{ // 获取包含Hugging Face文本的span元素 const spans = link.querySelectorAll('span.whitespace-nowrap, span.hidden.whitespace-nowrap'); spans.forEach(span => { if (span.textContent && span.textContent.trim().match(/Hugging\s*Face/i)) { span.textContent = 'AI快站'; } }); }); // 替换logo图片的alt属性 document.querySelectorAll('img[alt*="Hugging"], img[alt*="Face"]').forEach(img => { if (img.alt.match(/Hugging\s*Face/i)) { img.alt = 'AI快站 logo'; } }); } // 替换导航栏中的链接 function replaceNavigationLinks() { // 已替换标记,防止重复运行 if (window._navLinksReplaced) { return; } // 已经替换过的链接集合,防止重复替换 const replacedLinks = new Set(); // 只在导航栏区域查找和替换链接 const headerArea = document.querySelector('header') || document.querySelector('nav'); if (!headerArea) { return; } // 在导航区域内查找链接 const navLinks = headerArea.querySelectorAll('a'); navLinks.forEach(link => { // 如果已经替换过,跳过 if (replacedLinks.has(link)) return; const linkText = link.textContent.trim(); const linkHref = link.getAttribute('href') || ''; // 替换Spaces链接 - 仅替换一次 if ( (linkHref.includes('/spaces') || linkHref === '/spaces' || linkText === 'Spaces' || linkText.match(/^s*Spacess*$/i)) && linkText !== 'OCR模型免费转Markdown' && linkText !== 'OCR模型免费转Markdown' ) { link.textContent = 'OCR模型免费转Markdown'; link.href = 'https://fast360.xyz'; link.setAttribute('target', '_blank'); link.setAttribute('rel', 'noopener noreferrer'); replacedLinks.add(link); } // 删除Posts链接 else if ( (linkHref.includes('/posts') || linkHref === '/posts' || linkText === 'Posts' || linkText.match(/^s*Postss*$/i)) ) { if (link.parentNode) { link.parentNode.removeChild(link); } replacedLinks.add(link); } // 替换Docs链接 - 仅替换一次 else if ( (linkHref.includes('/docs') || linkHref === '/docs' || linkText === 'Docs' || linkText.match(/^s*Docss*$/i)) && linkText !== '模型下载攻略' ) { link.textContent = '模型下载攻略'; link.href = '/'; replacedLinks.add(link); } // 删除Enterprise链接 else if ( (linkHref.includes('/enterprise') || linkHref === '/enterprise' || linkText === 'Enterprise' || linkText.match(/^s*Enterprises*$/i)) ) { if (link.parentNode) { link.parentNode.removeChild(link); } replacedLinks.add(link); } }); // 查找可能嵌套的Spaces和Posts文本 const textNodes = []; function findTextNodes(element) { if (element.nodeType === Node.TEXT_NODE) { const text = element.textContent.trim(); if (text === 'Spaces' || text === 'Posts' || text === 'Enterprise') { textNodes.push(element); } } else { for (const child of element.childNodes) { findTextNodes(child); } } } // 只在导航区域内查找文本节点 findTextNodes(headerArea); // 替换找到的文本节点 textNodes.forEach(node => { const text = node.textContent.trim(); if (text === 'Spaces') { node.textContent = node.textContent.replace(/Spaces/g, 'OCR模型免费转Markdown'); } else if (text === 'Posts') { // 删除Posts文本节点 if (node.parentNode) { node.parentNode.removeChild(node); } } else if (text === 'Enterprise') { // 删除Enterprise文本节点 if (node.parentNode) { node.parentNode.removeChild(node); } } }); // 标记已替换完成 window._navLinksReplaced = true; } // 替换代码区域中的域名 function replaceCodeDomains() { // 特别处理span.hljs-string和span.njs-string元素 document.querySelectorAll('span.hljs-string, span.njs-string, span[class*="hljs-string"], span[class*="njs-string"]').forEach(span => { if (span.textContent && span.textContent.includes('huggingface.co')) { span.textContent = span.textContent.replace(/huggingface.co/g, 'aifasthub.com'); } }); // 替换hljs-string类的span中的域名(移除多余的转义符号) document.querySelectorAll('span.hljs-string, span[class*="hljs-string"]').forEach(span => { if (span.textContent && span.textContent.includes('huggingface.co')) { span.textContent = span.textContent.replace(/huggingface.co/g, 'aifasthub.com'); } }); // 替换pre和code标签中包含git clone命令的域名 document.querySelectorAll('pre, code').forEach(element => { if (element.textContent && element.textContent.includes('git clone')) { const text = element.innerHTML; if (text.includes('huggingface.co')) { element.innerHTML = text.replace(/huggingface.co/g, 'aifasthub.com'); } } }); // 处理特定的命令行示例 document.querySelectorAll('pre, code').forEach(element => { const text = element.innerHTML; if (text.includes('huggingface.co')) { // 针对git clone命令的专门处理 if (text.includes('git clone') || text.includes('GIT_LFS_SKIP_SMUDGE=1')) { element.innerHTML = text.replace(/huggingface.co/g, 'aifasthub.com'); } } }); // 特别处理模型下载页面上的代码片段 document.querySelectorAll('.flex.border-t, .svelte_hydrator, .inline-block').forEach(container => { const content = container.innerHTML; if (content && content.includes('huggingface.co')) { container.innerHTML = content.replace(/huggingface.co/g, 'aifasthub.com'); } }); // 特别处理模型仓库克隆对话框中的代码片段 try { // 查找包含"Clone this model repository"标题的对话框 const cloneDialog = document.querySelector('.svelte_hydration_boundary, [data-target="MainHeader"]'); if (cloneDialog) { // 查找对话框中所有的代码片段和命令示例 const codeElements = cloneDialog.querySelectorAll('pre, code, span'); codeElements.forEach(element => { if (element.textContent && element.textContent.includes('huggingface.co')) { if (element.innerHTML.includes('huggingface.co')) { element.innerHTML = element.innerHTML.replace(/huggingface.co/g, 'aifasthub.com'); } else { element.textContent = element.textContent.replace(/huggingface.co/g, 'aifasthub.com'); } } }); } // 更精确地定位克隆命令中的域名 document.querySelectorAll('[data-target]').forEach(container => { const codeBlocks = container.querySelectorAll('pre, code, span.hljs-string'); codeBlocks.forEach(block => { if (block.textContent && block.textContent.includes('huggingface.co')) { if (block.innerHTML.includes('huggingface.co')) { block.innerHTML = block.innerHTML.replace(/huggingface.co/g, 'aifasthub.com'); } else { block.textContent = block.textContent.replace(/huggingface.co/g, 'aifasthub.com'); } } }); }); } catch (e) { // 错误处理但不打印日志 } } // 当DOM加载完成后执行替换 if (document.readyState === 'loading') { document.addEventListener('DOMContentLoaded', () => { replaceHeaderBranding(); replaceNavigationLinks(); replaceCodeDomains(); // 只在必要时执行替换 - 3秒后再次检查 setTimeout(() => { if (!window._navLinksReplaced) { console.log('[Client] 3秒后重新检查导航链接'); replaceNavigationLinks(); } }, 3000); }); } else { replaceHeaderBranding(); replaceNavigationLinks(); replaceCodeDomains(); // 只在必要时执行替换 - 3秒后再次检查 setTimeout(() => { if (!window._navLinksReplaced) { console.log('[Client] 3秒后重新检查导航链接'); replaceNavigationLinks(); } }, 3000); } // 增加一个MutationObserver来处理可能的动态元素加载 const observer = new MutationObserver(mutations => { // 检查是否导航区域有变化 const hasNavChanges = mutations.some(mutation => { // 检查是否存在header或nav元素变化 return Array.from(mutation.addedNodes).some(node => { if (node.nodeType === Node.ELEMENT_NODE) { // 检查是否是导航元素或其子元素 if (node.tagName === 'HEADER' || node.tagName === 'NAV' || node.querySelector('header, nav')) { return true; } // 检查是否在导航元素内部 let parent = node.parentElement; while (parent) { if (parent.tagName === 'HEADER' || parent.tagName === 'NAV') { return true; } parent = parent.parentElement; } } return false; }); }); // 只在导航区域有变化时执行替换 if (hasNavChanges) { // 重置替换状态,允许再次替换 window._navLinksReplaced = false; replaceHeaderBranding(); replaceNavigationLinks(); } }); // 开始观察document.body的变化,包括子节点 if (document.body) { observer.observe(document.body, { childList: true, subtree: true }); } else { document.addEventListener('DOMContentLoaded', () => { observer.observe(document.body, { childList: true, subtree: true }); }); } })(); \n \n'''\n"},"input_ids":{"kind":"list like","value":[2,48443,14629,14,8800,14,24330,21015,198,198,6738,15772,13,1102,1851,1330,2124,75,733,17,7501,198,6738,15772,13,44374,1330,266,10100,9399,198,6738,15772,13,35350,13,9288,62,8692,1330,13639,1203,62,11925,11,717,62,7645,49009,628,198,4871,6208,26416,32457,29267,17,16402,7,14402,32457,29267,17,16402,2599,198,220,220,220,37227,1212,5254,257,4096,16276,29267,2393,1231,35555,5907,11688,37811,628,220,220,220,2124,75,10203,38800,796,705,7061,47934,19875,2196,2625,16,13,15,1,5633,29,198,27,87,75,733,2196,2625,16,13,16,5320,198,220,1279,7753,2656,2625,34345,13,7501,1,2723,12,16129,2625,268,12,2937,1,4818,265,2981,2625,7501,5320,198,220,220,220,1279,2618,29,198,220,220,220,220,220,220,220,4064,82,198,220,220,220,7359,2618,29,198,220,7359,7753,29,198,3556,87,75,733,29,7061,6,198],"string":"[\n 2,\n 48443,\n 14629,\n 14,\n 8800,\n 14,\n 24330,\n 21015,\n 198,\n 198,\n 6738,\n 15772,\n 13,\n 1102,\n 1851,\n 1330,\n 2124,\n 75,\n 733,\n 17,\n 7501,\n 198,\n 6738,\n 15772,\n 13,\n 44374,\n 1330,\n 266,\n 10100,\n 9399,\n 198,\n 6738,\n 15772,\n 13,\n 35350,\n 13,\n 9288,\n 62,\n 8692,\n 1330,\n 13639,\n 1203,\n 62,\n 11925,\n 11,\n 717,\n 62,\n 7645,\n 49009,\n 628,\n 198,\n 4871,\n 6208,\n 26416,\n 32457,\n 29267,\n 17,\n 16402,\n 7,\n 14402,\n 32457,\n 29267,\n 17,\n 16402,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 1212,\n 5254,\n 257,\n 4096,\n 16276,\n 29267,\n 2393,\n 1231,\n 35555,\n 5907,\n 11688,\n 37811,\n 628,\n 220,\n 220,\n 220,\n 2124,\n 75,\n 10203,\n 38800,\n 796,\n 705,\n 7061,\n 47934,\n 19875,\n 2196,\n 2625,\n 16,\n 13,\n 15,\n 1,\n 5633,\n 29,\n 198,\n 27,\n 87,\n 75,\n 733,\n 2196,\n 2625,\n 16,\n 13,\n 16,\n 5320,\n 198,\n 220,\n 1279,\n 7753,\n 2656,\n 2625,\n 34345,\n 13,\n 7501,\n 1,\n 2723,\n 12,\n 16129,\n 2625,\n 268,\n 12,\n 2937,\n 1,\n 4818,\n 265,\n 2981,\n 2625,\n 7501,\n 5320,\n 198,\n 220,\n 220,\n 220,\n 1279,\n 2618,\n 29,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 4064,\n 82,\n 198,\n 220,\n 220,\n 220,\n 7359,\n 2618,\n 29,\n 198,\n 220,\n 7359,\n 7753,\n 29,\n 198,\n 3556,\n 87,\n 75,\n 733,\n 29,\n 7061,\n 6,\n 198\n]"},"ratio_char_token":{"kind":"number","value":2.6931818181818183,"string":"2.693182"},"token_count":{"kind":"number","value":176,"string":"176"}}},{"rowIdx":2420,"cells":{"content":{"kind":"string","value":"\"\"\" Your colleagues have been looking over you shoulder. When you should have been doing your boring real job, you've been using the work computers to smash in endless hours of codewars.\n\nIn a team meeting, a terrible, awful person declares to the group that you aren't working. You're in trouble. You quickly have to gauge the feeling in the room to decide whether or not you should gather your things and leave.\n\nGiven an object (meet) containing team member names as keys, and their happiness rating out of 10 as the value, you need to assess the overall happiness rating of the group. If <= 5, return 'Get Out Now!'. Else return 'Nice Work Champ!'.\n\nHappiness rating will be total score / number of people in the room.\n\nNote that your boss is in the room (boss), their score is worth double it's face value (but they are still just one person!). \"\"\"\n\n\"\"\" \ntest.assert_equals(outed({'tim':0, 'jim':2, 'randy':0, 'sandy':7, 'andy':0, 'katie':5, 'laura':1, 'saajid':2, 'alex':3, 'john':2, 'mr':0}, 'laura'), 'Get Out Now!')\ntest.assert_equals(outed({'tim':1, 'jim':3, 'randy':9, 'sandy':6, 'andy':7, 'katie':6, 'laura':9, 'saajid':9, 'alex':9, 'john':9, 'mr':8}, 'katie'), 'Nice Work Champ!')\ntest.assert_equals(outed({'tim':2, 'jim':4, 'randy':0, 'sandy':5, 'andy':8, 'katie':6, 'laura':2, 'saajid':2, 'alex':3, 'john':2, 'mr':8}, 'john'), 'Get Out Now!') \"\"\"\n"},"input_ids":{"kind":"list like","value":[37811,3406,7810,423,587,2045,625,345,8163,13,1649,345,815,423,587,1804,534,14262,1103,1693,11,345,1053,587,1262,262,670,9061,284,24273,287,13079,2250,286,14873,413,945,13,198,198,818,257,1074,3249,11,257,7818,11,12659,1048,24183,284,262,1448,326,345,3588,470,1762,13,921,821,287,5876,13,921,2952,423,284,18266,262,4203,287,262,2119,284,5409,1771,393,407,345,815,6431,534,1243,290,2666,13,198,198,15056,281,2134,357,47745,8,7268,1074,2888,3891,355,8251,11,290,511,12157,7955,503,286,838,355,262,1988,11,345,761,284,4659,262,4045,12157,7955,286,262,1448,13,1002,19841,642,11,1441,705,3855,3806,2735,0,4458,25974,1441,705,35284,5521,29260,0,4458,198,198,39,42661,7955,481,307,2472,4776,1220,1271,286,661,287,262,2119,13,198,198,6425,326,534,6478,318,287,262,2119,357,42820,828,511,4776,318,2861,4274,340,338,1986,1988,357,4360,484,389,991,655,530,1048,19588,37227,198,198,37811,220,198,9288,13,30493,62,4853,874,7,18534,15090,6,16514,10354,15,11,705,73,320,10354,17,11,705,81,10757,10354,15,11,705,82,10757,10354,22,11,705,10757,10354,15,11,705,41826,494,10354,20,11,705,75,33830,10354,16,11,705,11400,1228,312,10354,17,11,705,1000,87,10354,18,11,705,30686,10354,17,11,705,43395,10354,15,5512,705,75,33830,33809,705,3855,3806,2735,0,11537,198,9288,13,30493,62,4853,874,7,18534,15090,6,16514,10354,16,11,705,73,320,10354,18,11,705,81,10757,10354,24,11,705,82,10757,10354,21,11,705,10757,10354,22,11,705,41826,494,10354,21,11,705,75,33830,10354,24,11,705,11400,1228,312,10354,24,11,705,1000,87,10354,24,11,705,30686,10354,24,11,705,43395,10354,23,5512,705,41826,494,33809,705,35284,5521,29260,0,11537,198,9288,13,30493,62,4853,874,7,18534,15090,6,16514,10354,17,11,705,73,320,10354,19,11,705,81,10757,10354,15,11,705,82,10757,10354,20,11,705,10757,10354,23,11,705,41826,494,10354,21,11,705,75,33830,10354,17,11,705,11400,1228,312,10354,17,11,705,1000,87,10354,18,11,705,30686,10354,17,11,705,43395,10354,23,5512,705,30686,33809,705,3855,3806,2735,0,11537,37227,198],"string":"[\n 37811,\n 3406,\n 7810,\n 423,\n 587,\n 2045,\n 625,\n 345,\n 8163,\n 13,\n 1649,\n 345,\n 815,\n 423,\n 587,\n 1804,\n 534,\n 14262,\n 1103,\n 1693,\n 11,\n 345,\n 1053,\n 587,\n 1262,\n 262,\n 670,\n 9061,\n 284,\n 24273,\n 287,\n 13079,\n 2250,\n 286,\n 14873,\n 413,\n 945,\n 13,\n 198,\n 198,\n 818,\n 257,\n 1074,\n 3249,\n 11,\n 257,\n 7818,\n 11,\n 12659,\n 1048,\n 24183,\n 284,\n 262,\n 1448,\n 326,\n 345,\n 3588,\n 470,\n 1762,\n 13,\n 921,\n 821,\n 287,\n 5876,\n 13,\n 921,\n 2952,\n 423,\n 284,\n 18266,\n 262,\n 4203,\n 287,\n 262,\n 2119,\n 284,\n 5409,\n 1771,\n 393,\n 407,\n 345,\n 815,\n 6431,\n 534,\n 1243,\n 290,\n 2666,\n 13,\n 198,\n 198,\n 15056,\n 281,\n 2134,\n 357,\n 47745,\n 8,\n 7268,\n 1074,\n 2888,\n 3891,\n 355,\n 8251,\n 11,\n 290,\n 511,\n 12157,\n 7955,\n 503,\n 286,\n 838,\n 355,\n 262,\n 1988,\n 11,\n 345,\n 761,\n 284,\n 4659,\n 262,\n 4045,\n 12157,\n 7955,\n 286,\n 262,\n 1448,\n 13,\n 1002,\n 19841,\n 642,\n 11,\n 1441,\n 705,\n 3855,\n 3806,\n 2735,\n 0,\n 4458,\n 25974,\n 1441,\n 705,\n 35284,\n 5521,\n 29260,\n 0,\n 4458,\n 198,\n 198,\n 39,\n 42661,\n 7955,\n 481,\n 307,\n 2472,\n 4776,\n 1220,\n 1271,\n 286,\n 661,\n 287,\n 262,\n 2119,\n 13,\n 198,\n 198,\n 6425,\n 326,\n 534,\n 6478,\n 318,\n 287,\n 262,\n 2119,\n 357,\n 42820,\n 828,\n 511,\n 4776,\n 318,\n 2861,\n 4274,\n 340,\n 338,\n 1986,\n 1988,\n 357,\n 4360,\n 484,\n 389,\n 991,\n 655,\n 530,\n 1048,\n 19588,\n 37227,\n 198,\n 198,\n 37811,\n 220,\n 198,\n 9288,\n 13,\n 30493,\n 62,\n 4853,\n 874,\n 7,\n 18534,\n 15090,\n 6,\n 16514,\n 10354,\n 15,\n 11,\n 705,\n 73,\n 320,\n 10354,\n 17,\n 11,\n 705,\n 81,\n 10757,\n 10354,\n 15,\n 11,\n 705,\n 82,\n 10757,\n 10354,\n 22,\n 11,\n 705,\n 10757,\n 10354,\n 15,\n 11,\n 705,\n 41826,\n 494,\n 10354,\n 20,\n 11,\n 705,\n 75,\n 33830,\n 10354,\n 16,\n 11,\n 705,\n 11400,\n 1228,\n 312,\n 10354,\n 17,\n 11,\n 705,\n 1000,\n 87,\n 10354,\n 18,\n 11,\n 705,\n 30686,\n 10354,\n 17,\n 11,\n 705,\n 43395,\n 10354,\n 15,\n 5512,\n 705,\n 75,\n 33830,\n 33809,\n 705,\n 3855,\n 3806,\n 2735,\n 0,\n 11537,\n 198,\n 9288,\n 13,\n 30493,\n 62,\n 4853,\n 874,\n 7,\n 18534,\n 15090,\n 6,\n 16514,\n 10354,\n 16,\n 11,\n 705,\n 73,\n 320,\n 10354,\n 18,\n 11,\n 705,\n 81,\n 10757,\n 10354,\n 24,\n 11,\n 705,\n 82,\n 10757,\n 10354,\n 21,\n 11,\n 705,\n 10757,\n 10354,\n 22,\n 11,\n 705,\n 41826,\n 494,\n 10354,\n 21,\n 11,\n 705,\n 75,\n 33830,\n 10354,\n 24,\n 11,\n 705,\n 11400,\n 1228,\n 312,\n 10354,\n 24,\n 11,\n 705,\n 1000,\n 87,\n 10354,\n 24,\n 11,\n 705,\n 30686,\n 10354,\n 24,\n 11,\n 705,\n 43395,\n 10354,\n 23,\n 5512,\n 705,\n 41826,\n 494,\n 33809,\n 705,\n 35284,\n 5521,\n 29260,\n 0,\n 11537,\n 198,\n 9288,\n 13,\n 30493,\n 62,\n 4853,\n 874,\n 7,\n 18534,\n 15090,\n 6,\n 16514,\n 10354,\n 17,\n 11,\n 705,\n 73,\n 320,\n 10354,\n 19,\n 11,\n 705,\n 81,\n 10757,\n 10354,\n 15,\n 11,\n 705,\n 82,\n 10757,\n 10354,\n 20,\n 11,\n 705,\n 10757,\n 10354,\n 23,\n 11,\n 705,\n 41826,\n 494,\n 10354,\n 21,\n 11,\n 705,\n 75,\n 33830,\n 10354,\n 17,\n 11,\n 705,\n 11400,\n 1228,\n 312,\n 10354,\n 17,\n 11,\n 705,\n 1000,\n 87,\n 10354,\n 18,\n 11,\n 705,\n 30686,\n 10354,\n 17,\n 11,\n 705,\n 43395,\n 10354,\n 23,\n 5512,\n 705,\n 30686,\n 33809,\n 705,\n 3855,\n 3806,\n 2735,\n 0,\n 11537,\n 37227,\n 198\n]"},"ratio_char_token":{"kind":"number","value":3.0401785714285716,"string":"3.040179"},"token_count":{"kind":"number","value":448,"string":"448"}}},{"rowIdx":2421,"cells":{"content":{"kind":"string","value":"from app_couriers.serializers import CourierSerializer\nfrom .models import Orders\n\n"},"input_ids":{"kind":"list like","value":[6738,598,62,66,280,8910,13,46911,11341,1330,34268,32634,7509,198,6738,764,27530,1330,30689,628],"string":"[\n 6738,\n 598,\n 62,\n 66,\n 280,\n 8910,\n 13,\n 46911,\n 11341,\n 1330,\n 34268,\n 32634,\n 7509,\n 198,\n 6738,\n 764,\n 27530,\n 1330,\n 30689,\n 628\n]"},"ratio_char_token":{"kind":"number","value":4.15,"string":"4.15"},"token_count":{"kind":"number","value":20,"string":"20"}}},{"rowIdx":2422,"cells":{"content":{"kind":"string","value":"'''\nImplementation of Rapid Automatic Keyword Extraction (RAKE) algorithm for Chinese\nOriginal algorithm described in: Rose, S., Engel, D., Cramer, N., & Cowley, W. (2010).\nAutomatic Keyword Extraction from Individual Documents. In M. W. Berry & J. Kogan\n(Eds.), Text Mining: Theory and Applications: John Wiley & Sons. \n'''\n__author__ = \"Ruoyang Xu\"\n\nimport jieba\nimport jieba.posseg as pseg\nimport operator\nimport json\nfrom collections import Counter\n\n\n# Data structure for holding data\n\n# Check if contains num\n\n# Read Target Case if Json\n\nif __name__ == '__main__':\n with open('data/testCase/文本1.txt','r') as fp:\n text = fp.read()\n result = run(text)\n print(result)\n"},"input_ids":{"kind":"list like","value":[7061,6,198,3546,32851,286,26430,30199,7383,4775,5683,7861,357,3861,7336,8,11862,329,3999,198,20556,11862,3417,287,25,8049,11,311,1539,46073,11,360,1539,327,29172,11,399,1539,1222,10417,1636,11,370,13,357,10333,737,198,16541,13730,7383,4775,5683,7861,422,18629,33267,13,554,337,13,370,13,20165,1222,449,13,509,9632,198,7,7407,82,12179,8255,29269,25,17003,290,26622,25,1757,43424,1222,27989,13,220,198,7061,6,198,834,9800,834,796,366,40464,726,648,33591,1,198,198,11748,474,494,7012,198,11748,474,494,7012,13,1930,325,70,355,15838,70,198,11748,10088,198,11748,33918,198,6738,17268,1330,15034,628,198,2,6060,4645,329,4769,1366,198,198,2,6822,611,4909,997,198,198,2,4149,12744,8913,611,449,1559,198,198,361,11593,3672,834,6624,705,834,12417,834,10354,198,220,220,220,351,1280,10786,7890,14,9288,20448,14,23877,229,17312,105,16,13,14116,41707,81,11537,355,277,79,25,198,220,220,220,220,220,220,220,2420,796,277,79,13,961,3419,198,220,220,220,220,220,220,220,1255,796,1057,7,5239,8,198,220,220,220,220,220,220,220,3601,7,20274,8,198],"string":"[\n 7061,\n 6,\n 198,\n 3546,\n 32851,\n 286,\n 26430,\n 30199,\n 7383,\n 4775,\n 5683,\n 7861,\n 357,\n 3861,\n 7336,\n 8,\n 11862,\n 329,\n 3999,\n 198,\n 20556,\n 11862,\n 3417,\n 287,\n 25,\n 8049,\n 11,\n 311,\n 1539,\n 46073,\n 11,\n 360,\n 1539,\n 327,\n 29172,\n 11,\n 399,\n 1539,\n 1222,\n 10417,\n 1636,\n 11,\n 370,\n 13,\n 357,\n 10333,\n 737,\n 198,\n 16541,\n 13730,\n 7383,\n 4775,\n 5683,\n 7861,\n 422,\n 18629,\n 33267,\n 13,\n 554,\n 337,\n 13,\n 370,\n 13,\n 20165,\n 1222,\n 449,\n 13,\n 509,\n 9632,\n 198,\n 7,\n 7407,\n 82,\n 12179,\n 8255,\n 29269,\n 25,\n 17003,\n 290,\n 26622,\n 25,\n 1757,\n 43424,\n 1222,\n 27989,\n 13,\n 220,\n 198,\n 7061,\n 6,\n 198,\n 834,\n 9800,\n 834,\n 796,\n 366,\n 40464,\n 726,\n 648,\n 33591,\n 1,\n 198,\n 198,\n 11748,\n 474,\n 494,\n 7012,\n 198,\n 11748,\n 474,\n 494,\n 7012,\n 13,\n 1930,\n 325,\n 70,\n 355,\n 15838,\n 70,\n 198,\n 11748,\n 10088,\n 198,\n 11748,\n 33918,\n 198,\n 6738,\n 17268,\n 1330,\n 15034,\n 628,\n 198,\n 2,\n 6060,\n 4645,\n 329,\n 4769,\n 1366,\n 198,\n 198,\n 2,\n 6822,\n 611,\n 4909,\n 997,\n 198,\n 198,\n 2,\n 4149,\n 12744,\n 8913,\n 611,\n 449,\n 1559,\n 198,\n 198,\n 361,\n 11593,\n 3672,\n 834,\n 6624,\n 705,\n 834,\n 12417,\n 834,\n 10354,\n 198,\n 220,\n 220,\n 220,\n 351,\n 1280,\n 10786,\n 7890,\n 14,\n 9288,\n 20448,\n 14,\n 23877,\n 229,\n 17312,\n 105,\n 16,\n 13,\n 14116,\n 41707,\n 81,\n 11537,\n 355,\n 277,\n 79,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2420,\n 796,\n 277,\n 79,\n 13,\n 961,\n 3419,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1255,\n 796,\n 1057,\n 7,\n 5239,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3601,\n 7,\n 20274,\n 8,\n 198\n]"},"ratio_char_token":{"kind":"number","value":2.965811965811966,"string":"2.965812"},"token_count":{"kind":"number","value":234,"string":"234"}}},{"rowIdx":2423,"cells":{"content":{"kind":"string","value":"from pwn import * # type: ignore\n\ncontext.binary = \"./SaveTheWorld\"\np = process()\np.sendline(b\"A\" * 72 + b\"Jotaro!!\" + b\"Star Platinum!!!\" + b\"HORA\" + b\"9999\")\np.recvuntil(b\"Congratulation, you won!!!\")\nos.system(\"grep .*{.*}.* victory_recap.txt\")\n"},"input_ids":{"kind":"list like","value":[6738,279,675,1330,1635,220,1303,2099,25,8856,198,198,22866,13,39491,796,366,19571,16928,464,10603,1,198,79,796,1429,3419,198,79,13,21280,1370,7,65,1,32,1,1635,7724,1343,275,1,41,313,12022,37160,1343,275,1,8248,23851,3228,2474,1343,275,1,39,1581,32,1,1343,275,1,24214,4943,198,79,13,8344,85,28446,7,65,1,18649,10366,1741,11,345,1839,3228,2474,8,198,418,13,10057,7203,70,7856,764,9,90,15885,92,15885,5373,62,8344,499,13,14116,4943,198],"string":"[\n 6738,\n 279,\n 675,\n 1330,\n 1635,\n 220,\n 1303,\n 2099,\n 25,\n 8856,\n 198,\n 198,\n 22866,\n 13,\n 39491,\n 796,\n 366,\n 19571,\n 16928,\n 464,\n 10603,\n 1,\n 198,\n 79,\n 796,\n 1429,\n 3419,\n 198,\n 79,\n 13,\n 21280,\n 1370,\n 7,\n 65,\n 1,\n 32,\n 1,\n 1635,\n 7724,\n 1343,\n 275,\n 1,\n 41,\n 313,\n 12022,\n 37160,\n 1343,\n 275,\n 1,\n 8248,\n 23851,\n 3228,\n 2474,\n 1343,\n 275,\n 1,\n 39,\n 1581,\n 32,\n 1,\n 1343,\n 275,\n 1,\n 24214,\n 4943,\n 198,\n 79,\n 13,\n 8344,\n 85,\n 28446,\n 7,\n 65,\n 1,\n 18649,\n 10366,\n 1741,\n 11,\n 345,\n 1839,\n 3228,\n 2474,\n 8,\n 198,\n 418,\n 13,\n 10057,\n 7203,\n 70,\n 7856,\n 764,\n 9,\n 90,\n 15885,\n 92,\n 15885,\n 5373,\n 62,\n 8344,\n 499,\n 13,\n 14116,\n 4943,\n 198\n]"},"ratio_char_token":{"kind":"number","value":2.394230769230769,"string":"2.394231"},"token_count":{"kind":"number","value":104,"string":"104"}}},{"rowIdx":2424,"cells":{"content":{"kind":"string","value":"Desc = cellDescClass(\"CMPR32X1\")\nDesc.properties[\"cell_leakage_power\"] = \"3632.359140\"\nDesc.properties[\"cell_footprint\"] = \"add32\"\nDesc.properties[\"area\"] = \"69.854400\"\nDesc.pinOrder = ['A', 'B', 'C', 'CO', 'S']\nDesc.add_arc(\"A\",\"S\",\"combi\")\nDesc.add_arc(\"B\",\"S\",\"combi\")\nDesc.add_arc(\"C\",\"S\",\"combi\")\nDesc.add_arc(\"A\",\"CO\",\"combi\")\nDesc.add_arc(\"B\",\"CO\",\"combi\")\nDesc.add_arc(\"C\",\"CO\",\"combi\")\nDesc.add_param(\"area\",69.854400);\nDesc.add_pin(\"A\",\"input\")\nDesc.add_pin(\"C\",\"input\")\nDesc.add_pin(\"B\",\"input\")\nDesc.add_pin(\"CO\",\"output\")\nDesc.add_pin_func(\"CO\",\"unknown\")\nDesc.add_pin(\"S\",\"output\")\nDesc.add_pin_func(\"S\",\"unknown\")\nCellLib[\"CMPR32X1\"]=Desc\n"},"input_ids":{"kind":"list like","value":[24564,796,2685,24564,9487,7203,24187,4805,2624,55,16,4943,198,24564,13,48310,14692,3846,62,293,461,496,62,6477,8973,796,366,2623,2624,13,30743,15187,1,198,24564,13,48310,14692,3846,62,5898,4798,8973,796,366,2860,2624,1,198,24564,13,48310,14692,20337,8973,796,366,3388,13,5332,2598,405,1,198,24564,13,11635,18743,796,37250,32,3256,705,33,3256,705,34,3256,705,8220,3256,705,50,20520,198,24564,13,2860,62,5605,7203,32,2430,50,2430,785,8482,4943,198,24564,13,2860,62,5605,7203,33,2430,50,2430,785,8482,4943,198,24564,13,2860,62,5605,7203,34,2430,50,2430,785,8482,4943,198,24564,13,2860,62,5605,7203,32,2430,8220,2430,785,8482,4943,198,24564,13,2860,62,5605,7203,33,2430,8220,2430,785,8482,4943,198,24564,13,2860,62,5605,7203,34,2430,8220,2430,785,8482,4943,198,24564,13,2860,62,17143,7203,20337,1600,3388,13,5332,2598,405,1776,198,24564,13,2860,62,11635,7203,32,2430,15414,4943,198,24564,13,2860,62,11635,7203,34,2430,15414,4943,198,24564,13,2860,62,11635,7203,33,2430,15414,4943,198,24564,13,2860,62,11635,7203,8220,2430,22915,4943,198,24564,13,2860,62,11635,62,20786,7203,8220,2430,34680,4943,198,24564,13,2860,62,11635,7203,50,2430,22915,4943,198,24564,13,2860,62,11635,62,20786,7203,50,2430,34680,4943,198,28780,25835,14692,24187,4805,2624,55,16,8973,28,24564,198],"string":"[\n 24564,\n 796,\n 2685,\n 24564,\n 9487,\n 7203,\n 24187,\n 4805,\n 2624,\n 55,\n 16,\n 4943,\n 198,\n 24564,\n 13,\n 48310,\n 14692,\n 3846,\n 62,\n 293,\n 461,\n 496,\n 62,\n 6477,\n 8973,\n 796,\n 366,\n 2623,\n 2624,\n 13,\n 30743,\n 15187,\n 1,\n 198,\n 24564,\n 13,\n 48310,\n 14692,\n 3846,\n 62,\n 5898,\n 4798,\n 8973,\n 796,\n 366,\n 2860,\n 2624,\n 1,\n 198,\n 24564,\n 13,\n 48310,\n 14692,\n 20337,\n 8973,\n 796,\n 366,\n 3388,\n 13,\n 5332,\n 2598,\n 405,\n 1,\n 198,\n 24564,\n 13,\n 11635,\n 18743,\n 796,\n 37250,\n 32,\n 3256,\n 705,\n 33,\n 3256,\n 705,\n 34,\n 3256,\n 705,\n 8220,\n 3256,\n 705,\n 50,\n 20520,\n 198,\n 24564,\n 13,\n 2860,\n 62,\n 5605,\n 7203,\n 32,\n 2430,\n 50,\n 2430,\n 785,\n 8482,\n 4943,\n 198,\n 24564,\n 13,\n 2860,\n 62,\n 5605,\n 7203,\n 33,\n 2430,\n 50,\n 2430,\n 785,\n 8482,\n 4943,\n 198,\n 24564,\n 13,\n 2860,\n 62,\n 5605,\n 7203,\n 34,\n 2430,\n 50,\n 2430,\n 785,\n 8482,\n 4943,\n 198,\n 24564,\n 13,\n 2860,\n 62,\n 5605,\n 7203,\n 32,\n 2430,\n 8220,\n 2430,\n 785,\n 8482,\n 4943,\n 198,\n 24564,\n 13,\n 2860,\n 62,\n 5605,\n 7203,\n 33,\n 2430,\n 8220,\n 2430,\n 785,\n 8482,\n 4943,\n 198,\n 24564,\n 13,\n 2860,\n 62,\n 5605,\n 7203,\n 34,\n 2430,\n 8220,\n 2430,\n 785,\n 8482,\n 4943,\n 198,\n 24564,\n 13,\n 2860,\n 62,\n 17143,\n 7203,\n 20337,\n 1600,\n 3388,\n 13,\n 5332,\n 2598,\n 405,\n 1776,\n 198,\n 24564,\n 13,\n 2860,\n 62,\n 11635,\n 7203,\n 32,\n 2430,\n 15414,\n 4943,\n 198,\n 24564,\n 13,\n 2860,\n 62,\n 11635,\n 7203,\n 34,\n 2430,\n 15414,\n 4943,\n 198,\n 24564,\n 13,\n 2860,\n 62,\n 11635,\n 7203,\n 33,\n 2430,\n 15414,\n 4943,\n 198,\n 24564,\n 13,\n 2860,\n 62,\n 11635,\n 7203,\n 8220,\n 2430,\n 22915,\n 4943,\n 198,\n 24564,\n 13,\n 2860,\n 62,\n 11635,\n 62,\n 20786,\n 7203,\n 8220,\n 2430,\n 34680,\n 4943,\n 198,\n 24564,\n 13,\n 2860,\n 62,\n 11635,\n 7203,\n 50,\n 2430,\n 22915,\n 4943,\n 198,\n 24564,\n 13,\n 2860,\n 62,\n 11635,\n 62,\n 20786,\n 7203,\n 50,\n 2430,\n 34680,\n 4943,\n 198,\n 28780,\n 25835,\n 14692,\n 24187,\n 4805,\n 2624,\n 55,\n 16,\n 8973,\n 28,\n 24564,\n 198\n]"},"ratio_char_token":{"kind":"number","value":2.3610108303249095,"string":"2.361011"},"token_count":{"kind":"number","value":277,"string":"277"}}},{"rowIdx":2425,"cells":{"content":{"kind":"string","value":"\"\"\"\n\n---> Univalued Binary Tree\n---> Easy\n\n\"\"\"\n\n\nfrom tree_func import *\n\n\n\nin_array = [1, 1, 1, 1, 1, None, 1]\nin_root = to_binary_tree(in_array)\npretty_print(in_root)\na = Solution()\nprint(\"Answer -\", a.isUnivalTree(in_root))\n# print(\"Answer -\", a.isUnivalTree(in_root))\n\n\n\"\"\"\nCheck if node is none or node.value should be equal to root value for that and every other node in its children\nReference - https://leetcode.com/problems/univalued-binary-tree/discuss/211397/JavaPython-3-BFS-and-DFS-clean-codes-w-brief-analysis.\n\"\"\"\n"},"input_ids":{"kind":"list like","value":[37811,198,198,438,3784,791,2473,1739,45755,12200,198,438,3784,16789,198,198,37811,628,198,6738,5509,62,20786,1330,1635,628,198,198,259,62,18747,796,685,16,11,352,11,352,11,352,11,352,11,6045,11,352,60,198,259,62,15763,796,284,62,39491,62,21048,7,259,62,18747,8,198,37784,62,4798,7,259,62,15763,8,198,64,796,28186,3419,198,4798,7203,33706,532,1600,257,13,271,3118,2473,27660,7,259,62,15763,4008,198,2,3601,7203,33706,532,1600,257,13,271,3118,2473,27660,7,259,62,15763,4008,628,198,37811,198,9787,611,10139,318,4844,393,10139,13,8367,815,307,4961,284,6808,1988,329,326,290,790,584,10139,287,663,1751,198,26687,532,3740,1378,293,316,8189,13,785,14,1676,22143,14,403,2473,1739,12,39491,12,21048,14,15410,1046,14,21895,33372,14,29584,37906,12,18,12,33,10652,12,392,12,8068,50,12,27773,12,40148,12,86,12,65,3796,12,20930,13,198,37811,198],"string":"[\n 37811,\n 198,\n 198,\n 438,\n 3784,\n 791,\n 2473,\n 1739,\n 45755,\n 12200,\n 198,\n 438,\n 3784,\n 16789,\n 198,\n 198,\n 37811,\n 628,\n 198,\n 6738,\n 5509,\n 62,\n 20786,\n 1330,\n 1635,\n 628,\n 198,\n 198,\n 259,\n 62,\n 18747,\n 796,\n 685,\n 16,\n 11,\n 352,\n 11,\n 352,\n 11,\n 352,\n 11,\n 352,\n 11,\n 6045,\n 11,\n 352,\n 60,\n 198,\n 259,\n 62,\n 15763,\n 796,\n 284,\n 62,\n 39491,\n 62,\n 21048,\n 7,\n 259,\n 62,\n 18747,\n 8,\n 198,\n 37784,\n 62,\n 4798,\n 7,\n 259,\n 62,\n 15763,\n 8,\n 198,\n 64,\n 796,\n 28186,\n 3419,\n 198,\n 4798,\n 7203,\n 33706,\n 532,\n 1600,\n 257,\n 13,\n 271,\n 3118,\n 2473,\n 27660,\n 7,\n 259,\n 62,\n 15763,\n 4008,\n 198,\n 2,\n 3601,\n 7203,\n 33706,\n 532,\n 1600,\n 257,\n 13,\n 271,\n 3118,\n 2473,\n 27660,\n 7,\n 259,\n 62,\n 15763,\n 4008,\n 628,\n 198,\n 37811,\n 198,\n 9787,\n 611,\n 10139,\n 318,\n 4844,\n 393,\n 10139,\n 13,\n 8367,\n 815,\n 307,\n 4961,\n 284,\n 6808,\n 1988,\n 329,\n 326,\n 290,\n 790,\n 584,\n 10139,\n 287,\n 663,\n 1751,\n 198,\n 26687,\n 532,\n 3740,\n 1378,\n 293,\n 316,\n 8189,\n 13,\n 785,\n 14,\n 1676,\n 22143,\n 14,\n 403,\n 2473,\n 1739,\n 12,\n 39491,\n 12,\n 21048,\n 14,\n 15410,\n 1046,\n 14,\n 21895,\n 33372,\n 14,\n 29584,\n 37906,\n 12,\n 18,\n 12,\n 33,\n 10652,\n 12,\n 392,\n 12,\n 8068,\n 50,\n 12,\n 27773,\n 12,\n 40148,\n 12,\n 86,\n 12,\n 65,\n 3796,\n 12,\n 20930,\n 13,\n 198,\n 37811,\n 198\n]"},"ratio_char_token":{"kind":"number","value":2.7216494845360826,"string":"2.721649"},"token_count":{"kind":"number","value":194,"string":"194"}}},{"rowIdx":2426,"cells":{"content":{"kind":"string","value":"import os\nimport struct\nimport numpy as np\n\ndef load_mnist(path, kind='train'):\n \"\"\"Load MNIST data from `path`\"\"\"\n labels_path = os.path.join(path,\n '%s-labels.idx1-ubyte'\n % kind)\n images_path = os.path.join(path,\n '%s-images.idx3-ubyte'\n % kind)\n with open(labels_path, 'rb') as lbpath:\n magic, n = struct.unpack('>II',\n lbpath.read(8))\n labels = np.fromfile(lbpath,\n dtype=np.uint8)\n labels = labels.reshape(labels.shape[0], 1)\n\n with open(images_path, 'rb') as imgpath:\n magic, num, rows, cols = struct.unpack('>IIII',\n imgpath.read(16))\n images = np.fromfile(imgpath,\n dtype=np.uint8).reshape(len(labels), 784)\n\n return images, labels"},"input_ids":{"kind":"list like","value":[11748,28686,198,11748,2878,198,11748,299,32152,355,45941,198,198,4299,3440,62,10295,396,7,6978,11,1611,11639,27432,6,2599,198,220,220,220,37227,8912,29060,8808,1366,422,4600,6978,63,37811,198,220,220,220,14722,62,6978,796,28686,13,6978,13,22179,7,6978,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,705,4,82,12,23912,1424,13,312,87,16,12,549,88,660,6,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,4064,1611,8,198,220,220,220,4263,62,6978,796,28686,13,6978,13,22179,7,6978,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,705,4,82,12,17566,13,312,87,18,12,549,88,660,6,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,4064,1611,8,198,220,220,220,351,1280,7,23912,1424,62,6978,11,705,26145,11537,355,18360,6978,25,198,220,220,220,220,220,220,220,5536,11,299,796,2878,13,403,8002,10786,29,3978,3256,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,18360,6978,13,961,7,23,4008,198,220,220,220,220,220,220,220,14722,796,45941,13,6738,7753,7,23160,6978,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,288,4906,28,37659,13,28611,23,8,198,220,220,220,220,220,220,220,14722,796,14722,13,3447,1758,7,23912,1424,13,43358,58,15,4357,352,8,628,220,220,220,351,1280,7,17566,62,6978,11,705,26145,11537,355,33705,6978,25,198,220,220,220,220,220,220,220,5536,11,997,11,15274,11,951,82,796,2878,13,403,8002,10786,29,3978,3978,3256,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,33705,6978,13,961,7,1433,4008,198,220,220,220,220,220,220,220,4263,796,45941,13,6738,7753,7,9600,6978,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,288,4906,28,37659,13,28611,23,737,3447,1758,7,11925,7,23912,1424,828,767,5705,8,628,220,220,220,1441,4263,11,14722],"string":"[\n 11748,\n 28686,\n 198,\n 11748,\n 2878,\n 198,\n 11748,\n 299,\n 32152,\n 355,\n 45941,\n 198,\n 198,\n 4299,\n 3440,\n 62,\n 10295,\n 396,\n 7,\n 6978,\n 11,\n 1611,\n 11639,\n 27432,\n 6,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 8912,\n 29060,\n 8808,\n 1366,\n 422,\n 4600,\n 6978,\n 63,\n 37811,\n 198,\n 220,\n 220,\n 220,\n 14722,\n 62,\n 6978,\n 796,\n 28686,\n 13,\n 6978,\n 13,\n 22179,\n 7,\n 6978,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 705,\n 4,\n 82,\n 12,\n 23912,\n 1424,\n 13,\n 312,\n 87,\n 16,\n 12,\n 549,\n 88,\n 660,\n 6,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 4064,\n 1611,\n 8,\n 198,\n 220,\n 220,\n 220,\n 4263,\n 62,\n 6978,\n 796,\n 28686,\n 13,\n 6978,\n 13,\n 22179,\n 7,\n 6978,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 705,\n 4,\n 82,\n 12,\n 17566,\n 13,\n 312,\n 87,\n 18,\n 12,\n 549,\n 88,\n 660,\n 6,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 4064,\n 1611,\n 8,\n 198,\n 220,\n 220,\n 220,\n 351,\n 1280,\n 7,\n 23912,\n 1424,\n 62,\n 6978,\n 11,\n 705,\n 26145,\n 11537,\n 355,\n 18360,\n 6978,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 5536,\n 11,\n 299,\n 796,\n 2878,\n 13,\n 403,\n 8002,\n 10786,\n 29,\n 3978,\n 3256,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 18360,\n 6978,\n 13,\n 961,\n 7,\n 23,\n 4008,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 14722,\n 796,\n 45941,\n 13,\n 6738,\n 7753,\n 7,\n 23160,\n 6978,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 288,\n 4906,\n 28,\n 37659,\n 13,\n 28611,\n 23,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 14722,\n 796,\n 14722,\n 13,\n 3447,\n 1758,\n 7,\n 23912,\n 1424,\n 13,\n 43358,\n 58,\n 15,\n 4357,\n 352,\n 8,\n 628,\n 220,\n 220,\n 220,\n 351,\n 1280,\n 7,\n 17566,\n 62,\n 6978,\n 11,\n 705,\n 26145,\n 11537,\n 355,\n 33705,\n 6978,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 5536,\n 11,\n 997,\n 11,\n 15274,\n 11,\n 951,\n 82,\n 796,\n 2878,\n 13,\n 403,\n 8002,\n 10786,\n 29,\n 3978,\n 3978,\n 3256,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 33705,\n 6978,\n 13,\n 961,\n 7,\n 1433,\n 4008,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 4263,\n 796,\n 45941,\n 13,\n 6738,\n 7753,\n 7,\n 9600,\n 6978,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 288,\n 4906,\n 28,\n 37659,\n 13,\n 28611,\n 23,\n 737,\n 3447,\n 1758,\n 7,\n 11925,\n 7,\n 23912,\n 1424,\n 828,\n 767,\n 5705,\n 8,\n 628,\n 220,\n 220,\n 220,\n 1441,\n 4263,\n 11,\n 14722\n]"},"ratio_char_token":{"kind":"number","value":1.6880570409982174,"string":"1.688057"},"token_count":{"kind":"number","value":561,"string":"561"}}},{"rowIdx":2427,"cells":{"content":{"kind":"string","value":"arr = [1, 2, 3, 4, 4, 4, 5, 6, 6, 7, 8, 9]\narr.sort()\nmy_dict = {i:arr.count(i) for i in arr}\n\n# sorting the dictionary based on value\nmy_dict = {k: v for k, v in sorted(my_dict.items(), key=lambda item: item[1])}\n\nprint(len(my_dict))\nprint(my_dict)\nlist = list(my_dict.keys())\nprint(list[-1])\n\n"},"input_ids":{"kind":"list like","value":[3258,796,685,16,11,362,11,513,11,604,11,604,11,604,11,642,11,718,11,718,11,767,11,807,11,860,60,198,3258,13,30619,3419,198,1820,62,11600,796,1391,72,25,3258,13,9127,7,72,8,329,1312,287,5240,92,198,198,2,29407,262,22155,1912,319,1988,198,1820,62,11600,796,1391,74,25,410,329,479,11,410,287,23243,7,1820,62,11600,13,23814,22784,1994,28,50033,2378,25,2378,58,16,12962,92,198,198,4798,7,11925,7,1820,62,11600,4008,198,4798,7,1820,62,11600,8,198,4868,796,1351,7,1820,62,11600,13,13083,28955,198,4798,7,4868,58,12,16,12962,628],"string":"[\n 3258,\n 796,\n 685,\n 16,\n 11,\n 362,\n 11,\n 513,\n 11,\n 604,\n 11,\n 604,\n 11,\n 604,\n 11,\n 642,\n 11,\n 718,\n 11,\n 718,\n 11,\n 767,\n 11,\n 807,\n 11,\n 860,\n 60,\n 198,\n 3258,\n 13,\n 30619,\n 3419,\n 198,\n 1820,\n 62,\n 11600,\n 796,\n 1391,\n 72,\n 25,\n 3258,\n 13,\n 9127,\n 7,\n 72,\n 8,\n 329,\n 1312,\n 287,\n 5240,\n 92,\n 198,\n 198,\n 2,\n 29407,\n 262,\n 22155,\n 1912,\n 319,\n 1988,\n 198,\n 1820,\n 62,\n 11600,\n 796,\n 1391,\n 74,\n 25,\n 410,\n 329,\n 479,\n 11,\n 410,\n 287,\n 23243,\n 7,\n 1820,\n 62,\n 11600,\n 13,\n 23814,\n 22784,\n 1994,\n 28,\n 50033,\n 2378,\n 25,\n 2378,\n 58,\n 16,\n 12962,\n 92,\n 198,\n 198,\n 4798,\n 7,\n 11925,\n 7,\n 1820,\n 62,\n 11600,\n 4008,\n 198,\n 4798,\n 7,\n 1820,\n 62,\n 11600,\n 8,\n 198,\n 4868,\n 796,\n 1351,\n 7,\n 1820,\n 62,\n 11600,\n 13,\n 13083,\n 28955,\n 198,\n 4798,\n 7,\n 4868,\n 58,\n 12,\n 16,\n 12962,\n 628\n]"},"ratio_char_token":{"kind":"number","value":2.2868217054263567,"string":"2.286822"},"token_count":{"kind":"number","value":129,"string":"129"}}},{"rowIdx":2428,"cells":{"content":{"kind":"string","value":"#coding=utf-8\n'''\nCreated on 2016-1-18\n\n@author: Devuser\n'''\n\nfrom django import template\nfrom doraemon.auth_extend.user.templatetags.auth_required_node import LogoutRequiredNode,LoginRequiredNode,UserRequiredNode,ManagerRequiredNode,AdminRequiredNode\n\nregister = template.Library()\n\n\n\n@register.tag()\n\n@register.tag()\n\n@register.tag()\n\n@register.tag()\n\n@register.tag()"},"input_ids":{"kind":"list like","value":[2,66,7656,28,40477,12,23,198,7061,6,198,41972,319,1584,12,16,12,1507,198,198,31,9800,25,6245,7220,198,7061,6,198,198,6738,42625,14208,1330,11055,198,6738,288,5799,7966,13,18439,62,2302,437,13,7220,13,11498,489,265,316,3775,13,18439,62,35827,62,17440,1330,5972,448,37374,19667,11,47790,37374,19667,11,12982,37374,19667,11,13511,37374,19667,11,46787,37374,19667,198,198,30238,796,11055,13,23377,3419,628,198,198,31,30238,13,12985,3419,198,198,31,30238,13,12985,3419,198,198,31,30238,13,12985,3419,198,198,31,30238,13,12985,3419,198,198,31,30238,13,12985,3419],"string":"[\n 2,\n 66,\n 7656,\n 28,\n 40477,\n 12,\n 23,\n 198,\n 7061,\n 6,\n 198,\n 41972,\n 319,\n 1584,\n 12,\n 16,\n 12,\n 1507,\n 198,\n 198,\n 31,\n 9800,\n 25,\n 6245,\n 7220,\n 198,\n 7061,\n 6,\n 198,\n 198,\n 6738,\n 42625,\n 14208,\n 1330,\n 11055,\n 198,\n 6738,\n 288,\n 5799,\n 7966,\n 13,\n 18439,\n 62,\n 2302,\n 437,\n 13,\n 7220,\n 13,\n 11498,\n 489,\n 265,\n 316,\n 3775,\n 13,\n 18439,\n 62,\n 35827,\n 62,\n 17440,\n 1330,\n 5972,\n 448,\n 37374,\n 19667,\n 11,\n 47790,\n 37374,\n 19667,\n 11,\n 12982,\n 37374,\n 19667,\n 11,\n 13511,\n 37374,\n 19667,\n 11,\n 46787,\n 37374,\n 19667,\n 198,\n 198,\n 30238,\n 796,\n 11055,\n 13,\n 23377,\n 3419,\n 628,\n 198,\n 198,\n 31,\n 30238,\n 13,\n 12985,\n 3419,\n 198,\n 198,\n 31,\n 30238,\n 13,\n 12985,\n 3419,\n 198,\n 198,\n 31,\n 30238,\n 13,\n 12985,\n 3419,\n 198,\n 198,\n 31,\n 30238,\n 13,\n 12985,\n 3419,\n 198,\n 198,\n 31,\n 30238,\n 13,\n 12985,\n 3419\n]"},"ratio_char_token":{"kind":"number","value":2.975806451612903,"string":"2.975806"},"token_count":{"kind":"number","value":124,"string":"124"}}},{"rowIdx":2429,"cells":{"content":{"kind":"string","value":"import yaml\nimport schoolopy\nimport sys\n\n\ndef err(msg):\n \"\"\"\n Prints out error message and exits with error.\n \"\"\"\n print(f\"Error: {msg}\")\n exit(1)\n\n\ndef main(limit):\n \"\"\"\n Likes all the posts & comments\n in your most recent feed (20 posts).\n\n Args:\n limit: How many posts to like.\n\n Returns:\n A message of the number of posts & comments that were newly liked.\n \"\"\"\n with open('config.yaml', 'r') as file:\n config = yaml.load(file, Loader=yaml.FullLoader)\n sc = schoolopy.Schoology(schoolopy.Auth(config['key'],\n config['secret']))\n post_liked = 0\n comments_liked = 0\n\n # Set the number of posts to check\n try:\n sc.limit = int(limit)\n except ValueError:\n err(\"The 'limit' argument must be a number\")\n\n # Get updates\n try:\n updates = sc.get_feed()\n except KeyError:\n err(\"The key or secret is incorrect\")\n\n print(\"Liking posts...\")\n\n # Go through all most recent 20 posts\n for update in updates:\n\n # Like post\n try:\n sc.like(update.id)\n post_liked += 1\n except schoolopy.NoDifferenceError:\n pass\n\n # Get comments if post is in a group\n if update.realm == \"group\":\n comments = sc.get_group_update_comments(update.id,\n update.group_id)\n # Else get comments if post is in a course\n elif update.realm == \"section\":\n comments = sc.get_section_update_comments(update.id,\n update.section_id)\n else:\n continue\n\n # Go through the comments inside the group\n for comment in comments:\n # Like each comment\n try:\n sc.like_comment(update.id, comment.id)\n comments_liked += 1\n except schoolopy.NoDifferenceError:\n continue\n\n return (\"---------------\\n\"\n f\"Liked {post_liked} posts and {comments_liked} comments\")\n\n\nif __name__ == \"__main__\":\n # Too many arguments are specified\n if len(sys.argv) > 2:\n err(\"Only the 'limit' argument is allowed\")\n # Default limit is 20\n limit = 20 if len(sys.argv) == 1 else sys.argv[1]\n print(main(limit))\n"},"input_ids":{"kind":"list like","value":[11748,331,43695,198,11748,1524,11081,198,11748,25064,628,198,4299,11454,7,19662,2599,198,220,220,220,37227,198,220,220,220,12578,82,503,4049,3275,290,30151,351,4049,13,198,220,220,220,37227,198,220,220,220,3601,7,69,1,12331,25,1391,19662,92,4943,198,220,220,220,8420,7,16,8,628,198,4299,1388,7,32374,2599,198,220,220,220,37227,198,220,220,220,46077,477,262,6851,1222,3651,198,220,220,220,287,534,749,2274,3745,357,1238,6851,737,628,220,220,220,943,14542,25,198,220,220,220,220,220,220,220,4179,25,1374,867,6851,284,588,13,628,220,220,220,16409,25,198,220,220,220,220,220,220,220,317,3275,286,262,1271,286,6851,1222,3651,326,547,8308,8288,13,198,220,220,220,37227,198,220,220,220,351,1280,10786,11250,13,88,43695,3256,705,81,11537,355,2393,25,198,220,220,220,220,220,220,220,4566,796,331,43695,13,2220,7,7753,11,8778,263,28,88,43695,13,13295,17401,8,198,220,220,220,629,796,1524,11081,13,50,6679,1435,7,14347,11081,13,30515,7,11250,17816,2539,6,4357,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,4566,17816,21078,20520,4008,198,220,220,220,1281,62,75,17951,796,657,198,220,220,220,3651,62,75,17951,796,657,628,220,220,220,1303,5345,262,1271,286,6851,284,2198,198,220,220,220,1949,25,198,220,220,220,220,220,220,220,629,13,32374,796,493,7,32374,8,198,220,220,220,2845,11052,12331,25,198,220,220,220,220,220,220,220,11454,7203,464,705,32374,6,4578,1276,307,257,1271,4943,628,220,220,220,1303,3497,5992,198,220,220,220,1949,25,198,220,220,220,220,220,220,220,5992,796,629,13,1136,62,12363,3419,198,220,220,220,2845,7383,12331,25,198,220,220,220,220,220,220,220,11454,7203,464,1994,393,3200,318,11491,4943,628,220,220,220,3601,7203,43,14132,6851,9313,8,628,220,220,220,1303,1514,832,477,749,2274,1160,6851,198,220,220,220,329,4296,287,5992,25,628,220,220,220,220,220,220,220,1303,4525,1281,198,220,220,220,220,220,220,220,1949,25,198,220,220,220,220,220,220,220,220,220,220,220,629,13,2339,7,19119,13,312,8,198,220,220,220,220,220,220,220,220,220,220,220,1281,62,75,17951,15853,352,198,220,220,220,220,220,220,220,2845,1524,11081,13,2949,28813,1945,12331,25,198,220,220,220,220,220,220,220,220,220,220,220,1208,628,220,220,220,220,220,220,220,1303,3497,3651,611,1281,318,287,257,1448,198,220,220,220,220,220,220,220,611,4296,13,5305,76,6624,366,8094,1298,198,220,220,220,220,220,220,220,220,220,220,220,3651,796,629,13,1136,62,8094,62,19119,62,15944,7,19119,13,312,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,4296,13,8094,62,312,8,198,220,220,220,220,220,220,220,1303,25974,651,3651,611,1281,318,287,257,1781,198,220,220,220,220,220,220,220,1288,361,4296,13,5305,76,6624,366,5458,1298,198,220,220,220,220,220,220,220,220,220,220,220,3651,796,629,13,1136,62,5458,62,19119,62,15944,7,19119,13,312,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,4296,13,5458,62,312,8,198,220,220,220,220,220,220,220,2073,25,198,220,220,220,220,220,220,220,220,220,220,220,2555,628,220,220,220,220,220,220,220,1303,1514,832,262,3651,2641,262,1448,198,220,220,220,220,220,220,220,329,2912,287,3651,25,198,220,220,220,220,220,220,220,220,220,220,220,1303,4525,1123,2912,198,220,220,220,220,220,220,220,220,220,220,220,1949,25,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,629,13,2339,62,23893,7,19119,13,312,11,2912,13,312,8,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,3651,62,75,17951,15853,352,198,220,220,220,220,220,220,220,220,220,220,220,2845,1524,11081,13,2949,28813,1945,12331,25,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,2555,628,220,220,220,1441,5855,24305,59,77,1,198,220,220,220,220,220,220,220,220,220,220,220,277,1,43,17951,1391,7353,62,75,17951,92,6851,290,1391,15944,62,75,17951,92,3651,4943,628,198,361,11593,3672,834,6624,366,834,12417,834,1298,198,220,220,220,1303,14190,867,7159,389,7368,198,220,220,220,611,18896,7,17597,13,853,85,8,1875,362,25,198,220,220,220,220,220,220,220,11454,7203,10049,262,705,32374,6,4578,318,3142,4943,198,220,220,220,1303,15161,4179,318,1160,198,220,220,220,4179,796,1160,611,18896,7,17597,13,853,85,8,6624,352,2073,25064,13,853,85,58,16,60,198,220,220,220,3601,7,12417,7,32374,4008,198],"string":"[\n 11748,\n 331,\n 43695,\n 198,\n 11748,\n 1524,\n 11081,\n 198,\n 11748,\n 25064,\n 628,\n 198,\n 4299,\n 11454,\n 7,\n 19662,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 12578,\n 82,\n 503,\n 4049,\n 3275,\n 290,\n 30151,\n 351,\n 4049,\n 13,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 3601,\n 7,\n 69,\n 1,\n 12331,\n 25,\n 1391,\n 19662,\n 92,\n 4943,\n 198,\n 220,\n 220,\n 220,\n 8420,\n 7,\n 16,\n 8,\n 628,\n 198,\n 4299,\n 1388,\n 7,\n 32374,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 46077,\n 477,\n 262,\n 6851,\n 1222,\n 3651,\n 198,\n 220,\n 220,\n 220,\n 287,\n 534,\n 749,\n 2274,\n 3745,\n 357,\n 1238,\n 6851,\n 737,\n 628,\n 220,\n 220,\n 220,\n 943,\n 14542,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 4179,\n 25,\n 1374,\n 867,\n 6851,\n 284,\n 588,\n 13,\n 628,\n 220,\n 220,\n 220,\n 16409,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 317,\n 3275,\n 286,\n 262,\n 1271,\n 286,\n 6851,\n 1222,\n 3651,\n 326,\n 547,\n 8308,\n 8288,\n 13,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 351,\n 1280,\n 10786,\n 11250,\n 13,\n 88,\n 43695,\n 3256,\n 705,\n 81,\n 11537,\n 355,\n 2393,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 4566,\n 796,\n 331,\n 43695,\n 13,\n 2220,\n 7,\n 7753,\n 11,\n 8778,\n 263,\n 28,\n 88,\n 43695,\n 13,\n 13295,\n 17401,\n 8,\n 198,\n 220,\n 220,\n 220,\n 629,\n 796,\n 1524,\n 11081,\n 13,\n 50,\n 6679,\n 1435,\n 7,\n 14347,\n 11081,\n 13,\n 30515,\n 7,\n 11250,\n 17816,\n 2539,\n 6,\n 4357,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 4566,\n 17816,\n 21078,\n 20520,\n 4008,\n 198,\n 220,\n 220,\n 220,\n 1281,\n 62,\n 75,\n 17951,\n 796,\n 657,\n 198,\n 220,\n 220,\n 220,\n 3651,\n 62,\n 75,\n 17951,\n 796,\n 657,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 5345,\n 262,\n 1271,\n 286,\n 6851,\n 284,\n 2198,\n 198,\n 220,\n 220,\n 220,\n 1949,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 629,\n 13,\n 32374,\n 796,\n 493,\n 7,\n 32374,\n 8,\n 198,\n 220,\n 220,\n 220,\n 2845,\n 11052,\n 12331,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 11454,\n 7203,\n 464,\n 705,\n 32374,\n 6,\n 4578,\n 1276,\n 307,\n 257,\n 1271,\n 4943,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 3497,\n 5992,\n 198,\n 220,\n 220,\n 220,\n 1949,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 5992,\n 796,\n 629,\n 13,\n 1136,\n 62,\n 12363,\n 3419,\n 198,\n 220,\n 220,\n 220,\n 2845,\n 7383,\n 12331,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 11454,\n 7203,\n 464,\n 1994,\n 393,\n 3200,\n 318,\n 11491,\n 4943,\n 628,\n 220,\n 220,\n 220,\n 3601,\n 7203,\n 43,\n 14132,\n 6851,\n 9313,\n 8,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 1514,\n 832,\n 477,\n 749,\n 2274,\n 1160,\n 6851,\n 198,\n 220,\n 220,\n 220,\n 329,\n 4296,\n 287,\n 5992,\n 25,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 4525,\n 1281,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1949,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 629,\n 13,\n 2339,\n 7,\n 19119,\n 13,\n 312,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1281,\n 62,\n 75,\n 17951,\n 15853,\n 352,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2845,\n 1524,\n 11081,\n 13,\n 2949,\n 28813,\n 1945,\n 12331,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1208,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 3497,\n 3651,\n 611,\n 1281,\n 318,\n 287,\n 257,\n 1448,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 4296,\n 13,\n 5305,\n 76,\n 6624,\n 366,\n 8094,\n 1298,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3651,\n 796,\n 629,\n 13,\n 1136,\n 62,\n 8094,\n 62,\n 19119,\n 62,\n 15944,\n 7,\n 19119,\n 13,\n 312,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 4296,\n 13,\n 8094,\n 62,\n 312,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 25974,\n 651,\n 3651,\n 611,\n 1281,\n 318,\n 287,\n 257,\n 1781,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1288,\n 361,\n 4296,\n 13,\n 5305,\n 76,\n 6624,\n 366,\n 5458,\n 1298,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3651,\n 796,\n 629,\n 13,\n 1136,\n 62,\n 5458,\n 62,\n 19119,\n 62,\n 15944,\n 7,\n 19119,\n 13,\n 312,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 4296,\n 13,\n 5458,\n 62,\n 312,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2073,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2555,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 1514,\n 832,\n 262,\n 3651,\n 2641,\n 262,\n 1448,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 329,\n 2912,\n 287,\n 3651,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 4525,\n 1123,\n 2912,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1949,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 629,\n 13,\n 2339,\n 62,\n 23893,\n 7,\n 19119,\n 13,\n 312,\n 11,\n 2912,\n 13,\n 312,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3651,\n 62,\n 75,\n 17951,\n 15853,\n 352,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2845,\n 1524,\n 11081,\n 13,\n 2949,\n 28813,\n 1945,\n 12331,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2555,\n 628,\n 220,\n 220,\n 220,\n 1441,\n 5855,\n 24305,\n 59,\n 77,\n 1,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 277,\n 1,\n 43,\n 17951,\n 1391,\n 7353,\n 62,\n 75,\n 17951,\n 92,\n 6851,\n 290,\n 1391,\n 15944,\n 62,\n 75,\n 17951,\n 92,\n 3651,\n 4943,\n 628,\n 198,\n 361,\n 11593,\n 3672,\n 834,\n 6624,\n 366,\n 834,\n 12417,\n 834,\n 1298,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 14190,\n 867,\n 7159,\n 389,\n 7368,\n 198,\n 220,\n 220,\n 220,\n 611,\n 18896,\n 7,\n 17597,\n 13,\n 853,\n 85,\n 8,\n 1875,\n 362,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 11454,\n 7203,\n 10049,\n 262,\n 705,\n 32374,\n 6,\n 4578,\n 318,\n 3142,\n 4943,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 15161,\n 4179,\n 318,\n 1160,\n 198,\n 220,\n 220,\n 220,\n 4179,\n 796,\n 1160,\n 611,\n 18896,\n 7,\n 17597,\n 13,\n 853,\n 85,\n 8,\n 6624,\n 352,\n 2073,\n 25064,\n 13,\n 853,\n 85,\n 58,\n 16,\n 60,\n 198,\n 220,\n 220,\n 220,\n 3601,\n 7,\n 12417,\n 7,\n 32374,\n 4008,\n 198\n]"},"ratio_char_token":{"kind":"number","value":2.171802054154995,"string":"2.171802"},"token_count":{"kind":"number","value":1071,"string":"1,071"}}},{"rowIdx":2430,"cells":{"content":{"kind":"string","value":"# Loopit eli silmukat\n\n##### INFO #####\n#\n# Joskus monimutkaisen kuvion piirtäminen vaatii samojen\n# komentojen toistamista moneen kertaan. Loopilla eli silmukalla\n# voit toistaa koodipalikoita eli pätkiä koodia\n\nimport turtle\nt = turtle.Turtle()\n\n# Seuraava on esimerkki silmukasta.\n#\n# \"for\" kertoo tietokoneelle että sen tulee toistaa jotakin\n# monta kertaa\n#\n# \"in range(2)\" kertoo että komento tulee toistaa 2 kertaa\n#\n# \"i\" on muuttuja jonka arvo kasvaa yhdellä jokaisen toiston\n# (eli iteraation) jälkeen. Muuttujaa i ei käytetä tässä\n# tehtäväss, mutta näet myöhemmin esimerkkejä, joissa siitä\n# on hyötyä.\n\nfor i in range(2):\n # Seuraavilla riveillä on komennot jotka toistetaan.\n # Nämä rivit ollaan sisennetty, eli ne alkavat kahdella välilyönnillä\n # Sisennyksellä kerrotaan mitkä rivit kuuluvat toistettavaan koodipalikkaan.\n t.forward(30)\n t.left(120)\n t.forward(30)\n t.right(60)\n\n##### TEHTÄVÄ 1 #####\n#\n# Klikkaa 'run' ja katso mitä tapahtuu.\n#\n# Kuinka monta kertaa silmukka tulisi toistaa että tähti olisi valmis?\n# Laita oikea numero komennon range(...) sulkujen sisään.\n# Vinkkin: voit kokeilla useita eri numeroita ja katsoa mikä toimii\n\n##### TEHTÄVÄ 2 #####\n#\n# Mieti muita muotoja joissa on toistuva kaava.\n# Esimerkiksi: neliö, rappuset, aallot\n#\n# Muuta silmukkaa niin että se piirtää valitsemasi kuvion.\n#\n# Vinkki: Aloita piirtämällä vain yksi toisto kirjoittamalla\n# \"range(1)\" ja saa se piirtämään kuten haluat. Voit sitten\n# toistaa kuvion niin monta kertaa kuin haluat muuttamalla\n# range arvoa.\n"},"input_ids":{"kind":"list like","value":[2,26304,270,1288,72,3313,76,2724,265,198,198,4242,2,24890,46424,198,2,198,2,22568,45614,937,320,315,4914,13254,479,14795,295,31028,2265,11033,1084,268,46935,265,4178,6072,13210,268,198,2,479,296,298,13210,268,284,396,321,12523,285,505,268,479,861,28340,13,26304,5049,1288,72,3313,76,2724,30315,198,2,7608,270,284,396,7252,479,702,8521,12125,5350,1288,72,279,11033,83,4106,11033,479,702,544,198,198,11748,28699,198,83,796,28699,13,51,17964,3419,198,198,2,1001,5330,4170,319,1658,320,9587,4106,3313,76,2724,40197,13,198,2,198,2,366,1640,1,479,861,2238,256,1155,482,505,13485,304,926,11033,3308,256,2261,68,284,396,7252,474,313,27048,198,2,40689,64,479,861,7252,198,2,198,2,366,259,2837,7,17,16725,479,861,2238,304,926,11033,479,296,50217,256,2261,68,284,396,7252,362,479,861,7252,198,2,198,2,366,72,1,319,38779,15318,84,6592,474,261,4914,610,13038,479,292,6862,64,331,31298,695,11033,474,17411,13254,284,36363,198,2,357,43733,340,8607,341,8,474,11033,75,365,268,13,8252,15318,84,6592,64,1312,304,72,479,11033,20760,316,11033,256,11033,824,11033,198,2,573,4352,11033,85,11033,824,11,4517,8326,299,11033,316,616,9101,4411,1084,1658,320,9587,365,73,11033,11,2525,13808,33721,270,11033,198,2,319,2537,9101,774,11033,13,198,198,1640,1312,287,2837,7,17,2599,198,220,1303,1001,5330,615,5049,40112,359,11033,319,479,3674,1662,474,313,4914,284,396,17167,272,13,198,220,1303,399,11033,76,11033,374,452,270,267,8466,272,264,271,1697,316,774,11,1288,72,497,32915,615,265,479,993,67,12627,410,11033,75,813,9101,20471,359,11033,198,220,1303,311,271,11870,74,7255,11033,41927,305,8326,272,10255,74,11033,374,452,270,479,84,377,14795,265,284,396,3087,4170,272,479,702,8521,1134,4914,272,13,198,220,256,13,11813,7,1270,8,198,220,256,13,9464,7,10232,8,198,220,256,13,11813,7,1270,8,198,220,256,13,3506,7,1899,8,198,198,4242,2,13368,6535,127,226,53,127,226,352,46424,198,2,198,2,14770,1134,4914,64,705,5143,6,45091,479,265,568,10255,11033,9814,993,83,12303,13,198,2,198,2,12554,48955,40689,64,479,861,7252,3313,76,2724,4914,48373,23267,284,396,7252,304,926,11033,256,11033,4352,72,25776,23267,1188,25413,30,198,2,406,4548,64,267,522,64,997,3529,479,296,1697,261,2837,7,23029,264,12171,23577,268,264,271,11033,11033,77,13,198,2,569,676,5116,25,7608,270,479,2088,5049,779,5350,1931,72,997,3529,5350,45091,479,265,568,64,285,1134,11033,284,320,4178,198,198,4242,2,13368,6535,127,226,53,127,226,362,46424,198,2,198,2,337,1155,72,285,5013,64,38779,2069,6592,2525,13808,319,284,396,84,6862,38387,4170,13,198,2,8678,22723,4106,591,72,25,299,43733,9101,11,29106,385,316,11,257,439,313,198,2,198,2,8252,29822,3313,76,2724,4914,64,37628,259,304,926,11033,384,31028,2265,11033,11033,1188,270,325,5356,72,479,14795,295,13,198,2,198,2,569,676,4106,25,978,78,5350,31028,2265,11033,76,11033,297,11033,23469,331,591,72,284,396,78,479,343,7639,715,321,30315,198,2,366,9521,7,16,16725,45091,473,64,384,31028,2265,11033,76,11033,11033,77,479,7809,10284,84,265,13,20687,270,264,2621,198,2,284,396,7252,479,14795,295,37628,259,40689,64,479,861,7252,479,48441,10284,84,265,38779,15318,321,30315,198,2,2837,610,85,12162,13,198],"string":"[\n 2,\n 26304,\n 270,\n 1288,\n 72,\n 3313,\n 76,\n 2724,\n 265,\n 198,\n 198,\n 4242,\n 2,\n 24890,\n 46424,\n 198,\n 2,\n 198,\n 2,\n 22568,\n 45614,\n 937,\n 320,\n 315,\n 4914,\n 13254,\n 479,\n 14795,\n 295,\n 31028,\n 2265,\n 11033,\n 1084,\n 268,\n 46935,\n 265,\n 4178,\n 6072,\n 13210,\n 268,\n 198,\n 2,\n 479,\n 296,\n 298,\n 13210,\n 268,\n 284,\n 396,\n 321,\n 12523,\n 285,\n 505,\n 268,\n 479,\n 861,\n 28340,\n 13,\n 26304,\n 5049,\n 1288,\n 72,\n 3313,\n 76,\n 2724,\n 30315,\n 198,\n 2,\n 7608,\n 270,\n 284,\n 396,\n 7252,\n 479,\n 702,\n 8521,\n 12125,\n 5350,\n 1288,\n 72,\n 279,\n 11033,\n 83,\n 4106,\n 11033,\n 479,\n 702,\n 544,\n 198,\n 198,\n 11748,\n 28699,\n 198,\n 83,\n 796,\n 28699,\n 13,\n 51,\n 17964,\n 3419,\n 198,\n 198,\n 2,\n 1001,\n 5330,\n 4170,\n 319,\n 1658,\n 320,\n 9587,\n 4106,\n 3313,\n 76,\n 2724,\n 40197,\n 13,\n 198,\n 2,\n 198,\n 2,\n 366,\n 1640,\n 1,\n 479,\n 861,\n 2238,\n 256,\n 1155,\n 482,\n 505,\n 13485,\n 304,\n 926,\n 11033,\n 3308,\n 256,\n 2261,\n 68,\n 284,\n 396,\n 7252,\n 474,\n 313,\n 27048,\n 198,\n 2,\n 40689,\n 64,\n 479,\n 861,\n 7252,\n 198,\n 2,\n 198,\n 2,\n 366,\n 259,\n 2837,\n 7,\n 17,\n 16725,\n 479,\n 861,\n 2238,\n 304,\n 926,\n 11033,\n 479,\n 296,\n 50217,\n 256,\n 2261,\n 68,\n 284,\n 396,\n 7252,\n 362,\n 479,\n 861,\n 7252,\n 198,\n 2,\n 198,\n 2,\n 366,\n 72,\n 1,\n 319,\n 38779,\n 15318,\n 84,\n 6592,\n 474,\n 261,\n 4914,\n 610,\n 13038,\n 479,\n 292,\n 6862,\n 64,\n 331,\n 31298,\n 695,\n 11033,\n 474,\n 17411,\n 13254,\n 284,\n 36363,\n 198,\n 2,\n 357,\n 43733,\n 340,\n 8607,\n 341,\n 8,\n 474,\n 11033,\n 75,\n 365,\n 268,\n 13,\n 8252,\n 15318,\n 84,\n 6592,\n 64,\n 1312,\n 304,\n 72,\n 479,\n 11033,\n 20760,\n 316,\n 11033,\n 256,\n 11033,\n 824,\n 11033,\n 198,\n 2,\n 573,\n 4352,\n 11033,\n 85,\n 11033,\n 824,\n 11,\n 4517,\n 8326,\n 299,\n 11033,\n 316,\n 616,\n 9101,\n 4411,\n 1084,\n 1658,\n 320,\n 9587,\n 365,\n 73,\n 11033,\n 11,\n 2525,\n 13808,\n 33721,\n 270,\n 11033,\n 198,\n 2,\n 319,\n 2537,\n 9101,\n 774,\n 11033,\n 13,\n 198,\n 198,\n 1640,\n 1312,\n 287,\n 2837,\n 7,\n 17,\n 2599,\n 198,\n 220,\n 1303,\n 1001,\n 5330,\n 615,\n 5049,\n 40112,\n 359,\n 11033,\n 319,\n 479,\n 3674,\n 1662,\n 474,\n 313,\n 4914,\n 284,\n 396,\n 17167,\n 272,\n 13,\n 198,\n 220,\n 1303,\n 399,\n 11033,\n 76,\n 11033,\n 374,\n 452,\n 270,\n 267,\n 8466,\n 272,\n 264,\n 271,\n 1697,\n 316,\n 774,\n 11,\n 1288,\n 72,\n 497,\n 32915,\n 615,\n 265,\n 479,\n 993,\n 67,\n 12627,\n 410,\n 11033,\n 75,\n 813,\n 9101,\n 20471,\n 359,\n 11033,\n 198,\n 220,\n 1303,\n 311,\n 271,\n 11870,\n 74,\n 7255,\n 11033,\n 41927,\n 305,\n 8326,\n 272,\n 10255,\n 74,\n 11033,\n 374,\n 452,\n 270,\n 479,\n 84,\n 377,\n 14795,\n 265,\n 284,\n 396,\n 3087,\n 4170,\n 272,\n 479,\n 702,\n 8521,\n 1134,\n 4914,\n 272,\n 13,\n 198,\n 220,\n 256,\n 13,\n 11813,\n 7,\n 1270,\n 8,\n 198,\n 220,\n 256,\n 13,\n 9464,\n 7,\n 10232,\n 8,\n 198,\n 220,\n 256,\n 13,\n 11813,\n 7,\n 1270,\n 8,\n 198,\n 220,\n 256,\n 13,\n 3506,\n 7,\n 1899,\n 8,\n 198,\n 198,\n 4242,\n 2,\n 13368,\n 6535,\n 127,\n 226,\n 53,\n 127,\n 226,\n 352,\n 46424,\n 198,\n 2,\n 198,\n 2,\n 14770,\n 1134,\n 4914,\n 64,\n 705,\n 5143,\n 6,\n 45091,\n 479,\n 265,\n 568,\n 10255,\n 11033,\n 9814,\n 993,\n 83,\n 12303,\n 13,\n 198,\n 2,\n 198,\n 2,\n 12554,\n 48955,\n 40689,\n 64,\n 479,\n 861,\n 7252,\n 3313,\n 76,\n 2724,\n 4914,\n 48373,\n 23267,\n 284,\n 396,\n 7252,\n 304,\n 926,\n 11033,\n 256,\n 11033,\n 4352,\n 72,\n 25776,\n 23267,\n 1188,\n 25413,\n 30,\n 198,\n 2,\n 406,\n 4548,\n 64,\n 267,\n 522,\n 64,\n 997,\n 3529,\n 479,\n 296,\n 1697,\n 261,\n 2837,\n 7,\n 23029,\n 264,\n 12171,\n 23577,\n 268,\n 264,\n 271,\n 11033,\n 11033,\n 77,\n 13,\n 198,\n 2,\n 569,\n 676,\n 5116,\n 25,\n 7608,\n 270,\n 479,\n 2088,\n 5049,\n 779,\n 5350,\n 1931,\n 72,\n 997,\n 3529,\n 5350,\n 45091,\n 479,\n 265,\n 568,\n 64,\n 285,\n 1134,\n 11033,\n 284,\n 320,\n 4178,\n 198,\n 198,\n 4242,\n 2,\n 13368,\n 6535,\n 127,\n 226,\n 53,\n 127,\n 226,\n 362,\n 46424,\n 198,\n 2,\n 198,\n 2,\n 337,\n 1155,\n 72,\n 285,\n 5013,\n 64,\n 38779,\n 2069,\n 6592,\n 2525,\n 13808,\n 319,\n 284,\n 396,\n 84,\n 6862,\n 38387,\n 4170,\n 13,\n 198,\n 2,\n 8678,\n 22723,\n 4106,\n 591,\n 72,\n 25,\n 299,\n 43733,\n 9101,\n 11,\n 29106,\n 385,\n 316,\n 11,\n 257,\n 439,\n 313,\n 198,\n 2,\n 198,\n 2,\n 8252,\n 29822,\n 3313,\n 76,\n 2724,\n 4914,\n 64,\n 37628,\n 259,\n 304,\n 926,\n 11033,\n 384,\n 31028,\n 2265,\n 11033,\n 11033,\n 1188,\n 270,\n 325,\n 5356,\n 72,\n 479,\n 14795,\n 295,\n 13,\n 198,\n 2,\n 198,\n 2,\n 569,\n 676,\n 4106,\n 25,\n 978,\n 78,\n 5350,\n 31028,\n 2265,\n 11033,\n 76,\n 11033,\n 297,\n 11033,\n 23469,\n 331,\n 591,\n 72,\n 284,\n 396,\n 78,\n 479,\n 343,\n 7639,\n 715,\n 321,\n 30315,\n 198,\n 2,\n 366,\n 9521,\n 7,\n 16,\n 16725,\n 45091,\n 473,\n 64,\n 384,\n 31028,\n 2265,\n 11033,\n 76,\n 11033,\n 11033,\n 77,\n 479,\n 7809,\n 10284,\n 84,\n 265,\n 13,\n 20687,\n 270,\n 264,\n 2621,\n 198,\n 2,\n 284,\n 396,\n 7252,\n 479,\n 14795,\n 295,\n 37628,\n 259,\n 40689,\n 64,\n 479,\n 861,\n 7252,\n 479,\n 48441,\n 10284,\n 84,\n 265,\n 38779,\n 15318,\n 321,\n 30315,\n 198,\n 2,\n 2837,\n 610,\n 85,\n 12162,\n 13,\n 198\n]"},"ratio_char_token":{"kind":"number","value":2.149859943977591,"string":"2.14986"},"token_count":{"kind":"number","value":714,"string":"714"}}},{"rowIdx":2431,"cells":{"content":{"kind":"string","value":"from queue import Queue, Empty\r\nfrom time import sleep\r\nfrom threading import Timer\r\n\r\n\r\n\r\n\r\nif __name__ == '__main__':\r\n main()\r\n"},"input_ids":{"kind":"list like","value":[6738,16834,1330,4670,518,11,33523,201,198,6738,640,1330,3993,201,198,6738,4704,278,1330,5045,263,201,198,201,198,201,198,201,198,201,198,361,11593,3672,834,6624,705,834,12417,834,10354,201,198,220,220,220,1388,3419,201,198],"string":"[\n 6738,\n 16834,\n 1330,\n 4670,\n 518,\n 11,\n 33523,\n 201,\n 198,\n 6738,\n 640,\n 1330,\n 3993,\n 201,\n 198,\n 6738,\n 4704,\n 278,\n 1330,\n 5045,\n 263,\n 201,\n 198,\n 201,\n 198,\n 201,\n 198,\n 201,\n 198,\n 201,\n 198,\n 361,\n 11593,\n 3672,\n 834,\n 6624,\n 705,\n 834,\n 12417,\n 834,\n 10354,\n 201,\n 198,\n 220,\n 220,\n 220,\n 1388,\n 3419,\n 201,\n 198\n]"},"ratio_char_token":{"kind":"number","value":2.66,"string":"2.66"},"token_count":{"kind":"number","value":50,"string":"50"}}},{"rowIdx":2432,"cells":{"content":{"kind":"string","value":"# -*- coding: utf-8 -*-\nimport hashlib\nimport subprocess\nimport sys\nimport os\n\nG_ZIP_SPLIT_LINE = 500\nG_ZIP_SPLIT_UNIT = 100\n\n\n\n\n\n\n\n\n"},"input_ids":{"kind":"list like","value":[2,532,9,12,19617,25,3384,69,12,23,532,9,12,198,11748,12234,8019,198,11748,850,14681,198,11748,25064,198,11748,28686,198,198,38,62,57,4061,62,4303,43,2043,62,24027,796,5323,198,38,62,57,4061,62,4303,43,2043,62,4944,2043,796,1802,628,628,628,628,198],"string":"[\n 2,\n 532,\n 9,\n 12,\n 19617,\n 25,\n 3384,\n 69,\n 12,\n 23,\n 532,\n 9,\n 12,\n 198,\n 11748,\n 12234,\n 8019,\n 198,\n 11748,\n 850,\n 14681,\n 198,\n 11748,\n 25064,\n 198,\n 11748,\n 28686,\n 198,\n 198,\n 38,\n 62,\n 57,\n 4061,\n 62,\n 4303,\n 43,\n 2043,\n 62,\n 24027,\n 796,\n 5323,\n 198,\n 38,\n 62,\n 57,\n 4061,\n 62,\n 4303,\n 43,\n 2043,\n 62,\n 4944,\n 2043,\n 796,\n 1802,\n 628,\n 628,\n 628,\n 628,\n 198\n]"},"ratio_char_token":{"kind":"number","value":2.216666666666667,"string":"2.216667"},"token_count":{"kind":"number","value":60,"string":"60"}}},{"rowIdx":2433,"cells":{"content":{"kind":"string","value":"# Copyright 2019 The Sonnet Authors. All Rights Reserved.\n#\n# Licensed under the Apache License, Version 2.0 (the \"License\");\n# you may not use this file except in compliance with the License.\n# You may obtain a copy of the License at\n#\n# http://www.apache.org/licenses/LICENSE-2.0\n#\n# Unless required by applicable law or agreed to in writing, software\n# distributed under the License is distributed on an \"AS IS\" BASIS,\n# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n# See the License for the specific language governing permissions and\n# limitations under the License.\n# ============================================================================\n\"\"\"Parallel linear module.\"\"\"\n\nimport math\nfrom typing import Optional\n\nfrom sonnet.src import base\nfrom sonnet.src import initializers\nfrom sonnet.src import once\nfrom sonnet.src import utils\nimport tensorflow as tf\n\n\nclass ParallelLinears(base.Module):\n \"\"\"Parallel linear.\n\n This is equivalent to n separate linears applied in parallel to n inputs. It\n takes an input of shape [num_linears, batch_size, input_size] and returns an\n output of shape [num_linears, batch_size, output_size].\n\n It uses a single batched matmul which is more efficient than stacking separate\n snt.Linear layers. This is implemented using `num_linear`s first to avoid the\n need for transposes in order to make it efficient when stacking these.\n \"\"\"\n\n def __init__(self,\n output_size: int,\n with_bias: bool = True,\n w_init: Optional[initializers.Initializer] = None,\n b_init: Optional[initializers.Initializer] = None,\n name: Optional[str] = None):\n \"\"\"Constructs a `ParallelLinear` module.\n\n Args:\n output_size: Output dimensionality.\n with_bias: Whether to include bias parameters. Default `True`.\n w_init: Optional initializer for the weights. By default the weights are\n initialized truncated random normal values with a standard deviation of\n `1 / sqrt(input_feature_size)`, which is commonly used when the inputs\n are zero centered (see https://arxiv.org/abs/1502.03167v3).\n b_init: Optional initializer for the bias. By default the bias is\n initialized to zero.\n name: Name of the module.\n \"\"\"\n super().__init__(name=name)\n self.output_size = output_size\n self.with_bias = with_bias\n self.w_init = w_init\n if with_bias:\n self.b_init = b_init if b_init is not None else initializers.Zeros()\n elif b_init is not None:\n raise ValueError(\"When not using a bias the b_init must be None.\")\n\n @once.once\n def _initialize(self, inputs: tf.Tensor):\n \"\"\"Constructs parameters used by this module.\"\"\"\n utils.assert_rank(inputs, 3)\n\n self.input_size = inputs.shape[2]\n if self.input_size is None: # Can happen inside an @tf.function.\n raise ValueError(\"Input size must be specified at module build time.\")\n num_linears = inputs.shape[0]\n if num_linears is None: # Can happen inside an @tf.function.\n raise ValueError(\n \"The number of linears must be specified at module build time.\")\n\n if self.w_init is None:\n # See https://arxiv.org/abs/1502.03167v3.\n stddev = 1. / math.sqrt(self.input_size)\n self.w_init = initializers.TruncatedNormal(stddev=stddev)\n\n self.w = tf.Variable(\n self.w_init([num_linears, self.input_size, self.output_size],\n inputs.dtype),\n name=\"w\")\n\n if self.with_bias:\n self.b = tf.Variable(\n self.b_init([num_linears, 1, self.output_size], inputs.dtype),\n name=\"b\")\n"},"input_ids":{"kind":"list like","value":[2,15069,13130,383,6295,3262,46665,13,1439,6923,33876,13,198,2,198,2,49962,739,262,24843,13789,11,10628,362,13,15,357,1169,366,34156,15341,198,2,345,743,407,779,428,2393,2845,287,11846,351,262,13789,13,198,2,921,743,7330,257,4866,286,262,13789,379,198,2,198,2,220,220,220,2638,1378,2503,13,43073,13,2398,14,677,4541,14,43,2149,24290,12,17,13,15,198,2,198,2,17486,2672,416,9723,1099,393,4987,284,287,3597,11,3788,198,2,9387,739,262,13789,318,9387,319,281,366,1921,3180,1,29809,1797,11,198,2,42881,34764,11015,6375,7102,49828,11053,3963,15529,509,12115,11,2035,4911,393,220,17142,13,198,2,4091,262,13789,329,262,2176,3303,15030,21627,290,198,2,11247,739,262,13789,13,198,2,38093,2559,18604,198,37811,10044,29363,14174,8265,526,15931,198,198,11748,10688,198,6738,19720,1330,32233,198,198,6738,3367,3262,13,10677,1330,2779,198,6738,3367,3262,13,10677,1330,4238,11341,198,6738,3367,3262,13,10677,1330,1752,198,6738,3367,3262,13,10677,1330,3384,4487,198,11748,11192,273,11125,355,48700,628,198,4871,42945,14993,4127,7,8692,13,26796,2599,198,220,37227,10044,29363,14174,13,628,220,770,318,7548,284,299,4553,9493,4127,5625,287,10730,284,299,17311,13,632,198,220,2753,281,5128,286,5485,685,22510,62,2815,4127,11,15458,62,7857,11,5128,62,7857,60,290,5860,281,198,220,5072,286,5485,685,22510,62,2815,4127,11,15458,62,7857,11,5072,62,7857,4083,628,220,632,3544,257,2060,7365,1740,2603,76,377,543,318,517,6942,621,41228,4553,198,220,264,429,13,14993,451,11685,13,770,318,9177,1262,4600,22510,62,29127,63,82,717,284,3368,262,198,220,761,329,1007,4832,287,1502,284,787,340,6942,618,41228,777,13,198,220,37227,628,220,825,11593,15003,834,7,944,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,5072,62,7857,25,493,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,351,62,65,4448,25,20512,796,6407,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,266,62,15003,25,32233,58,36733,11341,13,24243,7509,60,796,6045,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,275,62,15003,25,32233,58,36733,11341,13,24243,7509,60,796,6045,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1438,25,32233,58,2536,60,796,6045,2599,198,220,220,220,37227,42316,82,257,4600,10044,29363,14993,451,63,8265,13,628,220,220,220,943,14542,25,198,220,220,220,220,220,5072,62,7857,25,25235,15793,1483,13,198,220,220,220,220,220,351,62,65,4448,25,10127,284,2291,10690,10007,13,15161,4600,17821,44646,198,220,220,220,220,220,266,62,15003,25,32233,4238,7509,329,262,19590,13,2750,4277,262,19590,389,198,220,220,220,220,220,220,220,23224,40122,515,4738,3487,3815,351,257,3210,28833,286,198,220,220,220,220,220,220,220,4600,16,1220,19862,17034,7,15414,62,30053,62,7857,8,47671,543,318,8811,973,618,262,17311,198,220,220,220,220,220,220,220,389,6632,19254,357,3826,3740,1378,283,87,452,13,2398,14,8937,14,8628,17,13,3070,21940,85,18,737,198,220,220,220,220,220,275,62,15003,25,32233,4238,7509,329,262,10690,13,2750,4277,262,10690,318,198,220,220,220,220,220,220,220,23224,284,6632,13,198,220,220,220,220,220,1438,25,6530,286,262,8265,13,198,220,220,220,37227,198,220,220,220,2208,22446,834,15003,834,7,3672,28,3672,8,198,220,220,220,2116,13,22915,62,7857,796,5072,62,7857,198,220,220,220,2116,13,4480,62,65,4448,796,351,62,65,4448,198,220,220,220,2116,13,86,62,15003,796,266,62,15003,198,220,220,220,611,351,62,65,4448,25,198,220,220,220,220,220,2116,13,65,62,15003,796,275,62,15003,611,275,62,15003,318,407,6045,2073,4238,11341,13,57,27498,3419,198,220,220,220,1288,361,275,62,15003,318,407,6045,25,198,220,220,220,220,220,5298,11052,12331,7203,2215,407,1262,257,10690,262,275,62,15003,1276,307,6045,19570,628,220,2488,27078,13,27078,198,220,825,4808,36733,1096,7,944,11,17311,25,48700,13,51,22854,2599,198,220,220,220,37227,42316,82,10007,973,416,428,8265,526,15931,198,220,220,220,3384,4487,13,30493,62,43027,7,15414,82,11,513,8,628,220,220,220,2116,13,15414,62,7857,796,17311,13,43358,58,17,60,198,220,220,220,611,2116,13,15414,62,7857,318,6045,25,220,1303,1680,1645,2641,281,2488,27110,13,8818,13,198,220,220,220,220,220,5298,11052,12331,7203,20560,2546,1276,307,7368,379,8265,1382,640,19570,198,220,220,220,997,62,2815,4127,796,17311,13,43358,58,15,60,198,220,220,220,611,997,62,2815,4127,318,6045,25,220,1303,1680,1645,2641,281,2488,27110,13,8818,13,198,220,220,220,220,220,5298,11052,12331,7,198,220,220,220,220,220,220,220,220,220,366,464,1271,286,9493,4127,1276,307,7368,379,8265,1382,640,19570,628,220,220,220,611,2116,13,86,62,15003,318,6045,25,198,220,220,220,220,220,1303,4091,3740,1378,283,87,452,13,2398,14,8937,14,8628,17,13,3070,21940,85,18,13,198,220,220,220,220,220,336,1860,1990,796,352,13,1220,10688,13,31166,17034,7,944,13,15414,62,7857,8,198,220,220,220,220,220,2116,13,86,62,15003,796,4238,11341,13,2898,19524,515,26447,7,301,1860,1990,28,301,1860,1990,8,628,220,220,220,2116,13,86,796,48700,13,43015,7,198,220,220,220,220,220,220,220,2116,13,86,62,15003,26933,22510,62,2815,4127,11,2116,13,15414,62,7857,11,2116,13,22915,62,7857,4357,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,17311,13,67,4906,828,198,220,220,220,220,220,220,220,1438,2625,86,4943,628,220,220,220,611,2116,13,4480,62,65,4448,25,198,220,220,220,220,220,2116,13,65,796,48700,13,43015,7,198,220,220,220,220,220,220,220,220,220,2116,13,65,62,15003,26933,22510,62,2815,4127,11,352,11,2116,13,22915,62,7857,4357,17311,13,67,4906,828,198,220,220,220,220,220,220,220,220,220,1438,2625,65,4943,198],"string":"[\n 2,\n 15069,\n 13130,\n 383,\n 6295,\n 3262,\n 46665,\n 13,\n 1439,\n 6923,\n 33876,\n 13,\n 198,\n 2,\n 198,\n 2,\n 49962,\n 739,\n 262,\n 24843,\n 13789,\n 11,\n 10628,\n 362,\n 13,\n 15,\n 357,\n 1169,\n 366,\n 34156,\n 15341,\n 198,\n 2,\n 345,\n 743,\n 407,\n 779,\n 428,\n 2393,\n 2845,\n 287,\n 11846,\n 351,\n 262,\n 13789,\n 13,\n 198,\n 2,\n 921,\n 743,\n 7330,\n 257,\n 4866,\n 286,\n 262,\n 13789,\n 379,\n 198,\n 2,\n 198,\n 2,\n 220,\n 220,\n 220,\n 2638,\n 1378,\n 2503,\n 13,\n 43073,\n 13,\n 2398,\n 14,\n 677,\n 4541,\n 14,\n 43,\n 2149,\n 24290,\n 12,\n 17,\n 13,\n 15,\n 198,\n 2,\n 198,\n 2,\n 17486,\n 2672,\n 416,\n 9723,\n 1099,\n 393,\n 4987,\n 284,\n 287,\n 3597,\n 11,\n 3788,\n 198,\n 2,\n 9387,\n 739,\n 262,\n 13789,\n 318,\n 9387,\n 319,\n 281,\n 366,\n 1921,\n 3180,\n 1,\n 29809,\n 1797,\n 11,\n 198,\n 2,\n 42881,\n 34764,\n 11015,\n 6375,\n 7102,\n 49828,\n 11053,\n 3963,\n 15529,\n 509,\n 12115,\n 11,\n 2035,\n 4911,\n 393,\n 220,\n 17142,\n 13,\n 198,\n 2,\n 4091,\n 262,\n 13789,\n 329,\n 262,\n 2176,\n 3303,\n 15030,\n 21627,\n 290,\n 198,\n 2,\n 11247,\n 739,\n 262,\n 13789,\n 13,\n 198,\n 2,\n 38093,\n 2559,\n 18604,\n 198,\n 37811,\n 10044,\n 29363,\n 14174,\n 8265,\n 526,\n 15931,\n 198,\n 198,\n 11748,\n 10688,\n 198,\n 6738,\n 19720,\n 1330,\n 32233,\n 198,\n 198,\n 6738,\n 3367,\n 3262,\n 13,\n 10677,\n 1330,\n 2779,\n 198,\n 6738,\n 3367,\n 3262,\n 13,\n 10677,\n 1330,\n 4238,\n 11341,\n 198,\n 6738,\n 3367,\n 3262,\n 13,\n 10677,\n 1330,\n 1752,\n 198,\n 6738,\n 3367,\n 3262,\n 13,\n 10677,\n 1330,\n 3384,\n 4487,\n 198,\n 11748,\n 11192,\n 273,\n 11125,\n 355,\n 48700,\n 628,\n 198,\n 4871,\n 42945,\n 14993,\n 4127,\n 7,\n 8692,\n 13,\n 26796,\n 2599,\n 198,\n 220,\n 37227,\n 10044,\n 29363,\n 14174,\n 13,\n 628,\n 220,\n 770,\n 318,\n 7548,\n 284,\n 299,\n 4553,\n 9493,\n 4127,\n 5625,\n 287,\n 10730,\n 284,\n 299,\n 17311,\n 13,\n 632,\n 198,\n 220,\n 2753,\n 281,\n 5128,\n 286,\n 5485,\n 685,\n 22510,\n 62,\n 2815,\n 4127,\n 11,\n 15458,\n 62,\n 7857,\n 11,\n 5128,\n 62,\n 7857,\n 60,\n 290,\n 5860,\n 281,\n 198,\n 220,\n 5072,\n 286,\n 5485,\n 685,\n 22510,\n 62,\n 2815,\n 4127,\n 11,\n 15458,\n 62,\n 7857,\n 11,\n 5072,\n 62,\n 7857,\n 4083,\n 628,\n 220,\n 632,\n 3544,\n 257,\n 2060,\n 7365,\n 1740,\n 2603,\n 76,\n 377,\n 543,\n 318,\n 517,\n 6942,\n 621,\n 41228,\n 4553,\n 198,\n 220,\n 264,\n 429,\n 13,\n 14993,\n 451,\n 11685,\n 13,\n 770,\n 318,\n 9177,\n 1262,\n 4600,\n 22510,\n 62,\n 29127,\n 63,\n 82,\n 717,\n 284,\n 3368,\n 262,\n 198,\n 220,\n 761,\n 329,\n 1007,\n 4832,\n 287,\n 1502,\n 284,\n 787,\n 340,\n 6942,\n 618,\n 41228,\n 777,\n 13,\n 198,\n 220,\n 37227,\n 628,\n 220,\n 825,\n 11593,\n 15003,\n 834,\n 7,\n 944,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 5072,\n 62,\n 7857,\n 25,\n 493,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 351,\n 62,\n 65,\n 4448,\n 25,\n 20512,\n 796,\n 6407,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 266,\n 62,\n 15003,\n 25,\n 32233,\n 58,\n 36733,\n 11341,\n 13,\n 24243,\n 7509,\n 60,\n 796,\n 6045,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 275,\n 62,\n 15003,\n 25,\n 32233,\n 58,\n 36733,\n 11341,\n 13,\n 24243,\n 7509,\n 60,\n 796,\n 6045,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1438,\n 25,\n 32233,\n 58,\n 2536,\n 60,\n 796,\n 6045,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 42316,\n 82,\n 257,\n 4600,\n 10044,\n 29363,\n 14993,\n 451,\n 63,\n 8265,\n 13,\n 628,\n 220,\n 220,\n 220,\n 943,\n 14542,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 5072,\n 62,\n 7857,\n 25,\n 25235,\n 15793,\n 1483,\n 13,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 351,\n 62,\n 65,\n 4448,\n 25,\n 10127,\n 284,\n 2291,\n 10690,\n 10007,\n 13,\n 15161,\n 4600,\n 17821,\n 44646,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 266,\n 62,\n 15003,\n 25,\n 32233,\n 4238,\n 7509,\n 329,\n 262,\n 19590,\n 13,\n 2750,\n 4277,\n 262,\n 19590,\n 389,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 23224,\n 40122,\n 515,\n 4738,\n 3487,\n 3815,\n 351,\n 257,\n 3210,\n 28833,\n 286,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 4600,\n 16,\n 1220,\n 19862,\n 17034,\n 7,\n 15414,\n 62,\n 30053,\n 62,\n 7857,\n 8,\n 47671,\n 543,\n 318,\n 8811,\n 973,\n 618,\n 262,\n 17311,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 389,\n 6632,\n 19254,\n 357,\n 3826,\n 3740,\n 1378,\n 283,\n 87,\n 452,\n 13,\n 2398,\n 14,\n 8937,\n 14,\n 8628,\n 17,\n 13,\n 3070,\n 21940,\n 85,\n 18,\n 737,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 275,\n 62,\n 15003,\n 25,\n 32233,\n 4238,\n 7509,\n 329,\n 262,\n 10690,\n 13,\n 2750,\n 4277,\n 262,\n 10690,\n 318,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 23224,\n 284,\n 6632,\n 13,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1438,\n 25,\n 6530,\n 286,\n 262,\n 8265,\n 13,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 2208,\n 22446,\n 834,\n 15003,\n 834,\n 7,\n 3672,\n 28,\n 3672,\n 8,\n 198,\n 220,\n 220,\n 220,\n 2116,\n 13,\n 22915,\n 62,\n 7857,\n 796,\n 5072,\n 62,\n 7857,\n 198,\n 220,\n 220,\n 220,\n 2116,\n 13,\n 4480,\n 62,\n 65,\n 4448,\n 796,\n 351,\n 62,\n 65,\n 4448,\n 198,\n 220,\n 220,\n 220,\n 2116,\n 13,\n 86,\n 62,\n 15003,\n 796,\n 266,\n 62,\n 15003,\n 198,\n 220,\n 220,\n 220,\n 611,\n 351,\n 62,\n 65,\n 4448,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13,\n 65,\n 62,\n 15003,\n 796,\n 275,\n 62,\n 15003,\n 611,\n 275,\n 62,\n 15003,\n 318,\n 407,\n 6045,\n 2073,\n 4238,\n 11341,\n 13,\n 57,\n 27498,\n 3419,\n 198,\n 220,\n 220,\n 220,\n 1288,\n 361,\n 275,\n 62,\n 15003,\n 318,\n 407,\n 6045,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 5298,\n 11052,\n 12331,\n 7203,\n 2215,\n 407,\n 1262,\n 257,\n 10690,\n 262,\n 275,\n 62,\n 15003,\n 1276,\n 307,\n 6045,\n 19570,\n 628,\n 220,\n 2488,\n 27078,\n 13,\n 27078,\n 198,\n 220,\n 825,\n 4808,\n 36733,\n 1096,\n 7,\n 944,\n 11,\n 17311,\n 25,\n 48700,\n 13,\n 51,\n 22854,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 42316,\n 82,\n 10007,\n 973,\n 416,\n 428,\n 8265,\n 526,\n 15931,\n 198,\n 220,\n 220,\n 220,\n 3384,\n 4487,\n 13,\n 30493,\n 62,\n 43027,\n 7,\n 15414,\n 82,\n 11,\n 513,\n 8,\n 628,\n 220,\n 220,\n 220,\n 2116,\n 13,\n 15414,\n 62,\n 7857,\n 796,\n 17311,\n 13,\n 43358,\n 58,\n 17,\n 60,\n 198,\n 220,\n 220,\n 220,\n 611,\n 2116,\n 13,\n 15414,\n 62,\n 7857,\n 318,\n 6045,\n 25,\n 220,\n 1303,\n 1680,\n 1645,\n 2641,\n 281,\n 2488,\n 27110,\n 13,\n 8818,\n 13,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 5298,\n 11052,\n 12331,\n 7203,\n 20560,\n 2546,\n 1276,\n 307,\n 7368,\n 379,\n 8265,\n 1382,\n 640,\n 19570,\n 198,\n 220,\n 220,\n 220,\n 997,\n 62,\n 2815,\n 4127,\n 796,\n 17311,\n 13,\n 43358,\n 58,\n 15,\n 60,\n 198,\n 220,\n 220,\n 220,\n 611,\n 997,\n 62,\n 2815,\n 4127,\n 318,\n 6045,\n 25,\n 220,\n 1303,\n 1680,\n 1645,\n 2641,\n 281,\n 2488,\n 27110,\n 13,\n 8818,\n 13,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 5298,\n 11052,\n 12331,\n 7,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 464,\n 1271,\n 286,\n 9493,\n 4127,\n 1276,\n 307,\n 7368,\n 379,\n 8265,\n 1382,\n 640,\n 19570,\n 628,\n 220,\n 220,\n 220,\n 611,\n 2116,\n 13,\n 86,\n 62,\n 15003,\n 318,\n 6045,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 4091,\n 3740,\n 1378,\n 283,\n 87,\n 452,\n 13,\n 2398,\n 14,\n 8937,\n 14,\n 8628,\n 17,\n 13,\n 3070,\n 21940,\n 85,\n 18,\n 13,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 336,\n 1860,\n 1990,\n 796,\n 352,\n 13,\n 1220,\n 10688,\n 13,\n 31166,\n 17034,\n 7,\n 944,\n 13,\n 15414,\n 62,\n 7857,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13,\n 86,\n 62,\n 15003,\n 796,\n 4238,\n 11341,\n 13,\n 2898,\n 19524,\n 515,\n 26447,\n 7,\n 301,\n 1860,\n 1990,\n 28,\n 301,\n 1860,\n 1990,\n 8,\n 628,\n 220,\n 220,\n 220,\n 2116,\n 13,\n 86,\n 796,\n 48700,\n 13,\n 43015,\n 7,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13,\n 86,\n 62,\n 15003,\n 26933,\n 22510,\n 62,\n 2815,\n 4127,\n 11,\n 2116,\n 13,\n 15414,\n 62,\n 7857,\n 11,\n 2116,\n 13,\n 22915,\n 62,\n 7857,\n 4357,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 17311,\n 13,\n 67,\n 4906,\n 828,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1438,\n 2625,\n 86,\n 4943,\n 628,\n 220,\n 220,\n 220,\n 611,\n 2116,\n 13,\n 4480,\n 62,\n 65,\n 4448,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13,\n 65,\n 796,\n 48700,\n 13,\n 43015,\n 7,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13,\n 65,\n 62,\n 15003,\n 26933,\n 22510,\n 62,\n 2815,\n 4127,\n 11,\n 352,\n 11,\n 2116,\n 13,\n 22915,\n 62,\n 7857,\n 4357,\n 17311,\n 13,\n 67,\n 4906,\n 828,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1438,\n 2625,\n 65,\n 4943,\n 198\n]"},"ratio_char_token":{"kind":"number","value":2.8711462450592884,"string":"2.871146"},"token_count":{"kind":"number","value":1265,"string":"1,265"}}},{"rowIdx":2434,"cells":{"content":{"kind":"string","value":"import responses\n\nfrom urllib.parse import urlencode\nfrom tests.util import random_str\nfrom tests.util import mock_http_response\nfrom binance.spot import Spot as Client\nfrom binance.error import ParameterRequiredError, ClientError\n\nmock_item = {\"key_1\": \"value_1\", \"key_2\": \"value_2\"}\nmock_exception = {\"code\": -1105, \"msg\": \"error message.\"}\n\nkey = random_str()\nsecret = random_str()\n\nparams = {\"coin\": \"USDT\", \"collateralCoin\": \"BTC\", \"amount\": \"1\"}\n\n\ndef test_futures_loan_borrow_without_coin():\n \"\"\"Tests the API endpoint to borrow cross funds without coin\"\"\"\n\n params = {\"coin\": \"\", \"collateralCoin\": \"BTC\"}\n\n client = Client(key, secret)\n client.futures_loan_borrow.when.called_with(**params).should.throw(\n ParameterRequiredError\n )\n\n\ndef test_futures_loan_borrow_without_collateralCoin():\n \"\"\"Tests the API endpoint to borrow cross funds without collateralCoin\"\"\"\n\n params = {\"coin\": \"USDT\", \"collateralCoin\": \"\"}\n\n client = Client(key, secret)\n client.futures_loan_borrow.when.called_with(**params).should.throw(\n ParameterRequiredError\n )\n\n\n@mock_http_response(\n responses.POST,\n \"/sapi/v1/futures/loan/borrow\\\\?\" + urlencode(params),\n mock_item,\n 200,\n)\ndef test_futures_loan_borrow():\n \"\"\"Tests the API endpoint to borrow cross funds\"\"\"\n\n client = Client(key, secret)\n response = client.futures_loan_borrow(**params)\n response.should.equal(mock_item)\n"},"input_ids":{"kind":"list like","value":[11748,9109,198,198,6738,2956,297,571,13,29572,1330,2956,11925,8189,198,6738,5254,13,22602,1330,4738,62,2536,198,6738,5254,13,22602,1330,15290,62,4023,62,26209,198,6738,9874,590,13,20485,1330,15899,355,20985,198,6738,9874,590,13,18224,1330,25139,2357,37374,12331,11,20985,12331,198,198,76,735,62,9186,796,19779,2539,62,16,1298,366,8367,62,16,1600,366,2539,62,17,1298,366,8367,62,17,20662,198,76,735,62,1069,4516,796,19779,8189,1298,532,11442,20,11,366,19662,1298,366,18224,3275,526,92,198,198,2539,796,4738,62,2536,3419,198,21078,796,4738,62,2536,3419,198,198,37266,796,19779,3630,1298,366,2937,24544,1600,366,26000,10534,24387,1298,366,35964,1600,366,17287,1298,366,16,20662,628,198,4299,1332,62,69,315,942,62,5439,272,62,2865,808,62,19419,62,3630,33529,198,220,220,220,37227,51,3558,262,7824,36123,284,8804,3272,5153,1231,10752,37811,628,220,220,220,42287,796,19779,3630,1298,366,1600,366,26000,10534,24387,1298,366,35964,20662,628,220,220,220,5456,796,20985,7,2539,11,3200,8,198,220,220,220,5456,13,69,315,942,62,5439,272,62,2865,808,13,12518,13,7174,62,4480,7,1174,37266,737,21754,13,16939,7,198,220,220,220,220,220,220,220,25139,2357,37374,12331,198,220,220,220,1267,628,198,4299,1332,62,69,315,942,62,5439,272,62,2865,808,62,19419,62,26000,10534,24387,33529,198,220,220,220,37227,51,3558,262,7824,36123,284,8804,3272,5153,1231,27907,24387,37811,628,220,220,220,42287,796,19779,3630,1298,366,2937,24544,1600,366,26000,10534,24387,1298,13538,92,628,220,220,220,5456,796,20985,7,2539,11,3200,8,198,220,220,220,5456,13,69,315,942,62,5439,272,62,2865,808,13,12518,13,7174,62,4480,7,1174,37266,737,21754,13,16939,7,198,220,220,220,220,220,220,220,25139,2357,37374,12331,198,220,220,220,1267,628,198,31,76,735,62,4023,62,26209,7,198,220,220,220,9109,13,32782,11,198,220,220,220,12813,82,15042,14,85,16,14,69,315,942,14,5439,272,14,2865,808,6852,1701,1343,2956,11925,8189,7,37266,828,198,220,220,220,15290,62,9186,11,198,220,220,220,939,11,198,8,198,4299,1332,62,69,315,942,62,5439,272,62,2865,808,33529,198,220,220,220,37227,51,3558,262,7824,36123,284,8804,3272,5153,37811,628,220,220,220,5456,796,20985,7,2539,11,3200,8,198,220,220,220,2882,796,5456,13,69,315,942,62,5439,272,62,2865,808,7,1174,37266,8,198,220,220,220,2882,13,21754,13,40496,7,76,735,62,9186,8,198],"string":"[\n 11748,\n 9109,\n 198,\n 198,\n 6738,\n 2956,\n 297,\n 571,\n 13,\n 29572,\n 1330,\n 2956,\n 11925,\n 8189,\n 198,\n 6738,\n 5254,\n 13,\n 22602,\n 1330,\n 4738,\n 62,\n 2536,\n 198,\n 6738,\n 5254,\n 13,\n 22602,\n 1330,\n 15290,\n 62,\n 4023,\n 62,\n 26209,\n 198,\n 6738,\n 9874,\n 590,\n 13,\n 20485,\n 1330,\n 15899,\n 355,\n 20985,\n 198,\n 6738,\n 9874,\n 590,\n 13,\n 18224,\n 1330,\n 25139,\n 2357,\n 37374,\n 12331,\n 11,\n 20985,\n 12331,\n 198,\n 198,\n 76,\n 735,\n 62,\n 9186,\n 796,\n 19779,\n 2539,\n 62,\n 16,\n 1298,\n 366,\n 8367,\n 62,\n 16,\n 1600,\n 366,\n 2539,\n 62,\n 17,\n 1298,\n 366,\n 8367,\n 62,\n 17,\n 20662,\n 198,\n 76,\n 735,\n 62,\n 1069,\n 4516,\n 796,\n 19779,\n 8189,\n 1298,\n 532,\n 11442,\n 20,\n 11,\n 366,\n 19662,\n 1298,\n 366,\n 18224,\n 3275,\n 526,\n 92,\n 198,\n 198,\n 2539,\n 796,\n 4738,\n 62,\n 2536,\n 3419,\n 198,\n 21078,\n 796,\n 4738,\n 62,\n 2536,\n 3419,\n 198,\n 198,\n 37266,\n 796,\n 19779,\n 3630,\n 1298,\n 366,\n 2937,\n 24544,\n 1600,\n 366,\n 26000,\n 10534,\n 24387,\n 1298,\n 366,\n 35964,\n 1600,\n 366,\n 17287,\n 1298,\n 366,\n 16,\n 20662,\n 628,\n 198,\n 4299,\n 1332,\n 62,\n 69,\n 315,\n 942,\n 62,\n 5439,\n 272,\n 62,\n 2865,\n 808,\n 62,\n 19419,\n 62,\n 3630,\n 33529,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 51,\n 3558,\n 262,\n 7824,\n 36123,\n 284,\n 8804,\n 3272,\n 5153,\n 1231,\n 10752,\n 37811,\n 628,\n 220,\n 220,\n 220,\n 42287,\n 796,\n 19779,\n 3630,\n 1298,\n 366,\n 1600,\n 366,\n 26000,\n 10534,\n 24387,\n 1298,\n 366,\n 35964,\n 20662,\n 628,\n 220,\n 220,\n 220,\n 5456,\n 796,\n 20985,\n 7,\n 2539,\n 11,\n 3200,\n 8,\n 198,\n 220,\n 220,\n 220,\n 5456,\n 13,\n 69,\n 315,\n 942,\n 62,\n 5439,\n 272,\n 62,\n 2865,\n 808,\n 13,\n 12518,\n 13,\n 7174,\n 62,\n 4480,\n 7,\n 1174,\n 37266,\n 737,\n 21754,\n 13,\n 16939,\n 7,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 25139,\n 2357,\n 37374,\n 12331,\n 198,\n 220,\n 220,\n 220,\n 1267,\n 628,\n 198,\n 4299,\n 1332,\n 62,\n 69,\n 315,\n 942,\n 62,\n 5439,\n 272,\n 62,\n 2865,\n 808,\n 62,\n 19419,\n 62,\n 26000,\n 10534,\n 24387,\n 33529,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 51,\n 3558,\n 262,\n 7824,\n 36123,\n 284,\n 8804,\n 3272,\n 5153,\n 1231,\n 27907,\n 24387,\n 37811,\n 628,\n 220,\n 220,\n 220,\n 42287,\n 796,\n 19779,\n 3630,\n 1298,\n 366,\n 2937,\n 24544,\n 1600,\n 366,\n 26000,\n 10534,\n 24387,\n 1298,\n 13538,\n 92,\n 628,\n 220,\n 220,\n 220,\n 5456,\n 796,\n 20985,\n 7,\n 2539,\n 11,\n 3200,\n 8,\n 198,\n 220,\n 220,\n 220,\n 5456,\n 13,\n 69,\n 315,\n 942,\n 62,\n 5439,\n 272,\n 62,\n 2865,\n 808,\n 13,\n 12518,\n 13,\n 7174,\n 62,\n 4480,\n 7,\n 1174,\n 37266,\n 737,\n 21754,\n 13,\n 16939,\n 7,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 25139,\n 2357,\n 37374,\n 12331,\n 198,\n 220,\n 220,\n 220,\n 1267,\n 628,\n 198,\n 31,\n 76,\n 735,\n 62,\n 4023,\n 62,\n 26209,\n 7,\n 198,\n 220,\n 220,\n 220,\n 9109,\n 13,\n 32782,\n 11,\n 198,\n 220,\n 220,\n 220,\n 12813,\n 82,\n 15042,\n 14,\n 85,\n 16,\n 14,\n 69,\n 315,\n 942,\n 14,\n 5439,\n 272,\n 14,\n 2865,\n 808,\n 6852,\n 1701,\n 1343,\n 2956,\n 11925,\n 8189,\n 7,\n 37266,\n 828,\n 198,\n 220,\n 220,\n 220,\n 15290,\n 62,\n 9186,\n 11,\n 198,\n 220,\n 220,\n 220,\n 939,\n 11,\n 198,\n 8,\n 198,\n 4299,\n 1332,\n 62,\n 69,\n 315,\n 942,\n 62,\n 5439,\n 272,\n 62,\n 2865,\n 808,\n 33529,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 51,\n 3558,\n 262,\n 7824,\n 36123,\n 284,\n 8804,\n 3272,\n 5153,\n 37811,\n 628,\n 220,\n 220,\n 220,\n 5456,\n 796,\n 20985,\n 7,\n 2539,\n 11,\n 3200,\n 8,\n 198,\n 220,\n 220,\n 220,\n 2882,\n 796,\n 5456,\n 13,\n 69,\n 315,\n 942,\n 62,\n 5439,\n 272,\n 62,\n 2865,\n 808,\n 7,\n 1174,\n 37266,\n 8,\n 198,\n 220,\n 220,\n 220,\n 2882,\n 13,\n 21754,\n 13,\n 40496,\n 7,\n 76,\n 735,\n 62,\n 9186,\n 8,\n 198\n]"},"ratio_char_token":{"kind":"number","value":2.7625482625482625,"string":"2.762548"},"token_count":{"kind":"number","value":518,"string":"518"}}},{"rowIdx":2435,"cells":{"content":{"kind":"string","value":"#\n# Copyright (c) SAS Institute Inc.\n#\n# Licensed under the Apache License, Version 2.0 (the \"License\");\n# you may not use this file except in compliance with the License.\n# You may obtain a copy of the License at\n#\n# http://www.apache.org/licenses/LICENSE-2.0\n#\n# Unless required by applicable law or agreed to in writing, software\n# distributed under the License is distributed on an \"AS IS\" BASIS,\n# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n# See the License for the specific language governing permissions and\n# limitations under the License.\n#\n\n\nfrom testrunner import testhelp\n\n\nfrom conary_test import rephelp\n\nimport os\n\nfrom conary_test.cvctest.buildtest import policytest\n\nfrom conary import versions\nfrom conary.build import action, trovefilter\nfrom conary.conaryclient import cmdline\nfrom conary.deps import deps\nfrom conary.lib import util\n\n"},"input_ids":{"kind":"list like","value":[2,198,2,15069,357,66,8,35516,5136,3457,13,198,2,198,2,49962,739,262,24843,13789,11,10628,362,13,15,357,1169,366,34156,15341,198,2,345,743,407,779,428,2393,2845,287,11846,351,262,13789,13,198,2,921,743,7330,257,4866,286,262,13789,379,198,2,198,2,220,220,220,220,2638,1378,2503,13,43073,13,2398,14,677,4541,14,43,2149,24290,12,17,13,15,198,2,198,2,17486,2672,416,9723,1099,393,4987,284,287,3597,11,3788,198,2,9387,739,262,13789,318,9387,319,281,366,1921,3180,1,29809,1797,11,198,2,42881,34764,11015,6375,7102,49828,11053,3963,15529,509,12115,11,2035,4911,393,17142,13,198,2,4091,262,13789,329,262,2176,3303,15030,21627,290,198,2,11247,739,262,13789,13,198,2,628,198,6738,1332,16737,1330,1332,16794,628,198,6738,369,560,62,9288,1330,1128,16794,198,198,11748,28686,198,198,6738,369,560,62,9288,13,33967,310,395,13,11249,9288,1330,2450,9288,198,198,6738,369,560,1330,6300,198,6738,369,560,13,11249,1330,2223,11,42377,24455,198,6738,369,560,13,1102,560,16366,1330,23991,1370,198,6738,369,560,13,10378,82,1330,390,862,198,6738,369,560,13,8019,1330,7736,628],"string":"[\n 2,\n 198,\n 2,\n 15069,\n 357,\n 66,\n 8,\n 35516,\n 5136,\n 3457,\n 13,\n 198,\n 2,\n 198,\n 2,\n 49962,\n 739,\n 262,\n 24843,\n 13789,\n 11,\n 10628,\n 362,\n 13,\n 15,\n 357,\n 1169,\n 366,\n 34156,\n 15341,\n 198,\n 2,\n 345,\n 743,\n 407,\n 779,\n 428,\n 2393,\n 2845,\n 287,\n 11846,\n 351,\n 262,\n 13789,\n 13,\n 198,\n 2,\n 921,\n 743,\n 7330,\n 257,\n 4866,\n 286,\n 262,\n 13789,\n 379,\n 198,\n 2,\n 198,\n 2,\n 220,\n 220,\n 220,\n 220,\n 2638,\n 1378,\n 2503,\n 13,\n 43073,\n 13,\n 2398,\n 14,\n 677,\n 4541,\n 14,\n 43,\n 2149,\n 24290,\n 12,\n 17,\n 13,\n 15,\n 198,\n 2,\n 198,\n 2,\n 17486,\n 2672,\n 416,\n 9723,\n 1099,\n 393,\n 4987,\n 284,\n 287,\n 3597,\n 11,\n 3788,\n 198,\n 2,\n 9387,\n 739,\n 262,\n 13789,\n 318,\n 9387,\n 319,\n 281,\n 366,\n 1921,\n 3180,\n 1,\n 29809,\n 1797,\n 11,\n 198,\n 2,\n 42881,\n 34764,\n 11015,\n 6375,\n 7102,\n 49828,\n 11053,\n 3963,\n 15529,\n 509,\n 12115,\n 11,\n 2035,\n 4911,\n 393,\n 17142,\n 13,\n 198,\n 2,\n 4091,\n 262,\n 13789,\n 329,\n 262,\n 2176,\n 3303,\n 15030,\n 21627,\n 290,\n 198,\n 2,\n 11247,\n 739,\n 262,\n 13789,\n 13,\n 198,\n 2,\n 628,\n 198,\n 6738,\n 1332,\n 16737,\n 1330,\n 1332,\n 16794,\n 628,\n 198,\n 6738,\n 369,\n 560,\n 62,\n 9288,\n 1330,\n 1128,\n 16794,\n 198,\n 198,\n 11748,\n 28686,\n 198,\n 198,\n 6738,\n 369,\n 560,\n 62,\n 9288,\n 13,\n 33967,\n 310,\n 395,\n 13,\n 11249,\n 9288,\n 1330,\n 2450,\n 9288,\n 198,\n 198,\n 6738,\n 369,\n 560,\n 1330,\n 6300,\n 198,\n 6738,\n 369,\n 560,\n 13,\n 11249,\n 1330,\n 2223,\n 11,\n 42377,\n 24455,\n 198,\n 6738,\n 369,\n 560,\n 13,\n 1102,\n 560,\n 16366,\n 1330,\n 23991,\n 1370,\n 198,\n 6738,\n 369,\n 560,\n 13,\n 10378,\n 82,\n 1330,\n 390,\n 862,\n 198,\n 6738,\n 369,\n 560,\n 13,\n 8019,\n 1330,\n 7736,\n 628\n]"},"ratio_char_token":{"kind":"number","value":3.677685950413223,"string":"3.677686"},"token_count":{"kind":"number","value":242,"string":"242"}}},{"rowIdx":2436,"cells":{"content":{"kind":"string","value":"'''\n#Students Name's: \tCiaran Carroll\n# Student Id Number's:\t13113259\n#\n# Project 1:\n# Implement image reconstruction from parallel-projection sinograms using Python.\n#\n# CAT Scanners (or CT scan) - Computer Axial Tomography\n# CT scan: is a special X-ray tests that produce cross-sectional images of the body using X-rays and\n# a computer\n# FFTs - Fast Fourieris Transform\n# FFT: is an algorithm that samples a signal over a period of time (or space) and divides it\n# into its frequency components\n# Laminogram: Reconstruct the sum of the backprojections (i.e. sum of the f(x,y))\n# Coplanar rotational laminography (CRL) is a special case of laminography which is a\n# tomographic technique used to image cross-sectional views through solid objects.\n#\n# Aim:\n# (1) Reconstruct an image from the sinogram image (sinogram.png)\n# (2) Investigate the behaviour of backprojection reconstruction with ramp-filtering\n# (3) Investigate the behaviour of backprojection reconstruction without ramp-filtering\n# (4) Investigate the behaviour of backprojection reconstruction with Hamming-windowed ramp-filtering\n#\n# A display of all the projections for all X-ray angles is called a Sinogram\n#\n# Rebuild the image from a sum of the 'Backprojections' of the 1-d projection data\n\nStep 1 - Backprojection reconstruction of the sinogram without filtering:\nWhen all the projection angles are combined the projection, the resulting image will\nbe blurred. This is due to the fact that the resulting image is concentrated towards the\ncenter. (concentrated samples of the image towards the center, and more sparse samples near\nthe edges). To compensate for this we will need to apply a filter to the output image of the\nbackprojection such as the ramp filter or the Hamming-windowed ramp-filter\n\n\n\n\n\n\n\n\nNew Steps\n(1) - Form the image projections and translate into the frequency domain using the FFT\n\n\n'''\n\nimport numpy as np\nimport matplotlib.pylab as plt\nfrom PIL import Image\nfrom scipy.ndimage.filters import gaussian_filter\nfrom skimage.transform import rotate\nimport scipy.fftpack as fft\n#from skimage.transform import iradon\n\ndef imread(filename,greyscale=True):\n \"\"\"Load an image, return as a Numpy array.\"\"\"\n if greyscale:\n pil_im = Image.open(filename).convert('L')\n else:\n pil_im = Image.open(filename)\n return np.array(pil_im)\n\n\ndef imshow(im, autoscale=False,colourmap='gray', newfig=True, title=None):\n \"\"\"Display an image, turning off autoscaling (unless explicitly required)\n and interpolation.\n\n (1) 8-bit greyscale images and 24-bit RGB are scaled in 0..255.\n (2) 0-1 binary images are scaled in 0..1.\n (3) Float images are scaled in 0.0..1.0 if their min values are >= 0\n and their max values <= 1.0\n (4) Float images are scaled in 0.0..255.0 if their min values are >= 0\n and their max values are > 1 and <= 255.0\n (5) Any image not covered by the above cases is autoscaled. If\n autoscaling is explicitly requested, it is always turned on.\n\n A new figure is created by default. \"newfig=False\" turns off this\n behaviour.\n\n Interpolation is always off (unless the backend stops this).\n \"\"\"\n if newfig:\n if title != None: fig = plt.figure(title)\n else: fig = plt.figure()\n if autoscale:\n plt.imshow(im,interpolation='nearest',cmap=colourmap)\n else:\n maxval = im.max()\n if im.dtype == 'uint8': ## 8-bit greyscale or 24-bit RGB\n if maxval > 1: maxval = 255\n plt.imshow(im,interpolation='nearest',vmin=0,vmax=maxval,cmap=colourmap)\n elif im.dtype == 'float32' or im.dtype == 'float64':\n minval = im.min()\n if minval >= 0.0:\n if maxval <= 1.0: ## Looks like 0..1 float greyscale\n minval, maxval = 0.0, 1.0\n elif maxval <= 255.0: ## Looks like a float 0 .. 255 image.\n minval, maxval = 0.0, 255.0\n plt.imshow(im,interpolation='nearest',vmin=minval,vmax=maxval,cmap=colourmap)\n else:\n plt.imshow(im,interpolation='nearest',cmap=colourmap)\n plt.axis('image')\n ## plt.axis('off')\n plt.show()\n ##return fig\n\ndef build_proj_ffts(projs):\n \"Build 1-d FFTs of an array of projections, each projection 1 row fo the array.\"\n\n return fft.rfft(projs, axis=1)\n\ndef build_proj_iffts(projs):\n \"Build 1-d iFFTs of an array of projections, each projection 1 row fo the array.\"\n\n return fft.irfft(projs, axis=1)\n\ndef build_laminogram(radonT):\n \"Generate a laminogram by simple backprojection using the Radon Transform of an image, 'radonT'.\"\n laminogram = np.zeros((radonT.shape[1],radonT.shape[1]))\n dTheta = 180.0 / radonT.shape[0]\n for i in range(radonT.shape[0]):\n temp = np.tile(radonT[i],(radonT.shape[1],1))\n temp = rotate(temp, dTheta*i)\n laminogram += temp\n return laminogram\n\ndef ramp_filter_ffts(ffts):\n \"Ramp filter a 2-d array of 1-d FFTs (1-d FFTs along the rows).\"\n ramp = np.floor(np.arange(0.5, ffts.shape[1]//2 + 0.1, 0.5))\n return ffts * ramp\n\ndef radon(image, steps):\n \"Build the Radon Transform using 'steps' projections of 'image’.\"\n projections = [] # Accumulate projections in a list.\n dTheta = -180.0 / steps # Angle increment for rotations.\n for i in range(steps):\n projections.append(rotate(image, i*dTheta).sum(axis=0))\n return np.vstack(projections)\n\n# Original Sinogram Image\nsinogram = imread('sinogram.png')\nimshow(sinogram, title=\"Original Sinogram Image\")\n\n# Backprojection reconstruction without ramp filtering\nsinogram_laminogram = build_laminogram(sinogram)\nimshow(sinogram_laminogram, title=\"Sinogram reconstruction by backprojection\")\n\n# Backprojection reconstruction with ramp filtering\n\n# Apply an infinite ramp filter to the reconstruction\n\n# Maybe apply a ramp filter with a cutoff at half the max frwquency\n# But most likely no point\n\n# Get the FFT of the image (Frequency Domain)\nfourier = build_proj_ffts(sinogram)\n\n# Filter the fourier transform by the ramp filter\nramp_filtered = ramp_filter_ffts(fourier)\n\n# Take the inverse FFT of the image to convert it back to Special Domain\ninverse_fourier_ramp_filtered = build_proj_iffts(ramp_filtered)\n#imshow(iffts_projection_sinogram, title=\"Test ramp filter\")\n#test1 = radon(iffts_projection_sinogram, 180)\n#imshow(test1, title=\"Test ramp filter\")\n\n# Build the filtered image by pbackprojecting the filtered projections\nfiltered_reconstrution = build_laminogram(inverse_fourier_ramp_filtered)\nimshow(filtered_reconstrution, title=\"Test ramp filter\")\n"},"input_ids":{"kind":"list like","value":[7061,6,198,2,28239,6530,338,25,220,220,197,34,12571,272,21298,198,2,13613,5121,7913,338,25,197,1485,16616,25191,198,2,198,2,4935,352,25,198,2,48282,2939,25056,422,10730,12,16302,295,7813,26836,1262,11361,13,198,2,198,2,38348,1446,15672,357,273,16356,9367,8,532,13851,12176,498,4186,4867,198,2,16356,9367,25,318,257,2041,1395,12,2433,5254,326,4439,3272,12,44330,4263,286,262,1767,1262,1395,12,20477,290,198,2,220,220,220,220,220,220,220,220,220,257,3644,198,2,376,9792,82,532,12549,34296,5277,271,26981,198,2,376,9792,25,318,281,11862,326,8405,257,6737,625,257,2278,286,640,357,273,2272,8,290,36319,340,198,2,220,220,220,220,220,656,663,8373,6805,198,2,406,5669,21857,25,23419,7249,262,2160,286,262,736,16302,507,357,72,13,68,13,2160,286,262,277,7,87,11,88,4008,198,2,6955,9620,283,5724,864,300,5669,4867,357,34,7836,8,318,257,2041,1339,286,300,5669,4867,543,318,257,198,2,220,16667,6826,8173,973,284,2939,3272,12,44330,5009,832,4735,5563,13,198,2,198,2,36223,25,198,2,357,16,8,23419,7249,281,2939,422,262,7813,21857,2939,357,31369,21857,13,11134,8,198,2,357,17,8,7488,10055,262,9172,286,736,16302,295,25056,351,10454,12,10379,20212,198,2,357,18,8,7488,10055,262,9172,286,736,16302,295,25056,1231,10454,12,10379,20212,198,2,357,19,8,7488,10055,262,9172,286,736,16302,295,25056,351,4345,2229,12,7972,6972,10454,12,10379,20212,198,2,198,2,317,3359,286,477,262,19887,329,477,1395,12,2433,18333,318,1444,257,10884,21857,198,2,198,2,797,11249,262,2939,422,257,2160,286,262,705,7282,16302,507,6,286,262,352,12,67,20128,1366,198,198,8600,352,532,5157,16302,295,25056,286,262,7813,21857,1231,25431,25,198,2215,477,262,20128,18333,389,5929,262,20128,11,262,7186,2939,481,198,1350,38258,13,770,318,2233,284,262,1109,326,262,7186,2939,318,17298,3371,262,198,16159,13,357,1102,1087,4111,8405,286,262,2939,3371,262,3641,11,290,517,29877,8405,1474,198,1169,13015,737,1675,21392,329,428,356,481,761,284,4174,257,8106,284,262,5072,2939,286,262,198,1891,16302,295,884,355,262,10454,8106,393,262,4345,2229,12,7972,6972,10454,12,24455,628,628,628,628,198,3791,32144,198,7,16,8,532,5178,262,2939,19887,290,15772,656,262,8373,7386,1262,262,376,9792,628,198,7061,6,198,198,11748,299,32152,355,45941,198,11748,2603,29487,8019,13,79,2645,397,355,458,83,198,6738,350,4146,1330,7412,198,6738,629,541,88,13,358,9060,13,10379,1010,1330,31986,31562,62,24455,198,6738,1341,9060,13,35636,1330,23064,198,11748,629,541,88,13,487,83,8002,355,277,701,198,2,6738,1341,9060,13,35636,1330,4173,324,261,198,198,4299,545,961,7,34345,11,16694,28349,1000,28,17821,2599,198,220,220,220,37227,8912,281,2939,11,1441,355,257,399,32152,7177,526,15931,198,220,220,220,611,10536,28349,1000,25,198,220,220,220,220,220,220,220,5560,62,320,796,7412,13,9654,7,34345,737,1102,1851,10786,43,11537,198,220,220,220,2073,25,198,220,220,220,220,220,220,220,5560,62,320,796,7412,13,9654,7,34345,8,198,220,220,220,1441,45941,13,18747,7,79,346,62,320,8,628,198,4299,545,12860,7,320,11,1960,17500,1000,28,25101,11,49903,8899,11639,44605,3256,649,5647,28,17821,11,3670,28,14202,2599,198,220,220,220,37227,23114,281,2939,11,6225,572,1960,17500,4272,357,25252,11777,2672,8,198,220,220,220,220,220,220,290,39555,341,13,628,220,220,220,220,220,220,357,16,8,807,12,2545,10536,28349,1000,4263,290,1987,12,2545,25228,389,27464,287,657,492,13381,13,198,220,220,220,220,220,220,357,17,8,657,12,16,13934,4263,389,27464,287,657,492,16,13,198,220,220,220,220,220,220,357,18,8,48436,4263,389,27464,287,657,13,15,492,16,13,15,611,511,949,3815,389,18189,657,198,220,220,220,220,220,220,220,220,220,220,290,511,3509,3815,19841,352,13,15,198,220,220,220,220,220,220,357,19,8,48436,4263,389,27464,287,657,13,15,492,13381,13,15,611,511,949,3815,389,18189,657,198,220,220,220,220,220,220,220,220,220,220,290,511,3509,3815,389,1875,352,290,19841,14280,13,15,198,220,220,220,220,220,220,357,20,8,4377,2939,407,5017,416,262,2029,2663,318,1960,17500,3021,13,220,1002,198,220,220,220,220,220,220,220,220,220,220,1960,17500,4272,318,11777,9167,11,340,318,1464,2900,319,13,628,220,220,220,220,220,220,317,649,3785,318,2727,416,4277,13,220,366,3605,5647,28,25101,1,4962,572,428,198,220,220,220,220,220,220,9172,13,628,220,220,220,220,220,220,4225,16104,341,318,1464,572,357,25252,262,30203,9911,428,737,198,220,220,220,37227,198,220,220,220,611,649,5647,25,198,220,220,220,220,220,220,220,611,3670,14512,6045,25,2336,796,458,83,13,26875,7,7839,8,198,220,220,220,220,220,220,220,2073,25,2336,796,458,83,13,26875,3419,198,220,220,220,611,1960,17500,1000,25,198,220,220,220,220,220,220,220,458,83,13,320,12860,7,320,11,3849,16104,341,11639,710,12423,3256,66,8899,28,49903,8899,8,198,220,220,220,2073,25,198,220,220,220,220,220,220,220,3509,2100,796,545,13,9806,3419,198,220,220,220,220,220,220,220,611,545,13,67,4906,6624,705,28611,23,10354,220,220,220,220,220,220,220,22492,807,12,2545,10536,28349,1000,393,1987,12,2545,25228,198,220,220,220,220,220,220,220,220,220,220,220,611,3509,2100,1875,352,25,3509,2100,796,14280,198,220,220,220,220,220,220,220,220,220,220,220,458,83,13,320,12860,7,320,11,3849,16104,341,11639,710,12423,3256,85,1084,28,15,11,85,9806,28,9806,2100,11,66,8899,28,49903,8899,8,198,220,220,220,220,220,220,220,1288,361,545,13,67,4906,6624,705,22468,2624,6,393,545,13,67,4906,6624,705,22468,2414,10354,198,220,220,220,220,220,220,220,220,220,220,220,949,2100,796,545,13,1084,3419,198,220,220,220,220,220,220,220,220,220,220,220,611,949,2100,18189,657,13,15,25,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,611,3509,2100,19841,352,13,15,25,220,22492,29403,588,657,492,16,12178,10536,28349,1000,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,949,2100,11,3509,2100,796,657,13,15,11,352,13,15,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1288,361,3509,2100,19841,14280,13,15,25,22492,29403,588,257,12178,657,11485,14280,2939,13,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,949,2100,11,3509,2100,796,657,13,15,11,14280,13,15,198,220,220,220,220,220,220,220,220,220,220,220,458,83,13,320,12860,7,320,11,3849,16104,341,11639,710,12423,3256,85,1084,28,1084,2100,11,85,9806,28,9806,2100,11,66,8899,28,49903,8899,8,198,220,220,220,220,220,220,220,2073,25,198,220,220,220,220,220,220,220,220,220,220,220,458,83,13,320,12860,7,320,11,3849,16104,341,11639,710,12423,3256,66,8899,28,49903,8899,8,198,220,220,220,458,83,13,22704,10786,9060,11537,198,220,220,220,22492,458,83,13,22704,10786,2364,11537,198,220,220,220,458,83,13,12860,3419,198,220,220,220,22492,7783,2336,198,198,4299,1382,62,1676,73,62,487,912,7,1676,8457,2599,198,220,220,220,366,15580,352,12,67,376,9792,82,286,281,7177,286,19887,11,1123,20128,352,5752,11511,262,7177,526,628,220,220,220,1441,277,701,13,81,487,83,7,1676,8457,11,16488,28,16,8,198,198,4299,1382,62,1676,73,62,361,35594,7,1676,8457,2599,198,220,220,220,366,15580,352,12,67,1312,5777,33758,286,281,7177,286,19887,11,1123,20128,352,5752,11511,262,7177,526,628,220,220,220,1441,277,701,13,343,487,83,7,1676,8457,11,16488,28,16,8,198,198,4299,1382,62,2543,259,21857,7,6335,261,51,2599,198,220,220,220,366,8645,378,257,300,5669,21857,416,2829,736,16302,295,1262,262,5325,261,26981,286,281,2939,11,705,6335,261,51,30827,198,220,220,220,300,5669,21857,796,45941,13,9107,418,19510,6335,261,51,13,43358,58,16,4357,6335,261,51,13,43358,58,16,60,4008,198,220,220,220,288,464,8326,796,11546,13,15,1220,2511,261,51,13,43358,58,15,60,198,220,220,220,329,1312,287,2837,7,6335,261,51,13,43358,58,15,60,2599,198,220,220,220,220,220,220,220,20218,796,45941,13,40927,7,6335,261,51,58,72,4357,7,6335,261,51,13,43358,58,16,4357,16,4008,198,220,220,220,220,220,220,220,20218,796,23064,7,29510,11,288,464,8326,9,72,8,198,220,220,220,220,220,220,220,300,5669,21857,15853,20218,198,220,220,220,1441,300,5669,21857,198,198,4299,10454,62,24455,62,487,912,7,487,912,2599,198,220,220,220,366,49,696,8106,257,362,12,67,7177,286,352,12,67,376,9792,82,357,16,12,67,376,9792,82,1863,262,15274,21387,198,220,220,220,10454,796,45941,13,28300,7,37659,13,283,858,7,15,13,20,11,277,35594,13,43358,58,16,60,1003,17,1343,657,13,16,11,657,13,20,4008,198,220,220,220,1441,277,35594,1635,10454,198,198,4299,2511,261,7,9060,11,4831,2599,198,220,220,220,366,15580,262,5325,261,26981,1262,705,20214,6,19887,286,705,9060,447,247,526,198,220,220,220,19887,796,17635,220,220,220,220,220,220,220,1303,6366,388,5039,19887,287,257,1351,13,198,220,220,220,288,464,8326,796,532,15259,13,15,1220,4831,1303,42375,18703,329,5724,602,13,198,220,220,220,329,1312,287,2837,7,20214,2599,198,220,220,220,220,220,220,220,19887,13,33295,7,10599,378,7,9060,11,1312,9,67,464,8326,737,16345,7,22704,28,15,4008,198,220,220,220,1441,45941,13,85,25558,7,16302,507,8,198,198,2,13745,10884,21857,7412,198,31369,21857,796,545,961,10786,31369,21857,13,11134,11537,198,320,12860,7,31369,21857,11,3670,2625,20556,10884,21857,7412,4943,198,198,2,5157,16302,295,25056,1231,10454,25431,198,31369,21857,62,2543,259,21857,796,1382,62,2543,259,21857,7,31369,21857,8,198,320,12860,7,31369,21857,62,2543,259,21857,11,3670,2625,46200,21857,25056,416,736,16302,295,4943,198,198,2,5157,16302,295,25056,351,10454,25431,198,198,2,27967,281,15541,10454,8106,284,262,25056,198,198,2,220,6674,4174,257,10454,8106,351,257,45616,379,2063,262,3509,1216,86,421,1387,198,2,887,749,1884,645,966,198,198,2,3497,262,376,9792,286,262,2939,357,37,28707,20021,8,198,69,280,5277,796,1382,62,1676,73,62,487,912,7,31369,21857,8,198,198,2,25853,262,46287,5277,6121,416,262,10454,8106,198,81,696,62,10379,4400,796,10454,62,24455,62,487,912,7,69,280,5277,8,198,198,2,7214,262,34062,376,9792,286,262,2939,284,10385,340,736,284,6093,20021,198,259,4399,62,69,280,5277,62,81,696,62,10379,4400,796,1382,62,1676,73,62,361,35594,7,81,696,62,10379,4400,8,198,2,320,12860,7,361,35594,62,16302,295,62,31369,21857,11,3670,2625,14402,10454,8106,4943,198,2,9288,16,796,2511,261,7,361,35594,62,16302,295,62,31369,21857,11,11546,8,198,2,320,12860,7,9288,16,11,3670,2625,14402,10454,8106,4943,198,198,2,10934,262,29083,2939,416,279,1891,16302,278,262,29083,19887,198,10379,4400,62,260,1102,2536,1009,796,1382,62,2543,259,21857,7,259,4399,62,69,280,5277,62,81,696,62,10379,4400,8,198,320,12860,7,10379,4400,62,260,1102,2536,1009,11,3670,2625,14402,10454,8106,4943,198],"string":"[\n 7061,\n 6,\n 198,\n 2,\n 28239,\n 6530,\n 338,\n 25,\n 220,\n 220,\n 197,\n 34,\n 12571,\n 272,\n 21298,\n 198,\n 2,\n 13613,\n 5121,\n 7913,\n 338,\n 25,\n 197,\n 1485,\n 16616,\n 25191,\n 198,\n 2,\n 198,\n 2,\n 4935,\n 352,\n 25,\n 198,\n 2,\n 48282,\n 2939,\n 25056,\n 422,\n 10730,\n 12,\n 16302,\n 295,\n 7813,\n 26836,\n 1262,\n 11361,\n 13,\n 198,\n 2,\n 198,\n 2,\n 38348,\n 1446,\n 15672,\n 357,\n 273,\n 16356,\n 9367,\n 8,\n 532,\n 13851,\n 12176,\n 498,\n 4186,\n 4867,\n 198,\n 2,\n 16356,\n 9367,\n 25,\n 318,\n 257,\n 2041,\n 1395,\n 12,\n 2433,\n 5254,\n 326,\n 4439,\n 3272,\n 12,\n 44330,\n 4263,\n 286,\n 262,\n 1767,\n 1262,\n 1395,\n 12,\n 20477,\n 290,\n 198,\n 2,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 257,\n 3644,\n 198,\n 2,\n 376,\n 9792,\n 82,\n 532,\n 12549,\n 34296,\n 5277,\n 271,\n 26981,\n 198,\n 2,\n 376,\n 9792,\n 25,\n 318,\n 281,\n 11862,\n 326,\n 8405,\n 257,\n 6737,\n 625,\n 257,\n 2278,\n 286,\n 640,\n 357,\n 273,\n 2272,\n 8,\n 290,\n 36319,\n 340,\n 198,\n 2,\n 220,\n 220,\n 220,\n 220,\n 220,\n 656,\n 663,\n 8373,\n 6805,\n 198,\n 2,\n 406,\n 5669,\n 21857,\n 25,\n 23419,\n 7249,\n 262,\n 2160,\n 286,\n 262,\n 736,\n 16302,\n 507,\n 357,\n 72,\n 13,\n 68,\n 13,\n 2160,\n 286,\n 262,\n 277,\n 7,\n 87,\n 11,\n 88,\n 4008,\n 198,\n 2,\n 6955,\n 9620,\n 283,\n 5724,\n 864,\n 300,\n 5669,\n 4867,\n 357,\n 34,\n 7836,\n 8,\n 318,\n 257,\n 2041,\n 1339,\n 286,\n 300,\n 5669,\n 4867,\n 543,\n 318,\n 257,\n 198,\n 2,\n 220,\n 16667,\n 6826,\n 8173,\n 973,\n 284,\n 2939,\n 3272,\n 12,\n 44330,\n 5009,\n 832,\n 4735,\n 5563,\n 13,\n 198,\n 2,\n 198,\n 2,\n 36223,\n 25,\n 198,\n 2,\n 357,\n 16,\n 8,\n 23419,\n 7249,\n 281,\n 2939,\n 422,\n 262,\n 7813,\n 21857,\n 2939,\n 357,\n 31369,\n 21857,\n 13,\n 11134,\n 8,\n 198,\n 2,\n 357,\n 17,\n 8,\n 7488,\n 10055,\n 262,\n 9172,\n 286,\n 736,\n 16302,\n 295,\n 25056,\n 351,\n 10454,\n 12,\n 10379,\n 20212,\n 198,\n 2,\n 357,\n 18,\n 8,\n 7488,\n 10055,\n 262,\n 9172,\n 286,\n 736,\n 16302,\n 295,\n 25056,\n 1231,\n 10454,\n 12,\n 10379,\n 20212,\n 198,\n 2,\n 357,\n 19,\n 8,\n 7488,\n 10055,\n 262,\n 9172,\n 286,\n 736,\n 16302,\n 295,\n 25056,\n 351,\n 4345,\n 2229,\n 12,\n 7972,\n 6972,\n 10454,\n 12,\n 10379,\n 20212,\n 198,\n 2,\n 198,\n 2,\n 317,\n 3359,\n 286,\n 477,\n 262,\n 19887,\n 329,\n 477,\n 1395,\n 12,\n 2433,\n 18333,\n 318,\n 1444,\n 257,\n 10884,\n 21857,\n 198,\n 2,\n 198,\n 2,\n 797,\n 11249,\n 262,\n 2939,\n 422,\n 257,\n 2160,\n 286,\n 262,\n 705,\n 7282,\n 16302,\n 507,\n 6,\n 286,\n 262,\n 352,\n 12,\n 67,\n 20128,\n 1366,\n 198,\n 198,\n 8600,\n 352,\n 532,\n 5157,\n 16302,\n 295,\n 25056,\n 286,\n 262,\n 7813,\n 21857,\n 1231,\n 25431,\n 25,\n 198,\n 2215,\n 477,\n 262,\n 20128,\n 18333,\n 389,\n 5929,\n 262,\n 20128,\n 11,\n 262,\n 7186,\n 2939,\n 481,\n 198,\n 1350,\n 38258,\n 13,\n 770,\n 318,\n 2233,\n 284,\n 262,\n 1109,\n 326,\n 262,\n 7186,\n 2939,\n 318,\n 17298,\n 3371,\n 262,\n 198,\n 16159,\n 13,\n 357,\n 1102,\n 1087,\n 4111,\n 8405,\n 286,\n 262,\n 2939,\n 3371,\n 262,\n 3641,\n 11,\n 290,\n 517,\n 29877,\n 8405,\n 1474,\n 198,\n 1169,\n 13015,\n 737,\n 1675,\n 21392,\n 329,\n 428,\n 356,\n 481,\n 761,\n 284,\n 4174,\n 257,\n 8106,\n 284,\n 262,\n 5072,\n 2939,\n 286,\n 262,\n 198,\n 1891,\n 16302,\n 295,\n 884,\n 355,\n 262,\n 10454,\n 8106,\n 393,\n 262,\n 4345,\n 2229,\n 12,\n 7972,\n 6972,\n 10454,\n 12,\n 24455,\n 628,\n 628,\n 628,\n 628,\n 198,\n 3791,\n 32144,\n 198,\n 7,\n 16,\n 8,\n 532,\n 5178,\n 262,\n 2939,\n 19887,\n 290,\n 15772,\n 656,\n 262,\n 8373,\n 7386,\n 1262,\n 262,\n 376,\n 9792,\n 628,\n 198,\n 7061,\n 6,\n 198,\n 198,\n 11748,\n 299,\n 32152,\n 355,\n 45941,\n 198,\n 11748,\n 2603,\n 29487,\n 8019,\n 13,\n 79,\n 2645,\n 397,\n 355,\n 458,\n 83,\n 198,\n 6738,\n 350,\n 4146,\n 1330,\n 7412,\n 198,\n 6738,\n 629,\n 541,\n 88,\n 13,\n 358,\n 9060,\n 13,\n 10379,\n 1010,\n 1330,\n 31986,\n 31562,\n 62,\n 24455,\n 198,\n 6738,\n 1341,\n 9060,\n 13,\n 35636,\n 1330,\n 23064,\n 198,\n 11748,\n 629,\n 541,\n 88,\n 13,\n 487,\n 83,\n 8002,\n 355,\n 277,\n 701,\n 198,\n 2,\n 6738,\n 1341,\n 9060,\n 13,\n 35636,\n 1330,\n 4173,\n 324,\n 261,\n 198,\n 198,\n 4299,\n 545,\n 961,\n 7,\n 34345,\n 11,\n 16694,\n 28349,\n 1000,\n 28,\n 17821,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 8912,\n 281,\n 2939,\n 11,\n 1441,\n 355,\n 257,\n 399,\n 32152,\n 7177,\n 526,\n 15931,\n 198,\n 220,\n 220,\n 220,\n 611,\n 10536,\n 28349,\n 1000,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 5560,\n 62,\n 320,\n 796,\n 7412,\n 13,\n 9654,\n 7,\n 34345,\n 737,\n 1102,\n 1851,\n 10786,\n 43,\n 11537,\n 198,\n 220,\n 220,\n 220,\n 2073,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 5560,\n 62,\n 320,\n 796,\n 7412,\n 13,\n 9654,\n 7,\n 34345,\n 8,\n 198,\n 220,\n 220,\n 220,\n 1441,\n 45941,\n 13,\n 18747,\n 7,\n 79,\n 346,\n 62,\n 320,\n 8,\n 628,\n 198,\n 4299,\n 545,\n 12860,\n 7,\n 320,\n 11,\n 1960,\n 17500,\n 1000,\n 28,\n 25101,\n 11,\n 49903,\n 8899,\n 11639,\n 44605,\n 3256,\n 649,\n 5647,\n 28,\n 17821,\n 11,\n 3670,\n 28,\n 14202,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 23114,\n 281,\n 2939,\n 11,\n 6225,\n 572,\n 1960,\n 17500,\n 4272,\n 357,\n 25252,\n 11777,\n 2672,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 290,\n 39555,\n 341,\n 13,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 357,\n 16,\n 8,\n 807,\n 12,\n 2545,\n 10536,\n 28349,\n 1000,\n 4263,\n 290,\n 1987,\n 12,\n 2545,\n 25228,\n 389,\n 27464,\n 287,\n 657,\n 492,\n 13381,\n 13,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 357,\n 17,\n 8,\n 657,\n 12,\n 16,\n 13934,\n 4263,\n 389,\n 27464,\n 287,\n 657,\n 492,\n 16,\n 13,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 357,\n 18,\n 8,\n 48436,\n 4263,\n 389,\n 27464,\n 287,\n 657,\n 13,\n 15,\n 492,\n 16,\n 13,\n 15,\n 611,\n 511,\n 949,\n 3815,\n 389,\n 18189,\n 657,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 290,\n 511,\n 3509,\n 3815,\n 19841,\n 352,\n 13,\n 15,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 357,\n 19,\n 8,\n 48436,\n 4263,\n 389,\n 27464,\n 287,\n 657,\n 13,\n 15,\n 492,\n 13381,\n 13,\n 15,\n 611,\n 511,\n 949,\n 3815,\n 389,\n 18189,\n 657,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 290,\n 511,\n 3509,\n 3815,\n 389,\n 1875,\n 352,\n 290,\n 19841,\n 14280,\n 13,\n 15,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 357,\n 20,\n 8,\n 4377,\n 2939,\n 407,\n 5017,\n 416,\n 262,\n 2029,\n 2663,\n 318,\n 1960,\n 17500,\n 3021,\n 13,\n 220,\n 1002,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1960,\n 17500,\n 4272,\n 318,\n 11777,\n 9167,\n 11,\n 340,\n 318,\n 1464,\n 2900,\n 319,\n 13,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 317,\n 649,\n 3785,\n 318,\n 2727,\n 416,\n 4277,\n 13,\n 220,\n 366,\n 3605,\n 5647,\n 28,\n 25101,\n 1,\n 4962,\n 572,\n 428,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 9172,\n 13,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 4225,\n 16104,\n 341,\n 318,\n 1464,\n 572,\n 357,\n 25252,\n 262,\n 30203,\n 9911,\n 428,\n 737,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 611,\n 649,\n 5647,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 3670,\n 14512,\n 6045,\n 25,\n 2336,\n 796,\n 458,\n 83,\n 13,\n 26875,\n 7,\n 7839,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2073,\n 25,\n 2336,\n 796,\n 458,\n 83,\n 13,\n 26875,\n 3419,\n 198,\n 220,\n 220,\n 220,\n 611,\n 1960,\n 17500,\n 1000,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 458,\n 83,\n 13,\n 320,\n 12860,\n 7,\n 320,\n 11,\n 3849,\n 16104,\n 341,\n 11639,\n 710,\n 12423,\n 3256,\n 66,\n 8899,\n 28,\n 49903,\n 8899,\n 8,\n 198,\n 220,\n 220,\n 220,\n 2073,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3509,\n 2100,\n 796,\n 545,\n 13,\n 9806,\n 3419,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 545,\n 13,\n 67,\n 4906,\n 6624,\n 705,\n 28611,\n 23,\n 10354,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 22492,\n 807,\n 12,\n 2545,\n 10536,\n 28349,\n 1000,\n 393,\n 1987,\n 12,\n 2545,\n 25228,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 3509,\n 2100,\n 1875,\n 352,\n 25,\n 3509,\n 2100,\n 796,\n 14280,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 458,\n 83,\n 13,\n 320,\n 12860,\n 7,\n 320,\n 11,\n 3849,\n 16104,\n 341,\n 11639,\n 710,\n 12423,\n 3256,\n 85,\n 1084,\n 28,\n 15,\n 11,\n 85,\n 9806,\n 28,\n 9806,\n 2100,\n 11,\n 66,\n 8899,\n 28,\n 49903,\n 8899,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1288,\n 361,\n 545,\n 13,\n 67,\n 4906,\n 6624,\n 705,\n 22468,\n 2624,\n 6,\n 393,\n 545,\n 13,\n 67,\n 4906,\n 6624,\n 705,\n 22468,\n 2414,\n 10354,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 949,\n 2100,\n 796,\n 545,\n 13,\n 1084,\n 3419,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 949,\n 2100,\n 18189,\n 657,\n 13,\n 15,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 3509,\n 2100,\n 19841,\n 352,\n 13,\n 15,\n 25,\n 220,\n 22492,\n 29403,\n 588,\n 657,\n 492,\n 16,\n 12178,\n 10536,\n 28349,\n 1000,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 949,\n 2100,\n 11,\n 3509,\n 2100,\n 796,\n 657,\n 13,\n 15,\n 11,\n 352,\n 13,\n 15,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1288,\n 361,\n 3509,\n 2100,\n 19841,\n 14280,\n 13,\n 15,\n 25,\n 22492,\n 29403,\n 588,\n 257,\n 12178,\n 657,\n 11485,\n 14280,\n 2939,\n 13,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 949,\n 2100,\n 11,\n 3509,\n 2100,\n 796,\n 657,\n 13,\n 15,\n 11,\n 14280,\n 13,\n 15,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 458,\n 83,\n 13,\n 320,\n 12860,\n 7,\n 320,\n 11,\n 3849,\n 16104,\n 341,\n 11639,\n 710,\n 12423,\n 3256,\n 85,\n 1084,\n 28,\n 1084,\n 2100,\n 11,\n 85,\n 9806,\n 28,\n 9806,\n 2100,\n 11,\n 66,\n 8899,\n 28,\n 49903,\n 8899,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2073,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 458,\n 83,\n 13,\n 320,\n 12860,\n 7,\n 320,\n 11,\n 3849,\n 16104,\n 341,\n 11639,\n 710,\n 12423,\n 3256,\n 66,\n 8899,\n 28,\n 49903,\n 8899,\n 8,\n 198,\n 220,\n 220,\n 220,\n 458,\n 83,\n 13,\n 22704,\n 10786,\n 9060,\n 11537,\n 198,\n 220,\n 220,\n 220,\n 22492,\n 458,\n 83,\n 13,\n 22704,\n 10786,\n 2364,\n 11537,\n 198,\n 220,\n 220,\n 220,\n 458,\n 83,\n 13,\n 12860,\n 3419,\n 198,\n 220,\n 220,\n 220,\n 22492,\n 7783,\n 2336,\n 198,\n 198,\n 4299,\n 1382,\n 62,\n 1676,\n 73,\n 62,\n 487,\n 912,\n 7,\n 1676,\n 8457,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 366,\n 15580,\n 352,\n 12,\n 67,\n 376,\n 9792,\n 82,\n 286,\n 281,\n 7177,\n 286,\n 19887,\n 11,\n 1123,\n 20128,\n 352,\n 5752,\n 11511,\n 262,\n 7177,\n 526,\n 628,\n 220,\n 220,\n 220,\n 1441,\n 277,\n 701,\n 13,\n 81,\n 487,\n 83,\n 7,\n 1676,\n 8457,\n 11,\n 16488,\n 28,\n 16,\n 8,\n 198,\n 198,\n 4299,\n 1382,\n 62,\n 1676,\n 73,\n 62,\n 361,\n 35594,\n 7,\n 1676,\n 8457,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 366,\n 15580,\n 352,\n 12,\n 67,\n 1312,\n 5777,\n 33758,\n 286,\n 281,\n 7177,\n 286,\n 19887,\n 11,\n 1123,\n 20128,\n 352,\n 5752,\n 11511,\n 262,\n 7177,\n 526,\n 628,\n 220,\n 220,\n 220,\n 1441,\n 277,\n 701,\n 13,\n 343,\n 487,\n 83,\n 7,\n 1676,\n 8457,\n 11,\n 16488,\n 28,\n 16,\n 8,\n 198,\n 198,\n 4299,\n 1382,\n 62,\n 2543,\n 259,\n 21857,\n 7,\n 6335,\n 261,\n 51,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 366,\n 8645,\n 378,\n 257,\n 300,\n 5669,\n 21857,\n 416,\n 2829,\n 736,\n 16302,\n 295,\n 1262,\n 262,\n 5325,\n 261,\n 26981,\n 286,\n 281,\n 2939,\n 11,\n 705,\n 6335,\n 261,\n 51,\n 30827,\n 198,\n 220,\n 220,\n 220,\n 300,\n 5669,\n 21857,\n 796,\n 45941,\n 13,\n 9107,\n 418,\n 19510,\n 6335,\n 261,\n 51,\n 13,\n 43358,\n 58,\n 16,\n 4357,\n 6335,\n 261,\n 51,\n 13,\n 43358,\n 58,\n 16,\n 60,\n 4008,\n 198,\n 220,\n 220,\n 220,\n 288,\n 464,\n 8326,\n 796,\n 11546,\n 13,\n 15,\n 1220,\n 2511,\n 261,\n 51,\n 13,\n 43358,\n 58,\n 15,\n 60,\n 198,\n 220,\n 220,\n 220,\n 329,\n 1312,\n 287,\n 2837,\n 7,\n 6335,\n 261,\n 51,\n 13,\n 43358,\n 58,\n 15,\n 60,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 20218,\n 796,\n 45941,\n 13,\n 40927,\n 7,\n 6335,\n 261,\n 51,\n 58,\n 72,\n 4357,\n 7,\n 6335,\n 261,\n 51,\n 13,\n 43358,\n 58,\n 16,\n 4357,\n 16,\n 4008,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 20218,\n 796,\n 23064,\n 7,\n 29510,\n 11,\n 288,\n 464,\n 8326,\n 9,\n 72,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 300,\n 5669,\n 21857,\n 15853,\n 20218,\n 198,\n 220,\n 220,\n 220,\n 1441,\n 300,\n 5669,\n 21857,\n 198,\n 198,\n 4299,\n 10454,\n 62,\n 24455,\n 62,\n 487,\n 912,\n 7,\n 487,\n 912,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 366,\n 49,\n 696,\n 8106,\n 257,\n 362,\n 12,\n 67,\n 7177,\n 286,\n 352,\n 12,\n 67,\n 376,\n 9792,\n 82,\n 357,\n 16,\n 12,\n 67,\n 376,\n 9792,\n 82,\n 1863,\n 262,\n 15274,\n 21387,\n 198,\n 220,\n 220,\n 220,\n 10454,\n 796,\n 45941,\n 13,\n 28300,\n 7,\n 37659,\n 13,\n 283,\n 858,\n 7,\n 15,\n 13,\n 20,\n 11,\n 277,\n 35594,\n 13,\n 43358,\n 58,\n 16,\n 60,\n 1003,\n 17,\n 1343,\n 657,\n 13,\n 16,\n 11,\n 657,\n 13,\n 20,\n 4008,\n 198,\n 220,\n 220,\n 220,\n 1441,\n 277,\n 35594,\n 1635,\n 10454,\n 198,\n 198,\n 4299,\n 2511,\n 261,\n 7,\n 9060,\n 11,\n 4831,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 366,\n 15580,\n 262,\n 5325,\n 261,\n 26981,\n 1262,\n 705,\n 20214,\n 6,\n 19887,\n 286,\n 705,\n 9060,\n 447,\n 247,\n 526,\n 198,\n 220,\n 220,\n 220,\n 19887,\n 796,\n 17635,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 6366,\n 388,\n 5039,\n 19887,\n 287,\n 257,\n 1351,\n 13,\n 198,\n 220,\n 220,\n 220,\n 288,\n 464,\n 8326,\n 796,\n 532,\n 15259,\n 13,\n 15,\n 1220,\n 4831,\n 1303,\n 42375,\n 18703,\n 329,\n 5724,\n 602,\n 13,\n 198,\n 220,\n 220,\n 220,\n 329,\n 1312,\n 287,\n 2837,\n 7,\n 20214,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 19887,\n 13,\n 33295,\n 7,\n 10599,\n 378,\n 7,\n 9060,\n 11,\n 1312,\n 9,\n 67,\n 464,\n 8326,\n 737,\n 16345,\n 7,\n 22704,\n 28,\n 15,\n 4008,\n 198,\n 220,\n 220,\n 220,\n 1441,\n 45941,\n 13,\n 85,\n 25558,\n 7,\n 16302,\n 507,\n 8,\n 198,\n 198,\n 2,\n 13745,\n 10884,\n 21857,\n 7412,\n 198,\n 31369,\n 21857,\n 796,\n 545,\n 961,\n 10786,\n 31369,\n 21857,\n 13,\n 11134,\n 11537,\n 198,\n 320,\n 12860,\n 7,\n 31369,\n 21857,\n 11,\n 3670,\n 2625,\n 20556,\n 10884,\n 21857,\n 7412,\n 4943,\n 198,\n 198,\n 2,\n 5157,\n 16302,\n 295,\n 25056,\n 1231,\n 10454,\n 25431,\n 198,\n 31369,\n 21857,\n 62,\n 2543,\n 259,\n 21857,\n 796,\n 1382,\n 62,\n 2543,\n 259,\n 21857,\n 7,\n 31369,\n 21857,\n 8,\n 198,\n 320,\n 12860,\n 7,\n 31369,\n 21857,\n 62,\n 2543,\n 259,\n 21857,\n 11,\n 3670,\n 2625,\n 46200,\n 21857,\n 25056,\n 416,\n 736,\n 16302,\n 295,\n 4943,\n 198,\n 198,\n 2,\n 5157,\n 16302,\n 295,\n 25056,\n 351,\n 10454,\n 25431,\n 198,\n 198,\n 2,\n 27967,\n 281,\n 15541,\n 10454,\n 8106,\n 284,\n 262,\n 25056,\n 198,\n 198,\n 2,\n 220,\n 6674,\n 4174,\n 257,\n 10454,\n 8106,\n 351,\n 257,\n 45616,\n 379,\n 2063,\n 262,\n 3509,\n 1216,\n 86,\n 421,\n 1387,\n 198,\n 2,\n 887,\n 749,\n 1884,\n 645,\n 966,\n 198,\n 198,\n 2,\n 3497,\n 262,\n 376,\n 9792,\n 286,\n 262,\n 2939,\n 357,\n 37,\n 28707,\n 20021,\n 8,\n 198,\n 69,\n 280,\n 5277,\n 796,\n 1382,\n 62,\n 1676,\n 73,\n 62,\n 487,\n 912,\n 7,\n 31369,\n 21857,\n 8,\n 198,\n 198,\n 2,\n 25853,\n 262,\n 46287,\n 5277,\n 6121,\n 416,\n 262,\n 10454,\n 8106,\n 198,\n 81,\n 696,\n 62,\n 10379,\n 4400,\n 796,\n 10454,\n 62,\n 24455,\n 62,\n 487,\n 912,\n 7,\n 69,\n 280,\n 5277,\n 8,\n 198,\n 198,\n 2,\n 7214,\n 262,\n 34062,\n 376,\n 9792,\n 286,\n 262,\n 2939,\n 284,\n 10385,\n 340,\n 736,\n 284,\n 6093,\n 20021,\n 198,\n 259,\n 4399,\n 62,\n 69,\n 280,\n 5277,\n 62,\n 81,\n 696,\n 62,\n 10379,\n 4400,\n 796,\n 1382,\n 62,\n 1676,\n 73,\n 62,\n 361,\n 35594,\n 7,\n 81,\n 696,\n 62,\n 10379,\n 4400,\n 8,\n 198,\n 2,\n 320,\n 12860,\n 7,\n 361,\n 35594,\n 62,\n 16302,\n 295,\n 62,\n 31369,\n 21857,\n 11,\n 3670,\n 2625,\n 14402,\n 10454,\n 8106,\n 4943,\n 198,\n 2,\n 9288,\n 16,\n 796,\n 2511,\n 261,\n 7,\n 361,\n 35594,\n 62,\n 16302,\n 295,\n 62,\n 31369,\n 21857,\n 11,\n 11546,\n 8,\n 198,\n 2,\n 320,\n 12860,\n 7,\n 9288,\n 16,\n 11,\n 3670,\n 2625,\n 14402,\n 10454,\n 8106,\n 4943,\n 198,\n 198,\n 2,\n 10934,\n 262,\n 29083,\n 2939,\n 416,\n 279,\n 1891,\n 16302,\n 278,\n 262,\n 29083,\n 19887,\n 198,\n 10379,\n 4400,\n 62,\n 260,\n 1102,\n 2536,\n 1009,\n 796,\n 1382,\n 62,\n 2543,\n 259,\n 21857,\n 7,\n 259,\n 4399,\n 62,\n 69,\n 280,\n 5277,\n 62,\n 81,\n 696,\n 62,\n 10379,\n 4400,\n 8,\n 198,\n 320,\n 12860,\n 7,\n 10379,\n 4400,\n 62,\n 260,\n 1102,\n 2536,\n 1009,\n 11,\n 3670,\n 2625,\n 14402,\n 10454,\n 8106,\n 4943,\n 198\n]"},"ratio_char_token":{"kind":"number","value":2.775365344467641,"string":"2.775365"},"token_count":{"kind":"number","value":2395,"string":"2,395"}}},{"rowIdx":2437,"cells":{"content":{"kind":"string","value":"import argparse\nimport collections\nimport datetime\nimport json\nimport random\nimport re\n\nimport esprima\nimport requests\n\n## Get the email and password\n\nparser = argparse.ArgumentParser(\"messyger\")\nparser.add_argument(\"-u\", \"--email\", required=True)\nparser.add_argument(\"-p\", \"--password\", required=True)\nparser.add_argument(\"-m\", \"--message\")\nparser.add_argument(\"-r\", \"--recipient\", type=int)\nargs = parser.parse_args()\n\n## Parse the HTML response\n\nhtml_resp = requests.get(\"https://www.messenger.com\")\nhtml_resp.raise_for_status()\nhtml_page = html_resp.text\n\ninitial_request_id = re.search(\n r'name=\"initial_request_id\" value=\"([^\"]+)\"', html_page\n).group(1)\n\nlsd = re.search(r'name=\"lsd\" value=\"([^\"]+)\"', html_page).group(1)\n\ndatr = re.search(r'\"_js_datr\",\"([^\"]+)\"', html_page).group(1)\n\n## Make the login request\n\nlogin = requests.post(\n \"https://www.messenger.com/login/password/\",\n cookies={\"datr\": datr},\n data={\n \"lsd\": lsd,\n \"initial_request_id\": initial_request_id,\n \"email\": args.email,\n \"pass\": args.password,\n },\n allow_redirects=False,\n)\nassert login.status_code == 302\n\n## Extract the inbox query parameters\n\ninbox_html_resp = requests.get(\"https://www.messenger.com\", cookies=login.cookies)\ninbox_html_resp.raise_for_status()\ninbox_html_page = inbox_html_resp.text\n\ndtsg = re.search(r'\"DTSGInitialData\",\\[\\],\\{\"token\":\"([^\"]+)\"', inbox_html_page).group(\n 1\n)\n\ndevice_id = re.search(r'\"deviceId\":\"([^\"]+)\"', inbox_html_page).group(1)\n\nschema_version = re.search(r'\"schemaVersion\":\"([0-9]+)\"', inbox_html_page).group(1)\n\nscript_urls = re.findall(r'\"([^\"]+rsrc\\.php/[^\"]+\\.js[^\"]+)\"', inbox_html_page)\n\nscripts = []\nfor url in script_urls:\n resp = requests.get(url)\n resp.raise_for_status()\n scripts.append(resp.text)\n\nfor script in scripts:\n if \"LSPlatformGraphQLLightspeedRequestQuery\" not in script:\n continue\n doc_id = re.search(\n r'id:\"([0-9]+)\",metadata:\\{\\},name:\"LSPlatformGraphQLLightspeedRequestQuery\"',\n script,\n ).group(1)\n break\n\nif not args.message:\n\n inbox_resp = requests.post(\n \"https://www.messenger.com/api/graphql/\",\n cookies=login.cookies,\n data={\n \"fb_dtsg\": dtsg,\n \"doc_id\": doc_id,\n \"variables\": json.dumps(\n {\n \"deviceId\": device_id,\n \"requestId\": 0,\n \"requestPayload\": json.dumps(\n {\n \"database\": 1,\n \"version\": schema_version,\n \"sync_params\": json.dumps({}),\n }\n ),\n \"requestType\": 1,\n }\n ),\n },\n )\n inbox_resp.raise_for_status()\n\n ## Parse the inbox data response\n\n inbox_json = inbox_resp.json()\n inbox_js = inbox_json[\"data\"][\"viewer\"][\"lightspeed_web_request\"][\"payload\"]\n\n ast = esprima.parseScript(inbox_js)\n\n fn_calls = collections.defaultdict(list)\n\n esprima.parseScript(inbox_js, delegate=handle_node)\n\n conversations = collections.defaultdict(dict)\n\n for args in fn_calls[\"deleteThenInsertThread\"]:\n last_sent_ts, last_read_ts, last_msg, *rest = args\n user_id, last_msg_author = [\n arg for arg in rest if isinstance(arg, int) and arg > 1e14\n ]\n conversations[user_id][\"unread\"] = last_sent_ts != last_read_ts\n conversations[user_id][\"last_message\"] = last_msg\n conversations[user_id][\"last_message_author\"] = last_msg_author\n\n for args in fn_calls[\"verifyContactRowExists\"]:\n user_id, _, _, name, *rest = args\n conversations[user_id][\"name\"] = name\n\n print(json.dumps(conversations, indent=2))\n\nelse:\n\n ## Replicate the send-message request\n\n timestamp = int(datetime.datetime.now().timestamp() * 1000)\n epoch = timestamp << 22\n otid = epoch + random.randrange(2 ** 22)\n\n send_message_resp = requests.post(\n \"https://www.messenger.com/api/graphql/\",\n cookies=login.cookies,\n data={\n \"fb_dtsg\": dtsg,\n \"doc_id\": doc_id,\n \"variables\": json.dumps(\n {\n \"deviceId\": device_id,\n \"requestId\": 0,\n \"requestPayload\": json.dumps(\n {\n \"version_id\": str(schema_version),\n \"tasks\": [\n {\n \"label\": \"46\",\n \"payload\": json.dumps(\n {\n \"thread_id\": args.recipient,\n \"otid\": \"6870463702739115830\",\n \"source\": 0,\n \"send_type\": 1,\n \"text\": args.message,\n \"initiating_source\": 1,\n }\n ),\n \"queue_name\": str(args.recipient),\n \"task_id\": 0,\n \"failure_count\": None,\n },\n {\n \"label\": \"21\",\n \"payload\": json.dumps(\n {\n \"thread_id\": args.recipient,\n \"last_read_watermark_ts\": timestamp,\n \"sync_group\": 1,\n }\n ),\n \"queue_name\": str(args.recipient),\n \"task_id\": 1,\n \"failure_count\": None,\n },\n ],\n \"epoch_id\": 6870463702858032000,\n }\n ),\n \"requestType\": 3,\n }\n ),\n },\n )\n\n print(send_message_resp.text)\n"},"input_ids":{"kind":"list like","value":[11748,1822,29572,198,11748,17268,198,11748,4818,8079,198,11748,33918,198,11748,4738,198,11748,302,198,198,11748,1658,1050,8083,198,11748,7007,198,198,2235,3497,262,3053,290,9206,198,198,48610,796,1822,29572,13,28100,1713,46677,7203,37348,88,1362,4943,198,48610,13,2860,62,49140,7203,12,84,1600,366,438,12888,1600,2672,28,17821,8,198,48610,13,2860,62,49140,7203,12,79,1600,366,438,28712,1600,2672,28,17821,8,198,48610,13,2860,62,49140,7203,12,76,1600,366,438,20500,4943,198,48610,13,2860,62,49140,7203,12,81,1600,366,438,8344,48137,1600,2099,28,600,8,198,22046,796,30751,13,29572,62,22046,3419,198,198,2235,2547,325,262,11532,2882,198,198,6494,62,4363,796,7007,13,1136,7203,5450,1378,2503,13,37348,6540,13,785,4943,198,6494,62,4363,13,40225,62,1640,62,13376,3419,198,6494,62,7700,796,27711,62,4363,13,5239,198,198,36733,62,25927,62,312,796,302,13,12947,7,198,220,220,220,374,6,3672,2625,36733,62,25927,62,312,1,1988,2625,26933,61,8973,10,16725,3256,27711,62,7700,198,737,8094,7,16,8,198,198,7278,67,796,302,13,12947,7,81,6,3672,2625,7278,67,1,1988,2625,26933,61,8973,10,16725,3256,27711,62,7700,737,8094,7,16,8,198,198,19608,81,796,302,13,12947,7,81,29653,62,8457,62,19608,81,2430,26933,61,8973,10,16725,3256,27711,62,7700,737,8094,7,16,8,198,198,2235,6889,262,17594,2581,198,198,38235,796,7007,13,7353,7,198,220,220,220,366,5450,1378,2503,13,37348,6540,13,785,14,38235,14,28712,14,1600,198,220,220,220,14746,28,4895,19608,81,1298,4818,81,5512,198,220,220,220,1366,34758,198,220,220,220,220,220,220,220,366,7278,67,1298,300,21282,11,198,220,220,220,220,220,220,220,366,36733,62,25927,62,312,1298,4238,62,25927,62,312,11,198,220,220,220,220,220,220,220,366,12888,1298,26498,13,12888,11,198,220,220,220,220,220,220,220,366,6603,1298,26498,13,28712,11,198,220,220,220,8964,198,220,220,220,1249,62,445,1060,82,28,25101,11,198,8,198,30493,17594,13,13376,62,8189,6624,32591,198,198,2235,29677,262,13734,12405,10007,198,198,259,3524,62,6494,62,4363,796,7007,13,1136,7203,5450,1378,2503,13,37348,6540,13,785,1600,14746,28,38235,13,27916,444,8,198,259,3524,62,6494,62,4363,13,40225,62,1640,62,13376,3419,198,259,3524,62,6494,62,7700,796,13734,62,6494,62,4363,13,5239,198,198,67,912,70,796,302,13,12947,7,81,29653,35,4694,38,24243,6601,1600,59,58,59,4357,59,4895,30001,2404,26933,61,8973,10,16725,3256,13734,62,6494,62,7700,737,8094,7,198,220,220,220,352,198,8,198,198,25202,62,312,796,302,13,12947,7,81,29653,25202,7390,2404,26933,61,8973,10,16725,3256,13734,62,6494,62,7700,737,8094,7,16,8,198,198,15952,2611,62,9641,796,302,13,12947,7,81,29653,15952,2611,14815,2404,26933,15,12,24,48688,16725,3256,13734,62,6494,62,7700,737,8094,7,16,8,198,198,12048,62,6371,82,796,302,13,19796,439,7,81,6,18109,58,61,8973,10,3808,6015,17405,10121,14,58,61,8973,10,17405,8457,58,61,8973,10,16725,3256,13734,62,6494,62,7700,8,198,198,46521,796,17635,198,1640,19016,287,4226,62,6371,82,25,198,220,220,220,1217,796,7007,13,1136,7,6371,8,198,220,220,220,1217,13,40225,62,1640,62,13376,3419,198,220,220,220,14750,13,33295,7,4363,13,5239,8,198,198,1640,4226,287,14750,25,198,220,220,220,611,366,6561,37148,37065,48,3069,2337,39492,18453,20746,1,407,287,4226,25,198,220,220,220,220,220,220,220,2555,198,220,220,220,2205,62,312,796,302,13,12947,7,198,220,220,220,220,220,220,220,374,6,312,11097,26933,15,12,24,60,28988,1600,38993,7479,31478,5512,3672,11097,6561,37148,37065,48,3069,2337,39492,18453,20746,1,3256,198,220,220,220,220,220,220,220,4226,11,198,220,220,220,6739,8094,7,16,8,198,220,220,220,2270,198,198,361,407,26498,13,20500,25,628,220,220,220,13734,62,4363,796,7007,13,7353,7,198,220,220,220,220,220,220,220,366,5450,1378,2503,13,37348,6540,13,785,14,15042,14,34960,13976,14,1600,198,220,220,220,220,220,220,220,14746,28,38235,13,27916,444,11,198,220,220,220,220,220,220,220,1366,34758,198,220,220,220,220,220,220,220,220,220,220,220,366,21855,62,67,912,70,1298,288,912,70,11,198,220,220,220,220,220,220,220,220,220,220,220,366,15390,62,312,1298,2205,62,312,11,198,220,220,220,220,220,220,220,220,220,220,220,366,25641,2977,1298,33918,13,67,8142,7,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1391,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,25202,7390,1298,3335,62,312,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,25927,7390,1298,657,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,25927,19197,2220,1298,33918,13,67,8142,7,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1391,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,48806,1298,352,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,9641,1298,32815,62,9641,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,27261,62,37266,1298,33918,13,67,8142,15090,92,828,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1782,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,10612,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,25927,6030,1298,352,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1782,198,220,220,220,220,220,220,220,220,220,220,220,10612,198,220,220,220,220,220,220,220,8964,198,220,220,220,1267,198,220,220,220,13734,62,4363,13,40225,62,1640,62,13376,3419,628,220,220,220,22492,2547,325,262,13734,1366,2882,628,220,220,220,13734,62,17752,796,13734,62,4363,13,17752,3419,198,220,220,220,13734,62,8457,796,13734,62,17752,14692,7890,1,7131,1,1177,263,1,7131,1,8091,39492,62,12384,62,25927,1,7131,1,15577,2220,8973,628,220,220,220,6468,796,1658,1050,8083,13,29572,7391,7,259,3524,62,8457,8,628,220,220,220,24714,62,66,5691,796,17268,13,12286,11600,7,4868,8,628,220,220,220,1658,1050,8083,13,29572,7391,7,259,3524,62,8457,11,23191,28,28144,62,17440,8,628,220,220,220,10275,796,17268,13,12286,11600,7,11600,8,628,220,220,220,329,26498,287,24714,62,66,5691,14692,33678,6423,44402,16818,1,5974,198,220,220,220,220,220,220,220,938,62,34086,62,912,11,938,62,961,62,912,11,938,62,19662,11,1635,2118,796,26498,198,220,220,220,220,220,220,220,2836,62,312,11,938,62,19662,62,9800,796,685,198,220,220,220,220,220,220,220,220,220,220,220,1822,329,1822,287,1334,611,318,39098,7,853,11,493,8,290,1822,1875,352,68,1415,198,220,220,220,220,220,220,220,2361,198,220,220,220,220,220,220,220,10275,58,7220,62,312,7131,1,403,961,8973,796,938,62,34086,62,912,14512,938,62,961,62,912,198,220,220,220,220,220,220,220,10275,58,7220,62,312,7131,1,12957,62,20500,8973,796,938,62,19662,198,220,220,220,220,220,220,220,10275,58,7220,62,312,7131,1,12957,62,20500,62,9800,8973,796,938,62,19662,62,9800,628,220,220,220,329,26498,287,24714,62,66,5691,14692,332,1958,17829,25166,3109,1023,1,5974,198,220,220,220,220,220,220,220,2836,62,312,11,4808,11,4808,11,1438,11,1635,2118,796,26498,198,220,220,220,220,220,220,220,10275,58,7220,62,312,7131,1,3672,8973,796,1438,628,220,220,220,3601,7,17752,13,67,8142,7,1102,690,602,11,33793,28,17,4008,198,198,17772,25,628,220,220,220,22492,18407,5344,262,3758,12,20500,2581,628,220,220,220,41033,796,493,7,19608,8079,13,19608,8079,13,2197,22446,16514,27823,3419,1635,8576,8,198,220,220,220,36835,796,41033,9959,2534,198,220,220,220,30972,312,796,36835,1343,4738,13,25192,9521,7,17,12429,2534,8,628,220,220,220,3758,62,20500,62,4363,796,7007,13,7353,7,198,220,220,220,220,220,220,220,366,5450,1378,2503,13,37348,6540,13,785,14,15042,14,34960,13976,14,1600,198,220,220,220,220,220,220,220,14746,28,38235,13,27916,444,11,198,220,220,220,220,220,220,220,1366,34758,198,220,220,220,220,220,220,220,220,220,220,220,366,21855,62,67,912,70,1298,288,912,70,11,198,220,220,220,220,220,220,220,220,220,220,220,366,15390,62,312,1298,2205,62,312,11,198,220,220,220,220,220,220,220,220,220,220,220,366,25641,2977,1298,33918,13,67,8142,7,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1391,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,25202,7390,1298,3335,62,312,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,25927,7390,1298,657,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,25927,19197,2220,1298,33918,13,67,8142,7,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1391,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,9641,62,312,1298,965,7,15952,2611,62,9641,828,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,83,6791,1298,685,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1391,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,18242,1298,366,3510,1600,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,15577,2220,1298,33918,13,67,8142,7,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1391,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,16663,62,312,1298,26498,13,8344,48137,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,313,312,1298,366,3104,2154,3510,20167,1983,2670,1157,3365,1270,1600,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,10459,1298,657,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,21280,62,4906,1298,352,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,5239,1298,26498,13,20500,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,259,8846,803,62,10459,1298,352,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1782,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,10612,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,36560,62,3672,1298,965,7,22046,13,8344,48137,828,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,35943,62,312,1298,657,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,32165,495,62,9127,1298,6045,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,8964,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1391,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,18242,1298,366,2481,1600,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,15577,2220,1298,33918,13,67,8142,7,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1391,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,16663,62,312,1298,26498,13,8344,48137,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,12957,62,961,62,7050,4102,62,912,1298,41033,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,27261,62,8094,1298,352,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1782,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,10612,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,36560,62,3672,1298,965,7,22046,13,8344,48137,828,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,35943,62,312,1298,352,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,32165,495,62,9127,1298,6045,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,8964,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,16589,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,538,5374,62,312,1298,8257,2154,3510,20167,26279,1795,2624,830,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1782,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,10612,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,25927,6030,1298,513,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1782,198,220,220,220,220,220,220,220,220,220,220,220,10612,198,220,220,220,220,220,220,220,8964,198,220,220,220,1267,628,220,220,220,3601,7,21280,62,20500,62,4363,13,5239,8,198],"string":"[\n 11748,\n 1822,\n 29572,\n 198,\n 11748,\n 17268,\n 198,\n 11748,\n 4818,\n 8079,\n 198,\n 11748,\n 33918,\n 198,\n 11748,\n 4738,\n 198,\n 11748,\n 302,\n 198,\n 198,\n 11748,\n 1658,\n 1050,\n 8083,\n 198,\n 11748,\n 7007,\n 198,\n 198,\n 2235,\n 3497,\n 262,\n 3053,\n 290,\n 9206,\n 198,\n 198,\n 48610,\n 796,\n 1822,\n 29572,\n 13,\n 28100,\n 1713,\n 46677,\n 7203,\n 37348,\n 88,\n 1362,\n 4943,\n 198,\n 48610,\n 13,\n 2860,\n 62,\n 49140,\n 7203,\n 12,\n 84,\n 1600,\n 366,\n 438,\n 12888,\n 1600,\n 2672,\n 28,\n 17821,\n 8,\n 198,\n 48610,\n 13,\n 2860,\n 62,\n 49140,\n 7203,\n 12,\n 79,\n 1600,\n 366,\n 438,\n 28712,\n 1600,\n 2672,\n 28,\n 17821,\n 8,\n 198,\n 48610,\n 13,\n 2860,\n 62,\n 49140,\n 7203,\n 12,\n 76,\n 1600,\n 366,\n 438,\n 20500,\n 4943,\n 198,\n 48610,\n 13,\n 2860,\n 62,\n 49140,\n 7203,\n 12,\n 81,\n 1600,\n 366,\n 438,\n 8344,\n 48137,\n 1600,\n 2099,\n 28,\n 600,\n 8,\n 198,\n 22046,\n 796,\n 30751,\n 13,\n 29572,\n 62,\n 22046,\n 3419,\n 198,\n 198,\n 2235,\n 2547,\n 325,\n 262,\n 11532,\n 2882,\n 198,\n 198,\n 6494,\n 62,\n 4363,\n 796,\n 7007,\n 13,\n 1136,\n 7203,\n 5450,\n 1378,\n 2503,\n 13,\n 37348,\n 6540,\n 13,\n 785,\n 4943,\n 198,\n 6494,\n 62,\n 4363,\n 13,\n 40225,\n 62,\n 1640,\n 62,\n 13376,\n 3419,\n 198,\n 6494,\n 62,\n 7700,\n 796,\n 27711,\n 62,\n 4363,\n 13,\n 5239,\n 198,\n 198,\n 36733,\n 62,\n 25927,\n 62,\n 312,\n 796,\n 302,\n 13,\n 12947,\n 7,\n 198,\n 220,\n 220,\n 220,\n 374,\n 6,\n 3672,\n 2625,\n 36733,\n 62,\n 25927,\n 62,\n 312,\n 1,\n 1988,\n 2625,\n 26933,\n 61,\n 8973,\n 10,\n 16725,\n 3256,\n 27711,\n 62,\n 7700,\n 198,\n 737,\n 8094,\n 7,\n 16,\n 8,\n 198,\n 198,\n 7278,\n 67,\n 796,\n 302,\n 13,\n 12947,\n 7,\n 81,\n 6,\n 3672,\n 2625,\n 7278,\n 67,\n 1,\n 1988,\n 2625,\n 26933,\n 61,\n 8973,\n 10,\n 16725,\n 3256,\n 27711,\n 62,\n 7700,\n 737,\n 8094,\n 7,\n 16,\n 8,\n 198,\n 198,\n 19608,\n 81,\n 796,\n 302,\n 13,\n 12947,\n 7,\n 81,\n 29653,\n 62,\n 8457,\n 62,\n 19608,\n 81,\n 2430,\n 26933,\n 61,\n 8973,\n 10,\n 16725,\n 3256,\n 27711,\n 62,\n 7700,\n 737,\n 8094,\n 7,\n 16,\n 8,\n 198,\n 198,\n 2235,\n 6889,\n 262,\n 17594,\n 2581,\n 198,\n 198,\n 38235,\n 796,\n 7007,\n 13,\n 7353,\n 7,\n 198,\n 220,\n 220,\n 220,\n 366,\n 5450,\n 1378,\n 2503,\n 13,\n 37348,\n 6540,\n 13,\n 785,\n 14,\n 38235,\n 14,\n 28712,\n 14,\n 1600,\n 198,\n 220,\n 220,\n 220,\n 14746,\n 28,\n 4895,\n 19608,\n 81,\n 1298,\n 4818,\n 81,\n 5512,\n 198,\n 220,\n 220,\n 220,\n 1366,\n 34758,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 7278,\n 67,\n 1298,\n 300,\n 21282,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 36733,\n 62,\n 25927,\n 62,\n 312,\n 1298,\n 4238,\n 62,\n 25927,\n 62,\n 312,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 12888,\n 1298,\n 26498,\n 13,\n 12888,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 6603,\n 1298,\n 26498,\n 13,\n 28712,\n 11,\n 198,\n 220,\n 220,\n 220,\n 8964,\n 198,\n 220,\n 220,\n 220,\n 1249,\n 62,\n 445,\n 1060,\n 82,\n 28,\n 25101,\n 11,\n 198,\n 8,\n 198,\n 30493,\n 17594,\n 13,\n 13376,\n 62,\n 8189,\n 6624,\n 32591,\n 198,\n 198,\n 2235,\n 29677,\n 262,\n 13734,\n 12405,\n 10007,\n 198,\n 198,\n 259,\n 3524,\n 62,\n 6494,\n 62,\n 4363,\n 796,\n 7007,\n 13,\n 1136,\n 7203,\n 5450,\n 1378,\n 2503,\n 13,\n 37348,\n 6540,\n 13,\n 785,\n 1600,\n 14746,\n 28,\n 38235,\n 13,\n 27916,\n 444,\n 8,\n 198,\n 259,\n 3524,\n 62,\n 6494,\n 62,\n 4363,\n 13,\n 40225,\n 62,\n 1640,\n 62,\n 13376,\n 3419,\n 198,\n 259,\n 3524,\n 62,\n 6494,\n 62,\n 7700,\n 796,\n 13734,\n 62,\n 6494,\n 62,\n 4363,\n 13,\n 5239,\n 198,\n 198,\n 67,\n 912,\n 70,\n 796,\n 302,\n 13,\n 12947,\n 7,\n 81,\n 29653,\n 35,\n 4694,\n 38,\n 24243,\n 6601,\n 1600,\n 59,\n 58,\n 59,\n 4357,\n 59,\n 4895,\n 30001,\n 2404,\n 26933,\n 61,\n 8973,\n 10,\n 16725,\n 3256,\n 13734,\n 62,\n 6494,\n 62,\n 7700,\n 737,\n 8094,\n 7,\n 198,\n 220,\n 220,\n 220,\n 352,\n 198,\n 8,\n 198,\n 198,\n 25202,\n 62,\n 312,\n 796,\n 302,\n 13,\n 12947,\n 7,\n 81,\n 29653,\n 25202,\n 7390,\n 2404,\n 26933,\n 61,\n 8973,\n 10,\n 16725,\n 3256,\n 13734,\n 62,\n 6494,\n 62,\n 7700,\n 737,\n 8094,\n 7,\n 16,\n 8,\n 198,\n 198,\n 15952,\n 2611,\n 62,\n 9641,\n 796,\n 302,\n 13,\n 12947,\n 7,\n 81,\n 29653,\n 15952,\n 2611,\n 14815,\n 2404,\n 26933,\n 15,\n 12,\n 24,\n 48688,\n 16725,\n 3256,\n 13734,\n 62,\n 6494,\n 62,\n 7700,\n 737,\n 8094,\n 7,\n 16,\n 8,\n 198,\n 198,\n 12048,\n 62,\n 6371,\n 82,\n 796,\n 302,\n 13,\n 19796,\n 439,\n 7,\n 81,\n 6,\n 18109,\n 58,\n 61,\n 8973,\n 10,\n 3808,\n 6015,\n 17405,\n 10121,\n 14,\n 58,\n 61,\n 8973,\n 10,\n 17405,\n 8457,\n 58,\n 61,\n 8973,\n 10,\n 16725,\n 3256,\n 13734,\n 62,\n 6494,\n 62,\n 7700,\n 8,\n 198,\n 198,\n 46521,\n 796,\n 17635,\n 198,\n 1640,\n 19016,\n 287,\n 4226,\n 62,\n 6371,\n 82,\n 25,\n 198,\n 220,\n 220,\n 220,\n 1217,\n 796,\n 7007,\n 13,\n 1136,\n 7,\n 6371,\n 8,\n 198,\n 220,\n 220,\n 220,\n 1217,\n 13,\n 40225,\n 62,\n 1640,\n 62,\n 13376,\n 3419,\n 198,\n 220,\n 220,\n 220,\n 14750,\n 13,\n 33295,\n 7,\n 4363,\n 13,\n 5239,\n 8,\n 198,\n 198,\n 1640,\n 4226,\n 287,\n 14750,\n 25,\n 198,\n 220,\n 220,\n 220,\n 611,\n 366,\n 6561,\n 37148,\n 37065,\n 48,\n 3069,\n 2337,\n 39492,\n 18453,\n 20746,\n 1,\n 407,\n 287,\n 4226,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2555,\n 198,\n 220,\n 220,\n 220,\n 2205,\n 62,\n 312,\n 796,\n 302,\n 13,\n 12947,\n 7,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 374,\n 6,\n 312,\n 11097,\n 26933,\n 15,\n 12,\n 24,\n 60,\n 28988,\n 1600,\n 38993,\n 7479,\n 31478,\n 5512,\n 3672,\n 11097,\n 6561,\n 37148,\n 37065,\n 48,\n 3069,\n 2337,\n 39492,\n 18453,\n 20746,\n 1,\n 3256,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 4226,\n 11,\n 198,\n 220,\n 220,\n 220,\n 6739,\n 8094,\n 7,\n 16,\n 8,\n 198,\n 220,\n 220,\n 220,\n 2270,\n 198,\n 198,\n 361,\n 407,\n 26498,\n 13,\n 20500,\n 25,\n 628,\n 220,\n 220,\n 220,\n 13734,\n 62,\n 4363,\n 796,\n 7007,\n 13,\n 7353,\n 7,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 5450,\n 1378,\n 2503,\n 13,\n 37348,\n 6540,\n 13,\n 785,\n 14,\n 15042,\n 14,\n 34960,\n 13976,\n 14,\n 1600,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 14746,\n 28,\n 38235,\n 13,\n 27916,\n 444,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1366,\n 34758,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 21855,\n 62,\n 67,\n 912,\n 70,\n 1298,\n 288,\n 912,\n 70,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 15390,\n 62,\n 312,\n 1298,\n 2205,\n 62,\n 312,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 25641,\n 2977,\n 1298,\n 33918,\n 13,\n 67,\n 8142,\n 7,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1391,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 25202,\n 7390,\n 1298,\n 3335,\n 62,\n 312,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 25927,\n 7390,\n 1298,\n 657,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 25927,\n 19197,\n 2220,\n 1298,\n 33918,\n 13,\n 67,\n 8142,\n 7,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1391,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 48806,\n 1298,\n 352,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 9641,\n 1298,\n 32815,\n 62,\n 9641,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 27261,\n 62,\n 37266,\n 1298,\n 33918,\n 13,\n 67,\n 8142,\n 15090,\n 92,\n 828,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1782,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 10612,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 25927,\n 6030,\n 1298,\n 352,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1782,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 10612,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 8964,\n 198,\n 220,\n 220,\n 220,\n 1267,\n 198,\n 220,\n 220,\n 220,\n 13734,\n 62,\n 4363,\n 13,\n 40225,\n 62,\n 1640,\n 62,\n 13376,\n 3419,\n 628,\n 220,\n 220,\n 220,\n 22492,\n 2547,\n 325,\n 262,\n 13734,\n 1366,\n 2882,\n 628,\n 220,\n 220,\n 220,\n 13734,\n 62,\n 17752,\n 796,\n 13734,\n 62,\n 4363,\n 13,\n 17752,\n 3419,\n 198,\n 220,\n 220,\n 220,\n 13734,\n 62,\n 8457,\n 796,\n 13734,\n 62,\n 17752,\n 14692,\n 7890,\n 1,\n 7131,\n 1,\n 1177,\n 263,\n 1,\n 7131,\n 1,\n 8091,\n 39492,\n 62,\n 12384,\n 62,\n 25927,\n 1,\n 7131,\n 1,\n 15577,\n 2220,\n 8973,\n 628,\n 220,\n 220,\n 220,\n 6468,\n 796,\n 1658,\n 1050,\n 8083,\n 13,\n 29572,\n 7391,\n 7,\n 259,\n 3524,\n 62,\n 8457,\n 8,\n 628,\n 220,\n 220,\n 220,\n 24714,\n 62,\n 66,\n 5691,\n 796,\n 17268,\n 13,\n 12286,\n 11600,\n 7,\n 4868,\n 8,\n 628,\n 220,\n 220,\n 220,\n 1658,\n 1050,\n 8083,\n 13,\n 29572,\n 7391,\n 7,\n 259,\n 3524,\n 62,\n 8457,\n 11,\n 23191,\n 28,\n 28144,\n 62,\n 17440,\n 8,\n 628,\n 220,\n 220,\n 220,\n 10275,\n 796,\n 17268,\n 13,\n 12286,\n 11600,\n 7,\n 11600,\n 8,\n 628,\n 220,\n 220,\n 220,\n 329,\n 26498,\n 287,\n 24714,\n 62,\n 66,\n 5691,\n 14692,\n 33678,\n 6423,\n 44402,\n 16818,\n 1,\n 5974,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 938,\n 62,\n 34086,\n 62,\n 912,\n 11,\n 938,\n 62,\n 961,\n 62,\n 912,\n 11,\n 938,\n 62,\n 19662,\n 11,\n 1635,\n 2118,\n 796,\n 26498,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2836,\n 62,\n 312,\n 11,\n 938,\n 62,\n 19662,\n 62,\n 9800,\n 796,\n 685,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1822,\n 329,\n 1822,\n 287,\n 1334,\n 611,\n 318,\n 39098,\n 7,\n 853,\n 11,\n 493,\n 8,\n 290,\n 1822,\n 1875,\n 352,\n 68,\n 1415,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2361,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 10275,\n 58,\n 7220,\n 62,\n 312,\n 7131,\n 1,\n 403,\n 961,\n 8973,\n 796,\n 938,\n 62,\n 34086,\n 62,\n 912,\n 14512,\n 938,\n 62,\n 961,\n 62,\n 912,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 10275,\n 58,\n 7220,\n 62,\n 312,\n 7131,\n 1,\n 12957,\n 62,\n 20500,\n 8973,\n 796,\n 938,\n 62,\n 19662,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 10275,\n 58,\n 7220,\n 62,\n 312,\n 7131,\n 1,\n 12957,\n 62,\n 20500,\n 62,\n 9800,\n 8973,\n 796,\n 938,\n 62,\n 19662,\n 62,\n 9800,\n 628,\n 220,\n 220,\n 220,\n 329,\n 26498,\n 287,\n 24714,\n 62,\n 66,\n 5691,\n 14692,\n 332,\n 1958,\n 17829,\n 25166,\n 3109,\n 1023,\n 1,\n 5974,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2836,\n 62,\n 312,\n 11,\n 4808,\n 11,\n 4808,\n 11,\n 1438,\n 11,\n 1635,\n 2118,\n 796,\n 26498,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 10275,\n 58,\n 7220,\n 62,\n 312,\n 7131,\n 1,\n 3672,\n 8973,\n 796,\n 1438,\n 628,\n 220,\n 220,\n 220,\n 3601,\n 7,\n 17752,\n 13,\n 67,\n 8142,\n 7,\n 1102,\n 690,\n 602,\n 11,\n 33793,\n 28,\n 17,\n 4008,\n 198,\n 198,\n 17772,\n 25,\n 628,\n 220,\n 220,\n 220,\n 22492,\n 18407,\n 5344,\n 262,\n 3758,\n 12,\n 20500,\n 2581,\n 628,\n 220,\n 220,\n 220,\n 41033,\n 796,\n 493,\n 7,\n 19608,\n 8079,\n 13,\n 19608,\n 8079,\n 13,\n 2197,\n 22446,\n 16514,\n 27823,\n 3419,\n 1635,\n 8576,\n 8,\n 198,\n 220,\n 220,\n 220,\n 36835,\n 796,\n 41033,\n 9959,\n 2534,\n 198,\n 220,\n 220,\n 220,\n 30972,\n 312,\n 796,\n 36835,\n 1343,\n 4738,\n 13,\n 25192,\n 9521,\n 7,\n 17,\n 12429,\n 2534,\n 8,\n 628,\n 220,\n 220,\n 220,\n 3758,\n 62,\n 20500,\n 62,\n 4363,\n 796,\n 7007,\n 13,\n 7353,\n 7,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 5450,\n 1378,\n 2503,\n 13,\n 37348,\n 6540,\n 13,\n 785,\n 14,\n 15042,\n 14,\n 34960,\n 13976,\n 14,\n 1600,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 14746,\n 28,\n 38235,\n 13,\n 27916,\n 444,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1366,\n 34758,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 21855,\n 62,\n 67,\n 912,\n 70,\n 1298,\n 288,\n 912,\n 70,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 15390,\n 62,\n 312,\n 1298,\n 2205,\n 62,\n 312,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 25641,\n 2977,\n 1298,\n 33918,\n 13,\n 67,\n 8142,\n 7,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1391,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 25202,\n 7390,\n 1298,\n 3335,\n 62,\n 312,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 25927,\n 7390,\n 1298,\n 657,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 25927,\n 19197,\n 2220,\n 1298,\n 33918,\n 13,\n 67,\n 8142,\n 7,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1391,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 9641,\n 62,\n 312,\n 1298,\n 965,\n 7,\n 15952,\n 2611,\n 62,\n 9641,\n 828,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 83,\n 6791,\n 1298,\n 685,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1391,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 18242,\n 1298,\n 366,\n 3510,\n 1600,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 15577,\n 2220,\n 1298,\n 33918,\n 13,\n 67,\n 8142,\n 7,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1391,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 16663,\n 62,\n 312,\n 1298,\n 26498,\n 13,\n 8344,\n 48137,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 313,\n 312,\n 1298,\n 366,\n 3104,\n 2154,\n 3510,\n 20167,\n 1983,\n 2670,\n 1157,\n 3365,\n 1270,\n 1600,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 10459,\n 1298,\n 657,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 21280,\n 62,\n 4906,\n 1298,\n 352,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 5239,\n 1298,\n 26498,\n 13,\n 20500,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 259,\n 8846,\n 803,\n 62,\n 10459,\n 1298,\n 352,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1782,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 10612,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 36560,\n 62,\n 3672,\n 1298,\n 965,\n 7,\n 22046,\n 13,\n 8344,\n 48137,\n 828,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 35943,\n 62,\n 312,\n 1298,\n 657,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 32165,\n 495,\n 62,\n 9127,\n 1298,\n 6045,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 8964,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1391,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 18242,\n 1298,\n 366,\n 2481,\n 1600,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 15577,\n 2220,\n 1298,\n 33918,\n 13,\n 67,\n 8142,\n 7,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1391,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 16663,\n 62,\n 312,\n 1298,\n 26498,\n 13,\n 8344,\n 48137,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 12957,\n 62,\n 961,\n 62,\n 7050,\n 4102,\n 62,\n 912,\n 1298,\n 41033,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 27261,\n 62,\n 8094,\n 1298,\n 352,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1782,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 10612,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 36560,\n 62,\n 3672,\n 1298,\n 965,\n 7,\n 22046,\n 13,\n 8344,\n 48137,\n 828,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 35943,\n 62,\n 312,\n 1298,\n 352,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 32165,\n 495,\n 62,\n 9127,\n 1298,\n 6045,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 8964,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 16589,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 538,\n 5374,\n 62,\n 312,\n 1298,\n 8257,\n 2154,\n 3510,\n 20167,\n 26279,\n 1795,\n 2624,\n 830,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1782,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 10612,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 25927,\n 6030,\n 1298,\n 513,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1782,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 10612,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 8964,\n 198,\n 220,\n 220,\n 220,\n 1267,\n 628,\n 220,\n 220,\n 220,\n 3601,\n 7,\n 21280,\n 62,\n 20500,\n 62,\n 4363,\n 13,\n 5239,\n 8,\n 198\n]"},"ratio_char_token":{"kind":"number","value":1.7581589958158996,"string":"1.758159"},"token_count":{"kind":"number","value":3585,"string":"3,585"}}},{"rowIdx":2438,"cells":{"content":{"kind":"string","value":"import os\nimport re\n\n\nwith open('PKGBUILD') as fp:\n for line in fp.readlines():\n line = line.strip()\n current_build_number = re.search(r\"^_pkgbuildnumber=(.+)$\", line)\n if current_build_number is None:\n continue\n current_build_number = current_build_number.group(1)\n break\n else:\n raise ValueError(\"_pkgbuildnumber not found\")\n\nlatest_version = os.environ['INPUT_VERSION']\nlatest_build_number = os.environ['INPUT_BUILD_NUMBER']\nlatest_hash_x86_64 = os.environ['INPUT_SHA256_x86_64']\n\nprint(f'Current build number: {current_build_number}')\nprint(f'Latest build number: {latest_build_number}')\nprint(f'Latest version: {latest_version}')\nprint(f'{latest_version}+{latest_build_number} x86_64 SHA256: {latest_hash_x86_64}')\n\nif latest_build_number.isdigit() is False:\n print('Latest build number is invalid')\n exit(1)\n\nif ' ' in latest_version or '-' in latest_version:\n print('Latest version is invalid')\n exit(1)\n\nwith open('PKGBUILD') as fp:\n contents = fp.read()\n\nif current_build_number != latest_build_number:\n contents = re.sub(r\"^pkgrel=.+$\", 'pkgrel=1', contents, flags=re.MULTILINE)\n\ncontents = re.sub(r\"^_pkgbuildnumber=.+$\", f'_pkgbuildnumber={latest_build_number}', contents, flags=re.MULTILINE)\ncontents = re.sub(r\"^_pkgversion=.+$\", f'_pkgversion={latest_version}', contents, flags=re.MULTILINE)\ncontents = re.sub(r\"(sha256sums_x86_64=\\(\\n ').+'\\n\", f\"\\g<1>{latest_hash_x86_64}'\\n\", contents)\n\nwith open('PKGBUILD', 'w') as fp:\n fp.write(contents)\n"},"input_ids":{"kind":"list like","value":[11748,28686,198,11748,302,628,198,4480,1280,10786,40492,4579,52,26761,11537,355,277,79,25,198,220,220,220,329,1627,287,277,79,13,961,6615,33529,198,220,220,220,220,220,220,220,1627,796,1627,13,36311,3419,198,220,220,220,220,220,220,220,1459,62,11249,62,17618,796,302,13,12947,7,81,1,61,62,35339,11249,17618,16193,13,28988,3,1600,1627,8,198,220,220,220,220,220,220,220,611,1459,62,11249,62,17618,318,6045,25,198,220,220,220,220,220,220,220,220,220,220,220,2555,198,220,220,220,220,220,220,220,1459,62,11249,62,17618,796,1459,62,11249,62,17618,13,8094,7,16,8,198,220,220,220,220,220,220,220,2270,198,220,220,220,2073,25,198,220,220,220,220,220,220,220,5298,11052,12331,7203,62,35339,11249,17618,407,1043,4943,198,198,42861,62,9641,796,28686,13,268,2268,17816,1268,30076,62,43717,20520,198,42861,62,11249,62,17618,796,28686,13,268,2268,17816,1268,30076,62,19499,26761,62,41359,13246,20520,198,42861,62,17831,62,87,4521,62,2414,796,28686,13,268,2268,17816,1268,30076,62,37596,11645,62,87,4521,62,2414,20520,198,198,4798,7,69,6,11297,1382,1271,25,1391,14421,62,11249,62,17618,92,11537,198,4798,7,69,6,39478,1382,1271,25,1391,42861,62,11249,62,17618,92,11537,198,4798,7,69,6,39478,2196,25,1391,42861,62,9641,92,11537,198,4798,7,69,6,90,42861,62,9641,92,10,90,42861,62,11249,62,17618,92,2124,4521,62,2414,25630,11645,25,1391,42861,62,17831,62,87,4521,62,2414,92,11537,198,198,361,3452,62,11249,62,17618,13,9409,328,270,3419,318,10352,25,198,220,220,220,3601,10786,39478,1382,1271,318,12515,11537,198,220,220,220,8420,7,16,8,198,198,361,705,705,287,3452,62,9641,393,705,19355,287,3452,62,9641,25,198,220,220,220,3601,10786,39478,2196,318,12515,11537,198,220,220,220,8420,7,16,8,198,198,4480,1280,10786,40492,4579,52,26761,11537,355,277,79,25,198,220,220,220,10154,796,277,79,13,961,3419,198,198,361,1459,62,11249,62,17618,14512,3452,62,11249,62,17618,25,198,220,220,220,10154,796,302,13,7266,7,81,1,61,35339,2411,28,13,10,3,1600,705,35339,2411,28,16,3256,10154,11,9701,28,260,13,44,16724,4146,8881,8,198,198,3642,658,796,302,13,7266,7,81,1,61,62,35339,11249,17618,28,13,10,3,1600,277,6,62,35339,11249,17618,34758,42861,62,11249,62,17618,92,3256,10154,11,9701,28,260,13,44,16724,4146,8881,8,198,3642,658,796,302,13,7266,7,81,1,61,62,35339,9641,28,13,10,3,1600,277,6,62,35339,9641,34758,42861,62,9641,92,3256,10154,11,9701,28,260,13,44,16724,4146,8881,8,198,3642,658,796,302,13,7266,7,81,18109,26270,11645,82,5700,62,87,4521,62,2414,28,59,38016,77,220,705,737,10,6,59,77,1600,277,1,59,70,27,16,29,90,42861,62,17831,62,87,4521,62,2414,92,6,59,77,1600,10154,8,198,198,4480,1280,10786,40492,4579,52,26761,3256,705,86,11537,355,277,79,25,198,220,220,220,277,79,13,13564,7,3642,658,8,198],"string":"[\n 11748,\n 28686,\n 198,\n 11748,\n 302,\n 628,\n 198,\n 4480,\n 1280,\n 10786,\n 40492,\n 4579,\n 52,\n 26761,\n 11537,\n 355,\n 277,\n 79,\n 25,\n 198,\n 220,\n 220,\n 220,\n 329,\n 1627,\n 287,\n 277,\n 79,\n 13,\n 961,\n 6615,\n 33529,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1627,\n 796,\n 1627,\n 13,\n 36311,\n 3419,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1459,\n 62,\n 11249,\n 62,\n 17618,\n 796,\n 302,\n 13,\n 12947,\n 7,\n 81,\n 1,\n 61,\n 62,\n 35339,\n 11249,\n 17618,\n 16193,\n 13,\n 28988,\n 3,\n 1600,\n 1627,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 1459,\n 62,\n 11249,\n 62,\n 17618,\n 318,\n 6045,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2555,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1459,\n 62,\n 11249,\n 62,\n 17618,\n 796,\n 1459,\n 62,\n 11249,\n 62,\n 17618,\n 13,\n 8094,\n 7,\n 16,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2270,\n 198,\n 220,\n 220,\n 220,\n 2073,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 5298,\n 11052,\n 12331,\n 7203,\n 62,\n 35339,\n 11249,\n 17618,\n 407,\n 1043,\n 4943,\n 198,\n 198,\n 42861,\n 62,\n 9641,\n 796,\n 28686,\n 13,\n 268,\n 2268,\n 17816,\n 1268,\n 30076,\n 62,\n 43717,\n 20520,\n 198,\n 42861,\n 62,\n 11249,\n 62,\n 17618,\n 796,\n 28686,\n 13,\n 268,\n 2268,\n 17816,\n 1268,\n 30076,\n 62,\n 19499,\n 26761,\n 62,\n 41359,\n 13246,\n 20520,\n 198,\n 42861,\n 62,\n 17831,\n 62,\n 87,\n 4521,\n 62,\n 2414,\n 796,\n 28686,\n 13,\n 268,\n 2268,\n 17816,\n 1268,\n 30076,\n 62,\n 37596,\n 11645,\n 62,\n 87,\n 4521,\n 62,\n 2414,\n 20520,\n 198,\n 198,\n 4798,\n 7,\n 69,\n 6,\n 11297,\n 1382,\n 1271,\n 25,\n 1391,\n 14421,\n 62,\n 11249,\n 62,\n 17618,\n 92,\n 11537,\n 198,\n 4798,\n 7,\n 69,\n 6,\n 39478,\n 1382,\n 1271,\n 25,\n 1391,\n 42861,\n 62,\n 11249,\n 62,\n 17618,\n 92,\n 11537,\n 198,\n 4798,\n 7,\n 69,\n 6,\n 39478,\n 2196,\n 25,\n 1391,\n 42861,\n 62,\n 9641,\n 92,\n 11537,\n 198,\n 4798,\n 7,\n 69,\n 6,\n 90,\n 42861,\n 62,\n 9641,\n 92,\n 10,\n 90,\n 42861,\n 62,\n 11249,\n 62,\n 17618,\n 92,\n 2124,\n 4521,\n 62,\n 2414,\n 25630,\n 11645,\n 25,\n 1391,\n 42861,\n 62,\n 17831,\n 62,\n 87,\n 4521,\n 62,\n 2414,\n 92,\n 11537,\n 198,\n 198,\n 361,\n 3452,\n 62,\n 11249,\n 62,\n 17618,\n 13,\n 9409,\n 328,\n 270,\n 3419,\n 318,\n 10352,\n 25,\n 198,\n 220,\n 220,\n 220,\n 3601,\n 10786,\n 39478,\n 1382,\n 1271,\n 318,\n 12515,\n 11537,\n 198,\n 220,\n 220,\n 220,\n 8420,\n 7,\n 16,\n 8,\n 198,\n 198,\n 361,\n 705,\n 705,\n 287,\n 3452,\n 62,\n 9641,\n 393,\n 705,\n 19355,\n 287,\n 3452,\n 62,\n 9641,\n 25,\n 198,\n 220,\n 220,\n 220,\n 3601,\n 10786,\n 39478,\n 2196,\n 318,\n 12515,\n 11537,\n 198,\n 220,\n 220,\n 220,\n 8420,\n 7,\n 16,\n 8,\n 198,\n 198,\n 4480,\n 1280,\n 10786,\n 40492,\n 4579,\n 52,\n 26761,\n 11537,\n 355,\n 277,\n 79,\n 25,\n 198,\n 220,\n 220,\n 220,\n 10154,\n 796,\n 277,\n 79,\n 13,\n 961,\n 3419,\n 198,\n 198,\n 361,\n 1459,\n 62,\n 11249,\n 62,\n 17618,\n 14512,\n 3452,\n 62,\n 11249,\n 62,\n 17618,\n 25,\n 198,\n 220,\n 220,\n 220,\n 10154,\n 796,\n 302,\n 13,\n 7266,\n 7,\n 81,\n 1,\n 61,\n 35339,\n 2411,\n 28,\n 13,\n 10,\n 3,\n 1600,\n 705,\n 35339,\n 2411,\n 28,\n 16,\n 3256,\n 10154,\n 11,\n 9701,\n 28,\n 260,\n 13,\n 44,\n 16724,\n 4146,\n 8881,\n 8,\n 198,\n 198,\n 3642,\n 658,\n 796,\n 302,\n 13,\n 7266,\n 7,\n 81,\n 1,\n 61,\n 62,\n 35339,\n 11249,\n 17618,\n 28,\n 13,\n 10,\n 3,\n 1600,\n 277,\n 6,\n 62,\n 35339,\n 11249,\n 17618,\n 34758,\n 42861,\n 62,\n 11249,\n 62,\n 17618,\n 92,\n 3256,\n 10154,\n 11,\n 9701,\n 28,\n 260,\n 13,\n 44,\n 16724,\n 4146,\n 8881,\n 8,\n 198,\n 3642,\n 658,\n 796,\n 302,\n 13,\n 7266,\n 7,\n 81,\n 1,\n 61,\n 62,\n 35339,\n 9641,\n 28,\n 13,\n 10,\n 3,\n 1600,\n 277,\n 6,\n 62,\n 35339,\n 9641,\n 34758,\n 42861,\n 62,\n 9641,\n 92,\n 3256,\n 10154,\n 11,\n 9701,\n 28,\n 260,\n 13,\n 44,\n 16724,\n 4146,\n 8881,\n 8,\n 198,\n 3642,\n 658,\n 796,\n 302,\n 13,\n 7266,\n 7,\n 81,\n 18109,\n 26270,\n 11645,\n 82,\n 5700,\n 62,\n 87,\n 4521,\n 62,\n 2414,\n 28,\n 59,\n 38016,\n 77,\n 220,\n 705,\n 737,\n 10,\n 6,\n 59,\n 77,\n 1600,\n 277,\n 1,\n 59,\n 70,\n 27,\n 16,\n 29,\n 90,\n 42861,\n 62,\n 17831,\n 62,\n 87,\n 4521,\n 62,\n 2414,\n 92,\n 6,\n 59,\n 77,\n 1600,\n 10154,\n 8,\n 198,\n 198,\n 4480,\n 1280,\n 10786,\n 40492,\n 4579,\n 52,\n 26761,\n 3256,\n 705,\n 86,\n 11537,\n 355,\n 277,\n 79,\n 25,\n 198,\n 220,\n 220,\n 220,\n 277,\n 79,\n 13,\n 13564,\n 7,\n 3642,\n 658,\n 8,\n 198\n]"},"ratio_char_token":{"kind":"number","value":2.4290220820189274,"string":"2.429022"},"token_count":{"kind":"number","value":634,"string":"634"}}},{"rowIdx":2439,"cells":{"content":{"kind":"string","value":"import pytest\nimport numpy as np\nfrom functools import reduce\nfrom hottbox.core.structures import Tensor,TensorCPD, TensorTKD, TensorTT\nfrom hottbox.utils.validation.checks import is_super_symmetric\nfrom ..basic import dense_tensor, sparse_tensor, super_diagonal_tensor, \\\n super_diag_tensor, super_symmetric_tensor, residual_tensor\n\n\n\n\n\ndef test_super_diag_tensor():\n \"\"\" Tests for creating super-diagonal tensor\"\"\"\n order = 3\n rank = 2\n correct_shape = (rank, ) * order\n true_default_data = np.array([[[1., 0.],\n [0., 0.]],\n\n [[0., 0.],\n [0., 1.]]])\n true_default_mode_names = ['mode-0', 'mode-1', 'mode-2']\n correct_values = np.arange(rank)\n true_data = np.array([[[0., 0.],\n [0., 0.]],\n\n [[0., 0.],\n [0., 1.]]])\n\n # ------ tests for default super diagonal tensor\n tensor = super_diag_tensor(correct_shape)\n assert isinstance(tensor, Tensor)\n np.testing.assert_array_equal(tensor.data, true_default_data)\n assert (tensor.mode_names == true_default_mode_names)\n\n # ------ tests for super diagonal tensor with custom values on the main diagonal\n tensor = super_diag_tensor(correct_shape, values=correct_values)\n assert isinstance(tensor, Tensor)\n np.testing.assert_array_equal(tensor.data, true_data)\n assert (tensor.mode_names == true_default_mode_names)\n\n # ------ tests that should Fail\n\n with pytest.raises(TypeError):\n # shape should be passed as tuple\n super_diag_tensor(shape=list(correct_shape))\n\n with pytest.raises(ValueError):\n # all values in shape should be the same\n incorrect_shape = [rank] * order\n incorrect_shape[1] = order+1\n super_diag_tensor(shape=tuple(incorrect_shape))\n\n with pytest.raises(ValueError):\n # values should be an one dimensional numpy array\n incorrect_values = np.ones([rank, rank])\n super_diag_tensor(shape=correct_shape, values=incorrect_values)\n\n with pytest.raises(ValueError):\n # too many values for the specified shape\n incorrect_values = np.ones(correct_shape[0]+1)\n super_diag_tensor(shape=correct_shape, values=incorrect_values)\n\n with pytest.raises(TypeError):\n # values should be a numpy array\n incorrect_values = [1] * correct_shape[0]\n super_diag_tensor(shape=correct_shape, values=incorrect_values)\n\n\n\ndef test_residual_tensor():\n \"\"\" Tests for computing/creating a residual tensor \"\"\"\n true_default_mode_names = ['mode-0', 'mode-1', 'mode-2']\n\n # ------ tests for residual tensor with the Tensor\n array_3d = np.array([[[0, 1, 2, 3],\n [4, 5, 6, 7],\n [8, 9, 10, 11]],\n\n [[12, 13, 14, 15],\n [16, 17, 18, 19],\n [20, 21, 22, 23]]])\n true_residual_data = np.zeros(array_3d.shape)\n tensor_1 = Tensor(array=array_3d)\n tensor_2 = Tensor(array=array_3d)\n residual = residual_tensor(tensor_orig=tensor_1, tensor_approx=tensor_2)\n assert isinstance(residual, Tensor)\n assert (residual.mode_names == true_default_mode_names)\n np.testing.assert_array_equal(residual.data, true_residual_data)\n\n # ------ tests for residual tensor with the TensorCPD\n array_3d = np.array([[[100., 250., 400., 550.],\n [250., 650., 1050., 1450.],\n [400., 1050., 1700., 2350.]],\n\n [[250., 650., 1050., 1450.],\n [650., 1925., 3200., 4475.],\n [1050., 3200., 5350., 7500.]]]\n )\n true_residual_data = np.zeros(array_3d.shape)\n tensor = Tensor(array=array_3d)\n ft_shape = (2, 3, 4) # define shape of the tensor in full form\n R = 5 # define Kryskal rank of a tensor in CP form\n core_values = np.ones(R)\n fmat = [np.arange(orig_dim * R).reshape(orig_dim, R)\n for orig_dim in ft_shape]\n tensor_cpd = TensorCPD(fmat=fmat, core_values=core_values)\n residual = residual_tensor(tensor_orig=tensor, tensor_approx=tensor_cpd)\n assert isinstance(residual, Tensor)\n assert (residual.mode_names == true_default_mode_names)\n np.testing.assert_array_equal(residual.data, true_residual_data)\n\n # ------ tests for residual tensor with the TensorTKD\n array_3d = np.array([[[378, 1346, 2314, 3282, 4250],\n [1368, 4856, 8344, 11832, 15320],\n [2358, 8366, 14374, 20382, 26390],\n [3348, 11876, 20404, 28932, 37460]],\n\n [[1458, 5146, 8834, 12522, 16210],\n [5112, 17944, 30776, 43608, 56440],\n [8766, 30742, 52718, 74694, 96670],\n [12420, 43540, 74660, 105780, 136900]],\n\n [[2538, 8946, 15354, 21762, 28170],\n [8856, 31032, 53208, 75384, 97560],\n [15174, 53118, 91062, 129006, 166950],\n [21492, 75204, 128916, 182628, 236340]]])\n true_residual_data = np.zeros(array_3d.shape)\n tensor = Tensor(array=array_3d)\n ft_shape = (3, 4, 5) # define shape of the tensor in full form\n ml_rank = (2, 3, 4) # define multi-linear rank of a tensor in Tucker form\n core_size = reduce(lambda x, y: x * y, ml_rank)\n core_values = np.arange(core_size).reshape(ml_rank)\n fmat = [np.arange(ft_shape[mode] * ml_rank[mode]).reshape(ft_shape[mode],\n ml_rank[mode]) for mode in range(len(ft_shape))]\n tensor_tkd = TensorTKD(fmat=fmat, core_values=core_values)\n residual = residual_tensor(tensor_orig=tensor, tensor_approx=tensor_tkd)\n assert isinstance(residual, Tensor)\n assert (residual.mode_names == true_default_mode_names)\n np.testing.assert_array_equal(residual.data, true_residual_data)\n\n # ------ tests for residual tensor with the TensorTT\n array_3d = np.array([[[300, 348, 396, 444, 492, 540],\n [354, 411, 468, 525, 582, 639],\n [408, 474, 540, 606, 672, 738],\n [462, 537, 612, 687, 762, 837],\n [516, 600, 684, 768, 852, 936]],\n\n [[960, 1110, 1260, 1410, 1560, 1710],\n [1230, 1425, 1620, 1815, 2010, 2205],\n [1500, 1740, 1980, 2220, 2460, 2700],\n [1770, 2055, 2340, 2625, 2910, 3195],\n [2040, 2370, 2700, 3030, 3360, 3690]],\n\n [[1620, 1872, 2124, 2376, 2628, 2880],\n [2106, 2439, 2772, 3105, 3438, 3771],\n [2592, 3006, 3420, 3834, 4248, 4662],\n [3078, 3573, 4068, 4563, 5058, 5553],\n [3564, 4140, 4716, 5292, 5868, 6444]],\n\n [[2280, 2634, 2988, 3342, 3696, 4050],\n [2982, 3453, 3924, 4395, 4866, 5337],\n [3684, 4272, 4860, 5448, 6036, 6624],\n [4386, 5091, 5796, 6501, 7206, 7911],\n [5088, 5910, 6732, 7554, 8376, 9198]]])\n true_residual_data = np.zeros(array_3d.shape)\n tensor = Tensor(array=array_3d)\n r1, r2 = 2, 3\n I, J, K = 4, 5, 6\n core_1 = np.arange(I * r1).reshape(I, r1)\n core_2 = np.arange(r1 * J * r2).reshape(r1, J, r2)\n core_3 = np.arange(r2 * K).reshape(r2, K)\n core_values = [core_1, core_2, core_3]\n ft_shape = (I, J, K)\n tensor_tt = TensorTT(core_values=core_values)\n residual = residual_tensor(tensor_orig=tensor, tensor_approx=tensor_tt)\n assert isinstance(residual, Tensor)\n assert (residual.mode_names == true_default_mode_names)\n np.testing.assert_array_equal(residual.data, true_residual_data)\n\n # ------ tests that should FAIL for residual tensor due to wrong input type\n array_3d = np.array([[[0, 1, 2, 3],\n [4, 5, 6, 7],\n [8, 9, 10, 11]],\n\n [[12, 13, 14, 15],\n [16, 17, 18, 19],\n [20, 21, 22, 23]]])\n tensor_1 = Tensor(array=array_3d)\n tensor_2 = array_3d\n with pytest.raises(TypeError):\n residual_tensor(tensor_orig=tensor_1, tensor_approx=tensor_2)\n\n tensor_1 = array_3d\n tensor_2 = Tensor(array=array_3d)\n with pytest.raises(TypeError):\n residual_tensor(tensor_orig=tensor_1, tensor_approx=tensor_2)\n"},"input_ids":{"kind":"list like","value":[11748,12972,9288,198,11748,299,32152,355,45941,198,6738,1257,310,10141,1330,4646,198,6738,289,1252,3524,13,7295,13,7249,942,1330,309,22854,11,51,22854,34,5760,11,309,22854,51,42,35,11,309,22854,15751,198,6738,289,1252,3524,13,26791,13,12102,341,13,42116,1330,318,62,16668,62,1837,3020,19482,198,6738,11485,35487,1330,15715,62,83,22854,11,29877,62,83,22854,11,2208,62,10989,27923,62,83,22854,11,3467,198,220,220,220,2208,62,10989,363,62,83,22854,11,2208,62,1837,3020,19482,62,83,22854,11,29598,62,83,22854,628,628,198,198,4299,1332,62,16668,62,10989,363,62,83,22854,33529,198,220,220,220,37227,30307,329,4441,2208,12,10989,27923,11192,273,37811,198,220,220,220,1502,796,513,198,220,220,220,4279,796,362,198,220,220,220,3376,62,43358,796,357,43027,11,1267,1635,1502,198,220,220,220,2081,62,12286,62,7890,796,45941,13,18747,26933,30109,16,1539,657,13,4357,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,685,15,1539,657,8183,4357,628,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,16410,15,1539,657,13,4357,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,685,15,1539,352,8183,11907,8,198,220,220,220,2081,62,12286,62,14171,62,14933,796,37250,14171,12,15,3256,705,14171,12,16,3256,705,14171,12,17,20520,198,220,220,220,3376,62,27160,796,45941,13,283,858,7,43027,8,198,220,220,220,2081,62,7890,796,45941,13,18747,26933,30109,15,1539,657,13,4357,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,685,15,1539,657,8183,4357,628,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,16410,15,1539,657,13,4357,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,685,15,1539,352,8183,11907,8,628,220,220,220,1303,40103,5254,329,4277,2208,40039,11192,273,198,220,220,220,11192,273,796,2208,62,10989,363,62,83,22854,7,30283,62,43358,8,198,220,220,220,6818,318,39098,7,83,22854,11,309,22854,8,198,220,220,220,45941,13,33407,13,30493,62,18747,62,40496,7,83,22854,13,7890,11,2081,62,12286,62,7890,8,198,220,220,220,6818,357,83,22854,13,14171,62,14933,6624,2081,62,12286,62,14171,62,14933,8,628,220,220,220,1303,40103,5254,329,2208,40039,11192,273,351,2183,3815,319,262,1388,40039,198,220,220,220,11192,273,796,2208,62,10989,363,62,83,22854,7,30283,62,43358,11,3815,28,30283,62,27160,8,198,220,220,220,6818,318,39098,7,83,22854,11,309,22854,8,198,220,220,220,45941,13,33407,13,30493,62,18747,62,40496,7,83,22854,13,7890,11,2081,62,7890,8,198,220,220,220,6818,357,83,22854,13,14171,62,14933,6624,2081,62,12286,62,14171,62,14933,8,628,220,220,220,1303,40103,5254,326,815,18448,628,220,220,220,351,12972,9288,13,430,2696,7,6030,12331,2599,198,220,220,220,220,220,220,220,1303,5485,815,307,3804,355,46545,198,220,220,220,220,220,220,220,2208,62,10989,363,62,83,22854,7,43358,28,4868,7,30283,62,43358,4008,628,220,220,220,351,12972,9288,13,430,2696,7,11395,12331,2599,198,220,220,220,220,220,220,220,1303,477,3815,287,5485,815,307,262,976,198,220,220,220,220,220,220,220,11491,62,43358,796,685,43027,60,1635,1502,198,220,220,220,220,220,220,220,11491,62,43358,58,16,60,796,1502,10,16,198,220,220,220,220,220,220,220,2208,62,10989,363,62,83,22854,7,43358,28,83,29291,7,1939,47315,62,43358,4008,628,220,220,220,351,12972,9288,13,430,2696,7,11395,12331,2599,198,220,220,220,220,220,220,220,1303,3815,815,307,281,530,38517,299,32152,7177,198,220,220,220,220,220,220,220,11491,62,27160,796,45941,13,1952,26933,43027,11,4279,12962,198,220,220,220,220,220,220,220,2208,62,10989,363,62,83,22854,7,43358,28,30283,62,43358,11,3815,28,1939,47315,62,27160,8,628,220,220,220,351,12972,9288,13,430,2696,7,11395,12331,2599,198,220,220,220,220,220,220,220,1303,1165,867,3815,329,262,7368,5485,198,220,220,220,220,220,220,220,11491,62,27160,796,45941,13,1952,7,30283,62,43358,58,15,48688,16,8,198,220,220,220,220,220,220,220,2208,62,10989,363,62,83,22854,7,43358,28,30283,62,43358,11,3815,28,1939,47315,62,27160,8,628,220,220,220,351,12972,9288,13,430,2696,7,6030,12331,2599,198,220,220,220,220,220,220,220,1303,3815,815,307,257,299,32152,7177,198,220,220,220,220,220,220,220,11491,62,27160,796,685,16,60,1635,3376,62,43358,58,15,60,198,220,220,220,220,220,220,220,2208,62,10989,363,62,83,22854,7,43358,28,30283,62,43358,11,3815,28,1939,47315,62,27160,8,628,198,198,4299,1332,62,411,312,723,62,83,22854,33529,198,220,220,220,37227,30307,329,14492,14,20123,278,257,29598,11192,273,37227,198,220,220,220,2081,62,12286,62,14171,62,14933,796,37250,14171,12,15,3256,705,14171,12,16,3256,705,14171,12,17,20520,628,220,220,220,1303,40103,5254,329,29598,11192,273,351,262,309,22854,198,220,220,220,7177,62,18,67,796,45941,13,18747,26933,30109,15,11,220,352,11,220,362,11,220,513,4357,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,685,19,11,220,642,11,220,718,11,220,767,4357,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,685,23,11,220,860,11,838,11,1367,60,4357,628,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,16410,1065,11,1511,11,1478,11,1315,4357,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,685,1433,11,1596,11,1248,11,678,4357,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,685,1238,11,2310,11,2534,11,2242,11907,12962,198,220,220,220,2081,62,411,312,723,62,7890,796,45941,13,9107,418,7,18747,62,18,67,13,43358,8,198,220,220,220,11192,273,62,16,796,309,22854,7,18747,28,18747,62,18,67,8,198,220,220,220,11192,273,62,17,796,309,22854,7,18747,28,18747,62,18,67,8,198,220,220,220,29598,796,29598,62,83,22854,7,83,22854,62,11612,28,83,22854,62,16,11,11192,273,62,1324,13907,28,83,22854,62,17,8,198,220,220,220,6818,318,39098,7,411,312,723,11,309,22854,8,198,220,220,220,6818,357,411,312,723,13,14171,62,14933,6624,2081,62,12286,62,14171,62,14933,8,198,220,220,220,45941,13,33407,13,30493,62,18747,62,40496,7,411,312,723,13,7890,11,2081,62,411,312,723,62,7890,8,628,220,220,220,1303,40103,5254,329,29598,11192,273,351,262,309,22854,34,5760,198,220,220,220,7177,62,18,67,796,45941,13,18747,26933,30109,3064,1539,8646,1539,7337,1539,25240,13,4357,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,685,9031,1539,22626,1539,47235,1539,1478,1120,13,4357,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,685,7029,1539,47235,1539,35665,1539,2242,1120,8183,4357,628,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,16410,9031,1539,22626,1539,47235,1539,1478,1120,13,4357,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,685,17544,1539,36864,1539,513,2167,1539,5846,2425,13,4357,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,685,940,1120,1539,513,2167,1539,7192,1120,1539,767,4059,8183,11907,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1267,198,220,220,220,2081,62,411,312,723,62,7890,796,45941,13,9107,418,7,18747,62,18,67,13,43358,8,198,220,220,220,11192,273,796,309,22854,7,18747,28,18747,62,18,67,8,198,220,220,220,10117,62,43358,796,357,17,11,513,11,604,8,220,220,220,1303,8160,5485,286,262,11192,273,287,1336,1296,198,220,220,220,371,796,642,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1303,8160,41662,8135,282,4279,286,257,11192,273,287,16932,1296,198,220,220,220,4755,62,27160,796,45941,13,1952,7,49,8,198,220,220,220,277,6759,796,685,37659,13,283,858,7,11612,62,27740,1635,371,737,3447,1758,7,11612,62,27740,11,371,8,198,220,220,220,220,220,220,220,220,220,220,220,329,1796,62,27740,287,10117,62,43358,60,198,220,220,220,11192,273,62,13155,67,796,309,22854,34,5760,7,69,6759,28,69,6759,11,4755,62,27160,28,7295,62,27160,8,198,220,220,220,29598,796,29598,62,83,22854,7,83,22854,62,11612,28,83,22854,11,11192,273,62,1324,13907,28,83,22854,62,13155,67,8,198,220,220,220,6818,318,39098,7,411,312,723,11,309,22854,8,198,220,220,220,6818,357,411,312,723,13,14171,62,14933,6624,2081,62,12286,62,14171,62,14933,8,198,220,220,220,45941,13,33407,13,30493,62,18747,62,40496,7,411,312,723,13,7890,11,2081,62,411,312,723,62,7890,8,628,220,220,220,1303,40103,5254,329,29598,11192,273,351,262,309,22854,51,42,35,198,220,220,220,7177,62,18,67,796,45941,13,18747,26933,30109,30695,11,220,220,1511,3510,11,220,220,2242,1415,11,220,220,513,32568,11,220,220,5433,1120,4357,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,685,1485,3104,11,220,220,4764,3980,11,220,220,9698,2598,11,220,19035,2624,11,220,1315,19504,4357,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,685,1954,3365,11,220,220,807,32459,11,220,1478,31020,11,220,1160,36243,11,220,2608,25964,4357,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,685,2091,2780,11,220,19035,4304,11,220,1160,26429,11,220,38902,2624,11,220,49020,1899,60,4357,628,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,16410,1415,3365,11,220,220,642,20964,11,220,220,9193,2682,11,220,13151,1828,11,220,1467,21536,4357,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,685,4349,1065,11,220,27228,2598,11,220,1542,39509,11,220,5946,28688,11,220,642,2414,1821,4357,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,685,5774,2791,11,220,38369,3682,11,220,642,1983,1507,11,220,8915,45214,11,220,860,2791,2154,4357,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,685,17464,1238,11,220,42671,1821,11,220,767,3510,1899,11,838,3553,1795,11,1511,3388,405,60,4357,628,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,16410,1495,2548,11,220,220,9919,3510,11,220,1315,32182,11,220,24894,5237,11,220,2579,17279,4357,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,685,3459,3980,11,220,28947,2624,11,220,7192,21315,11,220,5441,22842,11,220,860,2425,1899,4357,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,685,1314,22985,11,220,7192,16817,11,220,860,940,5237,11,1105,12865,21,11,1467,3388,1120,4357,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,685,22291,5892,11,220,5441,18638,11,1105,4531,1433,11,1248,2075,2078,11,2242,5066,1821,11907,12962,198,220,220,220,2081,62,411,312,723,62,7890,796,45941,13,9107,418,7,18747,62,18,67,13,43358,8,198,220,220,220,11192,273,796,309,22854,7,18747,28,18747,62,18,67,8,198,220,220,220,10117,62,43358,796,357,18,11,604,11,642,8,220,220,220,1303,8160,5485,286,262,11192,273,287,1336,1296,198,220,220,220,25962,62,43027,796,357,17,11,513,11,604,8,220,220,220,220,1303,8160,5021,12,29127,4279,286,257,11192,273,287,25951,1296,198,220,220,220,4755,62,7857,796,4646,7,50033,2124,11,331,25,2124,1635,331,11,25962,62,43027,8,198,220,220,220,4755,62,27160,796,45941,13,283,858,7,7295,62,7857,737,3447,1758,7,4029,62,43027,8,198,220,220,220,277,6759,796,685,37659,13,283,858,7,701,62,43358,58,14171,60,1635,25962,62,43027,58,14171,35944,3447,1758,7,701,62,43358,58,14171,4357,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,25962,62,43027,58,14171,12962,329,4235,287,2837,7,11925,7,701,62,43358,4008,60,198,220,220,220,11192,273,62,30488,67,796,309,22854,51,42,35,7,69,6759,28,69,6759,11,4755,62,27160,28,7295,62,27160,8,198,220,220,220,29598,796,29598,62,83,22854,7,83,22854,62,11612,28,83,22854,11,11192,273,62,1324,13907,28,83,22854,62,30488,67,8,198,220,220,220,6818,318,39098,7,411,312,723,11,309,22854,8,198,220,220,220,6818,357,411,312,723,13,14171,62,14933,6624,2081,62,12286,62,14171,62,14933,8,198,220,220,220,45941,13,33407,13,30493,62,18747,62,40496,7,411,312,723,13,7890,11,2081,62,411,312,723,62,7890,8,628,220,220,220,1303,40103,5254,329,29598,11192,273,351,262,309,22854,15751,198,220,220,220,7177,62,18,67,796,45941,13,18747,26933,30109,6200,11,44084,11,48758,11,45095,11,5125,17,11,38190,4357,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,685,32182,11,43184,11,604,3104,11,45719,11,642,6469,11,718,2670,4357,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,685,26200,11,604,4524,11,38190,11,3126,21,11,718,4761,11,767,2548,4357,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,685,39997,11,642,2718,11,718,1065,11,718,5774,11,767,5237,11,807,2718,4357,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,685,47493,11,10053,11,718,5705,11,46720,11,807,4309,11,860,2623,60,4357,628,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,16410,39277,11,1367,940,11,1105,1899,11,1478,940,11,1315,1899,11,1596,940,4357,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,685,1065,1270,11,1478,1495,11,1467,1238,11,1248,1314,11,3050,11,15629,20,4357,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,685,33698,11,1596,1821,11,7169,11,2534,1238,11,1987,1899,11,2681,405,4357,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,685,1558,2154,11,1160,2816,11,2242,1821,11,2608,1495,11,2808,940,11,513,22186,4357,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,685,1238,1821,11,2242,2154,11,2681,405,11,1542,1270,11,4747,1899,11,513,35844,60,4357,628,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,16410,1433,1238,11,1248,4761,11,362,17464,11,2242,4304,11,2608,2078,11,2579,1795,4357,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,685,17,15801,11,1987,2670,11,2681,4761,11,513,13348,11,4974,2548,11,42163,16,4357,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,685,1495,5892,11,5867,21,11,4974,1238,11,4353,2682,11,604,23045,11,604,39380,4357,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,685,1270,3695,11,3439,4790,11,2319,3104,11,604,46572,11,2026,3365,11,44717,18,4357,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,685,2327,2414,11,604,15187,11,6298,1433,11,642,32759,11,7618,3104,11,718,30272,60,4357,628,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,16410,1828,1795,11,2608,2682,11,2808,3459,11,513,31575,11,513,38205,11,2319,1120,4357,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,685,1959,6469,11,513,36625,11,5014,1731,11,604,31010,11,4764,2791,11,642,31496,4357,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,685,2623,5705,11,604,29807,11,4764,1899,11,642,31115,11,3126,2623,11,7930,1731,4357,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,685,19,21734,11,2026,6420,11,642,41060,11,6135,486,11,767,22136,11,9225,1157,4357,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,685,1120,3459,11,7863,940,11,8275,2624,11,767,44218,11,807,32128,11,860,22337,11907,12962,198,220,220,220,2081,62,411,312,723,62,7890,796,45941,13,9107,418,7,18747,62,18,67,13,43358,8,198,220,220,220,11192,273,796,309,22854,7,18747,28,18747,62,18,67,8,198,220,220,220,374,16,11,374,17,796,362,11,513,198,220,220,220,314,11,449,11,509,796,604,11,642,11,718,198,220,220,220,4755,62,16,796,45941,13,283,858,7,40,1635,374,16,737,3447,1758,7,40,11,374,16,8,198,220,220,220,4755,62,17,796,45941,13,283,858,7,81,16,1635,449,1635,374,17,737,3447,1758,7,81,16,11,449,11,374,17,8,198,220,220,220,4755,62,18,796,45941,13,283,858,7,81,17,1635,509,737,3447,1758,7,81,17,11,509,8,198,220,220,220,4755,62,27160,796,685,7295,62,16,11,4755,62,17,11,4755,62,18,60,198,220,220,220,10117,62,43358,796,357,40,11,449,11,509,8,198,220,220,220,11192,273,62,926,796,309,22854,15751,7,7295,62,27160,28,7295,62,27160,8,198,220,220,220,29598,796,29598,62,83,22854,7,83,22854,62,11612,28,83,22854,11,11192,273,62,1324,13907,28,83,22854,62,926,8,198,220,220,220,6818,318,39098,7,411,312,723,11,309,22854,8,198,220,220,220,6818,357,411,312,723,13,14171,62,14933,6624,2081,62,12286,62,14171,62,14933,8,198,220,220,220,45941,13,33407,13,30493,62,18747,62,40496,7,411,312,723,13,7890,11,2081,62,411,312,723,62,7890,8,628,220,220,220,1303,40103,5254,326,815,9677,4146,329,29598,11192,273,2233,284,2642,5128,2099,198,220,220,220,7177,62,18,67,796,45941,13,18747,26933,30109,15,11,352,11,362,11,513,4357,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,685,19,11,642,11,718,11,767,4357,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,685,23,11,860,11,838,11,1367,60,4357,628,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,16410,1065,11,1511,11,1478,11,1315,4357,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,685,1433,11,1596,11,1248,11,678,4357,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,685,1238,11,2310,11,2534,11,2242,11907,12962,198,220,220,220,11192,273,62,16,796,309,22854,7,18747,28,18747,62,18,67,8,198,220,220,220,11192,273,62,17,796,7177,62,18,67,198,220,220,220,351,12972,9288,13,430,2696,7,6030,12331,2599,198,220,220,220,220,220,220,220,29598,62,83,22854,7,83,22854,62,11612,28,83,22854,62,16,11,11192,273,62,1324,13907,28,83,22854,62,17,8,628,220,220,220,11192,273,62,16,796,7177,62,18,67,198,220,220,220,11192,273,62,17,796,309,22854,7,18747,28,18747,62,18,67,8,198,220,220,220,351,12972,9288,13,430,2696,7,6030,12331,2599,198,220,220,220,220,220,220,220,29598,62,83,22854,7,83,22854,62,11612,28,83,22854,62,16,11,11192,273,62,1324,13907,28,83,22854,62,17,8,198],"string":"[\n 11748,\n 12972,\n 9288,\n 198,\n 11748,\n 299,\n 32152,\n 355,\n 45941,\n 198,\n 6738,\n 1257,\n 310,\n 10141,\n 1330,\n 4646,\n 198,\n 6738,\n 289,\n 1252,\n 3524,\n 13,\n 7295,\n 13,\n 7249,\n 942,\n 1330,\n 309,\n 22854,\n 11,\n 51,\n 22854,\n 34,\n 5760,\n 11,\n 309,\n 22854,\n 51,\n 42,\n 35,\n 11,\n 309,\n 22854,\n 15751,\n 198,\n 6738,\n 289,\n 1252,\n 3524,\n 13,\n 26791,\n 13,\n 12102,\n 341,\n 13,\n 42116,\n 1330,\n 318,\n 62,\n 16668,\n 62,\n 1837,\n 3020,\n 19482,\n 198,\n 6738,\n 11485,\n 35487,\n 1330,\n 15715,\n 62,\n 83,\n 22854,\n 11,\n 29877,\n 62,\n 83,\n 22854,\n 11,\n 2208,\n 62,\n 10989,\n 27923,\n 62,\n 83,\n 22854,\n 11,\n 3467,\n 198,\n 220,\n 220,\n 220,\n 2208,\n 62,\n 10989,\n 363,\n 62,\n 83,\n 22854,\n 11,\n 2208,\n 62,\n 1837,\n 3020,\n 19482,\n 62,\n 83,\n 22854,\n 11,\n 29598,\n 62,\n 83,\n 22854,\n 628,\n 628,\n 198,\n 198,\n 4299,\n 1332,\n 62,\n 16668,\n 62,\n 10989,\n 363,\n 62,\n 83,\n 22854,\n 33529,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 30307,\n 329,\n 4441,\n 2208,\n 12,\n 10989,\n 27923,\n 11192,\n 273,\n 37811,\n 198,\n 220,\n 220,\n 220,\n 1502,\n 796,\n 513,\n 198,\n 220,\n 220,\n 220,\n 4279,\n 796,\n 362,\n 198,\n 220,\n 220,\n 220,\n 3376,\n 62,\n 43358,\n 796,\n 357,\n 43027,\n 11,\n 1267,\n 1635,\n 1502,\n 198,\n 220,\n 220,\n 220,\n 2081,\n 62,\n 12286,\n 62,\n 7890,\n 796,\n 45941,\n 13,\n 18747,\n 26933,\n 30109,\n 16,\n 1539,\n 657,\n 13,\n 4357,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 685,\n 15,\n 1539,\n 657,\n 8183,\n 4357,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 16410,\n 15,\n 1539,\n 657,\n 13,\n 4357,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 685,\n 15,\n 1539,\n 352,\n 8183,\n 11907,\n 8,\n 198,\n 220,\n 220,\n 220,\n 2081,\n 62,\n 12286,\n 62,\n 14171,\n 62,\n 14933,\n 796,\n 37250,\n 14171,\n 12,\n 15,\n 3256,\n 705,\n 14171,\n 12,\n 16,\n 3256,\n 705,\n 14171,\n 12,\n 17,\n 20520,\n 198,\n 220,\n 220,\n 220,\n 3376,\n 62,\n 27160,\n 796,\n 45941,\n 13,\n 283,\n 858,\n 7,\n 43027,\n 8,\n 198,\n 220,\n 220,\n 220,\n 2081,\n 62,\n 7890,\n 796,\n 45941,\n 13,\n 18747,\n 26933,\n 30109,\n 15,\n 1539,\n 657,\n 13,\n 4357,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 685,\n 15,\n 1539,\n 657,\n 8183,\n 4357,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 16410,\n 15,\n 1539,\n 657,\n 13,\n 4357,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 685,\n 15,\n 1539,\n 352,\n 8183,\n 11907,\n 8,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 40103,\n 5254,\n 329,\n 4277,\n 2208,\n 40039,\n 11192,\n 273,\n 198,\n 220,\n 220,\n 220,\n 11192,\n 273,\n 796,\n 2208,\n 62,\n 10989,\n 363,\n 62,\n 83,\n 22854,\n 7,\n 30283,\n 62,\n 43358,\n 8,\n 198,\n 220,\n 220,\n 220,\n 6818,\n 318,\n 39098,\n 7,\n 83,\n 22854,\n 11,\n 309,\n 22854,\n 8,\n 198,\n 220,\n 220,\n 220,\n 45941,\n 13,\n 33407,\n 13,\n 30493,\n 62,\n 18747,\n 62,\n 40496,\n 7,\n 83,\n 22854,\n 13,\n 7890,\n 11,\n 2081,\n 62,\n 12286,\n 62,\n 7890,\n 8,\n 198,\n 220,\n 220,\n 220,\n 6818,\n 357,\n 83,\n 22854,\n 13,\n 14171,\n 62,\n 14933,\n 6624,\n 2081,\n 62,\n 12286,\n 62,\n 14171,\n 62,\n 14933,\n 8,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 40103,\n 5254,\n 329,\n 2208,\n 40039,\n 11192,\n 273,\n 351,\n 2183,\n 3815,\n 319,\n 262,\n 1388,\n 40039,\n 198,\n 220,\n 220,\n 220,\n 11192,\n 273,\n 796,\n 2208,\n 62,\n 10989,\n 363,\n 62,\n 83,\n 22854,\n 7,\n 30283,\n 62,\n 43358,\n 11,\n 3815,\n 28,\n 30283,\n 62,\n 27160,\n 8,\n 198,\n 220,\n 220,\n 220,\n 6818,\n 318,\n 39098,\n 7,\n 83,\n 22854,\n 11,\n 309,\n 22854,\n 8,\n 198,\n 220,\n 220,\n 220,\n 45941,\n 13,\n 33407,\n 13,\n 30493,\n 62,\n 18747,\n 62,\n 40496,\n 7,\n 83,\n 22854,\n 13,\n 7890,\n 11,\n 2081,\n 62,\n 7890,\n 8,\n 198,\n 220,\n 220,\n 220,\n 6818,\n 357,\n 83,\n 22854,\n 13,\n 14171,\n 62,\n 14933,\n 6624,\n 2081,\n 62,\n 12286,\n 62,\n 14171,\n 62,\n 14933,\n 8,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 40103,\n 5254,\n 326,\n 815,\n 18448,\n 628,\n 220,\n 220,\n 220,\n 351,\n 12972,\n 9288,\n 13,\n 430,\n 2696,\n 7,\n 6030,\n 12331,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 5485,\n 815,\n 307,\n 3804,\n 355,\n 46545,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2208,\n 62,\n 10989,\n 363,\n 62,\n 83,\n 22854,\n 7,\n 43358,\n 28,\n 4868,\n 7,\n 30283,\n 62,\n 43358,\n 4008,\n 628,\n 220,\n 220,\n 220,\n 351,\n 12972,\n 9288,\n 13,\n 430,\n 2696,\n 7,\n 11395,\n 12331,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 477,\n 3815,\n 287,\n 5485,\n 815,\n 307,\n 262,\n 976,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 11491,\n 62,\n 43358,\n 796,\n 685,\n 43027,\n 60,\n 1635,\n 1502,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 11491,\n 62,\n 43358,\n 58,\n 16,\n 60,\n 796,\n 1502,\n 10,\n 16,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2208,\n 62,\n 10989,\n 363,\n 62,\n 83,\n 22854,\n 7,\n 43358,\n 28,\n 83,\n 29291,\n 7,\n 1939,\n 47315,\n 62,\n 43358,\n 4008,\n 628,\n 220,\n 220,\n 220,\n 351,\n 12972,\n 9288,\n 13,\n 430,\n 2696,\n 7,\n 11395,\n 12331,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 3815,\n 815,\n 307,\n 281,\n 530,\n 38517,\n 299,\n 32152,\n 7177,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 11491,\n 62,\n 27160,\n 796,\n 45941,\n 13,\n 1952,\n 26933,\n 43027,\n 11,\n 4279,\n 12962,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2208,\n 62,\n 10989,\n 363,\n 62,\n 83,\n 22854,\n 7,\n 43358,\n 28,\n 30283,\n 62,\n 43358,\n 11,\n 3815,\n 28,\n 1939,\n 47315,\n 62,\n 27160,\n 8,\n 628,\n 220,\n 220,\n 220,\n 351,\n 12972,\n 9288,\n 13,\n 430,\n 2696,\n 7,\n 11395,\n 12331,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 1165,\n 867,\n 3815,\n 329,\n 262,\n 7368,\n 5485,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 11491,\n 62,\n 27160,\n 796,\n 45941,\n 13,\n 1952,\n 7,\n 30283,\n 62,\n 43358,\n 58,\n 15,\n 48688,\n 16,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2208,\n 62,\n 10989,\n 363,\n 62,\n 83,\n 22854,\n 7,\n 43358,\n 28,\n 30283,\n 62,\n 43358,\n 11,\n 3815,\n 28,\n 1939,\n 47315,\n 62,\n 27160,\n 8,\n 628,\n 220,\n 220,\n 220,\n 351,\n 12972,\n 9288,\n 13,\n 430,\n 2696,\n 7,\n 6030,\n 12331,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 3815,\n 815,\n 307,\n 257,\n 299,\n 32152,\n 7177,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 11491,\n 62,\n 27160,\n 796,\n 685,\n 16,\n 60,\n 1635,\n 3376,\n 62,\n 43358,\n 58,\n 15,\n 60,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2208,\n 62,\n 10989,\n 363,\n 62,\n 83,\n 22854,\n 7,\n 43358,\n 28,\n 30283,\n 62,\n 43358,\n 11,\n 3815,\n 28,\n 1939,\n 47315,\n 62,\n 27160,\n 8,\n 628,\n 198,\n 198,\n 4299,\n 1332,\n 62,\n 411,\n 312,\n 723,\n 62,\n 83,\n 22854,\n 33529,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 30307,\n 329,\n 14492,\n 14,\n 20123,\n 278,\n 257,\n 29598,\n 11192,\n 273,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 2081,\n 62,\n 12286,\n 62,\n 14171,\n 62,\n 14933,\n 796,\n 37250,\n 14171,\n 12,\n 15,\n 3256,\n 705,\n 14171,\n 12,\n 16,\n 3256,\n 705,\n 14171,\n 12,\n 17,\n 20520,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 40103,\n 5254,\n 329,\n 29598,\n 11192,\n 273,\n 351,\n 262,\n 309,\n 22854,\n 198,\n 220,\n 220,\n 220,\n 7177,\n 62,\n 18,\n 67,\n 796,\n 45941,\n 13,\n 18747,\n 26933,\n 30109,\n 15,\n 11,\n 220,\n 352,\n 11,\n 220,\n 362,\n 11,\n 220,\n 513,\n 4357,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 685,\n 19,\n 11,\n 220,\n 642,\n 11,\n 220,\n 718,\n 11,\n 220,\n 767,\n 4357,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 685,\n 23,\n 11,\n 220,\n 860,\n 11,\n 838,\n 11,\n 1367,\n 60,\n 4357,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 16410,\n 1065,\n 11,\n 1511,\n 11,\n 1478,\n 11,\n 1315,\n 4357,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 685,\n 1433,\n 11,\n 1596,\n 11,\n 1248,\n 11,\n 678,\n 4357,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 685,\n 1238,\n 11,\n 2310,\n 11,\n 2534,\n 11,\n 2242,\n 11907,\n 12962,\n 198,\n 220,\n 220,\n 220,\n 2081,\n 62,\n 411,\n 312,\n 723,\n 62,\n 7890,\n 796,\n 45941,\n 13,\n 9107,\n 418,\n 7,\n 18747,\n 62,\n 18,\n 67,\n 13,\n 43358,\n 8,\n 198,\n 220,\n 220,\n 220,\n 11192,\n 273,\n 62,\n 16,\n 796,\n 309,\n 22854,\n 7,\n 18747,\n 28,\n 18747,\n 62,\n 18,\n 67,\n 8,\n 198,\n 220,\n 220,\n 220,\n 11192,\n 273,\n 62,\n 17,\n 796,\n 309,\n 22854,\n 7,\n 18747,\n 28,\n 18747,\n 62,\n 18,\n 67,\n 8,\n 198,\n 220,\n 220,\n 220,\n 29598,\n 796,\n 29598,\n 62,\n 83,\n 22854,\n 7,\n 83,\n 22854,\n 62,\n 11612,\n 28,\n 83,\n 22854,\n 62,\n 16,\n 11,\n 11192,\n 273,\n 62,\n 1324,\n 13907,\n 28,\n 83,\n 22854,\n 62,\n 17,\n 8,\n 198,\n 220,\n 220,\n 220,\n 6818,\n 318,\n 39098,\n 7,\n 411,\n 312,\n 723,\n 11,\n 309,\n 22854,\n 8,\n 198,\n 220,\n 220,\n 220,\n 6818,\n 357,\n 411,\n 312,\n 723,\n 13,\n 14171,\n 62,\n 14933,\n 6624,\n 2081,\n 62,\n 12286,\n 62,\n 14171,\n 62,\n 14933,\n 8,\n 198,\n 220,\n 220,\n 220,\n 45941,\n 13,\n 33407,\n 13,\n 30493,\n 62,\n 18747,\n 62,\n 40496,\n 7,\n 411,\n 312,\n 723,\n 13,\n 7890,\n 11,\n 2081,\n 62,\n 411,\n 312,\n 723,\n 62,\n 7890,\n 8,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 40103,\n 5254,\n 329,\n 29598,\n 11192,\n 273,\n 351,\n 262,\n 309,\n 22854,\n 34,\n 5760,\n 198,\n 220,\n 220,\n 220,\n 7177,\n 62,\n 18,\n 67,\n 796,\n 45941,\n 13,\n 18747,\n 26933,\n 30109,\n 3064,\n 1539,\n 8646,\n 1539,\n 7337,\n 1539,\n 25240,\n 13,\n 4357,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 685,\n 9031,\n 1539,\n 22626,\n 1539,\n 47235,\n 1539,\n 1478,\n 1120,\n 13,\n 4357,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 685,\n 7029,\n 1539,\n 47235,\n 1539,\n 35665,\n 1539,\n 2242,\n 1120,\n 8183,\n 4357,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 16410,\n 9031,\n 1539,\n 22626,\n 1539,\n 47235,\n 1539,\n 1478,\n 1120,\n 13,\n 4357,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 685,\n 17544,\n 1539,\n 36864,\n 1539,\n 513,\n 2167,\n 1539,\n 5846,\n 2425,\n 13,\n 4357,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 685,\n 940,\n 1120,\n 1539,\n 513,\n 2167,\n 1539,\n 7192,\n 1120,\n 1539,\n 767,\n 4059,\n 8183,\n 11907,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1267,\n 198,\n 220,\n 220,\n 220,\n 2081,\n 62,\n 411,\n 312,\n 723,\n 62,\n 7890,\n 796,\n 45941,\n 13,\n 9107,\n 418,\n 7,\n 18747,\n 62,\n 18,\n 67,\n 13,\n 43358,\n 8,\n 198,\n 220,\n 220,\n 220,\n 11192,\n 273,\n 796,\n 309,\n 22854,\n 7,\n 18747,\n 28,\n 18747,\n 62,\n 18,\n 67,\n 8,\n 198,\n 220,\n 220,\n 220,\n 10117,\n 62,\n 43358,\n 796,\n 357,\n 17,\n 11,\n 513,\n 11,\n 604,\n 8,\n 220,\n 220,\n 220,\n 1303,\n 8160,\n 5485,\n 286,\n 262,\n 11192,\n 273,\n 287,\n 1336,\n 1296,\n 198,\n 220,\n 220,\n 220,\n 371,\n 796,\n 642,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 8160,\n 41662,\n 8135,\n 282,\n 4279,\n 286,\n 257,\n 11192,\n 273,\n 287,\n 16932,\n 1296,\n 198,\n 220,\n 220,\n 220,\n 4755,\n 62,\n 27160,\n 796,\n 45941,\n 13,\n 1952,\n 7,\n 49,\n 8,\n 198,\n 220,\n 220,\n 220,\n 277,\n 6759,\n 796,\n 685,\n 37659,\n 13,\n 283,\n 858,\n 7,\n 11612,\n 62,\n 27740,\n 1635,\n 371,\n 737,\n 3447,\n 1758,\n 7,\n 11612,\n 62,\n 27740,\n 11,\n 371,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 329,\n 1796,\n 62,\n 27740,\n 287,\n 10117,\n 62,\n 43358,\n 60,\n 198,\n 220,\n 220,\n 220,\n 11192,\n 273,\n 62,\n 13155,\n 67,\n 796,\n 309,\n 22854,\n 34,\n 5760,\n 7,\n 69,\n 6759,\n 28,\n 69,\n 6759,\n 11,\n 4755,\n 62,\n 27160,\n 28,\n 7295,\n 62,\n 27160,\n 8,\n 198,\n 220,\n 220,\n 220,\n 29598,\n 796,\n 29598,\n 62,\n 83,\n 22854,\n 7,\n 83,\n 22854,\n 62,\n 11612,\n 28,\n 83,\n 22854,\n 11,\n 11192,\n 273,\n 62,\n 1324,\n 13907,\n 28,\n 83,\n 22854,\n 62,\n 13155,\n 67,\n 8,\n 198,\n 220,\n 220,\n 220,\n 6818,\n 318,\n 39098,\n 7,\n 411,\n 312,\n 723,\n 11,\n 309,\n 22854,\n 8,\n 198,\n 220,\n 220,\n 220,\n 6818,\n 357,\n 411,\n 312,\n 723,\n 13,\n 14171,\n 62,\n 14933,\n 6624,\n 2081,\n 62,\n 12286,\n 62,\n 14171,\n 62,\n 14933,\n 8,\n 198,\n 220,\n 220,\n 220,\n 45941,\n 13,\n 33407,\n 13,\n 30493,\n 62,\n 18747,\n 62,\n 40496,\n 7,\n 411,\n 312,\n 723,\n 13,\n 7890,\n 11,\n 2081,\n 62,\n 411,\n 312,\n 723,\n 62,\n 7890,\n 8,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 40103,\n 5254,\n 329,\n 29598,\n 11192,\n 273,\n 351,\n 262,\n 309,\n 22854,\n 51,\n 42,\n 35,\n 198,\n 220,\n 220,\n 220,\n 7177,\n 62,\n 18,\n 67,\n 796,\n 45941,\n 13,\n 18747,\n 26933,\n 30109,\n 30695,\n 11,\n 220,\n 220,\n 1511,\n 3510,\n 11,\n 220,\n 220,\n 2242,\n 1415,\n 11,\n 220,\n 220,\n 513,\n 32568,\n 11,\n 220,\n 220,\n 5433,\n 1120,\n 4357,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 685,\n 1485,\n 3104,\n 11,\n 220,\n 220,\n 4764,\n 3980,\n 11,\n 220,\n 220,\n 9698,\n 2598,\n 11,\n 220,\n 19035,\n 2624,\n 11,\n 220,\n 1315,\n 19504,\n 4357,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 685,\n 1954,\n 3365,\n 11,\n 220,\n 220,\n 807,\n 32459,\n 11,\n 220,\n 1478,\n 31020,\n 11,\n 220,\n 1160,\n 36243,\n 11,\n 220,\n 2608,\n 25964,\n 4357,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 685,\n 2091,\n 2780,\n 11,\n 220,\n 19035,\n 4304,\n 11,\n 220,\n 1160,\n 26429,\n 11,\n 220,\n 38902,\n 2624,\n 11,\n 220,\n 49020,\n 1899,\n 60,\n 4357,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 16410,\n 1415,\n 3365,\n 11,\n 220,\n 220,\n 642,\n 20964,\n 11,\n 220,\n 220,\n 9193,\n 2682,\n 11,\n 220,\n 13151,\n 1828,\n 11,\n 220,\n 1467,\n 21536,\n 4357,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 685,\n 4349,\n 1065,\n 11,\n 220,\n 27228,\n 2598,\n 11,\n 220,\n 1542,\n 39509,\n 11,\n 220,\n 5946,\n 28688,\n 11,\n 220,\n 642,\n 2414,\n 1821,\n 4357,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 685,\n 5774,\n 2791,\n 11,\n 220,\n 38369,\n 3682,\n 11,\n 220,\n 642,\n 1983,\n 1507,\n 11,\n 220,\n 8915,\n 45214,\n 11,\n 220,\n 860,\n 2791,\n 2154,\n 4357,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 685,\n 17464,\n 1238,\n 11,\n 220,\n 42671,\n 1821,\n 11,\n 220,\n 767,\n 3510,\n 1899,\n 11,\n 838,\n 3553,\n 1795,\n 11,\n 1511,\n 3388,\n 405,\n 60,\n 4357,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 16410,\n 1495,\n 2548,\n 11,\n 220,\n 220,\n 9919,\n 3510,\n 11,\n 220,\n 1315,\n 32182,\n 11,\n 220,\n 24894,\n 5237,\n 11,\n 220,\n 2579,\n 17279,\n 4357,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 685,\n 3459,\n 3980,\n 11,\n 220,\n 28947,\n 2624,\n 11,\n 220,\n 7192,\n 21315,\n 11,\n 220,\n 5441,\n 22842,\n 11,\n 220,\n 860,\n 2425,\n 1899,\n 4357,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 685,\n 1314,\n 22985,\n 11,\n 220,\n 7192,\n 16817,\n 11,\n 220,\n 860,\n 940,\n 5237,\n 11,\n 1105,\n 12865,\n 21,\n 11,\n 1467,\n 3388,\n 1120,\n 4357,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 685,\n 22291,\n 5892,\n 11,\n 220,\n 5441,\n 18638,\n 11,\n 1105,\n 4531,\n 1433,\n 11,\n 1248,\n 2075,\n 2078,\n 11,\n 2242,\n 5066,\n 1821,\n 11907,\n 12962,\n 198,\n 220,\n 220,\n 220,\n 2081,\n 62,\n 411,\n 312,\n 723,\n 62,\n 7890,\n 796,\n 45941,\n 13,\n 9107,\n 418,\n 7,\n 18747,\n 62,\n 18,\n 67,\n 13,\n 43358,\n 8,\n 198,\n 220,\n 220,\n 220,\n 11192,\n 273,\n 796,\n 309,\n 22854,\n 7,\n 18747,\n 28,\n 18747,\n 62,\n 18,\n 67,\n 8,\n 198,\n 220,\n 220,\n 220,\n 10117,\n 62,\n 43358,\n 796,\n 357,\n 18,\n 11,\n 604,\n 11,\n 642,\n 8,\n 220,\n 220,\n 220,\n 1303,\n 8160,\n 5485,\n 286,\n 262,\n 11192,\n 273,\n 287,\n 1336,\n 1296,\n 198,\n 220,\n 220,\n 220,\n 25962,\n 62,\n 43027,\n 796,\n 357,\n 17,\n 11,\n 513,\n 11,\n 604,\n 8,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 8160,\n 5021,\n 12,\n 29127,\n 4279,\n 286,\n 257,\n 11192,\n 273,\n 287,\n 25951,\n 1296,\n 198,\n 220,\n 220,\n 220,\n 4755,\n 62,\n 7857,\n 796,\n 4646,\n 7,\n 50033,\n 2124,\n 11,\n 331,\n 25,\n 2124,\n 1635,\n 331,\n 11,\n 25962,\n 62,\n 43027,\n 8,\n 198,\n 220,\n 220,\n 220,\n 4755,\n 62,\n 27160,\n 796,\n 45941,\n 13,\n 283,\n 858,\n 7,\n 7295,\n 62,\n 7857,\n 737,\n 3447,\n 1758,\n 7,\n 4029,\n 62,\n 43027,\n 8,\n 198,\n 220,\n 220,\n 220,\n 277,\n 6759,\n 796,\n 685,\n 37659,\n 13,\n 283,\n 858,\n 7,\n 701,\n 62,\n 43358,\n 58,\n 14171,\n 60,\n 1635,\n 25962,\n 62,\n 43027,\n 58,\n 14171,\n 35944,\n 3447,\n 1758,\n 7,\n 701,\n 62,\n 43358,\n 58,\n 14171,\n 4357,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 25962,\n 62,\n 43027,\n 58,\n 14171,\n 12962,\n 329,\n 4235,\n 287,\n 2837,\n 7,\n 11925,\n 7,\n 701,\n 62,\n 43358,\n 4008,\n 60,\n 198,\n 220,\n 220,\n 220,\n 11192,\n 273,\n 62,\n 30488,\n 67,\n 796,\n 309,\n 22854,\n 51,\n 42,\n 35,\n 7,\n 69,\n 6759,\n 28,\n 69,\n 6759,\n 11,\n 4755,\n 62,\n 27160,\n 28,\n 7295,\n 62,\n 27160,\n 8,\n 198,\n 220,\n 220,\n 220,\n 29598,\n 796,\n 29598,\n 62,\n 83,\n 22854,\n 7,\n 83,\n 22854,\n 62,\n 11612,\n 28,\n 83,\n 22854,\n 11,\n 11192,\n 273,\n 62,\n 1324,\n 13907,\n 28,\n 83,\n 22854,\n 62,\n 30488,\n 67,\n 8,\n 198,\n 220,\n 220,\n 220,\n 6818,\n 318,\n 39098,\n 7,\n 411,\n 312,\n 723,\n 11,\n 309,\n 22854,\n 8,\n 198,\n 220,\n 220,\n 220,\n 6818,\n 357,\n 411,\n 312,\n 723,\n 13,\n 14171,\n 62,\n 14933,\n 6624,\n 2081,\n 62,\n 12286,\n 62,\n 14171,\n 62,\n 14933,\n 8,\n 198,\n 220,\n 220,\n 220,\n 45941,\n 13,\n 33407,\n 13,\n 30493,\n 62,\n 18747,\n 62,\n 40496,\n 7,\n 411,\n 312,\n 723,\n 13,\n 7890,\n 11,\n 2081,\n 62,\n 411,\n 312,\n 723,\n 62,\n 7890,\n 8,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 40103,\n 5254,\n 329,\n 29598,\n 11192,\n 273,\n 351,\n 262,\n 309,\n 22854,\n 15751,\n 198,\n 220,\n 220,\n 220,\n 7177,\n 62,\n 18,\n 67,\n 796,\n 45941,\n 13,\n 18747,\n 26933,\n 30109,\n 6200,\n 11,\n 44084,\n 11,\n 48758,\n 11,\n 45095,\n 11,\n 5125,\n 17,\n 11,\n 38190,\n 4357,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 685,\n 32182,\n 11,\n 43184,\n 11,\n 604,\n 3104,\n 11,\n 45719,\n 11,\n 642,\n 6469,\n 11,\n 718,\n 2670,\n 4357,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 685,\n 26200,\n 11,\n 604,\n 4524,\n 11,\n 38190,\n 11,\n 3126,\n 21,\n 11,\n 718,\n 4761,\n 11,\n 767,\n 2548,\n 4357,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 685,\n 39997,\n 11,\n 642,\n 2718,\n 11,\n 718,\n 1065,\n 11,\n 718,\n 5774,\n 11,\n 767,\n 5237,\n 11,\n 807,\n 2718,\n 4357,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 685,\n 47493,\n 11,\n 10053,\n 11,\n 718,\n 5705,\n 11,\n 46720,\n 11,\n 807,\n 4309,\n 11,\n 860,\n 2623,\n 60,\n 4357,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 16410,\n 39277,\n 11,\n 1367,\n 940,\n 11,\n 1105,\n 1899,\n 11,\n 1478,\n 940,\n 11,\n 1315,\n 1899,\n 11,\n 1596,\n 940,\n 4357,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 685,\n 1065,\n 1270,\n 11,\n 1478,\n 1495,\n 11,\n 1467,\n 1238,\n 11,\n 1248,\n 1314,\n 11,\n 3050,\n 11,\n 15629,\n 20,\n 4357,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 685,\n 33698,\n 11,\n 1596,\n 1821,\n 11,\n 7169,\n 11,\n 2534,\n 1238,\n 11,\n 1987,\n 1899,\n 11,\n 2681,\n 405,\n 4357,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 685,\n 1558,\n 2154,\n 11,\n 1160,\n 2816,\n 11,\n 2242,\n 1821,\n 11,\n 2608,\n 1495,\n 11,\n 2808,\n 940,\n 11,\n 513,\n 22186,\n 4357,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 685,\n 1238,\n 1821,\n 11,\n 2242,\n 2154,\n 11,\n 2681,\n 405,\n 11,\n 1542,\n 1270,\n 11,\n 4747,\n 1899,\n 11,\n 513,\n 35844,\n 60,\n 4357,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 16410,\n 1433,\n 1238,\n 11,\n 1248,\n 4761,\n 11,\n 362,\n 17464,\n 11,\n 2242,\n 4304,\n 11,\n 2608,\n 2078,\n 11,\n 2579,\n 1795,\n 4357,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 685,\n 17,\n 15801,\n 11,\n 1987,\n 2670,\n 11,\n 2681,\n 4761,\n 11,\n 513,\n 13348,\n 11,\n 4974,\n 2548,\n 11,\n 42163,\n 16,\n 4357,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 685,\n 1495,\n 5892,\n 11,\n 5867,\n 21,\n 11,\n 4974,\n 1238,\n 11,\n 4353,\n 2682,\n 11,\n 604,\n 23045,\n 11,\n 604,\n 39380,\n 4357,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 685,\n 1270,\n 3695,\n 11,\n 3439,\n 4790,\n 11,\n 2319,\n 3104,\n 11,\n 604,\n 46572,\n 11,\n 2026,\n 3365,\n 11,\n 44717,\n 18,\n 4357,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 685,\n 2327,\n 2414,\n 11,\n 604,\n 15187,\n 11,\n 6298,\n 1433,\n 11,\n 642,\n 32759,\n 11,\n 7618,\n 3104,\n 11,\n 718,\n 30272,\n 60,\n 4357,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 16410,\n 1828,\n 1795,\n 11,\n 2608,\n 2682,\n 11,\n 2808,\n 3459,\n 11,\n 513,\n 31575,\n 11,\n 513,\n 38205,\n 11,\n 2319,\n 1120,\n 4357,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 685,\n 1959,\n 6469,\n 11,\n 513,\n 36625,\n 11,\n 5014,\n 1731,\n 11,\n 604,\n 31010,\n 11,\n 4764,\n 2791,\n 11,\n 642,\n 31496,\n 4357,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 685,\n 2623,\n 5705,\n 11,\n 604,\n 29807,\n 11,\n 4764,\n 1899,\n 11,\n 642,\n 31115,\n 11,\n 3126,\n 2623,\n 11,\n 7930,\n 1731,\n 4357,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 685,\n 19,\n 21734,\n 11,\n 2026,\n 6420,\n 11,\n 642,\n 41060,\n 11,\n 6135,\n 486,\n 11,\n 767,\n 22136,\n 11,\n 9225,\n 1157,\n 4357,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 685,\n 1120,\n 3459,\n 11,\n 7863,\n 940,\n 11,\n 8275,\n 2624,\n 11,\n 767,\n 44218,\n 11,\n 807,\n 32128,\n 11,\n 860,\n 22337,\n 11907,\n 12962,\n 198,\n 220,\n 220,\n 220,\n 2081,\n 62,\n 411,\n 312,\n 723,\n 62,\n 7890,\n 796,\n 45941,\n 13,\n 9107,\n 418,\n 7,\n 18747,\n 62,\n 18,\n 67,\n 13,\n 43358,\n 8,\n 198,\n 220,\n 220,\n 220,\n 11192,\n 273,\n 796,\n 309,\n 22854,\n 7,\n 18747,\n 28,\n 18747,\n 62,\n 18,\n 67,\n 8,\n 198,\n 220,\n 220,\n 220,\n 374,\n 16,\n 11,\n 374,\n 17,\n 796,\n 362,\n 11,\n 513,\n 198,\n 220,\n 220,\n 220,\n 314,\n 11,\n 449,\n 11,\n 509,\n 796,\n 604,\n 11,\n 642,\n 11,\n 718,\n 198,\n 220,\n 220,\n 220,\n 4755,\n 62,\n 16,\n 796,\n 45941,\n 13,\n 283,\n 858,\n 7,\n 40,\n 1635,\n 374,\n 16,\n 737,\n 3447,\n 1758,\n 7,\n 40,\n 11,\n 374,\n 16,\n 8,\n 198,\n 220,\n 220,\n 220,\n 4755,\n 62,\n 17,\n 796,\n 45941,\n 13,\n 283,\n 858,\n 7,\n 81,\n 16,\n 1635,\n 449,\n 1635,\n 374,\n 17,\n 737,\n 3447,\n 1758,\n 7,\n 81,\n 16,\n 11,\n 449,\n 11,\n 374,\n 17,\n 8,\n 198,\n 220,\n 220,\n 220,\n 4755,\n 62,\n 18,\n 796,\n 45941,\n 13,\n 283,\n 858,\n 7,\n 81,\n 17,\n 1635,\n 509,\n 737,\n 3447,\n 1758,\n 7,\n 81,\n 17,\n 11,\n 509,\n 8,\n 198,\n 220,\n 220,\n 220,\n 4755,\n 62,\n 27160,\n 796,\n 685,\n 7295,\n 62,\n 16,\n 11,\n 4755,\n 62,\n 17,\n 11,\n 4755,\n 62,\n 18,\n 60,\n 198,\n 220,\n 220,\n 220,\n 10117,\n 62,\n 43358,\n 796,\n 357,\n 40,\n 11,\n 449,\n 11,\n 509,\n 8,\n 198,\n 220,\n 220,\n 220,\n 11192,\n 273,\n 62,\n 926,\n 796,\n 309,\n 22854,\n 15751,\n 7,\n 7295,\n 62,\n 27160,\n 28,\n 7295,\n 62,\n 27160,\n 8,\n 198,\n 220,\n 220,\n 220,\n 29598,\n 796,\n 29598,\n 62,\n 83,\n 22854,\n 7,\n 83,\n 22854,\n 62,\n 11612,\n 28,\n 83,\n 22854,\n 11,\n 11192,\n 273,\n 62,\n 1324,\n 13907,\n 28,\n 83,\n 22854,\n 62,\n 926,\n 8,\n 198,\n 220,\n 220,\n 220,\n 6818,\n 318,\n 39098,\n 7,\n 411,\n 312,\n 723,\n 11,\n 309,\n 22854,\n 8,\n 198,\n 220,\n 220,\n 220,\n 6818,\n 357,\n 411,\n 312,\n 723,\n 13,\n 14171,\n 62,\n 14933,\n 6624,\n 2081,\n 62,\n 12286,\n 62,\n 14171,\n 62,\n 14933,\n 8,\n 198,\n 220,\n 220,\n 220,\n 45941,\n 13,\n 33407,\n 13,\n 30493,\n 62,\n 18747,\n 62,\n 40496,\n 7,\n 411,\n 312,\n 723,\n 13,\n 7890,\n 11,\n 2081,\n 62,\n 411,\n 312,\n 723,\n 62,\n 7890,\n 8,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 40103,\n 5254,\n 326,\n 815,\n 9677,\n 4146,\n 329,\n 29598,\n 11192,\n 273,\n 2233,\n 284,\n 2642,\n 5128,\n 2099,\n 198,\n 220,\n 220,\n 220,\n 7177,\n 62,\n 18,\n 67,\n 796,\n 45941,\n 13,\n 18747,\n 26933,\n 30109,\n 15,\n 11,\n 352,\n 11,\n 362,\n 11,\n 513,\n 4357,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 685,\n 19,\n 11,\n 642,\n 11,\n 718,\n 11,\n 767,\n 4357,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 685,\n 23,\n 11,\n 860,\n 11,\n 838,\n 11,\n 1367,\n 60,\n 4357,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 16410,\n 1065,\n 11,\n 1511,\n 11,\n 1478,\n 11,\n 1315,\n 4357,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 685,\n 1433,\n 11,\n 1596,\n 11,\n 1248,\n 11,\n 678,\n 4357,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 685,\n 1238,\n 11,\n 2310,\n 11,\n 2534,\n 11,\n 2242,\n 11907,\n 12962,\n 198,\n 220,\n 220,\n 220,\n 11192,\n 273,\n 62,\n 16,\n 796,\n 309,\n 22854,\n 7,\n 18747,\n 28,\n 18747,\n 62,\n 18,\n 67,\n 8,\n 198,\n 220,\n 220,\n 220,\n 11192,\n 273,\n 62,\n 17,\n 796,\n 7177,\n 62,\n 18,\n 67,\n 198,\n 220,\n 220,\n 220,\n 351,\n 12972,\n 9288,\n 13,\n 430,\n 2696,\n 7,\n 6030,\n 12331,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 29598,\n 62,\n 83,\n 22854,\n 7,\n 83,\n 22854,\n 62,\n 11612,\n 28,\n 83,\n 22854,\n 62,\n 16,\n 11,\n 11192,\n 273,\n 62,\n 1324,\n 13907,\n 28,\n 83,\n 22854,\n 62,\n 17,\n 8,\n 628,\n 220,\n 220,\n 220,\n 11192,\n 273,\n 62,\n 16,\n 796,\n 7177,\n 62,\n 18,\n 67,\n 198,\n 220,\n 220,\n 220,\n 11192,\n 273,\n 62,\n 17,\n 796,\n 309,\n 22854,\n 7,\n 18747,\n 28,\n 18747,\n 62,\n 18,\n 67,\n 8,\n 198,\n 220,\n 220,\n 220,\n 351,\n 12972,\n 9288,\n 13,\n 430,\n 2696,\n 7,\n 6030,\n 12331,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 29598,\n 62,\n 83,\n 22854,\n 7,\n 83,\n 22854,\n 62,\n 11612,\n 28,\n 83,\n 22854,\n 62,\n 16,\n 11,\n 11192,\n 273,\n 62,\n 1324,\n 13907,\n 28,\n 83,\n 22854,\n 62,\n 17,\n 8,\n 198\n]"},"ratio_char_token":{"kind":"number","value":1.9111741597555651,"string":"1.911174"},"token_count":{"kind":"number","value":4582,"string":"4,582"}}},{"rowIdx":2440,"cells":{"content":{"kind":"string","value":"\"\"\"Base classes for my data model.\"\"\"\nimport decimal\n\nfrom google.appengine.ext import ndb\nfrom google.appengine.ext.ndb import polymodel\n\nfrom appengine import history, rest, user\n\n\n# From http://stackoverflow.com/questions/10035133/ndb-decimal-property\nclass DecimalProperty(ndb.IntegerProperty):\n \"\"\"Decimal property ideal to store currency values, such as $20.34.\"\"\"\n # See https://developers.google.com/appengine/docs/python/ndb/subclassprop\n\n\nclass Base(polymodel.PolyModel):\n \"\"\"Base for all objects.\"\"\"\n\n def to_dict(self):\n \"\"\"Convert this object to a python dict.\"\"\"\n result = super(Base, self).to_dict()\n result['id'] = self.key.id()\n result['class'] = result['class_'][-1]\n del result['class_']\n\n # Should move this into detector mixin when I figure out how\n if 'detector' in result:\n del result['detector']\n return result\n\n @classmethod\n\n def _put_async(self, **ctx_options):\n \"\"\"Overrides _put_async and sends event to UI.\"\"\"\n classname = self._event_classname()\n if classname is not None:\n values = self.to_dict()\n user.send_event(cls=classname, id=self.key.string_id(),\n event='update', obj=values)\n history.store_version(values)\n return super(Base, self)._put_async(**ctx_options)\n put_async = _put_async\n\n @rest.command\n\n def sync(self):\n \"\"\"Called when fields on the object are updated\n through the API.\"\"\"\n pass\n"},"input_ids":{"kind":"list like","value":[37811,14881,6097,329,616,1366,2746,526,15931,198,11748,32465,198,198,6738,23645,13,1324,18392,13,2302,1330,299,9945,198,6738,23645,13,1324,18392,13,2302,13,358,65,1330,7514,19849,198,198,6738,598,18392,1330,2106,11,1334,11,2836,628,198,2,3574,2638,1378,25558,2502,11125,13,785,14,6138,507,14,3064,2327,16945,14,358,65,12,12501,4402,12,26745,198,4871,4280,4402,21746,7,358,65,13,46541,21746,2599,198,220,37227,10707,4402,3119,7306,284,3650,7395,3815,11,884,355,720,1238,13,2682,526,15931,198,220,1303,4091,3740,1378,16244,364,13,13297,13,785,14,1324,18392,14,31628,14,29412,14,358,65,14,7266,4871,22930,628,198,4871,7308,7,35428,19849,13,34220,17633,2599,198,220,37227,14881,329,477,5563,526,15931,628,220,825,284,62,11600,7,944,2599,198,220,220,220,37227,3103,1851,428,2134,284,257,21015,8633,526,15931,198,220,220,220,1255,796,2208,7,14881,11,2116,737,1462,62,11600,3419,198,220,220,220,1255,17816,312,20520,796,2116,13,2539,13,312,3419,198,220,220,220,1255,17816,4871,20520,796,1255,17816,4871,62,6,7131,12,16,60,198,220,220,220,1619,1255,17816,4871,62,20520,628,220,220,220,1303,10358,1445,428,656,31029,5022,259,618,314,3785,503,703,198,220,220,220,611,705,15255,9250,6,287,1255,25,198,220,220,220,220,220,1619,1255,17816,15255,9250,20520,198,220,220,220,1441,1255,628,220,2488,4871,24396,628,220,825,4808,1996,62,292,13361,7,944,11,12429,49464,62,25811,2599,198,220,220,220,37227,5886,81,1460,4808,1996,62,292,13361,290,12800,1785,284,12454,526,15931,198,220,220,220,1398,3672,796,2116,13557,15596,62,4871,3672,3419,198,220,220,220,611,1398,3672,318,407,6045,25,198,220,220,220,220,220,3815,796,2116,13,1462,62,11600,3419,198,220,220,220,220,220,2836,13,21280,62,15596,7,565,82,28,4871,3672,11,4686,28,944,13,2539,13,8841,62,312,22784,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1785,11639,19119,3256,26181,28,27160,8,198,220,220,220,220,220,2106,13,8095,62,9641,7,27160,8,198,220,220,220,1441,2208,7,14881,11,2116,737,62,1996,62,292,13361,7,1174,49464,62,25811,8,198,220,1234,62,292,13361,796,4808,1996,62,292,13361,628,220,2488,2118,13,21812,628,220,825,17510,7,944,2599,198,220,220,220,37227,34,4262,618,7032,319,262,2134,389,6153,198,220,220,220,220,220,220,832,262,7824,526,15931,198,220,220,220,1208,198],"string":"[\n 37811,\n 14881,\n 6097,\n 329,\n 616,\n 1366,\n 2746,\n 526,\n 15931,\n 198,\n 11748,\n 32465,\n 198,\n 198,\n 6738,\n 23645,\n 13,\n 1324,\n 18392,\n 13,\n 2302,\n 1330,\n 299,\n 9945,\n 198,\n 6738,\n 23645,\n 13,\n 1324,\n 18392,\n 13,\n 2302,\n 13,\n 358,\n 65,\n 1330,\n 7514,\n 19849,\n 198,\n 198,\n 6738,\n 598,\n 18392,\n 1330,\n 2106,\n 11,\n 1334,\n 11,\n 2836,\n 628,\n 198,\n 2,\n 3574,\n 2638,\n 1378,\n 25558,\n 2502,\n 11125,\n 13,\n 785,\n 14,\n 6138,\n 507,\n 14,\n 3064,\n 2327,\n 16945,\n 14,\n 358,\n 65,\n 12,\n 12501,\n 4402,\n 12,\n 26745,\n 198,\n 4871,\n 4280,\n 4402,\n 21746,\n 7,\n 358,\n 65,\n 13,\n 46541,\n 21746,\n 2599,\n 198,\n 220,\n 37227,\n 10707,\n 4402,\n 3119,\n 7306,\n 284,\n 3650,\n 7395,\n 3815,\n 11,\n 884,\n 355,\n 720,\n 1238,\n 13,\n 2682,\n 526,\n 15931,\n 198,\n 220,\n 1303,\n 4091,\n 3740,\n 1378,\n 16244,\n 364,\n 13,\n 13297,\n 13,\n 785,\n 14,\n 1324,\n 18392,\n 14,\n 31628,\n 14,\n 29412,\n 14,\n 358,\n 65,\n 14,\n 7266,\n 4871,\n 22930,\n 628,\n 198,\n 4871,\n 7308,\n 7,\n 35428,\n 19849,\n 13,\n 34220,\n 17633,\n 2599,\n 198,\n 220,\n 37227,\n 14881,\n 329,\n 477,\n 5563,\n 526,\n 15931,\n 628,\n 220,\n 825,\n 284,\n 62,\n 11600,\n 7,\n 944,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 3103,\n 1851,\n 428,\n 2134,\n 284,\n 257,\n 21015,\n 8633,\n 526,\n 15931,\n 198,\n 220,\n 220,\n 220,\n 1255,\n 796,\n 2208,\n 7,\n 14881,\n 11,\n 2116,\n 737,\n 1462,\n 62,\n 11600,\n 3419,\n 198,\n 220,\n 220,\n 220,\n 1255,\n 17816,\n 312,\n 20520,\n 796,\n 2116,\n 13,\n 2539,\n 13,\n 312,\n 3419,\n 198,\n 220,\n 220,\n 220,\n 1255,\n 17816,\n 4871,\n 20520,\n 796,\n 1255,\n 17816,\n 4871,\n 62,\n 6,\n 7131,\n 12,\n 16,\n 60,\n 198,\n 220,\n 220,\n 220,\n 1619,\n 1255,\n 17816,\n 4871,\n 62,\n 20520,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 10358,\n 1445,\n 428,\n 656,\n 31029,\n 5022,\n 259,\n 618,\n 314,\n 3785,\n 503,\n 703,\n 198,\n 220,\n 220,\n 220,\n 611,\n 705,\n 15255,\n 9250,\n 6,\n 287,\n 1255,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1619,\n 1255,\n 17816,\n 15255,\n 9250,\n 20520,\n 198,\n 220,\n 220,\n 220,\n 1441,\n 1255,\n 628,\n 220,\n 2488,\n 4871,\n 24396,\n 628,\n 220,\n 825,\n 4808,\n 1996,\n 62,\n 292,\n 13361,\n 7,\n 944,\n 11,\n 12429,\n 49464,\n 62,\n 25811,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 5886,\n 81,\n 1460,\n 4808,\n 1996,\n 62,\n 292,\n 13361,\n 290,\n 12800,\n 1785,\n 284,\n 12454,\n 526,\n 15931,\n 198,\n 220,\n 220,\n 220,\n 1398,\n 3672,\n 796,\n 2116,\n 13557,\n 15596,\n 62,\n 4871,\n 3672,\n 3419,\n 198,\n 220,\n 220,\n 220,\n 611,\n 1398,\n 3672,\n 318,\n 407,\n 6045,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3815,\n 796,\n 2116,\n 13,\n 1462,\n 62,\n 11600,\n 3419,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2836,\n 13,\n 21280,\n 62,\n 15596,\n 7,\n 565,\n 82,\n 28,\n 4871,\n 3672,\n 11,\n 4686,\n 28,\n 944,\n 13,\n 2539,\n 13,\n 8841,\n 62,\n 312,\n 22784,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1785,\n 11639,\n 19119,\n 3256,\n 26181,\n 28,\n 27160,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2106,\n 13,\n 8095,\n 62,\n 9641,\n 7,\n 27160,\n 8,\n 198,\n 220,\n 220,\n 220,\n 1441,\n 2208,\n 7,\n 14881,\n 11,\n 2116,\n 737,\n 62,\n 1996,\n 62,\n 292,\n 13361,\n 7,\n 1174,\n 49464,\n 62,\n 25811,\n 8,\n 198,\n 220,\n 1234,\n 62,\n 292,\n 13361,\n 796,\n 4808,\n 1996,\n 62,\n 292,\n 13361,\n 628,\n 220,\n 2488,\n 2118,\n 13,\n 21812,\n 628,\n 220,\n 825,\n 17510,\n 7,\n 944,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 34,\n 4262,\n 618,\n 7032,\n 319,\n 262,\n 2134,\n 389,\n 6153,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 832,\n 262,\n 7824,\n 526,\n 15931,\n 198,\n 220,\n 220,\n 220,\n 1208,\n 198\n]"},"ratio_char_token":{"kind":"number","value":2.782101167315175,"string":"2.782101"},"token_count":{"kind":"number","value":514,"string":"514"}}},{"rowIdx":2441,"cells":{"content":{"kind":"string","value":"#\n# Copyright (C) 2016-2020 by Nathan Lovato, Daniel Oakey, Razvan Radulescu, and contributors\n#\n# This file is part of Power Sequencer.\n#\n# Power Sequencer is free software: you can redistribute it and/or modify it under the terms of the\n# GNU General Public License as published by the Free Software Foundation, either version 3 of the\n# License, or (at your option) any later version.\n#\n# Power Sequencer is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;\n# without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n# GNU General Public License for more details.\n#\n# You should have received a copy of the GNU General Public License along with Power Sequencer. If\n# not, see .\n#\nimport bpy\n\nfrom .utils.doc import doc_name, doc_idname, doc_brief, doc_description\n\n\nclass POWER_SEQUENCER_OT_scene_cycle(bpy.types.Operator):\n \"\"\"\n Cycle through scenes\n \"\"\"\n\n doc = {\n \"name\": doc_name(__qualname__),\n \"demo\": \"https://i.imgur.com/7zhq8Tg.gif\",\n \"description\": doc_description(__doc__),\n \"shortcuts\": [({\"type\": \"TAB\", \"value\": \"PRESS\", \"shift\": True}, {}, \"Cycle Scenes\")],\n \"keymap\": \"Sequencer\",\n }\n bl_idname = doc_idname(__qualname__)\n bl_label = doc[\"name\"]\n bl_description = doc_brief(doc[\"description\"])\n bl_options = {\"REGISTER\", \"UNDO\"}\n\n @classmethod\n"},"input_ids":{"kind":"list like","value":[2,198,2,15069,357,34,8,1584,12,42334,416,18106,39911,5549,11,7806,440,539,88,11,38058,10438,5325,377,3798,84,11,290,20420,198,2,198,2,770,2393,318,636,286,4333,24604,12137,13,198,2,198,2,4333,24604,12137,318,1479,3788,25,345,460,17678,4163,340,290,14,273,13096,340,739,262,2846,286,262,198,2,22961,3611,5094,13789,355,3199,416,262,3232,10442,5693,11,2035,2196,513,286,262,198,2,13789,11,393,357,265,534,3038,8,597,1568,2196,13,198,2,198,2,4333,24604,12137,318,9387,287,262,2911,326,340,481,307,4465,11,475,42881,15529,34764,56,26,198,2,1231,772,262,17142,18215,286,34482,3398,1565,5603,25382,393,376,46144,7473,317,16652,2149,37232,33079,48933,13,4091,262,198,2,22961,3611,5094,13789,329,517,3307,13,198,2,198,2,921,815,423,2722,257,4866,286,262,22961,3611,5094,13789,1863,351,4333,24604,12137,13,1002,198,2,407,11,766,1279,5450,1378,2503,13,41791,13,2398,14,677,4541,15913,13,198,2,198,11748,275,9078,198,198,6738,764,26791,13,15390,1330,2205,62,3672,11,2205,62,312,3672,11,2205,62,65,3796,11,2205,62,11213,628,198,4871,40295,62,5188,10917,24181,1137,62,2394,62,29734,62,13696,7,65,9078,13,19199,13,18843,1352,2599,198,220,220,220,37227,198,220,220,220,26993,832,8188,198,220,220,220,37227,628,220,220,220,2205,796,1391,198,220,220,220,220,220,220,220,366,3672,1298,2205,62,3672,7,834,13255,3672,834,828,198,220,220,220,220,220,220,220,366,9536,78,1298,366,5450,1378,72,13,19791,13,785,14,22,23548,80,23,51,70,13,27908,1600,198,220,220,220,220,220,220,220,366,11213,1298,2205,62,11213,7,834,15390,834,828,198,220,220,220,220,220,220,220,366,19509,23779,1298,47527,4895,4906,1298,366,5603,33,1600,366,8367,1298,366,32761,1600,366,30846,1298,6407,5512,1391,5512,366,20418,2375,49525,4943,4357,198,220,220,220,220,220,220,220,366,2539,8899,1298,366,44015,12137,1600,198,220,220,220,1782,198,220,220,220,698,62,312,3672,796,2205,62,312,3672,7,834,13255,3672,834,8,198,220,220,220,698,62,18242,796,2205,14692,3672,8973,198,220,220,220,698,62,11213,796,2205,62,65,3796,7,15390,14692,11213,8973,8,198,220,220,220,698,62,25811,796,19779,31553,41517,1600,366,4944,18227,20662,628,220,220,220,2488,4871,24396,198],"string":"[\n 2,\n 198,\n 2,\n 15069,\n 357,\n 34,\n 8,\n 1584,\n 12,\n 42334,\n 416,\n 18106,\n 39911,\n 5549,\n 11,\n 7806,\n 440,\n 539,\n 88,\n 11,\n 38058,\n 10438,\n 5325,\n 377,\n 3798,\n 84,\n 11,\n 290,\n 20420,\n 198,\n 2,\n 198,\n 2,\n 770,\n 2393,\n 318,\n 636,\n 286,\n 4333,\n 24604,\n 12137,\n 13,\n 198,\n 2,\n 198,\n 2,\n 4333,\n 24604,\n 12137,\n 318,\n 1479,\n 3788,\n 25,\n 345,\n 460,\n 17678,\n 4163,\n 340,\n 290,\n 14,\n 273,\n 13096,\n 340,\n 739,\n 262,\n 2846,\n 286,\n 262,\n 198,\n 2,\n 22961,\n 3611,\n 5094,\n 13789,\n 355,\n 3199,\n 416,\n 262,\n 3232,\n 10442,\n 5693,\n 11,\n 2035,\n 2196,\n 513,\n 286,\n 262,\n 198,\n 2,\n 13789,\n 11,\n 393,\n 357,\n 265,\n 534,\n 3038,\n 8,\n 597,\n 1568,\n 2196,\n 13,\n 198,\n 2,\n 198,\n 2,\n 4333,\n 24604,\n 12137,\n 318,\n 9387,\n 287,\n 262,\n 2911,\n 326,\n 340,\n 481,\n 307,\n 4465,\n 11,\n 475,\n 42881,\n 15529,\n 34764,\n 56,\n 26,\n 198,\n 2,\n 1231,\n 772,\n 262,\n 17142,\n 18215,\n 286,\n 34482,\n 3398,\n 1565,\n 5603,\n 25382,\n 393,\n 376,\n 46144,\n 7473,\n 317,\n 16652,\n 2149,\n 37232,\n 33079,\n 48933,\n 13,\n 4091,\n 262,\n 198,\n 2,\n 22961,\n 3611,\n 5094,\n 13789,\n 329,\n 517,\n 3307,\n 13,\n 198,\n 2,\n 198,\n 2,\n 921,\n 815,\n 423,\n 2722,\n 257,\n 4866,\n 286,\n 262,\n 22961,\n 3611,\n 5094,\n 13789,\n 1863,\n 351,\n 4333,\n 24604,\n 12137,\n 13,\n 1002,\n 198,\n 2,\n 407,\n 11,\n 766,\n 1279,\n 5450,\n 1378,\n 2503,\n 13,\n 41791,\n 13,\n 2398,\n 14,\n 677,\n 4541,\n 15913,\n 13,\n 198,\n 2,\n 198,\n 11748,\n 275,\n 9078,\n 198,\n 198,\n 6738,\n 764,\n 26791,\n 13,\n 15390,\n 1330,\n 2205,\n 62,\n 3672,\n 11,\n 2205,\n 62,\n 312,\n 3672,\n 11,\n 2205,\n 62,\n 65,\n 3796,\n 11,\n 2205,\n 62,\n 11213,\n 628,\n 198,\n 4871,\n 40295,\n 62,\n 5188,\n 10917,\n 24181,\n 1137,\n 62,\n 2394,\n 62,\n 29734,\n 62,\n 13696,\n 7,\n 65,\n 9078,\n 13,\n 19199,\n 13,\n 18843,\n 1352,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 26993,\n 832,\n 8188,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 628,\n 220,\n 220,\n 220,\n 2205,\n 796,\n 1391,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 3672,\n 1298,\n 2205,\n 62,\n 3672,\n 7,\n 834,\n 13255,\n 3672,\n 834,\n 828,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 9536,\n 78,\n 1298,\n 366,\n 5450,\n 1378,\n 72,\n 13,\n 19791,\n 13,\n 785,\n 14,\n 22,\n 23548,\n 80,\n 23,\n 51,\n 70,\n 13,\n 27908,\n 1600,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 11213,\n 1298,\n 2205,\n 62,\n 11213,\n 7,\n 834,\n 15390,\n 834,\n 828,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 19509,\n 23779,\n 1298,\n 47527,\n 4895,\n 4906,\n 1298,\n 366,\n 5603,\n 33,\n 1600,\n 366,\n 8367,\n 1298,\n 366,\n 32761,\n 1600,\n 366,\n 30846,\n 1298,\n 6407,\n 5512,\n 1391,\n 5512,\n 366,\n 20418,\n 2375,\n 49525,\n 4943,\n 4357,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 2539,\n 8899,\n 1298,\n 366,\n 44015,\n 12137,\n 1600,\n 198,\n 220,\n 220,\n 220,\n 1782,\n 198,\n 220,\n 220,\n 220,\n 698,\n 62,\n 312,\n 3672,\n 796,\n 2205,\n 62,\n 312,\n 3672,\n 7,\n 834,\n 13255,\n 3672,\n 834,\n 8,\n 198,\n 220,\n 220,\n 220,\n 698,\n 62,\n 18242,\n 796,\n 2205,\n 14692,\n 3672,\n 8973,\n 198,\n 220,\n 220,\n 220,\n 698,\n 62,\n 11213,\n 796,\n 2205,\n 62,\n 65,\n 3796,\n 7,\n 15390,\n 14692,\n 11213,\n 8973,\n 8,\n 198,\n 220,\n 220,\n 220,\n 698,\n 62,\n 25811,\n 796,\n 19779,\n 31553,\n 41517,\n 1600,\n 366,\n 4944,\n 18227,\n 20662,\n 628,\n 220,\n 220,\n 220,\n 2488,\n 4871,\n 24396,\n 198\n]"},"ratio_char_token":{"kind":"number","value":2.94824016563147,"string":"2.94824"},"token_count":{"kind":"number","value":483,"string":"483"}}},{"rowIdx":2442,"cells":{"content":{"kind":"string","value":"from sys import path as sys_path\nfrom os import path as os_path\nfrom subprocess import Popen, PIPE\nimport time\nimport logging\nimport warnings\nimport numpy as np\n\nsys_path.append(os_path.abspath('../src'))\n\nfrom config import RUNTIME_CONFIG\nfrom config import john_nick_names, hc_nick_names\nfrom common import PasswordPolicyConf, FilePath\nfrom argparsing import setup_args, parse_args\nfrom guess_count import GuessCount\nfrom tokenstr import TokenString\nfrom utility import read_passwords,read_wordlist,read_rulelist,get_look_cmd,build_trie_from_wordlist\nfrom utility import filter_passwords_with_password_policy\nfrom preprocess import precomputation\nfrom invert_rule import invert_one_rule\nfrom demo_common import match_inversion_result, search_exist_data, search_trie, estimate_guess_number\n\n\ndef start_processing():\n \"\"\" Take in a wordlist, rulelist and test set, outputs the guessability and guess number of each pwd in the test set.\n\n Steps:\n 1. read rulelist and do precomputation (detect invertibility)\n 2. read wordlist/pwlist, and get count for each rule\n 3. Rule Inversion (for each rule, invert all pwds)\n \"\"\"\n\n stime = time.perf_counter()\n\n ##################### Precomputation and Other Preparation #####################\n # initialize a bash exe for communication\n external_bash_process = Popen(['/bin/bash'], stdin=PIPE, stdout=PIPE)\n\n # Logging Basic Info\n logging.basicConfig(filename=RUNTIME_CONFIG.get_log_addr(),level=logging.DEBUG)\n logging.info(\"Starting Time: {}\\n\\nConfigurations: {}\\n\".format(time.strftime(\"%Y-%m-%d %H:%M\"), RUNTIME_CONFIG.short_config_string()))\n logging.info(\"PasswordPolicy: {}\\n\".format(RUNTIME_CONFIG['password_policy'].to_debug_string()))\n\n print(\"Reading Rulelist\\n\")\n rulelist = read_rulelist(RUNTIME_CONFIG['rulelist_path']['name'], RUNTIME_CONFIG['rulelist_path']['prefix'])\n\n print(\"Start Precomputation\\n\")\n rulelist = precomputation(rulelist)\n\n print(\"Reading Wordlist and Password Set\\n\")\n wordlist = read_wordlist(RUNTIME_CONFIG['wordlist_path']['name'], RUNTIME_CONFIG['wordlist_path']['prefix'])\n\n # Computing Guess Count\n counts, cumsum = GuessCount.get_counts(wordlist, rulelist, RUNTIME_CONFIG['preprocess_path'])\n\n # read other things\n pwlist = read_passwords(RUNTIME_CONFIG['pwlist_path']['addr'])\n # filter out pwds not consistent with the policy\n not_filtered_pwds, filtered_pwds = filter_passwords_with_password_policy(pwlist)\n trie = build_trie_from_wordlist(wordlist)\n\n ##################### Start Inversion #####################\n print(\"Start Inverting Rules\\n\")\n i_time = time.perf_counter()\n # guessability of pwds\n is_guessable = [False] * len(pwlist)\n is_enable_regex = RUNTIME_CONFIG['enable_regex']\n is_debug = RUNTIME_CONFIG['debug']\n lookup_threshold = RUNTIME_CONFIG['lookup_threshold']\n # tokenize pwds once.\n tokenized_pwds = [TokenString(pwd) for pw_idx, pwd in not_filtered_pwds]\n\n # invert rules (with special memory handling and other staff)\n for r_idx, r in enumerate(rulelist):\n if is_debug == True:\n print(r.raw)\n \n if r.feasibility.is_invertible(): # invertible, if blow up, use trie\n for token_pwd, (pw_idx, pwd) in zip(tokenized_pwds,not_filtered_pwds):\n result = invert_one_rule(token_pwd,r,is_enable_regex,r.feasibility.special_idx)\n if result.is_normal():\n if result.get_number_of_strings() <= lookup_threshold:\n ret_vals = match_inversion_result(result, wordlist)\n else:\n ret_vals = search_trie(result, trie)\n\n if len(ret_vals) != 0:\n is_guessable[pw_idx] = True\n for v in ret_vals:\n logging.info(\"\\nPasswordIdx:{}\\nPassword:{}\\nRule:{}\\nWord:{}\\nGuess:{} ( {} - {} )\\n\".format(pw_idx, pwd, r.raw, v, *estimate_guess_number(counts, cumsum, v, r_idx, wordlist)))\n\n elif result.is_out_of_scope():\n ret_vals = []\n logging.info(\"Inversion error for {}(RL) {}(pw), error msg: {}\\n\".format(r.raw, pwd, \"out_of_scope\"))\n print(\"Inversion error for {}(RL) {}(pw), error msg: {}\".format(r.raw, pwd, \"out_of_scope\"))\n\n else:\n ret_vals = []\n logging.info(\"Inversion error for {}(RL) {}(pw), error msg: {}\\n\".format(r.raw, pwd, result.error_msg))\n print(\"Inversion error for {}(RL) {}(pw), error msg: {}\".format(r.raw, pwd, result.error_msg))\n\n elif r.feasibility.is_optimizable(): # uninvertible, if cannot handle, binary\n # where the binary file is stored\n enumerated_data_addr = \"{}/enumerated/rule{}.txt\".format(RUNTIME_CONFIG['preprocess_path'],r_idx)\n for token_pwd, (pw_idx, pwd) in zip(tokenized_pwds,not_filtered_pwds):\n result = invert_one_rule(token_pwd,r,is_enable_regex)\n\n if result.is_normal():\n if result.get_number_of_strings() <= lookup_threshold:\n ret_vals = match_inversion_result(result, wordlist)\n else:\n ret_vals = search_exist_data(pwd,enumerated_data_addr,external_bash_process)\n \n if len(ret_vals) != 0:\n is_guessable[pw_idx] = True\n for v in ret_vals:\n logging.info(\"\\nPasswordIdx:{}\\nPassword:{}\\nRule:{}\\nWord:{}\\nGuess:{} ( {} - {} )\\n\".format(pw_idx, pwd, r.raw, v, *estimate_guess_number(counts, cumsum, v, r_idx, wordlist)))\n\n elif result.is_out_of_scope():\n ret_vals = search_exist_data(pwd,enumerated_data_addr,external_bash_process)\n if len(ret_vals) != 0:\n is_guessable[pw_idx] = True\n for v in ret_vals:\n logging.info(\"\\nPasswordIdx:{}\\nPassword:{}\\nRule:{}\\nWord:{}\\nGuess:{} ( {} - {} )\\n\".format(pw_idx, pwd, r.raw, v, *estimate_guess_number(counts, cumsum, v, r_idx, wordlist)))\n else:\n ret_vals = []\n logging.info(\"Inversion error for {}(RL) {}(pw), error msg: {}\\n\".format(r.raw, pwd, result.error_msg))\n print(\"Inversion error for {}(RL) {}(pw), error msg: {}\".format(r.raw, pwd, result.error_msg))\n\n else: # binary\n # where the binary file is stored\n enumerated_data_addr = \"{}/enumerated/rule{}.txt\".format(RUNTIME_CONFIG['preprocess_path'],r_idx)\n for token_pwd, (pw_idx, pwd) in zip(tokenized_pwds,not_filtered_pwds):\n ret_vals = search_exist_data(pwd,enumerated_data_addr,external_bash_process)\n\n if len(ret_vals) != 0:\n is_guessable[pw_idx] = True\n for v in ret_vals:\n logging.info(\"\\nPasswordIdx:{}\\nPassword:{}\\nRule:{}\\nWord:{}\\nGuess:{} ( {} - {} )\\n\".format(pw_idx, pwd, r.raw, v, *estimate_guess_number(counts, cumsum, v, r_idx, wordlist)))\n ##################### End of Inversion #####################\n \n # Write Not Guessable Data\n for pw_idx, pwd in filtered_pwds:\n logging.info(\"\\nPasswordIdx:{}\\nPassword:{}\\nNot Guessable\\n\".format(pw_idx, pwd))\n\n for is_guessed, (pw_idx, pwd) in zip(is_guessable, not_filtered_pwds):\n if is_guessed == False:\n logging.info(\"\\nPasswordIdx:{}\\nPassword:{}\\nNot Guessable\\n\".format(pw_idx, pwd))\n\n logging.info(\"Total guesses made by this configuration: {}\\n\".format(np.sum(counts)))\n\n print(\"Finished Inverting Rules, Total Time: {}\".format(time.perf_counter()-i_time))\n\n\nif __name__ == \"__main__\":\n main()"},"input_ids":{"kind":"list like","value":[6738,25064,1330,3108,355,25064,62,6978,198,6738,28686,1330,3108,355,28686,62,6978,198,6738,850,14681,1330,8099,268,11,350,4061,36,198,11748,640,198,11748,18931,198,11748,14601,198,11748,299,32152,355,45941,198,198,17597,62,6978,13,33295,7,418,62,6978,13,397,2777,776,10786,40720,10677,6,4008,198,198,6738,4566,1330,32494,34694,62,10943,16254,198,6738,4566,1330,45610,62,17172,62,14933,11,289,66,62,17172,62,14933,198,6738,2219,1330,30275,36727,18546,11,9220,15235,198,6738,1822,79,945,278,1330,9058,62,22046,11,21136,62,22046,198,6738,4724,62,9127,1330,37571,12332,198,6738,11241,2536,1330,29130,10100,198,6738,10361,1330,1100,62,6603,10879,11,961,62,4775,4868,11,961,62,25135,4868,11,1136,62,5460,62,28758,11,11249,62,83,5034,62,6738,62,4775,4868,198,6738,10361,1330,8106,62,6603,10879,62,4480,62,28712,62,30586,198,6738,662,14681,1330,662,785,1996,341,198,6738,287,1851,62,25135,1330,287,1851,62,505,62,25135,198,6738,13605,62,11321,1330,2872,62,259,9641,62,20274,11,2989,62,38476,62,7890,11,2989,62,83,5034,11,8636,62,5162,408,62,17618,628,198,4299,923,62,36948,33529,198,220,220,220,37227,7214,287,257,1573,4868,11,3896,4868,290,1332,900,11,23862,262,4724,1799,290,4724,1271,286,1123,279,16993,287,262,1332,900,13,628,220,220,220,32144,25,198,220,220,220,220,220,220,220,352,13,1100,3896,4868,290,466,662,785,1996,341,357,15255,478,287,1851,2247,8,198,220,220,220,220,220,220,220,362,13,1100,1573,4868,14,79,86,4868,11,290,651,954,329,1123,3896,198,220,220,220,220,220,220,220,513,13,14330,554,9641,357,1640,1123,3896,11,287,1851,477,279,86,9310,8,198,220,220,220,37227,628,220,220,220,336,524,796,640,13,525,69,62,24588,3419,628,220,220,220,1303,14468,4242,3771,785,1996,341,290,3819,38397,341,1303,14468,4242,198,220,220,220,1303,41216,257,27334,409,68,329,6946,198,220,220,220,7097,62,41757,62,14681,796,8099,268,7,17816,14,8800,14,41757,6,4357,14367,259,28,47,4061,36,11,14367,448,28,47,4061,36,8,628,220,220,220,1303,5972,2667,14392,14151,198,220,220,220,18931,13,35487,16934,7,34345,28,49,4944,34694,62,10943,16254,13,1136,62,6404,62,29851,22784,5715,28,6404,2667,13,30531,8,198,220,220,220,18931,13,10951,7203,22851,3862,25,23884,59,77,59,77,16934,20074,25,23884,59,77,1911,18982,7,2435,13,2536,31387,7203,4,56,12,4,76,12,4,67,4064,39,25,4,44,12340,32494,34694,62,10943,16254,13,19509,62,11250,62,8841,3419,4008,198,220,220,220,18931,13,10951,7203,35215,36727,25,23884,59,77,1911,18982,7,49,4944,34694,62,10943,16254,17816,28712,62,30586,6,4083,1462,62,24442,62,8841,3419,4008,628,220,220,220,3601,7203,36120,14330,4868,59,77,4943,198,220,220,220,3896,4868,796,1100,62,25135,4868,7,49,4944,34694,62,10943,16254,17816,25135,4868,62,6978,6,7131,6,3672,6,4357,32494,34694,62,10943,16254,17816,25135,4868,62,6978,6,7131,6,40290,6,12962,628,220,220,220,3601,7203,10434,3771,785,1996,341,59,77,4943,198,220,220,220,3896,4868,796,662,785,1996,341,7,25135,4868,8,628,220,220,220,3601,7203,36120,9678,4868,290,30275,5345,59,77,4943,198,220,220,220,1573,4868,796,1100,62,4775,4868,7,49,4944,34694,62,10943,16254,17816,4775,4868,62,6978,6,7131,6,3672,6,4357,32494,34694,62,10943,16254,17816,4775,4868,62,6978,6,7131,6,40290,6,12962,628,220,220,220,1303,38589,37571,2764,198,220,220,220,9853,11,269,5700,388,796,37571,12332,13,1136,62,9127,82,7,4775,4868,11,3896,4868,11,32494,34694,62,10943,16254,17816,3866,14681,62,6978,6,12962,628,220,220,220,1303,1100,584,1243,198,220,220,220,279,86,4868,796,1100,62,6603,10879,7,49,4944,34694,62,10943,16254,17816,79,86,4868,62,6978,6,7131,6,29851,6,12962,198,220,220,220,1303,8106,503,279,86,9310,407,6414,351,262,2450,198,220,220,220,407,62,10379,4400,62,79,86,9310,11,29083,62,79,86,9310,796,8106,62,6603,10879,62,4480,62,28712,62,30586,7,79,86,4868,8,198,220,220,220,1333,68,796,1382,62,83,5034,62,6738,62,4775,4868,7,4775,4868,8,628,220,220,220,1303,14468,4242,7253,554,9641,1303,14468,4242,198,220,220,220,3601,7203,10434,554,48820,14252,59,77,4943,198,220,220,220,1312,62,2435,796,640,13,525,69,62,24588,3419,198,220,220,220,1303,4724,1799,286,279,86,9310,198,220,220,220,318,62,5162,408,540,796,685,25101,60,1635,18896,7,79,86,4868,8,198,220,220,220,318,62,21633,62,260,25636,796,32494,34694,62,10943,16254,17816,21633,62,260,25636,20520,198,220,220,220,318,62,24442,796,32494,34694,62,10943,16254,17816,24442,20520,198,220,220,220,35847,62,400,10126,796,32494,34694,62,10943,16254,17816,5460,929,62,400,10126,20520,198,220,220,220,1303,11241,1096,279,86,9310,1752,13,198,220,220,220,11241,1143,62,79,86,9310,796,685,30642,10100,7,79,16993,8,329,279,86,62,312,87,11,279,16993,287,407,62,10379,4400,62,79,86,9310,60,628,220,220,220,1303,287,1851,3173,357,4480,2041,4088,9041,290,584,3085,8,198,220,220,220,329,374,62,312,87,11,374,287,27056,378,7,25135,4868,2599,198,220,220,220,220,220,220,220,611,318,62,24442,6624,6407,25,198,220,220,220,220,220,220,220,220,220,220,220,3601,7,81,13,1831,8,198,220,220,220,220,220,220,220,220,220,220,220,220,198,220,220,220,220,220,220,220,611,374,13,5036,292,2247,13,271,62,259,1851,856,33529,1303,287,1851,856,11,611,6611,510,11,779,1333,68,198,220,220,220,220,220,220,220,220,220,220,220,329,11241,62,79,16993,11,357,79,86,62,312,87,11,279,16993,8,287,19974,7,30001,1143,62,79,86,9310,11,1662,62,10379,4400,62,79,86,9310,2599,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1255,796,287,1851,62,505,62,25135,7,30001,62,79,16993,11,81,11,271,62,21633,62,260,25636,11,81,13,5036,292,2247,13,20887,62,312,87,8,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,611,1255,13,271,62,11265,33529,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,611,1255,13,1136,62,17618,62,1659,62,37336,3419,19841,35847,62,400,10126,25,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1005,62,12786,796,2872,62,259,9641,62,20274,7,20274,11,1573,4868,8,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,2073,25,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1005,62,12786,796,2989,62,83,5034,7,20274,11,1333,68,8,628,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,611,18896,7,1186,62,12786,8,14512,657,25,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,318,62,5162,408,540,58,79,86,62,312,87,60,796,6407,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,329,410,287,1005,62,12786,25,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,18931,13,10951,7203,59,77,35215,7390,87,29164,32239,77,35215,29164,32239,77,31929,29164,32239,77,26449,29164,32239,77,8205,408,29164,92,357,23884,532,23884,1267,59,77,1911,18982,7,79,86,62,312,87,11,279,16993,11,374,13,1831,11,410,11,1635,395,1920,62,5162,408,62,17618,7,9127,82,11,269,5700,388,11,410,11,374,62,312,87,11,1573,4868,22305,628,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1288,361,1255,13,271,62,448,62,1659,62,29982,33529,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1005,62,12786,796,17635,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,18931,13,10951,7203,818,9641,4049,329,23884,7,7836,8,23884,7,79,86,828,4049,31456,25,23884,59,77,1911,18982,7,81,13,1831,11,279,16993,11,366,448,62,1659,62,29982,48774,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,3601,7203,818,9641,4049,329,23884,7,7836,8,23884,7,79,86,828,4049,31456,25,23884,1911,18982,7,81,13,1831,11,279,16993,11,366,448,62,1659,62,29982,48774,628,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,2073,25,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1005,62,12786,796,17635,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,18931,13,10951,7203,818,9641,4049,329,23884,7,7836,8,23884,7,79,86,828,4049,31456,25,23884,59,77,1911,18982,7,81,13,1831,11,279,16993,11,1255,13,18224,62,19662,4008,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,3601,7203,818,9641,4049,329,23884,7,7836,8,23884,7,79,86,828,4049,31456,25,23884,1911,18982,7,81,13,1831,11,279,16993,11,1255,13,18224,62,19662,4008,628,220,220,220,220,220,220,220,1288,361,374,13,5036,292,2247,13,271,62,40085,13821,33529,1303,26329,1851,856,11,611,2314,5412,11,13934,198,220,220,220,220,220,220,220,220,220,220,220,1303,810,262,13934,2393,318,8574,198,220,220,220,220,220,220,220,220,220,220,220,27056,515,62,7890,62,29851,796,45144,92,14,268,6975,515,14,25135,90,27422,14116,1911,18982,7,49,4944,34694,62,10943,16254,17816,3866,14681,62,6978,6,4357,81,62,312,87,8,198,220,220,220,220,220,220,220,220,220,220,220,329,11241,62,79,16993,11,357,79,86,62,312,87,11,279,16993,8,287,19974,7,30001,1143,62,79,86,9310,11,1662,62,10379,4400,62,79,86,9310,2599,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1255,796,287,1851,62,505,62,25135,7,30001,62,79,16993,11,81,11,271,62,21633,62,260,25636,8,628,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,611,1255,13,271,62,11265,33529,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,611,1255,13,1136,62,17618,62,1659,62,37336,3419,19841,35847,62,400,10126,25,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1005,62,12786,796,2872,62,259,9641,62,20274,7,20274,11,1573,4868,8,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,2073,25,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1005,62,12786,796,2989,62,38476,62,7890,7,79,16993,11,268,6975,515,62,7890,62,29851,11,22615,62,41757,62,14681,8,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,611,18896,7,1186,62,12786,8,14512,657,25,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,318,62,5162,408,540,58,79,86,62,312,87,60,796,6407,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,329,410,287,1005,62,12786,25,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,18931,13,10951,7203,59,77,35215,7390,87,29164,32239,77,35215,29164,32239,77,31929,29164,32239,77,26449,29164,32239,77,8205,408,29164,92,357,23884,532,23884,1267,59,77,1911,18982,7,79,86,62,312,87,11,279,16993,11,374,13,1831,11,410,11,1635,395,1920,62,5162,408,62,17618,7,9127,82,11,269,5700,388,11,410,11,374,62,312,87,11,1573,4868,22305,628,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1288,361,1255,13,271,62,448,62,1659,62,29982,33529,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1005,62,12786,796,2989,62,38476,62,7890,7,79,16993,11,268,6975,515,62,7890,62,29851,11,22615,62,41757,62,14681,8,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,611,18896,7,1186,62,12786,8,14512,657,25,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,318,62,5162,408,540,58,79,86,62,312,87,60,796,6407,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,329,410,287,1005,62,12786,25,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,18931,13,10951,7203,59,77,35215,7390,87,29164,32239,77,35215,29164,32239,77,31929,29164,32239,77,26449,29164,32239,77,8205,408,29164,92,357,23884,532,23884,1267,59,77,1911,18982,7,79,86,62,312,87,11,279,16993,11,374,13,1831,11,410,11,1635,395,1920,62,5162,408,62,17618,7,9127,82,11,269,5700,388,11,410,11,374,62,312,87,11,1573,4868,22305,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,2073,25,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1005,62,12786,796,17635,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,18931,13,10951,7203,818,9641,4049,329,23884,7,7836,8,23884,7,79,86,828,4049,31456,25,23884,59,77,1911,18982,7,81,13,1831,11,279,16993,11,1255,13,18224,62,19662,4008,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,3601,7203,818,9641,4049,329,23884,7,7836,8,23884,7,79,86,828,4049,31456,25,23884,1911,18982,7,81,13,1831,11,279,16993,11,1255,13,18224,62,19662,4008,628,220,220,220,220,220,220,220,2073,25,1303,13934,198,220,220,220,220,220,220,220,220,220,220,220,1303,810,262,13934,2393,318,8574,198,220,220,220,220,220,220,220,220,220,220,220,27056,515,62,7890,62,29851,796,45144,92,14,268,6975,515,14,25135,90,27422,14116,1911,18982,7,49,4944,34694,62,10943,16254,17816,3866,14681,62,6978,6,4357,81,62,312,87,8,198,220,220,220,220,220,220,220,220,220,220,220,329,11241,62,79,16993,11,357,79,86,62,312,87,11,279,16993,8,287,19974,7,30001,1143,62,79,86,9310,11,1662,62,10379,4400,62,79,86,9310,2599,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1005,62,12786,796,2989,62,38476,62,7890,7,79,16993,11,268,6975,515,62,7890,62,29851,11,22615,62,41757,62,14681,8,628,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,611,18896,7,1186,62,12786,8,14512,657,25,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,318,62,5162,408,540,58,79,86,62,312,87,60,796,6407,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,329,410,287,1005,62,12786,25,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,18931,13,10951,7203,59,77,35215,7390,87,29164,32239,77,35215,29164,32239,77,31929,29164,32239,77,26449,29164,32239,77,8205,408,29164,92,357,23884,532,23884,1267,59,77,1911,18982,7,79,86,62,312,87,11,279,16993,11,374,13,1831,11,410,11,1635,395,1920,62,5162,408,62,17618,7,9127,82,11,269,5700,388,11,410,11,374,62,312,87,11,1573,4868,22305,198,220,220,220,1303,14468,4242,5268,286,554,9641,1303,14468,4242,198,220,220,220,220,198,220,220,220,1303,19430,1892,37571,540,6060,198,220,220,220,329,279,86,62,312,87,11,279,16993,287,29083,62,79,86,9310,25,198,220,220,220,220,220,220,220,18931,13,10951,7203,59,77,35215,7390,87,29164,32239,77,35215,29164,32239,77,3673,37571,540,59,77,1911,18982,7,79,86,62,312,87,11,279,16993,4008,628,220,220,220,329,318,62,5162,6676,11,357,79,86,62,312,87,11,279,16993,8,287,19974,7,271,62,5162,408,540,11,407,62,10379,4400,62,79,86,9310,2599,198,220,220,220,220,220,220,220,611,318,62,5162,6676,6624,10352,25,198,220,220,220,220,220,220,220,220,220,220,220,18931,13,10951,7203,59,77,35215,7390,87,29164,32239,77,35215,29164,32239,77,3673,37571,540,59,77,1911,18982,7,79,86,62,312,87,11,279,16993,4008,628,220,220,220,18931,13,10951,7203,14957,44774,925,416,428,8398,25,23884,59,77,1911,18982,7,37659,13,16345,7,9127,82,22305,628,220,220,220,3601,7203,18467,1348,554,48820,14252,11,7472,3862,25,23884,1911,18982,7,2435,13,525,69,62,24588,3419,12,72,62,2435,4008,628,198,361,11593,3672,834,6624,366,834,12417,834,1298,198,220,220,220,1388,3419],"string":"[\n 6738,\n 25064,\n 1330,\n 3108,\n 355,\n 25064,\n 62,\n 6978,\n 198,\n 6738,\n 28686,\n 1330,\n 3108,\n 355,\n 28686,\n 62,\n 6978,\n 198,\n 6738,\n 850,\n 14681,\n 1330,\n 8099,\n 268,\n 11,\n 350,\n 4061,\n 36,\n 198,\n 11748,\n 640,\n 198,\n 11748,\n 18931,\n 198,\n 11748,\n 14601,\n 198,\n 11748,\n 299,\n 32152,\n 355,\n 45941,\n 198,\n 198,\n 17597,\n 62,\n 6978,\n 13,\n 33295,\n 7,\n 418,\n 62,\n 6978,\n 13,\n 397,\n 2777,\n 776,\n 10786,\n 40720,\n 10677,\n 6,\n 4008,\n 198,\n 198,\n 6738,\n 4566,\n 1330,\n 32494,\n 34694,\n 62,\n 10943,\n 16254,\n 198,\n 6738,\n 4566,\n 1330,\n 45610,\n 62,\n 17172,\n 62,\n 14933,\n 11,\n 289,\n 66,\n 62,\n 17172,\n 62,\n 14933,\n 198,\n 6738,\n 2219,\n 1330,\n 30275,\n 36727,\n 18546,\n 11,\n 9220,\n 15235,\n 198,\n 6738,\n 1822,\n 79,\n 945,\n 278,\n 1330,\n 9058,\n 62,\n 22046,\n 11,\n 21136,\n 62,\n 22046,\n 198,\n 6738,\n 4724,\n 62,\n 9127,\n 1330,\n 37571,\n 12332,\n 198,\n 6738,\n 11241,\n 2536,\n 1330,\n 29130,\n 10100,\n 198,\n 6738,\n 10361,\n 1330,\n 1100,\n 62,\n 6603,\n 10879,\n 11,\n 961,\n 62,\n 4775,\n 4868,\n 11,\n 961,\n 62,\n 25135,\n 4868,\n 11,\n 1136,\n 62,\n 5460,\n 62,\n 28758,\n 11,\n 11249,\n 62,\n 83,\n 5034,\n 62,\n 6738,\n 62,\n 4775,\n 4868,\n 198,\n 6738,\n 10361,\n 1330,\n 8106,\n 62,\n 6603,\n 10879,\n 62,\n 4480,\n 62,\n 28712,\n 62,\n 30586,\n 198,\n 6738,\n 662,\n 14681,\n 1330,\n 662,\n 785,\n 1996,\n 341,\n 198,\n 6738,\n 287,\n 1851,\n 62,\n 25135,\n 1330,\n 287,\n 1851,\n 62,\n 505,\n 62,\n 25135,\n 198,\n 6738,\n 13605,\n 62,\n 11321,\n 1330,\n 2872,\n 62,\n 259,\n 9641,\n 62,\n 20274,\n 11,\n 2989,\n 62,\n 38476,\n 62,\n 7890,\n 11,\n 2989,\n 62,\n 83,\n 5034,\n 11,\n 8636,\n 62,\n 5162,\n 408,\n 62,\n 17618,\n 628,\n 198,\n 4299,\n 923,\n 62,\n 36948,\n 33529,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 7214,\n 287,\n 257,\n 1573,\n 4868,\n 11,\n 3896,\n 4868,\n 290,\n 1332,\n 900,\n 11,\n 23862,\n 262,\n 4724,\n 1799,\n 290,\n 4724,\n 1271,\n 286,\n 1123,\n 279,\n 16993,\n 287,\n 262,\n 1332,\n 900,\n 13,\n 628,\n 220,\n 220,\n 220,\n 32144,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 352,\n 13,\n 1100,\n 3896,\n 4868,\n 290,\n 466,\n 662,\n 785,\n 1996,\n 341,\n 357,\n 15255,\n 478,\n 287,\n 1851,\n 2247,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 362,\n 13,\n 1100,\n 1573,\n 4868,\n 14,\n 79,\n 86,\n 4868,\n 11,\n 290,\n 651,\n 954,\n 329,\n 1123,\n 3896,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 513,\n 13,\n 14330,\n 554,\n 9641,\n 357,\n 1640,\n 1123,\n 3896,\n 11,\n 287,\n 1851,\n 477,\n 279,\n 86,\n 9310,\n 8,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 628,\n 220,\n 220,\n 220,\n 336,\n 524,\n 796,\n 640,\n 13,\n 525,\n 69,\n 62,\n 24588,\n 3419,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 14468,\n 4242,\n 3771,\n 785,\n 1996,\n 341,\n 290,\n 3819,\n 38397,\n 341,\n 1303,\n 14468,\n 4242,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 41216,\n 257,\n 27334,\n 409,\n 68,\n 329,\n 6946,\n 198,\n 220,\n 220,\n 220,\n 7097,\n 62,\n 41757,\n 62,\n 14681,\n 796,\n 8099,\n 268,\n 7,\n 17816,\n 14,\n 8800,\n 14,\n 41757,\n 6,\n 4357,\n 14367,\n 259,\n 28,\n 47,\n 4061,\n 36,\n 11,\n 14367,\n 448,\n 28,\n 47,\n 4061,\n 36,\n 8,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 5972,\n 2667,\n 14392,\n 14151,\n 198,\n 220,\n 220,\n 220,\n 18931,\n 13,\n 35487,\n 16934,\n 7,\n 34345,\n 28,\n 49,\n 4944,\n 34694,\n 62,\n 10943,\n 16254,\n 13,\n 1136,\n 62,\n 6404,\n 62,\n 29851,\n 22784,\n 5715,\n 28,\n 6404,\n 2667,\n 13,\n 30531,\n 8,\n 198,\n 220,\n 220,\n 220,\n 18931,\n 13,\n 10951,\n 7203,\n 22851,\n 3862,\n 25,\n 23884,\n 59,\n 77,\n 59,\n 77,\n 16934,\n 20074,\n 25,\n 23884,\n 59,\n 77,\n 1911,\n 18982,\n 7,\n 2435,\n 13,\n 2536,\n 31387,\n 7203,\n 4,\n 56,\n 12,\n 4,\n 76,\n 12,\n 4,\n 67,\n 4064,\n 39,\n 25,\n 4,\n 44,\n 12340,\n 32494,\n 34694,\n 62,\n 10943,\n 16254,\n 13,\n 19509,\n 62,\n 11250,\n 62,\n 8841,\n 3419,\n 4008,\n 198,\n 220,\n 220,\n 220,\n 18931,\n 13,\n 10951,\n 7203,\n 35215,\n 36727,\n 25,\n 23884,\n 59,\n 77,\n 1911,\n 18982,\n 7,\n 49,\n 4944,\n 34694,\n 62,\n 10943,\n 16254,\n 17816,\n 28712,\n 62,\n 30586,\n 6,\n 4083,\n 1462,\n 62,\n 24442,\n 62,\n 8841,\n 3419,\n 4008,\n 628,\n 220,\n 220,\n 220,\n 3601,\n 7203,\n 36120,\n 14330,\n 4868,\n 59,\n 77,\n 4943,\n 198,\n 220,\n 220,\n 220,\n 3896,\n 4868,\n 796,\n 1100,\n 62,\n 25135,\n 4868,\n 7,\n 49,\n 4944,\n 34694,\n 62,\n 10943,\n 16254,\n 17816,\n 25135,\n 4868,\n 62,\n 6978,\n 6,\n 7131,\n 6,\n 3672,\n 6,\n 4357,\n 32494,\n 34694,\n 62,\n 10943,\n 16254,\n 17816,\n 25135,\n 4868,\n 62,\n 6978,\n 6,\n 7131,\n 6,\n 40290,\n 6,\n 12962,\n 628,\n 220,\n 220,\n 220,\n 3601,\n 7203,\n 10434,\n 3771,\n 785,\n 1996,\n 341,\n 59,\n 77,\n 4943,\n 198,\n 220,\n 220,\n 220,\n 3896,\n 4868,\n 796,\n 662,\n 785,\n 1996,\n 341,\n 7,\n 25135,\n 4868,\n 8,\n 628,\n 220,\n 220,\n 220,\n 3601,\n 7203,\n 36120,\n 9678,\n 4868,\n 290,\n 30275,\n 5345,\n 59,\n 77,\n 4943,\n 198,\n 220,\n 220,\n 220,\n 1573,\n 4868,\n 796,\n 1100,\n 62,\n 4775,\n 4868,\n 7,\n 49,\n 4944,\n 34694,\n 62,\n 10943,\n 16254,\n 17816,\n 4775,\n 4868,\n 62,\n 6978,\n 6,\n 7131,\n 6,\n 3672,\n 6,\n 4357,\n 32494,\n 34694,\n 62,\n 10943,\n 16254,\n 17816,\n 4775,\n 4868,\n 62,\n 6978,\n 6,\n 7131,\n 6,\n 40290,\n 6,\n 12962,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 38589,\n 37571,\n 2764,\n 198,\n 220,\n 220,\n 220,\n 9853,\n 11,\n 269,\n 5700,\n 388,\n 796,\n 37571,\n 12332,\n 13,\n 1136,\n 62,\n 9127,\n 82,\n 7,\n 4775,\n 4868,\n 11,\n 3896,\n 4868,\n 11,\n 32494,\n 34694,\n 62,\n 10943,\n 16254,\n 17816,\n 3866,\n 14681,\n 62,\n 6978,\n 6,\n 12962,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 1100,\n 584,\n 1243,\n 198,\n 220,\n 220,\n 220,\n 279,\n 86,\n 4868,\n 796,\n 1100,\n 62,\n 6603,\n 10879,\n 7,\n 49,\n 4944,\n 34694,\n 62,\n 10943,\n 16254,\n 17816,\n 79,\n 86,\n 4868,\n 62,\n 6978,\n 6,\n 7131,\n 6,\n 29851,\n 6,\n 12962,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 8106,\n 503,\n 279,\n 86,\n 9310,\n 407,\n 6414,\n 351,\n 262,\n 2450,\n 198,\n 220,\n 220,\n 220,\n 407,\n 62,\n 10379,\n 4400,\n 62,\n 79,\n 86,\n 9310,\n 11,\n 29083,\n 62,\n 79,\n 86,\n 9310,\n 796,\n 8106,\n 62,\n 6603,\n 10879,\n 62,\n 4480,\n 62,\n 28712,\n 62,\n 30586,\n 7,\n 79,\n 86,\n 4868,\n 8,\n 198,\n 220,\n 220,\n 220,\n 1333,\n 68,\n 796,\n 1382,\n 62,\n 83,\n 5034,\n 62,\n 6738,\n 62,\n 4775,\n 4868,\n 7,\n 4775,\n 4868,\n 8,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 14468,\n 4242,\n 7253,\n 554,\n 9641,\n 1303,\n 14468,\n 4242,\n 198,\n 220,\n 220,\n 220,\n 3601,\n 7203,\n 10434,\n 554,\n 48820,\n 14252,\n 59,\n 77,\n 4943,\n 198,\n 220,\n 220,\n 220,\n 1312,\n 62,\n 2435,\n 796,\n 640,\n 13,\n 525,\n 69,\n 62,\n 24588,\n 3419,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 4724,\n 1799,\n 286,\n 279,\n 86,\n 9310,\n 198,\n 220,\n 220,\n 220,\n 318,\n 62,\n 5162,\n 408,\n 540,\n 796,\n 685,\n 25101,\n 60,\n 1635,\n 18896,\n 7,\n 79,\n 86,\n 4868,\n 8,\n 198,\n 220,\n 220,\n 220,\n 318,\n 62,\n 21633,\n 62,\n 260,\n 25636,\n 796,\n 32494,\n 34694,\n 62,\n 10943,\n 16254,\n 17816,\n 21633,\n 62,\n 260,\n 25636,\n 20520,\n 198,\n 220,\n 220,\n 220,\n 318,\n 62,\n 24442,\n 796,\n 32494,\n 34694,\n 62,\n 10943,\n 16254,\n 17816,\n 24442,\n 20520,\n 198,\n 220,\n 220,\n 220,\n 35847,\n 62,\n 400,\n 10126,\n 796,\n 32494,\n 34694,\n 62,\n 10943,\n 16254,\n 17816,\n 5460,\n 929,\n 62,\n 400,\n 10126,\n 20520,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 11241,\n 1096,\n 279,\n 86,\n 9310,\n 1752,\n 13,\n 198,\n 220,\n 220,\n 220,\n 11241,\n 1143,\n 62,\n 79,\n 86,\n 9310,\n 796,\n 685,\n 30642,\n 10100,\n 7,\n 79,\n 16993,\n 8,\n 329,\n 279,\n 86,\n 62,\n 312,\n 87,\n 11,\n 279,\n 16993,\n 287,\n 407,\n 62,\n 10379,\n 4400,\n 62,\n 79,\n 86,\n 9310,\n 60,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 287,\n 1851,\n 3173,\n 357,\n 4480,\n 2041,\n 4088,\n 9041,\n 290,\n 584,\n 3085,\n 8,\n 198,\n 220,\n 220,\n 220,\n 329,\n 374,\n 62,\n 312,\n 87,\n 11,\n 374,\n 287,\n 27056,\n 378,\n 7,\n 25135,\n 4868,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 318,\n 62,\n 24442,\n 6624,\n 6407,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3601,\n 7,\n 81,\n 13,\n 1831,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 374,\n 13,\n 5036,\n 292,\n 2247,\n 13,\n 271,\n 62,\n 259,\n 1851,\n 856,\n 33529,\n 1303,\n 287,\n 1851,\n 856,\n 11,\n 611,\n 6611,\n 510,\n 11,\n 779,\n 1333,\n 68,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 329,\n 11241,\n 62,\n 79,\n 16993,\n 11,\n 357,\n 79,\n 86,\n 62,\n 312,\n 87,\n 11,\n 279,\n 16993,\n 8,\n 287,\n 19974,\n 7,\n 30001,\n 1143,\n 62,\n 79,\n 86,\n 9310,\n 11,\n 1662,\n 62,\n 10379,\n 4400,\n 62,\n 79,\n 86,\n 9310,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1255,\n 796,\n 287,\n 1851,\n 62,\n 505,\n 62,\n 25135,\n 7,\n 30001,\n 62,\n 79,\n 16993,\n 11,\n 81,\n 11,\n 271,\n 62,\n 21633,\n 62,\n 260,\n 25636,\n 11,\n 81,\n 13,\n 5036,\n 292,\n 2247,\n 13,\n 20887,\n 62,\n 312,\n 87,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 1255,\n 13,\n 271,\n 62,\n 11265,\n 33529,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 1255,\n 13,\n 1136,\n 62,\n 17618,\n 62,\n 1659,\n 62,\n 37336,\n 3419,\n 19841,\n 35847,\n 62,\n 400,\n 10126,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1005,\n 62,\n 12786,\n 796,\n 2872,\n 62,\n 259,\n 9641,\n 62,\n 20274,\n 7,\n 20274,\n 11,\n 1573,\n 4868,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2073,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1005,\n 62,\n 12786,\n 796,\n 2989,\n 62,\n 83,\n 5034,\n 7,\n 20274,\n 11,\n 1333,\n 68,\n 8,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 18896,\n 7,\n 1186,\n 62,\n 12786,\n 8,\n 14512,\n 657,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 318,\n 62,\n 5162,\n 408,\n 540,\n 58,\n 79,\n 86,\n 62,\n 312,\n 87,\n 60,\n 796,\n 6407,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 329,\n 410,\n 287,\n 1005,\n 62,\n 12786,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 18931,\n 13,\n 10951,\n 7203,\n 59,\n 77,\n 35215,\n 7390,\n 87,\n 29164,\n 32239,\n 77,\n 35215,\n 29164,\n 32239,\n 77,\n 31929,\n 29164,\n 32239,\n 77,\n 26449,\n 29164,\n 32239,\n 77,\n 8205,\n 408,\n 29164,\n 92,\n 357,\n 23884,\n 532,\n 23884,\n 1267,\n 59,\n 77,\n 1911,\n 18982,\n 7,\n 79,\n 86,\n 62,\n 312,\n 87,\n 11,\n 279,\n 16993,\n 11,\n 374,\n 13,\n 1831,\n 11,\n 410,\n 11,\n 1635,\n 395,\n 1920,\n 62,\n 5162,\n 408,\n 62,\n 17618,\n 7,\n 9127,\n 82,\n 11,\n 269,\n 5700,\n 388,\n 11,\n 410,\n 11,\n 374,\n 62,\n 312,\n 87,\n 11,\n 1573,\n 4868,\n 22305,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1288,\n 361,\n 1255,\n 13,\n 271,\n 62,\n 448,\n 62,\n 1659,\n 62,\n 29982,\n 33529,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1005,\n 62,\n 12786,\n 796,\n 17635,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 18931,\n 13,\n 10951,\n 7203,\n 818,\n 9641,\n 4049,\n 329,\n 23884,\n 7,\n 7836,\n 8,\n 23884,\n 7,\n 79,\n 86,\n 828,\n 4049,\n 31456,\n 25,\n 23884,\n 59,\n 77,\n 1911,\n 18982,\n 7,\n 81,\n 13,\n 1831,\n 11,\n 279,\n 16993,\n 11,\n 366,\n 448,\n 62,\n 1659,\n 62,\n 29982,\n 48774,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3601,\n 7203,\n 818,\n 9641,\n 4049,\n 329,\n 23884,\n 7,\n 7836,\n 8,\n 23884,\n 7,\n 79,\n 86,\n 828,\n 4049,\n 31456,\n 25,\n 23884,\n 1911,\n 18982,\n 7,\n 81,\n 13,\n 1831,\n 11,\n 279,\n 16993,\n 11,\n 366,\n 448,\n 62,\n 1659,\n 62,\n 29982,\n 48774,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2073,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1005,\n 62,\n 12786,\n 796,\n 17635,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 18931,\n 13,\n 10951,\n 7203,\n 818,\n 9641,\n 4049,\n 329,\n 23884,\n 7,\n 7836,\n 8,\n 23884,\n 7,\n 79,\n 86,\n 828,\n 4049,\n 31456,\n 25,\n 23884,\n 59,\n 77,\n 1911,\n 18982,\n 7,\n 81,\n 13,\n 1831,\n 11,\n 279,\n 16993,\n 11,\n 1255,\n 13,\n 18224,\n 62,\n 19662,\n 4008,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3601,\n 7203,\n 818,\n 9641,\n 4049,\n 329,\n 23884,\n 7,\n 7836,\n 8,\n 23884,\n 7,\n 79,\n 86,\n 828,\n 4049,\n 31456,\n 25,\n 23884,\n 1911,\n 18982,\n 7,\n 81,\n 13,\n 1831,\n 11,\n 279,\n 16993,\n 11,\n 1255,\n 13,\n 18224,\n 62,\n 19662,\n 4008,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1288,\n 361,\n 374,\n 13,\n 5036,\n 292,\n 2247,\n 13,\n 271,\n 62,\n 40085,\n 13821,\n 33529,\n 1303,\n 26329,\n 1851,\n 856,\n 11,\n 611,\n 2314,\n 5412,\n 11,\n 13934,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 810,\n 262,\n 13934,\n 2393,\n 318,\n 8574,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 27056,\n 515,\n 62,\n 7890,\n 62,\n 29851,\n 796,\n 45144,\n 92,\n 14,\n 268,\n 6975,\n 515,\n 14,\n 25135,\n 90,\n 27422,\n 14116,\n 1911,\n 18982,\n 7,\n 49,\n 4944,\n 34694,\n 62,\n 10943,\n 16254,\n 17816,\n 3866,\n 14681,\n 62,\n 6978,\n 6,\n 4357,\n 81,\n 62,\n 312,\n 87,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 329,\n 11241,\n 62,\n 79,\n 16993,\n 11,\n 357,\n 79,\n 86,\n 62,\n 312,\n 87,\n 11,\n 279,\n 16993,\n 8,\n 287,\n 19974,\n 7,\n 30001,\n 1143,\n 62,\n 79,\n 86,\n 9310,\n 11,\n 1662,\n 62,\n 10379,\n 4400,\n 62,\n 79,\n 86,\n 9310,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1255,\n 796,\n 287,\n 1851,\n 62,\n 505,\n 62,\n 25135,\n 7,\n 30001,\n 62,\n 79,\n 16993,\n 11,\n 81,\n 11,\n 271,\n 62,\n 21633,\n 62,\n 260,\n 25636,\n 8,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 1255,\n 13,\n 271,\n 62,\n 11265,\n 33529,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 1255,\n 13,\n 1136,\n 62,\n 17618,\n 62,\n 1659,\n 62,\n 37336,\n 3419,\n 19841,\n 35847,\n 62,\n 400,\n 10126,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1005,\n 62,\n 12786,\n 796,\n 2872,\n 62,\n 259,\n 9641,\n 62,\n 20274,\n 7,\n 20274,\n 11,\n 1573,\n 4868,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2073,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1005,\n 62,\n 12786,\n 796,\n 2989,\n 62,\n 38476,\n 62,\n 7890,\n 7,\n 79,\n 16993,\n 11,\n 268,\n 6975,\n 515,\n 62,\n 7890,\n 62,\n 29851,\n 11,\n 22615,\n 62,\n 41757,\n 62,\n 14681,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 18896,\n 7,\n 1186,\n 62,\n 12786,\n 8,\n 14512,\n 657,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 318,\n 62,\n 5162,\n 408,\n 540,\n 58,\n 79,\n 86,\n 62,\n 312,\n 87,\n 60,\n 796,\n 6407,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 329,\n 410,\n 287,\n 1005,\n 62,\n 12786,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 18931,\n 13,\n 10951,\n 7203,\n 59,\n 77,\n 35215,\n 7390,\n 87,\n 29164,\n 32239,\n 77,\n 35215,\n 29164,\n 32239,\n 77,\n 31929,\n 29164,\n 32239,\n 77,\n 26449,\n 29164,\n 32239,\n 77,\n 8205,\n 408,\n 29164,\n 92,\n 357,\n 23884,\n 532,\n 23884,\n 1267,\n 59,\n 77,\n 1911,\n 18982,\n 7,\n 79,\n 86,\n 62,\n 312,\n 87,\n 11,\n 279,\n 16993,\n 11,\n 374,\n 13,\n 1831,\n 11,\n 410,\n 11,\n 1635,\n 395,\n 1920,\n 62,\n 5162,\n 408,\n 62,\n 17618,\n 7,\n 9127,\n 82,\n 11,\n 269,\n 5700,\n 388,\n 11,\n 410,\n 11,\n 374,\n 62,\n 312,\n 87,\n 11,\n 1573,\n 4868,\n 22305,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1288,\n 361,\n 1255,\n 13,\n 271,\n 62,\n 448,\n 62,\n 1659,\n 62,\n 29982,\n 33529,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1005,\n 62,\n 12786,\n 796,\n 2989,\n 62,\n 38476,\n 62,\n 7890,\n 7,\n 79,\n 16993,\n 11,\n 268,\n 6975,\n 515,\n 62,\n 7890,\n 62,\n 29851,\n 11,\n 22615,\n 62,\n 41757,\n 62,\n 14681,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 18896,\n 7,\n 1186,\n 62,\n 12786,\n 8,\n 14512,\n 657,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 318,\n 62,\n 5162,\n 408,\n 540,\n 58,\n 79,\n 86,\n 62,\n 312,\n 87,\n 60,\n 796,\n 6407,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 329,\n 410,\n 287,\n 1005,\n 62,\n 12786,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 18931,\n 13,\n 10951,\n 7203,\n 59,\n 77,\n 35215,\n 7390,\n 87,\n 29164,\n 32239,\n 77,\n 35215,\n 29164,\n 32239,\n 77,\n 31929,\n 29164,\n 32239,\n 77,\n 26449,\n 29164,\n 32239,\n 77,\n 8205,\n 408,\n 29164,\n 92,\n 357,\n 23884,\n 532,\n 23884,\n 1267,\n 59,\n 77,\n 1911,\n 18982,\n 7,\n 79,\n 86,\n 62,\n 312,\n 87,\n 11,\n 279,\n 16993,\n 11,\n 374,\n 13,\n 1831,\n 11,\n 410,\n 11,\n 1635,\n 395,\n 1920,\n 62,\n 5162,\n 408,\n 62,\n 17618,\n 7,\n 9127,\n 82,\n 11,\n 269,\n 5700,\n 388,\n 11,\n 410,\n 11,\n 374,\n 62,\n 312,\n 87,\n 11,\n 1573,\n 4868,\n 22305,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2073,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1005,\n 62,\n 12786,\n 796,\n 17635,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 18931,\n 13,\n 10951,\n 7203,\n 818,\n 9641,\n 4049,\n 329,\n 23884,\n 7,\n 7836,\n 8,\n 23884,\n 7,\n 79,\n 86,\n 828,\n 4049,\n 31456,\n 25,\n 23884,\n 59,\n 77,\n 1911,\n 18982,\n 7,\n 81,\n 13,\n 1831,\n 11,\n 279,\n 16993,\n 11,\n 1255,\n 13,\n 18224,\n 62,\n 19662,\n 4008,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3601,\n 7203,\n 818,\n 9641,\n 4049,\n 329,\n 23884,\n 7,\n 7836,\n 8,\n 23884,\n 7,\n 79,\n 86,\n 828,\n 4049,\n 31456,\n 25,\n 23884,\n 1911,\n 18982,\n 7,\n 81,\n 13,\n 1831,\n 11,\n 279,\n 16993,\n 11,\n 1255,\n 13,\n 18224,\n 62,\n 19662,\n 4008,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2073,\n 25,\n 1303,\n 13934,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 810,\n 262,\n 13934,\n 2393,\n 318,\n 8574,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 27056,\n 515,\n 62,\n 7890,\n 62,\n 29851,\n 796,\n 45144,\n 92,\n 14,\n 268,\n 6975,\n 515,\n 14,\n 25135,\n 90,\n 27422,\n 14116,\n 1911,\n 18982,\n 7,\n 49,\n 4944,\n 34694,\n 62,\n 10943,\n 16254,\n 17816,\n 3866,\n 14681,\n 62,\n 6978,\n 6,\n 4357,\n 81,\n 62,\n 312,\n 87,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 329,\n 11241,\n 62,\n 79,\n 16993,\n 11,\n 357,\n 79,\n 86,\n 62,\n 312,\n 87,\n 11,\n 279,\n 16993,\n 8,\n 287,\n 19974,\n 7,\n 30001,\n 1143,\n 62,\n 79,\n 86,\n 9310,\n 11,\n 1662,\n 62,\n 10379,\n 4400,\n 62,\n 79,\n 86,\n 9310,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1005,\n 62,\n 12786,\n 796,\n 2989,\n 62,\n 38476,\n 62,\n 7890,\n 7,\n 79,\n 16993,\n 11,\n 268,\n 6975,\n 515,\n 62,\n 7890,\n 62,\n 29851,\n 11,\n 22615,\n 62,\n 41757,\n 62,\n 14681,\n 8,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 18896,\n 7,\n 1186,\n 62,\n 12786,\n 8,\n 14512,\n 657,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 318,\n 62,\n 5162,\n 408,\n 540,\n 58,\n 79,\n 86,\n 62,\n 312,\n 87,\n 60,\n 796,\n 6407,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 329,\n 410,\n 287,\n 1005,\n 62,\n 12786,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 18931,\n 13,\n 10951,\n 7203,\n 59,\n 77,\n 35215,\n 7390,\n 87,\n 29164,\n 32239,\n 77,\n 35215,\n 29164,\n 32239,\n 77,\n 31929,\n 29164,\n 32239,\n 77,\n 26449,\n 29164,\n 32239,\n 77,\n 8205,\n 408,\n 29164,\n 92,\n 357,\n 23884,\n 532,\n 23884,\n 1267,\n 59,\n 77,\n 1911,\n 18982,\n 7,\n 79,\n 86,\n 62,\n 312,\n 87,\n 11,\n 279,\n 16993,\n 11,\n 374,\n 13,\n 1831,\n 11,\n 410,\n 11,\n 1635,\n 395,\n 1920,\n 62,\n 5162,\n 408,\n 62,\n 17618,\n 7,\n 9127,\n 82,\n 11,\n 269,\n 5700,\n 388,\n 11,\n 410,\n 11,\n 374,\n 62,\n 312,\n 87,\n 11,\n 1573,\n 4868,\n 22305,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 14468,\n 4242,\n 5268,\n 286,\n 554,\n 9641,\n 1303,\n 14468,\n 4242,\n 198,\n 220,\n 220,\n 220,\n 220,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 19430,\n 1892,\n 37571,\n 540,\n 6060,\n 198,\n 220,\n 220,\n 220,\n 329,\n 279,\n 86,\n 62,\n 312,\n 87,\n 11,\n 279,\n 16993,\n 287,\n 29083,\n 62,\n 79,\n 86,\n 9310,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 18931,\n 13,\n 10951,\n 7203,\n 59,\n 77,\n 35215,\n 7390,\n 87,\n 29164,\n 32239,\n 77,\n 35215,\n 29164,\n 32239,\n 77,\n 3673,\n 37571,\n 540,\n 59,\n 77,\n 1911,\n 18982,\n 7,\n 79,\n 86,\n 62,\n 312,\n 87,\n 11,\n 279,\n 16993,\n 4008,\n 628,\n 220,\n 220,\n 220,\n 329,\n 318,\n 62,\n 5162,\n 6676,\n 11,\n 357,\n 79,\n 86,\n 62,\n 312,\n 87,\n 11,\n 279,\n 16993,\n 8,\n 287,\n 19974,\n 7,\n 271,\n 62,\n 5162,\n 408,\n 540,\n 11,\n 407,\n 62,\n 10379,\n 4400,\n 62,\n 79,\n 86,\n 9310,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 318,\n 62,\n 5162,\n 6676,\n 6624,\n 10352,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 18931,\n 13,\n 10951,\n 7203,\n 59,\n 77,\n 35215,\n 7390,\n 87,\n 29164,\n 32239,\n 77,\n 35215,\n 29164,\n 32239,\n 77,\n 3673,\n 37571,\n 540,\n 59,\n 77,\n 1911,\n 18982,\n 7,\n 79,\n 86,\n 62,\n 312,\n 87,\n 11,\n 279,\n 16993,\n 4008,\n 628,\n 220,\n 220,\n 220,\n 18931,\n 13,\n 10951,\n 7203,\n 14957,\n 44774,\n 925,\n 416,\n 428,\n 8398,\n 25,\n 23884,\n 59,\n 77,\n 1911,\n 18982,\n 7,\n 37659,\n 13,\n 16345,\n 7,\n 9127,\n 82,\n 22305,\n 628,\n 220,\n 220,\n 220,\n 3601,\n 7203,\n 18467,\n 1348,\n 554,\n 48820,\n 14252,\n 11,\n 7472,\n 3862,\n 25,\n 23884,\n 1911,\n 18982,\n 7,\n 2435,\n 13,\n 525,\n 69,\n 62,\n 24588,\n 3419,\n 12,\n 72,\n 62,\n 2435,\n 4008,\n 628,\n 198,\n 361,\n 11593,\n 3672,\n 834,\n 6624,\n 366,\n 834,\n 12417,\n 834,\n 1298,\n 198,\n 220,\n 220,\n 220,\n 1388,\n 3419\n]"},"ratio_char_token":{"kind":"number","value":2.181439288691303,"string":"2.181439"},"token_count":{"kind":"number","value":3599,"string":"3,599"}}},{"rowIdx":2443,"cells":{"content":{"kind":"string","value":"'''\nThis file is for retrieving system environment variables and helper\nvariables directly derived from them.\n\nIn decreasing order of precedence, environment variables can be set by:\n1. adding them to .env file at root of this project\n2. exporting and then running bumblebee in then same terminal.\n E.g. export BUMBLEBEE_ENV=local; bumblebee\n3. prefixing 'bumblebee' command with the environment variable when running.\n E.g. BUMBLEBEE_ENV=local bumblebee\n'''\nfrom dotenv import load_dotenv\nimport os\n\nload_dotenv()\n\nbumblebee_environment = os.environ.get('BUMBLEBEE_ENV', 'production').lower()\nis_local = bumblebee_environment == 'local'\n"},"input_ids":{"kind":"list like","value":[7061,6,198,1212,2393,318,329,50122,1080,2858,9633,290,31904,198,25641,2977,3264,10944,422,606,13,198,198,818,24030,1502,286,38177,11,2858,9633,460,307,900,416,25,198,16,13,4375,606,284,764,24330,2393,379,6808,286,428,1628,198,17,13,39133,290,788,2491,275,10344,20963,287,788,976,12094,13,198,220,220,412,13,70,13,10784,347,5883,19146,33,6500,62,1677,53,28,12001,26,275,10344,20963,198,18,13,21231,278,705,4435,903,20963,6,3141,351,262,2858,7885,618,2491,13,198,220,220,412,13,70,13,347,5883,19146,33,6500,62,1677,53,28,12001,275,10344,20963,198,7061,6,198,6738,16605,24330,1330,3440,62,26518,24330,198,11748,28686,198,198,2220,62,26518,24330,3419,198,198,4435,903,20963,62,38986,796,28686,13,268,2268,13,1136,10786,33,5883,19146,33,6500,62,1677,53,3256,705,25493,27691,21037,3419,198,271,62,12001,796,275,10344,20963,62,38986,6624,705,12001,6,198],"string":"[\n 7061,\n 6,\n 198,\n 1212,\n 2393,\n 318,\n 329,\n 50122,\n 1080,\n 2858,\n 9633,\n 290,\n 31904,\n 198,\n 25641,\n 2977,\n 3264,\n 10944,\n 422,\n 606,\n 13,\n 198,\n 198,\n 818,\n 24030,\n 1502,\n 286,\n 38177,\n 11,\n 2858,\n 9633,\n 460,\n 307,\n 900,\n 416,\n 25,\n 198,\n 16,\n 13,\n 4375,\n 606,\n 284,\n 764,\n 24330,\n 2393,\n 379,\n 6808,\n 286,\n 428,\n 1628,\n 198,\n 17,\n 13,\n 39133,\n 290,\n 788,\n 2491,\n 275,\n 10344,\n 20963,\n 287,\n 788,\n 976,\n 12094,\n 13,\n 198,\n 220,\n 220,\n 412,\n 13,\n 70,\n 13,\n 10784,\n 347,\n 5883,\n 19146,\n 33,\n 6500,\n 62,\n 1677,\n 53,\n 28,\n 12001,\n 26,\n 275,\n 10344,\n 20963,\n 198,\n 18,\n 13,\n 21231,\n 278,\n 705,\n 4435,\n 903,\n 20963,\n 6,\n 3141,\n 351,\n 262,\n 2858,\n 7885,\n 618,\n 2491,\n 13,\n 198,\n 220,\n 220,\n 412,\n 13,\n 70,\n 13,\n 347,\n 5883,\n 19146,\n 33,\n 6500,\n 62,\n 1677,\n 53,\n 28,\n 12001,\n 275,\n 10344,\n 20963,\n 198,\n 7061,\n 6,\n 198,\n 6738,\n 16605,\n 24330,\n 1330,\n 3440,\n 62,\n 26518,\n 24330,\n 198,\n 11748,\n 28686,\n 198,\n 198,\n 2220,\n 62,\n 26518,\n 24330,\n 3419,\n 198,\n 198,\n 4435,\n 903,\n 20963,\n 62,\n 38986,\n 796,\n 28686,\n 13,\n 268,\n 2268,\n 13,\n 1136,\n 10786,\n 33,\n 5883,\n 19146,\n 33,\n 6500,\n 62,\n 1677,\n 53,\n 3256,\n 705,\n 25493,\n 27691,\n 21037,\n 3419,\n 198,\n 271,\n 62,\n 12001,\n 796,\n 275,\n 10344,\n 20963,\n 62,\n 38986,\n 6624,\n 705,\n 12001,\n 6,\n 198\n]"},"ratio_char_token":{"kind":"number","value":3.3612565445026177,"string":"3.361257"},"token_count":{"kind":"number","value":191,"string":"191"}}},{"rowIdx":2444,"cells":{"content":{"kind":"string","value":"\"\"\"Pagination sample for Microsoft Graph.\"\"\"\n# Copyright (c) Microsoft. All rights reserved. Licensed under the MIT license.\n# See LICENSE in the project root for license information.\nimport os\n\nimport bottle\nimport graphrest\n\nimport config\n\n\nMSGRAPH = graphrest.GraphSession(client_id=config.CLIENT_ID,\n client_secret=config.CLIENT_SECRET,\n redirect_uri=config.REDIRECT_URI,\n scopes=['User.Read', 'Mail.Read'])\n\nbottle.TEMPLATE_PATH = ['./static/templates']\n\n\n@bottle.route('/')\n@bottle.view('homepage.html')\ndef homepage():\n \"\"\"Render the home page.\"\"\"\n return {'title': 'Pagination Basics'}\n\n\n@bottle.route('/login')\ndef login():\n \"\"\"Prompt user to authenticate.\"\"\"\n endpoint = MSGRAPH.api_endpoint('me/messages')\n MSGRAPH.login(login_redirect=f'/pagination?endpoint={endpoint}')\n\n\n@bottle.route('/login/authorized')\ndef authorized():\n \"\"\"Handler for the application's Redirect URI.\"\"\"\n MSGRAPH.redirect_uri_handler()\n\n\n@bottle.route('/pagination')\n@bottle.view('pagination.html')\ndef pagination():\n \"\"\"Example of paginated response from Microsoft Graph.\"\"\"\n endpoint = bottle.request.query.endpoint\n graphdata = MSGRAPH.get(endpoint).json()\n return {'graphdata': graphdata}\n\n\n@bottle.route('/static/')\ndef server_static(filepath):\n \"\"\"Handler for static files, used with the development server.\"\"\"\n root_folder = os.path.abspath(os.path.dirname(__file__))\n return bottle.static_file(filepath, root=os.path.join(root_folder, 'static'))\n\n\nif __name__ == '__main__':\n bottle.run(app=bottle.app(), server='wsgiref', host='localhost', port=5000)\n"},"input_ids":{"kind":"list like","value":[37811,47,363,1883,6291,329,5413,29681,526,15931,198,2,15069,357,66,8,5413,13,1439,2489,10395,13,49962,739,262,17168,5964,13,198,2,4091,38559,24290,287,262,1628,6808,329,5964,1321,13,198,11748,28686,198,198,11748,9294,198,11748,4823,2118,198,198,11748,4566,628,198,5653,10761,31300,796,4823,2118,13,37065,36044,7,16366,62,312,28,11250,13,5097,28495,62,2389,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,5456,62,21078,28,11250,13,5097,28495,62,23683,26087,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,18941,62,9900,28,11250,13,22083,40,23988,62,47269,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,629,13920,28,17816,12982,13,5569,3256,705,25804,13,5569,6,12962,198,198,10985,293,13,51,3620,6489,6158,62,34219,796,685,4458,14,12708,14,11498,17041,20520,628,198,31,10985,293,13,38629,10786,14,11537,198,31,10985,293,13,1177,10786,11195,7700,13,6494,11537,198,4299,34940,33529,198,220,220,220,37227,45819,262,1363,2443,526,15931,198,220,220,220,1441,1391,6,7839,10354,705,47,363,1883,45884,6,92,628,198,31,10985,293,13,38629,10786,14,38235,11537,198,4299,17594,33529,198,220,220,220,37227,24129,457,2836,284,8323,5344,526,15931,198,220,220,220,36123,796,6579,10761,31300,13,15042,62,437,4122,10786,1326,14,37348,1095,11537,198,220,220,220,6579,10761,31300,13,38235,7,38235,62,445,1060,28,69,26488,79,363,1883,30,437,4122,34758,437,4122,92,11537,628,198,31,10985,293,13,38629,10786,14,38235,14,19721,11537,198,4299,10435,33529,198,220,220,220,37227,25060,329,262,3586,338,2297,1060,43975,526,15931,198,220,220,220,6579,10761,31300,13,445,1060,62,9900,62,30281,3419,628,198,31,10985,293,13,38629,10786,14,79,363,1883,11537,198,31,10985,293,13,1177,10786,79,363,1883,13,6494,11537,198,4299,42208,1883,33529,198,220,220,220,37227,16281,286,42208,3898,2882,422,5413,29681,526,15931,198,220,220,220,36123,796,9294,13,25927,13,22766,13,437,4122,198,220,220,220,4823,7890,796,6579,10761,31300,13,1136,7,437,4122,737,17752,3419,198,220,220,220,1441,1391,6,34960,7890,10354,4823,7890,92,628,198,31,10985,293,13,38629,10786,14,12708,14,27,7753,6978,25,6978,29,11537,198,4299,4382,62,12708,7,7753,6978,2599,198,220,220,220,37227,25060,329,9037,3696,11,973,351,262,2478,4382,526,15931,198,220,220,220,6808,62,43551,796,28686,13,6978,13,397,2777,776,7,418,13,6978,13,15908,3672,7,834,7753,834,4008,198,220,220,220,1441,9294,13,12708,62,7753,7,7753,6978,11,6808,28,418,13,6978,13,22179,7,15763,62,43551,11,705,12708,6,4008,628,198,361,11593,3672,834,6624,705,834,12417,834,10354,198,220,220,220,9294,13,5143,7,1324,28,10985,293,13,1324,22784,4382,11639,18504,70,557,69,3256,2583,11639,36750,3256,2493,28,27641,8,198],"string":"[\n 37811,\n 47,\n 363,\n 1883,\n 6291,\n 329,\n 5413,\n 29681,\n 526,\n 15931,\n 198,\n 2,\n 15069,\n 357,\n 66,\n 8,\n 5413,\n 13,\n 1439,\n 2489,\n 10395,\n 13,\n 49962,\n 739,\n 262,\n 17168,\n 5964,\n 13,\n 198,\n 2,\n 4091,\n 38559,\n 24290,\n 287,\n 262,\n 1628,\n 6808,\n 329,\n 5964,\n 1321,\n 13,\n 198,\n 11748,\n 28686,\n 198,\n 198,\n 11748,\n 9294,\n 198,\n 11748,\n 4823,\n 2118,\n 198,\n 198,\n 11748,\n 4566,\n 628,\n 198,\n 5653,\n 10761,\n 31300,\n 796,\n 4823,\n 2118,\n 13,\n 37065,\n 36044,\n 7,\n 16366,\n 62,\n 312,\n 28,\n 11250,\n 13,\n 5097,\n 28495,\n 62,\n 2389,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 5456,\n 62,\n 21078,\n 28,\n 11250,\n 13,\n 5097,\n 28495,\n 62,\n 23683,\n 26087,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 18941,\n 62,\n 9900,\n 28,\n 11250,\n 13,\n 22083,\n 40,\n 23988,\n 62,\n 47269,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 629,\n 13920,\n 28,\n 17816,\n 12982,\n 13,\n 5569,\n 3256,\n 705,\n 25804,\n 13,\n 5569,\n 6,\n 12962,\n 198,\n 198,\n 10985,\n 293,\n 13,\n 51,\n 3620,\n 6489,\n 6158,\n 62,\n 34219,\n 796,\n 685,\n 4458,\n 14,\n 12708,\n 14,\n 11498,\n 17041,\n 20520,\n 628,\n 198,\n 31,\n 10985,\n 293,\n 13,\n 38629,\n 10786,\n 14,\n 11537,\n 198,\n 31,\n 10985,\n 293,\n 13,\n 1177,\n 10786,\n 11195,\n 7700,\n 13,\n 6494,\n 11537,\n 198,\n 4299,\n 34940,\n 33529,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 45819,\n 262,\n 1363,\n 2443,\n 526,\n 15931,\n 198,\n 220,\n 220,\n 220,\n 1441,\n 1391,\n 6,\n 7839,\n 10354,\n 705,\n 47,\n 363,\n 1883,\n 45884,\n 6,\n 92,\n 628,\n 198,\n 31,\n 10985,\n 293,\n 13,\n 38629,\n 10786,\n 14,\n 38235,\n 11537,\n 198,\n 4299,\n 17594,\n 33529,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 24129,\n 457,\n 2836,\n 284,\n 8323,\n 5344,\n 526,\n 15931,\n 198,\n 220,\n 220,\n 220,\n 36123,\n 796,\n 6579,\n 10761,\n 31300,\n 13,\n 15042,\n 62,\n 437,\n 4122,\n 10786,\n 1326,\n 14,\n 37348,\n 1095,\n 11537,\n 198,\n 220,\n 220,\n 220,\n 6579,\n 10761,\n 31300,\n 13,\n 38235,\n 7,\n 38235,\n 62,\n 445,\n 1060,\n 28,\n 69,\n 26488,\n 79,\n 363,\n 1883,\n 30,\n 437,\n 4122,\n 34758,\n 437,\n 4122,\n 92,\n 11537,\n 628,\n 198,\n 31,\n 10985,\n 293,\n 13,\n 38629,\n 10786,\n 14,\n 38235,\n 14,\n 19721,\n 11537,\n 198,\n 4299,\n 10435,\n 33529,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 25060,\n 329,\n 262,\n 3586,\n 338,\n 2297,\n 1060,\n 43975,\n 526,\n 15931,\n 198,\n 220,\n 220,\n 220,\n 6579,\n 10761,\n 31300,\n 13,\n 445,\n 1060,\n 62,\n 9900,\n 62,\n 30281,\n 3419,\n 628,\n 198,\n 31,\n 10985,\n 293,\n 13,\n 38629,\n 10786,\n 14,\n 79,\n 363,\n 1883,\n 11537,\n 198,\n 31,\n 10985,\n 293,\n 13,\n 1177,\n 10786,\n 79,\n 363,\n 1883,\n 13,\n 6494,\n 11537,\n 198,\n 4299,\n 42208,\n 1883,\n 33529,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 16281,\n 286,\n 42208,\n 3898,\n 2882,\n 422,\n 5413,\n 29681,\n 526,\n 15931,\n 198,\n 220,\n 220,\n 220,\n 36123,\n 796,\n 9294,\n 13,\n 25927,\n 13,\n 22766,\n 13,\n 437,\n 4122,\n 198,\n 220,\n 220,\n 220,\n 4823,\n 7890,\n 796,\n 6579,\n 10761,\n 31300,\n 13,\n 1136,\n 7,\n 437,\n 4122,\n 737,\n 17752,\n 3419,\n 198,\n 220,\n 220,\n 220,\n 1441,\n 1391,\n 6,\n 34960,\n 7890,\n 10354,\n 4823,\n 7890,\n 92,\n 628,\n 198,\n 31,\n 10985,\n 293,\n 13,\n 38629,\n 10786,\n 14,\n 12708,\n 14,\n 27,\n 7753,\n 6978,\n 25,\n 6978,\n 29,\n 11537,\n 198,\n 4299,\n 4382,\n 62,\n 12708,\n 7,\n 7753,\n 6978,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 25060,\n 329,\n 9037,\n 3696,\n 11,\n 973,\n 351,\n 262,\n 2478,\n 4382,\n 526,\n 15931,\n 198,\n 220,\n 220,\n 220,\n 6808,\n 62,\n 43551,\n 796,\n 28686,\n 13,\n 6978,\n 13,\n 397,\n 2777,\n 776,\n 7,\n 418,\n 13,\n 6978,\n 13,\n 15908,\n 3672,\n 7,\n 834,\n 7753,\n 834,\n 4008,\n 198,\n 220,\n 220,\n 220,\n 1441,\n 9294,\n 13,\n 12708,\n 62,\n 7753,\n 7,\n 7753,\n 6978,\n 11,\n 6808,\n 28,\n 418,\n 13,\n 6978,\n 13,\n 22179,\n 7,\n 15763,\n 62,\n 43551,\n 11,\n 705,\n 12708,\n 6,\n 4008,\n 628,\n 198,\n 361,\n 11593,\n 3672,\n 834,\n 6624,\n 705,\n 834,\n 12417,\n 834,\n 10354,\n 198,\n 220,\n 220,\n 220,\n 9294,\n 13,\n 5143,\n 7,\n 1324,\n 28,\n 10985,\n 293,\n 13,\n 1324,\n 22784,\n 4382,\n 11639,\n 18504,\n 70,\n 557,\n 69,\n 3256,\n 2583,\n 11639,\n 36750,\n 3256,\n 2493,\n 28,\n 27641,\n 8,\n 198\n]"},"ratio_char_token":{"kind":"number","value":2.6290571870170014,"string":"2.629057"},"token_count":{"kind":"number","value":647,"string":"647"}}},{"rowIdx":2445,"cells":{"content":{"kind":"string","value":"from django.conf import settings\nfrom django.db import models\nfrom django.dispatch import receiver\nfrom django.contrib.auth.models import User\nimport requests\nfrom django.utils.text import slugify\nfrom django.utils.translation import ugettext_lazy as _, ugettext\nfrom django.core import validators\nfrom channels import Group, Channel\nfrom django.utils import timezone\nfrom datetime import timedelta,datetime\nfrom django_auth_lti.patch_reverse import reverse\n\nfrom .groups import group_for_attempt\nfrom .report_outcome import report_outcome_for_attempt, ReportOutcomeFailure, ReportOutcomeConnectionError\n\nimport os\nimport shutil\nfrom zipfile import ZipFile\nfrom lxml import etree\nimport re\nimport json\nfrom collections import defaultdict\n\n@receiver(models.signals.post_save)\n\n\n# Create your models here.\n\n@receiver(models.signals.pre_save, sender=Exam)\n\n\nGRADING_METHODS = [\n ('highest',_('Highest score')),\n ('last',_('Last attempt')),\n]\n\nREPORT_TIMES = [\n ('immediately',_('Immediately')),\n ('oncompletion',_('On completion')),\n ('manually',_('Manually, by instructor')),\n]\nREPORTING_STATUSES = [\n ('reporting',_('Reporting scores')),\n ('error',_('Error encountered')),\n ('complete',_('All scores reported')),\n]\n\nSHOW_SCORES_MODES = [\n ('always',_('Always')),\n ('complete',_('When attempt is complete')),\n ('never',_('Never')),\n]\n\nCOMPLETION_STATUSES = [\n ('not attempted',_('Not attempted')),\n ('incomplete',_('Incomplete')),\n ('completed',_('Complete')),\n]\nmodels.signals.post_save.connect(remark_update_scaled_score,sender=RemarkPart)\nmodels.signals.post_delete.connect(remark_update_scaled_score,sender=RemarkPart)\n\nDISCOUNT_BEHAVIOURS = [\n ('remove','Remove from total'),\n ('fullmarks','Award everyone full credit'),\n]\nmodels.signals.post_save.connect(discount_update_scaled_score,sender=DiscountPart)\nmodels.signals.post_delete.connect(discount_update_scaled_score,sender=DiscountPart)\n\n@receiver(models.signals.post_save,sender=ScormElement)\n\n@receiver(models.signals.post_save,sender=ScormElement)\n\n@receiver(models.signals.post_save,sender=ScormElement)\n\n@receiver(models.signals.post_save,sender=ScormElement)\ndef scorm_set_num_questions(sender,instance,created,**kwargs):\n \"\"\" Set the number of questions for this resource - can only work this out once the exam has been run! \"\"\"\n if not re.match(r'^cmi.objectives.([0-9]+).id$',instance.key) or not created:\n return\n\n number = int(re.match(r'q(\\d+)',instance.value).group(1))+1\n resource = instance.attempt.resource\n \n if number>resource.num_questions:\n resource.num_questions = number\n resource.save()\n\n@receiver(models.signals.pre_save,sender=EditorLink)\n"},"input_ids":{"kind":"list like","value":[6738,42625,14208,13,10414,1330,6460,198,6738,42625,14208,13,9945,1330,4981,198,6738,42625,14208,13,6381,17147,1330,9733,198,6738,42625,14208,13,3642,822,13,18439,13,27530,1330,11787,198,11748,7007,198,6738,42625,14208,13,26791,13,5239,1330,31065,1958,198,6738,42625,14208,13,26791,13,41519,1330,334,1136,5239,62,75,12582,355,4808,11,334,1136,5239,198,6738,42625,14208,13,7295,1330,4938,2024,198,6738,9619,1330,4912,11,11102,198,6738,42625,14208,13,26791,1330,640,11340,198,6738,4818,8079,1330,28805,12514,11,19608,8079,198,6738,42625,14208,62,18439,62,2528,72,13,17147,62,50188,1330,9575,198,198,6738,764,24432,1330,1448,62,1640,62,1078,1791,198,6738,764,13116,62,448,2958,1330,989,62,448,2958,62,1640,62,1078,1791,11,6358,7975,2958,50015,11,6358,7975,2958,32048,12331,198,198,11748,28686,198,11748,4423,346,198,6738,19974,7753,1330,38636,8979,198,6738,300,19875,1330,2123,631,198,11748,302,198,11748,33918,198,6738,17268,1330,4277,11600,198,198,31,260,39729,7,27530,13,12683,874,13,7353,62,21928,8,628,198,2,13610,534,4981,994,13,198,198,31,260,39729,7,27530,13,12683,874,13,3866,62,21928,11,29788,28,3109,321,8,628,198,10761,2885,2751,62,49273,50,796,685,198,220,220,220,19203,35323,3256,62,10786,36124,3634,4776,11537,828,198,220,220,220,19203,12957,3256,62,10786,5956,2230,11537,828,198,60,198,198,2200,15490,62,51,3955,1546,796,685,198,220,220,220,19203,320,23802,3256,62,10786,3546,23802,11537,828,198,220,220,220,19203,261,785,24547,3256,62,10786,2202,11939,11537,828,198,220,220,220,19203,805,935,3256,62,10786,5124,935,11,416,21187,11537,828,198,60,198,2200,15490,2751,62,35744,2937,1546,796,685,198,220,220,220,19203,49914,3256,62,10786,42159,8198,11537,828,198,220,220,220,19203,18224,3256,62,10786,12331,12956,11537,828,198,220,220,220,19203,20751,3256,62,10786,3237,8198,2098,11537,828,198,60,198,198,9693,3913,62,6173,1581,1546,62,33365,1546,796,685,198,220,220,220,19203,33770,3256,62,10786,30374,11537,828,198,220,220,220,19203,20751,3256,62,10786,2215,2230,318,1844,11537,828,198,220,220,220,19203,12081,3256,62,10786,12295,11537,828,198,60,198,198,41335,24131,62,35744,2937,1546,796,685,198,220,220,220,19203,1662,7482,3256,62,10786,3673,7482,11537,828,198,220,220,220,19203,259,20751,3256,62,10786,818,20751,11537,828,198,220,220,220,19203,785,16838,3256,62,10786,20988,11537,828,198,60,198,27530,13,12683,874,13,7353,62,21928,13,8443,7,2787,668,62,19119,62,1416,3021,62,26675,11,82,2194,28,8413,668,7841,8,198,27530,13,12683,874,13,7353,62,33678,13,8443,7,2787,668,62,19119,62,1416,3021,62,26675,11,82,2194,28,8413,668,7841,8,198,198,26288,34,28270,62,12473,7801,12861,2606,6998,796,685,198,220,220,220,19203,28956,41707,27914,422,2472,33809,198,220,220,220,19203,12853,14306,41707,32,904,2506,1336,3884,33809,198,60,198,27530,13,12683,874,13,7353,62,21928,13,8443,7,15410,608,62,19119,62,1416,3021,62,26675,11,82,2194,28,15642,608,7841,8,198,27530,13,12683,874,13,7353,62,33678,13,8443,7,15410,608,62,19119,62,1416,3021,62,26675,11,82,2194,28,15642,608,7841,8,198,198,31,260,39729,7,27530,13,12683,874,13,7353,62,21928,11,82,2194,28,3351,579,20180,8,198,198,31,260,39729,7,27530,13,12683,874,13,7353,62,21928,11,82,2194,28,3351,579,20180,8,198,198,31,260,39729,7,27530,13,12683,874,13,7353,62,21928,11,82,2194,28,3351,579,20180,8,198,198,31,260,39729,7,27530,13,12683,874,13,7353,62,21928,11,82,2194,28,3351,579,20180,8,198,4299,629,579,62,2617,62,22510,62,6138,507,7,82,2194,11,39098,11,25598,11,1174,46265,22046,2599,198,220,220,220,37227,5345,262,1271,286,2683,329,428,8271,532,460,691,670,428,503,1752,262,2814,468,587,1057,0,37227,198,220,220,220,611,407,302,13,15699,7,81,6,61,11215,72,13,15252,1083,12195,58,15,12,24,48688,737,312,3,3256,39098,13,2539,8,393,407,2727,25,198,220,220,220,220,220,220,220,1441,628,220,220,220,1271,796,493,7,260,13,15699,7,81,6,80,38016,67,28988,3256,39098,13,8367,737,8094,7,16,4008,10,16,198,220,220,220,8271,796,4554,13,1078,1791,13,31092,198,220,220,220,220,198,220,220,220,611,1271,29,31092,13,22510,62,6138,507,25,198,220,220,220,220,220,220,220,8271,13,22510,62,6138,507,796,1271,198,220,220,220,220,220,220,220,8271,13,21928,3419,198,198,31,260,39729,7,27530,13,12683,874,13,3866,62,21928,11,82,2194,28,17171,11280,8,198],"string":"[\n 6738,\n 42625,\n 14208,\n 13,\n 10414,\n 1330,\n 6460,\n 198,\n 6738,\n 42625,\n 14208,\n 13,\n 9945,\n 1330,\n 4981,\n 198,\n 6738,\n 42625,\n 14208,\n 13,\n 6381,\n 17147,\n 1330,\n 9733,\n 198,\n 6738,\n 42625,\n 14208,\n 13,\n 3642,\n 822,\n 13,\n 18439,\n 13,\n 27530,\n 1330,\n 11787,\n 198,\n 11748,\n 7007,\n 198,\n 6738,\n 42625,\n 14208,\n 13,\n 26791,\n 13,\n 5239,\n 1330,\n 31065,\n 1958,\n 198,\n 6738,\n 42625,\n 14208,\n 13,\n 26791,\n 13,\n 41519,\n 1330,\n 334,\n 1136,\n 5239,\n 62,\n 75,\n 12582,\n 355,\n 4808,\n 11,\n 334,\n 1136,\n 5239,\n 198,\n 6738,\n 42625,\n 14208,\n 13,\n 7295,\n 1330,\n 4938,\n 2024,\n 198,\n 6738,\n 9619,\n 1330,\n 4912,\n 11,\n 11102,\n 198,\n 6738,\n 42625,\n 14208,\n 13,\n 26791,\n 1330,\n 640,\n 11340,\n 198,\n 6738,\n 4818,\n 8079,\n 1330,\n 28805,\n 12514,\n 11,\n 19608,\n 8079,\n 198,\n 6738,\n 42625,\n 14208,\n 62,\n 18439,\n 62,\n 2528,\n 72,\n 13,\n 17147,\n 62,\n 50188,\n 1330,\n 9575,\n 198,\n 198,\n 6738,\n 764,\n 24432,\n 1330,\n 1448,\n 62,\n 1640,\n 62,\n 1078,\n 1791,\n 198,\n 6738,\n 764,\n 13116,\n 62,\n 448,\n 2958,\n 1330,\n 989,\n 62,\n 448,\n 2958,\n 62,\n 1640,\n 62,\n 1078,\n 1791,\n 11,\n 6358,\n 7975,\n 2958,\n 50015,\n 11,\n 6358,\n 7975,\n 2958,\n 32048,\n 12331,\n 198,\n 198,\n 11748,\n 28686,\n 198,\n 11748,\n 4423,\n 346,\n 198,\n 6738,\n 19974,\n 7753,\n 1330,\n 38636,\n 8979,\n 198,\n 6738,\n 300,\n 19875,\n 1330,\n 2123,\n 631,\n 198,\n 11748,\n 302,\n 198,\n 11748,\n 33918,\n 198,\n 6738,\n 17268,\n 1330,\n 4277,\n 11600,\n 198,\n 198,\n 31,\n 260,\n 39729,\n 7,\n 27530,\n 13,\n 12683,\n 874,\n 13,\n 7353,\n 62,\n 21928,\n 8,\n 628,\n 198,\n 2,\n 13610,\n 534,\n 4981,\n 994,\n 13,\n 198,\n 198,\n 31,\n 260,\n 39729,\n 7,\n 27530,\n 13,\n 12683,\n 874,\n 13,\n 3866,\n 62,\n 21928,\n 11,\n 29788,\n 28,\n 3109,\n 321,\n 8,\n 628,\n 198,\n 10761,\n 2885,\n 2751,\n 62,\n 49273,\n 50,\n 796,\n 685,\n 198,\n 220,\n 220,\n 220,\n 19203,\n 35323,\n 3256,\n 62,\n 10786,\n 36124,\n 3634,\n 4776,\n 11537,\n 828,\n 198,\n 220,\n 220,\n 220,\n 19203,\n 12957,\n 3256,\n 62,\n 10786,\n 5956,\n 2230,\n 11537,\n 828,\n 198,\n 60,\n 198,\n 198,\n 2200,\n 15490,\n 62,\n 51,\n 3955,\n 1546,\n 796,\n 685,\n 198,\n 220,\n 220,\n 220,\n 19203,\n 320,\n 23802,\n 3256,\n 62,\n 10786,\n 3546,\n 23802,\n 11537,\n 828,\n 198,\n 220,\n 220,\n 220,\n 19203,\n 261,\n 785,\n 24547,\n 3256,\n 62,\n 10786,\n 2202,\n 11939,\n 11537,\n 828,\n 198,\n 220,\n 220,\n 220,\n 19203,\n 805,\n 935,\n 3256,\n 62,\n 10786,\n 5124,\n 935,\n 11,\n 416,\n 21187,\n 11537,\n 828,\n 198,\n 60,\n 198,\n 2200,\n 15490,\n 2751,\n 62,\n 35744,\n 2937,\n 1546,\n 796,\n 685,\n 198,\n 220,\n 220,\n 220,\n 19203,\n 49914,\n 3256,\n 62,\n 10786,\n 42159,\n 8198,\n 11537,\n 828,\n 198,\n 220,\n 220,\n 220,\n 19203,\n 18224,\n 3256,\n 62,\n 10786,\n 12331,\n 12956,\n 11537,\n 828,\n 198,\n 220,\n 220,\n 220,\n 19203,\n 20751,\n 3256,\n 62,\n 10786,\n 3237,\n 8198,\n 2098,\n 11537,\n 828,\n 198,\n 60,\n 198,\n 198,\n 9693,\n 3913,\n 62,\n 6173,\n 1581,\n 1546,\n 62,\n 33365,\n 1546,\n 796,\n 685,\n 198,\n 220,\n 220,\n 220,\n 19203,\n 33770,\n 3256,\n 62,\n 10786,\n 30374,\n 11537,\n 828,\n 198,\n 220,\n 220,\n 220,\n 19203,\n 20751,\n 3256,\n 62,\n 10786,\n 2215,\n 2230,\n 318,\n 1844,\n 11537,\n 828,\n 198,\n 220,\n 220,\n 220,\n 19203,\n 12081,\n 3256,\n 62,\n 10786,\n 12295,\n 11537,\n 828,\n 198,\n 60,\n 198,\n 198,\n 41335,\n 24131,\n 62,\n 35744,\n 2937,\n 1546,\n 796,\n 685,\n 198,\n 220,\n 220,\n 220,\n 19203,\n 1662,\n 7482,\n 3256,\n 62,\n 10786,\n 3673,\n 7482,\n 11537,\n 828,\n 198,\n 220,\n 220,\n 220,\n 19203,\n 259,\n 20751,\n 3256,\n 62,\n 10786,\n 818,\n 20751,\n 11537,\n 828,\n 198,\n 220,\n 220,\n 220,\n 19203,\n 785,\n 16838,\n 3256,\n 62,\n 10786,\n 20988,\n 11537,\n 828,\n 198,\n 60,\n 198,\n 27530,\n 13,\n 12683,\n 874,\n 13,\n 7353,\n 62,\n 21928,\n 13,\n 8443,\n 7,\n 2787,\n 668,\n 62,\n 19119,\n 62,\n 1416,\n 3021,\n 62,\n 26675,\n 11,\n 82,\n 2194,\n 28,\n 8413,\n 668,\n 7841,\n 8,\n 198,\n 27530,\n 13,\n 12683,\n 874,\n 13,\n 7353,\n 62,\n 33678,\n 13,\n 8443,\n 7,\n 2787,\n 668,\n 62,\n 19119,\n 62,\n 1416,\n 3021,\n 62,\n 26675,\n 11,\n 82,\n 2194,\n 28,\n 8413,\n 668,\n 7841,\n 8,\n 198,\n 198,\n 26288,\n 34,\n 28270,\n 62,\n 12473,\n 7801,\n 12861,\n 2606,\n 6998,\n 796,\n 685,\n 198,\n 220,\n 220,\n 220,\n 19203,\n 28956,\n 41707,\n 27914,\n 422,\n 2472,\n 33809,\n 198,\n 220,\n 220,\n 220,\n 19203,\n 12853,\n 14306,\n 41707,\n 32,\n 904,\n 2506,\n 1336,\n 3884,\n 33809,\n 198,\n 60,\n 198,\n 27530,\n 13,\n 12683,\n 874,\n 13,\n 7353,\n 62,\n 21928,\n 13,\n 8443,\n 7,\n 15410,\n 608,\n 62,\n 19119,\n 62,\n 1416,\n 3021,\n 62,\n 26675,\n 11,\n 82,\n 2194,\n 28,\n 15642,\n 608,\n 7841,\n 8,\n 198,\n 27530,\n 13,\n 12683,\n 874,\n 13,\n 7353,\n 62,\n 33678,\n 13,\n 8443,\n 7,\n 15410,\n 608,\n 62,\n 19119,\n 62,\n 1416,\n 3021,\n 62,\n 26675,\n 11,\n 82,\n 2194,\n 28,\n 15642,\n 608,\n 7841,\n 8,\n 198,\n 198,\n 31,\n 260,\n 39729,\n 7,\n 27530,\n 13,\n 12683,\n 874,\n 13,\n 7353,\n 62,\n 21928,\n 11,\n 82,\n 2194,\n 28,\n 3351,\n 579,\n 20180,\n 8,\n 198,\n 198,\n 31,\n 260,\n 39729,\n 7,\n 27530,\n 13,\n 12683,\n 874,\n 13,\n 7353,\n 62,\n 21928,\n 11,\n 82,\n 2194,\n 28,\n 3351,\n 579,\n 20180,\n 8,\n 198,\n 198,\n 31,\n 260,\n 39729,\n 7,\n 27530,\n 13,\n 12683,\n 874,\n 13,\n 7353,\n 62,\n 21928,\n 11,\n 82,\n 2194,\n 28,\n 3351,\n 579,\n 20180,\n 8,\n 198,\n 198,\n 31,\n 260,\n 39729,\n 7,\n 27530,\n 13,\n 12683,\n 874,\n 13,\n 7353,\n 62,\n 21928,\n 11,\n 82,\n 2194,\n 28,\n 3351,\n 579,\n 20180,\n 8,\n 198,\n 4299,\n 629,\n 579,\n 62,\n 2617,\n 62,\n 22510,\n 62,\n 6138,\n 507,\n 7,\n 82,\n 2194,\n 11,\n 39098,\n 11,\n 25598,\n 11,\n 1174,\n 46265,\n 22046,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 5345,\n 262,\n 1271,\n 286,\n 2683,\n 329,\n 428,\n 8271,\n 532,\n 460,\n 691,\n 670,\n 428,\n 503,\n 1752,\n 262,\n 2814,\n 468,\n 587,\n 1057,\n 0,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 611,\n 407,\n 302,\n 13,\n 15699,\n 7,\n 81,\n 6,\n 61,\n 11215,\n 72,\n 13,\n 15252,\n 1083,\n 12195,\n 58,\n 15,\n 12,\n 24,\n 48688,\n 737,\n 312,\n 3,\n 3256,\n 39098,\n 13,\n 2539,\n 8,\n 393,\n 407,\n 2727,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1441,\n 628,\n 220,\n 220,\n 220,\n 1271,\n 796,\n 493,\n 7,\n 260,\n 13,\n 15699,\n 7,\n 81,\n 6,\n 80,\n 38016,\n 67,\n 28988,\n 3256,\n 39098,\n 13,\n 8367,\n 737,\n 8094,\n 7,\n 16,\n 4008,\n 10,\n 16,\n 198,\n 220,\n 220,\n 220,\n 8271,\n 796,\n 4554,\n 13,\n 1078,\n 1791,\n 13,\n 31092,\n 198,\n 220,\n 220,\n 220,\n 220,\n 198,\n 220,\n 220,\n 220,\n 611,\n 1271,\n 29,\n 31092,\n 13,\n 22510,\n 62,\n 6138,\n 507,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 8271,\n 13,\n 22510,\n 62,\n 6138,\n 507,\n 796,\n 1271,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 8271,\n 13,\n 21928,\n 3419,\n 198,\n 198,\n 31,\n 260,\n 39729,\n 7,\n 27530,\n 13,\n 12683,\n 874,\n 13,\n 3866,\n 62,\n 21928,\n 11,\n 82,\n 2194,\n 28,\n 17171,\n 11280,\n 8,\n 198\n]"},"ratio_char_token":{"kind":"number","value":2.8686440677966103,"string":"2.868644"},"token_count":{"kind":"number","value":944,"string":"944"}}},{"rowIdx":2446,"cells":{"content":{"kind":"string","value":"import json\nimport re\nimport argparse\nimport sys\n\n\n\n\nif __name__ == '__main__':\n main()\n"},"input_ids":{"kind":"list like","value":[11748,33918,198,11748,302,198,11748,1822,29572,198,11748,25064,628,628,198,361,11593,3672,834,6624,705,834,12417,834,10354,198,220,220,220,1388,3419,198],"string":"[\n 11748,\n 33918,\n 198,\n 11748,\n 302,\n 198,\n 11748,\n 1822,\n 29572,\n 198,\n 11748,\n 25064,\n 628,\n 628,\n 198,\n 361,\n 11593,\n 3672,\n 834,\n 6624,\n 705,\n 834,\n 12417,\n 834,\n 10354,\n 198,\n 220,\n 220,\n 220,\n 1388,\n 3419,\n 198\n]"},"ratio_char_token":{"kind":"number","value":2.84375,"string":"2.84375"},"token_count":{"kind":"number","value":32,"string":"32"}}},{"rowIdx":2447,"cells":{"content":{"kind":"string","value":"import json\n\nfrom src.mappers.heartbeatMapper import Heartbeat\n\n"},"input_ids":{"kind":"list like","value":[11748,33918,198,198,6738,12351,13,76,46629,13,11499,12945,44,11463,1330,8894,12945,628],"string":"[\n 11748,\n 33918,\n 198,\n 198,\n 6738,\n 12351,\n 13,\n 76,\n 46629,\n 13,\n 11499,\n 12945,\n 44,\n 11463,\n 1330,\n 8894,\n 12945,\n 628\n]"},"ratio_char_token":{"kind":"number","value":3.5555555555555554,"string":"3.555556"},"token_count":{"kind":"number","value":18,"string":"18"}}},{"rowIdx":2448,"cells":{"content":{"kind":"string","value":"# Generated automatically using the command :\n# c++2py h5py_io.hpp --members_read_only -N h5 -a _h5py -m _h5py -o _h5py --moduledoc=\"A lightweight hdf5 python interface\" --cxxflags=\"-std=c++20\" --includes=./../../c++ --only=\"object file group h5_read_bare h5_write_bare\"\nfrom cpp2py.wrap_generator import *\n\n# The module\nmodule = module_(full_name = \"_h5py\", doc = r\"A lightweight hdf5 python interface\", app_name = \"_h5py\")\n\n# Imports\n\n# Add here all includes\nmodule.add_include(\"\")\n\n# Add here anything to add in the C++ code at the start, e.g. namespace using\nmodule.add_preamble(\"\"\"\n#include \n#include \n#include \n\nusing namespace h5;\n\"\"\")\n\n\n# The class file\nc = class_(\n py_type = \"File\", # name of the python class\n c_type = \"file\", # name of the C++ class\n doc = r\"\"\"A little handler for the HDF5 file\n\n The class is basically a pointer to the file.\"\"\", # doc of the C++ class\n hdf5 = False,\n)\n\nc.add_constructor(\"\"\"()\"\"\", doc = r\"\"\"Open a file in memory\"\"\")\n\nc.add_constructor(\"\"\"(std::string name, char mode)\"\"\", doc = r\"\"\"\"\"\")\n\nc.add_constructor(\"\"\"(std::span buf)\"\"\", doc = r\"\"\"Create a file in memory from a byte buffer\"\"\")\n\nc.add_property(name = \"name\", getter = cfunction(\"\"\"std::string name ()\"\"\"),\n doc = r\"\"\"Name of the file\"\"\")\n\nc.add_method(\"\"\"void flush ()\"\"\",\n doc = r\"\"\"Flush the file\"\"\")\n\nc.add_method(\"\"\"std::vector as_buffer ()\"\"\",\n doc = r\"\"\"Get a copy of the associated byte buffer\"\"\")\n\nmodule.add_class(c)\n\n# The class group\nc = class_(\n py_type = \"Group\", # name of the python class\n c_type = \"group\", # name of the C++ class\n doc = r\"\"\"HDF5 group\"\"\", # doc of the C++ class\n hdf5 = False,\n)\n\nc.add_constructor(\"\"\"(file f)\"\"\", doc = r\"\"\"Takes the \"/\" group at the top of the file\"\"\")\n\nc.add_property(name = \"name\", getter = cfunction(\"\"\"std::string name ()\"\"\"),\n doc = r\"\"\"Name of the group\"\"\")\n\nc.add_method(\"\"\"group open_group (std::string key)\"\"\",\n doc = r\"\"\"Open a subgroup.\n Throws std::runtime_error if it does not exist.\n\nParameters\n----------\nkey\n The name of the subgroup. If empty, return this group\"\"\")\n\nc.add_method(\"\"\"group create_group (std::string key, bool delete_if_exists = true)\"\"\",\n doc = r\"\"\"Create a subgroup in this group\n\nParameters\n----------\nkey\n The name of the subgroup. If empty, return this group.\n\ndelete_if_exists\n Unlink the group if it exists\"\"\")\n\nc.add_method(\"\"\"std::vector get_all_subgroup_dataset_names ()\"\"\", name='keys',\n doc = r\"\"\"Returns all names of dataset of G\"\"\")\n\nc.add_property(name = \"file\", getter = cfunction(\"\"\"file get_file ()\"\"\"),\n doc = r\"\"\"The parent file\"\"\")\n\nc.add_method(\"\"\"bool has_subgroup (std::string key)\"\"\",\n doc = r\"\"\"True iff key is a subgroup of this.\n\nParameters\n----------\nkey\"\"\")\n\nc.add_method(\"\"\"bool has_dataset (std::string key)\"\"\",\n doc = r\"\"\"True iff key is a dataset of this.\n\nParameters\n----------\nkey\"\"\")\n\nc.add_method(\"void write_attribute(std::string key, std::string val)\", calling_pattern = \"h5_write_attribute(self_c, key, val)\", doc = \"Write an attribute\")\n\nc.add_method(\"std::string read_attribute(std::string name)\", calling_pattern = \"std::string result = h5_read_attribute(self_c, name)\", doc = \"Read an attribute\")\n\nc.add_method(\"std::string read_hdf5_format_from_key(std::string key)\", calling_pattern = \"std::string result; read_hdf5_format_from_key(self_c, key, result);\", doc = \"Read the format string from the key in the group\")\n\nmodule.add_class(c)\n\nmodule.add_function (name = \"h5_write\", signature = \"void h5_write_bare (group g, std::string name, PyObject * ob)\", doc = r\"\"\"\"\"\")\n\nmodule.add_function (name = \"h5_read\", signature = \"PyObject * h5_read_bare (group g, std::string name)\", doc = r\"\"\"\"\"\")\n\n\n\nmodule.generate_code()\n"},"input_ids":{"kind":"list like","value":[2,2980,515,6338,1262,262,3141,1058,198,2,269,4880,17,9078,289,20,9078,62,952,13,71,381,1377,30814,62,961,62,8807,532,45,289,20,532,64,4808,71,20,9078,532,76,4808,71,20,9078,532,78,4808,71,20,9078,1377,4666,6309,420,2625,32,18700,289,7568,20,21015,7071,1,1377,66,5324,33152,2625,12,19282,28,66,4880,1238,1,1377,42813,28,19571,40720,40720,66,4880,1377,8807,2625,15252,2393,1448,289,20,62,961,62,49382,289,20,62,13564,62,49382,1,198,6738,269,381,17,9078,13,37150,62,8612,1352,1330,1635,198,198,2,383,8265,198,21412,796,8265,41052,12853,62,3672,796,45434,71,20,9078,1600,2205,796,374,1,32,18700,289,7568,20,21015,7071,1600,598,62,3672,796,45434,71,20,9078,4943,198,198,2,1846,3742,198,198,2,3060,994,477,3407,198,21412,13,2860,62,17256,7203,27,71,20,9078,62,952,13,71,381,29,4943,198,198,2,3060,994,1997,284,751,287,262,327,4880,2438,379,262,923,11,304,13,70,13,25745,1262,198,21412,13,2860,62,79,1476,903,7203,15931,198,2,17256,1279,20322,17,9078,14,1102,332,1010,14,12626,13,71,381,29,198,2,17256,1279,20322,17,9078,14,1102,332,1010,14,8841,13,71,381,29,198,2,17256,1279,20322,17,9078,14,1102,332,1010,14,31364,13,71,381,29,198,198,3500,25745,289,20,26,198,15931,4943,628,198,2,383,1398,2393,198,66,796,1398,41052,198,220,220,220,220,220,220,220,12972,62,4906,796,366,8979,1600,220,1303,1438,286,262,21015,1398,198,220,220,220,220,220,220,220,269,62,4906,796,366,7753,1600,220,220,1303,1438,286,262,327,4880,1398,198,220,220,220,220,220,220,220,2205,796,374,37811,32,1310,21360,329,262,5572,37,20,2393,628,220,383,1398,318,6209,257,17562,284,262,2393,32203,1600,220,220,1303,2205,286,262,327,4880,1398,198,220,220,220,220,220,220,220,289,7568,20,796,10352,11,198,8,198,198,66,13,2860,62,41571,273,7203,15931,3419,15931,1600,2205,796,374,37811,11505,257,2393,287,4088,15931,4943,198,198,66,13,2860,62,41571,273,7203,15931,7,19282,3712,8841,1438,11,1149,4235,8,15931,1600,2205,796,374,15931,37811,4943,198,198,66,13,2860,62,41571,273,7203,15931,7,19282,3712,12626,27,19282,3712,26327,29,42684,8,15931,1600,2205,796,374,37811,16447,257,2393,287,4088,422,257,18022,11876,15931,4943,198,198,66,13,2860,62,26745,7,3672,796,366,3672,1600,651,353,796,269,8818,7203,15931,19282,3712,8841,1438,7499,15931,12340,198,220,220,220,220,220,220,220,220,220,220,220,220,2205,796,374,37811,5376,286,262,2393,15931,4943,198,198,66,13,2860,62,24396,7203,15931,19382,24773,7499,15931,1600,198,220,220,220,220,220,220,220,220,220,220,220,220,2205,796,374,37811,7414,1530,262,2393,15931,4943,198,198,66,13,2860,62,24396,7203,15931,19282,3712,31364,27,19282,3712,26327,29,355,62,22252,7499,15931,1600,198,220,220,220,220,220,220,220,220,220,220,220,220,2205,796,374,37811,3855,257,4866,286,262,3917,18022,11876,15931,4943,198,198,21412,13,2860,62,4871,7,66,8,198,198,2,383,1398,1448,198,66,796,1398,41052,198,220,220,220,220,220,220,220,12972,62,4906,796,366,13247,1600,220,1303,1438,286,262,21015,1398,198,220,220,220,220,220,220,220,269,62,4906,796,366,8094,1600,220,220,1303,1438,286,262,327,4880,1398,198,220,220,220,220,220,220,220,2205,796,374,37811,39,8068,20,1448,15931,1600,220,220,1303,2205,286,262,327,4880,1398,198,220,220,220,220,220,220,220,289,7568,20,796,10352,11,198,8,198,198,66,13,2860,62,41571,273,7203,15931,7,7753,277,8,15931,1600,2205,796,374,37811,51,1124,262,12813,1,1448,379,262,1353,286,262,2393,15931,4943,198,198,66,13,2860,62,26745,7,3672,796,366,3672,1600,651,353,796,269,8818,7203,15931,19282,3712,8841,1438,7499,15931,12340,198,220,220,220,220,220,220,220,220,220,220,220,220,2205,796,374,37811,5376,286,262,1448,15931,4943,198,198,66,13,2860,62,24396,7203,15931,8094,1280,62,8094,357,19282,3712,8841,1994,8,15931,1600,198,220,220,220,220,220,220,220,220,220,220,220,220,2205,796,374,37811,11505,257,850,8094,13,198,536,8516,14367,3712,43282,62,18224,611,340,857,407,2152,13,198,198,48944,198,35937,198,2539,198,220,220,220,220,383,1438,286,262,850,8094,13,1002,6565,11,1441,428,1448,15931,4943,198,198,66,13,2860,62,24396,7203,15931,8094,2251,62,8094,357,19282,3712,8841,1994,11,20512,12233,62,361,62,1069,1023,796,2081,8,15931,1600,198,220,220,220,220,220,220,220,220,220,220,220,220,2205,796,374,37811,16447,257,850,8094,287,428,1448,198,198,48944,198,35937,198,2539,198,220,220,220,220,383,1438,286,262,850,8094,13,1002,6565,11,1441,428,1448,13,198,198,33678,62,361,62,1069,1023,198,220,220,220,220,791,8726,262,1448,611,340,7160,15931,4943,198,198,66,13,2860,62,24396,7203,15931,19282,3712,31364,27,19282,3712,8841,29,651,62,439,62,7266,8094,62,19608,292,316,62,14933,7499,15931,1600,1438,11639,13083,3256,198,220,220,220,220,220,220,220,220,220,220,220,220,2205,796,374,37811,35561,477,3891,286,27039,286,402,15931,4943,198,198,66,13,2860,62,26745,7,3672,796,366,7753,1600,651,353,796,269,8818,7203,15931,7753,651,62,7753,7499,15931,12340,198,220,220,220,220,220,220,220,220,220,220,220,220,2205,796,374,37811,464,2560,2393,15931,4943,198,198,66,13,2860,62,24396,7203,15931,30388,468,62,7266,8094,357,19282,3712,8841,1994,8,15931,1600,198,220,220,220,220,220,220,220,220,220,220,220,220,2205,796,374,37811,17821,611,69,1994,318,257,850,8094,286,428,13,198,198,48944,198,35937,198,2539,15931,4943,198,198,66,13,2860,62,24396,7203,15931,30388,468,62,19608,292,316,357,19282,3712,8841,1994,8,15931,1600,198,220,220,220,220,220,220,220,220,220,220,220,220,2205,796,374,37811,17821,611,69,1994,318,257,27039,286,428,13,198,198,48944,198,35937,198,2539,15931,4943,198,198,66,13,2860,62,24396,7203,19382,3551,62,42348,7,19282,3712,8841,1994,11,14367,3712,8841,1188,42501,4585,62,33279,796,366,71,20,62,13564,62,42348,7,944,62,66,11,1994,11,1188,42501,2205,796,366,16594,281,11688,4943,198,198,66,13,2860,62,24396,7203,19282,3712,8841,1100,62,42348,7,19282,3712,8841,1438,42501,4585,62,33279,796,366,19282,3712,8841,1255,796,289,20,62,961,62,42348,27,19282,3712,8841,33994,944,62,66,11,1438,42501,2205,796,366,5569,281,11688,4943,198,198,66,13,2860,62,24396,7203,19282,3712,8841,1100,62,71,7568,20,62,18982,62,6738,62,2539,7,19282,3712,8841,1994,42501,4585,62,33279,796,366,19282,3712,8841,1255,26,1100,62,71,7568,20,62,18982,62,6738,62,2539,7,944,62,66,11,1994,11,1255,1776,1600,2205,796,366,5569,262,5794,4731,422,262,1994,287,262,1448,4943,198,198,21412,13,2860,62,4871,7,66,8,198,198,21412,13,2860,62,8818,357,3672,796,366,71,20,62,13564,1600,9877,796,366,19382,289,20,62,13564,62,49382,357,8094,308,11,14367,3712,8841,1438,11,9485,10267,1635,909,42501,2205,796,374,15931,37811,4943,198,198,21412,13,2860,62,8818,357,3672,796,366,71,20,62,961,1600,9877,796,366,20519,10267,1635,289,20,62,961,62,49382,357,8094,308,11,14367,3712,8841,1438,42501,2205,796,374,15931,37811,4943,628,198,198,21412,13,8612,378,62,8189,3419,198],"string":"[\n 2,\n 2980,\n 515,\n 6338,\n 1262,\n 262,\n 3141,\n 1058,\n 198,\n 2,\n 269,\n 4880,\n 17,\n 9078,\n 289,\n 20,\n 9078,\n 62,\n 952,\n 13,\n 71,\n 381,\n 1377,\n 30814,\n 62,\n 961,\n 62,\n 8807,\n 532,\n 45,\n 289,\n 20,\n 532,\n 64,\n 4808,\n 71,\n 20,\n 9078,\n 532,\n 76,\n 4808,\n 71,\n 20,\n 9078,\n 532,\n 78,\n 4808,\n 71,\n 20,\n 9078,\n 1377,\n 4666,\n 6309,\n 420,\n 2625,\n 32,\n 18700,\n 289,\n 7568,\n 20,\n 21015,\n 7071,\n 1,\n 1377,\n 66,\n 5324,\n 33152,\n 2625,\n 12,\n 19282,\n 28,\n 66,\n 4880,\n 1238,\n 1,\n 1377,\n 42813,\n 28,\n 19571,\n 40720,\n 40720,\n 66,\n 4880,\n 1377,\n 8807,\n 2625,\n 15252,\n 2393,\n 1448,\n 289,\n 20,\n 62,\n 961,\n 62,\n 49382,\n 289,\n 20,\n 62,\n 13564,\n 62,\n 49382,\n 1,\n 198,\n 6738,\n 269,\n 381,\n 17,\n 9078,\n 13,\n 37150,\n 62,\n 8612,\n 1352,\n 1330,\n 1635,\n 198,\n 198,\n 2,\n 383,\n 8265,\n 198,\n 21412,\n 796,\n 8265,\n 41052,\n 12853,\n 62,\n 3672,\n 796,\n 45434,\n 71,\n 20,\n 9078,\n 1600,\n 2205,\n 796,\n 374,\n 1,\n 32,\n 18700,\n 289,\n 7568,\n 20,\n 21015,\n 7071,\n 1600,\n 598,\n 62,\n 3672,\n 796,\n 45434,\n 71,\n 20,\n 9078,\n 4943,\n 198,\n 198,\n 2,\n 1846,\n 3742,\n 198,\n 198,\n 2,\n 3060,\n 994,\n 477,\n 3407,\n 198,\n 21412,\n 13,\n 2860,\n 62,\n 17256,\n 7203,\n 27,\n 71,\n 20,\n 9078,\n 62,\n 952,\n 13,\n 71,\n 381,\n 29,\n 4943,\n 198,\n 198,\n 2,\n 3060,\n 994,\n 1997,\n 284,\n 751,\n 287,\n 262,\n 327,\n 4880,\n 2438,\n 379,\n 262,\n 923,\n 11,\n 304,\n 13,\n 70,\n 13,\n 25745,\n 1262,\n 198,\n 21412,\n 13,\n 2860,\n 62,\n 79,\n 1476,\n 903,\n 7203,\n 15931,\n 198,\n 2,\n 17256,\n 1279,\n 20322,\n 17,\n 9078,\n 14,\n 1102,\n 332,\n 1010,\n 14,\n 12626,\n 13,\n 71,\n 381,\n 29,\n 198,\n 2,\n 17256,\n 1279,\n 20322,\n 17,\n 9078,\n 14,\n 1102,\n 332,\n 1010,\n 14,\n 8841,\n 13,\n 71,\n 381,\n 29,\n 198,\n 2,\n 17256,\n 1279,\n 20322,\n 17,\n 9078,\n 14,\n 1102,\n 332,\n 1010,\n 14,\n 31364,\n 13,\n 71,\n 381,\n 29,\n 198,\n 198,\n 3500,\n 25745,\n 289,\n 20,\n 26,\n 198,\n 15931,\n 4943,\n 628,\n 198,\n 2,\n 383,\n 1398,\n 2393,\n 198,\n 66,\n 796,\n 1398,\n 41052,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 12972,\n 62,\n 4906,\n 796,\n 366,\n 8979,\n 1600,\n 220,\n 1303,\n 1438,\n 286,\n 262,\n 21015,\n 1398,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 269,\n 62,\n 4906,\n 796,\n 366,\n 7753,\n 1600,\n 220,\n 220,\n 1303,\n 1438,\n 286,\n 262,\n 327,\n 4880,\n 1398,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2205,\n 796,\n 374,\n 37811,\n 32,\n 1310,\n 21360,\n 329,\n 262,\n 5572,\n 37,\n 20,\n 2393,\n 628,\n 220,\n 383,\n 1398,\n 318,\n 6209,\n 257,\n 17562,\n 284,\n 262,\n 2393,\n 32203,\n 1600,\n 220,\n 220,\n 1303,\n 2205,\n 286,\n 262,\n 327,\n 4880,\n 1398,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 289,\n 7568,\n 20,\n 796,\n 10352,\n 11,\n 198,\n 8,\n 198,\n 198,\n 66,\n 13,\n 2860,\n 62,\n 41571,\n 273,\n 7203,\n 15931,\n 3419,\n 15931,\n 1600,\n 2205,\n 796,\n 374,\n 37811,\n 11505,\n 257,\n 2393,\n 287,\n 4088,\n 15931,\n 4943,\n 198,\n 198,\n 66,\n 13,\n 2860,\n 62,\n 41571,\n 273,\n 7203,\n 15931,\n 7,\n 19282,\n 3712,\n 8841,\n 1438,\n 11,\n 1149,\n 4235,\n 8,\n 15931,\n 1600,\n 2205,\n 796,\n 374,\n 15931,\n 37811,\n 4943,\n 198,\n 198,\n 66,\n 13,\n 2860,\n 62,\n 41571,\n 273,\n 7203,\n 15931,\n 7,\n 19282,\n 3712,\n 12626,\n 27,\n 19282,\n 3712,\n 26327,\n 29,\n 42684,\n 8,\n 15931,\n 1600,\n 2205,\n 796,\n 374,\n 37811,\n 16447,\n 257,\n 2393,\n 287,\n 4088,\n 422,\n 257,\n 18022,\n 11876,\n 15931,\n 4943,\n 198,\n 198,\n 66,\n 13,\n 2860,\n 62,\n 26745,\n 7,\n 3672,\n 796,\n 366,\n 3672,\n 1600,\n 651,\n 353,\n 796,\n 269,\n 8818,\n 7203,\n 15931,\n 19282,\n 3712,\n 8841,\n 1438,\n 7499,\n 15931,\n 12340,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2205,\n 796,\n 374,\n 37811,\n 5376,\n 286,\n 262,\n 2393,\n 15931,\n 4943,\n 198,\n 198,\n 66,\n 13,\n 2860,\n 62,\n 24396,\n 7203,\n 15931,\n 19382,\n 24773,\n 7499,\n 15931,\n 1600,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2205,\n 796,\n 374,\n 37811,\n 7414,\n 1530,\n 262,\n 2393,\n 15931,\n 4943,\n 198,\n 198,\n 66,\n 13,\n 2860,\n 62,\n 24396,\n 7203,\n 15931,\n 19282,\n 3712,\n 31364,\n 27,\n 19282,\n 3712,\n 26327,\n 29,\n 355,\n 62,\n 22252,\n 7499,\n 15931,\n 1600,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2205,\n 796,\n 374,\n 37811,\n 3855,\n 257,\n 4866,\n 286,\n 262,\n 3917,\n 18022,\n 11876,\n 15931,\n 4943,\n 198,\n 198,\n 21412,\n 13,\n 2860,\n 62,\n 4871,\n 7,\n 66,\n 8,\n 198,\n 198,\n 2,\n 383,\n 1398,\n 1448,\n 198,\n 66,\n 796,\n 1398,\n 41052,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 12972,\n 62,\n 4906,\n 796,\n 366,\n 13247,\n 1600,\n 220,\n 1303,\n 1438,\n 286,\n 262,\n 21015,\n 1398,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 269,\n 62,\n 4906,\n 796,\n 366,\n 8094,\n 1600,\n 220,\n 220,\n 1303,\n 1438,\n 286,\n 262,\n 327,\n 4880,\n 1398,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2205,\n 796,\n 374,\n 37811,\n 39,\n 8068,\n 20,\n 1448,\n 15931,\n 1600,\n 220,\n 220,\n 1303,\n 2205,\n 286,\n 262,\n 327,\n 4880,\n 1398,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 289,\n 7568,\n 20,\n 796,\n 10352,\n 11,\n 198,\n 8,\n 198,\n 198,\n 66,\n 13,\n 2860,\n 62,\n 41571,\n 273,\n 7203,\n 15931,\n 7,\n 7753,\n 277,\n 8,\n 15931,\n 1600,\n 2205,\n 796,\n 374,\n 37811,\n 51,\n 1124,\n 262,\n 12813,\n 1,\n 1448,\n 379,\n 262,\n 1353,\n 286,\n 262,\n 2393,\n 15931,\n 4943,\n 198,\n 198,\n 66,\n 13,\n 2860,\n 62,\n 26745,\n 7,\n 3672,\n 796,\n 366,\n 3672,\n 1600,\n 651,\n 353,\n 796,\n 269,\n 8818,\n 7203,\n 15931,\n 19282,\n 3712,\n 8841,\n 1438,\n 7499,\n 15931,\n 12340,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2205,\n 796,\n 374,\n 37811,\n 5376,\n 286,\n 262,\n 1448,\n 15931,\n 4943,\n 198,\n 198,\n 66,\n 13,\n 2860,\n 62,\n 24396,\n 7203,\n 15931,\n 8094,\n 1280,\n 62,\n 8094,\n 357,\n 19282,\n 3712,\n 8841,\n 1994,\n 8,\n 15931,\n 1600,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2205,\n 796,\n 374,\n 37811,\n 11505,\n 257,\n 850,\n 8094,\n 13,\n 198,\n 536,\n 8516,\n 14367,\n 3712,\n 43282,\n 62,\n 18224,\n 611,\n 340,\n 857,\n 407,\n 2152,\n 13,\n 198,\n 198,\n 48944,\n 198,\n 35937,\n 198,\n 2539,\n 198,\n 220,\n 220,\n 220,\n 220,\n 383,\n 1438,\n 286,\n 262,\n 850,\n 8094,\n 13,\n 1002,\n 6565,\n 11,\n 1441,\n 428,\n 1448,\n 15931,\n 4943,\n 198,\n 198,\n 66,\n 13,\n 2860,\n 62,\n 24396,\n 7203,\n 15931,\n 8094,\n 2251,\n 62,\n 8094,\n 357,\n 19282,\n 3712,\n 8841,\n 1994,\n 11,\n 20512,\n 12233,\n 62,\n 361,\n 62,\n 1069,\n 1023,\n 796,\n 2081,\n 8,\n 15931,\n 1600,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2205,\n 796,\n 374,\n 37811,\n 16447,\n 257,\n 850,\n 8094,\n 287,\n 428,\n 1448,\n 198,\n 198,\n 48944,\n 198,\n 35937,\n 198,\n 2539,\n 198,\n 220,\n 220,\n 220,\n 220,\n 383,\n 1438,\n 286,\n 262,\n 850,\n 8094,\n 13,\n 1002,\n 6565,\n 11,\n 1441,\n 428,\n 1448,\n 13,\n 198,\n 198,\n 33678,\n 62,\n 361,\n 62,\n 1069,\n 1023,\n 198,\n 220,\n 220,\n 220,\n 220,\n 791,\n 8726,\n 262,\n 1448,\n 611,\n 340,\n 7160,\n 15931,\n 4943,\n 198,\n 198,\n 66,\n 13,\n 2860,\n 62,\n 24396,\n 7203,\n 15931,\n 19282,\n 3712,\n 31364,\n 27,\n 19282,\n 3712,\n 8841,\n 29,\n 651,\n 62,\n 439,\n 62,\n 7266,\n 8094,\n 62,\n 19608,\n 292,\n 316,\n 62,\n 14933,\n 7499,\n 15931,\n 1600,\n 1438,\n 11639,\n 13083,\n 3256,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2205,\n 796,\n 374,\n 37811,\n 35561,\n 477,\n 3891,\n 286,\n 27039,\n 286,\n 402,\n 15931,\n 4943,\n 198,\n 198,\n 66,\n 13,\n 2860,\n 62,\n 26745,\n 7,\n 3672,\n 796,\n 366,\n 7753,\n 1600,\n 651,\n 353,\n 796,\n 269,\n 8818,\n 7203,\n 15931,\n 7753,\n 651,\n 62,\n 7753,\n 7499,\n 15931,\n 12340,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2205,\n 796,\n 374,\n 37811,\n 464,\n 2560,\n 2393,\n 15931,\n 4943,\n 198,\n 198,\n 66,\n 13,\n 2860,\n 62,\n 24396,\n 7203,\n 15931,\n 30388,\n 468,\n 62,\n 7266,\n 8094,\n 357,\n 19282,\n 3712,\n 8841,\n 1994,\n 8,\n 15931,\n 1600,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2205,\n 796,\n 374,\n 37811,\n 17821,\n 611,\n 69,\n 1994,\n 318,\n 257,\n 850,\n 8094,\n 286,\n 428,\n 13,\n 198,\n 198,\n 48944,\n 198,\n 35937,\n 198,\n 2539,\n 15931,\n 4943,\n 198,\n 198,\n 66,\n 13,\n 2860,\n 62,\n 24396,\n 7203,\n 15931,\n 30388,\n 468,\n 62,\n 19608,\n 292,\n 316,\n 357,\n 19282,\n 3712,\n 8841,\n 1994,\n 8,\n 15931,\n 1600,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2205,\n 796,\n 374,\n 37811,\n 17821,\n 611,\n 69,\n 1994,\n 318,\n 257,\n 27039,\n 286,\n 428,\n 13,\n 198,\n 198,\n 48944,\n 198,\n 35937,\n 198,\n 2539,\n 15931,\n 4943,\n 198,\n 198,\n 66,\n 13,\n 2860,\n 62,\n 24396,\n 7203,\n 19382,\n 3551,\n 62,\n 42348,\n 7,\n 19282,\n 3712,\n 8841,\n 1994,\n 11,\n 14367,\n 3712,\n 8841,\n 1188,\n 42501,\n 4585,\n 62,\n 33279,\n 796,\n 366,\n 71,\n 20,\n 62,\n 13564,\n 62,\n 42348,\n 7,\n 944,\n 62,\n 66,\n 11,\n 1994,\n 11,\n 1188,\n 42501,\n 2205,\n 796,\n 366,\n 16594,\n 281,\n 11688,\n 4943,\n 198,\n 198,\n 66,\n 13,\n 2860,\n 62,\n 24396,\n 7203,\n 19282,\n 3712,\n 8841,\n 1100,\n 62,\n 42348,\n 7,\n 19282,\n 3712,\n 8841,\n 1438,\n 42501,\n 4585,\n 62,\n 33279,\n 796,\n 366,\n 19282,\n 3712,\n 8841,\n 1255,\n 796,\n 289,\n 20,\n 62,\n 961,\n 62,\n 42348,\n 27,\n 19282,\n 3712,\n 8841,\n 33994,\n 944,\n 62,\n 66,\n 11,\n 1438,\n 42501,\n 2205,\n 796,\n 366,\n 5569,\n 281,\n 11688,\n 4943,\n 198,\n 198,\n 66,\n 13,\n 2860,\n 62,\n 24396,\n 7203,\n 19282,\n 3712,\n 8841,\n 1100,\n 62,\n 71,\n 7568,\n 20,\n 62,\n 18982,\n 62,\n 6738,\n 62,\n 2539,\n 7,\n 19282,\n 3712,\n 8841,\n 1994,\n 42501,\n 4585,\n 62,\n 33279,\n 796,\n 366,\n 19282,\n 3712,\n 8841,\n 1255,\n 26,\n 1100,\n 62,\n 71,\n 7568,\n 20,\n 62,\n 18982,\n 62,\n 6738,\n 62,\n 2539,\n 7,\n 944,\n 62,\n 66,\n 11,\n 1994,\n 11,\n 1255,\n 1776,\n 1600,\n 2205,\n 796,\n 366,\n 5569,\n 262,\n 5794,\n 4731,\n 422,\n 262,\n 1994,\n 287,\n 262,\n 1448,\n 4943,\n 198,\n 198,\n 21412,\n 13,\n 2860,\n 62,\n 4871,\n 7,\n 66,\n 8,\n 198,\n 198,\n 21412,\n 13,\n 2860,\n 62,\n 8818,\n 357,\n 3672,\n 796,\n 366,\n 71,\n 20,\n 62,\n 13564,\n 1600,\n 9877,\n 796,\n 366,\n 19382,\n 289,\n 20,\n 62,\n 13564,\n 62,\n 49382,\n 357,\n 8094,\n 308,\n 11,\n 14367,\n 3712,\n 8841,\n 1438,\n 11,\n 9485,\n 10267,\n 1635,\n 909,\n 42501,\n 2205,\n 796,\n 374,\n 15931,\n 37811,\n 4943,\n 198,\n 198,\n 21412,\n 13,\n 2860,\n 62,\n 8818,\n 357,\n 3672,\n 796,\n 366,\n 71,\n 20,\n 62,\n 961,\n 1600,\n 9877,\n 796,\n 366,\n 20519,\n 10267,\n 1635,\n 289,\n 20,\n 62,\n 961,\n 62,\n 49382,\n 357,\n 8094,\n 308,\n 11,\n 14367,\n 3712,\n 8841,\n 1438,\n 42501,\n 2205,\n 796,\n 374,\n 15931,\n 37811,\n 4943,\n 628,\n 198,\n 198,\n 21412,\n 13,\n 8612,\n 378,\n 62,\n 8189,\n 3419,\n 198\n]"},"ratio_char_token":{"kind":"number","value":2.6363636363636362,"string":"2.636364"},"token_count":{"kind":"number","value":1518,"string":"1,518"}}},{"rowIdx":2449,"cells":{"content":{"kind":"string","value":"# Copyright 2021 Google Inc.\n#\n# Licensed under the Apache License, Version 2.0 (the \"License\")\n# you may not use this file except in compliance with the License.\n# You may obtain a copy of the License at\n#\n# http://www.apache.org/licenses/LICENSE-2.0\n#\n# Unless required by applicable law or agreed to in writing, software\n# distributed under the License is distributed on an \"AS IS\" BASIS,\n# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n# See the License for the specific language governing permissions and\n# limitations under the License.\n\nimport testing_config # Must be imported first\n\nimport flask\nfrom unittest import mock\nimport werkzeug\n\nfrom internals import models\nfrom internals import approval_defs\nfrom internals import detect_intent\n\ntest_app = flask.Flask(__name__)\n\n\n"},"input_ids":{"kind":"list like","value":[2,15069,33448,3012,3457,13,198,2,198,2,49962,739,262,24843,13789,11,10628,362,13,15,357,1169,366,34156,4943,198,2,345,743,407,779,428,2393,2845,287,11846,351,262,13789,13,198,2,921,743,7330,257,4866,286,262,13789,379,198,2,198,2,220,220,220,220,2638,1378,2503,13,43073,13,2398,14,677,4541,14,43,2149,24290,12,17,13,15,198,2,198,2,17486,2672,416,9723,1099,393,4987,284,287,3597,11,3788,198,2,9387,739,262,13789,318,9387,319,281,366,1921,3180,1,29809,1797,11,198,2,42881,34764,11015,6375,7102,49828,11053,3963,15529,509,12115,11,2035,4911,393,17142,13,198,2,4091,262,13789,329,262,2176,3303,15030,21627,290,198,2,11247,739,262,13789,13,198,198,11748,4856,62,11250,220,1303,12039,307,17392,717,198,198,11748,42903,198,6738,555,715,395,1330,15290,198,11748,266,9587,2736,1018,198,198,6738,1788,874,1330,4981,198,6738,1788,874,1330,7546,62,4299,82,198,6738,1788,874,1330,4886,62,48536,198,198,9288,62,1324,796,42903,13,7414,2093,7,834,3672,834,8,628,198],"string":"[\n 2,\n 15069,\n 33448,\n 3012,\n 3457,\n 13,\n 198,\n 2,\n 198,\n 2,\n 49962,\n 739,\n 262,\n 24843,\n 13789,\n 11,\n 10628,\n 362,\n 13,\n 15,\n 357,\n 1169,\n 366,\n 34156,\n 4943,\n 198,\n 2,\n 345,\n 743,\n 407,\n 779,\n 428,\n 2393,\n 2845,\n 287,\n 11846,\n 351,\n 262,\n 13789,\n 13,\n 198,\n 2,\n 921,\n 743,\n 7330,\n 257,\n 4866,\n 286,\n 262,\n 13789,\n 379,\n 198,\n 2,\n 198,\n 2,\n 220,\n 220,\n 220,\n 220,\n 2638,\n 1378,\n 2503,\n 13,\n 43073,\n 13,\n 2398,\n 14,\n 677,\n 4541,\n 14,\n 43,\n 2149,\n 24290,\n 12,\n 17,\n 13,\n 15,\n 198,\n 2,\n 198,\n 2,\n 17486,\n 2672,\n 416,\n 9723,\n 1099,\n 393,\n 4987,\n 284,\n 287,\n 3597,\n 11,\n 3788,\n 198,\n 2,\n 9387,\n 739,\n 262,\n 13789,\n 318,\n 9387,\n 319,\n 281,\n 366,\n 1921,\n 3180,\n 1,\n 29809,\n 1797,\n 11,\n 198,\n 2,\n 42881,\n 34764,\n 11015,\n 6375,\n 7102,\n 49828,\n 11053,\n 3963,\n 15529,\n 509,\n 12115,\n 11,\n 2035,\n 4911,\n 393,\n 17142,\n 13,\n 198,\n 2,\n 4091,\n 262,\n 13789,\n 329,\n 262,\n 2176,\n 3303,\n 15030,\n 21627,\n 290,\n 198,\n 2,\n 11247,\n 739,\n 262,\n 13789,\n 13,\n 198,\n 198,\n 11748,\n 4856,\n 62,\n 11250,\n 220,\n 1303,\n 12039,\n 307,\n 17392,\n 717,\n 198,\n 198,\n 11748,\n 42903,\n 198,\n 6738,\n 555,\n 715,\n 395,\n 1330,\n 15290,\n 198,\n 11748,\n 266,\n 9587,\n 2736,\n 1018,\n 198,\n 198,\n 6738,\n 1788,\n 874,\n 1330,\n 4981,\n 198,\n 6738,\n 1788,\n 874,\n 1330,\n 7546,\n 62,\n 4299,\n 82,\n 198,\n 6738,\n 1788,\n 874,\n 1330,\n 4886,\n 62,\n 48536,\n 198,\n 198,\n 9288,\n 62,\n 1324,\n 796,\n 42903,\n 13,\n 7414,\n 2093,\n 7,\n 834,\n 3672,\n 834,\n 8,\n 628,\n 198\n]"},"ratio_char_token":{"kind":"number","value":3.7477064220183487,"string":"3.747706"},"token_count":{"kind":"number","value":218,"string":"218"}}},{"rowIdx":2450,"cells":{"content":{"kind":"string","value":"\"\"\"Citizens model.\"\"\"\n\n# Django\nfrom django.db import models\nfrom django.contrib.auth.models import AbstractUser\nfrom django.core.validators import RegexValidator\n\n# models\nfrom paranuara.companies.models import Company\n\n# PostgreSQL fields\nfrom django.contrib.postgres.fields import JSONField\n\n# Utilities\nfrom paranuara.utils.models import ParanuaraModel\n\n\nclass Citizen(ParanuaraModel, AbstractUser):\n \"\"\"Citizen model.\n Extend from Django's Abstract User, change the username field\n to email and add some extra fields.\n \"\"\"\n\n index = models.IntegerField(\n unique=True,\n default=-1\n )\n\n favorite_food = models.ManyToManyField(\n 'foods.Food',\n related_name='favorite_food'\n )\n\n has_died = models.BooleanField(\n 'died',\n default=False,\n help_text=(\n 'Help easily distinguish citizens died or alive. '\n )\n )\n\n balance = models.DecimalField(\n max_digits=15,\n decimal_places=2,\n default=None\n )\n\n picture = models.ImageField(\n 'profile picture',\n upload_to='paranuara/citizens/pictures/',\n blank=True,\n null=True\n )\n\n age = models.IntegerField(\n default=-1\n )\n\n eyeColor = models.CharField(\n max_length=50,\n blank=False\n )\n\n gender = models.CharField(\n max_length=6,\n blank=True\n )\n\n email = models.EmailField(\n 'email address',\n unique=True,\n error_messages={\n 'unique': 'A user with that email already exists.'\n }\n )\n\n phone_regex = RegexValidator(\n regex=r'\\+?1?\\d{9,15}$',\n message=\"Phone number must be entered in the format: +999999999. Up to 15 digits allowed.\"\n )\n\n phone = models.CharField(\n validators=[phone_regex],\n max_length=20,\n blank=True\n )\n\n address = models.CharField(\n max_length=100,\n blank=True\n )\n\n company = models.ForeignKey(\n Company,\n related_name='employees_company',\n on_delete=models.SET_NULL, \n null=True\n )\n\n about = models.CharField(\n max_length=1000,\n blank=True,\n null=True\n )\n\n greeting = models.CharField(\n max_length=1000,\n blank=True,\n null=True\n )\n\n tags = JSONField(\n default=None,\n blank=True,\n null=True\n )\n\n REQUIRED_FIELDS = ['has_died', 'eyeColor', 'index']\n\n\nclass Relationship(models.Model):\n \"\"\"Class to represent many to many relation between Ctizens\"\"\"\n\n from_people = models.ForeignKey(Citizen, related_name='from_people', on_delete=models.CASCADE)\n to_people = models.ForeignKey(Citizen, related_name='to_people', on_delete=models.CASCADE)\n"},"input_ids":{"kind":"list like","value":[37811,34,34100,2746,526,15931,198,198,2,37770,198,6738,42625,14208,13,9945,1330,4981,198,6738,42625,14208,13,3642,822,13,18439,13,27530,1330,27741,12982,198,6738,42625,14208,13,7295,13,12102,2024,1330,797,25636,47139,1352,198,198,2,4981,198,6738,23511,84,3301,13,34390,444,13,27530,1330,5834,198,198,2,2947,47701,7032,198,6738,42625,14208,13,3642,822,13,7353,34239,13,25747,1330,19449,15878,198,198,2,41086,198,6738,23511,84,3301,13,26791,13,27530,1330,2547,42357,3301,17633,628,198,4871,22307,7,10044,42357,3301,17633,11,27741,12982,2599,198,220,220,220,37227,34,36958,2746,13,198,220,220,220,46228,422,37770,338,27741,11787,11,1487,262,20579,2214,198,220,220,220,284,3053,290,751,617,3131,7032,13,198,220,220,220,37227,628,220,220,220,6376,796,4981,13,46541,15878,7,198,220,220,220,220,220,220,220,220,3748,28,17821,11,198,220,220,220,220,220,220,220,220,4277,10779,16,198,220,220,220,1267,628,220,220,220,4004,62,19425,796,4981,13,7085,2514,7085,15878,7,198,220,220,220,220,220,220,220,705,19425,82,13,24602,3256,198,220,220,220,220,220,220,220,3519,62,3672,11639,35200,62,19425,6,198,220,220,220,1267,628,220,220,220,468,62,67,798,796,4981,13,46120,13087,15878,7,198,220,220,220,220,220,220,220,705,67,798,3256,198,220,220,220,220,220,220,220,4277,28,25101,11,198,220,220,220,220,220,220,220,1037,62,5239,16193,198,220,220,220,220,220,220,220,220,220,220,220,705,22087,3538,15714,4290,3724,393,6776,13,705,198,220,220,220,220,220,220,220,1267,198,220,220,220,1267,628,220,220,220,5236,796,4981,13,10707,4402,15878,7,198,220,220,220,220,220,220,220,3509,62,12894,896,28,1314,11,198,220,220,220,220,220,220,220,32465,62,23625,28,17,11,198,220,220,220,220,220,220,220,4277,28,14202,198,220,220,220,1267,628,220,220,220,4286,796,4981,13,5159,15878,7,198,220,220,220,220,220,220,220,705,13317,4286,3256,198,220,220,220,220,220,220,220,9516,62,1462,11639,1845,42357,3301,14,46801,14,18847,942,14,3256,198,220,220,220,220,220,220,220,9178,28,17821,11,198,220,220,220,220,220,220,220,9242,28,17821,198,220,220,220,1267,628,220,220,220,2479,796,4981,13,46541,15878,7,198,220,220,220,220,220,220,220,220,4277,10779,16,198,220,220,220,1267,628,220,220,220,4151,10258,796,4981,13,12441,15878,7,198,220,220,220,220,220,220,220,3509,62,13664,28,1120,11,198,220,220,220,220,220,220,220,9178,28,25101,198,220,220,220,1267,628,220,220,220,5279,796,4981,13,12441,15878,7,198,220,220,220,220,220,220,220,3509,62,13664,28,21,11,198,220,220,220,220,220,220,220,9178,28,17821,198,220,220,220,1267,628,220,220,220,3053,796,4981,13,15333,15878,7,198,220,220,220,220,220,220,220,705,12888,2209,3256,198,220,220,220,220,220,220,220,3748,28,17821,11,198,220,220,220,220,220,220,220,4049,62,37348,1095,34758,198,220,220,220,220,220,220,220,220,220,220,220,705,34642,10354,705,32,2836,351,326,3053,1541,7160,2637,198,220,220,220,220,220,220,220,1782,198,220,220,220,1267,628,220,220,220,3072,62,260,25636,796,797,25636,47139,1352,7,198,220,220,220,220,220,220,220,40364,28,81,6,59,10,30,16,30,59,67,90,24,11,1314,92,3,3256,198,220,220,220,220,220,220,220,3275,2625,6132,1271,1276,307,5982,287,262,5794,25,1343,24214,2079,17032,13,3205,284,1315,19561,3142,526,198,220,220,220,1267,628,220,220,220,3072,796,4981,13,12441,15878,7,198,220,220,220,220,220,220,220,4938,2024,41888,4862,62,260,25636,4357,198,220,220,220,220,220,220,220,3509,62,13664,28,1238,11,198,220,220,220,220,220,220,220,9178,28,17821,198,220,220,220,1267,628,220,220,220,2209,796,4981,13,12441,15878,7,198,220,220,220,220,220,220,220,3509,62,13664,28,3064,11,198,220,220,220,220,220,220,220,9178,28,17821,198,220,220,220,1267,628,220,220,220,1664,796,4981,13,33616,9218,7,198,220,220,220,220,220,220,220,5834,11,198,220,220,220,220,220,220,220,3519,62,3672,11639,7033,2841,62,39722,3256,198,220,220,220,220,220,220,220,319,62,33678,28,27530,13,28480,62,33991,11,220,198,220,220,220,220,220,220,220,9242,28,17821,198,220,220,220,1267,628,220,220,220,546,796,4981,13,12441,15878,7,198,220,220,220,220,220,220,220,3509,62,13664,28,12825,11,198,220,220,220,220,220,220,220,9178,28,17821,11,198,220,220,220,220,220,220,220,9242,28,17821,198,220,220,220,1267,628,220,220,220,31933,796,4981,13,12441,15878,7,198,220,220,220,220,220,220,220,3509,62,13664,28,12825,11,198,220,220,220,220,220,220,220,9178,28,17821,11,198,220,220,220,220,220,220,220,9242,28,17821,198,220,220,220,1267,628,220,220,220,15940,796,19449,15878,7,198,220,220,220,220,220,220,220,4277,28,14202,11,198,220,220,220,220,220,220,220,9178,28,17821,11,198,220,220,220,220,220,220,220,9242,28,17821,198,220,220,220,1267,628,220,220,220,4526,10917,37819,62,11674,3698,5258,796,37250,10134,62,67,798,3256,705,25379,10258,3256,705,9630,20520,628,198,4871,39771,7,27530,13,17633,2599,198,220,220,220,37227,9487,284,2380,867,284,867,8695,1022,43166,44908,37811,628,220,220,220,422,62,15332,796,4981,13,33616,9218,7,34,36958,11,3519,62,3672,11639,6738,62,15332,3256,319,62,33678,28,27530,13,34,42643,19266,8,198,220,220,220,284,62,15332,796,4981,13,33616,9218,7,34,36958,11,3519,62,3672,11639,1462,62,15332,3256,319,62,33678,28,27530,13,34,42643,19266,8,198],"string":"[\n 37811,\n 34,\n 34100,\n 2746,\n 526,\n 15931,\n 198,\n 198,\n 2,\n 37770,\n 198,\n 6738,\n 42625,\n 14208,\n 13,\n 9945,\n 1330,\n 4981,\n 198,\n 6738,\n 42625,\n 14208,\n 13,\n 3642,\n 822,\n 13,\n 18439,\n 13,\n 27530,\n 1330,\n 27741,\n 12982,\n 198,\n 6738,\n 42625,\n 14208,\n 13,\n 7295,\n 13,\n 12102,\n 2024,\n 1330,\n 797,\n 25636,\n 47139,\n 1352,\n 198,\n 198,\n 2,\n 4981,\n 198,\n 6738,\n 23511,\n 84,\n 3301,\n 13,\n 34390,\n 444,\n 13,\n 27530,\n 1330,\n 5834,\n 198,\n 198,\n 2,\n 2947,\n 47701,\n 7032,\n 198,\n 6738,\n 42625,\n 14208,\n 13,\n 3642,\n 822,\n 13,\n 7353,\n 34239,\n 13,\n 25747,\n 1330,\n 19449,\n 15878,\n 198,\n 198,\n 2,\n 41086,\n 198,\n 6738,\n 23511,\n 84,\n 3301,\n 13,\n 26791,\n 13,\n 27530,\n 1330,\n 2547,\n 42357,\n 3301,\n 17633,\n 628,\n 198,\n 4871,\n 22307,\n 7,\n 10044,\n 42357,\n 3301,\n 17633,\n 11,\n 27741,\n 12982,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 34,\n 36958,\n 2746,\n 13,\n 198,\n 220,\n 220,\n 220,\n 46228,\n 422,\n 37770,\n 338,\n 27741,\n 11787,\n 11,\n 1487,\n 262,\n 20579,\n 2214,\n 198,\n 220,\n 220,\n 220,\n 284,\n 3053,\n 290,\n 751,\n 617,\n 3131,\n 7032,\n 13,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 628,\n 220,\n 220,\n 220,\n 6376,\n 796,\n 4981,\n 13,\n 46541,\n 15878,\n 7,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3748,\n 28,\n 17821,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 4277,\n 10779,\n 16,\n 198,\n 220,\n 220,\n 220,\n 1267,\n 628,\n 220,\n 220,\n 220,\n 4004,\n 62,\n 19425,\n 796,\n 4981,\n 13,\n 7085,\n 2514,\n 7085,\n 15878,\n 7,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 705,\n 19425,\n 82,\n 13,\n 24602,\n 3256,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3519,\n 62,\n 3672,\n 11639,\n 35200,\n 62,\n 19425,\n 6,\n 198,\n 220,\n 220,\n 220,\n 1267,\n 628,\n 220,\n 220,\n 220,\n 468,\n 62,\n 67,\n 798,\n 796,\n 4981,\n 13,\n 46120,\n 13087,\n 15878,\n 7,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 705,\n 67,\n 798,\n 3256,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 4277,\n 28,\n 25101,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1037,\n 62,\n 5239,\n 16193,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 705,\n 22087,\n 3538,\n 15714,\n 4290,\n 3724,\n 393,\n 6776,\n 13,\n 705,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1267,\n 198,\n 220,\n 220,\n 220,\n 1267,\n 628,\n 220,\n 220,\n 220,\n 5236,\n 796,\n 4981,\n 13,\n 10707,\n 4402,\n 15878,\n 7,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3509,\n 62,\n 12894,\n 896,\n 28,\n 1314,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 32465,\n 62,\n 23625,\n 28,\n 17,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 4277,\n 28,\n 14202,\n 198,\n 220,\n 220,\n 220,\n 1267,\n 628,\n 220,\n 220,\n 220,\n 4286,\n 796,\n 4981,\n 13,\n 5159,\n 15878,\n 7,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 705,\n 13317,\n 4286,\n 3256,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 9516,\n 62,\n 1462,\n 11639,\n 1845,\n 42357,\n 3301,\n 14,\n 46801,\n 14,\n 18847,\n 942,\n 14,\n 3256,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 9178,\n 28,\n 17821,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 9242,\n 28,\n 17821,\n 198,\n 220,\n 220,\n 220,\n 1267,\n 628,\n 220,\n 220,\n 220,\n 2479,\n 796,\n 4981,\n 13,\n 46541,\n 15878,\n 7,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 4277,\n 10779,\n 16,\n 198,\n 220,\n 220,\n 220,\n 1267,\n 628,\n 220,\n 220,\n 220,\n 4151,\n 10258,\n 796,\n 4981,\n 13,\n 12441,\n 15878,\n 7,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3509,\n 62,\n 13664,\n 28,\n 1120,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 9178,\n 28,\n 25101,\n 198,\n 220,\n 220,\n 220,\n 1267,\n 628,\n 220,\n 220,\n 220,\n 5279,\n 796,\n 4981,\n 13,\n 12441,\n 15878,\n 7,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3509,\n 62,\n 13664,\n 28,\n 21,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 9178,\n 28,\n 17821,\n 198,\n 220,\n 220,\n 220,\n 1267,\n 628,\n 220,\n 220,\n 220,\n 3053,\n 796,\n 4981,\n 13,\n 15333,\n 15878,\n 7,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 705,\n 12888,\n 2209,\n 3256,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3748,\n 28,\n 17821,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 4049,\n 62,\n 37348,\n 1095,\n 34758,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 705,\n 34642,\n 10354,\n 705,\n 32,\n 2836,\n 351,\n 326,\n 3053,\n 1541,\n 7160,\n 2637,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1782,\n 198,\n 220,\n 220,\n 220,\n 1267,\n 628,\n 220,\n 220,\n 220,\n 3072,\n 62,\n 260,\n 25636,\n 796,\n 797,\n 25636,\n 47139,\n 1352,\n 7,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 40364,\n 28,\n 81,\n 6,\n 59,\n 10,\n 30,\n 16,\n 30,\n 59,\n 67,\n 90,\n 24,\n 11,\n 1314,\n 92,\n 3,\n 3256,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3275,\n 2625,\n 6132,\n 1271,\n 1276,\n 307,\n 5982,\n 287,\n 262,\n 5794,\n 25,\n 1343,\n 24214,\n 2079,\n 17032,\n 13,\n 3205,\n 284,\n 1315,\n 19561,\n 3142,\n 526,\n 198,\n 220,\n 220,\n 220,\n 1267,\n 628,\n 220,\n 220,\n 220,\n 3072,\n 796,\n 4981,\n 13,\n 12441,\n 15878,\n 7,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 4938,\n 2024,\n 41888,\n 4862,\n 62,\n 260,\n 25636,\n 4357,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3509,\n 62,\n 13664,\n 28,\n 1238,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 9178,\n 28,\n 17821,\n 198,\n 220,\n 220,\n 220,\n 1267,\n 628,\n 220,\n 220,\n 220,\n 2209,\n 796,\n 4981,\n 13,\n 12441,\n 15878,\n 7,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3509,\n 62,\n 13664,\n 28,\n 3064,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 9178,\n 28,\n 17821,\n 198,\n 220,\n 220,\n 220,\n 1267,\n 628,\n 220,\n 220,\n 220,\n 1664,\n 796,\n 4981,\n 13,\n 33616,\n 9218,\n 7,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 5834,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3519,\n 62,\n 3672,\n 11639,\n 7033,\n 2841,\n 62,\n 39722,\n 3256,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 319,\n 62,\n 33678,\n 28,\n 27530,\n 13,\n 28480,\n 62,\n 33991,\n 11,\n 220,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 9242,\n 28,\n 17821,\n 198,\n 220,\n 220,\n 220,\n 1267,\n 628,\n 220,\n 220,\n 220,\n 546,\n 796,\n 4981,\n 13,\n 12441,\n 15878,\n 7,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3509,\n 62,\n 13664,\n 28,\n 12825,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 9178,\n 28,\n 17821,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 9242,\n 28,\n 17821,\n 198,\n 220,\n 220,\n 220,\n 1267,\n 628,\n 220,\n 220,\n 220,\n 31933,\n 796,\n 4981,\n 13,\n 12441,\n 15878,\n 7,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3509,\n 62,\n 13664,\n 28,\n 12825,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 9178,\n 28,\n 17821,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 9242,\n 28,\n 17821,\n 198,\n 220,\n 220,\n 220,\n 1267,\n 628,\n 220,\n 220,\n 220,\n 15940,\n 796,\n 19449,\n 15878,\n 7,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 4277,\n 28,\n 14202,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 9178,\n 28,\n 17821,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 9242,\n 28,\n 17821,\n 198,\n 220,\n 220,\n 220,\n 1267,\n 628,\n 220,\n 220,\n 220,\n 4526,\n 10917,\n 37819,\n 62,\n 11674,\n 3698,\n 5258,\n 796,\n 37250,\n 10134,\n 62,\n 67,\n 798,\n 3256,\n 705,\n 25379,\n 10258,\n 3256,\n 705,\n 9630,\n 20520,\n 628,\n 198,\n 4871,\n 39771,\n 7,\n 27530,\n 13,\n 17633,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 9487,\n 284,\n 2380,\n 867,\n 284,\n 867,\n 8695,\n 1022,\n 43166,\n 44908,\n 37811,\n 628,\n 220,\n 220,\n 220,\n 422,\n 62,\n 15332,\n 796,\n 4981,\n 13,\n 33616,\n 9218,\n 7,\n 34,\n 36958,\n 11,\n 3519,\n 62,\n 3672,\n 11639,\n 6738,\n 62,\n 15332,\n 3256,\n 319,\n 62,\n 33678,\n 28,\n 27530,\n 13,\n 34,\n 42643,\n 19266,\n 8,\n 198,\n 220,\n 220,\n 220,\n 284,\n 62,\n 15332,\n 796,\n 4981,\n 13,\n 33616,\n 9218,\n 7,\n 34,\n 36958,\n 11,\n 3519,\n 62,\n 3672,\n 11639,\n 1462,\n 62,\n 15332,\n 3256,\n 319,\n 62,\n 33678,\n 28,\n 27530,\n 13,\n 34,\n 42643,\n 19266,\n 8,\n 198\n]"},"ratio_char_token":{"kind":"number","value":2.3254237288135595,"string":"2.325424"},"token_count":{"kind":"number","value":1180,"string":"1,180"}}},{"rowIdx":2451,"cells":{"content":{"kind":"string","value":"#!/usr/bin/env python\n# -*- coding: utf-8 -*-\nfrom django.urls import path\nfrom .views import login_register, task_manage, analysis_page\nurlpatterns = [\n path('login/', login_register.Login.as_view()),\n path('register/', login_register.SignIn.as_view()),\n path('register/check_username', login_register.SignIn.as_view()),\n path('task_manager/addition/', task_manage.TaskManage.as_view()),\n path('task_manager/removing/', task_manage.TaskManage.as_view()),\n path('task_manager/recovering/', task_manage.Recover.as_view()),\n path('task_manager/upgrade/', task_manage.TaskManage.as_view()),\n path('task_manager/tasks', task_manage.TaskManage.as_view()),\n path('task_manager/schools', task_manage.SearchSchool.as_view()),\n path('analysis_page/posts_data', analysis_page.GetData.as_view()),\n path('analysis_page/users_analysis_data', analysis_page.GetUserAnalyseData.as_view()),\n path('analysis_page/posts_analysis_data', analysis_page.GetPostsAnalysisData.as_view())\n]\n"},"input_ids":{"kind":"list like","value":[2,48443,14629,14,8800,14,24330,21015,198,2,532,9,12,19617,25,3384,69,12,23,532,9,12,198,6738,42625,14208,13,6371,82,1330,3108,198,6738,764,33571,1330,17594,62,30238,11,4876,62,805,496,11,3781,62,7700,198,6371,33279,82,796,685,198,220,220,220,3108,10786,38235,14,3256,17594,62,30238,13,47790,13,292,62,1177,3419,828,198,220,220,220,3108,10786,30238,14,3256,17594,62,30238,13,11712,818,13,292,62,1177,3419,828,198,220,220,220,3108,10786,30238,14,9122,62,29460,3256,17594,62,30238,13,11712,818,13,292,62,1177,3419,828,198,220,220,220,3108,10786,35943,62,37153,14,2860,653,14,3256,4876,62,805,496,13,25714,5124,496,13,292,62,1177,3419,828,198,220,220,220,3108,10786,35943,62,37153,14,2787,5165,14,3256,4876,62,805,496,13,25714,5124,496,13,292,62,1177,3419,828,198,220,220,220,3108,10786,35943,62,37153,14,260,9631,278,14,3256,4876,62,805,496,13,6690,2502,13,292,62,1177,3419,828,198,220,220,220,3108,10786,35943,62,37153,14,929,9526,14,3256,4876,62,805,496,13,25714,5124,496,13,292,62,1177,3419,828,198,220,220,220,3108,10786,35943,62,37153,14,83,6791,3256,4876,62,805,496,13,25714,5124,496,13,292,62,1177,3419,828,198,220,220,220,3108,10786,35943,62,37153,14,14347,82,3256,4876,62,805,496,13,18243,26130,13,292,62,1177,3419,828,198,220,220,220,3108,10786,20930,62,7700,14,24875,62,7890,3256,3781,62,7700,13,3855,6601,13,292,62,1177,3419,828,198,220,220,220,3108,10786,20930,62,7700,14,18417,62,20930,62,7890,3256,3781,62,7700,13,3855,12982,37702,325,6601,13,292,62,1177,3419,828,198,220,220,220,3108,10786,20930,62,7700,14,24875,62,20930,62,7890,3256,3781,62,7700,13,3855,21496,32750,6601,13,292,62,1177,28955,198,60,198],"string":"[\n 2,\n 48443,\n 14629,\n 14,\n 8800,\n 14,\n 24330,\n 21015,\n 198,\n 2,\n 532,\n 9,\n 12,\n 19617,\n 25,\n 3384,\n 69,\n 12,\n 23,\n 532,\n 9,\n 12,\n 198,\n 6738,\n 42625,\n 14208,\n 13,\n 6371,\n 82,\n 1330,\n 3108,\n 198,\n 6738,\n 764,\n 33571,\n 1330,\n 17594,\n 62,\n 30238,\n 11,\n 4876,\n 62,\n 805,\n 496,\n 11,\n 3781,\n 62,\n 7700,\n 198,\n 6371,\n 33279,\n 82,\n 796,\n 685,\n 198,\n 220,\n 220,\n 220,\n 3108,\n 10786,\n 38235,\n 14,\n 3256,\n 17594,\n 62,\n 30238,\n 13,\n 47790,\n 13,\n 292,\n 62,\n 1177,\n 3419,\n 828,\n 198,\n 220,\n 220,\n 220,\n 3108,\n 10786,\n 30238,\n 14,\n 3256,\n 17594,\n 62,\n 30238,\n 13,\n 11712,\n 818,\n 13,\n 292,\n 62,\n 1177,\n 3419,\n 828,\n 198,\n 220,\n 220,\n 220,\n 3108,\n 10786,\n 30238,\n 14,\n 9122,\n 62,\n 29460,\n 3256,\n 17594,\n 62,\n 30238,\n 13,\n 11712,\n 818,\n 13,\n 292,\n 62,\n 1177,\n 3419,\n 828,\n 198,\n 220,\n 220,\n 220,\n 3108,\n 10786,\n 35943,\n 62,\n 37153,\n 14,\n 2860,\n 653,\n 14,\n 3256,\n 4876,\n 62,\n 805,\n 496,\n 13,\n 25714,\n 5124,\n 496,\n 13,\n 292,\n 62,\n 1177,\n 3419,\n 828,\n 198,\n 220,\n 220,\n 220,\n 3108,\n 10786,\n 35943,\n 62,\n 37153,\n 14,\n 2787,\n 5165,\n 14,\n 3256,\n 4876,\n 62,\n 805,\n 496,\n 13,\n 25714,\n 5124,\n 496,\n 13,\n 292,\n 62,\n 1177,\n 3419,\n 828,\n 198,\n 220,\n 220,\n 220,\n 3108,\n 10786,\n 35943,\n 62,\n 37153,\n 14,\n 260,\n 9631,\n 278,\n 14,\n 3256,\n 4876,\n 62,\n 805,\n 496,\n 13,\n 6690,\n 2502,\n 13,\n 292,\n 62,\n 1177,\n 3419,\n 828,\n 198,\n 220,\n 220,\n 220,\n 3108,\n 10786,\n 35943,\n 62,\n 37153,\n 14,\n 929,\n 9526,\n 14,\n 3256,\n 4876,\n 62,\n 805,\n 496,\n 13,\n 25714,\n 5124,\n 496,\n 13,\n 292,\n 62,\n 1177,\n 3419,\n 828,\n 198,\n 220,\n 220,\n 220,\n 3108,\n 10786,\n 35943,\n 62,\n 37153,\n 14,\n 83,\n 6791,\n 3256,\n 4876,\n 62,\n 805,\n 496,\n 13,\n 25714,\n 5124,\n 496,\n 13,\n 292,\n 62,\n 1177,\n 3419,\n 828,\n 198,\n 220,\n 220,\n 220,\n 3108,\n 10786,\n 35943,\n 62,\n 37153,\n 14,\n 14347,\n 82,\n 3256,\n 4876,\n 62,\n 805,\n 496,\n 13,\n 18243,\n 26130,\n 13,\n 292,\n 62,\n 1177,\n 3419,\n 828,\n 198,\n 220,\n 220,\n 220,\n 3108,\n 10786,\n 20930,\n 62,\n 7700,\n 14,\n 24875,\n 62,\n 7890,\n 3256,\n 3781,\n 62,\n 7700,\n 13,\n 3855,\n 6601,\n 13,\n 292,\n 62,\n 1177,\n 3419,\n 828,\n 198,\n 220,\n 220,\n 220,\n 3108,\n 10786,\n 20930,\n 62,\n 7700,\n 14,\n 18417,\n 62,\n 20930,\n 62,\n 7890,\n 3256,\n 3781,\n 62,\n 7700,\n 13,\n 3855,\n 12982,\n 37702,\n 325,\n 6601,\n 13,\n 292,\n 62,\n 1177,\n 3419,\n 828,\n 198,\n 220,\n 220,\n 220,\n 3108,\n 10786,\n 20930,\n 62,\n 7700,\n 14,\n 24875,\n 62,\n 20930,\n 62,\n 7890,\n 3256,\n 3781,\n 62,\n 7700,\n 13,\n 3855,\n 21496,\n 32750,\n 6601,\n 13,\n 292,\n 62,\n 1177,\n 28955,\n 198,\n 60,\n 198\n]"},"ratio_char_token":{"kind":"number","value":2.683646112600536,"string":"2.683646"},"token_count":{"kind":"number","value":373,"string":"373"}}},{"rowIdx":2452,"cells":{"content":{"kind":"string","value":"from django.conf import settings\nfrom django.conf.urls import url, include\nfrom django.contrib.staticfiles.urls import staticfiles_urlpatterns\nfrom main import views\nfrom django.contrib.auth import views as auth_views\nfrom django.views.static import serve\n\n# Uncomment the next two lines to enable the admin:\nfrom django.contrib import admin\nadmin.autodiscover()\n\nurlpatterns = [\n url(r'^$', views.index, name=\"home\"),\n url(\"^music/\", include(\"audiotracks.urls\")),\n url(\"^(?P[\\w\\._-]+)/music/\", include(\"audiotracks.urls\")),\n url(r'^login$', auth_views.login, name=\"login\"),\n url(r'^logout$', auth_views.logout, name=\"logout\"),\n url(r'^admin/', include(admin.site.urls)),\n]\n\nif settings.DEBUG:\n urlpatterns += [\n url(r'^site_media/(?P.*)$', serve, {\n 'document_root': settings.MEDIA_ROOT\n })\n ]\n urlpatterns += staticfiles_urlpatterns()\n"},"input_ids":{"kind":"list like","value":[6738,42625,14208,13,10414,1330,6460,198,6738,42625,14208,13,10414,13,6371,82,1330,19016,11,2291,198,6738,42625,14208,13,3642,822,13,12708,16624,13,6371,82,1330,9037,16624,62,6371,33279,82,198,6738,1388,1330,5009,198,6738,42625,14208,13,3642,822,13,18439,1330,5009,355,6284,62,33571,198,6738,42625,14208,13,33571,13,12708,1330,4691,198,198,2,791,23893,262,1306,734,3951,284,7139,262,13169,25,198,6738,42625,14208,13,3642,822,1330,13169,198,28482,13,2306,375,29392,3419,198,198,6371,33279,82,796,685,198,220,220,220,19016,7,81,6,61,3,3256,5009,13,9630,11,1438,2625,11195,12340,198,220,220,220,19016,7203,61,28965,14,1600,2291,7203,3885,5151,81,4595,13,6371,82,4943,828,198,220,220,220,19016,7203,61,7,30,47,27,29460,36937,59,86,59,13557,12,48688,20679,28965,14,1600,2291,7203,3885,5151,81,4595,13,6371,82,4943,828,198,220,220,220,19016,7,81,6,61,38235,3,3256,6284,62,33571,13,38235,11,1438,2625,38235,12340,198,220,220,220,19016,7,81,6,61,6404,448,3,3256,6284,62,33571,13,6404,448,11,1438,2625,6404,448,12340,198,220,220,220,19016,7,81,6,61,28482,14,3256,2291,7,28482,13,15654,13,6371,82,36911,198,60,198,198,361,6460,13,30531,25,198,220,220,220,19016,33279,82,15853,685,198,220,220,220,220,220,220,220,19016,7,81,6,61,15654,62,11431,29006,30,47,27,6978,29,15885,8,3,3256,4691,11,1391,198,220,220,220,220,220,220,220,220,220,220,220,705,22897,62,15763,10354,6460,13,30733,3539,62,13252,2394,198,220,220,220,220,220,220,220,32092,198,220,220,220,2361,198,220,220,220,19016,33279,82,15853,9037,16624,62,6371,33279,82,3419,198],"string":"[\n 6738,\n 42625,\n 14208,\n 13,\n 10414,\n 1330,\n 6460,\n 198,\n 6738,\n 42625,\n 14208,\n 13,\n 10414,\n 13,\n 6371,\n 82,\n 1330,\n 19016,\n 11,\n 2291,\n 198,\n 6738,\n 42625,\n 14208,\n 13,\n 3642,\n 822,\n 13,\n 12708,\n 16624,\n 13,\n 6371,\n 82,\n 1330,\n 9037,\n 16624,\n 62,\n 6371,\n 33279,\n 82,\n 198,\n 6738,\n 1388,\n 1330,\n 5009,\n 198,\n 6738,\n 42625,\n 14208,\n 13,\n 3642,\n 822,\n 13,\n 18439,\n 1330,\n 5009,\n 355,\n 6284,\n 62,\n 33571,\n 198,\n 6738,\n 42625,\n 14208,\n 13,\n 33571,\n 13,\n 12708,\n 1330,\n 4691,\n 198,\n 198,\n 2,\n 791,\n 23893,\n 262,\n 1306,\n 734,\n 3951,\n 284,\n 7139,\n 262,\n 13169,\n 25,\n 198,\n 6738,\n 42625,\n 14208,\n 13,\n 3642,\n 822,\n 1330,\n 13169,\n 198,\n 28482,\n 13,\n 2306,\n 375,\n 29392,\n 3419,\n 198,\n 198,\n 6371,\n 33279,\n 82,\n 796,\n 685,\n 198,\n 220,\n 220,\n 220,\n 19016,\n 7,\n 81,\n 6,\n 61,\n 3,\n 3256,\n 5009,\n 13,\n 9630,\n 11,\n 1438,\n 2625,\n 11195,\n 12340,\n 198,\n 220,\n 220,\n 220,\n 19016,\n 7203,\n 61,\n 28965,\n 14,\n 1600,\n 2291,\n 7203,\n 3885,\n 5151,\n 81,\n 4595,\n 13,\n 6371,\n 82,\n 4943,\n 828,\n 198,\n 220,\n 220,\n 220,\n 19016,\n 7203,\n 61,\n 7,\n 30,\n 47,\n 27,\n 29460,\n 36937,\n 59,\n 86,\n 59,\n 13557,\n 12,\n 48688,\n 20679,\n 28965,\n 14,\n 1600,\n 2291,\n 7203,\n 3885,\n 5151,\n 81,\n 4595,\n 13,\n 6371,\n 82,\n 4943,\n 828,\n 198,\n 220,\n 220,\n 220,\n 19016,\n 7,\n 81,\n 6,\n 61,\n 38235,\n 3,\n 3256,\n 6284,\n 62,\n 33571,\n 13,\n 38235,\n 11,\n 1438,\n 2625,\n 38235,\n 12340,\n 198,\n 220,\n 220,\n 220,\n 19016,\n 7,\n 81,\n 6,\n 61,\n 6404,\n 448,\n 3,\n 3256,\n 6284,\n 62,\n 33571,\n 13,\n 6404,\n 448,\n 11,\n 1438,\n 2625,\n 6404,\n 448,\n 12340,\n 198,\n 220,\n 220,\n 220,\n 19016,\n 7,\n 81,\n 6,\n 61,\n 28482,\n 14,\n 3256,\n 2291,\n 7,\n 28482,\n 13,\n 15654,\n 13,\n 6371,\n 82,\n 36911,\n 198,\n 60,\n 198,\n 198,\n 361,\n 6460,\n 13,\n 30531,\n 25,\n 198,\n 220,\n 220,\n 220,\n 19016,\n 33279,\n 82,\n 15853,\n 685,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 19016,\n 7,\n 81,\n 6,\n 61,\n 15654,\n 62,\n 11431,\n 29006,\n 30,\n 47,\n 27,\n 6978,\n 29,\n 15885,\n 8,\n 3,\n 3256,\n 4691,\n 11,\n 1391,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 705,\n 22897,\n 62,\n 15763,\n 10354,\n 6460,\n 13,\n 30733,\n 3539,\n 62,\n 13252,\n 2394,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 32092,\n 198,\n 220,\n 220,\n 220,\n 2361,\n 198,\n 220,\n 220,\n 220,\n 19016,\n 33279,\n 82,\n 15853,\n 9037,\n 16624,\n 62,\n 6371,\n 33279,\n 82,\n 3419,\n 198\n]"},"ratio_char_token":{"kind":"number","value":2.585714285714286,"string":"2.585714"},"token_count":{"kind":"number","value":350,"string":"350"}}},{"rowIdx":2453,"cells":{"content":{"kind":"string","value":"from mathbox.statistics.estimator import mean, std\n\n# Generalized ESD Test for Outliers\n# https://www.itl.nist.gov/div898/handbook/eda/section3/eda35h3.htm"},"input_ids":{"kind":"list like","value":[6738,10688,3524,13,14269,3969,13,395,320,1352,1330,1612,11,14367,198,198,2,3611,1143,412,10305,6208,329,3806,75,3183,198,2,3740,1378,2503,13,270,75,13,77,396,13,9567,14,7146,23,4089,14,4993,2070,14,18082,14,5458,18,14,18082,2327,71,18,13,19211],"string":"[\n 6738,\n 10688,\n 3524,\n 13,\n 14269,\n 3969,\n 13,\n 395,\n 320,\n 1352,\n 1330,\n 1612,\n 11,\n 14367,\n 198,\n 198,\n 2,\n 3611,\n 1143,\n 412,\n 10305,\n 6208,\n 329,\n 3806,\n 75,\n 3183,\n 198,\n 2,\n 3740,\n 1378,\n 2503,\n 13,\n 270,\n 75,\n 13,\n 77,\n 396,\n 13,\n 9567,\n 14,\n 7146,\n 23,\n 4089,\n 14,\n 4993,\n 2070,\n 14,\n 18082,\n 14,\n 5458,\n 18,\n 14,\n 18082,\n 2327,\n 71,\n 18,\n 13,\n 19211\n]"},"ratio_char_token":{"kind":"number","value":2.6724137931034484,"string":"2.672414"},"token_count":{"kind":"number","value":58,"string":"58"}}},{"rowIdx":2454,"cells":{"content":{"kind":"string","value":"#!/usr/bin/python\n\nfrom requirement import *\nfrom producer import producer\nfrom scheduler import fcfs\nfrom teller import teller\n\n\ntxt = open('result/processes','w')\ntxt.write('Processes\\n\\n')\n\n#Thread(target = producer).start()\nproducer()\n\nfor process in processes:\n\ttxt.write(str(process)+'\\n')\n\nfor i in range(teller_count):\n\ttellers.append( teller() )\n\na = fcfs(processes,tellers)\n\ntxt.close()\n"},"input_ids":{"kind":"list like","value":[2,48443,14629,14,8800,14,29412,198,198,6738,9079,1330,1635,198,6738,9920,1330,9920,198,6738,6038,18173,1330,277,66,9501,198,6738,1560,263,1330,1560,263,628,198,14116,796,1280,10786,20274,14,14681,274,41707,86,11537,198,14116,13,13564,10786,18709,274,59,77,59,77,11537,198,198,2,16818,7,16793,796,9920,737,9688,3419,198,18230,2189,3419,198,198,1640,1429,287,7767,25,198,197,14116,13,13564,7,2536,7,14681,47762,6,59,77,11537,198,198,1640,1312,287,2837,7,660,6051,62,9127,2599,198,197,660,13802,13,33295,7,1560,263,3419,1267,198,198,64,796,277,66,9501,7,14681,274,11,660,13802,8,198,198,14116,13,19836,3419,198],"string":"[\n 2,\n 48443,\n 14629,\n 14,\n 8800,\n 14,\n 29412,\n 198,\n 198,\n 6738,\n 9079,\n 1330,\n 1635,\n 198,\n 6738,\n 9920,\n 1330,\n 9920,\n 198,\n 6738,\n 6038,\n 18173,\n 1330,\n 277,\n 66,\n 9501,\n 198,\n 6738,\n 1560,\n 263,\n 1330,\n 1560,\n 263,\n 628,\n 198,\n 14116,\n 796,\n 1280,\n 10786,\n 20274,\n 14,\n 14681,\n 274,\n 41707,\n 86,\n 11537,\n 198,\n 14116,\n 13,\n 13564,\n 10786,\n 18709,\n 274,\n 59,\n 77,\n 59,\n 77,\n 11537,\n 198,\n 198,\n 2,\n 16818,\n 7,\n 16793,\n 796,\n 9920,\n 737,\n 9688,\n 3419,\n 198,\n 18230,\n 2189,\n 3419,\n 198,\n 198,\n 1640,\n 1429,\n 287,\n 7767,\n 25,\n 198,\n 197,\n 14116,\n 13,\n 13564,\n 7,\n 2536,\n 7,\n 14681,\n 47762,\n 6,\n 59,\n 77,\n 11537,\n 198,\n 198,\n 1640,\n 1312,\n 287,\n 2837,\n 7,\n 660,\n 6051,\n 62,\n 9127,\n 2599,\n 198,\n 197,\n 660,\n 13802,\n 13,\n 33295,\n 7,\n 1560,\n 263,\n 3419,\n 1267,\n 198,\n 198,\n 64,\n 796,\n 277,\n 66,\n 9501,\n 7,\n 14681,\n 274,\n 11,\n 660,\n 13802,\n 8,\n 198,\n 198,\n 14116,\n 13,\n 19836,\n 3419,\n 198\n]"},"ratio_char_token":{"kind":"number","value":2.8768115942028984,"string":"2.876812"},"token_count":{"kind":"number","value":138,"string":"138"}}},{"rowIdx":2455,"cells":{"content":{"kind":"string","value":"from floem import *\n\nn_cores = 2\n\n\nEnq, Deq, Release = queue.queue_custom('queue', Tuple, 4, n_cores, Tuple.task, enq_output=True)\n\n\nRxWrite('mysend')\nRxPrint('process')\n\nc = Compiler()\nc.testing = r'''\nTuple tuples[5];\nfor(int i=0; i<5;i++) {\n tuples[i].task = 10;\n tuples[i].val = i;\n}\n\nfor(int i=0; i<5;i++) {\n mysend(&tuples[i], 0);\n process(0);\n}\n\nfor(int i=0; i<5;i++) {\n tuples[i].val = 100 + i;\n mysend(&tuples[i], 1);\n tuples[i].task = 0;\n}\n\nfor(int i=0; i<5;i++) {\n process(1);\n}\n'''\nc.generate_code_and_run([0,0,-1,1,-2,2,-3,3,-4,4,-100,-101,-102,-103,-104,100,101,102,103])"},"input_ids":{"kind":"list like","value":[6738,5530,368,1330,1635,198,198,77,62,66,2850,796,362,628,198,4834,80,11,1024,80,11,13868,796,16834,13,36560,62,23144,10786,36560,3256,309,29291,11,604,11,299,62,66,2850,11,309,29291,13,35943,11,551,80,62,22915,28,17821,8,628,198,49,87,16594,10786,28744,437,11537,198,49,87,18557,10786,14681,11537,198,198,66,796,3082,5329,3419,198,66,13,33407,796,374,7061,6,198,51,29291,12777,2374,58,20,11208,198,1640,7,600,1312,28,15,26,1312,27,20,26,72,29577,1391,198,220,220,220,12777,2374,58,72,4083,35943,796,838,26,198,220,220,220,12777,2374,58,72,4083,2100,796,1312,26,198,92,198,198,1640,7,600,1312,28,15,26,1312,27,20,26,72,29577,1391,198,220,220,220,616,21280,39434,28047,2374,58,72,4357,657,1776,198,220,220,220,1429,7,15,1776,198,92,198,198,1640,7,600,1312,28,15,26,1312,27,20,26,72,29577,1391,198,220,220,220,12777,2374,58,72,4083,2100,796,1802,1343,1312,26,198,220,220,220,616,21280,39434,28047,2374,58,72,4357,352,1776,198,220,220,220,12777,2374,58,72,4083,35943,796,657,26,198,92,198,198,1640,7,600,1312,28,15,26,1312,27,20,26,72,29577,1391,198,220,220,220,1429,7,16,1776,198,92,198,7061,6,198,66,13,8612,378,62,8189,62,392,62,5143,26933,15,11,15,12095,16,11,16,12095,17,11,17,12095,18,11,18,12095,19,11,19,12095,3064,12095,8784,12095,15377,12095,15197,12095,13464,11,3064,11,8784,11,15377,11,15197,12962],"string":"[\n 6738,\n 5530,\n 368,\n 1330,\n 1635,\n 198,\n 198,\n 77,\n 62,\n 66,\n 2850,\n 796,\n 362,\n 628,\n 198,\n 4834,\n 80,\n 11,\n 1024,\n 80,\n 11,\n 13868,\n 796,\n 16834,\n 13,\n 36560,\n 62,\n 23144,\n 10786,\n 36560,\n 3256,\n 309,\n 29291,\n 11,\n 604,\n 11,\n 299,\n 62,\n 66,\n 2850,\n 11,\n 309,\n 29291,\n 13,\n 35943,\n 11,\n 551,\n 80,\n 62,\n 22915,\n 28,\n 17821,\n 8,\n 628,\n 198,\n 49,\n 87,\n 16594,\n 10786,\n 28744,\n 437,\n 11537,\n 198,\n 49,\n 87,\n 18557,\n 10786,\n 14681,\n 11537,\n 198,\n 198,\n 66,\n 796,\n 3082,\n 5329,\n 3419,\n 198,\n 66,\n 13,\n 33407,\n 796,\n 374,\n 7061,\n 6,\n 198,\n 51,\n 29291,\n 12777,\n 2374,\n 58,\n 20,\n 11208,\n 198,\n 1640,\n 7,\n 600,\n 1312,\n 28,\n 15,\n 26,\n 1312,\n 27,\n 20,\n 26,\n 72,\n 29577,\n 1391,\n 198,\n 220,\n 220,\n 220,\n 12777,\n 2374,\n 58,\n 72,\n 4083,\n 35943,\n 796,\n 838,\n 26,\n 198,\n 220,\n 220,\n 220,\n 12777,\n 2374,\n 58,\n 72,\n 4083,\n 2100,\n 796,\n 1312,\n 26,\n 198,\n 92,\n 198,\n 198,\n 1640,\n 7,\n 600,\n 1312,\n 28,\n 15,\n 26,\n 1312,\n 27,\n 20,\n 26,\n 72,\n 29577,\n 1391,\n 198,\n 220,\n 220,\n 220,\n 616,\n 21280,\n 39434,\n 28047,\n 2374,\n 58,\n 72,\n 4357,\n 657,\n 1776,\n 198,\n 220,\n 220,\n 220,\n 1429,\n 7,\n 15,\n 1776,\n 198,\n 92,\n 198,\n 198,\n 1640,\n 7,\n 600,\n 1312,\n 28,\n 15,\n 26,\n 1312,\n 27,\n 20,\n 26,\n 72,\n 29577,\n 1391,\n 198,\n 220,\n 220,\n 220,\n 12777,\n 2374,\n 58,\n 72,\n 4083,\n 2100,\n 796,\n 1802,\n 1343,\n 1312,\n 26,\n 198,\n 220,\n 220,\n 220,\n 616,\n 21280,\n 39434,\n 28047,\n 2374,\n 58,\n 72,\n 4357,\n 352,\n 1776,\n 198,\n 220,\n 220,\n 220,\n 12777,\n 2374,\n 58,\n 72,\n 4083,\n 35943,\n 796,\n 657,\n 26,\n 198,\n 92,\n 198,\n 198,\n 1640,\n 7,\n 600,\n 1312,\n 28,\n 15,\n 26,\n 1312,\n 27,\n 20,\n 26,\n 72,\n 29577,\n 1391,\n 198,\n 220,\n 220,\n 220,\n 1429,\n 7,\n 16,\n 1776,\n 198,\n 92,\n 198,\n 7061,\n 6,\n 198,\n 66,\n 13,\n 8612,\n 378,\n 62,\n 8189,\n 62,\n 392,\n 62,\n 5143,\n 26933,\n 15,\n 11,\n 15,\n 12095,\n 16,\n 11,\n 16,\n 12095,\n 17,\n 11,\n 17,\n 12095,\n 18,\n 11,\n 18,\n 12095,\n 19,\n 11,\n 19,\n 12095,\n 3064,\n 12095,\n 8784,\n 12095,\n 15377,\n 12095,\n 15197,\n 12095,\n 13464,\n 11,\n 3064,\n 11,\n 8784,\n 11,\n 15377,\n 11,\n 15197,\n 12962\n]"},"ratio_char_token":{"kind":"number","value":1.9394904458598725,"string":"1.93949"},"token_count":{"kind":"number","value":314,"string":"314"}}},{"rowIdx":2456,"cells":{"content":{"kind":"string","value":"# -*- coding: utf-8 -*-\n#\n# Electrum-NMC - lightweight Namecoin client\n# Copyright (C) 2018 The Namecoin developers\n#\n# License for all components not part of Electrum-DOGE:\n#\n# Permission is hereby granted, free of charge, to any person\n# obtaining a copy of this software and associated documentation files\n# (the \"Software\"), to deal in the Software without restriction,\n# including without limitation the rights to use, copy, modify, merge,\n# publish, distribute, sublicense, and/or sell copies of the Software,\n# and to permit persons to whom the Software is furnished to do so,\n# subject to the following conditions:\n#\n# The above copyright notice and this permission notice shall be\n# included in all copies or substantial portions of the Software.\n#\n# THE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND,\n# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF\n# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND\n# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS\n# BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN\n# ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN\n# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE\n# SOFTWARE.\n#\n# Based on Electrum-DOGE - lightweight Dogecoin client\n# Copyright (C) 2014 The Electrum-DOGE contributors\n#\n# License for the Electrum-DOGE components:\n#\n# This program is free software: you can redistribute it and/or modify\n# it under the terms of the GNU General Public License as published by\n# the Free Software Foundation, either version 3 of the License, or\n# (at your option) any later version.\n#\n# This program is distributed in the hope that it will be useful,\n# but WITHOUT ANY WARRANTY; without even the implied warranty of\n# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n# GNU General Public License for more details.\n#\n# You should have received a copy of the GNU General Public License\n# along with this program. If not, see .\n\nimport binascii\n\nfrom .bitcoin import hash_encode, hash_decode\nfrom .crypto import sha256d\nfrom . import blockchain, constants, transaction\nfrom .transaction import BCDataStream, Transaction, TxOutput, TYPE_SCRIPT\nfrom .util import bfh, bh2u\n\n# Maximum index of the merkle root hash in the coinbase transaction script,\n# where no merged mining header is present.\nMAX_INDEX_PC_BACKWARDS_COMPATIBILITY = 20\n\n# Header for merge-mining data in the coinbase.\nCOINBASE_MERGED_MINING_HEADER = bfh('fabe') + b'mm'\n\ndef deserialize_auxpow_header(base_header, s, start_position=0) -> (dict, int):\n \"\"\"Deserialises an AuxPoW instance.\n\n Returns the deserialised AuxPoW dict and the end position in the byte\n array as a pair.\"\"\"\n auxpow_header = {}\n\n # Chain ID is the top 16 bits of the 32-bit version.\n auxpow_header['chain_id'] = get_chain_id(base_header)\n\n # The parent coinbase transaction is first.\n # Deserialize it and save the trailing data.\n parent_coinbase_tx = Transaction(s, expect_trailing_data=True, copy_input=False, start_position=start_position)\n parent_coinbase_tx._allow_zero_outputs = True\n start_position = fast_tx_deserialize(parent_coinbase_tx)\n auxpow_header['parent_coinbase_tx'] = parent_coinbase_tx\n\n # Next is the parent block hash. According to the Bitcoin.it wiki,\n # this field is not actually consensus-critical. So we don't save it.\n start_position = start_position + 32\n\n # The coinbase and chain merkle branches/indices are next.\n # Deserialize them and save the trailing data.\n auxpow_header['coinbase_merkle_branch'], auxpow_header['coinbase_merkle_index'], start_position = deserialize_merkle_branch(s, start_position=start_position)\n auxpow_header['chain_merkle_branch'], auxpow_header['chain_merkle_index'], start_position = deserialize_merkle_branch(s, start_position=start_position)\n \n # Finally there's the parent header. Deserialize it.\n parent_header_bytes = s[start_position : start_position + constants.net.HEADER_SIZE]\n auxpow_header['parent_header'] = blockchain.deserialize_pure_header(parent_header_bytes, None)\n start_position += constants.net.HEADER_SIZE\n # The parent block header doesn't have any block height,\n # so delete that field. (We used None as a dummy value above.)\n del auxpow_header['parent_header']['block_height']\n\n return auxpow_header, start_position\n\n# Copied from merkle_branch_from_string in https://github.com/electrumalt/electrum-doge/blob/f74312822a14f59aa8d50186baff74cade449ccd/lib/blockchain.py#L622\n# Returns list of hashes, merkle index, and position of trailing data in s\n# TODO: Audit this function carefully.\n\n# Reimplementation of btcutils.check_merkle_branch from Electrum-DOGE.\n# btcutils seems to have an unclear license and no obvious Git repo, so it\n# seemed wiser to re-implement.\n# This re-implementation is roughly based on libdohj's calculateMerkleRoot.\n\n# Copied from Electrum-DOGE\n# TODO: Audit this function carefully.\n# https://github.com/kR105/i0coin/compare/bitcoin:master...master#diff-610df86e65fce009eb271c2a4f7394ccR262\n\n# Copied from Electrum-DOGE\n# TODO: Audit this function carefully.\n\n# This is calculated the same as the Transaction.txid() method, but doesn't\n# reserialize it.\n\n# Used by fast_tx_deserialize\n\n# This is equivalent to (tx.deserialize(), ), but doesn't parse outputs."},"input_ids":{"kind":"list like","value":[2,532,9,12,19617,25,3384,69,12,23,532,9,12,198,2,198,2,5903,6582,12,45,9655,532,18700,6530,3630,5456,198,2,15069,357,34,8,2864,383,6530,3630,6505,198,2,198,2,13789,329,477,6805,407,636,286,5903,6582,12,35,7730,36,25,198,2,198,2,2448,3411,318,29376,7520,11,1479,286,3877,11,284,597,1048,198,2,16727,257,4866,286,428,3788,290,3917,10314,3696,198,2,357,1169,366,25423,12340,284,1730,287,262,10442,1231,17504,11,198,2,1390,1231,17385,262,2489,284,779,11,4866,11,13096,11,20121,11,198,2,7715,11,14983,11,850,43085,11,290,14,273,3677,9088,286,262,10442,11,198,2,290,284,8749,6506,284,4150,262,10442,318,30760,284,466,523,11,198,2,2426,284,262,1708,3403,25,198,2,198,2,383,2029,6634,4003,290,428,7170,4003,2236,307,198,2,3017,287,477,9088,393,8904,16690,286,262,10442,13,198,2,198,2,3336,47466,3180,36592,2389,1961,366,1921,3180,1600,42881,34764,56,3963,15529,509,12115,11,198,2,7788,32761,6375,8959,49094,11,47783,2751,21728,5626,40880,5390,3336,34764,11015,3963,198,2,34482,3398,1565,5603,25382,11,376,46144,7473,317,16652,2149,37232,33079,48933,5357,198,2,44521,1268,10913,2751,12529,13,3268,8005,49261,50163,3336,37195,20673,6375,27975,38162,9947,367,15173,4877,198,2,9348,43031,19146,7473,15529,47666,3955,11,29506,25552,6375,25401,43031,25382,11,7655,2767,16879,3268,3537,198,2,40282,3963,27342,10659,11,309,9863,6375,25401,54,24352,11,5923,1797,2751,16034,11,16289,3963,6375,3268,198,2,7102,45,24565,13315,3336,47466,6375,3336,23210,6375,25401,5550,1847,20754,3268,3336,198,2,47466,13,198,2,198,2,13403,319,5903,6582,12,35,7730,36,532,18700,2141,469,3630,5456,198,2,15069,357,34,8,1946,383,5903,6582,12,35,7730,36,20420,198,2,198,2,13789,329,262,5903,6582,12,35,7730,36,6805,25,198,2,198,2,770,1430,318,1479,3788,25,345,460,17678,4163,340,290,14,273,13096,198,2,340,739,262,2846,286,262,22961,3611,5094,13789,355,3199,416,198,2,262,3232,10442,5693,11,2035,2196,513,286,262,13789,11,393,198,2,357,265,534,3038,8,597,1568,2196,13,198,2,198,2,770,1430,318,9387,287,262,2911,326,340,481,307,4465,11,198,2,475,42881,15529,34764,56,26,1231,772,262,17142,18215,286,198,2,34482,3398,1565,5603,25382,393,376,46144,7473,317,16652,2149,37232,33079,48933,13,4091,262,198,2,22961,3611,5094,13789,329,517,3307,13,198,2,198,2,921,815,423,2722,257,4866,286,262,22961,3611,5094,13789,198,2,1863,351,428,1430,13,1002,407,11,766,1279,4023,1378,2503,13,41791,13,2398,14,677,4541,15913,13,198,198,11748,9874,292,979,72,198,198,6738,764,35395,1330,12234,62,268,8189,11,12234,62,12501,1098,198,6738,764,29609,78,1330,427,64,11645,67,198,6738,764,1330,11779,11,38491,11,8611,198,6738,764,7645,2673,1330,11843,6601,12124,11,45389,11,309,87,26410,11,41876,62,6173,46023,198,6738,764,22602,1330,275,69,71,11,275,71,17,84,198,198,2,22246,6376,286,262,4017,74,293,6808,12234,287,262,10752,8692,8611,4226,11,198,2,810,645,23791,9691,13639,318,1944,13,198,22921,62,12115,6369,62,5662,62,31098,16279,5258,62,9858,47,1404,40,25382,796,1160,198,198,2,48900,329,20121,12,45374,1366,287,262,10752,8692,13,198,8220,1268,33,11159,62,29296,38,1961,62,23678,2751,62,37682,1137,796,275,69,71,10786,69,11231,11537,1343,275,1101,76,6,198,198,4299,748,48499,1096,62,14644,79,322,62,25677,7,8692,62,25677,11,264,11,923,62,9150,28,15,8,4613,357,11600,11,493,2599,198,220,220,220,37227,5960,48499,2696,281,47105,18833,54,4554,13,628,220,220,220,16409,262,748,48499,1417,47105,18833,54,8633,290,262,886,2292,287,262,18022,198,220,220,220,7177,355,257,5166,526,15931,198,220,220,220,27506,79,322,62,25677,796,23884,628,220,220,220,1303,21853,4522,318,262,1353,1467,10340,286,262,3933,12,2545,2196,13,198,220,220,220,27506,79,322,62,25677,17816,7983,62,312,20520,796,651,62,7983,62,312,7,8692,62,25677,8,628,220,220,220,1303,383,2560,10752,8692,8611,318,717,13,198,220,220,220,1303,2935,48499,1096,340,290,3613,262,25462,1366,13,198,220,220,220,2560,62,3630,8692,62,17602,796,45389,7,82,11,1607,62,9535,4386,62,7890,28,17821,11,4866,62,15414,28,25101,11,923,62,9150,28,9688,62,9150,8,198,220,220,220,2560,62,3630,8692,62,17602,13557,12154,62,22570,62,22915,82,796,6407,198,220,220,220,923,62,9150,796,3049,62,17602,62,8906,48499,1096,7,8000,62,3630,8692,62,17602,8,198,220,220,220,27506,79,322,62,25677,17816,8000,62,3630,8692,62,17602,20520,796,2560,62,3630,8692,62,17602,628,220,220,220,1303,7406,318,262,2560,2512,12234,13,220,4784,284,262,6185,13,270,22719,11,198,220,220,220,1303,428,2214,318,407,1682,11529,12,34666,13,220,1406,356,836,470,3613,340,13,198,220,220,220,923,62,9150,796,923,62,9150,1343,3933,628,220,220,220,1303,383,10752,8692,290,6333,4017,74,293,13737,14,521,1063,389,1306,13,198,220,220,220,1303,2935,48499,1096,606,290,3613,262,25462,1366,13,198,220,220,220,27506,79,322,62,25677,17816,3630,8692,62,647,74,293,62,1671,3702,6,4357,27506,79,322,62,25677,17816,3630,8692,62,647,74,293,62,9630,6,4357,923,62,9150,796,748,48499,1096,62,647,74,293,62,1671,3702,7,82,11,923,62,9150,28,9688,62,9150,8,198,220,220,220,27506,79,322,62,25677,17816,7983,62,647,74,293,62,1671,3702,6,4357,27506,79,322,62,25677,17816,7983,62,647,74,293,62,9630,6,4357,923,62,9150,796,748,48499,1096,62,647,74,293,62,1671,3702,7,82,11,923,62,9150,28,9688,62,9150,8,198,220,220,220,220,198,220,220,220,1303,9461,612,338,262,2560,13639,13,220,2935,48499,1096,340,13,198,220,220,220,2560,62,25677,62,33661,796,264,58,9688,62,9150,1058,923,62,9150,1343,38491,13,3262,13,37682,1137,62,33489,60,198,220,220,220,27506,79,322,62,25677,17816,8000,62,25677,20520,796,11779,13,8906,48499,1096,62,37424,62,25677,7,8000,62,25677,62,33661,11,6045,8,198,220,220,220,923,62,9150,15853,38491,13,3262,13,37682,1137,62,33489,198,220,220,220,1303,383,2560,2512,13639,1595,470,423,597,2512,6001,11,198,220,220,220,1303,523,12233,326,2214,13,220,357,1135,973,6045,355,257,31548,1988,2029,2014,198,220,220,220,1619,27506,79,322,62,25677,17816,8000,62,25677,6,7131,6,9967,62,17015,20520,628,220,220,220,1441,27506,79,322,62,25677,11,923,62,9150,198,198,2,6955,798,422,4017,74,293,62,1671,3702,62,6738,62,8841,287,3740,1378,12567,13,785,14,9509,6582,2501,14,9509,6582,12,4598,469,14,2436,672,14,69,22,3559,12762,1828,64,1415,69,3270,7252,23,67,33548,4521,65,2001,4524,46395,31911,535,67,14,8019,14,9967,7983,13,9078,2,43,21,1828,198,2,16409,1351,286,46621,11,4017,74,293,6376,11,290,2292,286,25462,1366,287,264,198,2,16926,46,25,46450,428,2163,7773,13,198,198,2,797,320,32851,286,275,83,8968,4487,13,9122,62,647,74,293,62,1671,3702,422,5903,6582,12,35,7730,36,13,198,2,275,83,8968,4487,2331,284,423,281,10061,5964,290,645,3489,15151,29924,11,523,340,198,2,3947,47897,284,302,12,320,26908,13,198,2,770,302,12,320,32851,318,7323,1912,319,9195,67,1219,73,338,15284,44,9587,293,30016,13,198,198,2,6955,798,422,5903,6582,12,35,7730,36,198,2,16926,46,25,46450,428,2163,7773,13,198,2,3740,1378,12567,13,785,14,74,49,13348,14,72,15,3630,14,5589,533,14,35395,25,9866,986,9866,2,26069,12,39132,7568,4521,68,2996,69,344,28694,1765,28977,66,17,64,19,69,22,34626,535,49,29119,198,198,2,6955,798,422,5903,6582,12,35,7730,36,198,2,16926,46,25,46450,428,2163,7773,13,198,198,2,770,318,10488,262,976,355,262,45389,13,17602,312,3419,2446,11,475,1595,470,198,2,581,48499,1096,340,13,198,198,2,16718,416,3049,62,17602,62,8906,48499,1096,198,198,2,770,318,7548,284,357,17602,13,8906,48499,1096,22784,10612,475,1595,470,21136,23862,13],"string":"[\n 2,\n 532,\n 9,\n 12,\n 19617,\n 25,\n 3384,\n 69,\n 12,\n 23,\n 532,\n 9,\n 12,\n 198,\n 2,\n 198,\n 2,\n 5903,\n 6582,\n 12,\n 45,\n 9655,\n 532,\n 18700,\n 6530,\n 3630,\n 5456,\n 198,\n 2,\n 15069,\n 357,\n 34,\n 8,\n 2864,\n 383,\n 6530,\n 3630,\n 6505,\n 198,\n 2,\n 198,\n 2,\n 13789,\n 329,\n 477,\n 6805,\n 407,\n 636,\n 286,\n 5903,\n 6582,\n 12,\n 35,\n 7730,\n 36,\n 25,\n 198,\n 2,\n 198,\n 2,\n 2448,\n 3411,\n 318,\n 29376,\n 7520,\n 11,\n 1479,\n 286,\n 3877,\n 11,\n 284,\n 597,\n 1048,\n 198,\n 2,\n 16727,\n 257,\n 4866,\n 286,\n 428,\n 3788,\n 290,\n 3917,\n 10314,\n 3696,\n 198,\n 2,\n 357,\n 1169,\n 366,\n 25423,\n 12340,\n 284,\n 1730,\n 287,\n 262,\n 10442,\n 1231,\n 17504,\n 11,\n 198,\n 2,\n 1390,\n 1231,\n 17385,\n 262,\n 2489,\n 284,\n 779,\n 11,\n 4866,\n 11,\n 13096,\n 11,\n 20121,\n 11,\n 198,\n 2,\n 7715,\n 11,\n 14983,\n 11,\n 850,\n 43085,\n 11,\n 290,\n 14,\n 273,\n 3677,\n 9088,\n 286,\n 262,\n 10442,\n 11,\n 198,\n 2,\n 290,\n 284,\n 8749,\n 6506,\n 284,\n 4150,\n 262,\n 10442,\n 318,\n 30760,\n 284,\n 466,\n 523,\n 11,\n 198,\n 2,\n 2426,\n 284,\n 262,\n 1708,\n 3403,\n 25,\n 198,\n 2,\n 198,\n 2,\n 383,\n 2029,\n 6634,\n 4003,\n 290,\n 428,\n 7170,\n 4003,\n 2236,\n 307,\n 198,\n 2,\n 3017,\n 287,\n 477,\n 9088,\n 393,\n 8904,\n 16690,\n 286,\n 262,\n 10442,\n 13,\n 198,\n 2,\n 198,\n 2,\n 3336,\n 47466,\n 3180,\n 36592,\n 2389,\n 1961,\n 366,\n 1921,\n 3180,\n 1600,\n 42881,\n 34764,\n 56,\n 3963,\n 15529,\n 509,\n 12115,\n 11,\n 198,\n 2,\n 7788,\n 32761,\n 6375,\n 8959,\n 49094,\n 11,\n 47783,\n 2751,\n 21728,\n 5626,\n 40880,\n 5390,\n 3336,\n 34764,\n 11015,\n 3963,\n 198,\n 2,\n 34482,\n 3398,\n 1565,\n 5603,\n 25382,\n 11,\n 376,\n 46144,\n 7473,\n 317,\n 16652,\n 2149,\n 37232,\n 33079,\n 48933,\n 5357,\n 198,\n 2,\n 44521,\n 1268,\n 10913,\n 2751,\n 12529,\n 13,\n 3268,\n 8005,\n 49261,\n 50163,\n 3336,\n 37195,\n 20673,\n 6375,\n 27975,\n 38162,\n 9947,\n 367,\n 15173,\n 4877,\n 198,\n 2,\n 9348,\n 43031,\n 19146,\n 7473,\n 15529,\n 47666,\n 3955,\n 11,\n 29506,\n 25552,\n 6375,\n 25401,\n 43031,\n 25382,\n 11,\n 7655,\n 2767,\n 16879,\n 3268,\n 3537,\n 198,\n 2,\n 40282,\n 3963,\n 27342,\n 10659,\n 11,\n 309,\n 9863,\n 6375,\n 25401,\n 54,\n 24352,\n 11,\n 5923,\n 1797,\n 2751,\n 16034,\n 11,\n 16289,\n 3963,\n 6375,\n 3268,\n 198,\n 2,\n 7102,\n 45,\n 24565,\n 13315,\n 3336,\n 47466,\n 6375,\n 3336,\n 23210,\n 6375,\n 25401,\n 5550,\n 1847,\n 20754,\n 3268,\n 3336,\n 198,\n 2,\n 47466,\n 13,\n 198,\n 2,\n 198,\n 2,\n 13403,\n 319,\n 5903,\n 6582,\n 12,\n 35,\n 7730,\n 36,\n 532,\n 18700,\n 2141,\n 469,\n 3630,\n 5456,\n 198,\n 2,\n 15069,\n 357,\n 34,\n 8,\n 1946,\n 383,\n 5903,\n 6582,\n 12,\n 35,\n 7730,\n 36,\n 20420,\n 198,\n 2,\n 198,\n 2,\n 13789,\n 329,\n 262,\n 5903,\n 6582,\n 12,\n 35,\n 7730,\n 36,\n 6805,\n 25,\n 198,\n 2,\n 198,\n 2,\n 770,\n 1430,\n 318,\n 1479,\n 3788,\n 25,\n 345,\n 460,\n 17678,\n 4163,\n 340,\n 290,\n 14,\n 273,\n 13096,\n 198,\n 2,\n 340,\n 739,\n 262,\n 2846,\n 286,\n 262,\n 22961,\n 3611,\n 5094,\n 13789,\n 355,\n 3199,\n 416,\n 198,\n 2,\n 262,\n 3232,\n 10442,\n 5693,\n 11,\n 2035,\n 2196,\n 513,\n 286,\n 262,\n 13789,\n 11,\n 393,\n 198,\n 2,\n 357,\n 265,\n 534,\n 3038,\n 8,\n 597,\n 1568,\n 2196,\n 13,\n 198,\n 2,\n 198,\n 2,\n 770,\n 1430,\n 318,\n 9387,\n 287,\n 262,\n 2911,\n 326,\n 340,\n 481,\n 307,\n 4465,\n 11,\n 198,\n 2,\n 475,\n 42881,\n 15529,\n 34764,\n 56,\n 26,\n 1231,\n 772,\n 262,\n 17142,\n 18215,\n 286,\n 198,\n 2,\n 34482,\n 3398,\n 1565,\n 5603,\n 25382,\n 393,\n 376,\n 46144,\n 7473,\n 317,\n 16652,\n 2149,\n 37232,\n 33079,\n 48933,\n 13,\n 4091,\n 262,\n 198,\n 2,\n 22961,\n 3611,\n 5094,\n 13789,\n 329,\n 517,\n 3307,\n 13,\n 198,\n 2,\n 198,\n 2,\n 921,\n 815,\n 423,\n 2722,\n 257,\n 4866,\n 286,\n 262,\n 22961,\n 3611,\n 5094,\n 13789,\n 198,\n 2,\n 1863,\n 351,\n 428,\n 1430,\n 13,\n 1002,\n 407,\n 11,\n 766,\n 1279,\n 4023,\n 1378,\n 2503,\n 13,\n 41791,\n 13,\n 2398,\n 14,\n 677,\n 4541,\n 15913,\n 13,\n 198,\n 198,\n 11748,\n 9874,\n 292,\n 979,\n 72,\n 198,\n 198,\n 6738,\n 764,\n 35395,\n 1330,\n 12234,\n 62,\n 268,\n 8189,\n 11,\n 12234,\n 62,\n 12501,\n 1098,\n 198,\n 6738,\n 764,\n 29609,\n 78,\n 1330,\n 427,\n 64,\n 11645,\n 67,\n 198,\n 6738,\n 764,\n 1330,\n 11779,\n 11,\n 38491,\n 11,\n 8611,\n 198,\n 6738,\n 764,\n 7645,\n 2673,\n 1330,\n 11843,\n 6601,\n 12124,\n 11,\n 45389,\n 11,\n 309,\n 87,\n 26410,\n 11,\n 41876,\n 62,\n 6173,\n 46023,\n 198,\n 6738,\n 764,\n 22602,\n 1330,\n 275,\n 69,\n 71,\n 11,\n 275,\n 71,\n 17,\n 84,\n 198,\n 198,\n 2,\n 22246,\n 6376,\n 286,\n 262,\n 4017,\n 74,\n 293,\n 6808,\n 12234,\n 287,\n 262,\n 10752,\n 8692,\n 8611,\n 4226,\n 11,\n 198,\n 2,\n 810,\n 645,\n 23791,\n 9691,\n 13639,\n 318,\n 1944,\n 13,\n 198,\n 22921,\n 62,\n 12115,\n 6369,\n 62,\n 5662,\n 62,\n 31098,\n 16279,\n 5258,\n 62,\n 9858,\n 47,\n 1404,\n 40,\n 25382,\n 796,\n 1160,\n 198,\n 198,\n 2,\n 48900,\n 329,\n 20121,\n 12,\n 45374,\n 1366,\n 287,\n 262,\n 10752,\n 8692,\n 13,\n 198,\n 8220,\n 1268,\n 33,\n 11159,\n 62,\n 29296,\n 38,\n 1961,\n 62,\n 23678,\n 2751,\n 62,\n 37682,\n 1137,\n 796,\n 275,\n 69,\n 71,\n 10786,\n 69,\n 11231,\n 11537,\n 1343,\n 275,\n 1101,\n 76,\n 6,\n 198,\n 198,\n 4299,\n 748,\n 48499,\n 1096,\n 62,\n 14644,\n 79,\n 322,\n 62,\n 25677,\n 7,\n 8692,\n 62,\n 25677,\n 11,\n 264,\n 11,\n 923,\n 62,\n 9150,\n 28,\n 15,\n 8,\n 4613,\n 357,\n 11600,\n 11,\n 493,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 5960,\n 48499,\n 2696,\n 281,\n 47105,\n 18833,\n 54,\n 4554,\n 13,\n 628,\n 220,\n 220,\n 220,\n 16409,\n 262,\n 748,\n 48499,\n 1417,\n 47105,\n 18833,\n 54,\n 8633,\n 290,\n 262,\n 886,\n 2292,\n 287,\n 262,\n 18022,\n 198,\n 220,\n 220,\n 220,\n 7177,\n 355,\n 257,\n 5166,\n 526,\n 15931,\n 198,\n 220,\n 220,\n 220,\n 27506,\n 79,\n 322,\n 62,\n 25677,\n 796,\n 23884,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 21853,\n 4522,\n 318,\n 262,\n 1353,\n 1467,\n 10340,\n 286,\n 262,\n 3933,\n 12,\n 2545,\n 2196,\n 13,\n 198,\n 220,\n 220,\n 220,\n 27506,\n 79,\n 322,\n 62,\n 25677,\n 17816,\n 7983,\n 62,\n 312,\n 20520,\n 796,\n 651,\n 62,\n 7983,\n 62,\n 312,\n 7,\n 8692,\n 62,\n 25677,\n 8,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 383,\n 2560,\n 10752,\n 8692,\n 8611,\n 318,\n 717,\n 13,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 2935,\n 48499,\n 1096,\n 340,\n 290,\n 3613,\n 262,\n 25462,\n 1366,\n 13,\n 198,\n 220,\n 220,\n 220,\n 2560,\n 62,\n 3630,\n 8692,\n 62,\n 17602,\n 796,\n 45389,\n 7,\n 82,\n 11,\n 1607,\n 62,\n 9535,\n 4386,\n 62,\n 7890,\n 28,\n 17821,\n 11,\n 4866,\n 62,\n 15414,\n 28,\n 25101,\n 11,\n 923,\n 62,\n 9150,\n 28,\n 9688,\n 62,\n 9150,\n 8,\n 198,\n 220,\n 220,\n 220,\n 2560,\n 62,\n 3630,\n 8692,\n 62,\n 17602,\n 13557,\n 12154,\n 62,\n 22570,\n 62,\n 22915,\n 82,\n 796,\n 6407,\n 198,\n 220,\n 220,\n 220,\n 923,\n 62,\n 9150,\n 796,\n 3049,\n 62,\n 17602,\n 62,\n 8906,\n 48499,\n 1096,\n 7,\n 8000,\n 62,\n 3630,\n 8692,\n 62,\n 17602,\n 8,\n 198,\n 220,\n 220,\n 220,\n 27506,\n 79,\n 322,\n 62,\n 25677,\n 17816,\n 8000,\n 62,\n 3630,\n 8692,\n 62,\n 17602,\n 20520,\n 796,\n 2560,\n 62,\n 3630,\n 8692,\n 62,\n 17602,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 7406,\n 318,\n 262,\n 2560,\n 2512,\n 12234,\n 13,\n 220,\n 4784,\n 284,\n 262,\n 6185,\n 13,\n 270,\n 22719,\n 11,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 428,\n 2214,\n 318,\n 407,\n 1682,\n 11529,\n 12,\n 34666,\n 13,\n 220,\n 1406,\n 356,\n 836,\n 470,\n 3613,\n 340,\n 13,\n 198,\n 220,\n 220,\n 220,\n 923,\n 62,\n 9150,\n 796,\n 923,\n 62,\n 9150,\n 1343,\n 3933,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 383,\n 10752,\n 8692,\n 290,\n 6333,\n 4017,\n 74,\n 293,\n 13737,\n 14,\n 521,\n 1063,\n 389,\n 1306,\n 13,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 2935,\n 48499,\n 1096,\n 606,\n 290,\n 3613,\n 262,\n 25462,\n 1366,\n 13,\n 198,\n 220,\n 220,\n 220,\n 27506,\n 79,\n 322,\n 62,\n 25677,\n 17816,\n 3630,\n 8692,\n 62,\n 647,\n 74,\n 293,\n 62,\n 1671,\n 3702,\n 6,\n 4357,\n 27506,\n 79,\n 322,\n 62,\n 25677,\n 17816,\n 3630,\n 8692,\n 62,\n 647,\n 74,\n 293,\n 62,\n 9630,\n 6,\n 4357,\n 923,\n 62,\n 9150,\n 796,\n 748,\n 48499,\n 1096,\n 62,\n 647,\n 74,\n 293,\n 62,\n 1671,\n 3702,\n 7,\n 82,\n 11,\n 923,\n 62,\n 9150,\n 28,\n 9688,\n 62,\n 9150,\n 8,\n 198,\n 220,\n 220,\n 220,\n 27506,\n 79,\n 322,\n 62,\n 25677,\n 17816,\n 7983,\n 62,\n 647,\n 74,\n 293,\n 62,\n 1671,\n 3702,\n 6,\n 4357,\n 27506,\n 79,\n 322,\n 62,\n 25677,\n 17816,\n 7983,\n 62,\n 647,\n 74,\n 293,\n 62,\n 9630,\n 6,\n 4357,\n 923,\n 62,\n 9150,\n 796,\n 748,\n 48499,\n 1096,\n 62,\n 647,\n 74,\n 293,\n 62,\n 1671,\n 3702,\n 7,\n 82,\n 11,\n 923,\n 62,\n 9150,\n 28,\n 9688,\n 62,\n 9150,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 9461,\n 612,\n 338,\n 262,\n 2560,\n 13639,\n 13,\n 220,\n 2935,\n 48499,\n 1096,\n 340,\n 13,\n 198,\n 220,\n 220,\n 220,\n 2560,\n 62,\n 25677,\n 62,\n 33661,\n 796,\n 264,\n 58,\n 9688,\n 62,\n 9150,\n 1058,\n 923,\n 62,\n 9150,\n 1343,\n 38491,\n 13,\n 3262,\n 13,\n 37682,\n 1137,\n 62,\n 33489,\n 60,\n 198,\n 220,\n 220,\n 220,\n 27506,\n 79,\n 322,\n 62,\n 25677,\n 17816,\n 8000,\n 62,\n 25677,\n 20520,\n 796,\n 11779,\n 13,\n 8906,\n 48499,\n 1096,\n 62,\n 37424,\n 62,\n 25677,\n 7,\n 8000,\n 62,\n 25677,\n 62,\n 33661,\n 11,\n 6045,\n 8,\n 198,\n 220,\n 220,\n 220,\n 923,\n 62,\n 9150,\n 15853,\n 38491,\n 13,\n 3262,\n 13,\n 37682,\n 1137,\n 62,\n 33489,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 383,\n 2560,\n 2512,\n 13639,\n 1595,\n 470,\n 423,\n 597,\n 2512,\n 6001,\n 11,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 523,\n 12233,\n 326,\n 2214,\n 13,\n 220,\n 357,\n 1135,\n 973,\n 6045,\n 355,\n 257,\n 31548,\n 1988,\n 2029,\n 2014,\n 198,\n 220,\n 220,\n 220,\n 1619,\n 27506,\n 79,\n 322,\n 62,\n 25677,\n 17816,\n 8000,\n 62,\n 25677,\n 6,\n 7131,\n 6,\n 9967,\n 62,\n 17015,\n 20520,\n 628,\n 220,\n 220,\n 220,\n 1441,\n 27506,\n 79,\n 322,\n 62,\n 25677,\n 11,\n 923,\n 62,\n 9150,\n 198,\n 198,\n 2,\n 6955,\n 798,\n 422,\n 4017,\n 74,\n 293,\n 62,\n 1671,\n 3702,\n 62,\n 6738,\n 62,\n 8841,\n 287,\n 3740,\n 1378,\n 12567,\n 13,\n 785,\n 14,\n 9509,\n 6582,\n 2501,\n 14,\n 9509,\n 6582,\n 12,\n 4598,\n 469,\n 14,\n 2436,\n 672,\n 14,\n 69,\n 22,\n 3559,\n 12762,\n 1828,\n 64,\n 1415,\n 69,\n 3270,\n 7252,\n 23,\n 67,\n 33548,\n 4521,\n 65,\n 2001,\n 4524,\n 46395,\n 31911,\n 535,\n 67,\n 14,\n 8019,\n 14,\n 9967,\n 7983,\n 13,\n 9078,\n 2,\n 43,\n 21,\n 1828,\n 198,\n 2,\n 16409,\n 1351,\n 286,\n 46621,\n 11,\n 4017,\n 74,\n 293,\n 6376,\n 11,\n 290,\n 2292,\n 286,\n 25462,\n 1366,\n 287,\n 264,\n 198,\n 2,\n 16926,\n 46,\n 25,\n 46450,\n 428,\n 2163,\n 7773,\n 13,\n 198,\n 198,\n 2,\n 797,\n 320,\n 32851,\n 286,\n 275,\n 83,\n 8968,\n 4487,\n 13,\n 9122,\n 62,\n 647,\n 74,\n 293,\n 62,\n 1671,\n 3702,\n 422,\n 5903,\n 6582,\n 12,\n 35,\n 7730,\n 36,\n 13,\n 198,\n 2,\n 275,\n 83,\n 8968,\n 4487,\n 2331,\n 284,\n 423,\n 281,\n 10061,\n 5964,\n 290,\n 645,\n 3489,\n 15151,\n 29924,\n 11,\n 523,\n 340,\n 198,\n 2,\n 3947,\n 47897,\n 284,\n 302,\n 12,\n 320,\n 26908,\n 13,\n 198,\n 2,\n 770,\n 302,\n 12,\n 320,\n 32851,\n 318,\n 7323,\n 1912,\n 319,\n 9195,\n 67,\n 1219,\n 73,\n 338,\n 15284,\n 44,\n 9587,\n 293,\n 30016,\n 13,\n 198,\n 198,\n 2,\n 6955,\n 798,\n 422,\n 5903,\n 6582,\n 12,\n 35,\n 7730,\n 36,\n 198,\n 2,\n 16926,\n 46,\n 25,\n 46450,\n 428,\n 2163,\n 7773,\n 13,\n 198,\n 2,\n 3740,\n 1378,\n 12567,\n 13,\n 785,\n 14,\n 74,\n 49,\n 13348,\n 14,\n 72,\n 15,\n 3630,\n 14,\n 5589,\n 533,\n 14,\n 35395,\n 25,\n 9866,\n 986,\n 9866,\n 2,\n 26069,\n 12,\n 39132,\n 7568,\n 4521,\n 68,\n 2996,\n 69,\n 344,\n 28694,\n 1765,\n 28977,\n 66,\n 17,\n 64,\n 19,\n 69,\n 22,\n 34626,\n 535,\n 49,\n 29119,\n 198,\n 198,\n 2,\n 6955,\n 798,\n 422,\n 5903,\n 6582,\n 12,\n 35,\n 7730,\n 36,\n 198,\n 2,\n 16926,\n 46,\n 25,\n 46450,\n 428,\n 2163,\n 7773,\n 13,\n 198,\n 198,\n 2,\n 770,\n 318,\n 10488,\n 262,\n 976,\n 355,\n 262,\n 45389,\n 13,\n 17602,\n 312,\n 3419,\n 2446,\n 11,\n 475,\n 1595,\n 470,\n 198,\n 2,\n 581,\n 48499,\n 1096,\n 340,\n 13,\n 198,\n 198,\n 2,\n 16718,\n 416,\n 3049,\n 62,\n 17602,\n 62,\n 8906,\n 48499,\n 1096,\n 198,\n 198,\n 2,\n 770,\n 318,\n 7548,\n 284,\n 357,\n 17602,\n 13,\n 8906,\n 48499,\n 1096,\n 22784,\n 10612,\n 475,\n 1595,\n 470,\n 21136,\n 23862,\n 13\n]"},"ratio_char_token":{"kind":"number","value":3.2082093991671625,"string":"3.208209"},"token_count":{"kind":"number","value":1681,"string":"1,681"}}},{"rowIdx":2457,"cells":{"content":{"kind":"string","value":"#!/usr/bin/env python3\n# -*- coding: utf-8 -*-\n\nimport sys\n\n\ndef extract(file=None, path=None):\n \"\"\"\n Extract all of the YouTube links within a Headset user-made list.\n\n :param file: headset json export file path\n :param path: json path to extract, you can use [JSON Columns](http://json-columns.com) to get it\n :return: `list` containing all of the links in the list\n \"\"\"\n if not file or not path:\n print('error: file or json path not provided...')\n return None\n\n # todo: implement\n pass\n\n\nif __name__ == '__main__':\n extract()\n"},"input_ids":{"kind":"list like","value":[2,48443,14629,14,8800,14,24330,21015,18,198,2,532,9,12,19617,25,3384,69,12,23,532,9,12,198,198,11748,25064,628,198,4299,7925,7,7753,28,14202,11,3108,28,14202,2599,198,220,37227,198,220,29677,477,286,262,7444,6117,1626,257,7123,2617,2836,12,9727,1351,13,628,220,1058,17143,2393,25,23492,33918,10784,2393,3108,198,220,1058,17143,3108,25,33918,3108,284,7925,11,345,460,779,685,40386,29201,82,16151,4023,1378,17752,12,28665,82,13,785,8,284,651,340,198,220,1058,7783,25,4600,4868,63,7268,477,286,262,6117,287,262,1351,198,220,37227,198,220,611,407,2393,393,407,3108,25,198,220,220,220,3601,10786,18224,25,2393,393,33918,3108,407,2810,986,11537,198,220,220,220,1441,6045,628,220,1303,284,4598,25,3494,198,220,1208,628,198,361,11593,3672,834,6624,705,834,12417,834,10354,198,220,7925,3419,198],"string":"[\n 2,\n 48443,\n 14629,\n 14,\n 8800,\n 14,\n 24330,\n 21015,\n 18,\n 198,\n 2,\n 532,\n 9,\n 12,\n 19617,\n 25,\n 3384,\n 69,\n 12,\n 23,\n 532,\n 9,\n 12,\n 198,\n 198,\n 11748,\n 25064,\n 628,\n 198,\n 4299,\n 7925,\n 7,\n 7753,\n 28,\n 14202,\n 11,\n 3108,\n 28,\n 14202,\n 2599,\n 198,\n 220,\n 37227,\n 198,\n 220,\n 29677,\n 477,\n 286,\n 262,\n 7444,\n 6117,\n 1626,\n 257,\n 7123,\n 2617,\n 2836,\n 12,\n 9727,\n 1351,\n 13,\n 628,\n 220,\n 1058,\n 17143,\n 2393,\n 25,\n 23492,\n 33918,\n 10784,\n 2393,\n 3108,\n 198,\n 220,\n 1058,\n 17143,\n 3108,\n 25,\n 33918,\n 3108,\n 284,\n 7925,\n 11,\n 345,\n 460,\n 779,\n 685,\n 40386,\n 29201,\n 82,\n 16151,\n 4023,\n 1378,\n 17752,\n 12,\n 28665,\n 82,\n 13,\n 785,\n 8,\n 284,\n 651,\n 340,\n 198,\n 220,\n 1058,\n 7783,\n 25,\n 4600,\n 4868,\n 63,\n 7268,\n 477,\n 286,\n 262,\n 6117,\n 287,\n 262,\n 1351,\n 198,\n 220,\n 37227,\n 198,\n 220,\n 611,\n 407,\n 2393,\n 393,\n 407,\n 3108,\n 25,\n 198,\n 220,\n 220,\n 220,\n 3601,\n 10786,\n 18224,\n 25,\n 2393,\n 393,\n 33918,\n 3108,\n 407,\n 2810,\n 986,\n 11537,\n 198,\n 220,\n 220,\n 220,\n 1441,\n 6045,\n 628,\n 220,\n 1303,\n 284,\n 4598,\n 25,\n 3494,\n 198,\n 220,\n 1208,\n 628,\n 198,\n 361,\n 11593,\n 3672,\n 834,\n 6624,\n 705,\n 834,\n 12417,\n 834,\n 10354,\n 198,\n 220,\n 7925,\n 3419,\n 198\n]"},"ratio_char_token":{"kind":"number","value":3.0446927374301676,"string":"3.044693"},"token_count":{"kind":"number","value":179,"string":"179"}}},{"rowIdx":2458,"cells":{"content":{"kind":"string","value":"from django.shortcuts import render\nfrom django.http import HttpResponse\nfrom django.contrib.auth.forms import UserCreationForm\nfrom django.contrib.auth import login, authenticate\nfrom django.contrib.auth.models import User\nfrom django.http import JsonResponse\n\n\n####################\n# IMPORT OTHER LIBS\n####################\nimport os\nimport numpy as np\nimport seaborn as sns\nimport cv2\nfrom heatmappy import Heatmapper\nfrom heatmappy.video import VideoHeatmapper\nfrom PIL import Image\nimport moviepy.editor as mp\nimport urllib\nimport glob\nimport pandas as pd\nfrom pathlib import Path\nimport shutil\nimport vimeo_dl as vimeo\nimport plotly.express as px\nimport plotly\nimport plotly.graph_objects as go\n\nfrom .models import Video, VideoStat\n\nEMOTIONS = [\n 'angry', \n 'disgusted', \n 'fearful', \n 'happy', \n 'neutral', \n 'sad', \n 'surprised'\n]\n\n# # Create your views here.\n# def index(request):\n# return render(request, 'index.html')\n\nheatmap_points = []\ndef index(request):\n '''\n Renders login + main page\n '''\n global user\n if request.method == 'POST':\n username = request.POST['username']\n password = request.POST['password']\n user = authenticate(username=username, password=password)\n\n if user is not None:\n # if user is authentificated\n\n data = Video.objects.all()\n response_data = {\n \"video_data\": data,\n \"name\" : username,\n \"is_staff\": user.is_staff,\n }\n return render(request, 'main.html', response_data)\n return render(request, 'index.html')\n else:\n form = UserCreationForm()\n \n return render(request, 'index.html', {'form': form})\n\n\ndef video(request, video_id):\n '''\n Renders video page\n '''\n\n global video\n video = list(Video.objects.all())[video_id-1]\n\n VideoStat.objects.filter(video_link= video.video_link, user_id= user.username).delete()\n\n response_data = {\n \"name\" : user.username,\n \"video_name\": video.video_name,\n \"video_link\": video.video_link,\n \"is_staff\": user.is_staff\n }\n\n \n return render(request, 'video.html', response_data)\n\n\ndef recievePoints(request):\n '''\n Recieves gaze points via ajax request\n '''\n\n x, y = request.GET['x'], request.GET['y']\n time = request.GET['time']\n width, height = request.GET['width'], request.GET['height']\n username = request.GET['username']\n\n try:\n expressions = urllib.parse.unquote(request.GET['expressions']).split(';')\n expressions = list(map(float, expressions))\n except:\n expressions = []\n\n try:\n emotion = EMOTIONS[np.argmax(expressions)]\n except:\n emotion = 'None'\n \n\n try:\n x, y, time = int(float(x)), int(float(y)), int(float(time))\n except:\n x, y = 0, 0\n\n try:\n width, height = int(width), int(height)\n except:\n width, height = 0, 0\n\n\n VideoStat.objects.create(video_link= video.video_link, user_id= user.username, timestamp = time, emotions=emotion, coordinates=f'{x}:{y}', screen_width=width, screen_height=height)\n\n\n return JsonResponse({'ok': True})\n\ndef exportStats(request):\n '''\n Recieves export request via ajax\n '''\n # get video data\n entries = VideoStat.objects.filter(video_link=video.video_link)\n DOWNLOAD_PATH = Path('viewer/static/downloads') / video.video_link\n try:\n os.mkdir(DOWNLOAD_PATH)\n except:\n pass\n \n video_data = vimeo.new(f'https://vimeo.com/{video.video_link}')\n video_data.streams[0].download(quiet=False)\n video_width, video_height = str(video_data.streams[0]).split('@')[-1].split('x')\n video_width, video_height = int(video_width), int(video_height)\n\n # get video db entries\n heatmap_points = []\n emotion_points = []\n for e in entries:\n x,y = list(map(int, e.coordinates.split(':')))\n time = int(e.timestamp)\n\n x *= video_width / int(e.screen_width)\n y *= video_height / int(e.screen_height)\n heatmap_points.append([x,y, time])\n emotion_points.append([e.user_id, time//5000, e.emotions])\n \n emotions = pd.DataFrame(emotion_points)\n emotions.columns = ['user_name', 'timestamp', 'emotion']\n\n \n emotion_counts = []\n for (ts, item) in emotions.groupby('timestamp'):\n COUNTER = {\n 'timestamp': item['timestamp'].iloc[0] * 5,\n 'angry': 0, \n 'disgusted': 0, \n 'fearful': 0, \n 'happy': 0, \n 'neutral': 0, \n 'sad': 0, \n 'surprised': 0,\n 'None': 0\n }\n for index, count in item['emotion'].value_counts().items():\n COUNTER[index] = count\n emotion_counts.append(COUNTER.values())\n emotion_counts = pd.DataFrame(emotion_counts)\n emotion_counts.columns = COUNTER.keys()\n emotion_counts.to_csv(DOWNLOAD_PATH / 'out.csv', index = None)\n\n \n heatmapper = Heatmapper(point_strength=0.6, opacity=0.8)\n video_heatmapper = VideoHeatmapper(heatmapper)\n heatmap_video = video_heatmapper.heatmap_on_video_path(\n video_path=f'{video_data.title}.mp4',\n points=heatmap_points\n )\n\n heatmap_video.write_videofile(str(DOWNLOAD_PATH / 'out.mp4'), bitrate=\"500k\", fps=24)\n\n mp4_files = glob.glob(str('*.mp4'))\n for f in mp4_files:\n if f != 'out.mp4':\n os.remove(f)\n\n shutil.make_archive(str(DOWNLOAD_PATH), 'zip', str(DOWNLOAD_PATH))\n shutil.rmtree(str(DOWNLOAD_PATH))\n\n\n # time based graph\n\n fig = px.line(emotion_counts, x=\"timestamp\", y=emotion_counts.columns[1:])\n fig = plotly.graph_objs.Figure(fig.data, fig.layout)\n fig_json_1 = fig.to_json()\n\n # pie chart\n labels, counts = list(emotions['emotion'].value_counts().index), list(emotions['emotion'].value_counts().values)\n fig = go.Figure(data=[go.Pie(labels=labels, values=counts)])\n fig_json_2 = fig.to_json()\n\n\n\n\n return JsonResponse({'ok': True, 'plotly_graph_1': fig_json_1, 'plotly_graph_2': fig_json_2}) \n"},"input_ids":{"kind":"list like","value":[6738,42625,14208,13,19509,23779,1330,8543,198,6738,42625,14208,13,4023,1330,367,29281,31077,198,6738,42625,14208,13,3642,822,13,18439,13,23914,1330,11787,12443,341,8479,198,6738,42625,14208,13,3642,822,13,18439,1330,17594,11,8323,5344,198,6738,42625,14208,13,3642,822,13,18439,13,27530,1330,11787,198,6738,42625,14208,13,4023,1330,449,1559,31077,628,198,14468,4242,198,2,30023,9863,25401,24653,4462,198,14468,4242,198,11748,28686,198,11748,299,32152,355,45941,198,11748,384,397,1211,355,3013,82,198,11748,269,85,17,198,6738,4894,76,7774,1330,12308,76,11463,198,6738,4894,76,7774,13,15588,1330,7623,39596,76,11463,198,6738,350,4146,1330,7412,198,11748,3807,9078,13,35352,355,29034,198,11748,2956,297,571,198,11748,15095,198,11748,19798,292,355,279,67,198,6738,3108,8019,1330,10644,198,11748,4423,346,198,11748,410,47776,62,25404,355,410,47776,198,11748,7110,306,13,42712,355,279,87,198,11748,7110,306,198,11748,7110,306,13,34960,62,48205,355,467,198,198,6738,764,27530,1330,7623,11,7623,17126,198,198,3620,2394,11053,796,685,198,220,220,220,705,648,563,3256,220,198,220,220,220,705,6381,70,8459,3256,220,198,220,220,220,705,69,451,913,3256,220,198,220,220,220,705,34191,3256,220,198,220,220,220,705,29797,3256,220,198,220,220,220,705,82,324,3256,220,198,220,220,220,705,11793,1050,1417,6,198,60,198,198,2,1303,13610,534,5009,994,13,198,2,825,6376,7,25927,2599,198,2,220,220,220,220,1441,8543,7,25927,11,705,9630,13,6494,11537,198,198,25080,8899,62,13033,796,17635,198,4299,6376,7,25927,2599,198,220,220,220,705,7061,198,220,220,220,371,7338,17594,1343,1388,2443,198,220,220,220,705,7061,198,220,220,220,3298,2836,198,220,220,220,611,2581,13,24396,6624,705,32782,10354,198,220,220,220,220,220,220,220,20579,796,2581,13,32782,17816,29460,20520,198,220,220,220,220,220,220,220,9206,796,2581,13,32782,17816,28712,20520,198,220,220,220,220,220,220,220,2836,796,8323,5344,7,29460,28,29460,11,9206,28,28712,8,628,220,220,220,220,220,220,220,611,2836,318,407,6045,25,198,220,220,220,220,220,220,220,220,220,220,220,1303,611,2836,318,8323,811,515,628,220,220,220,220,220,220,220,220,220,220,220,1366,796,7623,13,48205,13,439,3419,198,220,220,220,220,220,220,220,220,220,220,220,2882,62,7890,796,1391,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,15588,62,7890,1298,1366,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,3672,1,1058,20579,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,271,62,28120,1298,2836,13,271,62,28120,11,198,220,220,220,220,220,220,220,220,220,220,220,1782,198,220,220,220,220,220,220,220,220,220,220,220,1441,8543,7,25927,11,705,12417,13,6494,3256,2882,62,7890,8,198,220,220,220,220,220,220,220,1441,8543,7,25927,11,705,9630,13,6494,11537,198,220,220,220,2073,25,198,220,220,220,220,220,220,220,1296,796,11787,12443,341,8479,3419,198,220,220,220,220,198,220,220,220,1441,8543,7,25927,11,705,9630,13,6494,3256,1391,6,687,10354,1296,30072,628,198,4299,2008,7,25927,11,2008,62,312,2599,198,220,220,220,705,7061,198,220,220,220,371,7338,2008,2443,198,220,220,220,705,7061,628,220,220,220,3298,2008,198,220,220,220,2008,796,1351,7,10798,13,48205,13,439,28955,58,15588,62,312,12,16,60,628,220,220,220,7623,17126,13,48205,13,24455,7,15588,62,8726,28,2008,13,15588,62,8726,11,2836,62,312,28,2836,13,29460,737,33678,3419,628,220,220,220,2882,62,7890,796,1391,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,3672,1,1058,2836,13,29460,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,15588,62,3672,1298,2008,13,15588,62,3672,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,15588,62,8726,1298,2008,13,15588,62,8726,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,271,62,28120,1298,2836,13,271,62,28120,198,220,220,220,220,220,220,220,220,220,220,220,1782,628,220,220,220,220,220,220,220,220,198,220,220,220,1441,8543,7,25927,11,705,15588,13,6494,3256,2882,62,7890,8,628,198,4299,664,12311,40710,7,25927,2599,198,220,220,220,705,7061,198,220,220,220,3311,17974,17841,2173,2884,257,73,897,2581,198,220,220,220,705,7061,628,220,220,220,2124,11,331,796,2581,13,18851,17816,87,6,4357,2581,13,18851,17816,88,20520,198,220,220,220,640,796,2581,13,18851,17816,2435,20520,198,220,220,220,9647,11,6001,796,2581,13,18851,17816,10394,6,4357,2581,13,18851,17816,17015,20520,198,220,220,220,20579,796,2581,13,18851,17816,29460,20520,628,220,220,220,1949,25,198,220,220,220,220,220,220,220,14700,796,2956,297,571,13,29572,13,403,22708,7,25927,13,18851,17816,42712,507,20520,737,35312,10786,26,11537,198,220,220,220,220,220,220,220,14700,796,1351,7,8899,7,22468,11,14700,4008,198,220,220,220,2845,25,198,220,220,220,220,220,220,220,14700,796,17635,628,220,220,220,1949,25,198,220,220,220,220,220,220,220,9942,796,17228,2394,11053,58,37659,13,853,9806,7,42712,507,15437,198,220,220,220,2845,25,198,220,220,220,220,220,220,220,9942,796,705,14202,6,198,220,220,220,220,628,220,220,220,1949,25,198,220,220,220,220,220,220,220,2124,11,331,11,640,796,493,7,22468,7,87,36911,493,7,22468,7,88,36911,493,7,22468,7,2435,4008,198,220,220,220,2845,25,198,220,220,220,220,220,220,220,2124,11,331,796,657,11,657,628,220,220,220,1949,25,198,220,220,220,220,220,220,220,9647,11,6001,796,493,7,10394,828,493,7,17015,8,198,220,220,220,2845,25,198,220,220,220,220,220,220,220,9647,11,6001,796,657,11,657,628,198,220,220,220,7623,17126,13,48205,13,17953,7,15588,62,8726,28,2008,13,15588,62,8726,11,2836,62,312,28,2836,13,29460,11,41033,796,640,11,10825,28,368,9650,11,22715,28,69,6,90,87,92,29164,88,92,3256,3159,62,10394,28,10394,11,3159,62,17015,28,17015,8,628,198,220,220,220,1441,449,1559,31077,15090,6,482,10354,6407,30072,198,198,4299,10784,29668,7,25927,2599,198,220,220,220,705,7061,198,220,220,220,3311,17974,10784,2581,2884,257,73,897,198,220,220,220,705,7061,198,220,220,220,1303,651,2008,1366,198,220,220,220,12784,796,7623,17126,13,48205,13,24455,7,15588,62,8726,28,15588,13,15588,62,8726,8,198,220,220,220,30320,35613,62,34219,796,10644,10786,1177,263,14,12708,14,15002,82,11537,1220,2008,13,15588,62,8726,198,220,220,220,1949,25,198,220,220,220,220,220,220,220,28686,13,28015,15908,7,41925,35613,62,34219,8,198,220,220,220,2845,25,198,220,220,220,220,220,220,220,1208,198,220,220,220,220,220,220,220,220,198,220,220,220,2008,62,7890,796,410,47776,13,3605,7,69,6,5450,1378,85,47776,13,785,14,90,15588,13,15588,62,8726,92,11537,198,220,220,220,2008,62,7890,13,5532,82,58,15,4083,15002,7,39624,28,25101,8,198,220,220,220,2008,62,10394,11,2008,62,17015,796,965,7,15588,62,7890,13,5532,82,58,15,35944,35312,10786,31,11537,58,12,16,4083,35312,10786,87,11537,198,220,220,220,2008,62,10394,11,2008,62,17015,796,493,7,15588,62,10394,828,493,7,15588,62,17015,8,628,220,220,220,1303,651,2008,20613,12784,198,220,220,220,4894,8899,62,13033,796,17635,198,220,220,220,9942,62,13033,796,17635,198,220,220,220,329,304,287,12784,25,198,220,220,220,220,220,220,220,2124,11,88,796,1351,7,8899,7,600,11,304,13,37652,17540,13,35312,7,10354,6,22305,198,220,220,220,220,220,220,220,640,796,493,7,68,13,16514,27823,8,628,220,220,220,220,220,220,220,2124,1635,28,2008,62,10394,1220,493,7,68,13,9612,62,10394,8,198,220,220,220,220,220,220,220,331,1635,28,2008,62,17015,1220,493,7,68,13,9612,62,17015,8,198,220,220,220,220,220,220,220,4894,8899,62,13033,13,33295,26933,87,11,88,11,640,12962,198,220,220,220,220,220,220,220,9942,62,13033,13,33295,26933,68,13,7220,62,312,11,640,1003,27641,11,304,13,368,36083,12962,198,220,220,220,220,198,220,220,220,10825,796,279,67,13,6601,19778,7,368,9650,62,13033,8,198,220,220,220,10825,13,28665,82,796,37250,7220,62,3672,3256,705,16514,27823,3256,705,368,9650,20520,628,220,220,220,220,198,220,220,220,9942,62,9127,82,796,17635,198,220,220,220,329,357,912,11,2378,8,287,10825,13,8094,1525,10786,16514,27823,6,2599,198,220,220,220,220,220,220,220,31404,5781,796,1391,198,220,220,220,220,220,220,220,220,220,220,220,705,16514,27823,10354,2378,17816,16514,27823,6,4083,346,420,58,15,60,1635,642,11,198,220,220,220,220,220,220,220,220,220,220,220,705,648,563,10354,657,11,220,198,220,220,220,220,220,220,220,220,220,220,220,705,6381,70,8459,10354,657,11,220,198,220,220,220,220,220,220,220,220,220,220,220,705,69,451,913,10354,657,11,220,198,220,220,220,220,220,220,220,220,220,220,220,705,34191,10354,657,11,220,198,220,220,220,220,220,220,220,220,220,220,220,705,29797,10354,657,11,220,198,220,220,220,220,220,220,220,220,220,220,220,705,82,324,10354,657,11,220,198,220,220,220,220,220,220,220,220,220,220,220,705,11793,1050,1417,10354,657,11,198,220,220,220,220,220,220,220,220,220,220,220,705,14202,10354,657,198,220,220,220,220,220,220,220,1782,198,220,220,220,220,220,220,220,329,6376,11,954,287,2378,17816,368,9650,6,4083,8367,62,9127,82,22446,23814,33529,198,220,220,220,220,220,220,220,220,220,220,220,31404,5781,58,9630,60,796,954,198,220,220,220,220,220,220,220,9942,62,9127,82,13,33295,7,34,19385,5781,13,27160,28955,198,220,220,220,9942,62,9127,82,796,279,67,13,6601,19778,7,368,9650,62,9127,82,8,198,220,220,220,9942,62,9127,82,13,28665,82,796,31404,5781,13,13083,3419,198,220,220,220,9942,62,9127,82,13,1462,62,40664,7,41925,35613,62,34219,1220,705,448,13,40664,3256,6376,796,6045,8,628,220,220,220,220,198,220,220,220,4894,76,11463,796,12308,76,11463,7,4122,62,41402,28,15,13,21,11,45912,28,15,13,23,8,198,220,220,220,2008,62,25080,76,11463,796,7623,39596,76,11463,7,25080,76,11463,8,198,220,220,220,4894,8899,62,15588,796,2008,62,25080,76,11463,13,25080,8899,62,261,62,15588,62,6978,7,198,220,220,220,220,220,220,220,2008,62,6978,28,69,6,90,15588,62,7890,13,7839,27422,3149,19,3256,198,220,220,220,220,220,220,220,2173,28,25080,8899,62,13033,198,220,220,220,1267,628,220,220,220,4894,8899,62,15588,13,13564,62,15588,7753,7,2536,7,41925,35613,62,34219,1220,705,448,13,3149,19,33809,1643,4873,2625,4059,74,1600,32977,28,1731,8,628,220,220,220,29034,19,62,16624,796,15095,13,4743,672,7,2536,10786,24620,3149,19,6,4008,198,220,220,220,329,277,287,29034,19,62,16624,25,198,220,220,220,220,220,220,220,611,277,14512,705,448,13,3149,19,10354,198,220,220,220,220,220,220,220,220,220,220,220,28686,13,28956,7,69,8,628,220,220,220,4423,346,13,15883,62,17474,7,2536,7,41925,35613,62,34219,828,705,13344,3256,965,7,41925,35613,62,34219,4008,198,220,220,220,4423,346,13,81,16762,631,7,2536,7,41925,35613,62,34219,4008,628,198,220,220,220,1303,640,1912,4823,628,220,220,220,2336,796,279,87,13,1370,7,368,9650,62,9127,82,11,2124,2625,16514,27823,1600,331,28,368,9650,62,9127,82,13,28665,82,58,16,25,12962,198,220,220,220,2336,796,7110,306,13,34960,62,672,8457,13,11337,7,5647,13,7890,11,2336,13,39786,8,198,220,220,220,2336,62,17752,62,16,796,2336,13,1462,62,17752,3419,628,220,220,220,1303,2508,8262,198,220,220,220,14722,11,9853,796,1351,7,368,36083,17816,368,9650,6,4083,8367,62,9127,82,22446,9630,828,1351,7,368,36083,17816,368,9650,6,4083,8367,62,9127,82,22446,27160,8,198,220,220,220,2336,796,467,13,11337,7,7890,41888,2188,13,48223,7,23912,1424,28,23912,1424,11,3815,28,9127,82,8,12962,198,220,220,220,2336,62,17752,62,17,796,2336,13,1462,62,17752,3419,628,628,198,220,220,220,1441,449,1559,31077,15090,6,482,10354,6407,11,705,29487,306,62,34960,62,16,10354,2336,62,17752,62,16,11,705,29487,306,62,34960,62,17,10354,2336,62,17752,62,17,30072,220,220,220,198],"string":"[\n 6738,\n 42625,\n 14208,\n 13,\n 19509,\n 23779,\n 1330,\n 8543,\n 198,\n 6738,\n 42625,\n 14208,\n 13,\n 4023,\n 1330,\n 367,\n 29281,\n 31077,\n 198,\n 6738,\n 42625,\n 14208,\n 13,\n 3642,\n 822,\n 13,\n 18439,\n 13,\n 23914,\n 1330,\n 11787,\n 12443,\n 341,\n 8479,\n 198,\n 6738,\n 42625,\n 14208,\n 13,\n 3642,\n 822,\n 13,\n 18439,\n 1330,\n 17594,\n 11,\n 8323,\n 5344,\n 198,\n 6738,\n 42625,\n 14208,\n 13,\n 3642,\n 822,\n 13,\n 18439,\n 13,\n 27530,\n 1330,\n 11787,\n 198,\n 6738,\n 42625,\n 14208,\n 13,\n 4023,\n 1330,\n 449,\n 1559,\n 31077,\n 628,\n 198,\n 14468,\n 4242,\n 198,\n 2,\n 30023,\n 9863,\n 25401,\n 24653,\n 4462,\n 198,\n 14468,\n 4242,\n 198,\n 11748,\n 28686,\n 198,\n 11748,\n 299,\n 32152,\n 355,\n 45941,\n 198,\n 11748,\n 384,\n 397,\n 1211,\n 355,\n 3013,\n 82,\n 198,\n 11748,\n 269,\n 85,\n 17,\n 198,\n 6738,\n 4894,\n 76,\n 7774,\n 1330,\n 12308,\n 76,\n 11463,\n 198,\n 6738,\n 4894,\n 76,\n 7774,\n 13,\n 15588,\n 1330,\n 7623,\n 39596,\n 76,\n 11463,\n 198,\n 6738,\n 350,\n 4146,\n 1330,\n 7412,\n 198,\n 11748,\n 3807,\n 9078,\n 13,\n 35352,\n 355,\n 29034,\n 198,\n 11748,\n 2956,\n 297,\n 571,\n 198,\n 11748,\n 15095,\n 198,\n 11748,\n 19798,\n 292,\n 355,\n 279,\n 67,\n 198,\n 6738,\n 3108,\n 8019,\n 1330,\n 10644,\n 198,\n 11748,\n 4423,\n 346,\n 198,\n 11748,\n 410,\n 47776,\n 62,\n 25404,\n 355,\n 410,\n 47776,\n 198,\n 11748,\n 7110,\n 306,\n 13,\n 42712,\n 355,\n 279,\n 87,\n 198,\n 11748,\n 7110,\n 306,\n 198,\n 11748,\n 7110,\n 306,\n 13,\n 34960,\n 62,\n 48205,\n 355,\n 467,\n 198,\n 198,\n 6738,\n 764,\n 27530,\n 1330,\n 7623,\n 11,\n 7623,\n 17126,\n 198,\n 198,\n 3620,\n 2394,\n 11053,\n 796,\n 685,\n 198,\n 220,\n 220,\n 220,\n 705,\n 648,\n 563,\n 3256,\n 220,\n 198,\n 220,\n 220,\n 220,\n 705,\n 6381,\n 70,\n 8459,\n 3256,\n 220,\n 198,\n 220,\n 220,\n 220,\n 705,\n 69,\n 451,\n 913,\n 3256,\n 220,\n 198,\n 220,\n 220,\n 220,\n 705,\n 34191,\n 3256,\n 220,\n 198,\n 220,\n 220,\n 220,\n 705,\n 29797,\n 3256,\n 220,\n 198,\n 220,\n 220,\n 220,\n 705,\n 82,\n 324,\n 3256,\n 220,\n 198,\n 220,\n 220,\n 220,\n 705,\n 11793,\n 1050,\n 1417,\n 6,\n 198,\n 60,\n 198,\n 198,\n 2,\n 1303,\n 13610,\n 534,\n 5009,\n 994,\n 13,\n 198,\n 2,\n 825,\n 6376,\n 7,\n 25927,\n 2599,\n 198,\n 2,\n 220,\n 220,\n 220,\n 220,\n 1441,\n 8543,\n 7,\n 25927,\n 11,\n 705,\n 9630,\n 13,\n 6494,\n 11537,\n 198,\n 198,\n 25080,\n 8899,\n 62,\n 13033,\n 796,\n 17635,\n 198,\n 4299,\n 6376,\n 7,\n 25927,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 705,\n 7061,\n 198,\n 220,\n 220,\n 220,\n 371,\n 7338,\n 17594,\n 1343,\n 1388,\n 2443,\n 198,\n 220,\n 220,\n 220,\n 705,\n 7061,\n 198,\n 220,\n 220,\n 220,\n 3298,\n 2836,\n 198,\n 220,\n 220,\n 220,\n 611,\n 2581,\n 13,\n 24396,\n 6624,\n 705,\n 32782,\n 10354,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 20579,\n 796,\n 2581,\n 13,\n 32782,\n 17816,\n 29460,\n 20520,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 9206,\n 796,\n 2581,\n 13,\n 32782,\n 17816,\n 28712,\n 20520,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2836,\n 796,\n 8323,\n 5344,\n 7,\n 29460,\n 28,\n 29460,\n 11,\n 9206,\n 28,\n 28712,\n 8,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 2836,\n 318,\n 407,\n 6045,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 611,\n 2836,\n 318,\n 8323,\n 811,\n 515,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1366,\n 796,\n 7623,\n 13,\n 48205,\n 13,\n 439,\n 3419,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2882,\n 62,\n 7890,\n 796,\n 1391,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 15588,\n 62,\n 7890,\n 1298,\n 1366,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 3672,\n 1,\n 1058,\n 20579,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 271,\n 62,\n 28120,\n 1298,\n 2836,\n 13,\n 271,\n 62,\n 28120,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1782,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1441,\n 8543,\n 7,\n 25927,\n 11,\n 705,\n 12417,\n 13,\n 6494,\n 3256,\n 2882,\n 62,\n 7890,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1441,\n 8543,\n 7,\n 25927,\n 11,\n 705,\n 9630,\n 13,\n 6494,\n 11537,\n 198,\n 220,\n 220,\n 220,\n 2073,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1296,\n 796,\n 11787,\n 12443,\n 341,\n 8479,\n 3419,\n 198,\n 220,\n 220,\n 220,\n 220,\n 198,\n 220,\n 220,\n 220,\n 1441,\n 8543,\n 7,\n 25927,\n 11,\n 705,\n 9630,\n 13,\n 6494,\n 3256,\n 1391,\n 6,\n 687,\n 10354,\n 1296,\n 30072,\n 628,\n 198,\n 4299,\n 2008,\n 7,\n 25927,\n 11,\n 2008,\n 62,\n 312,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 705,\n 7061,\n 198,\n 220,\n 220,\n 220,\n 371,\n 7338,\n 2008,\n 2443,\n 198,\n 220,\n 220,\n 220,\n 705,\n 7061,\n 628,\n 220,\n 220,\n 220,\n 3298,\n 2008,\n 198,\n 220,\n 220,\n 220,\n 2008,\n 796,\n 1351,\n 7,\n 10798,\n 13,\n 48205,\n 13,\n 439,\n 28955,\n 58,\n 15588,\n 62,\n 312,\n 12,\n 16,\n 60,\n 628,\n 220,\n 220,\n 220,\n 7623,\n 17126,\n 13,\n 48205,\n 13,\n 24455,\n 7,\n 15588,\n 62,\n 8726,\n 28,\n 2008,\n 13,\n 15588,\n 62,\n 8726,\n 11,\n 2836,\n 62,\n 312,\n 28,\n 2836,\n 13,\n 29460,\n 737,\n 33678,\n 3419,\n 628,\n 220,\n 220,\n 220,\n 2882,\n 62,\n 7890,\n 796,\n 1391,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 3672,\n 1,\n 1058,\n 2836,\n 13,\n 29460,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 15588,\n 62,\n 3672,\n 1298,\n 2008,\n 13,\n 15588,\n 62,\n 3672,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 15588,\n 62,\n 8726,\n 1298,\n 2008,\n 13,\n 15588,\n 62,\n 8726,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 271,\n 62,\n 28120,\n 1298,\n 2836,\n 13,\n 271,\n 62,\n 28120,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1782,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 198,\n 220,\n 220,\n 220,\n 1441,\n 8543,\n 7,\n 25927,\n 11,\n 705,\n 15588,\n 13,\n 6494,\n 3256,\n 2882,\n 62,\n 7890,\n 8,\n 628,\n 198,\n 4299,\n 664,\n 12311,\n 40710,\n 7,\n 25927,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 705,\n 7061,\n 198,\n 220,\n 220,\n 220,\n 3311,\n 17974,\n 17841,\n 2173,\n 2884,\n 257,\n 73,\n 897,\n 2581,\n 198,\n 220,\n 220,\n 220,\n 705,\n 7061,\n 628,\n 220,\n 220,\n 220,\n 2124,\n 11,\n 331,\n 796,\n 2581,\n 13,\n 18851,\n 17816,\n 87,\n 6,\n 4357,\n 2581,\n 13,\n 18851,\n 17816,\n 88,\n 20520,\n 198,\n 220,\n 220,\n 220,\n 640,\n 796,\n 2581,\n 13,\n 18851,\n 17816,\n 2435,\n 20520,\n 198,\n 220,\n 220,\n 220,\n 9647,\n 11,\n 6001,\n 796,\n 2581,\n 13,\n 18851,\n 17816,\n 10394,\n 6,\n 4357,\n 2581,\n 13,\n 18851,\n 17816,\n 17015,\n 20520,\n 198,\n 220,\n 220,\n 220,\n 20579,\n 796,\n 2581,\n 13,\n 18851,\n 17816,\n 29460,\n 20520,\n 628,\n 220,\n 220,\n 220,\n 1949,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 14700,\n 796,\n 2956,\n 297,\n 571,\n 13,\n 29572,\n 13,\n 403,\n 22708,\n 7,\n 25927,\n 13,\n 18851,\n 17816,\n 42712,\n 507,\n 20520,\n 737,\n 35312,\n 10786,\n 26,\n 11537,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 14700,\n 796,\n 1351,\n 7,\n 8899,\n 7,\n 22468,\n 11,\n 14700,\n 4008,\n 198,\n 220,\n 220,\n 220,\n 2845,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 14700,\n 796,\n 17635,\n 628,\n 220,\n 220,\n 220,\n 1949,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 9942,\n 796,\n 17228,\n 2394,\n 11053,\n 58,\n 37659,\n 13,\n 853,\n 9806,\n 7,\n 42712,\n 507,\n 15437,\n 198,\n 220,\n 220,\n 220,\n 2845,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 9942,\n 796,\n 705,\n 14202,\n 6,\n 198,\n 220,\n 220,\n 220,\n 220,\n 628,\n 220,\n 220,\n 220,\n 1949,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2124,\n 11,\n 331,\n 11,\n 640,\n 796,\n 493,\n 7,\n 22468,\n 7,\n 87,\n 36911,\n 493,\n 7,\n 22468,\n 7,\n 88,\n 36911,\n 493,\n 7,\n 22468,\n 7,\n 2435,\n 4008,\n 198,\n 220,\n 220,\n 220,\n 2845,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2124,\n 11,\n 331,\n 796,\n 657,\n 11,\n 657,\n 628,\n 220,\n 220,\n 220,\n 1949,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 9647,\n 11,\n 6001,\n 796,\n 493,\n 7,\n 10394,\n 828,\n 493,\n 7,\n 17015,\n 8,\n 198,\n 220,\n 220,\n 220,\n 2845,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 9647,\n 11,\n 6001,\n 796,\n 657,\n 11,\n 657,\n 628,\n 198,\n 220,\n 220,\n 220,\n 7623,\n 17126,\n 13,\n 48205,\n 13,\n 17953,\n 7,\n 15588,\n 62,\n 8726,\n 28,\n 2008,\n 13,\n 15588,\n 62,\n 8726,\n 11,\n 2836,\n 62,\n 312,\n 28,\n 2836,\n 13,\n 29460,\n 11,\n 41033,\n 796,\n 640,\n 11,\n 10825,\n 28,\n 368,\n 9650,\n 11,\n 22715,\n 28,\n 69,\n 6,\n 90,\n 87,\n 92,\n 29164,\n 88,\n 92,\n 3256,\n 3159,\n 62,\n 10394,\n 28,\n 10394,\n 11,\n 3159,\n 62,\n 17015,\n 28,\n 17015,\n 8,\n 628,\n 198,\n 220,\n 220,\n 220,\n 1441,\n 449,\n 1559,\n 31077,\n 15090,\n 6,\n 482,\n 10354,\n 6407,\n 30072,\n 198,\n 198,\n 4299,\n 10784,\n 29668,\n 7,\n 25927,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 705,\n 7061,\n 198,\n 220,\n 220,\n 220,\n 3311,\n 17974,\n 10784,\n 2581,\n 2884,\n 257,\n 73,\n 897,\n 198,\n 220,\n 220,\n 220,\n 705,\n 7061,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 651,\n 2008,\n 1366,\n 198,\n 220,\n 220,\n 220,\n 12784,\n 796,\n 7623,\n 17126,\n 13,\n 48205,\n 13,\n 24455,\n 7,\n 15588,\n 62,\n 8726,\n 28,\n 15588,\n 13,\n 15588,\n 62,\n 8726,\n 8,\n 198,\n 220,\n 220,\n 220,\n 30320,\n 35613,\n 62,\n 34219,\n 796,\n 10644,\n 10786,\n 1177,\n 263,\n 14,\n 12708,\n 14,\n 15002,\n 82,\n 11537,\n 1220,\n 2008,\n 13,\n 15588,\n 62,\n 8726,\n 198,\n 220,\n 220,\n 220,\n 1949,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 28686,\n 13,\n 28015,\n 15908,\n 7,\n 41925,\n 35613,\n 62,\n 34219,\n 8,\n 198,\n 220,\n 220,\n 220,\n 2845,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1208,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 198,\n 220,\n 220,\n 220,\n 2008,\n 62,\n 7890,\n 796,\n 410,\n 47776,\n 13,\n 3605,\n 7,\n 69,\n 6,\n 5450,\n 1378,\n 85,\n 47776,\n 13,\n 785,\n 14,\n 90,\n 15588,\n 13,\n 15588,\n 62,\n 8726,\n 92,\n 11537,\n 198,\n 220,\n 220,\n 220,\n 2008,\n 62,\n 7890,\n 13,\n 5532,\n 82,\n 58,\n 15,\n 4083,\n 15002,\n 7,\n 39624,\n 28,\n 25101,\n 8,\n 198,\n 220,\n 220,\n 220,\n 2008,\n 62,\n 10394,\n 11,\n 2008,\n 62,\n 17015,\n 796,\n 965,\n 7,\n 15588,\n 62,\n 7890,\n 13,\n 5532,\n 82,\n 58,\n 15,\n 35944,\n 35312,\n 10786,\n 31,\n 11537,\n 58,\n 12,\n 16,\n 4083,\n 35312,\n 10786,\n 87,\n 11537,\n 198,\n 220,\n 220,\n 220,\n 2008,\n 62,\n 10394,\n 11,\n 2008,\n 62,\n 17015,\n 796,\n 493,\n 7,\n 15588,\n 62,\n 10394,\n 828,\n 493,\n 7,\n 15588,\n 62,\n 17015,\n 8,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 651,\n 2008,\n 20613,\n 12784,\n 198,\n 220,\n 220,\n 220,\n 4894,\n 8899,\n 62,\n 13033,\n 796,\n 17635,\n 198,\n 220,\n 220,\n 220,\n 9942,\n 62,\n 13033,\n 796,\n 17635,\n 198,\n 220,\n 220,\n 220,\n 329,\n 304,\n 287,\n 12784,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2124,\n 11,\n 88,\n 796,\n 1351,\n 7,\n 8899,\n 7,\n 600,\n 11,\n 304,\n 13,\n 37652,\n 17540,\n 13,\n 35312,\n 7,\n 10354,\n 6,\n 22305,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 640,\n 796,\n 493,\n 7,\n 68,\n 13,\n 16514,\n 27823,\n 8,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2124,\n 1635,\n 28,\n 2008,\n 62,\n 10394,\n 1220,\n 493,\n 7,\n 68,\n 13,\n 9612,\n 62,\n 10394,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 331,\n 1635,\n 28,\n 2008,\n 62,\n 17015,\n 1220,\n 493,\n 7,\n 68,\n 13,\n 9612,\n 62,\n 17015,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 4894,\n 8899,\n 62,\n 13033,\n 13,\n 33295,\n 26933,\n 87,\n 11,\n 88,\n 11,\n 640,\n 12962,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 9942,\n 62,\n 13033,\n 13,\n 33295,\n 26933,\n 68,\n 13,\n 7220,\n 62,\n 312,\n 11,\n 640,\n 1003,\n 27641,\n 11,\n 304,\n 13,\n 368,\n 36083,\n 12962,\n 198,\n 220,\n 220,\n 220,\n 220,\n 198,\n 220,\n 220,\n 220,\n 10825,\n 796,\n 279,\n 67,\n 13,\n 6601,\n 19778,\n 7,\n 368,\n 9650,\n 62,\n 13033,\n 8,\n 198,\n 220,\n 220,\n 220,\n 10825,\n 13,\n 28665,\n 82,\n 796,\n 37250,\n 7220,\n 62,\n 3672,\n 3256,\n 705,\n 16514,\n 27823,\n 3256,\n 705,\n 368,\n 9650,\n 20520,\n 628,\n 220,\n 220,\n 220,\n 220,\n 198,\n 220,\n 220,\n 220,\n 9942,\n 62,\n 9127,\n 82,\n 796,\n 17635,\n 198,\n 220,\n 220,\n 220,\n 329,\n 357,\n 912,\n 11,\n 2378,\n 8,\n 287,\n 10825,\n 13,\n 8094,\n 1525,\n 10786,\n 16514,\n 27823,\n 6,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 31404,\n 5781,\n 796,\n 1391,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 705,\n 16514,\n 27823,\n 10354,\n 2378,\n 17816,\n 16514,\n 27823,\n 6,\n 4083,\n 346,\n 420,\n 58,\n 15,\n 60,\n 1635,\n 642,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 705,\n 648,\n 563,\n 10354,\n 657,\n 11,\n 220,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 705,\n 6381,\n 70,\n 8459,\n 10354,\n 657,\n 11,\n 220,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 705,\n 69,\n 451,\n 913,\n 10354,\n 657,\n 11,\n 220,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 705,\n 34191,\n 10354,\n 657,\n 11,\n 220,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 705,\n 29797,\n 10354,\n 657,\n 11,\n 220,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 705,\n 82,\n 324,\n 10354,\n 657,\n 11,\n 220,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 705,\n 11793,\n 1050,\n 1417,\n 10354,\n 657,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 705,\n 14202,\n 10354,\n 657,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1782,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 329,\n 6376,\n 11,\n 954,\n 287,\n 2378,\n 17816,\n 368,\n 9650,\n 6,\n 4083,\n 8367,\n 62,\n 9127,\n 82,\n 22446,\n 23814,\n 33529,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 31404,\n 5781,\n 58,\n 9630,\n 60,\n 796,\n 954,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 9942,\n 62,\n 9127,\n 82,\n 13,\n 33295,\n 7,\n 34,\n 19385,\n 5781,\n 13,\n 27160,\n 28955,\n 198,\n 220,\n 220,\n 220,\n 9942,\n 62,\n 9127,\n 82,\n 796,\n 279,\n 67,\n 13,\n 6601,\n 19778,\n 7,\n 368,\n 9650,\n 62,\n 9127,\n 82,\n 8,\n 198,\n 220,\n 220,\n 220,\n 9942,\n 62,\n 9127,\n 82,\n 13,\n 28665,\n 82,\n 796,\n 31404,\n 5781,\n 13,\n 13083,\n 3419,\n 198,\n 220,\n 220,\n 220,\n 9942,\n 62,\n 9127,\n 82,\n 13,\n 1462,\n 62,\n 40664,\n 7,\n 41925,\n 35613,\n 62,\n 34219,\n 1220,\n 705,\n 448,\n 13,\n 40664,\n 3256,\n 6376,\n 796,\n 6045,\n 8,\n 628,\n 220,\n 220,\n 220,\n 220,\n 198,\n 220,\n 220,\n 220,\n 4894,\n 76,\n 11463,\n 796,\n 12308,\n 76,\n 11463,\n 7,\n 4122,\n 62,\n 41402,\n 28,\n 15,\n 13,\n 21,\n 11,\n 45912,\n 28,\n 15,\n 13,\n 23,\n 8,\n 198,\n 220,\n 220,\n 220,\n 2008,\n 62,\n 25080,\n 76,\n 11463,\n 796,\n 7623,\n 39596,\n 76,\n 11463,\n 7,\n 25080,\n 76,\n 11463,\n 8,\n 198,\n 220,\n 220,\n 220,\n 4894,\n 8899,\n 62,\n 15588,\n 796,\n 2008,\n 62,\n 25080,\n 76,\n 11463,\n 13,\n 25080,\n 8899,\n 62,\n 261,\n 62,\n 15588,\n 62,\n 6978,\n 7,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2008,\n 62,\n 6978,\n 28,\n 69,\n 6,\n 90,\n 15588,\n 62,\n 7890,\n 13,\n 7839,\n 27422,\n 3149,\n 19,\n 3256,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2173,\n 28,\n 25080,\n 8899,\n 62,\n 13033,\n 198,\n 220,\n 220,\n 220,\n 1267,\n 628,\n 220,\n 220,\n 220,\n 4894,\n 8899,\n 62,\n 15588,\n 13,\n 13564,\n 62,\n 15588,\n 7753,\n 7,\n 2536,\n 7,\n 41925,\n 35613,\n 62,\n 34219,\n 1220,\n 705,\n 448,\n 13,\n 3149,\n 19,\n 33809,\n 1643,\n 4873,\n 2625,\n 4059,\n 74,\n 1600,\n 32977,\n 28,\n 1731,\n 8,\n 628,\n 220,\n 220,\n 220,\n 29034,\n 19,\n 62,\n 16624,\n 796,\n 15095,\n 13,\n 4743,\n 672,\n 7,\n 2536,\n 10786,\n 24620,\n 3149,\n 19,\n 6,\n 4008,\n 198,\n 220,\n 220,\n 220,\n 329,\n 277,\n 287,\n 29034,\n 19,\n 62,\n 16624,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 277,\n 14512,\n 705,\n 448,\n 13,\n 3149,\n 19,\n 10354,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 28686,\n 13,\n 28956,\n 7,\n 69,\n 8,\n 628,\n 220,\n 220,\n 220,\n 4423,\n 346,\n 13,\n 15883,\n 62,\n 17474,\n 7,\n 2536,\n 7,\n 41925,\n 35613,\n 62,\n 34219,\n 828,\n 705,\n 13344,\n 3256,\n 965,\n 7,\n 41925,\n 35613,\n 62,\n 34219,\n 4008,\n 198,\n 220,\n 220,\n 220,\n 4423,\n 346,\n 13,\n 81,\n 16762,\n 631,\n 7,\n 2536,\n 7,\n 41925,\n 35613,\n 62,\n 34219,\n 4008,\n 628,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 640,\n 1912,\n 4823,\n 628,\n 220,\n 220,\n 220,\n 2336,\n 796,\n 279,\n 87,\n 13,\n 1370,\n 7,\n 368,\n 9650,\n 62,\n 9127,\n 82,\n 11,\n 2124,\n 2625,\n 16514,\n 27823,\n 1600,\n 331,\n 28,\n 368,\n 9650,\n 62,\n 9127,\n 82,\n 13,\n 28665,\n 82,\n 58,\n 16,\n 25,\n 12962,\n 198,\n 220,\n 220,\n 220,\n 2336,\n 796,\n 7110,\n 306,\n 13,\n 34960,\n 62,\n 672,\n 8457,\n 13,\n 11337,\n 7,\n 5647,\n 13,\n 7890,\n 11,\n 2336,\n 13,\n 39786,\n 8,\n 198,\n 220,\n 220,\n 220,\n 2336,\n 62,\n 17752,\n 62,\n 16,\n 796,\n 2336,\n 13,\n 1462,\n 62,\n 17752,\n 3419,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 2508,\n 8262,\n 198,\n 220,\n 220,\n 220,\n 14722,\n 11,\n 9853,\n 796,\n 1351,\n 7,\n 368,\n 36083,\n 17816,\n 368,\n 9650,\n 6,\n 4083,\n 8367,\n 62,\n 9127,\n 82,\n 22446,\n 9630,\n 828,\n 1351,\n 7,\n 368,\n 36083,\n 17816,\n 368,\n 9650,\n 6,\n 4083,\n 8367,\n 62,\n 9127,\n 82,\n 22446,\n 27160,\n 8,\n 198,\n 220,\n 220,\n 220,\n 2336,\n 796,\n 467,\n 13,\n 11337,\n 7,\n 7890,\n 41888,\n 2188,\n 13,\n 48223,\n 7,\n 23912,\n 1424,\n 28,\n 23912,\n 1424,\n 11,\n 3815,\n 28,\n 9127,\n 82,\n 8,\n 12962,\n 198,\n 220,\n 220,\n 220,\n 2336,\n 62,\n 17752,\n 62,\n 17,\n 796,\n 2336,\n 13,\n 1462,\n 62,\n 17752,\n 3419,\n 628,\n 628,\n 198,\n 220,\n 220,\n 220,\n 1441,\n 449,\n 1559,\n 31077,\n 15090,\n 6,\n 482,\n 10354,\n 6407,\n 11,\n 705,\n 29487,\n 306,\n 62,\n 34960,\n 62,\n 16,\n 10354,\n 2336,\n 62,\n 17752,\n 62,\n 16,\n 11,\n 705,\n 29487,\n 306,\n 62,\n 34960,\n 62,\n 17,\n 10354,\n 2336,\n 62,\n 17752,\n 62,\n 17,\n 30072,\n 220,\n 220,\n 220,\n 198\n]"},"ratio_char_token":{"kind":"number","value":2.315390447308567,"string":"2.31539"},"token_count":{"kind":"number","value":2638,"string":"2,638"}}},{"rowIdx":2459,"cells":{"content":{"kind":"string","value":"import re\nfrom importlib import import_module\nimport inspect\n\nimport sublime_plugin\nimport sublime\n\n\nSCOPE_RE = re.compile(r'\\bsource\\.python\\b')\nLIB_MODULE_RE = re.compile(r'\\bsupport\\.module\\.python\\b')\n\n\n\ndef grab_module(view, cursor):\n ''' Grabs the entire module path under the cursor '''\n word_sel = view.word(cursor)\n\n pos = None\n\n # Are we on a dot right now?\n if view.substr(cursor.begin() - 1) == '.':\n pos = cursor.begin() - 1\n\n # Are we on a word?\n elif view.substr(word_sel.begin() - 1) == '.':\n pos = word_sel.begin() - 1\n\n # Not a module\n else:\n return False\n\n path_parts = []\n while view.substr(pos) == '.':\n # Expand prefix to a word\n word_sel = view.word(pos - 1)\n word = view.substr(word_sel)\n\n path_parts.append(word)\n pos = word_sel.begin() - 1\n\n # Format the module path\n path = '.'.join(reversed(path_parts))\n\n return path\n\n\n"},"input_ids":{"kind":"list like","value":[11748,302,198,6738,1330,8019,1330,1330,62,21412,198,11748,10104,198,198,11748,41674,62,33803,198,11748,41674,628,198,6173,32135,62,2200,796,302,13,5589,576,7,81,6,59,1443,1668,17405,29412,59,65,11537,198,40347,62,33365,24212,62,2200,796,302,13,5589,576,7,81,6,59,1443,84,4926,17405,21412,17405,29412,59,65,11537,628,198,198,4299,5552,62,21412,7,1177,11,23493,2599,198,220,220,220,705,7061,1902,8937,262,2104,8265,3108,739,262,23493,705,7061,198,220,220,220,1573,62,741,796,1570,13,4775,7,66,21471,8,628,220,220,220,1426,796,6045,628,220,220,220,1303,4231,356,319,257,16605,826,783,30,198,220,220,220,611,1570,13,7266,2536,7,66,21471,13,27471,3419,532,352,8,6624,705,2637,25,198,220,220,220,220,220,220,220,1426,796,23493,13,27471,3419,532,352,628,220,220,220,1303,4231,356,319,257,1573,30,198,220,220,220,1288,361,1570,13,7266,2536,7,4775,62,741,13,27471,3419,532,352,8,6624,705,2637,25,198,220,220,220,220,220,220,220,1426,796,1573,62,741,13,27471,3419,532,352,628,220,220,220,1303,1892,257,8265,198,220,220,220,2073,25,198,220,220,220,220,220,220,220,1441,10352,628,220,220,220,3108,62,42632,796,17635,198,220,220,220,981,1570,13,7266,2536,7,1930,8,6624,705,2637,25,198,220,220,220,220,220,220,220,1303,49368,21231,284,257,1573,198,220,220,220,220,220,220,220,1573,62,741,796,1570,13,4775,7,1930,532,352,8,198,220,220,220,220,220,220,220,1573,796,1570,13,7266,2536,7,4775,62,741,8,628,220,220,220,220,220,220,220,3108,62,42632,13,33295,7,4775,8,198,220,220,220,220,220,220,220,1426,796,1573,62,741,13,27471,3419,532,352,628,220,220,220,1303,18980,262,8265,3108,198,220,220,220,3108,796,705,2637,13,22179,7,260,690,276,7,6978,62,42632,4008,628,220,220,220,1441,3108,628,198],"string":"[\n 11748,\n 302,\n 198,\n 6738,\n 1330,\n 8019,\n 1330,\n 1330,\n 62,\n 21412,\n 198,\n 11748,\n 10104,\n 198,\n 198,\n 11748,\n 41674,\n 62,\n 33803,\n 198,\n 11748,\n 41674,\n 628,\n 198,\n 6173,\n 32135,\n 62,\n 2200,\n 796,\n 302,\n 13,\n 5589,\n 576,\n 7,\n 81,\n 6,\n 59,\n 1443,\n 1668,\n 17405,\n 29412,\n 59,\n 65,\n 11537,\n 198,\n 40347,\n 62,\n 33365,\n 24212,\n 62,\n 2200,\n 796,\n 302,\n 13,\n 5589,\n 576,\n 7,\n 81,\n 6,\n 59,\n 1443,\n 84,\n 4926,\n 17405,\n 21412,\n 17405,\n 29412,\n 59,\n 65,\n 11537,\n 628,\n 198,\n 198,\n 4299,\n 5552,\n 62,\n 21412,\n 7,\n 1177,\n 11,\n 23493,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 705,\n 7061,\n 1902,\n 8937,\n 262,\n 2104,\n 8265,\n 3108,\n 739,\n 262,\n 23493,\n 705,\n 7061,\n 198,\n 220,\n 220,\n 220,\n 1573,\n 62,\n 741,\n 796,\n 1570,\n 13,\n 4775,\n 7,\n 66,\n 21471,\n 8,\n 628,\n 220,\n 220,\n 220,\n 1426,\n 796,\n 6045,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 4231,\n 356,\n 319,\n 257,\n 16605,\n 826,\n 783,\n 30,\n 198,\n 220,\n 220,\n 220,\n 611,\n 1570,\n 13,\n 7266,\n 2536,\n 7,\n 66,\n 21471,\n 13,\n 27471,\n 3419,\n 532,\n 352,\n 8,\n 6624,\n 705,\n 2637,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1426,\n 796,\n 23493,\n 13,\n 27471,\n 3419,\n 532,\n 352,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 4231,\n 356,\n 319,\n 257,\n 1573,\n 30,\n 198,\n 220,\n 220,\n 220,\n 1288,\n 361,\n 1570,\n 13,\n 7266,\n 2536,\n 7,\n 4775,\n 62,\n 741,\n 13,\n 27471,\n 3419,\n 532,\n 352,\n 8,\n 6624,\n 705,\n 2637,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1426,\n 796,\n 1573,\n 62,\n 741,\n 13,\n 27471,\n 3419,\n 532,\n 352,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 1892,\n 257,\n 8265,\n 198,\n 220,\n 220,\n 220,\n 2073,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1441,\n 10352,\n 628,\n 220,\n 220,\n 220,\n 3108,\n 62,\n 42632,\n 796,\n 17635,\n 198,\n 220,\n 220,\n 220,\n 981,\n 1570,\n 13,\n 7266,\n 2536,\n 7,\n 1930,\n 8,\n 6624,\n 705,\n 2637,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 49368,\n 21231,\n 284,\n 257,\n 1573,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1573,\n 62,\n 741,\n 796,\n 1570,\n 13,\n 4775,\n 7,\n 1930,\n 532,\n 352,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1573,\n 796,\n 1570,\n 13,\n 7266,\n 2536,\n 7,\n 4775,\n 62,\n 741,\n 8,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3108,\n 62,\n 42632,\n 13,\n 33295,\n 7,\n 4775,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1426,\n 796,\n 1573,\n 62,\n 741,\n 13,\n 27471,\n 3419,\n 532,\n 352,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 18980,\n 262,\n 8265,\n 3108,\n 198,\n 220,\n 220,\n 220,\n 3108,\n 796,\n 705,\n 2637,\n 13,\n 22179,\n 7,\n 260,\n 690,\n 276,\n 7,\n 6978,\n 62,\n 42632,\n 4008,\n 628,\n 220,\n 220,\n 220,\n 1441,\n 3108,\n 628,\n 198\n]"},"ratio_char_token":{"kind":"number","value":2.3828715365239295,"string":"2.382872"},"token_count":{"kind":"number","value":397,"string":"397"}}},{"rowIdx":2460,"cells":{"content":{"kind":"string","value":"\n\"\"\"\nCalculates port ranks and distributes ports.\nThe rank of a port is a floating point number that represents its position\ninside the containing layer. This depends on the node order of that layer and on the\nport constraints of the nodes. Port ranks are used by {@link ICrossingMinimizationHeuristics\nfor calculating barycenter or median values for nodes. Furthermore, they are used in this\nclass for distributing the ports of nodes where the order of ports is not fixed,\nwhich has to be done as the last step of each crossing minimization processor.\nThere are different ways to determine port ranks, therefore that is done in concrete subclasses.\n\"\"\"\nfrom collections import defaultdict\nfrom math import inf\nfrom typing import List\n\nfrom layeredGraphLayouter.containers.constants import PortType, PortSide\nfrom layeredGraphLayouter.containers.lNode import LNode\nfrom layeredGraphLayouter.containers.lPort import LPort\n\n\n\n\n\nclass AbstractBarycenterPortDistributor():\n \"\"\"\n\n Constructs a port distributor for the given array of port ranks. \n All ports are required to be assigned ids in the range of the given array.\n\n :ivar portRanks: port ranks dict {port: rank} in which the results of ranks calculation are stored.\n \"\"\"\n\n # ######################################/\n # Port Rank Assignment\n\n def calculatePortRanks_many(self, layer: List[LNode], portType: PortType):\n \"\"\"\n Determine ranks for all ports of specific type in the given layer.\n The ranks are written to the {@link #getPortRanks() array.\n\n :param layer: a layer as node array\n :param portType: the port type to consider\n \"\"\"\n #assert isinstance(layer, LNodeLayer), (layer, layer.__class__)\n calculatePortRanks = self.calculatePortRanks\n consumedRank = 0\n for node in layer:\n consumedRank += calculatePortRanks(node, consumedRank, portType)\n\n def calculatePortRanks(self, node: LNode, rankSum: float, type_: PortType):\n \"\"\"\n Assign port ranks for the input or output ports of the given node. If the node's port\n constraints imply a fixed order, the ports are assumed to be pre-ordered in the usual way,\n i.e. in clockwise order north - east - south - west.\n The ranks are written to the {@link #getPortRanks() array.\n\n :param node: a node\n :param rankSum: the sum of ranks of preceding nodes in the same layer\n :param type: the port type to consider\n :return the rank consumed by the given node the following node's ranks start at\n {@code rankSum + consumedRank\n :see: {@link org.eclipse.alg.layered.intermediate.PortListSorter \n \"\"\"\n raise NotImplementedError(\"Implement on child class\")\n\n # ######################################/\n # Port Distribution\n\n def distributePorts(self, node, ports):\n \"\"\"\n * Distribute the ports of the given node by their sides, connected ports, and input or output\n * type.\n *\n * :param node\n * node whose ports shall be sorted\n \"\"\"\n self.inLayerPorts.clear()\n if ports:\n self.iteratePortsAndCollectInLayerPorts(node, ports)\n\n if self.inLayerPorts:\n self.calculateInLayerPortsBarycenterValues(node)\n\n def sortPorts(self, node):\n \"\"\"\n Sort the ports of a node using the given relative position values.\n These values are interpreted as a hint for the clockwise order of ports.\n\n :param node: a node\n \"\"\"\n portBarycenter = self.portBarycenter\n for side in node.iterSides():\n side.sort(key=lambda p: portBarycenter[p])\n"},"input_ids":{"kind":"list like","value":[198,37811,198,9771,3129,689,2493,9803,290,1233,7657,14090,13,198,464,4279,286,257,2493,318,257,12462,966,1271,326,6870,663,2292,198,48787,262,7268,7679,13,770,8338,319,262,10139,1502,286,326,7679,290,319,262,198,634,17778,286,262,13760,13,4347,9803,389,973,416,1391,31,8726,12460,1214,278,9452,320,1634,1544,333,3969,198,1640,26019,275,560,16159,393,14288,3815,329,13760,13,11399,11,484,389,973,287,428,198,4871,329,25950,262,14090,286,13760,810,262,1502,286,14090,318,407,5969,11,198,4758,468,284,307,1760,355,262,938,2239,286,1123,12538,10356,1634,12649,13,198,1858,389,1180,2842,284,5004,2493,9803,11,4361,326,318,1760,287,10017,850,37724,13,198,37811,198,6738,17268,1330,4277,11600,198,6738,10688,1330,1167,198,6738,19720,1330,7343,198,198,6738,37748,37065,23763,39605,13,3642,50221,13,9979,1187,1330,4347,6030,11,4347,24819,198,6738,37748,37065,23763,39605,13,3642,50221,13,75,19667,1330,406,19667,198,6738,37748,37065,23763,39605,13,3642,50221,13,75,13924,1330,406,13924,628,628,198,198,4871,27741,33,560,16159,13924,20344,2455,273,33529,198,220,220,220,37227,628,220,220,220,28407,82,257,2493,32137,329,262,1813,7177,286,2493,9803,13,220,198,220,220,220,1439,14090,389,2672,284,307,8686,220,2340,287,262,2837,286,262,1813,7177,13,628,220,220,220,1058,452,283,2493,49,2283,25,2493,9803,8633,1391,634,25,4279,92,287,543,262,2482,286,9803,17952,389,8574,13,198,220,220,220,37227,628,220,220,220,1303,1303,29113,4242,2,14,198,220,220,220,1303,4347,10916,50144,628,220,220,220,825,15284,13924,49,2283,62,21834,7,944,11,7679,25,7343,58,43,19667,4357,2493,6030,25,4347,6030,2599,198,220,220,220,220,220,220,220,37227,198,220,220,220,220,220,220,220,45559,3810,9803,329,477,14090,286,2176,2099,287,262,1813,7679,13,198,220,220,220,220,220,220,220,383,9803,389,3194,284,262,1391,31,8726,1303,1136,13924,49,2283,3419,7177,13,628,220,220,220,220,220,220,220,1058,17143,7679,25,257,7679,355,10139,7177,198,220,220,220,220,220,220,220,1058,17143,2493,6030,25,262,2493,2099,284,2074,198,220,220,220,220,220,220,220,37227,198,220,220,220,220,220,220,220,1303,30493,318,39098,7,29289,11,406,19667,49925,828,357,29289,11,7679,13,834,4871,834,8,198,220,220,220,220,220,220,220,15284,13924,49,2283,796,2116,13,9948,3129,378,13924,49,2283,198,220,220,220,220,220,220,220,13529,27520,796,657,198,220,220,220,220,220,220,220,329,10139,287,7679,25,198,220,220,220,220,220,220,220,220,220,220,220,13529,27520,15853,15284,13924,49,2283,7,17440,11,13529,27520,11,2493,6030,8,628,220,220,220,825,15284,13924,49,2283,7,944,11,10139,25,406,19667,11,4279,13065,25,12178,11,2099,62,25,4347,6030,2599,198,220,220,220,220,220,220,220,37227,198,220,220,220,220,220,220,220,2195,570,2493,9803,329,262,5128,393,5072,14090,286,262,1813,10139,13,1002,262,10139,338,2493,198,220,220,220,220,220,220,220,17778,20135,257,5969,1502,11,262,14090,389,9672,284,307,662,12,24071,287,262,6678,835,11,198,220,220,220,220,220,220,220,1312,13,68,13,287,8801,3083,1502,5093,532,7627,532,5366,532,7421,13,198,220,220,220,220,220,220,220,383,9803,389,3194,284,262,1391,31,8726,1303,1136,13924,49,2283,3419,7177,13,628,220,220,220,220,220,220,220,1058,17143,10139,25,257,10139,198,220,220,220,220,220,220,220,1058,17143,4279,13065,25,262,2160,286,9803,286,18148,13760,287,262,976,7679,198,220,220,220,220,220,220,220,1058,17143,2099,25,262,2493,2099,284,2074,198,220,220,220,220,220,220,220,1058,7783,262,4279,13529,416,262,1813,10139,262,1708,10139,338,9803,923,379,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1391,31,8189,4279,13065,1343,13529,27520,198,220,220,220,220,220,220,220,1058,3826,25,220,1391,31,8726,8745,13,68,17043,13,14016,13,10724,1068,13,3849,13857,13,13924,8053,50,4337,220,198,220,220,220,220,220,220,220,37227,198,220,220,220,220,220,220,220,5298,1892,3546,1154,12061,12331,7203,3546,26908,319,1200,1398,4943,628,220,220,220,1303,1303,29113,4242,2,14,198,220,220,220,1303,4347,27484,628,220,220,220,825,14983,47,2096,7,944,11,10139,11,14090,2599,198,220,220,220,220,220,220,220,37227,198,220,220,220,220,220,220,220,220,1635,4307,4163,262,14090,286,262,1813,10139,416,511,5389,11,5884,14090,11,290,5128,393,5072,198,220,220,220,220,220,220,220,220,1635,2099,13,198,220,220,220,220,220,220,220,220,1635,198,220,220,220,220,220,220,220,220,1635,1058,17143,10139,198,220,220,220,220,220,220,220,220,1635,220,220,220,220,220,220,220,220,220,220,220,10139,3025,14090,2236,307,23243,198,220,220,220,220,220,220,220,37227,198,220,220,220,220,220,220,220,2116,13,259,49925,47,2096,13,20063,3419,198,220,220,220,220,220,220,220,611,14090,25,198,220,220,220,220,220,220,220,220,220,220,220,2116,13,2676,378,47,2096,1870,31337,818,49925,47,2096,7,17440,11,14090,8,628,220,220,220,220,220,220,220,220,220,220,220,611,2116,13,259,49925,47,2096,25,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,2116,13,9948,3129,378,818,49925,47,2096,33,560,16159,40161,7,17440,8,628,220,220,220,825,3297,47,2096,7,944,11,10139,2599,198,220,220,220,220,220,220,220,37227,198,220,220,220,220,220,220,220,33947,262,14090,286,257,10139,1262,262,1813,3585,2292,3815,13,198,220,220,220,220,220,220,220,2312,3815,389,16173,355,257,9254,329,262,8801,3083,1502,286,14090,13,628,220,220,220,220,220,220,220,1058,17143,10139,25,257,10139,198,220,220,220,220,220,220,220,37227,198,220,220,220,220,220,220,220,2493,33,560,16159,796,2116,13,634,33,560,16159,198,220,220,220,220,220,220,220,329,1735,287,10139,13,2676,50,1460,33529,198,220,220,220,220,220,220,220,220,220,220,220,1735,13,30619,7,2539,28,50033,279,25,2493,33,560,16159,58,79,12962,198],"string":"[\n 198,\n 37811,\n 198,\n 9771,\n 3129,\n 689,\n 2493,\n 9803,\n 290,\n 1233,\n 7657,\n 14090,\n 13,\n 198,\n 464,\n 4279,\n 286,\n 257,\n 2493,\n 318,\n 257,\n 12462,\n 966,\n 1271,\n 326,\n 6870,\n 663,\n 2292,\n 198,\n 48787,\n 262,\n 7268,\n 7679,\n 13,\n 770,\n 8338,\n 319,\n 262,\n 10139,\n 1502,\n 286,\n 326,\n 7679,\n 290,\n 319,\n 262,\n 198,\n 634,\n 17778,\n 286,\n 262,\n 13760,\n 13,\n 4347,\n 9803,\n 389,\n 973,\n 416,\n 1391,\n 31,\n 8726,\n 12460,\n 1214,\n 278,\n 9452,\n 320,\n 1634,\n 1544,\n 333,\n 3969,\n 198,\n 1640,\n 26019,\n 275,\n 560,\n 16159,\n 393,\n 14288,\n 3815,\n 329,\n 13760,\n 13,\n 11399,\n 11,\n 484,\n 389,\n 973,\n 287,\n 428,\n 198,\n 4871,\n 329,\n 25950,\n 262,\n 14090,\n 286,\n 13760,\n 810,\n 262,\n 1502,\n 286,\n 14090,\n 318,\n 407,\n 5969,\n 11,\n 198,\n 4758,\n 468,\n 284,\n 307,\n 1760,\n 355,\n 262,\n 938,\n 2239,\n 286,\n 1123,\n 12538,\n 10356,\n 1634,\n 12649,\n 13,\n 198,\n 1858,\n 389,\n 1180,\n 2842,\n 284,\n 5004,\n 2493,\n 9803,\n 11,\n 4361,\n 326,\n 318,\n 1760,\n 287,\n 10017,\n 850,\n 37724,\n 13,\n 198,\n 37811,\n 198,\n 6738,\n 17268,\n 1330,\n 4277,\n 11600,\n 198,\n 6738,\n 10688,\n 1330,\n 1167,\n 198,\n 6738,\n 19720,\n 1330,\n 7343,\n 198,\n 198,\n 6738,\n 37748,\n 37065,\n 23763,\n 39605,\n 13,\n 3642,\n 50221,\n 13,\n 9979,\n 1187,\n 1330,\n 4347,\n 6030,\n 11,\n 4347,\n 24819,\n 198,\n 6738,\n 37748,\n 37065,\n 23763,\n 39605,\n 13,\n 3642,\n 50221,\n 13,\n 75,\n 19667,\n 1330,\n 406,\n 19667,\n 198,\n 6738,\n 37748,\n 37065,\n 23763,\n 39605,\n 13,\n 3642,\n 50221,\n 13,\n 75,\n 13924,\n 1330,\n 406,\n 13924,\n 628,\n 628,\n 198,\n 198,\n 4871,\n 27741,\n 33,\n 560,\n 16159,\n 13924,\n 20344,\n 2455,\n 273,\n 33529,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 628,\n 220,\n 220,\n 220,\n 28407,\n 82,\n 257,\n 2493,\n 32137,\n 329,\n 262,\n 1813,\n 7177,\n 286,\n 2493,\n 9803,\n 13,\n 220,\n 198,\n 220,\n 220,\n 220,\n 1439,\n 14090,\n 389,\n 2672,\n 284,\n 307,\n 8686,\n 220,\n 2340,\n 287,\n 262,\n 2837,\n 286,\n 262,\n 1813,\n 7177,\n 13,\n 628,\n 220,\n 220,\n 220,\n 1058,\n 452,\n 283,\n 2493,\n 49,\n 2283,\n 25,\n 2493,\n 9803,\n 8633,\n 1391,\n 634,\n 25,\n 4279,\n 92,\n 287,\n 543,\n 262,\n 2482,\n 286,\n 9803,\n 17952,\n 389,\n 8574,\n 13,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 1303,\n 29113,\n 4242,\n 2,\n 14,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 4347,\n 10916,\n 50144,\n 628,\n 220,\n 220,\n 220,\n 825,\n 15284,\n 13924,\n 49,\n 2283,\n 62,\n 21834,\n 7,\n 944,\n 11,\n 7679,\n 25,\n 7343,\n 58,\n 43,\n 19667,\n 4357,\n 2493,\n 6030,\n 25,\n 4347,\n 6030,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 45559,\n 3810,\n 9803,\n 329,\n 477,\n 14090,\n 286,\n 2176,\n 2099,\n 287,\n 262,\n 1813,\n 7679,\n 13,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 383,\n 9803,\n 389,\n 3194,\n 284,\n 262,\n 1391,\n 31,\n 8726,\n 1303,\n 1136,\n 13924,\n 49,\n 2283,\n 3419,\n 7177,\n 13,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1058,\n 17143,\n 7679,\n 25,\n 257,\n 7679,\n 355,\n 10139,\n 7177,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1058,\n 17143,\n 2493,\n 6030,\n 25,\n 262,\n 2493,\n 2099,\n 284,\n 2074,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 30493,\n 318,\n 39098,\n 7,\n 29289,\n 11,\n 406,\n 19667,\n 49925,\n 828,\n 357,\n 29289,\n 11,\n 7679,\n 13,\n 834,\n 4871,\n 834,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 15284,\n 13924,\n 49,\n 2283,\n 796,\n 2116,\n 13,\n 9948,\n 3129,\n 378,\n 13924,\n 49,\n 2283,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 13529,\n 27520,\n 796,\n 657,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 329,\n 10139,\n 287,\n 7679,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 13529,\n 27520,\n 15853,\n 15284,\n 13924,\n 49,\n 2283,\n 7,\n 17440,\n 11,\n 13529,\n 27520,\n 11,\n 2493,\n 6030,\n 8,\n 628,\n 220,\n 220,\n 220,\n 825,\n 15284,\n 13924,\n 49,\n 2283,\n 7,\n 944,\n 11,\n 10139,\n 25,\n 406,\n 19667,\n 11,\n 4279,\n 13065,\n 25,\n 12178,\n 11,\n 2099,\n 62,\n 25,\n 4347,\n 6030,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2195,\n 570,\n 2493,\n 9803,\n 329,\n 262,\n 5128,\n 393,\n 5072,\n 14090,\n 286,\n 262,\n 1813,\n 10139,\n 13,\n 1002,\n 262,\n 10139,\n 338,\n 2493,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 17778,\n 20135,\n 257,\n 5969,\n 1502,\n 11,\n 262,\n 14090,\n 389,\n 9672,\n 284,\n 307,\n 662,\n 12,\n 24071,\n 287,\n 262,\n 6678,\n 835,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1312,\n 13,\n 68,\n 13,\n 287,\n 8801,\n 3083,\n 1502,\n 5093,\n 532,\n 7627,\n 532,\n 5366,\n 532,\n 7421,\n 13,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 383,\n 9803,\n 389,\n 3194,\n 284,\n 262,\n 1391,\n 31,\n 8726,\n 1303,\n 1136,\n 13924,\n 49,\n 2283,\n 3419,\n 7177,\n 13,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1058,\n 17143,\n 10139,\n 25,\n 257,\n 10139,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1058,\n 17143,\n 4279,\n 13065,\n 25,\n 262,\n 2160,\n 286,\n 9803,\n 286,\n 18148,\n 13760,\n 287,\n 262,\n 976,\n 7679,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1058,\n 17143,\n 2099,\n 25,\n 262,\n 2493,\n 2099,\n 284,\n 2074,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1058,\n 7783,\n 262,\n 4279,\n 13529,\n 416,\n 262,\n 1813,\n 10139,\n 262,\n 1708,\n 10139,\n 338,\n 9803,\n 923,\n 379,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1391,\n 31,\n 8189,\n 4279,\n 13065,\n 1343,\n 13529,\n 27520,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1058,\n 3826,\n 25,\n 220,\n 1391,\n 31,\n 8726,\n 8745,\n 13,\n 68,\n 17043,\n 13,\n 14016,\n 13,\n 10724,\n 1068,\n 13,\n 3849,\n 13857,\n 13,\n 13924,\n 8053,\n 50,\n 4337,\n 220,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 5298,\n 1892,\n 3546,\n 1154,\n 12061,\n 12331,\n 7203,\n 3546,\n 26908,\n 319,\n 1200,\n 1398,\n 4943,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 1303,\n 29113,\n 4242,\n 2,\n 14,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 4347,\n 27484,\n 628,\n 220,\n 220,\n 220,\n 825,\n 14983,\n 47,\n 2096,\n 7,\n 944,\n 11,\n 10139,\n 11,\n 14090,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1635,\n 4307,\n 4163,\n 262,\n 14090,\n 286,\n 262,\n 1813,\n 10139,\n 416,\n 511,\n 5389,\n 11,\n 5884,\n 14090,\n 11,\n 290,\n 5128,\n 393,\n 5072,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1635,\n 2099,\n 13,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1635,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1635,\n 1058,\n 17143,\n 10139,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1635,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 10139,\n 3025,\n 14090,\n 2236,\n 307,\n 23243,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13,\n 259,\n 49925,\n 47,\n 2096,\n 13,\n 20063,\n 3419,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 14090,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13,\n 2676,\n 378,\n 47,\n 2096,\n 1870,\n 31337,\n 818,\n 49925,\n 47,\n 2096,\n 7,\n 17440,\n 11,\n 14090,\n 8,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 2116,\n 13,\n 259,\n 49925,\n 47,\n 2096,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13,\n 9948,\n 3129,\n 378,\n 818,\n 49925,\n 47,\n 2096,\n 33,\n 560,\n 16159,\n 40161,\n 7,\n 17440,\n 8,\n 628,\n 220,\n 220,\n 220,\n 825,\n 3297,\n 47,\n 2096,\n 7,\n 944,\n 11,\n 10139,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 33947,\n 262,\n 14090,\n 286,\n 257,\n 10139,\n 1262,\n 262,\n 1813,\n 3585,\n 2292,\n 3815,\n 13,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2312,\n 3815,\n 389,\n 16173,\n 355,\n 257,\n 9254,\n 329,\n 262,\n 8801,\n 3083,\n 1502,\n 286,\n 14090,\n 13,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1058,\n 17143,\n 10139,\n 25,\n 257,\n 10139,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2493,\n 33,\n 560,\n 16159,\n 796,\n 2116,\n 13,\n 634,\n 33,\n 560,\n 16159,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 329,\n 1735,\n 287,\n 10139,\n 13,\n 2676,\n 50,\n 1460,\n 33529,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1735,\n 13,\n 30619,\n 7,\n 2539,\n 28,\n 50033,\n 279,\n 25,\n 2493,\n 33,\n 560,\n 16159,\n 58,\n 79,\n 12962,\n 198\n]"},"ratio_char_token":{"kind":"number","value":2.9412698412698415,"string":"2.94127"},"token_count":{"kind":"number","value":1260,"string":"1,260"}}},{"rowIdx":2461,"cells":{"content":{"kind":"string","value":"from setuptools import setup, find_packages\n\n\nPACKAGENAME = \"deltasigma\"\nVERSION = \"0.0.dev\"\n\n\nsetup(\n name=PACKAGENAME,\n version=VERSION,\n author=\"Antonio Villarreal\",\n author_email=\"avillarreal@anl.gov\",\n description=\"Source code for chopper / halotools implementation to calculate delta sigma.\",\n long_description=\"Source code for chopper / halotools implementation to calculate delta sigma.\",\n install_requires=[\"numpy\", \"halotools\", \"colossus\", \"yaml\", \"pyyaml\", \"psutil\", \"six\"],\n packages=find_packages(),\n url=\"https://github.com/villarrealas/deltasigma\"\n)\n"},"input_ids":{"kind":"list like","value":[6738,900,37623,10141,1330,9058,11,1064,62,43789,628,198,47,8120,4760,1677,10067,796,366,67,2120,292,13495,1,198,43717,796,366,15,13,15,13,7959,1,628,198,40406,7,198,220,220,220,1438,28,47,8120,4760,1677,10067,11,198,220,220,220,2196,28,43717,11,198,220,220,220,1772,2625,13217,261,952,9757,283,5305,1600,198,220,220,220,1772,62,12888,2625,615,359,283,5305,31,272,75,13,9567,1600,198,220,220,220,6764,2625,7416,2438,329,1727,2848,1220,10284,313,10141,7822,284,15284,25979,264,13495,33283,198,220,220,220,890,62,11213,2625,7416,2438,329,1727,2848,1220,10284,313,10141,7822,284,15284,25979,264,13495,33283,198,220,220,220,2721,62,47911,28,14692,77,32152,1600,366,14201,313,10141,1600,366,4033,36533,1600,366,88,43695,1600,366,9078,88,43695,1600,366,862,22602,1600,366,19412,33116,198,220,220,220,10392,28,19796,62,43789,22784,198,220,220,220,19016,2625,5450,1378,12567,13,785,14,41082,283,5305,292,14,67,2120,292,13495,1,198,8,198],"string":"[\n 6738,\n 900,\n 37623,\n 10141,\n 1330,\n 9058,\n 11,\n 1064,\n 62,\n 43789,\n 628,\n 198,\n 47,\n 8120,\n 4760,\n 1677,\n 10067,\n 796,\n 366,\n 67,\n 2120,\n 292,\n 13495,\n 1,\n 198,\n 43717,\n 796,\n 366,\n 15,\n 13,\n 15,\n 13,\n 7959,\n 1,\n 628,\n 198,\n 40406,\n 7,\n 198,\n 220,\n 220,\n 220,\n 1438,\n 28,\n 47,\n 8120,\n 4760,\n 1677,\n 10067,\n 11,\n 198,\n 220,\n 220,\n 220,\n 2196,\n 28,\n 43717,\n 11,\n 198,\n 220,\n 220,\n 220,\n 1772,\n 2625,\n 13217,\n 261,\n 952,\n 9757,\n 283,\n 5305,\n 1600,\n 198,\n 220,\n 220,\n 220,\n 1772,\n 62,\n 12888,\n 2625,\n 615,\n 359,\n 283,\n 5305,\n 31,\n 272,\n 75,\n 13,\n 9567,\n 1600,\n 198,\n 220,\n 220,\n 220,\n 6764,\n 2625,\n 7416,\n 2438,\n 329,\n 1727,\n 2848,\n 1220,\n 10284,\n 313,\n 10141,\n 7822,\n 284,\n 15284,\n 25979,\n 264,\n 13495,\n 33283,\n 198,\n 220,\n 220,\n 220,\n 890,\n 62,\n 11213,\n 2625,\n 7416,\n 2438,\n 329,\n 1727,\n 2848,\n 1220,\n 10284,\n 313,\n 10141,\n 7822,\n 284,\n 15284,\n 25979,\n 264,\n 13495,\n 33283,\n 198,\n 220,\n 220,\n 220,\n 2721,\n 62,\n 47911,\n 28,\n 14692,\n 77,\n 32152,\n 1600,\n 366,\n 14201,\n 313,\n 10141,\n 1600,\n 366,\n 4033,\n 36533,\n 1600,\n 366,\n 88,\n 43695,\n 1600,\n 366,\n 9078,\n 88,\n 43695,\n 1600,\n 366,\n 862,\n 22602,\n 1600,\n 366,\n 19412,\n 33116,\n 198,\n 220,\n 220,\n 220,\n 10392,\n 28,\n 19796,\n 62,\n 43789,\n 22784,\n 198,\n 220,\n 220,\n 220,\n 19016,\n 2625,\n 5450,\n 1378,\n 12567,\n 13,\n 785,\n 14,\n 41082,\n 283,\n 5305,\n 292,\n 14,\n 67,\n 2120,\n 292,\n 13495,\n 1,\n 198,\n 8,\n 198\n]"},"ratio_char_token":{"kind":"number","value":2.859903381642512,"string":"2.859903"},"token_count":{"kind":"number","value":207,"string":"207"}}},{"rowIdx":2462,"cells":{"content":{"kind":"string","value":"import itertools\r\nimport os\r\nimport csv\r\nfrom loguru import logger\r\n\r\nfrom datetime import *\r\n\r\n\r\n\r\nclass SensorPersistence(Persistence):\r\n \"\"\"\r\n Writes sensor data to a buffer and periodically flushes to file system.\r\n \"\"\"\r\n"},"input_ids":{"kind":"list like","value":[11748,340,861,10141,201,198,11748,28686,201,198,11748,269,21370,201,198,6738,2604,14717,1330,49706,201,198,201,198,6738,4818,8079,1330,1635,201,198,201,198,201,198,201,198,4871,35367,30946,13274,7,30946,13274,2599,201,198,220,220,220,37227,201,198,220,220,220,220,220,220,220,12257,274,12694,1366,284,257,11876,290,26034,781,17237,284,2393,1080,13,201,198,220,220,220,37227,201,198],"string":"[\n 11748,\n 340,\n 861,\n 10141,\n 201,\n 198,\n 11748,\n 28686,\n 201,\n 198,\n 11748,\n 269,\n 21370,\n 201,\n 198,\n 6738,\n 2604,\n 14717,\n 1330,\n 49706,\n 201,\n 198,\n 201,\n 198,\n 6738,\n 4818,\n 8079,\n 1330,\n 1635,\n 201,\n 198,\n 201,\n 198,\n 201,\n 198,\n 201,\n 198,\n 4871,\n 35367,\n 30946,\n 13274,\n 7,\n 30946,\n 13274,\n 2599,\n 201,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 201,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 12257,\n 274,\n 12694,\n 1366,\n 284,\n 257,\n 11876,\n 290,\n 26034,\n 781,\n 17237,\n 284,\n 2393,\n 1080,\n 13,\n 201,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 201,\n 198\n]"},"ratio_char_token":{"kind":"number","value":2.8674698795180724,"string":"2.86747"},"token_count":{"kind":"number","value":83,"string":"83"}}},{"rowIdx":2463,"cells":{"content":{"kind":"string","value":"from picamera import PiCamera\nfrom time import sleep\nfrom gpiozero import Button\nimport keyboard\n\nbutton = keyboard.is_pressed('h')\ncamera = PiCamera()\n\nwhile True:\n\tcamera.start_preview()\n\tbutton.wait_for_press()\n\tprint(\"Button has been pressed!\")\n\tsleep(3)\n\tcamera.capture('animateImage.jpg')\n\tcamera.stop_preview()\n"},"input_ids":{"kind":"list like","value":[6738,8301,18144,1330,13993,35632,198,6738,640,1330,3993,198,6738,27809,952,22570,1330,20969,198,11748,10586,198,198,16539,796,10586,13,271,62,45477,10786,71,11537,198,25695,796,13993,35632,3419,198,198,4514,6407,25,198,197,25695,13,9688,62,3866,1177,3419,198,197,16539,13,17077,62,1640,62,8439,3419,198,197,4798,7203,21864,468,587,12070,2474,8,198,197,42832,7,18,8,198,197,25695,13,27144,495,10786,45685,5159,13,9479,11537,198,197,25695,13,11338,62,3866,1177,3419,198],"string":"[\n 6738,\n 8301,\n 18144,\n 1330,\n 13993,\n 35632,\n 198,\n 6738,\n 640,\n 1330,\n 3993,\n 198,\n 6738,\n 27809,\n 952,\n 22570,\n 1330,\n 20969,\n 198,\n 11748,\n 10586,\n 198,\n 198,\n 16539,\n 796,\n 10586,\n 13,\n 271,\n 62,\n 45477,\n 10786,\n 71,\n 11537,\n 198,\n 25695,\n 796,\n 13993,\n 35632,\n 3419,\n 198,\n 198,\n 4514,\n 6407,\n 25,\n 198,\n 197,\n 25695,\n 13,\n 9688,\n 62,\n 3866,\n 1177,\n 3419,\n 198,\n 197,\n 16539,\n 13,\n 17077,\n 62,\n 1640,\n 62,\n 8439,\n 3419,\n 198,\n 197,\n 4798,\n 7203,\n 21864,\n 468,\n 587,\n 12070,\n 2474,\n 8,\n 198,\n 197,\n 42832,\n 7,\n 18,\n 8,\n 198,\n 197,\n 25695,\n 13,\n 27144,\n 495,\n 10786,\n 45685,\n 5159,\n 13,\n 9479,\n 11537,\n 198,\n 197,\n 25695,\n 13,\n 11338,\n 62,\n 3866,\n 1177,\n 3419,\n 198\n]"},"ratio_char_token":{"kind":"number","value":3.1485148514851486,"string":"3.148515"},"token_count":{"kind":"number","value":101,"string":"101"}}},{"rowIdx":2464,"cells":{"content":{"kind":"string","value":"#!/usr/bin/env python\n\nimport os, sys, pickle\nimport keras.backend as K\nimport tensorflow as tf\nimport numpy as np\nfrom argparse import ArgumentParser\n\nsys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '..')))\nfrom datasets import mnist\nfrom models import (train, accuracy, save_to_file, fc_100_100_10,\n pca_filtered_model, fastica_filtered_model,\n incrementalpca_filtered_model, nmf_filtered_model,\n truncatedsvd_filtered_model, kernelpca_filtered_model)\n\nargument_parser = ArgumentParser()\nargument_parser.add_argument(\"--pca\", action=\"store_true\",\n help=\"use PCA image filter defense\")\nargument_parser.add_argument(\"--fastica\", action=\"store_true\",\n help=\"use FastICA image filter defense\")\nargument_parser.add_argument(\"--incrementalpca\", action=\"store_true\",\n help=\"use IncrementalPCA image filter defense\")\nargument_parser.add_argument(\"--nmf\", action=\"store_true\",\n help=\"use IncrementalPCA image filter defense\")\nargument_parser.add_argument(\"--truncatedsvd\", action=\"store_true\",\n help=\"use TruncatedSVD image filter defense\")\nargument_parser.add_argument(\"--kernelpca\", action=\"store_true\",\n help=\"use KernelPCA image filter defense\")\nargument_parser.add_argument(\"--n-components\", type=int, nargs=\"+\", default=[],\n help=\"number of components for image filters\")\nargument_parser.add_argument(\"--epochs\", type=int, default=-1,\n help=\"default: let the model choose\")\nargument_parser.add_argument(\"--random-seed\", action=\"store_true\",\n help=\"initialize model with random seed\")\nargs = argument_parser.parse_args()\n\nPREFIX = os.environ.get('PREFIX', '.')\n\nX_train, y_train, X_test, y_test = mnist()\n\nif not args.random_seed:\n K.clear_session()\n tf.set_random_seed(1234)\n np.random.seed(1234)\n\nno_defense_model = fc_100_100_10()\nprint(f\"Training {no_defense_model.name}...\")\ntrain(no_defense_model, X_train, y_train, args.epochs, verbose=True,\n stop_on_stable_weights=True, reduce_lr_on_plateau=True,\n stop_on_stable_weights_patience=60, reduce_lr_on_plateau_patience=30)\n\nprint(f\"Saving {no_defense_model.name}...\")\nsave_to_file(no_defense_model, PREFIX)\n\nfor n_components in args.n_components:\n if args.pca:\n pca = cached(f\"pca-{n_components}\")\n filtered_model = pca_filtered_model(no_defense_model, X_train,\n n_components, pca=pca)\n\n print(f\"Saving {filtered_model.name}...\")\n save_to_file(filtered_model, PREFIX)\n\n if args.fastica:\n fastica = cached(f\"fastica-{n_components}\")\n filtered_model = fastica_filtered_model(no_defense_model, X_train,\n n_components, fastica=fastica)\n\n print(f\"Saving {filtered_model.name}...\")\n save_to_file(filtered_model, PREFIX)\n\n if args.incrementalpca:\n incrementalpca = cached(f\"incrementalpca-{n_components}\")\n filtered_model = incrementalpca_filtered_model(no_defense_model, X_train,\n n_components,\n incrementalpca=incrementalpca)\n\n print(f\"Saving {filtered_model.name}...\")\n save_to_file(filtered_model, PREFIX)\n\n if args.nmf:\n nmf = cached(f\"nmf-{n_components}\")\n filtered_model = nmf_filtered_model(no_defense_model, X_train,\n n_components, nmf=nmf)\n\n print(f\"Saving {filtered_model.name}...\")\n save_to_file(filtered_model, PREFIX)\n\n if args.truncatedsvd:\n truncatedsvd = cached(f\"truncatedsvd-{n_components}\")\n filtered_model = truncatedsvd_filtered_model(no_defense_model, X_train,\n n_components,\n truncatedsvd=truncatedsvd)\n\n print(f\"Saving {filtered_model.name}...\")\n save_to_file(filtered_model, PREFIX)\n\n if args.kernelpca:\n kernelpca = cached(f\"kernelpca-{n_components}\")\n filtered_model = kernelpca_filtered_model(no_defense_model, X_train,\n n_components, kernelpca=kernelpca)\n\n print(f\"Saving {filtered_model.name}...\")\n save_to_file(filtered_model, PREFIX)\n"},"input_ids":{"kind":"list like","value":[2,48443,14629,14,8800,14,24330,21015,198,198,11748,28686,11,25064,11,2298,293,198,11748,41927,292,13,1891,437,355,509,198,11748,11192,273,11125,355,48700,198,11748,299,32152,355,45941,198,6738,1822,29572,1330,45751,46677,198,198,17597,13,6978,13,28463,7,15,11,28686,13,6978,13,397,2777,776,7,418,13,6978,13,22179,7,418,13,6978,13,15908,3672,7,834,7753,834,828,705,492,6,22305,198,6738,40522,1330,285,77,396,198,6738,4981,1330,357,27432,11,9922,11,3613,62,1462,62,7753,11,277,66,62,3064,62,3064,62,940,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,279,6888,62,10379,4400,62,19849,11,3049,3970,62,10379,4400,62,19849,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,29497,79,6888,62,10379,4400,62,19849,11,28642,69,62,10379,4400,62,19849,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,40122,515,82,20306,62,10379,4400,62,19849,11,9720,79,6888,62,10379,4400,62,19849,8,198,198,49140,62,48610,796,45751,46677,3419,198,49140,62,48610,13,2860,62,49140,7203,438,79,6888,1600,2223,2625,8095,62,7942,1600,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1037,2625,1904,4217,32,2939,8106,3761,4943,198,49140,62,48610,13,2860,62,49140,7203,438,69,3477,64,1600,2223,2625,8095,62,7942,1600,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1037,2625,1904,12549,25241,2939,8106,3761,4943,198,49140,62,48610,13,2860,62,49140,7203,438,24988,37098,79,6888,1600,2223,2625,8095,62,7942,1600,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1037,2625,1904,10791,37098,5662,32,2939,8106,3761,4943,198,49140,62,48610,13,2860,62,49140,7203,438,21533,69,1600,2223,2625,8095,62,7942,1600,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1037,2625,1904,10791,37098,5662,32,2939,8106,3761,4943,198,49140,62,48610,13,2860,62,49140,7203,438,2213,19524,515,82,20306,1600,2223,2625,8095,62,7942,1600,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1037,2625,1904,833,19524,515,50,8898,2939,8106,3761,4943,198,49140,62,48610,13,2860,62,49140,7203,438,33885,79,6888,1600,2223,2625,8095,62,7942,1600,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1037,2625,1904,32169,5662,32,2939,8106,3761,4943,198,49140,62,48610,13,2860,62,49140,7203,438,77,12,5589,3906,1600,2099,28,600,11,299,22046,2625,10,1600,4277,41888,4357,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1037,2625,17618,286,6805,329,2939,16628,4943,198,49140,62,48610,13,2860,62,49140,7203,438,538,5374,82,1600,2099,28,600,11,4277,10779,16,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1037,2625,12286,25,1309,262,2746,3853,4943,198,49140,62,48610,13,2860,62,49140,7203,438,25120,12,28826,1600,2223,2625,8095,62,7942,1600,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1037,2625,36733,1096,2746,351,4738,9403,4943,198,22046,796,4578,62,48610,13,29572,62,22046,3419,198,198,47,31688,10426,796,28686,13,268,2268,13,1136,10786,47,31688,10426,3256,705,2637,8,198,198,55,62,27432,11,331,62,27432,11,1395,62,9288,11,331,62,9288,796,285,77,396,3419,198,198,361,407,26498,13,25120,62,28826,25,198,220,220,220,509,13,20063,62,29891,3419,198,220,220,220,48700,13,2617,62,25120,62,28826,7,1065,2682,8,198,220,220,220,45941,13,25120,13,28826,7,1065,2682,8,198,198,3919,62,19774,62,19849,796,277,66,62,3064,62,3064,62,940,3419,198,4798,7,69,1,44357,1391,3919,62,19774,62,19849,13,3672,92,9313,8,198,27432,7,3919,62,19774,62,19849,11,1395,62,27432,11,331,62,27432,11,26498,13,538,5374,82,11,15942,577,28,17821,11,198,220,220,220,220,220,2245,62,261,62,31284,62,43775,28,17821,11,4646,62,14050,62,261,62,6816,559,28,17821,11,198,220,220,220,220,220,2245,62,261,62,31284,62,43775,62,8071,1240,28,1899,11,4646,62,14050,62,261,62,6816,559,62,8071,1240,28,1270,8,198,198,4798,7,69,1,50,2703,1391,3919,62,19774,62,19849,13,3672,92,9313,8,198,21928,62,1462,62,7753,7,3919,62,19774,62,19849,11,22814,47084,8,198,198,1640,299,62,5589,3906,287,26498,13,77,62,5589,3906,25,198,220,220,220,611,26498,13,79,6888,25,198,220,220,220,220,220,220,220,279,6888,796,39986,7,69,1,79,6888,12,90,77,62,5589,3906,92,4943,198,220,220,220,220,220,220,220,29083,62,19849,796,279,6888,62,10379,4400,62,19849,7,3919,62,19774,62,19849,11,1395,62,27432,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,299,62,5589,3906,11,279,6888,28,79,6888,8,628,220,220,220,220,220,220,220,3601,7,69,1,50,2703,1391,10379,4400,62,19849,13,3672,92,9313,8,198,220,220,220,220,220,220,220,3613,62,1462,62,7753,7,10379,4400,62,19849,11,22814,47084,8,628,220,220,220,611,26498,13,69,3477,64,25,198,220,220,220,220,220,220,220,3049,3970,796,39986,7,69,1,69,3477,64,12,90,77,62,5589,3906,92,4943,198,220,220,220,220,220,220,220,29083,62,19849,796,3049,3970,62,10379,4400,62,19849,7,3919,62,19774,62,19849,11,1395,62,27432,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,299,62,5589,3906,11,3049,3970,28,69,3477,64,8,628,220,220,220,220,220,220,220,3601,7,69,1,50,2703,1391,10379,4400,62,19849,13,3672,92,9313,8,198,220,220,220,220,220,220,220,3613,62,1462,62,7753,7,10379,4400,62,19849,11,22814,47084,8,628,220,220,220,611,26498,13,24988,37098,79,6888,25,198,220,220,220,220,220,220,220,29497,79,6888,796,39986,7,69,1,24988,37098,79,6888,12,90,77,62,5589,3906,92,4943,198,220,220,220,220,220,220,220,29083,62,19849,796,29497,79,6888,62,10379,4400,62,19849,7,3919,62,19774,62,19849,11,1395,62,27432,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,299,62,5589,3906,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,29497,79,6888,28,24988,37098,79,6888,8,628,220,220,220,220,220,220,220,3601,7,69,1,50,2703,1391,10379,4400,62,19849,13,3672,92,9313,8,198,220,220,220,220,220,220,220,3613,62,1462,62,7753,7,10379,4400,62,19849,11,22814,47084,8,628,220,220,220,611,26498,13,21533,69,25,198,220,220,220,220,220,220,220,28642,69,796,39986,7,69,1,21533,69,12,90,77,62,5589,3906,92,4943,198,220,220,220,220,220,220,220,29083,62,19849,796,28642,69,62,10379,4400,62,19849,7,3919,62,19774,62,19849,11,1395,62,27432,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,299,62,5589,3906,11,28642,69,28,21533,69,8,628,220,220,220,220,220,220,220,3601,7,69,1,50,2703,1391,10379,4400,62,19849,13,3672,92,9313,8,198,220,220,220,220,220,220,220,3613,62,1462,62,7753,7,10379,4400,62,19849,11,22814,47084,8,628,220,220,220,611,26498,13,2213,19524,515,82,20306,25,198,220,220,220,220,220,220,220,40122,515,82,20306,796,39986,7,69,1,2213,19524,515,82,20306,12,90,77,62,5589,3906,92,4943,198,220,220,220,220,220,220,220,29083,62,19849,796,40122,515,82,20306,62,10379,4400,62,19849,7,3919,62,19774,62,19849,11,1395,62,27432,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,299,62,5589,3906,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,40122,515,82,20306,28,2213,19524,515,82,20306,8,628,220,220,220,220,220,220,220,3601,7,69,1,50,2703,1391,10379,4400,62,19849,13,3672,92,9313,8,198,220,220,220,220,220,220,220,3613,62,1462,62,7753,7,10379,4400,62,19849,11,22814,47084,8,628,220,220,220,611,26498,13,33885,79,6888,25,198,220,220,220,220,220,220,220,9720,79,6888,796,39986,7,69,1,33885,79,6888,12,90,77,62,5589,3906,92,4943,198,220,220,220,220,220,220,220,29083,62,19849,796,9720,79,6888,62,10379,4400,62,19849,7,3919,62,19774,62,19849,11,1395,62,27432,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,299,62,5589,3906,11,9720,79,6888,28,33885,79,6888,8,628,220,220,220,220,220,220,220,3601,7,69,1,50,2703,1391,10379,4400,62,19849,13,3672,92,9313,8,198,220,220,220,220,220,220,220,3613,62,1462,62,7753,7,10379,4400,62,19849,11,22814,47084,8,198],"string":"[\n 2,\n 48443,\n 14629,\n 14,\n 8800,\n 14,\n 24330,\n 21015,\n 198,\n 198,\n 11748,\n 28686,\n 11,\n 25064,\n 11,\n 2298,\n 293,\n 198,\n 11748,\n 41927,\n 292,\n 13,\n 1891,\n 437,\n 355,\n 509,\n 198,\n 11748,\n 11192,\n 273,\n 11125,\n 355,\n 48700,\n 198,\n 11748,\n 299,\n 32152,\n 355,\n 45941,\n 198,\n 6738,\n 1822,\n 29572,\n 1330,\n 45751,\n 46677,\n 198,\n 198,\n 17597,\n 13,\n 6978,\n 13,\n 28463,\n 7,\n 15,\n 11,\n 28686,\n 13,\n 6978,\n 13,\n 397,\n 2777,\n 776,\n 7,\n 418,\n 13,\n 6978,\n 13,\n 22179,\n 7,\n 418,\n 13,\n 6978,\n 13,\n 15908,\n 3672,\n 7,\n 834,\n 7753,\n 834,\n 828,\n 705,\n 492,\n 6,\n 22305,\n 198,\n 6738,\n 40522,\n 1330,\n 285,\n 77,\n 396,\n 198,\n 6738,\n 4981,\n 1330,\n 357,\n 27432,\n 11,\n 9922,\n 11,\n 3613,\n 62,\n 1462,\n 62,\n 7753,\n 11,\n 277,\n 66,\n 62,\n 3064,\n 62,\n 3064,\n 62,\n 940,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 279,\n 6888,\n 62,\n 10379,\n 4400,\n 62,\n 19849,\n 11,\n 3049,\n 3970,\n 62,\n 10379,\n 4400,\n 62,\n 19849,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 29497,\n 79,\n 6888,\n 62,\n 10379,\n 4400,\n 62,\n 19849,\n 11,\n 28642,\n 69,\n 62,\n 10379,\n 4400,\n 62,\n 19849,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 40122,\n 515,\n 82,\n 20306,\n 62,\n 10379,\n 4400,\n 62,\n 19849,\n 11,\n 9720,\n 79,\n 6888,\n 62,\n 10379,\n 4400,\n 62,\n 19849,\n 8,\n 198,\n 198,\n 49140,\n 62,\n 48610,\n 796,\n 45751,\n 46677,\n 3419,\n 198,\n 49140,\n 62,\n 48610,\n 13,\n 2860,\n 62,\n 49140,\n 7203,\n 438,\n 79,\n 6888,\n 1600,\n 2223,\n 2625,\n 8095,\n 62,\n 7942,\n 1600,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1037,\n 2625,\n 1904,\n 4217,\n 32,\n 2939,\n 8106,\n 3761,\n 4943,\n 198,\n 49140,\n 62,\n 48610,\n 13,\n 2860,\n 62,\n 49140,\n 7203,\n 438,\n 69,\n 3477,\n 64,\n 1600,\n 2223,\n 2625,\n 8095,\n 62,\n 7942,\n 1600,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1037,\n 2625,\n 1904,\n 12549,\n 25241,\n 2939,\n 8106,\n 3761,\n 4943,\n 198,\n 49140,\n 62,\n 48610,\n 13,\n 2860,\n 62,\n 49140,\n 7203,\n 438,\n 24988,\n 37098,\n 79,\n 6888,\n 1600,\n 2223,\n 2625,\n 8095,\n 62,\n 7942,\n 1600,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1037,\n 2625,\n 1904,\n 10791,\n 37098,\n 5662,\n 32,\n 2939,\n 8106,\n 3761,\n 4943,\n 198,\n 49140,\n 62,\n 48610,\n 13,\n 2860,\n 62,\n 49140,\n 7203,\n 438,\n 21533,\n 69,\n 1600,\n 2223,\n 2625,\n 8095,\n 62,\n 7942,\n 1600,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1037,\n 2625,\n 1904,\n 10791,\n 37098,\n 5662,\n 32,\n 2939,\n 8106,\n 3761,\n 4943,\n 198,\n 49140,\n 62,\n 48610,\n 13,\n 2860,\n 62,\n 49140,\n 7203,\n 438,\n 2213,\n 19524,\n 515,\n 82,\n 20306,\n 1600,\n 2223,\n 2625,\n 8095,\n 62,\n 7942,\n 1600,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1037,\n 2625,\n 1904,\n 833,\n 19524,\n 515,\n 50,\n 8898,\n 2939,\n 8106,\n 3761,\n 4943,\n 198,\n 49140,\n 62,\n 48610,\n 13,\n 2860,\n 62,\n 49140,\n 7203,\n 438,\n 33885,\n 79,\n 6888,\n 1600,\n 2223,\n 2625,\n 8095,\n 62,\n 7942,\n 1600,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1037,\n 2625,\n 1904,\n 32169,\n 5662,\n 32,\n 2939,\n 8106,\n 3761,\n 4943,\n 198,\n 49140,\n 62,\n 48610,\n 13,\n 2860,\n 62,\n 49140,\n 7203,\n 438,\n 77,\n 12,\n 5589,\n 3906,\n 1600,\n 2099,\n 28,\n 600,\n 11,\n 299,\n 22046,\n 2625,\n 10,\n 1600,\n 4277,\n 41888,\n 4357,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1037,\n 2625,\n 17618,\n 286,\n 6805,\n 329,\n 2939,\n 16628,\n 4943,\n 198,\n 49140,\n 62,\n 48610,\n 13,\n 2860,\n 62,\n 49140,\n 7203,\n 438,\n 538,\n 5374,\n 82,\n 1600,\n 2099,\n 28,\n 600,\n 11,\n 4277,\n 10779,\n 16,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1037,\n 2625,\n 12286,\n 25,\n 1309,\n 262,\n 2746,\n 3853,\n 4943,\n 198,\n 49140,\n 62,\n 48610,\n 13,\n 2860,\n 62,\n 49140,\n 7203,\n 438,\n 25120,\n 12,\n 28826,\n 1600,\n 2223,\n 2625,\n 8095,\n 62,\n 7942,\n 1600,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1037,\n 2625,\n 36733,\n 1096,\n 2746,\n 351,\n 4738,\n 9403,\n 4943,\n 198,\n 22046,\n 796,\n 4578,\n 62,\n 48610,\n 13,\n 29572,\n 62,\n 22046,\n 3419,\n 198,\n 198,\n 47,\n 31688,\n 10426,\n 796,\n 28686,\n 13,\n 268,\n 2268,\n 13,\n 1136,\n 10786,\n 47,\n 31688,\n 10426,\n 3256,\n 705,\n 2637,\n 8,\n 198,\n 198,\n 55,\n 62,\n 27432,\n 11,\n 331,\n 62,\n 27432,\n 11,\n 1395,\n 62,\n 9288,\n 11,\n 331,\n 62,\n 9288,\n 796,\n 285,\n 77,\n 396,\n 3419,\n 198,\n 198,\n 361,\n 407,\n 26498,\n 13,\n 25120,\n 62,\n 28826,\n 25,\n 198,\n 220,\n 220,\n 220,\n 509,\n 13,\n 20063,\n 62,\n 29891,\n 3419,\n 198,\n 220,\n 220,\n 220,\n 48700,\n 13,\n 2617,\n 62,\n 25120,\n 62,\n 28826,\n 7,\n 1065,\n 2682,\n 8,\n 198,\n 220,\n 220,\n 220,\n 45941,\n 13,\n 25120,\n 13,\n 28826,\n 7,\n 1065,\n 2682,\n 8,\n 198,\n 198,\n 3919,\n 62,\n 19774,\n 62,\n 19849,\n 796,\n 277,\n 66,\n 62,\n 3064,\n 62,\n 3064,\n 62,\n 940,\n 3419,\n 198,\n 4798,\n 7,\n 69,\n 1,\n 44357,\n 1391,\n 3919,\n 62,\n 19774,\n 62,\n 19849,\n 13,\n 3672,\n 92,\n 9313,\n 8,\n 198,\n 27432,\n 7,\n 3919,\n 62,\n 19774,\n 62,\n 19849,\n 11,\n 1395,\n 62,\n 27432,\n 11,\n 331,\n 62,\n 27432,\n 11,\n 26498,\n 13,\n 538,\n 5374,\n 82,\n 11,\n 15942,\n 577,\n 28,\n 17821,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2245,\n 62,\n 261,\n 62,\n 31284,\n 62,\n 43775,\n 28,\n 17821,\n 11,\n 4646,\n 62,\n 14050,\n 62,\n 261,\n 62,\n 6816,\n 559,\n 28,\n 17821,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2245,\n 62,\n 261,\n 62,\n 31284,\n 62,\n 43775,\n 62,\n 8071,\n 1240,\n 28,\n 1899,\n 11,\n 4646,\n 62,\n 14050,\n 62,\n 261,\n 62,\n 6816,\n 559,\n 62,\n 8071,\n 1240,\n 28,\n 1270,\n 8,\n 198,\n 198,\n 4798,\n 7,\n 69,\n 1,\n 50,\n 2703,\n 1391,\n 3919,\n 62,\n 19774,\n 62,\n 19849,\n 13,\n 3672,\n 92,\n 9313,\n 8,\n 198,\n 21928,\n 62,\n 1462,\n 62,\n 7753,\n 7,\n 3919,\n 62,\n 19774,\n 62,\n 19849,\n 11,\n 22814,\n 47084,\n 8,\n 198,\n 198,\n 1640,\n 299,\n 62,\n 5589,\n 3906,\n 287,\n 26498,\n 13,\n 77,\n 62,\n 5589,\n 3906,\n 25,\n 198,\n 220,\n 220,\n 220,\n 611,\n 26498,\n 13,\n 79,\n 6888,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 279,\n 6888,\n 796,\n 39986,\n 7,\n 69,\n 1,\n 79,\n 6888,\n 12,\n 90,\n 77,\n 62,\n 5589,\n 3906,\n 92,\n 4943,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 29083,\n 62,\n 19849,\n 796,\n 279,\n 6888,\n 62,\n 10379,\n 4400,\n 62,\n 19849,\n 7,\n 3919,\n 62,\n 19774,\n 62,\n 19849,\n 11,\n 1395,\n 62,\n 27432,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 299,\n 62,\n 5589,\n 3906,\n 11,\n 279,\n 6888,\n 28,\n 79,\n 6888,\n 8,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3601,\n 7,\n 69,\n 1,\n 50,\n 2703,\n 1391,\n 10379,\n 4400,\n 62,\n 19849,\n 13,\n 3672,\n 92,\n 9313,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3613,\n 62,\n 1462,\n 62,\n 7753,\n 7,\n 10379,\n 4400,\n 62,\n 19849,\n 11,\n 22814,\n 47084,\n 8,\n 628,\n 220,\n 220,\n 220,\n 611,\n 26498,\n 13,\n 69,\n 3477,\n 64,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3049,\n 3970,\n 796,\n 39986,\n 7,\n 69,\n 1,\n 69,\n 3477,\n 64,\n 12,\n 90,\n 77,\n 62,\n 5589,\n 3906,\n 92,\n 4943,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 29083,\n 62,\n 19849,\n 796,\n 3049,\n 3970,\n 62,\n 10379,\n 4400,\n 62,\n 19849,\n 7,\n 3919,\n 62,\n 19774,\n 62,\n 19849,\n 11,\n 1395,\n 62,\n 27432,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 299,\n 62,\n 5589,\n 3906,\n 11,\n 3049,\n 3970,\n 28,\n 69,\n 3477,\n 64,\n 8,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3601,\n 7,\n 69,\n 1,\n 50,\n 2703,\n 1391,\n 10379,\n 4400,\n 62,\n 19849,\n 13,\n 3672,\n 92,\n 9313,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3613,\n 62,\n 1462,\n 62,\n 7753,\n 7,\n 10379,\n 4400,\n 62,\n 19849,\n 11,\n 22814,\n 47084,\n 8,\n 628,\n 220,\n 220,\n 220,\n 611,\n 26498,\n 13,\n 24988,\n 37098,\n 79,\n 6888,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 29497,\n 79,\n 6888,\n 796,\n 39986,\n 7,\n 69,\n 1,\n 24988,\n 37098,\n 79,\n 6888,\n 12,\n 90,\n 77,\n 62,\n 5589,\n 3906,\n 92,\n 4943,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 29083,\n 62,\n 19849,\n 796,\n 29497,\n 79,\n 6888,\n 62,\n 10379,\n 4400,\n 62,\n 19849,\n 7,\n 3919,\n 62,\n 19774,\n 62,\n 19849,\n 11,\n 1395,\n 62,\n 27432,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 299,\n 62,\n 5589,\n 3906,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 29497,\n 79,\n 6888,\n 28,\n 24988,\n 37098,\n 79,\n 6888,\n 8,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3601,\n 7,\n 69,\n 1,\n 50,\n 2703,\n 1391,\n 10379,\n 4400,\n 62,\n 19849,\n 13,\n 3672,\n 92,\n 9313,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3613,\n 62,\n 1462,\n 62,\n 7753,\n 7,\n 10379,\n 4400,\n 62,\n 19849,\n 11,\n 22814,\n 47084,\n 8,\n 628,\n 220,\n 220,\n 220,\n 611,\n 26498,\n 13,\n 21533,\n 69,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 28642,\n 69,\n 796,\n 39986,\n 7,\n 69,\n 1,\n 21533,\n 69,\n 12,\n 90,\n 77,\n 62,\n 5589,\n 3906,\n 92,\n 4943,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 29083,\n 62,\n 19849,\n 796,\n 28642,\n 69,\n 62,\n 10379,\n 4400,\n 62,\n 19849,\n 7,\n 3919,\n 62,\n 19774,\n 62,\n 19849,\n 11,\n 1395,\n 62,\n 27432,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 299,\n 62,\n 5589,\n 3906,\n 11,\n 28642,\n 69,\n 28,\n 21533,\n 69,\n 8,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3601,\n 7,\n 69,\n 1,\n 50,\n 2703,\n 1391,\n 10379,\n 4400,\n 62,\n 19849,\n 13,\n 3672,\n 92,\n 9313,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3613,\n 62,\n 1462,\n 62,\n 7753,\n 7,\n 10379,\n 4400,\n 62,\n 19849,\n 11,\n 22814,\n 47084,\n 8,\n 628,\n 220,\n 220,\n 220,\n 611,\n 26498,\n 13,\n 2213,\n 19524,\n 515,\n 82,\n 20306,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 40122,\n 515,\n 82,\n 20306,\n 796,\n 39986,\n 7,\n 69,\n 1,\n 2213,\n 19524,\n 515,\n 82,\n 20306,\n 12,\n 90,\n 77,\n 62,\n 5589,\n 3906,\n 92,\n 4943,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 29083,\n 62,\n 19849,\n 796,\n 40122,\n 515,\n 82,\n 20306,\n 62,\n 10379,\n 4400,\n 62,\n 19849,\n 7,\n 3919,\n 62,\n 19774,\n 62,\n 19849,\n 11,\n 1395,\n 62,\n 27432,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 299,\n 62,\n 5589,\n 3906,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 40122,\n 515,\n 82,\n 20306,\n 28,\n 2213,\n 19524,\n 515,\n 82,\n 20306,\n 8,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3601,\n 7,\n 69,\n 1,\n 50,\n 2703,\n 1391,\n 10379,\n 4400,\n 62,\n 19849,\n 13,\n 3672,\n 92,\n 9313,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3613,\n 62,\n 1462,\n 62,\n 7753,\n 7,\n 10379,\n 4400,\n 62,\n 19849,\n 11,\n 22814,\n 47084,\n 8,\n 628,\n 220,\n 220,\n 220,\n 611,\n 26498,\n 13,\n 33885,\n 79,\n 6888,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 9720,\n 79,\n 6888,\n 796,\n 39986,\n 7,\n 69,\n 1,\n 33885,\n 79,\n 6888,\n 12,\n 90,\n 77,\n 62,\n 5589,\n 3906,\n 92,\n 4943,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 29083,\n 62,\n 19849,\n 796,\n 9720,\n 79,\n 6888,\n 62,\n 10379,\n 4400,\n 62,\n 19849,\n 7,\n 3919,\n 62,\n 19774,\n 62,\n 19849,\n 11,\n 1395,\n 62,\n 27432,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 299,\n 62,\n 5589,\n 3906,\n 11,\n 9720,\n 79,\n 6888,\n 28,\n 33885,\n 79,\n 6888,\n 8,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3601,\n 7,\n 69,\n 1,\n 50,\n 2703,\n 1391,\n 10379,\n 4400,\n 62,\n 19849,\n 13,\n 3672,\n 92,\n 9313,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3613,\n 62,\n 1462,\n 62,\n 7753,\n 7,\n 10379,\n 4400,\n 62,\n 19849,\n 11,\n 22814,\n 47084,\n 8,\n 198\n]"},"ratio_char_token":{"kind":"number","value":2.0543232231779087,"string":"2.054323"},"token_count":{"kind":"number","value":2209,"string":"2,209"}}},{"rowIdx":2465,"cells":{"content":{"kind":"string","value":"#!/usr/bin/env python\n'''\nVIMTern.py dispatch work to your intern via Slack from the command line.\n'''\nfrom random import randint\nfrom sys import exit, argv\nimport argparse\nimport json\nimport yaml # To load the intrn file\n\nVERBOSE = False\n\ntry:\n import requests\nexcept ImportError:\n print \"Unable to import requests. Run `pip install requests`.\"\n exit(1)\n\n\ndef _load_intrn(intrn_file=\"default.intrn\"):\n '''\n Load the config file.\n '''\n config = None\n with open(intrn_file, 'r') as stream:\n try:\n config = yaml.load(stream)\n except yaml.YAMLError as ex:\n print str(ex)\n exit(1)\n return config\n\n\ndef vimtern_do(msg, intrn_file):\n '''\n Issue commands to 1ntern.\n '''\n global VERBOSE\n if not intrn_file:\n raise AttributeError(\"Path to .intrn file required.\")\n config = _load_intrn(intrn_file)\n if not msg or msg == '':\n num = len(config[\"default_msgs\"])\n msg = config[\"default_msgs\"][randint(0, num - 1)]\n if not isinstance(msg, basestring):\n print \"vimtern_do: msg is not a string.\"\n print \"msg: \", msg\n exit(1)\n\n # Build JSON message payload\n msg = msg.replace('\"', '').strip()\n channel = config[\"Slack\"][\"channel\"]\n username = config[\"Slack\"][\"username\"]\n icon_emoji = config[\"Slack\"][\"icon_emoji\"]\n payload = json.dumps({\n \"text\": msg,\n \"channel\": channel,\n \"username\": username,\n \"icon_emoji\": icon_emoji,\n \"parse\": \"full\"\n })\n\n # Create and send POST request to Slack webhook\n slack_uri = config['Slack']['uri']\n try:\n r = requests.post(slack_uri, data=payload, headers={\n 'Content-type': 'application/json'})\n r.raise_for_status()\n except requests.exceptions.ConnectionError:\n print \"Could not establish connection to Slack.\"\n exit(1)\n except requests.exceptions.HTTPError as err:\n print \"Slack API request was not successful.\"\n print err.message\n exit(1)\n except requests.exceptions.Timeout:\n print \"Slack API request timed out.\"\n exit(1)\n\n\nif __name__ == \"__main__\":\n parser = argparse.ArgumentParser()\n parser.add_argument(\"-f\",\n \"--config\",\n dest='config',\n help=\"Path to the .intrn config file.\")\n parser.add_argument(\"-m\",\n \"--msg\",\n dest='msg',\n help=\"Message to send.\",\n default=\"\")\n parser.add_argument('-v',\n '--verbose',\n dest='verbose',\n action='store_true',\n help='Verbose mode to help debug.')\n parser.set_defaults(verbose=False)\n args = parser.parse_args()\n\n VERBOSE = args.verbose\n\n if VERBOSE:\n print \"ARGS: \", argv\n try:\n vimtern_do(args.msg, args.config)\n except Exception, e:\n print str(e)\n parser.print_help()\n"},"input_ids":{"kind":"list like","value":[2,48443,14629,14,8800,14,24330,21015,198,7061,6,198,53,3955,51,1142,13,9078,27965,670,284,534,1788,2884,36256,422,262,3141,1627,13,198,7061,6,198,6738,4738,1330,43720,600,198,6738,25064,1330,8420,11,1822,85,198,11748,1822,29572,198,11748,33918,198,11748,331,43695,220,1303,1675,3440,262,9913,77,2393,198,198,5959,33,14058,796,10352,198,198,28311,25,198,220,220,220,1330,7007,198,16341,17267,12331,25,198,220,220,220,3601,366,3118,540,284,1330,7007,13,5660,4600,79,541,2721,7007,63,526,198,220,220,220,8420,7,16,8,628,198,4299,4808,2220,62,600,35906,7,600,35906,62,7753,2625,12286,13,600,35906,1,2599,198,220,220,220,705,7061,198,220,220,220,8778,262,4566,2393,13,198,220,220,220,705,7061,198,220,220,220,4566,796,6045,198,220,220,220,351,1280,7,600,35906,62,7753,11,705,81,11537,355,4269,25,198,220,220,220,220,220,220,220,1949,25,198,220,220,220,220,220,220,220,220,220,220,220,4566,796,331,43695,13,2220,7,5532,8,198,220,220,220,220,220,220,220,2845,331,43695,13,56,2390,2538,81,1472,355,409,25,198,220,220,220,220,220,220,220,220,220,220,220,3601,965,7,1069,8,198,220,220,220,220,220,220,220,220,220,220,220,8420,7,16,8,198,220,220,220,1441,4566,628,198,4299,43907,759,62,4598,7,19662,11,9913,77,62,7753,2599,198,220,220,220,705,7061,198,220,220,220,18232,9729,284,352,77,759,13,198,220,220,220,705,7061,198,220,220,220,3298,33310,33,14058,198,220,220,220,611,407,9913,77,62,7753,25,198,220,220,220,220,220,220,220,5298,3460,4163,12331,7203,15235,284,764,600,35906,2393,2672,19570,198,220,220,220,4566,796,4808,2220,62,600,35906,7,600,35906,62,7753,8,198,220,220,220,611,407,31456,393,31456,6624,10148,25,198,220,220,220,220,220,220,220,997,796,18896,7,11250,14692,12286,62,907,14542,8973,8,198,220,220,220,220,220,220,220,31456,796,4566,14692,12286,62,907,14542,1,7131,25192,600,7,15,11,997,532,352,15437,198,220,220,220,611,407,318,39098,7,19662,11,1615,395,1806,2599,198,220,220,220,220,220,220,220,3601,366,31124,759,62,4598,25,31456,318,407,257,4731,526,198,220,220,220,220,220,220,220,3601,366,19662,25,33172,31456,198,220,220,220,220,220,220,220,8420,7,16,8,628,220,220,220,1303,10934,19449,3275,21437,198,220,220,220,31456,796,31456,13,33491,10786,1,3256,10148,737,36311,3419,198,220,220,220,6518,796,4566,14692,11122,441,1,7131,1,17620,8973,198,220,220,220,20579,796,4566,14692,11122,441,1,7131,1,29460,8973,198,220,220,220,7196,62,368,31370,796,4566,14692,11122,441,1,7131,1,4749,62,368,31370,8973,198,220,220,220,21437,796,33918,13,67,8142,15090,198,220,220,220,220,220,220,220,366,5239,1298,31456,11,198,220,220,220,220,220,220,220,366,17620,1298,6518,11,198,220,220,220,220,220,220,220,366,29460,1298,20579,11,198,220,220,220,220,220,220,220,366,4749,62,368,31370,1298,7196,62,368,31370,11,198,220,220,220,220,220,220,220,366,29572,1298,366,12853,1,198,220,220,220,32092,628,220,220,220,1303,13610,290,3758,24582,2581,284,36256,3992,25480,198,220,220,220,30740,62,9900,796,4566,17816,11122,441,6,7131,6,9900,20520,198,220,220,220,1949,25,198,220,220,220,220,220,220,220,374,796,7007,13,7353,7,6649,441,62,9900,11,1366,28,15577,2220,11,24697,34758,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,705,19746,12,4906,10354,705,31438,14,17752,6,30072,198,220,220,220,220,220,220,220,374,13,40225,62,1640,62,13376,3419,198,220,220,220,2845,7007,13,1069,11755,13,32048,12331,25,198,220,220,220,220,220,220,220,3601,366,23722,407,4474,4637,284,36256,526,198,220,220,220,220,220,220,220,8420,7,16,8,198,220,220,220,2845,7007,13,1069,11755,13,40717,12331,355,11454,25,198,220,220,220,220,220,220,220,3601,366,11122,441,7824,2581,373,407,4388,526,198,220,220,220,220,220,220,220,3601,11454,13,20500,198,220,220,220,220,220,220,220,8420,7,16,8,198,220,220,220,2845,7007,13,1069,11755,13,48031,25,198,220,220,220,220,220,220,220,3601,366,11122,441,7824,2581,28805,503,526,198,220,220,220,220,220,220,220,8420,7,16,8,628,198,361,11593,3672,834,6624,366,834,12417,834,1298,198,220,220,220,30751,796,1822,29572,13,28100,1713,46677,3419,198,220,220,220,30751,13,2860,62,49140,7203,12,69,1600,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,438,11250,1600,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,2244,11639,11250,3256,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1037,2625,15235,284,262,764,600,35906,4566,2393,19570,198,220,220,220,30751,13,2860,62,49140,7203,12,76,1600,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,438,19662,1600,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,2244,11639,19662,3256,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1037,2625,12837,284,3758,33283,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,4277,2625,4943,198,220,220,220,30751,13,2860,62,49140,10786,12,85,3256,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,705,438,19011,577,3256,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,2244,11639,19011,577,3256,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,2223,11639,8095,62,7942,3256,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1037,11639,13414,65,577,4235,284,1037,14257,2637,8,198,220,220,220,30751,13,2617,62,12286,82,7,19011,577,28,25101,8,198,220,220,220,26498,796,30751,13,29572,62,22046,3419,628,220,220,220,33310,33,14058,796,26498,13,19011,577,628,220,220,220,611,33310,33,14058,25,198,220,220,220,220,220,220,220,3601,366,1503,14313,25,33172,1822,85,198,220,220,220,1949,25,198,220,220,220,220,220,220,220,43907,759,62,4598,7,22046,13,19662,11,26498,13,11250,8,198,220,220,220,2845,35528,11,304,25,198,220,220,220,220,220,220,220,3601,965,7,68,8,198,220,220,220,220,220,220,220,30751,13,4798,62,16794,3419,198],"string":"[\n 2,\n 48443,\n 14629,\n 14,\n 8800,\n 14,\n 24330,\n 21015,\n 198,\n 7061,\n 6,\n 198,\n 53,\n 3955,\n 51,\n 1142,\n 13,\n 9078,\n 27965,\n 670,\n 284,\n 534,\n 1788,\n 2884,\n 36256,\n 422,\n 262,\n 3141,\n 1627,\n 13,\n 198,\n 7061,\n 6,\n 198,\n 6738,\n 4738,\n 1330,\n 43720,\n 600,\n 198,\n 6738,\n 25064,\n 1330,\n 8420,\n 11,\n 1822,\n 85,\n 198,\n 11748,\n 1822,\n 29572,\n 198,\n 11748,\n 33918,\n 198,\n 11748,\n 331,\n 43695,\n 220,\n 1303,\n 1675,\n 3440,\n 262,\n 9913,\n 77,\n 2393,\n 198,\n 198,\n 5959,\n 33,\n 14058,\n 796,\n 10352,\n 198,\n 198,\n 28311,\n 25,\n 198,\n 220,\n 220,\n 220,\n 1330,\n 7007,\n 198,\n 16341,\n 17267,\n 12331,\n 25,\n 198,\n 220,\n 220,\n 220,\n 3601,\n 366,\n 3118,\n 540,\n 284,\n 1330,\n 7007,\n 13,\n 5660,\n 4600,\n 79,\n 541,\n 2721,\n 7007,\n 63,\n 526,\n 198,\n 220,\n 220,\n 220,\n 8420,\n 7,\n 16,\n 8,\n 628,\n 198,\n 4299,\n 4808,\n 2220,\n 62,\n 600,\n 35906,\n 7,\n 600,\n 35906,\n 62,\n 7753,\n 2625,\n 12286,\n 13,\n 600,\n 35906,\n 1,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 705,\n 7061,\n 198,\n 220,\n 220,\n 220,\n 8778,\n 262,\n 4566,\n 2393,\n 13,\n 198,\n 220,\n 220,\n 220,\n 705,\n 7061,\n 198,\n 220,\n 220,\n 220,\n 4566,\n 796,\n 6045,\n 198,\n 220,\n 220,\n 220,\n 351,\n 1280,\n 7,\n 600,\n 35906,\n 62,\n 7753,\n 11,\n 705,\n 81,\n 11537,\n 355,\n 4269,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1949,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 4566,\n 796,\n 331,\n 43695,\n 13,\n 2220,\n 7,\n 5532,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2845,\n 331,\n 43695,\n 13,\n 56,\n 2390,\n 2538,\n 81,\n 1472,\n 355,\n 409,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3601,\n 965,\n 7,\n 1069,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 8420,\n 7,\n 16,\n 8,\n 198,\n 220,\n 220,\n 220,\n 1441,\n 4566,\n 628,\n 198,\n 4299,\n 43907,\n 759,\n 62,\n 4598,\n 7,\n 19662,\n 11,\n 9913,\n 77,\n 62,\n 7753,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 705,\n 7061,\n 198,\n 220,\n 220,\n 220,\n 18232,\n 9729,\n 284,\n 352,\n 77,\n 759,\n 13,\n 198,\n 220,\n 220,\n 220,\n 705,\n 7061,\n 198,\n 220,\n 220,\n 220,\n 3298,\n 33310,\n 33,\n 14058,\n 198,\n 220,\n 220,\n 220,\n 611,\n 407,\n 9913,\n 77,\n 62,\n 7753,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 5298,\n 3460,\n 4163,\n 12331,\n 7203,\n 15235,\n 284,\n 764,\n 600,\n 35906,\n 2393,\n 2672,\n 19570,\n 198,\n 220,\n 220,\n 220,\n 4566,\n 796,\n 4808,\n 2220,\n 62,\n 600,\n 35906,\n 7,\n 600,\n 35906,\n 62,\n 7753,\n 8,\n 198,\n 220,\n 220,\n 220,\n 611,\n 407,\n 31456,\n 393,\n 31456,\n 6624,\n 10148,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 997,\n 796,\n 18896,\n 7,\n 11250,\n 14692,\n 12286,\n 62,\n 907,\n 14542,\n 8973,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 31456,\n 796,\n 4566,\n 14692,\n 12286,\n 62,\n 907,\n 14542,\n 1,\n 7131,\n 25192,\n 600,\n 7,\n 15,\n 11,\n 997,\n 532,\n 352,\n 15437,\n 198,\n 220,\n 220,\n 220,\n 611,\n 407,\n 318,\n 39098,\n 7,\n 19662,\n 11,\n 1615,\n 395,\n 1806,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3601,\n 366,\n 31124,\n 759,\n 62,\n 4598,\n 25,\n 31456,\n 318,\n 407,\n 257,\n 4731,\n 526,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3601,\n 366,\n 19662,\n 25,\n 33172,\n 31456,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 8420,\n 7,\n 16,\n 8,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 10934,\n 19449,\n 3275,\n 21437,\n 198,\n 220,\n 220,\n 220,\n 31456,\n 796,\n 31456,\n 13,\n 33491,\n 10786,\n 1,\n 3256,\n 10148,\n 737,\n 36311,\n 3419,\n 198,\n 220,\n 220,\n 220,\n 6518,\n 796,\n 4566,\n 14692,\n 11122,\n 441,\n 1,\n 7131,\n 1,\n 17620,\n 8973,\n 198,\n 220,\n 220,\n 220,\n 20579,\n 796,\n 4566,\n 14692,\n 11122,\n 441,\n 1,\n 7131,\n 1,\n 29460,\n 8973,\n 198,\n 220,\n 220,\n 220,\n 7196,\n 62,\n 368,\n 31370,\n 796,\n 4566,\n 14692,\n 11122,\n 441,\n 1,\n 7131,\n 1,\n 4749,\n 62,\n 368,\n 31370,\n 8973,\n 198,\n 220,\n 220,\n 220,\n 21437,\n 796,\n 33918,\n 13,\n 67,\n 8142,\n 15090,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 5239,\n 1298,\n 31456,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 17620,\n 1298,\n 6518,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 29460,\n 1298,\n 20579,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 4749,\n 62,\n 368,\n 31370,\n 1298,\n 7196,\n 62,\n 368,\n 31370,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 29572,\n 1298,\n 366,\n 12853,\n 1,\n 198,\n 220,\n 220,\n 220,\n 32092,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 13610,\n 290,\n 3758,\n 24582,\n 2581,\n 284,\n 36256,\n 3992,\n 25480,\n 198,\n 220,\n 220,\n 220,\n 30740,\n 62,\n 9900,\n 796,\n 4566,\n 17816,\n 11122,\n 441,\n 6,\n 7131,\n 6,\n 9900,\n 20520,\n 198,\n 220,\n 220,\n 220,\n 1949,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 374,\n 796,\n 7007,\n 13,\n 7353,\n 7,\n 6649,\n 441,\n 62,\n 9900,\n 11,\n 1366,\n 28,\n 15577,\n 2220,\n 11,\n 24697,\n 34758,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 705,\n 19746,\n 12,\n 4906,\n 10354,\n 705,\n 31438,\n 14,\n 17752,\n 6,\n 30072,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 374,\n 13,\n 40225,\n 62,\n 1640,\n 62,\n 13376,\n 3419,\n 198,\n 220,\n 220,\n 220,\n 2845,\n 7007,\n 13,\n 1069,\n 11755,\n 13,\n 32048,\n 12331,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3601,\n 366,\n 23722,\n 407,\n 4474,\n 4637,\n 284,\n 36256,\n 526,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 8420,\n 7,\n 16,\n 8,\n 198,\n 220,\n 220,\n 220,\n 2845,\n 7007,\n 13,\n 1069,\n 11755,\n 13,\n 40717,\n 12331,\n 355,\n 11454,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3601,\n 366,\n 11122,\n 441,\n 7824,\n 2581,\n 373,\n 407,\n 4388,\n 526,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3601,\n 11454,\n 13,\n 20500,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 8420,\n 7,\n 16,\n 8,\n 198,\n 220,\n 220,\n 220,\n 2845,\n 7007,\n 13,\n 1069,\n 11755,\n 13,\n 48031,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3601,\n 366,\n 11122,\n 441,\n 7824,\n 2581,\n 28805,\n 503,\n 526,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 8420,\n 7,\n 16,\n 8,\n 628,\n 198,\n 361,\n 11593,\n 3672,\n 834,\n 6624,\n 366,\n 834,\n 12417,\n 834,\n 1298,\n 198,\n 220,\n 220,\n 220,\n 30751,\n 796,\n 1822,\n 29572,\n 13,\n 28100,\n 1713,\n 46677,\n 3419,\n 198,\n 220,\n 220,\n 220,\n 30751,\n 13,\n 2860,\n 62,\n 49140,\n 7203,\n 12,\n 69,\n 1600,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 438,\n 11250,\n 1600,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2244,\n 11639,\n 11250,\n 3256,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1037,\n 2625,\n 15235,\n 284,\n 262,\n 764,\n 600,\n 35906,\n 4566,\n 2393,\n 19570,\n 198,\n 220,\n 220,\n 220,\n 30751,\n 13,\n 2860,\n 62,\n 49140,\n 7203,\n 12,\n 76,\n 1600,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 438,\n 19662,\n 1600,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2244,\n 11639,\n 19662,\n 3256,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1037,\n 2625,\n 12837,\n 284,\n 3758,\n 33283,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 4277,\n 2625,\n 4943,\n 198,\n 220,\n 220,\n 220,\n 30751,\n 13,\n 2860,\n 62,\n 49140,\n 10786,\n 12,\n 85,\n 3256,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 705,\n 438,\n 19011,\n 577,\n 3256,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2244,\n 11639,\n 19011,\n 577,\n 3256,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2223,\n 11639,\n 8095,\n 62,\n 7942,\n 3256,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1037,\n 11639,\n 13414,\n 65,\n 577,\n 4235,\n 284,\n 1037,\n 14257,\n 2637,\n 8,\n 198,\n 220,\n 220,\n 220,\n 30751,\n 13,\n 2617,\n 62,\n 12286,\n 82,\n 7,\n 19011,\n 577,\n 28,\n 25101,\n 8,\n 198,\n 220,\n 220,\n 220,\n 26498,\n 796,\n 30751,\n 13,\n 29572,\n 62,\n 22046,\n 3419,\n 628,\n 220,\n 220,\n 220,\n 33310,\n 33,\n 14058,\n 796,\n 26498,\n 13,\n 19011,\n 577,\n 628,\n 220,\n 220,\n 220,\n 611,\n 33310,\n 33,\n 14058,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3601,\n 366,\n 1503,\n 14313,\n 25,\n 33172,\n 1822,\n 85,\n 198,\n 220,\n 220,\n 220,\n 1949,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 43907,\n 759,\n 62,\n 4598,\n 7,\n 22046,\n 13,\n 19662,\n 11,\n 26498,\n 13,\n 11250,\n 8,\n 198,\n 220,\n 220,\n 220,\n 2845,\n 35528,\n 11,\n 304,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3601,\n 965,\n 7,\n 68,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 30751,\n 13,\n 4798,\n 62,\n 16794,\n 3419,\n 198\n]"},"ratio_char_token":{"kind":"number","value":2.134453781512605,"string":"2.134454"},"token_count":{"kind":"number","value":1428,"string":"1,428"}}},{"rowIdx":2466,"cells":{"content":{"kind":"string","value":"from numpy import array"},"input_ids":{"kind":"list like","value":[6738,299,32152,1330,7177],"string":"[\n 6738,\n 299,\n 32152,\n 1330,\n 7177\n]"},"ratio_char_token":{"kind":"number","value":4.6,"string":"4.6"},"token_count":{"kind":"number","value":5,"string":"5"}}},{"rowIdx":2467,"cells":{"content":{"kind":"string","value":"import stripe\nfrom stripe.test.helper import StripeResourceTest\n\n"},"input_ids":{"kind":"list like","value":[11748,39858,198,6738,39858,13,9288,13,2978,525,1330,26137,431,26198,14402,628],"string":"[\n 11748,\n 39858,\n 198,\n 6738,\n 39858,\n 13,\n 9288,\n 13,\n 2978,\n 525,\n 1330,\n 26137,\n 431,\n 26198,\n 14402,\n 628\n]"},"ratio_char_token":{"kind":"number","value":4.0625,"string":"4.0625"},"token_count":{"kind":"number","value":16,"string":"16"}}},{"rowIdx":2468,"cells":{"content":{"kind":"string","value":"\"\"\"\nCreated on 10 Nov 2018\n\n@author: Bruno Beloff (bruno.beloff@southcoastscience.com)\n\na dummy LED state, to maintain compatibility with the DFE Eng package\n\"\"\"\n\nfrom collections import OrderedDict\n\nfrom scs_core.data.json import JSONable\n\n\n# --------------------------------------------------------------------------------------------------------------------\n\nclass LEDState(JSONable):\n \"\"\"\n classdocs\n \"\"\"\n\n # ----------------------------------------------------------------------------------------------------------------\n\n @classmethod\n\n\n # ----------------------------------------------------------------------------------------------------------------\n\n # noinspection PyUnusedLocal\n def __init__(self, colour0, colour1):\n \"\"\"\n Constructor\n \"\"\"\n pass\n\n\n # ----------------------------------------------------------------------------------------------------------------\n\n @classmethod\n\n\n # ----------------------------------------------------------------------------------------------------------------\n\n\n # ----------------------------------------------------------------------------------------------------------------\n\n @property\n\n\n @property\n\n\n # ----------------------------------------------------------------------------------------------------------------\n"},"input_ids":{"kind":"list like","value":[37811,198,41972,319,838,5267,2864,198,198,31,9800,25,31045,3944,2364,357,1671,36909,13,6667,2364,31,35782,1073,5773,4234,13,785,8,198,198,64,31548,12365,1181,11,284,5529,17764,351,262,360,15112,1985,5301,198,37811,198,198,6738,17268,1330,14230,1068,35,713,198,198,6738,629,82,62,7295,13,7890,13,17752,1330,19449,540,628,198,2,16529,3880,19351,198,198,4871,12365,9012,7,40386,540,2599,198,220,220,220,37227,198,220,220,220,1398,31628,198,220,220,220,37227,628,220,220,220,1303,16529,47232,628,220,220,220,2488,4871,24396,628,198,220,220,220,1303,16529,47232,628,220,220,220,1303,645,1040,14978,9485,3118,1484,14565,198,220,220,220,825,11593,15003,834,7,944,11,9568,15,11,9568,16,2599,198,220,220,220,220,220,220,220,37227,198,220,220,220,220,220,220,220,28407,273,198,220,220,220,220,220,220,220,37227,198,220,220,220,220,220,220,220,1208,628,198,220,220,220,1303,16529,47232,628,220,220,220,2488,4871,24396,628,198,220,220,220,1303,16529,47232,628,198,220,220,220,1303,16529,47232,628,220,220,220,2488,26745,628,198,220,220,220,2488,26745,628,198,220,220,220,1303,16529,47232,198],"string":"[\n 37811,\n 198,\n 41972,\n 319,\n 838,\n 5267,\n 2864,\n 198,\n 198,\n 31,\n 9800,\n 25,\n 31045,\n 3944,\n 2364,\n 357,\n 1671,\n 36909,\n 13,\n 6667,\n 2364,\n 31,\n 35782,\n 1073,\n 5773,\n 4234,\n 13,\n 785,\n 8,\n 198,\n 198,\n 64,\n 31548,\n 12365,\n 1181,\n 11,\n 284,\n 5529,\n 17764,\n 351,\n 262,\n 360,\n 15112,\n 1985,\n 5301,\n 198,\n 37811,\n 198,\n 198,\n 6738,\n 17268,\n 1330,\n 14230,\n 1068,\n 35,\n 713,\n 198,\n 198,\n 6738,\n 629,\n 82,\n 62,\n 7295,\n 13,\n 7890,\n 13,\n 17752,\n 1330,\n 19449,\n 540,\n 628,\n 198,\n 2,\n 16529,\n 3880,\n 19351,\n 198,\n 198,\n 4871,\n 12365,\n 9012,\n 7,\n 40386,\n 540,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 1398,\n 31628,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 16529,\n 47232,\n 628,\n 220,\n 220,\n 220,\n 2488,\n 4871,\n 24396,\n 628,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 16529,\n 47232,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 645,\n 1040,\n 14978,\n 9485,\n 3118,\n 1484,\n 14565,\n 198,\n 220,\n 220,\n 220,\n 825,\n 11593,\n 15003,\n 834,\n 7,\n 944,\n 11,\n 9568,\n 15,\n 11,\n 9568,\n 16,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 28407,\n 273,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1208,\n 628,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 16529,\n 47232,\n 628,\n 220,\n 220,\n 220,\n 2488,\n 4871,\n 24396,\n 628,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 16529,\n 47232,\n 628,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 16529,\n 47232,\n 628,\n 220,\n 220,\n 220,\n 2488,\n 26745,\n 628,\n 198,\n 220,\n 220,\n 220,\n 2488,\n 26745,\n 628,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 16529,\n 47232,\n 198\n]"},"ratio_char_token":{"kind":"number","value":5.549586776859504,"string":"5.549587"},"token_count":{"kind":"number","value":242,"string":"242"}}},{"rowIdx":2469,"cells":{"content":{"kind":"string","value":"#!/usr/bin/env python3\n# -*- coding: utf-8 -*-\n\n\"\"\"Les boucles et les instruction de contrôle\n\nQuelques exemples de manipulations des boucles et des instructions\n\"\"\"\n\n# la suite de fibonnaci\na, b = 0, 1\nwhile a < 20:\n print(a, end=\",\") # on idente de 4 espace l'instruction suivante\n a, b = b, a+b\nprint()\n\nif a == 21:\n print(\"_\")\nelif a == 13: # 'else if' se note 'elif' en python\n print(\"°\")\nelse:\n print(\")\")\n\n\n# Un peu d'unicode ;) et des boucles for\nwords = [\"Bonjour\", \"Jeune\", \"Padawan\"]\nfor w in words:\n if w == \"Yoda\":\n break # le 'break' permet de sortie de la boucle,\nelse: # par contre on passe dans le 'else' si le break\n # n'est jamais appelé dans la boucle for'\n # ici on utilise le r de raw_string\n st = r\"\"\"\n ____\n (xXXXX|xx======---(-\n / |\n / XX|\n /xxx XXX|\n /xxx X |\n / ________|\n __ ____/_|_|_______\\_\n ###|=||________|_________|_\n ~~ |==| __ _ __ /|~~~~~~~~~-------------_______\n |==| ||(( ||()| | |XXXXXXXX| >\n __ |==| ~~__~__~~__ \\|_________-------------~~~~~~~\n ###|=||~~~~~~~~|_______ |\"\n ~~ ~~~~\\~|~| /~\n \\ ~~~~~~~~~\n \\xxx X |\n \\xxx XXX|\n \\ XX| Incom's T-65B X-wing Space\n \\ | Superiority Starfighter (4)\n (xXXXX|xx======---(-\n ~~~~\"\"\"\n print(st)\n\n\n# on peut aussi utiliser range dans la même idée\n# que la boucle for(i = 0; i < words.length; i++) dans d'autres langage\nfor i in range(len(words)):\n print(words[i], len(words[i]))\n\n\n# exemple de range qui est objet iterable,\n# et pas une liste à proprement parlée\nrange(5) # 0, 1, 2, 3, 4\nrange(5, 10) # 5, 6, 7, 8, 9\nrange(0, 10, 3) # 0, 3, 6, 9\nrange(-10, -100, -30) # -10, -40, -70\n\n\n# mot clé 'pass'\na = 9\nif a < 10:\n pass # 'pass' ne fait rien, mais est parfois nécessaire après une instruction\n # TODO : Afficher un message d'erreur...\nelse:\n print(\"a supérieur a 10\")\n"},"input_ids":{"kind":"list like","value":[2,48443,14629,14,8800,14,24330,21015,18,198,2,532,9,12,19617,25,3384,69,12,23,532,9,12,198,198,37811,35882,35833,5427,2123,10287,12064,390,3445,27083,293,198,198,48,2731,13281,409,368,2374,390,7704,5768,748,35833,5427,2123,748,7729,198,37811,198,198,2,8591,18389,390,12900,261,77,32009,198,64,11,275,796,657,11,352,198,4514,257,1279,1160,25,198,220,220,220,3601,7,64,11,886,28,2430,8,220,220,220,220,220,220,1303,319,1852,68,390,604,1658,10223,300,6,8625,2762,424,452,12427,198,220,220,220,257,11,275,796,275,11,257,10,65,198,4798,3419,198,198,361,257,6624,2310,25,198,220,220,220,3601,7203,62,4943,198,417,361,257,6624,1511,25,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1303,705,17772,611,6,384,3465,705,417,361,6,551,21015,198,220,220,220,3601,7203,7200,4943,198,17772,25,198,220,220,220,3601,7,4943,4943,628,198,2,791,613,84,288,6,46903,1098,35540,2123,748,35833,5427,329,198,10879,796,14631,20682,73,454,1600,366,40932,1726,1600,366,26114,43004,8973,198,1640,266,287,2456,25,198,220,220,220,611,266,6624,366,56,11329,1298,198,220,220,220,220,220,220,220,2270,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1303,443,705,9032,6,583,4164,390,3297,494,390,8591,35833,2375,11,198,17772,25,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1303,1582,542,260,319,279,21612,288,504,443,705,17772,6,33721,443,2270,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1303,299,6,395,474,1689,271,598,417,2634,288,504,8591,35833,2375,329,6,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1303,14158,72,319,7736,786,443,374,390,8246,62,8841,198,220,220,220,336,796,374,37811,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1427,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,357,87,24376,91,5324,50155,6329,32590,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1220,220,220,220,220,930,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1220,220,220,220,21044,91,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1220,31811,27713,91,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1220,31811,1395,220,220,930,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1220,220,2602,91,198,220,220,220,220,220,220,220,11593,220,1427,47835,91,62,91,37405,59,62,198,220,220,220,44386,91,28,15886,2602,91,2602,62,91,62,198,220,220,220,220,220,220,220,220,4907,220,220,930,855,91,11593,220,4808,220,11593,220,220,1220,91,15116,93,32501,37405,198,220,220,220,220,220,220,220,220,220,220,220,930,855,91,8614,19510,8614,3419,91,930,930,24376,24376,91,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1875,198,220,220,220,220,220,220,220,11593,220,220,930,855,91,220,4907,834,93,834,4907,834,3467,91,2602,62,32501,8728,4907,93,198,220,220,220,44386,91,28,15886,15116,91,37405,220,930,1,198,220,220,220,220,220,220,220,220,4907,220,8728,59,93,91,93,91,220,220,220,220,220,220,1220,93,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,3467,220,15116,93,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,3467,31811,1395,220,220,930,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,3467,31811,27713,91,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,3467,220,220,220,21044,91,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,554,785,338,309,12,2996,33,1395,12,5469,4687,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,3467,220,220,220,220,930,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,22953,414,2907,24733,357,19,8,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,357,87,24376,91,5324,50155,6329,32590,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,8728,37811,198,220,220,220,3601,7,301,8,628,198,2,319,613,315,257,1046,72,7736,5847,2837,288,504,8591,285,25792,1326,4686,22161,198,2,8358,8591,35833,2375,329,7,72,796,657,26,1312,1279,2456,13,13664,26,1312,29577,288,504,288,6,2306,411,42392,496,198,1640,1312,287,2837,7,11925,7,10879,8,2599,198,220,220,220,3601,7,10879,58,72,4357,18896,7,10879,58,72,60,4008,628,198,2,409,368,1154,390,2837,45567,1556,26181,316,11629,540,11,198,2,2123,38836,17809,1351,68,28141,2632,260,434,1582,75,22161,198,9521,7,20,8,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1303,657,11,352,11,362,11,513,11,604,198,9521,7,20,11,838,8,220,220,220,220,220,220,220,220,220,220,220,1303,642,11,718,11,767,11,807,11,860,198,9521,7,15,11,838,11,513,8,220,220,220,220,220,220,220,220,1303,657,11,513,11,718,11,860,198,9521,32590,940,11,532,3064,11,532,1270,8,220,220,1303,532,940,11,532,1821,11,532,2154,628,198,2,2369,537,2634,705,6603,6,198,64,796,860,198,361,257,1279,838,25,198,220,220,220,1208,220,220,220,220,220,220,220,1303,705,6603,6,497,277,4548,374,2013,11,285,15152,1556,1582,6513,271,299,2634,919,7626,46593,14064,82,17809,12064,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1303,16926,46,1058,317,2108,372,555,3275,288,6,263,260,333,986,198,17772,25,198,220,220,220,3601,7203,64,7418,2634,5034,333,257,838,4943,198],"string":"[\n 2,\n 48443,\n 14629,\n 14,\n 8800,\n 14,\n 24330,\n 21015,\n 18,\n 198,\n 2,\n 532,\n 9,\n 12,\n 19617,\n 25,\n 3384,\n 69,\n 12,\n 23,\n 532,\n 9,\n 12,\n 198,\n 198,\n 37811,\n 35882,\n 35833,\n 5427,\n 2123,\n 10287,\n 12064,\n 390,\n 3445,\n 27083,\n 293,\n 198,\n 198,\n 48,\n 2731,\n 13281,\n 409,\n 368,\n 2374,\n 390,\n 7704,\n 5768,\n 748,\n 35833,\n 5427,\n 2123,\n 748,\n 7729,\n 198,\n 37811,\n 198,\n 198,\n 2,\n 8591,\n 18389,\n 390,\n 12900,\n 261,\n 77,\n 32009,\n 198,\n 64,\n 11,\n 275,\n 796,\n 657,\n 11,\n 352,\n 198,\n 4514,\n 257,\n 1279,\n 1160,\n 25,\n 198,\n 220,\n 220,\n 220,\n 3601,\n 7,\n 64,\n 11,\n 886,\n 28,\n 2430,\n 8,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 319,\n 1852,\n 68,\n 390,\n 604,\n 1658,\n 10223,\n 300,\n 6,\n 8625,\n 2762,\n 424,\n 452,\n 12427,\n 198,\n 220,\n 220,\n 220,\n 257,\n 11,\n 275,\n 796,\n 275,\n 11,\n 257,\n 10,\n 65,\n 198,\n 4798,\n 3419,\n 198,\n 198,\n 361,\n 257,\n 6624,\n 2310,\n 25,\n 198,\n 220,\n 220,\n 220,\n 3601,\n 7203,\n 62,\n 4943,\n 198,\n 417,\n 361,\n 257,\n 6624,\n 1511,\n 25,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 705,\n 17772,\n 611,\n 6,\n 384,\n 3465,\n 705,\n 417,\n 361,\n 6,\n 551,\n 21015,\n 198,\n 220,\n 220,\n 220,\n 3601,\n 7203,\n 7200,\n 4943,\n 198,\n 17772,\n 25,\n 198,\n 220,\n 220,\n 220,\n 3601,\n 7,\n 4943,\n 4943,\n 628,\n 198,\n 2,\n 791,\n 613,\n 84,\n 288,\n 6,\n 46903,\n 1098,\n 35540,\n 2123,\n 748,\n 35833,\n 5427,\n 329,\n 198,\n 10879,\n 796,\n 14631,\n 20682,\n 73,\n 454,\n 1600,\n 366,\n 40932,\n 1726,\n 1600,\n 366,\n 26114,\n 43004,\n 8973,\n 198,\n 1640,\n 266,\n 287,\n 2456,\n 25,\n 198,\n 220,\n 220,\n 220,\n 611,\n 266,\n 6624,\n 366,\n 56,\n 11329,\n 1298,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2270,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 443,\n 705,\n 9032,\n 6,\n 583,\n 4164,\n 390,\n 3297,\n 494,\n 390,\n 8591,\n 35833,\n 2375,\n 11,\n 198,\n 17772,\n 25,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 1582,\n 542,\n 260,\n 319,\n 279,\n 21612,\n 288,\n 504,\n 443,\n 705,\n 17772,\n 6,\n 33721,\n 443,\n 2270,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 299,\n 6,\n 395,\n 474,\n 1689,\n 271,\n 598,\n 417,\n 2634,\n 288,\n 504,\n 8591,\n 35833,\n 2375,\n 329,\n 6,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 14158,\n 72,\n 319,\n 7736,\n 786,\n 443,\n 374,\n 390,\n 8246,\n 62,\n 8841,\n 198,\n 220,\n 220,\n 220,\n 336,\n 796,\n 374,\n 37811,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1427,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 357,\n 87,\n 24376,\n 91,\n 5324,\n 50155,\n 6329,\n 32590,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1220,\n 220,\n 220,\n 220,\n 220,\n 930,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1220,\n 220,\n 220,\n 220,\n 21044,\n 91,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1220,\n 31811,\n 27713,\n 91,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1220,\n 31811,\n 1395,\n 220,\n 220,\n 930,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1220,\n 220,\n 2602,\n 91,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 11593,\n 220,\n 1427,\n 47835,\n 91,\n 62,\n 91,\n 37405,\n 59,\n 62,\n 198,\n 220,\n 220,\n 220,\n 44386,\n 91,\n 28,\n 15886,\n 2602,\n 91,\n 2602,\n 62,\n 91,\n 62,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 4907,\n 220,\n 220,\n 930,\n 855,\n 91,\n 11593,\n 220,\n 4808,\n 220,\n 11593,\n 220,\n 220,\n 1220,\n 91,\n 15116,\n 93,\n 32501,\n 37405,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 930,\n 855,\n 91,\n 8614,\n 19510,\n 8614,\n 3419,\n 91,\n 930,\n 930,\n 24376,\n 24376,\n 91,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1875,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 11593,\n 220,\n 220,\n 930,\n 855,\n 91,\n 220,\n 4907,\n 834,\n 93,\n 834,\n 4907,\n 834,\n 3467,\n 91,\n 2602,\n 62,\n 32501,\n 8728,\n 4907,\n 93,\n 198,\n 220,\n 220,\n 220,\n 44386,\n 91,\n 28,\n 15886,\n 15116,\n 91,\n 37405,\n 220,\n 930,\n 1,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 4907,\n 220,\n 8728,\n 59,\n 93,\n 91,\n 93,\n 91,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1220,\n 93,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3467,\n 220,\n 15116,\n 93,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3467,\n 31811,\n 1395,\n 220,\n 220,\n 930,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3467,\n 31811,\n 27713,\n 91,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3467,\n 220,\n 220,\n 220,\n 21044,\n 91,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 554,\n 785,\n 338,\n 309,\n 12,\n 2996,\n 33,\n 1395,\n 12,\n 5469,\n 4687,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3467,\n 220,\n 220,\n 220,\n 220,\n 930,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 22953,\n 414,\n 2907,\n 24733,\n 357,\n 19,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 357,\n 87,\n 24376,\n 91,\n 5324,\n 50155,\n 6329,\n 32590,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 8728,\n 37811,\n 198,\n 220,\n 220,\n 220,\n 3601,\n 7,\n 301,\n 8,\n 628,\n 198,\n 2,\n 319,\n 613,\n 315,\n 257,\n 1046,\n 72,\n 7736,\n 5847,\n 2837,\n 288,\n 504,\n 8591,\n 285,\n 25792,\n 1326,\n 4686,\n 22161,\n 198,\n 2,\n 8358,\n 8591,\n 35833,\n 2375,\n 329,\n 7,\n 72,\n 796,\n 657,\n 26,\n 1312,\n 1279,\n 2456,\n 13,\n 13664,\n 26,\n 1312,\n 29577,\n 288,\n 504,\n 288,\n 6,\n 2306,\n 411,\n 42392,\n 496,\n 198,\n 1640,\n 1312,\n 287,\n 2837,\n 7,\n 11925,\n 7,\n 10879,\n 8,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 3601,\n 7,\n 10879,\n 58,\n 72,\n 4357,\n 18896,\n 7,\n 10879,\n 58,\n 72,\n 60,\n 4008,\n 628,\n 198,\n 2,\n 409,\n 368,\n 1154,\n 390,\n 2837,\n 45567,\n 1556,\n 26181,\n 316,\n 11629,\n 540,\n 11,\n 198,\n 2,\n 2123,\n 38836,\n 17809,\n 1351,\n 68,\n 28141,\n 2632,\n 260,\n 434,\n 1582,\n 75,\n 22161,\n 198,\n 9521,\n 7,\n 20,\n 8,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 657,\n 11,\n 352,\n 11,\n 362,\n 11,\n 513,\n 11,\n 604,\n 198,\n 9521,\n 7,\n 20,\n 11,\n 838,\n 8,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 642,\n 11,\n 718,\n 11,\n 767,\n 11,\n 807,\n 11,\n 860,\n 198,\n 9521,\n 7,\n 15,\n 11,\n 838,\n 11,\n 513,\n 8,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 657,\n 11,\n 513,\n 11,\n 718,\n 11,\n 860,\n 198,\n 9521,\n 32590,\n 940,\n 11,\n 532,\n 3064,\n 11,\n 532,\n 1270,\n 8,\n 220,\n 220,\n 1303,\n 532,\n 940,\n 11,\n 532,\n 1821,\n 11,\n 532,\n 2154,\n 628,\n 198,\n 2,\n 2369,\n 537,\n 2634,\n 705,\n 6603,\n 6,\n 198,\n 64,\n 796,\n 860,\n 198,\n 361,\n 257,\n 1279,\n 838,\n 25,\n 198,\n 220,\n 220,\n 220,\n 1208,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 705,\n 6603,\n 6,\n 497,\n 277,\n 4548,\n 374,\n 2013,\n 11,\n 285,\n 15152,\n 1556,\n 1582,\n 6513,\n 271,\n 299,\n 2634,\n 919,\n 7626,\n 46593,\n 14064,\n 82,\n 17809,\n 12064,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 16926,\n 46,\n 1058,\n 317,\n 2108,\n 372,\n 555,\n 3275,\n 288,\n 6,\n 263,\n 260,\n 333,\n 986,\n 198,\n 17772,\n 25,\n 198,\n 220,\n 220,\n 220,\n 3601,\n 7203,\n 64,\n 7418,\n 2634,\n 5034,\n 333,\n 257,\n 838,\n 4943,\n 198\n]"},"ratio_char_token":{"kind":"number","value":1.7947932618683002,"string":"1.794793"},"token_count":{"kind":"number","value":1306,"string":"1,306"}}},{"rowIdx":2470,"cells":{"content":{"kind":"string","value":"import time\n\n"},"input_ids":{"kind":"list like","value":[11748,640,628],"string":"[\n 11748,\n 640,\n 628\n]"},"ratio_char_token":{"kind":"number","value":4.333333333333333,"string":"4.333333"},"token_count":{"kind":"number","value":3,"string":"3"}}},{"rowIdx":2471,"cells":{"content":{"kind":"string","value":"\"\"\"Setup.\"\"\"\n\nfrom setuptools import setup, find_packages\n\ninst_reqs = [\n \"mercantile == 1.1.5\",\n \"requests\",\n \"geojson\",\n \"pillow\",\n \"gdal == 2.4.2\",\n \"shapely == 1.6.4\",\n \"affine == 2.3.0\",\n \"numpy == 1.19.0\", \n \"rasterio == 1.1.5\"\n]\nextra_reqs = {\"test\": [\"pytest\", \"pytest-cov\"]}\n\nsetup(\n name=\"app\",\n version=\"0.5.0\",\n description=u\"Lambda Download and Predict\",\n python_requires=\">=3\",\n keywords=\"AWS-Lambda Python\",\n packages=find_packages(exclude=[\"ez_setup\", \"examples\", \"tests\"]),\n include_package_data=True,\n zip_safe=False,\n install_requires=inst_reqs,\n extras_require=extra_reqs,\n)\n"},"input_ids":{"kind":"list like","value":[37811,40786,526,15931,198,198,6738,900,37623,10141,1330,9058,11,1064,62,43789,198,198,8625,62,42180,82,796,685,198,220,220,220,366,647,66,415,576,6624,352,13,16,13,20,1600,198,220,220,220,366,8897,3558,1600,198,220,220,220,366,469,13210,1559,1600,198,220,220,220,366,27215,322,1600,198,220,220,220,366,21287,282,6624,362,13,19,13,17,1600,198,220,220,220,366,43358,306,6624,352,13,21,13,19,1600,198,220,220,220,366,2001,500,6624,362,13,18,13,15,1600,198,220,220,220,366,77,32152,6624,352,13,1129,13,15,1600,220,198,220,220,220,366,81,1603,952,6624,352,13,16,13,20,1,198,60,198,26086,62,42180,82,796,19779,9288,1298,14631,9078,9288,1600,366,9078,9288,12,66,709,8973,92,198,198,40406,7,198,220,220,220,1438,2625,1324,1600,198,220,220,220,2196,2625,15,13,20,13,15,1600,198,220,220,220,6764,28,84,1,43,4131,6814,10472,290,49461,1600,198,220,220,220,21015,62,47911,2625,29,28,18,1600,198,220,220,220,26286,2625,12298,50,12,43,4131,6814,11361,1600,198,220,220,220,10392,28,19796,62,43789,7,1069,9152,28,14692,8471,62,40406,1600,366,1069,12629,1600,366,41989,8973,828,198,220,220,220,2291,62,26495,62,7890,28,17821,11,198,220,220,220,19974,62,21230,28,25101,11,198,220,220,220,2721,62,47911,28,8625,62,42180,82,11,198,220,220,220,33849,62,46115,28,26086,62,42180,82,11,198,8,198],"string":"[\n 37811,\n 40786,\n 526,\n 15931,\n 198,\n 198,\n 6738,\n 900,\n 37623,\n 10141,\n 1330,\n 9058,\n 11,\n 1064,\n 62,\n 43789,\n 198,\n 198,\n 8625,\n 62,\n 42180,\n 82,\n 796,\n 685,\n 198,\n 220,\n 220,\n 220,\n 366,\n 647,\n 66,\n 415,\n 576,\n 6624,\n 352,\n 13,\n 16,\n 13,\n 20,\n 1600,\n 198,\n 220,\n 220,\n 220,\n 366,\n 8897,\n 3558,\n 1600,\n 198,\n 220,\n 220,\n 220,\n 366,\n 469,\n 13210,\n 1559,\n 1600,\n 198,\n 220,\n 220,\n 220,\n 366,\n 27215,\n 322,\n 1600,\n 198,\n 220,\n 220,\n 220,\n 366,\n 21287,\n 282,\n 6624,\n 362,\n 13,\n 19,\n 13,\n 17,\n 1600,\n 198,\n 220,\n 220,\n 220,\n 366,\n 43358,\n 306,\n 6624,\n 352,\n 13,\n 21,\n 13,\n 19,\n 1600,\n 198,\n 220,\n 220,\n 220,\n 366,\n 2001,\n 500,\n 6624,\n 362,\n 13,\n 18,\n 13,\n 15,\n 1600,\n 198,\n 220,\n 220,\n 220,\n 366,\n 77,\n 32152,\n 6624,\n 352,\n 13,\n 1129,\n 13,\n 15,\n 1600,\n 220,\n 198,\n 220,\n 220,\n 220,\n 366,\n 81,\n 1603,\n 952,\n 6624,\n 352,\n 13,\n 16,\n 13,\n 20,\n 1,\n 198,\n 60,\n 198,\n 26086,\n 62,\n 42180,\n 82,\n 796,\n 19779,\n 9288,\n 1298,\n 14631,\n 9078,\n 9288,\n 1600,\n 366,\n 9078,\n 9288,\n 12,\n 66,\n 709,\n 8973,\n 92,\n 198,\n 198,\n 40406,\n 7,\n 198,\n 220,\n 220,\n 220,\n 1438,\n 2625,\n 1324,\n 1600,\n 198,\n 220,\n 220,\n 220,\n 2196,\n 2625,\n 15,\n 13,\n 20,\n 13,\n 15,\n 1600,\n 198,\n 220,\n 220,\n 220,\n 6764,\n 28,\n 84,\n 1,\n 43,\n 4131,\n 6814,\n 10472,\n 290,\n 49461,\n 1600,\n 198,\n 220,\n 220,\n 220,\n 21015,\n 62,\n 47911,\n 2625,\n 29,\n 28,\n 18,\n 1600,\n 198,\n 220,\n 220,\n 220,\n 26286,\n 2625,\n 12298,\n 50,\n 12,\n 43,\n 4131,\n 6814,\n 11361,\n 1600,\n 198,\n 220,\n 220,\n 220,\n 10392,\n 28,\n 19796,\n 62,\n 43789,\n 7,\n 1069,\n 9152,\n 28,\n 14692,\n 8471,\n 62,\n 40406,\n 1600,\n 366,\n 1069,\n 12629,\n 1600,\n 366,\n 41989,\n 8973,\n 828,\n 198,\n 220,\n 220,\n 220,\n 2291,\n 62,\n 26495,\n 62,\n 7890,\n 28,\n 17821,\n 11,\n 198,\n 220,\n 220,\n 220,\n 19974,\n 62,\n 21230,\n 28,\n 25101,\n 11,\n 198,\n 220,\n 220,\n 220,\n 2721,\n 62,\n 47911,\n 28,\n 8625,\n 62,\n 42180,\n 82,\n 11,\n 198,\n 220,\n 220,\n 220,\n 33849,\n 62,\n 46115,\n 28,\n 26086,\n 62,\n 42180,\n 82,\n 11,\n 198,\n 8,\n 198\n]"},"ratio_char_token":{"kind":"number","value":2.1589403973509933,"string":"2.15894"},"token_count":{"kind":"number","value":302,"string":"302"}}},{"rowIdx":2472,"cells":{"content":{"kind":"string","value":"# Copyright 2022 Yan Yan\n#\n# Licensed under the Apache License, Version 2.0 (the \"License\");\n# you may not use this file except in compliance with the License.\n# You may obtain a copy of the License at\n#\n# http://www.apache.org/licenses/LICENSE-2.0\n#\n# Unless required by applicable law or agreed to in writing, software\n# distributed under the License is distributed on an \"AS IS\" BASIS,\n# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n# See the License for the specific language governing permissions and\n# limitations under the License.\n\nfrom cumm.core_cc.tensorview_bind import (NVRTCParams, GemmAlgoDesp,\n ConvAlgoDesp, ConvParams, ConvOpType,\n ConvLayoutType, ShuffleStrideType,\n ConvMode, run_nvrtc_conv_kernel,\n GemmParams, run_nvrtc_gemm_kernel)\n"},"input_ids":{"kind":"list like","value":[2,15069,33160,10642,10642,198,2,198,2,49962,739,262,24843,13789,11,10628,362,13,15,357,1169,366,34156,15341,198,2,345,743,407,779,428,2393,2845,287,11846,351,262,13789,13,198,2,921,743,7330,257,4866,286,262,13789,379,198,2,198,2,220,220,220,220,2638,1378,2503,13,43073,13,2398,14,677,4541,14,43,2149,24290,12,17,13,15,198,2,198,2,17486,2672,416,9723,1099,393,4987,284,287,3597,11,3788,198,2,9387,739,262,13789,318,9387,319,281,366,1921,3180,1,29809,1797,11,198,2,42881,34764,11015,6375,7102,49828,11053,3963,15529,509,12115,11,2035,4911,393,17142,13,198,2,4091,262,13789,329,262,2176,3303,15030,21627,290,198,2,11247,739,262,13789,13,198,198,6738,10973,76,13,7295,62,535,13,83,22854,1177,62,21653,1330,357,45,13024,4825,10044,4105,11,15669,76,2348,2188,5960,79,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,34872,2348,2188,5960,79,11,34872,10044,4105,11,34872,18257,6030,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,34872,32517,6030,11,911,18137,1273,13154,6030,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,34872,19076,11,1057,62,48005,17034,66,62,42946,62,33885,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,15669,76,10044,4105,11,1057,62,48005,17034,66,62,24090,76,62,33885,8,198],"string":"[\n 2,\n 15069,\n 33160,\n 10642,\n 10642,\n 198,\n 2,\n 198,\n 2,\n 49962,\n 739,\n 262,\n 24843,\n 13789,\n 11,\n 10628,\n 362,\n 13,\n 15,\n 357,\n 1169,\n 366,\n 34156,\n 15341,\n 198,\n 2,\n 345,\n 743,\n 407,\n 779,\n 428,\n 2393,\n 2845,\n 287,\n 11846,\n 351,\n 262,\n 13789,\n 13,\n 198,\n 2,\n 921,\n 743,\n 7330,\n 257,\n 4866,\n 286,\n 262,\n 13789,\n 379,\n 198,\n 2,\n 198,\n 2,\n 220,\n 220,\n 220,\n 220,\n 2638,\n 1378,\n 2503,\n 13,\n 43073,\n 13,\n 2398,\n 14,\n 677,\n 4541,\n 14,\n 43,\n 2149,\n 24290,\n 12,\n 17,\n 13,\n 15,\n 198,\n 2,\n 198,\n 2,\n 17486,\n 2672,\n 416,\n 9723,\n 1099,\n 393,\n 4987,\n 284,\n 287,\n 3597,\n 11,\n 3788,\n 198,\n 2,\n 9387,\n 739,\n 262,\n 13789,\n 318,\n 9387,\n 319,\n 281,\n 366,\n 1921,\n 3180,\n 1,\n 29809,\n 1797,\n 11,\n 198,\n 2,\n 42881,\n 34764,\n 11015,\n 6375,\n 7102,\n 49828,\n 11053,\n 3963,\n 15529,\n 509,\n 12115,\n 11,\n 2035,\n 4911,\n 393,\n 17142,\n 13,\n 198,\n 2,\n 4091,\n 262,\n 13789,\n 329,\n 262,\n 2176,\n 3303,\n 15030,\n 21627,\n 290,\n 198,\n 2,\n 11247,\n 739,\n 262,\n 13789,\n 13,\n 198,\n 198,\n 6738,\n 10973,\n 76,\n 13,\n 7295,\n 62,\n 535,\n 13,\n 83,\n 22854,\n 1177,\n 62,\n 21653,\n 1330,\n 357,\n 45,\n 13024,\n 4825,\n 10044,\n 4105,\n 11,\n 15669,\n 76,\n 2348,\n 2188,\n 5960,\n 79,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 34872,\n 2348,\n 2188,\n 5960,\n 79,\n 11,\n 34872,\n 10044,\n 4105,\n 11,\n 34872,\n 18257,\n 6030,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 34872,\n 32517,\n 6030,\n 11,\n 911,\n 18137,\n 1273,\n 13154,\n 6030,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 34872,\n 19076,\n 11,\n 1057,\n 62,\n 48005,\n 17034,\n 66,\n 62,\n 42946,\n 62,\n 33885,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 15669,\n 76,\n 10044,\n 4105,\n 11,\n 1057,\n 62,\n 48005,\n 17034,\n 66,\n 62,\n 24090,\n 76,\n 62,\n 33885,\n 8,\n 198\n]"},"ratio_char_token":{"kind":"number","value":2.380952380952381,"string":"2.380952"},"token_count":{"kind":"number","value":399,"string":"399"}}},{"rowIdx":2473,"cells":{"content":{"kind":"string","value":"#!/bin/python3\n# author: Jan Hybs\n\nfrom loguru import logger\n\n\nfrom flask_restful import Resource\nfrom cihpc.common.utils import strings\nfrom cihpc.common.utils import datautils as du\n\n"},"input_ids":{"kind":"list like","value":[2,48443,8800,14,29412,18,198,2,1772,25,2365,6707,1443,198,198,6738,2604,14717,1330,49706,628,198,6738,42903,62,2118,913,1330,20857,198,6738,269,4449,14751,13,11321,13,26791,1330,13042,198,6738,269,4449,14751,13,11321,13,26791,1330,1366,26791,355,7043,628],"string":"[\n 2,\n 48443,\n 8800,\n 14,\n 29412,\n 18,\n 198,\n 2,\n 1772,\n 25,\n 2365,\n 6707,\n 1443,\n 198,\n 198,\n 6738,\n 2604,\n 14717,\n 1330,\n 49706,\n 628,\n 198,\n 6738,\n 42903,\n 62,\n 2118,\n 913,\n 1330,\n 20857,\n 198,\n 6738,\n 269,\n 4449,\n 14751,\n 13,\n 11321,\n 13,\n 26791,\n 1330,\n 13042,\n 198,\n 6738,\n 269,\n 4449,\n 14751,\n 13,\n 11321,\n 13,\n 26791,\n 1330,\n 1366,\n 26791,\n 355,\n 7043,\n 628\n]"},"ratio_char_token":{"kind":"number","value":3.3636363636363638,"string":"3.363636"},"token_count":{"kind":"number","value":55,"string":"55"}}},{"rowIdx":2474,"cells":{"content":{"kind":"string","value":"from spinn_machine.utilities.progress_bar import ProgressBar\n\nfrom spinn_front_end_common.abstract_models.\\\n abstract_data_specable_vertex import AbstractDataSpecableVertex\nfrom spinn_front_end_common.utilities.utility_objs.executable_targets import \\\n ExecutableTargets\nfrom spinn_front_end_common.utilities import exceptions\n\n\nclass FrontEndCommonPartitionableGraphDataSpecificationWriter(object):\n \"\"\" Executes a partitionable graph data specification generation\n \"\"\"\n\n def __call__(\n self, placements, graph_mapper, tags, executable_finder,\n partitioned_graph, partitionable_graph, routing_infos, hostname,\n report_default_directory, write_text_specs,\n app_data_runtime_folder):\n \"\"\" generates the dsg for the graph.\n\n :return:\n \"\"\"\n\n # iterate though subvertices and call generate_data_spec for each\n # vertex\n executable_targets = ExecutableTargets()\n dsg_targets = dict()\n\n # create a progress bar for end users\n progress_bar = ProgressBar(len(list(placements.placements)),\n \"Generating data specifications\")\n for placement in placements.placements:\n associated_vertex = graph_mapper.get_vertex_from_subvertex(\n placement.subvertex)\n\n self._generate_data_spec_for_subvertices(\n placement, associated_vertex, executable_targets, dsg_targets,\n graph_mapper, tags, executable_finder, partitioned_graph,\n partitionable_graph, routing_infos, hostname,\n report_default_directory, write_text_specs,\n app_data_runtime_folder)\n\n progress_bar.update()\n\n # finish the progress bar\n progress_bar.end()\n\n return {'executable_targets': executable_targets,\n 'dsg_targets': dsg_targets}\n"},"input_ids":{"kind":"list like","value":[6738,599,3732,62,30243,13,315,2410,13,33723,62,5657,1330,18387,10374,198,198,6738,599,3732,62,8534,62,437,62,11321,13,397,8709,62,27530,13,59,198,220,220,220,12531,62,7890,62,16684,540,62,332,16886,1330,27741,6601,22882,540,13414,16886,198,6738,599,3732,62,8534,62,437,62,11321,13,315,2410,13,315,879,62,672,8457,13,18558,18187,62,83,853,1039,1330,3467,198,220,220,220,8393,18187,51,853,1039,198,6738,599,3732,62,8534,62,437,62,11321,13,315,2410,1330,13269,628,198,4871,8880,12915,17227,7841,653,540,37065,6601,22882,2649,34379,7,15252,2599,198,220,220,220,37227,8393,1769,257,18398,540,4823,1366,20855,5270,198,220,220,220,37227,628,220,220,220,825,11593,13345,834,7,198,220,220,220,220,220,220,220,220,220,220,220,2116,11,21957,3196,11,4823,62,76,11463,11,15940,11,28883,62,22805,11,198,220,220,220,220,220,220,220,220,220,220,220,18398,276,62,34960,11,18398,540,62,34960,11,28166,62,10745,418,11,2583,3672,11,198,220,220,220,220,220,220,220,220,220,220,220,989,62,12286,62,34945,11,3551,62,5239,62,4125,6359,11,198,220,220,220,220,220,220,220,220,220,220,220,598,62,7890,62,43282,62,43551,2599,198,220,220,220,220,220,220,220,37227,18616,262,288,45213,329,262,4823,13,628,220,220,220,220,220,220,220,1058,7783,25,198,220,220,220,220,220,220,220,37227,628,220,220,220,220,220,220,220,1303,11629,378,996,850,1851,1063,290,869,7716,62,7890,62,16684,329,1123,198,220,220,220,220,220,220,220,1303,37423,198,220,220,220,220,220,220,220,28883,62,83,853,1039,796,8393,18187,51,853,1039,3419,198,220,220,220,220,220,220,220,288,45213,62,83,853,1039,796,8633,3419,628,220,220,220,220,220,220,220,1303,2251,257,4371,2318,329,886,2985,198,220,220,220,220,220,220,220,4371,62,5657,796,18387,10374,7,11925,7,4868,7,489,28613,13,489,28613,36911,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,8645,803,1366,20640,4943,198,220,220,220,220,220,220,220,329,13127,287,21957,3196,13,489,28613,25,198,220,220,220,220,220,220,220,220,220,220,220,3917,62,332,16886,796,4823,62,76,11463,13,1136,62,332,16886,62,6738,62,7266,332,16886,7,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,13127,13,7266,332,16886,8,628,220,220,220,220,220,220,220,220,220,220,220,2116,13557,8612,378,62,7890,62,16684,62,1640,62,7266,1851,1063,7,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,13127,11,3917,62,332,16886,11,28883,62,83,853,1039,11,288,45213,62,83,853,1039,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,4823,62,76,11463,11,15940,11,28883,62,22805,11,18398,276,62,34960,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,18398,540,62,34960,11,28166,62,10745,418,11,2583,3672,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,989,62,12286,62,34945,11,3551,62,5239,62,4125,6359,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,598,62,7890,62,43282,62,43551,8,628,220,220,220,220,220,220,220,220,220,220,220,4371,62,5657,13,19119,3419,628,220,220,220,220,220,220,220,1303,5461,262,4371,2318,198,220,220,220,220,220,220,220,4371,62,5657,13,437,3419,628,220,220,220,220,220,220,220,1441,1391,6,18558,18187,62,83,853,1039,10354,28883,62,83,853,1039,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,705,9310,70,62,83,853,1039,10354,288,45213,62,83,853,1039,92,198],"string":"[\n 6738,\n 599,\n 3732,\n 62,\n 30243,\n 13,\n 315,\n 2410,\n 13,\n 33723,\n 62,\n 5657,\n 1330,\n 18387,\n 10374,\n 198,\n 198,\n 6738,\n 599,\n 3732,\n 62,\n 8534,\n 62,\n 437,\n 62,\n 11321,\n 13,\n 397,\n 8709,\n 62,\n 27530,\n 13,\n 59,\n 198,\n 220,\n 220,\n 220,\n 12531,\n 62,\n 7890,\n 62,\n 16684,\n 540,\n 62,\n 332,\n 16886,\n 1330,\n 27741,\n 6601,\n 22882,\n 540,\n 13414,\n 16886,\n 198,\n 6738,\n 599,\n 3732,\n 62,\n 8534,\n 62,\n 437,\n 62,\n 11321,\n 13,\n 315,\n 2410,\n 13,\n 315,\n 879,\n 62,\n 672,\n 8457,\n 13,\n 18558,\n 18187,\n 62,\n 83,\n 853,\n 1039,\n 1330,\n 3467,\n 198,\n 220,\n 220,\n 220,\n 8393,\n 18187,\n 51,\n 853,\n 1039,\n 198,\n 6738,\n 599,\n 3732,\n 62,\n 8534,\n 62,\n 437,\n 62,\n 11321,\n 13,\n 315,\n 2410,\n 1330,\n 13269,\n 628,\n 198,\n 4871,\n 8880,\n 12915,\n 17227,\n 7841,\n 653,\n 540,\n 37065,\n 6601,\n 22882,\n 2649,\n 34379,\n 7,\n 15252,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 8393,\n 1769,\n 257,\n 18398,\n 540,\n 4823,\n 1366,\n 20855,\n 5270,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 628,\n 220,\n 220,\n 220,\n 825,\n 11593,\n 13345,\n 834,\n 7,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 11,\n 21957,\n 3196,\n 11,\n 4823,\n 62,\n 76,\n 11463,\n 11,\n 15940,\n 11,\n 28883,\n 62,\n 22805,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 18398,\n 276,\n 62,\n 34960,\n 11,\n 18398,\n 540,\n 62,\n 34960,\n 11,\n 28166,\n 62,\n 10745,\n 418,\n 11,\n 2583,\n 3672,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 989,\n 62,\n 12286,\n 62,\n 34945,\n 11,\n 3551,\n 62,\n 5239,\n 62,\n 4125,\n 6359,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 598,\n 62,\n 7890,\n 62,\n 43282,\n 62,\n 43551,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 18616,\n 262,\n 288,\n 45213,\n 329,\n 262,\n 4823,\n 13,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1058,\n 7783,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 11629,\n 378,\n 996,\n 850,\n 1851,\n 1063,\n 290,\n 869,\n 7716,\n 62,\n 7890,\n 62,\n 16684,\n 329,\n 1123,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 37423,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 28883,\n 62,\n 83,\n 853,\n 1039,\n 796,\n 8393,\n 18187,\n 51,\n 853,\n 1039,\n 3419,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 288,\n 45213,\n 62,\n 83,\n 853,\n 1039,\n 796,\n 8633,\n 3419,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 2251,\n 257,\n 4371,\n 2318,\n 329,\n 886,\n 2985,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 4371,\n 62,\n 5657,\n 796,\n 18387,\n 10374,\n 7,\n 11925,\n 7,\n 4868,\n 7,\n 489,\n 28613,\n 13,\n 489,\n 28613,\n 36911,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 8645,\n 803,\n 1366,\n 20640,\n 4943,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 329,\n 13127,\n 287,\n 21957,\n 3196,\n 13,\n 489,\n 28613,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3917,\n 62,\n 332,\n 16886,\n 796,\n 4823,\n 62,\n 76,\n 11463,\n 13,\n 1136,\n 62,\n 332,\n 16886,\n 62,\n 6738,\n 62,\n 7266,\n 332,\n 16886,\n 7,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 13127,\n 13,\n 7266,\n 332,\n 16886,\n 8,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13557,\n 8612,\n 378,\n 62,\n 7890,\n 62,\n 16684,\n 62,\n 1640,\n 62,\n 7266,\n 1851,\n 1063,\n 7,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 13127,\n 11,\n 3917,\n 62,\n 332,\n 16886,\n 11,\n 28883,\n 62,\n 83,\n 853,\n 1039,\n 11,\n 288,\n 45213,\n 62,\n 83,\n 853,\n 1039,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 4823,\n 62,\n 76,\n 11463,\n 11,\n 15940,\n 11,\n 28883,\n 62,\n 22805,\n 11,\n 18398,\n 276,\n 62,\n 34960,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 18398,\n 540,\n 62,\n 34960,\n 11,\n 28166,\n 62,\n 10745,\n 418,\n 11,\n 2583,\n 3672,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 989,\n 62,\n 12286,\n 62,\n 34945,\n 11,\n 3551,\n 62,\n 5239,\n 62,\n 4125,\n 6359,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 598,\n 62,\n 7890,\n 62,\n 43282,\n 62,\n 43551,\n 8,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 4371,\n 62,\n 5657,\n 13,\n 19119,\n 3419,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 5461,\n 262,\n 4371,\n 2318,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 4371,\n 62,\n 5657,\n 13,\n 437,\n 3419,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1441,\n 1391,\n 6,\n 18558,\n 18187,\n 62,\n 83,\n 853,\n 1039,\n 10354,\n 28883,\n 62,\n 83,\n 853,\n 1039,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 705,\n 9310,\n 70,\n 62,\n 83,\n 853,\n 1039,\n 10354,\n 288,\n 45213,\n 62,\n 83,\n 853,\n 1039,\n 92,\n 198\n]"},"ratio_char_token":{"kind":"number","value":2.3959646910466583,"string":"2.395965"},"token_count":{"kind":"number","value":793,"string":"793"}}},{"rowIdx":2475,"cells":{"content":{"kind":"string","value":"# -*- coding: utf-8 -*-\nimport io, json\n\nfrom pathlib import Path\n\n\nclass ColorRegistry:\n \"\"\"\n Open, read and store color names maps\n\n Default shipped color registry is used on loading if no specific path is\n given to ``load`` method.\n \"\"\"\n\n def load(self, path=None):\n \"\"\"\n Load registry and set maps\n\n Keyword args:\n path (pathlib.Path): Optionnal path object to open instead of\n default of from ``ColorRegistry.map_path``.\n \"\"\"\n names = self.get_registry_file(path or self.map_path)\n\n self.name_map, self.hexa_map = self.get_registry_maps(names)\n\n def get_registry_file(self, path):\n \"\"\"\n Open registry file from given path\n\n Args:\n path (pathlib.Path): Path object to open.\n\n Returns:\n list: List of map items from registry.\n \"\"\"\n with io.open(str(path), 'r') as fp:\n registry_map = json.load(fp)\n\n return registry_map\n\n def get_registry_maps(self, items):\n \"\"\"\n From registry items build maps, one indexed on name, another\n one indexed on color.\n\n Args:\n items (list): Registry items\n\n Returns:\n tuple: First item is the names map, second item is the colors map.\n Both are list object.\n \"\"\"\n name_map = items\n # Reverse keys/values so map is indexed on hexa\n hexa_map = list(zip([v for k,v in items], [k for k,v in items]))\n\n return name_map, hexa_map\n"},"input_ids":{"kind":"list like","value":[2,532,9,12,19617,25,3384,69,12,23,532,9,12,198,11748,33245,11,33918,198,198,6738,3108,8019,1330,10644,628,198,4871,5315,8081,4592,25,198,220,220,220,37227,198,220,220,220,4946,11,1100,290,3650,3124,3891,8739,628,220,220,220,15161,14338,3124,20478,318,973,319,11046,611,645,2176,3108,318,198,220,220,220,1813,284,7559,2220,15506,2446,13,198,220,220,220,37227,628,220,220,220,825,3440,7,944,11,3108,28,14202,2599,198,220,220,220,220,220,220,220,37227,198,220,220,220,220,220,220,220,8778,20478,290,900,8739,628,220,220,220,220,220,220,220,7383,4775,26498,25,198,220,220,220,220,220,220,220,220,220,220,220,3108,357,6978,8019,13,15235,2599,16018,77,282,3108,2134,284,1280,2427,286,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,4277,286,422,7559,10258,8081,4592,13,8899,62,6978,15506,13,198,220,220,220,220,220,220,220,37227,198,220,220,220,220,220,220,220,3891,796,2116,13,1136,62,2301,4592,62,7753,7,6978,393,2116,13,8899,62,6978,8,628,220,220,220,220,220,220,220,2116,13,3672,62,8899,11,2116,13,258,27865,62,8899,796,2116,13,1136,62,2301,4592,62,31803,7,14933,8,628,220,220,220,825,651,62,2301,4592,62,7753,7,944,11,3108,2599,198,220,220,220,220,220,220,220,37227,198,220,220,220,220,220,220,220,4946,20478,2393,422,1813,3108,628,220,220,220,220,220,220,220,943,14542,25,198,220,220,220,220,220,220,220,220,220,220,220,3108,357,6978,8019,13,15235,2599,10644,2134,284,1280,13,628,220,220,220,220,220,220,220,16409,25,198,220,220,220,220,220,220,220,220,220,220,220,1351,25,7343,286,3975,3709,422,20478,13,198,220,220,220,220,220,220,220,37227,198,220,220,220,220,220,220,220,351,33245,13,9654,7,2536,7,6978,828,705,81,11537,355,277,79,25,198,220,220,220,220,220,220,220,220,220,220,220,20478,62,8899,796,33918,13,2220,7,46428,8,628,220,220,220,220,220,220,220,1441,20478,62,8899,628,220,220,220,825,651,62,2301,4592,62,31803,7,944,11,3709,2599,198,220,220,220,220,220,220,220,37227,198,220,220,220,220,220,220,220,3574,20478,3709,1382,8739,11,530,41497,319,1438,11,1194,198,220,220,220,220,220,220,220,530,41497,319,3124,13,628,220,220,220,220,220,220,220,943,14542,25,198,220,220,220,220,220,220,220,220,220,220,220,3709,357,4868,2599,33432,3709,628,220,220,220,220,220,220,220,16409,25,198,220,220,220,220,220,220,220,220,220,220,220,46545,25,3274,2378,318,262,3891,3975,11,1218,2378,318,262,7577,3975,13,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,5747,389,1351,2134,13,198,220,220,220,220,220,220,220,37227,198,220,220,220,220,220,220,220,1438,62,8899,796,3709,198,220,220,220,220,220,220,220,1303,31849,8251,14,27160,523,3975,318,41497,319,17910,64,198,220,220,220,220,220,220,220,17910,64,62,8899,796,1351,7,13344,26933,85,329,479,11,85,287,3709,4357,685,74,329,479,11,85,287,3709,60,4008,628,220,220,220,220,220,220,220,1441,1438,62,8899,11,17910,64,62,8899,198],"string":"[\n 2,\n 532,\n 9,\n 12,\n 19617,\n 25,\n 3384,\n 69,\n 12,\n 23,\n 532,\n 9,\n 12,\n 198,\n 11748,\n 33245,\n 11,\n 33918,\n 198,\n 198,\n 6738,\n 3108,\n 8019,\n 1330,\n 10644,\n 628,\n 198,\n 4871,\n 5315,\n 8081,\n 4592,\n 25,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 4946,\n 11,\n 1100,\n 290,\n 3650,\n 3124,\n 3891,\n 8739,\n 628,\n 220,\n 220,\n 220,\n 15161,\n 14338,\n 3124,\n 20478,\n 318,\n 973,\n 319,\n 11046,\n 611,\n 645,\n 2176,\n 3108,\n 318,\n 198,\n 220,\n 220,\n 220,\n 1813,\n 284,\n 7559,\n 2220,\n 15506,\n 2446,\n 13,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 628,\n 220,\n 220,\n 220,\n 825,\n 3440,\n 7,\n 944,\n 11,\n 3108,\n 28,\n 14202,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 8778,\n 20478,\n 290,\n 900,\n 8739,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 7383,\n 4775,\n 26498,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3108,\n 357,\n 6978,\n 8019,\n 13,\n 15235,\n 2599,\n 16018,\n 77,\n 282,\n 3108,\n 2134,\n 284,\n 1280,\n 2427,\n 286,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 4277,\n 286,\n 422,\n 7559,\n 10258,\n 8081,\n 4592,\n 13,\n 8899,\n 62,\n 6978,\n 15506,\n 13,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3891,\n 796,\n 2116,\n 13,\n 1136,\n 62,\n 2301,\n 4592,\n 62,\n 7753,\n 7,\n 6978,\n 393,\n 2116,\n 13,\n 8899,\n 62,\n 6978,\n 8,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13,\n 3672,\n 62,\n 8899,\n 11,\n 2116,\n 13,\n 258,\n 27865,\n 62,\n 8899,\n 796,\n 2116,\n 13,\n 1136,\n 62,\n 2301,\n 4592,\n 62,\n 31803,\n 7,\n 14933,\n 8,\n 628,\n 220,\n 220,\n 220,\n 825,\n 651,\n 62,\n 2301,\n 4592,\n 62,\n 7753,\n 7,\n 944,\n 11,\n 3108,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 4946,\n 20478,\n 2393,\n 422,\n 1813,\n 3108,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 943,\n 14542,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3108,\n 357,\n 6978,\n 8019,\n 13,\n 15235,\n 2599,\n 10644,\n 2134,\n 284,\n 1280,\n 13,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 16409,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1351,\n 25,\n 7343,\n 286,\n 3975,\n 3709,\n 422,\n 20478,\n 13,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 351,\n 33245,\n 13,\n 9654,\n 7,\n 2536,\n 7,\n 6978,\n 828,\n 705,\n 81,\n 11537,\n 355,\n 277,\n 79,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 20478,\n 62,\n 8899,\n 796,\n 33918,\n 13,\n 2220,\n 7,\n 46428,\n 8,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1441,\n 20478,\n 62,\n 8899,\n 628,\n 220,\n 220,\n 220,\n 825,\n 651,\n 62,\n 2301,\n 4592,\n 62,\n 31803,\n 7,\n 944,\n 11,\n 3709,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3574,\n 20478,\n 3709,\n 1382,\n 8739,\n 11,\n 530,\n 41497,\n 319,\n 1438,\n 11,\n 1194,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 530,\n 41497,\n 319,\n 3124,\n 13,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 943,\n 14542,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3709,\n 357,\n 4868,\n 2599,\n 33432,\n 3709,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 16409,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 46545,\n 25,\n 3274,\n 2378,\n 318,\n 262,\n 3891,\n 3975,\n 11,\n 1218,\n 2378,\n 318,\n 262,\n 7577,\n 3975,\n 13,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 5747,\n 389,\n 1351,\n 2134,\n 13,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1438,\n 62,\n 8899,\n 796,\n 3709,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 31849,\n 8251,\n 14,\n 27160,\n 523,\n 3975,\n 318,\n 41497,\n 319,\n 17910,\n 64,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 17910,\n 64,\n 62,\n 8899,\n 796,\n 1351,\n 7,\n 13344,\n 26933,\n 85,\n 329,\n 479,\n 11,\n 85,\n 287,\n 3709,\n 4357,\n 685,\n 74,\n 329,\n 479,\n 11,\n 85,\n 287,\n 3709,\n 60,\n 4008,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1441,\n 1438,\n 62,\n 8899,\n 11,\n 17910,\n 64,\n 62,\n 8899,\n 198\n]"},"ratio_char_token":{"kind":"number","value":2.305847076461769,"string":"2.305847"},"token_count":{"kind":"number","value":667,"string":"667"}}},{"rowIdx":2476,"cells":{"content":{"kind":"string","value":"#-*-coding:utf-8-*-\n\nfrom futuquant import *\nimport pandas\n\n\n\nif __name__ == '__main__':\n GetMulHtryKl().test1()"},"input_ids":{"kind":"list like","value":[2,12,9,12,66,7656,25,40477,12,23,12,9,12,198,198,6738,13294,84,40972,1330,1635,198,11748,19798,292,628,198,198,361,11593,3672,834,6624,705,834,12417,834,10354,198,220,220,220,3497,44,377,39,28311,42,75,22446,9288,16,3419],"string":"[\n 2,\n 12,\n 9,\n 12,\n 66,\n 7656,\n 25,\n 40477,\n 12,\n 23,\n 12,\n 9,\n 12,\n 198,\n 198,\n 6738,\n 13294,\n 84,\n 40972,\n 1330,\n 1635,\n 198,\n 11748,\n 19798,\n 292,\n 628,\n 198,\n 198,\n 361,\n 11593,\n 3672,\n 834,\n 6624,\n 705,\n 834,\n 12417,\n 834,\n 10354,\n 198,\n 220,\n 220,\n 220,\n 3497,\n 44,\n 377,\n 39,\n 28311,\n 42,\n 75,\n 22446,\n 9288,\n 16,\n 3419\n]"},"ratio_char_token":{"kind":"number","value":2.169811320754717,"string":"2.169811"},"token_count":{"kind":"number","value":53,"string":"53"}}},{"rowIdx":2477,"cells":{"content":{"kind":"string","value":"#!/usr/bin/env python3\n# Copyright (c) 2021 oatsu\n\"\"\"\n連続音歌詞を空白で区切って単独音にするUTAUプラグイン\n\"\"\"\n\n\nimport utaupy\n\n\ndef ren2tan(plugin):\n \"\"\"\n 歌詞を空白で区切って、空白より後ろ側だけ残す。\n \"\"\"\n for note in plugin.notes:\n note.lyric = note.lyric.split()[-1]\n\n\nif __name__ == '__main__':\n utaupy.utauplugin.run(ren2tan)\n"},"input_ids":{"kind":"list like","value":[2,48443,14629,14,8800,14,24330,21015,18,198,2,15069,357,66,8,33448,267,19231,198,37811,198,34460,96,163,114,21253,253,111,29826,234,164,102,252,31758,163,102,118,163,50159,30640,44293,118,26344,229,33180,28134,39355,246,45379,105,165,253,111,28618,33623,25748,3843,26830,30965,9263,26095,11482,6527,198,37811,628,198,11748,3384,559,9078,628,198,4299,8851,17,38006,7,33803,2599,198,220,220,220,37227,198,220,220,220,10545,255,234,164,102,252,31758,163,102,118,163,50159,30640,44293,118,26344,229,33180,28134,23513,163,102,118,163,50159,1792,230,28255,36181,234,1792,235,161,223,112,46777,2515,239,162,106,233,33623,16764,198,220,220,220,37227,198,220,220,220,329,3465,287,13877,13,17815,25,198,220,220,220,220,220,220,220,3465,13,306,1173,796,3465,13,306,1173,13,35312,3419,58,12,16,60,628,198,361,11593,3672,834,6624,705,834,12417,834,10354,198,220,220,220,3384,559,9078,13,315,559,33803,13,5143,7,918,17,38006,8,198],"string":"[\n 2,\n 48443,\n 14629,\n 14,\n 8800,\n 14,\n 24330,\n 21015,\n 18,\n 198,\n 2,\n 15069,\n 357,\n 66,\n 8,\n 33448,\n 267,\n 19231,\n 198,\n 37811,\n 198,\n 34460,\n 96,\n 163,\n 114,\n 21253,\n 253,\n 111,\n 29826,\n 234,\n 164,\n 102,\n 252,\n 31758,\n 163,\n 102,\n 118,\n 163,\n 50159,\n 30640,\n 44293,\n 118,\n 26344,\n 229,\n 33180,\n 28134,\n 39355,\n 246,\n 45379,\n 105,\n 165,\n 253,\n 111,\n 28618,\n 33623,\n 25748,\n 3843,\n 26830,\n 30965,\n 9263,\n 26095,\n 11482,\n 6527,\n 198,\n 37811,\n 628,\n 198,\n 11748,\n 3384,\n 559,\n 9078,\n 628,\n 198,\n 4299,\n 8851,\n 17,\n 38006,\n 7,\n 33803,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 10545,\n 255,\n 234,\n 164,\n 102,\n 252,\n 31758,\n 163,\n 102,\n 118,\n 163,\n 50159,\n 30640,\n 44293,\n 118,\n 26344,\n 229,\n 33180,\n 28134,\n 23513,\n 163,\n 102,\n 118,\n 163,\n 50159,\n 1792,\n 230,\n 28255,\n 36181,\n 234,\n 1792,\n 235,\n 161,\n 223,\n 112,\n 46777,\n 2515,\n 239,\n 162,\n 106,\n 233,\n 33623,\n 16764,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 329,\n 3465,\n 287,\n 13877,\n 13,\n 17815,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3465,\n 13,\n 306,\n 1173,\n 796,\n 3465,\n 13,\n 306,\n 1173,\n 13,\n 35312,\n 3419,\n 58,\n 12,\n 16,\n 60,\n 628,\n 198,\n 361,\n 11593,\n 3672,\n 834,\n 6624,\n 705,\n 834,\n 12417,\n 834,\n 10354,\n 198,\n 220,\n 220,\n 220,\n 3384,\n 559,\n 9078,\n 13,\n 315,\n 559,\n 33803,\n 13,\n 5143,\n 7,\n 918,\n 17,\n 38006,\n 8,\n 198\n]"},"ratio_char_token":{"kind":"number","value":1.5172413793103448,"string":"1.517241"},"token_count":{"kind":"number","value":203,"string":"203"}}},{"rowIdx":2478,"cells":{"content":{"kind":"string","value":"import cupy\n\n\ndef empty(shape, dtype=float):\n \"\"\"Returns an array without initializing the elements.\n\n This function currently does not support ``order`` option.\n\n Args:\n shape (tuple of ints): Dimensionalities of the array.\n dtype: Data type specifier.\n\n Returns:\n cupy.ndarray: A new array with elements not initialized.\n\n .. seealso:: :func:`numpy.empty`\n\n \"\"\"\n # TODO(beam2d): Support ordering option\n return cupy.ndarray(shape, dtype=dtype)\n\n\ndef empty_like(a, dtype=None):\n \"\"\"Returns a new array with same shape and dtype of a given array.\n\n This function currently does not support ``order`` and ``subok`` options.\n\n Args:\n a (cupy.ndarray): Base array.\n dtype: Data type specifier. The data type of ``a`` is used by default.\n\n Returns:\n cupy.ndarray: A new array with same shape and dtype of ``a`` with\n elements not initialized.\n\n .. seealso:: :func:`numpy.empty_like`\n\n \"\"\"\n # TODO(beam2d): Support ordering option\n if dtype is None:\n dtype = a.dtype\n return empty(a.shape, dtype=dtype)\n\n\ndef eye(N, M=None, k=0, dtype=float):\n \"\"\"Returns a 2-D array with ones on the diagonals and zeros elsewhere.\n\n Args:\n N (int): Number of rows.\n M (int): Number of columns. M == N by default.\n k (int): Index of the diagonal. Zero indicates the main diagonal,\n a positive index an upper diagonal, and a negative index a lower\n diagonal.\n dtype: Data type specifier.\n\n Returns:\n cupy.ndarray: A 2-D array with given diagonals filled with ones and\n zeros elsewhere.\n\n .. seealso:: :func:`numpy.eye`\n\n \"\"\"\n if M is None:\n M = N\n ret = zeros((N, M), dtype)\n ret.diagonal(k)[:] = 1\n return ret\n\n\ndef identity(n, dtype=float):\n \"\"\"Returns a 2-D identity array.\n\n It is equivalent to ``eye(n, n, dtype)``.\n\n Args:\n n (int): Number of rows and columns.\n dtype: Data type specifier.\n\n Returns:\n cupy.ndarray: A 2-D identity array.\n\n .. seealso:: :func:`numpy.identity`\n\n \"\"\"\n return eye(n, dtype=dtype)\n\n\ndef ones(shape, dtype=float):\n \"\"\"Returns a new array of given shape and dtype, filled with ones.\n\n This function currently does not support ``order`` option.\n\n Args:\n shape (tuple of ints): Dimensionalities of the array.\n dtype: Data type specifier.\n\n Returns:\n cupy.ndarray: An array filled with ones.\n\n .. seealso:: :func:`numpy.ones`\n\n \"\"\"\n # TODO(beam2d): Support ordering option\n return full(shape, 1, dtype)\n\n\ndef ones_like(a, dtype=None):\n \"\"\"Returns an array of ones with same shape and dtype as a given array.\n\n This function currently does not support ``order`` and ``subok`` options.\n\n Args:\n a (cupy.ndarray): Base array.\n dtype: Data type specifier. The dtype of ``a`` is used by default.\n\n Returns:\n cupy.ndarray: An array filled with ones.\n\n .. seealso:: :func:`numpy.ones_like`\n\n \"\"\"\n # TODO(beam2d): Support ordering option\n if dtype is None:\n dtype = a.dtype\n return ones(a.shape, dtype)\n\n\ndef zeros(shape, dtype=float):\n \"\"\"Returns a new array of given shape and dtype, filled with zeros.\n\n This function currently does not support ``order`` option.\n\n Args:\n shape (tuple of ints): Dimensionalities of the array.\n dtype: Data type specifier.\n\n Returns:\n cupy.ndarray: An array filled with ones.\n\n .. seealso:: :func:`numpy.zeros`\n\n \"\"\"\n # TODO(beam2d): Support ordering option\n a = empty(shape, dtype)\n a.data.memset(0, a.nbytes)\n return a\n\n\ndef zeros_like(a, dtype=None):\n \"\"\"Returns an array of zeros with same shape and dtype as a given array.\n\n This function currently does not support ``order`` and ``subok`` options.\n\n Args:\n a (cupy.ndarray): Base array.\n dtype: Data type specifier. The dtype of ``a`` is used by default.\n\n Returns:\n cupy.ndarray: An array filled with ones.\n\n .. seealso:: :func:`numpy.zeros_like`\n\n \"\"\"\n # TODO(beam2d): Support ordering option\n if dtype is None:\n dtype = a.dtype\n return zeros(a.shape, dtype=dtype)\n\n\ndef full(shape, fill_value, dtype=None):\n \"\"\"Returns a new array of given shape and dtype, filled with a given value.\n\n This function currently does not support ``order`` option.\n\n Args:\n shape (tuple of ints): Dimensionalities of the array.\n fill_value: A scalar value to fill a new array.\n dtype: Data type specifier.\n\n Returns:\n cupy.ndarray: An array filled with ``fill_value``.\n\n .. seealso:: :func:`numpy.full`\n\n \"\"\"\n # TODO(beam2d): Support ordering option\n a = empty(shape, dtype)\n a.fill(fill_value)\n return a\n\n\ndef full_like(a, fill_value, dtype=None):\n \"\"\"Returns a full array with same shape and dtype as a given array.\n\n This function currently does not support ``order`` and ``subok`` options.\n\n Args:\n a (cupy.ndarray): Base array.\n fill_value: A scalar value to fill a new array.\n dtype: Data type specifier. The dtype of ``a`` is used by default.\n\n Returns:\n cupy.ndarray: An array filled with ``fill_value``.\n\n .. seealso:: :func:`numpy.full_like`\n\n \"\"\"\n # TODO(beam2d): Support ordering option\n if dtype is None:\n dtype = a.dtype\n return full(a.shape, fill_value, dtype)\n"},"input_ids":{"kind":"list like","value":[11748,6508,88,628,198,4299,6565,7,43358,11,288,4906,28,22468,2599,198,220,220,220,37227,35561,281,7177,1231,4238,2890,262,4847,13,628,220,220,220,770,2163,3058,857,407,1104,7559,2875,15506,3038,13,628,220,220,220,943,14542,25,198,220,220,220,220,220,220,220,5485,357,83,29291,286,493,82,2599,360,16198,871,286,262,7177,13,198,220,220,220,220,220,220,220,288,4906,25,6060,2099,1020,7483,13,628,220,220,220,16409,25,198,220,220,220,220,220,220,220,6508,88,13,358,18747,25,317,649,7177,351,4847,407,23224,13,628,220,220,220,11485,766,14508,3712,1058,20786,25,63,77,32152,13,28920,63,628,220,220,220,37227,198,220,220,220,1303,16926,46,7,40045,17,67,2599,7929,16216,3038,198,220,220,220,1441,6508,88,13,358,18747,7,43358,11,288,4906,28,67,4906,8,628,198,4299,6565,62,2339,7,64,11,288,4906,28,14202,2599,198,220,220,220,37227,35561,257,649,7177,351,976,5485,290,288,4906,286,257,1813,7177,13,628,220,220,220,770,2163,3058,857,407,1104,7559,2875,15506,290,7559,7266,482,15506,3689,13,628,220,220,220,943,14542,25,198,220,220,220,220,220,220,220,257,357,25244,88,13,358,18747,2599,7308,7177,13,198,220,220,220,220,220,220,220,288,4906,25,6060,2099,1020,7483,13,383,1366,2099,286,7559,64,15506,318,973,416,4277,13,628,220,220,220,16409,25,198,220,220,220,220,220,220,220,6508,88,13,358,18747,25,317,649,7177,351,976,5485,290,288,4906,286,7559,64,15506,351,198,220,220,220,220,220,220,220,4847,407,23224,13,628,220,220,220,11485,766,14508,3712,1058,20786,25,63,77,32152,13,28920,62,2339,63,628,220,220,220,37227,198,220,220,220,1303,16926,46,7,40045,17,67,2599,7929,16216,3038,198,220,220,220,611,288,4906,318,6045,25,198,220,220,220,220,220,220,220,288,4906,796,257,13,67,4906,198,220,220,220,1441,6565,7,64,13,43358,11,288,4906,28,67,4906,8,628,198,4299,4151,7,45,11,337,28,14202,11,479,28,15,11,288,4906,28,22468,2599,198,220,220,220,37227,35561,257,362,12,35,7177,351,3392,319,262,2566,1840,874,290,1976,27498,8057,13,628,220,220,220,943,14542,25,198,220,220,220,220,220,220,220,399,357,600,2599,7913,286,15274,13,198,220,220,220,220,220,220,220,337,357,600,2599,7913,286,15180,13,337,6624,399,416,4277,13,198,220,220,220,220,220,220,220,479,357,600,2599,12901,286,262,40039,13,12169,9217,262,1388,40039,11,198,220,220,220,220,220,220,220,220,220,220,220,257,3967,6376,281,6727,40039,11,290,257,4633,6376,257,2793,198,220,220,220,220,220,220,220,220,220,220,220,40039,13,198,220,220,220,220,220,220,220,288,4906,25,6060,2099,1020,7483,13,628,220,220,220,16409,25,198,220,220,220,220,220,220,220,6508,88,13,358,18747,25,317,362,12,35,7177,351,1813,2566,1840,874,5901,351,3392,290,198,220,220,220,220,220,220,220,1976,27498,8057,13,628,220,220,220,11485,766,14508,3712,1058,20786,25,63,77,32152,13,25379,63,628,220,220,220,37227,198,220,220,220,611,337,318,6045,25,198,220,220,220,220,220,220,220,337,796,399,198,220,220,220,1005,796,1976,27498,19510,45,11,337,828,288,4906,8,198,220,220,220,1005,13,10989,27923,7,74,38381,47715,796,352,198,220,220,220,1441,1005,628,198,4299,5369,7,77,11,288,4906,28,22468,2599,198,220,220,220,37227,35561,257,362,12,35,5369,7177,13,628,220,220,220,632,318,7548,284,7559,25379,7,77,11,299,11,288,4906,8,15506,13,628,220,220,220,943,14542,25,198,220,220,220,220,220,220,220,299,357,600,2599,7913,286,15274,290,15180,13,198,220,220,220,220,220,220,220,288,4906,25,6060,2099,1020,7483,13,628,220,220,220,16409,25,198,220,220,220,220,220,220,220,6508,88,13,358,18747,25,317,362,12,35,5369,7177,13,628,220,220,220,11485,766,14508,3712,1058,20786,25,63,77,32152,13,738,414,63,628,220,220,220,37227,198,220,220,220,1441,4151,7,77,11,288,4906,28,67,4906,8,628,198,4299,3392,7,43358,11,288,4906,28,22468,2599,198,220,220,220,37227,35561,257,649,7177,286,1813,5485,290,288,4906,11,5901,351,3392,13,628,220,220,220,770,2163,3058,857,407,1104,7559,2875,15506,3038,13,628,220,220,220,943,14542,25,198,220,220,220,220,220,220,220,5485,357,83,29291,286,493,82,2599,360,16198,871,286,262,7177,13,198,220,220,220,220,220,220,220,288,4906,25,6060,2099,1020,7483,13,628,220,220,220,16409,25,198,220,220,220,220,220,220,220,6508,88,13,358,18747,25,1052,7177,5901,351,3392,13,628,220,220,220,11485,766,14508,3712,1058,20786,25,63,77,32152,13,1952,63,628,220,220,220,37227,198,220,220,220,1303,16926,46,7,40045,17,67,2599,7929,16216,3038,198,220,220,220,1441,1336,7,43358,11,352,11,288,4906,8,628,198,4299,3392,62,2339,7,64,11,288,4906,28,14202,2599,198,220,220,220,37227,35561,281,7177,286,3392,351,976,5485,290,288,4906,355,257,1813,7177,13,628,220,220,220,770,2163,3058,857,407,1104,7559,2875,15506,290,7559,7266,482,15506,3689,13,628,220,220,220,943,14542,25,198,220,220,220,220,220,220,220,257,357,25244,88,13,358,18747,2599,7308,7177,13,198,220,220,220,220,220,220,220,288,4906,25,6060,2099,1020,7483,13,383,288,4906,286,7559,64,15506,318,973,416,4277,13,628,220,220,220,16409,25,198,220,220,220,220,220,220,220,6508,88,13,358,18747,25,1052,7177,5901,351,3392,13,628,220,220,220,11485,766,14508,3712,1058,20786,25,63,77,32152,13,1952,62,2339,63,628,220,220,220,37227,198,220,220,220,1303,16926,46,7,40045,17,67,2599,7929,16216,3038,198,220,220,220,611,288,4906,318,6045,25,198,220,220,220,220,220,220,220,288,4906,796,257,13,67,4906,198,220,220,220,1441,3392,7,64,13,43358,11,288,4906,8,628,198,4299,1976,27498,7,43358,11,288,4906,28,22468,2599,198,220,220,220,37227,35561,257,649,7177,286,1813,5485,290,288,4906,11,5901,351,1976,27498,13,628,220,220,220,770,2163,3058,857,407,1104,7559,2875,15506,3038,13,628,220,220,220,943,14542,25,198,220,220,220,220,220,220,220,5485,357,83,29291,286,493,82,2599,360,16198,871,286,262,7177,13,198,220,220,220,220,220,220,220,288,4906,25,6060,2099,1020,7483,13,628,220,220,220,16409,25,198,220,220,220,220,220,220,220,6508,88,13,358,18747,25,1052,7177,5901,351,3392,13,628,220,220,220,11485,766,14508,3712,1058,20786,25,63,77,32152,13,9107,418,63,628,220,220,220,37227,198,220,220,220,1303,16926,46,7,40045,17,67,2599,7929,16216,3038,198,220,220,220,257,796,6565,7,43358,11,288,4906,8,198,220,220,220,257,13,7890,13,11883,2617,7,15,11,257,13,77,33661,8,198,220,220,220,1441,257,628,198,4299,1976,27498,62,2339,7,64,11,288,4906,28,14202,2599,198,220,220,220,37227,35561,281,7177,286,1976,27498,351,976,5485,290,288,4906,355,257,1813,7177,13,628,220,220,220,770,2163,3058,857,407,1104,7559,2875,15506,290,7559,7266,482,15506,3689,13,628,220,220,220,943,14542,25,198,220,220,220,220,220,220,220,257,357,25244,88,13,358,18747,2599,7308,7177,13,198,220,220,220,220,220,220,220,288,4906,25,6060,2099,1020,7483,13,383,288,4906,286,7559,64,15506,318,973,416,4277,13,628,220,220,220,16409,25,198,220,220,220,220,220,220,220,6508,88,13,358,18747,25,1052,7177,5901,351,3392,13,628,220,220,220,11485,766,14508,3712,1058,20786,25,63,77,32152,13,9107,418,62,2339,63,628,220,220,220,37227,198,220,220,220,1303,16926,46,7,40045,17,67,2599,7929,16216,3038,198,220,220,220,611,288,4906,318,6045,25,198,220,220,220,220,220,220,220,288,4906,796,257,13,67,4906,198,220,220,220,1441,1976,27498,7,64,13,43358,11,288,4906,28,67,4906,8,628,198,4299,1336,7,43358,11,6070,62,8367,11,288,4906,28,14202,2599,198,220,220,220,37227,35561,257,649,7177,286,1813,5485,290,288,4906,11,5901,351,257,1813,1988,13,628,220,220,220,770,2163,3058,857,407,1104,7559,2875,15506,3038,13,628,220,220,220,943,14542,25,198,220,220,220,220,220,220,220,5485,357,83,29291,286,493,82,2599,360,16198,871,286,262,7177,13,198,220,220,220,220,220,220,220,6070,62,8367,25,317,16578,283,1988,284,6070,257,649,7177,13,198,220,220,220,220,220,220,220,288,4906,25,6060,2099,1020,7483,13,628,220,220,220,16409,25,198,220,220,220,220,220,220,220,6508,88,13,358,18747,25,1052,7177,5901,351,7559,20797,62,8367,15506,13,628,220,220,220,11485,766,14508,3712,1058,20786,25,63,77,32152,13,12853,63,628,220,220,220,37227,198,220,220,220,1303,16926,46,7,40045,17,67,2599,7929,16216,3038,198,220,220,220,257,796,6565,7,43358,11,288,4906,8,198,220,220,220,257,13,20797,7,20797,62,8367,8,198,220,220,220,1441,257,628,198,4299,1336,62,2339,7,64,11,6070,62,8367,11,288,4906,28,14202,2599,198,220,220,220,37227,35561,257,1336,7177,351,976,5485,290,288,4906,355,257,1813,7177,13,628,220,220,220,770,2163,3058,857,407,1104,7559,2875,15506,290,7559,7266,482,15506,3689,13,628,220,220,220,943,14542,25,198,220,220,220,220,220,220,220,257,357,25244,88,13,358,18747,2599,7308,7177,13,198,220,220,220,220,220,220,220,6070,62,8367,25,317,16578,283,1988,284,6070,257,649,7177,13,198,220,220,220,220,220,220,220,288,4906,25,6060,2099,1020,7483,13,383,288,4906,286,7559,64,15506,318,973,416,4277,13,628,220,220,220,16409,25,198,220,220,220,220,220,220,220,6508,88,13,358,18747,25,1052,7177,5901,351,7559,20797,62,8367,15506,13,628,220,220,220,11485,766,14508,3712,1058,20786,25,63,77,32152,13,12853,62,2339,63,628,220,220,220,37227,198,220,220,220,1303,16926,46,7,40045,17,67,2599,7929,16216,3038,198,220,220,220,611,288,4906,318,6045,25,198,220,220,220,220,220,220,220,288,4906,796,257,13,67,4906,198,220,220,220,1441,1336,7,64,13,43358,11,6070,62,8367,11,288,4906,8,198],"string":"[\n 11748,\n 6508,\n 88,\n 628,\n 198,\n 4299,\n 6565,\n 7,\n 43358,\n 11,\n 288,\n 4906,\n 28,\n 22468,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 35561,\n 281,\n 7177,\n 1231,\n 4238,\n 2890,\n 262,\n 4847,\n 13,\n 628,\n 220,\n 220,\n 220,\n 770,\n 2163,\n 3058,\n 857,\n 407,\n 1104,\n 7559,\n 2875,\n 15506,\n 3038,\n 13,\n 628,\n 220,\n 220,\n 220,\n 943,\n 14542,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 5485,\n 357,\n 83,\n 29291,\n 286,\n 493,\n 82,\n 2599,\n 360,\n 16198,\n 871,\n 286,\n 262,\n 7177,\n 13,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 288,\n 4906,\n 25,\n 6060,\n 2099,\n 1020,\n 7483,\n 13,\n 628,\n 220,\n 220,\n 220,\n 16409,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 6508,\n 88,\n 13,\n 358,\n 18747,\n 25,\n 317,\n 649,\n 7177,\n 351,\n 4847,\n 407,\n 23224,\n 13,\n 628,\n 220,\n 220,\n 220,\n 11485,\n 766,\n 14508,\n 3712,\n 1058,\n 20786,\n 25,\n 63,\n 77,\n 32152,\n 13,\n 28920,\n 63,\n 628,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 16926,\n 46,\n 7,\n 40045,\n 17,\n 67,\n 2599,\n 7929,\n 16216,\n 3038,\n 198,\n 220,\n 220,\n 220,\n 1441,\n 6508,\n 88,\n 13,\n 358,\n 18747,\n 7,\n 43358,\n 11,\n 288,\n 4906,\n 28,\n 67,\n 4906,\n 8,\n 628,\n 198,\n 4299,\n 6565,\n 62,\n 2339,\n 7,\n 64,\n 11,\n 288,\n 4906,\n 28,\n 14202,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 35561,\n 257,\n 649,\n 7177,\n 351,\n 976,\n 5485,\n 290,\n 288,\n 4906,\n 286,\n 257,\n 1813,\n 7177,\n 13,\n 628,\n 220,\n 220,\n 220,\n 770,\n 2163,\n 3058,\n 857,\n 407,\n 1104,\n 7559,\n 2875,\n 15506,\n 290,\n 7559,\n 7266,\n 482,\n 15506,\n 3689,\n 13,\n 628,\n 220,\n 220,\n 220,\n 943,\n 14542,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 257,\n 357,\n 25244,\n 88,\n 13,\n 358,\n 18747,\n 2599,\n 7308,\n 7177,\n 13,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 288,\n 4906,\n 25,\n 6060,\n 2099,\n 1020,\n 7483,\n 13,\n 383,\n 1366,\n 2099,\n 286,\n 7559,\n 64,\n 15506,\n 318,\n 973,\n 416,\n 4277,\n 13,\n 628,\n 220,\n 220,\n 220,\n 16409,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 6508,\n 88,\n 13,\n 358,\n 18747,\n 25,\n 317,\n 649,\n 7177,\n 351,\n 976,\n 5485,\n 290,\n 288,\n 4906,\n 286,\n 7559,\n 64,\n 15506,\n 351,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 4847,\n 407,\n 23224,\n 13,\n 628,\n 220,\n 220,\n 220,\n 11485,\n 766,\n 14508,\n 3712,\n 1058,\n 20786,\n 25,\n 63,\n 77,\n 32152,\n 13,\n 28920,\n 62,\n 2339,\n 63,\n 628,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 16926,\n 46,\n 7,\n 40045,\n 17,\n 67,\n 2599,\n 7929,\n 16216,\n 3038,\n 198,\n 220,\n 220,\n 220,\n 611,\n 288,\n 4906,\n 318,\n 6045,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 288,\n 4906,\n 796,\n 257,\n 13,\n 67,\n 4906,\n 198,\n 220,\n 220,\n 220,\n 1441,\n 6565,\n 7,\n 64,\n 13,\n 43358,\n 11,\n 288,\n 4906,\n 28,\n 67,\n 4906,\n 8,\n 628,\n 198,\n 4299,\n 4151,\n 7,\n 45,\n 11,\n 337,\n 28,\n 14202,\n 11,\n 479,\n 28,\n 15,\n 11,\n 288,\n 4906,\n 28,\n 22468,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 35561,\n 257,\n 362,\n 12,\n 35,\n 7177,\n 351,\n 3392,\n 319,\n 262,\n 2566,\n 1840,\n 874,\n 290,\n 1976,\n 27498,\n 8057,\n 13,\n 628,\n 220,\n 220,\n 220,\n 943,\n 14542,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 399,\n 357,\n 600,\n 2599,\n 7913,\n 286,\n 15274,\n 13,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 337,\n 357,\n 600,\n 2599,\n 7913,\n 286,\n 15180,\n 13,\n 337,\n 6624,\n 399,\n 416,\n 4277,\n 13,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 479,\n 357,\n 600,\n 2599,\n 12901,\n 286,\n 262,\n 40039,\n 13,\n 12169,\n 9217,\n 262,\n 1388,\n 40039,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 257,\n 3967,\n 6376,\n 281,\n 6727,\n 40039,\n 11,\n 290,\n 257,\n 4633,\n 6376,\n 257,\n 2793,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 40039,\n 13,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 288,\n 4906,\n 25,\n 6060,\n 2099,\n 1020,\n 7483,\n 13,\n 628,\n 220,\n 220,\n 220,\n 16409,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 6508,\n 88,\n 13,\n 358,\n 18747,\n 25,\n 317,\n 362,\n 12,\n 35,\n 7177,\n 351,\n 1813,\n 2566,\n 1840,\n 874,\n 5901,\n 351,\n 3392,\n 290,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1976,\n 27498,\n 8057,\n 13,\n 628,\n 220,\n 220,\n 220,\n 11485,\n 766,\n 14508,\n 3712,\n 1058,\n 20786,\n 25,\n 63,\n 77,\n 32152,\n 13,\n 25379,\n 63,\n 628,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 611,\n 337,\n 318,\n 6045,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 337,\n 796,\n 399,\n 198,\n 220,\n 220,\n 220,\n 1005,\n 796,\n 1976,\n 27498,\n 19510,\n 45,\n 11,\n 337,\n 828,\n 288,\n 4906,\n 8,\n 198,\n 220,\n 220,\n 220,\n 1005,\n 13,\n 10989,\n 27923,\n 7,\n 74,\n 38381,\n 47715,\n 796,\n 352,\n 198,\n 220,\n 220,\n 220,\n 1441,\n 1005,\n 628,\n 198,\n 4299,\n 5369,\n 7,\n 77,\n 11,\n 288,\n 4906,\n 28,\n 22468,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 35561,\n 257,\n 362,\n 12,\n 35,\n 5369,\n 7177,\n 13,\n 628,\n 220,\n 220,\n 220,\n 632,\n 318,\n 7548,\n 284,\n 7559,\n 25379,\n 7,\n 77,\n 11,\n 299,\n 11,\n 288,\n 4906,\n 8,\n 15506,\n 13,\n 628,\n 220,\n 220,\n 220,\n 943,\n 14542,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 299,\n 357,\n 600,\n 2599,\n 7913,\n 286,\n 15274,\n 290,\n 15180,\n 13,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 288,\n 4906,\n 25,\n 6060,\n 2099,\n 1020,\n 7483,\n 13,\n 628,\n 220,\n 220,\n 220,\n 16409,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 6508,\n 88,\n 13,\n 358,\n 18747,\n 25,\n 317,\n 362,\n 12,\n 35,\n 5369,\n 7177,\n 13,\n 628,\n 220,\n 220,\n 220,\n 11485,\n 766,\n 14508,\n 3712,\n 1058,\n 20786,\n 25,\n 63,\n 77,\n 32152,\n 13,\n 738,\n 414,\n 63,\n 628,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 1441,\n 4151,\n 7,\n 77,\n 11,\n 288,\n 4906,\n 28,\n 67,\n 4906,\n 8,\n 628,\n 198,\n 4299,\n 3392,\n 7,\n 43358,\n 11,\n 288,\n 4906,\n 28,\n 22468,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 35561,\n 257,\n 649,\n 7177,\n 286,\n 1813,\n 5485,\n 290,\n 288,\n 4906,\n 11,\n 5901,\n 351,\n 3392,\n 13,\n 628,\n 220,\n 220,\n 220,\n 770,\n 2163,\n 3058,\n 857,\n 407,\n 1104,\n 7559,\n 2875,\n 15506,\n 3038,\n 13,\n 628,\n 220,\n 220,\n 220,\n 943,\n 14542,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 5485,\n 357,\n 83,\n 29291,\n 286,\n 493,\n 82,\n 2599,\n 360,\n 16198,\n 871,\n 286,\n 262,\n 7177,\n 13,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 288,\n 4906,\n 25,\n 6060,\n 2099,\n 1020,\n 7483,\n 13,\n 628,\n 220,\n 220,\n 220,\n 16409,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 6508,\n 88,\n 13,\n 358,\n 18747,\n 25,\n 1052,\n 7177,\n 5901,\n 351,\n 3392,\n 13,\n 628,\n 220,\n 220,\n 220,\n 11485,\n 766,\n 14508,\n 3712,\n 1058,\n 20786,\n 25,\n 63,\n 77,\n 32152,\n 13,\n 1952,\n 63,\n 628,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 16926,\n 46,\n 7,\n 40045,\n 17,\n 67,\n 2599,\n 7929,\n 16216,\n 3038,\n 198,\n 220,\n 220,\n 220,\n 1441,\n 1336,\n 7,\n 43358,\n 11,\n 352,\n 11,\n 288,\n 4906,\n 8,\n 628,\n 198,\n 4299,\n 3392,\n 62,\n 2339,\n 7,\n 64,\n 11,\n 288,\n 4906,\n 28,\n 14202,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 35561,\n 281,\n 7177,\n 286,\n 3392,\n 351,\n 976,\n 5485,\n 290,\n 288,\n 4906,\n 355,\n 257,\n 1813,\n 7177,\n 13,\n 628,\n 220,\n 220,\n 220,\n 770,\n 2163,\n 3058,\n 857,\n 407,\n 1104,\n 7559,\n 2875,\n 15506,\n 290,\n 7559,\n 7266,\n 482,\n 15506,\n 3689,\n 13,\n 628,\n 220,\n 220,\n 220,\n 943,\n 14542,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 257,\n 357,\n 25244,\n 88,\n 13,\n 358,\n 18747,\n 2599,\n 7308,\n 7177,\n 13,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 288,\n 4906,\n 25,\n 6060,\n 2099,\n 1020,\n 7483,\n 13,\n 383,\n 288,\n 4906,\n 286,\n 7559,\n 64,\n 15506,\n 318,\n 973,\n 416,\n 4277,\n 13,\n 628,\n 220,\n 220,\n 220,\n 16409,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 6508,\n 88,\n 13,\n 358,\n 18747,\n 25,\n 1052,\n 7177,\n 5901,\n 351,\n 3392,\n 13,\n 628,\n 220,\n 220,\n 220,\n 11485,\n 766,\n 14508,\n 3712,\n 1058,\n 20786,\n 25,\n 63,\n 77,\n 32152,\n 13,\n 1952,\n 62,\n 2339,\n 63,\n 628,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 16926,\n 46,\n 7,\n 40045,\n 17,\n 67,\n 2599,\n 7929,\n 16216,\n 3038,\n 198,\n 220,\n 220,\n 220,\n 611,\n 288,\n 4906,\n 318,\n 6045,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 288,\n 4906,\n 796,\n 257,\n 13,\n 67,\n 4906,\n 198,\n 220,\n 220,\n 220,\n 1441,\n 3392,\n 7,\n 64,\n 13,\n 43358,\n 11,\n 288,\n 4906,\n 8,\n 628,\n 198,\n 4299,\n 1976,\n 27498,\n 7,\n 43358,\n 11,\n 288,\n 4906,\n 28,\n 22468,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 35561,\n 257,\n 649,\n 7177,\n 286,\n 1813,\n 5485,\n 290,\n 288,\n 4906,\n 11,\n 5901,\n 351,\n 1976,\n 27498,\n 13,\n 628,\n 220,\n 220,\n 220,\n 770,\n 2163,\n 3058,\n 857,\n 407,\n 1104,\n 7559,\n 2875,\n 15506,\n 3038,\n 13,\n 628,\n 220,\n 220,\n 220,\n 943,\n 14542,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 5485,\n 357,\n 83,\n 29291,\n 286,\n 493,\n 82,\n 2599,\n 360,\n 16198,\n 871,\n 286,\n 262,\n 7177,\n 13,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 288,\n 4906,\n 25,\n 6060,\n 2099,\n 1020,\n 7483,\n 13,\n 628,\n 220,\n 220,\n 220,\n 16409,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 6508,\n 88,\n 13,\n 358,\n 18747,\n 25,\n 1052,\n 7177,\n 5901,\n 351,\n 3392,\n 13,\n 628,\n 220,\n 220,\n 220,\n 11485,\n 766,\n 14508,\n 3712,\n 1058,\n 20786,\n 25,\n 63,\n 77,\n 32152,\n 13,\n 9107,\n 418,\n 63,\n 628,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 16926,\n 46,\n 7,\n 40045,\n 17,\n 67,\n 2599,\n 7929,\n 16216,\n 3038,\n 198,\n 220,\n 220,\n 220,\n 257,\n 796,\n 6565,\n 7,\n 43358,\n 11,\n 288,\n 4906,\n 8,\n 198,\n 220,\n 220,\n 220,\n 257,\n 13,\n 7890,\n 13,\n 11883,\n 2617,\n 7,\n 15,\n 11,\n 257,\n 13,\n 77,\n 33661,\n 8,\n 198,\n 220,\n 220,\n 220,\n 1441,\n 257,\n 628,\n 198,\n 4299,\n 1976,\n 27498,\n 62,\n 2339,\n 7,\n 64,\n 11,\n 288,\n 4906,\n 28,\n 14202,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 35561,\n 281,\n 7177,\n 286,\n 1976,\n 27498,\n 351,\n 976,\n 5485,\n 290,\n 288,\n 4906,\n 355,\n 257,\n 1813,\n 7177,\n 13,\n 628,\n 220,\n 220,\n 220,\n 770,\n 2163,\n 3058,\n 857,\n 407,\n 1104,\n 7559,\n 2875,\n 15506,\n 290,\n 7559,\n 7266,\n 482,\n 15506,\n 3689,\n 13,\n 628,\n 220,\n 220,\n 220,\n 943,\n 14542,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 257,\n 357,\n 25244,\n 88,\n 13,\n 358,\n 18747,\n 2599,\n 7308,\n 7177,\n 13,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 288,\n 4906,\n 25,\n 6060,\n 2099,\n 1020,\n 7483,\n 13,\n 383,\n 288,\n 4906,\n 286,\n 7559,\n 64,\n 15506,\n 318,\n 973,\n 416,\n 4277,\n 13,\n 628,\n 220,\n 220,\n 220,\n 16409,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 6508,\n 88,\n 13,\n 358,\n 18747,\n 25,\n 1052,\n 7177,\n 5901,\n 351,\n 3392,\n 13,\n 628,\n 220,\n 220,\n 220,\n 11485,\n 766,\n 14508,\n 3712,\n 1058,\n 20786,\n 25,\n 63,\n 77,\n 32152,\n 13,\n 9107,\n 418,\n 62,\n 2339,\n 63,\n 628,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 16926,\n 46,\n 7,\n 40045,\n 17,\n 67,\n 2599,\n 7929,\n 16216,\n 3038,\n 198,\n 220,\n 220,\n 220,\n 611,\n 288,\n 4906,\n 318,\n 6045,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 288,\n 4906,\n 796,\n 257,\n 13,\n 67,\n 4906,\n 198,\n 220,\n 220,\n 220,\n 1441,\n 1976,\n 27498,\n 7,\n 64,\n 13,\n 43358,\n 11,\n 288,\n 4906,\n 28,\n 67,\n 4906,\n 8,\n 628,\n 198,\n 4299,\n 1336,\n 7,\n 43358,\n 11,\n 6070,\n 62,\n 8367,\n 11,\n 288,\n 4906,\n 28,\n 14202,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 35561,\n 257,\n 649,\n 7177,\n 286,\n 1813,\n 5485,\n 290,\n 288,\n 4906,\n 11,\n 5901,\n 351,\n 257,\n 1813,\n 1988,\n 13,\n 628,\n 220,\n 220,\n 220,\n 770,\n 2163,\n 3058,\n 857,\n 407,\n 1104,\n 7559,\n 2875,\n 15506,\n 3038,\n 13,\n 628,\n 220,\n 220,\n 220,\n 943,\n 14542,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 5485,\n 357,\n 83,\n 29291,\n 286,\n 493,\n 82,\n 2599,\n 360,\n 16198,\n 871,\n 286,\n 262,\n 7177,\n 13,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 6070,\n 62,\n 8367,\n 25,\n 317,\n 16578,\n 283,\n 1988,\n 284,\n 6070,\n 257,\n 649,\n 7177,\n 13,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 288,\n 4906,\n 25,\n 6060,\n 2099,\n 1020,\n 7483,\n 13,\n 628,\n 220,\n 220,\n 220,\n 16409,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 6508,\n 88,\n 13,\n 358,\n 18747,\n 25,\n 1052,\n 7177,\n 5901,\n 351,\n 7559,\n 20797,\n 62,\n 8367,\n 15506,\n 13,\n 628,\n 220,\n 220,\n 220,\n 11485,\n 766,\n 14508,\n 3712,\n 1058,\n 20786,\n 25,\n 63,\n 77,\n 32152,\n 13,\n 12853,\n 63,\n 628,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 16926,\n 46,\n 7,\n 40045,\n 17,\n 67,\n 2599,\n 7929,\n 16216,\n 3038,\n 198,\n 220,\n 220,\n 220,\n 257,\n 796,\n 6565,\n 7,\n 43358,\n 11,\n 288,\n 4906,\n 8,\n 198,\n 220,\n 220,\n 220,\n 257,\n 13,\n 20797,\n 7,\n 20797,\n 62,\n 8367,\n 8,\n 198,\n 220,\n 220,\n 220,\n 1441,\n 257,\n 628,\n 198,\n 4299,\n 1336,\n 62,\n 2339,\n 7,\n 64,\n 11,\n 6070,\n 62,\n 8367,\n 11,\n 288,\n 4906,\n 28,\n 14202,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 35561,\n 257,\n 1336,\n 7177,\n 351,\n 976,\n 5485,\n 290,\n 288,\n 4906,\n 355,\n 257,\n 1813,\n 7177,\n 13,\n 628,\n 220,\n 220,\n 220,\n 770,\n 2163,\n 3058,\n 857,\n 407,\n 1104,\n 7559,\n 2875,\n 15506,\n 290,\n 7559,\n 7266,\n 482,\n 15506,\n 3689,\n 13,\n 628,\n 220,\n 220,\n 220,\n 943,\n 14542,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 257,\n 357,\n 25244,\n 88,\n 13,\n 358,\n 18747,\n 2599,\n 7308,\n 7177,\n 13,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 6070,\n 62,\n 8367,\n 25,\n 317,\n 16578,\n 283,\n 1988,\n 284,\n 6070,\n 257,\n 649,\n 7177,\n 13,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 288,\n 4906,\n 25,\n 6060,\n 2099,\n 1020,\n 7483,\n 13,\n 383,\n 288,\n 4906,\n 286,\n 7559,\n 64,\n 15506,\n 318,\n 973,\n 416,\n 4277,\n 13,\n 628,\n 220,\n 220,\n 220,\n 16409,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 6508,\n 88,\n 13,\n 358,\n 18747,\n 25,\n 1052,\n 7177,\n 5901,\n 351,\n 7559,\n 20797,\n 62,\n 8367,\n 15506,\n 13,\n 628,\n 220,\n 220,\n 220,\n 11485,\n 766,\n 14508,\n 3712,\n 1058,\n 20786,\n 25,\n 63,\n 77,\n 32152,\n 13,\n 12853,\n 62,\n 2339,\n 63,\n 628,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 16926,\n 46,\n 7,\n 40045,\n 17,\n 67,\n 2599,\n 7929,\n 16216,\n 3038,\n 198,\n 220,\n 220,\n 220,\n 611,\n 288,\n 4906,\n 318,\n 6045,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 288,\n 4906,\n 796,\n 257,\n 13,\n 67,\n 4906,\n 198,\n 220,\n 220,\n 220,\n 1441,\n 1336,\n 7,\n 64,\n 13,\n 43358,\n 11,\n 6070,\n 62,\n 8367,\n 11,\n 288,\n 4906,\n 8,\n 198\n]"},"ratio_char_token":{"kind":"number","value":2.563593380614657,"string":"2.563593"},"token_count":{"kind":"number","value":2115,"string":"2,115"}}},{"rowIdx":2479,"cells":{"content":{"kind":"string","value":"from __future__ import absolute_import\nfrom __future__ import division\nfrom __future__ import print_function\n\nimport logging\nimport argparse\nimport json\nfrom functools import reduce\n\nimport tensorflow as tf\n\n\nfrom tensorflow.python.lib.io.file_io import FileIO # pylint: disable=E0611\n\nfrom sciencebeam_gym.trainer.data.examples import (\n get_matching_files,\n read_examples\n)\n\nfrom sciencebeam_gym.preprocess.color_map import (\n parse_color_map_from_file\n)\n\nfrom sciencebeam_gym.tools.calculate_class_weights import (\n tf_calculate_efnet_weights_for_frequency_by_label\n)\n\nfrom sciencebeam_gym.trainer.models.pix2pix.tf_utils import (\n find_nearest_centroid_indices\n)\n\nfrom sciencebeam_gym.preprocess.preprocessing_utils import (\n parse_page_range\n)\n\nfrom sciencebeam_gym.trainer.models.pix2pix.pix2pix_core import (\n BaseLoss,\n ALL_BASE_LOSS,\n create_pix2pix_model,\n create_other_summaries\n)\n\nfrom sciencebeam_gym.trainer.models.pix2pix.evaluate import (\n evaluate_separate_channels,\n evaluate_predictions,\n evaluation_summary\n)\n\nfrom sciencebeam_gym.model_utils.channels import (\n calculate_color_masks\n)\n\n\nUNKNOWN_COLOR = (255, 255, 255)\nUNKNOWN_LABEL = 'unknown'\n\nDEFAULT_UNKNOWN_CLASS_WEIGHT = 0.1\n\n\n\n\nclass GraphReferences(object):\n \"\"\"Holder of base tensors used for training model using common task.\"\"\"\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\ndef create_model(argv=None):\n \"\"\"Factory method that creates model to be used by generic task.py.\"\"\"\n parser = model_args_parser()\n args, task_args = parser.parse_known_args(argv)\n return Model(args), task_args\n"},"input_ids":{"kind":"list like","value":[6738,11593,37443,834,1330,4112,62,11748,198,6738,11593,37443,834,1330,7297,198,6738,11593,37443,834,1330,3601,62,8818,198,198,11748,18931,198,11748,1822,29572,198,11748,33918,198,6738,1257,310,10141,1330,4646,198,198,11748,11192,273,11125,355,48700,628,198,6738,11192,273,11125,13,29412,13,8019,13,952,13,7753,62,952,1330,9220,9399,220,1303,279,2645,600,25,15560,28,36,3312,1157,198,198,6738,3783,40045,62,1360,76,13,2213,10613,13,7890,13,1069,12629,1330,357,198,220,220,220,651,62,15699,278,62,16624,11,198,220,220,220,1100,62,1069,12629,198,8,198,198,6738,3783,40045,62,1360,76,13,3866,14681,13,8043,62,8899,1330,357,198,220,220,220,21136,62,8043,62,8899,62,6738,62,7753,198,8,198,198,6738,3783,40045,62,1360,76,13,31391,13,9948,3129,378,62,4871,62,43775,1330,357,198,220,220,220,48700,62,9948,3129,378,62,891,3262,62,43775,62,1640,62,35324,62,1525,62,18242,198,8,198,198,6738,3783,40045,62,1360,76,13,2213,10613,13,27530,13,79,844,17,79,844,13,27110,62,26791,1330,357,198,220,220,220,1064,62,710,12423,62,1087,3882,62,521,1063,198,8,198,198,6738,3783,40045,62,1360,76,13,3866,14681,13,3866,36948,62,26791,1330,357,198,220,220,220,21136,62,7700,62,9521,198,8,198,198,6738,3783,40045,62,1360,76,13,2213,10613,13,27530,13,79,844,17,79,844,13,79,844,17,79,844,62,7295,1330,357,198,220,220,220,7308,43,793,11,198,220,220,220,11096,62,33,11159,62,43,18420,11,198,220,220,220,2251,62,79,844,17,79,844,62,19849,11,198,220,220,220,2251,62,847,62,82,13929,3166,198,8,198,198,6738,3783,40045,62,1360,76,13,2213,10613,13,27530,13,79,844,17,79,844,13,49786,1330,357,198,220,220,220,13446,62,25512,378,62,354,8961,11,198,220,220,220,13446,62,28764,9278,11,198,220,220,220,12660,62,49736,198,8,198,198,6738,3783,40045,62,1360,76,13,19849,62,26791,13,354,8961,1330,357,198,220,220,220,15284,62,8043,62,5356,591,198,8,628,198,4944,44706,62,46786,796,357,13381,11,14280,11,14280,8,198,4944,44706,62,48780,3698,796,705,34680,6,198,198,7206,38865,62,4944,44706,62,31631,62,8845,9947,796,657,13,16,628,628,198,4871,29681,19927,7,15252,2599,198,220,220,220,37227,39,19892,286,2779,11192,669,973,329,3047,2746,1262,2219,4876,526,15931,628,628,628,628,628,628,628,628,628,628,628,198,198,4299,2251,62,19849,7,853,85,28,14202,2599,198,220,220,220,37227,22810,2446,326,8075,2746,284,307,973,416,14276,4876,13,9078,526,15931,198,220,220,220,30751,796,2746,62,22046,62,48610,3419,198,220,220,220,26498,11,4876,62,22046,796,30751,13,29572,62,4002,62,22046,7,853,85,8,198,220,220,220,1441,9104,7,22046,828,4876,62,22046,198],"string":"[\n 6738,\n 11593,\n 37443,\n 834,\n 1330,\n 4112,\n 62,\n 11748,\n 198,\n 6738,\n 11593,\n 37443,\n 834,\n 1330,\n 7297,\n 198,\n 6738,\n 11593,\n 37443,\n 834,\n 1330,\n 3601,\n 62,\n 8818,\n 198,\n 198,\n 11748,\n 18931,\n 198,\n 11748,\n 1822,\n 29572,\n 198,\n 11748,\n 33918,\n 198,\n 6738,\n 1257,\n 310,\n 10141,\n 1330,\n 4646,\n 198,\n 198,\n 11748,\n 11192,\n 273,\n 11125,\n 355,\n 48700,\n 628,\n 198,\n 6738,\n 11192,\n 273,\n 11125,\n 13,\n 29412,\n 13,\n 8019,\n 13,\n 952,\n 13,\n 7753,\n 62,\n 952,\n 1330,\n 9220,\n 9399,\n 220,\n 1303,\n 279,\n 2645,\n 600,\n 25,\n 15560,\n 28,\n 36,\n 3312,\n 1157,\n 198,\n 198,\n 6738,\n 3783,\n 40045,\n 62,\n 1360,\n 76,\n 13,\n 2213,\n 10613,\n 13,\n 7890,\n 13,\n 1069,\n 12629,\n 1330,\n 357,\n 198,\n 220,\n 220,\n 220,\n 651,\n 62,\n 15699,\n 278,\n 62,\n 16624,\n 11,\n 198,\n 220,\n 220,\n 220,\n 1100,\n 62,\n 1069,\n 12629,\n 198,\n 8,\n 198,\n 198,\n 6738,\n 3783,\n 40045,\n 62,\n 1360,\n 76,\n 13,\n 3866,\n 14681,\n 13,\n 8043,\n 62,\n 8899,\n 1330,\n 357,\n 198,\n 220,\n 220,\n 220,\n 21136,\n 62,\n 8043,\n 62,\n 8899,\n 62,\n 6738,\n 62,\n 7753,\n 198,\n 8,\n 198,\n 198,\n 6738,\n 3783,\n 40045,\n 62,\n 1360,\n 76,\n 13,\n 31391,\n 13,\n 9948,\n 3129,\n 378,\n 62,\n 4871,\n 62,\n 43775,\n 1330,\n 357,\n 198,\n 220,\n 220,\n 220,\n 48700,\n 62,\n 9948,\n 3129,\n 378,\n 62,\n 891,\n 3262,\n 62,\n 43775,\n 62,\n 1640,\n 62,\n 35324,\n 62,\n 1525,\n 62,\n 18242,\n 198,\n 8,\n 198,\n 198,\n 6738,\n 3783,\n 40045,\n 62,\n 1360,\n 76,\n 13,\n 2213,\n 10613,\n 13,\n 27530,\n 13,\n 79,\n 844,\n 17,\n 79,\n 844,\n 13,\n 27110,\n 62,\n 26791,\n 1330,\n 357,\n 198,\n 220,\n 220,\n 220,\n 1064,\n 62,\n 710,\n 12423,\n 62,\n 1087,\n 3882,\n 62,\n 521,\n 1063,\n 198,\n 8,\n 198,\n 198,\n 6738,\n 3783,\n 40045,\n 62,\n 1360,\n 76,\n 13,\n 3866,\n 14681,\n 13,\n 3866,\n 36948,\n 62,\n 26791,\n 1330,\n 357,\n 198,\n 220,\n 220,\n 220,\n 21136,\n 62,\n 7700,\n 62,\n 9521,\n 198,\n 8,\n 198,\n 198,\n 6738,\n 3783,\n 40045,\n 62,\n 1360,\n 76,\n 13,\n 2213,\n 10613,\n 13,\n 27530,\n 13,\n 79,\n 844,\n 17,\n 79,\n 844,\n 13,\n 79,\n 844,\n 17,\n 79,\n 844,\n 62,\n 7295,\n 1330,\n 357,\n 198,\n 220,\n 220,\n 220,\n 7308,\n 43,\n 793,\n 11,\n 198,\n 220,\n 220,\n 220,\n 11096,\n 62,\n 33,\n 11159,\n 62,\n 43,\n 18420,\n 11,\n 198,\n 220,\n 220,\n 220,\n 2251,\n 62,\n 79,\n 844,\n 17,\n 79,\n 844,\n 62,\n 19849,\n 11,\n 198,\n 220,\n 220,\n 220,\n 2251,\n 62,\n 847,\n 62,\n 82,\n 13929,\n 3166,\n 198,\n 8,\n 198,\n 198,\n 6738,\n 3783,\n 40045,\n 62,\n 1360,\n 76,\n 13,\n 2213,\n 10613,\n 13,\n 27530,\n 13,\n 79,\n 844,\n 17,\n 79,\n 844,\n 13,\n 49786,\n 1330,\n 357,\n 198,\n 220,\n 220,\n 220,\n 13446,\n 62,\n 25512,\n 378,\n 62,\n 354,\n 8961,\n 11,\n 198,\n 220,\n 220,\n 220,\n 13446,\n 62,\n 28764,\n 9278,\n 11,\n 198,\n 220,\n 220,\n 220,\n 12660,\n 62,\n 49736,\n 198,\n 8,\n 198,\n 198,\n 6738,\n 3783,\n 40045,\n 62,\n 1360,\n 76,\n 13,\n 19849,\n 62,\n 26791,\n 13,\n 354,\n 8961,\n 1330,\n 357,\n 198,\n 220,\n 220,\n 220,\n 15284,\n 62,\n 8043,\n 62,\n 5356,\n 591,\n 198,\n 8,\n 628,\n 198,\n 4944,\n 44706,\n 62,\n 46786,\n 796,\n 357,\n 13381,\n 11,\n 14280,\n 11,\n 14280,\n 8,\n 198,\n 4944,\n 44706,\n 62,\n 48780,\n 3698,\n 796,\n 705,\n 34680,\n 6,\n 198,\n 198,\n 7206,\n 38865,\n 62,\n 4944,\n 44706,\n 62,\n 31631,\n 62,\n 8845,\n 9947,\n 796,\n 657,\n 13,\n 16,\n 628,\n 628,\n 198,\n 4871,\n 29681,\n 19927,\n 7,\n 15252,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 39,\n 19892,\n 286,\n 2779,\n 11192,\n 669,\n 973,\n 329,\n 3047,\n 2746,\n 1262,\n 2219,\n 4876,\n 526,\n 15931,\n 628,\n 628,\n 628,\n 628,\n 628,\n 628,\n 628,\n 628,\n 628,\n 628,\n 628,\n 198,\n 198,\n 4299,\n 2251,\n 62,\n 19849,\n 7,\n 853,\n 85,\n 28,\n 14202,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 22810,\n 2446,\n 326,\n 8075,\n 2746,\n 284,\n 307,\n 973,\n 416,\n 14276,\n 4876,\n 13,\n 9078,\n 526,\n 15931,\n 198,\n 220,\n 220,\n 220,\n 30751,\n 796,\n 2746,\n 62,\n 22046,\n 62,\n 48610,\n 3419,\n 198,\n 220,\n 220,\n 220,\n 26498,\n 11,\n 4876,\n 62,\n 22046,\n 796,\n 30751,\n 13,\n 29572,\n 62,\n 4002,\n 62,\n 22046,\n 7,\n 853,\n 85,\n 8,\n 198,\n 220,\n 220,\n 220,\n 1441,\n 9104,\n 7,\n 22046,\n 828,\n 4876,\n 62,\n 22046,\n 198\n]"},"ratio_char_token":{"kind":"number","value":2.757314974182444,"string":"2.757315"},"token_count":{"kind":"number","value":581,"string":"581"}}},{"rowIdx":2480,"cells":{"content":{"kind":"string","value":"import aiohttp.web\nfrom functools import wraps\nimport logging\nfrom typing import Callable\nimport json\nimport dataclasses\n\nimport ray\nimport ray.dashboard.utils as dashboard_utils\nfrom ray._private.job_manager import JobManager\nfrom ray._private.runtime_env.packaging import (package_exists,\n upload_package_to_gcs)\nfrom ray.dashboard.modules.job.data_types import (\n GetPackageResponse, JobStatus, JobSubmitRequest, JobSubmitResponse,\n JobStatusResponse, JobLogsResponse)\n\nlogger = logging.getLogger(__name__)\nroutes = dashboard_utils.ClassMethodRouteTable\n\nRAY_INTERNAL_JOBS_NAMESPACE = \"_ray_internal_jobs_\"\n\nJOBS_API_PREFIX = \"/api/jobs/\"\nJOBS_API_ROUTE_LOGS = JOBS_API_PREFIX + \"logs\"\nJOBS_API_ROUTE_SUBMIT = JOBS_API_PREFIX + \"submit\"\nJOBS_API_ROUTE_STATUS = JOBS_API_PREFIX + \"status\"\nJOBS_API_ROUTE_PACKAGE = JOBS_API_PREFIX + \"package\"\n\n\n"},"input_ids":{"kind":"list like","value":[11748,257,952,4023,13,12384,198,6738,1257,310,10141,1330,27521,198,11748,18931,198,6738,19720,1330,4889,540,198,11748,33918,198,11748,4818,330,28958,198,198,11748,26842,198,11748,26842,13,42460,3526,13,26791,355,30415,62,26791,198,6738,26842,13557,19734,13,21858,62,37153,1330,15768,13511,198,6738,26842,13557,19734,13,43282,62,24330,13,8002,3039,1330,357,26495,62,1069,1023,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,9516,62,26495,62,1462,62,70,6359,8,198,6738,26842,13,42460,3526,13,18170,13,21858,13,7890,62,19199,1330,357,198,220,220,220,3497,27813,31077,11,15768,19580,11,15768,45135,18453,11,15768,45135,31077,11,198,220,220,220,15768,19580,31077,11,15768,11187,82,31077,8,198,198,6404,1362,796,18931,13,1136,11187,1362,7,834,3672,834,8,198,81,448,274,796,30415,62,26791,13,9487,17410,43401,10962,198,198,30631,62,1268,31800,1847,62,45006,4462,62,45,29559,47,11598,796,45434,2433,62,32538,62,43863,62,1,198,198,45006,4462,62,17614,62,47,31688,10426,796,12813,15042,14,43863,30487,198,45006,4462,62,17614,62,49,2606,9328,62,25294,50,796,32357,4462,62,17614,62,47,31688,10426,1343,366,6404,82,1,198,45006,4462,62,17614,62,49,2606,9328,62,50,10526,36393,796,32357,4462,62,17614,62,47,31688,10426,1343,366,46002,1,198,45006,4462,62,17614,62,49,2606,9328,62,35744,2937,796,32357,4462,62,17614,62,47,31688,10426,1343,366,13376,1,198,45006,4462,62,17614,62,49,2606,9328,62,47,8120,11879,796,32357,4462,62,17614,62,47,31688,10426,1343,366,26495,1,628,198],"string":"[\n 11748,\n 257,\n 952,\n 4023,\n 13,\n 12384,\n 198,\n 6738,\n 1257,\n 310,\n 10141,\n 1330,\n 27521,\n 198,\n 11748,\n 18931,\n 198,\n 6738,\n 19720,\n 1330,\n 4889,\n 540,\n 198,\n 11748,\n 33918,\n 198,\n 11748,\n 4818,\n 330,\n 28958,\n 198,\n 198,\n 11748,\n 26842,\n 198,\n 11748,\n 26842,\n 13,\n 42460,\n 3526,\n 13,\n 26791,\n 355,\n 30415,\n 62,\n 26791,\n 198,\n 6738,\n 26842,\n 13557,\n 19734,\n 13,\n 21858,\n 62,\n 37153,\n 1330,\n 15768,\n 13511,\n 198,\n 6738,\n 26842,\n 13557,\n 19734,\n 13,\n 43282,\n 62,\n 24330,\n 13,\n 8002,\n 3039,\n 1330,\n 357,\n 26495,\n 62,\n 1069,\n 1023,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 9516,\n 62,\n 26495,\n 62,\n 1462,\n 62,\n 70,\n 6359,\n 8,\n 198,\n 6738,\n 26842,\n 13,\n 42460,\n 3526,\n 13,\n 18170,\n 13,\n 21858,\n 13,\n 7890,\n 62,\n 19199,\n 1330,\n 357,\n 198,\n 220,\n 220,\n 220,\n 3497,\n 27813,\n 31077,\n 11,\n 15768,\n 19580,\n 11,\n 15768,\n 45135,\n 18453,\n 11,\n 15768,\n 45135,\n 31077,\n 11,\n 198,\n 220,\n 220,\n 220,\n 15768,\n 19580,\n 31077,\n 11,\n 15768,\n 11187,\n 82,\n 31077,\n 8,\n 198,\n 198,\n 6404,\n 1362,\n 796,\n 18931,\n 13,\n 1136,\n 11187,\n 1362,\n 7,\n 834,\n 3672,\n 834,\n 8,\n 198,\n 81,\n 448,\n 274,\n 796,\n 30415,\n 62,\n 26791,\n 13,\n 9487,\n 17410,\n 43401,\n 10962,\n 198,\n 198,\n 30631,\n 62,\n 1268,\n 31800,\n 1847,\n 62,\n 45006,\n 4462,\n 62,\n 45,\n 29559,\n 47,\n 11598,\n 796,\n 45434,\n 2433,\n 62,\n 32538,\n 62,\n 43863,\n 62,\n 1,\n 198,\n 198,\n 45006,\n 4462,\n 62,\n 17614,\n 62,\n 47,\n 31688,\n 10426,\n 796,\n 12813,\n 15042,\n 14,\n 43863,\n 30487,\n 198,\n 45006,\n 4462,\n 62,\n 17614,\n 62,\n 49,\n 2606,\n 9328,\n 62,\n 25294,\n 50,\n 796,\n 32357,\n 4462,\n 62,\n 17614,\n 62,\n 47,\n 31688,\n 10426,\n 1343,\n 366,\n 6404,\n 82,\n 1,\n 198,\n 45006,\n 4462,\n 62,\n 17614,\n 62,\n 49,\n 2606,\n 9328,\n 62,\n 50,\n 10526,\n 36393,\n 796,\n 32357,\n 4462,\n 62,\n 17614,\n 62,\n 47,\n 31688,\n 10426,\n 1343,\n 366,\n 46002,\n 1,\n 198,\n 45006,\n 4462,\n 62,\n 17614,\n 62,\n 49,\n 2606,\n 9328,\n 62,\n 35744,\n 2937,\n 796,\n 32357,\n 4462,\n 62,\n 17614,\n 62,\n 47,\n 31688,\n 10426,\n 1343,\n 366,\n 13376,\n 1,\n 198,\n 45006,\n 4462,\n 62,\n 17614,\n 62,\n 49,\n 2606,\n 9328,\n 62,\n 47,\n 8120,\n 11879,\n 796,\n 32357,\n 4462,\n 62,\n 17614,\n 62,\n 47,\n 31688,\n 10426,\n 1343,\n 366,\n 26495,\n 1,\n 628,\n 198\n]"},"ratio_char_token":{"kind":"number","value":2.5323943661971833,"string":"2.532394"},"token_count":{"kind":"number","value":355,"string":"355"}}},{"rowIdx":2481,"cells":{"content":{"kind":"string","value":"#!/usr/bin/env python\nimport argparse\n\nfrom .sql import MiniSpiderSQL\nfrom .scheduler import MiniSpider\nfrom .extractor import Extractor\nfrom .downloader import MiniSpiderDownloader\n\n__version__ = '0.0.3'\n\n\n\nif __name__ == '__main__':\n main()\n"},"input_ids":{"kind":"list like","value":[2,48443,14629,14,8800,14,24330,21015,198,11748,1822,29572,198,198,6738,764,25410,1330,12558,41294,17861,198,6738,764,1416,704,18173,1330,12558,41294,198,6738,764,2302,40450,1330,29677,273,198,6738,764,15002,263,1330,12558,41294,10002,263,198,198,834,9641,834,796,705,15,13,15,13,18,6,628,198,198,361,11593,3672,834,6624,705,834,12417,834,10354,198,220,220,220,1388,3419,198],"string":"[\n 2,\n 48443,\n 14629,\n 14,\n 8800,\n 14,\n 24330,\n 21015,\n 198,\n 11748,\n 1822,\n 29572,\n 198,\n 198,\n 6738,\n 764,\n 25410,\n 1330,\n 12558,\n 41294,\n 17861,\n 198,\n 6738,\n 764,\n 1416,\n 704,\n 18173,\n 1330,\n 12558,\n 41294,\n 198,\n 6738,\n 764,\n 2302,\n 40450,\n 1330,\n 29677,\n 273,\n 198,\n 6738,\n 764,\n 15002,\n 263,\n 1330,\n 12558,\n 41294,\n 10002,\n 263,\n 198,\n 198,\n 834,\n 9641,\n 834,\n 796,\n 705,\n 15,\n 13,\n 15,\n 13,\n 18,\n 6,\n 628,\n 198,\n 198,\n 361,\n 11593,\n 3672,\n 834,\n 6624,\n 705,\n 834,\n 12417,\n 834,\n 10354,\n 198,\n 220,\n 220,\n 220,\n 1388,\n 3419,\n 198\n]"},"ratio_char_token":{"kind":"number","value":3.037037037037037,"string":"3.037037"},"token_count":{"kind":"number","value":81,"string":"81"}}},{"rowIdx":2482,"cells":{"content":{"kind":"string","value":"# -*- coding: utf-8 -*-\n#\n# Copyright (C) 2020 CERN.\n#\n# invenio-app-ils is free software; you can redistribute it and/or modify it\n# under the terms of the MIT License; see LICENSE file for more details.\n\n\"\"\"ILL mail tasks.\"\"\"\n\nfrom invenio_app_ils.ill.errors import ILLError\nfrom invenio_app_ils.ill.mail.factory import ill_message_creator_factory\nfrom invenio_app_ils.mail.messages import get_common_message_ctx\nfrom invenio_app_ils.mail.tasks import send_ils_email\n\n\ndef send_ill_mail(brw_req, action=None, message_ctx={}, **kwargs):\n \"\"\"Send an ILL email.\n\n :param brw_req: the borrowing request record.\n :param action: the action performed, if any.\n :param message_ctx: any other parameter to be passed as ctx in the msg.\n \"\"\"\n creator = ill_message_creator_factory()\n\n message_ctx.update(get_common_message_ctx(record=brw_req))\n try:\n # fetch and inject in the email template the patron loan if available\n loan = brw_req.patron_loan.get()\n message_ctx[\"patron_loan\"] = loan\n except ILLError:\n # no loan in the borrowin request\n message_ctx[\"patron_loan\"] = dict()\n\n patron = message_ctx[\"patron\"]\n\n msg = creator(\n brw_req,\n action=action,\n message_ctx=message_ctx,\n recipients=[patron.email],\n **kwargs,\n )\n send_ils_email(msg)\n"},"input_ids":{"kind":"list like","value":[2,532,9,12,19617,25,3384,69,12,23,532,9,12,198,2,198,2,15069,357,34,8,12131,327,28778,13,198,2,198,2,287,574,952,12,1324,12,4487,318,1479,3788,26,345,460,17678,4163,340,290,14,273,13096,340,198,2,739,262,2846,286,262,17168,13789,26,766,38559,24290,2393,329,517,3307,13,198,198,37811,8267,6920,8861,526,15931,198,198,6738,287,574,952,62,1324,62,4487,13,359,13,48277,1330,14639,2538,81,1472,198,6738,287,574,952,62,1324,62,4487,13,359,13,4529,13,69,9548,1330,2801,62,20500,62,45382,62,69,9548,198,6738,287,574,952,62,1324,62,4487,13,4529,13,37348,1095,1330,651,62,11321,62,20500,62,49464,198,6738,287,574,952,62,1324,62,4487,13,4529,13,83,6791,1330,3758,62,4487,62,12888,628,198,4299,3758,62,359,62,4529,7,1671,86,62,42180,11,2223,28,14202,11,3275,62,49464,34758,5512,12429,46265,22046,2599,198,220,220,220,37227,25206,281,314,3069,3053,13,628,220,220,220,1058,17143,865,86,62,42180,25,262,23669,2581,1700,13,198,220,220,220,1058,17143,2223,25,262,2223,6157,11,611,597,13,198,220,220,220,1058,17143,3275,62,49464,25,597,584,11507,284,307,3804,355,269,17602,287,262,31456,13,198,220,220,220,37227,198,220,220,220,13172,796,2801,62,20500,62,45382,62,69,9548,3419,628,220,220,220,3275,62,49464,13,19119,7,1136,62,11321,62,20500,62,49464,7,22105,28,1671,86,62,42180,4008,198,220,220,220,1949,25,198,220,220,220,220,220,220,220,1303,21207,290,8677,287,262,3053,11055,262,19686,8063,611,1695,198,220,220,220,220,220,220,220,8063,796,865,86,62,42180,13,8071,1313,62,5439,272,13,1136,3419,198,220,220,220,220,220,220,220,3275,62,49464,14692,8071,1313,62,5439,272,8973,796,8063,198,220,220,220,2845,14639,2538,81,1472,25,198,220,220,220,220,220,220,220,1303,645,8063,287,262,8804,259,2581,198,220,220,220,220,220,220,220,3275,62,49464,14692,8071,1313,62,5439,272,8973,796,8633,3419,628,220,220,220,19686,796,3275,62,49464,14692,8071,1313,8973,628,220,220,220,31456,796,13172,7,198,220,220,220,220,220,220,220,865,86,62,42180,11,198,220,220,220,220,220,220,220,2223,28,2673,11,198,220,220,220,220,220,220,220,3275,62,49464,28,20500,62,49464,11,198,220,220,220,220,220,220,220,20352,41888,8071,1313,13,12888,4357,198,220,220,220,220,220,220,220,12429,46265,22046,11,198,220,220,220,1267,198,220,220,220,3758,62,4487,62,12888,7,19662,8,198],"string":"[\n 2,\n 532,\n 9,\n 12,\n 19617,\n 25,\n 3384,\n 69,\n 12,\n 23,\n 532,\n 9,\n 12,\n 198,\n 2,\n 198,\n 2,\n 15069,\n 357,\n 34,\n 8,\n 12131,\n 327,\n 28778,\n 13,\n 198,\n 2,\n 198,\n 2,\n 287,\n 574,\n 952,\n 12,\n 1324,\n 12,\n 4487,\n 318,\n 1479,\n 3788,\n 26,\n 345,\n 460,\n 17678,\n 4163,\n 340,\n 290,\n 14,\n 273,\n 13096,\n 340,\n 198,\n 2,\n 739,\n 262,\n 2846,\n 286,\n 262,\n 17168,\n 13789,\n 26,\n 766,\n 38559,\n 24290,\n 2393,\n 329,\n 517,\n 3307,\n 13,\n 198,\n 198,\n 37811,\n 8267,\n 6920,\n 8861,\n 526,\n 15931,\n 198,\n 198,\n 6738,\n 287,\n 574,\n 952,\n 62,\n 1324,\n 62,\n 4487,\n 13,\n 359,\n 13,\n 48277,\n 1330,\n 14639,\n 2538,\n 81,\n 1472,\n 198,\n 6738,\n 287,\n 574,\n 952,\n 62,\n 1324,\n 62,\n 4487,\n 13,\n 359,\n 13,\n 4529,\n 13,\n 69,\n 9548,\n 1330,\n 2801,\n 62,\n 20500,\n 62,\n 45382,\n 62,\n 69,\n 9548,\n 198,\n 6738,\n 287,\n 574,\n 952,\n 62,\n 1324,\n 62,\n 4487,\n 13,\n 4529,\n 13,\n 37348,\n 1095,\n 1330,\n 651,\n 62,\n 11321,\n 62,\n 20500,\n 62,\n 49464,\n 198,\n 6738,\n 287,\n 574,\n 952,\n 62,\n 1324,\n 62,\n 4487,\n 13,\n 4529,\n 13,\n 83,\n 6791,\n 1330,\n 3758,\n 62,\n 4487,\n 62,\n 12888,\n 628,\n 198,\n 4299,\n 3758,\n 62,\n 359,\n 62,\n 4529,\n 7,\n 1671,\n 86,\n 62,\n 42180,\n 11,\n 2223,\n 28,\n 14202,\n 11,\n 3275,\n 62,\n 49464,\n 34758,\n 5512,\n 12429,\n 46265,\n 22046,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 25206,\n 281,\n 314,\n 3069,\n 3053,\n 13,\n 628,\n 220,\n 220,\n 220,\n 1058,\n 17143,\n 865,\n 86,\n 62,\n 42180,\n 25,\n 262,\n 23669,\n 2581,\n 1700,\n 13,\n 198,\n 220,\n 220,\n 220,\n 1058,\n 17143,\n 2223,\n 25,\n 262,\n 2223,\n 6157,\n 11,\n 611,\n 597,\n 13,\n 198,\n 220,\n 220,\n 220,\n 1058,\n 17143,\n 3275,\n 62,\n 49464,\n 25,\n 597,\n 584,\n 11507,\n 284,\n 307,\n 3804,\n 355,\n 269,\n 17602,\n 287,\n 262,\n 31456,\n 13,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 13172,\n 796,\n 2801,\n 62,\n 20500,\n 62,\n 45382,\n 62,\n 69,\n 9548,\n 3419,\n 628,\n 220,\n 220,\n 220,\n 3275,\n 62,\n 49464,\n 13,\n 19119,\n 7,\n 1136,\n 62,\n 11321,\n 62,\n 20500,\n 62,\n 49464,\n 7,\n 22105,\n 28,\n 1671,\n 86,\n 62,\n 42180,\n 4008,\n 198,\n 220,\n 220,\n 220,\n 1949,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 21207,\n 290,\n 8677,\n 287,\n 262,\n 3053,\n 11055,\n 262,\n 19686,\n 8063,\n 611,\n 1695,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 8063,\n 796,\n 865,\n 86,\n 62,\n 42180,\n 13,\n 8071,\n 1313,\n 62,\n 5439,\n 272,\n 13,\n 1136,\n 3419,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3275,\n 62,\n 49464,\n 14692,\n 8071,\n 1313,\n 62,\n 5439,\n 272,\n 8973,\n 796,\n 8063,\n 198,\n 220,\n 220,\n 220,\n 2845,\n 14639,\n 2538,\n 81,\n 1472,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 645,\n 8063,\n 287,\n 262,\n 8804,\n 259,\n 2581,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3275,\n 62,\n 49464,\n 14692,\n 8071,\n 1313,\n 62,\n 5439,\n 272,\n 8973,\n 796,\n 8633,\n 3419,\n 628,\n 220,\n 220,\n 220,\n 19686,\n 796,\n 3275,\n 62,\n 49464,\n 14692,\n 8071,\n 1313,\n 8973,\n 628,\n 220,\n 220,\n 220,\n 31456,\n 796,\n 13172,\n 7,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 865,\n 86,\n 62,\n 42180,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2223,\n 28,\n 2673,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3275,\n 62,\n 49464,\n 28,\n 20500,\n 62,\n 49464,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 20352,\n 41888,\n 8071,\n 1313,\n 13,\n 12888,\n 4357,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 12429,\n 46265,\n 22046,\n 11,\n 198,\n 220,\n 220,\n 220,\n 1267,\n 198,\n 220,\n 220,\n 220,\n 3758,\n 62,\n 4487,\n 62,\n 12888,\n 7,\n 19662,\n 8,\n 198\n]"},"ratio_char_token":{"kind":"number","value":2.5717017208413,"string":"2.571702"},"token_count":{"kind":"number","value":523,"string":"523"}}},{"rowIdx":2483,"cells":{"content":{"kind":"string","value":"from abc import abstractmethod\r\n\r\nfrom csp.observer import Observer\r\n\r\n\r\nclass Propagator(Observer):\r\n \"\"\"Abstract class for a constraint propagator.\"\"\"\r\n \r\n \r\n @abstractmethod\r\n def on_domain_change(self, var):\r\n \"\"\"Called when a variable domain has changed.\r\n \r\n :param var: The variable that changed\r\n :type var: Variable\r\n \"\"\"\r\n pass\r\n \r\n def setup(self, problem):\r\n \"\"\"Called to initialize this propagator with problem data\r\n\r\n :param problem: The csp\r\n :type problem: Problem\r\n \"\"\"\r\n for v in problem.variables:\r\n v.add_observer(self)\r\n self.map[v] = []\r\n\r\n for c in problem.constraints:\r\n for v in c.get_vars():\r\n self.map[v].append(c)\r\n"},"input_ids":{"kind":"list like","value":[6738,450,66,1330,12531,24396,201,198,201,198,6738,269,2777,13,672,15388,1330,27058,201,198,201,198,201,198,4871,8772,363,1352,7,31310,18497,2599,201,198,220,220,220,37227,23839,1398,329,257,32315,8928,1352,526,15931,201,198,220,220,220,220,201,198,220,220,220,220,201,198,220,220,220,2488,397,8709,24396,201,198,220,220,220,825,319,62,27830,62,3803,7,944,11,1401,2599,201,198,220,220,220,220,220,220,220,37227,34,4262,618,257,7885,7386,468,3421,13,201,198,220,220,220,220,220,220,220,220,201,198,220,220,220,220,220,220,220,1058,17143,1401,25,383,7885,326,3421,201,198,220,220,220,220,220,220,220,1058,4906,1401,25,35748,201,198,220,220,220,220,220,220,220,37227,201,198,220,220,220,220,220,220,220,1208,201,198,220,220,220,220,201,198,220,220,220,825,9058,7,944,11,1917,2599,201,198,220,220,220,220,220,220,220,37227,34,4262,284,41216,428,8928,1352,351,1917,1366,201,198,201,198,220,220,220,220,220,220,220,1058,17143,1917,25,383,269,2777,201,198,220,220,220,220,220,220,220,1058,4906,1917,25,20647,201,198,220,220,220,220,220,220,220,37227,201,198,220,220,220,220,220,220,220,329,410,287,1917,13,25641,2977,25,201,198,220,220,220,220,220,220,220,220,220,220,220,410,13,2860,62,672,15388,7,944,8,201,198,220,220,220,220,220,220,220,220,220,220,220,2116,13,8899,58,85,60,796,17635,201,198,201,198,220,220,220,220,220,220,220,329,269,287,1917,13,1102,2536,6003,25,201,198,220,220,220,220,220,220,220,220,220,220,220,329,410,287,269,13,1136,62,85,945,33529,201,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,2116,13,8899,58,85,4083,33295,7,66,8,201,198],"string":"[\n 6738,\n 450,\n 66,\n 1330,\n 12531,\n 24396,\n 201,\n 198,\n 201,\n 198,\n 6738,\n 269,\n 2777,\n 13,\n 672,\n 15388,\n 1330,\n 27058,\n 201,\n 198,\n 201,\n 198,\n 201,\n 198,\n 4871,\n 8772,\n 363,\n 1352,\n 7,\n 31310,\n 18497,\n 2599,\n 201,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 23839,\n 1398,\n 329,\n 257,\n 32315,\n 8928,\n 1352,\n 526,\n 15931,\n 201,\n 198,\n 220,\n 220,\n 220,\n 220,\n 201,\n 198,\n 220,\n 220,\n 220,\n 220,\n 201,\n 198,\n 220,\n 220,\n 220,\n 2488,\n 397,\n 8709,\n 24396,\n 201,\n 198,\n 220,\n 220,\n 220,\n 825,\n 319,\n 62,\n 27830,\n 62,\n 3803,\n 7,\n 944,\n 11,\n 1401,\n 2599,\n 201,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 34,\n 4262,\n 618,\n 257,\n 7885,\n 7386,\n 468,\n 3421,\n 13,\n 201,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 201,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1058,\n 17143,\n 1401,\n 25,\n 383,\n 7885,\n 326,\n 3421,\n 201,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1058,\n 4906,\n 1401,\n 25,\n 35748,\n 201,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 201,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1208,\n 201,\n 198,\n 220,\n 220,\n 220,\n 220,\n 201,\n 198,\n 220,\n 220,\n 220,\n 825,\n 9058,\n 7,\n 944,\n 11,\n 1917,\n 2599,\n 201,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 34,\n 4262,\n 284,\n 41216,\n 428,\n 8928,\n 1352,\n 351,\n 1917,\n 1366,\n 201,\n 198,\n 201,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1058,\n 17143,\n 1917,\n 25,\n 383,\n 269,\n 2777,\n 201,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1058,\n 4906,\n 1917,\n 25,\n 20647,\n 201,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 201,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 329,\n 410,\n 287,\n 1917,\n 13,\n 25641,\n 2977,\n 25,\n 201,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 410,\n 13,\n 2860,\n 62,\n 672,\n 15388,\n 7,\n 944,\n 8,\n 201,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13,\n 8899,\n 58,\n 85,\n 60,\n 796,\n 17635,\n 201,\n 198,\n 201,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 329,\n 269,\n 287,\n 1917,\n 13,\n 1102,\n 2536,\n 6003,\n 25,\n 201,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 329,\n 410,\n 287,\n 269,\n 13,\n 1136,\n 62,\n 85,\n 945,\n 33529,\n 201,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13,\n 8899,\n 58,\n 85,\n 4083,\n 33295,\n 7,\n 66,\n 8,\n 201,\n 198\n]"},"ratio_char_token":{"kind":"number","value":2.11968085106383,"string":"2.119681"},"token_count":{"kind":"number","value":376,"string":"376"}}},{"rowIdx":2484,"cells":{"content":{"kind":"string","value":"# Generated by Django 2.0 on 2019-04-02 09:57\n\nfrom django.db import migrations, models\n\n"},"input_ids":{"kind":"list like","value":[2,2980,515,416,37770,362,13,15,319,13130,12,3023,12,2999,7769,25,3553,198,198,6738,42625,14208,13,9945,1330,15720,602,11,4981,628],"string":"[\n 2,\n 2980,\n 515,\n 416,\n 37770,\n 362,\n 13,\n 15,\n 319,\n 13130,\n 12,\n 3023,\n 12,\n 2999,\n 7769,\n 25,\n 3553,\n 198,\n 198,\n 6738,\n 42625,\n 14208,\n 13,\n 9945,\n 1330,\n 15720,\n 602,\n 11,\n 4981,\n 628\n]"},"ratio_char_token":{"kind":"number","value":2.966666666666667,"string":"2.966667"},"token_count":{"kind":"number","value":30,"string":"30"}}},{"rowIdx":2485,"cells":{"content":{"kind":"string","value":"# coding:utf8\nimport re\n\noptions = {\n 'root_url': 'http://www.juooo.com',\n 'max_count': 1000,\n 'urlReg': {\n 'urlRegType': 1,\n 'urlFull': '',\n 'urlStr': 'http://(\\w+).juooo.com/\\w+'\n },\n 'urlData': []\n}\n \n"},"input_ids":{"kind":"list like","value":[2,19617,25,40477,23,198,11748,302,198,198,25811,796,1391,198,220,220,220,705,15763,62,6371,10354,705,4023,1378,2503,13,14396,34160,13,785,3256,198,220,220,220,705,9806,62,9127,10354,8576,11,198,220,220,220,705,6371,8081,10354,1391,198,220,220,220,220,220,220,220,705,6371,8081,6030,10354,352,11,198,220,220,220,220,220,220,220,705,6371,13295,10354,705,3256,198,220,220,220,220,220,220,220,705,6371,13290,10354,705,4023,1378,38016,86,10,737,14396,34160,13,785,14,59,86,10,6,198,220,220,220,8964,198,220,220,220,705,6371,6601,10354,17635,198,92,198,220,198],"string":"[\n 2,\n 19617,\n 25,\n 40477,\n 23,\n 198,\n 11748,\n 302,\n 198,\n 198,\n 25811,\n 796,\n 1391,\n 198,\n 220,\n 220,\n 220,\n 705,\n 15763,\n 62,\n 6371,\n 10354,\n 705,\n 4023,\n 1378,\n 2503,\n 13,\n 14396,\n 34160,\n 13,\n 785,\n 3256,\n 198,\n 220,\n 220,\n 220,\n 705,\n 9806,\n 62,\n 9127,\n 10354,\n 8576,\n 11,\n 198,\n 220,\n 220,\n 220,\n 705,\n 6371,\n 8081,\n 10354,\n 1391,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 705,\n 6371,\n 8081,\n 6030,\n 10354,\n 352,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 705,\n 6371,\n 13295,\n 10354,\n 705,\n 3256,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 705,\n 6371,\n 13290,\n 10354,\n 705,\n 4023,\n 1378,\n 38016,\n 86,\n 10,\n 737,\n 14396,\n 34160,\n 13,\n 785,\n 14,\n 59,\n 86,\n 10,\n 6,\n 198,\n 220,\n 220,\n 220,\n 8964,\n 198,\n 220,\n 220,\n 220,\n 705,\n 6371,\n 6601,\n 10354,\n 17635,\n 198,\n 92,\n 198,\n 220,\n 198\n]"},"ratio_char_token":{"kind":"number","value":1.875,"string":"1.875"},"token_count":{"kind":"number","value":128,"string":"128"}}},{"rowIdx":2486,"cells":{"content":{"kind":"string","value":"import pandas as pd\nimport numpy as np\nimport os, sys, gc, random\nimport datetime\nimport dateutil.relativedelta\n\n# Machine learning\nfrom sklearn.preprocessing import LabelEncoder\nfrom sklearn.impute import SimpleImputer\nfrom sklearn.model_selection import StratifiedKFold\nfrom sklearn.metrics import roc_auc_score\n\n# Custom library\nfrom utils import seed_everything, print_score\n\n\nTOTAL_THRES = 300 # 구매액 임계값\nSEED = 42 # 랜덤 시드\nseed_everything(SEED) # 시드 고정\n\ndata_dir = '../input/train.csv' # os.environ['SM_CHANNEL_TRAIN']\nmodel_dir = '../model' # os.environ['SM_MODEL_DIR']\n\n\n'''\n 입력인자로 받는 year_month에 대해 고객 ID별로 총 구매액이\n 구매액 임계값을 넘는지 여부의 binary label을 생성하는 함수\n'''\n\n# def get_year_month_list(df, year_month):\n# df = df.copy()\n#\n# df['year_month-mode'] = df['order_date'].dt.strftime('%Y-%m')\n# dd = df.groupby(['year_month-mode', 'customer_id'])['total'].sum()\n# cust_ids = df['customer_id'].unique()\n#\n# # year_month 이전 월 계산\n# bef_12_d = datetime.datetime.strptime(year_month, \"%Y-%m\")\n# bef_12_prev_ym = bef_12_d - dateutil.relativedelta.relativedelta(months=12)\n# bef_12_prev_ym = bef_12_prev_ym.strftime('%Y-%m')\n#\n# # ddt = df[df['year_month-mode'] == bef_12_prev_ym]\n#\n# first_bef = []\n# for id in cust_ids:\n# dd[:, bef_12_prev_ym]\n# # first_bef.append(dd.xs((id, bef_12_prev_ym)))\n#\n# # df['cycle_month'] = pd.Series(first_bef)\n#\n# print(df)\n\n\n\n\n\n\n\n\n\nif __name__ == '__main__':\n \n print('data_dir', data_dir)\n"},"input_ids":{"kind":"list like","value":[11748,19798,292,355,279,67,198,11748,299,32152,355,45941,198,11748,28686,11,25064,11,308,66,11,4738,198,11748,4818,8079,198,11748,3128,22602,13,2411,265,1572,12514,198,198,2,10850,4673,198,6738,1341,35720,13,3866,36948,1330,36052,27195,12342,198,6738,1341,35720,13,11011,1133,1330,17427,3546,10549,198,6738,1341,35720,13,19849,62,49283,1330,29186,1431,42,37,727,198,6738,1341,35720,13,4164,10466,1330,686,66,62,14272,62,26675,198,198,2,8562,5888,198,6738,3384,4487,1330,9403,62,37814,11,3601,62,26675,628,198,51,27510,62,4221,19535,796,5867,1303,220,166,113,105,167,100,97,168,243,94,23821,252,226,166,111,226,166,108,240,198,5188,1961,796,5433,1303,31619,252,250,167,235,97,23821,233,250,167,241,250,198,28826,62,37814,7,5188,1961,8,1303,23821,233,250,167,241,250,220,166,111,254,168,254,243,198,198,7890,62,15908,796,705,40720,15414,14,27432,13,40664,6,1303,28686,13,268,2268,17816,12310,62,3398,22846,3698,62,51,3861,1268,20520,198,19849,62,15908,796,705,40720,19849,6,1303,28686,13,268,2268,17816,12310,62,33365,3698,62,34720,20520,628,198,7061,6,198,220,220,220,23821,252,227,167,254,98,35975,116,168,252,238,167,94,250,31619,108,249,167,232,242,614,62,8424,168,245,238,31619,234,222,47991,112,220,166,111,254,166,108,251,4522,167,111,226,167,94,250,23821,112,251,220,166,113,105,167,100,97,168,243,94,35975,112,198,220,220,220,220,166,113,105,167,100,97,168,243,94,23821,252,226,166,111,226,166,108,240,35975,226,31619,226,246,167,232,242,168,100,222,23821,245,105,167,114,222,35975,246,13934,6167,35975,226,23821,225,251,168,226,109,47991,246,167,232,242,220,47991,101,168,230,246,198,7061,6,198,198,2,825,651,62,1941,62,8424,62,4868,7,7568,11,614,62,8424,2599,198,2,220,220,220,220,47764,796,47764,13,30073,3419,198,2,198,2,220,220,220,220,47764,17816,1941,62,8424,12,14171,20520,796,47764,17816,2875,62,4475,6,4083,28664,13,2536,31387,10786,4,56,12,4,76,11537,198,2,220,220,220,220,49427,796,47764,13,8094,1525,7,17816,1941,62,8424,12,14171,3256,705,23144,263,62,312,6,12962,17816,23350,6,4083,16345,3419,198,2,220,220,220,220,9378,62,2340,796,47764,17816,23144,263,62,312,6,4083,34642,3419,198,2,198,2,220,220,220,220,1303,614,62,8424,23821,251,112,168,254,226,23821,249,242,220,166,111,226,168,224,108,198,2,220,220,220,220,307,69,62,1065,62,67,796,4818,8079,13,19608,8079,13,2536,457,524,7,1941,62,8424,11,36521,56,12,4,76,4943,198,2,220,220,220,220,307,69,62,1065,62,47050,62,4948,796,307,69,62,1065,62,67,532,3128,22602,13,2411,265,1572,12514,13,2411,265,1572,12514,7,41537,28,1065,8,198,2,220,220,220,220,307,69,62,1065,62,47050,62,4948,796,307,69,62,1065,62,47050,62,4948,13,2536,31387,10786,4,56,12,4,76,11537,198,2,198,2,220,220,220,220,1303,288,28664,796,47764,58,7568,17816,1941,62,8424,12,14171,20520,6624,307,69,62,1065,62,47050,62,4948,60,198,2,198,2,220,220,220,220,717,62,65,891,796,17635,198,2,220,220,220,220,329,4686,287,9378,62,2340,25,198,2,220,220,220,220,220,220,220,220,49427,58,45299,307,69,62,1065,62,47050,62,4948,60,198,2,220,220,220,220,220,220,220,220,1303,717,62,65,891,13,33295,7,1860,13,34223,19510,312,11,307,69,62,1065,62,47050,62,4948,22305,198,2,198,2,220,220,220,220,1303,47764,17816,13696,62,8424,20520,796,279,67,13,27996,7,11085,62,65,891,8,198,2,198,2,220,220,220,220,3601,7,7568,8,628,628,628,628,198,198,361,11593,3672,834,6624,705,834,12417,834,10354,198,220,220,220,220,198,220,220,220,3601,10786,7890,62,15908,3256,1366,62,15908,8,198],"string":"[\n 11748,\n 19798,\n 292,\n 355,\n 279,\n 67,\n 198,\n 11748,\n 299,\n 32152,\n 355,\n 45941,\n 198,\n 11748,\n 28686,\n 11,\n 25064,\n 11,\n 308,\n 66,\n 11,\n 4738,\n 198,\n 11748,\n 4818,\n 8079,\n 198,\n 11748,\n 3128,\n 22602,\n 13,\n 2411,\n 265,\n 1572,\n 12514,\n 198,\n 198,\n 2,\n 10850,\n 4673,\n 198,\n 6738,\n 1341,\n 35720,\n 13,\n 3866,\n 36948,\n 1330,\n 36052,\n 27195,\n 12342,\n 198,\n 6738,\n 1341,\n 35720,\n 13,\n 11011,\n 1133,\n 1330,\n 17427,\n 3546,\n 10549,\n 198,\n 6738,\n 1341,\n 35720,\n 13,\n 19849,\n 62,\n 49283,\n 1330,\n 29186,\n 1431,\n 42,\n 37,\n 727,\n 198,\n 6738,\n 1341,\n 35720,\n 13,\n 4164,\n 10466,\n 1330,\n 686,\n 66,\n 62,\n 14272,\n 62,\n 26675,\n 198,\n 198,\n 2,\n 8562,\n 5888,\n 198,\n 6738,\n 3384,\n 4487,\n 1330,\n 9403,\n 62,\n 37814,\n 11,\n 3601,\n 62,\n 26675,\n 628,\n 198,\n 51,\n 27510,\n 62,\n 4221,\n 19535,\n 796,\n 5867,\n 1303,\n 220,\n 166,\n 113,\n 105,\n 167,\n 100,\n 97,\n 168,\n 243,\n 94,\n 23821,\n 252,\n 226,\n 166,\n 111,\n 226,\n 166,\n 108,\n 240,\n 198,\n 5188,\n 1961,\n 796,\n 5433,\n 1303,\n 31619,\n 252,\n 250,\n 167,\n 235,\n 97,\n 23821,\n 233,\n 250,\n 167,\n 241,\n 250,\n 198,\n 28826,\n 62,\n 37814,\n 7,\n 5188,\n 1961,\n 8,\n 1303,\n 23821,\n 233,\n 250,\n 167,\n 241,\n 250,\n 220,\n 166,\n 111,\n 254,\n 168,\n 254,\n 243,\n 198,\n 198,\n 7890,\n 62,\n 15908,\n 796,\n 705,\n 40720,\n 15414,\n 14,\n 27432,\n 13,\n 40664,\n 6,\n 1303,\n 28686,\n 13,\n 268,\n 2268,\n 17816,\n 12310,\n 62,\n 3398,\n 22846,\n 3698,\n 62,\n 51,\n 3861,\n 1268,\n 20520,\n 198,\n 19849,\n 62,\n 15908,\n 796,\n 705,\n 40720,\n 19849,\n 6,\n 1303,\n 28686,\n 13,\n 268,\n 2268,\n 17816,\n 12310,\n 62,\n 33365,\n 3698,\n 62,\n 34720,\n 20520,\n 628,\n 198,\n 7061,\n 6,\n 198,\n 220,\n 220,\n 220,\n 23821,\n 252,\n 227,\n 167,\n 254,\n 98,\n 35975,\n 116,\n 168,\n 252,\n 238,\n 167,\n 94,\n 250,\n 31619,\n 108,\n 249,\n 167,\n 232,\n 242,\n 614,\n 62,\n 8424,\n 168,\n 245,\n 238,\n 31619,\n 234,\n 222,\n 47991,\n 112,\n 220,\n 166,\n 111,\n 254,\n 166,\n 108,\n 251,\n 4522,\n 167,\n 111,\n 226,\n 167,\n 94,\n 250,\n 23821,\n 112,\n 251,\n 220,\n 166,\n 113,\n 105,\n 167,\n 100,\n 97,\n 168,\n 243,\n 94,\n 35975,\n 112,\n 198,\n 220,\n 220,\n 220,\n 220,\n 166,\n 113,\n 105,\n 167,\n 100,\n 97,\n 168,\n 243,\n 94,\n 23821,\n 252,\n 226,\n 166,\n 111,\n 226,\n 166,\n 108,\n 240,\n 35975,\n 226,\n 31619,\n 226,\n 246,\n 167,\n 232,\n 242,\n 168,\n 100,\n 222,\n 23821,\n 245,\n 105,\n 167,\n 114,\n 222,\n 35975,\n 246,\n 13934,\n 6167,\n 35975,\n 226,\n 23821,\n 225,\n 251,\n 168,\n 226,\n 109,\n 47991,\n 246,\n 167,\n 232,\n 242,\n 220,\n 47991,\n 101,\n 168,\n 230,\n 246,\n 198,\n 7061,\n 6,\n 198,\n 198,\n 2,\n 825,\n 651,\n 62,\n 1941,\n 62,\n 8424,\n 62,\n 4868,\n 7,\n 7568,\n 11,\n 614,\n 62,\n 8424,\n 2599,\n 198,\n 2,\n 220,\n 220,\n 220,\n 220,\n 47764,\n 796,\n 47764,\n 13,\n 30073,\n 3419,\n 198,\n 2,\n 198,\n 2,\n 220,\n 220,\n 220,\n 220,\n 47764,\n 17816,\n 1941,\n 62,\n 8424,\n 12,\n 14171,\n 20520,\n 796,\n 47764,\n 17816,\n 2875,\n 62,\n 4475,\n 6,\n 4083,\n 28664,\n 13,\n 2536,\n 31387,\n 10786,\n 4,\n 56,\n 12,\n 4,\n 76,\n 11537,\n 198,\n 2,\n 220,\n 220,\n 220,\n 220,\n 49427,\n 796,\n 47764,\n 13,\n 8094,\n 1525,\n 7,\n 17816,\n 1941,\n 62,\n 8424,\n 12,\n 14171,\n 3256,\n 705,\n 23144,\n 263,\n 62,\n 312,\n 6,\n 12962,\n 17816,\n 23350,\n 6,\n 4083,\n 16345,\n 3419,\n 198,\n 2,\n 220,\n 220,\n 220,\n 220,\n 9378,\n 62,\n 2340,\n 796,\n 47764,\n 17816,\n 23144,\n 263,\n 62,\n 312,\n 6,\n 4083,\n 34642,\n 3419,\n 198,\n 2,\n 198,\n 2,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 614,\n 62,\n 8424,\n 23821,\n 251,\n 112,\n 168,\n 254,\n 226,\n 23821,\n 249,\n 242,\n 220,\n 166,\n 111,\n 226,\n 168,\n 224,\n 108,\n 198,\n 2,\n 220,\n 220,\n 220,\n 220,\n 307,\n 69,\n 62,\n 1065,\n 62,\n 67,\n 796,\n 4818,\n 8079,\n 13,\n 19608,\n 8079,\n 13,\n 2536,\n 457,\n 524,\n 7,\n 1941,\n 62,\n 8424,\n 11,\n 36521,\n 56,\n 12,\n 4,\n 76,\n 4943,\n 198,\n 2,\n 220,\n 220,\n 220,\n 220,\n 307,\n 69,\n 62,\n 1065,\n 62,\n 47050,\n 62,\n 4948,\n 796,\n 307,\n 69,\n 62,\n 1065,\n 62,\n 67,\n 532,\n 3128,\n 22602,\n 13,\n 2411,\n 265,\n 1572,\n 12514,\n 13,\n 2411,\n 265,\n 1572,\n 12514,\n 7,\n 41537,\n 28,\n 1065,\n 8,\n 198,\n 2,\n 220,\n 220,\n 220,\n 220,\n 307,\n 69,\n 62,\n 1065,\n 62,\n 47050,\n 62,\n 4948,\n 796,\n 307,\n 69,\n 62,\n 1065,\n 62,\n 47050,\n 62,\n 4948,\n 13,\n 2536,\n 31387,\n 10786,\n 4,\n 56,\n 12,\n 4,\n 76,\n 11537,\n 198,\n 2,\n 198,\n 2,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 288,\n 28664,\n 796,\n 47764,\n 58,\n 7568,\n 17816,\n 1941,\n 62,\n 8424,\n 12,\n 14171,\n 20520,\n 6624,\n 307,\n 69,\n 62,\n 1065,\n 62,\n 47050,\n 62,\n 4948,\n 60,\n 198,\n 2,\n 198,\n 2,\n 220,\n 220,\n 220,\n 220,\n 717,\n 62,\n 65,\n 891,\n 796,\n 17635,\n 198,\n 2,\n 220,\n 220,\n 220,\n 220,\n 329,\n 4686,\n 287,\n 9378,\n 62,\n 2340,\n 25,\n 198,\n 2,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 49427,\n 58,\n 45299,\n 307,\n 69,\n 62,\n 1065,\n 62,\n 47050,\n 62,\n 4948,\n 60,\n 198,\n 2,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 717,\n 62,\n 65,\n 891,\n 13,\n 33295,\n 7,\n 1860,\n 13,\n 34223,\n 19510,\n 312,\n 11,\n 307,\n 69,\n 62,\n 1065,\n 62,\n 47050,\n 62,\n 4948,\n 22305,\n 198,\n 2,\n 198,\n 2,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 47764,\n 17816,\n 13696,\n 62,\n 8424,\n 20520,\n 796,\n 279,\n 67,\n 13,\n 27996,\n 7,\n 11085,\n 62,\n 65,\n 891,\n 8,\n 198,\n 2,\n 198,\n 2,\n 220,\n 220,\n 220,\n 220,\n 3601,\n 7,\n 7568,\n 8,\n 628,\n 628,\n 628,\n 628,\n 198,\n 198,\n 361,\n 11593,\n 3672,\n 834,\n 6624,\n 705,\n 834,\n 12417,\n 834,\n 10354,\n 198,\n 220,\n 220,\n 220,\n 220,\n 198,\n 220,\n 220,\n 220,\n 3601,\n 10786,\n 7890,\n 62,\n 15908,\n 3256,\n 1366,\n 62,\n 15908,\n 8,\n 198\n]"},"ratio_char_token":{"kind":"number","value":1.8676654182272159,"string":"1.867665"},"token_count":{"kind":"number","value":801,"string":"801"}}},{"rowIdx":2487,"cells":{"content":{"kind":"string","value":"from __future__ import unicode_literals\nfrom __future__ import print_function\n\nimport unicodedata\nimport unittest\n\n\"\"\"\nVery simple assorted helpers for natural language processing that I've used a few times.\n\"\"\"\n\n_CHAR_TRANSLATIONS = {\n # chars to remove\n \"\\u00ae\": None,\n \"\\u2122\": None,\n\n # chars to normalize that aren't handled by combining char stripping\n \"\\u2018\": \"'\",\n \"\\u2019\": \"'\",\n \"\\u201c\": '\"',\n \"\\u201d\": '\"',\n \"\\u2013\": \"-\",\n \"\\u2014\": \"-\",\n \"\\u00bd\": \"1/2\"\n}\n\n_CODEPOINT_TRANSLATIONS = {ord(k): v for k, v in _CHAR_TRANSLATIONS.items()}\n\n\ndef strip_diacritics(s):\n \"\"\"Remove accents and other diacritics\"\"\"\n return \"\".join(c for c in unicodedata.normalize(\"NFD\", s) if unicodedata.category(c) != \"Mn\")\n\n\ndef normalize_unicode(s):\n \"\"\"Remove trademark sign, normalize smart quotes, etc\"\"\"\n return s.translate(_CODEPOINT_TRANSLATIONS)\n\n\n\n"},"input_ids":{"kind":"list like","value":[6738,11593,37443,834,1330,28000,1098,62,17201,874,198,6738,11593,37443,834,1330,3601,62,8818,198,198,11748,28000,9043,1045,198,11748,555,715,395,198,198,37811,198,16371,2829,46603,49385,329,3288,3303,7587,326,314,1053,973,257,1178,1661,13,198,37811,198,198,62,38019,62,5446,1565,8634,18421,796,1391,198,220,220,220,1303,34534,284,4781,198,220,220,220,37082,84,405,3609,1298,6045,11,198,220,220,220,37082,84,17,18376,1298,6045,11,628,220,220,220,1303,34534,284,3487,1096,326,3588,470,12118,416,19771,1149,37727,198,220,220,220,37082,84,7908,1298,24018,1600,198,220,220,220,37082,84,23344,1298,24018,1600,198,220,220,220,37082,84,1264,66,1298,705,1,3256,198,220,220,220,37082,84,1264,67,1298,705,1,3256,198,220,220,220,37082,84,6390,1298,27444,1600,198,220,220,220,37082,84,4967,1298,27444,1600,198,220,220,220,37082,84,405,17457,1298,366,16,14,17,1,198,92,198,198,62,34,3727,8905,46,12394,62,5446,1565,8634,18421,796,1391,585,7,74,2599,410,329,479,11,410,287,4808,38019,62,5446,1565,8634,18421,13,23814,3419,92,628,198,4299,10283,62,67,9607,799,873,7,82,2599,198,220,220,220,37227,27914,39271,290,584,2566,330,799,873,37811,198,220,220,220,1441,366,1911,22179,7,66,329,269,287,28000,9043,1045,13,11265,1096,7203,21870,35,1600,264,8,611,28000,9043,1045,13,22872,7,66,8,14512,366,44,77,4943,628,198,4299,3487,1096,62,46903,1098,7,82,2599,198,220,220,220,37227,27914,16028,1051,11,3487,1096,4451,13386,11,3503,37811,198,220,220,220,1441,264,13,7645,17660,28264,34,3727,8905,46,12394,62,5446,1565,8634,18421,8,628,628],"string":"[\n 6738,\n 11593,\n 37443,\n 834,\n 1330,\n 28000,\n 1098,\n 62,\n 17201,\n 874,\n 198,\n 6738,\n 11593,\n 37443,\n 834,\n 1330,\n 3601,\n 62,\n 8818,\n 198,\n 198,\n 11748,\n 28000,\n 9043,\n 1045,\n 198,\n 11748,\n 555,\n 715,\n 395,\n 198,\n 198,\n 37811,\n 198,\n 16371,\n 2829,\n 46603,\n 49385,\n 329,\n 3288,\n 3303,\n 7587,\n 326,\n 314,\n 1053,\n 973,\n 257,\n 1178,\n 1661,\n 13,\n 198,\n 37811,\n 198,\n 198,\n 62,\n 38019,\n 62,\n 5446,\n 1565,\n 8634,\n 18421,\n 796,\n 1391,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 34534,\n 284,\n 4781,\n 198,\n 220,\n 220,\n 220,\n 37082,\n 84,\n 405,\n 3609,\n 1298,\n 6045,\n 11,\n 198,\n 220,\n 220,\n 220,\n 37082,\n 84,\n 17,\n 18376,\n 1298,\n 6045,\n 11,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 34534,\n 284,\n 3487,\n 1096,\n 326,\n 3588,\n 470,\n 12118,\n 416,\n 19771,\n 1149,\n 37727,\n 198,\n 220,\n 220,\n 220,\n 37082,\n 84,\n 7908,\n 1298,\n 24018,\n 1600,\n 198,\n 220,\n 220,\n 220,\n 37082,\n 84,\n 23344,\n 1298,\n 24018,\n 1600,\n 198,\n 220,\n 220,\n 220,\n 37082,\n 84,\n 1264,\n 66,\n 1298,\n 705,\n 1,\n 3256,\n 198,\n 220,\n 220,\n 220,\n 37082,\n 84,\n 1264,\n 67,\n 1298,\n 705,\n 1,\n 3256,\n 198,\n 220,\n 220,\n 220,\n 37082,\n 84,\n 6390,\n 1298,\n 27444,\n 1600,\n 198,\n 220,\n 220,\n 220,\n 37082,\n 84,\n 4967,\n 1298,\n 27444,\n 1600,\n 198,\n 220,\n 220,\n 220,\n 37082,\n 84,\n 405,\n 17457,\n 1298,\n 366,\n 16,\n 14,\n 17,\n 1,\n 198,\n 92,\n 198,\n 198,\n 62,\n 34,\n 3727,\n 8905,\n 46,\n 12394,\n 62,\n 5446,\n 1565,\n 8634,\n 18421,\n 796,\n 1391,\n 585,\n 7,\n 74,\n 2599,\n 410,\n 329,\n 479,\n 11,\n 410,\n 287,\n 4808,\n 38019,\n 62,\n 5446,\n 1565,\n 8634,\n 18421,\n 13,\n 23814,\n 3419,\n 92,\n 628,\n 198,\n 4299,\n 10283,\n 62,\n 67,\n 9607,\n 799,\n 873,\n 7,\n 82,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 27914,\n 39271,\n 290,\n 584,\n 2566,\n 330,\n 799,\n 873,\n 37811,\n 198,\n 220,\n 220,\n 220,\n 1441,\n 366,\n 1911,\n 22179,\n 7,\n 66,\n 329,\n 269,\n 287,\n 28000,\n 9043,\n 1045,\n 13,\n 11265,\n 1096,\n 7203,\n 21870,\n 35,\n 1600,\n 264,\n 8,\n 611,\n 28000,\n 9043,\n 1045,\n 13,\n 22872,\n 7,\n 66,\n 8,\n 14512,\n 366,\n 44,\n 77,\n 4943,\n 628,\n 198,\n 4299,\n 3487,\n 1096,\n 62,\n 46903,\n 1098,\n 7,\n 82,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 27914,\n 16028,\n 1051,\n 11,\n 3487,\n 1096,\n 4451,\n 13386,\n 11,\n 3503,\n 37811,\n 198,\n 220,\n 220,\n 220,\n 1441,\n 264,\n 13,\n 7645,\n 17660,\n 28264,\n 34,\n 3727,\n 8905,\n 46,\n 12394,\n 62,\n 5446,\n 1565,\n 8634,\n 18421,\n 8,\n 628,\n 628\n]"},"ratio_char_token":{"kind":"number","value":2.63049853372434,"string":"2.630499"},"token_count":{"kind":"number","value":341,"string":"341"}}},{"rowIdx":2488,"cells":{"content":{"kind":"string","value":"from manim_imports_ext import *\n"},"input_ids":{"kind":"list like","value":[6738,582,320,62,320,3742,62,2302,1330,1635,198],"string":"[\n 6738,\n 582,\n 320,\n 62,\n 320,\n 3742,\n 62,\n 2302,\n 1330,\n 1635,\n 198\n]"},"ratio_char_token":{"kind":"number","value":2.909090909090909,"string":"2.909091"},"token_count":{"kind":"number","value":11,"string":"11"}}},{"rowIdx":2489,"cells":{"content":{"kind":"string","value":"#!/usr/bin/env python\n\n\"\"\"\ngenome_download: downloading genomes\n\nUsage:\n genome_download [options] \n genome_download -h | --help\n genome_download --version\n\nOptions:\n Taxon-accession table (see Description).\n Use '-' if from STDIN.\n -d= Output directory. [Default: .]\n -e= Email to use for NCBI queries. [Default: blank@gmail.com]\n -a= Number of ambiguous nucleotides allowed in a genome. [Default: 0]\n -n= Number of cpus. [Default: 1]\n -t= Number of tries to download genomes. [Default: 10]\n -r Rename genome sequences based on taxon name?\n --debug Debug mode (no multiprocessing).\n -h --help Show this screen.\n --version Show version.\n\nDescription:\n Taxon-accession table\n ---------------------\n * tab-delimited\n * must contain 2 columns\n * \"Taxon\" = taxon name\n * \"Accession\" = NCBI accession used for downloading \n * Possible accessions:\n * ncbi nucleotide db\n * ncbi assembly db\n * ftp url to genome (direct download)\n * other columns are allowed\n\n Output\n ------\n * Genome fasta files written to the specified output directory\n * A table mapping taxa to the download genome fasta file is written to STDOUT\n\"\"\"\n\n# import\nimport sys,os\nimport logging\n## batteries\nfrom docopt import docopt\nfrom MGSIM import Genome_Download\n## logging\nlogging.basicConfig(format='%(asctime)s - %(message)s', level=logging.DEBUG)\n\n\n# opt parse\n \n"},"input_ids":{"kind":"list like","value":[2,48443,14629,14,8800,14,24330,21015,198,198,37811,198,5235,462,62,15002,25,22023,42136,198,198,28350,25,198,220,19270,62,15002,685,25811,60,1279,15526,295,62,11487,29,198,220,19270,62,15002,532,71,930,1377,16794,198,220,19270,62,15002,1377,9641,198,198,29046,25,198,220,1279,15526,259,62,11487,29,220,9241,261,12,15526,295,3084,357,3826,12489,737,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,5765,705,19355,611,422,48571,1268,13,198,220,532,67,28,27,67,29,220,220,220,220,220,220,220,220,220,220,220,25235,8619,13,685,19463,25,764,60,198,220,532,68,28,27,68,29,220,220,220,220,220,220,220,220,220,220,220,9570,284,779,329,8823,3483,20743,13,685,19463,25,9178,31,14816,13,785,60,198,220,532,64,28,27,64,29,220,220,220,220,220,220,220,220,220,220,220,7913,286,27102,17751,313,1460,3142,287,257,19270,13,685,19463,25,657,60,198,220,532,77,28,27,77,29,220,220,220,220,220,220,220,220,220,220,220,7913,286,31396,385,13,685,19463,25,352,60,198,220,532,83,28,27,83,29,220,220,220,220,220,220,220,220,220,220,220,7913,286,8404,284,4321,42136,13,685,19463,25,838,60,198,220,532,81,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,7152,480,19270,16311,1912,319,1687,261,1438,30,198,220,1377,24442,220,220,220,220,220,220,220,220,220,220,31687,4235,357,3919,18540,305,919,278,737,198,220,532,71,1377,16794,220,220,220,220,220,220,220,220,5438,428,3159,13,198,220,1377,9641,220,220,220,220,220,220,220,220,5438,2196,13,198,198,11828,25,198,220,9241,261,12,15526,295,3084,198,220,41436,12,198,220,1635,7400,12,12381,320,863,198,220,1635,1276,3994,362,15180,198,220,220,220,1635,366,27017,261,1,796,1687,261,1438,198,220,220,220,1635,366,15457,295,1,796,8823,3483,1895,295,973,329,22023,220,198,220,220,220,220,220,1635,33671,1895,507,25,198,220,220,220,220,220,220,220,220,1635,299,66,8482,17751,45608,20613,198,220,220,220,220,220,220,220,220,1635,299,66,8482,10474,20613,198,220,220,220,220,220,220,220,220,1635,10117,79,19016,284,19270,357,12942,4321,8,198,220,1635,584,15180,389,3142,628,220,25235,198,220,40103,198,220,1635,5215,462,3049,64,3696,3194,284,262,7368,5072,8619,198,220,1635,317,3084,16855,1687,64,284,262,4321,19270,3049,64,2393,318,3194,284,48571,12425,198,37811,198,198,2,1330,198,11748,25064,11,418,198,11748,18931,198,2235,13591,198,6738,2205,8738,1330,2205,8738,198,6738,337,14313,3955,1330,5215,462,62,10002,198,2235,18931,198,6404,2667,13,35487,16934,7,18982,11639,4,7,292,310,524,8,82,532,4064,7,20500,8,82,3256,1241,28,6404,2667,13,30531,8,628,198,2,2172,21136,198,220,220,220,198],"string":"[\n 2,\n 48443,\n 14629,\n 14,\n 8800,\n 14,\n 24330,\n 21015,\n 198,\n 198,\n 37811,\n 198,\n 5235,\n 462,\n 62,\n 15002,\n 25,\n 22023,\n 42136,\n 198,\n 198,\n 28350,\n 25,\n 198,\n 220,\n 19270,\n 62,\n 15002,\n 685,\n 25811,\n 60,\n 1279,\n 15526,\n 295,\n 62,\n 11487,\n 29,\n 198,\n 220,\n 19270,\n 62,\n 15002,\n 532,\n 71,\n 930,\n 1377,\n 16794,\n 198,\n 220,\n 19270,\n 62,\n 15002,\n 1377,\n 9641,\n 198,\n 198,\n 29046,\n 25,\n 198,\n 220,\n 1279,\n 15526,\n 259,\n 62,\n 11487,\n 29,\n 220,\n 9241,\n 261,\n 12,\n 15526,\n 295,\n 3084,\n 357,\n 3826,\n 12489,\n 737,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 5765,\n 705,\n 19355,\n 611,\n 422,\n 48571,\n 1268,\n 13,\n 198,\n 220,\n 532,\n 67,\n 28,\n 27,\n 67,\n 29,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 25235,\n 8619,\n 13,\n 685,\n 19463,\n 25,\n 764,\n 60,\n 198,\n 220,\n 532,\n 68,\n 28,\n 27,\n 68,\n 29,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 9570,\n 284,\n 779,\n 329,\n 8823,\n 3483,\n 20743,\n 13,\n 685,\n 19463,\n 25,\n 9178,\n 31,\n 14816,\n 13,\n 785,\n 60,\n 198,\n 220,\n 532,\n 64,\n 28,\n 27,\n 64,\n 29,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 7913,\n 286,\n 27102,\n 17751,\n 313,\n 1460,\n 3142,\n 287,\n 257,\n 19270,\n 13,\n 685,\n 19463,\n 25,\n 657,\n 60,\n 198,\n 220,\n 532,\n 77,\n 28,\n 27,\n 77,\n 29,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 7913,\n 286,\n 31396,\n 385,\n 13,\n 685,\n 19463,\n 25,\n 352,\n 60,\n 198,\n 220,\n 532,\n 83,\n 28,\n 27,\n 83,\n 29,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 7913,\n 286,\n 8404,\n 284,\n 4321,\n 42136,\n 13,\n 685,\n 19463,\n 25,\n 838,\n 60,\n 198,\n 220,\n 532,\n 81,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 7152,\n 480,\n 19270,\n 16311,\n 1912,\n 319,\n 1687,\n 261,\n 1438,\n 30,\n 198,\n 220,\n 1377,\n 24442,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 31687,\n 4235,\n 357,\n 3919,\n 18540,\n 305,\n 919,\n 278,\n 737,\n 198,\n 220,\n 532,\n 71,\n 1377,\n 16794,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 5438,\n 428,\n 3159,\n 13,\n 198,\n 220,\n 1377,\n 9641,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 5438,\n 2196,\n 13,\n 198,\n 198,\n 11828,\n 25,\n 198,\n 220,\n 9241,\n 261,\n 12,\n 15526,\n 295,\n 3084,\n 198,\n 220,\n 41436,\n 12,\n 198,\n 220,\n 1635,\n 7400,\n 12,\n 12381,\n 320,\n 863,\n 198,\n 220,\n 1635,\n 1276,\n 3994,\n 362,\n 15180,\n 198,\n 220,\n 220,\n 220,\n 1635,\n 366,\n 27017,\n 261,\n 1,\n 796,\n 1687,\n 261,\n 1438,\n 198,\n 220,\n 220,\n 220,\n 1635,\n 366,\n 15457,\n 295,\n 1,\n 796,\n 8823,\n 3483,\n 1895,\n 295,\n 973,\n 329,\n 22023,\n 220,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1635,\n 33671,\n 1895,\n 507,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1635,\n 299,\n 66,\n 8482,\n 17751,\n 45608,\n 20613,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1635,\n 299,\n 66,\n 8482,\n 10474,\n 20613,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1635,\n 10117,\n 79,\n 19016,\n 284,\n 19270,\n 357,\n 12942,\n 4321,\n 8,\n 198,\n 220,\n 1635,\n 584,\n 15180,\n 389,\n 3142,\n 628,\n 220,\n 25235,\n 198,\n 220,\n 40103,\n 198,\n 220,\n 1635,\n 5215,\n 462,\n 3049,\n 64,\n 3696,\n 3194,\n 284,\n 262,\n 7368,\n 5072,\n 8619,\n 198,\n 220,\n 1635,\n 317,\n 3084,\n 16855,\n 1687,\n 64,\n 284,\n 262,\n 4321,\n 19270,\n 3049,\n 64,\n 2393,\n 318,\n 3194,\n 284,\n 48571,\n 12425,\n 198,\n 37811,\n 198,\n 198,\n 2,\n 1330,\n 198,\n 11748,\n 25064,\n 11,\n 418,\n 198,\n 11748,\n 18931,\n 198,\n 2235,\n 13591,\n 198,\n 6738,\n 2205,\n 8738,\n 1330,\n 2205,\n 8738,\n 198,\n 6738,\n 337,\n 14313,\n 3955,\n 1330,\n 5215,\n 462,\n 62,\n 10002,\n 198,\n 2235,\n 18931,\n 198,\n 6404,\n 2667,\n 13,\n 35487,\n 16934,\n 7,\n 18982,\n 11639,\n 4,\n 7,\n 292,\n 310,\n 524,\n 8,\n 82,\n 532,\n 4064,\n 7,\n 20500,\n 8,\n 82,\n 3256,\n 1241,\n 28,\n 6404,\n 2667,\n 13,\n 30531,\n 8,\n 628,\n 198,\n 2,\n 2172,\n 21136,\n 198,\n 220,\n 220,\n 220,\n 198\n]"},"ratio_char_token":{"kind":"number","value":2.615126050420168,"string":"2.615126"},"token_count":{"kind":"number","value":595,"string":"595"}}},{"rowIdx":2490,"cells":{"content":{"kind":"string","value":"import logging\nimport multiprocessing\nfrom typing import MutableMapping\nfrom PyQt6.QtCore import *\nfrom PyQt6.QtWidgets import *\nfrom Core.messages import Courier, Message\nfrom .widgets import *\nimport os, sys\n\n"},"input_ids":{"kind":"list like","value":[11748,18931,198,11748,18540,305,919,278,198,6738,19720,1330,13859,540,44,5912,198,6738,9485,48,83,21,13,48,83,14055,1330,1635,198,6738,9485,48,83,21,13,48,83,54,312,11407,1330,1635,198,6738,7231,13,37348,1095,1330,34268,11,16000,198,6738,764,28029,11407,1330,1635,198,11748,28686,11,25064,628],"string":"[\n 11748,\n 18931,\n 198,\n 11748,\n 18540,\n 305,\n 919,\n 278,\n 198,\n 6738,\n 19720,\n 1330,\n 13859,\n 540,\n 44,\n 5912,\n 198,\n 6738,\n 9485,\n 48,\n 83,\n 21,\n 13,\n 48,\n 83,\n 14055,\n 1330,\n 1635,\n 198,\n 6738,\n 9485,\n 48,\n 83,\n 21,\n 13,\n 48,\n 83,\n 54,\n 312,\n 11407,\n 1330,\n 1635,\n 198,\n 6738,\n 7231,\n 13,\n 37348,\n 1095,\n 1330,\n 34268,\n 11,\n 16000,\n 198,\n 6738,\n 764,\n 28029,\n 11407,\n 1330,\n 1635,\n 198,\n 11748,\n 28686,\n 11,\n 25064,\n 628\n]"},"ratio_char_token":{"kind":"number","value":3.246153846153846,"string":"3.246154"},"token_count":{"kind":"number","value":65,"string":"65"}}},{"rowIdx":2491,"cells":{"content":{"kind":"string","value":"# SPDX-License-Identifier: MIT\n# Greetings to:\n# - https://www.theiphonewiki.com/wiki/IMG4_File_Format\n# - https://github.com/tihmstar/img4tool/\n# - https://lapo.it/asn1js/\n# - hexdump tool of choice\n\nimport functools\nfrom asn1crypto.core import (\n Enumerated, Choice, Sequence, SequenceOf, SetOf,\n Integer, IA5String, OctetString, ParsableOctetString, Integer,\n Any\n)\nfrom asn1crypto.x509 import Certificate\nimport restruct\n\n\nclass any_tag(tuple):\n \"\"\" highly cursed tuple subtype to bully asn1crypto into accepting any tag \"\"\"\n\n\n\n\n\nif __name__ == '__main__':\n import argparse\n\n parser = argparse.ArgumentParser()\n parser.add_argument('-r', '--raw', action='store_true', help='print raw parsed data')\n parser.add_argument('infile', type=argparse.FileType('rb'), help='input .img4/.im4m/.im4p file')\n parser.add_argument('outfile', type=argparse.FileType('wb'), nargs='?', help='output data file for payload')\n args = parser.parse_args()\n\n contents = args.infile.read()\n errors = {}\n for p in (IMG4, IMG4Manifest, IMG4Payload):\n try:\n img4 = p.load(contents)\n img4.native # trigger parsing\n break\n except Exception as e:\n errors[p] = e\n else:\n print('Could not parse file {}:'.format(args.infile.name))\n for (p, e) in errors.items():\n print(' - As {}: {}'.format(p.__name__, e))\n sys.exit(1)\n \n if isinstance(img4, IMG4):\n payload = img4['payload']\n manifest = img4['manifest']\n elif isinstance(img4, IMG4Manifest):\n payload = None\n manifest = img4\n elif isinstance(img4, IMG4Payload):\n payload = img4\n manifest = None\n\n if payload:\n p = payload.native\n if args.raw:\n print(restruct.format_value(p, str))\n else:\n print('payload:')\n print(' type:', p['type'])\n print(' desc:', p['description'])\n if p['keybags']:\n print(' keybags:')\n keybags = payload['keybags'].parse(IMG4KeyBagSequence).native\n for kb in keybags:\n print(' id: ', kb['id'])\n print(' iv: ', restruct.format_value(kb['iv'], str))\n print(' key:', restruct.format_value(kb['key'], str))\n print()\n if p['compression']:\n print(' compression:')\n print(' algo:', p['compression']['algorithm'])\n print(' size:', p['compression']['original_size'])\n algo = p['compression']['algorithm']\n else:\n algo = None\n print()\n\n if args.outfile:\n if algo == 'lzfse':\n import lzfse\n data = lzfse.decompress(p['data'])\n elif algo:\n raise ValueError('unknown algorithm: {}'.format(algo))\n else:\n data = p['data']\n args.outfile.write(data)\n if manifest:\n m = manifest.native\n if args.raw:\n print(restruct.format_value(m, str))\n else:\n print('manifest:')\n for p in m['contents']:\n print(' body:')\n if p['type'] == 'MANB':\n for c in p['categories']:\n cname = c['category']['type']\n for v in c['category']['values']:\n print(' {}.{}: {}'.format(cname, v['value']['key'], restruct.format_value(v['value']['value'], str)))\n print()\n"},"input_ids":{"kind":"list like","value":[2,30628,55,12,34156,12,33234,7483,25,17168,198,2,402,46648,284,25,198,2,532,3740,1378,2503,13,1169,13323,44181,5580,13,785,14,15466,14,3955,38,19,62,8979,62,26227,198,2,532,3740,1378,12567,13,785,14,83,4449,76,7364,14,9600,19,25981,14,198,2,532,3740,1378,37796,78,13,270,14,292,77,16,8457,14,198,2,532,17910,39455,2891,286,3572,198,198,11748,1257,310,10141,198,6738,355,77,16,29609,78,13,7295,1330,357,198,220,220,220,2039,6975,515,11,18502,11,45835,11,45835,5189,11,5345,5189,11,198,220,220,220,34142,11,35229,20,10100,11,2556,316,10100,11,23042,540,12349,316,10100,11,34142,11,198,220,220,220,4377,198,8,198,6738,355,77,16,29609,78,13,87,29022,1330,27895,198,11748,27596,628,198,4871,597,62,12985,7,83,29291,2599,198,220,220,220,37227,4047,25155,46545,850,4906,284,27410,355,77,16,29609,78,656,12598,597,7621,37227,628,628,198,198,361,11593,3672,834,6624,705,834,12417,834,10354,198,220,220,220,1330,1822,29572,628,220,220,220,30751,796,1822,29572,13,28100,1713,46677,3419,198,220,220,220,30751,13,2860,62,49140,10786,12,81,3256,705,438,1831,3256,2223,11639,8095,62,7942,3256,1037,11639,4798,8246,44267,1366,11537,198,220,220,220,30751,13,2860,62,49140,10786,259,7753,3256,2099,28,853,29572,13,8979,6030,10786,26145,33809,1037,11639,15414,764,9600,19,11757,320,19,76,11757,320,19,79,2393,11537,198,220,220,220,30751,13,2860,62,49140,10786,448,7753,3256,2099,28,853,29572,13,8979,6030,10786,39346,33809,299,22046,11639,30,3256,1037,11639,22915,1366,2393,329,21437,11537,198,220,220,220,26498,796,30751,13,29572,62,22046,3419,628,220,220,220,10154,796,26498,13,259,7753,13,961,3419,198,220,220,220,8563,796,23884,198,220,220,220,329,279,287,357,3955,38,19,11,8959,38,19,5124,8409,11,8959,38,19,19197,2220,2599,198,220,220,220,220,220,220,220,1949,25,198,220,220,220,220,220,220,220,220,220,220,220,33705,19,796,279,13,2220,7,3642,658,8,198,220,220,220,220,220,220,220,220,220,220,220,33705,19,13,30191,220,1303,7616,32096,198,220,220,220,220,220,220,220,220,220,220,220,2270,198,220,220,220,220,220,220,220,2845,35528,355,304,25,198,220,220,220,220,220,220,220,220,220,220,220,8563,58,79,60,796,304,198,220,220,220,2073,25,198,220,220,220,220,220,220,220,3601,10786,23722,407,21136,2393,23884,25,4458,18982,7,22046,13,259,7753,13,3672,4008,198,220,220,220,220,220,220,220,329,357,79,11,304,8,287,8563,13,23814,33529,198,220,220,220,220,220,220,220,220,220,220,220,3601,10786,532,1081,23884,25,23884,4458,18982,7,79,13,834,3672,834,11,304,4008,198,220,220,220,220,220,220,220,25064,13,37023,7,16,8,198,220,220,220,220,198,220,220,220,611,318,39098,7,9600,19,11,8959,38,19,2599,198,220,220,220,220,220,220,220,21437,796,33705,19,17816,15577,2220,20520,198,220,220,220,220,220,220,220,10561,796,33705,19,17816,805,8409,20520,198,220,220,220,1288,361,318,39098,7,9600,19,11,8959,38,19,5124,8409,2599,198,220,220,220,220,220,220,220,21437,796,6045,198,220,220,220,220,220,220,220,10561,796,33705,19,198,220,220,220,1288,361,318,39098,7,9600,19,11,8959,38,19,19197,2220,2599,198,220,220,220,220,220,220,220,21437,796,33705,19,198,220,220,220,220,220,220,220,10561,796,6045,628,220,220,220,611,21437,25,198,220,220,220,220,220,220,220,279,796,21437,13,30191,198,220,220,220,220,220,220,220,611,26498,13,1831,25,198,220,220,220,220,220,220,220,220,220,220,220,3601,7,2118,1356,13,18982,62,8367,7,79,11,965,4008,198,220,220,220,220,220,220,220,2073,25,198,220,220,220,220,220,220,220,220,220,220,220,3601,10786,15577,2220,25,11537,198,220,220,220,220,220,220,220,220,220,220,220,3601,10786,220,2099,25,3256,279,17816,4906,6,12962,198,220,220,220,220,220,220,220,220,220,220,220,3601,10786,220,1715,25,3256,279,17816,11213,6,12962,198,220,220,220,220,220,220,220,220,220,220,220,611,279,17816,2539,34005,6,5974,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,3601,10786,220,1994,34005,25,11537,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1994,34005,796,21437,17816,2539,34005,6,4083,29572,7,3955,38,19,9218,33,363,44015,594,737,30191,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,329,47823,287,1994,34005,25,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,3601,10786,220,220,220,4686,25,46083,47823,17816,312,6,12962,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,3601,10786,220,220,220,21628,25,46083,27596,13,18982,62,8367,7,32812,17816,452,6,4357,965,4008,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,3601,10786,220,220,220,1994,25,3256,27596,13,18982,62,8367,7,32812,17816,2539,6,4357,965,4008,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,3601,3419,198,220,220,220,220,220,220,220,220,220,220,220,611,279,17816,5589,2234,6,5974,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,3601,10786,220,19794,25,11537,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,3601,10786,220,220,220,435,2188,25,3256,279,17816,5589,2234,6,7131,6,282,42289,6,12962,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,3601,10786,220,220,220,2546,25,3256,279,17816,5589,2234,6,7131,6,14986,62,7857,6,12962,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,435,2188,796,279,17816,5589,2234,6,7131,6,282,42289,20520,198,220,220,220,220,220,220,220,220,220,220,220,2073,25,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,435,2188,796,6045,198,220,220,220,220,220,220,220,220,220,220,220,3601,3419,628,220,220,220,220,220,220,220,611,26498,13,448,7753,25,198,220,220,220,220,220,220,220,220,220,220,220,611,435,2188,6624,705,75,89,69,325,10354,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1330,300,89,69,325,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1366,796,300,89,69,325,13,12501,3361,601,7,79,17816,7890,6,12962,198,220,220,220,220,220,220,220,220,220,220,220,1288,361,435,2188,25,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,5298,11052,12331,10786,34680,11862,25,23884,4458,18982,7,282,2188,4008,198,220,220,220,220,220,220,220,220,220,220,220,2073,25,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1366,796,279,17816,7890,20520,198,220,220,220,220,220,220,220,220,220,220,220,26498,13,448,7753,13,13564,7,7890,8,198,220,220,220,611,10561,25,198,220,220,220,220,220,220,220,285,796,10561,13,30191,198,220,220,220,220,220,220,220,611,26498,13,1831,25,198,220,220,220,220,220,220,220,220,220,220,220,3601,7,2118,1356,13,18982,62,8367,7,76,11,965,4008,198,220,220,220,220,220,220,220,2073,25,198,220,220,220,220,220,220,220,220,220,220,220,3601,10786,805,8409,25,11537,198,220,220,220,220,220,220,220,220,220,220,220,329,279,287,285,17816,3642,658,6,5974,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,3601,10786,220,1767,25,11537,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,611,279,17816,4906,20520,6624,705,10725,33,10354,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,329,269,287,279,17816,66,26129,6,5974,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,269,3672,796,269,17816,22872,6,7131,6,4906,20520,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,329,410,287,269,17816,22872,6,7131,6,27160,6,5974,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,3601,10786,220,220,220,23884,13,90,38362,23884,4458,18982,7,66,3672,11,410,17816,8367,6,7131,6,2539,6,4357,27596,13,18982,62,8367,7,85,17816,8367,6,7131,6,8367,6,4357,965,22305,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,3601,3419,198],"string":"[\n 2,\n 30628,\n 55,\n 12,\n 34156,\n 12,\n 33234,\n 7483,\n 25,\n 17168,\n 198,\n 2,\n 402,\n 46648,\n 284,\n 25,\n 198,\n 2,\n 532,\n 3740,\n 1378,\n 2503,\n 13,\n 1169,\n 13323,\n 44181,\n 5580,\n 13,\n 785,\n 14,\n 15466,\n 14,\n 3955,\n 38,\n 19,\n 62,\n 8979,\n 62,\n 26227,\n 198,\n 2,\n 532,\n 3740,\n 1378,\n 12567,\n 13,\n 785,\n 14,\n 83,\n 4449,\n 76,\n 7364,\n 14,\n 9600,\n 19,\n 25981,\n 14,\n 198,\n 2,\n 532,\n 3740,\n 1378,\n 37796,\n 78,\n 13,\n 270,\n 14,\n 292,\n 77,\n 16,\n 8457,\n 14,\n 198,\n 2,\n 532,\n 17910,\n 39455,\n 2891,\n 286,\n 3572,\n 198,\n 198,\n 11748,\n 1257,\n 310,\n 10141,\n 198,\n 6738,\n 355,\n 77,\n 16,\n 29609,\n 78,\n 13,\n 7295,\n 1330,\n 357,\n 198,\n 220,\n 220,\n 220,\n 2039,\n 6975,\n 515,\n 11,\n 18502,\n 11,\n 45835,\n 11,\n 45835,\n 5189,\n 11,\n 5345,\n 5189,\n 11,\n 198,\n 220,\n 220,\n 220,\n 34142,\n 11,\n 35229,\n 20,\n 10100,\n 11,\n 2556,\n 316,\n 10100,\n 11,\n 23042,\n 540,\n 12349,\n 316,\n 10100,\n 11,\n 34142,\n 11,\n 198,\n 220,\n 220,\n 220,\n 4377,\n 198,\n 8,\n 198,\n 6738,\n 355,\n 77,\n 16,\n 29609,\n 78,\n 13,\n 87,\n 29022,\n 1330,\n 27895,\n 198,\n 11748,\n 27596,\n 628,\n 198,\n 4871,\n 597,\n 62,\n 12985,\n 7,\n 83,\n 29291,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 4047,\n 25155,\n 46545,\n 850,\n 4906,\n 284,\n 27410,\n 355,\n 77,\n 16,\n 29609,\n 78,\n 656,\n 12598,\n 597,\n 7621,\n 37227,\n 628,\n 628,\n 198,\n 198,\n 361,\n 11593,\n 3672,\n 834,\n 6624,\n 705,\n 834,\n 12417,\n 834,\n 10354,\n 198,\n 220,\n 220,\n 220,\n 1330,\n 1822,\n 29572,\n 628,\n 220,\n 220,\n 220,\n 30751,\n 796,\n 1822,\n 29572,\n 13,\n 28100,\n 1713,\n 46677,\n 3419,\n 198,\n 220,\n 220,\n 220,\n 30751,\n 13,\n 2860,\n 62,\n 49140,\n 10786,\n 12,\n 81,\n 3256,\n 705,\n 438,\n 1831,\n 3256,\n 2223,\n 11639,\n 8095,\n 62,\n 7942,\n 3256,\n 1037,\n 11639,\n 4798,\n 8246,\n 44267,\n 1366,\n 11537,\n 198,\n 220,\n 220,\n 220,\n 30751,\n 13,\n 2860,\n 62,\n 49140,\n 10786,\n 259,\n 7753,\n 3256,\n 2099,\n 28,\n 853,\n 29572,\n 13,\n 8979,\n 6030,\n 10786,\n 26145,\n 33809,\n 1037,\n 11639,\n 15414,\n 764,\n 9600,\n 19,\n 11757,\n 320,\n 19,\n 76,\n 11757,\n 320,\n 19,\n 79,\n 2393,\n 11537,\n 198,\n 220,\n 220,\n 220,\n 30751,\n 13,\n 2860,\n 62,\n 49140,\n 10786,\n 448,\n 7753,\n 3256,\n 2099,\n 28,\n 853,\n 29572,\n 13,\n 8979,\n 6030,\n 10786,\n 39346,\n 33809,\n 299,\n 22046,\n 11639,\n 30,\n 3256,\n 1037,\n 11639,\n 22915,\n 1366,\n 2393,\n 329,\n 21437,\n 11537,\n 198,\n 220,\n 220,\n 220,\n 26498,\n 796,\n 30751,\n 13,\n 29572,\n 62,\n 22046,\n 3419,\n 628,\n 220,\n 220,\n 220,\n 10154,\n 796,\n 26498,\n 13,\n 259,\n 7753,\n 13,\n 961,\n 3419,\n 198,\n 220,\n 220,\n 220,\n 8563,\n 796,\n 23884,\n 198,\n 220,\n 220,\n 220,\n 329,\n 279,\n 287,\n 357,\n 3955,\n 38,\n 19,\n 11,\n 8959,\n 38,\n 19,\n 5124,\n 8409,\n 11,\n 8959,\n 38,\n 19,\n 19197,\n 2220,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1949,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 33705,\n 19,\n 796,\n 279,\n 13,\n 2220,\n 7,\n 3642,\n 658,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 33705,\n 19,\n 13,\n 30191,\n 220,\n 1303,\n 7616,\n 32096,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2270,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2845,\n 35528,\n 355,\n 304,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 8563,\n 58,\n 79,\n 60,\n 796,\n 304,\n 198,\n 220,\n 220,\n 220,\n 2073,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3601,\n 10786,\n 23722,\n 407,\n 21136,\n 2393,\n 23884,\n 25,\n 4458,\n 18982,\n 7,\n 22046,\n 13,\n 259,\n 7753,\n 13,\n 3672,\n 4008,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 329,\n 357,\n 79,\n 11,\n 304,\n 8,\n 287,\n 8563,\n 13,\n 23814,\n 33529,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3601,\n 10786,\n 532,\n 1081,\n 23884,\n 25,\n 23884,\n 4458,\n 18982,\n 7,\n 79,\n 13,\n 834,\n 3672,\n 834,\n 11,\n 304,\n 4008,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 25064,\n 13,\n 37023,\n 7,\n 16,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 198,\n 220,\n 220,\n 220,\n 611,\n 318,\n 39098,\n 7,\n 9600,\n 19,\n 11,\n 8959,\n 38,\n 19,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 21437,\n 796,\n 33705,\n 19,\n 17816,\n 15577,\n 2220,\n 20520,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 10561,\n 796,\n 33705,\n 19,\n 17816,\n 805,\n 8409,\n 20520,\n 198,\n 220,\n 220,\n 220,\n 1288,\n 361,\n 318,\n 39098,\n 7,\n 9600,\n 19,\n 11,\n 8959,\n 38,\n 19,\n 5124,\n 8409,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 21437,\n 796,\n 6045,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 10561,\n 796,\n 33705,\n 19,\n 198,\n 220,\n 220,\n 220,\n 1288,\n 361,\n 318,\n 39098,\n 7,\n 9600,\n 19,\n 11,\n 8959,\n 38,\n 19,\n 19197,\n 2220,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 21437,\n 796,\n 33705,\n 19,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 10561,\n 796,\n 6045,\n 628,\n 220,\n 220,\n 220,\n 611,\n 21437,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 279,\n 796,\n 21437,\n 13,\n 30191,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 26498,\n 13,\n 1831,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3601,\n 7,\n 2118,\n 1356,\n 13,\n 18982,\n 62,\n 8367,\n 7,\n 79,\n 11,\n 965,\n 4008,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2073,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3601,\n 10786,\n 15577,\n 2220,\n 25,\n 11537,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3601,\n 10786,\n 220,\n 2099,\n 25,\n 3256,\n 279,\n 17816,\n 4906,\n 6,\n 12962,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3601,\n 10786,\n 220,\n 1715,\n 25,\n 3256,\n 279,\n 17816,\n 11213,\n 6,\n 12962,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 279,\n 17816,\n 2539,\n 34005,\n 6,\n 5974,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3601,\n 10786,\n 220,\n 1994,\n 34005,\n 25,\n 11537,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1994,\n 34005,\n 796,\n 21437,\n 17816,\n 2539,\n 34005,\n 6,\n 4083,\n 29572,\n 7,\n 3955,\n 38,\n 19,\n 9218,\n 33,\n 363,\n 44015,\n 594,\n 737,\n 30191,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 329,\n 47823,\n 287,\n 1994,\n 34005,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3601,\n 10786,\n 220,\n 220,\n 220,\n 4686,\n 25,\n 46083,\n 47823,\n 17816,\n 312,\n 6,\n 12962,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3601,\n 10786,\n 220,\n 220,\n 220,\n 21628,\n 25,\n 46083,\n 27596,\n 13,\n 18982,\n 62,\n 8367,\n 7,\n 32812,\n 17816,\n 452,\n 6,\n 4357,\n 965,\n 4008,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3601,\n 10786,\n 220,\n 220,\n 220,\n 1994,\n 25,\n 3256,\n 27596,\n 13,\n 18982,\n 62,\n 8367,\n 7,\n 32812,\n 17816,\n 2539,\n 6,\n 4357,\n 965,\n 4008,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3601,\n 3419,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 279,\n 17816,\n 5589,\n 2234,\n 6,\n 5974,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3601,\n 10786,\n 220,\n 19794,\n 25,\n 11537,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3601,\n 10786,\n 220,\n 220,\n 220,\n 435,\n 2188,\n 25,\n 3256,\n 279,\n 17816,\n 5589,\n 2234,\n 6,\n 7131,\n 6,\n 282,\n 42289,\n 6,\n 12962,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3601,\n 10786,\n 220,\n 220,\n 220,\n 2546,\n 25,\n 3256,\n 279,\n 17816,\n 5589,\n 2234,\n 6,\n 7131,\n 6,\n 14986,\n 62,\n 7857,\n 6,\n 12962,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 435,\n 2188,\n 796,\n 279,\n 17816,\n 5589,\n 2234,\n 6,\n 7131,\n 6,\n 282,\n 42289,\n 20520,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2073,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 435,\n 2188,\n 796,\n 6045,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3601,\n 3419,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 26498,\n 13,\n 448,\n 7753,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 435,\n 2188,\n 6624,\n 705,\n 75,\n 89,\n 69,\n 325,\n 10354,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1330,\n 300,\n 89,\n 69,\n 325,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1366,\n 796,\n 300,\n 89,\n 69,\n 325,\n 13,\n 12501,\n 3361,\n 601,\n 7,\n 79,\n 17816,\n 7890,\n 6,\n 12962,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1288,\n 361,\n 435,\n 2188,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 5298,\n 11052,\n 12331,\n 10786,\n 34680,\n 11862,\n 25,\n 23884,\n 4458,\n 18982,\n 7,\n 282,\n 2188,\n 4008,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2073,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1366,\n 796,\n 279,\n 17816,\n 7890,\n 20520,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 26498,\n 13,\n 448,\n 7753,\n 13,\n 13564,\n 7,\n 7890,\n 8,\n 198,\n 220,\n 220,\n 220,\n 611,\n 10561,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 285,\n 796,\n 10561,\n 13,\n 30191,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 26498,\n 13,\n 1831,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3601,\n 7,\n 2118,\n 1356,\n 13,\n 18982,\n 62,\n 8367,\n 7,\n 76,\n 11,\n 965,\n 4008,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2073,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3601,\n 10786,\n 805,\n 8409,\n 25,\n 11537,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 329,\n 279,\n 287,\n 285,\n 17816,\n 3642,\n 658,\n 6,\n 5974,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3601,\n 10786,\n 220,\n 1767,\n 25,\n 11537,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 279,\n 17816,\n 4906,\n 20520,\n 6624,\n 705,\n 10725,\n 33,\n 10354,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 329,\n 269,\n 287,\n 279,\n 17816,\n 66,\n 26129,\n 6,\n 5974,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 269,\n 3672,\n 796,\n 269,\n 17816,\n 22872,\n 6,\n 7131,\n 6,\n 4906,\n 20520,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 329,\n 410,\n 287,\n 269,\n 17816,\n 22872,\n 6,\n 7131,\n 6,\n 27160,\n 6,\n 5974,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3601,\n 10786,\n 220,\n 220,\n 220,\n 23884,\n 13,\n 90,\n 38362,\n 23884,\n 4458,\n 18982,\n 7,\n 66,\n 3672,\n 11,\n 410,\n 17816,\n 8367,\n 6,\n 7131,\n 6,\n 2539,\n 6,\n 4357,\n 27596,\n 13,\n 18982,\n 62,\n 8367,\n 7,\n 85,\n 17816,\n 8367,\n 6,\n 7131,\n 6,\n 8367,\n 6,\n 4357,\n 965,\n 22305,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3601,\n 3419,\n 198\n]"},"ratio_char_token":{"kind":"number","value":1.9812775330396475,"string":"1.981278"},"token_count":{"kind":"number","value":1816,"string":"1,816"}}},{"rowIdx":2492,"cells":{"content":{"kind":"string","value":"import unittest\n\nfrom programy.storage.stores.nosql.mongo.dao.rdf import RDF\n\n"},"input_ids":{"kind":"list like","value":[11748,555,715,395,198,198,6738,1430,88,13,35350,13,43409,13,39369,13976,13,76,25162,13,67,5488,13,4372,69,1330,371,8068,628],"string":"[\n 11748,\n 555,\n 715,\n 395,\n 198,\n 198,\n 6738,\n 1430,\n 88,\n 13,\n 35350,\n 13,\n 43409,\n 13,\n 39369,\n 13976,\n 13,\n 76,\n 25162,\n 13,\n 67,\n 5488,\n 13,\n 4372,\n 69,\n 1330,\n 371,\n 8068,\n 628\n]"},"ratio_char_token":{"kind":"number","value":2.689655172413793,"string":"2.689655"},"token_count":{"kind":"number","value":29,"string":"29"}}},{"rowIdx":2493,"cells":{"content":{"kind":"string","value":"# (c) 2017 Gregor Mitscha-Baude\nfrom matplotlib import pyplot as plt\nimport numpy as np\nimport dolfin\nfrom nanopores.tools import fields\nfields.set_dir_dropbox()\nfrom nanopores.models.nanopore import Setup\nfrom nanopores.geometries.alphahempoly import poly\nfrom nanopores.geometries.alphahem import default\nfrom nanopores.geometries.cylpore import Pore, get_geo\nfrom nanopores.models.diffusion_ahem import diff_profile_z_ahem, get_diffusivity\n\n# params for precomputed diffusivity\nparams = dict(dim=2, Nmax=1e5, h=.5, ahemqsuniform=True, rMolecule=0.11)\n\n#ap1 = 18\n#ap2 = 49\n#x0 = poly[18]\n#x1 = poly[49]\n#\n#zmem = .5*(x0[1] + x1[1])\n#print zmem\n#\n#poly = [[x[0], x[1] - zmem] for x in poly]\n#proteincs = [z - zmem for z in default[\"proteincs\"]]\n#cs = [z - zmem for z in default[\"cs\"]]\n#default.update(zmem=0., hmem=2.82, Htop=10, Hbot=6, R=6, proteincs=proteincs, cs=cs)\n#print default\n#\n#def new_get_geo(**params):\n# return get_geo(poly, **params)\n#\n#p = Pore(poly, **default)\n#p.build(h=.5)\n#\n#p.polygons[\"alphahem\"].plot(\"ok\")\n#p.polygons[\"membrane\"].plot()\n#p.polygons[\"bulkfluid_top\"].plot()\n#p.polygons[\"bulkfluid_bottom\"].plot()\n#plt.show()\n\n#setup = Setup(get_geo=new_get_geo, geop=default, h=.5)\n#setup = Setup(h=.5)\n#setup.geo.plot_boundaries()\nfunctions, mesh = fields.get_functions(name=\"Dalphahem-coupled\", **params)\ndist = functions[\"dist\"]\n\n#dolfin.plot(dist, interactive=True)\n\n# construct D fit from Noskov2004 and plot tabulated D values\nA = 0.64309\nB = 0.00044\nC = 0.06894\nD = 0.35647\nE = 0.19409\n\nz, D = diff_profile_fit(a=-12, b=2, N=100)\nplt.plot(z, D, \"-b\", label=\"Tabulated (infinite cylinder)\")\n\ndata = diff_profile_z_ahem(a=-12, b=2, N=100, **params)\nz = [x0[2] for x0 in data[\"x\"]]\nDz = data[\"D\"]\n\nplt.plot(z, Dz, \"og\", label=\"Full hydrodynamic model\")\nplt.ylabel(\"Rel. diffusivity\")\nplt.xlabel(\"z [nm]\")\nplt.xlim(-10, 0)\nax = plt.gca()\n#ax.yaxis.tick_right()\n#ax.yaxis.set_label_position(\"right\")\nplt.legend(loc=\"upper left\", frameon=False)\n\nfrom nanopores import savefigs\nfrom folders import FIGDIR\nsavefigs(\"Dz\", FIGDIR + \"/ahem\", (6, 4.5))\n#print results"},"input_ids":{"kind":"list like","value":[2,357,66,8,2177,8547,273,22424,11693,12,34458,2507,198,6738,2603,29487,8019,1330,12972,29487,355,458,83,198,11748,299,32152,355,45941,198,11748,288,4024,259,198,6738,46661,2850,13,31391,1330,7032,198,25747,13,2617,62,15908,62,14781,3524,3419,198,6738,46661,2850,13,27530,13,12647,404,382,1330,31122,198,6738,46661,2850,13,469,908,1678,13,26591,258,3149,3366,1330,7514,198,6738,46661,2850,13,469,908,1678,13,26591,4411,1330,4277,198,6738,46661,2850,13,469,908,1678,13,948,34431,382,1330,350,382,11,651,62,469,78,198,6738,46661,2850,13,27530,13,26069,4241,62,64,4411,1330,814,62,13317,62,89,62,64,4411,11,651,62,26069,385,3458,198,198,2,42287,329,662,785,17128,814,385,3458,198,37266,796,8633,7,27740,28,17,11,399,9806,28,16,68,20,11,289,28,13,20,11,257,4411,80,19155,6933,28,17821,11,374,44,2305,23172,28,15,13,1157,8,198,198,2,499,16,796,1248,198,2,499,17,796,5125,198,2,87,15,796,7514,58,1507,60,198,2,87,16,796,7514,58,2920,60,198,2,198,2,89,11883,796,764,20,9,7,87,15,58,16,60,1343,2124,16,58,16,12962,198,2,4798,1976,11883,198,2,198,2,35428,796,16410,87,58,15,4357,2124,58,16,60,532,1976,11883,60,329,2124,287,7514,60,198,2,1676,660,1939,82,796,685,89,532,1976,11883,329,1976,287,4277,14692,1676,660,1939,82,8973,60,198,2,6359,796,685,89,532,1976,11883,329,1976,287,4277,14692,6359,8973,60,198,2,12286,13,19119,7,89,11883,28,15,1539,289,11883,28,17,13,6469,11,367,4852,28,940,11,367,13645,28,21,11,371,28,21,11,5915,1939,82,28,1676,660,1939,82,11,50115,28,6359,8,198,2,4798,4277,198,2,198,2,4299,649,62,1136,62,469,78,7,1174,37266,2599,198,2,220,220,220,1441,651,62,469,78,7,35428,11,12429,37266,8,198,2,198,2,79,796,350,382,7,35428,11,12429,12286,8,198,2,79,13,11249,7,71,28,13,20,8,198,2,198,2,79,13,35428,70,684,14692,26591,4411,1,4083,29487,7203,482,4943,198,2,79,13,35428,70,684,14692,11883,1671,1531,1,4083,29487,3419,198,2,79,13,35428,70,684,14692,65,12171,35522,312,62,4852,1,4083,29487,3419,198,2,79,13,35428,70,684,14692,65,12171,35522,312,62,22487,1,4083,29487,3419,198,2,489,83,13,12860,3419,198,198,2,40406,796,31122,7,1136,62,469,78,28,3605,62,1136,62,469,78,11,30324,28,12286,11,289,28,13,20,8,198,2,40406,796,31122,7,71,28,13,20,8,198,2,40406,13,469,78,13,29487,62,7784,3166,3419,198,12543,2733,11,19609,796,7032,13,1136,62,12543,2733,7,3672,2625,35,26591,4411,12,66,280,10137,1600,12429,37266,8,198,17080,796,5499,14692,17080,8973,198,198,2,67,4024,259,13,29487,7,17080,11,14333,28,17821,8,198,198,2,5678,360,4197,422,32798,21862,15724,290,7110,7400,4817,360,3815,198,32,796,657,13,2414,26895,198,33,796,657,13,830,2598,198,34,796,657,13,15,3104,5824,198,35,796,657,13,2327,33981,198,36,796,657,13,1129,29416,198,198,89,11,360,796,814,62,13317,62,11147,7,64,10779,1065,11,275,28,17,11,399,28,3064,8,198,489,83,13,29487,7,89,11,360,11,27444,65,1600,6167,2625,33349,4817,357,10745,9504,24911,8,4943,198,198,7890,796,814,62,13317,62,89,62,64,4411,7,64,10779,1065,11,275,28,17,11,399,28,3064,11,12429,37266,8,198,89,796,685,87,15,58,17,60,329,2124,15,287,1366,14692,87,8973,60,198,35,89,796,1366,14692,35,8973,198,198,489,83,13,29487,7,89,11,360,89,11,366,519,1600,6167,2625,13295,7409,14892,28995,2746,4943,198,489,83,13,2645,9608,7203,6892,13,814,385,3458,4943,198,489,83,13,87,18242,7203,89,685,21533,60,4943,198,489,83,13,87,2475,32590,940,11,657,8,198,897,796,458,83,13,70,6888,3419,198,2,897,13,88,22704,13,42298,62,3506,3419,198,2,897,13,88,22704,13,2617,62,18242,62,9150,7203,3506,4943,198,489,83,13,1455,437,7,17946,2625,45828,1364,1600,5739,261,28,25101,8,198,198,6738,46661,2850,1330,3613,5647,82,198,6738,24512,1330,19697,34720,198,21928,5647,82,7203,35,89,1600,19697,34720,1343,12813,64,4411,1600,357,21,11,604,13,20,4008,198,2,4798,2482],"string":"[\n 2,\n 357,\n 66,\n 8,\n 2177,\n 8547,\n 273,\n 22424,\n 11693,\n 12,\n 34458,\n 2507,\n 198,\n 6738,\n 2603,\n 29487,\n 8019,\n 1330,\n 12972,\n 29487,\n 355,\n 458,\n 83,\n 198,\n 11748,\n 299,\n 32152,\n 355,\n 45941,\n 198,\n 11748,\n 288,\n 4024,\n 259,\n 198,\n 6738,\n 46661,\n 2850,\n 13,\n 31391,\n 1330,\n 7032,\n 198,\n 25747,\n 13,\n 2617,\n 62,\n 15908,\n 62,\n 14781,\n 3524,\n 3419,\n 198,\n 6738,\n 46661,\n 2850,\n 13,\n 27530,\n 13,\n 12647,\n 404,\n 382,\n 1330,\n 31122,\n 198,\n 6738,\n 46661,\n 2850,\n 13,\n 469,\n 908,\n 1678,\n 13,\n 26591,\n 258,\n 3149,\n 3366,\n 1330,\n 7514,\n 198,\n 6738,\n 46661,\n 2850,\n 13,\n 469,\n 908,\n 1678,\n 13,\n 26591,\n 4411,\n 1330,\n 4277,\n 198,\n 6738,\n 46661,\n 2850,\n 13,\n 469,\n 908,\n 1678,\n 13,\n 948,\n 34431,\n 382,\n 1330,\n 350,\n 382,\n 11,\n 651,\n 62,\n 469,\n 78,\n 198,\n 6738,\n 46661,\n 2850,\n 13,\n 27530,\n 13,\n 26069,\n 4241,\n 62,\n 64,\n 4411,\n 1330,\n 814,\n 62,\n 13317,\n 62,\n 89,\n 62,\n 64,\n 4411,\n 11,\n 651,\n 62,\n 26069,\n 385,\n 3458,\n 198,\n 198,\n 2,\n 42287,\n 329,\n 662,\n 785,\n 17128,\n 814,\n 385,\n 3458,\n 198,\n 37266,\n 796,\n 8633,\n 7,\n 27740,\n 28,\n 17,\n 11,\n 399,\n 9806,\n 28,\n 16,\n 68,\n 20,\n 11,\n 289,\n 28,\n 13,\n 20,\n 11,\n 257,\n 4411,\n 80,\n 19155,\n 6933,\n 28,\n 17821,\n 11,\n 374,\n 44,\n 2305,\n 23172,\n 28,\n 15,\n 13,\n 1157,\n 8,\n 198,\n 198,\n 2,\n 499,\n 16,\n 796,\n 1248,\n 198,\n 2,\n 499,\n 17,\n 796,\n 5125,\n 198,\n 2,\n 87,\n 15,\n 796,\n 7514,\n 58,\n 1507,\n 60,\n 198,\n 2,\n 87,\n 16,\n 796,\n 7514,\n 58,\n 2920,\n 60,\n 198,\n 2,\n 198,\n 2,\n 89,\n 11883,\n 796,\n 764,\n 20,\n 9,\n 7,\n 87,\n 15,\n 58,\n 16,\n 60,\n 1343,\n 2124,\n 16,\n 58,\n 16,\n 12962,\n 198,\n 2,\n 4798,\n 1976,\n 11883,\n 198,\n 2,\n 198,\n 2,\n 35428,\n 796,\n 16410,\n 87,\n 58,\n 15,\n 4357,\n 2124,\n 58,\n 16,\n 60,\n 532,\n 1976,\n 11883,\n 60,\n 329,\n 2124,\n 287,\n 7514,\n 60,\n 198,\n 2,\n 1676,\n 660,\n 1939,\n 82,\n 796,\n 685,\n 89,\n 532,\n 1976,\n 11883,\n 329,\n 1976,\n 287,\n 4277,\n 14692,\n 1676,\n 660,\n 1939,\n 82,\n 8973,\n 60,\n 198,\n 2,\n 6359,\n 796,\n 685,\n 89,\n 532,\n 1976,\n 11883,\n 329,\n 1976,\n 287,\n 4277,\n 14692,\n 6359,\n 8973,\n 60,\n 198,\n 2,\n 12286,\n 13,\n 19119,\n 7,\n 89,\n 11883,\n 28,\n 15,\n 1539,\n 289,\n 11883,\n 28,\n 17,\n 13,\n 6469,\n 11,\n 367,\n 4852,\n 28,\n 940,\n 11,\n 367,\n 13645,\n 28,\n 21,\n 11,\n 371,\n 28,\n 21,\n 11,\n 5915,\n 1939,\n 82,\n 28,\n 1676,\n 660,\n 1939,\n 82,\n 11,\n 50115,\n 28,\n 6359,\n 8,\n 198,\n 2,\n 4798,\n 4277,\n 198,\n 2,\n 198,\n 2,\n 4299,\n 649,\n 62,\n 1136,\n 62,\n 469,\n 78,\n 7,\n 1174,\n 37266,\n 2599,\n 198,\n 2,\n 220,\n 220,\n 220,\n 1441,\n 651,\n 62,\n 469,\n 78,\n 7,\n 35428,\n 11,\n 12429,\n 37266,\n 8,\n 198,\n 2,\n 198,\n 2,\n 79,\n 796,\n 350,\n 382,\n 7,\n 35428,\n 11,\n 12429,\n 12286,\n 8,\n 198,\n 2,\n 79,\n 13,\n 11249,\n 7,\n 71,\n 28,\n 13,\n 20,\n 8,\n 198,\n 2,\n 198,\n 2,\n 79,\n 13,\n 35428,\n 70,\n 684,\n 14692,\n 26591,\n 4411,\n 1,\n 4083,\n 29487,\n 7203,\n 482,\n 4943,\n 198,\n 2,\n 79,\n 13,\n 35428,\n 70,\n 684,\n 14692,\n 11883,\n 1671,\n 1531,\n 1,\n 4083,\n 29487,\n 3419,\n 198,\n 2,\n 79,\n 13,\n 35428,\n 70,\n 684,\n 14692,\n 65,\n 12171,\n 35522,\n 312,\n 62,\n 4852,\n 1,\n 4083,\n 29487,\n 3419,\n 198,\n 2,\n 79,\n 13,\n 35428,\n 70,\n 684,\n 14692,\n 65,\n 12171,\n 35522,\n 312,\n 62,\n 22487,\n 1,\n 4083,\n 29487,\n 3419,\n 198,\n 2,\n 489,\n 83,\n 13,\n 12860,\n 3419,\n 198,\n 198,\n 2,\n 40406,\n 796,\n 31122,\n 7,\n 1136,\n 62,\n 469,\n 78,\n 28,\n 3605,\n 62,\n 1136,\n 62,\n 469,\n 78,\n 11,\n 30324,\n 28,\n 12286,\n 11,\n 289,\n 28,\n 13,\n 20,\n 8,\n 198,\n 2,\n 40406,\n 796,\n 31122,\n 7,\n 71,\n 28,\n 13,\n 20,\n 8,\n 198,\n 2,\n 40406,\n 13,\n 469,\n 78,\n 13,\n 29487,\n 62,\n 7784,\n 3166,\n 3419,\n 198,\n 12543,\n 2733,\n 11,\n 19609,\n 796,\n 7032,\n 13,\n 1136,\n 62,\n 12543,\n 2733,\n 7,\n 3672,\n 2625,\n 35,\n 26591,\n 4411,\n 12,\n 66,\n 280,\n 10137,\n 1600,\n 12429,\n 37266,\n 8,\n 198,\n 17080,\n 796,\n 5499,\n 14692,\n 17080,\n 8973,\n 198,\n 198,\n 2,\n 67,\n 4024,\n 259,\n 13,\n 29487,\n 7,\n 17080,\n 11,\n 14333,\n 28,\n 17821,\n 8,\n 198,\n 198,\n 2,\n 5678,\n 360,\n 4197,\n 422,\n 32798,\n 21862,\n 15724,\n 290,\n 7110,\n 7400,\n 4817,\n 360,\n 3815,\n 198,\n 32,\n 796,\n 657,\n 13,\n 2414,\n 26895,\n 198,\n 33,\n 796,\n 657,\n 13,\n 830,\n 2598,\n 198,\n 34,\n 796,\n 657,\n 13,\n 15,\n 3104,\n 5824,\n 198,\n 35,\n 796,\n 657,\n 13,\n 2327,\n 33981,\n 198,\n 36,\n 796,\n 657,\n 13,\n 1129,\n 29416,\n 198,\n 198,\n 89,\n 11,\n 360,\n 796,\n 814,\n 62,\n 13317,\n 62,\n 11147,\n 7,\n 64,\n 10779,\n 1065,\n 11,\n 275,\n 28,\n 17,\n 11,\n 399,\n 28,\n 3064,\n 8,\n 198,\n 489,\n 83,\n 13,\n 29487,\n 7,\n 89,\n 11,\n 360,\n 11,\n 27444,\n 65,\n 1600,\n 6167,\n 2625,\n 33349,\n 4817,\n 357,\n 10745,\n 9504,\n 24911,\n 8,\n 4943,\n 198,\n 198,\n 7890,\n 796,\n 814,\n 62,\n 13317,\n 62,\n 89,\n 62,\n 64,\n 4411,\n 7,\n 64,\n 10779,\n 1065,\n 11,\n 275,\n 28,\n 17,\n 11,\n 399,\n 28,\n 3064,\n 11,\n 12429,\n 37266,\n 8,\n 198,\n 89,\n 796,\n 685,\n 87,\n 15,\n 58,\n 17,\n 60,\n 329,\n 2124,\n 15,\n 287,\n 1366,\n 14692,\n 87,\n 8973,\n 60,\n 198,\n 35,\n 89,\n 796,\n 1366,\n 14692,\n 35,\n 8973,\n 198,\n 198,\n 489,\n 83,\n 13,\n 29487,\n 7,\n 89,\n 11,\n 360,\n 89,\n 11,\n 366,\n 519,\n 1600,\n 6167,\n 2625,\n 13295,\n 7409,\n 14892,\n 28995,\n 2746,\n 4943,\n 198,\n 489,\n 83,\n 13,\n 2645,\n 9608,\n 7203,\n 6892,\n 13,\n 814,\n 385,\n 3458,\n 4943,\n 198,\n 489,\n 83,\n 13,\n 87,\n 18242,\n 7203,\n 89,\n 685,\n 21533,\n 60,\n 4943,\n 198,\n 489,\n 83,\n 13,\n 87,\n 2475,\n 32590,\n 940,\n 11,\n 657,\n 8,\n 198,\n 897,\n 796,\n 458,\n 83,\n 13,\n 70,\n 6888,\n 3419,\n 198,\n 2,\n 897,\n 13,\n 88,\n 22704,\n 13,\n 42298,\n 62,\n 3506,\n 3419,\n 198,\n 2,\n 897,\n 13,\n 88,\n 22704,\n 13,\n 2617,\n 62,\n 18242,\n 62,\n 9150,\n 7203,\n 3506,\n 4943,\n 198,\n 489,\n 83,\n 13,\n 1455,\n 437,\n 7,\n 17946,\n 2625,\n 45828,\n 1364,\n 1600,\n 5739,\n 261,\n 28,\n 25101,\n 8,\n 198,\n 198,\n 6738,\n 46661,\n 2850,\n 1330,\n 3613,\n 5647,\n 82,\n 198,\n 6738,\n 24512,\n 1330,\n 19697,\n 34720,\n 198,\n 21928,\n 5647,\n 82,\n 7203,\n 35,\n 89,\n 1600,\n 19697,\n 34720,\n 1343,\n 12813,\n 64,\n 4411,\n 1600,\n 357,\n 21,\n 11,\n 604,\n 13,\n 20,\n 4008,\n 198,\n 2,\n 4798,\n 2482\n]"},"ratio_char_token":{"kind":"number","value":2.334078212290503,"string":"2.334078"},"token_count":{"kind":"number","value":895,"string":"895"}}},{"rowIdx":2494,"cells":{"content":{"kind":"string","value":"\"\"\"This module solves kata https://www.codewars.com/kata/multiples-and-digit-sums/train/python.\"\"\"\n\n\ndef procedure(i):\n \"\"\"Return an integer derived by first finding all multiples of i up to 100,\n then summing all up digit sums of all multiples.\"\"\"\n return sum(int(d) for i in range(n, 101, n) for d in str(i))\n"},"input_ids":{"kind":"list like","value":[37811,1212,8265,39107,479,1045,3740,1378,2503,13,19815,413,945,13,785,14,74,1045,14,41684,2374,12,392,12,27003,12,82,5700,14,27432,14,29412,526,15931,628,198,4299,8771,7,72,2599,198,220,220,220,37227,13615,281,18253,10944,416,717,4917,477,5021,2374,286,1312,510,284,1802,11,198,220,220,220,788,2160,2229,477,510,16839,21784,286,477,5021,2374,526,15931,198,220,220,220,1441,2160,7,600,7,67,8,329,1312,287,2837,7,77,11,8949,11,299,8,329,288,287,965,7,72,4008,198],"string":"[\n 37811,\n 1212,\n 8265,\n 39107,\n 479,\n 1045,\n 3740,\n 1378,\n 2503,\n 13,\n 19815,\n 413,\n 945,\n 13,\n 785,\n 14,\n 74,\n 1045,\n 14,\n 41684,\n 2374,\n 12,\n 392,\n 12,\n 27003,\n 12,\n 82,\n 5700,\n 14,\n 27432,\n 14,\n 29412,\n 526,\n 15931,\n 628,\n 198,\n 4299,\n 8771,\n 7,\n 72,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 13615,\n 281,\n 18253,\n 10944,\n 416,\n 717,\n 4917,\n 477,\n 5021,\n 2374,\n 286,\n 1312,\n 510,\n 284,\n 1802,\n 11,\n 198,\n 220,\n 220,\n 220,\n 788,\n 2160,\n 2229,\n 477,\n 510,\n 16839,\n 21784,\n 286,\n 477,\n 5021,\n 2374,\n 526,\n 15931,\n 198,\n 220,\n 220,\n 220,\n 1441,\n 2160,\n 7,\n 600,\n 7,\n 67,\n 8,\n 329,\n 1312,\n 287,\n 2837,\n 7,\n 77,\n 11,\n 8949,\n 11,\n 299,\n 8,\n 329,\n 288,\n 287,\n 965,\n 7,\n 72,\n 4008,\n 198\n]"},"ratio_char_token":{"kind":"number","value":2.9357798165137616,"string":"2.93578"},"token_count":{"kind":"number","value":109,"string":"109"}}},{"rowIdx":2495,"cells":{"content":{"kind":"string","value":"import json\nimport folium\nimport folium.plugins\nimport tempfile\nimport os\nimport re\n\n\n\nimport argparse\n\n\n\nif __name__ == \"__main__\":\n cwd = os.getcwd()\n\n args = get_args()\n\n plot_privpurge(\n os.path.join(cwd, args.zonefile),\n os.path.join(cwd, args.directory),\n filename=args.output,\n )\n"},"input_ids":{"kind":"list like","value":[11748,33918,198,11748,5955,1505,198,11748,5955,1505,13,37390,198,11748,20218,7753,198,11748,28686,198,11748,302,628,198,198,11748,1822,29572,628,198,198,361,11593,3672,834,6624,366,834,12417,834,1298,198,220,220,220,269,16993,796,28686,13,1136,66,16993,3419,628,220,220,220,26498,796,651,62,22046,3419,628,220,220,220,7110,62,13776,14225,469,7,198,220,220,220,220,220,220,220,28686,13,6978,13,22179,7,66,16993,11,26498,13,11340,7753,828,198,220,220,220,220,220,220,220,28686,13,6978,13,22179,7,66,16993,11,26498,13,34945,828,198,220,220,220,220,220,220,220,29472,28,22046,13,22915,11,198,220,220,220,1267,198],"string":"[\n 11748,\n 33918,\n 198,\n 11748,\n 5955,\n 1505,\n 198,\n 11748,\n 5955,\n 1505,\n 13,\n 37390,\n 198,\n 11748,\n 20218,\n 7753,\n 198,\n 11748,\n 28686,\n 198,\n 11748,\n 302,\n 628,\n 198,\n 198,\n 11748,\n 1822,\n 29572,\n 628,\n 198,\n 198,\n 361,\n 11593,\n 3672,\n 834,\n 6624,\n 366,\n 834,\n 12417,\n 834,\n 1298,\n 198,\n 220,\n 220,\n 220,\n 269,\n 16993,\n 796,\n 28686,\n 13,\n 1136,\n 66,\n 16993,\n 3419,\n 628,\n 220,\n 220,\n 220,\n 26498,\n 796,\n 651,\n 62,\n 22046,\n 3419,\n 628,\n 220,\n 220,\n 220,\n 7110,\n 62,\n 13776,\n 14225,\n 469,\n 7,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 28686,\n 13,\n 6978,\n 13,\n 22179,\n 7,\n 66,\n 16993,\n 11,\n 26498,\n 13,\n 11340,\n 7753,\n 828,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 28686,\n 13,\n 6978,\n 13,\n 22179,\n 7,\n 66,\n 16993,\n 11,\n 26498,\n 13,\n 34945,\n 828,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 29472,\n 28,\n 22046,\n 13,\n 22915,\n 11,\n 198,\n 220,\n 220,\n 220,\n 1267,\n 198\n]"},"ratio_char_token":{"kind":"number","value":2.335766423357664,"string":"2.335766"},"token_count":{"kind":"number","value":137,"string":"137"}}},{"rowIdx":2496,"cells":{"content":{"kind":"string","value":"# pylint: skip-file\n\n\"\"\"\nUnit test for data utils functions.\n\"\"\"\n\nimport numpy as np\nimport pandas as pd\nimport pytest\n\nimport tensorflow as tf\nfrom tensorflow import test\n\nfrom .data_utils import quantiles_handler, example_handler, fill_none\nfrom ..data import random_ts\nfrom ..dataset import WindowGenerator\n\n\n\n@pytest.fixture(scope=\"class\")\n\n\n@pytest.mark.usefixtures(\"prepare_data\")\n\n\n@pytest.mark.usefixtures(\"prepare_data\")\n"},"input_ids":{"kind":"list like","value":[2,279,2645,600,25,14267,12,7753,198,198,37811,198,26453,1332,329,1366,3384,4487,5499,13,198,37811,198,198,11748,299,32152,355,45941,198,11748,19798,292,355,279,67,198,11748,12972,9288,198,198,11748,11192,273,11125,355,48700,198,6738,11192,273,11125,1330,1332,198,198,6738,764,7890,62,26791,1330,5554,2915,62,30281,11,1672,62,30281,11,6070,62,23108,198,6738,11485,7890,1330,4738,62,912,198,6738,11485,19608,292,316,1330,26580,8645,1352,628,198,198,31,9078,9288,13,69,9602,7,29982,2625,4871,4943,628,198,31,9078,9288,13,4102,13,1904,69,25506,7203,46012,533,62,7890,4943,628,198,31,9078,9288,13,4102,13,1904,69,25506,7203,46012,533,62,7890,4943,198],"string":"[\n 2,\n 279,\n 2645,\n 600,\n 25,\n 14267,\n 12,\n 7753,\n 198,\n 198,\n 37811,\n 198,\n 26453,\n 1332,\n 329,\n 1366,\n 3384,\n 4487,\n 5499,\n 13,\n 198,\n 37811,\n 198,\n 198,\n 11748,\n 299,\n 32152,\n 355,\n 45941,\n 198,\n 11748,\n 19798,\n 292,\n 355,\n 279,\n 67,\n 198,\n 11748,\n 12972,\n 9288,\n 198,\n 198,\n 11748,\n 11192,\n 273,\n 11125,\n 355,\n 48700,\n 198,\n 6738,\n 11192,\n 273,\n 11125,\n 1330,\n 1332,\n 198,\n 198,\n 6738,\n 764,\n 7890,\n 62,\n 26791,\n 1330,\n 5554,\n 2915,\n 62,\n 30281,\n 11,\n 1672,\n 62,\n 30281,\n 11,\n 6070,\n 62,\n 23108,\n 198,\n 6738,\n 11485,\n 7890,\n 1330,\n 4738,\n 62,\n 912,\n 198,\n 6738,\n 11485,\n 19608,\n 292,\n 316,\n 1330,\n 26580,\n 8645,\n 1352,\n 628,\n 198,\n 198,\n 31,\n 9078,\n 9288,\n 13,\n 69,\n 9602,\n 7,\n 29982,\n 2625,\n 4871,\n 4943,\n 628,\n 198,\n 31,\n 9078,\n 9288,\n 13,\n 4102,\n 13,\n 1904,\n 69,\n 25506,\n 7203,\n 46012,\n 533,\n 62,\n 7890,\n 4943,\n 628,\n 198,\n 31,\n 9078,\n 9288,\n 13,\n 4102,\n 13,\n 1904,\n 69,\n 25506,\n 7203,\n 46012,\n 533,\n 62,\n 7890,\n 4943,\n 198\n]"},"ratio_char_token":{"kind":"number","value":3.028169014084507,"string":"3.028169"},"token_count":{"kind":"number","value":142,"string":"142"}}},{"rowIdx":2497,"cells":{"content":{"kind":"string","value":"# Copyright (C) Mesosphere, Inc. See LICENSE file for details.\n\n\"\"\"\nShared code for DC/OS endpoints mocks used by AR instances, both EE and Open.\n\"\"\"\n\nimport abc\nimport http.server\nimport logging\nimport os\nimport socket\nimport socketserver\nimport ssl\nimport threading\n\n# pylint: disable=C0103\nlog = logging.getLogger(__name__)\n\n\n# Just a dict would be no good as we want to have threading lock initialization\n# as well.\n# pylint: disable=R0903\nclass EndpointContext:\n \"\"\"An endpoint context that holds all the endpoint data together with\n threading lock that protects it.\"\"\"\n data = None\n lock = None\n\n def __init__(self, initial_data=None):\n \"\"\"Initialize EndpointContext object.\n\n This data is often manipulated by methods nested across\n inheritance chains, so we need to use RLock() instead of Lock().\n\n The need for the lock itself stems from the fact that very often certain\n keys of the context need to be manipulated at the same time/in synchronized\n manner.\n\n In some of the places, code relies on thread safety/atomicity of\n some of Python's expressions/statements:\n\n https://docs.python.org/3.6/faq/library.html#what-kinds-of-global-value-mutation-are-thread-safe\n\n This is why some of the operations on the EndpointContext dictionary\n are not protected by locks, esp. in case when it's only about fetching\n a single value from context dict or storing/appending one there.\n\n Args:\n initial_data (dict): initial data to initialize context with\n \"\"\"\n self.lock = threading.RLock()\n if initial_data is not None:\n self.data = initial_data\n else:\n self.data = {}\n\n\nclass Endpoint(abc.ABC):\n \"\"\"Endpoint base class, from which all Endpoints must inherit\n\n This class represents common behaviour shared across all endpoints,\n no matter the function or repository flavour (ee/open).\n\n Ever endpoint must by default serve GOOD/expected data, and only after\n changing it's state using it's methods, it may start serving something\n else and/or simulate error conditions.\n\n The state of the endpoint may be changed by tests/fixtures by executing\n Mocker's .send_command() method which in turn redirect the call to the\n correct endpoint call. For the sake of simplicity it is assumed that each\n such method will have well-defined interface:\n def do_something(self, aux_data=None):\n return result\n\n `aux_data` is a python dictionary that must provide all data required\n by function to execute. It can be None if such data is not required\n `result` can be anything that makes sense in particular function's case.\n \"\"\"\n _context = None\n _httpd_thread = None\n _httpd = None\n\n def __init__(self, endpoint_id):\n \"\"\"Initialize new Endpoint object\n\n Args:\n endpoint_id (str): ID of the endpoint that it should identify itself\n with\n \"\"\"\n initial_data = {\"always_bork\": False,\n \"endpoint_id\": endpoint_id,\n \"always_redirect\": False,\n \"redirect_target\": None,\n \"always_stall\": False,\n \"response_headers\": {},\n \"stall_time\": 0,\n }\n self._context = EndpointContext(initial_data)\n\n @property\n def id(self):\n \"\"\"Return ID of the endpoint\"\"\"\n return self._context.data['endpoint_id']\n\n def start(self):\n \"\"\"Start endpoint's threaded httpd server\"\"\"\n log.debug(\"Starting endpoint `%s`\", self.id)\n self._httpd_thread.start()\n self._httpd.startup_done.wait()\n\n def stop(self):\n \"\"\"Perform cleanup of the endpoint threads\n\n This method should be used right before destroying the Endpoint object.\n It takes care of stopping internal httpd server.\n \"\"\"\n log.debug(\"Stopping endpoint `%s`\", self.id)\n self._httpd.shutdown()\n self._httpd_thread.join()\n self._httpd.server_close()\n\n def reset(self, aux_data=None):\n \"\"\"Reset endpoint to the default/good state\n\n Args:\n aux_data (dict): unused, present only to satisfy the endpoint's\n method interface. See class description for details.\n \"\"\"\n del aux_data\n log.debug(\"Resetting endpoint `%s`\", self.id)\n # Locking is not really needed here as it is atomic op anyway,\n # but let's be consistent\n with self._context.lock:\n self._context.data['always_bork'] = False\n\n self._context.data['always_stall'] = False\n self._context.data['stall_time'] = 0\n\n self._context.data[\"always_redirect\"] = False\n self._context.data[\"redirect_target\"] = None\n\n def set_response_headers(self, aux_data):\n \"\"\"Make endpoint sent custom headers in the response\n\n Args:\n aux_data: a dict with header's name/content as keys/vals\n \"\"\"\n with self._context.lock:\n self._context.data[\"response_headers\"].update(aux_data)\n\n def always_stall(self, aux_data=None):\n \"\"\"Make endpoint always wait given time before answering the request\n\n Args:\n aux_data (numeric): time in seconds, as acepted by time.sleep()\n function\n \"\"\"\n with self._context.lock:\n self._context.data[\"always_stall\"] = True\n self._context.data[\"stall_time\"] = aux_data\n\n def always_bork(self, aux_data=True):\n \"\"\"Make endpoint always respond with an error\n\n Args:\n aux_data (dict): True or False, depending whether endpoint should\n always respond with errors or not.\n \"\"\"\n self._context.data[\"always_bork\"] = aux_data\n\n def always_redirect(self, aux_data=None):\n \"\"\"Make endpoint always respond with a redirect\n\n Args:\n aux_data (str): target location for the redirect\n \"\"\"\n with self._context.lock:\n self._context.data[\"always_redirect\"] = True\n self._context.data[\"redirect_target\"] = aux_data\n\n\nclass StatefullHTTPServer(socketserver.ThreadingMixIn, http.server.HTTPServer):\n \"\"\"Base class for all endpoint-internal httpd servers.\n\n This class serves as a base for all internal httpd server, it's role is\n to pull in Threading mix-in and link Endpoint context to httpd itself,\n so that it's available in the httpd request handler through request's\n .server.context attribute.\n\n Worth noting that this is by default a TCP/IP server.\n\n It's based on:\n https://mail.python.org/pipermail/python-list/2012-March/621727.html\n \"\"\"\n\n\nclass TcpIpHttpEndpoint(Endpoint):\n \"\"\"Base class for all endpoints that serve TCP/IP requests\n\n This class binds together HTTPd server code, http request handler and\n endpoint context to form a base class for all endpoints that serve\n TCP/IP traffic.\n \"\"\"\n def __init__(self, handler_class, port, ip='', keyfile=None, certfile=None):\n \"\"\"Initialize new TcpIpHttpEndpoint object\n\n Args:\n handler_class (obj): a request handler class that will be handling\n requests received by internal httpd server\n port (int): tcp port that httpd server will listen on\n ip (str): ip address that httpd server will listen on, by default\n listen on all addresses\n \"\"\"\n if certfile is not None and keyfile is not None:\n endpoint_id = \"https://{}:{}\".format(ip, port)\n else:\n endpoint_id = \"http://{}:{}\".format(ip, port)\n super().__init__(endpoint_id)\n\n self._context.data['listen_ip'] = ip\n self._context.data['listen_port'] = port\n self._context.data['certfile'] = certfile\n self._context.data['keyfile'] = keyfile\n\n self._handler_class = handler_class\n\n self.__setup_httpd_thread(ip, port)\n\n def __setup_httpd_thread(self, ip, port):\n \"\"\"Setup internal HTTPd server that this endpoints relies on to serve\n requests.\n \"\"\"\n self._httpd = StatefullHTTPServer(self._context,\n (ip, port),\n self._handler_class)\n\n httpd_thread_name = \"TcpIpHttpdThread-{}\".format(self.id)\n self._httpd_thread = threading.Thread(target=self._httpd.serve_forever,\n name=httpd_thread_name)\n\n\nclass UnixSocketStatefulHTTPServer(StatefullHTTPServer):\n \"\"\"Base class for all endpoint-internal httpd servers that listen on\n Unix socket.\n\n This class inherits from StatefullHTTPServer and mofies it's behaviour\n so that it's able to listen on Unix socket.\n\n Attributes:\n address_family: set only to override default value of the variable set\n in the http.server.HTTPServer class, must not be modified.\n \"\"\"\n address_family = socket.AF_UNIX\n\n def server_bind(self):\n \"\"\"Override default server socket bind behaviour to adapt it to\n serving on Unix socket.\n\n Please check the documentation of http.server.HTTPServer class for more\n details.\n \"\"\"\n socketserver.TCPServer.server_bind(self)\n self.server_name = self.context.data['socket_path']\n self.server_port = 0\n\n def client_address(self):\n \"\"\"Override default client_address method to adapt it to serving on Unix\n socket. Without it logging will break as Unix socket has no notion of\n the client's IP address.\n\n Please check the documentation of http.server.HTTPServer class for more\n details.\n \"\"\"\n return (self.context.data['socket_path'], 0)\n\n\n# http://stackoverflow.com/questions/21650370/setting-up-an-http-server-that-listens-over-a-file-socket\n# https://docs.python.org/3.3/library/socketserver.html\nclass UnixSocketHTTPEndpoint(Endpoint):\n \"\"\"Base class for all endpoints that serve requests on the Unix socket\n\n This class binds together HTTPd server code, http request handler and\n endpoint context to form a base class for all endpoints that serve\n Unix socket traffic.\n \"\"\"\n def __init__(self, handler_class, path, keyfile=None, certfile=None):\n \"\"\"Initialize new UnixSocketHTTPEndpoint object\n\n Args:\n handler_class (obj): a request handler class that will be handling\n requests received by internal httpd server\n path (str): Unix socket path, that internal httpd server will listen\n on\n \"\"\"\n if certfile is not None and keyfile is not None:\n endpoint_id = \"https://{}\".format(path)\n else:\n endpoint_id = \"http://{}\".format(path)\n super().__init__(endpoint_id)\n\n self._context.data['socket_path'] = path\n self._context.data['certfile'] = certfile\n self._context.data['keyfile'] = keyfile\n\n self._handler_class = handler_class\n\n self.__cleanup_stale_socket(path)\n self.__setup_httpd_thread(path)\n\n @staticmethod\n\n def __setup_httpd_thread(self, socket_path):\n \"\"\"Setup internal HTTPd server that this endpoints relies on to serve\n requests.\n\n Args:\n path (str): Unix socket path, that internal httpd server will listen\n on\n \"\"\"\n self._httpd = UnixSocketStatefulHTTPServer(self._context,\n socket_path,\n self._handler_class)\n\n httpd_thread_name = \"UnixSocketHttpdThread-{}\".format(self.id)\n self._httpd_thread = threading.Thread(target=self._httpd.serve_forever,\n name=httpd_thread_name)\n\n # nginx spawns worker processes as 'nobody/nogroup', so we need to\n # make the socket available to it.\n os.chmod(socket_path, 0o777)\n"},"input_ids":{"kind":"list like","value":[2,15069,357,34,8,14937,22829,11,3457,13,4091,38559,24290,2393,329,3307,13,198,198,37811,198,2484,1144,2438,329,6257,14,2640,886,13033,285,3320,973,416,5923,10245,11,1111,27254,290,4946,13,198,37811,198,198,11748,450,66,198,11748,2638,13,15388,198,11748,18931,198,11748,28686,198,11748,17802,198,11748,37037,18497,198,11748,264,6649,198,11748,4704,278,198,198,2,279,2645,600,25,15560,28,34,486,3070,198,6404,796,18931,13,1136,11187,1362,7,834,3672,834,8,628,198,2,2329,257,8633,561,307,645,922,355,356,765,284,423,4704,278,5793,37588,198,2,355,880,13,198,2,279,2645,600,25,15560,28,49,2931,3070,198,4871,5268,4122,21947,25,198,220,220,220,37227,2025,36123,4732,326,6622,477,262,36123,1366,1978,351,198,220,220,220,220,220,220,4704,278,5793,326,17289,340,526,15931,198,220,220,220,1366,796,6045,198,220,220,220,5793,796,6045,628,220,220,220,825,11593,15003,834,7,944,11,4238,62,7890,28,14202,2599,198,220,220,220,220,220,220,220,37227,24243,1096,5268,4122,21947,2134,13,628,220,220,220,220,220,220,220,770,1366,318,1690,25036,416,5050,28376,1973,198,220,220,220,220,220,220,220,24155,14659,11,523,356,761,284,779,371,25392,3419,2427,286,13656,22446,628,220,220,220,220,220,220,220,383,761,329,262,5793,2346,21552,422,262,1109,326,845,1690,1728,198,220,220,220,220,220,220,220,8251,286,262,4732,761,284,307,25036,379,262,976,640,14,259,47192,198,220,220,220,220,220,220,220,5642,13,628,220,220,220,220,220,220,220,554,617,286,262,4113,11,2438,16507,319,4704,3747,14,37696,8467,286,198,220,220,220,220,220,220,220,617,286,11361,338,14700,14,14269,3196,25,628,220,220,220,220,220,220,220,220,220,220,220,3740,1378,31628,13,29412,13,2398,14,18,13,21,14,13331,80,14,32016,13,6494,2,10919,12,11031,82,12,1659,12,20541,12,8367,12,76,7094,12,533,12,16663,12,21230,628,220,220,220,220,220,220,220,770,318,1521,617,286,262,4560,319,262,5268,4122,21947,22155,198,220,220,220,220,220,220,220,389,407,6861,416,19253,11,15024,13,287,1339,618,340,338,691,546,21207,278,198,220,220,220,220,220,220,220,257,2060,1988,422,4732,8633,393,23069,14,1324,1571,530,612,13,628,220,220,220,220,220,220,220,943,14542,25,198,220,220,220,220,220,220,220,220,220,220,220,4238,62,7890,357,11600,2599,4238,1366,284,41216,4732,351,198,220,220,220,220,220,220,220,37227,198,220,220,220,220,220,220,220,2116,13,5354,796,4704,278,13,7836,735,3419,198,220,220,220,220,220,220,220,611,4238,62,7890,318,407,6045,25,198,220,220,220,220,220,220,220,220,220,220,220,2116,13,7890,796,4238,62,7890,198,220,220,220,220,220,220,220,2073,25,198,220,220,220,220,220,220,220,220,220,220,220,2116,13,7890,796,23884,628,198,4871,5268,4122,7,39305,13,24694,2599,198,220,220,220,37227,12915,4122,2779,1398,11,422,543,477,5268,13033,1276,16955,628,220,220,220,220,220,220,770,1398,6870,2219,9172,4888,1973,477,886,13033,11,198,220,220,220,220,220,220,645,2300,262,2163,393,16099,29254,357,1453,14,9654,737,628,220,220,220,220,220,220,10776,36123,1276,416,4277,4691,21090,14,40319,1366,11,290,691,706,198,220,220,220,220,220,220,5609,340,338,1181,1262,340,338,5050,11,340,743,923,7351,1223,198,220,220,220,220,220,220,2073,290,14,273,29308,4049,3403,13,628,220,220,220,220,220,220,383,1181,286,262,36123,743,307,3421,416,5254,14,69,25506,416,23710,198,220,220,220,220,220,220,337,12721,338,764,21280,62,21812,3419,2446,543,287,1210,18941,262,869,284,262,198,220,220,220,220,220,220,3376,36123,869,13,1114,262,11060,286,21654,340,318,9672,326,1123,198,220,220,220,220,220,220,884,2446,481,423,880,12,23211,7071,25,198,220,220,220,220,220,220,220,825,466,62,18927,7,944,11,27506,62,7890,28,14202,2599,198,220,220,220,220,220,220,220,220,220,220,220,1441,1255,628,220,220,220,220,220,220,220,4600,14644,62,7890,63,318,257,21015,22155,326,1276,2148,477,1366,2672,198,220,220,220,220,220,220,220,220,220,220,220,416,2163,284,12260,13,632,460,307,6045,611,884,1366,318,407,2672,198,220,220,220,220,220,220,220,4600,20274,63,460,307,1997,326,1838,2565,287,1948,2163,338,1339,13,198,220,220,220,37227,198,220,220,220,4808,22866,796,6045,198,220,220,220,4808,4023,67,62,16663,796,6045,198,220,220,220,4808,4023,67,796,6045,628,220,220,220,825,11593,15003,834,7,944,11,36123,62,312,2599,198,220,220,220,220,220,220,220,37227,24243,1096,649,5268,4122,2134,628,220,220,220,220,220,220,220,943,14542,25,198,220,220,220,220,220,220,220,220,220,220,220,36123,62,312,357,2536,2599,4522,286,262,36123,326,340,815,5911,2346,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,351,198,220,220,220,220,220,220,220,37227,198,220,220,220,220,220,220,220,4238,62,7890,796,19779,33770,62,65,967,1298,10352,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,437,4122,62,312,1298,36123,62,312,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,33770,62,445,1060,1298,10352,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,445,1060,62,16793,1298,6045,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,33770,62,32989,1298,10352,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,26209,62,50145,1298,1391,5512,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,32989,62,2435,1298,657,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1782,198,220,220,220,220,220,220,220,2116,13557,22866,796,5268,4122,21947,7,36733,62,7890,8,628,220,220,220,2488,26745,198,220,220,220,825,4686,7,944,2599,198,220,220,220,220,220,220,220,37227,13615,4522,286,262,36123,37811,198,220,220,220,220,220,220,220,1441,2116,13557,22866,13,7890,17816,437,4122,62,312,20520,628,220,220,220,825,923,7,944,2599,198,220,220,220,220,220,220,220,37227,10434,36123,338,40945,2638,67,4382,37811,198,220,220,220,220,220,220,220,2604,13,24442,7203,22851,36123,4600,4,82,63,1600,2116,13,312,8,198,220,220,220,220,220,220,220,2116,13557,4023,67,62,16663,13,9688,3419,198,220,220,220,220,220,220,220,2116,13557,4023,67,13,9688,929,62,28060,13,17077,3419,628,220,220,220,825,2245,7,944,2599,198,220,220,220,220,220,220,220,37227,5990,687,27425,286,262,36123,14390,628,220,220,220,220,220,220,220,770,2446,815,307,973,826,878,13897,262,5268,4122,2134,13,198,220,220,220,220,220,220,220,632,2753,1337,286,12225,5387,2638,67,4382,13,198,220,220,220,220,220,220,220,37227,198,220,220,220,220,220,220,220,2604,13,24442,7203,1273,33307,36123,4600,4,82,63,1600,2116,13,312,8,198,220,220,220,220,220,220,220,2116,13557,4023,67,13,49625,2902,3419,198,220,220,220,220,220,220,220,2116,13557,4023,67,62,16663,13,22179,3419,198,220,220,220,220,220,220,220,2116,13557,4023,67,13,15388,62,19836,3419,628,220,220,220,825,13259,7,944,11,27506,62,7890,28,14202,2599,198,220,220,220,220,220,220,220,37227,4965,316,36123,284,262,4277,14,11274,1181,628,220,220,220,220,220,220,220,943,14542,25,198,220,220,220,220,220,220,220,220,220,220,220,27506,62,7890,357,11600,2599,21958,11,1944,691,284,15959,262,36123,338,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,2446,7071,13,4091,1398,6764,329,3307,13,198,220,220,220,220,220,220,220,37227,198,220,220,220,220,220,220,220,1619,27506,62,7890,198,220,220,220,220,220,220,220,2604,13,24442,7203,4965,35463,36123,4600,4,82,63,1600,2116,13,312,8,198,220,220,220,220,220,220,220,1303,406,8629,318,407,1107,2622,994,355,340,318,17226,1034,6949,11,198,220,220,220,220,220,220,220,1303,475,1309,338,307,6414,198,220,220,220,220,220,220,220,351,2116,13557,22866,13,5354,25,198,220,220,220,220,220,220,220,220,220,220,220,2116,13557,22866,13,7890,17816,33770,62,65,967,20520,796,10352,628,220,220,220,220,220,220,220,220,220,220,220,2116,13557,22866,13,7890,17816,33770,62,32989,20520,796,10352,198,220,220,220,220,220,220,220,220,220,220,220,2116,13557,22866,13,7890,17816,32989,62,2435,20520,796,657,628,220,220,220,220,220,220,220,220,220,220,220,2116,13557,22866,13,7890,14692,33770,62,445,1060,8973,796,10352,198,220,220,220,220,220,220,220,220,220,220,220,2116,13557,22866,13,7890,14692,445,1060,62,16793,8973,796,6045,628,220,220,220,825,900,62,26209,62,50145,7,944,11,27506,62,7890,2599,198,220,220,220,220,220,220,220,37227,12050,36123,1908,2183,24697,287,262,2882,628,220,220,220,220,220,220,220,943,14542,25,198,220,220,220,220,220,220,220,220,220,220,220,27506,62,7890,25,257,8633,351,13639,338,1438,14,11299,355,8251,14,12786,198,220,220,220,220,220,220,220,37227,198,220,220,220,220,220,220,220,351,2116,13557,22866,13,5354,25,198,220,220,220,220,220,220,220,220,220,220,220,2116,13557,22866,13,7890,14692,26209,62,50145,1,4083,19119,7,14644,62,7890,8,628,220,220,220,825,1464,62,32989,7,944,11,27506,62,7890,28,14202,2599,198,220,220,220,220,220,220,220,37227,12050,36123,1464,4043,1813,640,878,18877,262,2581,628,220,220,220,220,220,220,220,943,14542,25,198,220,220,220,220,220,220,220,220,220,220,220,27506,62,7890,357,77,39223,2599,640,287,4201,11,355,257,984,276,416,640,13,42832,3419,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,2163,198,220,220,220,220,220,220,220,37227,198,220,220,220,220,220,220,220,351,2116,13557,22866,13,5354,25,198,220,220,220,220,220,220,220,220,220,220,220,2116,13557,22866,13,7890,14692,33770,62,32989,8973,796,6407,198,220,220,220,220,220,220,220,220,220,220,220,2116,13557,22866,13,7890,14692,32989,62,2435,8973,796,27506,62,7890,628,220,220,220,825,1464,62,65,967,7,944,11,27506,62,7890,28,17821,2599,198,220,220,220,220,220,220,220,37227,12050,36123,1464,3031,351,281,4049,628,220,220,220,220,220,220,220,943,14542,25,198,220,220,220,220,220,220,220,220,220,220,220,27506,62,7890,357,11600,2599,6407,393,10352,11,6906,1771,36123,815,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1464,3031,351,8563,393,407,13,198,220,220,220,220,220,220,220,37227,198,220,220,220,220,220,220,220,2116,13557,22866,13,7890,14692,33770,62,65,967,8973,796,27506,62,7890,628,220,220,220,825,1464,62,445,1060,7,944,11,27506,62,7890,28,14202,2599,198,220,220,220,220,220,220,220,37227,12050,36123,1464,3031,351,257,18941,628,220,220,220,220,220,220,220,943,14542,25,198,220,220,220,220,220,220,220,220,220,220,220,27506,62,7890,357,2536,2599,2496,4067,329,262,18941,198,220,220,220,220,220,220,220,37227,198,220,220,220,220,220,220,220,351,2116,13557,22866,13,5354,25,198,220,220,220,220,220,220,220,220,220,220,220,2116,13557,22866,13,7890,14692,33770,62,445,1060,8973,796,6407,198,220,220,220,220,220,220,220,220,220,220,220,2116,13557,22866,13,7890,14692,445,1060,62,16793,8973,796,27506,62,7890,628,198,4871,1812,12853,6535,28820,18497,7,82,11603,18497,13,16818,278,35608,818,11,2638,13,15388,13,6535,28820,18497,2599,198,220,220,220,37227,14881,1398,329,477,36123,12,32538,2638,67,9597,13,628,220,220,220,770,1398,9179,355,257,2779,329,477,5387,2638,67,4382,11,340,338,2597,318,198,220,220,220,284,2834,287,14122,278,5022,12,259,290,2792,5268,4122,4732,284,2638,67,2346,11,198,220,220,220,523,326,340,338,1695,287,262,2638,67,2581,21360,832,2581,338,198,220,220,220,764,15388,13,22866,11688,13,628,220,220,220,22301,10820,326,428,318,416,4277,257,23633,14,4061,4382,13,628,220,220,220,632,338,1912,319,25,198,220,220,220,3740,1378,4529,13,29412,13,2398,14,79,9346,4529,14,29412,12,4868,14,6999,12,16192,14,5237,1558,1983,13,6494,198,220,220,220,37227,628,198,4871,309,13155,40,79,43481,12915,4122,7,12915,4122,2599,198,220,220,220,37227,14881,1398,329,477,886,13033,326,4691,23633,14,4061,7007,628,220,220,220,220,220,220,220,770,1398,37354,1978,14626,67,4382,2438,11,2638,2581,21360,290,198,220,220,220,220,220,220,220,36123,4732,284,1296,257,2779,1398,329,477,886,13033,326,4691,198,220,220,220,220,220,220,220,23633,14,4061,4979,13,198,220,220,220,37227,198,220,220,220,825,11593,15003,834,7,944,11,21360,62,4871,11,2493,11,20966,11639,3256,1994,7753,28,14202,11,5051,7753,28,14202,2599,198,220,220,220,220,220,220,220,37227,24243,1096,649,309,13155,40,79,43481,12915,4122,2134,628,220,220,220,220,220,220,220,943,14542,25,198,220,220,220,220,220,220,220,220,220,220,220,21360,62,4871,357,26801,2599,257,2581,21360,1398,326,481,307,9041,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,7007,2722,416,5387,2638,67,4382,198,220,220,220,220,220,220,220,220,220,220,220,2493,357,600,2599,48265,2493,326,2638,67,4382,481,6004,319,198,220,220,220,220,220,220,220,220,220,220,220,20966,357,2536,2599,20966,2209,326,2638,67,4382,481,6004,319,11,416,4277,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,6004,319,477,9405,198,220,220,220,220,220,220,220,37227,198,220,220,220,220,220,220,220,611,5051,7753,318,407,6045,290,1994,7753,318,407,6045,25,198,220,220,220,220,220,220,220,220,220,220,220,36123,62,312,796,366,5450,1378,90,92,29164,92,1911,18982,7,541,11,2493,8,198,220,220,220,220,220,220,220,2073,25,198,220,220,220,220,220,220,220,220,220,220,220,36123,62,312,796,366,4023,1378,90,92,29164,92,1911,18982,7,541,11,2493,8,198,220,220,220,220,220,220,220,2208,22446,834,15003,834,7,437,4122,62,312,8,628,220,220,220,220,220,220,220,2116,13557,22866,13,7890,17816,4868,268,62,541,20520,796,20966,198,220,220,220,220,220,220,220,2116,13557,22866,13,7890,17816,4868,268,62,634,20520,796,2493,198,220,220,220,220,220,220,220,2116,13557,22866,13,7890,17816,22583,7753,20520,796,5051,7753,198,220,220,220,220,220,220,220,2116,13557,22866,13,7890,17816,2539,7753,20520,796,1994,7753,628,220,220,220,220,220,220,220,2116,13557,30281,62,4871,796,21360,62,4871,628,220,220,220,220,220,220,220,2116,13,834,40406,62,4023,67,62,16663,7,541,11,2493,8,628,220,220,220,825,11593,40406,62,4023,67,62,16663,7,944,11,20966,11,2493,2599,198,220,220,220,220,220,220,220,37227,40786,5387,14626,67,4382,326,428,886,13033,16507,319,284,4691,198,220,220,220,220,220,220,220,220,220,220,7007,13,198,220,220,220,220,220,220,220,37227,198,220,220,220,220,220,220,220,2116,13557,4023,67,796,1812,12853,6535,28820,18497,7,944,13557,22866,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,357,541,11,2493,828,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,2116,13557,30281,62,4871,8,628,220,220,220,220,220,220,220,2638,67,62,16663,62,3672,796,366,51,13155,40,79,43481,67,16818,12,90,92,1911,18982,7,944,13,312,8,198,220,220,220,220,220,220,220,2116,13557,4023,67,62,16663,796,4704,278,13,16818,7,16793,28,944,13557,4023,67,13,2655,303,62,754,332,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1438,28,4023,67,62,16663,62,3672,8,628,198,4871,33501,39105,9012,913,6535,28820,18497,7,9012,12853,6535,28820,18497,2599,198,220,220,220,37227,14881,1398,329,477,36123,12,32538,2638,67,9597,326,6004,319,198,220,220,220,220,220,220,33501,17802,13,628,220,220,220,770,1398,10639,896,422,1812,12853,6535,28820,18497,290,285,1659,444,340,338,9172,198,220,220,220,523,326,340,338,1498,284,6004,319,33501,17802,13,628,220,220,220,49213,25,198,220,220,220,220,220,220,220,2209,62,17989,25,900,691,284,20957,4277,1988,286,262,7885,900,198,220,220,220,220,220,220,220,220,220,220,220,287,262,2638,13,15388,13,6535,28820,18497,1398,11,1276,407,307,9518,13,198,220,220,220,37227,198,220,220,220,2209,62,17989,796,17802,13,8579,62,4944,10426,628,220,220,220,825,4382,62,21653,7,944,2599,198,220,220,220,220,220,220,220,37227,37961,4277,4382,17802,11007,9172,284,6068,340,284,198,220,220,220,220,220,220,220,220,220,220,7351,319,33501,17802,13,628,220,220,220,220,220,220,220,4222,2198,262,10314,286,2638,13,15388,13,6535,28820,18497,1398,329,517,198,220,220,220,220,220,220,220,3307,13,198,220,220,220,220,220,220,220,37227,198,220,220,220,220,220,220,220,37037,18497,13,4825,3705,18497,13,15388,62,21653,7,944,8,198,220,220,220,220,220,220,220,2116,13,15388,62,3672,796,2116,13,22866,13,7890,17816,44971,62,6978,20520,198,220,220,220,220,220,220,220,2116,13,15388,62,634,796,657,628,220,220,220,825,5456,62,21975,7,944,2599,198,220,220,220,220,220,220,220,37227,37961,4277,5456,62,21975,2446,284,6068,340,284,7351,319,33501,198,220,220,220,220,220,220,220,17802,13,9170,340,18931,481,2270,355,33501,17802,468,645,9495,286,198,220,220,220,220,220,220,220,262,5456,338,6101,2209,13,628,220,220,220,220,220,220,220,4222,2198,262,10314,286,2638,13,15388,13,6535,28820,18497,1398,329,517,198,220,220,220,220,220,220,220,3307,13,198,220,220,220,220,220,220,220,37227,198,220,220,220,220,220,220,220,1441,357,944,13,22866,13,7890,17816,44971,62,6978,6,4357,657,8,628,198,2,2638,1378,25558,2502,11125,13,785,14,6138,507,14,20666,1120,20167,14,33990,12,929,12,272,12,4023,12,15388,12,5562,12,4868,641,12,2502,12,64,12,7753,12,44971,198,2,3740,1378,31628,13,29412,13,2398,14,18,13,18,14,32016,14,82,11603,18497,13,6494,198,4871,33501,39105,40717,12915,4122,7,12915,4122,2599,198,220,220,220,37227,14881,1398,329,477,886,13033,326,4691,7007,319,262,33501,17802,628,220,220,220,220,220,220,220,770,1398,37354,1978,14626,67,4382,2438,11,2638,2581,21360,290,198,220,220,220,220,220,220,220,36123,4732,284,1296,257,2779,1398,329,477,886,13033,326,4691,198,220,220,220,220,220,220,220,33501,17802,4979,13,198,220,220,220,37227,198,220,220,220,825,11593,15003,834,7,944,11,21360,62,4871,11,3108,11,1994,7753,28,14202,11,5051,7753,28,14202,2599,198,220,220,220,220,220,220,220,37227,24243,1096,649,33501,39105,40717,12915,4122,2134,628,220,220,220,220,220,220,220,943,14542,25,198,220,220,220,220,220,220,220,220,220,220,220,21360,62,4871,357,26801,2599,257,2581,21360,1398,326,481,307,9041,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,7007,2722,416,5387,2638,67,4382,198,220,220,220,220,220,220,220,220,220,220,220,3108,357,2536,2599,33501,17802,3108,11,326,5387,2638,67,4382,481,6004,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,319,198,220,220,220,220,220,220,220,37227,198,220,220,220,220,220,220,220,611,5051,7753,318,407,6045,290,1994,7753,318,407,6045,25,198,220,220,220,220,220,220,220,220,220,220,220,36123,62,312,796,366,5450,1378,90,92,1911,18982,7,6978,8,198,220,220,220,220,220,220,220,2073,25,198,220,220,220,220,220,220,220,220,220,220,220,36123,62,312,796,366,4023,1378,90,92,1911,18982,7,6978,8,198,220,220,220,220,220,220,220,2208,22446,834,15003,834,7,437,4122,62,312,8,628,220,220,220,220,220,220,220,2116,13557,22866,13,7890,17816,44971,62,6978,20520,796,3108,198,220,220,220,220,220,220,220,2116,13557,22866,13,7890,17816,22583,7753,20520,796,5051,7753,198,220,220,220,220,220,220,220,2116,13557,22866,13,7890,17816,2539,7753,20520,796,1994,7753,628,220,220,220,220,220,220,220,2116,13557,30281,62,4871,796,21360,62,4871,628,220,220,220,220,220,220,220,2116,13,834,27773,929,62,301,1000,62,44971,7,6978,8,198,220,220,220,220,220,220,220,2116,13,834,40406,62,4023,67,62,16663,7,6978,8,628,220,220,220,2488,12708,24396,628,220,220,220,825,11593,40406,62,4023,67,62,16663,7,944,11,17802,62,6978,2599,198,220,220,220,220,220,220,220,37227,40786,5387,14626,67,4382,326,428,886,13033,16507,319,284,4691,198,220,220,220,220,220,220,220,220,220,220,7007,13,628,220,220,220,220,220,220,220,943,14542,25,198,220,220,220,220,220,220,220,220,220,220,220,3108,357,2536,2599,33501,17802,3108,11,326,5387,2638,67,4382,481,6004,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,319,198,220,220,220,220,220,220,220,37227,198,220,220,220,220,220,220,220,2116,13557,4023,67,796,33501,39105,9012,913,6535,28820,18497,7,944,13557,22866,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,17802,62,6978,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,2116,13557,30281,62,4871,8,628,220,220,220,220,220,220,220,2638,67,62,16663,62,3672,796,366,47000,39105,43481,67,16818,12,90,92,1911,18982,7,944,13,312,8,198,220,220,220,220,220,220,220,2116,13557,4023,67,62,16663,796,4704,278,13,16818,7,16793,28,944,13557,4023,67,13,2655,303,62,754,332,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1438,28,4023,67,62,16663,62,3672,8,628,220,220,220,220,220,220,220,1303,299,42822,44632,8383,7767,355,705,34952,1118,14,77,519,3233,3256,523,356,761,284,198,220,220,220,220,220,220,220,1303,787,262,17802,1695,284,340,13,198,220,220,220,220,220,220,220,28686,13,354,4666,7,44971,62,6978,11,657,78,29331,8,198],"string":"[\n 2,\n 15069,\n 357,\n 34,\n 8,\n 14937,\n 22829,\n 11,\n 3457,\n 13,\n 4091,\n 38559,\n 24290,\n 2393,\n 329,\n 3307,\n 13,\n 198,\n 198,\n 37811,\n 198,\n 2484,\n 1144,\n 2438,\n 329,\n 6257,\n 14,\n 2640,\n 886,\n 13033,\n 285,\n 3320,\n 973,\n 416,\n 5923,\n 10245,\n 11,\n 1111,\n 27254,\n 290,\n 4946,\n 13,\n 198,\n 37811,\n 198,\n 198,\n 11748,\n 450,\n 66,\n 198,\n 11748,\n 2638,\n 13,\n 15388,\n 198,\n 11748,\n 18931,\n 198,\n 11748,\n 28686,\n 198,\n 11748,\n 17802,\n 198,\n 11748,\n 37037,\n 18497,\n 198,\n 11748,\n 264,\n 6649,\n 198,\n 11748,\n 4704,\n 278,\n 198,\n 198,\n 2,\n 279,\n 2645,\n 600,\n 25,\n 15560,\n 28,\n 34,\n 486,\n 3070,\n 198,\n 6404,\n 796,\n 18931,\n 13,\n 1136,\n 11187,\n 1362,\n 7,\n 834,\n 3672,\n 834,\n 8,\n 628,\n 198,\n 2,\n 2329,\n 257,\n 8633,\n 561,\n 307,\n 645,\n 922,\n 355,\n 356,\n 765,\n 284,\n 423,\n 4704,\n 278,\n 5793,\n 37588,\n 198,\n 2,\n 355,\n 880,\n 13,\n 198,\n 2,\n 279,\n 2645,\n 600,\n 25,\n 15560,\n 28,\n 49,\n 2931,\n 3070,\n 198,\n 4871,\n 5268,\n 4122,\n 21947,\n 25,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 2025,\n 36123,\n 4732,\n 326,\n 6622,\n 477,\n 262,\n 36123,\n 1366,\n 1978,\n 351,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 4704,\n 278,\n 5793,\n 326,\n 17289,\n 340,\n 526,\n 15931,\n 198,\n 220,\n 220,\n 220,\n 1366,\n 796,\n 6045,\n 198,\n 220,\n 220,\n 220,\n 5793,\n 796,\n 6045,\n 628,\n 220,\n 220,\n 220,\n 825,\n 11593,\n 15003,\n 834,\n 7,\n 944,\n 11,\n 4238,\n 62,\n 7890,\n 28,\n 14202,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 24243,\n 1096,\n 5268,\n 4122,\n 21947,\n 2134,\n 13,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 770,\n 1366,\n 318,\n 1690,\n 25036,\n 416,\n 5050,\n 28376,\n 1973,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 24155,\n 14659,\n 11,\n 523,\n 356,\n 761,\n 284,\n 779,\n 371,\n 25392,\n 3419,\n 2427,\n 286,\n 13656,\n 22446,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 383,\n 761,\n 329,\n 262,\n 5793,\n 2346,\n 21552,\n 422,\n 262,\n 1109,\n 326,\n 845,\n 1690,\n 1728,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 8251,\n 286,\n 262,\n 4732,\n 761,\n 284,\n 307,\n 25036,\n 379,\n 262,\n 976,\n 640,\n 14,\n 259,\n 47192,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 5642,\n 13,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 554,\n 617,\n 286,\n 262,\n 4113,\n 11,\n 2438,\n 16507,\n 319,\n 4704,\n 3747,\n 14,\n 37696,\n 8467,\n 286,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 617,\n 286,\n 11361,\n 338,\n 14700,\n 14,\n 14269,\n 3196,\n 25,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3740,\n 1378,\n 31628,\n 13,\n 29412,\n 13,\n 2398,\n 14,\n 18,\n 13,\n 21,\n 14,\n 13331,\n 80,\n 14,\n 32016,\n 13,\n 6494,\n 2,\n 10919,\n 12,\n 11031,\n 82,\n 12,\n 1659,\n 12,\n 20541,\n 12,\n 8367,\n 12,\n 76,\n 7094,\n 12,\n 533,\n 12,\n 16663,\n 12,\n 21230,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 770,\n 318,\n 1521,\n 617,\n 286,\n 262,\n 4560,\n 319,\n 262,\n 5268,\n 4122,\n 21947,\n 22155,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 389,\n 407,\n 6861,\n 416,\n 19253,\n 11,\n 15024,\n 13,\n 287,\n 1339,\n 618,\n 340,\n 338,\n 691,\n 546,\n 21207,\n 278,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 257,\n 2060,\n 1988,\n 422,\n 4732,\n 8633,\n 393,\n 23069,\n 14,\n 1324,\n 1571,\n 530,\n 612,\n 13,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 943,\n 14542,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 4238,\n 62,\n 7890,\n 357,\n 11600,\n 2599,\n 4238,\n 1366,\n 284,\n 41216,\n 4732,\n 351,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13,\n 5354,\n 796,\n 4704,\n 278,\n 13,\n 7836,\n 735,\n 3419,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 4238,\n 62,\n 7890,\n 318,\n 407,\n 6045,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13,\n 7890,\n 796,\n 4238,\n 62,\n 7890,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2073,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13,\n 7890,\n 796,\n 23884,\n 628,\n 198,\n 4871,\n 5268,\n 4122,\n 7,\n 39305,\n 13,\n 24694,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 12915,\n 4122,\n 2779,\n 1398,\n 11,\n 422,\n 543,\n 477,\n 5268,\n 13033,\n 1276,\n 16955,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 770,\n 1398,\n 6870,\n 2219,\n 9172,\n 4888,\n 1973,\n 477,\n 886,\n 13033,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 645,\n 2300,\n 262,\n 2163,\n 393,\n 16099,\n 29254,\n 357,\n 1453,\n 14,\n 9654,\n 737,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 10776,\n 36123,\n 1276,\n 416,\n 4277,\n 4691,\n 21090,\n 14,\n 40319,\n 1366,\n 11,\n 290,\n 691,\n 706,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 5609,\n 340,\n 338,\n 1181,\n 1262,\n 340,\n 338,\n 5050,\n 11,\n 340,\n 743,\n 923,\n 7351,\n 1223,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2073,\n 290,\n 14,\n 273,\n 29308,\n 4049,\n 3403,\n 13,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 383,\n 1181,\n 286,\n 262,\n 36123,\n 743,\n 307,\n 3421,\n 416,\n 5254,\n 14,\n 69,\n 25506,\n 416,\n 23710,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 337,\n 12721,\n 338,\n 764,\n 21280,\n 62,\n 21812,\n 3419,\n 2446,\n 543,\n 287,\n 1210,\n 18941,\n 262,\n 869,\n 284,\n 262,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3376,\n 36123,\n 869,\n 13,\n 1114,\n 262,\n 11060,\n 286,\n 21654,\n 340,\n 318,\n 9672,\n 326,\n 1123,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 884,\n 2446,\n 481,\n 423,\n 880,\n 12,\n 23211,\n 7071,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 825,\n 466,\n 62,\n 18927,\n 7,\n 944,\n 11,\n 27506,\n 62,\n 7890,\n 28,\n 14202,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1441,\n 1255,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 4600,\n 14644,\n 62,\n 7890,\n 63,\n 318,\n 257,\n 21015,\n 22155,\n 326,\n 1276,\n 2148,\n 477,\n 1366,\n 2672,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 416,\n 2163,\n 284,\n 12260,\n 13,\n 632,\n 460,\n 307,\n 6045,\n 611,\n 884,\n 1366,\n 318,\n 407,\n 2672,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 4600,\n 20274,\n 63,\n 460,\n 307,\n 1997,\n 326,\n 1838,\n 2565,\n 287,\n 1948,\n 2163,\n 338,\n 1339,\n 13,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 4808,\n 22866,\n 796,\n 6045,\n 198,\n 220,\n 220,\n 220,\n 4808,\n 4023,\n 67,\n 62,\n 16663,\n 796,\n 6045,\n 198,\n 220,\n 220,\n 220,\n 4808,\n 4023,\n 67,\n 796,\n 6045,\n 628,\n 220,\n 220,\n 220,\n 825,\n 11593,\n 15003,\n 834,\n 7,\n 944,\n 11,\n 36123,\n 62,\n 312,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 24243,\n 1096,\n 649,\n 5268,\n 4122,\n 2134,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 943,\n 14542,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 36123,\n 62,\n 312,\n 357,\n 2536,\n 2599,\n 4522,\n 286,\n 262,\n 36123,\n 326,\n 340,\n 815,\n 5911,\n 2346,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 351,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 4238,\n 62,\n 7890,\n 796,\n 19779,\n 33770,\n 62,\n 65,\n 967,\n 1298,\n 10352,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 437,\n 4122,\n 62,\n 312,\n 1298,\n 36123,\n 62,\n 312,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 33770,\n 62,\n 445,\n 1060,\n 1298,\n 10352,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 445,\n 1060,\n 62,\n 16793,\n 1298,\n 6045,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 33770,\n 62,\n 32989,\n 1298,\n 10352,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 26209,\n 62,\n 50145,\n 1298,\n 1391,\n 5512,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 32989,\n 62,\n 2435,\n 1298,\n 657,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1782,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13557,\n 22866,\n 796,\n 5268,\n 4122,\n 21947,\n 7,\n 36733,\n 62,\n 7890,\n 8,\n 628,\n 220,\n 220,\n 220,\n 2488,\n 26745,\n 198,\n 220,\n 220,\n 220,\n 825,\n 4686,\n 7,\n 944,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 13615,\n 4522,\n 286,\n 262,\n 36123,\n 37811,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1441,\n 2116,\n 13557,\n 22866,\n 13,\n 7890,\n 17816,\n 437,\n 4122,\n 62,\n 312,\n 20520,\n 628,\n 220,\n 220,\n 220,\n 825,\n 923,\n 7,\n 944,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 10434,\n 36123,\n 338,\n 40945,\n 2638,\n 67,\n 4382,\n 37811,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2604,\n 13,\n 24442,\n 7203,\n 22851,\n 36123,\n 4600,\n 4,\n 82,\n 63,\n 1600,\n 2116,\n 13,\n 312,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13557,\n 4023,\n 67,\n 62,\n 16663,\n 13,\n 9688,\n 3419,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13557,\n 4023,\n 67,\n 13,\n 9688,\n 929,\n 62,\n 28060,\n 13,\n 17077,\n 3419,\n 628,\n 220,\n 220,\n 220,\n 825,\n 2245,\n 7,\n 944,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 5990,\n 687,\n 27425,\n 286,\n 262,\n 36123,\n 14390,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 770,\n 2446,\n 815,\n 307,\n 973,\n 826,\n 878,\n 13897,\n 262,\n 5268,\n 4122,\n 2134,\n 13,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 632,\n 2753,\n 1337,\n 286,\n 12225,\n 5387,\n 2638,\n 67,\n 4382,\n 13,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2604,\n 13,\n 24442,\n 7203,\n 1273,\n 33307,\n 36123,\n 4600,\n 4,\n 82,\n 63,\n 1600,\n 2116,\n 13,\n 312,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13557,\n 4023,\n 67,\n 13,\n 49625,\n 2902,\n 3419,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13557,\n 4023,\n 67,\n 62,\n 16663,\n 13,\n 22179,\n 3419,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13557,\n 4023,\n 67,\n 13,\n 15388,\n 62,\n 19836,\n 3419,\n 628,\n 220,\n 220,\n 220,\n 825,\n 13259,\n 7,\n 944,\n 11,\n 27506,\n 62,\n 7890,\n 28,\n 14202,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 4965,\n 316,\n 36123,\n 284,\n 262,\n 4277,\n 14,\n 11274,\n 1181,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 943,\n 14542,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 27506,\n 62,\n 7890,\n 357,\n 11600,\n 2599,\n 21958,\n 11,\n 1944,\n 691,\n 284,\n 15959,\n 262,\n 36123,\n 338,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2446,\n 7071,\n 13,\n 4091,\n 1398,\n 6764,\n 329,\n 3307,\n 13,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1619,\n 27506,\n 62,\n 7890,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2604,\n 13,\n 24442,\n 7203,\n 4965,\n 35463,\n 36123,\n 4600,\n 4,\n 82,\n 63,\n 1600,\n 2116,\n 13,\n 312,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 406,\n 8629,\n 318,\n 407,\n 1107,\n 2622,\n 994,\n 355,\n 340,\n 318,\n 17226,\n 1034,\n 6949,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 475,\n 1309,\n 338,\n 307,\n 6414,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 351,\n 2116,\n 13557,\n 22866,\n 13,\n 5354,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13557,\n 22866,\n 13,\n 7890,\n 17816,\n 33770,\n 62,\n 65,\n 967,\n 20520,\n 796,\n 10352,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13557,\n 22866,\n 13,\n 7890,\n 17816,\n 33770,\n 62,\n 32989,\n 20520,\n 796,\n 10352,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13557,\n 22866,\n 13,\n 7890,\n 17816,\n 32989,\n 62,\n 2435,\n 20520,\n 796,\n 657,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13557,\n 22866,\n 13,\n 7890,\n 14692,\n 33770,\n 62,\n 445,\n 1060,\n 8973,\n 796,\n 10352,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13557,\n 22866,\n 13,\n 7890,\n 14692,\n 445,\n 1060,\n 62,\n 16793,\n 8973,\n 796,\n 6045,\n 628,\n 220,\n 220,\n 220,\n 825,\n 900,\n 62,\n 26209,\n 62,\n 50145,\n 7,\n 944,\n 11,\n 27506,\n 62,\n 7890,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 12050,\n 36123,\n 1908,\n 2183,\n 24697,\n 287,\n 262,\n 2882,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 943,\n 14542,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 27506,\n 62,\n 7890,\n 25,\n 257,\n 8633,\n 351,\n 13639,\n 338,\n 1438,\n 14,\n 11299,\n 355,\n 8251,\n 14,\n 12786,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 351,\n 2116,\n 13557,\n 22866,\n 13,\n 5354,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13557,\n 22866,\n 13,\n 7890,\n 14692,\n 26209,\n 62,\n 50145,\n 1,\n 4083,\n 19119,\n 7,\n 14644,\n 62,\n 7890,\n 8,\n 628,\n 220,\n 220,\n 220,\n 825,\n 1464,\n 62,\n 32989,\n 7,\n 944,\n 11,\n 27506,\n 62,\n 7890,\n 28,\n 14202,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 12050,\n 36123,\n 1464,\n 4043,\n 1813,\n 640,\n 878,\n 18877,\n 262,\n 2581,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 943,\n 14542,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 27506,\n 62,\n 7890,\n 357,\n 77,\n 39223,\n 2599,\n 640,\n 287,\n 4201,\n 11,\n 355,\n 257,\n 984,\n 276,\n 416,\n 640,\n 13,\n 42832,\n 3419,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2163,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 351,\n 2116,\n 13557,\n 22866,\n 13,\n 5354,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13557,\n 22866,\n 13,\n 7890,\n 14692,\n 33770,\n 62,\n 32989,\n 8973,\n 796,\n 6407,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13557,\n 22866,\n 13,\n 7890,\n 14692,\n 32989,\n 62,\n 2435,\n 8973,\n 796,\n 27506,\n 62,\n 7890,\n 628,\n 220,\n 220,\n 220,\n 825,\n 1464,\n 62,\n 65,\n 967,\n 7,\n 944,\n 11,\n 27506,\n 62,\n 7890,\n 28,\n 17821,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 12050,\n 36123,\n 1464,\n 3031,\n 351,\n 281,\n 4049,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 943,\n 14542,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 27506,\n 62,\n 7890,\n 357,\n 11600,\n 2599,\n 6407,\n 393,\n 10352,\n 11,\n 6906,\n 1771,\n 36123,\n 815,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1464,\n 3031,\n 351,\n 8563,\n 393,\n 407,\n 13,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13557,\n 22866,\n 13,\n 7890,\n 14692,\n 33770,\n 62,\n 65,\n 967,\n 8973,\n 796,\n 27506,\n 62,\n 7890,\n 628,\n 220,\n 220,\n 220,\n 825,\n 1464,\n 62,\n 445,\n 1060,\n 7,\n 944,\n 11,\n 27506,\n 62,\n 7890,\n 28,\n 14202,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 12050,\n 36123,\n 1464,\n 3031,\n 351,\n 257,\n 18941,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 943,\n 14542,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 27506,\n 62,\n 7890,\n 357,\n 2536,\n 2599,\n 2496,\n 4067,\n 329,\n 262,\n 18941,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 351,\n 2116,\n 13557,\n 22866,\n 13,\n 5354,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13557,\n 22866,\n 13,\n 7890,\n 14692,\n 33770,\n 62,\n 445,\n 1060,\n 8973,\n 796,\n 6407,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13557,\n 22866,\n 13,\n 7890,\n 14692,\n 445,\n 1060,\n 62,\n 16793,\n 8973,\n 796,\n 27506,\n 62,\n 7890,\n 628,\n 198,\n 4871,\n 1812,\n 12853,\n 6535,\n 28820,\n 18497,\n 7,\n 82,\n 11603,\n 18497,\n 13,\n 16818,\n 278,\n 35608,\n 818,\n 11,\n 2638,\n 13,\n 15388,\n 13,\n 6535,\n 28820,\n 18497,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 14881,\n 1398,\n 329,\n 477,\n 36123,\n 12,\n 32538,\n 2638,\n 67,\n 9597,\n 13,\n 628,\n 220,\n 220,\n 220,\n 770,\n 1398,\n 9179,\n 355,\n 257,\n 2779,\n 329,\n 477,\n 5387,\n 2638,\n 67,\n 4382,\n 11,\n 340,\n 338,\n 2597,\n 318,\n 198,\n 220,\n 220,\n 220,\n 284,\n 2834,\n 287,\n 14122,\n 278,\n 5022,\n 12,\n 259,\n 290,\n 2792,\n 5268,\n 4122,\n 4732,\n 284,\n 2638,\n 67,\n 2346,\n 11,\n 198,\n 220,\n 220,\n 220,\n 523,\n 326,\n 340,\n 338,\n 1695,\n 287,\n 262,\n 2638,\n 67,\n 2581,\n 21360,\n 832,\n 2581,\n 338,\n 198,\n 220,\n 220,\n 220,\n 764,\n 15388,\n 13,\n 22866,\n 11688,\n 13,\n 628,\n 220,\n 220,\n 220,\n 22301,\n 10820,\n 326,\n 428,\n 318,\n 416,\n 4277,\n 257,\n 23633,\n 14,\n 4061,\n 4382,\n 13,\n 628,\n 220,\n 220,\n 220,\n 632,\n 338,\n 1912,\n 319,\n 25,\n 198,\n 220,\n 220,\n 220,\n 3740,\n 1378,\n 4529,\n 13,\n 29412,\n 13,\n 2398,\n 14,\n 79,\n 9346,\n 4529,\n 14,\n 29412,\n 12,\n 4868,\n 14,\n 6999,\n 12,\n 16192,\n 14,\n 5237,\n 1558,\n 1983,\n 13,\n 6494,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 628,\n 198,\n 4871,\n 309,\n 13155,\n 40,\n 79,\n 43481,\n 12915,\n 4122,\n 7,\n 12915,\n 4122,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 14881,\n 1398,\n 329,\n 477,\n 886,\n 13033,\n 326,\n 4691,\n 23633,\n 14,\n 4061,\n 7007,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 770,\n 1398,\n 37354,\n 1978,\n 14626,\n 67,\n 4382,\n 2438,\n 11,\n 2638,\n 2581,\n 21360,\n 290,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 36123,\n 4732,\n 284,\n 1296,\n 257,\n 2779,\n 1398,\n 329,\n 477,\n 886,\n 13033,\n 326,\n 4691,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 23633,\n 14,\n 4061,\n 4979,\n 13,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 825,\n 11593,\n 15003,\n 834,\n 7,\n 944,\n 11,\n 21360,\n 62,\n 4871,\n 11,\n 2493,\n 11,\n 20966,\n 11639,\n 3256,\n 1994,\n 7753,\n 28,\n 14202,\n 11,\n 5051,\n 7753,\n 28,\n 14202,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 24243,\n 1096,\n 649,\n 309,\n 13155,\n 40,\n 79,\n 43481,\n 12915,\n 4122,\n 2134,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 943,\n 14542,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 21360,\n 62,\n 4871,\n 357,\n 26801,\n 2599,\n 257,\n 2581,\n 21360,\n 1398,\n 326,\n 481,\n 307,\n 9041,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 7007,\n 2722,\n 416,\n 5387,\n 2638,\n 67,\n 4382,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2493,\n 357,\n 600,\n 2599,\n 48265,\n 2493,\n 326,\n 2638,\n 67,\n 4382,\n 481,\n 6004,\n 319,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 20966,\n 357,\n 2536,\n 2599,\n 20966,\n 2209,\n 326,\n 2638,\n 67,\n 4382,\n 481,\n 6004,\n 319,\n 11,\n 416,\n 4277,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 6004,\n 319,\n 477,\n 9405,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 5051,\n 7753,\n 318,\n 407,\n 6045,\n 290,\n 1994,\n 7753,\n 318,\n 407,\n 6045,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 36123,\n 62,\n 312,\n 796,\n 366,\n 5450,\n 1378,\n 90,\n 92,\n 29164,\n 92,\n 1911,\n 18982,\n 7,\n 541,\n 11,\n 2493,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2073,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 36123,\n 62,\n 312,\n 796,\n 366,\n 4023,\n 1378,\n 90,\n 92,\n 29164,\n 92,\n 1911,\n 18982,\n 7,\n 541,\n 11,\n 2493,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2208,\n 22446,\n 834,\n 15003,\n 834,\n 7,\n 437,\n 4122,\n 62,\n 312,\n 8,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13557,\n 22866,\n 13,\n 7890,\n 17816,\n 4868,\n 268,\n 62,\n 541,\n 20520,\n 796,\n 20966,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13557,\n 22866,\n 13,\n 7890,\n 17816,\n 4868,\n 268,\n 62,\n 634,\n 20520,\n 796,\n 2493,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13557,\n 22866,\n 13,\n 7890,\n 17816,\n 22583,\n 7753,\n 20520,\n 796,\n 5051,\n 7753,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13557,\n 22866,\n 13,\n 7890,\n 17816,\n 2539,\n 7753,\n 20520,\n 796,\n 1994,\n 7753,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13557,\n 30281,\n 62,\n 4871,\n 796,\n 21360,\n 62,\n 4871,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13,\n 834,\n 40406,\n 62,\n 4023,\n 67,\n 62,\n 16663,\n 7,\n 541,\n 11,\n 2493,\n 8,\n 628,\n 220,\n 220,\n 220,\n 825,\n 11593,\n 40406,\n 62,\n 4023,\n 67,\n 62,\n 16663,\n 7,\n 944,\n 11,\n 20966,\n 11,\n 2493,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 40786,\n 5387,\n 14626,\n 67,\n 4382,\n 326,\n 428,\n 886,\n 13033,\n 16507,\n 319,\n 284,\n 4691,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 7007,\n 13,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13557,\n 4023,\n 67,\n 796,\n 1812,\n 12853,\n 6535,\n 28820,\n 18497,\n 7,\n 944,\n 13557,\n 22866,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 357,\n 541,\n 11,\n 2493,\n 828,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13557,\n 30281,\n 62,\n 4871,\n 8,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2638,\n 67,\n 62,\n 16663,\n 62,\n 3672,\n 796,\n 366,\n 51,\n 13155,\n 40,\n 79,\n 43481,\n 67,\n 16818,\n 12,\n 90,\n 92,\n 1911,\n 18982,\n 7,\n 944,\n 13,\n 312,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13557,\n 4023,\n 67,\n 62,\n 16663,\n 796,\n 4704,\n 278,\n 13,\n 16818,\n 7,\n 16793,\n 28,\n 944,\n 13557,\n 4023,\n 67,\n 13,\n 2655,\n 303,\n 62,\n 754,\n 332,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1438,\n 28,\n 4023,\n 67,\n 62,\n 16663,\n 62,\n 3672,\n 8,\n 628,\n 198,\n 4871,\n 33501,\n 39105,\n 9012,\n 913,\n 6535,\n 28820,\n 18497,\n 7,\n 9012,\n 12853,\n 6535,\n 28820,\n 18497,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 14881,\n 1398,\n 329,\n 477,\n 36123,\n 12,\n 32538,\n 2638,\n 67,\n 9597,\n 326,\n 6004,\n 319,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 33501,\n 17802,\n 13,\n 628,\n 220,\n 220,\n 220,\n 770,\n 1398,\n 10639,\n 896,\n 422,\n 1812,\n 12853,\n 6535,\n 28820,\n 18497,\n 290,\n 285,\n 1659,\n 444,\n 340,\n 338,\n 9172,\n 198,\n 220,\n 220,\n 220,\n 523,\n 326,\n 340,\n 338,\n 1498,\n 284,\n 6004,\n 319,\n 33501,\n 17802,\n 13,\n 628,\n 220,\n 220,\n 220,\n 49213,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2209,\n 62,\n 17989,\n 25,\n 900,\n 691,\n 284,\n 20957,\n 4277,\n 1988,\n 286,\n 262,\n 7885,\n 900,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 287,\n 262,\n 2638,\n 13,\n 15388,\n 13,\n 6535,\n 28820,\n 18497,\n 1398,\n 11,\n 1276,\n 407,\n 307,\n 9518,\n 13,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 2209,\n 62,\n 17989,\n 796,\n 17802,\n 13,\n 8579,\n 62,\n 4944,\n 10426,\n 628,\n 220,\n 220,\n 220,\n 825,\n 4382,\n 62,\n 21653,\n 7,\n 944,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 37961,\n 4277,\n 4382,\n 17802,\n 11007,\n 9172,\n 284,\n 6068,\n 340,\n 284,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 7351,\n 319,\n 33501,\n 17802,\n 13,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 4222,\n 2198,\n 262,\n 10314,\n 286,\n 2638,\n 13,\n 15388,\n 13,\n 6535,\n 28820,\n 18497,\n 1398,\n 329,\n 517,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3307,\n 13,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37037,\n 18497,\n 13,\n 4825,\n 3705,\n 18497,\n 13,\n 15388,\n 62,\n 21653,\n 7,\n 944,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13,\n 15388,\n 62,\n 3672,\n 796,\n 2116,\n 13,\n 22866,\n 13,\n 7890,\n 17816,\n 44971,\n 62,\n 6978,\n 20520,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13,\n 15388,\n 62,\n 634,\n 796,\n 657,\n 628,\n 220,\n 220,\n 220,\n 825,\n 5456,\n 62,\n 21975,\n 7,\n 944,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 37961,\n 4277,\n 5456,\n 62,\n 21975,\n 2446,\n 284,\n 6068,\n 340,\n 284,\n 7351,\n 319,\n 33501,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 17802,\n 13,\n 9170,\n 340,\n 18931,\n 481,\n 2270,\n 355,\n 33501,\n 17802,\n 468,\n 645,\n 9495,\n 286,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 262,\n 5456,\n 338,\n 6101,\n 2209,\n 13,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 4222,\n 2198,\n 262,\n 10314,\n 286,\n 2638,\n 13,\n 15388,\n 13,\n 6535,\n 28820,\n 18497,\n 1398,\n 329,\n 517,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3307,\n 13,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1441,\n 357,\n 944,\n 13,\n 22866,\n 13,\n 7890,\n 17816,\n 44971,\n 62,\n 6978,\n 6,\n 4357,\n 657,\n 8,\n 628,\n 198,\n 2,\n 2638,\n 1378,\n 25558,\n 2502,\n 11125,\n 13,\n 785,\n 14,\n 6138,\n 507,\n 14,\n 20666,\n 1120,\n 20167,\n 14,\n 33990,\n 12,\n 929,\n 12,\n 272,\n 12,\n 4023,\n 12,\n 15388,\n 12,\n 5562,\n 12,\n 4868,\n 641,\n 12,\n 2502,\n 12,\n 64,\n 12,\n 7753,\n 12,\n 44971,\n 198,\n 2,\n 3740,\n 1378,\n 31628,\n 13,\n 29412,\n 13,\n 2398,\n 14,\n 18,\n 13,\n 18,\n 14,\n 32016,\n 14,\n 82,\n 11603,\n 18497,\n 13,\n 6494,\n 198,\n 4871,\n 33501,\n 39105,\n 40717,\n 12915,\n 4122,\n 7,\n 12915,\n 4122,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 14881,\n 1398,\n 329,\n 477,\n 886,\n 13033,\n 326,\n 4691,\n 7007,\n 319,\n 262,\n 33501,\n 17802,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 770,\n 1398,\n 37354,\n 1978,\n 14626,\n 67,\n 4382,\n 2438,\n 11,\n 2638,\n 2581,\n 21360,\n 290,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 36123,\n 4732,\n 284,\n 1296,\n 257,\n 2779,\n 1398,\n 329,\n 477,\n 886,\n 13033,\n 326,\n 4691,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 33501,\n 17802,\n 4979,\n 13,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 825,\n 11593,\n 15003,\n 834,\n 7,\n 944,\n 11,\n 21360,\n 62,\n 4871,\n 11,\n 3108,\n 11,\n 1994,\n 7753,\n 28,\n 14202,\n 11,\n 5051,\n 7753,\n 28,\n 14202,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 24243,\n 1096,\n 649,\n 33501,\n 39105,\n 40717,\n 12915,\n 4122,\n 2134,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 943,\n 14542,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 21360,\n 62,\n 4871,\n 357,\n 26801,\n 2599,\n 257,\n 2581,\n 21360,\n 1398,\n 326,\n 481,\n 307,\n 9041,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 7007,\n 2722,\n 416,\n 5387,\n 2638,\n 67,\n 4382,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3108,\n 357,\n 2536,\n 2599,\n 33501,\n 17802,\n 3108,\n 11,\n 326,\n 5387,\n 2638,\n 67,\n 4382,\n 481,\n 6004,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 319,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 5051,\n 7753,\n 318,\n 407,\n 6045,\n 290,\n 1994,\n 7753,\n 318,\n 407,\n 6045,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 36123,\n 62,\n 312,\n 796,\n 366,\n 5450,\n 1378,\n 90,\n 92,\n 1911,\n 18982,\n 7,\n 6978,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2073,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 36123,\n 62,\n 312,\n 796,\n 366,\n 4023,\n 1378,\n 90,\n 92,\n 1911,\n 18982,\n 7,\n 6978,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2208,\n 22446,\n 834,\n 15003,\n 834,\n 7,\n 437,\n 4122,\n 62,\n 312,\n 8,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13557,\n 22866,\n 13,\n 7890,\n 17816,\n 44971,\n 62,\n 6978,\n 20520,\n 796,\n 3108,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13557,\n 22866,\n 13,\n 7890,\n 17816,\n 22583,\n 7753,\n 20520,\n 796,\n 5051,\n 7753,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13557,\n 22866,\n 13,\n 7890,\n 17816,\n 2539,\n 7753,\n 20520,\n 796,\n 1994,\n 7753,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13557,\n 30281,\n 62,\n 4871,\n 796,\n 21360,\n 62,\n 4871,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13,\n 834,\n 27773,\n 929,\n 62,\n 301,\n 1000,\n 62,\n 44971,\n 7,\n 6978,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13,\n 834,\n 40406,\n 62,\n 4023,\n 67,\n 62,\n 16663,\n 7,\n 6978,\n 8,\n 628,\n 220,\n 220,\n 220,\n 2488,\n 12708,\n 24396,\n 628,\n 220,\n 220,\n 220,\n 825,\n 11593,\n 40406,\n 62,\n 4023,\n 67,\n 62,\n 16663,\n 7,\n 944,\n 11,\n 17802,\n 62,\n 6978,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 40786,\n 5387,\n 14626,\n 67,\n 4382,\n 326,\n 428,\n 886,\n 13033,\n 16507,\n 319,\n 284,\n 4691,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 7007,\n 13,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 943,\n 14542,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3108,\n 357,\n 2536,\n 2599,\n 33501,\n 17802,\n 3108,\n 11,\n 326,\n 5387,\n 2638,\n 67,\n 4382,\n 481,\n 6004,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 319,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13557,\n 4023,\n 67,\n 796,\n 33501,\n 39105,\n 9012,\n 913,\n 6535,\n 28820,\n 18497,\n 7,\n 944,\n 13557,\n 22866,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 17802,\n 62,\n 6978,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13557,\n 30281,\n 62,\n 4871,\n 8,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2638,\n 67,\n 62,\n 16663,\n 62,\n 3672,\n 796,\n 366,\n 47000,\n 39105,\n 43481,\n 67,\n 16818,\n 12,\n 90,\n 92,\n 1911,\n 18982,\n 7,\n 944,\n 13,\n 312,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13557,\n 4023,\n 67,\n 62,\n 16663,\n 796,\n 4704,\n 278,\n 13,\n 16818,\n 7,\n 16793,\n 28,\n 944,\n 13557,\n 4023,\n 67,\n 13,\n 2655,\n 303,\n 62,\n 754,\n 332,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1438,\n 28,\n 4023,\n 67,\n 62,\n 16663,\n 62,\n 3672,\n 8,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 299,\n 42822,\n 44632,\n 8383,\n 7767,\n 355,\n 705,\n 34952,\n 1118,\n 14,\n 77,\n 519,\n 3233,\n 3256,\n 523,\n 356,\n 761,\n 284,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 787,\n 262,\n 17802,\n 1695,\n 284,\n 340,\n 13,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 28686,\n 13,\n 354,\n 4666,\n 7,\n 44971,\n 62,\n 6978,\n 11,\n 657,\n 78,\n 29331,\n 8,\n 198\n]"},"ratio_char_token":{"kind":"number","value":2.4987644151565074,"string":"2.498764"},"token_count":{"kind":"number","value":4856,"string":"4,856"}}},{"rowIdx":2498,"cells":{"content":{"kind":"string","value":"import os\nimport argparse\nfrom datetime import datetime\nimport time\n\nimport torch\nimport torch.nn.functional as F\nimport torch.multiprocessing as mp\n\nimport numpy as np\nimport pandas as pd\nfrom tqdm import tqdm\nimport matplotlib\nimport matplotlib.pyplot as plt\n\nfrom tensorboardX import SummaryWriter\n\nimport data\nimport track\nimport model\nimport utils\n\nmatplotlib.use(\"Qt5Agg\")\n\n\n\nif __name__ == \"__main__\":\n try:\n main()\n except KeyboardInterrupt:\n print(\"Process interrupted by user, emptying cache...\")\n torch.cuda.empty_cache()\n"},"input_ids":{"kind":"list like","value":[11748,28686,198,11748,1822,29572,198,6738,4818,8079,1330,4818,8079,198,11748,640,198,198,11748,28034,198,11748,28034,13,20471,13,45124,355,376,198,11748,28034,13,16680,541,305,919,278,355,29034,198,198,11748,299,32152,355,45941,198,11748,19798,292,355,279,67,198,6738,256,80,36020,1330,256,80,36020,198,11748,2603,29487,8019,198,11748,2603,29487,8019,13,9078,29487,355,458,83,198,198,6738,11192,273,3526,55,1330,21293,34379,198,198,11748,1366,198,11748,2610,198,11748,2746,198,11748,3384,4487,198,198,6759,29487,8019,13,1904,7203,48,83,20,46384,4943,628,198,198,361,11593,3672,834,6624,366,834,12417,834,1298,198,220,220,220,1949,25,198,220,220,220,220,220,220,220,1388,3419,198,220,220,220,2845,31973,9492,3622,25,198,220,220,220,220,220,220,220,3601,7203,18709,19072,416,2836,11,23909,1112,12940,9313,8,198,220,220,220,220,220,220,220,28034,13,66,15339,13,28920,62,23870,3419,198],"string":"[\n 11748,\n 28686,\n 198,\n 11748,\n 1822,\n 29572,\n 198,\n 6738,\n 4818,\n 8079,\n 1330,\n 4818,\n 8079,\n 198,\n 11748,\n 640,\n 198,\n 198,\n 11748,\n 28034,\n 198,\n 11748,\n 28034,\n 13,\n 20471,\n 13,\n 45124,\n 355,\n 376,\n 198,\n 11748,\n 28034,\n 13,\n 16680,\n 541,\n 305,\n 919,\n 278,\n 355,\n 29034,\n 198,\n 198,\n 11748,\n 299,\n 32152,\n 355,\n 45941,\n 198,\n 11748,\n 19798,\n 292,\n 355,\n 279,\n 67,\n 198,\n 6738,\n 256,\n 80,\n 36020,\n 1330,\n 256,\n 80,\n 36020,\n 198,\n 11748,\n 2603,\n 29487,\n 8019,\n 198,\n 11748,\n 2603,\n 29487,\n 8019,\n 13,\n 9078,\n 29487,\n 355,\n 458,\n 83,\n 198,\n 198,\n 6738,\n 11192,\n 273,\n 3526,\n 55,\n 1330,\n 21293,\n 34379,\n 198,\n 198,\n 11748,\n 1366,\n 198,\n 11748,\n 2610,\n 198,\n 11748,\n 2746,\n 198,\n 11748,\n 3384,\n 4487,\n 198,\n 198,\n 6759,\n 29487,\n 8019,\n 13,\n 1904,\n 7203,\n 48,\n 83,\n 20,\n 46384,\n 4943,\n 628,\n 198,\n 198,\n 361,\n 11593,\n 3672,\n 834,\n 6624,\n 366,\n 834,\n 12417,\n 834,\n 1298,\n 198,\n 220,\n 220,\n 220,\n 1949,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1388,\n 3419,\n 198,\n 220,\n 220,\n 220,\n 2845,\n 31973,\n 9492,\n 3622,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3601,\n 7203,\n 18709,\n 19072,\n 416,\n 2836,\n 11,\n 23909,\n 1112,\n 12940,\n 9313,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 28034,\n 13,\n 66,\n 15339,\n 13,\n 28920,\n 62,\n 23870,\n 3419,\n 198\n]"},"ratio_char_token":{"kind":"number","value":2.9166666666666665,"string":"2.916667"},"token_count":{"kind":"number","value":192,"string":"192"}}},{"rowIdx":2499,"cells":{"content":{"kind":"string","value":"import math\n\t\t\n\t#def find_par(self):\n\t\t\n\t\t\n\t\t\n\t\n\t\nif __name__ == \"__main__\":\n\tmain()\n\t\t\n\n\n"},"input_ids":{"kind":"list like","value":[11748,10688,198,197,197,198,197,2,4299,1064,62,1845,7,944,2599,198,197,197,198,197,197,198,197,197,198,197,198,197,198,361,11593,3672,834,6624,366,834,12417,834,1298,198,197,12417,3419,198,197,197,628,198],"string":"[\n 11748,\n 10688,\n 198,\n 197,\n 197,\n 198,\n 197,\n 2,\n 4299,\n 1064,\n 62,\n 1845,\n 7,\n 944,\n 2599,\n 198,\n 197,\n 197,\n 198,\n 197,\n 197,\n 198,\n 197,\n 197,\n 198,\n 197,\n 198,\n 197,\n 198,\n 361,\n 11593,\n 3672,\n 834,\n 6624,\n 366,\n 834,\n 12417,\n 834,\n 1298,\n 198,\n 197,\n 12417,\n 3419,\n 198,\n 197,\n 197,\n 628,\n 198\n]"},"ratio_char_token":{"kind":"number","value":1.875,"string":"1.875"},"token_count":{"kind":"number","value":48,"string":"48"}}}],"truncated":false,"partial":false},"paginationData":{"pageIndex":24,"numItemsPerPage":100,"numTotalItems":12760182,"offset":2400,"length":100}},"jwt":"eyJhbGciOiJFZERTQSJ9.eyJyZWFkIjp0cnVlLCJwZXJtaXNzaW9ucyI6eyJyZXBvLmNvbnRlbnQucmVhZCI6dHJ1ZX0sImlhdCI6MTc1NjU5MjM1MSwic3ViIjoiL2RhdGFzZXRzL3l0emkvdGhlLXN0YWNrLWRlZHVwLXB5dGhvbi1maWx0ZXJlZC1kb2NzdHJpbmdzLWdwdDIiLCJleHAiOjE3NTY1OTU5NTEsImlzcyI6Imh0dHBzOi8vaHVnZ2luZ2ZhY2UuY28ifQ.YMe6ZMVdn5cbsiC4L-zYxC73gNUgRVTwhbvdg5mMv3n2n7gloJ-ZBj4Wm9lc4eWsuELB34ivk-7S9ZgCgmZmCg","displayUrls":true},"discussionsStats":{"closed":0,"open":1,"total":1},"fullWidth":true,"hasGatedAccess":true,"hasFullAccess":true,"isEmbedded":false,"savedQueries":{"community":[],"user":[]}}">
content
stringlengths
1
1.04M
input_ids
listlengths
1
774k
ratio_char_token
float64
0.38
22.9
token_count
int64
1
774k
from itests.utils import get_sleep_time from blacksheep.client.pool import ClientConnectionPools import os import pathlib import asyncio from multiprocessing import Process from time import sleep import pytest from blacksheep.client import ClientSession from .flask_app import app @pytest.fixture(scope="session") def event_loop(): """Create an instance of the default event loop for all test cases.""" loop = asyncio.get_event_loop_policy().new_event_loop() yield loop loop.close() @pytest.fixture(scope="module") @pytest.fixture(scope="module") @pytest.fixture(scope="module") @pytest.fixture(scope="module") @pytest.fixture(scope="module", autouse=True)
[ 6738, 340, 3558, 13, 26791, 1330, 651, 62, 42832, 62, 2435, 198, 6738, 2042, 7091, 538, 13, 16366, 13, 7742, 1330, 20985, 32048, 47, 10141, 198, 11748, 28686, 198, 11748, 3108, 8019, 198, 11748, 30351, 952, 198, 6738, 18540, 305, 919, 278, 1330, 10854, 198, 6738, 640, 1330, 3993, 198, 198, 11748, 12972, 9288, 198, 198, 6738, 2042, 7091, 538, 13, 16366, 1330, 20985, 36044, 198, 198, 6738, 764, 2704, 2093, 62, 1324, 1330, 598, 628, 198, 198, 31, 9078, 9288, 13, 69, 9602, 7, 29982, 2625, 29891, 4943, 198, 4299, 1785, 62, 26268, 33529, 198, 220, 220, 220, 37227, 16447, 281, 4554, 286, 262, 4277, 1785, 9052, 329, 477, 1332, 2663, 526, 15931, 198, 220, 220, 220, 9052, 796, 30351, 952, 13, 1136, 62, 15596, 62, 26268, 62, 30586, 22446, 3605, 62, 15596, 62, 26268, 3419, 198, 220, 220, 220, 7800, 9052, 198, 220, 220, 220, 9052, 13, 19836, 3419, 628, 198, 31, 9078, 9288, 13, 69, 9602, 7, 29982, 2625, 21412, 4943, 628, 198, 31, 9078, 9288, 13, 69, 9602, 7, 29982, 2625, 21412, 4943, 628, 198, 31, 9078, 9288, 13, 69, 9602, 7, 29982, 2625, 21412, 4943, 628, 198, 31, 9078, 9288, 13, 69, 9602, 7, 29982, 2625, 21412, 4943, 628, 198, 198, 31, 9078, 9288, 13, 69, 9602, 7, 29982, 2625, 21412, 1600, 1960, 1076, 28, 17821, 8, 198 ]
3.09417
223
print("part1:", iterate(80)) print("part2:", iterate(256))
[ 198, 4798, 7203, 3911, 16, 25, 1600, 11629, 378, 7, 1795, 4008, 198, 4798, 7203, 3911, 17, 25, 1600, 11629, 378, 7, 11645, 4008, 198 ]
2.4
25
""" ============================================== Repository of Updaters, Dividers, and Derivers ============================================== You should interpret words and phrases that appear fully capitalized in this document as described in :rfc:`2119`. Here is a brief summary of the RFC: * "MUST" indicates absolute requirements. Vivarium may not work correctly if you don't follow these. * "SHOULD" indicates strong suggestions. You might have a valid reason for deviating from them, but be careful that you understand the ramifications. * "MAY" indicates truly optional features that you can include or exclude as you wish. -------- Updaters -------- Each :term:`updater` is defined as a function whose name begins with ``update_``. Vivarium uses these functions to apply :term:`updates` to :term:`variables`. Updater names are defined in :py:data:`updater_library`, which maps these names to updater functions. Updater API =========== An updater function MUST have a name that begins with ``update_``. The function MUST accept exactly two positional arguments: the first MUST be the current value of the variable (i.e. before applying the update), and the second MUST be the value associated with the variable in the update. The function SHOULD not accept any other parameters. The function MUST return the updated value of the variable only. -------- Dividers -------- Each :term:`divider` is defined by a function that follows the API we describe below. Vivarium uses these dividers to generate daughter cell states from the mother cell's state. Divider names are defined in :py:data:`divider_library`, which maps these names to divider functions. Divider API =========== Each divider function MUST have a name prefixed with ``_divide``. The function MUST accept a single positional argument, the value of the variable in the mother cell. It SHOULD accept no other arguments. The function MUST return a :py:class:`list` with two elements: the values of the variables in each of the daughter cells. .. note:: Dividers MAY not be deterministic and MAY not be symmetric. For example, a divider splitting an odd, integer-valued value may randomly decide which daughter cell receives the remainder. -------- Derivers -------- Each :term:`deriver` is defined as a separate :term:`process`, but here deriver names are mapped to processes by :py:data:`deriver_library`. The available derivers are: * **mmol_to_counts**: :py:class:`vivarium.processes.derive_counts.DeriveCounts` * **counts_to_mmol**: :py:class:`vivarium.processes.derive_concentrations.DeriveConcentrations` * **mass**: :py:class:`vivarium.processes.tree_mass.TreeMass` * **globals**: :py:class:`vivarium.processes.derive_globals.DeriveGlobals` See the documentation for each :term:`process class` for more details on that deriver. """ from __future__ import absolute_import, division, print_function import copy import random import numpy as np from vivarium.library.dict_utils import deep_merge from vivarium.library.units import Quantity # deriver processes from vivarium.processes.derive_concentrations import DeriveConcentrations from vivarium.processes.derive_counts import DeriveCounts from vivarium.processes.derive_globals import DeriveGlobals from vivarium.processes.tree_mass import TreeMass ## updater functions def update_merge(current_value, new_value): """Merge Updater Arguments: current_value (dict): new_value (dict): Returns: dict: The merger of ``current_value`` and ``new_value``. For any shared keys, the value in ``new_value`` is used. """ update = current_value.copy() for k, v in current_value.items(): new = new_value.get(k) if isinstance(new, dict): update[k] = deep_merge(dict(v), new) else: update[k] = new return update def update_set(current_value, new_value): """Set Updater Returns: The value provided in ``new_value``. """ return new_value def update_accumulate(current_value, new_value): """Accumulate Updater Returns: The sum of ``current_value`` and ``new_value``. """ return current_value + new_value #: Maps updater names to updater functions updater_library = { 'accumulate': update_accumulate, 'set': update_set, 'merge': update_merge} ## divider functions def divide_set(state): """Set Divider Returns: A list ``[state, state]``. No copying is performed. """ return [state, state] def divide_split(state): """Split Divider Arguments: state: Must be an :py:class:`int`, a :py:class:`float`, or a :py:class:`str` of value ``Infinity``. Returns: A list, each of whose elements contains half of ``state``. If ``state`` is an :py:class:`int`, the remainder is placed at random in one of the two elements. If ``state`` is infinite, the return value is ``[state, state]`` (no copying is done). Raises: Exception: if ``state`` is of an unrecognized type. """ if isinstance(state, int): remainder = state % 2 half = int(state / 2) if random.choice([True, False]): return [half + remainder, half] else: return [half, half + remainder] elif state == float('inf') or state == 'Infinity': # some concentrations are considered infinite in the environment # an alternative option is to not divide the local environment state return [state, state] elif isinstance(state, (float, Quantity)): half = state/2 return [half, half] else: raise Exception('can not divide state {} of type {}'.format(state, type(state))) def divide_zero(state): """Zero Divider Returns: ``[0, 0]`` regardless of input """ return [0, 0] def divide_split_dict(state): """Split-Dictionary Divider Returns: A list of two dictionaries. The first dictionary stores the first half of the key-value pairs in ``state``, and the second dictionary stores the rest of the key-value pairs. .. note:: Since dictionaries are unordered, you should avoid making any assumptions about which keys will be sent to which daughter cell. """ if state is None: state = {} d1 = dict(list(state.items())[len(state) // 2:]) d2 = dict(list(state.items())[:len(state) // 2]) return [d1, d2] #: Maps divider names to divider functions divider_library = { 'set': divide_set, 'split': divide_split, 'split_dict': divide_split_dict, 'zero': divide_zero} # Derivers #: Maps deriver names to :term:`process classes` deriver_library = { 'mmol_to_counts': DeriveCounts, 'counts_to_mmol': DeriveConcentrations, 'mass': TreeMass, 'globals': DeriveGlobals, } # Serializers serializer_library = { 'numpy': NumpySerializer(), }
[ 37811, 198, 10052, 25609, 855, 198, 6207, 13264, 286, 3205, 67, 8605, 11, 360, 1699, 364, 11, 290, 9626, 1191, 198, 10052, 25609, 855, 198, 198, 1639, 815, 6179, 2456, 290, 20144, 326, 1656, 3938, 3139, 1143, 287, 198, 5661, 3188, 355, 3417, 287, 1058, 81, 16072, 25, 63, 2481, 1129, 44646, 3423, 318, 257, 4506, 10638, 286, 198, 1169, 30978, 25, 198, 198, 9, 366, 44, 7759, 1, 9217, 4112, 5359, 13, 25313, 17756, 743, 407, 670, 198, 220, 9380, 611, 345, 836, 470, 1061, 777, 13, 198, 9, 366, 9693, 24010, 1, 9217, 1913, 11776, 13, 921, 1244, 423, 257, 4938, 1738, 198, 220, 329, 1614, 26336, 422, 606, 11, 475, 307, 8161, 326, 345, 1833, 262, 198, 220, 36093, 13, 198, 9, 366, 44, 4792, 1, 9217, 4988, 11902, 3033, 326, 345, 460, 2291, 393, 198, 220, 19607, 355, 345, 4601, 13, 198, 198, 982, 198, 4933, 67, 8605, 198, 982, 198, 198, 10871, 1058, 4354, 25, 63, 929, 67, 729, 63, 318, 5447, 355, 257, 2163, 3025, 1438, 6140, 351, 198, 15506, 19119, 62, 15506, 13, 25313, 17756, 3544, 777, 5499, 284, 4174, 1058, 4354, 25, 63, 929, 19581, 63, 284, 198, 25, 4354, 25, 63, 25641, 2977, 44646, 3205, 67, 729, 3891, 389, 5447, 287, 198, 25, 9078, 25, 7890, 25, 63, 929, 67, 729, 62, 32016, 47671, 543, 8739, 777, 3891, 284, 2325, 729, 5499, 13, 198, 198, 4933, 67, 729, 7824, 198, 2559, 18604, 198, 198, 2025, 2325, 729, 2163, 17191, 423, 257, 1438, 326, 6140, 351, 7559, 19119, 62, 15506, 13, 383, 198, 8818, 17191, 2453, 3446, 734, 45203, 7159, 25, 262, 717, 17191, 307, 198, 1169, 1459, 1988, 286, 262, 7885, 357, 72, 13, 68, 13, 878, 11524, 262, 4296, 828, 290, 198, 1169, 1218, 17191, 307, 262, 1988, 3917, 351, 262, 7885, 287, 262, 4296, 13, 198, 464, 2163, 40312, 407, 2453, 597, 584, 10007, 13, 383, 2163, 17191, 198, 7783, 262, 6153, 1988, 286, 262, 7885, 691, 13, 198, 198, 982, 198, 35, 1699, 364, 198, 982, 198, 198, 10871, 1058, 4354, 25, 63, 7146, 1304, 63, 318, 5447, 416, 257, 2163, 326, 5679, 262, 7824, 356, 198, 20147, 4892, 2174, 13, 25313, 17756, 3544, 777, 13576, 364, 284, 7716, 4957, 2685, 198, 27219, 422, 262, 2802, 2685, 338, 1181, 13, 4777, 1304, 3891, 389, 5447, 287, 198, 25, 9078, 25, 7890, 25, 63, 7146, 1304, 62, 32016, 47671, 543, 8739, 777, 3891, 284, 2659, 1304, 5499, 13, 198, 198, 24095, 1304, 7824, 198, 2559, 18604, 198, 198, 10871, 2659, 1304, 2163, 17191, 423, 257, 1438, 7694, 2966, 351, 7559, 62, 7146, 485, 15506, 13, 383, 198, 8818, 17191, 2453, 257, 2060, 45203, 4578, 11, 262, 1988, 286, 262, 198, 45286, 287, 262, 2802, 2685, 13, 632, 40312, 2453, 645, 584, 7159, 13, 383, 198, 8818, 17191, 1441, 257, 1058, 9078, 25, 4871, 25, 63, 4868, 63, 351, 734, 4847, 25, 262, 3815, 286, 198, 1169, 9633, 287, 1123, 286, 262, 4957, 4778, 13, 198, 198, 492, 3465, 3712, 360, 1699, 364, 26720, 407, 307, 2206, 49228, 290, 26720, 407, 307, 23606, 19482, 13, 198, 220, 220, 220, 1114, 1672, 11, 257, 2659, 1304, 26021, 281, 5629, 11, 18253, 12, 39728, 1988, 743, 198, 220, 220, 220, 15456, 5409, 543, 4957, 2685, 11583, 262, 17675, 13, 198, 198, 982, 198, 28532, 1191, 198, 982, 198, 198, 10871, 1058, 4354, 25, 63, 1082, 1428, 63, 318, 5447, 355, 257, 4553, 1058, 4354, 25, 63, 14681, 47671, 475, 994, 198, 1082, 1428, 3891, 389, 27661, 284, 7767, 416, 1058, 9078, 25, 7890, 25, 63, 1082, 1428, 62, 32016, 44646, 383, 198, 15182, 4587, 1191, 389, 25, 198, 198, 9, 12429, 3020, 349, 62, 1462, 62, 9127, 82, 1174, 25, 1058, 9078, 25, 4871, 25, 63, 85, 452, 17756, 13, 14681, 274, 13, 1082, 425, 62, 9127, 82, 13, 28532, 425, 12332, 82, 63, 198, 9, 12429, 9127, 82, 62, 1462, 62, 3020, 349, 1174, 25, 198, 220, 1058, 9078, 25, 4871, 25, 63, 85, 452, 17756, 13, 14681, 274, 13, 1082, 425, 62, 1102, 1087, 9143, 13, 28532, 425, 3103, 1087, 9143, 63, 198, 9, 12429, 22208, 1174, 25, 1058, 9078, 25, 4871, 25, 63, 85, 452, 17756, 13, 14681, 274, 13, 21048, 62, 22208, 13, 27660, 20273, 63, 198, 9, 12429, 4743, 672, 874, 1174, 25, 198, 220, 1058, 9078, 25, 4871, 25, 63, 85, 452, 17756, 13, 14681, 274, 13, 1082, 425, 62, 4743, 672, 874, 13, 28532, 425, 9861, 672, 874, 63, 198, 198, 6214, 262, 10314, 329, 1123, 1058, 4354, 25, 63, 14681, 1398, 63, 329, 517, 3307, 319, 198, 5562, 4587, 1428, 13, 198, 37811, 628, 198, 6738, 11593, 37443, 834, 1330, 4112, 62, 11748, 11, 7297, 11, 3601, 62, 8818, 198, 198, 11748, 4866, 198, 11748, 4738, 198, 198, 11748, 299, 32152, 355, 45941, 198, 198, 6738, 410, 452, 17756, 13, 32016, 13, 11600, 62, 26791, 1330, 2769, 62, 647, 469, 198, 6738, 410, 452, 17756, 13, 32016, 13, 41667, 1330, 39789, 198, 198, 2, 4587, 1428, 7767, 198, 6738, 410, 452, 17756, 13, 14681, 274, 13, 1082, 425, 62, 1102, 1087, 9143, 1330, 9626, 425, 3103, 1087, 9143, 198, 6738, 410, 452, 17756, 13, 14681, 274, 13, 1082, 425, 62, 9127, 82, 1330, 9626, 425, 12332, 82, 198, 6738, 410, 452, 17756, 13, 14681, 274, 13, 1082, 425, 62, 4743, 672, 874, 1330, 9626, 425, 9861, 672, 874, 198, 6738, 410, 452, 17756, 13, 14681, 274, 13, 21048, 62, 22208, 1330, 12200, 20273, 628, 198, 2235, 2325, 729, 5499, 198, 198, 4299, 4296, 62, 647, 469, 7, 14421, 62, 8367, 11, 649, 62, 8367, 2599, 198, 220, 220, 220, 37227, 13102, 469, 3205, 67, 729, 628, 220, 220, 220, 20559, 2886, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1459, 62, 8367, 357, 11600, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 649, 62, 8367, 357, 11600, 2599, 628, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 8633, 25, 383, 24589, 286, 7559, 14421, 62, 8367, 15506, 290, 7559, 3605, 62, 8367, 15506, 13, 1114, 597, 198, 220, 220, 220, 220, 220, 220, 220, 4888, 8251, 11, 262, 1988, 287, 7559, 3605, 62, 8367, 15506, 318, 973, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 4296, 796, 1459, 62, 8367, 13, 30073, 3419, 198, 220, 220, 220, 329, 479, 11, 410, 287, 1459, 62, 8367, 13, 23814, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 649, 796, 649, 62, 8367, 13, 1136, 7, 74, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 318, 39098, 7, 3605, 11, 8633, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4296, 58, 74, 60, 796, 2769, 62, 647, 469, 7, 11600, 7, 85, 828, 649, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4296, 58, 74, 60, 796, 649, 198, 220, 220, 220, 1441, 4296, 198, 198, 4299, 4296, 62, 2617, 7, 14421, 62, 8367, 11, 649, 62, 8367, 2599, 198, 220, 220, 220, 37227, 7248, 3205, 67, 729, 628, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 383, 1988, 2810, 287, 7559, 3605, 62, 8367, 15506, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 649, 62, 8367, 198, 198, 4299, 4296, 62, 4134, 388, 5039, 7, 14421, 62, 8367, 11, 649, 62, 8367, 2599, 198, 220, 220, 220, 37227, 17320, 388, 5039, 3205, 67, 729, 628, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 383, 2160, 286, 7559, 14421, 62, 8367, 15506, 290, 7559, 3605, 62, 8367, 15506, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 1459, 62, 8367, 1343, 649, 62, 8367, 198, 198, 2, 25, 20347, 2325, 729, 3891, 284, 2325, 729, 5499, 198, 929, 67, 729, 62, 32016, 796, 1391, 198, 220, 220, 220, 705, 4134, 388, 5039, 10354, 4296, 62, 4134, 388, 5039, 11, 198, 220, 220, 220, 705, 2617, 10354, 4296, 62, 2617, 11, 198, 220, 220, 220, 705, 647, 469, 10354, 4296, 62, 647, 469, 92, 198, 198, 2235, 2659, 1304, 5499, 198, 4299, 14083, 62, 2617, 7, 5219, 2599, 198, 220, 220, 220, 37227, 7248, 4777, 1304, 628, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 317, 1351, 7559, 58, 5219, 11, 1181, 60, 15506, 13, 1400, 23345, 318, 6157, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 685, 5219, 11, 1181, 60, 198, 198, 4299, 14083, 62, 35312, 7, 5219, 2599, 198, 220, 220, 220, 37227, 41205, 4777, 1304, 628, 220, 220, 220, 20559, 2886, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1181, 25, 12039, 307, 281, 1058, 9078, 25, 4871, 25, 63, 600, 47671, 257, 1058, 9078, 25, 4871, 25, 63, 22468, 47671, 393, 257, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1058, 9078, 25, 4871, 25, 63, 2536, 63, 286, 1988, 7559, 18943, 6269, 15506, 13, 628, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 317, 1351, 11, 1123, 286, 3025, 4847, 4909, 2063, 286, 7559, 5219, 15506, 13, 1002, 198, 220, 220, 220, 220, 220, 220, 220, 7559, 5219, 15506, 318, 281, 1058, 9078, 25, 4871, 25, 63, 600, 47671, 262, 17675, 318, 4624, 379, 198, 220, 220, 220, 220, 220, 220, 220, 4738, 287, 530, 286, 262, 734, 4847, 13, 1002, 7559, 5219, 15506, 318, 15541, 11, 262, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 1988, 318, 7559, 58, 5219, 11, 1181, 60, 15506, 357, 3919, 23345, 318, 1760, 737, 628, 220, 220, 220, 7567, 2696, 25, 198, 220, 220, 220, 220, 220, 220, 220, 35528, 25, 611, 7559, 5219, 15506, 318, 286, 281, 43483, 1143, 2099, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 318, 39098, 7, 5219, 11, 493, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 17675, 796, 1181, 4064, 362, 198, 220, 220, 220, 220, 220, 220, 220, 2063, 796, 493, 7, 5219, 1220, 362, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 4738, 13, 25541, 26933, 17821, 11, 10352, 60, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 685, 13959, 1343, 17675, 11, 2063, 60, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 685, 13959, 11, 2063, 1343, 17675, 60, 198, 220, 220, 220, 1288, 361, 1181, 6624, 12178, 10786, 10745, 11537, 393, 1181, 6624, 705, 18943, 6269, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 617, 14587, 389, 3177, 15541, 287, 262, 2858, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 281, 5559, 3038, 318, 284, 407, 14083, 262, 1957, 2858, 1181, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 685, 5219, 11, 1181, 60, 198, 220, 220, 220, 1288, 361, 318, 39098, 7, 5219, 11, 357, 22468, 11, 39789, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 2063, 796, 1181, 14, 17, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 685, 13959, 11, 2063, 60, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 35528, 10786, 5171, 407, 14083, 1181, 23884, 286, 2099, 23884, 4458, 18982, 7, 5219, 11, 2099, 7, 5219, 22305, 198, 198, 4299, 14083, 62, 22570, 7, 5219, 2599, 198, 220, 220, 220, 37227, 28667, 4777, 1304, 628, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 7559, 58, 15, 11, 657, 60, 15506, 7692, 286, 5128, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 685, 15, 11, 657, 60, 198, 198, 4299, 14083, 62, 35312, 62, 11600, 7, 5219, 2599, 198, 220, 220, 220, 37227, 41205, 12, 35, 14188, 4777, 1304, 628, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 317, 1351, 286, 734, 48589, 3166, 13, 383, 717, 22155, 7000, 262, 198, 220, 220, 220, 220, 220, 220, 220, 717, 2063, 286, 262, 1994, 12, 8367, 14729, 287, 7559, 5219, 15506, 11, 290, 262, 1218, 198, 220, 220, 220, 220, 220, 220, 220, 22155, 7000, 262, 1334, 286, 262, 1994, 12, 8367, 14729, 13, 628, 220, 220, 220, 220, 220, 220, 220, 11485, 3465, 3712, 4619, 48589, 3166, 389, 555, 24071, 11, 345, 815, 3368, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1642, 597, 14895, 546, 543, 8251, 481, 307, 1908, 284, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 543, 4957, 2685, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 1181, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1181, 796, 23884, 198, 220, 220, 220, 288, 16, 796, 8633, 7, 4868, 7, 5219, 13, 23814, 28955, 58, 11925, 7, 5219, 8, 3373, 362, 25, 12962, 198, 220, 220, 220, 288, 17, 796, 8633, 7, 4868, 7, 5219, 13, 23814, 28955, 58, 25, 11925, 7, 5219, 8, 3373, 362, 12962, 198, 220, 220, 220, 1441, 685, 67, 16, 11, 288, 17, 60, 198, 198, 2, 25, 20347, 2659, 1304, 3891, 284, 2659, 1304, 5499, 198, 7146, 1304, 62, 32016, 796, 1391, 198, 220, 220, 220, 705, 2617, 10354, 14083, 62, 2617, 11, 198, 220, 220, 220, 705, 35312, 10354, 14083, 62, 35312, 11, 198, 220, 220, 220, 705, 35312, 62, 11600, 10354, 14083, 62, 35312, 62, 11600, 11, 198, 220, 220, 220, 705, 22570, 10354, 14083, 62, 22570, 92, 198, 198, 2, 9626, 1191, 198, 198, 2, 25, 20347, 4587, 1428, 3891, 284, 1058, 4354, 25, 63, 14681, 6097, 63, 198, 1082, 1428, 62, 32016, 796, 1391, 198, 220, 220, 220, 705, 3020, 349, 62, 1462, 62, 9127, 82, 10354, 9626, 425, 12332, 82, 11, 198, 220, 220, 220, 705, 9127, 82, 62, 1462, 62, 3020, 349, 10354, 9626, 425, 3103, 1087, 9143, 11, 198, 220, 220, 220, 705, 22208, 10354, 12200, 20273, 11, 198, 220, 220, 220, 705, 4743, 672, 874, 10354, 9626, 425, 9861, 672, 874, 11, 198, 92, 628, 198, 2, 23283, 11341, 198, 198, 46911, 7509, 62, 32016, 796, 1391, 198, 220, 220, 220, 705, 77, 32152, 10354, 399, 32152, 32634, 7509, 22784, 198, 92, 198 ]
2.935973
2,374
import torch from torch import Tensor def compute_accuracy(pred: Tensor, gt: Tensor, ignore: int = 0): """ pred (torch.Tensor): predicted words shape of [L, N] gt (torch.Tensor): GT words shape of [L, N] ignore (int): ignored label """ mask = gt != ignore tp = torch.logical_and(pred == gt, mask) return tp.sum() / mask.sum()
[ 11748, 28034, 198, 6738, 28034, 1330, 309, 22854, 628, 198, 4299, 24061, 62, 4134, 23843, 7, 28764, 25, 309, 22854, 11, 308, 83, 25, 309, 22854, 11, 8856, 25, 493, 796, 657, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2747, 357, 13165, 354, 13, 51, 22854, 2599, 11001, 2456, 5485, 286, 685, 43, 11, 399, 60, 198, 220, 220, 220, 308, 83, 357, 13165, 354, 13, 51, 22854, 2599, 7963, 2456, 5485, 286, 685, 43, 11, 399, 60, 198, 220, 220, 220, 8856, 357, 600, 2599, 9514, 6167, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 9335, 796, 308, 83, 14512, 8856, 198, 220, 220, 220, 256, 79, 796, 28034, 13, 6404, 605, 62, 392, 7, 28764, 6624, 308, 83, 11, 9335, 8, 628, 220, 220, 220, 1441, 256, 79, 13, 16345, 3419, 1220, 9335, 13, 16345, 3419, 628 ]
2.531469
143
from django.apps import AppConfig
[ 6738, 42625, 14208, 13, 18211, 1330, 2034, 16934, 628 ]
3.888889
9
# this is a make/python hybrid file # Normal make files are a make/sh hybrid. # This makefile uses python instead of sh (or bash) test_cxx_sources ?= checkcxxsources $(cxxsources):$(out_init) $(origin) if (this == "checkcxxsources") and (not os.path.exists(env.cxxsources)): leave() caption() if (this == env.cxxsources): lib_cxx, main_cxx = [],[] quote = "'" else: quote = "" test_cxx=[] for root, dirs, files in os.walk(env.cxxsrc) : for file in files: if file.endswith(".cxx"): cxx = quote+os.path.join(root, file)+quote if root.endswith("/main"): if (this == env.cxxsources): lib_cxx.append(cxx); main_cxx.append(cxx) test_cxx.append(cxx) elif root.endswith("/test"): test_cxx.append(cxx) test_cxx.sort() if (this == env.cxxsources): lib_cxx.sort() main_cxx.sort() with open (this, "w") as f: f.write("# === Generated by %s:%s ===\n\n" % (env.MAKEFILE_LIST, this)) f.write("lib_cxx_sources := %s\n\n" % (",".join(lib_cxx))) f.write("main_cxx_sources := %s\n\n" % (",".join(main_cxx))) f.write("test_cxx_sources := %s\n\n" % (",".join(test_cxx))) leave() before = set([$(test_cxx_sources)]) after = set(test_cxx) removed = str(before-after).replace(root_prefix,"") added = str(after-before).replace(root_prefix,"") removals = removed != "set()" additions = added != "set()" if removals or additions: print ("cxx source files were added or removed\n") if removals: print("removals:", removed) if additions: print("additions:", added) print ("\nForcing dependency and rule regeneration and re-link.\n") run(env.MAKE, "re-dep") cxx_dep0 := $(CXX), "-E", "--trace-includes", $(DEP_CXX_FLAGS) cxx_dep1 := "-I$(cxxinc)", cxx, "-o/dev/null" cxx_dep := $(cxx_dep0), $(cxx_dep1) $(cxxdeps): $(cxxsources);$(caption) queues, process = [],[] fd_a=types.SimpleNamespace() fd_a.gorge = gorge fd_a.root = root_prefix_len prefix = "test_cxx_sources := " prefix_len = len(prefix) with open(first) as f: lines = f.readlines() for line in lines: if line.startswith(prefix): sources = line[prefix_len:].rstrip() test_cxx = sources.split(",") for _cxx in test_cxx: cxx = _cxx.replace("'","") q = multiprocessing.Queue() p = multiprocessing.Process(target=find_dep, args=(cxx, q, fd_a)) process.append(p) queues.append(q) p.start() break with open (this, "w") as f: f.write("# === Generated by %s:%s ===\n\n" % (env.MAKEFILE_LIST, this)) n = 1 for q in queues: obj = q.get() deps = q.get() f.write("\n# %d\n%s := " % (n, obj)) f.write(" ".join(deps)) f.write("\n") n+=1 for p in process: p.join() $(objrules): $(cxxdeps); $(caption) suffix = "_obj_deps" prefix = "cxxsrc_" main_prefix = prefix + "main_" test_prefix = prefix + "test_" sep = " := " sep_len = len(sep) prefix_len = len(prefix) main_obj0, test_obj0, lib_obj0 = [],[],[] main_objs, test_objs, lib_objs = {},{},{} cxx_ext = ".cxx" cxx_ext_len = len(cxx_ext) with open(first) as f: lines = f.readlines() for line in lines: if line.startswith(prefix): i = line.find(sep) if i == -1: raise RuntimeError("Source deps line not formatted correctly") deps = line[:i] sources = line [i+sep_len:] j = sources.find(cxx_ext)+cxx_ext_len if j == -1: raise RuntimeError("Source deps line not formatted correctly") cxxfile = sources[root_prefix_len:j] cxxfile_i = "need to work on ctfe wrapper..." deps1 = deps.replace(suffix,".o") deps1 = deps1.replace("cxxsrc","$$(obj)") deps1 = deps1.replace("_","/",2) obj = deps1 if deps.startswith(main_prefix): lib_obj = obj.replace("$$(obj)/main","$$(obj)/lib") test_obj = obj.replace("$$(obj)/main/","$$(obj)/test/main__") main_objs[obj] = (cxxfile,deps,cxxfile_i) lib_objs[lib_obj] = (cxxfile,deps,cxxfile_i) test_objs[test_obj] = (cxxfile,deps,cxxfile_i) main_obj0.append(obj) lib_obj0.append(lib_obj) test_obj0.append(test_obj) continue if deps.startswith(test_prefix): test_objs[obj] = (cxxfile,deps,cxxfile_i) test_obj0.append(obj) with open (this, "w") as f: f.write("# === Generated by %s:%s ===\n\n" % (env.MAKEFILE_LIST, this)) f.write("\nmain_exe_objects := %s\n" % (" ".join(main_obj0))) f.write("\nlib_so_objects := %s\n" % (" ".join(lib_obj0))) f.write("\ntest_exe_objects := %s\n" % (" ".join(test_obj0))) f.write("\n__main_exe_objects__ := %s\n" % (make_quoted_list(main_obj0))) f.write("\n__lib_so_objects__ := %s\n" % (make_quoted_list(lib_obj0))) f.write("\n__test_exe_objects__ := %s\n" % (make_quoted_list(test_obj0))) ipch = "'-include-pch'," rule = "$$(__CXX_FLAGS), '-c', '$$<', '-o$$@'" main = ipch + "'$$(main_sysheaders_pch)'," + rule + ", $$(MAIN_EXTRA)" test = ipch + "'$$(test_sysheaders_pch)'," + rule + ", $$(TEST_EXTRA)" lib = ipch + "'$$(lib_sysheaders_pch)'," + rule + ", $$(LIB_EXTRA)" cxx = "$$(CXX)" main_d = "$$(obj_main_init) $$(main_sysheaders_pch)" lib_d = "$$(obj_lib_init) $$(lib_sysheaders_pch)" test_d = "$$(obj_test_init) $$(test_sysheaders_pch)" target("main", main_objs, main, cxx, main_d, f) target("lib", lib_objs, lib, cxx, lib_d, f) target("test", test_objs, test, cxx, test_d, f)
[ 2, 428, 318, 257, 787, 14, 29412, 14554, 2393, 198, 198, 2, 14435, 787, 3696, 389, 257, 787, 14, 1477, 14554, 13, 198, 2, 770, 787, 7753, 3544, 21015, 2427, 286, 427, 357, 273, 27334, 8, 198, 198, 9288, 62, 66, 5324, 62, 82, 2203, 5633, 28, 198, 198, 9122, 66, 5324, 82, 2203, 29568, 66, 5324, 82, 2203, 2599, 3, 7, 448, 62, 15003, 8, 198, 220, 29568, 47103, 8, 198, 220, 611, 357, 5661, 6624, 366, 9122, 66, 5324, 82, 2203, 4943, 290, 357, 1662, 28686, 13, 6978, 13, 1069, 1023, 7, 24330, 13, 66, 5324, 82, 2203, 8, 2599, 198, 220, 220, 220, 2666, 3419, 198, 220, 8305, 3419, 628, 220, 611, 357, 5661, 6624, 17365, 13, 66, 5324, 82, 2203, 2599, 198, 220, 220, 220, 9195, 62, 66, 5324, 11, 1388, 62, 66, 5324, 796, 685, 4357, 21737, 198, 220, 220, 220, 9577, 796, 24018, 1, 198, 220, 2073, 25, 198, 220, 220, 220, 9577, 796, 13538, 628, 220, 1332, 62, 66, 5324, 28, 21737, 628, 220, 329, 6808, 11, 288, 17062, 11, 3696, 287, 28686, 13, 11152, 7, 24330, 13, 66, 5324, 10677, 8, 1058, 198, 220, 220, 220, 329, 2393, 287, 3696, 25, 198, 220, 220, 220, 220, 220, 611, 2393, 13, 437, 2032, 342, 7, 1911, 66, 5324, 1, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 269, 5324, 796, 9577, 10, 418, 13, 6978, 13, 22179, 7, 15763, 11, 2393, 47762, 22708, 198, 220, 220, 220, 220, 220, 220, 220, 611, 6808, 13, 437, 2032, 342, 7203, 14, 12417, 1, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 357, 5661, 6624, 17365, 13, 66, 5324, 82, 2203, 2599, 9195, 62, 66, 5324, 13, 33295, 7, 66, 5324, 1776, 1388, 62, 66, 5324, 13, 33295, 7, 66, 5324, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1332, 62, 66, 5324, 13, 33295, 7, 66, 5324, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 6808, 13, 437, 2032, 342, 7203, 14, 9288, 1, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1332, 62, 66, 5324, 13, 33295, 7, 66, 5324, 8, 628, 220, 1332, 62, 66, 5324, 13, 30619, 3419, 628, 220, 611, 357, 5661, 6624, 17365, 13, 66, 5324, 82, 2203, 2599, 198, 220, 220, 220, 9195, 62, 66, 5324, 13, 30619, 3419, 198, 220, 220, 220, 1388, 62, 66, 5324, 13, 30619, 3419, 198, 220, 220, 220, 351, 1280, 357, 5661, 11, 366, 86, 4943, 355, 277, 25, 198, 220, 220, 220, 220, 220, 277, 13, 13564, 7203, 2, 24844, 2980, 515, 416, 4064, 82, 25, 4, 82, 24844, 59, 77, 59, 77, 1, 4064, 357, 24330, 13, 5673, 7336, 25664, 62, 45849, 11, 428, 4008, 198, 220, 220, 220, 220, 220, 277, 13, 13564, 7203, 8019, 62, 66, 5324, 62, 82, 2203, 19039, 4064, 82, 59, 77, 59, 77, 1, 4064, 357, 2430, 13, 22179, 7, 8019, 62, 66, 5324, 22305, 198, 220, 220, 220, 220, 220, 277, 13, 13564, 7203, 12417, 62, 66, 5324, 62, 82, 2203, 19039, 4064, 82, 59, 77, 59, 77, 1, 4064, 357, 2430, 13, 22179, 7, 12417, 62, 66, 5324, 22305, 198, 220, 220, 220, 220, 220, 277, 13, 13564, 7203, 9288, 62, 66, 5324, 62, 82, 2203, 19039, 4064, 82, 59, 77, 59, 77, 1, 4064, 357, 2430, 13, 22179, 7, 9288, 62, 66, 5324, 22305, 198, 220, 220, 220, 2666, 3419, 628, 220, 878, 796, 900, 26933, 3, 7, 9288, 62, 66, 5324, 62, 82, 2203, 8, 12962, 198, 220, 706, 796, 900, 7, 9288, 62, 66, 5324, 8, 198, 220, 4615, 796, 965, 7, 19052, 12, 8499, 737, 33491, 7, 15763, 62, 40290, 553, 4943, 198, 220, 2087, 796, 965, 7, 8499, 12, 19052, 737, 33491, 7, 15763, 62, 40290, 553, 4943, 198, 220, 816, 709, 874, 796, 4615, 14512, 366, 2617, 3419, 1, 198, 220, 19885, 796, 2087, 14512, 366, 2617, 3419, 1, 198, 220, 611, 816, 709, 874, 393, 19885, 25, 198, 220, 220, 220, 3601, 5855, 66, 5324, 2723, 3696, 547, 2087, 393, 4615, 59, 77, 4943, 198, 220, 220, 220, 611, 816, 709, 874, 25, 3601, 7203, 2787, 709, 874, 25, 1600, 4615, 8, 198, 220, 220, 220, 611, 19885, 25, 3601, 7203, 2860, 1756, 25, 1600, 2087, 8, 198, 220, 220, 220, 3601, 5855, 59, 77, 1890, 2259, 20203, 290, 3896, 27597, 290, 302, 12, 8726, 13, 59, 77, 4943, 198, 220, 220, 220, 1057, 7, 24330, 13, 5673, 7336, 11, 366, 260, 12, 10378, 4943, 198, 198, 66, 5324, 62, 10378, 15, 19039, 29568, 34, 8051, 828, 27444, 36, 1600, 366, 438, 40546, 12, 42813, 1600, 29568, 46162, 62, 34, 8051, 62, 38948, 50, 8, 198, 66, 5324, 62, 10378, 16, 19039, 27444, 40, 3, 7, 66, 5324, 1939, 42501, 269, 5324, 11, 27444, 78, 14, 7959, 14, 8423, 1, 198, 66, 5324, 62, 10378, 19039, 29568, 66, 5324, 62, 10378, 15, 828, 29568, 66, 5324, 62, 10378, 16, 8, 198, 198, 3, 7, 66, 5324, 10378, 82, 2599, 29568, 66, 5324, 82, 2203, 1776, 3, 7, 6888, 1159, 8, 628, 220, 43359, 11, 1429, 796, 685, 4357, 21737, 198, 220, 277, 67, 62, 64, 28, 19199, 13, 26437, 36690, 10223, 3419, 198, 220, 277, 67, 62, 64, 13, 70, 3643, 796, 17177, 198, 220, 277, 67, 62, 64, 13, 15763, 796, 6808, 62, 40290, 62, 11925, 628, 220, 21231, 796, 366, 9288, 62, 66, 5324, 62, 82, 2203, 19039, 366, 198, 220, 21231, 62, 11925, 796, 18896, 7, 40290, 8, 628, 220, 351, 1280, 7, 11085, 8, 355, 277, 25, 198, 220, 220, 220, 3951, 796, 277, 13, 961, 6615, 3419, 198, 220, 220, 220, 329, 1627, 287, 3951, 25, 198, 220, 220, 220, 220, 220, 611, 1627, 13, 9688, 2032, 342, 7, 40290, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 4237, 796, 1627, 58, 40290, 62, 11925, 25, 4083, 81, 36311, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1332, 62, 66, 5324, 796, 4237, 13, 35312, 7, 2430, 8, 198, 220, 220, 220, 220, 220, 220, 220, 329, 4808, 66, 5324, 287, 1332, 62, 66, 5324, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 5324, 796, 4808, 66, 5324, 13, 33491, 7203, 6, 2430, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10662, 796, 18540, 305, 919, 278, 13, 34991, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 796, 18540, 305, 919, 278, 13, 18709, 7, 16793, 28, 19796, 62, 10378, 11, 26498, 16193, 66, 5324, 11, 10662, 11, 277, 67, 62, 64, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1429, 13, 33295, 7, 79, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 43359, 13, 33295, 7, 80, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 13, 9688, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2270, 628, 220, 351, 1280, 357, 5661, 11, 366, 86, 4943, 355, 277, 25, 198, 220, 220, 220, 277, 13, 13564, 7203, 2, 24844, 2980, 515, 416, 4064, 82, 25, 4, 82, 24844, 59, 77, 59, 77, 1, 4064, 357, 24330, 13, 5673, 7336, 25664, 62, 45849, 11, 428, 4008, 198, 220, 220, 220, 299, 796, 352, 198, 220, 220, 220, 329, 10662, 287, 43359, 25, 198, 220, 220, 220, 220, 220, 26181, 796, 10662, 13, 1136, 3419, 198, 220, 220, 220, 220, 220, 390, 862, 796, 10662, 13, 1136, 3419, 198, 220, 220, 220, 220, 220, 277, 13, 13564, 7203, 59, 77, 2, 4064, 67, 59, 77, 4, 82, 19039, 366, 4064, 357, 77, 11, 26181, 4008, 198, 220, 220, 220, 220, 220, 277, 13, 13564, 7203, 27071, 22179, 7, 10378, 82, 4008, 198, 220, 220, 220, 220, 220, 277, 13, 13564, 7203, 59, 77, 4943, 198, 220, 220, 220, 220, 220, 299, 47932, 16, 628, 220, 329, 279, 287, 1429, 25, 279, 13, 22179, 3419, 198, 198, 3, 7, 26801, 38785, 2599, 29568, 66, 5324, 10378, 82, 1776, 29568, 6888, 1159, 8, 198, 220, 35488, 796, 45434, 26801, 62, 10378, 82, 1, 198, 220, 21231, 796, 366, 66, 5324, 10677, 62, 1, 198, 220, 1388, 62, 40290, 796, 21231, 1343, 366, 12417, 62, 1, 198, 220, 1332, 62, 40290, 796, 21231, 1343, 366, 9288, 62, 1, 198, 220, 41767, 796, 366, 19039, 366, 198, 220, 41767, 62, 11925, 796, 18896, 7, 325, 79, 8, 198, 220, 21231, 62, 11925, 796, 18896, 7, 40290, 8, 628, 220, 1388, 62, 26801, 15, 11, 1332, 62, 26801, 15, 11, 9195, 62, 26801, 15, 796, 685, 38430, 4357, 21737, 198, 220, 1388, 62, 672, 8457, 11, 1332, 62, 672, 8457, 11, 9195, 62, 672, 8457, 796, 1391, 5512, 90, 5512, 90, 92, 628, 220, 269, 5324, 62, 2302, 796, 27071, 66, 5324, 1, 198, 220, 269, 5324, 62, 2302, 62, 11925, 796, 18896, 7, 66, 5324, 62, 2302, 8, 628, 220, 351, 1280, 7, 11085, 8, 355, 277, 25, 198, 220, 220, 220, 3951, 796, 277, 13, 961, 6615, 3419, 198, 220, 220, 220, 329, 1627, 287, 3951, 25, 198, 220, 220, 220, 220, 220, 611, 1627, 13, 9688, 2032, 342, 7, 40290, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1312, 796, 1627, 13, 19796, 7, 325, 79, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1312, 6624, 532, 16, 25, 5298, 43160, 12331, 7203, 7416, 390, 862, 1627, 407, 39559, 9380, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 390, 862, 796, 1627, 58, 25, 72, 60, 198, 220, 220, 220, 220, 220, 220, 220, 4237, 796, 1627, 685, 72, 10, 325, 79, 62, 11925, 47715, 198, 220, 220, 220, 220, 220, 220, 220, 474, 796, 4237, 13, 19796, 7, 66, 5324, 62, 2302, 47762, 66, 5324, 62, 2302, 62, 11925, 198, 220, 220, 220, 220, 220, 220, 220, 611, 474, 6624, 532, 16, 25, 5298, 43160, 12331, 7203, 7416, 390, 862, 1627, 407, 39559, 9380, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 269, 5324, 7753, 796, 4237, 58, 15763, 62, 40290, 62, 11925, 25, 73, 60, 198, 220, 220, 220, 220, 220, 220, 220, 269, 5324, 7753, 62, 72, 796, 366, 31227, 284, 670, 319, 269, 83, 5036, 29908, 9313, 198, 220, 220, 220, 220, 220, 220, 220, 390, 862, 16, 796, 390, 862, 13, 33491, 7, 37333, 844, 553, 13, 78, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 390, 862, 16, 796, 390, 862, 16, 13, 33491, 7203, 66, 5324, 10677, 2430, 13702, 7, 26801, 8, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 390, 862, 16, 796, 390, 862, 16, 13, 33491, 7203, 62, 2430, 14, 1600, 17, 8, 198, 220, 220, 220, 220, 220, 220, 220, 26181, 796, 390, 862, 16, 198, 220, 220, 220, 220, 220, 220, 220, 611, 390, 862, 13, 9688, 2032, 342, 7, 12417, 62, 40290, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9195, 62, 26801, 796, 26181, 13, 33491, 7203, 13702, 7, 26801, 20679, 12417, 2430, 13702, 7, 26801, 20679, 8019, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1332, 62, 26801, 796, 26181, 13, 33491, 7203, 13702, 7, 26801, 20679, 12417, 14, 2430, 13702, 7, 26801, 20679, 9288, 14, 12417, 834, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1388, 62, 672, 8457, 58, 26801, 60, 796, 357, 66, 5324, 7753, 11, 10378, 82, 11, 66, 5324, 7753, 62, 72, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9195, 62, 672, 8457, 58, 8019, 62, 26801, 60, 796, 357, 66, 5324, 7753, 11, 10378, 82, 11, 66, 5324, 7753, 62, 72, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1332, 62, 672, 8457, 58, 9288, 62, 26801, 60, 796, 357, 66, 5324, 7753, 11, 10378, 82, 11, 66, 5324, 7753, 62, 72, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1388, 62, 26801, 15, 13, 33295, 7, 26801, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9195, 62, 26801, 15, 13, 33295, 7, 8019, 62, 26801, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1332, 62, 26801, 15, 13, 33295, 7, 9288, 62, 26801, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 198, 220, 220, 220, 220, 220, 220, 220, 611, 390, 862, 13, 9688, 2032, 342, 7, 9288, 62, 40290, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1332, 62, 672, 8457, 58, 26801, 60, 796, 357, 66, 5324, 7753, 11, 10378, 82, 11, 66, 5324, 7753, 62, 72, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1332, 62, 26801, 15, 13, 33295, 7, 26801, 8, 628, 220, 351, 1280, 357, 5661, 11, 366, 86, 4943, 355, 277, 25, 198, 220, 220, 220, 277, 13, 13564, 7203, 2, 24844, 2980, 515, 416, 4064, 82, 25, 4, 82, 24844, 59, 77, 59, 77, 1, 4064, 357, 24330, 13, 5673, 7336, 25664, 62, 45849, 11, 428, 4008, 198, 220, 220, 220, 277, 13, 13564, 7203, 59, 77, 12417, 62, 13499, 62, 48205, 19039, 4064, 82, 59, 77, 1, 4064, 5855, 27071, 22179, 7, 12417, 62, 26801, 15, 22305, 198, 220, 220, 220, 277, 13, 13564, 7203, 59, 77, 8019, 62, 568, 62, 48205, 19039, 4064, 82, 59, 77, 1, 4064, 5855, 27071, 22179, 7, 8019, 62, 26801, 15, 22305, 198, 220, 220, 220, 277, 13, 13564, 7203, 59, 429, 395, 62, 13499, 62, 48205, 19039, 4064, 82, 59, 77, 1, 4064, 5855, 27071, 22179, 7, 9288, 62, 26801, 15, 22305, 198, 220, 220, 220, 277, 13, 13564, 7203, 59, 77, 834, 12417, 62, 13499, 62, 48205, 834, 19039, 4064, 82, 59, 77, 1, 4064, 357, 15883, 62, 421, 5191, 62, 4868, 7, 12417, 62, 26801, 15, 22305, 198, 220, 220, 220, 277, 13, 13564, 7203, 59, 77, 834, 8019, 62, 568, 62, 48205, 834, 19039, 4064, 82, 59, 77, 1, 4064, 357, 15883, 62, 421, 5191, 62, 4868, 7, 8019, 62, 26801, 15, 22305, 198, 220, 220, 220, 277, 13, 13564, 7203, 59, 77, 834, 9288, 62, 13499, 62, 48205, 834, 19039, 4064, 82, 59, 77, 1, 4064, 357, 15883, 62, 421, 5191, 62, 4868, 7, 9288, 62, 26801, 15, 22305, 628, 220, 220, 220, 20966, 354, 796, 24018, 12, 17256, 12, 79, 354, 40264, 198, 220, 220, 220, 3896, 796, 366, 13702, 7, 834, 34, 8051, 62, 38948, 50, 828, 705, 12, 66, 3256, 705, 13702, 27, 3256, 705, 12, 78, 13702, 31, 29653, 198, 220, 220, 220, 1388, 796, 20966, 354, 1343, 24018, 13702, 7, 12417, 62, 17597, 50145, 62, 79, 354, 33047, 553, 1343, 3896, 1343, 33172, 32382, 7, 5673, 1268, 62, 13918, 3861, 16725, 198, 220, 220, 220, 1332, 796, 20966, 354, 1343, 24018, 13702, 7, 9288, 62, 17597, 50145, 62, 79, 354, 33047, 553, 1343, 3896, 1343, 33172, 32382, 7, 51, 6465, 62, 13918, 3861, 16725, 198, 220, 220, 220, 9195, 796, 20966, 354, 1343, 24018, 13702, 7, 8019, 62, 17597, 50145, 62, 79, 354, 33047, 553, 1343, 3896, 1343, 33172, 32382, 7, 40347, 62, 13918, 3861, 16725, 198, 220, 220, 220, 269, 5324, 796, 366, 13702, 7, 34, 8051, 16725, 628, 220, 220, 220, 1388, 62, 67, 796, 366, 13702, 7, 26801, 62, 12417, 62, 15003, 8, 32382, 7, 12417, 62, 17597, 50145, 62, 79, 354, 16725, 198, 220, 220, 220, 9195, 62, 67, 796, 366, 13702, 7, 26801, 62, 8019, 62, 15003, 8, 32382, 7, 8019, 62, 17597, 50145, 62, 79, 354, 16725, 198, 220, 220, 220, 1332, 62, 67, 796, 366, 13702, 7, 26801, 62, 9288, 62, 15003, 8, 32382, 7, 9288, 62, 17597, 50145, 62, 79, 354, 16725, 628, 220, 220, 220, 2496, 7203, 12417, 1600, 1388, 62, 672, 8457, 11, 1388, 11, 269, 5324, 11, 1388, 62, 67, 11, 277, 8, 198, 220, 220, 220, 2496, 7203, 8019, 1600, 9195, 62, 672, 8457, 11, 9195, 11, 269, 5324, 11, 9195, 62, 67, 11, 277, 8, 198, 220, 220, 220, 2496, 7203, 9288, 1600, 1332, 62, 672, 8457, 11, 1332, 11, 269, 5324, 11, 1332, 62, 67, 11, 277, 8, 198 ]
2.09716
2,676
from binance.lib.utils import ( check_required_parameter, ) from binance.lib.utils import check_required_parameters def ping(self): """ | | **Test Connectivity** | *Test connectivity to the Rest API.* :API endpoint: ``GET /dapi/v1/ping`` :API doc: https://binance-docs.github.io/apidocs/delivery/en/#test-connectivity | """ url_path = "/dapi/v1/ping" return self.query(url_path) def time(self): """ | | **Check Server Time** | *Test connectivity to the Rest API and get the current server time.* :API endpoint: ``GET /dapi/v1/time`` :API doc: https://binance-docs.github.io/apidocs/delivery/en/#check-server-time | """ url_path = "/dapi/v1/time" return self.query(url_path) def exchange_info(self): """ | | **Exchange Information** | *Current exchange trading rules and symbol information* :API endpoint: ``GET /dapi/v1/exchangeInfo`` :API doc: https://binance-docs.github.io/apidocs/delivery/en/#exchange-information | """ url_path = "/dapi/v1/exchangeInfo" return self.query(url_path) def depth(self, symbol: str, **kwargs): """ | | **Get Orderbook** :API endpoint: ``GET /dapi/v1/depth`` :API doc: https://binance-docs.github.io/apidocs/delivery/en/#order-book :parameter symbol: string; the trading pair :parameter limit: optional int; limit the results. Default 500, valid limits: [5, 10, 20, 50, 100, 500, 1000]. | """ check_required_parameter(symbol, "symbol") params = {"symbol": symbol, **kwargs} return self.query("/dapi/v1/depth", params) def trades(self, symbol: str, **kwargs): """ | | **Get Recent Market Trades** :API endpoint: ``GET /dapi/v1/trades`` :API doc: https://binance-docs.github.io/apidocs/delivery/en/#recent-trades-list :parameter symbol: string; the trading pair :parameter limit: optional int; limit the results. Default 500, max 1000. | """ check_required_parameter(symbol, "symbol") params = {"symbol": symbol, **kwargs} return self.query("/dapi/v1/trades", params) def historical_trades(self, symbol: str, **kwargs): """ | | **Old Trade Lookup** | *Get older market historical trades.* :API endpoint: ``GET /dapi/v1/historicalTrades`` :API doc: https://binance-docs.github.io/apidocs/delivery/en/#old-trades-lookup-market_data :parameter symbol: string; the trading pair :parameter limit: optional int; limit the results. Default 500, max 1000. :parameter formId: optional int; trade ID to fetch from. Default gets most recent trades. | """ check_required_parameter(symbol, "symbol") params = {"symbol": symbol, **kwargs} return self.limit_request("GET", "/dapi/v1/historicalTrades", params) def agg_trades(self, symbol: str, **kwargs): """ | | **Compressed/Aggregate Trades List** | *Get compressed, aggregate market trades. Market trades that fill at the time, from the same order, with the same price will have the quantity aggregated.* :API endpoint: ``GET /dapi/v1/aggTrades`` :API doc: https://binance-docs.github.io/apidocs/delivery/en/#compressed-aggregate-trades-list :parameter symbol: string; the trading pair :parameter limit: optional int; limit the results. Default 500, max 1000. :parameter formId: optional int; trade ID to fetch from. Default gets most recent trades. :parameter startTime: optional int; Timestamp in ms to get aggregate trades from INCLUSIVE. :parameter endTime: optional int; Timestamp in ms to get aggregate trades until INCLUSIVE. | """ check_required_parameter(symbol, "symbol") params = {"symbol": symbol, **kwargs} return self.query("/dapi/v1/aggTrades", params) def klines(self, symbol: str, interval: str, **kwargs): """ | | **Kline/Candlestick Data** | *Kline/candlestick bars for a symbol. Klines are uniquely identified by their open time.* :API endpoint: ``GET /dapi/v1/klines`` :API doc: https://binance-docs.github.io/apidocs/delivery/en/#kline-candlestick-data :parameter symbol: string; the trading pair :parameter interval: string; the interval of kline, e.g 1m, 5m, 1h, 1d, etc. (see more in https://binance-docs.github.io/apidocs/delivery/en/#public-endpoints-info) :parameter limit: optional int; limit the results. Default 500, max 1000. :parameter startTime: optional int; Timestamp in ms to get aggregate trades from INCLUSIVE. :parameter endTime: optional int; Timestamp in ms to get aggregate trades until INCLUSIVE. | """ check_required_parameters([[symbol, "symbol"], [interval, "interval"]]) params = {"symbol": symbol, "interval": interval, **kwargs} return self.query("/dapi/v1/klines", params) def continuous_klines(self, pair: str, contractType: str, interval: str, **kwargs): """ | | **Continuous Kline/Candlestick Data** | *Kline/candlestick bars for a specific contract type. Klines are uniquely identified by their open time.* :API endpoint: ``GET /dapi/v1/continuousKlines`` :API doc: https://binance-docs.github.io/apidocs/delivery/en/#continuous-contract-kline-candlestick-data :parameter pair: string; the trading pair :parameter contractType: string; PERPETUAL, CURRENT_MONTH, NEXT_MONTH, CURRENT_QUARTER, NEXT_QUARTER. :parameter interval: string; the interval of kline, e.g 1m, 5m, 1h, 1d, etc. (see more in https://binance-docs.github.io/apidocs/delivery/en/#public-endpoints-info) :parameter limit: optional int; limit the results. Default 500, max 1000. :parameter startTime: optional int; Timestamp in ms to get aggregate trades from INCLUSIVE. :parameter endTime: optional int; Timestamp in ms to get aggregate trades until INCLUSIVE. | """ check_required_parameters([[pair, "pair"], [contractType,"contractType"], [interval, "interval"]]) params = {"pair": pair, "contractType":contractType, "interval": interval, **kwargs} return self.query("/dapi/v1/continuousKlines", params) def index_price_klines(self, pair: str, interval: str, **kwargs): """ | | **Kline/Candlestick Data for the index price of a pair.** | *Klines are uniquely identified by their open time.* :API endpoint: ``GET /dapi/v1/indexPriceKlines`` :API doc: https://binance-docs.github.io/apidocs/delivery/en/#index-price-kline-candlestick-data :parameter pair: string; the trading pair :parameter interval: string; the interval of kline, e.g 1m, 5m, 1h, 1d, etc. (see more in https://binance-docs.github.io/apidocs/delivery/en/#public-endpoints-info) :parameter limit: optional int; limit the results. Default 500, max 1000. :parameter startTime: optional int; Timestamp in ms to get aggregate trades from INCLUSIVE. :parameter endTime: optional int; Timestamp in ms to get aggregate trades until INCLUSIVE. | """ check_required_parameters([[pair, "pair"], [interval, "interval"]]) params = {"pair": pair, "interval": interval, **kwargs} return self.query("/dapi/v1/indexPriceKlines", params) def mark_price_klines(self, symbol: str, interval: str, **kwargs): """ | | **Kline/candlestick bars for the mark price of a symbol.** | *Klines are uniquely identified by their open time.* :API endpoint: ``GET /dapi/v1/markPriceKlines`` :API doc: https://binance-docs.github.io/apidocs/delivery/en/#mark-price-kline-candlestick-data :parameter pair: string; the trading pair :parameter interval: string; the interval of kline, e.g 1m, 5m, 1h, 1d, etc. (see more in https://binance-docs.github.io/apidocs/delivery/en/#public-endpoints-info) :parameter limit: optional int; limit the results. Default 500, max 1000. :parameter startTime: optional int; Timestamp in ms to get aggregate trades from INCLUSIVE. :parameter endTime: optional int; Timestamp in ms to get aggregate trades until INCLUSIVE. **Notes** - The difference between startTime and endTime can only be up to 200 days - Between startTime and endTime, the most recent limit data from endTime will be returned: - If startTime and endTime are not sent, current timestamp will be set as endTime, and the most recent data will be returned. - If startTime is sent only, the timestamp of 200 days after startTime will be set as endTime(up to the current time) - If endTime is sent only, the timestamp of 200 days before endTime will be set as startTime | """ check_required_parameters([[symbol, "symbol"], [interval, "interval"]]) params = {"symbol": symbol, "interval": interval, **kwargs} return self.query("/dapi/v1/markPriceKlines", params) def mark_price(self, symbol: str): """ | | **Mark Price and Funding Rate** :API endpoint: ``GET /dapi/v1/premiumIndex`` :API doc: https://binance-docs.github.io/apidocs/delivery/en/#index-price-and-mark-price :parameter symbol: string; the trading pair | """ check_required_parameter(symbol, "symbol") params = { "symbol": symbol, } return self.query("/dapi/v1/premiumIndex", params) def funding_rate(self, symbol: str, **kwargs): """ | | **Funding Rate History** :API endpoint: ``GET /dapi/v1/fundingRate`` :API doc: https://binance-docs.github.io/apidocs/delivery/en/#get-funding-rate-history-of-perpetual-futures :parameter symbol: string; the trading pair :parameter limit: optional int; limit the results. Default 500, max 1000. :parameter startTime: optional int; Timestamp in ms to get aggregate trades from INCLUSIVE. :parameter endTime: optional int; Timestamp in ms to get aggregate trades until INCLUSIVE. **Notes** - Empty array will be returned for delivery symbols. | """ params = {"symbol": symbol, **kwargs} return self.query("/dapi/v1/fundingRate", params) def ticker_24hr_price_change(self, symbol: str = None, pair: str = None): """ | | **24 hour rolling window price change statistics.** | *Careful when accessing this with no symbol.* | *If the symbol is not sent, tickers for all symbols will be returned in an array.* :API endpoint: ``GET /dapi/v1/ticker/24hr`` :API doc: https://binance-docs.github.io/apidocs/delivery/en/#24hr-ticker-price-change-statistics :parameter symbol: optional string; the trading symbol :parameter pair: optional string; the trading pair **Notes** - Symbol and pair cannot be sent together - If a pair is sent, tickers for all symbols of the pair will be returned - If either a pair or symbol is sent, tickers for all symbols of all pairs will be returned | """ if (symbol is None) and (pair is None): return self.query("/dapi/v1/ticker/24hr") elif (symbol is None): params = {"pair": pair} else: params = {"symbol": symbol} return self.query("/dapi/v1/ticker/24hr", params) def ticker_price(self, symbol: str = None, pair: str = None): """ | | **Latest price for a symbol or symbols** :API endpoint: ``GET /dapi/v1/ticker/price`` :API doc: https://binance-docs.github.io/apidocs/delivery/en/#symbol-price-ticker :parameter symbol: optional string; the trading symbol :parameter pair: optional string; the trading pair **Notes** - Symbol and pair cannot be sent together - If a pair is sent,tickers for all symbols of the pair will be returned - If either a pair or symbol is sent, tickers for all symbols of all pairs will be returned | """ if (symbol is None) and (pair is None): return self.query("/dapi/v1/ticker/price") elif (symbol is None): params = {"pair": pair} else: params = {"symbol": symbol} return self.query("/dapi/v1/ticker/price", params) def book_ticker(self, symbol: str = None, pair: str = None): """ | | **Best price/qty on the order book for a symbol or symbols** :API endpoint: ``GET /dapi/v1/ticker/bookTicker`` :API doc: https://binance-docs.github.io/apidocs/delivery/en/#symbol-order-book-ticker :parameter symbol: optional string; the trading symbol **Notes** - If the symbol is not sent, bookTickers for all symbols will be returned in an array. | """ if (symbol is None) and (pair is None): return self.query("/dapi/v1/ticker/bookTicker") elif (symbol is None): params = {"pair": pair} else: params = {"symbol": symbol} return self.query("/dapi/v1/ticker/bookTicker", params) def open_interest(self, symbol: str): """ | | **Get present open interest of a specific symbol** :API endpoint: ``GET /dapi/v1/openInterest`` :API doc: https://binance-docs.github.io/apidocs/delivery/en/#open-interest :parameter symbol: string; the trading symbol | """ check_required_parameter(symbol, "symbol") params = {"symbol": symbol} return self.query("/dapi/v1/ticker/bookTicker", params) def open_interest_hist(self, pair: str, contractType: str, period: str, **kwargs): """ | | **Get historical open interest of a specific symbol** :API endpoint: ``GET /futures/data/openInterestHist`` :API doc: https://binance-docs.github.io/apidocs/delivery/en/#open-interest-statistics-market-data :parameter pair: string; the trading pair :parameter contractType: string; ALL, CURRENT_QUARTER, NEXT_QUARTER, PERPETUAL. :parameter period: string; the period of open interest, "5m", "15m", "30m", "1h", "2h", "4h", "6h", "12h", "1d". (see more in https://binance-docs.github.io/apidocs/delivery/en/#public-endpoints-info) :parameter limit: optional int; limit the results. Default 30, max 500. :parameter startTime: optional int :parameter endTime: optional int **Notes** - If startTime and endTime are not sent, the most recent data is returned. - Only the data of the latest 30 days is available. | """ check_required_parameters([[pair, "pair"], [contractType, "contractType"], [period, "period"]]) params = {"pair": pair, "contractType": contractType, "period": period, **kwargs} return self.query("/futures/data/openInterestHist", params) def top_long_short_account_ratio(self, pair: str, period: str, **kwargs): """ | | **Get top long short account ratio** :API endpoint: `GET /futures/data/topLongShortAccountRatio` :API doc: https://binance-docs.github.io/apidocs/delivery/en/#top-trader-long-short-ratio-accounts-market-data :parameter pair: string; the trading pair :parameter period: string; the period of open interest, "5m", "15m", "30m", "1h", "2h", "4h", "6h", "12h", "1d". (see more in https://binance-docs.github.io/apidocs/delivery/en/#public-endpoints-info) :parameter limit: optional int; limit the results. Default 30, max 500. :parameter startTime: optional int :parameter endTime: optional int **Notes** - If startTime and endTime are not sent, the most recent data is returned. - Only the data of the latest 30 days is available. | """ check_required_parameters([[pair, "pair"], [period, "period"]]) params = {"pair": pair, "period": period, **kwargs} return self.query("/futures/data/topLongShortAccountRatio", params) def top_long_short_position_ratio(self, pair: str, period: str, **kwargs): """ | | **Get top long short position ratio** :API endpoint: ``GET /futures/data/topLongShortPositionRatio`` :API doc: https://binance-docs.github.io/apidocs/delivery/en/#top-trader-long-short-ratio-positions-market-data :parameter pair: string; the trading pair :parameter period: string; the period of open interest, "5m", "15m", "30m", "1h", "2h", "4h", "6h", "12h", "1d". (see more in https://binance-docs.github.io/apidocs/delivery/en/#public-endpoints-info) :parameter limit: optional int; limit the results. Default 30, max 500. :parameter startTime: optional int :parameter endTime: optional int **Notes** - If startTime and endTime are not sent, the most recent data is returned. - Only the data of the latest 30 days is available. | """ check_required_parameters([[pair, "pair"], [period, "period"]]) params = {"pair": pair, "period": period, **kwargs} return self.query("/futures/data/topLongShortPositionRatio", params) def long_short_account_ratio(self, pair: str, period: str, **kwargs): """ | | **Get top long short account ratio** :API endpoint: ``GET /futures/data/globalLongShortAccountRatio`` :API doc: https://binance-docs.github.io/apidocs/delivery/en/#top-trader-long-short-ratio-accounts-market-data :parameter pair: string; the trading pair :parameter period: string; the period of open interest, "5m", "15m", "30m", "1h", "2h", "4h", "6h", "12h", "1d". (see more in https://binance-docs.github.io/apidocs/delivery/en/#public-endpoints-info) :parameter limit: optional int; limit the results. Default 30, max 500. :parameter startTime: optional int :parameter endTime: optional int **Notes** - If startTime and endTime are not sent, the most recent data is returned. - Only the data of the latest 30 days is available. | """ check_required_parameters([[pair, "pair"], [period, "period"]]) params = {"pair": pair, "period": period, **kwargs} return self.query("/futures/data/globalLongShortAccountRatio", params) def taker_long_short_ratio(self, pair: str, contractType: str, period: str, **kwargs): """ | | **Get taker long short ratio** :API endpoint: ``GET /futures/data/takerBuySellVol`` :API doc: https://binance-docs.github.io/apidocs/delivery/en/#taker-buy-sell-volume-market-data :parameter pair: string; the trading pair :parameter contractType: string; CURRENT_QUARTER, NEXT_QUARTER, PERPETUAL. :parameter period: string; the period of open interest, "5m", "15m", "30m", "1h", "2h", "4h", "6h", "12h", "1d". (see more in https://binance-docs.github.io/apidocs/delivery/en/#public-endpoints-info) :parameter limit: optional int; limit the results. Default 30, max 500. :parameter startTime: optional int :parameter endTime: optional int **Notes** - If startTime and endTime are not sent, the most recent data is returned. - Only the data of the latest 30 days is available. | """ check_required_parameters([[pair, "pair"], [contractType, "contractType"], [period, "period"]]) params = {"pair": pair, "contractType": contractType, "period": period, **kwargs} return self.query("/futures/data/takerBuySellVol", params) def basis(self, pair: str, contractType: str, period: str, **kwargs): """ | | **Get Index Composite** :API endpoint: ``GET /futures/data/basis`` :API doc: xshttps://binance-docs.github.io/apidocs/delivery/en/#basis-market-data :parameter pair: string; the trading pair :parameter contractType: string; CURRENT_QUARTER, NEXT_QUARTER, PERPETUAL. :parameter period: string; the period of open interest, "5m", "15m", "30m", "1h", "2h", "4h", "6h", "12h", "1d". (see more in https://binance-docs.github.io/apidocs/delivery/en/#public-endpoints-info) :parameter limit: optional int; limit the results. Default 30, max 500. :parameter startTime: optional int :parameter endTime: optional int **Notes** - If startTime and endTime are not sent, the most recent data is returned. - Only the data of the latest 30 days is available. | """ check_required_parameters([[pair, "pair"], [contractType, "contractType"], [period, "period"]]) params = {"pair": pair, "contractType": contractType, "period": period, **kwargs} return self.query("/futures/data/basis", params)
[ 6738, 9874, 590, 13, 8019, 13, 26791, 1330, 357, 198, 220, 220, 220, 2198, 62, 35827, 62, 17143, 2357, 11, 198, 8, 198, 6738, 9874, 590, 13, 8019, 13, 26791, 1330, 2198, 62, 35827, 62, 17143, 7307, 628, 198, 4299, 29400, 7, 944, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 930, 198, 220, 220, 220, 930, 12429, 14402, 8113, 3458, 1174, 198, 220, 220, 220, 930, 1635, 14402, 19843, 284, 262, 8324, 7824, 15885, 628, 220, 220, 220, 1058, 17614, 36123, 25, 7559, 18851, 1220, 67, 15042, 14, 85, 16, 14, 13886, 15506, 198, 220, 220, 220, 1058, 17614, 2205, 25, 3740, 1378, 8800, 590, 12, 31628, 13, 12567, 13, 952, 14, 499, 312, 420, 82, 14, 12381, 6315, 14, 268, 31113, 9288, 12, 8443, 3458, 198, 220, 220, 220, 930, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 19016, 62, 6978, 796, 12813, 67, 15042, 14, 85, 16, 14, 13886, 1, 198, 220, 220, 220, 1441, 2116, 13, 22766, 7, 6371, 62, 6978, 8, 628, 198, 4299, 640, 7, 944, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 930, 198, 220, 220, 220, 930, 12429, 9787, 9652, 3862, 1174, 198, 220, 220, 220, 930, 1635, 14402, 19843, 284, 262, 8324, 7824, 290, 651, 262, 1459, 4382, 640, 15885, 628, 220, 220, 220, 1058, 17614, 36123, 25, 7559, 18851, 1220, 67, 15042, 14, 85, 16, 14, 2435, 15506, 198, 220, 220, 220, 1058, 17614, 2205, 25, 3740, 1378, 8800, 590, 12, 31628, 13, 12567, 13, 952, 14, 499, 312, 420, 82, 14, 12381, 6315, 14, 268, 31113, 9122, 12, 15388, 12, 2435, 198, 220, 220, 220, 930, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 19016, 62, 6978, 796, 12813, 67, 15042, 14, 85, 16, 14, 2435, 1, 198, 220, 220, 220, 1441, 2116, 13, 22766, 7, 6371, 62, 6978, 8, 628, 198, 4299, 5163, 62, 10951, 7, 944, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 930, 198, 220, 220, 220, 930, 12429, 3109, 3803, 6188, 1174, 198, 220, 220, 220, 930, 1635, 11297, 5163, 7313, 3173, 290, 6194, 1321, 9, 628, 220, 220, 220, 1058, 17614, 36123, 25, 7559, 18851, 1220, 67, 15042, 14, 85, 16, 14, 1069, 3803, 12360, 15506, 198, 220, 220, 220, 1058, 17614, 2205, 25, 3740, 1378, 8800, 590, 12, 31628, 13, 12567, 13, 952, 14, 499, 312, 420, 82, 14, 12381, 6315, 14, 268, 31113, 1069, 3803, 12, 17018, 198, 220, 220, 220, 930, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 19016, 62, 6978, 796, 12813, 67, 15042, 14, 85, 16, 14, 1069, 3803, 12360, 1, 198, 220, 220, 220, 1441, 2116, 13, 22766, 7, 6371, 62, 6978, 8, 628, 198, 4299, 6795, 7, 944, 11, 6194, 25, 965, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 930, 198, 220, 220, 220, 930, 12429, 3855, 8284, 2070, 1174, 628, 220, 220, 220, 1058, 17614, 36123, 25, 7559, 18851, 1220, 67, 15042, 14, 85, 16, 14, 18053, 15506, 198, 220, 220, 220, 1058, 17614, 2205, 25, 3740, 1378, 8800, 590, 12, 31628, 13, 12567, 13, 952, 14, 499, 312, 420, 82, 14, 12381, 6315, 14, 268, 31113, 2875, 12, 2070, 628, 220, 220, 220, 1058, 17143, 2357, 6194, 25, 4731, 26, 262, 7313, 5166, 198, 220, 220, 220, 1058, 17143, 2357, 4179, 25, 11902, 493, 26, 4179, 262, 2482, 13, 15161, 5323, 11, 4938, 7095, 25, 685, 20, 11, 838, 11, 1160, 11, 2026, 11, 1802, 11, 5323, 11, 8576, 4083, 198, 220, 220, 220, 930, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 2198, 62, 35827, 62, 17143, 2357, 7, 1837, 23650, 11, 366, 1837, 23650, 4943, 198, 220, 220, 220, 42287, 796, 19779, 1837, 23650, 1298, 6194, 11, 12429, 46265, 22046, 92, 198, 220, 220, 220, 1441, 2116, 13, 22766, 7203, 14, 67, 15042, 14, 85, 16, 14, 18053, 1600, 42287, 8, 628, 198, 4299, 17674, 7, 944, 11, 6194, 25, 965, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 930, 198, 220, 220, 220, 930, 12429, 3855, 22926, 5991, 833, 2367, 1174, 628, 220, 220, 220, 1058, 17614, 36123, 25, 7559, 18851, 1220, 67, 15042, 14, 85, 16, 14, 2213, 2367, 15506, 198, 220, 220, 220, 1058, 17614, 2205, 25, 3740, 1378, 8800, 590, 12, 31628, 13, 12567, 13, 952, 14, 499, 312, 420, 82, 14, 12381, 6315, 14, 268, 31113, 49921, 12, 2213, 2367, 12, 4868, 628, 220, 220, 220, 1058, 17143, 2357, 6194, 25, 4731, 26, 262, 7313, 5166, 198, 220, 220, 220, 1058, 17143, 2357, 4179, 25, 11902, 493, 26, 4179, 262, 2482, 13, 15161, 5323, 11, 3509, 8576, 13, 198, 220, 220, 220, 930, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 198, 220, 220, 220, 2198, 62, 35827, 62, 17143, 2357, 7, 1837, 23650, 11, 366, 1837, 23650, 4943, 198, 220, 220, 220, 42287, 796, 19779, 1837, 23650, 1298, 6194, 11, 12429, 46265, 22046, 92, 198, 220, 220, 220, 1441, 2116, 13, 22766, 7203, 14, 67, 15042, 14, 85, 16, 14, 2213, 2367, 1600, 42287, 8, 628, 198, 4299, 6754, 62, 2213, 2367, 7, 944, 11, 6194, 25, 965, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 930, 198, 220, 220, 220, 930, 12429, 19620, 9601, 6803, 929, 1174, 198, 220, 220, 220, 930, 1635, 3855, 4697, 1910, 6754, 17674, 15885, 628, 220, 220, 220, 1058, 17614, 36123, 25, 7559, 18851, 1220, 67, 15042, 14, 85, 16, 14, 10034, 12409, 2898, 2367, 15506, 198, 220, 220, 220, 1058, 17614, 2205, 25, 3740, 1378, 8800, 590, 12, 31628, 13, 12567, 13, 952, 14, 499, 312, 420, 82, 14, 12381, 6315, 14, 268, 31113, 727, 12, 2213, 2367, 12, 5460, 929, 12, 10728, 62, 7890, 628, 220, 220, 220, 1058, 17143, 2357, 6194, 25, 4731, 26, 262, 7313, 5166, 198, 220, 220, 220, 1058, 17143, 2357, 4179, 25, 11902, 493, 26, 4179, 262, 2482, 13, 15161, 5323, 11, 3509, 8576, 13, 198, 220, 220, 220, 1058, 17143, 2357, 1296, 7390, 25, 11902, 493, 26, 3292, 4522, 284, 21207, 422, 13, 15161, 3011, 749, 2274, 17674, 13, 198, 220, 220, 220, 930, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 2198, 62, 35827, 62, 17143, 2357, 7, 1837, 23650, 11, 366, 1837, 23650, 4943, 198, 220, 220, 220, 42287, 796, 19779, 1837, 23650, 1298, 6194, 11, 12429, 46265, 22046, 92, 198, 220, 220, 220, 1441, 2116, 13, 32374, 62, 25927, 7203, 18851, 1600, 12813, 67, 15042, 14, 85, 16, 14, 10034, 12409, 2898, 2367, 1600, 42287, 8, 628, 198, 4299, 4194, 62, 2213, 2367, 7, 944, 11, 6194, 25, 965, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 930, 198, 220, 220, 220, 930, 12429, 7293, 2790, 14, 46384, 49373, 833, 2367, 7343, 1174, 198, 220, 220, 220, 930, 1635, 3855, 25388, 11, 19406, 1910, 17674, 13, 5991, 17674, 326, 6070, 379, 262, 640, 11, 422, 262, 976, 1502, 11, 351, 262, 976, 2756, 481, 423, 262, 12040, 13262, 515, 15885, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1058, 17614, 36123, 25, 7559, 18851, 1220, 67, 15042, 14, 85, 16, 14, 9460, 2898, 2367, 15506, 198, 220, 220, 220, 1058, 17614, 2205, 25, 3740, 1378, 8800, 590, 12, 31628, 13, 12567, 13, 952, 14, 499, 312, 420, 82, 14, 12381, 6315, 14, 268, 31113, 5589, 2790, 12, 9460, 49373, 12, 2213, 2367, 12, 4868, 628, 220, 220, 220, 1058, 17143, 2357, 6194, 25, 4731, 26, 262, 7313, 5166, 198, 220, 220, 220, 1058, 17143, 2357, 4179, 25, 11902, 493, 26, 4179, 262, 2482, 13, 15161, 5323, 11, 3509, 8576, 13, 198, 220, 220, 220, 1058, 17143, 2357, 1296, 7390, 25, 11902, 493, 26, 3292, 4522, 284, 21207, 422, 13, 15161, 3011, 749, 2274, 17674, 13, 198, 220, 220, 220, 1058, 17143, 2357, 923, 7575, 25, 11902, 493, 26, 5045, 27823, 287, 13845, 284, 651, 19406, 17674, 422, 3268, 28332, 9306, 13, 198, 220, 220, 220, 1058, 17143, 2357, 886, 7575, 25, 11902, 493, 26, 5045, 27823, 287, 13845, 284, 651, 19406, 17674, 1566, 3268, 28332, 9306, 13, 198, 220, 220, 220, 930, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 2198, 62, 35827, 62, 17143, 2357, 7, 1837, 23650, 11, 366, 1837, 23650, 4943, 198, 220, 220, 220, 42287, 796, 19779, 1837, 23650, 1298, 6194, 11, 12429, 46265, 22046, 92, 198, 220, 220, 220, 1441, 2116, 13, 22766, 7203, 14, 67, 15042, 14, 85, 16, 14, 9460, 2898, 2367, 1600, 42287, 8, 628, 198, 4299, 479, 6615, 7, 944, 11, 6194, 25, 965, 11, 16654, 25, 965, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 930, 198, 220, 220, 220, 930, 12429, 42, 1370, 14, 41572, 32712, 624, 6060, 1174, 198, 220, 220, 220, 930, 1635, 42, 1370, 14, 46188, 32712, 624, 9210, 329, 257, 6194, 13, 509, 6615, 389, 24139, 5174, 416, 511, 1280, 640, 15885, 628, 220, 220, 220, 1058, 17614, 36123, 25, 7559, 18851, 1220, 67, 15042, 14, 85, 16, 14, 74, 6615, 15506, 198, 220, 220, 220, 1058, 17614, 2205, 25, 3740, 1378, 8800, 590, 12, 31628, 13, 12567, 13, 952, 14, 499, 312, 420, 82, 14, 12381, 6315, 14, 268, 31113, 74, 1370, 12, 46188, 32712, 624, 12, 7890, 628, 220, 220, 220, 1058, 17143, 2357, 6194, 25, 4731, 26, 262, 7313, 5166, 198, 220, 220, 220, 1058, 17143, 2357, 16654, 25, 4731, 26, 262, 16654, 286, 479, 1370, 11, 304, 13, 70, 352, 76, 11, 642, 76, 11, 352, 71, 11, 352, 67, 11, 3503, 13, 357, 3826, 517, 287, 3740, 1378, 8800, 590, 12, 31628, 13, 12567, 13, 952, 14, 499, 312, 420, 82, 14, 12381, 6315, 14, 268, 31113, 11377, 12, 437, 13033, 12, 10951, 8, 198, 220, 220, 220, 1058, 17143, 2357, 4179, 25, 11902, 493, 26, 4179, 262, 2482, 13, 15161, 5323, 11, 3509, 8576, 13, 198, 220, 220, 220, 1058, 17143, 2357, 923, 7575, 25, 11902, 493, 26, 5045, 27823, 287, 13845, 284, 651, 19406, 17674, 422, 3268, 28332, 9306, 13, 198, 220, 220, 220, 1058, 17143, 2357, 886, 7575, 25, 11902, 493, 26, 5045, 27823, 287, 13845, 284, 651, 19406, 17674, 1566, 3268, 28332, 9306, 13, 198, 220, 220, 220, 930, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 2198, 62, 35827, 62, 17143, 7307, 26933, 58, 1837, 23650, 11, 366, 1837, 23650, 33116, 685, 3849, 2100, 11, 366, 3849, 2100, 8973, 12962, 198, 220, 220, 220, 42287, 796, 19779, 1837, 23650, 1298, 6194, 11, 366, 3849, 2100, 1298, 16654, 11, 12429, 46265, 22046, 92, 198, 220, 220, 220, 1441, 2116, 13, 22766, 7203, 14, 67, 15042, 14, 85, 16, 14, 74, 6615, 1600, 42287, 8, 628, 198, 4299, 12948, 62, 74, 6615, 7, 944, 11, 5166, 25, 965, 11, 2775, 6030, 25, 965, 11, 16654, 25, 965, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 930, 198, 220, 220, 220, 930, 12429, 17875, 5623, 509, 1370, 14, 41572, 32712, 624, 6060, 1174, 198, 220, 220, 220, 930, 1635, 42, 1370, 14, 46188, 32712, 624, 9210, 329, 257, 2176, 2775, 2099, 13, 509, 6615, 389, 24139, 5174, 416, 511, 1280, 640, 15885, 220, 220, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1058, 17614, 36123, 25, 7559, 18851, 1220, 67, 15042, 14, 85, 16, 14, 18487, 5623, 42, 6615, 15506, 198, 220, 220, 220, 1058, 17614, 2205, 25, 3740, 1378, 8800, 590, 12, 31628, 13, 12567, 13, 952, 14, 499, 312, 420, 82, 14, 12381, 6315, 14, 268, 31113, 18487, 5623, 12, 28484, 12, 74, 1370, 12, 46188, 32712, 624, 12, 7890, 628, 220, 220, 220, 1058, 17143, 2357, 5166, 25, 4731, 26, 262, 7313, 5166, 198, 220, 220, 220, 1058, 17143, 2357, 2775, 6030, 25, 4731, 26, 19878, 47731, 25620, 11, 327, 39237, 62, 27857, 4221, 11, 39726, 62, 27857, 4221, 11, 327, 39237, 62, 10917, 1503, 5781, 11, 39726, 62, 10917, 1503, 5781, 13, 198, 220, 220, 220, 1058, 17143, 2357, 16654, 25, 4731, 26, 262, 16654, 286, 479, 1370, 11, 304, 13, 70, 352, 76, 11, 642, 76, 11, 352, 71, 11, 352, 67, 11, 3503, 13, 357, 3826, 517, 287, 3740, 1378, 8800, 590, 12, 31628, 13, 12567, 13, 952, 14, 499, 312, 420, 82, 14, 12381, 6315, 14, 268, 31113, 11377, 12, 437, 13033, 12, 10951, 8, 198, 220, 220, 220, 1058, 17143, 2357, 4179, 25, 11902, 493, 26, 4179, 262, 2482, 13, 15161, 5323, 11, 3509, 8576, 13, 198, 220, 220, 220, 1058, 17143, 2357, 923, 7575, 25, 11902, 493, 26, 5045, 27823, 287, 13845, 284, 651, 19406, 17674, 422, 3268, 28332, 9306, 13, 198, 220, 220, 220, 1058, 17143, 2357, 886, 7575, 25, 11902, 493, 26, 5045, 27823, 287, 13845, 284, 651, 19406, 17674, 1566, 3268, 28332, 9306, 13, 198, 220, 220, 220, 930, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 2198, 62, 35827, 62, 17143, 7307, 26933, 58, 24874, 11, 366, 24874, 33116, 685, 28484, 6030, 553, 28484, 6030, 33116, 685, 3849, 2100, 11, 366, 3849, 2100, 8973, 12962, 198, 220, 220, 220, 42287, 796, 19779, 24874, 1298, 5166, 11, 366, 28484, 6030, 1298, 28484, 6030, 11, 366, 3849, 2100, 1298, 16654, 11, 12429, 46265, 22046, 92, 198, 220, 220, 220, 1441, 2116, 13, 22766, 7203, 14, 67, 15042, 14, 85, 16, 14, 18487, 5623, 42, 6615, 1600, 42287, 8, 628, 198, 4299, 6376, 62, 20888, 62, 74, 6615, 7, 944, 11, 5166, 25, 965, 11, 16654, 25, 965, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 930, 198, 220, 220, 220, 930, 12429, 42, 1370, 14, 41572, 32712, 624, 6060, 329, 262, 6376, 2756, 286, 257, 5166, 13, 1174, 198, 220, 220, 220, 930, 1635, 42, 6615, 389, 24139, 5174, 416, 511, 1280, 640, 15885, 220, 220, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1058, 17614, 36123, 25, 7559, 18851, 1220, 67, 15042, 14, 85, 16, 14, 9630, 18124, 42, 6615, 15506, 198, 220, 220, 220, 1058, 17614, 2205, 25, 3740, 1378, 8800, 590, 12, 31628, 13, 12567, 13, 952, 14, 499, 312, 420, 82, 14, 12381, 6315, 14, 268, 31113, 9630, 12, 20888, 12, 74, 1370, 12, 46188, 32712, 624, 12, 7890, 628, 220, 220, 220, 1058, 17143, 2357, 5166, 25, 4731, 26, 262, 7313, 5166, 198, 220, 220, 220, 1058, 17143, 2357, 16654, 25, 4731, 26, 262, 16654, 286, 479, 1370, 11, 304, 13, 70, 352, 76, 11, 642, 76, 11, 352, 71, 11, 352, 67, 11, 3503, 13, 357, 3826, 517, 287, 3740, 1378, 8800, 590, 12, 31628, 13, 12567, 13, 952, 14, 499, 312, 420, 82, 14, 12381, 6315, 14, 268, 31113, 11377, 12, 437, 13033, 12, 10951, 8, 198, 220, 220, 220, 1058, 17143, 2357, 4179, 25, 11902, 493, 26, 4179, 262, 2482, 13, 15161, 5323, 11, 3509, 8576, 13, 198, 220, 220, 220, 1058, 17143, 2357, 923, 7575, 25, 11902, 493, 26, 5045, 27823, 287, 13845, 284, 651, 19406, 17674, 422, 3268, 28332, 9306, 13, 198, 220, 220, 220, 1058, 17143, 2357, 886, 7575, 25, 11902, 493, 26, 5045, 27823, 287, 13845, 284, 651, 19406, 17674, 1566, 3268, 28332, 9306, 13, 198, 220, 220, 220, 930, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 2198, 62, 35827, 62, 17143, 7307, 26933, 58, 24874, 11, 366, 24874, 33116, 685, 3849, 2100, 11, 366, 3849, 2100, 8973, 12962, 198, 220, 220, 220, 42287, 796, 19779, 24874, 1298, 5166, 11, 366, 3849, 2100, 1298, 16654, 11, 12429, 46265, 22046, 92, 198, 220, 220, 220, 1441, 2116, 13, 22766, 7203, 14, 67, 15042, 14, 85, 16, 14, 9630, 18124, 42, 6615, 1600, 42287, 8, 628, 198, 4299, 1317, 62, 20888, 62, 74, 6615, 7, 944, 11, 6194, 25, 965, 11, 16654, 25, 965, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 930, 198, 220, 220, 220, 930, 12429, 42, 1370, 14, 46188, 32712, 624, 9210, 329, 262, 1317, 2756, 286, 257, 6194, 13, 1174, 198, 220, 220, 220, 930, 1635, 42, 6615, 389, 24139, 5174, 416, 511, 1280, 640, 15885, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1058, 17614, 36123, 25, 7559, 18851, 1220, 67, 15042, 14, 85, 16, 14, 4102, 18124, 42, 6615, 15506, 198, 220, 220, 220, 1058, 17614, 2205, 25, 3740, 1378, 8800, 590, 12, 31628, 13, 12567, 13, 952, 14, 499, 312, 420, 82, 14, 12381, 6315, 14, 268, 31113, 4102, 12, 20888, 12, 74, 1370, 12, 46188, 32712, 624, 12, 7890, 628, 220, 220, 220, 1058, 17143, 2357, 5166, 25, 4731, 26, 262, 7313, 5166, 198, 220, 220, 220, 1058, 17143, 2357, 16654, 25, 4731, 26, 262, 16654, 286, 479, 1370, 11, 304, 13, 70, 352, 76, 11, 642, 76, 11, 352, 71, 11, 352, 67, 11, 3503, 13, 357, 3826, 517, 287, 3740, 1378, 8800, 590, 12, 31628, 13, 12567, 13, 952, 14, 499, 312, 420, 82, 14, 12381, 6315, 14, 268, 31113, 11377, 12, 437, 13033, 12, 10951, 8, 198, 220, 220, 220, 1058, 17143, 2357, 4179, 25, 11902, 493, 26, 4179, 262, 2482, 13, 15161, 5323, 11, 3509, 8576, 13, 198, 220, 220, 220, 1058, 17143, 2357, 923, 7575, 25, 11902, 493, 26, 5045, 27823, 287, 13845, 284, 651, 19406, 17674, 422, 3268, 28332, 9306, 13, 198, 220, 220, 220, 1058, 17143, 2357, 886, 7575, 25, 11902, 493, 26, 5045, 27823, 287, 13845, 284, 651, 19406, 17674, 1566, 3268, 28332, 9306, 13, 198, 220, 220, 220, 220, 198, 220, 220, 220, 12429, 16130, 1174, 198, 220, 220, 220, 220, 220, 220, 220, 532, 383, 3580, 1022, 923, 7575, 290, 886, 7575, 460, 691, 307, 510, 284, 939, 1528, 198, 220, 220, 220, 220, 220, 220, 220, 532, 14307, 923, 7575, 290, 886, 7575, 11, 262, 749, 2274, 4179, 1366, 422, 886, 7575, 481, 307, 4504, 25, 198, 220, 220, 220, 220, 220, 220, 220, 532, 1002, 923, 7575, 290, 886, 7575, 389, 407, 1908, 11, 1459, 41033, 481, 307, 900, 355, 886, 7575, 11, 290, 262, 749, 2274, 1366, 481, 307, 4504, 13, 198, 220, 220, 220, 220, 220, 220, 220, 532, 1002, 923, 7575, 318, 1908, 691, 11, 262, 41033, 286, 939, 1528, 706, 923, 7575, 481, 307, 900, 355, 886, 7575, 7, 929, 284, 262, 1459, 640, 8, 198, 220, 220, 220, 220, 220, 220, 220, 532, 1002, 886, 7575, 318, 1908, 691, 11, 262, 41033, 286, 939, 1528, 878, 886, 7575, 481, 307, 900, 355, 923, 7575, 198, 220, 220, 220, 930, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 2198, 62, 35827, 62, 17143, 7307, 26933, 58, 1837, 23650, 11, 366, 1837, 23650, 33116, 685, 3849, 2100, 11, 366, 3849, 2100, 8973, 12962, 198, 220, 220, 220, 42287, 796, 19779, 1837, 23650, 1298, 6194, 11, 366, 3849, 2100, 1298, 16654, 11, 12429, 46265, 22046, 92, 198, 220, 220, 220, 1441, 2116, 13, 22766, 7203, 14, 67, 15042, 14, 85, 16, 14, 4102, 18124, 42, 6615, 1600, 42287, 8, 628, 198, 4299, 1317, 62, 20888, 7, 944, 11, 6194, 25, 965, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 930, 198, 220, 220, 220, 930, 12429, 9704, 7886, 290, 35249, 14806, 1174, 628, 220, 220, 220, 1058, 17614, 36123, 25, 7559, 18851, 1220, 67, 15042, 14, 85, 16, 14, 31605, 1505, 15732, 15506, 198, 220, 220, 220, 1058, 17614, 2205, 25, 3740, 1378, 8800, 590, 12, 31628, 13, 12567, 13, 952, 14, 499, 312, 420, 82, 14, 12381, 6315, 14, 268, 31113, 9630, 12, 20888, 12, 392, 12, 4102, 12, 20888, 628, 220, 220, 220, 1058, 17143, 2357, 6194, 25, 4731, 26, 262, 7313, 5166, 198, 220, 220, 220, 930, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 2198, 62, 35827, 62, 17143, 2357, 7, 1837, 23650, 11, 366, 1837, 23650, 4943, 198, 220, 220, 220, 42287, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 1837, 23650, 1298, 6194, 11, 198, 220, 220, 220, 1782, 198, 220, 220, 220, 1441, 2116, 13, 22766, 7203, 14, 67, 15042, 14, 85, 16, 14, 31605, 1505, 15732, 1600, 42287, 8, 628, 198, 4299, 4918, 62, 4873, 7, 944, 11, 6194, 25, 965, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 930, 198, 220, 220, 220, 930, 12429, 24553, 278, 14806, 7443, 1174, 628, 220, 220, 220, 1058, 17614, 36123, 25, 7559, 18851, 1220, 67, 15042, 14, 85, 16, 14, 25032, 32184, 15506, 198, 220, 220, 220, 1058, 17614, 2205, 25, 3740, 1378, 8800, 590, 12, 31628, 13, 12567, 13, 952, 14, 499, 312, 420, 82, 14, 12381, 6315, 14, 268, 31113, 1136, 12, 25032, 12, 4873, 12, 23569, 12, 1659, 12, 525, 6449, 723, 12, 69, 315, 942, 628, 220, 220, 220, 1058, 17143, 2357, 6194, 25, 4731, 26, 262, 7313, 5166, 198, 220, 220, 220, 1058, 17143, 2357, 4179, 25, 11902, 493, 26, 4179, 262, 2482, 13, 15161, 5323, 11, 3509, 8576, 13, 198, 220, 220, 220, 1058, 17143, 2357, 923, 7575, 25, 11902, 493, 26, 5045, 27823, 287, 13845, 284, 651, 19406, 17674, 422, 3268, 28332, 9306, 13, 198, 220, 220, 220, 1058, 17143, 2357, 886, 7575, 25, 11902, 493, 26, 5045, 27823, 287, 13845, 284, 651, 19406, 17674, 1566, 3268, 28332, 9306, 13, 198, 220, 220, 220, 220, 198, 220, 220, 220, 12429, 16130, 1174, 198, 220, 220, 220, 220, 220, 220, 220, 532, 33523, 7177, 481, 307, 4504, 329, 7585, 14354, 13, 198, 220, 220, 220, 930, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 198, 220, 220, 220, 42287, 796, 19779, 1837, 23650, 1298, 6194, 11, 12429, 46265, 22046, 92, 198, 220, 220, 220, 1441, 2116, 13, 22766, 7203, 14, 67, 15042, 14, 85, 16, 14, 25032, 32184, 1600, 42287, 8, 628, 198, 4299, 4378, 263, 62, 1731, 11840, 62, 20888, 62, 3803, 7, 944, 11, 6194, 25, 965, 796, 6045, 11, 5166, 25, 965, 796, 6045, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 930, 198, 220, 220, 220, 930, 12429, 1731, 1711, 10708, 4324, 2756, 1487, 7869, 13, 1174, 198, 220, 220, 220, 930, 1635, 17784, 913, 618, 22534, 428, 351, 645, 6194, 15885, 198, 220, 220, 220, 930, 1635, 1532, 262, 6194, 318, 407, 1908, 11, 4378, 364, 329, 477, 14354, 481, 307, 4504, 287, 281, 7177, 15885, 628, 220, 220, 220, 1058, 17614, 36123, 25, 7559, 18851, 1220, 67, 15042, 14, 85, 16, 14, 83, 15799, 14, 1731, 11840, 15506, 198, 220, 220, 220, 1058, 17614, 2205, 25, 3740, 1378, 8800, 590, 12, 31628, 13, 12567, 13, 952, 14, 499, 312, 420, 82, 14, 12381, 6315, 14, 268, 31113, 1731, 11840, 12, 83, 15799, 12, 20888, 12, 3803, 12, 14269, 3969, 628, 220, 220, 220, 1058, 17143, 2357, 6194, 25, 11902, 4731, 26, 262, 7313, 6194, 198, 220, 220, 220, 1058, 17143, 2357, 5166, 25, 11902, 4731, 26, 262, 7313, 5166, 628, 220, 220, 220, 12429, 16130, 1174, 198, 220, 220, 220, 220, 220, 220, 220, 532, 38357, 290, 5166, 2314, 307, 1908, 1978, 198, 220, 220, 220, 220, 220, 220, 220, 532, 1002, 257, 5166, 318, 1908, 11, 4378, 364, 329, 477, 14354, 286, 262, 5166, 481, 307, 4504, 198, 220, 220, 220, 220, 220, 220, 220, 532, 1002, 2035, 257, 5166, 393, 6194, 318, 1908, 11, 4378, 364, 329, 477, 14354, 286, 477, 14729, 481, 307, 4504, 198, 220, 220, 220, 930, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 611, 357, 1837, 23650, 318, 6045, 8, 290, 357, 24874, 318, 6045, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 22766, 7203, 14, 67, 15042, 14, 85, 16, 14, 83, 15799, 14, 1731, 11840, 4943, 198, 220, 220, 220, 1288, 361, 357, 1837, 23650, 318, 6045, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 42287, 796, 19779, 24874, 1298, 5166, 92, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 42287, 796, 19779, 1837, 23650, 1298, 6194, 92, 628, 220, 220, 220, 1441, 2116, 13, 22766, 7203, 14, 67, 15042, 14, 85, 16, 14, 83, 15799, 14, 1731, 11840, 1600, 42287, 8, 628, 198, 4299, 4378, 263, 62, 20888, 7, 944, 11, 6194, 25, 965, 796, 6045, 11, 5166, 25, 965, 796, 6045, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 930, 198, 220, 220, 220, 930, 12429, 39478, 2756, 329, 257, 6194, 393, 14354, 1174, 628, 220, 220, 220, 1058, 17614, 36123, 25, 7559, 18851, 1220, 67, 15042, 14, 85, 16, 14, 83, 15799, 14, 20888, 15506, 198, 220, 220, 220, 1058, 17614, 2205, 25, 3740, 1378, 8800, 590, 12, 31628, 13, 12567, 13, 952, 14, 499, 312, 420, 82, 14, 12381, 6315, 14, 268, 31113, 1837, 23650, 12, 20888, 12, 83, 15799, 628, 220, 220, 220, 1058, 17143, 2357, 6194, 25, 11902, 4731, 26, 262, 7313, 6194, 198, 220, 220, 220, 1058, 17143, 2357, 5166, 25, 11902, 4731, 26, 262, 7313, 5166, 628, 220, 220, 220, 12429, 16130, 1174, 198, 220, 220, 220, 220, 220, 220, 220, 532, 38357, 290, 5166, 2314, 307, 1908, 1978, 198, 220, 220, 220, 220, 220, 220, 220, 532, 1002, 257, 5166, 318, 1908, 11, 83, 21630, 329, 477, 14354, 286, 262, 5166, 481, 307, 4504, 198, 220, 220, 220, 220, 220, 220, 220, 532, 1002, 2035, 257, 5166, 393, 6194, 318, 1908, 11, 4378, 364, 329, 477, 14354, 286, 477, 14729, 481, 307, 4504, 198, 220, 220, 220, 930, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 611, 357, 1837, 23650, 318, 6045, 8, 290, 357, 24874, 318, 6045, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 22766, 7203, 14, 67, 15042, 14, 85, 16, 14, 83, 15799, 14, 20888, 4943, 198, 220, 220, 220, 1288, 361, 357, 1837, 23650, 318, 6045, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 42287, 796, 19779, 24874, 1298, 5166, 92, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 42287, 796, 19779, 1837, 23650, 1298, 6194, 92, 628, 220, 220, 220, 1441, 2116, 13, 22766, 7203, 14, 67, 15042, 14, 85, 16, 14, 83, 15799, 14, 20888, 1600, 42287, 8, 628, 198, 4299, 1492, 62, 83, 15799, 7, 944, 11, 6194, 25, 965, 796, 6045, 11, 5166, 25, 965, 796, 6045, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 930, 198, 220, 220, 220, 930, 12429, 13014, 2756, 14, 80, 774, 319, 262, 1502, 1492, 329, 257, 6194, 393, 14354, 1174, 628, 220, 220, 220, 1058, 17614, 36123, 25, 7559, 18851, 1220, 67, 15042, 14, 85, 16, 14, 83, 15799, 14, 2070, 51, 15799, 15506, 198, 220, 220, 220, 1058, 17614, 2205, 25, 3740, 1378, 8800, 590, 12, 31628, 13, 12567, 13, 952, 14, 499, 312, 420, 82, 14, 12381, 6315, 14, 268, 31113, 1837, 23650, 12, 2875, 12, 2070, 12, 83, 15799, 628, 220, 220, 220, 1058, 17143, 2357, 6194, 25, 11902, 4731, 26, 262, 7313, 6194, 628, 220, 220, 220, 12429, 16130, 1174, 198, 220, 220, 220, 220, 220, 220, 220, 532, 1002, 262, 6194, 318, 407, 1908, 11, 1492, 51, 21630, 329, 477, 14354, 481, 307, 4504, 287, 281, 7177, 13, 198, 220, 220, 220, 930, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 611, 357, 1837, 23650, 318, 6045, 8, 290, 357, 24874, 318, 6045, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 22766, 7203, 14, 67, 15042, 14, 85, 16, 14, 83, 15799, 14, 2070, 51, 15799, 4943, 198, 220, 220, 220, 1288, 361, 357, 1837, 23650, 318, 6045, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 42287, 796, 19779, 24874, 1298, 5166, 92, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 42287, 796, 19779, 1837, 23650, 1298, 6194, 92, 628, 220, 220, 220, 1441, 2116, 13, 22766, 7203, 14, 67, 15042, 14, 85, 16, 14, 83, 15799, 14, 2070, 51, 15799, 1600, 42287, 8, 628, 198, 4299, 1280, 62, 9446, 7, 944, 11, 6194, 25, 965, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 930, 198, 220, 220, 220, 930, 12429, 3855, 1944, 1280, 1393, 286, 257, 2176, 6194, 1174, 628, 220, 220, 220, 1058, 17614, 36123, 25, 7559, 18851, 1220, 67, 15042, 14, 85, 16, 14, 9654, 19302, 15506, 198, 220, 220, 220, 1058, 17614, 2205, 25, 3740, 1378, 8800, 590, 12, 31628, 13, 12567, 13, 952, 14, 499, 312, 420, 82, 14, 12381, 6315, 14, 268, 31113, 9654, 12, 9446, 628, 220, 220, 220, 1058, 17143, 2357, 6194, 25, 4731, 26, 262, 7313, 6194, 198, 220, 220, 220, 930, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 2198, 62, 35827, 62, 17143, 2357, 7, 1837, 23650, 11, 366, 1837, 23650, 4943, 198, 220, 220, 220, 42287, 796, 19779, 1837, 23650, 1298, 6194, 92, 198, 220, 220, 220, 1441, 2116, 13, 22766, 7203, 14, 67, 15042, 14, 85, 16, 14, 83, 15799, 14, 2070, 51, 15799, 1600, 42287, 8, 628, 198, 4299, 1280, 62, 9446, 62, 10034, 7, 944, 11, 5166, 25, 965, 11, 2775, 6030, 25, 965, 11, 2278, 25, 965, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 930, 198, 220, 220, 220, 930, 12429, 3855, 6754, 1280, 1393, 286, 257, 2176, 6194, 1174, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1058, 17614, 36123, 25, 7559, 18851, 1220, 69, 315, 942, 14, 7890, 14, 9654, 19302, 13749, 15506, 198, 220, 220, 220, 1058, 17614, 2205, 25, 3740, 1378, 8800, 590, 12, 31628, 13, 12567, 13, 952, 14, 499, 312, 420, 82, 14, 12381, 6315, 14, 268, 31113, 9654, 12, 9446, 12, 14269, 3969, 12, 10728, 12, 7890, 628, 220, 220, 220, 1058, 17143, 2357, 5166, 25, 4731, 26, 262, 7313, 5166, 198, 220, 220, 220, 1058, 17143, 2357, 2775, 6030, 25, 4731, 26, 11096, 11, 327, 39237, 62, 10917, 1503, 5781, 11, 39726, 62, 10917, 1503, 5781, 11, 19878, 47731, 25620, 13, 198, 220, 220, 220, 1058, 17143, 2357, 2278, 25, 4731, 26, 262, 2278, 286, 1280, 1393, 11, 366, 20, 76, 1600, 366, 1314, 76, 1600, 366, 1270, 76, 1600, 366, 16, 71, 1600, 366, 17, 71, 1600, 366, 19, 71, 1600, 366, 21, 71, 1600, 366, 1065, 71, 1600, 366, 16, 67, 1911, 357, 3826, 517, 287, 3740, 1378, 8800, 590, 12, 31628, 13, 12567, 13, 952, 14, 499, 312, 420, 82, 14, 12381, 6315, 14, 268, 31113, 11377, 12, 437, 13033, 12, 10951, 8, 198, 220, 220, 220, 1058, 17143, 2357, 4179, 25, 11902, 493, 26, 4179, 262, 2482, 13, 15161, 1542, 11, 3509, 5323, 13, 198, 220, 220, 220, 1058, 17143, 2357, 923, 7575, 25, 11902, 493, 198, 220, 220, 220, 1058, 17143, 2357, 886, 7575, 25, 11902, 493, 628, 220, 220, 220, 12429, 16130, 1174, 198, 220, 220, 220, 220, 220, 220, 220, 532, 1002, 923, 7575, 290, 886, 7575, 389, 407, 1908, 11, 262, 749, 2274, 1366, 318, 4504, 13, 198, 220, 220, 220, 220, 220, 220, 220, 532, 5514, 262, 1366, 286, 262, 3452, 1542, 1528, 318, 1695, 13, 198, 220, 220, 220, 930, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 2198, 62, 35827, 62, 17143, 7307, 26933, 58, 24874, 11, 366, 24874, 33116, 685, 28484, 6030, 11, 366, 28484, 6030, 33116, 685, 41007, 11, 366, 41007, 8973, 12962, 198, 220, 220, 220, 42287, 796, 19779, 24874, 1298, 5166, 11, 366, 28484, 6030, 1298, 2775, 6030, 11, 366, 41007, 1298, 2278, 11, 12429, 46265, 22046, 92, 198, 220, 220, 220, 1441, 2116, 13, 22766, 7203, 14, 69, 315, 942, 14, 7890, 14, 9654, 19302, 13749, 1600, 42287, 8, 628, 198, 4299, 1353, 62, 6511, 62, 19509, 62, 23317, 62, 10366, 952, 7, 944, 11, 5166, 25, 965, 11, 2278, 25, 965, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 930, 198, 220, 220, 220, 930, 12429, 3855, 1353, 890, 1790, 1848, 8064, 1174, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1058, 17614, 36123, 25, 4600, 18851, 1220, 69, 315, 942, 14, 7890, 14, 4852, 14617, 16438, 30116, 29665, 952, 63, 198, 220, 220, 220, 1058, 17614, 2205, 25, 3740, 1378, 8800, 590, 12, 31628, 13, 12567, 13, 952, 14, 499, 312, 420, 82, 14, 12381, 6315, 14, 268, 31113, 4852, 12, 2213, 5067, 12, 6511, 12, 19509, 12, 10366, 952, 12, 23317, 82, 12, 10728, 12, 7890, 628, 220, 220, 220, 1058, 17143, 2357, 5166, 25, 4731, 26, 262, 7313, 5166, 198, 220, 220, 220, 1058, 17143, 2357, 2278, 25, 4731, 26, 262, 2278, 286, 1280, 1393, 11, 366, 20, 76, 1600, 366, 1314, 76, 1600, 366, 1270, 76, 1600, 366, 16, 71, 1600, 366, 17, 71, 1600, 366, 19, 71, 1600, 366, 21, 71, 1600, 366, 1065, 71, 1600, 366, 16, 67, 1911, 357, 3826, 517, 287, 3740, 1378, 8800, 590, 12, 31628, 13, 12567, 13, 952, 14, 499, 312, 420, 82, 14, 12381, 6315, 14, 268, 31113, 11377, 12, 437, 13033, 12, 10951, 8, 198, 220, 220, 220, 1058, 17143, 2357, 4179, 25, 11902, 493, 26, 4179, 262, 2482, 13, 15161, 1542, 11, 3509, 5323, 13, 198, 220, 220, 220, 1058, 17143, 2357, 923, 7575, 25, 11902, 493, 198, 220, 220, 220, 1058, 17143, 2357, 886, 7575, 25, 11902, 493, 628, 220, 220, 220, 12429, 16130, 1174, 198, 220, 220, 220, 220, 220, 220, 220, 532, 1002, 923, 7575, 290, 886, 7575, 389, 407, 1908, 11, 262, 749, 2274, 1366, 318, 4504, 13, 198, 220, 220, 220, 220, 220, 220, 220, 532, 5514, 262, 1366, 286, 262, 3452, 1542, 1528, 318, 1695, 13, 198, 220, 220, 220, 930, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 2198, 62, 35827, 62, 17143, 7307, 26933, 58, 24874, 11, 366, 24874, 33116, 685, 41007, 11, 366, 41007, 8973, 12962, 198, 220, 220, 220, 42287, 796, 19779, 24874, 1298, 5166, 11, 366, 41007, 1298, 2278, 11, 12429, 46265, 22046, 92, 198, 220, 220, 220, 1441, 2116, 13, 22766, 7203, 14, 69, 315, 942, 14, 7890, 14, 4852, 14617, 16438, 30116, 29665, 952, 1600, 42287, 8, 628, 198, 4299, 1353, 62, 6511, 62, 19509, 62, 9150, 62, 10366, 952, 7, 944, 11, 5166, 25, 965, 11, 2278, 25, 965, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 930, 198, 220, 220, 220, 930, 12429, 3855, 1353, 890, 1790, 2292, 8064, 1174, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1058, 17614, 36123, 25, 7559, 18851, 1220, 69, 315, 942, 14, 7890, 14, 4852, 14617, 16438, 26545, 29665, 952, 15506, 198, 220, 220, 220, 1058, 17614, 2205, 25, 3740, 1378, 8800, 590, 12, 31628, 13, 12567, 13, 952, 14, 499, 312, 420, 82, 14, 12381, 6315, 14, 268, 31113, 4852, 12, 2213, 5067, 12, 6511, 12, 19509, 12, 10366, 952, 12, 1930, 1756, 12, 10728, 12, 7890, 628, 220, 220, 220, 1058, 17143, 2357, 5166, 25, 4731, 26, 262, 7313, 5166, 198, 220, 220, 220, 1058, 17143, 2357, 2278, 25, 4731, 26, 262, 2278, 286, 1280, 1393, 11, 366, 20, 76, 1600, 366, 1314, 76, 1600, 366, 1270, 76, 1600, 366, 16, 71, 1600, 366, 17, 71, 1600, 366, 19, 71, 1600, 366, 21, 71, 1600, 366, 1065, 71, 1600, 366, 16, 67, 1911, 357, 3826, 517, 287, 3740, 1378, 8800, 590, 12, 31628, 13, 12567, 13, 952, 14, 499, 312, 420, 82, 14, 12381, 6315, 14, 268, 31113, 11377, 12, 437, 13033, 12, 10951, 8, 198, 220, 220, 220, 1058, 17143, 2357, 4179, 25, 11902, 493, 26, 4179, 262, 2482, 13, 15161, 1542, 11, 3509, 5323, 13, 198, 220, 220, 220, 1058, 17143, 2357, 923, 7575, 25, 11902, 493, 198, 220, 220, 220, 1058, 17143, 2357, 886, 7575, 25, 11902, 493, 628, 220, 220, 220, 12429, 16130, 1174, 198, 220, 220, 220, 220, 220, 220, 220, 532, 1002, 923, 7575, 290, 886, 7575, 389, 407, 1908, 11, 262, 749, 2274, 1366, 318, 4504, 13, 198, 220, 220, 220, 220, 220, 220, 220, 532, 5514, 262, 1366, 286, 262, 3452, 1542, 1528, 318, 1695, 13, 198, 220, 220, 220, 930, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 2198, 62, 35827, 62, 17143, 7307, 26933, 58, 24874, 11, 366, 24874, 33116, 685, 41007, 11, 366, 41007, 8973, 12962, 198, 220, 220, 220, 42287, 796, 19779, 24874, 1298, 5166, 11, 366, 41007, 1298, 2278, 11, 12429, 46265, 22046, 92, 198, 220, 220, 220, 1441, 2116, 13, 22766, 7203, 14, 69, 315, 942, 14, 7890, 14, 4852, 14617, 16438, 26545, 29665, 952, 1600, 42287, 8, 628, 198, 4299, 890, 62, 19509, 62, 23317, 62, 10366, 952, 7, 944, 11, 5166, 25, 965, 11, 2278, 25, 965, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 930, 198, 220, 220, 220, 930, 12429, 3855, 1353, 890, 1790, 1848, 8064, 1174, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1058, 17614, 36123, 25, 7559, 18851, 1220, 69, 315, 942, 14, 7890, 14, 20541, 14617, 16438, 30116, 29665, 952, 15506, 198, 220, 220, 220, 1058, 17614, 2205, 25, 3740, 1378, 8800, 590, 12, 31628, 13, 12567, 13, 952, 14, 499, 312, 420, 82, 14, 12381, 6315, 14, 268, 31113, 4852, 12, 2213, 5067, 12, 6511, 12, 19509, 12, 10366, 952, 12, 23317, 82, 12, 10728, 12, 7890, 628, 220, 220, 220, 1058, 17143, 2357, 5166, 25, 4731, 26, 262, 7313, 5166, 198, 220, 220, 220, 1058, 17143, 2357, 2278, 25, 4731, 26, 262, 2278, 286, 1280, 1393, 11, 366, 20, 76, 1600, 366, 1314, 76, 1600, 366, 1270, 76, 1600, 366, 16, 71, 1600, 366, 17, 71, 1600, 366, 19, 71, 1600, 366, 21, 71, 1600, 366, 1065, 71, 1600, 366, 16, 67, 1911, 357, 3826, 517, 287, 3740, 1378, 8800, 590, 12, 31628, 13, 12567, 13, 952, 14, 499, 312, 420, 82, 14, 12381, 6315, 14, 268, 31113, 11377, 12, 437, 13033, 12, 10951, 8, 198, 220, 220, 220, 1058, 17143, 2357, 4179, 25, 11902, 493, 26, 4179, 262, 2482, 13, 15161, 1542, 11, 3509, 5323, 13, 198, 220, 220, 220, 1058, 17143, 2357, 923, 7575, 25, 11902, 493, 198, 220, 220, 220, 1058, 17143, 2357, 886, 7575, 25, 11902, 493, 628, 220, 220, 220, 12429, 16130, 1174, 198, 220, 220, 220, 220, 220, 220, 220, 532, 1002, 923, 7575, 290, 886, 7575, 389, 407, 1908, 11, 262, 749, 2274, 1366, 318, 4504, 13, 198, 220, 220, 220, 220, 220, 220, 220, 532, 5514, 262, 1366, 286, 262, 3452, 1542, 1528, 318, 1695, 13, 198, 220, 220, 220, 930, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 2198, 62, 35827, 62, 17143, 7307, 26933, 58, 24874, 11, 366, 24874, 33116, 685, 41007, 11, 366, 41007, 8973, 12962, 198, 220, 220, 220, 42287, 796, 19779, 24874, 1298, 5166, 11, 366, 41007, 1298, 2278, 11, 12429, 46265, 22046, 92, 198, 220, 220, 220, 1441, 2116, 13, 22766, 7203, 14, 69, 315, 942, 14, 7890, 14, 20541, 14617, 16438, 30116, 29665, 952, 1600, 42287, 8, 628, 198, 4299, 256, 3110, 62, 6511, 62, 19509, 62, 10366, 952, 7, 944, 11, 5166, 25, 965, 11, 2775, 6030, 25, 965, 11, 2278, 25, 965, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 930, 198, 220, 220, 220, 930, 12429, 3855, 256, 3110, 890, 1790, 8064, 1174, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1058, 17614, 36123, 25, 7559, 18851, 1220, 69, 315, 942, 14, 7890, 14, 30157, 14518, 50, 695, 16598, 15506, 198, 220, 220, 220, 1058, 17614, 2205, 25, 3740, 1378, 8800, 590, 12, 31628, 13, 12567, 13, 952, 14, 499, 312, 420, 82, 14, 12381, 6315, 14, 268, 31113, 30157, 12, 17846, 12, 7255, 12, 29048, 12, 10728, 12, 7890, 628, 220, 220, 220, 1058, 17143, 2357, 5166, 25, 4731, 26, 262, 7313, 5166, 198, 220, 220, 220, 1058, 17143, 2357, 2775, 6030, 25, 4731, 26, 327, 39237, 62, 10917, 1503, 5781, 11, 39726, 62, 10917, 1503, 5781, 11, 19878, 47731, 25620, 13, 198, 220, 220, 220, 1058, 17143, 2357, 2278, 25, 4731, 26, 262, 2278, 286, 1280, 1393, 11, 366, 20, 76, 1600, 366, 1314, 76, 1600, 366, 1270, 76, 1600, 366, 16, 71, 1600, 366, 17, 71, 1600, 366, 19, 71, 1600, 366, 21, 71, 1600, 366, 1065, 71, 1600, 366, 16, 67, 1911, 357, 3826, 517, 287, 3740, 1378, 8800, 590, 12, 31628, 13, 12567, 13, 952, 14, 499, 312, 420, 82, 14, 12381, 6315, 14, 268, 31113, 11377, 12, 437, 13033, 12, 10951, 8, 198, 220, 220, 220, 1058, 17143, 2357, 4179, 25, 11902, 493, 26, 4179, 262, 2482, 13, 15161, 1542, 11, 3509, 5323, 13, 198, 220, 220, 220, 1058, 17143, 2357, 923, 7575, 25, 11902, 493, 198, 220, 220, 220, 1058, 17143, 2357, 886, 7575, 25, 11902, 493, 628, 220, 220, 220, 12429, 16130, 1174, 198, 220, 220, 220, 220, 220, 220, 220, 532, 1002, 923, 7575, 290, 886, 7575, 389, 407, 1908, 11, 262, 749, 2274, 1366, 318, 4504, 13, 198, 220, 220, 220, 220, 220, 220, 220, 532, 5514, 262, 1366, 286, 262, 3452, 1542, 1528, 318, 1695, 13, 198, 220, 220, 220, 930, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 2198, 62, 35827, 62, 17143, 7307, 26933, 58, 24874, 11, 366, 24874, 33116, 685, 28484, 6030, 11, 366, 28484, 6030, 33116, 685, 41007, 11, 366, 41007, 8973, 12962, 198, 220, 220, 220, 42287, 796, 19779, 24874, 1298, 5166, 11, 366, 28484, 6030, 1298, 2775, 6030, 11, 366, 41007, 1298, 2278, 11, 12429, 46265, 22046, 92, 198, 220, 220, 220, 1441, 2116, 13, 22766, 7203, 14, 69, 315, 942, 14, 7890, 14, 30157, 14518, 50, 695, 16598, 1600, 42287, 8, 628, 198, 4299, 4308, 7, 944, 11, 5166, 25, 965, 11, 2775, 6030, 25, 965, 11, 2278, 25, 965, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 930, 198, 220, 220, 220, 930, 12429, 3855, 12901, 49355, 1174, 628, 220, 220, 220, 1058, 17614, 36123, 25, 7559, 18851, 1220, 69, 315, 942, 14, 7890, 14, 12093, 271, 15506, 198, 220, 220, 220, 1058, 17614, 2205, 25, 2124, 1477, 926, 862, 1378, 8800, 590, 12, 31628, 13, 12567, 13, 952, 14, 499, 312, 420, 82, 14, 12381, 6315, 14, 268, 31113, 12093, 271, 12, 10728, 12, 7890, 628, 220, 220, 220, 1058, 17143, 2357, 5166, 25, 4731, 26, 262, 7313, 5166, 198, 220, 220, 220, 1058, 17143, 2357, 2775, 6030, 25, 4731, 26, 327, 39237, 62, 10917, 1503, 5781, 11, 39726, 62, 10917, 1503, 5781, 11, 19878, 47731, 25620, 13, 198, 220, 220, 220, 1058, 17143, 2357, 2278, 25, 4731, 26, 262, 2278, 286, 1280, 1393, 11, 366, 20, 76, 1600, 366, 1314, 76, 1600, 366, 1270, 76, 1600, 366, 16, 71, 1600, 366, 17, 71, 1600, 366, 19, 71, 1600, 366, 21, 71, 1600, 366, 1065, 71, 1600, 366, 16, 67, 1911, 357, 3826, 517, 287, 3740, 1378, 8800, 590, 12, 31628, 13, 12567, 13, 952, 14, 499, 312, 420, 82, 14, 12381, 6315, 14, 268, 31113, 11377, 12, 437, 13033, 12, 10951, 8, 198, 220, 220, 220, 1058, 17143, 2357, 4179, 25, 11902, 493, 26, 4179, 262, 2482, 13, 15161, 1542, 11, 3509, 5323, 13, 198, 220, 220, 220, 1058, 17143, 2357, 923, 7575, 25, 11902, 493, 198, 220, 220, 220, 1058, 17143, 2357, 886, 7575, 25, 11902, 493, 628, 220, 220, 220, 12429, 16130, 1174, 198, 220, 220, 220, 220, 220, 220, 220, 532, 1002, 923, 7575, 290, 886, 7575, 389, 407, 1908, 11, 262, 749, 2274, 1366, 318, 4504, 13, 198, 220, 220, 220, 220, 220, 220, 220, 532, 5514, 262, 1366, 286, 262, 3452, 1542, 1528, 318, 1695, 13, 198, 220, 220, 220, 930, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 2198, 62, 35827, 62, 17143, 7307, 26933, 58, 24874, 11, 366, 24874, 33116, 685, 28484, 6030, 11, 366, 28484, 6030, 33116, 685, 41007, 11, 366, 41007, 8973, 12962, 198, 220, 220, 220, 42287, 796, 19779, 24874, 1298, 5166, 11, 366, 28484, 6030, 1298, 2775, 6030, 11, 366, 41007, 1298, 2278, 11, 12429, 46265, 22046, 92, 198, 220, 220, 220, 1441, 2116, 13, 22766, 7203, 14, 69, 315, 942, 14, 7890, 14, 12093, 271, 1600, 42287, 8, 198 ]
2.74541
7,298
import click from gitkit.util.shell import get_output @click.command() def what(): """ What _is_ the current revision anyway? """ description = get_output("git describe") revision = get_output("git rev-parse HEAD") print(f"{description} ({revision})")
[ 11748, 3904, 198, 198, 6738, 17606, 15813, 13, 22602, 13, 29149, 1330, 651, 62, 22915, 628, 198, 31, 12976, 13, 21812, 3419, 198, 4299, 644, 33529, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1867, 4808, 271, 62, 262, 1459, 18440, 6949, 30, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 6764, 796, 651, 62, 22915, 7203, 18300, 6901, 4943, 198, 220, 220, 220, 18440, 796, 651, 62, 22915, 7203, 18300, 2710, 12, 29572, 39837, 4943, 198, 220, 220, 220, 3601, 7, 69, 1, 90, 11213, 92, 37913, 260, 10178, 30072, 4943, 198 ]
2.936842
95
# -------------- # Importing header files import numpy as np import warnings warnings.filterwarnings('ignore') #New record new_record=[[50, 9, 4, 1, 0, 0, 40, 0]] #Reading file # data = np.genfromtxt(path, delimiter=",", skip_header=1) #Code starts here data = np.genfromtxt(path, delimiter = ",", skip_header = 1) census = np.concatenate((new_record,data),axis = 0) age = census[:,0] max_age = np.max(age) min_age = np.min(age) age_mean = np.mean(age) age_std = np.std(age) race_0 = census[census[:,2]==0] race_1 = census[census[:,2]==1] race_2 = census[census[:,2]==2] race_3 = census[census[:,3]==3] race_4 = census[census[:,4]==4] len_0 = len(race_0) len_1 = len(race_1) len_2 = len(race_2) len_3 = len(race_3) len_4 = len(race_4) a = [len_0, len_1, len_2, len_3, len_4] minority_race = min(a) senior_citizens = census[census[:,0]>60] working_hours_sum = senior_citizens.sum(axis=0)[6] senior_citizens_len = len(senior_citizens) avg_working_hours = working_hours_sum/senior_citizens_len print(round(avg_working_hours,2)) high = census[census[:,1]>10] low = census[census[:,1]<=10] avg_pay_high = round(np.mean(high[:,7]),2) avg_pay_low = round(np.mean(low[:,7]),2) print(avg_pay_high) print(avg_pay_low)
[ 2, 220, 26171, 198, 2, 17267, 278, 13639, 3696, 201, 198, 11748, 299, 32152, 355, 45941, 201, 198, 11748, 14601, 201, 198, 201, 198, 40539, 654, 13, 24455, 40539, 654, 10786, 46430, 11537, 201, 198, 201, 198, 2, 3791, 1700, 201, 198, 3605, 62, 22105, 28, 30109, 1120, 11, 220, 860, 11, 220, 604, 11, 220, 352, 11, 220, 657, 11, 220, 657, 11, 2319, 11, 220, 657, 11907, 201, 198, 201, 198, 2, 36120, 2393, 201, 198, 2, 1366, 796, 45941, 13, 5235, 6738, 14116, 7, 6978, 11, 46728, 2676, 28, 2430, 11, 14267, 62, 25677, 28, 16, 8, 201, 198, 201, 198, 2, 10669, 4940, 994, 201, 198, 7890, 796, 45941, 13, 5235, 6738, 14116, 7, 6978, 11, 46728, 2676, 796, 366, 553, 11, 14267, 62, 25677, 796, 352, 8, 201, 198, 66, 7314, 796, 45941, 13, 1102, 9246, 268, 378, 19510, 3605, 62, 22105, 11, 7890, 828, 22704, 796, 657, 8, 201, 198, 201, 198, 496, 796, 21649, 58, 45299, 15, 60, 201, 198, 9806, 62, 496, 796, 45941, 13, 9806, 7, 496, 8, 201, 198, 1084, 62, 496, 796, 45941, 13, 1084, 7, 496, 8, 201, 198, 201, 198, 496, 62, 32604, 796, 45941, 13, 32604, 7, 496, 8, 201, 198, 496, 62, 19282, 796, 45941, 13, 19282, 7, 496, 8, 201, 198, 16740, 62, 15, 796, 21649, 58, 66, 7314, 58, 45299, 17, 60, 855, 15, 60, 201, 198, 16740, 62, 16, 796, 21649, 58, 66, 7314, 58, 45299, 17, 60, 855, 16, 60, 201, 198, 16740, 62, 17, 796, 21649, 58, 66, 7314, 58, 45299, 17, 60, 855, 17, 60, 201, 198, 16740, 62, 18, 796, 21649, 58, 66, 7314, 58, 45299, 18, 60, 855, 18, 60, 201, 198, 16740, 62, 19, 796, 21649, 58, 66, 7314, 58, 45299, 19, 60, 855, 19, 60, 201, 198, 201, 198, 11925, 62, 15, 796, 18896, 7, 16740, 62, 15, 8, 201, 198, 11925, 62, 16, 796, 18896, 7, 16740, 62, 16, 8, 201, 198, 11925, 62, 17, 796, 18896, 7, 16740, 62, 17, 8, 201, 198, 11925, 62, 18, 796, 18896, 7, 16740, 62, 18, 8, 201, 198, 11925, 62, 19, 796, 18896, 7, 16740, 62, 19, 8, 201, 198, 201, 198, 64, 796, 685, 11925, 62, 15, 11, 18896, 62, 16, 11, 18896, 62, 17, 11, 18896, 62, 18, 11, 18896, 62, 19, 60, 201, 198, 1084, 29134, 62, 16740, 796, 949, 7, 64, 8, 201, 198, 201, 198, 6248, 1504, 62, 46801, 796, 21649, 58, 66, 7314, 58, 45299, 15, 60, 29, 1899, 60, 201, 198, 16090, 62, 24425, 62, 16345, 796, 4664, 62, 46801, 13, 16345, 7, 22704, 28, 15, 38381, 21, 60, 201, 198, 6248, 1504, 62, 46801, 62, 11925, 796, 18896, 7, 6248, 1504, 62, 46801, 8, 201, 198, 615, 70, 62, 16090, 62, 24425, 796, 1762, 62, 24425, 62, 16345, 14, 6248, 1504, 62, 46801, 62, 11925, 201, 198, 201, 198, 4798, 7, 744, 7, 615, 70, 62, 16090, 62, 24425, 11, 17, 4008, 201, 198, 201, 198, 8929, 796, 21649, 58, 66, 7314, 58, 45299, 16, 60, 29, 940, 60, 201, 198, 9319, 796, 21649, 58, 66, 7314, 58, 45299, 16, 60, 27, 28, 940, 60, 201, 198, 201, 198, 615, 70, 62, 15577, 62, 8929, 796, 2835, 7, 37659, 13, 32604, 7, 8929, 58, 45299, 22, 46570, 17, 8, 220, 201, 198, 615, 70, 62, 15577, 62, 9319, 796, 2835, 7, 37659, 13, 32604, 7, 9319, 58, 45299, 22, 46570, 17, 8, 201, 198, 4798, 7, 615, 70, 62, 15577, 62, 8929, 8, 201, 198, 4798, 7, 615, 70, 62, 15577, 62, 9319, 8, 201, 628, 628 ]
2.138564
599
from stack_class import * def reverse_file(path): """Overwrite given file using its context line-by-line reversed""" s=ArrayStack() with open(path,"r") as original: for line in original: s.push(line.rstrip("\n")) # removing newline characters # overwrite the contents in LIFO order with open(path,"w") as new: while not s.is_empty(): new.write(s.pop()+"\n") # re-insert newline characters. return "Reversed" print(reverse_file("sample.txt"))
[ 6738, 8931, 62, 4871, 1330, 1635, 198, 4299, 9575, 62, 7753, 7, 6978, 2599, 198, 220, 220, 220, 37227, 5886, 13564, 1813, 2393, 1262, 663, 4732, 1627, 12, 1525, 12, 1370, 17687, 37811, 198, 220, 220, 220, 264, 28, 19182, 25896, 3419, 198, 220, 220, 220, 351, 1280, 7, 6978, 553, 81, 4943, 355, 2656, 25, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1627, 287, 2656, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 13, 14689, 7, 1370, 13, 81, 36311, 7203, 59, 77, 48774, 1303, 10829, 649, 1370, 3435, 628, 220, 220, 220, 1303, 49312, 262, 10154, 287, 406, 5064, 46, 1502, 198, 220, 220, 220, 351, 1280, 7, 6978, 553, 86, 4943, 355, 649, 25, 198, 220, 220, 220, 220, 220, 220, 220, 981, 407, 264, 13, 271, 62, 28920, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 649, 13, 13564, 7, 82, 13, 12924, 3419, 10, 1, 59, 77, 4943, 1303, 302, 12, 28463, 649, 1370, 3435, 13, 628, 220, 220, 220, 1441, 366, 3041, 690, 276, 1, 198, 198, 4798, 7, 50188, 62, 7753, 7203, 39873, 13, 14116, 48774, 198 ]
2.583756
197
import sys import os from simulaqron.toolbox import get_simulaqron_path # Get path to SimulaQron folder simulaqron_path = get_simulaqron_path.main() tot_nr = int(sys.argv[1]) # configure run files for nodes with open("run.sh", "w") as f: f.write("#!/bin/sh\n\n") for i in range(tot_nr - 1): f.write("python3 node.py {} {} &\n".format(i, tot_nr)) f.write("python3 node.py {} {}\n".format(tot_nr - 1, tot_nr)) with open("run_v2.sh", "w") as f: f.write("#!/bin/sh\n\n") for i in range(tot_nr - 1): f.write("python3 node_v2.py {} {} &\n".format(i, tot_nr)) f.write("python3 node_v2.py {} {}\n".format(tot_nr - 1, tot_nr)) # configure network nodes = "".join(["n" + str(i) + " " for i in range(tot_nr)]) os.system("python3 " + simulaqron_path + "configFiles.py " + nodes)
[ 11748, 25064, 198, 11748, 28686, 198, 198, 6738, 985, 4712, 80, 1313, 13, 25981, 3524, 1330, 651, 62, 14323, 4712, 80, 1313, 62, 6978, 198, 198, 2, 3497, 3108, 284, 3184, 4712, 48, 1313, 9483, 198, 14323, 4712, 80, 1313, 62, 6978, 796, 651, 62, 14323, 4712, 80, 1313, 62, 6978, 13, 12417, 3419, 198, 198, 83, 313, 62, 48624, 796, 493, 7, 17597, 13, 853, 85, 58, 16, 12962, 198, 198, 2, 17425, 1057, 3696, 329, 13760, 198, 198, 4480, 1280, 7203, 5143, 13, 1477, 1600, 366, 86, 4943, 355, 277, 25, 198, 220, 220, 220, 277, 13, 13564, 7203, 2, 48443, 8800, 14, 1477, 59, 77, 59, 77, 4943, 198, 220, 220, 220, 329, 1312, 287, 2837, 7, 83, 313, 62, 48624, 532, 352, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 277, 13, 13564, 7203, 29412, 18, 10139, 13, 9078, 23884, 23884, 1222, 59, 77, 1911, 18982, 7, 72, 11, 2006, 62, 48624, 4008, 198, 220, 220, 220, 277, 13, 13564, 7203, 29412, 18, 10139, 13, 9078, 23884, 23884, 59, 77, 1911, 18982, 7, 83, 313, 62, 48624, 532, 352, 11, 2006, 62, 48624, 4008, 198, 198, 4480, 1280, 7203, 5143, 62, 85, 17, 13, 1477, 1600, 366, 86, 4943, 355, 277, 25, 198, 220, 220, 220, 277, 13, 13564, 7203, 2, 48443, 8800, 14, 1477, 59, 77, 59, 77, 4943, 198, 220, 220, 220, 329, 1312, 287, 2837, 7, 83, 313, 62, 48624, 532, 352, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 277, 13, 13564, 7203, 29412, 18, 10139, 62, 85, 17, 13, 9078, 23884, 23884, 1222, 59, 77, 1911, 18982, 7, 72, 11, 2006, 62, 48624, 4008, 198, 220, 220, 220, 277, 13, 13564, 7203, 29412, 18, 10139, 62, 85, 17, 13, 9078, 23884, 23884, 59, 77, 1911, 18982, 7, 83, 313, 62, 48624, 532, 352, 11, 2006, 62, 48624, 4008, 198, 198, 2, 17425, 3127, 198, 198, 77, 4147, 796, 366, 1911, 22179, 7, 14692, 77, 1, 1343, 965, 7, 72, 8, 1343, 366, 366, 329, 1312, 287, 2837, 7, 83, 313, 62, 48624, 8, 12962, 198, 198, 418, 13, 10057, 7203, 29412, 18, 366, 1343, 985, 4712, 80, 1313, 62, 6978, 1343, 366, 11250, 25876, 13, 9078, 366, 1343, 13760, 8, 198 ]
2.193548
372
from .selection import Selection from .logging import logger from .dir import config_dir, cache_dir __all__ = [ 'Selection', 'logger', 'config_dir', 'cache_dir', ]
[ 6738, 764, 49283, 1330, 29538, 198, 6738, 764, 6404, 2667, 1330, 49706, 198, 6738, 764, 15908, 1330, 4566, 62, 15908, 11, 12940, 62, 15908, 198, 198, 834, 439, 834, 796, 685, 198, 220, 220, 220, 705, 4653, 1564, 3256, 198, 220, 220, 220, 705, 6404, 1362, 3256, 198, 220, 220, 220, 705, 11250, 62, 15908, 3256, 198, 220, 220, 220, 705, 23870, 62, 15908, 3256, 198, 60, 198 ]
2.661765
68
from __future__ import division,print_function #matplotlib inline #load_ext autoreload #autoreload 2 import sys from tqdm import tqdm_notebook as tqdm import random import matplotlib.pyplot as plt import math import numpy as np import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim import torch.nn.init as init from torch.autograd import Variable, grad from torchvision import datasets, transforms from torch.nn.parameter import Parameter import calculate_log as callog import warnings warnings.filterwarnings('ignore') torch.cuda.set_device(0) #Select the GPU torch_model = ResNet(BasicBlock, [3, 4, 6, 3], num_classes=10) torch_model.load('/nobackup-slow/dataset/my_xfdu/resnet_cifar10.pth') torch_model.cuda() torch_model.params = list(torch_model.parameters()) torch_model.eval() print("Done") batch_size = 128 mean = np.array([[0.4914, 0.4822, 0.4465]]).T std = np.array([[0.2023, 0.1994, 0.2010]]).T normalize = transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)) transform_train = transforms.Compose([ transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip(), transforms.ToTensor(), normalize ]) transform_test = transforms.Compose([ transforms.CenterCrop(size=(32, 32)), transforms.ToTensor(), normalize ]) train_loader = torch.utils.data.DataLoader( datasets.CIFAR10('/nobackup-slow/dataset/cifarpy', train=True, download=True, transform=transform_train), batch_size=batch_size, shuffle=True) test_loader = torch.utils.data.DataLoader( datasets.CIFAR10('/nobackup-slow/dataset/cifarpy', train=False, transform=transform_test), batch_size=batch_size) data_train = list(torch.utils.data.DataLoader( datasets.CIFAR10('/nobackup-slow/dataset/cifarpy', train=True, download=True, transform=transform_test), batch_size=1, shuffle=False)) data = list(torch.utils.data.DataLoader( datasets.CIFAR10('/nobackup-slow/dataset/cifarpy', train=False, download=True, transform=transform_test), batch_size=1, shuffle=False)) torch_model.eval() # correct = 0 # total = 0 # for x,y in test_loader: # x = x.cuda() # y = y.numpy() # correct += (y==np.argmax(torch_model(x).detach().cpu().numpy(),axis=1)).sum() # total += y.shape[0] # print("Accuracy: ",correct/total) cifar100 = list(torch.utils.data.DataLoader( datasets.CIFAR100('/nobackup-slow/dataset/cifarpy', train=False, download=True, transform=transform_test), batch_size=1, shuffle=True)) train_preds = [] train_confs = [] train_logits = [] for idx in range(0, len(data_train), 128): batch = torch.squeeze(torch.stack([x[0] for x in data_train[idx:idx + 128]]), dim=1).cuda() logits = torch_model(batch) confs = F.softmax(logits, dim=1).cpu().detach().numpy() preds = np.argmax(confs, axis=1) logits = (logits.cpu().detach().numpy()) train_confs.extend(np.max(confs, axis=1)) train_preds.extend(preds) train_logits.extend(logits) print("Done") test_preds = [] test_confs = [] test_logits = [] for idx in range(0, len(data), 128): batch = torch.squeeze(torch.stack([x[0] for x in data[idx:idx + 128]]), dim=1).cuda() logits = torch_model(batch) confs = F.softmax(logits, dim=1).cpu().detach().numpy() preds = np.argmax(confs, axis=1) logits = (logits.cpu().detach().numpy()) test_confs.extend(np.max(confs, axis=1)) test_preds.extend(preds) test_logits.extend(logits) print("Done") import calculate_log as callog detector = Detector() detector.compute_minmaxs(data_train, POWERS=range(1, 11)) detector.compute_test_deviations(POWERS=range(1, 11)) print("CIFAR-100") c100_results = detector.compute_ood_deviations(cifar100,POWERS=range(1,11))
[ 6738, 11593, 37443, 834, 1330, 7297, 11, 4798, 62, 8818, 198, 198, 2, 6759, 29487, 8019, 26098, 198, 2, 2220, 62, 2302, 1960, 382, 2220, 198, 2, 2306, 382, 2220, 362, 198, 198, 11748, 25064, 198, 6738, 256, 80, 36020, 1330, 256, 80, 36020, 62, 11295, 2070, 355, 256, 80, 36020, 198, 198, 11748, 4738, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 11748, 10688, 198, 198, 11748, 299, 32152, 355, 45941, 198, 198, 11748, 28034, 198, 11748, 28034, 13, 20471, 355, 299, 77, 198, 11748, 28034, 13, 20471, 13, 45124, 355, 376, 198, 11748, 28034, 13, 40085, 355, 6436, 198, 11748, 28034, 13, 20471, 13, 15003, 355, 2315, 198, 6738, 28034, 13, 2306, 519, 6335, 1330, 35748, 11, 3915, 198, 6738, 28034, 10178, 1330, 40522, 11, 31408, 198, 6738, 28034, 13, 20471, 13, 17143, 2357, 1330, 25139, 2357, 198, 198, 11748, 15284, 62, 6404, 355, 869, 519, 198, 198, 11748, 14601, 198, 40539, 654, 13, 24455, 40539, 654, 10786, 46430, 11537, 628, 198, 13165, 354, 13, 66, 15339, 13, 2617, 62, 25202, 7, 15, 8, 1303, 17563, 262, 11362, 628, 628, 198, 198, 13165, 354, 62, 19849, 796, 1874, 7934, 7, 26416, 12235, 11, 685, 18, 11, 604, 11, 718, 11, 513, 4357, 997, 62, 37724, 28, 940, 8, 198, 13165, 354, 62, 19849, 13, 2220, 10786, 14, 34952, 441, 929, 12, 38246, 14, 19608, 292, 316, 14, 1820, 62, 26152, 646, 14, 411, 3262, 62, 66, 361, 283, 940, 13, 79, 400, 11537, 198, 13165, 354, 62, 19849, 13, 66, 15339, 3419, 198, 13165, 354, 62, 19849, 13, 37266, 796, 1351, 7, 13165, 354, 62, 19849, 13, 17143, 7307, 28955, 198, 13165, 354, 62, 19849, 13, 18206, 3419, 198, 4798, 7203, 45677, 4943, 198, 198, 43501, 62, 7857, 796, 13108, 198, 32604, 796, 45941, 13, 18747, 26933, 58, 15, 13, 2920, 1415, 11, 657, 13, 2780, 1828, 11, 657, 13, 2598, 2996, 11907, 737, 51, 198, 198, 19282, 796, 45941, 13, 18747, 26933, 58, 15, 13, 1238, 1954, 11, 657, 13, 22666, 11, 657, 13, 10333, 11907, 737, 51, 198, 11265, 1096, 796, 31408, 13, 26447, 1096, 19510, 15, 13, 2920, 1415, 11, 657, 13, 2780, 1828, 11, 657, 13, 2598, 2996, 828, 357, 15, 13, 1238, 1954, 11, 657, 13, 22666, 11, 657, 13, 10333, 4008, 198, 198, 35636, 62, 27432, 796, 31408, 13, 7293, 577, 26933, 198, 220, 220, 220, 31408, 13, 29531, 34, 1773, 7, 2624, 11, 24511, 28, 19, 828, 198, 220, 220, 220, 31408, 13, 29531, 27991, 38342, 7414, 541, 22784, 198, 220, 220, 220, 31408, 13, 2514, 51, 22854, 22784, 198, 220, 220, 220, 3487, 1096, 198, 198, 12962, 198, 35636, 62, 9288, 796, 31408, 13, 7293, 577, 26933, 198, 220, 220, 220, 31408, 13, 23656, 34, 1773, 7, 7857, 16193, 2624, 11, 3933, 36911, 198, 220, 220, 220, 31408, 13, 2514, 51, 22854, 22784, 198, 220, 220, 220, 3487, 1096, 198, 12962, 198, 198, 27432, 62, 29356, 796, 28034, 13, 26791, 13, 7890, 13, 6601, 17401, 7, 198, 220, 220, 220, 40522, 13, 34, 5064, 1503, 940, 10786, 14, 34952, 441, 929, 12, 38246, 14, 19608, 292, 316, 14, 66, 361, 5117, 88, 3256, 4512, 28, 17821, 11, 4321, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6121, 28, 35636, 62, 27432, 828, 198, 220, 220, 220, 15458, 62, 7857, 28, 43501, 62, 7857, 11, 36273, 28, 17821, 8, 198, 9288, 62, 29356, 796, 28034, 13, 26791, 13, 7890, 13, 6601, 17401, 7, 198, 220, 220, 220, 40522, 13, 34, 5064, 1503, 940, 10786, 14, 34952, 441, 929, 12, 38246, 14, 19608, 292, 316, 14, 66, 361, 5117, 88, 3256, 4512, 28, 25101, 11, 6121, 28, 35636, 62, 9288, 828, 198, 220, 220, 220, 15458, 62, 7857, 28, 43501, 62, 7857, 8, 198, 198, 7890, 62, 27432, 796, 1351, 7, 13165, 354, 13, 26791, 13, 7890, 13, 6601, 17401, 7, 198, 220, 220, 220, 220, 220, 220, 220, 40522, 13, 34, 5064, 1503, 940, 10786, 14, 34952, 441, 929, 12, 38246, 14, 19608, 292, 316, 14, 66, 361, 5117, 88, 3256, 4512, 28, 17821, 11, 4321, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6121, 28, 35636, 62, 9288, 828, 198, 220, 220, 220, 220, 220, 220, 220, 15458, 62, 7857, 28, 16, 11, 36273, 28, 25101, 4008, 198, 198, 7890, 796, 1351, 7, 13165, 354, 13, 26791, 13, 7890, 13, 6601, 17401, 7, 198, 220, 220, 220, 40522, 13, 34, 5064, 1503, 940, 10786, 14, 34952, 441, 929, 12, 38246, 14, 19608, 292, 316, 14, 66, 361, 5117, 88, 3256, 4512, 28, 25101, 11, 4321, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6121, 28, 35636, 62, 9288, 828, 198, 220, 220, 220, 15458, 62, 7857, 28, 16, 11, 36273, 28, 25101, 4008, 628, 198, 13165, 354, 62, 19849, 13, 18206, 3419, 198, 2, 3376, 796, 657, 198, 2, 2472, 796, 657, 198, 2, 329, 2124, 11, 88, 287, 1332, 62, 29356, 25, 198, 2, 220, 220, 220, 220, 2124, 796, 2124, 13, 66, 15339, 3419, 198, 2, 220, 220, 220, 220, 331, 796, 331, 13, 77, 32152, 3419, 198, 2, 220, 220, 220, 220, 3376, 15853, 357, 88, 855, 37659, 13, 853, 9806, 7, 13165, 354, 62, 19849, 7, 87, 737, 15255, 620, 22446, 36166, 22446, 77, 32152, 22784, 22704, 28, 16, 29720, 16345, 3419, 198, 2, 220, 220, 220, 220, 2472, 15853, 331, 13, 43358, 58, 15, 60, 198, 2, 3601, 7203, 17320, 23843, 25, 33172, 30283, 14, 23350, 8, 628, 198, 66, 361, 283, 3064, 796, 1351, 7, 13165, 354, 13, 26791, 13, 7890, 13, 6601, 17401, 7, 198, 220, 220, 220, 40522, 13, 34, 5064, 1503, 3064, 10786, 14, 34952, 441, 929, 12, 38246, 14, 19608, 292, 316, 14, 66, 361, 5117, 88, 3256, 4512, 28, 25101, 11, 4321, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6121, 28, 35636, 62, 9288, 828, 198, 220, 220, 220, 15458, 62, 7857, 28, 16, 11, 36273, 28, 17821, 4008, 198, 198, 27432, 62, 28764, 82, 796, 17635, 198, 27432, 62, 1102, 9501, 796, 17635, 198, 27432, 62, 6404, 896, 796, 17635, 198, 1640, 4686, 87, 287, 2837, 7, 15, 11, 18896, 7, 7890, 62, 27432, 828, 13108, 2599, 198, 220, 220, 220, 15458, 796, 28034, 13, 16485, 1453, 2736, 7, 13165, 354, 13, 25558, 26933, 87, 58, 15, 60, 329, 2124, 287, 1366, 62, 27432, 58, 312, 87, 25, 312, 87, 1343, 13108, 11907, 828, 5391, 28, 16, 737, 66, 15339, 3419, 628, 220, 220, 220, 2604, 896, 796, 28034, 62, 19849, 7, 43501, 8, 198, 220, 220, 220, 1013, 82, 796, 376, 13, 4215, 9806, 7, 6404, 896, 11, 5391, 28, 16, 737, 36166, 22446, 15255, 620, 22446, 77, 32152, 3419, 198, 220, 220, 220, 2747, 82, 796, 45941, 13, 853, 9806, 7, 1102, 9501, 11, 16488, 28, 16, 8, 198, 220, 220, 220, 2604, 896, 796, 357, 6404, 896, 13, 36166, 22446, 15255, 620, 22446, 77, 32152, 28955, 628, 220, 220, 220, 4512, 62, 1102, 9501, 13, 2302, 437, 7, 37659, 13, 9806, 7, 1102, 9501, 11, 16488, 28, 16, 4008, 198, 220, 220, 220, 4512, 62, 28764, 82, 13, 2302, 437, 7, 28764, 82, 8, 198, 220, 220, 220, 4512, 62, 6404, 896, 13, 2302, 437, 7, 6404, 896, 8, 198, 4798, 7203, 45677, 4943, 198, 198, 9288, 62, 28764, 82, 796, 17635, 198, 9288, 62, 1102, 9501, 796, 17635, 198, 9288, 62, 6404, 896, 796, 17635, 198, 198, 1640, 4686, 87, 287, 2837, 7, 15, 11, 18896, 7, 7890, 828, 13108, 2599, 198, 220, 220, 220, 15458, 796, 28034, 13, 16485, 1453, 2736, 7, 13165, 354, 13, 25558, 26933, 87, 58, 15, 60, 329, 2124, 287, 1366, 58, 312, 87, 25, 312, 87, 1343, 13108, 11907, 828, 5391, 28, 16, 737, 66, 15339, 3419, 628, 220, 220, 220, 2604, 896, 796, 28034, 62, 19849, 7, 43501, 8, 198, 220, 220, 220, 1013, 82, 796, 376, 13, 4215, 9806, 7, 6404, 896, 11, 5391, 28, 16, 737, 36166, 22446, 15255, 620, 22446, 77, 32152, 3419, 198, 220, 220, 220, 2747, 82, 796, 45941, 13, 853, 9806, 7, 1102, 9501, 11, 16488, 28, 16, 8, 198, 220, 220, 220, 2604, 896, 796, 357, 6404, 896, 13, 36166, 22446, 15255, 620, 22446, 77, 32152, 28955, 628, 220, 220, 220, 1332, 62, 1102, 9501, 13, 2302, 437, 7, 37659, 13, 9806, 7, 1102, 9501, 11, 16488, 28, 16, 4008, 198, 220, 220, 220, 1332, 62, 28764, 82, 13, 2302, 437, 7, 28764, 82, 8, 198, 220, 220, 220, 1332, 62, 6404, 896, 13, 2302, 437, 7, 6404, 896, 8, 198, 4798, 7203, 45677, 4943, 198, 198, 11748, 15284, 62, 6404, 355, 869, 519, 628, 628, 628, 198, 198, 15255, 9250, 796, 4614, 9250, 3419, 198, 15255, 9250, 13, 5589, 1133, 62, 1084, 9806, 82, 7, 7890, 62, 27432, 11, 24148, 4877, 28, 9521, 7, 16, 11, 1367, 4008, 198, 198, 15255, 9250, 13, 5589, 1133, 62, 9288, 62, 7959, 40356, 7, 47, 3913, 4877, 28, 9521, 7, 16, 11, 1367, 4008, 198, 198, 4798, 7203, 34, 5064, 1503, 12, 3064, 4943, 198, 66, 3064, 62, 43420, 796, 31029, 13, 5589, 1133, 62, 702, 62, 7959, 40356, 7, 66, 361, 283, 3064, 11, 47, 3913, 4877, 28, 9521, 7, 16, 11, 1157, 4008 ]
2.419497
1,590
import logging import math from misaka import Markdown, HtmlRenderer from lxml.html import fromstring # https://stackoverflow.com/a/3155023 millnames = ['',' thousand',' million',' billion',' trillion']
[ 11748, 18931, 198, 11748, 10688, 198, 198, 6738, 2984, 8130, 1330, 2940, 2902, 11, 367, 20369, 49, 437, 11882, 198, 6738, 300, 19875, 13, 6494, 1330, 422, 8841, 198, 198, 2, 3740, 1378, 25558, 2502, 11125, 13, 785, 14, 64, 14, 27936, 1120, 1954, 198, 17805, 14933, 796, 37250, 41707, 7319, 41707, 1510, 41707, 2997, 41707, 12989, 20520 ]
3.517241
58
from flask import Flask from elasticsearch import Elasticsearch from contact import Contact class Handler(object): """ Handles operations on elasticsearch. """ def list_contacts(self, arguments): """ Returns a list of contacts or False. """ try: self.es.indices.refresh(index = self.index_name) res = self.es.search(index = self.index_name, body = { "from": arguments["page"] * arguments["pageSize"], "size": arguments["pageSize"], "query": arguments["query"] }) return res['hits']['hits'] except: return False def create_contact(self, form): """ Creates contact from form data. Returns True if successful. """ try: if self._get_contact(form['name']): #contact by that name exists return False else: contact = Contact(form) res = self.es.index(index = self.index_name, doc_type = '_doc', body = str(contact)) return res['result'] == 'created' except: return False def list_a_contact(self, name): """ Returns data on a single contact identified by name. """ try: return self._get_contact(name)['_source'] except: return False def update_contact(self, form): """ Update a contact using form data. Returns True if successful. """ try: if self.delete_contact(form['name']): return self.create_contact(form) else: return False except: return False def delete_contact(self, name): """ Delete a contact identified by name. Returns True if successful. """ try: contact_id = self._get_contact(name)['_id'] res = self.es.delete(index = self.index_name, doc_type = '_doc', id = contact_id) return res['result'] == 'deleted' except: return False
[ 6738, 42903, 1330, 46947, 198, 6738, 27468, 12947, 1330, 48567, 12947, 198, 6738, 2800, 1330, 14039, 628, 198, 4871, 32412, 7, 15252, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 7157, 829, 4560, 319, 27468, 12947, 13, 198, 220, 220, 220, 37227, 628, 198, 220, 220, 220, 825, 1351, 62, 3642, 8656, 7, 944, 11, 7159, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 16409, 257, 1351, 286, 13961, 393, 10352, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 274, 13, 521, 1063, 13, 5420, 3447, 7, 9630, 796, 2116, 13, 9630, 62, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 581, 796, 2116, 13, 274, 13, 12947, 7, 9630, 796, 2116, 13, 9630, 62, 3672, 11, 1767, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 6738, 1298, 7159, 14692, 7700, 8973, 1635, 7159, 14692, 7700, 10699, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 7857, 1298, 7159, 14692, 7700, 10699, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 22766, 1298, 7159, 14692, 22766, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 32092, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 581, 17816, 71, 896, 6, 7131, 6, 71, 896, 20520, 628, 220, 220, 220, 220, 220, 220, 220, 2845, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 628, 198, 220, 220, 220, 825, 2251, 62, 32057, 7, 944, 11, 1296, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 7921, 274, 2800, 422, 1296, 1366, 13, 16409, 6407, 611, 4388, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13557, 1136, 62, 32057, 7, 687, 17816, 3672, 20520, 2599, 1303, 32057, 416, 326, 1438, 7160, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2800, 796, 14039, 7, 687, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 581, 796, 2116, 13, 274, 13, 9630, 7, 9630, 796, 2116, 13, 9630, 62, 3672, 11, 2205, 62, 4906, 796, 705, 62, 15390, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1767, 796, 965, 7, 32057, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 581, 17816, 20274, 20520, 6624, 705, 25598, 6, 628, 220, 220, 220, 220, 220, 220, 220, 2845, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 628, 198, 220, 220, 220, 825, 1351, 62, 64, 62, 32057, 7, 944, 11, 1438, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 16409, 1366, 319, 257, 2060, 2800, 5174, 416, 1438, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 220, 2116, 13557, 1136, 62, 32057, 7, 3672, 8, 17816, 62, 10459, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 628, 198, 220, 220, 220, 825, 4296, 62, 32057, 7, 944, 11, 1296, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 10133, 257, 2800, 1262, 1296, 1366, 13, 16409, 6407, 611, 4388, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 33678, 62, 32057, 7, 687, 17816, 3672, 20520, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 17953, 62, 32057, 7, 687, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 628, 220, 220, 220, 825, 12233, 62, 32057, 7, 944, 11, 1438, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 23520, 257, 2800, 5174, 416, 1438, 13, 16409, 6407, 611, 4388, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2800, 62, 312, 796, 2116, 13557, 1136, 62, 32057, 7, 3672, 8, 17816, 62, 312, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 581, 796, 2116, 13, 274, 13, 33678, 7, 9630, 796, 2116, 13, 9630, 62, 3672, 11, 2205, 62, 4906, 796, 705, 62, 15390, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4686, 796, 2800, 62, 312, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 581, 17816, 20274, 20520, 6624, 705, 2934, 33342, 6, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 198 ]
2.058052
1,068
from django.db import models from django.contrib.auth.models import User # Create your models here.
[ 6738, 42625, 14208, 13, 9945, 1330, 4981, 198, 6738, 42625, 14208, 13, 3642, 822, 13, 18439, 13, 27530, 1330, 11787, 198, 198, 2, 13610, 534, 4981, 994, 13, 628, 628, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 628 ]
2.829268
41
import arcpy source = "C:\\TxDOT\\Shapefiles\\District_Offices.shp" outputcopy = "T:\\DATAMGT\\MAPPING\\Personal Folders\\Adam\\District_Offices.shp" copyPhone()
[ 11748, 10389, 9078, 198, 10459, 796, 366, 34, 25, 6852, 46047, 35, 2394, 6852, 33383, 16624, 6852, 44857, 62, 9362, 1063, 13, 1477, 79, 1, 198, 22915, 30073, 796, 366, 51, 25, 6852, 35, 1404, 2390, 19555, 6852, 44, 24805, 2751, 6852, 30228, 39957, 364, 6852, 23159, 6852, 44857, 62, 9362, 1063, 13, 1477, 79, 1, 198, 30073, 6132, 3419, 198 ]
2.655738
61
from novmpy.bridge import * from capstone import * from capstone.x86 import * from novmpy.x86_deobf import * from novmpy.match_helper import *
[ 6738, 645, 85, 3149, 88, 13, 9458, 1330, 1635, 198, 6738, 1451, 6440, 1330, 1635, 198, 6738, 1451, 6440, 13, 87, 4521, 1330, 1635, 198, 6738, 645, 85, 3149, 88, 13, 87, 4521, 62, 2934, 672, 69, 1330, 1635, 198, 6738, 645, 85, 3149, 88, 13, 15699, 62, 2978, 525, 1330, 1635, 628, 198 ]
2.685185
54
#!/usr/bin/env python import rospy import smach_ros from smach_tutorial.BasicStateMachine import BasicStateMachine_0,\ BasicStateMachine_1,\ BasicStateMachine_2 ##----------------------------------------------------------------------------------- # Example ##----------------------------------------------------------------------------------- if __name__ == '__main__': rospy.init_node('tutorial_node') main() #Change to main1 to call your function
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 198, 11748, 686, 2777, 88, 198, 11748, 895, 620, 62, 4951, 198, 198, 6738, 895, 620, 62, 83, 44917, 13, 26416, 9012, 37573, 1330, 14392, 9012, 37573, 62, 15, 11, 59, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14392, 9012, 37573, 62, 16, 11, 59, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14392, 9012, 37573, 62, 17, 198, 2235, 10097, 1783, 6329, 198, 2, 17934, 198, 198, 2235, 10097, 1783, 6329, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 686, 2777, 88, 13, 15003, 62, 17440, 10786, 83, 44917, 62, 17440, 11537, 198, 220, 220, 220, 1388, 3419, 1303, 19400, 284, 1388, 16, 284, 869, 534, 2163, 198 ]
2.741294
201
#!/usr/bin/env python from translate.convert import xliff2po from translate.misc import wStringIO from translate.storage.test_base import headerless_len, first_translatable class TestBasicXLIFF2PO(TestXLIFF2PO): """This tests a basic XLIFF file without xmlns attribute""" xliffskeleton = '''<?xml version="1.0" ?> <xliff version="1.1"> <file original="filename.po" source-language="en-US" datatype="po"> <body> %s </body> </file> </xliff>'''
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 198, 6738, 15772, 13, 1102, 1851, 1330, 2124, 75, 733, 17, 7501, 198, 6738, 15772, 13, 44374, 1330, 266, 10100, 9399, 198, 6738, 15772, 13, 35350, 13, 9288, 62, 8692, 1330, 13639, 1203, 62, 11925, 11, 717, 62, 7645, 49009, 628, 198, 4871, 6208, 26416, 32457, 29267, 17, 16402, 7, 14402, 32457, 29267, 17, 16402, 2599, 198, 220, 220, 220, 37227, 1212, 5254, 257, 4096, 16276, 29267, 2393, 1231, 35555, 5907, 11688, 37811, 628, 220, 220, 220, 2124, 75, 10203, 38800, 796, 705, 7061, 47934, 19875, 2196, 2625, 16, 13, 15, 1, 5633, 29, 198, 27, 87, 75, 733, 2196, 2625, 16, 13, 16, 5320, 198, 220, 1279, 7753, 2656, 2625, 34345, 13, 7501, 1, 2723, 12, 16129, 2625, 268, 12, 2937, 1, 4818, 265, 2981, 2625, 7501, 5320, 198, 220, 220, 220, 1279, 2618, 29, 198, 220, 220, 220, 220, 220, 220, 220, 4064, 82, 198, 220, 220, 220, 7359, 2618, 29, 198, 220, 7359, 7753, 29, 198, 3556, 87, 75, 733, 29, 7061, 6, 198 ]
2.693182
176
""" Your colleagues have been looking over you shoulder. When you should have been doing your boring real job, you've been using the work computers to smash in endless hours of codewars. In a team meeting, a terrible, awful person declares to the group that you aren't working. You're in trouble. You quickly have to gauge the feeling in the room to decide whether or not you should gather your things and leave. Given an object (meet) containing team member names as keys, and their happiness rating out of 10 as the value, you need to assess the overall happiness rating of the group. If <= 5, return 'Get Out Now!'. Else return 'Nice Work Champ!'. Happiness rating will be total score / number of people in the room. Note that your boss is in the room (boss), their score is worth double it's face value (but they are still just one person!). """ """ test.assert_equals(outed({'tim':0, 'jim':2, 'randy':0, 'sandy':7, 'andy':0, 'katie':5, 'laura':1, 'saajid':2, 'alex':3, 'john':2, 'mr':0}, 'laura'), 'Get Out Now!') test.assert_equals(outed({'tim':1, 'jim':3, 'randy':9, 'sandy':6, 'andy':7, 'katie':6, 'laura':9, 'saajid':9, 'alex':9, 'john':9, 'mr':8}, 'katie'), 'Nice Work Champ!') test.assert_equals(outed({'tim':2, 'jim':4, 'randy':0, 'sandy':5, 'andy':8, 'katie':6, 'laura':2, 'saajid':2, 'alex':3, 'john':2, 'mr':8}, 'john'), 'Get Out Now!') """
[ 37811, 3406, 7810, 423, 587, 2045, 625, 345, 8163, 13, 1649, 345, 815, 423, 587, 1804, 534, 14262, 1103, 1693, 11, 345, 1053, 587, 1262, 262, 670, 9061, 284, 24273, 287, 13079, 2250, 286, 14873, 413, 945, 13, 198, 198, 818, 257, 1074, 3249, 11, 257, 7818, 11, 12659, 1048, 24183, 284, 262, 1448, 326, 345, 3588, 470, 1762, 13, 921, 821, 287, 5876, 13, 921, 2952, 423, 284, 18266, 262, 4203, 287, 262, 2119, 284, 5409, 1771, 393, 407, 345, 815, 6431, 534, 1243, 290, 2666, 13, 198, 198, 15056, 281, 2134, 357, 47745, 8, 7268, 1074, 2888, 3891, 355, 8251, 11, 290, 511, 12157, 7955, 503, 286, 838, 355, 262, 1988, 11, 345, 761, 284, 4659, 262, 4045, 12157, 7955, 286, 262, 1448, 13, 1002, 19841, 642, 11, 1441, 705, 3855, 3806, 2735, 0, 4458, 25974, 1441, 705, 35284, 5521, 29260, 0, 4458, 198, 198, 39, 42661, 7955, 481, 307, 2472, 4776, 1220, 1271, 286, 661, 287, 262, 2119, 13, 198, 198, 6425, 326, 534, 6478, 318, 287, 262, 2119, 357, 42820, 828, 511, 4776, 318, 2861, 4274, 340, 338, 1986, 1988, 357, 4360, 484, 389, 991, 655, 530, 1048, 19588, 37227, 198, 198, 37811, 220, 198, 9288, 13, 30493, 62, 4853, 874, 7, 18534, 15090, 6, 16514, 10354, 15, 11, 705, 73, 320, 10354, 17, 11, 705, 81, 10757, 10354, 15, 11, 705, 82, 10757, 10354, 22, 11, 705, 10757, 10354, 15, 11, 705, 41826, 494, 10354, 20, 11, 705, 75, 33830, 10354, 16, 11, 705, 11400, 1228, 312, 10354, 17, 11, 705, 1000, 87, 10354, 18, 11, 705, 30686, 10354, 17, 11, 705, 43395, 10354, 15, 5512, 705, 75, 33830, 33809, 705, 3855, 3806, 2735, 0, 11537, 198, 9288, 13, 30493, 62, 4853, 874, 7, 18534, 15090, 6, 16514, 10354, 16, 11, 705, 73, 320, 10354, 18, 11, 705, 81, 10757, 10354, 24, 11, 705, 82, 10757, 10354, 21, 11, 705, 10757, 10354, 22, 11, 705, 41826, 494, 10354, 21, 11, 705, 75, 33830, 10354, 24, 11, 705, 11400, 1228, 312, 10354, 24, 11, 705, 1000, 87, 10354, 24, 11, 705, 30686, 10354, 24, 11, 705, 43395, 10354, 23, 5512, 705, 41826, 494, 33809, 705, 35284, 5521, 29260, 0, 11537, 198, 9288, 13, 30493, 62, 4853, 874, 7, 18534, 15090, 6, 16514, 10354, 17, 11, 705, 73, 320, 10354, 19, 11, 705, 81, 10757, 10354, 15, 11, 705, 82, 10757, 10354, 20, 11, 705, 10757, 10354, 23, 11, 705, 41826, 494, 10354, 21, 11, 705, 75, 33830, 10354, 17, 11, 705, 11400, 1228, 312, 10354, 17, 11, 705, 1000, 87, 10354, 18, 11, 705, 30686, 10354, 17, 11, 705, 43395, 10354, 23, 5512, 705, 30686, 33809, 705, 3855, 3806, 2735, 0, 11537, 37227, 198 ]
3.040179
448
from app_couriers.serializers import CourierSerializer from .models import Orders
[ 6738, 598, 62, 66, 280, 8910, 13, 46911, 11341, 1330, 34268, 32634, 7509, 198, 6738, 764, 27530, 1330, 30689, 628 ]
4.15
20
''' Implementation of Rapid Automatic Keyword Extraction (RAKE) algorithm for Chinese Original algorithm described in: Rose, S., Engel, D., Cramer, N., & Cowley, W. (2010). Automatic Keyword Extraction from Individual Documents. In M. W. Berry & J. Kogan (Eds.), Text Mining: Theory and Applications: John Wiley & Sons. ''' __author__ = "Ruoyang Xu" import jieba import jieba.posseg as pseg import operator import json from collections import Counter # Data structure for holding data # Check if contains num # Read Target Case if Json if __name__ == '__main__': with open('data/testCase/文本1.txt','r') as fp: text = fp.read() result = run(text) print(result)
[ 7061, 6, 198, 3546, 32851, 286, 26430, 30199, 7383, 4775, 5683, 7861, 357, 3861, 7336, 8, 11862, 329, 3999, 198, 20556, 11862, 3417, 287, 25, 8049, 11, 311, 1539, 46073, 11, 360, 1539, 327, 29172, 11, 399, 1539, 1222, 10417, 1636, 11, 370, 13, 357, 10333, 737, 198, 16541, 13730, 7383, 4775, 5683, 7861, 422, 18629, 33267, 13, 554, 337, 13, 370, 13, 20165, 1222, 449, 13, 509, 9632, 198, 7, 7407, 82, 12179, 8255, 29269, 25, 17003, 290, 26622, 25, 1757, 43424, 1222, 27989, 13, 220, 198, 7061, 6, 198, 834, 9800, 834, 796, 366, 40464, 726, 648, 33591, 1, 198, 198, 11748, 474, 494, 7012, 198, 11748, 474, 494, 7012, 13, 1930, 325, 70, 355, 15838, 70, 198, 11748, 10088, 198, 11748, 33918, 198, 6738, 17268, 1330, 15034, 628, 198, 2, 6060, 4645, 329, 4769, 1366, 198, 198, 2, 6822, 611, 4909, 997, 198, 198, 2, 4149, 12744, 8913, 611, 449, 1559, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 351, 1280, 10786, 7890, 14, 9288, 20448, 14, 23877, 229, 17312, 105, 16, 13, 14116, 41707, 81, 11537, 355, 277, 79, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2420, 796, 277, 79, 13, 961, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 1057, 7, 5239, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 20274, 8, 198 ]
2.965812
234
from pwn import * # type: ignore context.binary = "./SaveTheWorld" p = process() p.sendline(b"A" * 72 + b"Jotaro!!" + b"Star Platinum!!!" + b"HORA" + b"9999") p.recvuntil(b"Congratulation, you won!!!") os.system("grep .*{.*}.* victory_recap.txt")
[ 6738, 279, 675, 1330, 1635, 220, 1303, 2099, 25, 8856, 198, 198, 22866, 13, 39491, 796, 366, 19571, 16928, 464, 10603, 1, 198, 79, 796, 1429, 3419, 198, 79, 13, 21280, 1370, 7, 65, 1, 32, 1, 1635, 7724, 1343, 275, 1, 41, 313, 12022, 37160, 1343, 275, 1, 8248, 23851, 3228, 2474, 1343, 275, 1, 39, 1581, 32, 1, 1343, 275, 1, 24214, 4943, 198, 79, 13, 8344, 85, 28446, 7, 65, 1, 18649, 10366, 1741, 11, 345, 1839, 3228, 2474, 8, 198, 418, 13, 10057, 7203, 70, 7856, 764, 9, 90, 15885, 92, 15885, 5373, 62, 8344, 499, 13, 14116, 4943, 198 ]
2.394231
104
Desc = cellDescClass("CMPR32X1") Desc.properties["cell_leakage_power"] = "3632.359140" Desc.properties["cell_footprint"] = "add32" Desc.properties["area"] = "69.854400" Desc.pinOrder = ['A', 'B', 'C', 'CO', 'S'] Desc.add_arc("A","S","combi") Desc.add_arc("B","S","combi") Desc.add_arc("C","S","combi") Desc.add_arc("A","CO","combi") Desc.add_arc("B","CO","combi") Desc.add_arc("C","CO","combi") Desc.add_param("area",69.854400); Desc.add_pin("A","input") Desc.add_pin("C","input") Desc.add_pin("B","input") Desc.add_pin("CO","output") Desc.add_pin_func("CO","unknown") Desc.add_pin("S","output") Desc.add_pin_func("S","unknown") CellLib["CMPR32X1"]=Desc
[ 24564, 796, 2685, 24564, 9487, 7203, 24187, 4805, 2624, 55, 16, 4943, 198, 24564, 13, 48310, 14692, 3846, 62, 293, 461, 496, 62, 6477, 8973, 796, 366, 2623, 2624, 13, 30743, 15187, 1, 198, 24564, 13, 48310, 14692, 3846, 62, 5898, 4798, 8973, 796, 366, 2860, 2624, 1, 198, 24564, 13, 48310, 14692, 20337, 8973, 796, 366, 3388, 13, 5332, 2598, 405, 1, 198, 24564, 13, 11635, 18743, 796, 37250, 32, 3256, 705, 33, 3256, 705, 34, 3256, 705, 8220, 3256, 705, 50, 20520, 198, 24564, 13, 2860, 62, 5605, 7203, 32, 2430, 50, 2430, 785, 8482, 4943, 198, 24564, 13, 2860, 62, 5605, 7203, 33, 2430, 50, 2430, 785, 8482, 4943, 198, 24564, 13, 2860, 62, 5605, 7203, 34, 2430, 50, 2430, 785, 8482, 4943, 198, 24564, 13, 2860, 62, 5605, 7203, 32, 2430, 8220, 2430, 785, 8482, 4943, 198, 24564, 13, 2860, 62, 5605, 7203, 33, 2430, 8220, 2430, 785, 8482, 4943, 198, 24564, 13, 2860, 62, 5605, 7203, 34, 2430, 8220, 2430, 785, 8482, 4943, 198, 24564, 13, 2860, 62, 17143, 7203, 20337, 1600, 3388, 13, 5332, 2598, 405, 1776, 198, 24564, 13, 2860, 62, 11635, 7203, 32, 2430, 15414, 4943, 198, 24564, 13, 2860, 62, 11635, 7203, 34, 2430, 15414, 4943, 198, 24564, 13, 2860, 62, 11635, 7203, 33, 2430, 15414, 4943, 198, 24564, 13, 2860, 62, 11635, 7203, 8220, 2430, 22915, 4943, 198, 24564, 13, 2860, 62, 11635, 62, 20786, 7203, 8220, 2430, 34680, 4943, 198, 24564, 13, 2860, 62, 11635, 7203, 50, 2430, 22915, 4943, 198, 24564, 13, 2860, 62, 11635, 62, 20786, 7203, 50, 2430, 34680, 4943, 198, 28780, 25835, 14692, 24187, 4805, 2624, 55, 16, 8973, 28, 24564, 198 ]
2.361011
277
""" ---> Univalued Binary Tree ---> Easy """ from tree_func import * in_array = [1, 1, 1, 1, 1, None, 1] in_root = to_binary_tree(in_array) pretty_print(in_root) a = Solution() print("Answer -", a.isUnivalTree(in_root)) # print("Answer -", a.isUnivalTree(in_root)) """ Check if node is none or node.value should be equal to root value for that and every other node in its children Reference - https://leetcode.com/problems/univalued-binary-tree/discuss/211397/JavaPython-3-BFS-and-DFS-clean-codes-w-brief-analysis. """
[ 37811, 198, 198, 438, 3784, 791, 2473, 1739, 45755, 12200, 198, 438, 3784, 16789, 198, 198, 37811, 628, 198, 6738, 5509, 62, 20786, 1330, 1635, 628, 198, 198, 259, 62, 18747, 796, 685, 16, 11, 352, 11, 352, 11, 352, 11, 352, 11, 6045, 11, 352, 60, 198, 259, 62, 15763, 796, 284, 62, 39491, 62, 21048, 7, 259, 62, 18747, 8, 198, 37784, 62, 4798, 7, 259, 62, 15763, 8, 198, 64, 796, 28186, 3419, 198, 4798, 7203, 33706, 532, 1600, 257, 13, 271, 3118, 2473, 27660, 7, 259, 62, 15763, 4008, 198, 2, 3601, 7203, 33706, 532, 1600, 257, 13, 271, 3118, 2473, 27660, 7, 259, 62, 15763, 4008, 628, 198, 37811, 198, 9787, 611, 10139, 318, 4844, 393, 10139, 13, 8367, 815, 307, 4961, 284, 6808, 1988, 329, 326, 290, 790, 584, 10139, 287, 663, 1751, 198, 26687, 532, 3740, 1378, 293, 316, 8189, 13, 785, 14, 1676, 22143, 14, 403, 2473, 1739, 12, 39491, 12, 21048, 14, 15410, 1046, 14, 21895, 33372, 14, 29584, 37906, 12, 18, 12, 33, 10652, 12, 392, 12, 8068, 50, 12, 27773, 12, 40148, 12, 86, 12, 65, 3796, 12, 20930, 13, 198, 37811, 198 ]
2.721649
194
import os import struct import numpy as np def load_mnist(path, kind='train'): """Load MNIST data from `path`""" labels_path = os.path.join(path, '%s-labels.idx1-ubyte' % kind) images_path = os.path.join(path, '%s-images.idx3-ubyte' % kind) with open(labels_path, 'rb') as lbpath: magic, n = struct.unpack('>II', lbpath.read(8)) labels = np.fromfile(lbpath, dtype=np.uint8) labels = labels.reshape(labels.shape[0], 1) with open(images_path, 'rb') as imgpath: magic, num, rows, cols = struct.unpack('>IIII', imgpath.read(16)) images = np.fromfile(imgpath, dtype=np.uint8).reshape(len(labels), 784) return images, labels
[ 11748, 28686, 198, 11748, 2878, 198, 11748, 299, 32152, 355, 45941, 198, 198, 4299, 3440, 62, 10295, 396, 7, 6978, 11, 1611, 11639, 27432, 6, 2599, 198, 220, 220, 220, 37227, 8912, 29060, 8808, 1366, 422, 4600, 6978, 63, 37811, 198, 220, 220, 220, 14722, 62, 6978, 796, 28686, 13, 6978, 13, 22179, 7, 6978, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4, 82, 12, 23912, 1424, 13, 312, 87, 16, 12, 549, 88, 660, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4064, 1611, 8, 198, 220, 220, 220, 4263, 62, 6978, 796, 28686, 13, 6978, 13, 22179, 7, 6978, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4, 82, 12, 17566, 13, 312, 87, 18, 12, 549, 88, 660, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4064, 1611, 8, 198, 220, 220, 220, 351, 1280, 7, 23912, 1424, 62, 6978, 11, 705, 26145, 11537, 355, 18360, 6978, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5536, 11, 299, 796, 2878, 13, 403, 8002, 10786, 29, 3978, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18360, 6978, 13, 961, 7, 23, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 14722, 796, 45941, 13, 6738, 7753, 7, 23160, 6978, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 4906, 28, 37659, 13, 28611, 23, 8, 198, 220, 220, 220, 220, 220, 220, 220, 14722, 796, 14722, 13, 3447, 1758, 7, 23912, 1424, 13, 43358, 58, 15, 4357, 352, 8, 628, 220, 220, 220, 351, 1280, 7, 17566, 62, 6978, 11, 705, 26145, 11537, 355, 33705, 6978, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5536, 11, 997, 11, 15274, 11, 951, 82, 796, 2878, 13, 403, 8002, 10786, 29, 3978, 3978, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 33705, 6978, 13, 961, 7, 1433, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 4263, 796, 45941, 13, 6738, 7753, 7, 9600, 6978, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 4906, 28, 37659, 13, 28611, 23, 737, 3447, 1758, 7, 11925, 7, 23912, 1424, 828, 767, 5705, 8, 628, 220, 220, 220, 1441, 4263, 11, 14722 ]
1.688057
561
arr = [1, 2, 3, 4, 4, 4, 5, 6, 6, 7, 8, 9] arr.sort() my_dict = {i:arr.count(i) for i in arr} # sorting the dictionary based on value my_dict = {k: v for k, v in sorted(my_dict.items(), key=lambda item: item[1])} print(len(my_dict)) print(my_dict) list = list(my_dict.keys()) print(list[-1])
[ 3258, 796, 685, 16, 11, 362, 11, 513, 11, 604, 11, 604, 11, 604, 11, 642, 11, 718, 11, 718, 11, 767, 11, 807, 11, 860, 60, 198, 3258, 13, 30619, 3419, 198, 1820, 62, 11600, 796, 1391, 72, 25, 3258, 13, 9127, 7, 72, 8, 329, 1312, 287, 5240, 92, 198, 198, 2, 29407, 262, 22155, 1912, 319, 1988, 198, 1820, 62, 11600, 796, 1391, 74, 25, 410, 329, 479, 11, 410, 287, 23243, 7, 1820, 62, 11600, 13, 23814, 22784, 1994, 28, 50033, 2378, 25, 2378, 58, 16, 12962, 92, 198, 198, 4798, 7, 11925, 7, 1820, 62, 11600, 4008, 198, 4798, 7, 1820, 62, 11600, 8, 198, 4868, 796, 1351, 7, 1820, 62, 11600, 13, 13083, 28955, 198, 4798, 7, 4868, 58, 12, 16, 12962, 628 ]
2.286822
129
#coding=utf-8 ''' Created on 2016-1-18 @author: Devuser ''' from django import template from doraemon.auth_extend.user.templatetags.auth_required_node import LogoutRequiredNode,LoginRequiredNode,UserRequiredNode,ManagerRequiredNode,AdminRequiredNode register = template.Library() @register.tag() @register.tag() @register.tag() @register.tag() @register.tag()
[ 2, 66, 7656, 28, 40477, 12, 23, 198, 7061, 6, 198, 41972, 319, 1584, 12, 16, 12, 1507, 198, 198, 31, 9800, 25, 6245, 7220, 198, 7061, 6, 198, 198, 6738, 42625, 14208, 1330, 11055, 198, 6738, 288, 5799, 7966, 13, 18439, 62, 2302, 437, 13, 7220, 13, 11498, 489, 265, 316, 3775, 13, 18439, 62, 35827, 62, 17440, 1330, 5972, 448, 37374, 19667, 11, 47790, 37374, 19667, 11, 12982, 37374, 19667, 11, 13511, 37374, 19667, 11, 46787, 37374, 19667, 198, 198, 30238, 796, 11055, 13, 23377, 3419, 628, 198, 198, 31, 30238, 13, 12985, 3419, 198, 198, 31, 30238, 13, 12985, 3419, 198, 198, 31, 30238, 13, 12985, 3419, 198, 198, 31, 30238, 13, 12985, 3419, 198, 198, 31, 30238, 13, 12985, 3419 ]
2.975806
124
import yaml import schoolopy import sys def err(msg): """ Prints out error message and exits with error. """ print(f"Error: {msg}") exit(1) def main(limit): """ Likes all the posts & comments in your most recent feed (20 posts). Args: limit: How many posts to like. Returns: A message of the number of posts & comments that were newly liked. """ with open('config.yaml', 'r') as file: config = yaml.load(file, Loader=yaml.FullLoader) sc = schoolopy.Schoology(schoolopy.Auth(config['key'], config['secret'])) post_liked = 0 comments_liked = 0 # Set the number of posts to check try: sc.limit = int(limit) except ValueError: err("The 'limit' argument must be a number") # Get updates try: updates = sc.get_feed() except KeyError: err("The key or secret is incorrect") print("Liking posts...") # Go through all most recent 20 posts for update in updates: # Like post try: sc.like(update.id) post_liked += 1 except schoolopy.NoDifferenceError: pass # Get comments if post is in a group if update.realm == "group": comments = sc.get_group_update_comments(update.id, update.group_id) # Else get comments if post is in a course elif update.realm == "section": comments = sc.get_section_update_comments(update.id, update.section_id) else: continue # Go through the comments inside the group for comment in comments: # Like each comment try: sc.like_comment(update.id, comment.id) comments_liked += 1 except schoolopy.NoDifferenceError: continue return ("---------------\n" f"Liked {post_liked} posts and {comments_liked} comments") if __name__ == "__main__": # Too many arguments are specified if len(sys.argv) > 2: err("Only the 'limit' argument is allowed") # Default limit is 20 limit = 20 if len(sys.argv) == 1 else sys.argv[1] print(main(limit))
[ 11748, 331, 43695, 198, 11748, 1524, 11081, 198, 11748, 25064, 628, 198, 4299, 11454, 7, 19662, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 12578, 82, 503, 4049, 3275, 290, 30151, 351, 4049, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3601, 7, 69, 1, 12331, 25, 1391, 19662, 92, 4943, 198, 220, 220, 220, 8420, 7, 16, 8, 628, 198, 4299, 1388, 7, 32374, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 46077, 477, 262, 6851, 1222, 3651, 198, 220, 220, 220, 287, 534, 749, 2274, 3745, 357, 1238, 6851, 737, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 4179, 25, 1374, 867, 6851, 284, 588, 13, 628, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 317, 3275, 286, 262, 1271, 286, 6851, 1222, 3651, 326, 547, 8308, 8288, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 351, 1280, 10786, 11250, 13, 88, 43695, 3256, 705, 81, 11537, 355, 2393, 25, 198, 220, 220, 220, 220, 220, 220, 220, 4566, 796, 331, 43695, 13, 2220, 7, 7753, 11, 8778, 263, 28, 88, 43695, 13, 13295, 17401, 8, 198, 220, 220, 220, 629, 796, 1524, 11081, 13, 50, 6679, 1435, 7, 14347, 11081, 13, 30515, 7, 11250, 17816, 2539, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4566, 17816, 21078, 20520, 4008, 198, 220, 220, 220, 1281, 62, 75, 17951, 796, 657, 198, 220, 220, 220, 3651, 62, 75, 17951, 796, 657, 628, 220, 220, 220, 1303, 5345, 262, 1271, 286, 6851, 284, 2198, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 629, 13, 32374, 796, 493, 7, 32374, 8, 198, 220, 220, 220, 2845, 11052, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 11454, 7203, 464, 705, 32374, 6, 4578, 1276, 307, 257, 1271, 4943, 628, 220, 220, 220, 1303, 3497, 5992, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5992, 796, 629, 13, 1136, 62, 12363, 3419, 198, 220, 220, 220, 2845, 7383, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 11454, 7203, 464, 1994, 393, 3200, 318, 11491, 4943, 628, 220, 220, 220, 3601, 7203, 43, 14132, 6851, 9313, 8, 628, 220, 220, 220, 1303, 1514, 832, 477, 749, 2274, 1160, 6851, 198, 220, 220, 220, 329, 4296, 287, 5992, 25, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 4525, 1281, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 629, 13, 2339, 7, 19119, 13, 312, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1281, 62, 75, 17951, 15853, 352, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 1524, 11081, 13, 2949, 28813, 1945, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1208, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 3497, 3651, 611, 1281, 318, 287, 257, 1448, 198, 220, 220, 220, 220, 220, 220, 220, 611, 4296, 13, 5305, 76, 6624, 366, 8094, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3651, 796, 629, 13, 1136, 62, 8094, 62, 19119, 62, 15944, 7, 19119, 13, 312, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4296, 13, 8094, 62, 312, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 25974, 651, 3651, 611, 1281, 318, 287, 257, 1781, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 4296, 13, 5305, 76, 6624, 366, 5458, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3651, 796, 629, 13, 1136, 62, 5458, 62, 19119, 62, 15944, 7, 19119, 13, 312, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4296, 13, 5458, 62, 312, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 1514, 832, 262, 3651, 2641, 262, 1448, 198, 220, 220, 220, 220, 220, 220, 220, 329, 2912, 287, 3651, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 4525, 1123, 2912, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 629, 13, 2339, 62, 23893, 7, 19119, 13, 312, 11, 2912, 13, 312, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3651, 62, 75, 17951, 15853, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 1524, 11081, 13, 2949, 28813, 1945, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 628, 220, 220, 220, 1441, 5855, 24305, 59, 77, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 1, 43, 17951, 1391, 7353, 62, 75, 17951, 92, 6851, 290, 1391, 15944, 62, 75, 17951, 92, 3651, 4943, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 1303, 14190, 867, 7159, 389, 7368, 198, 220, 220, 220, 611, 18896, 7, 17597, 13, 853, 85, 8, 1875, 362, 25, 198, 220, 220, 220, 220, 220, 220, 220, 11454, 7203, 10049, 262, 705, 32374, 6, 4578, 318, 3142, 4943, 198, 220, 220, 220, 1303, 15161, 4179, 318, 1160, 198, 220, 220, 220, 4179, 796, 1160, 611, 18896, 7, 17597, 13, 853, 85, 8, 6624, 352, 2073, 25064, 13, 853, 85, 58, 16, 60, 198, 220, 220, 220, 3601, 7, 12417, 7, 32374, 4008, 198 ]
2.171802
1,071
# Loopit eli silmukat ##### INFO ##### # # Joskus monimutkaisen kuvion piirtäminen vaatii samojen # komentojen toistamista moneen kertaan. Loopilla eli silmukalla # voit toistaa koodipalikoita eli pätkiä koodia import turtle t = turtle.Turtle() # Seuraava on esimerkki silmukasta. # # "for" kertoo tietokoneelle että sen tulee toistaa jotakin # monta kertaa # # "in range(2)" kertoo että komento tulee toistaa 2 kertaa # # "i" on muuttuja jonka arvo kasvaa yhdellä jokaisen toiston # (eli iteraation) jälkeen. Muuttujaa i ei käytetä tässä # tehtäväss, mutta näet myöhemmin esimerkkejä, joissa siitä # on hyötyä. for i in range(2): # Seuraavilla riveillä on komennot jotka toistetaan. # Nämä rivit ollaan sisennetty, eli ne alkavat kahdella välilyönnillä # Sisennyksellä kerrotaan mitkä rivit kuuluvat toistettavaan koodipalikkaan. t.forward(30) t.left(120) t.forward(30) t.right(60) ##### TEHTÄVÄ 1 ##### # # Klikkaa 'run' ja katso mitä tapahtuu. # # Kuinka monta kertaa silmukka tulisi toistaa että tähti olisi valmis? # Laita oikea numero komennon range(...) sulkujen sisään. # Vinkkin: voit kokeilla useita eri numeroita ja katsoa mikä toimii ##### TEHTÄVÄ 2 ##### # # Mieti muita muotoja joissa on toistuva kaava. # Esimerkiksi: neliö, rappuset, aallot # # Muuta silmukkaa niin että se piirtää valitsemasi kuvion. # # Vinkki: Aloita piirtämällä vain yksi toisto kirjoittamalla # "range(1)" ja saa se piirtämään kuten haluat. Voit sitten # toistaa kuvion niin monta kertaa kuin haluat muuttamalla # range arvoa.
[ 2, 26304, 270, 1288, 72, 3313, 76, 2724, 265, 198, 198, 4242, 2, 24890, 46424, 198, 2, 198, 2, 22568, 45614, 937, 320, 315, 4914, 13254, 479, 14795, 295, 31028, 2265, 11033, 1084, 268, 46935, 265, 4178, 6072, 13210, 268, 198, 2, 479, 296, 298, 13210, 268, 284, 396, 321, 12523, 285, 505, 268, 479, 861, 28340, 13, 26304, 5049, 1288, 72, 3313, 76, 2724, 30315, 198, 2, 7608, 270, 284, 396, 7252, 479, 702, 8521, 12125, 5350, 1288, 72, 279, 11033, 83, 4106, 11033, 479, 702, 544, 198, 198, 11748, 28699, 198, 83, 796, 28699, 13, 51, 17964, 3419, 198, 198, 2, 1001, 5330, 4170, 319, 1658, 320, 9587, 4106, 3313, 76, 2724, 40197, 13, 198, 2, 198, 2, 366, 1640, 1, 479, 861, 2238, 256, 1155, 482, 505, 13485, 304, 926, 11033, 3308, 256, 2261, 68, 284, 396, 7252, 474, 313, 27048, 198, 2, 40689, 64, 479, 861, 7252, 198, 2, 198, 2, 366, 259, 2837, 7, 17, 16725, 479, 861, 2238, 304, 926, 11033, 479, 296, 50217, 256, 2261, 68, 284, 396, 7252, 362, 479, 861, 7252, 198, 2, 198, 2, 366, 72, 1, 319, 38779, 15318, 84, 6592, 474, 261, 4914, 610, 13038, 479, 292, 6862, 64, 331, 31298, 695, 11033, 474, 17411, 13254, 284, 36363, 198, 2, 357, 43733, 340, 8607, 341, 8, 474, 11033, 75, 365, 268, 13, 8252, 15318, 84, 6592, 64, 1312, 304, 72, 479, 11033, 20760, 316, 11033, 256, 11033, 824, 11033, 198, 2, 573, 4352, 11033, 85, 11033, 824, 11, 4517, 8326, 299, 11033, 316, 616, 9101, 4411, 1084, 1658, 320, 9587, 365, 73, 11033, 11, 2525, 13808, 33721, 270, 11033, 198, 2, 319, 2537, 9101, 774, 11033, 13, 198, 198, 1640, 1312, 287, 2837, 7, 17, 2599, 198, 220, 1303, 1001, 5330, 615, 5049, 40112, 359, 11033, 319, 479, 3674, 1662, 474, 313, 4914, 284, 396, 17167, 272, 13, 198, 220, 1303, 399, 11033, 76, 11033, 374, 452, 270, 267, 8466, 272, 264, 271, 1697, 316, 774, 11, 1288, 72, 497, 32915, 615, 265, 479, 993, 67, 12627, 410, 11033, 75, 813, 9101, 20471, 359, 11033, 198, 220, 1303, 311, 271, 11870, 74, 7255, 11033, 41927, 305, 8326, 272, 10255, 74, 11033, 374, 452, 270, 479, 84, 377, 14795, 265, 284, 396, 3087, 4170, 272, 479, 702, 8521, 1134, 4914, 272, 13, 198, 220, 256, 13, 11813, 7, 1270, 8, 198, 220, 256, 13, 9464, 7, 10232, 8, 198, 220, 256, 13, 11813, 7, 1270, 8, 198, 220, 256, 13, 3506, 7, 1899, 8, 198, 198, 4242, 2, 13368, 6535, 127, 226, 53, 127, 226, 352, 46424, 198, 2, 198, 2, 14770, 1134, 4914, 64, 705, 5143, 6, 45091, 479, 265, 568, 10255, 11033, 9814, 993, 83, 12303, 13, 198, 2, 198, 2, 12554, 48955, 40689, 64, 479, 861, 7252, 3313, 76, 2724, 4914, 48373, 23267, 284, 396, 7252, 304, 926, 11033, 256, 11033, 4352, 72, 25776, 23267, 1188, 25413, 30, 198, 2, 406, 4548, 64, 267, 522, 64, 997, 3529, 479, 296, 1697, 261, 2837, 7, 23029, 264, 12171, 23577, 268, 264, 271, 11033, 11033, 77, 13, 198, 2, 569, 676, 5116, 25, 7608, 270, 479, 2088, 5049, 779, 5350, 1931, 72, 997, 3529, 5350, 45091, 479, 265, 568, 64, 285, 1134, 11033, 284, 320, 4178, 198, 198, 4242, 2, 13368, 6535, 127, 226, 53, 127, 226, 362, 46424, 198, 2, 198, 2, 337, 1155, 72, 285, 5013, 64, 38779, 2069, 6592, 2525, 13808, 319, 284, 396, 84, 6862, 38387, 4170, 13, 198, 2, 8678, 22723, 4106, 591, 72, 25, 299, 43733, 9101, 11, 29106, 385, 316, 11, 257, 439, 313, 198, 2, 198, 2, 8252, 29822, 3313, 76, 2724, 4914, 64, 37628, 259, 304, 926, 11033, 384, 31028, 2265, 11033, 11033, 1188, 270, 325, 5356, 72, 479, 14795, 295, 13, 198, 2, 198, 2, 569, 676, 4106, 25, 978, 78, 5350, 31028, 2265, 11033, 76, 11033, 297, 11033, 23469, 331, 591, 72, 284, 396, 78, 479, 343, 7639, 715, 321, 30315, 198, 2, 366, 9521, 7, 16, 16725, 45091, 473, 64, 384, 31028, 2265, 11033, 76, 11033, 11033, 77, 479, 7809, 10284, 84, 265, 13, 20687, 270, 264, 2621, 198, 2, 284, 396, 7252, 479, 14795, 295, 37628, 259, 40689, 64, 479, 861, 7252, 479, 48441, 10284, 84, 265, 38779, 15318, 321, 30315, 198, 2, 2837, 610, 85, 12162, 13, 198 ]
2.14986
714
from queue import Queue, Empty from time import sleep from threading import Timer if __name__ == '__main__': main()
[ 6738, 16834, 1330, 4670, 518, 11, 33523, 201, 198, 6738, 640, 1330, 3993, 201, 198, 6738, 4704, 278, 1330, 5045, 263, 201, 198, 201, 198, 201, 198, 201, 198, 201, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 201, 198, 220, 220, 220, 1388, 3419, 201, 198 ]
2.66
50
# -*- coding: utf-8 -*- import hashlib import subprocess import sys import os G_ZIP_SPLIT_LINE = 500 G_ZIP_SPLIT_UNIT = 100
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 11748, 12234, 8019, 198, 11748, 850, 14681, 198, 11748, 25064, 198, 11748, 28686, 198, 198, 38, 62, 57, 4061, 62, 4303, 43, 2043, 62, 24027, 796, 5323, 198, 38, 62, 57, 4061, 62, 4303, 43, 2043, 62, 4944, 2043, 796, 1802, 628, 628, 628, 628, 198 ]
2.216667
60
# Copyright 2019 The Sonnet Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Parallel linear module.""" import math from typing import Optional from sonnet.src import base from sonnet.src import initializers from sonnet.src import once from sonnet.src import utils import tensorflow as tf class ParallelLinears(base.Module): """Parallel linear. This is equivalent to n separate linears applied in parallel to n inputs. It takes an input of shape [num_linears, batch_size, input_size] and returns an output of shape [num_linears, batch_size, output_size]. It uses a single batched matmul which is more efficient than stacking separate snt.Linear layers. This is implemented using `num_linear`s first to avoid the need for transposes in order to make it efficient when stacking these. """ def __init__(self, output_size: int, with_bias: bool = True, w_init: Optional[initializers.Initializer] = None, b_init: Optional[initializers.Initializer] = None, name: Optional[str] = None): """Constructs a `ParallelLinear` module. Args: output_size: Output dimensionality. with_bias: Whether to include bias parameters. Default `True`. w_init: Optional initializer for the weights. By default the weights are initialized truncated random normal values with a standard deviation of `1 / sqrt(input_feature_size)`, which is commonly used when the inputs are zero centered (see https://arxiv.org/abs/1502.03167v3). b_init: Optional initializer for the bias. By default the bias is initialized to zero. name: Name of the module. """ super().__init__(name=name) self.output_size = output_size self.with_bias = with_bias self.w_init = w_init if with_bias: self.b_init = b_init if b_init is not None else initializers.Zeros() elif b_init is not None: raise ValueError("When not using a bias the b_init must be None.") @once.once def _initialize(self, inputs: tf.Tensor): """Constructs parameters used by this module.""" utils.assert_rank(inputs, 3) self.input_size = inputs.shape[2] if self.input_size is None: # Can happen inside an @tf.function. raise ValueError("Input size must be specified at module build time.") num_linears = inputs.shape[0] if num_linears is None: # Can happen inside an @tf.function. raise ValueError( "The number of linears must be specified at module build time.") if self.w_init is None: # See https://arxiv.org/abs/1502.03167v3. stddev = 1. / math.sqrt(self.input_size) self.w_init = initializers.TruncatedNormal(stddev=stddev) self.w = tf.Variable( self.w_init([num_linears, self.input_size, self.output_size], inputs.dtype), name="w") if self.with_bias: self.b = tf.Variable( self.b_init([num_linears, 1, self.output_size], inputs.dtype), name="b")
[ 2, 15069, 13130, 383, 6295, 3262, 46665, 13, 1439, 6923, 33876, 13, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 220, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 2, 38093, 2559, 18604, 198, 37811, 10044, 29363, 14174, 8265, 526, 15931, 198, 198, 11748, 10688, 198, 6738, 19720, 1330, 32233, 198, 198, 6738, 3367, 3262, 13, 10677, 1330, 2779, 198, 6738, 3367, 3262, 13, 10677, 1330, 4238, 11341, 198, 6738, 3367, 3262, 13, 10677, 1330, 1752, 198, 6738, 3367, 3262, 13, 10677, 1330, 3384, 4487, 198, 11748, 11192, 273, 11125, 355, 48700, 628, 198, 4871, 42945, 14993, 4127, 7, 8692, 13, 26796, 2599, 198, 220, 37227, 10044, 29363, 14174, 13, 628, 220, 770, 318, 7548, 284, 299, 4553, 9493, 4127, 5625, 287, 10730, 284, 299, 17311, 13, 632, 198, 220, 2753, 281, 5128, 286, 5485, 685, 22510, 62, 2815, 4127, 11, 15458, 62, 7857, 11, 5128, 62, 7857, 60, 290, 5860, 281, 198, 220, 5072, 286, 5485, 685, 22510, 62, 2815, 4127, 11, 15458, 62, 7857, 11, 5072, 62, 7857, 4083, 628, 220, 632, 3544, 257, 2060, 7365, 1740, 2603, 76, 377, 543, 318, 517, 6942, 621, 41228, 4553, 198, 220, 264, 429, 13, 14993, 451, 11685, 13, 770, 318, 9177, 1262, 4600, 22510, 62, 29127, 63, 82, 717, 284, 3368, 262, 198, 220, 761, 329, 1007, 4832, 287, 1502, 284, 787, 340, 6942, 618, 41228, 777, 13, 198, 220, 37227, 628, 220, 825, 11593, 15003, 834, 7, 944, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5072, 62, 7857, 25, 493, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 351, 62, 65, 4448, 25, 20512, 796, 6407, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 266, 62, 15003, 25, 32233, 58, 36733, 11341, 13, 24243, 7509, 60, 796, 6045, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 275, 62, 15003, 25, 32233, 58, 36733, 11341, 13, 24243, 7509, 60, 796, 6045, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 25, 32233, 58, 2536, 60, 796, 6045, 2599, 198, 220, 220, 220, 37227, 42316, 82, 257, 4600, 10044, 29363, 14993, 451, 63, 8265, 13, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 5072, 62, 7857, 25, 25235, 15793, 1483, 13, 198, 220, 220, 220, 220, 220, 351, 62, 65, 4448, 25, 10127, 284, 2291, 10690, 10007, 13, 15161, 4600, 17821, 44646, 198, 220, 220, 220, 220, 220, 266, 62, 15003, 25, 32233, 4238, 7509, 329, 262, 19590, 13, 2750, 4277, 262, 19590, 389, 198, 220, 220, 220, 220, 220, 220, 220, 23224, 40122, 515, 4738, 3487, 3815, 351, 257, 3210, 28833, 286, 198, 220, 220, 220, 220, 220, 220, 220, 4600, 16, 1220, 19862, 17034, 7, 15414, 62, 30053, 62, 7857, 8, 47671, 543, 318, 8811, 973, 618, 262, 17311, 198, 220, 220, 220, 220, 220, 220, 220, 389, 6632, 19254, 357, 3826, 3740, 1378, 283, 87, 452, 13, 2398, 14, 8937, 14, 8628, 17, 13, 3070, 21940, 85, 18, 737, 198, 220, 220, 220, 220, 220, 275, 62, 15003, 25, 32233, 4238, 7509, 329, 262, 10690, 13, 2750, 4277, 262, 10690, 318, 198, 220, 220, 220, 220, 220, 220, 220, 23224, 284, 6632, 13, 198, 220, 220, 220, 220, 220, 1438, 25, 6530, 286, 262, 8265, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2208, 22446, 834, 15003, 834, 7, 3672, 28, 3672, 8, 198, 220, 220, 220, 2116, 13, 22915, 62, 7857, 796, 5072, 62, 7857, 198, 220, 220, 220, 2116, 13, 4480, 62, 65, 4448, 796, 351, 62, 65, 4448, 198, 220, 220, 220, 2116, 13, 86, 62, 15003, 796, 266, 62, 15003, 198, 220, 220, 220, 611, 351, 62, 65, 4448, 25, 198, 220, 220, 220, 220, 220, 2116, 13, 65, 62, 15003, 796, 275, 62, 15003, 611, 275, 62, 15003, 318, 407, 6045, 2073, 4238, 11341, 13, 57, 27498, 3419, 198, 220, 220, 220, 1288, 361, 275, 62, 15003, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7203, 2215, 407, 1262, 257, 10690, 262, 275, 62, 15003, 1276, 307, 6045, 19570, 628, 220, 2488, 27078, 13, 27078, 198, 220, 825, 4808, 36733, 1096, 7, 944, 11, 17311, 25, 48700, 13, 51, 22854, 2599, 198, 220, 220, 220, 37227, 42316, 82, 10007, 973, 416, 428, 8265, 526, 15931, 198, 220, 220, 220, 3384, 4487, 13, 30493, 62, 43027, 7, 15414, 82, 11, 513, 8, 628, 220, 220, 220, 2116, 13, 15414, 62, 7857, 796, 17311, 13, 43358, 58, 17, 60, 198, 220, 220, 220, 611, 2116, 13, 15414, 62, 7857, 318, 6045, 25, 220, 1303, 1680, 1645, 2641, 281, 2488, 27110, 13, 8818, 13, 198, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7203, 20560, 2546, 1276, 307, 7368, 379, 8265, 1382, 640, 19570, 198, 220, 220, 220, 997, 62, 2815, 4127, 796, 17311, 13, 43358, 58, 15, 60, 198, 220, 220, 220, 611, 997, 62, 2815, 4127, 318, 6045, 25, 220, 1303, 1680, 1645, 2641, 281, 2488, 27110, 13, 8818, 13, 198, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 464, 1271, 286, 9493, 4127, 1276, 307, 7368, 379, 8265, 1382, 640, 19570, 628, 220, 220, 220, 611, 2116, 13, 86, 62, 15003, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 1303, 4091, 3740, 1378, 283, 87, 452, 13, 2398, 14, 8937, 14, 8628, 17, 13, 3070, 21940, 85, 18, 13, 198, 220, 220, 220, 220, 220, 336, 1860, 1990, 796, 352, 13, 1220, 10688, 13, 31166, 17034, 7, 944, 13, 15414, 62, 7857, 8, 198, 220, 220, 220, 220, 220, 2116, 13, 86, 62, 15003, 796, 4238, 11341, 13, 2898, 19524, 515, 26447, 7, 301, 1860, 1990, 28, 301, 1860, 1990, 8, 628, 220, 220, 220, 2116, 13, 86, 796, 48700, 13, 43015, 7, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 86, 62, 15003, 26933, 22510, 62, 2815, 4127, 11, 2116, 13, 15414, 62, 7857, 11, 2116, 13, 22915, 62, 7857, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17311, 13, 67, 4906, 828, 198, 220, 220, 220, 220, 220, 220, 220, 1438, 2625, 86, 4943, 628, 220, 220, 220, 611, 2116, 13, 4480, 62, 65, 4448, 25, 198, 220, 220, 220, 220, 220, 2116, 13, 65, 796, 48700, 13, 43015, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 65, 62, 15003, 26933, 22510, 62, 2815, 4127, 11, 352, 11, 2116, 13, 22915, 62, 7857, 4357, 17311, 13, 67, 4906, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 2625, 65, 4943, 198 ]
2.871146
1,265
import responses from urllib.parse import urlencode from tests.util import random_str from tests.util import mock_http_response from binance.spot import Spot as Client from binance.error import ParameterRequiredError, ClientError mock_item = {"key_1": "value_1", "key_2": "value_2"} mock_exception = {"code": -1105, "msg": "error message."} key = random_str() secret = random_str() params = {"coin": "USDT", "collateralCoin": "BTC", "amount": "1"} def test_futures_loan_borrow_without_coin(): """Tests the API endpoint to borrow cross funds without coin""" params = {"coin": "", "collateralCoin": "BTC"} client = Client(key, secret) client.futures_loan_borrow.when.called_with(**params).should.throw( ParameterRequiredError ) def test_futures_loan_borrow_without_collateralCoin(): """Tests the API endpoint to borrow cross funds without collateralCoin""" params = {"coin": "USDT", "collateralCoin": ""} client = Client(key, secret) client.futures_loan_borrow.when.called_with(**params).should.throw( ParameterRequiredError ) @mock_http_response( responses.POST, "/sapi/v1/futures/loan/borrow\\?" + urlencode(params), mock_item, 200, ) def test_futures_loan_borrow(): """Tests the API endpoint to borrow cross funds""" client = Client(key, secret) response = client.futures_loan_borrow(**params) response.should.equal(mock_item)
[ 11748, 9109, 198, 198, 6738, 2956, 297, 571, 13, 29572, 1330, 2956, 11925, 8189, 198, 6738, 5254, 13, 22602, 1330, 4738, 62, 2536, 198, 6738, 5254, 13, 22602, 1330, 15290, 62, 4023, 62, 26209, 198, 6738, 9874, 590, 13, 20485, 1330, 15899, 355, 20985, 198, 6738, 9874, 590, 13, 18224, 1330, 25139, 2357, 37374, 12331, 11, 20985, 12331, 198, 198, 76, 735, 62, 9186, 796, 19779, 2539, 62, 16, 1298, 366, 8367, 62, 16, 1600, 366, 2539, 62, 17, 1298, 366, 8367, 62, 17, 20662, 198, 76, 735, 62, 1069, 4516, 796, 19779, 8189, 1298, 532, 11442, 20, 11, 366, 19662, 1298, 366, 18224, 3275, 526, 92, 198, 198, 2539, 796, 4738, 62, 2536, 3419, 198, 21078, 796, 4738, 62, 2536, 3419, 198, 198, 37266, 796, 19779, 3630, 1298, 366, 2937, 24544, 1600, 366, 26000, 10534, 24387, 1298, 366, 35964, 1600, 366, 17287, 1298, 366, 16, 20662, 628, 198, 4299, 1332, 62, 69, 315, 942, 62, 5439, 272, 62, 2865, 808, 62, 19419, 62, 3630, 33529, 198, 220, 220, 220, 37227, 51, 3558, 262, 7824, 36123, 284, 8804, 3272, 5153, 1231, 10752, 37811, 628, 220, 220, 220, 42287, 796, 19779, 3630, 1298, 366, 1600, 366, 26000, 10534, 24387, 1298, 366, 35964, 20662, 628, 220, 220, 220, 5456, 796, 20985, 7, 2539, 11, 3200, 8, 198, 220, 220, 220, 5456, 13, 69, 315, 942, 62, 5439, 272, 62, 2865, 808, 13, 12518, 13, 7174, 62, 4480, 7, 1174, 37266, 737, 21754, 13, 16939, 7, 198, 220, 220, 220, 220, 220, 220, 220, 25139, 2357, 37374, 12331, 198, 220, 220, 220, 1267, 628, 198, 4299, 1332, 62, 69, 315, 942, 62, 5439, 272, 62, 2865, 808, 62, 19419, 62, 26000, 10534, 24387, 33529, 198, 220, 220, 220, 37227, 51, 3558, 262, 7824, 36123, 284, 8804, 3272, 5153, 1231, 27907, 24387, 37811, 628, 220, 220, 220, 42287, 796, 19779, 3630, 1298, 366, 2937, 24544, 1600, 366, 26000, 10534, 24387, 1298, 13538, 92, 628, 220, 220, 220, 5456, 796, 20985, 7, 2539, 11, 3200, 8, 198, 220, 220, 220, 5456, 13, 69, 315, 942, 62, 5439, 272, 62, 2865, 808, 13, 12518, 13, 7174, 62, 4480, 7, 1174, 37266, 737, 21754, 13, 16939, 7, 198, 220, 220, 220, 220, 220, 220, 220, 25139, 2357, 37374, 12331, 198, 220, 220, 220, 1267, 628, 198, 31, 76, 735, 62, 4023, 62, 26209, 7, 198, 220, 220, 220, 9109, 13, 32782, 11, 198, 220, 220, 220, 12813, 82, 15042, 14, 85, 16, 14, 69, 315, 942, 14, 5439, 272, 14, 2865, 808, 6852, 1701, 1343, 2956, 11925, 8189, 7, 37266, 828, 198, 220, 220, 220, 15290, 62, 9186, 11, 198, 220, 220, 220, 939, 11, 198, 8, 198, 4299, 1332, 62, 69, 315, 942, 62, 5439, 272, 62, 2865, 808, 33529, 198, 220, 220, 220, 37227, 51, 3558, 262, 7824, 36123, 284, 8804, 3272, 5153, 37811, 628, 220, 220, 220, 5456, 796, 20985, 7, 2539, 11, 3200, 8, 198, 220, 220, 220, 2882, 796, 5456, 13, 69, 315, 942, 62, 5439, 272, 62, 2865, 808, 7, 1174, 37266, 8, 198, 220, 220, 220, 2882, 13, 21754, 13, 40496, 7, 76, 735, 62, 9186, 8, 198 ]
2.762548
518
# # Copyright (c) SAS Institute Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from testrunner import testhelp from conary_test import rephelp import os from conary_test.cvctest.buildtest import policytest from conary import versions from conary.build import action, trovefilter from conary.conaryclient import cmdline from conary.deps import deps from conary.lib import util
[ 2, 198, 2, 15069, 357, 66, 8, 35516, 5136, 3457, 13, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 2, 628, 198, 6738, 1332, 16737, 1330, 1332, 16794, 628, 198, 6738, 369, 560, 62, 9288, 1330, 1128, 16794, 198, 198, 11748, 28686, 198, 198, 6738, 369, 560, 62, 9288, 13, 33967, 310, 395, 13, 11249, 9288, 1330, 2450, 9288, 198, 198, 6738, 369, 560, 1330, 6300, 198, 6738, 369, 560, 13, 11249, 1330, 2223, 11, 42377, 24455, 198, 6738, 369, 560, 13, 1102, 560, 16366, 1330, 23991, 1370, 198, 6738, 369, 560, 13, 10378, 82, 1330, 390, 862, 198, 6738, 369, 560, 13, 8019, 1330, 7736, 628 ]
3.677686
242
''' #Students Name's: Ciaran Carroll # Student Id Number's: 13113259 # # Project 1: # Implement image reconstruction from parallel-projection sinograms using Python. # # CAT Scanners (or CT scan) - Computer Axial Tomography # CT scan: is a special X-ray tests that produce cross-sectional images of the body using X-rays and # a computer # FFTs - Fast Fourieris Transform # FFT: is an algorithm that samples a signal over a period of time (or space) and divides it # into its frequency components # Laminogram: Reconstruct the sum of the backprojections (i.e. sum of the f(x,y)) # Coplanar rotational laminography (CRL) is a special case of laminography which is a # tomographic technique used to image cross-sectional views through solid objects. # # Aim: # (1) Reconstruct an image from the sinogram image (sinogram.png) # (2) Investigate the behaviour of backprojection reconstruction with ramp-filtering # (3) Investigate the behaviour of backprojection reconstruction without ramp-filtering # (4) Investigate the behaviour of backprojection reconstruction with Hamming-windowed ramp-filtering # # A display of all the projections for all X-ray angles is called a Sinogram # # Rebuild the image from a sum of the 'Backprojections' of the 1-d projection data Step 1 - Backprojection reconstruction of the sinogram without filtering: When all the projection angles are combined the projection, the resulting image will be blurred. This is due to the fact that the resulting image is concentrated towards the center. (concentrated samples of the image towards the center, and more sparse samples near the edges). To compensate for this we will need to apply a filter to the output image of the backprojection such as the ramp filter or the Hamming-windowed ramp-filter New Steps (1) - Form the image projections and translate into the frequency domain using the FFT ''' import numpy as np import matplotlib.pylab as plt from PIL import Image from scipy.ndimage.filters import gaussian_filter from skimage.transform import rotate import scipy.fftpack as fft #from skimage.transform import iradon def imread(filename,greyscale=True): """Load an image, return as a Numpy array.""" if greyscale: pil_im = Image.open(filename).convert('L') else: pil_im = Image.open(filename) return np.array(pil_im) def imshow(im, autoscale=False,colourmap='gray', newfig=True, title=None): """Display an image, turning off autoscaling (unless explicitly required) and interpolation. (1) 8-bit greyscale images and 24-bit RGB are scaled in 0..255. (2) 0-1 binary images are scaled in 0..1. (3) Float images are scaled in 0.0..1.0 if their min values are >= 0 and their max values <= 1.0 (4) Float images are scaled in 0.0..255.0 if their min values are >= 0 and their max values are > 1 and <= 255.0 (5) Any image not covered by the above cases is autoscaled. If autoscaling is explicitly requested, it is always turned on. A new figure is created by default. "newfig=False" turns off this behaviour. Interpolation is always off (unless the backend stops this). """ if newfig: if title != None: fig = plt.figure(title) else: fig = plt.figure() if autoscale: plt.imshow(im,interpolation='nearest',cmap=colourmap) else: maxval = im.max() if im.dtype == 'uint8': ## 8-bit greyscale or 24-bit RGB if maxval > 1: maxval = 255 plt.imshow(im,interpolation='nearest',vmin=0,vmax=maxval,cmap=colourmap) elif im.dtype == 'float32' or im.dtype == 'float64': minval = im.min() if minval >= 0.0: if maxval <= 1.0: ## Looks like 0..1 float greyscale minval, maxval = 0.0, 1.0 elif maxval <= 255.0: ## Looks like a float 0 .. 255 image. minval, maxval = 0.0, 255.0 plt.imshow(im,interpolation='nearest',vmin=minval,vmax=maxval,cmap=colourmap) else: plt.imshow(im,interpolation='nearest',cmap=colourmap) plt.axis('image') ## plt.axis('off') plt.show() ##return fig def build_proj_ffts(projs): "Build 1-d FFTs of an array of projections, each projection 1 row fo the array." return fft.rfft(projs, axis=1) def build_proj_iffts(projs): "Build 1-d iFFTs of an array of projections, each projection 1 row fo the array." return fft.irfft(projs, axis=1) def build_laminogram(radonT): "Generate a laminogram by simple backprojection using the Radon Transform of an image, 'radonT'." laminogram = np.zeros((radonT.shape[1],radonT.shape[1])) dTheta = 180.0 / radonT.shape[0] for i in range(radonT.shape[0]): temp = np.tile(radonT[i],(radonT.shape[1],1)) temp = rotate(temp, dTheta*i) laminogram += temp return laminogram def ramp_filter_ffts(ffts): "Ramp filter a 2-d array of 1-d FFTs (1-d FFTs along the rows)." ramp = np.floor(np.arange(0.5, ffts.shape[1]//2 + 0.1, 0.5)) return ffts * ramp def radon(image, steps): "Build the Radon Transform using 'steps' projections of 'image’." projections = [] # Accumulate projections in a list. dTheta = -180.0 / steps # Angle increment for rotations. for i in range(steps): projections.append(rotate(image, i*dTheta).sum(axis=0)) return np.vstack(projections) # Original Sinogram Image sinogram = imread('sinogram.png') imshow(sinogram, title="Original Sinogram Image") # Backprojection reconstruction without ramp filtering sinogram_laminogram = build_laminogram(sinogram) imshow(sinogram_laminogram, title="Sinogram reconstruction by backprojection") # Backprojection reconstruction with ramp filtering # Apply an infinite ramp filter to the reconstruction # Maybe apply a ramp filter with a cutoff at half the max frwquency # But most likely no point # Get the FFT of the image (Frequency Domain) fourier = build_proj_ffts(sinogram) # Filter the fourier transform by the ramp filter ramp_filtered = ramp_filter_ffts(fourier) # Take the inverse FFT of the image to convert it back to Special Domain inverse_fourier_ramp_filtered = build_proj_iffts(ramp_filtered) #imshow(iffts_projection_sinogram, title="Test ramp filter") #test1 = radon(iffts_projection_sinogram, 180) #imshow(test1, title="Test ramp filter") # Build the filtered image by pbackprojecting the filtered projections filtered_reconstrution = build_laminogram(inverse_fourier_ramp_filtered) imshow(filtered_reconstrution, title="Test ramp filter")
[ 7061, 6, 198, 2, 28239, 6530, 338, 25, 220, 220, 197, 34, 12571, 272, 21298, 198, 2, 13613, 5121, 7913, 338, 25, 197, 1485, 16616, 25191, 198, 2, 198, 2, 4935, 352, 25, 198, 2, 48282, 2939, 25056, 422, 10730, 12, 16302, 295, 7813, 26836, 1262, 11361, 13, 198, 2, 198, 2, 38348, 1446, 15672, 357, 273, 16356, 9367, 8, 532, 13851, 12176, 498, 4186, 4867, 198, 2, 16356, 9367, 25, 318, 257, 2041, 1395, 12, 2433, 5254, 326, 4439, 3272, 12, 44330, 4263, 286, 262, 1767, 1262, 1395, 12, 20477, 290, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 257, 3644, 198, 2, 376, 9792, 82, 532, 12549, 34296, 5277, 271, 26981, 198, 2, 376, 9792, 25, 318, 281, 11862, 326, 8405, 257, 6737, 625, 257, 2278, 286, 640, 357, 273, 2272, 8, 290, 36319, 340, 198, 2, 220, 220, 220, 220, 220, 656, 663, 8373, 6805, 198, 2, 406, 5669, 21857, 25, 23419, 7249, 262, 2160, 286, 262, 736, 16302, 507, 357, 72, 13, 68, 13, 2160, 286, 262, 277, 7, 87, 11, 88, 4008, 198, 2, 6955, 9620, 283, 5724, 864, 300, 5669, 4867, 357, 34, 7836, 8, 318, 257, 2041, 1339, 286, 300, 5669, 4867, 543, 318, 257, 198, 2, 220, 16667, 6826, 8173, 973, 284, 2939, 3272, 12, 44330, 5009, 832, 4735, 5563, 13, 198, 2, 198, 2, 36223, 25, 198, 2, 357, 16, 8, 23419, 7249, 281, 2939, 422, 262, 7813, 21857, 2939, 357, 31369, 21857, 13, 11134, 8, 198, 2, 357, 17, 8, 7488, 10055, 262, 9172, 286, 736, 16302, 295, 25056, 351, 10454, 12, 10379, 20212, 198, 2, 357, 18, 8, 7488, 10055, 262, 9172, 286, 736, 16302, 295, 25056, 1231, 10454, 12, 10379, 20212, 198, 2, 357, 19, 8, 7488, 10055, 262, 9172, 286, 736, 16302, 295, 25056, 351, 4345, 2229, 12, 7972, 6972, 10454, 12, 10379, 20212, 198, 2, 198, 2, 317, 3359, 286, 477, 262, 19887, 329, 477, 1395, 12, 2433, 18333, 318, 1444, 257, 10884, 21857, 198, 2, 198, 2, 797, 11249, 262, 2939, 422, 257, 2160, 286, 262, 705, 7282, 16302, 507, 6, 286, 262, 352, 12, 67, 20128, 1366, 198, 198, 8600, 352, 532, 5157, 16302, 295, 25056, 286, 262, 7813, 21857, 1231, 25431, 25, 198, 2215, 477, 262, 20128, 18333, 389, 5929, 262, 20128, 11, 262, 7186, 2939, 481, 198, 1350, 38258, 13, 770, 318, 2233, 284, 262, 1109, 326, 262, 7186, 2939, 318, 17298, 3371, 262, 198, 16159, 13, 357, 1102, 1087, 4111, 8405, 286, 262, 2939, 3371, 262, 3641, 11, 290, 517, 29877, 8405, 1474, 198, 1169, 13015, 737, 1675, 21392, 329, 428, 356, 481, 761, 284, 4174, 257, 8106, 284, 262, 5072, 2939, 286, 262, 198, 1891, 16302, 295, 884, 355, 262, 10454, 8106, 393, 262, 4345, 2229, 12, 7972, 6972, 10454, 12, 24455, 628, 628, 628, 628, 198, 3791, 32144, 198, 7, 16, 8, 532, 5178, 262, 2939, 19887, 290, 15772, 656, 262, 8373, 7386, 1262, 262, 376, 9792, 628, 198, 7061, 6, 198, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 2603, 29487, 8019, 13, 79, 2645, 397, 355, 458, 83, 198, 6738, 350, 4146, 1330, 7412, 198, 6738, 629, 541, 88, 13, 358, 9060, 13, 10379, 1010, 1330, 31986, 31562, 62, 24455, 198, 6738, 1341, 9060, 13, 35636, 1330, 23064, 198, 11748, 629, 541, 88, 13, 487, 83, 8002, 355, 277, 701, 198, 2, 6738, 1341, 9060, 13, 35636, 1330, 4173, 324, 261, 198, 198, 4299, 545, 961, 7, 34345, 11, 16694, 28349, 1000, 28, 17821, 2599, 198, 220, 220, 220, 37227, 8912, 281, 2939, 11, 1441, 355, 257, 399, 32152, 7177, 526, 15931, 198, 220, 220, 220, 611, 10536, 28349, 1000, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5560, 62, 320, 796, 7412, 13, 9654, 7, 34345, 737, 1102, 1851, 10786, 43, 11537, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5560, 62, 320, 796, 7412, 13, 9654, 7, 34345, 8, 198, 220, 220, 220, 1441, 45941, 13, 18747, 7, 79, 346, 62, 320, 8, 628, 198, 4299, 545, 12860, 7, 320, 11, 1960, 17500, 1000, 28, 25101, 11, 49903, 8899, 11639, 44605, 3256, 649, 5647, 28, 17821, 11, 3670, 28, 14202, 2599, 198, 220, 220, 220, 37227, 23114, 281, 2939, 11, 6225, 572, 1960, 17500, 4272, 357, 25252, 11777, 2672, 8, 198, 220, 220, 220, 220, 220, 220, 290, 39555, 341, 13, 628, 220, 220, 220, 220, 220, 220, 357, 16, 8, 807, 12, 2545, 10536, 28349, 1000, 4263, 290, 1987, 12, 2545, 25228, 389, 27464, 287, 657, 492, 13381, 13, 198, 220, 220, 220, 220, 220, 220, 357, 17, 8, 657, 12, 16, 13934, 4263, 389, 27464, 287, 657, 492, 16, 13, 198, 220, 220, 220, 220, 220, 220, 357, 18, 8, 48436, 4263, 389, 27464, 287, 657, 13, 15, 492, 16, 13, 15, 611, 511, 949, 3815, 389, 18189, 657, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 290, 511, 3509, 3815, 19841, 352, 13, 15, 198, 220, 220, 220, 220, 220, 220, 357, 19, 8, 48436, 4263, 389, 27464, 287, 657, 13, 15, 492, 13381, 13, 15, 611, 511, 949, 3815, 389, 18189, 657, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 290, 511, 3509, 3815, 389, 1875, 352, 290, 19841, 14280, 13, 15, 198, 220, 220, 220, 220, 220, 220, 357, 20, 8, 4377, 2939, 407, 5017, 416, 262, 2029, 2663, 318, 1960, 17500, 3021, 13, 220, 1002, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1960, 17500, 4272, 318, 11777, 9167, 11, 340, 318, 1464, 2900, 319, 13, 628, 220, 220, 220, 220, 220, 220, 317, 649, 3785, 318, 2727, 416, 4277, 13, 220, 366, 3605, 5647, 28, 25101, 1, 4962, 572, 428, 198, 220, 220, 220, 220, 220, 220, 9172, 13, 628, 220, 220, 220, 220, 220, 220, 4225, 16104, 341, 318, 1464, 572, 357, 25252, 262, 30203, 9911, 428, 737, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 649, 5647, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 3670, 14512, 6045, 25, 2336, 796, 458, 83, 13, 26875, 7, 7839, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 2336, 796, 458, 83, 13, 26875, 3419, 198, 220, 220, 220, 611, 1960, 17500, 1000, 25, 198, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 320, 12860, 7, 320, 11, 3849, 16104, 341, 11639, 710, 12423, 3256, 66, 8899, 28, 49903, 8899, 8, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3509, 2100, 796, 545, 13, 9806, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 611, 545, 13, 67, 4906, 6624, 705, 28611, 23, 10354, 220, 220, 220, 220, 220, 220, 220, 22492, 807, 12, 2545, 10536, 28349, 1000, 393, 1987, 12, 2545, 25228, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 3509, 2100, 1875, 352, 25, 3509, 2100, 796, 14280, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 320, 12860, 7, 320, 11, 3849, 16104, 341, 11639, 710, 12423, 3256, 85, 1084, 28, 15, 11, 85, 9806, 28, 9806, 2100, 11, 66, 8899, 28, 49903, 8899, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 545, 13, 67, 4906, 6624, 705, 22468, 2624, 6, 393, 545, 13, 67, 4906, 6624, 705, 22468, 2414, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 949, 2100, 796, 545, 13, 1084, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 949, 2100, 18189, 657, 13, 15, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 3509, 2100, 19841, 352, 13, 15, 25, 220, 22492, 29403, 588, 657, 492, 16, 12178, 10536, 28349, 1000, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 949, 2100, 11, 3509, 2100, 796, 657, 13, 15, 11, 352, 13, 15, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 3509, 2100, 19841, 14280, 13, 15, 25, 22492, 29403, 588, 257, 12178, 657, 11485, 14280, 2939, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 949, 2100, 11, 3509, 2100, 796, 657, 13, 15, 11, 14280, 13, 15, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 320, 12860, 7, 320, 11, 3849, 16104, 341, 11639, 710, 12423, 3256, 85, 1084, 28, 1084, 2100, 11, 85, 9806, 28, 9806, 2100, 11, 66, 8899, 28, 49903, 8899, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 320, 12860, 7, 320, 11, 3849, 16104, 341, 11639, 710, 12423, 3256, 66, 8899, 28, 49903, 8899, 8, 198, 220, 220, 220, 458, 83, 13, 22704, 10786, 9060, 11537, 198, 220, 220, 220, 22492, 458, 83, 13, 22704, 10786, 2364, 11537, 198, 220, 220, 220, 458, 83, 13, 12860, 3419, 198, 220, 220, 220, 22492, 7783, 2336, 198, 198, 4299, 1382, 62, 1676, 73, 62, 487, 912, 7, 1676, 8457, 2599, 198, 220, 220, 220, 366, 15580, 352, 12, 67, 376, 9792, 82, 286, 281, 7177, 286, 19887, 11, 1123, 20128, 352, 5752, 11511, 262, 7177, 526, 628, 220, 220, 220, 1441, 277, 701, 13, 81, 487, 83, 7, 1676, 8457, 11, 16488, 28, 16, 8, 198, 198, 4299, 1382, 62, 1676, 73, 62, 361, 35594, 7, 1676, 8457, 2599, 198, 220, 220, 220, 366, 15580, 352, 12, 67, 1312, 5777, 33758, 286, 281, 7177, 286, 19887, 11, 1123, 20128, 352, 5752, 11511, 262, 7177, 526, 628, 220, 220, 220, 1441, 277, 701, 13, 343, 487, 83, 7, 1676, 8457, 11, 16488, 28, 16, 8, 198, 198, 4299, 1382, 62, 2543, 259, 21857, 7, 6335, 261, 51, 2599, 198, 220, 220, 220, 366, 8645, 378, 257, 300, 5669, 21857, 416, 2829, 736, 16302, 295, 1262, 262, 5325, 261, 26981, 286, 281, 2939, 11, 705, 6335, 261, 51, 30827, 198, 220, 220, 220, 300, 5669, 21857, 796, 45941, 13, 9107, 418, 19510, 6335, 261, 51, 13, 43358, 58, 16, 4357, 6335, 261, 51, 13, 43358, 58, 16, 60, 4008, 198, 220, 220, 220, 288, 464, 8326, 796, 11546, 13, 15, 1220, 2511, 261, 51, 13, 43358, 58, 15, 60, 198, 220, 220, 220, 329, 1312, 287, 2837, 7, 6335, 261, 51, 13, 43358, 58, 15, 60, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 20218, 796, 45941, 13, 40927, 7, 6335, 261, 51, 58, 72, 4357, 7, 6335, 261, 51, 13, 43358, 58, 16, 4357, 16, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 20218, 796, 23064, 7, 29510, 11, 288, 464, 8326, 9, 72, 8, 198, 220, 220, 220, 220, 220, 220, 220, 300, 5669, 21857, 15853, 20218, 198, 220, 220, 220, 1441, 300, 5669, 21857, 198, 198, 4299, 10454, 62, 24455, 62, 487, 912, 7, 487, 912, 2599, 198, 220, 220, 220, 366, 49, 696, 8106, 257, 362, 12, 67, 7177, 286, 352, 12, 67, 376, 9792, 82, 357, 16, 12, 67, 376, 9792, 82, 1863, 262, 15274, 21387, 198, 220, 220, 220, 10454, 796, 45941, 13, 28300, 7, 37659, 13, 283, 858, 7, 15, 13, 20, 11, 277, 35594, 13, 43358, 58, 16, 60, 1003, 17, 1343, 657, 13, 16, 11, 657, 13, 20, 4008, 198, 220, 220, 220, 1441, 277, 35594, 1635, 10454, 198, 198, 4299, 2511, 261, 7, 9060, 11, 4831, 2599, 198, 220, 220, 220, 366, 15580, 262, 5325, 261, 26981, 1262, 705, 20214, 6, 19887, 286, 705, 9060, 447, 247, 526, 198, 220, 220, 220, 19887, 796, 17635, 220, 220, 220, 220, 220, 220, 220, 1303, 6366, 388, 5039, 19887, 287, 257, 1351, 13, 198, 220, 220, 220, 288, 464, 8326, 796, 532, 15259, 13, 15, 1220, 4831, 1303, 42375, 18703, 329, 5724, 602, 13, 198, 220, 220, 220, 329, 1312, 287, 2837, 7, 20214, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 19887, 13, 33295, 7, 10599, 378, 7, 9060, 11, 1312, 9, 67, 464, 8326, 737, 16345, 7, 22704, 28, 15, 4008, 198, 220, 220, 220, 1441, 45941, 13, 85, 25558, 7, 16302, 507, 8, 198, 198, 2, 13745, 10884, 21857, 7412, 198, 31369, 21857, 796, 545, 961, 10786, 31369, 21857, 13, 11134, 11537, 198, 320, 12860, 7, 31369, 21857, 11, 3670, 2625, 20556, 10884, 21857, 7412, 4943, 198, 198, 2, 5157, 16302, 295, 25056, 1231, 10454, 25431, 198, 31369, 21857, 62, 2543, 259, 21857, 796, 1382, 62, 2543, 259, 21857, 7, 31369, 21857, 8, 198, 320, 12860, 7, 31369, 21857, 62, 2543, 259, 21857, 11, 3670, 2625, 46200, 21857, 25056, 416, 736, 16302, 295, 4943, 198, 198, 2, 5157, 16302, 295, 25056, 351, 10454, 25431, 198, 198, 2, 27967, 281, 15541, 10454, 8106, 284, 262, 25056, 198, 198, 2, 220, 6674, 4174, 257, 10454, 8106, 351, 257, 45616, 379, 2063, 262, 3509, 1216, 86, 421, 1387, 198, 2, 887, 749, 1884, 645, 966, 198, 198, 2, 3497, 262, 376, 9792, 286, 262, 2939, 357, 37, 28707, 20021, 8, 198, 69, 280, 5277, 796, 1382, 62, 1676, 73, 62, 487, 912, 7, 31369, 21857, 8, 198, 198, 2, 25853, 262, 46287, 5277, 6121, 416, 262, 10454, 8106, 198, 81, 696, 62, 10379, 4400, 796, 10454, 62, 24455, 62, 487, 912, 7, 69, 280, 5277, 8, 198, 198, 2, 7214, 262, 34062, 376, 9792, 286, 262, 2939, 284, 10385, 340, 736, 284, 6093, 20021, 198, 259, 4399, 62, 69, 280, 5277, 62, 81, 696, 62, 10379, 4400, 796, 1382, 62, 1676, 73, 62, 361, 35594, 7, 81, 696, 62, 10379, 4400, 8, 198, 2, 320, 12860, 7, 361, 35594, 62, 16302, 295, 62, 31369, 21857, 11, 3670, 2625, 14402, 10454, 8106, 4943, 198, 2, 9288, 16, 796, 2511, 261, 7, 361, 35594, 62, 16302, 295, 62, 31369, 21857, 11, 11546, 8, 198, 2, 320, 12860, 7, 9288, 16, 11, 3670, 2625, 14402, 10454, 8106, 4943, 198, 198, 2, 10934, 262, 29083, 2939, 416, 279, 1891, 16302, 278, 262, 29083, 19887, 198, 10379, 4400, 62, 260, 1102, 2536, 1009, 796, 1382, 62, 2543, 259, 21857, 7, 259, 4399, 62, 69, 280, 5277, 62, 81, 696, 62, 10379, 4400, 8, 198, 320, 12860, 7, 10379, 4400, 62, 260, 1102, 2536, 1009, 11, 3670, 2625, 14402, 10454, 8106, 4943, 198 ]
2.775365
2,395
import argparse import collections import datetime import json import random import re import esprima import requests ## Get the email and password parser = argparse.ArgumentParser("messyger") parser.add_argument("-u", "--email", required=True) parser.add_argument("-p", "--password", required=True) parser.add_argument("-m", "--message") parser.add_argument("-r", "--recipient", type=int) args = parser.parse_args() ## Parse the HTML response html_resp = requests.get("https://www.messenger.com") html_resp.raise_for_status() html_page = html_resp.text initial_request_id = re.search( r'name="initial_request_id" value="([^"]+)"', html_page ).group(1) lsd = re.search(r'name="lsd" value="([^"]+)"', html_page).group(1) datr = re.search(r'"_js_datr","([^"]+)"', html_page).group(1) ## Make the login request login = requests.post( "https://www.messenger.com/login/password/", cookies={"datr": datr}, data={ "lsd": lsd, "initial_request_id": initial_request_id, "email": args.email, "pass": args.password, }, allow_redirects=False, ) assert login.status_code == 302 ## Extract the inbox query parameters inbox_html_resp = requests.get("https://www.messenger.com", cookies=login.cookies) inbox_html_resp.raise_for_status() inbox_html_page = inbox_html_resp.text dtsg = re.search(r'"DTSGInitialData",\[\],\{"token":"([^"]+)"', inbox_html_page).group( 1 ) device_id = re.search(r'"deviceId":"([^"]+)"', inbox_html_page).group(1) schema_version = re.search(r'"schemaVersion":"([0-9]+)"', inbox_html_page).group(1) script_urls = re.findall(r'"([^"]+rsrc\.php/[^"]+\.js[^"]+)"', inbox_html_page) scripts = [] for url in script_urls: resp = requests.get(url) resp.raise_for_status() scripts.append(resp.text) for script in scripts: if "LSPlatformGraphQLLightspeedRequestQuery" not in script: continue doc_id = re.search( r'id:"([0-9]+)",metadata:\{\},name:"LSPlatformGraphQLLightspeedRequestQuery"', script, ).group(1) break if not args.message: inbox_resp = requests.post( "https://www.messenger.com/api/graphql/", cookies=login.cookies, data={ "fb_dtsg": dtsg, "doc_id": doc_id, "variables": json.dumps( { "deviceId": device_id, "requestId": 0, "requestPayload": json.dumps( { "database": 1, "version": schema_version, "sync_params": json.dumps({}), } ), "requestType": 1, } ), }, ) inbox_resp.raise_for_status() ## Parse the inbox data response inbox_json = inbox_resp.json() inbox_js = inbox_json["data"]["viewer"]["lightspeed_web_request"]["payload"] ast = esprima.parseScript(inbox_js) fn_calls = collections.defaultdict(list) esprima.parseScript(inbox_js, delegate=handle_node) conversations = collections.defaultdict(dict) for args in fn_calls["deleteThenInsertThread"]: last_sent_ts, last_read_ts, last_msg, *rest = args user_id, last_msg_author = [ arg for arg in rest if isinstance(arg, int) and arg > 1e14 ] conversations[user_id]["unread"] = last_sent_ts != last_read_ts conversations[user_id]["last_message"] = last_msg conversations[user_id]["last_message_author"] = last_msg_author for args in fn_calls["verifyContactRowExists"]: user_id, _, _, name, *rest = args conversations[user_id]["name"] = name print(json.dumps(conversations, indent=2)) else: ## Replicate the send-message request timestamp = int(datetime.datetime.now().timestamp() * 1000) epoch = timestamp << 22 otid = epoch + random.randrange(2 ** 22) send_message_resp = requests.post( "https://www.messenger.com/api/graphql/", cookies=login.cookies, data={ "fb_dtsg": dtsg, "doc_id": doc_id, "variables": json.dumps( { "deviceId": device_id, "requestId": 0, "requestPayload": json.dumps( { "version_id": str(schema_version), "tasks": [ { "label": "46", "payload": json.dumps( { "thread_id": args.recipient, "otid": "6870463702739115830", "source": 0, "send_type": 1, "text": args.message, "initiating_source": 1, } ), "queue_name": str(args.recipient), "task_id": 0, "failure_count": None, }, { "label": "21", "payload": json.dumps( { "thread_id": args.recipient, "last_read_watermark_ts": timestamp, "sync_group": 1, } ), "queue_name": str(args.recipient), "task_id": 1, "failure_count": None, }, ], "epoch_id": 6870463702858032000, } ), "requestType": 3, } ), }, ) print(send_message_resp.text)
[ 11748, 1822, 29572, 198, 11748, 17268, 198, 11748, 4818, 8079, 198, 11748, 33918, 198, 11748, 4738, 198, 11748, 302, 198, 198, 11748, 1658, 1050, 8083, 198, 11748, 7007, 198, 198, 2235, 3497, 262, 3053, 290, 9206, 198, 198, 48610, 796, 1822, 29572, 13, 28100, 1713, 46677, 7203, 37348, 88, 1362, 4943, 198, 48610, 13, 2860, 62, 49140, 7203, 12, 84, 1600, 366, 438, 12888, 1600, 2672, 28, 17821, 8, 198, 48610, 13, 2860, 62, 49140, 7203, 12, 79, 1600, 366, 438, 28712, 1600, 2672, 28, 17821, 8, 198, 48610, 13, 2860, 62, 49140, 7203, 12, 76, 1600, 366, 438, 20500, 4943, 198, 48610, 13, 2860, 62, 49140, 7203, 12, 81, 1600, 366, 438, 8344, 48137, 1600, 2099, 28, 600, 8, 198, 22046, 796, 30751, 13, 29572, 62, 22046, 3419, 198, 198, 2235, 2547, 325, 262, 11532, 2882, 198, 198, 6494, 62, 4363, 796, 7007, 13, 1136, 7203, 5450, 1378, 2503, 13, 37348, 6540, 13, 785, 4943, 198, 6494, 62, 4363, 13, 40225, 62, 1640, 62, 13376, 3419, 198, 6494, 62, 7700, 796, 27711, 62, 4363, 13, 5239, 198, 198, 36733, 62, 25927, 62, 312, 796, 302, 13, 12947, 7, 198, 220, 220, 220, 374, 6, 3672, 2625, 36733, 62, 25927, 62, 312, 1, 1988, 2625, 26933, 61, 8973, 10, 16725, 3256, 27711, 62, 7700, 198, 737, 8094, 7, 16, 8, 198, 198, 7278, 67, 796, 302, 13, 12947, 7, 81, 6, 3672, 2625, 7278, 67, 1, 1988, 2625, 26933, 61, 8973, 10, 16725, 3256, 27711, 62, 7700, 737, 8094, 7, 16, 8, 198, 198, 19608, 81, 796, 302, 13, 12947, 7, 81, 29653, 62, 8457, 62, 19608, 81, 2430, 26933, 61, 8973, 10, 16725, 3256, 27711, 62, 7700, 737, 8094, 7, 16, 8, 198, 198, 2235, 6889, 262, 17594, 2581, 198, 198, 38235, 796, 7007, 13, 7353, 7, 198, 220, 220, 220, 366, 5450, 1378, 2503, 13, 37348, 6540, 13, 785, 14, 38235, 14, 28712, 14, 1600, 198, 220, 220, 220, 14746, 28, 4895, 19608, 81, 1298, 4818, 81, 5512, 198, 220, 220, 220, 1366, 34758, 198, 220, 220, 220, 220, 220, 220, 220, 366, 7278, 67, 1298, 300, 21282, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 36733, 62, 25927, 62, 312, 1298, 4238, 62, 25927, 62, 312, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12888, 1298, 26498, 13, 12888, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 6603, 1298, 26498, 13, 28712, 11, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1249, 62, 445, 1060, 82, 28, 25101, 11, 198, 8, 198, 30493, 17594, 13, 13376, 62, 8189, 6624, 32591, 198, 198, 2235, 29677, 262, 13734, 12405, 10007, 198, 198, 259, 3524, 62, 6494, 62, 4363, 796, 7007, 13, 1136, 7203, 5450, 1378, 2503, 13, 37348, 6540, 13, 785, 1600, 14746, 28, 38235, 13, 27916, 444, 8, 198, 259, 3524, 62, 6494, 62, 4363, 13, 40225, 62, 1640, 62, 13376, 3419, 198, 259, 3524, 62, 6494, 62, 7700, 796, 13734, 62, 6494, 62, 4363, 13, 5239, 198, 198, 67, 912, 70, 796, 302, 13, 12947, 7, 81, 29653, 35, 4694, 38, 24243, 6601, 1600, 59, 58, 59, 4357, 59, 4895, 30001, 2404, 26933, 61, 8973, 10, 16725, 3256, 13734, 62, 6494, 62, 7700, 737, 8094, 7, 198, 220, 220, 220, 352, 198, 8, 198, 198, 25202, 62, 312, 796, 302, 13, 12947, 7, 81, 29653, 25202, 7390, 2404, 26933, 61, 8973, 10, 16725, 3256, 13734, 62, 6494, 62, 7700, 737, 8094, 7, 16, 8, 198, 198, 15952, 2611, 62, 9641, 796, 302, 13, 12947, 7, 81, 29653, 15952, 2611, 14815, 2404, 26933, 15, 12, 24, 48688, 16725, 3256, 13734, 62, 6494, 62, 7700, 737, 8094, 7, 16, 8, 198, 198, 12048, 62, 6371, 82, 796, 302, 13, 19796, 439, 7, 81, 6, 18109, 58, 61, 8973, 10, 3808, 6015, 17405, 10121, 14, 58, 61, 8973, 10, 17405, 8457, 58, 61, 8973, 10, 16725, 3256, 13734, 62, 6494, 62, 7700, 8, 198, 198, 46521, 796, 17635, 198, 1640, 19016, 287, 4226, 62, 6371, 82, 25, 198, 220, 220, 220, 1217, 796, 7007, 13, 1136, 7, 6371, 8, 198, 220, 220, 220, 1217, 13, 40225, 62, 1640, 62, 13376, 3419, 198, 220, 220, 220, 14750, 13, 33295, 7, 4363, 13, 5239, 8, 198, 198, 1640, 4226, 287, 14750, 25, 198, 220, 220, 220, 611, 366, 6561, 37148, 37065, 48, 3069, 2337, 39492, 18453, 20746, 1, 407, 287, 4226, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2555, 198, 220, 220, 220, 2205, 62, 312, 796, 302, 13, 12947, 7, 198, 220, 220, 220, 220, 220, 220, 220, 374, 6, 312, 11097, 26933, 15, 12, 24, 60, 28988, 1600, 38993, 7479, 31478, 5512, 3672, 11097, 6561, 37148, 37065, 48, 3069, 2337, 39492, 18453, 20746, 1, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 4226, 11, 198, 220, 220, 220, 6739, 8094, 7, 16, 8, 198, 220, 220, 220, 2270, 198, 198, 361, 407, 26498, 13, 20500, 25, 628, 220, 220, 220, 13734, 62, 4363, 796, 7007, 13, 7353, 7, 198, 220, 220, 220, 220, 220, 220, 220, 366, 5450, 1378, 2503, 13, 37348, 6540, 13, 785, 14, 15042, 14, 34960, 13976, 14, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 14746, 28, 38235, 13, 27916, 444, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 34758, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 21855, 62, 67, 912, 70, 1298, 288, 912, 70, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 15390, 62, 312, 1298, 2205, 62, 312, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 25641, 2977, 1298, 33918, 13, 67, 8142, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 25202, 7390, 1298, 3335, 62, 312, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 25927, 7390, 1298, 657, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 25927, 19197, 2220, 1298, 33918, 13, 67, 8142, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 48806, 1298, 352, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 9641, 1298, 32815, 62, 9641, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 27261, 62, 37266, 1298, 33918, 13, 67, 8142, 15090, 92, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 25927, 6030, 1298, 352, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 13734, 62, 4363, 13, 40225, 62, 1640, 62, 13376, 3419, 628, 220, 220, 220, 22492, 2547, 325, 262, 13734, 1366, 2882, 628, 220, 220, 220, 13734, 62, 17752, 796, 13734, 62, 4363, 13, 17752, 3419, 198, 220, 220, 220, 13734, 62, 8457, 796, 13734, 62, 17752, 14692, 7890, 1, 7131, 1, 1177, 263, 1, 7131, 1, 8091, 39492, 62, 12384, 62, 25927, 1, 7131, 1, 15577, 2220, 8973, 628, 220, 220, 220, 6468, 796, 1658, 1050, 8083, 13, 29572, 7391, 7, 259, 3524, 62, 8457, 8, 628, 220, 220, 220, 24714, 62, 66, 5691, 796, 17268, 13, 12286, 11600, 7, 4868, 8, 628, 220, 220, 220, 1658, 1050, 8083, 13, 29572, 7391, 7, 259, 3524, 62, 8457, 11, 23191, 28, 28144, 62, 17440, 8, 628, 220, 220, 220, 10275, 796, 17268, 13, 12286, 11600, 7, 11600, 8, 628, 220, 220, 220, 329, 26498, 287, 24714, 62, 66, 5691, 14692, 33678, 6423, 44402, 16818, 1, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 938, 62, 34086, 62, 912, 11, 938, 62, 961, 62, 912, 11, 938, 62, 19662, 11, 1635, 2118, 796, 26498, 198, 220, 220, 220, 220, 220, 220, 220, 2836, 62, 312, 11, 938, 62, 19662, 62, 9800, 796, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1822, 329, 1822, 287, 1334, 611, 318, 39098, 7, 853, 11, 493, 8, 290, 1822, 1875, 352, 68, 1415, 198, 220, 220, 220, 220, 220, 220, 220, 2361, 198, 220, 220, 220, 220, 220, 220, 220, 10275, 58, 7220, 62, 312, 7131, 1, 403, 961, 8973, 796, 938, 62, 34086, 62, 912, 14512, 938, 62, 961, 62, 912, 198, 220, 220, 220, 220, 220, 220, 220, 10275, 58, 7220, 62, 312, 7131, 1, 12957, 62, 20500, 8973, 796, 938, 62, 19662, 198, 220, 220, 220, 220, 220, 220, 220, 10275, 58, 7220, 62, 312, 7131, 1, 12957, 62, 20500, 62, 9800, 8973, 796, 938, 62, 19662, 62, 9800, 628, 220, 220, 220, 329, 26498, 287, 24714, 62, 66, 5691, 14692, 332, 1958, 17829, 25166, 3109, 1023, 1, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 2836, 62, 312, 11, 4808, 11, 4808, 11, 1438, 11, 1635, 2118, 796, 26498, 198, 220, 220, 220, 220, 220, 220, 220, 10275, 58, 7220, 62, 312, 7131, 1, 3672, 8973, 796, 1438, 628, 220, 220, 220, 3601, 7, 17752, 13, 67, 8142, 7, 1102, 690, 602, 11, 33793, 28, 17, 4008, 198, 198, 17772, 25, 628, 220, 220, 220, 22492, 18407, 5344, 262, 3758, 12, 20500, 2581, 628, 220, 220, 220, 41033, 796, 493, 7, 19608, 8079, 13, 19608, 8079, 13, 2197, 22446, 16514, 27823, 3419, 1635, 8576, 8, 198, 220, 220, 220, 36835, 796, 41033, 9959, 2534, 198, 220, 220, 220, 30972, 312, 796, 36835, 1343, 4738, 13, 25192, 9521, 7, 17, 12429, 2534, 8, 628, 220, 220, 220, 3758, 62, 20500, 62, 4363, 796, 7007, 13, 7353, 7, 198, 220, 220, 220, 220, 220, 220, 220, 366, 5450, 1378, 2503, 13, 37348, 6540, 13, 785, 14, 15042, 14, 34960, 13976, 14, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 14746, 28, 38235, 13, 27916, 444, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 34758, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 21855, 62, 67, 912, 70, 1298, 288, 912, 70, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 15390, 62, 312, 1298, 2205, 62, 312, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 25641, 2977, 1298, 33918, 13, 67, 8142, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 25202, 7390, 1298, 3335, 62, 312, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 25927, 7390, 1298, 657, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 25927, 19197, 2220, 1298, 33918, 13, 67, 8142, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 9641, 62, 312, 1298, 965, 7, 15952, 2611, 62, 9641, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 83, 6791, 1298, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 18242, 1298, 366, 3510, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 15577, 2220, 1298, 33918, 13, 67, 8142, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 16663, 62, 312, 1298, 26498, 13, 8344, 48137, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 313, 312, 1298, 366, 3104, 2154, 3510, 20167, 1983, 2670, 1157, 3365, 1270, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 10459, 1298, 657, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 21280, 62, 4906, 1298, 352, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 5239, 1298, 26498, 13, 20500, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 259, 8846, 803, 62, 10459, 1298, 352, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 36560, 62, 3672, 1298, 965, 7, 22046, 13, 8344, 48137, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 35943, 62, 312, 1298, 657, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 32165, 495, 62, 9127, 1298, 6045, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 18242, 1298, 366, 2481, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 15577, 2220, 1298, 33918, 13, 67, 8142, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 16663, 62, 312, 1298, 26498, 13, 8344, 48137, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 12957, 62, 961, 62, 7050, 4102, 62, 912, 1298, 41033, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 27261, 62, 8094, 1298, 352, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 36560, 62, 3672, 1298, 965, 7, 22046, 13, 8344, 48137, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 35943, 62, 312, 1298, 352, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 32165, 495, 62, 9127, 1298, 6045, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16589, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 538, 5374, 62, 312, 1298, 8257, 2154, 3510, 20167, 26279, 1795, 2624, 830, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 25927, 6030, 1298, 513, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 3601, 7, 21280, 62, 20500, 62, 4363, 13, 5239, 8, 198 ]
1.758159
3,585
import os import re with open('PKGBUILD') as fp: for line in fp.readlines(): line = line.strip() current_build_number = re.search(r"^_pkgbuildnumber=(.+)$", line) if current_build_number is None: continue current_build_number = current_build_number.group(1) break else: raise ValueError("_pkgbuildnumber not found") latest_version = os.environ['INPUT_VERSION'] latest_build_number = os.environ['INPUT_BUILD_NUMBER'] latest_hash_x86_64 = os.environ['INPUT_SHA256_x86_64'] print(f'Current build number: {current_build_number}') print(f'Latest build number: {latest_build_number}') print(f'Latest version: {latest_version}') print(f'{latest_version}+{latest_build_number} x86_64 SHA256: {latest_hash_x86_64}') if latest_build_number.isdigit() is False: print('Latest build number is invalid') exit(1) if ' ' in latest_version or '-' in latest_version: print('Latest version is invalid') exit(1) with open('PKGBUILD') as fp: contents = fp.read() if current_build_number != latest_build_number: contents = re.sub(r"^pkgrel=.+$", 'pkgrel=1', contents, flags=re.MULTILINE) contents = re.sub(r"^_pkgbuildnumber=.+$", f'_pkgbuildnumber={latest_build_number}', contents, flags=re.MULTILINE) contents = re.sub(r"^_pkgversion=.+$", f'_pkgversion={latest_version}', contents, flags=re.MULTILINE) contents = re.sub(r"(sha256sums_x86_64=\(\n ').+'\n", f"\g<1>{latest_hash_x86_64}'\n", contents) with open('PKGBUILD', 'w') as fp: fp.write(contents)
[ 11748, 28686, 198, 11748, 302, 628, 198, 4480, 1280, 10786, 40492, 4579, 52, 26761, 11537, 355, 277, 79, 25, 198, 220, 220, 220, 329, 1627, 287, 277, 79, 13, 961, 6615, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 1627, 796, 1627, 13, 36311, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1459, 62, 11249, 62, 17618, 796, 302, 13, 12947, 7, 81, 1, 61, 62, 35339, 11249, 17618, 16193, 13, 28988, 3, 1600, 1627, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1459, 62, 11249, 62, 17618, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 198, 220, 220, 220, 220, 220, 220, 220, 1459, 62, 11249, 62, 17618, 796, 1459, 62, 11249, 62, 17618, 13, 8094, 7, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2270, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7203, 62, 35339, 11249, 17618, 407, 1043, 4943, 198, 198, 42861, 62, 9641, 796, 28686, 13, 268, 2268, 17816, 1268, 30076, 62, 43717, 20520, 198, 42861, 62, 11249, 62, 17618, 796, 28686, 13, 268, 2268, 17816, 1268, 30076, 62, 19499, 26761, 62, 41359, 13246, 20520, 198, 42861, 62, 17831, 62, 87, 4521, 62, 2414, 796, 28686, 13, 268, 2268, 17816, 1268, 30076, 62, 37596, 11645, 62, 87, 4521, 62, 2414, 20520, 198, 198, 4798, 7, 69, 6, 11297, 1382, 1271, 25, 1391, 14421, 62, 11249, 62, 17618, 92, 11537, 198, 4798, 7, 69, 6, 39478, 1382, 1271, 25, 1391, 42861, 62, 11249, 62, 17618, 92, 11537, 198, 4798, 7, 69, 6, 39478, 2196, 25, 1391, 42861, 62, 9641, 92, 11537, 198, 4798, 7, 69, 6, 90, 42861, 62, 9641, 92, 10, 90, 42861, 62, 11249, 62, 17618, 92, 2124, 4521, 62, 2414, 25630, 11645, 25, 1391, 42861, 62, 17831, 62, 87, 4521, 62, 2414, 92, 11537, 198, 198, 361, 3452, 62, 11249, 62, 17618, 13, 9409, 328, 270, 3419, 318, 10352, 25, 198, 220, 220, 220, 3601, 10786, 39478, 1382, 1271, 318, 12515, 11537, 198, 220, 220, 220, 8420, 7, 16, 8, 198, 198, 361, 705, 705, 287, 3452, 62, 9641, 393, 705, 19355, 287, 3452, 62, 9641, 25, 198, 220, 220, 220, 3601, 10786, 39478, 2196, 318, 12515, 11537, 198, 220, 220, 220, 8420, 7, 16, 8, 198, 198, 4480, 1280, 10786, 40492, 4579, 52, 26761, 11537, 355, 277, 79, 25, 198, 220, 220, 220, 10154, 796, 277, 79, 13, 961, 3419, 198, 198, 361, 1459, 62, 11249, 62, 17618, 14512, 3452, 62, 11249, 62, 17618, 25, 198, 220, 220, 220, 10154, 796, 302, 13, 7266, 7, 81, 1, 61, 35339, 2411, 28, 13, 10, 3, 1600, 705, 35339, 2411, 28, 16, 3256, 10154, 11, 9701, 28, 260, 13, 44, 16724, 4146, 8881, 8, 198, 198, 3642, 658, 796, 302, 13, 7266, 7, 81, 1, 61, 62, 35339, 11249, 17618, 28, 13, 10, 3, 1600, 277, 6, 62, 35339, 11249, 17618, 34758, 42861, 62, 11249, 62, 17618, 92, 3256, 10154, 11, 9701, 28, 260, 13, 44, 16724, 4146, 8881, 8, 198, 3642, 658, 796, 302, 13, 7266, 7, 81, 1, 61, 62, 35339, 9641, 28, 13, 10, 3, 1600, 277, 6, 62, 35339, 9641, 34758, 42861, 62, 9641, 92, 3256, 10154, 11, 9701, 28, 260, 13, 44, 16724, 4146, 8881, 8, 198, 3642, 658, 796, 302, 13, 7266, 7, 81, 18109, 26270, 11645, 82, 5700, 62, 87, 4521, 62, 2414, 28, 59, 38016, 77, 220, 705, 737, 10, 6, 59, 77, 1600, 277, 1, 59, 70, 27, 16, 29, 90, 42861, 62, 17831, 62, 87, 4521, 62, 2414, 92, 6, 59, 77, 1600, 10154, 8, 198, 198, 4480, 1280, 10786, 40492, 4579, 52, 26761, 3256, 705, 86, 11537, 355, 277, 79, 25, 198, 220, 220, 220, 277, 79, 13, 13564, 7, 3642, 658, 8, 198 ]
2.429022
634
import pytest import numpy as np from functools import reduce from hottbox.core.structures import Tensor,TensorCPD, TensorTKD, TensorTT from hottbox.utils.validation.checks import is_super_symmetric from ..basic import dense_tensor, sparse_tensor, super_diagonal_tensor, \ super_diag_tensor, super_symmetric_tensor, residual_tensor def test_super_diag_tensor(): """ Tests for creating super-diagonal tensor""" order = 3 rank = 2 correct_shape = (rank, ) * order true_default_data = np.array([[[1., 0.], [0., 0.]], [[0., 0.], [0., 1.]]]) true_default_mode_names = ['mode-0', 'mode-1', 'mode-2'] correct_values = np.arange(rank) true_data = np.array([[[0., 0.], [0., 0.]], [[0., 0.], [0., 1.]]]) # ------ tests for default super diagonal tensor tensor = super_diag_tensor(correct_shape) assert isinstance(tensor, Tensor) np.testing.assert_array_equal(tensor.data, true_default_data) assert (tensor.mode_names == true_default_mode_names) # ------ tests for super diagonal tensor with custom values on the main diagonal tensor = super_diag_tensor(correct_shape, values=correct_values) assert isinstance(tensor, Tensor) np.testing.assert_array_equal(tensor.data, true_data) assert (tensor.mode_names == true_default_mode_names) # ------ tests that should Fail with pytest.raises(TypeError): # shape should be passed as tuple super_diag_tensor(shape=list(correct_shape)) with pytest.raises(ValueError): # all values in shape should be the same incorrect_shape = [rank] * order incorrect_shape[1] = order+1 super_diag_tensor(shape=tuple(incorrect_shape)) with pytest.raises(ValueError): # values should be an one dimensional numpy array incorrect_values = np.ones([rank, rank]) super_diag_tensor(shape=correct_shape, values=incorrect_values) with pytest.raises(ValueError): # too many values for the specified shape incorrect_values = np.ones(correct_shape[0]+1) super_diag_tensor(shape=correct_shape, values=incorrect_values) with pytest.raises(TypeError): # values should be a numpy array incorrect_values = [1] * correct_shape[0] super_diag_tensor(shape=correct_shape, values=incorrect_values) def test_residual_tensor(): """ Tests for computing/creating a residual tensor """ true_default_mode_names = ['mode-0', 'mode-1', 'mode-2'] # ------ tests for residual tensor with the Tensor array_3d = np.array([[[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]], [[12, 13, 14, 15], [16, 17, 18, 19], [20, 21, 22, 23]]]) true_residual_data = np.zeros(array_3d.shape) tensor_1 = Tensor(array=array_3d) tensor_2 = Tensor(array=array_3d) residual = residual_tensor(tensor_orig=tensor_1, tensor_approx=tensor_2) assert isinstance(residual, Tensor) assert (residual.mode_names == true_default_mode_names) np.testing.assert_array_equal(residual.data, true_residual_data) # ------ tests for residual tensor with the TensorCPD array_3d = np.array([[[100., 250., 400., 550.], [250., 650., 1050., 1450.], [400., 1050., 1700., 2350.]], [[250., 650., 1050., 1450.], [650., 1925., 3200., 4475.], [1050., 3200., 5350., 7500.]]] ) true_residual_data = np.zeros(array_3d.shape) tensor = Tensor(array=array_3d) ft_shape = (2, 3, 4) # define shape of the tensor in full form R = 5 # define Kryskal rank of a tensor in CP form core_values = np.ones(R) fmat = [np.arange(orig_dim * R).reshape(orig_dim, R) for orig_dim in ft_shape] tensor_cpd = TensorCPD(fmat=fmat, core_values=core_values) residual = residual_tensor(tensor_orig=tensor, tensor_approx=tensor_cpd) assert isinstance(residual, Tensor) assert (residual.mode_names == true_default_mode_names) np.testing.assert_array_equal(residual.data, true_residual_data) # ------ tests for residual tensor with the TensorTKD array_3d = np.array([[[378, 1346, 2314, 3282, 4250], [1368, 4856, 8344, 11832, 15320], [2358, 8366, 14374, 20382, 26390], [3348, 11876, 20404, 28932, 37460]], [[1458, 5146, 8834, 12522, 16210], [5112, 17944, 30776, 43608, 56440], [8766, 30742, 52718, 74694, 96670], [12420, 43540, 74660, 105780, 136900]], [[2538, 8946, 15354, 21762, 28170], [8856, 31032, 53208, 75384, 97560], [15174, 53118, 91062, 129006, 166950], [21492, 75204, 128916, 182628, 236340]]]) true_residual_data = np.zeros(array_3d.shape) tensor = Tensor(array=array_3d) ft_shape = (3, 4, 5) # define shape of the tensor in full form ml_rank = (2, 3, 4) # define multi-linear rank of a tensor in Tucker form core_size = reduce(lambda x, y: x * y, ml_rank) core_values = np.arange(core_size).reshape(ml_rank) fmat = [np.arange(ft_shape[mode] * ml_rank[mode]).reshape(ft_shape[mode], ml_rank[mode]) for mode in range(len(ft_shape))] tensor_tkd = TensorTKD(fmat=fmat, core_values=core_values) residual = residual_tensor(tensor_orig=tensor, tensor_approx=tensor_tkd) assert isinstance(residual, Tensor) assert (residual.mode_names == true_default_mode_names) np.testing.assert_array_equal(residual.data, true_residual_data) # ------ tests for residual tensor with the TensorTT array_3d = np.array([[[300, 348, 396, 444, 492, 540], [354, 411, 468, 525, 582, 639], [408, 474, 540, 606, 672, 738], [462, 537, 612, 687, 762, 837], [516, 600, 684, 768, 852, 936]], [[960, 1110, 1260, 1410, 1560, 1710], [1230, 1425, 1620, 1815, 2010, 2205], [1500, 1740, 1980, 2220, 2460, 2700], [1770, 2055, 2340, 2625, 2910, 3195], [2040, 2370, 2700, 3030, 3360, 3690]], [[1620, 1872, 2124, 2376, 2628, 2880], [2106, 2439, 2772, 3105, 3438, 3771], [2592, 3006, 3420, 3834, 4248, 4662], [3078, 3573, 4068, 4563, 5058, 5553], [3564, 4140, 4716, 5292, 5868, 6444]], [[2280, 2634, 2988, 3342, 3696, 4050], [2982, 3453, 3924, 4395, 4866, 5337], [3684, 4272, 4860, 5448, 6036, 6624], [4386, 5091, 5796, 6501, 7206, 7911], [5088, 5910, 6732, 7554, 8376, 9198]]]) true_residual_data = np.zeros(array_3d.shape) tensor = Tensor(array=array_3d) r1, r2 = 2, 3 I, J, K = 4, 5, 6 core_1 = np.arange(I * r1).reshape(I, r1) core_2 = np.arange(r1 * J * r2).reshape(r1, J, r2) core_3 = np.arange(r2 * K).reshape(r2, K) core_values = [core_1, core_2, core_3] ft_shape = (I, J, K) tensor_tt = TensorTT(core_values=core_values) residual = residual_tensor(tensor_orig=tensor, tensor_approx=tensor_tt) assert isinstance(residual, Tensor) assert (residual.mode_names == true_default_mode_names) np.testing.assert_array_equal(residual.data, true_residual_data) # ------ tests that should FAIL for residual tensor due to wrong input type array_3d = np.array([[[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]], [[12, 13, 14, 15], [16, 17, 18, 19], [20, 21, 22, 23]]]) tensor_1 = Tensor(array=array_3d) tensor_2 = array_3d with pytest.raises(TypeError): residual_tensor(tensor_orig=tensor_1, tensor_approx=tensor_2) tensor_1 = array_3d tensor_2 = Tensor(array=array_3d) with pytest.raises(TypeError): residual_tensor(tensor_orig=tensor_1, tensor_approx=tensor_2)
[ 11748, 12972, 9288, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 1257, 310, 10141, 1330, 4646, 198, 6738, 289, 1252, 3524, 13, 7295, 13, 7249, 942, 1330, 309, 22854, 11, 51, 22854, 34, 5760, 11, 309, 22854, 51, 42, 35, 11, 309, 22854, 15751, 198, 6738, 289, 1252, 3524, 13, 26791, 13, 12102, 341, 13, 42116, 1330, 318, 62, 16668, 62, 1837, 3020, 19482, 198, 6738, 11485, 35487, 1330, 15715, 62, 83, 22854, 11, 29877, 62, 83, 22854, 11, 2208, 62, 10989, 27923, 62, 83, 22854, 11, 3467, 198, 220, 220, 220, 2208, 62, 10989, 363, 62, 83, 22854, 11, 2208, 62, 1837, 3020, 19482, 62, 83, 22854, 11, 29598, 62, 83, 22854, 628, 628, 198, 198, 4299, 1332, 62, 16668, 62, 10989, 363, 62, 83, 22854, 33529, 198, 220, 220, 220, 37227, 30307, 329, 4441, 2208, 12, 10989, 27923, 11192, 273, 37811, 198, 220, 220, 220, 1502, 796, 513, 198, 220, 220, 220, 4279, 796, 362, 198, 220, 220, 220, 3376, 62, 43358, 796, 357, 43027, 11, 1267, 1635, 1502, 198, 220, 220, 220, 2081, 62, 12286, 62, 7890, 796, 45941, 13, 18747, 26933, 30109, 16, 1539, 657, 13, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 15, 1539, 657, 8183, 4357, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16410, 15, 1539, 657, 13, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 15, 1539, 352, 8183, 11907, 8, 198, 220, 220, 220, 2081, 62, 12286, 62, 14171, 62, 14933, 796, 37250, 14171, 12, 15, 3256, 705, 14171, 12, 16, 3256, 705, 14171, 12, 17, 20520, 198, 220, 220, 220, 3376, 62, 27160, 796, 45941, 13, 283, 858, 7, 43027, 8, 198, 220, 220, 220, 2081, 62, 7890, 796, 45941, 13, 18747, 26933, 30109, 15, 1539, 657, 13, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 15, 1539, 657, 8183, 4357, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16410, 15, 1539, 657, 13, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 15, 1539, 352, 8183, 11907, 8, 628, 220, 220, 220, 1303, 40103, 5254, 329, 4277, 2208, 40039, 11192, 273, 198, 220, 220, 220, 11192, 273, 796, 2208, 62, 10989, 363, 62, 83, 22854, 7, 30283, 62, 43358, 8, 198, 220, 220, 220, 6818, 318, 39098, 7, 83, 22854, 11, 309, 22854, 8, 198, 220, 220, 220, 45941, 13, 33407, 13, 30493, 62, 18747, 62, 40496, 7, 83, 22854, 13, 7890, 11, 2081, 62, 12286, 62, 7890, 8, 198, 220, 220, 220, 6818, 357, 83, 22854, 13, 14171, 62, 14933, 6624, 2081, 62, 12286, 62, 14171, 62, 14933, 8, 628, 220, 220, 220, 1303, 40103, 5254, 329, 2208, 40039, 11192, 273, 351, 2183, 3815, 319, 262, 1388, 40039, 198, 220, 220, 220, 11192, 273, 796, 2208, 62, 10989, 363, 62, 83, 22854, 7, 30283, 62, 43358, 11, 3815, 28, 30283, 62, 27160, 8, 198, 220, 220, 220, 6818, 318, 39098, 7, 83, 22854, 11, 309, 22854, 8, 198, 220, 220, 220, 45941, 13, 33407, 13, 30493, 62, 18747, 62, 40496, 7, 83, 22854, 13, 7890, 11, 2081, 62, 7890, 8, 198, 220, 220, 220, 6818, 357, 83, 22854, 13, 14171, 62, 14933, 6624, 2081, 62, 12286, 62, 14171, 62, 14933, 8, 628, 220, 220, 220, 1303, 40103, 5254, 326, 815, 18448, 628, 220, 220, 220, 351, 12972, 9288, 13, 430, 2696, 7, 6030, 12331, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 5485, 815, 307, 3804, 355, 46545, 198, 220, 220, 220, 220, 220, 220, 220, 2208, 62, 10989, 363, 62, 83, 22854, 7, 43358, 28, 4868, 7, 30283, 62, 43358, 4008, 628, 220, 220, 220, 351, 12972, 9288, 13, 430, 2696, 7, 11395, 12331, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 477, 3815, 287, 5485, 815, 307, 262, 976, 198, 220, 220, 220, 220, 220, 220, 220, 11491, 62, 43358, 796, 685, 43027, 60, 1635, 1502, 198, 220, 220, 220, 220, 220, 220, 220, 11491, 62, 43358, 58, 16, 60, 796, 1502, 10, 16, 198, 220, 220, 220, 220, 220, 220, 220, 2208, 62, 10989, 363, 62, 83, 22854, 7, 43358, 28, 83, 29291, 7, 1939, 47315, 62, 43358, 4008, 628, 220, 220, 220, 351, 12972, 9288, 13, 430, 2696, 7, 11395, 12331, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3815, 815, 307, 281, 530, 38517, 299, 32152, 7177, 198, 220, 220, 220, 220, 220, 220, 220, 11491, 62, 27160, 796, 45941, 13, 1952, 26933, 43027, 11, 4279, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 2208, 62, 10989, 363, 62, 83, 22854, 7, 43358, 28, 30283, 62, 43358, 11, 3815, 28, 1939, 47315, 62, 27160, 8, 628, 220, 220, 220, 351, 12972, 9288, 13, 430, 2696, 7, 11395, 12331, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1165, 867, 3815, 329, 262, 7368, 5485, 198, 220, 220, 220, 220, 220, 220, 220, 11491, 62, 27160, 796, 45941, 13, 1952, 7, 30283, 62, 43358, 58, 15, 48688, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2208, 62, 10989, 363, 62, 83, 22854, 7, 43358, 28, 30283, 62, 43358, 11, 3815, 28, 1939, 47315, 62, 27160, 8, 628, 220, 220, 220, 351, 12972, 9288, 13, 430, 2696, 7, 6030, 12331, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3815, 815, 307, 257, 299, 32152, 7177, 198, 220, 220, 220, 220, 220, 220, 220, 11491, 62, 27160, 796, 685, 16, 60, 1635, 3376, 62, 43358, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 2208, 62, 10989, 363, 62, 83, 22854, 7, 43358, 28, 30283, 62, 43358, 11, 3815, 28, 1939, 47315, 62, 27160, 8, 628, 198, 198, 4299, 1332, 62, 411, 312, 723, 62, 83, 22854, 33529, 198, 220, 220, 220, 37227, 30307, 329, 14492, 14, 20123, 278, 257, 29598, 11192, 273, 37227, 198, 220, 220, 220, 2081, 62, 12286, 62, 14171, 62, 14933, 796, 37250, 14171, 12, 15, 3256, 705, 14171, 12, 16, 3256, 705, 14171, 12, 17, 20520, 628, 220, 220, 220, 1303, 40103, 5254, 329, 29598, 11192, 273, 351, 262, 309, 22854, 198, 220, 220, 220, 7177, 62, 18, 67, 796, 45941, 13, 18747, 26933, 30109, 15, 11, 220, 352, 11, 220, 362, 11, 220, 513, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 19, 11, 220, 642, 11, 220, 718, 11, 220, 767, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 23, 11, 220, 860, 11, 838, 11, 1367, 60, 4357, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16410, 1065, 11, 1511, 11, 1478, 11, 1315, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 1433, 11, 1596, 11, 1248, 11, 678, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 1238, 11, 2310, 11, 2534, 11, 2242, 11907, 12962, 198, 220, 220, 220, 2081, 62, 411, 312, 723, 62, 7890, 796, 45941, 13, 9107, 418, 7, 18747, 62, 18, 67, 13, 43358, 8, 198, 220, 220, 220, 11192, 273, 62, 16, 796, 309, 22854, 7, 18747, 28, 18747, 62, 18, 67, 8, 198, 220, 220, 220, 11192, 273, 62, 17, 796, 309, 22854, 7, 18747, 28, 18747, 62, 18, 67, 8, 198, 220, 220, 220, 29598, 796, 29598, 62, 83, 22854, 7, 83, 22854, 62, 11612, 28, 83, 22854, 62, 16, 11, 11192, 273, 62, 1324, 13907, 28, 83, 22854, 62, 17, 8, 198, 220, 220, 220, 6818, 318, 39098, 7, 411, 312, 723, 11, 309, 22854, 8, 198, 220, 220, 220, 6818, 357, 411, 312, 723, 13, 14171, 62, 14933, 6624, 2081, 62, 12286, 62, 14171, 62, 14933, 8, 198, 220, 220, 220, 45941, 13, 33407, 13, 30493, 62, 18747, 62, 40496, 7, 411, 312, 723, 13, 7890, 11, 2081, 62, 411, 312, 723, 62, 7890, 8, 628, 220, 220, 220, 1303, 40103, 5254, 329, 29598, 11192, 273, 351, 262, 309, 22854, 34, 5760, 198, 220, 220, 220, 7177, 62, 18, 67, 796, 45941, 13, 18747, 26933, 30109, 3064, 1539, 8646, 1539, 7337, 1539, 25240, 13, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 9031, 1539, 22626, 1539, 47235, 1539, 1478, 1120, 13, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 7029, 1539, 47235, 1539, 35665, 1539, 2242, 1120, 8183, 4357, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16410, 9031, 1539, 22626, 1539, 47235, 1539, 1478, 1120, 13, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 17544, 1539, 36864, 1539, 513, 2167, 1539, 5846, 2425, 13, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 940, 1120, 1539, 513, 2167, 1539, 7192, 1120, 1539, 767, 4059, 8183, 11907, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 2081, 62, 411, 312, 723, 62, 7890, 796, 45941, 13, 9107, 418, 7, 18747, 62, 18, 67, 13, 43358, 8, 198, 220, 220, 220, 11192, 273, 796, 309, 22854, 7, 18747, 28, 18747, 62, 18, 67, 8, 198, 220, 220, 220, 10117, 62, 43358, 796, 357, 17, 11, 513, 11, 604, 8, 220, 220, 220, 1303, 8160, 5485, 286, 262, 11192, 273, 287, 1336, 1296, 198, 220, 220, 220, 371, 796, 642, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 8160, 41662, 8135, 282, 4279, 286, 257, 11192, 273, 287, 16932, 1296, 198, 220, 220, 220, 4755, 62, 27160, 796, 45941, 13, 1952, 7, 49, 8, 198, 220, 220, 220, 277, 6759, 796, 685, 37659, 13, 283, 858, 7, 11612, 62, 27740, 1635, 371, 737, 3447, 1758, 7, 11612, 62, 27740, 11, 371, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1796, 62, 27740, 287, 10117, 62, 43358, 60, 198, 220, 220, 220, 11192, 273, 62, 13155, 67, 796, 309, 22854, 34, 5760, 7, 69, 6759, 28, 69, 6759, 11, 4755, 62, 27160, 28, 7295, 62, 27160, 8, 198, 220, 220, 220, 29598, 796, 29598, 62, 83, 22854, 7, 83, 22854, 62, 11612, 28, 83, 22854, 11, 11192, 273, 62, 1324, 13907, 28, 83, 22854, 62, 13155, 67, 8, 198, 220, 220, 220, 6818, 318, 39098, 7, 411, 312, 723, 11, 309, 22854, 8, 198, 220, 220, 220, 6818, 357, 411, 312, 723, 13, 14171, 62, 14933, 6624, 2081, 62, 12286, 62, 14171, 62, 14933, 8, 198, 220, 220, 220, 45941, 13, 33407, 13, 30493, 62, 18747, 62, 40496, 7, 411, 312, 723, 13, 7890, 11, 2081, 62, 411, 312, 723, 62, 7890, 8, 628, 220, 220, 220, 1303, 40103, 5254, 329, 29598, 11192, 273, 351, 262, 309, 22854, 51, 42, 35, 198, 220, 220, 220, 7177, 62, 18, 67, 796, 45941, 13, 18747, 26933, 30109, 30695, 11, 220, 220, 1511, 3510, 11, 220, 220, 2242, 1415, 11, 220, 220, 513, 32568, 11, 220, 220, 5433, 1120, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 1485, 3104, 11, 220, 220, 4764, 3980, 11, 220, 220, 9698, 2598, 11, 220, 19035, 2624, 11, 220, 1315, 19504, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 1954, 3365, 11, 220, 220, 807, 32459, 11, 220, 1478, 31020, 11, 220, 1160, 36243, 11, 220, 2608, 25964, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 2091, 2780, 11, 220, 19035, 4304, 11, 220, 1160, 26429, 11, 220, 38902, 2624, 11, 220, 49020, 1899, 60, 4357, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16410, 1415, 3365, 11, 220, 220, 642, 20964, 11, 220, 220, 9193, 2682, 11, 220, 13151, 1828, 11, 220, 1467, 21536, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 4349, 1065, 11, 220, 27228, 2598, 11, 220, 1542, 39509, 11, 220, 5946, 28688, 11, 220, 642, 2414, 1821, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 5774, 2791, 11, 220, 38369, 3682, 11, 220, 642, 1983, 1507, 11, 220, 8915, 45214, 11, 220, 860, 2791, 2154, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 17464, 1238, 11, 220, 42671, 1821, 11, 220, 767, 3510, 1899, 11, 838, 3553, 1795, 11, 1511, 3388, 405, 60, 4357, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16410, 1495, 2548, 11, 220, 220, 9919, 3510, 11, 220, 1315, 32182, 11, 220, 24894, 5237, 11, 220, 2579, 17279, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 3459, 3980, 11, 220, 28947, 2624, 11, 220, 7192, 21315, 11, 220, 5441, 22842, 11, 220, 860, 2425, 1899, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 1314, 22985, 11, 220, 7192, 16817, 11, 220, 860, 940, 5237, 11, 1105, 12865, 21, 11, 1467, 3388, 1120, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 22291, 5892, 11, 220, 5441, 18638, 11, 1105, 4531, 1433, 11, 1248, 2075, 2078, 11, 2242, 5066, 1821, 11907, 12962, 198, 220, 220, 220, 2081, 62, 411, 312, 723, 62, 7890, 796, 45941, 13, 9107, 418, 7, 18747, 62, 18, 67, 13, 43358, 8, 198, 220, 220, 220, 11192, 273, 796, 309, 22854, 7, 18747, 28, 18747, 62, 18, 67, 8, 198, 220, 220, 220, 10117, 62, 43358, 796, 357, 18, 11, 604, 11, 642, 8, 220, 220, 220, 1303, 8160, 5485, 286, 262, 11192, 273, 287, 1336, 1296, 198, 220, 220, 220, 25962, 62, 43027, 796, 357, 17, 11, 513, 11, 604, 8, 220, 220, 220, 220, 1303, 8160, 5021, 12, 29127, 4279, 286, 257, 11192, 273, 287, 25951, 1296, 198, 220, 220, 220, 4755, 62, 7857, 796, 4646, 7, 50033, 2124, 11, 331, 25, 2124, 1635, 331, 11, 25962, 62, 43027, 8, 198, 220, 220, 220, 4755, 62, 27160, 796, 45941, 13, 283, 858, 7, 7295, 62, 7857, 737, 3447, 1758, 7, 4029, 62, 43027, 8, 198, 220, 220, 220, 277, 6759, 796, 685, 37659, 13, 283, 858, 7, 701, 62, 43358, 58, 14171, 60, 1635, 25962, 62, 43027, 58, 14171, 35944, 3447, 1758, 7, 701, 62, 43358, 58, 14171, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25962, 62, 43027, 58, 14171, 12962, 329, 4235, 287, 2837, 7, 11925, 7, 701, 62, 43358, 4008, 60, 198, 220, 220, 220, 11192, 273, 62, 30488, 67, 796, 309, 22854, 51, 42, 35, 7, 69, 6759, 28, 69, 6759, 11, 4755, 62, 27160, 28, 7295, 62, 27160, 8, 198, 220, 220, 220, 29598, 796, 29598, 62, 83, 22854, 7, 83, 22854, 62, 11612, 28, 83, 22854, 11, 11192, 273, 62, 1324, 13907, 28, 83, 22854, 62, 30488, 67, 8, 198, 220, 220, 220, 6818, 318, 39098, 7, 411, 312, 723, 11, 309, 22854, 8, 198, 220, 220, 220, 6818, 357, 411, 312, 723, 13, 14171, 62, 14933, 6624, 2081, 62, 12286, 62, 14171, 62, 14933, 8, 198, 220, 220, 220, 45941, 13, 33407, 13, 30493, 62, 18747, 62, 40496, 7, 411, 312, 723, 13, 7890, 11, 2081, 62, 411, 312, 723, 62, 7890, 8, 628, 220, 220, 220, 1303, 40103, 5254, 329, 29598, 11192, 273, 351, 262, 309, 22854, 15751, 198, 220, 220, 220, 7177, 62, 18, 67, 796, 45941, 13, 18747, 26933, 30109, 6200, 11, 44084, 11, 48758, 11, 45095, 11, 5125, 17, 11, 38190, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 32182, 11, 43184, 11, 604, 3104, 11, 45719, 11, 642, 6469, 11, 718, 2670, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 26200, 11, 604, 4524, 11, 38190, 11, 3126, 21, 11, 718, 4761, 11, 767, 2548, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 39997, 11, 642, 2718, 11, 718, 1065, 11, 718, 5774, 11, 767, 5237, 11, 807, 2718, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 47493, 11, 10053, 11, 718, 5705, 11, 46720, 11, 807, 4309, 11, 860, 2623, 60, 4357, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16410, 39277, 11, 1367, 940, 11, 1105, 1899, 11, 1478, 940, 11, 1315, 1899, 11, 1596, 940, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 1065, 1270, 11, 1478, 1495, 11, 1467, 1238, 11, 1248, 1314, 11, 3050, 11, 15629, 20, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 33698, 11, 1596, 1821, 11, 7169, 11, 2534, 1238, 11, 1987, 1899, 11, 2681, 405, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 1558, 2154, 11, 1160, 2816, 11, 2242, 1821, 11, 2608, 1495, 11, 2808, 940, 11, 513, 22186, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 1238, 1821, 11, 2242, 2154, 11, 2681, 405, 11, 1542, 1270, 11, 4747, 1899, 11, 513, 35844, 60, 4357, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16410, 1433, 1238, 11, 1248, 4761, 11, 362, 17464, 11, 2242, 4304, 11, 2608, 2078, 11, 2579, 1795, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 17, 15801, 11, 1987, 2670, 11, 2681, 4761, 11, 513, 13348, 11, 4974, 2548, 11, 42163, 16, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 1495, 5892, 11, 5867, 21, 11, 4974, 1238, 11, 4353, 2682, 11, 604, 23045, 11, 604, 39380, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 1270, 3695, 11, 3439, 4790, 11, 2319, 3104, 11, 604, 46572, 11, 2026, 3365, 11, 44717, 18, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 2327, 2414, 11, 604, 15187, 11, 6298, 1433, 11, 642, 32759, 11, 7618, 3104, 11, 718, 30272, 60, 4357, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16410, 1828, 1795, 11, 2608, 2682, 11, 2808, 3459, 11, 513, 31575, 11, 513, 38205, 11, 2319, 1120, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 1959, 6469, 11, 513, 36625, 11, 5014, 1731, 11, 604, 31010, 11, 4764, 2791, 11, 642, 31496, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 2623, 5705, 11, 604, 29807, 11, 4764, 1899, 11, 642, 31115, 11, 3126, 2623, 11, 7930, 1731, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 19, 21734, 11, 2026, 6420, 11, 642, 41060, 11, 6135, 486, 11, 767, 22136, 11, 9225, 1157, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 1120, 3459, 11, 7863, 940, 11, 8275, 2624, 11, 767, 44218, 11, 807, 32128, 11, 860, 22337, 11907, 12962, 198, 220, 220, 220, 2081, 62, 411, 312, 723, 62, 7890, 796, 45941, 13, 9107, 418, 7, 18747, 62, 18, 67, 13, 43358, 8, 198, 220, 220, 220, 11192, 273, 796, 309, 22854, 7, 18747, 28, 18747, 62, 18, 67, 8, 198, 220, 220, 220, 374, 16, 11, 374, 17, 796, 362, 11, 513, 198, 220, 220, 220, 314, 11, 449, 11, 509, 796, 604, 11, 642, 11, 718, 198, 220, 220, 220, 4755, 62, 16, 796, 45941, 13, 283, 858, 7, 40, 1635, 374, 16, 737, 3447, 1758, 7, 40, 11, 374, 16, 8, 198, 220, 220, 220, 4755, 62, 17, 796, 45941, 13, 283, 858, 7, 81, 16, 1635, 449, 1635, 374, 17, 737, 3447, 1758, 7, 81, 16, 11, 449, 11, 374, 17, 8, 198, 220, 220, 220, 4755, 62, 18, 796, 45941, 13, 283, 858, 7, 81, 17, 1635, 509, 737, 3447, 1758, 7, 81, 17, 11, 509, 8, 198, 220, 220, 220, 4755, 62, 27160, 796, 685, 7295, 62, 16, 11, 4755, 62, 17, 11, 4755, 62, 18, 60, 198, 220, 220, 220, 10117, 62, 43358, 796, 357, 40, 11, 449, 11, 509, 8, 198, 220, 220, 220, 11192, 273, 62, 926, 796, 309, 22854, 15751, 7, 7295, 62, 27160, 28, 7295, 62, 27160, 8, 198, 220, 220, 220, 29598, 796, 29598, 62, 83, 22854, 7, 83, 22854, 62, 11612, 28, 83, 22854, 11, 11192, 273, 62, 1324, 13907, 28, 83, 22854, 62, 926, 8, 198, 220, 220, 220, 6818, 318, 39098, 7, 411, 312, 723, 11, 309, 22854, 8, 198, 220, 220, 220, 6818, 357, 411, 312, 723, 13, 14171, 62, 14933, 6624, 2081, 62, 12286, 62, 14171, 62, 14933, 8, 198, 220, 220, 220, 45941, 13, 33407, 13, 30493, 62, 18747, 62, 40496, 7, 411, 312, 723, 13, 7890, 11, 2081, 62, 411, 312, 723, 62, 7890, 8, 628, 220, 220, 220, 1303, 40103, 5254, 326, 815, 9677, 4146, 329, 29598, 11192, 273, 2233, 284, 2642, 5128, 2099, 198, 220, 220, 220, 7177, 62, 18, 67, 796, 45941, 13, 18747, 26933, 30109, 15, 11, 352, 11, 362, 11, 513, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 19, 11, 642, 11, 718, 11, 767, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 23, 11, 860, 11, 838, 11, 1367, 60, 4357, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16410, 1065, 11, 1511, 11, 1478, 11, 1315, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 1433, 11, 1596, 11, 1248, 11, 678, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 1238, 11, 2310, 11, 2534, 11, 2242, 11907, 12962, 198, 220, 220, 220, 11192, 273, 62, 16, 796, 309, 22854, 7, 18747, 28, 18747, 62, 18, 67, 8, 198, 220, 220, 220, 11192, 273, 62, 17, 796, 7177, 62, 18, 67, 198, 220, 220, 220, 351, 12972, 9288, 13, 430, 2696, 7, 6030, 12331, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 29598, 62, 83, 22854, 7, 83, 22854, 62, 11612, 28, 83, 22854, 62, 16, 11, 11192, 273, 62, 1324, 13907, 28, 83, 22854, 62, 17, 8, 628, 220, 220, 220, 11192, 273, 62, 16, 796, 7177, 62, 18, 67, 198, 220, 220, 220, 11192, 273, 62, 17, 796, 309, 22854, 7, 18747, 28, 18747, 62, 18, 67, 8, 198, 220, 220, 220, 351, 12972, 9288, 13, 430, 2696, 7, 6030, 12331, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 29598, 62, 83, 22854, 7, 83, 22854, 62, 11612, 28, 83, 22854, 62, 16, 11, 11192, 273, 62, 1324, 13907, 28, 83, 22854, 62, 17, 8, 198 ]
1.911174
4,582
"""Base classes for my data model.""" import decimal from google.appengine.ext import ndb from google.appengine.ext.ndb import polymodel from appengine import history, rest, user # From http://stackoverflow.com/questions/10035133/ndb-decimal-property class DecimalProperty(ndb.IntegerProperty): """Decimal property ideal to store currency values, such as $20.34.""" # See https://developers.google.com/appengine/docs/python/ndb/subclassprop class Base(polymodel.PolyModel): """Base for all objects.""" def to_dict(self): """Convert this object to a python dict.""" result = super(Base, self).to_dict() result['id'] = self.key.id() result['class'] = result['class_'][-1] del result['class_'] # Should move this into detector mixin when I figure out how if 'detector' in result: del result['detector'] return result @classmethod def _put_async(self, **ctx_options): """Overrides _put_async and sends event to UI.""" classname = self._event_classname() if classname is not None: values = self.to_dict() user.send_event(cls=classname, id=self.key.string_id(), event='update', obj=values) history.store_version(values) return super(Base, self)._put_async(**ctx_options) put_async = _put_async @rest.command def sync(self): """Called when fields on the object are updated through the API.""" pass
[ 37811, 14881, 6097, 329, 616, 1366, 2746, 526, 15931, 198, 11748, 32465, 198, 198, 6738, 23645, 13, 1324, 18392, 13, 2302, 1330, 299, 9945, 198, 6738, 23645, 13, 1324, 18392, 13, 2302, 13, 358, 65, 1330, 7514, 19849, 198, 198, 6738, 598, 18392, 1330, 2106, 11, 1334, 11, 2836, 628, 198, 2, 3574, 2638, 1378, 25558, 2502, 11125, 13, 785, 14, 6138, 507, 14, 3064, 2327, 16945, 14, 358, 65, 12, 12501, 4402, 12, 26745, 198, 4871, 4280, 4402, 21746, 7, 358, 65, 13, 46541, 21746, 2599, 198, 220, 37227, 10707, 4402, 3119, 7306, 284, 3650, 7395, 3815, 11, 884, 355, 720, 1238, 13, 2682, 526, 15931, 198, 220, 1303, 4091, 3740, 1378, 16244, 364, 13, 13297, 13, 785, 14, 1324, 18392, 14, 31628, 14, 29412, 14, 358, 65, 14, 7266, 4871, 22930, 628, 198, 4871, 7308, 7, 35428, 19849, 13, 34220, 17633, 2599, 198, 220, 37227, 14881, 329, 477, 5563, 526, 15931, 628, 220, 825, 284, 62, 11600, 7, 944, 2599, 198, 220, 220, 220, 37227, 3103, 1851, 428, 2134, 284, 257, 21015, 8633, 526, 15931, 198, 220, 220, 220, 1255, 796, 2208, 7, 14881, 11, 2116, 737, 1462, 62, 11600, 3419, 198, 220, 220, 220, 1255, 17816, 312, 20520, 796, 2116, 13, 2539, 13, 312, 3419, 198, 220, 220, 220, 1255, 17816, 4871, 20520, 796, 1255, 17816, 4871, 62, 6, 7131, 12, 16, 60, 198, 220, 220, 220, 1619, 1255, 17816, 4871, 62, 20520, 628, 220, 220, 220, 1303, 10358, 1445, 428, 656, 31029, 5022, 259, 618, 314, 3785, 503, 703, 198, 220, 220, 220, 611, 705, 15255, 9250, 6, 287, 1255, 25, 198, 220, 220, 220, 220, 220, 1619, 1255, 17816, 15255, 9250, 20520, 198, 220, 220, 220, 1441, 1255, 628, 220, 2488, 4871, 24396, 628, 220, 825, 4808, 1996, 62, 292, 13361, 7, 944, 11, 12429, 49464, 62, 25811, 2599, 198, 220, 220, 220, 37227, 5886, 81, 1460, 4808, 1996, 62, 292, 13361, 290, 12800, 1785, 284, 12454, 526, 15931, 198, 220, 220, 220, 1398, 3672, 796, 2116, 13557, 15596, 62, 4871, 3672, 3419, 198, 220, 220, 220, 611, 1398, 3672, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 3815, 796, 2116, 13, 1462, 62, 11600, 3419, 198, 220, 220, 220, 220, 220, 2836, 13, 21280, 62, 15596, 7, 565, 82, 28, 4871, 3672, 11, 4686, 28, 944, 13, 2539, 13, 8841, 62, 312, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1785, 11639, 19119, 3256, 26181, 28, 27160, 8, 198, 220, 220, 220, 220, 220, 2106, 13, 8095, 62, 9641, 7, 27160, 8, 198, 220, 220, 220, 1441, 2208, 7, 14881, 11, 2116, 737, 62, 1996, 62, 292, 13361, 7, 1174, 49464, 62, 25811, 8, 198, 220, 1234, 62, 292, 13361, 796, 4808, 1996, 62, 292, 13361, 628, 220, 2488, 2118, 13, 21812, 628, 220, 825, 17510, 7, 944, 2599, 198, 220, 220, 220, 37227, 34, 4262, 618, 7032, 319, 262, 2134, 389, 6153, 198, 220, 220, 220, 220, 220, 220, 832, 262, 7824, 526, 15931, 198, 220, 220, 220, 1208, 198 ]
2.782101
514
# # Copyright (C) 2016-2020 by Nathan Lovato, Daniel Oakey, Razvan Radulescu, and contributors # # This file is part of Power Sequencer. # # Power Sequencer is free software: you can redistribute it and/or modify it under the terms of the # GNU General Public License as published by the Free Software Foundation, either version 3 of the # License, or (at your option) any later version. # # Power Sequencer is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; # without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License along with Power Sequencer. If # not, see <https://www.gnu.org/licenses/>. # import bpy from .utils.doc import doc_name, doc_idname, doc_brief, doc_description class POWER_SEQUENCER_OT_scene_cycle(bpy.types.Operator): """ Cycle through scenes """ doc = { "name": doc_name(__qualname__), "demo": "https://i.imgur.com/7zhq8Tg.gif", "description": doc_description(__doc__), "shortcuts": [({"type": "TAB", "value": "PRESS", "shift": True}, {}, "Cycle Scenes")], "keymap": "Sequencer", } bl_idname = doc_idname(__qualname__) bl_label = doc["name"] bl_description = doc_brief(doc["description"]) bl_options = {"REGISTER", "UNDO"} @classmethod
[ 2, 198, 2, 15069, 357, 34, 8, 1584, 12, 42334, 416, 18106, 39911, 5549, 11, 7806, 440, 539, 88, 11, 38058, 10438, 5325, 377, 3798, 84, 11, 290, 20420, 198, 2, 198, 2, 770, 2393, 318, 636, 286, 4333, 24604, 12137, 13, 198, 2, 198, 2, 4333, 24604, 12137, 318, 1479, 3788, 25, 345, 460, 17678, 4163, 340, 290, 14, 273, 13096, 340, 739, 262, 2846, 286, 262, 198, 2, 22961, 3611, 5094, 13789, 355, 3199, 416, 262, 3232, 10442, 5693, 11, 2035, 2196, 513, 286, 262, 198, 2, 13789, 11, 393, 357, 265, 534, 3038, 8, 597, 1568, 2196, 13, 198, 2, 198, 2, 4333, 24604, 12137, 318, 9387, 287, 262, 2911, 326, 340, 481, 307, 4465, 11, 475, 42881, 15529, 34764, 56, 26, 198, 2, 1231, 772, 262, 17142, 18215, 286, 34482, 3398, 1565, 5603, 25382, 393, 376, 46144, 7473, 317, 16652, 2149, 37232, 33079, 48933, 13, 4091, 262, 198, 2, 22961, 3611, 5094, 13789, 329, 517, 3307, 13, 198, 2, 198, 2, 921, 815, 423, 2722, 257, 4866, 286, 262, 22961, 3611, 5094, 13789, 1863, 351, 4333, 24604, 12137, 13, 1002, 198, 2, 407, 11, 766, 1279, 5450, 1378, 2503, 13, 41791, 13, 2398, 14, 677, 4541, 15913, 13, 198, 2, 198, 11748, 275, 9078, 198, 198, 6738, 764, 26791, 13, 15390, 1330, 2205, 62, 3672, 11, 2205, 62, 312, 3672, 11, 2205, 62, 65, 3796, 11, 2205, 62, 11213, 628, 198, 4871, 40295, 62, 5188, 10917, 24181, 1137, 62, 2394, 62, 29734, 62, 13696, 7, 65, 9078, 13, 19199, 13, 18843, 1352, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 26993, 832, 8188, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 2205, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 3672, 1298, 2205, 62, 3672, 7, 834, 13255, 3672, 834, 828, 198, 220, 220, 220, 220, 220, 220, 220, 366, 9536, 78, 1298, 366, 5450, 1378, 72, 13, 19791, 13, 785, 14, 22, 23548, 80, 23, 51, 70, 13, 27908, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11213, 1298, 2205, 62, 11213, 7, 834, 15390, 834, 828, 198, 220, 220, 220, 220, 220, 220, 220, 366, 19509, 23779, 1298, 47527, 4895, 4906, 1298, 366, 5603, 33, 1600, 366, 8367, 1298, 366, 32761, 1600, 366, 30846, 1298, 6407, 5512, 1391, 5512, 366, 20418, 2375, 49525, 4943, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 366, 2539, 8899, 1298, 366, 44015, 12137, 1600, 198, 220, 220, 220, 1782, 198, 220, 220, 220, 698, 62, 312, 3672, 796, 2205, 62, 312, 3672, 7, 834, 13255, 3672, 834, 8, 198, 220, 220, 220, 698, 62, 18242, 796, 2205, 14692, 3672, 8973, 198, 220, 220, 220, 698, 62, 11213, 796, 2205, 62, 65, 3796, 7, 15390, 14692, 11213, 8973, 8, 198, 220, 220, 220, 698, 62, 25811, 796, 19779, 31553, 41517, 1600, 366, 4944, 18227, 20662, 628, 220, 220, 220, 2488, 4871, 24396, 198 ]
2.94824
483
from sys import path as sys_path from os import path as os_path from subprocess import Popen, PIPE import time import logging import warnings import numpy as np sys_path.append(os_path.abspath('../src')) from config import RUNTIME_CONFIG from config import john_nick_names, hc_nick_names from common import PasswordPolicyConf, FilePath from argparsing import setup_args, parse_args from guess_count import GuessCount from tokenstr import TokenString from utility import read_passwords,read_wordlist,read_rulelist,get_look_cmd,build_trie_from_wordlist from utility import filter_passwords_with_password_policy from preprocess import precomputation from invert_rule import invert_one_rule from demo_common import match_inversion_result, search_exist_data, search_trie, estimate_guess_number def start_processing(): """ Take in a wordlist, rulelist and test set, outputs the guessability and guess number of each pwd in the test set. Steps: 1. read rulelist and do precomputation (detect invertibility) 2. read wordlist/pwlist, and get count for each rule 3. Rule Inversion (for each rule, invert all pwds) """ stime = time.perf_counter() ##################### Precomputation and Other Preparation ##################### # initialize a bash exe for communication external_bash_process = Popen(['/bin/bash'], stdin=PIPE, stdout=PIPE) # Logging Basic Info logging.basicConfig(filename=RUNTIME_CONFIG.get_log_addr(),level=logging.DEBUG) logging.info("Starting Time: {}\n\nConfigurations: {}\n".format(time.strftime("%Y-%m-%d %H:%M"), RUNTIME_CONFIG.short_config_string())) logging.info("PasswordPolicy: {}\n".format(RUNTIME_CONFIG['password_policy'].to_debug_string())) print("Reading Rulelist\n") rulelist = read_rulelist(RUNTIME_CONFIG['rulelist_path']['name'], RUNTIME_CONFIG['rulelist_path']['prefix']) print("Start Precomputation\n") rulelist = precomputation(rulelist) print("Reading Wordlist and Password Set\n") wordlist = read_wordlist(RUNTIME_CONFIG['wordlist_path']['name'], RUNTIME_CONFIG['wordlist_path']['prefix']) # Computing Guess Count counts, cumsum = GuessCount.get_counts(wordlist, rulelist, RUNTIME_CONFIG['preprocess_path']) # read other things pwlist = read_passwords(RUNTIME_CONFIG['pwlist_path']['addr']) # filter out pwds not consistent with the policy not_filtered_pwds, filtered_pwds = filter_passwords_with_password_policy(pwlist) trie = build_trie_from_wordlist(wordlist) ##################### Start Inversion ##################### print("Start Inverting Rules\n") i_time = time.perf_counter() # guessability of pwds is_guessable = [False] * len(pwlist) is_enable_regex = RUNTIME_CONFIG['enable_regex'] is_debug = RUNTIME_CONFIG['debug'] lookup_threshold = RUNTIME_CONFIG['lookup_threshold'] # tokenize pwds once. tokenized_pwds = [TokenString(pwd) for pw_idx, pwd in not_filtered_pwds] # invert rules (with special memory handling and other staff) for r_idx, r in enumerate(rulelist): if is_debug == True: print(r.raw) if r.feasibility.is_invertible(): # invertible, if blow up, use trie for token_pwd, (pw_idx, pwd) in zip(tokenized_pwds,not_filtered_pwds): result = invert_one_rule(token_pwd,r,is_enable_regex,r.feasibility.special_idx) if result.is_normal(): if result.get_number_of_strings() <= lookup_threshold: ret_vals = match_inversion_result(result, wordlist) else: ret_vals = search_trie(result, trie) if len(ret_vals) != 0: is_guessable[pw_idx] = True for v in ret_vals: logging.info("\nPasswordIdx:{}\nPassword:{}\nRule:{}\nWord:{}\nGuess:{} ( {} - {} )\n".format(pw_idx, pwd, r.raw, v, *estimate_guess_number(counts, cumsum, v, r_idx, wordlist))) elif result.is_out_of_scope(): ret_vals = [] logging.info("Inversion error for {}(RL) {}(pw), error msg: {}\n".format(r.raw, pwd, "out_of_scope")) print("Inversion error for {}(RL) {}(pw), error msg: {}".format(r.raw, pwd, "out_of_scope")) else: ret_vals = [] logging.info("Inversion error for {}(RL) {}(pw), error msg: {}\n".format(r.raw, pwd, result.error_msg)) print("Inversion error for {}(RL) {}(pw), error msg: {}".format(r.raw, pwd, result.error_msg)) elif r.feasibility.is_optimizable(): # uninvertible, if cannot handle, binary # where the binary file is stored enumerated_data_addr = "{}/enumerated/rule{}.txt".format(RUNTIME_CONFIG['preprocess_path'],r_idx) for token_pwd, (pw_idx, pwd) in zip(tokenized_pwds,not_filtered_pwds): result = invert_one_rule(token_pwd,r,is_enable_regex) if result.is_normal(): if result.get_number_of_strings() <= lookup_threshold: ret_vals = match_inversion_result(result, wordlist) else: ret_vals = search_exist_data(pwd,enumerated_data_addr,external_bash_process) if len(ret_vals) != 0: is_guessable[pw_idx] = True for v in ret_vals: logging.info("\nPasswordIdx:{}\nPassword:{}\nRule:{}\nWord:{}\nGuess:{} ( {} - {} )\n".format(pw_idx, pwd, r.raw, v, *estimate_guess_number(counts, cumsum, v, r_idx, wordlist))) elif result.is_out_of_scope(): ret_vals = search_exist_data(pwd,enumerated_data_addr,external_bash_process) if len(ret_vals) != 0: is_guessable[pw_idx] = True for v in ret_vals: logging.info("\nPasswordIdx:{}\nPassword:{}\nRule:{}\nWord:{}\nGuess:{} ( {} - {} )\n".format(pw_idx, pwd, r.raw, v, *estimate_guess_number(counts, cumsum, v, r_idx, wordlist))) else: ret_vals = [] logging.info("Inversion error for {}(RL) {}(pw), error msg: {}\n".format(r.raw, pwd, result.error_msg)) print("Inversion error for {}(RL) {}(pw), error msg: {}".format(r.raw, pwd, result.error_msg)) else: # binary # where the binary file is stored enumerated_data_addr = "{}/enumerated/rule{}.txt".format(RUNTIME_CONFIG['preprocess_path'],r_idx) for token_pwd, (pw_idx, pwd) in zip(tokenized_pwds,not_filtered_pwds): ret_vals = search_exist_data(pwd,enumerated_data_addr,external_bash_process) if len(ret_vals) != 0: is_guessable[pw_idx] = True for v in ret_vals: logging.info("\nPasswordIdx:{}\nPassword:{}\nRule:{}\nWord:{}\nGuess:{} ( {} - {} )\n".format(pw_idx, pwd, r.raw, v, *estimate_guess_number(counts, cumsum, v, r_idx, wordlist))) ##################### End of Inversion ##################### # Write Not Guessable Data for pw_idx, pwd in filtered_pwds: logging.info("\nPasswordIdx:{}\nPassword:{}\nNot Guessable\n".format(pw_idx, pwd)) for is_guessed, (pw_idx, pwd) in zip(is_guessable, not_filtered_pwds): if is_guessed == False: logging.info("\nPasswordIdx:{}\nPassword:{}\nNot Guessable\n".format(pw_idx, pwd)) logging.info("Total guesses made by this configuration: {}\n".format(np.sum(counts))) print("Finished Inverting Rules, Total Time: {}".format(time.perf_counter()-i_time)) if __name__ == "__main__": main()
[ 6738, 25064, 1330, 3108, 355, 25064, 62, 6978, 198, 6738, 28686, 1330, 3108, 355, 28686, 62, 6978, 198, 6738, 850, 14681, 1330, 8099, 268, 11, 350, 4061, 36, 198, 11748, 640, 198, 11748, 18931, 198, 11748, 14601, 198, 11748, 299, 32152, 355, 45941, 198, 198, 17597, 62, 6978, 13, 33295, 7, 418, 62, 6978, 13, 397, 2777, 776, 10786, 40720, 10677, 6, 4008, 198, 198, 6738, 4566, 1330, 32494, 34694, 62, 10943, 16254, 198, 6738, 4566, 1330, 45610, 62, 17172, 62, 14933, 11, 289, 66, 62, 17172, 62, 14933, 198, 6738, 2219, 1330, 30275, 36727, 18546, 11, 9220, 15235, 198, 6738, 1822, 79, 945, 278, 1330, 9058, 62, 22046, 11, 21136, 62, 22046, 198, 6738, 4724, 62, 9127, 1330, 37571, 12332, 198, 6738, 11241, 2536, 1330, 29130, 10100, 198, 6738, 10361, 1330, 1100, 62, 6603, 10879, 11, 961, 62, 4775, 4868, 11, 961, 62, 25135, 4868, 11, 1136, 62, 5460, 62, 28758, 11, 11249, 62, 83, 5034, 62, 6738, 62, 4775, 4868, 198, 6738, 10361, 1330, 8106, 62, 6603, 10879, 62, 4480, 62, 28712, 62, 30586, 198, 6738, 662, 14681, 1330, 662, 785, 1996, 341, 198, 6738, 287, 1851, 62, 25135, 1330, 287, 1851, 62, 505, 62, 25135, 198, 6738, 13605, 62, 11321, 1330, 2872, 62, 259, 9641, 62, 20274, 11, 2989, 62, 38476, 62, 7890, 11, 2989, 62, 83, 5034, 11, 8636, 62, 5162, 408, 62, 17618, 628, 198, 4299, 923, 62, 36948, 33529, 198, 220, 220, 220, 37227, 7214, 287, 257, 1573, 4868, 11, 3896, 4868, 290, 1332, 900, 11, 23862, 262, 4724, 1799, 290, 4724, 1271, 286, 1123, 279, 16993, 287, 262, 1332, 900, 13, 628, 220, 220, 220, 32144, 25, 198, 220, 220, 220, 220, 220, 220, 220, 352, 13, 1100, 3896, 4868, 290, 466, 662, 785, 1996, 341, 357, 15255, 478, 287, 1851, 2247, 8, 198, 220, 220, 220, 220, 220, 220, 220, 362, 13, 1100, 1573, 4868, 14, 79, 86, 4868, 11, 290, 651, 954, 329, 1123, 3896, 198, 220, 220, 220, 220, 220, 220, 220, 513, 13, 14330, 554, 9641, 357, 1640, 1123, 3896, 11, 287, 1851, 477, 279, 86, 9310, 8, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 336, 524, 796, 640, 13, 525, 69, 62, 24588, 3419, 628, 220, 220, 220, 1303, 14468, 4242, 3771, 785, 1996, 341, 290, 3819, 38397, 341, 1303, 14468, 4242, 198, 220, 220, 220, 1303, 41216, 257, 27334, 409, 68, 329, 6946, 198, 220, 220, 220, 7097, 62, 41757, 62, 14681, 796, 8099, 268, 7, 17816, 14, 8800, 14, 41757, 6, 4357, 14367, 259, 28, 47, 4061, 36, 11, 14367, 448, 28, 47, 4061, 36, 8, 628, 220, 220, 220, 1303, 5972, 2667, 14392, 14151, 198, 220, 220, 220, 18931, 13, 35487, 16934, 7, 34345, 28, 49, 4944, 34694, 62, 10943, 16254, 13, 1136, 62, 6404, 62, 29851, 22784, 5715, 28, 6404, 2667, 13, 30531, 8, 198, 220, 220, 220, 18931, 13, 10951, 7203, 22851, 3862, 25, 23884, 59, 77, 59, 77, 16934, 20074, 25, 23884, 59, 77, 1911, 18982, 7, 2435, 13, 2536, 31387, 7203, 4, 56, 12, 4, 76, 12, 4, 67, 4064, 39, 25, 4, 44, 12340, 32494, 34694, 62, 10943, 16254, 13, 19509, 62, 11250, 62, 8841, 3419, 4008, 198, 220, 220, 220, 18931, 13, 10951, 7203, 35215, 36727, 25, 23884, 59, 77, 1911, 18982, 7, 49, 4944, 34694, 62, 10943, 16254, 17816, 28712, 62, 30586, 6, 4083, 1462, 62, 24442, 62, 8841, 3419, 4008, 628, 220, 220, 220, 3601, 7203, 36120, 14330, 4868, 59, 77, 4943, 198, 220, 220, 220, 3896, 4868, 796, 1100, 62, 25135, 4868, 7, 49, 4944, 34694, 62, 10943, 16254, 17816, 25135, 4868, 62, 6978, 6, 7131, 6, 3672, 6, 4357, 32494, 34694, 62, 10943, 16254, 17816, 25135, 4868, 62, 6978, 6, 7131, 6, 40290, 6, 12962, 628, 220, 220, 220, 3601, 7203, 10434, 3771, 785, 1996, 341, 59, 77, 4943, 198, 220, 220, 220, 3896, 4868, 796, 662, 785, 1996, 341, 7, 25135, 4868, 8, 628, 220, 220, 220, 3601, 7203, 36120, 9678, 4868, 290, 30275, 5345, 59, 77, 4943, 198, 220, 220, 220, 1573, 4868, 796, 1100, 62, 4775, 4868, 7, 49, 4944, 34694, 62, 10943, 16254, 17816, 4775, 4868, 62, 6978, 6, 7131, 6, 3672, 6, 4357, 32494, 34694, 62, 10943, 16254, 17816, 4775, 4868, 62, 6978, 6, 7131, 6, 40290, 6, 12962, 628, 220, 220, 220, 1303, 38589, 37571, 2764, 198, 220, 220, 220, 9853, 11, 269, 5700, 388, 796, 37571, 12332, 13, 1136, 62, 9127, 82, 7, 4775, 4868, 11, 3896, 4868, 11, 32494, 34694, 62, 10943, 16254, 17816, 3866, 14681, 62, 6978, 6, 12962, 628, 220, 220, 220, 1303, 1100, 584, 1243, 198, 220, 220, 220, 279, 86, 4868, 796, 1100, 62, 6603, 10879, 7, 49, 4944, 34694, 62, 10943, 16254, 17816, 79, 86, 4868, 62, 6978, 6, 7131, 6, 29851, 6, 12962, 198, 220, 220, 220, 1303, 8106, 503, 279, 86, 9310, 407, 6414, 351, 262, 2450, 198, 220, 220, 220, 407, 62, 10379, 4400, 62, 79, 86, 9310, 11, 29083, 62, 79, 86, 9310, 796, 8106, 62, 6603, 10879, 62, 4480, 62, 28712, 62, 30586, 7, 79, 86, 4868, 8, 198, 220, 220, 220, 1333, 68, 796, 1382, 62, 83, 5034, 62, 6738, 62, 4775, 4868, 7, 4775, 4868, 8, 628, 220, 220, 220, 1303, 14468, 4242, 7253, 554, 9641, 1303, 14468, 4242, 198, 220, 220, 220, 3601, 7203, 10434, 554, 48820, 14252, 59, 77, 4943, 198, 220, 220, 220, 1312, 62, 2435, 796, 640, 13, 525, 69, 62, 24588, 3419, 198, 220, 220, 220, 1303, 4724, 1799, 286, 279, 86, 9310, 198, 220, 220, 220, 318, 62, 5162, 408, 540, 796, 685, 25101, 60, 1635, 18896, 7, 79, 86, 4868, 8, 198, 220, 220, 220, 318, 62, 21633, 62, 260, 25636, 796, 32494, 34694, 62, 10943, 16254, 17816, 21633, 62, 260, 25636, 20520, 198, 220, 220, 220, 318, 62, 24442, 796, 32494, 34694, 62, 10943, 16254, 17816, 24442, 20520, 198, 220, 220, 220, 35847, 62, 400, 10126, 796, 32494, 34694, 62, 10943, 16254, 17816, 5460, 929, 62, 400, 10126, 20520, 198, 220, 220, 220, 1303, 11241, 1096, 279, 86, 9310, 1752, 13, 198, 220, 220, 220, 11241, 1143, 62, 79, 86, 9310, 796, 685, 30642, 10100, 7, 79, 16993, 8, 329, 279, 86, 62, 312, 87, 11, 279, 16993, 287, 407, 62, 10379, 4400, 62, 79, 86, 9310, 60, 628, 220, 220, 220, 1303, 287, 1851, 3173, 357, 4480, 2041, 4088, 9041, 290, 584, 3085, 8, 198, 220, 220, 220, 329, 374, 62, 312, 87, 11, 374, 287, 27056, 378, 7, 25135, 4868, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 611, 318, 62, 24442, 6624, 6407, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 81, 13, 1831, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 611, 374, 13, 5036, 292, 2247, 13, 271, 62, 259, 1851, 856, 33529, 1303, 287, 1851, 856, 11, 611, 6611, 510, 11, 779, 1333, 68, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 11241, 62, 79, 16993, 11, 357, 79, 86, 62, 312, 87, 11, 279, 16993, 8, 287, 19974, 7, 30001, 1143, 62, 79, 86, 9310, 11, 1662, 62, 10379, 4400, 62, 79, 86, 9310, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 287, 1851, 62, 505, 62, 25135, 7, 30001, 62, 79, 16993, 11, 81, 11, 271, 62, 21633, 62, 260, 25636, 11, 81, 13, 5036, 292, 2247, 13, 20887, 62, 312, 87, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1255, 13, 271, 62, 11265, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1255, 13, 1136, 62, 17618, 62, 1659, 62, 37336, 3419, 19841, 35847, 62, 400, 10126, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1005, 62, 12786, 796, 2872, 62, 259, 9641, 62, 20274, 7, 20274, 11, 1573, 4868, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1005, 62, 12786, 796, 2989, 62, 83, 5034, 7, 20274, 11, 1333, 68, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 1186, 62, 12786, 8, 14512, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 318, 62, 5162, 408, 540, 58, 79, 86, 62, 312, 87, 60, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 410, 287, 1005, 62, 12786, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18931, 13, 10951, 7203, 59, 77, 35215, 7390, 87, 29164, 32239, 77, 35215, 29164, 32239, 77, 31929, 29164, 32239, 77, 26449, 29164, 32239, 77, 8205, 408, 29164, 92, 357, 23884, 532, 23884, 1267, 59, 77, 1911, 18982, 7, 79, 86, 62, 312, 87, 11, 279, 16993, 11, 374, 13, 1831, 11, 410, 11, 1635, 395, 1920, 62, 5162, 408, 62, 17618, 7, 9127, 82, 11, 269, 5700, 388, 11, 410, 11, 374, 62, 312, 87, 11, 1573, 4868, 22305, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 1255, 13, 271, 62, 448, 62, 1659, 62, 29982, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1005, 62, 12786, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18931, 13, 10951, 7203, 818, 9641, 4049, 329, 23884, 7, 7836, 8, 23884, 7, 79, 86, 828, 4049, 31456, 25, 23884, 59, 77, 1911, 18982, 7, 81, 13, 1831, 11, 279, 16993, 11, 366, 448, 62, 1659, 62, 29982, 48774, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 818, 9641, 4049, 329, 23884, 7, 7836, 8, 23884, 7, 79, 86, 828, 4049, 31456, 25, 23884, 1911, 18982, 7, 81, 13, 1831, 11, 279, 16993, 11, 366, 448, 62, 1659, 62, 29982, 48774, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1005, 62, 12786, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18931, 13, 10951, 7203, 818, 9641, 4049, 329, 23884, 7, 7836, 8, 23884, 7, 79, 86, 828, 4049, 31456, 25, 23884, 59, 77, 1911, 18982, 7, 81, 13, 1831, 11, 279, 16993, 11, 1255, 13, 18224, 62, 19662, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 818, 9641, 4049, 329, 23884, 7, 7836, 8, 23884, 7, 79, 86, 828, 4049, 31456, 25, 23884, 1911, 18982, 7, 81, 13, 1831, 11, 279, 16993, 11, 1255, 13, 18224, 62, 19662, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 374, 13, 5036, 292, 2247, 13, 271, 62, 40085, 13821, 33529, 1303, 26329, 1851, 856, 11, 611, 2314, 5412, 11, 13934, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 810, 262, 13934, 2393, 318, 8574, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27056, 515, 62, 7890, 62, 29851, 796, 45144, 92, 14, 268, 6975, 515, 14, 25135, 90, 27422, 14116, 1911, 18982, 7, 49, 4944, 34694, 62, 10943, 16254, 17816, 3866, 14681, 62, 6978, 6, 4357, 81, 62, 312, 87, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 11241, 62, 79, 16993, 11, 357, 79, 86, 62, 312, 87, 11, 279, 16993, 8, 287, 19974, 7, 30001, 1143, 62, 79, 86, 9310, 11, 1662, 62, 10379, 4400, 62, 79, 86, 9310, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 287, 1851, 62, 505, 62, 25135, 7, 30001, 62, 79, 16993, 11, 81, 11, 271, 62, 21633, 62, 260, 25636, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1255, 13, 271, 62, 11265, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1255, 13, 1136, 62, 17618, 62, 1659, 62, 37336, 3419, 19841, 35847, 62, 400, 10126, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1005, 62, 12786, 796, 2872, 62, 259, 9641, 62, 20274, 7, 20274, 11, 1573, 4868, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1005, 62, 12786, 796, 2989, 62, 38476, 62, 7890, 7, 79, 16993, 11, 268, 6975, 515, 62, 7890, 62, 29851, 11, 22615, 62, 41757, 62, 14681, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 1186, 62, 12786, 8, 14512, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 318, 62, 5162, 408, 540, 58, 79, 86, 62, 312, 87, 60, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 410, 287, 1005, 62, 12786, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18931, 13, 10951, 7203, 59, 77, 35215, 7390, 87, 29164, 32239, 77, 35215, 29164, 32239, 77, 31929, 29164, 32239, 77, 26449, 29164, 32239, 77, 8205, 408, 29164, 92, 357, 23884, 532, 23884, 1267, 59, 77, 1911, 18982, 7, 79, 86, 62, 312, 87, 11, 279, 16993, 11, 374, 13, 1831, 11, 410, 11, 1635, 395, 1920, 62, 5162, 408, 62, 17618, 7, 9127, 82, 11, 269, 5700, 388, 11, 410, 11, 374, 62, 312, 87, 11, 1573, 4868, 22305, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 1255, 13, 271, 62, 448, 62, 1659, 62, 29982, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1005, 62, 12786, 796, 2989, 62, 38476, 62, 7890, 7, 79, 16993, 11, 268, 6975, 515, 62, 7890, 62, 29851, 11, 22615, 62, 41757, 62, 14681, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 1186, 62, 12786, 8, 14512, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 318, 62, 5162, 408, 540, 58, 79, 86, 62, 312, 87, 60, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 410, 287, 1005, 62, 12786, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18931, 13, 10951, 7203, 59, 77, 35215, 7390, 87, 29164, 32239, 77, 35215, 29164, 32239, 77, 31929, 29164, 32239, 77, 26449, 29164, 32239, 77, 8205, 408, 29164, 92, 357, 23884, 532, 23884, 1267, 59, 77, 1911, 18982, 7, 79, 86, 62, 312, 87, 11, 279, 16993, 11, 374, 13, 1831, 11, 410, 11, 1635, 395, 1920, 62, 5162, 408, 62, 17618, 7, 9127, 82, 11, 269, 5700, 388, 11, 410, 11, 374, 62, 312, 87, 11, 1573, 4868, 22305, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1005, 62, 12786, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18931, 13, 10951, 7203, 818, 9641, 4049, 329, 23884, 7, 7836, 8, 23884, 7, 79, 86, 828, 4049, 31456, 25, 23884, 59, 77, 1911, 18982, 7, 81, 13, 1831, 11, 279, 16993, 11, 1255, 13, 18224, 62, 19662, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 818, 9641, 4049, 329, 23884, 7, 7836, 8, 23884, 7, 79, 86, 828, 4049, 31456, 25, 23884, 1911, 18982, 7, 81, 13, 1831, 11, 279, 16993, 11, 1255, 13, 18224, 62, 19662, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 1303, 13934, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 810, 262, 13934, 2393, 318, 8574, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27056, 515, 62, 7890, 62, 29851, 796, 45144, 92, 14, 268, 6975, 515, 14, 25135, 90, 27422, 14116, 1911, 18982, 7, 49, 4944, 34694, 62, 10943, 16254, 17816, 3866, 14681, 62, 6978, 6, 4357, 81, 62, 312, 87, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 11241, 62, 79, 16993, 11, 357, 79, 86, 62, 312, 87, 11, 279, 16993, 8, 287, 19974, 7, 30001, 1143, 62, 79, 86, 9310, 11, 1662, 62, 10379, 4400, 62, 79, 86, 9310, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1005, 62, 12786, 796, 2989, 62, 38476, 62, 7890, 7, 79, 16993, 11, 268, 6975, 515, 62, 7890, 62, 29851, 11, 22615, 62, 41757, 62, 14681, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 1186, 62, 12786, 8, 14512, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 318, 62, 5162, 408, 540, 58, 79, 86, 62, 312, 87, 60, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 410, 287, 1005, 62, 12786, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18931, 13, 10951, 7203, 59, 77, 35215, 7390, 87, 29164, 32239, 77, 35215, 29164, 32239, 77, 31929, 29164, 32239, 77, 26449, 29164, 32239, 77, 8205, 408, 29164, 92, 357, 23884, 532, 23884, 1267, 59, 77, 1911, 18982, 7, 79, 86, 62, 312, 87, 11, 279, 16993, 11, 374, 13, 1831, 11, 410, 11, 1635, 395, 1920, 62, 5162, 408, 62, 17618, 7, 9127, 82, 11, 269, 5700, 388, 11, 410, 11, 374, 62, 312, 87, 11, 1573, 4868, 22305, 198, 220, 220, 220, 1303, 14468, 4242, 5268, 286, 554, 9641, 1303, 14468, 4242, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 19430, 1892, 37571, 540, 6060, 198, 220, 220, 220, 329, 279, 86, 62, 312, 87, 11, 279, 16993, 287, 29083, 62, 79, 86, 9310, 25, 198, 220, 220, 220, 220, 220, 220, 220, 18931, 13, 10951, 7203, 59, 77, 35215, 7390, 87, 29164, 32239, 77, 35215, 29164, 32239, 77, 3673, 37571, 540, 59, 77, 1911, 18982, 7, 79, 86, 62, 312, 87, 11, 279, 16993, 4008, 628, 220, 220, 220, 329, 318, 62, 5162, 6676, 11, 357, 79, 86, 62, 312, 87, 11, 279, 16993, 8, 287, 19974, 7, 271, 62, 5162, 408, 540, 11, 407, 62, 10379, 4400, 62, 79, 86, 9310, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 611, 318, 62, 5162, 6676, 6624, 10352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18931, 13, 10951, 7203, 59, 77, 35215, 7390, 87, 29164, 32239, 77, 35215, 29164, 32239, 77, 3673, 37571, 540, 59, 77, 1911, 18982, 7, 79, 86, 62, 312, 87, 11, 279, 16993, 4008, 628, 220, 220, 220, 18931, 13, 10951, 7203, 14957, 44774, 925, 416, 428, 8398, 25, 23884, 59, 77, 1911, 18982, 7, 37659, 13, 16345, 7, 9127, 82, 22305, 628, 220, 220, 220, 3601, 7203, 18467, 1348, 554, 48820, 14252, 11, 7472, 3862, 25, 23884, 1911, 18982, 7, 2435, 13, 525, 69, 62, 24588, 3419, 12, 72, 62, 2435, 4008, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 1388, 3419 ]
2.181439
3,599
''' This file is for retrieving system environment variables and helper variables directly derived from them. In decreasing order of precedence, environment variables can be set by: 1. adding them to .env file at root of this project 2. exporting and then running bumblebee in then same terminal. E.g. export BUMBLEBEE_ENV=local; bumblebee 3. prefixing 'bumblebee' command with the environment variable when running. E.g. BUMBLEBEE_ENV=local bumblebee ''' from dotenv import load_dotenv import os load_dotenv() bumblebee_environment = os.environ.get('BUMBLEBEE_ENV', 'production').lower() is_local = bumblebee_environment == 'local'
[ 7061, 6, 198, 1212, 2393, 318, 329, 50122, 1080, 2858, 9633, 290, 31904, 198, 25641, 2977, 3264, 10944, 422, 606, 13, 198, 198, 818, 24030, 1502, 286, 38177, 11, 2858, 9633, 460, 307, 900, 416, 25, 198, 16, 13, 4375, 606, 284, 764, 24330, 2393, 379, 6808, 286, 428, 1628, 198, 17, 13, 39133, 290, 788, 2491, 275, 10344, 20963, 287, 788, 976, 12094, 13, 198, 220, 220, 412, 13, 70, 13, 10784, 347, 5883, 19146, 33, 6500, 62, 1677, 53, 28, 12001, 26, 275, 10344, 20963, 198, 18, 13, 21231, 278, 705, 4435, 903, 20963, 6, 3141, 351, 262, 2858, 7885, 618, 2491, 13, 198, 220, 220, 412, 13, 70, 13, 347, 5883, 19146, 33, 6500, 62, 1677, 53, 28, 12001, 275, 10344, 20963, 198, 7061, 6, 198, 6738, 16605, 24330, 1330, 3440, 62, 26518, 24330, 198, 11748, 28686, 198, 198, 2220, 62, 26518, 24330, 3419, 198, 198, 4435, 903, 20963, 62, 38986, 796, 28686, 13, 268, 2268, 13, 1136, 10786, 33, 5883, 19146, 33, 6500, 62, 1677, 53, 3256, 705, 25493, 27691, 21037, 3419, 198, 271, 62, 12001, 796, 275, 10344, 20963, 62, 38986, 6624, 705, 12001, 6, 198 ]
3.361257
191
"""Pagination sample for Microsoft Graph.""" # Copyright (c) Microsoft. All rights reserved. Licensed under the MIT license. # See LICENSE in the project root for license information. import os import bottle import graphrest import config MSGRAPH = graphrest.GraphSession(client_id=config.CLIENT_ID, client_secret=config.CLIENT_SECRET, redirect_uri=config.REDIRECT_URI, scopes=['User.Read', 'Mail.Read']) bottle.TEMPLATE_PATH = ['./static/templates'] @bottle.route('/') @bottle.view('homepage.html') def homepage(): """Render the home page.""" return {'title': 'Pagination Basics'} @bottle.route('/login') def login(): """Prompt user to authenticate.""" endpoint = MSGRAPH.api_endpoint('me/messages') MSGRAPH.login(login_redirect=f'/pagination?endpoint={endpoint}') @bottle.route('/login/authorized') def authorized(): """Handler for the application's Redirect URI.""" MSGRAPH.redirect_uri_handler() @bottle.route('/pagination') @bottle.view('pagination.html') def pagination(): """Example of paginated response from Microsoft Graph.""" endpoint = bottle.request.query.endpoint graphdata = MSGRAPH.get(endpoint).json() return {'graphdata': graphdata} @bottle.route('/static/<filepath:path>') def server_static(filepath): """Handler for static files, used with the development server.""" root_folder = os.path.abspath(os.path.dirname(__file__)) return bottle.static_file(filepath, root=os.path.join(root_folder, 'static')) if __name__ == '__main__': bottle.run(app=bottle.app(), server='wsgiref', host='localhost', port=5000)
[ 37811, 47, 363, 1883, 6291, 329, 5413, 29681, 526, 15931, 198, 2, 15069, 357, 66, 8, 5413, 13, 1439, 2489, 10395, 13, 49962, 739, 262, 17168, 5964, 13, 198, 2, 4091, 38559, 24290, 287, 262, 1628, 6808, 329, 5964, 1321, 13, 198, 11748, 28686, 198, 198, 11748, 9294, 198, 11748, 4823, 2118, 198, 198, 11748, 4566, 628, 198, 5653, 10761, 31300, 796, 4823, 2118, 13, 37065, 36044, 7, 16366, 62, 312, 28, 11250, 13, 5097, 28495, 62, 2389, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5456, 62, 21078, 28, 11250, 13, 5097, 28495, 62, 23683, 26087, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18941, 62, 9900, 28, 11250, 13, 22083, 40, 23988, 62, 47269, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 629, 13920, 28, 17816, 12982, 13, 5569, 3256, 705, 25804, 13, 5569, 6, 12962, 198, 198, 10985, 293, 13, 51, 3620, 6489, 6158, 62, 34219, 796, 685, 4458, 14, 12708, 14, 11498, 17041, 20520, 628, 198, 31, 10985, 293, 13, 38629, 10786, 14, 11537, 198, 31, 10985, 293, 13, 1177, 10786, 11195, 7700, 13, 6494, 11537, 198, 4299, 34940, 33529, 198, 220, 220, 220, 37227, 45819, 262, 1363, 2443, 526, 15931, 198, 220, 220, 220, 1441, 1391, 6, 7839, 10354, 705, 47, 363, 1883, 45884, 6, 92, 628, 198, 31, 10985, 293, 13, 38629, 10786, 14, 38235, 11537, 198, 4299, 17594, 33529, 198, 220, 220, 220, 37227, 24129, 457, 2836, 284, 8323, 5344, 526, 15931, 198, 220, 220, 220, 36123, 796, 6579, 10761, 31300, 13, 15042, 62, 437, 4122, 10786, 1326, 14, 37348, 1095, 11537, 198, 220, 220, 220, 6579, 10761, 31300, 13, 38235, 7, 38235, 62, 445, 1060, 28, 69, 26488, 79, 363, 1883, 30, 437, 4122, 34758, 437, 4122, 92, 11537, 628, 198, 31, 10985, 293, 13, 38629, 10786, 14, 38235, 14, 19721, 11537, 198, 4299, 10435, 33529, 198, 220, 220, 220, 37227, 25060, 329, 262, 3586, 338, 2297, 1060, 43975, 526, 15931, 198, 220, 220, 220, 6579, 10761, 31300, 13, 445, 1060, 62, 9900, 62, 30281, 3419, 628, 198, 31, 10985, 293, 13, 38629, 10786, 14, 79, 363, 1883, 11537, 198, 31, 10985, 293, 13, 1177, 10786, 79, 363, 1883, 13, 6494, 11537, 198, 4299, 42208, 1883, 33529, 198, 220, 220, 220, 37227, 16281, 286, 42208, 3898, 2882, 422, 5413, 29681, 526, 15931, 198, 220, 220, 220, 36123, 796, 9294, 13, 25927, 13, 22766, 13, 437, 4122, 198, 220, 220, 220, 4823, 7890, 796, 6579, 10761, 31300, 13, 1136, 7, 437, 4122, 737, 17752, 3419, 198, 220, 220, 220, 1441, 1391, 6, 34960, 7890, 10354, 4823, 7890, 92, 628, 198, 31, 10985, 293, 13, 38629, 10786, 14, 12708, 14, 27, 7753, 6978, 25, 6978, 29, 11537, 198, 4299, 4382, 62, 12708, 7, 7753, 6978, 2599, 198, 220, 220, 220, 37227, 25060, 329, 9037, 3696, 11, 973, 351, 262, 2478, 4382, 526, 15931, 198, 220, 220, 220, 6808, 62, 43551, 796, 28686, 13, 6978, 13, 397, 2777, 776, 7, 418, 13, 6978, 13, 15908, 3672, 7, 834, 7753, 834, 4008, 198, 220, 220, 220, 1441, 9294, 13, 12708, 62, 7753, 7, 7753, 6978, 11, 6808, 28, 418, 13, 6978, 13, 22179, 7, 15763, 62, 43551, 11, 705, 12708, 6, 4008, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 9294, 13, 5143, 7, 1324, 28, 10985, 293, 13, 1324, 22784, 4382, 11639, 18504, 70, 557, 69, 3256, 2583, 11639, 36750, 3256, 2493, 28, 27641, 8, 198 ]
2.629057
647
from django.conf import settings from django.db import models from django.dispatch import receiver from django.contrib.auth.models import User import requests from django.utils.text import slugify from django.utils.translation import ugettext_lazy as _, ugettext from django.core import validators from channels import Group, Channel from django.utils import timezone from datetime import timedelta,datetime from django_auth_lti.patch_reverse import reverse from .groups import group_for_attempt from .report_outcome import report_outcome_for_attempt, ReportOutcomeFailure, ReportOutcomeConnectionError import os import shutil from zipfile import ZipFile from lxml import etree import re import json from collections import defaultdict @receiver(models.signals.post_save) # Create your models here. @receiver(models.signals.pre_save, sender=Exam) GRADING_METHODS = [ ('highest',_('Highest score')), ('last',_('Last attempt')), ] REPORT_TIMES = [ ('immediately',_('Immediately')), ('oncompletion',_('On completion')), ('manually',_('Manually, by instructor')), ] REPORTING_STATUSES = [ ('reporting',_('Reporting scores')), ('error',_('Error encountered')), ('complete',_('All scores reported')), ] SHOW_SCORES_MODES = [ ('always',_('Always')), ('complete',_('When attempt is complete')), ('never',_('Never')), ] COMPLETION_STATUSES = [ ('not attempted',_('Not attempted')), ('incomplete',_('Incomplete')), ('completed',_('Complete')), ] models.signals.post_save.connect(remark_update_scaled_score,sender=RemarkPart) models.signals.post_delete.connect(remark_update_scaled_score,sender=RemarkPart) DISCOUNT_BEHAVIOURS = [ ('remove','Remove from total'), ('fullmarks','Award everyone full credit'), ] models.signals.post_save.connect(discount_update_scaled_score,sender=DiscountPart) models.signals.post_delete.connect(discount_update_scaled_score,sender=DiscountPart) @receiver(models.signals.post_save,sender=ScormElement) @receiver(models.signals.post_save,sender=ScormElement) @receiver(models.signals.post_save,sender=ScormElement) @receiver(models.signals.post_save,sender=ScormElement) def scorm_set_num_questions(sender,instance,created,**kwargs): """ Set the number of questions for this resource - can only work this out once the exam has been run! """ if not re.match(r'^cmi.objectives.([0-9]+).id$',instance.key) or not created: return number = int(re.match(r'q(\d+)',instance.value).group(1))+1 resource = instance.attempt.resource if number>resource.num_questions: resource.num_questions = number resource.save() @receiver(models.signals.pre_save,sender=EditorLink)
[ 6738, 42625, 14208, 13, 10414, 1330, 6460, 198, 6738, 42625, 14208, 13, 9945, 1330, 4981, 198, 6738, 42625, 14208, 13, 6381, 17147, 1330, 9733, 198, 6738, 42625, 14208, 13, 3642, 822, 13, 18439, 13, 27530, 1330, 11787, 198, 11748, 7007, 198, 6738, 42625, 14208, 13, 26791, 13, 5239, 1330, 31065, 1958, 198, 6738, 42625, 14208, 13, 26791, 13, 41519, 1330, 334, 1136, 5239, 62, 75, 12582, 355, 4808, 11, 334, 1136, 5239, 198, 6738, 42625, 14208, 13, 7295, 1330, 4938, 2024, 198, 6738, 9619, 1330, 4912, 11, 11102, 198, 6738, 42625, 14208, 13, 26791, 1330, 640, 11340, 198, 6738, 4818, 8079, 1330, 28805, 12514, 11, 19608, 8079, 198, 6738, 42625, 14208, 62, 18439, 62, 2528, 72, 13, 17147, 62, 50188, 1330, 9575, 198, 198, 6738, 764, 24432, 1330, 1448, 62, 1640, 62, 1078, 1791, 198, 6738, 764, 13116, 62, 448, 2958, 1330, 989, 62, 448, 2958, 62, 1640, 62, 1078, 1791, 11, 6358, 7975, 2958, 50015, 11, 6358, 7975, 2958, 32048, 12331, 198, 198, 11748, 28686, 198, 11748, 4423, 346, 198, 6738, 19974, 7753, 1330, 38636, 8979, 198, 6738, 300, 19875, 1330, 2123, 631, 198, 11748, 302, 198, 11748, 33918, 198, 6738, 17268, 1330, 4277, 11600, 198, 198, 31, 260, 39729, 7, 27530, 13, 12683, 874, 13, 7353, 62, 21928, 8, 628, 198, 2, 13610, 534, 4981, 994, 13, 198, 198, 31, 260, 39729, 7, 27530, 13, 12683, 874, 13, 3866, 62, 21928, 11, 29788, 28, 3109, 321, 8, 628, 198, 10761, 2885, 2751, 62, 49273, 50, 796, 685, 198, 220, 220, 220, 19203, 35323, 3256, 62, 10786, 36124, 3634, 4776, 11537, 828, 198, 220, 220, 220, 19203, 12957, 3256, 62, 10786, 5956, 2230, 11537, 828, 198, 60, 198, 198, 2200, 15490, 62, 51, 3955, 1546, 796, 685, 198, 220, 220, 220, 19203, 320, 23802, 3256, 62, 10786, 3546, 23802, 11537, 828, 198, 220, 220, 220, 19203, 261, 785, 24547, 3256, 62, 10786, 2202, 11939, 11537, 828, 198, 220, 220, 220, 19203, 805, 935, 3256, 62, 10786, 5124, 935, 11, 416, 21187, 11537, 828, 198, 60, 198, 2200, 15490, 2751, 62, 35744, 2937, 1546, 796, 685, 198, 220, 220, 220, 19203, 49914, 3256, 62, 10786, 42159, 8198, 11537, 828, 198, 220, 220, 220, 19203, 18224, 3256, 62, 10786, 12331, 12956, 11537, 828, 198, 220, 220, 220, 19203, 20751, 3256, 62, 10786, 3237, 8198, 2098, 11537, 828, 198, 60, 198, 198, 9693, 3913, 62, 6173, 1581, 1546, 62, 33365, 1546, 796, 685, 198, 220, 220, 220, 19203, 33770, 3256, 62, 10786, 30374, 11537, 828, 198, 220, 220, 220, 19203, 20751, 3256, 62, 10786, 2215, 2230, 318, 1844, 11537, 828, 198, 220, 220, 220, 19203, 12081, 3256, 62, 10786, 12295, 11537, 828, 198, 60, 198, 198, 41335, 24131, 62, 35744, 2937, 1546, 796, 685, 198, 220, 220, 220, 19203, 1662, 7482, 3256, 62, 10786, 3673, 7482, 11537, 828, 198, 220, 220, 220, 19203, 259, 20751, 3256, 62, 10786, 818, 20751, 11537, 828, 198, 220, 220, 220, 19203, 785, 16838, 3256, 62, 10786, 20988, 11537, 828, 198, 60, 198, 27530, 13, 12683, 874, 13, 7353, 62, 21928, 13, 8443, 7, 2787, 668, 62, 19119, 62, 1416, 3021, 62, 26675, 11, 82, 2194, 28, 8413, 668, 7841, 8, 198, 27530, 13, 12683, 874, 13, 7353, 62, 33678, 13, 8443, 7, 2787, 668, 62, 19119, 62, 1416, 3021, 62, 26675, 11, 82, 2194, 28, 8413, 668, 7841, 8, 198, 198, 26288, 34, 28270, 62, 12473, 7801, 12861, 2606, 6998, 796, 685, 198, 220, 220, 220, 19203, 28956, 41707, 27914, 422, 2472, 33809, 198, 220, 220, 220, 19203, 12853, 14306, 41707, 32, 904, 2506, 1336, 3884, 33809, 198, 60, 198, 27530, 13, 12683, 874, 13, 7353, 62, 21928, 13, 8443, 7, 15410, 608, 62, 19119, 62, 1416, 3021, 62, 26675, 11, 82, 2194, 28, 15642, 608, 7841, 8, 198, 27530, 13, 12683, 874, 13, 7353, 62, 33678, 13, 8443, 7, 15410, 608, 62, 19119, 62, 1416, 3021, 62, 26675, 11, 82, 2194, 28, 15642, 608, 7841, 8, 198, 198, 31, 260, 39729, 7, 27530, 13, 12683, 874, 13, 7353, 62, 21928, 11, 82, 2194, 28, 3351, 579, 20180, 8, 198, 198, 31, 260, 39729, 7, 27530, 13, 12683, 874, 13, 7353, 62, 21928, 11, 82, 2194, 28, 3351, 579, 20180, 8, 198, 198, 31, 260, 39729, 7, 27530, 13, 12683, 874, 13, 7353, 62, 21928, 11, 82, 2194, 28, 3351, 579, 20180, 8, 198, 198, 31, 260, 39729, 7, 27530, 13, 12683, 874, 13, 7353, 62, 21928, 11, 82, 2194, 28, 3351, 579, 20180, 8, 198, 4299, 629, 579, 62, 2617, 62, 22510, 62, 6138, 507, 7, 82, 2194, 11, 39098, 11, 25598, 11, 1174, 46265, 22046, 2599, 198, 220, 220, 220, 37227, 5345, 262, 1271, 286, 2683, 329, 428, 8271, 532, 460, 691, 670, 428, 503, 1752, 262, 2814, 468, 587, 1057, 0, 37227, 198, 220, 220, 220, 611, 407, 302, 13, 15699, 7, 81, 6, 61, 11215, 72, 13, 15252, 1083, 12195, 58, 15, 12, 24, 48688, 737, 312, 3, 3256, 39098, 13, 2539, 8, 393, 407, 2727, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 628, 220, 220, 220, 1271, 796, 493, 7, 260, 13, 15699, 7, 81, 6, 80, 38016, 67, 28988, 3256, 39098, 13, 8367, 737, 8094, 7, 16, 4008, 10, 16, 198, 220, 220, 220, 8271, 796, 4554, 13, 1078, 1791, 13, 31092, 198, 220, 220, 220, 220, 198, 220, 220, 220, 611, 1271, 29, 31092, 13, 22510, 62, 6138, 507, 25, 198, 220, 220, 220, 220, 220, 220, 220, 8271, 13, 22510, 62, 6138, 507, 796, 1271, 198, 220, 220, 220, 220, 220, 220, 220, 8271, 13, 21928, 3419, 198, 198, 31, 260, 39729, 7, 27530, 13, 12683, 874, 13, 3866, 62, 21928, 11, 82, 2194, 28, 17171, 11280, 8, 198 ]
2.868644
944
import json import re import argparse import sys if __name__ == '__main__': main()
[ 11748, 33918, 198, 11748, 302, 198, 11748, 1822, 29572, 198, 11748, 25064, 628, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1388, 3419, 198 ]
2.84375
32
import json from src.mappers.heartbeatMapper import Heartbeat
[ 11748, 33918, 198, 198, 6738, 12351, 13, 76, 46629, 13, 11499, 12945, 44, 11463, 1330, 8894, 12945, 628 ]
3.555556
18
# Generated automatically using the command : # c++2py h5py_io.hpp --members_read_only -N h5 -a _h5py -m _h5py -o _h5py --moduledoc="A lightweight hdf5 python interface" --cxxflags="-std=c++20" --includes=./../../c++ --only="object file group h5_read_bare h5_write_bare" from cpp2py.wrap_generator import * # The module module = module_(full_name = "_h5py", doc = r"A lightweight hdf5 python interface", app_name = "_h5py") # Imports # Add here all includes module.add_include("<h5py_io.hpp>") # Add here anything to add in the C++ code at the start, e.g. namespace using module.add_preamble(""" #include <cpp2py/converters/span.hpp> #include <cpp2py/converters/string.hpp> #include <cpp2py/converters/vector.hpp> using namespace h5; """) # The class file c = class_( py_type = "File", # name of the python class c_type = "file", # name of the C++ class doc = r"""A little handler for the HDF5 file The class is basically a pointer to the file.""", # doc of the C++ class hdf5 = False, ) c.add_constructor("""()""", doc = r"""Open a file in memory""") c.add_constructor("""(std::string name, char mode)""", doc = r"""""") c.add_constructor("""(std::span<std::byte> buf)""", doc = r"""Create a file in memory from a byte buffer""") c.add_property(name = "name", getter = cfunction("""std::string name ()"""), doc = r"""Name of the file""") c.add_method("""void flush ()""", doc = r"""Flush the file""") c.add_method("""std::vector<std::byte> as_buffer ()""", doc = r"""Get a copy of the associated byte buffer""") module.add_class(c) # The class group c = class_( py_type = "Group", # name of the python class c_type = "group", # name of the C++ class doc = r"""HDF5 group""", # doc of the C++ class hdf5 = False, ) c.add_constructor("""(file f)""", doc = r"""Takes the "/" group at the top of the file""") c.add_property(name = "name", getter = cfunction("""std::string name ()"""), doc = r"""Name of the group""") c.add_method("""group open_group (std::string key)""", doc = r"""Open a subgroup. Throws std::runtime_error if it does not exist. Parameters ---------- key The name of the subgroup. If empty, return this group""") c.add_method("""group create_group (std::string key, bool delete_if_exists = true)""", doc = r"""Create a subgroup in this group Parameters ---------- key The name of the subgroup. If empty, return this group. delete_if_exists Unlink the group if it exists""") c.add_method("""std::vector<std::string> get_all_subgroup_dataset_names ()""", name='keys', doc = r"""Returns all names of dataset of G""") c.add_property(name = "file", getter = cfunction("""file get_file ()"""), doc = r"""The parent file""") c.add_method("""bool has_subgroup (std::string key)""", doc = r"""True iff key is a subgroup of this. Parameters ---------- key""") c.add_method("""bool has_dataset (std::string key)""", doc = r"""True iff key is a dataset of this. Parameters ---------- key""") c.add_method("void write_attribute(std::string key, std::string val)", calling_pattern = "h5_write_attribute(self_c, key, val)", doc = "Write an attribute") c.add_method("std::string read_attribute(std::string name)", calling_pattern = "std::string result = h5_read_attribute<std::string>(self_c, name)", doc = "Read an attribute") c.add_method("std::string read_hdf5_format_from_key(std::string key)", calling_pattern = "std::string result; read_hdf5_format_from_key(self_c, key, result);", doc = "Read the format string from the key in the group") module.add_class(c) module.add_function (name = "h5_write", signature = "void h5_write_bare (group g, std::string name, PyObject * ob)", doc = r"""""") module.add_function (name = "h5_read", signature = "PyObject * h5_read_bare (group g, std::string name)", doc = r"""""") module.generate_code()
[ 2, 2980, 515, 6338, 1262, 262, 3141, 1058, 198, 2, 269, 4880, 17, 9078, 289, 20, 9078, 62, 952, 13, 71, 381, 1377, 30814, 62, 961, 62, 8807, 532, 45, 289, 20, 532, 64, 4808, 71, 20, 9078, 532, 76, 4808, 71, 20, 9078, 532, 78, 4808, 71, 20, 9078, 1377, 4666, 6309, 420, 2625, 32, 18700, 289, 7568, 20, 21015, 7071, 1, 1377, 66, 5324, 33152, 2625, 12, 19282, 28, 66, 4880, 1238, 1, 1377, 42813, 28, 19571, 40720, 40720, 66, 4880, 1377, 8807, 2625, 15252, 2393, 1448, 289, 20, 62, 961, 62, 49382, 289, 20, 62, 13564, 62, 49382, 1, 198, 6738, 269, 381, 17, 9078, 13, 37150, 62, 8612, 1352, 1330, 1635, 198, 198, 2, 383, 8265, 198, 21412, 796, 8265, 41052, 12853, 62, 3672, 796, 45434, 71, 20, 9078, 1600, 2205, 796, 374, 1, 32, 18700, 289, 7568, 20, 21015, 7071, 1600, 598, 62, 3672, 796, 45434, 71, 20, 9078, 4943, 198, 198, 2, 1846, 3742, 198, 198, 2, 3060, 994, 477, 3407, 198, 21412, 13, 2860, 62, 17256, 7203, 27, 71, 20, 9078, 62, 952, 13, 71, 381, 29, 4943, 198, 198, 2, 3060, 994, 1997, 284, 751, 287, 262, 327, 4880, 2438, 379, 262, 923, 11, 304, 13, 70, 13, 25745, 1262, 198, 21412, 13, 2860, 62, 79, 1476, 903, 7203, 15931, 198, 2, 17256, 1279, 20322, 17, 9078, 14, 1102, 332, 1010, 14, 12626, 13, 71, 381, 29, 198, 2, 17256, 1279, 20322, 17, 9078, 14, 1102, 332, 1010, 14, 8841, 13, 71, 381, 29, 198, 2, 17256, 1279, 20322, 17, 9078, 14, 1102, 332, 1010, 14, 31364, 13, 71, 381, 29, 198, 198, 3500, 25745, 289, 20, 26, 198, 15931, 4943, 628, 198, 2, 383, 1398, 2393, 198, 66, 796, 1398, 41052, 198, 220, 220, 220, 220, 220, 220, 220, 12972, 62, 4906, 796, 366, 8979, 1600, 220, 1303, 1438, 286, 262, 21015, 1398, 198, 220, 220, 220, 220, 220, 220, 220, 269, 62, 4906, 796, 366, 7753, 1600, 220, 220, 1303, 1438, 286, 262, 327, 4880, 1398, 198, 220, 220, 220, 220, 220, 220, 220, 2205, 796, 374, 37811, 32, 1310, 21360, 329, 262, 5572, 37, 20, 2393, 628, 220, 383, 1398, 318, 6209, 257, 17562, 284, 262, 2393, 32203, 1600, 220, 220, 1303, 2205, 286, 262, 327, 4880, 1398, 198, 220, 220, 220, 220, 220, 220, 220, 289, 7568, 20, 796, 10352, 11, 198, 8, 198, 198, 66, 13, 2860, 62, 41571, 273, 7203, 15931, 3419, 15931, 1600, 2205, 796, 374, 37811, 11505, 257, 2393, 287, 4088, 15931, 4943, 198, 198, 66, 13, 2860, 62, 41571, 273, 7203, 15931, 7, 19282, 3712, 8841, 1438, 11, 1149, 4235, 8, 15931, 1600, 2205, 796, 374, 15931, 37811, 4943, 198, 198, 66, 13, 2860, 62, 41571, 273, 7203, 15931, 7, 19282, 3712, 12626, 27, 19282, 3712, 26327, 29, 42684, 8, 15931, 1600, 2205, 796, 374, 37811, 16447, 257, 2393, 287, 4088, 422, 257, 18022, 11876, 15931, 4943, 198, 198, 66, 13, 2860, 62, 26745, 7, 3672, 796, 366, 3672, 1600, 651, 353, 796, 269, 8818, 7203, 15931, 19282, 3712, 8841, 1438, 7499, 15931, 12340, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2205, 796, 374, 37811, 5376, 286, 262, 2393, 15931, 4943, 198, 198, 66, 13, 2860, 62, 24396, 7203, 15931, 19382, 24773, 7499, 15931, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2205, 796, 374, 37811, 7414, 1530, 262, 2393, 15931, 4943, 198, 198, 66, 13, 2860, 62, 24396, 7203, 15931, 19282, 3712, 31364, 27, 19282, 3712, 26327, 29, 355, 62, 22252, 7499, 15931, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2205, 796, 374, 37811, 3855, 257, 4866, 286, 262, 3917, 18022, 11876, 15931, 4943, 198, 198, 21412, 13, 2860, 62, 4871, 7, 66, 8, 198, 198, 2, 383, 1398, 1448, 198, 66, 796, 1398, 41052, 198, 220, 220, 220, 220, 220, 220, 220, 12972, 62, 4906, 796, 366, 13247, 1600, 220, 1303, 1438, 286, 262, 21015, 1398, 198, 220, 220, 220, 220, 220, 220, 220, 269, 62, 4906, 796, 366, 8094, 1600, 220, 220, 1303, 1438, 286, 262, 327, 4880, 1398, 198, 220, 220, 220, 220, 220, 220, 220, 2205, 796, 374, 37811, 39, 8068, 20, 1448, 15931, 1600, 220, 220, 1303, 2205, 286, 262, 327, 4880, 1398, 198, 220, 220, 220, 220, 220, 220, 220, 289, 7568, 20, 796, 10352, 11, 198, 8, 198, 198, 66, 13, 2860, 62, 41571, 273, 7203, 15931, 7, 7753, 277, 8, 15931, 1600, 2205, 796, 374, 37811, 51, 1124, 262, 12813, 1, 1448, 379, 262, 1353, 286, 262, 2393, 15931, 4943, 198, 198, 66, 13, 2860, 62, 26745, 7, 3672, 796, 366, 3672, 1600, 651, 353, 796, 269, 8818, 7203, 15931, 19282, 3712, 8841, 1438, 7499, 15931, 12340, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2205, 796, 374, 37811, 5376, 286, 262, 1448, 15931, 4943, 198, 198, 66, 13, 2860, 62, 24396, 7203, 15931, 8094, 1280, 62, 8094, 357, 19282, 3712, 8841, 1994, 8, 15931, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2205, 796, 374, 37811, 11505, 257, 850, 8094, 13, 198, 536, 8516, 14367, 3712, 43282, 62, 18224, 611, 340, 857, 407, 2152, 13, 198, 198, 48944, 198, 35937, 198, 2539, 198, 220, 220, 220, 220, 383, 1438, 286, 262, 850, 8094, 13, 1002, 6565, 11, 1441, 428, 1448, 15931, 4943, 198, 198, 66, 13, 2860, 62, 24396, 7203, 15931, 8094, 2251, 62, 8094, 357, 19282, 3712, 8841, 1994, 11, 20512, 12233, 62, 361, 62, 1069, 1023, 796, 2081, 8, 15931, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2205, 796, 374, 37811, 16447, 257, 850, 8094, 287, 428, 1448, 198, 198, 48944, 198, 35937, 198, 2539, 198, 220, 220, 220, 220, 383, 1438, 286, 262, 850, 8094, 13, 1002, 6565, 11, 1441, 428, 1448, 13, 198, 198, 33678, 62, 361, 62, 1069, 1023, 198, 220, 220, 220, 220, 791, 8726, 262, 1448, 611, 340, 7160, 15931, 4943, 198, 198, 66, 13, 2860, 62, 24396, 7203, 15931, 19282, 3712, 31364, 27, 19282, 3712, 8841, 29, 651, 62, 439, 62, 7266, 8094, 62, 19608, 292, 316, 62, 14933, 7499, 15931, 1600, 1438, 11639, 13083, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2205, 796, 374, 37811, 35561, 477, 3891, 286, 27039, 286, 402, 15931, 4943, 198, 198, 66, 13, 2860, 62, 26745, 7, 3672, 796, 366, 7753, 1600, 651, 353, 796, 269, 8818, 7203, 15931, 7753, 651, 62, 7753, 7499, 15931, 12340, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2205, 796, 374, 37811, 464, 2560, 2393, 15931, 4943, 198, 198, 66, 13, 2860, 62, 24396, 7203, 15931, 30388, 468, 62, 7266, 8094, 357, 19282, 3712, 8841, 1994, 8, 15931, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2205, 796, 374, 37811, 17821, 611, 69, 1994, 318, 257, 850, 8094, 286, 428, 13, 198, 198, 48944, 198, 35937, 198, 2539, 15931, 4943, 198, 198, 66, 13, 2860, 62, 24396, 7203, 15931, 30388, 468, 62, 19608, 292, 316, 357, 19282, 3712, 8841, 1994, 8, 15931, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2205, 796, 374, 37811, 17821, 611, 69, 1994, 318, 257, 27039, 286, 428, 13, 198, 198, 48944, 198, 35937, 198, 2539, 15931, 4943, 198, 198, 66, 13, 2860, 62, 24396, 7203, 19382, 3551, 62, 42348, 7, 19282, 3712, 8841, 1994, 11, 14367, 3712, 8841, 1188, 42501, 4585, 62, 33279, 796, 366, 71, 20, 62, 13564, 62, 42348, 7, 944, 62, 66, 11, 1994, 11, 1188, 42501, 2205, 796, 366, 16594, 281, 11688, 4943, 198, 198, 66, 13, 2860, 62, 24396, 7203, 19282, 3712, 8841, 1100, 62, 42348, 7, 19282, 3712, 8841, 1438, 42501, 4585, 62, 33279, 796, 366, 19282, 3712, 8841, 1255, 796, 289, 20, 62, 961, 62, 42348, 27, 19282, 3712, 8841, 33994, 944, 62, 66, 11, 1438, 42501, 2205, 796, 366, 5569, 281, 11688, 4943, 198, 198, 66, 13, 2860, 62, 24396, 7203, 19282, 3712, 8841, 1100, 62, 71, 7568, 20, 62, 18982, 62, 6738, 62, 2539, 7, 19282, 3712, 8841, 1994, 42501, 4585, 62, 33279, 796, 366, 19282, 3712, 8841, 1255, 26, 1100, 62, 71, 7568, 20, 62, 18982, 62, 6738, 62, 2539, 7, 944, 62, 66, 11, 1994, 11, 1255, 1776, 1600, 2205, 796, 366, 5569, 262, 5794, 4731, 422, 262, 1994, 287, 262, 1448, 4943, 198, 198, 21412, 13, 2860, 62, 4871, 7, 66, 8, 198, 198, 21412, 13, 2860, 62, 8818, 357, 3672, 796, 366, 71, 20, 62, 13564, 1600, 9877, 796, 366, 19382, 289, 20, 62, 13564, 62, 49382, 357, 8094, 308, 11, 14367, 3712, 8841, 1438, 11, 9485, 10267, 1635, 909, 42501, 2205, 796, 374, 15931, 37811, 4943, 198, 198, 21412, 13, 2860, 62, 8818, 357, 3672, 796, 366, 71, 20, 62, 961, 1600, 9877, 796, 366, 20519, 10267, 1635, 289, 20, 62, 961, 62, 49382, 357, 8094, 308, 11, 14367, 3712, 8841, 1438, 42501, 2205, 796, 374, 15931, 37811, 4943, 628, 198, 198, 21412, 13, 8612, 378, 62, 8189, 3419, 198 ]
2.636364
1,518
# Copyright 2021 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License") # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import testing_config # Must be imported first import flask from unittest import mock import werkzeug from internals import models from internals import approval_defs from internals import detect_intent test_app = flask.Flask(__name__)
[ 2, 15069, 33448, 3012, 3457, 13, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 4943, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 198, 11748, 4856, 62, 11250, 220, 1303, 12039, 307, 17392, 717, 198, 198, 11748, 42903, 198, 6738, 555, 715, 395, 1330, 15290, 198, 11748, 266, 9587, 2736, 1018, 198, 198, 6738, 1788, 874, 1330, 4981, 198, 6738, 1788, 874, 1330, 7546, 62, 4299, 82, 198, 6738, 1788, 874, 1330, 4886, 62, 48536, 198, 198, 9288, 62, 1324, 796, 42903, 13, 7414, 2093, 7, 834, 3672, 834, 8, 628, 198 ]
3.747706
218
"""Citizens model.""" # Django from django.db import models from django.contrib.auth.models import AbstractUser from django.core.validators import RegexValidator # models from paranuara.companies.models import Company # PostgreSQL fields from django.contrib.postgres.fields import JSONField # Utilities from paranuara.utils.models import ParanuaraModel class Citizen(ParanuaraModel, AbstractUser): """Citizen model. Extend from Django's Abstract User, change the username field to email and add some extra fields. """ index = models.IntegerField( unique=True, default=-1 ) favorite_food = models.ManyToManyField( 'foods.Food', related_name='favorite_food' ) has_died = models.BooleanField( 'died', default=False, help_text=( 'Help easily distinguish citizens died or alive. ' ) ) balance = models.DecimalField( max_digits=15, decimal_places=2, default=None ) picture = models.ImageField( 'profile picture', upload_to='paranuara/citizens/pictures/', blank=True, null=True ) age = models.IntegerField( default=-1 ) eyeColor = models.CharField( max_length=50, blank=False ) gender = models.CharField( max_length=6, blank=True ) email = models.EmailField( 'email address', unique=True, error_messages={ 'unique': 'A user with that email already exists.' } ) phone_regex = RegexValidator( regex=r'\+?1?\d{9,15}$', message="Phone number must be entered in the format: +999999999. Up to 15 digits allowed." ) phone = models.CharField( validators=[phone_regex], max_length=20, blank=True ) address = models.CharField( max_length=100, blank=True ) company = models.ForeignKey( Company, related_name='employees_company', on_delete=models.SET_NULL, null=True ) about = models.CharField( max_length=1000, blank=True, null=True ) greeting = models.CharField( max_length=1000, blank=True, null=True ) tags = JSONField( default=None, blank=True, null=True ) REQUIRED_FIELDS = ['has_died', 'eyeColor', 'index'] class Relationship(models.Model): """Class to represent many to many relation between Ctizens""" from_people = models.ForeignKey(Citizen, related_name='from_people', on_delete=models.CASCADE) to_people = models.ForeignKey(Citizen, related_name='to_people', on_delete=models.CASCADE)
[ 37811, 34, 34100, 2746, 526, 15931, 198, 198, 2, 37770, 198, 6738, 42625, 14208, 13, 9945, 1330, 4981, 198, 6738, 42625, 14208, 13, 3642, 822, 13, 18439, 13, 27530, 1330, 27741, 12982, 198, 6738, 42625, 14208, 13, 7295, 13, 12102, 2024, 1330, 797, 25636, 47139, 1352, 198, 198, 2, 4981, 198, 6738, 23511, 84, 3301, 13, 34390, 444, 13, 27530, 1330, 5834, 198, 198, 2, 2947, 47701, 7032, 198, 6738, 42625, 14208, 13, 3642, 822, 13, 7353, 34239, 13, 25747, 1330, 19449, 15878, 198, 198, 2, 41086, 198, 6738, 23511, 84, 3301, 13, 26791, 13, 27530, 1330, 2547, 42357, 3301, 17633, 628, 198, 4871, 22307, 7, 10044, 42357, 3301, 17633, 11, 27741, 12982, 2599, 198, 220, 220, 220, 37227, 34, 36958, 2746, 13, 198, 220, 220, 220, 46228, 422, 37770, 338, 27741, 11787, 11, 1487, 262, 20579, 2214, 198, 220, 220, 220, 284, 3053, 290, 751, 617, 3131, 7032, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 6376, 796, 4981, 13, 46541, 15878, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 3748, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 4277, 10779, 16, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 4004, 62, 19425, 796, 4981, 13, 7085, 2514, 7085, 15878, 7, 198, 220, 220, 220, 220, 220, 220, 220, 705, 19425, 82, 13, 24602, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 3519, 62, 3672, 11639, 35200, 62, 19425, 6, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 468, 62, 67, 798, 796, 4981, 13, 46120, 13087, 15878, 7, 198, 220, 220, 220, 220, 220, 220, 220, 705, 67, 798, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 4277, 28, 25101, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1037, 62, 5239, 16193, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 22087, 3538, 15714, 4290, 3724, 393, 6776, 13, 705, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 5236, 796, 4981, 13, 10707, 4402, 15878, 7, 198, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 12894, 896, 28, 1314, 11, 198, 220, 220, 220, 220, 220, 220, 220, 32465, 62, 23625, 28, 17, 11, 198, 220, 220, 220, 220, 220, 220, 220, 4277, 28, 14202, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 4286, 796, 4981, 13, 5159, 15878, 7, 198, 220, 220, 220, 220, 220, 220, 220, 705, 13317, 4286, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 9516, 62, 1462, 11639, 1845, 42357, 3301, 14, 46801, 14, 18847, 942, 14, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 9178, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 9242, 28, 17821, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 2479, 796, 4981, 13, 46541, 15878, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 4277, 10779, 16, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 4151, 10258, 796, 4981, 13, 12441, 15878, 7, 198, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 13664, 28, 1120, 11, 198, 220, 220, 220, 220, 220, 220, 220, 9178, 28, 25101, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 5279, 796, 4981, 13, 12441, 15878, 7, 198, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 13664, 28, 21, 11, 198, 220, 220, 220, 220, 220, 220, 220, 9178, 28, 17821, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 3053, 796, 4981, 13, 15333, 15878, 7, 198, 220, 220, 220, 220, 220, 220, 220, 705, 12888, 2209, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 3748, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 4049, 62, 37348, 1095, 34758, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 34642, 10354, 705, 32, 2836, 351, 326, 3053, 1541, 7160, 2637, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 3072, 62, 260, 25636, 796, 797, 25636, 47139, 1352, 7, 198, 220, 220, 220, 220, 220, 220, 220, 40364, 28, 81, 6, 59, 10, 30, 16, 30, 59, 67, 90, 24, 11, 1314, 92, 3, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 3275, 2625, 6132, 1271, 1276, 307, 5982, 287, 262, 5794, 25, 1343, 24214, 2079, 17032, 13, 3205, 284, 1315, 19561, 3142, 526, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 3072, 796, 4981, 13, 12441, 15878, 7, 198, 220, 220, 220, 220, 220, 220, 220, 4938, 2024, 41888, 4862, 62, 260, 25636, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 13664, 28, 1238, 11, 198, 220, 220, 220, 220, 220, 220, 220, 9178, 28, 17821, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 2209, 796, 4981, 13, 12441, 15878, 7, 198, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 13664, 28, 3064, 11, 198, 220, 220, 220, 220, 220, 220, 220, 9178, 28, 17821, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 1664, 796, 4981, 13, 33616, 9218, 7, 198, 220, 220, 220, 220, 220, 220, 220, 5834, 11, 198, 220, 220, 220, 220, 220, 220, 220, 3519, 62, 3672, 11639, 7033, 2841, 62, 39722, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 319, 62, 33678, 28, 27530, 13, 28480, 62, 33991, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 9242, 28, 17821, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 546, 796, 4981, 13, 12441, 15878, 7, 198, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 13664, 28, 12825, 11, 198, 220, 220, 220, 220, 220, 220, 220, 9178, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 9242, 28, 17821, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 31933, 796, 4981, 13, 12441, 15878, 7, 198, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 13664, 28, 12825, 11, 198, 220, 220, 220, 220, 220, 220, 220, 9178, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 9242, 28, 17821, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 15940, 796, 19449, 15878, 7, 198, 220, 220, 220, 220, 220, 220, 220, 4277, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 9178, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 9242, 28, 17821, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 4526, 10917, 37819, 62, 11674, 3698, 5258, 796, 37250, 10134, 62, 67, 798, 3256, 705, 25379, 10258, 3256, 705, 9630, 20520, 628, 198, 4871, 39771, 7, 27530, 13, 17633, 2599, 198, 220, 220, 220, 37227, 9487, 284, 2380, 867, 284, 867, 8695, 1022, 43166, 44908, 37811, 628, 220, 220, 220, 422, 62, 15332, 796, 4981, 13, 33616, 9218, 7, 34, 36958, 11, 3519, 62, 3672, 11639, 6738, 62, 15332, 3256, 319, 62, 33678, 28, 27530, 13, 34, 42643, 19266, 8, 198, 220, 220, 220, 284, 62, 15332, 796, 4981, 13, 33616, 9218, 7, 34, 36958, 11, 3519, 62, 3672, 11639, 1462, 62, 15332, 3256, 319, 62, 33678, 28, 27530, 13, 34, 42643, 19266, 8, 198 ]
2.325424
1,180
#!/usr/bin/env python # -*- coding: utf-8 -*- from django.urls import path from .views import login_register, task_manage, analysis_page urlpatterns = [ path('login/', login_register.Login.as_view()), path('register/', login_register.SignIn.as_view()), path('register/check_username', login_register.SignIn.as_view()), path('task_manager/addition/', task_manage.TaskManage.as_view()), path('task_manager/removing/', task_manage.TaskManage.as_view()), path('task_manager/recovering/', task_manage.Recover.as_view()), path('task_manager/upgrade/', task_manage.TaskManage.as_view()), path('task_manager/tasks', task_manage.TaskManage.as_view()), path('task_manager/schools', task_manage.SearchSchool.as_view()), path('analysis_page/posts_data', analysis_page.GetData.as_view()), path('analysis_page/users_analysis_data', analysis_page.GetUserAnalyseData.as_view()), path('analysis_page/posts_analysis_data', analysis_page.GetPostsAnalysisData.as_view()) ]
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 6738, 42625, 14208, 13, 6371, 82, 1330, 3108, 198, 6738, 764, 33571, 1330, 17594, 62, 30238, 11, 4876, 62, 805, 496, 11, 3781, 62, 7700, 198, 6371, 33279, 82, 796, 685, 198, 220, 220, 220, 3108, 10786, 38235, 14, 3256, 17594, 62, 30238, 13, 47790, 13, 292, 62, 1177, 3419, 828, 198, 220, 220, 220, 3108, 10786, 30238, 14, 3256, 17594, 62, 30238, 13, 11712, 818, 13, 292, 62, 1177, 3419, 828, 198, 220, 220, 220, 3108, 10786, 30238, 14, 9122, 62, 29460, 3256, 17594, 62, 30238, 13, 11712, 818, 13, 292, 62, 1177, 3419, 828, 198, 220, 220, 220, 3108, 10786, 35943, 62, 37153, 14, 2860, 653, 14, 3256, 4876, 62, 805, 496, 13, 25714, 5124, 496, 13, 292, 62, 1177, 3419, 828, 198, 220, 220, 220, 3108, 10786, 35943, 62, 37153, 14, 2787, 5165, 14, 3256, 4876, 62, 805, 496, 13, 25714, 5124, 496, 13, 292, 62, 1177, 3419, 828, 198, 220, 220, 220, 3108, 10786, 35943, 62, 37153, 14, 260, 9631, 278, 14, 3256, 4876, 62, 805, 496, 13, 6690, 2502, 13, 292, 62, 1177, 3419, 828, 198, 220, 220, 220, 3108, 10786, 35943, 62, 37153, 14, 929, 9526, 14, 3256, 4876, 62, 805, 496, 13, 25714, 5124, 496, 13, 292, 62, 1177, 3419, 828, 198, 220, 220, 220, 3108, 10786, 35943, 62, 37153, 14, 83, 6791, 3256, 4876, 62, 805, 496, 13, 25714, 5124, 496, 13, 292, 62, 1177, 3419, 828, 198, 220, 220, 220, 3108, 10786, 35943, 62, 37153, 14, 14347, 82, 3256, 4876, 62, 805, 496, 13, 18243, 26130, 13, 292, 62, 1177, 3419, 828, 198, 220, 220, 220, 3108, 10786, 20930, 62, 7700, 14, 24875, 62, 7890, 3256, 3781, 62, 7700, 13, 3855, 6601, 13, 292, 62, 1177, 3419, 828, 198, 220, 220, 220, 3108, 10786, 20930, 62, 7700, 14, 18417, 62, 20930, 62, 7890, 3256, 3781, 62, 7700, 13, 3855, 12982, 37702, 325, 6601, 13, 292, 62, 1177, 3419, 828, 198, 220, 220, 220, 3108, 10786, 20930, 62, 7700, 14, 24875, 62, 20930, 62, 7890, 3256, 3781, 62, 7700, 13, 3855, 21496, 32750, 6601, 13, 292, 62, 1177, 28955, 198, 60, 198 ]
2.683646
373
from django.conf import settings from django.conf.urls import url, include from django.contrib.staticfiles.urls import staticfiles_urlpatterns from main import views from django.contrib.auth import views as auth_views from django.views.static import serve # Uncomment the next two lines to enable the admin: from django.contrib import admin admin.autodiscover() urlpatterns = [ url(r'^$', views.index, name="home"), url("^music/", include("audiotracks.urls")), url("^(?P<username>[\w\._-]+)/music/", include("audiotracks.urls")), url(r'^login$', auth_views.login, name="login"), url(r'^logout$', auth_views.logout, name="logout"), url(r'^admin/', include(admin.site.urls)), ] if settings.DEBUG: urlpatterns += [ url(r'^site_media/(?P<path>.*)$', serve, { 'document_root': settings.MEDIA_ROOT }) ] urlpatterns += staticfiles_urlpatterns()
[ 6738, 42625, 14208, 13, 10414, 1330, 6460, 198, 6738, 42625, 14208, 13, 10414, 13, 6371, 82, 1330, 19016, 11, 2291, 198, 6738, 42625, 14208, 13, 3642, 822, 13, 12708, 16624, 13, 6371, 82, 1330, 9037, 16624, 62, 6371, 33279, 82, 198, 6738, 1388, 1330, 5009, 198, 6738, 42625, 14208, 13, 3642, 822, 13, 18439, 1330, 5009, 355, 6284, 62, 33571, 198, 6738, 42625, 14208, 13, 33571, 13, 12708, 1330, 4691, 198, 198, 2, 791, 23893, 262, 1306, 734, 3951, 284, 7139, 262, 13169, 25, 198, 6738, 42625, 14208, 13, 3642, 822, 1330, 13169, 198, 28482, 13, 2306, 375, 29392, 3419, 198, 198, 6371, 33279, 82, 796, 685, 198, 220, 220, 220, 19016, 7, 81, 6, 61, 3, 3256, 5009, 13, 9630, 11, 1438, 2625, 11195, 12340, 198, 220, 220, 220, 19016, 7203, 61, 28965, 14, 1600, 2291, 7203, 3885, 5151, 81, 4595, 13, 6371, 82, 4943, 828, 198, 220, 220, 220, 19016, 7203, 61, 7, 30, 47, 27, 29460, 36937, 59, 86, 59, 13557, 12, 48688, 20679, 28965, 14, 1600, 2291, 7203, 3885, 5151, 81, 4595, 13, 6371, 82, 4943, 828, 198, 220, 220, 220, 19016, 7, 81, 6, 61, 38235, 3, 3256, 6284, 62, 33571, 13, 38235, 11, 1438, 2625, 38235, 12340, 198, 220, 220, 220, 19016, 7, 81, 6, 61, 6404, 448, 3, 3256, 6284, 62, 33571, 13, 6404, 448, 11, 1438, 2625, 6404, 448, 12340, 198, 220, 220, 220, 19016, 7, 81, 6, 61, 28482, 14, 3256, 2291, 7, 28482, 13, 15654, 13, 6371, 82, 36911, 198, 60, 198, 198, 361, 6460, 13, 30531, 25, 198, 220, 220, 220, 19016, 33279, 82, 15853, 685, 198, 220, 220, 220, 220, 220, 220, 220, 19016, 7, 81, 6, 61, 15654, 62, 11431, 29006, 30, 47, 27, 6978, 29, 15885, 8, 3, 3256, 4691, 11, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 22897, 62, 15763, 10354, 6460, 13, 30733, 3539, 62, 13252, 2394, 198, 220, 220, 220, 220, 220, 220, 220, 32092, 198, 220, 220, 220, 2361, 198, 220, 220, 220, 19016, 33279, 82, 15853, 9037, 16624, 62, 6371, 33279, 82, 3419, 198 ]
2.585714
350
from mathbox.statistics.estimator import mean, std # Generalized ESD Test for Outliers # https://www.itl.nist.gov/div898/handbook/eda/section3/eda35h3.htm
[ 6738, 10688, 3524, 13, 14269, 3969, 13, 395, 320, 1352, 1330, 1612, 11, 14367, 198, 198, 2, 3611, 1143, 412, 10305, 6208, 329, 3806, 75, 3183, 198, 2, 3740, 1378, 2503, 13, 270, 75, 13, 77, 396, 13, 9567, 14, 7146, 23, 4089, 14, 4993, 2070, 14, 18082, 14, 5458, 18, 14, 18082, 2327, 71, 18, 13, 19211 ]
2.672414
58
#!/usr/bin/python from requirement import * from producer import producer from scheduler import fcfs from teller import teller txt = open('result/processes','w') txt.write('Processes\n\n') #Thread(target = producer).start() producer() for process in processes: txt.write(str(process)+'\n') for i in range(teller_count): tellers.append( teller() ) a = fcfs(processes,tellers) txt.close()
[ 2, 48443, 14629, 14, 8800, 14, 29412, 198, 198, 6738, 9079, 1330, 1635, 198, 6738, 9920, 1330, 9920, 198, 6738, 6038, 18173, 1330, 277, 66, 9501, 198, 6738, 1560, 263, 1330, 1560, 263, 628, 198, 14116, 796, 1280, 10786, 20274, 14, 14681, 274, 41707, 86, 11537, 198, 14116, 13, 13564, 10786, 18709, 274, 59, 77, 59, 77, 11537, 198, 198, 2, 16818, 7, 16793, 796, 9920, 737, 9688, 3419, 198, 18230, 2189, 3419, 198, 198, 1640, 1429, 287, 7767, 25, 198, 197, 14116, 13, 13564, 7, 2536, 7, 14681, 47762, 6, 59, 77, 11537, 198, 198, 1640, 1312, 287, 2837, 7, 660, 6051, 62, 9127, 2599, 198, 197, 660, 13802, 13, 33295, 7, 1560, 263, 3419, 1267, 198, 198, 64, 796, 277, 66, 9501, 7, 14681, 274, 11, 660, 13802, 8, 198, 198, 14116, 13, 19836, 3419, 198 ]
2.876812
138
from floem import * n_cores = 2 Enq, Deq, Release = queue.queue_custom('queue', Tuple, 4, n_cores, Tuple.task, enq_output=True) RxWrite('mysend') RxPrint('process') c = Compiler() c.testing = r''' Tuple tuples[5]; for(int i=0; i<5;i++) { tuples[i].task = 10; tuples[i].val = i; } for(int i=0; i<5;i++) { mysend(&tuples[i], 0); process(0); } for(int i=0; i<5;i++) { tuples[i].val = 100 + i; mysend(&tuples[i], 1); tuples[i].task = 0; } for(int i=0; i<5;i++) { process(1); } ''' c.generate_code_and_run([0,0,-1,1,-2,2,-3,3,-4,4,-100,-101,-102,-103,-104,100,101,102,103])
[ 6738, 5530, 368, 1330, 1635, 198, 198, 77, 62, 66, 2850, 796, 362, 628, 198, 4834, 80, 11, 1024, 80, 11, 13868, 796, 16834, 13, 36560, 62, 23144, 10786, 36560, 3256, 309, 29291, 11, 604, 11, 299, 62, 66, 2850, 11, 309, 29291, 13, 35943, 11, 551, 80, 62, 22915, 28, 17821, 8, 628, 198, 49, 87, 16594, 10786, 28744, 437, 11537, 198, 49, 87, 18557, 10786, 14681, 11537, 198, 198, 66, 796, 3082, 5329, 3419, 198, 66, 13, 33407, 796, 374, 7061, 6, 198, 51, 29291, 12777, 2374, 58, 20, 11208, 198, 1640, 7, 600, 1312, 28, 15, 26, 1312, 27, 20, 26, 72, 29577, 1391, 198, 220, 220, 220, 12777, 2374, 58, 72, 4083, 35943, 796, 838, 26, 198, 220, 220, 220, 12777, 2374, 58, 72, 4083, 2100, 796, 1312, 26, 198, 92, 198, 198, 1640, 7, 600, 1312, 28, 15, 26, 1312, 27, 20, 26, 72, 29577, 1391, 198, 220, 220, 220, 616, 21280, 39434, 28047, 2374, 58, 72, 4357, 657, 1776, 198, 220, 220, 220, 1429, 7, 15, 1776, 198, 92, 198, 198, 1640, 7, 600, 1312, 28, 15, 26, 1312, 27, 20, 26, 72, 29577, 1391, 198, 220, 220, 220, 12777, 2374, 58, 72, 4083, 2100, 796, 1802, 1343, 1312, 26, 198, 220, 220, 220, 616, 21280, 39434, 28047, 2374, 58, 72, 4357, 352, 1776, 198, 220, 220, 220, 12777, 2374, 58, 72, 4083, 35943, 796, 657, 26, 198, 92, 198, 198, 1640, 7, 600, 1312, 28, 15, 26, 1312, 27, 20, 26, 72, 29577, 1391, 198, 220, 220, 220, 1429, 7, 16, 1776, 198, 92, 198, 7061, 6, 198, 66, 13, 8612, 378, 62, 8189, 62, 392, 62, 5143, 26933, 15, 11, 15, 12095, 16, 11, 16, 12095, 17, 11, 17, 12095, 18, 11, 18, 12095, 19, 11, 19, 12095, 3064, 12095, 8784, 12095, 15377, 12095, 15197, 12095, 13464, 11, 3064, 11, 8784, 11, 15377, 11, 15197, 12962 ]
1.93949
314
# -*- coding: utf-8 -*- # # Electrum-NMC - lightweight Namecoin client # Copyright (C) 2018 The Namecoin developers # # License for all components not part of Electrum-DOGE: # # Permission is hereby granted, free of charge, to any person # obtaining a copy of this software and associated documentation files # (the "Software"), to deal in the Software without restriction, # including without limitation the rights to use, copy, modify, merge, # publish, distribute, sublicense, and/or sell copies of the Software, # and to permit persons to whom the Software is furnished to do so, # subject to the following conditions: # # The above copyright notice and this permission notice shall be # included in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS # BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN # ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # # Based on Electrum-DOGE - lightweight Dogecoin client # Copyright (C) 2014 The Electrum-DOGE contributors # # License for the Electrum-DOGE components: # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. import binascii from .bitcoin import hash_encode, hash_decode from .crypto import sha256d from . import blockchain, constants, transaction from .transaction import BCDataStream, Transaction, TxOutput, TYPE_SCRIPT from .util import bfh, bh2u # Maximum index of the merkle root hash in the coinbase transaction script, # where no merged mining header is present. MAX_INDEX_PC_BACKWARDS_COMPATIBILITY = 20 # Header for merge-mining data in the coinbase. COINBASE_MERGED_MINING_HEADER = bfh('fabe') + b'mm' def deserialize_auxpow_header(base_header, s, start_position=0) -> (dict, int): """Deserialises an AuxPoW instance. Returns the deserialised AuxPoW dict and the end position in the byte array as a pair.""" auxpow_header = {} # Chain ID is the top 16 bits of the 32-bit version. auxpow_header['chain_id'] = get_chain_id(base_header) # The parent coinbase transaction is first. # Deserialize it and save the trailing data. parent_coinbase_tx = Transaction(s, expect_trailing_data=True, copy_input=False, start_position=start_position) parent_coinbase_tx._allow_zero_outputs = True start_position = fast_tx_deserialize(parent_coinbase_tx) auxpow_header['parent_coinbase_tx'] = parent_coinbase_tx # Next is the parent block hash. According to the Bitcoin.it wiki, # this field is not actually consensus-critical. So we don't save it. start_position = start_position + 32 # The coinbase and chain merkle branches/indices are next. # Deserialize them and save the trailing data. auxpow_header['coinbase_merkle_branch'], auxpow_header['coinbase_merkle_index'], start_position = deserialize_merkle_branch(s, start_position=start_position) auxpow_header['chain_merkle_branch'], auxpow_header['chain_merkle_index'], start_position = deserialize_merkle_branch(s, start_position=start_position) # Finally there's the parent header. Deserialize it. parent_header_bytes = s[start_position : start_position + constants.net.HEADER_SIZE] auxpow_header['parent_header'] = blockchain.deserialize_pure_header(parent_header_bytes, None) start_position += constants.net.HEADER_SIZE # The parent block header doesn't have any block height, # so delete that field. (We used None as a dummy value above.) del auxpow_header['parent_header']['block_height'] return auxpow_header, start_position # Copied from merkle_branch_from_string in https://github.com/electrumalt/electrum-doge/blob/f74312822a14f59aa8d50186baff74cade449ccd/lib/blockchain.py#L622 # Returns list of hashes, merkle index, and position of trailing data in s # TODO: Audit this function carefully. # Reimplementation of btcutils.check_merkle_branch from Electrum-DOGE. # btcutils seems to have an unclear license and no obvious Git repo, so it # seemed wiser to re-implement. # This re-implementation is roughly based on libdohj's calculateMerkleRoot. # Copied from Electrum-DOGE # TODO: Audit this function carefully. # https://github.com/kR105/i0coin/compare/bitcoin:master...master#diff-610df86e65fce009eb271c2a4f7394ccR262 # Copied from Electrum-DOGE # TODO: Audit this function carefully. # This is calculated the same as the Transaction.txid() method, but doesn't # reserialize it. # Used by fast_tx_deserialize # This is equivalent to (tx.deserialize(), ), but doesn't parse outputs.
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 2, 198, 2, 5903, 6582, 12, 45, 9655, 532, 18700, 6530, 3630, 5456, 198, 2, 15069, 357, 34, 8, 2864, 383, 6530, 3630, 6505, 198, 2, 198, 2, 13789, 329, 477, 6805, 407, 636, 286, 5903, 6582, 12, 35, 7730, 36, 25, 198, 2, 198, 2, 2448, 3411, 318, 29376, 7520, 11, 1479, 286, 3877, 11, 284, 597, 1048, 198, 2, 16727, 257, 4866, 286, 428, 3788, 290, 3917, 10314, 3696, 198, 2, 357, 1169, 366, 25423, 12340, 284, 1730, 287, 262, 10442, 1231, 17504, 11, 198, 2, 1390, 1231, 17385, 262, 2489, 284, 779, 11, 4866, 11, 13096, 11, 20121, 11, 198, 2, 7715, 11, 14983, 11, 850, 43085, 11, 290, 14, 273, 3677, 9088, 286, 262, 10442, 11, 198, 2, 290, 284, 8749, 6506, 284, 4150, 262, 10442, 318, 30760, 284, 466, 523, 11, 198, 2, 2426, 284, 262, 1708, 3403, 25, 198, 2, 198, 2, 383, 2029, 6634, 4003, 290, 428, 7170, 4003, 2236, 307, 198, 2, 3017, 287, 477, 9088, 393, 8904, 16690, 286, 262, 10442, 13, 198, 2, 198, 2, 3336, 47466, 3180, 36592, 2389, 1961, 366, 1921, 3180, 1600, 42881, 34764, 56, 3963, 15529, 509, 12115, 11, 198, 2, 7788, 32761, 6375, 8959, 49094, 11, 47783, 2751, 21728, 5626, 40880, 5390, 3336, 34764, 11015, 3963, 198, 2, 34482, 3398, 1565, 5603, 25382, 11, 376, 46144, 7473, 317, 16652, 2149, 37232, 33079, 48933, 5357, 198, 2, 44521, 1268, 10913, 2751, 12529, 13, 3268, 8005, 49261, 50163, 3336, 37195, 20673, 6375, 27975, 38162, 9947, 367, 15173, 4877, 198, 2, 9348, 43031, 19146, 7473, 15529, 47666, 3955, 11, 29506, 25552, 6375, 25401, 43031, 25382, 11, 7655, 2767, 16879, 3268, 3537, 198, 2, 40282, 3963, 27342, 10659, 11, 309, 9863, 6375, 25401, 54, 24352, 11, 5923, 1797, 2751, 16034, 11, 16289, 3963, 6375, 3268, 198, 2, 7102, 45, 24565, 13315, 3336, 47466, 6375, 3336, 23210, 6375, 25401, 5550, 1847, 20754, 3268, 3336, 198, 2, 47466, 13, 198, 2, 198, 2, 13403, 319, 5903, 6582, 12, 35, 7730, 36, 532, 18700, 2141, 469, 3630, 5456, 198, 2, 15069, 357, 34, 8, 1946, 383, 5903, 6582, 12, 35, 7730, 36, 20420, 198, 2, 198, 2, 13789, 329, 262, 5903, 6582, 12, 35, 7730, 36, 6805, 25, 198, 2, 198, 2, 770, 1430, 318, 1479, 3788, 25, 345, 460, 17678, 4163, 340, 290, 14, 273, 13096, 198, 2, 340, 739, 262, 2846, 286, 262, 22961, 3611, 5094, 13789, 355, 3199, 416, 198, 2, 262, 3232, 10442, 5693, 11, 2035, 2196, 513, 286, 262, 13789, 11, 393, 198, 2, 357, 265, 534, 3038, 8, 597, 1568, 2196, 13, 198, 2, 198, 2, 770, 1430, 318, 9387, 287, 262, 2911, 326, 340, 481, 307, 4465, 11, 198, 2, 475, 42881, 15529, 34764, 56, 26, 1231, 772, 262, 17142, 18215, 286, 198, 2, 34482, 3398, 1565, 5603, 25382, 393, 376, 46144, 7473, 317, 16652, 2149, 37232, 33079, 48933, 13, 4091, 262, 198, 2, 22961, 3611, 5094, 13789, 329, 517, 3307, 13, 198, 2, 198, 2, 921, 815, 423, 2722, 257, 4866, 286, 262, 22961, 3611, 5094, 13789, 198, 2, 1863, 351, 428, 1430, 13, 1002, 407, 11, 766, 1279, 4023, 1378, 2503, 13, 41791, 13, 2398, 14, 677, 4541, 15913, 13, 198, 198, 11748, 9874, 292, 979, 72, 198, 198, 6738, 764, 35395, 1330, 12234, 62, 268, 8189, 11, 12234, 62, 12501, 1098, 198, 6738, 764, 29609, 78, 1330, 427, 64, 11645, 67, 198, 6738, 764, 1330, 11779, 11, 38491, 11, 8611, 198, 6738, 764, 7645, 2673, 1330, 11843, 6601, 12124, 11, 45389, 11, 309, 87, 26410, 11, 41876, 62, 6173, 46023, 198, 6738, 764, 22602, 1330, 275, 69, 71, 11, 275, 71, 17, 84, 198, 198, 2, 22246, 6376, 286, 262, 4017, 74, 293, 6808, 12234, 287, 262, 10752, 8692, 8611, 4226, 11, 198, 2, 810, 645, 23791, 9691, 13639, 318, 1944, 13, 198, 22921, 62, 12115, 6369, 62, 5662, 62, 31098, 16279, 5258, 62, 9858, 47, 1404, 40, 25382, 796, 1160, 198, 198, 2, 48900, 329, 20121, 12, 45374, 1366, 287, 262, 10752, 8692, 13, 198, 8220, 1268, 33, 11159, 62, 29296, 38, 1961, 62, 23678, 2751, 62, 37682, 1137, 796, 275, 69, 71, 10786, 69, 11231, 11537, 1343, 275, 1101, 76, 6, 198, 198, 4299, 748, 48499, 1096, 62, 14644, 79, 322, 62, 25677, 7, 8692, 62, 25677, 11, 264, 11, 923, 62, 9150, 28, 15, 8, 4613, 357, 11600, 11, 493, 2599, 198, 220, 220, 220, 37227, 5960, 48499, 2696, 281, 47105, 18833, 54, 4554, 13, 628, 220, 220, 220, 16409, 262, 748, 48499, 1417, 47105, 18833, 54, 8633, 290, 262, 886, 2292, 287, 262, 18022, 198, 220, 220, 220, 7177, 355, 257, 5166, 526, 15931, 198, 220, 220, 220, 27506, 79, 322, 62, 25677, 796, 23884, 628, 220, 220, 220, 1303, 21853, 4522, 318, 262, 1353, 1467, 10340, 286, 262, 3933, 12, 2545, 2196, 13, 198, 220, 220, 220, 27506, 79, 322, 62, 25677, 17816, 7983, 62, 312, 20520, 796, 651, 62, 7983, 62, 312, 7, 8692, 62, 25677, 8, 628, 220, 220, 220, 1303, 383, 2560, 10752, 8692, 8611, 318, 717, 13, 198, 220, 220, 220, 1303, 2935, 48499, 1096, 340, 290, 3613, 262, 25462, 1366, 13, 198, 220, 220, 220, 2560, 62, 3630, 8692, 62, 17602, 796, 45389, 7, 82, 11, 1607, 62, 9535, 4386, 62, 7890, 28, 17821, 11, 4866, 62, 15414, 28, 25101, 11, 923, 62, 9150, 28, 9688, 62, 9150, 8, 198, 220, 220, 220, 2560, 62, 3630, 8692, 62, 17602, 13557, 12154, 62, 22570, 62, 22915, 82, 796, 6407, 198, 220, 220, 220, 923, 62, 9150, 796, 3049, 62, 17602, 62, 8906, 48499, 1096, 7, 8000, 62, 3630, 8692, 62, 17602, 8, 198, 220, 220, 220, 27506, 79, 322, 62, 25677, 17816, 8000, 62, 3630, 8692, 62, 17602, 20520, 796, 2560, 62, 3630, 8692, 62, 17602, 628, 220, 220, 220, 1303, 7406, 318, 262, 2560, 2512, 12234, 13, 220, 4784, 284, 262, 6185, 13, 270, 22719, 11, 198, 220, 220, 220, 1303, 428, 2214, 318, 407, 1682, 11529, 12, 34666, 13, 220, 1406, 356, 836, 470, 3613, 340, 13, 198, 220, 220, 220, 923, 62, 9150, 796, 923, 62, 9150, 1343, 3933, 628, 220, 220, 220, 1303, 383, 10752, 8692, 290, 6333, 4017, 74, 293, 13737, 14, 521, 1063, 389, 1306, 13, 198, 220, 220, 220, 1303, 2935, 48499, 1096, 606, 290, 3613, 262, 25462, 1366, 13, 198, 220, 220, 220, 27506, 79, 322, 62, 25677, 17816, 3630, 8692, 62, 647, 74, 293, 62, 1671, 3702, 6, 4357, 27506, 79, 322, 62, 25677, 17816, 3630, 8692, 62, 647, 74, 293, 62, 9630, 6, 4357, 923, 62, 9150, 796, 748, 48499, 1096, 62, 647, 74, 293, 62, 1671, 3702, 7, 82, 11, 923, 62, 9150, 28, 9688, 62, 9150, 8, 198, 220, 220, 220, 27506, 79, 322, 62, 25677, 17816, 7983, 62, 647, 74, 293, 62, 1671, 3702, 6, 4357, 27506, 79, 322, 62, 25677, 17816, 7983, 62, 647, 74, 293, 62, 9630, 6, 4357, 923, 62, 9150, 796, 748, 48499, 1096, 62, 647, 74, 293, 62, 1671, 3702, 7, 82, 11, 923, 62, 9150, 28, 9688, 62, 9150, 8, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 9461, 612, 338, 262, 2560, 13639, 13, 220, 2935, 48499, 1096, 340, 13, 198, 220, 220, 220, 2560, 62, 25677, 62, 33661, 796, 264, 58, 9688, 62, 9150, 1058, 923, 62, 9150, 1343, 38491, 13, 3262, 13, 37682, 1137, 62, 33489, 60, 198, 220, 220, 220, 27506, 79, 322, 62, 25677, 17816, 8000, 62, 25677, 20520, 796, 11779, 13, 8906, 48499, 1096, 62, 37424, 62, 25677, 7, 8000, 62, 25677, 62, 33661, 11, 6045, 8, 198, 220, 220, 220, 923, 62, 9150, 15853, 38491, 13, 3262, 13, 37682, 1137, 62, 33489, 198, 220, 220, 220, 1303, 383, 2560, 2512, 13639, 1595, 470, 423, 597, 2512, 6001, 11, 198, 220, 220, 220, 1303, 523, 12233, 326, 2214, 13, 220, 357, 1135, 973, 6045, 355, 257, 31548, 1988, 2029, 2014, 198, 220, 220, 220, 1619, 27506, 79, 322, 62, 25677, 17816, 8000, 62, 25677, 6, 7131, 6, 9967, 62, 17015, 20520, 628, 220, 220, 220, 1441, 27506, 79, 322, 62, 25677, 11, 923, 62, 9150, 198, 198, 2, 6955, 798, 422, 4017, 74, 293, 62, 1671, 3702, 62, 6738, 62, 8841, 287, 3740, 1378, 12567, 13, 785, 14, 9509, 6582, 2501, 14, 9509, 6582, 12, 4598, 469, 14, 2436, 672, 14, 69, 22, 3559, 12762, 1828, 64, 1415, 69, 3270, 7252, 23, 67, 33548, 4521, 65, 2001, 4524, 46395, 31911, 535, 67, 14, 8019, 14, 9967, 7983, 13, 9078, 2, 43, 21, 1828, 198, 2, 16409, 1351, 286, 46621, 11, 4017, 74, 293, 6376, 11, 290, 2292, 286, 25462, 1366, 287, 264, 198, 2, 16926, 46, 25, 46450, 428, 2163, 7773, 13, 198, 198, 2, 797, 320, 32851, 286, 275, 83, 8968, 4487, 13, 9122, 62, 647, 74, 293, 62, 1671, 3702, 422, 5903, 6582, 12, 35, 7730, 36, 13, 198, 2, 275, 83, 8968, 4487, 2331, 284, 423, 281, 10061, 5964, 290, 645, 3489, 15151, 29924, 11, 523, 340, 198, 2, 3947, 47897, 284, 302, 12, 320, 26908, 13, 198, 2, 770, 302, 12, 320, 32851, 318, 7323, 1912, 319, 9195, 67, 1219, 73, 338, 15284, 44, 9587, 293, 30016, 13, 198, 198, 2, 6955, 798, 422, 5903, 6582, 12, 35, 7730, 36, 198, 2, 16926, 46, 25, 46450, 428, 2163, 7773, 13, 198, 2, 3740, 1378, 12567, 13, 785, 14, 74, 49, 13348, 14, 72, 15, 3630, 14, 5589, 533, 14, 35395, 25, 9866, 986, 9866, 2, 26069, 12, 39132, 7568, 4521, 68, 2996, 69, 344, 28694, 1765, 28977, 66, 17, 64, 19, 69, 22, 34626, 535, 49, 29119, 198, 198, 2, 6955, 798, 422, 5903, 6582, 12, 35, 7730, 36, 198, 2, 16926, 46, 25, 46450, 428, 2163, 7773, 13, 198, 198, 2, 770, 318, 10488, 262, 976, 355, 262, 45389, 13, 17602, 312, 3419, 2446, 11, 475, 1595, 470, 198, 2, 581, 48499, 1096, 340, 13, 198, 198, 2, 16718, 416, 3049, 62, 17602, 62, 8906, 48499, 1096, 198, 198, 2, 770, 318, 7548, 284, 357, 17602, 13, 8906, 48499, 1096, 22784, 10612, 475, 1595, 470, 21136, 23862, 13 ]
3.208209
1,681
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import sys def extract(file=None, path=None): """ Extract all of the YouTube links within a Headset user-made list. :param file: headset json export file path :param path: json path to extract, you can use [JSON Columns](http://json-columns.com) to get it :return: `list` containing all of the links in the list """ if not file or not path: print('error: file or json path not provided...') return None # todo: implement pass if __name__ == '__main__': extract()
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 198, 11748, 25064, 628, 198, 4299, 7925, 7, 7753, 28, 14202, 11, 3108, 28, 14202, 2599, 198, 220, 37227, 198, 220, 29677, 477, 286, 262, 7444, 6117, 1626, 257, 7123, 2617, 2836, 12, 9727, 1351, 13, 628, 220, 1058, 17143, 2393, 25, 23492, 33918, 10784, 2393, 3108, 198, 220, 1058, 17143, 3108, 25, 33918, 3108, 284, 7925, 11, 345, 460, 779, 685, 40386, 29201, 82, 16151, 4023, 1378, 17752, 12, 28665, 82, 13, 785, 8, 284, 651, 340, 198, 220, 1058, 7783, 25, 4600, 4868, 63, 7268, 477, 286, 262, 6117, 287, 262, 1351, 198, 220, 37227, 198, 220, 611, 407, 2393, 393, 407, 3108, 25, 198, 220, 220, 220, 3601, 10786, 18224, 25, 2393, 393, 33918, 3108, 407, 2810, 986, 11537, 198, 220, 220, 220, 1441, 6045, 628, 220, 1303, 284, 4598, 25, 3494, 198, 220, 1208, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 7925, 3419, 198 ]
3.044693
179
from django.shortcuts import render from django.http import HttpResponse from django.contrib.auth.forms import UserCreationForm from django.contrib.auth import login, authenticate from django.contrib.auth.models import User from django.http import JsonResponse #################### # IMPORT OTHER LIBS #################### import os import numpy as np import seaborn as sns import cv2 from heatmappy import Heatmapper from heatmappy.video import VideoHeatmapper from PIL import Image import moviepy.editor as mp import urllib import glob import pandas as pd from pathlib import Path import shutil import vimeo_dl as vimeo import plotly.express as px import plotly import plotly.graph_objects as go from .models import Video, VideoStat EMOTIONS = [ 'angry', 'disgusted', 'fearful', 'happy', 'neutral', 'sad', 'surprised' ] # # Create your views here. # def index(request): # return render(request, 'index.html') heatmap_points = [] def index(request): ''' Renders login + main page ''' global user if request.method == 'POST': username = request.POST['username'] password = request.POST['password'] user = authenticate(username=username, password=password) if user is not None: # if user is authentificated data = Video.objects.all() response_data = { "video_data": data, "name" : username, "is_staff": user.is_staff, } return render(request, 'main.html', response_data) return render(request, 'index.html') else: form = UserCreationForm() return render(request, 'index.html', {'form': form}) def video(request, video_id): ''' Renders video page ''' global video video = list(Video.objects.all())[video_id-1] VideoStat.objects.filter(video_link= video.video_link, user_id= user.username).delete() response_data = { "name" : user.username, "video_name": video.video_name, "video_link": video.video_link, "is_staff": user.is_staff } return render(request, 'video.html', response_data) def recievePoints(request): ''' Recieves gaze points via ajax request ''' x, y = request.GET['x'], request.GET['y'] time = request.GET['time'] width, height = request.GET['width'], request.GET['height'] username = request.GET['username'] try: expressions = urllib.parse.unquote(request.GET['expressions']).split(';') expressions = list(map(float, expressions)) except: expressions = [] try: emotion = EMOTIONS[np.argmax(expressions)] except: emotion = 'None' try: x, y, time = int(float(x)), int(float(y)), int(float(time)) except: x, y = 0, 0 try: width, height = int(width), int(height) except: width, height = 0, 0 VideoStat.objects.create(video_link= video.video_link, user_id= user.username, timestamp = time, emotions=emotion, coordinates=f'{x}:{y}', screen_width=width, screen_height=height) return JsonResponse({'ok': True}) def exportStats(request): ''' Recieves export request via ajax ''' # get video data entries = VideoStat.objects.filter(video_link=video.video_link) DOWNLOAD_PATH = Path('viewer/static/downloads') / video.video_link try: os.mkdir(DOWNLOAD_PATH) except: pass video_data = vimeo.new(f'https://vimeo.com/{video.video_link}') video_data.streams[0].download(quiet=False) video_width, video_height = str(video_data.streams[0]).split('@')[-1].split('x') video_width, video_height = int(video_width), int(video_height) # get video db entries heatmap_points = [] emotion_points = [] for e in entries: x,y = list(map(int, e.coordinates.split(':'))) time = int(e.timestamp) x *= video_width / int(e.screen_width) y *= video_height / int(e.screen_height) heatmap_points.append([x,y, time]) emotion_points.append([e.user_id, time//5000, e.emotions]) emotions = pd.DataFrame(emotion_points) emotions.columns = ['user_name', 'timestamp', 'emotion'] emotion_counts = [] for (ts, item) in emotions.groupby('timestamp'): COUNTER = { 'timestamp': item['timestamp'].iloc[0] * 5, 'angry': 0, 'disgusted': 0, 'fearful': 0, 'happy': 0, 'neutral': 0, 'sad': 0, 'surprised': 0, 'None': 0 } for index, count in item['emotion'].value_counts().items(): COUNTER[index] = count emotion_counts.append(COUNTER.values()) emotion_counts = pd.DataFrame(emotion_counts) emotion_counts.columns = COUNTER.keys() emotion_counts.to_csv(DOWNLOAD_PATH / 'out.csv', index = None) heatmapper = Heatmapper(point_strength=0.6, opacity=0.8) video_heatmapper = VideoHeatmapper(heatmapper) heatmap_video = video_heatmapper.heatmap_on_video_path( video_path=f'{video_data.title}.mp4', points=heatmap_points ) heatmap_video.write_videofile(str(DOWNLOAD_PATH / 'out.mp4'), bitrate="500k", fps=24) mp4_files = glob.glob(str('*.mp4')) for f in mp4_files: if f != 'out.mp4': os.remove(f) shutil.make_archive(str(DOWNLOAD_PATH), 'zip', str(DOWNLOAD_PATH)) shutil.rmtree(str(DOWNLOAD_PATH)) # time based graph fig = px.line(emotion_counts, x="timestamp", y=emotion_counts.columns[1:]) fig = plotly.graph_objs.Figure(fig.data, fig.layout) fig_json_1 = fig.to_json() # pie chart labels, counts = list(emotions['emotion'].value_counts().index), list(emotions['emotion'].value_counts().values) fig = go.Figure(data=[go.Pie(labels=labels, values=counts)]) fig_json_2 = fig.to_json() return JsonResponse({'ok': True, 'plotly_graph_1': fig_json_1, 'plotly_graph_2': fig_json_2})
[ 6738, 42625, 14208, 13, 19509, 23779, 1330, 8543, 198, 6738, 42625, 14208, 13, 4023, 1330, 367, 29281, 31077, 198, 6738, 42625, 14208, 13, 3642, 822, 13, 18439, 13, 23914, 1330, 11787, 12443, 341, 8479, 198, 6738, 42625, 14208, 13, 3642, 822, 13, 18439, 1330, 17594, 11, 8323, 5344, 198, 6738, 42625, 14208, 13, 3642, 822, 13, 18439, 13, 27530, 1330, 11787, 198, 6738, 42625, 14208, 13, 4023, 1330, 449, 1559, 31077, 628, 198, 14468, 4242, 198, 2, 30023, 9863, 25401, 24653, 4462, 198, 14468, 4242, 198, 11748, 28686, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 384, 397, 1211, 355, 3013, 82, 198, 11748, 269, 85, 17, 198, 6738, 4894, 76, 7774, 1330, 12308, 76, 11463, 198, 6738, 4894, 76, 7774, 13, 15588, 1330, 7623, 39596, 76, 11463, 198, 6738, 350, 4146, 1330, 7412, 198, 11748, 3807, 9078, 13, 35352, 355, 29034, 198, 11748, 2956, 297, 571, 198, 11748, 15095, 198, 11748, 19798, 292, 355, 279, 67, 198, 6738, 3108, 8019, 1330, 10644, 198, 11748, 4423, 346, 198, 11748, 410, 47776, 62, 25404, 355, 410, 47776, 198, 11748, 7110, 306, 13, 42712, 355, 279, 87, 198, 11748, 7110, 306, 198, 11748, 7110, 306, 13, 34960, 62, 48205, 355, 467, 198, 198, 6738, 764, 27530, 1330, 7623, 11, 7623, 17126, 198, 198, 3620, 2394, 11053, 796, 685, 198, 220, 220, 220, 705, 648, 563, 3256, 220, 198, 220, 220, 220, 705, 6381, 70, 8459, 3256, 220, 198, 220, 220, 220, 705, 69, 451, 913, 3256, 220, 198, 220, 220, 220, 705, 34191, 3256, 220, 198, 220, 220, 220, 705, 29797, 3256, 220, 198, 220, 220, 220, 705, 82, 324, 3256, 220, 198, 220, 220, 220, 705, 11793, 1050, 1417, 6, 198, 60, 198, 198, 2, 1303, 13610, 534, 5009, 994, 13, 198, 2, 825, 6376, 7, 25927, 2599, 198, 2, 220, 220, 220, 220, 1441, 8543, 7, 25927, 11, 705, 9630, 13, 6494, 11537, 198, 198, 25080, 8899, 62, 13033, 796, 17635, 198, 4299, 6376, 7, 25927, 2599, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 371, 7338, 17594, 1343, 1388, 2443, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 3298, 2836, 198, 220, 220, 220, 611, 2581, 13, 24396, 6624, 705, 32782, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 20579, 796, 2581, 13, 32782, 17816, 29460, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 9206, 796, 2581, 13, 32782, 17816, 28712, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 2836, 796, 8323, 5344, 7, 29460, 28, 29460, 11, 9206, 28, 28712, 8, 628, 220, 220, 220, 220, 220, 220, 220, 611, 2836, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 611, 2836, 318, 8323, 811, 515, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 796, 7623, 13, 48205, 13, 439, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2882, 62, 7890, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 15588, 62, 7890, 1298, 1366, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 3672, 1, 1058, 20579, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 271, 62, 28120, 1298, 2836, 13, 271, 62, 28120, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 8543, 7, 25927, 11, 705, 12417, 13, 6494, 3256, 2882, 62, 7890, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 8543, 7, 25927, 11, 705, 9630, 13, 6494, 11537, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1296, 796, 11787, 12443, 341, 8479, 3419, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1441, 8543, 7, 25927, 11, 705, 9630, 13, 6494, 3256, 1391, 6, 687, 10354, 1296, 30072, 628, 198, 4299, 2008, 7, 25927, 11, 2008, 62, 312, 2599, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 371, 7338, 2008, 2443, 198, 220, 220, 220, 705, 7061, 628, 220, 220, 220, 3298, 2008, 198, 220, 220, 220, 2008, 796, 1351, 7, 10798, 13, 48205, 13, 439, 28955, 58, 15588, 62, 312, 12, 16, 60, 628, 220, 220, 220, 7623, 17126, 13, 48205, 13, 24455, 7, 15588, 62, 8726, 28, 2008, 13, 15588, 62, 8726, 11, 2836, 62, 312, 28, 2836, 13, 29460, 737, 33678, 3419, 628, 220, 220, 220, 2882, 62, 7890, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 3672, 1, 1058, 2836, 13, 29460, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 15588, 62, 3672, 1298, 2008, 13, 15588, 62, 3672, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 15588, 62, 8726, 1298, 2008, 13, 15588, 62, 8726, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 271, 62, 28120, 1298, 2836, 13, 271, 62, 28120, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 628, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 1441, 8543, 7, 25927, 11, 705, 15588, 13, 6494, 3256, 2882, 62, 7890, 8, 628, 198, 4299, 664, 12311, 40710, 7, 25927, 2599, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 3311, 17974, 17841, 2173, 2884, 257, 73, 897, 2581, 198, 220, 220, 220, 705, 7061, 628, 220, 220, 220, 2124, 11, 331, 796, 2581, 13, 18851, 17816, 87, 6, 4357, 2581, 13, 18851, 17816, 88, 20520, 198, 220, 220, 220, 640, 796, 2581, 13, 18851, 17816, 2435, 20520, 198, 220, 220, 220, 9647, 11, 6001, 796, 2581, 13, 18851, 17816, 10394, 6, 4357, 2581, 13, 18851, 17816, 17015, 20520, 198, 220, 220, 220, 20579, 796, 2581, 13, 18851, 17816, 29460, 20520, 628, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 14700, 796, 2956, 297, 571, 13, 29572, 13, 403, 22708, 7, 25927, 13, 18851, 17816, 42712, 507, 20520, 737, 35312, 10786, 26, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 14700, 796, 1351, 7, 8899, 7, 22468, 11, 14700, 4008, 198, 220, 220, 220, 2845, 25, 198, 220, 220, 220, 220, 220, 220, 220, 14700, 796, 17635, 628, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 9942, 796, 17228, 2394, 11053, 58, 37659, 13, 853, 9806, 7, 42712, 507, 15437, 198, 220, 220, 220, 2845, 25, 198, 220, 220, 220, 220, 220, 220, 220, 9942, 796, 705, 14202, 6, 198, 220, 220, 220, 220, 628, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 11, 331, 11, 640, 796, 493, 7, 22468, 7, 87, 36911, 493, 7, 22468, 7, 88, 36911, 493, 7, 22468, 7, 2435, 4008, 198, 220, 220, 220, 2845, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 11, 331, 796, 657, 11, 657, 628, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 9647, 11, 6001, 796, 493, 7, 10394, 828, 493, 7, 17015, 8, 198, 220, 220, 220, 2845, 25, 198, 220, 220, 220, 220, 220, 220, 220, 9647, 11, 6001, 796, 657, 11, 657, 628, 198, 220, 220, 220, 7623, 17126, 13, 48205, 13, 17953, 7, 15588, 62, 8726, 28, 2008, 13, 15588, 62, 8726, 11, 2836, 62, 312, 28, 2836, 13, 29460, 11, 41033, 796, 640, 11, 10825, 28, 368, 9650, 11, 22715, 28, 69, 6, 90, 87, 92, 29164, 88, 92, 3256, 3159, 62, 10394, 28, 10394, 11, 3159, 62, 17015, 28, 17015, 8, 628, 198, 220, 220, 220, 1441, 449, 1559, 31077, 15090, 6, 482, 10354, 6407, 30072, 198, 198, 4299, 10784, 29668, 7, 25927, 2599, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 3311, 17974, 10784, 2581, 2884, 257, 73, 897, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 1303, 651, 2008, 1366, 198, 220, 220, 220, 12784, 796, 7623, 17126, 13, 48205, 13, 24455, 7, 15588, 62, 8726, 28, 15588, 13, 15588, 62, 8726, 8, 198, 220, 220, 220, 30320, 35613, 62, 34219, 796, 10644, 10786, 1177, 263, 14, 12708, 14, 15002, 82, 11537, 1220, 2008, 13, 15588, 62, 8726, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 28015, 15908, 7, 41925, 35613, 62, 34219, 8, 198, 220, 220, 220, 2845, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1208, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 2008, 62, 7890, 796, 410, 47776, 13, 3605, 7, 69, 6, 5450, 1378, 85, 47776, 13, 785, 14, 90, 15588, 13, 15588, 62, 8726, 92, 11537, 198, 220, 220, 220, 2008, 62, 7890, 13, 5532, 82, 58, 15, 4083, 15002, 7, 39624, 28, 25101, 8, 198, 220, 220, 220, 2008, 62, 10394, 11, 2008, 62, 17015, 796, 965, 7, 15588, 62, 7890, 13, 5532, 82, 58, 15, 35944, 35312, 10786, 31, 11537, 58, 12, 16, 4083, 35312, 10786, 87, 11537, 198, 220, 220, 220, 2008, 62, 10394, 11, 2008, 62, 17015, 796, 493, 7, 15588, 62, 10394, 828, 493, 7, 15588, 62, 17015, 8, 628, 220, 220, 220, 1303, 651, 2008, 20613, 12784, 198, 220, 220, 220, 4894, 8899, 62, 13033, 796, 17635, 198, 220, 220, 220, 9942, 62, 13033, 796, 17635, 198, 220, 220, 220, 329, 304, 287, 12784, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 11, 88, 796, 1351, 7, 8899, 7, 600, 11, 304, 13, 37652, 17540, 13, 35312, 7, 10354, 6, 22305, 198, 220, 220, 220, 220, 220, 220, 220, 640, 796, 493, 7, 68, 13, 16514, 27823, 8, 628, 220, 220, 220, 220, 220, 220, 220, 2124, 1635, 28, 2008, 62, 10394, 1220, 493, 7, 68, 13, 9612, 62, 10394, 8, 198, 220, 220, 220, 220, 220, 220, 220, 331, 1635, 28, 2008, 62, 17015, 1220, 493, 7, 68, 13, 9612, 62, 17015, 8, 198, 220, 220, 220, 220, 220, 220, 220, 4894, 8899, 62, 13033, 13, 33295, 26933, 87, 11, 88, 11, 640, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 9942, 62, 13033, 13, 33295, 26933, 68, 13, 7220, 62, 312, 11, 640, 1003, 27641, 11, 304, 13, 368, 36083, 12962, 198, 220, 220, 220, 220, 198, 220, 220, 220, 10825, 796, 279, 67, 13, 6601, 19778, 7, 368, 9650, 62, 13033, 8, 198, 220, 220, 220, 10825, 13, 28665, 82, 796, 37250, 7220, 62, 3672, 3256, 705, 16514, 27823, 3256, 705, 368, 9650, 20520, 628, 220, 220, 220, 220, 198, 220, 220, 220, 9942, 62, 9127, 82, 796, 17635, 198, 220, 220, 220, 329, 357, 912, 11, 2378, 8, 287, 10825, 13, 8094, 1525, 10786, 16514, 27823, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 31404, 5781, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 16514, 27823, 10354, 2378, 17816, 16514, 27823, 6, 4083, 346, 420, 58, 15, 60, 1635, 642, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 648, 563, 10354, 657, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 6381, 70, 8459, 10354, 657, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 69, 451, 913, 10354, 657, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 34191, 10354, 657, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 29797, 10354, 657, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 82, 324, 10354, 657, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 11793, 1050, 1417, 10354, 657, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 14202, 10354, 657, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 329, 6376, 11, 954, 287, 2378, 17816, 368, 9650, 6, 4083, 8367, 62, 9127, 82, 22446, 23814, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 31404, 5781, 58, 9630, 60, 796, 954, 198, 220, 220, 220, 220, 220, 220, 220, 9942, 62, 9127, 82, 13, 33295, 7, 34, 19385, 5781, 13, 27160, 28955, 198, 220, 220, 220, 9942, 62, 9127, 82, 796, 279, 67, 13, 6601, 19778, 7, 368, 9650, 62, 9127, 82, 8, 198, 220, 220, 220, 9942, 62, 9127, 82, 13, 28665, 82, 796, 31404, 5781, 13, 13083, 3419, 198, 220, 220, 220, 9942, 62, 9127, 82, 13, 1462, 62, 40664, 7, 41925, 35613, 62, 34219, 1220, 705, 448, 13, 40664, 3256, 6376, 796, 6045, 8, 628, 220, 220, 220, 220, 198, 220, 220, 220, 4894, 76, 11463, 796, 12308, 76, 11463, 7, 4122, 62, 41402, 28, 15, 13, 21, 11, 45912, 28, 15, 13, 23, 8, 198, 220, 220, 220, 2008, 62, 25080, 76, 11463, 796, 7623, 39596, 76, 11463, 7, 25080, 76, 11463, 8, 198, 220, 220, 220, 4894, 8899, 62, 15588, 796, 2008, 62, 25080, 76, 11463, 13, 25080, 8899, 62, 261, 62, 15588, 62, 6978, 7, 198, 220, 220, 220, 220, 220, 220, 220, 2008, 62, 6978, 28, 69, 6, 90, 15588, 62, 7890, 13, 7839, 27422, 3149, 19, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 2173, 28, 25080, 8899, 62, 13033, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 4894, 8899, 62, 15588, 13, 13564, 62, 15588, 7753, 7, 2536, 7, 41925, 35613, 62, 34219, 1220, 705, 448, 13, 3149, 19, 33809, 1643, 4873, 2625, 4059, 74, 1600, 32977, 28, 1731, 8, 628, 220, 220, 220, 29034, 19, 62, 16624, 796, 15095, 13, 4743, 672, 7, 2536, 10786, 24620, 3149, 19, 6, 4008, 198, 220, 220, 220, 329, 277, 287, 29034, 19, 62, 16624, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 277, 14512, 705, 448, 13, 3149, 19, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 28956, 7, 69, 8, 628, 220, 220, 220, 4423, 346, 13, 15883, 62, 17474, 7, 2536, 7, 41925, 35613, 62, 34219, 828, 705, 13344, 3256, 965, 7, 41925, 35613, 62, 34219, 4008, 198, 220, 220, 220, 4423, 346, 13, 81, 16762, 631, 7, 2536, 7, 41925, 35613, 62, 34219, 4008, 628, 198, 220, 220, 220, 1303, 640, 1912, 4823, 628, 220, 220, 220, 2336, 796, 279, 87, 13, 1370, 7, 368, 9650, 62, 9127, 82, 11, 2124, 2625, 16514, 27823, 1600, 331, 28, 368, 9650, 62, 9127, 82, 13, 28665, 82, 58, 16, 25, 12962, 198, 220, 220, 220, 2336, 796, 7110, 306, 13, 34960, 62, 672, 8457, 13, 11337, 7, 5647, 13, 7890, 11, 2336, 13, 39786, 8, 198, 220, 220, 220, 2336, 62, 17752, 62, 16, 796, 2336, 13, 1462, 62, 17752, 3419, 628, 220, 220, 220, 1303, 2508, 8262, 198, 220, 220, 220, 14722, 11, 9853, 796, 1351, 7, 368, 36083, 17816, 368, 9650, 6, 4083, 8367, 62, 9127, 82, 22446, 9630, 828, 1351, 7, 368, 36083, 17816, 368, 9650, 6, 4083, 8367, 62, 9127, 82, 22446, 27160, 8, 198, 220, 220, 220, 2336, 796, 467, 13, 11337, 7, 7890, 41888, 2188, 13, 48223, 7, 23912, 1424, 28, 23912, 1424, 11, 3815, 28, 9127, 82, 8, 12962, 198, 220, 220, 220, 2336, 62, 17752, 62, 17, 796, 2336, 13, 1462, 62, 17752, 3419, 628, 628, 198, 220, 220, 220, 1441, 449, 1559, 31077, 15090, 6, 482, 10354, 6407, 11, 705, 29487, 306, 62, 34960, 62, 16, 10354, 2336, 62, 17752, 62, 16, 11, 705, 29487, 306, 62, 34960, 62, 17, 10354, 2336, 62, 17752, 62, 17, 30072, 220, 220, 220, 198 ]
2.31539
2,638
import re from importlib import import_module import inspect import sublime_plugin import sublime SCOPE_RE = re.compile(r'\bsource\.python\b') LIB_MODULE_RE = re.compile(r'\bsupport\.module\.python\b') def grab_module(view, cursor): ''' Grabs the entire module path under the cursor ''' word_sel = view.word(cursor) pos = None # Are we on a dot right now? if view.substr(cursor.begin() - 1) == '.': pos = cursor.begin() - 1 # Are we on a word? elif view.substr(word_sel.begin() - 1) == '.': pos = word_sel.begin() - 1 # Not a module else: return False path_parts = [] while view.substr(pos) == '.': # Expand prefix to a word word_sel = view.word(pos - 1) word = view.substr(word_sel) path_parts.append(word) pos = word_sel.begin() - 1 # Format the module path path = '.'.join(reversed(path_parts)) return path
[ 11748, 302, 198, 6738, 1330, 8019, 1330, 1330, 62, 21412, 198, 11748, 10104, 198, 198, 11748, 41674, 62, 33803, 198, 11748, 41674, 628, 198, 6173, 32135, 62, 2200, 796, 302, 13, 5589, 576, 7, 81, 6, 59, 1443, 1668, 17405, 29412, 59, 65, 11537, 198, 40347, 62, 33365, 24212, 62, 2200, 796, 302, 13, 5589, 576, 7, 81, 6, 59, 1443, 84, 4926, 17405, 21412, 17405, 29412, 59, 65, 11537, 628, 198, 198, 4299, 5552, 62, 21412, 7, 1177, 11, 23493, 2599, 198, 220, 220, 220, 705, 7061, 1902, 8937, 262, 2104, 8265, 3108, 739, 262, 23493, 705, 7061, 198, 220, 220, 220, 1573, 62, 741, 796, 1570, 13, 4775, 7, 66, 21471, 8, 628, 220, 220, 220, 1426, 796, 6045, 628, 220, 220, 220, 1303, 4231, 356, 319, 257, 16605, 826, 783, 30, 198, 220, 220, 220, 611, 1570, 13, 7266, 2536, 7, 66, 21471, 13, 27471, 3419, 532, 352, 8, 6624, 705, 2637, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1426, 796, 23493, 13, 27471, 3419, 532, 352, 628, 220, 220, 220, 1303, 4231, 356, 319, 257, 1573, 30, 198, 220, 220, 220, 1288, 361, 1570, 13, 7266, 2536, 7, 4775, 62, 741, 13, 27471, 3419, 532, 352, 8, 6624, 705, 2637, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1426, 796, 1573, 62, 741, 13, 27471, 3419, 532, 352, 628, 220, 220, 220, 1303, 1892, 257, 8265, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 628, 220, 220, 220, 3108, 62, 42632, 796, 17635, 198, 220, 220, 220, 981, 1570, 13, 7266, 2536, 7, 1930, 8, 6624, 705, 2637, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 49368, 21231, 284, 257, 1573, 198, 220, 220, 220, 220, 220, 220, 220, 1573, 62, 741, 796, 1570, 13, 4775, 7, 1930, 532, 352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1573, 796, 1570, 13, 7266, 2536, 7, 4775, 62, 741, 8, 628, 220, 220, 220, 220, 220, 220, 220, 3108, 62, 42632, 13, 33295, 7, 4775, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1426, 796, 1573, 62, 741, 13, 27471, 3419, 532, 352, 628, 220, 220, 220, 1303, 18980, 262, 8265, 3108, 198, 220, 220, 220, 3108, 796, 705, 2637, 13, 22179, 7, 260, 690, 276, 7, 6978, 62, 42632, 4008, 628, 220, 220, 220, 1441, 3108, 628, 198 ]
2.382872
397
""" Calculates port ranks and distributes ports. The rank of a port is a floating point number that represents its position inside the containing layer. This depends on the node order of that layer and on the port constraints of the nodes. Port ranks are used by {@link ICrossingMinimizationHeuristics for calculating barycenter or median values for nodes. Furthermore, they are used in this class for distributing the ports of nodes where the order of ports is not fixed, which has to be done as the last step of each crossing minimization processor. There are different ways to determine port ranks, therefore that is done in concrete subclasses. """ from collections import defaultdict from math import inf from typing import List from layeredGraphLayouter.containers.constants import PortType, PortSide from layeredGraphLayouter.containers.lNode import LNode from layeredGraphLayouter.containers.lPort import LPort class AbstractBarycenterPortDistributor(): """ Constructs a port distributor for the given array of port ranks. All ports are required to be assigned ids in the range of the given array. :ivar portRanks: port ranks dict {port: rank} in which the results of ranks calculation are stored. """ # ######################################/ # Port Rank Assignment def calculatePortRanks_many(self, layer: List[LNode], portType: PortType): """ Determine ranks for all ports of specific type in the given layer. The ranks are written to the {@link #getPortRanks() array. :param layer: a layer as node array :param portType: the port type to consider """ #assert isinstance(layer, LNodeLayer), (layer, layer.__class__) calculatePortRanks = self.calculatePortRanks consumedRank = 0 for node in layer: consumedRank += calculatePortRanks(node, consumedRank, portType) def calculatePortRanks(self, node: LNode, rankSum: float, type_: PortType): """ Assign port ranks for the input or output ports of the given node. If the node's port constraints imply a fixed order, the ports are assumed to be pre-ordered in the usual way, i.e. in clockwise order north - east - south - west. The ranks are written to the {@link #getPortRanks() array. :param node: a node :param rankSum: the sum of ranks of preceding nodes in the same layer :param type: the port type to consider :return the rank consumed by the given node the following node's ranks start at {@code rankSum + consumedRank :see: {@link org.eclipse.alg.layered.intermediate.PortListSorter """ raise NotImplementedError("Implement on child class") # ######################################/ # Port Distribution def distributePorts(self, node, ports): """ * Distribute the ports of the given node by their sides, connected ports, and input or output * type. * * :param node * node whose ports shall be sorted """ self.inLayerPorts.clear() if ports: self.iteratePortsAndCollectInLayerPorts(node, ports) if self.inLayerPorts: self.calculateInLayerPortsBarycenterValues(node) def sortPorts(self, node): """ Sort the ports of a node using the given relative position values. These values are interpreted as a hint for the clockwise order of ports. :param node: a node """ portBarycenter = self.portBarycenter for side in node.iterSides(): side.sort(key=lambda p: portBarycenter[p])
[ 198, 37811, 198, 9771, 3129, 689, 2493, 9803, 290, 1233, 7657, 14090, 13, 198, 464, 4279, 286, 257, 2493, 318, 257, 12462, 966, 1271, 326, 6870, 663, 2292, 198, 48787, 262, 7268, 7679, 13, 770, 8338, 319, 262, 10139, 1502, 286, 326, 7679, 290, 319, 262, 198, 634, 17778, 286, 262, 13760, 13, 4347, 9803, 389, 973, 416, 1391, 31, 8726, 12460, 1214, 278, 9452, 320, 1634, 1544, 333, 3969, 198, 1640, 26019, 275, 560, 16159, 393, 14288, 3815, 329, 13760, 13, 11399, 11, 484, 389, 973, 287, 428, 198, 4871, 329, 25950, 262, 14090, 286, 13760, 810, 262, 1502, 286, 14090, 318, 407, 5969, 11, 198, 4758, 468, 284, 307, 1760, 355, 262, 938, 2239, 286, 1123, 12538, 10356, 1634, 12649, 13, 198, 1858, 389, 1180, 2842, 284, 5004, 2493, 9803, 11, 4361, 326, 318, 1760, 287, 10017, 850, 37724, 13, 198, 37811, 198, 6738, 17268, 1330, 4277, 11600, 198, 6738, 10688, 1330, 1167, 198, 6738, 19720, 1330, 7343, 198, 198, 6738, 37748, 37065, 23763, 39605, 13, 3642, 50221, 13, 9979, 1187, 1330, 4347, 6030, 11, 4347, 24819, 198, 6738, 37748, 37065, 23763, 39605, 13, 3642, 50221, 13, 75, 19667, 1330, 406, 19667, 198, 6738, 37748, 37065, 23763, 39605, 13, 3642, 50221, 13, 75, 13924, 1330, 406, 13924, 628, 628, 198, 198, 4871, 27741, 33, 560, 16159, 13924, 20344, 2455, 273, 33529, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 28407, 82, 257, 2493, 32137, 329, 262, 1813, 7177, 286, 2493, 9803, 13, 220, 198, 220, 220, 220, 1439, 14090, 389, 2672, 284, 307, 8686, 220, 2340, 287, 262, 2837, 286, 262, 1813, 7177, 13, 628, 220, 220, 220, 1058, 452, 283, 2493, 49, 2283, 25, 2493, 9803, 8633, 1391, 634, 25, 4279, 92, 287, 543, 262, 2482, 286, 9803, 17952, 389, 8574, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 1303, 1303, 29113, 4242, 2, 14, 198, 220, 220, 220, 1303, 4347, 10916, 50144, 628, 220, 220, 220, 825, 15284, 13924, 49, 2283, 62, 21834, 7, 944, 11, 7679, 25, 7343, 58, 43, 19667, 4357, 2493, 6030, 25, 4347, 6030, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 45559, 3810, 9803, 329, 477, 14090, 286, 2176, 2099, 287, 262, 1813, 7679, 13, 198, 220, 220, 220, 220, 220, 220, 220, 383, 9803, 389, 3194, 284, 262, 1391, 31, 8726, 1303, 1136, 13924, 49, 2283, 3419, 7177, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 7679, 25, 257, 7679, 355, 10139, 7177, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 2493, 6030, 25, 262, 2493, 2099, 284, 2074, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 30493, 318, 39098, 7, 29289, 11, 406, 19667, 49925, 828, 357, 29289, 11, 7679, 13, 834, 4871, 834, 8, 198, 220, 220, 220, 220, 220, 220, 220, 15284, 13924, 49, 2283, 796, 2116, 13, 9948, 3129, 378, 13924, 49, 2283, 198, 220, 220, 220, 220, 220, 220, 220, 13529, 27520, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 329, 10139, 287, 7679, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13529, 27520, 15853, 15284, 13924, 49, 2283, 7, 17440, 11, 13529, 27520, 11, 2493, 6030, 8, 628, 220, 220, 220, 825, 15284, 13924, 49, 2283, 7, 944, 11, 10139, 25, 406, 19667, 11, 4279, 13065, 25, 12178, 11, 2099, 62, 25, 4347, 6030, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2195, 570, 2493, 9803, 329, 262, 5128, 393, 5072, 14090, 286, 262, 1813, 10139, 13, 1002, 262, 10139, 338, 2493, 198, 220, 220, 220, 220, 220, 220, 220, 17778, 20135, 257, 5969, 1502, 11, 262, 14090, 389, 9672, 284, 307, 662, 12, 24071, 287, 262, 6678, 835, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1312, 13, 68, 13, 287, 8801, 3083, 1502, 5093, 532, 7627, 532, 5366, 532, 7421, 13, 198, 220, 220, 220, 220, 220, 220, 220, 383, 9803, 389, 3194, 284, 262, 1391, 31, 8726, 1303, 1136, 13924, 49, 2283, 3419, 7177, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 10139, 25, 257, 10139, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 4279, 13065, 25, 262, 2160, 286, 9803, 286, 18148, 13760, 287, 262, 976, 7679, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 2099, 25, 262, 2493, 2099, 284, 2074, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 262, 4279, 13529, 416, 262, 1813, 10139, 262, 1708, 10139, 338, 9803, 923, 379, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 31, 8189, 4279, 13065, 1343, 13529, 27520, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 3826, 25, 220, 1391, 31, 8726, 8745, 13, 68, 17043, 13, 14016, 13, 10724, 1068, 13, 3849, 13857, 13, 13924, 8053, 50, 4337, 220, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 1892, 3546, 1154, 12061, 12331, 7203, 3546, 26908, 319, 1200, 1398, 4943, 628, 220, 220, 220, 1303, 1303, 29113, 4242, 2, 14, 198, 220, 220, 220, 1303, 4347, 27484, 628, 220, 220, 220, 825, 14983, 47, 2096, 7, 944, 11, 10139, 11, 14090, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 220, 1635, 4307, 4163, 262, 14090, 286, 262, 1813, 10139, 416, 511, 5389, 11, 5884, 14090, 11, 290, 5128, 393, 5072, 198, 220, 220, 220, 220, 220, 220, 220, 220, 1635, 2099, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 1635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 1635, 1058, 17143, 10139, 198, 220, 220, 220, 220, 220, 220, 220, 220, 1635, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10139, 3025, 14090, 2236, 307, 23243, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 259, 49925, 47, 2096, 13, 20063, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 611, 14090, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 2676, 378, 47, 2096, 1870, 31337, 818, 49925, 47, 2096, 7, 17440, 11, 14090, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 259, 49925, 47, 2096, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 9948, 3129, 378, 818, 49925, 47, 2096, 33, 560, 16159, 40161, 7, 17440, 8, 628, 220, 220, 220, 825, 3297, 47, 2096, 7, 944, 11, 10139, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 33947, 262, 14090, 286, 257, 10139, 1262, 262, 1813, 3585, 2292, 3815, 13, 198, 220, 220, 220, 220, 220, 220, 220, 2312, 3815, 389, 16173, 355, 257, 9254, 329, 262, 8801, 3083, 1502, 286, 14090, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 10139, 25, 257, 10139, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2493, 33, 560, 16159, 796, 2116, 13, 634, 33, 560, 16159, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1735, 287, 10139, 13, 2676, 50, 1460, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1735, 13, 30619, 7, 2539, 28, 50033, 279, 25, 2493, 33, 560, 16159, 58, 79, 12962, 198 ]
2.94127
1,260
from setuptools import setup, find_packages PACKAGENAME = "deltasigma" VERSION = "0.0.dev" setup( name=PACKAGENAME, version=VERSION, author="Antonio Villarreal", author_email="[email protected]", description="Source code for chopper / halotools implementation to calculate delta sigma.", long_description="Source code for chopper / halotools implementation to calculate delta sigma.", install_requires=["numpy", "halotools", "colossus", "yaml", "pyyaml", "psutil", "six"], packages=find_packages(), url="https://github.com/villarrealas/deltasigma" )
[ 6738, 900, 37623, 10141, 1330, 9058, 11, 1064, 62, 43789, 628, 198, 47, 8120, 4760, 1677, 10067, 796, 366, 67, 2120, 292, 13495, 1, 198, 43717, 796, 366, 15, 13, 15, 13, 7959, 1, 628, 198, 40406, 7, 198, 220, 220, 220, 1438, 28, 47, 8120, 4760, 1677, 10067, 11, 198, 220, 220, 220, 2196, 28, 43717, 11, 198, 220, 220, 220, 1772, 2625, 13217, 261, 952, 9757, 283, 5305, 1600, 198, 220, 220, 220, 1772, 62, 12888, 2625, 615, 359, 283, 5305, 31, 272, 75, 13, 9567, 1600, 198, 220, 220, 220, 6764, 2625, 7416, 2438, 329, 1727, 2848, 1220, 10284, 313, 10141, 7822, 284, 15284, 25979, 264, 13495, 33283, 198, 220, 220, 220, 890, 62, 11213, 2625, 7416, 2438, 329, 1727, 2848, 1220, 10284, 313, 10141, 7822, 284, 15284, 25979, 264, 13495, 33283, 198, 220, 220, 220, 2721, 62, 47911, 28, 14692, 77, 32152, 1600, 366, 14201, 313, 10141, 1600, 366, 4033, 36533, 1600, 366, 88, 43695, 1600, 366, 9078, 88, 43695, 1600, 366, 862, 22602, 1600, 366, 19412, 33116, 198, 220, 220, 220, 10392, 28, 19796, 62, 43789, 22784, 198, 220, 220, 220, 19016, 2625, 5450, 1378, 12567, 13, 785, 14, 41082, 283, 5305, 292, 14, 67, 2120, 292, 13495, 1, 198, 8, 198 ]
2.859903
207
import itertools import os import csv from loguru import logger from datetime import * class SensorPersistence(Persistence): """ Writes sensor data to a buffer and periodically flushes to file system. """
[ 11748, 340, 861, 10141, 201, 198, 11748, 28686, 201, 198, 11748, 269, 21370, 201, 198, 6738, 2604, 14717, 1330, 49706, 201, 198, 201, 198, 6738, 4818, 8079, 1330, 1635, 201, 198, 201, 198, 201, 198, 201, 198, 4871, 35367, 30946, 13274, 7, 30946, 13274, 2599, 201, 198, 220, 220, 220, 37227, 201, 198, 220, 220, 220, 220, 220, 220, 220, 12257, 274, 12694, 1366, 284, 257, 11876, 290, 26034, 781, 17237, 284, 2393, 1080, 13, 201, 198, 220, 220, 220, 37227, 201, 198 ]
2.86747
83
from picamera import PiCamera from time import sleep from gpiozero import Button import keyboard button = keyboard.is_pressed('h') camera = PiCamera() while True: camera.start_preview() button.wait_for_press() print("Button has been pressed!") sleep(3) camera.capture('animateImage.jpg') camera.stop_preview()
[ 6738, 8301, 18144, 1330, 13993, 35632, 198, 6738, 640, 1330, 3993, 198, 6738, 27809, 952, 22570, 1330, 20969, 198, 11748, 10586, 198, 198, 16539, 796, 10586, 13, 271, 62, 45477, 10786, 71, 11537, 198, 25695, 796, 13993, 35632, 3419, 198, 198, 4514, 6407, 25, 198, 197, 25695, 13, 9688, 62, 3866, 1177, 3419, 198, 197, 16539, 13, 17077, 62, 1640, 62, 8439, 3419, 198, 197, 4798, 7203, 21864, 468, 587, 12070, 2474, 8, 198, 197, 42832, 7, 18, 8, 198, 197, 25695, 13, 27144, 495, 10786, 45685, 5159, 13, 9479, 11537, 198, 197, 25695, 13, 11338, 62, 3866, 1177, 3419, 198 ]
3.148515
101
#!/usr/bin/env python import os, sys, pickle import keras.backend as K import tensorflow as tf import numpy as np from argparse import ArgumentParser sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))) from datasets import mnist from models import (train, accuracy, save_to_file, fc_100_100_10, pca_filtered_model, fastica_filtered_model, incrementalpca_filtered_model, nmf_filtered_model, truncatedsvd_filtered_model, kernelpca_filtered_model) argument_parser = ArgumentParser() argument_parser.add_argument("--pca", action="store_true", help="use PCA image filter defense") argument_parser.add_argument("--fastica", action="store_true", help="use FastICA image filter defense") argument_parser.add_argument("--incrementalpca", action="store_true", help="use IncrementalPCA image filter defense") argument_parser.add_argument("--nmf", action="store_true", help="use IncrementalPCA image filter defense") argument_parser.add_argument("--truncatedsvd", action="store_true", help="use TruncatedSVD image filter defense") argument_parser.add_argument("--kernelpca", action="store_true", help="use KernelPCA image filter defense") argument_parser.add_argument("--n-components", type=int, nargs="+", default=[], help="number of components for image filters") argument_parser.add_argument("--epochs", type=int, default=-1, help="default: let the model choose") argument_parser.add_argument("--random-seed", action="store_true", help="initialize model with random seed") args = argument_parser.parse_args() PREFIX = os.environ.get('PREFIX', '.') X_train, y_train, X_test, y_test = mnist() if not args.random_seed: K.clear_session() tf.set_random_seed(1234) np.random.seed(1234) no_defense_model = fc_100_100_10() print(f"Training {no_defense_model.name}...") train(no_defense_model, X_train, y_train, args.epochs, verbose=True, stop_on_stable_weights=True, reduce_lr_on_plateau=True, stop_on_stable_weights_patience=60, reduce_lr_on_plateau_patience=30) print(f"Saving {no_defense_model.name}...") save_to_file(no_defense_model, PREFIX) for n_components in args.n_components: if args.pca: pca = cached(f"pca-{n_components}") filtered_model = pca_filtered_model(no_defense_model, X_train, n_components, pca=pca) print(f"Saving {filtered_model.name}...") save_to_file(filtered_model, PREFIX) if args.fastica: fastica = cached(f"fastica-{n_components}") filtered_model = fastica_filtered_model(no_defense_model, X_train, n_components, fastica=fastica) print(f"Saving {filtered_model.name}...") save_to_file(filtered_model, PREFIX) if args.incrementalpca: incrementalpca = cached(f"incrementalpca-{n_components}") filtered_model = incrementalpca_filtered_model(no_defense_model, X_train, n_components, incrementalpca=incrementalpca) print(f"Saving {filtered_model.name}...") save_to_file(filtered_model, PREFIX) if args.nmf: nmf = cached(f"nmf-{n_components}") filtered_model = nmf_filtered_model(no_defense_model, X_train, n_components, nmf=nmf) print(f"Saving {filtered_model.name}...") save_to_file(filtered_model, PREFIX) if args.truncatedsvd: truncatedsvd = cached(f"truncatedsvd-{n_components}") filtered_model = truncatedsvd_filtered_model(no_defense_model, X_train, n_components, truncatedsvd=truncatedsvd) print(f"Saving {filtered_model.name}...") save_to_file(filtered_model, PREFIX) if args.kernelpca: kernelpca = cached(f"kernelpca-{n_components}") filtered_model = kernelpca_filtered_model(no_defense_model, X_train, n_components, kernelpca=kernelpca) print(f"Saving {filtered_model.name}...") save_to_file(filtered_model, PREFIX)
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 198, 11748, 28686, 11, 25064, 11, 2298, 293, 198, 11748, 41927, 292, 13, 1891, 437, 355, 509, 198, 11748, 11192, 273, 11125, 355, 48700, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 1822, 29572, 1330, 45751, 46677, 198, 198, 17597, 13, 6978, 13, 28463, 7, 15, 11, 28686, 13, 6978, 13, 397, 2777, 776, 7, 418, 13, 6978, 13, 22179, 7, 418, 13, 6978, 13, 15908, 3672, 7, 834, 7753, 834, 828, 705, 492, 6, 22305, 198, 6738, 40522, 1330, 285, 77, 396, 198, 6738, 4981, 1330, 357, 27432, 11, 9922, 11, 3613, 62, 1462, 62, 7753, 11, 277, 66, 62, 3064, 62, 3064, 62, 940, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 6888, 62, 10379, 4400, 62, 19849, 11, 3049, 3970, 62, 10379, 4400, 62, 19849, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29497, 79, 6888, 62, 10379, 4400, 62, 19849, 11, 28642, 69, 62, 10379, 4400, 62, 19849, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 40122, 515, 82, 20306, 62, 10379, 4400, 62, 19849, 11, 9720, 79, 6888, 62, 10379, 4400, 62, 19849, 8, 198, 198, 49140, 62, 48610, 796, 45751, 46677, 3419, 198, 49140, 62, 48610, 13, 2860, 62, 49140, 7203, 438, 79, 6888, 1600, 2223, 2625, 8095, 62, 7942, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 1904, 4217, 32, 2939, 8106, 3761, 4943, 198, 49140, 62, 48610, 13, 2860, 62, 49140, 7203, 438, 69, 3477, 64, 1600, 2223, 2625, 8095, 62, 7942, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 1904, 12549, 25241, 2939, 8106, 3761, 4943, 198, 49140, 62, 48610, 13, 2860, 62, 49140, 7203, 438, 24988, 37098, 79, 6888, 1600, 2223, 2625, 8095, 62, 7942, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 1904, 10791, 37098, 5662, 32, 2939, 8106, 3761, 4943, 198, 49140, 62, 48610, 13, 2860, 62, 49140, 7203, 438, 21533, 69, 1600, 2223, 2625, 8095, 62, 7942, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 1904, 10791, 37098, 5662, 32, 2939, 8106, 3761, 4943, 198, 49140, 62, 48610, 13, 2860, 62, 49140, 7203, 438, 2213, 19524, 515, 82, 20306, 1600, 2223, 2625, 8095, 62, 7942, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 1904, 833, 19524, 515, 50, 8898, 2939, 8106, 3761, 4943, 198, 49140, 62, 48610, 13, 2860, 62, 49140, 7203, 438, 33885, 79, 6888, 1600, 2223, 2625, 8095, 62, 7942, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 1904, 32169, 5662, 32, 2939, 8106, 3761, 4943, 198, 49140, 62, 48610, 13, 2860, 62, 49140, 7203, 438, 77, 12, 5589, 3906, 1600, 2099, 28, 600, 11, 299, 22046, 2625, 10, 1600, 4277, 41888, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 17618, 286, 6805, 329, 2939, 16628, 4943, 198, 49140, 62, 48610, 13, 2860, 62, 49140, 7203, 438, 538, 5374, 82, 1600, 2099, 28, 600, 11, 4277, 10779, 16, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 12286, 25, 1309, 262, 2746, 3853, 4943, 198, 49140, 62, 48610, 13, 2860, 62, 49140, 7203, 438, 25120, 12, 28826, 1600, 2223, 2625, 8095, 62, 7942, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 36733, 1096, 2746, 351, 4738, 9403, 4943, 198, 22046, 796, 4578, 62, 48610, 13, 29572, 62, 22046, 3419, 198, 198, 47, 31688, 10426, 796, 28686, 13, 268, 2268, 13, 1136, 10786, 47, 31688, 10426, 3256, 705, 2637, 8, 198, 198, 55, 62, 27432, 11, 331, 62, 27432, 11, 1395, 62, 9288, 11, 331, 62, 9288, 796, 285, 77, 396, 3419, 198, 198, 361, 407, 26498, 13, 25120, 62, 28826, 25, 198, 220, 220, 220, 509, 13, 20063, 62, 29891, 3419, 198, 220, 220, 220, 48700, 13, 2617, 62, 25120, 62, 28826, 7, 1065, 2682, 8, 198, 220, 220, 220, 45941, 13, 25120, 13, 28826, 7, 1065, 2682, 8, 198, 198, 3919, 62, 19774, 62, 19849, 796, 277, 66, 62, 3064, 62, 3064, 62, 940, 3419, 198, 4798, 7, 69, 1, 44357, 1391, 3919, 62, 19774, 62, 19849, 13, 3672, 92, 9313, 8, 198, 27432, 7, 3919, 62, 19774, 62, 19849, 11, 1395, 62, 27432, 11, 331, 62, 27432, 11, 26498, 13, 538, 5374, 82, 11, 15942, 577, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 2245, 62, 261, 62, 31284, 62, 43775, 28, 17821, 11, 4646, 62, 14050, 62, 261, 62, 6816, 559, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 2245, 62, 261, 62, 31284, 62, 43775, 62, 8071, 1240, 28, 1899, 11, 4646, 62, 14050, 62, 261, 62, 6816, 559, 62, 8071, 1240, 28, 1270, 8, 198, 198, 4798, 7, 69, 1, 50, 2703, 1391, 3919, 62, 19774, 62, 19849, 13, 3672, 92, 9313, 8, 198, 21928, 62, 1462, 62, 7753, 7, 3919, 62, 19774, 62, 19849, 11, 22814, 47084, 8, 198, 198, 1640, 299, 62, 5589, 3906, 287, 26498, 13, 77, 62, 5589, 3906, 25, 198, 220, 220, 220, 611, 26498, 13, 79, 6888, 25, 198, 220, 220, 220, 220, 220, 220, 220, 279, 6888, 796, 39986, 7, 69, 1, 79, 6888, 12, 90, 77, 62, 5589, 3906, 92, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 29083, 62, 19849, 796, 279, 6888, 62, 10379, 4400, 62, 19849, 7, 3919, 62, 19774, 62, 19849, 11, 1395, 62, 27432, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 62, 5589, 3906, 11, 279, 6888, 28, 79, 6888, 8, 628, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 69, 1, 50, 2703, 1391, 10379, 4400, 62, 19849, 13, 3672, 92, 9313, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3613, 62, 1462, 62, 7753, 7, 10379, 4400, 62, 19849, 11, 22814, 47084, 8, 628, 220, 220, 220, 611, 26498, 13, 69, 3477, 64, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3049, 3970, 796, 39986, 7, 69, 1, 69, 3477, 64, 12, 90, 77, 62, 5589, 3906, 92, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 29083, 62, 19849, 796, 3049, 3970, 62, 10379, 4400, 62, 19849, 7, 3919, 62, 19774, 62, 19849, 11, 1395, 62, 27432, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 62, 5589, 3906, 11, 3049, 3970, 28, 69, 3477, 64, 8, 628, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 69, 1, 50, 2703, 1391, 10379, 4400, 62, 19849, 13, 3672, 92, 9313, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3613, 62, 1462, 62, 7753, 7, 10379, 4400, 62, 19849, 11, 22814, 47084, 8, 628, 220, 220, 220, 611, 26498, 13, 24988, 37098, 79, 6888, 25, 198, 220, 220, 220, 220, 220, 220, 220, 29497, 79, 6888, 796, 39986, 7, 69, 1, 24988, 37098, 79, 6888, 12, 90, 77, 62, 5589, 3906, 92, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 29083, 62, 19849, 796, 29497, 79, 6888, 62, 10379, 4400, 62, 19849, 7, 3919, 62, 19774, 62, 19849, 11, 1395, 62, 27432, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 62, 5589, 3906, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29497, 79, 6888, 28, 24988, 37098, 79, 6888, 8, 628, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 69, 1, 50, 2703, 1391, 10379, 4400, 62, 19849, 13, 3672, 92, 9313, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3613, 62, 1462, 62, 7753, 7, 10379, 4400, 62, 19849, 11, 22814, 47084, 8, 628, 220, 220, 220, 611, 26498, 13, 21533, 69, 25, 198, 220, 220, 220, 220, 220, 220, 220, 28642, 69, 796, 39986, 7, 69, 1, 21533, 69, 12, 90, 77, 62, 5589, 3906, 92, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 29083, 62, 19849, 796, 28642, 69, 62, 10379, 4400, 62, 19849, 7, 3919, 62, 19774, 62, 19849, 11, 1395, 62, 27432, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 62, 5589, 3906, 11, 28642, 69, 28, 21533, 69, 8, 628, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 69, 1, 50, 2703, 1391, 10379, 4400, 62, 19849, 13, 3672, 92, 9313, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3613, 62, 1462, 62, 7753, 7, 10379, 4400, 62, 19849, 11, 22814, 47084, 8, 628, 220, 220, 220, 611, 26498, 13, 2213, 19524, 515, 82, 20306, 25, 198, 220, 220, 220, 220, 220, 220, 220, 40122, 515, 82, 20306, 796, 39986, 7, 69, 1, 2213, 19524, 515, 82, 20306, 12, 90, 77, 62, 5589, 3906, 92, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 29083, 62, 19849, 796, 40122, 515, 82, 20306, 62, 10379, 4400, 62, 19849, 7, 3919, 62, 19774, 62, 19849, 11, 1395, 62, 27432, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 62, 5589, 3906, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 40122, 515, 82, 20306, 28, 2213, 19524, 515, 82, 20306, 8, 628, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 69, 1, 50, 2703, 1391, 10379, 4400, 62, 19849, 13, 3672, 92, 9313, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3613, 62, 1462, 62, 7753, 7, 10379, 4400, 62, 19849, 11, 22814, 47084, 8, 628, 220, 220, 220, 611, 26498, 13, 33885, 79, 6888, 25, 198, 220, 220, 220, 220, 220, 220, 220, 9720, 79, 6888, 796, 39986, 7, 69, 1, 33885, 79, 6888, 12, 90, 77, 62, 5589, 3906, 92, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 29083, 62, 19849, 796, 9720, 79, 6888, 62, 10379, 4400, 62, 19849, 7, 3919, 62, 19774, 62, 19849, 11, 1395, 62, 27432, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 62, 5589, 3906, 11, 9720, 79, 6888, 28, 33885, 79, 6888, 8, 628, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 69, 1, 50, 2703, 1391, 10379, 4400, 62, 19849, 13, 3672, 92, 9313, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3613, 62, 1462, 62, 7753, 7, 10379, 4400, 62, 19849, 11, 22814, 47084, 8, 198 ]
2.054323
2,209
#!/usr/bin/env python ''' VIMTern.py dispatch work to your intern via Slack from the command line. ''' from random import randint from sys import exit, argv import argparse import json import yaml # To load the intrn file VERBOSE = False try: import requests except ImportError: print "Unable to import requests. Run `pip install requests`." exit(1) def _load_intrn(intrn_file="default.intrn"): ''' Load the config file. ''' config = None with open(intrn_file, 'r') as stream: try: config = yaml.load(stream) except yaml.YAMLError as ex: print str(ex) exit(1) return config def vimtern_do(msg, intrn_file): ''' Issue commands to 1ntern. ''' global VERBOSE if not intrn_file: raise AttributeError("Path to .intrn file required.") config = _load_intrn(intrn_file) if not msg or msg == '': num = len(config["default_msgs"]) msg = config["default_msgs"][randint(0, num - 1)] if not isinstance(msg, basestring): print "vimtern_do: msg is not a string." print "msg: ", msg exit(1) # Build JSON message payload msg = msg.replace('"', '').strip() channel = config["Slack"]["channel"] username = config["Slack"]["username"] icon_emoji = config["Slack"]["icon_emoji"] payload = json.dumps({ "text": msg, "channel": channel, "username": username, "icon_emoji": icon_emoji, "parse": "full" }) # Create and send POST request to Slack webhook slack_uri = config['Slack']['uri'] try: r = requests.post(slack_uri, data=payload, headers={ 'Content-type': 'application/json'}) r.raise_for_status() except requests.exceptions.ConnectionError: print "Could not establish connection to Slack." exit(1) except requests.exceptions.HTTPError as err: print "Slack API request was not successful." print err.message exit(1) except requests.exceptions.Timeout: print "Slack API request timed out." exit(1) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("-f", "--config", dest='config', help="Path to the .intrn config file.") parser.add_argument("-m", "--msg", dest='msg', help="Message to send.", default="") parser.add_argument('-v', '--verbose', dest='verbose', action='store_true', help='Verbose mode to help debug.') parser.set_defaults(verbose=False) args = parser.parse_args() VERBOSE = args.verbose if VERBOSE: print "ARGS: ", argv try: vimtern_do(args.msg, args.config) except Exception, e: print str(e) parser.print_help()
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 7061, 6, 198, 53, 3955, 51, 1142, 13, 9078, 27965, 670, 284, 534, 1788, 2884, 36256, 422, 262, 3141, 1627, 13, 198, 7061, 6, 198, 6738, 4738, 1330, 43720, 600, 198, 6738, 25064, 1330, 8420, 11, 1822, 85, 198, 11748, 1822, 29572, 198, 11748, 33918, 198, 11748, 331, 43695, 220, 1303, 1675, 3440, 262, 9913, 77, 2393, 198, 198, 5959, 33, 14058, 796, 10352, 198, 198, 28311, 25, 198, 220, 220, 220, 1330, 7007, 198, 16341, 17267, 12331, 25, 198, 220, 220, 220, 3601, 366, 3118, 540, 284, 1330, 7007, 13, 5660, 4600, 79, 541, 2721, 7007, 63, 526, 198, 220, 220, 220, 8420, 7, 16, 8, 628, 198, 4299, 4808, 2220, 62, 600, 35906, 7, 600, 35906, 62, 7753, 2625, 12286, 13, 600, 35906, 1, 2599, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 8778, 262, 4566, 2393, 13, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 4566, 796, 6045, 198, 220, 220, 220, 351, 1280, 7, 600, 35906, 62, 7753, 11, 705, 81, 11537, 355, 4269, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4566, 796, 331, 43695, 13, 2220, 7, 5532, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 331, 43695, 13, 56, 2390, 2538, 81, 1472, 355, 409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 965, 7, 1069, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8420, 7, 16, 8, 198, 220, 220, 220, 1441, 4566, 628, 198, 4299, 43907, 759, 62, 4598, 7, 19662, 11, 9913, 77, 62, 7753, 2599, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 18232, 9729, 284, 352, 77, 759, 13, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 3298, 33310, 33, 14058, 198, 220, 220, 220, 611, 407, 9913, 77, 62, 7753, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 3460, 4163, 12331, 7203, 15235, 284, 764, 600, 35906, 2393, 2672, 19570, 198, 220, 220, 220, 4566, 796, 4808, 2220, 62, 600, 35906, 7, 600, 35906, 62, 7753, 8, 198, 220, 220, 220, 611, 407, 31456, 393, 31456, 6624, 10148, 25, 198, 220, 220, 220, 220, 220, 220, 220, 997, 796, 18896, 7, 11250, 14692, 12286, 62, 907, 14542, 8973, 8, 198, 220, 220, 220, 220, 220, 220, 220, 31456, 796, 4566, 14692, 12286, 62, 907, 14542, 1, 7131, 25192, 600, 7, 15, 11, 997, 532, 352, 15437, 198, 220, 220, 220, 611, 407, 318, 39098, 7, 19662, 11, 1615, 395, 1806, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 366, 31124, 759, 62, 4598, 25, 31456, 318, 407, 257, 4731, 526, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 366, 19662, 25, 33172, 31456, 198, 220, 220, 220, 220, 220, 220, 220, 8420, 7, 16, 8, 628, 220, 220, 220, 1303, 10934, 19449, 3275, 21437, 198, 220, 220, 220, 31456, 796, 31456, 13, 33491, 10786, 1, 3256, 10148, 737, 36311, 3419, 198, 220, 220, 220, 6518, 796, 4566, 14692, 11122, 441, 1, 7131, 1, 17620, 8973, 198, 220, 220, 220, 20579, 796, 4566, 14692, 11122, 441, 1, 7131, 1, 29460, 8973, 198, 220, 220, 220, 7196, 62, 368, 31370, 796, 4566, 14692, 11122, 441, 1, 7131, 1, 4749, 62, 368, 31370, 8973, 198, 220, 220, 220, 21437, 796, 33918, 13, 67, 8142, 15090, 198, 220, 220, 220, 220, 220, 220, 220, 366, 5239, 1298, 31456, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 17620, 1298, 6518, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 29460, 1298, 20579, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 4749, 62, 368, 31370, 1298, 7196, 62, 368, 31370, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 29572, 1298, 366, 12853, 1, 198, 220, 220, 220, 32092, 628, 220, 220, 220, 1303, 13610, 290, 3758, 24582, 2581, 284, 36256, 3992, 25480, 198, 220, 220, 220, 30740, 62, 9900, 796, 4566, 17816, 11122, 441, 6, 7131, 6, 9900, 20520, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 374, 796, 7007, 13, 7353, 7, 6649, 441, 62, 9900, 11, 1366, 28, 15577, 2220, 11, 24697, 34758, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 19746, 12, 4906, 10354, 705, 31438, 14, 17752, 6, 30072, 198, 220, 220, 220, 220, 220, 220, 220, 374, 13, 40225, 62, 1640, 62, 13376, 3419, 198, 220, 220, 220, 2845, 7007, 13, 1069, 11755, 13, 32048, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 366, 23722, 407, 4474, 4637, 284, 36256, 526, 198, 220, 220, 220, 220, 220, 220, 220, 8420, 7, 16, 8, 198, 220, 220, 220, 2845, 7007, 13, 1069, 11755, 13, 40717, 12331, 355, 11454, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 366, 11122, 441, 7824, 2581, 373, 407, 4388, 526, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 11454, 13, 20500, 198, 220, 220, 220, 220, 220, 220, 220, 8420, 7, 16, 8, 198, 220, 220, 220, 2845, 7007, 13, 1069, 11755, 13, 48031, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 366, 11122, 441, 7824, 2581, 28805, 503, 526, 198, 220, 220, 220, 220, 220, 220, 220, 8420, 7, 16, 8, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 30751, 796, 1822, 29572, 13, 28100, 1713, 46677, 3419, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7203, 12, 69, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 438, 11250, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2244, 11639, 11250, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 15235, 284, 262, 764, 600, 35906, 4566, 2393, 19570, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7203, 12, 76, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 438, 19662, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2244, 11639, 19662, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 12837, 284, 3758, 33283, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4277, 2625, 4943, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 10786, 12, 85, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 438, 19011, 577, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2244, 11639, 19011, 577, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2223, 11639, 8095, 62, 7942, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 11639, 13414, 65, 577, 4235, 284, 1037, 14257, 2637, 8, 198, 220, 220, 220, 30751, 13, 2617, 62, 12286, 82, 7, 19011, 577, 28, 25101, 8, 198, 220, 220, 220, 26498, 796, 30751, 13, 29572, 62, 22046, 3419, 628, 220, 220, 220, 33310, 33, 14058, 796, 26498, 13, 19011, 577, 628, 220, 220, 220, 611, 33310, 33, 14058, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 366, 1503, 14313, 25, 33172, 1822, 85, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 43907, 759, 62, 4598, 7, 22046, 13, 19662, 11, 26498, 13, 11250, 8, 198, 220, 220, 220, 2845, 35528, 11, 304, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 965, 7, 68, 8, 198, 220, 220, 220, 220, 220, 220, 220, 30751, 13, 4798, 62, 16794, 3419, 198 ]
2.134454
1,428
from numpy import array
[ 6738, 299, 32152, 1330, 7177 ]
4.6
5
import stripe from stripe.test.helper import StripeResourceTest
[ 11748, 39858, 198, 6738, 39858, 13, 9288, 13, 2978, 525, 1330, 26137, 431, 26198, 14402, 628 ]
4.0625
16
""" Created on 10 Nov 2018 @author: Bruno Beloff ([email protected]) a dummy LED state, to maintain compatibility with the DFE Eng package """ from collections import OrderedDict from scs_core.data.json import JSONable # -------------------------------------------------------------------------------------------------------------------- class LEDState(JSONable): """ classdocs """ # ---------------------------------------------------------------------------------------------------------------- @classmethod # ---------------------------------------------------------------------------------------------------------------- # noinspection PyUnusedLocal def __init__(self, colour0, colour1): """ Constructor """ pass # ---------------------------------------------------------------------------------------------------------------- @classmethod # ---------------------------------------------------------------------------------------------------------------- # ---------------------------------------------------------------------------------------------------------------- @property @property # ----------------------------------------------------------------------------------------------------------------
[ 37811, 198, 41972, 319, 838, 5267, 2864, 198, 198, 31, 9800, 25, 31045, 3944, 2364, 357, 1671, 36909, 13, 6667, 2364, 31, 35782, 1073, 5773, 4234, 13, 785, 8, 198, 198, 64, 31548, 12365, 1181, 11, 284, 5529, 17764, 351, 262, 360, 15112, 1985, 5301, 198, 37811, 198, 198, 6738, 17268, 1330, 14230, 1068, 35, 713, 198, 198, 6738, 629, 82, 62, 7295, 13, 7890, 13, 17752, 1330, 19449, 540, 628, 198, 2, 16529, 3880, 19351, 198, 198, 4871, 12365, 9012, 7, 40386, 540, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1398, 31628, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 1303, 16529, 47232, 628, 220, 220, 220, 2488, 4871, 24396, 628, 198, 220, 220, 220, 1303, 16529, 47232, 628, 220, 220, 220, 1303, 645, 1040, 14978, 9485, 3118, 1484, 14565, 198, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 9568, 15, 11, 9568, 16, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 28407, 273, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1208, 628, 198, 220, 220, 220, 1303, 16529, 47232, 628, 220, 220, 220, 2488, 4871, 24396, 628, 198, 220, 220, 220, 1303, 16529, 47232, 628, 198, 220, 220, 220, 1303, 16529, 47232, 628, 220, 220, 220, 2488, 26745, 628, 198, 220, 220, 220, 2488, 26745, 628, 198, 220, 220, 220, 1303, 16529, 47232, 198 ]
5.549587
242
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """Les boucles et les instruction de contrôle Quelques exemples de manipulations des boucles et des instructions """ # la suite de fibonnaci a, b = 0, 1 while a < 20: print(a, end=",") # on idente de 4 espace l'instruction suivante a, b = b, a+b print() if a == 21: print("_") elif a == 13: # 'else if' se note 'elif' en python print("°") else: print(")") # Un peu d'unicode ;) et des boucles for words = ["Bonjour", "Jeune", "Padawan"] for w in words: if w == "Yoda": break # le 'break' permet de sortie de la boucle, else: # par contre on passe dans le 'else' si le break # n'est jamais appelé dans la boucle for' # ici on utilise le r de raw_string st = r""" ____ (xXXXX|xx======---(- / | / XX| /xxx XXX| /xxx X | / ________| __ ____/_|_|_______\_ ###|=||________|_________|_ ~~ |==| __ _ __ /|~~~~~~~~~-------------_______ |==| ||(( ||()| | |XXXXXXXX| > __ |==| ~~__~__~~__ \|_________-------------~~~~~~~ ###|=||~~~~~~~~|_______ |" ~~ ~~~~\~|~| /~ \ ~~~~~~~~~ \xxx X | \xxx XXX| \ XX| Incom's T-65B X-wing Space \ | Superiority Starfighter (4) (xXXXX|xx======---(- ~~~~""" print(st) # on peut aussi utiliser range dans la même idée # que la boucle for(i = 0; i < words.length; i++) dans d'autres langage for i in range(len(words)): print(words[i], len(words[i])) # exemple de range qui est objet iterable, # et pas une liste à proprement parlée range(5) # 0, 1, 2, 3, 4 range(5, 10) # 5, 6, 7, 8, 9 range(0, 10, 3) # 0, 3, 6, 9 range(-10, -100, -30) # -10, -40, -70 # mot clé 'pass' a = 9 if a < 10: pass # 'pass' ne fait rien, mais est parfois nécessaire après une instruction # TODO : Afficher un message d'erreur... else: print("a supérieur a 10")
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 198, 37811, 35882, 35833, 5427, 2123, 10287, 12064, 390, 3445, 27083, 293, 198, 198, 48, 2731, 13281, 409, 368, 2374, 390, 7704, 5768, 748, 35833, 5427, 2123, 748, 7729, 198, 37811, 198, 198, 2, 8591, 18389, 390, 12900, 261, 77, 32009, 198, 64, 11, 275, 796, 657, 11, 352, 198, 4514, 257, 1279, 1160, 25, 198, 220, 220, 220, 3601, 7, 64, 11, 886, 28, 2430, 8, 220, 220, 220, 220, 220, 220, 1303, 319, 1852, 68, 390, 604, 1658, 10223, 300, 6, 8625, 2762, 424, 452, 12427, 198, 220, 220, 220, 257, 11, 275, 796, 275, 11, 257, 10, 65, 198, 4798, 3419, 198, 198, 361, 257, 6624, 2310, 25, 198, 220, 220, 220, 3601, 7203, 62, 4943, 198, 417, 361, 257, 6624, 1511, 25, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 705, 17772, 611, 6, 384, 3465, 705, 417, 361, 6, 551, 21015, 198, 220, 220, 220, 3601, 7203, 7200, 4943, 198, 17772, 25, 198, 220, 220, 220, 3601, 7, 4943, 4943, 628, 198, 2, 791, 613, 84, 288, 6, 46903, 1098, 35540, 2123, 748, 35833, 5427, 329, 198, 10879, 796, 14631, 20682, 73, 454, 1600, 366, 40932, 1726, 1600, 366, 26114, 43004, 8973, 198, 1640, 266, 287, 2456, 25, 198, 220, 220, 220, 611, 266, 6624, 366, 56, 11329, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 2270, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 443, 705, 9032, 6, 583, 4164, 390, 3297, 494, 390, 8591, 35833, 2375, 11, 198, 17772, 25, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1582, 542, 260, 319, 279, 21612, 288, 504, 443, 705, 17772, 6, 33721, 443, 2270, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 299, 6, 395, 474, 1689, 271, 598, 417, 2634, 288, 504, 8591, 35833, 2375, 329, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 14158, 72, 319, 7736, 786, 443, 374, 390, 8246, 62, 8841, 198, 220, 220, 220, 336, 796, 374, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1427, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 87, 24376, 91, 5324, 50155, 6329, 32590, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1220, 220, 220, 220, 220, 930, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1220, 220, 220, 220, 21044, 91, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1220, 31811, 27713, 91, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1220, 31811, 1395, 220, 220, 930, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1220, 220, 2602, 91, 198, 220, 220, 220, 220, 220, 220, 220, 11593, 220, 1427, 47835, 91, 62, 91, 37405, 59, 62, 198, 220, 220, 220, 44386, 91, 28, 15886, 2602, 91, 2602, 62, 91, 62, 198, 220, 220, 220, 220, 220, 220, 220, 220, 4907, 220, 220, 930, 855, 91, 11593, 220, 4808, 220, 11593, 220, 220, 1220, 91, 15116, 93, 32501, 37405, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 855, 91, 8614, 19510, 8614, 3419, 91, 930, 930, 24376, 24376, 91, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1875, 198, 220, 220, 220, 220, 220, 220, 220, 11593, 220, 220, 930, 855, 91, 220, 4907, 834, 93, 834, 4907, 834, 3467, 91, 2602, 62, 32501, 8728, 4907, 93, 198, 220, 220, 220, 44386, 91, 28, 15886, 15116, 91, 37405, 220, 930, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 4907, 220, 8728, 59, 93, 91, 93, 91, 220, 220, 220, 220, 220, 220, 1220, 93, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3467, 220, 15116, 93, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3467, 31811, 1395, 220, 220, 930, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3467, 31811, 27713, 91, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3467, 220, 220, 220, 21044, 91, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 554, 785, 338, 309, 12, 2996, 33, 1395, 12, 5469, 4687, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3467, 220, 220, 220, 220, 930, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 22953, 414, 2907, 24733, 357, 19, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 87, 24376, 91, 5324, 50155, 6329, 32590, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8728, 37811, 198, 220, 220, 220, 3601, 7, 301, 8, 628, 198, 2, 319, 613, 315, 257, 1046, 72, 7736, 5847, 2837, 288, 504, 8591, 285, 25792, 1326, 4686, 22161, 198, 2, 8358, 8591, 35833, 2375, 329, 7, 72, 796, 657, 26, 1312, 1279, 2456, 13, 13664, 26, 1312, 29577, 288, 504, 288, 6, 2306, 411, 42392, 496, 198, 1640, 1312, 287, 2837, 7, 11925, 7, 10879, 8, 2599, 198, 220, 220, 220, 3601, 7, 10879, 58, 72, 4357, 18896, 7, 10879, 58, 72, 60, 4008, 628, 198, 2, 409, 368, 1154, 390, 2837, 45567, 1556, 26181, 316, 11629, 540, 11, 198, 2, 2123, 38836, 17809, 1351, 68, 28141, 2632, 260, 434, 1582, 75, 22161, 198, 9521, 7, 20, 8, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 657, 11, 352, 11, 362, 11, 513, 11, 604, 198, 9521, 7, 20, 11, 838, 8, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 642, 11, 718, 11, 767, 11, 807, 11, 860, 198, 9521, 7, 15, 11, 838, 11, 513, 8, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 657, 11, 513, 11, 718, 11, 860, 198, 9521, 32590, 940, 11, 532, 3064, 11, 532, 1270, 8, 220, 220, 1303, 532, 940, 11, 532, 1821, 11, 532, 2154, 628, 198, 2, 2369, 537, 2634, 705, 6603, 6, 198, 64, 796, 860, 198, 361, 257, 1279, 838, 25, 198, 220, 220, 220, 1208, 220, 220, 220, 220, 220, 220, 220, 1303, 705, 6603, 6, 497, 277, 4548, 374, 2013, 11, 285, 15152, 1556, 1582, 6513, 271, 299, 2634, 919, 7626, 46593, 14064, 82, 17809, 12064, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 16926, 46, 1058, 317, 2108, 372, 555, 3275, 288, 6, 263, 260, 333, 986, 198, 17772, 25, 198, 220, 220, 220, 3601, 7203, 64, 7418, 2634, 5034, 333, 257, 838, 4943, 198 ]
1.794793
1,306
import time
[ 11748, 640, 628 ]
4.333333
3
"""Setup.""" from setuptools import setup, find_packages inst_reqs = [ "mercantile == 1.1.5", "requests", "geojson", "pillow", "gdal == 2.4.2", "shapely == 1.6.4", "affine == 2.3.0", "numpy == 1.19.0", "rasterio == 1.1.5" ] extra_reqs = {"test": ["pytest", "pytest-cov"]} setup( name="app", version="0.5.0", description=u"Lambda Download and Predict", python_requires=">=3", keywords="AWS-Lambda Python", packages=find_packages(exclude=["ez_setup", "examples", "tests"]), include_package_data=True, zip_safe=False, install_requires=inst_reqs, extras_require=extra_reqs, )
[ 37811, 40786, 526, 15931, 198, 198, 6738, 900, 37623, 10141, 1330, 9058, 11, 1064, 62, 43789, 198, 198, 8625, 62, 42180, 82, 796, 685, 198, 220, 220, 220, 366, 647, 66, 415, 576, 6624, 352, 13, 16, 13, 20, 1600, 198, 220, 220, 220, 366, 8897, 3558, 1600, 198, 220, 220, 220, 366, 469, 13210, 1559, 1600, 198, 220, 220, 220, 366, 27215, 322, 1600, 198, 220, 220, 220, 366, 21287, 282, 6624, 362, 13, 19, 13, 17, 1600, 198, 220, 220, 220, 366, 43358, 306, 6624, 352, 13, 21, 13, 19, 1600, 198, 220, 220, 220, 366, 2001, 500, 6624, 362, 13, 18, 13, 15, 1600, 198, 220, 220, 220, 366, 77, 32152, 6624, 352, 13, 1129, 13, 15, 1600, 220, 198, 220, 220, 220, 366, 81, 1603, 952, 6624, 352, 13, 16, 13, 20, 1, 198, 60, 198, 26086, 62, 42180, 82, 796, 19779, 9288, 1298, 14631, 9078, 9288, 1600, 366, 9078, 9288, 12, 66, 709, 8973, 92, 198, 198, 40406, 7, 198, 220, 220, 220, 1438, 2625, 1324, 1600, 198, 220, 220, 220, 2196, 2625, 15, 13, 20, 13, 15, 1600, 198, 220, 220, 220, 6764, 28, 84, 1, 43, 4131, 6814, 10472, 290, 49461, 1600, 198, 220, 220, 220, 21015, 62, 47911, 2625, 29, 28, 18, 1600, 198, 220, 220, 220, 26286, 2625, 12298, 50, 12, 43, 4131, 6814, 11361, 1600, 198, 220, 220, 220, 10392, 28, 19796, 62, 43789, 7, 1069, 9152, 28, 14692, 8471, 62, 40406, 1600, 366, 1069, 12629, 1600, 366, 41989, 8973, 828, 198, 220, 220, 220, 2291, 62, 26495, 62, 7890, 28, 17821, 11, 198, 220, 220, 220, 19974, 62, 21230, 28, 25101, 11, 198, 220, 220, 220, 2721, 62, 47911, 28, 8625, 62, 42180, 82, 11, 198, 220, 220, 220, 33849, 62, 46115, 28, 26086, 62, 42180, 82, 11, 198, 8, 198 ]
2.15894
302
# Copyright 2022 Yan Yan # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from cumm.core_cc.tensorview_bind import (NVRTCParams, GemmAlgoDesp, ConvAlgoDesp, ConvParams, ConvOpType, ConvLayoutType, ShuffleStrideType, ConvMode, run_nvrtc_conv_kernel, GemmParams, run_nvrtc_gemm_kernel)
[ 2, 15069, 33160, 10642, 10642, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 198, 6738, 10973, 76, 13, 7295, 62, 535, 13, 83, 22854, 1177, 62, 21653, 1330, 357, 45, 13024, 4825, 10044, 4105, 11, 15669, 76, 2348, 2188, 5960, 79, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 34872, 2348, 2188, 5960, 79, 11, 34872, 10044, 4105, 11, 34872, 18257, 6030, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 34872, 32517, 6030, 11, 911, 18137, 1273, 13154, 6030, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 34872, 19076, 11, 1057, 62, 48005, 17034, 66, 62, 42946, 62, 33885, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15669, 76, 10044, 4105, 11, 1057, 62, 48005, 17034, 66, 62, 24090, 76, 62, 33885, 8, 198 ]
2.380952
399
#!/bin/python3 # author: Jan Hybs from loguru import logger from flask_restful import Resource from cihpc.common.utils import strings from cihpc.common.utils import datautils as du
[ 2, 48443, 8800, 14, 29412, 18, 198, 2, 1772, 25, 2365, 6707, 1443, 198, 198, 6738, 2604, 14717, 1330, 49706, 628, 198, 6738, 42903, 62, 2118, 913, 1330, 20857, 198, 6738, 269, 4449, 14751, 13, 11321, 13, 26791, 1330, 13042, 198, 6738, 269, 4449, 14751, 13, 11321, 13, 26791, 1330, 1366, 26791, 355, 7043, 628 ]
3.363636
55
from spinn_machine.utilities.progress_bar import ProgressBar from spinn_front_end_common.abstract_models.\ abstract_data_specable_vertex import AbstractDataSpecableVertex from spinn_front_end_common.utilities.utility_objs.executable_targets import \ ExecutableTargets from spinn_front_end_common.utilities import exceptions class FrontEndCommonPartitionableGraphDataSpecificationWriter(object): """ Executes a partitionable graph data specification generation """ def __call__( self, placements, graph_mapper, tags, executable_finder, partitioned_graph, partitionable_graph, routing_infos, hostname, report_default_directory, write_text_specs, app_data_runtime_folder): """ generates the dsg for the graph. :return: """ # iterate though subvertices and call generate_data_spec for each # vertex executable_targets = ExecutableTargets() dsg_targets = dict() # create a progress bar for end users progress_bar = ProgressBar(len(list(placements.placements)), "Generating data specifications") for placement in placements.placements: associated_vertex = graph_mapper.get_vertex_from_subvertex( placement.subvertex) self._generate_data_spec_for_subvertices( placement, associated_vertex, executable_targets, dsg_targets, graph_mapper, tags, executable_finder, partitioned_graph, partitionable_graph, routing_infos, hostname, report_default_directory, write_text_specs, app_data_runtime_folder) progress_bar.update() # finish the progress bar progress_bar.end() return {'executable_targets': executable_targets, 'dsg_targets': dsg_targets}
[ 6738, 599, 3732, 62, 30243, 13, 315, 2410, 13, 33723, 62, 5657, 1330, 18387, 10374, 198, 198, 6738, 599, 3732, 62, 8534, 62, 437, 62, 11321, 13, 397, 8709, 62, 27530, 13, 59, 198, 220, 220, 220, 12531, 62, 7890, 62, 16684, 540, 62, 332, 16886, 1330, 27741, 6601, 22882, 540, 13414, 16886, 198, 6738, 599, 3732, 62, 8534, 62, 437, 62, 11321, 13, 315, 2410, 13, 315, 879, 62, 672, 8457, 13, 18558, 18187, 62, 83, 853, 1039, 1330, 3467, 198, 220, 220, 220, 8393, 18187, 51, 853, 1039, 198, 6738, 599, 3732, 62, 8534, 62, 437, 62, 11321, 13, 315, 2410, 1330, 13269, 628, 198, 4871, 8880, 12915, 17227, 7841, 653, 540, 37065, 6601, 22882, 2649, 34379, 7, 15252, 2599, 198, 220, 220, 220, 37227, 8393, 1769, 257, 18398, 540, 4823, 1366, 20855, 5270, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 11593, 13345, 834, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 11, 21957, 3196, 11, 4823, 62, 76, 11463, 11, 15940, 11, 28883, 62, 22805, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18398, 276, 62, 34960, 11, 18398, 540, 62, 34960, 11, 28166, 62, 10745, 418, 11, 2583, 3672, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 989, 62, 12286, 62, 34945, 11, 3551, 62, 5239, 62, 4125, 6359, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 598, 62, 7890, 62, 43282, 62, 43551, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 18616, 262, 288, 45213, 329, 262, 4823, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 11629, 378, 996, 850, 1851, 1063, 290, 869, 7716, 62, 7890, 62, 16684, 329, 1123, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 37423, 198, 220, 220, 220, 220, 220, 220, 220, 28883, 62, 83, 853, 1039, 796, 8393, 18187, 51, 853, 1039, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 288, 45213, 62, 83, 853, 1039, 796, 8633, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 2251, 257, 4371, 2318, 329, 886, 2985, 198, 220, 220, 220, 220, 220, 220, 220, 4371, 62, 5657, 796, 18387, 10374, 7, 11925, 7, 4868, 7, 489, 28613, 13, 489, 28613, 36911, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 8645, 803, 1366, 20640, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 329, 13127, 287, 21957, 3196, 13, 489, 28613, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3917, 62, 332, 16886, 796, 4823, 62, 76, 11463, 13, 1136, 62, 332, 16886, 62, 6738, 62, 7266, 332, 16886, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13127, 13, 7266, 332, 16886, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 8612, 378, 62, 7890, 62, 16684, 62, 1640, 62, 7266, 1851, 1063, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13127, 11, 3917, 62, 332, 16886, 11, 28883, 62, 83, 853, 1039, 11, 288, 45213, 62, 83, 853, 1039, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4823, 62, 76, 11463, 11, 15940, 11, 28883, 62, 22805, 11, 18398, 276, 62, 34960, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18398, 540, 62, 34960, 11, 28166, 62, 10745, 418, 11, 2583, 3672, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 989, 62, 12286, 62, 34945, 11, 3551, 62, 5239, 62, 4125, 6359, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 598, 62, 7890, 62, 43282, 62, 43551, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4371, 62, 5657, 13, 19119, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 5461, 262, 4371, 2318, 198, 220, 220, 220, 220, 220, 220, 220, 4371, 62, 5657, 13, 437, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 1391, 6, 18558, 18187, 62, 83, 853, 1039, 10354, 28883, 62, 83, 853, 1039, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 9310, 70, 62, 83, 853, 1039, 10354, 288, 45213, 62, 83, 853, 1039, 92, 198 ]
2.395965
793
# -*- coding: utf-8 -*- import io, json from pathlib import Path class ColorRegistry: """ Open, read and store color names maps Default shipped color registry is used on loading if no specific path is given to ``load`` method. """ def load(self, path=None): """ Load registry and set maps Keyword args: path (pathlib.Path): Optionnal path object to open instead of default of from ``ColorRegistry.map_path``. """ names = self.get_registry_file(path or self.map_path) self.name_map, self.hexa_map = self.get_registry_maps(names) def get_registry_file(self, path): """ Open registry file from given path Args: path (pathlib.Path): Path object to open. Returns: list: List of map items from registry. """ with io.open(str(path), 'r') as fp: registry_map = json.load(fp) return registry_map def get_registry_maps(self, items): """ From registry items build maps, one indexed on name, another one indexed on color. Args: items (list): Registry items Returns: tuple: First item is the names map, second item is the colors map. Both are list object. """ name_map = items # Reverse keys/values so map is indexed on hexa hexa_map = list(zip([v for k,v in items], [k for k,v in items])) return name_map, hexa_map
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 11748, 33245, 11, 33918, 198, 198, 6738, 3108, 8019, 1330, 10644, 628, 198, 4871, 5315, 8081, 4592, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 4946, 11, 1100, 290, 3650, 3124, 3891, 8739, 628, 220, 220, 220, 15161, 14338, 3124, 20478, 318, 973, 319, 11046, 611, 645, 2176, 3108, 318, 198, 220, 220, 220, 1813, 284, 7559, 2220, 15506, 2446, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 3440, 7, 944, 11, 3108, 28, 14202, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 8778, 20478, 290, 900, 8739, 628, 220, 220, 220, 220, 220, 220, 220, 7383, 4775, 26498, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3108, 357, 6978, 8019, 13, 15235, 2599, 16018, 77, 282, 3108, 2134, 284, 1280, 2427, 286, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4277, 286, 422, 7559, 10258, 8081, 4592, 13, 8899, 62, 6978, 15506, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 3891, 796, 2116, 13, 1136, 62, 2301, 4592, 62, 7753, 7, 6978, 393, 2116, 13, 8899, 62, 6978, 8, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 3672, 62, 8899, 11, 2116, 13, 258, 27865, 62, 8899, 796, 2116, 13, 1136, 62, 2301, 4592, 62, 31803, 7, 14933, 8, 628, 220, 220, 220, 825, 651, 62, 2301, 4592, 62, 7753, 7, 944, 11, 3108, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 4946, 20478, 2393, 422, 1813, 3108, 628, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3108, 357, 6978, 8019, 13, 15235, 2599, 10644, 2134, 284, 1280, 13, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1351, 25, 7343, 286, 3975, 3709, 422, 20478, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 351, 33245, 13, 9654, 7, 2536, 7, 6978, 828, 705, 81, 11537, 355, 277, 79, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20478, 62, 8899, 796, 33918, 13, 2220, 7, 46428, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 20478, 62, 8899, 628, 220, 220, 220, 825, 651, 62, 2301, 4592, 62, 31803, 7, 944, 11, 3709, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 3574, 20478, 3709, 1382, 8739, 11, 530, 41497, 319, 1438, 11, 1194, 198, 220, 220, 220, 220, 220, 220, 220, 530, 41497, 319, 3124, 13, 628, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3709, 357, 4868, 2599, 33432, 3709, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 46545, 25, 3274, 2378, 318, 262, 3891, 3975, 11, 1218, 2378, 318, 262, 7577, 3975, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5747, 389, 1351, 2134, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1438, 62, 8899, 796, 3709, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 31849, 8251, 14, 27160, 523, 3975, 318, 41497, 319, 17910, 64, 198, 220, 220, 220, 220, 220, 220, 220, 17910, 64, 62, 8899, 796, 1351, 7, 13344, 26933, 85, 329, 479, 11, 85, 287, 3709, 4357, 685, 74, 329, 479, 11, 85, 287, 3709, 60, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 1438, 62, 8899, 11, 17910, 64, 62, 8899, 198 ]
2.305847
667
#-*-coding:utf-8-*- from futuquant import * import pandas if __name__ == '__main__': GetMulHtryKl().test1()
[ 2, 12, 9, 12, 66, 7656, 25, 40477, 12, 23, 12, 9, 12, 198, 198, 6738, 13294, 84, 40972, 1330, 1635, 198, 11748, 19798, 292, 628, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 3497, 44, 377, 39, 28311, 42, 75, 22446, 9288, 16, 3419 ]
2.169811
53
#!/usr/bin/env python3 # Copyright (c) 2021 oatsu """ 連続音歌詞を空白で区切って単独音にするUTAUプラグイン """ import utaupy def ren2tan(plugin): """ 歌詞を空白で区切って、空白より後ろ側だけ残す。 """ for note in plugin.notes: note.lyric = note.lyric.split()[-1] if __name__ == '__main__': utaupy.utauplugin.run(ren2tan)
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 2, 15069, 357, 66, 8, 33448, 267, 19231, 198, 37811, 198, 34460, 96, 163, 114, 21253, 253, 111, 29826, 234, 164, 102, 252, 31758, 163, 102, 118, 163, 50159, 30640, 44293, 118, 26344, 229, 33180, 28134, 39355, 246, 45379, 105, 165, 253, 111, 28618, 33623, 25748, 3843, 26830, 30965, 9263, 26095, 11482, 6527, 198, 37811, 628, 198, 11748, 3384, 559, 9078, 628, 198, 4299, 8851, 17, 38006, 7, 33803, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 10545, 255, 234, 164, 102, 252, 31758, 163, 102, 118, 163, 50159, 30640, 44293, 118, 26344, 229, 33180, 28134, 23513, 163, 102, 118, 163, 50159, 1792, 230, 28255, 36181, 234, 1792, 235, 161, 223, 112, 46777, 2515, 239, 162, 106, 233, 33623, 16764, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 329, 3465, 287, 13877, 13, 17815, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3465, 13, 306, 1173, 796, 3465, 13, 306, 1173, 13, 35312, 3419, 58, 12, 16, 60, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 3384, 559, 9078, 13, 315, 559, 33803, 13, 5143, 7, 918, 17, 38006, 8, 198 ]
1.517241
203
import cupy def empty(shape, dtype=float): """Returns an array without initializing the elements. This function currently does not support ``order`` option. Args: shape (tuple of ints): Dimensionalities of the array. dtype: Data type specifier. Returns: cupy.ndarray: A new array with elements not initialized. .. seealso:: :func:`numpy.empty` """ # TODO(beam2d): Support ordering option return cupy.ndarray(shape, dtype=dtype) def empty_like(a, dtype=None): """Returns a new array with same shape and dtype of a given array. This function currently does not support ``order`` and ``subok`` options. Args: a (cupy.ndarray): Base array. dtype: Data type specifier. The data type of ``a`` is used by default. Returns: cupy.ndarray: A new array with same shape and dtype of ``a`` with elements not initialized. .. seealso:: :func:`numpy.empty_like` """ # TODO(beam2d): Support ordering option if dtype is None: dtype = a.dtype return empty(a.shape, dtype=dtype) def eye(N, M=None, k=0, dtype=float): """Returns a 2-D array with ones on the diagonals and zeros elsewhere. Args: N (int): Number of rows. M (int): Number of columns. M == N by default. k (int): Index of the diagonal. Zero indicates the main diagonal, a positive index an upper diagonal, and a negative index a lower diagonal. dtype: Data type specifier. Returns: cupy.ndarray: A 2-D array with given diagonals filled with ones and zeros elsewhere. .. seealso:: :func:`numpy.eye` """ if M is None: M = N ret = zeros((N, M), dtype) ret.diagonal(k)[:] = 1 return ret def identity(n, dtype=float): """Returns a 2-D identity array. It is equivalent to ``eye(n, n, dtype)``. Args: n (int): Number of rows and columns. dtype: Data type specifier. Returns: cupy.ndarray: A 2-D identity array. .. seealso:: :func:`numpy.identity` """ return eye(n, dtype=dtype) def ones(shape, dtype=float): """Returns a new array of given shape and dtype, filled with ones. This function currently does not support ``order`` option. Args: shape (tuple of ints): Dimensionalities of the array. dtype: Data type specifier. Returns: cupy.ndarray: An array filled with ones. .. seealso:: :func:`numpy.ones` """ # TODO(beam2d): Support ordering option return full(shape, 1, dtype) def ones_like(a, dtype=None): """Returns an array of ones with same shape and dtype as a given array. This function currently does not support ``order`` and ``subok`` options. Args: a (cupy.ndarray): Base array. dtype: Data type specifier. The dtype of ``a`` is used by default. Returns: cupy.ndarray: An array filled with ones. .. seealso:: :func:`numpy.ones_like` """ # TODO(beam2d): Support ordering option if dtype is None: dtype = a.dtype return ones(a.shape, dtype) def zeros(shape, dtype=float): """Returns a new array of given shape and dtype, filled with zeros. This function currently does not support ``order`` option. Args: shape (tuple of ints): Dimensionalities of the array. dtype: Data type specifier. Returns: cupy.ndarray: An array filled with ones. .. seealso:: :func:`numpy.zeros` """ # TODO(beam2d): Support ordering option a = empty(shape, dtype) a.data.memset(0, a.nbytes) return a def zeros_like(a, dtype=None): """Returns an array of zeros with same shape and dtype as a given array. This function currently does not support ``order`` and ``subok`` options. Args: a (cupy.ndarray): Base array. dtype: Data type specifier. The dtype of ``a`` is used by default. Returns: cupy.ndarray: An array filled with ones. .. seealso:: :func:`numpy.zeros_like` """ # TODO(beam2d): Support ordering option if dtype is None: dtype = a.dtype return zeros(a.shape, dtype=dtype) def full(shape, fill_value, dtype=None): """Returns a new array of given shape and dtype, filled with a given value. This function currently does not support ``order`` option. Args: shape (tuple of ints): Dimensionalities of the array. fill_value: A scalar value to fill a new array. dtype: Data type specifier. Returns: cupy.ndarray: An array filled with ``fill_value``. .. seealso:: :func:`numpy.full` """ # TODO(beam2d): Support ordering option a = empty(shape, dtype) a.fill(fill_value) return a def full_like(a, fill_value, dtype=None): """Returns a full array with same shape and dtype as a given array. This function currently does not support ``order`` and ``subok`` options. Args: a (cupy.ndarray): Base array. fill_value: A scalar value to fill a new array. dtype: Data type specifier. The dtype of ``a`` is used by default. Returns: cupy.ndarray: An array filled with ``fill_value``. .. seealso:: :func:`numpy.full_like` """ # TODO(beam2d): Support ordering option if dtype is None: dtype = a.dtype return full(a.shape, fill_value, dtype)
[ 11748, 6508, 88, 628, 198, 4299, 6565, 7, 43358, 11, 288, 4906, 28, 22468, 2599, 198, 220, 220, 220, 37227, 35561, 281, 7177, 1231, 4238, 2890, 262, 4847, 13, 628, 220, 220, 220, 770, 2163, 3058, 857, 407, 1104, 7559, 2875, 15506, 3038, 13, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5485, 357, 83, 29291, 286, 493, 82, 2599, 360, 16198, 871, 286, 262, 7177, 13, 198, 220, 220, 220, 220, 220, 220, 220, 288, 4906, 25, 6060, 2099, 1020, 7483, 13, 628, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 6508, 88, 13, 358, 18747, 25, 317, 649, 7177, 351, 4847, 407, 23224, 13, 628, 220, 220, 220, 11485, 766, 14508, 3712, 1058, 20786, 25, 63, 77, 32152, 13, 28920, 63, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 1303, 16926, 46, 7, 40045, 17, 67, 2599, 7929, 16216, 3038, 198, 220, 220, 220, 1441, 6508, 88, 13, 358, 18747, 7, 43358, 11, 288, 4906, 28, 67, 4906, 8, 628, 198, 4299, 6565, 62, 2339, 7, 64, 11, 288, 4906, 28, 14202, 2599, 198, 220, 220, 220, 37227, 35561, 257, 649, 7177, 351, 976, 5485, 290, 288, 4906, 286, 257, 1813, 7177, 13, 628, 220, 220, 220, 770, 2163, 3058, 857, 407, 1104, 7559, 2875, 15506, 290, 7559, 7266, 482, 15506, 3689, 13, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 257, 357, 25244, 88, 13, 358, 18747, 2599, 7308, 7177, 13, 198, 220, 220, 220, 220, 220, 220, 220, 288, 4906, 25, 6060, 2099, 1020, 7483, 13, 383, 1366, 2099, 286, 7559, 64, 15506, 318, 973, 416, 4277, 13, 628, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 6508, 88, 13, 358, 18747, 25, 317, 649, 7177, 351, 976, 5485, 290, 288, 4906, 286, 7559, 64, 15506, 351, 198, 220, 220, 220, 220, 220, 220, 220, 4847, 407, 23224, 13, 628, 220, 220, 220, 11485, 766, 14508, 3712, 1058, 20786, 25, 63, 77, 32152, 13, 28920, 62, 2339, 63, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 1303, 16926, 46, 7, 40045, 17, 67, 2599, 7929, 16216, 3038, 198, 220, 220, 220, 611, 288, 4906, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 288, 4906, 796, 257, 13, 67, 4906, 198, 220, 220, 220, 1441, 6565, 7, 64, 13, 43358, 11, 288, 4906, 28, 67, 4906, 8, 628, 198, 4299, 4151, 7, 45, 11, 337, 28, 14202, 11, 479, 28, 15, 11, 288, 4906, 28, 22468, 2599, 198, 220, 220, 220, 37227, 35561, 257, 362, 12, 35, 7177, 351, 3392, 319, 262, 2566, 1840, 874, 290, 1976, 27498, 8057, 13, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 399, 357, 600, 2599, 7913, 286, 15274, 13, 198, 220, 220, 220, 220, 220, 220, 220, 337, 357, 600, 2599, 7913, 286, 15180, 13, 337, 6624, 399, 416, 4277, 13, 198, 220, 220, 220, 220, 220, 220, 220, 479, 357, 600, 2599, 12901, 286, 262, 40039, 13, 12169, 9217, 262, 1388, 40039, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 257, 3967, 6376, 281, 6727, 40039, 11, 290, 257, 4633, 6376, 257, 2793, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 40039, 13, 198, 220, 220, 220, 220, 220, 220, 220, 288, 4906, 25, 6060, 2099, 1020, 7483, 13, 628, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 6508, 88, 13, 358, 18747, 25, 317, 362, 12, 35, 7177, 351, 1813, 2566, 1840, 874, 5901, 351, 3392, 290, 198, 220, 220, 220, 220, 220, 220, 220, 1976, 27498, 8057, 13, 628, 220, 220, 220, 11485, 766, 14508, 3712, 1058, 20786, 25, 63, 77, 32152, 13, 25379, 63, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 337, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 337, 796, 399, 198, 220, 220, 220, 1005, 796, 1976, 27498, 19510, 45, 11, 337, 828, 288, 4906, 8, 198, 220, 220, 220, 1005, 13, 10989, 27923, 7, 74, 38381, 47715, 796, 352, 198, 220, 220, 220, 1441, 1005, 628, 198, 4299, 5369, 7, 77, 11, 288, 4906, 28, 22468, 2599, 198, 220, 220, 220, 37227, 35561, 257, 362, 12, 35, 5369, 7177, 13, 628, 220, 220, 220, 632, 318, 7548, 284, 7559, 25379, 7, 77, 11, 299, 11, 288, 4906, 8, 15506, 13, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 299, 357, 600, 2599, 7913, 286, 15274, 290, 15180, 13, 198, 220, 220, 220, 220, 220, 220, 220, 288, 4906, 25, 6060, 2099, 1020, 7483, 13, 628, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 6508, 88, 13, 358, 18747, 25, 317, 362, 12, 35, 5369, 7177, 13, 628, 220, 220, 220, 11485, 766, 14508, 3712, 1058, 20786, 25, 63, 77, 32152, 13, 738, 414, 63, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 4151, 7, 77, 11, 288, 4906, 28, 67, 4906, 8, 628, 198, 4299, 3392, 7, 43358, 11, 288, 4906, 28, 22468, 2599, 198, 220, 220, 220, 37227, 35561, 257, 649, 7177, 286, 1813, 5485, 290, 288, 4906, 11, 5901, 351, 3392, 13, 628, 220, 220, 220, 770, 2163, 3058, 857, 407, 1104, 7559, 2875, 15506, 3038, 13, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5485, 357, 83, 29291, 286, 493, 82, 2599, 360, 16198, 871, 286, 262, 7177, 13, 198, 220, 220, 220, 220, 220, 220, 220, 288, 4906, 25, 6060, 2099, 1020, 7483, 13, 628, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 6508, 88, 13, 358, 18747, 25, 1052, 7177, 5901, 351, 3392, 13, 628, 220, 220, 220, 11485, 766, 14508, 3712, 1058, 20786, 25, 63, 77, 32152, 13, 1952, 63, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 1303, 16926, 46, 7, 40045, 17, 67, 2599, 7929, 16216, 3038, 198, 220, 220, 220, 1441, 1336, 7, 43358, 11, 352, 11, 288, 4906, 8, 628, 198, 4299, 3392, 62, 2339, 7, 64, 11, 288, 4906, 28, 14202, 2599, 198, 220, 220, 220, 37227, 35561, 281, 7177, 286, 3392, 351, 976, 5485, 290, 288, 4906, 355, 257, 1813, 7177, 13, 628, 220, 220, 220, 770, 2163, 3058, 857, 407, 1104, 7559, 2875, 15506, 290, 7559, 7266, 482, 15506, 3689, 13, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 257, 357, 25244, 88, 13, 358, 18747, 2599, 7308, 7177, 13, 198, 220, 220, 220, 220, 220, 220, 220, 288, 4906, 25, 6060, 2099, 1020, 7483, 13, 383, 288, 4906, 286, 7559, 64, 15506, 318, 973, 416, 4277, 13, 628, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 6508, 88, 13, 358, 18747, 25, 1052, 7177, 5901, 351, 3392, 13, 628, 220, 220, 220, 11485, 766, 14508, 3712, 1058, 20786, 25, 63, 77, 32152, 13, 1952, 62, 2339, 63, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 1303, 16926, 46, 7, 40045, 17, 67, 2599, 7929, 16216, 3038, 198, 220, 220, 220, 611, 288, 4906, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 288, 4906, 796, 257, 13, 67, 4906, 198, 220, 220, 220, 1441, 3392, 7, 64, 13, 43358, 11, 288, 4906, 8, 628, 198, 4299, 1976, 27498, 7, 43358, 11, 288, 4906, 28, 22468, 2599, 198, 220, 220, 220, 37227, 35561, 257, 649, 7177, 286, 1813, 5485, 290, 288, 4906, 11, 5901, 351, 1976, 27498, 13, 628, 220, 220, 220, 770, 2163, 3058, 857, 407, 1104, 7559, 2875, 15506, 3038, 13, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5485, 357, 83, 29291, 286, 493, 82, 2599, 360, 16198, 871, 286, 262, 7177, 13, 198, 220, 220, 220, 220, 220, 220, 220, 288, 4906, 25, 6060, 2099, 1020, 7483, 13, 628, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 6508, 88, 13, 358, 18747, 25, 1052, 7177, 5901, 351, 3392, 13, 628, 220, 220, 220, 11485, 766, 14508, 3712, 1058, 20786, 25, 63, 77, 32152, 13, 9107, 418, 63, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 1303, 16926, 46, 7, 40045, 17, 67, 2599, 7929, 16216, 3038, 198, 220, 220, 220, 257, 796, 6565, 7, 43358, 11, 288, 4906, 8, 198, 220, 220, 220, 257, 13, 7890, 13, 11883, 2617, 7, 15, 11, 257, 13, 77, 33661, 8, 198, 220, 220, 220, 1441, 257, 628, 198, 4299, 1976, 27498, 62, 2339, 7, 64, 11, 288, 4906, 28, 14202, 2599, 198, 220, 220, 220, 37227, 35561, 281, 7177, 286, 1976, 27498, 351, 976, 5485, 290, 288, 4906, 355, 257, 1813, 7177, 13, 628, 220, 220, 220, 770, 2163, 3058, 857, 407, 1104, 7559, 2875, 15506, 290, 7559, 7266, 482, 15506, 3689, 13, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 257, 357, 25244, 88, 13, 358, 18747, 2599, 7308, 7177, 13, 198, 220, 220, 220, 220, 220, 220, 220, 288, 4906, 25, 6060, 2099, 1020, 7483, 13, 383, 288, 4906, 286, 7559, 64, 15506, 318, 973, 416, 4277, 13, 628, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 6508, 88, 13, 358, 18747, 25, 1052, 7177, 5901, 351, 3392, 13, 628, 220, 220, 220, 11485, 766, 14508, 3712, 1058, 20786, 25, 63, 77, 32152, 13, 9107, 418, 62, 2339, 63, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 1303, 16926, 46, 7, 40045, 17, 67, 2599, 7929, 16216, 3038, 198, 220, 220, 220, 611, 288, 4906, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 288, 4906, 796, 257, 13, 67, 4906, 198, 220, 220, 220, 1441, 1976, 27498, 7, 64, 13, 43358, 11, 288, 4906, 28, 67, 4906, 8, 628, 198, 4299, 1336, 7, 43358, 11, 6070, 62, 8367, 11, 288, 4906, 28, 14202, 2599, 198, 220, 220, 220, 37227, 35561, 257, 649, 7177, 286, 1813, 5485, 290, 288, 4906, 11, 5901, 351, 257, 1813, 1988, 13, 628, 220, 220, 220, 770, 2163, 3058, 857, 407, 1104, 7559, 2875, 15506, 3038, 13, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5485, 357, 83, 29291, 286, 493, 82, 2599, 360, 16198, 871, 286, 262, 7177, 13, 198, 220, 220, 220, 220, 220, 220, 220, 6070, 62, 8367, 25, 317, 16578, 283, 1988, 284, 6070, 257, 649, 7177, 13, 198, 220, 220, 220, 220, 220, 220, 220, 288, 4906, 25, 6060, 2099, 1020, 7483, 13, 628, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 6508, 88, 13, 358, 18747, 25, 1052, 7177, 5901, 351, 7559, 20797, 62, 8367, 15506, 13, 628, 220, 220, 220, 11485, 766, 14508, 3712, 1058, 20786, 25, 63, 77, 32152, 13, 12853, 63, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 1303, 16926, 46, 7, 40045, 17, 67, 2599, 7929, 16216, 3038, 198, 220, 220, 220, 257, 796, 6565, 7, 43358, 11, 288, 4906, 8, 198, 220, 220, 220, 257, 13, 20797, 7, 20797, 62, 8367, 8, 198, 220, 220, 220, 1441, 257, 628, 198, 4299, 1336, 62, 2339, 7, 64, 11, 6070, 62, 8367, 11, 288, 4906, 28, 14202, 2599, 198, 220, 220, 220, 37227, 35561, 257, 1336, 7177, 351, 976, 5485, 290, 288, 4906, 355, 257, 1813, 7177, 13, 628, 220, 220, 220, 770, 2163, 3058, 857, 407, 1104, 7559, 2875, 15506, 290, 7559, 7266, 482, 15506, 3689, 13, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 257, 357, 25244, 88, 13, 358, 18747, 2599, 7308, 7177, 13, 198, 220, 220, 220, 220, 220, 220, 220, 6070, 62, 8367, 25, 317, 16578, 283, 1988, 284, 6070, 257, 649, 7177, 13, 198, 220, 220, 220, 220, 220, 220, 220, 288, 4906, 25, 6060, 2099, 1020, 7483, 13, 383, 288, 4906, 286, 7559, 64, 15506, 318, 973, 416, 4277, 13, 628, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 6508, 88, 13, 358, 18747, 25, 1052, 7177, 5901, 351, 7559, 20797, 62, 8367, 15506, 13, 628, 220, 220, 220, 11485, 766, 14508, 3712, 1058, 20786, 25, 63, 77, 32152, 13, 12853, 62, 2339, 63, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 1303, 16926, 46, 7, 40045, 17, 67, 2599, 7929, 16216, 3038, 198, 220, 220, 220, 611, 288, 4906, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 288, 4906, 796, 257, 13, 67, 4906, 198, 220, 220, 220, 1441, 1336, 7, 64, 13, 43358, 11, 6070, 62, 8367, 11, 288, 4906, 8, 198 ]
2.563593
2,115
from __future__ import absolute_import from __future__ import division from __future__ import print_function import logging import argparse import json from functools import reduce import tensorflow as tf from tensorflow.python.lib.io.file_io import FileIO # pylint: disable=E0611 from sciencebeam_gym.trainer.data.examples import ( get_matching_files, read_examples ) from sciencebeam_gym.preprocess.color_map import ( parse_color_map_from_file ) from sciencebeam_gym.tools.calculate_class_weights import ( tf_calculate_efnet_weights_for_frequency_by_label ) from sciencebeam_gym.trainer.models.pix2pix.tf_utils import ( find_nearest_centroid_indices ) from sciencebeam_gym.preprocess.preprocessing_utils import ( parse_page_range ) from sciencebeam_gym.trainer.models.pix2pix.pix2pix_core import ( BaseLoss, ALL_BASE_LOSS, create_pix2pix_model, create_other_summaries ) from sciencebeam_gym.trainer.models.pix2pix.evaluate import ( evaluate_separate_channels, evaluate_predictions, evaluation_summary ) from sciencebeam_gym.model_utils.channels import ( calculate_color_masks ) UNKNOWN_COLOR = (255, 255, 255) UNKNOWN_LABEL = 'unknown' DEFAULT_UNKNOWN_CLASS_WEIGHT = 0.1 class GraphReferences(object): """Holder of base tensors used for training model using common task.""" def create_model(argv=None): """Factory method that creates model to be used by generic task.py.""" parser = model_args_parser() args, task_args = parser.parse_known_args(argv) return Model(args), task_args
[ 6738, 11593, 37443, 834, 1330, 4112, 62, 11748, 198, 6738, 11593, 37443, 834, 1330, 7297, 198, 6738, 11593, 37443, 834, 1330, 3601, 62, 8818, 198, 198, 11748, 18931, 198, 11748, 1822, 29572, 198, 11748, 33918, 198, 6738, 1257, 310, 10141, 1330, 4646, 198, 198, 11748, 11192, 273, 11125, 355, 48700, 628, 198, 6738, 11192, 273, 11125, 13, 29412, 13, 8019, 13, 952, 13, 7753, 62, 952, 1330, 9220, 9399, 220, 1303, 279, 2645, 600, 25, 15560, 28, 36, 3312, 1157, 198, 198, 6738, 3783, 40045, 62, 1360, 76, 13, 2213, 10613, 13, 7890, 13, 1069, 12629, 1330, 357, 198, 220, 220, 220, 651, 62, 15699, 278, 62, 16624, 11, 198, 220, 220, 220, 1100, 62, 1069, 12629, 198, 8, 198, 198, 6738, 3783, 40045, 62, 1360, 76, 13, 3866, 14681, 13, 8043, 62, 8899, 1330, 357, 198, 220, 220, 220, 21136, 62, 8043, 62, 8899, 62, 6738, 62, 7753, 198, 8, 198, 198, 6738, 3783, 40045, 62, 1360, 76, 13, 31391, 13, 9948, 3129, 378, 62, 4871, 62, 43775, 1330, 357, 198, 220, 220, 220, 48700, 62, 9948, 3129, 378, 62, 891, 3262, 62, 43775, 62, 1640, 62, 35324, 62, 1525, 62, 18242, 198, 8, 198, 198, 6738, 3783, 40045, 62, 1360, 76, 13, 2213, 10613, 13, 27530, 13, 79, 844, 17, 79, 844, 13, 27110, 62, 26791, 1330, 357, 198, 220, 220, 220, 1064, 62, 710, 12423, 62, 1087, 3882, 62, 521, 1063, 198, 8, 198, 198, 6738, 3783, 40045, 62, 1360, 76, 13, 3866, 14681, 13, 3866, 36948, 62, 26791, 1330, 357, 198, 220, 220, 220, 21136, 62, 7700, 62, 9521, 198, 8, 198, 198, 6738, 3783, 40045, 62, 1360, 76, 13, 2213, 10613, 13, 27530, 13, 79, 844, 17, 79, 844, 13, 79, 844, 17, 79, 844, 62, 7295, 1330, 357, 198, 220, 220, 220, 7308, 43, 793, 11, 198, 220, 220, 220, 11096, 62, 33, 11159, 62, 43, 18420, 11, 198, 220, 220, 220, 2251, 62, 79, 844, 17, 79, 844, 62, 19849, 11, 198, 220, 220, 220, 2251, 62, 847, 62, 82, 13929, 3166, 198, 8, 198, 198, 6738, 3783, 40045, 62, 1360, 76, 13, 2213, 10613, 13, 27530, 13, 79, 844, 17, 79, 844, 13, 49786, 1330, 357, 198, 220, 220, 220, 13446, 62, 25512, 378, 62, 354, 8961, 11, 198, 220, 220, 220, 13446, 62, 28764, 9278, 11, 198, 220, 220, 220, 12660, 62, 49736, 198, 8, 198, 198, 6738, 3783, 40045, 62, 1360, 76, 13, 19849, 62, 26791, 13, 354, 8961, 1330, 357, 198, 220, 220, 220, 15284, 62, 8043, 62, 5356, 591, 198, 8, 628, 198, 4944, 44706, 62, 46786, 796, 357, 13381, 11, 14280, 11, 14280, 8, 198, 4944, 44706, 62, 48780, 3698, 796, 705, 34680, 6, 198, 198, 7206, 38865, 62, 4944, 44706, 62, 31631, 62, 8845, 9947, 796, 657, 13, 16, 628, 628, 198, 4871, 29681, 19927, 7, 15252, 2599, 198, 220, 220, 220, 37227, 39, 19892, 286, 2779, 11192, 669, 973, 329, 3047, 2746, 1262, 2219, 4876, 526, 15931, 628, 628, 628, 628, 628, 628, 628, 628, 628, 628, 628, 198, 198, 4299, 2251, 62, 19849, 7, 853, 85, 28, 14202, 2599, 198, 220, 220, 220, 37227, 22810, 2446, 326, 8075, 2746, 284, 307, 973, 416, 14276, 4876, 13, 9078, 526, 15931, 198, 220, 220, 220, 30751, 796, 2746, 62, 22046, 62, 48610, 3419, 198, 220, 220, 220, 26498, 11, 4876, 62, 22046, 796, 30751, 13, 29572, 62, 4002, 62, 22046, 7, 853, 85, 8, 198, 220, 220, 220, 1441, 9104, 7, 22046, 828, 4876, 62, 22046, 198 ]
2.757315
581
import aiohttp.web from functools import wraps import logging from typing import Callable import json import dataclasses import ray import ray.dashboard.utils as dashboard_utils from ray._private.job_manager import JobManager from ray._private.runtime_env.packaging import (package_exists, upload_package_to_gcs) from ray.dashboard.modules.job.data_types import ( GetPackageResponse, JobStatus, JobSubmitRequest, JobSubmitResponse, JobStatusResponse, JobLogsResponse) logger = logging.getLogger(__name__) routes = dashboard_utils.ClassMethodRouteTable RAY_INTERNAL_JOBS_NAMESPACE = "_ray_internal_jobs_" JOBS_API_PREFIX = "/api/jobs/" JOBS_API_ROUTE_LOGS = JOBS_API_PREFIX + "logs" JOBS_API_ROUTE_SUBMIT = JOBS_API_PREFIX + "submit" JOBS_API_ROUTE_STATUS = JOBS_API_PREFIX + "status" JOBS_API_ROUTE_PACKAGE = JOBS_API_PREFIX + "package"
[ 11748, 257, 952, 4023, 13, 12384, 198, 6738, 1257, 310, 10141, 1330, 27521, 198, 11748, 18931, 198, 6738, 19720, 1330, 4889, 540, 198, 11748, 33918, 198, 11748, 4818, 330, 28958, 198, 198, 11748, 26842, 198, 11748, 26842, 13, 42460, 3526, 13, 26791, 355, 30415, 62, 26791, 198, 6738, 26842, 13557, 19734, 13, 21858, 62, 37153, 1330, 15768, 13511, 198, 6738, 26842, 13557, 19734, 13, 43282, 62, 24330, 13, 8002, 3039, 1330, 357, 26495, 62, 1069, 1023, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9516, 62, 26495, 62, 1462, 62, 70, 6359, 8, 198, 6738, 26842, 13, 42460, 3526, 13, 18170, 13, 21858, 13, 7890, 62, 19199, 1330, 357, 198, 220, 220, 220, 3497, 27813, 31077, 11, 15768, 19580, 11, 15768, 45135, 18453, 11, 15768, 45135, 31077, 11, 198, 220, 220, 220, 15768, 19580, 31077, 11, 15768, 11187, 82, 31077, 8, 198, 198, 6404, 1362, 796, 18931, 13, 1136, 11187, 1362, 7, 834, 3672, 834, 8, 198, 81, 448, 274, 796, 30415, 62, 26791, 13, 9487, 17410, 43401, 10962, 198, 198, 30631, 62, 1268, 31800, 1847, 62, 45006, 4462, 62, 45, 29559, 47, 11598, 796, 45434, 2433, 62, 32538, 62, 43863, 62, 1, 198, 198, 45006, 4462, 62, 17614, 62, 47, 31688, 10426, 796, 12813, 15042, 14, 43863, 30487, 198, 45006, 4462, 62, 17614, 62, 49, 2606, 9328, 62, 25294, 50, 796, 32357, 4462, 62, 17614, 62, 47, 31688, 10426, 1343, 366, 6404, 82, 1, 198, 45006, 4462, 62, 17614, 62, 49, 2606, 9328, 62, 50, 10526, 36393, 796, 32357, 4462, 62, 17614, 62, 47, 31688, 10426, 1343, 366, 46002, 1, 198, 45006, 4462, 62, 17614, 62, 49, 2606, 9328, 62, 35744, 2937, 796, 32357, 4462, 62, 17614, 62, 47, 31688, 10426, 1343, 366, 13376, 1, 198, 45006, 4462, 62, 17614, 62, 49, 2606, 9328, 62, 47, 8120, 11879, 796, 32357, 4462, 62, 17614, 62, 47, 31688, 10426, 1343, 366, 26495, 1, 628, 198 ]
2.532394
355
#!/usr/bin/env python import argparse from .sql import MiniSpiderSQL from .scheduler import MiniSpider from .extractor import Extractor from .downloader import MiniSpiderDownloader __version__ = '0.0.3' if __name__ == '__main__': main()
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 11748, 1822, 29572, 198, 198, 6738, 764, 25410, 1330, 12558, 41294, 17861, 198, 6738, 764, 1416, 704, 18173, 1330, 12558, 41294, 198, 6738, 764, 2302, 40450, 1330, 29677, 273, 198, 6738, 764, 15002, 263, 1330, 12558, 41294, 10002, 263, 198, 198, 834, 9641, 834, 796, 705, 15, 13, 15, 13, 18, 6, 628, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1388, 3419, 198 ]
3.037037
81
# -*- coding: utf-8 -*- # # Copyright (C) 2020 CERN. # # invenio-app-ils is free software; you can redistribute it and/or modify it # under the terms of the MIT License; see LICENSE file for more details. """ILL mail tasks.""" from invenio_app_ils.ill.errors import ILLError from invenio_app_ils.ill.mail.factory import ill_message_creator_factory from invenio_app_ils.mail.messages import get_common_message_ctx from invenio_app_ils.mail.tasks import send_ils_email def send_ill_mail(brw_req, action=None, message_ctx={}, **kwargs): """Send an ILL email. :param brw_req: the borrowing request record. :param action: the action performed, if any. :param message_ctx: any other parameter to be passed as ctx in the msg. """ creator = ill_message_creator_factory() message_ctx.update(get_common_message_ctx(record=brw_req)) try: # fetch and inject in the email template the patron loan if available loan = brw_req.patron_loan.get() message_ctx["patron_loan"] = loan except ILLError: # no loan in the borrowin request message_ctx["patron_loan"] = dict() patron = message_ctx["patron"] msg = creator( brw_req, action=action, message_ctx=message_ctx, recipients=[patron.email], **kwargs, ) send_ils_email(msg)
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 2, 198, 2, 15069, 357, 34, 8, 12131, 327, 28778, 13, 198, 2, 198, 2, 287, 574, 952, 12, 1324, 12, 4487, 318, 1479, 3788, 26, 345, 460, 17678, 4163, 340, 290, 14, 273, 13096, 340, 198, 2, 739, 262, 2846, 286, 262, 17168, 13789, 26, 766, 38559, 24290, 2393, 329, 517, 3307, 13, 198, 198, 37811, 8267, 6920, 8861, 526, 15931, 198, 198, 6738, 287, 574, 952, 62, 1324, 62, 4487, 13, 359, 13, 48277, 1330, 14639, 2538, 81, 1472, 198, 6738, 287, 574, 952, 62, 1324, 62, 4487, 13, 359, 13, 4529, 13, 69, 9548, 1330, 2801, 62, 20500, 62, 45382, 62, 69, 9548, 198, 6738, 287, 574, 952, 62, 1324, 62, 4487, 13, 4529, 13, 37348, 1095, 1330, 651, 62, 11321, 62, 20500, 62, 49464, 198, 6738, 287, 574, 952, 62, 1324, 62, 4487, 13, 4529, 13, 83, 6791, 1330, 3758, 62, 4487, 62, 12888, 628, 198, 4299, 3758, 62, 359, 62, 4529, 7, 1671, 86, 62, 42180, 11, 2223, 28, 14202, 11, 3275, 62, 49464, 34758, 5512, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 37227, 25206, 281, 314, 3069, 3053, 13, 628, 220, 220, 220, 1058, 17143, 865, 86, 62, 42180, 25, 262, 23669, 2581, 1700, 13, 198, 220, 220, 220, 1058, 17143, 2223, 25, 262, 2223, 6157, 11, 611, 597, 13, 198, 220, 220, 220, 1058, 17143, 3275, 62, 49464, 25, 597, 584, 11507, 284, 307, 3804, 355, 269, 17602, 287, 262, 31456, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 13172, 796, 2801, 62, 20500, 62, 45382, 62, 69, 9548, 3419, 628, 220, 220, 220, 3275, 62, 49464, 13, 19119, 7, 1136, 62, 11321, 62, 20500, 62, 49464, 7, 22105, 28, 1671, 86, 62, 42180, 4008, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 21207, 290, 8677, 287, 262, 3053, 11055, 262, 19686, 8063, 611, 1695, 198, 220, 220, 220, 220, 220, 220, 220, 8063, 796, 865, 86, 62, 42180, 13, 8071, 1313, 62, 5439, 272, 13, 1136, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 3275, 62, 49464, 14692, 8071, 1313, 62, 5439, 272, 8973, 796, 8063, 198, 220, 220, 220, 2845, 14639, 2538, 81, 1472, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 645, 8063, 287, 262, 8804, 259, 2581, 198, 220, 220, 220, 220, 220, 220, 220, 3275, 62, 49464, 14692, 8071, 1313, 62, 5439, 272, 8973, 796, 8633, 3419, 628, 220, 220, 220, 19686, 796, 3275, 62, 49464, 14692, 8071, 1313, 8973, 628, 220, 220, 220, 31456, 796, 13172, 7, 198, 220, 220, 220, 220, 220, 220, 220, 865, 86, 62, 42180, 11, 198, 220, 220, 220, 220, 220, 220, 220, 2223, 28, 2673, 11, 198, 220, 220, 220, 220, 220, 220, 220, 3275, 62, 49464, 28, 20500, 62, 49464, 11, 198, 220, 220, 220, 220, 220, 220, 220, 20352, 41888, 8071, 1313, 13, 12888, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 12429, 46265, 22046, 11, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 3758, 62, 4487, 62, 12888, 7, 19662, 8, 198 ]
2.571702
523
from abc import abstractmethod from csp.observer import Observer class Propagator(Observer): """Abstract class for a constraint propagator.""" @abstractmethod def on_domain_change(self, var): """Called when a variable domain has changed. :param var: The variable that changed :type var: Variable """ pass def setup(self, problem): """Called to initialize this propagator with problem data :param problem: The csp :type problem: Problem """ for v in problem.variables: v.add_observer(self) self.map[v] = [] for c in problem.constraints: for v in c.get_vars(): self.map[v].append(c)
[ 6738, 450, 66, 1330, 12531, 24396, 201, 198, 201, 198, 6738, 269, 2777, 13, 672, 15388, 1330, 27058, 201, 198, 201, 198, 201, 198, 4871, 8772, 363, 1352, 7, 31310, 18497, 2599, 201, 198, 220, 220, 220, 37227, 23839, 1398, 329, 257, 32315, 8928, 1352, 526, 15931, 201, 198, 220, 220, 220, 220, 201, 198, 220, 220, 220, 220, 201, 198, 220, 220, 220, 2488, 397, 8709, 24396, 201, 198, 220, 220, 220, 825, 319, 62, 27830, 62, 3803, 7, 944, 11, 1401, 2599, 201, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 34, 4262, 618, 257, 7885, 7386, 468, 3421, 13, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 1401, 25, 383, 7885, 326, 3421, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 4906, 1401, 25, 35748, 201, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1208, 201, 198, 220, 220, 220, 220, 201, 198, 220, 220, 220, 825, 9058, 7, 944, 11, 1917, 2599, 201, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 34, 4262, 284, 41216, 428, 8928, 1352, 351, 1917, 1366, 201, 198, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 1917, 25, 383, 269, 2777, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 4906, 1917, 25, 20647, 201, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 201, 198, 220, 220, 220, 220, 220, 220, 220, 329, 410, 287, 1917, 13, 25641, 2977, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 410, 13, 2860, 62, 672, 15388, 7, 944, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 8899, 58, 85, 60, 796, 17635, 201, 198, 201, 198, 220, 220, 220, 220, 220, 220, 220, 329, 269, 287, 1917, 13, 1102, 2536, 6003, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 410, 287, 269, 13, 1136, 62, 85, 945, 33529, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 8899, 58, 85, 4083, 33295, 7, 66, 8, 201, 198 ]
2.119681
376
# Generated by Django 2.0 on 2019-04-02 09:57 from django.db import migrations, models
[ 2, 2980, 515, 416, 37770, 362, 13, 15, 319, 13130, 12, 3023, 12, 2999, 7769, 25, 3553, 198, 198, 6738, 42625, 14208, 13, 9945, 1330, 15720, 602, 11, 4981, 628 ]
2.966667
30
# coding:utf8 import re options = { 'root_url': 'http://www.juooo.com', 'max_count': 1000, 'urlReg': { 'urlRegType': 1, 'urlFull': '', 'urlStr': 'http://(\w+).juooo.com/\w+' }, 'urlData': [] }
[ 2, 19617, 25, 40477, 23, 198, 11748, 302, 198, 198, 25811, 796, 1391, 198, 220, 220, 220, 705, 15763, 62, 6371, 10354, 705, 4023, 1378, 2503, 13, 14396, 34160, 13, 785, 3256, 198, 220, 220, 220, 705, 9806, 62, 9127, 10354, 8576, 11, 198, 220, 220, 220, 705, 6371, 8081, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 705, 6371, 8081, 6030, 10354, 352, 11, 198, 220, 220, 220, 220, 220, 220, 220, 705, 6371, 13295, 10354, 705, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 6371, 13290, 10354, 705, 4023, 1378, 38016, 86, 10, 737, 14396, 34160, 13, 785, 14, 59, 86, 10, 6, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 705, 6371, 6601, 10354, 17635, 198, 92, 198, 220, 198 ]
1.875
128
import pandas as pd import numpy as np import os, sys, gc, random import datetime import dateutil.relativedelta # Machine learning from sklearn.preprocessing import LabelEncoder from sklearn.impute import SimpleImputer from sklearn.model_selection import StratifiedKFold from sklearn.metrics import roc_auc_score # Custom library from utils import seed_everything, print_score TOTAL_THRES = 300 # 구매액 임계값 SEED = 42 # 랜덤 시드 seed_everything(SEED) # 시드 고정 data_dir = '../input/train.csv' # os.environ['SM_CHANNEL_TRAIN'] model_dir = '../model' # os.environ['SM_MODEL_DIR'] ''' 입력인자로 받는 year_month에 대해 고객 ID별로 총 구매액이 구매액 임계값을 넘는지 여부의 binary label을 생성하는 함수 ''' # def get_year_month_list(df, year_month): # df = df.copy() # # df['year_month-mode'] = df['order_date'].dt.strftime('%Y-%m') # dd = df.groupby(['year_month-mode', 'customer_id'])['total'].sum() # cust_ids = df['customer_id'].unique() # # # year_month 이전 월 계산 # bef_12_d = datetime.datetime.strptime(year_month, "%Y-%m") # bef_12_prev_ym = bef_12_d - dateutil.relativedelta.relativedelta(months=12) # bef_12_prev_ym = bef_12_prev_ym.strftime('%Y-%m') # # # ddt = df[df['year_month-mode'] == bef_12_prev_ym] # # first_bef = [] # for id in cust_ids: # dd[:, bef_12_prev_ym] # # first_bef.append(dd.xs((id, bef_12_prev_ym))) # # # df['cycle_month'] = pd.Series(first_bef) # # print(df) if __name__ == '__main__': print('data_dir', data_dir)
[ 11748, 19798, 292, 355, 279, 67, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 28686, 11, 25064, 11, 308, 66, 11, 4738, 198, 11748, 4818, 8079, 198, 11748, 3128, 22602, 13, 2411, 265, 1572, 12514, 198, 198, 2, 10850, 4673, 198, 6738, 1341, 35720, 13, 3866, 36948, 1330, 36052, 27195, 12342, 198, 6738, 1341, 35720, 13, 11011, 1133, 1330, 17427, 3546, 10549, 198, 6738, 1341, 35720, 13, 19849, 62, 49283, 1330, 29186, 1431, 42, 37, 727, 198, 6738, 1341, 35720, 13, 4164, 10466, 1330, 686, 66, 62, 14272, 62, 26675, 198, 198, 2, 8562, 5888, 198, 6738, 3384, 4487, 1330, 9403, 62, 37814, 11, 3601, 62, 26675, 628, 198, 51, 27510, 62, 4221, 19535, 796, 5867, 1303, 220, 166, 113, 105, 167, 100, 97, 168, 243, 94, 23821, 252, 226, 166, 111, 226, 166, 108, 240, 198, 5188, 1961, 796, 5433, 1303, 31619, 252, 250, 167, 235, 97, 23821, 233, 250, 167, 241, 250, 198, 28826, 62, 37814, 7, 5188, 1961, 8, 1303, 23821, 233, 250, 167, 241, 250, 220, 166, 111, 254, 168, 254, 243, 198, 198, 7890, 62, 15908, 796, 705, 40720, 15414, 14, 27432, 13, 40664, 6, 1303, 28686, 13, 268, 2268, 17816, 12310, 62, 3398, 22846, 3698, 62, 51, 3861, 1268, 20520, 198, 19849, 62, 15908, 796, 705, 40720, 19849, 6, 1303, 28686, 13, 268, 2268, 17816, 12310, 62, 33365, 3698, 62, 34720, 20520, 628, 198, 7061, 6, 198, 220, 220, 220, 23821, 252, 227, 167, 254, 98, 35975, 116, 168, 252, 238, 167, 94, 250, 31619, 108, 249, 167, 232, 242, 614, 62, 8424, 168, 245, 238, 31619, 234, 222, 47991, 112, 220, 166, 111, 254, 166, 108, 251, 4522, 167, 111, 226, 167, 94, 250, 23821, 112, 251, 220, 166, 113, 105, 167, 100, 97, 168, 243, 94, 35975, 112, 198, 220, 220, 220, 220, 166, 113, 105, 167, 100, 97, 168, 243, 94, 23821, 252, 226, 166, 111, 226, 166, 108, 240, 35975, 226, 31619, 226, 246, 167, 232, 242, 168, 100, 222, 23821, 245, 105, 167, 114, 222, 35975, 246, 13934, 6167, 35975, 226, 23821, 225, 251, 168, 226, 109, 47991, 246, 167, 232, 242, 220, 47991, 101, 168, 230, 246, 198, 7061, 6, 198, 198, 2, 825, 651, 62, 1941, 62, 8424, 62, 4868, 7, 7568, 11, 614, 62, 8424, 2599, 198, 2, 220, 220, 220, 220, 47764, 796, 47764, 13, 30073, 3419, 198, 2, 198, 2, 220, 220, 220, 220, 47764, 17816, 1941, 62, 8424, 12, 14171, 20520, 796, 47764, 17816, 2875, 62, 4475, 6, 4083, 28664, 13, 2536, 31387, 10786, 4, 56, 12, 4, 76, 11537, 198, 2, 220, 220, 220, 220, 49427, 796, 47764, 13, 8094, 1525, 7, 17816, 1941, 62, 8424, 12, 14171, 3256, 705, 23144, 263, 62, 312, 6, 12962, 17816, 23350, 6, 4083, 16345, 3419, 198, 2, 220, 220, 220, 220, 9378, 62, 2340, 796, 47764, 17816, 23144, 263, 62, 312, 6, 4083, 34642, 3419, 198, 2, 198, 2, 220, 220, 220, 220, 1303, 614, 62, 8424, 23821, 251, 112, 168, 254, 226, 23821, 249, 242, 220, 166, 111, 226, 168, 224, 108, 198, 2, 220, 220, 220, 220, 307, 69, 62, 1065, 62, 67, 796, 4818, 8079, 13, 19608, 8079, 13, 2536, 457, 524, 7, 1941, 62, 8424, 11, 36521, 56, 12, 4, 76, 4943, 198, 2, 220, 220, 220, 220, 307, 69, 62, 1065, 62, 47050, 62, 4948, 796, 307, 69, 62, 1065, 62, 67, 532, 3128, 22602, 13, 2411, 265, 1572, 12514, 13, 2411, 265, 1572, 12514, 7, 41537, 28, 1065, 8, 198, 2, 220, 220, 220, 220, 307, 69, 62, 1065, 62, 47050, 62, 4948, 796, 307, 69, 62, 1065, 62, 47050, 62, 4948, 13, 2536, 31387, 10786, 4, 56, 12, 4, 76, 11537, 198, 2, 198, 2, 220, 220, 220, 220, 1303, 288, 28664, 796, 47764, 58, 7568, 17816, 1941, 62, 8424, 12, 14171, 20520, 6624, 307, 69, 62, 1065, 62, 47050, 62, 4948, 60, 198, 2, 198, 2, 220, 220, 220, 220, 717, 62, 65, 891, 796, 17635, 198, 2, 220, 220, 220, 220, 329, 4686, 287, 9378, 62, 2340, 25, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 49427, 58, 45299, 307, 69, 62, 1065, 62, 47050, 62, 4948, 60, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 717, 62, 65, 891, 13, 33295, 7, 1860, 13, 34223, 19510, 312, 11, 307, 69, 62, 1065, 62, 47050, 62, 4948, 22305, 198, 2, 198, 2, 220, 220, 220, 220, 1303, 47764, 17816, 13696, 62, 8424, 20520, 796, 279, 67, 13, 27996, 7, 11085, 62, 65, 891, 8, 198, 2, 198, 2, 220, 220, 220, 220, 3601, 7, 7568, 8, 628, 628, 628, 628, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 220, 198, 220, 220, 220, 3601, 10786, 7890, 62, 15908, 3256, 1366, 62, 15908, 8, 198 ]
1.867665
801
from __future__ import unicode_literals from __future__ import print_function import unicodedata import unittest """ Very simple assorted helpers for natural language processing that I've used a few times. """ _CHAR_TRANSLATIONS = { # chars to remove "\u00ae": None, "\u2122": None, # chars to normalize that aren't handled by combining char stripping "\u2018": "'", "\u2019": "'", "\u201c": '"', "\u201d": '"', "\u2013": "-", "\u2014": "-", "\u00bd": "1/2" } _CODEPOINT_TRANSLATIONS = {ord(k): v for k, v in _CHAR_TRANSLATIONS.items()} def strip_diacritics(s): """Remove accents and other diacritics""" return "".join(c for c in unicodedata.normalize("NFD", s) if unicodedata.category(c) != "Mn") def normalize_unicode(s): """Remove trademark sign, normalize smart quotes, etc""" return s.translate(_CODEPOINT_TRANSLATIONS)
[ 6738, 11593, 37443, 834, 1330, 28000, 1098, 62, 17201, 874, 198, 6738, 11593, 37443, 834, 1330, 3601, 62, 8818, 198, 198, 11748, 28000, 9043, 1045, 198, 11748, 555, 715, 395, 198, 198, 37811, 198, 16371, 2829, 46603, 49385, 329, 3288, 3303, 7587, 326, 314, 1053, 973, 257, 1178, 1661, 13, 198, 37811, 198, 198, 62, 38019, 62, 5446, 1565, 8634, 18421, 796, 1391, 198, 220, 220, 220, 1303, 34534, 284, 4781, 198, 220, 220, 220, 37082, 84, 405, 3609, 1298, 6045, 11, 198, 220, 220, 220, 37082, 84, 17, 18376, 1298, 6045, 11, 628, 220, 220, 220, 1303, 34534, 284, 3487, 1096, 326, 3588, 470, 12118, 416, 19771, 1149, 37727, 198, 220, 220, 220, 37082, 84, 7908, 1298, 24018, 1600, 198, 220, 220, 220, 37082, 84, 23344, 1298, 24018, 1600, 198, 220, 220, 220, 37082, 84, 1264, 66, 1298, 705, 1, 3256, 198, 220, 220, 220, 37082, 84, 1264, 67, 1298, 705, 1, 3256, 198, 220, 220, 220, 37082, 84, 6390, 1298, 27444, 1600, 198, 220, 220, 220, 37082, 84, 4967, 1298, 27444, 1600, 198, 220, 220, 220, 37082, 84, 405, 17457, 1298, 366, 16, 14, 17, 1, 198, 92, 198, 198, 62, 34, 3727, 8905, 46, 12394, 62, 5446, 1565, 8634, 18421, 796, 1391, 585, 7, 74, 2599, 410, 329, 479, 11, 410, 287, 4808, 38019, 62, 5446, 1565, 8634, 18421, 13, 23814, 3419, 92, 628, 198, 4299, 10283, 62, 67, 9607, 799, 873, 7, 82, 2599, 198, 220, 220, 220, 37227, 27914, 39271, 290, 584, 2566, 330, 799, 873, 37811, 198, 220, 220, 220, 1441, 366, 1911, 22179, 7, 66, 329, 269, 287, 28000, 9043, 1045, 13, 11265, 1096, 7203, 21870, 35, 1600, 264, 8, 611, 28000, 9043, 1045, 13, 22872, 7, 66, 8, 14512, 366, 44, 77, 4943, 628, 198, 4299, 3487, 1096, 62, 46903, 1098, 7, 82, 2599, 198, 220, 220, 220, 37227, 27914, 16028, 1051, 11, 3487, 1096, 4451, 13386, 11, 3503, 37811, 198, 220, 220, 220, 1441, 264, 13, 7645, 17660, 28264, 34, 3727, 8905, 46, 12394, 62, 5446, 1565, 8634, 18421, 8, 628, 628 ]
2.630499
341
from manim_imports_ext import *
[ 6738, 582, 320, 62, 320, 3742, 62, 2302, 1330, 1635, 198 ]
2.909091
11
#!/usr/bin/env python """ genome_download: downloading genomes Usage: genome_download [options] <accession_table> genome_download -h | --help genome_download --version Options: <accessin_table> Taxon-accession table (see Description). Use '-' if from STDIN. -d=<d> Output directory. [Default: .] -e=<e> Email to use for NCBI queries. [Default: [email protected]] -a=<a> Number of ambiguous nucleotides allowed in a genome. [Default: 0] -n=<n> Number of cpus. [Default: 1] -t=<t> Number of tries to download genomes. [Default: 10] -r Rename genome sequences based on taxon name? --debug Debug mode (no multiprocessing). -h --help Show this screen. --version Show version. Description: Taxon-accession table --------------------- * tab-delimited * must contain 2 columns * "Taxon" = taxon name * "Accession" = NCBI accession used for downloading * Possible accessions: * ncbi nucleotide db * ncbi assembly db * ftp url to genome (direct download) * other columns are allowed Output ------ * Genome fasta files written to the specified output directory * A table mapping taxa to the download genome fasta file is written to STDOUT """ # import import sys,os import logging ## batteries from docopt import docopt from MGSIM import Genome_Download ## logging logging.basicConfig(format='%(asctime)s - %(message)s', level=logging.DEBUG) # opt parse
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 198, 37811, 198, 5235, 462, 62, 15002, 25, 22023, 42136, 198, 198, 28350, 25, 198, 220, 19270, 62, 15002, 685, 25811, 60, 1279, 15526, 295, 62, 11487, 29, 198, 220, 19270, 62, 15002, 532, 71, 930, 1377, 16794, 198, 220, 19270, 62, 15002, 1377, 9641, 198, 198, 29046, 25, 198, 220, 1279, 15526, 259, 62, 11487, 29, 220, 9241, 261, 12, 15526, 295, 3084, 357, 3826, 12489, 737, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5765, 705, 19355, 611, 422, 48571, 1268, 13, 198, 220, 532, 67, 28, 27, 67, 29, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25235, 8619, 13, 685, 19463, 25, 764, 60, 198, 220, 532, 68, 28, 27, 68, 29, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9570, 284, 779, 329, 8823, 3483, 20743, 13, 685, 19463, 25, 9178, 31, 14816, 13, 785, 60, 198, 220, 532, 64, 28, 27, 64, 29, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7913, 286, 27102, 17751, 313, 1460, 3142, 287, 257, 19270, 13, 685, 19463, 25, 657, 60, 198, 220, 532, 77, 28, 27, 77, 29, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7913, 286, 31396, 385, 13, 685, 19463, 25, 352, 60, 198, 220, 532, 83, 28, 27, 83, 29, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7913, 286, 8404, 284, 4321, 42136, 13, 685, 19463, 25, 838, 60, 198, 220, 532, 81, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7152, 480, 19270, 16311, 1912, 319, 1687, 261, 1438, 30, 198, 220, 1377, 24442, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 31687, 4235, 357, 3919, 18540, 305, 919, 278, 737, 198, 220, 532, 71, 1377, 16794, 220, 220, 220, 220, 220, 220, 220, 220, 5438, 428, 3159, 13, 198, 220, 1377, 9641, 220, 220, 220, 220, 220, 220, 220, 220, 5438, 2196, 13, 198, 198, 11828, 25, 198, 220, 9241, 261, 12, 15526, 295, 3084, 198, 220, 41436, 12, 198, 220, 1635, 7400, 12, 12381, 320, 863, 198, 220, 1635, 1276, 3994, 362, 15180, 198, 220, 220, 220, 1635, 366, 27017, 261, 1, 796, 1687, 261, 1438, 198, 220, 220, 220, 1635, 366, 15457, 295, 1, 796, 8823, 3483, 1895, 295, 973, 329, 22023, 220, 198, 220, 220, 220, 220, 220, 1635, 33671, 1895, 507, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 1635, 299, 66, 8482, 17751, 45608, 20613, 198, 220, 220, 220, 220, 220, 220, 220, 220, 1635, 299, 66, 8482, 10474, 20613, 198, 220, 220, 220, 220, 220, 220, 220, 220, 1635, 10117, 79, 19016, 284, 19270, 357, 12942, 4321, 8, 198, 220, 1635, 584, 15180, 389, 3142, 628, 220, 25235, 198, 220, 40103, 198, 220, 1635, 5215, 462, 3049, 64, 3696, 3194, 284, 262, 7368, 5072, 8619, 198, 220, 1635, 317, 3084, 16855, 1687, 64, 284, 262, 4321, 19270, 3049, 64, 2393, 318, 3194, 284, 48571, 12425, 198, 37811, 198, 198, 2, 1330, 198, 11748, 25064, 11, 418, 198, 11748, 18931, 198, 2235, 13591, 198, 6738, 2205, 8738, 1330, 2205, 8738, 198, 6738, 337, 14313, 3955, 1330, 5215, 462, 62, 10002, 198, 2235, 18931, 198, 6404, 2667, 13, 35487, 16934, 7, 18982, 11639, 4, 7, 292, 310, 524, 8, 82, 532, 4064, 7, 20500, 8, 82, 3256, 1241, 28, 6404, 2667, 13, 30531, 8, 628, 198, 2, 2172, 21136, 198, 220, 220, 220, 198 ]
2.615126
595
import logging import multiprocessing from typing import MutableMapping from PyQt6.QtCore import * from PyQt6.QtWidgets import * from Core.messages import Courier, Message from .widgets import * import os, sys
[ 11748, 18931, 198, 11748, 18540, 305, 919, 278, 198, 6738, 19720, 1330, 13859, 540, 44, 5912, 198, 6738, 9485, 48, 83, 21, 13, 48, 83, 14055, 1330, 1635, 198, 6738, 9485, 48, 83, 21, 13, 48, 83, 54, 312, 11407, 1330, 1635, 198, 6738, 7231, 13, 37348, 1095, 1330, 34268, 11, 16000, 198, 6738, 764, 28029, 11407, 1330, 1635, 198, 11748, 28686, 11, 25064, 628 ]
3.246154
65
# SPDX-License-Identifier: MIT # Greetings to: # - https://www.theiphonewiki.com/wiki/IMG4_File_Format # - https://github.com/tihmstar/img4tool/ # - https://lapo.it/asn1js/ # - hexdump tool of choice import functools from asn1crypto.core import ( Enumerated, Choice, Sequence, SequenceOf, SetOf, Integer, IA5String, OctetString, ParsableOctetString, Integer, Any ) from asn1crypto.x509 import Certificate import restruct class any_tag(tuple): """ highly cursed tuple subtype to bully asn1crypto into accepting any tag """ if __name__ == '__main__': import argparse parser = argparse.ArgumentParser() parser.add_argument('-r', '--raw', action='store_true', help='print raw parsed data') parser.add_argument('infile', type=argparse.FileType('rb'), help='input .img4/.im4m/.im4p file') parser.add_argument('outfile', type=argparse.FileType('wb'), nargs='?', help='output data file for payload') args = parser.parse_args() contents = args.infile.read() errors = {} for p in (IMG4, IMG4Manifest, IMG4Payload): try: img4 = p.load(contents) img4.native # trigger parsing break except Exception as e: errors[p] = e else: print('Could not parse file {}:'.format(args.infile.name)) for (p, e) in errors.items(): print(' - As {}: {}'.format(p.__name__, e)) sys.exit(1) if isinstance(img4, IMG4): payload = img4['payload'] manifest = img4['manifest'] elif isinstance(img4, IMG4Manifest): payload = None manifest = img4 elif isinstance(img4, IMG4Payload): payload = img4 manifest = None if payload: p = payload.native if args.raw: print(restruct.format_value(p, str)) else: print('payload:') print(' type:', p['type']) print(' desc:', p['description']) if p['keybags']: print(' keybags:') keybags = payload['keybags'].parse(IMG4KeyBagSequence).native for kb in keybags: print(' id: ', kb['id']) print(' iv: ', restruct.format_value(kb['iv'], str)) print(' key:', restruct.format_value(kb['key'], str)) print() if p['compression']: print(' compression:') print(' algo:', p['compression']['algorithm']) print(' size:', p['compression']['original_size']) algo = p['compression']['algorithm'] else: algo = None print() if args.outfile: if algo == 'lzfse': import lzfse data = lzfse.decompress(p['data']) elif algo: raise ValueError('unknown algorithm: {}'.format(algo)) else: data = p['data'] args.outfile.write(data) if manifest: m = manifest.native if args.raw: print(restruct.format_value(m, str)) else: print('manifest:') for p in m['contents']: print(' body:') if p['type'] == 'MANB': for c in p['categories']: cname = c['category']['type'] for v in c['category']['values']: print(' {}.{}: {}'.format(cname, v['value']['key'], restruct.format_value(v['value']['value'], str))) print()
[ 2, 30628, 55, 12, 34156, 12, 33234, 7483, 25, 17168, 198, 2, 402, 46648, 284, 25, 198, 2, 532, 3740, 1378, 2503, 13, 1169, 13323, 44181, 5580, 13, 785, 14, 15466, 14, 3955, 38, 19, 62, 8979, 62, 26227, 198, 2, 532, 3740, 1378, 12567, 13, 785, 14, 83, 4449, 76, 7364, 14, 9600, 19, 25981, 14, 198, 2, 532, 3740, 1378, 37796, 78, 13, 270, 14, 292, 77, 16, 8457, 14, 198, 2, 532, 17910, 39455, 2891, 286, 3572, 198, 198, 11748, 1257, 310, 10141, 198, 6738, 355, 77, 16, 29609, 78, 13, 7295, 1330, 357, 198, 220, 220, 220, 2039, 6975, 515, 11, 18502, 11, 45835, 11, 45835, 5189, 11, 5345, 5189, 11, 198, 220, 220, 220, 34142, 11, 35229, 20, 10100, 11, 2556, 316, 10100, 11, 23042, 540, 12349, 316, 10100, 11, 34142, 11, 198, 220, 220, 220, 4377, 198, 8, 198, 6738, 355, 77, 16, 29609, 78, 13, 87, 29022, 1330, 27895, 198, 11748, 27596, 628, 198, 4871, 597, 62, 12985, 7, 83, 29291, 2599, 198, 220, 220, 220, 37227, 4047, 25155, 46545, 850, 4906, 284, 27410, 355, 77, 16, 29609, 78, 656, 12598, 597, 7621, 37227, 628, 628, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1330, 1822, 29572, 628, 220, 220, 220, 30751, 796, 1822, 29572, 13, 28100, 1713, 46677, 3419, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 10786, 12, 81, 3256, 705, 438, 1831, 3256, 2223, 11639, 8095, 62, 7942, 3256, 1037, 11639, 4798, 8246, 44267, 1366, 11537, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 10786, 259, 7753, 3256, 2099, 28, 853, 29572, 13, 8979, 6030, 10786, 26145, 33809, 1037, 11639, 15414, 764, 9600, 19, 11757, 320, 19, 76, 11757, 320, 19, 79, 2393, 11537, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 10786, 448, 7753, 3256, 2099, 28, 853, 29572, 13, 8979, 6030, 10786, 39346, 33809, 299, 22046, 11639, 30, 3256, 1037, 11639, 22915, 1366, 2393, 329, 21437, 11537, 198, 220, 220, 220, 26498, 796, 30751, 13, 29572, 62, 22046, 3419, 628, 220, 220, 220, 10154, 796, 26498, 13, 259, 7753, 13, 961, 3419, 198, 220, 220, 220, 8563, 796, 23884, 198, 220, 220, 220, 329, 279, 287, 357, 3955, 38, 19, 11, 8959, 38, 19, 5124, 8409, 11, 8959, 38, 19, 19197, 2220, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 33705, 19, 796, 279, 13, 2220, 7, 3642, 658, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 33705, 19, 13, 30191, 220, 1303, 7616, 32096, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 35528, 355, 304, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8563, 58, 79, 60, 796, 304, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 23722, 407, 21136, 2393, 23884, 25, 4458, 18982, 7, 22046, 13, 259, 7753, 13, 3672, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 329, 357, 79, 11, 304, 8, 287, 8563, 13, 23814, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 532, 1081, 23884, 25, 23884, 4458, 18982, 7, 79, 13, 834, 3672, 834, 11, 304, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 37023, 7, 16, 8, 198, 220, 220, 220, 220, 198, 220, 220, 220, 611, 318, 39098, 7, 9600, 19, 11, 8959, 38, 19, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 21437, 796, 33705, 19, 17816, 15577, 2220, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 10561, 796, 33705, 19, 17816, 805, 8409, 20520, 198, 220, 220, 220, 1288, 361, 318, 39098, 7, 9600, 19, 11, 8959, 38, 19, 5124, 8409, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 21437, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 10561, 796, 33705, 19, 198, 220, 220, 220, 1288, 361, 318, 39098, 7, 9600, 19, 11, 8959, 38, 19, 19197, 2220, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 21437, 796, 33705, 19, 198, 220, 220, 220, 220, 220, 220, 220, 10561, 796, 6045, 628, 220, 220, 220, 611, 21437, 25, 198, 220, 220, 220, 220, 220, 220, 220, 279, 796, 21437, 13, 30191, 198, 220, 220, 220, 220, 220, 220, 220, 611, 26498, 13, 1831, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 2118, 1356, 13, 18982, 62, 8367, 7, 79, 11, 965, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 15577, 2220, 25, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 220, 2099, 25, 3256, 279, 17816, 4906, 6, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 220, 1715, 25, 3256, 279, 17816, 11213, 6, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 279, 17816, 2539, 34005, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 220, 1994, 34005, 25, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1994, 34005, 796, 21437, 17816, 2539, 34005, 6, 4083, 29572, 7, 3955, 38, 19, 9218, 33, 363, 44015, 594, 737, 30191, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 47823, 287, 1994, 34005, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 220, 220, 220, 4686, 25, 46083, 47823, 17816, 312, 6, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 220, 220, 220, 21628, 25, 46083, 27596, 13, 18982, 62, 8367, 7, 32812, 17816, 452, 6, 4357, 965, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 220, 220, 220, 1994, 25, 3256, 27596, 13, 18982, 62, 8367, 7, 32812, 17816, 2539, 6, 4357, 965, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 279, 17816, 5589, 2234, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 220, 19794, 25, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 220, 220, 220, 435, 2188, 25, 3256, 279, 17816, 5589, 2234, 6, 7131, 6, 282, 42289, 6, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 220, 220, 220, 2546, 25, 3256, 279, 17816, 5589, 2234, 6, 7131, 6, 14986, 62, 7857, 6, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 435, 2188, 796, 279, 17816, 5589, 2234, 6, 7131, 6, 282, 42289, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 435, 2188, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 611, 26498, 13, 448, 7753, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 435, 2188, 6624, 705, 75, 89, 69, 325, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1330, 300, 89, 69, 325, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 796, 300, 89, 69, 325, 13, 12501, 3361, 601, 7, 79, 17816, 7890, 6, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 435, 2188, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 10786, 34680, 11862, 25, 23884, 4458, 18982, 7, 282, 2188, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 796, 279, 17816, 7890, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26498, 13, 448, 7753, 13, 13564, 7, 7890, 8, 198, 220, 220, 220, 611, 10561, 25, 198, 220, 220, 220, 220, 220, 220, 220, 285, 796, 10561, 13, 30191, 198, 220, 220, 220, 220, 220, 220, 220, 611, 26498, 13, 1831, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 2118, 1356, 13, 18982, 62, 8367, 7, 76, 11, 965, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 805, 8409, 25, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 279, 287, 285, 17816, 3642, 658, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 220, 1767, 25, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 279, 17816, 4906, 20520, 6624, 705, 10725, 33, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 269, 287, 279, 17816, 66, 26129, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 3672, 796, 269, 17816, 22872, 6, 7131, 6, 4906, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 410, 287, 269, 17816, 22872, 6, 7131, 6, 27160, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 220, 220, 220, 23884, 13, 90, 38362, 23884, 4458, 18982, 7, 66, 3672, 11, 410, 17816, 8367, 6, 7131, 6, 2539, 6, 4357, 27596, 13, 18982, 62, 8367, 7, 85, 17816, 8367, 6, 7131, 6, 8367, 6, 4357, 965, 22305, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 3419, 198 ]
1.981278
1,816
import unittest from programy.storage.stores.nosql.mongo.dao.rdf import RDF
[ 11748, 555, 715, 395, 198, 198, 6738, 1430, 88, 13, 35350, 13, 43409, 13, 39369, 13976, 13, 76, 25162, 13, 67, 5488, 13, 4372, 69, 1330, 371, 8068, 628 ]
2.689655
29
# (c) 2017 Gregor Mitscha-Baude from matplotlib import pyplot as plt import numpy as np import dolfin from nanopores.tools import fields fields.set_dir_dropbox() from nanopores.models.nanopore import Setup from nanopores.geometries.alphahempoly import poly from nanopores.geometries.alphahem import default from nanopores.geometries.cylpore import Pore, get_geo from nanopores.models.diffusion_ahem import diff_profile_z_ahem, get_diffusivity # params for precomputed diffusivity params = dict(dim=2, Nmax=1e5, h=.5, ahemqsuniform=True, rMolecule=0.11) #ap1 = 18 #ap2 = 49 #x0 = poly[18] #x1 = poly[49] # #zmem = .5*(x0[1] + x1[1]) #print zmem # #poly = [[x[0], x[1] - zmem] for x in poly] #proteincs = [z - zmem for z in default["proteincs"]] #cs = [z - zmem for z in default["cs"]] #default.update(zmem=0., hmem=2.82, Htop=10, Hbot=6, R=6, proteincs=proteincs, cs=cs) #print default # #def new_get_geo(**params): # return get_geo(poly, **params) # #p = Pore(poly, **default) #p.build(h=.5) # #p.polygons["alphahem"].plot("ok") #p.polygons["membrane"].plot() #p.polygons["bulkfluid_top"].plot() #p.polygons["bulkfluid_bottom"].plot() #plt.show() #setup = Setup(get_geo=new_get_geo, geop=default, h=.5) #setup = Setup(h=.5) #setup.geo.plot_boundaries() functions, mesh = fields.get_functions(name="Dalphahem-coupled", **params) dist = functions["dist"] #dolfin.plot(dist, interactive=True) # construct D fit from Noskov2004 and plot tabulated D values A = 0.64309 B = 0.00044 C = 0.06894 D = 0.35647 E = 0.19409 z, D = diff_profile_fit(a=-12, b=2, N=100) plt.plot(z, D, "-b", label="Tabulated (infinite cylinder)") data = diff_profile_z_ahem(a=-12, b=2, N=100, **params) z = [x0[2] for x0 in data["x"]] Dz = data["D"] plt.plot(z, Dz, "og", label="Full hydrodynamic model") plt.ylabel("Rel. diffusivity") plt.xlabel("z [nm]") plt.xlim(-10, 0) ax = plt.gca() #ax.yaxis.tick_right() #ax.yaxis.set_label_position("right") plt.legend(loc="upper left", frameon=False) from nanopores import savefigs from folders import FIGDIR savefigs("Dz", FIGDIR + "/ahem", (6, 4.5)) #print results
[ 2, 357, 66, 8, 2177, 8547, 273, 22424, 11693, 12, 34458, 2507, 198, 6738, 2603, 29487, 8019, 1330, 12972, 29487, 355, 458, 83, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 288, 4024, 259, 198, 6738, 46661, 2850, 13, 31391, 1330, 7032, 198, 25747, 13, 2617, 62, 15908, 62, 14781, 3524, 3419, 198, 6738, 46661, 2850, 13, 27530, 13, 12647, 404, 382, 1330, 31122, 198, 6738, 46661, 2850, 13, 469, 908, 1678, 13, 26591, 258, 3149, 3366, 1330, 7514, 198, 6738, 46661, 2850, 13, 469, 908, 1678, 13, 26591, 4411, 1330, 4277, 198, 6738, 46661, 2850, 13, 469, 908, 1678, 13, 948, 34431, 382, 1330, 350, 382, 11, 651, 62, 469, 78, 198, 6738, 46661, 2850, 13, 27530, 13, 26069, 4241, 62, 64, 4411, 1330, 814, 62, 13317, 62, 89, 62, 64, 4411, 11, 651, 62, 26069, 385, 3458, 198, 198, 2, 42287, 329, 662, 785, 17128, 814, 385, 3458, 198, 37266, 796, 8633, 7, 27740, 28, 17, 11, 399, 9806, 28, 16, 68, 20, 11, 289, 28, 13, 20, 11, 257, 4411, 80, 19155, 6933, 28, 17821, 11, 374, 44, 2305, 23172, 28, 15, 13, 1157, 8, 198, 198, 2, 499, 16, 796, 1248, 198, 2, 499, 17, 796, 5125, 198, 2, 87, 15, 796, 7514, 58, 1507, 60, 198, 2, 87, 16, 796, 7514, 58, 2920, 60, 198, 2, 198, 2, 89, 11883, 796, 764, 20, 9, 7, 87, 15, 58, 16, 60, 1343, 2124, 16, 58, 16, 12962, 198, 2, 4798, 1976, 11883, 198, 2, 198, 2, 35428, 796, 16410, 87, 58, 15, 4357, 2124, 58, 16, 60, 532, 1976, 11883, 60, 329, 2124, 287, 7514, 60, 198, 2, 1676, 660, 1939, 82, 796, 685, 89, 532, 1976, 11883, 329, 1976, 287, 4277, 14692, 1676, 660, 1939, 82, 8973, 60, 198, 2, 6359, 796, 685, 89, 532, 1976, 11883, 329, 1976, 287, 4277, 14692, 6359, 8973, 60, 198, 2, 12286, 13, 19119, 7, 89, 11883, 28, 15, 1539, 289, 11883, 28, 17, 13, 6469, 11, 367, 4852, 28, 940, 11, 367, 13645, 28, 21, 11, 371, 28, 21, 11, 5915, 1939, 82, 28, 1676, 660, 1939, 82, 11, 50115, 28, 6359, 8, 198, 2, 4798, 4277, 198, 2, 198, 2, 4299, 649, 62, 1136, 62, 469, 78, 7, 1174, 37266, 2599, 198, 2, 220, 220, 220, 1441, 651, 62, 469, 78, 7, 35428, 11, 12429, 37266, 8, 198, 2, 198, 2, 79, 796, 350, 382, 7, 35428, 11, 12429, 12286, 8, 198, 2, 79, 13, 11249, 7, 71, 28, 13, 20, 8, 198, 2, 198, 2, 79, 13, 35428, 70, 684, 14692, 26591, 4411, 1, 4083, 29487, 7203, 482, 4943, 198, 2, 79, 13, 35428, 70, 684, 14692, 11883, 1671, 1531, 1, 4083, 29487, 3419, 198, 2, 79, 13, 35428, 70, 684, 14692, 65, 12171, 35522, 312, 62, 4852, 1, 4083, 29487, 3419, 198, 2, 79, 13, 35428, 70, 684, 14692, 65, 12171, 35522, 312, 62, 22487, 1, 4083, 29487, 3419, 198, 2, 489, 83, 13, 12860, 3419, 198, 198, 2, 40406, 796, 31122, 7, 1136, 62, 469, 78, 28, 3605, 62, 1136, 62, 469, 78, 11, 30324, 28, 12286, 11, 289, 28, 13, 20, 8, 198, 2, 40406, 796, 31122, 7, 71, 28, 13, 20, 8, 198, 2, 40406, 13, 469, 78, 13, 29487, 62, 7784, 3166, 3419, 198, 12543, 2733, 11, 19609, 796, 7032, 13, 1136, 62, 12543, 2733, 7, 3672, 2625, 35, 26591, 4411, 12, 66, 280, 10137, 1600, 12429, 37266, 8, 198, 17080, 796, 5499, 14692, 17080, 8973, 198, 198, 2, 67, 4024, 259, 13, 29487, 7, 17080, 11, 14333, 28, 17821, 8, 198, 198, 2, 5678, 360, 4197, 422, 32798, 21862, 15724, 290, 7110, 7400, 4817, 360, 3815, 198, 32, 796, 657, 13, 2414, 26895, 198, 33, 796, 657, 13, 830, 2598, 198, 34, 796, 657, 13, 15, 3104, 5824, 198, 35, 796, 657, 13, 2327, 33981, 198, 36, 796, 657, 13, 1129, 29416, 198, 198, 89, 11, 360, 796, 814, 62, 13317, 62, 11147, 7, 64, 10779, 1065, 11, 275, 28, 17, 11, 399, 28, 3064, 8, 198, 489, 83, 13, 29487, 7, 89, 11, 360, 11, 27444, 65, 1600, 6167, 2625, 33349, 4817, 357, 10745, 9504, 24911, 8, 4943, 198, 198, 7890, 796, 814, 62, 13317, 62, 89, 62, 64, 4411, 7, 64, 10779, 1065, 11, 275, 28, 17, 11, 399, 28, 3064, 11, 12429, 37266, 8, 198, 89, 796, 685, 87, 15, 58, 17, 60, 329, 2124, 15, 287, 1366, 14692, 87, 8973, 60, 198, 35, 89, 796, 1366, 14692, 35, 8973, 198, 198, 489, 83, 13, 29487, 7, 89, 11, 360, 89, 11, 366, 519, 1600, 6167, 2625, 13295, 7409, 14892, 28995, 2746, 4943, 198, 489, 83, 13, 2645, 9608, 7203, 6892, 13, 814, 385, 3458, 4943, 198, 489, 83, 13, 87, 18242, 7203, 89, 685, 21533, 60, 4943, 198, 489, 83, 13, 87, 2475, 32590, 940, 11, 657, 8, 198, 897, 796, 458, 83, 13, 70, 6888, 3419, 198, 2, 897, 13, 88, 22704, 13, 42298, 62, 3506, 3419, 198, 2, 897, 13, 88, 22704, 13, 2617, 62, 18242, 62, 9150, 7203, 3506, 4943, 198, 489, 83, 13, 1455, 437, 7, 17946, 2625, 45828, 1364, 1600, 5739, 261, 28, 25101, 8, 198, 198, 6738, 46661, 2850, 1330, 3613, 5647, 82, 198, 6738, 24512, 1330, 19697, 34720, 198, 21928, 5647, 82, 7203, 35, 89, 1600, 19697, 34720, 1343, 12813, 64, 4411, 1600, 357, 21, 11, 604, 13, 20, 4008, 198, 2, 4798, 2482 ]
2.334078
895
"""This module solves kata https://www.codewars.com/kata/multiples-and-digit-sums/train/python.""" def procedure(i): """Return an integer derived by first finding all multiples of i up to 100, then summing all up digit sums of all multiples.""" return sum(int(d) for i in range(n, 101, n) for d in str(i))
[ 37811, 1212, 8265, 39107, 479, 1045, 3740, 1378, 2503, 13, 19815, 413, 945, 13, 785, 14, 74, 1045, 14, 41684, 2374, 12, 392, 12, 27003, 12, 82, 5700, 14, 27432, 14, 29412, 526, 15931, 628, 198, 4299, 8771, 7, 72, 2599, 198, 220, 220, 220, 37227, 13615, 281, 18253, 10944, 416, 717, 4917, 477, 5021, 2374, 286, 1312, 510, 284, 1802, 11, 198, 220, 220, 220, 788, 2160, 2229, 477, 510, 16839, 21784, 286, 477, 5021, 2374, 526, 15931, 198, 220, 220, 220, 1441, 2160, 7, 600, 7, 67, 8, 329, 1312, 287, 2837, 7, 77, 11, 8949, 11, 299, 8, 329, 288, 287, 965, 7, 72, 4008, 198 ]
2.93578
109
import json import folium import folium.plugins import tempfile import os import re import argparse if __name__ == "__main__": cwd = os.getcwd() args = get_args() plot_privpurge( os.path.join(cwd, args.zonefile), os.path.join(cwd, args.directory), filename=args.output, )
[ 11748, 33918, 198, 11748, 5955, 1505, 198, 11748, 5955, 1505, 13, 37390, 198, 11748, 20218, 7753, 198, 11748, 28686, 198, 11748, 302, 628, 198, 198, 11748, 1822, 29572, 628, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 269, 16993, 796, 28686, 13, 1136, 66, 16993, 3419, 628, 220, 220, 220, 26498, 796, 651, 62, 22046, 3419, 628, 220, 220, 220, 7110, 62, 13776, 14225, 469, 7, 198, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 6978, 13, 22179, 7, 66, 16993, 11, 26498, 13, 11340, 7753, 828, 198, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 6978, 13, 22179, 7, 66, 16993, 11, 26498, 13, 34945, 828, 198, 220, 220, 220, 220, 220, 220, 220, 29472, 28, 22046, 13, 22915, 11, 198, 220, 220, 220, 1267, 198 ]
2.335766
137
# pylint: skip-file """ Unit test for data utils functions. """ import numpy as np import pandas as pd import pytest import tensorflow as tf from tensorflow import test from .data_utils import quantiles_handler, example_handler, fill_none from ..data import random_ts from ..dataset import WindowGenerator @pytest.fixture(scope="class") @pytest.mark.usefixtures("prepare_data") @pytest.mark.usefixtures("prepare_data")
[ 2, 279, 2645, 600, 25, 14267, 12, 7753, 198, 198, 37811, 198, 26453, 1332, 329, 1366, 3384, 4487, 5499, 13, 198, 37811, 198, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 19798, 292, 355, 279, 67, 198, 11748, 12972, 9288, 198, 198, 11748, 11192, 273, 11125, 355, 48700, 198, 6738, 11192, 273, 11125, 1330, 1332, 198, 198, 6738, 764, 7890, 62, 26791, 1330, 5554, 2915, 62, 30281, 11, 1672, 62, 30281, 11, 6070, 62, 23108, 198, 6738, 11485, 7890, 1330, 4738, 62, 912, 198, 6738, 11485, 19608, 292, 316, 1330, 26580, 8645, 1352, 628, 198, 198, 31, 9078, 9288, 13, 69, 9602, 7, 29982, 2625, 4871, 4943, 628, 198, 31, 9078, 9288, 13, 4102, 13, 1904, 69, 25506, 7203, 46012, 533, 62, 7890, 4943, 628, 198, 31, 9078, 9288, 13, 4102, 13, 1904, 69, 25506, 7203, 46012, 533, 62, 7890, 4943, 198 ]
3.028169
142
# Copyright (C) Mesosphere, Inc. See LICENSE file for details. """ Shared code for DC/OS endpoints mocks used by AR instances, both EE and Open. """ import abc import http.server import logging import os import socket import socketserver import ssl import threading # pylint: disable=C0103 log = logging.getLogger(__name__) # Just a dict would be no good as we want to have threading lock initialization # as well. # pylint: disable=R0903 class EndpointContext: """An endpoint context that holds all the endpoint data together with threading lock that protects it.""" data = None lock = None def __init__(self, initial_data=None): """Initialize EndpointContext object. This data is often manipulated by methods nested across inheritance chains, so we need to use RLock() instead of Lock(). The need for the lock itself stems from the fact that very often certain keys of the context need to be manipulated at the same time/in synchronized manner. In some of the places, code relies on thread safety/atomicity of some of Python's expressions/statements: https://docs.python.org/3.6/faq/library.html#what-kinds-of-global-value-mutation-are-thread-safe This is why some of the operations on the EndpointContext dictionary are not protected by locks, esp. in case when it's only about fetching a single value from context dict or storing/appending one there. Args: initial_data (dict): initial data to initialize context with """ self.lock = threading.RLock() if initial_data is not None: self.data = initial_data else: self.data = {} class Endpoint(abc.ABC): """Endpoint base class, from which all Endpoints must inherit This class represents common behaviour shared across all endpoints, no matter the function or repository flavour (ee/open). Ever endpoint must by default serve GOOD/expected data, and only after changing it's state using it's methods, it may start serving something else and/or simulate error conditions. The state of the endpoint may be changed by tests/fixtures by executing Mocker's .send_command() method which in turn redirect the call to the correct endpoint call. For the sake of simplicity it is assumed that each such method will have well-defined interface: def do_something(self, aux_data=None): return result `aux_data` is a python dictionary that must provide all data required by function to execute. It can be None if such data is not required `result` can be anything that makes sense in particular function's case. """ _context = None _httpd_thread = None _httpd = None def __init__(self, endpoint_id): """Initialize new Endpoint object Args: endpoint_id (str): ID of the endpoint that it should identify itself with """ initial_data = {"always_bork": False, "endpoint_id": endpoint_id, "always_redirect": False, "redirect_target": None, "always_stall": False, "response_headers": {}, "stall_time": 0, } self._context = EndpointContext(initial_data) @property def id(self): """Return ID of the endpoint""" return self._context.data['endpoint_id'] def start(self): """Start endpoint's threaded httpd server""" log.debug("Starting endpoint `%s`", self.id) self._httpd_thread.start() self._httpd.startup_done.wait() def stop(self): """Perform cleanup of the endpoint threads This method should be used right before destroying the Endpoint object. It takes care of stopping internal httpd server. """ log.debug("Stopping endpoint `%s`", self.id) self._httpd.shutdown() self._httpd_thread.join() self._httpd.server_close() def reset(self, aux_data=None): """Reset endpoint to the default/good state Args: aux_data (dict): unused, present only to satisfy the endpoint's method interface. See class description for details. """ del aux_data log.debug("Resetting endpoint `%s`", self.id) # Locking is not really needed here as it is atomic op anyway, # but let's be consistent with self._context.lock: self._context.data['always_bork'] = False self._context.data['always_stall'] = False self._context.data['stall_time'] = 0 self._context.data["always_redirect"] = False self._context.data["redirect_target"] = None def set_response_headers(self, aux_data): """Make endpoint sent custom headers in the response Args: aux_data: a dict with header's name/content as keys/vals """ with self._context.lock: self._context.data["response_headers"].update(aux_data) def always_stall(self, aux_data=None): """Make endpoint always wait given time before answering the request Args: aux_data (numeric): time in seconds, as acepted by time.sleep() function """ with self._context.lock: self._context.data["always_stall"] = True self._context.data["stall_time"] = aux_data def always_bork(self, aux_data=True): """Make endpoint always respond with an error Args: aux_data (dict): True or False, depending whether endpoint should always respond with errors or not. """ self._context.data["always_bork"] = aux_data def always_redirect(self, aux_data=None): """Make endpoint always respond with a redirect Args: aux_data (str): target location for the redirect """ with self._context.lock: self._context.data["always_redirect"] = True self._context.data["redirect_target"] = aux_data class StatefullHTTPServer(socketserver.ThreadingMixIn, http.server.HTTPServer): """Base class for all endpoint-internal httpd servers. This class serves as a base for all internal httpd server, it's role is to pull in Threading mix-in and link Endpoint context to httpd itself, so that it's available in the httpd request handler through request's .server.context attribute. Worth noting that this is by default a TCP/IP server. It's based on: https://mail.python.org/pipermail/python-list/2012-March/621727.html """ class TcpIpHttpEndpoint(Endpoint): """Base class for all endpoints that serve TCP/IP requests This class binds together HTTPd server code, http request handler and endpoint context to form a base class for all endpoints that serve TCP/IP traffic. """ def __init__(self, handler_class, port, ip='', keyfile=None, certfile=None): """Initialize new TcpIpHttpEndpoint object Args: handler_class (obj): a request handler class that will be handling requests received by internal httpd server port (int): tcp port that httpd server will listen on ip (str): ip address that httpd server will listen on, by default listen on all addresses """ if certfile is not None and keyfile is not None: endpoint_id = "https://{}:{}".format(ip, port) else: endpoint_id = "http://{}:{}".format(ip, port) super().__init__(endpoint_id) self._context.data['listen_ip'] = ip self._context.data['listen_port'] = port self._context.data['certfile'] = certfile self._context.data['keyfile'] = keyfile self._handler_class = handler_class self.__setup_httpd_thread(ip, port) def __setup_httpd_thread(self, ip, port): """Setup internal HTTPd server that this endpoints relies on to serve requests. """ self._httpd = StatefullHTTPServer(self._context, (ip, port), self._handler_class) httpd_thread_name = "TcpIpHttpdThread-{}".format(self.id) self._httpd_thread = threading.Thread(target=self._httpd.serve_forever, name=httpd_thread_name) class UnixSocketStatefulHTTPServer(StatefullHTTPServer): """Base class for all endpoint-internal httpd servers that listen on Unix socket. This class inherits from StatefullHTTPServer and mofies it's behaviour so that it's able to listen on Unix socket. Attributes: address_family: set only to override default value of the variable set in the http.server.HTTPServer class, must not be modified. """ address_family = socket.AF_UNIX def server_bind(self): """Override default server socket bind behaviour to adapt it to serving on Unix socket. Please check the documentation of http.server.HTTPServer class for more details. """ socketserver.TCPServer.server_bind(self) self.server_name = self.context.data['socket_path'] self.server_port = 0 def client_address(self): """Override default client_address method to adapt it to serving on Unix socket. Without it logging will break as Unix socket has no notion of the client's IP address. Please check the documentation of http.server.HTTPServer class for more details. """ return (self.context.data['socket_path'], 0) # http://stackoverflow.com/questions/21650370/setting-up-an-http-server-that-listens-over-a-file-socket # https://docs.python.org/3.3/library/socketserver.html class UnixSocketHTTPEndpoint(Endpoint): """Base class for all endpoints that serve requests on the Unix socket This class binds together HTTPd server code, http request handler and endpoint context to form a base class for all endpoints that serve Unix socket traffic. """ def __init__(self, handler_class, path, keyfile=None, certfile=None): """Initialize new UnixSocketHTTPEndpoint object Args: handler_class (obj): a request handler class that will be handling requests received by internal httpd server path (str): Unix socket path, that internal httpd server will listen on """ if certfile is not None and keyfile is not None: endpoint_id = "https://{}".format(path) else: endpoint_id = "http://{}".format(path) super().__init__(endpoint_id) self._context.data['socket_path'] = path self._context.data['certfile'] = certfile self._context.data['keyfile'] = keyfile self._handler_class = handler_class self.__cleanup_stale_socket(path) self.__setup_httpd_thread(path) @staticmethod def __setup_httpd_thread(self, socket_path): """Setup internal HTTPd server that this endpoints relies on to serve requests. Args: path (str): Unix socket path, that internal httpd server will listen on """ self._httpd = UnixSocketStatefulHTTPServer(self._context, socket_path, self._handler_class) httpd_thread_name = "UnixSocketHttpdThread-{}".format(self.id) self._httpd_thread = threading.Thread(target=self._httpd.serve_forever, name=httpd_thread_name) # nginx spawns worker processes as 'nobody/nogroup', so we need to # make the socket available to it. os.chmod(socket_path, 0o777)
[ 2, 15069, 357, 34, 8, 14937, 22829, 11, 3457, 13, 4091, 38559, 24290, 2393, 329, 3307, 13, 198, 198, 37811, 198, 2484, 1144, 2438, 329, 6257, 14, 2640, 886, 13033, 285, 3320, 973, 416, 5923, 10245, 11, 1111, 27254, 290, 4946, 13, 198, 37811, 198, 198, 11748, 450, 66, 198, 11748, 2638, 13, 15388, 198, 11748, 18931, 198, 11748, 28686, 198, 11748, 17802, 198, 11748, 37037, 18497, 198, 11748, 264, 6649, 198, 11748, 4704, 278, 198, 198, 2, 279, 2645, 600, 25, 15560, 28, 34, 486, 3070, 198, 6404, 796, 18931, 13, 1136, 11187, 1362, 7, 834, 3672, 834, 8, 628, 198, 2, 2329, 257, 8633, 561, 307, 645, 922, 355, 356, 765, 284, 423, 4704, 278, 5793, 37588, 198, 2, 355, 880, 13, 198, 2, 279, 2645, 600, 25, 15560, 28, 49, 2931, 3070, 198, 4871, 5268, 4122, 21947, 25, 198, 220, 220, 220, 37227, 2025, 36123, 4732, 326, 6622, 477, 262, 36123, 1366, 1978, 351, 198, 220, 220, 220, 220, 220, 220, 4704, 278, 5793, 326, 17289, 340, 526, 15931, 198, 220, 220, 220, 1366, 796, 6045, 198, 220, 220, 220, 5793, 796, 6045, 628, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 4238, 62, 7890, 28, 14202, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 24243, 1096, 5268, 4122, 21947, 2134, 13, 628, 220, 220, 220, 220, 220, 220, 220, 770, 1366, 318, 1690, 25036, 416, 5050, 28376, 1973, 198, 220, 220, 220, 220, 220, 220, 220, 24155, 14659, 11, 523, 356, 761, 284, 779, 371, 25392, 3419, 2427, 286, 13656, 22446, 628, 220, 220, 220, 220, 220, 220, 220, 383, 761, 329, 262, 5793, 2346, 21552, 422, 262, 1109, 326, 845, 1690, 1728, 198, 220, 220, 220, 220, 220, 220, 220, 8251, 286, 262, 4732, 761, 284, 307, 25036, 379, 262, 976, 640, 14, 259, 47192, 198, 220, 220, 220, 220, 220, 220, 220, 5642, 13, 628, 220, 220, 220, 220, 220, 220, 220, 554, 617, 286, 262, 4113, 11, 2438, 16507, 319, 4704, 3747, 14, 37696, 8467, 286, 198, 220, 220, 220, 220, 220, 220, 220, 617, 286, 11361, 338, 14700, 14, 14269, 3196, 25, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3740, 1378, 31628, 13, 29412, 13, 2398, 14, 18, 13, 21, 14, 13331, 80, 14, 32016, 13, 6494, 2, 10919, 12, 11031, 82, 12, 1659, 12, 20541, 12, 8367, 12, 76, 7094, 12, 533, 12, 16663, 12, 21230, 628, 220, 220, 220, 220, 220, 220, 220, 770, 318, 1521, 617, 286, 262, 4560, 319, 262, 5268, 4122, 21947, 22155, 198, 220, 220, 220, 220, 220, 220, 220, 389, 407, 6861, 416, 19253, 11, 15024, 13, 287, 1339, 618, 340, 338, 691, 546, 21207, 278, 198, 220, 220, 220, 220, 220, 220, 220, 257, 2060, 1988, 422, 4732, 8633, 393, 23069, 14, 1324, 1571, 530, 612, 13, 628, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4238, 62, 7890, 357, 11600, 2599, 4238, 1366, 284, 41216, 4732, 351, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 5354, 796, 4704, 278, 13, 7836, 735, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 611, 4238, 62, 7890, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 7890, 796, 4238, 62, 7890, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 7890, 796, 23884, 628, 198, 4871, 5268, 4122, 7, 39305, 13, 24694, 2599, 198, 220, 220, 220, 37227, 12915, 4122, 2779, 1398, 11, 422, 543, 477, 5268, 13033, 1276, 16955, 628, 220, 220, 220, 220, 220, 220, 770, 1398, 6870, 2219, 9172, 4888, 1973, 477, 886, 13033, 11, 198, 220, 220, 220, 220, 220, 220, 645, 2300, 262, 2163, 393, 16099, 29254, 357, 1453, 14, 9654, 737, 628, 220, 220, 220, 220, 220, 220, 10776, 36123, 1276, 416, 4277, 4691, 21090, 14, 40319, 1366, 11, 290, 691, 706, 198, 220, 220, 220, 220, 220, 220, 5609, 340, 338, 1181, 1262, 340, 338, 5050, 11, 340, 743, 923, 7351, 1223, 198, 220, 220, 220, 220, 220, 220, 2073, 290, 14, 273, 29308, 4049, 3403, 13, 628, 220, 220, 220, 220, 220, 220, 383, 1181, 286, 262, 36123, 743, 307, 3421, 416, 5254, 14, 69, 25506, 416, 23710, 198, 220, 220, 220, 220, 220, 220, 337, 12721, 338, 764, 21280, 62, 21812, 3419, 2446, 543, 287, 1210, 18941, 262, 869, 284, 262, 198, 220, 220, 220, 220, 220, 220, 3376, 36123, 869, 13, 1114, 262, 11060, 286, 21654, 340, 318, 9672, 326, 1123, 198, 220, 220, 220, 220, 220, 220, 884, 2446, 481, 423, 880, 12, 23211, 7071, 25, 198, 220, 220, 220, 220, 220, 220, 220, 825, 466, 62, 18927, 7, 944, 11, 27506, 62, 7890, 28, 14202, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 1255, 628, 220, 220, 220, 220, 220, 220, 220, 4600, 14644, 62, 7890, 63, 318, 257, 21015, 22155, 326, 1276, 2148, 477, 1366, 2672, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 416, 2163, 284, 12260, 13, 632, 460, 307, 6045, 611, 884, 1366, 318, 407, 2672, 198, 220, 220, 220, 220, 220, 220, 220, 4600, 20274, 63, 460, 307, 1997, 326, 1838, 2565, 287, 1948, 2163, 338, 1339, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 4808, 22866, 796, 6045, 198, 220, 220, 220, 4808, 4023, 67, 62, 16663, 796, 6045, 198, 220, 220, 220, 4808, 4023, 67, 796, 6045, 628, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 36123, 62, 312, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 24243, 1096, 649, 5268, 4122, 2134, 628, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 36123, 62, 312, 357, 2536, 2599, 4522, 286, 262, 36123, 326, 340, 815, 5911, 2346, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 351, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 4238, 62, 7890, 796, 19779, 33770, 62, 65, 967, 1298, 10352, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 437, 4122, 62, 312, 1298, 36123, 62, 312, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 33770, 62, 445, 1060, 1298, 10352, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 445, 1060, 62, 16793, 1298, 6045, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 33770, 62, 32989, 1298, 10352, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 26209, 62, 50145, 1298, 1391, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 32989, 62, 2435, 1298, 657, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 22866, 796, 5268, 4122, 21947, 7, 36733, 62, 7890, 8, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 4686, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 13615, 4522, 286, 262, 36123, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13557, 22866, 13, 7890, 17816, 437, 4122, 62, 312, 20520, 628, 220, 220, 220, 825, 923, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 10434, 36123, 338, 40945, 2638, 67, 4382, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 2604, 13, 24442, 7203, 22851, 36123, 4600, 4, 82, 63, 1600, 2116, 13, 312, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 4023, 67, 62, 16663, 13, 9688, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 4023, 67, 13, 9688, 929, 62, 28060, 13, 17077, 3419, 628, 220, 220, 220, 825, 2245, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 5990, 687, 27425, 286, 262, 36123, 14390, 628, 220, 220, 220, 220, 220, 220, 220, 770, 2446, 815, 307, 973, 826, 878, 13897, 262, 5268, 4122, 2134, 13, 198, 220, 220, 220, 220, 220, 220, 220, 632, 2753, 1337, 286, 12225, 5387, 2638, 67, 4382, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2604, 13, 24442, 7203, 1273, 33307, 36123, 4600, 4, 82, 63, 1600, 2116, 13, 312, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 4023, 67, 13, 49625, 2902, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 4023, 67, 62, 16663, 13, 22179, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 4023, 67, 13, 15388, 62, 19836, 3419, 628, 220, 220, 220, 825, 13259, 7, 944, 11, 27506, 62, 7890, 28, 14202, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 4965, 316, 36123, 284, 262, 4277, 14, 11274, 1181, 628, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27506, 62, 7890, 357, 11600, 2599, 21958, 11, 1944, 691, 284, 15959, 262, 36123, 338, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2446, 7071, 13, 4091, 1398, 6764, 329, 3307, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1619, 27506, 62, 7890, 198, 220, 220, 220, 220, 220, 220, 220, 2604, 13, 24442, 7203, 4965, 35463, 36123, 4600, 4, 82, 63, 1600, 2116, 13, 312, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 406, 8629, 318, 407, 1107, 2622, 994, 355, 340, 318, 17226, 1034, 6949, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 475, 1309, 338, 307, 6414, 198, 220, 220, 220, 220, 220, 220, 220, 351, 2116, 13557, 22866, 13, 5354, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 22866, 13, 7890, 17816, 33770, 62, 65, 967, 20520, 796, 10352, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 22866, 13, 7890, 17816, 33770, 62, 32989, 20520, 796, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 22866, 13, 7890, 17816, 32989, 62, 2435, 20520, 796, 657, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 22866, 13, 7890, 14692, 33770, 62, 445, 1060, 8973, 796, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 22866, 13, 7890, 14692, 445, 1060, 62, 16793, 8973, 796, 6045, 628, 220, 220, 220, 825, 900, 62, 26209, 62, 50145, 7, 944, 11, 27506, 62, 7890, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 12050, 36123, 1908, 2183, 24697, 287, 262, 2882, 628, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27506, 62, 7890, 25, 257, 8633, 351, 13639, 338, 1438, 14, 11299, 355, 8251, 14, 12786, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 351, 2116, 13557, 22866, 13, 5354, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 22866, 13, 7890, 14692, 26209, 62, 50145, 1, 4083, 19119, 7, 14644, 62, 7890, 8, 628, 220, 220, 220, 825, 1464, 62, 32989, 7, 944, 11, 27506, 62, 7890, 28, 14202, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 12050, 36123, 1464, 4043, 1813, 640, 878, 18877, 262, 2581, 628, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27506, 62, 7890, 357, 77, 39223, 2599, 640, 287, 4201, 11, 355, 257, 984, 276, 416, 640, 13, 42832, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2163, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 351, 2116, 13557, 22866, 13, 5354, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 22866, 13, 7890, 14692, 33770, 62, 32989, 8973, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 22866, 13, 7890, 14692, 32989, 62, 2435, 8973, 796, 27506, 62, 7890, 628, 220, 220, 220, 825, 1464, 62, 65, 967, 7, 944, 11, 27506, 62, 7890, 28, 17821, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 12050, 36123, 1464, 3031, 351, 281, 4049, 628, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27506, 62, 7890, 357, 11600, 2599, 6407, 393, 10352, 11, 6906, 1771, 36123, 815, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1464, 3031, 351, 8563, 393, 407, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 22866, 13, 7890, 14692, 33770, 62, 65, 967, 8973, 796, 27506, 62, 7890, 628, 220, 220, 220, 825, 1464, 62, 445, 1060, 7, 944, 11, 27506, 62, 7890, 28, 14202, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 12050, 36123, 1464, 3031, 351, 257, 18941, 628, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27506, 62, 7890, 357, 2536, 2599, 2496, 4067, 329, 262, 18941, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 351, 2116, 13557, 22866, 13, 5354, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 22866, 13, 7890, 14692, 33770, 62, 445, 1060, 8973, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 22866, 13, 7890, 14692, 445, 1060, 62, 16793, 8973, 796, 27506, 62, 7890, 628, 198, 4871, 1812, 12853, 6535, 28820, 18497, 7, 82, 11603, 18497, 13, 16818, 278, 35608, 818, 11, 2638, 13, 15388, 13, 6535, 28820, 18497, 2599, 198, 220, 220, 220, 37227, 14881, 1398, 329, 477, 36123, 12, 32538, 2638, 67, 9597, 13, 628, 220, 220, 220, 770, 1398, 9179, 355, 257, 2779, 329, 477, 5387, 2638, 67, 4382, 11, 340, 338, 2597, 318, 198, 220, 220, 220, 284, 2834, 287, 14122, 278, 5022, 12, 259, 290, 2792, 5268, 4122, 4732, 284, 2638, 67, 2346, 11, 198, 220, 220, 220, 523, 326, 340, 338, 1695, 287, 262, 2638, 67, 2581, 21360, 832, 2581, 338, 198, 220, 220, 220, 764, 15388, 13, 22866, 11688, 13, 628, 220, 220, 220, 22301, 10820, 326, 428, 318, 416, 4277, 257, 23633, 14, 4061, 4382, 13, 628, 220, 220, 220, 632, 338, 1912, 319, 25, 198, 220, 220, 220, 3740, 1378, 4529, 13, 29412, 13, 2398, 14, 79, 9346, 4529, 14, 29412, 12, 4868, 14, 6999, 12, 16192, 14, 5237, 1558, 1983, 13, 6494, 198, 220, 220, 220, 37227, 628, 198, 4871, 309, 13155, 40, 79, 43481, 12915, 4122, 7, 12915, 4122, 2599, 198, 220, 220, 220, 37227, 14881, 1398, 329, 477, 886, 13033, 326, 4691, 23633, 14, 4061, 7007, 628, 220, 220, 220, 220, 220, 220, 220, 770, 1398, 37354, 1978, 14626, 67, 4382, 2438, 11, 2638, 2581, 21360, 290, 198, 220, 220, 220, 220, 220, 220, 220, 36123, 4732, 284, 1296, 257, 2779, 1398, 329, 477, 886, 13033, 326, 4691, 198, 220, 220, 220, 220, 220, 220, 220, 23633, 14, 4061, 4979, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 21360, 62, 4871, 11, 2493, 11, 20966, 11639, 3256, 1994, 7753, 28, 14202, 11, 5051, 7753, 28, 14202, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 24243, 1096, 649, 309, 13155, 40, 79, 43481, 12915, 4122, 2134, 628, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21360, 62, 4871, 357, 26801, 2599, 257, 2581, 21360, 1398, 326, 481, 307, 9041, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7007, 2722, 416, 5387, 2638, 67, 4382, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2493, 357, 600, 2599, 48265, 2493, 326, 2638, 67, 4382, 481, 6004, 319, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20966, 357, 2536, 2599, 20966, 2209, 326, 2638, 67, 4382, 481, 6004, 319, 11, 416, 4277, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6004, 319, 477, 9405, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 5051, 7753, 318, 407, 6045, 290, 1994, 7753, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 36123, 62, 312, 796, 366, 5450, 1378, 90, 92, 29164, 92, 1911, 18982, 7, 541, 11, 2493, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 36123, 62, 312, 796, 366, 4023, 1378, 90, 92, 29164, 92, 1911, 18982, 7, 541, 11, 2493, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2208, 22446, 834, 15003, 834, 7, 437, 4122, 62, 312, 8, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 22866, 13, 7890, 17816, 4868, 268, 62, 541, 20520, 796, 20966, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 22866, 13, 7890, 17816, 4868, 268, 62, 634, 20520, 796, 2493, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 22866, 13, 7890, 17816, 22583, 7753, 20520, 796, 5051, 7753, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 22866, 13, 7890, 17816, 2539, 7753, 20520, 796, 1994, 7753, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 30281, 62, 4871, 796, 21360, 62, 4871, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 834, 40406, 62, 4023, 67, 62, 16663, 7, 541, 11, 2493, 8, 628, 220, 220, 220, 825, 11593, 40406, 62, 4023, 67, 62, 16663, 7, 944, 11, 20966, 11, 2493, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 40786, 5387, 14626, 67, 4382, 326, 428, 886, 13033, 16507, 319, 284, 4691, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7007, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 4023, 67, 796, 1812, 12853, 6535, 28820, 18497, 7, 944, 13557, 22866, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 541, 11, 2493, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 30281, 62, 4871, 8, 628, 220, 220, 220, 220, 220, 220, 220, 2638, 67, 62, 16663, 62, 3672, 796, 366, 51, 13155, 40, 79, 43481, 67, 16818, 12, 90, 92, 1911, 18982, 7, 944, 13, 312, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 4023, 67, 62, 16663, 796, 4704, 278, 13, 16818, 7, 16793, 28, 944, 13557, 4023, 67, 13, 2655, 303, 62, 754, 332, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 28, 4023, 67, 62, 16663, 62, 3672, 8, 628, 198, 4871, 33501, 39105, 9012, 913, 6535, 28820, 18497, 7, 9012, 12853, 6535, 28820, 18497, 2599, 198, 220, 220, 220, 37227, 14881, 1398, 329, 477, 36123, 12, 32538, 2638, 67, 9597, 326, 6004, 319, 198, 220, 220, 220, 220, 220, 220, 33501, 17802, 13, 628, 220, 220, 220, 770, 1398, 10639, 896, 422, 1812, 12853, 6535, 28820, 18497, 290, 285, 1659, 444, 340, 338, 9172, 198, 220, 220, 220, 523, 326, 340, 338, 1498, 284, 6004, 319, 33501, 17802, 13, 628, 220, 220, 220, 49213, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2209, 62, 17989, 25, 900, 691, 284, 20957, 4277, 1988, 286, 262, 7885, 900, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 287, 262, 2638, 13, 15388, 13, 6535, 28820, 18497, 1398, 11, 1276, 407, 307, 9518, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2209, 62, 17989, 796, 17802, 13, 8579, 62, 4944, 10426, 628, 220, 220, 220, 825, 4382, 62, 21653, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 37961, 4277, 4382, 17802, 11007, 9172, 284, 6068, 340, 284, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7351, 319, 33501, 17802, 13, 628, 220, 220, 220, 220, 220, 220, 220, 4222, 2198, 262, 10314, 286, 2638, 13, 15388, 13, 6535, 28820, 18497, 1398, 329, 517, 198, 220, 220, 220, 220, 220, 220, 220, 3307, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 37037, 18497, 13, 4825, 3705, 18497, 13, 15388, 62, 21653, 7, 944, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 15388, 62, 3672, 796, 2116, 13, 22866, 13, 7890, 17816, 44971, 62, 6978, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 15388, 62, 634, 796, 657, 628, 220, 220, 220, 825, 5456, 62, 21975, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 37961, 4277, 5456, 62, 21975, 2446, 284, 6068, 340, 284, 7351, 319, 33501, 198, 220, 220, 220, 220, 220, 220, 220, 17802, 13, 9170, 340, 18931, 481, 2270, 355, 33501, 17802, 468, 645, 9495, 286, 198, 220, 220, 220, 220, 220, 220, 220, 262, 5456, 338, 6101, 2209, 13, 628, 220, 220, 220, 220, 220, 220, 220, 4222, 2198, 262, 10314, 286, 2638, 13, 15388, 13, 6535, 28820, 18497, 1398, 329, 517, 198, 220, 220, 220, 220, 220, 220, 220, 3307, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 357, 944, 13, 22866, 13, 7890, 17816, 44971, 62, 6978, 6, 4357, 657, 8, 628, 198, 2, 2638, 1378, 25558, 2502, 11125, 13, 785, 14, 6138, 507, 14, 20666, 1120, 20167, 14, 33990, 12, 929, 12, 272, 12, 4023, 12, 15388, 12, 5562, 12, 4868, 641, 12, 2502, 12, 64, 12, 7753, 12, 44971, 198, 2, 3740, 1378, 31628, 13, 29412, 13, 2398, 14, 18, 13, 18, 14, 32016, 14, 82, 11603, 18497, 13, 6494, 198, 4871, 33501, 39105, 40717, 12915, 4122, 7, 12915, 4122, 2599, 198, 220, 220, 220, 37227, 14881, 1398, 329, 477, 886, 13033, 326, 4691, 7007, 319, 262, 33501, 17802, 628, 220, 220, 220, 220, 220, 220, 220, 770, 1398, 37354, 1978, 14626, 67, 4382, 2438, 11, 2638, 2581, 21360, 290, 198, 220, 220, 220, 220, 220, 220, 220, 36123, 4732, 284, 1296, 257, 2779, 1398, 329, 477, 886, 13033, 326, 4691, 198, 220, 220, 220, 220, 220, 220, 220, 33501, 17802, 4979, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 21360, 62, 4871, 11, 3108, 11, 1994, 7753, 28, 14202, 11, 5051, 7753, 28, 14202, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 24243, 1096, 649, 33501, 39105, 40717, 12915, 4122, 2134, 628, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21360, 62, 4871, 357, 26801, 2599, 257, 2581, 21360, 1398, 326, 481, 307, 9041, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7007, 2722, 416, 5387, 2638, 67, 4382, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3108, 357, 2536, 2599, 33501, 17802, 3108, 11, 326, 5387, 2638, 67, 4382, 481, 6004, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 319, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 5051, 7753, 318, 407, 6045, 290, 1994, 7753, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 36123, 62, 312, 796, 366, 5450, 1378, 90, 92, 1911, 18982, 7, 6978, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 36123, 62, 312, 796, 366, 4023, 1378, 90, 92, 1911, 18982, 7, 6978, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2208, 22446, 834, 15003, 834, 7, 437, 4122, 62, 312, 8, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 22866, 13, 7890, 17816, 44971, 62, 6978, 20520, 796, 3108, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 22866, 13, 7890, 17816, 22583, 7753, 20520, 796, 5051, 7753, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 22866, 13, 7890, 17816, 2539, 7753, 20520, 796, 1994, 7753, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 30281, 62, 4871, 796, 21360, 62, 4871, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 834, 27773, 929, 62, 301, 1000, 62, 44971, 7, 6978, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 834, 40406, 62, 4023, 67, 62, 16663, 7, 6978, 8, 628, 220, 220, 220, 2488, 12708, 24396, 628, 220, 220, 220, 825, 11593, 40406, 62, 4023, 67, 62, 16663, 7, 944, 11, 17802, 62, 6978, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 40786, 5387, 14626, 67, 4382, 326, 428, 886, 13033, 16507, 319, 284, 4691, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7007, 13, 628, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3108, 357, 2536, 2599, 33501, 17802, 3108, 11, 326, 5387, 2638, 67, 4382, 481, 6004, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 319, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 4023, 67, 796, 33501, 39105, 9012, 913, 6535, 28820, 18497, 7, 944, 13557, 22866, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17802, 62, 6978, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 30281, 62, 4871, 8, 628, 220, 220, 220, 220, 220, 220, 220, 2638, 67, 62, 16663, 62, 3672, 796, 366, 47000, 39105, 43481, 67, 16818, 12, 90, 92, 1911, 18982, 7, 944, 13, 312, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 4023, 67, 62, 16663, 796, 4704, 278, 13, 16818, 7, 16793, 28, 944, 13557, 4023, 67, 13, 2655, 303, 62, 754, 332, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 28, 4023, 67, 62, 16663, 62, 3672, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 299, 42822, 44632, 8383, 7767, 355, 705, 34952, 1118, 14, 77, 519, 3233, 3256, 523, 356, 761, 284, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 787, 262, 17802, 1695, 284, 340, 13, 198, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 354, 4666, 7, 44971, 62, 6978, 11, 657, 78, 29331, 8, 198 ]
2.498764
4,856
import os import argparse from datetime import datetime import time import torch import torch.nn.functional as F import torch.multiprocessing as mp import numpy as np import pandas as pd from tqdm import tqdm import matplotlib import matplotlib.pyplot as plt from tensorboardX import SummaryWriter import data import track import model import utils matplotlib.use("Qt5Agg") if __name__ == "__main__": try: main() except KeyboardInterrupt: print("Process interrupted by user, emptying cache...") torch.cuda.empty_cache()
[ 11748, 28686, 198, 11748, 1822, 29572, 198, 6738, 4818, 8079, 1330, 4818, 8079, 198, 11748, 640, 198, 198, 11748, 28034, 198, 11748, 28034, 13, 20471, 13, 45124, 355, 376, 198, 11748, 28034, 13, 16680, 541, 305, 919, 278, 355, 29034, 198, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 19798, 292, 355, 279, 67, 198, 6738, 256, 80, 36020, 1330, 256, 80, 36020, 198, 11748, 2603, 29487, 8019, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 198, 6738, 11192, 273, 3526, 55, 1330, 21293, 34379, 198, 198, 11748, 1366, 198, 11748, 2610, 198, 11748, 2746, 198, 11748, 3384, 4487, 198, 198, 6759, 29487, 8019, 13, 1904, 7203, 48, 83, 20, 46384, 4943, 628, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1388, 3419, 198, 220, 220, 220, 2845, 31973, 9492, 3622, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 18709, 19072, 416, 2836, 11, 23909, 1112, 12940, 9313, 8, 198, 220, 220, 220, 220, 220, 220, 220, 28034, 13, 66, 15339, 13, 28920, 62, 23870, 3419, 198 ]
2.916667
192
import math #def find_par(self): if __name__ == "__main__": main()
[ 11748, 10688, 198, 197, 197, 198, 197, 2, 4299, 1064, 62, 1845, 7, 944, 2599, 198, 197, 197, 198, 197, 197, 198, 197, 197, 198, 197, 198, 197, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 197, 12417, 3419, 198, 197, 197, 628, 198 ]
1.875
48