output_description
stringlengths 15
956
| submission_id
stringlengths 10
10
| status
stringclasses 3
values | problem_id
stringlengths 6
6
| input_description
stringlengths 9
2.55k
| attempt
stringlengths 1
13.7k
| problem_description
stringlengths 7
5.24k
| samples
stringlengths 2
2.72k
|
---|---|---|---|---|---|---|---|
Print "Yes" if given dices are all different, otherwise "No" in a line.
|
s429316798
|
Accepted
|
p02386
|
In the first line, the number of dices $n$ is given. In the following $n$
lines, six integers assigned to the dice faces are given respectively in the
same way as Dice III.
|
import random
class dice:
def __init__(self, t, S, E):
self.dice = list(map(int, input().split()))
self.t = t
self.S = S
self.E = E
self.now_dice()
def roll(self, order):
if order == "E":
self.t, self.E = self.W, self.t
elif order == "N":
self.t, self.S = self.S, self.g
elif order == "S":
self.t, self.S = self.N, self.t
elif order == "W":
self.t, self.E = self.E, self.g
self.now_dice()
def now_dice(self):
self.N = 7 - self.S
self.g = 7 - self.t
self.W = 7 - self.E
self.now = [self.t, self.S, self.E, self.N, self.W, self.g]
return self.now
if __name__ == "__main__":
num = int(input())
dice_1 = dice(1, 2, 3)
direc = ["N", "E", "W", "S"]
x = 0
for _ in range(num - 1):
dice_2 = dice(1, 2, 3)
for __ in range(1200):
random.shuffle(direc)
dice_2.roll(direc[0])
if [dice_1.dice[dice_1.now[v] - 1] for v in range(6)] == [
dice_2.dice[dice_2.now[v] - 1] for v in range(6)
]:
x += 1
break
if x >= 1:
print("No")
else:
print("Yes")
|
Dice IV
Write a program which reads $n$ dices constructed in the same way as Dice I,
and determines whether they are all different. For the determination, use the
same way as Dice III.
|
[{"input": "3\n 1 2 3 4 5 6\n 6 2 4 3 5 1\n 6 5 4 3 2 1", "output": "No"}, {"input": "3\n 1 2 3 4 5 6\n 6 5 4 3 2 1\n 5 4 3 2 1 6", "output": "Yes"}]
|
Print "Yes" if given dices are all different, otherwise "No" in a line.
|
s730200572
|
Accepted
|
p02386
|
In the first line, the number of dices $n$ is given. In the following $n$
lines, six integers assigned to the dice faces are given respectively in the
same way as Dice III.
|
import sys
import itertools
class Dice(object):
def __init__(self, faces: list):
self.list_sn = [faces[5], faces[4], faces[0], faces[1]] # 6,5,1,2
self.list_we = [faces[5], faces[2], faces[0], faces[3]] # 6,5,1,2
def _roll_positive(self, list_a: list, list_b: list) -> list:
list_a = list_a[1:] + list_a[0:1] # Roll one unit in the positive direction.
list_b[0] = list_a[0] # Change the bottom face.
list_b[2] = list_a[2] # Change the top face.
return [list_a, list_b]
def _roll_negative(self, list_a: list, list_b: list) -> list:
list_a = list_a[3:] + list_a[0:3]
list_b[0] = list_a[0] # Change the bottom face.
list_b[2] = list_a[2] # Change the top face.
return [list_a, list_b]
def roll(self, direction: str):
if "N" == direction:
self.list_sn, self.list_we = self._roll_positive(self.list_sn, self.list_we)
elif "S" == direction:
self.list_sn, self.list_we = self._roll_negative(self.list_sn, self.list_we)
elif "E" == direction:
self.list_we, self.list_sn = self._roll_positive(self.list_we, self.list_sn)
else:
self.list_we, self.list_sn = self._roll_negative(self.list_we, self.list_sn)
if __name__ == "__main__":
dice_num = int(input())
dice_list = [
Dice(list(map(lambda x: int(x), input().split()))) for _ in range(dice_num)
]
for Dice_a, Dice_b in itertools.combinations(dice_list, 2):
for command in "NNNNWNNNWNNNENNNENNNWNNN": # Check all patterns.
Dice_b.roll(command)
if Dice_a.list_sn == Dice_b.list_sn and Dice_a.list_we == Dice_b.list_we:
print("No") # Some pair is identical.
sys.exit()
print("Yes") # All dices are different.
|
Dice IV
Write a program which reads $n$ dices constructed in the same way as Dice I,
and determines whether they are all different. For the determination, use the
same way as Dice III.
|
[{"input": "3\n 1 2 3 4 5 6\n 6 2 4 3 5 1\n 6 5 4 3 2 1", "output": "No"}, {"input": "3\n 1 2 3 4 5 6\n 6 5 4 3 2 1\n 5 4 3 2 1 6", "output": "Yes"}]
|
Print "Yes" if given dices are all different, otherwise "No" in a line.
|
s129483169
|
Accepted
|
p02386
|
In the first line, the number of dices $n$ is given. In the following $n$
lines, six integers assigned to the dice faces are given respectively in the
same way as Dice III.
|
number = int(input())
dices = []
for i in range(number):
dices.append(input().split())
tf = 0
for i in range(number - 1):
for j in range(i + 1, number):
dice_1 = dices[i]
dice_2 = dices[j]
rolls = {
" ": [0, 1, 2, 3, 4, 5],
"W": [2, 1, 5, 0, 4, 3],
"N": [1, 5, 2, 3, 0, 4],
"E": [3, 1, 0, 5, 4, 2],
"S": [4, 0, 2, 3, 5, 1],
}
orders = [" ", "N", "W", "E", "S", "NN"]
for order in orders:
copy_2 = dice_2
for d in order:
roll = rolls[d]
copy_2 = [copy_2[i] for i in roll]
l = [1, 2, 4, 3]
a0 = copy_2[0] == dice_1[0]
a1 = copy_2[5] == dice_1[5]
a2 = " ".join([copy_2[s] for s in l]) in " ".join(
[dice_1[s] for s in l] * 2
)
if a0 and a1 and a2:
tf += 1
if tf > 0:
print("No")
else:
print("Yes")
|
Dice IV
Write a program which reads $n$ dices constructed in the same way as Dice I,
and determines whether they are all different. For the determination, use the
same way as Dice III.
|
[{"input": "3\n 1 2 3 4 5 6\n 6 2 4 3 5 1\n 6 5 4 3 2 1", "output": "No"}, {"input": "3\n 1 2 3 4 5 6\n 6 5 4 3 2 1\n 5 4 3 2 1 6", "output": "Yes"}]
|
Print "Yes" if given dices are all different, otherwise "No" in a line.
|
s688000961
|
Accepted
|
p02386
|
In the first line, the number of dices $n$ is given. In the following $n$
lines, six integers assigned to the dice faces are given respectively in the
same way as Dice III.
|
class Dice:
"""Dice class"""
def __init__(self): # ?????????????????????
self.eyeIndex = 1 # center
self.eyeIndex_E = 3 # east
self.eyeIndex_W = 4 # west
self.eyeIndex_N = 5 # north
self.eyeIndex_S = 2 # south
self.eye = 0
self.eye_S = 0
self.eye_E = 0
self.eye_W = 0
self.eye_N = 0
self.eye_B = 0
self.eyes = []
def convEyesIndexToEyes(self):
self.eye = self.eyes[self.eyeIndex]
self.eye_S = self.eyes[self.eyeIndex_S]
self.eye_E = self.eyes[self.eyeIndex_E]
self.eye_N = self.eyes[self.eyeIndex_N]
self.eye_W = self.eyes[self.eyeIndex_W]
self.eye_B = self.eyes[7 - self.eyeIndex]
def shakeDice(self, in_command):
pre_eyeIndex = self.eyeIndex
if in_command == "E":
self.eyeIndex = self.eyeIndex_W
self.eyeIndex_E = pre_eyeIndex
self.eyeIndex_W = 7 - self.eyeIndex_E
elif in_command == "W":
self.eyeIndex = self.eyeIndex_E
self.eyeIndex_W = pre_eyeIndex
self.eyeIndex_E = 7 - self.eyeIndex_W
elif in_command == "N":
self.eyeIndex = self.eyeIndex_S
self.eyeIndex_N = pre_eyeIndex
self.eyeIndex_S = 7 - self.eyeIndex_N
elif in_command == "S":
self.eyeIndex = self.eyeIndex_N
self.eyeIndex_S = pre_eyeIndex
self.eyeIndex_N = 7 - self.eyeIndex_S
self.convEyesIndexToEyes()
def rotateDice(self):
# rotate clockwise
pre_E = self.eyeIndex_E
pre_S = self.eyeIndex_S
pre_W = self.eyeIndex_W
pre_N = self.eyeIndex_N
self.eyeIndex_E = pre_N
self.eyeIndex_S = pre_E
self.eyeIndex_W = pre_S
self.eyeIndex_N = pre_W
self.convEyesIndexToEyes()
def getEye(self):
return self.eye
def getEye_S(self):
return self.eye_S
def getEye_E(self):
return self.eye_E
def getEye_N(self):
return self.eye_N
def getEye_W(self):
return self.eye_W
def getEye_B(self):
return self.eye_B
def setEyes(self, eyes): # setEyes()???????????? ???????????????
eyes = "0 " + eyes
self.eyes = list(map(int, eyes.split(" ")))
self.convEyesIndexToEyes()
def checkSameDice(dice_1, dice_2):
shake_direction = "E"
shake_cnt = 0
while True:
if (
dice_2.getEye() == dice_1.getEye()
and dice_2.getEye_B() == dice_1.getEye_B()
):
break
dice_2.shakeDice(shake_direction)
shake_cnt = shake_cnt + 1
if shake_cnt >= 8:
return False
break
if shake_cnt >= 4:
shake_direction = "N"
rotate_cnt = 0
while True:
if (
dice_1.getEye() == dice_2.getEye()
and dice_1.getEye_E() == dice_2.getEye_E()
and dice_1.getEye_S() == dice_2.getEye_S()
and dice_1.getEye_W() == dice_2.getEye_W()
and dice_1.getEye_N() == dice_2.getEye_N()
):
break
dice_2.rotateDice()
rotate_cnt = rotate_cnt + 1
if rotate_cnt >= 5:
return False
return True
dice_cnt = int(input().rstrip())
# dice_eyes = [" " for i in range(dice_cnt)]
dices = []
# set all dices
for i in range(dice_cnt):
# dice_eyes[i] = input().rtstrip()
tmpDice = Dice()
tmpDice.setEyes(input().rstrip())
dices.append(tmpDice)
tmpDice = None
judge = "Yes"
for i in range(dice_cnt):
for j in range(i + 1, dice_cnt):
if checkSameDice(dices[i], dices[j]):
judge = "No"
break
if judge == "No":
break
print(judge)
|
Dice IV
Write a program which reads $n$ dices constructed in the same way as Dice I,
and determines whether they are all different. For the determination, use the
same way as Dice III.
|
[{"input": "3\n 1 2 3 4 5 6\n 6 2 4 3 5 1\n 6 5 4 3 2 1", "output": "No"}, {"input": "3\n 1 2 3 4 5 6\n 6 5 4 3 2 1\n 5 4 3 2 1 6", "output": "Yes"}]
|
Print "Yes" if given dices are all different, otherwise "No" in a line.
|
s627390440
|
Accepted
|
p02386
|
In the first line, the number of dices $n$ is given. In the following $n$
lines, six integers assigned to the dice faces are given respectively in the
same way as Dice III.
|
from itertools import combinations
class Dice:
def __init__(self, dim=list(range(1, 7))):
self.dim = dim
def roll(self, direction):
if direction == "N":
buff = self.dim[0]
self.dim[0] = self.dim[1]
self.dim[1] = self.dim[5]
self.dim[5] = self.dim[4]
self.dim[4] = buff
if direction == "E":
buff = self.dim[3]
self.dim[3] = self.dim[5]
self.dim[5] = self.dim[2]
self.dim[2] = self.dim[0]
self.dim[0] = buff
if direction == "W":
buff = self.dim[0]
self.dim[0] = self.dim[2]
self.dim[2] = self.dim[5]
self.dim[5] = self.dim[3]
self.dim[3] = buff
if direction == "S":
buff = self.dim[0]
self.dim[0] = self.dim[4]
self.dim[4] = self.dim[5]
self.dim[5] = self.dim[1]
self.dim[1] = buff
def dice_ident(lsts, comb):
for i in comb:
D1 = Dice(lsts[i[0]])
D2 = Dice(lsts[i[1]])
for op in "EEENEEENEEESEEESEEENEEEN":
if D1.dim == D2.dim:
return print("No")
D1.roll(op)
return print("Yes")
number = int(input())
comb = list(combinations(range(number), 2))
lsts = []
for i in range(number):
lsts.append(list(map(int, input().split())))
dice_ident(lsts, comb)
|
Dice IV
Write a program which reads $n$ dices constructed in the same way as Dice I,
and determines whether they are all different. For the determination, use the
same way as Dice III.
|
[{"input": "3\n 1 2 3 4 5 6\n 6 2 4 3 5 1\n 6 5 4 3 2 1", "output": "No"}, {"input": "3\n 1 2 3 4 5 6\n 6 5 4 3 2 1\n 5 4 3 2 1 6", "output": "Yes"}]
|
Print "Yes" if given dices are all different, otherwise "No" in a line.
|
s542867527
|
Accepted
|
p02386
|
In the first line, the number of dices $n$ is given. In the following $n$
lines, six integers assigned to the dice faces are given respectively in the
same way as Dice III.
|
class Dice:
same_dice_index = (
(0, 1, 2, 3, 4, 5),
(0, 2, 4, 1, 3, 5),
(0, 3, 1, 4, 2, 5),
(0, 4, 3, 2, 1, 5),
(1, 0, 3, 2, 5, 4),
(1, 2, 0, 5, 3, 4),
(1, 3, 5, 0, 2, 4),
(1, 5, 2, 3, 0, 4),
(2, 0, 1, 4, 5, 3),
(2, 1, 5, 0, 4, 3),
(2, 4, 0, 5, 1, 3),
(2, 5, 4, 1, 0, 3),
(3, 0, 4, 1, 5, 2),
(3, 1, 0, 5, 4, 2),
(3, 4, 5, 0, 1, 2),
(3, 5, 1, 4, 0, 2),
(4, 0, 2, 3, 5, 1),
(4, 2, 5, 0, 3, 1),
(4, 3, 0, 5, 2, 1),
(4, 5, 3, 2, 0, 1),
(5, 1, 3, 2, 4, 0),
(5, 2, 1, 4, 3, 0),
(5, 3, 4, 1, 2, 0),
(5, 4, 2, 3, 1, 0),
)
def __init__(self, str_list):
self.faces = str_list
def is_same(self, dice):
for i in Dice.same_dice_index:
for n, j in enumerate(i):
if dice.faces[n] != self.faces[j]:
break
else:
return True
return False
def is_unique(self, dices_list):
for i in dices_list:
if self.is_same(i):
return False
return True
import sys
n = int(sys.stdin.readline())
dices = []
for i in range(n):
str_list = sys.stdin.readline().split()
new_dice = Dice(str_list)
if not new_dice.is_unique(dices):
print("No")
break
dices.append(new_dice)
else:
print("Yes")
|
Dice IV
Write a program which reads $n$ dices constructed in the same way as Dice I,
and determines whether they are all different. For the determination, use the
same way as Dice III.
|
[{"input": "3\n 1 2 3 4 5 6\n 6 2 4 3 5 1\n 6 5 4 3 2 1", "output": "No"}, {"input": "3\n 1 2 3 4 5 6\n 6 5 4 3 2 1\n 5 4 3 2 1 6", "output": "Yes"}]
|
Print "Yes" if given dices are all different, otherwise "No" in a line.
|
s871744406
|
Accepted
|
p02386
|
In the first line, the number of dices $n$ is given. In the following $n$
lines, six integers assigned to the dice faces are given respectively in the
same way as Dice III.
|
import itertools
def get_dice():
input_data = input().split(" ")
items = [int(cont) for cont in input_data]
keys = ["T", "S", "E", "W", "N", "B"]
return dict(zip(keys, items))
def rot_dice(rot, dice):
if rot == "N":
keys = ["T", "S", "B", "N"]
items = dice["S"], dice["B"], dice["N"], dice["T"]
new_dice = dict(zip(keys, items))
dice.update(new_dice)
if rot == "S":
keys = ["T", "S", "B", "N"]
items = dice["N"], dice["T"], dice["S"], dice["B"]
new_dice = dict(zip(keys, items))
dice.update(new_dice)
if rot == "E":
keys = ["T", "E", "B", "W"]
items = dice["W"], dice["T"], dice["E"], dice["B"]
new_dice = dict(zip(keys, items))
dice.update(new_dice)
if rot == "W":
keys = ["T", "E", "B", "W"]
items = dice["E"], dice["B"], dice["W"], dice["T"]
new_dice = dict(zip(keys, items))
dice.update(new_dice)
if rot == "R":
keys = ["N", "W", "S", "E"]
items = dice["E"], dice["N"], dice["W"], dice["S"]
new_dice = dict(zip(keys, items))
dice.update(new_dice)
if rot == "L":
keys = ["N", "W", "S", "E"]
items = dice["W"], dice["S"], dice["E"], dice["N"]
new_dice = dict(zip(keys, items))
dice.update(new_dice)
def search_right_surf(conds, dice):
a, b = conds
a_key = [k for k, v in dice.items() if v == a]
b_key = [k for k, v in dice.items() if v == b]
key_list = a_key + b_key
part_st = "".join(key_list)
def search(part_st):
if part_st in "TNBST":
return "W"
if part_st in "TSBNT":
return "E"
if part_st in "TEBWT":
return "N"
if part_st in "TWBET":
return "S"
if part_st in "NESWN":
return "B"
if part_st in "NWSEN":
return "T"
target_key = search(part_st)
print(dice[target_key])
def search_top_surf(top_surf, dice):
dice2_surf, *_ = [k for k, v in dice.items() if v == top_surf]
if dice2_surf == "N":
rot_dice("S", dice)
if dice2_surf == "B":
controls = list("SS")
for i in controls:
rot_dice(i, dice)
if dice2_surf == "S":
controls = list("N")
for i in controls:
rot_dice(i, dice)
if dice2_surf == "W":
controls = list("E")
for i in controls:
rot_dice(i, dice)
if dice2_surf == "E":
controls = list("W")
for i in controls:
rot_dice(i, dice)
def search_flont_surf(flont_surf, dice):
dice2_surf, *_ = [k for k, v in dice.items() if v == flont_surf]
if dice2_surf == "E":
controls = list("R")
for i in controls:
rot_dice(i, dice)
if dice2_surf == "S":
controls = list("RR")
for i in controls:
rot_dice(i, dice)
if dice2_surf == "W":
rot_dice("L", dice)
def perfect_rot_compare(dice1, dice2):
def compare_dice(dice1, dice2):
if dice1 == dice2:
return True
comb = ["N", "S", "E", "W", "R", "L"]
tups = list()
for i in range(6):
tups.append(itertools.combinations(comb, i))
if compare_dice(dice1, dice2):
return True
for commands in itertools.chain.from_iterable(tups):
for command in commands:
rot_dice(command, dice2)
if compare_dice(dice1, dice2):
return True
return False
def compare_many_dices(dice_list):
dice1 = dice_list.pop(0)
for dice2 in dice_list:
if perfect_rot_compare(dice1, dice2):
return True
return False
def q1():
dice = get_dice()
controls = list(input())
for i in controls:
rot_dice(i, dice)
print(dice["T"])
def q2():
dice = get_dice()
a = input()
repeater = int(a)
for neee in range(repeater):
control_input = input().split(" ")
conds = [int(i) for i in control_input]
search_right_surf(conds, dice)
def q3():
dice1 = get_dice()
dice2 = get_dice()
if perfect_rot_compare(dice1, dice2):
print("Yes")
else:
print("No")
def q4():
inp = input()
dice_num = int(inp)
dice_list = list()
for i in range(dice_num):
dice_list.append(get_dice())
if compare_many_dices(dice_list):
print("No")
else:
print("Yes")
q4()
|
Dice IV
Write a program which reads $n$ dices constructed in the same way as Dice I,
and determines whether they are all different. For the determination, use the
same way as Dice III.
|
[{"input": "3\n 1 2 3 4 5 6\n 6 2 4 3 5 1\n 6 5 4 3 2 1", "output": "No"}, {"input": "3\n 1 2 3 4 5 6\n 6 5 4 3 2 1\n 5 4 3 2 1 6", "output": "Yes"}]
|
Print "Yes" if given dices are all different, otherwise "No" in a line.
|
s520942693
|
Accepted
|
p02386
|
In the first line, the number of dices $n$ is given. In the following $n$
lines, six integers assigned to the dice faces are given respectively in the
same way as Dice III.
|
# サイコロ 初期状態
# [1] N
# [4][2][3][5] W[1]E
# [6] S
#
# 上記の順番でラベルに対する整数が与えられる
# l1 l2 l3 l4 l5 l6
# 複数のサイコロが全て異なっていれば'Yes'
# 1組でも一致していたら'No'
import copy
class Dice:
def __init__(self, l1, l2, l3, l4, l5, l6):
self.l1 = l1
self.l2 = l2
self.l3 = l3
self.l4 = l4
self.l5 = l5
self.l6 = l6
self.tmp = 0
def move_n(self):
self.tmp = self.l5
self.l5 = self.l1
self.l1 = self.l2
self.l2 = self.l6
self.l6 = self.tmp
def move_s(self):
self.tmp = self.l2
self.l2 = self.l1
self.l1 = self.l5
self.l5 = self.l6
self.l6 = self.tmp
def move_e(self):
self.tmp = self.l3
self.l3 = self.l1
self.l1 = self.l4
self.l4 = self.l6
self.l6 = self.tmp
def move_w(self):
self.tmp = self.l4
self.l4 = self.l1
self.l1 = self.l3
self.l3 = self.l6
self.l6 = self.tmp
def show(self):
return self.l1, self.l2, self.l3, self.l4, self.l5, self.l6
n = int(input())
yn_f = False
d_inf1 = []
d_inf2 = []
for _ in range(n):
d_inf1.append(Dice(*map(int, input().split())))
d_inf2 = copy.deepcopy(d_inf1)
for i, d1 in enumerate(d_inf1):
for j, d2 in enumerate(d_inf2):
if i == j:
continue
if set(d1.show()) == set(d2.show()):
ne_switch = 0
while d1.l2 != d2.l2:
if ne_switch <= 3:
d1.move_n()
ne_switch += 1
elif 4 == ne_switch:
d1.move_e()
ne_switch = 0
e_cnt = 0
while d1.l1 != d2.l1 and e_cnt <= 3:
d1.move_e()
e_cnt += 1
if d1.l3 == d2.l3 and d1.l4 == d2.l4 and d1.l5 == d2.l5 and d1.l6 == d2.l6:
yn_f = True
if yn_f:
break
if yn_f:
break
print("No" if yn_f else "Yes")
|
Dice IV
Write a program which reads $n$ dices constructed in the same way as Dice I,
and determines whether they are all different. For the determination, use the
same way as Dice III.
|
[{"input": "3\n 1 2 3 4 5 6\n 6 2 4 3 5 1\n 6 5 4 3 2 1", "output": "No"}, {"input": "3\n 1 2 3 4 5 6\n 6 5 4 3 2 1\n 5 4 3 2 1 6", "output": "Yes"}]
|
If he can achieve the objective, print `OK`; if he cannot, print `NG`.
* * *
|
s049860714
|
Runtime Error
|
p02693
|
Input is given from Standard Input in the following format:
K
A B
|
from sys import stdin
import itertools
import numpy as np
from numba import njit
def main():
# 入力
readline = stdin.readline
N, M, Q = map(int, readline().split())
a = np.zeros(Q, dtype=np.int64)
b = np.zeros(Q, dtype=np.int64)
c = np.zeros(Q, dtype=np.int64)
d = np.zeros(Q, dtype=np.int64)
for i in range(Q):
a[i], b[i], c[i], d[i] = map(int, readline().split())
arrays = np.array(
list(itertools.combinations_with_replacement(range(1, M + 1), N)),
dtype=np.int64,
)
l = len(arrays)
print(f(l, Q, a, b, c, d, arrays))
@njit("i8(i8,i8,i8[:],i8[:],i8[:],i8[:],i8[:,:])", cache=True)
def f(l, Q, a, b, c, d, arrays):
max_res = 0
for i in range(l):
res = 0
for j in range(Q):
if arrays[i][b[j] - 1] - arrays[i][a[j] - 1] == c[j]:
res += d[j]
max_res = max(max_res, res)
return max_res
if __name__ == "__main__":
main()
|
Statement
Takahashi the Jumbo will practice golf.
His objective is to get a carry distance that is a multiple of K, while he can
only make a carry distance of between A and B (inclusive).
If he can achieve the objective, print `OK`; if he cannot, print `NG`.
|
[{"input": "7\n 500 600", "output": "OK\n \n\nAmong the multiples of 7, for example, 567 lies between 500 and 600.\n\n* * *"}, {"input": "4\n 5 7", "output": "NG\n \n\nNo multiple of 4 lies between 5 and 7.\n\n* * *"}, {"input": "1\n 11 11", "output": "OK"}]
|
If he can achieve the objective, print `OK`; if he cannot, print `NG`.
* * *
|
s818586989
|
Runtime Error
|
p02693
|
Input is given from Standard Input in the following format:
K
A B
|
import numpy as np
# from numba import jit
n, m, q = map(int, input().split())
a = list(range(q))
b = list(range(q))
c = list(range(q))
d = list(range(q))
for i in range(q):
a[i], b[i], c[i], d[i] = map(int, input().split())
A = np.sort(np.random.randint(1, m + 1, n))
# @jit
def calc_energy(A):
energy = 0.0
for i in range(q):
if (A[b[i] - 1] - A[a[i] - 1]) == c[i]:
energy += d[i]
return energy
T = 20000
temperature = 200
for t in range(T):
A_prev = np.copy(A)
energy_prev = calc_energy(A_prev)
idx = np.random.randint(0, n)
A[idx] = np.random.randint(1, m + 1)
energy = calc_energy(A)
if np.random.rand() < (energy - energy_prev) / temperature:
pass
else:
A = np.copy(A_prev)
temperature *= 0.999
print(np.int(calc_energy(A)))
|
Statement
Takahashi the Jumbo will practice golf.
His objective is to get a carry distance that is a multiple of K, while he can
only make a carry distance of between A and B (inclusive).
If he can achieve the objective, print `OK`; if he cannot, print `NG`.
|
[{"input": "7\n 500 600", "output": "OK\n \n\nAmong the multiples of 7, for example, 567 lies between 500 and 600.\n\n* * *"}, {"input": "4\n 5 7", "output": "NG\n \n\nNo multiple of 4 lies between 5 and 7.\n\n* * *"}, {"input": "1\n 11 11", "output": "OK"}]
|
If he can achieve the objective, print `OK`; if he cannot, print `NG`.
* * *
|
s621070931
|
Runtime Error
|
p02693
|
Input is given from Standard Input in the following format:
K
A B
|
from bisect import bisect_left
from collections import deque
import copy
def lis(A: list):
L = [A[0]]
for a in A[1:]:
if a > L[-1]:
# Lの末尾よりaが大きければ増加部分列を延長できる
L.append(a)
else:
# そうでなければ、「aより小さい最大要素の次」をaにする
# 該当位置は、二分探索で特定できる
L[bisect_left(L, a)] = a
return len(L)
n = int(input())
a = tuple(map(int, input().split()))
G = [[] for _ in range(n + 1)]
for i in range(n - 1):
u, v = map(int, input().split())
G[u].append(v)
G[v].append(u)
letu = [[] for _ in range(n + 1)]
letu[1].append(1)
que = deque([1])
while que:
q = que.popleft()
for nq in G[q]:
let = copy.deepcopy(letu[q])
if letu[nq] != []: # seen配列としても使う。seenないと閉路でWA
continue
let = let + [nq]
letu[nq] = let
que.append(nq)
for j in range(1, n + 1):
tmp = [a[aa - 1] for aa in letu[j]]
print(lis(tmp))
|
Statement
Takahashi the Jumbo will practice golf.
His objective is to get a carry distance that is a multiple of K, while he can
only make a carry distance of between A and B (inclusive).
If he can achieve the objective, print `OK`; if he cannot, print `NG`.
|
[{"input": "7\n 500 600", "output": "OK\n \n\nAmong the multiples of 7, for example, 567 lies between 500 and 600.\n\n* * *"}, {"input": "4\n 5 7", "output": "NG\n \n\nNo multiple of 4 lies between 5 and 7.\n\n* * *"}, {"input": "1\n 11 11", "output": "OK"}]
|
If he can achieve the objective, print `OK`; if he cannot, print `NG`.
* * *
|
s181387925
|
Runtime Error
|
p02693
|
Input is given from Standard Input in the following format:
K
A B
|
n, m, q = map(int, input().split())
List = [list(map(int, input().split())) for i in range(q)]
p_max = 0
point = 0
A = [1] * n
E = [m] * n
while A != E:
# 得点計算
for j in range(q):
if A[List[j][1] - 1] - A[List[j][0] - 1] == List[j][2]:
point += List[j][3]
# 最大値の更新
if p_max < point:
p_max = point
point = 0
# Aの更新
for i in reversed(range(0, n)):
if A[i] < m:
A[i] = A[i] + 1
if i != n - 1:
for k in range(i + 1, n):
A[k] = A[i]
break
print(p_max)
|
Statement
Takahashi the Jumbo will practice golf.
His objective is to get a carry distance that is a multiple of K, while he can
only make a carry distance of between A and B (inclusive).
If he can achieve the objective, print `OK`; if he cannot, print `NG`.
|
[{"input": "7\n 500 600", "output": "OK\n \n\nAmong the multiples of 7, for example, 567 lies between 500 and 600.\n\n* * *"}, {"input": "4\n 5 7", "output": "NG\n \n\nNo multiple of 4 lies between 5 and 7.\n\n* * *"}, {"input": "1\n 11 11", "output": "OK"}]
|
If he can achieve the objective, print `OK`; if he cannot, print `NG`.
* * *
|
s371677733
|
Runtime Error
|
p02693
|
Input is given from Standard Input in the following format:
K
A B
|
nmq = list(map(int, input().split()))
N = nmq[0]
M = nmq[1]
Q = nmq[2]
ablist = [list(map(int, input().split())) for i in range(Q)]
sumlist = []
alist = [i for i in range(1, M + 1)]
import itertools as ite
case = list(ite.combinations_with_replacement(alist, N))
for nowcase in case:
sumd = 0
for i in range(Q):
a = ablist[i][0]
b = ablist[i][1]
c = ablist[i][2]
d = ablist[i][3]
aa = nowcase[a - 1]
ab = nowcase[b - 1]
if ab - aa == c:
sumd += d
sumlist.append(sumd)
print(max(sumlist))
|
Statement
Takahashi the Jumbo will practice golf.
His objective is to get a carry distance that is a multiple of K, while he can
only make a carry distance of between A and B (inclusive).
If he can achieve the objective, print `OK`; if he cannot, print `NG`.
|
[{"input": "7\n 500 600", "output": "OK\n \n\nAmong the multiples of 7, for example, 567 lies between 500 and 600.\n\n* * *"}, {"input": "4\n 5 7", "output": "NG\n \n\nNo multiple of 4 lies between 5 and 7.\n\n* * *"}, {"input": "1\n 11 11", "output": "OK"}]
|
If he can achieve the objective, print `OK`; if he cannot, print `NG`.
* * *
|
s553257270
|
Runtime Error
|
p02693
|
Input is given from Standard Input in the following format:
K
A B
|
N, M = list(map(int, input().split()))
src = [i + 1 for i in range(M * 2 + 1)]
if N % 2 == 0:
for m in range(M // 2):
a = src[m]
b = src[M - m]
print("{} {}".format(a, b))
for m in range(M // 2):
a = src[M + 1 + m]
b = src[-(m + 1)]
print("{} {}".format(a, b))
else:
for m in range(M // 2):
a = src[m]
b = src[M - 1 - m]
print("{} {}".format(a, b))
for m in range(M - (M // 2)):
a = src[M + m]
b = src[-(m + 1)]
print("{} {}".format(a, b))
|
Statement
Takahashi the Jumbo will practice golf.
His objective is to get a carry distance that is a multiple of K, while he can
only make a carry distance of between A and B (inclusive).
If he can achieve the objective, print `OK`; if he cannot, print `NG`.
|
[{"input": "7\n 500 600", "output": "OK\n \n\nAmong the multiples of 7, for example, 567 lies between 500 and 600.\n\n* * *"}, {"input": "4\n 5 7", "output": "NG\n \n\nNo multiple of 4 lies between 5 and 7.\n\n* * *"}, {"input": "1\n 11 11", "output": "OK"}]
|
If he can achieve the objective, print `OK`; if he cannot, print `NG`.
* * *
|
s695241163
|
Wrong Answer
|
p02693
|
Input is given from Standard Input in the following format:
K
A B
|
ppp = "Hello WOoooooooo?"
print(ppp)
|
Statement
Takahashi the Jumbo will practice golf.
His objective is to get a carry distance that is a multiple of K, while he can
only make a carry distance of between A and B (inclusive).
If he can achieve the objective, print `OK`; if he cannot, print `NG`.
|
[{"input": "7\n 500 600", "output": "OK\n \n\nAmong the multiples of 7, for example, 567 lies between 500 and 600.\n\n* * *"}, {"input": "4\n 5 7", "output": "NG\n \n\nNo multiple of 4 lies between 5 and 7.\n\n* * *"}, {"input": "1\n 11 11", "output": "OK"}]
|
If he can achieve the objective, print `OK`; if he cannot, print `NG`.
* * *
|
s453879029
|
Runtime Error
|
p02693
|
Input is given from Standard Input in the following format:
K
A B
|
import itertools
N, M, Q = map(int, input().split())
m = list()
res = -100
for i in range(Q):
n = list(map(int, input().split()))
m.append(n)
l = [x for x in range(1, M + 1)]
p = itertools.combinations_with_replacement(l, N)
for p in p:
total = 0
for i in range(Q):
num = 0
a = m[i][0]
b = m[i][1]
A = p[a - 1]
B = p[b - 1]
C = B - A
if m[i][2] == C:
num = num + m[i][3]
total = total + num
if res < total:
res = total
print(res)
|
Statement
Takahashi the Jumbo will practice golf.
His objective is to get a carry distance that is a multiple of K, while he can
only make a carry distance of between A and B (inclusive).
If he can achieve the objective, print `OK`; if he cannot, print `NG`.
|
[{"input": "7\n 500 600", "output": "OK\n \n\nAmong the multiples of 7, for example, 567 lies between 500 and 600.\n\n* * *"}, {"input": "4\n 5 7", "output": "NG\n \n\nNo multiple of 4 lies between 5 and 7.\n\n* * *"}, {"input": "1\n 11 11", "output": "OK"}]
|
If he can achieve the objective, print `OK`; if he cannot, print `NG`.
* * *
|
s228902818
|
Accepted
|
p02693
|
Input is given from Standard Input in the following format:
K
A B
|
s_K = input()
s_AB = input().split()
str = "NG"
K = int(s_K)
A = int(s_AB[0])
B = int(s_AB[1])
for w in range(A, B + 1):
if w % K == 0:
str = "OK"
print(str)
|
Statement
Takahashi the Jumbo will practice golf.
His objective is to get a carry distance that is a multiple of K, while he can
only make a carry distance of between A and B (inclusive).
If he can achieve the objective, print `OK`; if he cannot, print `NG`.
|
[{"input": "7\n 500 600", "output": "OK\n \n\nAmong the multiples of 7, for example, 567 lies between 500 and 600.\n\n* * *"}, {"input": "4\n 5 7", "output": "NG\n \n\nNo multiple of 4 lies between 5 and 7.\n\n* * *"}, {"input": "1\n 11 11", "output": "OK"}]
|
If he can achieve the objective, print `OK`; if he cannot, print `NG`.
* * *
|
s444843650
|
Runtime Error
|
p02693
|
Input is given from Standard Input in the following format:
K
A B
|
A = list(map(int, input().split())) # 入力のときに N を使う必要はありません
i_max = 0
i_count = 0
j_count = 0
for x in range(1, A[2] + 1):
if i_max < ((A[0] * x) // A[1] - A[0] * (x // A[1])):
i_max = (A[0] * x) // A[1] - A[0] * (x // A[1])
i_count = x
if (x - i_count) == 1:
j_count = j_count + 1
if j_count == 2:
break
print(i_count)
|
Statement
Takahashi the Jumbo will practice golf.
His objective is to get a carry distance that is a multiple of K, while he can
only make a carry distance of between A and B (inclusive).
If he can achieve the objective, print `OK`; if he cannot, print `NG`.
|
[{"input": "7\n 500 600", "output": "OK\n \n\nAmong the multiples of 7, for example, 567 lies between 500 and 600.\n\n* * *"}, {"input": "4\n 5 7", "output": "NG\n \n\nNo multiple of 4 lies between 5 and 7.\n\n* * *"}, {"input": "1\n 11 11", "output": "OK"}]
|
If he can achieve the objective, print `OK`; if he cannot, print `NG`.
* * *
|
s612981950
|
Runtime Error
|
p02693
|
Input is given from Standard Input in the following format:
K
A B
|
a, b, n = map(int, input().split())
ans = int((a * n) / b) - a * int(n / b)
n = n - 1
ans = max(ans, int((a * n) / b) - a * int(n / b))
n = n - 2
ans = max(ans, int((a * n) / b) - a * int(n / b))
n = n - 3
ans = max(ans, int((a * n) / b) - a * int(n / b))
n = min(n, 1)
ans = max(ans, int((a * n) / b) - a * int(n / b))
n = min(n, 2)
ans = max(ans, int((a * n) / b) - a * int(n / b))
n = min(n, 3)
ans = max(ans, int((a * n) / b) - a * int(n / b))
print(ans)
|
Statement
Takahashi the Jumbo will practice golf.
His objective is to get a carry distance that is a multiple of K, while he can
only make a carry distance of between A and B (inclusive).
If he can achieve the objective, print `OK`; if he cannot, print `NG`.
|
[{"input": "7\n 500 600", "output": "OK\n \n\nAmong the multiples of 7, for example, 567 lies between 500 and 600.\n\n* * *"}, {"input": "4\n 5 7", "output": "NG\n \n\nNo multiple of 4 lies between 5 and 7.\n\n* * *"}, {"input": "1\n 11 11", "output": "OK"}]
|
Print 1 if G has cycle(s), 0 otherwise.
|
s431214808
|
Wrong Answer
|
p02369
|
A directed graph G is given in the following format:
|V| |E|
s0 t0
s1 t1
:
s|E|-1 t|E|-1
|V| is the number of nodes and |E| is the number of edges in the graph. The
graph nodes are named with the numbers 0, 1,..., |V|-1 respectively.
si and ti represent source and target nodes of i-th edge (directed).
|
from collections import deque, defaultdict
def topological_sort(V, E):
'''
Kahn's Algorithm (O(|V| + |E|) time)
Input:
V = [0, 1, ..., N-1]: a list of vertices of the digraph
E: the adjacency list of the digraph (dict)
Output:
If the input digraph is acyclic, then return a topological sorting of the digraph.
Else, return None.
'''
indeg = {v: 0 for v in V}
for ends in E.values():
for v in ends:
indeg[v] += 1
q = deque([v for v in V if indeg[v] == 0])
top_sorted = []
while q:
v = q.popleft()
top_sorted.append(v)
for u in E[v]:
indeg[u] -= 1
if indeg[u] == 0:
q.append(u)
if len(top_sorted) == len(V): # The input digraph is acyclic.
return top_sorted
else: # There is a directed cycle in the digraph.
return None
N, M = map(int, input().split())
V = range(N)
E = defaultdict(list)
for _ in range(M):
s, t = map(int, input().split())
E[s].append(t)
print(0 if topological_sort(V, E) is None else 1)
|
Cycle Detection for a Directed Graph
Find a cycle in a directed graph G(V, E).
|
[{"input": "3 3\n 0 1\n 0 2\n 1 2", "output": "0"}, {"input": "3 3\n 0 1\n 1 2\n 2 0", "output": "1"}]
|
Print 1 if G has cycle(s), 0 otherwise.
|
s248772854
|
Accepted
|
p02369
|
A directed graph G is given in the following format:
|V| |E|
s0 t0
s1 t1
:
s|E|-1 t|E|-1
|V| is the number of nodes and |E| is the number of edges in the graph. The
graph nodes are named with the numbers 0, 1,..., |V|-1 respectively.
si and ti represent source and target nodes of i-th edge (directed).
|
# Cycle Detection for a Directed Graph
[vertex, edge] = list(map(int, input("").split()))
array = [[0 for j in range(vertex)] for i in range(vertex)]
for i in range(edge):
data = list(map(int, input("").split()))
array[data[0]][data[1]] = 1
visited = [0 for j in range(vertex)]
result = 0
def dfs(node, goal):
for t in range(vertex):
visited[node] = 1
if array[node][t] != 0 and t == goal:
global result
result = 1
if array[node][t] != 0 and visited[t] == 0:
dfs(t, goal)
for i in range(vertex):
visited = [0 for j in range(vertex)]
dfs(i, i)
if result == 1:
print(1)
break
if result == 0:
print(0)
|
Cycle Detection for a Directed Graph
Find a cycle in a directed graph G(V, E).
|
[{"input": "3 3\n 0 1\n 0 2\n 1 2", "output": "0"}, {"input": "3 3\n 0 1\n 1 2\n 2 0", "output": "1"}]
|
Output what day of the week it is in a line. Use the following conventions in
your output: "mon" for Monday, "tue" for Tuesday, "wed" for Wednesday, "thu"
for Thursday, "fri" for Friday, "sat" for Saturday, and "sun" for Sunday.
|
s634082731
|
Accepted
|
p00354
|
The input is given in the following format.
X
The input line specifies a day X (1 ≤ X ≤ 30) in September 2017.
|
X = int(input())
X = (X - 9) % 7
if X < 0:
X = X + 7
y = ""
if X == 0:
y = "sat"
elif X == 1:
y = "sun"
elif X == 2:
y = "mon"
elif X == 3:
y = "tue"
elif X == 4:
y = "wed"
elif X == 5:
y = "thu"
elif X == 6:
y = "fri"
print(y)
|
Day of Week
The 9th day of September 2017 is Saturday. Then, what day of the week is the
X-th of September 2017?
Given a day in September 2017, write a program to report what day of the week
it is.
|
[{"input": "1", "output": "fri"}, {"input": "9", "output": "sat"}, {"input": "30", "output": "sat"}]
|
Output what day of the week it is in a line. Use the following conventions in
your output: "mon" for Monday, "tue" for Tuesday, "wed" for Wednesday, "thu"
for Thursday, "fri" for Friday, "sat" for Saturday, and "sun" for Sunday.
|
s933222953
|
Accepted
|
p00354
|
The input is given in the following format.
X
The input line specifies a day X (1 ≤ X ≤ 30) in September 2017.
|
W = ["mon", "tue", "wed", "thu", "fri", "sat", "sun"] * 10
n = int(input())
print(W[n + 3])
|
Day of Week
The 9th day of September 2017 is Saturday. Then, what day of the week is the
X-th of September 2017?
Given a day in September 2017, write a program to report what day of the week
it is.
|
[{"input": "1", "output": "fri"}, {"input": "9", "output": "sat"}, {"input": "30", "output": "sat"}]
|
Output what day of the week it is in a line. Use the following conventions in
your output: "mon" for Monday, "tue" for Tuesday, "wed" for Wednesday, "thu"
for Thursday, "fri" for Friday, "sat" for Saturday, and "sun" for Sunday.
|
s950807768
|
Accepted
|
p00354
|
The input is given in the following format.
X
The input line specifies a day X (1 ≤ X ≤ 30) in September 2017.
|
lis = ["thu", "fri", "sat", "sun", "mon", "tue", "wed"]
print(lis[int(input()) % 7])
|
Day of Week
The 9th day of September 2017 is Saturday. Then, what day of the week is the
X-th of September 2017?
Given a day in September 2017, write a program to report what day of the week
it is.
|
[{"input": "1", "output": "fri"}, {"input": "9", "output": "sat"}, {"input": "30", "output": "sat"}]
|
Output what day of the week it is in a line. Use the following conventions in
your output: "mon" for Monday, "tue" for Tuesday, "wed" for Wednesday, "thu"
for Thursday, "fri" for Friday, "sat" for Saturday, and "sun" for Sunday.
|
s536748964
|
Accepted
|
p00354
|
The input is given in the following format.
X
The input line specifies a day X (1 ≤ X ≤ 30) in September 2017.
|
print(["thu", "fri", "sat", "sun", "mon", "tue", "wed"][int(input()) % 7])
|
Day of Week
The 9th day of September 2017 is Saturday. Then, what day of the week is the
X-th of September 2017?
Given a day in September 2017, write a program to report what day of the week
it is.
|
[{"input": "1", "output": "fri"}, {"input": "9", "output": "sat"}, {"input": "30", "output": "sat"}]
|
Output what day of the week it is in a line. Use the following conventions in
your output: "mon" for Monday, "tue" for Tuesday, "wed" for Wednesday, "thu"
for Thursday, "fri" for Friday, "sat" for Saturday, and "sun" for Sunday.
|
s520055397
|
Accepted
|
p00354
|
The input is given in the following format.
X
The input line specifies a day X (1 ≤ X ≤ 30) in September 2017.
|
X = int(input())
Day = ["mon", "tue", "wed", "thu", "fri", "sat", "sun"]
a = X % 7
if a == 2 or a == 3:
print(Day[a + 3])
elif a == 4 or a == 5 or a == 6:
print(Day[a - 4])
elif a == 0 or a == 1:
print(Day[a + 3])
|
Day of Week
The 9th day of September 2017 is Saturday. Then, what day of the week is the
X-th of September 2017?
Given a day in September 2017, write a program to report what day of the week
it is.
|
[{"input": "1", "output": "fri"}, {"input": "9", "output": "sat"}, {"input": "30", "output": "sat"}]
|
Output what day of the week it is in a line. Use the following conventions in
your output: "mon" for Monday, "tue" for Tuesday, "wed" for Wednesday, "thu"
for Thursday, "fri" for Friday, "sat" for Saturday, and "sun" for Sunday.
|
s436578130
|
Accepted
|
p00354
|
The input is given in the following format.
X
The input line specifies a day X (1 ≤ X ≤ 30) in September 2017.
|
day = ["sat", "sun", "mon", "tue", "wed", "thu", "fri"]
dayf = ["thu", "fri", "sat", "sun", "mon", "tue", "wed"]
x = int(input())
if x < 9:
print(dayf[x % 7])
else:
print(day[abs(x - 9) % 7])
|
Day of Week
The 9th day of September 2017 is Saturday. Then, what day of the week is the
X-th of September 2017?
Given a day in September 2017, write a program to report what day of the week
it is.
|
[{"input": "1", "output": "fri"}, {"input": "9", "output": "sat"}, {"input": "30", "output": "sat"}]
|
If there is no closed curve that satisfies the condition, print `Impossible`.
If such a closed curve exists, print `Possible` in the first line. Then, print
one such curve in the following format:
L
x_0 y_0
x_1 y_1
:
x_L y_L
This represents the closed polyline that passes
(x_0,y_0),(x_1,y_1),\ldots,(x_L,y_L) in this order.
Here, all of the following must be satisfied:
* 0 \leq x_i \leq N, 0 \leq y_i \leq 1, and x_i, y_i are integers. (0 \leq i \leq L)
* |x_i-x_{i+1}| + |y_i-y_{i+1}| = 1. (0 \leq i \leq L-1)
* (x_0,y_0) = (x_L,y_L).
Additionally, the length of the closed curve L must satisfy 0 \leq L \leq
250000.
It can be proved that, if there is a closed curve that satisfies the condition
in Problem Statement, there is also a closed curve that can be expressed in
this format.
* * *
|
s091108141
|
Wrong Answer
|
p02739
|
Input is given from Standard Input in the following format:
N
A_0A_1 \cdots A_{2^N-1}
|
n = int(input())
a = [1 - int(c) for c in input()]
s = [a[1 << i] for i in range(n)]
for x in range(2**n):
t = any(s[i] for i in filter(lambda i: (x >> i) & 1, range(n)))
if a[x] != t:
possible = False
break
else:
possible = True
if possible:
print("Possible")
res = [(0, 0)]
for i in range(n):
if s[i]:
res.append((i, 1))
res.append((i + 1, 1))
res.append((i + 1, 0))
for i in range(n - 1, -1, -1):
res.append((i, 0))
print(len(res) - 1)
for x, y in res:
print(x, y)
else:
print("Impossible")
|
Statement
Given are a positive integer N and a sequence of length 2^N consisting of 0s
and 1s: A_0,A_1,\ldots,A_{2^N-1}. Determine whether there exists a closed
curve C that satisfies the condition below for all 2^N sets S \subseteq
\\{0,1,\ldots,N-1 \\}. If the answer is yes, construct one such closed curve.
* Let x = \sum_{i \in S} 2^i and B_S be the set of points \\{ (i+0.5,0.5) | i \in S \\}.
* If there is a way to continuously move the closed curve C without touching B_S so that every point on the closed curve has a negative y-coordinate, A_x = 1.
* If there is no such way, A_x = 0.
For instruction on printing a closed curve, see Output below.
|
[{"input": "1\n 10", "output": "Possible\n 4\n 0 0\n 0 1\n 1 1\n 1 0\n 0 0\n \n\nWhen S = \\emptyset, we can move this curve so that every point on it has a\nnegative y-coordinate.\n\n\n\nWhen S = \\\\{0\\\\}, we cannot do so.\n\n\n\n* * *"}, {"input": "2\n 1000", "output": "Possible\n 6\n 1 0\n 2 0\n 2 1\n 1 1\n 0 1\n 0 0\n 1 0\n \n\nThe output represents the following curve:\n\n\n\n* * *"}, {"input": "2\n 1001", "output": "Impossible\n \n\n* * *"}, {"input": "1\n 11", "output": "Possible\n 0\n 1 1"}]
|
If there is no closed curve that satisfies the condition, print `Impossible`.
If such a closed curve exists, print `Possible` in the first line. Then, print
one such curve in the following format:
L
x_0 y_0
x_1 y_1
:
x_L y_L
This represents the closed polyline that passes
(x_0,y_0),(x_1,y_1),\ldots,(x_L,y_L) in this order.
Here, all of the following must be satisfied:
* 0 \leq x_i \leq N, 0 \leq y_i \leq 1, and x_i, y_i are integers. (0 \leq i \leq L)
* |x_i-x_{i+1}| + |y_i-y_{i+1}| = 1. (0 \leq i \leq L-1)
* (x_0,y_0) = (x_L,y_L).
Additionally, the length of the closed curve L must satisfy 0 \leq L \leq
250000.
It can be proved that, if there is a closed curve that satisfies the condition
in Problem Statement, there is also a closed curve that can be expressed in
this format.
* * *
|
s537896254
|
Wrong Answer
|
p02739
|
Input is given from Standard Input in the following format:
N
A_0A_1 \cdots A_{2^N-1}
|
print("Possible")
print(0)
print(1, 1)
|
Statement
Given are a positive integer N and a sequence of length 2^N consisting of 0s
and 1s: A_0,A_1,\ldots,A_{2^N-1}. Determine whether there exists a closed
curve C that satisfies the condition below for all 2^N sets S \subseteq
\\{0,1,\ldots,N-1 \\}. If the answer is yes, construct one such closed curve.
* Let x = \sum_{i \in S} 2^i and B_S be the set of points \\{ (i+0.5,0.5) | i \in S \\}.
* If there is a way to continuously move the closed curve C without touching B_S so that every point on the closed curve has a negative y-coordinate, A_x = 1.
* If there is no such way, A_x = 0.
For instruction on printing a closed curve, see Output below.
|
[{"input": "1\n 10", "output": "Possible\n 4\n 0 0\n 0 1\n 1 1\n 1 0\n 0 0\n \n\nWhen S = \\emptyset, we can move this curve so that every point on it has a\nnegative y-coordinate.\n\n\n\nWhen S = \\\\{0\\\\}, we cannot do so.\n\n\n\n* * *"}, {"input": "2\n 1000", "output": "Possible\n 6\n 1 0\n 2 0\n 2 1\n 1 1\n 0 1\n 0 0\n 1 0\n \n\nThe output represents the following curve:\n\n\n\n* * *"}, {"input": "2\n 1001", "output": "Impossible\n \n\n* * *"}, {"input": "1\n 11", "output": "Possible\n 0\n 1 1"}]
|
If there is no closed curve that satisfies the condition, print `Impossible`.
If such a closed curve exists, print `Possible` in the first line. Then, print
one such curve in the following format:
L
x_0 y_0
x_1 y_1
:
x_L y_L
This represents the closed polyline that passes
(x_0,y_0),(x_1,y_1),\ldots,(x_L,y_L) in this order.
Here, all of the following must be satisfied:
* 0 \leq x_i \leq N, 0 \leq y_i \leq 1, and x_i, y_i are integers. (0 \leq i \leq L)
* |x_i-x_{i+1}| + |y_i-y_{i+1}| = 1. (0 \leq i \leq L-1)
* (x_0,y_0) = (x_L,y_L).
Additionally, the length of the closed curve L must satisfy 0 \leq L \leq
250000.
It can be proved that, if there is a closed curve that satisfies the condition
in Problem Statement, there is also a closed curve that can be expressed in
this format.
* * *
|
s450850471
|
Wrong Answer
|
p02739
|
Input is given from Standard Input in the following format:
N
A_0A_1 \cdots A_{2^N-1}
|
print("Impossible")
|
Statement
Given are a positive integer N and a sequence of length 2^N consisting of 0s
and 1s: A_0,A_1,\ldots,A_{2^N-1}. Determine whether there exists a closed
curve C that satisfies the condition below for all 2^N sets S \subseteq
\\{0,1,\ldots,N-1 \\}. If the answer is yes, construct one such closed curve.
* Let x = \sum_{i \in S} 2^i and B_S be the set of points \\{ (i+0.5,0.5) | i \in S \\}.
* If there is a way to continuously move the closed curve C without touching B_S so that every point on the closed curve has a negative y-coordinate, A_x = 1.
* If there is no such way, A_x = 0.
For instruction on printing a closed curve, see Output below.
|
[{"input": "1\n 10", "output": "Possible\n 4\n 0 0\n 0 1\n 1 1\n 1 0\n 0 0\n \n\nWhen S = \\emptyset, we can move this curve so that every point on it has a\nnegative y-coordinate.\n\n\n\nWhen S = \\\\{0\\\\}, we cannot do so.\n\n\n\n* * *"}, {"input": "2\n 1000", "output": "Possible\n 6\n 1 0\n 2 0\n 2 1\n 1 1\n 0 1\n 0 0\n 1 0\n \n\nThe output represents the following curve:\n\n\n\n* * *"}, {"input": "2\n 1001", "output": "Impossible\n \n\n* * *"}, {"input": "1\n 11", "output": "Possible\n 0\n 1 1"}]
|
If there is no closed curve that satisfies the condition, print `Impossible`.
If such a closed curve exists, print `Possible` in the first line. Then, print
one such curve in the following format:
L
x_0 y_0
x_1 y_1
:
x_L y_L
This represents the closed polyline that passes
(x_0,y_0),(x_1,y_1),\ldots,(x_L,y_L) in this order.
Here, all of the following must be satisfied:
* 0 \leq x_i \leq N, 0 \leq y_i \leq 1, and x_i, y_i are integers. (0 \leq i \leq L)
* |x_i-x_{i+1}| + |y_i-y_{i+1}| = 1. (0 \leq i \leq L-1)
* (x_0,y_0) = (x_L,y_L).
Additionally, the length of the closed curve L must satisfy 0 \leq L \leq
250000.
It can be proved that, if there is a closed curve that satisfies the condition
in Problem Statement, there is also a closed curve that can be expressed in
this format.
* * *
|
s844997202
|
Runtime Error
|
p02739
|
Input is given from Standard Input in the following format:
N
A_0A_1 \cdots A_{2^N-1}
|
import sys
N = int(input())
on = 0
for i in range(1 << N):
a = int(sys.stdin.read(1))
if bin(i).count("1") == 1 and not a:
on |= i
if not a ^ bool(i & on):
print("Impossible")
break
else:
raise ValueError
|
Statement
Given are a positive integer N and a sequence of length 2^N consisting of 0s
and 1s: A_0,A_1,\ldots,A_{2^N-1}. Determine whether there exists a closed
curve C that satisfies the condition below for all 2^N sets S \subseteq
\\{0,1,\ldots,N-1 \\}. If the answer is yes, construct one such closed curve.
* Let x = \sum_{i \in S} 2^i and B_S be the set of points \\{ (i+0.5,0.5) | i \in S \\}.
* If there is a way to continuously move the closed curve C without touching B_S so that every point on the closed curve has a negative y-coordinate, A_x = 1.
* If there is no such way, A_x = 0.
For instruction on printing a closed curve, see Output below.
|
[{"input": "1\n 10", "output": "Possible\n 4\n 0 0\n 0 1\n 1 1\n 1 0\n 0 0\n \n\nWhen S = \\emptyset, we can move this curve so that every point on it has a\nnegative y-coordinate.\n\n\n\nWhen S = \\\\{0\\\\}, we cannot do so.\n\n\n\n* * *"}, {"input": "2\n 1000", "output": "Possible\n 6\n 1 0\n 2 0\n 2 1\n 1 1\n 0 1\n 0 0\n 1 0\n \n\nThe output represents the following curve:\n\n\n\n* * *"}, {"input": "2\n 1001", "output": "Impossible\n \n\n* * *"}, {"input": "1\n 11", "output": "Possible\n 0\n 1 1"}]
|
Print the answer.
* * *
|
s829005258
|
Accepted
|
p03082
|
Input is given from Standard Input in the following format:
N X
S_1 S_2 \ldots S_{N}
|
N, X, *S = map(int, open(0).read().split())
e = enumerate
d = range(X + 1)
for i, s in e(sorted(S)):
d = [(t * i + d[j % s]) % (10**9 + 7) for j, t in e(d)]
print(d[-1])
|
Statement
Snuke has a blackboard and a set S consisting of N integers. The i-th element
in S is S_i.
He wrote an integer X on the blackboard, then performed the following
operation N times:
* Choose one element from S and remove it.
* Let x be the number written on the blackboard now, and y be the integer removed from S. Replace the number on the blackboard with x \bmod {y}.
There are N! possible orders in which the elements are removed from S. For
each of them, find the number that would be written on the blackboard after
the N operations, and compute the sum of all those N! numbers modulo 10^{9}+7.
|
[{"input": "2 19\n 3 7", "output": "3\n \n\n * There are two possible orders in which we remove the numbers from S.\n * If we remove 3 and 7 in this order, the number on the blackboard changes as follows: 19 \\rightarrow 1 \\rightarrow 1.\n * If we remove 7 and 3 in this order, the number on the blackboard changes as follows: 19 \\rightarrow 5 \\rightarrow 2.\n * The output should be the sum of these: 3.\n\n* * *"}, {"input": "5 82\n 22 11 6 5 13", "output": "288\n \n\n* * *"}, {"input": "10 100000\n 50000 50001 50002 50003 50004 50005 50006 50007 50008 50009", "output": "279669259\n \n\n * Be sure to compute the sum modulo 10^{9}+7."}]
|
Print the answer.
* * *
|
s622806485
|
Runtime Error
|
p03082
|
Input is given from Standard Input in the following format:
N X
S_1 S_2 \ldots S_{N}
|
# 通るかな?
def 解():
import numpy as np
import sys
input = sys.stdin.readline
N, Q = [int(_) for _ in input().split()]
S = input()
dS = {}
for i in range(1, N + 1):
s = S[i - 1]
if s in dS:
dS[s].add(i)
else:
dS[s] = {i}
# aM = [1]*(N+2)
# aM = {i:1 for i in range(N+2)}
aM = np.array([1] * (N + 2))
for _ in range(Q):
t, d = input().split()
if t in dS:
if d == "R":
for i in dS[t]:
if aM[i]:
aM[i + 1] += aM[i]
aM[i] = 0
else:
for i in dS[t]:
if aM[i]:
aM[i - 1] += aM[i]
aM[i] = 0
# print(sum(aM[i] for i in range(1,N+1)))
print(sum(aM[1 : N + 1]))
解()
|
Statement
Snuke has a blackboard and a set S consisting of N integers. The i-th element
in S is S_i.
He wrote an integer X on the blackboard, then performed the following
operation N times:
* Choose one element from S and remove it.
* Let x be the number written on the blackboard now, and y be the integer removed from S. Replace the number on the blackboard with x \bmod {y}.
There are N! possible orders in which the elements are removed from S. For
each of them, find the number that would be written on the blackboard after
the N operations, and compute the sum of all those N! numbers modulo 10^{9}+7.
|
[{"input": "2 19\n 3 7", "output": "3\n \n\n * There are two possible orders in which we remove the numbers from S.\n * If we remove 3 and 7 in this order, the number on the blackboard changes as follows: 19 \\rightarrow 1 \\rightarrow 1.\n * If we remove 7 and 3 in this order, the number on the blackboard changes as follows: 19 \\rightarrow 5 \\rightarrow 2.\n * The output should be the sum of these: 3.\n\n* * *"}, {"input": "5 82\n 22 11 6 5 13", "output": "288\n \n\n* * *"}, {"input": "10 100000\n 50000 50001 50002 50003 50004 50005 50006 50007 50008 50009", "output": "279669259\n \n\n * Be sure to compute the sum modulo 10^{9}+7."}]
|
Print the answer.
* * *
|
s065184247
|
Accepted
|
p03082
|
Input is given from Standard Input in the following format:
N X
S_1 S_2 \ldots S_{N}
|
n, x = map(int, input().split())
s, f, M = sorted(list(map(int, input().split())))[::-1], [1, 1], 10**9 + 7
for i in range(2, n):
f += [f[-1] * i % M]
D = {x: f[n - 1]}
for i, k in enumerate(s):
m, inv = dict(), pow(n - i - 1, M - 2, M)
for j, a in D.items():
m[j % k] = m.get(j % k, 0) + a
for j, a in m.items():
D[j] = (D.get(j, 0) + a * inv) % M
print(sum([i * j for i, j in m.items()]) % M)
|
Statement
Snuke has a blackboard and a set S consisting of N integers. The i-th element
in S is S_i.
He wrote an integer X on the blackboard, then performed the following
operation N times:
* Choose one element from S and remove it.
* Let x be the number written on the blackboard now, and y be the integer removed from S. Replace the number on the blackboard with x \bmod {y}.
There are N! possible orders in which the elements are removed from S. For
each of them, find the number that would be written on the blackboard after
the N operations, and compute the sum of all those N! numbers modulo 10^{9}+7.
|
[{"input": "2 19\n 3 7", "output": "3\n \n\n * There are two possible orders in which we remove the numbers from S.\n * If we remove 3 and 7 in this order, the number on the blackboard changes as follows: 19 \\rightarrow 1 \\rightarrow 1.\n * If we remove 7 and 3 in this order, the number on the blackboard changes as follows: 19 \\rightarrow 5 \\rightarrow 2.\n * The output should be the sum of these: 3.\n\n* * *"}, {"input": "5 82\n 22 11 6 5 13", "output": "288\n \n\n* * *"}, {"input": "10 100000\n 50000 50001 50002 50003 50004 50005 50006 50007 50008 50009", "output": "279669259\n \n\n * Be sure to compute the sum modulo 10^{9}+7."}]
|
Print `YES` if Rng can complete the problem set without creating new
candidates of problems; print `NO` if he cannot.
* * *
|
s695012474
|
Runtime Error
|
p03578
|
Input is given from Standard Input in the following format:
N
D_1 D_2 ... D_N
M
T_1 T_2 ... T_M
|
n = input()
d = [int(i) for i in input().split(" ")]
m = input()
t = [int(i) for i in input().split(" ")]
d_set = set(d)
d_set = list(d_set)
t_set = set(t)
t_set = list(t_set)
flag =0
if len(t_set != d_set):
flag = 1
else:
for s in t_set:
if(d.count(s) < t.count(s)):
flag = 1
break
if flag == 1:
print("NO")
else:
print("YES")
|
Statement
Rng is preparing a problem set for a qualification round of CODEFESTIVAL.
He has N candidates of problems. The difficulty of the i-th candidate is D_i.
There must be M problems in the problem set, and the difficulty of the i-th
problem must be T_i. Here, one candidate of a problem cannot be used as
multiple problems.
Determine whether Rng can complete the problem set without creating new
candidates of problems.
|
[{"input": "5\n 3 1 4 1 5\n 3\n 5 4 3", "output": "YES\n \n\n* * *"}, {"input": "7\n 100 200 500 700 1200 1600 2000\n 6\n 100 200 500 700 1600 1600", "output": "NO\n \n\nNot enough 1600s.\n\n* * *"}, {"input": "1\n 800\n 5\n 100 100 100 100 100", "output": "NO\n \n\n* * *"}, {"input": "15\n 1 2 2 3 3 3 4 4 4 4 5 5 5 5 5\n 9\n 5 4 3 2 1 2 3 4 5", "output": "YES"}]
|
Print `YES` if Rng can complete the problem set without creating new
candidates of problems; print `NO` if he cannot.
* * *
|
s626669208
|
Runtime Error
|
p03578
|
Input is given from Standard Input in the following format:
N
D_1 D_2 ... D_N
M
T_1 T_2 ... T_M
|
n = int(input())
D = list(map(int, input().split()))
m = int(input())
T = list(map(int, input().split()))
D.sort()
T.sort()
if n=<m:
if D==T:
print('YES')
exit()
else:
print('NO')
exit()
r = 'YES'
for i in range(m):
if T[i] in D:
idx = D.index(T[i])
D = D[idx+1:]
else:
r = 'NO'
break
print(r)
|
Statement
Rng is preparing a problem set for a qualification round of CODEFESTIVAL.
He has N candidates of problems. The difficulty of the i-th candidate is D_i.
There must be M problems in the problem set, and the difficulty of the i-th
problem must be T_i. Here, one candidate of a problem cannot be used as
multiple problems.
Determine whether Rng can complete the problem set without creating new
candidates of problems.
|
[{"input": "5\n 3 1 4 1 5\n 3\n 5 4 3", "output": "YES\n \n\n* * *"}, {"input": "7\n 100 200 500 700 1200 1600 2000\n 6\n 100 200 500 700 1600 1600", "output": "NO\n \n\nNot enough 1600s.\n\n* * *"}, {"input": "1\n 800\n 5\n 100 100 100 100 100", "output": "NO\n \n\n* * *"}, {"input": "15\n 1 2 2 3 3 3 4 4 4 4 5 5 5 5 5\n 9\n 5 4 3 2 1 2 3 4 5", "output": "YES"}]
|
Print `YES` if Rng can complete the problem set without creating new
candidates of problems; print `NO` if he cannot.
* * *
|
s038702562
|
Runtime Error
|
p03578
|
Input is given from Standard Input in the following format:
N
D_1 D_2 ... D_N
M
T_1 T_2 ... T_M
|
mport collections
n = int(input())
ln = list(map(int, input().split()))
m = int(input())
lm = list(map(int, input().split()))
c1 = collections.Counter(lm)
c2 = collections.Counter(ln)
for i in c1.keys():
if c2[i] < c1[i]:
print("NO")
exit()
print("YES")
|
Statement
Rng is preparing a problem set for a qualification round of CODEFESTIVAL.
He has N candidates of problems. The difficulty of the i-th candidate is D_i.
There must be M problems in the problem set, and the difficulty of the i-th
problem must be T_i. Here, one candidate of a problem cannot be used as
multiple problems.
Determine whether Rng can complete the problem set without creating new
candidates of problems.
|
[{"input": "5\n 3 1 4 1 5\n 3\n 5 4 3", "output": "YES\n \n\n* * *"}, {"input": "7\n 100 200 500 700 1200 1600 2000\n 6\n 100 200 500 700 1600 1600", "output": "NO\n \n\nNot enough 1600s.\n\n* * *"}, {"input": "1\n 800\n 5\n 100 100 100 100 100", "output": "NO\n \n\n* * *"}, {"input": "15\n 1 2 2 3 3 3 4 4 4 4 5 5 5 5 5\n 9\n 5 4 3 2 1 2 3 4 5", "output": "YES"}]
|
Print `YES` if Rng can complete the problem set without creating new
candidates of problems; print `NO` if he cannot.
* * *
|
s267910915
|
Runtime Error
|
p03578
|
Input is given from Standard Input in the following format:
N
D_1 D_2 ... D_N
M
T_1 T_2 ... T_M
|
= list(map(int,input().split()))
m = int(input())
T = list(map(int,input().split()))
if m > n:
print('NO')
exit()
numd = [0]*200005
numt = [0]*200005
for d in D:
numd[d] += 1
for t in T:
numt[t] += 1
for t in T:
if numt[t] > numd[t]:
print('NO')
exit()
print('YES')
|
Statement
Rng is preparing a problem set for a qualification round of CODEFESTIVAL.
He has N candidates of problems. The difficulty of the i-th candidate is D_i.
There must be M problems in the problem set, and the difficulty of the i-th
problem must be T_i. Here, one candidate of a problem cannot be used as
multiple problems.
Determine whether Rng can complete the problem set without creating new
candidates of problems.
|
[{"input": "5\n 3 1 4 1 5\n 3\n 5 4 3", "output": "YES\n \n\n* * *"}, {"input": "7\n 100 200 500 700 1200 1600 2000\n 6\n 100 200 500 700 1600 1600", "output": "NO\n \n\nNot enough 1600s.\n\n* * *"}, {"input": "1\n 800\n 5\n 100 100 100 100 100", "output": "NO\n \n\n* * *"}, {"input": "15\n 1 2 2 3 3 3 4 4 4 4 5 5 5 5 5\n 9\n 5 4 3 2 1 2 3 4 5", "output": "YES"}]
|
Print `YES` if Rng can complete the problem set without creating new
candidates of problems; print `NO` if he cannot.
* * *
|
s479916971
|
Runtime Error
|
p03578
|
Input is given from Standard Input in the following format:
N
D_1 D_2 ... D_N
M
T_1 T_2 ... T_M
|
n = int(input())
d = list(map(int, input().split()))
m = int(input())
t = list(map(int, input().split()))
t_ = set(t)
for i in range(len(t_):
if t.count(t_[i]) > d.count(t_[i]):
print("NO")
exit()
print("YES")
|
Statement
Rng is preparing a problem set for a qualification round of CODEFESTIVAL.
He has N candidates of problems. The difficulty of the i-th candidate is D_i.
There must be M problems in the problem set, and the difficulty of the i-th
problem must be T_i. Here, one candidate of a problem cannot be used as
multiple problems.
Determine whether Rng can complete the problem set without creating new
candidates of problems.
|
[{"input": "5\n 3 1 4 1 5\n 3\n 5 4 3", "output": "YES\n \n\n* * *"}, {"input": "7\n 100 200 500 700 1200 1600 2000\n 6\n 100 200 500 700 1600 1600", "output": "NO\n \n\nNot enough 1600s.\n\n* * *"}, {"input": "1\n 800\n 5\n 100 100 100 100 100", "output": "NO\n \n\n* * *"}, {"input": "15\n 1 2 2 3 3 3 4 4 4 4 5 5 5 5 5\n 9\n 5 4 3 2 1 2 3 4 5", "output": "YES"}]
|
Print `YES` if Rng can complete the problem set without creating new
candidates of problems; print `NO` if he cannot.
* * *
|
s060911978
|
Runtime Error
|
p03578
|
Input is given from Standard Input in the following format:
N
D_1 D_2 ... D_N
M
T_1 T_2 ... T_M
|
n=int(input())
d=sorted(list(map(int,input().split())))
m=int(input())
t=sorted(list(map(int,input().split())))
j=0
for i in range(len(t)):
if j==len(s):
print("NO")
break
t[i]==s[j]:
j+=1
else:
print("YES")
|
Statement
Rng is preparing a problem set for a qualification round of CODEFESTIVAL.
He has N candidates of problems. The difficulty of the i-th candidate is D_i.
There must be M problems in the problem set, and the difficulty of the i-th
problem must be T_i. Here, one candidate of a problem cannot be used as
multiple problems.
Determine whether Rng can complete the problem set without creating new
candidates of problems.
|
[{"input": "5\n 3 1 4 1 5\n 3\n 5 4 3", "output": "YES\n \n\n* * *"}, {"input": "7\n 100 200 500 700 1200 1600 2000\n 6\n 100 200 500 700 1600 1600", "output": "NO\n \n\nNot enough 1600s.\n\n* * *"}, {"input": "1\n 800\n 5\n 100 100 100 100 100", "output": "NO\n \n\n* * *"}, {"input": "15\n 1 2 2 3 3 3 4 4 4 4 5 5 5 5 5\n 9\n 5 4 3 2 1 2 3 4 5", "output": "YES"}]
|
Print `YES` if Rng can complete the problem set without creating new
candidates of problems; print `NO` if he cannot.
* * *
|
s514717227
|
Accepted
|
p03578
|
Input is given from Standard Input in the following format:
N
D_1 D_2 ... D_N
M
T_1 T_2 ... T_M
|
# -*- coding: utf-8 -*-
#############
# Libraries #
#############
import sys
input = sys.stdin.readline
import math
# from math import gcd
import bisect
from collections import defaultdict
from collections import deque
from collections import Counter
from functools import lru_cache
#############
# Constants #
#############
MOD = 10**9 + 7
INF = float("inf")
#############
# Functions #
#############
######INPUT######
def I():
return int(input().strip())
def S():
return input().strip()
def IL():
return list(map(int, input().split()))
def SL():
return list(map(str, input().split()))
def ILs(n):
return list(int(input()) for _ in range(n))
def SLs(n):
return list(input().strip() for _ in range(n))
def ILL(n):
return [list(map(int, input().split())) for _ in range(n)]
def SLL(n):
return [list(map(str, input().split())) for _ in range(n)]
######OUTPUT######
def P(arg):
print(arg)
return
def Y():
print("Yes")
return
def N():
print("No")
return
def E():
exit()
def PE(arg):
print(arg)
exit()
def YE():
print("Yes")
exit()
def NE():
print("No")
exit()
#####Shorten#####
def DD(arg):
return defaultdict(arg)
#####Inverse#####
def inv(n):
return pow(n, MOD - 2, MOD)
######Combination######
kaijo_memo = []
def kaijo(n):
if len(kaijo_memo) > n:
return kaijo_memo[n]
if len(kaijo_memo) == 0:
kaijo_memo.append(1)
while len(kaijo_memo) <= n:
kaijo_memo.append(kaijo_memo[-1] * len(kaijo_memo) % MOD)
return kaijo_memo[n]
gyaku_kaijo_memo = []
def gyaku_kaijo(n):
if len(gyaku_kaijo_memo) > n:
return gyaku_kaijo_memo[n]
if len(gyaku_kaijo_memo) == 0:
gyaku_kaijo_memo.append(1)
while len(gyaku_kaijo_memo) <= n:
gyaku_kaijo_memo.append(
gyaku_kaijo_memo[-1] * pow(len(gyaku_kaijo_memo), MOD - 2, MOD) % MOD
)
return gyaku_kaijo_memo[n]
def nCr(n, r):
if n == r:
return 1
if n < r or r < 0:
return 0
ret = 1
ret = ret * kaijo(n) % MOD
ret = ret * gyaku_kaijo(r) % MOD
ret = ret * gyaku_kaijo(n - r) % MOD
return ret
######Factorization######
def factorization(n):
arr = []
temp = n
for i in range(2, int(-(-(n**0.5) // 1)) + 1):
if temp % i == 0:
cnt = 0
while temp % i == 0:
cnt += 1
temp //= i
arr.append([i, cnt])
if temp != 1:
arr.append([temp, 1])
if arr == []:
arr.append([n, 1])
return arr
#####MakeDivisors######
def make_divisors(n):
divisors = []
for i in range(1, int(n**0.5) + 1):
if n % i == 0:
divisors.append(i)
if i != n // i:
divisors.append(n // i)
return divisors
#####MakePrimes######
def make_primes(N):
max = int(math.sqrt(N))
seachList = [i for i in range(2, N + 1)]
primeNum = []
while seachList[0] <= max:
primeNum.append(seachList[0])
tmp = seachList[0]
seachList = [i for i in seachList if i % tmp != 0]
primeNum.extend(seachList)
return primeNum
#####GCD#####
def gcd(a, b):
while b:
a, b = b, a % b
return a
#####LCM#####
def lcm(a, b):
return a * b // gcd(a, b)
#####BitCount#####
def count_bit(n):
count = 0
while n:
n &= n - 1
count += 1
return count
#####ChangeBase#####
def base_10_to_n(X, n):
if X // n:
return base_10_to_n(X // n, n) + [X % n]
return [X % n]
def base_n_to_10(X, n):
return sum(int(str(X)[-i - 1]) * n**i for i in range(len(str(X))))
#####IntLog#####
def int_log(n, a):
count = 0
while n >= a:
n //= a
count += 1
return count
#############
# Main Code #
#############
N = I()
A = IL()
M = I()
B = IL()
dic1 = DD(int)
dic2 = DD(int)
for a in A:
dic1[a] += 1
for b in B:
dic2[b] += 1
for k in dic2:
if dic2[k] > dic1[k]:
print("NO")
exit()
print("YES")
|
Statement
Rng is preparing a problem set for a qualification round of CODEFESTIVAL.
He has N candidates of problems. The difficulty of the i-th candidate is D_i.
There must be M problems in the problem set, and the difficulty of the i-th
problem must be T_i. Here, one candidate of a problem cannot be used as
multiple problems.
Determine whether Rng can complete the problem set without creating new
candidates of problems.
|
[{"input": "5\n 3 1 4 1 5\n 3\n 5 4 3", "output": "YES\n \n\n* * *"}, {"input": "7\n 100 200 500 700 1200 1600 2000\n 6\n 100 200 500 700 1600 1600", "output": "NO\n \n\nNot enough 1600s.\n\n* * *"}, {"input": "1\n 800\n 5\n 100 100 100 100 100", "output": "NO\n \n\n* * *"}, {"input": "15\n 1 2 2 3 3 3 4 4 4 4 5 5 5 5 5\n 9\n 5 4 3 2 1 2 3 4 5", "output": "YES"}]
|
Print `YES` if Rng can complete the problem set without creating new
candidates of problems; print `NO` if he cannot.
* * *
|
s133183095
|
Accepted
|
p03578
|
Input is given from Standard Input in the following format:
N
D_1 D_2 ... D_N
M
T_1 T_2 ... T_M
|
from collections import defaultdict
def getinputdata():
# 配列初期化
array_result = []
data = input()
array_result.append(data.split(" "))
flg = 1
try:
while flg:
data = input()
if data != "":
array_result.append(data.split(" "))
else:
flg = 0
finally:
return array_result
arr_data = getinputdata()
n = int(arr_data[0][0])
arr = [int(x) for x in arr_data[1]]
numbers = defaultdict(lambda: 0)
for v in arr:
numbers[v] += 1
hash01 = dict(numbers)
m = int(arr_data[2][0])
arr_problem = [int(x) for x in arr_data[3]]
numbers_problem = defaultdict(lambda: 0)
for v in arr_problem:
numbers_problem[v] += 1
hash02 = dict(numbers_problem)
chkflg = True
for k, v in hash02.items():
if not k in hash01 or v > hash01[k]:
chkflg = False
print("YES" if chkflg else "NO")
|
Statement
Rng is preparing a problem set for a qualification round of CODEFESTIVAL.
He has N candidates of problems. The difficulty of the i-th candidate is D_i.
There must be M problems in the problem set, and the difficulty of the i-th
problem must be T_i. Here, one candidate of a problem cannot be used as
multiple problems.
Determine whether Rng can complete the problem set without creating new
candidates of problems.
|
[{"input": "5\n 3 1 4 1 5\n 3\n 5 4 3", "output": "YES\n \n\n* * *"}, {"input": "7\n 100 200 500 700 1200 1600 2000\n 6\n 100 200 500 700 1600 1600", "output": "NO\n \n\nNot enough 1600s.\n\n* * *"}, {"input": "1\n 800\n 5\n 100 100 100 100 100", "output": "NO\n \n\n* * *"}, {"input": "15\n 1 2 2 3 3 3 4 4 4 4 5 5 5 5 5\n 9\n 5 4 3 2 1 2 3 4 5", "output": "YES"}]
|
Print `YES` if Rng can complete the problem set without creating new
candidates of problems; print `NO` if he cannot.
* * *
|
s241734228
|
Accepted
|
p03578
|
Input is given from Standard Input in the following format:
N
D_1 D_2 ... D_N
M
T_1 T_2 ... T_M
|
import sys
from functools import lru_cache, cmp_to_key
from heapq import merge, heapify, heappop, heappush
from math import *
from collections import defaultdict as dd, deque, Counter as C
from itertools import combinations as comb, permutations as perm
from bisect import bisect_left as bl, bisect_right as br, bisect
from time import perf_counter
from fractions import Fraction
# sys.setrecursionlimit(int(pow(10, 2)))
# sys.stdin = open("input.txt", "r")
# sys.stdout = open("output.txt", "w")
mod = int(pow(10, 9) + 7)
mod2 = 998244353
def data():
return sys.stdin.readline().strip()
def out(*var, end="\n"):
sys.stdout.write(" ".join(map(str, var)) + end)
def l():
return list(sp())
def sl():
return list(ssp())
def sp():
return map(int, data().split())
def ssp():
return map(str, data().split())
def l1d(n, val=0):
return [val for i in range(n)]
def l2d(n, m, val=0):
return [l1d(n, val) for j in range(m)]
# @lru_cache(None)
N = l()[0]
D = l()
M = l()[0]
T = l()
d = {}
t = {}
for i in range(N):
if D[i] not in d:
d[D[i]] = 0
d[D[i]] += 1
for i in range(M):
if T[i] not in t:
t[T[i]] = 0
t[T[i]] += 1
ans = "YES"
for ks in t:
if ks not in d or d[ks] < t[ks]:
ans = "NO"
break
print(ans)
|
Statement
Rng is preparing a problem set for a qualification round of CODEFESTIVAL.
He has N candidates of problems. The difficulty of the i-th candidate is D_i.
There must be M problems in the problem set, and the difficulty of the i-th
problem must be T_i. Here, one candidate of a problem cannot be used as
multiple problems.
Determine whether Rng can complete the problem set without creating new
candidates of problems.
|
[{"input": "5\n 3 1 4 1 5\n 3\n 5 4 3", "output": "YES\n \n\n* * *"}, {"input": "7\n 100 200 500 700 1200 1600 2000\n 6\n 100 200 500 700 1600 1600", "output": "NO\n \n\nNot enough 1600s.\n\n* * *"}, {"input": "1\n 800\n 5\n 100 100 100 100 100", "output": "NO\n \n\n* * *"}, {"input": "15\n 1 2 2 3 3 3 4 4 4 4 5 5 5 5 5\n 9\n 5 4 3 2 1 2 3 4 5", "output": "YES"}]
|
Print `YES` if Rng can complete the problem set without creating new
candidates of problems; print `NO` if he cannot.
* * *
|
s362134160
|
Accepted
|
p03578
|
Input is given from Standard Input in the following format:
N
D_1 D_2 ... D_N
M
T_1 T_2 ... T_M
|
import math
import fractions
import bisect
import collections
import itertools
import heapq
import string
import sys
import copy
from decimal import *
from collections import deque
sys.setrecursionlimit(10**7)
MOD = 10**9 + 7
INF = float("inf") # 無限大
def gcd(a, b):
return fractions.gcd(a, b) # 最大公約数
def lcm(a, b):
return (a * b) // fractions.gcd(a, b) # 最小公倍数
def iin():
return int(sys.stdin.readline()) # 整数読み込み
def ifn():
return float(sys.stdin.readline()) # 浮動小数点読み込み
def isn():
return sys.stdin.readline().split() # 文字列読み込み
def imn():
return map(int, sys.stdin.readline().split()) # 整数map取得
def imnn():
return map(lambda x: int(x) - 1, sys.stdin.readline().split()) # 整数-1map取得
def fmn():
return map(float, sys.stdin.readline().split()) # 浮動小数点map取得
def iln():
return list(map(int, sys.stdin.readline().split())) # 整数リスト取得
def iln_s():
return sorted(iln()) # 昇順の整数リスト取得
def iln_r():
return sorted(iln(), reverse=True) # 降順の整数リスト取得
def fln():
return list(map(float, sys.stdin.readline().split())) # 浮動小数点リスト取得
def join(l, s=""):
return s.join(l) # リストを文字列に変換
def perm(l, n):
return itertools.permutations(l, n) # 順列取得
def perm_count(n, r):
return math.factorial(n) // math.factorial(n - r) # 順列の総数
def comb(l, n):
return itertools.combinations(l, n) # 組み合わせ取得
def comb_count(n, r):
return math.factorial(n) // (
math.factorial(n - r) * math.factorial(r)
) # 組み合わせの総数
def two_distance(a, b, c, d):
return ((c - a) ** 2 + (d - b) ** 2) ** 0.5 # 2点間の距離
def m_add(a, b):
return (a + b) % MOD
def print_list(l):
print(*l, sep="\n")
def sieves_of_e(n):
is_prime = [True] * (n + 1)
is_prime[0] = False
is_prime[1] = False
for i in range(2, int(n**0.5) + 1):
if not is_prime[i]:
continue
for j in range(i * 2, n + 1, i):
is_prime[j] = False
return is_prime
N = iin()
D = collections.Counter(iln())
M = iin()
T = collections.Counter(iln())
isOK = False
for key, value in T.items():
if value > D[key]:
break
else:
isOK = True
print("YES" if isOK else "NO")
|
Statement
Rng is preparing a problem set for a qualification round of CODEFESTIVAL.
He has N candidates of problems. The difficulty of the i-th candidate is D_i.
There must be M problems in the problem set, and the difficulty of the i-th
problem must be T_i. Here, one candidate of a problem cannot be used as
multiple problems.
Determine whether Rng can complete the problem set without creating new
candidates of problems.
|
[{"input": "5\n 3 1 4 1 5\n 3\n 5 4 3", "output": "YES\n \n\n* * *"}, {"input": "7\n 100 200 500 700 1200 1600 2000\n 6\n 100 200 500 700 1600 1600", "output": "NO\n \n\nNot enough 1600s.\n\n* * *"}, {"input": "1\n 800\n 5\n 100 100 100 100 100", "output": "NO\n \n\n* * *"}, {"input": "15\n 1 2 2 3 3 3 4 4 4 4 5 5 5 5 5\n 9\n 5 4 3 2 1 2 3 4 5", "output": "YES"}]
|
Print `YES` if Rng can complete the problem set without creating new
candidates of problems; print `NO` if he cannot.
* * *
|
s169601185
|
Accepted
|
p03578
|
Input is given from Standard Input in the following format:
N
D_1 D_2 ... D_N
M
T_1 T_2 ... T_M
|
import sys
import heapq
import re
from itertools import permutations
from bisect import bisect_left, bisect_right
from collections import Counter, deque
from fractions import gcd
from math import factorial, sqrt, ceil
from functools import lru_cache, reduce
INF = 1 << 60
MOD = 1000000007
sys.setrecursionlimit(10**7)
# UnionFind
class UnionFind:
def __init__(self, n):
self.n = n
self.parents = [-1] * n
def find(self, x):
if self.parents[x] < 0:
return x
else:
self.parents[x] = self.find(self.parents[x])
return self.parents[x]
def union(self, x, y):
x = self.find(x)
y = self.find(y)
if x == y:
return
if self.parents[x] > self.parents[y]:
x, y = y, x
self.parents[x] += self.parents[y]
self.parents[y] = x
def size(self, x):
return -self.parents[self.find(x)]
def same(self, x, y):
return self.find(x) == self.find(y)
def members(self, x):
root = self.find(x)
return [i for i in range(self.n) if self.find(i) == root]
def roots(self):
return [i for i, x in enumerate(self.parents) if x < 0]
def group_count(self):
return len(self.roots())
def all_group_members(self):
return {r: self.members(r) for r in self.roots()}
def __str__(self):
return "\n".join("{}: {}".format(r, self.members(r)) for r in self.roots())
# ダイクストラ
def dijkstra_heap(s, edge, n):
# 始点sから各頂点への最短距離
d = [10**20] * n
used = [True] * n # True:未確定
d[s] = 0
used[s] = False
edgelist = []
for a, b in edge[s]:
heapq.heappush(edgelist, a * (10**6) + b)
while len(edgelist):
minedge = heapq.heappop(edgelist)
# まだ使われてない頂点の中から最小の距離のものを探す
if not used[minedge % (10**6)]:
continue
v = minedge % (10**6)
d[v] = minedge // (10**6)
used[v] = False
for e in edge[v]:
if used[e[1]]:
heapq.heappush(edgelist, (e[0] + d[v]) * (10**6) + e[1])
return d
# 素因数分解
def factorization(n):
arr = []
temp = n
for i in range(2, int(-(-(n**0.5) // 1)) + 1):
if temp % i == 0:
cnt = 0
while temp % i == 0:
cnt += 1
temp //= i
arr.append([i, cnt])
if temp != 1:
arr.append([temp, 1])
if arr == []:
arr.append([n, 1])
return arr
# 2数の最小公倍数
def lcm(x, y):
return (x * y) // gcd(x, y)
# リストの要素の最小公倍数
def lcm_list(numbers):
return reduce(lcm, numbers, 1)
# リストの要素の最大公約数
def gcd_list(numbers):
return reduce(gcd, numbers)
# 素数判定
def is_prime(n):
if n <= 1:
return False
p = 2
while True:
if p**2 > n:
break
if n % p == 0:
return False
p += 1
return True
# limit以下の素数を列挙
def eratosthenes(limit):
A = [i for i in range(2, limit + 1)]
P = []
while True:
prime = min(A)
if prime > sqrt(limit):
break
P.append(prime)
i = 0
while i < len(A):
if A[i] % prime == 0:
A.pop(i)
continue
i += 1
for a in A:
P.append(a)
return P
# 同じものを含む順列
def permutation_with_duplicates(L):
if L == []:
return [[]]
else:
ret = []
# set(集合)型で重複を削除、ソート
S = sorted(set(L))
for i in S:
data = L[:]
data.remove(i)
for j in permutation_with_duplicates(data):
ret.append([i] + j)
return ret
# ここから書き始める
n = int(input())
d = Counter(list(map(int, input().split())))
m = int(input())
t_list = list(map(int, input().split()))
t = Counter(t_list)
# print("d =", d)
# print("t =", t)
yes = True
for i in t_list:
# print()
# print("d =", d)
# print("t =", t)
if d[i] == 0:
yes = False
break
d[i] -= 1
if yes:
print("YES")
else:
print("NO")
|
Statement
Rng is preparing a problem set for a qualification round of CODEFESTIVAL.
He has N candidates of problems. The difficulty of the i-th candidate is D_i.
There must be M problems in the problem set, and the difficulty of the i-th
problem must be T_i. Here, one candidate of a problem cannot be used as
multiple problems.
Determine whether Rng can complete the problem set without creating new
candidates of problems.
|
[{"input": "5\n 3 1 4 1 5\n 3\n 5 4 3", "output": "YES\n \n\n* * *"}, {"input": "7\n 100 200 500 700 1200 1600 2000\n 6\n 100 200 500 700 1600 1600", "output": "NO\n \n\nNot enough 1600s.\n\n* * *"}, {"input": "1\n 800\n 5\n 100 100 100 100 100", "output": "NO\n \n\n* * *"}, {"input": "15\n 1 2 2 3 3 3 4 4 4 4 5 5 5 5 5\n 9\n 5 4 3 2 1 2 3 4 5", "output": "YES"}]
|
Print the largest integer that can be formed with exactly N matchsticks under
the conditions in the problem statement.
* * *
|
s915825043
|
Accepted
|
p03128
|
Input is given from Standard Input in the following format:
N M
A_1 A_2 ... A_M
|
import queue
from collections import defaultdict
import copy
N, M = map(int, input().split())
A = list(map(int, input().split()))
ma = [2, 5, 5, 4, 5, 6, 3, 7, 6]
BA = [[0, 0] for _ in range(M)] # (必要本数,-1*数字)
for i in range(M):
BA[i][1] = -1 * A[i]
BA[i][0] = ma[A[i] - 1]
BA.sort()
# 同じ本数使うものを消去
can = []
ii = 0
while ii < len(BA):
if BA[ii][0] in can:
BA.pop(ii)
else:
can.append(BA[ii][0])
ii += 1
M = len(BA) # Mの書き換え
diff = [0] * M # 数字変更の際に追加で必要な本数
for i in range(M):
diff[i] = BA[i][0] - BA[0][0]
BA[i][1] = BA[i][1] * -1 # (必要本数,数字)に直しておく
fi = BA[0] ###
# BA.sort(key=lambda x: x[1]*-1)#数字の大きいもの順
p = [1] * (N + 1)
for i in range(N):
p[i + 1] = p[i] * 10
# 数字のセットL(sort済み)から作れる最大の数値を出力
def set_to_num(L):
ans = 0
for i in range(len(L)):
ans += L[i] * p[i]
return ans
# 2つの配列を合わせる
def make_set(temp, L):
ori = copy.deepcopy(temp)
for i in range(len(L)):
ori[i] = L[i]
ori.sort()
return ori
# dd用hash
def make_h(L):
h = 0
for i in range(len(L)):
h += p[i] * L[i]
return h
ans = -1
Max_dig = N // fi[0]
for d in range(Max_dig): # 減らす桁数
dig = Max_dig - d
rem = N - fi[0] * dig
temp = [fi[1]] * dig
dd = defaultdict(int)
q = queue.Queue()
q.put((rem, [])) # 残り本数,入れ替える数字
while not q.empty():
rem2, L = q.get()
if rem2 == 0:
# print(temp,L)
LLL = make_set(temp, L)
# print(LLL)
ans = max(ans, set_to_num(LLL))
else:
for i in range(1, M): # 変更候補の数字を見ていく.0番は自身のためのぞく
if rem2 >= diff[i]:
LL = copy.deepcopy(L)
LL.append(BA[i][1])
if len(LL) <= len(temp):
LL.sort()
h = make_h(LL)
if dd[h] == 0:
q.put((rem2 - diff[i], LL))
dd[h] = 1
if ans != -1:
break
print(ans)
|
Statement
Find the largest integer that can be formed with exactly N matchsticks, under
the following conditions:
* Every digit in the integer must be one of the digits A_1, A_2, ..., A_M (1 \leq A_i \leq 9).
* The number of matchsticks used to form digits 1, 2, 3, 4, 5, 6, 7, 8, 9 should be 2, 5, 5, 4, 5, 6, 3, 7, 6, respectively.
|
[{"input": "20 4\n 3 7 8 4", "output": "777773\n \n\nThe integer 777773 can be formed with 3 + 3 + 3 + 3 + 3 + 5 = 20 matchsticks,\nand this is the largest integer that can be formed by 20 matchsticks under the\nconditions.\n\n* * *"}, {"input": "101 9\n 9 8 7 6 5 4 3 2 1", "output": "71111111111111111111111111111111111111111111111111\n \n\nThe output may not fit into a 64-bit integer type.\n\n* * *"}, {"input": "15 3\n 5 4 6", "output": "654"}]
|
Print the largest integer that can be formed with exactly N matchsticks under
the conditions in the problem statement.
* * *
|
s399736893
|
Accepted
|
p03128
|
Input is given from Standard Input in the following format:
N M
A_1 A_2 ... A_M
|
#!/usr/bin/env python3
import sys
# import math
# from string import ascii_lowercase, ascii_upper_case, ascii_letters, digits, hexdigits
# import re # re.compile(pattern) => ptn obj; p.search(s), p.match(s), p.finditer(s) => match obj; p.sub(after, s)
# from operator import itemgetter # itemgetter(1), itemgetter('key')
# from collections import deque # deque class. deque(L): dq.append(x), dq.appendleft(x), dq.pop(), dq.popleft(), dq.rotate()
# from collections import defaultdict # subclass of dict. defaultdict(facroty)
from collections import (
Counter,
) # subclass of dict. Counter(iter): c.elements(), c.most_common(n), c.subtract(iter)
# from heapq import heapify, heappush, heappop # built-in list. heapify(L) changes list in-place to min-heap in O(n), heappush(heapL, x) and heappop(heapL) in O(lgn).
# from heapq import nlargest, nsmallest # nlargest(n, iter[, key]) returns k-largest-list in O(n+klgn).
# from itertools import count, cycle, repeat # count(start[,step]), cycle(iter), repeat(elm[,n])
# from itertools import groupby # [(k, list(g)) for k, g in groupby('000112')] returns [('0',['0','0','0']), ('1',['1','1']), ('2',['2'])]
# from itertools import starmap # starmap(pow, [[2,5], [3,2]]) returns [32, 9]
# from itertools import product, permutations # product(iter, repeat=n), permutations(iter[,r])
# from itertools import combinations, combinations_with_replacement
# from itertools import accumulate # accumulate(iter[, f])
# from functools import reduce # reduce(f, iter[, init])
# from functools import lru_cache # @lrucache ...arguments of functions should be able to be keys of dict (e.g. list is not allowed)
# from bisect import bisect_left, bisect_right # bisect_left(a, x, lo=0, hi=len(a)) returns i such that all(val<x for val in a[lo:i]) and all(val>-=x for val in a[i:hi]).
from copy import copy, deepcopy # to copy multi-dimentional matrix without reference
# from fractions import gcd # for Python 3.4 (previous contest @AtCoder)
def main():
mod = 1000000007 # 10^9+7
inf = float("inf") # sys.float_info.max = 1.79...e+308
# inf = 2 ** 64 - 1 # (for fast JIT compile in PyPy) 1.84...e+19
sys.setrecursionlimit(10**6) # 1000 -> 1000000
def input():
return sys.stdin.readline().rstrip()
def ii():
return int(input())
def mi():
return map(int, input().split())
def mi_0():
return map(lambda x: int(x) - 1, input().split())
def lmi():
return list(map(int, input().split()))
def lmi_0():
return list(map(lambda x: int(x) - 1, input().split()))
def li():
return list(input())
n, m = mi()
A = lmi()
# A の前処理 (同じ必要本数なのに値が小さいやつらが入っていたら削除しておく)
if 6 in A and 9 in A:
A.remove(6)
if 2 in A and 5 in A:
A.remove(2)
if 3 in A and 5 in A:
A.remove(3)
if 2 in A and 3 in A:
A.remove(2)
# 各数字とマッチの必要本数の対応テーブル
num_to_match = {1: 2, 2: 5, 3: 5, 4: 4, 5: 5, 6: 6, 7: 3, 8: 7, 9: 6}
match_to_num = dict()
for num in A:
match_to_num[num_to_match[num]] = num
needed_match = [num_to_match[num] for num in A]
# dp[i] = (指定された数字を使い i 本全部を使って作れる最大桁数, 使用数字のカウンタ)
dp = [[None, None] for _ in range(n + 1)]
dp[0][0] = 0
dp[0][1] = Counter()
def counter_gt(c1, c2):
# print(f"{c1} {c2}")
return sorted(tuple(c1.items()), key=lambda x: x[0], reverse=True) > sorted(
tuple(c2.items()), key=lambda x: x[0], reverse=True
)
for i in range(n + 1):
digit_max = 0
counter_memo = None
for match in needed_match:
if i - match >= 0 and dp[i - match][0] is not None:
tmp = copy(dp[i - match][1])
tmp[match_to_num[match]] += 1
if dp[i - match][0] + 1 > digit_max or (
dp[i - match][0] + 1 == digit_max and counter_gt(tmp, counter_memo)
):
digit_max = dp[i - match][0] + 1
counter_memo = copy(dp[i - match][1])
counter_memo[match_to_num[match]] += 1
if digit_max != 0:
dp[i][0] = digit_max
dp[i][1] = counter_memo
# print('')
# for elm in dp:
# print(elm)
char_array = [None] * dp[n][0]
cnt = 0
t = sorted(dp[n][1].items(), key=lambda x: x[0], reverse=True)
for k, v in t:
for i in range(v):
char_array[i + cnt] = str(k)
cnt += v
print("".join(char_array))
if __name__ == "__main__":
main()
|
Statement
Find the largest integer that can be formed with exactly N matchsticks, under
the following conditions:
* Every digit in the integer must be one of the digits A_1, A_2, ..., A_M (1 \leq A_i \leq 9).
* The number of matchsticks used to form digits 1, 2, 3, 4, 5, 6, 7, 8, 9 should be 2, 5, 5, 4, 5, 6, 3, 7, 6, respectively.
|
[{"input": "20 4\n 3 7 8 4", "output": "777773\n \n\nThe integer 777773 can be formed with 3 + 3 + 3 + 3 + 3 + 5 = 20 matchsticks,\nand this is the largest integer that can be formed by 20 matchsticks under the\nconditions.\n\n* * *"}, {"input": "101 9\n 9 8 7 6 5 4 3 2 1", "output": "71111111111111111111111111111111111111111111111111\n \n\nThe output may not fit into a 64-bit integer type.\n\n* * *"}, {"input": "15 3\n 5 4 6", "output": "654"}]
|
Print the largest integer that can be formed with exactly N matchsticks under
the conditions in the problem statement.
* * *
|
s211859747
|
Wrong Answer
|
p03128
|
Input is given from Standard Input in the following format:
N M
A_1 A_2 ... A_M
|
n, m = map(int, input().split())
a = sorted(list(map(int, input().split())))
match = [0, 2, 5, 5, 4, 5, 6, 3, 7, 6]
move = [0, 0, 0, 0, 0, 0]
for i in a:
stick = match[i]
move[stick - 2] = i
dp = [[0, 0, 0, 0, 0, 0] for i in range(n + 10)]
for i in range(n):
if not any(dp[i]):
if i:
continue
for k, v in enumerate(move, 2):
if v:
dp[i + k] = list()
for k2, v2 in enumerate(dp[i]):
if k - 2 == k2:
v2 += 1
dp[i + k].append(v2)
ANS = sorted([[i, j] for i, j in zip(move, dp[n])], reverse=True)
ans = ""
for i, j in ANS:
ans += str(i) * j
print(ans)
|
Statement
Find the largest integer that can be formed with exactly N matchsticks, under
the following conditions:
* Every digit in the integer must be one of the digits A_1, A_2, ..., A_M (1 \leq A_i \leq 9).
* The number of matchsticks used to form digits 1, 2, 3, 4, 5, 6, 7, 8, 9 should be 2, 5, 5, 4, 5, 6, 3, 7, 6, respectively.
|
[{"input": "20 4\n 3 7 8 4", "output": "777773\n \n\nThe integer 777773 can be formed with 3 + 3 + 3 + 3 + 3 + 5 = 20 matchsticks,\nand this is the largest integer that can be formed by 20 matchsticks under the\nconditions.\n\n* * *"}, {"input": "101 9\n 9 8 7 6 5 4 3 2 1", "output": "71111111111111111111111111111111111111111111111111\n \n\nThe output may not fit into a 64-bit integer type.\n\n* * *"}, {"input": "15 3\n 5 4 6", "output": "654"}]
|
Print the largest integer that can be formed with exactly N matchsticks under
the conditions in the problem statement.
* * *
|
s352281954
|
Runtime Error
|
p03128
|
Input is given from Standard Input in the following format:
N M
A_1 A_2 ... A_M
|
import numpy as np
def judge(N, n, list_new, A, min):
# judge if we can make the perfect match
if n == 1:
if N in list_new:
s = np.where(N == list_new)
s = s[0].tolist()
l = []
for item in A[s]:
l.append([item])
return l
else:
return []
listy = []
list_here = np.sort(list_new)
list_h = list_here[::-1]
for i in range(len(list_h)):
item = list_new[i]
M = N - item
m = n - 1
if M < min * m or item * m < M:
pass
else:
s = judge(M, m, list_new, A, min)
if s != []:
for sin in s:
listy.append(np.append(sin, A[i]))
if listy == []:
return []
else:
return listy
list = [2, 5, 5, 4, 5, 6, 3, 7, 6]
s = input()
s = s.split()
N = int(s[0])
M = int(s[1])
t = input()
A = t.split()
list_new = []
for i in range(M):
A[i] = int(A[i])
A = np.array(A)
for item in A:
list_new.append(list[item - 1])
list_new = np.array(list_new)
min = np.min(list_new)
q, mod = divmod(N, min)
a = np.where(list_new == min)
a = a[0].tolist()
num = A[a]
digit = max(num)
number = str(digit) * q
while True:
a = judge(N, q, list_new, A, min)
if a != []:
listofnumbers = []
for item in a:
item.sort()
string = ""
for i in item:
string = str(i) + string
listofnumbers.append(int(string))
print(np.max(listofnumbers))
break
else:
q = q - 1
|
Statement
Find the largest integer that can be formed with exactly N matchsticks, under
the following conditions:
* Every digit in the integer must be one of the digits A_1, A_2, ..., A_M (1 \leq A_i \leq 9).
* The number of matchsticks used to form digits 1, 2, 3, 4, 5, 6, 7, 8, 9 should be 2, 5, 5, 4, 5, 6, 3, 7, 6, respectively.
|
[{"input": "20 4\n 3 7 8 4", "output": "777773\n \n\nThe integer 777773 can be formed with 3 + 3 + 3 + 3 + 3 + 5 = 20 matchsticks,\nand this is the largest integer that can be formed by 20 matchsticks under the\nconditions.\n\n* * *"}, {"input": "101 9\n 9 8 7 6 5 4 3 2 1", "output": "71111111111111111111111111111111111111111111111111\n \n\nThe output may not fit into a 64-bit integer type.\n\n* * *"}, {"input": "15 3\n 5 4 6", "output": "654"}]
|
Print the largest integer that can be formed with exactly N matchsticks under
the conditions in the problem statement.
* * *
|
s217302954
|
Wrong Answer
|
p03128
|
Input is given from Standard Input in the following format:
N M
A_1 A_2 ... A_M
|
import numpy as np
n, m = list(map(int, input().split()))
a = list(map(int, input().split()))
need_lis = [0, 2, 5, 5, 4, 5, 6, 3, 7, 6]
use_lis = [need_lis[i] for i in a]
use_lis.sort()
use_num_lis = []
for i in use_lis:
if i == 2:
use_num_lis.append(1)
if i == 3:
use_num_lis.append(7)
if i == 4:
use_num_lis.append(4)
if i == 5:
if 5 in a:
use_num_lis.append(5)
elif 3 in a:
use_num_lis.append(3)
else:
use_num_lis.append(2)
if i == 6:
if 9 in a:
use_num_lis.append(9)
else:
use_num_lis.append(6)
if i == 7:
use_num_lis.append(8)
ok_lis = []
for i in range(use_lis[0] ** (len(use_lis) - 1)):
ind_lis = []
for j in range(len(use_lis) - 2, -1, -1):
# print(j)
ind_lis.append(i // (use_lis[0] ** j))
i -= (i // (use_lis[0] ** j)) * (use_lis[0] ** j)
# print(ind_lis)
count = 0
for i in range(len(use_lis) - 1):
count += use_lis[i + 1] * ind_lis[i]
# print(count)
if (n - count) % use_lis[0] == 0:
# print(n-count)
rest = n - count
ok_lis.append([int(rest / use_lis[0])] + ind_lis)
res = []
for i in ok_lis:
res.append(sum(i))
max_lis = [i for i in range(len(res)) if res[i] == max(res)]
answers_lis = []
for i in max_lis:
answer = ""
use = ok_lis[i]
num_lis = use_num_lis
for k in range(len(use)):
ind = np.argmax(np.array(num_lis))
# print(ind)
if use[ind] > 0:
count = 0
for j in range(use[ind]):
# print(type(count))
count += (10**j) * num_lis[ind]
count = str(count)
# print(type(count))
answer += count
num_lis[ind] = 0
answers_lis.append(answer)
use_num_lis = []
for i in use_lis:
if i == 2:
use_num_lis.append(1)
if i == 3:
use_num_lis.append(7)
if i == 4:
use_num_lis.append(4)
if i == 5:
if 5 in a:
use_num_lis.append(5)
elif 3 in a:
use_num_lis.append(3)
else:
use_num_lis.append(2)
if i == 6:
if 9 in a:
use_num_lis.append(9)
else:
use_num_lis.append(6)
if i == 7:
use_num_lis.append(8)
print(int(max(answers_lis)))
|
Statement
Find the largest integer that can be formed with exactly N matchsticks, under
the following conditions:
* Every digit in the integer must be one of the digits A_1, A_2, ..., A_M (1 \leq A_i \leq 9).
* The number of matchsticks used to form digits 1, 2, 3, 4, 5, 6, 7, 8, 9 should be 2, 5, 5, 4, 5, 6, 3, 7, 6, respectively.
|
[{"input": "20 4\n 3 7 8 4", "output": "777773\n \n\nThe integer 777773 can be formed with 3 + 3 + 3 + 3 + 3 + 5 = 20 matchsticks,\nand this is the largest integer that can be formed by 20 matchsticks under the\nconditions.\n\n* * *"}, {"input": "101 9\n 9 8 7 6 5 4 3 2 1", "output": "71111111111111111111111111111111111111111111111111\n \n\nThe output may not fit into a 64-bit integer type.\n\n* * *"}, {"input": "15 3\n 5 4 6", "output": "654"}]
|
Print the largest integer that can be formed with exactly N matchsticks under
the conditions in the problem statement.
* * *
|
s296772105
|
Wrong Answer
|
p03128
|
Input is given from Standard Input in the following format:
N M
A_1 A_2 ... A_M
|
# coding: utf-8
# Your code here!
from collections import defaultdict
N, M = map(int, input().rstrip().split(" "))
A = sorted(list(map(int, input().rstrip().split(" "))))[::-1]
numbers = {1: 2, 2: 5, 3: 5, 4: 4, 5: 5, 6: 6, 7: 3, 8: 7, 9: 6}
temp = [False] * 8
temp_A = []
for a in A:
if temp[numbers[a]] == False:
temp_A.append(a)
temp[numbers[a]] = True
A = temp_A
max_numbers = []
memo = defaultdict(lambda: defaultdict(lambda: [-1, -1]))
memo2 = defaultdict(lambda: defaultdict(lambda: []))
def recursive(n, honsu, sum_numbers, i):
if memo[n][i][0] != -1:
return memo[n][i][0], memo[n][i][1], memo2[n][i]
if n == 0:
return honsu, sum_numbers, [0] * (len(A) - i)
max_honsu = -1
max_sum_numbers = -1
max_k = []
for j in range(i, len(A)):
a = A[j]
for k in range(n // numbers[a] + 1):
return_honsu, return_sum_numbers, return_ks = recursive(
n - numbers[a] * k, honsu + k, sum_numbers + a * k, j + 1
)
if return_honsu > max_honsu:
max_honsu = return_honsu
max_sum_numbers = return_sum_numbers
max_k = [k] + return_ks
elif return_honsu == max_honsu:
if return_sum_numbers > max_sum_numbers:
max_sum_numbers = return_sum_numbers
max_k = [k] + return_ks
memo[n][i][0] = max_honsu
memo[n][i][1] = max_sum_numbers
memo2[n][i] = max_k
return max_honsu, max_sum_numbers, max_k
honsu, sum_numbers, _ = recursive(N, 0, 0, 0)
honsu = sorted([[a, x] for a, x in zip(A, memo2[N][0])], key=lambda x: x[0])[::-1]
for a, x in honsu:
for _ in range(x):
print(a, end="")
|
Statement
Find the largest integer that can be formed with exactly N matchsticks, under
the following conditions:
* Every digit in the integer must be one of the digits A_1, A_2, ..., A_M (1 \leq A_i \leq 9).
* The number of matchsticks used to form digits 1, 2, 3, 4, 5, 6, 7, 8, 9 should be 2, 5, 5, 4, 5, 6, 3, 7, 6, respectively.
|
[{"input": "20 4\n 3 7 8 4", "output": "777773\n \n\nThe integer 777773 can be formed with 3 + 3 + 3 + 3 + 3 + 5 = 20 matchsticks,\nand this is the largest integer that can be formed by 20 matchsticks under the\nconditions.\n\n* * *"}, {"input": "101 9\n 9 8 7 6 5 4 3 2 1", "output": "71111111111111111111111111111111111111111111111111\n \n\nThe output may not fit into a 64-bit integer type.\n\n* * *"}, {"input": "15 3\n 5 4 6", "output": "654"}]
|
Print the largest integer that can be formed with exactly N matchsticks under
the conditions in the problem statement.
* * *
|
s041483303
|
Runtime Error
|
p03128
|
Input is given from Standard Input in the following format:
N M
A_1 A_2 ... A_M
|
N, M = map(int, input().split())
A = list(map(int, input().split()))
AtoH = [0, 2, 5, 5, 4, 5, 6, 3, 7, 6]
H = [AtoH[a] for a in A]
# print("H:", H)
dp = [0] * (N + 1)
dpl = [0] * (N + 1)
for i in range(M):
h, a = H[i], A[i]
dp[N - h] = max(dp[N - h], dp[N] + a)
dpl[N - h] = 1
for dpi in range(N - 1, -1, -1):
if dp[dpi]:
for m in range(M):
h, a = H[m], A[m]
if dpi - h >= 0:
if dp[dpi - h] < dp[dpi] + 10 ** dpl[dpi] * a:
dp[dpi - h] = dp[dpi] + 10 ** dpl[dpi] * a
dpl[dpi - h] = dpl[dpi] + 1
print(dp[0])
|
Statement
Find the largest integer that can be formed with exactly N matchsticks, under
the following conditions:
* Every digit in the integer must be one of the digits A_1, A_2, ..., A_M (1 \leq A_i \leq 9).
* The number of matchsticks used to form digits 1, 2, 3, 4, 5, 6, 7, 8, 9 should be 2, 5, 5, 4, 5, 6, 3, 7, 6, respectively.
|
[{"input": "20 4\n 3 7 8 4", "output": "777773\n \n\nThe integer 777773 can be formed with 3 + 3 + 3 + 3 + 3 + 5 = 20 matchsticks,\nand this is the largest integer that can be formed by 20 matchsticks under the\nconditions.\n\n* * *"}, {"input": "101 9\n 9 8 7 6 5 4 3 2 1", "output": "71111111111111111111111111111111111111111111111111\n \n\nThe output may not fit into a 64-bit integer type.\n\n* * *"}, {"input": "15 3\n 5 4 6", "output": "654"}]
|
Print the largest integer that can be formed with exactly N matchsticks under
the conditions in the problem statement.
* * *
|
s317464163
|
Runtime Error
|
p03128
|
Input is given from Standard Input in the following format:
N M
A_1 A_2 ... A_M
|
n, m = map(int, input().split(" "))
useable_numbers = list(sorted(map(int, input().split(" "))))
required_maches = {1: 2, 2: 5, 3: 5, 4: 4, 5: 5, 6: 6, 7: 3, 8: 7, 9: 6}
dp = dict()
def evaluate(used_numbers):
if used_numbers == []:
return 0
return int("".join(map(str, sorted(used_numbers, reverse=True))))
def find(used_matches):
if used_matches in dp:
return dp[used_matches]
if used_matches == 0:
dp[used_matches] = []
return dp[used_matches]
if used_matches < 0:
dp[used_matches] = None
return dp[used_matches]
candidates = [
ai
for ai in useable_numbers
if find(used_matches - required_maches[ai]) is not None
]
if candidates == []:
dp[used_matches] = None
return dp[used_matches]
max_ai = max(
candidates,
key=lambda ai: evaluate(find(used_matches - required_maches[ai]) + [ai]),
)
dp[used_matches] = find(used_matches - required_maches[max_ai]) + [max_ai]
return dp[used_matches]
print(evaluate(find(n)))
|
Statement
Find the largest integer that can be formed with exactly N matchsticks, under
the following conditions:
* Every digit in the integer must be one of the digits A_1, A_2, ..., A_M (1 \leq A_i \leq 9).
* The number of matchsticks used to form digits 1, 2, 3, 4, 5, 6, 7, 8, 9 should be 2, 5, 5, 4, 5, 6, 3, 7, 6, respectively.
|
[{"input": "20 4\n 3 7 8 4", "output": "777773\n \n\nThe integer 777773 can be formed with 3 + 3 + 3 + 3 + 3 + 5 = 20 matchsticks,\nand this is the largest integer that can be formed by 20 matchsticks under the\nconditions.\n\n* * *"}, {"input": "101 9\n 9 8 7 6 5 4 3 2 1", "output": "71111111111111111111111111111111111111111111111111\n \n\nThe output may not fit into a 64-bit integer type.\n\n* * *"}, {"input": "15 3\n 5 4 6", "output": "654"}]
|
Print the largest integer that can be formed with exactly N matchsticks under
the conditions in the problem statement.
* * *
|
s306618318
|
Runtime Error
|
p03128
|
Input is given from Standard Input in the following format:
N M
A_1 A_2 ... A_M
|
from sys import stdin
N, M = [int(x) for x in stdin.readline().rstrip().split()]
S = [2, 5, 5, 4, 5, 6, 3, 7, 6]
A = [int(x) for x in stdin.readline().rstrip().split()]
B = [(x, S[x - 1]) for x in A]
B.sort(key=lambda x: x[1])
print(B)
def solve(match, ans):
if match == 0:
return int(ans)
if match < B[0][1]:
return -1
return max([solve(match - B[k][1], ans + str(B[k][0])) for k in range(len(A))])
print(solve(N, ""))
|
Statement
Find the largest integer that can be formed with exactly N matchsticks, under
the following conditions:
* Every digit in the integer must be one of the digits A_1, A_2, ..., A_M (1 \leq A_i \leq 9).
* The number of matchsticks used to form digits 1, 2, 3, 4, 5, 6, 7, 8, 9 should be 2, 5, 5, 4, 5, 6, 3, 7, 6, respectively.
|
[{"input": "20 4\n 3 7 8 4", "output": "777773\n \n\nThe integer 777773 can be formed with 3 + 3 + 3 + 3 + 3 + 5 = 20 matchsticks,\nand this is the largest integer that can be formed by 20 matchsticks under the\nconditions.\n\n* * *"}, {"input": "101 9\n 9 8 7 6 5 4 3 2 1", "output": "71111111111111111111111111111111111111111111111111\n \n\nThe output may not fit into a 64-bit integer type.\n\n* * *"}, {"input": "15 3\n 5 4 6", "output": "654"}]
|
Print the largest integer that can be formed with exactly N matchsticks under
the conditions in the problem statement.
* * *
|
s255028408
|
Runtime Error
|
p03128
|
Input is given from Standard Input in the following format:
N M
A_1 A_2 ... A_M
|
N, M = map(int, input().split())
A = list(map(int, input().split()))
A.sort()
B = [[] for i in range(0, 10)]
for i in range(0, M):
if 1 in A:
B[2].append(1)
if 2 in A:
B[5].append(2)
if 3 in A:
B[5].append(3)
if 4 in A:
B[4].append(4)
if 5 in A:
B[5].append(5)
if 6 in A:
B[6].append(6)
if 7 in A:
B[3].append(7)
if 8 in A:
B[7].append(8)
if 9 in A:
B[6].append(9)
dp = ["n" for i in range(0, N + 1)]
if 1 in A:
dp[2] = 1
if 2 in A:
dp[5] = 2
if 3 in A:
dp[5] = 3
if 4 in A:
dp[4] = 4
if 5 in A:
dp[5] = 5
if 6 in A:
dp[6] = 6
if 7 in A:
dp[3] = 7
if 8 in A:
dp[7] = 8
if 9 in A:
dp[6] = 9
for i in range(4, N + 1):
if i == 4:
if B[2] != []:
dp[4] = 11
if i == 5:
if B[3] != [] and dp[2] != "n":
dp[5] = 71
if i == 6:
a = 0
b = 0
c = 0
if B[2] != [] and dp[4] != "n":
a = 1 * 10 ** len(str(dp[4])) + dp[4]
if B[3] != []:
b = 77
if B[4] != [] and dp[2] != "n":
c = 41
if dp[6] == "n":
x = max(a, b, c)
if x != 0:
dp[6] = x
else:
dp[6] = max(a, b, c, dp[6])
if i == 7:
a = 0
b = 0
c = 0
d = 0
if B[2] != [] and dp[5] != "n":
a = 1 * 10 ** len(str(dp[5])) + dp[5]
if B[3] != [] and dp[4] != "n":
b = 7 * 10 ** len(str(dp[4])) + dp[4]
if B[4] != [] and dp[3] != "n":
c = 47
if B[5] != [] and dp[2] != "n":
d = max(B[5]) * 10 + 1
if dp[7] == "n":
x = max(a, b, c, d)
if x != 0:
dp[7] = x
else:
dp[7] = max(dp[7], a, b, c, d)
if i > 7:
a = 0
b = 0
c = 0
d = 0
e = 0
f = 0
if B[2] != [] and dp[i - 2] != "n":
a = 1 * 10 ** (len(str(dp[i - 2]))) + dp[i - 2]
if B[3] != [] and dp[i - 3] != "n":
b = 7 * 10 ** (len(str(dp[i - 3]))) + dp[i - 3]
if B[4] != [] and dp[i - 4] != "n":
c = 4 * 10 ** (len(str(dp[i - 4]))) + dp[i - 4]
if B[5] != [] and dp[i - 5] != "n":
d = max(B[5]) * 10 ** (len(str(dp[i - 5]))) + dp[i - 5]
if B[6] != [] and dp[i - 6] != "n":
e = max(B[6]) * 10 ** (len(str(dp[i - 6]))) + dp[i - 6]
if B[7] != [] and dp[i - 7] != "n":
f = 8 * 10 ** (len(str(dp[i - 7]))) + dp[i - 7]
x = max(a, b, c, d, e, f)
if x == 0:
dp[i] = "n"
else:
dp[i] = x
print(dp[N])
|
Statement
Find the largest integer that can be formed with exactly N matchsticks, under
the following conditions:
* Every digit in the integer must be one of the digits A_1, A_2, ..., A_M (1 \leq A_i \leq 9).
* The number of matchsticks used to form digits 1, 2, 3, 4, 5, 6, 7, 8, 9 should be 2, 5, 5, 4, 5, 6, 3, 7, 6, respectively.
|
[{"input": "20 4\n 3 7 8 4", "output": "777773\n \n\nThe integer 777773 can be formed with 3 + 3 + 3 + 3 + 3 + 5 = 20 matchsticks,\nand this is the largest integer that can be formed by 20 matchsticks under the\nconditions.\n\n* * *"}, {"input": "101 9\n 9 8 7 6 5 4 3 2 1", "output": "71111111111111111111111111111111111111111111111111\n \n\nThe output may not fit into a 64-bit integer type.\n\n* * *"}, {"input": "15 3\n 5 4 6", "output": "654"}]
|
Print the largest integer that can be formed with exactly N matchsticks under
the conditions in the problem statement.
* * *
|
s464613942
|
Wrong Answer
|
p03128
|
Input is given from Standard Input in the following format:
N M
A_1 A_2 ... A_M
|
n, m = map(int, input().split())
arr = list(map(int, input().split()))
dic = {1: 2, 2: 5, 3: 5, 4: 4, 5: 5, 6: 6, 7: 3, 8: 7, 9: 6}
cand = [[""] for _ in range(6)]
for val in arr:
cand[dic[val] - 2].append(str(val))
pos = 6
for i in range(5, -1, -1):
cand[i] = sorted(cand[i], reverse=True)
if len(cand[i]) > 1:
pos = i
ans = []
for c1 in range(n // (pos + 2), max(-1, n // (pos + 2) - 11), -1):
tmp = [[cand[pos][0], c1]]
if pos == 5 and (pos + 2) * c1 == n:
t = ""
tmp = sorted(tmp, reverse=True, key=lambda x: x[0])
for char, val in tmp:
t += char * val
ans.append(t)
for c2 in range(11):
if pos >= 5:
continue
tmp2 = tmp + [[cand[pos + 1][0], c2]]
if pos == 4 and (pos + 2) * c1 + (pos + 2 + 1) * c2 == n:
t = ""
tmp2 = sorted(tmp2, reverse=True, key=lambda x: x[0])
for char, val in tmp2:
t += char * val
ans.append(t)
for c3 in range(11):
if pos >= 4:
continue
tmp3 = tmp2 + [[cand[pos + 2][0], c3]]
if (
pos == 3
and (pos + 2) * c1 + (pos + 2 + 1) * c2 + (pos + 2 + 2) * c3 == n
):
t = ""
tmp3 = sorted(tmp3, reverse=True, key=lambda x: x[0])
for char, val in tmp3:
t += char * val
ans.append(t)
for c4 in range(11):
if pos >= 3:
continue
tmp4 = tmp3 + [[cand[pos + 3][0], c4]]
if (
pos == 2
and (pos + 2) * c1
+ (pos + 2 + 1) * c2
+ (pos + 2 + 2) * c3
+ (pos + 2 + 3) * c4
== n
):
t = ""
tmp4 = sorted(tmp4, reverse=True, key=lambda x: x[0])
for char, val in tmp4:
t += char * val
ans.append(t)
for c5 in range(11):
if pos >= 2:
continue
tmp5 = tmp4 + [[cand[pos + 4][0], c5]]
if (
pos == 1
and (pos + 2) * c1
+ (pos + 2 + 1) * c2
+ (pos + 2 + 2) * c3
+ (pos + 2 + 3) * c4
+ (pos + 2 + 4) * c5
== n
):
t = ""
tmp5 = sorted(tmp5, reverse=True, key=lambda x: x[0])
for char, val in tmp5:
t += char * val
ans.append(t)
for c6 in range(11):
if pos >= 1:
continue
tmp6 = tmp5 + [[cand[pos + 5][0], c6]]
if (
pos == 0
and (pos + 2) * c1
+ (pos + 2 + 1) * c2
+ (pos + 2 + 2) * c3
+ (pos + 2 + 3) * c4
+ (pos + 2 + 4) * c5
+ (pos + 2 + 5) * c6
== n
):
t = ""
tmp6 = sorted(tmp6, reverse=True, key=lambda x: x[0])
for char, val in tmp6:
t += char * val
ans.append(t)
ans = sorted(ans, reverse=True, key=lambda x: len(x))
print(ans[0])
|
Statement
Find the largest integer that can be formed with exactly N matchsticks, under
the following conditions:
* Every digit in the integer must be one of the digits A_1, A_2, ..., A_M (1 \leq A_i \leq 9).
* The number of matchsticks used to form digits 1, 2, 3, 4, 5, 6, 7, 8, 9 should be 2, 5, 5, 4, 5, 6, 3, 7, 6, respectively.
|
[{"input": "20 4\n 3 7 8 4", "output": "777773\n \n\nThe integer 777773 can be formed with 3 + 3 + 3 + 3 + 3 + 5 = 20 matchsticks,\nand this is the largest integer that can be formed by 20 matchsticks under the\nconditions.\n\n* * *"}, {"input": "101 9\n 9 8 7 6 5 4 3 2 1", "output": "71111111111111111111111111111111111111111111111111\n \n\nThe output may not fit into a 64-bit integer type.\n\n* * *"}, {"input": "15 3\n 5 4 6", "output": "654"}]
|
Print the largest integer that can be formed with exactly N matchsticks under
the conditions in the problem statement.
* * *
|
s893138486
|
Runtime Error
|
p03128
|
Input is given from Standard Input in the following format:
N M
A_1 A_2 ... A_M
|
n, m = map(int, input().split())
num = list(map(int, input().split()))
num_dic = {1: 2, 2: 5, 3: 5, 4: 4, 5: 5, 6: 6, 7: 3, 8: 7, 9: 6}
dp = [0] * (n + 1)
def creat_num(original, num): # original=431,num=1 return 4311
if original == 0:
return num
new = list(map(int, list(str(original)))) + [num]
new.sort()
new.reverse()
return int("".join(list(map(str, new))))
def match_dp(dp, num, num_dic, n):
for i in num:
if n - num_dic[i] >= 0:
new_num = creat_num(dp[n], i)
dp[n - num_dic[i]] = max(new_num, dp[n - num_dic[i]])
match_dp(dp, num, num_dic, n - num_dic[i])
match_dp(dp, num, num_dic, n)
print(dp[0])
|
Statement
Find the largest integer that can be formed with exactly N matchsticks, under
the following conditions:
* Every digit in the integer must be one of the digits A_1, A_2, ..., A_M (1 \leq A_i \leq 9).
* The number of matchsticks used to form digits 1, 2, 3, 4, 5, 6, 7, 8, 9 should be 2, 5, 5, 4, 5, 6, 3, 7, 6, respectively.
|
[{"input": "20 4\n 3 7 8 4", "output": "777773\n \n\nThe integer 777773 can be formed with 3 + 3 + 3 + 3 + 3 + 5 = 20 matchsticks,\nand this is the largest integer that can be formed by 20 matchsticks under the\nconditions.\n\n* * *"}, {"input": "101 9\n 9 8 7 6 5 4 3 2 1", "output": "71111111111111111111111111111111111111111111111111\n \n\nThe output may not fit into a 64-bit integer type.\n\n* * *"}, {"input": "15 3\n 5 4 6", "output": "654"}]
|
Print the largest integer that can be formed with exactly N matchsticks under
the conditions in the problem statement.
* * *
|
s131532172
|
Wrong Answer
|
p03128
|
Input is given from Standard Input in the following format:
N M
A_1 A_2 ... A_M
|
from itertools import permutations
n, m = list(map(int, input().split()))
aa = list(map(int, input().split()))
match = [6, 2, 5, 5, 4, 5, 6, 3, 7, 6]
minm = min(match[a] for a in aa)
keta = n // minm
if m == 1:
print(str(aa[0]) * keta)
elif m == 2:
ans_best = 0
for a0, a1 in permutations(aa, 2):
m0, m1 = match[a0], match[a1]
for i in range(min(6, keta)):
ans = int(str(a0) * i + str(a1) * (keta - i))
if m0 * i + m1 * (keta - i) == n:
ans_best = max(ans_best, ans)
ans = int(str(a0) * (keta - i) + str(a1) * i)
if m0 * (keta - i) + m1 * i == n:
ans_best = max(ans_best, ans)
print(ans_best)
else:
ans_best = 0
for a0, a1, a2 in permutations(aa, 3):
m0, m1, m2 = match[a0], match[a1], match[a2]
for i in range(min(6, keta)):
for j in range(min(6, keta) - i):
ans = int(str(a0) * i + str(a1) * j + str(a2) * (keta - i - j))
if m0 * i + m1 * j + m2 * (keta - i - j) == n:
ans_best = max(ans_best, ans)
ans = int(str(a0) * i + str(a1) * (keta - i - j) + str(a2) * j)
if m0 * i + m1 * (keta - i - j) + m2 * j == n:
ans_best = max(ans_best, ans)
ans = int(str(a0) * (keta - i - j) + str(a1) * i + str(a2) * j)
if m0 * (keta - i - j) + m1 * i + m2 * j == n:
ans_best = max(ans_best, ans)
print(ans_best)
|
Statement
Find the largest integer that can be formed with exactly N matchsticks, under
the following conditions:
* Every digit in the integer must be one of the digits A_1, A_2, ..., A_M (1 \leq A_i \leq 9).
* The number of matchsticks used to form digits 1, 2, 3, 4, 5, 6, 7, 8, 9 should be 2, 5, 5, 4, 5, 6, 3, 7, 6, respectively.
|
[{"input": "20 4\n 3 7 8 4", "output": "777773\n \n\nThe integer 777773 can be formed with 3 + 3 + 3 + 3 + 3 + 5 = 20 matchsticks,\nand this is the largest integer that can be formed by 20 matchsticks under the\nconditions.\n\n* * *"}, {"input": "101 9\n 9 8 7 6 5 4 3 2 1", "output": "71111111111111111111111111111111111111111111111111\n \n\nThe output may not fit into a 64-bit integer type.\n\n* * *"}, {"input": "15 3\n 5 4 6", "output": "654"}]
|
Print the largest integer that can be formed with exactly N matchsticks under
the conditions in the problem statement.
* * *
|
s268502316
|
Wrong Answer
|
p03128
|
Input is given from Standard Input in the following format:
N M
A_1 A_2 ... A_M
|
def examA():
A, B = LI()
if B % A == 0:
ans = A + B
else:
ans = B - A
print(ans)
return
def examB():
N, M = LI()
Flag = [0] * M
for i in range(N):
K = LI()
for j in range(1, K[0] + 1):
Flag[K[j] - 1] += 1
ans = 0
for i in Flag:
if i == N:
ans += 1
print(ans)
return
def gcd(x, y):
if y == 0:
return x
while y != 0:
x, y = y, x % y
return x
def examC():
N = I()
A = LI()
cur = A[0]
for i in range(N - 1):
cur = gcd(cur, A[i + 1])
ans = cur
print(ans)
return
def examD():
N, M = LI()
A = LI()
A.sort()
Matti = [2, 5, 5, 4, 5, 6, 3, 7, 6]
D = {}
for a in A:
D[Matti[a - 1]] = a
# print(D)
dp = [-inf] * (N + 10)
dp[0] = 0
for i in range(N):
for matti, num in D.items():
dp[i + matti] = max(dp[i + matti], dp[i] + 1)
# print(dp)
used = []
i = N
while i > 0:
# print(i)
# input()
for matti, num in D.items():
if i - matti < 0:
continue
if dp[i - matti] == dp[i] - 1:
used.append(num)
i -= matti
# print(used)
used.sort(reverse=True)
ans = "".join(map(str, used))
print(ans)
return
import sys, copy, bisect, itertools, heapq, math
from heapq import heappop, heappush, heapify
from collections import Counter, defaultdict, deque
def I():
return int(sys.stdin.readline())
def LI():
return list(map(int, sys.stdin.readline().split()))
def LSI():
return list(map(str, sys.stdin.readline().split()))
def LS():
return sys.stdin.readline().split()
def SI():
return sys.stdin.readline().strip()
global mod, mod2, inf, alphabet
mod = 10**9 + 7
mod2 = 998244353
inf = 10**18
alphabet = [chr(ord("a") + i) for i in range(26)]
if __name__ == "__main__":
examD()
"""
31 2
5 8
"""
|
Statement
Find the largest integer that can be formed with exactly N matchsticks, under
the following conditions:
* Every digit in the integer must be one of the digits A_1, A_2, ..., A_M (1 \leq A_i \leq 9).
* The number of matchsticks used to form digits 1, 2, 3, 4, 5, 6, 7, 8, 9 should be 2, 5, 5, 4, 5, 6, 3, 7, 6, respectively.
|
[{"input": "20 4\n 3 7 8 4", "output": "777773\n \n\nThe integer 777773 can be formed with 3 + 3 + 3 + 3 + 3 + 5 = 20 matchsticks,\nand this is the largest integer that can be formed by 20 matchsticks under the\nconditions.\n\n* * *"}, {"input": "101 9\n 9 8 7 6 5 4 3 2 1", "output": "71111111111111111111111111111111111111111111111111\n \n\nThe output may not fit into a 64-bit integer type.\n\n* * *"}, {"input": "15 3\n 5 4 6", "output": "654"}]
|
Print the largest integer that can be formed with exactly N matchsticks under
the conditions in the problem statement.
* * *
|
s830313631
|
Runtime Error
|
p03128
|
Input is given from Standard Input in the following format:
N M
A_1 A_2 ... A_M
|
import sys
from bisect import bisect_left
INF = 1 << 30
def main():
N, M = map(int, input().split())
A = set(map(str, input().split()))
number = "174532968"
necesary_match = (2, 3, 4, 5, 5, 5, 6, 6, 7)
match = {i: j for i, j in zip(number, necesary_match)}
if "1" in A:
if N % 2 == 0:
ans = ["1"] * (N // 2)
else:
for num in "75328":
if num in A:
ans = ["1"] * ((N - match[num]) // 2) + [num]
break
elif "7" in A:
if N % 3 == 0:
ans = ["7"] * (N // 3)
elif N % 3 == 1:
flag = False
for num in "48":
if num in A:
flag = True
ans = ["7"] * ((N - match[num]) // 3) + [num]
break
if not flag:
for num in "532":
if num in A:
ans = ["7"] * ((N - 2 * match[num]) // 3) + [num] * 2
break
else:
flag = False
for num in "532":
if num in A:
flag = True
ans = ["7"] * ((N - match[num]) // 3) + [num]
break
if not flag:
for num in "48":
if num in A:
ans = ["7"] * ((N - 2 * match[num]) // 3) + [num] * 2
break
elif "4" in A:
if N % 4 == 0:
ans = ["4"] * (N // 4)
elif N % 4 == 1:
flag = False
for num in "532":
if num in A:
flag = True
ans = ["4"] * ((N - match[num]) // 4) + [num]
break
if not flag:
for num in "96":
if num in A:
flag = True
ans = ["4"] * ((N - match[num] - match["8"]) // 4) + [num, "8"]
break
if not flag:
ans = ["4"] * ((N - match["8"] * 3) // 4) + ["8"] * 3
elif N % 4 == 2:
flag = False
for num in "96":
if num in A:
ans = ["4"] * ((N - match[num]) // 4) + [num]
flag = True
break
if not flag:
for num in "532":
if num in A:
ans = ["4"] * ((N - 2 * match[num]) // 4) + [num] * 2
flag = True
break
if not flag:
ans = ["4"] * ((N - 2 * match["8"]) // 4) + ["8"] * 2
else:
flag = False
if "8" in A:
flag = True
ans = ["4"] * ((N - match["8"]) // 4) + ["8"]
if not flag:
x = ""
for num in "96":
if num in A:
x = num
break
y = ""
for num in "532":
if num in A:
y = num
break
if x:
ans = ["4"] * ((N - match[x] - match[y]) // 4) + [x, y]
else:
ans = ["4"] * ((N - 3 * match[y]) // 4) + [y] * 3
else:
x = ""
for num in "532":
if num in A:
x = num
break
if x:
if N % 5 == 0:
ans = [x] * (N // 5)
elif N & 5 == 1:
flag = False
for num in "96":
if num in A:
flag = True
ans = [x] * ((N - match[num]) // 5) + [num]
break
if not flag:
ans = [x] * ((N - 3 * match["8"]) // 5) + ["8"] * 3
elif N % 5 == 2:
if "8" in A:
ans = [x] * ((N - match["8"]) // 5) + ["8"]
else:
for num in "96":
if num in A:
ans = [x] * ((N - 2 * match[num]) // 5) + [num] * 2
break
elif N % 5 == 3:
if "8" in A:
flag = False
for num in "96":
if num in A:
flag = True
ans = [x] * ((N - match[num] - match["8"]) // 5) + [
"8",
num,
]
break
if not flag:
ans = [x] * ((N - 4 * match["8"]) // 5) + ["8"] * 4
elif N % 5 == 4:
if "8" in A:
ans = [x] * ((N - 2 * match["8"]) // 5) + ["8"] * 2
else:
for num in "96":
if num in A:
ans = [x] * ((N - 4 * match[num]) // 5) + [num] * 4
break
else:
y = ""
for num in "96":
if num in A:
y = num
break
if y:
if N % 6 == 0:
ans = [y] * (N // 6)
else:
k = N % 6
ans = [y] * ((N - k * match["8"]) // 6) + ["8"] * k
else:
ans = ["8"] * (N // 7)
ans.sort(reverse=True)
print("".join(ans))
if __name__ == "__main__":
main()
|
Statement
Find the largest integer that can be formed with exactly N matchsticks, under
the following conditions:
* Every digit in the integer must be one of the digits A_1, A_2, ..., A_M (1 \leq A_i \leq 9).
* The number of matchsticks used to form digits 1, 2, 3, 4, 5, 6, 7, 8, 9 should be 2, 5, 5, 4, 5, 6, 3, 7, 6, respectively.
|
[{"input": "20 4\n 3 7 8 4", "output": "777773\n \n\nThe integer 777773 can be formed with 3 + 3 + 3 + 3 + 3 + 5 = 20 matchsticks,\nand this is the largest integer that can be formed by 20 matchsticks under the\nconditions.\n\n* * *"}, {"input": "101 9\n 9 8 7 6 5 4 3 2 1", "output": "71111111111111111111111111111111111111111111111111\n \n\nThe output may not fit into a 64-bit integer type.\n\n* * *"}, {"input": "15 3\n 5 4 6", "output": "654"}]
|
Print the largest integer that can be formed with exactly N matchsticks under
the conditions in the problem statement.
* * *
|
s166195641
|
Runtime Error
|
p03128
|
Input is given from Standard Input in the following format:
N M
A_1 A_2 ... A_M
|
import sys, re, os
from collections import deque, defaultdict, Counter
from math import ceil, sqrt, hypot, factorial, pi, sin, cos, radians
from itertools import permutations, combinations, product, accumulate
from operator import itemgetter, mul
from copy import deepcopy
from string import ascii_lowercase, ascii_uppercase, digits
from fractions import gcd
def input():
return sys.stdin.readline().strip()
def STR():
return input()
def INT():
return int(input())
def MAP():
return map(int, input().split())
def S_MAP():
return map(str, input().split())
def LIST():
return list(map(int, input().split()))
def S_LIST():
return list(map(str, input().split()))
sys.setrecursionlimit(10**9)
inf = sys.maxsize
mod = 10**9 + 7
n, m = MAP()
a = LIST()
b = [2, 5, 5, 4, 5, 6, 3, 7, 6]
arr = [[1, 2], [2, 5], [3, 5], [4, 4], [5, 5], [6, 6], [7, 3], [8, 7], [9, 6]]
arr2 = []
for i in range(9):
if arr[i][0] in a:
arr2.append(arr[i])
arr2.sort(key=lambda x: x[1])
# print('arr2', arr2)
larr2 = len(arr2)
ans = []
arr3 = []
arr4 = []
for i in range(larr2):
for j in range(i + 1, larr2):
if not arr2[i][1] + arr2[j][1] in arr3:
arr3.append(arr2[i][1] + arr2[j][1])
arr4.append([arr2[i][0], arr2[j][0]])
else:
index = arr3.index(arr2[i][1] + arr2[j][1])
arr4[index].sort(reverse=True)
t = sorted([arr2[i][0], arr2[j][0]], reverse=True)
flag = False
if a[0] > arr4[index][0] or (
a[0] == arr4[index][0] and t[1] > arr4[index][1]
):
arr4[index] = t
# print('arr3', arr3)
# print('arr4', arr4)
maxarr3 = max(arr3)
ii = 0
while n > 0:
if n in arr3 and not n - arr2[ii][1] in arr3:
index = arr3.index(n)
ans.append(arr4[index][0])
ans.append(arr4[index][1])
n = 0
elif ii >= 0:
n -= arr2[ii][1]
ans.append(arr2[ii][0])
elif n < maxarr3 or ii < 0:
index = arr2.index([ans[len(ans) - 1], b[ans[len(ans) - 1] - 1]])
n += arr2[index][1]
del ans[len(ans) - 1]
ii = index + 1
if ii >= larr2:
ii = -1
# print(n)
# print('ans', ans)
ans.sort(reverse=True)
anstr = ""
for i in range(len(ans)):
anstr += str(ans[i])
print(anstr)
"""
for i in range(len(arr2)):
l = n // arr2[i][1] #同じ数字の桁数
m = n % arr2[i][1] #端数
print(l, m)
if m != 0:
while
indexes = []
for j in range(len(arr2)):
if m == arr2[j][1]:
indexes.append(j)
print(indexes)
index = -1
mx = 0
for j in indexes:
if mx < arr2[j][0]:
mx = arr2[j][0]
index = j
if index >= 0:
if arr2[index][0] > arr2[i][0]:
ans = str(arr2[index][0]) + str(arr2[i][0]) * l
print('a')
print(ans)
exit()
else:
ans = str(arr2[i][0]) * l + str(arr2[index][0])
print('b')
print(ans)
exit()
elif m == 0:
ans = str(arr2[index][0]) * l
print('c')
print(ans)
exit()
"""
|
Statement
Find the largest integer that can be formed with exactly N matchsticks, under
the following conditions:
* Every digit in the integer must be one of the digits A_1, A_2, ..., A_M (1 \leq A_i \leq 9).
* The number of matchsticks used to form digits 1, 2, 3, 4, 5, 6, 7, 8, 9 should be 2, 5, 5, 4, 5, 6, 3, 7, 6, respectively.
|
[{"input": "20 4\n 3 7 8 4", "output": "777773\n \n\nThe integer 777773 can be formed with 3 + 3 + 3 + 3 + 3 + 5 = 20 matchsticks,\nand this is the largest integer that can be formed by 20 matchsticks under the\nconditions.\n\n* * *"}, {"input": "101 9\n 9 8 7 6 5 4 3 2 1", "output": "71111111111111111111111111111111111111111111111111\n \n\nThe output may not fit into a 64-bit integer type.\n\n* * *"}, {"input": "15 3\n 5 4 6", "output": "654"}]
|
Print the largest integer that can be formed with exactly N matchsticks under
the conditions in the problem statement.
* * *
|
s819433645
|
Runtime Error
|
p03128
|
Input is given from Standard Input in the following format:
N M
A_1 A_2 ... A_M
|
N, M = list(map(int, input().split()))
A = list(map(int, input().split())) # len(A)=M
_dict = {}
num_matches = {1: 2, 2: 5, 3: 5, 4: 4, 5: 5, 6: 6, 7: 3, 8: 7, 9: 6}
for a in A:
_dict[num_matches[a]] = _dict.get(num_matches[a], []) + [a]
# print(_dict)
memo = [None for _ in range(N + 1)] # return memo[N]
# Nほんのマッチを使って作れる整数の最大値.(作れなければ0)
def max_int_with_match(n):
if memo[n]:
return memo[n]
if n < min(_dict.keys()):
memo[n] = 0
return memo[n]
memo[n] = max(
max(_dict.get(n, [0])),
max(
map(
lambda x: max(_dict[x]) + 10 * max_int_with_match(n - x),
list(filter(lambda x: x < n, _dict.keys())),
)
),
)
return memo[n]
print(max_int_with_match(N))
# print(memo)
|
Statement
Find the largest integer that can be formed with exactly N matchsticks, under
the following conditions:
* Every digit in the integer must be one of the digits A_1, A_2, ..., A_M (1 \leq A_i \leq 9).
* The number of matchsticks used to form digits 1, 2, 3, 4, 5, 6, 7, 8, 9 should be 2, 5, 5, 4, 5, 6, 3, 7, 6, respectively.
|
[{"input": "20 4\n 3 7 8 4", "output": "777773\n \n\nThe integer 777773 can be formed with 3 + 3 + 3 + 3 + 3 + 5 = 20 matchsticks,\nand this is the largest integer that can be formed by 20 matchsticks under the\nconditions.\n\n* * *"}, {"input": "101 9\n 9 8 7 6 5 4 3 2 1", "output": "71111111111111111111111111111111111111111111111111\n \n\nThe output may not fit into a 64-bit integer type.\n\n* * *"}, {"input": "15 3\n 5 4 6", "output": "654"}]
|
Print the largest integer that can be formed with exactly N matchsticks under
the conditions in the problem statement.
* * *
|
s142619817
|
Runtime Error
|
p03128
|
Input is given from Standard Input in the following format:
N M
A_1 A_2 ... A_M
|
n, m = [int(i) for i in input().split()]
e = [[int(i) for i in input().split()] for i in range(n)]
s = []
for t in e:
b_list = 0
for x in t[1:]:
b_list = b_list | pow(2, x - 1)
s.append(b_list)
result = pow(2, 30) - 1
for i in s:
result = result & i
cnt = 0
for i in range(30):
if result & pow(2, i):
cnt += 1
print(cnt)
|
Statement
Find the largest integer that can be formed with exactly N matchsticks, under
the following conditions:
* Every digit in the integer must be one of the digits A_1, A_2, ..., A_M (1 \leq A_i \leq 9).
* The number of matchsticks used to form digits 1, 2, 3, 4, 5, 6, 7, 8, 9 should be 2, 5, 5, 4, 5, 6, 3, 7, 6, respectively.
|
[{"input": "20 4\n 3 7 8 4", "output": "777773\n \n\nThe integer 777773 can be formed with 3 + 3 + 3 + 3 + 3 + 5 = 20 matchsticks,\nand this is the largest integer that can be formed by 20 matchsticks under the\nconditions.\n\n* * *"}, {"input": "101 9\n 9 8 7 6 5 4 3 2 1", "output": "71111111111111111111111111111111111111111111111111\n \n\nThe output may not fit into a 64-bit integer type.\n\n* * *"}, {"input": "15 3\n 5 4 6", "output": "654"}]
|
Print the largest integer that can be formed with exactly N matchsticks under
the conditions in the problem statement.
* * *
|
s167253908
|
Runtime Error
|
p03128
|
Input is given from Standard Input in the following format:
N M
A_1 A_2 ... A_M
|
n, m = map(int, input().split())
l = list(map(int, input().split()))
if 1 in l:
if n % 2 == 0:
ans = "1" * (n / 2)
else:
if 7 in l:
ans = "7" + "1" * (int(n / 2) - 1)
elif 5 in l:
ans = "5" + "1" * (int(n / 2) - 2)
elif 3 in l:
ans = "3" + "1" * (int(n / 2) - 2)
elif 2 in l:
ans = "2" + "1" * (int(n / 2) - 2)
elif 8 in l:
ans = "8" + "1" * (int(n / 2) - 3)
else:
ans = "0"
print(ans)
|
Statement
Find the largest integer that can be formed with exactly N matchsticks, under
the following conditions:
* Every digit in the integer must be one of the digits A_1, A_2, ..., A_M (1 \leq A_i \leq 9).
* The number of matchsticks used to form digits 1, 2, 3, 4, 5, 6, 7, 8, 9 should be 2, 5, 5, 4, 5, 6, 3, 7, 6, respectively.
|
[{"input": "20 4\n 3 7 8 4", "output": "777773\n \n\nThe integer 777773 can be formed with 3 + 3 + 3 + 3 + 3 + 5 = 20 matchsticks,\nand this is the largest integer that can be formed by 20 matchsticks under the\nconditions.\n\n* * *"}, {"input": "101 9\n 9 8 7 6 5 4 3 2 1", "output": "71111111111111111111111111111111111111111111111111\n \n\nThe output may not fit into a 64-bit integer type.\n\n* * *"}, {"input": "15 3\n 5 4 6", "output": "654"}]
|
Print the largest integer that can be formed with exactly N matchsticks under
the conditions in the problem statement.
* * *
|
s255938254
|
Accepted
|
p03128
|
Input is given from Standard Input in the following format:
N M
A_1 A_2 ... A_M
|
l = [[0, 0], [1, 2], [2, 5], [3, 5], [4, 4], [5, 5], [6, 6], [7, 3], [8, 7], [9, 6]]
n, m = map(int, input().split())
a = list(map(int, input().split()))
l0 = []
for i in range(m):
l0.append(l[a[i]])
l0.sort(key=lambda x: x[0], reverse=True)
l0.sort(key=lambda x: x[1])
p, q = l0[0]
count = n - (n // q) * q
c = 1
ans = 0
for i in range(n // q):
ans += p * c
c *= 10
c = c // 10
l0.sort(key=lambda x: x[0], reverse=True)
i = 0
while count > 0 and i < m:
p1, q1 = l0[i]
if q1 > q:
q1 -= q
# print(count)
if p1 > p:
while count >= q1:
ans -= p * c
ans += p1 * c
count -= q1
c = c // 10
i += 1
else:
i += 1
i = 0
c = 1
l0.sort(key=lambda x: x[1], reverse=True)
while count > 0 and i < m:
p1, q1 = l0[i]
if q1 > q:
q1 -= q
if p1 < p:
while count >= q1:
ans -= p * c
ans += p1 * c
count -= q1
c *= 10
i += 1
else:
i += 1
if count == 0:
print(ans)
else:
x = n // q - 1
for i in range(n // q - 1):
count = n - (x) * q
c = 1
ans = 0
for i in range(x):
ans += p * c
c *= 10
c = c // 10
l0.sort(key=lambda x: x[0], reverse=True)
i = 0
while count > 0 and i < m:
p1, q1 = l0[i]
if q1 > q:
q1 -= q
# print(count)
if p1 > p:
while count >= q1:
ans -= p * c
ans += p1 * c
count -= q1
c = c // 10
i += 1
else:
i += 1
i = 0
c = 1
l0.sort(key=lambda x: x[1], reverse=True)
while count > 0 and i < m:
p1, q1 = l0[i]
if q1 > q:
q1 -= q
if p1 < p:
while count >= q1:
ans -= p * c
ans += p1 * c
count -= q1
c *= 10
i += 1
else:
i += 1
if count == 0:
print(ans)
break
else:
x += 1
|
Statement
Find the largest integer that can be formed with exactly N matchsticks, under
the following conditions:
* Every digit in the integer must be one of the digits A_1, A_2, ..., A_M (1 \leq A_i \leq 9).
* The number of matchsticks used to form digits 1, 2, 3, 4, 5, 6, 7, 8, 9 should be 2, 5, 5, 4, 5, 6, 3, 7, 6, respectively.
|
[{"input": "20 4\n 3 7 8 4", "output": "777773\n \n\nThe integer 777773 can be formed with 3 + 3 + 3 + 3 + 3 + 5 = 20 matchsticks,\nand this is the largest integer that can be formed by 20 matchsticks under the\nconditions.\n\n* * *"}, {"input": "101 9\n 9 8 7 6 5 4 3 2 1", "output": "71111111111111111111111111111111111111111111111111\n \n\nThe output may not fit into a 64-bit integer type.\n\n* * *"}, {"input": "15 3\n 5 4 6", "output": "654"}]
|
Print the largest integer that can be formed with exactly N matchsticks under
the conditions in the problem statement.
* * *
|
s716839400
|
Wrong Answer
|
p03128
|
Input is given from Standard Input in the following format:
N M
A_1 A_2 ... A_M
|
N, M = map(int, input().split())
A = list(input().split())
if "1" in A:
if N % 2 == 0:
print("1" * (N // 2))
else:
if "7" in A:
print("7" + "1" * (N // 2 - 1))
else:
print("1" * (N // 2))
else:
if "7" in A:
if N % 3 == 0:
print("7" * (N // 3))
elif N % 3 == 1:
if "4" in A:
print("7" * (N // 3 - 1) + "4")
elif "8" in A:
print("8" + "7" * (N // 3 - 2))
elif N % 3 == 2:
if "5" in A:
print("7" * (N // 3 - 1) + "5")
elif "3" in A:
print("7" * (N // 3 - 1) + "3")
elif "2" in A:
print("7" * (N // 3 - 1) + "2")
elif "4" in A:
if N % 3 == 3:
if N >= 11 and "9" in A and "5" in A:
print("95" + "4" * (N // 4 - 2))
elif N >= 11 and "9" in A and "3" in A:
print("9" + "4" * (N // 4 - 2) + "3")
elif N >= 11 and "9" in A and "2" in A:
print("9" + "4" * (N // 4 - 2) + "2")
elif "8" in A:
print("8" + "4" * (N // 4 - 1))
elif N >= 11 and "6" in A and "5" in A:
print("65" + "4" * (N // 4 - 2))
elif N >= 11 and "6" in A and "3" in A:
print("6" + "4" * (N // 4 - 2) + "3")
elif N >= 11 and "6" in A and "2" in A:
print("6" + "4" * (N // 4 - 2) + "2")
elif N % 4 == 2 and "9" in A:
print("9" + "4" * (N // 4 - 1))
elif N % 4 == 2 and "6" in A:
print("6" + "4" * (N // 4 - 1))
elif N % 4 != 0 and "5" in A:
print("5" * min(N % 4, N // 5) + "4" * (N // 4 - min(N % 4, N // 5)))
elif N % 4 != 0 and "3" in A:
print("4" * (N // 4 - min(N % 4, N // 5)) + "3" * min(N % 4, N // 5))
elif N % 4 != 0 and "5" in A:
print("4" * (N // 4 - min(N % 4, N // 5)) + "2" * min(N % 4, N // 5))
else:
print("4" * (N // 4))
elif "5" in A:
if N % 5 != 0 and "9" in A:
print("9" * min(N % 5, N // 6) + "5" * (N // 5 - min(N % 5, N // 6)))
elif N % 5 == 2 and "8" in A:
print("8" + "5" * (N // 5 - 1))
elif N % 5 != 0 and "6" in A:
print("6" * min(N % 5, N // 6) + "5" * (N // 5 - min(N % 5, N // 6)))
else:
print("5" * (N // 5))
elif "3" in A:
if N % 5 != 0 and "9" in A:
print("9" * min(N % 5, N // 6) + "3" * (N // 5 - min(N % 5, N // 6)))
elif N % 5 == 2 and "8" in A:
print("8" + "3" * (N // 5 - 1))
elif N % 5 != 0 and "6" in A:
print("6" * min(N % 5, N // 6) + "3" * (N // 5 - min(N % 5, N // 6)))
else:
print("3" * (N // 5))
elif "2" in A:
if N % 5 != 0 and "9" in A:
print("9" * min(N % 5, N // 6) + "2" * (N // 5 - min(N % 5, N // 6)))
elif N % 5 == 2 and "8" in A:
print("8" + "2" * (N // 5 - 1))
elif N % 5 != 0 and "6" in A:
print("6" * min(N % 5, N // 6) + "2" * (N // 5 - min(N % 5, N // 6)))
else:
print("2" * (N // 5))
elif "9" in A:
print("9" * (N // 6))
elif "6" in A:
if N % 6 != 0 and "8" in A:
print("8" * min(N % 6, N // 7) + "6" * (N // 6 - min(N % 6, N // 7)))
else:
print("6" * (N // 6))
else:
if "8" in A:
print("8" * (N // 7))
|
Statement
Find the largest integer that can be formed with exactly N matchsticks, under
the following conditions:
* Every digit in the integer must be one of the digits A_1, A_2, ..., A_M (1 \leq A_i \leq 9).
* The number of matchsticks used to form digits 1, 2, 3, 4, 5, 6, 7, 8, 9 should be 2, 5, 5, 4, 5, 6, 3, 7, 6, respectively.
|
[{"input": "20 4\n 3 7 8 4", "output": "777773\n \n\nThe integer 777773 can be formed with 3 + 3 + 3 + 3 + 3 + 5 = 20 matchsticks,\nand this is the largest integer that can be formed by 20 matchsticks under the\nconditions.\n\n* * *"}, {"input": "101 9\n 9 8 7 6 5 4 3 2 1", "output": "71111111111111111111111111111111111111111111111111\n \n\nThe output may not fit into a 64-bit integer type.\n\n* * *"}, {"input": "15 3\n 5 4 6", "output": "654"}]
|
Print the largest integer that can be formed with exactly N matchsticks under
the conditions in the problem statement.
* * *
|
s310717185
|
Wrong Answer
|
p03128
|
Input is given from Standard Input in the following format:
N M
A_1 A_2 ... A_M
|
from itertools import product
e = [10, 2, 5, 5, 4, 5, 6, 3, 7, 6]
n, m = map(int, input().split())
a = sorted(map(int, input().split()))
d = {}
for i in a:
if e[i] not in d:
d[e[i]] = i
elif d[e[i]] < i:
d[e[i]] = i
dd = sorted(
[[i[0] + j[0], i[1] * 10 + j[1]] for i, j in product(d.items(), d.items())]
+ [[k, v] for k, v in d.items()]
)
d = {}
for k, v in dd:
if k not in d:
d[k] = v
elif d[k] < v:
d[k] = v
dd = [[k, v] for k, v in sorted(d.items())]
# [print(k,v) for k,v in dd]
# print()
if 2 in d:
kk = 2
vv = 1
elif 3 in d:
kk = 3
vv = 7
else:
kk = 10000
vv = 0
for match_num, num in dd:
if kk >= match_num and vv < num:
kk = match_num
vv = num
elif kk * 2 > match_num and vv * len(str(vv)) + vv < num:
kk = match_num
vv = num
k = kk * 3
ans = []
while n - kk >= k:
ans.append(vv)
n -= kk
vvv = 0
uu = 0
u = 0
# print(ans, n)
for i, j, k in product(dd, dd, dd):
k_len = len(str(k[1]))
j_len = len(str(j[1]))
# if i[0] + j[0] + k[0] == n:
# print(i,j,k, i[1] * 10**(j_len+k_len) + j[1] * 10**k_len + k[1])
if (
i[0] + j[0] + k[0] == n
and i[1] * 10 ** (j_len + k_len) + j[1] * 10**k_len + k[1] > vvv
):
vvv = i[1] * 10 ** (j_len + k_len) + j[1] * 10**k_len + k[1]
uu = i[1] * 10 ** (j_len) + j[1]
u = k[1]
if i[0] + j[0] == n and i[1] * 10 ** (j_len) + j[1] > vvv:
vvv = i[1] * 10 ** (j_len) + j[1]
uu = i[1]
u = j[1]
if i[0] == n and i[1] > vvv:
vvv = i[1]
uu = i[1]
if u == 0:
print(uu)
else:
tmp = "".join(map(str, ans)) if ans else ""
print(str(uu) + tmp + str(u))
# print(vv,uu,u)
|
Statement
Find the largest integer that can be formed with exactly N matchsticks, under
the following conditions:
* Every digit in the integer must be one of the digits A_1, A_2, ..., A_M (1 \leq A_i \leq 9).
* The number of matchsticks used to form digits 1, 2, 3, 4, 5, 6, 7, 8, 9 should be 2, 5, 5, 4, 5, 6, 3, 7, 6, respectively.
|
[{"input": "20 4\n 3 7 8 4", "output": "777773\n \n\nThe integer 777773 can be formed with 3 + 3 + 3 + 3 + 3 + 5 = 20 matchsticks,\nand this is the largest integer that can be formed by 20 matchsticks under the\nconditions.\n\n* * *"}, {"input": "101 9\n 9 8 7 6 5 4 3 2 1", "output": "71111111111111111111111111111111111111111111111111\n \n\nThe output may not fit into a 64-bit integer type.\n\n* * *"}, {"input": "15 3\n 5 4 6", "output": "654"}]
|
Print the largest integer that can be formed with exactly N matchsticks under
the conditions in the problem statement.
* * *
|
s144243693
|
Runtime Error
|
p03128
|
Input is given from Standard Input in the following format:
N M
A_1 A_2 ... A_M
|
n, m = (int(i) for i in input().split())
a = list(int(i) for i in input().split())
use = []
t = [0, 2, 5, 5, 4, 5, 6, 3, 7, 6]
for i in range(1, 9):
if i in a:
use.append([i, t[i]])
use = sorted(use, key=lambda x: x[1])
query = ""
kaisuu = n // use[0][1]
amari = int(n % use[0][1])
# 答えのベースを作る
judge = []
for i in range(kaisuu):
query += str(use[0][0])
if amari == 0:
judge = [int(query)]
# あまりに応じて最後尾を変えるか最初を変えるか
else:
# 先頭を変えた後のあまりで後ろを変える
for j, k in enumerate(use):
tmp2 = query
amari = int(n % use[0][1])
if int(k[0]) > int(use[0][0]) and int(k[1]) <= amari + int(use[0][1]):
tmp2 = str(k[0]) + query[1::]
amari -= int(k[1])
amari += int(use[0][1])
if amari == 0:
judge.append(int(tmp2))
# 後ろ側をあまりが0になるように調整する
if amari > 0:
for j, k in enumerate(use):
if int(k[1]) == amari + int(use[0][1]):
tmp2 = tmp2[:-1] + str(k[0])
judge.append(int(tmp2))
print(max(judge))
|
Statement
Find the largest integer that can be formed with exactly N matchsticks, under
the following conditions:
* Every digit in the integer must be one of the digits A_1, A_2, ..., A_M (1 \leq A_i \leq 9).
* The number of matchsticks used to form digits 1, 2, 3, 4, 5, 6, 7, 8, 9 should be 2, 5, 5, 4, 5, 6, 3, 7, 6, respectively.
|
[{"input": "20 4\n 3 7 8 4", "output": "777773\n \n\nThe integer 777773 can be formed with 3 + 3 + 3 + 3 + 3 + 5 = 20 matchsticks,\nand this is the largest integer that can be formed by 20 matchsticks under the\nconditions.\n\n* * *"}, {"input": "101 9\n 9 8 7 6 5 4 3 2 1", "output": "71111111111111111111111111111111111111111111111111\n \n\nThe output may not fit into a 64-bit integer type.\n\n* * *"}, {"input": "15 3\n 5 4 6", "output": "654"}]
|
Print the largest integer that can be formed with exactly N matchsticks under
the conditions in the problem statement.
* * *
|
s379492697
|
Wrong Answer
|
p03128
|
Input is given from Standard Input in the following format:
N M
A_1 A_2 ... A_M
|
from sys import stdin
n, m = [int(x) for x in stdin.readline().rstrip().split()]
a = [int(x) for x in stdin.readline().rstrip().split()]
if 1 in a:
minm = 2
elif 7 in a:
minm = 3
elif 4 in a:
minm = 4
elif 2 in a:
minm = 5
elif 3 in a:
minm = 5
elif 5 in a:
minm = 5
elif 6 in a:
minm = 6
elif 9 in a:
minm = 6
elif 8 in a:
minm = 7
order = n // minm
amari = n % minm
output = ""
for i in range(order - 1):
amari += minm
if amari >= 6 and 9 in a:
output += "9"
amari -= 6
elif amari >= 7 and 8 in a:
output += "8"
amari -= 7
elif amari >= 3 and 7 in a:
output += "7"
amari -= 3
elif amari >= 6 and 6 in a:
output += "6"
amari -= 6
elif amari >= 5 and 5 in a:
output += "5"
amari -= 5
elif amari >= 4 and 4 in a:
output += "4"
amari -= 4
elif amari >= 5 and 3 in a:
output += "3"
amari -= 5
elif amari >= 5 and 2 in a:
output += "2"
amari -= 5
elif amari >= 2 and 1 in a:
output += "1"
amari -= 2
amari += minm
if amari == 6 and 9 in a:
output += "9"
amari -= 6
elif amari == 7 and 8 in a:
output += "8"
amari -= 7
elif amari == 3 and 7 in a:
output += "7"
amari -= 3
elif amari == 6 and 6 in a:
output += "6"
amari -= 6
elif amari == 5 and 5 in a:
output += "5"
amari -= 5
elif amari == 4 and 4 in a:
output += "4"
amari -= 4
elif amari == 5 and 3 in a:
output += "3"
amari -= 5
elif amari == 5 and 2 in a:
output += "2"
amari -= 5
elif amari == 2 and 1 in a:
output += "1"
amari -= 2
print(output)
|
Statement
Find the largest integer that can be formed with exactly N matchsticks, under
the following conditions:
* Every digit in the integer must be one of the digits A_1, A_2, ..., A_M (1 \leq A_i \leq 9).
* The number of matchsticks used to form digits 1, 2, 3, 4, 5, 6, 7, 8, 9 should be 2, 5, 5, 4, 5, 6, 3, 7, 6, respectively.
|
[{"input": "20 4\n 3 7 8 4", "output": "777773\n \n\nThe integer 777773 can be formed with 3 + 3 + 3 + 3 + 3 + 5 = 20 matchsticks,\nand this is the largest integer that can be formed by 20 matchsticks under the\nconditions.\n\n* * *"}, {"input": "101 9\n 9 8 7 6 5 4 3 2 1", "output": "71111111111111111111111111111111111111111111111111\n \n\nThe output may not fit into a 64-bit integer type.\n\n* * *"}, {"input": "15 3\n 5 4 6", "output": "654"}]
|
Print the largest integer that can be formed with exactly N matchsticks under
the conditions in the problem statement.
* * *
|
s969336050
|
Runtime Error
|
p03128
|
Input is given from Standard Input in the following format:
N M
A_1 A_2 ... A_M
|
#解答例
N,M=map(int,input().split())
A=list(map(int,input().split()))#使える数字の種類
weight=[0,2,5,5,4,5,6,3,7,6]#作るのに何本必要か、また0は作れないので0になっている
dp=[-1]*(N+1)#とりあえずこれくらい確保しておけばok
dp[0]=0#0本では0しか作れない
#dp[i]はちょうどi本で作れる最高の数を入れることにする
for i in range(N+1):#N本あるから、一本ずつ増やしていって最大N本
if dp[i] == -1:continue
for a in A:
if i+weight[a]<N+1:#今あるi本にa本を加えてもN本を超えないか
dp[i+weight[a]]=max(dp[i+weight[a]],dp[i]*10+a)#今まで作ったi+weight[a]のときのdpの値と、今作ったdp[i]*10+aの値を比べ、大きい方を格納する
#なぜdp[i]*10+aになるのかに関しては、右から数字を追加していく場合のみを考えることで、重複せずに全通り試せるから
#もし一通りもなかった場合、-1が格納されたままになるため問題がない
print(dp[N])
|
Statement
Find the largest integer that can be formed with exactly N matchsticks, under
the following conditions:
* Every digit in the integer must be one of the digits A_1, A_2, ..., A_M (1 \leq A_i \leq 9).
* The number of matchsticks used to form digits 1, 2, 3, 4, 5, 6, 7, 8, 9 should be 2, 5, 5, 4, 5, 6, 3, 7, 6, respectively.
|
[{"input": "20 4\n 3 7 8 4", "output": "777773\n \n\nThe integer 777773 can be formed with 3 + 3 + 3 + 3 + 3 + 5 = 20 matchsticks,\nand this is the largest integer that can be formed by 20 matchsticks under the\nconditions.\n\n* * *"}, {"input": "101 9\n 9 8 7 6 5 4 3 2 1", "output": "71111111111111111111111111111111111111111111111111\n \n\nThe output may not fit into a 64-bit integer type.\n\n* * *"}, {"input": "15 3\n 5 4 6", "output": "654"}]
|
Print the largest integer that can be formed with exactly N matchsticks under
the conditions in the problem statement.
* * *
|
s024079609
|
Runtime Error
|
p03128
|
Input is given from Standard Input in the following format:
N M
A_1 A_2 ... A_M
|
N, M = map(int, input().split())
A = list(map(int, input().split()))
def gcd(a, b):
while b:
a, b = b, a % b
return a
def lcm(a, b):
return a * b // gcd(a, b)
L = [2,5,5,4,5,6,3,7,6]
l_A = [L[A[i] for i in range(len(A))]
c_m = 0
mi = min(l_A)
ma = max(l_A)
if mi == 5:
c_m = 5
elif mi == 6:
c_m = 9
else:
c_m = L.index(mi) + 1
s = list(set(l_A)).sort()
if N % mi == 0:
print(str(c_m)*(N//mi))
lest = (N % mi) + mi
if lest in l_A:
lest_c = l_A[l_A.index(lest)]
if mi < lest_c:
print(str(lest_c)+str(mi)*((N//mi)-1))
else:
print(str(mi)*((N//mi)-1)+str(lest_c))
|
Statement
Find the largest integer that can be formed with exactly N matchsticks, under
the following conditions:
* Every digit in the integer must be one of the digits A_1, A_2, ..., A_M (1 \leq A_i \leq 9).
* The number of matchsticks used to form digits 1, 2, 3, 4, 5, 6, 7, 8, 9 should be 2, 5, 5, 4, 5, 6, 3, 7, 6, respectively.
|
[{"input": "20 4\n 3 7 8 4", "output": "777773\n \n\nThe integer 777773 can be formed with 3 + 3 + 3 + 3 + 3 + 5 = 20 matchsticks,\nand this is the largest integer that can be formed by 20 matchsticks under the\nconditions.\n\n* * *"}, {"input": "101 9\n 9 8 7 6 5 4 3 2 1", "output": "71111111111111111111111111111111111111111111111111\n \n\nThe output may not fit into a 64-bit integer type.\n\n* * *"}, {"input": "15 3\n 5 4 6", "output": "654"}]
|
Print the largest integer that can be formed with exactly N matchsticks under
the conditions in the problem statement.
* * *
|
s531856504
|
Runtime Error
|
p03128
|
Input is given from Standard Input in the following format:
N M
A_1 A_2 ... A_M
|
N, M = map(int, input().split())
A = list(map(int, input().split()))
li = [[1, 2], [7, 3], [4, 4], [5, 5], [3, 5], [2, 5], [9, 6], [6, 6], [8, 7]]
use = []
Q = [0] * 10
counter = 0
for i in li:
Flag = False
if i[0] in A:
Flag = True
for j in use:
if j[1] == i[1]:
Flag = False
if Flag:
use.append(i)
Q[use[0][0]] = int(N // use[0][1])
R = N % use[0][1]
while R != 0:
if Q[use[counter][0]] == 0 or counter >= M - 1:
counter -= 1
else:
Q[use[counter][0]] -= 1
R += use[counter][1]
counter += 1
Q[use[counter][0]] = int(R // use[counter][1])
R = R % use[counter][1]
ans = ""
for i in [9, 8, 7, 6, 5, 4, 3, 2, 1]:
ans = ans + str(i) * Q[i]
print(ans)
|
Statement
Find the largest integer that can be formed with exactly N matchsticks, under
the following conditions:
* Every digit in the integer must be one of the digits A_1, A_2, ..., A_M (1 \leq A_i \leq 9).
* The number of matchsticks used to form digits 1, 2, 3, 4, 5, 6, 7, 8, 9 should be 2, 5, 5, 4, 5, 6, 3, 7, 6, respectively.
|
[{"input": "20 4\n 3 7 8 4", "output": "777773\n \n\nThe integer 777773 can be formed with 3 + 3 + 3 + 3 + 3 + 5 = 20 matchsticks,\nand this is the largest integer that can be formed by 20 matchsticks under the\nconditions.\n\n* * *"}, {"input": "101 9\n 9 8 7 6 5 4 3 2 1", "output": "71111111111111111111111111111111111111111111111111\n \n\nThe output may not fit into a 64-bit integer type.\n\n* * *"}, {"input": "15 3\n 5 4 6", "output": "654"}]
|
Print the largest integer that can be formed with exactly N matchsticks under
the conditions in the problem statement.
* * *
|
s524866493
|
Wrong Answer
|
p03128
|
Input is given from Standard Input in the following format:
N M
A_1 A_2 ... A_M
|
arr = [10, 2, 5, 5, 4, 5, 6, 3, 7, 6]
N, M = map(int, input().split())
src = sorted(list(map(int, input().split())), key=lambda x: arr[x])
dim = 0
num = 0
min_num = 0
for i in src:
if arr[min_num] > arr[i]:
if min_num <= i:
min_num = i
for i in src:
tmp = 1 + (N - arr[i]) // arr[min_num]
if dim <= tmp and num < i:
dim = tmp
num = i
s = str(num)
cnt = N - arr[num]
cnt_dim = 1
while cnt_dim + 1 < dim:
s += str(min_num)
cnt -= arr[min_num]
cnt_dim += 1
for i in src:
if cnt == arr[i]:
if i <= min_num:
s += str(i)
break
else:
s = s[:1] + str(i) + s[1:]
break
print(s)
|
Statement
Find the largest integer that can be formed with exactly N matchsticks, under
the following conditions:
* Every digit in the integer must be one of the digits A_1, A_2, ..., A_M (1 \leq A_i \leq 9).
* The number of matchsticks used to form digits 1, 2, 3, 4, 5, 6, 7, 8, 9 should be 2, 5, 5, 4, 5, 6, 3, 7, 6, respectively.
|
[{"input": "20 4\n 3 7 8 4", "output": "777773\n \n\nThe integer 777773 can be formed with 3 + 3 + 3 + 3 + 3 + 5 = 20 matchsticks,\nand this is the largest integer that can be formed by 20 matchsticks under the\nconditions.\n\n* * *"}, {"input": "101 9\n 9 8 7 6 5 4 3 2 1", "output": "71111111111111111111111111111111111111111111111111\n \n\nThe output may not fit into a 64-bit integer type.\n\n* * *"}, {"input": "15 3\n 5 4 6", "output": "654"}]
|
Print the largest integer that can be formed with exactly N matchsticks under
the conditions in the problem statement.
* * *
|
s075987126
|
Accepted
|
p03128
|
Input is given from Standard Input in the following format:
N M
A_1 A_2 ... A_M
|
N, M = map(int, input().split())
A = list(map(int, input().split()))
d = {1: 2, 2: 5, 3: 5, 4: 4, 5: 5, 6: 6, 7: 3, 8: 7, 9: 6}
D = {a: d[a] for a in A}
m = min(D.values())
E = {}
for k, v in D.items():
v -= m
if v in E:
E[v] = max(E[v], k)
else:
E[v] = k
F = sorted(E.keys(), key=lambda f: (max(0, E[f] - E[0]), f), reverse=True)
F.remove(0)
K = N // m
for k in range(K, 0, -1):
B = [E[0]] * k
R = N - k * m
if not R:
print("".join(map(str, sorted(B, reverse=True))))
break
def rec(r, i, j):
if i < 0:
return
for f in F[j:]:
if r == f:
B[i] = E[f]
print("".join(map(str, sorted(B, reverse=True))))
exit()
elif r > f:
B[i], tmp = E[f], B[i]
rec(r - f, i - 1, j)
B[i] = tmp
j += 1
rec(R, k - 1, 0)
|
Statement
Find the largest integer that can be formed with exactly N matchsticks, under
the following conditions:
* Every digit in the integer must be one of the digits A_1, A_2, ..., A_M (1 \leq A_i \leq 9).
* The number of matchsticks used to form digits 1, 2, 3, 4, 5, 6, 7, 8, 9 should be 2, 5, 5, 4, 5, 6, 3, 7, 6, respectively.
|
[{"input": "20 4\n 3 7 8 4", "output": "777773\n \n\nThe integer 777773 can be formed with 3 + 3 + 3 + 3 + 3 + 5 = 20 matchsticks,\nand this is the largest integer that can be formed by 20 matchsticks under the\nconditions.\n\n* * *"}, {"input": "101 9\n 9 8 7 6 5 4 3 2 1", "output": "71111111111111111111111111111111111111111111111111\n \n\nThe output may not fit into a 64-bit integer type.\n\n* * *"}, {"input": "15 3\n 5 4 6", "output": "654"}]
|
Print the largest integer that can be formed with exactly N matchsticks under
the conditions in the problem statement.
* * *
|
s347977501
|
Runtime Error
|
p03128
|
Input is given from Standard Input in the following format:
N M
A_1 A_2 ... A_M
|
## ABC068-D
## 途中だけど保存用
N, M = map(int, input().split())
A = list(map(int, input().split()))
#cost = dict([(1,2),(2,5),(3,5),(4,4),(5,5),(6,6),(7,3),(8,7),(9,6)])
cost = [(1,2),(7,3),(4,4),(5,5),(3,5),(2,5),(9,6),(6,6),(8,7)] ## priority order
## 使う可能性のある数字だけを取り出す
## (5,3,2),(9,6) は上位数だけで十分
## 2個の数字で代用できる場合はそちらを用いる: 4 --> 11
B = []
B_cost = []
for i in range(len(cost)):
if cost[i][1] in B_cost:
continue
elif cost[i][1] == 4 and 2 in B_cost:
continue
elif cost[i][1] == 6 and (2 in B_cost or 3 in B_cost):
continue
else:
B.append((cost[i]))
B_cost.append(cost[i][1])
solver = []
n_num = 0
upper_n_num = (N + B[0][1]) // B[0][1]
n_lowcost = upper_n_num
while True:
|
Statement
Find the largest integer that can be formed with exactly N matchsticks, under
the following conditions:
* Every digit in the integer must be one of the digits A_1, A_2, ..., A_M (1 \leq A_i \leq 9).
* The number of matchsticks used to form digits 1, 2, 3, 4, 5, 6, 7, 8, 9 should be 2, 5, 5, 4, 5, 6, 3, 7, 6, respectively.
|
[{"input": "20 4\n 3 7 8 4", "output": "777773\n \n\nThe integer 777773 can be formed with 3 + 3 + 3 + 3 + 3 + 5 = 20 matchsticks,\nand this is the largest integer that can be formed by 20 matchsticks under the\nconditions.\n\n* * *"}, {"input": "101 9\n 9 8 7 6 5 4 3 2 1", "output": "71111111111111111111111111111111111111111111111111\n \n\nThe output may not fit into a 64-bit integer type.\n\n* * *"}, {"input": "15 3\n 5 4 6", "output": "654"}]
|
Print the largest integer that can be formed with exactly N matchsticks under
the conditions in the problem statement.
* * *
|
s026602230
|
Runtime Error
|
p03128
|
Input is given from Standard Input in the following format:
N M
A_1 A_2 ... A_M
|
N, M = list(map(int, input().split()))
A = list(map(int, input().split())) #len(A)=M
_dict={}
num_matches={1:2,2:5,3:5,4:4,5:5,6:6,7:3,8:7,9:6}
for a in A:
_dict[num_matches[a]]=_dict.get(num_matches[a],[]) + [a]
print(_dict)
memo = [None for _ in range(N+1)] # return memo[N]
# Nほんのマッチを使って作れる整数の最大値.(作れなければ0)
def max_int_with_match(n):
if memo[n]:
return memo[n]
if n in _dict.keys():
memo[n] = max(max(_dict[n]),
max(map(lambda x: max(_dict[x]) + 10 * max_int_with_match(n-x), _dict.keys()
)
)
)
return memo[n]
if n < min(_dict.keys()):
memo[n] = 0
return memo[n]
memo[n] = max(map(lambda x: max(_dict[x]) + 10 * max_int_with_match(n-x), _dict.keys()))
return memo[n]
print(max_int_with_match(N))
|
Statement
Find the largest integer that can be formed with exactly N matchsticks, under
the following conditions:
* Every digit in the integer must be one of the digits A_1, A_2, ..., A_M (1 \leq A_i \leq 9).
* The number of matchsticks used to form digits 1, 2, 3, 4, 5, 6, 7, 8, 9 should be 2, 5, 5, 4, 5, 6, 3, 7, 6, respectively.
|
[{"input": "20 4\n 3 7 8 4", "output": "777773\n \n\nThe integer 777773 can be formed with 3 + 3 + 3 + 3 + 3 + 5 = 20 matchsticks,\nand this is the largest integer that can be formed by 20 matchsticks under the\nconditions.\n\n* * *"}, {"input": "101 9\n 9 8 7 6 5 4 3 2 1", "output": "71111111111111111111111111111111111111111111111111\n \n\nThe output may not fit into a 64-bit integer type.\n\n* * *"}, {"input": "15 3\n 5 4 6", "output": "654"}]
|
Print the largest integer that can be formed with exactly N matchsticks under
the conditions in the problem statement.
* * *
|
s491710907
|
Runtime Error
|
p03128
|
Input is given from Standard Input in the following format:
N M
A_1 A_2 ... A_M
|
d=[0,2,5,5,4,5,6,3,7,6]
N,M=map(int,input().split())
A=list(map(int,input().split()))
l=[]
for a in A:
l.append([a,d[a]])
l.sort(key=lambda x:x[0],reverse=True)
l.sort(key=lambda x:x[1])
min_val,min_match=l[0]
ans=[]
if N%min_match==0:
ans.append(int(str(min_val)*(N//min_match)))
from itertools import combinations_with_replacement
for i in range(1,M):
f = False
r = 1
while not f:
for p in combinations_with_replacement(l[1:],r):
v=[]
m_sum=0
for val,mat in p:
v.append(str(val))
m_sum+=mat
if (N-m_sum)%min_match==0:
ans.append(int(''.join(sorted(v+
[str(min_val)]*((N-m_sum)//min_match),reverse=True))))
f = (len(ans) == 0)
r += 1
print(max(ans))
|
Statement
Find the largest integer that can be formed with exactly N matchsticks, under
the following conditions:
* Every digit in the integer must be one of the digits A_1, A_2, ..., A_M (1 \leq A_i \leq 9).
* The number of matchsticks used to form digits 1, 2, 3, 4, 5, 6, 7, 8, 9 should be 2, 5, 5, 4, 5, 6, 3, 7, 6, respectively.
|
[{"input": "20 4\n 3 7 8 4", "output": "777773\n \n\nThe integer 777773 can be formed with 3 + 3 + 3 + 3 + 3 + 5 = 20 matchsticks,\nand this is the largest integer that can be formed by 20 matchsticks under the\nconditions.\n\n* * *"}, {"input": "101 9\n 9 8 7 6 5 4 3 2 1", "output": "71111111111111111111111111111111111111111111111111\n \n\nThe output may not fit into a 64-bit integer type.\n\n* * *"}, {"input": "15 3\n 5 4 6", "output": "654"}]
|
Print the maximum possible positive integer that divides every element of A
after the operations.
* * *
|
s725064467
|
Accepted
|
p02955
|
Input is given from Standard Input in the following format:
N K
A_1 A_2 \cdots A_{N-1} A_{N}
|
n, k, *l = map(int, open(0).read().split())
s = sum(l)
L = []
for i in range(1, 30000):
L += [i, s // i] * (s % i < 1)
t = 1
for d in L:
a = sorted([m % d for m in l])
t = max(t, d * (sum(a[: -sum(a) // d]) <= k))
print(t)
|
Statement
We have a sequence of N integers: A_1, A_2, \cdots, A_N.
You can perform the following operation between 0 and K times (inclusive):
* Choose two integers i and j such that i \neq j, each between 1 and N (inclusive). Add 1 to A_i and -1 to A_j, possibly producing a negative element.
Compute the maximum possible positive integer that divides every element of A
after the operations. Here a positive integer x divides an integer y if and
only if there exists an integer z such that y = xz.
|
[{"input": "2 3\n 8 20", "output": "7\n \n\n7 will divide every element of A if, for example, we perform the following\noperation:\n\n * Choose i = 2, j = 1. A becomes (7, 21).\n\nWe cannot reach the situation where 8 or greater integer divides every element\nof A.\n\n* * *"}, {"input": "2 10\n 3 5", "output": "8\n \n\nConsider performing the following five operations:\n\n * Choose i = 2, j = 1. A becomes (2, 6).\n * Choose i = 2, j = 1. A becomes (1, 7).\n * Choose i = 2, j = 1. A becomes (0, 8).\n * Choose i = 2, j = 1. A becomes (-1, 9).\n * Choose i = 1, j = 2. A becomes (0, 8).\n\nThen, 0 = 8 \\times 0 and 8 = 8 \\times 1, so 8 divides every element of A. We\ncannot reach the situation where 9 or greater integer divides every element of\nA.\n\n* * *"}, {"input": "4 5\n 10 1 2 22", "output": "7\n \n\n* * *"}, {"input": "8 7\n 1 7 5 6 8 2 6 5", "output": "5"}]
|
Print the maximum possible positive integer that divides every element of A
after the operations.
* * *
|
s753322613
|
Accepted
|
p02955
|
Input is given from Standard Input in the following format:
N K
A_1 A_2 \cdots A_{N-1} A_{N}
|
n, k = map(int, input().split())
a = list(map(int, input().split()))
sun = sum(a)
cd = []
rcd = []
for i in range(1, int(sun**0.5) + 1):
if sun % i == 0:
cd.append(i)
rcd.append(sun // i)
rcd.reverse()
if cd[-1] == rcd[0]:
del cd[-1]
gcd = cd + rcd
gcd.reverse()
count = 0
while True:
g = gcd[count]
b = list(map(lambda x: x % g, a))
moon = sum(b) // g
b.sort()
luna = sum(b[: n - moon])
if luna <= k:
print(g)
break
count += 1
|
Statement
We have a sequence of N integers: A_1, A_2, \cdots, A_N.
You can perform the following operation between 0 and K times (inclusive):
* Choose two integers i and j such that i \neq j, each between 1 and N (inclusive). Add 1 to A_i and -1 to A_j, possibly producing a negative element.
Compute the maximum possible positive integer that divides every element of A
after the operations. Here a positive integer x divides an integer y if and
only if there exists an integer z such that y = xz.
|
[{"input": "2 3\n 8 20", "output": "7\n \n\n7 will divide every element of A if, for example, we perform the following\noperation:\n\n * Choose i = 2, j = 1. A becomes (7, 21).\n\nWe cannot reach the situation where 8 or greater integer divides every element\nof A.\n\n* * *"}, {"input": "2 10\n 3 5", "output": "8\n \n\nConsider performing the following five operations:\n\n * Choose i = 2, j = 1. A becomes (2, 6).\n * Choose i = 2, j = 1. A becomes (1, 7).\n * Choose i = 2, j = 1. A becomes (0, 8).\n * Choose i = 2, j = 1. A becomes (-1, 9).\n * Choose i = 1, j = 2. A becomes (0, 8).\n\nThen, 0 = 8 \\times 0 and 8 = 8 \\times 1, so 8 divides every element of A. We\ncannot reach the situation where 9 or greater integer divides every element of\nA.\n\n* * *"}, {"input": "4 5\n 10 1 2 22", "output": "7\n \n\n* * *"}, {"input": "8 7\n 1 7 5 6 8 2 6 5", "output": "5"}]
|
Print the maximum possible positive integer that divides every element of A
after the operations.
* * *
|
s820497250
|
Wrong Answer
|
p02955
|
Input is given from Standard Input in the following format:
N K
A_1 A_2 \cdots A_{N-1} A_{N}
|
n, k = list(map(int, input().split(" ")))
a = [int(i) for i in input().split(" ")]
ave_a = sum(a) / n
count = 0
sa = 0
for i in range(n):
if a[i] != ave_a and a[i] % ave_a != 0:
count += 1
if a[i] % ave_a != 0:
sa += ave_a - a[i]
if sa == 0 and count <= k:
print(ave_a)
|
Statement
We have a sequence of N integers: A_1, A_2, \cdots, A_N.
You can perform the following operation between 0 and K times (inclusive):
* Choose two integers i and j such that i \neq j, each between 1 and N (inclusive). Add 1 to A_i and -1 to A_j, possibly producing a negative element.
Compute the maximum possible positive integer that divides every element of A
after the operations. Here a positive integer x divides an integer y if and
only if there exists an integer z such that y = xz.
|
[{"input": "2 3\n 8 20", "output": "7\n \n\n7 will divide every element of A if, for example, we perform the following\noperation:\n\n * Choose i = 2, j = 1. A becomes (7, 21).\n\nWe cannot reach the situation where 8 or greater integer divides every element\nof A.\n\n* * *"}, {"input": "2 10\n 3 5", "output": "8\n \n\nConsider performing the following five operations:\n\n * Choose i = 2, j = 1. A becomes (2, 6).\n * Choose i = 2, j = 1. A becomes (1, 7).\n * Choose i = 2, j = 1. A becomes (0, 8).\n * Choose i = 2, j = 1. A becomes (-1, 9).\n * Choose i = 1, j = 2. A becomes (0, 8).\n\nThen, 0 = 8 \\times 0 and 8 = 8 \\times 1, so 8 divides every element of A. We\ncannot reach the situation where 9 or greater integer divides every element of\nA.\n\n* * *"}, {"input": "4 5\n 10 1 2 22", "output": "7\n \n\n* * *"}, {"input": "8 7\n 1 7 5 6 8 2 6 5", "output": "5"}]
|
Print the maximum possible positive integer that divides every element of A
after the operations.
* * *
|
s399126033
|
Wrong Answer
|
p02955
|
Input is given from Standard Input in the following format:
N K
A_1 A_2 \cdots A_{N-1} A_{N}
|
N, K = list(map(int, input().split()))
A = [int(i) for i in input().split()]
A_sum = sum(A)
def prime_factors(n):
i = 2
factors = []
while i * i <= n:
if n % i:
i += 1
else:
n //= i
factors.append(i)
if n > 1:
factors.append(n)
return factors
factors = prime_factors(A_sum)
if min(A) < K:
print(A_sum)
else:
print(max(factors))
|
Statement
We have a sequence of N integers: A_1, A_2, \cdots, A_N.
You can perform the following operation between 0 and K times (inclusive):
* Choose two integers i and j such that i \neq j, each between 1 and N (inclusive). Add 1 to A_i and -1 to A_j, possibly producing a negative element.
Compute the maximum possible positive integer that divides every element of A
after the operations. Here a positive integer x divides an integer y if and
only if there exists an integer z such that y = xz.
|
[{"input": "2 3\n 8 20", "output": "7\n \n\n7 will divide every element of A if, for example, we perform the following\noperation:\n\n * Choose i = 2, j = 1. A becomes (7, 21).\n\nWe cannot reach the situation where 8 or greater integer divides every element\nof A.\n\n* * *"}, {"input": "2 10\n 3 5", "output": "8\n \n\nConsider performing the following five operations:\n\n * Choose i = 2, j = 1. A becomes (2, 6).\n * Choose i = 2, j = 1. A becomes (1, 7).\n * Choose i = 2, j = 1. A becomes (0, 8).\n * Choose i = 2, j = 1. A becomes (-1, 9).\n * Choose i = 1, j = 2. A becomes (0, 8).\n\nThen, 0 = 8 \\times 0 and 8 = 8 \\times 1, so 8 divides every element of A. We\ncannot reach the situation where 9 or greater integer divides every element of\nA.\n\n* * *"}, {"input": "4 5\n 10 1 2 22", "output": "7\n \n\n* * *"}, {"input": "8 7\n 1 7 5 6 8 2 6 5", "output": "5"}]
|
Print the maximum possible positive integer that divides every element of A
after the operations.
* * *
|
s733101807
|
Wrong Answer
|
p02955
|
Input is given from Standard Input in the following format:
N K
A_1 A_2 \cdots A_{N-1} A_{N}
|
import heapq as h
def partions(M): # Mの約数列 O(n^(0.5+e))
import math
d = []
i = 1
while math.sqrt(M) >= i:
if M % i == 0:
d.append(i)
if i**2 != M:
d.append(M // i)
i = i + 1
d.sort()
return d
N, K = map(int, input().split())
A = list(map(int, input().split()))
s = sum(A)
candidate = partions(s)
ans = 1
for i in range(0, len(candidate)):
X = [A[j] % candidate[i] for j in range(0, N)]
test = 0
h.heapify(X)
for j in range(0, N - 1):
s = h.heappop(X)
X = [candidate[i] - X[j] for j in range(0, len(X))]
t = h.heappop(X)
X = [candidate[i] - X[j] for j in range(0, len(X))]
if t > s:
test += s
h.heappush(X, (N - (t - s)) % candidate[i])
else:
test += t
h.heappush(X, s - t)
if K >= test:
ans = candidate[i]
print(ans)
|
Statement
We have a sequence of N integers: A_1, A_2, \cdots, A_N.
You can perform the following operation between 0 and K times (inclusive):
* Choose two integers i and j such that i \neq j, each between 1 and N (inclusive). Add 1 to A_i and -1 to A_j, possibly producing a negative element.
Compute the maximum possible positive integer that divides every element of A
after the operations. Here a positive integer x divides an integer y if and
only if there exists an integer z such that y = xz.
|
[{"input": "2 3\n 8 20", "output": "7\n \n\n7 will divide every element of A if, for example, we perform the following\noperation:\n\n * Choose i = 2, j = 1. A becomes (7, 21).\n\nWe cannot reach the situation where 8 or greater integer divides every element\nof A.\n\n* * *"}, {"input": "2 10\n 3 5", "output": "8\n \n\nConsider performing the following five operations:\n\n * Choose i = 2, j = 1. A becomes (2, 6).\n * Choose i = 2, j = 1. A becomes (1, 7).\n * Choose i = 2, j = 1. A becomes (0, 8).\n * Choose i = 2, j = 1. A becomes (-1, 9).\n * Choose i = 1, j = 2. A becomes (0, 8).\n\nThen, 0 = 8 \\times 0 and 8 = 8 \\times 1, so 8 divides every element of A. We\ncannot reach the situation where 9 or greater integer divides every element of\nA.\n\n* * *"}, {"input": "4 5\n 10 1 2 22", "output": "7\n \n\n* * *"}, {"input": "8 7\n 1 7 5 6 8 2 6 5", "output": "5"}]
|
Print the maximum possible positive integer that divides every element of A
after the operations.
* * *
|
s851393029
|
Wrong Answer
|
p02955
|
Input is given from Standard Input in the following format:
N K
A_1 A_2 \cdots A_{N-1} A_{N}
|
import sys
sys.setrecursionlimit(10**7)
def LI():
return [int(x) for x in sys.stdin.readline().split()]
def LI_():
return [int(x) - 1 for x in sys.stdin.readline().split()]
def LF():
return [float(x) for x in sys.stdin.readline().split()]
def LS():
return sys.stdin.readline().split()
def II():
return int(sys.stdin.readline())
def SI():
return sys.stdin.readline().strip()
INF = 10**18
MOD = 10**9 + 7
debug = True
debug = False
def dprint(*objects):
if debug == True:
print(*objects)
def prime_factors(n):
i = 2
factors = []
while i * i <= n:
if n % i:
i += 1
else:
n //= i
factors.append(i)
if n > 1:
factors.append(n)
return factors
def main():
N, K = LI()
a_list = LI()
a_list = sorted(a_list)
total = sum(a_list)
pfactors = prime_factors(total)
from collections import Counter
c = Counter(pfactors)
dprint(c)
factor_list = []
for f, c in c.items():
k_list = list(range(0, c + 1))
factor_list.append([f**k for k in k_list])
dprint(factor_list)
ans_list = []
from itertools import product
for tup in product(*factor_list):
ans = 1
for t in tup:
ans *= t
ans_list.append(ans)
ans_list = sorted(ans_list, reverse=True)
dprint(ans_list)
def check(ans):
ope = 0
diff = 0
for a in a_list:
if a % ans == 0:
continue
na = a // ans
near_up = ans * (na + 1)
near_down = ans * (na)
dup = abs(a - near_up)
ddn = abs(a - near_down)
dope = min(dup, ddn)
if dup <= ddn:
diff += dope
else:
diff -= dope
ope += dope
dprint(a, dope, diff)
ope /= 2
dprint(ans, ope, diff)
if ope + abs(diff) % ans <= K:
return True
else:
return False
for ans in ans_list:
flag = check(ans)
dprint(ans, flag)
dprint()
if flag:
print(ans)
return
main()
|
Statement
We have a sequence of N integers: A_1, A_2, \cdots, A_N.
You can perform the following operation between 0 and K times (inclusive):
* Choose two integers i and j such that i \neq j, each between 1 and N (inclusive). Add 1 to A_i and -1 to A_j, possibly producing a negative element.
Compute the maximum possible positive integer that divides every element of A
after the operations. Here a positive integer x divides an integer y if and
only if there exists an integer z such that y = xz.
|
[{"input": "2 3\n 8 20", "output": "7\n \n\n7 will divide every element of A if, for example, we perform the following\noperation:\n\n * Choose i = 2, j = 1. A becomes (7, 21).\n\nWe cannot reach the situation where 8 or greater integer divides every element\nof A.\n\n* * *"}, {"input": "2 10\n 3 5", "output": "8\n \n\nConsider performing the following five operations:\n\n * Choose i = 2, j = 1. A becomes (2, 6).\n * Choose i = 2, j = 1. A becomes (1, 7).\n * Choose i = 2, j = 1. A becomes (0, 8).\n * Choose i = 2, j = 1. A becomes (-1, 9).\n * Choose i = 1, j = 2. A becomes (0, 8).\n\nThen, 0 = 8 \\times 0 and 8 = 8 \\times 1, so 8 divides every element of A. We\ncannot reach the situation where 9 or greater integer divides every element of\nA.\n\n* * *"}, {"input": "4 5\n 10 1 2 22", "output": "7\n \n\n* * *"}, {"input": "8 7\n 1 7 5 6 8 2 6 5", "output": "5"}]
|
Print the maximum possible positive integer that divides every element of A
after the operations.
* * *
|
s296310182
|
Wrong Answer
|
p02955
|
Input is given from Standard Input in the following format:
N K
A_1 A_2 \cdots A_{N-1} A_{N}
|
import sys
read = sys.stdin.buffer.read
readline = sys.stdin.buffer.readline
readlines = sys.stdin.buffer.readlines
n, k = map(int, input().split())
a = [int(i) for i in input().split()]
def divisorize(fct):
b, e = fct.pop()
pre_div = divisorize(fct) if fct else [[]]
suf_div = [[(b, k)] for k in range(e + 1)]
return [pre + suf for pre in pre_div for suf in suf_div]
def factorize(n):
fct = []
b, e = 2, 0
while b * b <= n:
while n % b == 0:
n = n // b
e = e + 1
if e > 0:
fct.append((b, e))
b, e = b + 1, 0
if n > 1:
fct.append((n, 1))
return fct
def num(fct):
a = 1
for base, exponent in fct:
a = a * base**exponent
return a
c = []
fct = factorize(sum(a))
for div in divisorize(fct):
c.append(num(div))
c.sort(reverse=True)
ans = 1
from heapq import heapify, heappush, heappop
for num in c:
chk = 0
cnt = 0
pl = []
mi = []
heapify(pl)
heapify(mi)
for j in a:
m = min(j % num, num - j % num)
chk += m
if m == j % num:
cnt += m
heappush(pl, -m)
else:
cnt -= m
heappush(mi, -m)
for i in range(abs(cnt) // num):
if cnt < 0 and pl != []:
p = heappop(pl)
chk += p
chk += num
elif cnt > 0 and mi != []:
q = heappop(mi)
chk -= q
chk -= num
if chk <= 2 * k:
ans = num
break
print(ans)
|
Statement
We have a sequence of N integers: A_1, A_2, \cdots, A_N.
You can perform the following operation between 0 and K times (inclusive):
* Choose two integers i and j such that i \neq j, each between 1 and N (inclusive). Add 1 to A_i and -1 to A_j, possibly producing a negative element.
Compute the maximum possible positive integer that divides every element of A
after the operations. Here a positive integer x divides an integer y if and
only if there exists an integer z such that y = xz.
|
[{"input": "2 3\n 8 20", "output": "7\n \n\n7 will divide every element of A if, for example, we perform the following\noperation:\n\n * Choose i = 2, j = 1. A becomes (7, 21).\n\nWe cannot reach the situation where 8 or greater integer divides every element\nof A.\n\n* * *"}, {"input": "2 10\n 3 5", "output": "8\n \n\nConsider performing the following five operations:\n\n * Choose i = 2, j = 1. A becomes (2, 6).\n * Choose i = 2, j = 1. A becomes (1, 7).\n * Choose i = 2, j = 1. A becomes (0, 8).\n * Choose i = 2, j = 1. A becomes (-1, 9).\n * Choose i = 1, j = 2. A becomes (0, 8).\n\nThen, 0 = 8 \\times 0 and 8 = 8 \\times 1, so 8 divides every element of A. We\ncannot reach the situation where 9 or greater integer divides every element of\nA.\n\n* * *"}, {"input": "4 5\n 10 1 2 22", "output": "7\n \n\n* * *"}, {"input": "8 7\n 1 7 5 6 8 2 6 5", "output": "5"}]
|
Print the maximum possible positive integer that divides every element of A
after the operations.
* * *
|
s009496137
|
Wrong Answer
|
p02955
|
Input is given from Standard Input in the following format:
N K
A_1 A_2 \cdots A_{N-1} A_{N}
|
# ABC 136 E
import math
N, K = map(int, input().split())
A = list(map(int, input().split()))
S = sum(A)
P = [1, S]
for k in range(2, math.floor(math.sqrt(S)) + 1):
if S % k == 0:
P.append(k)
P.append(S // k)
P = sorted(P)[::-1]
for e in P:
t = []
u = []
for a in A:
if a % e != 0:
t.append(a % e)
u.append(e - a % e)
t = sorted(t)
if len(t) == 0:
print(e)
exit(0)
else:
p = [f for f in t]
for k in range(1, len(t)):
p[k] += p[k - 1]
m = [e - f for f in t]
print(m)
for k in range(1, len(t)):
m[-k - 1] += m[-k]
for k in range(len(t) - 1):
if p[k] == m[k + 1] and p[k] <= K:
print(e)
exit(0)
|
Statement
We have a sequence of N integers: A_1, A_2, \cdots, A_N.
You can perform the following operation between 0 and K times (inclusive):
* Choose two integers i and j such that i \neq j, each between 1 and N (inclusive). Add 1 to A_i and -1 to A_j, possibly producing a negative element.
Compute the maximum possible positive integer that divides every element of A
after the operations. Here a positive integer x divides an integer y if and
only if there exists an integer z such that y = xz.
|
[{"input": "2 3\n 8 20", "output": "7\n \n\n7 will divide every element of A if, for example, we perform the following\noperation:\n\n * Choose i = 2, j = 1. A becomes (7, 21).\n\nWe cannot reach the situation where 8 or greater integer divides every element\nof A.\n\n* * *"}, {"input": "2 10\n 3 5", "output": "8\n \n\nConsider performing the following five operations:\n\n * Choose i = 2, j = 1. A becomes (2, 6).\n * Choose i = 2, j = 1. A becomes (1, 7).\n * Choose i = 2, j = 1. A becomes (0, 8).\n * Choose i = 2, j = 1. A becomes (-1, 9).\n * Choose i = 1, j = 2. A becomes (0, 8).\n\nThen, 0 = 8 \\times 0 and 8 = 8 \\times 1, so 8 divides every element of A. We\ncannot reach the situation where 9 or greater integer divides every element of\nA.\n\n* * *"}, {"input": "4 5\n 10 1 2 22", "output": "7\n \n\n* * *"}, {"input": "8 7\n 1 7 5 6 8 2 6 5", "output": "5"}]
|
Print the maximum possible positive integer that divides every element of A
after the operations.
* * *
|
s528615188
|
Accepted
|
p02955
|
Input is given from Standard Input in the following format:
N K
A_1 A_2 \cdots A_{N-1} A_{N}
|
n, k = list(map(int, input().split()))
a = list(map(int, input().split()))
candidate = set()
result = 0
x = 1
while x**2 <= (sum(a) + 1):
if sum(a) % x == 0:
candidate.add(x)
candidate.add(int(sum(a) / x))
x += 1
# print(candidate)
for i in candidate:
b = [0] * len(a)
for j in range(len(a)):
b[j] = int(a[j] % i)
b.sort()
if sum(b[: int(len(b) - sum(b) / i)]) <= k:
result = max(result, i)
# need=0
# need+=sum(b)/i
# if need<=k:
print(result)
|
Statement
We have a sequence of N integers: A_1, A_2, \cdots, A_N.
You can perform the following operation between 0 and K times (inclusive):
* Choose two integers i and j such that i \neq j, each between 1 and N (inclusive). Add 1 to A_i and -1 to A_j, possibly producing a negative element.
Compute the maximum possible positive integer that divides every element of A
after the operations. Here a positive integer x divides an integer y if and
only if there exists an integer z such that y = xz.
|
[{"input": "2 3\n 8 20", "output": "7\n \n\n7 will divide every element of A if, for example, we perform the following\noperation:\n\n * Choose i = 2, j = 1. A becomes (7, 21).\n\nWe cannot reach the situation where 8 or greater integer divides every element\nof A.\n\n* * *"}, {"input": "2 10\n 3 5", "output": "8\n \n\nConsider performing the following five operations:\n\n * Choose i = 2, j = 1. A becomes (2, 6).\n * Choose i = 2, j = 1. A becomes (1, 7).\n * Choose i = 2, j = 1. A becomes (0, 8).\n * Choose i = 2, j = 1. A becomes (-1, 9).\n * Choose i = 1, j = 2. A becomes (0, 8).\n\nThen, 0 = 8 \\times 0 and 8 = 8 \\times 1, so 8 divides every element of A. We\ncannot reach the situation where 9 or greater integer divides every element of\nA.\n\n* * *"}, {"input": "4 5\n 10 1 2 22", "output": "7\n \n\n* * *"}, {"input": "8 7\n 1 7 5 6 8 2 6 5", "output": "5"}]
|
Print the maximum possible positive integer that divides every element of A
after the operations.
* * *
|
s831991824
|
Accepted
|
p02955
|
Input is given from Standard Input in the following format:
N K
A_1 A_2 \cdots A_{N-1} A_{N}
|
def e_max_gcd(N, K, A):
def divisor_list(n):
"""n の正の約数のリスト"""
ret = []
for k in range(1, int(n**0.5) + 1):
if n % k == 0:
ret.append(k)
if k != n // k:
ret.append(n // k)
ret.sort()
return ret
ans = 1 # 任意の整数は1の倍数
for c in divisor_list(sum(A)): # sum(A)の約数が解の candidate
r = sorted([a % c for a in A])
# rをある位置で左右に分けたとき、「左」には-1、「右」には+1する操作を
# 行って全要素をcの倍数にしたい。このとき、「左」の要素の和の分だけ
# 操作してよいが、それはKを超えてはならない。
# 最初、すべての要素を「左」に入れる。
# 「左」の要素の関数値A(-1してcの倍数にするための操作回数)は最初sum(r)とし、
# 「右」の要素の関数値B(+1してcの倍数にするための操作回数)は最初0とする。
# ここで「左」の要素eを右から順に「右」に入れていくとすると、1つ入れるごとに
# A の値は e だけ減り、B の値は c - e だけ増える。
# よって A-B の値は1つ「右」に入れるごとに c だけ減る。
# ゆえに、「右」に何個の要素を入れるべきかは sum(r)//c からわかる。
if sum(r[: N - sum(r) // c]) <= K:
ans = max(ans, c)
return ans
N, K = [int(i) for i in input().split()]
A = [int(i) for i in input().split()]
print(e_max_gcd(N, K, A))
|
Statement
We have a sequence of N integers: A_1, A_2, \cdots, A_N.
You can perform the following operation between 0 and K times (inclusive):
* Choose two integers i and j such that i \neq j, each between 1 and N (inclusive). Add 1 to A_i and -1 to A_j, possibly producing a negative element.
Compute the maximum possible positive integer that divides every element of A
after the operations. Here a positive integer x divides an integer y if and
only if there exists an integer z such that y = xz.
|
[{"input": "2 3\n 8 20", "output": "7\n \n\n7 will divide every element of A if, for example, we perform the following\noperation:\n\n * Choose i = 2, j = 1. A becomes (7, 21).\n\nWe cannot reach the situation where 8 or greater integer divides every element\nof A.\n\n* * *"}, {"input": "2 10\n 3 5", "output": "8\n \n\nConsider performing the following five operations:\n\n * Choose i = 2, j = 1. A becomes (2, 6).\n * Choose i = 2, j = 1. A becomes (1, 7).\n * Choose i = 2, j = 1. A becomes (0, 8).\n * Choose i = 2, j = 1. A becomes (-1, 9).\n * Choose i = 1, j = 2. A becomes (0, 8).\n\nThen, 0 = 8 \\times 0 and 8 = 8 \\times 1, so 8 divides every element of A. We\ncannot reach the situation where 9 or greater integer divides every element of\nA.\n\n* * *"}, {"input": "4 5\n 10 1 2 22", "output": "7\n \n\n* * *"}, {"input": "8 7\n 1 7 5 6 8 2 6 5", "output": "5"}]
|
Print the maximum possible positive integer that divides every element of A
after the operations.
* * *
|
s336208496
|
Accepted
|
p02955
|
Input is given from Standard Input in the following format:
N K
A_1 A_2 \cdots A_{N-1} A_{N}
|
N, K = list(map(int, input().split()))
As = list(map(int, input().split()))
rs = []
a = sum(As)
for i in range(a):
i += 1
if a % i == 0:
rs.append(i)
rs.append(a // i)
if a < i**2:
break
rs = sorted(rs)[::-1]
for r in rs:
Bs = sorted([A % r for A in As])
sum1 = 0
sum2 = r * N - sum(Bs)
R = None
for b in Bs:
sum1 += b
sum2 -= r - b
if abs(sum1 - sum2) % r == 0:
if max(sum1, sum2) > K:
continue
R = r
break
if R:
break
print(R)
|
Statement
We have a sequence of N integers: A_1, A_2, \cdots, A_N.
You can perform the following operation between 0 and K times (inclusive):
* Choose two integers i and j such that i \neq j, each between 1 and N (inclusive). Add 1 to A_i and -1 to A_j, possibly producing a negative element.
Compute the maximum possible positive integer that divides every element of A
after the operations. Here a positive integer x divides an integer y if and
only if there exists an integer z such that y = xz.
|
[{"input": "2 3\n 8 20", "output": "7\n \n\n7 will divide every element of A if, for example, we perform the following\noperation:\n\n * Choose i = 2, j = 1. A becomes (7, 21).\n\nWe cannot reach the situation where 8 or greater integer divides every element\nof A.\n\n* * *"}, {"input": "2 10\n 3 5", "output": "8\n \n\nConsider performing the following five operations:\n\n * Choose i = 2, j = 1. A becomes (2, 6).\n * Choose i = 2, j = 1. A becomes (1, 7).\n * Choose i = 2, j = 1. A becomes (0, 8).\n * Choose i = 2, j = 1. A becomes (-1, 9).\n * Choose i = 1, j = 2. A becomes (0, 8).\n\nThen, 0 = 8 \\times 0 and 8 = 8 \\times 1, so 8 divides every element of A. We\ncannot reach the situation where 9 or greater integer divides every element of\nA.\n\n* * *"}, {"input": "4 5\n 10 1 2 22", "output": "7\n \n\n* * *"}, {"input": "8 7\n 1 7 5 6 8 2 6 5", "output": "5"}]
|
If it is possible to go to Island N by using two boat services, print
`POSSIBLE`; otherwise, print `IMPOSSIBLE`.
* * *
|
s640547018
|
Accepted
|
p03647
|
Input is given from Standard Input in the following format:
N M
a_1 b_1
a_2 b_2
:
a_M b_M
|
def getinputdata():
# 配列初期化
array_result = []
data = input()
array_result.append(data.split(" "))
flg = True
try:
while flg:
data = input()
array_temp = []
if data != "":
array_result.append(data.split(" "))
flg = True
else:
flg = False
finally:
return array_result
arr_data = getinputdata()
# 島数
n = arr_data[0][0]
m = int(arr_data[0][1])
arr01 = []
arr02 = []
for i in range(1, 1 + m):
if arr_data[i][0] == "1":
arr01.append(arr_data[i][1])
if arr_data[i][1] == n:
arr02.append(arr_data[i][0])
print("POSSIBLE" if len(list(set(arr01) & set(arr02))) == 1 else "IMPOSSIBLE")
|
Statement
In Takahashi Kingdom, there is an archipelago of N islands, called Takahashi
Islands. For convenience, we will call them Island 1, Island 2, ..., Island N.
There are M kinds of regular boat services between these islands. Each service
connects two islands. The i-th service connects Island a_i and Island b_i.
Cat Snuke is on Island 1 now, and wants to go to Island N. However, it turned
out that there is no boat service from Island 1 to Island N, so he wants to
know whether it is possible to go to Island N by using two boat services.
Help him.
|
[{"input": "3 2\n 1 2\n 2 3", "output": "POSSIBLE\n \n\n* * *"}, {"input": "4 3\n 1 2\n 2 3\n 3 4", "output": "IMPOSSIBLE\n \n\nYou have to use three boat services to get to Island 4.\n\n* * *"}, {"input": "100000 1\n 1 99999", "output": "IMPOSSIBLE\n \n\n* * *"}, {"input": "5 5\n 1 3\n 4 5\n 2 3\n 2 4\n 1 4", "output": "POSSIBLE\n \n\nYou can get to Island 5 by using two boat services: Island 1 -> Island 4 ->\nIsland 5."}]
|
If it is possible to go to Island N by using two boat services, print
`POSSIBLE`; otherwise, print `IMPOSSIBLE`.
* * *
|
s661510138
|
Runtime Error
|
p03647
|
Input is given from Standard Input in the following format:
N M
a_1 b_1
a_2 b_2
:
a_M b_M
|
def f():
n,m = map(int,input().split(" "))
s = []
w = [[] for i in range(n+2)]
for i in range(m):
a,b = map(int,input().split(" "))
if a==1:
s.append(b)
if b==1:
s.append(a)
w[a].append(b)
w[b].append(a)
for i in s:
if n in w[i]:
print("POSSIBLE")
return 0
print("IMPOSSIBLE")
return 0
f()
|
Statement
In Takahashi Kingdom, there is an archipelago of N islands, called Takahashi
Islands. For convenience, we will call them Island 1, Island 2, ..., Island N.
There are M kinds of regular boat services between these islands. Each service
connects two islands. The i-th service connects Island a_i and Island b_i.
Cat Snuke is on Island 1 now, and wants to go to Island N. However, it turned
out that there is no boat service from Island 1 to Island N, so he wants to
know whether it is possible to go to Island N by using two boat services.
Help him.
|
[{"input": "3 2\n 1 2\n 2 3", "output": "POSSIBLE\n \n\n* * *"}, {"input": "4 3\n 1 2\n 2 3\n 3 4", "output": "IMPOSSIBLE\n \n\nYou have to use three boat services to get to Island 4.\n\n* * *"}, {"input": "100000 1\n 1 99999", "output": "IMPOSSIBLE\n \n\n* * *"}, {"input": "5 5\n 1 3\n 4 5\n 2 3\n 2 4\n 1 4", "output": "POSSIBLE\n \n\nYou can get to Island 5 by using two boat services: Island 1 -> Island 4 ->\nIsland 5."}]
|
If it is possible to go to Island N by using two boat services, print
`POSSIBLE`; otherwise, print `IMPOSSIBLE`.
* * *
|
s905427020
|
Accepted
|
p03647
|
Input is given from Standard Input in the following format:
N M
a_1 b_1
a_2 b_2
:
a_M b_M
|
# -*- coding: utf-8 -*-
N, M = [int(n) for n in input().split()]
islands = {n: [] for n in range(1, N + 1)}
result = "IMPOSSIBLE"
for m in range(M):
a, b = [int(n) for n in input().split()]
islands[a].append(b)
islands[b].append(a)
ok_isl = set()
search_isl = [1]
next_isl = set()
loop = True
for x in range(2):
for i in search_isl:
if N in islands[i]:
loop = False
result = "POSSIBLE"
else:
next_isl.update(islands[i])
ok_isl = ok_isl.union(search_isl)
search_isl = next_isl.difference(ok_isl)
if len(search_isl) == 0:
break
print(result)
|
Statement
In Takahashi Kingdom, there is an archipelago of N islands, called Takahashi
Islands. For convenience, we will call them Island 1, Island 2, ..., Island N.
There are M kinds of regular boat services between these islands. Each service
connects two islands. The i-th service connects Island a_i and Island b_i.
Cat Snuke is on Island 1 now, and wants to go to Island N. However, it turned
out that there is no boat service from Island 1 to Island N, so he wants to
know whether it is possible to go to Island N by using two boat services.
Help him.
|
[{"input": "3 2\n 1 2\n 2 3", "output": "POSSIBLE\n \n\n* * *"}, {"input": "4 3\n 1 2\n 2 3\n 3 4", "output": "IMPOSSIBLE\n \n\nYou have to use three boat services to get to Island 4.\n\n* * *"}, {"input": "100000 1\n 1 99999", "output": "IMPOSSIBLE\n \n\n* * *"}, {"input": "5 5\n 1 3\n 4 5\n 2 3\n 2 4\n 1 4", "output": "POSSIBLE\n \n\nYou can get to Island 5 by using two boat services: Island 1 -> Island 4 ->\nIsland 5."}]
|
Print the answer.
* * *
|
s777224849
|
Wrong Answer
|
p03217
|
Input is given from Standard Input in the following format:
N D
x_1 y_1
:
x_N y_N
|
n, d = [int(i) for i in input().split()]
X, Y = zip(*[[int(i) for i in input().split()] for j in range(n)])
ans = int(1e9)
for bx in range(d):
for by in range(d):
S = set()
for x, y in zip(X, Y):
x %= d
x += d if x < bx else 0
y %= d
y += d if y < by else 0
dy = 0
try:
if x > y:
while True:
for dx in range(dy + 1):
if not (x + dx * d, y + dy * d) in S:
S.add((x + dx * d, y + dy * d))
raise ()
dx = dy
for dy in range(dx + 1):
if not (x + dx * d, y + dy * d) in S:
S.add((x + dx * d, y + dy * d))
raise ()
dy += 1
else:
while True:
for ddy in range(dy + 1):
if not (x + dy * d, y + ddy * d) in S:
S.add((x + dy * d, y + ddy * d))
raise ()
for dx in range(dy + 1):
if not (x + dx * d, y + dy * d) in S:
S.add((x + dx * d, y + dy * d))
raise ()
dy += 1
except:
pass
X, Y = zip(*tuple(S))
ans = min(ans, max(abs(max(X) - min(X)), (max(Y) - min(Y))))
print(ans)
|
Statement
Niwango-kun, an employee of Dwango Co., Ltd., likes Niconico TV-chan, so he
collected a lot of soft toys of her and spread them on the floor.
Niwango-kun has N black rare soft toys of Niconico TV-chan and they are spread
together with ordinary ones. He wanted these black rare soft toys to be close
together, so he decided to rearrange them.
In an infinitely large two-dimensional plane, every lattice point has a soft
toy on it. The coordinates (x_i,y_i) of N black rare soft toys are given. All
soft toys are considered to be points (without a length, area, or volume).
He may perform the following operation arbitrarily many times:
* Put an axis-aligned square with side length D, rotate the square by 90 degrees with four soft toys on the four corners of the square. More specifically, if the left bottom corner's coordinate is (x, y), rotate four points (x,y) \rightarrow (x+D,y) \rightarrow (x+D,y+D) \rightarrow (x,y+D) \rightarrow (x,y) in this order. Each of the four corners of the square must be on a lattice point.
Let's define the _scatteredness_ of an arrangement by the minimum side length
of an axis-aligned square enclosing all black rare soft toys. Black rare soft
toys on the edges or the vertices of a square are considered to be enclosed by
the square.
Find the minimum scatteredness after he performs arbitrarily many operations.
|
[{"input": "3 1\n 0 0\n 1 0\n 2 0", "output": "1\n \n\n* * *"}, {"input": "19 2\n 1 3\n 2 3\n 0 1\n 1 1\n 2 1\n 3 1\n 4 4\n 5 4\n 6 4\n 7 4\n 8 4\n 8 3\n 8 2\n 8 1\n 8 0\n 7 0\n 6 0\n 5 0\n 4 0", "output": "4\n \n\n* * *"}, {"input": "8 3\n 0 0\n 0 3\n 3 0\n 3 3\n 2 2\n 2 5\n 5 2\n 5 5", "output": "4"}]
|
Print the answer.
* * *
|
s186666252
|
Wrong Answer
|
p03217
|
Input is given from Standard Input in the following format:
N D
x_1 y_1
:
x_N y_N
|
n, d = map(int, input().split())
m = [[0] * d for i in range(d)]
for i in range(n):
bnm, jkl = map(int, input().split())
i = bnm % d
j = jkl % d
m[i][j] += 1
for i in range(d):
for j in range(d):
if m[i][j] != 0:
l = 1
if i <= d - i:
p = i
p = min(i, abs(d - i))
q = min(j, abs(d - j))
g = 10**5
h = 0
for qqq in range(100):
a = (g + h) // 2
c = ((a - p) // d + (a + p) // d + 1) * (
(a - q) // d + (a - q) // d + 1
)
if c > m[i][j]:
g = a
else:
h = a
a = h
if ((a - p) // d + (a + p) // d + 1) * (
(a - q) // d + (a - q) // d + 1
) >= m[i][j]:
m[i][j] = a
else:
m[i][j] = g
res = m[0][0]
for i in range(d):
for j in range(d):
res = max(res, m[i][j])
print(res)
|
Statement
Niwango-kun, an employee of Dwango Co., Ltd., likes Niconico TV-chan, so he
collected a lot of soft toys of her and spread them on the floor.
Niwango-kun has N black rare soft toys of Niconico TV-chan and they are spread
together with ordinary ones. He wanted these black rare soft toys to be close
together, so he decided to rearrange them.
In an infinitely large two-dimensional plane, every lattice point has a soft
toy on it. The coordinates (x_i,y_i) of N black rare soft toys are given. All
soft toys are considered to be points (without a length, area, or volume).
He may perform the following operation arbitrarily many times:
* Put an axis-aligned square with side length D, rotate the square by 90 degrees with four soft toys on the four corners of the square. More specifically, if the left bottom corner's coordinate is (x, y), rotate four points (x,y) \rightarrow (x+D,y) \rightarrow (x+D,y+D) \rightarrow (x,y+D) \rightarrow (x,y) in this order. Each of the four corners of the square must be on a lattice point.
Let's define the _scatteredness_ of an arrangement by the minimum side length
of an axis-aligned square enclosing all black rare soft toys. Black rare soft
toys on the edges or the vertices of a square are considered to be enclosed by
the square.
Find the minimum scatteredness after he performs arbitrarily many operations.
|
[{"input": "3 1\n 0 0\n 1 0\n 2 0", "output": "1\n \n\n* * *"}, {"input": "19 2\n 1 3\n 2 3\n 0 1\n 1 1\n 2 1\n 3 1\n 4 4\n 5 4\n 6 4\n 7 4\n 8 4\n 8 3\n 8 2\n 8 1\n 8 0\n 7 0\n 6 0\n 5 0\n 4 0", "output": "4\n \n\n* * *"}, {"input": "8 3\n 0 0\n 0 3\n 3 0\n 3 3\n 2 2\n 2 5\n 5 2\n 5 5", "output": "4"}]
|
Print the number of the ways to press the keys N times in total such that the
editor displays the string s in the end, modulo 10^9+7.
* * *
|
s983307996
|
Wrong Answer
|
p04028
|
The input is given from Standard Input in the following format:
N
s
|
# dp[i][j][k] := i 文字目まで見て、j 文字できてて、k 文字は余計に打ってて後で消す
mod = 10**9 + 7
N = int(input())
if N > 300:
exit()
S = input()
J = len(S)
dp = [[0] * (N - J + 2) for _ in range(J + 1)]
dp[0][0] = 1
for _ in range(N):
dp_new = [[0] * (N - J + 2) for _ in range(J + 1)]
for j in range(J + 1):
for k in range(N - J + 1):
dp_new[j][k] = dp[j][k + 1]
if k == 0 and j != 0:
dp_new[j][k] += dp[j - 1][k]
if k != 0:
dp_new[j][k] += dp[j][k - 1] << 1
if j == k == 0:
dp_new[j][k] += dp[j][k]
dp_new[j][k] %= mod
dp = dp_new
print(dp[J][0])
|
Statement
Sig has built his own keyboard. Designed for ultimate simplicity, this
keyboard only has 3 keys on it: the `0` key, the `1` key and the backspace
key.
To begin with, he is using a plain text editor with this keyboard. This editor
always displays one string (possibly empty). Just after the editor is
launched, this string is empty. When each key on the keyboard is pressed, the
following changes occur to the string:
* The `0` key: a letter `0` will be inserted to the right of the string.
* The `1` key: a letter `1` will be inserted to the right of the string.
* The backspace key: if the string is empty, nothing happens. Otherwise, the rightmost letter of the string is deleted.
Sig has launched the editor, and pressed these keys N times in total. As a
result, the editor displays a string s. Find the number of such ways to press
the keys, modulo 10^9 + 7.
|
[{"input": "3\n 0", "output": "5\n \n\nWe will denote the backspace key by `B`. The following 5 ways to press the\nkeys will cause the editor to display the string `0` in the end: `00B`, `01B`,\n`0B0`, `1B0`, `BB0`. In the last way, nothing will happen when the backspace\nkey is pressed.\n\n* * *"}, {"input": "300\n 1100100", "output": "519054663\n \n\n* * *"}, {"input": "5000\n 01000001011101000100001101101111011001000110010101110010000", "output": "500886057"}]
|
Print the number of the ways to press the keys N times in total such that the
editor displays the string s in the end, modulo 10^9+7.
* * *
|
s326128023
|
Runtime Error
|
p04028
|
The input is given from Standard Input in the following format:
N
s
|
#include<bits/stdc++.h>
#define range(i,a,b) for(int i = (a); i < (b); i++)
#define rep(i,b) for(int i = 0; i < (b); i++)
#define all(a) (a).begin(), (a).end()
#define show(x) cerr << #x << " = " << (x) << endl;
//const int INF = 1e8;
using namespace std;
const long long M = 1000000007;
//x^n mod M
typedef long long ull;
ull power(ull x, ull n){
ull res = 1;
if(n > 0){
res = power(x, n / 2);
if(n % 2 == 0) res = (res * res) % M;
else res = (((res * res) % M) * x ) %M;
}
return res;
}
int main(){
int n;
string s;
cin >> n >> s;
vector<long long> dp(n + 1, 0);
dp[0] = 1;
rep(i,n){
vector<long long> _dp(n + 1, 0);
rep(j,n + 1){
if(j == 0) (_dp[j] += dp[j]) %= M;
else (_dp[j - 1] += dp[j]) %= M;
(_dp[j + 1] += dp[j] * 2LL) %= M;
}
dp = _dp;
//for(auto j : dp){ for(auto k : j){ cout << k << ' '; } cout << endl; } cout << endl;
}
cout << dp[s.size()] * power(power(2,s.size()), M - 2) % M << endl;
}
|
Statement
Sig has built his own keyboard. Designed for ultimate simplicity, this
keyboard only has 3 keys on it: the `0` key, the `1` key and the backspace
key.
To begin with, he is using a plain text editor with this keyboard. This editor
always displays one string (possibly empty). Just after the editor is
launched, this string is empty. When each key on the keyboard is pressed, the
following changes occur to the string:
* The `0` key: a letter `0` will be inserted to the right of the string.
* The `1` key: a letter `1` will be inserted to the right of the string.
* The backspace key: if the string is empty, nothing happens. Otherwise, the rightmost letter of the string is deleted.
Sig has launched the editor, and pressed these keys N times in total. As a
result, the editor displays a string s. Find the number of such ways to press
the keys, modulo 10^9 + 7.
|
[{"input": "3\n 0", "output": "5\n \n\nWe will denote the backspace key by `B`. The following 5 ways to press the\nkeys will cause the editor to display the string `0` in the end: `00B`, `01B`,\n`0B0`, `1B0`, `BB0`. In the last way, nothing will happen when the backspace\nkey is pressed.\n\n* * *"}, {"input": "300\n 1100100", "output": "519054663\n \n\n* * *"}, {"input": "5000\n 01000001011101000100001101101111011001000110010101110010000", "output": "500886057"}]
|
Print the number of the ways to press the keys N times in total such that the
editor displays the string s in the end, modulo 10^9+7.
* * *
|
s189993940
|
Wrong Answer
|
p04028
|
The input is given from Standard Input in the following format:
N
s
|
n = int(input())
s = input()
l = len(s)
MOD = 10**9 + 7
dp = [[[0] * (j + 1) for j in range(n + 2)] for i in range(n + 1)]
dp[0][0][0] = 1
for i in range(n):
for j in range(i + 2):
if j == 0:
dp[i + 1][0][0] = dp[i][1][0] + dp[i][1][1] + dp[i][0][0]
dp[i + 1][0][0] %= MOD
else:
for k in range(j + 1):
if j == k:
dp[i + 1][j][k] = (
dp[i][j - 1][k - 1] + dp[i][j + 1][k + 1] + dp[i][j + 1][k]
)
else:
dp[i + 1][j][k] = dp[i][j - 1][k] * 2 + dp[i][j + 1][k]
dp[i + 1][j][k] %= MOD
ans = dp[n][l][l]
print(ans)
|
Statement
Sig has built his own keyboard. Designed for ultimate simplicity, this
keyboard only has 3 keys on it: the `0` key, the `1` key and the backspace
key.
To begin with, he is using a plain text editor with this keyboard. This editor
always displays one string (possibly empty). Just after the editor is
launched, this string is empty. When each key on the keyboard is pressed, the
following changes occur to the string:
* The `0` key: a letter `0` will be inserted to the right of the string.
* The `1` key: a letter `1` will be inserted to the right of the string.
* The backspace key: if the string is empty, nothing happens. Otherwise, the rightmost letter of the string is deleted.
Sig has launched the editor, and pressed these keys N times in total. As a
result, the editor displays a string s. Find the number of such ways to press
the keys, modulo 10^9 + 7.
|
[{"input": "3\n 0", "output": "5\n \n\nWe will denote the backspace key by `B`. The following 5 ways to press the\nkeys will cause the editor to display the string `0` in the end: `00B`, `01B`,\n`0B0`, `1B0`, `BB0`. In the last way, nothing will happen when the backspace\nkey is pressed.\n\n* * *"}, {"input": "300\n 1100100", "output": "519054663\n \n\n* * *"}, {"input": "5000\n 01000001011101000100001101101111011001000110010101110010000", "output": "500886057"}]
|
Print the number of the ways to press the keys N times in total such that the
editor displays the string s in the end, modulo 10^9+7.
* * *
|
s864895483
|
Wrong Answer
|
p04028
|
The input is given from Standard Input in the following format:
N
s
|
N = int(input())
s = input()
n = len(s)
MOD = 10**9 + 7
dp = [[0] * (N + n + 1) for _ in range(2)]
dp[0][0] = 1
for i in range(N):
src = i % 2
tgt = (i + 1) % 2
dp[tgt][0] = sum(dp[src][0:2]) % MOD
dp[tgt][-1] = (2 * dp[src][-2]) % MOD
for j in range(1, N + n - 1):
dp[tgt][j] = (dp[src][j - 1] * 2 + dp[src][j + 1]) % MOD
tmp = pow(2**n, MOD - 2, MOD)
res = (dp[N % 2][n] * tmp) % MOD
print(res)
# print(dp)
|
Statement
Sig has built his own keyboard. Designed for ultimate simplicity, this
keyboard only has 3 keys on it: the `0` key, the `1` key and the backspace
key.
To begin with, he is using a plain text editor with this keyboard. This editor
always displays one string (possibly empty). Just after the editor is
launched, this string is empty. When each key on the keyboard is pressed, the
following changes occur to the string:
* The `0` key: a letter `0` will be inserted to the right of the string.
* The `1` key: a letter `1` will be inserted to the right of the string.
* The backspace key: if the string is empty, nothing happens. Otherwise, the rightmost letter of the string is deleted.
Sig has launched the editor, and pressed these keys N times in total. As a
result, the editor displays a string s. Find the number of such ways to press
the keys, modulo 10^9 + 7.
|
[{"input": "3\n 0", "output": "5\n \n\nWe will denote the backspace key by `B`. The following 5 ways to press the\nkeys will cause the editor to display the string `0` in the end: `00B`, `01B`,\n`0B0`, `1B0`, `BB0`. In the last way, nothing will happen when the backspace\nkey is pressed.\n\n* * *"}, {"input": "300\n 1100100", "output": "519054663\n \n\n* * *"}, {"input": "5000\n 01000001011101000100001101101111011001000110010101110010000", "output": "500886057"}]
|
For each input case, you have to print the height of the student in the class
whose both hands are up. If there is no such student, then print 0 for that
case.
|
s276515758
|
Wrong Answer
|
p00591
|
The input will consist of several cases. the first line of each case will be
n(0 < n < 100), the number of rows and columns in the class. It will then be
followed by a n-by-n matrix, each row of the matrix appearing on a single
line. Note that the elements of the matrix may not be necessarily distinct.
The input will be terminated by the case n = 0.
|
while True:
n = int(input())
if not n:
break
print(max(min(map(int, input().split())) for i in range(n)))
|
Advanced Algorithm Class
In the advanced algorithm class, n2 students sit in n rows and n columns. One
day, a professor who teaches this subject comes into the class, asks the
shortest student in each row to lift up his left hand, and the tallest student
in each column to lift up his right hand. What is the height of the student
whose both hands are up ? The student will become a target for professor’s
questions.
Given the size of the class, and the height of the students in the class, you
have to print the height of the student who has both his hands up in the
class.
|
[{"input": "1 2 3\n 4 5 6\n 7 8 9\n 3\n 1 2 3\n 7 8 9\n 4 5 6\n 0", "output": "7"}]
|
Print the output result of the above program for given integer n.
|
s831628058
|
Wrong Answer
|
p02406
|
An integer n is given in a line.
|
n = int(input())
x = 1
y = ""
z = 1
while True:
z = 1
x += 1
if x % 3 == 0:
y += " "
y += str(x)
else:
while True:
b = int(x % 10 ** (z - 1))
a = int((x - b) / 10**z)
c = a % 10**z
d = a % 10 ** (z - 1)
if a == 3 or b == 3 or c == 3 or d == 3:
y += " "
y += str(x)
break
z += 1
if a < 3:
break
if x >= n:
break
print(y)
|
Structured Programming
In programming languages like C/C++, a goto statement provides an
unconditional jump from the "goto" to a labeled statement. For example, a
statement "goto CHECK_NUM;" is executed, control of the program jumps to
CHECK_NUM. Using these constructs, you can implement, for example, loops.
Note that use of goto statement is highly discouraged, because it is difficult
to trace the control flow of a program which includes goto.
Write a program which does precisely the same thing as the following program
(this example is wrtten in C++). Let's try to write the program without goto
statements.
void call(int n){
int i = 1;
CHECK_NUM:
int x = i;
if ( x % 3 == 0 ){
cout << " " << i;
goto END_CHECK_NUM;
}
INCLUDE3:
if ( x % 10 == 3 ){
cout << " " << i;
goto END_CHECK_NUM;
}
x /= 10;
if ( x ) goto INCLUDE3;
END_CHECK_NUM:
if ( ++i <= n ) goto CHECK_NUM;
cout << endl;
}
|
[{"input": "", "output": "6 9 12 13 15 18 21 23 24 27 30\n \n\nPut a single space character before each element."}]
|
Print the output result of the above program for given integer n.
|
s497226375
|
Accepted
|
p02406
|
An integer n is given in a line.
|
N = str(input())
S = ""
for i in range(1, int(N) + 1):
m = str(i)
if i % 3 == 0 or "3" in m:
S = S + " " + str(i)
print(S)
|
Structured Programming
In programming languages like C/C++, a goto statement provides an
unconditional jump from the "goto" to a labeled statement. For example, a
statement "goto CHECK_NUM;" is executed, control of the program jumps to
CHECK_NUM. Using these constructs, you can implement, for example, loops.
Note that use of goto statement is highly discouraged, because it is difficult
to trace the control flow of a program which includes goto.
Write a program which does precisely the same thing as the following program
(this example is wrtten in C++). Let's try to write the program without goto
statements.
void call(int n){
int i = 1;
CHECK_NUM:
int x = i;
if ( x % 3 == 0 ){
cout << " " << i;
goto END_CHECK_NUM;
}
INCLUDE3:
if ( x % 10 == 3 ){
cout << " " << i;
goto END_CHECK_NUM;
}
x /= 10;
if ( x ) goto INCLUDE3;
END_CHECK_NUM:
if ( ++i <= n ) goto CHECK_NUM;
cout << endl;
}
|
[{"input": "", "output": "6 9 12 13 15 18 21 23 24 27 30\n \n\nPut a single space character before each element."}]
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.