
davanstrien
HF Staff
Enhance README.md with additional clarity and usage details for OCR scripts
763d5c9
metadata
viewer: false
tags:
- uv-script
- ocr
- vision-language-model
- document-processing
OCR UV Scripts
Part of uv-scripts - ready-to-run ML tools powered by UV
Ready-to-run OCR scripts that work with uv run
- no setup required!
🚀 Quick Start with HuggingFace Jobs
Run OCR on any dataset without needing your own GPU:
hf jobs uv run --flavor l4x1 \
https://huggingface.co/datasets/uv-scripts/ocr/raw/main/nanonets-ocr.py \
your-input-dataset your-output-dataset
That's it! The script will:
- ✅ Process all images in your dataset
- ✅ Add OCR results as a new
markdown
column - ✅ Push the results to a new dataset
- 📊 View results at:
https://huggingface.co/datasets/[your-output-dataset]
📋 Available Scripts
Nanonets OCR (nanonets-ocr.py
)
State-of-the-art document OCR using nanonets/Nanonets-OCR-s that handles:
- 📐 LaTeX equations - Mathematical formulas preserved
- 📊 Tables - Extracted as HTML format
- 📝 Document structure - Headers, lists, formatting maintained
- 🖼️ Images - Captions and descriptions included
- ☑️ Forms - Checkboxes rendered as ☐/☑
💻 Usage Examples
Run on HuggingFace Jobs (Recommended)
No GPU? No problem! Run on HF infrastructure:
# Basic OCR job
hf jobs uv run --flavor l4x1 \
https://huggingface.co/datasets/uv-scripts/ocr/raw/main/nanonets-ocr.py \
your-input-dataset your-output-dataset
# Real example with UFO dataset 🛸
hf jobs uv run \
--flavor a10g-large \
--image vllm/vllm-openai:latest \
-e HF_TOKEN=$(python3 -c "from huggingface_hub import get_token; print(get_token())") \
https://huggingface.co/datasets/uv-scripts/ocr/raw/main/nanonets-ocr.py \
davanstrien/ufo-ColPali \
your-username/ufo-ocr \
--image-column image \
--max-model-len 16384 \
--batch-size 64
# Private dataset with custom settings
hf jobs uv run --flavor l40sx1 \
-e HF_TOKEN=$(python3 -c "from huggingface_hub import get_token; print(get_token())") \
https://huggingface.co/datasets/uv-scripts/ocr/raw/main/nanonets-ocr.py \
private-input private-output \
--private \
--batch-size 32
Python API
from huggingface_hub import run_uv_job
job = run_uv_job(
"https://huggingface.co/datasets/uv-scripts/ocr/raw/main/nanonets-ocr.py",
args=["input-dataset", "output-dataset", "--batch-size", "16"],
flavor="l4x1"
)
Run Locally (Requires GPU)
# Clone and run
git clone https://huggingface.co/datasets/uv-scripts/ocr
cd ocr
uv run nanonets-ocr.py input-dataset output-dataset
# Or run directly from URL
uv run https://huggingface.co/datasets/uv-scripts/ocr/raw/main/nanonets-ocr.py \
input-dataset output-dataset
📁 Works With
Any HuggingFace dataset containing images - documents, forms, receipts, books, handwriting.
🎛️ Configuration Options
Option | Default | Description |
---|---|---|
--image-column |
image |
Column containing images |
--batch-size |
8 |
Images processed together |
--max-model-len |
8192 |
Max context length |
--max-tokens |
4096 |
Max output tokens |
--gpu-memory-utilization |
0.7 |
GPU memory usage |
--split |
train |
Dataset split to process |
--max-samples |
None | Limit samples (for testing) |
--private |
False | Make output dataset private |
More OCR VLM Scripts coming soon! Stay tuned for updates!