ytzi/the-stack-dedup-python-filtered-docstrings-gpt2 · Datasets at Fast360
{
// 获取包含Hugging Face文本的span元素
const spans = link.querySelectorAll('span.whitespace-nowrap, span.hidden.whitespace-nowrap');
spans.forEach(span => {
if (span.textContent && span.textContent.trim().match(/Hugging\s*Face/i)) {
span.textContent = 'AI快站';
}
});
});
// 替换logo图片的alt属性
document.querySelectorAll('img[alt*="Hugging"], img[alt*="Face"]').forEach(img => {
if (img.alt.match(/Hugging\s*Face/i)) {
img.alt = 'AI快站 logo';
}
});
}
// 替换导航栏中的链接
function replaceNavigationLinks() {
// 已替换标记,防止重复运行
if (window._navLinksReplaced) {
return;
}
// 已经替换过的链接集合,防止重复替换
const replacedLinks = new Set();
// 只在导航栏区域查找和替换链接
const headerArea = document.querySelector('header') || document.querySelector('nav');
if (!headerArea) {
return;
}
// 在导航区域内查找链接
const navLinks = headerArea.querySelectorAll('a');
navLinks.forEach(link => {
// 如果已经替换过,跳过
if (replacedLinks.has(link)) return;
const linkText = link.textContent.trim();
const linkHref = link.getAttribute('href') || '';
// 替换Spaces链接 - 仅替换一次
if (
(linkHref.includes('/spaces') || linkHref === '/spaces' ||
linkText === 'Spaces' || linkText.match(/^s*Spacess*$/i)) &&
linkText !== 'PDF TO Markdown' &&
linkText !== 'PDF TO Markdown'
) {
link.textContent = 'PDF TO Markdown';
link.href = 'https://fast360.xyz';
link.setAttribute('target', '_blank');
link.setAttribute('rel', 'noopener noreferrer');
replacedLinks.add(link);
}
// 删除Posts链接
else if (
(linkHref.includes('/posts') || linkHref === '/posts' ||
linkText === 'Posts' || linkText.match(/^s*Postss*$/i))
) {
if (link.parentNode) {
link.parentNode.removeChild(link);
}
replacedLinks.add(link);
}
// 替换Docs链接 - 仅替换一次
else if (
(linkHref.includes('/docs') || linkHref === '/docs' ||
linkText === 'Docs' || linkText.match(/^s*Docss*$/i)) &&
linkText !== 'Voice Cloning'
) {
link.textContent = 'Voice Cloning';
link.href = 'https://vibevoice.info/';
replacedLinks.add(link);
}
// 删除Enterprise链接
else if (
(linkHref.includes('/enterprise') || linkHref === '/enterprise' ||
linkText === 'Enterprise' || linkText.match(/^s*Enterprises*$/i))
) {
if (link.parentNode) {
link.parentNode.removeChild(link);
}
replacedLinks.add(link);
}
});
// 查找可能嵌套的Spaces和Posts文本
const textNodes = [];
function findTextNodes(element) {
if (element.nodeType === Node.TEXT_NODE) {
const text = element.textContent.trim();
if (text === 'Spaces' || text === 'Posts' || text === 'Enterprise') {
textNodes.push(element);
}
} else {
for (const child of element.childNodes) {
findTextNodes(child);
}
}
}
// 只在导航区域内查找文本节点
findTextNodes(headerArea);
// 替换找到的文本节点
textNodes.forEach(node => {
const text = node.textContent.trim();
if (text === 'Spaces') {
node.textContent = node.textContent.replace(/Spaces/g, 'PDF TO Markdown');
} else if (text === 'Posts') {
// 删除Posts文本节点
if (node.parentNode) {
node.parentNode.removeChild(node);
}
} else if (text === 'Enterprise') {
// 删除Enterprise文本节点
if (node.parentNode) {
node.parentNode.removeChild(node);
}
}
});
// 标记已替换完成
window._navLinksReplaced = true;
}
// 替换代码区域中的域名
function replaceCodeDomains() {
// 特别处理span.hljs-string和span.njs-string元素
document.querySelectorAll('span.hljs-string, span.njs-string, span[class*="hljs-string"], span[class*="njs-string"]').forEach(span => {
if (span.textContent && span.textContent.includes('huggingface.co')) {
span.textContent = span.textContent.replace(/huggingface.co/g, 'aifasthub.com');
}
});
// 替换hljs-string类的span中的域名(移除多余的转义符号)
document.querySelectorAll('span.hljs-string, span[class*="hljs-string"]').forEach(span => {
if (span.textContent && span.textContent.includes('huggingface.co')) {
span.textContent = span.textContent.replace(/huggingface.co/g, 'aifasthub.com');
}
});
// 替换pre和code标签中包含git clone命令的域名
document.querySelectorAll('pre, code').forEach(element => {
if (element.textContent && element.textContent.includes('git clone')) {
const text = element.innerHTML;
if (text.includes('huggingface.co')) {
element.innerHTML = text.replace(/huggingface.co/g, 'aifasthub.com');
}
}
});
// 处理特定的命令行示例
document.querySelectorAll('pre, code').forEach(element => {
const text = element.innerHTML;
if (text.includes('huggingface.co')) {
// 针对git clone命令的专门处理
if (text.includes('git clone') || text.includes('GIT_LFS_SKIP_SMUDGE=1')) {
element.innerHTML = text.replace(/huggingface.co/g, 'aifasthub.com');
}
}
});
// 特别处理模型下载页面上的代码片段
document.querySelectorAll('.flex.border-t, .svelte_hydrator, .inline-block').forEach(container => {
const content = container.innerHTML;
if (content && content.includes('huggingface.co')) {
container.innerHTML = content.replace(/huggingface.co/g, 'aifasthub.com');
}
});
// 特别处理模型仓库克隆对话框中的代码片段
try {
// 查找包含"Clone this model repository"标题的对话框
const cloneDialog = document.querySelector('.svelte_hydration_boundary, [data-target="MainHeader"]');
if (cloneDialog) {
// 查找对话框中所有的代码片段和命令示例
const codeElements = cloneDialog.querySelectorAll('pre, code, span');
codeElements.forEach(element => {
if (element.textContent && element.textContent.includes('huggingface.co')) {
if (element.innerHTML.includes('huggingface.co')) {
element.innerHTML = element.innerHTML.replace(/huggingface.co/g, 'aifasthub.com');
} else {
element.textContent = element.textContent.replace(/huggingface.co/g, 'aifasthub.com');
}
}
});
}
// 更精确地定位克隆命令中的域名
document.querySelectorAll('[data-target]').forEach(container => {
const codeBlocks = container.querySelectorAll('pre, code, span.hljs-string');
codeBlocks.forEach(block => {
if (block.textContent && block.textContent.includes('huggingface.co')) {
if (block.innerHTML.includes('huggingface.co')) {
block.innerHTML = block.innerHTML.replace(/huggingface.co/g, 'aifasthub.com');
} else {
block.textContent = block.textContent.replace(/huggingface.co/g, 'aifasthub.com');
}
}
});
});
} catch (e) {
// 错误处理但不打印日志
}
}
// 当DOM加载完成后执行替换
if (document.readyState === 'loading') {
document.addEventListener('DOMContentLoaded', () => {
replaceHeaderBranding();
replaceNavigationLinks();
replaceCodeDomains();
// 只在必要时执行替换 - 3秒后再次检查
setTimeout(() => {
if (!window._navLinksReplaced) {
console.log('[Client] 3秒后重新检查导航链接');
replaceNavigationLinks();
}
}, 3000);
});
} else {
replaceHeaderBranding();
replaceNavigationLinks();
replaceCodeDomains();
// 只在必要时执行替换 - 3秒后再次检查
setTimeout(() => {
if (!window._navLinksReplaced) {
console.log('[Client] 3秒后重新检查导航链接');
replaceNavigationLinks();
}
}, 3000);
}
// 增加一个MutationObserver来处理可能的动态元素加载
const observer = new MutationObserver(mutations => {
// 检查是否导航区域有变化
const hasNavChanges = mutations.some(mutation => {
// 检查是否存在header或nav元素变化
return Array.from(mutation.addedNodes).some(node => {
if (node.nodeType === Node.ELEMENT_NODE) {
// 检查是否是导航元素或其子元素
if (node.tagName === 'HEADER' || node.tagName === 'NAV' ||
node.querySelector('header, nav')) {
return true;
}
// 检查是否在导航元素内部
let parent = node.parentElement;
while (parent) {
if (parent.tagName === 'HEADER' || parent.tagName === 'NAV') {
return true;
}
parent = parent.parentElement;
}
}
return false;
});
});
// 只在导航区域有变化时执行替换
if (hasNavChanges) {
// 重置替换状态,允许再次替换
window._navLinksReplaced = false;
replaceHeaderBranding();
replaceNavigationLinks();
}
});
// 开始观察document.body的变化,包括子节点
if (document.body) {
observer.observe(document.body, { childList: true, subtree: true });
} else {
document.addEventListener('DOMContentLoaded', () => {
observer.observe(document.body, { childList: true, subtree: true });
});
}
})();
', response.body)\n return response\n\n @asyncio.coroutine\n def view(self, request):\n \"\"\" Debug Toolbar. \"\"\"\n auth = yield from self.authorize(request)\n if not auth:\n raise HTTPForbidden()\n\n request_id = request.match_info.get('request_id')\n state = self.history.get(request_id, None)\n\n response = yield from self.app.ps.jinja2.render(\n 'debugtoolbar/toolbar.html',\n debugtoolbar=self,\n state=state,\n static_path=self.cfg.prefix + 'static',\n panels=state and state.panels or [],\n global_panels=self.global_panels,\n request=state and state.request or None,\n )\n return Response(text=response, content_type='text/html')\n\n @asyncio.coroutine\n def authorize(self, request): # noqa\n \"\"\"Default authorization.\"\"\"\n return True\n\n def authorization(self, func):\n \"\"\"Define a authorization handler.\n\n ::\n debugtoolbar = muffin_debugtoolbar.Plugin()\n debugtoolbar.setup(app)\n\n @debugtoolbar.authorization\n def current_user_is_logged(request):\n user = yield from load_session(request)\n return user\n\n \"\"\"\n self.authorize = to_coroutine(func)\n return func\n\n @asyncio.coroutine\n def sse(self, request):\n \"\"\"SSE.\"\"\"\n response = Response(status=200)\n response.content_type = 'text/event-stream'\n response.text = ''\n active_request_id = request.GET.get('request_id')\n client_last_request_id = str(request.headers.get('Last-Event-Id', 0))\n if self.history:\n last_request_id = next(reversed(self.history))\n if not last_request_id == client_last_request_id:\n data = []\n for _id in reversed(self.history):\n data.append([\n _id, self.history[_id].json, 'active' if active_request_id == _id else ''])\n if data:\n response.text = U_SSE_PAYLOAD.format(last_request_id, json.dumps(data))\n\n return response\n\n @asyncio.coroutine\n\n @asyncio.coroutine\n\n @asyncio.coroutine\n\n\nclass DebugState:\n\n \"\"\" Store debug state. \"\"\"\n\n def __init__(self, app, request):\n \"\"\"Store the params.\"\"\"\n self.request = request\n self.status = 200\n self.panels = [Panel(app, request) for Panel in app.ps.debugtoolbar.cfg.panels]\n\n @property\n def id(self):\n \"\"\"Return state ID.\"\"\"\n return str(id(self))\n\n @property\n def json(self):\n \"\"\"Return JSON.\"\"\"\n return {'method': self.request.method,\n 'path': self.request.path,\n 'scheme': 'http',\n 'status_code': self.status}\n\n @asyncio.coroutine\n def process_response(self, response):\n \"\"\"Process response.\"\"\"\n for panel in self.panels:\n yield from panel.process_response(response)\n"},"input_ids":{"kind":"list like","value":[37811,27509,16984,5657,42636,526,15931,198,11748,30351,952,198,11748,1330,8019,198,11748,20966,21975,355,20966,198,11748,28686,13,6978,355,1034,198,11748,302,198,11748,25064,198,11748,334,27112,198,198,6738,27563,259,1330,357,198,220,220,220,18261,11,36125,43401,11,14626,16922,11,14626,22069,18453,11,284,62,10215,28399,11,14626,1890,37978,8,198,6738,27563,259,13,37390,1330,7308,37233,11,42636,16922,198,6738,27563,259,13,26791,1330,33918,198,198,6738,764,1330,13043,11,3384,4487,198,6738,764,83,18347,10141,13,83,18347,10141,1330,651,62,40546,1891,628,198,2200,62,33,33076,796,302,13,5589,576,7,65,6,27,11139,2618,29,3256,302,13,40,8,198,52,62,50,5188,62,4537,56,35613,796,366,312,25,1391,15,32239,710,1151,25,649,62,25927,59,358,1045,25,1391,16,32239,77,59,77,1,198,22083,40,23988,62,34,3727,1546,796,357,6200,11,25643,11,32591,11,30727,11,32747,11,38369,11,35617,8,628,198,6489,7340,1268,62,13252,2394,796,1034,13,15908,3672,7,404,13,397,2777,776,7,834,7753,834,4008,628,198,31,292,13361,952,13,10215,28399,198,4299,14257,25981,5657,62,27171,1574,62,69,9548,7,1324,11,21360,2599,198,220,220,220,37227,40786,31687,3504,1574,526,15931,198,220,220,220,288,18347,65,796,598,13,862,13,24442,25981,5657,628,220,220,220,2488,292,13361,952,13,10215,28399,198,220,220,220,825,14257,25981,5657,62,27171,1574,7,25927,2599,198,220,220,220,220,220,220,220,37227,34500,4873,284,3586,526,15931,628,220,220,220,220,220,220,220,1303,6822,329,14257,25981,5657,318,9343,329,262,2581,198,220,220,220,220,220,220,220,611,407,288,18347,65,13,37581,13,25616,393,597,7,8899,7,25927,13,6978,13,9688,2032,342,11,288,18347,65,13,37581,13,1069,9152,8,2599,198,220,220,220,220,220,220,220,220,220,220,220,1441,357,88,1164,422,21360,7,25927,4008,628,220,220,220,220,220,220,220,6569,62,4774,11,6569,62,634,796,2581,13,7645,634,13,1136,62,26086,62,10951,10786,431,13292,11537,198,220,220,220,220,220,220,220,329,2583,287,288,18347,65,13,37581,13,4774,82,25,198,220,220,220,220,220,220,220,220,220,220,220,611,20966,13,541,62,21975,7,47960,62,4774,8,287,20966,13,541,62,27349,7,4774,2599,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,2270,198,220,220,220,220,220,220,220,2073,25,198,220,220,220,220,220,220,220,220,220,220,220,1441,357,88,1164,422,21360,7,25927,4008,628,220,220,220,220,220,220,220,1303,20768,1096,257,14257,5219,329,262,2581,198,220,220,220,220,220,220,220,1181,796,31687,9012,7,1324,11,2581,8,198,220,220,220,220,220,220,220,288,18347,65,13,23569,58,5219,13,312,60,796,1181,198,220,220,220,220,220,220,220,4732,62,2032,23640,796,1181,13,37150,62,30281,7,30281,8,628,220,220,220,220,220,220,220,1303,6889,2882,198,220,220,220,220,220,220,220,1949,25,198,220,220,220,220,220,220,220,220,220,220,220,2882,796,7800,422,4732,62,2032,23640,7,30281,7,25927,4008,198,220,220,220,220,220,220,220,220,220,220,220,1181,13,13376,796,2882,13,13376,198,220,220,220,220,220,220,220,2845,14626,16922,355,2859,25,198,220,220,220,220,220,220,220,220,220,220,220,2882,796,2859,198,220,220,220,220,220,220,220,220,220,220,220,1181,13,13376,796,2882,13,13376,628,220,220,220,220,220,220,220,2845,35528,355,2859,25,198,220,220,220,220,220,220,220,220,220,220,220,1303,9363,12854,1891,329,555,38788,6631,198,220,220,220,220,220,220,220,220,220,220,220,1181,13,13376,796,5323,198,220,220,220,220,220,220,220,220,220,220,220,611,407,288,18347,65,13,37581,13,3849,984,62,41194,25,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,5298,198,220,220,220,220,220,220,220,220,220,220,220,256,65,796,651,62,40546,1891,7,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,7508,28,17597,13,41194,62,10951,22784,14267,28,16,11,905,62,30342,62,37805,28,25101,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,8856,62,10057,62,1069,11755,28,17821,11,2859,28,41194,8,198,220,220,220,220,220,220,220,220,220,220,220,288,18347,65,13,1069,11755,58,83,65,13,312,60,796,2581,17816,79,9945,83,62,83,65,20520,796,256,65,198,220,220,220,220,220,220,220,220,220,220,220,329,5739,287,256,65,13,37805,25,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,288,18347,65,13,37805,58,312,7,14535,15437,796,5739,198,220,220,220,220,220,220,220,220,220,220,220,2882,796,18261,7,5239,28,83,65,13,13287,62,12853,7,25927,828,2695,62,4906,11639,5239,14,6494,11537,628,220,220,220,220,220,220,220,1303,37127,2638,18941,12416,290,3359,281,27711,2443,351,257,2792,284,262,2496,13,198,220,220,220,220,220,220,220,611,288,18347,65,13,37581,13,3849,984,62,445,1060,82,290,2882,13,13376,287,23848,40,23988,62,34,3727,1546,3467,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,290,705,14749,6,287,2882,13,50145,25,628,220,220,220,220,220,220,220,220,220,220,220,2882,796,7800,422,598,13,862,13,18594,6592,17,13,13287,7,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,705,24442,25981,5657,14,445,1060,13,6494,3256,2882,28,26209,8,198,220,220,220,220,220,220,220,220,220,220,220,2882,796,18261,7,5239,28,26209,11,2695,62,4906,11639,5239,14,6494,11537,628,220,220,220,220,220,220,220,7800,422,1181,13,14681,62,26209,7,26209,8,628,220,220,220,220,220,220,220,611,318,39098,7,26209,11,18261,8,290,2882,13,11299,62,4906,6624,705,5239,14,6494,6,290,3467,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,4526,62,33,33076,13,12947,7,26209,13,2618,2599,198,220,220,220,220,220,220,220,220,220,220,220,1441,357,88,1164,422,288,18347,65,13,259,752,7,5219,11,2882,4008,628,220,220,220,220,220,220,220,1441,2882,628,220,220,220,1441,14257,25981,5657,62,27171,1574,628,198,4871,42636,7,14881,37233,2599,628,220,220,220,37227,464,13877,7822,526,15931,628,220,220,220,1438,796,705,24442,25981,5657,6,198,220,220,220,26235,796,1391,198,220,220,220,220,220,220,220,705,25616,10354,6407,11,198,220,220,220,220,220,220,220,705,4774,82,10354,37250,16799,13,15,13,15,13,16,6,4357,198,220,220,220,220,220,220,220,705,40290,10354,31051,62,24442,3256,198,220,220,220,220,220,220,220,705,3849,984,62,41194,10354,705,24442,3256,220,1303,14257,14,13812,14,25101,11,198,220,220,220,220,220,220,220,705,3849,984,62,445,1060,82,10354,6407,11,198,220,220,220,220,220,220,220,705,1069,9152,10354,685,4357,198,220,220,220,220,220,220,220,705,6839,1424,10354,685,198,220,220,220,220,220,220,220,220,220,220,220,13043,13,39681,27509,26639,11,198,220,220,220,220,220,220,220,220,220,220,220,13043,13,18453,53,945,27509,26639,11,198,220,220,220,220,220,220,220,220,220,220,220,13043,13,11187,2667,27509,26639,11,198,220,220,220,220,220,220,220,220,220,220,220,13043,13,2898,558,1891,27509,26639,11,198,220,220,220,220,220,220,220,16589,198,220,220,220,220,220,220,220,705,2860,1859,62,6839,1424,10354,685,4357,198,220,220,220,220,220,220,220,705,20541,62,6839,1424,10354,685,198,220,220,220,220,220,220,220,220,220,220,220,13043,13,49,448,274,27509,26639,11,198,220,220,220,220,220,220,220,220,220,220,220,13043,13,38149,27509,26639,11,198,220,220,220,220,220,220,220,220,220,220,220,13043,13,34621,86,3565,27509,26639,11,198,220,220,220,220,220,220,220,220,220,220,220,13043,13,45150,27509,26639,11,198,220,220,220,220,220,220,220,2361,198,220,220,220,1782,628,220,220,220,825,9058,7,944,11,598,2599,198,220,220,220,220,220,220,220,37227,40786,262,13877,290,8335,3586,526,15931,198,220,220,220,220,220,220,220,2208,7,37233,11,2116,737,40406,7,1324,8,628,220,220,220,220,220,220,220,611,705,18594,6592,17,6,407,287,598,13,37390,25,198,220,220,220,220,220,220,220,220,220,220,220,5298,42636,16922,10786,464,13877,4433,337,1648,259,12,41,259,6592,17,13877,6589,2637,8,628,220,220,220,220,220,220,220,2116,13,37581,13,40290,796,2116,13,37581,13,40290,13,81,36311,10786,14,11537,1343,31051,6,198,220,220,220,220,220,220,220,2116,13,37581,13,1069,9152,13,33295,7,944,13,37581,13,40290,8,628,220,220,220,220,220,220,220,1303,31122,14257,25981,5657,24019,198,220,220,220,220,220,220,220,598,13,862,13,18594,6592,17,13,37581,13,28243,62,11379,364,13,33295,7,404,13,22179,7,6489,7340,1268,62,13252,2394,11,705,11498,17041,6,4008,628,220,220,220,220,220,220,220,2116,13,37581,13,6839,1424,15853,1351,7,944,13,37581,13,2860,1859,62,6839,1424,8,198,220,220,220,220,220,220,220,13043,62,796,17635,198,220,220,220,220,220,220,220,329,6103,287,2116,13,37581,13,6839,1424,25,198,220,220,220,220,220,220,220,220,220,220,220,611,318,39098,7,35330,11,965,2599,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,953,11,4808,11,6103,796,6103,13,3911,653,7,10354,11537,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,953,796,1330,8019,13,11748,62,21412,7,4666,8,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,6103,796,5418,7,35330,393,705,27509,26639,3256,953,13,834,11600,834,8,198,220,220,220,220,220,220,220,220,220,220,220,13043,44807,33295,7,35330,8,198,220,220,220,220,220,220,220,2116,13,37581,13,6839,1424,796,13043,62,628,220,220,220,220,220,220,220,1303,31122,14257,25981,5657,9037,3696,198,220,220,220,220,220,220,220,598,13,472,353,13,30238,62,38629,7,45442,43401,7,198,220,220,220,220,220,220,220,220,220,220,220,705,24442,25981,5657,13,12708,3256,198,220,220,220,220,220,220,220,220,220,220,220,2116,13,37581,13,40290,1343,705,12708,14,3256,198,220,220,220,220,220,220,220,220,220,220,220,1034,13,22179,7,6489,7340,1268,62,13252,2394,11,705,12708,6,22305,628,220,220,220,220,220,220,220,598,13,30238,7,944,13,37581,13,40290,1343,705,82,325,3256,1438,11639,24442,25981,5657,13,82,325,6,5769,944,13,82,325,8,198,220,220,220,220,220,220,220,598,13,30238,7,198,220,220,220,220,220,220,220,220,220,220,220,2116,13,37581,13,40290,1343,705,1069,4516,3256,1438,11639,24442,25981,5657,13,1069,4516,6,5769,944,13,1069,4516,8,198,220,220,220,220,220,220,220,598,13,30238,7,198,220,220,220,220,220,220,220,220,220,220,220,2116,13,37581,13,40290,1343,705,41049,3256,1438,11639,24442,25981,5657,13,41049,6,5769,944,13,41049,8,198,220,220,220,220,220,220,220,598,13,30238,7,198,220,220,220,220,220,220,220,220,220,220,220,2116,13,37581,13,40290,1343,705,10459,3256,1438,11639,24442,25981,5657,13,10459,6,5769,944,13,10459,8,198,220,220,220,220,220,220,220,598,13,30238,7,198,220,220,220,220,220,220,220,220,220,220,220,2116,13,37581,13,40290,13,81,36311,10786,14,33809,198,220,220,220,220,220,220,220,220,220,220,220,2116,13,37581,13,40290,11,198,220,220,220,220,220,220,220,220,220,220,220,2116,13,37581,13,40290,1343,705,90,25927,62,312,92,3256,1438,11639,24442,25981,5657,13,25927,6,5769,944,13,1177,8,628,220,220,220,220,220,220,220,598,17816,24442,25981,5657,20520,796,23884,198,220,220,220,220,220,220,220,598,17816,24442,25981,5657,6,7131,6,79,9945,83,62,30001,20520,796,334,27112,13,12303,312,19,22446,33095,198,220,220,220,220,220,220,220,2116,13,23569,796,598,17816,24442,25981,5657,6,7131,6,23569,20520,796,3384,4487,13,18122,7,1120,8,198,220,220,220,220,220,220,220,2116,13,1069,11755,796,598,17816,24442,25981,5657,6,7131,6,1069,11755,20520,796,3384,4487,13,18122,7,1120,8,198,220,220,220,220,220,220,220,2116,13,37805,796,598,17816,24442,25981,5657,6,7131,6,37805,20520,796,3384,4487,13,18122,7,3064,8,628,220,220,220,2488,292,13361,952,13,10215,28399,198,220,220,220,825,923,7,944,11,598,2599,198,220,220,220,220,220,220,220,37227,7253,3586,13,37227,198,220,220,220,220,220,220,220,598,13,27171,86,3565,13,28463,7,15,11,14257,25981,5657,62,27171,1574,62,69,9548,8,198,220,220,220,220,220,220,220,2116,13,20541,62,6839,1424,796,685,26639,7,944,13,1324,8,329,18810,287,2116,13,37581,13,20541,62,6839,1424,60,628,220,220,220,2488,292,13361,952,13,10215,28399,198,220,220,220,825,8677,7,944,11,1181,11,2882,2599,198,220,220,220,220,220,220,220,37227,554,752,31687,16984,5657,2438,284,2882,1767,13,37227,198,220,220,220,220,220,220,220,27711,796,7800,422,2116,13,1324,13,862,13,18594,6592,17,13,13287,7,198,220,220,220,220,220,220,220,220,220,220,220,705,24442,25981,5657,14,259,752,13,6494,3256,198,220,220,220,220,220,220,220,220,220,220,220,9037,62,6978,28,944,13,37581,13,40290,1343,705,12708,3256,198,220,220,220,220,220,220,220,220,220,220,220,50149,62,6371,28,944,13,37581,13,40290,1343,1181,13,312,11,198,220,220,220,220,220,220,220,1267,198,220,220,220,220,220,220,220,27711,796,27711,13,268,8189,7,5219,13,25927,13,354,945,316,393,705,40477,12,23,11537,198,220,220,220,220,220,220,220,2882,13,2618,796,4526,62,33,33076,13,7266,7,6494,1343,275,6,3556,2618,29,3256,2882,13,2618,8,198,220,220,220,220,220,220,220,1441,2882,628,220,220,220,2488,292,13361,952,13,10215,28399,198,220,220,220,825,1570,7,944,11,2581,2599,198,220,220,220,220,220,220,220,37227,31687,16984,5657,13,37227,198,220,220,220,220,220,220,220,6284,796,7800,422,2116,13,9800,1096,7,25927,8,198,220,220,220,220,220,220,220,611,407,6284,25,198,220,220,220,220,220,220,220,220,220,220,220,5298,14626,1890,37978,3419,628,220,220,220,220,220,220,220,2581,62,312,796,2581,13,15699,62,10951,13,1136,10786,25927,62,312,11537,198,220,220,220,220,220,220,220,1181,796,2116,13,23569,13,1136,7,25927,62,312,11,6045,8,628,220,220,220,220,220,220,220,2882,796,7800,422,2116,13,1324,13,862,13,18594,6592,17,13,13287,7,198,220,220,220,220,220,220,220,220,220,220,220,705,24442,25981,5657,14,25981,5657,13,6494,3256,198,220,220,220,220,220,220,220,220,220,220,220,14257,25981,5657,28,944,11,198,220,220,220,220,220,220,220,220,220,220,220,1181,28,5219,11,198,220,220,220,220,220,220,220,220,220,220,220,9037,62,6978,28,944,13,37581,13,40290,1343,705,12708,3256,198,220,220,220,220,220,220,220,220,220,220,220,13043,28,5219,290,1181,13,6839,1424,393,685,4357,198,220,220,220,220,220,220,220,220,220,220,220,3298,62,6839,1424,28,944,13,20541,62,6839,1424,11,198,220,220,220,220,220,220,220,220,220,220,220,2581,28,5219,290,1181,13,25927,393,6045,11,198,220,220,220,220,220,220,220,1267,198,220,220,220,220,220,220,220,1441,18261,7,5239,28,26209,11,2695,62,4906,11639,5239,14,6494,11537,628,220,220,220,2488,292,13361,952,13,10215,28399,198,220,220,220,825,29145,7,944,11,2581,2599,220,1303,645,20402,198,220,220,220,220,220,220,220,37227,19463,19601,526,15931,198,220,220,220,220,220,220,220,1441,6407,628,220,220,220,825,19601,7,944,11,25439,2599,198,220,220,220,220,220,220,220,37227,7469,500,257,19601,21360,13,628,220,220,220,220,220,220,220,7904,198,220,220,220,220,220,220,220,220,220,220,220,14257,25981,5657,796,27563,259,62,24442,25981,5657,13,37233,3419,198,220,220,220,220,220,220,220,220,220,220,220,14257,25981,5657,13,40406,7,1324,8,628,220,220,220,220,220,220,220,220,220,220,220,2488,24442,25981,5657,13,9800,1634,198,220,220,220,220,220,220,220,220,220,220,220,825,1459,62,7220,62,271,62,6404,2004,7,25927,2599,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,2836,796,7800,422,3440,62,29891,7,25927,8,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1441,2836,628,220,220,220,220,220,220,220,37227,198,220,220,220,220,220,220,220,2116,13,9800,1096,796,284,62,10215,28399,7,20786,8,198,220,220,220,220,220,220,220,1441,25439,628,220,220,220,2488,292,13361,952,13,10215,28399,198,220,220,220,825,264,325,7,944,11,2581,2599,198,220,220,220,220,220,220,220,37227,50,5188,526,15931,198,220,220,220,220,220,220,220,2882,796,18261,7,13376,28,2167,8,198,220,220,220,220,220,220,220,2882,13,11299,62,4906,796,705,5239,14,15596,12,5532,6,198,220,220,220,220,220,220,220,2882,13,5239,796,10148,198,220,220,220,220,220,220,220,4075,62,25927,62,312,796,2581,13,18851,13,1136,10786,25927,62,312,11537,198,220,220,220,220,220,220,220,5456,62,12957,62,25927,62,312,796,965,7,25927,13,50145,13,1136,10786,5956,12,9237,12,7390,3256,657,4008,198,220,220,220,220,220,220,220,611,2116,13,23569,25,198,220,220,220,220,220,220,220,220,220,220,220,938,62,25927,62,312,796,1306,7,260,690,276,7,944,13,23569,4008,198,220,220,220,220,220,220,220,220,220,220,220,611,407,938,62,25927,62,312,6624,5456,62,12957,62,25927,62,312,25,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1366,796,17635,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,329,4808,312,287,17687,7,944,13,23569,2599,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1366,13,33295,26933,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,4808,312,11,2116,13,23569,29795,312,4083,17752,11,705,5275,6,611,4075,62,25927,62,312,6624,4808,312,2073,10148,12962,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,611,1366,25,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,2882,13,5239,796,471,62,50,5188,62,4537,56,35613,13,18982,7,12957,62,25927,62,312,11,33918,13,67,8142,7,7890,4008,628,220,220,220,220,220,220,220,1441,2882,628,220,220,220,2488,292,13361,952,13,10215,28399,628,220,220,220,2488,292,13361,952,13,10215,28399,628,220,220,220,2488,292,13361,952,13,10215,28399,628,198,4871,31687,9012,25,628,220,220,220,37227,9363,14257,1181,13,37227,628,220,220,220,825,11593,15003,834,7,944,11,598,11,2581,2599,198,220,220,220,220,220,220,220,37227,22658,262,42287,526,15931,198,220,220,220,220,220,220,220,2116,13,25927,796,2581,198,220,220,220,220,220,220,220,2116,13,13376,796,939,198,220,220,220,220,220,220,220,2116,13,6839,1424,796,685,26639,7,1324,11,2581,8,329,18810,287,598,13,862,13,24442,25981,5657,13,37581,13,6839,1424,60,628,220,220,220,2488,26745,198,220,220,220,825,4686,7,944,2599,198,220,220,220,220,220,220,220,37227,13615,1181,4522,526,15931,198,220,220,220,220,220,220,220,1441,965,7,312,7,944,4008,628,220,220,220,2488,26745,198,220,220,220,825,33918,7,944,2599,198,220,220,220,220,220,220,220,37227,13615,19449,526,15931,198,220,220,220,220,220,220,220,1441,1391,6,24396,10354,2116,13,25927,13,24396,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,705,6978,10354,2116,13,25927,13,6978,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,705,15952,1326,10354,705,4023,3256,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,705,13376,62,8189,10354,2116,13,13376,92,628,220,220,220,2488,292,13361,952,13,10215,28399,198,220,220,220,825,1429,62,26209,7,944,11,2882,2599,198,220,220,220,220,220,220,220,37227,18709,2882,526,15931,198,220,220,220,220,220,220,220,329,6103,287,2116,13,6839,1424,25,198,220,220,220,220,220,220,220,220,220,220,220,7800,422,6103,13,14681,62,26209,7,26209,8,198],"string":"[\n 37811,\n 27509,\n 16984,\n 5657,\n 42636,\n 526,\n 15931,\n 198,\n 11748,\n 30351,\n 952,\n 198,\n 11748,\n 1330,\n 8019,\n 198,\n 11748,\n 20966,\n 21975,\n 355,\n 20966,\n 198,\n 11748,\n 28686,\n 13,\n 6978,\n 355,\n 1034,\n 198,\n 11748,\n 302,\n 198,\n 11748,\n 25064,\n 198,\n 11748,\n 334,\n 27112,\n 198,\n 198,\n 6738,\n 27563,\n 259,\n 1330,\n 357,\n 198,\n 220,\n 220,\n 220,\n 18261,\n 11,\n 36125,\n 43401,\n 11,\n 14626,\n 16922,\n 11,\n 14626,\n 22069,\n 18453,\n 11,\n 284,\n 62,\n 10215,\n 28399,\n 11,\n 14626,\n 1890,\n 37978,\n 8,\n 198,\n 6738,\n 27563,\n 259,\n 13,\n 37390,\n 1330,\n 7308,\n 37233,\n 11,\n 42636,\n 16922,\n 198,\n 6738,\n 27563,\n 259,\n 13,\n 26791,\n 1330,\n 33918,\n 198,\n 198,\n 6738,\n 764,\n 1330,\n 13043,\n 11,\n 3384,\n 4487,\n 198,\n 6738,\n 764,\n 83,\n 18347,\n 10141,\n 13,\n 83,\n 18347,\n 10141,\n 1330,\n 651,\n 62,\n 40546,\n 1891,\n 628,\n 198,\n 2200,\n 62,\n 33,\n 33076,\n 796,\n 302,\n 13,\n 5589,\n 576,\n 7,\n 65,\n 6,\n 27,\n 11139,\n 2618,\n 29,\n 3256,\n 302,\n 13,\n 40,\n 8,\n 198,\n 52,\n 62,\n 50,\n 5188,\n 62,\n 4537,\n 56,\n 35613,\n 796,\n 366,\n 312,\n 25,\n 1391,\n 15,\n 32239,\n 710,\n 1151,\n 25,\n 649,\n 62,\n 25927,\n 59,\n 358,\n 1045,\n 25,\n 1391,\n 16,\n 32239,\n 77,\n 59,\n 77,\n 1,\n 198,\n 22083,\n 40,\n 23988,\n 62,\n 34,\n 3727,\n 1546,\n 796,\n 357,\n 6200,\n 11,\n 25643,\n 11,\n 32591,\n 11,\n 30727,\n 11,\n 32747,\n 11,\n 38369,\n 11,\n 35617,\n 8,\n 628,\n 198,\n 6489,\n 7340,\n 1268,\n 62,\n 13252,\n 2394,\n 796,\n 1034,\n 13,\n 15908,\n 3672,\n 7,\n 404,\n 13,\n 397,\n 2777,\n 776,\n 7,\n 834,\n 7753,\n 834,\n 4008,\n 628,\n 198,\n 31,\n 292,\n 13361,\n 952,\n 13,\n 10215,\n 28399,\n 198,\n 4299,\n 14257,\n 25981,\n 5657,\n 62,\n 27171,\n 1574,\n 62,\n 69,\n 9548,\n 7,\n 1324,\n 11,\n 21360,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 40786,\n 31687,\n 3504,\n 1574,\n 526,\n 15931,\n 198,\n 220,\n 220,\n 220,\n 288,\n 18347,\n 65,\n 796,\n 598,\n 13,\n 862,\n 13,\n 24442,\n 25981,\n 5657,\n 628,\n 220,\n 220,\n 220,\n 2488,\n 292,\n 13361,\n 952,\n 13,\n 10215,\n 28399,\n 198,\n 220,\n 220,\n 220,\n 825,\n 14257,\n 25981,\n 5657,\n 62,\n 27171,\n 1574,\n 7,\n 25927,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 34500,\n 4873,\n 284,\n 3586,\n 526,\n 15931,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 6822,\n 329,\n 14257,\n 25981,\n 5657,\n 318,\n 9343,\n 329,\n 262,\n 2581,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 407,\n 288,\n 18347,\n 65,\n 13,\n 37581,\n 13,\n 25616,\n 393,\n 597,\n 7,\n 8899,\n 7,\n 25927,\n 13,\n 6978,\n 13,\n 9688,\n 2032,\n 342,\n 11,\n 288,\n 18347,\n 65,\n 13,\n 37581,\n 13,\n 1069,\n 9152,\n 8,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1441,\n 357,\n 88,\n 1164,\n 422,\n 21360,\n 7,\n 25927,\n 4008,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 6569,\n 62,\n 4774,\n 11,\n 6569,\n 62,\n 634,\n 796,\n 2581,\n 13,\n 7645,\n 634,\n 13,\n 1136,\n 62,\n 26086,\n 62,\n 10951,\n 10786,\n 431,\n 13292,\n 11537,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 329,\n 2583,\n 287,\n 288,\n 18347,\n 65,\n 13,\n 37581,\n 13,\n 4774,\n 82,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 20966,\n 13,\n 541,\n 62,\n 21975,\n 7,\n 47960,\n 62,\n 4774,\n 8,\n 287,\n 20966,\n 13,\n 541,\n 62,\n 27349,\n 7,\n 4774,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2270,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2073,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1441,\n 357,\n 88,\n 1164,\n 422,\n 21360,\n 7,\n 25927,\n 4008,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 20768,\n 1096,\n 257,\n 14257,\n 5219,\n 329,\n 262,\n 2581,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1181,\n 796,\n 31687,\n 9012,\n 7,\n 1324,\n 11,\n 2581,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 288,\n 18347,\n 65,\n 13,\n 23569,\n 58,\n 5219,\n 13,\n 312,\n 60,\n 796,\n 1181,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 4732,\n 62,\n 2032,\n 23640,\n 796,\n 1181,\n 13,\n 37150,\n 62,\n 30281,\n 7,\n 30281,\n 8,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 6889,\n 2882,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1949,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2882,\n 796,\n 7800,\n 422,\n 4732,\n 62,\n 2032,\n 23640,\n 7,\n 30281,\n 7,\n 25927,\n 4008,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1181,\n 13,\n 13376,\n 796,\n 2882,\n 13,\n 13376,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2845,\n 14626,\n 16922,\n 355,\n 2859,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2882,\n 796,\n 2859,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1181,\n 13,\n 13376,\n 796,\n 2882,\n 13,\n 13376,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2845,\n 35528,\n 355,\n 2859,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 9363,\n 12854,\n 1891,\n 329,\n 555,\n 38788,\n 6631,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1181,\n 13,\n 13376,\n 796,\n 5323,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 407,\n 288,\n 18347,\n 65,\n 13,\n 37581,\n 13,\n 3849,\n 984,\n 62,\n 41194,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 5298,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 256,\n 65,\n 796,\n 651,\n 62,\n 40546,\n 1891,\n 7,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 7508,\n 28,\n 17597,\n 13,\n 41194,\n 62,\n 10951,\n 22784,\n 14267,\n 28,\n 16,\n 11,\n 905,\n 62,\n 30342,\n 62,\n 37805,\n 28,\n 25101,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 8856,\n 62,\n 10057,\n 62,\n 1069,\n 11755,\n 28,\n 17821,\n 11,\n 2859,\n 28,\n 41194,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 288,\n 18347,\n 65,\n 13,\n 1069,\n 11755,\n 58,\n 83,\n 65,\n 13,\n 312,\n 60,\n 796,\n 2581,\n 17816,\n 79,\n 9945,\n 83,\n 62,\n 83,\n 65,\n 20520,\n 796,\n 256,\n 65,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 329,\n 5739,\n 287,\n 256,\n 65,\n 13,\n 37805,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 288,\n 18347,\n 65,\n 13,\n 37805,\n 58,\n 312,\n 7,\n 14535,\n 15437,\n 796,\n 5739,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2882,\n 796,\n 18261,\n 7,\n 5239,\n 28,\n 83,\n 65,\n 13,\n 13287,\n 62,\n 12853,\n 7,\n 25927,\n 828,\n 2695,\n 62,\n 4906,\n 11639,\n 5239,\n 14,\n 6494,\n 11537,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 37127,\n 2638,\n 18941,\n 12416,\n 290,\n 3359,\n 281,\n 27711,\n 2443,\n 351,\n 257,\n 2792,\n 284,\n 262,\n 2496,\n 13,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 288,\n 18347,\n 65,\n 13,\n 37581,\n 13,\n 3849,\n 984,\n 62,\n 445,\n 1060,\n 82,\n 290,\n 2882,\n 13,\n 13376,\n 287,\n 23848,\n 40,\n 23988,\n 62,\n 34,\n 3727,\n 1546,\n 3467,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 290,\n 705,\n 14749,\n 6,\n 287,\n 2882,\n 13,\n 50145,\n 25,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2882,\n 796,\n 7800,\n 422,\n 598,\n 13,\n 862,\n 13,\n 18594,\n 6592,\n 17,\n 13,\n 13287,\n 7,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 705,\n 24442,\n 25981,\n 5657,\n 14,\n 445,\n 1060,\n 13,\n 6494,\n 3256,\n 2882,\n 28,\n 26209,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2882,\n 796,\n 18261,\n 7,\n 5239,\n 28,\n 26209,\n 11,\n 2695,\n 62,\n 4906,\n 11639,\n 5239,\n 14,\n 6494,\n 11537,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 7800,\n 422,\n 1181,\n 13,\n 14681,\n 62,\n 26209,\n 7,\n 26209,\n 8,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 318,\n 39098,\n 7,\n 26209,\n 11,\n 18261,\n 8,\n 290,\n 2882,\n 13,\n 11299,\n 62,\n 4906,\n 6624,\n 705,\n 5239,\n 14,\n 6494,\n 6,\n 290,\n 3467,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 4526,\n 62,\n 33,\n 33076,\n 13,\n 12947,\n 7,\n 26209,\n 13,\n 2618,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1441,\n 357,\n 88,\n 1164,\n 422,\n 288,\n 18347,\n 65,\n 13,\n 259,\n 752,\n 7,\n 5219,\n 11,\n 2882,\n 4008,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1441,\n 2882,\n 628,\n 220,\n 220,\n 220,\n 1441,\n 14257,\n 25981,\n 5657,\n 62,\n 27171,\n 1574,\n 628,\n 198,\n 4871,\n 42636,\n 7,\n 14881,\n 37233,\n 2599,\n 628,\n 220,\n 220,\n 220,\n 37227,\n 464,\n 13877,\n 7822,\n 526,\n 15931,\n 628,\n 220,\n 220,\n 220,\n 1438,\n 796,\n 705,\n 24442,\n 25981,\n 5657,\n 6,\n 198,\n 220,\n 220,\n 220,\n 26235,\n 796,\n 1391,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 705,\n 25616,\n 10354,\n 6407,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 705,\n 4774,\n 82,\n 10354,\n 37250,\n 16799,\n 13,\n 15,\n 13,\n 15,\n 13,\n 16,\n 6,\n 4357,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 705,\n 40290,\n 10354,\n 31051,\n 62,\n 24442,\n 3256,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 705,\n 3849,\n 984,\n 62,\n 41194,\n 10354,\n 705,\n 24442,\n 3256,\n 220,\n 1303,\n 14257,\n 14,\n 13812,\n 14,\n 25101,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 705,\n 3849,\n 984,\n 62,\n 445,\n 1060,\n 82,\n 10354,\n 6407,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 705,\n 1069,\n 9152,\n 10354,\n 685,\n 4357,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 705,\n 6839,\n 1424,\n 10354,\n 685,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 13043,\n 13,\n 39681,\n 27509,\n 26639,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 13043,\n 13,\n 18453,\n 53,\n 945,\n 27509,\n 26639,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 13043,\n 13,\n 11187,\n 2667,\n 27509,\n 26639,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 13043,\n 13,\n 2898,\n 558,\n 1891,\n 27509,\n 26639,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 16589,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 705,\n 2860,\n 1859,\n 62,\n 6839,\n 1424,\n 10354,\n 685,\n 4357,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 705,\n 20541,\n 62,\n 6839,\n 1424,\n 10354,\n 685,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 13043,\n 13,\n 49,\n 448,\n 274,\n 27509,\n 26639,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 13043,\n 13,\n 38149,\n 27509,\n 26639,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 13043,\n 13,\n 34621,\n 86,\n 3565,\n 27509,\n 26639,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 13043,\n 13,\n 45150,\n 27509,\n 26639,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2361,\n 198,\n 220,\n 220,\n 220,\n 1782,\n 628,\n 220,\n 220,\n 220,\n 825,\n 9058,\n 7,\n 944,\n 11,\n 598,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 40786,\n 262,\n 13877,\n 290,\n 8335,\n 3586,\n 526,\n 15931,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2208,\n 7,\n 37233,\n 11,\n 2116,\n 737,\n 40406,\n 7,\n 1324,\n 8,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 705,\n 18594,\n 6592,\n 17,\n 6,\n 407,\n 287,\n 598,\n 13,\n 37390,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 5298,\n 42636,\n 16922,\n 10786,\n 464,\n 13877,\n 4433,\n 337,\n 1648,\n 259,\n 12,\n 41,\n 259,\n 6592,\n 17,\n 13877,\n 6589,\n 2637,\n 8,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13,\n 37581,\n 13,\n 40290,\n 796,\n 2116,\n 13,\n 37581,\n 13,\n 40290,\n 13,\n 81,\n 36311,\n 10786,\n 14,\n 11537,\n 1343,\n 31051,\n 6,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13,\n 37581,\n 13,\n 1069,\n 9152,\n 13,\n 33295,\n 7,\n 944,\n 13,\n 37581,\n 13,\n 40290,\n 8,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 31122,\n 14257,\n 25981,\n 5657,\n 24019,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 598,\n 13,\n 862,\n 13,\n 18594,\n 6592,\n 17,\n 13,\n 37581,\n 13,\n 28243,\n 62,\n 11379,\n 364,\n 13,\n 33295,\n 7,\n 404,\n 13,\n 22179,\n 7,\n 6489,\n 7340,\n 1268,\n 62,\n 13252,\n 2394,\n 11,\n 705,\n 11498,\n 17041,\n 6,\n 4008,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13,\n 37581,\n 13,\n 6839,\n 1424,\n 15853,\n 1351,\n 7,\n 944,\n 13,\n 37581,\n 13,\n 2860,\n 1859,\n 62,\n 6839,\n 1424,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 13043,\n 62,\n 796,\n 17635,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 329,\n 6103,\n 287,\n 2116,\n 13,\n 37581,\n 13,\n 6839,\n 1424,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 318,\n 39098,\n 7,\n 35330,\n 11,\n 965,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 953,\n 11,\n 4808,\n 11,\n 6103,\n 796,\n 6103,\n 13,\n 3911,\n 653,\n 7,\n 10354,\n 11537,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 953,\n 796,\n 1330,\n 8019,\n 13,\n 11748,\n 62,\n 21412,\n 7,\n 4666,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 6103,\n 796,\n 5418,\n 7,\n 35330,\n 393,\n 705,\n 27509,\n 26639,\n 3256,\n 953,\n 13,\n 834,\n 11600,\n 834,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 13043,\n 44807,\n 33295,\n 7,\n 35330,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13,\n 37581,\n 13,\n 6839,\n 1424,\n 796,\n 13043,\n 62,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 31122,\n 14257,\n 25981,\n 5657,\n 9037,\n 3696,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 598,\n 13,\n 472,\n 353,\n 13,\n 30238,\n 62,\n 38629,\n 7,\n 45442,\n 43401,\n 7,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 705,\n 24442,\n 25981,\n 5657,\n 13,\n 12708,\n 3256,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13,\n 37581,\n 13,\n 40290,\n 1343,\n 705,\n 12708,\n 14,\n 3256,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1034,\n 13,\n 22179,\n 7,\n 6489,\n 7340,\n 1268,\n 62,\n 13252,\n 2394,\n 11,\n 705,\n 12708,\n 6,\n 22305,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 598,\n 13,\n 30238,\n 7,\n 944,\n 13,\n 37581,\n 13,\n 40290,\n 1343,\n 705,\n 82,\n 325,\n 3256,\n 1438,\n 11639,\n 24442,\n 25981,\n 5657,\n 13,\n 82,\n 325,\n 6,\n 5769,\n 944,\n 13,\n 82,\n 325,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 598,\n 13,\n 30238,\n 7,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13,\n 37581,\n 13,\n 40290,\n 1343,\n 705,\n 1069,\n 4516,\n 3256,\n 1438,\n 11639,\n 24442,\n 25981,\n 5657,\n 13,\n 1069,\n 4516,\n 6,\n 5769,\n 944,\n 13,\n 1069,\n 4516,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 598,\n 13,\n 30238,\n 7,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13,\n 37581,\n 13,\n 40290,\n 1343,\n 705,\n 41049,\n 3256,\n 1438,\n 11639,\n 24442,\n 25981,\n 5657,\n 13,\n 41049,\n 6,\n 5769,\n 944,\n 13,\n 41049,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 598,\n 13,\n 30238,\n 7,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13,\n 37581,\n 13,\n 40290,\n 1343,\n 705,\n 10459,\n 3256,\n 1438,\n 11639,\n 24442,\n 25981,\n 5657,\n 13,\n 10459,\n 6,\n 5769,\n 944,\n 13,\n 10459,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 598,\n 13,\n 30238,\n 7,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13,\n 37581,\n 13,\n 40290,\n 13,\n 81,\n 36311,\n 10786,\n 14,\n 33809,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13,\n 37581,\n 13,\n 40290,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13,\n 37581,\n 13,\n 40290,\n 1343,\n 705,\n 90,\n 25927,\n 62,\n 312,\n 92,\n 3256,\n 1438,\n 11639,\n 24442,\n 25981,\n 5657,\n 13,\n 25927,\n 6,\n 5769,\n 944,\n 13,\n 1177,\n 8,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 598,\n 17816,\n 24442,\n 25981,\n 5657,\n 20520,\n 796,\n 23884,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 598,\n 17816,\n 24442,\n 25981,\n 5657,\n 6,\n 7131,\n 6,\n 79,\n 9945,\n 83,\n 62,\n 30001,\n 20520,\n 796,\n 334,\n 27112,\n 13,\n 12303,\n 312,\n 19,\n 22446,\n 33095,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13,\n 23569,\n 796,\n 598,\n 17816,\n 24442,\n 25981,\n 5657,\n 6,\n 7131,\n 6,\n 23569,\n 20520,\n 796,\n 3384,\n 4487,\n 13,\n 18122,\n 7,\n 1120,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13,\n 1069,\n 11755,\n 796,\n 598,\n 17816,\n 24442,\n 25981,\n 5657,\n 6,\n 7131,\n 6,\n 1069,\n 11755,\n 20520,\n 796,\n 3384,\n 4487,\n 13,\n 18122,\n 7,\n 1120,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13,\n 37805,\n 796,\n 598,\n 17816,\n 24442,\n 25981,\n 5657,\n 6,\n 7131,\n 6,\n 37805,\n 20520,\n 796,\n 3384,\n 4487,\n 13,\n 18122,\n 7,\n 3064,\n 8,\n 628,\n 220,\n 220,\n 220,\n 2488,\n 292,\n 13361,\n 952,\n 13,\n 10215,\n 28399,\n 198,\n 220,\n 220,\n 220,\n 825,\n 923,\n 7,\n 944,\n 11,\n 598,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 7253,\n 3586,\n 13,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 598,\n 13,\n 27171,\n 86,\n 3565,\n 13,\n 28463,\n 7,\n 15,\n 11,\n 14257,\n 25981,\n 5657,\n 62,\n 27171,\n 1574,\n 62,\n 69,\n 9548,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13,\n 20541,\n 62,\n 6839,\n 1424,\n 796,\n 685,\n 26639,\n 7,\n 944,\n 13,\n 1324,\n 8,\n 329,\n 18810,\n 287,\n 2116,\n 13,\n 37581,\n 13,\n 20541,\n 62,\n 6839,\n 1424,\n 60,\n 628,\n 220,\n 220,\n 220,\n 2488,\n 292,\n 13361,\n 952,\n 13,\n 10215,\n 28399,\n 198,\n 220,\n 220,\n 220,\n 825,\n 8677,\n 7,\n 944,\n 11,\n 1181,\n 11,\n 2882,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 554,\n 752,\n 31687,\n 16984,\n 5657,\n 2438,\n 284,\n 2882,\n 1767,\n 13,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 27711,\n 796,\n 7800,\n 422,\n 2116,\n 13,\n 1324,\n 13,\n 862,\n 13,\n 18594,\n 6592,\n 17,\n 13,\n 13287,\n 7,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 705,\n 24442,\n 25981,\n 5657,\n 14,\n 259,\n 752,\n 13,\n 6494,\n 3256,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 9037,\n 62,\n 6978,\n 28,\n 944,\n 13,\n 37581,\n 13,\n 40290,\n 1343,\n 705,\n 12708,\n 3256,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 50149,\n 62,\n 6371,\n 28,\n 944,\n 13,\n 37581,\n 13,\n 40290,\n 1343,\n 1181,\n 13,\n 312,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1267,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 27711,\n 796,\n 27711,\n 13,\n 268,\n 8189,\n 7,\n 5219,\n 13,\n 25927,\n 13,\n 354,\n 945,\n 316,\n 393,\n 705,\n 40477,\n 12,\n 23,\n 11537,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2882,\n 13,\n 2618,\n 796,\n 4526,\n 62,\n 33,\n 33076,\n 13,\n 7266,\n 7,\n 6494,\n 1343,\n 275,\n 6,\n 3556,\n 2618,\n 29,\n 3256,\n 2882,\n 13,\n 2618,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1441,\n 2882,\n 628,\n 220,\n 220,\n 220,\n 2488,\n 292,\n 13361,\n 952,\n 13,\n 10215,\n 28399,\n 198,\n 220,\n 220,\n 220,\n 825,\n 1570,\n 7,\n 944,\n 11,\n 2581,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 31687,\n 16984,\n 5657,\n 13,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 6284,\n 796,\n 7800,\n 422,\n 2116,\n 13,\n 9800,\n 1096,\n 7,\n 25927,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 407,\n 6284,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 5298,\n 14626,\n 1890,\n 37978,\n 3419,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2581,\n 62,\n 312,\n 796,\n 2581,\n 13,\n 15699,\n 62,\n 10951,\n 13,\n 1136,\n 10786,\n 25927,\n 62,\n 312,\n 11537,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1181,\n 796,\n 2116,\n 13,\n 23569,\n 13,\n 1136,\n 7,\n 25927,\n 62,\n 312,\n 11,\n 6045,\n 8,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2882,\n 796,\n 7800,\n 422,\n 2116,\n 13,\n 1324,\n 13,\n 862,\n 13,\n 18594,\n 6592,\n 17,\n 13,\n 13287,\n 7,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 705,\n 24442,\n 25981,\n 5657,\n 14,\n 25981,\n 5657,\n 13,\n 6494,\n 3256,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 14257,\n 25981,\n 5657,\n 28,\n 944,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1181,\n 28,\n 5219,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 9037,\n 62,\n 6978,\n 28,\n 944,\n 13,\n 37581,\n 13,\n 40290,\n 1343,\n 705,\n 12708,\n 3256,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 13043,\n 28,\n 5219,\n 290,\n 1181,\n 13,\n 6839,\n 1424,\n 393,\n 685,\n 4357,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3298,\n 62,\n 6839,\n 1424,\n 28,\n 944,\n 13,\n 20541,\n 62,\n 6839,\n 1424,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2581,\n 28,\n 5219,\n 290,\n 1181,\n 13,\n 25927,\n 393,\n 6045,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1267,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1441,\n 18261,\n 7,\n 5239,\n 28,\n 26209,\n 11,\n 2695,\n 62,\n 4906,\n 11639,\n 5239,\n 14,\n 6494,\n 11537,\n 628,\n 220,\n 220,\n 220,\n 2488,\n 292,\n 13361,\n 952,\n 13,\n 10215,\n 28399,\n 198,\n 220,\n 220,\n 220,\n 825,\n 29145,\n 7,\n 944,\n 11,\n 2581,\n 2599,\n 220,\n 1303,\n 645,\n 20402,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 19463,\n 19601,\n 526,\n 15931,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1441,\n 6407,\n 628,\n 220,\n 220,\n 220,\n 825,\n 19601,\n 7,\n 944,\n 11,\n 25439,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 7469,\n 500,\n 257,\n 19601,\n 21360,\n 13,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 7904,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 14257,\n 25981,\n 5657,\n 796,\n 27563,\n 259,\n 62,\n 24442,\n 25981,\n 5657,\n 13,\n 37233,\n 3419,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 14257,\n 25981,\n 5657,\n 13,\n 40406,\n 7,\n 1324,\n 8,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2488,\n 24442,\n 25981,\n 5657,\n 13,\n 9800,\n 1634,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 825,\n 1459,\n 62,\n 7220,\n 62,\n 271,\n 62,\n 6404,\n 2004,\n 7,\n 25927,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2836,\n 796,\n 7800,\n 422,\n 3440,\n 62,\n 29891,\n 7,\n 25927,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1441,\n 2836,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13,\n 9800,\n 1096,\n 796,\n 284,\n 62,\n 10215,\n 28399,\n 7,\n 20786,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1441,\n 25439,\n 628,\n 220,\n 220,\n 220,\n 2488,\n 292,\n 13361,\n 952,\n 13,\n 10215,\n 28399,\n 198,\n 220,\n 220,\n 220,\n 825,\n 264,\n 325,\n 7,\n 944,\n 11,\n 2581,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 50,\n 5188,\n 526,\n 15931,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2882,\n 796,\n 18261,\n 7,\n 13376,\n 28,\n 2167,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2882,\n 13,\n 11299,\n 62,\n 4906,\n 796,\n 705,\n 5239,\n 14,\n 15596,\n 12,\n 5532,\n 6,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2882,\n 13,\n 5239,\n 796,\n 10148,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 4075,\n 62,\n 25927,\n 62,\n 312,\n 796,\n 2581,\n 13,\n 18851,\n 13,\n 1136,\n 10786,\n 25927,\n 62,\n 312,\n 11537,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 5456,\n 62,\n 12957,\n 62,\n 25927,\n 62,\n 312,\n 796,\n 965,\n 7,\n 25927,\n 13,\n 50145,\n 13,\n 1136,\n 10786,\n 5956,\n 12,\n 9237,\n 12,\n 7390,\n 3256,\n 657,\n 4008,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 2116,\n 13,\n 23569,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 938,\n 62,\n 25927,\n 62,\n 312,\n 796,\n 1306,\n 7,\n 260,\n 690,\n 276,\n 7,\n 944,\n 13,\n 23569,\n 4008,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 407,\n 938,\n 62,\n 25927,\n 62,\n 312,\n 6624,\n 5456,\n 62,\n 12957,\n 62,\n 25927,\n 62,\n 312,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1366,\n 796,\n 17635,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 329,\n 4808,\n 312,\n 287,\n 17687,\n 7,\n 944,\n 13,\n 23569,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1366,\n 13,\n 33295,\n 26933,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 4808,\n 312,\n 11,\n 2116,\n 13,\n 23569,\n 29795,\n 312,\n 4083,\n 17752,\n 11,\n 705,\n 5275,\n 6,\n 611,\n 4075,\n 62,\n 25927,\n 62,\n 312,\n 6624,\n 4808,\n 312,\n 2073,\n 10148,\n 12962,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 1366,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2882,\n 13,\n 5239,\n 796,\n 471,\n 62,\n 50,\n 5188,\n 62,\n 4537,\n 56,\n 35613,\n 13,\n 18982,\n 7,\n 12957,\n 62,\n 25927,\n 62,\n 312,\n 11,\n 33918,\n 13,\n 67,\n 8142,\n 7,\n 7890,\n 4008,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1441,\n 2882,\n 628,\n 220,\n 220,\n 220,\n 2488,\n 292,\n 13361,\n 952,\n 13,\n 10215,\n 28399,\n 628,\n 220,\n 220,\n 220,\n 2488,\n 292,\n 13361,\n 952,\n 13,\n 10215,\n 28399,\n 628,\n 220,\n 220,\n 220,\n 2488,\n 292,\n 13361,\n 952,\n 13,\n 10215,\n 28399,\n 628,\n 198,\n 4871,\n 31687,\n 9012,\n 25,\n 628,\n 220,\n 220,\n 220,\n 37227,\n 9363,\n 14257,\n 1181,\n 13,\n 37227,\n 628,\n 220,\n 220,\n 220,\n 825,\n 11593,\n 15003,\n 834,\n 7,\n 944,\n 11,\n 598,\n 11,\n 2581,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 22658,\n 262,\n 42287,\n 526,\n 15931,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13,\n 25927,\n 796,\n 2581,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13,\n 13376,\n 796,\n 939,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13,\n 6839,\n 1424,\n 796,\n 685,\n 26639,\n 7,\n 1324,\n 11,\n 2581,\n 8,\n 329,\n 18810,\n 287,\n 598,\n 13,\n 862,\n 13,\n 24442,\n 25981,\n 5657,\n 13,\n 37581,\n 13,\n 6839,\n 1424,\n 60,\n 628,\n 220,\n 220,\n 220,\n 2488,\n 26745,\n 198,\n 220,\n 220,\n 220,\n 825,\n 4686,\n 7,\n 944,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 13615,\n 1181,\n 4522,\n 526,\n 15931,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1441,\n 965,\n 7,\n 312,\n 7,\n 944,\n 4008,\n 628,\n 220,\n 220,\n 220,\n 2488,\n 26745,\n 198,\n 220,\n 220,\n 220,\n 825,\n 33918,\n 7,\n 944,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 13615,\n 19449,\n 526,\n 15931,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1441,\n 1391,\n 6,\n 24396,\n 10354,\n 2116,\n 13,\n 25927,\n 13,\n 24396,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 705,\n 6978,\n 10354,\n 2116,\n 13,\n 25927,\n 13,\n 6978,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 705,\n 15952,\n 1326,\n 10354,\n 705,\n 4023,\n 3256,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 705,\n 13376,\n 62,\n 8189,\n 10354,\n 2116,\n 13,\n 13376,\n 92,\n 628,\n 220,\n 220,\n 220,\n 2488,\n 292,\n 13361,\n 952,\n 13,\n 10215,\n 28399,\n 198,\n 220,\n 220,\n 220,\n 825,\n 1429,\n 62,\n 26209,\n 7,\n 944,\n 11,\n 2882,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 18709,\n 2882,\n 526,\n 15931,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 329,\n 6103,\n 287,\n 2116,\n 13,\n 6839,\n 1424,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 7800,\n 422,\n 6103,\n 13,\n 14681,\n 62,\n 26209,\n 7,\n 26209,\n 8,\n 198\n]"},"ratio_char_token":{"kind":"number","value":2.22282099343955,"string":"2.222821"},"token_count":{"kind":"number","value":4268,"string":"4,268"}}},{"rowIdx":4239,"cells":{"content":{"kind":"string","value":"\nimport numpy as np\nfrom scipy import stats\nimport statsmodels.sandbox.stats.runs as runs\n\n# 18/21 output statistics fully implemented from MATLAB, the other three are either from complex helper functions or MATLAB functions that don't transfer well\n\ndef PH_Walker(y, walkerRule='prop', walkerParams=np.array([])):\n \"\"\"\n\n PH_Walker simulates a hypothetical walker moving through the time domain\n\n the hypothetical particle (or 'walker') moves in response to values of the time series at each point\n\n Outputs from this operation are summaries of the walkers motion, and comparisons of it to the original time series\n\n :param y: the input time series\n :param walkerRule: the kinematic rule by which the walker moves in response to the time series over time\n (i) 'prop': the walker narrows the gap between its value and that of the time series by a given proportion p\n\n (ii) 'biasprop': the walker is biased to move more in one direction; when it is being pushed up by the time\n series, it narrows the gap by a proportion p_{up}, and when it is being pushed down by the\n time series it narrows the gap by a (potentially different) proportion p_{down}. walkerParams = [pup,pdown]\n\n (iii) 'momentum': the walker moves as if it has mass m and inertia\n from the previous time step and the time series acts\n as a force altering its motion in a classical\n Newtonian dynamics framework. [walkerParams = m], the mass.\n\n (iv) 'runningvar': the walker moves with inertia as above, but\n its values are also adjusted so as to match the local\n variance of time series by a multiplicative factor.\n walkerParams = [m,wl], where m is the inertial mass and wl\n is the window length.\n\n :param walkerParams: the parameters for the specified walker, explained above\n\n :return: include the mean, spread, maximum, minimum, and autocorrelation of\n the walker's trajectory, the number of crossings between the walker and the\n original time series, the ratio or difference of some basic summary statistics\n between the original time series and the walker, an Ansari-Bradley test\n comparing the distributions of the walker and original time series, and\n various statistics summarizing properties of the residuals between the\n walker's trajectory and the original time series.\n\n \"\"\"\n\n # ----------------------------------------------------------------------------------------------------------------------------------\n # PRELIMINARIES\n #----------------------------------------------------------------------------------------------------------------------------------\n\n N = len(y)\n\n #----------------------------------------------------------------------------------------------------------------------------------\n # CHECK INPUTS\n #----------------------------------------------------------------------------------------------------------------------------------\n if walkerRule == 'runningvar':\n walkerParams = [1.5, 50]\n if (len(walkerParams) == 0):\n\n if walkerRule == 'prop':\n walkerParams = np.array([0.5])\n if walkerRule == 'biasprop':\n walkerParams = np.array([0.1, 0.2])\n if walkerRule == 'momentum':\n walkerParams = np.array([2])\n if walkerRule == 'runningvar':\n walkerParams = [1.5, 50]\n\n #----------------------------------------------------------------------------------------------------------------------------------\n # (1) WALK\n #----------------------------------------------------------------------------------------------------------------------------------\n\n\n w = np.zeros(N)\n\n if walkerRule == 'prop':\n\n # walker starts at zero and narrows the gap between its position\n # and the time series value at that point by the proportion given\n # in walkerParams, to give the value at the subsequent time step\n if isinstance(walkerParams,list):\n walkerParams = walkerParams[0]\n p = walkerParams\n w[0] = 0\n\n for i in range(1, N):\n w[i] = w[i-1] + p*(y[i-1]-w[i-1])\n\n\n elif walkerRule == 'biasprop':\n # walker is biased in one or the other direction (i.e., prefers to\n # go up, or down). Requires a vector of inputs: [p_up, p_down]\n\n pup = walkerParams[0]\n pdown = walkerParams[0]\n\n w[0] = 0\n\n for i in range (1, N):\n if y[i] > y[i-1]:\n w[i] = w[i-1] + pup*(y[i-1]-w[i-1])\n\n else :\n w[i] = w[i-1] + pdown*(y[i-1]-w[i-1])\n\n elif walkerRule == 'momentum':\n # walker moves as if it had inertia from the previous time step,\n # i.e., it 'wants' to move the same amount; the time series acts as\n # a force changing its motion\n\n m = walkerParams[0] # inertial mass\n\n w[0] = y[0]\n w[1] = y[1]\n\n for i in range(2, N):\n w_inert = w[i-1] + (w[i-1]-w[i-2])\n w[i] = w_inert + (y[i] - w_inert)/m # dissipative term\n #equation of motion (s-s_0 = ut + F/m*t^2)\n #where the 'force' is F is the change in the original time series at the point\n\n elif walkerRule == 'runningvar':\n\n m = walkerParams[0]\n wl = walkerParams[1]\n\n w[0] = y[0]\n w[1] = y[1]\n\n for i in range(2, N):\n w_inert = w[i-1] + (w[i-1]-w[i-2])\n w_mom = w_inert + (y[i] - w_inert)/m #dissipative term from time series\n\n if i > wl:\n w[i] = w_mom * (np.std(y[(i-wl):i]))/np.std(w[(i-wl):i])\n\n else:\n w[i] = w_mom\n\n\n else :\n\n print(\"Error: Unknown method: \" + walkerRule + \" for simulating walker on the time series\")\n\n\n #----------------------------------------------------------------------------------------------------------------------------------\n # (2) STATISITICS ON THE WALK\n #----------------------------------------------------------------------------------------------------------------------------------\n\n out = {} # dictionary for storing variables\n\n # (i) The walk itself -------------------------------------------------------------------------------------------\n\n out['w_mean'] = np.mean(w)\n out['w_median'] = np.median(w)\n out['w_std'] = np.std(w)\n out['w_ac1'] = CO_AutoCorr(w, 1, method='timedomainstat') # this function call in MATLAB uses method='Fourier', but we don't have that case implemented yet in autoCorr, however this seems to output the same thing\n out['w_ac2'] = CO_AutoCorr(w, 2, method='timedomainstat')\n out['w_tau'] = CO_FirstZero(w, 'ac')\n out['w_min'] = np.min(w)\n out['w_max'] = np.max(w)\n out['propzcross'] = sum( np.multiply( w[0:(len(w)-2)], w[1:(len(w)-1)] ) < 0) / (N-1) # np.multiply performs elementwise multiplication like matlab .*\n # differences between the walk at signal\n\n # (ii) Differences between the walk at signal -------------------------------------------------------------------\n\n out['sw_meanabsdiff'] = np.mean(np.abs(y-w))\n out['sw_taudiff'] = CO_FirstZero(y, 'ac') - CO_FirstZero(w, 'ac')\n out['sw_stdrat'] = np.std(w)/np.std(y) # will be thse same as w_std for z-scored signal\n out['sw_ac1rat'] = out['w_ac1']/CO_AutoCorr(y, 1)\n out['sw_minrat'] = min(w)/min(y)\n out['sw_maxrat'] = max(w)/max(y)\n out['sw_propcross'] = sum(np.multiply( w[0:(len(w)-1)] - y[0:(len(y)-1)] , w[1:(len(w))]-y[1:(len(y))]) < 0 )/(N-1) #np.multiply performs elementwise multiplication like matlab .*\n\n ansari = stats.ansari(w, y)\n out['sw_ansarib_pval'] = ansari[1]\n\n\n # r = np.linspace( np.min(np.min(y), np.min(w)), np.max(np.max(y), np.max(w)), 200 )\n # dy = stats.gaussian_kde(y, r)\n\n\n # (iii) looking at residuals between time series and walker\n\n res = w-y\n\n # CLOSEST FUNCTION TO MATLAB RUNSTEST, found in statsmodels.sandbox.stats.runs\n # runstest = runs.runstest_2samp(res, groups=2)\n # out['res_runstest'] = runstest\n\n out['res_acl'] = CO_AutoCorr(res, lag=1)\n\n\n return out\n"},"input_ids":{"kind":"list like","value":[198,11748,299,32152,355,45941,198,6738,629,541,88,1330,9756,198,11748,9756,27530,13,38142,3524,13,34242,13,48381,355,4539,198,198,2,1248,14,2481,5072,7869,3938,9177,422,36775,48780,11,262,584,1115,389,2035,422,3716,31904,5499,393,36775,48780,5499,326,836,470,4351,880,198,198,4299,9370,62,39950,7,88,11,2513,263,31929,11639,22930,3256,2513,263,10044,4105,28,37659,13,18747,26933,12962,2599,198,220,220,220,37227,628,220,220,220,9370,62,39950,985,15968,257,25345,2513,263,3867,832,262,640,7386,628,220,220,220,262,25345,18758,357,273,705,20783,11537,6100,287,2882,284,3815,286,262,640,2168,379,1123,966,628,220,220,220,25235,82,422,428,4905,389,30114,3166,286,262,2513,364,6268,11,290,17909,286,340,284,262,2656,640,2168,628,220,220,220,1058,17143,331,25,262,5128,640,2168,198,220,220,220,1058,17143,2513,263,31929,25,262,479,7749,1512,3896,416,543,262,2513,263,6100,287,2882,284,262,640,2168,625,640,198,220,220,220,220,220,220,220,220,220,220,220,357,72,8,705,22930,10354,262,2513,263,7135,82,262,7625,1022,663,1988,290,326,286,262,640,2168,416,257,1813,9823,279,628,220,220,220,220,220,220,220,220,220,220,220,357,4178,8,705,65,4448,22930,10354,262,2513,263,318,21925,284,1445,517,287,530,4571,26,618,340,318,852,7121,510,416,262,640,198,220,220,220,220,220,220,220,220,220,220,220,2168,11,340,7135,82,262,7625,416,257,9823,279,23330,929,5512,290,618,340,318,852,7121,866,416,262,198,220,220,220,220,220,220,220,220,220,220,220,640,2168,340,7135,82,262,7625,416,257,357,13059,3746,1180,8,9823,279,23330,2902,27422,2513,263,10044,4105,796,685,79,929,11,79,2902,60,628,220,220,220,220,220,220,220,220,220,220,220,357,15479,8,705,32542,298,388,10354,262,2513,263,6100,355,611,340,468,2347,285,290,48482,198,220,220,220,220,220,220,220,220,220,220,220,220,422,262,2180,640,2239,290,262,640,2168,6529,198,220,220,220,220,220,220,220,220,220,220,220,220,355,257,2700,29057,663,6268,287,257,15993,198,220,220,220,220,220,220,220,220,220,220,220,220,17321,666,17262,9355,13,685,20783,10044,4105,796,285,4357,262,2347,13,628,220,220,220,220,220,220,220,220,220,220,220,220,357,452,8,705,20270,7785,10354,262,2513,263,6100,351,48482,355,2029,11,475,198,220,220,220,220,220,220,220,220,220,220,220,220,663,3815,389,635,12328,523,355,284,2872,262,1957,198,220,220,220,220,220,220,220,220,220,220,220,220,24198,286,640,2168,416,257,15082,43058,5766,13,198,220,220,220,220,220,220,220,220,220,220,220,220,2513,263,10044,4105,796,685,76,11,40989,4357,810,285,318,262,29824,498,2347,290,266,75,198,220,220,220,220,220,220,220,220,220,220,220,220,318,262,4324,4129,13,628,220,220,220,1058,17143,2513,263,10044,4105,25,262,10007,329,262,7368,2513,263,11,4893,2029,628,220,220,220,1058,7783,25,2291,262,1612,11,4104,11,5415,11,5288,11,290,1960,420,273,49501,286,198,220,220,220,220,220,220,220,220,220,220,220,262,2513,263,338,22942,11,262,1271,286,41930,1022,262,2513,263,290,262,198,220,220,220,220,220,220,220,220,220,220,220,2656,640,2168,11,262,8064,393,3580,286,617,4096,10638,7869,198,220,220,220,220,220,220,220,220,220,220,220,1022,262,2656,640,2168,290,262,2513,263,11,281,28038,2743,12,30805,1636,1332,198,220,220,220,220,220,220,220,220,220,220,220,14176,262,24570,286,262,2513,263,290,2656,640,2168,11,290,198,220,220,220,220,220,220,220,220,220,220,220,2972,7869,15676,2890,6608,286,262,29598,82,1022,262,198,220,220,220,220,220,220,220,220,220,220,220,2513,263,338,22942,290,262,2656,640,2168,13,628,220,220,220,37227,628,220,220,220,1303,16529,10097,438,198,220,220,220,1303,350,16448,3955,1268,1503,11015,198,220,220,220,1303,10097,10097,438,628,220,220,220,399,796,18896,7,88,8,628,220,220,220,1303,10097,10097,438,198,220,220,220,1303,5870,25171,3268,30076,50,198,220,220,220,1303,10097,10097,438,198,220,220,220,611,2513,263,31929,6624,705,20270,7785,10354,198,220,220,220,220,220,220,220,2513,263,10044,4105,796,685,16,13,20,11,2026,60,198,220,220,220,611,357,11925,7,20783,10044,4105,8,6624,657,2599,628,220,220,220,220,220,220,220,611,2513,263,31929,6624,705,22930,10354,198,220,220,220,220,220,220,220,220,220,220,220,2513,263,10044,4105,796,45941,13,18747,26933,15,13,20,12962,198,220,220,220,220,220,220,220,611,2513,263,31929,6624,705,65,4448,22930,10354,198,220,220,220,220,220,220,220,220,220,220,220,2513,263,10044,4105,796,45941,13,18747,26933,15,13,16,11,657,13,17,12962,198,220,220,220,220,220,220,220,611,2513,263,31929,6624,705,32542,298,388,10354,198,220,220,220,220,220,220,220,220,220,220,220,2513,263,10044,4105,796,45941,13,18747,26933,17,12962,198,220,220,220,220,220,220,220,611,2513,263,31929,6624,705,20270,7785,10354,198,220,220,220,220,220,220,220,220,220,220,220,2513,263,10044,4105,796,685,16,13,20,11,2026,60,628,220,220,220,1303,10097,10097,438,198,220,220,220,1303,357,16,8,370,28082,198,220,220,220,1303,10097,10097,438,628,198,220,220,220,266,796,45941,13,9107,418,7,45,8,628,220,220,220,611,2513,263,31929,6624,705,22930,10354,628,220,220,220,220,220,220,220,1303,2513,263,4940,379,6632,290,7135,82,262,7625,1022,663,2292,198,220,220,220,220,220,220,220,1303,290,262,640,2168,1988,379,326,966,416,262,9823,1813,198,220,220,220,220,220,220,220,1303,287,2513,263,10044,4105,11,284,1577,262,1988,379,262,8840,640,2239,198,220,220,220,220,220,220,220,611,318,39098,7,20783,10044,4105,11,4868,2599,198,220,220,220,220,220,220,220,220,220,220,220,2513,263,10044,4105,796,2513,263,10044,4105,58,15,60,198,220,220,220,220,220,220,220,279,796,2513,263,10044,4105,198,220,220,220,220,220,220,220,266,58,15,60,796,657,628,220,220,220,220,220,220,220,329,1312,287,2837,7,16,11,399,2599,198,220,220,220,220,220,220,220,220,220,220,220,266,58,72,60,796,266,58,72,12,16,60,1343,279,9,7,88,58,72,12,16,45297,86,58,72,12,16,12962,628,198,220,220,220,1288,361,2513,263,31929,6624,705,65,4448,22930,10354,198,220,220,220,220,220,220,220,1303,2513,263,318,21925,287,530,393,262,584,4571,357,72,13,68,1539,26237,284,198,220,220,220,220,220,220,220,1303,467,510,11,393,866,737,26848,257,15879,286,17311,25,685,79,62,929,11,279,62,2902,60,628,220,220,220,220,220,220,220,15552,796,2513,263,10044,4105,58,15,60,198,220,220,220,220,220,220,220,279,2902,796,2513,263,10044,4105,58,15,60,628,220,220,220,220,220,220,220,266,58,15,60,796,657,628,220,220,220,220,220,220,220,329,1312,287,2837,357,16,11,399,2599,198,220,220,220,220,220,220,220,220,220,220,220,611,331,58,72,60,1875,331,58,72,12,16,5974,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,266,58,72,60,796,266,58,72,12,16,60,1343,15552,9,7,88,58,72,12,16,45297,86,58,72,12,16,12962,628,220,220,220,220,220,220,220,220,220,220,220,2073,1058,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,266,58,72,60,796,266,58,72,12,16,60,1343,279,2902,9,7,88,58,72,12,16,45297,86,58,72,12,16,12962,628,220,220,220,1288,361,2513,263,31929,6624,705,32542,298,388,10354,198,220,220,220,220,220,220,220,1303,2513,263,6100,355,611,340,550,48482,422,262,2180,640,2239,11,198,220,220,220,220,220,220,220,1303,1312,13,68,1539,340,705,86,1187,6,284,1445,262,976,2033,26,262,640,2168,6529,355,198,220,220,220,220,220,220,220,1303,257,2700,5609,663,6268,628,220,220,220,220,220,220,220,285,796,2513,263,10044,4105,58,15,60,1303,29824,498,2347,628,220,220,220,220,220,220,220,266,58,15,60,796,331,58,15,60,198,220,220,220,220,220,220,220,266,58,16,60,796,331,58,16,60,628,220,220,220,220,220,220,220,329,1312,287,2837,7,17,11,399,2599,198,220,220,220,220,220,220,220,220,220,220,220,266,62,259,861,796,266,58,72,12,16,60,1343,357,86,58,72,12,16,45297,86,58,72,12,17,12962,198,220,220,220,220,220,220,220,220,220,220,220,266,58,72,60,796,266,62,259,861,1343,357,88,58,72,60,532,266,62,259,861,20679,76,1303,32008,876,3381,198,220,220,220,220,220,220,220,220,220,220,220,1303,4853,341,286,6268,357,82,12,82,62,15,796,3384,1343,376,14,76,9,83,61,17,8,198,220,220,220,220,220,220,220,220,220,220,220,1303,3003,262,705,3174,6,318,376,318,262,1487,287,262,2656,640,2168,379,262,966,628,220,220,220,1288,361,2513,263,31929,6624,705,20270,7785,10354,628,220,220,220,220,220,220,220,285,796,2513,263,10044,4105,58,15,60,198,220,220,220,220,220,220,220,266,75,796,2513,263,10044,4105,58,16,60,628,220,220,220,220,220,220,220,266,58,15,60,796,331,58,15,60,198,220,220,220,220,220,220,220,266,58,16,60,796,331,58,16,60,628,220,220,220,220,220,220,220,329,1312,287,2837,7,17,11,399,2599,198,220,220,220,220,220,220,220,220,220,220,220,266,62,259,861,796,266,58,72,12,16,60,1343,357,86,58,72,12,16,45297,86,58,72,12,17,12962,198,220,220,220,220,220,220,220,220,220,220,220,266,62,32542,796,266,62,259,861,1343,357,88,58,72,60,532,266,62,259,861,20679,76,1303,67,747,541,876,3381,422,640,2168,628,220,220,220,220,220,220,220,220,220,220,220,611,1312,1875,266,75,25,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,266,58,72,60,796,266,62,32542,1635,357,37659,13,19282,7,88,58,7,72,12,40989,2599,72,60,4008,14,37659,13,19282,7,86,58,7,72,12,40989,2599,72,12962,628,220,220,220,220,220,220,220,220,220,220,220,2073,25,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,266,58,72,60,796,266,62,32542,628,198,220,220,220,2073,1058,628,220,220,220,220,220,220,220,3601,7203,12331,25,16185,2446,25,366,1343,2513,263,31929,1343,366,329,985,8306,2513,263,319,262,640,2168,4943,628,198,220,220,220,1303,10097,10097,438,198,220,220,220,1303,357,17,8,15486,1797,2043,19505,6177,3336,370,28082,198,220,220,220,1303,10097,10097,438,628,220,220,220,503,796,23884,1303,22155,329,23069,9633,628,220,220,220,1303,357,72,8,383,2513,2346,16529,22369,6329,628,220,220,220,503,17816,86,62,32604,20520,796,45941,13,32604,7,86,8,198,220,220,220,503,17816,86,62,1150,666,20520,796,45941,13,1150,666,7,86,8,198,220,220,220,503,17816,86,62,19282,20520,796,45941,13,19282,7,86,8,198,220,220,220,503,17816,86,62,330,16,20520,796,7375,62,27722,10606,81,7,86,11,352,11,2446,11639,16514,3836,391,14269,11537,1303,428,2163,869,287,36775,48780,3544,2446,11639,37,280,5277,3256,475,356,836,470,423,326,1339,9177,1865,287,8295,10606,81,11,2158,428,2331,284,5072,262,976,1517,198,220,220,220,503,17816,86,62,330,17,20520,796,7375,62,27722,10606,81,7,86,11,362,11,2446,11639,16514,3836,391,14269,11537,198,220,220,220,503,17816,86,62,83,559,20520,796,7375,62,5962,28667,7,86,11,705,330,11537,198,220,220,220,503,17816,86,62,1084,20520,796,45941,13,1084,7,86,8,198,220,220,220,503,17816,86,62,9806,20520,796,45941,13,9806,7,86,8,198,220,220,220,503,17816,22930,89,19692,20520,796,2160,7,45941,13,16680,541,306,7,266,58,15,37498,11925,7,86,13219,17,8,4357,266,58,16,37498,11925,7,86,13219,16,15437,1267,1279,657,8,1220,357,45,12,16,8,1303,45941,13,16680,541,306,17706,5002,3083,48473,588,2603,23912,764,9,198,220,220,220,1303,5400,1022,262,2513,379,6737,628,220,220,220,1303,357,4178,8,41937,1022,262,2513,379,6737,16529,6329,628,220,220,220,503,17816,2032,62,32604,8937,26069,20520,796,45941,13,32604,7,37659,13,8937,7,88,12,86,4008,198,220,220,220,503,17816,2032,62,83,3885,733,20520,796,7375,62,5962,28667,7,88,11,705,330,11537,532,7375,62,5962,28667,7,86,11,705,330,11537,198,220,220,220,503,17816,2032,62,301,7109,265,20520,796,45941,13,19282,7,86,20679,37659,13,19282,7,88,8,1303,481,307,294,325,976,355,266,62,19282,329,1976,12,1416,1850,6737,198,220,220,220,503,17816,2032,62,330,16,10366,20520,796,503,17816,86,62,330,16,20520,14,8220,62,27722,10606,81,7,88,11,352,8,198,220,220,220,503,17816,2032,62,1084,10366,20520,796,949,7,86,20679,1084,7,88,8,198,220,220,220,503,17816,2032,62,9806,10366,20520,796,3509,7,86,20679,9806,7,88,8,198,220,220,220,503,17816,2032,62,1676,14751,1214,20520,796,2160,7,37659,13,16680,541,306,7,266,58,15,37498,11925,7,86,13219,16,15437,532,331,58,15,37498,11925,7,88,13219,16,15437,837,266,58,16,37498,11925,7,86,4008,45297,88,58,16,37498,11925,7,88,4008,12962,1279,657,1267,29006,45,12,16,8,1303,37659,13,16680,541,306,17706,5002,3083,48473,588,2603,23912,764,9,628,220,220,220,9093,2743,796,9756,13,504,2743,7,86,11,331,8,198,220,220,220,503,17816,2032,62,504,283,571,62,79,2100,20520,796,9093,2743,58,16,60,628,198,220,220,220,1303,374,796,45941,13,21602,10223,7,45941,13,1084,7,37659,13,1084,7,88,828,45941,13,1084,7,86,36911,45941,13,9806,7,37659,13,9806,7,88,828,45941,13,9806,7,86,36911,939,1267,198,220,220,220,1303,20268,796,9756,13,4908,31562,62,74,2934,7,88,11,374,8,628,198,220,220,220,1303,357,15479,8,2045,379,29598,82,1022,640,2168,290,2513,263,628,220,220,220,581,796,266,12,88,628,220,220,220,1303,7852,2640,6465,29397,4177,2849,5390,36775,48780,32494,2257,6465,11,1043,287,9756,27530,13,38142,3524,13,34242,13,48381,198,220,220,220,1303,1057,301,395,796,4539,13,5143,301,395,62,17,82,696,7,411,11,2628,28,17,8,198,220,220,220,1303,503,17816,411,62,5143,301,395,20520,796,1057,301,395,628,220,220,220,503,17816,411,62,37779,20520,796,7375,62,27722,10606,81,7,411,11,19470,28,16,8,628,198,220,220,220,1441,503,198],"string":"[\n 198,\n 11748,\n 299,\n 32152,\n 355,\n 45941,\n 198,\n 6738,\n 629,\n 541,\n 88,\n 1330,\n 9756,\n 198,\n 11748,\n 9756,\n 27530,\n 13,\n 38142,\n 3524,\n 13,\n 34242,\n 13,\n 48381,\n 355,\n 4539,\n 198,\n 198,\n 2,\n 1248,\n 14,\n 2481,\n 5072,\n 7869,\n 3938,\n 9177,\n 422,\n 36775,\n 48780,\n 11,\n 262,\n 584,\n 1115,\n 389,\n 2035,\n 422,\n 3716,\n 31904,\n 5499,\n 393,\n 36775,\n 48780,\n 5499,\n 326,\n 836,\n 470,\n 4351,\n 880,\n 198,\n 198,\n 4299,\n 9370,\n 62,\n 39950,\n 7,\n 88,\n 11,\n 2513,\n 263,\n 31929,\n 11639,\n 22930,\n 3256,\n 2513,\n 263,\n 10044,\n 4105,\n 28,\n 37659,\n 13,\n 18747,\n 26933,\n 12962,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 628,\n 220,\n 220,\n 220,\n 9370,\n 62,\n 39950,\n 985,\n 15968,\n 257,\n 25345,\n 2513,\n 263,\n 3867,\n 832,\n 262,\n 640,\n 7386,\n 628,\n 220,\n 220,\n 220,\n 262,\n 25345,\n 18758,\n 357,\n 273,\n 705,\n 20783,\n 11537,\n 6100,\n 287,\n 2882,\n 284,\n 3815,\n 286,\n 262,\n 640,\n 2168,\n 379,\n 1123,\n 966,\n 628,\n 220,\n 220,\n 220,\n 25235,\n 82,\n 422,\n 428,\n 4905,\n 389,\n 30114,\n 3166,\n 286,\n 262,\n 2513,\n 364,\n 6268,\n 11,\n 290,\n 17909,\n 286,\n 340,\n 284,\n 262,\n 2656,\n 640,\n 2168,\n 628,\n 220,\n 220,\n 220,\n 1058,\n 17143,\n 331,\n 25,\n 262,\n 5128,\n 640,\n 2168,\n 198,\n 220,\n 220,\n 220,\n 1058,\n 17143,\n 2513,\n 263,\n 31929,\n 25,\n 262,\n 479,\n 7749,\n 1512,\n 3896,\n 416,\n 543,\n 262,\n 2513,\n 263,\n 6100,\n 287,\n 2882,\n 284,\n 262,\n 640,\n 2168,\n 625,\n 640,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 357,\n 72,\n 8,\n 705,\n 22930,\n 10354,\n 262,\n 2513,\n 263,\n 7135,\n 82,\n 262,\n 7625,\n 1022,\n 663,\n 1988,\n 290,\n 326,\n 286,\n 262,\n 640,\n 2168,\n 416,\n 257,\n 1813,\n 9823,\n 279,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 357,\n 4178,\n 8,\n 705,\n 65,\n 4448,\n 22930,\n 10354,\n 262,\n 2513,\n 263,\n 318,\n 21925,\n 284,\n 1445,\n 517,\n 287,\n 530,\n 4571,\n 26,\n 618,\n 340,\n 318,\n 852,\n 7121,\n 510,\n 416,\n 262,\n 640,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2168,\n 11,\n 340,\n 7135,\n 82,\n 262,\n 7625,\n 416,\n 257,\n 9823,\n 279,\n 23330,\n 929,\n 5512,\n 290,\n 618,\n 340,\n 318,\n 852,\n 7121,\n 866,\n 416,\n 262,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 640,\n 2168,\n 340,\n 7135,\n 82,\n 262,\n 7625,\n 416,\n 257,\n 357,\n 13059,\n 3746,\n 1180,\n 8,\n 9823,\n 279,\n 23330,\n 2902,\n 27422,\n 2513,\n 263,\n 10044,\n 4105,\n 796,\n 685,\n 79,\n 929,\n 11,\n 79,\n 2902,\n 60,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 357,\n 15479,\n 8,\n 705,\n 32542,\n 298,\n 388,\n 10354,\n 262,\n 2513,\n 263,\n 6100,\n 355,\n 611,\n 340,\n 468,\n 2347,\n 285,\n 290,\n 48482,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 422,\n 262,\n 2180,\n 640,\n 2239,\n 290,\n 262,\n 640,\n 2168,\n 6529,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 355,\n 257,\n 2700,\n 29057,\n 663,\n 6268,\n 287,\n 257,\n 15993,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 17321,\n 666,\n 17262,\n 9355,\n 13,\n 685,\n 20783,\n 10044,\n 4105,\n 796,\n 285,\n 4357,\n 262,\n 2347,\n 13,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 357,\n 452,\n 8,\n 705,\n 20270,\n 7785,\n 10354,\n 262,\n 2513,\n 263,\n 6100,\n 351,\n 48482,\n 355,\n 2029,\n 11,\n 475,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 663,\n 3815,\n 389,\n 635,\n 12328,\n 523,\n 355,\n 284,\n 2872,\n 262,\n 1957,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 24198,\n 286,\n 640,\n 2168,\n 416,\n 257,\n 15082,\n 43058,\n 5766,\n 13,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2513,\n 263,\n 10044,\n 4105,\n 796,\n 685,\n 76,\n 11,\n 40989,\n 4357,\n 810,\n 285,\n 318,\n 262,\n 29824,\n 498,\n 2347,\n 290,\n 266,\n 75,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 318,\n 262,\n 4324,\n 4129,\n 13,\n 628,\n 220,\n 220,\n 220,\n 1058,\n 17143,\n 2513,\n 263,\n 10044,\n 4105,\n 25,\n 262,\n 10007,\n 329,\n 262,\n 7368,\n 2513,\n 263,\n 11,\n 4893,\n 2029,\n 628,\n 220,\n 220,\n 220,\n 1058,\n 7783,\n 25,\n 2291,\n 262,\n 1612,\n 11,\n 4104,\n 11,\n 5415,\n 11,\n 5288,\n 11,\n 290,\n 1960,\n 420,\n 273,\n 49501,\n 286,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 262,\n 2513,\n 263,\n 338,\n 22942,\n 11,\n 262,\n 1271,\n 286,\n 41930,\n 1022,\n 262,\n 2513,\n 263,\n 290,\n 262,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2656,\n 640,\n 2168,\n 11,\n 262,\n 8064,\n 393,\n 3580,\n 286,\n 617,\n 4096,\n 10638,\n 7869,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1022,\n 262,\n 2656,\n 640,\n 2168,\n 290,\n 262,\n 2513,\n 263,\n 11,\n 281,\n 28038,\n 2743,\n 12,\n 30805,\n 1636,\n 1332,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 14176,\n 262,\n 24570,\n 286,\n 262,\n 2513,\n 263,\n 290,\n 2656,\n 640,\n 2168,\n 11,\n 290,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2972,\n 7869,\n 15676,\n 2890,\n 6608,\n 286,\n 262,\n 29598,\n 82,\n 1022,\n 262,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2513,\n 263,\n 338,\n 22942,\n 290,\n 262,\n 2656,\n 640,\n 2168,\n 13,\n 628,\n 220,\n 220,\n 220,\n 37227,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 16529,\n 10097,\n 438,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 350,\n 16448,\n 3955,\n 1268,\n 1503,\n 11015,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 10097,\n 10097,\n 438,\n 628,\n 220,\n 220,\n 220,\n 399,\n 796,\n 18896,\n 7,\n 88,\n 8,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 10097,\n 10097,\n 438,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 5870,\n 25171,\n 3268,\n 30076,\n 50,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 10097,\n 10097,\n 438,\n 198,\n 220,\n 220,\n 220,\n 611,\n 2513,\n 263,\n 31929,\n 6624,\n 705,\n 20270,\n 7785,\n 10354,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2513,\n 263,\n 10044,\n 4105,\n 796,\n 685,\n 16,\n 13,\n 20,\n 11,\n 2026,\n 60,\n 198,\n 220,\n 220,\n 220,\n 611,\n 357,\n 11925,\n 7,\n 20783,\n 10044,\n 4105,\n 8,\n 6624,\n 657,\n 2599,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 2513,\n 263,\n 31929,\n 6624,\n 705,\n 22930,\n 10354,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2513,\n 263,\n 10044,\n 4105,\n 796,\n 45941,\n 13,\n 18747,\n 26933,\n 15,\n 13,\n 20,\n 12962,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 2513,\n 263,\n 31929,\n 6624,\n 705,\n 65,\n 4448,\n 22930,\n 10354,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2513,\n 263,\n 10044,\n 4105,\n 796,\n 45941,\n 13,\n 18747,\n 26933,\n 15,\n 13,\n 16,\n 11,\n 657,\n 13,\n 17,\n 12962,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 2513,\n 263,\n 31929,\n 6624,\n 705,\n 32542,\n 298,\n 388,\n 10354,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2513,\n 263,\n 10044,\n 4105,\n 796,\n 45941,\n 13,\n 18747,\n 26933,\n 17,\n 12962,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 2513,\n 263,\n 31929,\n 6624,\n 705,\n 20270,\n 7785,\n 10354,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2513,\n 263,\n 10044,\n 4105,\n 796,\n 685,\n 16,\n 13,\n 20,\n 11,\n 2026,\n 60,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 10097,\n 10097,\n 438,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 357,\n 16,\n 8,\n 370,\n 28082,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 10097,\n 10097,\n 438,\n 628,\n 198,\n 220,\n 220,\n 220,\n 266,\n 796,\n 45941,\n 13,\n 9107,\n 418,\n 7,\n 45,\n 8,\n 628,\n 220,\n 220,\n 220,\n 611,\n 2513,\n 263,\n 31929,\n 6624,\n 705,\n 22930,\n 10354,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 2513,\n 263,\n 4940,\n 379,\n 6632,\n 290,\n 7135,\n 82,\n 262,\n 7625,\n 1022,\n 663,\n 2292,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 290,\n 262,\n 640,\n 2168,\n 1988,\n 379,\n 326,\n 966,\n 416,\n 262,\n 9823,\n 1813,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 287,\n 2513,\n 263,\n 10044,\n 4105,\n 11,\n 284,\n 1577,\n 262,\n 1988,\n 379,\n 262,\n 8840,\n 640,\n 2239,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 318,\n 39098,\n 7,\n 20783,\n 10044,\n 4105,\n 11,\n 4868,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2513,\n 263,\n 10044,\n 4105,\n 796,\n 2513,\n 263,\n 10044,\n 4105,\n 58,\n 15,\n 60,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 279,\n 796,\n 2513,\n 263,\n 10044,\n 4105,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 266,\n 58,\n 15,\n 60,\n 796,\n 657,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 329,\n 1312,\n 287,\n 2837,\n 7,\n 16,\n 11,\n 399,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 266,\n 58,\n 72,\n 60,\n 796,\n 266,\n 58,\n 72,\n 12,\n 16,\n 60,\n 1343,\n 279,\n 9,\n 7,\n 88,\n 58,\n 72,\n 12,\n 16,\n 45297,\n 86,\n 58,\n 72,\n 12,\n 16,\n 12962,\n 628,\n 198,\n 220,\n 220,\n 220,\n 1288,\n 361,\n 2513,\n 263,\n 31929,\n 6624,\n 705,\n 65,\n 4448,\n 22930,\n 10354,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 2513,\n 263,\n 318,\n 21925,\n 287,\n 530,\n 393,\n 262,\n 584,\n 4571,\n 357,\n 72,\n 13,\n 68,\n 1539,\n 26237,\n 284,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 467,\n 510,\n 11,\n 393,\n 866,\n 737,\n 26848,\n 257,\n 15879,\n 286,\n 17311,\n 25,\n 685,\n 79,\n 62,\n 929,\n 11,\n 279,\n 62,\n 2902,\n 60,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 15552,\n 796,\n 2513,\n 263,\n 10044,\n 4105,\n 58,\n 15,\n 60,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 279,\n 2902,\n 796,\n 2513,\n 263,\n 10044,\n 4105,\n 58,\n 15,\n 60,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 266,\n 58,\n 15,\n 60,\n 796,\n 657,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 329,\n 1312,\n 287,\n 2837,\n 357,\n 16,\n 11,\n 399,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 331,\n 58,\n 72,\n 60,\n 1875,\n 331,\n 58,\n 72,\n 12,\n 16,\n 5974,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 266,\n 58,\n 72,\n 60,\n 796,\n 266,\n 58,\n 72,\n 12,\n 16,\n 60,\n 1343,\n 15552,\n 9,\n 7,\n 88,\n 58,\n 72,\n 12,\n 16,\n 45297,\n 86,\n 58,\n 72,\n 12,\n 16,\n 12962,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2073,\n 1058,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 266,\n 58,\n 72,\n 60,\n 796,\n 266,\n 58,\n 72,\n 12,\n 16,\n 60,\n 1343,\n 279,\n 2902,\n 9,\n 7,\n 88,\n 58,\n 72,\n 12,\n 16,\n 45297,\n 86,\n 58,\n 72,\n 12,\n 16,\n 12962,\n 628,\n 220,\n 220,\n 220,\n 1288,\n 361,\n 2513,\n 263,\n 31929,\n 6624,\n 705,\n 32542,\n 298,\n 388,\n 10354,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 2513,\n 263,\n 6100,\n 355,\n 611,\n 340,\n 550,\n 48482,\n 422,\n 262,\n 2180,\n 640,\n 2239,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 1312,\n 13,\n 68,\n 1539,\n 340,\n 705,\n 86,\n 1187,\n 6,\n 284,\n 1445,\n 262,\n 976,\n 2033,\n 26,\n 262,\n 640,\n 2168,\n 6529,\n 355,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 257,\n 2700,\n 5609,\n 663,\n 6268,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 285,\n 796,\n 2513,\n 263,\n 10044,\n 4105,\n 58,\n 15,\n 60,\n 1303,\n 29824,\n 498,\n 2347,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 266,\n 58,\n 15,\n 60,\n 796,\n 331,\n 58,\n 15,\n 60,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 266,\n 58,\n 16,\n 60,\n 796,\n 331,\n 58,\n 16,\n 60,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 329,\n 1312,\n 287,\n 2837,\n 7,\n 17,\n 11,\n 399,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 266,\n 62,\n 259,\n 861,\n 796,\n 266,\n 58,\n 72,\n 12,\n 16,\n 60,\n 1343,\n 357,\n 86,\n 58,\n 72,\n 12,\n 16,\n 45297,\n 86,\n 58,\n 72,\n 12,\n 17,\n 12962,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 266,\n 58,\n 72,\n 60,\n 796,\n 266,\n 62,\n 259,\n 861,\n 1343,\n 357,\n 88,\n 58,\n 72,\n 60,\n 532,\n 266,\n 62,\n 259,\n 861,\n 20679,\n 76,\n 1303,\n 32008,\n 876,\n 3381,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 4853,\n 341,\n 286,\n 6268,\n 357,\n 82,\n 12,\n 82,\n 62,\n 15,\n 796,\n 3384,\n 1343,\n 376,\n 14,\n 76,\n 9,\n 83,\n 61,\n 17,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 3003,\n 262,\n 705,\n 3174,\n 6,\n 318,\n 376,\n 318,\n 262,\n 1487,\n 287,\n 262,\n 2656,\n 640,\n 2168,\n 379,\n 262,\n 966,\n 628,\n 220,\n 220,\n 220,\n 1288,\n 361,\n 2513,\n 263,\n 31929,\n 6624,\n 705,\n 20270,\n 7785,\n 10354,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 285,\n 796,\n 2513,\n 263,\n 10044,\n 4105,\n 58,\n 15,\n 60,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 266,\n 75,\n 796,\n 2513,\n 263,\n 10044,\n 4105,\n 58,\n 16,\n 60,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 266,\n 58,\n 15,\n 60,\n 796,\n 331,\n 58,\n 15,\n 60,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 266,\n 58,\n 16,\n 60,\n 796,\n 331,\n 58,\n 16,\n 60,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 329,\n 1312,\n 287,\n 2837,\n 7,\n 17,\n 11,\n 399,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 266,\n 62,\n 259,\n 861,\n 796,\n 266,\n 58,\n 72,\n 12,\n 16,\n 60,\n 1343,\n 357,\n 86,\n 58,\n 72,\n 12,\n 16,\n 45297,\n 86,\n 58,\n 72,\n 12,\n 17,\n 12962,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 266,\n 62,\n 32542,\n 796,\n 266,\n 62,\n 259,\n 861,\n 1343,\n 357,\n 88,\n 58,\n 72,\n 60,\n 532,\n 266,\n 62,\n 259,\n 861,\n 20679,\n 76,\n 1303,\n 67,\n 747,\n 541,\n 876,\n 3381,\n 422,\n 640,\n 2168,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 1312,\n 1875,\n 266,\n 75,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 266,\n 58,\n 72,\n 60,\n 796,\n 266,\n 62,\n 32542,\n 1635,\n 357,\n 37659,\n 13,\n 19282,\n 7,\n 88,\n 58,\n 7,\n 72,\n 12,\n 40989,\n 2599,\n 72,\n 60,\n 4008,\n 14,\n 37659,\n 13,\n 19282,\n 7,\n 86,\n 58,\n 7,\n 72,\n 12,\n 40989,\n 2599,\n 72,\n 12962,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2073,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 266,\n 58,\n 72,\n 60,\n 796,\n 266,\n 62,\n 32542,\n 628,\n 198,\n 220,\n 220,\n 220,\n 2073,\n 1058,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3601,\n 7203,\n 12331,\n 25,\n 16185,\n 2446,\n 25,\n 366,\n 1343,\n 2513,\n 263,\n 31929,\n 1343,\n 366,\n 329,\n 985,\n 8306,\n 2513,\n 263,\n 319,\n 262,\n 640,\n 2168,\n 4943,\n 628,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 10097,\n 10097,\n 438,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 357,\n 17,\n 8,\n 15486,\n 1797,\n 2043,\n 19505,\n 6177,\n 3336,\n 370,\n 28082,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 10097,\n 10097,\n 438,\n 628,\n 220,\n 220,\n 220,\n 503,\n 796,\n 23884,\n 1303,\n 22155,\n 329,\n 23069,\n 9633,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 357,\n 72,\n 8,\n 383,\n 2513,\n 2346,\n 16529,\n 22369,\n 6329,\n 628,\n 220,\n 220,\n 220,\n 503,\n 17816,\n 86,\n 62,\n 32604,\n 20520,\n 796,\n 45941,\n 13,\n 32604,\n 7,\n 86,\n 8,\n 198,\n 220,\n 220,\n 220,\n 503,\n 17816,\n 86,\n 62,\n 1150,\n 666,\n 20520,\n 796,\n 45941,\n 13,\n 1150,\n 666,\n 7,\n 86,\n 8,\n 198,\n 220,\n 220,\n 220,\n 503,\n 17816,\n 86,\n 62,\n 19282,\n 20520,\n 796,\n 45941,\n 13,\n 19282,\n 7,\n 86,\n 8,\n 198,\n 220,\n 220,\n 220,\n 503,\n 17816,\n 86,\n 62,\n 330,\n 16,\n 20520,\n 796,\n 7375,\n 62,\n 27722,\n 10606,\n 81,\n 7,\n 86,\n 11,\n 352,\n 11,\n 2446,\n 11639,\n 16514,\n 3836,\n 391,\n 14269,\n 11537,\n 1303,\n 428,\n 2163,\n 869,\n 287,\n 36775,\n 48780,\n 3544,\n 2446,\n 11639,\n 37,\n 280,\n 5277,\n 3256,\n 475,\n 356,\n 836,\n 470,\n 423,\n 326,\n 1339,\n 9177,\n 1865,\n 287,\n 8295,\n 10606,\n 81,\n 11,\n 2158,\n 428,\n 2331,\n 284,\n 5072,\n 262,\n 976,\n 1517,\n 198,\n 220,\n 220,\n 220,\n 503,\n 17816,\n 86,\n 62,\n 330,\n 17,\n 20520,\n 796,\n 7375,\n 62,\n 27722,\n 10606,\n 81,\n 7,\n 86,\n 11,\n 362,\n 11,\n 2446,\n 11639,\n 16514,\n 3836,\n 391,\n 14269,\n 11537,\n 198,\n 220,\n 220,\n 220,\n 503,\n 17816,\n 86,\n 62,\n 83,\n 559,\n 20520,\n 796,\n 7375,\n 62,\n 5962,\n 28667,\n 7,\n 86,\n 11,\n 705,\n 330,\n 11537,\n 198,\n 220,\n 220,\n 220,\n 503,\n 17816,\n 86,\n 62,\n 1084,\n 20520,\n 796,\n 45941,\n 13,\n 1084,\n 7,\n 86,\n 8,\n 198,\n 220,\n 220,\n 220,\n 503,\n 17816,\n 86,\n 62,\n 9806,\n 20520,\n 796,\n 45941,\n 13,\n 9806,\n 7,\n 86,\n 8,\n 198,\n 220,\n 220,\n 220,\n 503,\n 17816,\n 22930,\n 89,\n 19692,\n 20520,\n 796,\n 2160,\n 7,\n 45941,\n 13,\n 16680,\n 541,\n 306,\n 7,\n 266,\n 58,\n 15,\n 37498,\n 11925,\n 7,\n 86,\n 13219,\n 17,\n 8,\n 4357,\n 266,\n 58,\n 16,\n 37498,\n 11925,\n 7,\n 86,\n 13219,\n 16,\n 15437,\n 1267,\n 1279,\n 657,\n 8,\n 1220,\n 357,\n 45,\n 12,\n 16,\n 8,\n 1303,\n 45941,\n 13,\n 16680,\n 541,\n 306,\n 17706,\n 5002,\n 3083,\n 48473,\n 588,\n 2603,\n 23912,\n 764,\n 9,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 5400,\n 1022,\n 262,\n 2513,\n 379,\n 6737,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 357,\n 4178,\n 8,\n 41937,\n 1022,\n 262,\n 2513,\n 379,\n 6737,\n 16529,\n 6329,\n 628,\n 220,\n 220,\n 220,\n 503,\n 17816,\n 2032,\n 62,\n 32604,\n 8937,\n 26069,\n 20520,\n 796,\n 45941,\n 13,\n 32604,\n 7,\n 37659,\n 13,\n 8937,\n 7,\n 88,\n 12,\n 86,\n 4008,\n 198,\n 220,\n 220,\n 220,\n 503,\n 17816,\n 2032,\n 62,\n 83,\n 3885,\n 733,\n 20520,\n 796,\n 7375,\n 62,\n 5962,\n 28667,\n 7,\n 88,\n 11,\n 705,\n 330,\n 11537,\n 532,\n 7375,\n 62,\n 5962,\n 28667,\n 7,\n 86,\n 11,\n 705,\n 330,\n 11537,\n 198,\n 220,\n 220,\n 220,\n 503,\n 17816,\n 2032,\n 62,\n 301,\n 7109,\n 265,\n 20520,\n 796,\n 45941,\n 13,\n 19282,\n 7,\n 86,\n 20679,\n 37659,\n 13,\n 19282,\n 7,\n 88,\n 8,\n 1303,\n 481,\n 307,\n 294,\n 325,\n 976,\n 355,\n 266,\n 62,\n 19282,\n 329,\n 1976,\n 12,\n 1416,\n 1850,\n 6737,\n 198,\n 220,\n 220,\n 220,\n 503,\n 17816,\n 2032,\n 62,\n 330,\n 16,\n 10366,\n 20520,\n 796,\n 503,\n 17816,\n 86,\n 62,\n 330,\n 16,\n 20520,\n 14,\n 8220,\n 62,\n 27722,\n 10606,\n 81,\n 7,\n 88,\n 11,\n 352,\n 8,\n 198,\n 220,\n 220,\n 220,\n 503,\n 17816,\n 2032,\n 62,\n 1084,\n 10366,\n 20520,\n 796,\n 949,\n 7,\n 86,\n 20679,\n 1084,\n 7,\n 88,\n 8,\n 198,\n 220,\n 220,\n 220,\n 503,\n 17816,\n 2032,\n 62,\n 9806,\n 10366,\n 20520,\n 796,\n 3509,\n 7,\n 86,\n 20679,\n 9806,\n 7,\n 88,\n 8,\n 198,\n 220,\n 220,\n 220,\n 503,\n 17816,\n 2032,\n 62,\n 1676,\n 14751,\n 1214,\n 20520,\n 796,\n 2160,\n 7,\n 37659,\n 13,\n 16680,\n 541,\n 306,\n 7,\n 266,\n 58,\n 15,\n 37498,\n 11925,\n 7,\n 86,\n 13219,\n 16,\n 15437,\n 532,\n 331,\n 58,\n 15,\n 37498,\n 11925,\n 7,\n 88,\n 13219,\n 16,\n 15437,\n 837,\n 266,\n 58,\n 16,\n 37498,\n 11925,\n 7,\n 86,\n 4008,\n 45297,\n 88,\n 58,\n 16,\n 37498,\n 11925,\n 7,\n 88,\n 4008,\n 12962,\n 1279,\n 657,\n 1267,\n 29006,\n 45,\n 12,\n 16,\n 8,\n 1303,\n 37659,\n 13,\n 16680,\n 541,\n 306,\n 17706,\n 5002,\n 3083,\n 48473,\n 588,\n 2603,\n 23912,\n 764,\n 9,\n 628,\n 220,\n 220,\n 220,\n 9093,\n 2743,\n 796,\n 9756,\n 13,\n 504,\n 2743,\n 7,\n 86,\n 11,\n 331,\n 8,\n 198,\n 220,\n 220,\n 220,\n 503,\n 17816,\n 2032,\n 62,\n 504,\n 283,\n 571,\n 62,\n 79,\n 2100,\n 20520,\n 796,\n 9093,\n 2743,\n 58,\n 16,\n 60,\n 628,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 374,\n 796,\n 45941,\n 13,\n 21602,\n 10223,\n 7,\n 45941,\n 13,\n 1084,\n 7,\n 37659,\n 13,\n 1084,\n 7,\n 88,\n 828,\n 45941,\n 13,\n 1084,\n 7,\n 86,\n 36911,\n 45941,\n 13,\n 9806,\n 7,\n 37659,\n 13,\n 9806,\n 7,\n 88,\n 828,\n 45941,\n 13,\n 9806,\n 7,\n 86,\n 36911,\n 939,\n 1267,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 20268,\n 796,\n 9756,\n 13,\n 4908,\n 31562,\n 62,\n 74,\n 2934,\n 7,\n 88,\n 11,\n 374,\n 8,\n 628,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 357,\n 15479,\n 8,\n 2045,\n 379,\n 29598,\n 82,\n 1022,\n 640,\n 2168,\n 290,\n 2513,\n 263,\n 628,\n 220,\n 220,\n 220,\n 581,\n 796,\n 266,\n 12,\n 88,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 7852,\n 2640,\n 6465,\n 29397,\n 4177,\n 2849,\n 5390,\n 36775,\n 48780,\n 32494,\n 2257,\n 6465,\n 11,\n 1043,\n 287,\n 9756,\n 27530,\n 13,\n 38142,\n 3524,\n 13,\n 34242,\n 13,\n 48381,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 1057,\n 301,\n 395,\n 796,\n 4539,\n 13,\n 5143,\n 301,\n 395,\n 62,\n 17,\n 82,\n 696,\n 7,\n 411,\n 11,\n 2628,\n 28,\n 17,\n 8,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 503,\n 17816,\n 411,\n 62,\n 5143,\n 301,\n 395,\n 20520,\n 796,\n 1057,\n 301,\n 395,\n 628,\n 220,\n 220,\n 220,\n 503,\n 17816,\n 411,\n 62,\n 37779,\n 20520,\n 796,\n 7375,\n 62,\n 27722,\n 10606,\n 81,\n 7,\n 411,\n 11,\n 19470,\n 28,\n 16,\n 8,\n 628,\n 198,\n 220,\n 220,\n 220,\n 1441,\n 503,\n 198\n]"},"ratio_char_token":{"kind":"number","value":2.6947091685836346,"string":"2.694709"},"token_count":{"kind":"number","value":3043,"string":"3,043"}}},{"rowIdx":4240,"cells":{"content":{"kind":"string","value":"from typing import Dict\n\nSKIP = \"SKIP\"\nUNKNOWN = \"UNKNOWN!\"\n\n\n\ndef detect_change(first: Dict[str, str], second: Dict[str, str],\n compareKeys: [str]) -> bool:\n \"\"\"Detects change between two dictonaries\n\n Args:\n first (Dict[str, str]): First dictionary\n second (Dict[str, str]): Second dictionary\n compareKeys ([type]): Keys to handle comparison\n\n Returns:\n bool: Is there a change ?\n \"\"\"\n for key in compareKeys:\n if key not in second or key not in first:\n return True\n if first[key] != second[key]:\n return True\n return False\n"},"input_ids":{"kind":"list like","value":[6738,19720,1330,360,713,198,198,18831,4061,796,366,18831,4061,1,198,4944,44706,796,366,4944,44706,2474,628,198,198,4299,4886,62,3803,7,11085,25,360,713,58,2536,11,965,4357,1218,25,360,713,58,2536,11,965,4357,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,8996,40729,25,685,2536,12962,4613,20512,25,198,220,220,220,37227,47504,82,1487,1022,734,8633,261,3166,628,220,220,220,943,14542,25,198,220,220,220,220,220,220,220,717,357,35,713,58,2536,11,965,60,2599,3274,22155,198,220,220,220,220,220,220,220,1218,357,35,713,58,2536,11,965,60,2599,5498,22155,198,220,220,220,220,220,220,220,8996,40729,29565,4906,60,2599,26363,284,5412,7208,628,220,220,220,16409,25,198,220,220,220,220,220,220,220,20512,25,1148,612,257,1487,5633,198,220,220,220,37227,198,220,220,220,329,1994,287,8996,40729,25,198,220,220,220,220,220,220,220,611,1994,407,287,1218,393,1994,407,287,717,25,198,220,220,220,220,220,220,220,220,220,220,220,1441,6407,198,220,220,220,220,220,220,220,611,717,58,2539,60,14512,1218,58,2539,5974,198,220,220,220,220,220,220,220,220,220,220,220,1441,6407,198,220,220,220,1441,10352,198],"string":"[\n 6738,\n 19720,\n 1330,\n 360,\n 713,\n 198,\n 198,\n 18831,\n 4061,\n 796,\n 366,\n 18831,\n 4061,\n 1,\n 198,\n 4944,\n 44706,\n 796,\n 366,\n 4944,\n 44706,\n 2474,\n 628,\n 198,\n 198,\n 4299,\n 4886,\n 62,\n 3803,\n 7,\n 11085,\n 25,\n 360,\n 713,\n 58,\n 2536,\n 11,\n 965,\n 4357,\n 1218,\n 25,\n 360,\n 713,\n 58,\n 2536,\n 11,\n 965,\n 4357,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 8996,\n 40729,\n 25,\n 685,\n 2536,\n 12962,\n 4613,\n 20512,\n 25,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 47504,\n 82,\n 1487,\n 1022,\n 734,\n 8633,\n 261,\n 3166,\n 628,\n 220,\n 220,\n 220,\n 943,\n 14542,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 717,\n 357,\n 35,\n 713,\n 58,\n 2536,\n 11,\n 965,\n 60,\n 2599,\n 3274,\n 22155,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1218,\n 357,\n 35,\n 713,\n 58,\n 2536,\n 11,\n 965,\n 60,\n 2599,\n 5498,\n 22155,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 8996,\n 40729,\n 29565,\n 4906,\n 60,\n 2599,\n 26363,\n 284,\n 5412,\n 7208,\n 628,\n 220,\n 220,\n 220,\n 16409,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 20512,\n 25,\n 1148,\n 612,\n 257,\n 1487,\n 5633,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 329,\n 1994,\n 287,\n 8996,\n 40729,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 1994,\n 407,\n 287,\n 1218,\n 393,\n 1994,\n 407,\n 287,\n 717,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1441,\n 6407,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 717,\n 58,\n 2539,\n 60,\n 14512,\n 1218,\n 58,\n 2539,\n 5974,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1441,\n 6407,\n 198,\n 220,\n 220,\n 220,\n 1441,\n 10352,\n 198\n]"},"ratio_char_token":{"kind":"number","value":2.3946360153256707,"string":"2.394636"},"token_count":{"kind":"number","value":261,"string":"261"}}},{"rowIdx":4241,"cells":{"content":{"kind":"string","value":"from . helpers import get_timestamp\n"},"input_ids":{"kind":"list like","value":[6738,764,49385,1330,651,62,16514,27823,198],"string":"[\n 6738,\n 764,\n 49385,\n 1330,\n 651,\n 62,\n 16514,\n 27823,\n 198\n]"},"ratio_char_token":{"kind":"number","value":4,"string":"4"},"token_count":{"kind":"number","value":9,"string":"9"}}},{"rowIdx":4242,"cells":{"content":{"kind":"string","value":"from discord.ext import commands\n\n\n"},"input_ids":{"kind":"list like","value":[6738,36446,13,2302,1330,9729,628,198],"string":"[\n 6738,\n 36446,\n 13,\n 2302,\n 1330,\n 9729,\n 628,\n 198\n]"},"ratio_char_token":{"kind":"number","value":4.375,"string":"4.375"},"token_count":{"kind":"number","value":8,"string":"8"}}},{"rowIdx":4243,"cells":{"content":{"kind":"string","value":"import gym\nimport numpy as np\nfrom PIL import Image\nimport sys\n\nenv = gym.make('Pong-v0')\nenv.reset()\n\ndone = False\ni = 0\nstart = 0\n\nif len(sys.argv) < 3:\n print(\"Usage: collect_pong \")\n exit()\n\ntry:\n games = int(sys.argv[1])\n start = int(sys.argv[2])\n i = start\nexcept:\n print(\"Please provide a valid number for games and start point.\")\n exit()\n\nfor _ in range(games):\n count = 0\n while not done:\n o, r, done, info = env.step(env.action_space.sample())\n count += 1\n # Ignore first 25 frames of the game, since the games starts after this amount.\n if count < 25:\n continue\n img = Image.fromarray(o)\n img.save(\"images/pong_\" + str(i) + \".png\")\n i += 1\n done = False\n env.reset()\n\nprint(\"Saved {} images.\".format(i-start))\nprint(\"Total images: {}\".format(i))\nenv.close()\n"},"input_ids":{"kind":"list like","value":[11748,11550,198,11748,299,32152,355,45941,198,6738,350,4146,1330,7412,198,11748,25064,198,198,24330,796,11550,13,15883,10786,47,506,12,85,15,11537,198,24330,13,42503,3419,198,198,28060,796,10352,198,72,796,657,198,9688,796,657,198,198,361,18896,7,17597,13,853,85,8,1279,513,25,198,220,220,220,3601,7203,28350,25,2824,62,79,506,1279,19966,29,1279,9688,62,4122,29,4943,198,220,220,220,8420,3419,198,198,28311,25,198,220,220,220,1830,796,493,7,17597,13,853,85,58,16,12962,198,220,220,220,923,796,493,7,17597,13,853,85,58,17,12962,198,220,220,220,1312,796,923,198,16341,25,198,220,220,220,3601,7203,5492,2148,257,4938,1271,329,1830,290,923,966,19570,198,220,220,220,8420,3419,198,198,1640,4808,287,2837,7,19966,2599,198,220,220,220,954,796,657,198,220,220,220,981,407,1760,25,198,220,220,220,220,220,220,220,267,11,374,11,1760,11,7508,796,17365,13,9662,7,24330,13,2673,62,13200,13,39873,28955,198,220,220,220,220,220,220,220,954,15853,352,198,220,220,220,220,220,220,220,1303,41032,717,1679,13431,286,262,983,11,1201,262,1830,4940,706,428,2033,13,198,220,220,220,220,220,220,220,611,954,1279,1679,25,198,220,220,220,220,220,220,220,220,220,220,220,2555,198,220,220,220,220,220,220,220,33705,796,7412,13,6738,18747,7,78,8,198,220,220,220,220,220,220,220,33705,13,21928,7203,17566,14,79,506,62,1,1343,965,7,72,8,1343,27071,11134,4943,198,220,220,220,220,220,220,220,1312,15853,352,198,220,220,220,1760,796,10352,198,220,220,220,17365,13,42503,3419,198,198,4798,7203,50,9586,23884,4263,526,13,18982,7,72,12,9688,4008,198,4798,7203,14957,4263,25,23884,1911,18982,7,72,4008,198,24330,13,19836,3419,198],"string":"[\n 11748,\n 11550,\n 198,\n 11748,\n 299,\n 32152,\n 355,\n 45941,\n 198,\n 6738,\n 350,\n 4146,\n 1330,\n 7412,\n 198,\n 11748,\n 25064,\n 198,\n 198,\n 24330,\n 796,\n 11550,\n 13,\n 15883,\n 10786,\n 47,\n 506,\n 12,\n 85,\n 15,\n 11537,\n 198,\n 24330,\n 13,\n 42503,\n 3419,\n 198,\n 198,\n 28060,\n 796,\n 10352,\n 198,\n 72,\n 796,\n 657,\n 198,\n 9688,\n 796,\n 657,\n 198,\n 198,\n 361,\n 18896,\n 7,\n 17597,\n 13,\n 853,\n 85,\n 8,\n 1279,\n 513,\n 25,\n 198,\n 220,\n 220,\n 220,\n 3601,\n 7203,\n 28350,\n 25,\n 2824,\n 62,\n 79,\n 506,\n 1279,\n 19966,\n 29,\n 1279,\n 9688,\n 62,\n 4122,\n 29,\n 4943,\n 198,\n 220,\n 220,\n 220,\n 8420,\n 3419,\n 198,\n 198,\n 28311,\n 25,\n 198,\n 220,\n 220,\n 220,\n 1830,\n 796,\n 493,\n 7,\n 17597,\n 13,\n 853,\n 85,\n 58,\n 16,\n 12962,\n 198,\n 220,\n 220,\n 220,\n 923,\n 796,\n 493,\n 7,\n 17597,\n 13,\n 853,\n 85,\n 58,\n 17,\n 12962,\n 198,\n 220,\n 220,\n 220,\n 1312,\n 796,\n 923,\n 198,\n 16341,\n 25,\n 198,\n 220,\n 220,\n 220,\n 3601,\n 7203,\n 5492,\n 2148,\n 257,\n 4938,\n 1271,\n 329,\n 1830,\n 290,\n 923,\n 966,\n 19570,\n 198,\n 220,\n 220,\n 220,\n 8420,\n 3419,\n 198,\n 198,\n 1640,\n 4808,\n 287,\n 2837,\n 7,\n 19966,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 954,\n 796,\n 657,\n 198,\n 220,\n 220,\n 220,\n 981,\n 407,\n 1760,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 267,\n 11,\n 374,\n 11,\n 1760,\n 11,\n 7508,\n 796,\n 17365,\n 13,\n 9662,\n 7,\n 24330,\n 13,\n 2673,\n 62,\n 13200,\n 13,\n 39873,\n 28955,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 954,\n 15853,\n 352,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 41032,\n 717,\n 1679,\n 13431,\n 286,\n 262,\n 983,\n 11,\n 1201,\n 262,\n 1830,\n 4940,\n 706,\n 428,\n 2033,\n 13,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 954,\n 1279,\n 1679,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2555,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 33705,\n 796,\n 7412,\n 13,\n 6738,\n 18747,\n 7,\n 78,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 33705,\n 13,\n 21928,\n 7203,\n 17566,\n 14,\n 79,\n 506,\n 62,\n 1,\n 1343,\n 965,\n 7,\n 72,\n 8,\n 1343,\n 27071,\n 11134,\n 4943,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1312,\n 15853,\n 352,\n 198,\n 220,\n 220,\n 220,\n 1760,\n 796,\n 10352,\n 198,\n 220,\n 220,\n 220,\n 17365,\n 13,\n 42503,\n 3419,\n 198,\n 198,\n 4798,\n 7203,\n 50,\n 9586,\n 23884,\n 4263,\n 526,\n 13,\n 18982,\n 7,\n 72,\n 12,\n 9688,\n 4008,\n 198,\n 4798,\n 7203,\n 14957,\n 4263,\n 25,\n 23884,\n 1911,\n 18982,\n 7,\n 72,\n 4008,\n 198,\n 24330,\n 13,\n 19836,\n 3419,\n 198\n]"},"ratio_char_token":{"kind":"number","value":2.3609625668449197,"string":"2.360963"},"token_count":{"kind":"number","value":374,"string":"374"}}},{"rowIdx":4244,"cells":{"content":{"kind":"string","value":"import random\n\nmylist = []\n\nfor somethin in range(1,10):\n x = random.randrange(0,9)\n mylist.append(x)\n\nprint(mylist)\n\n\nlast_index=len(mylist)\nprint (\"length of mylist is:\",len(mylist))\nprint (\"first element is:\",mylist[0])\nprint (\"last element is:\",mylist[len(mylist)-1])\n\n \n#is mylist sorted?\nis_mylist_sorted = False\n\nx=0\ny=1\nintermediate=None\n\n#how many switches?\nnumber_of_switches = 0\n\n#bubble sort\nwhile not is_mylist_sorted:\n \n if mylist[x] > mylist[y]:\n intermediate=mylist[x]\n mylist[x]=mylist[y]\n mylist[y]=intermediate\n number_of_switches+=1\n x+=1\n y+=1\n \n if y==last_index:\n x=0\n y=1\n \n if number_of_switches==0:\n is_mylist_sorted = True\n else:\n number_of_switches = 0\n\n\nprint(\"finished\")\nprint(\"is my list sorted?\",is_mylist_sorted)\nprint(\"my list\",mylist)\n\n \n"},"input_ids":{"kind":"list like","value":[11748,4738,198,198,1820,4868,796,17635,198,198,1640,1054,20079,287,2837,7,16,11,940,2599,198,220,220,220,2124,796,4738,13,25192,9521,7,15,11,24,8,198,220,220,220,616,4868,13,33295,7,87,8,198,198,4798,7,1820,4868,8,628,198,12957,62,9630,28,11925,7,1820,4868,8,198,4798,5855,13664,286,616,4868,318,25,1600,11925,7,1820,4868,4008,198,4798,5855,11085,5002,318,25,1600,1820,4868,58,15,12962,198,4798,5855,12957,5002,318,25,1600,1820,4868,58,11925,7,1820,4868,13219,16,12962,628,220,220,220,220,198,2,271,616,4868,23243,30,198,271,62,1820,4868,62,82,9741,796,10352,198,198,87,28,15,198,88,28,16,198,3849,13857,28,14202,198,198,2,4919,867,18225,30,198,17618,62,1659,62,2032,9249,796,657,198,198,2,46176,903,3297,198,4514,407,318,62,1820,4868,62,82,9741,25,198,220,220,220,220,198,220,220,220,611,616,4868,58,87,60,1875,616,4868,58,88,5974,198,220,220,220,220,220,220,220,19898,28,1820,4868,58,87,60,198,220,220,220,220,220,220,220,616,4868,58,87,22241,1820,4868,58,88,60,198,220,220,220,220,220,220,220,616,4868,58,88,22241,3849,13857,198,220,220,220,220,220,220,220,1271,62,1659,62,2032,9249,47932,16,198,220,220,220,2124,47932,16,198,220,220,220,331,47932,16,198,220,220,220,198,220,220,220,611,331,855,12957,62,9630,25,198,220,220,220,220,220,220,220,2124,28,15,198,220,220,220,220,220,220,220,331,28,16,198,220,220,220,220,220,220,220,220,198,220,220,220,220,220,220,220,611,1271,62,1659,62,2032,9249,855,15,25,198,220,220,220,220,220,220,220,220,220,220,220,318,62,1820,4868,62,82,9741,796,6407,198,220,220,220,220,220,220,220,2073,25,198,220,220,220,220,220,220,220,220,220,220,220,1271,62,1659,62,2032,9249,796,657,628,198,4798,7203,43952,4943,198,4798,7203,271,616,1351,23243,35379,271,62,1820,4868,62,82,9741,8,198,4798,7203,1820,1351,1600,1820,4868,8,628,220,220,220,220,198],"string":"[\n 11748,\n 4738,\n 198,\n 198,\n 1820,\n 4868,\n 796,\n 17635,\n 198,\n 198,\n 1640,\n 1054,\n 20079,\n 287,\n 2837,\n 7,\n 16,\n 11,\n 940,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 2124,\n 796,\n 4738,\n 13,\n 25192,\n 9521,\n 7,\n 15,\n 11,\n 24,\n 8,\n 198,\n 220,\n 220,\n 220,\n 616,\n 4868,\n 13,\n 33295,\n 7,\n 87,\n 8,\n 198,\n 198,\n 4798,\n 7,\n 1820,\n 4868,\n 8,\n 628,\n 198,\n 12957,\n 62,\n 9630,\n 28,\n 11925,\n 7,\n 1820,\n 4868,\n 8,\n 198,\n 4798,\n 5855,\n 13664,\n 286,\n 616,\n 4868,\n 318,\n 25,\n 1600,\n 11925,\n 7,\n 1820,\n 4868,\n 4008,\n 198,\n 4798,\n 5855,\n 11085,\n 5002,\n 318,\n 25,\n 1600,\n 1820,\n 4868,\n 58,\n 15,\n 12962,\n 198,\n 4798,\n 5855,\n 12957,\n 5002,\n 318,\n 25,\n 1600,\n 1820,\n 4868,\n 58,\n 11925,\n 7,\n 1820,\n 4868,\n 13219,\n 16,\n 12962,\n 628,\n 220,\n 220,\n 220,\n 220,\n 198,\n 2,\n 271,\n 616,\n 4868,\n 23243,\n 30,\n 198,\n 271,\n 62,\n 1820,\n 4868,\n 62,\n 82,\n 9741,\n 796,\n 10352,\n 198,\n 198,\n 87,\n 28,\n 15,\n 198,\n 88,\n 28,\n 16,\n 198,\n 3849,\n 13857,\n 28,\n 14202,\n 198,\n 198,\n 2,\n 4919,\n 867,\n 18225,\n 30,\n 198,\n 17618,\n 62,\n 1659,\n 62,\n 2032,\n 9249,\n 796,\n 657,\n 198,\n 198,\n 2,\n 46176,\n 903,\n 3297,\n 198,\n 4514,\n 407,\n 318,\n 62,\n 1820,\n 4868,\n 62,\n 82,\n 9741,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 198,\n 220,\n 220,\n 220,\n 611,\n 616,\n 4868,\n 58,\n 87,\n 60,\n 1875,\n 616,\n 4868,\n 58,\n 88,\n 5974,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 19898,\n 28,\n 1820,\n 4868,\n 58,\n 87,\n 60,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 616,\n 4868,\n 58,\n 87,\n 22241,\n 1820,\n 4868,\n 58,\n 88,\n 60,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 616,\n 4868,\n 58,\n 88,\n 22241,\n 3849,\n 13857,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1271,\n 62,\n 1659,\n 62,\n 2032,\n 9249,\n 47932,\n 16,\n 198,\n 220,\n 220,\n 220,\n 2124,\n 47932,\n 16,\n 198,\n 220,\n 220,\n 220,\n 331,\n 47932,\n 16,\n 198,\n 220,\n 220,\n 220,\n 198,\n 220,\n 220,\n 220,\n 611,\n 331,\n 855,\n 12957,\n 62,\n 9630,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2124,\n 28,\n 15,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 331,\n 28,\n 16,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 1271,\n 62,\n 1659,\n 62,\n 2032,\n 9249,\n 855,\n 15,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 318,\n 62,\n 1820,\n 4868,\n 62,\n 82,\n 9741,\n 796,\n 6407,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2073,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1271,\n 62,\n 1659,\n 62,\n 2032,\n 9249,\n 796,\n 657,\n 628,\n 198,\n 4798,\n 7203,\n 43952,\n 4943,\n 198,\n 4798,\n 7203,\n 271,\n 616,\n 1351,\n 23243,\n 35379,\n 271,\n 62,\n 1820,\n 4868,\n 62,\n 82,\n 9741,\n 8,\n 198,\n 4798,\n 7203,\n 1820,\n 1351,\n 1600,\n 1820,\n 4868,\n 8,\n 628,\n 220,\n 220,\n 220,\n 220,\n 198\n]"},"ratio_char_token":{"kind":"number","value":2.062790697674419,"string":"2.062791"},"token_count":{"kind":"number","value":430,"string":"430"}}},{"rowIdx":4245,"cells":{"content":{"kind":"string","value":"import os\r\nimport setuptools\r\ntry: # for pip >= 10\r\n from pip._internal.req import parse_requirements\r\nexcept ImportError: # for pip <= 9.0.3\r\n from pip.req import parse_requirements\r\n\r\nrequirements_path = os.path.join(os.path.dirname(__file__), 'requirements.txt')\r\ninstall_requires = parse_requirements(requirements_path, session='hack')\r\ninstall_requires = [str(ir.req) for ir in install_requires]\r\n\r\nwith open(os.path.join(os.path.dirname(__file__), 'VERSION'), 'r') as f:\r\n version = f.read()\r\n\r\nwith open(os.path.join(os.path.dirname(__file__), 'README.md'), 'r') as f:\r\n long_description = f.read()\r\n\r\nsetuptools.setup(\r\n name='afs2-datasource',\r\n version=version,\r\n description='For AFS developer to access Datasource',\r\n long_description=long_description,\r\n long_description_content_type='text/markdown',\r\n author='WISE-PaaS/AFS',\r\n author_email='stacy.yeh@advantech.com.tw',\r\n packages=setuptools.find_packages(),\r\n install_requires=install_requires,\r\n keywords=['AFS'],\r\n license='Apache License 2.0',\r\n url='https://github.com/stacy0416/afs2-datasource'\r\n)\r\n\r\n# python setup.py bdist_wheel"},"input_ids":{"kind":"list like","value":[11748,28686,201,198,11748,900,37623,10141,201,198,28311,25,1303,329,7347,18189,838,201,198,220,422,7347,13557,32538,13,42180,1330,21136,62,8897,18883,201,198,16341,17267,12331,25,1303,329,7347,19841,860,13,15,13,18,201,198,220,422,7347,13,42180,1330,21136,62,8897,18883,201,198,201,198,8897,18883,62,6978,796,28686,13,6978,13,22179,7,418,13,6978,13,15908,3672,7,834,7753,834,828,705,8897,18883,13,14116,11537,201,198,17350,62,47911,796,21136,62,8897,18883,7,8897,18883,62,6978,11,6246,11639,31153,11537,201,198,17350,62,47911,796,685,2536,7,343,13,42180,8,329,4173,287,2721,62,47911,60,201,198,201,198,4480,1280,7,418,13,6978,13,22179,7,418,13,6978,13,15908,3672,7,834,7753,834,828,705,43717,33809,705,81,11537,355,277,25,201,198,220,2196,796,277,13,961,3419,201,198,201,198,4480,1280,7,418,13,6978,13,22179,7,418,13,6978,13,15908,3672,7,834,7753,834,828,705,15675,11682,13,9132,33809,705,81,11537,355,277,25,201,198,220,890,62,11213,796,277,13,961,3419,201,198,201,198,2617,37623,10141,13,40406,7,201,198,220,1438,11639,1878,82,17,12,19608,292,1668,3256,201,198,220,2196,28,9641,11,201,198,220,6764,11639,1890,317,10652,8517,284,1895,16092,292,1668,3256,201,198,220,890,62,11213,28,6511,62,11213,11,201,198,220,890,62,11213,62,11299,62,4906,11639,5239,14,4102,2902,3256,201,198,220,1772,11639,54,24352,12,47,7252,50,14,8579,50,3256,201,198,220,1772,62,12888,11639,301,1590,13,5948,71,31,13461,3055,13,785,13,4246,3256,201,198,220,10392,28,2617,37623,10141,13,19796,62,43789,22784,201,198,220,2721,62,47911,28,17350,62,47911,11,201,198,220,26286,28,17816,8579,50,6,4357,201,198,220,5964,11639,25189,4891,13789,362,13,15,3256,201,198,220,19016,11639,5450,1378,12567,13,785,14,301,1590,3023,1433,14,1878,82,17,12,19608,292,1668,6,201,198,8,201,198,201,198,2,21015,9058,13,9078,275,17080,62,22001],"string":"[\n 11748,\n 28686,\n 201,\n 198,\n 11748,\n 900,\n 37623,\n 10141,\n 201,\n 198,\n 28311,\n 25,\n 1303,\n 329,\n 7347,\n 18189,\n 838,\n 201,\n 198,\n 220,\n 422,\n 7347,\n 13557,\n 32538,\n 13,\n 42180,\n 1330,\n 21136,\n 62,\n 8897,\n 18883,\n 201,\n 198,\n 16341,\n 17267,\n 12331,\n 25,\n 1303,\n 329,\n 7347,\n 19841,\n 860,\n 13,\n 15,\n 13,\n 18,\n 201,\n 198,\n 220,\n 422,\n 7347,\n 13,\n 42180,\n 1330,\n 21136,\n 62,\n 8897,\n 18883,\n 201,\n 198,\n 201,\n 198,\n 8897,\n 18883,\n 62,\n 6978,\n 796,\n 28686,\n 13,\n 6978,\n 13,\n 22179,\n 7,\n 418,\n 13,\n 6978,\n 13,\n 15908,\n 3672,\n 7,\n 834,\n 7753,\n 834,\n 828,\n 705,\n 8897,\n 18883,\n 13,\n 14116,\n 11537,\n 201,\n 198,\n 17350,\n 62,\n 47911,\n 796,\n 21136,\n 62,\n 8897,\n 18883,\n 7,\n 8897,\n 18883,\n 62,\n 6978,\n 11,\n 6246,\n 11639,\n 31153,\n 11537,\n 201,\n 198,\n 17350,\n 62,\n 47911,\n 796,\n 685,\n 2536,\n 7,\n 343,\n 13,\n 42180,\n 8,\n 329,\n 4173,\n 287,\n 2721,\n 62,\n 47911,\n 60,\n 201,\n 198,\n 201,\n 198,\n 4480,\n 1280,\n 7,\n 418,\n 13,\n 6978,\n 13,\n 22179,\n 7,\n 418,\n 13,\n 6978,\n 13,\n 15908,\n 3672,\n 7,\n 834,\n 7753,\n 834,\n 828,\n 705,\n 43717,\n 33809,\n 705,\n 81,\n 11537,\n 355,\n 277,\n 25,\n 201,\n 198,\n 220,\n 2196,\n 796,\n 277,\n 13,\n 961,\n 3419,\n 201,\n 198,\n 201,\n 198,\n 4480,\n 1280,\n 7,\n 418,\n 13,\n 6978,\n 13,\n 22179,\n 7,\n 418,\n 13,\n 6978,\n 13,\n 15908,\n 3672,\n 7,\n 834,\n 7753,\n 834,\n 828,\n 705,\n 15675,\n 11682,\n 13,\n 9132,\n 33809,\n 705,\n 81,\n 11537,\n 355,\n 277,\n 25,\n 201,\n 198,\n 220,\n 890,\n 62,\n 11213,\n 796,\n 277,\n 13,\n 961,\n 3419,\n 201,\n 198,\n 201,\n 198,\n 2617,\n 37623,\n 10141,\n 13,\n 40406,\n 7,\n 201,\n 198,\n 220,\n 1438,\n 11639,\n 1878,\n 82,\n 17,\n 12,\n 19608,\n 292,\n 1668,\n 3256,\n 201,\n 198,\n 220,\n 2196,\n 28,\n 9641,\n 11,\n 201,\n 198,\n 220,\n 6764,\n 11639,\n 1890,\n 317,\n 10652,\n 8517,\n 284,\n 1895,\n 16092,\n 292,\n 1668,\n 3256,\n 201,\n 198,\n 220,\n 890,\n 62,\n 11213,\n 28,\n 6511,\n 62,\n 11213,\n 11,\n 201,\n 198,\n 220,\n 890,\n 62,\n 11213,\n 62,\n 11299,\n 62,\n 4906,\n 11639,\n 5239,\n 14,\n 4102,\n 2902,\n 3256,\n 201,\n 198,\n 220,\n 1772,\n 11639,\n 54,\n 24352,\n 12,\n 47,\n 7252,\n 50,\n 14,\n 8579,\n 50,\n 3256,\n 201,\n 198,\n 220,\n 1772,\n 62,\n 12888,\n 11639,\n 301,\n 1590,\n 13,\n 5948,\n 71,\n 31,\n 13461,\n 3055,\n 13,\n 785,\n 13,\n 4246,\n 3256,\n 201,\n 198,\n 220,\n 10392,\n 28,\n 2617,\n 37623,\n 10141,\n 13,\n 19796,\n 62,\n 43789,\n 22784,\n 201,\n 198,\n 220,\n 2721,\n 62,\n 47911,\n 28,\n 17350,\n 62,\n 47911,\n 11,\n 201,\n 198,\n 220,\n 26286,\n 28,\n 17816,\n 8579,\n 50,\n 6,\n 4357,\n 201,\n 198,\n 220,\n 5964,\n 11639,\n 25189,\n 4891,\n 13789,\n 362,\n 13,\n 15,\n 3256,\n 201,\n 198,\n 220,\n 19016,\n 11639,\n 5450,\n 1378,\n 12567,\n 13,\n 785,\n 14,\n 301,\n 1590,\n 3023,\n 1433,\n 14,\n 1878,\n 82,\n 17,\n 12,\n 19608,\n 292,\n 1668,\n 6,\n 201,\n 198,\n 8,\n 201,\n 198,\n 201,\n 198,\n 2,\n 21015,\n 9058,\n 13,\n 9078,\n 275,\n 17080,\n 62,\n 22001\n]"},"ratio_char_token":{"kind":"number","value":2.7111650485436893,"string":"2.711165"},"token_count":{"kind":"number","value":412,"string":"412"}}},{"rowIdx":4246,"cells":{"content":{"kind":"string","value":"import pandas as pd\n\n#============== First Round ===================#\n#===============================================#\n \n\n#============== Other Rounds ===================#\n#===============================================#\n"},"input_ids":{"kind":"list like","value":[11748,19798,292,355,279,67,198,198,2,25609,855,3274,10485,36658,855,2,198,2,10052,25609,18604,2,198,220,220,220,220,198,198,2,25609,855,3819,49049,36658,855,2,198,2,10052,25609,18604,2,198],"string":"[\n 11748,\n 19798,\n 292,\n 355,\n 279,\n 67,\n 198,\n 198,\n 2,\n 25609,\n 855,\n 3274,\n 10485,\n 36658,\n 855,\n 2,\n 198,\n 2,\n 10052,\n 25609,\n 18604,\n 2,\n 198,\n 220,\n 220,\n 220,\n 220,\n 198,\n 198,\n 2,\n 25609,\n 855,\n 3819,\n 49049,\n 36658,\n 855,\n 2,\n 198,\n 2,\n 10052,\n 25609,\n 18604,\n 2,\n 198\n]"},"ratio_char_token":{"kind":"number","value":5.136363636363637,"string":"5.136364"},"token_count":{"kind":"number","value":44,"string":"44"}}},{"rowIdx":4247,"cells":{"content":{"kind":"string","value":"\"\"\"\nExercício 03\nPeça ao usuário para digitar 3 valores inteiros e imprima a soma deles.\n\"\"\"\n\nprint('Digite três números inteiros para somá-los:\\n')\nnum1 = int(float(input('Primeiro número: ').replace(',', '.')))\nnum2 = int(float(input('Segundo número: ').replace(',', '.')))\nnum3 = int(float(input('Terceiro número: ').replace(',', '.')))\nsum = num1 + num2 + num3\nprint(f'_____\\nA soma dos valores é: {sum}')\n"},"input_ids":{"kind":"list like","value":[37811,198,3109,2798,8836,66,952,7643,198,6435,50041,257,78,514,84,6557,27250,31215,3100,7940,513,1188,2850,493,20295,4951,304,848,3036,64,257,3870,64,390,829,13,198,37811,198,198,4798,10786,19511,578,491,25792,82,299,21356,647,418,493,20295,4951,31215,3870,6557,12,33280,7479,77,11537,198,22510,16,796,493,7,22468,7,15414,10786,26405,7058,299,21356,647,78,25,705,737,33491,7,3256,3256,705,2637,22305,198,22510,17,796,493,7,22468,7,15414,10786,41030,41204,299,21356,647,78,25,705,737,33491,7,3256,3256,705,2637,22305,198,22510,18,796,493,7,22468,7,15414,10786,15156,344,7058,299,21356,647,78,25,705,737,33491,7,3256,3256,705,2637,22305,198,16345,796,997,16,1343,997,17,1343,997,18,198,4798,7,69,6,29343,59,77,32,3870,64,23430,1188,2850,38251,25,1391,16345,92,11537,198],"string":"[\n 37811,\n 198,\n 3109,\n 2798,\n 8836,\n 66,\n 952,\n 7643,\n 198,\n 6435,\n 50041,\n 257,\n 78,\n 514,\n 84,\n 6557,\n 27250,\n 31215,\n 3100,\n 7940,\n 513,\n 1188,\n 2850,\n 493,\n 20295,\n 4951,\n 304,\n 848,\n 3036,\n 64,\n 257,\n 3870,\n 64,\n 390,\n 829,\n 13,\n 198,\n 37811,\n 198,\n 198,\n 4798,\n 10786,\n 19511,\n 578,\n 491,\n 25792,\n 82,\n 299,\n 21356,\n 647,\n 418,\n 493,\n 20295,\n 4951,\n 31215,\n 3870,\n 6557,\n 12,\n 33280,\n 7479,\n 77,\n 11537,\n 198,\n 22510,\n 16,\n 796,\n 493,\n 7,\n 22468,\n 7,\n 15414,\n 10786,\n 26405,\n 7058,\n 299,\n 21356,\n 647,\n 78,\n 25,\n 705,\n 737,\n 33491,\n 7,\n 3256,\n 3256,\n 705,\n 2637,\n 22305,\n 198,\n 22510,\n 17,\n 796,\n 493,\n 7,\n 22468,\n 7,\n 15414,\n 10786,\n 41030,\n 41204,\n 299,\n 21356,\n 647,\n 78,\n 25,\n 705,\n 737,\n 33491,\n 7,\n 3256,\n 3256,\n 705,\n 2637,\n 22305,\n 198,\n 22510,\n 18,\n 796,\n 493,\n 7,\n 22468,\n 7,\n 15414,\n 10786,\n 15156,\n 344,\n 7058,\n 299,\n 21356,\n 647,\n 78,\n 25,\n 705,\n 737,\n 33491,\n 7,\n 3256,\n 3256,\n 705,\n 2637,\n 22305,\n 198,\n 16345,\n 796,\n 997,\n 16,\n 1343,\n 997,\n 17,\n 1343,\n 997,\n 18,\n 198,\n 4798,\n 7,\n 69,\n 6,\n 29343,\n 59,\n 77,\n 32,\n 3870,\n 64,\n 23430,\n 1188,\n 2850,\n 38251,\n 25,\n 1391,\n 16345,\n 92,\n 11537,\n 198\n]"},"ratio_char_token":{"kind":"number","value":2.3699421965317917,"string":"2.369942"},"token_count":{"kind":"number","value":173,"string":"173"}}},{"rowIdx":4248,"cells":{"content":{"kind":"string","value":"from __future__ import (absolute_import, division, print_function)\n__metaclass__ = type\nimport json\n\nmodule_definition = json.loads(\n \"\"\"{\n \"family\": \"discovery\",\n \"name\": \"discovery_network_device\",\n \"operations\": {\n \"get\": [\n \"get_discovered_network_devices_by_discovery_id\",\n \"get_discovered_devices_by_range\",\n \"get_devices_discovered_by_id\",\n \"get_network_devices_from_discovery\"\n ]\n },\n \"parameters\": {\n \"get_devices_discovered_by_id\": [\n {\n \"name\": \"id\",\n \"required\": true,\n \"type\": \"string\"\n },\n {\n \"name\": \"task_id\",\n \"required\": false,\n \"type\": \"string\"\n },\n {\n \"artificial\": true,\n \"name\": \"count\",\n \"required\": true,\n \"type\": \"boolean\"\n }\n ],\n \"get_discovered_devices_by_range\": [\n {\n \"name\": \"id\",\n \"required\": true,\n \"type\": \"string\"\n },\n {\n \"name\": \"records_to_return\",\n \"required\": true,\n \"type\": \"integer\"\n },\n {\n \"name\": \"start_index\",\n \"required\": true,\n \"type\": \"integer\"\n },\n {\n \"name\": \"task_id\",\n \"required\": false,\n \"type\": \"string\"\n }\n ],\n \"get_discovered_network_devices_by_discovery_id\": [\n {\n \"name\": \"id\",\n \"required\": true,\n \"type\": \"string\"\n },\n {\n \"name\": \"task_id\",\n \"required\": false,\n \"type\": \"string\"\n }\n ],\n \"get_network_devices_from_discovery\": [\n {\n \"name\": \"id\",\n \"required\": true,\n \"type\": \"string\"\n },\n {\n \"name\": \"cli_status\",\n \"required\": false,\n \"type\": \"string\"\n },\n {\n \"name\": \"http_status\",\n \"required\": false,\n \"type\": \"string\"\n },\n {\n \"name\": \"ip_address\",\n \"required\": false,\n \"type\": \"string\"\n },\n {\n \"name\": \"netconf_status\",\n \"required\": false,\n \"type\": \"string\"\n },\n {\n \"name\": \"ping_status\",\n \"required\": false,\n \"type\": \"string\"\n },\n {\n \"name\": \"snmp_status\",\n \"required\": false,\n \"type\": \"string\"\n },\n {\n \"name\": \"sort_by\",\n \"required\": false,\n \"type\": \"string\"\n },\n {\n \"name\": \"sort_order\",\n \"required\": false,\n \"type\": \"string\"\n },\n {\n \"name\": \"task_id\",\n \"required\": false,\n \"type\": \"string\"\n },\n {\n \"artificial\": true,\n \"name\": \"summary\",\n \"required\": true,\n \"type\": \"boolean\"\n }\n ]\n },\n \"responses\": {\n \"get_devices_discovered_by_id\": {\n \"properties\": [\n \"response\",\n \"version\"\n ],\n \"type\": \"object\"\n },\n \"get_discovered_devices_by_range\": {\n \"properties\": [\n \"response\",\n \"version\"\n ],\n \"type\": \"object\"\n },\n \"get_discovered_network_devices_by_discovery_id\": {\n \"properties\": [\n \"response\",\n \"version\"\n ],\n \"type\": \"object\"\n },\n \"get_network_devices_from_discovery\": {\n \"properties\": [\n \"response\",\n \"version\"\n ],\n \"type\": \"object\"\n }\n }\n}\"\"\"\n)\n"},"input_ids":{"kind":"list like","value":[6738,11593,37443,834,1330,357,48546,62,11748,11,7297,11,3601,62,8818,8,198,834,4164,330,31172,834,796,2099,198,11748,33918,198,198,21412,62,46758,796,33918,13,46030,7,198,220,220,220,37227,90,198,220,220,220,366,17989,1298,366,67,40821,1600,198,220,220,220,366,3672,1298,366,67,40821,62,27349,62,25202,1600,198,220,220,220,366,3575,602,1298,1391,198,220,220,220,220,220,220,220,366,1136,1298,685,198,220,220,220,220,220,220,220,220,220,220,220,366,1136,62,15410,2557,62,27349,62,42034,62,1525,62,67,40821,62,312,1600,198,220,220,220,220,220,220,220,220,220,220,220,366,1136,62,15410,2557,62,42034,62,1525,62,9521,1600,198,220,220,220,220,220,220,220,220,220,220,220,366,1136,62,42034,62,15410,2557,62,1525,62,312,1600,198,220,220,220,220,220,220,220,220,220,220,220,366,1136,62,27349,62,42034,62,6738,62,67,40821,1,198,220,220,220,220,220,220,220,2361,198,220,220,220,8964,198,220,220,220,366,17143,7307,1298,1391,198,220,220,220,220,220,220,220,366,1136,62,42034,62,15410,2557,62,1525,62,312,1298,685,198,220,220,220,220,220,220,220,220,220,220,220,1391,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,3672,1298,366,312,1600,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,35827,1298,2081,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,4906,1298,366,8841,1,198,220,220,220,220,220,220,220,220,220,220,220,8964,198,220,220,220,220,220,220,220,220,220,220,220,1391,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,3672,1298,366,35943,62,312,1600,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,35827,1298,3991,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,4906,1298,366,8841,1,198,220,220,220,220,220,220,220,220,220,220,220,8964,198,220,220,220,220,220,220,220,220,220,220,220,1391,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,433,9542,1298,2081,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,3672,1298,366,9127,1600,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,35827,1298,2081,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,4906,1298,366,2127,21052,1,198,220,220,220,220,220,220,220,220,220,220,220,1782,198,220,220,220,220,220,220,220,16589,198,220,220,220,220,220,220,220,366,1136,62,15410,2557,62,42034,62,1525,62,9521,1298,685,198,220,220,220,220,220,220,220,220,220,220,220,1391,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,3672,1298,366,312,1600,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,35827,1298,2081,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,4906,1298,366,8841,1,198,220,220,220,220,220,220,220,220,220,220,220,8964,198,220,220,220,220,220,220,220,220,220,220,220,1391,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,3672,1298,366,8344,3669,62,1462,62,7783,1600,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,35827,1298,2081,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,4906,1298,366,41433,1,198,220,220,220,220,220,220,220,220,220,220,220,8964,198,220,220,220,220,220,220,220,220,220,220,220,1391,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,3672,1298,366,9688,62,9630,1600,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,35827,1298,2081,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,4906,1298,366,41433,1,198,220,220,220,220,220,220,220,220,220,220,220,8964,198,220,220,220,220,220,220,220,220,220,220,220,1391,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,3672,1298,366,35943,62,312,1600,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,35827,1298,3991,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,4906,1298,366,8841,1,198,220,220,220,220,220,220,220,220,220,220,220,1782,198,220,220,220,220,220,220,220,16589,198,220,220,220,220,220,220,220,366,1136,62,15410,2557,62,27349,62,42034,62,1525,62,67,40821,62,312,1298,685,198,220,220,220,220,220,220,220,220,220,220,220,1391,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,3672,1298,366,312,1600,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,35827,1298,2081,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,4906,1298,366,8841,1,198,220,220,220,220,220,220,220,220,220,220,220,8964,198,220,220,220,220,220,220,220,220,220,220,220,1391,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,3672,1298,366,35943,62,312,1600,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,35827,1298,3991,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,4906,1298,366,8841,1,198,220,220,220,220,220,220,220,220,220,220,220,1782,198,220,220,220,220,220,220,220,16589,198,220,220,220,220,220,220,220,366,1136,62,27349,62,42034,62,6738,62,67,40821,1298,685,198,220,220,220,220,220,220,220,220,220,220,220,1391,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,3672,1298,366,312,1600,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,35827,1298,2081,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,4906,1298,366,8841,1,198,220,220,220,220,220,220,220,220,220,220,220,8964,198,220,220,220,220,220,220,220,220,220,220,220,1391,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,3672,1298,366,44506,62,13376,1600,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,35827,1298,3991,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,4906,1298,366,8841,1,198,220,220,220,220,220,220,220,220,220,220,220,8964,198,220,220,220,220,220,220,220,220,220,220,220,1391,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,3672,1298,366,4023,62,13376,1600,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,35827,1298,3991,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,4906,1298,366,8841,1,198,220,220,220,220,220,220,220,220,220,220,220,8964,198,220,220,220,220,220,220,220,220,220,220,220,1391,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,3672,1298,366,541,62,21975,1600,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,35827,1298,3991,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,4906,1298,366,8841,1,198,220,220,220,220,220,220,220,220,220,220,220,8964,198,220,220,220,220,220,220,220,220,220,220,220,1391,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,3672,1298,366,3262,10414,62,13376,1600,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,35827,1298,3991,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,4906,1298,366,8841,1,198,220,220,220,220,220,220,220,220,220,220,220,8964,198,220,220,220,220,220,220,220,220,220,220,220,1391,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,3672,1298,366,13886,62,13376,1600,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,35827,1298,3991,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,4906,1298,366,8841,1,198,220,220,220,220,220,220,220,220,220,220,220,8964,198,220,220,220,220,220,220,220,220,220,220,220,1391,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,3672,1298,366,16184,3149,62,13376,1600,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,35827,1298,3991,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,4906,1298,366,8841,1,198,220,220,220,220,220,220,220,220,220,220,220,8964,198,220,220,220,220,220,220,220,220,220,220,220,1391,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,3672,1298,366,30619,62,1525,1600,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,35827,1298,3991,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,4906,1298,366,8841,1,198,220,220,220,220,220,220,220,220,220,220,220,8964,198,220,220,220,220,220,220,220,220,220,220,220,1391,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,3672,1298,366,30619,62,2875,1600,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,35827,1298,3991,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,4906,1298,366,8841,1,198,220,220,220,220,220,220,220,220,220,220,220,8964,198,220,220,220,220,220,220,220,220,220,220,220,1391,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,3672,1298,366,35943,62,312,1600,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,35827,1298,3991,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,4906,1298,366,8841,1,198,220,220,220,220,220,220,220,220,220,220,220,8964,198,220,220,220,220,220,220,220,220,220,220,220,1391,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,433,9542,1298,2081,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,3672,1298,366,49736,1600,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,35827,1298,2081,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,4906,1298,366,2127,21052,1,198,220,220,220,220,220,220,220,220,220,220,220,1782,198,220,220,220,220,220,220,220,2361,198,220,220,220,8964,198,220,220,220,366,16733,274,1298,1391,198,220,220,220,220,220,220,220,366,1136,62,42034,62,15410,2557,62,1525,62,312,1298,1391,198,220,220,220,220,220,220,220,220,220,220,220,366,48310,1298,685,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,26209,1600,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,9641,1,198,220,220,220,220,220,220,220,220,220,220,220,16589,198,220,220,220,220,220,220,220,220,220,220,220,366,4906,1298,366,15252,1,198,220,220,220,220,220,220,220,8964,198,220,220,220,220,220,220,220,366,1136,62,15410,2557,62,42034,62,1525,62,9521,1298,1391,198,220,220,220,220,220,220,220,220,220,220,220,366,48310,1298,685,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,26209,1600,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,9641,1,198,220,220,220,220,220,220,220,220,220,220,220,16589,198,220,220,220,220,220,220,220,220,220,220,220,366,4906,1298,366,15252,1,198,220,220,220,220,220,220,220,8964,198,220,220,220,220,220,220,220,366,1136,62,15410,2557,62,27349,62,42034,62,1525,62,67,40821,62,312,1298,1391,198,220,220,220,220,220,220,220,220,220,220,220,366,48310,1298,685,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,26209,1600,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,9641,1,198,220,220,220,220,220,220,220,220,220,220,220,16589,198,220,220,220,220,220,220,220,220,220,220,220,366,4906,1298,366,15252,1,198,220,220,220,220,220,220,220,8964,198,220,220,220,220,220,220,220,366,1136,62,27349,62,42034,62,6738,62,67,40821,1298,1391,198,220,220,220,220,220,220,220,220,220,220,220,366,48310,1298,685,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,26209,1600,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,9641,1,198,220,220,220,220,220,220,220,220,220,220,220,16589,198,220,220,220,220,220,220,220,220,220,220,220,366,4906,1298,366,15252,1,198,220,220,220,220,220,220,220,1782,198,220,220,220,1782,198,92,37811,198,8,198],"string":"[\n 6738,\n 11593,\n 37443,\n 834,\n 1330,\n 357,\n 48546,\n 62,\n 11748,\n 11,\n 7297,\n 11,\n 3601,\n 62,\n 8818,\n 8,\n 198,\n 834,\n 4164,\n 330,\n 31172,\n 834,\n 796,\n 2099,\n 198,\n 11748,\n 33918,\n 198,\n 198,\n 21412,\n 62,\n 46758,\n 796,\n 33918,\n 13,\n 46030,\n 7,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 90,\n 198,\n 220,\n 220,\n 220,\n 366,\n 17989,\n 1298,\n 366,\n 67,\n 40821,\n 1600,\n 198,\n 220,\n 220,\n 220,\n 366,\n 3672,\n 1298,\n 366,\n 67,\n 40821,\n 62,\n 27349,\n 62,\n 25202,\n 1600,\n 198,\n 220,\n 220,\n 220,\n 366,\n 3575,\n 602,\n 1298,\n 1391,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 1136,\n 1298,\n 685,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 1136,\n 62,\n 15410,\n 2557,\n 62,\n 27349,\n 62,\n 42034,\n 62,\n 1525,\n 62,\n 67,\n 40821,\n 62,\n 312,\n 1600,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 1136,\n 62,\n 15410,\n 2557,\n 62,\n 42034,\n 62,\n 1525,\n 62,\n 9521,\n 1600,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 1136,\n 62,\n 42034,\n 62,\n 15410,\n 2557,\n 62,\n 1525,\n 62,\n 312,\n 1600,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 1136,\n 62,\n 27349,\n 62,\n 42034,\n 62,\n 6738,\n 62,\n 67,\n 40821,\n 1,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2361,\n 198,\n 220,\n 220,\n 220,\n 8964,\n 198,\n 220,\n 220,\n 220,\n 366,\n 17143,\n 7307,\n 1298,\n 1391,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 1136,\n 62,\n 42034,\n 62,\n 15410,\n 2557,\n 62,\n 1525,\n 62,\n 312,\n 1298,\n 685,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1391,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 3672,\n 1298,\n 366,\n 312,\n 1600,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 35827,\n 1298,\n 2081,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 4906,\n 1298,\n 366,\n 8841,\n 1,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 8964,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1391,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 3672,\n 1298,\n 366,\n 35943,\n 62,\n 312,\n 1600,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 35827,\n 1298,\n 3991,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 4906,\n 1298,\n 366,\n 8841,\n 1,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 8964,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1391,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 433,\n 9542,\n 1298,\n 2081,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 3672,\n 1298,\n 366,\n 9127,\n 1600,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 35827,\n 1298,\n 2081,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 4906,\n 1298,\n 366,\n 2127,\n 21052,\n 1,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1782,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 16589,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 1136,\n 62,\n 15410,\n 2557,\n 62,\n 42034,\n 62,\n 1525,\n 62,\n 9521,\n 1298,\n 685,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1391,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 3672,\n 1298,\n 366,\n 312,\n 1600,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 35827,\n 1298,\n 2081,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 4906,\n 1298,\n 366,\n 8841,\n 1,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 8964,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1391,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 3672,\n 1298,\n 366,\n 8344,\n 3669,\n 62,\n 1462,\n 62,\n 7783,\n 1600,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 35827,\n 1298,\n 2081,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 4906,\n 1298,\n 366,\n 41433,\n 1,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 8964,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1391,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 3672,\n 1298,\n 366,\n 9688,\n 62,\n 9630,\n 1600,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 35827,\n 1298,\n 2081,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 4906,\n 1298,\n 366,\n 41433,\n 1,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 8964,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1391,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 3672,\n 1298,\n 366,\n 35943,\n 62,\n 312,\n 1600,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 35827,\n 1298,\n 3991,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 4906,\n 1298,\n 366,\n 8841,\n 1,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1782,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 16589,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 1136,\n 62,\n 15410,\n 2557,\n 62,\n 27349,\n 62,\n 42034,\n 62,\n 1525,\n 62,\n 67,\n 40821,\n 62,\n 312,\n 1298,\n 685,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1391,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 3672,\n 1298,\n 366,\n 312,\n 1600,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 35827,\n 1298,\n 2081,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 4906,\n 1298,\n 366,\n 8841,\n 1,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 8964,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1391,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 3672,\n 1298,\n 366,\n 35943,\n 62,\n 312,\n 1600,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 35827,\n 1298,\n 3991,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 4906,\n 1298,\n 366,\n 8841,\n 1,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1782,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 16589,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 1136,\n 62,\n 27349,\n 62,\n 42034,\n 62,\n 6738,\n 62,\n 67,\n 40821,\n 1298,\n 685,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1391,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 3672,\n 1298,\n 366,\n 312,\n 1600,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 35827,\n 1298,\n 2081,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 4906,\n 1298,\n 366,\n 8841,\n 1,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 8964,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1391,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 3672,\n 1298,\n 366,\n 44506,\n 62,\n 13376,\n 1600,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 35827,\n 1298,\n 3991,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 4906,\n 1298,\n 366,\n 8841,\n 1,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 8964,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1391,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 3672,\n 1298,\n 366,\n 4023,\n 62,\n 13376,\n 1600,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 35827,\n 1298,\n 3991,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 4906,\n 1298,\n 366,\n 8841,\n 1,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 8964,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1391,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 3672,\n 1298,\n 366,\n 541,\n 62,\n 21975,\n 1600,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 35827,\n 1298,\n 3991,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 4906,\n 1298,\n 366,\n 8841,\n 1,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 8964,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1391,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 3672,\n 1298,\n 366,\n 3262,\n 10414,\n 62,\n 13376,\n 1600,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 35827,\n 1298,\n 3991,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 4906,\n 1298,\n 366,\n 8841,\n 1,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 8964,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1391,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 3672,\n 1298,\n 366,\n 13886,\n 62,\n 13376,\n 1600,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 35827,\n 1298,\n 3991,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 4906,\n 1298,\n 366,\n 8841,\n 1,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 8964,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1391,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 3672,\n 1298,\n 366,\n 16184,\n 3149,\n 62,\n 13376,\n 1600,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 35827,\n 1298,\n 3991,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 4906,\n 1298,\n 366,\n 8841,\n 1,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 8964,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1391,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 3672,\n 1298,\n 366,\n 30619,\n 62,\n 1525,\n 1600,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 35827,\n 1298,\n 3991,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 4906,\n 1298,\n 366,\n 8841,\n 1,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 8964,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1391,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 3672,\n 1298,\n 366,\n 30619,\n 62,\n 2875,\n 1600,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 35827,\n 1298,\n 3991,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 4906,\n 1298,\n 366,\n 8841,\n 1,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 8964,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1391,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 3672,\n 1298,\n 366,\n 35943,\n 62,\n 312,\n 1600,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 35827,\n 1298,\n 3991,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 4906,\n 1298,\n 366,\n 8841,\n 1,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 8964,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1391,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 433,\n 9542,\n 1298,\n 2081,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 3672,\n 1298,\n 366,\n 49736,\n 1600,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 35827,\n 1298,\n 2081,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 4906,\n 1298,\n 366,\n 2127,\n 21052,\n 1,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1782,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2361,\n 198,\n 220,\n 220,\n 220,\n 8964,\n 198,\n 220,\n 220,\n 220,\n 366,\n 16733,\n 274,\n 1298,\n 1391,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 1136,\n 62,\n 42034,\n 62,\n 15410,\n 2557,\n 62,\n 1525,\n 62,\n 312,\n 1298,\n 1391,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 48310,\n 1298,\n 685,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 26209,\n 1600,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 9641,\n 1,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 16589,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 4906,\n 1298,\n 366,\n 15252,\n 1,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 8964,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 1136,\n 62,\n 15410,\n 2557,\n 62,\n 42034,\n 62,\n 1525,\n 62,\n 9521,\n 1298,\n 1391,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 48310,\n 1298,\n 685,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 26209,\n 1600,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 9641,\n 1,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 16589,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 4906,\n 1298,\n 366,\n 15252,\n 1,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 8964,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 1136,\n 62,\n 15410,\n 2557,\n 62,\n 27349,\n 62,\n 42034,\n 62,\n 1525,\n 62,\n 67,\n 40821,\n 62,\n 312,\n 1298,\n 1391,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 48310,\n 1298,\n 685,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 26209,\n 1600,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 9641,\n 1,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 16589,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 4906,\n 1298,\n 366,\n 15252,\n 1,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 8964,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 1136,\n 62,\n 27349,\n 62,\n 42034,\n 62,\n 6738,\n 62,\n 67,\n 40821,\n 1298,\n 1391,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 48310,\n 1298,\n 685,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 26209,\n 1600,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 9641,\n 1,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 16589,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 4906,\n 1298,\n 366,\n 15252,\n 1,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1782,\n 198,\n 220,\n 220,\n 220,\n 1782,\n 198,\n 92,\n 37811,\n 198,\n 8,\n 198\n]"},"ratio_char_token":{"kind":"number","value":1.5498533724340176,"string":"1.549853"},"token_count":{"kind":"number","value":2728,"string":"2,728"}}},{"rowIdx":4249,"cells":{"content":{"kind":"string","value":"# Copyright 2013 The Chromium Authors. All rights reserved.\n# Use of this source code is governed by a BSD-style license that can be\n# found in the LICENSE file.\n\nimport sys\n\nfrom lib.bucket import BUCKET_ID\nfrom lib.subcommand import SubCommand\n\n"},"input_ids":{"kind":"list like","value":[2,15069,2211,383,18255,1505,46665,13,1439,2489,10395,13,198,2,5765,286,428,2723,2438,318,21825,416,257,347,10305,12,7635,5964,326,460,307,198,2,1043,287,262,38559,24290,2393,13,198,198,11748,25064,198,198,6738,9195,13,27041,316,1330,347,16696,2767,62,2389,198,6738,9195,13,7266,21812,1330,3834,21575,628],"string":"[\n 2,\n 15069,\n 2211,\n 383,\n 18255,\n 1505,\n 46665,\n 13,\n 1439,\n 2489,\n 10395,\n 13,\n 198,\n 2,\n 5765,\n 286,\n 428,\n 2723,\n 2438,\n 318,\n 21825,\n 416,\n 257,\n 347,\n 10305,\n 12,\n 7635,\n 5964,\n 326,\n 460,\n 307,\n 198,\n 2,\n 1043,\n 287,\n 262,\n 38559,\n 24290,\n 2393,\n 13,\n 198,\n 198,\n 11748,\n 25064,\n 198,\n 198,\n 6738,\n 9195,\n 13,\n 27041,\n 316,\n 1330,\n 347,\n 16696,\n 2767,\n 62,\n 2389,\n 198,\n 6738,\n 9195,\n 13,\n 7266,\n 21812,\n 1330,\n 3834,\n 21575,\n 628\n]"},"ratio_char_token":{"kind":"number","value":3.6865671641791047,"string":"3.686567"},"token_count":{"kind":"number","value":67,"string":"67"}}},{"rowIdx":4250,"cells":{"content":{"kind":"string","value":"burst_time=[]\r\nprint(\"Enter the number of process: \")\r\nn=int(input())\r\nprint(\"Enter the burst time of the processes: \\n\")\r\nburst_time=list(map(int, input().split()))\r\nwaiting_time=[]\r\navg_waiting_time=0\r\nturnaround_time=[]\r\navg_turnaround_time=0\r\nwaiting_time.insert(0,0)\r\nturnaround_time.insert(0,burst_time[0])\r\nfor i in range(1,len(burst_time)):\r\n waiting_time.insert(i,waiting_time[i-1]+burst_time[i-1])\r\n turnaround_time.insert(i,waiting_time[i]+burst_time[i])\r\n avg_waiting_time+=waiting_time[i]\r\n avg_turnaround_time+=turnaround_time[i]\r\navg_waiting_time=float(avg_waiting_time)/n\r\navg_turnaround_time=float(avg_turnaround_time)/n\r\nprint(\"\\n\")\r\nprint(\"Process\\t Burst Time\\t Waiting Time\\t Turn Around Time\")\r\nfor i in range(0,n):\r\n print(str(i)+\"\\t\\t\"+str(burst_time[i])+\"\\t\\t\"+str(waiting_time[i])+\"\\t\\t\"+str(turnaround_time[i]))\r\n print(\"\\n\")\r\nprint(\"Average Waiting time is: \"+str(avg_waiting_time))\r\nprint(\"Average Turn Arount Time is: \"+str(avg_turnaround_time))"},"input_ids":{"kind":"list like","value":[31961,62,2435,28,21737,201,198,4798,7203,17469,262,1271,286,1429,25,366,8,201,198,77,28,600,7,15414,28955,201,198,4798,7203,17469,262,11173,640,286,262,7767,25,3467,77,4943,201,198,31961,62,2435,28,4868,7,8899,7,600,11,5128,22446,35312,3419,4008,201,198,10247,1780,62,2435,28,21737,201,198,615,70,62,10247,1780,62,2435,28,15,201,198,15344,14145,62,2435,28,21737,201,198,615,70,62,15344,14145,62,2435,28,15,201,198,10247,1780,62,2435,13,28463,7,15,11,15,8,201,198,15344,14145,62,2435,13,28463,7,15,11,31961,62,2435,58,15,12962,201,198,1640,1312,287,2837,7,16,11,11925,7,31961,62,2435,8,2599,201,198,4953,62,2435,13,28463,7,72,11,10247,1780,62,2435,58,72,12,16,48688,31961,62,2435,58,72,12,16,12962,201,198,34217,62,2435,13,28463,7,72,11,10247,1780,62,2435,58,72,48688,31961,62,2435,58,72,12962,201,198,42781,62,10247,1780,62,2435,47932,10247,1780,62,2435,58,72,60,201,198,42781,62,15344,14145,62,2435,47932,15344,14145,62,2435,58,72,60,201,198,615,70,62,10247,1780,62,2435,28,22468,7,615,70,62,10247,1780,62,2435,20679,77,201,198,615,70,62,15344,14145,62,2435,28,22468,7,615,70,62,15344,14145,62,2435,20679,77,201,198,4798,7203,59,77,4943,201,198,4798,7203,18709,59,83,220,30635,3862,59,83,220,39669,3862,59,83,220,6756,16824,3862,4943,201,198,1640,1312,287,2837,7,15,11,77,2599,201,198,3601,7,2536,7,72,47762,1,59,83,59,83,1,10,2536,7,31961,62,2435,58,72,12962,10,1,59,83,59,83,1,10,2536,7,10247,1780,62,2435,58,72,12962,10,1,59,83,59,83,1,10,2536,7,15344,14145,62,2435,58,72,60,4008,201,198,3601,7203,59,77,4943,201,198,4798,7203,26287,39669,640,318,25,43825,2536,7,615,70,62,10247,1780,62,2435,4008,201,198,4798,7203,26287,6756,317,472,429,3862,318,25,43825,2536,7,615,70,62,15344,14145,62,2435,4008],"string":"[\n 31961,\n 62,\n 2435,\n 28,\n 21737,\n 201,\n 198,\n 4798,\n 7203,\n 17469,\n 262,\n 1271,\n 286,\n 1429,\n 25,\n 366,\n 8,\n 201,\n 198,\n 77,\n 28,\n 600,\n 7,\n 15414,\n 28955,\n 201,\n 198,\n 4798,\n 7203,\n 17469,\n 262,\n 11173,\n 640,\n 286,\n 262,\n 7767,\n 25,\n 3467,\n 77,\n 4943,\n 201,\n 198,\n 31961,\n 62,\n 2435,\n 28,\n 4868,\n 7,\n 8899,\n 7,\n 600,\n 11,\n 5128,\n 22446,\n 35312,\n 3419,\n 4008,\n 201,\n 198,\n 10247,\n 1780,\n 62,\n 2435,\n 28,\n 21737,\n 201,\n 198,\n 615,\n 70,\n 62,\n 10247,\n 1780,\n 62,\n 2435,\n 28,\n 15,\n 201,\n 198,\n 15344,\n 14145,\n 62,\n 2435,\n 28,\n 21737,\n 201,\n 198,\n 615,\n 70,\n 62,\n 15344,\n 14145,\n 62,\n 2435,\n 28,\n 15,\n 201,\n 198,\n 10247,\n 1780,\n 62,\n 2435,\n 13,\n 28463,\n 7,\n 15,\n 11,\n 15,\n 8,\n 201,\n 198,\n 15344,\n 14145,\n 62,\n 2435,\n 13,\n 28463,\n 7,\n 15,\n 11,\n 31961,\n 62,\n 2435,\n 58,\n 15,\n 12962,\n 201,\n 198,\n 1640,\n 1312,\n 287,\n 2837,\n 7,\n 16,\n 11,\n 11925,\n 7,\n 31961,\n 62,\n 2435,\n 8,\n 2599,\n 201,\n 198,\n 4953,\n 62,\n 2435,\n 13,\n 28463,\n 7,\n 72,\n 11,\n 10247,\n 1780,\n 62,\n 2435,\n 58,\n 72,\n 12,\n 16,\n 48688,\n 31961,\n 62,\n 2435,\n 58,\n 72,\n 12,\n 16,\n 12962,\n 201,\n 198,\n 34217,\n 62,\n 2435,\n 13,\n 28463,\n 7,\n 72,\n 11,\n 10247,\n 1780,\n 62,\n 2435,\n 58,\n 72,\n 48688,\n 31961,\n 62,\n 2435,\n 58,\n 72,\n 12962,\n 201,\n 198,\n 42781,\n 62,\n 10247,\n 1780,\n 62,\n 2435,\n 47932,\n 10247,\n 1780,\n 62,\n 2435,\n 58,\n 72,\n 60,\n 201,\n 198,\n 42781,\n 62,\n 15344,\n 14145,\n 62,\n 2435,\n 47932,\n 15344,\n 14145,\n 62,\n 2435,\n 58,\n 72,\n 60,\n 201,\n 198,\n 615,\n 70,\n 62,\n 10247,\n 1780,\n 62,\n 2435,\n 28,\n 22468,\n 7,\n 615,\n 70,\n 62,\n 10247,\n 1780,\n 62,\n 2435,\n 20679,\n 77,\n 201,\n 198,\n 615,\n 70,\n 62,\n 15344,\n 14145,\n 62,\n 2435,\n 28,\n 22468,\n 7,\n 615,\n 70,\n 62,\n 15344,\n 14145,\n 62,\n 2435,\n 20679,\n 77,\n 201,\n 198,\n 4798,\n 7203,\n 59,\n 77,\n 4943,\n 201,\n 198,\n 4798,\n 7203,\n 18709,\n 59,\n 83,\n 220,\n 30635,\n 3862,\n 59,\n 83,\n 220,\n 39669,\n 3862,\n 59,\n 83,\n 220,\n 6756,\n 16824,\n 3862,\n 4943,\n 201,\n 198,\n 1640,\n 1312,\n 287,\n 2837,\n 7,\n 15,\n 11,\n 77,\n 2599,\n 201,\n 198,\n 3601,\n 7,\n 2536,\n 7,\n 72,\n 47762,\n 1,\n 59,\n 83,\n 59,\n 83,\n 1,\n 10,\n 2536,\n 7,\n 31961,\n 62,\n 2435,\n 58,\n 72,\n 12962,\n 10,\n 1,\n 59,\n 83,\n 59,\n 83,\n 1,\n 10,\n 2536,\n 7,\n 10247,\n 1780,\n 62,\n 2435,\n 58,\n 72,\n 12962,\n 10,\n 1,\n 59,\n 83,\n 59,\n 83,\n 1,\n 10,\n 2536,\n 7,\n 15344,\n 14145,\n 62,\n 2435,\n 58,\n 72,\n 60,\n 4008,\n 201,\n 198,\n 3601,\n 7203,\n 59,\n 77,\n 4943,\n 201,\n 198,\n 4798,\n 7203,\n 26287,\n 39669,\n 640,\n 318,\n 25,\n 43825,\n 2536,\n 7,\n 615,\n 70,\n 62,\n 10247,\n 1780,\n 62,\n 2435,\n 4008,\n 201,\n 198,\n 4798,\n 7203,\n 26287,\n 6756,\n 317,\n 472,\n 429,\n 3862,\n 318,\n 25,\n 43825,\n 2536,\n 7,\n 615,\n 70,\n 62,\n 15344,\n 14145,\n 62,\n 2435,\n 4008\n]"},"ratio_char_token":{"kind":"number","value":2.3680387409200967,"string":"2.368039"},"token_count":{"kind":"number","value":413,"string":"413"}}},{"rowIdx":4251,"cells":{"content":{"kind":"string","value":"import os\n\nfrom airflow.hooks.base_hook import BaseHook\nfrom airflow.operators.bash_operator import BashOperator\nfrom airflow.utils.decorators import apply_defaults\n\n"},"input_ids":{"kind":"list like","value":[11748,28686,198,198,6738,45771,13,25480,82,13,8692,62,25480,1330,7308,39,566,198,6738,45771,13,3575,2024,13,41757,62,46616,1330,15743,18843,1352,198,6738,45771,13,26791,13,12501,273,2024,1330,4174,62,12286,82,628],"string":"[\n 11748,\n 28686,\n 198,\n 198,\n 6738,\n 45771,\n 13,\n 25480,\n 82,\n 13,\n 8692,\n 62,\n 25480,\n 1330,\n 7308,\n 39,\n 566,\n 198,\n 6738,\n 45771,\n 13,\n 3575,\n 2024,\n 13,\n 41757,\n 62,\n 46616,\n 1330,\n 15743,\n 18843,\n 1352,\n 198,\n 6738,\n 45771,\n 13,\n 26791,\n 13,\n 12501,\n 273,\n 2024,\n 1330,\n 4174,\n 62,\n 12286,\n 82,\n 628\n]"},"ratio_char_token":{"kind":"number","value":3.608695652173913,"string":"3.608696"},"token_count":{"kind":"number","value":46,"string":"46"}}},{"rowIdx":4252,"cells":{"content":{"kind":"string","value":"\"\"\"\nAuthor: Haoyin Xu\n\"\"\"\nimport time\nimport psutil\nimport argparse\nimport numpy as np\nimport torchvision.datasets as datasets\nfrom numpy.random import permutation\nfrom sklearn.tree import DecisionTreeClassifier\nfrom sklearn.ensemble import RandomForestClassifier\nfrom river import tree\nfrom skgarden import MondrianForestClassifier\nfrom sdtf import StreamDecisionForest\n\n\ndef write_result(filename, acc_ls):\n \"\"\"Writes results to specified text file\"\"\"\n output = open(filename, \"w\")\n for acc in acc_ls:\n output.write(str(acc) + \"\\n\")\n\n\ndef prediction(classifier):\n \"\"\"Generates predictions from model\"\"\"\n predictions = classifier.predict(X_test)\n\n p_t = 0\n for i in range(X_test.shape[0]):\n if predictions[i] == y_test[i]:\n p_t += 1\n\n return p_t / X_test.shape[0]\n\n\ndef experiment_dt():\n \"\"\"Runs experiments for Batch Decision Tree\"\"\"\n dt_l = []\n train_time_l = []\n test_time_l = []\n v_m_l = []\n s_m_l = []\n\n dt = DecisionTreeClassifier()\n\n for i in range(500):\n X_t = X_r[: (i + 1) * 100]\n y_t = y_r[: (i + 1) * 100]\n\n # Train the model\n start_time = time.perf_counter()\n dt.fit(X_t, y_t)\n end_time = time.perf_counter()\n train_time_l.append(end_time - start_time)\n\n # Test the model\n start_time = time.perf_counter()\n dt_l.append(prediction(dt))\n end_time = time.perf_counter()\n test_time_l.append(end_time - start_time)\n\n # Check memory\n v_m = psutil.virtual_memory()[2]\n v_m_l.append(v_m)\n s_m = psutil.swap_memory()[3]\n s_m_l.append(s_m)\n\n return dt_l, train_time_l, test_time_l, v_m_l, s_m_l\n\n\ndef experiment_rf():\n \"\"\"Runs experiments for Random Forest\"\"\"\n rf_l = []\n train_time_l = []\n test_time_l = []\n v_m_l = []\n s_m_l = []\n\n rf = RandomForestClassifier()\n\n for i in range(500):\n X_t = X_r[: (i + 1) * 100]\n y_t = y_r[: (i + 1) * 100]\n\n # Train the model\n start_time = time.perf_counter()\n rf.fit(X_t, y_t)\n end_time = time.perf_counter()\n train_time_l.append(end_time - start_time)\n\n # Test the model\n start_time = time.perf_counter()\n rf_l.append(prediction(rf))\n end_time = time.perf_counter()\n test_time_l.append(end_time - start_time)\n\n # Check memory\n v_m = psutil.virtual_memory()[2]\n v_m_l.append(v_m)\n s_m = psutil.swap_memory()[3]\n s_m_l.append(s_m)\n\n return rf_l, train_time_l, test_time_l, v_m_l, s_m_l\n\n\ndef experiment_ht():\n \"\"\"Runs experiments for Hoeffding Tree\"\"\"\n ht_l = []\n train_time_l = []\n test_time_l = []\n v_m_l = []\n s_m_l = []\n\n ht = tree.HoeffdingTreeClassifier(max_size=1000, grace_period=2)\n\n for i in range(X_train.shape[0]):\n X_t = X_r[i]\n y_t = y_r[i]\n\n idx = range(1024)\n X_t = dict(zip(idx, X_t))\n\n start_time = time.perf_counter()\n ht.learn_one(X_t, y_t)\n end_time = time.perf_counter()\n train_time_l.append(end_time - start_time)\n\n if i > 0 and (i + 1) % 100 == 0:\n p_t = 0.0\n start_time = time.perf_counter()\n for j in range(X_test.shape[0]):\n y_pred = ht.predict_one(X_test[j])\n if y_pred == y_test[j]:\n p_t += 1\n ht_l.append(p_t / X_test.shape[0])\n end_time = time.perf_counter()\n test_time_l.append(end_time - start_time)\n\n # Check memory\n v_m = psutil.virtual_memory()[2]\n v_m_l.append(v_m)\n s_m = psutil.swap_memory()[3]\n s_m_l.append(s_m)\n\n # Reformat the train times\n new_train_time_l = []\n for i in range(1, X_train.shape[0]):\n train_time_l[i] += train_time_l[i - 1]\n if i > 0 and (i + 1) % 100 == 0:\n new_train_time_l.append(train_time_l[i])\n train_time_l = new_train_time_l\n\n return ht_l, train_time_l, test_time_l, v_m_l, s_m_l\n\n\ndef experiment_mf():\n \"\"\"Runs experiments for Mondrian Forest\"\"\"\n mf_l = []\n train_time_l = []\n test_time_l = []\n v_m_l = []\n s_m_l = []\n\n mf = MondrianForestClassifier(n_estimators=10)\n\n for i in range(500):\n X_t = X_r[i * 100 : (i + 1) * 100]\n y_t = y_r[i * 100 : (i + 1) * 100]\n\n # Train the model\n start_time = time.perf_counter()\n mf.partial_fit(X_t, y_t)\n end_time = time.perf_counter()\n train_time_l.append(end_time - start_time)\n\n # Test the model\n start_time = time.perf_counter()\n mf_l.append(prediction(mf))\n end_time = time.perf_counter()\n test_time_l.append(end_time - start_time)\n\n # Check memory\n v_m = psutil.virtual_memory()[2]\n v_m_l.append(v_m)\n s_m = psutil.swap_memory()[3]\n s_m_l.append(s_m)\n\n # Reformat the train times\n for i in range(1, 500):\n train_time_l[i] += train_time_l[i - 1]\n\n return mf_l, train_time_l, test_time_l, v_m_l, s_m_l\n\n\ndef experiment_sdt():\n \"\"\"Runs experiments for Stream Decision Tree\"\"\"\n sdt_l = []\n train_time_l = []\n test_time_l = []\n v_m_l = []\n s_m_l = []\n\n sdt = DecisionTreeClassifier()\n\n for i in range(500):\n X_t = X_r[i * 100 : (i + 1) * 100]\n y_t = y_r[i * 100 : (i + 1) * 100]\n\n # Train the model\n start_time = time.perf_counter()\n sdt.partial_fit(X_t, y_t, classes=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9])\n end_time = time.perf_counter()\n train_time_l.append(end_time - start_time)\n\n # Test the model\n start_time = time.perf_counter()\n sdt_l.append(prediction(sdt))\n end_time = time.perf_counter()\n test_time_l.append(end_time - start_time)\n\n # Check memory\n v_m = psutil.virtual_memory()[2]\n v_m_l.append(v_m)\n s_m = psutil.swap_memory()[3]\n s_m_l.append(s_m)\n\n # Reformat the train times\n for i in range(1, 500):\n train_time_l[i] += train_time_l[i - 1]\n\n return sdt_l, train_time_l, test_time_l, v_m_l, s_m_l\n\n\ndef experiment_sdf():\n \"\"\"Runs experiments for Stream Decision Forest\"\"\"\n sdf_l = []\n train_time_l = []\n test_time_l = []\n v_m_l = []\n s_m_l = []\n\n sdf = StreamDecisionForest()\n\n for i in range(500):\n X_t = X_r[i * 100 : (i + 1) * 100]\n y_t = y_r[i * 100 : (i + 1) * 100]\n\n # Train the model\n start_time = time.perf_counter()\n sdf.partial_fit(X_t, y_t, classes=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9])\n end_time = time.perf_counter()\n train_time_l.append(end_time - start_time)\n\n # Test the model\n start_time = time.perf_counter()\n sdf_l.append(prediction(sdf))\n end_time = time.perf_counter()\n test_time_l.append(end_time - start_time)\n\n # Check memory\n v_m = psutil.virtual_memory()[2]\n v_m_l.append(v_m)\n s_m = psutil.swap_memory()[3]\n s_m_l.append(s_m)\n\n # Reformat the train times\n for i in range(1, 500):\n train_time_l[i] += train_time_l[i - 1]\n\n return sdf_l, train_time_l, test_time_l, v_m_l, s_m_l\n\n\n# Prepare CIFAR data\n# Normalize\nscale = np.mean(np.arange(0, 256))\nnormalize = lambda x: (x - scale) / scale\n\n# Train data\ncifar_trainset = datasets.CIFAR10(root=\"../\", train=True, download=True, transform=None)\nX_train = normalize(cifar_trainset.data)\ny_train = np.array(cifar_trainset.targets)\n\n# Test data\ncifar_testset = datasets.CIFAR10(root=\"../\", train=False, download=True, transform=None)\nX_test = normalize(cifar_testset.data)\ny_test = np.array(cifar_testset.targets)\n\nX_train = X_train.reshape(-1, 32 * 32 * 3)\nX_test = X_test.reshape(-1, 32 * 32 * 3)\n\n# Parse classifier choices\nparser = argparse.ArgumentParser()\nparser.add_argument(\"-all\", help=\"all classifiers\", required=False, action=\"store_true\")\nparser.add_argument(\"-dt\", help=\"decision forests\", required=False, action=\"store_true\")\nparser.add_argument(\"-rf\", help=\"random forests\", required=False, action=\"store_true\")\nparser.add_argument(\"-ht\", help=\"hoeffding trees\", required=False, action=\"store_true\")\nparser.add_argument(\"-mf\", help=\"mondrian forests\", required=False, action=\"store_true\")\nparser.add_argument(\n \"-sdt\", help=\"stream decision trees\", required=False, action=\"store_true\"\n)\nparser.add_argument(\n \"-sdf\", help=\"stream decision forests\", required=False, action=\"store_true\"\n)\nargs = parser.parse_args()\n\n# Perform experiments\nif args.all or args.dt:\n dt_acc_l = []\n dt_train_t_l = []\n dt_test_t_l = []\n dt_v_m_l = []\n dt_s_m_l = []\n for i in range(10):\n p = permutation(X_train.shape[0])\n\n X_r = X_train[p]\n y_r = y_train[p]\n\n dt_acc, dt_train_t, dt_test_t, dt_v_m, dt_s_m = experiment_dt()\n dt_acc_l.append(dt_acc)\n dt_train_t_l.append(dt_train_t)\n dt_test_t_l.append(dt_test_t)\n dt_v_m_l.append(dt_v_m)\n dt_s_m_l.append(dt_s_m)\n\n write_result(\"../results/dt/cifar10_acc.txt\", dt_acc_l)\n write_result(\"../results/dt/cifar10_train_t.txt\", dt_train_t_l)\n write_result(\"../results/dt/cifar10_test_t.txt\", dt_test_t_l)\n write_result(\"../results/dt/cifar10_v_m.txt\", dt_v_m_l)\n write_result(\"../results/dt/cifar10_s_m.txt\", dt_s_m_l)\n\nif args.all or args.rf:\n rf_acc_l = []\n rf_train_t_l = []\n rf_test_t_l = []\n rf_v_m_l = []\n rf_s_m_l = []\n for i in range(10):\n p = permutation(X_train.shape[0])\n\n X_r = X_train[p]\n y_r = y_train[p]\n\n rf_acc, rf_train_t, rf_test_t, rf_v_m, rf_s_m = experiment_rf()\n rf_acc_l.append(rf_acc)\n rf_train_t_l.append(rf_train_t)\n rf_test_t_l.append(rf_test_t)\n rf_v_m_l.append(rf_v_m)\n rf_s_m_l.append(rf_s_m)\n\n write_result(\"../results/rf/cifar10_acc.txt\", rf_acc_l)\n write_result(\"../results/rf/cifar10_train_t.txt\", rf_train_t_l)\n write_result(\"../results/rf/cifar10_test_t.txt\", rf_test_t_l)\n write_result(\"../results/rf/cifar10_v_m.txt\", rf_v_m_l)\n write_result(\"../results/rf/cifar10_s_m.txt\", rf_s_m_l)\n\nif args.all or args.ht:\n ht_acc_l = []\n ht_train_t_l = []\n ht_test_t_l = []\n ht_v_m_l = []\n ht_s_m_l = []\n for i in range(10):\n p = permutation(X_train.shape[0])\n\n X_r = X_train[p]\n y_r = y_train[p]\n\n ht_acc, ht_train_t, ht_test_t, ht_v_m, ht_s_m = experiment_ht()\n ht_acc_l.append(ht_acc)\n ht_train_t_l.append(ht_train_t)\n ht_test_t_l.append(ht_test_t)\n ht_v_m_l.append(ht_v_m)\n ht_s_m_l.append(ht_s_m)\n\n write_result(\"../results/ht/cifar10_acc.txt\", ht_acc_l)\n write_result(\"../results/ht/cifar10_train_t.txt\", ht_train_t_l)\n write_result(\"../results/ht/cifar10_test_t.txt\", ht_test_t_l)\n write_result(\"../results/ht/cifar10_v_m.txt\", ht_v_m_l)\n write_result(\"../results/ht/cifar10_s_m.txt\", ht_s_m_l)\n\nif args.all or args.mf:\n mf_acc_l = []\n mf_train_t_l = []\n mf_test_t_l = []\n mf_v_m_l = []\n mf_s_m_l = []\n for i in range(10):\n p = permutation(X_train.shape[0])\n\n X_r = X_train[p]\n y_r = y_train[p]\n\n mf_acc, mf_train_t, mf_test_t, mf_v_m, mf_s_m = experiment_mf()\n mf_acc_l.append(mf_acc)\n mf_train_t_l.append(mf_train_t)\n mf_test_t_l.append(mf_test_t)\n mf_v_m_l.append(mf_v_m)\n mf_s_m_l.append(mf_s_m)\n\n write_result(\"../results/mf/cifar10_acc.txt\", mf_acc_l)\n write_result(\"../results/mf/cifar10_train_t.txt\", mf_train_t_l)\n write_result(\"../results/mf/cifar10_test_t.txt\", mf_test_t_l)\n write_result(\"../results/mf/cifar10_v_m.txt\", mf_v_m_l)\n write_result(\"../results/mf/cifar10_s_m.txt\", mf_s_m_l)\n\nif args.all or args.sdt:\n sdt_acc_l = []\n sdt_train_t_l = []\n sdt_test_t_l = []\n sdt_v_m_l = []\n sdt_s_m_l = []\n for i in range(10):\n p = permutation(X_train.shape[0])\n\n X_r = X_train[p]\n y_r = y_train[p]\n\n sdt_acc, sdt_train_t, sdt_test_t, sdt_v_m, sdt_s_m = experiment_sdt()\n sdt_acc_l.append(sdt_acc)\n sdt_train_t_l.append(sdt_train_t)\n sdt_test_t_l.append(sdt_test_t)\n sdt_v_m_l.append(sdt_v_m)\n sdt_s_m_l.append(sdt_s_m)\n\n write_result(\"../results/sdt/cifar10_acc.txt\", sdt_acc_l)\n write_result(\"../results/sdt/cifar10_train_t.txt\", sdt_train_t_l)\n write_result(\"../results/sdt/cifar10_test_t.txt\", sdt_test_t_l)\n write_result(\"../results/sdt/cifar10_v_m.txt\", sdt_v_m_l)\n write_result(\"../results/sdt/cifar10_s_m.txt\", sdt_s_m_l)\n\nif args.all or args.sdf:\n sdf_acc_l = []\n sdf_train_t_l = []\n sdf_test_t_l = []\n sdf_v_m_l = []\n sdf_s_m_l = []\n for i in range(10):\n p = permutation(X_train.shape[0])\n\n X_r = X_train[p]\n y_r = y_train[p]\n\n sdf_acc, sdf_train_t, sdf_test_t, sdf_v_m, sdf_s_m = experiment_sdf()\n sdf_acc_l.append(sdf_acc)\n sdf_train_t_l.append(sdf_train_t)\n sdf_test_t_l.append(sdf_test_t)\n sdf_v_m_l.append(sdf_v_m)\n sdf_s_m_l.append(sdf_s_m)\n\n write_result(\"../results/sdf/cifar10_acc.txt\", sdf_acc_l)\n write_result(\"../results/sdf/cifar10_train_t.txt\", sdf_train_t_l)\n write_result(\"../results/sdf/cifar10_test_t.txt\", sdf_test_t_l)\n write_result(\"../results/sdf/cifar10_v_m.txt\", sdf_v_m_l)\n write_result(\"../results/sdf/cifar10_s_m.txt\", sdf_s_m_l)\n"},"input_ids":{"kind":"list like","value":[37811,198,13838,25,9398,726,259,33591,198,37811,198,11748,640,198,11748,26692,22602,198,11748,1822,29572,198,11748,299,32152,355,45941,198,11748,28034,10178,13,19608,292,1039,355,40522,198,6738,299,32152,13,25120,1330,9943,7094,198,6738,1341,35720,13,21048,1330,26423,27660,9487,7483,198,6738,1341,35720,13,1072,11306,1330,14534,34605,9487,7483,198,6738,7850,1330,5509,198,6738,1341,70,5872,1330,27328,4484,34605,9487,7483,198,6738,45647,27110,1330,13860,10707,1166,34605,628,198,4299,3551,62,20274,7,34345,11,697,62,7278,2599,198,220,220,220,37227,20257,274,2482,284,7368,2420,2393,37811,198,220,220,220,5072,796,1280,7,34345,11,366,86,4943,198,220,220,220,329,697,287,697,62,7278,25,198,220,220,220,220,220,220,220,5072,13,13564,7,2536,7,4134,8,1343,37082,77,4943,628,198,4299,17724,7,4871,7483,2599,198,220,220,220,37227,8645,689,16277,422,2746,37811,198,220,220,220,16277,796,1398,7483,13,79,17407,7,55,62,9288,8,628,220,220,220,279,62,83,796,657,198,220,220,220,329,1312,287,2837,7,55,62,9288,13,43358,58,15,60,2599,198,220,220,220,220,220,220,220,611,16277,58,72,60,6624,331,62,9288,58,72,5974,198,220,220,220,220,220,220,220,220,220,220,220,279,62,83,15853,352,628,220,220,220,1441,279,62,83,1220,1395,62,9288,13,43358,58,15,60,628,198,4299,6306,62,28664,33529,198,220,220,220,37227,10987,82,10256,329,347,963,26423,12200,37811,198,220,220,220,288,83,62,75,796,17635,198,220,220,220,4512,62,2435,62,75,796,17635,198,220,220,220,1332,62,2435,62,75,796,17635,198,220,220,220,410,62,76,62,75,796,17635,198,220,220,220,264,62,76,62,75,796,17635,628,220,220,220,288,83,796,26423,27660,9487,7483,3419,628,220,220,220,329,1312,287,2837,7,4059,2599,198,220,220,220,220,220,220,220,1395,62,83,796,1395,62,81,58,25,357,72,1343,352,8,1635,1802,60,198,220,220,220,220,220,220,220,331,62,83,796,331,62,81,58,25,357,72,1343,352,8,1635,1802,60,628,220,220,220,220,220,220,220,1303,16835,262,2746,198,220,220,220,220,220,220,220,923,62,2435,796,640,13,525,69,62,24588,3419,198,220,220,220,220,220,220,220,288,83,13,11147,7,55,62,83,11,331,62,83,8,198,220,220,220,220,220,220,220,886,62,2435,796,640,13,525,69,62,24588,3419,198,220,220,220,220,220,220,220,4512,62,2435,62,75,13,33295,7,437,62,2435,532,923,62,2435,8,628,220,220,220,220,220,220,220,1303,6208,262,2746,198,220,220,220,220,220,220,220,923,62,2435,796,640,13,525,69,62,24588,3419,198,220,220,220,220,220,220,220,288,83,62,75,13,33295,7,28764,2867,7,28664,4008,198,220,220,220,220,220,220,220,886,62,2435,796,640,13,525,69,62,24588,3419,198,220,220,220,220,220,220,220,1332,62,2435,62,75,13,33295,7,437,62,2435,532,923,62,2435,8,628,220,220,220,220,220,220,220,1303,6822,4088,198,220,220,220,220,220,220,220,410,62,76,796,26692,22602,13,32844,62,31673,3419,58,17,60,198,220,220,220,220,220,220,220,410,62,76,62,75,13,33295,7,85,62,76,8,198,220,220,220,220,220,220,220,264,62,76,796,26692,22602,13,2032,499,62,31673,3419,58,18,60,198,220,220,220,220,220,220,220,264,62,76,62,75,13,33295,7,82,62,76,8,628,220,220,220,1441,288,83,62,75,11,4512,62,2435,62,75,11,1332,62,2435,62,75,11,410,62,76,62,75,11,264,62,76,62,75,628,198,4299,6306,62,41871,33529,198,220,220,220,37227,10987,82,10256,329,14534,9115,37811,198,220,220,220,374,69,62,75,796,17635,198,220,220,220,4512,62,2435,62,75,796,17635,198,220,220,220,1332,62,2435,62,75,796,17635,198,220,220,220,410,62,76,62,75,796,17635,198,220,220,220,264,62,76,62,75,796,17635,628,220,220,220,374,69,796,14534,34605,9487,7483,3419,628,220,220,220,329,1312,287,2837,7,4059,2599,198,220,220,220,220,220,220,220,1395,62,83,796,1395,62,81,58,25,357,72,1343,352,8,1635,1802,60,198,220,220,220,220,220,220,220,331,62,83,796,331,62,81,58,25,357,72,1343,352,8,1635,1802,60,628,220,220,220,220,220,220,220,1303,16835,262,2746,198,220,220,220,220,220,220,220,923,62,2435,796,640,13,525,69,62,24588,3419,198,220,220,220,220,220,220,220,374,69,13,11147,7,55,62,83,11,331,62,83,8,198,220,220,220,220,220,220,220,886,62,2435,796,640,13,525,69,62,24588,3419,198,220,220,220,220,220,220,220,4512,62,2435,62,75,13,33295,7,437,62,2435,532,923,62,2435,8,628,220,220,220,220,220,220,220,1303,6208,262,2746,198,220,220,220,220,220,220,220,923,62,2435,796,640,13,525,69,62,24588,3419,198,220,220,220,220,220,220,220,374,69,62,75,13,33295,7,28764,2867,7,41871,4008,198,220,220,220,220,220,220,220,886,62,2435,796,640,13,525,69,62,24588,3419,198,220,220,220,220,220,220,220,1332,62,2435,62,75,13,33295,7,437,62,2435,532,923,62,2435,8,628,220,220,220,220,220,220,220,1303,6822,4088,198,220,220,220,220,220,220,220,410,62,76,796,26692,22602,13,32844,62,31673,3419,58,17,60,198,220,220,220,220,220,220,220,410,62,76,62,75,13,33295,7,85,62,76,8,198,220,220,220,220,220,220,220,264,62,76,796,26692,22602,13,2032,499,62,31673,3419,58,18,60,198,220,220,220,220,220,220,220,264,62,76,62,75,13,33295,7,82,62,76,8,628,220,220,220,1441,374,69,62,75,11,4512,62,2435,62,75,11,1332,62,2435,62,75,11,410,62,76,62,75,11,264,62,76,62,75,628,198,4299,6306,62,4352,33529,198,220,220,220,37227,10987,82,10256,329,367,2577,487,12083,12200,37811,198,220,220,220,289,83,62,75,796,17635,198,220,220,220,4512,62,2435,62,75,796,17635,198,220,220,220,1332,62,2435,62,75,796,17635,198,220,220,220,410,62,76,62,75,796,17635,198,220,220,220,264,62,76,62,75,796,17635,628,220,220,220,289,83,796,5509,13,39,2577,487,12083,27660,9487,7483,7,9806,62,7857,28,12825,11,11542,62,41007,28,17,8,628,220,220,220,329,1312,287,2837,7,55,62,27432,13,43358,58,15,60,2599,198,220,220,220,220,220,220,220,1395,62,83,796,1395,62,81,58,72,60,198,220,220,220,220,220,220,220,331,62,83,796,331,62,81,58,72,60,628,220,220,220,220,220,220,220,4686,87,796,2837,7,35500,8,198,220,220,220,220,220,220,220,1395,62,83,796,8633,7,13344,7,312,87,11,1395,62,83,4008,628,220,220,220,220,220,220,220,923,62,2435,796,640,13,525,69,62,24588,3419,198,220,220,220,220,220,220,220,289,83,13,35720,62,505,7,55,62,83,11,331,62,83,8,198,220,220,220,220,220,220,220,886,62,2435,796,640,13,525,69,62,24588,3419,198,220,220,220,220,220,220,220,4512,62,2435,62,75,13,33295,7,437,62,2435,532,923,62,2435,8,628,220,220,220,220,220,220,220,611,1312,1875,657,290,357,72,1343,352,8,4064,1802,6624,657,25,198,220,220,220,220,220,220,220,220,220,220,220,279,62,83,796,657,13,15,198,220,220,220,220,220,220,220,220,220,220,220,923,62,2435,796,640,13,525,69,62,24588,3419,198,220,220,220,220,220,220,220,220,220,220,220,329,474,287,2837,7,55,62,9288,13,43358,58,15,60,2599,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,331,62,28764,796,289,83,13,79,17407,62,505,7,55,62,9288,58,73,12962,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,611,331,62,28764,6624,331,62,9288,58,73,5974,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,279,62,83,15853,352,198,220,220,220,220,220,220,220,220,220,220,220,289,83,62,75,13,33295,7,79,62,83,1220,1395,62,9288,13,43358,58,15,12962,198,220,220,220,220,220,220,220,220,220,220,220,886,62,2435,796,640,13,525,69,62,24588,3419,198,220,220,220,220,220,220,220,220,220,220,220,1332,62,2435,62,75,13,33295,7,437,62,2435,532,923,62,2435,8,628,220,220,220,220,220,220,220,220,220,220,220,1303,6822,4088,198,220,220,220,220,220,220,220,220,220,220,220,410,62,76,796,26692,22602,13,32844,62,31673,3419,58,17,60,198,220,220,220,220,220,220,220,220,220,220,220,410,62,76,62,75,13,33295,7,85,62,76,8,198,220,220,220,220,220,220,220,220,220,220,220,264,62,76,796,26692,22602,13,2032,499,62,31673,3419,58,18,60,198,220,220,220,220,220,220,220,220,220,220,220,264,62,76,62,75,13,33295,7,82,62,76,8,628,220,220,220,1303,17893,265,262,4512,1661,198,220,220,220,649,62,27432,62,2435,62,75,796,17635,198,220,220,220,329,1312,287,2837,7,16,11,1395,62,27432,13,43358,58,15,60,2599,198,220,220,220,220,220,220,220,4512,62,2435,62,75,58,72,60,15853,4512,62,2435,62,75,58,72,532,352,60,198,220,220,220,220,220,220,220,611,1312,1875,657,290,357,72,1343,352,8,4064,1802,6624,657,25,198,220,220,220,220,220,220,220,220,220,220,220,649,62,27432,62,2435,62,75,13,33295,7,27432,62,2435,62,75,58,72,12962,198,220,220,220,4512,62,2435,62,75,796,649,62,27432,62,2435,62,75,628,220,220,220,1441,289,83,62,75,11,4512,62,2435,62,75,11,1332,62,2435,62,75,11,410,62,76,62,75,11,264,62,76,62,75,628,198,4299,6306,62,76,69,33529,198,220,220,220,37227,10987,82,10256,329,27328,4484,9115,37811,198,220,220,220,285,69,62,75,796,17635,198,220,220,220,4512,62,2435,62,75,796,17635,198,220,220,220,1332,62,2435,62,75,796,17635,198,220,220,220,410,62,76,62,75,796,17635,198,220,220,220,264,62,76,62,75,796,17635,628,220,220,220,285,69,796,27328,4484,34605,9487,7483,7,77,62,395,320,2024,28,940,8,628,220,220,220,329,1312,287,2837,7,4059,2599,198,220,220,220,220,220,220,220,1395,62,83,796,1395,62,81,58,72,1635,1802,1058,357,72,1343,352,8,1635,1802,60,198,220,220,220,220,220,220,220,331,62,83,796,331,62,81,58,72,1635,1802,1058,357,72,1343,352,8,1635,1802,60,628,220,220,220,220,220,220,220,1303,16835,262,2746,198,220,220,220,220,220,220,220,923,62,2435,796,640,13,525,69,62,24588,3419,198,220,220,220,220,220,220,220,285,69,13,47172,62,11147,7,55,62,83,11,331,62,83,8,198,220,220,220,220,220,220,220,886,62,2435,796,640,13,525,69,62,24588,3419,198,220,220,220,220,220,220,220,4512,62,2435,62,75,13,33295,7,437,62,2435,532,923,62,2435,8,628,220,220,220,220,220,220,220,1303,6208,262,2746,198,220,220,220,220,220,220,220,923,62,2435,796,640,13,525,69,62,24588,3419,198,220,220,220,220,220,220,220,285,69,62,75,13,33295,7,28764,2867,7,76,69,4008,198,220,220,220,220,220,220,220,886,62,2435,796,640,13,525,69,62,24588,3419,198,220,220,220,220,220,220,220,1332,62,2435,62,75,13,33295,7,437,62,2435,532,923,62,2435,8,628,220,220,220,220,220,220,220,1303,6822,4088,198,220,220,220,220,220,220,220,410,62,76,796,26692,22602,13,32844,62,31673,3419,58,17,60,198,220,220,220,220,220,220,220,410,62,76,62,75,13,33295,7,85,62,76,8,198,220,220,220,220,220,220,220,264,62,76,796,26692,22602,13,2032,499,62,31673,3419,58,18,60,198,220,220,220,220,220,220,220,264,62,76,62,75,13,33295,7,82,62,76,8,628,220,220,220,1303,17893,265,262,4512,1661,198,220,220,220,329,1312,287,2837,7,16,11,5323,2599,198,220,220,220,220,220,220,220,4512,62,2435,62,75,58,72,60,15853,4512,62,2435,62,75,58,72,532,352,60,628,220,220,220,1441,285,69,62,75,11,4512,62,2435,62,75,11,1332,62,2435,62,75,11,410,62,76,62,75,11,264,62,76,62,75,628,198,4299,6306,62,21282,83,33529,198,220,220,220,37227,10987,82,10256,329,13860,26423,12200,37811,198,220,220,220,264,28664,62,75,796,17635,198,220,220,220,4512,62,2435,62,75,796,17635,198,220,220,220,1332,62,2435,62,75,796,17635,198,220,220,220,410,62,76,62,75,796,17635,198,220,220,220,264,62,76,62,75,796,17635,628,220,220,220,264,28664,796,26423,27660,9487,7483,3419,628,220,220,220,329,1312,287,2837,7,4059,2599,198,220,220,220,220,220,220,220,1395,62,83,796,1395,62,81,58,72,1635,1802,1058,357,72,1343,352,8,1635,1802,60,198,220,220,220,220,220,220,220,331,62,83,796,331,62,81,58,72,1635,1802,1058,357,72,1343,352,8,1635,1802,60,628,220,220,220,220,220,220,220,1303,16835,262,2746,198,220,220,220,220,220,220,220,923,62,2435,796,640,13,525,69,62,24588,3419,198,220,220,220,220,220,220,220,264,28664,13,47172,62,11147,7,55,62,83,11,331,62,83,11,6097,41888,15,11,352,11,362,11,513,11,604,11,642,11,718,11,767,11,807,11,860,12962,198,220,220,220,220,220,220,220,886,62,2435,796,640,13,525,69,62,24588,3419,198,220,220,220,220,220,220,220,4512,62,2435,62,75,13,33295,7,437,62,2435,532,923,62,2435,8,628,220,220,220,220,220,220,220,1303,6208,262,2746,198,220,220,220,220,220,220,220,923,62,2435,796,640,13,525,69,62,24588,3419,198,220,220,220,220,220,220,220,264,28664,62,75,13,33295,7,28764,2867,7,21282,83,4008,198,220,220,220,220,220,220,220,886,62,2435,796,640,13,525,69,62,24588,3419,198,220,220,220,220,220,220,220,1332,62,2435,62,75,13,33295,7,437,62,2435,532,923,62,2435,8,628,220,220,220,220,220,220,220,1303,6822,4088,198,220,220,220,220,220,220,220,410,62,76,796,26692,22602,13,32844,62,31673,3419,58,17,60,198,220,220,220,220,220,220,220,410,62,76,62,75,13,33295,7,85,62,76,8,198,220,220,220,220,220,220,220,264,62,76,796,26692,22602,13,2032,499,62,31673,3419,58,18,60,198,220,220,220,220,220,220,220,264,62,76,62,75,13,33295,7,82,62,76,8,628,220,220,220,1303,17893,265,262,4512,1661,198,220,220,220,329,1312,287,2837,7,16,11,5323,2599,198,220,220,220,220,220,220,220,4512,62,2435,62,75,58,72,60,15853,4512,62,2435,62,75,58,72,532,352,60,628,220,220,220,1441,264,28664,62,75,11,4512,62,2435,62,75,11,1332,62,2435,62,75,11,410,62,76,62,75,11,264,62,76,62,75,628,198,4299,6306,62,82,7568,33529,198,220,220,220,37227,10987,82,10256,329,13860,26423,9115,37811,198,220,220,220,264,7568,62,75,796,17635,198,220,220,220,4512,62,2435,62,75,796,17635,198,220,220,220,1332,62,2435,62,75,796,17635,198,220,220,220,410,62,76,62,75,796,17635,198,220,220,220,264,62,76,62,75,796,17635,628,220,220,220,264,7568,796,13860,10707,1166,34605,3419,628,220,220,220,329,1312,287,2837,7,4059,2599,198,220,220,220,220,220,220,220,1395,62,83,796,1395,62,81,58,72,1635,1802,1058,357,72,1343,352,8,1635,1802,60,198,220,220,220,220,220,220,220,331,62,83,796,331,62,81,58,72,1635,1802,1058,357,72,1343,352,8,1635,1802,60,628,220,220,220,220,220,220,220,1303,16835,262,2746,198,220,220,220,220,220,220,220,923,62,2435,796,640,13,525,69,62,24588,3419,198,220,220,220,220,220,220,220,264,7568,13,47172,62,11147,7,55,62,83,11,331,62,83,11,6097,41888,15,11,352,11,362,11,513,11,604,11,642,11,718,11,767,11,807,11,860,12962,198,220,220,220,220,220,220,220,886,62,2435,796,640,13,525,69,62,24588,3419,198,220,220,220,220,220,220,220,4512,62,2435,62,75,13,33295,7,437,62,2435,532,923,62,2435,8,628,220,220,220,220,220,220,220,1303,6208,262,2746,198,220,220,220,220,220,220,220,923,62,2435,796,640,13,525,69,62,24588,3419,198,220,220,220,220,220,220,220,264,7568,62,75,13,33295,7,28764,2867,7,82,7568,4008,198,220,220,220,220,220,220,220,886,62,2435,796,640,13,525,69,62,24588,3419,198,220,220,220,220,220,220,220,1332,62,2435,62,75,13,33295,7,437,62,2435,532,923,62,2435,8,628,220,220,220,220,220,220,220,1303,6822,4088,198,220,220,220,220,220,220,220,410,62,76,796,26692,22602,13,32844,62,31673,3419,58,17,60,198,220,220,220,220,220,220,220,410,62,76,62,75,13,33295,7,85,62,76,8,198,220,220,220,220,220,220,220,264,62,76,796,26692,22602,13,2032,499,62,31673,3419,58,18,60,198,220,220,220,220,220,220,220,264,62,76,62,75,13,33295,7,82,62,76,8,628,220,220,220,1303,17893,265,262,4512,1661,198,220,220,220,329,1312,287,2837,7,16,11,5323,2599,198,220,220,220,220,220,220,220,4512,62,2435,62,75,58,72,60,15853,4512,62,2435,62,75,58,72,532,352,60,628,220,220,220,1441,264,7568,62,75,11,4512,62,2435,62,75,11,1332,62,2435,62,75,11,410,62,76,62,75,11,264,62,76,62,75,628,198,2,43426,327,5064,1503,1366,198,2,14435,1096,198,9888,796,45941,13,32604,7,37659,13,283,858,7,15,11,17759,4008,198,11265,1096,796,37456,2124,25,357,87,532,5046,8,1220,5046,198,198,2,16835,1366,198,66,361,283,62,2213,1299,316,796,40522,13,34,5064,1503,940,7,15763,2625,40720,1600,4512,28,17821,11,4321,28,17821,11,6121,28,14202,8,198,55,62,27432,796,3487,1096,7,66,361,283,62,2213,1299,316,13,7890,8,198,88,62,27432,796,45941,13,18747,7,66,361,283,62,2213,1299,316,13,83,853,1039,8,198,198,2,6208,1366,198,66,361,283,62,9288,2617,796,40522,13,34,5064,1503,940,7,15763,2625,40720,1600,4512,28,25101,11,4321,28,17821,11,6121,28,14202,8,198,55,62,9288,796,3487,1096,7,66,361,283,62,9288,2617,13,7890,8,198,88,62,9288,796,45941,13,18747,7,66,361,283,62,9288,2617,13,83,853,1039,8,198,198,55,62,27432,796,1395,62,27432,13,3447,1758,32590,16,11,3933,1635,3933,1635,513,8,198,55,62,9288,796,1395,62,9288,13,3447,1758,32590,16,11,3933,1635,3933,1635,513,8,198,198,2,2547,325,1398,7483,7747,198,48610,796,1822,29572,13,28100,1713,46677,3419,198,48610,13,2860,62,49140,7203,12,439,1600,1037,2625,439,1398,13350,1600,2672,28,25101,11,2223,2625,8095,62,7942,4943,198,48610,13,2860,62,49140,7203,12,28664,1600,1037,2625,12501,1166,17039,1600,2672,28,25101,11,2223,2625,8095,62,7942,4943,198,48610,13,2860,62,49140,7203,12,41871,1600,1037,2625,25120,17039,1600,2672,28,25101,11,2223,2625,8095,62,7942,4943,198,48610,13,2860,62,49140,7203,12,4352,1600,1037,2625,38979,487,12083,7150,1600,2672,28,25101,11,2223,2625,8095,62,7942,4943,198,48610,13,2860,62,49140,7203,12,76,69,1600,1037,2625,6327,4484,17039,1600,2672,28,25101,11,2223,2625,8095,62,7942,4943,198,48610,13,2860,62,49140,7,198,220,220,220,27444,21282,83,1600,1037,2625,5532,2551,7150,1600,2672,28,25101,11,2223,2625,8095,62,7942,1,198,8,198,48610,13,2860,62,49140,7,198,220,220,220,27444,82,7568,1600,1037,2625,5532,2551,17039,1600,2672,28,25101,11,2223,2625,8095,62,7942,1,198,8,198,22046,796,30751,13,29572,62,22046,3419,198,198,2,35006,10256,198,361,26498,13,439,393,26498,13,28664,25,198,220,220,220,288,83,62,4134,62,75,796,17635,198,220,220,220,288,83,62,27432,62,83,62,75,796,17635,198,220,220,220,288,83,62,9288,62,83,62,75,796,17635,198,220,220,220,288,83,62,85,62,76,62,75,796,17635,198,220,220,220,288,83,62,82,62,76,62,75,796,17635,198,220,220,220,329,1312,287,2837,7,940,2599,198,220,220,220,220,220,220,220,279,796,9943,7094,7,55,62,27432,13,43358,58,15,12962,628,220,220,220,220,220,220,220,1395,62,81,796,1395,62,27432,58,79,60,198,220,220,220,220,220,220,220,331,62,81,796,331,62,27432,58,79,60,628,220,220,220,220,220,220,220,288,83,62,4134,11,288,83,62,27432,62,83,11,288,83,62,9288,62,83,11,288,83,62,85,62,76,11,288,83,62,82,62,76,796,6306,62,28664,3419,198,220,220,220,220,220,220,220,288,83,62,4134,62,75,13,33295,7,28664,62,4134,8,198,220,220,220,220,220,220,220,288,83,62,27432,62,83,62,75,13,33295,7,28664,62,27432,62,83,8,198,220,220,220,220,220,220,220,288,83,62,9288,62,83,62,75,13,33295,7,28664,62,9288,62,83,8,198,220,220,220,220,220,220,220,288,83,62,85,62,76,62,75,13,33295,7,28664,62,85,62,76,8,198,220,220,220,220,220,220,220,288,83,62,82,62,76,62,75,13,33295,7,28664,62,82,62,76,8,628,220,220,220,220,220,220,220,3551,62,20274,7203,40720,43420,14,28664,14,66,361,283,940,62,4134,13,14116,1600,288,83,62,4134,62,75,8,198,220,220,220,220,220,220,220,3551,62,20274,7203,40720,43420,14,28664,14,66,361,283,940,62,27432,62,83,13,14116,1600,288,83,62,27432,62,83,62,75,8,198,220,220,220,220,220,220,220,3551,62,20274,7203,40720,43420,14,28664,14,66,361,283,940,62,9288,62,83,13,14116,1600,288,83,62,9288,62,83,62,75,8,198,220,220,220,220,220,220,220,3551,62,20274,7203,40720,43420,14,28664,14,66,361,283,940,62,85,62,76,13,14116,1600,288,83,62,85,62,76,62,75,8,198,220,220,220,220,220,220,220,3551,62,20274,7203,40720,43420,14,28664,14,66,361,283,940,62,82,62,76,13,14116,1600,288,83,62,82,62,76,62,75,8,198,198,361,26498,13,439,393,26498,13,41871,25,198,220,220,220,374,69,62,4134,62,75,796,17635,198,220,220,220,374,69,62,27432,62,83,62,75,796,17635,198,220,220,220,374,69,62,9288,62,83,62,75,796,17635,198,220,220,220,374,69,62,85,62,76,62,75,796,17635,198,220,220,220,374,69,62,82,62,76,62,75,796,17635,198,220,220,220,329,1312,287,2837,7,940,2599,198,220,220,220,220,220,220,220,279,796,9943,7094,7,55,62,27432,13,43358,58,15,12962,628,220,220,220,220,220,220,220,1395,62,81,796,1395,62,27432,58,79,60,198,220,220,220,220,220,220,220,331,62,81,796,331,62,27432,58,79,60,628,220,220,220,220,220,220,220,374,69,62,4134,11,374,69,62,27432,62,83,11,374,69,62,9288,62,83,11,374,69,62,85,62,76,11,374,69,62,82,62,76,796,6306,62,41871,3419,198,220,220,220,220,220,220,220,374,69,62,4134,62,75,13,33295,7,41871,62,4134,8,198,220,220,220,220,220,220,220,374,69,62,27432,62,83,62,75,13,33295,7,41871,62,27432,62,83,8,198,220,220,220,220,220,220,220,374,69,62,9288,62,83,62,75,13,33295,7,41871,62,9288,62,83,8,198,220,220,220,220,220,220,220,374,69,62,85,62,76,62,75,13,33295,7,41871,62,85,62,76,8,198,220,220,220,220,220,220,220,374,69,62,82,62,76,62,75,13,33295,7,41871,62,82,62,76,8,628,220,220,220,220,220,220,220,3551,62,20274,7203,40720,43420,14,41871,14,66,361,283,940,62,4134,13,14116,1600,374,69,62,4134,62,75,8,198,220,220,220,220,220,220,220,3551,62,20274,7203,40720,43420,14,41871,14,66,361,283,940,62,27432,62,83,13,14116,1600,374,69,62,27432,62,83,62,75,8,198,220,220,220,220,220,220,220,3551,62,20274,7203,40720,43420,14,41871,14,66,361,283,940,62,9288,62,83,13,14116,1600,374,69,62,9288,62,83,62,75,8,198,220,220,220,220,220,220,220,3551,62,20274,7203,40720,43420,14,41871,14,66,361,283,940,62,85,62,76,13,14116,1600,374,69,62,85,62,76,62,75,8,198,220,220,220,220,220,220,220,3551,62,20274,7203,40720,43420,14,41871,14,66,361,283,940,62,82,62,76,13,14116,1600,374,69,62,82,62,76,62,75,8,198,198,361,26498,13,439,393,26498,13,4352,25,198,220,220,220,289,83,62,4134,62,75,796,17635,198,220,220,220,289,83,62,27432,62,83,62,75,796,17635,198,220,220,220,289,83,62,9288,62,83,62,75,796,17635,198,220,220,220,289,83,62,85,62,76,62,75,796,17635,198,220,220,220,289,83,62,82,62,76,62,75,796,17635,198,220,220,220,329,1312,287,2837,7,940,2599,198,220,220,220,220,220,220,220,279,796,9943,7094,7,55,62,27432,13,43358,58,15,12962,628,220,220,220,220,220,220,220,1395,62,81,796,1395,62,27432,58,79,60,198,220,220,220,220,220,220,220,331,62,81,796,331,62,27432,58,79,60,628,220,220,220,220,220,220,220,289,83,62,4134,11,289,83,62,27432,62,83,11,289,83,62,9288,62,83,11,289,83,62,85,62,76,11,289,83,62,82,62,76,796,6306,62,4352,3419,198,220,220,220,220,220,220,220,289,83,62,4134,62,75,13,33295,7,4352,62,4134,8,198,220,220,220,220,220,220,220,289,83,62,27432,62,83,62,75,13,33295,7,4352,62,27432,62,83,8,198,220,220,220,220,220,220,220,289,83,62,9288,62,83,62,75,13,33295,7,4352,62,9288,62,83,8,198,220,220,220,220,220,220,220,289,83,62,85,62,76,62,75,13,33295,7,4352,62,85,62,76,8,198,220,220,220,220,220,220,220,289,83,62,82,62,76,62,75,13,33295,7,4352,62,82,62,76,8,628,220,220,220,220,220,220,220,3551,62,20274,7203,40720,43420,14,4352,14,66,361,283,940,62,4134,13,14116,1600,289,83,62,4134,62,75,8,198,220,220,220,220,220,220,220,3551,62,20274,7203,40720,43420,14,4352,14,66,361,283,940,62,27432,62,83,13,14116,1600,289,83,62,27432,62,83,62,75,8,198,220,220,220,220,220,220,220,3551,62,20274,7203,40720,43420,14,4352,14,66,361,283,940,62,9288,62,83,13,14116,1600,289,83,62,9288,62,83,62,75,8,198,220,220,220,220,220,220,220,3551,62,20274,7203,40720,43420,14,4352,14,66,361,283,940,62,85,62,76,13,14116,1600,289,83,62,85,62,76,62,75,8,198,220,220,220,220,220,220,220,3551,62,20274,7203,40720,43420,14,4352,14,66,361,283,940,62,82,62,76,13,14116,1600,289,83,62,82,62,76,62,75,8,198,198,361,26498,13,439,393,26498,13,76,69,25,198,220,220,220,285,69,62,4134,62,75,796,17635,198,220,220,220,285,69,62,27432,62,83,62,75,796,17635,198,220,220,220,285,69,62,9288,62,83,62,75,796,17635,198,220,220,220,285,69,62,85,62,76,62,75,796,17635,198,220,220,220,285,69,62,82,62,76,62,75,796,17635,198,220,220,220,329,1312,287,2837,7,940,2599,198,220,220,220,220,220,220,220,279,796,9943,7094,7,55,62,27432,13,43358,58,15,12962,628,220,220,220,220,220,220,220,1395,62,81,796,1395,62,27432,58,79,60,198,220,220,220,220,220,220,220,331,62,81,796,331,62,27432,58,79,60,628,220,220,220,220,220,220,220,285,69,62,4134,11,285,69,62,27432,62,83,11,285,69,62,9288,62,83,11,285,69,62,85,62,76,11,285,69,62,82,62,76,796,6306,62,76,69,3419,198,220,220,220,220,220,220,220,285,69,62,4134,62,75,13,33295,7,76,69,62,4134,8,198,220,220,220,220,220,220,220,285,69,62,27432,62,83,62,75,13,33295,7,76,69,62,27432,62,83,8,198,220,220,220,220,220,220,220,285,69,62,9288,62,83,62,75,13,33295,7,76,69,62,9288,62,83,8,198,220,220,220,220,220,220,220,285,69,62,85,62,76,62,75,13,33295,7,76,69,62,85,62,76,8,198,220,220,220,220,220,220,220,285,69,62,82,62,76,62,75,13,33295,7,76,69,62,82,62,76,8,628,220,220,220,220,220,220,220,3551,62,20274,7203,40720,43420,14,76,69,14,66,361,283,940,62,4134,13,14116,1600,285,69,62,4134,62,75,8,198,220,220,220,220,220,220,220,3551,62,20274,7203,40720,43420,14,76,69,14,66,361,283,940,62,27432,62,83,13,14116,1600,285,69,62,27432,62,83,62,75,8,198,220,220,220,220,220,220,220,3551,62,20274,7203,40720,43420,14,76,69,14,66,361,283,940,62,9288,62,83,13,14116,1600,285,69,62,9288,62,83,62,75,8,198,220,220,220,220,220,220,220,3551,62,20274,7203,40720,43420,14,76,69,14,66,361,283,940,62,85,62,76,13,14116,1600,285,69,62,85,62,76,62,75,8,198,220,220,220,220,220,220,220,3551,62,20274,7203,40720,43420,14,76,69,14,66,361,283,940,62,82,62,76,13,14116,1600,285,69,62,82,62,76,62,75,8,198,198,361,26498,13,439,393,26498,13,21282,83,25,198,220,220,220,264,28664,62,4134,62,75,796,17635,198,220,220,220,264,28664,62,27432,62,83,62,75,796,17635,198,220,220,220,264,28664,62,9288,62,83,62,75,796,17635,198,220,220,220,264,28664,62,85,62,76,62,75,796,17635,198,220,220,220,264,28664,62,82,62,76,62,75,796,17635,198,220,220,220,329,1312,287,2837,7,940,2599,198,220,220,220,220,220,220,220,279,796,9943,7094,7,55,62,27432,13,43358,58,15,12962,628,220,220,220,220,220,220,220,1395,62,81,796,1395,62,27432,58,79,60,198,220,220,220,220,220,220,220,331,62,81,796,331,62,27432,58,79,60,628,220,220,220,220,220,220,220,264,28664,62,4134,11,264,28664,62,27432,62,83,11,264,28664,62,9288,62,83,11,264,28664,62,85,62,76,11,264,28664,62,82,62,76,796,6306,62,21282,83,3419,198,220,220,220,220,220,220,220,264,28664,62,4134,62,75,13,33295,7,21282,83,62,4134,8,198,220,220,220,220,220,220,220,264,28664,62,27432,62,83,62,75,13,33295,7,21282,83,62,27432,62,83,8,198,220,220,220,220,220,220,220,264,28664,62,9288,62,83,62,75,13,33295,7,21282,83,62,9288,62,83,8,198,220,220,220,220,220,220,220,264,28664,62,85,62,76,62,75,13,33295,7,21282,83,62,85,62,76,8,198,220,220,220,220,220,220,220,264,28664,62,82,62,76,62,75,13,33295,7,21282,83,62,82,62,76,8,628,220,220,220,220,220,220,220,3551,62,20274,7203,40720,43420,14,21282,83,14,66,361,283,940,62,4134,13,14116,1600,264,28664,62,4134,62,75,8,198,220,220,220,220,220,220,220,3551,62,20274,7203,40720,43420,14,21282,83,14,66,361,283,940,62,27432,62,83,13,14116,1600,264,28664,62,27432,62,83,62,75,8,198,220,220,220,220,220,220,220,3551,62,20274,7203,40720,43420,14,21282,83,14,66,361,283,940,62,9288,62,83,13,14116,1600,264,28664,62,9288,62,83,62,75,8,198,220,220,220,220,220,220,220,3551,62,20274,7203,40720,43420,14,21282,83,14,66,361,283,940,62,85,62,76,13,14116,1600,264,28664,62,85,62,76,62,75,8,198,220,220,220,220,220,220,220,3551,62,20274,7203,40720,43420,14,21282,83,14,66,361,283,940,62,82,62,76,13,14116,1600,264,28664,62,82,62,76,62,75,8,198,198,361,26498,13,439,393,26498,13,82,7568,25,198,220,220,220,264,7568,62,4134,62,75,796,17635,198,220,220,220,264,7568,62,27432,62,83,62,75,796,17635,198,220,220,220,264,7568,62,9288,62,83,62,75,796,17635,198,220,220,220,264,7568,62,85,62,76,62,75,796,17635,198,220,220,220,264,7568,62,82,62,76,62,75,796,17635,198,220,220,220,329,1312,287,2837,7,940,2599,198,220,220,220,220,220,220,220,279,796,9943,7094,7,55,62,27432,13,43358,58,15,12962,628,220,220,220,220,220,220,220,1395,62,81,796,1395,62,27432,58,79,60,198,220,220,220,220,220,220,220,331,62,81,796,331,62,27432,58,79,60,628,220,220,220,220,220,220,220,264,7568,62,4134,11,264,7568,62,27432,62,83,11,264,7568,62,9288,62,83,11,264,7568,62,85,62,76,11,264,7568,62,82,62,76,796,6306,62,82,7568,3419,198,220,220,220,220,220,220,220,264,7568,62,4134,62,75,13,33295,7,82,7568,62,4134,8,198,220,220,220,220,220,220,220,264,7568,62,27432,62,83,62,75,13,33295,7,82,7568,62,27432,62,83,8,198,220,220,220,220,220,220,220,264,7568,62,9288,62,83,62,75,13,33295,7,82,7568,62,9288,62,83,8,198,220,220,220,220,220,220,220,264,7568,62,85,62,76,62,75,13,33295,7,82,7568,62,85,62,76,8,198,220,220,220,220,220,220,220,264,7568,62,82,62,76,62,75,13,33295,7,82,7568,62,82,62,76,8,628,220,220,220,220,220,220,220,3551,62,20274,7203,40720,43420,14,82,7568,14,66,361,283,940,62,4134,13,14116,1600,264,7568,62,4134,62,75,8,198,220,220,220,220,220,220,220,3551,62,20274,7203,40720,43420,14,82,7568,14,66,361,283,940,62,27432,62,83,13,14116,1600,264,7568,62,27432,62,83,62,75,8,198,220,220,220,220,220,220,220,3551,62,20274,7203,40720,43420,14,82,7568,14,66,361,283,940,62,9288,62,83,13,14116,1600,264,7568,62,9288,62,83,62,75,8,198,220,220,220,220,220,220,220,3551,62,20274,7203,40720,43420,14,82,7568,14,66,361,283,940,62,85,62,76,13,14116,1600,264,7568,62,85,62,76,62,75,8,198,220,220,220,220,220,220,220,3551,62,20274,7203,40720,43420,14,82,7568,14,66,361,283,940,62,82,62,76,13,14116,1600,264,7568,62,82,62,76,62,75,8,198],"string":"[\n 37811,\n 198,\n 13838,\n 25,\n 9398,\n 726,\n 259,\n 33591,\n 198,\n 37811,\n 198,\n 11748,\n 640,\n 198,\n 11748,\n 26692,\n 22602,\n 198,\n 11748,\n 1822,\n 29572,\n 198,\n 11748,\n 299,\n 32152,\n 355,\n 45941,\n 198,\n 11748,\n 28034,\n 10178,\n 13,\n 19608,\n 292,\n 1039,\n 355,\n 40522,\n 198,\n 6738,\n 299,\n 32152,\n 13,\n 25120,\n 1330,\n 9943,\n 7094,\n 198,\n 6738,\n 1341,\n 35720,\n 13,\n 21048,\n 1330,\n 26423,\n 27660,\n 9487,\n 7483,\n 198,\n 6738,\n 1341,\n 35720,\n 13,\n 1072,\n 11306,\n 1330,\n 14534,\n 34605,\n 9487,\n 7483,\n 198,\n 6738,\n 7850,\n 1330,\n 5509,\n 198,\n 6738,\n 1341,\n 70,\n 5872,\n 1330,\n 27328,\n 4484,\n 34605,\n 9487,\n 7483,\n 198,\n 6738,\n 45647,\n 27110,\n 1330,\n 13860,\n 10707,\n 1166,\n 34605,\n 628,\n 198,\n 4299,\n 3551,\n 62,\n 20274,\n 7,\n 34345,\n 11,\n 697,\n 62,\n 7278,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 20257,\n 274,\n 2482,\n 284,\n 7368,\n 2420,\n 2393,\n 37811,\n 198,\n 220,\n 220,\n 220,\n 5072,\n 796,\n 1280,\n 7,\n 34345,\n 11,\n 366,\n 86,\n 4943,\n 198,\n 220,\n 220,\n 220,\n 329,\n 697,\n 287,\n 697,\n 62,\n 7278,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 5072,\n 13,\n 13564,\n 7,\n 2536,\n 7,\n 4134,\n 8,\n 1343,\n 37082,\n 77,\n 4943,\n 628,\n 198,\n 4299,\n 17724,\n 7,\n 4871,\n 7483,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 8645,\n 689,\n 16277,\n 422,\n 2746,\n 37811,\n 198,\n 220,\n 220,\n 220,\n 16277,\n 796,\n 1398,\n 7483,\n 13,\n 79,\n 17407,\n 7,\n 55,\n 62,\n 9288,\n 8,\n 628,\n 220,\n 220,\n 220,\n 279,\n 62,\n 83,\n 796,\n 657,\n 198,\n 220,\n 220,\n 220,\n 329,\n 1312,\n 287,\n 2837,\n 7,\n 55,\n 62,\n 9288,\n 13,\n 43358,\n 58,\n 15,\n 60,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 16277,\n 58,\n 72,\n 60,\n 6624,\n 331,\n 62,\n 9288,\n 58,\n 72,\n 5974,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 279,\n 62,\n 83,\n 15853,\n 352,\n 628,\n 220,\n 220,\n 220,\n 1441,\n 279,\n 62,\n 83,\n 1220,\n 1395,\n 62,\n 9288,\n 13,\n 43358,\n 58,\n 15,\n 60,\n 628,\n 198,\n 4299,\n 6306,\n 62,\n 28664,\n 33529,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 10987,\n 82,\n 10256,\n 329,\n 347,\n 963,\n 26423,\n 12200,\n 37811,\n 198,\n 220,\n 220,\n 220,\n 288,\n 83,\n 62,\n 75,\n 796,\n 17635,\n 198,\n 220,\n 220,\n 220,\n 4512,\n 62,\n 2435,\n 62,\n 75,\n 796,\n 17635,\n 198,\n 220,\n 220,\n 220,\n 1332,\n 62,\n 2435,\n 62,\n 75,\n 796,\n 17635,\n 198,\n 220,\n 220,\n 220,\n 410,\n 62,\n 76,\n 62,\n 75,\n 796,\n 17635,\n 198,\n 220,\n 220,\n 220,\n 264,\n 62,\n 76,\n 62,\n 75,\n 796,\n 17635,\n 628,\n 220,\n 220,\n 220,\n 288,\n 83,\n 796,\n 26423,\n 27660,\n 9487,\n 7483,\n 3419,\n 628,\n 220,\n 220,\n 220,\n 329,\n 1312,\n 287,\n 2837,\n 7,\n 4059,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1395,\n 62,\n 83,\n 796,\n 1395,\n 62,\n 81,\n 58,\n 25,\n 357,\n 72,\n 1343,\n 352,\n 8,\n 1635,\n 1802,\n 60,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 331,\n 62,\n 83,\n 796,\n 331,\n 62,\n 81,\n 58,\n 25,\n 357,\n 72,\n 1343,\n 352,\n 8,\n 1635,\n 1802,\n 60,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 16835,\n 262,\n 2746,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 923,\n 62,\n 2435,\n 796,\n 640,\n 13,\n 525,\n 69,\n 62,\n 24588,\n 3419,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 288,\n 83,\n 13,\n 11147,\n 7,\n 55,\n 62,\n 83,\n 11,\n 331,\n 62,\n 83,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 886,\n 62,\n 2435,\n 796,\n 640,\n 13,\n 525,\n 69,\n 62,\n 24588,\n 3419,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 4512,\n 62,\n 2435,\n 62,\n 75,\n 13,\n 33295,\n 7,\n 437,\n 62,\n 2435,\n 532,\n 923,\n 62,\n 2435,\n 8,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 6208,\n 262,\n 2746,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 923,\n 62,\n 2435,\n 796,\n 640,\n 13,\n 525,\n 69,\n 62,\n 24588,\n 3419,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 288,\n 83,\n 62,\n 75,\n 13,\n 33295,\n 7,\n 28764,\n 2867,\n 7,\n 28664,\n 4008,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 886,\n 62,\n 2435,\n 796,\n 640,\n 13,\n 525,\n 69,\n 62,\n 24588,\n 3419,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1332,\n 62,\n 2435,\n 62,\n 75,\n 13,\n 33295,\n 7,\n 437,\n 62,\n 2435,\n 532,\n 923,\n 62,\n 2435,\n 8,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 6822,\n 4088,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 410,\n 62,\n 76,\n 796,\n 26692,\n 22602,\n 13,\n 32844,\n 62,\n 31673,\n 3419,\n 58,\n 17,\n 60,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 410,\n 62,\n 76,\n 62,\n 75,\n 13,\n 33295,\n 7,\n 85,\n 62,\n 76,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 264,\n 62,\n 76,\n 796,\n 26692,\n 22602,\n 13,\n 2032,\n 499,\n 62,\n 31673,\n 3419,\n 58,\n 18,\n 60,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 264,\n 62,\n 76,\n 62,\n 75,\n 13,\n 33295,\n 7,\n 82,\n 62,\n 76,\n 8,\n 628,\n 220,\n 220,\n 220,\n 1441,\n 288,\n 83,\n 62,\n 75,\n 11,\n 4512,\n 62,\n 2435,\n 62,\n 75,\n 11,\n 1332,\n 62,\n 2435,\n 62,\n 75,\n 11,\n 410,\n 62,\n 76,\n 62,\n 75,\n 11,\n 264,\n 62,\n 76,\n 62,\n 75,\n 628,\n 198,\n 4299,\n 6306,\n 62,\n 41871,\n 33529,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 10987,\n 82,\n 10256,\n 329,\n 14534,\n 9115,\n 37811,\n 198,\n 220,\n 220,\n 220,\n 374,\n 69,\n 62,\n 75,\n 796,\n 17635,\n 198,\n 220,\n 220,\n 220,\n 4512,\n 62,\n 2435,\n 62,\n 75,\n 796,\n 17635,\n 198,\n 220,\n 220,\n 220,\n 1332,\n 62,\n 2435,\n 62,\n 75,\n 796,\n 17635,\n 198,\n 220,\n 220,\n 220,\n 410,\n 62,\n 76,\n 62,\n 75,\n 796,\n 17635,\n 198,\n 220,\n 220,\n 220,\n 264,\n 62,\n 76,\n 62,\n 75,\n 796,\n 17635,\n 628,\n 220,\n 220,\n 220,\n 374,\n 69,\n 796,\n 14534,\n 34605,\n 9487,\n 7483,\n 3419,\n 628,\n 220,\n 220,\n 220,\n 329,\n 1312,\n 287,\n 2837,\n 7,\n 4059,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1395,\n 62,\n 83,\n 796,\n 1395,\n 62,\n 81,\n 58,\n 25,\n 357,\n 72,\n 1343,\n 352,\n 8,\n 1635,\n 1802,\n 60,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 331,\n 62,\n 83,\n 796,\n 331,\n 62,\n 81,\n 58,\n 25,\n 357,\n 72,\n 1343,\n 352,\n 8,\n 1635,\n 1802,\n 60,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 16835,\n 262,\n 2746,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 923,\n 62,\n 2435,\n 796,\n 640,\n 13,\n 525,\n 69,\n 62,\n 24588,\n 3419,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 374,\n 69,\n 13,\n 11147,\n 7,\n 55,\n 62,\n 83,\n 11,\n 331,\n 62,\n 83,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 886,\n 62,\n 2435,\n 796,\n 640,\n 13,\n 525,\n 69,\n 62,\n 24588,\n 3419,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 4512,\n 62,\n 2435,\n 62,\n 75,\n 13,\n 33295,\n 7,\n 437,\n 62,\n 2435,\n 532,\n 923,\n 62,\n 2435,\n 8,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 6208,\n 262,\n 2746,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 923,\n 62,\n 2435,\n 796,\n 640,\n 13,\n 525,\n 69,\n 62,\n 24588,\n 3419,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 374,\n 69,\n 62,\n 75,\n 13,\n 33295,\n 7,\n 28764,\n 2867,\n 7,\n 41871,\n 4008,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 886,\n 62,\n 2435,\n 796,\n 640,\n 13,\n 525,\n 69,\n 62,\n 24588,\n 3419,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1332,\n 62,\n 2435,\n 62,\n 75,\n 13,\n 33295,\n 7,\n 437,\n 62,\n 2435,\n 532,\n 923,\n 62,\n 2435,\n 8,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 6822,\n 4088,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 410,\n 62,\n 76,\n 796,\n 26692,\n 22602,\n 13,\n 32844,\n 62,\n 31673,\n 3419,\n 58,\n 17,\n 60,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 410,\n 62,\n 76,\n 62,\n 75,\n 13,\n 33295,\n 7,\n 85,\n 62,\n 76,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 264,\n 62,\n 76,\n 796,\n 26692,\n 22602,\n 13,\n 2032,\n 499,\n 62,\n 31673,\n 3419,\n 58,\n 18,\n 60,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 264,\n 62,\n 76,\n 62,\n 75,\n 13,\n 33295,\n 7,\n 82,\n 62,\n 76,\n 8,\n 628,\n 220,\n 220,\n 220,\n 1441,\n 374,\n 69,\n 62,\n 75,\n 11,\n 4512,\n 62,\n 2435,\n 62,\n 75,\n 11,\n 1332,\n 62,\n 2435,\n 62,\n 75,\n 11,\n 410,\n 62,\n 76,\n 62,\n 75,\n 11,\n 264,\n 62,\n 76,\n 62,\n 75,\n 628,\n 198,\n 4299,\n 6306,\n 62,\n 4352,\n 33529,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 10987,\n 82,\n 10256,\n 329,\n 367,\n 2577,\n 487,\n 12083,\n 12200,\n 37811,\n 198,\n 220,\n 220,\n 220,\n 289,\n 83,\n 62,\n 75,\n 796,\n 17635,\n 198,\n 220,\n 220,\n 220,\n 4512,\n 62,\n 2435,\n 62,\n 75,\n 796,\n 17635,\n 198,\n 220,\n 220,\n 220,\n 1332,\n 62,\n 2435,\n 62,\n 75,\n 796,\n 17635,\n 198,\n 220,\n 220,\n 220,\n 410,\n 62,\n 76,\n 62,\n 75,\n 796,\n 17635,\n 198,\n 220,\n 220,\n 220,\n 264,\n 62,\n 76,\n 62,\n 75,\n 796,\n 17635,\n 628,\n 220,\n 220,\n 220,\n 289,\n 83,\n 796,\n 5509,\n 13,\n 39,\n 2577,\n 487,\n 12083,\n 27660,\n 9487,\n 7483,\n 7,\n 9806,\n 62,\n 7857,\n 28,\n 12825,\n 11,\n 11542,\n 62,\n 41007,\n 28,\n 17,\n 8,\n 628,\n 220,\n 220,\n 220,\n 329,\n 1312,\n 287,\n 2837,\n 7,\n 55,\n 62,\n 27432,\n 13,\n 43358,\n 58,\n 15,\n 60,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1395,\n 62,\n 83,\n 796,\n 1395,\n 62,\n 81,\n 58,\n 72,\n 60,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 331,\n 62,\n 83,\n 796,\n 331,\n 62,\n 81,\n 58,\n 72,\n 60,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 4686,\n 87,\n 796,\n 2837,\n 7,\n 35500,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1395,\n 62,\n 83,\n 796,\n 8633,\n 7,\n 13344,\n 7,\n 312,\n 87,\n 11,\n 1395,\n 62,\n 83,\n 4008,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 923,\n 62,\n 2435,\n 796,\n 640,\n 13,\n 525,\n 69,\n 62,\n 24588,\n 3419,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 289,\n 83,\n 13,\n 35720,\n 62,\n 505,\n 7,\n 55,\n 62,\n 83,\n 11,\n 331,\n 62,\n 83,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 886,\n 62,\n 2435,\n 796,\n 640,\n 13,\n 525,\n 69,\n 62,\n 24588,\n 3419,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 4512,\n 62,\n 2435,\n 62,\n 75,\n 13,\n 33295,\n 7,\n 437,\n 62,\n 2435,\n 532,\n 923,\n 62,\n 2435,\n 8,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 1312,\n 1875,\n 657,\n 290,\n 357,\n 72,\n 1343,\n 352,\n 8,\n 4064,\n 1802,\n 6624,\n 657,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 279,\n 62,\n 83,\n 796,\n 657,\n 13,\n 15,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 923,\n 62,\n 2435,\n 796,\n 640,\n 13,\n 525,\n 69,\n 62,\n 24588,\n 3419,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 329,\n 474,\n 287,\n 2837,\n 7,\n 55,\n 62,\n 9288,\n 13,\n 43358,\n 58,\n 15,\n 60,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 331,\n 62,\n 28764,\n 796,\n 289,\n 83,\n 13,\n 79,\n 17407,\n 62,\n 505,\n 7,\n 55,\n 62,\n 9288,\n 58,\n 73,\n 12962,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 331,\n 62,\n 28764,\n 6624,\n 331,\n 62,\n 9288,\n 58,\n 73,\n 5974,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 279,\n 62,\n 83,\n 15853,\n 352,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 289,\n 83,\n 62,\n 75,\n 13,\n 33295,\n 7,\n 79,\n 62,\n 83,\n 1220,\n 1395,\n 62,\n 9288,\n 13,\n 43358,\n 58,\n 15,\n 12962,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 886,\n 62,\n 2435,\n 796,\n 640,\n 13,\n 525,\n 69,\n 62,\n 24588,\n 3419,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1332,\n 62,\n 2435,\n 62,\n 75,\n 13,\n 33295,\n 7,\n 437,\n 62,\n 2435,\n 532,\n 923,\n 62,\n 2435,\n 8,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 6822,\n 4088,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 410,\n 62,\n 76,\n 796,\n 26692,\n 22602,\n 13,\n 32844,\n 62,\n 31673,\n 3419,\n 58,\n 17,\n 60,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 410,\n 62,\n 76,\n 62,\n 75,\n 13,\n 33295,\n 7,\n 85,\n 62,\n 76,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 264,\n 62,\n 76,\n 796,\n 26692,\n 22602,\n 13,\n 2032,\n 499,\n 62,\n 31673,\n 3419,\n 58,\n 18,\n 60,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 264,\n 62,\n 76,\n 62,\n 75,\n 13,\n 33295,\n 7,\n 82,\n 62,\n 76,\n 8,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 17893,\n 265,\n 262,\n 4512,\n 1661,\n 198,\n 220,\n 220,\n 220,\n 649,\n 62,\n 27432,\n 62,\n 2435,\n 62,\n 75,\n 796,\n 17635,\n 198,\n 220,\n 220,\n 220,\n 329,\n 1312,\n 287,\n 2837,\n 7,\n 16,\n 11,\n 1395,\n 62,\n 27432,\n 13,\n 43358,\n 58,\n 15,\n 60,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 4512,\n 62,\n 2435,\n 62,\n 75,\n 58,\n 72,\n 60,\n 15853,\n 4512,\n 62,\n 2435,\n 62,\n 75,\n 58,\n 72,\n 532,\n 352,\n 60,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 1312,\n 1875,\n 657,\n 290,\n 357,\n 72,\n 1343,\n 352,\n 8,\n 4064,\n 1802,\n 6624,\n 657,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 649,\n 62,\n 27432,\n 62,\n 2435,\n 62,\n 75,\n 13,\n 33295,\n 7,\n 27432,\n 62,\n 2435,\n 62,\n 75,\n 58,\n 72,\n 12962,\n 198,\n 220,\n 220,\n 220,\n 4512,\n 62,\n 2435,\n 62,\n 75,\n 796,\n 649,\n 62,\n 27432,\n 62,\n 2435,\n 62,\n 75,\n 628,\n 220,\n 220,\n 220,\n 1441,\n 289,\n 83,\n 62,\n 75,\n 11,\n 4512,\n 62,\n 2435,\n 62,\n 75,\n 11,\n 1332,\n 62,\n 2435,\n 62,\n 75,\n 11,\n 410,\n 62,\n 76,\n 62,\n 75,\n 11,\n 264,\n 62,\n 76,\n 62,\n 75,\n 628,\n 198,\n 4299,\n 6306,\n 62,\n 76,\n 69,\n 33529,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 10987,\n 82,\n 10256,\n 329,\n 27328,\n 4484,\n 9115,\n 37811,\n 198,\n 220,\n 220,\n 220,\n 285,\n 69,\n 62,\n 75,\n 796,\n 17635,\n 198,\n 220,\n 220,\n 220,\n 4512,\n 62,\n 2435,\n 62,\n 75,\n 796,\n 17635,\n 198,\n 220,\n 220,\n 220,\n 1332,\n 62,\n 2435,\n 62,\n 75,\n 796,\n 17635,\n 198,\n 220,\n 220,\n 220,\n 410,\n 62,\n 76,\n 62,\n 75,\n 796,\n 17635,\n 198,\n 220,\n 220,\n 220,\n 264,\n 62,\n 76,\n 62,\n 75,\n 796,\n 17635,\n 628,\n 220,\n 220,\n 220,\n 285,\n 69,\n 796,\n 27328,\n 4484,\n 34605,\n 9487,\n 7483,\n 7,\n 77,\n 62,\n 395,\n 320,\n 2024,\n 28,\n 940,\n 8,\n 628,\n 220,\n 220,\n 220,\n 329,\n 1312,\n 287,\n 2837,\n 7,\n 4059,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1395,\n 62,\n 83,\n 796,\n 1395,\n 62,\n 81,\n 58,\n 72,\n 1635,\n 1802,\n 1058,\n 357,\n 72,\n 1343,\n 352,\n 8,\n 1635,\n 1802,\n 60,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 331,\n 62,\n 83,\n 796,\n 331,\n 62,\n 81,\n 58,\n 72,\n 1635,\n 1802,\n 1058,\n 357,\n 72,\n 1343,\n 352,\n 8,\n 1635,\n 1802,\n 60,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 16835,\n 262,\n 2746,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 923,\n 62,\n 2435,\n 796,\n 640,\n 13,\n 525,\n 69,\n 62,\n 24588,\n 3419,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 285,\n 69,\n 13,\n 47172,\n 62,\n 11147,\n 7,\n 55,\n 62,\n 83,\n 11,\n 331,\n 62,\n 83,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 886,\n 62,\n 2435,\n 796,\n 640,\n 13,\n 525,\n 69,\n 62,\n 24588,\n 3419,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 4512,\n 62,\n 2435,\n 62,\n 75,\n 13,\n 33295,\n 7,\n 437,\n 62,\n 2435,\n 532,\n 923,\n 62,\n 2435,\n 8,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 6208,\n 262,\n 2746,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 923,\n 62,\n 2435,\n 796,\n 640,\n 13,\n 525,\n 69,\n 62,\n 24588,\n 3419,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 285,\n 69,\n 62,\n 75,\n 13,\n 33295,\n 7,\n 28764,\n 2867,\n 7,\n 76,\n 69,\n 4008,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 886,\n 62,\n 2435,\n 796,\n 640,\n 13,\n 525,\n 69,\n 62,\n 24588,\n 3419,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1332,\n 62,\n 2435,\n 62,\n 75,\n 13,\n 33295,\n 7,\n 437,\n 62,\n 2435,\n 532,\n 923,\n 62,\n 2435,\n 8,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 6822,\n 4088,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 410,\n 62,\n 76,\n 796,\n 26692,\n 22602,\n 13,\n 32844,\n 62,\n 31673,\n 3419,\n 58,\n 17,\n 60,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 410,\n 62,\n 76,\n 62,\n 75,\n 13,\n 33295,\n 7,\n 85,\n 62,\n 76,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 264,\n 62,\n 76,\n 796,\n 26692,\n 22602,\n 13,\n 2032,\n 499,\n 62,\n 31673,\n 3419,\n 58,\n 18,\n 60,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 264,\n 62,\n 76,\n 62,\n 75,\n 13,\n 33295,\n 7,\n 82,\n 62,\n 76,\n 8,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 17893,\n 265,\n 262,\n 4512,\n 1661,\n 198,\n 220,\n 220,\n 220,\n 329,\n 1312,\n 287,\n 2837,\n 7,\n 16,\n 11,\n 5323,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 4512,\n 62,\n 2435,\n 62,\n 75,\n 58,\n 72,\n 60,\n 15853,\n 4512,\n 62,\n 2435,\n 62,\n 75,\n 58,\n 72,\n 532,\n 352,\n 60,\n 628,\n 220,\n 220,\n 220,\n 1441,\n 285,\n 69,\n 62,\n 75,\n 11,\n 4512,\n 62,\n 2435,\n 62,\n 75,\n 11,\n 1332,\n 62,\n 2435,\n 62,\n 75,\n 11,\n 410,\n 62,\n 76,\n 62,\n 75,\n 11,\n 264,\n 62,\n 76,\n 62,\n 75,\n 628,\n 198,\n 4299,\n 6306,\n 62,\n 21282,\n 83,\n 33529,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 10987,\n 82,\n 10256,\n 329,\n 13860,\n 26423,\n 12200,\n 37811,\n 198,\n 220,\n 220,\n 220,\n 264,\n 28664,\n 62,\n 75,\n 796,\n 17635,\n 198,\n 220,\n 220,\n 220,\n 4512,\n 62,\n 2435,\n 62,\n 75,\n 796,\n 17635,\n 198,\n 220,\n 220,\n 220,\n 1332,\n 62,\n 2435,\n 62,\n 75,\n 796,\n 17635,\n 198,\n 220,\n 220,\n 220,\n 410,\n 62,\n 76,\n 62,\n 75,\n 796,\n 17635,\n 198,\n 220,\n 220,\n 220,\n 264,\n 62,\n 76,\n 62,\n 75,\n 796,\n 17635,\n 628,\n 220,\n 220,\n 220,\n 264,\n 28664,\n 796,\n 26423,\n 27660,\n 9487,\n 7483,\n 3419,\n 628,\n 220,\n 220,\n 220,\n 329,\n 1312,\n 287,\n 2837,\n 7,\n 4059,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1395,\n 62,\n 83,\n 796,\n 1395,\n 62,\n 81,\n 58,\n 72,\n 1635,\n 1802,\n 1058,\n 357,\n 72,\n 1343,\n 352,\n 8,\n 1635,\n 1802,\n 60,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 331,\n 62,\n 83,\n 796,\n 331,\n 62,\n 81,\n 58,\n 72,\n 1635,\n 1802,\n 1058,\n 357,\n 72,\n 1343,\n 352,\n 8,\n 1635,\n 1802,\n 60,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 16835,\n 262,\n 2746,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 923,\n 62,\n 2435,\n 796,\n 640,\n 13,\n 525,\n 69,\n 62,\n 24588,\n 3419,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 264,\n 28664,\n 13,\n 47172,\n 62,\n 11147,\n 7,\n 55,\n 62,\n 83,\n 11,\n 331,\n 62,\n 83,\n 11,\n 6097,\n 41888,\n 15,\n 11,\n 352,\n 11,\n 362,\n 11,\n 513,\n 11,\n 604,\n 11,\n 642,\n 11,\n 718,\n 11,\n 767,\n 11,\n 807,\n 11,\n 860,\n 12962,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 886,\n 62,\n 2435,\n 796,\n 640,\n 13,\n 525,\n 69,\n 62,\n 24588,\n 3419,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 4512,\n 62,\n 2435,\n 62,\n 75,\n 13,\n 33295,\n 7,\n 437,\n 62,\n 2435,\n 532,\n 923,\n 62,\n 2435,\n 8,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 6208,\n 262,\n 2746,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 923,\n 62,\n 2435,\n 796,\n 640,\n 13,\n 525,\n 69,\n 62,\n 24588,\n 3419,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 264,\n 28664,\n 62,\n 75,\n 13,\n 33295,\n 7,\n 28764,\n 2867,\n 7,\n 21282,\n 83,\n 4008,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 886,\n 62,\n 2435,\n 796,\n 640,\n 13,\n 525,\n 69,\n 62,\n 24588,\n 3419,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1332,\n 62,\n 2435,\n 62,\n 75,\n 13,\n 33295,\n 7,\n 437,\n 62,\n 2435,\n 532,\n 923,\n 62,\n 2435,\n 8,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 6822,\n 4088,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 410,\n 62,\n 76,\n 796,\n 26692,\n 22602,\n 13,\n 32844,\n 62,\n 31673,\n 3419,\n 58,\n 17,\n 60,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 410,\n 62,\n 76,\n 62,\n 75,\n 13,\n 33295,\n 7,\n 85,\n 62,\n 76,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 264,\n 62,\n 76,\n 796,\n 26692,\n 22602,\n 13,\n 2032,\n 499,\n 62,\n 31673,\n 3419,\n 58,\n 18,\n 60,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 264,\n 62,\n 76,\n 62,\n 75,\n 13,\n 33295,\n 7,\n 82,\n 62,\n 76,\n 8,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 17893,\n 265,\n 262,\n 4512,\n 1661,\n 198,\n 220,\n 220,\n 220,\n 329,\n 1312,\n 287,\n 2837,\n 7,\n 16,\n 11,\n 5323,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 4512,\n 62,\n 2435,\n 62,\n 75,\n 58,\n 72,\n 60,\n 15853,\n 4512,\n 62,\n 2435,\n 62,\n 75,\n 58,\n 72,\n 532,\n 352,\n 60,\n 628,\n 220,\n 220,\n 220,\n 1441,\n 264,\n 28664,\n 62,\n 75,\n 11,\n 4512,\n 62,\n 2435,\n 62,\n 75,\n 11,\n 1332,\n 62,\n 2435,\n 62,\n 75,\n 11,\n 410,\n 62,\n 76,\n 62,\n 75,\n 11,\n 264,\n 62,\n 76,\n 62,\n 75,\n 628,\n 198,\n 4299,\n 6306,\n 62,\n 82,\n 7568,\n 33529,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 10987,\n 82,\n 10256,\n 329,\n 13860,\n 26423,\n 9115,\n 37811,\n 198,\n 220,\n 220,\n 220,\n 264,\n 7568,\n 62,\n 75,\n 796,\n 17635,\n 198,\n 220,\n 220,\n 220,\n 4512,\n 62,\n 2435,\n 62,\n 75,\n 796,\n 17635,\n 198,\n 220,\n 220,\n 220,\n 1332,\n 62,\n 2435,\n 62,\n 75,\n 796,\n 17635,\n 198,\n 220,\n 220,\n 220,\n 410,\n 62,\n 76,\n 62,\n 75,\n 796,\n 17635,\n 198,\n 220,\n 220,\n 220,\n 264,\n 62,\n 76,\n 62,\n 75,\n 796,\n 17635,\n 628,\n 220,\n 220,\n 220,\n 264,\n 7568,\n 796,\n 13860,\n 10707,\n 1166,\n 34605,\n 3419,\n 628,\n 220,\n 220,\n 220,\n 329,\n 1312,\n 287,\n 2837,\n 7,\n 4059,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1395,\n 62,\n 83,\n 796,\n 1395,\n 62,\n 81,\n 58,\n 72,\n 1635,\n 1802,\n 1058,\n 357,\n 72,\n 1343,\n 352,\n 8,\n 1635,\n 1802,\n 60,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 331,\n 62,\n 83,\n 796,\n 331,\n 62,\n 81,\n 58,\n 72,\n 1635,\n 1802,\n 1058,\n 357,\n 72,\n 1343,\n 352,\n 8,\n 1635,\n 1802,\n 60,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 16835,\n 262,\n 2746,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 923,\n 62,\n 2435,\n 796,\n 640,\n 13,\n 525,\n 69,\n 62,\n 24588,\n 3419,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 264,\n 7568,\n 13,\n 47172,\n 62,\n 11147,\n 7,\n 55,\n 62,\n 83,\n 11,\n 331,\n 62,\n 83,\n 11,\n 6097,\n 41888,\n 15,\n 11,\n 352,\n 11,\n 362,\n 11,\n 513,\n 11,\n 604,\n 11,\n 642,\n 11,\n 718,\n 11,\n 767,\n 11,\n 807,\n 11,\n 860,\n 12962,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 886,\n 62,\n 2435,\n 796,\n 640,\n 13,\n 525,\n 69,\n 62,\n 24588,\n 3419,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 4512,\n 62,\n 2435,\n 62,\n 75,\n 13,\n 33295,\n 7,\n 437,\n 62,\n 2435,\n 532,\n 923,\n 62,\n 2435,\n 8,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 6208,\n 262,\n 2746,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 923,\n 62,\n 2435,\n 796,\n 640,\n 13,\n 525,\n 69,\n 62,\n 24588,\n 3419,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 264,\n 7568,\n 62,\n 75,\n 13,\n 33295,\n 7,\n 28764,\n 2867,\n 7,\n 82,\n 7568,\n 4008,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 886,\n 62,\n 2435,\n 796,\n 640,\n 13,\n 525,\n 69,\n 62,\n 24588,\n 3419,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1332,\n 62,\n 2435,\n 62,\n 75,\n 13,\n 33295,\n 7,\n 437,\n 62,\n 2435,\n 532,\n 923,\n 62,\n 2435,\n 8,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 6822,\n 4088,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 410,\n 62,\n 76,\n 796,\n 26692,\n 22602,\n 13,\n 32844,\n 62,\n 31673,\n 3419,\n 58,\n 17,\n 60,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 410,\n 62,\n 76,\n 62,\n 75,\n 13,\n 33295,\n 7,\n 85,\n 62,\n 76,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 264,\n 62,\n 76,\n 796,\n 26692,\n 22602,\n 13,\n 2032,\n 499,\n 62,\n 31673,\n 3419,\n 58,\n 18,\n 60,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 264,\n 62,\n 76,\n 62,\n 75,\n 13,\n 33295,\n 7,\n 82,\n 62,\n 76,\n 8,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 17893,\n 265,\n 262,\n 4512,\n 1661,\n 198,\n 220,\n 220,\n 220,\n 329,\n 1312,\n 287,\n 2837,\n 7,\n 16,\n 11,\n 5323,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 4512,\n 62,\n 2435,\n 62,\n 75,\n 58,\n 72,\n 60,\n 15853,\n 4512,\n 62,\n 2435,\n 62,\n 75,\n 58,\n 72,\n 532,\n 352,\n 60,\n 628,\n 220,\n 220,\n 220,\n 1441,\n 264,\n 7568,\n 62,\n 75,\n 11,\n 4512,\n 62,\n 2435,\n 62,\n 75,\n 11,\n 1332,\n 62,\n 2435,\n 62,\n 75,\n 11,\n 410,\n 62,\n 76,\n 62,\n 75,\n 11,\n 264,\n 62,\n 76,\n 62,\n 75,\n 628,\n 198,\n 2,\n 43426,\n 327,\n 5064,\n 1503,\n 1366,\n 198,\n 2,\n 14435,\n 1096,\n 198,\n 9888,\n 796,\n 45941,\n 13,\n 32604,\n 7,\n 37659,\n 13,\n 283,\n 858,\n 7,\n 15,\n 11,\n 17759,\n 4008,\n 198,\n 11265,\n 1096,\n 796,\n 37456,\n 2124,\n 25,\n 357,\n 87,\n 532,\n 5046,\n 8,\n 1220,\n 5046,\n 198,\n 198,\n 2,\n 16835,\n 1366,\n 198,\n 66,\n 361,\n 283,\n 62,\n 2213,\n 1299,\n 316,\n 796,\n 40522,\n 13,\n 34,\n 5064,\n 1503,\n 940,\n 7,\n 15763,\n 2625,\n 40720,\n 1600,\n 4512,\n 28,\n 17821,\n 11,\n 4321,\n 28,\n 17821,\n 11,\n 6121,\n 28,\n 14202,\n 8,\n 198,\n 55,\n 62,\n 27432,\n 796,\n 3487,\n 1096,\n 7,\n 66,\n 361,\n 283,\n 62,\n 2213,\n 1299,\n 316,\n 13,\n 7890,\n 8,\n 198,\n 88,\n 62,\n 27432,\n 796,\n 45941,\n 13,\n 18747,\n 7,\n 66,\n 361,\n 283,\n 62,\n 2213,\n 1299,\n 316,\n 13,\n 83,\n 853,\n 1039,\n 8,\n 198,\n 198,\n 2,\n 6208,\n 1366,\n 198,\n 66,\n 361,\n 283,\n 62,\n 9288,\n 2617,\n 796,\n 40522,\n 13,\n 34,\n 5064,\n 1503,\n 940,\n 7,\n 15763,\n 2625,\n 40720,\n 1600,\n 4512,\n 28,\n 25101,\n 11,\n 4321,\n 28,\n 17821,\n 11,\n 6121,\n 28,\n 14202,\n 8,\n 198,\n 55,\n 62,\n 9288,\n 796,\n 3487,\n 1096,\n 7,\n 66,\n 361,\n 283,\n 62,\n 9288,\n 2617,\n 13,\n 7890,\n 8,\n 198,\n 88,\n 62,\n 9288,\n 796,\n 45941,\n 13,\n 18747,\n 7,\n 66,\n 361,\n 283,\n 62,\n 9288,\n 2617,\n 13,\n 83,\n 853,\n 1039,\n 8,\n 198,\n 198,\n 55,\n 62,\n 27432,\n 796,\n 1395,\n 62,\n 27432,\n 13,\n 3447,\n 1758,\n 32590,\n 16,\n 11,\n 3933,\n 1635,\n 3933,\n 1635,\n 513,\n 8,\n 198,\n 55,\n 62,\n 9288,\n 796,\n 1395,\n 62,\n 9288,\n 13,\n 3447,\n 1758,\n 32590,\n 16,\n 11,\n 3933,\n 1635,\n 3933,\n 1635,\n 513,\n 8,\n 198,\n 198,\n 2,\n 2547,\n 325,\n 1398,\n 7483,\n 7747,\n 198,\n 48610,\n 796,\n 1822,\n 29572,\n 13,\n 28100,\n 1713,\n 46677,\n 3419,\n 198,\n 48610,\n 13,\n 2860,\n 62,\n 49140,\n 7203,\n 12,\n 439,\n 1600,\n 1037,\n 2625,\n 439,\n 1398,\n 13350,\n 1600,\n 2672,\n 28,\n 25101,\n 11,\n 2223,\n 2625,\n 8095,\n 62,\n 7942,\n 4943,\n 198,\n 48610,\n 13,\n 2860,\n 62,\n 49140,\n 7203,\n 12,\n 28664,\n 1600,\n 1037,\n 2625,\n 12501,\n 1166,\n 17039,\n 1600,\n 2672,\n 28,\n 25101,\n 11,\n 2223,\n 2625,\n 8095,\n 62,\n 7942,\n 4943,\n 198,\n 48610,\n 13,\n 2860,\n 62,\n 49140,\n 7203,\n 12,\n 41871,\n 1600,\n 1037,\n 2625,\n 25120,\n 17039,\n 1600,\n 2672,\n 28,\n 25101,\n 11,\n 2223,\n 2625,\n 8095,\n 62,\n 7942,\n 4943,\n 198,\n 48610,\n 13,\n 2860,\n 62,\n 49140,\n 7203,\n 12,\n 4352,\n 1600,\n 1037,\n 2625,\n 38979,\n 487,\n 12083,\n 7150,\n 1600,\n 2672,\n 28,\n 25101,\n 11,\n 2223,\n 2625,\n 8095,\n 62,\n 7942,\n 4943,\n 198,\n 48610,\n 13,\n 2860,\n 62,\n 49140,\n 7203,\n 12,\n 76,\n 69,\n 1600,\n 1037,\n 2625,\n 6327,\n 4484,\n 17039,\n 1600,\n 2672,\n 28,\n 25101,\n 11,\n 2223,\n 2625,\n 8095,\n 62,\n 7942,\n 4943,\n 198,\n 48610,\n 13,\n 2860,\n 62,\n 49140,\n 7,\n 198,\n 220,\n 220,\n 220,\n 27444,\n 21282,\n 83,\n 1600,\n 1037,\n 2625,\n 5532,\n 2551,\n 7150,\n 1600,\n 2672,\n 28,\n 25101,\n 11,\n 2223,\n 2625,\n 8095,\n 62,\n 7942,\n 1,\n 198,\n 8,\n 198,\n 48610,\n 13,\n 2860,\n 62,\n 49140,\n 7,\n 198,\n 220,\n 220,\n 220,\n 27444,\n 82,\n 7568,\n 1600,\n 1037,\n 2625,\n 5532,\n 2551,\n 17039,\n 1600,\n 2672,\n 28,\n 25101,\n 11,\n 2223,\n 2625,\n 8095,\n 62,\n 7942,\n 1,\n 198,\n 8,\n 198,\n 22046,\n 796,\n 30751,\n 13,\n 29572,\n 62,\n 22046,\n 3419,\n 198,\n 198,\n 2,\n 35006,\n 10256,\n 198,\n 361,\n 26498,\n 13,\n 439,\n 393,\n 26498,\n 13,\n 28664,\n 25,\n 198,\n 220,\n 220,\n 220,\n 288,\n 83,\n 62,\n 4134,\n 62,\n 75,\n 796,\n 17635,\n 198,\n 220,\n 220,\n 220,\n 288,\n 83,\n 62,\n 27432,\n 62,\n 83,\n 62,\n 75,\n 796,\n 17635,\n 198,\n 220,\n 220,\n 220,\n 288,\n 83,\n 62,\n 9288,\n 62,\n 83,\n 62,\n 75,\n 796,\n 17635,\n 198,\n 220,\n 220,\n 220,\n 288,\n 83,\n 62,\n 85,\n 62,\n 76,\n 62,\n 75,\n 796,\n 17635,\n 198,\n 220,\n 220,\n 220,\n 288,\n 83,\n 62,\n 82,\n 62,\n 76,\n 62,\n 75,\n 796,\n 17635,\n 198,\n 220,\n 220,\n 220,\n 329,\n 1312,\n 287,\n 2837,\n 7,\n 940,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 279,\n 796,\n 9943,\n 7094,\n 7,\n 55,\n 62,\n 27432,\n 13,\n 43358,\n 58,\n 15,\n 12962,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1395,\n 62,\n 81,\n 796,\n 1395,\n 62,\n 27432,\n 58,\n 79,\n 60,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 331,\n 62,\n 81,\n 796,\n 331,\n 62,\n 27432,\n 58,\n 79,\n 60,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 288,\n 83,\n 62,\n 4134,\n 11,\n 288,\n 83,\n 62,\n 27432,\n 62,\n 83,\n 11,\n 288,\n 83,\n 62,\n 9288,\n 62,\n 83,\n 11,\n 288,\n 83,\n 62,\n 85,\n 62,\n 76,\n 11,\n 288,\n 83,\n 62,\n 82,\n 62,\n 76,\n 796,\n 6306,\n 62,\n 28664,\n 3419,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 288,\n 83,\n 62,\n 4134,\n 62,\n 75,\n 13,\n 33295,\n 7,\n 28664,\n 62,\n 4134,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 288,\n 83,\n 62,\n 27432,\n 62,\n 83,\n 62,\n 75,\n 13,\n 33295,\n 7,\n 28664,\n 62,\n 27432,\n 62,\n 83,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 288,\n 83,\n 62,\n 9288,\n 62,\n 83,\n 62,\n 75,\n 13,\n 33295,\n 7,\n 28664,\n 62,\n 9288,\n 62,\n 83,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 288,\n 83,\n 62,\n 85,\n 62,\n 76,\n 62,\n 75,\n 13,\n 33295,\n 7,\n 28664,\n 62,\n 85,\n 62,\n 76,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 288,\n 83,\n 62,\n 82,\n 62,\n 76,\n 62,\n 75,\n 13,\n 33295,\n 7,\n 28664,\n 62,\n 82,\n 62,\n 76,\n 8,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3551,\n 62,\n 20274,\n 7203,\n 40720,\n 43420,\n 14,\n 28664,\n 14,\n 66,\n 361,\n 283,\n 940,\n 62,\n 4134,\n 13,\n 14116,\n 1600,\n 288,\n 83,\n 62,\n 4134,\n 62,\n 75,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3551,\n 62,\n 20274,\n 7203,\n 40720,\n 43420,\n 14,\n 28664,\n 14,\n 66,\n 361,\n 283,\n 940,\n 62,\n 27432,\n 62,\n 83,\n 13,\n 14116,\n 1600,\n 288,\n 83,\n 62,\n 27432,\n 62,\n 83,\n 62,\n 75,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3551,\n 62,\n 20274,\n 7203,\n 40720,\n 43420,\n 14,\n 28664,\n 14,\n 66,\n 361,\n 283,\n 940,\n 62,\n 9288,\n 62,\n 83,\n 13,\n 14116,\n 1600,\n 288,\n 83,\n 62,\n 9288,\n 62,\n 83,\n 62,\n 75,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3551,\n 62,\n 20274,\n 7203,\n 40720,\n 43420,\n 14,\n 28664,\n 14,\n 66,\n 361,\n 283,\n 940,\n 62,\n 85,\n 62,\n 76,\n 13,\n 14116,\n 1600,\n 288,\n 83,\n 62,\n 85,\n 62,\n 76,\n 62,\n 75,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3551,\n 62,\n 20274,\n 7203,\n 40720,\n 43420,\n 14,\n 28664,\n 14,\n 66,\n 361,\n 283,\n 940,\n 62,\n 82,\n 62,\n 76,\n 13,\n 14116,\n 1600,\n 288,\n 83,\n 62,\n 82,\n 62,\n 76,\n 62,\n 75,\n 8,\n 198,\n 198,\n 361,\n 26498,\n 13,\n 439,\n 393,\n 26498,\n 13,\n 41871,\n 25,\n 198,\n 220,\n 220,\n 220,\n 374,\n 69,\n 62,\n 4134,\n 62,\n 75,\n 796,\n 17635,\n 198,\n 220,\n 220,\n 220,\n 374,\n 69,\n 62,\n 27432,\n 62,\n 83,\n 62,\n 75,\n 796,\n 17635,\n 198,\n 220,\n 220,\n 220,\n 374,\n 69,\n 62,\n 9288,\n 62,\n 83,\n 62,\n 75,\n 796,\n 17635,\n 198,\n 220,\n 220,\n 220,\n 374,\n 69,\n 62,\n 85,\n 62,\n 76,\n 62,\n 75,\n 796,\n 17635,\n 198,\n 220,\n 220,\n 220,\n 374,\n 69,\n 62,\n 82,\n 62,\n 76,\n 62,\n 75,\n 796,\n 17635,\n 198,\n 220,\n 220,\n 220,\n 329,\n 1312,\n 287,\n 2837,\n 7,\n 940,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 279,\n 796,\n 9943,\n 7094,\n 7,\n 55,\n 62,\n 27432,\n 13,\n 43358,\n 58,\n 15,\n 12962,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1395,\n 62,\n 81,\n 796,\n 1395,\n 62,\n 27432,\n 58,\n 79,\n 60,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 331,\n 62,\n 81,\n 796,\n 331,\n 62,\n 27432,\n 58,\n 79,\n 60,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 374,\n 69,\n 62,\n 4134,\n 11,\n 374,\n 69,\n 62,\n 27432,\n 62,\n 83,\n 11,\n 374,\n 69,\n 62,\n 9288,\n 62,\n 83,\n 11,\n 374,\n 69,\n 62,\n 85,\n 62,\n 76,\n 11,\n 374,\n 69,\n 62,\n 82,\n 62,\n 76,\n 796,\n 6306,\n 62,\n 41871,\n 3419,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 374,\n 69,\n 62,\n 4134,\n 62,\n 75,\n 13,\n 33295,\n 7,\n 41871,\n 62,\n 4134,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 374,\n 69,\n 62,\n 27432,\n 62,\n 83,\n 62,\n 75,\n 13,\n 33295,\n 7,\n 41871,\n 62,\n 27432,\n 62,\n 83,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 374,\n 69,\n 62,\n 9288,\n 62,\n 83,\n 62,\n 75,\n 13,\n 33295,\n 7,\n 41871,\n 62,\n 9288,\n 62,\n 83,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 374,\n 69,\n 62,\n 85,\n 62,\n 76,\n 62,\n 75,\n 13,\n 33295,\n 7,\n 41871,\n 62,\n 85,\n 62,\n 76,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 374,\n 69,\n 62,\n 82,\n 62,\n 76,\n 62,\n 75,\n 13,\n 33295,\n 7,\n 41871,\n 62,\n 82,\n 62,\n 76,\n 8,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3551,\n 62,\n 20274,\n 7203,\n 40720,\n 43420,\n 14,\n 41871,\n 14,\n 66,\n 361,\n 283,\n 940,\n 62,\n 4134,\n 13,\n 14116,\n 1600,\n 374,\n 69,\n 62,\n 4134,\n 62,\n 75,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3551,\n 62,\n 20274,\n 7203,\n 40720,\n 43420,\n 14,\n 41871,\n 14,\n 66,\n 361,\n 283,\n 940,\n 62,\n 27432,\n 62,\n 83,\n 13,\n 14116,\n 1600,\n 374,\n 69,\n 62,\n 27432,\n 62,\n 83,\n 62,\n 75,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3551,\n 62,\n 20274,\n 7203,\n 40720,\n 43420,\n 14,\n 41871,\n 14,\n 66,\n 361,\n 283,\n 940,\n 62,\n 9288,\n 62,\n 83,\n 13,\n 14116,\n 1600,\n 374,\n 69,\n 62,\n 9288,\n 62,\n 83,\n 62,\n 75,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3551,\n 62,\n 20274,\n 7203,\n 40720,\n 43420,\n 14,\n 41871,\n 14,\n 66,\n 361,\n 283,\n 940,\n 62,\n 85,\n 62,\n 76,\n 13,\n 14116,\n 1600,\n 374,\n 69,\n 62,\n 85,\n 62,\n 76,\n 62,\n 75,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3551,\n 62,\n 20274,\n 7203,\n 40720,\n 43420,\n 14,\n 41871,\n 14,\n 66,\n 361,\n 283,\n 940,\n 62,\n 82,\n 62,\n 76,\n 13,\n 14116,\n 1600,\n 374,\n 69,\n 62,\n 82,\n 62,\n 76,\n 62,\n 75,\n 8,\n 198,\n 198,\n 361,\n 26498,\n 13,\n 439,\n 393,\n 26498,\n 13,\n 4352,\n 25,\n 198,\n 220,\n 220,\n 220,\n 289,\n 83,\n 62,\n 4134,\n 62,\n 75,\n 796,\n 17635,\n 198,\n 220,\n 220,\n 220,\n 289,\n 83,\n 62,\n 27432,\n 62,\n 83,\n 62,\n 75,\n 796,\n 17635,\n 198,\n 220,\n 220,\n 220,\n 289,\n 83,\n 62,\n 9288,\n 62,\n 83,\n 62,\n 75,\n 796,\n 17635,\n 198,\n 220,\n 220,\n 220,\n 289,\n 83,\n 62,\n 85,\n 62,\n 76,\n 62,\n 75,\n 796,\n 17635,\n 198,\n 220,\n 220,\n 220,\n 289,\n 83,\n 62,\n 82,\n 62,\n 76,\n 62,\n 75,\n 796,\n 17635,\n 198,\n 220,\n 220,\n 220,\n 329,\n 1312,\n 287,\n 2837,\n 7,\n 940,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 279,\n 796,\n 9943,\n 7094,\n 7,\n 55,\n 62,\n 27432,\n 13,\n 43358,\n 58,\n 15,\n 12962,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1395,\n 62,\n 81,\n 796,\n 1395,\n 62,\n 27432,\n 58,\n 79,\n 60,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 331,\n 62,\n 81,\n 796,\n 331,\n 62,\n 27432,\n 58,\n 79,\n 60,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 289,\n 83,\n 62,\n 4134,\n 11,\n 289,\n 83,\n 62,\n 27432,\n 62,\n 83,\n 11,\n 289,\n 83,\n 62,\n 9288,\n 62,\n 83,\n 11,\n 289,\n 83,\n 62,\n 85,\n 62,\n 76,\n 11,\n 289,\n 83,\n 62,\n 82,\n 62,\n 76,\n 796,\n 6306,\n 62,\n 4352,\n 3419,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 289,\n 83,\n 62,\n 4134,\n 62,\n 75,\n 13,\n 33295,\n 7,\n 4352,\n 62,\n 4134,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 289,\n 83,\n 62,\n 27432,\n 62,\n 83,\n 62,\n 75,\n 13,\n 33295,\n 7,\n 4352,\n 62,\n 27432,\n 62,\n 83,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 289,\n 83,\n 62,\n 9288,\n 62,\n 83,\n 62,\n 75,\n 13,\n 33295,\n 7,\n 4352,\n 62,\n 9288,\n 62,\n 83,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 289,\n 83,\n 62,\n 85,\n 62,\n 76,\n 62,\n 75,\n 13,\n 33295,\n 7,\n 4352,\n 62,\n 85,\n 62,\n 76,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 289,\n 83,\n 62,\n 82,\n 62,\n 76,\n 62,\n 75,\n 13,\n 33295,\n 7,\n 4352,\n 62,\n 82,\n 62,\n 76,\n 8,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3551,\n 62,\n 20274,\n 7203,\n 40720,\n 43420,\n 14,\n 4352,\n 14,\n 66,\n 361,\n 283,\n 940,\n 62,\n 4134,\n 13,\n 14116,\n 1600,\n 289,\n 83,\n 62,\n 4134,\n 62,\n 75,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3551,\n 62,\n 20274,\n 7203,\n 40720,\n 43420,\n 14,\n 4352,\n 14,\n 66,\n 361,\n 283,\n 940,\n 62,\n 27432,\n 62,\n 83,\n 13,\n 14116,\n 1600,\n 289,\n 83,\n 62,\n 27432,\n 62,\n 83,\n 62,\n 75,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3551,\n 62,\n 20274,\n 7203,\n 40720,\n 43420,\n 14,\n 4352,\n 14,\n 66,\n 361,\n 283,\n 940,\n 62,\n 9288,\n 62,\n 83,\n 13,\n 14116,\n 1600,\n 289,\n 83,\n 62,\n 9288,\n 62,\n 83,\n 62,\n 75,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3551,\n 62,\n 20274,\n 7203,\n 40720,\n 43420,\n 14,\n 4352,\n 14,\n 66,\n 361,\n 283,\n 940,\n 62,\n 85,\n 62,\n 76,\n 13,\n 14116,\n 1600,\n 289,\n 83,\n 62,\n 85,\n 62,\n 76,\n 62,\n 75,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3551,\n 62,\n 20274,\n 7203,\n 40720,\n 43420,\n 14,\n 4352,\n 14,\n 66,\n 361,\n 283,\n 940,\n 62,\n 82,\n 62,\n 76,\n 13,\n 14116,\n 1600,\n 289,\n 83,\n 62,\n 82,\n 62,\n 76,\n 62,\n 75,\n 8,\n 198,\n 198,\n 361,\n 26498,\n 13,\n 439,\n 393,\n 26498,\n 13,\n 76,\n 69,\n 25,\n 198,\n 220,\n 220,\n 220,\n 285,\n 69,\n 62,\n 4134,\n 62,\n 75,\n 796,\n 17635,\n 198,\n 220,\n 220,\n 220,\n 285,\n 69,\n 62,\n 27432,\n 62,\n 83,\n 62,\n 75,\n 796,\n 17635,\n 198,\n 220,\n 220,\n 220,\n 285,\n 69,\n 62,\n 9288,\n 62,\n 83,\n 62,\n 75,\n 796,\n 17635,\n 198,\n 220,\n 220,\n 220,\n 285,\n 69,\n 62,\n 85,\n 62,\n 76,\n 62,\n 75,\n 796,\n 17635,\n 198,\n 220,\n 220,\n 220,\n 285,\n 69,\n 62,\n 82,\n 62,\n 76,\n 62,\n 75,\n 796,\n 17635,\n 198,\n 220,\n 220,\n 220,\n 329,\n 1312,\n 287,\n 2837,\n 7,\n 940,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 279,\n 796,\n 9943,\n 7094,\n 7,\n 55,\n 62,\n 27432,\n 13,\n 43358,\n 58,\n 15,\n 12962,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1395,\n 62,\n 81,\n 796,\n 1395,\n 62,\n 27432,\n 58,\n 79,\n 60,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 331,\n 62,\n 81,\n 796,\n 331,\n 62,\n 27432,\n 58,\n 79,\n 60,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 285,\n 69,\n 62,\n 4134,\n 11,\n 285,\n 69,\n 62,\n 27432,\n 62,\n 83,\n 11,\n 285,\n 69,\n 62,\n 9288,\n 62,\n 83,\n 11,\n 285,\n 69,\n 62,\n 85,\n 62,\n 76,\n 11,\n 285,\n 69,\n 62,\n 82,\n 62,\n 76,\n 796,\n 6306,\n 62,\n 76,\n 69,\n 3419,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 285,\n 69,\n 62,\n 4134,\n 62,\n 75,\n 13,\n 33295,\n 7,\n 76,\n 69,\n 62,\n 4134,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 285,\n 69,\n 62,\n 27432,\n 62,\n 83,\n 62,\n 75,\n 13,\n 33295,\n 7,\n 76,\n 69,\n 62,\n 27432,\n 62,\n 83,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 285,\n 69,\n 62,\n 9288,\n 62,\n 83,\n 62,\n 75,\n 13,\n 33295,\n 7,\n 76,\n 69,\n 62,\n 9288,\n 62,\n 83,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 285,\n 69,\n 62,\n 85,\n 62,\n 76,\n 62,\n 75,\n 13,\n 33295,\n 7,\n 76,\n 69,\n 62,\n 85,\n 62,\n 76,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 285,\n 69,\n 62,\n 82,\n 62,\n 76,\n 62,\n 75,\n 13,\n 33295,\n 7,\n 76,\n 69,\n 62,\n 82,\n 62,\n 76,\n 8,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3551,\n 62,\n 20274,\n 7203,\n 40720,\n 43420,\n 14,\n 76,\n 69,\n 14,\n 66,\n 361,\n 283,\n 940,\n 62,\n 4134,\n 13,\n 14116,\n 1600,\n 285,\n 69,\n 62,\n 4134,\n 62,\n 75,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3551,\n 62,\n 20274,\n 7203,\n 40720,\n 43420,\n 14,\n 76,\n 69,\n 14,\n 66,\n 361,\n 283,\n 940,\n 62,\n 27432,\n 62,\n 83,\n 13,\n 14116,\n 1600,\n 285,\n 69,\n 62,\n 27432,\n 62,\n 83,\n 62,\n 75,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3551,\n 62,\n 20274,\n 7203,\n 40720,\n 43420,\n 14,\n 76,\n 69,\n 14,\n 66,\n 361,\n 283,\n 940,\n 62,\n 9288,\n 62,\n 83,\n 13,\n 14116,\n 1600,\n 285,\n 69,\n 62,\n 9288,\n 62,\n 83,\n 62,\n 75,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3551,\n 62,\n 20274,\n 7203,\n 40720,\n 43420,\n 14,\n 76,\n 69,\n 14,\n 66,\n 361,\n 283,\n 940,\n 62,\n 85,\n 62,\n 76,\n 13,\n 14116,\n 1600,\n 285,\n 69,\n 62,\n 85,\n 62,\n 76,\n 62,\n 75,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3551,\n 62,\n 20274,\n 7203,\n 40720,\n 43420,\n 14,\n 76,\n 69,\n 14,\n 66,\n 361,\n 283,\n 940,\n 62,\n 82,\n 62,\n 76,\n 13,\n 14116,\n 1600,\n 285,\n 69,\n 62,\n 82,\n 62,\n 76,\n 62,\n 75,\n 8,\n 198,\n 198,\n 361,\n 26498,\n 13,\n 439,\n 393,\n 26498,\n 13,\n 21282,\n 83,\n 25,\n 198,\n 220,\n 220,\n 220,\n 264,\n 28664,\n 62,\n 4134,\n 62,\n 75,\n 796,\n 17635,\n 198,\n 220,\n 220,\n 220,\n 264,\n 28664,\n 62,\n 27432,\n 62,\n 83,\n 62,\n 75,\n 796,\n 17635,\n 198,\n 220,\n 220,\n 220,\n 264,\n 28664,\n 62,\n 9288,\n 62,\n 83,\n 62,\n 75,\n 796,\n 17635,\n 198,\n 220,\n 220,\n 220,\n 264,\n 28664,\n 62,\n 85,\n 62,\n 76,\n 62,\n 75,\n 796,\n 17635,\n 198,\n 220,\n 220,\n 220,\n 264,\n 28664,\n 62,\n 82,\n 62,\n 76,\n 62,\n 75,\n 796,\n 17635,\n 198,\n 220,\n 220,\n 220,\n 329,\n 1312,\n 287,\n 2837,\n 7,\n 940,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 279,\n 796,\n 9943,\n 7094,\n 7,\n 55,\n 62,\n 27432,\n 13,\n 43358,\n 58,\n 15,\n 12962,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1395,\n 62,\n 81,\n 796,\n 1395,\n 62,\n 27432,\n 58,\n 79,\n 60,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 331,\n 62,\n 81,\n 796,\n 331,\n 62,\n 27432,\n 58,\n 79,\n 60,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 264,\n 28664,\n 62,\n 4134,\n 11,\n 264,\n 28664,\n 62,\n 27432,\n 62,\n 83,\n 11,\n 264,\n 28664,\n 62,\n 9288,\n 62,\n 83,\n 11,\n 264,\n 28664,\n 62,\n 85,\n 62,\n 76,\n 11,\n 264,\n 28664,\n 62,\n 82,\n 62,\n 76,\n 796,\n 6306,\n 62,\n 21282,\n 83,\n 3419,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 264,\n 28664,\n 62,\n 4134,\n 62,\n 75,\n 13,\n 33295,\n 7,\n 21282,\n 83,\n 62,\n 4134,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 264,\n 28664,\n 62,\n 27432,\n 62,\n 83,\n 62,\n 75,\n 13,\n 33295,\n 7,\n 21282,\n 83,\n 62,\n 27432,\n 62,\n 83,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 264,\n 28664,\n 62,\n 9288,\n 62,\n 83,\n 62,\n 75,\n 13,\n 33295,\n 7,\n 21282,\n 83,\n 62,\n 9288,\n 62,\n 83,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 264,\n 28664,\n 62,\n 85,\n 62,\n 76,\n 62,\n 75,\n 13,\n 33295,\n 7,\n 21282,\n 83,\n 62,\n 85,\n 62,\n 76,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 264,\n 28664,\n 62,\n 82,\n 62,\n 76,\n 62,\n 75,\n 13,\n 33295,\n 7,\n 21282,\n 83,\n 62,\n 82,\n 62,\n 76,\n 8,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3551,\n 62,\n 20274,\n 7203,\n 40720,\n 43420,\n 14,\n 21282,\n 83,\n 14,\n 66,\n 361,\n 283,\n 940,\n 62,\n 4134,\n 13,\n 14116,\n 1600,\n 264,\n 28664,\n 62,\n 4134,\n 62,\n 75,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3551,\n 62,\n 20274,\n 7203,\n 40720,\n 43420,\n 14,\n 21282,\n 83,\n 14,\n 66,\n 361,\n 283,\n 940,\n 62,\n 27432,\n 62,\n 83,\n 13,\n 14116,\n 1600,\n 264,\n 28664,\n 62,\n 27432,\n 62,\n 83,\n 62,\n 75,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3551,\n 62,\n 20274,\n 7203,\n 40720,\n 43420,\n 14,\n 21282,\n 83,\n 14,\n 66,\n 361,\n 283,\n 940,\n 62,\n 9288,\n 62,\n 83,\n 13,\n 14116,\n 1600,\n 264,\n 28664,\n 62,\n 9288,\n 62,\n 83,\n 62,\n 75,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3551,\n 62,\n 20274,\n 7203,\n 40720,\n 43420,\n 14,\n 21282,\n 83,\n 14,\n 66,\n 361,\n 283,\n 940,\n 62,\n 85,\n 62,\n 76,\n 13,\n 14116,\n 1600,\n 264,\n 28664,\n 62,\n 85,\n 62,\n 76,\n 62,\n 75,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3551,\n 62,\n 20274,\n 7203,\n 40720,\n 43420,\n 14,\n 21282,\n 83,\n 14,\n 66,\n 361,\n 283,\n 940,\n 62,\n 82,\n 62,\n 76,\n 13,\n 14116,\n 1600,\n 264,\n 28664,\n 62,\n 82,\n 62,\n 76,\n 62,\n 75,\n 8,\n 198,\n 198,\n 361,\n 26498,\n 13,\n 439,\n 393,\n 26498,\n 13,\n 82,\n 7568,\n 25,\n 198,\n 220,\n 220,\n 220,\n 264,\n 7568,\n 62,\n 4134,\n 62,\n 75,\n 796,\n 17635,\n 198,\n 220,\n 220,\n 220,\n 264,\n 7568,\n 62,\n 27432,\n 62,\n 83,\n 62,\n 75,\n 796,\n 17635,\n 198,\n 220,\n 220,\n 220,\n 264,\n 7568,\n 62,\n 9288,\n 62,\n 83,\n 62,\n 75,\n 796,\n 17635,\n 198,\n 220,\n 220,\n 220,\n 264,\n 7568,\n 62,\n 85,\n 62,\n 76,\n 62,\n 75,\n 796,\n 17635,\n 198,\n 220,\n 220,\n 220,\n 264,\n 7568,\n 62,\n 82,\n 62,\n 76,\n 62,\n 75,\n 796,\n 17635,\n 198,\n 220,\n 220,\n 220,\n 329,\n 1312,\n 287,\n 2837,\n 7,\n 940,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 279,\n 796,\n 9943,\n 7094,\n 7,\n 55,\n 62,\n 27432,\n 13,\n 43358,\n 58,\n 15,\n 12962,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1395,\n 62,\n 81,\n 796,\n 1395,\n 62,\n 27432,\n 58,\n 79,\n 60,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 331,\n 62,\n 81,\n 796,\n 331,\n 62,\n 27432,\n 58,\n 79,\n 60,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 264,\n 7568,\n 62,\n 4134,\n 11,\n 264,\n 7568,\n 62,\n 27432,\n 62,\n 83,\n 11,\n 264,\n 7568,\n 62,\n 9288,\n 62,\n 83,\n 11,\n 264,\n 7568,\n 62,\n 85,\n 62,\n 76,\n 11,\n 264,\n 7568,\n 62,\n 82,\n 62,\n 76,\n 796,\n 6306,\n 62,\n 82,\n 7568,\n 3419,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 264,\n 7568,\n 62,\n 4134,\n 62,\n 75,\n 13,\n 33295,\n 7,\n 82,\n 7568,\n 62,\n 4134,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 264,\n 7568,\n 62,\n 27432,\n 62,\n 83,\n 62,\n 75,\n 13,\n 33295,\n 7,\n 82,\n 7568,\n 62,\n 27432,\n 62,\n 83,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 264,\n 7568,\n 62,\n 9288,\n 62,\n 83,\n 62,\n 75,\n 13,\n 33295,\n 7,\n 82,\n 7568,\n 62,\n 9288,\n 62,\n 83,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 264,\n 7568,\n 62,\n 85,\n 62,\n 76,\n 62,\n 75,\n 13,\n 33295,\n 7,\n 82,\n 7568,\n 62,\n 85,\n 62,\n 76,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 264,\n 7568,\n 62,\n 82,\n 62,\n 76,\n 62,\n 75,\n 13,\n 33295,\n 7,\n 82,\n 7568,\n 62,\n 82,\n 62,\n 76,\n 8,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3551,\n 62,\n 20274,\n 7203,\n 40720,\n 43420,\n 14,\n 82,\n 7568,\n 14,\n 66,\n 361,\n 283,\n 940,\n 62,\n 4134,\n 13,\n 14116,\n 1600,\n 264,\n 7568,\n 62,\n 4134,\n 62,\n 75,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3551,\n 62,\n 20274,\n 7203,\n 40720,\n 43420,\n 14,\n 82,\n 7568,\n 14,\n 66,\n 361,\n 283,\n 940,\n 62,\n 27432,\n 62,\n 83,\n 13,\n 14116,\n 1600,\n 264,\n 7568,\n 62,\n 27432,\n 62,\n 83,\n 62,\n 75,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3551,\n 62,\n 20274,\n 7203,\n 40720,\n 43420,\n 14,\n 82,\n 7568,\n 14,\n 66,\n 361,\n 283,\n 940,\n 62,\n 9288,\n 62,\n 83,\n 13,\n 14116,\n 1600,\n 264,\n 7568,\n 62,\n 9288,\n 62,\n 83,\n 62,\n 75,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3551,\n 62,\n 20274,\n 7203,\n 40720,\n 43420,\n 14,\n 82,\n 7568,\n 14,\n 66,\n 361,\n 283,\n 940,\n 62,\n 85,\n 62,\n 76,\n 13,\n 14116,\n 1600,\n 264,\n 7568,\n 62,\n 85,\n 62,\n 76,\n 62,\n 75,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3551,\n 62,\n 20274,\n 7203,\n 40720,\n 43420,\n 14,\n 82,\n 7568,\n 14,\n 66,\n 361,\n 283,\n 940,\n 62,\n 82,\n 62,\n 76,\n 13,\n 14116,\n 1600,\n 264,\n 7568,\n 62,\n 82,\n 62,\n 76,\n 62,\n 75,\n 8,\n 198\n]"},"ratio_char_token":{"kind":"number","value":1.8911488287277318,"string":"1.891149"},"token_count":{"kind":"number","value":7129,"string":"7,129"}}},{"rowIdx":4253,"cells":{"content":{"kind":"string","value":"\"\"\"Text wrapping and filling.\n\"\"\"\n\n# Copyright (C) 1999-2001 Gregory P. Ward.\n# Copyright (C) 2002, 2003 Python Software Foundation.\n# Written by Greg Ward \n\n# Modified by Sophie Kirschner\n# https://github.com/python/cpython/blob/master/Lib/textwrap.py\n# https://github.com/python/cpython/blob/master/LICENSE\n\n__revision__ = \"$Id$\"\n\nimport string, re\n\n# Do the right thing with boolean values for all known Python versions\n# (so this module can be copied to projects that don't depend on Python\n# 2.3, e.g. Optik and Docutils) by uncommenting the block of code below.\n#try:\n# True, False\n#except NameError:\n# (True, False) = (1, 0)\n\n__all__ = ['TextWrapper']\n\n# Hardcode the recognized whitespace characters to the US-ASCII\n# whitespace characters. The main reason for doing this is that in\n# ISO-8859-1, 0xa0 is non-breaking whitespace, so in certain locales\n# that character winds up in string.whitespace. Respecting\n# string.whitespace in those cases would 1) make textwrap treat 0xa0 the\n# same as any other whitespace char, which is clearly wrong (it's a\n# *non-breaking* space), 2) possibly cause problems with Unicode,\n# since 0xa0 is not in range(128).\n_whitespace = '\\t\\n\\x0b\\x0c\\r '\n\nclass TextWrapper:\n \"\"\"\n Object for wrapping/filling text. The public interface consists of\n the wrap() and fill() methods; the other methods are just there for\n subclasses to override in order to tweak the default behaviour.\n If you want to completely replace the main wrapping algorithm,\n you'll probably have to override _wrap_chunks().\n\n Several instance attributes control various aspects of wrapping:\n width (default: 70)\n the maximum width of wrapped lines (unless break_long_words\n is false)\n initial_indent (default: \"\")\n string that will be prepended to the first line of wrapped\n output. Counts towards the line's width.\n subsequent_indent (default: \"\")\n string that will be prepended to all lines save the first\n of wrapped output; also counts towards each line's width.\n expand_tabs (default: true)\n Expand tabs in input text to spaces before further processing.\n Each tab will become 1 .. 8 spaces, depending on its position in\n its line. If false, each tab is treated as a single character.\n replace_whitespace (default: true)\n Replace all whitespace characters in the input text by spaces\n after tab expansion. Note that if expand_tabs is false and\n replace_whitespace is true, every tab will be converted to a\n single space!\n break_long_words (default: true)\n Break words longer than 'width'. If false, those words will not\n be broken, and some lines might be longer than 'width'.\n break_on_hyphens (default: true)\n Allow breaking hyphenated words. If true, wrapping will occur\n preferably on whitespaces and right after hyphens part of\n compound words.\n drop_whitespace (default: true)\n Drop leading and trailing whitespace from lines.\n \"\"\"\n\n # This funky little regex is just the trick for splitting\n # text up into word-wrappable chunks. E.g.\n # \"Hello there -- you goof-ball, use the -b option!\"\n # splits into\n # Hello/ /there/ /--/ /you/ /goof-/ball,/ /use/ /the/ /-b/ /option!\n # (after stripping out empty strings).\n wordsep_re = re.compile(\n r'(\\s+|' # any whitespace\n r'[^\\s\\w]*\\w+[^0-9\\W]-(?=\\w+[^0-9\\W])|' # hyphenated words\n r'(?<=[\\w\\!\\\"\\'\\&\\.\\,\\?])-{2,}(?=\\w))') # em-dash\n\n # This less funky little regex just split on recognized spaces. E.g.\n # \"Hello there -- you goof-ball, use the -b option!\"\n # splits into\n # Hello/ /there/ /--/ /you/ /goof-ball,/ /use/ /the/ /-b/ /option!/\n wordsep_simple_re = re.compile(r'(\\s+)')\n\n\n # -- Private methods -----------------------------------------------\n # (possibly useful for subclasses to override)\n\n def _split(self, text):\n \"\"\"_split(text : string) -> [string]\n\n Split the text to wrap into indivisible chunks. Chunks are\n not quite the same as words; see _wrap_chunks() for full\n details. As an example, the text\n Look, goof-ball -- use the -b option!\n breaks into the following chunks:\n 'Look,', ' ', 'goof-', 'ball', ' ', '--', ' ',\n 'use', ' ', 'the', ' ', '-b', ' ', 'option!'\n if break_on_hyphens is True, or in:\n 'Look,', ' ', 'goof-ball', ' ', '--', ' ',\n 'use', ' ', 'the', ' ', '-b', ' ', option!'\n otherwise.\n \"\"\"\n if self.break_on_hyphens:\n pat = self.wordsep_re\n else:\n pat = self.wordsep_simple_re\n chunks = pat.split(text.decode(\"latin-1\"))\n chunks = list(filter(None, chunks)) # remove empty chunks\n return chunks\n\n def _handle_long_word(self, reversed_chunks, cur_line, cur_len, width):\n \"\"\"_handle_long_word(chunks : [string],\n cur_line : [string],\n cur_len : int, width : int)\n\n Handle a chunk of text (most likely a word, not whitespace) that\n is too long to fit in any line.\n \"\"\"\n # Figure out when indent is larger than the specified width, and make\n # sure at least one character is stripped off on every pass\n if width < 1:\n space_left = 1\n else:\n space_left = width - cur_len\n\n # If we're allowed to break long words, then do so: put as much\n # of the next chunk onto the current line as will fit.\n if self.break_long_words:\n cur_line.append(reversed_chunks[-1][:space_left])\n reversed_chunks[-1] = reversed_chunks[-1][space_left:]\n\n # Otherwise, we have to preserve the long word intact. Only add\n # it to the current line if there's nothing already there --\n # that minimizes how much we violate the width constraint.\n elif not cur_line:\n cur_line.append(reversed_chunks.pop())\n\n # If we're not allowed to break long words, and there's already\n # text on the current line, do nothing. Next time through the\n # main loop of _wrap_chunks(), we'll wind up here again, but\n # cur_len will be zero, so the next line will be entirely\n # devoted to the long word that we can't handle right now.\n \n # Added to consider basic ANSI escape sequences as zero-width\n \n def _wrap_chunks(self, chunks):\n \"\"\"_wrap_chunks(chunks : [string]) -> [string]\n\n Wrap a sequence of text chunks and return a list of lines of\n length 'self.width' or less. (If 'break_long_words' is false,\n some lines may be longer than this.) Chunks correspond roughly\n to words and the whitespace between them: each chunk is\n indivisible (modulo 'break_long_words'), but a line break can\n come between any two chunks. Chunks should not have internal\n whitespace; ie. a chunk is either all whitespace or a \"word\".\n Whitespace chunks will be removed from the beginning and end of\n lines, but apart from that whitespace is preserved.\n \"\"\"\n lines = []\n if self.width <= 0:\n raise ValueError(\"invalid width %r (must be > 0)\" % self.width)\n\n # Arrange in reverse order so items can be efficiently popped\n # from a stack of chucks.\n chunks.reverse()\n\n while chunks:\n\n # Start the list of chunks that will make up the current line.\n # cur_len is just the length of all the chunks in cur_line.\n cur_line = []\n cur_len = 0\n\n # Figure out which static string will prefix this line.\n if lines:\n indent = self.subsequent_indent\n else:\n indent = self.initial_indent\n\n # Maximum width for this line.\n width = self.width - len(indent)\n\n # First chunk on line is whitespace -- drop it, unless this\n # is the very beginning of the text (ie. no lines started yet).\n if self.drop_whitespace and chunks[-1].strip() == '' and lines:\n del chunks[-1]\n\n while chunks:\n l = self._get_chunk_length(chunks[-1])\n\n # Can at least squeeze this chunk onto the current line.\n if cur_len + l <= width:\n cur_line.append(chunks.pop())\n cur_len += l\n\n # Nope, this line is full.\n else:\n break\n\n # The current line is full, and the next chunk is too big to\n # fit on *any* line (not just this one).\n if chunks and self._get_chunk_length(chunks[-1]) > width:\n self._handle_long_word(chunks, cur_line, cur_len, width)\n\n # If the last chunk on this line is all whitespace, drop it.\n if self.drop_whitespace and cur_line and cur_line[-1].strip() == '':\n del cur_line[-1]\n\n # Convert current line back to a string and store it in list\n # of all lines (return value).\n if cur_line:\n lines.append(indent + ''.join(cur_line))\n\n return lines\n\n\n # -- Public interface ----------------------------------------------\n\n def wrap(self, text):\n \"\"\"wrap(text : string) -> [string]\n\n Reformat the single paragraph in 'text' so it fits in lines of\n no more than 'self.width' columns, and return a list of wrapped\n lines. Tabs in 'text' are expanded with string.expandtabs(),\n and all other whitespace characters (including newline) are\n converted to space.\n \"\"\"\n chunks = self._split(text)\n return self._wrap_chunks(chunks)\n\n def fill(self, text):\n \"\"\"fill(text : string) -> string\n\n Reformat the single paragraph in 'text' to fit in lines of no\n more than 'self.width' columns, and return a new string\n containing the entire wrapped paragraph.\n \"\"\"\n return \"\\n\".join(self.wrap(text))\n"},"input_ids":{"kind":"list like","value":[37811,8206,27074,290,12591,13,198,37811,198,198,2,15069,357,34,8,7358,12,14585,20653,350,13,12150,13,198,2,15069,357,34,8,6244,11,5816,11361,10442,5693,13,198,2,22503,416,8547,12150,1279,70,904,31,29412,13,3262,29,198,198,2,40499,416,35331,7385,20601,1008,198,2,3740,1378,12567,13,785,14,29412,14,13155,7535,14,2436,672,14,9866,14,25835,14,5239,37150,13,9078,198,2,3740,1378,12567,13,785,14,29412,14,13155,7535,14,2436,672,14,9866,14,43,2149,24290,198,198,834,260,10178,834,796,17971,7390,3,1,198,198,11748,4731,11,302,198,198,2,2141,262,826,1517,351,25131,3815,329,477,1900,11361,6300,198,2,357,568,428,8265,460,307,18984,284,4493,326,836,470,4745,319,11361,198,2,362,13,18,11,304,13,70,13,13123,1134,290,14432,26791,8,416,8820,434,278,262,2512,286,2438,2174,13,198,2,28311,25,198,2,220,220,220,6407,11,10352,198,2,16341,6530,12331,25,198,2,220,220,220,357,17821,11,10352,8,796,357,16,11,657,8,198,198,834,439,834,796,37250,8206,36918,2848,20520,198,198,2,6912,8189,262,8018,13216,10223,3435,284,262,1294,12,42643,3978,198,2,13216,10223,3435,13,220,383,1388,1738,329,1804,428,318,326,287,198,2,19694,12,3459,3270,12,16,11,657,27865,15,318,1729,12,13395,13216,10223,11,523,287,1728,1957,274,198,2,326,2095,13520,510,287,4731,13,1929,2737,10223,13,220,1874,35570,198,2,4731,13,1929,2737,10223,287,883,2663,561,352,8,787,2420,37150,2190,657,27865,15,262,198,2,976,355,597,584,13216,10223,1149,11,543,318,4084,2642,357,270,338,257,198,2,1635,13159,12,13395,9,2272,828,362,8,5457,2728,2761,351,34371,11,198,2,1201,657,27865,15,318,407,287,2837,7,12762,737,198,62,1929,2737,10223,796,705,59,83,59,77,59,87,15,65,59,87,15,66,59,81,705,198,198,4871,8255,36918,2848,25,198,220,220,220,37227,198,220,220,220,9515,329,27074,14,69,4509,2420,13,220,383,1171,7071,10874,286,198,220,220,220,262,14441,3419,290,6070,3419,5050,26,262,584,5050,389,655,612,329,198,220,220,220,850,37724,284,20957,287,1502,284,25393,262,4277,9172,13,198,220,220,220,1002,345,765,284,3190,6330,262,1388,27074,11862,11,198,220,220,220,345,1183,2192,423,284,20957,4808,37150,62,354,14125,22446,628,220,220,220,12168,4554,12608,1630,2972,7612,286,27074,25,198,220,220,220,220,220,9647,357,12286,25,4317,8,198,220,220,220,220,220,220,220,262,5415,9647,286,12908,3951,357,25252,2270,62,6511,62,10879,198,220,220,220,220,220,220,220,318,3991,8,198,220,220,220,220,220,4238,62,521,298,357,12286,25,366,4943,198,220,220,220,220,220,220,220,4731,326,481,307,3143,1631,284,262,717,1627,286,12908,198,220,220,220,220,220,220,220,5072,13,220,2764,82,3371,262,1627,338,9647,13,198,220,220,220,220,220,8840,62,521,298,357,12286,25,366,4943,198,220,220,220,220,220,220,220,4731,326,481,307,3143,1631,284,477,3951,3613,262,717,198,220,220,220,220,220,220,220,286,12908,5072,26,635,9853,3371,1123,1627,338,9647,13,198,220,220,220,220,220,4292,62,8658,82,357,12286,25,2081,8,198,220,220,220,220,220,220,220,49368,22524,287,5128,2420,284,9029,878,2252,7587,13,198,220,220,220,220,220,220,220,5501,7400,481,1716,352,11485,807,9029,11,6906,319,663,2292,287,198,220,220,220,220,220,220,220,663,1627,13,220,1002,3991,11,1123,7400,318,5716,355,257,2060,2095,13,198,220,220,220,220,220,6330,62,1929,2737,10223,357,12286,25,2081,8,198,220,220,220,220,220,220,220,40177,477,13216,10223,3435,287,262,5128,2420,416,9029,198,220,220,220,220,220,220,220,706,7400,7118,13,220,5740,326,611,4292,62,8658,82,318,3991,290,198,220,220,220,220,220,220,220,6330,62,1929,2737,10223,318,2081,11,790,7400,481,307,11513,284,257,198,220,220,220,220,220,220,220,2060,2272,0,198,220,220,220,220,220,2270,62,6511,62,10879,357,12286,25,2081,8,198,220,220,220,220,220,220,220,12243,2456,2392,621,705,10394,4458,220,1002,3991,11,883,2456,481,407,198,220,220,220,220,220,220,220,307,5445,11,290,617,3951,1244,307,2392,621,705,10394,4458,198,220,220,220,220,220,2270,62,261,62,36362,5135,357,12286,25,2081,8,198,220,220,220,220,220,220,220,22507,7163,5328,831,515,2456,13,1002,2081,11,27074,481,3051,198,220,220,220,220,220,220,220,29203,319,13216,43076,290,826,706,5328,5135,636,286,198,220,220,220,220,220,220,220,13061,2456,13,198,220,220,220,220,220,4268,62,1929,2737,10223,357,12286,25,2081,8,198,220,220,220,220,220,220,220,14258,3756,290,25462,13216,10223,422,3951,13,198,220,220,220,37227,628,220,220,220,1303,770,42958,1310,40364,318,655,262,6908,329,26021,198,220,220,220,1303,2420,510,656,1573,12,29988,381,540,22716,13,220,412,13,70,13,198,220,220,220,1303,220,220,366,15496,612,1377,345,31644,12,1894,11,779,262,532,65,3038,2474,198,220,220,220,1303,30778,656,198,220,220,220,1303,220,220,18435,14,1220,8117,14,1220,438,14,1220,5832,14,1220,2188,1659,12,14,1894,11,14,1220,1904,14,1220,1169,14,1220,12,65,14,1220,18076,0,198,220,220,220,1303,357,8499,37727,503,6565,13042,737,198,220,220,220,1573,325,79,62,260,796,302,13,5589,576,7,198,220,220,220,220,220,220,220,374,6,38016,82,10,91,6,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1303,597,13216,10223,198,220,220,220,220,220,220,220,374,6,58,61,59,82,59,86,60,9,59,86,10,58,61,15,12,24,59,54,60,30420,30,28,59,86,10,58,61,15,12,24,59,54,12962,91,6,220,220,1303,5328,831,515,2456,198,220,220,220,220,220,220,220,374,6,7,30,27,41888,59,86,59,0,7879,43054,59,5,17405,59,11,59,30,12962,12,90,17,11,92,7,30,28,59,86,4008,11537,220,220,1303,795,12,42460,628,220,220,220,1303,770,1342,42958,1310,40364,655,6626,319,8018,9029,13,412,13,70,13,198,220,220,220,1303,220,220,366,15496,612,1377,345,31644,12,1894,11,779,262,532,65,3038,2474,198,220,220,220,1303,30778,656,198,220,220,220,1303,220,220,18435,14,1220,8117,14,1220,438,14,1220,5832,14,1220,2188,1659,12,1894,11,14,1220,1904,14,1220,1169,14,1220,12,65,14,1220,18076,48443,198,220,220,220,1573,325,79,62,36439,62,260,796,302,13,5589,576,7,81,6,38016,82,28988,11537,628,198,220,220,220,1303,1377,15348,5050,20368,24305,198,220,220,220,1303,357,39363,4465,329,850,37724,284,20957,8,628,220,220,220,825,4808,35312,7,944,11,2420,2599,198,220,220,220,220,220,220,220,37227,62,35312,7,5239,1058,4731,8,4613,685,8841,60,628,220,220,220,220,220,220,220,27758,262,2420,284,14441,656,773,452,12843,22716,13,220,609,14125,389,198,220,220,220,220,220,220,220,407,2407,262,976,355,2456,26,766,4808,37150,62,354,14125,3419,329,1336,198,220,220,220,220,220,220,220,3307,13,220,1081,281,1672,11,262,2420,198,220,220,220,220,220,220,220,220,220,6803,11,31644,12,1894,1377,779,262,532,65,3038,0,198,220,220,220,220,220,220,220,9457,656,262,1708,22716,25,198,220,220,220,220,220,220,220,220,220,705,8567,11,3256,705,46083,705,2188,1659,12,3256,705,1894,3256,705,46083,705,438,3256,705,46083,198,220,220,220,220,220,220,220,220,220,705,1904,3256,705,46083,705,1169,3256,705,46083,705,12,65,3256,705,46083,705,18076,13679,198,220,220,220,220,220,220,220,611,2270,62,261,62,36362,5135,318,6407,11,393,287,25,198,220,220,220,220,220,220,220,220,220,705,8567,11,3256,705,46083,705,2188,1659,12,1894,3256,705,46083,705,438,3256,705,46083,198,220,220,220,220,220,220,220,220,220,705,1904,3256,705,46083,705,1169,3256,705,46083,705,12,65,3256,705,46083,3038,13679,198,220,220,220,220,220,220,220,4306,13,198,220,220,220,220,220,220,220,37227,198,220,220,220,220,220,220,220,611,2116,13,9032,62,261,62,36362,5135,25,198,220,220,220,220,220,220,220,220,220,220,220,1458,796,2116,13,4775,325,79,62,260,198,220,220,220,220,220,220,220,2073,25,198,220,220,220,220,220,220,220,220,220,220,220,1458,796,2116,13,4775,325,79,62,36439,62,260,198,220,220,220,220,220,220,220,22716,796,1458,13,35312,7,5239,13,12501,1098,7203,75,10680,12,16,48774,198,220,220,220,220,220,220,220,22716,796,1351,7,24455,7,14202,11,22716,4008,220,1303,4781,6565,22716,198,220,220,220,220,220,220,220,1441,22716,628,220,220,220,825,4808,28144,62,6511,62,4775,7,944,11,17687,62,354,14125,11,1090,62,1370,11,1090,62,11925,11,9647,2599,198,220,220,220,220,220,220,220,37227,62,28144,62,6511,62,4775,7,354,14125,1058,685,8841,4357,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1090,62,1370,1058,685,8841,4357,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1090,62,11925,1058,493,11,9647,1058,493,8,628,220,220,220,220,220,220,220,33141,257,16058,286,2420,357,1712,1884,257,1573,11,407,13216,10223,8,326,198,220,220,220,220,220,220,220,318,1165,890,284,4197,287,597,1627,13,198,220,220,220,220,220,220,220,37227,198,220,220,220,220,220,220,220,1303,11291,503,618,33793,318,4025,621,262,7368,9647,11,290,787,198,220,220,220,220,220,220,220,1303,1654,379,1551,530,2095,318,18818,572,319,790,1208,198,220,220,220,220,220,220,220,611,9647,1279,352,25,198,220,220,220,220,220,220,220,220,220,220,220,2272,62,9464,796,352,198,220,220,220,220,220,220,220,2073,25,198,220,220,220,220,220,220,220,220,220,220,220,2272,62,9464,796,9647,532,1090,62,11925,628,220,220,220,220,220,220,220,1303,1002,356,821,3142,284,2270,890,2456,11,788,466,523,25,1234,355,881,198,220,220,220,220,220,220,220,1303,286,262,1306,16058,4291,262,1459,1627,355,481,4197,13,198,220,220,220,220,220,220,220,611,2116,13,9032,62,6511,62,10879,25,198,220,220,220,220,220,220,220,220,220,220,220,1090,62,1370,13,33295,7,260,690,276,62,354,14125,58,12,16,7131,25,13200,62,9464,12962,198,220,220,220,220,220,220,220,220,220,220,220,17687,62,354,14125,58,12,16,60,796,17687,62,354,14125,58,12,16,7131,13200,62,9464,47715,628,220,220,220,220,220,220,220,1303,15323,11,356,423,284,12201,262,890,1573,16572,13,220,5514,751,198,220,220,220,220,220,220,220,1303,340,284,262,1459,1627,611,612,338,2147,1541,612,1377,198,220,220,220,220,220,220,220,1303,326,10356,4340,703,881,356,16967,262,9647,32315,13,198,220,220,220,220,220,220,220,1288,361,407,1090,62,1370,25,198,220,220,220,220,220,220,220,220,220,220,220,1090,62,1370,13,33295,7,260,690,276,62,354,14125,13,12924,28955,628,220,220,220,220,220,220,220,1303,1002,356,821,407,3142,284,2270,890,2456,11,290,612,338,1541,198,220,220,220,220,220,220,220,1303,2420,319,262,1459,1627,11,466,2147,13,220,7406,640,832,262,198,220,220,220,220,220,220,220,1303,1388,9052,286,4808,37150,62,354,14125,22784,356,1183,2344,510,994,757,11,475,198,220,220,220,220,220,220,220,1303,1090,62,11925,481,307,6632,11,523,262,1306,1627,481,307,5000,198,220,220,220,220,220,220,220,1303,13378,284,262,890,1573,326,356,460,470,5412,826,783,13,198,220,220,220,220,198,220,220,220,1303,10687,284,2074,4096,3537,11584,6654,16311,355,6632,12,10394,198,220,220,220,220,220,220,220,220,198,220,220,220,825,4808,37150,62,354,14125,7,944,11,22716,2599,198,220,220,220,220,220,220,220,37227,62,37150,62,354,14125,7,354,14125,1058,685,8841,12962,4613,685,8841,60,628,220,220,220,220,220,220,220,41028,257,8379,286,2420,22716,290,1441,257,1351,286,3951,286,198,220,220,220,220,220,220,220,4129,705,944,13,10394,6,393,1342,13,220,357,1532,705,9032,62,6511,62,10879,6,318,3991,11,198,220,220,220,220,220,220,220,617,3951,743,307,2392,621,428,2014,220,609,14125,6053,7323,198,220,220,220,220,220,220,220,284,2456,290,262,13216,10223,1022,606,25,1123,16058,318,198,220,220,220,220,220,220,220,773,452,12843,357,4666,43348,705,9032,62,6511,62,10879,33809,475,257,1627,2270,460,198,220,220,220,220,220,220,220,1282,1022,597,734,22716,13,220,609,14125,815,407,423,5387,198,220,220,220,220,220,220,220,13216,10223,26,37941,13,257,16058,318,2035,477,13216,10223,393,257,366,4775,1911,198,220,220,220,220,220,220,220,29290,10223,22716,481,307,4615,422,262,3726,290,886,286,198,220,220,220,220,220,220,220,3951,11,475,5475,422,326,13216,10223,318,17232,13,198,220,220,220,220,220,220,220,37227,198,220,220,220,220,220,220,220,3951,796,17635,198,220,220,220,220,220,220,220,611,2116,13,10394,19841,657,25,198,220,220,220,220,220,220,220,220,220,220,220,5298,11052,12331,7203,259,12102,9647,4064,81,357,27238,307,1875,657,16725,4064,2116,13,10394,8,628,220,220,220,220,220,220,220,1303,943,9521,287,9575,1502,523,3709,460,307,18306,22928,198,220,220,220,220,220,220,220,1303,422,257,8931,286,442,6238,13,198,220,220,220,220,220,220,220,22716,13,50188,3419,628,220,220,220,220,220,220,220,981,22716,25,628,220,220,220,220,220,220,220,220,220,220,220,1303,7253,262,1351,286,22716,326,481,787,510,262,1459,1627,13,198,220,220,220,220,220,220,220,220,220,220,220,1303,1090,62,11925,318,655,262,4129,286,477,262,22716,287,1090,62,1370,13,198,220,220,220,220,220,220,220,220,220,220,220,1090,62,1370,796,17635,198,220,220,220,220,220,220,220,220,220,220,220,1090,62,11925,796,657,628,220,220,220,220,220,220,220,220,220,220,220,1303,11291,503,543,9037,4731,481,21231,428,1627,13,198,220,220,220,220,220,220,220,220,220,220,220,611,3951,25,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,33793,796,2116,13,7266,44399,62,521,298,198,220,220,220,220,220,220,220,220,220,220,220,2073,25,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,33793,796,2116,13,36733,62,521,298,628,220,220,220,220,220,220,220,220,220,220,220,1303,22246,9647,329,428,1627,13,198,220,220,220,220,220,220,220,220,220,220,220,9647,796,2116,13,10394,532,18896,7,521,298,8,628,220,220,220,220,220,220,220,220,220,220,220,1303,3274,16058,319,1627,318,13216,10223,1377,4268,340,11,4556,428,198,220,220,220,220,220,220,220,220,220,220,220,1303,318,262,845,3726,286,262,2420,357,494,13,645,3951,2067,1865,737,198,220,220,220,220,220,220,220,220,220,220,220,611,2116,13,14781,62,1929,2737,10223,290,22716,58,12,16,4083,36311,3419,6624,10148,290,3951,25,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1619,22716,58,12,16,60,628,220,220,220,220,220,220,220,220,220,220,220,981,22716,25,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,300,796,2116,13557,1136,62,354,2954,62,13664,7,354,14125,58,12,16,12962,628,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1303,1680,379,1551,21229,428,16058,4291,262,1459,1627,13,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,611,1090,62,11925,1343,300,19841,9647,25,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1090,62,1370,13,33295,7,354,14125,13,12924,28955,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1090,62,11925,15853,300,628,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1303,39544,11,428,1627,318,1336,13,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,2073,25,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,2270,628,220,220,220,220,220,220,220,220,220,220,220,1303,383,1459,1627,318,1336,11,290,262,1306,16058,318,1165,1263,284,198,220,220,220,220,220,220,220,220,220,220,220,1303,4197,319,1635,1092,9,1627,357,1662,655,428,530,737,198,220,220,220,220,220,220,220,220,220,220,220,611,22716,290,2116,13557,1136,62,354,2954,62,13664,7,354,14125,58,12,16,12962,1875,9647,25,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,2116,13557,28144,62,6511,62,4775,7,354,14125,11,1090,62,1370,11,1090,62,11925,11,9647,8,628,220,220,220,220,220,220,220,220,220,220,220,1303,1002,262,938,16058,319,428,1627,318,477,13216,10223,11,4268,340,13,198,220,220,220,220,220,220,220,220,220,220,220,611,2116,13,14781,62,1929,2737,10223,290,1090,62,1370,290,1090,62,1370,58,12,16,4083,36311,3419,6624,10148,25,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1619,1090,62,1370,58,12,16,60,628,220,220,220,220,220,220,220,220,220,220,220,1303,38240,1459,1627,736,284,257,4731,290,3650,340,287,1351,198,220,220,220,220,220,220,220,220,220,220,220,1303,286,477,3951,357,7783,1988,737,198,220,220,220,220,220,220,220,220,220,220,220,611,1090,62,1370,25,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,3951,13,33295,7,521,298,1343,705,4458,22179,7,22019,62,1370,4008,628,220,220,220,220,220,220,220,1441,3951,628,198,220,220,220,1303,1377,5094,7071,20368,26171,628,220,220,220,825,14441,7,944,11,2420,2599,198,220,220,220,220,220,220,220,37227,37150,7,5239,1058,4731,8,4613,685,8841,60,628,220,220,220,220,220,220,220,17893,265,262,2060,7322,287,705,5239,6,523,340,11414,287,3951,286,198,220,220,220,220,220,220,220,645,517,621,705,944,13,10394,6,15180,11,290,1441,257,1351,286,12908,198,220,220,220,220,220,220,220,3951,13,220,309,8937,287,705,5239,6,389,9902,351,4731,13,11201,392,8658,82,22784,198,220,220,220,220,220,220,220,290,477,584,13216,10223,3435,357,8201,649,1370,8,389,198,220,220,220,220,220,220,220,11513,284,2272,13,198,220,220,220,220,220,220,220,37227,198,220,220,220,220,220,220,220,22716,796,2116,13557,35312,7,5239,8,198,220,220,220,220,220,220,220,1441,2116,13557,37150,62,354,14125,7,354,14125,8,628,220,220,220,825,6070,7,944,11,2420,2599,198,220,220,220,220,220,220,220,37227,20797,7,5239,1058,4731,8,4613,4731,628,220,220,220,220,220,220,220,17893,265,262,2060,7322,287,705,5239,6,284,4197,287,3951,286,645,198,220,220,220,220,220,220,220,517,621,705,944,13,10394,6,15180,11,290,1441,257,649,4731,198,220,220,220,220,220,220,220,7268,262,2104,12908,7322,13,198,220,220,220,220,220,220,220,37227,198,220,220,220,220,220,220,220,1441,37082,77,1911,22179,7,944,13,37150,7,5239,4008,198],"string":"[\n 37811,\n 8206,\n 27074,\n 290,\n 12591,\n 13,\n 198,\n 37811,\n 198,\n 198,\n 2,\n 15069,\n 357,\n 34,\n 8,\n 7358,\n 12,\n 14585,\n 20653,\n 350,\n 13,\n 12150,\n 13,\n 198,\n 2,\n 15069,\n 357,\n 34,\n 8,\n 6244,\n 11,\n 5816,\n 11361,\n 10442,\n 5693,\n 13,\n 198,\n 2,\n 22503,\n 416,\n 8547,\n 12150,\n 1279,\n 70,\n 904,\n 31,\n 29412,\n 13,\n 3262,\n 29,\n 198,\n 198,\n 2,\n 40499,\n 416,\n 35331,\n 7385,\n 20601,\n 1008,\n 198,\n 2,\n 3740,\n 1378,\n 12567,\n 13,\n 785,\n 14,\n 29412,\n 14,\n 13155,\n 7535,\n 14,\n 2436,\n 672,\n 14,\n 9866,\n 14,\n 25835,\n 14,\n 5239,\n 37150,\n 13,\n 9078,\n 198,\n 2,\n 3740,\n 1378,\n 12567,\n 13,\n 785,\n 14,\n 29412,\n 14,\n 13155,\n 7535,\n 14,\n 2436,\n 672,\n 14,\n 9866,\n 14,\n 43,\n 2149,\n 24290,\n 198,\n 198,\n 834,\n 260,\n 10178,\n 834,\n 796,\n 17971,\n 7390,\n 3,\n 1,\n 198,\n 198,\n 11748,\n 4731,\n 11,\n 302,\n 198,\n 198,\n 2,\n 2141,\n 262,\n 826,\n 1517,\n 351,\n 25131,\n 3815,\n 329,\n 477,\n 1900,\n 11361,\n 6300,\n 198,\n 2,\n 357,\n 568,\n 428,\n 8265,\n 460,\n 307,\n 18984,\n 284,\n 4493,\n 326,\n 836,\n 470,\n 4745,\n 319,\n 11361,\n 198,\n 2,\n 362,\n 13,\n 18,\n 11,\n 304,\n 13,\n 70,\n 13,\n 13123,\n 1134,\n 290,\n 14432,\n 26791,\n 8,\n 416,\n 8820,\n 434,\n 278,\n 262,\n 2512,\n 286,\n 2438,\n 2174,\n 13,\n 198,\n 2,\n 28311,\n 25,\n 198,\n 2,\n 220,\n 220,\n 220,\n 6407,\n 11,\n 10352,\n 198,\n 2,\n 16341,\n 6530,\n 12331,\n 25,\n 198,\n 2,\n 220,\n 220,\n 220,\n 357,\n 17821,\n 11,\n 10352,\n 8,\n 796,\n 357,\n 16,\n 11,\n 657,\n 8,\n 198,\n 198,\n 834,\n 439,\n 834,\n 796,\n 37250,\n 8206,\n 36918,\n 2848,\n 20520,\n 198,\n 198,\n 2,\n 6912,\n 8189,\n 262,\n 8018,\n 13216,\n 10223,\n 3435,\n 284,\n 262,\n 1294,\n 12,\n 42643,\n 3978,\n 198,\n 2,\n 13216,\n 10223,\n 3435,\n 13,\n 220,\n 383,\n 1388,\n 1738,\n 329,\n 1804,\n 428,\n 318,\n 326,\n 287,\n 198,\n 2,\n 19694,\n 12,\n 3459,\n 3270,\n 12,\n 16,\n 11,\n 657,\n 27865,\n 15,\n 318,\n 1729,\n 12,\n 13395,\n 13216,\n 10223,\n 11,\n 523,\n 287,\n 1728,\n 1957,\n 274,\n 198,\n 2,\n 326,\n 2095,\n 13520,\n 510,\n 287,\n 4731,\n 13,\n 1929,\n 2737,\n 10223,\n 13,\n 220,\n 1874,\n 35570,\n 198,\n 2,\n 4731,\n 13,\n 1929,\n 2737,\n 10223,\n 287,\n 883,\n 2663,\n 561,\n 352,\n 8,\n 787,\n 2420,\n 37150,\n 2190,\n 657,\n 27865,\n 15,\n 262,\n 198,\n 2,\n 976,\n 355,\n 597,\n 584,\n 13216,\n 10223,\n 1149,\n 11,\n 543,\n 318,\n 4084,\n 2642,\n 357,\n 270,\n 338,\n 257,\n 198,\n 2,\n 1635,\n 13159,\n 12,\n 13395,\n 9,\n 2272,\n 828,\n 362,\n 8,\n 5457,\n 2728,\n 2761,\n 351,\n 34371,\n 11,\n 198,\n 2,\n 1201,\n 657,\n 27865,\n 15,\n 318,\n 407,\n 287,\n 2837,\n 7,\n 12762,\n 737,\n 198,\n 62,\n 1929,\n 2737,\n 10223,\n 796,\n 705,\n 59,\n 83,\n 59,\n 77,\n 59,\n 87,\n 15,\n 65,\n 59,\n 87,\n 15,\n 66,\n 59,\n 81,\n 705,\n 198,\n 198,\n 4871,\n 8255,\n 36918,\n 2848,\n 25,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 9515,\n 329,\n 27074,\n 14,\n 69,\n 4509,\n 2420,\n 13,\n 220,\n 383,\n 1171,\n 7071,\n 10874,\n 286,\n 198,\n 220,\n 220,\n 220,\n 262,\n 14441,\n 3419,\n 290,\n 6070,\n 3419,\n 5050,\n 26,\n 262,\n 584,\n 5050,\n 389,\n 655,\n 612,\n 329,\n 198,\n 220,\n 220,\n 220,\n 850,\n 37724,\n 284,\n 20957,\n 287,\n 1502,\n 284,\n 25393,\n 262,\n 4277,\n 9172,\n 13,\n 198,\n 220,\n 220,\n 220,\n 1002,\n 345,\n 765,\n 284,\n 3190,\n 6330,\n 262,\n 1388,\n 27074,\n 11862,\n 11,\n 198,\n 220,\n 220,\n 220,\n 345,\n 1183,\n 2192,\n 423,\n 284,\n 20957,\n 4808,\n 37150,\n 62,\n 354,\n 14125,\n 22446,\n 628,\n 220,\n 220,\n 220,\n 12168,\n 4554,\n 12608,\n 1630,\n 2972,\n 7612,\n 286,\n 27074,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 9647,\n 357,\n 12286,\n 25,\n 4317,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 262,\n 5415,\n 9647,\n 286,\n 12908,\n 3951,\n 357,\n 25252,\n 2270,\n 62,\n 6511,\n 62,\n 10879,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 318,\n 3991,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 4238,\n 62,\n 521,\n 298,\n 357,\n 12286,\n 25,\n 366,\n 4943,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 4731,\n 326,\n 481,\n 307,\n 3143,\n 1631,\n 284,\n 262,\n 717,\n 1627,\n 286,\n 12908,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 5072,\n 13,\n 220,\n 2764,\n 82,\n 3371,\n 262,\n 1627,\n 338,\n 9647,\n 13,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 8840,\n 62,\n 521,\n 298,\n 357,\n 12286,\n 25,\n 366,\n 4943,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 4731,\n 326,\n 481,\n 307,\n 3143,\n 1631,\n 284,\n 477,\n 3951,\n 3613,\n 262,\n 717,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 286,\n 12908,\n 5072,\n 26,\n 635,\n 9853,\n 3371,\n 1123,\n 1627,\n 338,\n 9647,\n 13,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 4292,\n 62,\n 8658,\n 82,\n 357,\n 12286,\n 25,\n 2081,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 49368,\n 22524,\n 287,\n 5128,\n 2420,\n 284,\n 9029,\n 878,\n 2252,\n 7587,\n 13,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 5501,\n 7400,\n 481,\n 1716,\n 352,\n 11485,\n 807,\n 9029,\n 11,\n 6906,\n 319,\n 663,\n 2292,\n 287,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 663,\n 1627,\n 13,\n 220,\n 1002,\n 3991,\n 11,\n 1123,\n 7400,\n 318,\n 5716,\n 355,\n 257,\n 2060,\n 2095,\n 13,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 6330,\n 62,\n 1929,\n 2737,\n 10223,\n 357,\n 12286,\n 25,\n 2081,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 40177,\n 477,\n 13216,\n 10223,\n 3435,\n 287,\n 262,\n 5128,\n 2420,\n 416,\n 9029,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 706,\n 7400,\n 7118,\n 13,\n 220,\n 5740,\n 326,\n 611,\n 4292,\n 62,\n 8658,\n 82,\n 318,\n 3991,\n 290,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 6330,\n 62,\n 1929,\n 2737,\n 10223,\n 318,\n 2081,\n 11,\n 790,\n 7400,\n 481,\n 307,\n 11513,\n 284,\n 257,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2060,\n 2272,\n 0,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2270,\n 62,\n 6511,\n 62,\n 10879,\n 357,\n 12286,\n 25,\n 2081,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 12243,\n 2456,\n 2392,\n 621,\n 705,\n 10394,\n 4458,\n 220,\n 1002,\n 3991,\n 11,\n 883,\n 2456,\n 481,\n 407,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 307,\n 5445,\n 11,\n 290,\n 617,\n 3951,\n 1244,\n 307,\n 2392,\n 621,\n 705,\n 10394,\n 4458,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2270,\n 62,\n 261,\n 62,\n 36362,\n 5135,\n 357,\n 12286,\n 25,\n 2081,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 22507,\n 7163,\n 5328,\n 831,\n 515,\n 2456,\n 13,\n 1002,\n 2081,\n 11,\n 27074,\n 481,\n 3051,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 29203,\n 319,\n 13216,\n 43076,\n 290,\n 826,\n 706,\n 5328,\n 5135,\n 636,\n 286,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 13061,\n 2456,\n 13,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 4268,\n 62,\n 1929,\n 2737,\n 10223,\n 357,\n 12286,\n 25,\n 2081,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 14258,\n 3756,\n 290,\n 25462,\n 13216,\n 10223,\n 422,\n 3951,\n 13,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 770,\n 42958,\n 1310,\n 40364,\n 318,\n 655,\n 262,\n 6908,\n 329,\n 26021,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 2420,\n 510,\n 656,\n 1573,\n 12,\n 29988,\n 381,\n 540,\n 22716,\n 13,\n 220,\n 412,\n 13,\n 70,\n 13,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 220,\n 220,\n 366,\n 15496,\n 612,\n 1377,\n 345,\n 31644,\n 12,\n 1894,\n 11,\n 779,\n 262,\n 532,\n 65,\n 3038,\n 2474,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 30778,\n 656,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 220,\n 220,\n 18435,\n 14,\n 1220,\n 8117,\n 14,\n 1220,\n 438,\n 14,\n 1220,\n 5832,\n 14,\n 1220,\n 2188,\n 1659,\n 12,\n 14,\n 1894,\n 11,\n 14,\n 1220,\n 1904,\n 14,\n 1220,\n 1169,\n 14,\n 1220,\n 12,\n 65,\n 14,\n 1220,\n 18076,\n 0,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 357,\n 8499,\n 37727,\n 503,\n 6565,\n 13042,\n 737,\n 198,\n 220,\n 220,\n 220,\n 1573,\n 325,\n 79,\n 62,\n 260,\n 796,\n 302,\n 13,\n 5589,\n 576,\n 7,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 374,\n 6,\n 38016,\n 82,\n 10,\n 91,\n 6,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 597,\n 13216,\n 10223,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 374,\n 6,\n 58,\n 61,\n 59,\n 82,\n 59,\n 86,\n 60,\n 9,\n 59,\n 86,\n 10,\n 58,\n 61,\n 15,\n 12,\n 24,\n 59,\n 54,\n 60,\n 30420,\n 30,\n 28,\n 59,\n 86,\n 10,\n 58,\n 61,\n 15,\n 12,\n 24,\n 59,\n 54,\n 12962,\n 91,\n 6,\n 220,\n 220,\n 1303,\n 5328,\n 831,\n 515,\n 2456,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 374,\n 6,\n 7,\n 30,\n 27,\n 41888,\n 59,\n 86,\n 59,\n 0,\n 7879,\n 43054,\n 59,\n 5,\n 17405,\n 59,\n 11,\n 59,\n 30,\n 12962,\n 12,\n 90,\n 17,\n 11,\n 92,\n 7,\n 30,\n 28,\n 59,\n 86,\n 4008,\n 11537,\n 220,\n 220,\n 1303,\n 795,\n 12,\n 42460,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 770,\n 1342,\n 42958,\n 1310,\n 40364,\n 655,\n 6626,\n 319,\n 8018,\n 9029,\n 13,\n 412,\n 13,\n 70,\n 13,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 220,\n 220,\n 366,\n 15496,\n 612,\n 1377,\n 345,\n 31644,\n 12,\n 1894,\n 11,\n 779,\n 262,\n 532,\n 65,\n 3038,\n 2474,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 30778,\n 656,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 220,\n 220,\n 18435,\n 14,\n 1220,\n 8117,\n 14,\n 1220,\n 438,\n 14,\n 1220,\n 5832,\n 14,\n 1220,\n 2188,\n 1659,\n 12,\n 1894,\n 11,\n 14,\n 1220,\n 1904,\n 14,\n 1220,\n 1169,\n 14,\n 1220,\n 12,\n 65,\n 14,\n 1220,\n 18076,\n 48443,\n 198,\n 220,\n 220,\n 220,\n 1573,\n 325,\n 79,\n 62,\n 36439,\n 62,\n 260,\n 796,\n 302,\n 13,\n 5589,\n 576,\n 7,\n 81,\n 6,\n 38016,\n 82,\n 28988,\n 11537,\n 628,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 1377,\n 15348,\n 5050,\n 20368,\n 24305,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 357,\n 39363,\n 4465,\n 329,\n 850,\n 37724,\n 284,\n 20957,\n 8,\n 628,\n 220,\n 220,\n 220,\n 825,\n 4808,\n 35312,\n 7,\n 944,\n 11,\n 2420,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 62,\n 35312,\n 7,\n 5239,\n 1058,\n 4731,\n 8,\n 4613,\n 685,\n 8841,\n 60,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 27758,\n 262,\n 2420,\n 284,\n 14441,\n 656,\n 773,\n 452,\n 12843,\n 22716,\n 13,\n 220,\n 609,\n 14125,\n 389,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 407,\n 2407,\n 262,\n 976,\n 355,\n 2456,\n 26,\n 766,\n 4808,\n 37150,\n 62,\n 354,\n 14125,\n 3419,\n 329,\n 1336,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3307,\n 13,\n 220,\n 1081,\n 281,\n 1672,\n 11,\n 262,\n 2420,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 6803,\n 11,\n 31644,\n 12,\n 1894,\n 1377,\n 779,\n 262,\n 532,\n 65,\n 3038,\n 0,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 9457,\n 656,\n 262,\n 1708,\n 22716,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 705,\n 8567,\n 11,\n 3256,\n 705,\n 46083,\n 705,\n 2188,\n 1659,\n 12,\n 3256,\n 705,\n 1894,\n 3256,\n 705,\n 46083,\n 705,\n 438,\n 3256,\n 705,\n 46083,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 705,\n 1904,\n 3256,\n 705,\n 46083,\n 705,\n 1169,\n 3256,\n 705,\n 46083,\n 705,\n 12,\n 65,\n 3256,\n 705,\n 46083,\n 705,\n 18076,\n 13679,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 2270,\n 62,\n 261,\n 62,\n 36362,\n 5135,\n 318,\n 6407,\n 11,\n 393,\n 287,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 705,\n 8567,\n 11,\n 3256,\n 705,\n 46083,\n 705,\n 2188,\n 1659,\n 12,\n 1894,\n 3256,\n 705,\n 46083,\n 705,\n 438,\n 3256,\n 705,\n 46083,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 705,\n 1904,\n 3256,\n 705,\n 46083,\n 705,\n 1169,\n 3256,\n 705,\n 46083,\n 705,\n 12,\n 65,\n 3256,\n 705,\n 46083,\n 3038,\n 13679,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 4306,\n 13,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 2116,\n 13,\n 9032,\n 62,\n 261,\n 62,\n 36362,\n 5135,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1458,\n 796,\n 2116,\n 13,\n 4775,\n 325,\n 79,\n 62,\n 260,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2073,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1458,\n 796,\n 2116,\n 13,\n 4775,\n 325,\n 79,\n 62,\n 36439,\n 62,\n 260,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 22716,\n 796,\n 1458,\n 13,\n 35312,\n 7,\n 5239,\n 13,\n 12501,\n 1098,\n 7203,\n 75,\n 10680,\n 12,\n 16,\n 48774,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 22716,\n 796,\n 1351,\n 7,\n 24455,\n 7,\n 14202,\n 11,\n 22716,\n 4008,\n 220,\n 1303,\n 4781,\n 6565,\n 22716,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1441,\n 22716,\n 628,\n 220,\n 220,\n 220,\n 825,\n 4808,\n 28144,\n 62,\n 6511,\n 62,\n 4775,\n 7,\n 944,\n 11,\n 17687,\n 62,\n 354,\n 14125,\n 11,\n 1090,\n 62,\n 1370,\n 11,\n 1090,\n 62,\n 11925,\n 11,\n 9647,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 62,\n 28144,\n 62,\n 6511,\n 62,\n 4775,\n 7,\n 354,\n 14125,\n 1058,\n 685,\n 8841,\n 4357,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1090,\n 62,\n 1370,\n 1058,\n 685,\n 8841,\n 4357,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1090,\n 62,\n 11925,\n 1058,\n 493,\n 11,\n 9647,\n 1058,\n 493,\n 8,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 33141,\n 257,\n 16058,\n 286,\n 2420,\n 357,\n 1712,\n 1884,\n 257,\n 1573,\n 11,\n 407,\n 13216,\n 10223,\n 8,\n 326,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 318,\n 1165,\n 890,\n 284,\n 4197,\n 287,\n 597,\n 1627,\n 13,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 11291,\n 503,\n 618,\n 33793,\n 318,\n 4025,\n 621,\n 262,\n 7368,\n 9647,\n 11,\n 290,\n 787,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 1654,\n 379,\n 1551,\n 530,\n 2095,\n 318,\n 18818,\n 572,\n 319,\n 790,\n 1208,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 9647,\n 1279,\n 352,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2272,\n 62,\n 9464,\n 796,\n 352,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2073,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2272,\n 62,\n 9464,\n 796,\n 9647,\n 532,\n 1090,\n 62,\n 11925,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 1002,\n 356,\n 821,\n 3142,\n 284,\n 2270,\n 890,\n 2456,\n 11,\n 788,\n 466,\n 523,\n 25,\n 1234,\n 355,\n 881,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 286,\n 262,\n 1306,\n 16058,\n 4291,\n 262,\n 1459,\n 1627,\n 355,\n 481,\n 4197,\n 13,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 2116,\n 13,\n 9032,\n 62,\n 6511,\n 62,\n 10879,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1090,\n 62,\n 1370,\n 13,\n 33295,\n 7,\n 260,\n 690,\n 276,\n 62,\n 354,\n 14125,\n 58,\n 12,\n 16,\n 7131,\n 25,\n 13200,\n 62,\n 9464,\n 12962,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 17687,\n 62,\n 354,\n 14125,\n 58,\n 12,\n 16,\n 60,\n 796,\n 17687,\n 62,\n 354,\n 14125,\n 58,\n 12,\n 16,\n 7131,\n 13200,\n 62,\n 9464,\n 47715,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 15323,\n 11,\n 356,\n 423,\n 284,\n 12201,\n 262,\n 890,\n 1573,\n 16572,\n 13,\n 220,\n 5514,\n 751,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 340,\n 284,\n 262,\n 1459,\n 1627,\n 611,\n 612,\n 338,\n 2147,\n 1541,\n 612,\n 1377,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 326,\n 10356,\n 4340,\n 703,\n 881,\n 356,\n 16967,\n 262,\n 9647,\n 32315,\n 13,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1288,\n 361,\n 407,\n 1090,\n 62,\n 1370,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1090,\n 62,\n 1370,\n 13,\n 33295,\n 7,\n 260,\n 690,\n 276,\n 62,\n 354,\n 14125,\n 13,\n 12924,\n 28955,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 1002,\n 356,\n 821,\n 407,\n 3142,\n 284,\n 2270,\n 890,\n 2456,\n 11,\n 290,\n 612,\n 338,\n 1541,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 2420,\n 319,\n 262,\n 1459,\n 1627,\n 11,\n 466,\n 2147,\n 13,\n 220,\n 7406,\n 640,\n 832,\n 262,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 1388,\n 9052,\n 286,\n 4808,\n 37150,\n 62,\n 354,\n 14125,\n 22784,\n 356,\n 1183,\n 2344,\n 510,\n 994,\n 757,\n 11,\n 475,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 1090,\n 62,\n 11925,\n 481,\n 307,\n 6632,\n 11,\n 523,\n 262,\n 1306,\n 1627,\n 481,\n 307,\n 5000,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 13378,\n 284,\n 262,\n 890,\n 1573,\n 326,\n 356,\n 460,\n 470,\n 5412,\n 826,\n 783,\n 13,\n 198,\n 220,\n 220,\n 220,\n 220,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 10687,\n 284,\n 2074,\n 4096,\n 3537,\n 11584,\n 6654,\n 16311,\n 355,\n 6632,\n 12,\n 10394,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 198,\n 220,\n 220,\n 220,\n 825,\n 4808,\n 37150,\n 62,\n 354,\n 14125,\n 7,\n 944,\n 11,\n 22716,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 62,\n 37150,\n 62,\n 354,\n 14125,\n 7,\n 354,\n 14125,\n 1058,\n 685,\n 8841,\n 12962,\n 4613,\n 685,\n 8841,\n 60,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 41028,\n 257,\n 8379,\n 286,\n 2420,\n 22716,\n 290,\n 1441,\n 257,\n 1351,\n 286,\n 3951,\n 286,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 4129,\n 705,\n 944,\n 13,\n 10394,\n 6,\n 393,\n 1342,\n 13,\n 220,\n 357,\n 1532,\n 705,\n 9032,\n 62,\n 6511,\n 62,\n 10879,\n 6,\n 318,\n 3991,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 617,\n 3951,\n 743,\n 307,\n 2392,\n 621,\n 428,\n 2014,\n 220,\n 609,\n 14125,\n 6053,\n 7323,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 284,\n 2456,\n 290,\n 262,\n 13216,\n 10223,\n 1022,\n 606,\n 25,\n 1123,\n 16058,\n 318,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 773,\n 452,\n 12843,\n 357,\n 4666,\n 43348,\n 705,\n 9032,\n 62,\n 6511,\n 62,\n 10879,\n 33809,\n 475,\n 257,\n 1627,\n 2270,\n 460,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1282,\n 1022,\n 597,\n 734,\n 22716,\n 13,\n 220,\n 609,\n 14125,\n 815,\n 407,\n 423,\n 5387,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 13216,\n 10223,\n 26,\n 37941,\n 13,\n 257,\n 16058,\n 318,\n 2035,\n 477,\n 13216,\n 10223,\n 393,\n 257,\n 366,\n 4775,\n 1911,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 29290,\n 10223,\n 22716,\n 481,\n 307,\n 4615,\n 422,\n 262,\n 3726,\n 290,\n 886,\n 286,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3951,\n 11,\n 475,\n 5475,\n 422,\n 326,\n 13216,\n 10223,\n 318,\n 17232,\n 13,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3951,\n 796,\n 17635,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 2116,\n 13,\n 10394,\n 19841,\n 657,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 5298,\n 11052,\n 12331,\n 7203,\n 259,\n 12102,\n 9647,\n 4064,\n 81,\n 357,\n 27238,\n 307,\n 1875,\n 657,\n 16725,\n 4064,\n 2116,\n 13,\n 10394,\n 8,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 943,\n 9521,\n 287,\n 9575,\n 1502,\n 523,\n 3709,\n 460,\n 307,\n 18306,\n 22928,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 422,\n 257,\n 8931,\n 286,\n 442,\n 6238,\n 13,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 22716,\n 13,\n 50188,\n 3419,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 981,\n 22716,\n 25,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 7253,\n 262,\n 1351,\n 286,\n 22716,\n 326,\n 481,\n 787,\n 510,\n 262,\n 1459,\n 1627,\n 13,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 1090,\n 62,\n 11925,\n 318,\n 655,\n 262,\n 4129,\n 286,\n 477,\n 262,\n 22716,\n 287,\n 1090,\n 62,\n 1370,\n 13,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1090,\n 62,\n 1370,\n 796,\n 17635,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1090,\n 62,\n 11925,\n 796,\n 657,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 11291,\n 503,\n 543,\n 9037,\n 4731,\n 481,\n 21231,\n 428,\n 1627,\n 13,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 3951,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 33793,\n 796,\n 2116,\n 13,\n 7266,\n 44399,\n 62,\n 521,\n 298,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2073,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 33793,\n 796,\n 2116,\n 13,\n 36733,\n 62,\n 521,\n 298,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 22246,\n 9647,\n 329,\n 428,\n 1627,\n 13,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 9647,\n 796,\n 2116,\n 13,\n 10394,\n 532,\n 18896,\n 7,\n 521,\n 298,\n 8,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 3274,\n 16058,\n 319,\n 1627,\n 318,\n 13216,\n 10223,\n 1377,\n 4268,\n 340,\n 11,\n 4556,\n 428,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 318,\n 262,\n 845,\n 3726,\n 286,\n 262,\n 2420,\n 357,\n 494,\n 13,\n 645,\n 3951,\n 2067,\n 1865,\n 737,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 2116,\n 13,\n 14781,\n 62,\n 1929,\n 2737,\n 10223,\n 290,\n 22716,\n 58,\n 12,\n 16,\n 4083,\n 36311,\n 3419,\n 6624,\n 10148,\n 290,\n 3951,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1619,\n 22716,\n 58,\n 12,\n 16,\n 60,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 981,\n 22716,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 300,\n 796,\n 2116,\n 13557,\n 1136,\n 62,\n 354,\n 2954,\n 62,\n 13664,\n 7,\n 354,\n 14125,\n 58,\n 12,\n 16,\n 12962,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 1680,\n 379,\n 1551,\n 21229,\n 428,\n 16058,\n 4291,\n 262,\n 1459,\n 1627,\n 13,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 1090,\n 62,\n 11925,\n 1343,\n 300,\n 19841,\n 9647,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1090,\n 62,\n 1370,\n 13,\n 33295,\n 7,\n 354,\n 14125,\n 13,\n 12924,\n 28955,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1090,\n 62,\n 11925,\n 15853,\n 300,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 39544,\n 11,\n 428,\n 1627,\n 318,\n 1336,\n 13,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2073,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2270,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 383,\n 1459,\n 1627,\n 318,\n 1336,\n 11,\n 290,\n 262,\n 1306,\n 16058,\n 318,\n 1165,\n 1263,\n 284,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 4197,\n 319,\n 1635,\n 1092,\n 9,\n 1627,\n 357,\n 1662,\n 655,\n 428,\n 530,\n 737,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 22716,\n 290,\n 2116,\n 13557,\n 1136,\n 62,\n 354,\n 2954,\n 62,\n 13664,\n 7,\n 354,\n 14125,\n 58,\n 12,\n 16,\n 12962,\n 1875,\n 9647,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13557,\n 28144,\n 62,\n 6511,\n 62,\n 4775,\n 7,\n 354,\n 14125,\n 11,\n 1090,\n 62,\n 1370,\n 11,\n 1090,\n 62,\n 11925,\n 11,\n 9647,\n 8,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 1002,\n 262,\n 938,\n 16058,\n 319,\n 428,\n 1627,\n 318,\n 477,\n 13216,\n 10223,\n 11,\n 4268,\n 340,\n 13,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 2116,\n 13,\n 14781,\n 62,\n 1929,\n 2737,\n 10223,\n 290,\n 1090,\n 62,\n 1370,\n 290,\n 1090,\n 62,\n 1370,\n 58,\n 12,\n 16,\n 4083,\n 36311,\n 3419,\n 6624,\n 10148,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1619,\n 1090,\n 62,\n 1370,\n 58,\n 12,\n 16,\n 60,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 38240,\n 1459,\n 1627,\n 736,\n 284,\n 257,\n 4731,\n 290,\n 3650,\n 340,\n 287,\n 1351,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 286,\n 477,\n 3951,\n 357,\n 7783,\n 1988,\n 737,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 1090,\n 62,\n 1370,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3951,\n 13,\n 33295,\n 7,\n 521,\n 298,\n 1343,\n 705,\n 4458,\n 22179,\n 7,\n 22019,\n 62,\n 1370,\n 4008,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1441,\n 3951,\n 628,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 1377,\n 5094,\n 7071,\n 20368,\n 26171,\n 628,\n 220,\n 220,\n 220,\n 825,\n 14441,\n 7,\n 944,\n 11,\n 2420,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 37150,\n 7,\n 5239,\n 1058,\n 4731,\n 8,\n 4613,\n 685,\n 8841,\n 60,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 17893,\n 265,\n 262,\n 2060,\n 7322,\n 287,\n 705,\n 5239,\n 6,\n 523,\n 340,\n 11414,\n 287,\n 3951,\n 286,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 645,\n 517,\n 621,\n 705,\n 944,\n 13,\n 10394,\n 6,\n 15180,\n 11,\n 290,\n 1441,\n 257,\n 1351,\n 286,\n 12908,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3951,\n 13,\n 220,\n 309,\n 8937,\n 287,\n 705,\n 5239,\n 6,\n 389,\n 9902,\n 351,\n 4731,\n 13,\n 11201,\n 392,\n 8658,\n 82,\n 22784,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 290,\n 477,\n 584,\n 13216,\n 10223,\n 3435,\n 357,\n 8201,\n 649,\n 1370,\n 8,\n 389,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 11513,\n 284,\n 2272,\n 13,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 22716,\n 796,\n 2116,\n 13557,\n 35312,\n 7,\n 5239,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1441,\n 2116,\n 13557,\n 37150,\n 62,\n 354,\n 14125,\n 7,\n 354,\n 14125,\n 8,\n 628,\n 220,\n 220,\n 220,\n 825,\n 6070,\n 7,\n 944,\n 11,\n 2420,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 20797,\n 7,\n 5239,\n 1058,\n 4731,\n 8,\n 4613,\n 4731,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 17893,\n 265,\n 262,\n 2060,\n 7322,\n 287,\n 705,\n 5239,\n 6,\n 284,\n 4197,\n 287,\n 3951,\n 286,\n 645,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 517,\n 621,\n 705,\n 944,\n 13,\n 10394,\n 6,\n 15180,\n 11,\n 290,\n 1441,\n 257,\n 649,\n 4731,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 7268,\n 262,\n 2104,\n 12908,\n 7322,\n 13,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1441,\n 37082,\n 77,\n 1911,\n 22179,\n 7,\n 944,\n 13,\n 37150,\n 7,\n 5239,\n 4008,\n 198\n]"},"ratio_char_token":{"kind":"number","value":2.5205751115518096,"string":"2.520575"},"token_count":{"kind":"number","value":4034,"string":"4,034"}}},{"rowIdx":4254,"cells":{"content":{"kind":"string","value":"# Copyright 2014 Red Hat, Inc.\n#\n# Licensed under the Apache License, Version 2.0 (the \"License\"); you may\n# not use this file except in compliance with the License. You may obtain\n# a copy of the License at\n#\n# http://www.apache.org/licenses/LICENSE-2.0\n#\n# Unless required by applicable law or agreed to in writing, software\n# distributed under the License is distributed on an \"AS IS\" BASIS, WITHOUT\n# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the\n# License for the specific language governing permissions and limitations\n# under the License.\n\nimport netaddr\nfrom oslo_utils import versionutils\n\nimport nova.conf\nfrom nova import db\nfrom nova import exception\nfrom nova.i18n import _\nfrom nova import objects\nfrom nova.objects import base as obj_base\nfrom nova.objects import fields\n\nCONF = nova.conf.CONF\n\n\n# TODO(berrange): Remove NovaObjectDictCompat\n@obj_base.NovaObjectRegistry.register\n\n\n@obj_base.NovaObjectRegistry.register\n"},"input_ids":{"kind":"list like","value":[2,220,220,220,15069,1946,2297,10983,11,3457,13,198,2,198,2,220,220,220,49962,739,262,24843,13789,11,10628,362,13,15,357,1169,366,34156,15341,345,743,198,2,220,220,220,407,779,428,2393,2845,287,11846,351,262,13789,13,921,743,7330,198,2,220,220,220,257,4866,286,262,13789,379,198,2,198,2,220,220,220,220,220,220,220,220,2638,1378,2503,13,43073,13,2398,14,677,4541,14,43,2149,24290,12,17,13,15,198,2,198,2,220,220,220,17486,2672,416,9723,1099,393,4987,284,287,3597,11,3788,198,2,220,220,220,9387,739,262,13789,318,9387,319,281,366,1921,3180,1,29809,1797,11,42881,198,2,220,220,220,34764,11015,6375,7102,49828,11053,3963,15529,509,12115,11,2035,4911,393,17142,13,4091,262,198,2,220,220,220,13789,329,262,2176,3303,15030,21627,290,11247,198,2,220,220,220,739,262,13789,13,198,198,11748,2010,29851,198,6738,28686,5439,62,26791,1330,2196,26791,198,198,11748,645,6862,13,10414,198,6738,645,6862,1330,20613,198,6738,645,6862,1330,6631,198,6738,645,6862,13,72,1507,77,1330,4808,198,6738,645,6862,1330,5563,198,6738,645,6862,13,48205,1330,2779,355,26181,62,8692,198,6738,645,6862,13,48205,1330,7032,198,198,10943,37,796,645,6862,13,10414,13,10943,37,628,198,2,16926,46,7,527,9521,2599,17220,17711,10267,35,713,40073,198,31,26801,62,8692,13,45,10071,10267,8081,4592,13,30238,628,198,31,26801,62,8692,13,45,10071,10267,8081,4592,13,30238,198],"string":"[\n 2,\n 220,\n 220,\n 220,\n 15069,\n 1946,\n 2297,\n 10983,\n 11,\n 3457,\n 13,\n 198,\n 2,\n 198,\n 2,\n 220,\n 220,\n 220,\n 49962,\n 739,\n 262,\n 24843,\n 13789,\n 11,\n 10628,\n 362,\n 13,\n 15,\n 357,\n 1169,\n 366,\n 34156,\n 15341,\n 345,\n 743,\n 198,\n 2,\n 220,\n 220,\n 220,\n 407,\n 779,\n 428,\n 2393,\n 2845,\n 287,\n 11846,\n 351,\n 262,\n 13789,\n 13,\n 921,\n 743,\n 7330,\n 198,\n 2,\n 220,\n 220,\n 220,\n 257,\n 4866,\n 286,\n 262,\n 13789,\n 379,\n 198,\n 2,\n 198,\n 2,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2638,\n 1378,\n 2503,\n 13,\n 43073,\n 13,\n 2398,\n 14,\n 677,\n 4541,\n 14,\n 43,\n 2149,\n 24290,\n 12,\n 17,\n 13,\n 15,\n 198,\n 2,\n 198,\n 2,\n 220,\n 220,\n 220,\n 17486,\n 2672,\n 416,\n 9723,\n 1099,\n 393,\n 4987,\n 284,\n 287,\n 3597,\n 11,\n 3788,\n 198,\n 2,\n 220,\n 220,\n 220,\n 9387,\n 739,\n 262,\n 13789,\n 318,\n 9387,\n 319,\n 281,\n 366,\n 1921,\n 3180,\n 1,\n 29809,\n 1797,\n 11,\n 42881,\n 198,\n 2,\n 220,\n 220,\n 220,\n 34764,\n 11015,\n 6375,\n 7102,\n 49828,\n 11053,\n 3963,\n 15529,\n 509,\n 12115,\n 11,\n 2035,\n 4911,\n 393,\n 17142,\n 13,\n 4091,\n 262,\n 198,\n 2,\n 220,\n 220,\n 220,\n 13789,\n 329,\n 262,\n 2176,\n 3303,\n 15030,\n 21627,\n 290,\n 11247,\n 198,\n 2,\n 220,\n 220,\n 220,\n 739,\n 262,\n 13789,\n 13,\n 198,\n 198,\n 11748,\n 2010,\n 29851,\n 198,\n 6738,\n 28686,\n 5439,\n 62,\n 26791,\n 1330,\n 2196,\n 26791,\n 198,\n 198,\n 11748,\n 645,\n 6862,\n 13,\n 10414,\n 198,\n 6738,\n 645,\n 6862,\n 1330,\n 20613,\n 198,\n 6738,\n 645,\n 6862,\n 1330,\n 6631,\n 198,\n 6738,\n 645,\n 6862,\n 13,\n 72,\n 1507,\n 77,\n 1330,\n 4808,\n 198,\n 6738,\n 645,\n 6862,\n 1330,\n 5563,\n 198,\n 6738,\n 645,\n 6862,\n 13,\n 48205,\n 1330,\n 2779,\n 355,\n 26181,\n 62,\n 8692,\n 198,\n 6738,\n 645,\n 6862,\n 13,\n 48205,\n 1330,\n 7032,\n 198,\n 198,\n 10943,\n 37,\n 796,\n 645,\n 6862,\n 13,\n 10414,\n 13,\n 10943,\n 37,\n 628,\n 198,\n 2,\n 16926,\n 46,\n 7,\n 527,\n 9521,\n 2599,\n 17220,\n 17711,\n 10267,\n 35,\n 713,\n 40073,\n 198,\n 31,\n 26801,\n 62,\n 8692,\n 13,\n 45,\n 10071,\n 10267,\n 8081,\n 4592,\n 13,\n 30238,\n 628,\n 198,\n 31,\n 26801,\n 62,\n 8692,\n 13,\n 45,\n 10071,\n 10267,\n 8081,\n 4592,\n 13,\n 30238,\n 198\n]"},"ratio_char_token":{"kind":"number","value":3.2688524590163937,"string":"3.268852"},"token_count":{"kind":"number","value":305,"string":"305"}}},{"rowIdx":4255,"cells":{"content":{"kind":"string","value":"from PIL import Image\nfrom PIL.ExifTags import TAGS\nimport exifread\nimport re\n\nimport json\n\ndef get_exif_data(fname):\n \"\"\"Get embedded EXIF data from image file.\"\"\"\n ret = {}\n try:\n img = Image.open(fname)\n if hasattr( img, '_getexif' ):\n exifinfo = img._getexif()\n if exifinfo != None:\n for tag, value in exifinfo.items():\n decoded = TAGS.get(tag, tag)\n ret[decoded] = value\n except IOError:\n print('IOERROR ' + fname)\n return ret\nif __name__ == '__main__':\n fileName = \"1 (36).jpg\"\n # exif = get_exif_data(fileName)\n # print(exif)\n\n read()"},"input_ids":{"kind":"list like","value":[6738,350,4146,1330,7412,198,6738,350,4146,13,3109,361,36142,1330,37801,50,198,11748,409,361,961,198,11748,302,198,198,11748,33918,198,198,4299,651,62,1069,361,62,7890,7,69,3672,2599,198,220,220,220,37227,3855,14553,7788,5064,1366,422,2939,2393,526,15931,198,220,220,220,1005,796,23884,198,220,220,220,1949,25,198,220,220,220,220,220,220,220,33705,796,7412,13,9654,7,69,3672,8,198,220,220,220,220,220,220,220,611,468,35226,7,33705,11,705,62,1136,1069,361,6,15179,198,220,220,220,220,220,220,220,220,220,220,220,409,361,10951,796,33705,13557,1136,1069,361,3419,198,220,220,220,220,220,220,220,220,220,220,220,611,409,361,10951,14512,6045,25,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,329,7621,11,1988,287,409,361,10951,13,23814,33529,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,875,9043,796,37801,50,13,1136,7,12985,11,7621,8,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1005,58,12501,9043,60,796,1988,198,220,220,220,2845,24418,12331,25,198,220,220,220,220,220,220,220,3601,10786,9399,24908,705,1343,277,3672,8,198,220,220,220,1441,1005,198,361,11593,3672,834,6624,705,834,12417,834,10354,198,220,220,220,2393,5376,796,366,16,357,2623,737,9479,1,198,220,220,220,1303,409,361,796,651,62,1069,361,62,7890,7,7753,5376,8,198,220,220,220,1303,3601,7,1069,361,8,628,220,220,220,1100,3419],"string":"[\n 6738,\n 350,\n 4146,\n 1330,\n 7412,\n 198,\n 6738,\n 350,\n 4146,\n 13,\n 3109,\n 361,\n 36142,\n 1330,\n 37801,\n 50,\n 198,\n 11748,\n 409,\n 361,\n 961,\n 198,\n 11748,\n 302,\n 198,\n 198,\n 11748,\n 33918,\n 198,\n 198,\n 4299,\n 651,\n 62,\n 1069,\n 361,\n 62,\n 7890,\n 7,\n 69,\n 3672,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 3855,\n 14553,\n 7788,\n 5064,\n 1366,\n 422,\n 2939,\n 2393,\n 526,\n 15931,\n 198,\n 220,\n 220,\n 220,\n 1005,\n 796,\n 23884,\n 198,\n 220,\n 220,\n 220,\n 1949,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 33705,\n 796,\n 7412,\n 13,\n 9654,\n 7,\n 69,\n 3672,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 468,\n 35226,\n 7,\n 33705,\n 11,\n 705,\n 62,\n 1136,\n 1069,\n 361,\n 6,\n 15179,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 409,\n 361,\n 10951,\n 796,\n 33705,\n 13557,\n 1136,\n 1069,\n 361,\n 3419,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 409,\n 361,\n 10951,\n 14512,\n 6045,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 329,\n 7621,\n 11,\n 1988,\n 287,\n 409,\n 361,\n 10951,\n 13,\n 23814,\n 33529,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 875,\n 9043,\n 796,\n 37801,\n 50,\n 13,\n 1136,\n 7,\n 12985,\n 11,\n 7621,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1005,\n 58,\n 12501,\n 9043,\n 60,\n 796,\n 1988,\n 198,\n 220,\n 220,\n 220,\n 2845,\n 24418,\n 12331,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3601,\n 10786,\n 9399,\n 24908,\n 705,\n 1343,\n 277,\n 3672,\n 8,\n 198,\n 220,\n 220,\n 220,\n 1441,\n 1005,\n 198,\n 361,\n 11593,\n 3672,\n 834,\n 6624,\n 705,\n 834,\n 12417,\n 834,\n 10354,\n 198,\n 220,\n 220,\n 220,\n 2393,\n 5376,\n 796,\n 366,\n 16,\n 357,\n 2623,\n 737,\n 9479,\n 1,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 409,\n 361,\n 796,\n 651,\n 62,\n 1069,\n 361,\n 62,\n 7890,\n 7,\n 7753,\n 5376,\n 8,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 3601,\n 7,\n 1069,\n 361,\n 8,\n 628,\n 220,\n 220,\n 220,\n 1100,\n 3419\n]"},"ratio_char_token":{"kind":"number","value":2.049382716049383,"string":"2.049383"},"token_count":{"kind":"number","value":324,"string":"324"}}},{"rowIdx":4256,"cells":{"content":{"kind":"string","value":"from flask import Flask\nfrom flask_sqlalchemy import SQLAlchemy\nfrom flask_migrate import Migrate\nfrom flask_bootstrap import Bootstrap\nfrom flask_login import LoginManager\nfrom flask_moment import Moment\nfrom flask_mail import Mail\n# from flask_mail_sendgrid import MailSendGrid\nfrom config import Config\nfrom logging.handlers import RotatingFileHandler\nimport logging\nimport os\n\n\ndb = SQLAlchemy()\nmigrate = Migrate()\nbootstrap = Bootstrap()\nlogin = LoginManager()\nmoment = Moment()\nmail = Mail()\n\n\nfrom app import models\n"},"input_ids":{"kind":"list like","value":[6738,42903,1330,46947,198,6738,42903,62,25410,282,26599,1330,16363,2348,26599,198,6738,42903,62,76,42175,1330,337,42175,198,6738,42903,62,18769,26418,1330,18892,26418,198,6738,42903,62,38235,1330,23093,13511,198,6738,42903,62,32542,298,1330,29278,198,6738,42903,62,4529,1330,11099,198,2,422,42903,62,4529,62,21280,25928,1330,11099,25206,41339,198,6738,4566,1330,17056,198,6738,18931,13,4993,8116,1330,18481,803,8979,25060,198,11748,18931,198,11748,28686,628,198,9945,796,16363,2348,26599,3419,198,76,42175,796,337,42175,3419,198,18769,26418,796,18892,26418,3419,198,38235,796,23093,13511,3419,198,32542,298,796,29278,3419,198,4529,796,11099,3419,628,198,6738,598,1330,4981,198],"string":"[\n 6738,\n 42903,\n 1330,\n 46947,\n 198,\n 6738,\n 42903,\n 62,\n 25410,\n 282,\n 26599,\n 1330,\n 16363,\n 2348,\n 26599,\n 198,\n 6738,\n 42903,\n 62,\n 76,\n 42175,\n 1330,\n 337,\n 42175,\n 198,\n 6738,\n 42903,\n 62,\n 18769,\n 26418,\n 1330,\n 18892,\n 26418,\n 198,\n 6738,\n 42903,\n 62,\n 38235,\n 1330,\n 23093,\n 13511,\n 198,\n 6738,\n 42903,\n 62,\n 32542,\n 298,\n 1330,\n 29278,\n 198,\n 6738,\n 42903,\n 62,\n 4529,\n 1330,\n 11099,\n 198,\n 2,\n 422,\n 42903,\n 62,\n 4529,\n 62,\n 21280,\n 25928,\n 1330,\n 11099,\n 25206,\n 41339,\n 198,\n 6738,\n 4566,\n 1330,\n 17056,\n 198,\n 6738,\n 18931,\n 13,\n 4993,\n 8116,\n 1330,\n 18481,\n 803,\n 8979,\n 25060,\n 198,\n 11748,\n 18931,\n 198,\n 11748,\n 28686,\n 628,\n 198,\n 9945,\n 796,\n 16363,\n 2348,\n 26599,\n 3419,\n 198,\n 76,\n 42175,\n 796,\n 337,\n 42175,\n 3419,\n 198,\n 18769,\n 26418,\n 796,\n 18892,\n 26418,\n 3419,\n 198,\n 38235,\n 796,\n 23093,\n 13511,\n 3419,\n 198,\n 32542,\n 298,\n 796,\n 29278,\n 3419,\n 198,\n 4529,\n 796,\n 11099,\n 3419,\n 628,\n 198,\n 6738,\n 598,\n 1330,\n 4981,\n 198\n]"},"ratio_char_token":{"kind":"number","value":3.8248175182481754,"string":"3.824818"},"token_count":{"kind":"number","value":137,"string":"137"}}},{"rowIdx":4257,"cells":{"content":{"kind":"string","value":"'''\nFile: test_conversions.py\nAuthor: Adam Pah\nDescription: \npy.test test ensemble\n'''\nimport pytest\nimport conversions as conv\n\nclass TestConvertTimeseries:\n '''\n Covers the convert_timeseries_to_intervalseries function\n '''\n timeseries = [[0, 2], [2, 3], [5, 3]]\n\n def test_basic(self):\n '''\n Timeseries conversion test.\n '''\n #Set up the answer\n intervalseries = [[0, 2], [1, 3]]\n #Get the intervalseries\n test_intervals = conv.convert_timeseries_to_intervalseries(self.timeseries)\n #Just make sure that these things aren't the same\n assert intervalseries == test_intervals\n\n def test_yaxis_only(self):\n '''\n Timeseries conversion test with the yaxis only\n '''\n #Set up the answer\n intervalseries = [2, 3]\n #Get the intervalseries\n test_intervals = conv.convert_timeseries_to_intervalseries(self.timeseries, yaxis_only=True)\n #Just make sure that these things aren't the same\n assert intervalseries == test_intervals\n\n def test_negative_bounds(self):\n '''\n Test to make sure that system exit happens\n '''\n #Load up the data\n timeseries = [[0, 2], [-2, 3], [4, 3]]\n #Check for the system exit\n with pytest.raises(SystemExit):\n conv.convert_timeseries_to_intervalseries(timeseries, yaxis_only=True)\n"},"input_ids":{"kind":"list like","value":[7061,6,198,8979,25,1332,62,1102,47178,13,9078,198,13838,25,7244,350,993,198,11828,25,220,198,9078,13,9288,1332,34549,198,7061,6,198,11748,12972,9288,198,11748,32626,355,3063,198,198,4871,6208,3103,1851,28595,10640,25,198,220,220,220,705,7061,198,220,220,220,1766,690,262,10385,62,22355,10640,62,1462,62,3849,12786,10640,2163,198,220,220,220,705,7061,198,220,220,220,1661,10640,796,16410,15,11,362,4357,685,17,11,513,4357,685,20,11,513,11907,628,220,220,220,825,1332,62,35487,7,944,2599,198,220,220,220,220,220,220,220,705,7061,198,220,220,220,220,220,220,220,3782,10640,11315,1332,13,198,220,220,220,220,220,220,220,705,7061,198,220,220,220,220,220,220,220,1303,7248,510,262,3280,198,220,220,220,220,220,220,220,20016,10640,796,16410,15,11,362,4357,685,16,11,513,11907,198,220,220,220,220,220,220,220,1303,3855,262,20016,10640,198,220,220,220,220,220,220,220,1332,62,3849,12786,796,3063,13,1102,1851,62,22355,10640,62,1462,62,3849,12786,10640,7,944,13,22355,10640,8,198,220,220,220,220,220,220,220,1303,5703,787,1654,326,777,1243,3588,470,262,976,198,220,220,220,220,220,220,220,6818,20016,10640,6624,1332,62,3849,12786,628,220,220,220,825,1332,62,88,22704,62,8807,7,944,2599,198,220,220,220,220,220,220,220,705,7061,198,220,220,220,220,220,220,220,3782,10640,11315,1332,351,262,331,22704,691,198,220,220,220,220,220,220,220,705,7061,198,220,220,220,220,220,220,220,1303,7248,510,262,3280,198,220,220,220,220,220,220,220,20016,10640,796,685,17,11,513,60,198,220,220,220,220,220,220,220,1303,3855,262,20016,10640,198,220,220,220,220,220,220,220,1332,62,3849,12786,796,3063,13,1102,1851,62,22355,10640,62,1462,62,3849,12786,10640,7,944,13,22355,10640,11,331,22704,62,8807,28,17821,8,198,220,220,220,220,220,220,220,1303,5703,787,1654,326,777,1243,3588,470,262,976,198,220,220,220,220,220,220,220,6818,20016,10640,6624,1332,62,3849,12786,628,220,220,220,825,1332,62,31591,62,65,3733,7,944,2599,198,220,220,220,220,220,220,220,705,7061,198,220,220,220,220,220,220,220,6208,284,787,1654,326,1080,8420,4325,198,220,220,220,220,220,220,220,705,7061,198,220,220,220,220,220,220,220,1303,8912,510,262,1366,198,220,220,220,220,220,220,220,1661,10640,796,16410,15,11,362,4357,25915,17,11,513,4357,685,19,11,513,11907,198,220,220,220,220,220,220,220,1303,9787,329,262,1080,8420,198,220,220,220,220,220,220,220,351,12972,9288,13,430,2696,7,11964,30337,2599,198,220,220,220,220,220,220,220,220,220,220,220,3063,13,1102,1851,62,22355,10640,62,1462,62,3849,12786,10640,7,22355,10640,11,331,22704,62,8807,28,17821,8,198],"string":"[\n 7061,\n 6,\n 198,\n 8979,\n 25,\n 1332,\n 62,\n 1102,\n 47178,\n 13,\n 9078,\n 198,\n 13838,\n 25,\n 7244,\n 350,\n 993,\n 198,\n 11828,\n 25,\n 220,\n 198,\n 9078,\n 13,\n 9288,\n 1332,\n 34549,\n 198,\n 7061,\n 6,\n 198,\n 11748,\n 12972,\n 9288,\n 198,\n 11748,\n 32626,\n 355,\n 3063,\n 198,\n 198,\n 4871,\n 6208,\n 3103,\n 1851,\n 28595,\n 10640,\n 25,\n 198,\n 220,\n 220,\n 220,\n 705,\n 7061,\n 198,\n 220,\n 220,\n 220,\n 1766,\n 690,\n 262,\n 10385,\n 62,\n 22355,\n 10640,\n 62,\n 1462,\n 62,\n 3849,\n 12786,\n 10640,\n 2163,\n 198,\n 220,\n 220,\n 220,\n 705,\n 7061,\n 198,\n 220,\n 220,\n 220,\n 1661,\n 10640,\n 796,\n 16410,\n 15,\n 11,\n 362,\n 4357,\n 685,\n 17,\n 11,\n 513,\n 4357,\n 685,\n 20,\n 11,\n 513,\n 11907,\n 628,\n 220,\n 220,\n 220,\n 825,\n 1332,\n 62,\n 35487,\n 7,\n 944,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 705,\n 7061,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3782,\n 10640,\n 11315,\n 1332,\n 13,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 705,\n 7061,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 7248,\n 510,\n 262,\n 3280,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 20016,\n 10640,\n 796,\n 16410,\n 15,\n 11,\n 362,\n 4357,\n 685,\n 16,\n 11,\n 513,\n 11907,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 3855,\n 262,\n 20016,\n 10640,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1332,\n 62,\n 3849,\n 12786,\n 796,\n 3063,\n 13,\n 1102,\n 1851,\n 62,\n 22355,\n 10640,\n 62,\n 1462,\n 62,\n 3849,\n 12786,\n 10640,\n 7,\n 944,\n 13,\n 22355,\n 10640,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 5703,\n 787,\n 1654,\n 326,\n 777,\n 1243,\n 3588,\n 470,\n 262,\n 976,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 6818,\n 20016,\n 10640,\n 6624,\n 1332,\n 62,\n 3849,\n 12786,\n 628,\n 220,\n 220,\n 220,\n 825,\n 1332,\n 62,\n 88,\n 22704,\n 62,\n 8807,\n 7,\n 944,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 705,\n 7061,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3782,\n 10640,\n 11315,\n 1332,\n 351,\n 262,\n 331,\n 22704,\n 691,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 705,\n 7061,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 7248,\n 510,\n 262,\n 3280,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 20016,\n 10640,\n 796,\n 685,\n 17,\n 11,\n 513,\n 60,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 3855,\n 262,\n 20016,\n 10640,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1332,\n 62,\n 3849,\n 12786,\n 796,\n 3063,\n 13,\n 1102,\n 1851,\n 62,\n 22355,\n 10640,\n 62,\n 1462,\n 62,\n 3849,\n 12786,\n 10640,\n 7,\n 944,\n 13,\n 22355,\n 10640,\n 11,\n 331,\n 22704,\n 62,\n 8807,\n 28,\n 17821,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 5703,\n 787,\n 1654,\n 326,\n 777,\n 1243,\n 3588,\n 470,\n 262,\n 976,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 6818,\n 20016,\n 10640,\n 6624,\n 1332,\n 62,\n 3849,\n 12786,\n 628,\n 220,\n 220,\n 220,\n 825,\n 1332,\n 62,\n 31591,\n 62,\n 65,\n 3733,\n 7,\n 944,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 705,\n 7061,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 6208,\n 284,\n 787,\n 1654,\n 326,\n 1080,\n 8420,\n 4325,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 705,\n 7061,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 8912,\n 510,\n 262,\n 1366,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1661,\n 10640,\n 796,\n 16410,\n 15,\n 11,\n 362,\n 4357,\n 25915,\n 17,\n 11,\n 513,\n 4357,\n 685,\n 19,\n 11,\n 513,\n 11907,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 9787,\n 329,\n 262,\n 1080,\n 8420,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 351,\n 12972,\n 9288,\n 13,\n 430,\n 2696,\n 7,\n 11964,\n 30337,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3063,\n 13,\n 1102,\n 1851,\n 62,\n 22355,\n 10640,\n 62,\n 1462,\n 62,\n 3849,\n 12786,\n 10640,\n 7,\n 22355,\n 10640,\n 11,\n 331,\n 22704,\n 62,\n 8807,\n 28,\n 17821,\n 8,\n 198\n]"},"ratio_char_token":{"kind":"number","value":2.4133790737564325,"string":"2.413379"},"token_count":{"kind":"number","value":583,"string":"583"}}},{"rowIdx":4258,"cells":{"content":{"kind":"string","value":"from django.urls import reverse\n\nfrom extforms.deprecated_forms import SWCEventRequestForm, DCEventRequestForm\nfrom extrequests.models import (\n EventRequest,\n)\nfrom workshops.models import Event, Organization\nfrom workshops.tests.base import TestBase\n\n\n\n"},"input_ids":{"kind":"list like","value":[6738,42625,14208,13,6371,82,1330,9575,198,198,6738,1070,23914,13,10378,31023,62,23914,1330,12672,5222,1151,18453,8479,11,360,5222,1151,18453,8479,198,6738,1070,8897,3558,13,27530,1330,357,198,220,220,220,8558,18453,11,198,8,198,6738,25982,13,27530,1330,8558,11,12275,198,6738,25982,13,41989,13,8692,1330,6208,14881,628,628],"string":"[\n 6738,\n 42625,\n 14208,\n 13,\n 6371,\n 82,\n 1330,\n 9575,\n 198,\n 198,\n 6738,\n 1070,\n 23914,\n 13,\n 10378,\n 31023,\n 62,\n 23914,\n 1330,\n 12672,\n 5222,\n 1151,\n 18453,\n 8479,\n 11,\n 360,\n 5222,\n 1151,\n 18453,\n 8479,\n 198,\n 6738,\n 1070,\n 8897,\n 3558,\n 13,\n 27530,\n 1330,\n 357,\n 198,\n 220,\n 220,\n 220,\n 8558,\n 18453,\n 11,\n 198,\n 8,\n 198,\n 6738,\n 25982,\n 13,\n 27530,\n 1330,\n 8558,\n 11,\n 12275,\n 198,\n 6738,\n 25982,\n 13,\n 41989,\n 13,\n 8692,\n 1330,\n 6208,\n 14881,\n 628,\n 628\n]"},"ratio_char_token":{"kind":"number","value":3.739130434782609,"string":"3.73913"},"token_count":{"kind":"number","value":69,"string":"69"}}},{"rowIdx":4259,"cells":{"content":{"kind":"string","value":"\"\"\"\n Our HADS database gets loaded up with duplicates, this cleans it up.\n\n called from RUN_MIDNIGHT.sh\n\"\"\"\nfrom __future__ import print_function\nimport datetime\nimport sys\n\nimport pytz\nfrom pyiem.util import get_dbconn, utc\n\n\ndef query(sql, args=None):\n \"\"\"\n Do a query and make it atomic\n \"\"\"\n pgconn = get_dbconn('hads')\n hcursor = pgconn.cursor()\n sts = datetime.datetime.now()\n hcursor.execute(\"set work_mem='16GB'\")\n hcursor.execute(sql, args if args is not None else [])\n ets = datetime.datetime.now()\n print(\"%7s [%8.4fs] %s\" % (hcursor.rowcount, (ets - sts).total_seconds(),\n sql))\n hcursor.close()\n pgconn.commit()\n\n\ndef workflow(valid):\n ''' Do the work for this date, which is set to 00 UTC '''\n # Delete schoolnet data, since we created it in the first place!\n tbl = \"raw%s\" % (valid.strftime(\"%Y_%m\"),)\n sql = \"\"\"DELETE from \"\"\" + tbl + \"\"\" WHERE station IN\n (SELECT id from stations WHERE network in ('KCCI','KELO','KIMT')\n )\"\"\"\n query(sql)\n\n # make sure our tmp table does not exist\n query(\"DROP TABLE IF EXISTS tmp\")\n # Extract unique obs to special table\n sql = \"\"\"CREATE table tmp as select distinct * from \"\"\"+tbl+\"\"\"\n WHERE valid BETWEEN %s and %s\"\"\"\n args = (valid, valid + datetime.timedelta(hours=24))\n query(sql, args)\n\n # Delete them all!\n sql = \"\"\"delete from \"\"\"+tbl+\"\"\" WHERE valid BETWEEN %s and %s\"\"\"\n query(sql, args)\n\n sql = \"DROP index IF EXISTS \"+tbl+\"_idx\"\n query(sql)\n sql = \"DROP index IF EXISTS \"+tbl+\"_valid_idx\"\n query(sql)\n\n # Insert from special table\n sql = \"INSERT into \"+tbl+\" SELECT * from tmp\"\n query(sql)\n\n sql = \"CREATE index %s_idx on %s(station,valid)\" % (tbl, tbl)\n query(sql)\n sql = \"CREATE index %s_valid_idx on %s(valid)\" % (tbl, tbl)\n query(sql)\n\n sql = \"DROP TABLE IF EXISTS tmp\"\n query(sql)\n\n\ndef main(argv):\n \"\"\"Go Main Go\"\"\"\n if len(argv) == 4:\n utcnow = utc(int(argv[1]), int(argv[2]), int(argv[3]))\n workflow(utcnow)\n return\n utcnow = datetime.datetime.utcnow()\n utcnow = utcnow.replace(hour=0, minute=0, second=0, microsecond=0,\n tzinfo=pytz.utc)\n # Run for 'yesterday' and 35 days ago\n for day in [1, 35]:\n workflow(utcnow - datetime.timedelta(days=day))\n\n\nif __name__ == '__main__':\n # See how we are called\n main(sys.argv)\n"},"input_ids":{"kind":"list like","value":[37811,198,3954,367,47149,6831,3011,9639,510,351,14184,16856,11,428,20658,340,510,13,628,1444,422,32494,62,44,2389,45,9947,13,1477,198,37811,198,6738,11593,37443,834,1330,3601,62,8818,198,11748,4818,8079,198,11748,25064,198,198,11748,12972,22877,198,6738,12972,26597,13,22602,1330,651,62,9945,37043,11,3384,66,628,198,4299,12405,7,25410,11,26498,28,14202,2599,198,220,220,220,37227,198,220,220,220,2141,257,12405,290,787,340,17226,198,220,220,220,37227,198,220,220,220,23241,37043,796,651,62,9945,37043,10786,71,5643,11537,198,220,220,220,289,66,21471,796,23241,37043,13,66,21471,3419,198,220,220,220,39747,796,4818,8079,13,19608,8079,13,2197,3419,198,220,220,220,289,66,21471,13,41049,7203,2617,670,62,11883,11639,1433,4579,6,4943,198,220,220,220,289,66,21471,13,41049,7,25410,11,26498,611,26498,318,407,6045,2073,685,12962,198,220,220,220,304,912,796,4818,8079,13,19608,8079,13,2197,3419,198,220,220,220,3601,7203,4,22,82,685,4,23,13,19,9501,60,4064,82,1,4064,357,71,66,21471,13,808,9127,11,357,1039,532,39747,737,23350,62,43012,22784,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,44161,4008,198,220,220,220,289,66,21471,13,19836,3419,198,220,220,220,23241,37043,13,41509,3419,628,198,4299,30798,7,12102,2599,198,220,220,220,705,7061,2141,262,670,329,428,3128,11,543,318,900,284,3571,18119,705,7061,198,220,220,220,1303,23520,1524,3262,1366,11,1201,356,2727,340,287,262,717,1295,0,198,220,220,220,256,2436,796,366,1831,4,82,1,4064,357,12102,13,2536,31387,7203,4,56,62,4,76,12340,8,198,220,220,220,44161,796,37227,7206,2538,9328,422,37227,1343,256,2436,1343,37227,33411,4429,3268,198,220,220,220,220,220,220,220,220,220,220,220,220,220,357,46506,4686,422,8985,33411,3127,287,19203,42,4093,40,41707,42,3698,46,41707,42,3955,51,11537,198,220,220,220,220,220,220,220,220,220,220,220,220,220,1267,37811,198,220,220,220,12405,7,25410,8,628,220,220,220,1303,787,1654,674,45218,3084,857,407,2152,198,220,220,220,12405,7203,7707,3185,43679,16876,7788,1797,4694,45218,4943,198,220,220,220,1303,29677,3748,10201,284,2041,3084,198,220,220,220,44161,796,37227,43387,6158,3084,45218,355,2922,7310,1635,422,37227,10,83,2436,10,37811,198,220,220,220,220,220,220,220,33411,4938,38651,8845,1677,4064,82,290,4064,82,37811,198,220,220,220,26498,796,357,12102,11,4938,1343,4818,8079,13,16514,276,12514,7,24425,28,1731,4008,198,220,220,220,12405,7,25410,11,26498,8,628,220,220,220,1303,23520,606,477,0,198,220,220,220,44161,796,37227,33678,422,37227,10,83,2436,10,37811,33411,4938,38651,8845,1677,4064,82,290,4064,82,37811,198,220,220,220,12405,7,25410,11,26498,8,628,220,220,220,44161,796,366,7707,3185,6376,16876,7788,1797,4694,43825,83,2436,10,1,62,312,87,1,198,220,220,220,12405,7,25410,8,198,220,220,220,44161,796,366,7707,3185,6376,16876,7788,1797,4694,43825,83,2436,10,1,62,12102,62,312,87,1,198,220,220,220,12405,7,25410,8,628,220,220,220,1303,35835,422,2041,3084,198,220,220,220,44161,796,366,20913,17395,656,43825,83,2436,10,1,33493,1635,422,45218,1,198,220,220,220,12405,7,25410,8,628,220,220,220,44161,796,366,43387,6158,6376,4064,82,62,312,87,319,4064,82,7,17529,11,12102,16725,4064,357,83,2436,11,256,2436,8,198,220,220,220,12405,7,25410,8,198,220,220,220,44161,796,366,43387,6158,6376,4064,82,62,12102,62,312,87,319,4064,82,7,12102,16725,4064,357,83,2436,11,256,2436,8,198,220,220,220,12405,7,25410,8,628,220,220,220,44161,796,366,7707,3185,43679,16876,7788,1797,4694,45218,1,198,220,220,220,12405,7,25410,8,628,198,4299,1388,7,853,85,2599,198,220,220,220,37227,5247,8774,1514,37811,198,220,220,220,611,18896,7,853,85,8,6624,604,25,198,220,220,220,220,220,220,220,3384,66,2197,796,3384,66,7,600,7,853,85,58,16,46570,493,7,853,85,58,17,46570,493,7,853,85,58,18,60,4008,198,220,220,220,220,220,220,220,30798,7,315,66,2197,8,198,220,220,220,220,220,220,220,1441,198,220,220,220,3384,66,2197,796,4818,8079,13,19608,8079,13,315,66,2197,3419,198,220,220,220,3384,66,2197,796,3384,66,2197,13,33491,7,9769,28,15,11,5664,28,15,11,1218,28,15,11,4580,12227,28,15,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,256,89,10951,28,9078,22877,13,315,66,8,198,220,220,220,1303,5660,329,705,8505,6432,6,290,3439,1528,2084,198,220,220,220,329,1110,287,685,16,11,3439,5974,198,220,220,220,220,220,220,220,30798,7,315,66,2197,532,4818,8079,13,16514,276,12514,7,12545,28,820,4008,628,198,361,11593,3672,834,6624,705,834,12417,834,10354,198,220,220,220,1303,4091,703,356,389,1444,198,220,220,220,1388,7,17597,13,853,85,8,198],"string":"[\n 37811,\n 198,\n 3954,\n 367,\n 47149,\n 6831,\n 3011,\n 9639,\n 510,\n 351,\n 14184,\n 16856,\n 11,\n 428,\n 20658,\n 340,\n 510,\n 13,\n 628,\n 1444,\n 422,\n 32494,\n 62,\n 44,\n 2389,\n 45,\n 9947,\n 13,\n 1477,\n 198,\n 37811,\n 198,\n 6738,\n 11593,\n 37443,\n 834,\n 1330,\n 3601,\n 62,\n 8818,\n 198,\n 11748,\n 4818,\n 8079,\n 198,\n 11748,\n 25064,\n 198,\n 198,\n 11748,\n 12972,\n 22877,\n 198,\n 6738,\n 12972,\n 26597,\n 13,\n 22602,\n 1330,\n 651,\n 62,\n 9945,\n 37043,\n 11,\n 3384,\n 66,\n 628,\n 198,\n 4299,\n 12405,\n 7,\n 25410,\n 11,\n 26498,\n 28,\n 14202,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 2141,\n 257,\n 12405,\n 290,\n 787,\n 340,\n 17226,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 23241,\n 37043,\n 796,\n 651,\n 62,\n 9945,\n 37043,\n 10786,\n 71,\n 5643,\n 11537,\n 198,\n 220,\n 220,\n 220,\n 289,\n 66,\n 21471,\n 796,\n 23241,\n 37043,\n 13,\n 66,\n 21471,\n 3419,\n 198,\n 220,\n 220,\n 220,\n 39747,\n 796,\n 4818,\n 8079,\n 13,\n 19608,\n 8079,\n 13,\n 2197,\n 3419,\n 198,\n 220,\n 220,\n 220,\n 289,\n 66,\n 21471,\n 13,\n 41049,\n 7203,\n 2617,\n 670,\n 62,\n 11883,\n 11639,\n 1433,\n 4579,\n 6,\n 4943,\n 198,\n 220,\n 220,\n 220,\n 289,\n 66,\n 21471,\n 13,\n 41049,\n 7,\n 25410,\n 11,\n 26498,\n 611,\n 26498,\n 318,\n 407,\n 6045,\n 2073,\n 685,\n 12962,\n 198,\n 220,\n 220,\n 220,\n 304,\n 912,\n 796,\n 4818,\n 8079,\n 13,\n 19608,\n 8079,\n 13,\n 2197,\n 3419,\n 198,\n 220,\n 220,\n 220,\n 3601,\n 7203,\n 4,\n 22,\n 82,\n 685,\n 4,\n 23,\n 13,\n 19,\n 9501,\n 60,\n 4064,\n 82,\n 1,\n 4064,\n 357,\n 71,\n 66,\n 21471,\n 13,\n 808,\n 9127,\n 11,\n 357,\n 1039,\n 532,\n 39747,\n 737,\n 23350,\n 62,\n 43012,\n 22784,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 44161,\n 4008,\n 198,\n 220,\n 220,\n 220,\n 289,\n 66,\n 21471,\n 13,\n 19836,\n 3419,\n 198,\n 220,\n 220,\n 220,\n 23241,\n 37043,\n 13,\n 41509,\n 3419,\n 628,\n 198,\n 4299,\n 30798,\n 7,\n 12102,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 705,\n 7061,\n 2141,\n 262,\n 670,\n 329,\n 428,\n 3128,\n 11,\n 543,\n 318,\n 900,\n 284,\n 3571,\n 18119,\n 705,\n 7061,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 23520,\n 1524,\n 3262,\n 1366,\n 11,\n 1201,\n 356,\n 2727,\n 340,\n 287,\n 262,\n 717,\n 1295,\n 0,\n 198,\n 220,\n 220,\n 220,\n 256,\n 2436,\n 796,\n 366,\n 1831,\n 4,\n 82,\n 1,\n 4064,\n 357,\n 12102,\n 13,\n 2536,\n 31387,\n 7203,\n 4,\n 56,\n 62,\n 4,\n 76,\n 12340,\n 8,\n 198,\n 220,\n 220,\n 220,\n 44161,\n 796,\n 37227,\n 7206,\n 2538,\n 9328,\n 422,\n 37227,\n 1343,\n 256,\n 2436,\n 1343,\n 37227,\n 33411,\n 4429,\n 3268,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 357,\n 46506,\n 4686,\n 422,\n 8985,\n 33411,\n 3127,\n 287,\n 19203,\n 42,\n 4093,\n 40,\n 41707,\n 42,\n 3698,\n 46,\n 41707,\n 42,\n 3955,\n 51,\n 11537,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1267,\n 37811,\n 198,\n 220,\n 220,\n 220,\n 12405,\n 7,\n 25410,\n 8,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 787,\n 1654,\n 674,\n 45218,\n 3084,\n 857,\n 407,\n 2152,\n 198,\n 220,\n 220,\n 220,\n 12405,\n 7203,\n 7707,\n 3185,\n 43679,\n 16876,\n 7788,\n 1797,\n 4694,\n 45218,\n 4943,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 29677,\n 3748,\n 10201,\n 284,\n 2041,\n 3084,\n 198,\n 220,\n 220,\n 220,\n 44161,\n 796,\n 37227,\n 43387,\n 6158,\n 3084,\n 45218,\n 355,\n 2922,\n 7310,\n 1635,\n 422,\n 37227,\n 10,\n 83,\n 2436,\n 10,\n 37811,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 33411,\n 4938,\n 38651,\n 8845,\n 1677,\n 4064,\n 82,\n 290,\n 4064,\n 82,\n 37811,\n 198,\n 220,\n 220,\n 220,\n 26498,\n 796,\n 357,\n 12102,\n 11,\n 4938,\n 1343,\n 4818,\n 8079,\n 13,\n 16514,\n 276,\n 12514,\n 7,\n 24425,\n 28,\n 1731,\n 4008,\n 198,\n 220,\n 220,\n 220,\n 12405,\n 7,\n 25410,\n 11,\n 26498,\n 8,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 23520,\n 606,\n 477,\n 0,\n 198,\n 220,\n 220,\n 220,\n 44161,\n 796,\n 37227,\n 33678,\n 422,\n 37227,\n 10,\n 83,\n 2436,\n 10,\n 37811,\n 33411,\n 4938,\n 38651,\n 8845,\n 1677,\n 4064,\n 82,\n 290,\n 4064,\n 82,\n 37811,\n 198,\n 220,\n 220,\n 220,\n 12405,\n 7,\n 25410,\n 11,\n 26498,\n 8,\n 628,\n 220,\n 220,\n 220,\n 44161,\n 796,\n 366,\n 7707,\n 3185,\n 6376,\n 16876,\n 7788,\n 1797,\n 4694,\n 43825,\n 83,\n 2436,\n 10,\n 1,\n 62,\n 312,\n 87,\n 1,\n 198,\n 220,\n 220,\n 220,\n 12405,\n 7,\n 25410,\n 8,\n 198,\n 220,\n 220,\n 220,\n 44161,\n 796,\n 366,\n 7707,\n 3185,\n 6376,\n 16876,\n 7788,\n 1797,\n 4694,\n 43825,\n 83,\n 2436,\n 10,\n 1,\n 62,\n 12102,\n 62,\n 312,\n 87,\n 1,\n 198,\n 220,\n 220,\n 220,\n 12405,\n 7,\n 25410,\n 8,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 35835,\n 422,\n 2041,\n 3084,\n 198,\n 220,\n 220,\n 220,\n 44161,\n 796,\n 366,\n 20913,\n 17395,\n 656,\n 43825,\n 83,\n 2436,\n 10,\n 1,\n 33493,\n 1635,\n 422,\n 45218,\n 1,\n 198,\n 220,\n 220,\n 220,\n 12405,\n 7,\n 25410,\n 8,\n 628,\n 220,\n 220,\n 220,\n 44161,\n 796,\n 366,\n 43387,\n 6158,\n 6376,\n 4064,\n 82,\n 62,\n 312,\n 87,\n 319,\n 4064,\n 82,\n 7,\n 17529,\n 11,\n 12102,\n 16725,\n 4064,\n 357,\n 83,\n 2436,\n 11,\n 256,\n 2436,\n 8,\n 198,\n 220,\n 220,\n 220,\n 12405,\n 7,\n 25410,\n 8,\n 198,\n 220,\n 220,\n 220,\n 44161,\n 796,\n 366,\n 43387,\n 6158,\n 6376,\n 4064,\n 82,\n 62,\n 12102,\n 62,\n 312,\n 87,\n 319,\n 4064,\n 82,\n 7,\n 12102,\n 16725,\n 4064,\n 357,\n 83,\n 2436,\n 11,\n 256,\n 2436,\n 8,\n 198,\n 220,\n 220,\n 220,\n 12405,\n 7,\n 25410,\n 8,\n 628,\n 220,\n 220,\n 220,\n 44161,\n 796,\n 366,\n 7707,\n 3185,\n 43679,\n 16876,\n 7788,\n 1797,\n 4694,\n 45218,\n 1,\n 198,\n 220,\n 220,\n 220,\n 12405,\n 7,\n 25410,\n 8,\n 628,\n 198,\n 4299,\n 1388,\n 7,\n 853,\n 85,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 5247,\n 8774,\n 1514,\n 37811,\n 198,\n 220,\n 220,\n 220,\n 611,\n 18896,\n 7,\n 853,\n 85,\n 8,\n 6624,\n 604,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3384,\n 66,\n 2197,\n 796,\n 3384,\n 66,\n 7,\n 600,\n 7,\n 853,\n 85,\n 58,\n 16,\n 46570,\n 493,\n 7,\n 853,\n 85,\n 58,\n 17,\n 46570,\n 493,\n 7,\n 853,\n 85,\n 58,\n 18,\n 60,\n 4008,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 30798,\n 7,\n 315,\n 66,\n 2197,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1441,\n 198,\n 220,\n 220,\n 220,\n 3384,\n 66,\n 2197,\n 796,\n 4818,\n 8079,\n 13,\n 19608,\n 8079,\n 13,\n 315,\n 66,\n 2197,\n 3419,\n 198,\n 220,\n 220,\n 220,\n 3384,\n 66,\n 2197,\n 796,\n 3384,\n 66,\n 2197,\n 13,\n 33491,\n 7,\n 9769,\n 28,\n 15,\n 11,\n 5664,\n 28,\n 15,\n 11,\n 1218,\n 28,\n 15,\n 11,\n 4580,\n 12227,\n 28,\n 15,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 256,\n 89,\n 10951,\n 28,\n 9078,\n 22877,\n 13,\n 315,\n 66,\n 8,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 5660,\n 329,\n 705,\n 8505,\n 6432,\n 6,\n 290,\n 3439,\n 1528,\n 2084,\n 198,\n 220,\n 220,\n 220,\n 329,\n 1110,\n 287,\n 685,\n 16,\n 11,\n 3439,\n 5974,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 30798,\n 7,\n 315,\n 66,\n 2197,\n 532,\n 4818,\n 8079,\n 13,\n 16514,\n 276,\n 12514,\n 7,\n 12545,\n 28,\n 820,\n 4008,\n 628,\n 198,\n 361,\n 11593,\n 3672,\n 834,\n 6624,\n 705,\n 834,\n 12417,\n 834,\n 10354,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 4091,\n 703,\n 356,\n 389,\n 1444,\n 198,\n 220,\n 220,\n 220,\n 1388,\n 7,\n 17597,\n 13,\n 853,\n 85,\n 8,\n 198\n]"},"ratio_char_token":{"kind":"number","value":2.310377358490566,"string":"2.310377"},"token_count":{"kind":"number","value":1060,"string":"1,060"}}},{"rowIdx":4260,"cells":{"content":{"kind":"string","value":"from django.db import models\n \n"},"input_ids":{"kind":"list like","value":[6738,42625,14208,13,9945,1330,4981,198,220,198],"string":"[\n 6738,\n 42625,\n 14208,\n 13,\n 9945,\n 1330,\n 4981,\n 198,\n 220,\n 198\n]"},"ratio_char_token":{"kind":"number","value":3.1,"string":"3.1"},"token_count":{"kind":"number","value":10,"string":"10"}}},{"rowIdx":4261,"cells":{"content":{"kind":"string","value":"import numpy as np\nimport os\nimport pickle\n#128x128\n \n####################################################\n'''\nInputs 128x128 pixel array\nReturns label where:\nlabel 0 = 1\nlabel 1 = 2\netc\n'''\n'''\nreturns an array of arrays, each one is the data from one image\n'''\n\n###########################################\n\n\n# training Code for class (comment it before running flask app)\n\n#train()\n\n# for filename in os.listdir('[more here]/images'):\n# data = readTrainingData(path + filename)\n# character = data[6]\n# character = np.array(character, dtype='int')\n# for i in range(128):\n# print()\n# for j in range(128):\n# if (character[i][j] == 255):\n# print('*', end =\"\")\n# else:\n# print('7', end =\"\")\n# print()\n# print('------------------------------------------------------------')\n# print()\n# print()\n \n "},"input_ids":{"kind":"list like","value":[11748,299,32152,355,45941,198,11748,28686,198,11748,2298,293,198,2,12762,87,12762,198,220,220,220,220,220,220,220,220,198,29113,14468,4242,198,7061,6,198,20560,82,13108,87,12762,17465,7177,198,35561,6167,810,25,198,18242,657,796,352,198,18242,352,796,362,198,14784,198,7061,6,198,7061,6,198,7783,82,281,7177,286,220,26515,11,1123,530,318,262,1366,422,530,2939,198,7061,6,198,198,29113,7804,21017,628,198,2,3047,6127,329,1398,357,23893,340,878,2491,42903,598,8,198,198,2,27432,3419,198,198,2,329,29472,287,28686,13,4868,15908,10786,58,3549,994,60,14,17566,6,2599,198,2,220,220,220,220,1366,796,1100,44357,6601,7,6978,1343,29472,8,198,2,220,220,220,220,2095,796,1366,58,21,60,198,2,220,220,220,220,2095,796,45941,13,18747,7,22769,11,288,4906,11639,600,11537,198,2,220,220,220,220,329,1312,287,2837,7,12762,2599,198,2,220,220,220,220,220,220,220,220,3601,3419,198,2,220,220,220,220,220,220,220,220,329,474,287,2837,7,12762,2599,198,2,220,220,220,220,220,220,220,220,220,220,220,220,611,357,22769,58,72,7131,73,60,6624,14280,2599,198,2,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,3601,10786,9,3256,886,796,1,4943,198,2,220,220,220,220,220,220,220,220,220,220,220,220,2073,25,198,2,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,3601,10786,22,3256,886,796,1,4943,198,2,220,220,220,220,3601,3419,198,2,220,220,220,220,3601,10786,47232,10541,11537,198,2,220,220,220,220,3601,3419,198,2,220,220,220,220,3601,3419,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,198,220,220,220,220,220,220,220,220,220,220,220,220],"string":"[\n 11748,\n 299,\n 32152,\n 355,\n 45941,\n 198,\n 11748,\n 28686,\n 198,\n 11748,\n 2298,\n 293,\n 198,\n 2,\n 12762,\n 87,\n 12762,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 198,\n 29113,\n 14468,\n 4242,\n 198,\n 7061,\n 6,\n 198,\n 20560,\n 82,\n 13108,\n 87,\n 12762,\n 17465,\n 7177,\n 198,\n 35561,\n 6167,\n 810,\n 25,\n 198,\n 18242,\n 657,\n 796,\n 352,\n 198,\n 18242,\n 352,\n 796,\n 362,\n 198,\n 14784,\n 198,\n 7061,\n 6,\n 198,\n 7061,\n 6,\n 198,\n 7783,\n 82,\n 281,\n 7177,\n 286,\n 220,\n 26515,\n 11,\n 1123,\n 530,\n 318,\n 262,\n 1366,\n 422,\n 530,\n 2939,\n 198,\n 7061,\n 6,\n 198,\n 198,\n 29113,\n 7804,\n 21017,\n 628,\n 198,\n 2,\n 3047,\n 6127,\n 329,\n 1398,\n 357,\n 23893,\n 340,\n 878,\n 2491,\n 42903,\n 598,\n 8,\n 198,\n 198,\n 2,\n 27432,\n 3419,\n 198,\n 198,\n 2,\n 329,\n 29472,\n 287,\n 28686,\n 13,\n 4868,\n 15908,\n 10786,\n 58,\n 3549,\n 994,\n 60,\n 14,\n 17566,\n 6,\n 2599,\n 198,\n 2,\n 220,\n 220,\n 220,\n 220,\n 1366,\n 796,\n 1100,\n 44357,\n 6601,\n 7,\n 6978,\n 1343,\n 29472,\n 8,\n 198,\n 2,\n 220,\n 220,\n 220,\n 220,\n 2095,\n 796,\n 1366,\n 58,\n 21,\n 60,\n 198,\n 2,\n 220,\n 220,\n 220,\n 220,\n 2095,\n 796,\n 45941,\n 13,\n 18747,\n 7,\n 22769,\n 11,\n 288,\n 4906,\n 11639,\n 600,\n 11537,\n 198,\n 2,\n 220,\n 220,\n 220,\n 220,\n 329,\n 1312,\n 287,\n 2837,\n 7,\n 12762,\n 2599,\n 198,\n 2,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3601,\n 3419,\n 198,\n 2,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 329,\n 474,\n 287,\n 2837,\n 7,\n 12762,\n 2599,\n 198,\n 2,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 357,\n 22769,\n 58,\n 72,\n 7131,\n 73,\n 60,\n 6624,\n 14280,\n 2599,\n 198,\n 2,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3601,\n 10786,\n 9,\n 3256,\n 886,\n 796,\n 1,\n 4943,\n 198,\n 2,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2073,\n 25,\n 198,\n 2,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3601,\n 10786,\n 22,\n 3256,\n 886,\n 796,\n 1,\n 4943,\n 198,\n 2,\n 220,\n 220,\n 220,\n 220,\n 3601,\n 3419,\n 198,\n 2,\n 220,\n 220,\n 220,\n 220,\n 3601,\n 10786,\n 47232,\n 10541,\n 11537,\n 198,\n 2,\n 220,\n 220,\n 220,\n 220,\n 3601,\n 3419,\n 198,\n 2,\n 220,\n 220,\n 220,\n 220,\n 3601,\n 3419,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220\n]"},"ratio_char_token":{"kind":"number","value":2.482666666666667,"string":"2.482667"},"token_count":{"kind":"number","value":375,"string":"375"}}},{"rowIdx":4262,"cells":{"content":{"kind":"string","value":"# -*- coding: utf-8 -*-\n\n\"\"\"Python implementation of the StalinSort algorithm.\n\nReferences\n----------\n- :cite:`mathew` : @mathew@mastodon.social (2018/10/26 04:20:16)\n ''I came up with a single pass O(n) sort algorithm I call StalinSort. You\n iterate down the list of elements checking if they're in order. Any element\n which is out of order is eliminated. At the end you have a sorted list.''\n\"\"\"\n\ndef stalinsort(iterable, key=None, ascending=False):\n \"\"\"Sorts iterable according to the single pass O(n) StalinSort algorithm.\n\n Parameters\n ----------\n iterable: iterable object\n\n key: function\n A function of one argument that is used to extract a comparison key\n from each element. Default is None.\n\n Returns\n -------\n survivors: list\n List of surviving elements of iterable.\n \n Example\n -------\n >>>from stalinsort import stalinsort\n >>>a = [3, 2, 5, 7, 1, 3]\n >>>stalinsort(a)\n [3, 2, 1]\n \"\"\"\n\n ascending = False # There is only descent under communism.\n\n if key is not None:\n keys = iterable.apply(key)\n else:\n keys = list(iterable)\n\n survivors = iterable[:1] # I prefer to think in terms of survivors.\n for index, victim in enumerate(iterable[1:]):\n if survivors[-1] >= keys[index + 1]:\n survivors.append(victim)\n \n return survivors\n"},"input_ids":{"kind":"list like","value":[2,532,9,12,19617,25,3384,69,12,23,532,9,12,198,198,37811,37906,7822,286,262,17482,42758,11862,13,198,198,19927,198,35937,198,12,220,220,1058,66,578,25,63,6759,6391,63,1058,2488,6759,6391,31,47616,46457,13,14557,357,7908,14,940,14,2075,8702,25,1238,25,1433,8,198,220,220,220,10148,40,1625,510,351,257,2060,1208,440,7,77,8,3297,11862,314,869,17482,42758,13,921,198,220,220,220,11629,378,866,262,1351,286,4847,10627,611,484,821,287,1502,13,4377,5002,198,220,220,220,543,318,503,286,1502,318,15254,13,1629,262,886,345,423,257,23243,1351,13531,198,37811,198,198,4299,29049,1040,419,7,2676,540,11,1994,28,14202,11,41988,28,25101,2599,198,220,220,220,37227,50,2096,11629,540,1864,284,262,2060,1208,440,7,77,8,17482,42758,11862,13,628,220,220,220,40117,198,220,220,220,24200,438,198,220,220,220,11629,540,25,11629,540,2134,628,220,220,220,1994,25,2163,198,220,220,220,220,220,220,220,317,2163,286,530,4578,326,318,973,284,7925,257,7208,1994,198,220,220,220,220,220,220,220,422,1123,5002,13,15161,318,6045,13,628,220,220,220,16409,198,220,220,220,35656,198,220,220,220,13644,25,1351,198,220,220,220,220,220,220,220,7343,286,16997,4847,286,11629,540,13,198,220,220,220,220,198,220,220,220,17934,198,220,220,220,35656,198,220,220,220,13163,6738,29049,1040,419,1330,29049,1040,419,198,220,220,220,13163,64,796,685,18,11,362,11,642,11,767,11,352,11,513,60,198,220,220,220,13163,7757,1040,419,7,64,8,198,220,220,220,685,18,11,362,11,352,60,198,220,220,220,37227,628,220,220,220,41988,796,10352,1303,1318,318,691,18598,739,27770,13,628,220,220,220,611,1994,318,407,6045,25,198,220,220,220,220,220,220,220,8251,796,11629,540,13,39014,7,2539,8,198,220,220,220,2073,25,198,220,220,220,220,220,220,220,8251,796,1351,7,2676,540,8,628,220,220,220,13644,796,11629,540,58,25,16,60,1303,314,4702,284,892,287,2846,286,13644,13,198,220,220,220,329,6376,11,3117,287,27056,378,7,2676,540,58,16,47715,2599,198,220,220,220,220,220,220,220,611,220,13644,58,12,16,60,18189,8251,58,9630,1343,352,5974,198,220,220,220,220,220,220,220,220,220,220,220,13644,13,33295,7,32433,320,8,198,220,220,220,220,220,220,220,220,220,220,220,220,198,220,220,220,1441,13644,198],"string":"[\n 2,\n 532,\n 9,\n 12,\n 19617,\n 25,\n 3384,\n 69,\n 12,\n 23,\n 532,\n 9,\n 12,\n 198,\n 198,\n 37811,\n 37906,\n 7822,\n 286,\n 262,\n 17482,\n 42758,\n 11862,\n 13,\n 198,\n 198,\n 19927,\n 198,\n 35937,\n 198,\n 12,\n 220,\n 220,\n 1058,\n 66,\n 578,\n 25,\n 63,\n 6759,\n 6391,\n 63,\n 1058,\n 2488,\n 6759,\n 6391,\n 31,\n 47616,\n 46457,\n 13,\n 14557,\n 357,\n 7908,\n 14,\n 940,\n 14,\n 2075,\n 8702,\n 25,\n 1238,\n 25,\n 1433,\n 8,\n 198,\n 220,\n 220,\n 220,\n 10148,\n 40,\n 1625,\n 510,\n 351,\n 257,\n 2060,\n 1208,\n 440,\n 7,\n 77,\n 8,\n 3297,\n 11862,\n 314,\n 869,\n 17482,\n 42758,\n 13,\n 921,\n 198,\n 220,\n 220,\n 220,\n 11629,\n 378,\n 866,\n 262,\n 1351,\n 286,\n 4847,\n 10627,\n 611,\n 484,\n 821,\n 287,\n 1502,\n 13,\n 4377,\n 5002,\n 198,\n 220,\n 220,\n 220,\n 543,\n 318,\n 503,\n 286,\n 1502,\n 318,\n 15254,\n 13,\n 1629,\n 262,\n 886,\n 345,\n 423,\n 257,\n 23243,\n 1351,\n 13531,\n 198,\n 37811,\n 198,\n 198,\n 4299,\n 29049,\n 1040,\n 419,\n 7,\n 2676,\n 540,\n 11,\n 1994,\n 28,\n 14202,\n 11,\n 41988,\n 28,\n 25101,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 50,\n 2096,\n 11629,\n 540,\n 1864,\n 284,\n 262,\n 2060,\n 1208,\n 440,\n 7,\n 77,\n 8,\n 17482,\n 42758,\n 11862,\n 13,\n 628,\n 220,\n 220,\n 220,\n 40117,\n 198,\n 220,\n 220,\n 220,\n 24200,\n 438,\n 198,\n 220,\n 220,\n 220,\n 11629,\n 540,\n 25,\n 11629,\n 540,\n 2134,\n 628,\n 220,\n 220,\n 220,\n 1994,\n 25,\n 2163,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 317,\n 2163,\n 286,\n 530,\n 4578,\n 326,\n 318,\n 973,\n 284,\n 7925,\n 257,\n 7208,\n 1994,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 422,\n 1123,\n 5002,\n 13,\n 15161,\n 318,\n 6045,\n 13,\n 628,\n 220,\n 220,\n 220,\n 16409,\n 198,\n 220,\n 220,\n 220,\n 35656,\n 198,\n 220,\n 220,\n 220,\n 13644,\n 25,\n 1351,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 7343,\n 286,\n 16997,\n 4847,\n 286,\n 11629,\n 540,\n 13,\n 198,\n 220,\n 220,\n 220,\n 220,\n 198,\n 220,\n 220,\n 220,\n 17934,\n 198,\n 220,\n 220,\n 220,\n 35656,\n 198,\n 220,\n 220,\n 220,\n 13163,\n 6738,\n 29049,\n 1040,\n 419,\n 1330,\n 29049,\n 1040,\n 419,\n 198,\n 220,\n 220,\n 220,\n 13163,\n 64,\n 796,\n 685,\n 18,\n 11,\n 362,\n 11,\n 642,\n 11,\n 767,\n 11,\n 352,\n 11,\n 513,\n 60,\n 198,\n 220,\n 220,\n 220,\n 13163,\n 7757,\n 1040,\n 419,\n 7,\n 64,\n 8,\n 198,\n 220,\n 220,\n 220,\n 685,\n 18,\n 11,\n 362,\n 11,\n 352,\n 60,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 628,\n 220,\n 220,\n 220,\n 41988,\n 796,\n 10352,\n 1303,\n 1318,\n 318,\n 691,\n 18598,\n 739,\n 27770,\n 13,\n 628,\n 220,\n 220,\n 220,\n 611,\n 1994,\n 318,\n 407,\n 6045,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 8251,\n 796,\n 11629,\n 540,\n 13,\n 39014,\n 7,\n 2539,\n 8,\n 198,\n 220,\n 220,\n 220,\n 2073,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 8251,\n 796,\n 1351,\n 7,\n 2676,\n 540,\n 8,\n 628,\n 220,\n 220,\n 220,\n 13644,\n 796,\n 11629,\n 540,\n 58,\n 25,\n 16,\n 60,\n 1303,\n 314,\n 4702,\n 284,\n 892,\n 287,\n 2846,\n 286,\n 13644,\n 13,\n 198,\n 220,\n 220,\n 220,\n 329,\n 6376,\n 11,\n 3117,\n 287,\n 27056,\n 378,\n 7,\n 2676,\n 540,\n 58,\n 16,\n 47715,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 220,\n 13644,\n 58,\n 12,\n 16,\n 60,\n 18189,\n 8251,\n 58,\n 9630,\n 1343,\n 352,\n 5974,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 13644,\n 13,\n 33295,\n 7,\n 32433,\n 320,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 198,\n 220,\n 220,\n 220,\n 1441,\n 13644,\n 198\n]"},"ratio_char_token":{"kind":"number","value":2.7292490118577075,"string":"2.729249"},"token_count":{"kind":"number","value":506,"string":"506"}}},{"rowIdx":4263,"cells":{"content":{"kind":"string","value":"import matplotlib.pyplot as plt\nimport numpy as np\nfrom pyfmi import load_fmu\n\nmodel = load_fmu('./PadeSlave.fmu')\n\ninputs = ('inputVariable', lambda t: 5. * np.cos(t))\nsimulation = model.simulate(final_time=30, input=inputs)\n\nplt.plot(simulation['time'], simulation['inputVariable'])\nplt.plot(simulation['time'], simulation['outputVariable'])\n\nplt.legend(['inputVariable', 'outputVariable'])\nplt.xlabel('time')\nplt.show()\n"},"input_ids":{"kind":"list like","value":[11748,2603,29487,8019,13,9078,29487,355,458,83,198,11748,299,32152,355,45941,198,6738,12972,69,11632,1330,3440,62,69,30300,198,198,19849,796,3440,62,69,30300,7,4458,14,47,671,11122,1015,13,69,30300,11537,198,198,15414,82,796,19203,15414,43015,3256,37456,256,25,642,13,1635,45941,13,6966,7,83,4008,198,14323,1741,796,2746,13,14323,5039,7,20311,62,2435,28,1270,11,5128,28,15414,82,8,198,198,489,83,13,29487,7,14323,1741,17816,2435,6,4357,18640,17816,15414,43015,6,12962,198,489,83,13,29487,7,14323,1741,17816,2435,6,4357,18640,17816,22915,43015,6,12962,198,198,489,83,13,1455,437,7,17816,15414,43015,3256,705,22915,43015,6,12962,198,489,83,13,87,18242,10786,2435,11537,198,489,83,13,12860,3419,198],"string":"[\n 11748,\n 2603,\n 29487,\n 8019,\n 13,\n 9078,\n 29487,\n 355,\n 458,\n 83,\n 198,\n 11748,\n 299,\n 32152,\n 355,\n 45941,\n 198,\n 6738,\n 12972,\n 69,\n 11632,\n 1330,\n 3440,\n 62,\n 69,\n 30300,\n 198,\n 198,\n 19849,\n 796,\n 3440,\n 62,\n 69,\n 30300,\n 7,\n 4458,\n 14,\n 47,\n 671,\n 11122,\n 1015,\n 13,\n 69,\n 30300,\n 11537,\n 198,\n 198,\n 15414,\n 82,\n 796,\n 19203,\n 15414,\n 43015,\n 3256,\n 37456,\n 256,\n 25,\n 642,\n 13,\n 1635,\n 45941,\n 13,\n 6966,\n 7,\n 83,\n 4008,\n 198,\n 14323,\n 1741,\n 796,\n 2746,\n 13,\n 14323,\n 5039,\n 7,\n 20311,\n 62,\n 2435,\n 28,\n 1270,\n 11,\n 5128,\n 28,\n 15414,\n 82,\n 8,\n 198,\n 198,\n 489,\n 83,\n 13,\n 29487,\n 7,\n 14323,\n 1741,\n 17816,\n 2435,\n 6,\n 4357,\n 18640,\n 17816,\n 15414,\n 43015,\n 6,\n 12962,\n 198,\n 489,\n 83,\n 13,\n 29487,\n 7,\n 14323,\n 1741,\n 17816,\n 2435,\n 6,\n 4357,\n 18640,\n 17816,\n 22915,\n 43015,\n 6,\n 12962,\n 198,\n 198,\n 489,\n 83,\n 13,\n 1455,\n 437,\n 7,\n 17816,\n 15414,\n 43015,\n 3256,\n 705,\n 22915,\n 43015,\n 6,\n 12962,\n 198,\n 489,\n 83,\n 13,\n 87,\n 18242,\n 10786,\n 2435,\n 11537,\n 198,\n 489,\n 83,\n 13,\n 12860,\n 3419,\n 198\n]"},"ratio_char_token":{"kind":"number","value":2.7115384615384617,"string":"2.711538"},"token_count":{"kind":"number","value":156,"string":"156"}}},{"rowIdx":4264,"cells":{"content":{"kind":"string","value":"# Requirements:\n# - fmtc\n# - nnedi3\n# From:\n# - https://github.com/mawen1250/VapourSynth-script\n# - https://github.com/HomeOfVapourSynthEvolution/mvsfunc\nimport vapoursynth as vs\nimport math\n\n\n\n\n\n\n## Gamma conversion functions from HAvsFunc-r18\n# Convert the luma channel to linear light\n\n# Convert back a clip to gamma-corrected luma\n\n# Apply the inverse sigmoid curve to a clip in linear luminance\n\n# Convert back a clip to linear luminance\n## Gamma conversion functions from HAvsFunc-r18"},"input_ids":{"kind":"list like","value":[2,24422,25,198,2,220,220,532,46996,66,198,2,220,220,532,299,2817,72,18,198,2,3574,25,198,2,220,220,532,3740,1378,12567,13,785,14,76,707,268,1065,1120,14,53,499,454,29934,400,12,12048,198,2,220,220,532,3740,1378,12567,13,785,14,16060,5189,53,499,454,29934,400,15200,2122,14,76,14259,20786,198,11748,38187,454,28869,400,355,3691,198,11748,10688,628,628,628,198,2235,43595,11315,5499,422,367,7355,82,37,19524,12,81,1507,198,2,38240,262,300,7487,6518,284,14174,1657,198,198,2,38240,736,257,10651,284,34236,12,30283,276,300,7487,198,198,2,27967,262,34062,264,17225,1868,12133,284,257,10651,287,14174,29763,590,198,198,2,38240,736,257,10651,284,14174,29763,590,198,2235,43595,11315,5499,422,367,7355,82,37,19524,12,81,1507],"string":"[\n 2,\n 24422,\n 25,\n 198,\n 2,\n 220,\n 220,\n 532,\n 46996,\n 66,\n 198,\n 2,\n 220,\n 220,\n 532,\n 299,\n 2817,\n 72,\n 18,\n 198,\n 2,\n 3574,\n 25,\n 198,\n 2,\n 220,\n 220,\n 532,\n 3740,\n 1378,\n 12567,\n 13,\n 785,\n 14,\n 76,\n 707,\n 268,\n 1065,\n 1120,\n 14,\n 53,\n 499,\n 454,\n 29934,\n 400,\n 12,\n 12048,\n 198,\n 2,\n 220,\n 220,\n 532,\n 3740,\n 1378,\n 12567,\n 13,\n 785,\n 14,\n 16060,\n 5189,\n 53,\n 499,\n 454,\n 29934,\n 400,\n 15200,\n 2122,\n 14,\n 76,\n 14259,\n 20786,\n 198,\n 11748,\n 38187,\n 454,\n 28869,\n 400,\n 355,\n 3691,\n 198,\n 11748,\n 10688,\n 628,\n 628,\n 628,\n 198,\n 2235,\n 43595,\n 11315,\n 5499,\n 422,\n 367,\n 7355,\n 82,\n 37,\n 19524,\n 12,\n 81,\n 1507,\n 198,\n 2,\n 38240,\n 262,\n 300,\n 7487,\n 6518,\n 284,\n 14174,\n 1657,\n 198,\n 198,\n 2,\n 38240,\n 736,\n 257,\n 10651,\n 284,\n 34236,\n 12,\n 30283,\n 276,\n 300,\n 7487,\n 198,\n 198,\n 2,\n 27967,\n 262,\n 34062,\n 264,\n 17225,\n 1868,\n 12133,\n 284,\n 257,\n 10651,\n 287,\n 14174,\n 29763,\n 590,\n 198,\n 198,\n 2,\n 38240,\n 736,\n 257,\n 10651,\n 284,\n 14174,\n 29763,\n 590,\n 198,\n 2235,\n 43595,\n 11315,\n 5499,\n 422,\n 367,\n 7355,\n 82,\n 37,\n 19524,\n 12,\n 81,\n 1507\n]"},"ratio_char_token":{"kind":"number","value":3.018181818181818,"string":"3.018182"},"token_count":{"kind":"number","value":165,"string":"165"}}},{"rowIdx":4265,"cells":{"content":{"kind":"string","value":"# -*- coding: utf-8 -*-\n# Generated by Django 1.9.7 on 2017-03-17 17:29\nfrom __future__ import unicode_literals\n\nfrom django.db import migrations, models\n\n"},"input_ids":{"kind":"list like","value":[2,532,9,12,19617,25,3384,69,12,23,532,9,12,198,2,2980,515,416,37770,352,13,24,13,22,319,2177,12,3070,12,1558,1596,25,1959,198,6738,11593,37443,834,1330,28000,1098,62,17201,874,198,198,6738,42625,14208,13,9945,1330,15720,602,11,4981,628],"string":"[\n 2,\n 532,\n 9,\n 12,\n 19617,\n 25,\n 3384,\n 69,\n 12,\n 23,\n 532,\n 9,\n 12,\n 198,\n 2,\n 2980,\n 515,\n 416,\n 37770,\n 352,\n 13,\n 24,\n 13,\n 22,\n 319,\n 2177,\n 12,\n 3070,\n 12,\n 1558,\n 1596,\n 25,\n 1959,\n 198,\n 6738,\n 11593,\n 37443,\n 834,\n 1330,\n 28000,\n 1098,\n 62,\n 17201,\n 874,\n 198,\n 198,\n 6738,\n 42625,\n 14208,\n 13,\n 9945,\n 1330,\n 15720,\n 602,\n 11,\n 4981,\n 628\n]"},"ratio_char_token":{"kind":"number","value":2.719298245614035,"string":"2.719298"},"token_count":{"kind":"number","value":57,"string":"57"}}},{"rowIdx":4266,"cells":{"content":{"kind":"string","value":"import numpy as np\nimport EZ.stderr as stderr\n\n\n\n\n\n\n\n\n\n"},"input_ids":{"kind":"list like","value":[11748,299,32152,355,45941,198,11748,412,57,13,301,1082,81,355,336,1082,81,628,628,628,628,628],"string":"[\n 11748,\n 299,\n 32152,\n 355,\n 45941,\n 198,\n 11748,\n 412,\n 57,\n 13,\n 301,\n 1082,\n 81,\n 355,\n 336,\n 1082,\n 81,\n 628,\n 628,\n 628,\n 628,\n 628\n]"},"ratio_char_token":{"kind":"number","value":2.5,"string":"2.5"},"token_count":{"kind":"number","value":22,"string":"22"}}},{"rowIdx":4267,"cells":{"content":{"kind":"string","value":"from PyQt5 import QtGui, QtCore, QtWidgets\nfrom collections import namedtuple\nimport time\nimport random\nimport torch\nimport torch.nn as nn\nimport torch.nn.functional as F\nfrom utils import utils\n\nHumanFeedback = namedtuple('HumanFeedback', ['feedback_value'])\nSavedAction = namedtuple('SavedAction', ['state', 'action', 'logprob'])\nSavedActionsWithFeedback = namedtuple('SavedActionsWithFeedback', ['saved_actions', 'final_feedback'])\n\n\n\n\n\n"},"input_ids":{"kind":"list like","value":[6738,9485,48,83,20,1330,33734,8205,72,11,33734,14055,11,33734,54,312,11407,198,6738,17268,1330,3706,83,29291,198,11748,640,198,11748,4738,198,11748,28034,198,11748,28034,13,20471,355,299,77,198,11748,28034,13,20471,13,45124,355,376,198,6738,3384,4487,1330,3384,4487,198,198,20490,18332,1891,796,3706,83,29291,10786,20490,18332,1891,3256,37250,12363,1891,62,8367,6,12962,198,50,9586,12502,796,3706,83,29291,10786,50,9586,12502,3256,37250,5219,3256,705,2673,3256,705,6404,1676,65,6,12962,198,50,9586,32,2733,3152,18332,1891,796,3706,83,29291,10786,50,9586,32,2733,3152,18332,1891,3256,37250,82,9586,62,4658,3256,705,20311,62,12363,1891,6,12962,628,628,628],"string":"[\n 6738,\n 9485,\n 48,\n 83,\n 20,\n 1330,\n 33734,\n 8205,\n 72,\n 11,\n 33734,\n 14055,\n 11,\n 33734,\n 54,\n 312,\n 11407,\n 198,\n 6738,\n 17268,\n 1330,\n 3706,\n 83,\n 29291,\n 198,\n 11748,\n 640,\n 198,\n 11748,\n 4738,\n 198,\n 11748,\n 28034,\n 198,\n 11748,\n 28034,\n 13,\n 20471,\n 355,\n 299,\n 77,\n 198,\n 11748,\n 28034,\n 13,\n 20471,\n 13,\n 45124,\n 355,\n 376,\n 198,\n 6738,\n 3384,\n 4487,\n 1330,\n 3384,\n 4487,\n 198,\n 198,\n 20490,\n 18332,\n 1891,\n 796,\n 3706,\n 83,\n 29291,\n 10786,\n 20490,\n 18332,\n 1891,\n 3256,\n 37250,\n 12363,\n 1891,\n 62,\n 8367,\n 6,\n 12962,\n 198,\n 50,\n 9586,\n 12502,\n 796,\n 3706,\n 83,\n 29291,\n 10786,\n 50,\n 9586,\n 12502,\n 3256,\n 37250,\n 5219,\n 3256,\n 705,\n 2673,\n 3256,\n 705,\n 6404,\n 1676,\n 65,\n 6,\n 12962,\n 198,\n 50,\n 9586,\n 32,\n 2733,\n 3152,\n 18332,\n 1891,\n 796,\n 3706,\n 83,\n 29291,\n 10786,\n 50,\n 9586,\n 32,\n 2733,\n 3152,\n 18332,\n 1891,\n 3256,\n 37250,\n 82,\n 9586,\n 62,\n 4658,\n 3256,\n 705,\n 20311,\n 62,\n 12363,\n 1891,\n 6,\n 12962,\n 628,\n 628,\n 628\n]"},"ratio_char_token":{"kind":"number","value":3.142857142857143,"string":"3.142857"},"token_count":{"kind":"number","value":140,"string":"140"}}},{"rowIdx":4268,"cells":{"content":{"kind":"string","value":"import sys, random, string, time\r\n\r\nrawBoard = ''\r\nmoves = 0\r\n# size -> int\r\n# generate board of size size x size filled with random chars\r\n# @returns none\r\n\r\n# textFile -> string\r\n# loads a board from a text file\r\n# @returns board in 2D list form\r\n\r\n# board -> 2D array\r\n# prints out the bogal board\r\n\r\n# coordinate -> list, board -> 2D list\r\n# @returns list of all possible next positions\r\n\r\n# possibleMoves -> 2D list, usedPath -> 2D list\r\n# @returns the list of all legal moves\r\n\r\n# Function used for setting up all prefix dictionaries.\r\n# This is not run with my program but was created because I'm lazy and\r\n# didn't want to create the prefix dictionaries by hand.\r\n\r\n# board -> 2D list, currPos -> list, path -> 2D list\r\n# boggle board, xy pair current position, path that got to that position\r\n# @returns tuple of the word created and whether it is a real word.\r\n\r\nif __name__ == \"__main__\":\r\n main()"},"input_ids":{"kind":"list like","value":[11748,25064,11,4738,11,4731,11,640,201,198,201,198,1831,29828,796,10148,201,198,76,5241,796,657,201,198,2,2546,4613,493,201,198,2,7716,3096,286,2546,2546,2124,2546,5901,351,4738,34534,201,198,2,2488,7783,82,4844,201,198,201,198,2,2420,8979,4613,4731,201,198,2,15989,257,3096,422,257,2420,2393,201,198,2,2488,7783,82,3096,287,362,35,1351,1296,201,198,201,198,2,3096,4613,362,35,7177,201,198,2,20842,503,262,22922,282,3096,201,198,201,198,2,20435,4613,1351,11,3096,4613,362,35,1351,201,198,2,2488,7783,82,1351,286,477,1744,1306,6116,201,198,201,198,2,1744,44,5241,4613,362,35,1351,11,973,15235,4613,362,35,1351,201,198,2,2488,7783,82,262,1351,286,477,2742,6100,201,198,201,198,2,15553,973,329,4634,510,477,21231,48589,3166,13,201,198,2,770,318,407,1057,351,616,1430,475,373,2727,780,314,1101,16931,290,201,198,2,1422,470,765,284,2251,262,21231,48589,3166,416,1021,13,201,198,201,198,2,3096,4613,362,35,1351,11,1090,81,21604,4613,1351,11,3108,4613,362,35,1351,201,198,2,275,20258,3096,11,2124,88,5166,1459,2292,11,3108,326,1392,284,326,2292,201,198,2,2488,7783,82,46545,286,262,1573,2727,290,1771,340,318,257,1103,1573,13,201,198,201,198,361,11593,3672,834,6624,366,834,12417,834,1298,201,198,220,220,220,1388,3419],"string":"[\n 11748,\n 25064,\n 11,\n 4738,\n 11,\n 4731,\n 11,\n 640,\n 201,\n 198,\n 201,\n 198,\n 1831,\n 29828,\n 796,\n 10148,\n 201,\n 198,\n 76,\n 5241,\n 796,\n 657,\n 201,\n 198,\n 2,\n 2546,\n 4613,\n 493,\n 201,\n 198,\n 2,\n 7716,\n 3096,\n 286,\n 2546,\n 2546,\n 2124,\n 2546,\n 5901,\n 351,\n 4738,\n 34534,\n 201,\n 198,\n 2,\n 2488,\n 7783,\n 82,\n 4844,\n 201,\n 198,\n 201,\n 198,\n 2,\n 2420,\n 8979,\n 4613,\n 4731,\n 201,\n 198,\n 2,\n 15989,\n 257,\n 3096,\n 422,\n 257,\n 2420,\n 2393,\n 201,\n 198,\n 2,\n 2488,\n 7783,\n 82,\n 3096,\n 287,\n 362,\n 35,\n 1351,\n 1296,\n 201,\n 198,\n 201,\n 198,\n 2,\n 3096,\n 4613,\n 362,\n 35,\n 7177,\n 201,\n 198,\n 2,\n 20842,\n 503,\n 262,\n 22922,\n 282,\n 3096,\n 201,\n 198,\n 201,\n 198,\n 2,\n 20435,\n 4613,\n 1351,\n 11,\n 3096,\n 4613,\n 362,\n 35,\n 1351,\n 201,\n 198,\n 2,\n 2488,\n 7783,\n 82,\n 1351,\n 286,\n 477,\n 1744,\n 1306,\n 6116,\n 201,\n 198,\n 201,\n 198,\n 2,\n 1744,\n 44,\n 5241,\n 4613,\n 362,\n 35,\n 1351,\n 11,\n 973,\n 15235,\n 4613,\n 362,\n 35,\n 1351,\n 201,\n 198,\n 2,\n 2488,\n 7783,\n 82,\n 262,\n 1351,\n 286,\n 477,\n 2742,\n 6100,\n 201,\n 198,\n 201,\n 198,\n 2,\n 15553,\n 973,\n 329,\n 4634,\n 510,\n 477,\n 21231,\n 48589,\n 3166,\n 13,\n 201,\n 198,\n 2,\n 770,\n 318,\n 407,\n 1057,\n 351,\n 616,\n 1430,\n 475,\n 373,\n 2727,\n 780,\n 314,\n 1101,\n 16931,\n 290,\n 201,\n 198,\n 2,\n 1422,\n 470,\n 765,\n 284,\n 2251,\n 262,\n 21231,\n 48589,\n 3166,\n 416,\n 1021,\n 13,\n 201,\n 198,\n 201,\n 198,\n 2,\n 3096,\n 4613,\n 362,\n 35,\n 1351,\n 11,\n 1090,\n 81,\n 21604,\n 4613,\n 1351,\n 11,\n 3108,\n 4613,\n 362,\n 35,\n 1351,\n 201,\n 198,\n 2,\n 275,\n 20258,\n 3096,\n 11,\n 2124,\n 88,\n 5166,\n 1459,\n 2292,\n 11,\n 3108,\n 326,\n 1392,\n 284,\n 326,\n 2292,\n 201,\n 198,\n 2,\n 2488,\n 7783,\n 82,\n 46545,\n 286,\n 262,\n 1573,\n 2727,\n 290,\n 1771,\n 340,\n 318,\n 257,\n 1103,\n 1573,\n 13,\n 201,\n 198,\n 201,\n 198,\n 361,\n 11593,\n 3672,\n 834,\n 6624,\n 366,\n 834,\n 12417,\n 834,\n 1298,\n 201,\n 198,\n 220,\n 220,\n 220,\n 1388,\n 3419\n]"},"ratio_char_token":{"kind":"number","value":3.1964912280701756,"string":"3.196491"},"token_count":{"kind":"number","value":285,"string":"285"}}},{"rowIdx":4269,"cells":{"content":{"kind":"string","value":"\nmyFunc(\"That's neat\")\n"},"input_ids":{"kind":"list like","value":[198,1820,37,19524,7203,2504,338,15049,4943,198],"string":"[\n 198,\n 1820,\n 37,\n 19524,\n 7203,\n 2504,\n 338,\n 15049,\n 4943,\n 198\n]"},"ratio_char_token":{"kind":"number","value":2.3,"string":"2.3"},"token_count":{"kind":"number","value":10,"string":"10"}}},{"rowIdx":4270,"cells":{"content":{"kind":"string","value":"import logging\nimport os\n\nfrom netmiko import ConnectHandler\nfrom paramiko import AutoAddPolicy, SSHClient\nfrom routeros_diff.parser import RouterOSConfig\nfrom scp import SCPClient\n\n\n\n\n\n\n"},"input_ids":{"kind":"list like","value":[11748,18931,198,11748,28686,198,198,6738,2010,76,12125,1330,8113,25060,198,6738,5772,12125,1330,11160,4550,36727,11,33825,11792,198,6738,20264,418,62,26069,13,48610,1330,48538,2640,16934,198,6738,629,79,1330,17527,11792,628,628,628,198],"string":"[\n 11748,\n 18931,\n 198,\n 11748,\n 28686,\n 198,\n 198,\n 6738,\n 2010,\n 76,\n 12125,\n 1330,\n 8113,\n 25060,\n 198,\n 6738,\n 5772,\n 12125,\n 1330,\n 11160,\n 4550,\n 36727,\n 11,\n 33825,\n 11792,\n 198,\n 6738,\n 20264,\n 418,\n 62,\n 26069,\n 13,\n 48610,\n 1330,\n 48538,\n 2640,\n 16934,\n 198,\n 6738,\n 629,\n 79,\n 1330,\n 17527,\n 11792,\n 628,\n 628,\n 628,\n 198\n]"},"ratio_char_token":{"kind":"number","value":3.8958333333333335,"string":"3.895833"},"token_count":{"kind":"number","value":48,"string":"48"}}},{"rowIdx":4271,"cells":{"content":{"kind":"string","value":"import pytest_pydocstyle\n\n# https://docs.pytest.org/en/5.2.2/writing_plugins.html#testing-plugins\npytest_plugins = [\"pytester\"]\n\n\n\n\n\n\n\n\n\n\n"},"input_ids":{"kind":"list like","value":[11748,12972,9288,62,79,5173,420,7635,198,198,2,3740,1378,31628,13,9078,9288,13,2398,14,268,14,20,13,17,13,17,14,16502,62,37390,13,6494,2,33407,12,37390,198,9078,9288,62,37390,796,14631,9078,4879,353,8973,628,628,628,628,628,198],"string":"[\n 11748,\n 12972,\n 9288,\n 62,\n 79,\n 5173,\n 420,\n 7635,\n 198,\n 198,\n 2,\n 3740,\n 1378,\n 31628,\n 13,\n 9078,\n 9288,\n 13,\n 2398,\n 14,\n 268,\n 14,\n 20,\n 13,\n 17,\n 13,\n 17,\n 14,\n 16502,\n 62,\n 37390,\n 13,\n 6494,\n 2,\n 33407,\n 12,\n 37390,\n 198,\n 9078,\n 9288,\n 62,\n 37390,\n 796,\n 14631,\n 9078,\n 4879,\n 353,\n 8973,\n 628,\n 628,\n 628,\n 628,\n 628,\n 198\n]"},"ratio_char_token":{"kind":"number","value":2.5555555555555554,"string":"2.555556"},"token_count":{"kind":"number","value":54,"string":"54"}}},{"rowIdx":4272,"cells":{"content":{"kind":"string","value":"from peewee import *\nimport peeweedbevolve\n\nfrom models_data import Tweet, Branch, calldb\n\ndb = calldb()\n\n\ncreate_tables()\n"},"input_ids":{"kind":"list like","value":[6738,613,413,1453,1330,1635,198,11748,613,413,2308,1350,85,6442,198,198,6738,4981,62,7890,1330,18752,11,20551,11,2386,335,65,198,198,9945,796,2386,335,65,3419,628,198,17953,62,83,2977,3419,198],"string":"[\n 6738,\n 613,\n 413,\n 1453,\n 1330,\n 1635,\n 198,\n 11748,\n 613,\n 413,\n 2308,\n 1350,\n 85,\n 6442,\n 198,\n 198,\n 6738,\n 4981,\n 62,\n 7890,\n 1330,\n 18752,\n 11,\n 20551,\n 11,\n 2386,\n 335,\n 65,\n 198,\n 198,\n 9945,\n 796,\n 2386,\n 335,\n 65,\n 3419,\n 628,\n 198,\n 17953,\n 62,\n 83,\n 2977,\n 3419,\n 198\n]"},"ratio_char_token":{"kind":"number","value":2.7954545454545454,"string":"2.795455"},"token_count":{"kind":"number","value":44,"string":"44"}}},{"rowIdx":4273,"cells":{"content":{"kind":"string","value":"import json\nimport base64\nfrom rest_framework import status\nfrom rest_framework.test import APITestCase\nfrom rest_framework.authtoken.models import Token\nfrom .models import User\n\n# Create your tests here.\nACCEPT_STATUS = \"A\"\nREJECT_STATUS = \"R\"\nUNFRIEND_STATUS = \"R\"\n\n\n"},"input_ids":{"kind":"list like","value":[11748,33918,198,11748,2779,2414,198,6738,1334,62,30604,1330,3722,198,6738,1334,62,30604,13,9288,1330,3486,2043,395,20448,198,6738,1334,62,30604,13,18439,30001,13,27530,1330,29130,198,6738,764,27530,1330,11787,198,198,2,13610,534,5254,994,13,198,2246,42006,62,35744,2937,796,366,32,1,198,2200,23680,62,35744,2937,796,366,49,1,198,4944,37,7112,10619,62,35744,2937,796,366,49,1,628,198],"string":"[\n 11748,\n 33918,\n 198,\n 11748,\n 2779,\n 2414,\n 198,\n 6738,\n 1334,\n 62,\n 30604,\n 1330,\n 3722,\n 198,\n 6738,\n 1334,\n 62,\n 30604,\n 13,\n 9288,\n 1330,\n 3486,\n 2043,\n 395,\n 20448,\n 198,\n 6738,\n 1334,\n 62,\n 30604,\n 13,\n 18439,\n 30001,\n 13,\n 27530,\n 1330,\n 29130,\n 198,\n 6738,\n 764,\n 27530,\n 1330,\n 11787,\n 198,\n 198,\n 2,\n 13610,\n 534,\n 5254,\n 994,\n 13,\n 198,\n 2246,\n 42006,\n 62,\n 35744,\n 2937,\n 796,\n 366,\n 32,\n 1,\n 198,\n 2200,\n 23680,\n 62,\n 35744,\n 2937,\n 796,\n 366,\n 49,\n 1,\n 198,\n 4944,\n 37,\n 7112,\n 10619,\n 62,\n 35744,\n 2937,\n 796,\n 366,\n 49,\n 1,\n 628,\n 198\n]"},"ratio_char_token":{"kind":"number","value":3.176470588235294,"string":"3.176471"},"token_count":{"kind":"number","value":85,"string":"85"}}},{"rowIdx":4274,"cells":{"content":{"kind":"string","value":"# -*- coding: utf-8 -*-\n################################################################################\n# Copyright (C) 2009 Travis Shirk \n#\n# This program is free software; you can redistribute it and/or modify\n# it under the terms of the GNU General Public License as published by\n# the Free Software Foundation; either version 2 of the License, or\n# (at your option) any later version.\n#\n# This program is distributed in the hope that it will be useful,\n# but WITHOUT ANY WARRANTY; without even the implied warranty of\n# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n# GNU General Public License for more details.\n#\n# You should have received a copy of the GNU General Public License\n# along with this program; if not, write to the Free Software\n# Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA\n#\n################################################################################\nfrom __future__ import print_function\nimport os\nfrom eyed3 import LOCAL_ENCODING as ENCODING\nfrom eyed3.utils import formatSize, formatTime\nfrom eyed3.utils.console import (printMsg, printError, printWarning, boldText,\n Fore, HEADER_COLOR)\nfrom eyed3.plugins import LoaderPlugin\n\n"},"input_ids":{"kind":"list like","value":[2,532,9,12,19617,25,3384,69,12,23,532,9,12,198,29113,29113,14468,198,2,220,15069,357,34,8,3717,220,19804,911,14232,1279,83,16956,31,79,672,1140,13,785,29,198,2,198,2,220,770,1430,318,1479,3788,26,345,460,17678,4163,340,290,14,273,13096,198,2,220,340,739,262,2846,286,262,22961,3611,5094,13789,355,3199,416,198,2,220,262,3232,10442,5693,26,2035,2196,362,286,262,13789,11,393,198,2,220,357,265,534,3038,8,597,1568,2196,13,198,2,198,2,220,770,1430,318,9387,287,262,2911,326,340,481,307,4465,11,198,2,220,475,42881,15529,34764,56,26,1231,772,262,17142,18215,286,198,2,220,34482,3398,1565,5603,25382,393,376,46144,7473,317,16652,2149,37232,33079,48933,13,220,4091,262,198,2,220,22961,3611,5094,13789,329,517,3307,13,198,2,198,2,220,921,815,423,2722,257,4866,286,262,22961,3611,5094,13789,198,2,220,1863,351,428,1430,26,611,407,11,3551,284,262,3232,10442,198,2,220,5693,11,3457,1539,7863,10857,8474,11,26264,25508,11,6182,11,8779,220,7816,16243,12,12952,22,220,4916,198,2,198,29113,29113,14468,198,6738,11593,37443,834,1330,3601,62,8818,198,11748,28686,198,6738,45320,18,1330,37347,1847,62,24181,3727,2751,355,412,7792,3727,2751,198,6738,45320,18,13,26791,1330,5794,10699,11,5794,7575,198,6738,45320,18,13,26791,13,41947,1330,357,4798,50108,11,3601,12331,11,3601,20361,11,10758,8206,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,4558,11,39837,1137,62,46786,8,198,6738,45320,18,13,37390,1330,8778,263,37233,628],"string":"[\n 2,\n 532,\n 9,\n 12,\n 19617,\n 25,\n 3384,\n 69,\n 12,\n 23,\n 532,\n 9,\n 12,\n 198,\n 29113,\n 29113,\n 14468,\n 198,\n 2,\n 220,\n 15069,\n 357,\n 34,\n 8,\n 3717,\n 220,\n 19804,\n 911,\n 14232,\n 1279,\n 83,\n 16956,\n 31,\n 79,\n 672,\n 1140,\n 13,\n 785,\n 29,\n 198,\n 2,\n 198,\n 2,\n 220,\n 770,\n 1430,\n 318,\n 1479,\n 3788,\n 26,\n 345,\n 460,\n 17678,\n 4163,\n 340,\n 290,\n 14,\n 273,\n 13096,\n 198,\n 2,\n 220,\n 340,\n 739,\n 262,\n 2846,\n 286,\n 262,\n 22961,\n 3611,\n 5094,\n 13789,\n 355,\n 3199,\n 416,\n 198,\n 2,\n 220,\n 262,\n 3232,\n 10442,\n 5693,\n 26,\n 2035,\n 2196,\n 362,\n 286,\n 262,\n 13789,\n 11,\n 393,\n 198,\n 2,\n 220,\n 357,\n 265,\n 534,\n 3038,\n 8,\n 597,\n 1568,\n 2196,\n 13,\n 198,\n 2,\n 198,\n 2,\n 220,\n 770,\n 1430,\n 318,\n 9387,\n 287,\n 262,\n 2911,\n 326,\n 340,\n 481,\n 307,\n 4465,\n 11,\n 198,\n 2,\n 220,\n 475,\n 42881,\n 15529,\n 34764,\n 56,\n 26,\n 1231,\n 772,\n 262,\n 17142,\n 18215,\n 286,\n 198,\n 2,\n 220,\n 34482,\n 3398,\n 1565,\n 5603,\n 25382,\n 393,\n 376,\n 46144,\n 7473,\n 317,\n 16652,\n 2149,\n 37232,\n 33079,\n 48933,\n 13,\n 220,\n 4091,\n 262,\n 198,\n 2,\n 220,\n 22961,\n 3611,\n 5094,\n 13789,\n 329,\n 517,\n 3307,\n 13,\n 198,\n 2,\n 198,\n 2,\n 220,\n 921,\n 815,\n 423,\n 2722,\n 257,\n 4866,\n 286,\n 262,\n 22961,\n 3611,\n 5094,\n 13789,\n 198,\n 2,\n 220,\n 1863,\n 351,\n 428,\n 1430,\n 26,\n 611,\n 407,\n 11,\n 3551,\n 284,\n 262,\n 3232,\n 10442,\n 198,\n 2,\n 220,\n 5693,\n 11,\n 3457,\n 1539,\n 7863,\n 10857,\n 8474,\n 11,\n 26264,\n 25508,\n 11,\n 6182,\n 11,\n 8779,\n 220,\n 7816,\n 16243,\n 12,\n 12952,\n 22,\n 220,\n 4916,\n 198,\n 2,\n 198,\n 29113,\n 29113,\n 14468,\n 198,\n 6738,\n 11593,\n 37443,\n 834,\n 1330,\n 3601,\n 62,\n 8818,\n 198,\n 11748,\n 28686,\n 198,\n 6738,\n 45320,\n 18,\n 1330,\n 37347,\n 1847,\n 62,\n 24181,\n 3727,\n 2751,\n 355,\n 412,\n 7792,\n 3727,\n 2751,\n 198,\n 6738,\n 45320,\n 18,\n 13,\n 26791,\n 1330,\n 5794,\n 10699,\n 11,\n 5794,\n 7575,\n 198,\n 6738,\n 45320,\n 18,\n 13,\n 26791,\n 13,\n 41947,\n 1330,\n 357,\n 4798,\n 50108,\n 11,\n 3601,\n 12331,\n 11,\n 3601,\n 20361,\n 11,\n 10758,\n 8206,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 4558,\n 11,\n 39837,\n 1137,\n 62,\n 46786,\n 8,\n 198,\n 6738,\n 45320,\n 18,\n 13,\n 37390,\n 1330,\n 8778,\n 263,\n 37233,\n 628\n]"},"ratio_char_token":{"kind":"number","value":3.6647398843930636,"string":"3.66474"},"token_count":{"kind":"number","value":346,"string":"346"}}},{"rowIdx":4275,"cells":{"content":{"kind":"string","value":"# -*- coding: utf-8 -*-\n\"\"\"Clothing_Recommender Project .ipynb\n\nAutomatically generated by Colaboratory.\n\nOriginal file is located at\n https://colab.research.google.com/drive/1nw0ewNdkx8o3WULAp2ynhHpbq1kVq7YZ\n\nClean the data and use input\n\"\"\"\n\n## Import and Organize Data ##\n\nimport pandas as pd \nimport numpy as np \nimport matplotlib.pyplot as plt \nfrom sklearn.model_selection import train_test_split\n\n#read clean file (downloaded from Task 1)\ndf=pd.read_csv('CleanedData.csv', sep=',') \n\n#Pivot table (clothingID, age, rating) - Nan is replaced with 0 \ntrain = df.pivot_table(index='Age', columns='ClothingID', values='Rating')\n\n#sort train data\ntrain = train.sort_values('Age', ascending=True)\n\n###Create a greeting \n\nprint(\"Welcome, let us recommend a product for you\")\n\n#Take user input \n\nName =input('Please enter your name: ')\nAge = int(input('Please enter your age: '))\nCID_user = int(input(\"Enter Clothing ID: \")) #90\nwhile CID_user not in train.columns:\n print('Invalid: No data for ID')\n CID_user = int(input(\"Enter valid Clothing ID: \"))\nrating_user = float(input(\"Enter Rating for Clothing ID: \")) #4\n\n##use this later (if user has more than one rating to enter)\n#entries = int(input(\"How many ratings will you enter? \"))\n#for x in range(entries):\n\n#create array with user data \nuserArray = pd.DataFrame().reindex_like(train)\nuserArray.dropna(thresh=1,inplace=True)\nuserArray.loc[Age,CID_user] = rating_user #enter user data \n\nfrom sklearn.metrics.pairwise import nan_euclidean_distances\n\n#find euclidean distance between all rows of train and first row of test *ignores nan\ndistance = np.zeros((0,2)) #create empty array \nfor index, row in train.iterrows(): #iterate through each row of train \n result = float(nan_euclidean_distances([userArray.loc[Age]], [train.loc[index]])) #compute the euclidean distance between two rows, *confirmed it works thru excel\n result_array = [index, result] #place age and distance into an array \n distance = np.append(distance,[result_array],axis= 0) \n\n#convert array to a dataframe\ndfDistance = pd.DataFrame({'Age': distance[:, 0], 'E-Distance': distance[:, 1]})\ndfDistance.head()\n\nk= 5\n#sort by distance, reset the index \ndfDistance = dfDistance.sort_values('E-Distance', ascending=True).head(20)\ndfDistance = dfDistance.reset_index(drop=True) \ndfDistance.drop(dfDistance[dfDistance.index > k-1].index, inplace=True)\ndfDistance.head()\n\n#NOTE: for calculating the predicted rating, could use an IDW Interpolation function shown here https://stackoverflow.com/questions/3104781/inverse-distance-weighted-idw-interpolation-with-python\n#just using mean of each to test a solution, will come back and try more complex/accurate functions later \n\n#assume k of 5####\nk_array = pd.DataFrame().reindex_like(train)\nmeanArray = pd.DataFrame()\n\nfor x in dfDistance['Age']:\n k_array = k_array.append([train.loc[x]]) #make array of the k closest ages\n\nmeanArray = meanArray.append(k_array.mean(),ignore_index = True).transpose()\nmeanArray.dropna(axis=0,inplace=True)\nmeanArray.columns = [\"Mean\"]\nmeanArray = meanArray[meanArray.Mean == 5]\n\nrecommend = list(meanArray.index.values)\nprint(\"recommended ClothingID's are: \")\nprint(recommend)\n\n#feedback, clothingID (choose top 5), department \n#reverse lookup clothingID for department \n# feedback (choose first 3)\n\n"},"input_ids":{"kind":"list like","value":[2,532,9,12,19617,25,3384,69,12,23,532,9,12,198,37811,2601,24834,62,24898,2194,4935,764,541,2047,65,198,198,38062,4142,7560,416,1623,4820,2870,13,198,198,20556,2393,318,5140,379,198,220,220,220,3740,1378,4033,397,13,34033,13,13297,13,785,14,19472,14,16,47516,15,413,45,34388,87,23,78,18,54,6239,25189,17,2047,71,39,40842,80,16,74,53,80,22,56,57,198,198,32657,262,1366,290,779,5128,198,37811,198,198,2235,17267,290,7221,1096,6060,22492,198,198,11748,19798,292,355,279,67,220,198,11748,299,32152,355,45941,220,198,11748,2603,29487,8019,13,9078,29487,355,458,83,220,198,6738,1341,35720,13,19849,62,49283,1330,4512,62,9288,62,35312,198,198,2,961,3424,2393,357,2902,14578,422,15941,352,8,198,7568,28,30094,13,961,62,40664,10786,32657,276,6601,13,40664,3256,41767,28,3256,11537,220,198,198,2,47,45785,3084,357,565,24834,2389,11,2479,11,7955,8,532,18008,318,6928,351,657,220,198,27432,796,47764,13,79,45785,62,11487,7,9630,11639,23396,3256,15180,11639,2601,24834,2389,3256,3815,11639,29321,11537,198,198,2,30619,4512,1366,198,27432,796,4512,13,30619,62,27160,10786,23396,3256,41988,28,17821,8,198,198,21017,16447,257,31933,220,198,198,4798,7203,14618,11,1309,514,4313,257,1720,329,345,4943,198,198,2,12322,2836,5128,220,198,198,5376,796,15414,10786,5492,3802,534,1438,25,705,8,198,23396,796,493,7,15414,10786,5492,3802,534,2479,25,705,4008,198,34,2389,62,7220,796,493,7,15414,7203,17469,48921,4522,25,366,4008,1303,3829,198,4514,327,2389,62,7220,407,287,4512,13,28665,82,25,198,220,3601,10786,44651,25,1400,1366,329,4522,11537,198,220,327,2389,62,7220,796,493,7,15414,7203,17469,4938,48921,4522,25,366,4008,198,8821,62,7220,796,12178,7,15414,7203,17469,12028,329,48921,4522,25,366,4008,1303,19,198,198,2235,1904,428,1568,357,361,2836,468,517,621,530,7955,284,3802,8,198,2,298,1678,796,493,7,15414,7203,2437,867,10109,481,345,3802,30,366,4008,198,2,1640,2124,287,2837,7,298,1678,2599,198,198,2,17953,7177,351,2836,1366,220,198,7220,19182,796,279,67,13,6601,19778,22446,260,9630,62,2339,7,27432,8,198,7220,19182,13,14781,2616,7,400,3447,28,16,11,259,5372,28,17821,8,198,7220,19182,13,17946,58,23396,11,34,2389,62,7220,60,796,7955,62,7220,1303,9255,2836,1366,220,198,198,6738,1341,35720,13,4164,10466,13,24874,3083,1330,15709,62,12496,565,485,272,62,17080,1817,198,198,2,19796,304,36616,485,272,5253,1022,477,15274,286,4512,290,717,5752,286,1332,220,1635,570,2850,15709,198,30246,796,45941,13,9107,418,19510,15,11,17,4008,1303,17953,6565,7177,220,198,1640,6376,11,5752,287,4512,13,2676,8516,33529,220,1303,2676,378,832,1123,5752,286,4512,220,198,220,1255,796,12178,7,12647,62,12496,565,485,272,62,17080,1817,26933,7220,19182,13,17946,58,23396,60,4357,685,27432,13,17946,58,9630,11907,4008,1303,5589,1133,262,304,36616,485,272,5253,1022,734,15274,11,1635,36349,340,2499,33834,27336,198,220,1255,62,18747,796,685,9630,11,1255,60,1303,5372,2479,290,5253,656,281,7177,220,198,220,5253,796,45941,13,33295,7,30246,17414,20274,62,18747,4357,22704,28,657,8,220,198,198,2,1102,1851,7177,284,257,1366,14535,198,7568,45767,796,279,67,13,6601,19778,15090,6,23396,10354,5253,58,45299,657,4357,705,36,12,45767,10354,5253,58,45299,352,60,30072,198,7568,45767,13,2256,3419,198,198,74,28,642,198,2,30619,416,5253,11,13259,262,6376,220,198,7568,45767,796,47764,45767,13,30619,62,27160,10786,36,12,45767,3256,41988,28,17821,737,2256,7,1238,8,198,7568,45767,796,47764,45767,13,42503,62,9630,7,14781,28,17821,8,220,198,7568,45767,13,14781,7,7568,45767,58,7568,45767,13,9630,1875,479,12,16,4083,9630,11,287,5372,28,17821,8,198,7568,45767,13,2256,3419,198,198,2,16580,25,329,26019,262,11001,7955,11,714,779,281,4522,54,4225,16104,341,2163,3402,994,3740,1378,25558,2502,11125,13,785,14,6138,507,14,26717,2857,6659,14,259,4399,12,30246,12,6551,276,12,312,86,12,3849,16104,341,12,4480,12,29412,198,2,3137,1262,1612,286,1123,284,1332,257,4610,11,481,1282,736,290,1949,517,3716,14,4134,15537,5499,1568,220,198,198,2,562,2454,479,286,642,4242,198,74,62,18747,796,279,67,13,6601,19778,22446,260,9630,62,2339,7,27432,8,198,32604,19182,796,279,67,13,6601,19778,3419,198,198,1640,2124,287,47764,45767,17816,23396,6,5974,198,220,479,62,18747,796,479,62,18747,13,33295,26933,27432,13,17946,58,87,11907,8,1303,15883,7177,286,262,479,11706,9337,198,198,32604,19182,796,1612,19182,13,33295,7,74,62,18747,13,32604,22784,46430,62,9630,796,6407,737,7645,3455,3419,198,32604,19182,13,14781,2616,7,22704,28,15,11,259,5372,28,17821,8,198,32604,19182,13,28665,82,796,14631,5308,272,8973,198,32604,19182,796,1612,19182,58,32604,19182,13,5308,272,6624,642,60,198,198,47335,437,796,1351,7,32604,19182,13,9630,13,27160,8,198,4798,7203,47335,1631,48921,2389,338,389,25,366,8,198,4798,7,47335,437,8,198,198,2,12363,1891,11,9528,2389,357,6679,577,1353,642,828,5011,220,198,2,50188,35847,9528,2389,329,5011,220,198,2,7538,357,6679,577,717,513,8,628],"string":"[\n 2,\n 532,\n 9,\n 12,\n 19617,\n 25,\n 3384,\n 69,\n 12,\n 23,\n 532,\n 9,\n 12,\n 198,\n 37811,\n 2601,\n 24834,\n 62,\n 24898,\n 2194,\n 4935,\n 764,\n 541,\n 2047,\n 65,\n 198,\n 198,\n 38062,\n 4142,\n 7560,\n 416,\n 1623,\n 4820,\n 2870,\n 13,\n 198,\n 198,\n 20556,\n 2393,\n 318,\n 5140,\n 379,\n 198,\n 220,\n 220,\n 220,\n 3740,\n 1378,\n 4033,\n 397,\n 13,\n 34033,\n 13,\n 13297,\n 13,\n 785,\n 14,\n 19472,\n 14,\n 16,\n 47516,\n 15,\n 413,\n 45,\n 34388,\n 87,\n 23,\n 78,\n 18,\n 54,\n 6239,\n 25189,\n 17,\n 2047,\n 71,\n 39,\n 40842,\n 80,\n 16,\n 74,\n 53,\n 80,\n 22,\n 56,\n 57,\n 198,\n 198,\n 32657,\n 262,\n 1366,\n 290,\n 779,\n 5128,\n 198,\n 37811,\n 198,\n 198,\n 2235,\n 17267,\n 290,\n 7221,\n 1096,\n 6060,\n 22492,\n 198,\n 198,\n 11748,\n 19798,\n 292,\n 355,\n 279,\n 67,\n 220,\n 198,\n 11748,\n 299,\n 32152,\n 355,\n 45941,\n 220,\n 198,\n 11748,\n 2603,\n 29487,\n 8019,\n 13,\n 9078,\n 29487,\n 355,\n 458,\n 83,\n 220,\n 198,\n 6738,\n 1341,\n 35720,\n 13,\n 19849,\n 62,\n 49283,\n 1330,\n 4512,\n 62,\n 9288,\n 62,\n 35312,\n 198,\n 198,\n 2,\n 961,\n 3424,\n 2393,\n 357,\n 2902,\n 14578,\n 422,\n 15941,\n 352,\n 8,\n 198,\n 7568,\n 28,\n 30094,\n 13,\n 961,\n 62,\n 40664,\n 10786,\n 32657,\n 276,\n 6601,\n 13,\n 40664,\n 3256,\n 41767,\n 28,\n 3256,\n 11537,\n 220,\n 198,\n 198,\n 2,\n 47,\n 45785,\n 3084,\n 357,\n 565,\n 24834,\n 2389,\n 11,\n 2479,\n 11,\n 7955,\n 8,\n 532,\n 18008,\n 318,\n 6928,\n 351,\n 657,\n 220,\n 198,\n 27432,\n 796,\n 47764,\n 13,\n 79,\n 45785,\n 62,\n 11487,\n 7,\n 9630,\n 11639,\n 23396,\n 3256,\n 15180,\n 11639,\n 2601,\n 24834,\n 2389,\n 3256,\n 3815,\n 11639,\n 29321,\n 11537,\n 198,\n 198,\n 2,\n 30619,\n 4512,\n 1366,\n 198,\n 27432,\n 796,\n 4512,\n 13,\n 30619,\n 62,\n 27160,\n 10786,\n 23396,\n 3256,\n 41988,\n 28,\n 17821,\n 8,\n 198,\n 198,\n 21017,\n 16447,\n 257,\n 31933,\n 220,\n 198,\n 198,\n 4798,\n 7203,\n 14618,\n 11,\n 1309,\n 514,\n 4313,\n 257,\n 1720,\n 329,\n 345,\n 4943,\n 198,\n 198,\n 2,\n 12322,\n 2836,\n 5128,\n 220,\n 198,\n 198,\n 5376,\n 796,\n 15414,\n 10786,\n 5492,\n 3802,\n 534,\n 1438,\n 25,\n 705,\n 8,\n 198,\n 23396,\n 796,\n 493,\n 7,\n 15414,\n 10786,\n 5492,\n 3802,\n 534,\n 2479,\n 25,\n 705,\n 4008,\n 198,\n 34,\n 2389,\n 62,\n 7220,\n 796,\n 493,\n 7,\n 15414,\n 7203,\n 17469,\n 48921,\n 4522,\n 25,\n 366,\n 4008,\n 1303,\n 3829,\n 198,\n 4514,\n 327,\n 2389,\n 62,\n 7220,\n 407,\n 287,\n 4512,\n 13,\n 28665,\n 82,\n 25,\n 198,\n 220,\n 3601,\n 10786,\n 44651,\n 25,\n 1400,\n 1366,\n 329,\n 4522,\n 11537,\n 198,\n 220,\n 327,\n 2389,\n 62,\n 7220,\n 796,\n 493,\n 7,\n 15414,\n 7203,\n 17469,\n 4938,\n 48921,\n 4522,\n 25,\n 366,\n 4008,\n 198,\n 8821,\n 62,\n 7220,\n 796,\n 12178,\n 7,\n 15414,\n 7203,\n 17469,\n 12028,\n 329,\n 48921,\n 4522,\n 25,\n 366,\n 4008,\n 1303,\n 19,\n 198,\n 198,\n 2235,\n 1904,\n 428,\n 1568,\n 357,\n 361,\n 2836,\n 468,\n 517,\n 621,\n 530,\n 7955,\n 284,\n 3802,\n 8,\n 198,\n 2,\n 298,\n 1678,\n 796,\n 493,\n 7,\n 15414,\n 7203,\n 2437,\n 867,\n 10109,\n 481,\n 345,\n 3802,\n 30,\n 366,\n 4008,\n 198,\n 2,\n 1640,\n 2124,\n 287,\n 2837,\n 7,\n 298,\n 1678,\n 2599,\n 198,\n 198,\n 2,\n 17953,\n 7177,\n 351,\n 2836,\n 1366,\n 220,\n 198,\n 7220,\n 19182,\n 796,\n 279,\n 67,\n 13,\n 6601,\n 19778,\n 22446,\n 260,\n 9630,\n 62,\n 2339,\n 7,\n 27432,\n 8,\n 198,\n 7220,\n 19182,\n 13,\n 14781,\n 2616,\n 7,\n 400,\n 3447,\n 28,\n 16,\n 11,\n 259,\n 5372,\n 28,\n 17821,\n 8,\n 198,\n 7220,\n 19182,\n 13,\n 17946,\n 58,\n 23396,\n 11,\n 34,\n 2389,\n 62,\n 7220,\n 60,\n 796,\n 7955,\n 62,\n 7220,\n 1303,\n 9255,\n 2836,\n 1366,\n 220,\n 198,\n 198,\n 6738,\n 1341,\n 35720,\n 13,\n 4164,\n 10466,\n 13,\n 24874,\n 3083,\n 1330,\n 15709,\n 62,\n 12496,\n 565,\n 485,\n 272,\n 62,\n 17080,\n 1817,\n 198,\n 198,\n 2,\n 19796,\n 304,\n 36616,\n 485,\n 272,\n 5253,\n 1022,\n 477,\n 15274,\n 286,\n 4512,\n 290,\n 717,\n 5752,\n 286,\n 1332,\n 220,\n 1635,\n 570,\n 2850,\n 15709,\n 198,\n 30246,\n 796,\n 45941,\n 13,\n 9107,\n 418,\n 19510,\n 15,\n 11,\n 17,\n 4008,\n 1303,\n 17953,\n 6565,\n 7177,\n 220,\n 198,\n 1640,\n 6376,\n 11,\n 5752,\n 287,\n 4512,\n 13,\n 2676,\n 8516,\n 33529,\n 220,\n 1303,\n 2676,\n 378,\n 832,\n 1123,\n 5752,\n 286,\n 4512,\n 220,\n 198,\n 220,\n 1255,\n 796,\n 12178,\n 7,\n 12647,\n 62,\n 12496,\n 565,\n 485,\n 272,\n 62,\n 17080,\n 1817,\n 26933,\n 7220,\n 19182,\n 13,\n 17946,\n 58,\n 23396,\n 60,\n 4357,\n 685,\n 27432,\n 13,\n 17946,\n 58,\n 9630,\n 11907,\n 4008,\n 1303,\n 5589,\n 1133,\n 262,\n 304,\n 36616,\n 485,\n 272,\n 5253,\n 1022,\n 734,\n 15274,\n 11,\n 1635,\n 36349,\n 340,\n 2499,\n 33834,\n 27336,\n 198,\n 220,\n 1255,\n 62,\n 18747,\n 796,\n 685,\n 9630,\n 11,\n 1255,\n 60,\n 1303,\n 5372,\n 2479,\n 290,\n 5253,\n 656,\n 281,\n 7177,\n 220,\n 198,\n 220,\n 5253,\n 796,\n 45941,\n 13,\n 33295,\n 7,\n 30246,\n 17414,\n 20274,\n 62,\n 18747,\n 4357,\n 22704,\n 28,\n 657,\n 8,\n 220,\n 198,\n 198,\n 2,\n 1102,\n 1851,\n 7177,\n 284,\n 257,\n 1366,\n 14535,\n 198,\n 7568,\n 45767,\n 796,\n 279,\n 67,\n 13,\n 6601,\n 19778,\n 15090,\n 6,\n 23396,\n 10354,\n 5253,\n 58,\n 45299,\n 657,\n 4357,\n 705,\n 36,\n 12,\n 45767,\n 10354,\n 5253,\n 58,\n 45299,\n 352,\n 60,\n 30072,\n 198,\n 7568,\n 45767,\n 13,\n 2256,\n 3419,\n 198,\n 198,\n 74,\n 28,\n 642,\n 198,\n 2,\n 30619,\n 416,\n 5253,\n 11,\n 13259,\n 262,\n 6376,\n 220,\n 198,\n 7568,\n 45767,\n 796,\n 47764,\n 45767,\n 13,\n 30619,\n 62,\n 27160,\n 10786,\n 36,\n 12,\n 45767,\n 3256,\n 41988,\n 28,\n 17821,\n 737,\n 2256,\n 7,\n 1238,\n 8,\n 198,\n 7568,\n 45767,\n 796,\n 47764,\n 45767,\n 13,\n 42503,\n 62,\n 9630,\n 7,\n 14781,\n 28,\n 17821,\n 8,\n 220,\n 198,\n 7568,\n 45767,\n 13,\n 14781,\n 7,\n 7568,\n 45767,\n 58,\n 7568,\n 45767,\n 13,\n 9630,\n 1875,\n 479,\n 12,\n 16,\n 4083,\n 9630,\n 11,\n 287,\n 5372,\n 28,\n 17821,\n 8,\n 198,\n 7568,\n 45767,\n 13,\n 2256,\n 3419,\n 198,\n 198,\n 2,\n 16580,\n 25,\n 329,\n 26019,\n 262,\n 11001,\n 7955,\n 11,\n 714,\n 779,\n 281,\n 4522,\n 54,\n 4225,\n 16104,\n 341,\n 2163,\n 3402,\n 994,\n 3740,\n 1378,\n 25558,\n 2502,\n 11125,\n 13,\n 785,\n 14,\n 6138,\n 507,\n 14,\n 26717,\n 2857,\n 6659,\n 14,\n 259,\n 4399,\n 12,\n 30246,\n 12,\n 6551,\n 276,\n 12,\n 312,\n 86,\n 12,\n 3849,\n 16104,\n 341,\n 12,\n 4480,\n 12,\n 29412,\n 198,\n 2,\n 3137,\n 1262,\n 1612,\n 286,\n 1123,\n 284,\n 1332,\n 257,\n 4610,\n 11,\n 481,\n 1282,\n 736,\n 290,\n 1949,\n 517,\n 3716,\n 14,\n 4134,\n 15537,\n 5499,\n 1568,\n 220,\n 198,\n 198,\n 2,\n 562,\n 2454,\n 479,\n 286,\n 642,\n 4242,\n 198,\n 74,\n 62,\n 18747,\n 796,\n 279,\n 67,\n 13,\n 6601,\n 19778,\n 22446,\n 260,\n 9630,\n 62,\n 2339,\n 7,\n 27432,\n 8,\n 198,\n 32604,\n 19182,\n 796,\n 279,\n 67,\n 13,\n 6601,\n 19778,\n 3419,\n 198,\n 198,\n 1640,\n 2124,\n 287,\n 47764,\n 45767,\n 17816,\n 23396,\n 6,\n 5974,\n 198,\n 220,\n 479,\n 62,\n 18747,\n 796,\n 479,\n 62,\n 18747,\n 13,\n 33295,\n 26933,\n 27432,\n 13,\n 17946,\n 58,\n 87,\n 11907,\n 8,\n 1303,\n 15883,\n 7177,\n 286,\n 262,\n 479,\n 11706,\n 9337,\n 198,\n 198,\n 32604,\n 19182,\n 796,\n 1612,\n 19182,\n 13,\n 33295,\n 7,\n 74,\n 62,\n 18747,\n 13,\n 32604,\n 22784,\n 46430,\n 62,\n 9630,\n 796,\n 6407,\n 737,\n 7645,\n 3455,\n 3419,\n 198,\n 32604,\n 19182,\n 13,\n 14781,\n 2616,\n 7,\n 22704,\n 28,\n 15,\n 11,\n 259,\n 5372,\n 28,\n 17821,\n 8,\n 198,\n 32604,\n 19182,\n 13,\n 28665,\n 82,\n 796,\n 14631,\n 5308,\n 272,\n 8973,\n 198,\n 32604,\n 19182,\n 796,\n 1612,\n 19182,\n 58,\n 32604,\n 19182,\n 13,\n 5308,\n 272,\n 6624,\n 642,\n 60,\n 198,\n 198,\n 47335,\n 437,\n 796,\n 1351,\n 7,\n 32604,\n 19182,\n 13,\n 9630,\n 13,\n 27160,\n 8,\n 198,\n 4798,\n 7203,\n 47335,\n 1631,\n 48921,\n 2389,\n 338,\n 389,\n 25,\n 366,\n 8,\n 198,\n 4798,\n 7,\n 47335,\n 437,\n 8,\n 198,\n 198,\n 2,\n 12363,\n 1891,\n 11,\n 9528,\n 2389,\n 357,\n 6679,\n 577,\n 1353,\n 642,\n 828,\n 5011,\n 220,\n 198,\n 2,\n 50188,\n 35847,\n 9528,\n 2389,\n 329,\n 5011,\n 220,\n 198,\n 2,\n 7538,\n 357,\n 6679,\n 577,\n 717,\n 513,\n 8,\n 628\n]"},"ratio_char_token":{"kind":"number","value":3.05637707948244,"string":"3.056377"},"token_count":{"kind":"number","value":1082,"string":"1,082"}}},{"rowIdx":4276,"cells":{"content":{"kind":"string","value":"from rtree.index import Rtree\nfrom src.features.helper import *\nimport sys\nimport logging\nimport time\n\n\n\nif __name__ == '__main__':\n train_data = sys.argv[1]\n q_size = int(sys.argv[2])\n main(train_data, q_size)\n"},"input_ids":{"kind":"list like","value":[6738,374,21048,13,9630,1330,371,21048,198,6738,12351,13,40890,13,2978,525,1330,1635,198,11748,25064,198,11748,18931,198,11748,640,628,198,198,361,11593,3672,834,6624,705,834,12417,834,10354,198,220,220,220,4512,62,7890,796,25064,13,853,85,58,16,60,198,220,220,220,10662,62,7857,796,493,7,17597,13,853,85,58,17,12962,198,220,220,220,1388,7,27432,62,7890,11,10662,62,7857,8,198],"string":"[\n 6738,\n 374,\n 21048,\n 13,\n 9630,\n 1330,\n 371,\n 21048,\n 198,\n 6738,\n 12351,\n 13,\n 40890,\n 13,\n 2978,\n 525,\n 1330,\n 1635,\n 198,\n 11748,\n 25064,\n 198,\n 11748,\n 18931,\n 198,\n 11748,\n 640,\n 628,\n 198,\n 198,\n 361,\n 11593,\n 3672,\n 834,\n 6624,\n 705,\n 834,\n 12417,\n 834,\n 10354,\n 198,\n 220,\n 220,\n 220,\n 4512,\n 62,\n 7890,\n 796,\n 25064,\n 13,\n 853,\n 85,\n 58,\n 16,\n 60,\n 198,\n 220,\n 220,\n 220,\n 10662,\n 62,\n 7857,\n 796,\n 493,\n 7,\n 17597,\n 13,\n 853,\n 85,\n 58,\n 17,\n 12962,\n 198,\n 220,\n 220,\n 220,\n 1388,\n 7,\n 27432,\n 62,\n 7890,\n 11,\n 10662,\n 62,\n 7857,\n 8,\n 198\n]"},"ratio_char_token":{"kind":"number","value":2.528735632183908,"string":"2.528736"},"token_count":{"kind":"number","value":87,"string":"87"}}},{"rowIdx":4277,"cells":{"content":{"kind":"string","value":"from app import app\nimport logging\n\nlogging.basicConfig(level=logging.WARNING)\n\nif __name__ == \"__main__\":\n app.debug = True\n app.run()"},"input_ids":{"kind":"list like","value":[6738,598,1330,598,198,11748,18931,198,198,6404,2667,13,35487,16934,7,5715,28,6404,2667,13,31502,8,198,198,361,11593,3672,834,6624,366,834,12417,834,1298,198,220,220,220,598,13,24442,796,6407,198,220,220,220,598,13,5143,3419],"string":"[\n 6738,\n 598,\n 1330,\n 598,\n 198,\n 11748,\n 18931,\n 198,\n 198,\n 6404,\n 2667,\n 13,\n 35487,\n 16934,\n 7,\n 5715,\n 28,\n 6404,\n 2667,\n 13,\n 31502,\n 8,\n 198,\n 198,\n 361,\n 11593,\n 3672,\n 834,\n 6624,\n 366,\n 834,\n 12417,\n 834,\n 1298,\n 198,\n 220,\n 220,\n 220,\n 598,\n 13,\n 24442,\n 796,\n 6407,\n 198,\n 220,\n 220,\n 220,\n 598,\n 13,\n 5143,\n 3419\n]"},"ratio_char_token":{"kind":"number","value":2.764705882352941,"string":"2.764706"},"token_count":{"kind":"number","value":51,"string":"51"}}},{"rowIdx":4278,"cells":{"content":{"kind":"string","value":"# Copyright 2013-2018 Lawrence Livermore National Security, LLC and other\n# Spack Project Developers. See the top-level COPYRIGHT file for details.\n#\n# SPDX-License-Identifier: (Apache-2.0 OR MIT)\n\nfrom spack import *\n\n\nclass RAffypdnn(RPackage):\n \"\"\"The package contains functions to perform the PDNN method\n described by Li Zhang et al.\"\"\"\n\n homepage = \"https://www.bioconductor.org/packages/affypdnn/\"\n git = \"https://git.bioconductor.org/packages/affypdnn.git\"\n\n version('1.50.0', commit='97ff68e9f51f31333c0330435ea23b212b3ed18a')\n\n depends_on('r@3.4.0:3.4.9', when='@1.50.0')\n depends_on('r-affy', type=('build', 'run'))\n"},"input_ids":{"kind":"list like","value":[2,15069,2211,12,7908,13914,45036,3549,2351,4765,11,11419,290,584,198,2,1338,441,4935,34152,13,4091,262,1353,12,5715,27975,38162,9947,2393,329,3307,13,198,2,198,2,30628,55,12,34156,12,33234,7483,25,357,25189,4891,12,17,13,15,6375,17168,8,198,198,6738,599,441,1330,1635,628,198,4871,17926,487,4464,67,20471,7,49,27813,2599,198,220,220,220,37227,464,5301,4909,5499,284,1620,262,14340,6144,2446,198,220,220,220,3417,416,7455,19439,2123,435,526,15931,628,220,220,220,34940,796,366,5450,1378,2503,13,8482,420,40990,13,2398,14,43789,14,2001,4464,67,20471,30487,198,220,220,220,17606,220,220,220,220,220,796,366,5450,1378,18300,13,8482,420,40990,13,2398,14,43789,14,2001,4464,67,20471,13,18300,1,628,220,220,220,2196,10786,16,13,1120,13,15,3256,4589,11639,5607,487,3104,68,24,69,4349,69,25838,2091,66,3070,21288,2327,18213,1954,65,21777,65,18,276,1507,64,11537,628,220,220,220,8338,62,261,10786,81,31,18,13,19,13,15,25,18,13,19,13,24,3256,618,11639,31,16,13,1120,13,15,11537,198,220,220,220,8338,62,261,10786,81,12,2001,88,3256,2099,28,10786,11249,3256,705,5143,6,4008,198],"string":"[\n 2,\n 15069,\n 2211,\n 12,\n 7908,\n 13914,\n 45036,\n 3549,\n 2351,\n 4765,\n 11,\n 11419,\n 290,\n 584,\n 198,\n 2,\n 1338,\n 441,\n 4935,\n 34152,\n 13,\n 4091,\n 262,\n 1353,\n 12,\n 5715,\n 27975,\n 38162,\n 9947,\n 2393,\n 329,\n 3307,\n 13,\n 198,\n 2,\n 198,\n 2,\n 30628,\n 55,\n 12,\n 34156,\n 12,\n 33234,\n 7483,\n 25,\n 357,\n 25189,\n 4891,\n 12,\n 17,\n 13,\n 15,\n 6375,\n 17168,\n 8,\n 198,\n 198,\n 6738,\n 599,\n 441,\n 1330,\n 1635,\n 628,\n 198,\n 4871,\n 17926,\n 487,\n 4464,\n 67,\n 20471,\n 7,\n 49,\n 27813,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 464,\n 5301,\n 4909,\n 5499,\n 284,\n 1620,\n 262,\n 14340,\n 6144,\n 2446,\n 198,\n 220,\n 220,\n 220,\n 3417,\n 416,\n 7455,\n 19439,\n 2123,\n 435,\n 526,\n 15931,\n 628,\n 220,\n 220,\n 220,\n 34940,\n 796,\n 366,\n 5450,\n 1378,\n 2503,\n 13,\n 8482,\n 420,\n 40990,\n 13,\n 2398,\n 14,\n 43789,\n 14,\n 2001,\n 4464,\n 67,\n 20471,\n 30487,\n 198,\n 220,\n 220,\n 220,\n 17606,\n 220,\n 220,\n 220,\n 220,\n 220,\n 796,\n 366,\n 5450,\n 1378,\n 18300,\n 13,\n 8482,\n 420,\n 40990,\n 13,\n 2398,\n 14,\n 43789,\n 14,\n 2001,\n 4464,\n 67,\n 20471,\n 13,\n 18300,\n 1,\n 628,\n 220,\n 220,\n 220,\n 2196,\n 10786,\n 16,\n 13,\n 1120,\n 13,\n 15,\n 3256,\n 4589,\n 11639,\n 5607,\n 487,\n 3104,\n 68,\n 24,\n 69,\n 4349,\n 69,\n 25838,\n 2091,\n 66,\n 3070,\n 21288,\n 2327,\n 18213,\n 1954,\n 65,\n 21777,\n 65,\n 18,\n 276,\n 1507,\n 64,\n 11537,\n 628,\n 220,\n 220,\n 220,\n 8338,\n 62,\n 261,\n 10786,\n 81,\n 31,\n 18,\n 13,\n 19,\n 13,\n 15,\n 25,\n 18,\n 13,\n 19,\n 13,\n 24,\n 3256,\n 618,\n 11639,\n 31,\n 16,\n 13,\n 1120,\n 13,\n 15,\n 11537,\n 198,\n 220,\n 220,\n 220,\n 8338,\n 62,\n 261,\n 10786,\n 81,\n 12,\n 2001,\n 88,\n 3256,\n 2099,\n 28,\n 10786,\n 11249,\n 3256,\n 705,\n 5143,\n 6,\n 4008,\n 198\n]"},"ratio_char_token":{"kind":"number","value":2.6330645161290325,"string":"2.633065"},"token_count":{"kind":"number","value":248,"string":"248"}}},{"rowIdx":4279,"cells":{"content":{"kind":"string","value":"#######################################################################\n\"\"\"\n @author: Emanuele Musumeci (https://github.com/EmanueleMusumeci) \n \n PopulationInitializer abstract class and basic initializer that generates\n a population of random binary strings of a given length\n\n\"\"\"\n#######################################################################\nimport abc\n\nimport numpy as np\nfrom numpy import random\n\n#Base abstract class for population initialization methods, that generate a population for the genetic optimization process\n\n#Generate population of random binary strings of a given length\n\n #Generates a single binary individual\n \n #Generates a population of random binary individuals\n \n\n\n"},"input_ids":{"kind":"list like","value":[29113,29113,4242,21017,198,37811,198,2488,9800,25,412,805,518,293,2629,388,721,72,357,5450,1378,12567,13,785,14,36,805,518,293,10694,388,721,72,8,220,198,220,198,20133,24243,7509,12531,1398,290,4096,4238,7509,326,18616,198,257,3265,286,4738,13934,13042,286,257,1813,4129,198,198,37811,198,29113,29113,4242,21017,198,11748,450,66,198,198,11748,299,32152,355,45941,198,6738,299,32152,1330,4738,198,198,2,14881,12531,1398,329,3265,37588,5050,11,326,7716,257,3265,329,262,8513,23989,1429,198,198,2,8645,378,3265,286,4738,13934,13042,286,257,1813,4129,628,220,220,220,1303,8645,689,257,2060,13934,1981,198,220,220,220,220,220,220,220,220,198,220,220,220,1303,8645,689,257,3265,286,4738,13934,3925,198,220,220,220,220,220,220,220,220,628,198],"string":"[\n 29113,\n 29113,\n 4242,\n 21017,\n 198,\n 37811,\n 198,\n 2488,\n 9800,\n 25,\n 412,\n 805,\n 518,\n 293,\n 2629,\n 388,\n 721,\n 72,\n 357,\n 5450,\n 1378,\n 12567,\n 13,\n 785,\n 14,\n 36,\n 805,\n 518,\n 293,\n 10694,\n 388,\n 721,\n 72,\n 8,\n 220,\n 198,\n 220,\n 198,\n 20133,\n 24243,\n 7509,\n 12531,\n 1398,\n 290,\n 4096,\n 4238,\n 7509,\n 326,\n 18616,\n 198,\n 257,\n 3265,\n 286,\n 4738,\n 13934,\n 13042,\n 286,\n 257,\n 1813,\n 4129,\n 198,\n 198,\n 37811,\n 198,\n 29113,\n 29113,\n 4242,\n 21017,\n 198,\n 11748,\n 450,\n 66,\n 198,\n 198,\n 11748,\n 299,\n 32152,\n 355,\n 45941,\n 198,\n 6738,\n 299,\n 32152,\n 1330,\n 4738,\n 198,\n 198,\n 2,\n 14881,\n 12531,\n 1398,\n 329,\n 3265,\n 37588,\n 5050,\n 11,\n 326,\n 7716,\n 257,\n 3265,\n 329,\n 262,\n 8513,\n 23989,\n 1429,\n 198,\n 198,\n 2,\n 8645,\n 378,\n 3265,\n 286,\n 4738,\n 13934,\n 13042,\n 286,\n 257,\n 1813,\n 4129,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 8645,\n 689,\n 257,\n 2060,\n 13934,\n 1981,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 8645,\n 689,\n 257,\n 3265,\n 286,\n 4738,\n 13934,\n 3925,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 628,\n 198\n]"},"ratio_char_token":{"kind":"number","value":4.41717791411043,"string":"4.417178"},"token_count":{"kind":"number","value":163,"string":"163"}}},{"rowIdx":4280,"cells":{"content":{"kind":"string","value":"\nimport os\nimport subprocess\n\nfrom .utils import checkdir, get_condor_version, requires_command\nfrom .basenode import BaseNode\nfrom .job import Job\n\n\n\ndef _iter_job_args(job):\n \"\"\"\n Iterates over Job args list. Yields the name (and JobArg) for each node\n to be used when adding job to a Dagman (i.e. the name in the\n 'JOB name job_submit_file' line).\n\n Parameters\n ----------\n job : Job\n Job to iterate over. Note that the submit file for job must be built\n prior to using _iter_job_args.\n\n Yields\n ------\n node_name : str\n Node name to use in Dagman object.\n job_arg : JobArg namedtuple\n Job argument object (``arg``, ``name``, ``retry`` attributes).\n \"\"\"\n if not isinstance(job, Job):\n raise TypeError('Expecting a Job object, got {}'.format(type(job)))\n if not getattr(job, '_built', False):\n raise ValueError('Job {} must be built before adding it '\n 'to a Dagman'.format(job.name))\n\n if len(job.args) == 0:\n raise StopIteration\n else:\n for idx, job_arg in enumerate(job):\n arg, name, retry = job_arg\n if name is not None:\n node_name = '{}_{}'.format(job.submit_name, name)\n else:\n node_name = '{}_arg_{}'.format(job.submit_name, idx)\n yield node_name, job_arg\n\n\ndef _get_parent_child_string(node):\n \"\"\"Constructs the parent/child line for node to be added to a Dagman\n \"\"\"\n\n if not isinstance(node, BaseNode):\n raise ValueError('Expecting a Job or Dagman object, '\n 'got {}'.format(type(node)))\n\n parent_string = 'Parent'\n for parent_node in node.parents:\n if isinstance(parent_node, Job) and len(parent_node) > 0:\n for node_name, job_arg in _iter_job_args(parent_node):\n parent_string += ' {}'.format(node_name)\n else:\n parent_string += ' {}'.format(parent_node.submit_name)\n\n child_string = 'Child'\n if isinstance(node, Job) and len(node) > 0:\n for node_name, job_arg in _iter_job_args(node):\n child_string += ' {}'.format(node_name)\n else:\n child_string += ' {}'.format(node.submit_name)\n\n parent_child_string = parent_string + ' ' + child_string\n\n return parent_child_string\n\n\nclass Dagman(BaseNode):\n \"\"\"\n Dagman object consisting of a series of Jobs and sub-Dagmans to manage.\n\n Note that the ``submit`` parameter can be explicitly given or configured\n by setting the ``PYCONDOR_SUBMIT_DIR`` environment variable. An explicitly\n given value for ``submit`` will be used over the environment variable,\n while the environment variable will be used over a default value.\n\n Parameters\n ----------\n name : str\n Name of the Dagman instance. This will also be the name of the\n corresponding error, log, output, and submit files associated with\n this Dagman.\n\n submit : str\n Path to directory where condor dagman submit files will be written\n (defaults to the directory was the Dagman was submitted from).\n\n extra_lines : list or None, optional\n List of additional lines to be added to submit file.\n\n .. versionadded:: 0.1.1\n\n dag : Dagman, optional\n If specified, Dagman will be added to dag as a subdag\n (default is None).\n\n verbose : int, optional\n Level of logging verbosity option are 0-warning, 1-info,\n 2-debugging (default is 0).\n\n Attributes\n ----------\n jobs : list\n The list of jobs for this Dagman instance to manage.\n\n parents : list\n List of parent Jobs and Dagmans. Ensures that Jobs and Dagmans in the\n parents list will complete before this Dagman is submitted to HTCondor.\n\n children : list\n List of child Jobs and Dagmans. Ensures that Jobs and Dagmans in the\n children list will be submitted only after this Dagman has completed.\n \"\"\"\n\n def add_job(self, job):\n \"\"\"Add job to Dagman\n\n Parameters\n ----------\n job : Job\n Job to append to Dagman jobs list.\n\n\n Returns\n -------\n self : object\n Returns self.\n \"\"\"\n self._add_node(job)\n\n return self\n\n def add_subdag(self, dag):\n \"\"\"Add dag to Dagman\n\n Parameters\n ----------\n dag : Dagman\n Subdag to append to Dagman jobs list.\n\n\n Returns\n -------\n self : object\n Returns self.\n \"\"\"\n self._add_node(dag)\n\n return self\n\n def _get_job_arg_lines(self, job, fancyname):\n \"\"\"Constructs the lines to be added to a Dagman related to job\n \"\"\"\n\n if not isinstance(job, Job):\n raise TypeError('Expecting a Job object, got {}'.format(type(job)))\n if not getattr(job, '_built', False):\n raise ValueError('Job {} must be built before adding it '\n 'to a Dagman'.format(job.name))\n\n job_arg_lines = []\n if len(job.args) == 0:\n job_line = 'JOB {} {}'.format(job.submit_name, job.submit_file)\n job_arg_lines.append(job_line)\n else:\n for node_name, job_arg in _iter_job_args(job):\n # Check that '.' or '+' are not in node_name\n if '.' in node_name or '+' in node_name:\n self._has_bad_node_names = True\n\n arg, name, retry = job_arg\n # Add JOB line with Job submit file\n job_line = 'JOB {} {}'.format(node_name, job.submit_file)\n job_arg_lines.append(job_line)\n # Add job ARGS line for command line arguments\n arg_line = 'VARS {} ARGS=\"{}\"'.format(node_name, arg)\n job_arg_lines.append(arg_line)\n # Define job_name variable if there are arg_names for job\n if job._has_arg_names:\n if name is not None:\n job_name = node_name\n else:\n job_name = job.submit_name\n job_name_line = 'VARS {} job_name=\"{}\"'.format(node_name,\n job_name)\n job_arg_lines.append(job_name_line)\n # Add retry line for Job\n if retry is not None:\n retry_line = 'Retry {} {}'.format(node_name, retry)\n job_arg_lines.append(retry_line)\n\n return job_arg_lines\n\n def build(self, makedirs=True, fancyname=True):\n \"\"\"Build and saves the submit file for Dagman\n\n Parameters\n ----------\n makedirs : bool, optional\n If Job directories (e.g. error, output, log, submit) don't exist,\n create them (default is ``True``).\n\n fancyname : bool, optional\n Appends the date and unique id number to error, log, output, and\n submit files. For example, instead of ``dagname.submit`` the submit\n file becomes ``dagname_YYYYMMD_id``. This is useful when running\n several Dags/Jobs of the same name (default is ``True``).\n\n Returns\n -------\n self : object\n Returns self.\n \"\"\"\n if getattr(self, '_built', False):\n self.logger.warning(\n '{} submit file has already been built. '\n 'Skipping the build process...'.format(self.name))\n return self\n\n name = self._get_fancyname() if fancyname else self.name\n submit_file = os.path.join(self.submit, '{}.submit'.format(name))\n self.submit_file = submit_file\n self.submit_name = name\n checkdir(self.submit_file, makedirs)\n\n # Build submit files for all nodes in self.nodes\n # Note: nodes must be built before the submit file for self is built\n for node_index, node in enumerate(self.nodes, start=1):\n if isinstance(node, Job):\n node._build_from_dag(makedirs, fancyname)\n elif isinstance(node, Dagman):\n node.build(makedirs, fancyname)\n else:\n raise TypeError('Nodes must be either a Job or Dagman object')\n\n # Write dag submit file\n self.logger.info('Building DAG submission file {}...'.format(\n self.submit_file))\n lines = []\n parent_child_lines = []\n for node_index, node in enumerate(self.nodes, start=1):\n self.logger.info('Working on {} [{} of {}]'.format(node.name,\n node_index, len(self.nodes)))\n # Build the BaseNode submit file\n if isinstance(node, Job):\n # Add Job variables to Dagman submit file\n job_arg_lines = self._get_job_arg_lines(node, fancyname)\n lines.extend(job_arg_lines)\n elif isinstance(node, Dagman):\n subdag_string = _get_subdag_string(node)\n lines.append(subdag_string)\n else:\n raise TypeError('Nodes must be either a Job or Dagman object')\n # Add parent/child information, if necessary\n if node.hasparents():\n parent_child_string = _get_parent_child_string(node)\n parent_child_lines.append(parent_child_string)\n\n # Add any extra lines to submit file, if specified\n if self.extra_lines:\n lines.extend(self.extra_lines)\n\n # Write lines to dag submit file\n with open(submit_file, 'w') as dag:\n dag.writelines('\\n'.join(lines + ['\\n#Inter-job dependencies'] +\n parent_child_lines))\n\n self._built = True\n self.logger.info('Dagman submission file for {} successfully '\n 'built!'.format(self.name))\n\n return self\n\n @requires_command('condor_submit_dag')\n def submit_dag(self, submit_options=None):\n \"\"\"Submits Dagman to condor\n\n Parameters\n ----------\n submit_options : str, optional\n Options to be passed to ``condor_submit_dag`` for this Dagman\n (see the `condor_submit_dag documentation\n `_\n for possible options).\n\n Returns\n -------\n self : object\n Returns self.\n \"\"\"\n # Construct condor_submit_dag command\n command = 'condor_submit_dag'\n if submit_options is not None:\n command += ' {}'.format(submit_options)\n command += ' {}'.format(self.submit_file)\n submit_dag_proc = subprocess.Popen([command],\n stdout=subprocess.PIPE,\n shell=True)\n # Check that there are no illegal node names for newer condor versions\n condor_version = get_condor_version()\n if condor_version >= (8, 7, 2) and self._has_bad_node_names:\n err = (\"Found an illegal character (either '+' or '.') in the \"\n \"name for a node in Dagman {}. As of HTCondor version \"\n \"8.7.2, '+' and '.' are prohibited in Dagman node names. \"\n \"This means a '+' or '.' character is in a Job name, \"\n \"Dagman name, or the name for a Job argument.\".format(\n self.name))\n raise RuntimeError(err)\n\n # Execute condor_submit_dag command\n out, err = submit_dag_proc.communicate()\n print(out)\n\n return self\n\n @requires_command('condor_submit_dag')\n def build_submit(self, makedirs=True, fancyname=True, submit_options=None):\n \"\"\"Calls build and submit sequentially\n\n Parameters\n ----------\n makedirs : bool, optional\n If Job directories (e.g. error, output, log, submit) don't exist,\n create them (default is ``True``).\n\n fancyname : bool, optional\n Appends the date and unique id number to error, log, output, and\n submit files. For example, instead of ``dagname.submit`` the submit\n file becomes ``dagname_YYYYMMD_id``. This is useful when running\n several Dags/Jobs of the same name (default is ``True``).\n\n submit_options : str, optional\n Options to be passed to ``condor_submit_dag`` for this Dagman\n (see the `condor_submit_dag documentation\n `_\n for possible options).\n\n Returns\n -------\n self : object\n Returns self.\n \"\"\"\n self.build(makedirs, fancyname)\n self.submit_dag(submit_options=submit_options)\n\n return self\n"},"input_ids":{"kind":"list like","value":[198,11748,28686,198,11748,850,14681,198,198,6738,764,26791,1330,2198,15908,11,651,62,17561,273,62,9641,11,4433,62,21812,198,6738,764,12093,268,1098,1330,7308,19667,198,6738,764,21858,1330,15768,628,198,198,4299,4808,2676,62,21858,62,22046,7,21858,2599,198,220,220,220,37227,198,220,220,220,40806,689,625,15768,26498,1351,13,575,1164,82,262,1438,357,392,15768,28100,8,329,1123,10139,198,220,220,220,284,307,973,618,4375,1693,284,257,32167,805,357,72,13,68,13,262,1438,287,262,198,220,220,220,705,41,9864,1438,1693,62,46002,62,7753,6,1627,737,628,220,220,220,40117,198,220,220,220,24200,438,198,220,220,220,1693,1058,15768,198,220,220,220,220,220,220,220,15768,284,11629,378,625,13,5740,326,262,9199,2393,329,1693,1276,307,3170,198,220,220,220,220,220,220,220,3161,284,1262,4808,2676,62,21858,62,22046,13,628,220,220,220,575,1164,82,198,220,220,220,40103,198,220,220,220,10139,62,3672,1058,965,198,220,220,220,220,220,220,220,19081,1438,284,779,287,32167,805,2134,13,198,220,220,220,1693,62,853,1058,15768,28100,3706,83,29291,198,220,220,220,220,220,220,220,15768,4578,2134,357,15506,853,15506,11,7559,3672,15506,11,7559,1186,563,15506,12608,737,198,220,220,220,37227,198,220,220,220,611,407,318,39098,7,21858,11,15768,2599,198,220,220,220,220,220,220,220,5298,5994,12331,10786,3109,35570,257,15768,2134,11,1392,23884,4458,18982,7,4906,7,21858,22305,198,220,220,220,611,407,651,35226,7,21858,11,705,62,18780,3256,10352,2599,198,220,220,220,220,220,220,220,5298,11052,12331,10786,33308,23884,1276,307,3170,878,4375,340,705,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,705,1462,257,32167,805,4458,18982,7,21858,13,3672,4008,628,220,220,220,611,18896,7,21858,13,22046,8,6624,657,25,198,220,220,220,220,220,220,220,5298,13707,29993,341,198,220,220,220,2073,25,198,220,220,220,220,220,220,220,329,4686,87,11,1693,62,853,287,27056,378,7,21858,2599,198,220,220,220,220,220,220,220,220,220,220,220,1822,11,1438,11,1005,563,796,1693,62,853,198,220,220,220,220,220,220,220,220,220,220,220,611,1438,318,407,6045,25,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,10139,62,3672,796,705,90,92,23330,92,4458,18982,7,21858,13,46002,62,3672,11,1438,8,198,220,220,220,220,220,220,220,220,220,220,220,2073,25,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,10139,62,3672,796,705,90,92,62,853,23330,92,4458,18982,7,21858,13,46002,62,3672,11,4686,87,8,198,220,220,220,220,220,220,220,220,220,220,220,7800,10139,62,3672,11,1693,62,853,628,198,4299,4808,1136,62,8000,62,9410,62,8841,7,17440,2599,198,220,220,220,37227,42316,82,262,2560,14,9410,1627,329,10139,284,307,2087,284,257,32167,805,198,220,220,220,37227,628,220,220,220,611,407,318,39098,7,17440,11,7308,19667,2599,198,220,220,220,220,220,220,220,5298,11052,12331,10786,3109,35570,257,15768,393,32167,805,2134,11,705,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,705,23442,23884,4458,18982,7,4906,7,17440,22305,628,220,220,220,2560,62,8841,796,705,24546,6,198,220,220,220,329,2560,62,17440,287,10139,13,23743,25,198,220,220,220,220,220,220,220,611,318,39098,7,8000,62,17440,11,15768,8,290,18896,7,8000,62,17440,8,1875,657,25,198,220,220,220,220,220,220,220,220,220,220,220,329,10139,62,3672,11,1693,62,853,287,4808,2676,62,21858,62,22046,7,8000,62,17440,2599,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,2560,62,8841,15853,705,23884,4458,18982,7,17440,62,3672,8,198,220,220,220,220,220,220,220,2073,25,198,220,220,220,220,220,220,220,220,220,220,220,2560,62,8841,15853,705,23884,4458,18982,7,8000,62,17440,13,46002,62,3672,8,628,220,220,220,1200,62,8841,796,705,16424,6,198,220,220,220,611,318,39098,7,17440,11,15768,8,290,18896,7,17440,8,1875,657,25,198,220,220,220,220,220,220,220,329,10139,62,3672,11,1693,62,853,287,4808,2676,62,21858,62,22046,7,17440,2599,198,220,220,220,220,220,220,220,220,220,220,220,1200,62,8841,15853,705,23884,4458,18982,7,17440,62,3672,8,198,220,220,220,2073,25,198,220,220,220,220,220,220,220,1200,62,8841,15853,705,23884,4458,18982,7,17440,13,46002,62,3672,8,628,220,220,220,2560,62,9410,62,8841,796,2560,62,8841,1343,705,705,1343,1200,62,8841,628,220,220,220,1441,2560,62,9410,62,8841,628,198,4871,32167,805,7,14881,19667,2599,198,220,220,220,37227,198,220,220,220,32167,805,2134,17747,286,257,2168,286,19161,290,850,12,35,363,16221,284,6687,13,628,220,220,220,5740,326,262,7559,46002,15506,11507,460,307,11777,1813,393,17839,198,220,220,220,416,4634,262,7559,47,56,10943,35,1581,62,50,10526,36393,62,34720,15506,2858,7885,13,1052,11777,198,220,220,220,1813,1988,329,7559,46002,15506,481,307,973,625,262,2858,7885,11,198,220,220,220,981,262,2858,7885,481,307,973,625,257,4277,1988,13,628,220,220,220,40117,198,220,220,220,24200,438,198,220,220,220,1438,1058,965,198,220,220,220,220,220,220,220,6530,286,262,32167,805,4554,13,770,481,635,307,262,1438,286,262,198,220,220,220,220,220,220,220,11188,4049,11,2604,11,5072,11,290,9199,3696,3917,351,198,220,220,220,220,220,220,220,428,32167,805,13,628,220,220,220,9199,1058,965,198,220,220,220,220,220,220,220,10644,284,8619,810,1779,273,48924,805,9199,3696,481,307,3194,198,220,220,220,220,220,220,220,357,12286,82,284,262,8619,373,262,32167,805,373,8948,422,737,628,220,220,220,3131,62,6615,1058,1351,393,6045,11,11902,198,220,220,220,220,220,220,220,7343,286,3224,3951,284,307,2087,284,9199,2393,13,628,220,220,220,220,220,220,220,11485,2196,29373,3712,657,13,16,13,16,628,220,220,220,48924,1058,32167,805,11,11902,198,220,220,220,220,220,220,220,1002,7368,11,32167,805,481,307,2087,284,48924,355,257,850,67,363,198,220,220,220,220,220,220,220,357,12286,318,6045,737,628,220,220,220,15942,577,1058,493,11,11902,198,220,220,220,220,220,220,220,5684,286,18931,15942,16579,3038,389,657,12,43917,11,352,12,10951,11,198,220,220,220,220,220,220,220,362,12,24442,2667,357,12286,318,657,737,628,220,220,220,49213,198,220,220,220,24200,438,198,220,220,220,3946,1058,1351,198,220,220,220,220,220,220,220,383,1351,286,3946,329,428,32167,805,4554,284,6687,13,628,220,220,220,3397,1058,1351,198,220,220,220,220,220,220,220,7343,286,2560,19161,290,32167,16221,13,48221,942,326,19161,290,32167,16221,287,262,198,220,220,220,220,220,220,220,3397,1351,481,1844,878,428,32167,805,318,8948,284,22063,623,273,13,628,220,220,220,1751,1058,1351,198,220,220,220,220,220,220,220,7343,286,1200,19161,290,32167,16221,13,48221,942,326,19161,290,32167,16221,287,262,198,220,220,220,220,220,220,220,1751,1351,481,307,8948,691,706,428,32167,805,468,5668,13,198,220,220,220,37227,628,220,220,220,825,751,62,21858,7,944,11,1693,2599,198,220,220,220,220,220,220,220,37227,4550,1693,284,32167,805,628,220,220,220,220,220,220,220,40117,198,220,220,220,220,220,220,220,24200,438,198,220,220,220,220,220,220,220,1693,1058,15768,198,220,220,220,220,220,220,220,220,220,220,220,15768,284,24443,284,32167,805,3946,1351,13,628,198,220,220,220,220,220,220,220,16409,198,220,220,220,220,220,220,220,35656,198,220,220,220,220,220,220,220,2116,1058,2134,198,220,220,220,220,220,220,220,220,220,220,220,16409,2116,13,198,220,220,220,220,220,220,220,37227,198,220,220,220,220,220,220,220,2116,13557,2860,62,17440,7,21858,8,628,220,220,220,220,220,220,220,1441,2116,628,220,220,220,825,751,62,7266,67,363,7,944,11,48924,2599,198,220,220,220,220,220,220,220,37227,4550,48924,284,32167,805,628,220,220,220,220,220,220,220,40117,198,220,220,220,220,220,220,220,24200,438,198,220,220,220,220,220,220,220,48924,1058,32167,805,198,220,220,220,220,220,220,220,220,220,220,220,3834,67,363,284,24443,284,32167,805,3946,1351,13,628,198,220,220,220,220,220,220,220,16409,198,220,220,220,220,220,220,220,35656,198,220,220,220,220,220,220,220,2116,1058,2134,198,220,220,220,220,220,220,220,220,220,220,220,16409,2116,13,198,220,220,220,220,220,220,220,37227,198,220,220,220,220,220,220,220,2116,13557,2860,62,17440,7,67,363,8,628,220,220,220,220,220,220,220,1441,2116,628,220,220,220,825,4808,1136,62,21858,62,853,62,6615,7,944,11,1693,11,14996,3672,2599,198,220,220,220,220,220,220,220,37227,42316,82,262,3951,284,307,2087,284,257,32167,805,3519,284,1693,198,220,220,220,220,220,220,220,37227,628,220,220,220,220,220,220,220,611,407,318,39098,7,21858,11,15768,2599,198,220,220,220,220,220,220,220,220,220,220,220,5298,5994,12331,10786,3109,35570,257,15768,2134,11,1392,23884,4458,18982,7,4906,7,21858,22305,198,220,220,220,220,220,220,220,611,407,651,35226,7,21858,11,705,62,18780,3256,10352,2599,198,220,220,220,220,220,220,220,220,220,220,220,5298,11052,12331,10786,33308,23884,1276,307,3170,878,4375,340,705,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,705,1462,257,32167,805,4458,18982,7,21858,13,3672,4008,628,220,220,220,220,220,220,220,1693,62,853,62,6615,796,17635,198,220,220,220,220,220,220,220,611,18896,7,21858,13,22046,8,6624,657,25,198,220,220,220,220,220,220,220,220,220,220,220,1693,62,1370,796,705,41,9864,23884,23884,4458,18982,7,21858,13,46002,62,3672,11,1693,13,46002,62,7753,8,198,220,220,220,220,220,220,220,220,220,220,220,1693,62,853,62,6615,13,33295,7,21858,62,1370,8,198,220,220,220,220,220,220,220,2073,25,198,220,220,220,220,220,220,220,220,220,220,220,329,10139,62,3672,11,1693,62,853,287,4808,2676,62,21858,62,22046,7,21858,2599,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1303,6822,326,705,2637,393,705,10,6,389,407,287,10139,62,3672,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,611,705,2637,287,10139,62,3672,393,705,10,6,287,10139,62,3672,25,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,2116,13557,10134,62,14774,62,17440,62,14933,796,6407,628,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1822,11,1438,11,1005,563,796,1693,62,853,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1303,3060,449,9864,1627,351,15768,9199,2393,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1693,62,1370,796,705,41,9864,23884,23884,4458,18982,7,17440,62,3672,11,1693,13,46002,62,7753,8,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1693,62,853,62,6615,13,33295,7,21858,62,1370,8,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1303,3060,1693,5923,14313,1627,329,3141,1627,7159,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1822,62,1370,796,705,53,27415,23884,5923,14313,2625,90,36786,4458,18982,7,17440,62,3672,11,1822,8,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1693,62,853,62,6615,13,33295,7,853,62,1370,8,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1303,2896,500,1693,62,3672,7885,611,612,389,1822,62,14933,329,1693,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,611,1693,13557,10134,62,853,62,14933,25,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,611,1438,318,407,6045,25,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1693,62,3672,796,10139,62,3672,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,2073,25,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1693,62,3672,796,1693,13,46002,62,3672,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1693,62,3672,62,1370,796,705,53,27415,23884,1693,62,3672,2625,90,36786,4458,18982,7,17440,62,3672,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1693,62,3672,8,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1693,62,853,62,6615,13,33295,7,21858,62,3672,62,1370,8,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1303,3060,1005,563,1627,329,15768,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,611,1005,563,318,407,6045,25,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1005,563,62,1370,796,705,9781,563,23884,23884,4458,18982,7,17440,62,3672,11,1005,563,8,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1693,62,853,62,6615,13,33295,7,1186,563,62,1370,8,628,220,220,220,220,220,220,220,1441,1693,62,853,62,6615,628,220,220,220,825,1382,7,944,11,285,4335,17062,28,17821,11,14996,3672,28,17821,2599,198,220,220,220,220,220,220,220,37227,15580,290,16031,262,9199,2393,329,32167,805,628,220,220,220,220,220,220,220,40117,198,220,220,220,220,220,220,220,24200,438,198,220,220,220,220,220,220,220,285,4335,17062,1058,20512,11,11902,198,220,220,220,220,220,220,220,220,220,220,220,1002,15768,29196,357,68,13,70,13,4049,11,5072,11,2604,11,9199,8,836,470,2152,11,198,220,220,220,220,220,220,220,220,220,220,220,2251,606,357,12286,318,7559,17821,15506,737,628,220,220,220,220,220,220,220,14996,3672,1058,20512,11,11902,198,220,220,220,220,220,220,220,220,220,220,220,2034,2412,262,3128,290,3748,4686,1271,284,4049,11,2604,11,5072,11,290,198,220,220,220,220,220,220,220,220,220,220,220,9199,3696,13,1114,1672,11,2427,286,7559,67,363,3672,13,46002,15506,262,9199,198,220,220,220,220,220,220,220,220,220,220,220,2393,4329,7559,67,363,3672,62,26314,26314,12038,35,62,312,15506,13,770,318,4465,618,2491,198,220,220,220,220,220,220,220,220,220,220,220,1811,360,3775,14,41,8158,286,262,976,1438,357,12286,318,7559,17821,15506,737,628,220,220,220,220,220,220,220,16409,198,220,220,220,220,220,220,220,35656,198,220,220,220,220,220,220,220,2116,1058,2134,198,220,220,220,220,220,220,220,220,220,220,220,16409,2116,13,198,220,220,220,220,220,220,220,37227,198,220,220,220,220,220,220,220,611,651,35226,7,944,11,705,62,18780,3256,10352,2599,198,220,220,220,220,220,220,220,220,220,220,220,2116,13,6404,1362,13,43917,7,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,705,90,92,9199,2393,468,1541,587,3170,13,705,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,705,50,4106,2105,262,1382,1429,986,4458,18982,7,944,13,3672,4008,198,220,220,220,220,220,220,220,220,220,220,220,1441,2116,628,220,220,220,220,220,220,220,1438,796,2116,13557,1136,62,69,3883,3672,3419,611,14996,3672,2073,2116,13,3672,198,220,220,220,220,220,220,220,9199,62,7753,796,28686,13,6978,13,22179,7,944,13,46002,11,705,90,27422,46002,4458,18982,7,3672,4008,198,220,220,220,220,220,220,220,2116,13,46002,62,7753,796,9199,62,7753,198,220,220,220,220,220,220,220,2116,13,46002,62,3672,796,1438,198,220,220,220,220,220,220,220,2198,15908,7,944,13,46002,62,7753,11,285,4335,17062,8,628,220,220,220,220,220,220,220,1303,10934,9199,3696,329,477,13760,287,2116,13,77,4147,198,220,220,220,220,220,220,220,1303,5740,25,13760,1276,307,3170,878,262,9199,2393,329,2116,318,3170,198,220,220,220,220,220,220,220,329,10139,62,9630,11,10139,287,27056,378,7,944,13,77,4147,11,923,28,16,2599,198,220,220,220,220,220,220,220,220,220,220,220,611,318,39098,7,17440,11,15768,2599,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,10139,13557,11249,62,6738,62,67,363,7,76,4335,17062,11,14996,3672,8,198,220,220,220,220,220,220,220,220,220,220,220,1288,361,318,39098,7,17440,11,32167,805,2599,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,10139,13,11249,7,76,4335,17062,11,14996,3672,8,198,220,220,220,220,220,220,220,220,220,220,220,2073,25,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,5298,5994,12331,10786,45,4147,1276,307,2035,257,15768,393,32167,805,2134,11537,628,220,220,220,220,220,220,220,1303,19430,48924,9199,2393,198,220,220,220,220,220,220,220,2116,13,6404,1362,13,10951,10786,25954,360,4760,14498,2393,23884,986,4458,18982,7,198,220,220,220,220,220,220,220,220,220,220,220,2116,13,46002,62,7753,4008,198,220,220,220,220,220,220,220,3951,796,17635,198,220,220,220,220,220,220,220,2560,62,9410,62,6615,796,17635,198,220,220,220,220,220,220,220,329,10139,62,9630,11,10139,287,27056,378,7,944,13,77,4147,11,923,28,16,2599,198,220,220,220,220,220,220,220,220,220,220,220,2116,13,6404,1362,13,10951,10786,28516,319,23884,685,90,92,286,23884,60,4458,18982,7,17440,13,3672,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,10139,62,9630,11,18896,7,944,13,77,4147,22305,198,220,220,220,220,220,220,220,220,220,220,220,1303,10934,262,7308,19667,9199,2393,198,220,220,220,220,220,220,220,220,220,220,220,611,318,39098,7,17440,11,15768,2599,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1303,3060,15768,9633,284,32167,805,9199,2393,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1693,62,853,62,6615,796,2116,13557,1136,62,21858,62,853,62,6615,7,17440,11,14996,3672,8,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,3951,13,2302,437,7,21858,62,853,62,6615,8,198,220,220,220,220,220,220,220,220,220,220,220,1288,361,318,39098,7,17440,11,32167,805,2599,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,850,67,363,62,8841,796,4808,1136,62,7266,67,363,62,8841,7,17440,8,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,3951,13,33295,7,7266,67,363,62,8841,8,198,220,220,220,220,220,220,220,220,220,220,220,2073,25,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,5298,5994,12331,10786,45,4147,1276,307,2035,257,15768,393,32167,805,2134,11537,198,220,220,220,220,220,220,220,220,220,220,220,1303,3060,2560,14,9410,1321,11,611,3306,198,220,220,220,220,220,220,220,220,220,220,220,611,10139,13,71,5126,1580,82,33529,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,2560,62,9410,62,8841,796,4808,1136,62,8000,62,9410,62,8841,7,17440,8,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,2560,62,9410,62,6615,13,33295,7,8000,62,9410,62,8841,8,628,220,220,220,220,220,220,220,1303,3060,597,3131,3951,284,9199,2393,11,611,7368,198,220,220,220,220,220,220,220,611,2116,13,26086,62,6615,25,198,220,220,220,220,220,220,220,220,220,220,220,3951,13,2302,437,7,944,13,26086,62,6615,8,628,220,220,220,220,220,220,220,1303,19430,3951,284,48924,9199,2393,198,220,220,220,220,220,220,220,351,1280,7,46002,62,7753,11,705,86,11537,355,48924,25,198,220,220,220,220,220,220,220,220,220,220,220,48924,13,8933,20655,10786,59,77,4458,22179,7,6615,1343,37250,59,77,2,9492,12,21858,20086,20520,1343,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,2560,62,9410,62,6615,4008,628,220,220,220,220,220,220,220,2116,13557,18780,796,6407,198,220,220,220,220,220,220,220,2116,13,6404,1362,13,10951,10786,35,363,805,14498,2393,329,23884,7675,705,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,705,18780,0,4458,18982,7,944,13,3672,4008,628,220,220,220,220,220,220,220,1441,2116,628,220,220,220,2488,47911,62,21812,10786,17561,273,62,46002,62,67,363,11537,198,220,220,220,825,9199,62,67,363,7,944,11,9199,62,25811,28,14202,2599,198,220,220,220,220,220,220,220,37227,7004,24883,32167,805,284,1779,273,628,220,220,220,220,220,220,220,40117,198,220,220,220,220,220,220,220,24200,438,198,220,220,220,220,220,220,220,9199,62,25811,1058,965,11,11902,198,220,220,220,220,220,220,220,220,220,220,220,18634,284,307,3804,284,7559,17561,273,62,46002,62,67,363,15506,329,428,32167,805,198,220,220,220,220,220,220,220,220,220,220,220,357,3826,262,4600,17561,273,62,46002,62,67,363,10314,198,220,220,220,220,220,220,220,220,220,220,220,1279,4023,1378,34033,13,6359,13,86,2304,13,15532,14,4352,17561,273,14,805,723,14,14421,14,17561,273,62,46002,62,67,363,13,6494,29,63,62,198,220,220,220,220,220,220,220,220,220,220,220,329,1744,3689,737,628,220,220,220,220,220,220,220,16409,198,220,220,220,220,220,220,220,35656,198,220,220,220,220,220,220,220,2116,1058,2134,198,220,220,220,220,220,220,220,220,220,220,220,16409,2116,13,198,220,220,220,220,220,220,220,37227,198,220,220,220,220,220,220,220,1303,28407,1779,273,62,46002,62,67,363,3141,198,220,220,220,220,220,220,220,3141,796,705,17561,273,62,46002,62,67,363,6,198,220,220,220,220,220,220,220,611,9199,62,25811,318,407,6045,25,198,220,220,220,220,220,220,220,220,220,220,220,3141,15853,705,23884,4458,18982,7,46002,62,25811,8,198,220,220,220,220,220,220,220,3141,15853,705,23884,4458,18982,7,944,13,46002,62,7753,8,198,220,220,220,220,220,220,220,9199,62,67,363,62,36942,796,850,14681,13,47,9654,26933,21812,4357,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,14367,448,28,7266,14681,13,47,4061,36,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,7582,28,17821,8,198,220,220,220,220,220,220,220,1303,6822,326,612,389,645,5293,10139,3891,329,15064,1779,273,6300,198,220,220,220,220,220,220,220,1779,273,62,9641,796,651,62,17561,273,62,9641,3419,198,220,220,220,220,220,220,220,611,1779,273,62,9641,18189,357,23,11,767,11,362,8,290,2116,13557,10134,62,14774,62,17440,62,14933,25,198,220,220,220,220,220,220,220,220,220,220,220,11454,796,5855,21077,281,5293,2095,357,31336,705,10,6,393,705,2637,8,287,262,366,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,3672,329,257,10139,287,32167,805,23884,13,1081,286,22063,623,273,2196,366,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,23,13,22,13,17,11,705,10,6,290,220,705,2637,389,12244,287,32167,805,10139,3891,13,366,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,1212,1724,257,705,10,6,393,705,2637,2095,318,287,257,15768,1438,11,366,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,35,363,805,1438,11,393,262,1438,329,257,15768,4578,526,13,18982,7,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,2116,13,3672,4008,198,220,220,220,220,220,220,220,220,220,220,220,5298,43160,12331,7,8056,8,628,220,220,220,220,220,220,220,1303,8393,1133,1779,273,62,46002,62,67,363,3141,198,220,220,220,220,220,220,220,503,11,11454,796,9199,62,67,363,62,36942,13,10709,5344,3419,198,220,220,220,220,220,220,220,3601,7,448,8,628,220,220,220,220,220,220,220,1441,2116,628,220,220,220,2488,47911,62,21812,10786,17561,273,62,46002,62,67,363,11537,198,220,220,220,825,1382,62,46002,7,944,11,285,4335,17062,28,17821,11,14996,3672,28,17821,11,9199,62,25811,28,14202,2599,198,220,220,220,220,220,220,220,37227,34,5691,1382,290,9199,4726,3746,628,220,220,220,220,220,220,220,40117,198,220,220,220,220,220,220,220,24200,438,198,220,220,220,220,220,220,220,285,4335,17062,1058,20512,11,11902,198,220,220,220,220,220,220,220,220,220,220,220,1002,15768,29196,357,68,13,70,13,4049,11,5072,11,2604,11,9199,8,836,470,2152,11,198,220,220,220,220,220,220,220,220,220,220,220,2251,606,357,12286,318,7559,17821,15506,737,628,220,220,220,220,220,220,220,14996,3672,1058,20512,11,11902,198,220,220,220,220,220,220,220,220,220,220,220,2034,2412,262,3128,290,3748,4686,1271,284,4049,11,2604,11,5072,11,290,198,220,220,220,220,220,220,220,220,220,220,220,9199,3696,13,1114,1672,11,2427,286,7559,67,363,3672,13,46002,15506,262,9199,198,220,220,220,220,220,220,220,220,220,220,220,2393,4329,7559,67,363,3672,62,26314,26314,12038,35,62,312,15506,13,770,318,4465,618,2491,198,220,220,220,220,220,220,220,220,220,220,220,1811,360,3775,14,41,8158,286,262,976,1438,357,12286,318,7559,17821,15506,737,628,220,220,220,220,220,220,220,9199,62,25811,1058,965,11,11902,198,220,220,220,220,220,220,220,220,220,220,220,18634,284,307,3804,284,7559,17561,273,62,46002,62,67,363,15506,329,428,32167,805,198,220,220,220,220,220,220,220,220,220,220,220,357,3826,262,4600,17561,273,62,46002,62,67,363,10314,198,220,220,220,220,220,220,220,220,220,220,220,1279,4023,1378,34033,13,6359,13,86,2304,13,15532,14,4352,17561,273,14,805,723,14,14421,14,17561,273,62,46002,62,67,363,13,6494,29,63,62,198,220,220,220,220,220,220,220,220,220,220,220,329,1744,3689,737,628,220,220,220,220,220,220,220,16409,198,220,220,220,220,220,220,220,35656,198,220,220,220,220,220,220,220,2116,1058,2134,198,220,220,220,220,220,220,220,220,220,220,220,16409,2116,13,198,220,220,220,220,220,220,220,37227,198,220,220,220,220,220,220,220,2116,13,11249,7,76,4335,17062,11,14996,3672,8,198,220,220,220,220,220,220,220,2116,13,46002,62,67,363,7,46002,62,25811,28,46002,62,25811,8,628,220,220,220,220,220,220,220,1441,2116,198],"string":"[\n 198,\n 11748,\n 28686,\n 198,\n 11748,\n 850,\n 14681,\n 198,\n 198,\n 6738,\n 764,\n 26791,\n 1330,\n 2198,\n 15908,\n 11,\n 651,\n 62,\n 17561,\n 273,\n 62,\n 9641,\n 11,\n 4433,\n 62,\n 21812,\n 198,\n 6738,\n 764,\n 12093,\n 268,\n 1098,\n 1330,\n 7308,\n 19667,\n 198,\n 6738,\n 764,\n 21858,\n 1330,\n 15768,\n 628,\n 198,\n 198,\n 4299,\n 4808,\n 2676,\n 62,\n 21858,\n 62,\n 22046,\n 7,\n 21858,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 40806,\n 689,\n 625,\n 15768,\n 26498,\n 1351,\n 13,\n 575,\n 1164,\n 82,\n 262,\n 1438,\n 357,\n 392,\n 15768,\n 28100,\n 8,\n 329,\n 1123,\n 10139,\n 198,\n 220,\n 220,\n 220,\n 284,\n 307,\n 973,\n 618,\n 4375,\n 1693,\n 284,\n 257,\n 32167,\n 805,\n 357,\n 72,\n 13,\n 68,\n 13,\n 262,\n 1438,\n 287,\n 262,\n 198,\n 220,\n 220,\n 220,\n 705,\n 41,\n 9864,\n 1438,\n 1693,\n 62,\n 46002,\n 62,\n 7753,\n 6,\n 1627,\n 737,\n 628,\n 220,\n 220,\n 220,\n 40117,\n 198,\n 220,\n 220,\n 220,\n 24200,\n 438,\n 198,\n 220,\n 220,\n 220,\n 1693,\n 1058,\n 15768,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 15768,\n 284,\n 11629,\n 378,\n 625,\n 13,\n 5740,\n 326,\n 262,\n 9199,\n 2393,\n 329,\n 1693,\n 1276,\n 307,\n 3170,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3161,\n 284,\n 1262,\n 4808,\n 2676,\n 62,\n 21858,\n 62,\n 22046,\n 13,\n 628,\n 220,\n 220,\n 220,\n 575,\n 1164,\n 82,\n 198,\n 220,\n 220,\n 220,\n 40103,\n 198,\n 220,\n 220,\n 220,\n 10139,\n 62,\n 3672,\n 1058,\n 965,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 19081,\n 1438,\n 284,\n 779,\n 287,\n 32167,\n 805,\n 2134,\n 13,\n 198,\n 220,\n 220,\n 220,\n 1693,\n 62,\n 853,\n 1058,\n 15768,\n 28100,\n 3706,\n 83,\n 29291,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 15768,\n 4578,\n 2134,\n 357,\n 15506,\n 853,\n 15506,\n 11,\n 7559,\n 3672,\n 15506,\n 11,\n 7559,\n 1186,\n 563,\n 15506,\n 12608,\n 737,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 611,\n 407,\n 318,\n 39098,\n 7,\n 21858,\n 11,\n 15768,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 5298,\n 5994,\n 12331,\n 10786,\n 3109,\n 35570,\n 257,\n 15768,\n 2134,\n 11,\n 1392,\n 23884,\n 4458,\n 18982,\n 7,\n 4906,\n 7,\n 21858,\n 22305,\n 198,\n 220,\n 220,\n 220,\n 611,\n 407,\n 651,\n 35226,\n 7,\n 21858,\n 11,\n 705,\n 62,\n 18780,\n 3256,\n 10352,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 5298,\n 11052,\n 12331,\n 10786,\n 33308,\n 23884,\n 1276,\n 307,\n 3170,\n 878,\n 4375,\n 340,\n 705,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 705,\n 1462,\n 257,\n 32167,\n 805,\n 4458,\n 18982,\n 7,\n 21858,\n 13,\n 3672,\n 4008,\n 628,\n 220,\n 220,\n 220,\n 611,\n 18896,\n 7,\n 21858,\n 13,\n 22046,\n 8,\n 6624,\n 657,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 5298,\n 13707,\n 29993,\n 341,\n 198,\n 220,\n 220,\n 220,\n 2073,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 329,\n 4686,\n 87,\n 11,\n 1693,\n 62,\n 853,\n 287,\n 27056,\n 378,\n 7,\n 21858,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1822,\n 11,\n 1438,\n 11,\n 1005,\n 563,\n 796,\n 1693,\n 62,\n 853,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 1438,\n 318,\n 407,\n 6045,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 10139,\n 62,\n 3672,\n 796,\n 705,\n 90,\n 92,\n 23330,\n 92,\n 4458,\n 18982,\n 7,\n 21858,\n 13,\n 46002,\n 62,\n 3672,\n 11,\n 1438,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2073,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 10139,\n 62,\n 3672,\n 796,\n 705,\n 90,\n 92,\n 62,\n 853,\n 23330,\n 92,\n 4458,\n 18982,\n 7,\n 21858,\n 13,\n 46002,\n 62,\n 3672,\n 11,\n 4686,\n 87,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 7800,\n 10139,\n 62,\n 3672,\n 11,\n 1693,\n 62,\n 853,\n 628,\n 198,\n 4299,\n 4808,\n 1136,\n 62,\n 8000,\n 62,\n 9410,\n 62,\n 8841,\n 7,\n 17440,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 42316,\n 82,\n 262,\n 2560,\n 14,\n 9410,\n 1627,\n 329,\n 10139,\n 284,\n 307,\n 2087,\n 284,\n 257,\n 32167,\n 805,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 628,\n 220,\n 220,\n 220,\n 611,\n 407,\n 318,\n 39098,\n 7,\n 17440,\n 11,\n 7308,\n 19667,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 5298,\n 11052,\n 12331,\n 10786,\n 3109,\n 35570,\n 257,\n 15768,\n 393,\n 32167,\n 805,\n 2134,\n 11,\n 705,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 705,\n 23442,\n 23884,\n 4458,\n 18982,\n 7,\n 4906,\n 7,\n 17440,\n 22305,\n 628,\n 220,\n 220,\n 220,\n 2560,\n 62,\n 8841,\n 796,\n 705,\n 24546,\n 6,\n 198,\n 220,\n 220,\n 220,\n 329,\n 2560,\n 62,\n 17440,\n 287,\n 10139,\n 13,\n 23743,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 318,\n 39098,\n 7,\n 8000,\n 62,\n 17440,\n 11,\n 15768,\n 8,\n 290,\n 18896,\n 7,\n 8000,\n 62,\n 17440,\n 8,\n 1875,\n 657,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 329,\n 10139,\n 62,\n 3672,\n 11,\n 1693,\n 62,\n 853,\n 287,\n 4808,\n 2676,\n 62,\n 21858,\n 62,\n 22046,\n 7,\n 8000,\n 62,\n 17440,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2560,\n 62,\n 8841,\n 15853,\n 705,\n 23884,\n 4458,\n 18982,\n 7,\n 17440,\n 62,\n 3672,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2073,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2560,\n 62,\n 8841,\n 15853,\n 705,\n 23884,\n 4458,\n 18982,\n 7,\n 8000,\n 62,\n 17440,\n 13,\n 46002,\n 62,\n 3672,\n 8,\n 628,\n 220,\n 220,\n 220,\n 1200,\n 62,\n 8841,\n 796,\n 705,\n 16424,\n 6,\n 198,\n 220,\n 220,\n 220,\n 611,\n 318,\n 39098,\n 7,\n 17440,\n 11,\n 15768,\n 8,\n 290,\n 18896,\n 7,\n 17440,\n 8,\n 1875,\n 657,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 329,\n 10139,\n 62,\n 3672,\n 11,\n 1693,\n 62,\n 853,\n 287,\n 4808,\n 2676,\n 62,\n 21858,\n 62,\n 22046,\n 7,\n 17440,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1200,\n 62,\n 8841,\n 15853,\n 705,\n 23884,\n 4458,\n 18982,\n 7,\n 17440,\n 62,\n 3672,\n 8,\n 198,\n 220,\n 220,\n 220,\n 2073,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1200,\n 62,\n 8841,\n 15853,\n 705,\n 23884,\n 4458,\n 18982,\n 7,\n 17440,\n 13,\n 46002,\n 62,\n 3672,\n 8,\n 628,\n 220,\n 220,\n 220,\n 2560,\n 62,\n 9410,\n 62,\n 8841,\n 796,\n 2560,\n 62,\n 8841,\n 1343,\n 705,\n 705,\n 1343,\n 1200,\n 62,\n 8841,\n 628,\n 220,\n 220,\n 220,\n 1441,\n 2560,\n 62,\n 9410,\n 62,\n 8841,\n 628,\n 198,\n 4871,\n 32167,\n 805,\n 7,\n 14881,\n 19667,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 32167,\n 805,\n 2134,\n 17747,\n 286,\n 257,\n 2168,\n 286,\n 19161,\n 290,\n 850,\n 12,\n 35,\n 363,\n 16221,\n 284,\n 6687,\n 13,\n 628,\n 220,\n 220,\n 220,\n 5740,\n 326,\n 262,\n 7559,\n 46002,\n 15506,\n 11507,\n 460,\n 307,\n 11777,\n 1813,\n 393,\n 17839,\n 198,\n 220,\n 220,\n 220,\n 416,\n 4634,\n 262,\n 7559,\n 47,\n 56,\n 10943,\n 35,\n 1581,\n 62,\n 50,\n 10526,\n 36393,\n 62,\n 34720,\n 15506,\n 2858,\n 7885,\n 13,\n 1052,\n 11777,\n 198,\n 220,\n 220,\n 220,\n 1813,\n 1988,\n 329,\n 7559,\n 46002,\n 15506,\n 481,\n 307,\n 973,\n 625,\n 262,\n 2858,\n 7885,\n 11,\n 198,\n 220,\n 220,\n 220,\n 981,\n 262,\n 2858,\n 7885,\n 481,\n 307,\n 973,\n 625,\n 257,\n 4277,\n 1988,\n 13,\n 628,\n 220,\n 220,\n 220,\n 40117,\n 198,\n 220,\n 220,\n 220,\n 24200,\n 438,\n 198,\n 220,\n 220,\n 220,\n 1438,\n 1058,\n 965,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 6530,\n 286,\n 262,\n 32167,\n 805,\n 4554,\n 13,\n 770,\n 481,\n 635,\n 307,\n 262,\n 1438,\n 286,\n 262,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 11188,\n 4049,\n 11,\n 2604,\n 11,\n 5072,\n 11,\n 290,\n 9199,\n 3696,\n 3917,\n 351,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 428,\n 32167,\n 805,\n 13,\n 628,\n 220,\n 220,\n 220,\n 9199,\n 1058,\n 965,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 10644,\n 284,\n 8619,\n 810,\n 1779,\n 273,\n 48924,\n 805,\n 9199,\n 3696,\n 481,\n 307,\n 3194,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 357,\n 12286,\n 82,\n 284,\n 262,\n 8619,\n 373,\n 262,\n 32167,\n 805,\n 373,\n 8948,\n 422,\n 737,\n 628,\n 220,\n 220,\n 220,\n 3131,\n 62,\n 6615,\n 1058,\n 1351,\n 393,\n 6045,\n 11,\n 11902,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 7343,\n 286,\n 3224,\n 3951,\n 284,\n 307,\n 2087,\n 284,\n 9199,\n 2393,\n 13,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 11485,\n 2196,\n 29373,\n 3712,\n 657,\n 13,\n 16,\n 13,\n 16,\n 628,\n 220,\n 220,\n 220,\n 48924,\n 1058,\n 32167,\n 805,\n 11,\n 11902,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1002,\n 7368,\n 11,\n 32167,\n 805,\n 481,\n 307,\n 2087,\n 284,\n 48924,\n 355,\n 257,\n 850,\n 67,\n 363,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 357,\n 12286,\n 318,\n 6045,\n 737,\n 628,\n 220,\n 220,\n 220,\n 15942,\n 577,\n 1058,\n 493,\n 11,\n 11902,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 5684,\n 286,\n 18931,\n 15942,\n 16579,\n 3038,\n 389,\n 657,\n 12,\n 43917,\n 11,\n 352,\n 12,\n 10951,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 362,\n 12,\n 24442,\n 2667,\n 357,\n 12286,\n 318,\n 657,\n 737,\n 628,\n 220,\n 220,\n 220,\n 49213,\n 198,\n 220,\n 220,\n 220,\n 24200,\n 438,\n 198,\n 220,\n 220,\n 220,\n 3946,\n 1058,\n 1351,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 383,\n 1351,\n 286,\n 3946,\n 329,\n 428,\n 32167,\n 805,\n 4554,\n 284,\n 6687,\n 13,\n 628,\n 220,\n 220,\n 220,\n 3397,\n 1058,\n 1351,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 7343,\n 286,\n 2560,\n 19161,\n 290,\n 32167,\n 16221,\n 13,\n 48221,\n 942,\n 326,\n 19161,\n 290,\n 32167,\n 16221,\n 287,\n 262,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3397,\n 1351,\n 481,\n 1844,\n 878,\n 428,\n 32167,\n 805,\n 318,\n 8948,\n 284,\n 22063,\n 623,\n 273,\n 13,\n 628,\n 220,\n 220,\n 220,\n 1751,\n 1058,\n 1351,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 7343,\n 286,\n 1200,\n 19161,\n 290,\n 32167,\n 16221,\n 13,\n 48221,\n 942,\n 326,\n 19161,\n 290,\n 32167,\n 16221,\n 287,\n 262,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1751,\n 1351,\n 481,\n 307,\n 8948,\n 691,\n 706,\n 428,\n 32167,\n 805,\n 468,\n 5668,\n 13,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 628,\n 220,\n 220,\n 220,\n 825,\n 751,\n 62,\n 21858,\n 7,\n 944,\n 11,\n 1693,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 4550,\n 1693,\n 284,\n 32167,\n 805,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 40117,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 24200,\n 438,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1693,\n 1058,\n 15768,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 15768,\n 284,\n 24443,\n 284,\n 32167,\n 805,\n 3946,\n 1351,\n 13,\n 628,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 16409,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 35656,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 1058,\n 2134,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 16409,\n 2116,\n 13,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13557,\n 2860,\n 62,\n 17440,\n 7,\n 21858,\n 8,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1441,\n 2116,\n 628,\n 220,\n 220,\n 220,\n 825,\n 751,\n 62,\n 7266,\n 67,\n 363,\n 7,\n 944,\n 11,\n 48924,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 4550,\n 48924,\n 284,\n 32167,\n 805,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 40117,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 24200,\n 438,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 48924,\n 1058,\n 32167,\n 805,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3834,\n 67,\n 363,\n 284,\n 24443,\n 284,\n 32167,\n 805,\n 3946,\n 1351,\n 13,\n 628,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 16409,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 35656,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 1058,\n 2134,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 16409,\n 2116,\n 13,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13557,\n 2860,\n 62,\n 17440,\n 7,\n 67,\n 363,\n 8,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1441,\n 2116,\n 628,\n 220,\n 220,\n 220,\n 825,\n 4808,\n 1136,\n 62,\n 21858,\n 62,\n 853,\n 62,\n 6615,\n 7,\n 944,\n 11,\n 1693,\n 11,\n 14996,\n 3672,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 42316,\n 82,\n 262,\n 3951,\n 284,\n 307,\n 2087,\n 284,\n 257,\n 32167,\n 805,\n 3519,\n 284,\n 1693,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 407,\n 318,\n 39098,\n 7,\n 21858,\n 11,\n 15768,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 5298,\n 5994,\n 12331,\n 10786,\n 3109,\n 35570,\n 257,\n 15768,\n 2134,\n 11,\n 1392,\n 23884,\n 4458,\n 18982,\n 7,\n 4906,\n 7,\n 21858,\n 22305,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 407,\n 651,\n 35226,\n 7,\n 21858,\n 11,\n 705,\n 62,\n 18780,\n 3256,\n 10352,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 5298,\n 11052,\n 12331,\n 10786,\n 33308,\n 23884,\n 1276,\n 307,\n 3170,\n 878,\n 4375,\n 340,\n 705,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 705,\n 1462,\n 257,\n 32167,\n 805,\n 4458,\n 18982,\n 7,\n 21858,\n 13,\n 3672,\n 4008,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1693,\n 62,\n 853,\n 62,\n 6615,\n 796,\n 17635,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 18896,\n 7,\n 21858,\n 13,\n 22046,\n 8,\n 6624,\n 657,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1693,\n 62,\n 1370,\n 796,\n 705,\n 41,\n 9864,\n 23884,\n 23884,\n 4458,\n 18982,\n 7,\n 21858,\n 13,\n 46002,\n 62,\n 3672,\n 11,\n 1693,\n 13,\n 46002,\n 62,\n 7753,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1693,\n 62,\n 853,\n 62,\n 6615,\n 13,\n 33295,\n 7,\n 21858,\n 62,\n 1370,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2073,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 329,\n 10139,\n 62,\n 3672,\n 11,\n 1693,\n 62,\n 853,\n 287,\n 4808,\n 2676,\n 62,\n 21858,\n 62,\n 22046,\n 7,\n 21858,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 6822,\n 326,\n 705,\n 2637,\n 393,\n 705,\n 10,\n 6,\n 389,\n 407,\n 287,\n 10139,\n 62,\n 3672,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 705,\n 2637,\n 287,\n 10139,\n 62,\n 3672,\n 393,\n 705,\n 10,\n 6,\n 287,\n 10139,\n 62,\n 3672,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13557,\n 10134,\n 62,\n 14774,\n 62,\n 17440,\n 62,\n 14933,\n 796,\n 6407,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1822,\n 11,\n 1438,\n 11,\n 1005,\n 563,\n 796,\n 1693,\n 62,\n 853,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 3060,\n 449,\n 9864,\n 1627,\n 351,\n 15768,\n 9199,\n 2393,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1693,\n 62,\n 1370,\n 796,\n 705,\n 41,\n 9864,\n 23884,\n 23884,\n 4458,\n 18982,\n 7,\n 17440,\n 62,\n 3672,\n 11,\n 1693,\n 13,\n 46002,\n 62,\n 7753,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1693,\n 62,\n 853,\n 62,\n 6615,\n 13,\n 33295,\n 7,\n 21858,\n 62,\n 1370,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 3060,\n 1693,\n 5923,\n 14313,\n 1627,\n 329,\n 3141,\n 1627,\n 7159,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1822,\n 62,\n 1370,\n 796,\n 705,\n 53,\n 27415,\n 23884,\n 5923,\n 14313,\n 2625,\n 90,\n 36786,\n 4458,\n 18982,\n 7,\n 17440,\n 62,\n 3672,\n 11,\n 1822,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1693,\n 62,\n 853,\n 62,\n 6615,\n 13,\n 33295,\n 7,\n 853,\n 62,\n 1370,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 2896,\n 500,\n 1693,\n 62,\n 3672,\n 7885,\n 611,\n 612,\n 389,\n 1822,\n 62,\n 14933,\n 329,\n 1693,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 1693,\n 13557,\n 10134,\n 62,\n 853,\n 62,\n 14933,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 1438,\n 318,\n 407,\n 6045,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1693,\n 62,\n 3672,\n 796,\n 10139,\n 62,\n 3672,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2073,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1693,\n 62,\n 3672,\n 796,\n 1693,\n 13,\n 46002,\n 62,\n 3672,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1693,\n 62,\n 3672,\n 62,\n 1370,\n 796,\n 705,\n 53,\n 27415,\n 23884,\n 1693,\n 62,\n 3672,\n 2625,\n 90,\n 36786,\n 4458,\n 18982,\n 7,\n 17440,\n 62,\n 3672,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1693,\n 62,\n 3672,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1693,\n 62,\n 853,\n 62,\n 6615,\n 13,\n 33295,\n 7,\n 21858,\n 62,\n 3672,\n 62,\n 1370,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 3060,\n 1005,\n 563,\n 1627,\n 329,\n 15768,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 1005,\n 563,\n 318,\n 407,\n 6045,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1005,\n 563,\n 62,\n 1370,\n 796,\n 705,\n 9781,\n 563,\n 23884,\n 23884,\n 4458,\n 18982,\n 7,\n 17440,\n 62,\n 3672,\n 11,\n 1005,\n 563,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1693,\n 62,\n 853,\n 62,\n 6615,\n 13,\n 33295,\n 7,\n 1186,\n 563,\n 62,\n 1370,\n 8,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1441,\n 1693,\n 62,\n 853,\n 62,\n 6615,\n 628,\n 220,\n 220,\n 220,\n 825,\n 1382,\n 7,\n 944,\n 11,\n 285,\n 4335,\n 17062,\n 28,\n 17821,\n 11,\n 14996,\n 3672,\n 28,\n 17821,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 15580,\n 290,\n 16031,\n 262,\n 9199,\n 2393,\n 329,\n 32167,\n 805,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 40117,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 24200,\n 438,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 285,\n 4335,\n 17062,\n 1058,\n 20512,\n 11,\n 11902,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1002,\n 15768,\n 29196,\n 357,\n 68,\n 13,\n 70,\n 13,\n 4049,\n 11,\n 5072,\n 11,\n 2604,\n 11,\n 9199,\n 8,\n 836,\n 470,\n 2152,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2251,\n 606,\n 357,\n 12286,\n 318,\n 7559,\n 17821,\n 15506,\n 737,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 14996,\n 3672,\n 1058,\n 20512,\n 11,\n 11902,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2034,\n 2412,\n 262,\n 3128,\n 290,\n 3748,\n 4686,\n 1271,\n 284,\n 4049,\n 11,\n 2604,\n 11,\n 5072,\n 11,\n 290,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 9199,\n 3696,\n 13,\n 1114,\n 1672,\n 11,\n 2427,\n 286,\n 7559,\n 67,\n 363,\n 3672,\n 13,\n 46002,\n 15506,\n 262,\n 9199,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2393,\n 4329,\n 7559,\n 67,\n 363,\n 3672,\n 62,\n 26314,\n 26314,\n 12038,\n 35,\n 62,\n 312,\n 15506,\n 13,\n 770,\n 318,\n 4465,\n 618,\n 2491,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1811,\n 360,\n 3775,\n 14,\n 41,\n 8158,\n 286,\n 262,\n 976,\n 1438,\n 357,\n 12286,\n 318,\n 7559,\n 17821,\n 15506,\n 737,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 16409,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 35656,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 1058,\n 2134,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 16409,\n 2116,\n 13,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 651,\n 35226,\n 7,\n 944,\n 11,\n 705,\n 62,\n 18780,\n 3256,\n 10352,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13,\n 6404,\n 1362,\n 13,\n 43917,\n 7,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 705,\n 90,\n 92,\n 9199,\n 2393,\n 468,\n 1541,\n 587,\n 3170,\n 13,\n 705,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 705,\n 50,\n 4106,\n 2105,\n 262,\n 1382,\n 1429,\n 986,\n 4458,\n 18982,\n 7,\n 944,\n 13,\n 3672,\n 4008,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1441,\n 2116,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1438,\n 796,\n 2116,\n 13557,\n 1136,\n 62,\n 69,\n 3883,\n 3672,\n 3419,\n 611,\n 14996,\n 3672,\n 2073,\n 2116,\n 13,\n 3672,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 9199,\n 62,\n 7753,\n 796,\n 28686,\n 13,\n 6978,\n 13,\n 22179,\n 7,\n 944,\n 13,\n 46002,\n 11,\n 705,\n 90,\n 27422,\n 46002,\n 4458,\n 18982,\n 7,\n 3672,\n 4008,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13,\n 46002,\n 62,\n 7753,\n 796,\n 9199,\n 62,\n 7753,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13,\n 46002,\n 62,\n 3672,\n 796,\n 1438,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2198,\n 15908,\n 7,\n 944,\n 13,\n 46002,\n 62,\n 7753,\n 11,\n 285,\n 4335,\n 17062,\n 8,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 10934,\n 9199,\n 3696,\n 329,\n 477,\n 13760,\n 287,\n 2116,\n 13,\n 77,\n 4147,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 5740,\n 25,\n 13760,\n 1276,\n 307,\n 3170,\n 878,\n 262,\n 9199,\n 2393,\n 329,\n 2116,\n 318,\n 3170,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 329,\n 10139,\n 62,\n 9630,\n 11,\n 10139,\n 287,\n 27056,\n 378,\n 7,\n 944,\n 13,\n 77,\n 4147,\n 11,\n 923,\n 28,\n 16,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 318,\n 39098,\n 7,\n 17440,\n 11,\n 15768,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 10139,\n 13557,\n 11249,\n 62,\n 6738,\n 62,\n 67,\n 363,\n 7,\n 76,\n 4335,\n 17062,\n 11,\n 14996,\n 3672,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1288,\n 361,\n 318,\n 39098,\n 7,\n 17440,\n 11,\n 32167,\n 805,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 10139,\n 13,\n 11249,\n 7,\n 76,\n 4335,\n 17062,\n 11,\n 14996,\n 3672,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2073,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 5298,\n 5994,\n 12331,\n 10786,\n 45,\n 4147,\n 1276,\n 307,\n 2035,\n 257,\n 15768,\n 393,\n 32167,\n 805,\n 2134,\n 11537,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 19430,\n 48924,\n 9199,\n 2393,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13,\n 6404,\n 1362,\n 13,\n 10951,\n 10786,\n 25954,\n 360,\n 4760,\n 14498,\n 2393,\n 23884,\n 986,\n 4458,\n 18982,\n 7,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13,\n 46002,\n 62,\n 7753,\n 4008,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3951,\n 796,\n 17635,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2560,\n 62,\n 9410,\n 62,\n 6615,\n 796,\n 17635,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 329,\n 10139,\n 62,\n 9630,\n 11,\n 10139,\n 287,\n 27056,\n 378,\n 7,\n 944,\n 13,\n 77,\n 4147,\n 11,\n 923,\n 28,\n 16,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13,\n 6404,\n 1362,\n 13,\n 10951,\n 10786,\n 28516,\n 319,\n 23884,\n 685,\n 90,\n 92,\n 286,\n 23884,\n 60,\n 4458,\n 18982,\n 7,\n 17440,\n 13,\n 3672,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 10139,\n 62,\n 9630,\n 11,\n 18896,\n 7,\n 944,\n 13,\n 77,\n 4147,\n 22305,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 10934,\n 262,\n 7308,\n 19667,\n 9199,\n 2393,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 318,\n 39098,\n 7,\n 17440,\n 11,\n 15768,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 3060,\n 15768,\n 9633,\n 284,\n 32167,\n 805,\n 9199,\n 2393,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1693,\n 62,\n 853,\n 62,\n 6615,\n 796,\n 2116,\n 13557,\n 1136,\n 62,\n 21858,\n 62,\n 853,\n 62,\n 6615,\n 7,\n 17440,\n 11,\n 14996,\n 3672,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3951,\n 13,\n 2302,\n 437,\n 7,\n 21858,\n 62,\n 853,\n 62,\n 6615,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1288,\n 361,\n 318,\n 39098,\n 7,\n 17440,\n 11,\n 32167,\n 805,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 850,\n 67,\n 363,\n 62,\n 8841,\n 796,\n 4808,\n 1136,\n 62,\n 7266,\n 67,\n 363,\n 62,\n 8841,\n 7,\n 17440,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3951,\n 13,\n 33295,\n 7,\n 7266,\n 67,\n 363,\n 62,\n 8841,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2073,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 5298,\n 5994,\n 12331,\n 10786,\n 45,\n 4147,\n 1276,\n 307,\n 2035,\n 257,\n 15768,\n 393,\n 32167,\n 805,\n 2134,\n 11537,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 3060,\n 2560,\n 14,\n 9410,\n 1321,\n 11,\n 611,\n 3306,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 10139,\n 13,\n 71,\n 5126,\n 1580,\n 82,\n 33529,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2560,\n 62,\n 9410,\n 62,\n 8841,\n 796,\n 4808,\n 1136,\n 62,\n 8000,\n 62,\n 9410,\n 62,\n 8841,\n 7,\n 17440,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2560,\n 62,\n 9410,\n 62,\n 6615,\n 13,\n 33295,\n 7,\n 8000,\n 62,\n 9410,\n 62,\n 8841,\n 8,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 3060,\n 597,\n 3131,\n 3951,\n 284,\n 9199,\n 2393,\n 11,\n 611,\n 7368,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 2116,\n 13,\n 26086,\n 62,\n 6615,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3951,\n 13,\n 2302,\n 437,\n 7,\n 944,\n 13,\n 26086,\n 62,\n 6615,\n 8,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 19430,\n 3951,\n 284,\n 48924,\n 9199,\n 2393,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 351,\n 1280,\n 7,\n 46002,\n 62,\n 7753,\n 11,\n 705,\n 86,\n 11537,\n 355,\n 48924,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 48924,\n 13,\n 8933,\n 20655,\n 10786,\n 59,\n 77,\n 4458,\n 22179,\n 7,\n 6615,\n 1343,\n 37250,\n 59,\n 77,\n 2,\n 9492,\n 12,\n 21858,\n 20086,\n 20520,\n 1343,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2560,\n 62,\n 9410,\n 62,\n 6615,\n 4008,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13557,\n 18780,\n 796,\n 6407,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13,\n 6404,\n 1362,\n 13,\n 10951,\n 10786,\n 35,\n 363,\n 805,\n 14498,\n 2393,\n 329,\n 23884,\n 7675,\n 705,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 705,\n 18780,\n 0,\n 4458,\n 18982,\n 7,\n 944,\n 13,\n 3672,\n 4008,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1441,\n 2116,\n 628,\n 220,\n 220,\n 220,\n 2488,\n 47911,\n 62,\n 21812,\n 10786,\n 17561,\n 273,\n 62,\n 46002,\n 62,\n 67,\n 363,\n 11537,\n 198,\n 220,\n 220,\n 220,\n 825,\n 9199,\n 62,\n 67,\n 363,\n 7,\n 944,\n 11,\n 9199,\n 62,\n 25811,\n 28,\n 14202,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 7004,\n 24883,\n 32167,\n 805,\n 284,\n 1779,\n 273,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 40117,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 24200,\n 438,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 9199,\n 62,\n 25811,\n 1058,\n 965,\n 11,\n 11902,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 18634,\n 284,\n 307,\n 3804,\n 284,\n 7559,\n 17561,\n 273,\n 62,\n 46002,\n 62,\n 67,\n 363,\n 15506,\n 329,\n 428,\n 32167,\n 805,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 357,\n 3826,\n 262,\n 4600,\n 17561,\n 273,\n 62,\n 46002,\n 62,\n 67,\n 363,\n 10314,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1279,\n 4023,\n 1378,\n 34033,\n 13,\n 6359,\n 13,\n 86,\n 2304,\n 13,\n 15532,\n 14,\n 4352,\n 17561,\n 273,\n 14,\n 805,\n 723,\n 14,\n 14421,\n 14,\n 17561,\n 273,\n 62,\n 46002,\n 62,\n 67,\n 363,\n 13,\n 6494,\n 29,\n 63,\n 62,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 329,\n 1744,\n 3689,\n 737,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 16409,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 35656,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 1058,\n 2134,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 16409,\n 2116,\n 13,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 28407,\n 1779,\n 273,\n 62,\n 46002,\n 62,\n 67,\n 363,\n 3141,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3141,\n 796,\n 705,\n 17561,\n 273,\n 62,\n 46002,\n 62,\n 67,\n 363,\n 6,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 9199,\n 62,\n 25811,\n 318,\n 407,\n 6045,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3141,\n 15853,\n 705,\n 23884,\n 4458,\n 18982,\n 7,\n 46002,\n 62,\n 25811,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3141,\n 15853,\n 705,\n 23884,\n 4458,\n 18982,\n 7,\n 944,\n 13,\n 46002,\n 62,\n 7753,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 9199,\n 62,\n 67,\n 363,\n 62,\n 36942,\n 796,\n 850,\n 14681,\n 13,\n 47,\n 9654,\n 26933,\n 21812,\n 4357,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 14367,\n 448,\n 28,\n 7266,\n 14681,\n 13,\n 47,\n 4061,\n 36,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 7582,\n 28,\n 17821,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 6822,\n 326,\n 612,\n 389,\n 645,\n 5293,\n 10139,\n 3891,\n 329,\n 15064,\n 1779,\n 273,\n 6300,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1779,\n 273,\n 62,\n 9641,\n 796,\n 651,\n 62,\n 17561,\n 273,\n 62,\n 9641,\n 3419,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 1779,\n 273,\n 62,\n 9641,\n 18189,\n 357,\n 23,\n 11,\n 767,\n 11,\n 362,\n 8,\n 290,\n 2116,\n 13557,\n 10134,\n 62,\n 14774,\n 62,\n 17440,\n 62,\n 14933,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 11454,\n 796,\n 5855,\n 21077,\n 281,\n 5293,\n 2095,\n 357,\n 31336,\n 705,\n 10,\n 6,\n 393,\n 705,\n 2637,\n 8,\n 287,\n 262,\n 366,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 3672,\n 329,\n 257,\n 10139,\n 287,\n 32167,\n 805,\n 23884,\n 13,\n 1081,\n 286,\n 22063,\n 623,\n 273,\n 2196,\n 366,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 23,\n 13,\n 22,\n 13,\n 17,\n 11,\n 705,\n 10,\n 6,\n 290,\n 220,\n 705,\n 2637,\n 389,\n 12244,\n 287,\n 32167,\n 805,\n 10139,\n 3891,\n 13,\n 366,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 1212,\n 1724,\n 257,\n 705,\n 10,\n 6,\n 393,\n 705,\n 2637,\n 2095,\n 318,\n 287,\n 257,\n 15768,\n 1438,\n 11,\n 366,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 35,\n 363,\n 805,\n 1438,\n 11,\n 393,\n 262,\n 1438,\n 329,\n 257,\n 15768,\n 4578,\n 526,\n 13,\n 18982,\n 7,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13,\n 3672,\n 4008,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 5298,\n 43160,\n 12331,\n 7,\n 8056,\n 8,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 8393,\n 1133,\n 1779,\n 273,\n 62,\n 46002,\n 62,\n 67,\n 363,\n 3141,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 503,\n 11,\n 11454,\n 796,\n 9199,\n 62,\n 67,\n 363,\n 62,\n 36942,\n 13,\n 10709,\n 5344,\n 3419,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3601,\n 7,\n 448,\n 8,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1441,\n 2116,\n 628,\n 220,\n 220,\n 220,\n 2488,\n 47911,\n 62,\n 21812,\n 10786,\n 17561,\n 273,\n 62,\n 46002,\n 62,\n 67,\n 363,\n 11537,\n 198,\n 220,\n 220,\n 220,\n 825,\n 1382,\n 62,\n 46002,\n 7,\n 944,\n 11,\n 285,\n 4335,\n 17062,\n 28,\n 17821,\n 11,\n 14996,\n 3672,\n 28,\n 17821,\n 11,\n 9199,\n 62,\n 25811,\n 28,\n 14202,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 34,\n 5691,\n 1382,\n 290,\n 9199,\n 4726,\n 3746,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 40117,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 24200,\n 438,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 285,\n 4335,\n 17062,\n 1058,\n 20512,\n 11,\n 11902,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1002,\n 15768,\n 29196,\n 357,\n 68,\n 13,\n 70,\n 13,\n 4049,\n 11,\n 5072,\n 11,\n 2604,\n 11,\n 9199,\n 8,\n 836,\n 470,\n 2152,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2251,\n 606,\n 357,\n 12286,\n 318,\n 7559,\n 17821,\n 15506,\n 737,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 14996,\n 3672,\n 1058,\n 20512,\n 11,\n 11902,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2034,\n 2412,\n 262,\n 3128,\n 290,\n 3748,\n 4686,\n 1271,\n 284,\n 4049,\n 11,\n 2604,\n 11,\n 5072,\n 11,\n 290,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 9199,\n 3696,\n 13,\n 1114,\n 1672,\n 11,\n 2427,\n 286,\n 7559,\n 67,\n 363,\n 3672,\n 13,\n 46002,\n 15506,\n 262,\n 9199,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2393,\n 4329,\n 7559,\n 67,\n 363,\n 3672,\n 62,\n 26314,\n 26314,\n 12038,\n 35,\n 62,\n 312,\n 15506,\n 13,\n 770,\n 318,\n 4465,\n 618,\n 2491,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1811,\n 360,\n 3775,\n 14,\n 41,\n 8158,\n 286,\n 262,\n 976,\n 1438,\n 357,\n 12286,\n 318,\n 7559,\n 17821,\n 15506,\n 737,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 9199,\n 62,\n 25811,\n 1058,\n 965,\n 11,\n 11902,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 18634,\n 284,\n 307,\n 3804,\n 284,\n 7559,\n 17561,\n 273,\n 62,\n 46002,\n 62,\n 67,\n 363,\n 15506,\n 329,\n 428,\n 32167,\n 805,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 357,\n 3826,\n 262,\n 4600,\n 17561,\n 273,\n 62,\n 46002,\n 62,\n 67,\n 363,\n 10314,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1279,\n 4023,\n 1378,\n 34033,\n 13,\n 6359,\n 13,\n 86,\n 2304,\n 13,\n 15532,\n 14,\n 4352,\n 17561,\n 273,\n 14,\n 805,\n 723,\n 14,\n 14421,\n 14,\n 17561,\n 273,\n 62,\n 46002,\n 62,\n 67,\n 363,\n 13,\n 6494,\n 29,\n 63,\n 62,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 329,\n 1744,\n 3689,\n 737,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 16409,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 35656,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 1058,\n 2134,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 16409,\n 2116,\n 13,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13,\n 11249,\n 7,\n 76,\n 4335,\n 17062,\n 11,\n 14996,\n 3672,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13,\n 46002,\n 62,\n 67,\n 363,\n 7,\n 46002,\n 62,\n 25811,\n 28,\n 46002,\n 62,\n 25811,\n 8,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1441,\n 2116,\n 198\n]"},"ratio_char_token":{"kind":"number","value":2.2072226999140154,"string":"2.207223"},"token_count":{"kind":"number","value":5815,"string":"5,815"}}},{"rowIdx":4281,"cells":{"content":{"kind":"string","value":"\"\"\"\nModule containing a numpy-like array which supports lazy reading of tiled 2D-image data.\n\"\"\"\nimport abc\nimport dask.array as da\nimport numpy as np\n\n\nclass LazyArray:\n \"\"\"\n An abstract class of a numpy-like array which supports lazy reading of tiled 2D-image data.\n The class represents a custom array container which is compatible with the numpy API.\n For more details please refer to\n https://numpy.org/doc/stable/user/basics.dispatch.html#writing-custom-array-containers.\n\n The class is compatible with napari's image layer which expects a \"numpy-like array\" as\n input which supports indexing and can be converted to a numpy array via np.asarray.\n (ref: https://napari.org/tutorials/fundamentals/image.html#image-data-and-numpy-like-arrays)\n \"\"\"\n __metaclass__ = abc.ABCMeta\n\n def __init__(self, shape, dtype, tile_size):\n \"\"\"\n Initialization method.\n\n :param shape: The shape of the underlying array.\n :param dtype: The type of the underlying array.\n :param tile_size: The size of a single tile by which the image is divided.\n \"\"\"\n assert len(shape) == 2\n self.shape = shape\n self.dtype = dtype\n self.tile_size = tile_size\n self.ndim = 2\n\n @property\n def size(self):\n \"\"\"\n The number of elements in the array.\n \"\"\"\n return self.shape[0] * self.shape[1]\n\n def __array__(self, dtype=None, **kwargs):\n # pylint: disable=W0613\n \"\"\"\n Method used e.g. by numpy to obtain a standard numpy.ndarray.\n \"\"\"\n return np.asarray(self[0:self.shape[0], 0:self.shape[1]])\n\n def __getitem__(self, idx):\n \"\"\"\n Method which implements the support for basic slicing.\n It does not support field access nor advanced indexing.\n Moreover, the start and stop of a slice must be positive integers.\n\n This method is optimized for the napari viewer.\n napari calls self[:] for obtaining the shape, dtype and ndim attributes - not the data.\n To delay reading the underlying data this method does not return a numpy array\n but self when calling self[:].\n To access the underlying data napari calls np.asarray(self).\n \"\"\"\n if not (\n isinstance(idx, slice) or\n (isinstance(idx, tuple) and all(isinstance(i, slice) for i in idx))\n ):\n raise ValueError(\"LazyArray only supports indexing by slices!\")\n\n if (\n idx == slice(None, None, None) or\n idx == (slice(None, None, None), slice(None, None, None))\n ):\n return self\n\n if len(idx) != 2:\n raise Exception(\"Unsupported index!\")\n (y_min, y_max), (x_min, x_max) = [(i.start, i.stop) for i in idx]\n y_off = y_min - (y_min % self.tile_size)\n x_off = x_min - (x_min % self.tile_size)\n\n assert (y_min >= 0) and (y_max >= 0) and (x_min >= 0) & (x_max >= 0)\n\n if y_max % self.tile_size == 0:\n max_y_tiles = (y_max // self.tile_size)\n else:\n max_y_tiles = (y_max // self.tile_size) + 1\n if x_max % self.tile_size == 0:\n max_x_tiles = (x_max // self.tile_size)\n else:\n max_x_tiles = (x_max // self.tile_size) + 1\n\n dask_arrays = []\n for y_tile in range(y_min // self.tile_size, max_y_tiles):\n row_tiles = []\n for x_tile in range(x_min // self.tile_size, max_x_tiles):\n row_tiles.append(\n da.from_delayed(\n self.read_tile(y_tile, x_tile),\n shape=(self.tile_size, self.tile_size), dtype=np.uint8\n )\n )\n dask_arrays.append(row_tiles)\n\n y_max = min(y_max, self.shape[0])\n x_max = min(x_max, self.shape[1])\n return da.block(dask_arrays)[y_min-y_off:y_max-y_off, x_min-x_off:x_max-x_off]\n\n @abc.abstractmethod\n def read_tile(self, y_tile, x_tile):\n \"\"\"\n Abstract method which reads a tile at the position (y_tile, x_tile).\n \"\"\"\n return\n"},"input_ids":{"kind":"list like","value":[37811,198,26796,7268,257,299,32152,12,2339,7177,543,6971,16931,3555,286,256,3902,362,35,12,9060,1366,13,198,37811,198,11748,450,66,198,11748,288,2093,13,18747,355,12379,198,11748,299,32152,355,45941,628,198,4871,406,12582,19182,25,198,220,220,220,37227,198,220,220,220,1052,12531,1398,286,257,299,32152,12,2339,7177,543,6971,16931,3555,286,256,3902,362,35,12,9060,1366,13,198,220,220,220,383,1398,6870,257,2183,7177,9290,543,318,11670,351,262,299,32152,7824,13,198,220,220,220,1114,517,3307,3387,3522,284,198,220,220,220,3740,1378,77,32152,13,2398,14,15390,14,31284,14,7220,14,12093,873,13,6381,17147,13,6494,2,16502,12,23144,12,18747,12,3642,50221,13,628,220,220,220,383,1398,318,11670,351,25422,2743,338,2939,7679,543,13423,257,366,77,32152,12,2339,7177,1,355,198,220,220,220,5128,543,6971,6376,278,290,460,307,11513,284,257,299,32152,7177,2884,45941,13,292,18747,13,198,220,220,220,357,5420,25,3740,1378,77,499,2743,13,2398,14,83,44917,82,14,10990,3263,874,14,9060,13,6494,2,9060,12,7890,12,392,12,77,32152,12,2339,12,3258,592,8,198,220,220,220,37227,198,220,220,220,11593,4164,330,31172,834,796,450,66,13,24694,48526,628,220,220,220,825,11593,15003,834,7,944,11,5485,11,288,4906,11,17763,62,7857,2599,198,220,220,220,220,220,220,220,37227,198,220,220,220,220,220,220,220,20768,1634,2446,13,628,220,220,220,220,220,220,220,1058,17143,5485,25,383,5485,286,262,10238,7177,13,198,220,220,220,220,220,220,220,1058,17143,288,4906,25,383,2099,286,262,10238,7177,13,198,220,220,220,220,220,220,220,1058,17143,17763,62,7857,25,383,2546,286,257,2060,17763,416,543,262,2939,318,9086,13,198,220,220,220,220,220,220,220,37227,198,220,220,220,220,220,220,220,6818,18896,7,43358,8,6624,362,198,220,220,220,220,220,220,220,2116,13,43358,796,5485,198,220,220,220,220,220,220,220,2116,13,67,4906,796,288,4906,198,220,220,220,220,220,220,220,2116,13,40927,62,7857,796,17763,62,7857,198,220,220,220,220,220,220,220,2116,13,358,320,796,362,628,220,220,220,2488,26745,198,220,220,220,825,2546,7,944,2599,198,220,220,220,220,220,220,220,37227,198,220,220,220,220,220,220,220,383,1271,286,4847,287,262,7177,13,198,220,220,220,220,220,220,220,37227,198,220,220,220,220,220,220,220,1441,2116,13,43358,58,15,60,1635,2116,13,43358,58,16,60,628,220,220,220,825,11593,18747,834,7,944,11,288,4906,28,14202,11,12429,46265,22046,2599,198,220,220,220,220,220,220,220,1303,279,2645,600,25,15560,28,54,3312,1485,198,220,220,220,220,220,220,220,37227,198,220,220,220,220,220,220,220,11789,973,304,13,70,13,416,299,32152,284,7330,257,3210,299,32152,13,358,18747,13,198,220,220,220,220,220,220,220,37227,198,220,220,220,220,220,220,220,1441,45941,13,292,18747,7,944,58,15,25,944,13,43358,58,15,4357,657,25,944,13,43358,58,16,11907,8,628,220,220,220,825,11593,1136,9186,834,7,944,11,4686,87,2599,198,220,220,220,220,220,220,220,37227,198,220,220,220,220,220,220,220,11789,543,23986,262,1104,329,4096,49289,13,198,220,220,220,220,220,220,220,632,857,407,1104,2214,1895,4249,6190,6376,278,13,198,220,220,220,220,220,220,220,10968,11,262,923,290,2245,286,257,16416,1276,307,3967,37014,13,628,220,220,220,220,220,220,220,770,2446,318,23392,329,262,25422,2743,19091,13,198,220,220,220,220,220,220,220,25422,2743,3848,2116,58,47715,329,16727,262,5485,11,288,4906,290,299,27740,12608,532,407,262,1366,13,198,220,220,220,220,220,220,220,1675,5711,3555,262,10238,1366,428,2446,857,407,1441,257,299,32152,7177,198,220,220,220,220,220,220,220,475,2116,618,4585,2116,58,25,4083,198,220,220,220,220,220,220,220,1675,1895,262,10238,1366,25422,2743,3848,45941,13,292,18747,7,944,737,198,220,220,220,220,220,220,220,37227,198,220,220,220,220,220,220,220,611,407,357,198,220,220,220,220,220,220,220,220,220,220,220,318,39098,7,312,87,11,16416,8,393,198,220,220,220,220,220,220,220,220,220,220,220,357,271,39098,7,312,87,11,46545,8,290,477,7,271,39098,7,72,11,16416,8,329,1312,287,4686,87,4008,198,220,220,220,220,220,220,220,15179,198,220,220,220,220,220,220,220,220,220,220,220,5298,11052,12331,7203,43,12582,19182,691,6971,6376,278,416,24314,2474,8,628,220,220,220,220,220,220,220,611,357,198,220,220,220,220,220,220,220,220,220,220,220,4686,87,6624,16416,7,14202,11,6045,11,6045,8,393,198,220,220,220,220,220,220,220,220,220,220,220,4686,87,6624,357,48369,7,14202,11,6045,11,6045,828,16416,7,14202,11,6045,11,6045,4008,198,220,220,220,220,220,220,220,15179,198,220,220,220,220,220,220,220,220,220,220,220,1441,2116,628,220,220,220,220,220,220,220,611,18896,7,312,87,8,14512,362,25,198,220,220,220,220,220,220,220,220,220,220,220,5298,35528,7203,3118,15999,6376,2474,8,198,220,220,220,220,220,220,220,357,88,62,1084,11,331,62,9806,828,357,87,62,1084,11,2124,62,9806,8,796,47527,72,13,9688,11,1312,13,11338,8,329,1312,287,4686,87,60,198,220,220,220,220,220,220,220,331,62,2364,796,331,62,1084,532,357,88,62,1084,4064,2116,13,40927,62,7857,8,198,220,220,220,220,220,220,220,2124,62,2364,796,2124,62,1084,532,357,87,62,1084,4064,2116,13,40927,62,7857,8,628,220,220,220,220,220,220,220,6818,357,88,62,1084,18189,657,8,290,357,88,62,9806,18189,657,8,290,357,87,62,1084,18189,657,8,1222,357,87,62,9806,18189,657,8,628,220,220,220,220,220,220,220,611,331,62,9806,4064,2116,13,40927,62,7857,6624,657,25,198,220,220,220,220,220,220,220,220,220,220,220,3509,62,88,62,83,2915,796,357,88,62,9806,3373,2116,13,40927,62,7857,8,198,220,220,220,220,220,220,220,2073,25,198,220,220,220,220,220,220,220,220,220,220,220,3509,62,88,62,83,2915,796,357,88,62,9806,3373,2116,13,40927,62,7857,8,1343,352,198,220,220,220,220,220,220,220,611,2124,62,9806,4064,2116,13,40927,62,7857,6624,657,25,198,220,220,220,220,220,220,220,220,220,220,220,3509,62,87,62,83,2915,796,357,87,62,9806,3373,2116,13,40927,62,7857,8,198,220,220,220,220,220,220,220,2073,25,198,220,220,220,220,220,220,220,220,220,220,220,3509,62,87,62,83,2915,796,357,87,62,9806,3373,2116,13,40927,62,7857,8,1343,352,628,220,220,220,220,220,220,220,288,2093,62,3258,592,796,17635,198,220,220,220,220,220,220,220,329,331,62,40927,287,2837,7,88,62,1084,3373,2116,13,40927,62,7857,11,3509,62,88,62,83,2915,2599,198,220,220,220,220,220,220,220,220,220,220,220,5752,62,83,2915,796,17635,198,220,220,220,220,220,220,220,220,220,220,220,329,2124,62,40927,287,2837,7,87,62,1084,3373,2116,13,40927,62,7857,11,3509,62,87,62,83,2915,2599,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,5752,62,83,2915,13,33295,7,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,12379,13,6738,62,12381,16548,7,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,2116,13,961,62,40927,7,88,62,40927,11,2124,62,40927,828,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,5485,16193,944,13,40927,62,7857,11,2116,13,40927,62,7857,828,288,4906,28,37659,13,28611,23,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1267,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1267,198,220,220,220,220,220,220,220,220,220,220,220,288,2093,62,3258,592,13,33295,7,808,62,83,2915,8,628,220,220,220,220,220,220,220,331,62,9806,796,949,7,88,62,9806,11,2116,13,43358,58,15,12962,198,220,220,220,220,220,220,220,2124,62,9806,796,949,7,87,62,9806,11,2116,13,43358,58,16,12962,198,220,220,220,220,220,220,220,1441,12379,13,9967,7,67,2093,62,3258,592,38381,88,62,1084,12,88,62,2364,25,88,62,9806,12,88,62,2364,11,2124,62,1084,12,87,62,2364,25,87,62,9806,12,87,62,2364,60,628,220,220,220,2488,39305,13,397,8709,24396,198,220,220,220,825,1100,62,40927,7,944,11,331,62,40927,11,2124,62,40927,2599,198,220,220,220,220,220,220,220,37227,198,220,220,220,220,220,220,220,27741,2446,543,9743,257,17763,379,262,2292,357,88,62,40927,11,2124,62,40927,737,198,220,220,220,220,220,220,220,37227,198,220,220,220,220,220,220,220,1441,198],"string":"[\n 37811,\n 198,\n 26796,\n 7268,\n 257,\n 299,\n 32152,\n 12,\n 2339,\n 7177,\n 543,\n 6971,\n 16931,\n 3555,\n 286,\n 256,\n 3902,\n 362,\n 35,\n 12,\n 9060,\n 1366,\n 13,\n 198,\n 37811,\n 198,\n 11748,\n 450,\n 66,\n 198,\n 11748,\n 288,\n 2093,\n 13,\n 18747,\n 355,\n 12379,\n 198,\n 11748,\n 299,\n 32152,\n 355,\n 45941,\n 628,\n 198,\n 4871,\n 406,\n 12582,\n 19182,\n 25,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 1052,\n 12531,\n 1398,\n 286,\n 257,\n 299,\n 32152,\n 12,\n 2339,\n 7177,\n 543,\n 6971,\n 16931,\n 3555,\n 286,\n 256,\n 3902,\n 362,\n 35,\n 12,\n 9060,\n 1366,\n 13,\n 198,\n 220,\n 220,\n 220,\n 383,\n 1398,\n 6870,\n 257,\n 2183,\n 7177,\n 9290,\n 543,\n 318,\n 11670,\n 351,\n 262,\n 299,\n 32152,\n 7824,\n 13,\n 198,\n 220,\n 220,\n 220,\n 1114,\n 517,\n 3307,\n 3387,\n 3522,\n 284,\n 198,\n 220,\n 220,\n 220,\n 3740,\n 1378,\n 77,\n 32152,\n 13,\n 2398,\n 14,\n 15390,\n 14,\n 31284,\n 14,\n 7220,\n 14,\n 12093,\n 873,\n 13,\n 6381,\n 17147,\n 13,\n 6494,\n 2,\n 16502,\n 12,\n 23144,\n 12,\n 18747,\n 12,\n 3642,\n 50221,\n 13,\n 628,\n 220,\n 220,\n 220,\n 383,\n 1398,\n 318,\n 11670,\n 351,\n 25422,\n 2743,\n 338,\n 2939,\n 7679,\n 543,\n 13423,\n 257,\n 366,\n 77,\n 32152,\n 12,\n 2339,\n 7177,\n 1,\n 355,\n 198,\n 220,\n 220,\n 220,\n 5128,\n 543,\n 6971,\n 6376,\n 278,\n 290,\n 460,\n 307,\n 11513,\n 284,\n 257,\n 299,\n 32152,\n 7177,\n 2884,\n 45941,\n 13,\n 292,\n 18747,\n 13,\n 198,\n 220,\n 220,\n 220,\n 357,\n 5420,\n 25,\n 3740,\n 1378,\n 77,\n 499,\n 2743,\n 13,\n 2398,\n 14,\n 83,\n 44917,\n 82,\n 14,\n 10990,\n 3263,\n 874,\n 14,\n 9060,\n 13,\n 6494,\n 2,\n 9060,\n 12,\n 7890,\n 12,\n 392,\n 12,\n 77,\n 32152,\n 12,\n 2339,\n 12,\n 3258,\n 592,\n 8,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 11593,\n 4164,\n 330,\n 31172,\n 834,\n 796,\n 450,\n 66,\n 13,\n 24694,\n 48526,\n 628,\n 220,\n 220,\n 220,\n 825,\n 11593,\n 15003,\n 834,\n 7,\n 944,\n 11,\n 5485,\n 11,\n 288,\n 4906,\n 11,\n 17763,\n 62,\n 7857,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 20768,\n 1634,\n 2446,\n 13,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1058,\n 17143,\n 5485,\n 25,\n 383,\n 5485,\n 286,\n 262,\n 10238,\n 7177,\n 13,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1058,\n 17143,\n 288,\n 4906,\n 25,\n 383,\n 2099,\n 286,\n 262,\n 10238,\n 7177,\n 13,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1058,\n 17143,\n 17763,\n 62,\n 7857,\n 25,\n 383,\n 2546,\n 286,\n 257,\n 2060,\n 17763,\n 416,\n 543,\n 262,\n 2939,\n 318,\n 9086,\n 13,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 6818,\n 18896,\n 7,\n 43358,\n 8,\n 6624,\n 362,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13,\n 43358,\n 796,\n 5485,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13,\n 67,\n 4906,\n 796,\n 288,\n 4906,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13,\n 40927,\n 62,\n 7857,\n 796,\n 17763,\n 62,\n 7857,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13,\n 358,\n 320,\n 796,\n 362,\n 628,\n 220,\n 220,\n 220,\n 2488,\n 26745,\n 198,\n 220,\n 220,\n 220,\n 825,\n 2546,\n 7,\n 944,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 383,\n 1271,\n 286,\n 4847,\n 287,\n 262,\n 7177,\n 13,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1441,\n 2116,\n 13,\n 43358,\n 58,\n 15,\n 60,\n 1635,\n 2116,\n 13,\n 43358,\n 58,\n 16,\n 60,\n 628,\n 220,\n 220,\n 220,\n 825,\n 11593,\n 18747,\n 834,\n 7,\n 944,\n 11,\n 288,\n 4906,\n 28,\n 14202,\n 11,\n 12429,\n 46265,\n 22046,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 279,\n 2645,\n 600,\n 25,\n 15560,\n 28,\n 54,\n 3312,\n 1485,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 11789,\n 973,\n 304,\n 13,\n 70,\n 13,\n 416,\n 299,\n 32152,\n 284,\n 7330,\n 257,\n 3210,\n 299,\n 32152,\n 13,\n 358,\n 18747,\n 13,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1441,\n 45941,\n 13,\n 292,\n 18747,\n 7,\n 944,\n 58,\n 15,\n 25,\n 944,\n 13,\n 43358,\n 58,\n 15,\n 4357,\n 657,\n 25,\n 944,\n 13,\n 43358,\n 58,\n 16,\n 11907,\n 8,\n 628,\n 220,\n 220,\n 220,\n 825,\n 11593,\n 1136,\n 9186,\n 834,\n 7,\n 944,\n 11,\n 4686,\n 87,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 11789,\n 543,\n 23986,\n 262,\n 1104,\n 329,\n 4096,\n 49289,\n 13,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 632,\n 857,\n 407,\n 1104,\n 2214,\n 1895,\n 4249,\n 6190,\n 6376,\n 278,\n 13,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 10968,\n 11,\n 262,\n 923,\n 290,\n 2245,\n 286,\n 257,\n 16416,\n 1276,\n 307,\n 3967,\n 37014,\n 13,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 770,\n 2446,\n 318,\n 23392,\n 329,\n 262,\n 25422,\n 2743,\n 19091,\n 13,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 25422,\n 2743,\n 3848,\n 2116,\n 58,\n 47715,\n 329,\n 16727,\n 262,\n 5485,\n 11,\n 288,\n 4906,\n 290,\n 299,\n 27740,\n 12608,\n 532,\n 407,\n 262,\n 1366,\n 13,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1675,\n 5711,\n 3555,\n 262,\n 10238,\n 1366,\n 428,\n 2446,\n 857,\n 407,\n 1441,\n 257,\n 299,\n 32152,\n 7177,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 475,\n 2116,\n 618,\n 4585,\n 2116,\n 58,\n 25,\n 4083,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1675,\n 1895,\n 262,\n 10238,\n 1366,\n 25422,\n 2743,\n 3848,\n 45941,\n 13,\n 292,\n 18747,\n 7,\n 944,\n 737,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 407,\n 357,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 318,\n 39098,\n 7,\n 312,\n 87,\n 11,\n 16416,\n 8,\n 393,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 357,\n 271,\n 39098,\n 7,\n 312,\n 87,\n 11,\n 46545,\n 8,\n 290,\n 477,\n 7,\n 271,\n 39098,\n 7,\n 72,\n 11,\n 16416,\n 8,\n 329,\n 1312,\n 287,\n 4686,\n 87,\n 4008,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 15179,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 5298,\n 11052,\n 12331,\n 7203,\n 43,\n 12582,\n 19182,\n 691,\n 6971,\n 6376,\n 278,\n 416,\n 24314,\n 2474,\n 8,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 357,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 4686,\n 87,\n 6624,\n 16416,\n 7,\n 14202,\n 11,\n 6045,\n 11,\n 6045,\n 8,\n 393,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 4686,\n 87,\n 6624,\n 357,\n 48369,\n 7,\n 14202,\n 11,\n 6045,\n 11,\n 6045,\n 828,\n 16416,\n 7,\n 14202,\n 11,\n 6045,\n 11,\n 6045,\n 4008,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 15179,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1441,\n 2116,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 18896,\n 7,\n 312,\n 87,\n 8,\n 14512,\n 362,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 5298,\n 35528,\n 7203,\n 3118,\n 15999,\n 6376,\n 2474,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 357,\n 88,\n 62,\n 1084,\n 11,\n 331,\n 62,\n 9806,\n 828,\n 357,\n 87,\n 62,\n 1084,\n 11,\n 2124,\n 62,\n 9806,\n 8,\n 796,\n 47527,\n 72,\n 13,\n 9688,\n 11,\n 1312,\n 13,\n 11338,\n 8,\n 329,\n 1312,\n 287,\n 4686,\n 87,\n 60,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 331,\n 62,\n 2364,\n 796,\n 331,\n 62,\n 1084,\n 532,\n 357,\n 88,\n 62,\n 1084,\n 4064,\n 2116,\n 13,\n 40927,\n 62,\n 7857,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2124,\n 62,\n 2364,\n 796,\n 2124,\n 62,\n 1084,\n 532,\n 357,\n 87,\n 62,\n 1084,\n 4064,\n 2116,\n 13,\n 40927,\n 62,\n 7857,\n 8,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 6818,\n 357,\n 88,\n 62,\n 1084,\n 18189,\n 657,\n 8,\n 290,\n 357,\n 88,\n 62,\n 9806,\n 18189,\n 657,\n 8,\n 290,\n 357,\n 87,\n 62,\n 1084,\n 18189,\n 657,\n 8,\n 1222,\n 357,\n 87,\n 62,\n 9806,\n 18189,\n 657,\n 8,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 331,\n 62,\n 9806,\n 4064,\n 2116,\n 13,\n 40927,\n 62,\n 7857,\n 6624,\n 657,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3509,\n 62,\n 88,\n 62,\n 83,\n 2915,\n 796,\n 357,\n 88,\n 62,\n 9806,\n 3373,\n 2116,\n 13,\n 40927,\n 62,\n 7857,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2073,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3509,\n 62,\n 88,\n 62,\n 83,\n 2915,\n 796,\n 357,\n 88,\n 62,\n 9806,\n 3373,\n 2116,\n 13,\n 40927,\n 62,\n 7857,\n 8,\n 1343,\n 352,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 2124,\n 62,\n 9806,\n 4064,\n 2116,\n 13,\n 40927,\n 62,\n 7857,\n 6624,\n 657,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3509,\n 62,\n 87,\n 62,\n 83,\n 2915,\n 796,\n 357,\n 87,\n 62,\n 9806,\n 3373,\n 2116,\n 13,\n 40927,\n 62,\n 7857,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2073,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3509,\n 62,\n 87,\n 62,\n 83,\n 2915,\n 796,\n 357,\n 87,\n 62,\n 9806,\n 3373,\n 2116,\n 13,\n 40927,\n 62,\n 7857,\n 8,\n 1343,\n 352,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 288,\n 2093,\n 62,\n 3258,\n 592,\n 796,\n 17635,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 329,\n 331,\n 62,\n 40927,\n 287,\n 2837,\n 7,\n 88,\n 62,\n 1084,\n 3373,\n 2116,\n 13,\n 40927,\n 62,\n 7857,\n 11,\n 3509,\n 62,\n 88,\n 62,\n 83,\n 2915,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 5752,\n 62,\n 83,\n 2915,\n 796,\n 17635,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 329,\n 2124,\n 62,\n 40927,\n 287,\n 2837,\n 7,\n 87,\n 62,\n 1084,\n 3373,\n 2116,\n 13,\n 40927,\n 62,\n 7857,\n 11,\n 3509,\n 62,\n 87,\n 62,\n 83,\n 2915,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 5752,\n 62,\n 83,\n 2915,\n 13,\n 33295,\n 7,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 12379,\n 13,\n 6738,\n 62,\n 12381,\n 16548,\n 7,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13,\n 961,\n 62,\n 40927,\n 7,\n 88,\n 62,\n 40927,\n 11,\n 2124,\n 62,\n 40927,\n 828,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 5485,\n 16193,\n 944,\n 13,\n 40927,\n 62,\n 7857,\n 11,\n 2116,\n 13,\n 40927,\n 62,\n 7857,\n 828,\n 288,\n 4906,\n 28,\n 37659,\n 13,\n 28611,\n 23,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1267,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1267,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 288,\n 2093,\n 62,\n 3258,\n 592,\n 13,\n 33295,\n 7,\n 808,\n 62,\n 83,\n 2915,\n 8,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 331,\n 62,\n 9806,\n 796,\n 949,\n 7,\n 88,\n 62,\n 9806,\n 11,\n 2116,\n 13,\n 43358,\n 58,\n 15,\n 12962,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2124,\n 62,\n 9806,\n 796,\n 949,\n 7,\n 87,\n 62,\n 9806,\n 11,\n 2116,\n 13,\n 43358,\n 58,\n 16,\n 12962,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1441,\n 12379,\n 13,\n 9967,\n 7,\n 67,\n 2093,\n 62,\n 3258,\n 592,\n 38381,\n 88,\n 62,\n 1084,\n 12,\n 88,\n 62,\n 2364,\n 25,\n 88,\n 62,\n 9806,\n 12,\n 88,\n 62,\n 2364,\n 11,\n 2124,\n 62,\n 1084,\n 12,\n 87,\n 62,\n 2364,\n 25,\n 87,\n 62,\n 9806,\n 12,\n 87,\n 62,\n 2364,\n 60,\n 628,\n 220,\n 220,\n 220,\n 2488,\n 39305,\n 13,\n 397,\n 8709,\n 24396,\n 198,\n 220,\n 220,\n 220,\n 825,\n 1100,\n 62,\n 40927,\n 7,\n 944,\n 11,\n 331,\n 62,\n 40927,\n 11,\n 2124,\n 62,\n 40927,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 27741,\n 2446,\n 543,\n 9743,\n 257,\n 17763,\n 379,\n 262,\n 2292,\n 357,\n 88,\n 62,\n 40927,\n 11,\n 2124,\n 62,\n 40927,\n 737,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1441,\n 198\n]"},"ratio_char_token":{"kind":"number","value":2.209539121114684,"string":"2.209539"},"token_count":{"kind":"number","value":1866,"string":"1,866"}}},{"rowIdx":4282,"cells":{"content":{"kind":"string","value":"from django.core.management.base import BaseCommand\n\nfrom core.datatools.fail_repeat import FailRepeater\n\n"},"input_ids":{"kind":"list like","value":[6738,42625,14208,13,7295,13,27604,13,8692,1330,7308,21575,198,198,6738,4755,13,19608,265,10141,13,32165,62,44754,1330,18448,47541,729,628],"string":"[\n 6738,\n 42625,\n 14208,\n 13,\n 7295,\n 13,\n 27604,\n 13,\n 8692,\n 1330,\n 7308,\n 21575,\n 198,\n 198,\n 6738,\n 4755,\n 13,\n 19608,\n 265,\n 10141,\n 13,\n 32165,\n 62,\n 44754,\n 1330,\n 18448,\n 47541,\n 729,\n 628\n]"},"ratio_char_token":{"kind":"number","value":3.6551724137931036,"string":"3.655172"},"token_count":{"kind":"number","value":29,"string":"29"}}},{"rowIdx":4283,"cells":{"content":{"kind":"string","value":"from typing import Dict\nimport requests\nfrom config.env import starhubtvplus_app_key, starhubtvplus_client_uuid\n\n"},"input_ids":{"kind":"list like","value":[6738,19720,1330,360,713,198,11748,7007,198,6738,4566,13,24330,1330,3491,40140,14981,9541,62,1324,62,2539,11,3491,40140,14981,9541,62,16366,62,12303,312,628],"string":"[\n 6738,\n 19720,\n 1330,\n 360,\n 713,\n 198,\n 11748,\n 7007,\n 198,\n 6738,\n 4566,\n 13,\n 24330,\n 1330,\n 3491,\n 40140,\n 14981,\n 9541,\n 62,\n 1324,\n 62,\n 2539,\n 11,\n 3491,\n 40140,\n 14981,\n 9541,\n 62,\n 16366,\n 62,\n 12303,\n 312,\n 628\n]"},"ratio_char_token":{"kind":"number","value":3.4242424242424243,"string":"3.424242"},"token_count":{"kind":"number","value":33,"string":"33"}}},{"rowIdx":4284,"cells":{"content":{"kind":"string","value":"#\n# Import section\n#\nimport numpy\n\nfrom syned.beamline.beamline_element import BeamlineElement\nfrom syned.beamline.element_coordinates import ElementCoordinates\nfrom wofry.propagator.propagator import PropagationManager, PropagationElements, PropagationParameters\n\nfrom wofry.propagator.wavefront1D.generic_wavefront import GenericWavefront1D\n\nfrom wofryimpl.propagator.propagators1D.fresnel import Fresnel1D\nfrom wofryimpl.propagator.propagators1D.fresnel_convolution import FresnelConvolution1D\nfrom wofryimpl.propagator.propagators1D.fraunhofer import Fraunhofer1D\nfrom wofryimpl.propagator.propagators1D.integral import Integral1D\nfrom wofryimpl.propagator.propagators1D.fresnel_zoom import FresnelZoom1D\nfrom wofryimpl.propagator.propagators1D.fresnel_zoom_scaling_theorem import FresnelZoomScaling1D\n\n\n#\n# SOURCE========================\n#\n\n\n\n#\n# BEAMLINE========================\n#\n\n\n\n#\n# MAIN FUNCTION========================\n#\n\n\n\n#\n# MAIN========================\n#\n\n\n# main()\nif __name__ == \"__main__\":\n from orangecontrib.esrf.wofry.util.tally import TallyCoherentModes, Tally\n from oasys.util.oasys_util import get_fwhm\n from srxraylib.plot.gol import plot\n #\n #\n #\n # size_at_aperture = 565e-6\n APERTURE = [40.3e-6, 85.1e-6, 145e-6, 1000e-6, -40.3e-6, -85.1e-6, -145e-6, -1000e-6] # [ 5000e-6] # [-40.3e-6, -85.1e-6, -145e-6, -1000e-6] #\n DISTANCE = numpy.linspace(10, 50, 50) # numpy.array([18.4]) # # # 31.19 28.4\n number_of_points = 800 # 800\n\n\n for aperture in APERTURE:\n\n # src1, wf = main(aperture=aperture, distance=18.4168, number_of_points=number_of_points)\n\n filename = \"aperture_h_%g.dat\" % (1e6 * aperture) #<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<\n f = open(filename, 'w')\n\n f.write(\"# S 1 scored data\\n\")\n f.write(\"# N 5\\n\")\n f.write(\"# L distance fwhm total_intensity on_axis_intensity peak_intensity\")\n\n if aperture < 0:\n aperture *= -1\n nmodes = 1\n else:\n nmodes = 10\n\n for i,distance in enumerate(DISTANCE):\n tally = main(aperture=aperture, distance=distance, nmodes=nmodes)\n\n spectral_density = tally.get_spectral_density() # numpy.zeros_like(abscissas)\n abscissas = tally.get_abscissas()\n fwhm, quote, coordinates = get_fwhm(spectral_density, 1e6 * abscissas)\n\n I = spectral_density\n x = abscissas\n\n fwhm, quote, coordinates = get_fwhm(I, x)\n intensity_at_center = I[I.size // 2]\n intensity_total = I.sum() * (x[1] - x[0])\n intensity_peak = I.max()\n\n\n #<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<\n # plot(1e6 * abscissas, spectral_density,\n # legend=[\"From Cross Spectral Density\"],\n # xtitle=\"x [um]\", ytitle=\"Spectral Density\", title=\"D=%g m,FWHM = %g um, a=%g um\" % (distance, fwhm, aperture*1e6))\n\n f.write(\"\\n %g %g %g %g %g \" % (distance, fwhm, intensity_total, intensity_at_center, intensity_peak))\n\n f.close()\n print(\"File %s written to disk\" % filename)\n # tally.save(\"aperture_h_%g.dat\" % (aperture))\n\n\n # main()\n"},"input_ids":{"kind":"list like","value":[2,198,2,17267,2665,198,2,198,11748,299,32152,198,198,6738,827,2817,13,40045,1370,13,40045,1370,62,30854,1330,25855,1370,20180,198,6738,827,2817,13,40045,1370,13,30854,62,37652,17540,1330,11703,7222,585,17540,198,6738,266,1659,563,13,22930,363,1352,13,22930,363,1352,1330,8772,363,341,13511,11,8772,363,341,36,3639,11,8772,363,341,48944,198,198,6738,266,1659,563,13,22930,363,1352,13,19204,8534,16,35,13,41357,62,19204,8534,1330,42044,39709,8534,16,35,198,198,6738,266,1659,563,23928,13,22930,363,1352,13,22930,363,2024,16,35,13,69,411,4954,1330,32732,4954,16,35,198,6738,266,1659,563,23928,13,22930,363,1352,13,22930,363,2024,16,35,13,69,411,4954,62,42946,2122,1330,32732,4954,3103,85,2122,16,35,198,6738,266,1659,563,23928,13,22930,363,1352,13,22930,363,2024,16,35,13,69,430,403,71,30288,1330,39313,403,71,30288,16,35,198,6738,266,1659,563,23928,13,22930,363,1352,13,22930,363,2024,16,35,13,18908,1373,1330,15995,1373,16,35,198,6738,266,1659,563,23928,13,22930,363,1352,13,22930,363,2024,16,35,13,69,411,4954,62,89,4207,1330,32732,4954,57,4207,16,35,198,6738,266,1659,563,23928,13,22930,363,1352,13,22930,363,2024,16,35,13,69,411,4954,62,89,4207,62,1416,4272,62,1169,29625,1330,32732,4954,57,4207,3351,4272,16,35,628,198,2,198,2,311,31033,4770,2559,198,2,628,198,198,2,198,2,9348,2390,24027,4770,2559,198,2,628,198,198,2,198,2,8779,1268,29397,4177,2849,4770,2559,198,2,628,198,198,2,198,2,8779,1268,4770,2559,198,2,628,198,2,1388,3419,198,361,11593,3672,834,6624,366,834,12417,834,1298,198,220,220,220,422,10912,3642,822,13,274,41871,13,86,1659,563,13,22602,13,83,453,1330,309,453,7222,8334,44,4147,11,309,453,198,220,220,220,422,267,292,893,13,22602,13,78,292,893,62,22602,1330,651,62,69,1929,76,198,220,220,220,422,19677,87,2433,8019,13,29487,13,70,349,1330,7110,198,220,220,220,1303,198,220,220,220,1303,198,220,220,220,1303,198,220,220,220,1303,2546,62,265,62,499,861,495,796,642,2996,68,12,21,198,220,220,220,3486,17395,11335,796,685,1821,13,18,68,12,21,11,7600,13,16,68,12,21,11,20299,68,12,21,11,8576,68,12,21,11,532,1821,13,18,68,12,21,11,532,5332,13,16,68,12,21,11,532,18781,68,12,21,11,532,12825,68,12,21,60,1303,685,23336,68,12,21,60,1303,25915,1821,13,18,68,12,21,11,532,5332,13,16,68,12,21,11,532,18781,68,12,21,11,532,12825,68,12,21,60,1303,198,220,220,220,360,8808,19240,796,299,32152,13,21602,10223,7,940,11,2026,11,2026,8,1303,299,32152,13,18747,26933,1507,13,19,12962,1303,220,220,1303,1303,3261,13,1129,2579,13,19,198,220,220,220,1271,62,1659,62,13033,796,10460,1303,10460,628,198,220,220,220,329,32729,287,3486,17395,11335,25,628,220,220,220,220,220,220,220,1303,12351,16,11,266,69,796,1388,7,499,861,495,28,499,861,495,11,5253,28,1507,13,19,14656,11,1271,62,1659,62,13033,28,17618,62,1659,62,13033,8,628,220,220,220,220,220,220,220,29472,796,366,499,861,495,62,71,62,4,70,13,19608,1,4064,357,16,68,21,1635,32729,8,1303,16791,16791,16791,16791,16791,16791,16791,16791,16791,16791,16791,16791,16791,16791,16791,16791,16791,16791,16791,16791,16791,27,198,220,220,220,220,220,220,220,277,796,1280,7,34345,11,705,86,11537,628,220,220,220,220,220,220,220,277,13,13564,7203,2,311,352,7781,1366,59,77,4943,198,220,220,220,220,220,220,220,277,13,13564,7203,2,399,642,59,77,4943,198,220,220,220,220,220,220,220,277,13,13564,7203,2,406,220,5253,220,277,1929,76,220,2472,62,47799,220,319,62,22704,62,47799,220,9103,62,47799,4943,628,220,220,220,220,220,220,220,611,32729,1279,657,25,198,220,220,220,220,220,220,220,220,220,220,220,32729,1635,28,532,16,198,220,220,220,220,220,220,220,220,220,220,220,28642,4147,796,352,198,220,220,220,220,220,220,220,2073,25,198,220,220,220,220,220,220,220,220,220,220,220,28642,4147,796,838,628,220,220,220,220,220,220,220,329,1312,11,30246,287,27056,378,7,35,8808,19240,2599,198,220,220,220,220,220,220,220,220,220,220,220,26767,796,1388,7,499,861,495,28,499,861,495,11,5253,28,30246,11,28642,4147,28,21533,4147,8,628,220,220,220,220,220,220,220,220,220,220,220,37410,62,43337,796,26767,13,1136,62,4443,1373,62,43337,3419,1303,299,32152,13,9107,418,62,2339,7,397,1416,747,292,8,198,220,220,220,220,220,220,220,220,220,220,220,450,1416,747,292,796,26767,13,1136,62,397,1416,747,292,3419,198,220,220,220,220,220,220,220,220,220,220,220,277,1929,76,11,9577,11,22715,796,651,62,69,1929,76,7,4443,1373,62,43337,11,352,68,21,1635,450,1416,747,292,8,628,220,220,220,220,220,220,220,220,220,220,220,314,796,37410,62,43337,198,220,220,220,220,220,220,220,220,220,220,220,2124,796,450,1416,747,292,628,220,220,220,220,220,220,220,220,220,220,220,277,1929,76,11,9577,11,22715,796,651,62,69,1929,76,7,40,11,2124,8,198,220,220,220,220,220,220,220,220,220,220,220,12245,62,265,62,16159,796,314,58,40,13,7857,3373,362,60,198,220,220,220,220,220,220,220,220,220,220,220,12245,62,23350,796,314,13,16345,3419,1635,357,87,58,16,60,532,2124,58,15,12962,198,220,220,220,220,220,220,220,220,220,220,220,12245,62,36729,796,314,13,9806,3419,628,198,220,220,220,220,220,220,220,220,220,220,220,1303,16791,16791,16791,16791,16791,16791,16791,16791,16791,16791,16791,16791,16791,16791,16791,16791,16791,16791,16791,16791,16791,16791,16791,16791,16791,16791,16791,16791,16791,16791,16791,16791,16791,16791,16791,16791,16791,16791,16791,198,220,220,220,220,220,220,220,220,220,220,220,1303,7110,7,16,68,21,1635,450,1416,747,292,11,37410,62,43337,11,198,220,220,220,220,220,220,220,220,220,220,220,1303,220,220,220,220,220,8177,28,14692,4863,6372,13058,1373,360,6377,33116,198,220,220,220,220,220,220,220,220,220,220,220,1303,220,220,220,220,220,220,742,2578,2625,87,685,388,60,1600,331,7839,2625,49738,1373,360,6377,1600,3670,2625,35,28,4,70,285,11,37,12418,44,796,4064,70,23781,11,257,28,4,70,23781,1,4064,357,30246,11,277,1929,76,11,32729,9,16,68,21,4008,628,220,220,220,220,220,220,220,220,220,220,220,277,13,13564,7203,59,77,4064,70,220,4064,70,220,4064,70,220,4064,70,220,4064,70,220,366,4064,357,30246,11,220,277,1929,76,11,220,12245,62,23350,11,220,12245,62,265,62,16159,11,220,12245,62,36729,4008,628,220,220,220,220,220,220,220,277,13,19836,3419,198,220,220,220,220,220,220,220,3601,7203,8979,4064,82,3194,284,11898,1,4064,29472,8,198,220,220,220,220,220,220,220,1303,26767,13,21928,7203,499,861,495,62,71,62,4,70,13,19608,1,4064,357,499,861,495,4008,628,198,220,220,220,1303,1388,3419,198],"string":"[\n 2,\n 198,\n 2,\n 17267,\n 2665,\n 198,\n 2,\n 198,\n 11748,\n 299,\n 32152,\n 198,\n 198,\n 6738,\n 827,\n 2817,\n 13,\n 40045,\n 1370,\n 13,\n 40045,\n 1370,\n 62,\n 30854,\n 1330,\n 25855,\n 1370,\n 20180,\n 198,\n 6738,\n 827,\n 2817,\n 13,\n 40045,\n 1370,\n 13,\n 30854,\n 62,\n 37652,\n 17540,\n 1330,\n 11703,\n 7222,\n 585,\n 17540,\n 198,\n 6738,\n 266,\n 1659,\n 563,\n 13,\n 22930,\n 363,\n 1352,\n 13,\n 22930,\n 363,\n 1352,\n 1330,\n 8772,\n 363,\n 341,\n 13511,\n 11,\n 8772,\n 363,\n 341,\n 36,\n 3639,\n 11,\n 8772,\n 363,\n 341,\n 48944,\n 198,\n 198,\n 6738,\n 266,\n 1659,\n 563,\n 13,\n 22930,\n 363,\n 1352,\n 13,\n 19204,\n 8534,\n 16,\n 35,\n 13,\n 41357,\n 62,\n 19204,\n 8534,\n 1330,\n 42044,\n 39709,\n 8534,\n 16,\n 35,\n 198,\n 198,\n 6738,\n 266,\n 1659,\n 563,\n 23928,\n 13,\n 22930,\n 363,\n 1352,\n 13,\n 22930,\n 363,\n 2024,\n 16,\n 35,\n 13,\n 69,\n 411,\n 4954,\n 1330,\n 32732,\n 4954,\n 16,\n 35,\n 198,\n 6738,\n 266,\n 1659,\n 563,\n 23928,\n 13,\n 22930,\n 363,\n 1352,\n 13,\n 22930,\n 363,\n 2024,\n 16,\n 35,\n 13,\n 69,\n 411,\n 4954,\n 62,\n 42946,\n 2122,\n 1330,\n 32732,\n 4954,\n 3103,\n 85,\n 2122,\n 16,\n 35,\n 198,\n 6738,\n 266,\n 1659,\n 563,\n 23928,\n 13,\n 22930,\n 363,\n 1352,\n 13,\n 22930,\n 363,\n 2024,\n 16,\n 35,\n 13,\n 69,\n 430,\n 403,\n 71,\n 30288,\n 1330,\n 39313,\n 403,\n 71,\n 30288,\n 16,\n 35,\n 198,\n 6738,\n 266,\n 1659,\n 563,\n 23928,\n 13,\n 22930,\n 363,\n 1352,\n 13,\n 22930,\n 363,\n 2024,\n 16,\n 35,\n 13,\n 18908,\n 1373,\n 1330,\n 15995,\n 1373,\n 16,\n 35,\n 198,\n 6738,\n 266,\n 1659,\n 563,\n 23928,\n 13,\n 22930,\n 363,\n 1352,\n 13,\n 22930,\n 363,\n 2024,\n 16,\n 35,\n 13,\n 69,\n 411,\n 4954,\n 62,\n 89,\n 4207,\n 1330,\n 32732,\n 4954,\n 57,\n 4207,\n 16,\n 35,\n 198,\n 6738,\n 266,\n 1659,\n 563,\n 23928,\n 13,\n 22930,\n 363,\n 1352,\n 13,\n 22930,\n 363,\n 2024,\n 16,\n 35,\n 13,\n 69,\n 411,\n 4954,\n 62,\n 89,\n 4207,\n 62,\n 1416,\n 4272,\n 62,\n 1169,\n 29625,\n 1330,\n 32732,\n 4954,\n 57,\n 4207,\n 3351,\n 4272,\n 16,\n 35,\n 628,\n 198,\n 2,\n 198,\n 2,\n 311,\n 31033,\n 4770,\n 2559,\n 198,\n 2,\n 628,\n 198,\n 198,\n 2,\n 198,\n 2,\n 9348,\n 2390,\n 24027,\n 4770,\n 2559,\n 198,\n 2,\n 628,\n 198,\n 198,\n 2,\n 198,\n 2,\n 8779,\n 1268,\n 29397,\n 4177,\n 2849,\n 4770,\n 2559,\n 198,\n 2,\n 628,\n 198,\n 198,\n 2,\n 198,\n 2,\n 8779,\n 1268,\n 4770,\n 2559,\n 198,\n 2,\n 628,\n 198,\n 2,\n 1388,\n 3419,\n 198,\n 361,\n 11593,\n 3672,\n 834,\n 6624,\n 366,\n 834,\n 12417,\n 834,\n 1298,\n 198,\n 220,\n 220,\n 220,\n 422,\n 10912,\n 3642,\n 822,\n 13,\n 274,\n 41871,\n 13,\n 86,\n 1659,\n 563,\n 13,\n 22602,\n 13,\n 83,\n 453,\n 1330,\n 309,\n 453,\n 7222,\n 8334,\n 44,\n 4147,\n 11,\n 309,\n 453,\n 198,\n 220,\n 220,\n 220,\n 422,\n 267,\n 292,\n 893,\n 13,\n 22602,\n 13,\n 78,\n 292,\n 893,\n 62,\n 22602,\n 1330,\n 651,\n 62,\n 69,\n 1929,\n 76,\n 198,\n 220,\n 220,\n 220,\n 422,\n 19677,\n 87,\n 2433,\n 8019,\n 13,\n 29487,\n 13,\n 70,\n 349,\n 1330,\n 7110,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 2546,\n 62,\n 265,\n 62,\n 499,\n 861,\n 495,\n 796,\n 642,\n 2996,\n 68,\n 12,\n 21,\n 198,\n 220,\n 220,\n 220,\n 3486,\n 17395,\n 11335,\n 796,\n 685,\n 1821,\n 13,\n 18,\n 68,\n 12,\n 21,\n 11,\n 7600,\n 13,\n 16,\n 68,\n 12,\n 21,\n 11,\n 20299,\n 68,\n 12,\n 21,\n 11,\n 8576,\n 68,\n 12,\n 21,\n 11,\n 532,\n 1821,\n 13,\n 18,\n 68,\n 12,\n 21,\n 11,\n 532,\n 5332,\n 13,\n 16,\n 68,\n 12,\n 21,\n 11,\n 532,\n 18781,\n 68,\n 12,\n 21,\n 11,\n 532,\n 12825,\n 68,\n 12,\n 21,\n 60,\n 1303,\n 685,\n 23336,\n 68,\n 12,\n 21,\n 60,\n 1303,\n 25915,\n 1821,\n 13,\n 18,\n 68,\n 12,\n 21,\n 11,\n 532,\n 5332,\n 13,\n 16,\n 68,\n 12,\n 21,\n 11,\n 532,\n 18781,\n 68,\n 12,\n 21,\n 11,\n 532,\n 12825,\n 68,\n 12,\n 21,\n 60,\n 1303,\n 198,\n 220,\n 220,\n 220,\n 360,\n 8808,\n 19240,\n 796,\n 299,\n 32152,\n 13,\n 21602,\n 10223,\n 7,\n 940,\n 11,\n 2026,\n 11,\n 2026,\n 8,\n 1303,\n 299,\n 32152,\n 13,\n 18747,\n 26933,\n 1507,\n 13,\n 19,\n 12962,\n 1303,\n 220,\n 220,\n 1303,\n 1303,\n 3261,\n 13,\n 1129,\n 2579,\n 13,\n 19,\n 198,\n 220,\n 220,\n 220,\n 1271,\n 62,\n 1659,\n 62,\n 13033,\n 796,\n 10460,\n 1303,\n 10460,\n 628,\n 198,\n 220,\n 220,\n 220,\n 329,\n 32729,\n 287,\n 3486,\n 17395,\n 11335,\n 25,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 12351,\n 16,\n 11,\n 266,\n 69,\n 796,\n 1388,\n 7,\n 499,\n 861,\n 495,\n 28,\n 499,\n 861,\n 495,\n 11,\n 5253,\n 28,\n 1507,\n 13,\n 19,\n 14656,\n 11,\n 1271,\n 62,\n 1659,\n 62,\n 13033,\n 28,\n 17618,\n 62,\n 1659,\n 62,\n 13033,\n 8,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 29472,\n 796,\n 366,\n 499,\n 861,\n 495,\n 62,\n 71,\n 62,\n 4,\n 70,\n 13,\n 19608,\n 1,\n 4064,\n 357,\n 16,\n 68,\n 21,\n 1635,\n 32729,\n 8,\n 1303,\n 16791,\n 16791,\n 16791,\n 16791,\n 16791,\n 16791,\n 16791,\n 16791,\n 16791,\n 16791,\n 16791,\n 16791,\n 16791,\n 16791,\n 16791,\n 16791,\n 16791,\n 16791,\n 16791,\n 16791,\n 16791,\n 27,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 277,\n 796,\n 1280,\n 7,\n 34345,\n 11,\n 705,\n 86,\n 11537,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 277,\n 13,\n 13564,\n 7203,\n 2,\n 311,\n 352,\n 7781,\n 1366,\n 59,\n 77,\n 4943,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 277,\n 13,\n 13564,\n 7203,\n 2,\n 399,\n 642,\n 59,\n 77,\n 4943,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 277,\n 13,\n 13564,\n 7203,\n 2,\n 406,\n 220,\n 5253,\n 220,\n 277,\n 1929,\n 76,\n 220,\n 2472,\n 62,\n 47799,\n 220,\n 319,\n 62,\n 22704,\n 62,\n 47799,\n 220,\n 9103,\n 62,\n 47799,\n 4943,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 32729,\n 1279,\n 657,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 32729,\n 1635,\n 28,\n 532,\n 16,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 28642,\n 4147,\n 796,\n 352,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2073,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 28642,\n 4147,\n 796,\n 838,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 329,\n 1312,\n 11,\n 30246,\n 287,\n 27056,\n 378,\n 7,\n 35,\n 8808,\n 19240,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 26767,\n 796,\n 1388,\n 7,\n 499,\n 861,\n 495,\n 28,\n 499,\n 861,\n 495,\n 11,\n 5253,\n 28,\n 30246,\n 11,\n 28642,\n 4147,\n 28,\n 21533,\n 4147,\n 8,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37410,\n 62,\n 43337,\n 796,\n 26767,\n 13,\n 1136,\n 62,\n 4443,\n 1373,\n 62,\n 43337,\n 3419,\n 1303,\n 299,\n 32152,\n 13,\n 9107,\n 418,\n 62,\n 2339,\n 7,\n 397,\n 1416,\n 747,\n 292,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 450,\n 1416,\n 747,\n 292,\n 796,\n 26767,\n 13,\n 1136,\n 62,\n 397,\n 1416,\n 747,\n 292,\n 3419,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 277,\n 1929,\n 76,\n 11,\n 9577,\n 11,\n 22715,\n 796,\n 651,\n 62,\n 69,\n 1929,\n 76,\n 7,\n 4443,\n 1373,\n 62,\n 43337,\n 11,\n 352,\n 68,\n 21,\n 1635,\n 450,\n 1416,\n 747,\n 292,\n 8,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 314,\n 796,\n 37410,\n 62,\n 43337,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2124,\n 796,\n 450,\n 1416,\n 747,\n 292,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 277,\n 1929,\n 76,\n 11,\n 9577,\n 11,\n 22715,\n 796,\n 651,\n 62,\n 69,\n 1929,\n 76,\n 7,\n 40,\n 11,\n 2124,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 12245,\n 62,\n 265,\n 62,\n 16159,\n 796,\n 314,\n 58,\n 40,\n 13,\n 7857,\n 3373,\n 362,\n 60,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 12245,\n 62,\n 23350,\n 796,\n 314,\n 13,\n 16345,\n 3419,\n 1635,\n 357,\n 87,\n 58,\n 16,\n 60,\n 532,\n 2124,\n 58,\n 15,\n 12962,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 12245,\n 62,\n 36729,\n 796,\n 314,\n 13,\n 9806,\n 3419,\n 628,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 16791,\n 16791,\n 16791,\n 16791,\n 16791,\n 16791,\n 16791,\n 16791,\n 16791,\n 16791,\n 16791,\n 16791,\n 16791,\n 16791,\n 16791,\n 16791,\n 16791,\n 16791,\n 16791,\n 16791,\n 16791,\n 16791,\n 16791,\n 16791,\n 16791,\n 16791,\n 16791,\n 16791,\n 16791,\n 16791,\n 16791,\n 16791,\n 16791,\n 16791,\n 16791,\n 16791,\n 16791,\n 16791,\n 16791,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 7110,\n 7,\n 16,\n 68,\n 21,\n 1635,\n 450,\n 1416,\n 747,\n 292,\n 11,\n 37410,\n 62,\n 43337,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 220,\n 220,\n 220,\n 220,\n 220,\n 8177,\n 28,\n 14692,\n 4863,\n 6372,\n 13058,\n 1373,\n 360,\n 6377,\n 33116,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 742,\n 2578,\n 2625,\n 87,\n 685,\n 388,\n 60,\n 1600,\n 331,\n 7839,\n 2625,\n 49738,\n 1373,\n 360,\n 6377,\n 1600,\n 3670,\n 2625,\n 35,\n 28,\n 4,\n 70,\n 285,\n 11,\n 37,\n 12418,\n 44,\n 796,\n 4064,\n 70,\n 23781,\n 11,\n 257,\n 28,\n 4,\n 70,\n 23781,\n 1,\n 4064,\n 357,\n 30246,\n 11,\n 277,\n 1929,\n 76,\n 11,\n 32729,\n 9,\n 16,\n 68,\n 21,\n 4008,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 277,\n 13,\n 13564,\n 7203,\n 59,\n 77,\n 4064,\n 70,\n 220,\n 4064,\n 70,\n 220,\n 4064,\n 70,\n 220,\n 4064,\n 70,\n 220,\n 4064,\n 70,\n 220,\n 366,\n 4064,\n 357,\n 30246,\n 11,\n 220,\n 277,\n 1929,\n 76,\n 11,\n 220,\n 12245,\n 62,\n 23350,\n 11,\n 220,\n 12245,\n 62,\n 265,\n 62,\n 16159,\n 11,\n 220,\n 12245,\n 62,\n 36729,\n 4008,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 277,\n 13,\n 19836,\n 3419,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3601,\n 7203,\n 8979,\n 4064,\n 82,\n 3194,\n 284,\n 11898,\n 1,\n 4064,\n 29472,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 26767,\n 13,\n 21928,\n 7203,\n 499,\n 861,\n 495,\n 62,\n 71,\n 62,\n 4,\n 70,\n 13,\n 19608,\n 1,\n 4064,\n 357,\n 499,\n 861,\n 495,\n 4008,\n 628,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 1388,\n 3419,\n 198\n]"},"ratio_char_token":{"kind":"number","value":2.1843349088453747,"string":"2.184335"},"token_count":{"kind":"number","value":1481,"string":"1,481"}}},{"rowIdx":4285,"cells":{"content":{"kind":"string","value":"import unittest\nfrom models import Marker # for Marker.bounding_box_query\nimport datetime\n\n# This tests year 2014 accidents as this is the current example git data for testing\n# Once this changes to another year or to the current year's accidents (as should be) un-comment lines 11,13,15\n# and change both 2014 and 2015 to: %s\n\n\nclass TestQueryFilters(unittest.TestCase):\n \"\"\"\n # cyear = str(datetime.datetime.now().strftime(\"%Y\"))\n global start_date\n start_date = \"01/01/2014\" # % cyear\n global end_date\n end_date = \"01/01/2015\" # % str(int(cyear)-1)\n \"\"\"\n\n\nif __name__ == '__main__':\n unittest.main()\n suite = unittest.TestLoader().loadTestsFromTestCase(TestQueryFilters)\n unittest.TextTestRunner(verbosity=2).run(suite)\n"},"input_ids":{"kind":"list like","value":[11748,555,715,395,198,6738,4981,1330,2940,263,220,1303,329,2940,263,13,7784,278,62,3524,62,22766,198,11748,4818,8079,198,198,2,770,5254,614,1946,17390,355,428,318,262,1459,1672,17606,1366,329,4856,198,2,4874,428,2458,284,1194,614,393,284,262,1459,614,338,17390,357,292,815,307,8,555,12,23893,3951,1367,11,1485,11,1314,198,2,290,1487,1111,1946,290,1853,284,25,4064,82,628,198,4871,6208,20746,11928,1010,7,403,715,395,13,14402,20448,2599,198,220,220,220,37227,198,220,220,220,1303,269,1941,796,965,7,19608,8079,13,19608,8079,13,2197,22446,2536,31387,7203,4,56,48774,198,220,220,220,3298,923,62,4475,198,220,220,220,923,62,4475,796,366,486,14,486,14,4967,1,220,220,220,220,1303,4064,269,1941,198,220,220,220,3298,886,62,4475,198,220,220,220,886,62,4475,796,366,486,14,486,14,4626,1,220,220,220,220,220,220,1303,4064,965,7,600,7,948,451,13219,16,8,198,220,220,220,37227,628,198,361,11593,3672,834,6624,705,834,12417,834,10354,198,220,220,220,555,715,395,13,12417,3419,198,220,220,220,18389,796,555,715,395,13,14402,17401,22446,2220,51,3558,4863,14402,20448,7,14402,20746,11928,1010,8,198,220,220,220,555,715,395,13,8206,14402,49493,7,19011,16579,28,17,737,5143,7,2385,578,8,198],"string":"[\n 11748,\n 555,\n 715,\n 395,\n 198,\n 6738,\n 4981,\n 1330,\n 2940,\n 263,\n 220,\n 1303,\n 329,\n 2940,\n 263,\n 13,\n 7784,\n 278,\n 62,\n 3524,\n 62,\n 22766,\n 198,\n 11748,\n 4818,\n 8079,\n 198,\n 198,\n 2,\n 770,\n 5254,\n 614,\n 1946,\n 17390,\n 355,\n 428,\n 318,\n 262,\n 1459,\n 1672,\n 17606,\n 1366,\n 329,\n 4856,\n 198,\n 2,\n 4874,\n 428,\n 2458,\n 284,\n 1194,\n 614,\n 393,\n 284,\n 262,\n 1459,\n 614,\n 338,\n 17390,\n 357,\n 292,\n 815,\n 307,\n 8,\n 555,\n 12,\n 23893,\n 3951,\n 1367,\n 11,\n 1485,\n 11,\n 1314,\n 198,\n 2,\n 290,\n 1487,\n 1111,\n 1946,\n 290,\n 1853,\n 284,\n 25,\n 4064,\n 82,\n 628,\n 198,\n 4871,\n 6208,\n 20746,\n 11928,\n 1010,\n 7,\n 403,\n 715,\n 395,\n 13,\n 14402,\n 20448,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 269,\n 1941,\n 796,\n 965,\n 7,\n 19608,\n 8079,\n 13,\n 19608,\n 8079,\n 13,\n 2197,\n 22446,\n 2536,\n 31387,\n 7203,\n 4,\n 56,\n 48774,\n 198,\n 220,\n 220,\n 220,\n 3298,\n 923,\n 62,\n 4475,\n 198,\n 220,\n 220,\n 220,\n 923,\n 62,\n 4475,\n 796,\n 366,\n 486,\n 14,\n 486,\n 14,\n 4967,\n 1,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 4064,\n 269,\n 1941,\n 198,\n 220,\n 220,\n 220,\n 3298,\n 886,\n 62,\n 4475,\n 198,\n 220,\n 220,\n 220,\n 886,\n 62,\n 4475,\n 796,\n 366,\n 486,\n 14,\n 486,\n 14,\n 4626,\n 1,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 4064,\n 965,\n 7,\n 600,\n 7,\n 948,\n 451,\n 13219,\n 16,\n 8,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 628,\n 198,\n 361,\n 11593,\n 3672,\n 834,\n 6624,\n 705,\n 834,\n 12417,\n 834,\n 10354,\n 198,\n 220,\n 220,\n 220,\n 555,\n 715,\n 395,\n 13,\n 12417,\n 3419,\n 198,\n 220,\n 220,\n 220,\n 18389,\n 796,\n 555,\n 715,\n 395,\n 13,\n 14402,\n 17401,\n 22446,\n 2220,\n 51,\n 3558,\n 4863,\n 14402,\n 20448,\n 7,\n 14402,\n 20746,\n 11928,\n 1010,\n 8,\n 198,\n 220,\n 220,\n 220,\n 555,\n 715,\n 395,\n 13,\n 8206,\n 14402,\n 49493,\n 7,\n 19011,\n 16579,\n 28,\n 17,\n 737,\n 5143,\n 7,\n 2385,\n 578,\n 8,\n 198\n]"},"ratio_char_token":{"kind":"number","value":2.7781818181818183,"string":"2.778182"},"token_count":{"kind":"number","value":275,"string":"275"}}},{"rowIdx":4286,"cells":{"content":{"kind":"string","value":"# Copyright 2021 Google LLC\n#\n# Licensed under the Apache License, Version 2.0 (the \"License\");\n# you may not use this file except in compliance with the License.\n# You may obtain a copy of the License at\n#\n# http://www.apache.org/licenses/LICENSE-2.0\n#\n# Unless required by applicable law or agreed to in writing, software\n# distributed under the License is distributed on an \"AS IS\" BASIS,\n# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n# See the License for the specific language governing permissions and\n# limitations under the License.\n\nfrom absl.testing import absltest\nfrom learner.brains import tensor_nest\n\nimport tensorflow as tf\n\n\nclass TensorNestTest(absltest.TestCase):\n \"\"\"Tests for the tensor_nest module.\"\"\"\n\n def test_batch_size_valid_nest(self):\n \"\"\"Get the batch size of a nest of tensors with the same batch size.\"\"\"\n nest = {\n 'a': {\n 'b': tf.constant([[1, 2, 3], [4, 5, 6]]),\n 'c': tf.constant([[7, 8, 9, 10], [11, 12, 13, 14]])\n },\n }\n self.assertEqual(2, tensor_nest.batch_size(nest))\n\n def test_batch_size_invalid_nest(self):\n \"\"\"Get the batch size of a nest of tensors with different batch sizes.\"\"\"\n nest = {\n 'a': {\n 'b': tf.constant([[1, 2, 3], [4, 5, 6], [7, 8, 9]]),\n 'c': tf.constant([[7, 8, 9, 10], [11, 12, 13, 14]])\n },\n }\n self.assertRaisesRegex(\n tensor_nest.MismatchedBatchSizeError,\n 'Tensors found in nest with mismatched batch sizes: {\\'a\\'.*}',\n tensor_nest.batch_size, nest)\n\n def test_batch_size_empty_nest(self):\n \"\"\"Get the batch size of an empty tensor nest.\"\"\"\n self.assertIsNone(tensor_nest.batch_size({}))\n\n def test_concatenate_batched(self):\n \"\"\"Test the concatenation of a set of batched tensor nests.\"\"\"\n nests = [\n {\n 'a': {\n 'b': tf.constant([[1, 2], [3, 4]]),\n 'c': tf.constant([[9, 8, 7], [6, 5, 4]]),\n },\n },\n {\n 'a': {\n 'b': tf.constant([[5, 6]]),\n 'c': tf.constant([[3, 2, 1]]),\n },\n },\n ]\n expected = {\n 'a': {\n 'b': tf.constant([[1, 2], [3, 4], [5, 6]]),\n 'c': tf.constant([[9, 8, 7], [6, 5, 4], [3, 2, 1]]),\n },\n }\n tf.nest.assert_same_structure(tensor_nest.concatenate_batched(nests),\n expected, expand_composites=True)\n\n\nif __name__ == '__main__':\n absltest.main()\n"},"input_ids":{"kind":"list like","value":[2,15069,33448,3012,11419,198,2,198,2,49962,739,262,24843,13789,11,10628,362,13,15,357,1169,366,34156,15341,198,2,345,743,407,779,428,2393,2845,287,11846,351,262,13789,13,198,2,921,743,7330,257,4866,286,262,13789,379,198,2,198,2,220,220,220,220,220,2638,1378,2503,13,43073,13,2398,14,677,4541,14,43,2149,24290,12,17,13,15,198,2,198,2,17486,2672,416,9723,1099,393,4987,284,287,3597,11,3788,198,2,9387,739,262,13789,318,9387,319,281,366,1921,3180,1,29809,1797,11,198,2,42881,34764,11015,6375,7102,49828,11053,3963,15529,509,12115,11,2035,4911,393,17142,13,198,2,4091,262,13789,329,262,2176,3303,15030,21627,290,198,2,11247,739,262,13789,13,198,198,6738,2352,75,13,33407,1330,2352,2528,395,198,6738,22454,1008,13,1671,1299,1330,11192,273,62,77,395,198,198,11748,11192,273,11125,355,48700,628,198,4871,309,22854,45,395,14402,7,8937,2528,395,13,14402,20448,2599,198,220,37227,51,3558,329,262,11192,273,62,77,395,8265,526,15931,628,220,825,1332,62,43501,62,7857,62,12102,62,77,395,7,944,2599,198,220,220,220,37227,3855,262,15458,2546,286,257,16343,286,11192,669,351,262,976,15458,2546,526,15931,198,220,220,220,16343,796,1391,198,220,220,220,220,220,220,220,705,64,10354,1391,198,220,220,220,220,220,220,220,220,220,220,220,705,65,10354,48700,13,9979,415,26933,58,16,11,362,11,513,4357,685,19,11,642,11,718,11907,828,198,220,220,220,220,220,220,220,220,220,220,220,705,66,10354,48700,13,9979,415,26933,58,22,11,807,11,860,11,838,4357,685,1157,11,1105,11,1511,11,1478,11907,8,198,220,220,220,220,220,220,220,8964,198,220,220,220,1782,198,220,220,220,2116,13,30493,36,13255,7,17,11,11192,273,62,77,395,13,43501,62,7857,7,77,395,4008,628,220,825,1332,62,43501,62,7857,62,259,12102,62,77,395,7,944,2599,198,220,220,220,37227,3855,262,15458,2546,286,257,16343,286,11192,669,351,1180,15458,10620,526,15931,198,220,220,220,16343,796,1391,198,220,220,220,220,220,220,220,705,64,10354,1391,198,220,220,220,220,220,220,220,220,220,220,220,705,65,10354,48700,13,9979,415,26933,58,16,11,362,11,513,4357,685,19,11,642,11,718,4357,685,22,11,807,11,860,11907,828,198,220,220,220,220,220,220,220,220,220,220,220,705,66,10354,48700,13,9979,415,26933,58,22,11,807,11,860,11,838,4357,685,1157,11,1105,11,1511,11,1478,11907,8,198,220,220,220,220,220,220,220,8964,198,220,220,220,1782,198,220,220,220,2116,13,30493,21762,2696,3041,25636,7,198,220,220,220,220,220,220,220,11192,273,62,77,395,13,44,1042,14265,33,963,10699,12331,11,198,220,220,220,220,220,220,220,705,51,641,669,1043,287,16343,351,32691,14265,15458,10620,25,1391,43054,64,59,4458,9,92,3256,198,220,220,220,220,220,220,220,11192,273,62,77,395,13,43501,62,7857,11,16343,8,628,220,825,1332,62,43501,62,7857,62,28920,62,77,395,7,944,2599,198,220,220,220,37227,3855,262,15458,2546,286,281,6565,11192,273,16343,526,15931,198,220,220,220,2116,13,30493,3792,14202,7,83,22854,62,77,395,13,43501,62,7857,15090,92,4008,628,220,825,1332,62,1102,9246,268,378,62,8664,1740,7,944,2599,198,220,220,220,37227,14402,262,1673,36686,341,286,257,900,286,7365,1740,11192,273,44382,526,15931,198,220,220,220,44382,796,685,198,220,220,220,220,220,220,220,1391,198,220,220,220,220,220,220,220,220,220,220,220,705,64,10354,1391,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,705,65,10354,48700,13,9979,415,26933,58,16,11,362,4357,685,18,11,604,11907,828,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,705,66,10354,48700,13,9979,415,26933,58,24,11,807,11,767,4357,685,21,11,642,11,604,11907,828,198,220,220,220,220,220,220,220,220,220,220,220,8964,198,220,220,220,220,220,220,220,8964,198,220,220,220,220,220,220,220,1391,198,220,220,220,220,220,220,220,220,220,220,220,705,64,10354,1391,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,705,65,10354,48700,13,9979,415,26933,58,20,11,718,11907,828,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,705,66,10354,48700,13,9979,415,26933,58,18,11,362,11,352,11907,828,198,220,220,220,220,220,220,220,220,220,220,220,8964,198,220,220,220,220,220,220,220,8964,198,220,220,220,2361,198,220,220,220,2938,796,1391,198,220,220,220,220,220,220,220,705,64,10354,1391,198,220,220,220,220,220,220,220,220,220,220,220,705,65,10354,48700,13,9979,415,26933,58,16,11,362,4357,685,18,11,604,4357,685,20,11,718,11907,828,198,220,220,220,220,220,220,220,220,220,220,220,705,66,10354,48700,13,9979,415,26933,58,24,11,807,11,767,4357,685,21,11,642,11,604,4357,685,18,11,362,11,352,11907,828,198,220,220,220,220,220,220,220,8964,198,220,220,220,1782,198,220,220,220,48700,13,77,395,13,30493,62,31642,62,301,5620,7,83,22854,62,77,395,13,1102,9246,268,378,62,8664,1740,7,77,3558,828,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,2938,11,4292,62,785,1930,2737,28,17821,8,628,198,361,11593,3672,834,6624,705,834,12417,834,10354,198,220,2352,2528,395,13,12417,3419,198],"string":"[\n 2,\n 15069,\n 33448,\n 3012,\n 11419,\n 198,\n 2,\n 198,\n 2,\n 49962,\n 739,\n 262,\n 24843,\n 13789,\n 11,\n 10628,\n 362,\n 13,\n 15,\n 357,\n 1169,\n 366,\n 34156,\n 15341,\n 198,\n 2,\n 345,\n 743,\n 407,\n 779,\n 428,\n 2393,\n 2845,\n 287,\n 11846,\n 351,\n 262,\n 13789,\n 13,\n 198,\n 2,\n 921,\n 743,\n 7330,\n 257,\n 4866,\n 286,\n 262,\n 13789,\n 379,\n 198,\n 2,\n 198,\n 2,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2638,\n 1378,\n 2503,\n 13,\n 43073,\n 13,\n 2398,\n 14,\n 677,\n 4541,\n 14,\n 43,\n 2149,\n 24290,\n 12,\n 17,\n 13,\n 15,\n 198,\n 2,\n 198,\n 2,\n 17486,\n 2672,\n 416,\n 9723,\n 1099,\n 393,\n 4987,\n 284,\n 287,\n 3597,\n 11,\n 3788,\n 198,\n 2,\n 9387,\n 739,\n 262,\n 13789,\n 318,\n 9387,\n 319,\n 281,\n 366,\n 1921,\n 3180,\n 1,\n 29809,\n 1797,\n 11,\n 198,\n 2,\n 42881,\n 34764,\n 11015,\n 6375,\n 7102,\n 49828,\n 11053,\n 3963,\n 15529,\n 509,\n 12115,\n 11,\n 2035,\n 4911,\n 393,\n 17142,\n 13,\n 198,\n 2,\n 4091,\n 262,\n 13789,\n 329,\n 262,\n 2176,\n 3303,\n 15030,\n 21627,\n 290,\n 198,\n 2,\n 11247,\n 739,\n 262,\n 13789,\n 13,\n 198,\n 198,\n 6738,\n 2352,\n 75,\n 13,\n 33407,\n 1330,\n 2352,\n 2528,\n 395,\n 198,\n 6738,\n 22454,\n 1008,\n 13,\n 1671,\n 1299,\n 1330,\n 11192,\n 273,\n 62,\n 77,\n 395,\n 198,\n 198,\n 11748,\n 11192,\n 273,\n 11125,\n 355,\n 48700,\n 628,\n 198,\n 4871,\n 309,\n 22854,\n 45,\n 395,\n 14402,\n 7,\n 8937,\n 2528,\n 395,\n 13,\n 14402,\n 20448,\n 2599,\n 198,\n 220,\n 37227,\n 51,\n 3558,\n 329,\n 262,\n 11192,\n 273,\n 62,\n 77,\n 395,\n 8265,\n 526,\n 15931,\n 628,\n 220,\n 825,\n 1332,\n 62,\n 43501,\n 62,\n 7857,\n 62,\n 12102,\n 62,\n 77,\n 395,\n 7,\n 944,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 3855,\n 262,\n 15458,\n 2546,\n 286,\n 257,\n 16343,\n 286,\n 11192,\n 669,\n 351,\n 262,\n 976,\n 15458,\n 2546,\n 526,\n 15931,\n 198,\n 220,\n 220,\n 220,\n 16343,\n 796,\n 1391,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 705,\n 64,\n 10354,\n 1391,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 705,\n 65,\n 10354,\n 48700,\n 13,\n 9979,\n 415,\n 26933,\n 58,\n 16,\n 11,\n 362,\n 11,\n 513,\n 4357,\n 685,\n 19,\n 11,\n 642,\n 11,\n 718,\n 11907,\n 828,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 705,\n 66,\n 10354,\n 48700,\n 13,\n 9979,\n 415,\n 26933,\n 58,\n 22,\n 11,\n 807,\n 11,\n 860,\n 11,\n 838,\n 4357,\n 685,\n 1157,\n 11,\n 1105,\n 11,\n 1511,\n 11,\n 1478,\n 11907,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 8964,\n 198,\n 220,\n 220,\n 220,\n 1782,\n 198,\n 220,\n 220,\n 220,\n 2116,\n 13,\n 30493,\n 36,\n 13255,\n 7,\n 17,\n 11,\n 11192,\n 273,\n 62,\n 77,\n 395,\n 13,\n 43501,\n 62,\n 7857,\n 7,\n 77,\n 395,\n 4008,\n 628,\n 220,\n 825,\n 1332,\n 62,\n 43501,\n 62,\n 7857,\n 62,\n 259,\n 12102,\n 62,\n 77,\n 395,\n 7,\n 944,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 3855,\n 262,\n 15458,\n 2546,\n 286,\n 257,\n 16343,\n 286,\n 11192,\n 669,\n 351,\n 1180,\n 15458,\n 10620,\n 526,\n 15931,\n 198,\n 220,\n 220,\n 220,\n 16343,\n 796,\n 1391,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 705,\n 64,\n 10354,\n 1391,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 705,\n 65,\n 10354,\n 48700,\n 13,\n 9979,\n 415,\n 26933,\n 58,\n 16,\n 11,\n 362,\n 11,\n 513,\n 4357,\n 685,\n 19,\n 11,\n 642,\n 11,\n 718,\n 4357,\n 685,\n 22,\n 11,\n 807,\n 11,\n 860,\n 11907,\n 828,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 705,\n 66,\n 10354,\n 48700,\n 13,\n 9979,\n 415,\n 26933,\n 58,\n 22,\n 11,\n 807,\n 11,\n 860,\n 11,\n 838,\n 4357,\n 685,\n 1157,\n 11,\n 1105,\n 11,\n 1511,\n 11,\n 1478,\n 11907,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 8964,\n 198,\n 220,\n 220,\n 220,\n 1782,\n 198,\n 220,\n 220,\n 220,\n 2116,\n 13,\n 30493,\n 21762,\n 2696,\n 3041,\n 25636,\n 7,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 11192,\n 273,\n 62,\n 77,\n 395,\n 13,\n 44,\n 1042,\n 14265,\n 33,\n 963,\n 10699,\n 12331,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 705,\n 51,\n 641,\n 669,\n 1043,\n 287,\n 16343,\n 351,\n 32691,\n 14265,\n 15458,\n 10620,\n 25,\n 1391,\n 43054,\n 64,\n 59,\n 4458,\n 9,\n 92,\n 3256,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 11192,\n 273,\n 62,\n 77,\n 395,\n 13,\n 43501,\n 62,\n 7857,\n 11,\n 16343,\n 8,\n 628,\n 220,\n 825,\n 1332,\n 62,\n 43501,\n 62,\n 7857,\n 62,\n 28920,\n 62,\n 77,\n 395,\n 7,\n 944,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 3855,\n 262,\n 15458,\n 2546,\n 286,\n 281,\n 6565,\n 11192,\n 273,\n 16343,\n 526,\n 15931,\n 198,\n 220,\n 220,\n 220,\n 2116,\n 13,\n 30493,\n 3792,\n 14202,\n 7,\n 83,\n 22854,\n 62,\n 77,\n 395,\n 13,\n 43501,\n 62,\n 7857,\n 15090,\n 92,\n 4008,\n 628,\n 220,\n 825,\n 1332,\n 62,\n 1102,\n 9246,\n 268,\n 378,\n 62,\n 8664,\n 1740,\n 7,\n 944,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 14402,\n 262,\n 1673,\n 36686,\n 341,\n 286,\n 257,\n 900,\n 286,\n 7365,\n 1740,\n 11192,\n 273,\n 44382,\n 526,\n 15931,\n 198,\n 220,\n 220,\n 220,\n 44382,\n 796,\n 685,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1391,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 705,\n 64,\n 10354,\n 1391,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 705,\n 65,\n 10354,\n 48700,\n 13,\n 9979,\n 415,\n 26933,\n 58,\n 16,\n 11,\n 362,\n 4357,\n 685,\n 18,\n 11,\n 604,\n 11907,\n 828,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 705,\n 66,\n 10354,\n 48700,\n 13,\n 9979,\n 415,\n 26933,\n 58,\n 24,\n 11,\n 807,\n 11,\n 767,\n 4357,\n 685,\n 21,\n 11,\n 642,\n 11,\n 604,\n 11907,\n 828,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 8964,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 8964,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1391,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 705,\n 64,\n 10354,\n 1391,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 705,\n 65,\n 10354,\n 48700,\n 13,\n 9979,\n 415,\n 26933,\n 58,\n 20,\n 11,\n 718,\n 11907,\n 828,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 705,\n 66,\n 10354,\n 48700,\n 13,\n 9979,\n 415,\n 26933,\n 58,\n 18,\n 11,\n 362,\n 11,\n 352,\n 11907,\n 828,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 8964,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 8964,\n 198,\n 220,\n 220,\n 220,\n 2361,\n 198,\n 220,\n 220,\n 220,\n 2938,\n 796,\n 1391,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 705,\n 64,\n 10354,\n 1391,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 705,\n 65,\n 10354,\n 48700,\n 13,\n 9979,\n 415,\n 26933,\n 58,\n 16,\n 11,\n 362,\n 4357,\n 685,\n 18,\n 11,\n 604,\n 4357,\n 685,\n 20,\n 11,\n 718,\n 11907,\n 828,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 705,\n 66,\n 10354,\n 48700,\n 13,\n 9979,\n 415,\n 26933,\n 58,\n 24,\n 11,\n 807,\n 11,\n 767,\n 4357,\n 685,\n 21,\n 11,\n 642,\n 11,\n 604,\n 4357,\n 685,\n 18,\n 11,\n 362,\n 11,\n 352,\n 11907,\n 828,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 8964,\n 198,\n 220,\n 220,\n 220,\n 1782,\n 198,\n 220,\n 220,\n 220,\n 48700,\n 13,\n 77,\n 395,\n 13,\n 30493,\n 62,\n 31642,\n 62,\n 301,\n 5620,\n 7,\n 83,\n 22854,\n 62,\n 77,\n 395,\n 13,\n 1102,\n 9246,\n 268,\n 378,\n 62,\n 8664,\n 1740,\n 7,\n 77,\n 3558,\n 828,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2938,\n 11,\n 4292,\n 62,\n 785,\n 1930,\n 2737,\n 28,\n 17821,\n 8,\n 628,\n 198,\n 361,\n 11593,\n 3672,\n 834,\n 6624,\n 705,\n 834,\n 12417,\n 834,\n 10354,\n 198,\n 220,\n 2352,\n 2528,\n 395,\n 13,\n 12417,\n 3419,\n 198\n]"},"ratio_char_token":{"kind":"number","value":2.1701208981001727,"string":"2.170121"},"token_count":{"kind":"number","value":1158,"string":"1,158"}}},{"rowIdx":4287,"cells":{"content":{"kind":"string","value":"\"\"\" Longest Palindromic Subsequence\n\nGiven a string s, find the longest palindromic subsequence's length in s.\n\nA subsequence is a sequence that can be derived from another sequence by\ndeleting some or no elements without changing the order of the remaining elements.\n\n- Example 1:\n - Input: s = \"bbbab\"\n - Output: 4\n - Explanation: One possible longest palindromic subsequence is \"bbbb\".\n- Example 2:\n - Input: s = \"cbbd\"\n - Output: 2\n - Explanation: One possible longest palindromic subsequence is \"bb\".\n- Constraints:\n - 1 <= s.length <= 1000\n - s consists only of lowercase English letters.\n\"\"\"\n\n\n# A Dynamic Programming based Python\n# program for LPS problem Returns the length\n# of the longest palindromic subsequence in seq\n\n\n# Driver program to test above functions\nseq = \"GEEKS FOR GEEKS\"\nn = len(seq)\nprint(\"The length of the LPS is \" + str(lps(seq)))\n\n# This code is contributed by Bhavya Jain"},"input_ids":{"kind":"list like","value":[37811,5882,395,3175,521,398,291,3834,43167,198,198,15056,257,4731,264,11,1064,262,14069,6340,521,398,291,6399,594,338,4129,287,264,13,198,198,32,6399,594,318,257,8379,326,460,307,10944,422,1194,8379,416,198,2934,293,889,617,393,645,4847,1231,5609,262,1502,286,262,5637,4847,13,198,198,12,17934,352,25,198,220,220,220,532,23412,25,264,796,366,11848,65,397,1,198,220,220,220,532,25235,25,604,198,220,220,220,532,50125,341,25,1881,1744,14069,6340,521,398,291,6399,594,318,366,11848,11848,1911,198,12,17934,362,25,198,220,220,220,532,23412,25,264,796,366,66,11848,67,1,198,220,220,220,532,25235,25,362,198,220,220,220,532,50125,341,25,1881,1744,14069,6340,521,398,291,6399,594,318,366,11848,1911,198,12,1482,2536,6003,25,198,220,220,220,532,352,19841,264,13,13664,19841,8576,198,220,220,220,532,264,10874,691,286,2793,7442,3594,7475,13,198,37811,628,198,2,317,26977,30297,1912,11361,198,2,1430,329,406,3705,1917,16409,262,4129,198,2,286,262,14069,6340,521,398,291,6399,594,287,33756,628,198,2,12434,1430,284,1332,2029,5499,198,41068,796,366,38,6500,27015,7473,402,6500,27015,1,198,77,796,18896,7,41068,8,198,4798,7203,464,4129,286,262,406,3705,318,366,1343,965,7,75,862,7,41068,22305,198,198,2,770,2438,318,8639,416,16581,2830,64,449,391],"string":"[\n 37811,\n 5882,\n 395,\n 3175,\n 521,\n 398,\n 291,\n 3834,\n 43167,\n 198,\n 198,\n 15056,\n 257,\n 4731,\n 264,\n 11,\n 1064,\n 262,\n 14069,\n 6340,\n 521,\n 398,\n 291,\n 6399,\n 594,\n 338,\n 4129,\n 287,\n 264,\n 13,\n 198,\n 198,\n 32,\n 6399,\n 594,\n 318,\n 257,\n 8379,\n 326,\n 460,\n 307,\n 10944,\n 422,\n 1194,\n 8379,\n 416,\n 198,\n 2934,\n 293,\n 889,\n 617,\n 393,\n 645,\n 4847,\n 1231,\n 5609,\n 262,\n 1502,\n 286,\n 262,\n 5637,\n 4847,\n 13,\n 198,\n 198,\n 12,\n 17934,\n 352,\n 25,\n 198,\n 220,\n 220,\n 220,\n 532,\n 23412,\n 25,\n 264,\n 796,\n 366,\n 11848,\n 65,\n 397,\n 1,\n 198,\n 220,\n 220,\n 220,\n 532,\n 25235,\n 25,\n 604,\n 198,\n 220,\n 220,\n 220,\n 532,\n 50125,\n 341,\n 25,\n 1881,\n 1744,\n 14069,\n 6340,\n 521,\n 398,\n 291,\n 6399,\n 594,\n 318,\n 366,\n 11848,\n 11848,\n 1911,\n 198,\n 12,\n 17934,\n 362,\n 25,\n 198,\n 220,\n 220,\n 220,\n 532,\n 23412,\n 25,\n 264,\n 796,\n 366,\n 66,\n 11848,\n 67,\n 1,\n 198,\n 220,\n 220,\n 220,\n 532,\n 25235,\n 25,\n 362,\n 198,\n 220,\n 220,\n 220,\n 532,\n 50125,\n 341,\n 25,\n 1881,\n 1744,\n 14069,\n 6340,\n 521,\n 398,\n 291,\n 6399,\n 594,\n 318,\n 366,\n 11848,\n 1911,\n 198,\n 12,\n 1482,\n 2536,\n 6003,\n 25,\n 198,\n 220,\n 220,\n 220,\n 532,\n 352,\n 19841,\n 264,\n 13,\n 13664,\n 19841,\n 8576,\n 198,\n 220,\n 220,\n 220,\n 532,\n 264,\n 10874,\n 691,\n 286,\n 2793,\n 7442,\n 3594,\n 7475,\n 13,\n 198,\n 37811,\n 628,\n 198,\n 2,\n 317,\n 26977,\n 30297,\n 1912,\n 11361,\n 198,\n 2,\n 1430,\n 329,\n 406,\n 3705,\n 1917,\n 16409,\n 262,\n 4129,\n 198,\n 2,\n 286,\n 262,\n 14069,\n 6340,\n 521,\n 398,\n 291,\n 6399,\n 594,\n 287,\n 33756,\n 628,\n 198,\n 2,\n 12434,\n 1430,\n 284,\n 1332,\n 2029,\n 5499,\n 198,\n 41068,\n 796,\n 366,\n 38,\n 6500,\n 27015,\n 7473,\n 402,\n 6500,\n 27015,\n 1,\n 198,\n 77,\n 796,\n 18896,\n 7,\n 41068,\n 8,\n 198,\n 4798,\n 7203,\n 464,\n 4129,\n 286,\n 262,\n 406,\n 3705,\n 318,\n 366,\n 1343,\n 965,\n 7,\n 75,\n 862,\n 7,\n 41068,\n 22305,\n 198,\n 198,\n 2,\n 770,\n 2438,\n 318,\n 8639,\n 416,\n 16581,\n 2830,\n 64,\n 449,\n 391\n]"},"ratio_char_token":{"kind":"number","value":3.2447552447552446,"string":"3.244755"},"token_count":{"kind":"number","value":286,"string":"286"}}},{"rowIdx":4288,"cells":{"content":{"kind":"string","value":"import statistics\ndata = [2.75, 1.75, 1.25, 0.25, 0.5, 1.25, 3.5]\nprint(statistics.mean(data)) # 平均\nprint(statistics.median(data)) # 中央値\nprint(statistics.variance(data)) # 標本標準分散\n"},"input_ids":{"kind":"list like","value":[11748,7869,198,7890,796,685,17,13,2425,11,352,13,2425,11,352,13,1495,11,657,13,1495,11,657,13,20,11,352,13,1495,11,513,13,20,60,198,4798,7,14269,3969,13,32604,7,7890,4008,1303,10263,117,111,161,251,229,198,4798,7,14269,3969,13,1150,666,7,7890,4008,1303,220,40792,13783,106,161,222,97,198,4798,7,14269,3969,13,25641,590,7,7890,4008,1303,10545,101,247,17312,105,162,101,247,162,118,244,26344,228,46763,96,198],"string":"[\n 11748,\n 7869,\n 198,\n 7890,\n 796,\n 685,\n 17,\n 13,\n 2425,\n 11,\n 352,\n 13,\n 2425,\n 11,\n 352,\n 13,\n 1495,\n 11,\n 657,\n 13,\n 1495,\n 11,\n 657,\n 13,\n 20,\n 11,\n 352,\n 13,\n 1495,\n 11,\n 513,\n 13,\n 20,\n 60,\n 198,\n 4798,\n 7,\n 14269,\n 3969,\n 13,\n 32604,\n 7,\n 7890,\n 4008,\n 1303,\n 10263,\n 117,\n 111,\n 161,\n 251,\n 229,\n 198,\n 4798,\n 7,\n 14269,\n 3969,\n 13,\n 1150,\n 666,\n 7,\n 7890,\n 4008,\n 1303,\n 220,\n 40792,\n 13783,\n 106,\n 161,\n 222,\n 97,\n 198,\n 4798,\n 7,\n 14269,\n 3969,\n 13,\n 25641,\n 590,\n 7,\n 7890,\n 4008,\n 1303,\n 10545,\n 101,\n 247,\n 17312,\n 105,\n 162,\n 101,\n 247,\n 162,\n 118,\n 244,\n 26344,\n 228,\n 46763,\n 96,\n 198\n]"},"ratio_char_token":{"kind":"number","value":1.8265306122448979,"string":"1.826531"},"token_count":{"kind":"number","value":98,"string":"98"}}},{"rowIdx":4289,"cells":{"content":{"kind":"string","value":"# Copyright 2021 Joshua Watt \n#\n# SPDX-License-Identifier: MIT\n\n"},"input_ids":{"kind":"list like","value":[2,15069,33448,20700,30263,1279,41,11401,1199,10735,31,14816,13,785,29,198,2,198,2,30628,55,12,34156,12,33234,7483,25,17168,628],"string":"[\n 2,\n 15069,\n 33448,\n 20700,\n 30263,\n 1279,\n 41,\n 11401,\n 1199,\n 10735,\n 31,\n 14816,\n 13,\n 785,\n 29,\n 198,\n 2,\n 198,\n 2,\n 30628,\n 55,\n 12,\n 34156,\n 12,\n 33234,\n 7483,\n 25,\n 17168,\n 628\n]"},"ratio_char_token":{"kind":"number","value":2.9655172413793105,"string":"2.965517"},"token_count":{"kind":"number","value":29,"string":"29"}}},{"rowIdx":4290,"cells":{"content":{"kind":"string","value":"from django.db import models\nfrom django.contrib.auth.models import User\nfrom ckeditor_uploader.fields import RichTextUploadingField\n\n# Create your models here.\n "},"input_ids":{"kind":"list like","value":[6738,42625,14208,13,9945,1330,4981,198,6738,42625,14208,13,3642,822,13,18439,13,27530,1330,11787,198,6738,269,9091,2072,62,25850,263,13,25747,1330,3998,8206,41592,278,15878,198,198,2,13610,534,4981,994,13,198,220,220,220,220],"string":"[\n 6738,\n 42625,\n 14208,\n 13,\n 9945,\n 1330,\n 4981,\n 198,\n 6738,\n 42625,\n 14208,\n 13,\n 3642,\n 822,\n 13,\n 18439,\n 13,\n 27530,\n 1330,\n 11787,\n 198,\n 6738,\n 269,\n 9091,\n 2072,\n 62,\n 25850,\n 263,\n 13,\n 25747,\n 1330,\n 3998,\n 8206,\n 41592,\n 278,\n 15878,\n 198,\n 198,\n 2,\n 13610,\n 534,\n 4981,\n 994,\n 13,\n 198,\n 220,\n 220,\n 220,\n 220\n]"},"ratio_char_token":{"kind":"number","value":3.36734693877551,"string":"3.367347"},"token_count":{"kind":"number","value":49,"string":"49"}}},{"rowIdx":4291,"cells":{"content":{"kind":"string","value":"import os\n\nfrom django import forms\nfrom django.utils.translation import gettext_lazy as _\n\nfrom wagtail.admin.widgets import AdminPageChooser\nfrom wagtail.contrib.redirects.models import Redirect\nfrom wagtail.models import Site\n\n\n\n"},"input_ids":{"kind":"list like","value":[11748,28686,198,198,6738,42625,14208,1330,5107,198,6738,42625,14208,13,26791,13,41519,1330,651,5239,62,75,12582,355,4808,198,198,6738,266,363,13199,13,28482,13,28029,11407,1330,32053,9876,22164,13416,198,6738,266,363,13199,13,3642,822,13,445,1060,82,13,27530,1330,2297,1060,198,6738,266,363,13199,13,27530,1330,14413,628,628],"string":"[\n 11748,\n 28686,\n 198,\n 198,\n 6738,\n 42625,\n 14208,\n 1330,\n 5107,\n 198,\n 6738,\n 42625,\n 14208,\n 13,\n 26791,\n 13,\n 41519,\n 1330,\n 651,\n 5239,\n 62,\n 75,\n 12582,\n 355,\n 4808,\n 198,\n 198,\n 6738,\n 266,\n 363,\n 13199,\n 13,\n 28482,\n 13,\n 28029,\n 11407,\n 1330,\n 32053,\n 9876,\n 22164,\n 13416,\n 198,\n 6738,\n 266,\n 363,\n 13199,\n 13,\n 3642,\n 822,\n 13,\n 445,\n 1060,\n 82,\n 13,\n 27530,\n 1330,\n 2297,\n 1060,\n 198,\n 6738,\n 266,\n 363,\n 13199,\n 13,\n 27530,\n 1330,\n 14413,\n 628,\n 628\n]"},"ratio_char_token":{"kind":"number","value":3.36231884057971,"string":"3.362319"},"token_count":{"kind":"number","value":69,"string":"69"}}},{"rowIdx":4292,"cells":{"content":{"kind":"string","value":"import numpy as np\nimport cv2\nimport copy\nfrom Tkinter import *\nfrom PIL import Image\nfrom PIL import ImageTk\nimport tkFileDialog\n\n\nroot = Tk()\npanelA = None\npanelB = None\nimg = None\nimg2 = None\nimg3 = None\n\nConvolutionLabel = Label(root, text=\"Convolute\").grid(row=0,column=0)\nConv00Entry = Entry(root, bd =5)\nConv01Entry = Entry(root, bd =5)\nConv02Entry = Entry(root, bd =5)\nConv10Entry = Entry(root, bd =5)\nConv11Entry = Entry(root, bd =5)\nConv12Entry = Entry(root, bd =5)\nConv20Entry = Entry(root, bd =5)\nConv21Entry = Entry(root, bd =5)\nConv22Entry = Entry(root, bd =5)\nConv00Entry.grid(row=1,column=0)\nConv01Entry.grid(row=1,column=1)\nConv02Entry.grid(row=1,column=2)\nConv10Entry.grid(row=2,column=0)\nConv11Entry.grid(row=2,column=1)\nConv12Entry.grid(row=2,column=2)\nConv20Entry.grid(row=3,column=0)\nConv21Entry.grid(row=3,column=1)\nConv22Entry.grid(row=3,column=2)\n\nbrightnessLabel = Label(root, text=\"Brightness\").grid(row=4,column=0)\nbrightnessEntry = Entry(root, bd =5)\nbrightnessEntry.grid(row=4,column=1)\ncontrastLabel = Label(root, text=\"Contrast\").grid(row=5,column=0)\ncontrastEntry = Entry(root, bd =5)\ncontrastEntry.grid(row=5,column=1)\n\nzoomOutLabel = Label(root, text=\"ZoomOut\").grid(row=6,column=0)\nzoomOutXEntry = Entry(root, bd =5)\nzoomOutXEntry.grid(row=6,column=1)\nzoomOutYEntry = Entry(root, bd =5)\nzoomOutYEntry.grid(row=6,column=2)\n\nselectImageBtn = Button(root, text=\"Select an image\", command=selectImage).grid(row=0,column=3)\nhorizontalBtn = Button(root, text =\"Flip Horizontally\", command = flipHorizontal).grid(row=1,column=3)\ngrayscaleBtn = Button(root, text =\"Grayscale\", command = grayscale).grid(row=2,column=3)\nhistogramBtn = Button(root, text =\"Generate Histogram\", command = generateHistogram).grid(row=3,column=3)\nbrightnessBtn = Button(root, text =\"Change Brightness\", command = changeBrightness).grid(row=4,column=3)\ncontrastBtn = Button(root, text =\"Change Contrast\", command = changeContrast).grid(row=5,column=3)\nnegativeBtn = Button(root, text =\"Negative\", command = negative).grid(row=6,column=3)\nequalizeBtn = Button(root, text =\"Equalize\", command = equalize).grid(row=7,column=3)\nzoomOutBtn = Button(root, text =\"ZoomOut\", command = zoomOut).grid(row=8,column=3)\nzoomInBtn = Button(root, text =\"ZoomIn\", command = zoomIn).grid(row=9,column=3)\nrotateClockWiseBtn = Button(root, text =\"rotateClockWise\", command = rotateClockWise).grid(row=10,column=3)\nrotateAntiClockWiseBtn = Button(root, text =\"rotateAntiClockWise\", command = rotateAntiClockWise).grid(row=11,column=3)\nconvoluteBtn = Button(root, text =\"Convolute\", command = convolute).grid(row=12,column=3)\n\nroot.mainloop()"},"input_ids":{"kind":"list like","value":[11748,299,32152,355,45941,198,11748,269,85,17,198,11748,4866,198,6738,309,74,3849,1330,1635,198,6738,350,4146,1330,7412,198,6738,350,4146,1330,7412,51,74,198,11748,256,74,8979,44204,628,198,15763,796,309,74,3419,198,35330,32,796,6045,198,35330,33,796,6045,198,9600,796,6045,198,9600,17,796,6045,198,9600,18,796,6045,198,198,3103,85,2122,33986,796,36052,7,15763,11,2420,2625,3103,85,3552,11074,25928,7,808,28,15,11,28665,28,15,8,198,3103,85,405,30150,796,21617,7,15763,11,275,67,796,20,8,198,3103,85,486,30150,796,21617,7,15763,11,275,67,796,20,8,198,3103,85,2999,30150,796,21617,7,15763,11,275,67,796,20,8,198,3103,85,940,30150,796,21617,7,15763,11,275,67,796,20,8,198,3103,85,1157,30150,796,21617,7,15763,11,275,67,796,20,8,198,3103,85,1065,30150,796,21617,7,15763,11,275,67,796,20,8,198,3103,85,1238,30150,796,21617,7,15763,11,275,67,796,20,8,198,3103,85,2481,30150,796,21617,7,15763,11,275,67,796,20,8,198,3103,85,1828,30150,796,21617,7,15763,11,275,67,796,20,8,198,3103,85,405,30150,13,25928,7,808,28,16,11,28665,28,15,8,198,3103,85,486,30150,13,25928,7,808,28,16,11,28665,28,16,8,198,3103,85,2999,30150,13,25928,7,808,28,16,11,28665,28,17,8,198,3103,85,940,30150,13,25928,7,808,28,17,11,28665,28,15,8,198,3103,85,1157,30150,13,25928,7,808,28,17,11,28665,28,16,8,198,3103,85,1065,30150,13,25928,7,808,28,17,11,28665,28,17,8,198,3103,85,1238,30150,13,25928,7,808,28,18,11,28665,28,15,8,198,3103,85,2481,30150,13,25928,7,808,28,18,11,28665,28,16,8,198,3103,85,1828,30150,13,25928,7,808,28,18,11,28665,28,17,8,198,198,29199,1108,33986,796,36052,7,15763,11,2420,2625,41267,1108,11074,25928,7,808,28,19,11,28665,28,15,8,198,29199,1108,30150,796,21617,7,15763,11,275,67,796,20,8,198,29199,1108,30150,13,25928,7,808,28,19,11,28665,28,16,8,198,3642,5685,33986,796,36052,7,15763,11,2420,2625,4264,5685,11074,25928,7,808,28,20,11,28665,28,15,8,198,3642,5685,30150,796,21617,7,15763,11,275,67,796,20,8,198,3642,5685,30150,13,25928,7,808,28,20,11,28665,28,16,8,198,198,89,4207,7975,33986,796,36052,7,15763,11,2420,2625,57,4207,7975,11074,25928,7,808,28,21,11,28665,28,15,8,198,89,4207,7975,55,30150,796,21617,7,15763,11,275,67,796,20,8,198,89,4207,7975,55,30150,13,25928,7,808,28,21,11,28665,28,16,8,198,89,4207,7975,56,30150,796,21617,7,15763,11,275,67,796,20,8,198,89,4207,7975,56,30150,13,25928,7,808,28,21,11,28665,28,17,8,198,198,19738,5159,33,34106,796,20969,7,15763,11,2420,2625,17563,281,2939,1600,3141,28,19738,5159,737,25928,7,808,28,15,11,28665,28,18,8,198,17899,38342,33,34106,796,20969,7,15763,11,2420,796,1,7414,541,6075,12071,453,1600,3141,796,14283,27991,38342,737,25928,7,808,28,16,11,28665,28,18,8,198,2164,592,38765,33,34106,796,20969,7,15763,11,2420,796,1,8642,592,38765,1600,3141,796,1036,592,38765,737,25928,7,808,28,17,11,28665,28,18,8,198,10034,21857,33,34106,796,20969,7,15763,11,2420,796,1,8645,378,5590,21857,1600,3141,796,7716,13749,21857,737,25928,7,808,28,18,11,28665,28,18,8,198,29199,1108,33,34106,796,20969,7,15763,11,2420,796,1,19400,17558,1108,1600,3141,796,1487,41267,1108,737,25928,7,808,28,19,11,28665,28,18,8,198,3642,5685,33,34106,796,20969,7,15763,11,2420,796,1,19400,47011,1600,3141,796,1487,4264,5685,737,25928,7,808,28,20,11,28665,28,18,8,198,31591,33,34106,796,20969,7,15763,11,2420,796,1,32863,876,1600,3141,796,4633,737,25928,7,808,28,21,11,28665,28,18,8,198,40496,1096,33,34106,796,20969,7,15763,11,2420,796,1,36,13255,1096,1600,3141,796,4961,1096,737,25928,7,808,28,22,11,28665,28,18,8,198,89,4207,7975,33,34106,796,20969,7,15763,11,2420,796,1,57,4207,7975,1600,3141,796,19792,7975,737,25928,7,808,28,23,11,28665,28,18,8,198,89,4207,818,33,34106,796,20969,7,15763,11,2420,796,1,57,4207,818,1600,3141,796,19792,818,737,25928,7,808,28,24,11,28665,28,18,8,198,10599,378,44758,54,786,33,34106,796,20969,7,15763,11,2420,796,1,10599,378,44758,54,786,1600,3141,796,23064,44758,54,786,737,25928,7,808,28,940,11,28665,28,18,8,198,10599,378,28795,44758,54,786,33,34106,796,20969,7,15763,11,2420,796,1,10599,378,28795,44758,54,786,1600,3141,796,23064,28795,44758,54,786,737,25928,7,808,28,1157,11,28665,28,18,8,198,42946,3552,33,34106,796,20969,7,15763,11,2420,796,1,3103,85,3552,1600,3141,796,3063,3552,737,25928,7,808,28,1065,11,28665,28,18,8,198,198,15763,13,12417,26268,3419],"string":"[\n 11748,\n 299,\n 32152,\n 355,\n 45941,\n 198,\n 11748,\n 269,\n 85,\n 17,\n 198,\n 11748,\n 4866,\n 198,\n 6738,\n 309,\n 74,\n 3849,\n 1330,\n 1635,\n 198,\n 6738,\n 350,\n 4146,\n 1330,\n 7412,\n 198,\n 6738,\n 350,\n 4146,\n 1330,\n 7412,\n 51,\n 74,\n 198,\n 11748,\n 256,\n 74,\n 8979,\n 44204,\n 628,\n 198,\n 15763,\n 796,\n 309,\n 74,\n 3419,\n 198,\n 35330,\n 32,\n 796,\n 6045,\n 198,\n 35330,\n 33,\n 796,\n 6045,\n 198,\n 9600,\n 796,\n 6045,\n 198,\n 9600,\n 17,\n 796,\n 6045,\n 198,\n 9600,\n 18,\n 796,\n 6045,\n 198,\n 198,\n 3103,\n 85,\n 2122,\n 33986,\n 796,\n 36052,\n 7,\n 15763,\n 11,\n 2420,\n 2625,\n 3103,\n 85,\n 3552,\n 11074,\n 25928,\n 7,\n 808,\n 28,\n 15,\n 11,\n 28665,\n 28,\n 15,\n 8,\n 198,\n 3103,\n 85,\n 405,\n 30150,\n 796,\n 21617,\n 7,\n 15763,\n 11,\n 275,\n 67,\n 796,\n 20,\n 8,\n 198,\n 3103,\n 85,\n 486,\n 30150,\n 796,\n 21617,\n 7,\n 15763,\n 11,\n 275,\n 67,\n 796,\n 20,\n 8,\n 198,\n 3103,\n 85,\n 2999,\n 30150,\n 796,\n 21617,\n 7,\n 15763,\n 11,\n 275,\n 67,\n 796,\n 20,\n 8,\n 198,\n 3103,\n 85,\n 940,\n 30150,\n 796,\n 21617,\n 7,\n 15763,\n 11,\n 275,\n 67,\n 796,\n 20,\n 8,\n 198,\n 3103,\n 85,\n 1157,\n 30150,\n 796,\n 21617,\n 7,\n 15763,\n 11,\n 275,\n 67,\n 796,\n 20,\n 8,\n 198,\n 3103,\n 85,\n 1065,\n 30150,\n 796,\n 21617,\n 7,\n 15763,\n 11,\n 275,\n 67,\n 796,\n 20,\n 8,\n 198,\n 3103,\n 85,\n 1238,\n 30150,\n 796,\n 21617,\n 7,\n 15763,\n 11,\n 275,\n 67,\n 796,\n 20,\n 8,\n 198,\n 3103,\n 85,\n 2481,\n 30150,\n 796,\n 21617,\n 7,\n 15763,\n 11,\n 275,\n 67,\n 796,\n 20,\n 8,\n 198,\n 3103,\n 85,\n 1828,\n 30150,\n 796,\n 21617,\n 7,\n 15763,\n 11,\n 275,\n 67,\n 796,\n 20,\n 8,\n 198,\n 3103,\n 85,\n 405,\n 30150,\n 13,\n 25928,\n 7,\n 808,\n 28,\n 16,\n 11,\n 28665,\n 28,\n 15,\n 8,\n 198,\n 3103,\n 85,\n 486,\n 30150,\n 13,\n 25928,\n 7,\n 808,\n 28,\n 16,\n 11,\n 28665,\n 28,\n 16,\n 8,\n 198,\n 3103,\n 85,\n 2999,\n 30150,\n 13,\n 25928,\n 7,\n 808,\n 28,\n 16,\n 11,\n 28665,\n 28,\n 17,\n 8,\n 198,\n 3103,\n 85,\n 940,\n 30150,\n 13,\n 25928,\n 7,\n 808,\n 28,\n 17,\n 11,\n 28665,\n 28,\n 15,\n 8,\n 198,\n 3103,\n 85,\n 1157,\n 30150,\n 13,\n 25928,\n 7,\n 808,\n 28,\n 17,\n 11,\n 28665,\n 28,\n 16,\n 8,\n 198,\n 3103,\n 85,\n 1065,\n 30150,\n 13,\n 25928,\n 7,\n 808,\n 28,\n 17,\n 11,\n 28665,\n 28,\n 17,\n 8,\n 198,\n 3103,\n 85,\n 1238,\n 30150,\n 13,\n 25928,\n 7,\n 808,\n 28,\n 18,\n 11,\n 28665,\n 28,\n 15,\n 8,\n 198,\n 3103,\n 85,\n 2481,\n 30150,\n 13,\n 25928,\n 7,\n 808,\n 28,\n 18,\n 11,\n 28665,\n 28,\n 16,\n 8,\n 198,\n 3103,\n 85,\n 1828,\n 30150,\n 13,\n 25928,\n 7,\n 808,\n 28,\n 18,\n 11,\n 28665,\n 28,\n 17,\n 8,\n 198,\n 198,\n 29199,\n 1108,\n 33986,\n 796,\n 36052,\n 7,\n 15763,\n 11,\n 2420,\n 2625,\n 41267,\n 1108,\n 11074,\n 25928,\n 7,\n 808,\n 28,\n 19,\n 11,\n 28665,\n 28,\n 15,\n 8,\n 198,\n 29199,\n 1108,\n 30150,\n 796,\n 21617,\n 7,\n 15763,\n 11,\n 275,\n 67,\n 796,\n 20,\n 8,\n 198,\n 29199,\n 1108,\n 30150,\n 13,\n 25928,\n 7,\n 808,\n 28,\n 19,\n 11,\n 28665,\n 28,\n 16,\n 8,\n 198,\n 3642,\n 5685,\n 33986,\n 796,\n 36052,\n 7,\n 15763,\n 11,\n 2420,\n 2625,\n 4264,\n 5685,\n 11074,\n 25928,\n 7,\n 808,\n 28,\n 20,\n 11,\n 28665,\n 28,\n 15,\n 8,\n 198,\n 3642,\n 5685,\n 30150,\n 796,\n 21617,\n 7,\n 15763,\n 11,\n 275,\n 67,\n 796,\n 20,\n 8,\n 198,\n 3642,\n 5685,\n 30150,\n 13,\n 25928,\n 7,\n 808,\n 28,\n 20,\n 11,\n 28665,\n 28,\n 16,\n 8,\n 198,\n 198,\n 89,\n 4207,\n 7975,\n 33986,\n 796,\n 36052,\n 7,\n 15763,\n 11,\n 2420,\n 2625,\n 57,\n 4207,\n 7975,\n 11074,\n 25928,\n 7,\n 808,\n 28,\n 21,\n 11,\n 28665,\n 28,\n 15,\n 8,\n 198,\n 89,\n 4207,\n 7975,\n 55,\n 30150,\n 796,\n 21617,\n 7,\n 15763,\n 11,\n 275,\n 67,\n 796,\n 20,\n 8,\n 198,\n 89,\n 4207,\n 7975,\n 55,\n 30150,\n 13,\n 25928,\n 7,\n 808,\n 28,\n 21,\n 11,\n 28665,\n 28,\n 16,\n 8,\n 198,\n 89,\n 4207,\n 7975,\n 56,\n 30150,\n 796,\n 21617,\n 7,\n 15763,\n 11,\n 275,\n 67,\n 796,\n 20,\n 8,\n 198,\n 89,\n 4207,\n 7975,\n 56,\n 30150,\n 13,\n 25928,\n 7,\n 808,\n 28,\n 21,\n 11,\n 28665,\n 28,\n 17,\n 8,\n 198,\n 198,\n 19738,\n 5159,\n 33,\n 34106,\n 796,\n 20969,\n 7,\n 15763,\n 11,\n 2420,\n 2625,\n 17563,\n 281,\n 2939,\n 1600,\n 3141,\n 28,\n 19738,\n 5159,\n 737,\n 25928,\n 7,\n 808,\n 28,\n 15,\n 11,\n 28665,\n 28,\n 18,\n 8,\n 198,\n 17899,\n 38342,\n 33,\n 34106,\n 796,\n 20969,\n 7,\n 15763,\n 11,\n 2420,\n 796,\n 1,\n 7414,\n 541,\n 6075,\n 12071,\n 453,\n 1600,\n 3141,\n 796,\n 14283,\n 27991,\n 38342,\n 737,\n 25928,\n 7,\n 808,\n 28,\n 16,\n 11,\n 28665,\n 28,\n 18,\n 8,\n 198,\n 2164,\n 592,\n 38765,\n 33,\n 34106,\n 796,\n 20969,\n 7,\n 15763,\n 11,\n 2420,\n 796,\n 1,\n 8642,\n 592,\n 38765,\n 1600,\n 3141,\n 796,\n 1036,\n 592,\n 38765,\n 737,\n 25928,\n 7,\n 808,\n 28,\n 17,\n 11,\n 28665,\n 28,\n 18,\n 8,\n 198,\n 10034,\n 21857,\n 33,\n 34106,\n 796,\n 20969,\n 7,\n 15763,\n 11,\n 2420,\n 796,\n 1,\n 8645,\n 378,\n 5590,\n 21857,\n 1600,\n 3141,\n 796,\n 7716,\n 13749,\n 21857,\n 737,\n 25928,\n 7,\n 808,\n 28,\n 18,\n 11,\n 28665,\n 28,\n 18,\n 8,\n 198,\n 29199,\n 1108,\n 33,\n 34106,\n 796,\n 20969,\n 7,\n 15763,\n 11,\n 2420,\n 796,\n 1,\n 19400,\n 17558,\n 1108,\n 1600,\n 3141,\n 796,\n 1487,\n 41267,\n 1108,\n 737,\n 25928,\n 7,\n 808,\n 28,\n 19,\n 11,\n 28665,\n 28,\n 18,\n 8,\n 198,\n 3642,\n 5685,\n 33,\n 34106,\n 796,\n 20969,\n 7,\n 15763,\n 11,\n 2420,\n 796,\n 1,\n 19400,\n 47011,\n 1600,\n 3141,\n 796,\n 1487,\n 4264,\n 5685,\n 737,\n 25928,\n 7,\n 808,\n 28,\n 20,\n 11,\n 28665,\n 28,\n 18,\n 8,\n 198,\n 31591,\n 33,\n 34106,\n 796,\n 20969,\n 7,\n 15763,\n 11,\n 2420,\n 796,\n 1,\n 32863,\n 876,\n 1600,\n 3141,\n 796,\n 4633,\n 737,\n 25928,\n 7,\n 808,\n 28,\n 21,\n 11,\n 28665,\n 28,\n 18,\n 8,\n 198,\n 40496,\n 1096,\n 33,\n 34106,\n 796,\n 20969,\n 7,\n 15763,\n 11,\n 2420,\n 796,\n 1,\n 36,\n 13255,\n 1096,\n 1600,\n 3141,\n 796,\n 4961,\n 1096,\n 737,\n 25928,\n 7,\n 808,\n 28,\n 22,\n 11,\n 28665,\n 28,\n 18,\n 8,\n 198,\n 89,\n 4207,\n 7975,\n 33,\n 34106,\n 796,\n 20969,\n 7,\n 15763,\n 11,\n 2420,\n 796,\n 1,\n 57,\n 4207,\n 7975,\n 1600,\n 3141,\n 796,\n 19792,\n 7975,\n 737,\n 25928,\n 7,\n 808,\n 28,\n 23,\n 11,\n 28665,\n 28,\n 18,\n 8,\n 198,\n 89,\n 4207,\n 818,\n 33,\n 34106,\n 796,\n 20969,\n 7,\n 15763,\n 11,\n 2420,\n 796,\n 1,\n 57,\n 4207,\n 818,\n 1600,\n 3141,\n 796,\n 19792,\n 818,\n 737,\n 25928,\n 7,\n 808,\n 28,\n 24,\n 11,\n 28665,\n 28,\n 18,\n 8,\n 198,\n 10599,\n 378,\n 44758,\n 54,\n 786,\n 33,\n 34106,\n 796,\n 20969,\n 7,\n 15763,\n 11,\n 2420,\n 796,\n 1,\n 10599,\n 378,\n 44758,\n 54,\n 786,\n 1600,\n 3141,\n 796,\n 23064,\n 44758,\n 54,\n 786,\n 737,\n 25928,\n 7,\n 808,\n 28,\n 940,\n 11,\n 28665,\n 28,\n 18,\n 8,\n 198,\n 10599,\n 378,\n 28795,\n 44758,\n 54,\n 786,\n 33,\n 34106,\n 796,\n 20969,\n 7,\n 15763,\n 11,\n 2420,\n 796,\n 1,\n 10599,\n 378,\n 28795,\n 44758,\n 54,\n 786,\n 1600,\n 3141,\n 796,\n 23064,\n 28795,\n 44758,\n 54,\n 786,\n 737,\n 25928,\n 7,\n 808,\n 28,\n 1157,\n 11,\n 28665,\n 28,\n 18,\n 8,\n 198,\n 42946,\n 3552,\n 33,\n 34106,\n 796,\n 20969,\n 7,\n 15763,\n 11,\n 2420,\n 796,\n 1,\n 3103,\n 85,\n 3552,\n 1600,\n 3141,\n 796,\n 3063,\n 3552,\n 737,\n 25928,\n 7,\n 808,\n 28,\n 1065,\n 11,\n 28665,\n 28,\n 18,\n 8,\n 198,\n 198,\n 15763,\n 13,\n 12417,\n 26268,\n 3419\n]"},"ratio_char_token":{"kind":"number","value":2.564453125,"string":"2.564453"},"token_count":{"kind":"number","value":1024,"string":"1,024"}}},{"rowIdx":4293,"cells":{"content":{"kind":"string","value":"#-------------------------------------------------------------------------------\n# Post processing (color management) related Mari scripts\n# coding: utf-8\n# Copyright (c) 2011 The Foundry Visionmongers Ltd. All Rights Reserved.\n#-------------------------------------------------------------------------------\n\nimport mari, time, PythonQt, os, math\nQtGui = PythonQt.QtGui\nQtCore = PythonQt.QtCore\nocio = mari.utils.ocio\n\n##############################################################################################\n\nGAIN_GROUP_MAX_WIDTH = 312\nFSTOP_MAX_WIDTH = 50\nEXPOSURE_MAX_WIDTH = 102\nGAIN_MAX_WIDTH = 80\nGAMMA_MAX_WIDTH = 200\nTOOLBAR_SPACING = 3\n\ntoolbar = None\n\n #-----------------------------------------------------------------------------------------\n\n #-----------------------------------------------------------------------------------------\n\n #-----------------------------------------------------------------------------------------\n\n #-----------------------------------------------------------------------------------------\n\n #-----------------------------------------------------------------------------------------\n\n #-----------------------------------------------------------------------------------------\n\n #-----------------------------------------------------------------------------------------\n\n #-----------------------------------------------------------------------------------------\n\n #-----------------------------------------------------------------------------------------\n\n #-----------------------------------------------------------------------------------------\n\n #-----------------------------------------------------------------------------------------\n\n #-----------------------------------------------------------------------------------------\n\n #-----------------------------------------------------------------------------------------\n\n #-----------------------------------------------------------------------------------------\n\n #-----------------------------------------------------------------------------------------\n\n #-----------------------------------------------------------------------------------------\n\n #-----------------------------------------------------------------------------------------\n # Widgets:\n #-----------------------------------------------------------------------------------------\n\n #-----------------------------------------------------------------------------------------\n\n #-----------------------------------------------------------------------------------------\n\n #-----------------------------------------------------------------------------------------\n\n #-----------------------------------------------------------------------------------------\n\n #-----------------------------------------------------------------------------------------\n\n #-----------------------------------------------------------------------------------------\n\n #-----------------------------------------------------------------------------------------\n\n #-----------------------------------------------------------------------------------------\n\n #-----------------------------------------------------------------------------------------\n\n #-----------------------------------------------------------------------------------------\n\n #-----------------------------------------------------------------------------------------\n\n #-----------------------------------------------------------------------------------------\n\n #-----------------------------------------------------------------------------------------\n\n #-----------------------------------------------------------------------------------------\n\n #-----------------------------------------------------------------------------------------\n\n #-----------------------------------------------------------------------------------------\n\n #-----------------------------------------------------------------------------------------\n\n #-----------------------------------------------------------------------------------------\n # Metadata:\n #-----------------------------------------------------------------------------------------\n\n #-----------------------------------------------------------------------------------------\n\n #-----------------------------------------------------------------------------------------\n\n\n #-----------------------------------------------------------------------------------------\n # External Connections:\n #-----------------------------------------------------------------------------------------\n\n #-----------------------------------------------------------------------------------------\n\n #-----------------------------------------------------------------------------------------\n\n #-----------------------------------------------------------------------------------------\n\n #-----------------------------------------------------------------------------------------\n\n #-----------------------------------------------------------------------------------------\n\n #-----------------------------------------------------------------------------------------\n # Filter:\n #-----------------------------------------------------------------------------------------\n\n #-----------------------------------------------------------------------------------------\n\n #-----------------------------------------------------------------------------------------\n # Debugging:\n #-----------------------------------------------------------------------------------------\n\n##############################################################################################\n# The following functions CAN'T be part of the toolbar class as a potential bug in PythonQt\n# causes the disconnect function to fail\n\n#-----------------------------------------------------------------------------------------\n\n##############################################################################################\n\nif mari.app.isRunning():\n if not hasattr(mari.gl_render, 'createPostFilterCollection'):\n ocio.printMessage(ocio.MessageType.ERROR, 'This version of Mari does not support the mari.gl_render.createPostFilterCollection API')\n\n else:\n if ocio.config_default is not None:\n toolbar = OcioToolBar()\n\n else:\n # Destroy the OCIO post filter collection if present to prevent the user trying to use it.\n filter_collection = mari.gl_render.findPostFilterCollection('Color Space')\n if filter_collection is not None:\n mari.gl_render.deletePostFilterCollection(filter_collection)\n\n # Destroy the toolbar to prevent the user trying to use it.\n mari.app.deleteToolBar('Color Space')\n"},"input_ids":{"kind":"list like","value":[2,10097,24305,198,2,2947,7587,357,8043,4542,8,3519,29423,14750,198,2,19617,25,3384,69,12,23,198,2,15069,357,66,8,2813,383,4062,563,19009,31059,364,12052,13,220,1439,6923,33876,13,198,2,10097,24305,198,198,11748,1667,72,11,640,11,11361,48,83,11,28686,11,10688,198,48,83,8205,72,220,796,11361,48,83,13,48,83,8205,72,198,48,83,14055,796,11361,48,83,13,48,83,14055,198,420,952,220,220,796,1667,72,13,26791,13,420,952,198,198,29113,29113,14468,7804,4242,2235,198,198,9273,1268,62,46846,62,22921,62,54,2389,4221,796,34465,198,37,2257,3185,62,22921,62,54,2389,4221,220,220,220,220,220,796,2026,198,6369,37997,11335,62,22921,62,54,2389,4221,220,220,796,15143,198,9273,1268,62,22921,62,54,2389,4221,220,220,220,220,220,220,796,4019,198,38,2390,5673,62,22921,62,54,2389,4221,220,220,220,220,220,796,939,198,10468,3535,33,1503,62,4303,2246,2751,220,220,220,220,220,796,513,198,198,25981,5657,220,220,220,220,220,220,220,220,220,220,220,220,220,796,6045,628,220,220,220,1303,10097,22369,12,628,220,220,220,1303,10097,22369,12,628,220,220,220,1303,10097,22369,12,628,220,220,220,1303,10097,22369,12,628,220,220,220,1303,10097,22369,12,628,220,220,220,1303,10097,22369,12,628,220,220,220,1303,10097,22369,12,628,220,220,220,1303,10097,22369,12,628,220,220,220,1303,10097,22369,12,628,220,220,220,1303,10097,22369,12,628,220,220,220,1303,10097,22369,12,628,220,220,220,1303,10097,22369,12,628,220,220,220,1303,10097,22369,12,628,220,220,220,1303,10097,22369,12,628,220,220,220,1303,10097,22369,12,628,220,220,220,1303,10097,22369,12,628,220,220,220,1303,10097,22369,12,198,220,220,220,1303,24801,11407,25,198,220,220,220,1303,10097,22369,12,628,220,220,220,1303,10097,22369,12,628,220,220,220,1303,10097,22369,12,628,220,220,220,1303,10097,22369,12,628,220,220,220,1303,10097,22369,12,628,220,220,220,1303,10097,22369,12,628,220,220,220,1303,10097,22369,12,628,220,220,220,1303,10097,22369,12,628,220,220,220,1303,10097,22369,12,628,220,220,220,1303,10097,22369,12,628,220,220,220,1303,10097,22369,12,628,220,220,220,1303,10097,22369,12,628,220,220,220,1303,10097,22369,12,628,220,220,220,1303,10097,22369,12,628,220,220,220,1303,10097,22369,12,628,220,220,220,1303,10097,22369,12,628,220,220,220,1303,10097,22369,12,628,220,220,220,1303,10097,22369,12,628,220,220,220,1303,10097,22369,12,198,220,220,220,1303,3395,14706,25,198,220,220,220,1303,10097,22369,12,628,220,220,220,1303,10097,22369,12,628,220,220,220,1303,10097,22369,12,628,198,220,220,220,1303,10097,22369,12,198,220,220,220,1303,34579,8113,507,25,198,220,220,220,1303,10097,22369,12,628,220,220,220,1303,10097,22369,12,628,220,220,220,1303,10097,22369,12,628,220,220,220,1303,10097,22369,12,628,220,220,220,1303,10097,22369,12,628,220,220,220,1303,10097,22369,12,628,220,220,220,1303,10097,22369,12,198,220,220,220,1303,25853,25,198,220,220,220,1303,10097,22369,12,628,220,220,220,1303,10097,22369,12,628,220,220,220,1303,10097,22369,12,198,220,220,220,1303,31687,2667,25,198,220,220,220,1303,10097,22369,12,198,198,29113,29113,14468,7804,4242,2235,198,2,383,1708,5499,15628,6,51,307,636,286,262,50149,1398,355,257,2785,5434,287,11361,48,83,198,2,5640,262,22837,2163,284,2038,198,198,2,10097,22369,12,198,198,29113,29113,14468,7804,4242,2235,198,198,361,1667,72,13,1324,13,271,28768,33529,198,220,220,220,611,407,468,35226,7,76,2743,13,4743,62,13287,11,705,17953,6307,22417,36307,6,2599,198,220,220,220,220,220,220,220,267,66,952,13,4798,12837,7,420,952,13,12837,6030,13,24908,11,705,1212,2196,286,29423,857,407,1104,262,1667,72,13,4743,62,13287,13,17953,6307,22417,36307,7824,11537,628,220,220,220,2073,25,198,220,220,220,220,220,220,220,611,267,66,952,13,11250,62,12286,318,407,6045,25,198,220,220,220,220,220,220,220,220,220,220,220,50149,796,440,66,952,25391,10374,3419,628,220,220,220,220,220,220,220,2073,25,198,220,220,220,220,220,220,220,220,220,220,220,1303,19448,262,24775,9399,1281,8106,4947,611,1944,284,2948,262,2836,2111,284,779,340,13,198,220,220,220,220,220,220,220,220,220,220,220,8106,62,43681,796,1667,72,13,4743,62,13287,13,19796,6307,22417,36307,10786,10258,4687,11537,198,220,220,220,220,220,220,220,220,220,220,220,611,8106,62,43681,318,407,6045,25,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1667,72,13,4743,62,13287,13,33678,6307,22417,36307,7,24455,62,43681,8,628,220,220,220,220,220,220,220,220,220,220,220,1303,19448,262,50149,284,2948,262,2836,2111,284,779,340,13,198,220,220,220,220,220,220,220,220,220,220,220,1667,72,13,1324,13,33678,25391,10374,10786,10258,4687,11537,198],"string":"[\n 2,\n 10097,\n 24305,\n 198,\n 2,\n 2947,\n 7587,\n 357,\n 8043,\n 4542,\n 8,\n 3519,\n 29423,\n 14750,\n 198,\n 2,\n 19617,\n 25,\n 3384,\n 69,\n 12,\n 23,\n 198,\n 2,\n 15069,\n 357,\n 66,\n 8,\n 2813,\n 383,\n 4062,\n 563,\n 19009,\n 31059,\n 364,\n 12052,\n 13,\n 220,\n 1439,\n 6923,\n 33876,\n 13,\n 198,\n 2,\n 10097,\n 24305,\n 198,\n 198,\n 11748,\n 1667,\n 72,\n 11,\n 640,\n 11,\n 11361,\n 48,\n 83,\n 11,\n 28686,\n 11,\n 10688,\n 198,\n 48,\n 83,\n 8205,\n 72,\n 220,\n 796,\n 11361,\n 48,\n 83,\n 13,\n 48,\n 83,\n 8205,\n 72,\n 198,\n 48,\n 83,\n 14055,\n 796,\n 11361,\n 48,\n 83,\n 13,\n 48,\n 83,\n 14055,\n 198,\n 420,\n 952,\n 220,\n 220,\n 796,\n 1667,\n 72,\n 13,\n 26791,\n 13,\n 420,\n 952,\n 198,\n 198,\n 29113,\n 29113,\n 14468,\n 7804,\n 4242,\n 2235,\n 198,\n 198,\n 9273,\n 1268,\n 62,\n 46846,\n 62,\n 22921,\n 62,\n 54,\n 2389,\n 4221,\n 796,\n 34465,\n 198,\n 37,\n 2257,\n 3185,\n 62,\n 22921,\n 62,\n 54,\n 2389,\n 4221,\n 220,\n 220,\n 220,\n 220,\n 220,\n 796,\n 2026,\n 198,\n 6369,\n 37997,\n 11335,\n 62,\n 22921,\n 62,\n 54,\n 2389,\n 4221,\n 220,\n 220,\n 796,\n 15143,\n 198,\n 9273,\n 1268,\n 62,\n 22921,\n 62,\n 54,\n 2389,\n 4221,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 796,\n 4019,\n 198,\n 38,\n 2390,\n 5673,\n 62,\n 22921,\n 62,\n 54,\n 2389,\n 4221,\n 220,\n 220,\n 220,\n 220,\n 220,\n 796,\n 939,\n 198,\n 10468,\n 3535,\n 33,\n 1503,\n 62,\n 4303,\n 2246,\n 2751,\n 220,\n 220,\n 220,\n 220,\n 220,\n 796,\n 513,\n 198,\n 198,\n 25981,\n 5657,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 796,\n 6045,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 10097,\n 22369,\n 12,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 10097,\n 22369,\n 12,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 10097,\n 22369,\n 12,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 10097,\n 22369,\n 12,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 10097,\n 22369,\n 12,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 10097,\n 22369,\n 12,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 10097,\n 22369,\n 12,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 10097,\n 22369,\n 12,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 10097,\n 22369,\n 12,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 10097,\n 22369,\n 12,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 10097,\n 22369,\n 12,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 10097,\n 22369,\n 12,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 10097,\n 22369,\n 12,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 10097,\n 22369,\n 12,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 10097,\n 22369,\n 12,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 10097,\n 22369,\n 12,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 10097,\n 22369,\n 12,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 24801,\n 11407,\n 25,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 10097,\n 22369,\n 12,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 10097,\n 22369,\n 12,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 10097,\n 22369,\n 12,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 10097,\n 22369,\n 12,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 10097,\n 22369,\n 12,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 10097,\n 22369,\n 12,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 10097,\n 22369,\n 12,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 10097,\n 22369,\n 12,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 10097,\n 22369,\n 12,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 10097,\n 22369,\n 12,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 10097,\n 22369,\n 12,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 10097,\n 22369,\n 12,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 10097,\n 22369,\n 12,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 10097,\n 22369,\n 12,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 10097,\n 22369,\n 12,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 10097,\n 22369,\n 12,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 10097,\n 22369,\n 12,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 10097,\n 22369,\n 12,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 10097,\n 22369,\n 12,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 3395,\n 14706,\n 25,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 10097,\n 22369,\n 12,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 10097,\n 22369,\n 12,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 10097,\n 22369,\n 12,\n 628,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 10097,\n 22369,\n 12,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 34579,\n 8113,\n 507,\n 25,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 10097,\n 22369,\n 12,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 10097,\n 22369,\n 12,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 10097,\n 22369,\n 12,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 10097,\n 22369,\n 12,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 10097,\n 22369,\n 12,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 10097,\n 22369,\n 12,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 10097,\n 22369,\n 12,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 25853,\n 25,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 10097,\n 22369,\n 12,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 10097,\n 22369,\n 12,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 10097,\n 22369,\n 12,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 31687,\n 2667,\n 25,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 10097,\n 22369,\n 12,\n 198,\n 198,\n 29113,\n 29113,\n 14468,\n 7804,\n 4242,\n 2235,\n 198,\n 2,\n 383,\n 1708,\n 5499,\n 15628,\n 6,\n 51,\n 307,\n 636,\n 286,\n 262,\n 50149,\n 1398,\n 355,\n 257,\n 2785,\n 5434,\n 287,\n 11361,\n 48,\n 83,\n 198,\n 2,\n 5640,\n 262,\n 22837,\n 2163,\n 284,\n 2038,\n 198,\n 198,\n 2,\n 10097,\n 22369,\n 12,\n 198,\n 198,\n 29113,\n 29113,\n 14468,\n 7804,\n 4242,\n 2235,\n 198,\n 198,\n 361,\n 1667,\n 72,\n 13,\n 1324,\n 13,\n 271,\n 28768,\n 33529,\n 198,\n 220,\n 220,\n 220,\n 611,\n 407,\n 468,\n 35226,\n 7,\n 76,\n 2743,\n 13,\n 4743,\n 62,\n 13287,\n 11,\n 705,\n 17953,\n 6307,\n 22417,\n 36307,\n 6,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 267,\n 66,\n 952,\n 13,\n 4798,\n 12837,\n 7,\n 420,\n 952,\n 13,\n 12837,\n 6030,\n 13,\n 24908,\n 11,\n 705,\n 1212,\n 2196,\n 286,\n 29423,\n 857,\n 407,\n 1104,\n 262,\n 1667,\n 72,\n 13,\n 4743,\n 62,\n 13287,\n 13,\n 17953,\n 6307,\n 22417,\n 36307,\n 7824,\n 11537,\n 628,\n 220,\n 220,\n 220,\n 2073,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 267,\n 66,\n 952,\n 13,\n 11250,\n 62,\n 12286,\n 318,\n 407,\n 6045,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 50149,\n 796,\n 440,\n 66,\n 952,\n 25391,\n 10374,\n 3419,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2073,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 19448,\n 262,\n 24775,\n 9399,\n 1281,\n 8106,\n 4947,\n 611,\n 1944,\n 284,\n 2948,\n 262,\n 2836,\n 2111,\n 284,\n 779,\n 340,\n 13,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 8106,\n 62,\n 43681,\n 796,\n 1667,\n 72,\n 13,\n 4743,\n 62,\n 13287,\n 13,\n 19796,\n 6307,\n 22417,\n 36307,\n 10786,\n 10258,\n 4687,\n 11537,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 8106,\n 62,\n 43681,\n 318,\n 407,\n 6045,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1667,\n 72,\n 13,\n 4743,\n 62,\n 13287,\n 13,\n 33678,\n 6307,\n 22417,\n 36307,\n 7,\n 24455,\n 62,\n 43681,\n 8,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 19448,\n 262,\n 50149,\n 284,\n 2948,\n 262,\n 2836,\n 2111,\n 284,\n 779,\n 340,\n 13,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1667,\n 72,\n 13,\n 1324,\n 13,\n 33678,\n 25391,\n 10374,\n 10786,\n 10258,\n 4687,\n 11537,\n 198\n]"},"ratio_char_token":{"kind":"number","value":6.726295210166178,"string":"6.726295"},"token_count":{"kind":"number","value":1023,"string":"1,023"}}},{"rowIdx":4294,"cells":{"content":{"kind":"string","value":"# Copyright (c) Facebook, Inc. and its affiliates.\n#\n# This source code is licensed under the MIT license found in the\n# LICENSE file in the root directory of this source tree.\n\nimport os\nimport shutil\nfrom pathlib import Path\n\nfrom libcst.testing.utils import UnitTest\n\nfrom fixit.common.config import (\n CACHE as CONFIG_CACHE,\n get_lint_config,\n get_rules_for_path,\n)\nfrom fixit.common.utils import (\n dedent_with_lstrip,\n DuplicateLintRuleNameError,\n find_and_import_rule,\n import_rule_from_package,\n LintRuleNotFoundError,\n)\n\n\nDUMMY_PACKAGE: str = \"fixit.common.tests.test_imports_dummy_package\"\nDUMMY_PACKAGE_PATH: Path = Path(__file__).parent / \"test_imports_dummy_package\"\n\nDUPLICATE_DUMMY_PATH: Path = (\n Path(__file__).parent / \"test_imports_dummy_package_with_duplicate_rule\"\n)\n\n# Using dummy config file, test whether the rule import helpers work as expected.\n\n"},"input_ids":{"kind":"list like","value":[2,15069,357,66,8,3203,11,3457,13,290,663,29116,13,198,2,198,2,770,2723,2438,318,11971,739,262,17168,5964,1043,287,262,198,2,38559,24290,2393,287,262,6808,8619,286,428,2723,5509,13,198,198,11748,28686,198,11748,4423,346,198,6738,3108,8019,1330,10644,198,198,6738,9195,66,301,13,33407,13,26791,1330,11801,14402,198,198,6738,4259,270,13,11321,13,11250,1330,357,198,220,220,220,327,2246,13909,355,25626,62,34,2246,13909,11,198,220,220,220,651,62,75,600,62,11250,11,198,220,220,220,651,62,38785,62,1640,62,6978,11,198,8,198,6738,4259,270,13,11321,13,26791,1330,357,198,220,220,220,4648,298,62,4480,62,75,36311,11,198,220,220,220,49821,5344,43,600,31929,5376,12331,11,198,220,220,220,1064,62,392,62,11748,62,25135,11,198,220,220,220,1330,62,25135,62,6738,62,26495,11,198,220,220,220,406,600,31929,3673,21077,12331,11,198,8,628,198,35,5883,26708,62,47,8120,11879,25,965,796,366,13049,270,13,11321,13,41989,13,9288,62,320,3742,62,67,13513,62,26495,1,198,35,5883,26708,62,47,8120,11879,62,34219,25,10644,796,10644,7,834,7753,834,737,8000,1220,366,9288,62,320,3742,62,67,13513,62,26495,1,198,198,35,52,31484,6158,62,35,5883,26708,62,34219,25,10644,796,357,198,220,220,220,10644,7,834,7753,834,737,8000,1220,366,9288,62,320,3742,62,67,13513,62,26495,62,4480,62,646,489,5344,62,25135,1,198,8,198,198,2,8554,31548,4566,2393,11,1332,1771,262,3896,1330,49385,670,355,2938,13,628],"string":"[\n 2,\n 15069,\n 357,\n 66,\n 8,\n 3203,\n 11,\n 3457,\n 13,\n 290,\n 663,\n 29116,\n 13,\n 198,\n 2,\n 198,\n 2,\n 770,\n 2723,\n 2438,\n 318,\n 11971,\n 739,\n 262,\n 17168,\n 5964,\n 1043,\n 287,\n 262,\n 198,\n 2,\n 38559,\n 24290,\n 2393,\n 287,\n 262,\n 6808,\n 8619,\n 286,\n 428,\n 2723,\n 5509,\n 13,\n 198,\n 198,\n 11748,\n 28686,\n 198,\n 11748,\n 4423,\n 346,\n 198,\n 6738,\n 3108,\n 8019,\n 1330,\n 10644,\n 198,\n 198,\n 6738,\n 9195,\n 66,\n 301,\n 13,\n 33407,\n 13,\n 26791,\n 1330,\n 11801,\n 14402,\n 198,\n 198,\n 6738,\n 4259,\n 270,\n 13,\n 11321,\n 13,\n 11250,\n 1330,\n 357,\n 198,\n 220,\n 220,\n 220,\n 327,\n 2246,\n 13909,\n 355,\n 25626,\n 62,\n 34,\n 2246,\n 13909,\n 11,\n 198,\n 220,\n 220,\n 220,\n 651,\n 62,\n 75,\n 600,\n 62,\n 11250,\n 11,\n 198,\n 220,\n 220,\n 220,\n 651,\n 62,\n 38785,\n 62,\n 1640,\n 62,\n 6978,\n 11,\n 198,\n 8,\n 198,\n 6738,\n 4259,\n 270,\n 13,\n 11321,\n 13,\n 26791,\n 1330,\n 357,\n 198,\n 220,\n 220,\n 220,\n 4648,\n 298,\n 62,\n 4480,\n 62,\n 75,\n 36311,\n 11,\n 198,\n 220,\n 220,\n 220,\n 49821,\n 5344,\n 43,\n 600,\n 31929,\n 5376,\n 12331,\n 11,\n 198,\n 220,\n 220,\n 220,\n 1064,\n 62,\n 392,\n 62,\n 11748,\n 62,\n 25135,\n 11,\n 198,\n 220,\n 220,\n 220,\n 1330,\n 62,\n 25135,\n 62,\n 6738,\n 62,\n 26495,\n 11,\n 198,\n 220,\n 220,\n 220,\n 406,\n 600,\n 31929,\n 3673,\n 21077,\n 12331,\n 11,\n 198,\n 8,\n 628,\n 198,\n 35,\n 5883,\n 26708,\n 62,\n 47,\n 8120,\n 11879,\n 25,\n 965,\n 796,\n 366,\n 13049,\n 270,\n 13,\n 11321,\n 13,\n 41989,\n 13,\n 9288,\n 62,\n 320,\n 3742,\n 62,\n 67,\n 13513,\n 62,\n 26495,\n 1,\n 198,\n 35,\n 5883,\n 26708,\n 62,\n 47,\n 8120,\n 11879,\n 62,\n 34219,\n 25,\n 10644,\n 796,\n 10644,\n 7,\n 834,\n 7753,\n 834,\n 737,\n 8000,\n 1220,\n 366,\n 9288,\n 62,\n 320,\n 3742,\n 62,\n 67,\n 13513,\n 62,\n 26495,\n 1,\n 198,\n 198,\n 35,\n 52,\n 31484,\n 6158,\n 62,\n 35,\n 5883,\n 26708,\n 62,\n 34219,\n 25,\n 10644,\n 796,\n 357,\n 198,\n 220,\n 220,\n 220,\n 10644,\n 7,\n 834,\n 7753,\n 834,\n 737,\n 8000,\n 1220,\n 366,\n 9288,\n 62,\n 320,\n 3742,\n 62,\n 67,\n 13513,\n 62,\n 26495,\n 62,\n 4480,\n 62,\n 646,\n 489,\n 5344,\n 62,\n 25135,\n 1,\n 198,\n 8,\n 198,\n 198,\n 2,\n 8554,\n 31548,\n 4566,\n 2393,\n 11,\n 1332,\n 1771,\n 262,\n 3896,\n 1330,\n 49385,\n 670,\n 355,\n 2938,\n 13,\n 628\n]"},"ratio_char_token":{"kind":"number","value":2.8006230529595015,"string":"2.800623"},"token_count":{"kind":"number","value":321,"string":"321"}}},{"rowIdx":4295,"cells":{"content":{"kind":"string","value":"\"\"\"\nAnnounce addresses as they are received from other hosts\n\"\"\"\nimport Queue\n\nimport state\nfrom helper_random import randomshuffle\nfrom network.assemble import assemble_addr\nfrom network.connectionpool import BMConnectionPool\nfrom queues import addrQueue\nfrom threads import StoppableThread\n\n\nclass AddrThread(StoppableThread):\n \"\"\"(Node) address broadcasting thread\"\"\"\n name = \"AddrBroadcaster\"\n"},"input_ids":{"kind":"list like","value":[37811,198,18858,8652,9405,355,484,389,2722,422,584,11453,198,37811,198,11748,4670,518,198,198,11748,1181,198,6738,31904,62,25120,1330,4738,1477,18137,198,6738,3127,13,292,15140,1330,25432,62,29851,198,6738,3127,13,38659,7742,1330,29944,32048,27201,198,6738,43359,1330,37817,34991,198,6738,14390,1330,520,35628,16818,628,198,4871,3060,81,16818,7,1273,35628,16818,2599,198,220,220,220,13538,18109,19667,8,2209,22978,4704,37811,198,220,220,220,1438,796,366,4550,81,30507,17970,1,198],"string":"[\n 37811,\n 198,\n 18858,\n 8652,\n 9405,\n 355,\n 484,\n 389,\n 2722,\n 422,\n 584,\n 11453,\n 198,\n 37811,\n 198,\n 11748,\n 4670,\n 518,\n 198,\n 198,\n 11748,\n 1181,\n 198,\n 6738,\n 31904,\n 62,\n 25120,\n 1330,\n 4738,\n 1477,\n 18137,\n 198,\n 6738,\n 3127,\n 13,\n 292,\n 15140,\n 1330,\n 25432,\n 62,\n 29851,\n 198,\n 6738,\n 3127,\n 13,\n 38659,\n 7742,\n 1330,\n 29944,\n 32048,\n 27201,\n 198,\n 6738,\n 43359,\n 1330,\n 37817,\n 34991,\n 198,\n 6738,\n 14390,\n 1330,\n 520,\n 35628,\n 16818,\n 628,\n 198,\n 4871,\n 3060,\n 81,\n 16818,\n 7,\n 1273,\n 35628,\n 16818,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 13538,\n 18109,\n 19667,\n 8,\n 2209,\n 22978,\n 4704,\n 37811,\n 198,\n 220,\n 220,\n 220,\n 1438,\n 796,\n 366,\n 4550,\n 81,\n 30507,\n 17970,\n 1,\n 198\n]"},"ratio_char_token":{"kind":"number","value":4.03,"string":"4.03"},"token_count":{"kind":"number","value":100,"string":"100"}}},{"rowIdx":4296,"cells":{"content":{"kind":"string","value":"print(\"branches are fun\")"},"input_ids":{"kind":"list like","value":[4798,7203,1671,12140,389,1257,4943],"string":"[\n 4798,\n 7203,\n 1671,\n 12140,\n 389,\n 1257,\n 4943\n]"},"ratio_char_token":{"kind":"number","value":3.5714285714285716,"string":"3.571429"},"token_count":{"kind":"number","value":7,"string":"7"}}},{"rowIdx":4297,"cells":{"content":{"kind":"string","value":"from django import template\n\nregister = template.Library()\n\n@register.filter(name='addcss')\n\n\n\n"},"input_ids":{"kind":"list like","value":[6738,42625,14208,1330,11055,198,198,30238,796,11055,13,23377,3419,198,198,31,30238,13,24455,7,3672,11639,2860,25471,11537,628,628],"string":"[\n 6738,\n 42625,\n 14208,\n 1330,\n 11055,\n 198,\n 198,\n 30238,\n 796,\n 11055,\n 13,\n 23377,\n 3419,\n 198,\n 198,\n 31,\n 30238,\n 13,\n 24455,\n 7,\n 3672,\n 11639,\n 2860,\n 25471,\n 11537,\n 628,\n 628\n]"},"ratio_char_token":{"kind":"number","value":3.5185185185185186,"string":"3.518519"},"token_count":{"kind":"number","value":27,"string":"27"}}},{"rowIdx":4298,"cells":{"content":{"kind":"string","value":"# -*- coding: utf-8 -*-\n\nvars2d = [\n '2m_temperature',\n '10m_u_component_of_wind', '10m_v_component_of_wind',\n 'total_cloud_cover', 'total_precipitation',\n 'toa_incident_solar_radiation',\n 'temperature_850hPa',\n]\n\nvars3d = [\n 'geopotential', 'temperature',\n 'specific_humidity', 'relative_humidity',\n 'u_component_of_wind', 'v_component_of_wind',\n 'vorticity', 'potential_vorticity',\n]\n\ncodes = {\n 'geopotential': 'z',\n 'temperature': 't',\n 'temperature_850hPa': 't',\n 'specific_humidity': 'q',\n 'relative_humidity': 'r',\n 'u_component_of_wind': 'u',\n 'v_component_of_wind': 'v',\n 'vorticity': 'vo',\n 'potential_vorticity': 'pv',\n '2m_temperature': 't2m',\n '10m_u_component_of_wind': 'u10',\n '10m_v_component_of_wind': 'v10',\n 'total_cloud_cover': 'tcc',\n 'total_precipitation': 'tp',\n 'toa_incident_solar_radiation': 'tisr',\n}\n\ncode2var = {\n 'z': 'geopotential',\n 't': 'temperature',\n 'q': 'specific_humidity',\n 'r': 'relative_humidity',\n 'u': 'u_component_of_wind',\n 'v': 'v_component_of_wind',\n 'vo': 'vorticity',\n 'pv': 'potential_vorticity',\n 't2m': '2m_temperature',\n 'u10': '10m_u_component_of_wind',\n 'v10': '10m_v_component_of_wind',\n 'tcc': 'total_cloud_cover',\n 'tp': 'total_precipitation',\n 'tisr': 'toa_incident_solar_radiation',\n}\n\n"},"input_ids":{"kind":"list like","value":[2,532,9,12,19617,25,3384,69,12,23,532,9,12,198,198,85,945,17,67,796,685,198,220,220,220,705,17,76,62,11498,21069,3256,198,220,220,220,705,940,76,62,84,62,42895,62,1659,62,7972,3256,705,940,76,62,85,62,42895,62,1659,62,7972,3256,198,220,220,220,705,23350,62,17721,62,9631,3256,705,23350,62,3866,66,541,3780,3256,198,220,220,220,705,1462,64,62,1939,738,62,82,6192,62,6335,3920,3256,198,220,220,220,705,11498,21069,62,25764,71,28875,3256,198,60,198,198,85,945,18,67,796,685,198,220,220,220,705,469,43372,1843,3256,705,11498,21069,3256,198,220,220,220,705,11423,62,17047,17995,3256,705,43762,62,17047,17995,3256,198,220,220,220,705,84,62,42895,62,1659,62,7972,3256,705,85,62,42895,62,1659,62,7972,3256,198,220,220,220,705,85,419,8467,3256,705,13059,1843,62,85,419,8467,3256,198,60,198,198,40148,796,1391,198,220,220,220,705,469,43372,1843,10354,705,89,3256,198,220,220,220,705,11498,21069,10354,705,83,3256,198,220,220,220,705,11498,21069,62,25764,71,28875,10354,705,83,3256,198,220,220,220,705,11423,62,17047,17995,10354,705,80,3256,198,220,220,220,705,43762,62,17047,17995,10354,705,81,3256,198,220,220,220,705,84,62,42895,62,1659,62,7972,10354,705,84,3256,198,220,220,220,705,85,62,42895,62,1659,62,7972,10354,705,85,3256,198,220,220,220,705,85,419,8467,10354,705,13038,3256,198,220,220,220,705,13059,1843,62,85,419,8467,10354,705,79,85,3256,198,220,220,220,705,17,76,62,11498,21069,10354,705,83,17,76,3256,198,220,220,220,705,940,76,62,84,62,42895,62,1659,62,7972,10354,705,84,940,3256,198,220,220,220,705,940,76,62,85,62,42895,62,1659,62,7972,10354,705,85,940,3256,198,220,220,220,705,23350,62,17721,62,9631,10354,705,83,535,3256,198,220,220,220,705,23350,62,3866,66,541,3780,10354,705,34788,3256,198,220,220,220,705,1462,64,62,1939,738,62,82,6192,62,6335,3920,10354,705,48010,81,3256,198,92,198,198,8189,17,7785,796,1391,198,220,220,220,705,89,10354,705,469,43372,1843,3256,198,220,220,220,705,83,10354,705,11498,21069,3256,198,220,220,220,705,80,10354,705,11423,62,17047,17995,3256,198,220,220,220,705,81,10354,705,43762,62,17047,17995,3256,198,220,220,220,705,84,10354,705,84,62,42895,62,1659,62,7972,3256,198,220,220,220,705,85,10354,705,85,62,42895,62,1659,62,7972,3256,198,220,220,220,705,13038,10354,705,85,419,8467,3256,198,220,220,220,705,79,85,10354,705,13059,1843,62,85,419,8467,3256,198,220,220,220,705,83,17,76,10354,705,17,76,62,11498,21069,3256,198,220,220,220,705,84,940,10354,705,940,76,62,84,62,42895,62,1659,62,7972,3256,198,220,220,220,705,85,940,10354,705,940,76,62,85,62,42895,62,1659,62,7972,3256,198,220,220,220,705,83,535,10354,705,23350,62,17721,62,9631,3256,198,220,220,220,705,34788,10354,705,23350,62,3866,66,541,3780,3256,198,220,220,220,705,48010,81,10354,705,1462,64,62,1939,738,62,82,6192,62,6335,3920,3256,198,92,628],"string":"[\n 2,\n 532,\n 9,\n 12,\n 19617,\n 25,\n 3384,\n 69,\n 12,\n 23,\n 532,\n 9,\n 12,\n 198,\n 198,\n 85,\n 945,\n 17,\n 67,\n 796,\n 685,\n 198,\n 220,\n 220,\n 220,\n 705,\n 17,\n 76,\n 62,\n 11498,\n 21069,\n 3256,\n 198,\n 220,\n 220,\n 220,\n 705,\n 940,\n 76,\n 62,\n 84,\n 62,\n 42895,\n 62,\n 1659,\n 62,\n 7972,\n 3256,\n 705,\n 940,\n 76,\n 62,\n 85,\n 62,\n 42895,\n 62,\n 1659,\n 62,\n 7972,\n 3256,\n 198,\n 220,\n 220,\n 220,\n 705,\n 23350,\n 62,\n 17721,\n 62,\n 9631,\n 3256,\n 705,\n 23350,\n 62,\n 3866,\n 66,\n 541,\n 3780,\n 3256,\n 198,\n 220,\n 220,\n 220,\n 705,\n 1462,\n 64,\n 62,\n 1939,\n 738,\n 62,\n 82,\n 6192,\n 62,\n 6335,\n 3920,\n 3256,\n 198,\n 220,\n 220,\n 220,\n 705,\n 11498,\n 21069,\n 62,\n 25764,\n 71,\n 28875,\n 3256,\n 198,\n 60,\n 198,\n 198,\n 85,\n 945,\n 18,\n 67,\n 796,\n 685,\n 198,\n 220,\n 220,\n 220,\n 705,\n 469,\n 43372,\n 1843,\n 3256,\n 705,\n 11498,\n 21069,\n 3256,\n 198,\n 220,\n 220,\n 220,\n 705,\n 11423,\n 62,\n 17047,\n 17995,\n 3256,\n 705,\n 43762,\n 62,\n 17047,\n 17995,\n 3256,\n 198,\n 220,\n 220,\n 220,\n 705,\n 84,\n 62,\n 42895,\n 62,\n 1659,\n 62,\n 7972,\n 3256,\n 705,\n 85,\n 62,\n 42895,\n 62,\n 1659,\n 62,\n 7972,\n 3256,\n 198,\n 220,\n 220,\n 220,\n 705,\n 85,\n 419,\n 8467,\n 3256,\n 705,\n 13059,\n 1843,\n 62,\n 85,\n 419,\n 8467,\n 3256,\n 198,\n 60,\n 198,\n 198,\n 40148,\n 796,\n 1391,\n 198,\n 220,\n 220,\n 220,\n 705,\n 469,\n 43372,\n 1843,\n 10354,\n 705,\n 89,\n 3256,\n 198,\n 220,\n 220,\n 220,\n 705,\n 11498,\n 21069,\n 10354,\n 705,\n 83,\n 3256,\n 198,\n 220,\n 220,\n 220,\n 705,\n 11498,\n 21069,\n 62,\n 25764,\n 71,\n 28875,\n 10354,\n 705,\n 83,\n 3256,\n 198,\n 220,\n 220,\n 220,\n 705,\n 11423,\n 62,\n 17047,\n 17995,\n 10354,\n 705,\n 80,\n 3256,\n 198,\n 220,\n 220,\n 220,\n 705,\n 43762,\n 62,\n 17047,\n 17995,\n 10354,\n 705,\n 81,\n 3256,\n 198,\n 220,\n 220,\n 220,\n 705,\n 84,\n 62,\n 42895,\n 62,\n 1659,\n 62,\n 7972,\n 10354,\n 705,\n 84,\n 3256,\n 198,\n 220,\n 220,\n 220,\n 705,\n 85,\n 62,\n 42895,\n 62,\n 1659,\n 62,\n 7972,\n 10354,\n 705,\n 85,\n 3256,\n 198,\n 220,\n 220,\n 220,\n 705,\n 85,\n 419,\n 8467,\n 10354,\n 705,\n 13038,\n 3256,\n 198,\n 220,\n 220,\n 220,\n 705,\n 13059,\n 1843,\n 62,\n 85,\n 419,\n 8467,\n 10354,\n 705,\n 79,\n 85,\n 3256,\n 198,\n 220,\n 220,\n 220,\n 705,\n 17,\n 76,\n 62,\n 11498,\n 21069,\n 10354,\n 705,\n 83,\n 17,\n 76,\n 3256,\n 198,\n 220,\n 220,\n 220,\n 705,\n 940,\n 76,\n 62,\n 84,\n 62,\n 42895,\n 62,\n 1659,\n 62,\n 7972,\n 10354,\n 705,\n 84,\n 940,\n 3256,\n 198,\n 220,\n 220,\n 220,\n 705,\n 940,\n 76,\n 62,\n 85,\n 62,\n 42895,\n 62,\n 1659,\n 62,\n 7972,\n 10354,\n 705,\n 85,\n 940,\n 3256,\n 198,\n 220,\n 220,\n 220,\n 705,\n 23350,\n 62,\n 17721,\n 62,\n 9631,\n 10354,\n 705,\n 83,\n 535,\n 3256,\n 198,\n 220,\n 220,\n 220,\n 705,\n 23350,\n 62,\n 3866,\n 66,\n 541,\n 3780,\n 10354,\n 705,\n 34788,\n 3256,\n 198,\n 220,\n 220,\n 220,\n 705,\n 1462,\n 64,\n 62,\n 1939,\n 738,\n 62,\n 82,\n 6192,\n 62,\n 6335,\n 3920,\n 10354,\n 705,\n 48010,\n 81,\n 3256,\n 198,\n 92,\n 198,\n 198,\n 8189,\n 17,\n 7785,\n 796,\n 1391,\n 198,\n 220,\n 220,\n 220,\n 705,\n 89,\n 10354,\n 705,\n 469,\n 43372,\n 1843,\n 3256,\n 198,\n 220,\n 220,\n 220,\n 705,\n 83,\n 10354,\n 705,\n 11498,\n 21069,\n 3256,\n 198,\n 220,\n 220,\n 220,\n 705,\n 80,\n 10354,\n 705,\n 11423,\n 62,\n 17047,\n 17995,\n 3256,\n 198,\n 220,\n 220,\n 220,\n 705,\n 81,\n 10354,\n 705,\n 43762,\n 62,\n 17047,\n 17995,\n 3256,\n 198,\n 220,\n 220,\n 220,\n 705,\n 84,\n 10354,\n 705,\n 84,\n 62,\n 42895,\n 62,\n 1659,\n 62,\n 7972,\n 3256,\n 198,\n 220,\n 220,\n 220,\n 705,\n 85,\n 10354,\n 705,\n 85,\n 62,\n 42895,\n 62,\n 1659,\n 62,\n 7972,\n 3256,\n 198,\n 220,\n 220,\n 220,\n 705,\n 13038,\n 10354,\n 705,\n 85,\n 419,\n 8467,\n 3256,\n 198,\n 220,\n 220,\n 220,\n 705,\n 79,\n 85,\n 10354,\n 705,\n 13059,\n 1843,\n 62,\n 85,\n 419,\n 8467,\n 3256,\n 198,\n 220,\n 220,\n 220,\n 705,\n 83,\n 17,\n 76,\n 10354,\n 705,\n 17,\n 76,\n 62,\n 11498,\n 21069,\n 3256,\n 198,\n 220,\n 220,\n 220,\n 705,\n 84,\n 940,\n 10354,\n 705,\n 940,\n 76,\n 62,\n 84,\n 62,\n 42895,\n 62,\n 1659,\n 62,\n 7972,\n 3256,\n 198,\n 220,\n 220,\n 220,\n 705,\n 85,\n 940,\n 10354,\n 705,\n 940,\n 76,\n 62,\n 85,\n 62,\n 42895,\n 62,\n 1659,\n 62,\n 7972,\n 3256,\n 198,\n 220,\n 220,\n 220,\n 705,\n 83,\n 535,\n 10354,\n 705,\n 23350,\n 62,\n 17721,\n 62,\n 9631,\n 3256,\n 198,\n 220,\n 220,\n 220,\n 705,\n 34788,\n 10354,\n 705,\n 23350,\n 62,\n 3866,\n 66,\n 541,\n 3780,\n 3256,\n 198,\n 220,\n 220,\n 220,\n 705,\n 48010,\n 81,\n 10354,\n 705,\n 1462,\n 64,\n 62,\n 1939,\n 738,\n 62,\n 82,\n 6192,\n 62,\n 6335,\n 3920,\n 3256,\n 198,\n 92,\n 628\n]"},"ratio_char_token":{"kind":"number","value":2.085889570552147,"string":"2.08589"},"token_count":{"kind":"number","value":652,"string":"652"}}},{"rowIdx":4299,"cells":{"content":{"kind":"string","value":"# -*- coding: utf-8 -*-\n\"\"\"\n StepPy\n :copyright: (c) 2016-2017 by Yann Gravrand.\n :license: BSD, see LICENSE for more details.\n\"\"\"\n\nfrom collections import OrderedDict\n\n"},"input_ids":{"kind":"list like","value":[2,532,9,12,19617,25,3384,69,12,23,532,9,12,198,37811,198,220,220,220,5012,20519,198,220,220,220,1058,22163,4766,25,357,66,8,1584,12,5539,416,575,1236,32599,25192,13,198,220,220,220,1058,43085,25,347,10305,11,766,38559,24290,329,517,3307,13,198,37811,198,198,6738,17268,1330,14230,1068,35,713,628],"string":"[\n 2,\n 532,\n 9,\n 12,\n 19617,\n 25,\n 3384,\n 69,\n 12,\n 23,\n 532,\n 9,\n 12,\n 198,\n 37811,\n 198,\n 220,\n 220,\n 220,\n 5012,\n 20519,\n 198,\n 220,\n 220,\n 220,\n 1058,\n 22163,\n 4766,\n 25,\n 357,\n 66,\n 8,\n 1584,\n 12,\n 5539,\n 416,\n 575,\n 1236,\n 32599,\n 25192,\n 13,\n 198,\n 220,\n 220,\n 220,\n 1058,\n 43085,\n 25,\n 347,\n 10305,\n 11,\n 766,\n 38559,\n 24290,\n 329,\n 517,\n 3307,\n 13,\n 198,\n 37811,\n 198,\n 198,\n 6738,\n 17268,\n 1330,\n 14230,\n 1068,\n 35,\n 713,\n 628\n]"},"ratio_char_token":{"kind":"number","value":2.5428571428571427,"string":"2.542857"},"token_count":{"kind":"number","value":70,"string":"70"}}}],"truncated":false,"partial":false},"paginationData":{"pageIndex":42,"numItemsPerPage":100,"numTotalItems":12760182,"offset":4200,"length":100}},"jwt":"eyJhbGciOiJFZERTQSJ9.eyJyZWFkIjp0cnVlLCJwZXJtaXNzaW9ucyI6eyJyZXBvLmNvbnRlbnQucmVhZCI6dHJ1ZX0sImlhdCI6MTc1Nzg0NzA0Niwic3ViIjoiL2RhdGFzZXRzL3l0emkvdGhlLXN0YWNrLWRlZHVwLXB5dGhvbi1maWx0ZXJlZC1kb2NzdHJpbmdzLWdwdDIiLCJleHAiOjE3NTc4NTA2NDYsImlzcyI6Imh0dHBzOi8vaHVnZ2luZ2ZhY2UuY28ifQ.5dPFW2O4hyjA0OGbnoDkQ3SQQ6HGusQ4oLmq87yzxaetSCB5WC11sbXTLQ4wsPgMHfG8MmZzNMYGrePJ-zPaDQ","displayUrls":true},"discussionsStats":{"closed":0,"open":1,"total":1},"fullWidth":true,"hasGatedAccess":true,"hasFullAccess":true,"isEmbedded":false,"savedQueries":{"community":[],"user":[]}}">
Subset (1)
default (12.8M rows)
Split (1)
train (12.8M rows)
# Prerequisite: directories for "in_strProtRefsDir" and "sparseData2", should not contain any ".txt" file
# Output: under sparseData2 directory: target.csv, metaInfo.csv, *.txt
import sys
import os
sys.path.append('../..')
import prepLib
in_strFastaFilename = '{!s}/data/protein/plos_HumanEKC/HumanEKC_uniprot-reviewed_up000005640_DECOY.fasta'.format(os.environ.get('HOME'))
in_strPeptideFilename = '{!s}/data/protein/plos_HumanEKC/HumanEKC_dataset_peptide_identification_plos.txt'.format(os.environ.get('HOME'))
in_strProtRefsDir = './protRefs'
out_strOutputBaseDir = './sparseData2'
protDic, pepDic = prepLib.loadProtPeptideDic(in_strPeptideFilename)
prepLib.breakFasta(in_strFastaFilename, in_strProtRefsDir, protDic)
listProtRefFileName = prepLib.getProtRefFileNames(in_strProtRefsDir)
# match peptides with proteins
prepLib.fuRunAllProt(listProtRefFileName, in_strProtRefsDir, out_strOutputBaseDir, protDic)
strMetaInfoFilename = '{!s}/metaInfo.csv'.format(out_strOutputBaseDir)
prepLib.fuSaveMetaInfo(out_strOutputBaseDir, strMetaInfoFilename, in_strProtRefsDir)
pepProbsList = sorted(list(pepDic.values()),key=lambda x: x[0])
pepProbsList = [pepProbsList[i][1:3] for i in range(0,len(pepProbsList))]
prepLib.fuSavePepProbsTargetFromList('{!s}/target.csv'.format(out_strOutputBaseDir), pepProbsList)
[
2,
3771,
27614,
25,
29196,
329,
366,
259,
62,
2536,
19703,
8134,
82,
35277,
1,
290,
366,
82,
29572,
6601,
17,
1600,
815,
407,
3994,
597,
27071,
14116,
1,
2393,
198,
2,
25235,
25,
739,
29877,
6601,
17,
8619,
25,
2496,
13,
40664,
11,
13634,
12360,
13,
40664,
11,
46866,
14116,
198,
198,
11748,
25064,
198,
11748,
28686,
198,
17597,
13,
6978,
13,
33295,
10786,
40720,
492,
11537,
198,
11748,
3143,
25835,
198,
259,
62,
2536,
22968,
64,
35063,
796,
705,
90,
0,
82,
92,
14,
7890,
14,
48693,
14,
489,
418,
62,
20490,
36,
36222,
14,
20490,
36,
36222,
62,
403,
541,
10599,
12,
32974,
62,
929,
20483,
3980,
1821,
62,
41374,
21414,
13,
7217,
64,
4458,
18982,
7,
418,
13,
268,
2268,
13,
1136,
10786,
39069,
6,
4008,
198,
259,
62,
2536,
6435,
457,
485,
35063,
796,
705,
90,
0,
82,
92,
14,
7890,
14,
48693,
14,
489,
418,
62,
20490,
36,
36222,
14,
20490,
36,
36222,
62,
19608,
292,
316,
62,
431,
457,
485,
62,
738,
2649,
62,
489,
418,
13,
14116,
4458,
18982,
7,
418,
13,
268,
2268,
13,
1136,
10786,
39069,
6,
4008,
198,
198,
259,
62,
2536,
19703,
8134,
82,
35277,
796,
705,
19571,
11235,
8134,
82,
6,
198,
448,
62,
2536,
26410,
14881,
35277,
796,
705,
19571,
82,
29572,
6601,
17,
6,
198,
198,
11235,
35,
291,
11,
279,
538,
35,
291,
796,
3143,
25835,
13,
2220,
19703,
6435,
457,
485,
35,
291,
7,
259,
62,
2536,
6435,
457,
485,
35063,
8,
198,
46012,
25835,
13,
9032,
22968,
64,
7,
259,
62,
2536,
22968,
64,
35063,
11,
287,
62,
2536,
19703,
8134,
82,
35277,
11,
1237,
35,
291,
8,
198,
4868,
19703,
8134,
8979,
5376,
796,
3143,
25835,
13,
1136,
19703,
8134,
8979,
36690,
7,
259,
62,
2536,
19703,
8134,
82,
35277,
8,
198,
198,
2,
2872,
34337,
1460,
351,
15568,
198,
46012,
25835,
13,
20942,
10987,
3237,
19703,
7,
4868,
19703,
8134,
8979,
5376,
11,
287,
62,
2536,
19703,
8134,
82,
35277,
11,
503,
62,
2536,
26410,
14881,
35277,
11,
1237,
35,
291,
8,
198,
198,
2536,
48526,
12360,
35063,
796,
705,
90,
0,
82,
92,
14,
28961,
12360,
13,
40664,
4458,
18982,
7,
448,
62,
2536,
26410,
14881,
35277,
8,
198,
46012,
25835,
13,
20942,
16928,
48526,
12360,
7,
448,
62,
2536,
26410,
14881,
35277,
11,
965,
48526,
12360,
35063,
11,
287,
62,
2536,
19703,
8134,
82,
35277,
8,
198,
431,
79,
2964,
1443,
8053,
796,
23243,
7,
4868,
7,
431,
79,
35,
291,
13,
27160,
3419,
828,
2539,
28,
50033,
2124,
25,
2124,
58,
15,
12962,
198,
431,
79,
2964,
1443,
8053,
796,
685,
431,
79,
2964,
1443,
8053,
58,
72,
7131,
16,
25,
18,
60,
329,
1312,
287,
2837,
7,
15,
11,
11925,
7,
431,
79,
2964,
1443,
8053,
4008,
60,
198,
46012,
25835,
13,
20942,
16928,
47,
538,
2964,
1443,
21745,
4863,
8053,
10786,
90,
0,
82,
92,
14,
16793,
13,
40664,
4458,
18982,
7,
448,
62,
2536,
26410,
14881,
35277,
828,
279,
538,
2964,
1443,
8053,
8
]
import numpy as np
import unittest
import discretize
from SimPEG.maps import Wires
from SimPEG.utils import (
mkvc,
WeightedGaussianMixture,
GaussianMixtureWithPrior,
)
from scipy.stats import norm, multivariate_normal
if __name__ == "__main__":
unittest.main()
[
11748,
299,
32152,
355,
45941,
198,
11748,
555,
715,
395,
198,
11748,
1221,
1186,
1096,
198,
6738,
3184,
47,
7156,
13,
31803,
1330,
370,
2387,
198,
6738,
3184,
47,
7156,
13,
26791,
1330,
357,
198,
220,
220,
220,
33480,
28435,
11,
198,
220,
220,
220,
14331,
276,
35389,
31562,
44,
9602,
11,
198,
220,
220,
220,
12822,
31562,
44,
9602,
3152,
22442,
11,
198,
8,
198,
6738,
629,
541,
88,
13,
34242,
1330,
2593,
11,
1963,
42524,
62,
11265,
628,
198,
198,
361,
11593,
3672,
834,
6624,
366,
834,
12417,
834,
1298,
198,
220,
220,
220,
555,
715,
395,
13,
12417,
3419,
198
]
from llvmlite import ir, binding
from lang.scope import Scope
from collections import defaultdict
[
6738,
32660,
85,
4029,
578,
1330,
4173,
11,
12765,
198,
6738,
42392,
13,
29982,
1330,
41063,
198,
6738,
17268,
1330,
4277,
11600,
628
]
from draftjs_exporter.dom import DOM
from wagtail.admin.rich_text.converters import editor_html
from wagtail.admin.rich_text.converters.contentstate_models import Entity
from wagtail.admin.rich_text.converters.html_to_contentstate import AtomicBlockEntityElementHandler
from wagtail.embeds import embeds, format
from wagtail.embeds.exceptions import EmbedException
# Front-end conversion
def media_embedtype_handler(attrs):
"""
Given a dict of attributes from the <embed> tag, return the real HTML
representation for use on the front-end.
"""
return format.embed_to_frontend_html(attrs['url'])
# hallo.js / editor-html conversion
class MediaEmbedHandler:
"""
MediaEmbedHandler will be invoked whenever we encounter an element in HTML content
with an attribute of data-embedtype="media". The resulting element in the database
representation will be:
<embed embedtype="media" url="http://vimeo.com/XXXXX">
"""
@staticmethod
def get_db_attributes(tag):
"""
Given a tag that we've identified as a media embed (because it has a
data-embedtype="media" attribute), return a dict of the attributes we should
have on the resulting <embed> element.
"""
return {
'url': tag['data-url'],
}
@staticmethod
def expand_db_attributes(attrs):
"""
Given a dict of attributes from the <embed> tag, return the real HTML
representation for use within the editor.
"""
try:
return format.embed_to_editor_html(attrs['url'])
except EmbedException:
# Could be replaced with a nice error message
return ''
EditorHTMLEmbedConversionRule = [
editor_html.EmbedTypeRule('media', MediaEmbedHandler)
]
# draft.js / contentstate conversion
def media_embed_entity(props):
"""
Helper to construct elements of the form
<embed embedtype="media" url="https://www.youtube.com/watch?v=y8Kyi0WNg40"/>
when converting from contentstate data
"""
return DOM.create_element('embed', {
'embedtype': 'media',
'url': props.get('url'),
})
class MediaEmbedElementHandler(AtomicBlockEntityElementHandler):
"""
Rule for building an embed entity when converting from database representation
to contentstate
"""
ContentstateMediaConversionRule = {
'from_database_format': {
'embed[embedtype="media"]': MediaEmbedElementHandler(),
},
'to_database_format': {
'entity_decorators': {'EMBED': media_embed_entity}
}
}
[
6738,
4538,
8457,
62,
1069,
26634,
13,
3438,
1330,
24121,
198,
198,
6738,
266,
363,
13199,
13,
28482,
13,
7527,
62,
5239,
13,
1102,
332,
1010,
1330,
5464,
62,
6494,
198,
6738,
266,
363,
13199,
13,
28482,
13,
7527,
62,
5239,
13,
1102,
332,
1010,
13,
11299,
5219,
62,
27530,
1330,
20885,
198,
6738,
266,
363,
13199,
13,
28482,
13,
7527,
62,
5239,
13,
1102,
332,
1010,
13,
6494,
62,
1462,
62,
11299,
5219,
1330,
28976,
12235,
32398,
20180,
25060,
198,
6738,
266,
363,
13199,
13,
20521,
82,
1330,
11525,
82,
11,
5794,
198,
6738,
266,
363,
13199,
13,
20521,
82,
13,
1069,
11755,
1330,
13302,
276,
16922,
628,
198,
2,
8880,
12,
437,
11315,
198,
198,
4299,
2056,
62,
20521,
4906,
62,
30281,
7,
1078,
3808,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
11259,
257,
8633,
286,
12608,
422,
262,
1279,
20521,
29,
7621,
11,
1441,
262,
1103,
11532,
198,
220,
220,
220,
10552,
329,
779,
319,
262,
2166,
12,
437,
13,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
1441,
5794,
13,
20521,
62,
1462,
62,
8534,
437,
62,
6494,
7,
1078,
3808,
17816,
6371,
6,
12962,
628,
198,
2,
6899,
78,
13,
8457,
1220,
5464,
12,
6494,
11315,
198,
198,
4871,
6343,
31567,
276,
25060,
25,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
6343,
31567,
276,
25060,
481,
307,
24399,
8797,
356,
8791,
281,
5002,
287,
11532,
2695,
198,
220,
220,
220,
351,
281,
11688,
286,
1366,
12,
20521,
4906,
2625,
11431,
1911,
383,
7186,
5002,
287,
262,
6831,
198,
220,
220,
220,
10552,
481,
307,
25,
198,
220,
220,
220,
1279,
20521,
11525,
4906,
2625,
11431,
1,
19016,
2625,
4023,
1378,
85,
47776,
13,
785,
14,
24376,
55,
5320,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
2488,
12708,
24396,
198,
220,
220,
220,
825,
651,
62,
9945,
62,
1078,
7657,
7,
12985,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
11259,
257,
7621,
326,
356,
1053,
5174,
355,
257,
2056,
11525,
357,
13893,
340,
468,
257,
198,
220,
220,
220,
220,
220,
220,
220,
1366,
12,
20521,
4906,
2625,
11431,
1,
11688,
828,
1441,
257,
8633,
286,
262,
12608,
356,
815,
198,
220,
220,
220,
220,
220,
220,
220,
423,
319,
262,
7186,
1279,
20521,
29,
5002,
13,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
6371,
10354,
7621,
17816,
7890,
12,
6371,
6,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
1782,
628,
220,
220,
220,
2488,
12708,
24396,
198,
220,
220,
220,
825,
4292,
62,
9945,
62,
1078,
7657,
7,
1078,
3808,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
11259,
257,
8633,
286,
12608,
422,
262,
1279,
20521,
29,
7621,
11,
1441,
262,
1103,
11532,
198,
220,
220,
220,
220,
220,
220,
220,
10552,
329,
779,
1626,
262,
5464,
13,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
1949,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1441,
5794,
13,
20521,
62,
1462,
62,
35352,
62,
6494,
7,
1078,
3808,
17816,
6371,
6,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
2845,
13302,
276,
16922,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
10347,
307,
6928,
351,
257,
3621,
4049,
3275,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1441,
10148,
628,
198,
17171,
6535,
44,
2538,
2022,
276,
3103,
9641,
31929,
796,
685,
198,
220,
220,
220,
5464,
62,
6494,
13,
31567,
276,
6030,
31929,
10786,
11431,
3256,
6343,
31567,
276,
25060,
8,
198,
60,
628,
198,
2,
4538,
13,
8457,
1220,
2695,
5219,
11315,
198,
198,
4299,
2056,
62,
20521,
62,
26858,
7,
1676,
862,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
5053,
525,
284,
5678,
4847,
286,
262,
1296,
198,
220,
220,
220,
1279,
20521,
11525,
4906,
2625,
11431,
1,
19016,
2625,
5450,
1378,
2503,
13,
11604,
13,
785,
14,
8340,
30,
85,
28,
88,
23,
30630,
72,
15,
29767,
70,
1821,
26700,
198,
220,
220,
220,
618,
23202,
422,
2695,
5219,
1366,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
1441,
24121,
13,
17953,
62,
30854,
10786,
20521,
3256,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
705,
20521,
4906,
10354,
705,
11431,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
705,
6371,
10354,
25744,
13,
1136,
10786,
6371,
33809,
198,
220,
220,
220,
32092,
628,
198,
4871,
6343,
31567,
276,
20180,
25060,
7,
2953,
10179,
12235,
32398,
20180,
25060,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
14330,
329,
2615,
281,
11525,
9312,
618,
23202,
422,
6831,
10552,
198,
220,
220,
220,
284,
2695,
5219,
198,
220,
220,
220,
37227,
628,
198,
19746,
5219,
13152,
3103,
9641,
31929,
796,
1391,
198,
220,
220,
220,
705,
6738,
62,
48806,
62,
18982,
10354,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
705,
20521,
58,
20521,
4906,
2625,
11431,
8973,
10354,
6343,
31567,
276,
20180,
25060,
22784,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
705,
1462,
62,
48806,
62,
18982,
10354,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
705,
26858,
62,
12501,
273,
2024,
10354,
1391,
6,
3620,
33,
1961,
10354,
2056,
62,
20521,
62,
26858,
92,
198,
220,
220,
220,
1782,
198,
92,
198
]
# Englishクラスをインポートし、nlpオブジェクトを作成
from ____ import ____
nlp = ____
# テキストを処理
doc = ____("I like tree kangaroos and narwhals.")
# 「tree kangaroors」のスライスを選択
tree_kangaroos = ____
print(tree_kangaroos.text)
# 「tree kangaroos and narwhals」のスライスを選択(「.」は含まない)
tree_kangaroos_and_narwhals = ____
print(tree_kangaroos_and_narwhals.text)
[
2,
3594,
14099,
9263,
8943,
31758,
11482,
6527,
1209,
251,
12045,
230,
22180,
23513,
21283,
79,
20513,
24001,
21091,
24806,
14099,
13298,
31758,
43291,
22755,
238,
198,
6738,
220,
1427,
1330,
220,
1427,
198,
198,
21283,
79,
796,
220,
1427,
198,
198,
2,
14524,
228,
25084,
43302,
31758,
49035,
99,
49426,
228,
198,
15390,
796,
220,
1427,
7203,
40,
588,
5509,
479,
648,
12022,
418,
290,
30083,
1929,
874,
19570,
198,
198,
2,
40283,
21048,
479,
648,
12022,
669,
13700,
5641,
8943,
9263,
11482,
8943,
31758,
34402,
116,
162,
232,
252,
198,
21048,
62,
74,
648,
12022,
418,
796,
220,
1427,
198,
4798,
7,
21048,
62,
74,
648,
12022,
418,
13,
5239,
8,
198,
198,
2,
40283,
21048,
479,
648,
12022,
418,
290,
30083,
1929,
874,
13700,
5641,
8943,
9263,
11482,
8943,
31758,
34402,
116,
162,
232,
252,
171,
120,
230,
13697,
43735,
31676,
28938,
104,
30159,
26945,
18566,
171,
120,
231,
198,
21048,
62,
74,
648,
12022,
418,
62,
392,
62,
23955,
1929,
874,
796,
220,
1427,
198,
4798,
7,
21048,
62,
74,
648,
12022,
418,
62,
392,
62,
23955,
1929,
874,
13,
5239,
8,
198
]
from causal_world.task_generators.base_task import BaseTask
import numpy as np
[
6738,
26558,
62,
6894,
13,
35943,
62,
8612,
2024,
13,
8692,
62,
35943,
1330,
7308,
25714,
198,
11748,
299,
32152,
355,
45941,
628,
220,
220,
220,
220
]
from telegram import InputMediaPhoto
from ..language import get_text
from ..database.query import count_occurrence_of_specified_rating
from .buttons import (
get_list_of_buttons,
tamplate_for_show_a_list_of_products,
tamplate_for_show_a_detailed_product)
[
6738,
573,
30536,
1330,
23412,
13152,
6191,
198,
198,
6738,
11485,
16129,
1330,
651,
62,
5239,
198,
6738,
11485,
48806,
13,
22766,
1330,
954,
62,
13966,
33928,
62,
1659,
62,
23599,
62,
8821,
198,
6738,
764,
4360,
27288,
1330,
357,
198,
220,
220,
220,
651,
62,
4868,
62,
1659,
62,
4360,
27288,
11,
198,
220,
220,
220,
21885,
6816,
62,
1640,
62,
12860,
62,
64,
62,
4868,
62,
1659,
62,
29498,
11,
198,
220,
220,
220,
21885,
6816,
62,
1640,
62,
12860,
62,
64,
62,
15255,
6255,
62,
11167,
8,
628,
628,
628,
628,
628,
628,
628,
628,
628
]
# -*- coding: utf-8 -*-
#
# This file is part of Sequana software
#
# Copyright (c) 2016-2017 - Sequana Development Team
#
# File author(s):
# Thomas Cokelaer <[email protected] >
#
# Distributed under the terms of the 3-clause BSD license.
# The full license is in the LICENSE file, distributed with this software.
#
# website: https://github.com/sequana/sequana
# documentation: http://sequana.readthedocs.io
#
##############################################################################
import re
import ruamel.yaml
import colorlog
logger = colorlog.getLogger(__name__)
__all__ = ["YamlDocParser"]
class YamlDocParser(object):
"""A simple parser to extract block content to be found in YAML files
So as to create tooltips automatically in :ref:`sequanix`, one can comment
YAML configuration file with block comments (see developers guide in
:ref:`developers` )
Once read and parsed, all block comments before top-level sections are to
be found in the dictionary :attr:`sections`.
.. doctest::
from sequana import snaketools
from sequana.iotools import YamlDocParser
module = snaketools.Module('quality_control')
r = YamlDocParser(module.config)
r.sections['fastqc']
Those lines are removed from the docstring but available as a dictionary
"""
def __init__(self, filename):
""".. rubric:: constructor
:param str filename: the YAML file to parse
::
# main documentation
# block comment
section1:
- item
# block comment
section2:
# a comment
section3:
Here, section1 and section2 have block comments but not section3
"""
self.filename = filename
self.regex_section = re.compile("^[a-z,A-Z,_,0-9]+:")
self._specials = ["choice__"]
self.sections = {}
self._read_data()
self._parse_data()
def _get_expected_sections(self):
"""Get the top level keys in the YAML file
:return: list of top level sections' names"""
with open(self.filename, "r") as fh:
data = ruamel.yaml.load(fh.read(), ruamel.yaml.RoundTripLoader)
keys = list(data.keys())
return keys
def _parse_data(self):
"""Parse the YAML file to get the block content (comments)
before each top-level sections. See doc in the constructor
Removes all # so that the block of comments can be interpreted as
a standard docstring in Sequanix
"""
current_block = []
current_section = "docstring"
# if we get a line that starts with #, this is a new comment or
# part of a block comment. Otherwise, it means the current block
# comment has ended.
for this in self.data:
# Beginning of a new section at top level
if self.regex_section.findall(this):
name = self.regex_section.findall(this)[0]
current_section = name.strip(":")
self.sections[current_section] = "".join(current_block)
current_block = []
current_section = None
elif this.startswith('#'): # a comment at top level
current_block.append(this)
elif this.strip() == "": # an empty line
#this was the main comment, or an isolated comment
current_block = []
else: # a non-empty line to skip
current_block = []
for key in self._get_expected_sections():
if key not in self.sections.keys():
logger.warning("section %s not dealt by the parsing function" % key)
def _get_specials(self, section):
"""This method extracts data from the docstring
Lines such as ::
field_choice__ = ["a", "b"]
are extracted. Where _choice is a special keyword to be
found.
"""
if section not in self.sections.keys():
logger.warning("%s not found in the yaml " % section)
return
comments = self.sections[section]
specials = {}
for line in comments.split("\n"):
if "#############" in line:
pass
elif sum([this in line for this in self._specials]):
for special in self._specials:
line = line[2:]
key, value = line.split("=", 1)
key = key.strip().rstrip("__")
value = value.strip()
specials[key] = list(eval(value))
return specials
[
2,
532,
9,
12,
19617,
25,
3384,
69,
12,
23,
532,
9,
12,
198,
2,
198,
2,
220,
770,
2393,
318,
636,
286,
24604,
2271,
3788,
198,
2,
198,
2,
220,
15069,
357,
66,
8,
1584,
12,
5539,
532,
24604,
2271,
7712,
4816,
198,
2,
198,
2,
220,
9220,
1772,
7,
82,
2599,
198,
2,
220,
220,
220,
220,
220,
5658,
34723,
5031,
263,
1279,
400,
16911,
13,
1073,
365,
5031,
263,
31,
34274,
333,
13,
8310,
29,
198,
2,
198,
2,
220,
4307,
6169,
739,
262,
2846,
286,
262,
513,
12,
565,
682,
347,
10305,
5964,
13,
198,
2,
220,
383,
1336,
5964,
318,
287,
262,
38559,
24290,
2393,
11,
9387,
351,
428,
3788,
13,
198,
2,
198,
2,
220,
3052,
25,
3740,
1378,
12567,
13,
785,
14,
3107,
2271,
14,
3107,
2271,
198,
2,
220,
10314,
25,
2638,
1378,
3107,
2271,
13,
961,
83,
704,
420,
82,
13,
952,
198,
2,
198,
29113,
29113,
7804,
4242,
2235,
198,
11748,
302,
198,
11748,
7422,
17983,
13,
88,
43695,
198,
198,
11748,
3124,
6404,
198,
6404,
1362,
796,
3124,
6404,
13,
1136,
11187,
1362,
7,
834,
3672,
834,
8,
198,
198,
834,
439,
834,
796,
14631,
56,
43695,
23579,
46677,
8973,
628,
198,
4871,
14063,
75,
23579,
46677,
7,
15252,
2599,
198,
220,
220,
220,
37227,
32,
2829,
30751,
284,
7925,
2512,
2695,
284,
307,
1043,
287,
575,
2390,
43,
3696,
628,
220,
220,
220,
1406,
355,
284,
2251,
2891,
41315,
6338,
287,
1058,
5420,
25,
63,
3107,
272,
844,
47671,
530,
460,
2912,
198,
220,
220,
220,
575,
2390,
43,
8398,
2393,
351,
2512,
3651,
357,
3826,
6505,
5698,
287,
198,
220,
220,
220,
1058,
5420,
25,
63,
16244,
364,
63,
1267,
628,
220,
220,
220,
4874,
1100,
290,
44267,
11,
477,
2512,
3651,
878,
1353,
12,
5715,
9004,
389,
284,
220,
198,
220,
220,
220,
307,
1043,
287,
262,
22155,
1058,
35226,
25,
63,
23946,
44646,
628,
220,
220,
220,
11485,
10412,
395,
3712,
628,
220,
220,
220,
220,
220,
220,
220,
422,
4726,
2271,
1330,
3013,
461,
316,
10141,
198,
220,
220,
220,
220,
220,
220,
220,
422,
4726,
2271,
13,
5151,
10141,
1330,
14063,
75,
23579,
46677,
198,
220,
220,
220,
220,
220,
220,
220,
8265,
796,
3013,
461,
316,
10141,
13,
26796,
10786,
13237,
62,
13716,
11537,
198,
220,
220,
220,
220,
220,
220,
220,
374,
796,
14063,
75,
23579,
46677,
7,
21412,
13,
11250,
8,
198,
220,
220,
220,
220,
220,
220,
220,
374,
13,
23946,
17816,
7217,
80,
66,
20520,
628,
220,
220,
220,
5845,
3951,
389,
4615,
422,
262,
2205,
8841,
475,
1695,
355,
257,
22155,
628,
220,
220,
220,
37227,
198,
220,
220,
220,
825,
11593,
15003,
834,
7,
944,
11,
29472,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
492,
6437,
1173,
3712,
23772,
628,
220,
220,
220,
220,
220,
220,
220,
1058,
17143,
965,
29472,
25,
262,
575,
2390,
43,
2393,
284,
21136,
628,
220,
220,
220,
220,
220,
220,
220,
7904,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
1388,
10314,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
2512,
2912,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2665,
16,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
532,
2378,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
2512,
2912,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2665,
17,
25,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
257,
2912,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2665,
18,
25,
628,
220,
220,
220,
220,
220,
220,
220,
3423,
11,
2665,
16,
290,
2665,
17,
423,
2512,
3651,
475,
407,
2665,
18,
628,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
34345,
796,
29472,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
260,
25636,
62,
5458,
796,
302,
13,
5589,
576,
7203,
61,
58,
64,
12,
89,
11,
32,
12,
57,
11,
62,
11,
15,
12,
24,
48688,
25,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13557,
20887,
82,
796,
14631,
25541,
834,
8973,
628,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
23946,
796,
23884,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13557,
961,
62,
7890,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13557,
29572,
62,
7890,
3419,
628,
220,
220,
220,
825,
4808,
1136,
62,
40319,
62,
23946,
7,
944,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
3855,
262,
1353,
1241,
8251,
287,
262,
575,
2390,
43,
2393,
628,
220,
220,
220,
220,
220,
220,
220,
1058,
7783,
25,
1351,
286,
1353,
1241,
9004,
6,
3891,
37811,
198,
220,
220,
220,
220,
220,
220,
220,
351,
1280,
7,
944,
13,
34345,
11,
366,
81,
4943,
355,
277,
71,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1366,
796,
7422,
17983,
13,
88,
43695,
13,
2220,
7,
69,
71,
13,
961,
22784,
7422,
17983,
13,
88,
43695,
13,
22685,
51,
5528,
17401,
8,
198,
220,
220,
220,
220,
220,
220,
220,
8251,
796,
1351,
7,
7890,
13,
13083,
28955,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
8251,
628,
220,
220,
220,
825,
4808,
29572,
62,
7890,
7,
944,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
10044,
325,
262,
575,
2390,
43,
2393,
284,
651,
262,
2512,
2695,
357,
15944,
8,
198,
220,
220,
220,
220,
220,
220,
220,
878,
1123,
1353,
12,
5715,
9004,
13,
4091,
2205,
287,
262,
23772,
628,
220,
220,
220,
220,
220,
220,
220,
3982,
5241,
477,
1303,
523,
326,
262,
2512,
286,
3651,
460,
307,
16173,
355,
198,
220,
220,
220,
220,
220,
220,
220,
257,
3210,
2205,
8841,
287,
24604,
272,
844,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
1459,
62,
9967,
796,
17635,
198,
220,
220,
220,
220,
220,
220,
220,
1459,
62,
5458,
796,
366,
15390,
8841,
1,
628,
220,
220,
220,
220,
220,
220,
220,
1303,
611,
356,
651,
257,
1627,
326,
4940,
351,
1303,
11,
428,
318,
257,
649,
2912,
393,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
636,
286,
257,
2512,
2912,
13,
15323,
11,
340,
1724,
262,
1459,
2512,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
2912,
468,
4444,
13,
628,
220,
220,
220,
220,
220,
220,
220,
329,
428,
287,
2116,
13,
7890,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
25976,
286,
257,
649,
2665,
379,
1353,
1241,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
2116,
13,
260,
25636,
62,
5458,
13,
19796,
439,
7,
5661,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1438,
796,
2116,
13,
260,
25636,
62,
5458,
13,
19796,
439,
7,
5661,
38381,
15,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1459,
62,
5458,
796,
1438,
13,
36311,
7,
2404,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
23946,
58,
14421,
62,
5458,
60,
796,
366,
1911,
22179,
7,
14421,
62,
9967,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1459,
62,
9967,
796,
17635,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1459,
62,
5458,
796,
6045,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1288,
361,
428,
13,
9688,
2032,
342,
10786,
2,
6,
2599,
220,
220,
220,
1303,
257,
2912,
379,
1353,
1241,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1459,
62,
9967,
13,
33295,
7,
5661,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1288,
361,
428,
13,
36311,
3419,
6624,
366,
1298,
220,
220,
220,
220,
220,
1303,
281,
6565,
1627,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
5661,
373,
262,
1388,
2912,
11,
393,
281,
11557,
2912,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1459,
62,
9967,
796,
17635,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
220,
1303,
257,
1729,
12,
28920,
1627,
284,
14267,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1459,
62,
9967,
796,
17635,
628,
220,
220,
220,
220,
220,
220,
220,
329,
1994,
287,
2116,
13557,
1136,
62,
40319,
62,
23946,
33529,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
1994,
407,
287,
2116,
13,
23946,
13,
13083,
33529,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
49706,
13,
43917,
7203,
5458,
4064,
82,
407,
11829,
416,
262,
32096,
2163,
1,
4064,
1994,
8,
628,
220,
220,
220,
825,
4808,
1136,
62,
20887,
82,
7,
944,
11,
2665,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
1212,
2446,
32139,
1366,
422,
262,
2205,
8841,
628,
220,
220,
220,
220,
220,
220,
220,
26299,
884,
355,
7904,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2214,
62,
25541,
834,
796,
14631,
64,
1600,
366,
65,
8973,
628,
220,
220,
220,
220,
220,
220,
220,
389,
21242,
13,
6350,
4808,
25541,
318,
257,
2041,
21179,
284,
307,
198,
220,
220,
220,
220,
220,
220,
220,
1043,
13,
628,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
611,
2665,
407,
287,
2116,
13,
23946,
13,
13083,
33529,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
49706,
13,
43917,
7203,
4,
82,
407,
1043,
287,
262,
331,
43695,
366,
4064,
2665,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1441,
198,
220,
220,
220,
220,
220,
220,
220,
3651,
796,
2116,
13,
23946,
58,
5458,
60,
198,
220,
220,
220,
220,
220,
220,
220,
38102,
796,
23884,
198,
220,
220,
220,
220,
220,
220,
220,
329,
1627,
287,
3651,
13,
35312,
7203,
59,
77,
1,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
366,
7804,
4242,
2,
1,
287,
1627,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1208,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1288,
361,
2160,
26933,
5661,
287,
1627,
329,
428,
287,
2116,
13557,
20887,
82,
60,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
329,
2041,
287,
2116,
13557,
20887,
82,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1627,
796,
1627,
58,
17,
47715,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1994,
11,
1988,
796,
1627,
13,
35312,
7203,
28,
1600,
352,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1994,
796,
1994,
13,
36311,
22446,
81,
36311,
7203,
834,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1988,
796,
1988,
13,
36311,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
38102,
58,
2539,
60,
796,
1351,
7,
18206,
7,
8367,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
38102,
198
]
'''Tests the websocket middleware in pulsar.apps.ws.'''
import unittest
import asyncio
from pulsar.api import send
from pulsar.apps.ws import WebSocket, WS
from pulsar.apps.http import HttpClient
from pulsar.apps.test import run_test_server
from examples.websocket.manage import server
[
7061,
6,
51,
3558,
262,
2639,
5459,
3504,
1574,
287,
22271,
283,
13,
18211,
13,
18504,
2637,
7061,
198,
11748,
555,
715,
395,
198,
11748,
30351,
952,
198,
198,
6738,
22271,
283,
13,
15042,
1330,
3758,
198,
6738,
22271,
283,
13,
18211,
13,
18504,
1330,
5313,
39105,
11,
25290,
198,
6738,
22271,
283,
13,
18211,
13,
4023,
1330,
367,
29281,
11792,
198,
6738,
22271,
283,
13,
18211,
13,
9288,
1330,
1057,
62,
9288,
62,
15388,
198,
198,
6738,
6096,
13,
732,
1443,
5459,
13,
805,
496,
1330,
4382,
628,
198
]
"""
"""
import app.utils6L.utils6L as utils
import logging
import os
import PySimpleGUI as sg
from app.main.views import view_create_link_address
from app.model import db_session
from app.model.Company import Address, Company
from PySimpleGUI.PySimpleGUI import popup_scrolled
logger_name = os.getenv("LOGGER_NAME")
logger = logging.getLogger(logger_name)
NO_COMPANY_ADDRESS = 'No company address'
@utils.log_wrap
@utils.log_wrap
@utils.log_wrap
@utils.log_wrap
[
37811,
198,
37811,
198,
198,
11748,
598,
13,
26791,
21,
43,
13,
26791,
21,
43,
355,
3384,
4487,
198,
198,
11748,
18931,
198,
11748,
28686,
198,
11748,
9485,
26437,
40156,
355,
264,
70,
198,
198,
6738,
598,
13,
12417,
13,
33571,
1330,
1570,
62,
17953,
62,
8726,
62,
21975,
198,
6738,
598,
13,
19849,
1330,
20613,
62,
29891,
198,
6738,
598,
13,
19849,
13,
39154,
1330,
17917,
11,
5834,
198,
198,
6738,
9485,
26437,
40156,
13,
20519,
26437,
40156,
1330,
46207,
62,
1416,
8375,
198,
198,
6404,
1362,
62,
3672,
796,
28686,
13,
1136,
24330,
7203,
25294,
30373,
62,
20608,
4943,
198,
6404,
1362,
796,
18931,
13,
1136,
11187,
1362,
7,
6404,
1362,
62,
3672,
8,
198,
198,
15285,
62,
9858,
47,
31827,
62,
2885,
7707,
7597,
796,
705,
2949,
1664,
2209,
6,
628,
198,
31,
26791,
13,
6404,
62,
37150,
628,
198,
31,
26791,
13,
6404,
62,
37150,
628,
198,
31,
26791,
13,
6404,
62,
37150,
628,
198,
31,
26791,
13,
6404,
62,
37150,
198
]
# COUNT CONTAINED PERMUTATIONS
# O(M * U + N) time and O(U) space, where M -> length of big string,
# U -> number of unique characters in small string, N -> length
# of small string.
# U is actually a constant since it can't be greater than 26. and
# M > N, so M will dissolve N
# So, modified complexities:
# O(M) time and O(1) space, M -> length of big string
[
198,
2,
327,
28270,
7102,
30339,
1961,
19878,
44,
3843,
18421,
198,
198,
2,
440,
7,
44,
1635,
471,
1343,
399,
8,
640,
290,
440,
7,
52,
8,
2272,
11,
810,
337,
4613,
4129,
286,
1263,
4731,
11,
198,
2,
471,
4613,
1271,
286,
3748,
3435,
287,
1402,
4731,
11,
399,
4613,
4129,
198,
2,
286,
1402,
4731,
13,
198,
2,
471,
318,
1682,
257,
6937,
1201,
340,
460,
470,
307,
3744,
621,
2608,
13,
290,
220,
198,
2,
337,
1875,
399,
11,
523,
337,
481,
33862,
399,
198,
2,
1406,
11,
9518,
42292,
25,
198,
2,
440,
7,
44,
8,
640,
290,
440,
7,
16,
8,
2272,
11,
337,
4613,
4129,
286,
1263,
4731
]
import urllib.request, json
print(Users.get_user(Users("INfoUpgradersYT")))
[
11748,
2956,
297,
571,
13,
25927,
11,
33918,
198,
198,
4798,
7,
14490,
13,
1136,
62,
7220,
7,
14490,
7203,
1268,
6513,
4933,
9744,
364,
56,
51,
1,
22305,
198
]
from torch.distributions import constraints
from torch.distributions.exponential import Exponential
from torch.distributions.transformed_distribution import TransformedDistribution
from torch.distributions.transforms import AffineTransform, ExpTransform
from torch.distributions.utils import broadcast_all
class Pareto(TransformedDistribution):
r"""
Samples from a Pareto Type 1 distribution.
Example::
>>> m = Pareto(torch.tensor([1.0]), torch.tensor([1.0]))
>>> m.sample() # sample from a Pareto distribution with scale=1 and alpha=1
tensor([ 1.5623])
Args:
scale (float or Tensor): Scale parameter of the distribution
alpha (float or Tensor): Shape parameter of the distribution
"""
arg_constraints = {'alpha': constraints.positive, 'scale': constraints.positive}
@property
@property
@constraints.dependent_property
[
6738,
28034,
13,
17080,
2455,
507,
1330,
17778,
198,
6738,
28034,
13,
17080,
2455,
507,
13,
11201,
35470,
1330,
5518,
35470,
198,
6738,
28034,
13,
17080,
2455,
507,
13,
7645,
12214,
62,
17080,
3890,
1330,
3602,
12214,
20344,
3890,
198,
6738,
28034,
13,
17080,
2455,
507,
13,
7645,
23914,
1330,
6708,
500,
41762,
11,
5518,
41762,
198,
6738,
28034,
13,
17080,
2455,
507,
13,
26791,
1330,
7025,
62,
439,
628,
198,
4871,
350,
533,
1462,
7,
8291,
12214,
20344,
3890,
2599,
198,
220,
220,
220,
374,
37811,
198,
220,
220,
220,
3409,
2374,
422,
257,
350,
533,
1462,
5994,
352,
6082,
13,
628,
220,
220,
220,
17934,
3712,
628,
220,
220,
220,
220,
220,
220,
220,
13163,
285,
796,
350,
533,
1462,
7,
13165,
354,
13,
83,
22854,
26933,
16,
13,
15,
46570,
28034,
13,
83,
22854,
26933,
16,
13,
15,
60,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
13163,
285,
13,
39873,
3419,
220,
1303,
6291,
422,
257,
350,
533,
1462,
6082,
351,
5046,
28,
16,
290,
17130,
28,
16,
198,
220,
220,
220,
220,
220,
220,
220,
11192,
273,
26933,
352,
13,
3980,
1954,
12962,
628,
220,
220,
220,
943,
14542,
25,
198,
220,
220,
220,
220,
220,
220,
220,
5046,
357,
22468,
393,
309,
22854,
2599,
21589,
11507,
286,
262,
6082,
198,
220,
220,
220,
220,
220,
220,
220,
17130,
357,
22468,
393,
309,
22854,
2599,
25959,
11507,
286,
262,
6082,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
1822,
62,
1102,
2536,
6003,
796,
1391,
6,
26591,
10354,
17778,
13,
24561,
11,
705,
9888,
10354,
17778,
13,
24561,
92,
628,
220,
220,
220,
2488,
26745,
628,
220,
220,
220,
2488,
26745,
628,
220,
220,
220,
2488,
1102,
2536,
6003,
13,
21186,
62,
26745,
198
]
from bitmovin.bitmovin_object import BitmovinObject
from .s3_output_service import S3
from .gcs_output_service import GCS
from .akamai_netstorage_output_service import AkamaiNetStorage
from .azure_output_service import Azure
from .ftp_output_service import FTP
from .sftp_output_service import SFTP
from .generic_s3_output_service import GenericS3
from .local_output_service import Local
from .s3_role_based_output_service import S3RoleBased
[
6738,
1643,
76,
709,
259,
13,
2545,
76,
709,
259,
62,
15252,
1330,
4722,
76,
709,
259,
10267,
198,
6738,
764,
82,
18,
62,
22915,
62,
15271,
1330,
311,
18,
198,
6738,
764,
70,
6359,
62,
22915,
62,
15271,
1330,
402,
7902,
198,
6738,
764,
461,
1689,
72,
62,
3262,
35350,
62,
22915,
62,
15271,
1330,
9084,
1689,
72,
7934,
31425,
198,
6738,
764,
1031,
495,
62,
22915,
62,
15271,
1330,
22134,
198,
6738,
764,
701,
79,
62,
22915,
62,
15271,
1330,
45854,
198,
6738,
764,
82,
701,
79,
62,
22915,
62,
15271,
1330,
14362,
7250,
198,
6738,
764,
41357,
62,
82,
18,
62,
22915,
62,
15271,
1330,
42044,
50,
18,
198,
6738,
764,
12001,
62,
22915,
62,
15271,
1330,
10714,
198,
6738,
764,
82,
18,
62,
18090,
62,
3106,
62,
22915,
62,
15271,
1330,
311,
18,
47445,
15001,
628
]
#!/usr/bin/env python3
from btcmarkets_api import Market
BTC = Market("/market/BTC/AUD/tick", "BTC")
LTC = Market("/market/LTC/AUD/tick", "LTC")
ETH = Market("/market/ETH/AUD/tick", "ETH")
ETC = Market("/market/ETC/AUD/tick", "ETC")
XRP = Market("/market/XRP/AUD/tick", "XRP")
BCH = Market("/market/BCH/AUD/tick", "BCH")
BTC.update_data()
LTC.update_data()
ETH.update_data()
ETC.update_data()
XRP.update_data()
BCH.update_data()
[
2,
48443,
14629,
14,
8800,
14,
24330,
21015,
18,
198,
6738,
275,
23047,
34162,
62,
15042,
1330,
5991,
198,
198,
35964,
796,
5991,
7203,
14,
10728,
14,
35964,
14,
48877,
14,
42298,
1600,
366,
35964,
4943,
198,
43,
4825,
796,
5991,
7203,
14,
10728,
14,
43,
4825,
14,
48877,
14,
42298,
1600,
366,
43,
4825,
4943,
198,
20702,
796,
5991,
7203,
14,
10728,
14,
20702,
14,
48877,
14,
42298,
1600,
366,
20702,
4943,
198,
2767,
34,
796,
5991,
7203,
14,
10728,
14,
2767,
34,
14,
48877,
14,
42298,
1600,
366,
2767,
34,
4943,
198,
55,
20031,
796,
5991,
7203,
14,
10728,
14,
55,
20031,
14,
48877,
14,
42298,
1600,
366,
55,
20031,
4943,
198,
2749,
39,
796,
5991,
7203,
14,
10728,
14,
2749,
39,
14,
48877,
14,
42298,
1600,
366,
2749,
39,
4943,
198,
198,
35964,
13,
19119,
62,
7890,
3419,
198,
43,
4825,
13,
19119,
62,
7890,
3419,
198,
20702,
13,
19119,
62,
7890,
3419,
198,
2767,
34,
13,
19119,
62,
7890,
3419,
198,
55,
20031,
13,
19119,
62,
7890,
3419,
198,
2749,
39,
13,
19119,
62,
7890,
3419,
198
]
from funcs.concordance import concordance
def test_concordance_string():
"""
concordance can be called with a string (e.g. a single cell containing a string)
"""
grams = concordance('Hello world. Hello, my great world! Hello Alice and Bob.', 'world')
assert grams == [
('Hello world'),
('Hello, my great world')
]
def test_concordance_array_string():
"""
concordance can be called with an array of strings (e.g. a column
of cells containing strings)
"""
grams = concordance(['Hello world.', 'Hello, my great world!', 'Hello Alice and Bob.'], 'world')
assert grams == [
('Hello world'),
('Hello, my great world')
]
[
6738,
1257,
6359,
13,
1102,
66,
585,
590,
1330,
1673,
585,
590,
628,
198,
4299,
1332,
62,
1102,
66,
585,
590,
62,
8841,
33529,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
1673,
585,
590,
460,
307,
1444,
351,
257,
4731,
357,
68,
13,
70,
13,
257,
2060,
2685,
7268,
257,
4731,
8,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
16379,
796,
1673,
585,
590,
10786,
15496,
995,
13,
18435,
11,
616,
1049,
995,
0,
18435,
14862,
290,
5811,
2637,
11,
705,
6894,
11537,
198,
220,
220,
220,
6818,
16379,
6624,
685,
198,
220,
220,
220,
220,
220,
220,
220,
19203,
15496,
995,
33809,
198,
220,
220,
220,
220,
220,
220,
220,
19203,
15496,
11,
616,
1049,
995,
11537,
198,
220,
220,
220,
2361,
198,
198,
4299,
1332,
62,
1102,
66,
585,
590,
62,
18747,
62,
8841,
33529,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
1673,
585,
590,
460,
307,
1444,
351,
281,
7177,
286,
13042,
357,
68,
13,
70,
13,
257,
5721,
198,
220,
220,
220,
286,
4778,
7268,
13042,
8,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
16379,
796,
1673,
585,
590,
7,
17816,
15496,
995,
2637,
11,
705,
15496,
11,
616,
1049,
995,
0,
3256,
705,
15496,
14862,
290,
5811,
2637,
4357,
705,
6894,
11537,
198,
220,
220,
220,
6818,
16379,
6624,
685,
198,
220,
220,
220,
220,
220,
220,
220,
19203,
15496,
995,
33809,
198,
220,
220,
220,
220,
220,
220,
220,
19203,
15496,
11,
616,
1049,
995,
11537,
198,
220,
220,
220,
2361,
198
]
# -*- coding: utf-8 -*-
import numpy as np
import cv2 as cv
from keras.preprocessing import image
from keras.models import model_from_json
import click
import pandas as pd
from keras.layers import Input
from keras import models
from keras.models import load_model
import pyautogui
import statistics
from PyQt5 import QtWidgets, QtGui
from configurar import configurarWindow
import sys
import configuracoes as cfg
import camera
import mouse
import teclado
import matplotlib.pyplot as plt
pyautogui.FAILSAFE = False
#Captura um posicao padrao da cabeca para que possa
#fazer o deslocamento do mouse
#ponto de referencia #melhorar
#trata imagem da face e faz a predicao
#Objetivo: Reconhecer expressões faciais e posição da cabeça
# em quadro extraído do vídeo recebido de uma chamada de rotina.
#-----------------------------
#Objetivo: Determinar a partir de informações fornecidas pelo UC 001 se
# ocorreu alguma intenção de ação por parte dos usuários a partir do quadro extraído do vídeo capturado pela webcam.
#Realiza emulacao de comando que está associada a expressao
#-----------------------------
#Objetivo: Identificar a ocorrência de expressões faciais e
# movimentos realizados com a cabeça utilizando imagens de vídeos capturadas pela webcam.
if __name__== '__main__':
mouse_expressions().executar()
[
2,
532,
9,
12,
19617,
25,
3384,
69,
12,
23,
532,
9,
12,
198,
11748,
299,
32152,
355,
45941,
198,
11748,
269,
85,
17,
355,
269,
85,
198,
6738,
41927,
292,
13,
3866,
36948,
1330,
2939,
198,
6738,
41927,
292,
13,
27530,
1330,
2746,
62,
6738,
62,
17752,
198,
11748,
3904,
198,
11748,
19798,
292,
355,
279,
67,
198,
6738,
41927,
292,
13,
75,
6962,
1330,
23412,
198,
6738,
41927,
292,
1330,
4981,
198,
6738,
41927,
292,
13,
27530,
1330,
3440,
62,
19849,
198,
11748,
12972,
2306,
519,
9019,
198,
11748,
7869,
198,
6738,
9485,
48,
83,
20,
1330,
33734,
54,
312,
11407,
11,
33734,
8205,
72,
198,
6738,
4566,
333,
283,
1330,
4566,
333,
283,
27703,
198,
11748,
25064,
198,
11748,
4566,
333,
330,
3028,
355,
30218,
70,
220,
198,
11748,
4676,
198,
11748,
10211,
220,
198,
11748,
573,
565,
4533,
198,
11748,
2603,
29487,
8019,
13,
9078,
29487,
355,
458,
83,
198,
198,
9078,
2306,
519,
9019,
13,
7708,
4146,
4090,
15112,
796,
10352,
198,
197,
197,
628,
197,
2,
19209,
5330,
23781,
1426,
3970,
78,
14841,
430,
78,
12379,
16212,
31047,
31215,
8358,
1184,
64,
220,
198,
197,
2,
69,
19178,
267,
748,
17946,
3263,
78,
466,
10211,
198,
197,
2,
79,
5957,
390,
6773,
10782,
544,
220,
197,
197,
197,
197,
2,
17694,
17899,
283,
198,
197,
198,
197,
2,
2213,
1045,
3590,
368,
12379,
1986,
304,
277,
1031,
257,
2747,
3970,
78,
628,
198,
197,
2,
5944,
31173,
23593,
25,
23419,
258,
2189,
4911,
127,
113,
274,
1777,
544,
271,
304,
1426,
72,
16175,
28749,
12379,
269,
11231,
50041,
220,
198,
197,
2,
795,
15094,
305,
3131,
8836,
4598,
466,
410,
8836,
2934,
78,
1407,
14065,
78,
390,
334,
2611,
442,
321,
4763,
390,
5724,
1437,
13,
198,
197,
197,
197,
198,
197,
197,
197,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
198,
197,
2,
1783,
32501,
197,
197,
198,
197,
2,
5944,
31173,
23593,
25,
360,
13221,
283,
257,
636,
343,
390,
4175,
64,
16175,
127,
113,
274,
329,
32984,
24496,
16176,
78,
14417,
3571,
16,
384,
220,
198,
197,
2,
267,
10215,
260,
84,
435,
70,
7487,
493,
268,
16175,
28749,
390,
257,
16175,
28749,
16964,
636,
68,
23430,
514,
84,
6557,
380,
418,
257,
636,
343,
466,
15094,
305,
3131,
8836,
4598,
466,
410,
8836,
2934,
78,
3144,
333,
4533,
279,
10304,
49823,
13,
220,
198,
197,
2,
15633,
23638,
795,
377,
330,
5488,
390,
401,
25440,
8358,
1556,
6557,
2570,
4763,
257,
4911,
5488,
628,
198,
197,
2,
1783,
32501,
198,
197,
2,
5944,
31173,
23593,
25,
11440,
811,
283,
257,
267,
10215,
81,
25792,
10782,
544,
390,
4911,
127,
113,
274,
1777,
544,
271,
304,
220,
198,
197,
2,
1409,
3681,
418,
1103,
528,
22484,
401,
257,
269,
11231,
50041,
7736,
528,
25440,
3590,
641,
390,
410,
8836,
2934,
418,
3144,
333,
38768,
279,
10304,
49823,
13,
220,
198,
198,
361,
11593,
3672,
834,
855,
705,
834,
12417,
834,
10354,
198,
197,
35888,
62,
42712,
507,
22446,
18558,
315,
283,
3419
]
# -*- coding: utf-8 -*-
# Copyright: (c) 2018, Ansible Project
# Copyright: (c) 2018, Abhijeet Kasurde <[email protected] >
# GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt)
[
2,
532,
9,
12,
19617,
25,
3384,
69,
12,
23,
532,
9,
12,
198,
198,
2,
15069,
25,
357,
66,
8,
2864,
11,
28038,
856,
4935,
198,
2,
15069,
25,
357,
66,
8,
2864,
11,
2275,
71,
2926,
68,
316,
15035,
2799,
68,
1279,
461,
292,
2799,
68,
31,
445,
5183,
13,
785,
29,
198,
2,
22961,
3611,
5094,
13789,
410,
18,
13,
15,
10,
357,
3826,
27975,
45761,
393,
3740,
1378,
2503,
13,
41791,
13,
2398,
14,
677,
4541,
14,
70,
489,
12,
18,
13,
15,
13,
14116,
8,
628
]
import json
from .models import URL
[
11748,
33918,
198,
198,
6738,
764,
27530,
1330,
10289,
628
]
"""
IN PROGRESS:Transliterating Carlo's routine from Fortran
Form the B-Matrix and C-Matrix used to convert the coordinates
Calcualtes all of the derivaties via finite-difference
define starting xyz geometry.
convention: atom 1 is is 0 0 0
atom 2 bd 0 0
atom 3 on xy plane
"""
# import numpy as np
#
# NATOMS = 10 # maybe need, don't know
# INT_COORDS = ''
# DELTAX = 0.01
# DELTAY = 0.01
# DELTAZ = 0.01
#
#
# def compute_bmat(natoms, coords, deltax, deltay, deltaz):
# """ compute the bmatrix by central difference
# where B_ik = dq_i / dx_k
# """
#
# b_mat = np.zeros(3*natoms, 3*natoms)
# for j in range(3):
# for k in range(3):
#
# # perturb x + dx and x - dx
# xpert_xp = 1
# xpert_xn = 1
# _perturb_coordinates(coords, jpert, delta)
#
# # perturb y + dy and y - dy
# xpert_yp = 1
# xpert_yn = 1
# _perturb_coordinates(coords, jpert, delta)
#
# # perturb z + dz and z - dz
# xpert_zp = 1
# xpert_zn = 1
# _perturb_coordinates(coords, jpert, delta)
#
# # Now calculate the jk component C-Matrix
# _calculate_bmat_k_component(b_mat, coords, j, j*k,
# x_pert_pp, x_pert_pn,
# x_pert_np, x_pert_nn)
#
# # now update iangsub1 bmat component (whatever this is)
# b_mat = _update_bmat(bmat, coords)
#
# return b_mat
#
#
# def compute_cmat(natoms, coords, deltax, deltay, deltaz):
# """ compute the bmatrix by central difference
# where C_ijk = d2q_i / (dx_j.dx_k)
# """
#
# c_mat = np.zeros(3*natoms, 3*natoms, 3*natoms)
# for j in range(3):
# for k in range(3):
# # perturb xj + dxj and xk + dxk
# x_pert_pp = _perturb_coordinates(coords, jpert, kpert, d1, d2)
#
# # perturb xj - dxj and yk + dyk
# x_pert_np = _perturb_coordinates(coords, jpert, kpert, d1, d2)
#
# # perturb xj + dxj and yk - dyk
# x_pert_pn = _perturb_coordinates(coords, jpert, kpert, d1, d2)
#
# # perturb xj - dxj and xk - dxk
# x_pert_nn = _perturb_coordinates(coords, jpert, kpert, d1, d2)
#
# # Now calculate the jk component C-Matrix
# _calculate_cmat_k_component(c_mat, coords, j, j*k,
# x_pert_pp, x_pert_pn,
# x_pert_np, x_pert_nn)
#
# return c_mat
#
#
# def _perturb_coordinates(coords, jpert, delta1, kpert=None, delta2=None):
# """ Generate coordinates that have been perturbed
# """
# coords[jpert] += delta1
# coords[kpert] += delta2
# # call update_zmat(natom,natomt,intcoor,bislab,ibconn,
# # $ iaconn,idconn,bname,anname,dname,atname,cooxpp,cooypp,
# # $ coozpp,xintpp,tauopt,ntau,idummy,ilin_fr,aconnt,bconnt,
# # $ dconnt,atomlabel,ifilu)
#
# return coords
#
#
# def _calculate_bmat_k_component(b_mat, j_idx, coords, delta,
# x_pert_p, x_pert_n):
# """ Calculate one nine components of B_ij for given __
# """
#
# for i, coord in enumerate(coords):
# if abs(xpert_p[i] - xpert_np[i]) > 300.0:
# if xpert_n[i] < 0.0:
# xpert_n[i] += 360.0
# elif xpert_n[i] > 0.0:
# xpert_n[i] -= 360.0
# if abs(xpert_p[i] - xpert_n[i]) > 300.0:
# raise ValueError(
# 'something did not work here: k, j coord', kind, jind, i)
# b_mat[i, j_idx] = (
# ((xpert_p[i] - xpert_n[i]) / 2.0) * (1.0 / delta)
# )
#
# return b_mat
#
#
# def _calculate_cmat_k_component(c_mat, k_idx, coords, delta1, delta2,
# x_pert_pp, x_pert_pn, x_pert_np, x_pert_nn):
# """ Calculate one nine components of C_ijk for given j
# """
#
# for i, coord in enumerate(coords):
#
# if abs(xpert_pp[i] - xpert_np[i]) > 300.0:
# if xpert_pp[i] < 0.0:
# xpert_pp[i] += 360.0
# elif xpert_pp[i] > 0.0:
# xpert_pp[i] -= 360.0
# if abs(xpert_pp[i] - xpert_np[i]) > 300.0:
# raise ValueError(
# 'something did not work here: k, j coord',
# kind, jind, i)
#
# if abs(xpert_np[i] - xpert_np[i]) > 300.0:
# if xpert_pn[i] < 0.0:
# xpert_pn[i] += 360.0
# elif xpert_pn[i] > 0.0:
# xpert_pn[i] -= 360.0
# if abs(xpert_pp[i] - xpert_pn[i]) > 300.0:
# raise ValueError(
# 'something did not work here: k, j coord',
# kind, jind, i)
#
# if abs(xpert_np[i] - xpert_nn[i]) > 300.0:
# if xpert_nn[i] < 0.0:
# xpert_nn[i] += 360.0
# elif xpert_nn[i] > 0.0:
# xpert_nn[i] -= 360.0
# if abs(xpert_np[i] - xpert_nn[i]) > 300.0:
# raise ValueError(
# 'something did not work here: k, j coord',
# kind, jind, i)
#
# c_mat[i, j_idx, k_idx] = (
# xpert_pp[i] - xpert_np[i] - xpert_pn[i] +
# (xpert_nn[i] / 4.0) * (1.0 / deltax) * (1.0 / deltaz)
# )
#
# return c_mat
#
#
# if __name__ == '__main__':
# b_mat = compute_bmat(NATOMS, COORDS, DELTAX, DELTAY, DELTAZ)
# c_mat = compute_cmat(NATOMS, COORDS, DELTAX, DELTAY, DELTAZ)
[
37811,
198,
1268,
38688,
49,
7597,
25,
8291,
17201,
803,
40089,
338,
8027,
422,
6401,
2596,
198,
198,
8479,
262,
347,
12,
46912,
290,
327,
12,
46912,
973,
284,
10385,
262,
22715,
198,
198,
9771,
66,
723,
4879,
477,
286,
262,
16124,
265,
444,
2884,
27454,
12,
26069,
1945,
198,
198,
13086,
3599,
2124,
45579,
22939,
13,
198,
1102,
4018,
25,
22037,
352,
318,
318,
657,
657,
657,
198,
37696,
362,
275,
67,
657,
657,
198,
37696,
513,
319,
2124,
88,
6614,
198,
37811,
198,
198,
2,
1330,
299,
32152,
355,
45941,
198,
2,
198,
2,
10149,
2662,
50,
796,
838,
220,
1303,
3863,
761,
11,
836,
470,
760,
198,
2,
17828,
62,
8220,
1581,
5258,
796,
10148,
198,
2,
28163,
5603,
55,
796,
657,
13,
486,
198,
2,
28163,
51,
4792,
796,
657,
13,
486,
198,
2,
28163,
5603,
57,
796,
657,
13,
486,
198,
2,
198,
2,
198,
2,
825,
24061,
62,
65,
6759,
7,
32353,
3150,
11,
763,
3669,
11,
1619,
19290,
11,
1619,
83,
323,
11,
1619,
83,
1031,
2599,
198,
2,
220,
220,
220,
220,
37227,
24061,
262,
275,
6759,
8609,
416,
4318,
3580,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
810,
347,
62,
1134,
796,
288,
80,
62,
72,
1220,
44332,
62,
74,
198,
2,
220,
220,
220,
220,
37227,
198,
2,
198,
2,
220,
220,
220,
220,
275,
62,
6759,
796,
45941,
13,
9107,
418,
7,
18,
9,
32353,
3150,
11,
513,
9,
32353,
3150,
8,
198,
2,
220,
220,
220,
220,
329,
474,
287,
2837,
7,
18,
2599,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
329,
479,
287,
2837,
7,
18,
2599,
198,
2,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
22146,
5945,
2124,
1343,
44332,
290,
2124,
532,
44332,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2124,
11766,
62,
42372,
796,
352,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2124,
11766,
62,
87,
77,
796,
352,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4808,
11766,
5945,
62,
37652,
17540,
7,
1073,
3669,
11,
474,
11766,
11,
25979,
8,
198,
2,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
22146,
5945,
331,
1343,
20268,
290,
331,
532,
20268,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2124,
11766,
62,
4464,
796,
352,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2124,
11766,
62,
2047,
796,
352,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4808,
11766,
5945,
62,
37652,
17540,
7,
1073,
3669,
11,
474,
11766,
11,
25979,
8,
198,
2,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
22146,
5945,
1976,
1343,
288,
89,
290,
1976,
532,
288,
89,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2124,
11766,
62,
89,
79,
796,
352,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2124,
11766,
62,
47347,
796,
352,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4808,
11766,
5945,
62,
37652,
17540,
7,
1073,
3669,
11,
474,
11766,
11,
25979,
8,
198,
2,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
2735,
15284,
262,
474,
74,
7515,
327,
12,
46912,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
4808,
9948,
3129,
378,
62,
65,
6759,
62,
74,
62,
42895,
7,
65,
62,
6759,
11,
763,
3669,
11,
474,
11,
474,
9,
74,
11,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2124,
62,
11766,
62,
381,
11,
2124,
62,
11766,
62,
21999,
11,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2124,
62,
11766,
62,
37659,
11,
2124,
62,
11766,
62,
20471,
8,
198,
2,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
783,
4296,
1312,
648,
7266,
16,
275,
6759,
7515,
357,
39664,
428,
318,
8,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
275,
62,
6759,
796,
4808,
19119,
62,
65,
6759,
7,
65,
6759,
11,
763,
3669,
8,
198,
2,
198,
2,
220,
220,
220,
220,
1441,
275,
62,
6759,
198,
2,
198,
2,
198,
2,
825,
24061,
62,
66,
6759,
7,
32353,
3150,
11,
763,
3669,
11,
1619,
19290,
11,
1619,
83,
323,
11,
1619,
83,
1031,
2599,
198,
2,
220,
220,
220,
220,
37227,
24061,
262,
275,
6759,
8609,
416,
4318,
3580,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
810,
327,
62,
45961,
796,
288,
17,
80,
62,
72,
1220,
357,
34350,
62,
73,
13,
34350,
62,
74,
8,
198,
2,
220,
220,
220,
220,
37227,
198,
2,
198,
2,
220,
220,
220,
220,
269,
62,
6759,
796,
45941,
13,
9107,
418,
7,
18,
9,
32353,
3150,
11,
513,
9,
32353,
3150,
11,
513,
9,
32353,
3150,
8,
198,
2,
220,
220,
220,
220,
329,
474,
287,
2837,
7,
18,
2599,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
329,
479,
287,
2837,
7,
18,
2599,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
22146,
5945,
2124,
73,
1343,
44332,
73,
290,
2124,
74,
1343,
44332,
74,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2124,
62,
11766,
62,
381,
796,
4808,
11766,
5945,
62,
37652,
17540,
7,
1073,
3669,
11,
474,
11766,
11,
479,
11766,
11,
288,
16,
11,
288,
17,
8,
198,
2,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
22146,
5945,
2124,
73,
532,
44332,
73,
290,
331,
74,
1343,
20268,
74,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2124,
62,
11766,
62,
37659,
796,
4808,
11766,
5945,
62,
37652,
17540,
7,
1073,
3669,
11,
474,
11766,
11,
479,
11766,
11,
288,
16,
11,
288,
17,
8,
198,
2,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
22146,
5945,
2124,
73,
1343,
44332,
73,
290,
331,
74,
532,
20268,
74,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2124,
62,
11766,
62,
21999,
796,
4808,
11766,
5945,
62,
37652,
17540,
7,
1073,
3669,
11,
474,
11766,
11,
479,
11766,
11,
288,
16,
11,
288,
17,
8,
198,
2,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
22146,
5945,
2124,
73,
532,
44332,
73,
290,
2124,
74,
532,
44332,
74,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2124,
62,
11766,
62,
20471,
796,
4808,
11766,
5945,
62,
37652,
17540,
7,
1073,
3669,
11,
474,
11766,
11,
479,
11766,
11,
288,
16,
11,
288,
17,
8,
198,
2,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
2735,
15284,
262,
474,
74,
7515,
327,
12,
46912,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4808,
9948,
3129,
378,
62,
66,
6759,
62,
74,
62,
42895,
7,
66,
62,
6759,
11,
763,
3669,
11,
474,
11,
474,
9,
74,
11,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2124,
62,
11766,
62,
381,
11,
2124,
62,
11766,
62,
21999,
11,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2124,
62,
11766,
62,
37659,
11,
2124,
62,
11766,
62,
20471,
8,
198,
2,
198,
2,
220,
220,
220,
220,
1441,
269,
62,
6759,
198,
2,
198,
2,
198,
2,
825,
4808,
11766,
5945,
62,
37652,
17540,
7,
1073,
3669,
11,
474,
11766,
11,
25979,
16,
11,
479,
11766,
28,
14202,
11,
25979,
17,
28,
14202,
2599,
198,
2,
220,
220,
220,
220,
37227,
2980,
378,
22715,
326,
423,
587,
22146,
37694,
198,
2,
220,
220,
220,
220,
37227,
198,
2,
220,
220,
220,
220,
763,
3669,
58,
73,
11766,
60,
15853,
25979,
16,
198,
2,
220,
220,
220,
220,
763,
3669,
58,
74,
11766,
60,
15853,
25979,
17,
198,
2,
220,
220,
220,
220,
1303,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
869,
4296,
62,
89,
6759,
7,
32353,
296,
11,
32353,
296,
83,
11,
600,
1073,
273,
11,
65,
3044,
397,
11,
571,
37043,
11,
198,
2,
220,
220,
220,
220,
1303,
720,
220,
220,
220,
220,
1312,
7807,
77,
11,
312,
37043,
11,
65,
3672,
11,
1236,
480,
11,
67,
3672,
11,
265,
3672,
11,
1073,
1140,
381,
11,
1073,
726,
381,
11,
198,
2,
220,
220,
220,
220,
1303,
720,
220,
220,
220,
220,
763,
8590,
381,
11,
87,
600,
381,
11,
83,
559,
8738,
11,
429,
559,
11,
312,
13513,
11,
346,
259,
62,
8310,
11,
7807,
429,
11,
65,
1102,
429,
11,
198,
2,
220,
220,
220,
220,
1303,
720,
220,
220,
220,
220,
288,
1102,
429,
11,
37696,
18242,
11,
361,
346,
84,
8,
198,
2,
198,
2,
220,
220,
220,
220,
1441,
763,
3669,
198,
2,
198,
2,
198,
2,
825,
4808,
9948,
3129,
378,
62,
65,
6759,
62,
74,
62,
42895,
7,
65,
62,
6759,
11,
474,
62,
312,
87,
11,
763,
3669,
11,
25979,
11,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2124,
62,
11766,
62,
79,
11,
2124,
62,
11766,
62,
77,
2599,
198,
2,
220,
220,
220,
220,
37227,
27131,
378,
530,
5193,
6805,
286,
347,
62,
2926,
329,
1813,
11593,
198,
2,
220,
220,
220,
220,
37227,
198,
2,
198,
2,
220,
220,
220,
220,
329,
1312,
11,
6349,
287,
27056,
378,
7,
1073,
3669,
2599,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
611,
2352,
7,
87,
11766,
62,
79,
58,
72,
60,
532,
2124,
11766,
62,
37659,
58,
72,
12962,
1875,
5867,
13,
15,
25,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
2124,
11766,
62,
77,
58,
72,
60,
1279,
657,
13,
15,
25,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2124,
11766,
62,
77,
58,
72,
60,
15853,
11470,
13,
15,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1288,
361,
2124,
11766,
62,
77,
58,
72,
60,
1875,
657,
13,
15,
25,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2124,
11766,
62,
77,
58,
72,
60,
48185,
11470,
13,
15,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
2352,
7,
87,
11766,
62,
79,
58,
72,
60,
532,
2124,
11766,
62,
77,
58,
72,
12962,
1875,
5867,
13,
15,
25,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5298,
11052,
12331,
7,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
18927,
750,
407,
670,
994,
25,
479,
11,
474,
6349,
3256,
1611,
11,
474,
521,
11,
1312,
8,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
275,
62,
6759,
58,
72,
11,
474,
62,
312,
87,
60,
796,
357,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
14808,
87,
11766,
62,
79,
58,
72,
60,
532,
2124,
11766,
62,
77,
58,
72,
12962,
1220,
362,
13,
15,
8,
1635,
357,
16,
13,
15,
1220,
25979,
8,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
1267,
198,
2,
198,
2,
220,
220,
220,
220,
1441,
275,
62,
6759,
198,
2,
198,
2,
198,
2,
825,
4808,
9948,
3129,
378,
62,
66,
6759,
62,
74,
62,
42895,
7,
66,
62,
6759,
11,
479,
62,
312,
87,
11,
763,
3669,
11,
25979,
16,
11,
25979,
17,
11,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2124,
62,
11766,
62,
381,
11,
2124,
62,
11766,
62,
21999,
11,
2124,
62,
11766,
62,
37659,
11,
2124,
62,
11766,
62,
20471,
2599,
198,
2,
220,
220,
220,
220,
37227,
27131,
378,
530,
5193,
6805,
286,
327,
62,
45961,
329,
1813,
474,
198,
2,
220,
220,
220,
220,
37227,
198,
2,
198,
2,
220,
220,
220,
220,
329,
1312,
11,
6349,
287,
27056,
378,
7,
1073,
3669,
2599,
198,
2,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
611,
2352,
7,
87,
11766,
62,
381,
58,
72,
60,
532,
2124,
11766,
62,
37659,
58,
72,
12962,
1875,
5867,
13,
15,
25,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
2124,
11766,
62,
381,
58,
72,
60,
1279,
657,
13,
15,
25,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2124,
11766,
62,
381,
58,
72,
60,
15853,
11470,
13,
15,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1288,
361,
2124,
11766,
62,
381,
58,
72,
60,
1875,
657,
13,
15,
25,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2124,
11766,
62,
381,
58,
72,
60,
48185,
11470,
13,
15,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
2352,
7,
87,
11766,
62,
381,
58,
72,
60,
532,
2124,
11766,
62,
37659,
58,
72,
12962,
1875,
5867,
13,
15,
25,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5298,
11052,
12331,
7,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
18927,
750,
407,
670,
994,
25,
479,
11,
474,
6349,
3256,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1611,
11,
474,
521,
11,
1312,
8,
198,
2,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
611,
2352,
7,
87,
11766,
62,
37659,
58,
72,
60,
532,
2124,
11766,
62,
37659,
58,
72,
12962,
1875,
5867,
13,
15,
25,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
2124,
11766,
62,
21999,
58,
72,
60,
1279,
657,
13,
15,
25,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2124,
11766,
62,
21999,
58,
72,
60,
15853,
11470,
13,
15,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1288,
361,
2124,
11766,
62,
21999,
58,
72,
60,
1875,
657,
13,
15,
25,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2124,
11766,
62,
21999,
58,
72,
60,
48185,
11470,
13,
15,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
2352,
7,
87,
11766,
62,
381,
58,
72,
60,
532,
2124,
11766,
62,
21999,
58,
72,
12962,
1875,
5867,
13,
15,
25,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5298,
11052,
12331,
7,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
18927,
750,
407,
670,
994,
25,
479,
11,
474,
6349,
3256,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1611,
11,
474,
521,
11,
1312,
8,
198,
2,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
611,
2352,
7,
87,
11766,
62,
37659,
58,
72,
60,
532,
2124,
11766,
62,
20471,
58,
72,
12962,
1875,
5867,
13,
15,
25,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
2124,
11766,
62,
20471,
58,
72,
60,
1279,
657,
13,
15,
25,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2124,
11766,
62,
20471,
58,
72,
60,
15853,
11470,
13,
15,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1288,
361,
2124,
11766,
62,
20471,
58,
72,
60,
1875,
657,
13,
15,
25,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2124,
11766,
62,
20471,
58,
72,
60,
48185,
11470,
13,
15,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
2352,
7,
87,
11766,
62,
37659,
58,
72,
60,
532,
2124,
11766,
62,
20471,
58,
72,
12962,
1875,
5867,
13,
15,
25,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5298,
11052,
12331,
7,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
18927,
750,
407,
670,
994,
25,
479,
11,
474,
6349,
3256,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1611,
11,
474,
521,
11,
1312,
8,
198,
2,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
269,
62,
6759,
58,
72,
11,
474,
62,
312,
87,
11,
479,
62,
312,
87,
60,
796,
357,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2124,
11766,
62,
381,
58,
72,
60,
532,
2124,
11766,
62,
37659,
58,
72,
60,
532,
2124,
11766,
62,
21999,
58,
72,
60,
1343,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
357,
87,
11766,
62,
20471,
58,
72,
60,
1220,
604,
13,
15,
8,
1635,
357,
16,
13,
15,
1220,
1619,
19290,
8,
1635,
357,
16,
13,
15,
1220,
1619,
83,
1031,
8,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
1267,
198,
2,
198,
2,
220,
220,
220,
220,
1441,
269,
62,
6759,
198,
2,
198,
2,
198,
2,
611,
11593,
3672,
834,
6624,
705,
834,
12417,
834,
10354,
198,
2,
220,
220,
220,
220,
275,
62,
6759,
796,
24061,
62,
65,
6759,
7,
34259,
2662,
50,
11,
7375,
1581,
5258,
11,
28163,
5603,
55,
11,
28163,
51,
4792,
11,
28163,
5603,
57,
8,
198,
2,
220,
220,
220,
220,
269,
62,
6759,
796,
24061,
62,
66,
6759,
7,
34259,
2662,
50,
11,
7375,
1581,
5258,
11,
28163,
5603,
55,
11,
28163,
51,
4792,
11,
28163,
5603,
57,
8,
198
]
# --------------------------------------------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License. See License.txt in the project root for license information.
# --------------------------------------------------------------------------------------------
import json
import requests
from knack.util import CLIError
from azure.cli.command_modules.botservice import adal_authenticator
[
2,
16529,
1783,
10541,
198,
2,
15069,
357,
66,
8,
5413,
10501,
13,
1439,
2489,
10395,
13,
198,
2,
49962,
739,
262,
17168,
13789,
13,
4091,
13789,
13,
14116,
287,
262,
1628,
6808,
329,
5964,
1321,
13,
198,
2,
16529,
1783,
10541,
198,
198,
11748,
33918,
198,
11748,
7007,
198,
6738,
47868,
13,
22602,
1330,
43749,
12331,
198,
6738,
35560,
495,
13,
44506,
13,
21812,
62,
18170,
13,
42478,
712,
501,
1330,
512,
282,
62,
41299,
26407,
628
]
n = int(input())
pieces = {}
for _ in range(n):
piece, composer, key = input().split("|")
pieces[piece] = {'composer': composer, 'key': key}
data = input()
while not data == "Stop":
command = data.split("|")
if command[0] == "Add":
piece, composer, key = command[1:]
if piece in pieces:
print(f"{piece} is already in the collection!")
else:
pieces[piece] = {'composer': composer, 'key': key}
print(f"{piece} by {composer} in {key} added to the collection!")
elif command[0] == "Remove":
piece = command[1]
if piece in pieces:
del pieces[piece]
print(f"Successfully removed {piece}!")
else:
print(f"Invalid operation! {piece} does not exist in the collection.")
elif command[0] == "ChangeKey":
piece, new_key = command[1:]
if piece in pieces:
pieces[piece]['key'] = new_key
print(f"Changed the key of {piece} to {new_key}!")
else:
print(f"Invalid operation! {piece} does not exist in the collection.")
data = input()
sorted_pieces = sorted(pieces.items(), key=lambda tkvp: (tkvp[0], tkvp[1]['composer']))
for piece, data in sorted_pieces:
print(f"{piece} -> Composer: {data['composer']}, Key: {data['key']}")
[
77,
796,
493,
7,
15414,
28955,
198,
34154,
796,
23884,
628,
198,
1640,
4808,
287,
2837,
7,
77,
2599,
198,
220,
220,
220,
3704,
11,
26777,
11,
1994,
796,
5128,
22446,
35312,
7203,
91,
4943,
198,
220,
220,
220,
5207,
58,
12239,
60,
796,
1391,
6,
785,
1930,
263,
10354,
26777,
11,
705,
2539,
10354,
1994,
92,
628,
198,
7890,
796,
5128,
3419,
198,
198,
4514,
407,
1366,
6624,
366,
19485,
1298,
198,
220,
220,
220,
3141,
796,
1366,
13,
35312,
7203,
91,
4943,
198,
220,
220,
220,
611,
3141,
58,
15,
60,
6624,
366,
4550,
1298,
198,
220,
220,
220,
220,
220,
220,
220,
3704,
11,
26777,
11,
1994,
796,
3141,
58,
16,
47715,
198,
220,
220,
220,
220,
220,
220,
220,
611,
3704,
287,
5207,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3601,
7,
69,
1,
90,
12239,
92,
318,
1541,
287,
262,
4947,
2474,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5207,
58,
12239,
60,
796,
1391,
6,
785,
1930,
263,
10354,
26777,
11,
705,
2539,
10354,
1994,
92,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3601,
7,
69,
1,
90,
12239,
92,
416,
1391,
785,
1930,
263,
92,
287,
1391,
2539,
92,
2087,
284,
262,
4947,
2474,
8,
198,
220,
220,
220,
1288,
361,
3141,
58,
15,
60,
6624,
366,
27914,
1298,
198,
220,
220,
220,
220,
220,
220,
220,
3704,
796,
3141,
58,
16,
60,
198,
220,
220,
220,
220,
220,
220,
220,
611,
3704,
287,
5207,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1619,
5207,
58,
12239,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3601,
7,
69,
1,
33244,
2759,
4615,
1391,
12239,
92,
2474,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3601,
7,
69,
1,
44651,
4905,
0,
1391,
12239,
92,
857,
407,
2152,
287,
262,
4947,
19570,
198,
220,
220,
220,
1288,
361,
3141,
58,
15,
60,
6624,
366,
19400,
9218,
1298,
198,
220,
220,
220,
220,
220,
220,
220,
3704,
11,
649,
62,
2539,
796,
3141,
58,
16,
47715,
198,
220,
220,
220,
220,
220,
220,
220,
611,
3704,
287,
5207,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5207,
58,
12239,
7131,
6,
2539,
20520,
796,
649,
62,
2539,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3601,
7,
69,
1,
31813,
262,
1994,
286,
1391,
12239,
92,
284,
1391,
3605,
62,
2539,
92,
2474,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3601,
7,
69,
1,
44651,
4905,
0,
1391,
12239,
92,
857,
407,
2152,
287,
262,
4947,
19570,
198,
220,
220,
220,
1366,
796,
5128,
3419,
198,
198,
82,
9741,
62,
34154,
796,
23243,
7,
34154,
13,
23814,
22784,
1994,
28,
50033,
256,
74,
36133,
25,
357,
30488,
36133,
58,
15,
4357,
256,
74,
36133,
58,
16,
7131,
6,
785,
1930,
263,
20520,
4008,
198,
1640,
3704,
11,
1366,
287,
23243,
62,
34154,
25,
198,
220,
220,
220,
3601,
7,
69,
1,
90,
12239,
92,
4613,
29936,
263,
25,
1391,
7890,
17816,
785,
1930,
263,
20520,
5512,
7383,
25,
1391,
7890,
17816,
2539,
20520,
92,
4943
]
import insightconnect_plugin_runtime
from .schema import LookupAlertInput, LookupAlertOutput, Input, Output, Component
# Custom imports below
from insightconnect_plugin_runtime.exceptions import PluginException
from komand_recorded_future.util.api import Endpoint
[
11748,
11281,
8443,
62,
33803,
62,
43282,
198,
6738,
764,
15952,
2611,
1330,
6803,
929,
36420,
20560,
11,
6803,
929,
36420,
26410,
11,
23412,
11,
25235,
11,
35100,
198,
198,
2,
8562,
17944,
2174,
198,
6738,
11281,
8443,
62,
33803,
62,
43282,
13,
1069,
11755,
1330,
42636,
16922,
198,
6738,
479,
296,
392,
62,
47398,
62,
37443,
13,
22602,
13,
15042,
1330,
5268,
4122,
628
]
#!/usr/bin/env python3
# Copyright (c) 2020-2021 The Bitcoin Core developers
# Distributed under the MIT software license, see the accompanying
# file COPYING or http://www.opensource.org/licenses/mit-license.php.
"""Test indices in conjunction with prune."""
from test_framework.test_framework import BitcoinTestFramework
from test_framework.util import (
assert_equal,
assert_greater_than,
assert_raises_rpc_error,
)
if __name__ == '__main__':
FeatureIndexPruneTest().main()
[
2,
48443,
14629,
14,
8800,
14,
24330,
21015,
18,
198,
2,
15069,
357,
66,
8,
12131,
12,
1238,
2481,
383,
6185,
7231,
6505,
198,
2,
4307,
6169,
739,
262,
17168,
3788,
5964,
11,
766,
262,
19249,
198,
2,
2393,
27975,
45761,
393,
2638,
1378,
2503,
13,
44813,
1668,
13,
2398,
14,
677,
4541,
14,
2781,
12,
43085,
13,
10121,
13,
198,
37811,
14402,
36525,
287,
17856,
351,
778,
1726,
526,
15931,
198,
6738,
1332,
62,
30604,
13,
9288,
62,
30604,
1330,
6185,
14402,
21055,
6433,
198,
6738,
1332,
62,
30604,
13,
22602,
1330,
357,
198,
220,
220,
220,
6818,
62,
40496,
11,
198,
220,
220,
220,
6818,
62,
18223,
263,
62,
14813,
11,
198,
220,
220,
220,
6818,
62,
430,
2696,
62,
81,
14751,
62,
18224,
11,
198,
8,
628,
198,
198,
361,
11593,
3672,
834,
6624,
705,
834,
12417,
834,
10354,
198,
220,
220,
220,
27018,
15732,
6836,
1726,
14402,
22446,
12417,
3419,
198
]
from django.contrib.auth.models import User
from django.shortcuts import get_object_or_404
from django.views.generic import TemplateView
from ...models import Commit, UTopic
from ..utils import paginator
[
6738,
42625,
14208,
13,
3642,
822,
13,
18439,
13,
27530,
1330,
11787,
198,
6738,
42625,
14208,
13,
19509,
23779,
1330,
651,
62,
15252,
62,
273,
62,
26429,
198,
6738,
42625,
14208,
13,
33571,
13,
41357,
1330,
37350,
7680,
198,
198,
6738,
2644,
27530,
1330,
35910,
11,
471,
33221,
198,
6738,
11485,
26791,
1330,
42208,
20900,
628
]
from abaqusConstants import *
from .ContactProperty import ContactProperty
class FluidCavityProperty(ContactProperty):
"""The FluidCavityProperty object is an interaction property that defines the fluid
behavior for a surface-based fluid cavity.
The FluidCavityProperty object is derived from the InteractionProperty object.
Notes
-----
This object can be accessed by:
.. code-block:: python
import interaction
mdb.models[name].interactionProperties[name]
The corresponding analysis keywords are:
- FLUID BEHAVIOR
- CAPACITY
- FLUID BULK MODULUS
- FLUID DENSITY
- FLUID EXPANSION
- MOLECULAR WEIGHT
"""
def __init__(self, name: str, definition: SymbolicConstant = HYDRAULIC, fluidDensity: float = None,
molecularWeight: float = None, useExpansion: Boolean = OFF,
expansionTempDep: Boolean = OFF, expansionDependencies: int = 0,
referenceTemperature: float = 0, expansionTable: tuple = (),
useBulkModulus: Boolean = OFF, bulkModulusTempDep: Boolean = OFF,
bulkModulusDependencies: int = 0, bulkModulusTable: tuple = (),
useCapacity: Boolean = OFF, capacityType: SymbolicConstant = POLYNOMIAL,
capacityTempDep: Boolean = OFF, capacityDependencies: int = 0,
capacityTable: tuple = ()):
"""This method creates a FluidCavityProperty object.
Notes
-----
This function can be accessed by:
.. code-block:: python
mdb.models[name].FluidCavityProperty
Parameters
----------
name
A String specifying the interaction property repository key.
definition
A SymbolicConstant specifying the type of fluid cavity property to be defined. Possible
values are HYDRAULIC and PNEUMATIC. The default value is HYDRAULIC.
fluidDensity
None or a Float specifying the reference fluid density. This argument is applicable only
when *definition*=HYDRAULIC, and is required in that case. The default value is None.
molecularWeight
None or a Float specifying the molecular weight of the ideal gas species. This argument
is applicable only when *definition*=PNEUMATIC, and is required in that case. The
default value is None.
useExpansion
A Boolean specifying whether thermal expansion coefficients will be defined. This
argument is applicable only when *definition*=HYDRAULIC. The default value is OFF.
expansionTempDep
A Boolean specifying whether the thermal fluid expansion data will have temperature
dependency. This argument is applicable only when *definition*=HYDRAULIC and when
*useExpansion*=True. The default value is OFF.
expansionDependencies
An Int specifying the number of field variable dependencies in the thermal fluid
expansion data. This argument is applicable only when *definition*=HYDRAULIC and when
*useExpansion*=True. The default value is 0.
referenceTemperature
A Float specifying the reference temperature for the coefficient of thermal expansion.
This argument is applicable only when *definition*=HYDRAULIC, when *useExpansion*=True,
and when either *expansionTempDep*=True or when *expansionDependencies* is greater than
0. The default value is 0.0.
expansionTable
A sequence of sequences of Floats specifying the thermal expansion coefficients. This
argument is applicable only when *definition*=HYDRAULIC and when *useExpansion*=True.
Each sequence contains the following data:
- The mean coefficient of thermal expansion.
- Temperature, if the data depend on temperature.
- Value of the first field variable, if the data depend on field variables.
- Value of the second field variable.
- Etc.
useBulkModulus
A Boolean specifying whether fluid bulk modulus values will be defined. This argument is
applicable only when *definition*=HYDRAULIC. The default value is OFF.
bulkModulusTempDep
A Boolean specifying whether the fluid bulk modulus data will have temperature
dependency. This argument is applicable only when *definition*=HYDRAULIC and when
*useBulkModulus*=True. The default value is OFF.
bulkModulusDependencies
An Int specifying the number of field variable dependencies in the fluid bulk modulus
data. This argument is applicable only when *definition*=HYDRAULIC and when
*useBulkModulus*=True. The default value is 0.
bulkModulusTable
A sequence of sequences of Floats specifying the fluid bulk modulus values. This
argument is applicable only when *definition*=HYDRAULIC and when *useBulkModulus*=True.
Each sequence contains the following data:
- The fluid bulk modulus.
- Temperature, if the data depend on temperature.
- Value of the first field variable, if the data depend on field variables.
- Value of the second field variable.
- Etc.
useCapacity
A Boolean specifying whether molar heat capacity values will be defined. This argument
is applicable only when *definition*=PNEUMATIC. The default value is OFF.
capacityType
A SymbolicConstant specifying the method to define the molar heat capacity. Possible
values are POLYNOMIAL and TABULAR. The default value is POLYNOMIAL.
capacityTempDep
A Boolean specifying whether the molar heat capacity data will have temperature
dependency. This argument is applicable only when *definition*=PNEUMATIC, when
*useCapacity*=True, and when *capacityType*=TABULAR. The default value is OFF.
capacityDependencies
An Int specifying the number of field variable dependencies in the molar heat capacity
data. This argument is applicable only when *definition*=PNEUMATIC, when
*useCapacity*=True, and when *capacityType*=TABULAR. The default value is 0.
capacityTable
A sequence of sequences of Floats specifying the molar heat capacity values in the form
of a polynomial expression. This argument is applicable only when
*definition*=PNEUMATIC, when *useCapacity*=True, and when *capacityType*=POLYNOMIAL. In
this form, only one sequence is specified and that sequence contains the following data:
- The first molar heat capacity coefficient.
- The second molar heat capacity coefficient.
- The third molar heat capacity coefficient.
- The fourth molar heat capacity coefficient.
- The fifth molar heat capacity coefficient.
Alternatively, the sequence data may specify the molar heat capacity values at constant
pressure for an ideal gas species. This argument is applicable only when
*definition*=PNEUMATIC, when *useCapacity*=True, and when *capacityType*=TABULAR. Each
sequence contains the following data:
- The molar heat capacity at constant pressure.
- Temperature, if the data depend on temperature.
- Value of the first field variable, if the data depend on field variables.
- Value of the second field variable.
- Etc.
Returns
-------
A FluidCavityProperty object.
"""
super().__init__(name)
pass
def setValues(self, definition: SymbolicConstant = HYDRAULIC, fluidDensity: float = None,
molecularWeight: float = None, useExpansion: Boolean = OFF,
expansionTempDep: Boolean = OFF, expansionDependencies: int = 0,
referenceTemperature: float = 0, expansionTable: tuple = (),
useBulkModulus: Boolean = OFF, bulkModulusTempDep: Boolean = OFF,
bulkModulusDependencies: int = 0, bulkModulusTable: tuple = (),
useCapacity: Boolean = OFF, capacityType: SymbolicConstant = POLYNOMIAL,
capacityTempDep: Boolean = OFF, capacityDependencies: int = 0,
capacityTable: tuple = ()):
"""This method modifies the FluidCavityProperty object.
Parameters
----------
definition
A SymbolicConstant specifying the type of fluid cavity property to be defined. Possible
values are HYDRAULIC and PNEUMATIC. The default value is HYDRAULIC.
fluidDensity
None or a Float specifying the reference fluid density. This argument is applicable only
when *definition*=HYDRAULIC, and is required in that case. The default value is None.
molecularWeight
None or a Float specifying the molecular weight of the ideal gas species. This argument
is applicable only when *definition*=PNEUMATIC, and is required in that case. The
default value is None.
useExpansion
A Boolean specifying whether thermal expansion coefficients will be defined. This
argument is applicable only when *definition*=HYDRAULIC. The default value is OFF.
expansionTempDep
A Boolean specifying whether the thermal fluid expansion data will have temperature
dependency. This argument is applicable only when *definition*=HYDRAULIC and when
*useExpansion*=True. The default value is OFF.
expansionDependencies
An Int specifying the number of field variable dependencies in the thermal fluid
expansion data. This argument is applicable only when *definition*=HYDRAULIC and when
*useExpansion*=True. The default value is 0.
referenceTemperature
A Float specifying the reference temperature for the coefficient of thermal expansion.
This argument is applicable only when *definition*=HYDRAULIC, when *useExpansion*=True,
and when either *expansionTempDep*=True or when *expansionDependencies* is greater than
0. The default value is 0.0.
expansionTable
A sequence of sequences of Floats specifying the thermal expansion coefficients. This
argument is applicable only when *definition*=HYDRAULIC and when *useExpansion*=True.
Each sequence contains the following data:
- The mean coefficient of thermal expansion.
- Temperature, if the data depend on temperature.
- Value of the first field variable, if the data depend on field variables.
- Value of the second field variable.
- Etc.
useBulkModulus
A Boolean specifying whether fluid bulk modulus values will be defined. This argument is
applicable only when *definition*=HYDRAULIC. The default value is OFF.
bulkModulusTempDep
A Boolean specifying whether the fluid bulk modulus data will have temperature
dependency. This argument is applicable only when *definition*=HYDRAULIC and when
*useBulkModulus*=True. The default value is OFF.
bulkModulusDependencies
An Int specifying the number of field variable dependencies in the fluid bulk modulus
data. This argument is applicable only when *definition*=HYDRAULIC and when
*useBulkModulus*=True. The default value is 0.
bulkModulusTable
A sequence of sequences of Floats specifying the fluid bulk modulus values. This
argument is applicable only when *definition*=HYDRAULIC and when *useBulkModulus*=True.
Each sequence contains the following data:
- The fluid bulk modulus.
- Temperature, if the data depend on temperature.
- Value of the first field variable, if the data depend on field variables.
- Value of the second field variable.
- Etc.
useCapacity
A Boolean specifying whether molar heat capacity values will be defined. This argument
is applicable only when *definition*=PNEUMATIC. The default value is OFF.
capacityType
A SymbolicConstant specifying the method to define the molar heat capacity. Possible
values are POLYNOMIAL and TABULAR. The default value is POLYNOMIAL.
capacityTempDep
A Boolean specifying whether the molar heat capacity data will have temperature
dependency. This argument is applicable only when *definition*=PNEUMATIC, when
*useCapacity*=True, and when *capacityType*=TABULAR. The default value is OFF.
capacityDependencies
An Int specifying the number of field variable dependencies in the molar heat capacity
data. This argument is applicable only when *definition*=PNEUMATIC, when
*useCapacity*=True, and when *capacityType*=TABULAR. The default value is 0.
capacityTable
A sequence of sequences of Floats specifying the molar heat capacity values in the form
of a polynomial expression. This argument is applicable only when
*definition*=PNEUMATIC, when *useCapacity*=True, and when *capacityType*=POLYNOMIAL. In
this form, only one sequence is specified and that sequence contains the following data:
- The first molar heat capacity coefficient.
- The second molar heat capacity coefficient.
- The third molar heat capacity coefficient.
- The fourth molar heat capacity coefficient.
- The fifth molar heat capacity coefficient.
Alternatively, the sequence data may specify the molar heat capacity values at constant
pressure for an ideal gas species. This argument is applicable only when
*definition*=PNEUMATIC, when *useCapacity*=True, and when *capacityType*=TABULAR. Each
sequence contains the following data:
- The molar heat capacity at constant pressure.
- Temperature, if the data depend on temperature.
- Value of the first field variable, if the data depend on field variables.
- Value of the second field variable.
- Etc.
"""
pass
[
6738,
450,
30188,
385,
34184,
1187,
1330,
1635,
198,
6738,
764,
17829,
21746,
1330,
14039,
21746,
628,
198,
4871,
1610,
27112,
34,
615,
414,
21746,
7,
17829,
21746,
2599,
198,
220,
220,
220,
37227,
464,
1610,
27112,
34,
615,
414,
21746,
2134,
318,
281,
10375,
3119,
326,
15738,
262,
11711,
198,
220,
220,
220,
4069,
329,
257,
4417,
12,
3106,
11711,
31643,
13,
220,
198,
220,
220,
220,
383,
1610,
27112,
34,
615,
414,
21746,
2134,
318,
10944,
422,
262,
4225,
2673,
21746,
2134,
13,
220,
628,
220,
220,
220,
11822,
198,
220,
220,
220,
37404,
198,
220,
220,
220,
770,
2134,
460,
307,
17535,
416,
25,
628,
220,
220,
220,
11485,
2438,
12,
9967,
3712,
21015,
628,
220,
220,
220,
220,
220,
220,
220,
1330,
10375,
198,
220,
220,
220,
220,
220,
220,
220,
285,
9945,
13,
27530,
58,
3672,
4083,
3849,
2673,
2964,
18200,
58,
3672,
60,
628,
220,
220,
220,
383,
11188,
3781,
26286,
389,
25,
628,
220,
220,
220,
532,
9977,
27586,
9348,
7801,
12861,
1581,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
532,
20176,
2246,
9050,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
532,
9977,
27586,
347,
6239,
42,
19164,
6239,
2937,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
532,
9977,
27586,
360,
16938,
9050,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
532,
9977,
27586,
25703,
15037,
2849,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
532,
13070,
2538,
34,
37232,
12887,
9947,
628,
220,
220,
220,
37227,
628,
220,
220,
220,
825,
11593,
15003,
834,
7,
944,
11,
1438,
25,
965,
11,
6770,
25,
41327,
4160,
3103,
18797,
796,
367,
35755,
3861,
6239,
2149,
11,
11711,
35,
6377,
25,
12178,
796,
6045,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
18955,
25844,
25,
12178,
796,
6045,
11,
779,
16870,
5487,
25,
41146,
796,
18562,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
7118,
30782,
12156,
25,
41146,
796,
18562,
11,
7118,
35,
2690,
3976,
25,
493,
796,
657,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4941,
42492,
25,
12178,
796,
657,
11,
7118,
10962,
25,
46545,
796,
29994,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
779,
33,
12171,
5841,
23515,
25,
41146,
796,
18562,
11,
11963,
5841,
23515,
30782,
12156,
25,
41146,
796,
18562,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
11963,
5841,
23515,
35,
2690,
3976,
25,
493,
796,
657,
11,
11963,
5841,
23515,
10962,
25,
46545,
796,
29994,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
779,
15610,
4355,
25,
41146,
796,
18562,
11,
5339,
6030,
25,
41327,
4160,
3103,
18797,
796,
20634,
40760,
2662,
12576,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5339,
30782,
12156,
25,
41146,
796,
18562,
11,
5339,
35,
2690,
3976,
25,
493,
796,
657,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5339,
10962,
25,
46545,
796,
7499,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
1212,
2446,
8075,
257,
1610,
27112,
34,
615,
414,
21746,
2134,
13,
628,
220,
220,
220,
220,
220,
220,
220,
11822,
198,
220,
220,
220,
220,
220,
220,
220,
37404,
198,
220,
220,
220,
220,
220,
220,
220,
770,
2163,
460,
307,
17535,
416,
25,
628,
220,
220,
220,
220,
220,
220,
220,
11485,
2438,
12,
9967,
3712,
21015,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
285,
9945,
13,
27530,
58,
3672,
4083,
37,
2290,
312,
34,
615,
414,
21746,
198,
220,
220,
220,
220,
220,
220,
220,
220,
198,
220,
220,
220,
220,
220,
220,
220,
40117,
198,
220,
220,
220,
220,
220,
220,
220,
24200,
438,
198,
220,
220,
220,
220,
220,
220,
220,
1438,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
317,
10903,
31577,
262,
10375,
3119,
16099,
1994,
13,
220,
198,
220,
220,
220,
220,
220,
220,
220,
6770,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
317,
41327,
4160,
3103,
18797,
31577,
262,
2099,
286,
11711,
31643,
3119,
284,
307,
5447,
13,
33671,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3815,
389,
367,
35755,
3861,
6239,
2149,
290,
350,
12161,
5883,
1404,
2149,
13,
383,
4277,
1988,
318,
367,
35755,
3861,
6239,
2149,
13,
220,
198,
220,
220,
220,
220,
220,
220,
220,
11711,
35,
6377,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
6045,
393,
257,
48436,
31577,
262,
4941,
11711,
12109,
13,
770,
4578,
318,
9723,
691,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
618,
1635,
46758,
9,
28,
39,
35755,
3861,
6239,
2149,
11,
290,
318,
2672,
287,
326,
1339,
13,
383,
4277,
1988,
318,
6045,
13,
220,
198,
220,
220,
220,
220,
220,
220,
220,
18955,
25844,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
6045,
393,
257,
48436,
31577,
262,
18955,
3463,
286,
262,
7306,
3623,
4693,
13,
770,
4578,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
318,
9723,
691,
618,
1635,
46758,
9,
28,
47,
12161,
5883,
1404,
2149,
11,
290,
318,
2672,
287,
326,
1339,
13,
383,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4277,
1988,
318,
6045,
13,
220,
198,
220,
220,
220,
220,
220,
220,
220,
779,
16870,
5487,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
317,
41146,
31577,
1771,
18411,
7118,
44036,
481,
307,
5447,
13,
770,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4578,
318,
9723,
691,
618,
1635,
46758,
9,
28,
39,
35755,
3861,
6239,
2149,
13,
383,
4277,
1988,
318,
18562,
13,
220,
198,
220,
220,
220,
220,
220,
220,
220,
7118,
30782,
12156,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
317,
41146,
31577,
1771,
262,
18411,
11711,
7118,
1366,
481,
423,
5951,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
20203,
13,
770,
4578,
318,
9723,
691,
618,
1635,
46758,
9,
28,
39,
35755,
3861,
6239,
2149,
290,
618,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1635,
1904,
16870,
5487,
9,
28,
17821,
13,
383,
4277,
1988,
318,
18562,
13,
220,
198,
220,
220,
220,
220,
220,
220,
220,
7118,
35,
2690,
3976,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1052,
2558,
31577,
262,
1271,
286,
2214,
7885,
20086,
287,
262,
18411,
11711,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
7118,
1366,
13,
770,
4578,
318,
9723,
691,
618,
1635,
46758,
9,
28,
39,
35755,
3861,
6239,
2149,
290,
618,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1635,
1904,
16870,
5487,
9,
28,
17821,
13,
383,
4277,
1988,
318,
657,
13,
220,
198,
220,
220,
220,
220,
220,
220,
220,
4941,
42492,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
317,
48436,
31577,
262,
4941,
5951,
329,
262,
35381,
286,
18411,
7118,
13,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
770,
4578,
318,
9723,
691,
618,
1635,
46758,
9,
28,
39,
35755,
3861,
6239,
2149,
11,
618,
1635,
1904,
16870,
5487,
9,
28,
17821,
11,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
290,
618,
2035,
1635,
11201,
5487,
30782,
12156,
9,
28,
17821,
393,
618,
1635,
11201,
5487,
35,
2690,
3976,
9,
318,
3744,
621,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
657,
13,
383,
4277,
1988,
318,
657,
13,
15,
13,
220,
198,
220,
220,
220,
220,
220,
220,
220,
7118,
10962,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
317,
8379,
286,
16311,
286,
29075,
1381,
31577,
262,
18411,
7118,
44036,
13,
770,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4578,
318,
9723,
691,
618,
1635,
46758,
9,
28,
39,
35755,
3861,
6239,
2149,
290,
618,
1635,
1904,
16870,
5487,
9,
28,
17821,
13,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5501,
8379,
4909,
262,
1708,
1366,
25,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
532,
383,
1612,
35381,
286,
18411,
7118,
13,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
532,
34467,
11,
611,
262,
1366,
4745,
319,
5951,
13,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
532,
11052,
286,
262,
717,
2214,
7885,
11,
611,
262,
1366,
4745,
319,
2214,
9633,
13,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
532,
11052,
286,
262,
1218,
2214,
7885,
13,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
532,
17906,
66,
13,
220,
198,
220,
220,
220,
220,
220,
220,
220,
779,
33,
12171,
5841,
23515,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
317,
41146,
31577,
1771,
11711,
11963,
953,
23515,
3815,
481,
307,
5447,
13,
770,
4578,
318,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
9723,
691,
618,
1635,
46758,
9,
28,
39,
35755,
3861,
6239,
2149,
13,
383,
4277,
1988,
318,
18562,
13,
220,
198,
220,
220,
220,
220,
220,
220,
220,
11963,
5841,
23515,
30782,
12156,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
317,
41146,
31577,
1771,
262,
11711,
11963,
953,
23515,
1366,
481,
423,
5951,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
20203,
13,
770,
4578,
318,
9723,
691,
618,
1635,
46758,
9,
28,
39,
35755,
3861,
6239,
2149,
290,
618,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1635,
1904,
33,
12171,
5841,
23515,
9,
28,
17821,
13,
383,
4277,
1988,
318,
18562,
13,
220,
198,
220,
220,
220,
220,
220,
220,
220,
11963,
5841,
23515,
35,
2690,
3976,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1052,
2558,
31577,
262,
1271,
286,
2214,
7885,
20086,
287,
262,
11711,
11963,
953,
23515,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1366,
13,
770,
4578,
318,
9723,
691,
618,
1635,
46758,
9,
28,
39,
35755,
3861,
6239,
2149,
290,
618,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1635,
1904,
33,
12171,
5841,
23515,
9,
28,
17821,
13,
383,
4277,
1988,
318,
657,
13,
220,
198,
220,
220,
220,
220,
220,
220,
220,
11963,
5841,
23515,
10962,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
317,
8379,
286,
16311,
286,
29075,
1381,
31577,
262,
11711,
11963,
953,
23515,
3815,
13,
770,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4578,
318,
9723,
691,
618,
1635,
46758,
9,
28,
39,
35755,
3861,
6239,
2149,
290,
618,
1635,
1904,
33,
12171,
5841,
23515,
9,
28,
17821,
13,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5501,
8379,
4909,
262,
1708,
1366,
25,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
532,
383,
11711,
11963,
953,
23515,
13,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
532,
34467,
11,
611,
262,
1366,
4745,
319,
5951,
13,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
532,
11052,
286,
262,
717,
2214,
7885,
11,
611,
262,
1366,
4745,
319,
2214,
9633,
13,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
532,
11052,
286,
262,
1218,
2214,
7885,
13,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
532,
17906,
66,
13,
220,
198,
220,
220,
220,
220,
220,
220,
220,
779,
15610,
4355,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
317,
41146,
31577,
1771,
285,
6192,
4894,
5339,
3815,
481,
307,
5447,
13,
770,
4578,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
318,
9723,
691,
618,
1635,
46758,
9,
28,
47,
12161,
5883,
1404,
2149,
13,
383,
4277,
1988,
318,
18562,
13,
220,
198,
220,
220,
220,
220,
220,
220,
220,
5339,
6030,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
317,
41327,
4160,
3103,
18797,
31577,
262,
2446,
284,
8160,
262,
285,
6192,
4894,
5339,
13,
33671,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3815,
389,
20634,
40760,
2662,
12576,
290,
309,
6242,
37232,
13,
383,
4277,
1988,
318,
20634,
40760,
2662,
12576,
13,
220,
198,
220,
220,
220,
220,
220,
220,
220,
5339,
30782,
12156,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
317,
41146,
31577,
1771,
262,
285,
6192,
4894,
5339,
1366,
481,
423,
5951,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
20203,
13,
770,
4578,
318,
9723,
691,
618,
1635,
46758,
9,
28,
47,
12161,
5883,
1404,
2149,
11,
618,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1635,
1904,
15610,
4355,
9,
28,
17821,
11,
290,
618,
1635,
42404,
6030,
9,
28,
5603,
33,
37232,
13,
383,
4277,
1988,
318,
18562,
13,
220,
198,
220,
220,
220,
220,
220,
220,
220,
5339,
35,
2690,
3976,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1052,
2558,
31577,
262,
1271,
286,
2214,
7885,
20086,
287,
262,
285,
6192,
4894,
5339,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1366,
13,
770,
4578,
318,
9723,
691,
618,
1635,
46758,
9,
28,
47,
12161,
5883,
1404,
2149,
11,
618,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1635,
1904,
15610,
4355,
9,
28,
17821,
11,
290,
618,
1635,
42404,
6030,
9,
28,
5603,
33,
37232,
13,
383,
4277,
1988,
318,
657,
13,
220,
198,
220,
220,
220,
220,
220,
220,
220,
5339,
10962,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
317,
8379,
286,
16311,
286,
29075,
1381,
31577,
262,
285,
6192,
4894,
5339,
3815,
287,
262,
1296,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
286,
257,
745,
6213,
49070,
5408,
13,
770,
4578,
318,
9723,
691,
618,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1635,
46758,
9,
28,
47,
12161,
5883,
1404,
2149,
11,
618,
1635,
1904,
15610,
4355,
9,
28,
17821,
11,
290,
618,
1635,
42404,
6030,
9,
28,
45472,
40760,
2662,
12576,
13,
554,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
428,
1296,
11,
691,
530,
8379,
318,
7368,
290,
326,
8379,
4909,
262,
1708,
1366,
25,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
532,
383,
717,
285,
6192,
4894,
5339,
35381,
13,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
532,
383,
1218,
285,
6192,
4894,
5339,
35381,
13,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
532,
383,
2368,
285,
6192,
4894,
5339,
35381,
13,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
532,
383,
5544,
285,
6192,
4894,
5339,
35381,
13,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
532,
383,
8150,
285,
6192,
4894,
5339,
35381,
13,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
25929,
11,
262,
8379,
1366,
743,
11986,
262,
285,
6192,
4894,
5339,
3815,
379,
6937,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3833,
329,
281,
7306,
3623,
4693,
13,
770,
4578,
318,
9723,
691,
618,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1635,
46758,
9,
28,
47,
12161,
5883,
1404,
2149,
11,
618,
1635,
1904,
15610,
4355,
9,
28,
17821,
11,
290,
618,
1635,
42404,
6030,
9,
28,
5603,
33,
37232,
13,
5501,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8379,
4909,
262,
1708,
1366,
25,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
532,
383,
285,
6192,
4894,
5339,
379,
6937,
3833,
13,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
532,
34467,
11,
611,
262,
1366,
4745,
319,
5951,
13,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
532,
11052,
286,
262,
717,
2214,
7885,
11,
611,
262,
1366,
4745,
319,
2214,
9633,
13,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
532,
11052,
286,
262,
1218,
2214,
7885,
13,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
532,
17906,
66,
13,
220,
628,
220,
220,
220,
220,
220,
220,
220,
16409,
198,
220,
220,
220,
220,
220,
220,
220,
35656,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
317,
1610,
27112,
34,
615,
414,
21746,
2134,
13,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
2208,
22446,
834,
15003,
834,
7,
3672,
8,
198,
220,
220,
220,
220,
220,
220,
220,
1208,
628,
220,
220,
220,
825,
900,
40161,
7,
944,
11,
6770,
25,
41327,
4160,
3103,
18797,
796,
367,
35755,
3861,
6239,
2149,
11,
11711,
35,
6377,
25,
12178,
796,
6045,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
18955,
25844,
25,
12178,
796,
6045,
11,
779,
16870,
5487,
25,
41146,
796,
18562,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
7118,
30782,
12156,
25,
41146,
796,
18562,
11,
7118,
35,
2690,
3976,
25,
493,
796,
657,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4941,
42492,
25,
12178,
796,
657,
11,
7118,
10962,
25,
46545,
796,
29994,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
779,
33,
12171,
5841,
23515,
25,
41146,
796,
18562,
11,
11963,
5841,
23515,
30782,
12156,
25,
41146,
796,
18562,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
11963,
5841,
23515,
35,
2690,
3976,
25,
493,
796,
657,
11,
11963,
5841,
23515,
10962,
25,
46545,
796,
29994,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
779,
15610,
4355,
25,
41146,
796,
18562,
11,
5339,
6030,
25,
41327,
4160,
3103,
18797,
796,
20634,
40760,
2662,
12576,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5339,
30782,
12156,
25,
41146,
796,
18562,
11,
5339,
35,
2690,
3976,
25,
493,
796,
657,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5339,
10962,
25,
46545,
796,
7499,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
1212,
2446,
953,
6945,
262,
1610,
27112,
34,
615,
414,
21746,
2134,
13,
198,
220,
220,
220,
220,
220,
220,
220,
220,
198,
220,
220,
220,
220,
220,
220,
220,
40117,
198,
220,
220,
220,
220,
220,
220,
220,
24200,
438,
198,
220,
220,
220,
220,
220,
220,
220,
6770,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
317,
41327,
4160,
3103,
18797,
31577,
262,
2099,
286,
11711,
31643,
3119,
284,
307,
5447,
13,
33671,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3815,
389,
367,
35755,
3861,
6239,
2149,
290,
350,
12161,
5883,
1404,
2149,
13,
383,
4277,
1988,
318,
367,
35755,
3861,
6239,
2149,
13,
220,
198,
220,
220,
220,
220,
220,
220,
220,
11711,
35,
6377,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
6045,
393,
257,
48436,
31577,
262,
4941,
11711,
12109,
13,
770,
4578,
318,
9723,
691,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
618,
1635,
46758,
9,
28,
39,
35755,
3861,
6239,
2149,
11,
290,
318,
2672,
287,
326,
1339,
13,
383,
4277,
1988,
318,
6045,
13,
220,
198,
220,
220,
220,
220,
220,
220,
220,
18955,
25844,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
6045,
393,
257,
48436,
31577,
262,
18955,
3463,
286,
262,
7306,
3623,
4693,
13,
770,
4578,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
318,
9723,
691,
618,
1635,
46758,
9,
28,
47,
12161,
5883,
1404,
2149,
11,
290,
318,
2672,
287,
326,
1339,
13,
383,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4277,
1988,
318,
6045,
13,
220,
198,
220,
220,
220,
220,
220,
220,
220,
779,
16870,
5487,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
317,
41146,
31577,
1771,
18411,
7118,
44036,
481,
307,
5447,
13,
770,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4578,
318,
9723,
691,
618,
1635,
46758,
9,
28,
39,
35755,
3861,
6239,
2149,
13,
383,
4277,
1988,
318,
18562,
13,
220,
198,
220,
220,
220,
220,
220,
220,
220,
7118,
30782,
12156,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
317,
41146,
31577,
1771,
262,
18411,
11711,
7118,
1366,
481,
423,
5951,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
20203,
13,
770,
4578,
318,
9723,
691,
618,
1635,
46758,
9,
28,
39,
35755,
3861,
6239,
2149,
290,
618,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1635,
1904,
16870,
5487,
9,
28,
17821,
13,
383,
4277,
1988,
318,
18562,
13,
220,
198,
220,
220,
220,
220,
220,
220,
220,
7118,
35,
2690,
3976,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1052,
2558,
31577,
262,
1271,
286,
2214,
7885,
20086,
287,
262,
18411,
11711,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
7118,
1366,
13,
770,
4578,
318,
9723,
691,
618,
1635,
46758,
9,
28,
39,
35755,
3861,
6239,
2149,
290,
618,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1635,
1904,
16870,
5487,
9,
28,
17821,
13,
383,
4277,
1988,
318,
657,
13,
220,
198,
220,
220,
220,
220,
220,
220,
220,
4941,
42492,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
317,
48436,
31577,
262,
4941,
5951,
329,
262,
35381,
286,
18411,
7118,
13,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
770,
4578,
318,
9723,
691,
618,
1635,
46758,
9,
28,
39,
35755,
3861,
6239,
2149,
11,
618,
1635,
1904,
16870,
5487,
9,
28,
17821,
11,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
290,
618,
2035,
1635,
11201,
5487,
30782,
12156,
9,
28,
17821,
393,
618,
1635,
11201,
5487,
35,
2690,
3976,
9,
318,
3744,
621,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
657,
13,
383,
4277,
1988,
318,
657,
13,
15,
13,
220,
198,
220,
220,
220,
220,
220,
220,
220,
7118,
10962,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
317,
8379,
286,
16311,
286,
29075,
1381,
31577,
262,
18411,
7118,
44036,
13,
770,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4578,
318,
9723,
691,
618,
1635,
46758,
9,
28,
39,
35755,
3861,
6239,
2149,
290,
618,
1635,
1904,
16870,
5487,
9,
28,
17821,
13,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5501,
8379,
4909,
262,
1708,
1366,
25,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
532,
383,
1612,
35381,
286,
18411,
7118,
13,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
532,
34467,
11,
611,
262,
1366,
4745,
319,
5951,
13,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
532,
11052,
286,
262,
717,
2214,
7885,
11,
611,
262,
1366,
4745,
319,
2214,
9633,
13,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
532,
11052,
286,
262,
1218,
2214,
7885,
13,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
532,
17906,
66,
13,
220,
198,
220,
220,
220,
220,
220,
220,
220,
779,
33,
12171,
5841,
23515,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
317,
41146,
31577,
1771,
11711,
11963,
953,
23515,
3815,
481,
307,
5447,
13,
770,
4578,
318,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
9723,
691,
618,
1635,
46758,
9,
28,
39,
35755,
3861,
6239,
2149,
13,
383,
4277,
1988,
318,
18562,
13,
220,
198,
220,
220,
220,
220,
220,
220,
220,
11963,
5841,
23515,
30782,
12156,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
317,
41146,
31577,
1771,
262,
11711,
11963,
953,
23515,
1366,
481,
423,
5951,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
20203,
13,
770,
4578,
318,
9723,
691,
618,
1635,
46758,
9,
28,
39,
35755,
3861,
6239,
2149,
290,
618,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1635,
1904,
33,
12171,
5841,
23515,
9,
28,
17821,
13,
383,
4277,
1988,
318,
18562,
13,
220,
198,
220,
220,
220,
220,
220,
220,
220,
11963,
5841,
23515,
35,
2690,
3976,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1052,
2558,
31577,
262,
1271,
286,
2214,
7885,
20086,
287,
262,
11711,
11963,
953,
23515,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1366,
13,
770,
4578,
318,
9723,
691,
618,
1635,
46758,
9,
28,
39,
35755,
3861,
6239,
2149,
290,
618,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1635,
1904,
33,
12171,
5841,
23515,
9,
28,
17821,
13,
383,
4277,
1988,
318,
657,
13,
220,
198,
220,
220,
220,
220,
220,
220,
220,
11963,
5841,
23515,
10962,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
317,
8379,
286,
16311,
286,
29075,
1381,
31577,
262,
11711,
11963,
953,
23515,
3815,
13,
770,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4578,
318,
9723,
691,
618,
1635,
46758,
9,
28,
39,
35755,
3861,
6239,
2149,
290,
618,
1635,
1904,
33,
12171,
5841,
23515,
9,
28,
17821,
13,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5501,
8379,
4909,
262,
1708,
1366,
25,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
532,
383,
11711,
11963,
953,
23515,
13,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
532,
34467,
11,
611,
262,
1366,
4745,
319,
5951,
13,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
532,
11052,
286,
262,
717,
2214,
7885,
11,
611,
262,
1366,
4745,
319,
2214,
9633,
13,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
532,
11052,
286,
262,
1218,
2214,
7885,
13,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
532,
17906,
66,
13,
220,
198,
220,
220,
220,
220,
220,
220,
220,
779,
15610,
4355,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
317,
41146,
31577,
1771,
285,
6192,
4894,
5339,
3815,
481,
307,
5447,
13,
770,
4578,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
318,
9723,
691,
618,
1635,
46758,
9,
28,
47,
12161,
5883,
1404,
2149,
13,
383,
4277,
1988,
318,
18562,
13,
220,
198,
220,
220,
220,
220,
220,
220,
220,
5339,
6030,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
317,
41327,
4160,
3103,
18797,
31577,
262,
2446,
284,
8160,
262,
285,
6192,
4894,
5339,
13,
33671,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3815,
389,
20634,
40760,
2662,
12576,
290,
309,
6242,
37232,
13,
383,
4277,
1988,
318,
20634,
40760,
2662,
12576,
13,
220,
198,
220,
220,
220,
220,
220,
220,
220,
5339,
30782,
12156,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
317,
41146,
31577,
1771,
262,
285,
6192,
4894,
5339,
1366,
481,
423,
5951,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
20203,
13,
770,
4578,
318,
9723,
691,
618,
1635,
46758,
9,
28,
47,
12161,
5883,
1404,
2149,
11,
618,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1635,
1904,
15610,
4355,
9,
28,
17821,
11,
290,
618,
1635,
42404,
6030,
9,
28,
5603,
33,
37232,
13,
383,
4277,
1988,
318,
18562,
13,
220,
198,
220,
220,
220,
220,
220,
220,
220,
5339,
35,
2690,
3976,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1052,
2558,
31577,
262,
1271,
286,
2214,
7885,
20086,
287,
262,
285,
6192,
4894,
5339,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1366,
13,
770,
4578,
318,
9723,
691,
618,
1635,
46758,
9,
28,
47,
12161,
5883,
1404,
2149,
11,
618,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1635,
1904,
15610,
4355,
9,
28,
17821,
11,
290,
618,
1635,
42404,
6030,
9,
28,
5603,
33,
37232,
13,
383,
4277,
1988,
318,
657,
13,
220,
198,
220,
220,
220,
220,
220,
220,
220,
5339,
10962,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
317,
8379,
286,
16311,
286,
29075,
1381,
31577,
262,
285,
6192,
4894,
5339,
3815,
287,
262,
1296,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
286,
257,
745,
6213,
49070,
5408,
13,
770,
4578,
318,
9723,
691,
618,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1635,
46758,
9,
28,
47,
12161,
5883,
1404,
2149,
11,
618,
1635,
1904,
15610,
4355,
9,
28,
17821,
11,
290,
618,
1635,
42404,
6030,
9,
28,
45472,
40760,
2662,
12576,
13,
554,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
428,
1296,
11,
691,
530,
8379,
318,
7368,
290,
326,
8379,
4909,
262,
1708,
1366,
25,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
532,
383,
717,
285,
6192,
4894,
5339,
35381,
13,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
532,
383,
1218,
285,
6192,
4894,
5339,
35381,
13,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
532,
383,
2368,
285,
6192,
4894,
5339,
35381,
13,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
532,
383,
5544,
285,
6192,
4894,
5339,
35381,
13,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
532,
383,
8150,
285,
6192,
4894,
5339,
35381,
13,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
25929,
11,
262,
8379,
1366,
743,
11986,
262,
285,
6192,
4894,
5339,
3815,
379,
6937,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3833,
329,
281,
7306,
3623,
4693,
13,
770,
4578,
318,
9723,
691,
618,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1635,
46758,
9,
28,
47,
12161,
5883,
1404,
2149,
11,
618,
1635,
1904,
15610,
4355,
9,
28,
17821,
11,
290,
618,
1635,
42404,
6030,
9,
28,
5603,
33,
37232,
13,
5501,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8379,
4909,
262,
1708,
1366,
25,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
532,
383,
285,
6192,
4894,
5339,
379,
6937,
3833,
13,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
532,
34467,
11,
611,
262,
1366,
4745,
319,
5951,
13,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
532,
11052,
286,
262,
717,
2214,
7885,
11,
611,
262,
1366,
4745,
319,
2214,
9633,
13,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
532,
11052,
286,
262,
1218,
2214,
7885,
13,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
532,
17906,
66,
13,
220,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
1208,
198
]
import re
import csv
line = []
list2 = []
with open('output2.txt') as f:
for i in f:
line.append(i)
outList = re.findall(r"[-+]?\d*\.\d+|\d+", line[0]) # extracting integers from string
list2.append(outList[0])
list2.append(outList[2])
#writing into csv file
with open('epoch_loss.csv', 'a') as csvFile:
writer = csv.writer(csvFile)
writer.writerow(list2)
line.clear()
list2.clear()
[
11748,
302,
198,
11748,
269,
21370,
198,
1370,
796,
17635,
198,
4868,
17,
796,
17635,
198,
4480,
1280,
10786,
22915,
17,
13,
14116,
11537,
355,
277,
25,
198,
220,
220,
220,
329,
1312,
287,
277,
25,
198,
220,
220,
220,
220,
197,
1370,
13,
33295,
7,
72,
8,
198,
220,
220,
220,
220,
197,
448,
8053,
796,
302,
13,
19796,
439,
7,
81,
17912,
19529,
60,
30,
59,
67,
9,
17405,
59,
67,
10,
91,
59,
67,
10,
1600,
1627,
58,
15,
12962,
1303,
37895,
37014,
422,
4731,
198,
220,
220,
220,
220,
197,
4868,
17,
13,
33295,
7,
448,
8053,
58,
15,
12962,
198,
220,
220,
220,
220,
197,
4868,
17,
13,
33295,
7,
448,
8053,
58,
17,
12962,
198,
197,
2,
16502,
656,
269,
21370,
2393,
220,
198,
220,
220,
220,
220,
197,
4480,
1280,
10786,
538,
5374,
62,
22462,
13,
40664,
3256,
705,
64,
11537,
355,
269,
21370,
8979,
25,
198,
220,
220,
220,
220,
197,
197,
16002,
796,
269,
21370,
13,
16002,
7,
40664,
8979,
8,
198,
220,
220,
220,
220,
197,
197,
16002,
13,
16002,
322,
7,
4868,
17,
8,
628,
220,
220,
220,
220,
197,
1370,
13,
20063,
3419,
198,
220,
220,
220,
220,
197,
4868,
17,
13,
20063,
3419,
198
]
import tornado.web
import tornado.gen
import json
import io
import logging
import motor
from bson.objectid import ObjectId
import mickey.userfetcher
from mickey.basehandler import BaseHandler
[
11748,
33718,
13,
12384,
198,
11748,
33718,
13,
5235,
198,
11748,
33918,
198,
11748,
33245,
198,
11748,
18931,
198,
198,
11748,
5584,
198,
198,
6738,
275,
1559,
13,
15252,
312,
1330,
9515,
7390,
198,
11748,
12314,
2539,
13,
7220,
34045,
2044,
198,
6738,
12314,
2539,
13,
8692,
30281,
1330,
7308,
25060,
198
]
import os
import re
# Parses a given input file and returns a list of parameters for all structures.
[
11748,
28686,
198,
11748,
302,
198,
220,
220,
220,
1303,
23042,
274,
257,
1813,
5128,
2393,
290,
5860,
257,
1351,
286,
10007,
329,
477,
8573,
13,
198
]
from eth_account import Account
import sha3
import json
[
6738,
4555,
62,
23317,
1330,
10781,
198,
11748,
427,
64,
18,
198,
11748,
33918,
628,
628,
628,
628,
198
]
# This file was automatically generated by SWIG (http://www.swig.org).
# Version 2.0.12
#
# Do not make changes to this file unless you know what you are doing--modify
# the SWIG interface file instead.
from sys import version_info
if version_info >= (2,6,0):
_rpi_pcm_ws281x = swig_import_helper()
del swig_import_helper
else:
import _rpi_pcm_ws281x
del version_info
try:
_swig_property = property
except NameError:
pass # Python < 2.2 doesn't have 'property'.
try:
_object = object
_newclass = 1
except AttributeError:
_newclass = 0
WS2811_TARGET_FREQ = _rpi_pcm_ws281x.WS2811_TARGET_FREQ
WS2811_STRIP_RGB = _rpi_pcm_ws281x.WS2811_STRIP_RGB
WS2811_STRIP_RBG = _rpi_pcm_ws281x.WS2811_STRIP_RBG
WS2811_STRIP_GRB = _rpi_pcm_ws281x.WS2811_STRIP_GRB
WS2811_STRIP_GBR = _rpi_pcm_ws281x.WS2811_STRIP_GBR
WS2811_STRIP_BRG = _rpi_pcm_ws281x.WS2811_STRIP_BRG
WS2811_STRIP_BGR = _rpi_pcm_ws281x.WS2811_STRIP_BGR
ws2811_channel_t_swigregister = _rpi_pcm_ws281x.ws2811_channel_t_swigregister
ws2811_channel_t_swigregister(ws2811_channel_t)
ws2811_t_swigregister = _rpi_pcm_ws281x.ws2811_t_swigregister
ws2811_t_swigregister(ws2811_t)
ws2811_init = _rpi_pcm_ws281x.ws2811_init
ws2811_fini = _rpi_pcm_ws281x.ws2811_fini
ws2811_render = _rpi_pcm_ws281x.ws2811_render
ws2811_wait = _rpi_pcm_ws281x.ws2811_wait
ws2811_led_get = _rpi_pcm_ws281x.ws2811_led_get
ws2811_led_set = _rpi_pcm_ws281x.ws2811_led_set
# This file is compatible with both classic and new-style classes.
[
2,
770,
2393,
373,
6338,
7560,
416,
12672,
3528,
357,
4023,
1378,
2503,
13,
2032,
328,
13,
2398,
737,
198,
2,
10628,
362,
13,
15,
13,
1065,
198,
2,
198,
2,
2141,
407,
787,
2458,
284,
428,
2393,
4556,
345,
760,
644,
345,
389,
1804,
438,
4666,
1958,
198,
2,
262,
12672,
3528,
7071,
2393,
2427,
13,
628,
628,
198,
198,
6738,
25064,
1330,
2196,
62,
10951,
198,
361,
2196,
62,
10951,
18189,
357,
17,
11,
21,
11,
15,
2599,
198,
220,
220,
220,
4808,
81,
14415,
62,
79,
11215,
62,
18504,
30368,
87,
796,
1509,
328,
62,
11748,
62,
2978,
525,
3419,
198,
220,
220,
220,
1619,
1509,
328,
62,
11748,
62,
2978,
525,
198,
17772,
25,
198,
220,
220,
220,
1330,
4808,
81,
14415,
62,
79,
11215,
62,
18504,
30368,
87,
198,
12381,
2196,
62,
10951,
198,
28311,
25,
198,
220,
220,
220,
4808,
2032,
328,
62,
26745,
796,
3119,
198,
16341,
6530,
12331,
25,
198,
220,
220,
220,
1208,
1303,
11361,
1279,
362,
13,
17,
1595,
470,
423,
705,
26745,
4458,
198,
198,
28311,
25,
198,
220,
220,
220,
4808,
15252,
796,
2134,
198,
220,
220,
220,
4808,
3605,
4871,
796,
352,
198,
16341,
3460,
4163,
12331,
25,
198,
220,
220,
220,
4808,
3605,
4871,
796,
657,
628,
198,
19416,
2078,
1157,
62,
51,
46095,
62,
37,
2200,
48,
796,
4808,
81,
14415,
62,
79,
11215,
62,
18504,
30368,
87,
13,
19416,
2078,
1157,
62,
51,
46095,
62,
37,
2200,
48,
198,
19416,
2078,
1157,
62,
18601,
4061,
62,
36982,
796,
4808,
81,
14415,
62,
79,
11215,
62,
18504,
30368,
87,
13,
19416,
2078,
1157,
62,
18601,
4061,
62,
36982,
198,
19416,
2078,
1157,
62,
18601,
4061,
62,
27912,
38,
796,
4808,
81,
14415,
62,
79,
11215,
62,
18504,
30368,
87,
13,
19416,
2078,
1157,
62,
18601,
4061,
62,
27912,
38,
198,
19416,
2078,
1157,
62,
18601,
4061,
62,
10761,
33,
796,
4808,
81,
14415,
62,
79,
11215,
62,
18504,
30368,
87,
13,
19416,
2078,
1157,
62,
18601,
4061,
62,
10761,
33,
198,
19416,
2078,
1157,
62,
18601,
4061,
62,
4579,
49,
796,
4808,
81,
14415,
62,
79,
11215,
62,
18504,
30368,
87,
13,
19416,
2078,
1157,
62,
18601,
4061,
62,
4579,
49,
198,
19416,
2078,
1157,
62,
18601,
4061,
62,
11473,
38,
796,
4808,
81,
14415,
62,
79,
11215,
62,
18504,
30368,
87,
13,
19416,
2078,
1157,
62,
18601,
4061,
62,
11473,
38,
198,
19416,
2078,
1157,
62,
18601,
4061,
62,
33,
10761,
796,
4808,
81,
14415,
62,
79,
11215,
62,
18504,
30368,
87,
13,
19416,
2078,
1157,
62,
18601,
4061,
62,
33,
10761,
198,
18504,
2078,
1157,
62,
17620,
62,
83,
62,
2032,
328,
30238,
796,
4808,
81,
14415,
62,
79,
11215,
62,
18504,
30368,
87,
13,
18504,
2078,
1157,
62,
17620,
62,
83,
62,
2032,
328,
30238,
198,
18504,
2078,
1157,
62,
17620,
62,
83,
62,
2032,
328,
30238,
7,
18504,
2078,
1157,
62,
17620,
62,
83,
8,
198,
18504,
2078,
1157,
62,
83,
62,
2032,
328,
30238,
796,
4808,
81,
14415,
62,
79,
11215,
62,
18504,
30368,
87,
13,
18504,
2078,
1157,
62,
83,
62,
2032,
328,
30238,
198,
18504,
2078,
1157,
62,
83,
62,
2032,
328,
30238,
7,
18504,
2078,
1157,
62,
83,
8,
198,
198,
18504,
2078,
1157,
62,
15003,
796,
4808,
81,
14415,
62,
79,
11215,
62,
18504,
30368,
87,
13,
18504,
2078,
1157,
62,
15003,
198,
18504,
2078,
1157,
62,
69,
5362,
796,
4808,
81,
14415,
62,
79,
11215,
62,
18504,
30368,
87,
13,
18504,
2078,
1157,
62,
69,
5362,
198,
18504,
2078,
1157,
62,
13287,
796,
4808,
81,
14415,
62,
79,
11215,
62,
18504,
30368,
87,
13,
18504,
2078,
1157,
62,
13287,
198,
18504,
2078,
1157,
62,
17077,
796,
4808,
81,
14415,
62,
79,
11215,
62,
18504,
30368,
87,
13,
18504,
2078,
1157,
62,
17077,
198,
18504,
2078,
1157,
62,
992,
62,
1136,
796,
4808,
81,
14415,
62,
79,
11215,
62,
18504,
30368,
87,
13,
18504,
2078,
1157,
62,
992,
62,
1136,
198,
18504,
2078,
1157,
62,
992,
62,
2617,
796,
4808,
81,
14415,
62,
79,
11215,
62,
18504,
30368,
87,
13,
18504,
2078,
1157,
62,
992,
62,
2617,
198,
2,
770,
2393,
318,
11670,
351,
1111,
6833,
290,
649,
12,
7635,
6097,
13,
628,
198
]
'''
Here we consider a controller trained on nearest neighbor for the pendulum
environment in OpenAI Gym. The controller is taken from baselines ppo.
'''
import gym
import numpy as np
from gym import spaces
from baselines import deepq
from baselines.common import set_global_seeds, tf_util as U
import gym, logging
from baselines import logger
import numpy as np
import tensorflow as tf
from baselines.ppo1 import mlp_policy, pposgd_simple
from baselines.ppo1.pposgd_simple import *
U.make_session(num_cpu=1).__enter__()
env= gym.make('Pendulum-v1')
seed = 9699278477418928551
env.seed(seed)
num_timesteps=5e6
gym.logger.setLevel(logging.WARN)
pi = learn_return(env, policy_fn,
max_timesteps=num_timesteps,
timesteps_per_batch=2048,
clip_param=0.2, entcoeff=0.0,
optim_epochs=10, optim_stepsize=3e-4, optim_batchsize=64,
gamma=0.99, lam=0.95,
)
from scipy.stats import norm
# ------------------------------------------------------------------------------
from active_testing import pred_node, max_node, min_node, test_module
from active_testing.utils import sample_from
rand_nums = [1161003323,
415998644,
4057120664,
1747557171,
2890879164,
2055758971,
2911473105,
618390143,
691777806,
4168149016,
1809706292,
2771371912,
1956477866,
2141514268,
4025209431]
# Requirement 1: Find the initial configuration that minimizes the reward
# We need only one node for the reward. The reward is a smooth function
# given that the closed loop system is deterministic
bounds = [(-np.pi, np.pi)] # Bounds on theta
bounds.append((-1., 1.)) # Bounds on theta dot
bounds.append((7., 9.)) # Bounds on the speed
bounds.append((1.5, 2.5)) # Bounds on the torque magnitude
smooth_details_r1 = []
random_details_r1 = []
# This set assumes random sampling and checking
for r in rand_nums:
np.random.seed(r)
node0 = pred_node(f=lambda traj: traj[1]['reward']/200 )
TM = test_module(bounds=bounds, sut=lambda x0: sut(500,x0, ead=True),
f_tree = node0,init_sample = 60,
optimize_restarts=5, exp_weight=10, normalizer=True)
TM.initialize()
TM.run_BO(140)
smooth_details_r1.append([np.sum(TM.f_acqu.GP.Y < -5.),
np.sum(TM.f_acqu.GP.Y < -7.5),
TM.smooth_min_x,TM.smooth_min_val])
# With cost function
np.random.seed(r)
node0 = pred_node(f=lambda traj: traj[1]['reward']/200)
TM = test_module(bounds=bounds, sut=lambda x0: sut(500,x0, ead=True),
f_tree = node0, with_random = True, init_sample = 60,
optimize_restarts=5, exp_weight=10,
normalizer=True)
TM.initialize()
TM.run_BO(30)
TM.k = 5
TM.run_BO(40)
TM.k = 2
TM.run_BO(70)
smooth_details_r1.append([np.sum(TM.f_acqu.GP.Y < -5.),
np.sum(TM.f_acqu.GP.Y < -7.5),
TM.smooth_min_x, TM.smooth_min_val])
random_details_r1.append([np.sum(np.array(TM.random_Y) < -5.),
np.sum(np.array(TM.random_Y) < -7.5),
TM.rand_min_x, TM.rand_min_val])
print(r, smooth_details_r1[-2], smooth_details_r1[-1], random_details_r1[-1])
rand_nums.append(r)
# Requirement 2: Find the initial condition such that the pendulum stabilizes to 0
smooth_details_r2 = []
random_details_r2 = []
# This set assumes random sampling and checking
for r in rand_nums:
np.random.seed(r)
node0 = pred_node(f=lambda traj: pred1(traj))
TM = test_module(bounds=bounds, sut=lambda x0: sut(500,x0, ead=True),
f_tree = node0,init_sample = 60,
optimize_restarts=5, exp_weight=2, normalizer=True)
TM.initialize()
TM.run_BO(140)
smooth_vals = np.array(TM.f_acqu.find_GP_func())
smooth_details_r2.append([np.sum(smooth_vals < -1.00),
np.sum(smooth_vals < -10.0),
TM.smooth_min_x,TM.smooth_min_val,
TM.smooth_min_loc])
np.random.seed(r)
node0_ns = pred_node(f=lambda traj: pred1(traj))
TM_ns = test_module(bounds=bounds, sut=lambda x0: sut(500, x0, ead=True),
f_tree=node0_ns, init_sample=60, with_smooth=False,
with_ns=True,
optimize_restarts=5, exp_weight=10, normalizer=True)
TM_ns.initialize()
TM_ns.run_BO(30)
TM_ns.k = 5
TM_ns.run_BO(40)
TM_ns.k = 2
TM_ns.run_BO(70)
smooth_details_r2.append([np.sum(TM_ns.ns_GP.Y < -1.00),
np.sum(TM_ns.ns_GP.Y < -10.0),
TM_ns.ns_min_x, TM_ns.ns_min_val,
TM_ns.ns_min_loc])
# With cost function
np.random.seed(r)
node0_rand = pred_node(f=lambda traj: pred1(traj))
TM_rand = test_module(bounds=bounds, sut=lambda x0: sut(500,x0, ead=True),
f_tree = node0_rand, with_random = True, with_smooth=False,
init_sample = 60, optimize_restarts=5, exp_weight=10,
cost_model = cost_func, normalizer=True)
TM_rand.initialize()
TM_rand.run_BO(140)
random_details_r2.append([np.sum(np.array(TM_rand.random_Y) < -1.0),
np.sum(np.array(TM_rand.random_Y) < -10.0),
TM_rand.rand_min_x, TM_rand.rand_min_val,
TM_rand.rand_min_loc])
print(r, smooth_details_r2[-2], smooth_details_r2[-1],random_details_r2[-1])
# Requirement 3: Find the initial configuration such that it stabilizies to either
# 0 or to np.pi
smooth_details_r3 = []
ns_details_r3 = []
random_details_r3 = []
# This set assumes random sampling and checking
for r in rand_nums:
np.random.seed(r)
node0 = pred_node(f = lambda traj:pred1(traj))
node1 = pred_node(f = lambda traj:pred2(traj))
node2 = max_node(children=[node0, node1])
TM = test_module(bounds=bounds, sut=lambda x0: sut(500,x0, ead=True),
f_tree = node2,init_sample = 60,
optimize_restarts=5, exp_weight=2, normalizer=True)
TM.initialize()
TM.run_BO(140)
smooth_vals = np.array(TM.f_acqu.find_GP_func())
smooth_details_r3.append([np.sum(smooth_vals < -1.00),
np.sum(smooth_vals < -10.0),
TM.smooth_min_x,TM.smooth_min_val,
TM.smooth_min_loc])
np.random.seed(r)
node0_ns = pred_node(f=lambda traj: pred1(traj))
node1_ns = pred_node(f=lambda traj: pred2(traj))
node2_ns = max_node(children=[node0_ns, node1_ns])
TM_ns = test_module(bounds=bounds, sut=lambda x0: sut(500, x0, ead=True),
f_tree=node2_ns, init_sample=60, with_smooth=False,
with_ns=True,
optimize_restarts=5, exp_weight=2, normalizer=True)
TM_ns.initialize()
TM_ns.run_BO(140)
ns_details_r3.append([np.sum(TM_ns.ns_GP.Y < -1.00),
np.sum(TM_ns.ns_GP.Y < -10.0),
TM_ns.ns_min_x, TM_ns.ns_min_val,
TM_ns.ns_min_loc])
# With cost function
np.random.seed(r)
node0_rand = pred_node(f=lambda traj: pred1(traj))
node1_rand = pred_node(f=lambda traj: pred2(traj))
node2_rand = max_node(children=[node0_rand, node1_rand])
TM_rand = test_module(bounds=bounds, sut=lambda x0: sut(500,x0, ead=True),
f_tree = node2_rand, with_random = True, with_smooth=False,
init_sample = 60, optimize_restarts=5, exp_weight=10,
cost_model = cost_func, normalizer=True)
TM_rand.initialize()
TM_rand.run_BO(140)
random_details_r3.append([np.sum(np.array(TM_rand.random_Y) < -1.0),
np.sum(np.array(TM_rand.random_Y) < -10.0),
TM_rand.rand_min_x, TM_rand.rand_min_val,
TM_rand.rand_min_loc])
print(r, smooth_details_r3[-1], ns_details_r3[-1],random_details_r3[-1])
[
7061,
6,
198,
4342,
356,
2074,
257,
10444,
8776,
319,
16936,
4780,
329,
262,
44017,
14452,
198,
38986,
287,
4946,
20185,
31187,
13,
383,
10444,
318,
2077,
422,
1615,
20655,
279,
7501,
13,
198,
7061,
6,
198,
198,
11748,
11550,
198,
11748,
299,
32152,
355,
45941,
198,
6738,
11550,
1330,
9029,
198,
6738,
1615,
20655,
1330,
2769,
80,
198,
6738,
1615,
20655,
13,
11321,
1330,
900,
62,
20541,
62,
325,
5379,
11,
48700,
62,
22602,
355,
471,
198,
11748,
11550,
11,
18931,
198,
6738,
1615,
20655,
1330,
49706,
198,
11748,
299,
32152,
355,
45941,
198,
11748,
11192,
273,
11125,
355,
48700,
198,
6738,
1615,
20655,
13,
16634,
16,
1330,
25962,
79,
62,
30586,
11,
279,
1930,
21287,
62,
36439,
198,
6738,
1615,
20655,
13,
16634,
16,
13,
381,
418,
21287,
62,
36439,
1330,
1635,
198,
198,
52,
13,
15883,
62,
29891,
7,
22510,
62,
36166,
28,
16,
737,
834,
9255,
834,
3419,
198,
24330,
28,
11550,
13,
15883,
10786,
47,
437,
14452,
12,
85,
16,
11537,
198,
28826,
796,
9907,
2079,
25870,
2857,
4524,
23362,
2078,
43697,
198,
24330,
13,
28826,
7,
28826,
8,
198,
22510,
62,
16514,
395,
25386,
28,
20,
68,
21,
198,
198,
1360,
76,
13,
6404,
1362,
13,
2617,
4971,
7,
6404,
2667,
13,
37771,
8,
198,
14415,
796,
2193,
62,
7783,
7,
24330,
11,
2450,
62,
22184,
11,
198,
220,
220,
220,
220,
220,
220,
220,
3509,
62,
16514,
395,
25386,
28,
22510,
62,
16514,
395,
25386,
11,
198,
220,
220,
220,
220,
220,
220,
220,
4628,
395,
25386,
62,
525,
62,
43501,
28,
1238,
2780,
11,
198,
220,
220,
220,
220,
220,
220,
220,
10651,
62,
17143,
28,
15,
13,
17,
11,
920,
1073,
14822,
28,
15,
13,
15,
11,
198,
220,
220,
220,
220,
220,
220,
220,
6436,
62,
538,
5374,
82,
28,
940,
11,
6436,
62,
9662,
7857,
28,
18,
68,
12,
19,
11,
6436,
62,
43501,
7857,
28,
2414,
11,
198,
220,
220,
220,
220,
220,
220,
220,
34236,
28,
15,
13,
2079,
11,
30592,
28,
15,
13,
3865,
11,
198,
220,
220,
220,
1267,
628,
198,
6738,
629,
541,
88,
13,
34242,
1330,
2593,
198,
198,
2,
16529,
26171,
198,
6738,
4075,
62,
33407,
1330,
2747,
62,
17440,
11,
3509,
62,
17440,
11,
949,
62,
17440,
11,
1332,
62,
21412,
198,
6738,
4075,
62,
33407,
13,
26791,
1330,
6291,
62,
6738,
198,
25192,
62,
77,
5700,
796,
685,
18298,
3064,
2091,
1954,
11,
198,
40643,
34808,
29173,
11,
198,
2319,
3553,
1065,
3312,
2414,
11,
198,
27621,
2425,
3553,
27192,
11,
198,
38902,
2919,
3720,
23237,
11,
198,
1160,
2816,
2425,
4531,
4869,
11,
198,
2808,
1157,
37804,
13348,
11,
198,
718,
1507,
2670,
486,
3559,
11,
198,
8644,
1558,
3324,
37988,
11,
198,
604,
14656,
19442,
27037,
11,
198,
1248,
2931,
35402,
32759,
11,
198,
38703,
19708,
1129,
1065,
11,
198,
24793,
2414,
39761,
2791,
11,
198,
28277,
1314,
1415,
25022,
11,
198,
2319,
1495,
1238,
5824,
3132,
60,
198,
198,
2,
9394,
24615,
352,
25,
9938,
262,
4238,
8398,
326,
10356,
4340,
262,
6721,
198,
2,
775,
761,
691,
530,
10139,
329,
262,
6721,
13,
383,
6721,
318,
257,
7209,
2163,
198,
2,
1813,
326,
262,
4838,
9052,
1080,
318,
2206,
49228,
198,
65,
3733,
796,
685,
32590,
37659,
13,
14415,
11,
45941,
13,
14415,
15437,
1303,
347,
3733,
319,
262,
8326,
198,
65,
3733,
13,
33295,
19510,
12,
16,
1539,
352,
2014,
8,
1303,
347,
3733,
319,
262,
8326,
16605,
198,
65,
3733,
13,
33295,
19510,
22,
1539,
860,
2014,
8,
1303,
347,
3733,
319,
262,
2866,
198,
65,
3733,
13,
33295,
19510,
16,
13,
20,
11,
362,
13,
20,
4008,
1303,
347,
3733,
319,
262,
26415,
14735,
198,
198,
5796,
5226,
62,
36604,
62,
81,
16,
796,
17635,
198,
25120,
62,
36604,
62,
81,
16,
796,
17635,
198,
198,
2,
770,
900,
18533,
4738,
19232,
290,
10627,
198,
1640,
374,
287,
43720,
62,
77,
5700,
25,
198,
220,
220,
220,
45941,
13,
25120,
13,
28826,
7,
81,
8,
198,
220,
220,
220,
10139,
15,
796,
2747,
62,
17440,
7,
69,
28,
50033,
1291,
73,
25,
1291,
73,
58,
16,
7131,
6,
260,
904,
20520,
14,
2167,
1267,
198,
220,
220,
220,
21232,
796,
1332,
62,
21412,
7,
65,
3733,
28,
65,
3733,
11,
264,
315,
28,
50033,
2124,
15,
25,
264,
315,
7,
4059,
11,
87,
15,
11,
304,
324,
28,
17821,
828,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
277,
62,
21048,
796,
10139,
15,
11,
15003,
62,
39873,
796,
3126,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
27183,
62,
2118,
5889,
28,
20,
11,
1033,
62,
6551,
28,
940,
11,
3487,
7509,
28,
17821,
8,
198,
220,
220,
220,
21232,
13,
36733,
1096,
3419,
198,
220,
220,
220,
21232,
13,
5143,
62,
8202,
7,
15187,
8,
198,
220,
220,
220,
7209,
62,
36604,
62,
81,
16,
13,
33295,
26933,
37659,
13,
16345,
7,
15972,
13,
69,
62,
43561,
13,
16960,
13,
56,
1279,
532,
20,
12179,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
45941,
13,
16345,
7,
15972,
13,
69,
62,
43561,
13,
16960,
13,
56,
1279,
532,
22,
13,
20,
828,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
21232,
13,
5796,
5226,
62,
1084,
62,
87,
11,
15972,
13,
5796,
5226,
62,
1084,
62,
2100,
12962,
628,
198,
220,
220,
220,
1303,
2080,
1575,
2163,
198,
220,
220,
220,
45941,
13,
25120,
13,
28826,
7,
81,
8,
198,
220,
220,
220,
10139,
15,
796,
2747,
62,
17440,
7,
69,
28,
50033,
1291,
73,
25,
1291,
73,
58,
16,
7131,
6,
260,
904,
20520,
14,
2167,
8,
198,
220,
220,
220,
21232,
796,
1332,
62,
21412,
7,
65,
3733,
28,
65,
3733,
11,
264,
315,
28,
50033,
2124,
15,
25,
264,
315,
7,
4059,
11,
87,
15,
11,
304,
324,
28,
17821,
828,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
277,
62,
21048,
796,
10139,
15,
11,
351,
62,
25120,
796,
6407,
11,
2315,
62,
39873,
796,
3126,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
27183,
62,
2118,
5889,
28,
20,
11,
1033,
62,
6551,
28,
940,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3487,
7509,
28,
17821,
8,
198,
220,
220,
220,
21232,
13,
36733,
1096,
3419,
198,
220,
220,
220,
21232,
13,
5143,
62,
8202,
7,
1270,
8,
198,
220,
220,
220,
21232,
13,
74,
796,
642,
198,
220,
220,
220,
21232,
13,
5143,
62,
8202,
7,
1821,
8,
198,
220,
220,
220,
21232,
13,
74,
796,
362,
198,
220,
220,
220,
21232,
13,
5143,
62,
8202,
7,
2154,
8,
198,
220,
220,
220,
7209,
62,
36604,
62,
81,
16,
13,
33295,
26933,
37659,
13,
16345,
7,
15972,
13,
69,
62,
43561,
13,
16960,
13,
56,
1279,
532,
20,
12179,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
45941,
13,
16345,
7,
15972,
13,
69,
62,
43561,
13,
16960,
13,
56,
1279,
532,
22,
13,
20,
828,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
21232,
13,
5796,
5226,
62,
1084,
62,
87,
11,
21232,
13,
5796,
5226,
62,
1084,
62,
2100,
12962,
198,
220,
220,
220,
4738,
62,
36604,
62,
81,
16,
13,
33295,
26933,
37659,
13,
16345,
7,
37659,
13,
18747,
7,
15972,
13,
25120,
62,
56,
8,
1279,
532,
20,
12179,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
45941,
13,
16345,
7,
37659,
13,
18747,
7,
15972,
13,
25120,
62,
56,
8,
1279,
532,
22,
13,
20,
828,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
21232,
13,
25192,
62,
1084,
62,
87,
11,
21232,
13,
25192,
62,
1084,
62,
2100,
12962,
198,
220,
220,
220,
3601,
7,
81,
11,
7209,
62,
36604,
62,
81,
16,
58,
12,
17,
4357,
7209,
62,
36604,
62,
81,
16,
58,
12,
16,
4357,
4738,
62,
36604,
62,
81,
16,
58,
12,
16,
12962,
198,
220,
220,
220,
43720,
62,
77,
5700,
13,
33295,
7,
81,
8,
198,
198,
2,
9394,
24615,
362,
25,
9938,
262,
4238,
4006,
884,
326,
262,
44017,
14452,
14349,
4340,
284,
657,
198,
198,
5796,
5226,
62,
36604,
62,
81,
17,
796,
17635,
198,
25120,
62,
36604,
62,
81,
17,
796,
17635,
628,
198,
2,
770,
900,
18533,
4738,
19232,
290,
10627,
198,
1640,
374,
287,
43720,
62,
77,
5700,
25,
198,
220,
220,
220,
45941,
13,
25120,
13,
28826,
7,
81,
8,
198,
220,
220,
220,
10139,
15,
796,
2747,
62,
17440,
7,
69,
28,
50033,
1291,
73,
25,
2747,
16,
7,
9535,
73,
4008,
198,
220,
220,
220,
21232,
796,
1332,
62,
21412,
7,
65,
3733,
28,
65,
3733,
11,
264,
315,
28,
50033,
2124,
15,
25,
264,
315,
7,
4059,
11,
87,
15,
11,
304,
324,
28,
17821,
828,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
277,
62,
21048,
796,
10139,
15,
11,
15003,
62,
39873,
796,
3126,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
27183,
62,
2118,
5889,
28,
20,
11,
1033,
62,
6551,
28,
17,
11,
3487,
7509,
28,
17821,
8,
198,
220,
220,
220,
21232,
13,
36733,
1096,
3419,
198,
220,
220,
220,
21232,
13,
5143,
62,
8202,
7,
15187,
8,
198,
220,
220,
220,
7209,
62,
12786,
796,
45941,
13,
18747,
7,
15972,
13,
69,
62,
43561,
13,
19796,
62,
16960,
62,
20786,
28955,
198,
220,
220,
220,
7209,
62,
36604,
62,
81,
17,
13,
33295,
26933,
37659,
13,
16345,
7,
5796,
5226,
62,
12786,
1279,
532,
16,
13,
405,
828,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
45941,
13,
16345,
7,
5796,
5226,
62,
12786,
1279,
532,
940,
13,
15,
828,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
21232,
13,
5796,
5226,
62,
1084,
62,
87,
11,
15972,
13,
5796,
5226,
62,
1084,
62,
2100,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
21232,
13,
5796,
5226,
62,
1084,
62,
17946,
12962,
628,
220,
220,
220,
45941,
13,
25120,
13,
28826,
7,
81,
8,
198,
220,
220,
220,
10139,
15,
62,
5907,
796,
2747,
62,
17440,
7,
69,
28,
50033,
1291,
73,
25,
2747,
16,
7,
9535,
73,
4008,
198,
220,
220,
220,
21232,
62,
5907,
796,
1332,
62,
21412,
7,
65,
3733,
28,
65,
3733,
11,
264,
315,
28,
50033,
2124,
15,
25,
264,
315,
7,
4059,
11,
2124,
15,
11,
304,
324,
28,
17821,
828,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
277,
62,
21048,
28,
17440,
15,
62,
5907,
11,
2315,
62,
39873,
28,
1899,
11,
351,
62,
5796,
5226,
28,
25101,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
351,
62,
5907,
28,
17821,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
27183,
62,
2118,
5889,
28,
20,
11,
1033,
62,
6551,
28,
940,
11,
3487,
7509,
28,
17821,
8,
198,
220,
220,
220,
21232,
62,
5907,
13,
36733,
1096,
3419,
198,
220,
220,
220,
21232,
62,
5907,
13,
5143,
62,
8202,
7,
1270,
8,
198,
220,
220,
220,
21232,
62,
5907,
13,
74,
796,
642,
198,
220,
220,
220,
21232,
62,
5907,
13,
5143,
62,
8202,
7,
1821,
8,
198,
220,
220,
220,
21232,
62,
5907,
13,
74,
796,
362,
198,
220,
220,
220,
21232,
62,
5907,
13,
5143,
62,
8202,
7,
2154,
8,
198,
220,
220,
220,
7209,
62,
36604,
62,
81,
17,
13,
33295,
26933,
37659,
13,
16345,
7,
15972,
62,
5907,
13,
5907,
62,
16960,
13,
56,
1279,
532,
16,
13,
405,
828,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
45941,
13,
16345,
7,
15972,
62,
5907,
13,
5907,
62,
16960,
13,
56,
1279,
532,
940,
13,
15,
828,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
21232,
62,
5907,
13,
5907,
62,
1084,
62,
87,
11,
21232,
62,
5907,
13,
5907,
62,
1084,
62,
2100,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
21232,
62,
5907,
13,
5907,
62,
1084,
62,
17946,
12962,
628,
198,
220,
220,
220,
1303,
2080,
1575,
2163,
198,
220,
220,
220,
45941,
13,
25120,
13,
28826,
7,
81,
8,
628,
220,
220,
220,
10139,
15,
62,
25192,
796,
2747,
62,
17440,
7,
69,
28,
50033,
1291,
73,
25,
2747,
16,
7,
9535,
73,
4008,
198,
220,
220,
220,
21232,
62,
25192,
796,
1332,
62,
21412,
7,
65,
3733,
28,
65,
3733,
11,
264,
315,
28,
50033,
2124,
15,
25,
264,
315,
7,
4059,
11,
87,
15,
11,
304,
324,
28,
17821,
828,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
277,
62,
21048,
796,
10139,
15,
62,
25192,
11,
351,
62,
25120,
796,
6407,
11,
351,
62,
5796,
5226,
28,
25101,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2315,
62,
39873,
796,
3126,
11,
27183,
62,
2118,
5889,
28,
20,
11,
1033,
62,
6551,
28,
940,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1575,
62,
19849,
796,
1575,
62,
20786,
11,
3487,
7509,
28,
17821,
8,
198,
220,
220,
220,
21232,
62,
25192,
13,
36733,
1096,
3419,
198,
220,
220,
220,
21232,
62,
25192,
13,
5143,
62,
8202,
7,
15187,
8,
198,
220,
220,
220,
4738,
62,
36604,
62,
81,
17,
13,
33295,
26933,
37659,
13,
16345,
7,
37659,
13,
18747,
7,
15972,
62,
25192,
13,
25120,
62,
56,
8,
1279,
532,
16,
13,
15,
828,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
45941,
13,
16345,
7,
37659,
13,
18747,
7,
15972,
62,
25192,
13,
25120,
62,
56,
8,
1279,
532,
940,
13,
15,
828,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
21232,
62,
25192,
13,
25192,
62,
1084,
62,
87,
11,
21232,
62,
25192,
13,
25192,
62,
1084,
62,
2100,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
21232,
62,
25192,
13,
25192,
62,
1084,
62,
17946,
12962,
198,
220,
220,
220,
3601,
7,
81,
11,
7209,
62,
36604,
62,
81,
17,
58,
12,
17,
4357,
7209,
62,
36604,
62,
81,
17,
58,
12,
16,
4357,
25120,
62,
36604,
62,
81,
17,
58,
12,
16,
12962,
628,
198,
2,
9394,
24615,
513,
25,
9938,
262,
4238,
8398,
884,
326,
340,
14349,
528,
444,
284,
2035,
198,
2,
657,
393,
284,
45941,
13,
14415,
198,
198,
5796,
5226,
62,
36604,
62,
81,
18,
796,
17635,
198,
5907,
62,
36604,
62,
81,
18,
796,
17635,
198,
25120,
62,
36604,
62,
81,
18,
796,
17635,
198,
198,
2,
770,
900,
18533,
4738,
19232,
290,
10627,
198,
1640,
374,
287,
43720,
62,
77,
5700,
25,
198,
220,
220,
220,
45941,
13,
25120,
13,
28826,
7,
81,
8,
198,
220,
220,
220,
10139,
15,
796,
2747,
62,
17440,
7,
69,
796,
37456,
1291,
73,
25,
28764,
16,
7,
9535,
73,
4008,
198,
220,
220,
220,
10139,
16,
796,
2747,
62,
17440,
7,
69,
796,
37456,
1291,
73,
25,
28764,
17,
7,
9535,
73,
4008,
198,
220,
220,
220,
10139,
17,
796,
3509,
62,
17440,
7,
17197,
41888,
17440,
15,
11,
10139,
16,
12962,
198,
220,
220,
220,
21232,
796,
1332,
62,
21412,
7,
65,
3733,
28,
65,
3733,
11,
264,
315,
28,
50033,
2124,
15,
25,
264,
315,
7,
4059,
11,
87,
15,
11,
304,
324,
28,
17821,
828,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
277,
62,
21048,
796,
10139,
17,
11,
15003,
62,
39873,
796,
3126,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
27183,
62,
2118,
5889,
28,
20,
11,
1033,
62,
6551,
28,
17,
11,
3487,
7509,
28,
17821,
8,
198,
220,
220,
220,
21232,
13,
36733,
1096,
3419,
198,
220,
220,
220,
21232,
13,
5143,
62,
8202,
7,
15187,
8,
198,
220,
220,
220,
7209,
62,
12786,
796,
45941,
13,
18747,
7,
15972,
13,
69,
62,
43561,
13,
19796,
62,
16960,
62,
20786,
28955,
198,
220,
220,
220,
7209,
62,
36604,
62,
81,
18,
13,
33295,
26933,
37659,
13,
16345,
7,
5796,
5226,
62,
12786,
1279,
532,
16,
13,
405,
828,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
45941,
13,
16345,
7,
5796,
5226,
62,
12786,
1279,
532,
940,
13,
15,
828,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
21232,
13,
5796,
5226,
62,
1084,
62,
87,
11,
15972,
13,
5796,
5226,
62,
1084,
62,
2100,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
21232,
13,
5796,
5226,
62,
1084,
62,
17946,
12962,
628,
220,
220,
220,
45941,
13,
25120,
13,
28826,
7,
81,
8,
198,
220,
220,
220,
10139,
15,
62,
5907,
796,
2747,
62,
17440,
7,
69,
28,
50033,
1291,
73,
25,
2747,
16,
7,
9535,
73,
4008,
198,
220,
220,
220,
10139,
16,
62,
5907,
796,
2747,
62,
17440,
7,
69,
28,
50033,
1291,
73,
25,
2747,
17,
7,
9535,
73,
4008,
198,
220,
220,
220,
10139,
17,
62,
5907,
796,
3509,
62,
17440,
7,
17197,
41888,
17440,
15,
62,
5907,
11,
10139,
16,
62,
5907,
12962,
198,
220,
220,
220,
21232,
62,
5907,
796,
1332,
62,
21412,
7,
65,
3733,
28,
65,
3733,
11,
264,
315,
28,
50033,
2124,
15,
25,
264,
315,
7,
4059,
11,
2124,
15,
11,
304,
324,
28,
17821,
828,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
277,
62,
21048,
28,
17440,
17,
62,
5907,
11,
2315,
62,
39873,
28,
1899,
11,
351,
62,
5796,
5226,
28,
25101,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
351,
62,
5907,
28,
17821,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
27183,
62,
2118,
5889,
28,
20,
11,
1033,
62,
6551,
28,
17,
11,
3487,
7509,
28,
17821,
8,
198,
220,
220,
220,
21232,
62,
5907,
13,
36733,
1096,
3419,
198,
220,
220,
220,
21232,
62,
5907,
13,
5143,
62,
8202,
7,
15187,
8,
198,
220,
220,
220,
36545,
62,
36604,
62,
81,
18,
13,
33295,
26933,
37659,
13,
16345,
7,
15972,
62,
5907,
13,
5907,
62,
16960,
13,
56,
1279,
532,
16,
13,
405,
828,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
45941,
13,
16345,
7,
15972,
62,
5907,
13,
5907,
62,
16960,
13,
56,
1279,
532,
940,
13,
15,
828,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
21232,
62,
5907,
13,
5907,
62,
1084,
62,
87,
11,
21232,
62,
5907,
13,
5907,
62,
1084,
62,
2100,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
21232,
62,
5907,
13,
5907,
62,
1084,
62,
17946,
12962,
628,
198,
220,
220,
220,
1303,
2080,
1575,
2163,
198,
220,
220,
220,
45941,
13,
25120,
13,
28826,
7,
81,
8,
628,
220,
220,
220,
10139,
15,
62,
25192,
796,
2747,
62,
17440,
7,
69,
28,
50033,
1291,
73,
25,
2747,
16,
7,
9535,
73,
4008,
198,
220,
220,
220,
10139,
16,
62,
25192,
796,
2747,
62,
17440,
7,
69,
28,
50033,
1291,
73,
25,
2747,
17,
7,
9535,
73,
4008,
198,
220,
220,
220,
10139,
17,
62,
25192,
796,
3509,
62,
17440,
7,
17197,
41888,
17440,
15,
62,
25192,
11,
10139,
16,
62,
25192,
12962,
198,
220,
220,
220,
21232,
62,
25192,
796,
1332,
62,
21412,
7,
65,
3733,
28,
65,
3733,
11,
264,
315,
28,
50033,
2124,
15,
25,
264,
315,
7,
4059,
11,
87,
15,
11,
304,
324,
28,
17821,
828,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
277,
62,
21048,
796,
10139,
17,
62,
25192,
11,
351,
62,
25120,
796,
6407,
11,
351,
62,
5796,
5226,
28,
25101,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2315,
62,
39873,
796,
3126,
11,
27183,
62,
2118,
5889,
28,
20,
11,
1033,
62,
6551,
28,
940,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1575,
62,
19849,
796,
1575,
62,
20786,
11,
3487,
7509,
28,
17821,
8,
198,
220,
220,
220,
21232,
62,
25192,
13,
36733,
1096,
3419,
198,
220,
220,
220,
21232,
62,
25192,
13,
5143,
62,
8202,
7,
15187,
8,
198,
220,
220,
220,
4738,
62,
36604,
62,
81,
18,
13,
33295,
26933,
37659,
13,
16345,
7,
37659,
13,
18747,
7,
15972,
62,
25192,
13,
25120,
62,
56,
8,
1279,
532,
16,
13,
15,
828,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
45941,
13,
16345,
7,
37659,
13,
18747,
7,
15972,
62,
25192,
13,
25120,
62,
56,
8,
1279,
532,
940,
13,
15,
828,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
21232,
62,
25192,
13,
25192,
62,
1084,
62,
87,
11,
21232,
62,
25192,
13,
25192,
62,
1084,
62,
2100,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
21232,
62,
25192,
13,
25192,
62,
1084,
62,
17946,
12962,
198,
220,
220,
220,
3601,
7,
81,
11,
7209,
62,
36604,
62,
81,
18,
58,
12,
16,
4357,
36545,
62,
36604,
62,
81,
18,
58,
12,
16,
4357,
25120,
62,
36604,
62,
81,
18,
58,
12,
16,
12962,
628,
198
]
import re
from setuptools import setup, find_packages
with open('README.md', 'r', encoding='utf-8') as f:
readme = f.read()
with open('gforms/__init__.py', encoding='utf-8') as f:
version = re.search(r"__version__ = '(.+)'", f.read()).group(1)
setup(
name='gforms',
description='Google Forms wrapper for Python',
long_description=readme,
long_description_content_type='text/markdown',
author='vvd170501',
url='https://github.com/vvd170501/python-gforms',
classifiers=[
'Development Status :: 5 - Production/Stable',
'License :: OSI Approved :: MIT License',
'Programming Language :: Python :: 3 :: Only',
'Programming Language :: Python :: 3.6',
'Programming Language :: Python :: 3.7',
'Programming Language :: Python :: 3.8',
'Programming Language :: Python :: 3.9',
],
packages=['gforms'],
version=version,
license_files=('LICENSE',),
python_requires='>=3.6',
install_requires=[
'beautifulsoup4',
'requests',
"typing-extensions;python_version<'3.8'",
],
extras_require={
'dev': [
'pytest',
]
},
)
[
11748,
302,
198,
6738,
900,
37623,
10141,
1330,
9058,
11,
1064,
62,
43789,
628,
198,
4480,
1280,
10786,
15675,
11682,
13,
9132,
3256,
705,
81,
3256,
21004,
11639,
40477,
12,
23,
11537,
355,
277,
25,
198,
220,
220,
220,
1100,
1326,
796,
277,
13,
961,
3419,
628,
198,
4480,
1280,
10786,
70,
23914,
14,
834,
15003,
834,
13,
9078,
3256,
21004,
11639,
40477,
12,
23,
11537,
355,
277,
25,
198,
220,
220,
220,
2196,
796,
302,
13,
12947,
7,
81,
1,
834,
9641,
834,
796,
29513,
13,
28988,
6,
1600,
277,
13,
961,
3419,
737,
8094,
7,
16,
8,
628,
198,
40406,
7,
198,
220,
220,
220,
1438,
11639,
70,
23914,
3256,
198,
220,
220,
220,
6764,
11639,
11708,
39196,
29908,
329,
11361,
3256,
198,
220,
220,
220,
890,
62,
11213,
28,
961,
1326,
11,
198,
220,
220,
220,
890,
62,
11213,
62,
11299,
62,
4906,
11639,
5239,
14,
4102,
2902,
3256,
198,
220,
220,
220,
1772,
11639,
85,
20306,
1558,
2713,
486,
3256,
198,
220,
220,
220,
19016,
11639,
5450,
1378,
12567,
13,
785,
14,
85,
20306,
1558,
2713,
486,
14,
29412,
12,
70,
23914,
3256,
628,
220,
220,
220,
1398,
13350,
41888,
198,
220,
220,
220,
220,
220,
220,
220,
705,
41206,
12678,
7904,
642,
532,
19174,
14,
1273,
540,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
705,
34156,
7904,
7294,
40,
20010,
1079,
7904,
17168,
13789,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
705,
15167,
2229,
15417,
7904,
11361,
7904,
513,
7904,
5514,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
705,
15167,
2229,
15417,
7904,
11361,
7904,
513,
13,
21,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
705,
15167,
2229,
15417,
7904,
11361,
7904,
513,
13,
22,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
705,
15167,
2229,
15417,
7904,
11361,
7904,
513,
13,
23,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
705,
15167,
2229,
15417,
7904,
11361,
7904,
513,
13,
24,
3256,
198,
220,
220,
220,
16589,
628,
220,
220,
220,
10392,
28,
17816,
70,
23914,
6,
4357,
198,
220,
220,
220,
2196,
28,
9641,
11,
198,
220,
220,
220,
5964,
62,
16624,
28,
10786,
43,
2149,
24290,
3256,
828,
628,
220,
220,
220,
21015,
62,
47911,
11639,
29,
28,
18,
13,
21,
3256,
198,
220,
220,
220,
2721,
62,
47911,
41888,
198,
220,
220,
220,
220,
220,
220,
220,
705,
40544,
4135,
82,
10486,
19,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
705,
8897,
3558,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
366,
774,
13886,
12,
2302,
5736,
26,
29412,
62,
9641,
27,
6,
18,
13,
23,
6,
1600,
198,
220,
220,
220,
16589,
198,
220,
220,
220,
33849,
62,
46115,
34758,
198,
220,
220,
220,
220,
220,
220,
220,
705,
7959,
10354,
685,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
9078,
9288,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
2361,
198,
220,
220,
220,
8964,
198,
8,
198
]
import seqcluster.libs.logger as mylog
import os
from seqcluster.libs.classes import annotation, dbannotation
logger = mylog.getLogger("run")
def read_gtf_line(cols, field="name"):
"""parse gtf line to get class/name information"""
field = field.lower()
try:
group = cols[2]
attrs = cols[8].split(";")
name = [attr.strip().split(" ")[1] for attr in attrs if attr.strip().split(" ")[0].lower().endswith(field)]
if not name:
name = [attr.strip().split(" ")[1] for attr in attrs if attr.strip().split(" ")[0].lower().endswith("gene_id")]
if not name:
name = ["None"]
biotype = [attr.strip().split(" ")[1] for attr in attrs if attr.strip().split(" ")[0].lower().endswith("biotype")]
if biotype:
group = biotype[0]
c = cols[0]
s = int(cols[3])
e = int(cols[4])
st = cols[6]
return [c, s, e, st, group, name[0]]
except(Exception, e):
logger.error(cols)
logger.error("File is not in correct format")
logger.error("Expect chr source feature start end . strand attributes")
logger.error("Attributes are 'gene_name SNCA; gene_id ENSG; '")
logger.error("The 3rd column is used as type of small RNA (like miRNA)")
logger.error("at least should contains '; *name NAME; '")
logger.error(e)
raise
def _position_in_feature(pos_a, pos_b):
"""return distance to 3' and 5' end of the feature"""
strd = "-"
if pos_a[2] in pos_b[2]:
strd = "+"
if pos_a[2] in "+" and pos_b[2] in "+":
lento5 = pos_a[0] - pos_b[1] + 1
lento3 = pos_a[1] - pos_b[1] + 1
if pos_a[2] in "+" and pos_b[2] in "-":
lento5 = pos_a[1] - pos_b[0] + 1
lento3 = pos_a[0] - pos_b[1] + 1
if pos_a[2] in "-" and pos_b[2] in "+":
lento5 = pos_a[0] - pos_b[1] + 1
lento3 = pos_a[1] - pos_b[0] + 1
if pos_a[2] in "-" and pos_b[2] in "-":
lento3 = pos_a[0] - pos_b[0] + 1
lento5 = pos_a[1] - pos_b[1] + 1
else:
lento5 = pos_a[0] - pos_b[0] + 1
lento3 = pos_a[1] - pos_b[1] + 1
return lento5, lento3, strd
def anncluster(c, clus_obj, db, type_ann, feature_id="name"):
"""intersect transcription position with annotation files"""
id_sa, id_ea, id_id, id_idl, id_sta = 1, 2, 3, 4, 5
if type_ann == "bed":
id_sb = 7
id_eb = 8
id_stb = 11
id_tag = 9
ida = 0
clus_id = clus_obj.clus
loci_id = clus_obj.loci
db = os.path.splitext(db)[0]
logger.debug("Type:%s\n" % type_ann)
for cols in c.features():
if type_ann == "gtf":
cb, sb, eb, stb, db, tag = read_gtf_line(cols[6:], feature_id)
else:
sb = int(cols[id_sb])
eb = int(cols[id_eb])
stb = cols[id_stb]
tag = cols[id_tag]
id = int(cols[id_id])
idl = int(cols[id_idl])
if (id in clus_id):
clus = clus_id[id]
sa = int(cols[id_sa])
ea = int(cols[id_ea])
ida += 1
lento5, lento3, strd = _position_in_feature([sa, ea, cols[id_sta]], [sb, eb, stb])
if db in loci_id[idl].db_ann:
ann = annotation(db, tag, strd, lento5, lento3)
tdb = loci_id[idl].db_ann[db]
tdb.add_db_ann(ida, ann)
loci_id[idl].add_db(db, tdb)
else:
ann = annotation(db, tag, strd, lento5, lento3)
tdb = dbannotation(1)
tdb.add_db_ann(ida, ann)
loci_id[idl].add_db(db, tdb)
clus_id[id] = clus
clus_obj.clus = clus_id
clus_obj.loci = loci_id
return clus_obj
[
11748,
33756,
565,
5819,
13,
8019,
82,
13,
6404,
1362,
355,
616,
6404,
198,
11748,
28686,
198,
198,
6738,
33756,
565,
5819,
13,
8019,
82,
13,
37724,
1330,
23025,
11,
20613,
1236,
14221,
198,
198,
6404,
1362,
796,
616,
6404,
13,
1136,
11187,
1362,
7203,
5143,
4943,
628,
198,
4299,
1100,
62,
13655,
69,
62,
1370,
7,
4033,
82,
11,
2214,
2625,
3672,
1,
2599,
198,
220,
220,
220,
37227,
29572,
308,
27110,
1627,
284,
651,
1398,
14,
3672,
1321,
37811,
198,
220,
220,
220,
2214,
796,
2214,
13,
21037,
3419,
198,
220,
220,
220,
1949,
25,
198,
220,
220,
220,
220,
220,
220,
220,
1448,
796,
951,
82,
58,
17,
60,
198,
220,
220,
220,
220,
220,
220,
220,
708,
3808,
796,
951,
82,
58,
23,
4083,
35312,
7203,
26,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
1438,
796,
685,
35226,
13,
36311,
22446,
35312,
7203,
366,
38381,
16,
60,
329,
708,
81,
287,
708,
3808,
611,
708,
81,
13,
36311,
22446,
35312,
7203,
366,
38381,
15,
4083,
21037,
22446,
437,
2032,
342,
7,
3245,
15437,
198,
220,
220,
220,
220,
220,
220,
220,
611,
407,
1438,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1438,
796,
685,
35226,
13,
36311,
22446,
35312,
7203,
366,
38381,
16,
60,
329,
708,
81,
287,
708,
3808,
611,
708,
81,
13,
36311,
22446,
35312,
7203,
366,
38381,
15,
4083,
21037,
22446,
437,
2032,
342,
7203,
70,
1734,
62,
312,
4943,
60,
198,
220,
220,
220,
220,
220,
220,
220,
611,
407,
1438,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1438,
796,
14631,
14202,
8973,
198,
220,
220,
220,
220,
220,
220,
220,
3182,
8690,
796,
685,
35226,
13,
36311,
22446,
35312,
7203,
366,
38381,
16,
60,
329,
708,
81,
287,
708,
3808,
611,
708,
81,
13,
36311,
22446,
35312,
7203,
366,
38381,
15,
4083,
21037,
22446,
437,
2032,
342,
7203,
65,
5151,
2981,
4943,
60,
198,
220,
220,
220,
220,
220,
220,
220,
611,
3182,
8690,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1448,
796,
3182,
8690,
58,
15,
60,
198,
220,
220,
220,
220,
220,
220,
220,
269,
796,
951,
82,
58,
15,
60,
198,
220,
220,
220,
220,
220,
220,
220,
264,
796,
493,
7,
4033,
82,
58,
18,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
304,
796,
493,
7,
4033,
82,
58,
19,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
336,
796,
951,
82,
58,
21,
60,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
685,
66,
11,
264,
11,
304,
11,
336,
11,
1448,
11,
1438,
58,
15,
11907,
198,
220,
220,
220,
2845,
7,
16922,
11,
304,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
49706,
13,
18224,
7,
4033,
82,
8,
198,
220,
220,
220,
220,
220,
220,
220,
49706,
13,
18224,
7203,
8979,
318,
407,
287,
3376,
5794,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
49706,
13,
18224,
7203,
3109,
806,
442,
81,
2723,
3895,
923,
886,
764,
37923,
12608,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
49706,
13,
18224,
7203,
29021,
389,
705,
70,
1734,
62,
3672,
311,
7792,
32,
26,
9779,
62,
312,
412,
8035,
38,
26,
705,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
49706,
13,
18224,
7203,
464,
513,
4372,
5721,
318,
973,
355,
2099,
286,
1402,
25897,
357,
2339,
21504,
27204,
8,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
49706,
13,
18224,
7203,
265,
1551,
815,
4909,
705,
26,
1635,
3672,
36751,
26,
705,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
49706,
13,
18224,
7,
68,
8,
198,
220,
220,
220,
220,
220,
220,
220,
5298,
628,
198,
4299,
4808,
9150,
62,
259,
62,
30053,
7,
1930,
62,
64,
11,
1426,
62,
65,
2599,
198,
220,
220,
220,
37227,
7783,
5253,
284,
513,
6,
290,
642,
6,
886,
286,
262,
3895,
37811,
198,
220,
220,
220,
965,
67,
796,
366,
21215,
198,
220,
220,
220,
611,
1426,
62,
64,
58,
17,
60,
287,
1426,
62,
65,
58,
17,
5974,
198,
220,
220,
220,
220,
220,
220,
220,
965,
67,
796,
43825,
1,
198,
220,
220,
220,
611,
1426,
62,
64,
58,
17,
60,
287,
43825,
1,
290,
1426,
62,
65,
58,
17,
60,
287,
43825,
1298,
198,
220,
220,
220,
220,
220,
220,
220,
26269,
78,
20,
796,
1426,
62,
64,
58,
15,
60,
532,
1426,
62,
65,
58,
16,
60,
1343,
352,
198,
220,
220,
220,
220,
220,
220,
220,
26269,
78,
18,
796,
1426,
62,
64,
58,
16,
60,
532,
1426,
62,
65,
58,
16,
60,
1343,
352,
198,
220,
220,
220,
611,
1426,
62,
64,
58,
17,
60,
287,
43825,
1,
290,
1426,
62,
65,
58,
17,
60,
287,
27444,
1298,
198,
220,
220,
220,
220,
220,
220,
220,
26269,
78,
20,
796,
1426,
62,
64,
58,
16,
60,
532,
1426,
62,
65,
58,
15,
60,
1343,
352,
198,
220,
220,
220,
220,
220,
220,
220,
26269,
78,
18,
796,
1426,
62,
64,
58,
15,
60,
532,
1426,
62,
65,
58,
16,
60,
1343,
352,
198,
220,
220,
220,
611,
1426,
62,
64,
58,
17,
60,
287,
366,
21215,
290,
1426,
62,
65,
58,
17,
60,
287,
43825,
1298,
198,
220,
220,
220,
220,
220,
220,
220,
26269,
78,
20,
796,
1426,
62,
64,
58,
15,
60,
532,
1426,
62,
65,
58,
16,
60,
1343,
352,
198,
220,
220,
220,
220,
220,
220,
220,
26269,
78,
18,
796,
1426,
62,
64,
58,
16,
60,
532,
1426,
62,
65,
58,
15,
60,
1343,
352,
198,
220,
220,
220,
611,
1426,
62,
64,
58,
17,
60,
287,
366,
21215,
290,
1426,
62,
65,
58,
17,
60,
287,
27444,
1298,
198,
220,
220,
220,
220,
220,
220,
220,
26269,
78,
18,
796,
1426,
62,
64,
58,
15,
60,
532,
1426,
62,
65,
58,
15,
60,
1343,
352,
198,
220,
220,
220,
220,
220,
220,
220,
26269,
78,
20,
796,
1426,
62,
64,
58,
16,
60,
532,
1426,
62,
65,
58,
16,
60,
1343,
352,
198,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
26269,
78,
20,
796,
1426,
62,
64,
58,
15,
60,
532,
1426,
62,
65,
58,
15,
60,
1343,
352,
198,
220,
220,
220,
220,
220,
220,
220,
26269,
78,
18,
796,
1426,
62,
64,
58,
16,
60,
532,
1426,
62,
65,
58,
16,
60,
1343,
352,
198,
220,
220,
220,
1441,
26269,
78,
20,
11,
26269,
78,
18,
11,
965,
67,
628,
198,
4299,
1529,
565,
5819,
7,
66,
11,
537,
385,
62,
26801,
11,
20613,
11,
2099,
62,
1236,
11,
3895,
62,
312,
2625,
3672,
1,
2599,
198,
220,
220,
220,
37227,
3849,
8831,
26955,
2292,
351,
23025,
3696,
37811,
198,
220,
220,
220,
4686,
62,
11400,
11,
4686,
62,
18213,
11,
4686,
62,
312,
11,
4686,
62,
312,
75,
11,
4686,
62,
38031,
796,
352,
11,
362,
11,
513,
11,
604,
11,
642,
198,
220,
220,
220,
611,
2099,
62,
1236,
6624,
366,
3077,
1298,
198,
220,
220,
220,
220,
220,
220,
220,
4686,
62,
36299,
796,
767,
198,
220,
220,
220,
220,
220,
220,
220,
4686,
62,
1765,
796,
807,
198,
220,
220,
220,
220,
220,
220,
220,
4686,
62,
301,
65,
796,
1367,
198,
220,
220,
220,
220,
220,
220,
220,
4686,
62,
12985,
796,
860,
198,
220,
220,
220,
220,
3755,
796,
657,
198,
220,
220,
220,
537,
385,
62,
312,
796,
537,
385,
62,
26801,
13,
2527,
198,
220,
220,
220,
1179,
72,
62,
312,
796,
537,
385,
62,
26801,
13,
75,
1733,
198,
220,
220,
220,
20613,
796,
28686,
13,
6978,
13,
22018,
578,
742,
7,
9945,
38381,
15,
60,
198,
220,
220,
220,
49706,
13,
24442,
7203,
6030,
25,
4,
82,
59,
77,
1,
4064,
2099,
62,
1236,
8,
198,
220,
220,
220,
329,
951,
82,
287,
269,
13,
40890,
33529,
198,
220,
220,
220,
220,
220,
220,
220,
611,
2099,
62,
1236,
6624,
366,
13655,
69,
1298,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
269,
65,
11,
264,
65,
11,
36649,
11,
336,
65,
11,
20613,
11,
7621,
796,
1100,
62,
13655,
69,
62,
1370,
7,
4033,
82,
58,
21,
25,
4357,
3895,
62,
312,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
264,
65,
796,
493,
7,
4033,
82,
58,
312,
62,
36299,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
36649,
796,
493,
7,
4033,
82,
58,
312,
62,
1765,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
336,
65,
796,
951,
82,
58,
312,
62,
301,
65,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
7621,
796,
951,
82,
58,
312,
62,
12985,
60,
198,
220,
220,
220,
220,
220,
220,
220,
4686,
796,
493,
7,
4033,
82,
58,
312,
62,
312,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
4686,
75,
796,
493,
7,
4033,
82,
58,
312,
62,
312,
75,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
611,
357,
312,
287,
537,
385,
62,
312,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
537,
385,
796,
537,
385,
62,
312,
58,
312,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
473,
796,
493,
7,
4033,
82,
58,
312,
62,
11400,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
304,
64,
796,
493,
7,
4033,
82,
58,
312,
62,
18213,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3755,
15853,
352,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
26269,
78,
20,
11,
26269,
78,
18,
11,
965,
67,
796,
4808,
9150,
62,
259,
62,
30053,
26933,
11400,
11,
304,
64,
11,
951,
82,
58,
312,
62,
38031,
60,
4357,
685,
36299,
11,
36649,
11,
336,
65,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
20613,
287,
1179,
72,
62,
312,
58,
312,
75,
4083,
9945,
62,
1236,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1529,
796,
23025,
7,
9945,
11,
7621,
11,
965,
67,
11,
26269,
78,
20,
11,
26269,
78,
18,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
256,
9945,
796,
1179,
72,
62,
312,
58,
312,
75,
4083,
9945,
62,
1236,
58,
9945,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
256,
9945,
13,
2860,
62,
9945,
62,
1236,
7,
3755,
11,
1529,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1179,
72,
62,
312,
58,
312,
75,
4083,
2860,
62,
9945,
7,
9945,
11,
256,
9945,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1529,
796,
23025,
7,
9945,
11,
7621,
11,
965,
67,
11,
26269,
78,
20,
11,
26269,
78,
18,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
256,
9945,
796,
20613,
1236,
14221,
7,
16,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
256,
9945,
13,
2860,
62,
9945,
62,
1236,
7,
3755,
11,
1529,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1179,
72,
62,
312,
58,
312,
75,
4083,
2860,
62,
9945,
7,
9945,
11,
256,
9945,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
537,
385,
62,
312,
58,
312,
60,
796,
537,
385,
198,
220,
220,
220,
537,
385,
62,
26801,
13,
2527,
796,
537,
385,
62,
312,
198,
220,
220,
220,
537,
385,
62,
26801,
13,
75,
1733,
796,
1179,
72,
62,
312,
198,
220,
220,
220,
1441,
537,
385,
62,
26801,
628,
198
]
from __future__ import absolute_import
from __future__ import unicode_literals
import collections
import inspect
import json
import os
import re
from functools import partial
import compose
[
6738,
11593,
37443,
834,
1330,
4112,
62,
11748,
198,
6738,
11593,
37443,
834,
1330,
28000,
1098,
62,
17201,
874,
198,
198,
11748,
17268,
198,
11748,
10104,
198,
11748,
33918,
198,
11748,
28686,
198,
11748,
302,
198,
6738,
1257,
310,
10141,
1330,
13027,
198,
198,
11748,
36664,
628,
628,
628,
628,
198
]
import numpy as np
from ase.calculators.lj import LennardJones
from ase.units import Bohr, Ha
from pytest import approx, raises
from pygsm.level_of_theories.ase import ASELoT, geom_to_ase, xyz_to_ase
from pygsm.level_of_theories.base_lot import LoTError
xyz_4x4 = [
["H", 1.0, 2.0, 3.0],
["He", 4.0, 5.0, 6.0],
["Li", 7.0, 8.0, 9.0],
["Be", 10.0, 11.0, 12.0],
]
[
11748,
299,
32152,
355,
45941,
198,
6738,
257,
325,
13,
9948,
3129,
2024,
13,
75,
73,
1330,
28423,
446,
25784,
198,
6738,
257,
325,
13,
41667,
1330,
44366,
81,
11,
9398,
198,
6738,
12972,
9288,
1330,
5561,
11,
12073,
198,
198,
6738,
12972,
70,
5796,
13,
5715,
62,
1659,
62,
1169,
1749,
13,
589,
1330,
7054,
3698,
78,
51,
11,
4903,
296,
62,
1462,
62,
589,
11,
2124,
45579,
62,
1462,
62,
589,
198,
6738,
12972,
70,
5796,
13,
5715,
62,
1659,
62,
1169,
1749,
13,
8692,
62,
26487,
1330,
6706,
51,
12331,
198,
198,
5431,
89,
62,
19,
87,
19,
796,
685,
198,
220,
220,
220,
14631,
39,
1600,
352,
13,
15,
11,
362,
13,
15,
11,
513,
13,
15,
4357,
198,
220,
220,
220,
14631,
1544,
1600,
604,
13,
15,
11,
642,
13,
15,
11,
718,
13,
15,
4357,
198,
220,
220,
220,
14631,
32304,
1600,
767,
13,
15,
11,
807,
13,
15,
11,
860,
13,
15,
4357,
198,
220,
220,
220,
14631,
3856,
1600,
838,
13,
15,
11,
1367,
13,
15,
11,
1105,
13,
15,
4357,
198,
60,
628,
628,
628,
628,
198
]
from survey.features.page_objects.base import PageObject
__author__ = 'mnandri'
[
6738,
5526,
13,
40890,
13,
7700,
62,
48205,
13,
8692,
1330,
7873,
10267,
198,
198,
834,
9800,
834,
796,
705,
10295,
392,
380,
6,
628,
198
]
"""Debug Toolbar Plugin."""
import asyncio
import importlib
import ipaddress as ip
import os.path as op
import re
import sys
import uuid
from muffin import (
Response, StaticRoute, HTTPException, HTTPBadRequest, to_coroutine, HTTPForbidden)
from muffin.plugins import BasePlugin, PluginException
from muffin.utils import json
from . import panels, utils
from .tbtools.tbtools import get_traceback
RE_BODY = re.compile(b'<\/body>', re.I)
U_SSE_PAYLOAD = "id: {0}\nevent: new_request\ndata: {1}\n\n"
REDIRECT_CODES = (300, 301, 302, 303, 305, 307, 308)
PLUGIN_ROOT = op.dirname(op.abspath(__file__))
@asyncio.coroutine
def debugtoolbar_middleware_factory(app, handler):
"""Setup Debug middleware."""
dbtb = app.ps.debugtoolbar
@asyncio.coroutine
def debugtoolbar_middleware(request):
"""Integrate to application."""
# Check for debugtoolbar is enabled for the request
if not dbtb.cfg.enabled or any(map(request.path.startswith, dbtb.cfg.exclude)):
return (yield from handler(request))
remote_host, remote_port = request.transport.get_extra_info('peername')
for host in dbtb.cfg.hosts:
if ip.ip_address(remote_host) in ip.ip_network(host):
break
else:
return (yield from handler(request))
# Initialize a debugstate for the request
state = DebugState(app, request)
dbtb.history[state.id] = state
context_switcher = state.wrap_handler(handler)
# Make response
try:
response = yield from context_switcher(handler(request))
state.status = response.status
except HTTPException as exc:
response = exc
state.status = response.status
except Exception as exc:
# Store traceback for unhandled exception
state.status = 500
if not dbtb.cfg.intercept_exc:
raise
tb = get_traceback(
info=sys.exc_info(), skip=1, show_hidden_frames=False,
ignore_system_exceptions=True, exc=exc)
dbtb.exceptions[tb.id] = request['pdbt_tb'] = tb
for frame in tb.frames:
dbtb.frames[id(frame)] = frame
response = Response(text=tb.render_full(request), content_type='text/html')
# Intercept http redirect codes and display an html page with a link to the target.
if dbtb.cfg.intercept_redirects and response.status in REDIRECT_CODES \
and 'Location' in response.headers:
response = yield from app.ps.jinja2.render(
'debugtoolbar/redirect.html', response=response)
response = Response(text=response, content_type='text/html')
yield from state.process_response(response)
if isinstance(response, Response) and response.content_type == 'text/html' and \
RE_BODY.search(response.body):
return (yield from dbtb.inject(state, response))
return response
return debugtoolbar_middleware
class Plugin(BasePlugin):
"""The plugin implementation."""
name = 'debugtoolbar'
defaults = {
'enabled': True,
'hosts': ['127.0.0.1'],
'prefix': '/_debug',
'intercept_exc': 'debug', # debug/display/False,
'intercept_redirects': True,
'exclude': [],
'panels': [
panels.HeaderDebugPanel,
panels.RequestVarsDebugPanel,
panels.LoggingDebugPanel,
panels.TracebackDebugPanel,
],
'additional_panels': [],
'global_panels': [
panels.RoutesDebugPanel,
panels.ConfigurationDebugPanel,
panels.MiddlewaresDebugPanel,
panels.VersionsDebugPanel,
]
}
def setup(self, app):
"""Setup the plugin and prepare application."""
super(Plugin, self).setup(app)
if 'jinja2' not in app.plugins:
raise PluginException('The plugin requires Muffin-Jinja2 plugin installed.')
self.cfg.prefix = self.cfg.prefix.rstrip('/') + '/'
self.cfg.exclude.append(self.cfg.prefix)
# Setup debugtoolbar templates
app.ps.jinja2.cfg.template_folders.append(op.join(PLUGIN_ROOT, 'templates'))
self.cfg.panels += list(self.cfg.additional_panels)
panels_ = []
for panel in self.cfg.panels:
if isinstance(panel, str):
mod, _, panel = panel.partition(':')
mod = importlib.import_module(mod)
panel = eval(panel or 'DebugPanel', mod.__dict__)
panels_.append(panel)
self.cfg.panels = panels_
# Setup debugtoolbar static files
app.router.register_route(StaticRoute(
'debugtoolbar.static',
self.cfg.prefix + 'static/',
op.join(PLUGIN_ROOT, 'static')))
app.register(self.cfg.prefix + 'sse', name='debugtoolbar.sse')(self.sse)
app.register(
self.cfg.prefix + 'exception', name='debugtoolbar.exception')(self.exception)
app.register(
self.cfg.prefix + 'execute', name='debugtoolbar.execute')(self.execute)
app.register(
self.cfg.prefix + 'source', name='debugtoolbar.source')(self.source)
app.register(
self.cfg.prefix.rstrip('/'),
self.cfg.prefix,
self.cfg.prefix + '{request_id}', name='debugtoolbar.request')(self.view)
app['debugtoolbar'] = {}
app['debugtoolbar']['pdbt_token'] = uuid.uuid4().hex
self.history = app['debugtoolbar']['history'] = utils.History(50)
self.exceptions = app['debugtoolbar']['exceptions'] = utils.History(50)
self.frames = app['debugtoolbar']['frames'] = utils.History(100)
@asyncio.coroutine
def start(self, app):
""" Start application. """
app.middlewares.insert(0, debugtoolbar_middleware_factory)
self.global_panels = [Panel(self.app) for Panel in self.cfg.global_panels]
@asyncio.coroutine
def inject(self, state, response):
""" Inject Debug Toolbar code to response body. """
html = yield from self.app.ps.jinja2.render(
'debugtoolbar/inject.html',
static_path=self.cfg.prefix + 'static',
toolbar_url=self.cfg.prefix + state.id,
)
html = html.encode(state.request.charset or 'utf-8')
response.body = RE_BODY.sub(html + b'</body>', response.body)
return response
@asyncio.coroutine
def view(self, request):
""" Debug Toolbar. """
auth = yield from self.authorize(request)
if not auth:
raise HTTPForbidden()
request_id = request.match_info.get('request_id')
state = self.history.get(request_id, None)
response = yield from self.app.ps.jinja2.render(
'debugtoolbar/toolbar.html',
debugtoolbar=self,
state=state,
static_path=self.cfg.prefix + 'static',
panels=state and state.panels or [],
global_panels=self.global_panels,
request=state and state.request or None,
)
return Response(text=response, content_type='text/html')
@asyncio.coroutine
def authorize(self, request): # noqa
"""Default authorization."""
return True
def authorization(self, func):
"""Define a authorization handler.
::
debugtoolbar = muffin_debugtoolbar.Plugin()
debugtoolbar.setup(app)
@debugtoolbar.authorization
def current_user_is_logged(request):
user = yield from load_session(request)
return user
"""
self.authorize = to_coroutine(func)
return func
@asyncio.coroutine
def sse(self, request):
"""SSE."""
response = Response(status=200)
response.content_type = 'text/event-stream'
response.text = ''
active_request_id = request.GET.get('request_id')
client_last_request_id = str(request.headers.get('Last-Event-Id', 0))
if self.history:
last_request_id = next(reversed(self.history))
if not last_request_id == client_last_request_id:
data = []
for _id in reversed(self.history):
data.append([
_id, self.history[_id].json, 'active' if active_request_id == _id else ''])
if data:
response.text = U_SSE_PAYLOAD.format(last_request_id, json.dumps(data))
return response
@asyncio.coroutine
@asyncio.coroutine
@asyncio.coroutine
class DebugState:
""" Store debug state. """
def __init__(self, app, request):
"""Store the params."""
self.request = request
self.status = 200
self.panels = [Panel(app, request) for Panel in app.ps.debugtoolbar.cfg.panels]
@property
def id(self):
"""Return state ID."""
return str(id(self))
@property
def json(self):
"""Return JSON."""
return {'method': self.request.method,
'path': self.request.path,
'scheme': 'http',
'status_code': self.status}
@asyncio.coroutine
def process_response(self, response):
"""Process response."""
for panel in self.panels:
yield from panel.process_response(response)
[
37811,
27509,
16984,
5657,
42636,
526,
15931,
198,
11748,
30351,
952,
198,
11748,
1330,
8019,
198,
11748,
20966,
21975,
355,
20966,
198,
11748,
28686,
13,
6978,
355,
1034,
198,
11748,
302,
198,
11748,
25064,
198,
11748,
334,
27112,
198,
198,
6738,
27563,
259,
1330,
357,
198,
220,
220,
220,
18261,
11,
36125,
43401,
11,
14626,
16922,
11,
14626,
22069,
18453,
11,
284,
62,
10215,
28399,
11,
14626,
1890,
37978,
8,
198,
6738,
27563,
259,
13,
37390,
1330,
7308,
37233,
11,
42636,
16922,
198,
6738,
27563,
259,
13,
26791,
1330,
33918,
198,
198,
6738,
764,
1330,
13043,
11,
3384,
4487,
198,
6738,
764,
83,
18347,
10141,
13,
83,
18347,
10141,
1330,
651,
62,
40546,
1891,
628,
198,
2200,
62,
33,
33076,
796,
302,
13,
5589,
576,
7,
65,
6,
27,
11139,
2618,
29,
3256,
302,
13,
40,
8,
198,
52,
62,
50,
5188,
62,
4537,
56,
35613,
796,
366,
312,
25,
1391,
15,
32239,
710,
1151,
25,
649,
62,
25927,
59,
358,
1045,
25,
1391,
16,
32239,
77,
59,
77,
1,
198,
22083,
40,
23988,
62,
34,
3727,
1546,
796,
357,
6200,
11,
25643,
11,
32591,
11,
30727,
11,
32747,
11,
38369,
11,
35617,
8,
628,
198,
6489,
7340,
1268,
62,
13252,
2394,
796,
1034,
13,
15908,
3672,
7,
404,
13,
397,
2777,
776,
7,
834,
7753,
834,
4008,
628,
198,
31,
292,
13361,
952,
13,
10215,
28399,
198,
4299,
14257,
25981,
5657,
62,
27171,
1574,
62,
69,
9548,
7,
1324,
11,
21360,
2599,
198,
220,
220,
220,
37227,
40786,
31687,
3504,
1574,
526,
15931,
198,
220,
220,
220,
288,
18347,
65,
796,
598,
13,
862,
13,
24442,
25981,
5657,
628,
220,
220,
220,
2488,
292,
13361,
952,
13,
10215,
28399,
198,
220,
220,
220,
825,
14257,
25981,
5657,
62,
27171,
1574,
7,
25927,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
34500,
4873,
284,
3586,
526,
15931,
628,
220,
220,
220,
220,
220,
220,
220,
1303,
6822,
329,
14257,
25981,
5657,
318,
9343,
329,
262,
2581,
198,
220,
220,
220,
220,
220,
220,
220,
611,
407,
288,
18347,
65,
13,
37581,
13,
25616,
393,
597,
7,
8899,
7,
25927,
13,
6978,
13,
9688,
2032,
342,
11,
288,
18347,
65,
13,
37581,
13,
1069,
9152,
8,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1441,
357,
88,
1164,
422,
21360,
7,
25927,
4008,
628,
220,
220,
220,
220,
220,
220,
220,
6569,
62,
4774,
11,
6569,
62,
634,
796,
2581,
13,
7645,
634,
13,
1136,
62,
26086,
62,
10951,
10786,
431,
13292,
11537,
198,
220,
220,
220,
220,
220,
220,
220,
329,
2583,
287,
288,
18347,
65,
13,
37581,
13,
4774,
82,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
20966,
13,
541,
62,
21975,
7,
47960,
62,
4774,
8,
287,
20966,
13,
541,
62,
27349,
7,
4774,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2270,
198,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1441,
357,
88,
1164,
422,
21360,
7,
25927,
4008,
628,
220,
220,
220,
220,
220,
220,
220,
1303,
20768,
1096,
257,
14257,
5219,
329,
262,
2581,
198,
220,
220,
220,
220,
220,
220,
220,
1181,
796,
31687,
9012,
7,
1324,
11,
2581,
8,
198,
220,
220,
220,
220,
220,
220,
220,
288,
18347,
65,
13,
23569,
58,
5219,
13,
312,
60,
796,
1181,
198,
220,
220,
220,
220,
220,
220,
220,
4732,
62,
2032,
23640,
796,
1181,
13,
37150,
62,
30281,
7,
30281,
8,
628,
220,
220,
220,
220,
220,
220,
220,
1303,
6889,
2882,
198,
220,
220,
220,
220,
220,
220,
220,
1949,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2882,
796,
7800,
422,
4732,
62,
2032,
23640,
7,
30281,
7,
25927,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1181,
13,
13376,
796,
2882,
13,
13376,
198,
220,
220,
220,
220,
220,
220,
220,
2845,
14626,
16922,
355,
2859,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2882,
796,
2859,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1181,
13,
13376,
796,
2882,
13,
13376,
628,
220,
220,
220,
220,
220,
220,
220,
2845,
35528,
355,
2859,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
9363,
12854,
1891,
329,
555,
38788,
6631,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1181,
13,
13376,
796,
5323,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
407,
288,
18347,
65,
13,
37581,
13,
3849,
984,
62,
41194,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5298,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
256,
65,
796,
651,
62,
40546,
1891,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
7508,
28,
17597,
13,
41194,
62,
10951,
22784,
14267,
28,
16,
11,
905,
62,
30342,
62,
37805,
28,
25101,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8856,
62,
10057,
62,
1069,
11755,
28,
17821,
11,
2859,
28,
41194,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
288,
18347,
65,
13,
1069,
11755,
58,
83,
65,
13,
312,
60,
796,
2581,
17816,
79,
9945,
83,
62,
83,
65,
20520,
796,
256,
65,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
329,
5739,
287,
256,
65,
13,
37805,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
288,
18347,
65,
13,
37805,
58,
312,
7,
14535,
15437,
796,
5739,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2882,
796,
18261,
7,
5239,
28,
83,
65,
13,
13287,
62,
12853,
7,
25927,
828,
2695,
62,
4906,
11639,
5239,
14,
6494,
11537,
628,
220,
220,
220,
220,
220,
220,
220,
1303,
37127,
2638,
18941,
12416,
290,
3359,
281,
27711,
2443,
351,
257,
2792,
284,
262,
2496,
13,
198,
220,
220,
220,
220,
220,
220,
220,
611,
288,
18347,
65,
13,
37581,
13,
3849,
984,
62,
445,
1060,
82,
290,
2882,
13,
13376,
287,
23848,
40,
23988,
62,
34,
3727,
1546,
3467,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
290,
705,
14749,
6,
287,
2882,
13,
50145,
25,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2882,
796,
7800,
422,
598,
13,
862,
13,
18594,
6592,
17,
13,
13287,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
24442,
25981,
5657,
14,
445,
1060,
13,
6494,
3256,
2882,
28,
26209,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2882,
796,
18261,
7,
5239,
28,
26209,
11,
2695,
62,
4906,
11639,
5239,
14,
6494,
11537,
628,
220,
220,
220,
220,
220,
220,
220,
7800,
422,
1181,
13,
14681,
62,
26209,
7,
26209,
8,
628,
220,
220,
220,
220,
220,
220,
220,
611,
318,
39098,
7,
26209,
11,
18261,
8,
290,
2882,
13,
11299,
62,
4906,
6624,
705,
5239,
14,
6494,
6,
290,
3467,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4526,
62,
33,
33076,
13,
12947,
7,
26209,
13,
2618,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1441,
357,
88,
1164,
422,
288,
18347,
65,
13,
259,
752,
7,
5219,
11,
2882,
4008,
628,
220,
220,
220,
220,
220,
220,
220,
1441,
2882,
628,
220,
220,
220,
1441,
14257,
25981,
5657,
62,
27171,
1574,
628,
198,
4871,
42636,
7,
14881,
37233,
2599,
628,
220,
220,
220,
37227,
464,
13877,
7822,
526,
15931,
628,
220,
220,
220,
1438,
796,
705,
24442,
25981,
5657,
6,
198,
220,
220,
220,
26235,
796,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
705,
25616,
10354,
6407,
11,
198,
220,
220,
220,
220,
220,
220,
220,
705,
4774,
82,
10354,
37250,
16799,
13,
15,
13,
15,
13,
16,
6,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
705,
40290,
10354,
31051,
62,
24442,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
705,
3849,
984,
62,
41194,
10354,
705,
24442,
3256,
220,
1303,
14257,
14,
13812,
14,
25101,
11,
198,
220,
220,
220,
220,
220,
220,
220,
705,
3849,
984,
62,
445,
1060,
82,
10354,
6407,
11,
198,
220,
220,
220,
220,
220,
220,
220,
705,
1069,
9152,
10354,
685,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
705,
6839,
1424,
10354,
685,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
13043,
13,
39681,
27509,
26639,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
13043,
13,
18453,
53,
945,
27509,
26639,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
13043,
13,
11187,
2667,
27509,
26639,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
13043,
13,
2898,
558,
1891,
27509,
26639,
11,
198,
220,
220,
220,
220,
220,
220,
220,
16589,
198,
220,
220,
220,
220,
220,
220,
220,
705,
2860,
1859,
62,
6839,
1424,
10354,
685,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
705,
20541,
62,
6839,
1424,
10354,
685,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
13043,
13,
49,
448,
274,
27509,
26639,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
13043,
13,
38149,
27509,
26639,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
13043,
13,
34621,
86,
3565,
27509,
26639,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
13043,
13,
45150,
27509,
26639,
11,
198,
220,
220,
220,
220,
220,
220,
220,
2361,
198,
220,
220,
220,
1782,
628,
220,
220,
220,
825,
9058,
7,
944,
11,
598,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
40786,
262,
13877,
290,
8335,
3586,
526,
15931,
198,
220,
220,
220,
220,
220,
220,
220,
2208,
7,
37233,
11,
2116,
737,
40406,
7,
1324,
8,
628,
220,
220,
220,
220,
220,
220,
220,
611,
705,
18594,
6592,
17,
6,
407,
287,
598,
13,
37390,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5298,
42636,
16922,
10786,
464,
13877,
4433,
337,
1648,
259,
12,
41,
259,
6592,
17,
13877,
6589,
2637,
8,
628,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
37581,
13,
40290,
796,
2116,
13,
37581,
13,
40290,
13,
81,
36311,
10786,
14,
11537,
1343,
31051,
6,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
37581,
13,
1069,
9152,
13,
33295,
7,
944,
13,
37581,
13,
40290,
8,
628,
220,
220,
220,
220,
220,
220,
220,
1303,
31122,
14257,
25981,
5657,
24019,
198,
220,
220,
220,
220,
220,
220,
220,
598,
13,
862,
13,
18594,
6592,
17,
13,
37581,
13,
28243,
62,
11379,
364,
13,
33295,
7,
404,
13,
22179,
7,
6489,
7340,
1268,
62,
13252,
2394,
11,
705,
11498,
17041,
6,
4008,
628,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
37581,
13,
6839,
1424,
15853,
1351,
7,
944,
13,
37581,
13,
2860,
1859,
62,
6839,
1424,
8,
198,
220,
220,
220,
220,
220,
220,
220,
13043,
62,
796,
17635,
198,
220,
220,
220,
220,
220,
220,
220,
329,
6103,
287,
2116,
13,
37581,
13,
6839,
1424,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
318,
39098,
7,
35330,
11,
965,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
953,
11,
4808,
11,
6103,
796,
6103,
13,
3911,
653,
7,
10354,
11537,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
953,
796,
1330,
8019,
13,
11748,
62,
21412,
7,
4666,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
6103,
796,
5418,
7,
35330,
393,
705,
27509,
26639,
3256,
953,
13,
834,
11600,
834,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
13043,
44807,
33295,
7,
35330,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
37581,
13,
6839,
1424,
796,
13043,
62,
628,
220,
220,
220,
220,
220,
220,
220,
1303,
31122,
14257,
25981,
5657,
9037,
3696,
198,
220,
220,
220,
220,
220,
220,
220,
598,
13,
472,
353,
13,
30238,
62,
38629,
7,
45442,
43401,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
24442,
25981,
5657,
13,
12708,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
37581,
13,
40290,
1343,
705,
12708,
14,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1034,
13,
22179,
7,
6489,
7340,
1268,
62,
13252,
2394,
11,
705,
12708,
6,
22305,
628,
220,
220,
220,
220,
220,
220,
220,
598,
13,
30238,
7,
944,
13,
37581,
13,
40290,
1343,
705,
82,
325,
3256,
1438,
11639,
24442,
25981,
5657,
13,
82,
325,
6,
5769,
944,
13,
82,
325,
8,
198,
220,
220,
220,
220,
220,
220,
220,
598,
13,
30238,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
37581,
13,
40290,
1343,
705,
1069,
4516,
3256,
1438,
11639,
24442,
25981,
5657,
13,
1069,
4516,
6,
5769,
944,
13,
1069,
4516,
8,
198,
220,
220,
220,
220,
220,
220,
220,
598,
13,
30238,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
37581,
13,
40290,
1343,
705,
41049,
3256,
1438,
11639,
24442,
25981,
5657,
13,
41049,
6,
5769,
944,
13,
41049,
8,
198,
220,
220,
220,
220,
220,
220,
220,
598,
13,
30238,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
37581,
13,
40290,
1343,
705,
10459,
3256,
1438,
11639,
24442,
25981,
5657,
13,
10459,
6,
5769,
944,
13,
10459,
8,
198,
220,
220,
220,
220,
220,
220,
220,
598,
13,
30238,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
37581,
13,
40290,
13,
81,
36311,
10786,
14,
33809,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
37581,
13,
40290,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
37581,
13,
40290,
1343,
705,
90,
25927,
62,
312,
92,
3256,
1438,
11639,
24442,
25981,
5657,
13,
25927,
6,
5769,
944,
13,
1177,
8,
628,
220,
220,
220,
220,
220,
220,
220,
598,
17816,
24442,
25981,
5657,
20520,
796,
23884,
198,
220,
220,
220,
220,
220,
220,
220,
598,
17816,
24442,
25981,
5657,
6,
7131,
6,
79,
9945,
83,
62,
30001,
20520,
796,
334,
27112,
13,
12303,
312,
19,
22446,
33095,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
23569,
796,
598,
17816,
24442,
25981,
5657,
6,
7131,
6,
23569,
20520,
796,
3384,
4487,
13,
18122,
7,
1120,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
1069,
11755,
796,
598,
17816,
24442,
25981,
5657,
6,
7131,
6,
1069,
11755,
20520,
796,
3384,
4487,
13,
18122,
7,
1120,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
37805,
796,
598,
17816,
24442,
25981,
5657,
6,
7131,
6,
37805,
20520,
796,
3384,
4487,
13,
18122,
7,
3064,
8,
628,
220,
220,
220,
2488,
292,
13361,
952,
13,
10215,
28399,
198,
220,
220,
220,
825,
923,
7,
944,
11,
598,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
7253,
3586,
13,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
598,
13,
27171,
86,
3565,
13,
28463,
7,
15,
11,
14257,
25981,
5657,
62,
27171,
1574,
62,
69,
9548,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
20541,
62,
6839,
1424,
796,
685,
26639,
7,
944,
13,
1324,
8,
329,
18810,
287,
2116,
13,
37581,
13,
20541,
62,
6839,
1424,
60,
628,
220,
220,
220,
2488,
292,
13361,
952,
13,
10215,
28399,
198,
220,
220,
220,
825,
8677,
7,
944,
11,
1181,
11,
2882,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
554,
752,
31687,
16984,
5657,
2438,
284,
2882,
1767,
13,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
27711,
796,
7800,
422,
2116,
13,
1324,
13,
862,
13,
18594,
6592,
17,
13,
13287,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
24442,
25981,
5657,
14,
259,
752,
13,
6494,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
9037,
62,
6978,
28,
944,
13,
37581,
13,
40290,
1343,
705,
12708,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
50149,
62,
6371,
28,
944,
13,
37581,
13,
40290,
1343,
1181,
13,
312,
11,
198,
220,
220,
220,
220,
220,
220,
220,
1267,
198,
220,
220,
220,
220,
220,
220,
220,
27711,
796,
27711,
13,
268,
8189,
7,
5219,
13,
25927,
13,
354,
945,
316,
393,
705,
40477,
12,
23,
11537,
198,
220,
220,
220,
220,
220,
220,
220,
2882,
13,
2618,
796,
4526,
62,
33,
33076,
13,
7266,
7,
6494,
1343,
275,
6,
3556,
2618,
29,
3256,
2882,
13,
2618,
8,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
2882,
628,
220,
220,
220,
2488,
292,
13361,
952,
13,
10215,
28399,
198,
220,
220,
220,
825,
1570,
7,
944,
11,
2581,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
31687,
16984,
5657,
13,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
6284,
796,
7800,
422,
2116,
13,
9800,
1096,
7,
25927,
8,
198,
220,
220,
220,
220,
220,
220,
220,
611,
407,
6284,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5298,
14626,
1890,
37978,
3419,
628,
220,
220,
220,
220,
220,
220,
220,
2581,
62,
312,
796,
2581,
13,
15699,
62,
10951,
13,
1136,
10786,
25927,
62,
312,
11537,
198,
220,
220,
220,
220,
220,
220,
220,
1181,
796,
2116,
13,
23569,
13,
1136,
7,
25927,
62,
312,
11,
6045,
8,
628,
220,
220,
220,
220,
220,
220,
220,
2882,
796,
7800,
422,
2116,
13,
1324,
13,
862,
13,
18594,
6592,
17,
13,
13287,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
24442,
25981,
5657,
14,
25981,
5657,
13,
6494,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
14257,
25981,
5657,
28,
944,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1181,
28,
5219,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
9037,
62,
6978,
28,
944,
13,
37581,
13,
40290,
1343,
705,
12708,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
13043,
28,
5219,
290,
1181,
13,
6839,
1424,
393,
685,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3298,
62,
6839,
1424,
28,
944,
13,
20541,
62,
6839,
1424,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2581,
28,
5219,
290,
1181,
13,
25927,
393,
6045,
11,
198,
220,
220,
220,
220,
220,
220,
220,
1267,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
18261,
7,
5239,
28,
26209,
11,
2695,
62,
4906,
11639,
5239,
14,
6494,
11537,
628,
220,
220,
220,
2488,
292,
13361,
952,
13,
10215,
28399,
198,
220,
220,
220,
825,
29145,
7,
944,
11,
2581,
2599,
220,
1303,
645,
20402,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
19463,
19601,
526,
15931,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
6407,
628,
220,
220,
220,
825,
19601,
7,
944,
11,
25439,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
7469,
500,
257,
19601,
21360,
13,
628,
220,
220,
220,
220,
220,
220,
220,
7904,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
14257,
25981,
5657,
796,
27563,
259,
62,
24442,
25981,
5657,
13,
37233,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
14257,
25981,
5657,
13,
40406,
7,
1324,
8,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2488,
24442,
25981,
5657,
13,
9800,
1634,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
825,
1459,
62,
7220,
62,
271,
62,
6404,
2004,
7,
25927,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2836,
796,
7800,
422,
3440,
62,
29891,
7,
25927,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1441,
2836,
628,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
9800,
1096,
796,
284,
62,
10215,
28399,
7,
20786,
8,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
25439,
628,
220,
220,
220,
2488,
292,
13361,
952,
13,
10215,
28399,
198,
220,
220,
220,
825,
264,
325,
7,
944,
11,
2581,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
50,
5188,
526,
15931,
198,
220,
220,
220,
220,
220,
220,
220,
2882,
796,
18261,
7,
13376,
28,
2167,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2882,
13,
11299,
62,
4906,
796,
705,
5239,
14,
15596,
12,
5532,
6,
198,
220,
220,
220,
220,
220,
220,
220,
2882,
13,
5239,
796,
10148,
198,
220,
220,
220,
220,
220,
220,
220,
4075,
62,
25927,
62,
312,
796,
2581,
13,
18851,
13,
1136,
10786,
25927,
62,
312,
11537,
198,
220,
220,
220,
220,
220,
220,
220,
5456,
62,
12957,
62,
25927,
62,
312,
796,
965,
7,
25927,
13,
50145,
13,
1136,
10786,
5956,
12,
9237,
12,
7390,
3256,
657,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
611,
2116,
13,
23569,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
938,
62,
25927,
62,
312,
796,
1306,
7,
260,
690,
276,
7,
944,
13,
23569,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
407,
938,
62,
25927,
62,
312,
6624,
5456,
62,
12957,
62,
25927,
62,
312,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1366,
796,
17635,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
329,
4808,
312,
287,
17687,
7,
944,
13,
23569,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1366,
13,
33295,
26933,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4808,
312,
11,
2116,
13,
23569,
29795,
312,
4083,
17752,
11,
705,
5275,
6,
611,
4075,
62,
25927,
62,
312,
6624,
4808,
312,
2073,
10148,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
1366,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2882,
13,
5239,
796,
471,
62,
50,
5188,
62,
4537,
56,
35613,
13,
18982,
7,
12957,
62,
25927,
62,
312,
11,
33918,
13,
67,
8142,
7,
7890,
4008,
628,
220,
220,
220,
220,
220,
220,
220,
1441,
2882,
628,
220,
220,
220,
2488,
292,
13361,
952,
13,
10215,
28399,
628,
220,
220,
220,
2488,
292,
13361,
952,
13,
10215,
28399,
628,
220,
220,
220,
2488,
292,
13361,
952,
13,
10215,
28399,
628,
198,
4871,
31687,
9012,
25,
628,
220,
220,
220,
37227,
9363,
14257,
1181,
13,
37227,
628,
220,
220,
220,
825,
11593,
15003,
834,
7,
944,
11,
598,
11,
2581,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
22658,
262,
42287,
526,
15931,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
25927,
796,
2581,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
13376,
796,
939,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
6839,
1424,
796,
685,
26639,
7,
1324,
11,
2581,
8,
329,
18810,
287,
598,
13,
862,
13,
24442,
25981,
5657,
13,
37581,
13,
6839,
1424,
60,
628,
220,
220,
220,
2488,
26745,
198,
220,
220,
220,
825,
4686,
7,
944,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
13615,
1181,
4522,
526,
15931,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
965,
7,
312,
7,
944,
4008,
628,
220,
220,
220,
2488,
26745,
198,
220,
220,
220,
825,
33918,
7,
944,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
13615,
19449,
526,
15931,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
1391,
6,
24396,
10354,
2116,
13,
25927,
13,
24396,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
6978,
10354,
2116,
13,
25927,
13,
6978,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
15952,
1326,
10354,
705,
4023,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
13376,
62,
8189,
10354,
2116,
13,
13376,
92,
628,
220,
220,
220,
2488,
292,
13361,
952,
13,
10215,
28399,
198,
220,
220,
220,
825,
1429,
62,
26209,
7,
944,
11,
2882,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
18709,
2882,
526,
15931,
198,
220,
220,
220,
220,
220,
220,
220,
329,
6103,
287,
2116,
13,
6839,
1424,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
7800,
422,
6103,
13,
14681,
62,
26209,
7,
26209,
8,
198
]
import numpy as np
from scipy import stats
import statsmodels.sandbox.stats.runs as runs
# 18/21 output statistics fully implemented from MATLAB, the other three are either from complex helper functions or MATLAB functions that don't transfer well
def PH_Walker(y, walkerRule='prop', walkerParams=np.array([])):
"""
PH_Walker simulates a hypothetical walker moving through the time domain
the hypothetical particle (or 'walker') moves in response to values of the time series at each point
Outputs from this operation are summaries of the walkers motion, and comparisons of it to the original time series
:param y: the input time series
:param walkerRule: the kinematic rule by which the walker moves in response to the time series over time
(i) 'prop': the walker narrows the gap between its value and that of the time series by a given proportion p
(ii) 'biasprop': the walker is biased to move more in one direction; when it is being pushed up by the time
series, it narrows the gap by a proportion p_{up}, and when it is being pushed down by the
time series it narrows the gap by a (potentially different) proportion p_{down}. walkerParams = [pup,pdown]
(iii) 'momentum': the walker moves as if it has mass m and inertia
from the previous time step and the time series acts
as a force altering its motion in a classical
Newtonian dynamics framework. [walkerParams = m], the mass.
(iv) 'runningvar': the walker moves with inertia as above, but
its values are also adjusted so as to match the local
variance of time series by a multiplicative factor.
walkerParams = [m,wl], where m is the inertial mass and wl
is the window length.
:param walkerParams: the parameters for the specified walker, explained above
:return: include the mean, spread, maximum, minimum, and autocorrelation of
the walker's trajectory, the number of crossings between the walker and the
original time series, the ratio or difference of some basic summary statistics
between the original time series and the walker, an Ansari-Bradley test
comparing the distributions of the walker and original time series, and
various statistics summarizing properties of the residuals between the
walker's trajectory and the original time series.
"""
# ----------------------------------------------------------------------------------------------------------------------------------
# PRELIMINARIES
#----------------------------------------------------------------------------------------------------------------------------------
N = len(y)
#----------------------------------------------------------------------------------------------------------------------------------
# CHECK INPUTS
#----------------------------------------------------------------------------------------------------------------------------------
if walkerRule == 'runningvar':
walkerParams = [1.5, 50]
if (len(walkerParams) == 0):
if walkerRule == 'prop':
walkerParams = np.array([0.5])
if walkerRule == 'biasprop':
walkerParams = np.array([0.1, 0.2])
if walkerRule == 'momentum':
walkerParams = np.array([2])
if walkerRule == 'runningvar':
walkerParams = [1.5, 50]
#----------------------------------------------------------------------------------------------------------------------------------
# (1) WALK
#----------------------------------------------------------------------------------------------------------------------------------
w = np.zeros(N)
if walkerRule == 'prop':
# walker starts at zero and narrows the gap between its position
# and the time series value at that point by the proportion given
# in walkerParams, to give the value at the subsequent time step
if isinstance(walkerParams,list):
walkerParams = walkerParams[0]
p = walkerParams
w[0] = 0
for i in range(1, N):
w[i] = w[i-1] + p*(y[i-1]-w[i-1])
elif walkerRule == 'biasprop':
# walker is biased in one or the other direction (i.e., prefers to
# go up, or down). Requires a vector of inputs: [p_up, p_down]
pup = walkerParams[0]
pdown = walkerParams[0]
w[0] = 0
for i in range (1, N):
if y[i] > y[i-1]:
w[i] = w[i-1] + pup*(y[i-1]-w[i-1])
else :
w[i] = w[i-1] + pdown*(y[i-1]-w[i-1])
elif walkerRule == 'momentum':
# walker moves as if it had inertia from the previous time step,
# i.e., it 'wants' to move the same amount; the time series acts as
# a force changing its motion
m = walkerParams[0] # inertial mass
w[0] = y[0]
w[1] = y[1]
for i in range(2, N):
w_inert = w[i-1] + (w[i-1]-w[i-2])
w[i] = w_inert + (y[i] - w_inert)/m # dissipative term
#equation of motion (s-s_0 = ut + F/m*t^2)
#where the 'force' is F is the change in the original time series at the point
elif walkerRule == 'runningvar':
m = walkerParams[0]
wl = walkerParams[1]
w[0] = y[0]
w[1] = y[1]
for i in range(2, N):
w_inert = w[i-1] + (w[i-1]-w[i-2])
w_mom = w_inert + (y[i] - w_inert)/m #dissipative term from time series
if i > wl:
w[i] = w_mom * (np.std(y[(i-wl):i]))/np.std(w[(i-wl):i])
else:
w[i] = w_mom
else :
print("Error: Unknown method: " + walkerRule + " for simulating walker on the time series")
#----------------------------------------------------------------------------------------------------------------------------------
# (2) STATISITICS ON THE WALK
#----------------------------------------------------------------------------------------------------------------------------------
out = {} # dictionary for storing variables
# (i) The walk itself -------------------------------------------------------------------------------------------
out['w_mean'] = np.mean(w)
out['w_median'] = np.median(w)
out['w_std'] = np.std(w)
out['w_ac1'] = CO_AutoCorr(w, 1, method='timedomainstat') # this function call in MATLAB uses method='Fourier', but we don't have that case implemented yet in autoCorr, however this seems to output the same thing
out['w_ac2'] = CO_AutoCorr(w, 2, method='timedomainstat')
out['w_tau'] = CO_FirstZero(w, 'ac')
out['w_min'] = np.min(w)
out['w_max'] = np.max(w)
out['propzcross'] = sum( np.multiply( w[0:(len(w)-2)], w[1:(len(w)-1)] ) < 0) / (N-1) # np.multiply performs elementwise multiplication like matlab .*
# differences between the walk at signal
# (ii) Differences between the walk at signal -------------------------------------------------------------------
out['sw_meanabsdiff'] = np.mean(np.abs(y-w))
out['sw_taudiff'] = CO_FirstZero(y, 'ac') - CO_FirstZero(w, 'ac')
out['sw_stdrat'] = np.std(w)/np.std(y) # will be thse same as w_std for z-scored signal
out['sw_ac1rat'] = out['w_ac1']/CO_AutoCorr(y, 1)
out['sw_minrat'] = min(w)/min(y)
out['sw_maxrat'] = max(w)/max(y)
out['sw_propcross'] = sum(np.multiply( w[0:(len(w)-1)] - y[0:(len(y)-1)] , w[1:(len(w))]-y[1:(len(y))]) < 0 )/(N-1) #np.multiply performs elementwise multiplication like matlab .*
ansari = stats.ansari(w, y)
out['sw_ansarib_pval'] = ansari[1]
# r = np.linspace( np.min(np.min(y), np.min(w)), np.max(np.max(y), np.max(w)), 200 )
# dy = stats.gaussian_kde(y, r)
# (iii) looking at residuals between time series and walker
res = w-y
# CLOSEST FUNCTION TO MATLAB RUNSTEST, found in statsmodels.sandbox.stats.runs
# runstest = runs.runstest_2samp(res, groups=2)
# out['res_runstest'] = runstest
out['res_acl'] = CO_AutoCorr(res, lag=1)
return out
[
198,
11748,
299,
32152,
355,
45941,
198,
6738,
629,
541,
88,
1330,
9756,
198,
11748,
9756,
27530,
13,
38142,
3524,
13,
34242,
13,
48381,
355,
4539,
198,
198,
2,
1248,
14,
2481,
5072,
7869,
3938,
9177,
422,
36775,
48780,
11,
262,
584,
1115,
389,
2035,
422,
3716,
31904,
5499,
393,
36775,
48780,
5499,
326,
836,
470,
4351,
880,
198,
198,
4299,
9370,
62,
39950,
7,
88,
11,
2513,
263,
31929,
11639,
22930,
3256,
2513,
263,
10044,
4105,
28,
37659,
13,
18747,
26933,
12962,
2599,
198,
220,
220,
220,
37227,
628,
220,
220,
220,
9370,
62,
39950,
985,
15968,
257,
25345,
2513,
263,
3867,
832,
262,
640,
7386,
628,
220,
220,
220,
262,
25345,
18758,
357,
273,
705,
20783,
11537,
6100,
287,
2882,
284,
3815,
286,
262,
640,
2168,
379,
1123,
966,
628,
220,
220,
220,
25235,
82,
422,
428,
4905,
389,
30114,
3166,
286,
262,
2513,
364,
6268,
11,
290,
17909,
286,
340,
284,
262,
2656,
640,
2168,
628,
220,
220,
220,
1058,
17143,
331,
25,
262,
5128,
640,
2168,
198,
220,
220,
220,
1058,
17143,
2513,
263,
31929,
25,
262,
479,
7749,
1512,
3896,
416,
543,
262,
2513,
263,
6100,
287,
2882,
284,
262,
640,
2168,
625,
640,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
357,
72,
8,
705,
22930,
10354,
262,
2513,
263,
7135,
82,
262,
7625,
1022,
663,
1988,
290,
326,
286,
262,
640,
2168,
416,
257,
1813,
9823,
279,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
357,
4178,
8,
705,
65,
4448,
22930,
10354,
262,
2513,
263,
318,
21925,
284,
1445,
517,
287,
530,
4571,
26,
618,
340,
318,
852,
7121,
510,
416,
262,
640,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2168,
11,
340,
7135,
82,
262,
7625,
416,
257,
9823,
279,
23330,
929,
5512,
290,
618,
340,
318,
852,
7121,
866,
416,
262,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
640,
2168,
340,
7135,
82,
262,
7625,
416,
257,
357,
13059,
3746,
1180,
8,
9823,
279,
23330,
2902,
27422,
2513,
263,
10044,
4105,
796,
685,
79,
929,
11,
79,
2902,
60,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
357,
15479,
8,
705,
32542,
298,
388,
10354,
262,
2513,
263,
6100,
355,
611,
340,
468,
2347,
285,
290,
48482,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
422,
262,
2180,
640,
2239,
290,
262,
640,
2168,
6529,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
355,
257,
2700,
29057,
663,
6268,
287,
257,
15993,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
17321,
666,
17262,
9355,
13,
685,
20783,
10044,
4105,
796,
285,
4357,
262,
2347,
13,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
357,
452,
8,
705,
20270,
7785,
10354,
262,
2513,
263,
6100,
351,
48482,
355,
2029,
11,
475,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
663,
3815,
389,
635,
12328,
523,
355,
284,
2872,
262,
1957,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
24198,
286,
640,
2168,
416,
257,
15082,
43058,
5766,
13,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2513,
263,
10044,
4105,
796,
685,
76,
11,
40989,
4357,
810,
285,
318,
262,
29824,
498,
2347,
290,
266,
75,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
318,
262,
4324,
4129,
13,
628,
220,
220,
220,
1058,
17143,
2513,
263,
10044,
4105,
25,
262,
10007,
329,
262,
7368,
2513,
263,
11,
4893,
2029,
628,
220,
220,
220,
1058,
7783,
25,
2291,
262,
1612,
11,
4104,
11,
5415,
11,
5288,
11,
290,
1960,
420,
273,
49501,
286,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
262,
2513,
263,
338,
22942,
11,
262,
1271,
286,
41930,
1022,
262,
2513,
263,
290,
262,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2656,
640,
2168,
11,
262,
8064,
393,
3580,
286,
617,
4096,
10638,
7869,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1022,
262,
2656,
640,
2168,
290,
262,
2513,
263,
11,
281,
28038,
2743,
12,
30805,
1636,
1332,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
14176,
262,
24570,
286,
262,
2513,
263,
290,
2656,
640,
2168,
11,
290,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2972,
7869,
15676,
2890,
6608,
286,
262,
29598,
82,
1022,
262,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2513,
263,
338,
22942,
290,
262,
2656,
640,
2168,
13,
628,
220,
220,
220,
37227,
628,
220,
220,
220,
1303,
16529,
10097,
438,
198,
220,
220,
220,
1303,
350,
16448,
3955,
1268,
1503,
11015,
198,
220,
220,
220,
1303,
10097,
10097,
438,
628,
220,
220,
220,
399,
796,
18896,
7,
88,
8,
628,
220,
220,
220,
1303,
10097,
10097,
438,
198,
220,
220,
220,
1303,
5870,
25171,
3268,
30076,
50,
198,
220,
220,
220,
1303,
10097,
10097,
438,
198,
220,
220,
220,
611,
2513,
263,
31929,
6624,
705,
20270,
7785,
10354,
198,
220,
220,
220,
220,
220,
220,
220,
2513,
263,
10044,
4105,
796,
685,
16,
13,
20,
11,
2026,
60,
198,
220,
220,
220,
611,
357,
11925,
7,
20783,
10044,
4105,
8,
6624,
657,
2599,
628,
220,
220,
220,
220,
220,
220,
220,
611,
2513,
263,
31929,
6624,
705,
22930,
10354,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2513,
263,
10044,
4105,
796,
45941,
13,
18747,
26933,
15,
13,
20,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
611,
2513,
263,
31929,
6624,
705,
65,
4448,
22930,
10354,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2513,
263,
10044,
4105,
796,
45941,
13,
18747,
26933,
15,
13,
16,
11,
657,
13,
17,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
611,
2513,
263,
31929,
6624,
705,
32542,
298,
388,
10354,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2513,
263,
10044,
4105,
796,
45941,
13,
18747,
26933,
17,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
611,
2513,
263,
31929,
6624,
705,
20270,
7785,
10354,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2513,
263,
10044,
4105,
796,
685,
16,
13,
20,
11,
2026,
60,
628,
220,
220,
220,
1303,
10097,
10097,
438,
198,
220,
220,
220,
1303,
357,
16,
8,
370,
28082,
198,
220,
220,
220,
1303,
10097,
10097,
438,
628,
198,
220,
220,
220,
266,
796,
45941,
13,
9107,
418,
7,
45,
8,
628,
220,
220,
220,
611,
2513,
263,
31929,
6624,
705,
22930,
10354,
628,
220,
220,
220,
220,
220,
220,
220,
1303,
2513,
263,
4940,
379,
6632,
290,
7135,
82,
262,
7625,
1022,
663,
2292,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
290,
262,
640,
2168,
1988,
379,
326,
966,
416,
262,
9823,
1813,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
287,
2513,
263,
10044,
4105,
11,
284,
1577,
262,
1988,
379,
262,
8840,
640,
2239,
198,
220,
220,
220,
220,
220,
220,
220,
611,
318,
39098,
7,
20783,
10044,
4105,
11,
4868,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2513,
263,
10044,
4105,
796,
2513,
263,
10044,
4105,
58,
15,
60,
198,
220,
220,
220,
220,
220,
220,
220,
279,
796,
2513,
263,
10044,
4105,
198,
220,
220,
220,
220,
220,
220,
220,
266,
58,
15,
60,
796,
657,
628,
220,
220,
220,
220,
220,
220,
220,
329,
1312,
287,
2837,
7,
16,
11,
399,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
266,
58,
72,
60,
796,
266,
58,
72,
12,
16,
60,
1343,
279,
9,
7,
88,
58,
72,
12,
16,
45297,
86,
58,
72,
12,
16,
12962,
628,
198,
220,
220,
220,
1288,
361,
2513,
263,
31929,
6624,
705,
65,
4448,
22930,
10354,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
2513,
263,
318,
21925,
287,
530,
393,
262,
584,
4571,
357,
72,
13,
68,
1539,
26237,
284,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
467,
510,
11,
393,
866,
737,
26848,
257,
15879,
286,
17311,
25,
685,
79,
62,
929,
11,
279,
62,
2902,
60,
628,
220,
220,
220,
220,
220,
220,
220,
15552,
796,
2513,
263,
10044,
4105,
58,
15,
60,
198,
220,
220,
220,
220,
220,
220,
220,
279,
2902,
796,
2513,
263,
10044,
4105,
58,
15,
60,
628,
220,
220,
220,
220,
220,
220,
220,
266,
58,
15,
60,
796,
657,
628,
220,
220,
220,
220,
220,
220,
220,
329,
1312,
287,
2837,
357,
16,
11,
399,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
331,
58,
72,
60,
1875,
331,
58,
72,
12,
16,
5974,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
266,
58,
72,
60,
796,
266,
58,
72,
12,
16,
60,
1343,
15552,
9,
7,
88,
58,
72,
12,
16,
45297,
86,
58,
72,
12,
16,
12962,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2073,
1058,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
266,
58,
72,
60,
796,
266,
58,
72,
12,
16,
60,
1343,
279,
2902,
9,
7,
88,
58,
72,
12,
16,
45297,
86,
58,
72,
12,
16,
12962,
628,
220,
220,
220,
1288,
361,
2513,
263,
31929,
6624,
705,
32542,
298,
388,
10354,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
2513,
263,
6100,
355,
611,
340,
550,
48482,
422,
262,
2180,
640,
2239,
11,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
1312,
13,
68,
1539,
340,
705,
86,
1187,
6,
284,
1445,
262,
976,
2033,
26,
262,
640,
2168,
6529,
355,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
257,
2700,
5609,
663,
6268,
628,
220,
220,
220,
220,
220,
220,
220,
285,
796,
2513,
263,
10044,
4105,
58,
15,
60,
1303,
29824,
498,
2347,
628,
220,
220,
220,
220,
220,
220,
220,
266,
58,
15,
60,
796,
331,
58,
15,
60,
198,
220,
220,
220,
220,
220,
220,
220,
266,
58,
16,
60,
796,
331,
58,
16,
60,
628,
220,
220,
220,
220,
220,
220,
220,
329,
1312,
287,
2837,
7,
17,
11,
399,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
266,
62,
259,
861,
796,
266,
58,
72,
12,
16,
60,
1343,
357,
86,
58,
72,
12,
16,
45297,
86,
58,
72,
12,
17,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
266,
58,
72,
60,
796,
266,
62,
259,
861,
1343,
357,
88,
58,
72,
60,
532,
266,
62,
259,
861,
20679,
76,
1303,
32008,
876,
3381,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
4853,
341,
286,
6268,
357,
82,
12,
82,
62,
15,
796,
3384,
1343,
376,
14,
76,
9,
83,
61,
17,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
3003,
262,
705,
3174,
6,
318,
376,
318,
262,
1487,
287,
262,
2656,
640,
2168,
379,
262,
966,
628,
220,
220,
220,
1288,
361,
2513,
263,
31929,
6624,
705,
20270,
7785,
10354,
628,
220,
220,
220,
220,
220,
220,
220,
285,
796,
2513,
263,
10044,
4105,
58,
15,
60,
198,
220,
220,
220,
220,
220,
220,
220,
266,
75,
796,
2513,
263,
10044,
4105,
58,
16,
60,
628,
220,
220,
220,
220,
220,
220,
220,
266,
58,
15,
60,
796,
331,
58,
15,
60,
198,
220,
220,
220,
220,
220,
220,
220,
266,
58,
16,
60,
796,
331,
58,
16,
60,
628,
220,
220,
220,
220,
220,
220,
220,
329,
1312,
287,
2837,
7,
17,
11,
399,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
266,
62,
259,
861,
796,
266,
58,
72,
12,
16,
60,
1343,
357,
86,
58,
72,
12,
16,
45297,
86,
58,
72,
12,
17,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
266,
62,
32542,
796,
266,
62,
259,
861,
1343,
357,
88,
58,
72,
60,
532,
266,
62,
259,
861,
20679,
76,
1303,
67,
747,
541,
876,
3381,
422,
640,
2168,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
1312,
1875,
266,
75,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
266,
58,
72,
60,
796,
266,
62,
32542,
1635,
357,
37659,
13,
19282,
7,
88,
58,
7,
72,
12,
40989,
2599,
72,
60,
4008,
14,
37659,
13,
19282,
7,
86,
58,
7,
72,
12,
40989,
2599,
72,
12962,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
266,
58,
72,
60,
796,
266,
62,
32542,
628,
198,
220,
220,
220,
2073,
1058,
628,
220,
220,
220,
220,
220,
220,
220,
3601,
7203,
12331,
25,
16185,
2446,
25,
366,
1343,
2513,
263,
31929,
1343,
366,
329,
985,
8306,
2513,
263,
319,
262,
640,
2168,
4943,
628,
198,
220,
220,
220,
1303,
10097,
10097,
438,
198,
220,
220,
220,
1303,
357,
17,
8,
15486,
1797,
2043,
19505,
6177,
3336,
370,
28082,
198,
220,
220,
220,
1303,
10097,
10097,
438,
628,
220,
220,
220,
503,
796,
23884,
1303,
22155,
329,
23069,
9633,
628,
220,
220,
220,
1303,
357,
72,
8,
383,
2513,
2346,
16529,
22369,
6329,
628,
220,
220,
220,
503,
17816,
86,
62,
32604,
20520,
796,
45941,
13,
32604,
7,
86,
8,
198,
220,
220,
220,
503,
17816,
86,
62,
1150,
666,
20520,
796,
45941,
13,
1150,
666,
7,
86,
8,
198,
220,
220,
220,
503,
17816,
86,
62,
19282,
20520,
796,
45941,
13,
19282,
7,
86,
8,
198,
220,
220,
220,
503,
17816,
86,
62,
330,
16,
20520,
796,
7375,
62,
27722,
10606,
81,
7,
86,
11,
352,
11,
2446,
11639,
16514,
3836,
391,
14269,
11537,
1303,
428,
2163,
869,
287,
36775,
48780,
3544,
2446,
11639,
37,
280,
5277,
3256,
475,
356,
836,
470,
423,
326,
1339,
9177,
1865,
287,
8295,
10606,
81,
11,
2158,
428,
2331,
284,
5072,
262,
976,
1517,
198,
220,
220,
220,
503,
17816,
86,
62,
330,
17,
20520,
796,
7375,
62,
27722,
10606,
81,
7,
86,
11,
362,
11,
2446,
11639,
16514,
3836,
391,
14269,
11537,
198,
220,
220,
220,
503,
17816,
86,
62,
83,
559,
20520,
796,
7375,
62,
5962,
28667,
7,
86,
11,
705,
330,
11537,
198,
220,
220,
220,
503,
17816,
86,
62,
1084,
20520,
796,
45941,
13,
1084,
7,
86,
8,
198,
220,
220,
220,
503,
17816,
86,
62,
9806,
20520,
796,
45941,
13,
9806,
7,
86,
8,
198,
220,
220,
220,
503,
17816,
22930,
89,
19692,
20520,
796,
2160,
7,
45941,
13,
16680,
541,
306,
7,
266,
58,
15,
37498,
11925,
7,
86,
13219,
17,
8,
4357,
266,
58,
16,
37498,
11925,
7,
86,
13219,
16,
15437,
1267,
1279,
657,
8,
1220,
357,
45,
12,
16,
8,
1303,
45941,
13,
16680,
541,
306,
17706,
5002,
3083,
48473,
588,
2603,
23912,
764,
9,
198,
220,
220,
220,
1303,
5400,
1022,
262,
2513,
379,
6737,
628,
220,
220,
220,
1303,
357,
4178,
8,
41937,
1022,
262,
2513,
379,
6737,
16529,
6329,
628,
220,
220,
220,
503,
17816,
2032,
62,
32604,
8937,
26069,
20520,
796,
45941,
13,
32604,
7,
37659,
13,
8937,
7,
88,
12,
86,
4008,
198,
220,
220,
220,
503,
17816,
2032,
62,
83,
3885,
733,
20520,
796,
7375,
62,
5962,
28667,
7,
88,
11,
705,
330,
11537,
532,
7375,
62,
5962,
28667,
7,
86,
11,
705,
330,
11537,
198,
220,
220,
220,
503,
17816,
2032,
62,
301,
7109,
265,
20520,
796,
45941,
13,
19282,
7,
86,
20679,
37659,
13,
19282,
7,
88,
8,
1303,
481,
307,
294,
325,
976,
355,
266,
62,
19282,
329,
1976,
12,
1416,
1850,
6737,
198,
220,
220,
220,
503,
17816,
2032,
62,
330,
16,
10366,
20520,
796,
503,
17816,
86,
62,
330,
16,
20520,
14,
8220,
62,
27722,
10606,
81,
7,
88,
11,
352,
8,
198,
220,
220,
220,
503,
17816,
2032,
62,
1084,
10366,
20520,
796,
949,
7,
86,
20679,
1084,
7,
88,
8,
198,
220,
220,
220,
503,
17816,
2032,
62,
9806,
10366,
20520,
796,
3509,
7,
86,
20679,
9806,
7,
88,
8,
198,
220,
220,
220,
503,
17816,
2032,
62,
1676,
14751,
1214,
20520,
796,
2160,
7,
37659,
13,
16680,
541,
306,
7,
266,
58,
15,
37498,
11925,
7,
86,
13219,
16,
15437,
532,
331,
58,
15,
37498,
11925,
7,
88,
13219,
16,
15437,
837,
266,
58,
16,
37498,
11925,
7,
86,
4008,
45297,
88,
58,
16,
37498,
11925,
7,
88,
4008,
12962,
1279,
657,
1267,
29006,
45,
12,
16,
8,
1303,
37659,
13,
16680,
541,
306,
17706,
5002,
3083,
48473,
588,
2603,
23912,
764,
9,
628,
220,
220,
220,
9093,
2743,
796,
9756,
13,
504,
2743,
7,
86,
11,
331,
8,
198,
220,
220,
220,
503,
17816,
2032,
62,
504,
283,
571,
62,
79,
2100,
20520,
796,
9093,
2743,
58,
16,
60,
628,
198,
220,
220,
220,
1303,
374,
796,
45941,
13,
21602,
10223,
7,
45941,
13,
1084,
7,
37659,
13,
1084,
7,
88,
828,
45941,
13,
1084,
7,
86,
36911,
45941,
13,
9806,
7,
37659,
13,
9806,
7,
88,
828,
45941,
13,
9806,
7,
86,
36911,
939,
1267,
198,
220,
220,
220,
1303,
20268,
796,
9756,
13,
4908,
31562,
62,
74,
2934,
7,
88,
11,
374,
8,
628,
198,
220,
220,
220,
1303,
357,
15479,
8,
2045,
379,
29598,
82,
1022,
640,
2168,
290,
2513,
263,
628,
220,
220,
220,
581,
796,
266,
12,
88,
628,
220,
220,
220,
1303,
7852,
2640,
6465,
29397,
4177,
2849,
5390,
36775,
48780,
32494,
2257,
6465,
11,
1043,
287,
9756,
27530,
13,
38142,
3524,
13,
34242,
13,
48381,
198,
220,
220,
220,
1303,
1057,
301,
395,
796,
4539,
13,
5143,
301,
395,
62,
17,
82,
696,
7,
411,
11,
2628,
28,
17,
8,
198,
220,
220,
220,
1303,
503,
17816,
411,
62,
5143,
301,
395,
20520,
796,
1057,
301,
395,
628,
220,
220,
220,
503,
17816,
411,
62,
37779,
20520,
796,
7375,
62,
27722,
10606,
81,
7,
411,
11,
19470,
28,
16,
8,
628,
198,
220,
220,
220,
1441,
503,
198
]
from typing import Dict
SKIP = "SKIP"
UNKNOWN = "UNKNOWN!"
def detect_change(first: Dict[str, str], second: Dict[str, str],
compareKeys: [str]) -> bool:
"""Detects change between two dictonaries
Args:
first (Dict[str, str]): First dictionary
second (Dict[str, str]): Second dictionary
compareKeys ([type]): Keys to handle comparison
Returns:
bool: Is there a change ?
"""
for key in compareKeys:
if key not in second or key not in first:
return True
if first[key] != second[key]:
return True
return False
[
6738,
19720,
1330,
360,
713,
198,
198,
18831,
4061,
796,
366,
18831,
4061,
1,
198,
4944,
44706,
796,
366,
4944,
44706,
2474,
628,
198,
198,
4299,
4886,
62,
3803,
7,
11085,
25,
360,
713,
58,
2536,
11,
965,
4357,
1218,
25,
360,
713,
58,
2536,
11,
965,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8996,
40729,
25,
685,
2536,
12962,
4613,
20512,
25,
198,
220,
220,
220,
37227,
47504,
82,
1487,
1022,
734,
8633,
261,
3166,
628,
220,
220,
220,
943,
14542,
25,
198,
220,
220,
220,
220,
220,
220,
220,
717,
357,
35,
713,
58,
2536,
11,
965,
60,
2599,
3274,
22155,
198,
220,
220,
220,
220,
220,
220,
220,
1218,
357,
35,
713,
58,
2536,
11,
965,
60,
2599,
5498,
22155,
198,
220,
220,
220,
220,
220,
220,
220,
8996,
40729,
29565,
4906,
60,
2599,
26363,
284,
5412,
7208,
628,
220,
220,
220,
16409,
25,
198,
220,
220,
220,
220,
220,
220,
220,
20512,
25,
1148,
612,
257,
1487,
5633,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
329,
1994,
287,
8996,
40729,
25,
198,
220,
220,
220,
220,
220,
220,
220,
611,
1994,
407,
287,
1218,
393,
1994,
407,
287,
717,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1441,
6407,
198,
220,
220,
220,
220,
220,
220,
220,
611,
717,
58,
2539,
60,
14512,
1218,
58,
2539,
5974,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1441,
6407,
198,
220,
220,
220,
1441,
10352,
198
]
from . helpers import get_timestamp
[
6738,
764,
49385,
1330,
651,
62,
16514,
27823,
198
]
from discord.ext import commands
[
6738,
36446,
13,
2302,
1330,
9729,
628,
198
]
import gym
import numpy as np
from PIL import Image
import sys
env = gym.make('Pong-v0')
env.reset()
done = False
i = 0
start = 0
if len(sys.argv) < 3:
print("Usage: collect_pong <games> <start_point>")
exit()
try:
games = int(sys.argv[1])
start = int(sys.argv[2])
i = start
except:
print("Please provide a valid number for games and start point.")
exit()
for _ in range(games):
count = 0
while not done:
o, r, done, info = env.step(env.action_space.sample())
count += 1
# Ignore first 25 frames of the game, since the games starts after this amount.
if count < 25:
continue
img = Image.fromarray(o)
img.save("images/pong_" + str(i) + ".png")
i += 1
done = False
env.reset()
print("Saved {} images.".format(i-start))
print("Total images: {}".format(i))
env.close()
[
11748,
11550,
198,
11748,
299,
32152,
355,
45941,
198,
6738,
350,
4146,
1330,
7412,
198,
11748,
25064,
198,
198,
24330,
796,
11550,
13,
15883,
10786,
47,
506,
12,
85,
15,
11537,
198,
24330,
13,
42503,
3419,
198,
198,
28060,
796,
10352,
198,
72,
796,
657,
198,
9688,
796,
657,
198,
198,
361,
18896,
7,
17597,
13,
853,
85,
8,
1279,
513,
25,
198,
220,
220,
220,
3601,
7203,
28350,
25,
2824,
62,
79,
506,
1279,
19966,
29,
1279,
9688,
62,
4122,
29,
4943,
198,
220,
220,
220,
8420,
3419,
198,
198,
28311,
25,
198,
220,
220,
220,
1830,
796,
493,
7,
17597,
13,
853,
85,
58,
16,
12962,
198,
220,
220,
220,
923,
796,
493,
7,
17597,
13,
853,
85,
58,
17,
12962,
198,
220,
220,
220,
1312,
796,
923,
198,
16341,
25,
198,
220,
220,
220,
3601,
7203,
5492,
2148,
257,
4938,
1271,
329,
1830,
290,
923,
966,
19570,
198,
220,
220,
220,
8420,
3419,
198,
198,
1640,
4808,
287,
2837,
7,
19966,
2599,
198,
220,
220,
220,
954,
796,
657,
198,
220,
220,
220,
981,
407,
1760,
25,
198,
220,
220,
220,
220,
220,
220,
220,
267,
11,
374,
11,
1760,
11,
7508,
796,
17365,
13,
9662,
7,
24330,
13,
2673,
62,
13200,
13,
39873,
28955,
198,
220,
220,
220,
220,
220,
220,
220,
954,
15853,
352,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
41032,
717,
1679,
13431,
286,
262,
983,
11,
1201,
262,
1830,
4940,
706,
428,
2033,
13,
198,
220,
220,
220,
220,
220,
220,
220,
611,
954,
1279,
1679,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2555,
198,
220,
220,
220,
220,
220,
220,
220,
33705,
796,
7412,
13,
6738,
18747,
7,
78,
8,
198,
220,
220,
220,
220,
220,
220,
220,
33705,
13,
21928,
7203,
17566,
14,
79,
506,
62,
1,
1343,
965,
7,
72,
8,
1343,
27071,
11134,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
1312,
15853,
352,
198,
220,
220,
220,
1760,
796,
10352,
198,
220,
220,
220,
17365,
13,
42503,
3419,
198,
198,
4798,
7203,
50,
9586,
23884,
4263,
526,
13,
18982,
7,
72,
12,
9688,
4008,
198,
4798,
7203,
14957,
4263,
25,
23884,
1911,
18982,
7,
72,
4008,
198,
24330,
13,
19836,
3419,
198
]
import random
mylist = []
for somethin in range(1,10):
x = random.randrange(0,9)
mylist.append(x)
print(mylist)
last_index=len(mylist)
print ("length of mylist is:",len(mylist))
print ("first element is:",mylist[0])
print ("last element is:",mylist[len(mylist)-1])
#is mylist sorted?
is_mylist_sorted = False
x=0
y=1
intermediate=None
#how many switches?
number_of_switches = 0
#bubble sort
while not is_mylist_sorted:
if mylist[x] > mylist[y]:
intermediate=mylist[x]
mylist[x]=mylist[y]
mylist[y]=intermediate
number_of_switches+=1
x+=1
y+=1
if y==last_index:
x=0
y=1
if number_of_switches==0:
is_mylist_sorted = True
else:
number_of_switches = 0
print("finished")
print("is my list sorted?",is_mylist_sorted)
print("my list",mylist)
[
11748,
4738,
198,
198,
1820,
4868,
796,
17635,
198,
198,
1640,
1054,
20079,
287,
2837,
7,
16,
11,
940,
2599,
198,
220,
220,
220,
2124,
796,
4738,
13,
25192,
9521,
7,
15,
11,
24,
8,
198,
220,
220,
220,
616,
4868,
13,
33295,
7,
87,
8,
198,
198,
4798,
7,
1820,
4868,
8,
628,
198,
12957,
62,
9630,
28,
11925,
7,
1820,
4868,
8,
198,
4798,
5855,
13664,
286,
616,
4868,
318,
25,
1600,
11925,
7,
1820,
4868,
4008,
198,
4798,
5855,
11085,
5002,
318,
25,
1600,
1820,
4868,
58,
15,
12962,
198,
4798,
5855,
12957,
5002,
318,
25,
1600,
1820,
4868,
58,
11925,
7,
1820,
4868,
13219,
16,
12962,
628,
220,
220,
220,
220,
198,
2,
271,
616,
4868,
23243,
30,
198,
271,
62,
1820,
4868,
62,
82,
9741,
796,
10352,
198,
198,
87,
28,
15,
198,
88,
28,
16,
198,
3849,
13857,
28,
14202,
198,
198,
2,
4919,
867,
18225,
30,
198,
17618,
62,
1659,
62,
2032,
9249,
796,
657,
198,
198,
2,
46176,
903,
3297,
198,
4514,
407,
318,
62,
1820,
4868,
62,
82,
9741,
25,
198,
220,
220,
220,
220,
198,
220,
220,
220,
611,
616,
4868,
58,
87,
60,
1875,
616,
4868,
58,
88,
5974,
198,
220,
220,
220,
220,
220,
220,
220,
19898,
28,
1820,
4868,
58,
87,
60,
198,
220,
220,
220,
220,
220,
220,
220,
616,
4868,
58,
87,
22241,
1820,
4868,
58,
88,
60,
198,
220,
220,
220,
220,
220,
220,
220,
616,
4868,
58,
88,
22241,
3849,
13857,
198,
220,
220,
220,
220,
220,
220,
220,
1271,
62,
1659,
62,
2032,
9249,
47932,
16,
198,
220,
220,
220,
2124,
47932,
16,
198,
220,
220,
220,
331,
47932,
16,
198,
220,
220,
220,
198,
220,
220,
220,
611,
331,
855,
12957,
62,
9630,
25,
198,
220,
220,
220,
220,
220,
220,
220,
2124,
28,
15,
198,
220,
220,
220,
220,
220,
220,
220,
331,
28,
16,
198,
220,
220,
220,
220,
220,
220,
220,
220,
198,
220,
220,
220,
220,
220,
220,
220,
611,
1271,
62,
1659,
62,
2032,
9249,
855,
15,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
318,
62,
1820,
4868,
62,
82,
9741,
796,
6407,
198,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1271,
62,
1659,
62,
2032,
9249,
796,
657,
628,
198,
4798,
7203,
43952,
4943,
198,
4798,
7203,
271,
616,
1351,
23243,
35379,
271,
62,
1820,
4868,
62,
82,
9741,
8,
198,
4798,
7203,
1820,
1351,
1600,
1820,
4868,
8,
628,
220,
220,
220,
220,
198
]
import os
import setuptools
try: # for pip >= 10
from pip._internal.req import parse_requirements
except ImportError: # for pip <= 9.0.3
from pip.req import parse_requirements
requirements_path = os.path.join(os.path.dirname(__file__), 'requirements.txt')
install_requires = parse_requirements(requirements_path, session='hack')
install_requires = [str(ir.req) for ir in install_requires]
with open(os.path.join(os.path.dirname(__file__), 'VERSION'), 'r') as f:
version = f.read()
with open(os.path.join(os.path.dirname(__file__), 'README.md'), 'r') as f:
long_description = f.read()
setuptools.setup(
name='afs2-datasource',
version=version,
description='For AFS developer to access Datasource',
long_description=long_description,
long_description_content_type='text/markdown',
author='WISE-PaaS/AFS',
author_email='[email protected] ',
packages=setuptools.find_packages(),
install_requires=install_requires,
keywords=['AFS'],
license='Apache License 2.0',
url='https://github.com/stacy0416/afs2-datasource'
)
# python setup.py bdist_wheel
[
11748,
28686,
201,
198,
11748,
900,
37623,
10141,
201,
198,
28311,
25,
1303,
329,
7347,
18189,
838,
201,
198,
220,
422,
7347,
13557,
32538,
13,
42180,
1330,
21136,
62,
8897,
18883,
201,
198,
16341,
17267,
12331,
25,
1303,
329,
7347,
19841,
860,
13,
15,
13,
18,
201,
198,
220,
422,
7347,
13,
42180,
1330,
21136,
62,
8897,
18883,
201,
198,
201,
198,
8897,
18883,
62,
6978,
796,
28686,
13,
6978,
13,
22179,
7,
418,
13,
6978,
13,
15908,
3672,
7,
834,
7753,
834,
828,
705,
8897,
18883,
13,
14116,
11537,
201,
198,
17350,
62,
47911,
796,
21136,
62,
8897,
18883,
7,
8897,
18883,
62,
6978,
11,
6246,
11639,
31153,
11537,
201,
198,
17350,
62,
47911,
796,
685,
2536,
7,
343,
13,
42180,
8,
329,
4173,
287,
2721,
62,
47911,
60,
201,
198,
201,
198,
4480,
1280,
7,
418,
13,
6978,
13,
22179,
7,
418,
13,
6978,
13,
15908,
3672,
7,
834,
7753,
834,
828,
705,
43717,
33809,
705,
81,
11537,
355,
277,
25,
201,
198,
220,
2196,
796,
277,
13,
961,
3419,
201,
198,
201,
198,
4480,
1280,
7,
418,
13,
6978,
13,
22179,
7,
418,
13,
6978,
13,
15908,
3672,
7,
834,
7753,
834,
828,
705,
15675,
11682,
13,
9132,
33809,
705,
81,
11537,
355,
277,
25,
201,
198,
220,
890,
62,
11213,
796,
277,
13,
961,
3419,
201,
198,
201,
198,
2617,
37623,
10141,
13,
40406,
7,
201,
198,
220,
1438,
11639,
1878,
82,
17,
12,
19608,
292,
1668,
3256,
201,
198,
220,
2196,
28,
9641,
11,
201,
198,
220,
6764,
11639,
1890,
317,
10652,
8517,
284,
1895,
16092,
292,
1668,
3256,
201,
198,
220,
890,
62,
11213,
28,
6511,
62,
11213,
11,
201,
198,
220,
890,
62,
11213,
62,
11299,
62,
4906,
11639,
5239,
14,
4102,
2902,
3256,
201,
198,
220,
1772,
11639,
54,
24352,
12,
47,
7252,
50,
14,
8579,
50,
3256,
201,
198,
220,
1772,
62,
12888,
11639,
301,
1590,
13,
5948,
71,
31,
13461,
3055,
13,
785,
13,
4246,
3256,
201,
198,
220,
10392,
28,
2617,
37623,
10141,
13,
19796,
62,
43789,
22784,
201,
198,
220,
2721,
62,
47911,
28,
17350,
62,
47911,
11,
201,
198,
220,
26286,
28,
17816,
8579,
50,
6,
4357,
201,
198,
220,
5964,
11639,
25189,
4891,
13789,
362,
13,
15,
3256,
201,
198,
220,
19016,
11639,
5450,
1378,
12567,
13,
785,
14,
301,
1590,
3023,
1433,
14,
1878,
82,
17,
12,
19608,
292,
1668,
6,
201,
198,
8,
201,
198,
201,
198,
2,
21015,
9058,
13,
9078,
275,
17080,
62,
22001
]
import pandas as pd
#============== First Round ===================#
#===============================================#
#============== Other Rounds ===================#
#===============================================#
[
11748,
19798,
292,
355,
279,
67,
198,
198,
2,
25609,
855,
3274,
10485,
36658,
855,
2,
198,
2,
10052,
25609,
18604,
2,
198,
220,
220,
220,
220,
198,
198,
2,
25609,
855,
3819,
49049,
36658,
855,
2,
198,
2,
10052,
25609,
18604,
2,
198
]
"""
Exercício 03
Peça ao usuário para digitar 3 valores inteiros e imprima a soma deles.
"""
print('Digite três números inteiros para somá-los:\n')
num1 = int(float(input('Primeiro número: ').replace(',', '.')))
num2 = int(float(input('Segundo número: ').replace(',', '.')))
num3 = int(float(input('Terceiro número: ').replace(',', '.')))
sum = num1 + num2 + num3
print(f'_____\nA soma dos valores é: {sum}')
[
37811,
198,
3109,
2798,
8836,
66,
952,
7643,
198,
6435,
50041,
257,
78,
514,
84,
6557,
27250,
31215,
3100,
7940,
513,
1188,
2850,
493,
20295,
4951,
304,
848,
3036,
64,
257,
3870,
64,
390,
829,
13,
198,
37811,
198,
198,
4798,
10786,
19511,
578,
491,
25792,
82,
299,
21356,
647,
418,
493,
20295,
4951,
31215,
3870,
6557,
12,
33280,
7479,
77,
11537,
198,
22510,
16,
796,
493,
7,
22468,
7,
15414,
10786,
26405,
7058,
299,
21356,
647,
78,
25,
705,
737,
33491,
7,
3256,
3256,
705,
2637,
22305,
198,
22510,
17,
796,
493,
7,
22468,
7,
15414,
10786,
41030,
41204,
299,
21356,
647,
78,
25,
705,
737,
33491,
7,
3256,
3256,
705,
2637,
22305,
198,
22510,
18,
796,
493,
7,
22468,
7,
15414,
10786,
15156,
344,
7058,
299,
21356,
647,
78,
25,
705,
737,
33491,
7,
3256,
3256,
705,
2637,
22305,
198,
16345,
796,
997,
16,
1343,
997,
17,
1343,
997,
18,
198,
4798,
7,
69,
6,
29343,
59,
77,
32,
3870,
64,
23430,
1188,
2850,
38251,
25,
1391,
16345,
92,
11537,
198
]
from __future__ import (absolute_import, division, print_function)
__metaclass__ = type
import json
module_definition = json.loads(
"""{
"family": "discovery",
"name": "discovery_network_device",
"operations": {
"get": [
"get_discovered_network_devices_by_discovery_id",
"get_discovered_devices_by_range",
"get_devices_discovered_by_id",
"get_network_devices_from_discovery"
]
},
"parameters": {
"get_devices_discovered_by_id": [
{
"name": "id",
"required": true,
"type": "string"
},
{
"name": "task_id",
"required": false,
"type": "string"
},
{
"artificial": true,
"name": "count",
"required": true,
"type": "boolean"
}
],
"get_discovered_devices_by_range": [
{
"name": "id",
"required": true,
"type": "string"
},
{
"name": "records_to_return",
"required": true,
"type": "integer"
},
{
"name": "start_index",
"required": true,
"type": "integer"
},
{
"name": "task_id",
"required": false,
"type": "string"
}
],
"get_discovered_network_devices_by_discovery_id": [
{
"name": "id",
"required": true,
"type": "string"
},
{
"name": "task_id",
"required": false,
"type": "string"
}
],
"get_network_devices_from_discovery": [
{
"name": "id",
"required": true,
"type": "string"
},
{
"name": "cli_status",
"required": false,
"type": "string"
},
{
"name": "http_status",
"required": false,
"type": "string"
},
{
"name": "ip_address",
"required": false,
"type": "string"
},
{
"name": "netconf_status",
"required": false,
"type": "string"
},
{
"name": "ping_status",
"required": false,
"type": "string"
},
{
"name": "snmp_status",
"required": false,
"type": "string"
},
{
"name": "sort_by",
"required": false,
"type": "string"
},
{
"name": "sort_order",
"required": false,
"type": "string"
},
{
"name": "task_id",
"required": false,
"type": "string"
},
{
"artificial": true,
"name": "summary",
"required": true,
"type": "boolean"
}
]
},
"responses": {
"get_devices_discovered_by_id": {
"properties": [
"response",
"version"
],
"type": "object"
},
"get_discovered_devices_by_range": {
"properties": [
"response",
"version"
],
"type": "object"
},
"get_discovered_network_devices_by_discovery_id": {
"properties": [
"response",
"version"
],
"type": "object"
},
"get_network_devices_from_discovery": {
"properties": [
"response",
"version"
],
"type": "object"
}
}
}"""
)
[
6738,
11593,
37443,
834,
1330,
357,
48546,
62,
11748,
11,
7297,
11,
3601,
62,
8818,
8,
198,
834,
4164,
330,
31172,
834,
796,
2099,
198,
11748,
33918,
198,
198,
21412,
62,
46758,
796,
33918,
13,
46030,
7,
198,
220,
220,
220,
37227,
90,
198,
220,
220,
220,
366,
17989,
1298,
366,
67,
40821,
1600,
198,
220,
220,
220,
366,
3672,
1298,
366,
67,
40821,
62,
27349,
62,
25202,
1600,
198,
220,
220,
220,
366,
3575,
602,
1298,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
1136,
1298,
685,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
1136,
62,
15410,
2557,
62,
27349,
62,
42034,
62,
1525,
62,
67,
40821,
62,
312,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
1136,
62,
15410,
2557,
62,
42034,
62,
1525,
62,
9521,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
1136,
62,
42034,
62,
15410,
2557,
62,
1525,
62,
312,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
1136,
62,
27349,
62,
42034,
62,
6738,
62,
67,
40821,
1,
198,
220,
220,
220,
220,
220,
220,
220,
2361,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
366,
17143,
7307,
1298,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
1136,
62,
42034,
62,
15410,
2557,
62,
1525,
62,
312,
1298,
685,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
3672,
1298,
366,
312,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
35827,
1298,
2081,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
4906,
1298,
366,
8841,
1,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8964,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
3672,
1298,
366,
35943,
62,
312,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
35827,
1298,
3991,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
4906,
1298,
366,
8841,
1,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8964,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
433,
9542,
1298,
2081,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
3672,
1298,
366,
9127,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
35827,
1298,
2081,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
4906,
1298,
366,
2127,
21052,
1,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1782,
198,
220,
220,
220,
220,
220,
220,
220,
16589,
198,
220,
220,
220,
220,
220,
220,
220,
366,
1136,
62,
15410,
2557,
62,
42034,
62,
1525,
62,
9521,
1298,
685,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
3672,
1298,
366,
312,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
35827,
1298,
2081,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
4906,
1298,
366,
8841,
1,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8964,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
3672,
1298,
366,
8344,
3669,
62,
1462,
62,
7783,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
35827,
1298,
2081,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
4906,
1298,
366,
41433,
1,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8964,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
3672,
1298,
366,
9688,
62,
9630,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
35827,
1298,
2081,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
4906,
1298,
366,
41433,
1,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8964,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
3672,
1298,
366,
35943,
62,
312,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
35827,
1298,
3991,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
4906,
1298,
366,
8841,
1,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1782,
198,
220,
220,
220,
220,
220,
220,
220,
16589,
198,
220,
220,
220,
220,
220,
220,
220,
366,
1136,
62,
15410,
2557,
62,
27349,
62,
42034,
62,
1525,
62,
67,
40821,
62,
312,
1298,
685,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
3672,
1298,
366,
312,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
35827,
1298,
2081,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
4906,
1298,
366,
8841,
1,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8964,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
3672,
1298,
366,
35943,
62,
312,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
35827,
1298,
3991,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
4906,
1298,
366,
8841,
1,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1782,
198,
220,
220,
220,
220,
220,
220,
220,
16589,
198,
220,
220,
220,
220,
220,
220,
220,
366,
1136,
62,
27349,
62,
42034,
62,
6738,
62,
67,
40821,
1298,
685,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
3672,
1298,
366,
312,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
35827,
1298,
2081,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
4906,
1298,
366,
8841,
1,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8964,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
3672,
1298,
366,
44506,
62,
13376,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
35827,
1298,
3991,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
4906,
1298,
366,
8841,
1,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8964,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
3672,
1298,
366,
4023,
62,
13376,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
35827,
1298,
3991,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
4906,
1298,
366,
8841,
1,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8964,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
3672,
1298,
366,
541,
62,
21975,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
35827,
1298,
3991,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
4906,
1298,
366,
8841,
1,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8964,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
3672,
1298,
366,
3262,
10414,
62,
13376,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
35827,
1298,
3991,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
4906,
1298,
366,
8841,
1,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8964,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
3672,
1298,
366,
13886,
62,
13376,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
35827,
1298,
3991,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
4906,
1298,
366,
8841,
1,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8964,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
3672,
1298,
366,
16184,
3149,
62,
13376,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
35827,
1298,
3991,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
4906,
1298,
366,
8841,
1,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8964,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
3672,
1298,
366,
30619,
62,
1525,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
35827,
1298,
3991,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
4906,
1298,
366,
8841,
1,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8964,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
3672,
1298,
366,
30619,
62,
2875,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
35827,
1298,
3991,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
4906,
1298,
366,
8841,
1,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8964,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
3672,
1298,
366,
35943,
62,
312,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
35827,
1298,
3991,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
4906,
1298,
366,
8841,
1,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8964,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
433,
9542,
1298,
2081,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
3672,
1298,
366,
49736,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
35827,
1298,
2081,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
4906,
1298,
366,
2127,
21052,
1,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1782,
198,
220,
220,
220,
220,
220,
220,
220,
2361,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
366,
16733,
274,
1298,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
1136,
62,
42034,
62,
15410,
2557,
62,
1525,
62,
312,
1298,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
48310,
1298,
685,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
26209,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
9641,
1,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
16589,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
4906,
1298,
366,
15252,
1,
198,
220,
220,
220,
220,
220,
220,
220,
8964,
198,
220,
220,
220,
220,
220,
220,
220,
366,
1136,
62,
15410,
2557,
62,
42034,
62,
1525,
62,
9521,
1298,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
48310,
1298,
685,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
26209,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
9641,
1,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
16589,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
4906,
1298,
366,
15252,
1,
198,
220,
220,
220,
220,
220,
220,
220,
8964,
198,
220,
220,
220,
220,
220,
220,
220,
366,
1136,
62,
15410,
2557,
62,
27349,
62,
42034,
62,
1525,
62,
67,
40821,
62,
312,
1298,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
48310,
1298,
685,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
26209,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
9641,
1,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
16589,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
4906,
1298,
366,
15252,
1,
198,
220,
220,
220,
220,
220,
220,
220,
8964,
198,
220,
220,
220,
220,
220,
220,
220,
366,
1136,
62,
27349,
62,
42034,
62,
6738,
62,
67,
40821,
1298,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
48310,
1298,
685,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
26209,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
9641,
1,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
16589,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
4906,
1298,
366,
15252,
1,
198,
220,
220,
220,
220,
220,
220,
220,
1782,
198,
220,
220,
220,
1782,
198,
92,
37811,
198,
8,
198
]
# Copyright 2013 The Chromium Authors. All rights reserved.
# Use of this source code is governed by a BSD-style license that can be
# found in the LICENSE file.
import sys
from lib.bucket import BUCKET_ID
from lib.subcommand import SubCommand
[
2,
15069,
2211,
383,
18255,
1505,
46665,
13,
1439,
2489,
10395,
13,
198,
2,
5765,
286,
428,
2723,
2438,
318,
21825,
416,
257,
347,
10305,
12,
7635,
5964,
326,
460,
307,
198,
2,
1043,
287,
262,
38559,
24290,
2393,
13,
198,
198,
11748,
25064,
198,
198,
6738,
9195,
13,
27041,
316,
1330,
347,
16696,
2767,
62,
2389,
198,
6738,
9195,
13,
7266,
21812,
1330,
3834,
21575,
628
]
burst_time=[]
print("Enter the number of process: ")
n=int(input())
print("Enter the burst time of the processes: \n")
burst_time=list(map(int, input().split()))
waiting_time=[]
avg_waiting_time=0
turnaround_time=[]
avg_turnaround_time=0
waiting_time.insert(0,0)
turnaround_time.insert(0,burst_time[0])
for i in range(1,len(burst_time)):
waiting_time.insert(i,waiting_time[i-1]+burst_time[i-1])
turnaround_time.insert(i,waiting_time[i]+burst_time[i])
avg_waiting_time+=waiting_time[i]
avg_turnaround_time+=turnaround_time[i]
avg_waiting_time=float(avg_waiting_time)/n
avg_turnaround_time=float(avg_turnaround_time)/n
print("\n")
print("Process\t Burst Time\t Waiting Time\t Turn Around Time")
for i in range(0,n):
print(str(i)+"\t\t"+str(burst_time[i])+"\t\t"+str(waiting_time[i])+"\t\t"+str(turnaround_time[i]))
print("\n")
print("Average Waiting time is: "+str(avg_waiting_time))
print("Average Turn Arount Time is: "+str(avg_turnaround_time))
[
31961,
62,
2435,
28,
21737,
201,
198,
4798,
7203,
17469,
262,
1271,
286,
1429,
25,
366,
8,
201,
198,
77,
28,
600,
7,
15414,
28955,
201,
198,
4798,
7203,
17469,
262,
11173,
640,
286,
262,
7767,
25,
3467,
77,
4943,
201,
198,
31961,
62,
2435,
28,
4868,
7,
8899,
7,
600,
11,
5128,
22446,
35312,
3419,
4008,
201,
198,
10247,
1780,
62,
2435,
28,
21737,
201,
198,
615,
70,
62,
10247,
1780,
62,
2435,
28,
15,
201,
198,
15344,
14145,
62,
2435,
28,
21737,
201,
198,
615,
70,
62,
15344,
14145,
62,
2435,
28,
15,
201,
198,
10247,
1780,
62,
2435,
13,
28463,
7,
15,
11,
15,
8,
201,
198,
15344,
14145,
62,
2435,
13,
28463,
7,
15,
11,
31961,
62,
2435,
58,
15,
12962,
201,
198,
1640,
1312,
287,
2837,
7,
16,
11,
11925,
7,
31961,
62,
2435,
8,
2599,
201,
198,
4953,
62,
2435,
13,
28463,
7,
72,
11,
10247,
1780,
62,
2435,
58,
72,
12,
16,
48688,
31961,
62,
2435,
58,
72,
12,
16,
12962,
201,
198,
34217,
62,
2435,
13,
28463,
7,
72,
11,
10247,
1780,
62,
2435,
58,
72,
48688,
31961,
62,
2435,
58,
72,
12962,
201,
198,
42781,
62,
10247,
1780,
62,
2435,
47932,
10247,
1780,
62,
2435,
58,
72,
60,
201,
198,
42781,
62,
15344,
14145,
62,
2435,
47932,
15344,
14145,
62,
2435,
58,
72,
60,
201,
198,
615,
70,
62,
10247,
1780,
62,
2435,
28,
22468,
7,
615,
70,
62,
10247,
1780,
62,
2435,
20679,
77,
201,
198,
615,
70,
62,
15344,
14145,
62,
2435,
28,
22468,
7,
615,
70,
62,
15344,
14145,
62,
2435,
20679,
77,
201,
198,
4798,
7203,
59,
77,
4943,
201,
198,
4798,
7203,
18709,
59,
83,
220,
30635,
3862,
59,
83,
220,
39669,
3862,
59,
83,
220,
6756,
16824,
3862,
4943,
201,
198,
1640,
1312,
287,
2837,
7,
15,
11,
77,
2599,
201,
198,
3601,
7,
2536,
7,
72,
47762,
1,
59,
83,
59,
83,
1,
10,
2536,
7,
31961,
62,
2435,
58,
72,
12962,
10,
1,
59,
83,
59,
83,
1,
10,
2536,
7,
10247,
1780,
62,
2435,
58,
72,
12962,
10,
1,
59,
83,
59,
83,
1,
10,
2536,
7,
15344,
14145,
62,
2435,
58,
72,
60,
4008,
201,
198,
3601,
7203,
59,
77,
4943,
201,
198,
4798,
7203,
26287,
39669,
640,
318,
25,
43825,
2536,
7,
615,
70,
62,
10247,
1780,
62,
2435,
4008,
201,
198,
4798,
7203,
26287,
6756,
317,
472,
429,
3862,
318,
25,
43825,
2536,
7,
615,
70,
62,
15344,
14145,
62,
2435,
4008
]
import os
from airflow.hooks.base_hook import BaseHook
from airflow.operators.bash_operator import BashOperator
from airflow.utils.decorators import apply_defaults
[
11748,
28686,
198,
198,
6738,
45771,
13,
25480,
82,
13,
8692,
62,
25480,
1330,
7308,
39,
566,
198,
6738,
45771,
13,
3575,
2024,
13,
41757,
62,
46616,
1330,
15743,
18843,
1352,
198,
6738,
45771,
13,
26791,
13,
12501,
273,
2024,
1330,
4174,
62,
12286,
82,
628
]
"""
Author: Haoyin Xu
"""
import time
import psutil
import argparse
import numpy as np
import torchvision.datasets as datasets
from numpy.random import permutation
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
from river import tree
from skgarden import MondrianForestClassifier
from sdtf import StreamDecisionForest
def write_result(filename, acc_ls):
"""Writes results to specified text file"""
output = open(filename, "w")
for acc in acc_ls:
output.write(str(acc) + "\n")
def prediction(classifier):
"""Generates predictions from model"""
predictions = classifier.predict(X_test)
p_t = 0
for i in range(X_test.shape[0]):
if predictions[i] == y_test[i]:
p_t += 1
return p_t / X_test.shape[0]
def experiment_dt():
"""Runs experiments for Batch Decision Tree"""
dt_l = []
train_time_l = []
test_time_l = []
v_m_l = []
s_m_l = []
dt = DecisionTreeClassifier()
for i in range(500):
X_t = X_r[: (i + 1) * 100]
y_t = y_r[: (i + 1) * 100]
# Train the model
start_time = time.perf_counter()
dt.fit(X_t, y_t)
end_time = time.perf_counter()
train_time_l.append(end_time - start_time)
# Test the model
start_time = time.perf_counter()
dt_l.append(prediction(dt))
end_time = time.perf_counter()
test_time_l.append(end_time - start_time)
# Check memory
v_m = psutil.virtual_memory()[2]
v_m_l.append(v_m)
s_m = psutil.swap_memory()[3]
s_m_l.append(s_m)
return dt_l, train_time_l, test_time_l, v_m_l, s_m_l
def experiment_rf():
"""Runs experiments for Random Forest"""
rf_l = []
train_time_l = []
test_time_l = []
v_m_l = []
s_m_l = []
rf = RandomForestClassifier()
for i in range(500):
X_t = X_r[: (i + 1) * 100]
y_t = y_r[: (i + 1) * 100]
# Train the model
start_time = time.perf_counter()
rf.fit(X_t, y_t)
end_time = time.perf_counter()
train_time_l.append(end_time - start_time)
# Test the model
start_time = time.perf_counter()
rf_l.append(prediction(rf))
end_time = time.perf_counter()
test_time_l.append(end_time - start_time)
# Check memory
v_m = psutil.virtual_memory()[2]
v_m_l.append(v_m)
s_m = psutil.swap_memory()[3]
s_m_l.append(s_m)
return rf_l, train_time_l, test_time_l, v_m_l, s_m_l
def experiment_ht():
"""Runs experiments for Hoeffding Tree"""
ht_l = []
train_time_l = []
test_time_l = []
v_m_l = []
s_m_l = []
ht = tree.HoeffdingTreeClassifier(max_size=1000, grace_period=2)
for i in range(X_train.shape[0]):
X_t = X_r[i]
y_t = y_r[i]
idx = range(1024)
X_t = dict(zip(idx, X_t))
start_time = time.perf_counter()
ht.learn_one(X_t, y_t)
end_time = time.perf_counter()
train_time_l.append(end_time - start_time)
if i > 0 and (i + 1) % 100 == 0:
p_t = 0.0
start_time = time.perf_counter()
for j in range(X_test.shape[0]):
y_pred = ht.predict_one(X_test[j])
if y_pred == y_test[j]:
p_t += 1
ht_l.append(p_t / X_test.shape[0])
end_time = time.perf_counter()
test_time_l.append(end_time - start_time)
# Check memory
v_m = psutil.virtual_memory()[2]
v_m_l.append(v_m)
s_m = psutil.swap_memory()[3]
s_m_l.append(s_m)
# Reformat the train times
new_train_time_l = []
for i in range(1, X_train.shape[0]):
train_time_l[i] += train_time_l[i - 1]
if i > 0 and (i + 1) % 100 == 0:
new_train_time_l.append(train_time_l[i])
train_time_l = new_train_time_l
return ht_l, train_time_l, test_time_l, v_m_l, s_m_l
def experiment_mf():
"""Runs experiments for Mondrian Forest"""
mf_l = []
train_time_l = []
test_time_l = []
v_m_l = []
s_m_l = []
mf = MondrianForestClassifier(n_estimators=10)
for i in range(500):
X_t = X_r[i * 100 : (i + 1) * 100]
y_t = y_r[i * 100 : (i + 1) * 100]
# Train the model
start_time = time.perf_counter()
mf.partial_fit(X_t, y_t)
end_time = time.perf_counter()
train_time_l.append(end_time - start_time)
# Test the model
start_time = time.perf_counter()
mf_l.append(prediction(mf))
end_time = time.perf_counter()
test_time_l.append(end_time - start_time)
# Check memory
v_m = psutil.virtual_memory()[2]
v_m_l.append(v_m)
s_m = psutil.swap_memory()[3]
s_m_l.append(s_m)
# Reformat the train times
for i in range(1, 500):
train_time_l[i] += train_time_l[i - 1]
return mf_l, train_time_l, test_time_l, v_m_l, s_m_l
def experiment_sdt():
"""Runs experiments for Stream Decision Tree"""
sdt_l = []
train_time_l = []
test_time_l = []
v_m_l = []
s_m_l = []
sdt = DecisionTreeClassifier()
for i in range(500):
X_t = X_r[i * 100 : (i + 1) * 100]
y_t = y_r[i * 100 : (i + 1) * 100]
# Train the model
start_time = time.perf_counter()
sdt.partial_fit(X_t, y_t, classes=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
end_time = time.perf_counter()
train_time_l.append(end_time - start_time)
# Test the model
start_time = time.perf_counter()
sdt_l.append(prediction(sdt))
end_time = time.perf_counter()
test_time_l.append(end_time - start_time)
# Check memory
v_m = psutil.virtual_memory()[2]
v_m_l.append(v_m)
s_m = psutil.swap_memory()[3]
s_m_l.append(s_m)
# Reformat the train times
for i in range(1, 500):
train_time_l[i] += train_time_l[i - 1]
return sdt_l, train_time_l, test_time_l, v_m_l, s_m_l
def experiment_sdf():
"""Runs experiments for Stream Decision Forest"""
sdf_l = []
train_time_l = []
test_time_l = []
v_m_l = []
s_m_l = []
sdf = StreamDecisionForest()
for i in range(500):
X_t = X_r[i * 100 : (i + 1) * 100]
y_t = y_r[i * 100 : (i + 1) * 100]
# Train the model
start_time = time.perf_counter()
sdf.partial_fit(X_t, y_t, classes=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
end_time = time.perf_counter()
train_time_l.append(end_time - start_time)
# Test the model
start_time = time.perf_counter()
sdf_l.append(prediction(sdf))
end_time = time.perf_counter()
test_time_l.append(end_time - start_time)
# Check memory
v_m = psutil.virtual_memory()[2]
v_m_l.append(v_m)
s_m = psutil.swap_memory()[3]
s_m_l.append(s_m)
# Reformat the train times
for i in range(1, 500):
train_time_l[i] += train_time_l[i - 1]
return sdf_l, train_time_l, test_time_l, v_m_l, s_m_l
# Prepare CIFAR data
# Normalize
scale = np.mean(np.arange(0, 256))
normalize = lambda x: (x - scale) / scale
# Train data
cifar_trainset = datasets.CIFAR10(root="../", train=True, download=True, transform=None)
X_train = normalize(cifar_trainset.data)
y_train = np.array(cifar_trainset.targets)
# Test data
cifar_testset = datasets.CIFAR10(root="../", train=False, download=True, transform=None)
X_test = normalize(cifar_testset.data)
y_test = np.array(cifar_testset.targets)
X_train = X_train.reshape(-1, 32 * 32 * 3)
X_test = X_test.reshape(-1, 32 * 32 * 3)
# Parse classifier choices
parser = argparse.ArgumentParser()
parser.add_argument("-all", help="all classifiers", required=False, action="store_true")
parser.add_argument("-dt", help="decision forests", required=False, action="store_true")
parser.add_argument("-rf", help="random forests", required=False, action="store_true")
parser.add_argument("-ht", help="hoeffding trees", required=False, action="store_true")
parser.add_argument("-mf", help="mondrian forests", required=False, action="store_true")
parser.add_argument(
"-sdt", help="stream decision trees", required=False, action="store_true"
)
parser.add_argument(
"-sdf", help="stream decision forests", required=False, action="store_true"
)
args = parser.parse_args()
# Perform experiments
if args.all or args.dt:
dt_acc_l = []
dt_train_t_l = []
dt_test_t_l = []
dt_v_m_l = []
dt_s_m_l = []
for i in range(10):
p = permutation(X_train.shape[0])
X_r = X_train[p]
y_r = y_train[p]
dt_acc, dt_train_t, dt_test_t, dt_v_m, dt_s_m = experiment_dt()
dt_acc_l.append(dt_acc)
dt_train_t_l.append(dt_train_t)
dt_test_t_l.append(dt_test_t)
dt_v_m_l.append(dt_v_m)
dt_s_m_l.append(dt_s_m)
write_result("../results/dt/cifar10_acc.txt", dt_acc_l)
write_result("../results/dt/cifar10_train_t.txt", dt_train_t_l)
write_result("../results/dt/cifar10_test_t.txt", dt_test_t_l)
write_result("../results/dt/cifar10_v_m.txt", dt_v_m_l)
write_result("../results/dt/cifar10_s_m.txt", dt_s_m_l)
if args.all or args.rf:
rf_acc_l = []
rf_train_t_l = []
rf_test_t_l = []
rf_v_m_l = []
rf_s_m_l = []
for i in range(10):
p = permutation(X_train.shape[0])
X_r = X_train[p]
y_r = y_train[p]
rf_acc, rf_train_t, rf_test_t, rf_v_m, rf_s_m = experiment_rf()
rf_acc_l.append(rf_acc)
rf_train_t_l.append(rf_train_t)
rf_test_t_l.append(rf_test_t)
rf_v_m_l.append(rf_v_m)
rf_s_m_l.append(rf_s_m)
write_result("../results/rf/cifar10_acc.txt", rf_acc_l)
write_result("../results/rf/cifar10_train_t.txt", rf_train_t_l)
write_result("../results/rf/cifar10_test_t.txt", rf_test_t_l)
write_result("../results/rf/cifar10_v_m.txt", rf_v_m_l)
write_result("../results/rf/cifar10_s_m.txt", rf_s_m_l)
if args.all or args.ht:
ht_acc_l = []
ht_train_t_l = []
ht_test_t_l = []
ht_v_m_l = []
ht_s_m_l = []
for i in range(10):
p = permutation(X_train.shape[0])
X_r = X_train[p]
y_r = y_train[p]
ht_acc, ht_train_t, ht_test_t, ht_v_m, ht_s_m = experiment_ht()
ht_acc_l.append(ht_acc)
ht_train_t_l.append(ht_train_t)
ht_test_t_l.append(ht_test_t)
ht_v_m_l.append(ht_v_m)
ht_s_m_l.append(ht_s_m)
write_result("../results/ht/cifar10_acc.txt", ht_acc_l)
write_result("../results/ht/cifar10_train_t.txt", ht_train_t_l)
write_result("../results/ht/cifar10_test_t.txt", ht_test_t_l)
write_result("../results/ht/cifar10_v_m.txt", ht_v_m_l)
write_result("../results/ht/cifar10_s_m.txt", ht_s_m_l)
if args.all or args.mf:
mf_acc_l = []
mf_train_t_l = []
mf_test_t_l = []
mf_v_m_l = []
mf_s_m_l = []
for i in range(10):
p = permutation(X_train.shape[0])
X_r = X_train[p]
y_r = y_train[p]
mf_acc, mf_train_t, mf_test_t, mf_v_m, mf_s_m = experiment_mf()
mf_acc_l.append(mf_acc)
mf_train_t_l.append(mf_train_t)
mf_test_t_l.append(mf_test_t)
mf_v_m_l.append(mf_v_m)
mf_s_m_l.append(mf_s_m)
write_result("../results/mf/cifar10_acc.txt", mf_acc_l)
write_result("../results/mf/cifar10_train_t.txt", mf_train_t_l)
write_result("../results/mf/cifar10_test_t.txt", mf_test_t_l)
write_result("../results/mf/cifar10_v_m.txt", mf_v_m_l)
write_result("../results/mf/cifar10_s_m.txt", mf_s_m_l)
if args.all or args.sdt:
sdt_acc_l = []
sdt_train_t_l = []
sdt_test_t_l = []
sdt_v_m_l = []
sdt_s_m_l = []
for i in range(10):
p = permutation(X_train.shape[0])
X_r = X_train[p]
y_r = y_train[p]
sdt_acc, sdt_train_t, sdt_test_t, sdt_v_m, sdt_s_m = experiment_sdt()
sdt_acc_l.append(sdt_acc)
sdt_train_t_l.append(sdt_train_t)
sdt_test_t_l.append(sdt_test_t)
sdt_v_m_l.append(sdt_v_m)
sdt_s_m_l.append(sdt_s_m)
write_result("../results/sdt/cifar10_acc.txt", sdt_acc_l)
write_result("../results/sdt/cifar10_train_t.txt", sdt_train_t_l)
write_result("../results/sdt/cifar10_test_t.txt", sdt_test_t_l)
write_result("../results/sdt/cifar10_v_m.txt", sdt_v_m_l)
write_result("../results/sdt/cifar10_s_m.txt", sdt_s_m_l)
if args.all or args.sdf:
sdf_acc_l = []
sdf_train_t_l = []
sdf_test_t_l = []
sdf_v_m_l = []
sdf_s_m_l = []
for i in range(10):
p = permutation(X_train.shape[0])
X_r = X_train[p]
y_r = y_train[p]
sdf_acc, sdf_train_t, sdf_test_t, sdf_v_m, sdf_s_m = experiment_sdf()
sdf_acc_l.append(sdf_acc)
sdf_train_t_l.append(sdf_train_t)
sdf_test_t_l.append(sdf_test_t)
sdf_v_m_l.append(sdf_v_m)
sdf_s_m_l.append(sdf_s_m)
write_result("../results/sdf/cifar10_acc.txt", sdf_acc_l)
write_result("../results/sdf/cifar10_train_t.txt", sdf_train_t_l)
write_result("../results/sdf/cifar10_test_t.txt", sdf_test_t_l)
write_result("../results/sdf/cifar10_v_m.txt", sdf_v_m_l)
write_result("../results/sdf/cifar10_s_m.txt", sdf_s_m_l)
[
37811,
198,
13838,
25,
9398,
726,
259,
33591,
198,
37811,
198,
11748,
640,
198,
11748,
26692,
22602,
198,
11748,
1822,
29572,
198,
11748,
299,
32152,
355,
45941,
198,
11748,
28034,
10178,
13,
19608,
292,
1039,
355,
40522,
198,
6738,
299,
32152,
13,
25120,
1330,
9943,
7094,
198,
6738,
1341,
35720,
13,
21048,
1330,
26423,
27660,
9487,
7483,
198,
6738,
1341,
35720,
13,
1072,
11306,
1330,
14534,
34605,
9487,
7483,
198,
6738,
7850,
1330,
5509,
198,
6738,
1341,
70,
5872,
1330,
27328,
4484,
34605,
9487,
7483,
198,
6738,
45647,
27110,
1330,
13860,
10707,
1166,
34605,
628,
198,
4299,
3551,
62,
20274,
7,
34345,
11,
697,
62,
7278,
2599,
198,
220,
220,
220,
37227,
20257,
274,
2482,
284,
7368,
2420,
2393,
37811,
198,
220,
220,
220,
5072,
796,
1280,
7,
34345,
11,
366,
86,
4943,
198,
220,
220,
220,
329,
697,
287,
697,
62,
7278,
25,
198,
220,
220,
220,
220,
220,
220,
220,
5072,
13,
13564,
7,
2536,
7,
4134,
8,
1343,
37082,
77,
4943,
628,
198,
4299,
17724,
7,
4871,
7483,
2599,
198,
220,
220,
220,
37227,
8645,
689,
16277,
422,
2746,
37811,
198,
220,
220,
220,
16277,
796,
1398,
7483,
13,
79,
17407,
7,
55,
62,
9288,
8,
628,
220,
220,
220,
279,
62,
83,
796,
657,
198,
220,
220,
220,
329,
1312,
287,
2837,
7,
55,
62,
9288,
13,
43358,
58,
15,
60,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
611,
16277,
58,
72,
60,
6624,
331,
62,
9288,
58,
72,
5974,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
279,
62,
83,
15853,
352,
628,
220,
220,
220,
1441,
279,
62,
83,
1220,
1395,
62,
9288,
13,
43358,
58,
15,
60,
628,
198,
4299,
6306,
62,
28664,
33529,
198,
220,
220,
220,
37227,
10987,
82,
10256,
329,
347,
963,
26423,
12200,
37811,
198,
220,
220,
220,
288,
83,
62,
75,
796,
17635,
198,
220,
220,
220,
4512,
62,
2435,
62,
75,
796,
17635,
198,
220,
220,
220,
1332,
62,
2435,
62,
75,
796,
17635,
198,
220,
220,
220,
410,
62,
76,
62,
75,
796,
17635,
198,
220,
220,
220,
264,
62,
76,
62,
75,
796,
17635,
628,
220,
220,
220,
288,
83,
796,
26423,
27660,
9487,
7483,
3419,
628,
220,
220,
220,
329,
1312,
287,
2837,
7,
4059,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
1395,
62,
83,
796,
1395,
62,
81,
58,
25,
357,
72,
1343,
352,
8,
1635,
1802,
60,
198,
220,
220,
220,
220,
220,
220,
220,
331,
62,
83,
796,
331,
62,
81,
58,
25,
357,
72,
1343,
352,
8,
1635,
1802,
60,
628,
220,
220,
220,
220,
220,
220,
220,
1303,
16835,
262,
2746,
198,
220,
220,
220,
220,
220,
220,
220,
923,
62,
2435,
796,
640,
13,
525,
69,
62,
24588,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
288,
83,
13,
11147,
7,
55,
62,
83,
11,
331,
62,
83,
8,
198,
220,
220,
220,
220,
220,
220,
220,
886,
62,
2435,
796,
640,
13,
525,
69,
62,
24588,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
4512,
62,
2435,
62,
75,
13,
33295,
7,
437,
62,
2435,
532,
923,
62,
2435,
8,
628,
220,
220,
220,
220,
220,
220,
220,
1303,
6208,
262,
2746,
198,
220,
220,
220,
220,
220,
220,
220,
923,
62,
2435,
796,
640,
13,
525,
69,
62,
24588,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
288,
83,
62,
75,
13,
33295,
7,
28764,
2867,
7,
28664,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
886,
62,
2435,
796,
640,
13,
525,
69,
62,
24588,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
1332,
62,
2435,
62,
75,
13,
33295,
7,
437,
62,
2435,
532,
923,
62,
2435,
8,
628,
220,
220,
220,
220,
220,
220,
220,
1303,
6822,
4088,
198,
220,
220,
220,
220,
220,
220,
220,
410,
62,
76,
796,
26692,
22602,
13,
32844,
62,
31673,
3419,
58,
17,
60,
198,
220,
220,
220,
220,
220,
220,
220,
410,
62,
76,
62,
75,
13,
33295,
7,
85,
62,
76,
8,
198,
220,
220,
220,
220,
220,
220,
220,
264,
62,
76,
796,
26692,
22602,
13,
2032,
499,
62,
31673,
3419,
58,
18,
60,
198,
220,
220,
220,
220,
220,
220,
220,
264,
62,
76,
62,
75,
13,
33295,
7,
82,
62,
76,
8,
628,
220,
220,
220,
1441,
288,
83,
62,
75,
11,
4512,
62,
2435,
62,
75,
11,
1332,
62,
2435,
62,
75,
11,
410,
62,
76,
62,
75,
11,
264,
62,
76,
62,
75,
628,
198,
4299,
6306,
62,
41871,
33529,
198,
220,
220,
220,
37227,
10987,
82,
10256,
329,
14534,
9115,
37811,
198,
220,
220,
220,
374,
69,
62,
75,
796,
17635,
198,
220,
220,
220,
4512,
62,
2435,
62,
75,
796,
17635,
198,
220,
220,
220,
1332,
62,
2435,
62,
75,
796,
17635,
198,
220,
220,
220,
410,
62,
76,
62,
75,
796,
17635,
198,
220,
220,
220,
264,
62,
76,
62,
75,
796,
17635,
628,
220,
220,
220,
374,
69,
796,
14534,
34605,
9487,
7483,
3419,
628,
220,
220,
220,
329,
1312,
287,
2837,
7,
4059,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
1395,
62,
83,
796,
1395,
62,
81,
58,
25,
357,
72,
1343,
352,
8,
1635,
1802,
60,
198,
220,
220,
220,
220,
220,
220,
220,
331,
62,
83,
796,
331,
62,
81,
58,
25,
357,
72,
1343,
352,
8,
1635,
1802,
60,
628,
220,
220,
220,
220,
220,
220,
220,
1303,
16835,
262,
2746,
198,
220,
220,
220,
220,
220,
220,
220,
923,
62,
2435,
796,
640,
13,
525,
69,
62,
24588,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
374,
69,
13,
11147,
7,
55,
62,
83,
11,
331,
62,
83,
8,
198,
220,
220,
220,
220,
220,
220,
220,
886,
62,
2435,
796,
640,
13,
525,
69,
62,
24588,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
4512,
62,
2435,
62,
75,
13,
33295,
7,
437,
62,
2435,
532,
923,
62,
2435,
8,
628,
220,
220,
220,
220,
220,
220,
220,
1303,
6208,
262,
2746,
198,
220,
220,
220,
220,
220,
220,
220,
923,
62,
2435,
796,
640,
13,
525,
69,
62,
24588,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
374,
69,
62,
75,
13,
33295,
7,
28764,
2867,
7,
41871,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
886,
62,
2435,
796,
640,
13,
525,
69,
62,
24588,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
1332,
62,
2435,
62,
75,
13,
33295,
7,
437,
62,
2435,
532,
923,
62,
2435,
8,
628,
220,
220,
220,
220,
220,
220,
220,
1303,
6822,
4088,
198,
220,
220,
220,
220,
220,
220,
220,
410,
62,
76,
796,
26692,
22602,
13,
32844,
62,
31673,
3419,
58,
17,
60,
198,
220,
220,
220,
220,
220,
220,
220,
410,
62,
76,
62,
75,
13,
33295,
7,
85,
62,
76,
8,
198,
220,
220,
220,
220,
220,
220,
220,
264,
62,
76,
796,
26692,
22602,
13,
2032,
499,
62,
31673,
3419,
58,
18,
60,
198,
220,
220,
220,
220,
220,
220,
220,
264,
62,
76,
62,
75,
13,
33295,
7,
82,
62,
76,
8,
628,
220,
220,
220,
1441,
374,
69,
62,
75,
11,
4512,
62,
2435,
62,
75,
11,
1332,
62,
2435,
62,
75,
11,
410,
62,
76,
62,
75,
11,
264,
62,
76,
62,
75,
628,
198,
4299,
6306,
62,
4352,
33529,
198,
220,
220,
220,
37227,
10987,
82,
10256,
329,
367,
2577,
487,
12083,
12200,
37811,
198,
220,
220,
220,
289,
83,
62,
75,
796,
17635,
198,
220,
220,
220,
4512,
62,
2435,
62,
75,
796,
17635,
198,
220,
220,
220,
1332,
62,
2435,
62,
75,
796,
17635,
198,
220,
220,
220,
410,
62,
76,
62,
75,
796,
17635,
198,
220,
220,
220,
264,
62,
76,
62,
75,
796,
17635,
628,
220,
220,
220,
289,
83,
796,
5509,
13,
39,
2577,
487,
12083,
27660,
9487,
7483,
7,
9806,
62,
7857,
28,
12825,
11,
11542,
62,
41007,
28,
17,
8,
628,
220,
220,
220,
329,
1312,
287,
2837,
7,
55,
62,
27432,
13,
43358,
58,
15,
60,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
1395,
62,
83,
796,
1395,
62,
81,
58,
72,
60,
198,
220,
220,
220,
220,
220,
220,
220,
331,
62,
83,
796,
331,
62,
81,
58,
72,
60,
628,
220,
220,
220,
220,
220,
220,
220,
4686,
87,
796,
2837,
7,
35500,
8,
198,
220,
220,
220,
220,
220,
220,
220,
1395,
62,
83,
796,
8633,
7,
13344,
7,
312,
87,
11,
1395,
62,
83,
4008,
628,
220,
220,
220,
220,
220,
220,
220,
923,
62,
2435,
796,
640,
13,
525,
69,
62,
24588,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
289,
83,
13,
35720,
62,
505,
7,
55,
62,
83,
11,
331,
62,
83,
8,
198,
220,
220,
220,
220,
220,
220,
220,
886,
62,
2435,
796,
640,
13,
525,
69,
62,
24588,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
4512,
62,
2435,
62,
75,
13,
33295,
7,
437,
62,
2435,
532,
923,
62,
2435,
8,
628,
220,
220,
220,
220,
220,
220,
220,
611,
1312,
1875,
657,
290,
357,
72,
1343,
352,
8,
4064,
1802,
6624,
657,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
279,
62,
83,
796,
657,
13,
15,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
923,
62,
2435,
796,
640,
13,
525,
69,
62,
24588,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
329,
474,
287,
2837,
7,
55,
62,
9288,
13,
43358,
58,
15,
60,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
331,
62,
28764,
796,
289,
83,
13,
79,
17407,
62,
505,
7,
55,
62,
9288,
58,
73,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
331,
62,
28764,
6624,
331,
62,
9288,
58,
73,
5974,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
279,
62,
83,
15853,
352,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
289,
83,
62,
75,
13,
33295,
7,
79,
62,
83,
1220,
1395,
62,
9288,
13,
43358,
58,
15,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
886,
62,
2435,
796,
640,
13,
525,
69,
62,
24588,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1332,
62,
2435,
62,
75,
13,
33295,
7,
437,
62,
2435,
532,
923,
62,
2435,
8,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
6822,
4088,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
410,
62,
76,
796,
26692,
22602,
13,
32844,
62,
31673,
3419,
58,
17,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
410,
62,
76,
62,
75,
13,
33295,
7,
85,
62,
76,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
264,
62,
76,
796,
26692,
22602,
13,
2032,
499,
62,
31673,
3419,
58,
18,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
264,
62,
76,
62,
75,
13,
33295,
7,
82,
62,
76,
8,
628,
220,
220,
220,
1303,
17893,
265,
262,
4512,
1661,
198,
220,
220,
220,
649,
62,
27432,
62,
2435,
62,
75,
796,
17635,
198,
220,
220,
220,
329,
1312,
287,
2837,
7,
16,
11,
1395,
62,
27432,
13,
43358,
58,
15,
60,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
4512,
62,
2435,
62,
75,
58,
72,
60,
15853,
4512,
62,
2435,
62,
75,
58,
72,
532,
352,
60,
198,
220,
220,
220,
220,
220,
220,
220,
611,
1312,
1875,
657,
290,
357,
72,
1343,
352,
8,
4064,
1802,
6624,
657,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
649,
62,
27432,
62,
2435,
62,
75,
13,
33295,
7,
27432,
62,
2435,
62,
75,
58,
72,
12962,
198,
220,
220,
220,
4512,
62,
2435,
62,
75,
796,
649,
62,
27432,
62,
2435,
62,
75,
628,
220,
220,
220,
1441,
289,
83,
62,
75,
11,
4512,
62,
2435,
62,
75,
11,
1332,
62,
2435,
62,
75,
11,
410,
62,
76,
62,
75,
11,
264,
62,
76,
62,
75,
628,
198,
4299,
6306,
62,
76,
69,
33529,
198,
220,
220,
220,
37227,
10987,
82,
10256,
329,
27328,
4484,
9115,
37811,
198,
220,
220,
220,
285,
69,
62,
75,
796,
17635,
198,
220,
220,
220,
4512,
62,
2435,
62,
75,
796,
17635,
198,
220,
220,
220,
1332,
62,
2435,
62,
75,
796,
17635,
198,
220,
220,
220,
410,
62,
76,
62,
75,
796,
17635,
198,
220,
220,
220,
264,
62,
76,
62,
75,
796,
17635,
628,
220,
220,
220,
285,
69,
796,
27328,
4484,
34605,
9487,
7483,
7,
77,
62,
395,
320,
2024,
28,
940,
8,
628,
220,
220,
220,
329,
1312,
287,
2837,
7,
4059,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
1395,
62,
83,
796,
1395,
62,
81,
58,
72,
1635,
1802,
1058,
357,
72,
1343,
352,
8,
1635,
1802,
60,
198,
220,
220,
220,
220,
220,
220,
220,
331,
62,
83,
796,
331,
62,
81,
58,
72,
1635,
1802,
1058,
357,
72,
1343,
352,
8,
1635,
1802,
60,
628,
220,
220,
220,
220,
220,
220,
220,
1303,
16835,
262,
2746,
198,
220,
220,
220,
220,
220,
220,
220,
923,
62,
2435,
796,
640,
13,
525,
69,
62,
24588,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
285,
69,
13,
47172,
62,
11147,
7,
55,
62,
83,
11,
331,
62,
83,
8,
198,
220,
220,
220,
220,
220,
220,
220,
886,
62,
2435,
796,
640,
13,
525,
69,
62,
24588,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
4512,
62,
2435,
62,
75,
13,
33295,
7,
437,
62,
2435,
532,
923,
62,
2435,
8,
628,
220,
220,
220,
220,
220,
220,
220,
1303,
6208,
262,
2746,
198,
220,
220,
220,
220,
220,
220,
220,
923,
62,
2435,
796,
640,
13,
525,
69,
62,
24588,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
285,
69,
62,
75,
13,
33295,
7,
28764,
2867,
7,
76,
69,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
886,
62,
2435,
796,
640,
13,
525,
69,
62,
24588,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
1332,
62,
2435,
62,
75,
13,
33295,
7,
437,
62,
2435,
532,
923,
62,
2435,
8,
628,
220,
220,
220,
220,
220,
220,
220,
1303,
6822,
4088,
198,
220,
220,
220,
220,
220,
220,
220,
410,
62,
76,
796,
26692,
22602,
13,
32844,
62,
31673,
3419,
58,
17,
60,
198,
220,
220,
220,
220,
220,
220,
220,
410,
62,
76,
62,
75,
13,
33295,
7,
85,
62,
76,
8,
198,
220,
220,
220,
220,
220,
220,
220,
264,
62,
76,
796,
26692,
22602,
13,
2032,
499,
62,
31673,
3419,
58,
18,
60,
198,
220,
220,
220,
220,
220,
220,
220,
264,
62,
76,
62,
75,
13,
33295,
7,
82,
62,
76,
8,
628,
220,
220,
220,
1303,
17893,
265,
262,
4512,
1661,
198,
220,
220,
220,
329,
1312,
287,
2837,
7,
16,
11,
5323,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
4512,
62,
2435,
62,
75,
58,
72,
60,
15853,
4512,
62,
2435,
62,
75,
58,
72,
532,
352,
60,
628,
220,
220,
220,
1441,
285,
69,
62,
75,
11,
4512,
62,
2435,
62,
75,
11,
1332,
62,
2435,
62,
75,
11,
410,
62,
76,
62,
75,
11,
264,
62,
76,
62,
75,
628,
198,
4299,
6306,
62,
21282,
83,
33529,
198,
220,
220,
220,
37227,
10987,
82,
10256,
329,
13860,
26423,
12200,
37811,
198,
220,
220,
220,
264,
28664,
62,
75,
796,
17635,
198,
220,
220,
220,
4512,
62,
2435,
62,
75,
796,
17635,
198,
220,
220,
220,
1332,
62,
2435,
62,
75,
796,
17635,
198,
220,
220,
220,
410,
62,
76,
62,
75,
796,
17635,
198,
220,
220,
220,
264,
62,
76,
62,
75,
796,
17635,
628,
220,
220,
220,
264,
28664,
796,
26423,
27660,
9487,
7483,
3419,
628,
220,
220,
220,
329,
1312,
287,
2837,
7,
4059,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
1395,
62,
83,
796,
1395,
62,
81,
58,
72,
1635,
1802,
1058,
357,
72,
1343,
352,
8,
1635,
1802,
60,
198,
220,
220,
220,
220,
220,
220,
220,
331,
62,
83,
796,
331,
62,
81,
58,
72,
1635,
1802,
1058,
357,
72,
1343,
352,
8,
1635,
1802,
60,
628,
220,
220,
220,
220,
220,
220,
220,
1303,
16835,
262,
2746,
198,
220,
220,
220,
220,
220,
220,
220,
923,
62,
2435,
796,
640,
13,
525,
69,
62,
24588,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
264,
28664,
13,
47172,
62,
11147,
7,
55,
62,
83,
11,
331,
62,
83,
11,
6097,
41888,
15,
11,
352,
11,
362,
11,
513,
11,
604,
11,
642,
11,
718,
11,
767,
11,
807,
11,
860,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
886,
62,
2435,
796,
640,
13,
525,
69,
62,
24588,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
4512,
62,
2435,
62,
75,
13,
33295,
7,
437,
62,
2435,
532,
923,
62,
2435,
8,
628,
220,
220,
220,
220,
220,
220,
220,
1303,
6208,
262,
2746,
198,
220,
220,
220,
220,
220,
220,
220,
923,
62,
2435,
796,
640,
13,
525,
69,
62,
24588,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
264,
28664,
62,
75,
13,
33295,
7,
28764,
2867,
7,
21282,
83,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
886,
62,
2435,
796,
640,
13,
525,
69,
62,
24588,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
1332,
62,
2435,
62,
75,
13,
33295,
7,
437,
62,
2435,
532,
923,
62,
2435,
8,
628,
220,
220,
220,
220,
220,
220,
220,
1303,
6822,
4088,
198,
220,
220,
220,
220,
220,
220,
220,
410,
62,
76,
796,
26692,
22602,
13,
32844,
62,
31673,
3419,
58,
17,
60,
198,
220,
220,
220,
220,
220,
220,
220,
410,
62,
76,
62,
75,
13,
33295,
7,
85,
62,
76,
8,
198,
220,
220,
220,
220,
220,
220,
220,
264,
62,
76,
796,
26692,
22602,
13,
2032,
499,
62,
31673,
3419,
58,
18,
60,
198,
220,
220,
220,
220,
220,
220,
220,
264,
62,
76,
62,
75,
13,
33295,
7,
82,
62,
76,
8,
628,
220,
220,
220,
1303,
17893,
265,
262,
4512,
1661,
198,
220,
220,
220,
329,
1312,
287,
2837,
7,
16,
11,
5323,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
4512,
62,
2435,
62,
75,
58,
72,
60,
15853,
4512,
62,
2435,
62,
75,
58,
72,
532,
352,
60,
628,
220,
220,
220,
1441,
264,
28664,
62,
75,
11,
4512,
62,
2435,
62,
75,
11,
1332,
62,
2435,
62,
75,
11,
410,
62,
76,
62,
75,
11,
264,
62,
76,
62,
75,
628,
198,
4299,
6306,
62,
82,
7568,
33529,
198,
220,
220,
220,
37227,
10987,
82,
10256,
329,
13860,
26423,
9115,
37811,
198,
220,
220,
220,
264,
7568,
62,
75,
796,
17635,
198,
220,
220,
220,
4512,
62,
2435,
62,
75,
796,
17635,
198,
220,
220,
220,
1332,
62,
2435,
62,
75,
796,
17635,
198,
220,
220,
220,
410,
62,
76,
62,
75,
796,
17635,
198,
220,
220,
220,
264,
62,
76,
62,
75,
796,
17635,
628,
220,
220,
220,
264,
7568,
796,
13860,
10707,
1166,
34605,
3419,
628,
220,
220,
220,
329,
1312,
287,
2837,
7,
4059,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
1395,
62,
83,
796,
1395,
62,
81,
58,
72,
1635,
1802,
1058,
357,
72,
1343,
352,
8,
1635,
1802,
60,
198,
220,
220,
220,
220,
220,
220,
220,
331,
62,
83,
796,
331,
62,
81,
58,
72,
1635,
1802,
1058,
357,
72,
1343,
352,
8,
1635,
1802,
60,
628,
220,
220,
220,
220,
220,
220,
220,
1303,
16835,
262,
2746,
198,
220,
220,
220,
220,
220,
220,
220,
923,
62,
2435,
796,
640,
13,
525,
69,
62,
24588,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
264,
7568,
13,
47172,
62,
11147,
7,
55,
62,
83,
11,
331,
62,
83,
11,
6097,
41888,
15,
11,
352,
11,
362,
11,
513,
11,
604,
11,
642,
11,
718,
11,
767,
11,
807,
11,
860,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
886,
62,
2435,
796,
640,
13,
525,
69,
62,
24588,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
4512,
62,
2435,
62,
75,
13,
33295,
7,
437,
62,
2435,
532,
923,
62,
2435,
8,
628,
220,
220,
220,
220,
220,
220,
220,
1303,
6208,
262,
2746,
198,
220,
220,
220,
220,
220,
220,
220,
923,
62,
2435,
796,
640,
13,
525,
69,
62,
24588,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
264,
7568,
62,
75,
13,
33295,
7,
28764,
2867,
7,
82,
7568,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
886,
62,
2435,
796,
640,
13,
525,
69,
62,
24588,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
1332,
62,
2435,
62,
75,
13,
33295,
7,
437,
62,
2435,
532,
923,
62,
2435,
8,
628,
220,
220,
220,
220,
220,
220,
220,
1303,
6822,
4088,
198,
220,
220,
220,
220,
220,
220,
220,
410,
62,
76,
796,
26692,
22602,
13,
32844,
62,
31673,
3419,
58,
17,
60,
198,
220,
220,
220,
220,
220,
220,
220,
410,
62,
76,
62,
75,
13,
33295,
7,
85,
62,
76,
8,
198,
220,
220,
220,
220,
220,
220,
220,
264,
62,
76,
796,
26692,
22602,
13,
2032,
499,
62,
31673,
3419,
58,
18,
60,
198,
220,
220,
220,
220,
220,
220,
220,
264,
62,
76,
62,
75,
13,
33295,
7,
82,
62,
76,
8,
628,
220,
220,
220,
1303,
17893,
265,
262,
4512,
1661,
198,
220,
220,
220,
329,
1312,
287,
2837,
7,
16,
11,
5323,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
4512,
62,
2435,
62,
75,
58,
72,
60,
15853,
4512,
62,
2435,
62,
75,
58,
72,
532,
352,
60,
628,
220,
220,
220,
1441,
264,
7568,
62,
75,
11,
4512,
62,
2435,
62,
75,
11,
1332,
62,
2435,
62,
75,
11,
410,
62,
76,
62,
75,
11,
264,
62,
76,
62,
75,
628,
198,
2,
43426,
327,
5064,
1503,
1366,
198,
2,
14435,
1096,
198,
9888,
796,
45941,
13,
32604,
7,
37659,
13,
283,
858,
7,
15,
11,
17759,
4008,
198,
11265,
1096,
796,
37456,
2124,
25,
357,
87,
532,
5046,
8,
1220,
5046,
198,
198,
2,
16835,
1366,
198,
66,
361,
283,
62,
2213,
1299,
316,
796,
40522,
13,
34,
5064,
1503,
940,
7,
15763,
2625,
40720,
1600,
4512,
28,
17821,
11,
4321,
28,
17821,
11,
6121,
28,
14202,
8,
198,
55,
62,
27432,
796,
3487,
1096,
7,
66,
361,
283,
62,
2213,
1299,
316,
13,
7890,
8,
198,
88,
62,
27432,
796,
45941,
13,
18747,
7,
66,
361,
283,
62,
2213,
1299,
316,
13,
83,
853,
1039,
8,
198,
198,
2,
6208,
1366,
198,
66,
361,
283,
62,
9288,
2617,
796,
40522,
13,
34,
5064,
1503,
940,
7,
15763,
2625,
40720,
1600,
4512,
28,
25101,
11,
4321,
28,
17821,
11,
6121,
28,
14202,
8,
198,
55,
62,
9288,
796,
3487,
1096,
7,
66,
361,
283,
62,
9288,
2617,
13,
7890,
8,
198,
88,
62,
9288,
796,
45941,
13,
18747,
7,
66,
361,
283,
62,
9288,
2617,
13,
83,
853,
1039,
8,
198,
198,
55,
62,
27432,
796,
1395,
62,
27432,
13,
3447,
1758,
32590,
16,
11,
3933,
1635,
3933,
1635,
513,
8,
198,
55,
62,
9288,
796,
1395,
62,
9288,
13,
3447,
1758,
32590,
16,
11,
3933,
1635,
3933,
1635,
513,
8,
198,
198,
2,
2547,
325,
1398,
7483,
7747,
198,
48610,
796,
1822,
29572,
13,
28100,
1713,
46677,
3419,
198,
48610,
13,
2860,
62,
49140,
7203,
12,
439,
1600,
1037,
2625,
439,
1398,
13350,
1600,
2672,
28,
25101,
11,
2223,
2625,
8095,
62,
7942,
4943,
198,
48610,
13,
2860,
62,
49140,
7203,
12,
28664,
1600,
1037,
2625,
12501,
1166,
17039,
1600,
2672,
28,
25101,
11,
2223,
2625,
8095,
62,
7942,
4943,
198,
48610,
13,
2860,
62,
49140,
7203,
12,
41871,
1600,
1037,
2625,
25120,
17039,
1600,
2672,
28,
25101,
11,
2223,
2625,
8095,
62,
7942,
4943,
198,
48610,
13,
2860,
62,
49140,
7203,
12,
4352,
1600,
1037,
2625,
38979,
487,
12083,
7150,
1600,
2672,
28,
25101,
11,
2223,
2625,
8095,
62,
7942,
4943,
198,
48610,
13,
2860,
62,
49140,
7203,
12,
76,
69,
1600,
1037,
2625,
6327,
4484,
17039,
1600,
2672,
28,
25101,
11,
2223,
2625,
8095,
62,
7942,
4943,
198,
48610,
13,
2860,
62,
49140,
7,
198,
220,
220,
220,
27444,
21282,
83,
1600,
1037,
2625,
5532,
2551,
7150,
1600,
2672,
28,
25101,
11,
2223,
2625,
8095,
62,
7942,
1,
198,
8,
198,
48610,
13,
2860,
62,
49140,
7,
198,
220,
220,
220,
27444,
82,
7568,
1600,
1037,
2625,
5532,
2551,
17039,
1600,
2672,
28,
25101,
11,
2223,
2625,
8095,
62,
7942,
1,
198,
8,
198,
22046,
796,
30751,
13,
29572,
62,
22046,
3419,
198,
198,
2,
35006,
10256,
198,
361,
26498,
13,
439,
393,
26498,
13,
28664,
25,
198,
220,
220,
220,
288,
83,
62,
4134,
62,
75,
796,
17635,
198,
220,
220,
220,
288,
83,
62,
27432,
62,
83,
62,
75,
796,
17635,
198,
220,
220,
220,
288,
83,
62,
9288,
62,
83,
62,
75,
796,
17635,
198,
220,
220,
220,
288,
83,
62,
85,
62,
76,
62,
75,
796,
17635,
198,
220,
220,
220,
288,
83,
62,
82,
62,
76,
62,
75,
796,
17635,
198,
220,
220,
220,
329,
1312,
287,
2837,
7,
940,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
279,
796,
9943,
7094,
7,
55,
62,
27432,
13,
43358,
58,
15,
12962,
628,
220,
220,
220,
220,
220,
220,
220,
1395,
62,
81,
796,
1395,
62,
27432,
58,
79,
60,
198,
220,
220,
220,
220,
220,
220,
220,
331,
62,
81,
796,
331,
62,
27432,
58,
79,
60,
628,
220,
220,
220,
220,
220,
220,
220,
288,
83,
62,
4134,
11,
288,
83,
62,
27432,
62,
83,
11,
288,
83,
62,
9288,
62,
83,
11,
288,
83,
62,
85,
62,
76,
11,
288,
83,
62,
82,
62,
76,
796,
6306,
62,
28664,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
288,
83,
62,
4134,
62,
75,
13,
33295,
7,
28664,
62,
4134,
8,
198,
220,
220,
220,
220,
220,
220,
220,
288,
83,
62,
27432,
62,
83,
62,
75,
13,
33295,
7,
28664,
62,
27432,
62,
83,
8,
198,
220,
220,
220,
220,
220,
220,
220,
288,
83,
62,
9288,
62,
83,
62,
75,
13,
33295,
7,
28664,
62,
9288,
62,
83,
8,
198,
220,
220,
220,
220,
220,
220,
220,
288,
83,
62,
85,
62,
76,
62,
75,
13,
33295,
7,
28664,
62,
85,
62,
76,
8,
198,
220,
220,
220,
220,
220,
220,
220,
288,
83,
62,
82,
62,
76,
62,
75,
13,
33295,
7,
28664,
62,
82,
62,
76,
8,
628,
220,
220,
220,
220,
220,
220,
220,
3551,
62,
20274,
7203,
40720,
43420,
14,
28664,
14,
66,
361,
283,
940,
62,
4134,
13,
14116,
1600,
288,
83,
62,
4134,
62,
75,
8,
198,
220,
220,
220,
220,
220,
220,
220,
3551,
62,
20274,
7203,
40720,
43420,
14,
28664,
14,
66,
361,
283,
940,
62,
27432,
62,
83,
13,
14116,
1600,
288,
83,
62,
27432,
62,
83,
62,
75,
8,
198,
220,
220,
220,
220,
220,
220,
220,
3551,
62,
20274,
7203,
40720,
43420,
14,
28664,
14,
66,
361,
283,
940,
62,
9288,
62,
83,
13,
14116,
1600,
288,
83,
62,
9288,
62,
83,
62,
75,
8,
198,
220,
220,
220,
220,
220,
220,
220,
3551,
62,
20274,
7203,
40720,
43420,
14,
28664,
14,
66,
361,
283,
940,
62,
85,
62,
76,
13,
14116,
1600,
288,
83,
62,
85,
62,
76,
62,
75,
8,
198,
220,
220,
220,
220,
220,
220,
220,
3551,
62,
20274,
7203,
40720,
43420,
14,
28664,
14,
66,
361,
283,
940,
62,
82,
62,
76,
13,
14116,
1600,
288,
83,
62,
82,
62,
76,
62,
75,
8,
198,
198,
361,
26498,
13,
439,
393,
26498,
13,
41871,
25,
198,
220,
220,
220,
374,
69,
62,
4134,
62,
75,
796,
17635,
198,
220,
220,
220,
374,
69,
62,
27432,
62,
83,
62,
75,
796,
17635,
198,
220,
220,
220,
374,
69,
62,
9288,
62,
83,
62,
75,
796,
17635,
198,
220,
220,
220,
374,
69,
62,
85,
62,
76,
62,
75,
796,
17635,
198,
220,
220,
220,
374,
69,
62,
82,
62,
76,
62,
75,
796,
17635,
198,
220,
220,
220,
329,
1312,
287,
2837,
7,
940,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
279,
796,
9943,
7094,
7,
55,
62,
27432,
13,
43358,
58,
15,
12962,
628,
220,
220,
220,
220,
220,
220,
220,
1395,
62,
81,
796,
1395,
62,
27432,
58,
79,
60,
198,
220,
220,
220,
220,
220,
220,
220,
331,
62,
81,
796,
331,
62,
27432,
58,
79,
60,
628,
220,
220,
220,
220,
220,
220,
220,
374,
69,
62,
4134,
11,
374,
69,
62,
27432,
62,
83,
11,
374,
69,
62,
9288,
62,
83,
11,
374,
69,
62,
85,
62,
76,
11,
374,
69,
62,
82,
62,
76,
796,
6306,
62,
41871,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
374,
69,
62,
4134,
62,
75,
13,
33295,
7,
41871,
62,
4134,
8,
198,
220,
220,
220,
220,
220,
220,
220,
374,
69,
62,
27432,
62,
83,
62,
75,
13,
33295,
7,
41871,
62,
27432,
62,
83,
8,
198,
220,
220,
220,
220,
220,
220,
220,
374,
69,
62,
9288,
62,
83,
62,
75,
13,
33295,
7,
41871,
62,
9288,
62,
83,
8,
198,
220,
220,
220,
220,
220,
220,
220,
374,
69,
62,
85,
62,
76,
62,
75,
13,
33295,
7,
41871,
62,
85,
62,
76,
8,
198,
220,
220,
220,
220,
220,
220,
220,
374,
69,
62,
82,
62,
76,
62,
75,
13,
33295,
7,
41871,
62,
82,
62,
76,
8,
628,
220,
220,
220,
220,
220,
220,
220,
3551,
62,
20274,
7203,
40720,
43420,
14,
41871,
14,
66,
361,
283,
940,
62,
4134,
13,
14116,
1600,
374,
69,
62,
4134,
62,
75,
8,
198,
220,
220,
220,
220,
220,
220,
220,
3551,
62,
20274,
7203,
40720,
43420,
14,
41871,
14,
66,
361,
283,
940,
62,
27432,
62,
83,
13,
14116,
1600,
374,
69,
62,
27432,
62,
83,
62,
75,
8,
198,
220,
220,
220,
220,
220,
220,
220,
3551,
62,
20274,
7203,
40720,
43420,
14,
41871,
14,
66,
361,
283,
940,
62,
9288,
62,
83,
13,
14116,
1600,
374,
69,
62,
9288,
62,
83,
62,
75,
8,
198,
220,
220,
220,
220,
220,
220,
220,
3551,
62,
20274,
7203,
40720,
43420,
14,
41871,
14,
66,
361,
283,
940,
62,
85,
62,
76,
13,
14116,
1600,
374,
69,
62,
85,
62,
76,
62,
75,
8,
198,
220,
220,
220,
220,
220,
220,
220,
3551,
62,
20274,
7203,
40720,
43420,
14,
41871,
14,
66,
361,
283,
940,
62,
82,
62,
76,
13,
14116,
1600,
374,
69,
62,
82,
62,
76,
62,
75,
8,
198,
198,
361,
26498,
13,
439,
393,
26498,
13,
4352,
25,
198,
220,
220,
220,
289,
83,
62,
4134,
62,
75,
796,
17635,
198,
220,
220,
220,
289,
83,
62,
27432,
62,
83,
62,
75,
796,
17635,
198,
220,
220,
220,
289,
83,
62,
9288,
62,
83,
62,
75,
796,
17635,
198,
220,
220,
220,
289,
83,
62,
85,
62,
76,
62,
75,
796,
17635,
198,
220,
220,
220,
289,
83,
62,
82,
62,
76,
62,
75,
796,
17635,
198,
220,
220,
220,
329,
1312,
287,
2837,
7,
940,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
279,
796,
9943,
7094,
7,
55,
62,
27432,
13,
43358,
58,
15,
12962,
628,
220,
220,
220,
220,
220,
220,
220,
1395,
62,
81,
796,
1395,
62,
27432,
58,
79,
60,
198,
220,
220,
220,
220,
220,
220,
220,
331,
62,
81,
796,
331,
62,
27432,
58,
79,
60,
628,
220,
220,
220,
220,
220,
220,
220,
289,
83,
62,
4134,
11,
289,
83,
62,
27432,
62,
83,
11,
289,
83,
62,
9288,
62,
83,
11,
289,
83,
62,
85,
62,
76,
11,
289,
83,
62,
82,
62,
76,
796,
6306,
62,
4352,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
289,
83,
62,
4134,
62,
75,
13,
33295,
7,
4352,
62,
4134,
8,
198,
220,
220,
220,
220,
220,
220,
220,
289,
83,
62,
27432,
62,
83,
62,
75,
13,
33295,
7,
4352,
62,
27432,
62,
83,
8,
198,
220,
220,
220,
220,
220,
220,
220,
289,
83,
62,
9288,
62,
83,
62,
75,
13,
33295,
7,
4352,
62,
9288,
62,
83,
8,
198,
220,
220,
220,
220,
220,
220,
220,
289,
83,
62,
85,
62,
76,
62,
75,
13,
33295,
7,
4352,
62,
85,
62,
76,
8,
198,
220,
220,
220,
220,
220,
220,
220,
289,
83,
62,
82,
62,
76,
62,
75,
13,
33295,
7,
4352,
62,
82,
62,
76,
8,
628,
220,
220,
220,
220,
220,
220,
220,
3551,
62,
20274,
7203,
40720,
43420,
14,
4352,
14,
66,
361,
283,
940,
62,
4134,
13,
14116,
1600,
289,
83,
62,
4134,
62,
75,
8,
198,
220,
220,
220,
220,
220,
220,
220,
3551,
62,
20274,
7203,
40720,
43420,
14,
4352,
14,
66,
361,
283,
940,
62,
27432,
62,
83,
13,
14116,
1600,
289,
83,
62,
27432,
62,
83,
62,
75,
8,
198,
220,
220,
220,
220,
220,
220,
220,
3551,
62,
20274,
7203,
40720,
43420,
14,
4352,
14,
66,
361,
283,
940,
62,
9288,
62,
83,
13,
14116,
1600,
289,
83,
62,
9288,
62,
83,
62,
75,
8,
198,
220,
220,
220,
220,
220,
220,
220,
3551,
62,
20274,
7203,
40720,
43420,
14,
4352,
14,
66,
361,
283,
940,
62,
85,
62,
76,
13,
14116,
1600,
289,
83,
62,
85,
62,
76,
62,
75,
8,
198,
220,
220,
220,
220,
220,
220,
220,
3551,
62,
20274,
7203,
40720,
43420,
14,
4352,
14,
66,
361,
283,
940,
62,
82,
62,
76,
13,
14116,
1600,
289,
83,
62,
82,
62,
76,
62,
75,
8,
198,
198,
361,
26498,
13,
439,
393,
26498,
13,
76,
69,
25,
198,
220,
220,
220,
285,
69,
62,
4134,
62,
75,
796,
17635,
198,
220,
220,
220,
285,
69,
62,
27432,
62,
83,
62,
75,
796,
17635,
198,
220,
220,
220,
285,
69,
62,
9288,
62,
83,
62,
75,
796,
17635,
198,
220,
220,
220,
285,
69,
62,
85,
62,
76,
62,
75,
796,
17635,
198,
220,
220,
220,
285,
69,
62,
82,
62,
76,
62,
75,
796,
17635,
198,
220,
220,
220,
329,
1312,
287,
2837,
7,
940,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
279,
796,
9943,
7094,
7,
55,
62,
27432,
13,
43358,
58,
15,
12962,
628,
220,
220,
220,
220,
220,
220,
220,
1395,
62,
81,
796,
1395,
62,
27432,
58,
79,
60,
198,
220,
220,
220,
220,
220,
220,
220,
331,
62,
81,
796,
331,
62,
27432,
58,
79,
60,
628,
220,
220,
220,
220,
220,
220,
220,
285,
69,
62,
4134,
11,
285,
69,
62,
27432,
62,
83,
11,
285,
69,
62,
9288,
62,
83,
11,
285,
69,
62,
85,
62,
76,
11,
285,
69,
62,
82,
62,
76,
796,
6306,
62,
76,
69,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
285,
69,
62,
4134,
62,
75,
13,
33295,
7,
76,
69,
62,
4134,
8,
198,
220,
220,
220,
220,
220,
220,
220,
285,
69,
62,
27432,
62,
83,
62,
75,
13,
33295,
7,
76,
69,
62,
27432,
62,
83,
8,
198,
220,
220,
220,
220,
220,
220,
220,
285,
69,
62,
9288,
62,
83,
62,
75,
13,
33295,
7,
76,
69,
62,
9288,
62,
83,
8,
198,
220,
220,
220,
220,
220,
220,
220,
285,
69,
62,
85,
62,
76,
62,
75,
13,
33295,
7,
76,
69,
62,
85,
62,
76,
8,
198,
220,
220,
220,
220,
220,
220,
220,
285,
69,
62,
82,
62,
76,
62,
75,
13,
33295,
7,
76,
69,
62,
82,
62,
76,
8,
628,
220,
220,
220,
220,
220,
220,
220,
3551,
62,
20274,
7203,
40720,
43420,
14,
76,
69,
14,
66,
361,
283,
940,
62,
4134,
13,
14116,
1600,
285,
69,
62,
4134,
62,
75,
8,
198,
220,
220,
220,
220,
220,
220,
220,
3551,
62,
20274,
7203,
40720,
43420,
14,
76,
69,
14,
66,
361,
283,
940,
62,
27432,
62,
83,
13,
14116,
1600,
285,
69,
62,
27432,
62,
83,
62,
75,
8,
198,
220,
220,
220,
220,
220,
220,
220,
3551,
62,
20274,
7203,
40720,
43420,
14,
76,
69,
14,
66,
361,
283,
940,
62,
9288,
62,
83,
13,
14116,
1600,
285,
69,
62,
9288,
62,
83,
62,
75,
8,
198,
220,
220,
220,
220,
220,
220,
220,
3551,
62,
20274,
7203,
40720,
43420,
14,
76,
69,
14,
66,
361,
283,
940,
62,
85,
62,
76,
13,
14116,
1600,
285,
69,
62,
85,
62,
76,
62,
75,
8,
198,
220,
220,
220,
220,
220,
220,
220,
3551,
62,
20274,
7203,
40720,
43420,
14,
76,
69,
14,
66,
361,
283,
940,
62,
82,
62,
76,
13,
14116,
1600,
285,
69,
62,
82,
62,
76,
62,
75,
8,
198,
198,
361,
26498,
13,
439,
393,
26498,
13,
21282,
83,
25,
198,
220,
220,
220,
264,
28664,
62,
4134,
62,
75,
796,
17635,
198,
220,
220,
220,
264,
28664,
62,
27432,
62,
83,
62,
75,
796,
17635,
198,
220,
220,
220,
264,
28664,
62,
9288,
62,
83,
62,
75,
796,
17635,
198,
220,
220,
220,
264,
28664,
62,
85,
62,
76,
62,
75,
796,
17635,
198,
220,
220,
220,
264,
28664,
62,
82,
62,
76,
62,
75,
796,
17635,
198,
220,
220,
220,
329,
1312,
287,
2837,
7,
940,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
279,
796,
9943,
7094,
7,
55,
62,
27432,
13,
43358,
58,
15,
12962,
628,
220,
220,
220,
220,
220,
220,
220,
1395,
62,
81,
796,
1395,
62,
27432,
58,
79,
60,
198,
220,
220,
220,
220,
220,
220,
220,
331,
62,
81,
796,
331,
62,
27432,
58,
79,
60,
628,
220,
220,
220,
220,
220,
220,
220,
264,
28664,
62,
4134,
11,
264,
28664,
62,
27432,
62,
83,
11,
264,
28664,
62,
9288,
62,
83,
11,
264,
28664,
62,
85,
62,
76,
11,
264,
28664,
62,
82,
62,
76,
796,
6306,
62,
21282,
83,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
264,
28664,
62,
4134,
62,
75,
13,
33295,
7,
21282,
83,
62,
4134,
8,
198,
220,
220,
220,
220,
220,
220,
220,
264,
28664,
62,
27432,
62,
83,
62,
75,
13,
33295,
7,
21282,
83,
62,
27432,
62,
83,
8,
198,
220,
220,
220,
220,
220,
220,
220,
264,
28664,
62,
9288,
62,
83,
62,
75,
13,
33295,
7,
21282,
83,
62,
9288,
62,
83,
8,
198,
220,
220,
220,
220,
220,
220,
220,
264,
28664,
62,
85,
62,
76,
62,
75,
13,
33295,
7,
21282,
83,
62,
85,
62,
76,
8,
198,
220,
220,
220,
220,
220,
220,
220,
264,
28664,
62,
82,
62,
76,
62,
75,
13,
33295,
7,
21282,
83,
62,
82,
62,
76,
8,
628,
220,
220,
220,
220,
220,
220,
220,
3551,
62,
20274,
7203,
40720,
43420,
14,
21282,
83,
14,
66,
361,
283,
940,
62,
4134,
13,
14116,
1600,
264,
28664,
62,
4134,
62,
75,
8,
198,
220,
220,
220,
220,
220,
220,
220,
3551,
62,
20274,
7203,
40720,
43420,
14,
21282,
83,
14,
66,
361,
283,
940,
62,
27432,
62,
83,
13,
14116,
1600,
264,
28664,
62,
27432,
62,
83,
62,
75,
8,
198,
220,
220,
220,
220,
220,
220,
220,
3551,
62,
20274,
7203,
40720,
43420,
14,
21282,
83,
14,
66,
361,
283,
940,
62,
9288,
62,
83,
13,
14116,
1600,
264,
28664,
62,
9288,
62,
83,
62,
75,
8,
198,
220,
220,
220,
220,
220,
220,
220,
3551,
62,
20274,
7203,
40720,
43420,
14,
21282,
83,
14,
66,
361,
283,
940,
62,
85,
62,
76,
13,
14116,
1600,
264,
28664,
62,
85,
62,
76,
62,
75,
8,
198,
220,
220,
220,
220,
220,
220,
220,
3551,
62,
20274,
7203,
40720,
43420,
14,
21282,
83,
14,
66,
361,
283,
940,
62,
82,
62,
76,
13,
14116,
1600,
264,
28664,
62,
82,
62,
76,
62,
75,
8,
198,
198,
361,
26498,
13,
439,
393,
26498,
13,
82,
7568,
25,
198,
220,
220,
220,
264,
7568,
62,
4134,
62,
75,
796,
17635,
198,
220,
220,
220,
264,
7568,
62,
27432,
62,
83,
62,
75,
796,
17635,
198,
220,
220,
220,
264,
7568,
62,
9288,
62,
83,
62,
75,
796,
17635,
198,
220,
220,
220,
264,
7568,
62,
85,
62,
76,
62,
75,
796,
17635,
198,
220,
220,
220,
264,
7568,
62,
82,
62,
76,
62,
75,
796,
17635,
198,
220,
220,
220,
329,
1312,
287,
2837,
7,
940,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
279,
796,
9943,
7094,
7,
55,
62,
27432,
13,
43358,
58,
15,
12962,
628,
220,
220,
220,
220,
220,
220,
220,
1395,
62,
81,
796,
1395,
62,
27432,
58,
79,
60,
198,
220,
220,
220,
220,
220,
220,
220,
331,
62,
81,
796,
331,
62,
27432,
58,
79,
60,
628,
220,
220,
220,
220,
220,
220,
220,
264,
7568,
62,
4134,
11,
264,
7568,
62,
27432,
62,
83,
11,
264,
7568,
62,
9288,
62,
83,
11,
264,
7568,
62,
85,
62,
76,
11,
264,
7568,
62,
82,
62,
76,
796,
6306,
62,
82,
7568,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
264,
7568,
62,
4134,
62,
75,
13,
33295,
7,
82,
7568,
62,
4134,
8,
198,
220,
220,
220,
220,
220,
220,
220,
264,
7568,
62,
27432,
62,
83,
62,
75,
13,
33295,
7,
82,
7568,
62,
27432,
62,
83,
8,
198,
220,
220,
220,
220,
220,
220,
220,
264,
7568,
62,
9288,
62,
83,
62,
75,
13,
33295,
7,
82,
7568,
62,
9288,
62,
83,
8,
198,
220,
220,
220,
220,
220,
220,
220,
264,
7568,
62,
85,
62,
76,
62,
75,
13,
33295,
7,
82,
7568,
62,
85,
62,
76,
8,
198,
220,
220,
220,
220,
220,
220,
220,
264,
7568,
62,
82,
62,
76,
62,
75,
13,
33295,
7,
82,
7568,
62,
82,
62,
76,
8,
628,
220,
220,
220,
220,
220,
220,
220,
3551,
62,
20274,
7203,
40720,
43420,
14,
82,
7568,
14,
66,
361,
283,
940,
62,
4134,
13,
14116,
1600,
264,
7568,
62,
4134,
62,
75,
8,
198,
220,
220,
220,
220,
220,
220,
220,
3551,
62,
20274,
7203,
40720,
43420,
14,
82,
7568,
14,
66,
361,
283,
940,
62,
27432,
62,
83,
13,
14116,
1600,
264,
7568,
62,
27432,
62,
83,
62,
75,
8,
198,
220,
220,
220,
220,
220,
220,
220,
3551,
62,
20274,
7203,
40720,
43420,
14,
82,
7568,
14,
66,
361,
283,
940,
62,
9288,
62,
83,
13,
14116,
1600,
264,
7568,
62,
9288,
62,
83,
62,
75,
8,
198,
220,
220,
220,
220,
220,
220,
220,
3551,
62,
20274,
7203,
40720,
43420,
14,
82,
7568,
14,
66,
361,
283,
940,
62,
85,
62,
76,
13,
14116,
1600,
264,
7568,
62,
85,
62,
76,
62,
75,
8,
198,
220,
220,
220,
220,
220,
220,
220,
3551,
62,
20274,
7203,
40720,
43420,
14,
82,
7568,
14,
66,
361,
283,
940,
62,
82,
62,
76,
13,
14116,
1600,
264,
7568,
62,
82,
62,
76,
62,
75,
8,
198
]
"""Text wrapping and filling.
"""
# Copyright (C) 1999-2001 Gregory P. Ward.
# Copyright (C) 2002, 2003 Python Software Foundation.
# Written by Greg Ward <[email protected] >
# Modified by Sophie Kirschner
# https://github.com/python/cpython/blob/master/Lib/textwrap.py
# https://github.com/python/cpython/blob/master/LICENSE
__revision__ = "$Id$"
import string, re
# Do the right thing with boolean values for all known Python versions
# (so this module can be copied to projects that don't depend on Python
# 2.3, e.g. Optik and Docutils) by uncommenting the block of code below.
#try:
# True, False
#except NameError:
# (True, False) = (1, 0)
__all__ = ['TextWrapper']
# Hardcode the recognized whitespace characters to the US-ASCII
# whitespace characters. The main reason for doing this is that in
# ISO-8859-1, 0xa0 is non-breaking whitespace, so in certain locales
# that character winds up in string.whitespace. Respecting
# string.whitespace in those cases would 1) make textwrap treat 0xa0 the
# same as any other whitespace char, which is clearly wrong (it's a
# *non-breaking* space), 2) possibly cause problems with Unicode,
# since 0xa0 is not in range(128).
_whitespace = '\t\n\x0b\x0c\r '
class TextWrapper:
"""
Object for wrapping/filling text. The public interface consists of
the wrap() and fill() methods; the other methods are just there for
subclasses to override in order to tweak the default behaviour.
If you want to completely replace the main wrapping algorithm,
you'll probably have to override _wrap_chunks().
Several instance attributes control various aspects of wrapping:
width (default: 70)
the maximum width of wrapped lines (unless break_long_words
is false)
initial_indent (default: "")
string that will be prepended to the first line of wrapped
output. Counts towards the line's width.
subsequent_indent (default: "")
string that will be prepended to all lines save the first
of wrapped output; also counts towards each line's width.
expand_tabs (default: true)
Expand tabs in input text to spaces before further processing.
Each tab will become 1 .. 8 spaces, depending on its position in
its line. If false, each tab is treated as a single character.
replace_whitespace (default: true)
Replace all whitespace characters in the input text by spaces
after tab expansion. Note that if expand_tabs is false and
replace_whitespace is true, every tab will be converted to a
single space!
break_long_words (default: true)
Break words longer than 'width'. If false, those words will not
be broken, and some lines might be longer than 'width'.
break_on_hyphens (default: true)
Allow breaking hyphenated words. If true, wrapping will occur
preferably on whitespaces and right after hyphens part of
compound words.
drop_whitespace (default: true)
Drop leading and trailing whitespace from lines.
"""
# This funky little regex is just the trick for splitting
# text up into word-wrappable chunks. E.g.
# "Hello there -- you goof-ball, use the -b option!"
# splits into
# Hello/ /there/ /--/ /you/ /goof-/ball,/ /use/ /the/ /-b/ /option!
# (after stripping out empty strings).
wordsep_re = re.compile(
r'(\s+|' # any whitespace
r'[^\s\w]*\w+[^0-9\W]-(?=\w+[^0-9\W])|' # hyphenated words
r'(?<=[\w\!\"\'\&\.\,\?])-{2,}(?=\w))') # em-dash
# This less funky little regex just split on recognized spaces. E.g.
# "Hello there -- you goof-ball, use the -b option!"
# splits into
# Hello/ /there/ /--/ /you/ /goof-ball,/ /use/ /the/ /-b/ /option!/
wordsep_simple_re = re.compile(r'(\s+)')
# -- Private methods -----------------------------------------------
# (possibly useful for subclasses to override)
def _split(self, text):
"""_split(text : string) -> [string]
Split the text to wrap into indivisible chunks. Chunks are
not quite the same as words; see _wrap_chunks() for full
details. As an example, the text
Look, goof-ball -- use the -b option!
breaks into the following chunks:
'Look,', ' ', 'goof-', 'ball', ' ', '--', ' ',
'use', ' ', 'the', ' ', '-b', ' ', 'option!'
if break_on_hyphens is True, or in:
'Look,', ' ', 'goof-ball', ' ', '--', ' ',
'use', ' ', 'the', ' ', '-b', ' ', option!'
otherwise.
"""
if self.break_on_hyphens:
pat = self.wordsep_re
else:
pat = self.wordsep_simple_re
chunks = pat.split(text.decode("latin-1"))
chunks = list(filter(None, chunks)) # remove empty chunks
return chunks
def _handle_long_word(self, reversed_chunks, cur_line, cur_len, width):
"""_handle_long_word(chunks : [string],
cur_line : [string],
cur_len : int, width : int)
Handle a chunk of text (most likely a word, not whitespace) that
is too long to fit in any line.
"""
# Figure out when indent is larger than the specified width, and make
# sure at least one character is stripped off on every pass
if width < 1:
space_left = 1
else:
space_left = width - cur_len
# If we're allowed to break long words, then do so: put as much
# of the next chunk onto the current line as will fit.
if self.break_long_words:
cur_line.append(reversed_chunks[-1][:space_left])
reversed_chunks[-1] = reversed_chunks[-1][space_left:]
# Otherwise, we have to preserve the long word intact. Only add
# it to the current line if there's nothing already there --
# that minimizes how much we violate the width constraint.
elif not cur_line:
cur_line.append(reversed_chunks.pop())
# If we're not allowed to break long words, and there's already
# text on the current line, do nothing. Next time through the
# main loop of _wrap_chunks(), we'll wind up here again, but
# cur_len will be zero, so the next line will be entirely
# devoted to the long word that we can't handle right now.
# Added to consider basic ANSI escape sequences as zero-width
def _wrap_chunks(self, chunks):
"""_wrap_chunks(chunks : [string]) -> [string]
Wrap a sequence of text chunks and return a list of lines of
length 'self.width' or less. (If 'break_long_words' is false,
some lines may be longer than this.) Chunks correspond roughly
to words and the whitespace between them: each chunk is
indivisible (modulo 'break_long_words'), but a line break can
come between any two chunks. Chunks should not have internal
whitespace; ie. a chunk is either all whitespace or a "word".
Whitespace chunks will be removed from the beginning and end of
lines, but apart from that whitespace is preserved.
"""
lines = []
if self.width <= 0:
raise ValueError("invalid width %r (must be > 0)" % self.width)
# Arrange in reverse order so items can be efficiently popped
# from a stack of chucks.
chunks.reverse()
while chunks:
# Start the list of chunks that will make up the current line.
# cur_len is just the length of all the chunks in cur_line.
cur_line = []
cur_len = 0
# Figure out which static string will prefix this line.
if lines:
indent = self.subsequent_indent
else:
indent = self.initial_indent
# Maximum width for this line.
width = self.width - len(indent)
# First chunk on line is whitespace -- drop it, unless this
# is the very beginning of the text (ie. no lines started yet).
if self.drop_whitespace and chunks[-1].strip() == '' and lines:
del chunks[-1]
while chunks:
l = self._get_chunk_length(chunks[-1])
# Can at least squeeze this chunk onto the current line.
if cur_len + l <= width:
cur_line.append(chunks.pop())
cur_len += l
# Nope, this line is full.
else:
break
# The current line is full, and the next chunk is too big to
# fit on *any* line (not just this one).
if chunks and self._get_chunk_length(chunks[-1]) > width:
self._handle_long_word(chunks, cur_line, cur_len, width)
# If the last chunk on this line is all whitespace, drop it.
if self.drop_whitespace and cur_line and cur_line[-1].strip() == '':
del cur_line[-1]
# Convert current line back to a string and store it in list
# of all lines (return value).
if cur_line:
lines.append(indent + ''.join(cur_line))
return lines
# -- Public interface ----------------------------------------------
def wrap(self, text):
"""wrap(text : string) -> [string]
Reformat the single paragraph in 'text' so it fits in lines of
no more than 'self.width' columns, and return a list of wrapped
lines. Tabs in 'text' are expanded with string.expandtabs(),
and all other whitespace characters (including newline) are
converted to space.
"""
chunks = self._split(text)
return self._wrap_chunks(chunks)
def fill(self, text):
"""fill(text : string) -> string
Reformat the single paragraph in 'text' to fit in lines of no
more than 'self.width' columns, and return a new string
containing the entire wrapped paragraph.
"""
return "\n".join(self.wrap(text))
[
37811,
8206,
27074,
290,
12591,
13,
198,
37811,
198,
198,
2,
15069,
357,
34,
8,
7358,
12,
14585,
20653,
350,
13,
12150,
13,
198,
2,
15069,
357,
34,
8,
6244,
11,
5816,
11361,
10442,
5693,
13,
198,
2,
22503,
416,
8547,
12150,
1279,
70,
904,
31,
29412,
13,
3262,
29,
198,
198,
2,
40499,
416,
35331,
7385,
20601,
1008,
198,
2,
3740,
1378,
12567,
13,
785,
14,
29412,
14,
13155,
7535,
14,
2436,
672,
14,
9866,
14,
25835,
14,
5239,
37150,
13,
9078,
198,
2,
3740,
1378,
12567,
13,
785,
14,
29412,
14,
13155,
7535,
14,
2436,
672,
14,
9866,
14,
43,
2149,
24290,
198,
198,
834,
260,
10178,
834,
796,
17971,
7390,
3,
1,
198,
198,
11748,
4731,
11,
302,
198,
198,
2,
2141,
262,
826,
1517,
351,
25131,
3815,
329,
477,
1900,
11361,
6300,
198,
2,
357,
568,
428,
8265,
460,
307,
18984,
284,
4493,
326,
836,
470,
4745,
319,
11361,
198,
2,
362,
13,
18,
11,
304,
13,
70,
13,
13123,
1134,
290,
14432,
26791,
8,
416,
8820,
434,
278,
262,
2512,
286,
2438,
2174,
13,
198,
2,
28311,
25,
198,
2,
220,
220,
220,
6407,
11,
10352,
198,
2,
16341,
6530,
12331,
25,
198,
2,
220,
220,
220,
357,
17821,
11,
10352,
8,
796,
357,
16,
11,
657,
8,
198,
198,
834,
439,
834,
796,
37250,
8206,
36918,
2848,
20520,
198,
198,
2,
6912,
8189,
262,
8018,
13216,
10223,
3435,
284,
262,
1294,
12,
42643,
3978,
198,
2,
13216,
10223,
3435,
13,
220,
383,
1388,
1738,
329,
1804,
428,
318,
326,
287,
198,
2,
19694,
12,
3459,
3270,
12,
16,
11,
657,
27865,
15,
318,
1729,
12,
13395,
13216,
10223,
11,
523,
287,
1728,
1957,
274,
198,
2,
326,
2095,
13520,
510,
287,
4731,
13,
1929,
2737,
10223,
13,
220,
1874,
35570,
198,
2,
4731,
13,
1929,
2737,
10223,
287,
883,
2663,
561,
352,
8,
787,
2420,
37150,
2190,
657,
27865,
15,
262,
198,
2,
976,
355,
597,
584,
13216,
10223,
1149,
11,
543,
318,
4084,
2642,
357,
270,
338,
257,
198,
2,
1635,
13159,
12,
13395,
9,
2272,
828,
362,
8,
5457,
2728,
2761,
351,
34371,
11,
198,
2,
1201,
657,
27865,
15,
318,
407,
287,
2837,
7,
12762,
737,
198,
62,
1929,
2737,
10223,
796,
705,
59,
83,
59,
77,
59,
87,
15,
65,
59,
87,
15,
66,
59,
81,
705,
198,
198,
4871,
8255,
36918,
2848,
25,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
9515,
329,
27074,
14,
69,
4509,
2420,
13,
220,
383,
1171,
7071,
10874,
286,
198,
220,
220,
220,
262,
14441,
3419,
290,
6070,
3419,
5050,
26,
262,
584,
5050,
389,
655,
612,
329,
198,
220,
220,
220,
850,
37724,
284,
20957,
287,
1502,
284,
25393,
262,
4277,
9172,
13,
198,
220,
220,
220,
1002,
345,
765,
284,
3190,
6330,
262,
1388,
27074,
11862,
11,
198,
220,
220,
220,
345,
1183,
2192,
423,
284,
20957,
4808,
37150,
62,
354,
14125,
22446,
628,
220,
220,
220,
12168,
4554,
12608,
1630,
2972,
7612,
286,
27074,
25,
198,
220,
220,
220,
220,
220,
9647,
357,
12286,
25,
4317,
8,
198,
220,
220,
220,
220,
220,
220,
220,
262,
5415,
9647,
286,
12908,
3951,
357,
25252,
2270,
62,
6511,
62,
10879,
198,
220,
220,
220,
220,
220,
220,
220,
318,
3991,
8,
198,
220,
220,
220,
220,
220,
4238,
62,
521,
298,
357,
12286,
25,
366,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
4731,
326,
481,
307,
3143,
1631,
284,
262,
717,
1627,
286,
12908,
198,
220,
220,
220,
220,
220,
220,
220,
5072,
13,
220,
2764,
82,
3371,
262,
1627,
338,
9647,
13,
198,
220,
220,
220,
220,
220,
8840,
62,
521,
298,
357,
12286,
25,
366,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
4731,
326,
481,
307,
3143,
1631,
284,
477,
3951,
3613,
262,
717,
198,
220,
220,
220,
220,
220,
220,
220,
286,
12908,
5072,
26,
635,
9853,
3371,
1123,
1627,
338,
9647,
13,
198,
220,
220,
220,
220,
220,
4292,
62,
8658,
82,
357,
12286,
25,
2081,
8,
198,
220,
220,
220,
220,
220,
220,
220,
49368,
22524,
287,
5128,
2420,
284,
9029,
878,
2252,
7587,
13,
198,
220,
220,
220,
220,
220,
220,
220,
5501,
7400,
481,
1716,
352,
11485,
807,
9029,
11,
6906,
319,
663,
2292,
287,
198,
220,
220,
220,
220,
220,
220,
220,
663,
1627,
13,
220,
1002,
3991,
11,
1123,
7400,
318,
5716,
355,
257,
2060,
2095,
13,
198,
220,
220,
220,
220,
220,
6330,
62,
1929,
2737,
10223,
357,
12286,
25,
2081,
8,
198,
220,
220,
220,
220,
220,
220,
220,
40177,
477,
13216,
10223,
3435,
287,
262,
5128,
2420,
416,
9029,
198,
220,
220,
220,
220,
220,
220,
220,
706,
7400,
7118,
13,
220,
5740,
326,
611,
4292,
62,
8658,
82,
318,
3991,
290,
198,
220,
220,
220,
220,
220,
220,
220,
6330,
62,
1929,
2737,
10223,
318,
2081,
11,
790,
7400,
481,
307,
11513,
284,
257,
198,
220,
220,
220,
220,
220,
220,
220,
2060,
2272,
0,
198,
220,
220,
220,
220,
220,
2270,
62,
6511,
62,
10879,
357,
12286,
25,
2081,
8,
198,
220,
220,
220,
220,
220,
220,
220,
12243,
2456,
2392,
621,
705,
10394,
4458,
220,
1002,
3991,
11,
883,
2456,
481,
407,
198,
220,
220,
220,
220,
220,
220,
220,
307,
5445,
11,
290,
617,
3951,
1244,
307,
2392,
621,
705,
10394,
4458,
198,
220,
220,
220,
220,
220,
2270,
62,
261,
62,
36362,
5135,
357,
12286,
25,
2081,
8,
198,
220,
220,
220,
220,
220,
220,
220,
22507,
7163,
5328,
831,
515,
2456,
13,
1002,
2081,
11,
27074,
481,
3051,
198,
220,
220,
220,
220,
220,
220,
220,
29203,
319,
13216,
43076,
290,
826,
706,
5328,
5135,
636,
286,
198,
220,
220,
220,
220,
220,
220,
220,
13061,
2456,
13,
198,
220,
220,
220,
220,
220,
4268,
62,
1929,
2737,
10223,
357,
12286,
25,
2081,
8,
198,
220,
220,
220,
220,
220,
220,
220,
14258,
3756,
290,
25462,
13216,
10223,
422,
3951,
13,
198,
220,
220,
220,
37227,
628,
220,
220,
220,
1303,
770,
42958,
1310,
40364,
318,
655,
262,
6908,
329,
26021,
198,
220,
220,
220,
1303,
2420,
510,
656,
1573,
12,
29988,
381,
540,
22716,
13,
220,
412,
13,
70,
13,
198,
220,
220,
220,
1303,
220,
220,
366,
15496,
612,
1377,
345,
31644,
12,
1894,
11,
779,
262,
532,
65,
3038,
2474,
198,
220,
220,
220,
1303,
30778,
656,
198,
220,
220,
220,
1303,
220,
220,
18435,
14,
1220,
8117,
14,
1220,
438,
14,
1220,
5832,
14,
1220,
2188,
1659,
12,
14,
1894,
11,
14,
1220,
1904,
14,
1220,
1169,
14,
1220,
12,
65,
14,
1220,
18076,
0,
198,
220,
220,
220,
1303,
357,
8499,
37727,
503,
6565,
13042,
737,
198,
220,
220,
220,
1573,
325,
79,
62,
260,
796,
302,
13,
5589,
576,
7,
198,
220,
220,
220,
220,
220,
220,
220,
374,
6,
38016,
82,
10,
91,
6,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
597,
13216,
10223,
198,
220,
220,
220,
220,
220,
220,
220,
374,
6,
58,
61,
59,
82,
59,
86,
60,
9,
59,
86,
10,
58,
61,
15,
12,
24,
59,
54,
60,
30420,
30,
28,
59,
86,
10,
58,
61,
15,
12,
24,
59,
54,
12962,
91,
6,
220,
220,
1303,
5328,
831,
515,
2456,
198,
220,
220,
220,
220,
220,
220,
220,
374,
6,
7,
30,
27,
41888,
59,
86,
59,
0,
7879,
43054,
59,
5,
17405,
59,
11,
59,
30,
12962,
12,
90,
17,
11,
92,
7,
30,
28,
59,
86,
4008,
11537,
220,
220,
1303,
795,
12,
42460,
628,
220,
220,
220,
1303,
770,
1342,
42958,
1310,
40364,
655,
6626,
319,
8018,
9029,
13,
412,
13,
70,
13,
198,
220,
220,
220,
1303,
220,
220,
366,
15496,
612,
1377,
345,
31644,
12,
1894,
11,
779,
262,
532,
65,
3038,
2474,
198,
220,
220,
220,
1303,
30778,
656,
198,
220,
220,
220,
1303,
220,
220,
18435,
14,
1220,
8117,
14,
1220,
438,
14,
1220,
5832,
14,
1220,
2188,
1659,
12,
1894,
11,
14,
1220,
1904,
14,
1220,
1169,
14,
1220,
12,
65,
14,
1220,
18076,
48443,
198,
220,
220,
220,
1573,
325,
79,
62,
36439,
62,
260,
796,
302,
13,
5589,
576,
7,
81,
6,
38016,
82,
28988,
11537,
628,
198,
220,
220,
220,
1303,
1377,
15348,
5050,
20368,
24305,
198,
220,
220,
220,
1303,
357,
39363,
4465,
329,
850,
37724,
284,
20957,
8,
628,
220,
220,
220,
825,
4808,
35312,
7,
944,
11,
2420,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
62,
35312,
7,
5239,
1058,
4731,
8,
4613,
685,
8841,
60,
628,
220,
220,
220,
220,
220,
220,
220,
27758,
262,
2420,
284,
14441,
656,
773,
452,
12843,
22716,
13,
220,
609,
14125,
389,
198,
220,
220,
220,
220,
220,
220,
220,
407,
2407,
262,
976,
355,
2456,
26,
766,
4808,
37150,
62,
354,
14125,
3419,
329,
1336,
198,
220,
220,
220,
220,
220,
220,
220,
3307,
13,
220,
1081,
281,
1672,
11,
262,
2420,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
6803,
11,
31644,
12,
1894,
1377,
779,
262,
532,
65,
3038,
0,
198,
220,
220,
220,
220,
220,
220,
220,
9457,
656,
262,
1708,
22716,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
8567,
11,
3256,
705,
46083,
705,
2188,
1659,
12,
3256,
705,
1894,
3256,
705,
46083,
705,
438,
3256,
705,
46083,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
1904,
3256,
705,
46083,
705,
1169,
3256,
705,
46083,
705,
12,
65,
3256,
705,
46083,
705,
18076,
13679,
198,
220,
220,
220,
220,
220,
220,
220,
611,
2270,
62,
261,
62,
36362,
5135,
318,
6407,
11,
393,
287,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
8567,
11,
3256,
705,
46083,
705,
2188,
1659,
12,
1894,
3256,
705,
46083,
705,
438,
3256,
705,
46083,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
1904,
3256,
705,
46083,
705,
1169,
3256,
705,
46083,
705,
12,
65,
3256,
705,
46083,
3038,
13679,
198,
220,
220,
220,
220,
220,
220,
220,
4306,
13,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
611,
2116,
13,
9032,
62,
261,
62,
36362,
5135,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1458,
796,
2116,
13,
4775,
325,
79,
62,
260,
198,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1458,
796,
2116,
13,
4775,
325,
79,
62,
36439,
62,
260,
198,
220,
220,
220,
220,
220,
220,
220,
22716,
796,
1458,
13,
35312,
7,
5239,
13,
12501,
1098,
7203,
75,
10680,
12,
16,
48774,
198,
220,
220,
220,
220,
220,
220,
220,
22716,
796,
1351,
7,
24455,
7,
14202,
11,
22716,
4008,
220,
1303,
4781,
6565,
22716,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
22716,
628,
220,
220,
220,
825,
4808,
28144,
62,
6511,
62,
4775,
7,
944,
11,
17687,
62,
354,
14125,
11,
1090,
62,
1370,
11,
1090,
62,
11925,
11,
9647,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
62,
28144,
62,
6511,
62,
4775,
7,
354,
14125,
1058,
685,
8841,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1090,
62,
1370,
1058,
685,
8841,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1090,
62,
11925,
1058,
493,
11,
9647,
1058,
493,
8,
628,
220,
220,
220,
220,
220,
220,
220,
33141,
257,
16058,
286,
2420,
357,
1712,
1884,
257,
1573,
11,
407,
13216,
10223,
8,
326,
198,
220,
220,
220,
220,
220,
220,
220,
318,
1165,
890,
284,
4197,
287,
597,
1627,
13,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
11291,
503,
618,
33793,
318,
4025,
621,
262,
7368,
9647,
11,
290,
787,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
1654,
379,
1551,
530,
2095,
318,
18818,
572,
319,
790,
1208,
198,
220,
220,
220,
220,
220,
220,
220,
611,
9647,
1279,
352,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2272,
62,
9464,
796,
352,
198,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2272,
62,
9464,
796,
9647,
532,
1090,
62,
11925,
628,
220,
220,
220,
220,
220,
220,
220,
1303,
1002,
356,
821,
3142,
284,
2270,
890,
2456,
11,
788,
466,
523,
25,
1234,
355,
881,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
286,
262,
1306,
16058,
4291,
262,
1459,
1627,
355,
481,
4197,
13,
198,
220,
220,
220,
220,
220,
220,
220,
611,
2116,
13,
9032,
62,
6511,
62,
10879,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1090,
62,
1370,
13,
33295,
7,
260,
690,
276,
62,
354,
14125,
58,
12,
16,
7131,
25,
13200,
62,
9464,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
17687,
62,
354,
14125,
58,
12,
16,
60,
796,
17687,
62,
354,
14125,
58,
12,
16,
7131,
13200,
62,
9464,
47715,
628,
220,
220,
220,
220,
220,
220,
220,
1303,
15323,
11,
356,
423,
284,
12201,
262,
890,
1573,
16572,
13,
220,
5514,
751,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
340,
284,
262,
1459,
1627,
611,
612,
338,
2147,
1541,
612,
1377,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
326,
10356,
4340,
703,
881,
356,
16967,
262,
9647,
32315,
13,
198,
220,
220,
220,
220,
220,
220,
220,
1288,
361,
407,
1090,
62,
1370,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1090,
62,
1370,
13,
33295,
7,
260,
690,
276,
62,
354,
14125,
13,
12924,
28955,
628,
220,
220,
220,
220,
220,
220,
220,
1303,
1002,
356,
821,
407,
3142,
284,
2270,
890,
2456,
11,
290,
612,
338,
1541,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
2420,
319,
262,
1459,
1627,
11,
466,
2147,
13,
220,
7406,
640,
832,
262,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
1388,
9052,
286,
4808,
37150,
62,
354,
14125,
22784,
356,
1183,
2344,
510,
994,
757,
11,
475,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
1090,
62,
11925,
481,
307,
6632,
11,
523,
262,
1306,
1627,
481,
307,
5000,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
13378,
284,
262,
890,
1573,
326,
356,
460,
470,
5412,
826,
783,
13,
198,
220,
220,
220,
220,
198,
220,
220,
220,
1303,
10687,
284,
2074,
4096,
3537,
11584,
6654,
16311,
355,
6632,
12,
10394,
198,
220,
220,
220,
220,
220,
220,
220,
220,
198,
220,
220,
220,
825,
4808,
37150,
62,
354,
14125,
7,
944,
11,
22716,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
62,
37150,
62,
354,
14125,
7,
354,
14125,
1058,
685,
8841,
12962,
4613,
685,
8841,
60,
628,
220,
220,
220,
220,
220,
220,
220,
41028,
257,
8379,
286,
2420,
22716,
290,
1441,
257,
1351,
286,
3951,
286,
198,
220,
220,
220,
220,
220,
220,
220,
4129,
705,
944,
13,
10394,
6,
393,
1342,
13,
220,
357,
1532,
705,
9032,
62,
6511,
62,
10879,
6,
318,
3991,
11,
198,
220,
220,
220,
220,
220,
220,
220,
617,
3951,
743,
307,
2392,
621,
428,
2014,
220,
609,
14125,
6053,
7323,
198,
220,
220,
220,
220,
220,
220,
220,
284,
2456,
290,
262,
13216,
10223,
1022,
606,
25,
1123,
16058,
318,
198,
220,
220,
220,
220,
220,
220,
220,
773,
452,
12843,
357,
4666,
43348,
705,
9032,
62,
6511,
62,
10879,
33809,
475,
257,
1627,
2270,
460,
198,
220,
220,
220,
220,
220,
220,
220,
1282,
1022,
597,
734,
22716,
13,
220,
609,
14125,
815,
407,
423,
5387,
198,
220,
220,
220,
220,
220,
220,
220,
13216,
10223,
26,
37941,
13,
257,
16058,
318,
2035,
477,
13216,
10223,
393,
257,
366,
4775,
1911,
198,
220,
220,
220,
220,
220,
220,
220,
29290,
10223,
22716,
481,
307,
4615,
422,
262,
3726,
290,
886,
286,
198,
220,
220,
220,
220,
220,
220,
220,
3951,
11,
475,
5475,
422,
326,
13216,
10223,
318,
17232,
13,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
3951,
796,
17635,
198,
220,
220,
220,
220,
220,
220,
220,
611,
2116,
13,
10394,
19841,
657,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5298,
11052,
12331,
7203,
259,
12102,
9647,
4064,
81,
357,
27238,
307,
1875,
657,
16725,
4064,
2116,
13,
10394,
8,
628,
220,
220,
220,
220,
220,
220,
220,
1303,
943,
9521,
287,
9575,
1502,
523,
3709,
460,
307,
18306,
22928,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
422,
257,
8931,
286,
442,
6238,
13,
198,
220,
220,
220,
220,
220,
220,
220,
22716,
13,
50188,
3419,
628,
220,
220,
220,
220,
220,
220,
220,
981,
22716,
25,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
7253,
262,
1351,
286,
22716,
326,
481,
787,
510,
262,
1459,
1627,
13,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
1090,
62,
11925,
318,
655,
262,
4129,
286,
477,
262,
22716,
287,
1090,
62,
1370,
13,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1090,
62,
1370,
796,
17635,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1090,
62,
11925,
796,
657,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
11291,
503,
543,
9037,
4731,
481,
21231,
428,
1627,
13,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
3951,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
33793,
796,
2116,
13,
7266,
44399,
62,
521,
298,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
33793,
796,
2116,
13,
36733,
62,
521,
298,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
22246,
9647,
329,
428,
1627,
13,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
9647,
796,
2116,
13,
10394,
532,
18896,
7,
521,
298,
8,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
3274,
16058,
319,
1627,
318,
13216,
10223,
1377,
4268,
340,
11,
4556,
428,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
318,
262,
845,
3726,
286,
262,
2420,
357,
494,
13,
645,
3951,
2067,
1865,
737,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
2116,
13,
14781,
62,
1929,
2737,
10223,
290,
22716,
58,
12,
16,
4083,
36311,
3419,
6624,
10148,
290,
3951,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1619,
22716,
58,
12,
16,
60,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
981,
22716,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
300,
796,
2116,
13557,
1136,
62,
354,
2954,
62,
13664,
7,
354,
14125,
58,
12,
16,
12962,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
1680,
379,
1551,
21229,
428,
16058,
4291,
262,
1459,
1627,
13,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
1090,
62,
11925,
1343,
300,
19841,
9647,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1090,
62,
1370,
13,
33295,
7,
354,
14125,
13,
12924,
28955,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1090,
62,
11925,
15853,
300,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
39544,
11,
428,
1627,
318,
1336,
13,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2270,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
383,
1459,
1627,
318,
1336,
11,
290,
262,
1306,
16058,
318,
1165,
1263,
284,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
4197,
319,
1635,
1092,
9,
1627,
357,
1662,
655,
428,
530,
737,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
22716,
290,
2116,
13557,
1136,
62,
354,
2954,
62,
13664,
7,
354,
14125,
58,
12,
16,
12962,
1875,
9647,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13557,
28144,
62,
6511,
62,
4775,
7,
354,
14125,
11,
1090,
62,
1370,
11,
1090,
62,
11925,
11,
9647,
8,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
1002,
262,
938,
16058,
319,
428,
1627,
318,
477,
13216,
10223,
11,
4268,
340,
13,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
2116,
13,
14781,
62,
1929,
2737,
10223,
290,
1090,
62,
1370,
290,
1090,
62,
1370,
58,
12,
16,
4083,
36311,
3419,
6624,
10148,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1619,
1090,
62,
1370,
58,
12,
16,
60,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
38240,
1459,
1627,
736,
284,
257,
4731,
290,
3650,
340,
287,
1351,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
286,
477,
3951,
357,
7783,
1988,
737,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
1090,
62,
1370,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3951,
13,
33295,
7,
521,
298,
1343,
705,
4458,
22179,
7,
22019,
62,
1370,
4008,
628,
220,
220,
220,
220,
220,
220,
220,
1441,
3951,
628,
198,
220,
220,
220,
1303,
1377,
5094,
7071,
20368,
26171,
628,
220,
220,
220,
825,
14441,
7,
944,
11,
2420,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
37150,
7,
5239,
1058,
4731,
8,
4613,
685,
8841,
60,
628,
220,
220,
220,
220,
220,
220,
220,
17893,
265,
262,
2060,
7322,
287,
705,
5239,
6,
523,
340,
11414,
287,
3951,
286,
198,
220,
220,
220,
220,
220,
220,
220,
645,
517,
621,
705,
944,
13,
10394,
6,
15180,
11,
290,
1441,
257,
1351,
286,
12908,
198,
220,
220,
220,
220,
220,
220,
220,
3951,
13,
220,
309,
8937,
287,
705,
5239,
6,
389,
9902,
351,
4731,
13,
11201,
392,
8658,
82,
22784,
198,
220,
220,
220,
220,
220,
220,
220,
290,
477,
584,
13216,
10223,
3435,
357,
8201,
649,
1370,
8,
389,
198,
220,
220,
220,
220,
220,
220,
220,
11513,
284,
2272,
13,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
22716,
796,
2116,
13557,
35312,
7,
5239,
8,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
2116,
13557,
37150,
62,
354,
14125,
7,
354,
14125,
8,
628,
220,
220,
220,
825,
6070,
7,
944,
11,
2420,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
20797,
7,
5239,
1058,
4731,
8,
4613,
4731,
628,
220,
220,
220,
220,
220,
220,
220,
17893,
265,
262,
2060,
7322,
287,
705,
5239,
6,
284,
4197,
287,
3951,
286,
645,
198,
220,
220,
220,
220,
220,
220,
220,
517,
621,
705,
944,
13,
10394,
6,
15180,
11,
290,
1441,
257,
649,
4731,
198,
220,
220,
220,
220,
220,
220,
220,
7268,
262,
2104,
12908,
7322,
13,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
37082,
77,
1911,
22179,
7,
944,
13,
37150,
7,
5239,
4008,
198
]
# Copyright 2014 Red Hat, Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License"); you may
# not use this file except in compliance with the License. You may obtain
# a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
# License for the specific language governing permissions and limitations
# under the License.
import netaddr
from oslo_utils import versionutils
import nova.conf
from nova import db
from nova import exception
from nova.i18n import _
from nova import objects
from nova.objects import base as obj_base
from nova.objects import fields
CONF = nova.conf.CONF
# TODO(berrange): Remove NovaObjectDictCompat
@obj_base.NovaObjectRegistry.register
@obj_base.NovaObjectRegistry.register
[
2,
220,
220,
220,
15069,
1946,
2297,
10983,
11,
3457,
13,
198,
2,
198,
2,
220,
220,
220,
49962,
739,
262,
24843,
13789,
11,
10628,
362,
13,
15,
357,
1169,
366,
34156,
15341,
345,
743,
198,
2,
220,
220,
220,
407,
779,
428,
2393,
2845,
287,
11846,
351,
262,
13789,
13,
921,
743,
7330,
198,
2,
220,
220,
220,
257,
4866,
286,
262,
13789,
379,
198,
2,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
2638,
1378,
2503,
13,
43073,
13,
2398,
14,
677,
4541,
14,
43,
2149,
24290,
12,
17,
13,
15,
198,
2,
198,
2,
220,
220,
220,
17486,
2672,
416,
9723,
1099,
393,
4987,
284,
287,
3597,
11,
3788,
198,
2,
220,
220,
220,
9387,
739,
262,
13789,
318,
9387,
319,
281,
366,
1921,
3180,
1,
29809,
1797,
11,
42881,
198,
2,
220,
220,
220,
34764,
11015,
6375,
7102,
49828,
11053,
3963,
15529,
509,
12115,
11,
2035,
4911,
393,
17142,
13,
4091,
262,
198,
2,
220,
220,
220,
13789,
329,
262,
2176,
3303,
15030,
21627,
290,
11247,
198,
2,
220,
220,
220,
739,
262,
13789,
13,
198,
198,
11748,
2010,
29851,
198,
6738,
28686,
5439,
62,
26791,
1330,
2196,
26791,
198,
198,
11748,
645,
6862,
13,
10414,
198,
6738,
645,
6862,
1330,
20613,
198,
6738,
645,
6862,
1330,
6631,
198,
6738,
645,
6862,
13,
72,
1507,
77,
1330,
4808,
198,
6738,
645,
6862,
1330,
5563,
198,
6738,
645,
6862,
13,
48205,
1330,
2779,
355,
26181,
62,
8692,
198,
6738,
645,
6862,
13,
48205,
1330,
7032,
198,
198,
10943,
37,
796,
645,
6862,
13,
10414,
13,
10943,
37,
628,
198,
2,
16926,
46,
7,
527,
9521,
2599,
17220,
17711,
10267,
35,
713,
40073,
198,
31,
26801,
62,
8692,
13,
45,
10071,
10267,
8081,
4592,
13,
30238,
628,
198,
31,
26801,
62,
8692,
13,
45,
10071,
10267,
8081,
4592,
13,
30238,
198
]
from PIL import Image
from PIL.ExifTags import TAGS
import exifread
import re
import json
def get_exif_data(fname):
"""Get embedded EXIF data from image file."""
ret = {}
try:
img = Image.open(fname)
if hasattr( img, '_getexif' ):
exifinfo = img._getexif()
if exifinfo != None:
for tag, value in exifinfo.items():
decoded = TAGS.get(tag, tag)
ret[decoded] = value
except IOError:
print('IOERROR ' + fname)
return ret
if __name__ == '__main__':
fileName = "1 (36).jpg"
# exif = get_exif_data(fileName)
# print(exif)
read()
[
6738,
350,
4146,
1330,
7412,
198,
6738,
350,
4146,
13,
3109,
361,
36142,
1330,
37801,
50,
198,
11748,
409,
361,
961,
198,
11748,
302,
198,
198,
11748,
33918,
198,
198,
4299,
651,
62,
1069,
361,
62,
7890,
7,
69,
3672,
2599,
198,
220,
220,
220,
37227,
3855,
14553,
7788,
5064,
1366,
422,
2939,
2393,
526,
15931,
198,
220,
220,
220,
1005,
796,
23884,
198,
220,
220,
220,
1949,
25,
198,
220,
220,
220,
220,
220,
220,
220,
33705,
796,
7412,
13,
9654,
7,
69,
3672,
8,
198,
220,
220,
220,
220,
220,
220,
220,
611,
468,
35226,
7,
33705,
11,
705,
62,
1136,
1069,
361,
6,
15179,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
409,
361,
10951,
796,
33705,
13557,
1136,
1069,
361,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
409,
361,
10951,
14512,
6045,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
329,
7621,
11,
1988,
287,
409,
361,
10951,
13,
23814,
33529,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
875,
9043,
796,
37801,
50,
13,
1136,
7,
12985,
11,
7621,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1005,
58,
12501,
9043,
60,
796,
1988,
198,
220,
220,
220,
2845,
24418,
12331,
25,
198,
220,
220,
220,
220,
220,
220,
220,
3601,
10786,
9399,
24908,
705,
1343,
277,
3672,
8,
198,
220,
220,
220,
1441,
1005,
198,
361,
11593,
3672,
834,
6624,
705,
834,
12417,
834,
10354,
198,
220,
220,
220,
2393,
5376,
796,
366,
16,
357,
2623,
737,
9479,
1,
198,
220,
220,
220,
1303,
409,
361,
796,
651,
62,
1069,
361,
62,
7890,
7,
7753,
5376,
8,
198,
220,
220,
220,
1303,
3601,
7,
1069,
361,
8,
628,
220,
220,
220,
1100,
3419
]
from flask import Flask
from flask_sqlalchemy import SQLAlchemy
from flask_migrate import Migrate
from flask_bootstrap import Bootstrap
from flask_login import LoginManager
from flask_moment import Moment
from flask_mail import Mail
# from flask_mail_sendgrid import MailSendGrid
from config import Config
from logging.handlers import RotatingFileHandler
import logging
import os
db = SQLAlchemy()
migrate = Migrate()
bootstrap = Bootstrap()
login = LoginManager()
moment = Moment()
mail = Mail()
from app import models
[
6738,
42903,
1330,
46947,
198,
6738,
42903,
62,
25410,
282,
26599,
1330,
16363,
2348,
26599,
198,
6738,
42903,
62,
76,
42175,
1330,
337,
42175,
198,
6738,
42903,
62,
18769,
26418,
1330,
18892,
26418,
198,
6738,
42903,
62,
38235,
1330,
23093,
13511,
198,
6738,
42903,
62,
32542,
298,
1330,
29278,
198,
6738,
42903,
62,
4529,
1330,
11099,
198,
2,
422,
42903,
62,
4529,
62,
21280,
25928,
1330,
11099,
25206,
41339,
198,
6738,
4566,
1330,
17056,
198,
6738,
18931,
13,
4993,
8116,
1330,
18481,
803,
8979,
25060,
198,
11748,
18931,
198,
11748,
28686,
628,
198,
9945,
796,
16363,
2348,
26599,
3419,
198,
76,
42175,
796,
337,
42175,
3419,
198,
18769,
26418,
796,
18892,
26418,
3419,
198,
38235,
796,
23093,
13511,
3419,
198,
32542,
298,
796,
29278,
3419,
198,
4529,
796,
11099,
3419,
628,
198,
6738,
598,
1330,
4981,
198
]
'''
File: test_conversions.py
Author: Adam Pah
Description:
py.test test ensemble
'''
import pytest
import conversions as conv
class TestConvertTimeseries:
'''
Covers the convert_timeseries_to_intervalseries function
'''
timeseries = [[0, 2], [2, 3], [5, 3]]
def test_basic(self):
'''
Timeseries conversion test.
'''
#Set up the answer
intervalseries = [[0, 2], [1, 3]]
#Get the intervalseries
test_intervals = conv.convert_timeseries_to_intervalseries(self.timeseries)
#Just make sure that these things aren't the same
assert intervalseries == test_intervals
def test_yaxis_only(self):
'''
Timeseries conversion test with the yaxis only
'''
#Set up the answer
intervalseries = [2, 3]
#Get the intervalseries
test_intervals = conv.convert_timeseries_to_intervalseries(self.timeseries, yaxis_only=True)
#Just make sure that these things aren't the same
assert intervalseries == test_intervals
def test_negative_bounds(self):
'''
Test to make sure that system exit happens
'''
#Load up the data
timeseries = [[0, 2], [-2, 3], [4, 3]]
#Check for the system exit
with pytest.raises(SystemExit):
conv.convert_timeseries_to_intervalseries(timeseries, yaxis_only=True)
[
7061,
6,
198,
8979,
25,
1332,
62,
1102,
47178,
13,
9078,
198,
13838,
25,
7244,
350,
993,
198,
11828,
25,
220,
198,
9078,
13,
9288,
1332,
34549,
198,
7061,
6,
198,
11748,
12972,
9288,
198,
11748,
32626,
355,
3063,
198,
198,
4871,
6208,
3103,
1851,
28595,
10640,
25,
198,
220,
220,
220,
705,
7061,
198,
220,
220,
220,
1766,
690,
262,
10385,
62,
22355,
10640,
62,
1462,
62,
3849,
12786,
10640,
2163,
198,
220,
220,
220,
705,
7061,
198,
220,
220,
220,
1661,
10640,
796,
16410,
15,
11,
362,
4357,
685,
17,
11,
513,
4357,
685,
20,
11,
513,
11907,
628,
220,
220,
220,
825,
1332,
62,
35487,
7,
944,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
705,
7061,
198,
220,
220,
220,
220,
220,
220,
220,
3782,
10640,
11315,
1332,
13,
198,
220,
220,
220,
220,
220,
220,
220,
705,
7061,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
7248,
510,
262,
3280,
198,
220,
220,
220,
220,
220,
220,
220,
20016,
10640,
796,
16410,
15,
11,
362,
4357,
685,
16,
11,
513,
11907,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
3855,
262,
20016,
10640,
198,
220,
220,
220,
220,
220,
220,
220,
1332,
62,
3849,
12786,
796,
3063,
13,
1102,
1851,
62,
22355,
10640,
62,
1462,
62,
3849,
12786,
10640,
7,
944,
13,
22355,
10640,
8,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
5703,
787,
1654,
326,
777,
1243,
3588,
470,
262,
976,
198,
220,
220,
220,
220,
220,
220,
220,
6818,
20016,
10640,
6624,
1332,
62,
3849,
12786,
628,
220,
220,
220,
825,
1332,
62,
88,
22704,
62,
8807,
7,
944,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
705,
7061,
198,
220,
220,
220,
220,
220,
220,
220,
3782,
10640,
11315,
1332,
351,
262,
331,
22704,
691,
198,
220,
220,
220,
220,
220,
220,
220,
705,
7061,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
7248,
510,
262,
3280,
198,
220,
220,
220,
220,
220,
220,
220,
20016,
10640,
796,
685,
17,
11,
513,
60,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
3855,
262,
20016,
10640,
198,
220,
220,
220,
220,
220,
220,
220,
1332,
62,
3849,
12786,
796,
3063,
13,
1102,
1851,
62,
22355,
10640,
62,
1462,
62,
3849,
12786,
10640,
7,
944,
13,
22355,
10640,
11,
331,
22704,
62,
8807,
28,
17821,
8,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
5703,
787,
1654,
326,
777,
1243,
3588,
470,
262,
976,
198,
220,
220,
220,
220,
220,
220,
220,
6818,
20016,
10640,
6624,
1332,
62,
3849,
12786,
628,
220,
220,
220,
825,
1332,
62,
31591,
62,
65,
3733,
7,
944,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
705,
7061,
198,
220,
220,
220,
220,
220,
220,
220,
6208,
284,
787,
1654,
326,
1080,
8420,
4325,
198,
220,
220,
220,
220,
220,
220,
220,
705,
7061,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
8912,
510,
262,
1366,
198,
220,
220,
220,
220,
220,
220,
220,
1661,
10640,
796,
16410,
15,
11,
362,
4357,
25915,
17,
11,
513,
4357,
685,
19,
11,
513,
11907,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
9787,
329,
262,
1080,
8420,
198,
220,
220,
220,
220,
220,
220,
220,
351,
12972,
9288,
13,
430,
2696,
7,
11964,
30337,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3063,
13,
1102,
1851,
62,
22355,
10640,
62,
1462,
62,
3849,
12786,
10640,
7,
22355,
10640,
11,
331,
22704,
62,
8807,
28,
17821,
8,
198
]
from django.urls import reverse
from extforms.deprecated_forms import SWCEventRequestForm, DCEventRequestForm
from extrequests.models import (
EventRequest,
)
from workshops.models import Event, Organization
from workshops.tests.base import TestBase
[
6738,
42625,
14208,
13,
6371,
82,
1330,
9575,
198,
198,
6738,
1070,
23914,
13,
10378,
31023,
62,
23914,
1330,
12672,
5222,
1151,
18453,
8479,
11,
360,
5222,
1151,
18453,
8479,
198,
6738,
1070,
8897,
3558,
13,
27530,
1330,
357,
198,
220,
220,
220,
8558,
18453,
11,
198,
8,
198,
6738,
25982,
13,
27530,
1330,
8558,
11,
12275,
198,
6738,
25982,
13,
41989,
13,
8692,
1330,
6208,
14881,
628,
628
]
"""
Our HADS database gets loaded up with duplicates, this cleans it up.
called from RUN_MIDNIGHT.sh
"""
from __future__ import print_function
import datetime
import sys
import pytz
from pyiem.util import get_dbconn, utc
def query(sql, args=None):
"""
Do a query and make it atomic
"""
pgconn = get_dbconn('hads')
hcursor = pgconn.cursor()
sts = datetime.datetime.now()
hcursor.execute("set work_mem='16GB'")
hcursor.execute(sql, args if args is not None else [])
ets = datetime.datetime.now()
print("%7s [%8.4fs] %s" % (hcursor.rowcount, (ets - sts).total_seconds(),
sql))
hcursor.close()
pgconn.commit()
def workflow(valid):
''' Do the work for this date, which is set to 00 UTC '''
# Delete schoolnet data, since we created it in the first place!
tbl = "raw%s" % (valid.strftime("%Y_%m"),)
sql = """DELETE from """ + tbl + """ WHERE station IN
(SELECT id from stations WHERE network in ('KCCI','KELO','KIMT')
)"""
query(sql)
# make sure our tmp table does not exist
query("DROP TABLE IF EXISTS tmp")
# Extract unique obs to special table
sql = """CREATE table tmp as select distinct * from """+tbl+"""
WHERE valid BETWEEN %s and %s"""
args = (valid, valid + datetime.timedelta(hours=24))
query(sql, args)
# Delete them all!
sql = """delete from """+tbl+""" WHERE valid BETWEEN %s and %s"""
query(sql, args)
sql = "DROP index IF EXISTS "+tbl+"_idx"
query(sql)
sql = "DROP index IF EXISTS "+tbl+"_valid_idx"
query(sql)
# Insert from special table
sql = "INSERT into "+tbl+" SELECT * from tmp"
query(sql)
sql = "CREATE index %s_idx on %s(station,valid)" % (tbl, tbl)
query(sql)
sql = "CREATE index %s_valid_idx on %s(valid)" % (tbl, tbl)
query(sql)
sql = "DROP TABLE IF EXISTS tmp"
query(sql)
def main(argv):
"""Go Main Go"""
if len(argv) == 4:
utcnow = utc(int(argv[1]), int(argv[2]), int(argv[3]))
workflow(utcnow)
return
utcnow = datetime.datetime.utcnow()
utcnow = utcnow.replace(hour=0, minute=0, second=0, microsecond=0,
tzinfo=pytz.utc)
# Run for 'yesterday' and 35 days ago
for day in [1, 35]:
workflow(utcnow - datetime.timedelta(days=day))
if __name__ == '__main__':
# See how we are called
main(sys.argv)
[
37811,
198,
3954,
367,
47149,
6831,
3011,
9639,
510,
351,
14184,
16856,
11,
428,
20658,
340,
510,
13,
628,
1444,
422,
32494,
62,
44,
2389,
45,
9947,
13,
1477,
198,
37811,
198,
6738,
11593,
37443,
834,
1330,
3601,
62,
8818,
198,
11748,
4818,
8079,
198,
11748,
25064,
198,
198,
11748,
12972,
22877,
198,
6738,
12972,
26597,
13,
22602,
1330,
651,
62,
9945,
37043,
11,
3384,
66,
628,
198,
4299,
12405,
7,
25410,
11,
26498,
28,
14202,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
2141,
257,
12405,
290,
787,
340,
17226,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
23241,
37043,
796,
651,
62,
9945,
37043,
10786,
71,
5643,
11537,
198,
220,
220,
220,
289,
66,
21471,
796,
23241,
37043,
13,
66,
21471,
3419,
198,
220,
220,
220,
39747,
796,
4818,
8079,
13,
19608,
8079,
13,
2197,
3419,
198,
220,
220,
220,
289,
66,
21471,
13,
41049,
7203,
2617,
670,
62,
11883,
11639,
1433,
4579,
6,
4943,
198,
220,
220,
220,
289,
66,
21471,
13,
41049,
7,
25410,
11,
26498,
611,
26498,
318,
407,
6045,
2073,
685,
12962,
198,
220,
220,
220,
304,
912,
796,
4818,
8079,
13,
19608,
8079,
13,
2197,
3419,
198,
220,
220,
220,
3601,
7203,
4,
22,
82,
685,
4,
23,
13,
19,
9501,
60,
4064,
82,
1,
4064,
357,
71,
66,
21471,
13,
808,
9127,
11,
357,
1039,
532,
39747,
737,
23350,
62,
43012,
22784,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
44161,
4008,
198,
220,
220,
220,
289,
66,
21471,
13,
19836,
3419,
198,
220,
220,
220,
23241,
37043,
13,
41509,
3419,
628,
198,
4299,
30798,
7,
12102,
2599,
198,
220,
220,
220,
705,
7061,
2141,
262,
670,
329,
428,
3128,
11,
543,
318,
900,
284,
3571,
18119,
705,
7061,
198,
220,
220,
220,
1303,
23520,
1524,
3262,
1366,
11,
1201,
356,
2727,
340,
287,
262,
717,
1295,
0,
198,
220,
220,
220,
256,
2436,
796,
366,
1831,
4,
82,
1,
4064,
357,
12102,
13,
2536,
31387,
7203,
4,
56,
62,
4,
76,
12340,
8,
198,
220,
220,
220,
44161,
796,
37227,
7206,
2538,
9328,
422,
37227,
1343,
256,
2436,
1343,
37227,
33411,
4429,
3268,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
357,
46506,
4686,
422,
8985,
33411,
3127,
287,
19203,
42,
4093,
40,
41707,
42,
3698,
46,
41707,
42,
3955,
51,
11537,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1267,
37811,
198,
220,
220,
220,
12405,
7,
25410,
8,
628,
220,
220,
220,
1303,
787,
1654,
674,
45218,
3084,
857,
407,
2152,
198,
220,
220,
220,
12405,
7203,
7707,
3185,
43679,
16876,
7788,
1797,
4694,
45218,
4943,
198,
220,
220,
220,
1303,
29677,
3748,
10201,
284,
2041,
3084,
198,
220,
220,
220,
44161,
796,
37227,
43387,
6158,
3084,
45218,
355,
2922,
7310,
1635,
422,
37227,
10,
83,
2436,
10,
37811,
198,
220,
220,
220,
220,
220,
220,
220,
33411,
4938,
38651,
8845,
1677,
4064,
82,
290,
4064,
82,
37811,
198,
220,
220,
220,
26498,
796,
357,
12102,
11,
4938,
1343,
4818,
8079,
13,
16514,
276,
12514,
7,
24425,
28,
1731,
4008,
198,
220,
220,
220,
12405,
7,
25410,
11,
26498,
8,
628,
220,
220,
220,
1303,
23520,
606,
477,
0,
198,
220,
220,
220,
44161,
796,
37227,
33678,
422,
37227,
10,
83,
2436,
10,
37811,
33411,
4938,
38651,
8845,
1677,
4064,
82,
290,
4064,
82,
37811,
198,
220,
220,
220,
12405,
7,
25410,
11,
26498,
8,
628,
220,
220,
220,
44161,
796,
366,
7707,
3185,
6376,
16876,
7788,
1797,
4694,
43825,
83,
2436,
10,
1,
62,
312,
87,
1,
198,
220,
220,
220,
12405,
7,
25410,
8,
198,
220,
220,
220,
44161,
796,
366,
7707,
3185,
6376,
16876,
7788,
1797,
4694,
43825,
83,
2436,
10,
1,
62,
12102,
62,
312,
87,
1,
198,
220,
220,
220,
12405,
7,
25410,
8,
628,
220,
220,
220,
1303,
35835,
422,
2041,
3084,
198,
220,
220,
220,
44161,
796,
366,
20913,
17395,
656,
43825,
83,
2436,
10,
1,
33493,
1635,
422,
45218,
1,
198,
220,
220,
220,
12405,
7,
25410,
8,
628,
220,
220,
220,
44161,
796,
366,
43387,
6158,
6376,
4064,
82,
62,
312,
87,
319,
4064,
82,
7,
17529,
11,
12102,
16725,
4064,
357,
83,
2436,
11,
256,
2436,
8,
198,
220,
220,
220,
12405,
7,
25410,
8,
198,
220,
220,
220,
44161,
796,
366,
43387,
6158,
6376,
4064,
82,
62,
12102,
62,
312,
87,
319,
4064,
82,
7,
12102,
16725,
4064,
357,
83,
2436,
11,
256,
2436,
8,
198,
220,
220,
220,
12405,
7,
25410,
8,
628,
220,
220,
220,
44161,
796,
366,
7707,
3185,
43679,
16876,
7788,
1797,
4694,
45218,
1,
198,
220,
220,
220,
12405,
7,
25410,
8,
628,
198,
4299,
1388,
7,
853,
85,
2599,
198,
220,
220,
220,
37227,
5247,
8774,
1514,
37811,
198,
220,
220,
220,
611,
18896,
7,
853,
85,
8,
6624,
604,
25,
198,
220,
220,
220,
220,
220,
220,
220,
3384,
66,
2197,
796,
3384,
66,
7,
600,
7,
853,
85,
58,
16,
46570,
493,
7,
853,
85,
58,
17,
46570,
493,
7,
853,
85,
58,
18,
60,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
30798,
7,
315,
66,
2197,
8,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
198,
220,
220,
220,
3384,
66,
2197,
796,
4818,
8079,
13,
19608,
8079,
13,
315,
66,
2197,
3419,
198,
220,
220,
220,
3384,
66,
2197,
796,
3384,
66,
2197,
13,
33491,
7,
9769,
28,
15,
11,
5664,
28,
15,
11,
1218,
28,
15,
11,
4580,
12227,
28,
15,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
256,
89,
10951,
28,
9078,
22877,
13,
315,
66,
8,
198,
220,
220,
220,
1303,
5660,
329,
705,
8505,
6432,
6,
290,
3439,
1528,
2084,
198,
220,
220,
220,
329,
1110,
287,
685,
16,
11,
3439,
5974,
198,
220,
220,
220,
220,
220,
220,
220,
30798,
7,
315,
66,
2197,
532,
4818,
8079,
13,
16514,
276,
12514,
7,
12545,
28,
820,
4008,
628,
198,
361,
11593,
3672,
834,
6624,
705,
834,
12417,
834,
10354,
198,
220,
220,
220,
1303,
4091,
703,
356,
389,
1444,
198,
220,
220,
220,
1388,
7,
17597,
13,
853,
85,
8,
198
]
from django.db import models
[
6738,
42625,
14208,
13,
9945,
1330,
4981,
198,
220,
198
]
import numpy as np
import os
import pickle
#128x128
####################################################
'''
Inputs 128x128 pixel array
Returns label where:
label 0 = 1
label 1 = 2
etc
'''
'''
returns an array of arrays, each one is the data from one image
'''
###########################################
# training Code for class (comment it before running flask app)
#train()
# for filename in os.listdir('[more here]/images'):
# data = readTrainingData(path + filename)
# character = data[6]
# character = np.array(character, dtype='int')
# for i in range(128):
# print()
# for j in range(128):
# if (character[i][j] == 255):
# print('*', end ="")
# else:
# print('7', end ="")
# print()
# print('------------------------------------------------------------')
# print()
# print()
[
11748,
299,
32152,
355,
45941,
198,
11748,
28686,
198,
11748,
2298,
293,
198,
2,
12762,
87,
12762,
198,
220,
220,
220,
220,
220,
220,
220,
220,
198,
29113,
14468,
4242,
198,
7061,
6,
198,
20560,
82,
13108,
87,
12762,
17465,
7177,
198,
35561,
6167,
810,
25,
198,
18242,
657,
796,
352,
198,
18242,
352,
796,
362,
198,
14784,
198,
7061,
6,
198,
7061,
6,
198,
7783,
82,
281,
7177,
286,
220,
26515,
11,
1123,
530,
318,
262,
1366,
422,
530,
2939,
198,
7061,
6,
198,
198,
29113,
7804,
21017,
628,
198,
2,
3047,
6127,
329,
1398,
357,
23893,
340,
878,
2491,
42903,
598,
8,
198,
198,
2,
27432,
3419,
198,
198,
2,
329,
29472,
287,
28686,
13,
4868,
15908,
10786,
58,
3549,
994,
60,
14,
17566,
6,
2599,
198,
2,
220,
220,
220,
220,
1366,
796,
1100,
44357,
6601,
7,
6978,
1343,
29472,
8,
198,
2,
220,
220,
220,
220,
2095,
796,
1366,
58,
21,
60,
198,
2,
220,
220,
220,
220,
2095,
796,
45941,
13,
18747,
7,
22769,
11,
288,
4906,
11639,
600,
11537,
198,
2,
220,
220,
220,
220,
329,
1312,
287,
2837,
7,
12762,
2599,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
3601,
3419,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
329,
474,
287,
2837,
7,
12762,
2599,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
357,
22769,
58,
72,
7131,
73,
60,
6624,
14280,
2599,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3601,
10786,
9,
3256,
886,
796,
1,
4943,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3601,
10786,
22,
3256,
886,
796,
1,
4943,
198,
2,
220,
220,
220,
220,
3601,
3419,
198,
2,
220,
220,
220,
220,
3601,
10786,
47232,
10541,
11537,
198,
2,
220,
220,
220,
220,
3601,
3419,
198,
2,
220,
220,
220,
220,
3601,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220
]
# -*- coding: utf-8 -*-
"""Python implementation of the StalinSort algorithm.
References
----------
- :cite:`mathew` : @[email protected] (2018/10/26 04:20:16)
''I came up with a single pass O(n) sort algorithm I call StalinSort. You
iterate down the list of elements checking if they're in order. Any element
which is out of order is eliminated. At the end you have a sorted list.''
"""
def stalinsort(iterable, key=None, ascending=False):
"""Sorts iterable according to the single pass O(n) StalinSort algorithm.
Parameters
----------
iterable: iterable object
key: function
A function of one argument that is used to extract a comparison key
from each element. Default is None.
Returns
-------
survivors: list
List of surviving elements of iterable.
Example
-------
>>>from stalinsort import stalinsort
>>>a = [3, 2, 5, 7, 1, 3]
>>>stalinsort(a)
[3, 2, 1]
"""
ascending = False # There is only descent under communism.
if key is not None:
keys = iterable.apply(key)
else:
keys = list(iterable)
survivors = iterable[:1] # I prefer to think in terms of survivors.
for index, victim in enumerate(iterable[1:]):
if survivors[-1] >= keys[index + 1]:
survivors.append(victim)
return survivors
[
2,
532,
9,
12,
19617,
25,
3384,
69,
12,
23,
532,
9,
12,
198,
198,
37811,
37906,
7822,
286,
262,
17482,
42758,
11862,
13,
198,
198,
19927,
198,
35937,
198,
12,
220,
220,
1058,
66,
578,
25,
63,
6759,
6391,
63,
1058,
2488,
6759,
6391,
31,
47616,
46457,
13,
14557,
357,
7908,
14,
940,
14,
2075,
8702,
25,
1238,
25,
1433,
8,
198,
220,
220,
220,
10148,
40,
1625,
510,
351,
257,
2060,
1208,
440,
7,
77,
8,
3297,
11862,
314,
869,
17482,
42758,
13,
921,
198,
220,
220,
220,
11629,
378,
866,
262,
1351,
286,
4847,
10627,
611,
484,
821,
287,
1502,
13,
4377,
5002,
198,
220,
220,
220,
543,
318,
503,
286,
1502,
318,
15254,
13,
1629,
262,
886,
345,
423,
257,
23243,
1351,
13531,
198,
37811,
198,
198,
4299,
29049,
1040,
419,
7,
2676,
540,
11,
1994,
28,
14202,
11,
41988,
28,
25101,
2599,
198,
220,
220,
220,
37227,
50,
2096,
11629,
540,
1864,
284,
262,
2060,
1208,
440,
7,
77,
8,
17482,
42758,
11862,
13,
628,
220,
220,
220,
40117,
198,
220,
220,
220,
24200,
438,
198,
220,
220,
220,
11629,
540,
25,
11629,
540,
2134,
628,
220,
220,
220,
1994,
25,
2163,
198,
220,
220,
220,
220,
220,
220,
220,
317,
2163,
286,
530,
4578,
326,
318,
973,
284,
7925,
257,
7208,
1994,
198,
220,
220,
220,
220,
220,
220,
220,
422,
1123,
5002,
13,
15161,
318,
6045,
13,
628,
220,
220,
220,
16409,
198,
220,
220,
220,
35656,
198,
220,
220,
220,
13644,
25,
1351,
198,
220,
220,
220,
220,
220,
220,
220,
7343,
286,
16997,
4847,
286,
11629,
540,
13,
198,
220,
220,
220,
220,
198,
220,
220,
220,
17934,
198,
220,
220,
220,
35656,
198,
220,
220,
220,
13163,
6738,
29049,
1040,
419,
1330,
29049,
1040,
419,
198,
220,
220,
220,
13163,
64,
796,
685,
18,
11,
362,
11,
642,
11,
767,
11,
352,
11,
513,
60,
198,
220,
220,
220,
13163,
7757,
1040,
419,
7,
64,
8,
198,
220,
220,
220,
685,
18,
11,
362,
11,
352,
60,
198,
220,
220,
220,
37227,
628,
220,
220,
220,
41988,
796,
10352,
1303,
1318,
318,
691,
18598,
739,
27770,
13,
628,
220,
220,
220,
611,
1994,
318,
407,
6045,
25,
198,
220,
220,
220,
220,
220,
220,
220,
8251,
796,
11629,
540,
13,
39014,
7,
2539,
8,
198,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
8251,
796,
1351,
7,
2676,
540,
8,
628,
220,
220,
220,
13644,
796,
11629,
540,
58,
25,
16,
60,
1303,
314,
4702,
284,
892,
287,
2846,
286,
13644,
13,
198,
220,
220,
220,
329,
6376,
11,
3117,
287,
27056,
378,
7,
2676,
540,
58,
16,
47715,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
611,
220,
13644,
58,
12,
16,
60,
18189,
8251,
58,
9630,
1343,
352,
5974,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
13644,
13,
33295,
7,
32433,
320,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
198,
220,
220,
220,
1441,
13644,
198
]
import matplotlib.pyplot as plt
import numpy as np
from pyfmi import load_fmu
model = load_fmu('./PadeSlave.fmu')
inputs = ('inputVariable', lambda t: 5. * np.cos(t))
simulation = model.simulate(final_time=30, input=inputs)
plt.plot(simulation['time'], simulation['inputVariable'])
plt.plot(simulation['time'], simulation['outputVariable'])
plt.legend(['inputVariable', 'outputVariable'])
plt.xlabel('time')
plt.show()
[
11748,
2603,
29487,
8019,
13,
9078,
29487,
355,
458,
83,
198,
11748,
299,
32152,
355,
45941,
198,
6738,
12972,
69,
11632,
1330,
3440,
62,
69,
30300,
198,
198,
19849,
796,
3440,
62,
69,
30300,
7,
4458,
14,
47,
671,
11122,
1015,
13,
69,
30300,
11537,
198,
198,
15414,
82,
796,
19203,
15414,
43015,
3256,
37456,
256,
25,
642,
13,
1635,
45941,
13,
6966,
7,
83,
4008,
198,
14323,
1741,
796,
2746,
13,
14323,
5039,
7,
20311,
62,
2435,
28,
1270,
11,
5128,
28,
15414,
82,
8,
198,
198,
489,
83,
13,
29487,
7,
14323,
1741,
17816,
2435,
6,
4357,
18640,
17816,
15414,
43015,
6,
12962,
198,
489,
83,
13,
29487,
7,
14323,
1741,
17816,
2435,
6,
4357,
18640,
17816,
22915,
43015,
6,
12962,
198,
198,
489,
83,
13,
1455,
437,
7,
17816,
15414,
43015,
3256,
705,
22915,
43015,
6,
12962,
198,
489,
83,
13,
87,
18242,
10786,
2435,
11537,
198,
489,
83,
13,
12860,
3419,
198
]
# Requirements:
# - fmtc
# - nnedi3
# From:
# - https://github.com/mawen1250/VapourSynth-script
# - https://github.com/HomeOfVapourSynthEvolution/mvsfunc
import vapoursynth as vs
import math
## Gamma conversion functions from HAvsFunc-r18
# Convert the luma channel to linear light
# Convert back a clip to gamma-corrected luma
# Apply the inverse sigmoid curve to a clip in linear luminance
# Convert back a clip to linear luminance
## Gamma conversion functions from HAvsFunc-r18
[
2,
24422,
25,
198,
2,
220,
220,
532,
46996,
66,
198,
2,
220,
220,
532,
299,
2817,
72,
18,
198,
2,
3574,
25,
198,
2,
220,
220,
532,
3740,
1378,
12567,
13,
785,
14,
76,
707,
268,
1065,
1120,
14,
53,
499,
454,
29934,
400,
12,
12048,
198,
2,
220,
220,
532,
3740,
1378,
12567,
13,
785,
14,
16060,
5189,
53,
499,
454,
29934,
400,
15200,
2122,
14,
76,
14259,
20786,
198,
11748,
38187,
454,
28869,
400,
355,
3691,
198,
11748,
10688,
628,
628,
628,
198,
2235,
43595,
11315,
5499,
422,
367,
7355,
82,
37,
19524,
12,
81,
1507,
198,
2,
38240,
262,
300,
7487,
6518,
284,
14174,
1657,
198,
198,
2,
38240,
736,
257,
10651,
284,
34236,
12,
30283,
276,
300,
7487,
198,
198,
2,
27967,
262,
34062,
264,
17225,
1868,
12133,
284,
257,
10651,
287,
14174,
29763,
590,
198,
198,
2,
38240,
736,
257,
10651,
284,
14174,
29763,
590,
198,
2235,
43595,
11315,
5499,
422,
367,
7355,
82,
37,
19524,
12,
81,
1507
]
# -*- coding: utf-8 -*-
# Generated by Django 1.9.7 on 2017-03-17 17:29
from __future__ import unicode_literals
from django.db import migrations, models
[
2,
532,
9,
12,
19617,
25,
3384,
69,
12,
23,
532,
9,
12,
198,
2,
2980,
515,
416,
37770,
352,
13,
24,
13,
22,
319,
2177,
12,
3070,
12,
1558,
1596,
25,
1959,
198,
6738,
11593,
37443,
834,
1330,
28000,
1098,
62,
17201,
874,
198,
198,
6738,
42625,
14208,
13,
9945,
1330,
15720,
602,
11,
4981,
628
]
import numpy as np
import EZ.stderr as stderr
[
11748,
299,
32152,
355,
45941,
198,
11748,
412,
57,
13,
301,
1082,
81,
355,
336,
1082,
81,
628,
628,
628,
628,
628
]
from PyQt5 import QtGui, QtCore, QtWidgets
from collections import namedtuple
import time
import random
import torch
import torch.nn as nn
import torch.nn.functional as F
from utils import utils
HumanFeedback = namedtuple('HumanFeedback', ['feedback_value'])
SavedAction = namedtuple('SavedAction', ['state', 'action', 'logprob'])
SavedActionsWithFeedback = namedtuple('SavedActionsWithFeedback', ['saved_actions', 'final_feedback'])
[
6738,
9485,
48,
83,
20,
1330,
33734,
8205,
72,
11,
33734,
14055,
11,
33734,
54,
312,
11407,
198,
6738,
17268,
1330,
3706,
83,
29291,
198,
11748,
640,
198,
11748,
4738,
198,
11748,
28034,
198,
11748,
28034,
13,
20471,
355,
299,
77,
198,
11748,
28034,
13,
20471,
13,
45124,
355,
376,
198,
6738,
3384,
4487,
1330,
3384,
4487,
198,
198,
20490,
18332,
1891,
796,
3706,
83,
29291,
10786,
20490,
18332,
1891,
3256,
37250,
12363,
1891,
62,
8367,
6,
12962,
198,
50,
9586,
12502,
796,
3706,
83,
29291,
10786,
50,
9586,
12502,
3256,
37250,
5219,
3256,
705,
2673,
3256,
705,
6404,
1676,
65,
6,
12962,
198,
50,
9586,
32,
2733,
3152,
18332,
1891,
796,
3706,
83,
29291,
10786,
50,
9586,
32,
2733,
3152,
18332,
1891,
3256,
37250,
82,
9586,
62,
4658,
3256,
705,
20311,
62,
12363,
1891,
6,
12962,
628,
628,
628
]
import sys, random, string, time
rawBoard = ''
moves = 0
# size -> int
# generate board of size size x size filled with random chars
# @returns none
# textFile -> string
# loads a board from a text file
# @returns board in 2D list form
# board -> 2D array
# prints out the bogal board
# coordinate -> list, board -> 2D list
# @returns list of all possible next positions
# possibleMoves -> 2D list, usedPath -> 2D list
# @returns the list of all legal moves
# Function used for setting up all prefix dictionaries.
# This is not run with my program but was created because I'm lazy and
# didn't want to create the prefix dictionaries by hand.
# board -> 2D list, currPos -> list, path -> 2D list
# boggle board, xy pair current position, path that got to that position
# @returns tuple of the word created and whether it is a real word.
if __name__ == "__main__":
main()
[
11748,
25064,
11,
4738,
11,
4731,
11,
640,
201,
198,
201,
198,
1831,
29828,
796,
10148,
201,
198,
76,
5241,
796,
657,
201,
198,
2,
2546,
4613,
493,
201,
198,
2,
7716,
3096,
286,
2546,
2546,
2124,
2546,
5901,
351,
4738,
34534,
201,
198,
2,
2488,
7783,
82,
4844,
201,
198,
201,
198,
2,
2420,
8979,
4613,
4731,
201,
198,
2,
15989,
257,
3096,
422,
257,
2420,
2393,
201,
198,
2,
2488,
7783,
82,
3096,
287,
362,
35,
1351,
1296,
201,
198,
201,
198,
2,
3096,
4613,
362,
35,
7177,
201,
198,
2,
20842,
503,
262,
22922,
282,
3096,
201,
198,
201,
198,
2,
20435,
4613,
1351,
11,
3096,
4613,
362,
35,
1351,
201,
198,
2,
2488,
7783,
82,
1351,
286,
477,
1744,
1306,
6116,
201,
198,
201,
198,
2,
1744,
44,
5241,
4613,
362,
35,
1351,
11,
973,
15235,
4613,
362,
35,
1351,
201,
198,
2,
2488,
7783,
82,
262,
1351,
286,
477,
2742,
6100,
201,
198,
201,
198,
2,
15553,
973,
329,
4634,
510,
477,
21231,
48589,
3166,
13,
201,
198,
2,
770,
318,
407,
1057,
351,
616,
1430,
475,
373,
2727,
780,
314,
1101,
16931,
290,
201,
198,
2,
1422,
470,
765,
284,
2251,
262,
21231,
48589,
3166,
416,
1021,
13,
201,
198,
201,
198,
2,
3096,
4613,
362,
35,
1351,
11,
1090,
81,
21604,
4613,
1351,
11,
3108,
4613,
362,
35,
1351,
201,
198,
2,
275,
20258,
3096,
11,
2124,
88,
5166,
1459,
2292,
11,
3108,
326,
1392,
284,
326,
2292,
201,
198,
2,
2488,
7783,
82,
46545,
286,
262,
1573,
2727,
290,
1771,
340,
318,
257,
1103,
1573,
13,
201,
198,
201,
198,
361,
11593,
3672,
834,
6624,
366,
834,
12417,
834,
1298,
201,
198,
220,
220,
220,
1388,
3419
]
[
198,
1820,
37,
19524,
7203,
2504,
338,
15049,
4943,
198
]
import logging
import os
from netmiko import ConnectHandler
from paramiko import AutoAddPolicy, SSHClient
from routeros_diff.parser import RouterOSConfig
from scp import SCPClient
[
11748,
18931,
198,
11748,
28686,
198,
198,
6738,
2010,
76,
12125,
1330,
8113,
25060,
198,
6738,
5772,
12125,
1330,
11160,
4550,
36727,
11,
33825,
11792,
198,
6738,
20264,
418,
62,
26069,
13,
48610,
1330,
48538,
2640,
16934,
198,
6738,
629,
79,
1330,
17527,
11792,
628,
628,
628,
198
]
import pytest_pydocstyle
# https://docs.pytest.org/en/5.2.2/writing_plugins.html#testing-plugins
pytest_plugins = ["pytester"]
[
11748,
12972,
9288,
62,
79,
5173,
420,
7635,
198,
198,
2,
3740,
1378,
31628,
13,
9078,
9288,
13,
2398,
14,
268,
14,
20,
13,
17,
13,
17,
14,
16502,
62,
37390,
13,
6494,
2,
33407,
12,
37390,
198,
9078,
9288,
62,
37390,
796,
14631,
9078,
4879,
353,
8973,
628,
628,
628,
628,
628,
198
]
from peewee import *
import peeweedbevolve
from models_data import Tweet, Branch, calldb
db = calldb()
create_tables()
[
6738,
613,
413,
1453,
1330,
1635,
198,
11748,
613,
413,
2308,
1350,
85,
6442,
198,
198,
6738,
4981,
62,
7890,
1330,
18752,
11,
20551,
11,
2386,
335,
65,
198,
198,
9945,
796,
2386,
335,
65,
3419,
628,
198,
17953,
62,
83,
2977,
3419,
198
]
import json
import base64
from rest_framework import status
from rest_framework.test import APITestCase
from rest_framework.authtoken.models import Token
from .models import User
# Create your tests here.
ACCEPT_STATUS = "A"
REJECT_STATUS = "R"
UNFRIEND_STATUS = "R"
[
11748,
33918,
198,
11748,
2779,
2414,
198,
6738,
1334,
62,
30604,
1330,
3722,
198,
6738,
1334,
62,
30604,
13,
9288,
1330,
3486,
2043,
395,
20448,
198,
6738,
1334,
62,
30604,
13,
18439,
30001,
13,
27530,
1330,
29130,
198,
6738,
764,
27530,
1330,
11787,
198,
198,
2,
13610,
534,
5254,
994,
13,
198,
2246,
42006,
62,
35744,
2937,
796,
366,
32,
1,
198,
2200,
23680,
62,
35744,
2937,
796,
366,
49,
1,
198,
4944,
37,
7112,
10619,
62,
35744,
2937,
796,
366,
49,
1,
628,
198
]
# -*- coding: utf-8 -*-
################################################################################
# Copyright (C) 2009 Travis Shirk <[email protected] >
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
#
################################################################################
from __future__ import print_function
import os
from eyed3 import LOCAL_ENCODING as ENCODING
from eyed3.utils import formatSize, formatTime
from eyed3.utils.console import (printMsg, printError, printWarning, boldText,
Fore, HEADER_COLOR)
from eyed3.plugins import LoaderPlugin
[
2,
532,
9,
12,
19617,
25,
3384,
69,
12,
23,
532,
9,
12,
198,
29113,
29113,
14468,
198,
2,
220,
15069,
357,
34,
8,
3717,
220,
19804,
911,
14232,
1279,
83,
16956,
31,
79,
672,
1140,
13,
785,
29,
198,
2,
198,
2,
220,
770,
1430,
318,
1479,
3788,
26,
345,
460,
17678,
4163,
340,
290,
14,
273,
13096,
198,
2,
220,
340,
739,
262,
2846,
286,
262,
22961,
3611,
5094,
13789,
355,
3199,
416,
198,
2,
220,
262,
3232,
10442,
5693,
26,
2035,
2196,
362,
286,
262,
13789,
11,
393,
198,
2,
220,
357,
265,
534,
3038,
8,
597,
1568,
2196,
13,
198,
2,
198,
2,
220,
770,
1430,
318,
9387,
287,
262,
2911,
326,
340,
481,
307,
4465,
11,
198,
2,
220,
475,
42881,
15529,
34764,
56,
26,
1231,
772,
262,
17142,
18215,
286,
198,
2,
220,
34482,
3398,
1565,
5603,
25382,
393,
376,
46144,
7473,
317,
16652,
2149,
37232,
33079,
48933,
13,
220,
4091,
262,
198,
2,
220,
22961,
3611,
5094,
13789,
329,
517,
3307,
13,
198,
2,
198,
2,
220,
921,
815,
423,
2722,
257,
4866,
286,
262,
22961,
3611,
5094,
13789,
198,
2,
220,
1863,
351,
428,
1430,
26,
611,
407,
11,
3551,
284,
262,
3232,
10442,
198,
2,
220,
5693,
11,
3457,
1539,
7863,
10857,
8474,
11,
26264,
25508,
11,
6182,
11,
8779,
220,
7816,
16243,
12,
12952,
22,
220,
4916,
198,
2,
198,
29113,
29113,
14468,
198,
6738,
11593,
37443,
834,
1330,
3601,
62,
8818,
198,
11748,
28686,
198,
6738,
45320,
18,
1330,
37347,
1847,
62,
24181,
3727,
2751,
355,
412,
7792,
3727,
2751,
198,
6738,
45320,
18,
13,
26791,
1330,
5794,
10699,
11,
5794,
7575,
198,
6738,
45320,
18,
13,
26791,
13,
41947,
1330,
357,
4798,
50108,
11,
3601,
12331,
11,
3601,
20361,
11,
10758,
8206,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4558,
11,
39837,
1137,
62,
46786,
8,
198,
6738,
45320,
18,
13,
37390,
1330,
8778,
263,
37233,
628
]
# -*- coding: utf-8 -*-
"""Clothing_Recommender Project .ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/1nw0ewNdkx8o3WULAp2ynhHpbq1kVq7YZ
Clean the data and use input
"""
## Import and Organize Data ##
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
#read clean file (downloaded from Task 1)
df=pd.read_csv('CleanedData.csv', sep=',')
#Pivot table (clothingID, age, rating) - Nan is replaced with 0
train = df.pivot_table(index='Age', columns='ClothingID', values='Rating')
#sort train data
train = train.sort_values('Age', ascending=True)
###Create a greeting
print("Welcome, let us recommend a product for you")
#Take user input
Name =input('Please enter your name: ')
Age = int(input('Please enter your age: '))
CID_user = int(input("Enter Clothing ID: ")) #90
while CID_user not in train.columns:
print('Invalid: No data for ID')
CID_user = int(input("Enter valid Clothing ID: "))
rating_user = float(input("Enter Rating for Clothing ID: ")) #4
##use this later (if user has more than one rating to enter)
#entries = int(input("How many ratings will you enter? "))
#for x in range(entries):
#create array with user data
userArray = pd.DataFrame().reindex_like(train)
userArray.dropna(thresh=1,inplace=True)
userArray.loc[Age,CID_user] = rating_user #enter user data
from sklearn.metrics.pairwise import nan_euclidean_distances
#find euclidean distance between all rows of train and first row of test *ignores nan
distance = np.zeros((0,2)) #create empty array
for index, row in train.iterrows(): #iterate through each row of train
result = float(nan_euclidean_distances([userArray.loc[Age]], [train.loc[index]])) #compute the euclidean distance between two rows, *confirmed it works thru excel
result_array = [index, result] #place age and distance into an array
distance = np.append(distance,[result_array],axis= 0)
#convert array to a dataframe
dfDistance = pd.DataFrame({'Age': distance[:, 0], 'E-Distance': distance[:, 1]})
dfDistance.head()
k= 5
#sort by distance, reset the index
dfDistance = dfDistance.sort_values('E-Distance', ascending=True).head(20)
dfDistance = dfDistance.reset_index(drop=True)
dfDistance.drop(dfDistance[dfDistance.index > k-1].index, inplace=True)
dfDistance.head()
#NOTE: for calculating the predicted rating, could use an IDW Interpolation function shown here https://stackoverflow.com/questions/3104781/inverse-distance-weighted-idw-interpolation-with-python
#just using mean of each to test a solution, will come back and try more complex/accurate functions later
#assume k of 5####
k_array = pd.DataFrame().reindex_like(train)
meanArray = pd.DataFrame()
for x in dfDistance['Age']:
k_array = k_array.append([train.loc[x]]) #make array of the k closest ages
meanArray = meanArray.append(k_array.mean(),ignore_index = True).transpose()
meanArray.dropna(axis=0,inplace=True)
meanArray.columns = ["Mean"]
meanArray = meanArray[meanArray.Mean == 5]
recommend = list(meanArray.index.values)
print("recommended ClothingID's are: ")
print(recommend)
#feedback, clothingID (choose top 5), department
#reverse lookup clothingID for department
# feedback (choose first 3)
[
2,
532,
9,
12,
19617,
25,
3384,
69,
12,
23,
532,
9,
12,
198,
37811,
2601,
24834,
62,
24898,
2194,
4935,
764,
541,
2047,
65,
198,
198,
38062,
4142,
7560,
416,
1623,
4820,
2870,
13,
198,
198,
20556,
2393,
318,
5140,
379,
198,
220,
220,
220,
3740,
1378,
4033,
397,
13,
34033,
13,
13297,
13,
785,
14,
19472,
14,
16,
47516,
15,
413,
45,
34388,
87,
23,
78,
18,
54,
6239,
25189,
17,
2047,
71,
39,
40842,
80,
16,
74,
53,
80,
22,
56,
57,
198,
198,
32657,
262,
1366,
290,
779,
5128,
198,
37811,
198,
198,
2235,
17267,
290,
7221,
1096,
6060,
22492,
198,
198,
11748,
19798,
292,
355,
279,
67,
220,
198,
11748,
299,
32152,
355,
45941,
220,
198,
11748,
2603,
29487,
8019,
13,
9078,
29487,
355,
458,
83,
220,
198,
6738,
1341,
35720,
13,
19849,
62,
49283,
1330,
4512,
62,
9288,
62,
35312,
198,
198,
2,
961,
3424,
2393,
357,
2902,
14578,
422,
15941,
352,
8,
198,
7568,
28,
30094,
13,
961,
62,
40664,
10786,
32657,
276,
6601,
13,
40664,
3256,
41767,
28,
3256,
11537,
220,
198,
198,
2,
47,
45785,
3084,
357,
565,
24834,
2389,
11,
2479,
11,
7955,
8,
532,
18008,
318,
6928,
351,
657,
220,
198,
27432,
796,
47764,
13,
79,
45785,
62,
11487,
7,
9630,
11639,
23396,
3256,
15180,
11639,
2601,
24834,
2389,
3256,
3815,
11639,
29321,
11537,
198,
198,
2,
30619,
4512,
1366,
198,
27432,
796,
4512,
13,
30619,
62,
27160,
10786,
23396,
3256,
41988,
28,
17821,
8,
198,
198,
21017,
16447,
257,
31933,
220,
198,
198,
4798,
7203,
14618,
11,
1309,
514,
4313,
257,
1720,
329,
345,
4943,
198,
198,
2,
12322,
2836,
5128,
220,
198,
198,
5376,
796,
15414,
10786,
5492,
3802,
534,
1438,
25,
705,
8,
198,
23396,
796,
493,
7,
15414,
10786,
5492,
3802,
534,
2479,
25,
705,
4008,
198,
34,
2389,
62,
7220,
796,
493,
7,
15414,
7203,
17469,
48921,
4522,
25,
366,
4008,
1303,
3829,
198,
4514,
327,
2389,
62,
7220,
407,
287,
4512,
13,
28665,
82,
25,
198,
220,
3601,
10786,
44651,
25,
1400,
1366,
329,
4522,
11537,
198,
220,
327,
2389,
62,
7220,
796,
493,
7,
15414,
7203,
17469,
4938,
48921,
4522,
25,
366,
4008,
198,
8821,
62,
7220,
796,
12178,
7,
15414,
7203,
17469,
12028,
329,
48921,
4522,
25,
366,
4008,
1303,
19,
198,
198,
2235,
1904,
428,
1568,
357,
361,
2836,
468,
517,
621,
530,
7955,
284,
3802,
8,
198,
2,
298,
1678,
796,
493,
7,
15414,
7203,
2437,
867,
10109,
481,
345,
3802,
30,
366,
4008,
198,
2,
1640,
2124,
287,
2837,
7,
298,
1678,
2599,
198,
198,
2,
17953,
7177,
351,
2836,
1366,
220,
198,
7220,
19182,
796,
279,
67,
13,
6601,
19778,
22446,
260,
9630,
62,
2339,
7,
27432,
8,
198,
7220,
19182,
13,
14781,
2616,
7,
400,
3447,
28,
16,
11,
259,
5372,
28,
17821,
8,
198,
7220,
19182,
13,
17946,
58,
23396,
11,
34,
2389,
62,
7220,
60,
796,
7955,
62,
7220,
1303,
9255,
2836,
1366,
220,
198,
198,
6738,
1341,
35720,
13,
4164,
10466,
13,
24874,
3083,
1330,
15709,
62,
12496,
565,
485,
272,
62,
17080,
1817,
198,
198,
2,
19796,
304,
36616,
485,
272,
5253,
1022,
477,
15274,
286,
4512,
290,
717,
5752,
286,
1332,
220,
1635,
570,
2850,
15709,
198,
30246,
796,
45941,
13,
9107,
418,
19510,
15,
11,
17,
4008,
1303,
17953,
6565,
7177,
220,
198,
1640,
6376,
11,
5752,
287,
4512,
13,
2676,
8516,
33529,
220,
1303,
2676,
378,
832,
1123,
5752,
286,
4512,
220,
198,
220,
1255,
796,
12178,
7,
12647,
62,
12496,
565,
485,
272,
62,
17080,
1817,
26933,
7220,
19182,
13,
17946,
58,
23396,
60,
4357,
685,
27432,
13,
17946,
58,
9630,
11907,
4008,
1303,
5589,
1133,
262,
304,
36616,
485,
272,
5253,
1022,
734,
15274,
11,
1635,
36349,
340,
2499,
33834,
27336,
198,
220,
1255,
62,
18747,
796,
685,
9630,
11,
1255,
60,
1303,
5372,
2479,
290,
5253,
656,
281,
7177,
220,
198,
220,
5253,
796,
45941,
13,
33295,
7,
30246,
17414,
20274,
62,
18747,
4357,
22704,
28,
657,
8,
220,
198,
198,
2,
1102,
1851,
7177,
284,
257,
1366,
14535,
198,
7568,
45767,
796,
279,
67,
13,
6601,
19778,
15090,
6,
23396,
10354,
5253,
58,
45299,
657,
4357,
705,
36,
12,
45767,
10354,
5253,
58,
45299,
352,
60,
30072,
198,
7568,
45767,
13,
2256,
3419,
198,
198,
74,
28,
642,
198,
2,
30619,
416,
5253,
11,
13259,
262,
6376,
220,
198,
7568,
45767,
796,
47764,
45767,
13,
30619,
62,
27160,
10786,
36,
12,
45767,
3256,
41988,
28,
17821,
737,
2256,
7,
1238,
8,
198,
7568,
45767,
796,
47764,
45767,
13,
42503,
62,
9630,
7,
14781,
28,
17821,
8,
220,
198,
7568,
45767,
13,
14781,
7,
7568,
45767,
58,
7568,
45767,
13,
9630,
1875,
479,
12,
16,
4083,
9630,
11,
287,
5372,
28,
17821,
8,
198,
7568,
45767,
13,
2256,
3419,
198,
198,
2,
16580,
25,
329,
26019,
262,
11001,
7955,
11,
714,
779,
281,
4522,
54,
4225,
16104,
341,
2163,
3402,
994,
3740,
1378,
25558,
2502,
11125,
13,
785,
14,
6138,
507,
14,
26717,
2857,
6659,
14,
259,
4399,
12,
30246,
12,
6551,
276,
12,
312,
86,
12,
3849,
16104,
341,
12,
4480,
12,
29412,
198,
2,
3137,
1262,
1612,
286,
1123,
284,
1332,
257,
4610,
11,
481,
1282,
736,
290,
1949,
517,
3716,
14,
4134,
15537,
5499,
1568,
220,
198,
198,
2,
562,
2454,
479,
286,
642,
4242,
198,
74,
62,
18747,
796,
279,
67,
13,
6601,
19778,
22446,
260,
9630,
62,
2339,
7,
27432,
8,
198,
32604,
19182,
796,
279,
67,
13,
6601,
19778,
3419,
198,
198,
1640,
2124,
287,
47764,
45767,
17816,
23396,
6,
5974,
198,
220,
479,
62,
18747,
796,
479,
62,
18747,
13,
33295,
26933,
27432,
13,
17946,
58,
87,
11907,
8,
1303,
15883,
7177,
286,
262,
479,
11706,
9337,
198,
198,
32604,
19182,
796,
1612,
19182,
13,
33295,
7,
74,
62,
18747,
13,
32604,
22784,
46430,
62,
9630,
796,
6407,
737,
7645,
3455,
3419,
198,
32604,
19182,
13,
14781,
2616,
7,
22704,
28,
15,
11,
259,
5372,
28,
17821,
8,
198,
32604,
19182,
13,
28665,
82,
796,
14631,
5308,
272,
8973,
198,
32604,
19182,
796,
1612,
19182,
58,
32604,
19182,
13,
5308,
272,
6624,
642,
60,
198,
198,
47335,
437,
796,
1351,
7,
32604,
19182,
13,
9630,
13,
27160,
8,
198,
4798,
7203,
47335,
1631,
48921,
2389,
338,
389,
25,
366,
8,
198,
4798,
7,
47335,
437,
8,
198,
198,
2,
12363,
1891,
11,
9528,
2389,
357,
6679,
577,
1353,
642,
828,
5011,
220,
198,
2,
50188,
35847,
9528,
2389,
329,
5011,
220,
198,
2,
7538,
357,
6679,
577,
717,
513,
8,
628
]
from rtree.index import Rtree
from src.features.helper import *
import sys
import logging
import time
if __name__ == '__main__':
train_data = sys.argv[1]
q_size = int(sys.argv[2])
main(train_data, q_size)
[
6738,
374,
21048,
13,
9630,
1330,
371,
21048,
198,
6738,
12351,
13,
40890,
13,
2978,
525,
1330,
1635,
198,
11748,
25064,
198,
11748,
18931,
198,
11748,
640,
628,
198,
198,
361,
11593,
3672,
834,
6624,
705,
834,
12417,
834,
10354,
198,
220,
220,
220,
4512,
62,
7890,
796,
25064,
13,
853,
85,
58,
16,
60,
198,
220,
220,
220,
10662,
62,
7857,
796,
493,
7,
17597,
13,
853,
85,
58,
17,
12962,
198,
220,
220,
220,
1388,
7,
27432,
62,
7890,
11,
10662,
62,
7857,
8,
198
]
from app import app
import logging
logging.basicConfig(level=logging.WARNING)
if __name__ == "__main__":
app.debug = True
app.run()
[
6738,
598,
1330,
598,
198,
11748,
18931,
198,
198,
6404,
2667,
13,
35487,
16934,
7,
5715,
28,
6404,
2667,
13,
31502,
8,
198,
198,
361,
11593,
3672,
834,
6624,
366,
834,
12417,
834,
1298,
198,
220,
220,
220,
598,
13,
24442,
796,
6407,
198,
220,
220,
220,
598,
13,
5143,
3419
]
# Copyright 2013-2018 Lawrence Livermore National Security, LLC and other
# Spack Project Developers. See the top-level COPYRIGHT file for details.
#
# SPDX-License-Identifier: (Apache-2.0 OR MIT)
from spack import *
class RAffypdnn(RPackage):
"""The package contains functions to perform the PDNN method
described by Li Zhang et al."""
homepage = "https://www.bioconductor.org/packages/affypdnn/"
git = "https://git.bioconductor.org/packages/affypdnn.git"
version('1.50.0', commit='97ff68e9f51f31333c0330435ea23b212b3ed18a')
depends_on('[email protected] :3.4.9', when='@1.50.0')
depends_on('r-affy', type=('build', 'run'))
[
2,
15069,
2211,
12,
7908,
13914,
45036,
3549,
2351,
4765,
11,
11419,
290,
584,
198,
2,
1338,
441,
4935,
34152,
13,
4091,
262,
1353,
12,
5715,
27975,
38162,
9947,
2393,
329,
3307,
13,
198,
2,
198,
2,
30628,
55,
12,
34156,
12,
33234,
7483,
25,
357,
25189,
4891,
12,
17,
13,
15,
6375,
17168,
8,
198,
198,
6738,
599,
441,
1330,
1635,
628,
198,
4871,
17926,
487,
4464,
67,
20471,
7,
49,
27813,
2599,
198,
220,
220,
220,
37227,
464,
5301,
4909,
5499,
284,
1620,
262,
14340,
6144,
2446,
198,
220,
220,
220,
3417,
416,
7455,
19439,
2123,
435,
526,
15931,
628,
220,
220,
220,
34940,
796,
366,
5450,
1378,
2503,
13,
8482,
420,
40990,
13,
2398,
14,
43789,
14,
2001,
4464,
67,
20471,
30487,
198,
220,
220,
220,
17606,
220,
220,
220,
220,
220,
796,
366,
5450,
1378,
18300,
13,
8482,
420,
40990,
13,
2398,
14,
43789,
14,
2001,
4464,
67,
20471,
13,
18300,
1,
628,
220,
220,
220,
2196,
10786,
16,
13,
1120,
13,
15,
3256,
4589,
11639,
5607,
487,
3104,
68,
24,
69,
4349,
69,
25838,
2091,
66,
3070,
21288,
2327,
18213,
1954,
65,
21777,
65,
18,
276,
1507,
64,
11537,
628,
220,
220,
220,
8338,
62,
261,
10786,
81,
31,
18,
13,
19,
13,
15,
25,
18,
13,
19,
13,
24,
3256,
618,
11639,
31,
16,
13,
1120,
13,
15,
11537,
198,
220,
220,
220,
8338,
62,
261,
10786,
81,
12,
2001,
88,
3256,
2099,
28,
10786,
11249,
3256,
705,
5143,
6,
4008,
198
]
#######################################################################
"""
@author: Emanuele Musumeci (https://github.com/EmanueleMusumeci)
PopulationInitializer abstract class and basic initializer that generates
a population of random binary strings of a given length
"""
#######################################################################
import abc
import numpy as np
from numpy import random
#Base abstract class for population initialization methods, that generate a population for the genetic optimization process
#Generate population of random binary strings of a given length
#Generates a single binary individual
#Generates a population of random binary individuals
[
29113,
29113,
4242,
21017,
198,
37811,
198,
2488,
9800,
25,
412,
805,
518,
293,
2629,
388,
721,
72,
357,
5450,
1378,
12567,
13,
785,
14,
36,
805,
518,
293,
10694,
388,
721,
72,
8,
220,
198,
220,
198,
20133,
24243,
7509,
12531,
1398,
290,
4096,
4238,
7509,
326,
18616,
198,
257,
3265,
286,
4738,
13934,
13042,
286,
257,
1813,
4129,
198,
198,
37811,
198,
29113,
29113,
4242,
21017,
198,
11748,
450,
66,
198,
198,
11748,
299,
32152,
355,
45941,
198,
6738,
299,
32152,
1330,
4738,
198,
198,
2,
14881,
12531,
1398,
329,
3265,
37588,
5050,
11,
326,
7716,
257,
3265,
329,
262,
8513,
23989,
1429,
198,
198,
2,
8645,
378,
3265,
286,
4738,
13934,
13042,
286,
257,
1813,
4129,
628,
220,
220,
220,
1303,
8645,
689,
257,
2060,
13934,
1981,
198,
220,
220,
220,
220,
220,
220,
220,
220,
198,
220,
220,
220,
1303,
8645,
689,
257,
3265,
286,
4738,
13934,
3925,
198,
220,
220,
220,
220,
220,
220,
220,
220,
628,
198
]
import os
import subprocess
from .utils import checkdir, get_condor_version, requires_command
from .basenode import BaseNode
from .job import Job
def _iter_job_args(job):
"""
Iterates over Job args list. Yields the name (and JobArg) for each node
to be used when adding job to a Dagman (i.e. the name in the
'JOB name job_submit_file' line).
Parameters
----------
job : Job
Job to iterate over. Note that the submit file for job must be built
prior to using _iter_job_args.
Yields
------
node_name : str
Node name to use in Dagman object.
job_arg : JobArg namedtuple
Job argument object (``arg``, ``name``, ``retry`` attributes).
"""
if not isinstance(job, Job):
raise TypeError('Expecting a Job object, got {}'.format(type(job)))
if not getattr(job, '_built', False):
raise ValueError('Job {} must be built before adding it '
'to a Dagman'.format(job.name))
if len(job.args) == 0:
raise StopIteration
else:
for idx, job_arg in enumerate(job):
arg, name, retry = job_arg
if name is not None:
node_name = '{}_{}'.format(job.submit_name, name)
else:
node_name = '{}_arg_{}'.format(job.submit_name, idx)
yield node_name, job_arg
def _get_parent_child_string(node):
"""Constructs the parent/child line for node to be added to a Dagman
"""
if not isinstance(node, BaseNode):
raise ValueError('Expecting a Job or Dagman object, '
'got {}'.format(type(node)))
parent_string = 'Parent'
for parent_node in node.parents:
if isinstance(parent_node, Job) and len(parent_node) > 0:
for node_name, job_arg in _iter_job_args(parent_node):
parent_string += ' {}'.format(node_name)
else:
parent_string += ' {}'.format(parent_node.submit_name)
child_string = 'Child'
if isinstance(node, Job) and len(node) > 0:
for node_name, job_arg in _iter_job_args(node):
child_string += ' {}'.format(node_name)
else:
child_string += ' {}'.format(node.submit_name)
parent_child_string = parent_string + ' ' + child_string
return parent_child_string
class Dagman(BaseNode):
"""
Dagman object consisting of a series of Jobs and sub-Dagmans to manage.
Note that the ``submit`` parameter can be explicitly given or configured
by setting the ``PYCONDOR_SUBMIT_DIR`` environment variable. An explicitly
given value for ``submit`` will be used over the environment variable,
while the environment variable will be used over a default value.
Parameters
----------
name : str
Name of the Dagman instance. This will also be the name of the
corresponding error, log, output, and submit files associated with
this Dagman.
submit : str
Path to directory where condor dagman submit files will be written
(defaults to the directory was the Dagman was submitted from).
extra_lines : list or None, optional
List of additional lines to be added to submit file.
.. versionadded:: 0.1.1
dag : Dagman, optional
If specified, Dagman will be added to dag as a subdag
(default is None).
verbose : int, optional
Level of logging verbosity option are 0-warning, 1-info,
2-debugging (default is 0).
Attributes
----------
jobs : list
The list of jobs for this Dagman instance to manage.
parents : list
List of parent Jobs and Dagmans. Ensures that Jobs and Dagmans in the
parents list will complete before this Dagman is submitted to HTCondor.
children : list
List of child Jobs and Dagmans. Ensures that Jobs and Dagmans in the
children list will be submitted only after this Dagman has completed.
"""
def add_job(self, job):
"""Add job to Dagman
Parameters
----------
job : Job
Job to append to Dagman jobs list.
Returns
-------
self : object
Returns self.
"""
self._add_node(job)
return self
def add_subdag(self, dag):
"""Add dag to Dagman
Parameters
----------
dag : Dagman
Subdag to append to Dagman jobs list.
Returns
-------
self : object
Returns self.
"""
self._add_node(dag)
return self
def _get_job_arg_lines(self, job, fancyname):
"""Constructs the lines to be added to a Dagman related to job
"""
if not isinstance(job, Job):
raise TypeError('Expecting a Job object, got {}'.format(type(job)))
if not getattr(job, '_built', False):
raise ValueError('Job {} must be built before adding it '
'to a Dagman'.format(job.name))
job_arg_lines = []
if len(job.args) == 0:
job_line = 'JOB {} {}'.format(job.submit_name, job.submit_file)
job_arg_lines.append(job_line)
else:
for node_name, job_arg in _iter_job_args(job):
# Check that '.' or '+' are not in node_name
if '.' in node_name or '+' in node_name:
self._has_bad_node_names = True
arg, name, retry = job_arg
# Add JOB line with Job submit file
job_line = 'JOB {} {}'.format(node_name, job.submit_file)
job_arg_lines.append(job_line)
# Add job ARGS line for command line arguments
arg_line = 'VARS {} ARGS="{}"'.format(node_name, arg)
job_arg_lines.append(arg_line)
# Define job_name variable if there are arg_names for job
if job._has_arg_names:
if name is not None:
job_name = node_name
else:
job_name = job.submit_name
job_name_line = 'VARS {} job_name="{}"'.format(node_name,
job_name)
job_arg_lines.append(job_name_line)
# Add retry line for Job
if retry is not None:
retry_line = 'Retry {} {}'.format(node_name, retry)
job_arg_lines.append(retry_line)
return job_arg_lines
def build(self, makedirs=True, fancyname=True):
"""Build and saves the submit file for Dagman
Parameters
----------
makedirs : bool, optional
If Job directories (e.g. error, output, log, submit) don't exist,
create them (default is ``True``).
fancyname : bool, optional
Appends the date and unique id number to error, log, output, and
submit files. For example, instead of ``dagname.submit`` the submit
file becomes ``dagname_YYYYMMD_id``. This is useful when running
several Dags/Jobs of the same name (default is ``True``).
Returns
-------
self : object
Returns self.
"""
if getattr(self, '_built', False):
self.logger.warning(
'{} submit file has already been built. '
'Skipping the build process...'.format(self.name))
return self
name = self._get_fancyname() if fancyname else self.name
submit_file = os.path.join(self.submit, '{}.submit'.format(name))
self.submit_file = submit_file
self.submit_name = name
checkdir(self.submit_file, makedirs)
# Build submit files for all nodes in self.nodes
# Note: nodes must be built before the submit file for self is built
for node_index, node in enumerate(self.nodes, start=1):
if isinstance(node, Job):
node._build_from_dag(makedirs, fancyname)
elif isinstance(node, Dagman):
node.build(makedirs, fancyname)
else:
raise TypeError('Nodes must be either a Job or Dagman object')
# Write dag submit file
self.logger.info('Building DAG submission file {}...'.format(
self.submit_file))
lines = []
parent_child_lines = []
for node_index, node in enumerate(self.nodes, start=1):
self.logger.info('Working on {} [{} of {}]'.format(node.name,
node_index, len(self.nodes)))
# Build the BaseNode submit file
if isinstance(node, Job):
# Add Job variables to Dagman submit file
job_arg_lines = self._get_job_arg_lines(node, fancyname)
lines.extend(job_arg_lines)
elif isinstance(node, Dagman):
subdag_string = _get_subdag_string(node)
lines.append(subdag_string)
else:
raise TypeError('Nodes must be either a Job or Dagman object')
# Add parent/child information, if necessary
if node.hasparents():
parent_child_string = _get_parent_child_string(node)
parent_child_lines.append(parent_child_string)
# Add any extra lines to submit file, if specified
if self.extra_lines:
lines.extend(self.extra_lines)
# Write lines to dag submit file
with open(submit_file, 'w') as dag:
dag.writelines('\n'.join(lines + ['\n#Inter-job dependencies'] +
parent_child_lines))
self._built = True
self.logger.info('Dagman submission file for {} successfully '
'built!'.format(self.name))
return self
@requires_command('condor_submit_dag')
def submit_dag(self, submit_options=None):
"""Submits Dagman to condor
Parameters
----------
submit_options : str, optional
Options to be passed to ``condor_submit_dag`` for this Dagman
(see the `condor_submit_dag documentation
<http://research.cs.wisc.edu/htcondor/manual/current/condor_submit_dag.html>`_
for possible options).
Returns
-------
self : object
Returns self.
"""
# Construct condor_submit_dag command
command = 'condor_submit_dag'
if submit_options is not None:
command += ' {}'.format(submit_options)
command += ' {}'.format(self.submit_file)
submit_dag_proc = subprocess.Popen([command],
stdout=subprocess.PIPE,
shell=True)
# Check that there are no illegal node names for newer condor versions
condor_version = get_condor_version()
if condor_version >= (8, 7, 2) and self._has_bad_node_names:
err = ("Found an illegal character (either '+' or '.') in the "
"name for a node in Dagman {}. As of HTCondor version "
"8.7.2, '+' and '.' are prohibited in Dagman node names. "
"This means a '+' or '.' character is in a Job name, "
"Dagman name, or the name for a Job argument.".format(
self.name))
raise RuntimeError(err)
# Execute condor_submit_dag command
out, err = submit_dag_proc.communicate()
print(out)
return self
@requires_command('condor_submit_dag')
def build_submit(self, makedirs=True, fancyname=True, submit_options=None):
"""Calls build and submit sequentially
Parameters
----------
makedirs : bool, optional
If Job directories (e.g. error, output, log, submit) don't exist,
create them (default is ``True``).
fancyname : bool, optional
Appends the date and unique id number to error, log, output, and
submit files. For example, instead of ``dagname.submit`` the submit
file becomes ``dagname_YYYYMMD_id``. This is useful when running
several Dags/Jobs of the same name (default is ``True``).
submit_options : str, optional
Options to be passed to ``condor_submit_dag`` for this Dagman
(see the `condor_submit_dag documentation
<http://research.cs.wisc.edu/htcondor/manual/current/condor_submit_dag.html>`_
for possible options).
Returns
-------
self : object
Returns self.
"""
self.build(makedirs, fancyname)
self.submit_dag(submit_options=submit_options)
return self
[
198,
11748,
28686,
198,
11748,
850,
14681,
198,
198,
6738,
764,
26791,
1330,
2198,
15908,
11,
651,
62,
17561,
273,
62,
9641,
11,
4433,
62,
21812,
198,
6738,
764,
12093,
268,
1098,
1330,
7308,
19667,
198,
6738,
764,
21858,
1330,
15768,
628,
198,
198,
4299,
4808,
2676,
62,
21858,
62,
22046,
7,
21858,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
40806,
689,
625,
15768,
26498,
1351,
13,
575,
1164,
82,
262,
1438,
357,
392,
15768,
28100,
8,
329,
1123,
10139,
198,
220,
220,
220,
284,
307,
973,
618,
4375,
1693,
284,
257,
32167,
805,
357,
72,
13,
68,
13,
262,
1438,
287,
262,
198,
220,
220,
220,
705,
41,
9864,
1438,
1693,
62,
46002,
62,
7753,
6,
1627,
737,
628,
220,
220,
220,
40117,
198,
220,
220,
220,
24200,
438,
198,
220,
220,
220,
1693,
1058,
15768,
198,
220,
220,
220,
220,
220,
220,
220,
15768,
284,
11629,
378,
625,
13,
5740,
326,
262,
9199,
2393,
329,
1693,
1276,
307,
3170,
198,
220,
220,
220,
220,
220,
220,
220,
3161,
284,
1262,
4808,
2676,
62,
21858,
62,
22046,
13,
628,
220,
220,
220,
575,
1164,
82,
198,
220,
220,
220,
40103,
198,
220,
220,
220,
10139,
62,
3672,
1058,
965,
198,
220,
220,
220,
220,
220,
220,
220,
19081,
1438,
284,
779,
287,
32167,
805,
2134,
13,
198,
220,
220,
220,
1693,
62,
853,
1058,
15768,
28100,
3706,
83,
29291,
198,
220,
220,
220,
220,
220,
220,
220,
15768,
4578,
2134,
357,
15506,
853,
15506,
11,
7559,
3672,
15506,
11,
7559,
1186,
563,
15506,
12608,
737,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
611,
407,
318,
39098,
7,
21858,
11,
15768,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
5298,
5994,
12331,
10786,
3109,
35570,
257,
15768,
2134,
11,
1392,
23884,
4458,
18982,
7,
4906,
7,
21858,
22305,
198,
220,
220,
220,
611,
407,
651,
35226,
7,
21858,
11,
705,
62,
18780,
3256,
10352,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
5298,
11052,
12331,
10786,
33308,
23884,
1276,
307,
3170,
878,
4375,
340,
705,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
1462,
257,
32167,
805,
4458,
18982,
7,
21858,
13,
3672,
4008,
628,
220,
220,
220,
611,
18896,
7,
21858,
13,
22046,
8,
6624,
657,
25,
198,
220,
220,
220,
220,
220,
220,
220,
5298,
13707,
29993,
341,
198,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
329,
4686,
87,
11,
1693,
62,
853,
287,
27056,
378,
7,
21858,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1822,
11,
1438,
11,
1005,
563,
796,
1693,
62,
853,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
1438,
318,
407,
6045,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
10139,
62,
3672,
796,
705,
90,
92,
23330,
92,
4458,
18982,
7,
21858,
13,
46002,
62,
3672,
11,
1438,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
10139,
62,
3672,
796,
705,
90,
92,
62,
853,
23330,
92,
4458,
18982,
7,
21858,
13,
46002,
62,
3672,
11,
4686,
87,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
7800,
10139,
62,
3672,
11,
1693,
62,
853,
628,
198,
4299,
4808,
1136,
62,
8000,
62,
9410,
62,
8841,
7,
17440,
2599,
198,
220,
220,
220,
37227,
42316,
82,
262,
2560,
14,
9410,
1627,
329,
10139,
284,
307,
2087,
284,
257,
32167,
805,
198,
220,
220,
220,
37227,
628,
220,
220,
220,
611,
407,
318,
39098,
7,
17440,
11,
7308,
19667,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
5298,
11052,
12331,
10786,
3109,
35570,
257,
15768,
393,
32167,
805,
2134,
11,
705,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
23442,
23884,
4458,
18982,
7,
4906,
7,
17440,
22305,
628,
220,
220,
220,
2560,
62,
8841,
796,
705,
24546,
6,
198,
220,
220,
220,
329,
2560,
62,
17440,
287,
10139,
13,
23743,
25,
198,
220,
220,
220,
220,
220,
220,
220,
611,
318,
39098,
7,
8000,
62,
17440,
11,
15768,
8,
290,
18896,
7,
8000,
62,
17440,
8,
1875,
657,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
329,
10139,
62,
3672,
11,
1693,
62,
853,
287,
4808,
2676,
62,
21858,
62,
22046,
7,
8000,
62,
17440,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2560,
62,
8841,
15853,
705,
23884,
4458,
18982,
7,
17440,
62,
3672,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2560,
62,
8841,
15853,
705,
23884,
4458,
18982,
7,
8000,
62,
17440,
13,
46002,
62,
3672,
8,
628,
220,
220,
220,
1200,
62,
8841,
796,
705,
16424,
6,
198,
220,
220,
220,
611,
318,
39098,
7,
17440,
11,
15768,
8,
290,
18896,
7,
17440,
8,
1875,
657,
25,
198,
220,
220,
220,
220,
220,
220,
220,
329,
10139,
62,
3672,
11,
1693,
62,
853,
287,
4808,
2676,
62,
21858,
62,
22046,
7,
17440,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1200,
62,
8841,
15853,
705,
23884,
4458,
18982,
7,
17440,
62,
3672,
8,
198,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
1200,
62,
8841,
15853,
705,
23884,
4458,
18982,
7,
17440,
13,
46002,
62,
3672,
8,
628,
220,
220,
220,
2560,
62,
9410,
62,
8841,
796,
2560,
62,
8841,
1343,
705,
705,
1343,
1200,
62,
8841,
628,
220,
220,
220,
1441,
2560,
62,
9410,
62,
8841,
628,
198,
4871,
32167,
805,
7,
14881,
19667,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
32167,
805,
2134,
17747,
286,
257,
2168,
286,
19161,
290,
850,
12,
35,
363,
16221,
284,
6687,
13,
628,
220,
220,
220,
5740,
326,
262,
7559,
46002,
15506,
11507,
460,
307,
11777,
1813,
393,
17839,
198,
220,
220,
220,
416,
4634,
262,
7559,
47,
56,
10943,
35,
1581,
62,
50,
10526,
36393,
62,
34720,
15506,
2858,
7885,
13,
1052,
11777,
198,
220,
220,
220,
1813,
1988,
329,
7559,
46002,
15506,
481,
307,
973,
625,
262,
2858,
7885,
11,
198,
220,
220,
220,
981,
262,
2858,
7885,
481,
307,
973,
625,
257,
4277,
1988,
13,
628,
220,
220,
220,
40117,
198,
220,
220,
220,
24200,
438,
198,
220,
220,
220,
1438,
1058,
965,
198,
220,
220,
220,
220,
220,
220,
220,
6530,
286,
262,
32167,
805,
4554,
13,
770,
481,
635,
307,
262,
1438,
286,
262,
198,
220,
220,
220,
220,
220,
220,
220,
11188,
4049,
11,
2604,
11,
5072,
11,
290,
9199,
3696,
3917,
351,
198,
220,
220,
220,
220,
220,
220,
220,
428,
32167,
805,
13,
628,
220,
220,
220,
9199,
1058,
965,
198,
220,
220,
220,
220,
220,
220,
220,
10644,
284,
8619,
810,
1779,
273,
48924,
805,
9199,
3696,
481,
307,
3194,
198,
220,
220,
220,
220,
220,
220,
220,
357,
12286,
82,
284,
262,
8619,
373,
262,
32167,
805,
373,
8948,
422,
737,
628,
220,
220,
220,
3131,
62,
6615,
1058,
1351,
393,
6045,
11,
11902,
198,
220,
220,
220,
220,
220,
220,
220,
7343,
286,
3224,
3951,
284,
307,
2087,
284,
9199,
2393,
13,
628,
220,
220,
220,
220,
220,
220,
220,
11485,
2196,
29373,
3712,
657,
13,
16,
13,
16,
628,
220,
220,
220,
48924,
1058,
32167,
805,
11,
11902,
198,
220,
220,
220,
220,
220,
220,
220,
1002,
7368,
11,
32167,
805,
481,
307,
2087,
284,
48924,
355,
257,
850,
67,
363,
198,
220,
220,
220,
220,
220,
220,
220,
357,
12286,
318,
6045,
737,
628,
220,
220,
220,
15942,
577,
1058,
493,
11,
11902,
198,
220,
220,
220,
220,
220,
220,
220,
5684,
286,
18931,
15942,
16579,
3038,
389,
657,
12,
43917,
11,
352,
12,
10951,
11,
198,
220,
220,
220,
220,
220,
220,
220,
362,
12,
24442,
2667,
357,
12286,
318,
657,
737,
628,
220,
220,
220,
49213,
198,
220,
220,
220,
24200,
438,
198,
220,
220,
220,
3946,
1058,
1351,
198,
220,
220,
220,
220,
220,
220,
220,
383,
1351,
286,
3946,
329,
428,
32167,
805,
4554,
284,
6687,
13,
628,
220,
220,
220,
3397,
1058,
1351,
198,
220,
220,
220,
220,
220,
220,
220,
7343,
286,
2560,
19161,
290,
32167,
16221,
13,
48221,
942,
326,
19161,
290,
32167,
16221,
287,
262,
198,
220,
220,
220,
220,
220,
220,
220,
3397,
1351,
481,
1844,
878,
428,
32167,
805,
318,
8948,
284,
22063,
623,
273,
13,
628,
220,
220,
220,
1751,
1058,
1351,
198,
220,
220,
220,
220,
220,
220,
220,
7343,
286,
1200,
19161,
290,
32167,
16221,
13,
48221,
942,
326,
19161,
290,
32167,
16221,
287,
262,
198,
220,
220,
220,
220,
220,
220,
220,
1751,
1351,
481,
307,
8948,
691,
706,
428,
32167,
805,
468,
5668,
13,
198,
220,
220,
220,
37227,
628,
220,
220,
220,
825,
751,
62,
21858,
7,
944,
11,
1693,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
4550,
1693,
284,
32167,
805,
628,
220,
220,
220,
220,
220,
220,
220,
40117,
198,
220,
220,
220,
220,
220,
220,
220,
24200,
438,
198,
220,
220,
220,
220,
220,
220,
220,
1693,
1058,
15768,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
15768,
284,
24443,
284,
32167,
805,
3946,
1351,
13,
628,
198,
220,
220,
220,
220,
220,
220,
220,
16409,
198,
220,
220,
220,
220,
220,
220,
220,
35656,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
1058,
2134,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
16409,
2116,
13,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13557,
2860,
62,
17440,
7,
21858,
8,
628,
220,
220,
220,
220,
220,
220,
220,
1441,
2116,
628,
220,
220,
220,
825,
751,
62,
7266,
67,
363,
7,
944,
11,
48924,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
4550,
48924,
284,
32167,
805,
628,
220,
220,
220,
220,
220,
220,
220,
40117,
198,
220,
220,
220,
220,
220,
220,
220,
24200,
438,
198,
220,
220,
220,
220,
220,
220,
220,
48924,
1058,
32167,
805,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3834,
67,
363,
284,
24443,
284,
32167,
805,
3946,
1351,
13,
628,
198,
220,
220,
220,
220,
220,
220,
220,
16409,
198,
220,
220,
220,
220,
220,
220,
220,
35656,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
1058,
2134,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
16409,
2116,
13,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13557,
2860,
62,
17440,
7,
67,
363,
8,
628,
220,
220,
220,
220,
220,
220,
220,
1441,
2116,
628,
220,
220,
220,
825,
4808,
1136,
62,
21858,
62,
853,
62,
6615,
7,
944,
11,
1693,
11,
14996,
3672,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
42316,
82,
262,
3951,
284,
307,
2087,
284,
257,
32167,
805,
3519,
284,
1693,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
628,
220,
220,
220,
220,
220,
220,
220,
611,
407,
318,
39098,
7,
21858,
11,
15768,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5298,
5994,
12331,
10786,
3109,
35570,
257,
15768,
2134,
11,
1392,
23884,
4458,
18982,
7,
4906,
7,
21858,
22305,
198,
220,
220,
220,
220,
220,
220,
220,
611,
407,
651,
35226,
7,
21858,
11,
705,
62,
18780,
3256,
10352,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5298,
11052,
12331,
10786,
33308,
23884,
1276,
307,
3170,
878,
4375,
340,
705,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
1462,
257,
32167,
805,
4458,
18982,
7,
21858,
13,
3672,
4008,
628,
220,
220,
220,
220,
220,
220,
220,
1693,
62,
853,
62,
6615,
796,
17635,
198,
220,
220,
220,
220,
220,
220,
220,
611,
18896,
7,
21858,
13,
22046,
8,
6624,
657,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1693,
62,
1370,
796,
705,
41,
9864,
23884,
23884,
4458,
18982,
7,
21858,
13,
46002,
62,
3672,
11,
1693,
13,
46002,
62,
7753,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1693,
62,
853,
62,
6615,
13,
33295,
7,
21858,
62,
1370,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
329,
10139,
62,
3672,
11,
1693,
62,
853,
287,
4808,
2676,
62,
21858,
62,
22046,
7,
21858,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
6822,
326,
705,
2637,
393,
705,
10,
6,
389,
407,
287,
10139,
62,
3672,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
705,
2637,
287,
10139,
62,
3672,
393,
705,
10,
6,
287,
10139,
62,
3672,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13557,
10134,
62,
14774,
62,
17440,
62,
14933,
796,
6407,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1822,
11,
1438,
11,
1005,
563,
796,
1693,
62,
853,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
3060,
449,
9864,
1627,
351,
15768,
9199,
2393,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1693,
62,
1370,
796,
705,
41,
9864,
23884,
23884,
4458,
18982,
7,
17440,
62,
3672,
11,
1693,
13,
46002,
62,
7753,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1693,
62,
853,
62,
6615,
13,
33295,
7,
21858,
62,
1370,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
3060,
1693,
5923,
14313,
1627,
329,
3141,
1627,
7159,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1822,
62,
1370,
796,
705,
53,
27415,
23884,
5923,
14313,
2625,
90,
36786,
4458,
18982,
7,
17440,
62,
3672,
11,
1822,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1693,
62,
853,
62,
6615,
13,
33295,
7,
853,
62,
1370,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
2896,
500,
1693,
62,
3672,
7885,
611,
612,
389,
1822,
62,
14933,
329,
1693,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
1693,
13557,
10134,
62,
853,
62,
14933,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
1438,
318,
407,
6045,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1693,
62,
3672,
796,
10139,
62,
3672,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1693,
62,
3672,
796,
1693,
13,
46002,
62,
3672,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1693,
62,
3672,
62,
1370,
796,
705,
53,
27415,
23884,
1693,
62,
3672,
2625,
90,
36786,
4458,
18982,
7,
17440,
62,
3672,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1693,
62,
3672,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1693,
62,
853,
62,
6615,
13,
33295,
7,
21858,
62,
3672,
62,
1370,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
3060,
1005,
563,
1627,
329,
15768,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
1005,
563,
318,
407,
6045,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1005,
563,
62,
1370,
796,
705,
9781,
563,
23884,
23884,
4458,
18982,
7,
17440,
62,
3672,
11,
1005,
563,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1693,
62,
853,
62,
6615,
13,
33295,
7,
1186,
563,
62,
1370,
8,
628,
220,
220,
220,
220,
220,
220,
220,
1441,
1693,
62,
853,
62,
6615,
628,
220,
220,
220,
825,
1382,
7,
944,
11,
285,
4335,
17062,
28,
17821,
11,
14996,
3672,
28,
17821,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
15580,
290,
16031,
262,
9199,
2393,
329,
32167,
805,
628,
220,
220,
220,
220,
220,
220,
220,
40117,
198,
220,
220,
220,
220,
220,
220,
220,
24200,
438,
198,
220,
220,
220,
220,
220,
220,
220,
285,
4335,
17062,
1058,
20512,
11,
11902,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1002,
15768,
29196,
357,
68,
13,
70,
13,
4049,
11,
5072,
11,
2604,
11,
9199,
8,
836,
470,
2152,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2251,
606,
357,
12286,
318,
7559,
17821,
15506,
737,
628,
220,
220,
220,
220,
220,
220,
220,
14996,
3672,
1058,
20512,
11,
11902,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2034,
2412,
262,
3128,
290,
3748,
4686,
1271,
284,
4049,
11,
2604,
11,
5072,
11,
290,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
9199,
3696,
13,
1114,
1672,
11,
2427,
286,
7559,
67,
363,
3672,
13,
46002,
15506,
262,
9199,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2393,
4329,
7559,
67,
363,
3672,
62,
26314,
26314,
12038,
35,
62,
312,
15506,
13,
770,
318,
4465,
618,
2491,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1811,
360,
3775,
14,
41,
8158,
286,
262,
976,
1438,
357,
12286,
318,
7559,
17821,
15506,
737,
628,
220,
220,
220,
220,
220,
220,
220,
16409,
198,
220,
220,
220,
220,
220,
220,
220,
35656,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
1058,
2134,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
16409,
2116,
13,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
611,
651,
35226,
7,
944,
11,
705,
62,
18780,
3256,
10352,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
6404,
1362,
13,
43917,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
90,
92,
9199,
2393,
468,
1541,
587,
3170,
13,
705,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
50,
4106,
2105,
262,
1382,
1429,
986,
4458,
18982,
7,
944,
13,
3672,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1441,
2116,
628,
220,
220,
220,
220,
220,
220,
220,
1438,
796,
2116,
13557,
1136,
62,
69,
3883,
3672,
3419,
611,
14996,
3672,
2073,
2116,
13,
3672,
198,
220,
220,
220,
220,
220,
220,
220,
9199,
62,
7753,
796,
28686,
13,
6978,
13,
22179,
7,
944,
13,
46002,
11,
705,
90,
27422,
46002,
4458,
18982,
7,
3672,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
46002,
62,
7753,
796,
9199,
62,
7753,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
46002,
62,
3672,
796,
1438,
198,
220,
220,
220,
220,
220,
220,
220,
2198,
15908,
7,
944,
13,
46002,
62,
7753,
11,
285,
4335,
17062,
8,
628,
220,
220,
220,
220,
220,
220,
220,
1303,
10934,
9199,
3696,
329,
477,
13760,
287,
2116,
13,
77,
4147,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
5740,
25,
13760,
1276,
307,
3170,
878,
262,
9199,
2393,
329,
2116,
318,
3170,
198,
220,
220,
220,
220,
220,
220,
220,
329,
10139,
62,
9630,
11,
10139,
287,
27056,
378,
7,
944,
13,
77,
4147,
11,
923,
28,
16,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
318,
39098,
7,
17440,
11,
15768,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
10139,
13557,
11249,
62,
6738,
62,
67,
363,
7,
76,
4335,
17062,
11,
14996,
3672,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1288,
361,
318,
39098,
7,
17440,
11,
32167,
805,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
10139,
13,
11249,
7,
76,
4335,
17062,
11,
14996,
3672,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5298,
5994,
12331,
10786,
45,
4147,
1276,
307,
2035,
257,
15768,
393,
32167,
805,
2134,
11537,
628,
220,
220,
220,
220,
220,
220,
220,
1303,
19430,
48924,
9199,
2393,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
6404,
1362,
13,
10951,
10786,
25954,
360,
4760,
14498,
2393,
23884,
986,
4458,
18982,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
46002,
62,
7753,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
3951,
796,
17635,
198,
220,
220,
220,
220,
220,
220,
220,
2560,
62,
9410,
62,
6615,
796,
17635,
198,
220,
220,
220,
220,
220,
220,
220,
329,
10139,
62,
9630,
11,
10139,
287,
27056,
378,
7,
944,
13,
77,
4147,
11,
923,
28,
16,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
6404,
1362,
13,
10951,
10786,
28516,
319,
23884,
685,
90,
92,
286,
23884,
60,
4458,
18982,
7,
17440,
13,
3672,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
10139,
62,
9630,
11,
18896,
7,
944,
13,
77,
4147,
22305,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
10934,
262,
7308,
19667,
9199,
2393,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
318,
39098,
7,
17440,
11,
15768,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
3060,
15768,
9633,
284,
32167,
805,
9199,
2393,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1693,
62,
853,
62,
6615,
796,
2116,
13557,
1136,
62,
21858,
62,
853,
62,
6615,
7,
17440,
11,
14996,
3672,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3951,
13,
2302,
437,
7,
21858,
62,
853,
62,
6615,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1288,
361,
318,
39098,
7,
17440,
11,
32167,
805,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
850,
67,
363,
62,
8841,
796,
4808,
1136,
62,
7266,
67,
363,
62,
8841,
7,
17440,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3951,
13,
33295,
7,
7266,
67,
363,
62,
8841,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5298,
5994,
12331,
10786,
45,
4147,
1276,
307,
2035,
257,
15768,
393,
32167,
805,
2134,
11537,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
3060,
2560,
14,
9410,
1321,
11,
611,
3306,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
10139,
13,
71,
5126,
1580,
82,
33529,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2560,
62,
9410,
62,
8841,
796,
4808,
1136,
62,
8000,
62,
9410,
62,
8841,
7,
17440,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2560,
62,
9410,
62,
6615,
13,
33295,
7,
8000,
62,
9410,
62,
8841,
8,
628,
220,
220,
220,
220,
220,
220,
220,
1303,
3060,
597,
3131,
3951,
284,
9199,
2393,
11,
611,
7368,
198,
220,
220,
220,
220,
220,
220,
220,
611,
2116,
13,
26086,
62,
6615,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3951,
13,
2302,
437,
7,
944,
13,
26086,
62,
6615,
8,
628,
220,
220,
220,
220,
220,
220,
220,
1303,
19430,
3951,
284,
48924,
9199,
2393,
198,
220,
220,
220,
220,
220,
220,
220,
351,
1280,
7,
46002,
62,
7753,
11,
705,
86,
11537,
355,
48924,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
48924,
13,
8933,
20655,
10786,
59,
77,
4458,
22179,
7,
6615,
1343,
37250,
59,
77,
2,
9492,
12,
21858,
20086,
20520,
1343,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2560,
62,
9410,
62,
6615,
4008,
628,
220,
220,
220,
220,
220,
220,
220,
2116,
13557,
18780,
796,
6407,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
6404,
1362,
13,
10951,
10786,
35,
363,
805,
14498,
2393,
329,
23884,
7675,
705,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
18780,
0,
4458,
18982,
7,
944,
13,
3672,
4008,
628,
220,
220,
220,
220,
220,
220,
220,
1441,
2116,
628,
220,
220,
220,
2488,
47911,
62,
21812,
10786,
17561,
273,
62,
46002,
62,
67,
363,
11537,
198,
220,
220,
220,
825,
9199,
62,
67,
363,
7,
944,
11,
9199,
62,
25811,
28,
14202,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
7004,
24883,
32167,
805,
284,
1779,
273,
628,
220,
220,
220,
220,
220,
220,
220,
40117,
198,
220,
220,
220,
220,
220,
220,
220,
24200,
438,
198,
220,
220,
220,
220,
220,
220,
220,
9199,
62,
25811,
1058,
965,
11,
11902,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
18634,
284,
307,
3804,
284,
7559,
17561,
273,
62,
46002,
62,
67,
363,
15506,
329,
428,
32167,
805,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
357,
3826,
262,
4600,
17561,
273,
62,
46002,
62,
67,
363,
10314,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1279,
4023,
1378,
34033,
13,
6359,
13,
86,
2304,
13,
15532,
14,
4352,
17561,
273,
14,
805,
723,
14,
14421,
14,
17561,
273,
62,
46002,
62,
67,
363,
13,
6494,
29,
63,
62,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
329,
1744,
3689,
737,
628,
220,
220,
220,
220,
220,
220,
220,
16409,
198,
220,
220,
220,
220,
220,
220,
220,
35656,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
1058,
2134,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
16409,
2116,
13,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
28407,
1779,
273,
62,
46002,
62,
67,
363,
3141,
198,
220,
220,
220,
220,
220,
220,
220,
3141,
796,
705,
17561,
273,
62,
46002,
62,
67,
363,
6,
198,
220,
220,
220,
220,
220,
220,
220,
611,
9199,
62,
25811,
318,
407,
6045,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3141,
15853,
705,
23884,
4458,
18982,
7,
46002,
62,
25811,
8,
198,
220,
220,
220,
220,
220,
220,
220,
3141,
15853,
705,
23884,
4458,
18982,
7,
944,
13,
46002,
62,
7753,
8,
198,
220,
220,
220,
220,
220,
220,
220,
9199,
62,
67,
363,
62,
36942,
796,
850,
14681,
13,
47,
9654,
26933,
21812,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
14367,
448,
28,
7266,
14681,
13,
47,
4061,
36,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
7582,
28,
17821,
8,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
6822,
326,
612,
389,
645,
5293,
10139,
3891,
329,
15064,
1779,
273,
6300,
198,
220,
220,
220,
220,
220,
220,
220,
1779,
273,
62,
9641,
796,
651,
62,
17561,
273,
62,
9641,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
611,
1779,
273,
62,
9641,
18189,
357,
23,
11,
767,
11,
362,
8,
290,
2116,
13557,
10134,
62,
14774,
62,
17440,
62,
14933,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
11454,
796,
5855,
21077,
281,
5293,
2095,
357,
31336,
705,
10,
6,
393,
705,
2637,
8,
287,
262,
366,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
3672,
329,
257,
10139,
287,
32167,
805,
23884,
13,
1081,
286,
22063,
623,
273,
2196,
366,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
23,
13,
22,
13,
17,
11,
705,
10,
6,
290,
220,
705,
2637,
389,
12244,
287,
32167,
805,
10139,
3891,
13,
366,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
1212,
1724,
257,
705,
10,
6,
393,
705,
2637,
2095,
318,
287,
257,
15768,
1438,
11,
366,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
35,
363,
805,
1438,
11,
393,
262,
1438,
329,
257,
15768,
4578,
526,
13,
18982,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
3672,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5298,
43160,
12331,
7,
8056,
8,
628,
220,
220,
220,
220,
220,
220,
220,
1303,
8393,
1133,
1779,
273,
62,
46002,
62,
67,
363,
3141,
198,
220,
220,
220,
220,
220,
220,
220,
503,
11,
11454,
796,
9199,
62,
67,
363,
62,
36942,
13,
10709,
5344,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
3601,
7,
448,
8,
628,
220,
220,
220,
220,
220,
220,
220,
1441,
2116,
628,
220,
220,
220,
2488,
47911,
62,
21812,
10786,
17561,
273,
62,
46002,
62,
67,
363,
11537,
198,
220,
220,
220,
825,
1382,
62,
46002,
7,
944,
11,
285,
4335,
17062,
28,
17821,
11,
14996,
3672,
28,
17821,
11,
9199,
62,
25811,
28,
14202,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
34,
5691,
1382,
290,
9199,
4726,
3746,
628,
220,
220,
220,
220,
220,
220,
220,
40117,
198,
220,
220,
220,
220,
220,
220,
220,
24200,
438,
198,
220,
220,
220,
220,
220,
220,
220,
285,
4335,
17062,
1058,
20512,
11,
11902,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1002,
15768,
29196,
357,
68,
13,
70,
13,
4049,
11,
5072,
11,
2604,
11,
9199,
8,
836,
470,
2152,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2251,
606,
357,
12286,
318,
7559,
17821,
15506,
737,
628,
220,
220,
220,
220,
220,
220,
220,
14996,
3672,
1058,
20512,
11,
11902,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2034,
2412,
262,
3128,
290,
3748,
4686,
1271,
284,
4049,
11,
2604,
11,
5072,
11,
290,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
9199,
3696,
13,
1114,
1672,
11,
2427,
286,
7559,
67,
363,
3672,
13,
46002,
15506,
262,
9199,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2393,
4329,
7559,
67,
363,
3672,
62,
26314,
26314,
12038,
35,
62,
312,
15506,
13,
770,
318,
4465,
618,
2491,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1811,
360,
3775,
14,
41,
8158,
286,
262,
976,
1438,
357,
12286,
318,
7559,
17821,
15506,
737,
628,
220,
220,
220,
220,
220,
220,
220,
9199,
62,
25811,
1058,
965,
11,
11902,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
18634,
284,
307,
3804,
284,
7559,
17561,
273,
62,
46002,
62,
67,
363,
15506,
329,
428,
32167,
805,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
357,
3826,
262,
4600,
17561,
273,
62,
46002,
62,
67,
363,
10314,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1279,
4023,
1378,
34033,
13,
6359,
13,
86,
2304,
13,
15532,
14,
4352,
17561,
273,
14,
805,
723,
14,
14421,
14,
17561,
273,
62,
46002,
62,
67,
363,
13,
6494,
29,
63,
62,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
329,
1744,
3689,
737,
628,
220,
220,
220,
220,
220,
220,
220,
16409,
198,
220,
220,
220,
220,
220,
220,
220,
35656,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
1058,
2134,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
16409,
2116,
13,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
11249,
7,
76,
4335,
17062,
11,
14996,
3672,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
46002,
62,
67,
363,
7,
46002,
62,
25811,
28,
46002,
62,
25811,
8,
628,
220,
220,
220,
220,
220,
220,
220,
1441,
2116,
198
]
"""
Module containing a numpy-like array which supports lazy reading of tiled 2D-image data.
"""
import abc
import dask.array as da
import numpy as np
class LazyArray:
"""
An abstract class of a numpy-like array which supports lazy reading of tiled 2D-image data.
The class represents a custom array container which is compatible with the numpy API.
For more details please refer to
https://numpy.org/doc/stable/user/basics.dispatch.html#writing-custom-array-containers.
The class is compatible with napari's image layer which expects a "numpy-like array" as
input which supports indexing and can be converted to a numpy array via np.asarray.
(ref: https://napari.org/tutorials/fundamentals/image.html#image-data-and-numpy-like-arrays)
"""
__metaclass__ = abc.ABCMeta
def __init__(self, shape, dtype, tile_size):
"""
Initialization method.
:param shape: The shape of the underlying array.
:param dtype: The type of the underlying array.
:param tile_size: The size of a single tile by which the image is divided.
"""
assert len(shape) == 2
self.shape = shape
self.dtype = dtype
self.tile_size = tile_size
self.ndim = 2
@property
def size(self):
"""
The number of elements in the array.
"""
return self.shape[0] * self.shape[1]
def __array__(self, dtype=None, **kwargs):
# pylint: disable=W0613
"""
Method used e.g. by numpy to obtain a standard numpy.ndarray.
"""
return np.asarray(self[0:self.shape[0], 0:self.shape[1]])
def __getitem__(self, idx):
"""
Method which implements the support for basic slicing.
It does not support field access nor advanced indexing.
Moreover, the start and stop of a slice must be positive integers.
This method is optimized for the napari viewer.
napari calls self[:] for obtaining the shape, dtype and ndim attributes - not the data.
To delay reading the underlying data this method does not return a numpy array
but self when calling self[:].
To access the underlying data napari calls np.asarray(self).
"""
if not (
isinstance(idx, slice) or
(isinstance(idx, tuple) and all(isinstance(i, slice) for i in idx))
):
raise ValueError("LazyArray only supports indexing by slices!")
if (
idx == slice(None, None, None) or
idx == (slice(None, None, None), slice(None, None, None))
):
return self
if len(idx) != 2:
raise Exception("Unsupported index!")
(y_min, y_max), (x_min, x_max) = [(i.start, i.stop) for i in idx]
y_off = y_min - (y_min % self.tile_size)
x_off = x_min - (x_min % self.tile_size)
assert (y_min >= 0) and (y_max >= 0) and (x_min >= 0) & (x_max >= 0)
if y_max % self.tile_size == 0:
max_y_tiles = (y_max // self.tile_size)
else:
max_y_tiles = (y_max // self.tile_size) + 1
if x_max % self.tile_size == 0:
max_x_tiles = (x_max // self.tile_size)
else:
max_x_tiles = (x_max // self.tile_size) + 1
dask_arrays = []
for y_tile in range(y_min // self.tile_size, max_y_tiles):
row_tiles = []
for x_tile in range(x_min // self.tile_size, max_x_tiles):
row_tiles.append(
da.from_delayed(
self.read_tile(y_tile, x_tile),
shape=(self.tile_size, self.tile_size), dtype=np.uint8
)
)
dask_arrays.append(row_tiles)
y_max = min(y_max, self.shape[0])
x_max = min(x_max, self.shape[1])
return da.block(dask_arrays)[y_min-y_off:y_max-y_off, x_min-x_off:x_max-x_off]
@abc.abstractmethod
def read_tile(self, y_tile, x_tile):
"""
Abstract method which reads a tile at the position (y_tile, x_tile).
"""
return
[
37811,
198,
26796,
7268,
257,
299,
32152,
12,
2339,
7177,
543,
6971,
16931,
3555,
286,
256,
3902,
362,
35,
12,
9060,
1366,
13,
198,
37811,
198,
11748,
450,
66,
198,
11748,
288,
2093,
13,
18747,
355,
12379,
198,
11748,
299,
32152,
355,
45941,
628,
198,
4871,
406,
12582,
19182,
25,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
1052,
12531,
1398,
286,
257,
299,
32152,
12,
2339,
7177,
543,
6971,
16931,
3555,
286,
256,
3902,
362,
35,
12,
9060,
1366,
13,
198,
220,
220,
220,
383,
1398,
6870,
257,
2183,
7177,
9290,
543,
318,
11670,
351,
262,
299,
32152,
7824,
13,
198,
220,
220,
220,
1114,
517,
3307,
3387,
3522,
284,
198,
220,
220,
220,
3740,
1378,
77,
32152,
13,
2398,
14,
15390,
14,
31284,
14,
7220,
14,
12093,
873,
13,
6381,
17147,
13,
6494,
2,
16502,
12,
23144,
12,
18747,
12,
3642,
50221,
13,
628,
220,
220,
220,
383,
1398,
318,
11670,
351,
25422,
2743,
338,
2939,
7679,
543,
13423,
257,
366,
77,
32152,
12,
2339,
7177,
1,
355,
198,
220,
220,
220,
5128,
543,
6971,
6376,
278,
290,
460,
307,
11513,
284,
257,
299,
32152,
7177,
2884,
45941,
13,
292,
18747,
13,
198,
220,
220,
220,
357,
5420,
25,
3740,
1378,
77,
499,
2743,
13,
2398,
14,
83,
44917,
82,
14,
10990,
3263,
874,
14,
9060,
13,
6494,
2,
9060,
12,
7890,
12,
392,
12,
77,
32152,
12,
2339,
12,
3258,
592,
8,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
11593,
4164,
330,
31172,
834,
796,
450,
66,
13,
24694,
48526,
628,
220,
220,
220,
825,
11593,
15003,
834,
7,
944,
11,
5485,
11,
288,
4906,
11,
17763,
62,
7857,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
20768,
1634,
2446,
13,
628,
220,
220,
220,
220,
220,
220,
220,
1058,
17143,
5485,
25,
383,
5485,
286,
262,
10238,
7177,
13,
198,
220,
220,
220,
220,
220,
220,
220,
1058,
17143,
288,
4906,
25,
383,
2099,
286,
262,
10238,
7177,
13,
198,
220,
220,
220,
220,
220,
220,
220,
1058,
17143,
17763,
62,
7857,
25,
383,
2546,
286,
257,
2060,
17763,
416,
543,
262,
2939,
318,
9086,
13,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
6818,
18896,
7,
43358,
8,
6624,
362,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
43358,
796,
5485,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
67,
4906,
796,
288,
4906,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
40927,
62,
7857,
796,
17763,
62,
7857,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
358,
320,
796,
362,
628,
220,
220,
220,
2488,
26745,
198,
220,
220,
220,
825,
2546,
7,
944,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
383,
1271,
286,
4847,
287,
262,
7177,
13,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
2116,
13,
43358,
58,
15,
60,
1635,
2116,
13,
43358,
58,
16,
60,
628,
220,
220,
220,
825,
11593,
18747,
834,
7,
944,
11,
288,
4906,
28,
14202,
11,
12429,
46265,
22046,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
279,
2645,
600,
25,
15560,
28,
54,
3312,
1485,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
11789,
973,
304,
13,
70,
13,
416,
299,
32152,
284,
7330,
257,
3210,
299,
32152,
13,
358,
18747,
13,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
45941,
13,
292,
18747,
7,
944,
58,
15,
25,
944,
13,
43358,
58,
15,
4357,
657,
25,
944,
13,
43358,
58,
16,
11907,
8,
628,
220,
220,
220,
825,
11593,
1136,
9186,
834,
7,
944,
11,
4686,
87,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
11789,
543,
23986,
262,
1104,
329,
4096,
49289,
13,
198,
220,
220,
220,
220,
220,
220,
220,
632,
857,
407,
1104,
2214,
1895,
4249,
6190,
6376,
278,
13,
198,
220,
220,
220,
220,
220,
220,
220,
10968,
11,
262,
923,
290,
2245,
286,
257,
16416,
1276,
307,
3967,
37014,
13,
628,
220,
220,
220,
220,
220,
220,
220,
770,
2446,
318,
23392,
329,
262,
25422,
2743,
19091,
13,
198,
220,
220,
220,
220,
220,
220,
220,
25422,
2743,
3848,
2116,
58,
47715,
329,
16727,
262,
5485,
11,
288,
4906,
290,
299,
27740,
12608,
532,
407,
262,
1366,
13,
198,
220,
220,
220,
220,
220,
220,
220,
1675,
5711,
3555,
262,
10238,
1366,
428,
2446,
857,
407,
1441,
257,
299,
32152,
7177,
198,
220,
220,
220,
220,
220,
220,
220,
475,
2116,
618,
4585,
2116,
58,
25,
4083,
198,
220,
220,
220,
220,
220,
220,
220,
1675,
1895,
262,
10238,
1366,
25422,
2743,
3848,
45941,
13,
292,
18747,
7,
944,
737,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
611,
407,
357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
318,
39098,
7,
312,
87,
11,
16416,
8,
393,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
357,
271,
39098,
7,
312,
87,
11,
46545,
8,
290,
477,
7,
271,
39098,
7,
72,
11,
16416,
8,
329,
1312,
287,
4686,
87,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
15179,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5298,
11052,
12331,
7203,
43,
12582,
19182,
691,
6971,
6376,
278,
416,
24314,
2474,
8,
628,
220,
220,
220,
220,
220,
220,
220,
611,
357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4686,
87,
6624,
16416,
7,
14202,
11,
6045,
11,
6045,
8,
393,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4686,
87,
6624,
357,
48369,
7,
14202,
11,
6045,
11,
6045,
828,
16416,
7,
14202,
11,
6045,
11,
6045,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
15179,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1441,
2116,
628,
220,
220,
220,
220,
220,
220,
220,
611,
18896,
7,
312,
87,
8,
14512,
362,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5298,
35528,
7203,
3118,
15999,
6376,
2474,
8,
198,
220,
220,
220,
220,
220,
220,
220,
357,
88,
62,
1084,
11,
331,
62,
9806,
828,
357,
87,
62,
1084,
11,
2124,
62,
9806,
8,
796,
47527,
72,
13,
9688,
11,
1312,
13,
11338,
8,
329,
1312,
287,
4686,
87,
60,
198,
220,
220,
220,
220,
220,
220,
220,
331,
62,
2364,
796,
331,
62,
1084,
532,
357,
88,
62,
1084,
4064,
2116,
13,
40927,
62,
7857,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2124,
62,
2364,
796,
2124,
62,
1084,
532,
357,
87,
62,
1084,
4064,
2116,
13,
40927,
62,
7857,
8,
628,
220,
220,
220,
220,
220,
220,
220,
6818,
357,
88,
62,
1084,
18189,
657,
8,
290,
357,
88,
62,
9806,
18189,
657,
8,
290,
357,
87,
62,
1084,
18189,
657,
8,
1222,
357,
87,
62,
9806,
18189,
657,
8,
628,
220,
220,
220,
220,
220,
220,
220,
611,
331,
62,
9806,
4064,
2116,
13,
40927,
62,
7857,
6624,
657,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3509,
62,
88,
62,
83,
2915,
796,
357,
88,
62,
9806,
3373,
2116,
13,
40927,
62,
7857,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3509,
62,
88,
62,
83,
2915,
796,
357,
88,
62,
9806,
3373,
2116,
13,
40927,
62,
7857,
8,
1343,
352,
198,
220,
220,
220,
220,
220,
220,
220,
611,
2124,
62,
9806,
4064,
2116,
13,
40927,
62,
7857,
6624,
657,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3509,
62,
87,
62,
83,
2915,
796,
357,
87,
62,
9806,
3373,
2116,
13,
40927,
62,
7857,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3509,
62,
87,
62,
83,
2915,
796,
357,
87,
62,
9806,
3373,
2116,
13,
40927,
62,
7857,
8,
1343,
352,
628,
220,
220,
220,
220,
220,
220,
220,
288,
2093,
62,
3258,
592,
796,
17635,
198,
220,
220,
220,
220,
220,
220,
220,
329,
331,
62,
40927,
287,
2837,
7,
88,
62,
1084,
3373,
2116,
13,
40927,
62,
7857,
11,
3509,
62,
88,
62,
83,
2915,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5752,
62,
83,
2915,
796,
17635,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
329,
2124,
62,
40927,
287,
2837,
7,
87,
62,
1084,
3373,
2116,
13,
40927,
62,
7857,
11,
3509,
62,
87,
62,
83,
2915,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5752,
62,
83,
2915,
13,
33295,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
12379,
13,
6738,
62,
12381,
16548,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
961,
62,
40927,
7,
88,
62,
40927,
11,
2124,
62,
40927,
828,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5485,
16193,
944,
13,
40927,
62,
7857,
11,
2116,
13,
40927,
62,
7857,
828,
288,
4906,
28,
37659,
13,
28611,
23,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1267,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1267,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
288,
2093,
62,
3258,
592,
13,
33295,
7,
808,
62,
83,
2915,
8,
628,
220,
220,
220,
220,
220,
220,
220,
331,
62,
9806,
796,
949,
7,
88,
62,
9806,
11,
2116,
13,
43358,
58,
15,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
2124,
62,
9806,
796,
949,
7,
87,
62,
9806,
11,
2116,
13,
43358,
58,
16,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
12379,
13,
9967,
7,
67,
2093,
62,
3258,
592,
38381,
88,
62,
1084,
12,
88,
62,
2364,
25,
88,
62,
9806,
12,
88,
62,
2364,
11,
2124,
62,
1084,
12,
87,
62,
2364,
25,
87,
62,
9806,
12,
87,
62,
2364,
60,
628,
220,
220,
220,
2488,
39305,
13,
397,
8709,
24396,
198,
220,
220,
220,
825,
1100,
62,
40927,
7,
944,
11,
331,
62,
40927,
11,
2124,
62,
40927,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
27741,
2446,
543,
9743,
257,
17763,
379,
262,
2292,
357,
88,
62,
40927,
11,
2124,
62,
40927,
737,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
198
]
from django.core.management.base import BaseCommand
from core.datatools.fail_repeat import FailRepeater
[
6738,
42625,
14208,
13,
7295,
13,
27604,
13,
8692,
1330,
7308,
21575,
198,
198,
6738,
4755,
13,
19608,
265,
10141,
13,
32165,
62,
44754,
1330,
18448,
47541,
729,
628
]
from typing import Dict
import requests
from config.env import starhubtvplus_app_key, starhubtvplus_client_uuid
[
6738,
19720,
1330,
360,
713,
198,
11748,
7007,
198,
6738,
4566,
13,
24330,
1330,
3491,
40140,
14981,
9541,
62,
1324,
62,
2539,
11,
3491,
40140,
14981,
9541,
62,
16366,
62,
12303,
312,
628
]
#
# Import section
#
import numpy
from syned.beamline.beamline_element import BeamlineElement
from syned.beamline.element_coordinates import ElementCoordinates
from wofry.propagator.propagator import PropagationManager, PropagationElements, PropagationParameters
from wofry.propagator.wavefront1D.generic_wavefront import GenericWavefront1D
from wofryimpl.propagator.propagators1D.fresnel import Fresnel1D
from wofryimpl.propagator.propagators1D.fresnel_convolution import FresnelConvolution1D
from wofryimpl.propagator.propagators1D.fraunhofer import Fraunhofer1D
from wofryimpl.propagator.propagators1D.integral import Integral1D
from wofryimpl.propagator.propagators1D.fresnel_zoom import FresnelZoom1D
from wofryimpl.propagator.propagators1D.fresnel_zoom_scaling_theorem import FresnelZoomScaling1D
#
# SOURCE========================
#
#
# BEAMLINE========================
#
#
# MAIN FUNCTION========================
#
#
# MAIN========================
#
# main()
if __name__ == "__main__":
from orangecontrib.esrf.wofry.util.tally import TallyCoherentModes, Tally
from oasys.util.oasys_util import get_fwhm
from srxraylib.plot.gol import plot
#
#
#
# size_at_aperture = 565e-6
APERTURE = [40.3e-6, 85.1e-6, 145e-6, 1000e-6, -40.3e-6, -85.1e-6, -145e-6, -1000e-6] # [ 5000e-6] # [-40.3e-6, -85.1e-6, -145e-6, -1000e-6] #
DISTANCE = numpy.linspace(10, 50, 50) # numpy.array([18.4]) # # # 31.19 28.4
number_of_points = 800 # 800
for aperture in APERTURE:
# src1, wf = main(aperture=aperture, distance=18.4168, number_of_points=number_of_points)
filename = "aperture_h_%g.dat" % (1e6 * aperture) #<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
f = open(filename, 'w')
f.write("# S 1 scored data\n")
f.write("# N 5\n")
f.write("# L distance fwhm total_intensity on_axis_intensity peak_intensity")
if aperture < 0:
aperture *= -1
nmodes = 1
else:
nmodes = 10
for i,distance in enumerate(DISTANCE):
tally = main(aperture=aperture, distance=distance, nmodes=nmodes)
spectral_density = tally.get_spectral_density() # numpy.zeros_like(abscissas)
abscissas = tally.get_abscissas()
fwhm, quote, coordinates = get_fwhm(spectral_density, 1e6 * abscissas)
I = spectral_density
x = abscissas
fwhm, quote, coordinates = get_fwhm(I, x)
intensity_at_center = I[I.size // 2]
intensity_total = I.sum() * (x[1] - x[0])
intensity_peak = I.max()
#<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
# plot(1e6 * abscissas, spectral_density,
# legend=["From Cross Spectral Density"],
# xtitle="x [um]", ytitle="Spectral Density", title="D=%g m,FWHM = %g um, a=%g um" % (distance, fwhm, aperture*1e6))
f.write("\n %g %g %g %g %g " % (distance, fwhm, intensity_total, intensity_at_center, intensity_peak))
f.close()
print("File %s written to disk" % filename)
# tally.save("aperture_h_%g.dat" % (aperture))
# main()
[
2,
198,
2,
17267,
2665,
198,
2,
198,
11748,
299,
32152,
198,
198,
6738,
827,
2817,
13,
40045,
1370,
13,
40045,
1370,
62,
30854,
1330,
25855,
1370,
20180,
198,
6738,
827,
2817,
13,
40045,
1370,
13,
30854,
62,
37652,
17540,
1330,
11703,
7222,
585,
17540,
198,
6738,
266,
1659,
563,
13,
22930,
363,
1352,
13,
22930,
363,
1352,
1330,
8772,
363,
341,
13511,
11,
8772,
363,
341,
36,
3639,
11,
8772,
363,
341,
48944,
198,
198,
6738,
266,
1659,
563,
13,
22930,
363,
1352,
13,
19204,
8534,
16,
35,
13,
41357,
62,
19204,
8534,
1330,
42044,
39709,
8534,
16,
35,
198,
198,
6738,
266,
1659,
563,
23928,
13,
22930,
363,
1352,
13,
22930,
363,
2024,
16,
35,
13,
69,
411,
4954,
1330,
32732,
4954,
16,
35,
198,
6738,
266,
1659,
563,
23928,
13,
22930,
363,
1352,
13,
22930,
363,
2024,
16,
35,
13,
69,
411,
4954,
62,
42946,
2122,
1330,
32732,
4954,
3103,
85,
2122,
16,
35,
198,
6738,
266,
1659,
563,
23928,
13,
22930,
363,
1352,
13,
22930,
363,
2024,
16,
35,
13,
69,
430,
403,
71,
30288,
1330,
39313,
403,
71,
30288,
16,
35,
198,
6738,
266,
1659,
563,
23928,
13,
22930,
363,
1352,
13,
22930,
363,
2024,
16,
35,
13,
18908,
1373,
1330,
15995,
1373,
16,
35,
198,
6738,
266,
1659,
563,
23928,
13,
22930,
363,
1352,
13,
22930,
363,
2024,
16,
35,
13,
69,
411,
4954,
62,
89,
4207,
1330,
32732,
4954,
57,
4207,
16,
35,
198,
6738,
266,
1659,
563,
23928,
13,
22930,
363,
1352,
13,
22930,
363,
2024,
16,
35,
13,
69,
411,
4954,
62,
89,
4207,
62,
1416,
4272,
62,
1169,
29625,
1330,
32732,
4954,
57,
4207,
3351,
4272,
16,
35,
628,
198,
2,
198,
2,
311,
31033,
4770,
2559,
198,
2,
628,
198,
198,
2,
198,
2,
9348,
2390,
24027,
4770,
2559,
198,
2,
628,
198,
198,
2,
198,
2,
8779,
1268,
29397,
4177,
2849,
4770,
2559,
198,
2,
628,
198,
198,
2,
198,
2,
8779,
1268,
4770,
2559,
198,
2,
628,
198,
2,
1388,
3419,
198,
361,
11593,
3672,
834,
6624,
366,
834,
12417,
834,
1298,
198,
220,
220,
220,
422,
10912,
3642,
822,
13,
274,
41871,
13,
86,
1659,
563,
13,
22602,
13,
83,
453,
1330,
309,
453,
7222,
8334,
44,
4147,
11,
309,
453,
198,
220,
220,
220,
422,
267,
292,
893,
13,
22602,
13,
78,
292,
893,
62,
22602,
1330,
651,
62,
69,
1929,
76,
198,
220,
220,
220,
422,
19677,
87,
2433,
8019,
13,
29487,
13,
70,
349,
1330,
7110,
198,
220,
220,
220,
1303,
198,
220,
220,
220,
1303,
198,
220,
220,
220,
1303,
198,
220,
220,
220,
1303,
2546,
62,
265,
62,
499,
861,
495,
796,
642,
2996,
68,
12,
21,
198,
220,
220,
220,
3486,
17395,
11335,
796,
685,
1821,
13,
18,
68,
12,
21,
11,
7600,
13,
16,
68,
12,
21,
11,
20299,
68,
12,
21,
11,
8576,
68,
12,
21,
11,
532,
1821,
13,
18,
68,
12,
21,
11,
532,
5332,
13,
16,
68,
12,
21,
11,
532,
18781,
68,
12,
21,
11,
532,
12825,
68,
12,
21,
60,
1303,
685,
23336,
68,
12,
21,
60,
1303,
25915,
1821,
13,
18,
68,
12,
21,
11,
532,
5332,
13,
16,
68,
12,
21,
11,
532,
18781,
68,
12,
21,
11,
532,
12825,
68,
12,
21,
60,
1303,
198,
220,
220,
220,
360,
8808,
19240,
796,
299,
32152,
13,
21602,
10223,
7,
940,
11,
2026,
11,
2026,
8,
1303,
299,
32152,
13,
18747,
26933,
1507,
13,
19,
12962,
1303,
220,
220,
1303,
1303,
3261,
13,
1129,
2579,
13,
19,
198,
220,
220,
220,
1271,
62,
1659,
62,
13033,
796,
10460,
1303,
10460,
628,
198,
220,
220,
220,
329,
32729,
287,
3486,
17395,
11335,
25,
628,
220,
220,
220,
220,
220,
220,
220,
1303,
12351,
16,
11,
266,
69,
796,
1388,
7,
499,
861,
495,
28,
499,
861,
495,
11,
5253,
28,
1507,
13,
19,
14656,
11,
1271,
62,
1659,
62,
13033,
28,
17618,
62,
1659,
62,
13033,
8,
628,
220,
220,
220,
220,
220,
220,
220,
29472,
796,
366,
499,
861,
495,
62,
71,
62,
4,
70,
13,
19608,
1,
4064,
357,
16,
68,
21,
1635,
32729,
8,
1303,
16791,
16791,
16791,
16791,
16791,
16791,
16791,
16791,
16791,
16791,
16791,
16791,
16791,
16791,
16791,
16791,
16791,
16791,
16791,
16791,
16791,
27,
198,
220,
220,
220,
220,
220,
220,
220,
277,
796,
1280,
7,
34345,
11,
705,
86,
11537,
628,
220,
220,
220,
220,
220,
220,
220,
277,
13,
13564,
7203,
2,
311,
352,
7781,
1366,
59,
77,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
277,
13,
13564,
7203,
2,
399,
642,
59,
77,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
277,
13,
13564,
7203,
2,
406,
220,
5253,
220,
277,
1929,
76,
220,
2472,
62,
47799,
220,
319,
62,
22704,
62,
47799,
220,
9103,
62,
47799,
4943,
628,
220,
220,
220,
220,
220,
220,
220,
611,
32729,
1279,
657,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
32729,
1635,
28,
532,
16,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
28642,
4147,
796,
352,
198,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
28642,
4147,
796,
838,
628,
220,
220,
220,
220,
220,
220,
220,
329,
1312,
11,
30246,
287,
27056,
378,
7,
35,
8808,
19240,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
26767,
796,
1388,
7,
499,
861,
495,
28,
499,
861,
495,
11,
5253,
28,
30246,
11,
28642,
4147,
28,
21533,
4147,
8,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
37410,
62,
43337,
796,
26767,
13,
1136,
62,
4443,
1373,
62,
43337,
3419,
1303,
299,
32152,
13,
9107,
418,
62,
2339,
7,
397,
1416,
747,
292,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
450,
1416,
747,
292,
796,
26767,
13,
1136,
62,
397,
1416,
747,
292,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
277,
1929,
76,
11,
9577,
11,
22715,
796,
651,
62,
69,
1929,
76,
7,
4443,
1373,
62,
43337,
11,
352,
68,
21,
1635,
450,
1416,
747,
292,
8,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
314,
796,
37410,
62,
43337,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2124,
796,
450,
1416,
747,
292,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
277,
1929,
76,
11,
9577,
11,
22715,
796,
651,
62,
69,
1929,
76,
7,
40,
11,
2124,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
12245,
62,
265,
62,
16159,
796,
314,
58,
40,
13,
7857,
3373,
362,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
12245,
62,
23350,
796,
314,
13,
16345,
3419,
1635,
357,
87,
58,
16,
60,
532,
2124,
58,
15,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
12245,
62,
36729,
796,
314,
13,
9806,
3419,
628,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
16791,
16791,
16791,
16791,
16791,
16791,
16791,
16791,
16791,
16791,
16791,
16791,
16791,
16791,
16791,
16791,
16791,
16791,
16791,
16791,
16791,
16791,
16791,
16791,
16791,
16791,
16791,
16791,
16791,
16791,
16791,
16791,
16791,
16791,
16791,
16791,
16791,
16791,
16791,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
7110,
7,
16,
68,
21,
1635,
450,
1416,
747,
292,
11,
37410,
62,
43337,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
220,
220,
220,
220,
220,
8177,
28,
14692,
4863,
6372,
13058,
1373,
360,
6377,
33116,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
220,
220,
220,
220,
220,
220,
742,
2578,
2625,
87,
685,
388,
60,
1600,
331,
7839,
2625,
49738,
1373,
360,
6377,
1600,
3670,
2625,
35,
28,
4,
70,
285,
11,
37,
12418,
44,
796,
4064,
70,
23781,
11,
257,
28,
4,
70,
23781,
1,
4064,
357,
30246,
11,
277,
1929,
76,
11,
32729,
9,
16,
68,
21,
4008,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
277,
13,
13564,
7203,
59,
77,
4064,
70,
220,
4064,
70,
220,
4064,
70,
220,
4064,
70,
220,
4064,
70,
220,
366,
4064,
357,
30246,
11,
220,
277,
1929,
76,
11,
220,
12245,
62,
23350,
11,
220,
12245,
62,
265,
62,
16159,
11,
220,
12245,
62,
36729,
4008,
628,
220,
220,
220,
220,
220,
220,
220,
277,
13,
19836,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
3601,
7203,
8979,
4064,
82,
3194,
284,
11898,
1,
4064,
29472,
8,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
26767,
13,
21928,
7203,
499,
861,
495,
62,
71,
62,
4,
70,
13,
19608,
1,
4064,
357,
499,
861,
495,
4008,
628,
198,
220,
220,
220,
1303,
1388,
3419,
198
]
import unittest
from models import Marker # for Marker.bounding_box_query
import datetime
# This tests year 2014 accidents as this is the current example git data for testing
# Once this changes to another year or to the current year's accidents (as should be) un-comment lines 11,13,15
# and change both 2014 and 2015 to: %s
class TestQueryFilters(unittest.TestCase):
"""
# cyear = str(datetime.datetime.now().strftime("%Y"))
global start_date
start_date = "01/01/2014" # % cyear
global end_date
end_date = "01/01/2015" # % str(int(cyear)-1)
"""
if __name__ == '__main__':
unittest.main()
suite = unittest.TestLoader().loadTestsFromTestCase(TestQueryFilters)
unittest.TextTestRunner(verbosity=2).run(suite)
[
11748,
555,
715,
395,
198,
6738,
4981,
1330,
2940,
263,
220,
1303,
329,
2940,
263,
13,
7784,
278,
62,
3524,
62,
22766,
198,
11748,
4818,
8079,
198,
198,
2,
770,
5254,
614,
1946,
17390,
355,
428,
318,
262,
1459,
1672,
17606,
1366,
329,
4856,
198,
2,
4874,
428,
2458,
284,
1194,
614,
393,
284,
262,
1459,
614,
338,
17390,
357,
292,
815,
307,
8,
555,
12,
23893,
3951,
1367,
11,
1485,
11,
1314,
198,
2,
290,
1487,
1111,
1946,
290,
1853,
284,
25,
4064,
82,
628,
198,
4871,
6208,
20746,
11928,
1010,
7,
403,
715,
395,
13,
14402,
20448,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
1303,
269,
1941,
796,
965,
7,
19608,
8079,
13,
19608,
8079,
13,
2197,
22446,
2536,
31387,
7203,
4,
56,
48774,
198,
220,
220,
220,
3298,
923,
62,
4475,
198,
220,
220,
220,
923,
62,
4475,
796,
366,
486,
14,
486,
14,
4967,
1,
220,
220,
220,
220,
1303,
4064,
269,
1941,
198,
220,
220,
220,
3298,
886,
62,
4475,
198,
220,
220,
220,
886,
62,
4475,
796,
366,
486,
14,
486,
14,
4626,
1,
220,
220,
220,
220,
220,
220,
1303,
4064,
965,
7,
600,
7,
948,
451,
13219,
16,
8,
198,
220,
220,
220,
37227,
628,
198,
361,
11593,
3672,
834,
6624,
705,
834,
12417,
834,
10354,
198,
220,
220,
220,
555,
715,
395,
13,
12417,
3419,
198,
220,
220,
220,
18389,
796,
555,
715,
395,
13,
14402,
17401,
22446,
2220,
51,
3558,
4863,
14402,
20448,
7,
14402,
20746,
11928,
1010,
8,
198,
220,
220,
220,
555,
715,
395,
13,
8206,
14402,
49493,
7,
19011,
16579,
28,
17,
737,
5143,
7,
2385,
578,
8,
198
]
# Copyright 2021 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from absl.testing import absltest
from learner.brains import tensor_nest
import tensorflow as tf
class TensorNestTest(absltest.TestCase):
"""Tests for the tensor_nest module."""
def test_batch_size_valid_nest(self):
"""Get the batch size of a nest of tensors with the same batch size."""
nest = {
'a': {
'b': tf.constant([[1, 2, 3], [4, 5, 6]]),
'c': tf.constant([[7, 8, 9, 10], [11, 12, 13, 14]])
},
}
self.assertEqual(2, tensor_nest.batch_size(nest))
def test_batch_size_invalid_nest(self):
"""Get the batch size of a nest of tensors with different batch sizes."""
nest = {
'a': {
'b': tf.constant([[1, 2, 3], [4, 5, 6], [7, 8, 9]]),
'c': tf.constant([[7, 8, 9, 10], [11, 12, 13, 14]])
},
}
self.assertRaisesRegex(
tensor_nest.MismatchedBatchSizeError,
'Tensors found in nest with mismatched batch sizes: {\'a\'.*}',
tensor_nest.batch_size, nest)
def test_batch_size_empty_nest(self):
"""Get the batch size of an empty tensor nest."""
self.assertIsNone(tensor_nest.batch_size({}))
def test_concatenate_batched(self):
"""Test the concatenation of a set of batched tensor nests."""
nests = [
{
'a': {
'b': tf.constant([[1, 2], [3, 4]]),
'c': tf.constant([[9, 8, 7], [6, 5, 4]]),
},
},
{
'a': {
'b': tf.constant([[5, 6]]),
'c': tf.constant([[3, 2, 1]]),
},
},
]
expected = {
'a': {
'b': tf.constant([[1, 2], [3, 4], [5, 6]]),
'c': tf.constant([[9, 8, 7], [6, 5, 4], [3, 2, 1]]),
},
}
tf.nest.assert_same_structure(tensor_nest.concatenate_batched(nests),
expected, expand_composites=True)
if __name__ == '__main__':
absltest.main()
[
2,
15069,
33448,
3012,
11419,
198,
2,
198,
2,
49962,
739,
262,
24843,
13789,
11,
10628,
362,
13,
15,
357,
1169,
366,
34156,
15341,
198,
2,
345,
743,
407,
779,
428,
2393,
2845,
287,
11846,
351,
262,
13789,
13,
198,
2,
921,
743,
7330,
257,
4866,
286,
262,
13789,
379,
198,
2,
198,
2,
220,
220,
220,
220,
220,
2638,
1378,
2503,
13,
43073,
13,
2398,
14,
677,
4541,
14,
43,
2149,
24290,
12,
17,
13,
15,
198,
2,
198,
2,
17486,
2672,
416,
9723,
1099,
393,
4987,
284,
287,
3597,
11,
3788,
198,
2,
9387,
739,
262,
13789,
318,
9387,
319,
281,
366,
1921,
3180,
1,
29809,
1797,
11,
198,
2,
42881,
34764,
11015,
6375,
7102,
49828,
11053,
3963,
15529,
509,
12115,
11,
2035,
4911,
393,
17142,
13,
198,
2,
4091,
262,
13789,
329,
262,
2176,
3303,
15030,
21627,
290,
198,
2,
11247,
739,
262,
13789,
13,
198,
198,
6738,
2352,
75,
13,
33407,
1330,
2352,
2528,
395,
198,
6738,
22454,
1008,
13,
1671,
1299,
1330,
11192,
273,
62,
77,
395,
198,
198,
11748,
11192,
273,
11125,
355,
48700,
628,
198,
4871,
309,
22854,
45,
395,
14402,
7,
8937,
2528,
395,
13,
14402,
20448,
2599,
198,
220,
37227,
51,
3558,
329,
262,
11192,
273,
62,
77,
395,
8265,
526,
15931,
628,
220,
825,
1332,
62,
43501,
62,
7857,
62,
12102,
62,
77,
395,
7,
944,
2599,
198,
220,
220,
220,
37227,
3855,
262,
15458,
2546,
286,
257,
16343,
286,
11192,
669,
351,
262,
976,
15458,
2546,
526,
15931,
198,
220,
220,
220,
16343,
796,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
705,
64,
10354,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
65,
10354,
48700,
13,
9979,
415,
26933,
58,
16,
11,
362,
11,
513,
4357,
685,
19,
11,
642,
11,
718,
11907,
828,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
66,
10354,
48700,
13,
9979,
415,
26933,
58,
22,
11,
807,
11,
860,
11,
838,
4357,
685,
1157,
11,
1105,
11,
1511,
11,
1478,
11907,
8,
198,
220,
220,
220,
220,
220,
220,
220,
8964,
198,
220,
220,
220,
1782,
198,
220,
220,
220,
2116,
13,
30493,
36,
13255,
7,
17,
11,
11192,
273,
62,
77,
395,
13,
43501,
62,
7857,
7,
77,
395,
4008,
628,
220,
825,
1332,
62,
43501,
62,
7857,
62,
259,
12102,
62,
77,
395,
7,
944,
2599,
198,
220,
220,
220,
37227,
3855,
262,
15458,
2546,
286,
257,
16343,
286,
11192,
669,
351,
1180,
15458,
10620,
526,
15931,
198,
220,
220,
220,
16343,
796,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
705,
64,
10354,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
65,
10354,
48700,
13,
9979,
415,
26933,
58,
16,
11,
362,
11,
513,
4357,
685,
19,
11,
642,
11,
718,
4357,
685,
22,
11,
807,
11,
860,
11907,
828,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
66,
10354,
48700,
13,
9979,
415,
26933,
58,
22,
11,
807,
11,
860,
11,
838,
4357,
685,
1157,
11,
1105,
11,
1511,
11,
1478,
11907,
8,
198,
220,
220,
220,
220,
220,
220,
220,
8964,
198,
220,
220,
220,
1782,
198,
220,
220,
220,
2116,
13,
30493,
21762,
2696,
3041,
25636,
7,
198,
220,
220,
220,
220,
220,
220,
220,
11192,
273,
62,
77,
395,
13,
44,
1042,
14265,
33,
963,
10699,
12331,
11,
198,
220,
220,
220,
220,
220,
220,
220,
705,
51,
641,
669,
1043,
287,
16343,
351,
32691,
14265,
15458,
10620,
25,
1391,
43054,
64,
59,
4458,
9,
92,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
11192,
273,
62,
77,
395,
13,
43501,
62,
7857,
11,
16343,
8,
628,
220,
825,
1332,
62,
43501,
62,
7857,
62,
28920,
62,
77,
395,
7,
944,
2599,
198,
220,
220,
220,
37227,
3855,
262,
15458,
2546,
286,
281,
6565,
11192,
273,
16343,
526,
15931,
198,
220,
220,
220,
2116,
13,
30493,
3792,
14202,
7,
83,
22854,
62,
77,
395,
13,
43501,
62,
7857,
15090,
92,
4008,
628,
220,
825,
1332,
62,
1102,
9246,
268,
378,
62,
8664,
1740,
7,
944,
2599,
198,
220,
220,
220,
37227,
14402,
262,
1673,
36686,
341,
286,
257,
900,
286,
7365,
1740,
11192,
273,
44382,
526,
15931,
198,
220,
220,
220,
44382,
796,
685,
198,
220,
220,
220,
220,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
64,
10354,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
65,
10354,
48700,
13,
9979,
415,
26933,
58,
16,
11,
362,
4357,
685,
18,
11,
604,
11907,
828,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
66,
10354,
48700,
13,
9979,
415,
26933,
58,
24,
11,
807,
11,
767,
4357,
685,
21,
11,
642,
11,
604,
11907,
828,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8964,
198,
220,
220,
220,
220,
220,
220,
220,
8964,
198,
220,
220,
220,
220,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
64,
10354,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
65,
10354,
48700,
13,
9979,
415,
26933,
58,
20,
11,
718,
11907,
828,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
66,
10354,
48700,
13,
9979,
415,
26933,
58,
18,
11,
362,
11,
352,
11907,
828,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8964,
198,
220,
220,
220,
220,
220,
220,
220,
8964,
198,
220,
220,
220,
2361,
198,
220,
220,
220,
2938,
796,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
705,
64,
10354,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
65,
10354,
48700,
13,
9979,
415,
26933,
58,
16,
11,
362,
4357,
685,
18,
11,
604,
4357,
685,
20,
11,
718,
11907,
828,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
66,
10354,
48700,
13,
9979,
415,
26933,
58,
24,
11,
807,
11,
767,
4357,
685,
21,
11,
642,
11,
604,
4357,
685,
18,
11,
362,
11,
352,
11907,
828,
198,
220,
220,
220,
220,
220,
220,
220,
8964,
198,
220,
220,
220,
1782,
198,
220,
220,
220,
48700,
13,
77,
395,
13,
30493,
62,
31642,
62,
301,
5620,
7,
83,
22854,
62,
77,
395,
13,
1102,
9246,
268,
378,
62,
8664,
1740,
7,
77,
3558,
828,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2938,
11,
4292,
62,
785,
1930,
2737,
28,
17821,
8,
628,
198,
361,
11593,
3672,
834,
6624,
705,
834,
12417,
834,
10354,
198,
220,
2352,
2528,
395,
13,
12417,
3419,
198
]
""" Longest Palindromic Subsequence
Given a string s, find the longest palindromic subsequence's length in s.
A subsequence is a sequence that can be derived from another sequence by
deleting some or no elements without changing the order of the remaining elements.
- Example 1:
- Input: s = "bbbab"
- Output: 4
- Explanation: One possible longest palindromic subsequence is "bbbb".
- Example 2:
- Input: s = "cbbd"
- Output: 2
- Explanation: One possible longest palindromic subsequence is "bb".
- Constraints:
- 1 <= s.length <= 1000
- s consists only of lowercase English letters.
"""
# A Dynamic Programming based Python
# program for LPS problem Returns the length
# of the longest palindromic subsequence in seq
# Driver program to test above functions
seq = "GEEKS FOR GEEKS"
n = len(seq)
print("The length of the LPS is " + str(lps(seq)))
# This code is contributed by Bhavya Jain
[
37811,
5882,
395,
3175,
521,
398,
291,
3834,
43167,
198,
198,
15056,
257,
4731,
264,
11,
1064,
262,
14069,
6340,
521,
398,
291,
6399,
594,
338,
4129,
287,
264,
13,
198,
198,
32,
6399,
594,
318,
257,
8379,
326,
460,
307,
10944,
422,
1194,
8379,
416,
198,
2934,
293,
889,
617,
393,
645,
4847,
1231,
5609,
262,
1502,
286,
262,
5637,
4847,
13,
198,
198,
12,
17934,
352,
25,
198,
220,
220,
220,
532,
23412,
25,
264,
796,
366,
11848,
65,
397,
1,
198,
220,
220,
220,
532,
25235,
25,
604,
198,
220,
220,
220,
532,
50125,
341,
25,
1881,
1744,
14069,
6340,
521,
398,
291,
6399,
594,
318,
366,
11848,
11848,
1911,
198,
12,
17934,
362,
25,
198,
220,
220,
220,
532,
23412,
25,
264,
796,
366,
66,
11848,
67,
1,
198,
220,
220,
220,
532,
25235,
25,
362,
198,
220,
220,
220,
532,
50125,
341,
25,
1881,
1744,
14069,
6340,
521,
398,
291,
6399,
594,
318,
366,
11848,
1911,
198,
12,
1482,
2536,
6003,
25,
198,
220,
220,
220,
532,
352,
19841,
264,
13,
13664,
19841,
8576,
198,
220,
220,
220,
532,
264,
10874,
691,
286,
2793,
7442,
3594,
7475,
13,
198,
37811,
628,
198,
2,
317,
26977,
30297,
1912,
11361,
198,
2,
1430,
329,
406,
3705,
1917,
16409,
262,
4129,
198,
2,
286,
262,
14069,
6340,
521,
398,
291,
6399,
594,
287,
33756,
628,
198,
2,
12434,
1430,
284,
1332,
2029,
5499,
198,
41068,
796,
366,
38,
6500,
27015,
7473,
402,
6500,
27015,
1,
198,
77,
796,
18896,
7,
41068,
8,
198,
4798,
7203,
464,
4129,
286,
262,
406,
3705,
318,
366,
1343,
965,
7,
75,
862,
7,
41068,
22305,
198,
198,
2,
770,
2438,
318,
8639,
416,
16581,
2830,
64,
449,
391
]
import statistics
data = [2.75, 1.75, 1.25, 0.25, 0.5, 1.25, 3.5]
print(statistics.mean(data)) # 平均
print(statistics.median(data)) # 中央値
print(statistics.variance(data)) # 標本標準分散
[
11748,
7869,
198,
7890,
796,
685,
17,
13,
2425,
11,
352,
13,
2425,
11,
352,
13,
1495,
11,
657,
13,
1495,
11,
657,
13,
20,
11,
352,
13,
1495,
11,
513,
13,
20,
60,
198,
4798,
7,
14269,
3969,
13,
32604,
7,
7890,
4008,
1303,
10263,
117,
111,
161,
251,
229,
198,
4798,
7,
14269,
3969,
13,
1150,
666,
7,
7890,
4008,
1303,
220,
40792,
13783,
106,
161,
222,
97,
198,
4798,
7,
14269,
3969,
13,
25641,
590,
7,
7890,
4008,
1303,
10545,
101,
247,
17312,
105,
162,
101,
247,
162,
118,
244,
26344,
228,
46763,
96,
198
]
[
2,
15069,
33448,
20700,
30263,
1279,
41,
11401,
1199,
10735,
31,
14816,
13,
785,
29,
198,
2,
198,
2,
30628,
55,
12,
34156,
12,
33234,
7483,
25,
17168,
628
]
from django.db import models
from django.contrib.auth.models import User
from ckeditor_uploader.fields import RichTextUploadingField
# Create your models here.
[
6738,
42625,
14208,
13,
9945,
1330,
4981,
198,
6738,
42625,
14208,
13,
3642,
822,
13,
18439,
13,
27530,
1330,
11787,
198,
6738,
269,
9091,
2072,
62,
25850,
263,
13,
25747,
1330,
3998,
8206,
41592,
278,
15878,
198,
198,
2,
13610,
534,
4981,
994,
13,
198,
220,
220,
220,
220
]
import os
from django import forms
from django.utils.translation import gettext_lazy as _
from wagtail.admin.widgets import AdminPageChooser
from wagtail.contrib.redirects.models import Redirect
from wagtail.models import Site
[
11748,
28686,
198,
198,
6738,
42625,
14208,
1330,
5107,
198,
6738,
42625,
14208,
13,
26791,
13,
41519,
1330,
651,
5239,
62,
75,
12582,
355,
4808,
198,
198,
6738,
266,
363,
13199,
13,
28482,
13,
28029,
11407,
1330,
32053,
9876,
22164,
13416,
198,
6738,
266,
363,
13199,
13,
3642,
822,
13,
445,
1060,
82,
13,
27530,
1330,
2297,
1060,
198,
6738,
266,
363,
13199,
13,
27530,
1330,
14413,
628,
628
]
import numpy as np
import cv2
import copy
from Tkinter import *
from PIL import Image
from PIL import ImageTk
import tkFileDialog
root = Tk()
panelA = None
panelB = None
img = None
img2 = None
img3 = None
ConvolutionLabel = Label(root, text="Convolute").grid(row=0,column=0)
Conv00Entry = Entry(root, bd =5)
Conv01Entry = Entry(root, bd =5)
Conv02Entry = Entry(root, bd =5)
Conv10Entry = Entry(root, bd =5)
Conv11Entry = Entry(root, bd =5)
Conv12Entry = Entry(root, bd =5)
Conv20Entry = Entry(root, bd =5)
Conv21Entry = Entry(root, bd =5)
Conv22Entry = Entry(root, bd =5)
Conv00Entry.grid(row=1,column=0)
Conv01Entry.grid(row=1,column=1)
Conv02Entry.grid(row=1,column=2)
Conv10Entry.grid(row=2,column=0)
Conv11Entry.grid(row=2,column=1)
Conv12Entry.grid(row=2,column=2)
Conv20Entry.grid(row=3,column=0)
Conv21Entry.grid(row=3,column=1)
Conv22Entry.grid(row=3,column=2)
brightnessLabel = Label(root, text="Brightness").grid(row=4,column=0)
brightnessEntry = Entry(root, bd =5)
brightnessEntry.grid(row=4,column=1)
contrastLabel = Label(root, text="Contrast").grid(row=5,column=0)
contrastEntry = Entry(root, bd =5)
contrastEntry.grid(row=5,column=1)
zoomOutLabel = Label(root, text="ZoomOut").grid(row=6,column=0)
zoomOutXEntry = Entry(root, bd =5)
zoomOutXEntry.grid(row=6,column=1)
zoomOutYEntry = Entry(root, bd =5)
zoomOutYEntry.grid(row=6,column=2)
selectImageBtn = Button(root, text="Select an image", command=selectImage).grid(row=0,column=3)
horizontalBtn = Button(root, text ="Flip Horizontally", command = flipHorizontal).grid(row=1,column=3)
grayscaleBtn = Button(root, text ="Grayscale", command = grayscale).grid(row=2,column=3)
histogramBtn = Button(root, text ="Generate Histogram", command = generateHistogram).grid(row=3,column=3)
brightnessBtn = Button(root, text ="Change Brightness", command = changeBrightness).grid(row=4,column=3)
contrastBtn = Button(root, text ="Change Contrast", command = changeContrast).grid(row=5,column=3)
negativeBtn = Button(root, text ="Negative", command = negative).grid(row=6,column=3)
equalizeBtn = Button(root, text ="Equalize", command = equalize).grid(row=7,column=3)
zoomOutBtn = Button(root, text ="ZoomOut", command = zoomOut).grid(row=8,column=3)
zoomInBtn = Button(root, text ="ZoomIn", command = zoomIn).grid(row=9,column=3)
rotateClockWiseBtn = Button(root, text ="rotateClockWise", command = rotateClockWise).grid(row=10,column=3)
rotateAntiClockWiseBtn = Button(root, text ="rotateAntiClockWise", command = rotateAntiClockWise).grid(row=11,column=3)
convoluteBtn = Button(root, text ="Convolute", command = convolute).grid(row=12,column=3)
root.mainloop()
[
11748,
299,
32152,
355,
45941,
198,
11748,
269,
85,
17,
198,
11748,
4866,
198,
6738,
309,
74,
3849,
1330,
1635,
198,
6738,
350,
4146,
1330,
7412,
198,
6738,
350,
4146,
1330,
7412,
51,
74,
198,
11748,
256,
74,
8979,
44204,
628,
198,
15763,
796,
309,
74,
3419,
198,
35330,
32,
796,
6045,
198,
35330,
33,
796,
6045,
198,
9600,
796,
6045,
198,
9600,
17,
796,
6045,
198,
9600,
18,
796,
6045,
198,
198,
3103,
85,
2122,
33986,
796,
36052,
7,
15763,
11,
2420,
2625,
3103,
85,
3552,
11074,
25928,
7,
808,
28,
15,
11,
28665,
28,
15,
8,
198,
3103,
85,
405,
30150,
796,
21617,
7,
15763,
11,
275,
67,
796,
20,
8,
198,
3103,
85,
486,
30150,
796,
21617,
7,
15763,
11,
275,
67,
796,
20,
8,
198,
3103,
85,
2999,
30150,
796,
21617,
7,
15763,
11,
275,
67,
796,
20,
8,
198,
3103,
85,
940,
30150,
796,
21617,
7,
15763,
11,
275,
67,
796,
20,
8,
198,
3103,
85,
1157,
30150,
796,
21617,
7,
15763,
11,
275,
67,
796,
20,
8,
198,
3103,
85,
1065,
30150,
796,
21617,
7,
15763,
11,
275,
67,
796,
20,
8,
198,
3103,
85,
1238,
30150,
796,
21617,
7,
15763,
11,
275,
67,
796,
20,
8,
198,
3103,
85,
2481,
30150,
796,
21617,
7,
15763,
11,
275,
67,
796,
20,
8,
198,
3103,
85,
1828,
30150,
796,
21617,
7,
15763,
11,
275,
67,
796,
20,
8,
198,
3103,
85,
405,
30150,
13,
25928,
7,
808,
28,
16,
11,
28665,
28,
15,
8,
198,
3103,
85,
486,
30150,
13,
25928,
7,
808,
28,
16,
11,
28665,
28,
16,
8,
198,
3103,
85,
2999,
30150,
13,
25928,
7,
808,
28,
16,
11,
28665,
28,
17,
8,
198,
3103,
85,
940,
30150,
13,
25928,
7,
808,
28,
17,
11,
28665,
28,
15,
8,
198,
3103,
85,
1157,
30150,
13,
25928,
7,
808,
28,
17,
11,
28665,
28,
16,
8,
198,
3103,
85,
1065,
30150,
13,
25928,
7,
808,
28,
17,
11,
28665,
28,
17,
8,
198,
3103,
85,
1238,
30150,
13,
25928,
7,
808,
28,
18,
11,
28665,
28,
15,
8,
198,
3103,
85,
2481,
30150,
13,
25928,
7,
808,
28,
18,
11,
28665,
28,
16,
8,
198,
3103,
85,
1828,
30150,
13,
25928,
7,
808,
28,
18,
11,
28665,
28,
17,
8,
198,
198,
29199,
1108,
33986,
796,
36052,
7,
15763,
11,
2420,
2625,
41267,
1108,
11074,
25928,
7,
808,
28,
19,
11,
28665,
28,
15,
8,
198,
29199,
1108,
30150,
796,
21617,
7,
15763,
11,
275,
67,
796,
20,
8,
198,
29199,
1108,
30150,
13,
25928,
7,
808,
28,
19,
11,
28665,
28,
16,
8,
198,
3642,
5685,
33986,
796,
36052,
7,
15763,
11,
2420,
2625,
4264,
5685,
11074,
25928,
7,
808,
28,
20,
11,
28665,
28,
15,
8,
198,
3642,
5685,
30150,
796,
21617,
7,
15763,
11,
275,
67,
796,
20,
8,
198,
3642,
5685,
30150,
13,
25928,
7,
808,
28,
20,
11,
28665,
28,
16,
8,
198,
198,
89,
4207,
7975,
33986,
796,
36052,
7,
15763,
11,
2420,
2625,
57,
4207,
7975,
11074,
25928,
7,
808,
28,
21,
11,
28665,
28,
15,
8,
198,
89,
4207,
7975,
55,
30150,
796,
21617,
7,
15763,
11,
275,
67,
796,
20,
8,
198,
89,
4207,
7975,
55,
30150,
13,
25928,
7,
808,
28,
21,
11,
28665,
28,
16,
8,
198,
89,
4207,
7975,
56,
30150,
796,
21617,
7,
15763,
11,
275,
67,
796,
20,
8,
198,
89,
4207,
7975,
56,
30150,
13,
25928,
7,
808,
28,
21,
11,
28665,
28,
17,
8,
198,
198,
19738,
5159,
33,
34106,
796,
20969,
7,
15763,
11,
2420,
2625,
17563,
281,
2939,
1600,
3141,
28,
19738,
5159,
737,
25928,
7,
808,
28,
15,
11,
28665,
28,
18,
8,
198,
17899,
38342,
33,
34106,
796,
20969,
7,
15763,
11,
2420,
796,
1,
7414,
541,
6075,
12071,
453,
1600,
3141,
796,
14283,
27991,
38342,
737,
25928,
7,
808,
28,
16,
11,
28665,
28,
18,
8,
198,
2164,
592,
38765,
33,
34106,
796,
20969,
7,
15763,
11,
2420,
796,
1,
8642,
592,
38765,
1600,
3141,
796,
1036,
592,
38765,
737,
25928,
7,
808,
28,
17,
11,
28665,
28,
18,
8,
198,
10034,
21857,
33,
34106,
796,
20969,
7,
15763,
11,
2420,
796,
1,
8645,
378,
5590,
21857,
1600,
3141,
796,
7716,
13749,
21857,
737,
25928,
7,
808,
28,
18,
11,
28665,
28,
18,
8,
198,
29199,
1108,
33,
34106,
796,
20969,
7,
15763,
11,
2420,
796,
1,
19400,
17558,
1108,
1600,
3141,
796,
1487,
41267,
1108,
737,
25928,
7,
808,
28,
19,
11,
28665,
28,
18,
8,
198,
3642,
5685,
33,
34106,
796,
20969,
7,
15763,
11,
2420,
796,
1,
19400,
47011,
1600,
3141,
796,
1487,
4264,
5685,
737,
25928,
7,
808,
28,
20,
11,
28665,
28,
18,
8,
198,
31591,
33,
34106,
796,
20969,
7,
15763,
11,
2420,
796,
1,
32863,
876,
1600,
3141,
796,
4633,
737,
25928,
7,
808,
28,
21,
11,
28665,
28,
18,
8,
198,
40496,
1096,
33,
34106,
796,
20969,
7,
15763,
11,
2420,
796,
1,
36,
13255,
1096,
1600,
3141,
796,
4961,
1096,
737,
25928,
7,
808,
28,
22,
11,
28665,
28,
18,
8,
198,
89,
4207,
7975,
33,
34106,
796,
20969,
7,
15763,
11,
2420,
796,
1,
57,
4207,
7975,
1600,
3141,
796,
19792,
7975,
737,
25928,
7,
808,
28,
23,
11,
28665,
28,
18,
8,
198,
89,
4207,
818,
33,
34106,
796,
20969,
7,
15763,
11,
2420,
796,
1,
57,
4207,
818,
1600,
3141,
796,
19792,
818,
737,
25928,
7,
808,
28,
24,
11,
28665,
28,
18,
8,
198,
10599,
378,
44758,
54,
786,
33,
34106,
796,
20969,
7,
15763,
11,
2420,
796,
1,
10599,
378,
44758,
54,
786,
1600,
3141,
796,
23064,
44758,
54,
786,
737,
25928,
7,
808,
28,
940,
11,
28665,
28,
18,
8,
198,
10599,
378,
28795,
44758,
54,
786,
33,
34106,
796,
20969,
7,
15763,
11,
2420,
796,
1,
10599,
378,
28795,
44758,
54,
786,
1600,
3141,
796,
23064,
28795,
44758,
54,
786,
737,
25928,
7,
808,
28,
1157,
11,
28665,
28,
18,
8,
198,
42946,
3552,
33,
34106,
796,
20969,
7,
15763,
11,
2420,
796,
1,
3103,
85,
3552,
1600,
3141,
796,
3063,
3552,
737,
25928,
7,
808,
28,
1065,
11,
28665,
28,
18,
8,
198,
198,
15763,
13,
12417,
26268,
3419
]
#-------------------------------------------------------------------------------
# Post processing (color management) related Mari scripts
# coding: utf-8
# Copyright (c) 2011 The Foundry Visionmongers Ltd. All Rights Reserved.
#-------------------------------------------------------------------------------
import mari, time, PythonQt, os, math
QtGui = PythonQt.QtGui
QtCore = PythonQt.QtCore
ocio = mari.utils.ocio
##############################################################################################
GAIN_GROUP_MAX_WIDTH = 312
FSTOP_MAX_WIDTH = 50
EXPOSURE_MAX_WIDTH = 102
GAIN_MAX_WIDTH = 80
GAMMA_MAX_WIDTH = 200
TOOLBAR_SPACING = 3
toolbar = None
#-----------------------------------------------------------------------------------------
#-----------------------------------------------------------------------------------------
#-----------------------------------------------------------------------------------------
#-----------------------------------------------------------------------------------------
#-----------------------------------------------------------------------------------------
#-----------------------------------------------------------------------------------------
#-----------------------------------------------------------------------------------------
#-----------------------------------------------------------------------------------------
#-----------------------------------------------------------------------------------------
#-----------------------------------------------------------------------------------------
#-----------------------------------------------------------------------------------------
#-----------------------------------------------------------------------------------------
#-----------------------------------------------------------------------------------------
#-----------------------------------------------------------------------------------------
#-----------------------------------------------------------------------------------------
#-----------------------------------------------------------------------------------------
#-----------------------------------------------------------------------------------------
# Widgets:
#-----------------------------------------------------------------------------------------
#-----------------------------------------------------------------------------------------
#-----------------------------------------------------------------------------------------
#-----------------------------------------------------------------------------------------
#-----------------------------------------------------------------------------------------
#-----------------------------------------------------------------------------------------
#-----------------------------------------------------------------------------------------
#-----------------------------------------------------------------------------------------
#-----------------------------------------------------------------------------------------
#-----------------------------------------------------------------------------------------
#-----------------------------------------------------------------------------------------
#-----------------------------------------------------------------------------------------
#-----------------------------------------------------------------------------------------
#-----------------------------------------------------------------------------------------
#-----------------------------------------------------------------------------------------
#-----------------------------------------------------------------------------------------
#-----------------------------------------------------------------------------------------
#-----------------------------------------------------------------------------------------
#-----------------------------------------------------------------------------------------
# Metadata:
#-----------------------------------------------------------------------------------------
#-----------------------------------------------------------------------------------------
#-----------------------------------------------------------------------------------------
#-----------------------------------------------------------------------------------------
# External Connections:
#-----------------------------------------------------------------------------------------
#-----------------------------------------------------------------------------------------
#-----------------------------------------------------------------------------------------
#-----------------------------------------------------------------------------------------
#-----------------------------------------------------------------------------------------
#-----------------------------------------------------------------------------------------
#-----------------------------------------------------------------------------------------
# Filter:
#-----------------------------------------------------------------------------------------
#-----------------------------------------------------------------------------------------
#-----------------------------------------------------------------------------------------
# Debugging:
#-----------------------------------------------------------------------------------------
##############################################################################################
# The following functions CAN'T be part of the toolbar class as a potential bug in PythonQt
# causes the disconnect function to fail
#-----------------------------------------------------------------------------------------
##############################################################################################
if mari.app.isRunning():
if not hasattr(mari.gl_render, 'createPostFilterCollection'):
ocio.printMessage(ocio.MessageType.ERROR, 'This version of Mari does not support the mari.gl_render.createPostFilterCollection API')
else:
if ocio.config_default is not None:
toolbar = OcioToolBar()
else:
# Destroy the OCIO post filter collection if present to prevent the user trying to use it.
filter_collection = mari.gl_render.findPostFilterCollection('Color Space')
if filter_collection is not None:
mari.gl_render.deletePostFilterCollection(filter_collection)
# Destroy the toolbar to prevent the user trying to use it.
mari.app.deleteToolBar('Color Space')
[
2,
10097,
24305,
198,
2,
2947,
7587,
357,
8043,
4542,
8,
3519,
29423,
14750,
198,
2,
19617,
25,
3384,
69,
12,
23,
198,
2,
15069,
357,
66,
8,
2813,
383,
4062,
563,
19009,
31059,
364,
12052,
13,
220,
1439,
6923,
33876,
13,
198,
2,
10097,
24305,
198,
198,
11748,
1667,
72,
11,
640,
11,
11361,
48,
83,
11,
28686,
11,
10688,
198,
48,
83,
8205,
72,
220,
796,
11361,
48,
83,
13,
48,
83,
8205,
72,
198,
48,
83,
14055,
796,
11361,
48,
83,
13,
48,
83,
14055,
198,
420,
952,
220,
220,
796,
1667,
72,
13,
26791,
13,
420,
952,
198,
198,
29113,
29113,
14468,
7804,
4242,
2235,
198,
198,
9273,
1268,
62,
46846,
62,
22921,
62,
54,
2389,
4221,
796,
34465,
198,
37,
2257,
3185,
62,
22921,
62,
54,
2389,
4221,
220,
220,
220,
220,
220,
796,
2026,
198,
6369,
37997,
11335,
62,
22921,
62,
54,
2389,
4221,
220,
220,
796,
15143,
198,
9273,
1268,
62,
22921,
62,
54,
2389,
4221,
220,
220,
220,
220,
220,
220,
796,
4019,
198,
38,
2390,
5673,
62,
22921,
62,
54,
2389,
4221,
220,
220,
220,
220,
220,
796,
939,
198,
10468,
3535,
33,
1503,
62,
4303,
2246,
2751,
220,
220,
220,
220,
220,
796,
513,
198,
198,
25981,
5657,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
796,
6045,
628,
220,
220,
220,
1303,
10097,
22369,
12,
628,
220,
220,
220,
1303,
10097,
22369,
12,
628,
220,
220,
220,
1303,
10097,
22369,
12,
628,
220,
220,
220,
1303,
10097,
22369,
12,
628,
220,
220,
220,
1303,
10097,
22369,
12,
628,
220,
220,
220,
1303,
10097,
22369,
12,
628,
220,
220,
220,
1303,
10097,
22369,
12,
628,
220,
220,
220,
1303,
10097,
22369,
12,
628,
220,
220,
220,
1303,
10097,
22369,
12,
628,
220,
220,
220,
1303,
10097,
22369,
12,
628,
220,
220,
220,
1303,
10097,
22369,
12,
628,
220,
220,
220,
1303,
10097,
22369,
12,
628,
220,
220,
220,
1303,
10097,
22369,
12,
628,
220,
220,
220,
1303,
10097,
22369,
12,
628,
220,
220,
220,
1303,
10097,
22369,
12,
628,
220,
220,
220,
1303,
10097,
22369,
12,
628,
220,
220,
220,
1303,
10097,
22369,
12,
198,
220,
220,
220,
1303,
24801,
11407,
25,
198,
220,
220,
220,
1303,
10097,
22369,
12,
628,
220,
220,
220,
1303,
10097,
22369,
12,
628,
220,
220,
220,
1303,
10097,
22369,
12,
628,
220,
220,
220,
1303,
10097,
22369,
12,
628,
220,
220,
220,
1303,
10097,
22369,
12,
628,
220,
220,
220,
1303,
10097,
22369,
12,
628,
220,
220,
220,
1303,
10097,
22369,
12,
628,
220,
220,
220,
1303,
10097,
22369,
12,
628,
220,
220,
220,
1303,
10097,
22369,
12,
628,
220,
220,
220,
1303,
10097,
22369,
12,
628,
220,
220,
220,
1303,
10097,
22369,
12,
628,
220,
220,
220,
1303,
10097,
22369,
12,
628,
220,
220,
220,
1303,
10097,
22369,
12,
628,
220,
220,
220,
1303,
10097,
22369,
12,
628,
220,
220,
220,
1303,
10097,
22369,
12,
628,
220,
220,
220,
1303,
10097,
22369,
12,
628,
220,
220,
220,
1303,
10097,
22369,
12,
628,
220,
220,
220,
1303,
10097,
22369,
12,
628,
220,
220,
220,
1303,
10097,
22369,
12,
198,
220,
220,
220,
1303,
3395,
14706,
25,
198,
220,
220,
220,
1303,
10097,
22369,
12,
628,
220,
220,
220,
1303,
10097,
22369,
12,
628,
220,
220,
220,
1303,
10097,
22369,
12,
628,
198,
220,
220,
220,
1303,
10097,
22369,
12,
198,
220,
220,
220,
1303,
34579,
8113,
507,
25,
198,
220,
220,
220,
1303,
10097,
22369,
12,
628,
220,
220,
220,
1303,
10097,
22369,
12,
628,
220,
220,
220,
1303,
10097,
22369,
12,
628,
220,
220,
220,
1303,
10097,
22369,
12,
628,
220,
220,
220,
1303,
10097,
22369,
12,
628,
220,
220,
220,
1303,
10097,
22369,
12,
628,
220,
220,
220,
1303,
10097,
22369,
12,
198,
220,
220,
220,
1303,
25853,
25,
198,
220,
220,
220,
1303,
10097,
22369,
12,
628,
220,
220,
220,
1303,
10097,
22369,
12,
628,
220,
220,
220,
1303,
10097,
22369,
12,
198,
220,
220,
220,
1303,
31687,
2667,
25,
198,
220,
220,
220,
1303,
10097,
22369,
12,
198,
198,
29113,
29113,
14468,
7804,
4242,
2235,
198,
2,
383,
1708,
5499,
15628,
6,
51,
307,
636,
286,
262,
50149,
1398,
355,
257,
2785,
5434,
287,
11361,
48,
83,
198,
2,
5640,
262,
22837,
2163,
284,
2038,
198,
198,
2,
10097,
22369,
12,
198,
198,
29113,
29113,
14468,
7804,
4242,
2235,
198,
198,
361,
1667,
72,
13,
1324,
13,
271,
28768,
33529,
198,
220,
220,
220,
611,
407,
468,
35226,
7,
76,
2743,
13,
4743,
62,
13287,
11,
705,
17953,
6307,
22417,
36307,
6,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
267,
66,
952,
13,
4798,
12837,
7,
420,
952,
13,
12837,
6030,
13,
24908,
11,
705,
1212,
2196,
286,
29423,
857,
407,
1104,
262,
1667,
72,
13,
4743,
62,
13287,
13,
17953,
6307,
22417,
36307,
7824,
11537,
628,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
611,
267,
66,
952,
13,
11250,
62,
12286,
318,
407,
6045,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
50149,
796,
440,
66,
952,
25391,
10374,
3419,
628,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
19448,
262,
24775,
9399,
1281,
8106,
4947,
611,
1944,
284,
2948,
262,
2836,
2111,
284,
779,
340,
13,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8106,
62,
43681,
796,
1667,
72,
13,
4743,
62,
13287,
13,
19796,
6307,
22417,
36307,
10786,
10258,
4687,
11537,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
8106,
62,
43681,
318,
407,
6045,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1667,
72,
13,
4743,
62,
13287,
13,
33678,
6307,
22417,
36307,
7,
24455,
62,
43681,
8,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
19448,
262,
50149,
284,
2948,
262,
2836,
2111,
284,
779,
340,
13,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1667,
72,
13,
1324,
13,
33678,
25391,
10374,
10786,
10258,
4687,
11537,
198
]
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import os
import shutil
from pathlib import Path
from libcst.testing.utils import UnitTest
from fixit.common.config import (
CACHE as CONFIG_CACHE,
get_lint_config,
get_rules_for_path,
)
from fixit.common.utils import (
dedent_with_lstrip,
DuplicateLintRuleNameError,
find_and_import_rule,
import_rule_from_package,
LintRuleNotFoundError,
)
DUMMY_PACKAGE: str = "fixit.common.tests.test_imports_dummy_package"
DUMMY_PACKAGE_PATH: Path = Path(__file__).parent / "test_imports_dummy_package"
DUPLICATE_DUMMY_PATH: Path = (
Path(__file__).parent / "test_imports_dummy_package_with_duplicate_rule"
)
# Using dummy config file, test whether the rule import helpers work as expected.
[
2,
15069,
357,
66,
8,
3203,
11,
3457,
13,
290,
663,
29116,
13,
198,
2,
198,
2,
770,
2723,
2438,
318,
11971,
739,
262,
17168,
5964,
1043,
287,
262,
198,
2,
38559,
24290,
2393,
287,
262,
6808,
8619,
286,
428,
2723,
5509,
13,
198,
198,
11748,
28686,
198,
11748,
4423,
346,
198,
6738,
3108,
8019,
1330,
10644,
198,
198,
6738,
9195,
66,
301,
13,
33407,
13,
26791,
1330,
11801,
14402,
198,
198,
6738,
4259,
270,
13,
11321,
13,
11250,
1330,
357,
198,
220,
220,
220,
327,
2246,
13909,
355,
25626,
62,
34,
2246,
13909,
11,
198,
220,
220,
220,
651,
62,
75,
600,
62,
11250,
11,
198,
220,
220,
220,
651,
62,
38785,
62,
1640,
62,
6978,
11,
198,
8,
198,
6738,
4259,
270,
13,
11321,
13,
26791,
1330,
357,
198,
220,
220,
220,
4648,
298,
62,
4480,
62,
75,
36311,
11,
198,
220,
220,
220,
49821,
5344,
43,
600,
31929,
5376,
12331,
11,
198,
220,
220,
220,
1064,
62,
392,
62,
11748,
62,
25135,
11,
198,
220,
220,
220,
1330,
62,
25135,
62,
6738,
62,
26495,
11,
198,
220,
220,
220,
406,
600,
31929,
3673,
21077,
12331,
11,
198,
8,
628,
198,
35,
5883,
26708,
62,
47,
8120,
11879,
25,
965,
796,
366,
13049,
270,
13,
11321,
13,
41989,
13,
9288,
62,
320,
3742,
62,
67,
13513,
62,
26495,
1,
198,
35,
5883,
26708,
62,
47,
8120,
11879,
62,
34219,
25,
10644,
796,
10644,
7,
834,
7753,
834,
737,
8000,
1220,
366,
9288,
62,
320,
3742,
62,
67,
13513,
62,
26495,
1,
198,
198,
35,
52,
31484,
6158,
62,
35,
5883,
26708,
62,
34219,
25,
10644,
796,
357,
198,
220,
220,
220,
10644,
7,
834,
7753,
834,
737,
8000,
1220,
366,
9288,
62,
320,
3742,
62,
67,
13513,
62,
26495,
62,
4480,
62,
646,
489,
5344,
62,
25135,
1,
198,
8,
198,
198,
2,
8554,
31548,
4566,
2393,
11,
1332,
1771,
262,
3896,
1330,
49385,
670,
355,
2938,
13,
628
]
"""
Announce addresses as they are received from other hosts
"""
import Queue
import state
from helper_random import randomshuffle
from network.assemble import assemble_addr
from network.connectionpool import BMConnectionPool
from queues import addrQueue
from threads import StoppableThread
class AddrThread(StoppableThread):
"""(Node) address broadcasting thread"""
name = "AddrBroadcaster"
[
37811,
198,
18858,
8652,
9405,
355,
484,
389,
2722,
422,
584,
11453,
198,
37811,
198,
11748,
4670,
518,
198,
198,
11748,
1181,
198,
6738,
31904,
62,
25120,
1330,
4738,
1477,
18137,
198,
6738,
3127,
13,
292,
15140,
1330,
25432,
62,
29851,
198,
6738,
3127,
13,
38659,
7742,
1330,
29944,
32048,
27201,
198,
6738,
43359,
1330,
37817,
34991,
198,
6738,
14390,
1330,
520,
35628,
16818,
628,
198,
4871,
3060,
81,
16818,
7,
1273,
35628,
16818,
2599,
198,
220,
220,
220,
13538,
18109,
19667,
8,
2209,
22978,
4704,
37811,
198,
220,
220,
220,
1438,
796,
366,
4550,
81,
30507,
17970,
1,
198
]
print("branches are fun")
[
4798,
7203,
1671,
12140,
389,
1257,
4943
]
from django import template
register = template.Library()
@register.filter(name='addcss')
[
6738,
42625,
14208,
1330,
11055,
198,
198,
30238,
796,
11055,
13,
23377,
3419,
198,
198,
31,
30238,
13,
24455,
7,
3672,
11639,
2860,
25471,
11537,
628,
628
]
# -*- coding: utf-8 -*-
vars2d = [
'2m_temperature',
'10m_u_component_of_wind', '10m_v_component_of_wind',
'total_cloud_cover', 'total_precipitation',
'toa_incident_solar_radiation',
'temperature_850hPa',
]
vars3d = [
'geopotential', 'temperature',
'specific_humidity', 'relative_humidity',
'u_component_of_wind', 'v_component_of_wind',
'vorticity', 'potential_vorticity',
]
codes = {
'geopotential': 'z',
'temperature': 't',
'temperature_850hPa': 't',
'specific_humidity': 'q',
'relative_humidity': 'r',
'u_component_of_wind': 'u',
'v_component_of_wind': 'v',
'vorticity': 'vo',
'potential_vorticity': 'pv',
'2m_temperature': 't2m',
'10m_u_component_of_wind': 'u10',
'10m_v_component_of_wind': 'v10',
'total_cloud_cover': 'tcc',
'total_precipitation': 'tp',
'toa_incident_solar_radiation': 'tisr',
}
code2var = {
'z': 'geopotential',
't': 'temperature',
'q': 'specific_humidity',
'r': 'relative_humidity',
'u': 'u_component_of_wind',
'v': 'v_component_of_wind',
'vo': 'vorticity',
'pv': 'potential_vorticity',
't2m': '2m_temperature',
'u10': '10m_u_component_of_wind',
'v10': '10m_v_component_of_wind',
'tcc': 'total_cloud_cover',
'tp': 'total_precipitation',
'tisr': 'toa_incident_solar_radiation',
}
[
2,
532,
9,
12,
19617,
25,
3384,
69,
12,
23,
532,
9,
12,
198,
198,
85,
945,
17,
67,
796,
685,
198,
220,
220,
220,
705,
17,
76,
62,
11498,
21069,
3256,
198,
220,
220,
220,
705,
940,
76,
62,
84,
62,
42895,
62,
1659,
62,
7972,
3256,
705,
940,
76,
62,
85,
62,
42895,
62,
1659,
62,
7972,
3256,
198,
220,
220,
220,
705,
23350,
62,
17721,
62,
9631,
3256,
705,
23350,
62,
3866,
66,
541,
3780,
3256,
198,
220,
220,
220,
705,
1462,
64,
62,
1939,
738,
62,
82,
6192,
62,
6335,
3920,
3256,
198,
220,
220,
220,
705,
11498,
21069,
62,
25764,
71,
28875,
3256,
198,
60,
198,
198,
85,
945,
18,
67,
796,
685,
198,
220,
220,
220,
705,
469,
43372,
1843,
3256,
705,
11498,
21069,
3256,
198,
220,
220,
220,
705,
11423,
62,
17047,
17995,
3256,
705,
43762,
62,
17047,
17995,
3256,
198,
220,
220,
220,
705,
84,
62,
42895,
62,
1659,
62,
7972,
3256,
705,
85,
62,
42895,
62,
1659,
62,
7972,
3256,
198,
220,
220,
220,
705,
85,
419,
8467,
3256,
705,
13059,
1843,
62,
85,
419,
8467,
3256,
198,
60,
198,
198,
40148,
796,
1391,
198,
220,
220,
220,
705,
469,
43372,
1843,
10354,
705,
89,
3256,
198,
220,
220,
220,
705,
11498,
21069,
10354,
705,
83,
3256,
198,
220,
220,
220,
705,
11498,
21069,
62,
25764,
71,
28875,
10354,
705,
83,
3256,
198,
220,
220,
220,
705,
11423,
62,
17047,
17995,
10354,
705,
80,
3256,
198,
220,
220,
220,
705,
43762,
62,
17047,
17995,
10354,
705,
81,
3256,
198,
220,
220,
220,
705,
84,
62,
42895,
62,
1659,
62,
7972,
10354,
705,
84,
3256,
198,
220,
220,
220,
705,
85,
62,
42895,
62,
1659,
62,
7972,
10354,
705,
85,
3256,
198,
220,
220,
220,
705,
85,
419,
8467,
10354,
705,
13038,
3256,
198,
220,
220,
220,
705,
13059,
1843,
62,
85,
419,
8467,
10354,
705,
79,
85,
3256,
198,
220,
220,
220,
705,
17,
76,
62,
11498,
21069,
10354,
705,
83,
17,
76,
3256,
198,
220,
220,
220,
705,
940,
76,
62,
84,
62,
42895,
62,
1659,
62,
7972,
10354,
705,
84,
940,
3256,
198,
220,
220,
220,
705,
940,
76,
62,
85,
62,
42895,
62,
1659,
62,
7972,
10354,
705,
85,
940,
3256,
198,
220,
220,
220,
705,
23350,
62,
17721,
62,
9631,
10354,
705,
83,
535,
3256,
198,
220,
220,
220,
705,
23350,
62,
3866,
66,
541,
3780,
10354,
705,
34788,
3256,
198,
220,
220,
220,
705,
1462,
64,
62,
1939,
738,
62,
82,
6192,
62,
6335,
3920,
10354,
705,
48010,
81,
3256,
198,
92,
198,
198,
8189,
17,
7785,
796,
1391,
198,
220,
220,
220,
705,
89,
10354,
705,
469,
43372,
1843,
3256,
198,
220,
220,
220,
705,
83,
10354,
705,
11498,
21069,
3256,
198,
220,
220,
220,
705,
80,
10354,
705,
11423,
62,
17047,
17995,
3256,
198,
220,
220,
220,
705,
81,
10354,
705,
43762,
62,
17047,
17995,
3256,
198,
220,
220,
220,
705,
84,
10354,
705,
84,
62,
42895,
62,
1659,
62,
7972,
3256,
198,
220,
220,
220,
705,
85,
10354,
705,
85,
62,
42895,
62,
1659,
62,
7972,
3256,
198,
220,
220,
220,
705,
13038,
10354,
705,
85,
419,
8467,
3256,
198,
220,
220,
220,
705,
79,
85,
10354,
705,
13059,
1843,
62,
85,
419,
8467,
3256,
198,
220,
220,
220,
705,
83,
17,
76,
10354,
705,
17,
76,
62,
11498,
21069,
3256,
198,
220,
220,
220,
705,
84,
940,
10354,
705,
940,
76,
62,
84,
62,
42895,
62,
1659,
62,
7972,
3256,
198,
220,
220,
220,
705,
85,
940,
10354,
705,
940,
76,
62,
85,
62,
42895,
62,
1659,
62,
7972,
3256,
198,
220,
220,
220,
705,
83,
535,
10354,
705,
23350,
62,
17721,
62,
9631,
3256,
198,
220,
220,
220,
705,
34788,
10354,
705,
23350,
62,
3866,
66,
541,
3780,
3256,
198,
220,
220,
220,
705,
48010,
81,
10354,
705,
1462,
64,
62,
1939,
738,
62,
82,
6192,
62,
6335,
3920,
3256,
198,
92,
628
]
# -*- coding: utf-8 -*-
"""
StepPy
:copyright: (c) 2016-2017 by Yann Gravrand.
:license: BSD, see LICENSE for more details.
"""
from collections import OrderedDict
[
2,
532,
9,
12,
19617,
25,
3384,
69,
12,
23,
532,
9,
12,
198,
37811,
198,
220,
220,
220,
5012,
20519,
198,
220,
220,
220,
1058,
22163,
4766,
25,
357,
66,
8,
1584,
12,
5539,
416,
575,
1236,
32599,
25192,
13,
198,
220,
220,
220,
1058,
43085,
25,
347,
10305,
11,
766,
38559,
24290,
329,
517,
3307,
13,
198,
37811,
198,
198,
6738,
17268,
1330,
14230,
1068,
35,
713,
628
]