 32152, 12, 2339, 7177, 543, 6971, 16931, 3555, 286, 256, 3902, 362, 35, 12, 9060, 1366, 13, 198, 37811, 198, 11748, 450, 66, 198, 11748, 288, 2093, 13, 18747, 355, 12379, 198, 11748, 299, 32152, 355, 45941, 628, 198, 4871, 406, 12582, 19182, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1052, 12531, 1398, 286, 257, 299, 32152, 12, 2339, 7177, 543, 6971, 16931, 3555, 286, 256, 3902, 362, 35, 12, 9060, 1366, 13, 198, 220, 220, 220, 383, 1398, 6870, 257, 2183, 7177, 9290, 543, 318, 11670, 351, 262, 299, 32152, 7824, 13, 198, 220, 220, 220, 1114, 517, 3307, 3387, 3522, 284, 198, 220, 220, 220, 3740, 1378, 77, 32152, 13, 2398, 14, 15390, 14, 31284, 14, 7220, 14, 12093, 873, 13, 6381, 17147, 13, 6494, 2, 16502, 12, 23144, 12, 18747, 12, 3642, 50221, 13, 628, 220, 220, 220, 383, 1398, 318, 11670, 351, 25422, 2743, 338, 2939, 7679, 543, 13423, 257, 366, 77, 32152, 12, 2339, 7177, 1, 355, 198, 220, 220, 220, 5128, 543, 6971, 6376, 278, 290, 460, 307, 11513, 284, 257, 299, 32152, 7177, 2884, 45941, 13, 292, 18747, 13, 198, 220, 220, 220, 357, 5420, 25, 3740, 1378, 77, 499, 2743, 13, 2398, 14, 83, 44917, 82, 14, 10990, 3263, 874, 14, 9060, 13, 6494, 2, 9060, 12, 7890, 12, 392, 12, 77, 32152, 12, 2339, 12, 3258, 592, 8, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 11593, 4164, 330, 31172, 834, 796, 450, 66, 13, 24694, 48526, 628, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 5485, 11, 288, 4906, 11, 17763, 62, 7857, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 20768, 1634, 2446, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 5485, 25, 383, 5485, 286, 262, 10238, 7177, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 288, 4906, 25, 383, 2099, 286, 262, 10238, 7177, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 17763, 62, 7857, 25, 383, 2546, 286, 257, 2060, 17763, 416, 543, 262, 2939, 318, 9086, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 18896, 7, 43358, 8, 6624, 362, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 43358, 796, 5485, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 67, 4906, 796, 288, 4906, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 40927, 62, 7857, 796, 17763, 62, 7857, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 358, 320, 796, 362, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 2546, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 383, 1271, 286, 4847, 287, 262, 7177, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 43358, 58, 15, 60, 1635, 2116, 13, 43358, 58, 16, 60, 628, 220, 220, 220, 825, 11593, 18747, 834, 7, 944, 11, 288, 4906, 28, 14202, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 279, 2645, 600, 25, 15560, 28, 54, 3312, 1485, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 11789, 973, 304, 13, 70, 13, 416, 299, 32152, 284, 7330, 257, 3210, 299, 32152, 13, 358, 18747, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 45941, 13, 292, 18747, 7, 944, 58, 15, 25, 944, 13, 43358, 58, 15, 4357, 657, 25, 944, 13, 43358, 58, 16, 11907, 8, 628, 220, 220, 220, 825, 11593, 1136, 9186, 834, 7, 944, 11, 4686, 87, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 11789, 543, 23986, 262, 1104, 329, 4096, 49289, 13, 198, 220, 220, 220, 220, 220, 220, 220, 632, 857, 407, 1104, 2214, 1895, 4249, 6190, 6376, 278, 13, 198, 220, 220, 220, 220, 220, 220, 220, 10968, 11, 262, 923, 290, 2245, 286, 257, 16416, 1276, 307, 3967, 37014, 13, 628, 220, 220, 220, 220, 220, 220, 220, 770, 2446, 318, 23392, 329, 262, 25422, 2743, 19091, 13, 198, 220, 220, 220, 220, 220, 220, 220, 25422, 2743, 3848, 2116, 58, 47715, 329, 16727, 262, 5485, 11, 288, 4906, 290, 299, 27740, 12608, 532, 407, 262, 1366, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1675, 5711, 3555, 262, 10238, 1366, 428, 2446, 857, 407, 1441, 257, 299, 32152, 7177, 198, 220, 220, 220, 220, 220, 220, 220, 475, 2116, 618, 4585, 2116, 58, 25, 4083, 198, 220, 220, 220, 220, 220, 220, 220, 1675, 1895, 262, 10238, 1366, 25422, 2743, 3848, 45941, 13, 292, 18747, 7, 944, 737, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 318, 39098, 7, 312, 87, 11, 16416, 8, 393, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 271, 39098, 7, 312, 87, 11, 46545, 8, 290, 477, 7, 271, 39098, 7, 72, 11, 16416, 8, 329, 1312, 287, 4686, 87, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 15179, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7203, 43, 12582, 19182, 691, 6971, 6376, 278, 416, 24314, 2474, 8, 628, 220, 220, 220, 220, 220, 220, 220, 611, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4686, 87, 6624, 16416, 7, 14202, 11, 6045, 11, 6045, 8, 393, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4686, 87, 6624, 357, 48369, 7, 14202, 11, 6045, 11, 6045, 828, 16416, 7, 14202, 11, 6045, 11, 6045, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 15179, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 628, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 312, 87, 8, 14512, 362, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 35528, 7203, 3118, 15999, 6376, 2474, 8, 198, 220, 220, 220, 220, 220, 220, 220, 357, 88, 62, 1084, 11, 331, 62, 9806, 828, 357, 87, 62, 1084, 11, 2124, 62, 9806, 8, 796, 47527, 72, 13, 9688, 11, 1312, 13, 11338, 8, 329, 1312, 287, 4686, 87, 60, 198, 220, 220, 220, 220, 220, 220, 220, 331, 62, 2364, 796, 331, 62, 1084, 532, 357, 88, 62, 1084, 4064, 2116, 13, 40927, 62, 7857, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 62, 2364, 796, 2124, 62, 1084, 532, 357, 87, 62, 1084, 4064, 2116, 13, 40927, 62, 7857, 8, 628, 220, 220, 220, 220, 220, 220, 220, 6818, 357, 88, 62, 1084, 18189, 657, 8, 290, 357, 88, 62, 9806, 18189, 657, 8, 290, 357, 87, 62, 1084, 18189, 657, 8, 1222, 357, 87, 62, 9806, 18189, 657, 8, 628, 220, 220, 220, 220, 220, 220, 220, 611, 331, 62, 9806, 4064, 2116, 13, 40927, 62, 7857, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 88, 62, 83, 2915, 796, 357, 88, 62, 9806, 3373, 2116, 13, 40927, 62, 7857, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 88, 62, 83, 2915, 796, 357, 88, 62, 9806, 3373, 2116, 13, 40927, 62, 7857, 8, 1343, 352, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2124, 62, 9806, 4064, 2116, 13, 40927, 62, 7857, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 87, 62, 83, 2915, 796, 357, 87, 62, 9806, 3373, 2116, 13, 40927, 62, 7857, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 87, 62, 83, 2915, 796, 357, 87, 62, 9806, 3373, 2116, 13, 40927, 62, 7857, 8, 1343, 352, 628, 220, 220, 220, 220, 220, 220, 220, 288, 2093, 62, 3258, 592, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 329, 331, 62, 40927, 287, 2837, 7, 88, 62, 1084, 3373, 2116, 13, 40927, 62, 7857, 11, 3509, 62, 88, 62, 83, 2915, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5752, 62, 83, 2915, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 2124, 62, 40927, 287, 2837, 7, 87, 62, 1084, 3373, 2116, 13, 40927, 62, 7857, 11, 3509, 62, 87, 62, 83, 2915, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5752, 62, 83, 2915, 13, 33295, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12379, 13, 6738, 62, 12381, 16548, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 961, 62, 40927, 7, 88, 62, 40927, 11, 2124, 62, 40927, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5485, 16193, 944, 13, 40927, 62, 7857, 11, 2116, 13, 40927, 62, 7857, 828, 288, 4906, 28, 37659, 13, 28611, 23, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 2093, 62, 3258, 592, 13, 33295, 7, 808, 62, 83, 2915, 8, 628, 220, 220, 220, 220, 220, 220, 220, 331, 62, 9806, 796, 949, 7, 88, 62, 9806, 11, 2116, 13, 43358, 58, 15, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 62, 9806, 796, 949, 7, 87, 62, 9806, 11, 2116, 13, 43358, 58, 16, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 12379, 13, 9967, 7, 67, 2093, 62, 3258, 592, 38381, 88, 62, 1084, 12, 88, 62, 2364, 25, 88, 62, 9806, 12, 88, 62, 2364, 11, 2124, 62, 1084, 12, 87, 62, 2364, 25, 87, 62, 9806, 12, 87, 62, 2364, 60, 628, 220, 220, 220, 2488, 39305, 13, 397, 8709, 24396, 198, 220, 220, 220, 825, 1100, 62, 40927, 7, 944, 11, 331, 62, 40927, 11, 2124, 62, 40927, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 27741, 2446, 543, 9743, 257, 17763, 379, 262, 2292, 357, 88, 62, 40927, 11, 2124, 62, 40927, 737, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 198 ]
2.209539
1,866
from django.core.management.base import BaseCommand from core.datatools.fail_repeat import FailRepeater
[ 6738, 42625, 14208, 13, 7295, 13, 27604, 13, 8692, 1330, 7308, 21575, 198, 198, 6738, 4755, 13, 19608, 265, 10141, 13, 32165, 62, 44754, 1330, 18448, 47541, 729, 628 ]
3.655172
29
from typing import Dict import requests from config.env import starhubtvplus_app_key, starhubtvplus_client_uuid
[ 6738, 19720, 1330, 360, 713, 198, 11748, 7007, 198, 6738, 4566, 13, 24330, 1330, 3491, 40140, 14981, 9541, 62, 1324, 62, 2539, 11, 3491, 40140, 14981, 9541, 62, 16366, 62, 12303, 312, 628 ]
3.424242
33
# # Import section # import numpy from syned.beamline.beamline_element import BeamlineElement from syned.beamline.element_coordinates import ElementCoordinates from wofry.propagator.propagator import PropagationManager, PropagationElements, PropagationParameters from wofry.propagator.wavefront1D.generic_wavefront import GenericWavefront1D from wofryimpl.propagator.propagators1D.fresnel import Fresnel1D from wofryimpl.propagator.propagators1D.fresnel_convolution import FresnelConvolution1D from wofryimpl.propagator.propagators1D.fraunhofer import Fraunhofer1D from wofryimpl.propagator.propagators1D.integral import Integral1D from wofryimpl.propagator.propagators1D.fresnel_zoom import FresnelZoom1D from wofryimpl.propagator.propagators1D.fresnel_zoom_scaling_theorem import FresnelZoomScaling1D # # SOURCE======================== # # # BEAMLINE======================== # # # MAIN FUNCTION======================== # # # MAIN======================== # # main() if __name__ == "__main__": from orangecontrib.esrf.wofry.util.tally import TallyCoherentModes, Tally from oasys.util.oasys_util import get_fwhm from srxraylib.plot.gol import plot # # # # size_at_aperture = 565e-6 APERTURE = [40.3e-6, 85.1e-6, 145e-6, 1000e-6, -40.3e-6, -85.1e-6, -145e-6, -1000e-6] # [ 5000e-6] # [-40.3e-6, -85.1e-6, -145e-6, -1000e-6] # DISTANCE = numpy.linspace(10, 50, 50) # numpy.array([18.4]) # # # 31.19 28.4 number_of_points = 800 # 800 for aperture in APERTURE: # src1, wf = main(aperture=aperture, distance=18.4168, number_of_points=number_of_points) filename = "aperture_h_%g.dat" % (1e6 * aperture) #<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< f = open(filename, 'w') f.write("# S 1 scored data\n") f.write("# N 5\n") f.write("# L distance fwhm total_intensity on_axis_intensity peak_intensity") if aperture < 0: aperture *= -1 nmodes = 1 else: nmodes = 10 for i,distance in enumerate(DISTANCE): tally = main(aperture=aperture, distance=distance, nmodes=nmodes) spectral_density = tally.get_spectral_density() # numpy.zeros_like(abscissas) abscissas = tally.get_abscissas() fwhm, quote, coordinates = get_fwhm(spectral_density, 1e6 * abscissas) I = spectral_density x = abscissas fwhm, quote, coordinates = get_fwhm(I, x) intensity_at_center = I[I.size // 2] intensity_total = I.sum() * (x[1] - x[0]) intensity_peak = I.max() #<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< # plot(1e6 * abscissas, spectral_density, # legend=["From Cross Spectral Density"], # xtitle="x [um]", ytitle="Spectral Density", title="D=%g m,FWHM = %g um, a=%g um" % (distance, fwhm, aperture*1e6)) f.write("\n %g %g %g %g %g " % (distance, fwhm, intensity_total, intensity_at_center, intensity_peak)) f.close() print("File %s written to disk" % filename) # tally.save("aperture_h_%g.dat" % (aperture)) # main()
[ 2, 198, 2, 17267, 2665, 198, 2, 198, 11748, 299, 32152, 198, 198, 6738, 827, 2817, 13, 40045, 1370, 13, 40045, 1370, 62, 30854, 1330, 25855, 1370, 20180, 198, 6738, 827, 2817, 13, 40045, 1370, 13, 30854, 62, 37652, 17540, 1330, 11703, 7222, 585, 17540, 198, 6738, 266, 1659, 563, 13, 22930, 363, 1352, 13, 22930, 363, 1352, 1330, 8772, 363, 341, 13511, 11, 8772, 363, 341, 36, 3639, 11, 8772, 363, 341, 48944, 198, 198, 6738, 266, 1659, 563, 13, 22930, 363, 1352, 13, 19204, 8534, 16, 35, 13, 41357, 62, 19204, 8534, 1330, 42044, 39709, 8534, 16, 35, 198, 198, 6738, 266, 1659, 563, 23928, 13, 22930, 363, 1352, 13, 22930, 363, 2024, 16, 35, 13, 69, 411, 4954, 1330, 32732, 4954, 16, 35, 198, 6738, 266, 1659, 563, 23928, 13, 22930, 363, 1352, 13, 22930, 363, 2024, 16, 35, 13, 69, 411, 4954, 62, 42946, 2122, 1330, 32732, 4954, 3103, 85, 2122, 16, 35, 198, 6738, 266, 1659, 563, 23928, 13, 22930, 363, 1352, 13, 22930, 363, 2024, 16, 35, 13, 69, 430, 403, 71, 30288, 1330, 39313, 403, 71, 30288, 16, 35, 198, 6738, 266, 1659, 563, 23928, 13, 22930, 363, 1352, 13, 22930, 363, 2024, 16, 35, 13, 18908, 1373, 1330, 15995, 1373, 16, 35, 198, 6738, 266, 1659, 563, 23928, 13, 22930, 363, 1352, 13, 22930, 363, 2024, 16, 35, 13, 69, 411, 4954, 62, 89, 4207, 1330, 32732, 4954, 57, 4207, 16, 35, 198, 6738, 266, 1659, 563, 23928, 13, 22930, 363, 1352, 13, 22930, 363, 2024, 16, 35, 13, 69, 411, 4954, 62, 89, 4207, 62, 1416, 4272, 62, 1169, 29625, 1330, 32732, 4954, 57, 4207, 3351, 4272, 16, 35, 628, 198, 2, 198, 2, 311, 31033, 4770, 2559, 198, 2, 628, 198, 198, 2, 198, 2, 9348, 2390, 24027, 4770, 2559, 198, 2, 628, 198, 198, 2, 198, 2, 8779, 1268, 29397, 4177, 2849, 4770, 2559, 198, 2, 628, 198, 198, 2, 198, 2, 8779, 1268, 4770, 2559, 198, 2, 628, 198, 2, 1388, 3419, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 422, 10912, 3642, 822, 13, 274, 41871, 13, 86, 1659, 563, 13, 22602, 13, 83, 453, 1330, 309, 453, 7222, 8334, 44, 4147, 11, 309, 453, 198, 220, 220, 220, 422, 267, 292, 893, 13, 22602, 13, 78, 292, 893, 62, 22602, 1330, 651, 62, 69, 1929, 76, 198, 220, 220, 220, 422, 19677, 87, 2433, 8019, 13, 29487, 13, 70, 349, 1330, 7110, 198, 220, 220, 220, 1303, 198, 220, 220, 220, 1303, 198, 220, 220, 220, 1303, 198, 220, 220, 220, 1303, 2546, 62, 265, 62, 499, 861, 495, 796, 642, 2996, 68, 12, 21, 198, 220, 220, 220, 3486, 17395, 11335, 796, 685, 1821, 13, 18, 68, 12, 21, 11, 7600, 13, 16, 68, 12, 21, 11, 20299, 68, 12, 21, 11, 8576, 68, 12, 21, 11, 532, 1821, 13, 18, 68, 12, 21, 11, 532, 5332, 13, 16, 68, 12, 21, 11, 532, 18781, 68, 12, 21, 11, 532, 12825, 68, 12, 21, 60, 1303, 685, 23336, 68, 12, 21, 60, 1303, 25915, 1821, 13, 18, 68, 12, 21, 11, 532, 5332, 13, 16, 68, 12, 21, 11, 532, 18781, 68, 12, 21, 11, 532, 12825, 68, 12, 21, 60, 1303, 198, 220, 220, 220, 360, 8808, 19240, 796, 299, 32152, 13, 21602, 10223, 7, 940, 11, 2026, 11, 2026, 8, 1303, 299, 32152, 13, 18747, 26933, 1507, 13, 19, 12962, 1303, 220, 220, 1303, 1303, 3261, 13, 1129, 2579, 13, 19, 198, 220, 220, 220, 1271, 62, 1659, 62, 13033, 796, 10460, 1303, 10460, 628, 198, 220, 220, 220, 329, 32729, 287, 3486, 17395, 11335, 25, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 12351, 16, 11, 266, 69, 796, 1388, 7, 499, 861, 495, 28, 499, 861, 495, 11, 5253, 28, 1507, 13, 19, 14656, 11, 1271, 62, 1659, 62, 13033, 28, 17618, 62, 1659, 62, 13033, 8, 628, 220, 220, 220, 220, 220, 220, 220, 29472, 796, 366, 499, 861, 495, 62, 71, 62, 4, 70, 13, 19608, 1, 4064, 357, 16, 68, 21, 1635, 32729, 8, 1303, 16791, 16791, 16791, 16791, 16791, 16791, 16791, 16791, 16791, 16791, 16791, 16791, 16791, 16791, 16791, 16791, 16791, 16791, 16791, 16791, 16791, 27, 198, 220, 220, 220, 220, 220, 220, 220, 277, 796, 1280, 7, 34345, 11, 705, 86, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 277, 13, 13564, 7203, 2, 311, 352, 7781, 1366, 59, 77, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 277, 13, 13564, 7203, 2, 399, 642, 59, 77, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 277, 13, 13564, 7203, 2, 406, 220, 5253, 220, 277, 1929, 76, 220, 2472, 62, 47799, 220, 319, 62, 22704, 62, 47799, 220, 9103, 62, 47799, 4943, 628, 220, 220, 220, 220, 220, 220, 220, 611, 32729, 1279, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 32729, 1635, 28, 532, 16, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28642, 4147, 796, 352, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28642, 4147, 796, 838, 628, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 11, 30246, 287, 27056, 378, 7, 35, 8808, 19240, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26767, 796, 1388, 7, 499, 861, 495, 28, 499, 861, 495, 11, 5253, 28, 30246, 11, 28642, 4147, 28, 21533, 4147, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37410, 62, 43337, 796, 26767, 13, 1136, 62, 4443, 1373, 62, 43337, 3419, 1303, 299, 32152, 13, 9107, 418, 62, 2339, 7, 397, 1416, 747, 292, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 450, 1416, 747, 292, 796, 26767, 13, 1136, 62, 397, 1416, 747, 292, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 1929, 76, 11, 9577, 11, 22715, 796, 651, 62, 69, 1929, 76, 7, 4443, 1373, 62, 43337, 11, 352, 68, 21, 1635, 450, 1416, 747, 292, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 314, 796, 37410, 62, 43337, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 796, 450, 1416, 747, 292, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 1929, 76, 11, 9577, 11, 22715, 796, 651, 62, 69, 1929, 76, 7, 40, 11, 2124, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12245, 62, 265, 62, 16159, 796, 314, 58, 40, 13, 7857, 3373, 362, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12245, 62, 23350, 796, 314, 13, 16345, 3419, 1635, 357, 87, 58, 16, 60, 532, 2124, 58, 15, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12245, 62, 36729, 796, 314, 13, 9806, 3419, 628, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 16791, 16791, 16791, 16791, 16791, 16791, 16791, 16791, 16791, 16791, 16791, 16791, 16791, 16791, 16791, 16791, 16791, 16791, 16791, 16791, 16791, 16791, 16791, 16791, 16791, 16791, 16791, 16791, 16791, 16791, 16791, 16791, 16791, 16791, 16791, 16791, 16791, 16791, 16791, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 7110, 7, 16, 68, 21, 1635, 450, 1416, 747, 292, 11, 37410, 62, 43337, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 8177, 28, 14692, 4863, 6372, 13058, 1373, 360, 6377, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 742, 2578, 2625, 87, 685, 388, 60, 1600, 331, 7839, 2625, 49738, 1373, 360, 6377, 1600, 3670, 2625, 35, 28, 4, 70, 285, 11, 37, 12418, 44, 796, 4064, 70, 23781, 11, 257, 28, 4, 70, 23781, 1, 4064, 357, 30246, 11, 277, 1929, 76, 11, 32729, 9, 16, 68, 21, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 13, 13564, 7203, 59, 77, 4064, 70, 220, 4064, 70, 220, 4064, 70, 220, 4064, 70, 220, 4064, 70, 220, 366, 4064, 357, 30246, 11, 220, 277, 1929, 76, 11, 220, 12245, 62, 23350, 11, 220, 12245, 62, 265, 62, 16159, 11, 220, 12245, 62, 36729, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 277, 13, 19836, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 8979, 4064, 82, 3194, 284, 11898, 1, 4064, 29472, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 26767, 13, 21928, 7203, 499, 861, 495, 62, 71, 62, 4, 70, 13, 19608, 1, 4064, 357, 499, 861, 495, 4008, 628, 198, 220, 220, 220, 1303, 1388, 3419, 198 ]
2.184335
1,481
import unittest from models import Marker # for Marker.bounding_box_query import datetime # This tests year 2014 accidents as this is the current example git data for testing # Once this changes to another year or to the current year's accidents (as should be) un-comment lines 11,13,15 # and change both 2014 and 2015 to: %s class TestQueryFilters(unittest.TestCase): """ # cyear = str(datetime.datetime.now().strftime("%Y")) global start_date start_date = "01/01/2014" # % cyear global end_date end_date = "01/01/2015" # % str(int(cyear)-1) """ if __name__ == '__main__': unittest.main() suite = unittest.TestLoader().loadTestsFromTestCase(TestQueryFilters) unittest.TextTestRunner(verbosity=2).run(suite)
[ 11748, 555, 715, 395, 198, 6738, 4981, 1330, 2940, 263, 220, 1303, 329, 2940, 263, 13, 7784, 278, 62, 3524, 62, 22766, 198, 11748, 4818, 8079, 198, 198, 2, 770, 5254, 614, 1946, 17390, 355, 428, 318, 262, 1459, 1672, 17606, 1366, 329, 4856, 198, 2, 4874, 428, 2458, 284, 1194, 614, 393, 284, 262, 1459, 614, 338, 17390, 357, 292, 815, 307, 8, 555, 12, 23893, 3951, 1367, 11, 1485, 11, 1314, 198, 2, 290, 1487, 1111, 1946, 290, 1853, 284, 25, 4064, 82, 628, 198, 4871, 6208, 20746, 11928, 1010, 7, 403, 715, 395, 13, 14402, 20448, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1303, 269, 1941, 796, 965, 7, 19608, 8079, 13, 19608, 8079, 13, 2197, 22446, 2536, 31387, 7203, 4, 56, 48774, 198, 220, 220, 220, 3298, 923, 62, 4475, 198, 220, 220, 220, 923, 62, 4475, 796, 366, 486, 14, 486, 14, 4967, 1, 220, 220, 220, 220, 1303, 4064, 269, 1941, 198, 220, 220, 220, 3298, 886, 62, 4475, 198, 220, 220, 220, 886, 62, 4475, 796, 366, 486, 14, 486, 14, 4626, 1, 220, 220, 220, 220, 220, 220, 1303, 4064, 965, 7, 600, 7, 948, 451, 13219, 16, 8, 198, 220, 220, 220, 37227, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 555, 715, 395, 13, 12417, 3419, 198, 220, 220, 220, 18389, 796, 555, 715, 395, 13, 14402, 17401, 22446, 2220, 51, 3558, 4863, 14402, 20448, 7, 14402, 20746, 11928, 1010, 8, 198, 220, 220, 220, 555, 715, 395, 13, 8206, 14402, 49493, 7, 19011, 16579, 28, 17, 737, 5143, 7, 2385, 578, 8, 198 ]
2.778182
275
# Copyright 2021 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from absl.testing import absltest from learner.brains import tensor_nest import tensorflow as tf class TensorNestTest(absltest.TestCase): """Tests for the tensor_nest module.""" def test_batch_size_valid_nest(self): """Get the batch size of a nest of tensors with the same batch size.""" nest = { 'a': { 'b': tf.constant([[1, 2, 3], [4, 5, 6]]), 'c': tf.constant([[7, 8, 9, 10], [11, 12, 13, 14]]) }, } self.assertEqual(2, tensor_nest.batch_size(nest)) def test_batch_size_invalid_nest(self): """Get the batch size of a nest of tensors with different batch sizes.""" nest = { 'a': { 'b': tf.constant([[1, 2, 3], [4, 5, 6], [7, 8, 9]]), 'c': tf.constant([[7, 8, 9, 10], [11, 12, 13, 14]]) }, } self.assertRaisesRegex( tensor_nest.MismatchedBatchSizeError, 'Tensors found in nest with mismatched batch sizes: {\'a\'.*}', tensor_nest.batch_size, nest) def test_batch_size_empty_nest(self): """Get the batch size of an empty tensor nest.""" self.assertIsNone(tensor_nest.batch_size({})) def test_concatenate_batched(self): """Test the concatenation of a set of batched tensor nests.""" nests = [ { 'a': { 'b': tf.constant([[1, 2], [3, 4]]), 'c': tf.constant([[9, 8, 7], [6, 5, 4]]), }, }, { 'a': { 'b': tf.constant([[5, 6]]), 'c': tf.constant([[3, 2, 1]]), }, }, ] expected = { 'a': { 'b': tf.constant([[1, 2], [3, 4], [5, 6]]), 'c': tf.constant([[9, 8, 7], [6, 5, 4], [3, 2, 1]]), }, } tf.nest.assert_same_structure(tensor_nest.concatenate_batched(nests), expected, expand_composites=True) if __name__ == '__main__': absltest.main()
[ 2, 15069, 33448, 3012, 11419, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 198, 6738, 2352, 75, 13, 33407, 1330, 2352, 2528, 395, 198, 6738, 22454, 1008, 13, 1671, 1299, 1330, 11192, 273, 62, 77, 395, 198, 198, 11748, 11192, 273, 11125, 355, 48700, 628, 198, 4871, 309, 22854, 45, 395, 14402, 7, 8937, 2528, 395, 13, 14402, 20448, 2599, 198, 220, 37227, 51, 3558, 329, 262, 11192, 273, 62, 77, 395, 8265, 526, 15931, 628, 220, 825, 1332, 62, 43501, 62, 7857, 62, 12102, 62, 77, 395, 7, 944, 2599, 198, 220, 220, 220, 37227, 3855, 262, 15458, 2546, 286, 257, 16343, 286, 11192, 669, 351, 262, 976, 15458, 2546, 526, 15931, 198, 220, 220, 220, 16343, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 705, 64, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 65, 10354, 48700, 13, 9979, 415, 26933, 58, 16, 11, 362, 11, 513, 4357, 685, 19, 11, 642, 11, 718, 11907, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 66, 10354, 48700, 13, 9979, 415, 26933, 58, 22, 11, 807, 11, 860, 11, 838, 4357, 685, 1157, 11, 1105, 11, 1511, 11, 1478, 11907, 8, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 1782, 198, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 17, 11, 11192, 273, 62, 77, 395, 13, 43501, 62, 7857, 7, 77, 395, 4008, 628, 220, 825, 1332, 62, 43501, 62, 7857, 62, 259, 12102, 62, 77, 395, 7, 944, 2599, 198, 220, 220, 220, 37227, 3855, 262, 15458, 2546, 286, 257, 16343, 286, 11192, 669, 351, 1180, 15458, 10620, 526, 15931, 198, 220, 220, 220, 16343, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 705, 64, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 65, 10354, 48700, 13, 9979, 415, 26933, 58, 16, 11, 362, 11, 513, 4357, 685, 19, 11, 642, 11, 718, 4357, 685, 22, 11, 807, 11, 860, 11907, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 66, 10354, 48700, 13, 9979, 415, 26933, 58, 22, 11, 807, 11, 860, 11, 838, 4357, 685, 1157, 11, 1105, 11, 1511, 11, 1478, 11907, 8, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 1782, 198, 220, 220, 220, 2116, 13, 30493, 21762, 2696, 3041, 25636, 7, 198, 220, 220, 220, 220, 220, 220, 220, 11192, 273, 62, 77, 395, 13, 44, 1042, 14265, 33, 963, 10699, 12331, 11, 198, 220, 220, 220, 220, 220, 220, 220, 705, 51, 641, 669, 1043, 287, 16343, 351, 32691, 14265, 15458, 10620, 25, 1391, 43054, 64, 59, 4458, 9, 92, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 11192, 273, 62, 77, 395, 13, 43501, 62, 7857, 11, 16343, 8, 628, 220, 825, 1332, 62, 43501, 62, 7857, 62, 28920, 62, 77, 395, 7, 944, 2599, 198, 220, 220, 220, 37227, 3855, 262, 15458, 2546, 286, 281, 6565, 11192, 273, 16343, 526, 15931, 198, 220, 220, 220, 2116, 13, 30493, 3792, 14202, 7, 83, 22854, 62, 77, 395, 13, 43501, 62, 7857, 15090, 92, 4008, 628, 220, 825, 1332, 62, 1102, 9246, 268, 378, 62, 8664, 1740, 7, 944, 2599, 198, 220, 220, 220, 37227, 14402, 262, 1673, 36686, 341, 286, 257, 900, 286, 7365, 1740, 11192, 273, 44382, 526, 15931, 198, 220, 220, 220, 44382, 796, 685, 198, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 64, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 65, 10354, 48700, 13, 9979, 415, 26933, 58, 16, 11, 362, 4357, 685, 18, 11, 604, 11907, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 66, 10354, 48700, 13, 9979, 415, 26933, 58, 24, 11, 807, 11, 767, 4357, 685, 21, 11, 642, 11, 604, 11907, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 64, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 65, 10354, 48700, 13, 9979, 415, 26933, 58, 20, 11, 718, 11907, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 66, 10354, 48700, 13, 9979, 415, 26933, 58, 18, 11, 362, 11, 352, 11907, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 2361, 198, 220, 220, 220, 2938, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 705, 64, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 65, 10354, 48700, 13, 9979, 415, 26933, 58, 16, 11, 362, 4357, 685, 18, 11, 604, 4357, 685, 20, 11, 718, 11907, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 66, 10354, 48700, 13, 9979, 415, 26933, 58, 24, 11, 807, 11, 767, 4357, 685, 21, 11, 642, 11, 604, 4357, 685, 18, 11, 362, 11, 352, 11907, 828, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 1782, 198, 220, 220, 220, 48700, 13, 77, 395, 13, 30493, 62, 31642, 62, 301, 5620, 7, 83, 22854, 62, 77, 395, 13, 1102, 9246, 268, 378, 62, 8664, 1740, 7, 77, 3558, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2938, 11, 4292, 62, 785, 1930, 2737, 28, 17821, 8, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 2352, 2528, 395, 13, 12417, 3419, 198 ]
2.170121
1,158
""" Longest Palindromic Subsequence Given a string s, find the longest palindromic subsequence's length in s. A subsequence is a sequence that can be derived from another sequence by deleting some or no elements without changing the order of the remaining elements. - Example 1: - Input: s = "bbbab" - Output: 4 - Explanation: One possible longest palindromic subsequence is "bbbb". - Example 2: - Input: s = "cbbd" - Output: 2 - Explanation: One possible longest palindromic subsequence is "bb". - Constraints: - 1 <= s.length <= 1000 - s consists only of lowercase English letters. """ # A Dynamic Programming based Python # program for LPS problem Returns the length # of the longest palindromic subsequence in seq # Driver program to test above functions seq = "GEEKS FOR GEEKS" n = len(seq) print("The length of the LPS is " + str(lps(seq))) # This code is contributed by Bhavya Jain
[ 37811, 5882, 395, 3175, 521, 398, 291, 3834, 43167, 198, 198, 15056, 257, 4731, 264, 11, 1064, 262, 14069, 6340, 521, 398, 291, 6399, 594, 338, 4129, 287, 264, 13, 198, 198, 32, 6399, 594, 318, 257, 8379, 326, 460, 307, 10944, 422, 1194, 8379, 416, 198, 2934, 293, 889, 617, 393, 645, 4847, 1231, 5609, 262, 1502, 286, 262, 5637, 4847, 13, 198, 198, 12, 17934, 352, 25, 198, 220, 220, 220, 532, 23412, 25, 264, 796, 366, 11848, 65, 397, 1, 198, 220, 220, 220, 532, 25235, 25, 604, 198, 220, 220, 220, 532, 50125, 341, 25, 1881, 1744, 14069, 6340, 521, 398, 291, 6399, 594, 318, 366, 11848, 11848, 1911, 198, 12, 17934, 362, 25, 198, 220, 220, 220, 532, 23412, 25, 264, 796, 366, 66, 11848, 67, 1, 198, 220, 220, 220, 532, 25235, 25, 362, 198, 220, 220, 220, 532, 50125, 341, 25, 1881, 1744, 14069, 6340, 521, 398, 291, 6399, 594, 318, 366, 11848, 1911, 198, 12, 1482, 2536, 6003, 25, 198, 220, 220, 220, 532, 352, 19841, 264, 13, 13664, 19841, 8576, 198, 220, 220, 220, 532, 264, 10874, 691, 286, 2793, 7442, 3594, 7475, 13, 198, 37811, 628, 198, 2, 317, 26977, 30297, 1912, 11361, 198, 2, 1430, 329, 406, 3705, 1917, 16409, 262, 4129, 198, 2, 286, 262, 14069, 6340, 521, 398, 291, 6399, 594, 287, 33756, 628, 198, 2, 12434, 1430, 284, 1332, 2029, 5499, 198, 41068, 796, 366, 38, 6500, 27015, 7473, 402, 6500, 27015, 1, 198, 77, 796, 18896, 7, 41068, 8, 198, 4798, 7203, 464, 4129, 286, 262, 406, 3705, 318, 366, 1343, 965, 7, 75, 862, 7, 41068, 22305, 198, 198, 2, 770, 2438, 318, 8639, 416, 16581, 2830, 64, 449, 391 ]
3.244755
286
import statistics data = [2.75, 1.75, 1.25, 0.25, 0.5, 1.25, 3.5] print(statistics.mean(data)) # 平均 print(statistics.median(data)) # 中央値 print(statistics.variance(data)) # 標本標準分散
[ 11748, 7869, 198, 7890, 796, 685, 17, 13, 2425, 11, 352, 13, 2425, 11, 352, 13, 1495, 11, 657, 13, 1495, 11, 657, 13, 20, 11, 352, 13, 1495, 11, 513, 13, 20, 60, 198, 4798, 7, 14269, 3969, 13, 32604, 7, 7890, 4008, 1303, 10263, 117, 111, 161, 251, 229, 198, 4798, 7, 14269, 3969, 13, 1150, 666, 7, 7890, 4008, 1303, 220, 40792, 13783, 106, 161, 222, 97, 198, 4798, 7, 14269, 3969, 13, 25641, 590, 7, 7890, 4008, 1303, 10545, 101, 247, 17312, 105, 162, 101, 247, 162, 118, 244, 26344, 228, 46763, 96, 198 ]
1.826531
98
# Copyright 2021 Joshua Watt <[email protected]> # # SPDX-License-Identifier: MIT
[ 2, 15069, 33448, 20700, 30263, 1279, 41, 11401, 1199, 10735, 31, 14816, 13, 785, 29, 198, 2, 198, 2, 30628, 55, 12, 34156, 12, 33234, 7483, 25, 17168, 628 ]
2.965517
29
from django.db import models from django.contrib.auth.models import User from ckeditor_uploader.fields import RichTextUploadingField # Create your models here.
[ 6738, 42625, 14208, 13, 9945, 1330, 4981, 198, 6738, 42625, 14208, 13, 3642, 822, 13, 18439, 13, 27530, 1330, 11787, 198, 6738, 269, 9091, 2072, 62, 25850, 263, 13, 25747, 1330, 3998, 8206, 41592, 278, 15878, 198, 198, 2, 13610, 534, 4981, 994, 13, 198, 220, 220, 220, 220 ]
3.367347
49
import os from django import forms from django.utils.translation import gettext_lazy as _ from wagtail.admin.widgets import AdminPageChooser from wagtail.contrib.redirects.models import Redirect from wagtail.models import Site
[ 11748, 28686, 198, 198, 6738, 42625, 14208, 1330, 5107, 198, 6738, 42625, 14208, 13, 26791, 13, 41519, 1330, 651, 5239, 62, 75, 12582, 355, 4808, 198, 198, 6738, 266, 363, 13199, 13, 28482, 13, 28029, 11407, 1330, 32053, 9876, 22164, 13416, 198, 6738, 266, 363, 13199, 13, 3642, 822, 13, 445, 1060, 82, 13, 27530, 1330, 2297, 1060, 198, 6738, 266, 363, 13199, 13, 27530, 1330, 14413, 628, 628 ]
3.362319
69
import numpy as np import cv2 import copy from Tkinter import * from PIL import Image from PIL import ImageTk import tkFileDialog root = Tk() panelA = None panelB = None img = None img2 = None img3 = None ConvolutionLabel = Label(root, text="Convolute").grid(row=0,column=0) Conv00Entry = Entry(root, bd =5) Conv01Entry = Entry(root, bd =5) Conv02Entry = Entry(root, bd =5) Conv10Entry = Entry(root, bd =5) Conv11Entry = Entry(root, bd =5) Conv12Entry = Entry(root, bd =5) Conv20Entry = Entry(root, bd =5) Conv21Entry = Entry(root, bd =5) Conv22Entry = Entry(root, bd =5) Conv00Entry.grid(row=1,column=0) Conv01Entry.grid(row=1,column=1) Conv02Entry.grid(row=1,column=2) Conv10Entry.grid(row=2,column=0) Conv11Entry.grid(row=2,column=1) Conv12Entry.grid(row=2,column=2) Conv20Entry.grid(row=3,column=0) Conv21Entry.grid(row=3,column=1) Conv22Entry.grid(row=3,column=2) brightnessLabel = Label(root, text="Brightness").grid(row=4,column=0) brightnessEntry = Entry(root, bd =5) brightnessEntry.grid(row=4,column=1) contrastLabel = Label(root, text="Contrast").grid(row=5,column=0) contrastEntry = Entry(root, bd =5) contrastEntry.grid(row=5,column=1) zoomOutLabel = Label(root, text="ZoomOut").grid(row=6,column=0) zoomOutXEntry = Entry(root, bd =5) zoomOutXEntry.grid(row=6,column=1) zoomOutYEntry = Entry(root, bd =5) zoomOutYEntry.grid(row=6,column=2) selectImageBtn = Button(root, text="Select an image", command=selectImage).grid(row=0,column=3) horizontalBtn = Button(root, text ="Flip Horizontally", command = flipHorizontal).grid(row=1,column=3) grayscaleBtn = Button(root, text ="Grayscale", command = grayscale).grid(row=2,column=3) histogramBtn = Button(root, text ="Generate Histogram", command = generateHistogram).grid(row=3,column=3) brightnessBtn = Button(root, text ="Change Brightness", command = changeBrightness).grid(row=4,column=3) contrastBtn = Button(root, text ="Change Contrast", command = changeContrast).grid(row=5,column=3) negativeBtn = Button(root, text ="Negative", command = negative).grid(row=6,column=3) equalizeBtn = Button(root, text ="Equalize", command = equalize).grid(row=7,column=3) zoomOutBtn = Button(root, text ="ZoomOut", command = zoomOut).grid(row=8,column=3) zoomInBtn = Button(root, text ="ZoomIn", command = zoomIn).grid(row=9,column=3) rotateClockWiseBtn = Button(root, text ="rotateClockWise", command = rotateClockWise).grid(row=10,column=3) rotateAntiClockWiseBtn = Button(root, text ="rotateAntiClockWise", command = rotateAntiClockWise).grid(row=11,column=3) convoluteBtn = Button(root, text ="Convolute", command = convolute).grid(row=12,column=3) root.mainloop()
[ 11748, 299, 32152, 355, 45941, 198, 11748, 269, 85, 17, 198, 11748, 4866, 198, 6738, 309, 74, 3849, 1330, 1635, 198, 6738, 350, 4146, 1330, 7412, 198, 6738, 350, 4146, 1330, 7412, 51, 74, 198, 11748, 256, 74, 8979, 44204, 628, 198, 15763, 796, 309, 74, 3419, 198, 35330, 32, 796, 6045, 198, 35330, 33, 796, 6045, 198, 9600, 796, 6045, 198, 9600, 17, 796, 6045, 198, 9600, 18, 796, 6045, 198, 198, 3103, 85, 2122, 33986, 796, 36052, 7, 15763, 11, 2420, 2625, 3103, 85, 3552, 11074, 25928, 7, 808, 28, 15, 11, 28665, 28, 15, 8, 198, 3103, 85, 405, 30150, 796, 21617, 7, 15763, 11, 275, 67, 796, 20, 8, 198, 3103, 85, 486, 30150, 796, 21617, 7, 15763, 11, 275, 67, 796, 20, 8, 198, 3103, 85, 2999, 30150, 796, 21617, 7, 15763, 11, 275, 67, 796, 20, 8, 198, 3103, 85, 940, 30150, 796, 21617, 7, 15763, 11, 275, 67, 796, 20, 8, 198, 3103, 85, 1157, 30150, 796, 21617, 7, 15763, 11, 275, 67, 796, 20, 8, 198, 3103, 85, 1065, 30150, 796, 21617, 7, 15763, 11, 275, 67, 796, 20, 8, 198, 3103, 85, 1238, 30150, 796, 21617, 7, 15763, 11, 275, 67, 796, 20, 8, 198, 3103, 85, 2481, 30150, 796, 21617, 7, 15763, 11, 275, 67, 796, 20, 8, 198, 3103, 85, 1828, 30150, 796, 21617, 7, 15763, 11, 275, 67, 796, 20, 8, 198, 3103, 85, 405, 30150, 13, 25928, 7, 808, 28, 16, 11, 28665, 28, 15, 8, 198, 3103, 85, 486, 30150, 13, 25928, 7, 808, 28, 16, 11, 28665, 28, 16, 8, 198, 3103, 85, 2999, 30150, 13, 25928, 7, 808, 28, 16, 11, 28665, 28, 17, 8, 198, 3103, 85, 940, 30150, 13, 25928, 7, 808, 28, 17, 11, 28665, 28, 15, 8, 198, 3103, 85, 1157, 30150, 13, 25928, 7, 808, 28, 17, 11, 28665, 28, 16, 8, 198, 3103, 85, 1065, 30150, 13, 25928, 7, 808, 28, 17, 11, 28665, 28, 17, 8, 198, 3103, 85, 1238, 30150, 13, 25928, 7, 808, 28, 18, 11, 28665, 28, 15, 8, 198, 3103, 85, 2481, 30150, 13, 25928, 7, 808, 28, 18, 11, 28665, 28, 16, 8, 198, 3103, 85, 1828, 30150, 13, 25928, 7, 808, 28, 18, 11, 28665, 28, 17, 8, 198, 198, 29199, 1108, 33986, 796, 36052, 7, 15763, 11, 2420, 2625, 41267, 1108, 11074, 25928, 7, 808, 28, 19, 11, 28665, 28, 15, 8, 198, 29199, 1108, 30150, 796, 21617, 7, 15763, 11, 275, 67, 796, 20, 8, 198, 29199, 1108, 30150, 13, 25928, 7, 808, 28, 19, 11, 28665, 28, 16, 8, 198, 3642, 5685, 33986, 796, 36052, 7, 15763, 11, 2420, 2625, 4264, 5685, 11074, 25928, 7, 808, 28, 20, 11, 28665, 28, 15, 8, 198, 3642, 5685, 30150, 796, 21617, 7, 15763, 11, 275, 67, 796, 20, 8, 198, 3642, 5685, 30150, 13, 25928, 7, 808, 28, 20, 11, 28665, 28, 16, 8, 198, 198, 89, 4207, 7975, 33986, 796, 36052, 7, 15763, 11, 2420, 2625, 57, 4207, 7975, 11074, 25928, 7, 808, 28, 21, 11, 28665, 28, 15, 8, 198, 89, 4207, 7975, 55, 30150, 796, 21617, 7, 15763, 11, 275, 67, 796, 20, 8, 198, 89, 4207, 7975, 55, 30150, 13, 25928, 7, 808, 28, 21, 11, 28665, 28, 16, 8, 198, 89, 4207, 7975, 56, 30150, 796, 21617, 7, 15763, 11, 275, 67, 796, 20, 8, 198, 89, 4207, 7975, 56, 30150, 13, 25928, 7, 808, 28, 21, 11, 28665, 28, 17, 8, 198, 198, 19738, 5159, 33, 34106, 796, 20969, 7, 15763, 11, 2420, 2625, 17563, 281, 2939, 1600, 3141, 28, 19738, 5159, 737, 25928, 7, 808, 28, 15, 11, 28665, 28, 18, 8, 198, 17899, 38342, 33, 34106, 796, 20969, 7, 15763, 11, 2420, 796, 1, 7414, 541, 6075, 12071, 453, 1600, 3141, 796, 14283, 27991, 38342, 737, 25928, 7, 808, 28, 16, 11, 28665, 28, 18, 8, 198, 2164, 592, 38765, 33, 34106, 796, 20969, 7, 15763, 11, 2420, 796, 1, 8642, 592, 38765, 1600, 3141, 796, 1036, 592, 38765, 737, 25928, 7, 808, 28, 17, 11, 28665, 28, 18, 8, 198, 10034, 21857, 33, 34106, 796, 20969, 7, 15763, 11, 2420, 796, 1, 8645, 378, 5590, 21857, 1600, 3141, 796, 7716, 13749, 21857, 737, 25928, 7, 808, 28, 18, 11, 28665, 28, 18, 8, 198, 29199, 1108, 33, 34106, 796, 20969, 7, 15763, 11, 2420, 796, 1, 19400, 17558, 1108, 1600, 3141, 796, 1487, 41267, 1108, 737, 25928, 7, 808, 28, 19, 11, 28665, 28, 18, 8, 198, 3642, 5685, 33, 34106, 796, 20969, 7, 15763, 11, 2420, 796, 1, 19400, 47011, 1600, 3141, 796, 1487, 4264, 5685, 737, 25928, 7, 808, 28, 20, 11, 28665, 28, 18, 8, 198, 31591, 33, 34106, 796, 20969, 7, 15763, 11, 2420, 796, 1, 32863, 876, 1600, 3141, 796, 4633, 737, 25928, 7, 808, 28, 21, 11, 28665, 28, 18, 8, 198, 40496, 1096, 33, 34106, 796, 20969, 7, 15763, 11, 2420, 796, 1, 36, 13255, 1096, 1600, 3141, 796, 4961, 1096, 737, 25928, 7, 808, 28, 22, 11, 28665, 28, 18, 8, 198, 89, 4207, 7975, 33, 34106, 796, 20969, 7, 15763, 11, 2420, 796, 1, 57, 4207, 7975, 1600, 3141, 796, 19792, 7975, 737, 25928, 7, 808, 28, 23, 11, 28665, 28, 18, 8, 198, 89, 4207, 818, 33, 34106, 796, 20969, 7, 15763, 11, 2420, 796, 1, 57, 4207, 818, 1600, 3141, 796, 19792, 818, 737, 25928, 7, 808, 28, 24, 11, 28665, 28, 18, 8, 198, 10599, 378, 44758, 54, 786, 33, 34106, 796, 20969, 7, 15763, 11, 2420, 796, 1, 10599, 378, 44758, 54, 786, 1600, 3141, 796, 23064, 44758, 54, 786, 737, 25928, 7, 808, 28, 940, 11, 28665, 28, 18, 8, 198, 10599, 378, 28795, 44758, 54, 786, 33, 34106, 796, 20969, 7, 15763, 11, 2420, 796, 1, 10599, 378, 28795, 44758, 54, 786, 1600, 3141, 796, 23064, 28795, 44758, 54, 786, 737, 25928, 7, 808, 28, 1157, 11, 28665, 28, 18, 8, 198, 42946, 3552, 33, 34106, 796, 20969, 7, 15763, 11, 2420, 796, 1, 3103, 85, 3552, 1600, 3141, 796, 3063, 3552, 737, 25928, 7, 808, 28, 1065, 11, 28665, 28, 18, 8, 198, 198, 15763, 13, 12417, 26268, 3419 ]
2.564453
1,024
#------------------------------------------------------------------------------- # Post processing (color management) related Mari scripts # coding: utf-8 # Copyright (c) 2011 The Foundry Visionmongers Ltd. All Rights Reserved. #------------------------------------------------------------------------------- import mari, time, PythonQt, os, math QtGui = PythonQt.QtGui QtCore = PythonQt.QtCore ocio = mari.utils.ocio ############################################################################################## GAIN_GROUP_MAX_WIDTH = 312 FSTOP_MAX_WIDTH = 50 EXPOSURE_MAX_WIDTH = 102 GAIN_MAX_WIDTH = 80 GAMMA_MAX_WIDTH = 200 TOOLBAR_SPACING = 3 toolbar = None #----------------------------------------------------------------------------------------- #----------------------------------------------------------------------------------------- #----------------------------------------------------------------------------------------- #----------------------------------------------------------------------------------------- #----------------------------------------------------------------------------------------- #----------------------------------------------------------------------------------------- #----------------------------------------------------------------------------------------- #----------------------------------------------------------------------------------------- #----------------------------------------------------------------------------------------- #----------------------------------------------------------------------------------------- #----------------------------------------------------------------------------------------- #----------------------------------------------------------------------------------------- #----------------------------------------------------------------------------------------- #----------------------------------------------------------------------------------------- #----------------------------------------------------------------------------------------- #----------------------------------------------------------------------------------------- #----------------------------------------------------------------------------------------- # Widgets: #----------------------------------------------------------------------------------------- #----------------------------------------------------------------------------------------- #----------------------------------------------------------------------------------------- #----------------------------------------------------------------------------------------- #----------------------------------------------------------------------------------------- #----------------------------------------------------------------------------------------- #----------------------------------------------------------------------------------------- #----------------------------------------------------------------------------------------- #----------------------------------------------------------------------------------------- #----------------------------------------------------------------------------------------- #----------------------------------------------------------------------------------------- #----------------------------------------------------------------------------------------- #----------------------------------------------------------------------------------------- #----------------------------------------------------------------------------------------- #----------------------------------------------------------------------------------------- #----------------------------------------------------------------------------------------- #----------------------------------------------------------------------------------------- #----------------------------------------------------------------------------------------- #----------------------------------------------------------------------------------------- # Metadata: #----------------------------------------------------------------------------------------- #----------------------------------------------------------------------------------------- #----------------------------------------------------------------------------------------- #----------------------------------------------------------------------------------------- # External Connections: #----------------------------------------------------------------------------------------- #----------------------------------------------------------------------------------------- #----------------------------------------------------------------------------------------- #----------------------------------------------------------------------------------------- #----------------------------------------------------------------------------------------- #----------------------------------------------------------------------------------------- #----------------------------------------------------------------------------------------- # Filter: #----------------------------------------------------------------------------------------- #----------------------------------------------------------------------------------------- #----------------------------------------------------------------------------------------- # Debugging: #----------------------------------------------------------------------------------------- ############################################################################################## # The following functions CAN'T be part of the toolbar class as a potential bug in PythonQt # causes the disconnect function to fail #----------------------------------------------------------------------------------------- ############################################################################################## if mari.app.isRunning(): if not hasattr(mari.gl_render, 'createPostFilterCollection'): ocio.printMessage(ocio.MessageType.ERROR, 'This version of Mari does not support the mari.gl_render.createPostFilterCollection API') else: if ocio.config_default is not None: toolbar = OcioToolBar() else: # Destroy the OCIO post filter collection if present to prevent the user trying to use it. filter_collection = mari.gl_render.findPostFilterCollection('Color Space') if filter_collection is not None: mari.gl_render.deletePostFilterCollection(filter_collection) # Destroy the toolbar to prevent the user trying to use it. mari.app.deleteToolBar('Color Space')
[ 2, 10097, 24305, 198, 2, 2947, 7587, 357, 8043, 4542, 8, 3519, 29423, 14750, 198, 2, 19617, 25, 3384, 69, 12, 23, 198, 2, 15069, 357, 66, 8, 2813, 383, 4062, 563, 19009, 31059, 364, 12052, 13, 220, 1439, 6923, 33876, 13, 198, 2, 10097, 24305, 198, 198, 11748, 1667, 72, 11, 640, 11, 11361, 48, 83, 11, 28686, 11, 10688, 198, 48, 83, 8205, 72, 220, 796, 11361, 48, 83, 13, 48, 83, 8205, 72, 198, 48, 83, 14055, 796, 11361, 48, 83, 13, 48, 83, 14055, 198, 420, 952, 220, 220, 796, 1667, 72, 13, 26791, 13, 420, 952, 198, 198, 29113, 29113, 14468, 7804, 4242, 2235, 198, 198, 9273, 1268, 62, 46846, 62, 22921, 62, 54, 2389, 4221, 796, 34465, 198, 37, 2257, 3185, 62, 22921, 62, 54, 2389, 4221, 220, 220, 220, 220, 220, 796, 2026, 198, 6369, 37997, 11335, 62, 22921, 62, 54, 2389, 4221, 220, 220, 796, 15143, 198, 9273, 1268, 62, 22921, 62, 54, 2389, 4221, 220, 220, 220, 220, 220, 220, 796, 4019, 198, 38, 2390, 5673, 62, 22921, 62, 54, 2389, 4221, 220, 220, 220, 220, 220, 796, 939, 198, 10468, 3535, 33, 1503, 62, 4303, 2246, 2751, 220, 220, 220, 220, 220, 796, 513, 198, 198, 25981, 5657, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 796, 6045, 628, 220, 220, 220, 1303, 10097, 22369, 12, 628, 220, 220, 220, 1303, 10097, 22369, 12, 628, 220, 220, 220, 1303, 10097, 22369, 12, 628, 220, 220, 220, 1303, 10097, 22369, 12, 628, 220, 220, 220, 1303, 10097, 22369, 12, 628, 220, 220, 220, 1303, 10097, 22369, 12, 628, 220, 220, 220, 1303, 10097, 22369, 12, 628, 220, 220, 220, 1303, 10097, 22369, 12, 628, 220, 220, 220, 1303, 10097, 22369, 12, 628, 220, 220, 220, 1303, 10097, 22369, 12, 628, 220, 220, 220, 1303, 10097, 22369, 12, 628, 220, 220, 220, 1303, 10097, 22369, 12, 628, 220, 220, 220, 1303, 10097, 22369, 12, 628, 220, 220, 220, 1303, 10097, 22369, 12, 628, 220, 220, 220, 1303, 10097, 22369, 12, 628, 220, 220, 220, 1303, 10097, 22369, 12, 628, 220, 220, 220, 1303, 10097, 22369, 12, 198, 220, 220, 220, 1303, 24801, 11407, 25, 198, 220, 220, 220, 1303, 10097, 22369, 12, 628, 220, 220, 220, 1303, 10097, 22369, 12, 628, 220, 220, 220, 1303, 10097, 22369, 12, 628, 220, 220, 220, 1303, 10097, 22369, 12, 628, 220, 220, 220, 1303, 10097, 22369, 12, 628, 220, 220, 220, 1303, 10097, 22369, 12, 628, 220, 220, 220, 1303, 10097, 22369, 12, 628, 220, 220, 220, 1303, 10097, 22369, 12, 628, 220, 220, 220, 1303, 10097, 22369, 12, 628, 220, 220, 220, 1303, 10097, 22369, 12, 628, 220, 220, 220, 1303, 10097, 22369, 12, 628, 220, 220, 220, 1303, 10097, 22369, 12, 628, 220, 220, 220, 1303, 10097, 22369, 12, 628, 220, 220, 220, 1303, 10097, 22369, 12, 628, 220, 220, 220, 1303, 10097, 22369, 12, 628, 220, 220, 220, 1303, 10097, 22369, 12, 628, 220, 220, 220, 1303, 10097, 22369, 12, 628, 220, 220, 220, 1303, 10097, 22369, 12, 628, 220, 220, 220, 1303, 10097, 22369, 12, 198, 220, 220, 220, 1303, 3395, 14706, 25, 198, 220, 220, 220, 1303, 10097, 22369, 12, 628, 220, 220, 220, 1303, 10097, 22369, 12, 628, 220, 220, 220, 1303, 10097, 22369, 12, 628, 198, 220, 220, 220, 1303, 10097, 22369, 12, 198, 220, 220, 220, 1303, 34579, 8113, 507, 25, 198, 220, 220, 220, 1303, 10097, 22369, 12, 628, 220, 220, 220, 1303, 10097, 22369, 12, 628, 220, 220, 220, 1303, 10097, 22369, 12, 628, 220, 220, 220, 1303, 10097, 22369, 12, 628, 220, 220, 220, 1303, 10097, 22369, 12, 628, 220, 220, 220, 1303, 10097, 22369, 12, 628, 220, 220, 220, 1303, 10097, 22369, 12, 198, 220, 220, 220, 1303, 25853, 25, 198, 220, 220, 220, 1303, 10097, 22369, 12, 628, 220, 220, 220, 1303, 10097, 22369, 12, 628, 220, 220, 220, 1303, 10097, 22369, 12, 198, 220, 220, 220, 1303, 31687, 2667, 25, 198, 220, 220, 220, 1303, 10097, 22369, 12, 198, 198, 29113, 29113, 14468, 7804, 4242, 2235, 198, 2, 383, 1708, 5499, 15628, 6, 51, 307, 636, 286, 262, 50149, 1398, 355, 257, 2785, 5434, 287, 11361, 48, 83, 198, 2, 5640, 262, 22837, 2163, 284, 2038, 198, 198, 2, 10097, 22369, 12, 198, 198, 29113, 29113, 14468, 7804, 4242, 2235, 198, 198, 361, 1667, 72, 13, 1324, 13, 271, 28768, 33529, 198, 220, 220, 220, 611, 407, 468, 35226, 7, 76, 2743, 13, 4743, 62, 13287, 11, 705, 17953, 6307, 22417, 36307, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 267, 66, 952, 13, 4798, 12837, 7, 420, 952, 13, 12837, 6030, 13, 24908, 11, 705, 1212, 2196, 286, 29423, 857, 407, 1104, 262, 1667, 72, 13, 4743, 62, 13287, 13, 17953, 6307, 22417, 36307, 7824, 11537, 628, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 267, 66, 952, 13, 11250, 62, 12286, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 50149, 796, 440, 66, 952, 25391, 10374, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 19448, 262, 24775, 9399, 1281, 8106, 4947, 611, 1944, 284, 2948, 262, 2836, 2111, 284, 779, 340, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8106, 62, 43681, 796, 1667, 72, 13, 4743, 62, 13287, 13, 19796, 6307, 22417, 36307, 10786, 10258, 4687, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 8106, 62, 43681, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1667, 72, 13, 4743, 62, 13287, 13, 33678, 6307, 22417, 36307, 7, 24455, 62, 43681, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 19448, 262, 50149, 284, 2948, 262, 2836, 2111, 284, 779, 340, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1667, 72, 13, 1324, 13, 33678, 25391, 10374, 10786, 10258, 4687, 11537, 198 ]
6.726295
1,023
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import os import shutil from pathlib import Path from libcst.testing.utils import UnitTest from fixit.common.config import ( CACHE as CONFIG_CACHE, get_lint_config, get_rules_for_path, ) from fixit.common.utils import ( dedent_with_lstrip, DuplicateLintRuleNameError, find_and_import_rule, import_rule_from_package, LintRuleNotFoundError, ) DUMMY_PACKAGE: str = "fixit.common.tests.test_imports_dummy_package" DUMMY_PACKAGE_PATH: Path = Path(__file__).parent / "test_imports_dummy_package" DUPLICATE_DUMMY_PATH: Path = ( Path(__file__).parent / "test_imports_dummy_package_with_duplicate_rule" ) # Using dummy config file, test whether the rule import helpers work as expected.
[ 2, 15069, 357, 66, 8, 3203, 11, 3457, 13, 290, 663, 29116, 13, 198, 2, 198, 2, 770, 2723, 2438, 318, 11971, 739, 262, 17168, 5964, 1043, 287, 262, 198, 2, 38559, 24290, 2393, 287, 262, 6808, 8619, 286, 428, 2723, 5509, 13, 198, 198, 11748, 28686, 198, 11748, 4423, 346, 198, 6738, 3108, 8019, 1330, 10644, 198, 198, 6738, 9195, 66, 301, 13, 33407, 13, 26791, 1330, 11801, 14402, 198, 198, 6738, 4259, 270, 13, 11321, 13, 11250, 1330, 357, 198, 220, 220, 220, 327, 2246, 13909, 355, 25626, 62, 34, 2246, 13909, 11, 198, 220, 220, 220, 651, 62, 75, 600, 62, 11250, 11, 198, 220, 220, 220, 651, 62, 38785, 62, 1640, 62, 6978, 11, 198, 8, 198, 6738, 4259, 270, 13, 11321, 13, 26791, 1330, 357, 198, 220, 220, 220, 4648, 298, 62, 4480, 62, 75, 36311, 11, 198, 220, 220, 220, 49821, 5344, 43, 600, 31929, 5376, 12331, 11, 198, 220, 220, 220, 1064, 62, 392, 62, 11748, 62, 25135, 11, 198, 220, 220, 220, 1330, 62, 25135, 62, 6738, 62, 26495, 11, 198, 220, 220, 220, 406, 600, 31929, 3673, 21077, 12331, 11, 198, 8, 628, 198, 35, 5883, 26708, 62, 47, 8120, 11879, 25, 965, 796, 366, 13049, 270, 13, 11321, 13, 41989, 13, 9288, 62, 320, 3742, 62, 67, 13513, 62, 26495, 1, 198, 35, 5883, 26708, 62, 47, 8120, 11879, 62, 34219, 25, 10644, 796, 10644, 7, 834, 7753, 834, 737, 8000, 1220, 366, 9288, 62, 320, 3742, 62, 67, 13513, 62, 26495, 1, 198, 198, 35, 52, 31484, 6158, 62, 35, 5883, 26708, 62, 34219, 25, 10644, 796, 357, 198, 220, 220, 220, 10644, 7, 834, 7753, 834, 737, 8000, 1220, 366, 9288, 62, 320, 3742, 62, 67, 13513, 62, 26495, 62, 4480, 62, 646, 489, 5344, 62, 25135, 1, 198, 8, 198, 198, 2, 8554, 31548, 4566, 2393, 11, 1332, 1771, 262, 3896, 1330, 49385, 670, 355, 2938, 13, 628 ]
2.800623
321
""" Announce addresses as they are received from other hosts """ import Queue import state from helper_random import randomshuffle from network.assemble import assemble_addr from network.connectionpool import BMConnectionPool from queues import addrQueue from threads import StoppableThread class AddrThread(StoppableThread): """(Node) address broadcasting thread""" name = "AddrBroadcaster"
[ 37811, 198, 18858, 8652, 9405, 355, 484, 389, 2722, 422, 584, 11453, 198, 37811, 198, 11748, 4670, 518, 198, 198, 11748, 1181, 198, 6738, 31904, 62, 25120, 1330, 4738, 1477, 18137, 198, 6738, 3127, 13, 292, 15140, 1330, 25432, 62, 29851, 198, 6738, 3127, 13, 38659, 7742, 1330, 29944, 32048, 27201, 198, 6738, 43359, 1330, 37817, 34991, 198, 6738, 14390, 1330, 520, 35628, 16818, 628, 198, 4871, 3060, 81, 16818, 7, 1273, 35628, 16818, 2599, 198, 220, 220, 220, 13538, 18109, 19667, 8, 2209, 22978, 4704, 37811, 198, 220, 220, 220, 1438, 796, 366, 4550, 81, 30507, 17970, 1, 198 ]
4.03
100
print("branches are fun")
[ 4798, 7203, 1671, 12140, 389, 1257, 4943 ]
3.571429
7
from django import template register = template.Library() @register.filter(name='addcss')
[ 6738, 42625, 14208, 1330, 11055, 198, 198, 30238, 796, 11055, 13, 23377, 3419, 198, 198, 31, 30238, 13, 24455, 7, 3672, 11639, 2860, 25471, 11537, 628, 628 ]
3.518519
27
# -*- coding: utf-8 -*- vars2d = [ '2m_temperature', '10m_u_component_of_wind', '10m_v_component_of_wind', 'total_cloud_cover', 'total_precipitation', 'toa_incident_solar_radiation', 'temperature_850hPa', ] vars3d = [ 'geopotential', 'temperature', 'specific_humidity', 'relative_humidity', 'u_component_of_wind', 'v_component_of_wind', 'vorticity', 'potential_vorticity', ] codes = { 'geopotential': 'z', 'temperature': 't', 'temperature_850hPa': 't', 'specific_humidity': 'q', 'relative_humidity': 'r', 'u_component_of_wind': 'u', 'v_component_of_wind': 'v', 'vorticity': 'vo', 'potential_vorticity': 'pv', '2m_temperature': 't2m', '10m_u_component_of_wind': 'u10', '10m_v_component_of_wind': 'v10', 'total_cloud_cover': 'tcc', 'total_precipitation': 'tp', 'toa_incident_solar_radiation': 'tisr', } code2var = { 'z': 'geopotential', 't': 'temperature', 'q': 'specific_humidity', 'r': 'relative_humidity', 'u': 'u_component_of_wind', 'v': 'v_component_of_wind', 'vo': 'vorticity', 'pv': 'potential_vorticity', 't2m': '2m_temperature', 'u10': '10m_u_component_of_wind', 'v10': '10m_v_component_of_wind', 'tcc': 'total_cloud_cover', 'tp': 'total_precipitation', 'tisr': 'toa_incident_solar_radiation', }
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 198, 85, 945, 17, 67, 796, 685, 198, 220, 220, 220, 705, 17, 76, 62, 11498, 21069, 3256, 198, 220, 220, 220, 705, 940, 76, 62, 84, 62, 42895, 62, 1659, 62, 7972, 3256, 705, 940, 76, 62, 85, 62, 42895, 62, 1659, 62, 7972, 3256, 198, 220, 220, 220, 705, 23350, 62, 17721, 62, 9631, 3256, 705, 23350, 62, 3866, 66, 541, 3780, 3256, 198, 220, 220, 220, 705, 1462, 64, 62, 1939, 738, 62, 82, 6192, 62, 6335, 3920, 3256, 198, 220, 220, 220, 705, 11498, 21069, 62, 25764, 71, 28875, 3256, 198, 60, 198, 198, 85, 945, 18, 67, 796, 685, 198, 220, 220, 220, 705, 469, 43372, 1843, 3256, 705, 11498, 21069, 3256, 198, 220, 220, 220, 705, 11423, 62, 17047, 17995, 3256, 705, 43762, 62, 17047, 17995, 3256, 198, 220, 220, 220, 705, 84, 62, 42895, 62, 1659, 62, 7972, 3256, 705, 85, 62, 42895, 62, 1659, 62, 7972, 3256, 198, 220, 220, 220, 705, 85, 419, 8467, 3256, 705, 13059, 1843, 62, 85, 419, 8467, 3256, 198, 60, 198, 198, 40148, 796, 1391, 198, 220, 220, 220, 705, 469, 43372, 1843, 10354, 705, 89, 3256, 198, 220, 220, 220, 705, 11498, 21069, 10354, 705, 83, 3256, 198, 220, 220, 220, 705, 11498, 21069, 62, 25764, 71, 28875, 10354, 705, 83, 3256, 198, 220, 220, 220, 705, 11423, 62, 17047, 17995, 10354, 705, 80, 3256, 198, 220, 220, 220, 705, 43762, 62, 17047, 17995, 10354, 705, 81, 3256, 198, 220, 220, 220, 705, 84, 62, 42895, 62, 1659, 62, 7972, 10354, 705, 84, 3256, 198, 220, 220, 220, 705, 85, 62, 42895, 62, 1659, 62, 7972, 10354, 705, 85, 3256, 198, 220, 220, 220, 705, 85, 419, 8467, 10354, 705, 13038, 3256, 198, 220, 220, 220, 705, 13059, 1843, 62, 85, 419, 8467, 10354, 705, 79, 85, 3256, 198, 220, 220, 220, 705, 17, 76, 62, 11498, 21069, 10354, 705, 83, 17, 76, 3256, 198, 220, 220, 220, 705, 940, 76, 62, 84, 62, 42895, 62, 1659, 62, 7972, 10354, 705, 84, 940, 3256, 198, 220, 220, 220, 705, 940, 76, 62, 85, 62, 42895, 62, 1659, 62, 7972, 10354, 705, 85, 940, 3256, 198, 220, 220, 220, 705, 23350, 62, 17721, 62, 9631, 10354, 705, 83, 535, 3256, 198, 220, 220, 220, 705, 23350, 62, 3866, 66, 541, 3780, 10354, 705, 34788, 3256, 198, 220, 220, 220, 705, 1462, 64, 62, 1939, 738, 62, 82, 6192, 62, 6335, 3920, 10354, 705, 48010, 81, 3256, 198, 92, 198, 198, 8189, 17, 7785, 796, 1391, 198, 220, 220, 220, 705, 89, 10354, 705, 469, 43372, 1843, 3256, 198, 220, 220, 220, 705, 83, 10354, 705, 11498, 21069, 3256, 198, 220, 220, 220, 705, 80, 10354, 705, 11423, 62, 17047, 17995, 3256, 198, 220, 220, 220, 705, 81, 10354, 705, 43762, 62, 17047, 17995, 3256, 198, 220, 220, 220, 705, 84, 10354, 705, 84, 62, 42895, 62, 1659, 62, 7972, 3256, 198, 220, 220, 220, 705, 85, 10354, 705, 85, 62, 42895, 62, 1659, 62, 7972, 3256, 198, 220, 220, 220, 705, 13038, 10354, 705, 85, 419, 8467, 3256, 198, 220, 220, 220, 705, 79, 85, 10354, 705, 13059, 1843, 62, 85, 419, 8467, 3256, 198, 220, 220, 220, 705, 83, 17, 76, 10354, 705, 17, 76, 62, 11498, 21069, 3256, 198, 220, 220, 220, 705, 84, 940, 10354, 705, 940, 76, 62, 84, 62, 42895, 62, 1659, 62, 7972, 3256, 198, 220, 220, 220, 705, 85, 940, 10354, 705, 940, 76, 62, 85, 62, 42895, 62, 1659, 62, 7972, 3256, 198, 220, 220, 220, 705, 83, 535, 10354, 705, 23350, 62, 17721, 62, 9631, 3256, 198, 220, 220, 220, 705, 34788, 10354, 705, 23350, 62, 3866, 66, 541, 3780, 3256, 198, 220, 220, 220, 705, 48010, 81, 10354, 705, 1462, 64, 62, 1939, 738, 62, 82, 6192, 62, 6335, 3920, 3256, 198, 92, 628 ]
2.08589
652
# -*- coding: utf-8 -*- """ StepPy :copyright: (c) 2016-2017 by Yann Gravrand. :license: BSD, see LICENSE for more details. """ from collections import OrderedDict
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 37811, 198, 220, 220, 220, 5012, 20519, 198, 220, 220, 220, 1058, 22163, 4766, 25, 357, 66, 8, 1584, 12, 5539, 416, 575, 1236, 32599, 25192, 13, 198, 220, 220, 220, 1058, 43085, 25, 347, 10305, 11, 766, 38559, 24290, 329, 517, 3307, 13, 198, 37811, 198, 198, 6738, 17268, 1330, 14230, 1068, 35, 713, 628 ]
2.542857
70