coco_detection / README.md
whyen-wang's picture
update
b012d38
|
raw
history blame
6.67 kB
---
license: cc-by-4.0
size_categories:
- n<1K
task_categories:
- image-to-text
language:
- en
pretty_name: COCO Detection
---
# Dataset Card for "COCO Detection"
## Quick Start
### Usage
```python
>>> from datasets.load import load_dataset
>>> dataset = load_dataset('whyen-wang/coco_detection')
>>> example = dataset['train'][500]
>>> print(example)
{'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x426>,
'bboxes': [
[192.4199981689453, 220.17999267578125,
129.22999572753906, 148.3800048828125],
[76.94000244140625, 146.6300048828125,
104.55000305175781, 109.33000183105469],
[302.8800048828125, 115.2699966430664,
99.11000061035156, 119.2699966430664],
[0.0, 0.800000011920929,
592.5700073242188, 420.25]],
'categories': [46, 46, 46, 55],
'inst.rles': {
'size': [[426, 640], [426, 640], [426, 640], [426, 640]],
'counts': [
'gU`2b0d;...', 'RXP16m<=...', ']Xn34S=4...', 'n:U2o8W2...'
]}}
```
### Visualization
```python
>>> import cv2
>>> import numpy as np
>>> from PIL import Image
>>> def transforms(examples):
inst_rles = examples.pop('inst.rles')
annotation = []
for i in inst_rles:
inst_rles = [
{'size': size, 'counts': counts}
for size, counts in zip(i['size'], i['counts'])
]
annotation.append(maskUtils.decode(inst_rles))
examples['annotation'] = annotation
return examples
>>> def visualize(example, names, colors):
image = np.array(example['image'])
bboxes = np.array(example['bboxes']).round().astype(int)
bboxes[:, 2:] += bboxes[:, :2]
categories = example['categories']
masks = example['annotation']
n = len(bboxes)
for i in range(n):
c = categories[i]
color, name = colors[c], names[c]
cv2.rectangle(image, bboxes[i, :2], bboxes[i, 2:], color.tolist(), 2)
cv2.putText(
image, name, bboxes[i, :2], cv2.FONT_HERSHEY_SIMPLEX,
1, color.tolist(), 2, cv2.LINE_AA, False
)
image[masks[..., i] == 1] = image[masks[..., i] == 1] // 2 + color // 2
return image
>>> dataset.set_transform(transforms)
>>> names = dataset['train'].features['categories'].feature.names
>>> colors = np.ones((80, 3), np.uint8) * 255
>>> colors[:, 0] = np.linspace(0, 255, 80)
>>> colors = cv2.cvtColor(colors[None], cv2.COLOR_HSV2RGB)[0]
>>> example = dataset['train'][500]
>>> Image.fromarray(example)
```
## Table of Contents
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** https://cocodataset.org/
- **Repository:** None
- **Paper:** [Microsoft COCO: Common Objects in Context](https://arxiv.org/abs/1405.0312)
- **Leaderboard:** [Papers with Code](https://paperswithcode.com/dataset/coco)
- **Point of Contact:** None
### Dataset Summary
COCO is a large-scale object detection, segmentation, and captioning dataset.
### Supported Tasks and Leaderboards
[Object Detection](https://huggingface.co/tasks/object-detection)
[Image Segmentation](https://huggingface.co/tasks/image-segmentation)
### Languages
en
## Dataset Structure
### Data Instances
An example looks as follows.
```
{
"image": PIL.Image(mode="RGB"),
"captions": [
"Closeup of bins of food that include broccoli and bread.",
"A meal is presented in brightly colored plastic trays.",
"there are containers filled with different kinds of foods",
"Colorful dishes holding meat, vegetables, fruit, and bread.",
"A bunch of trays that have different food."
]
}
```
### Data Fields
[More Information Needed]
### Data Splits
| name | train | validation |
| ------- | ------: | ---------: |
| default | 118,287 | 5,000 |
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
Creative Commons Attribution 4.0 License
### Citation Information
```
@article{cocodataset,
author = {Tsung{-}Yi Lin and Michael Maire and Serge J. Belongie and Lubomir D. Bourdev and Ross B. Girshick and James Hays and Pietro Perona and Deva Ramanan and Piotr Doll{'{a} }r and C. Lawrence Zitnick},
title = {Microsoft {COCO:} Common Objects in Context},
journal = {CoRR},
volume = {abs/1405.0312},
year = {2014},
url = {http://arxiv.org/abs/1405.0312},
archivePrefix = {arXiv},
eprint = {1405.0312},
timestamp = {Mon, 13 Aug 2018 16:48:13 +0200},
biburl = {https://dblp.org/rec/bib/journals/corr/LinMBHPRDZ14},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
```
### Contributions
Thanks to [@github-whyen-wang](https://github.com/whyen-wang) for adding this dataset.