model_id
stringlengths
7
105
model_card
stringlengths
1
130k
model_labels
listlengths
2
80k
RobertoSonic/swinv2-tiny-patch4-window8-256-dmae-humeda-DAV67
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swinv2-tiny-patch4-window8-256-dmae-humeda-DAV67 This model is a fine-tuned version of [microsoft/swinv2-tiny-patch4-window8-256](https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2829 - Accuracy: 0.92 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 45 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-------:|:----:|:---------------:|:--------:| | 1.103 | 1.0 | 18 | 1.0588 | 0.4 | | 0.9007 | 2.0 | 36 | 0.5651 | 0.8229 | | 0.497 | 3.0 | 54 | 0.3559 | 0.8743 | | 0.4178 | 4.0 | 72 | 0.4171 | 0.7886 | | 0.4303 | 5.0 | 90 | 0.6884 | 0.7314 | | 0.485 | 6.0 | 108 | 0.3255 | 0.8629 | | 0.3345 | 7.0 | 126 | 0.2631 | 0.9029 | | 0.3058 | 8.0 | 144 | 0.3533 | 0.8343 | | 0.35 | 9.0 | 162 | 0.2853 | 0.8686 | | 0.2535 | 10.0 | 180 | 0.2529 | 0.9143 | | 0.21 | 11.0 | 198 | 0.3806 | 0.84 | | 0.2414 | 12.0 | 216 | 0.2829 | 0.92 | | 0.1978 | 13.0 | 234 | 0.3011 | 0.9143 | | 0.1683 | 14.0 | 252 | 0.2486 | 0.9086 | | 0.2351 | 15.0 | 270 | 0.3612 | 0.8629 | | 0.264 | 16.0 | 288 | 0.3643 | 0.88 | | 0.1714 | 17.0 | 306 | 0.2481 | 0.9086 | | 0.1714 | 18.0 | 324 | 0.3479 | 0.8914 | | 0.1886 | 19.0 | 342 | 0.2644 | 0.9029 | | 0.1522 | 20.0 | 360 | 0.2587 | 0.8971 | | 0.1468 | 21.0 | 378 | 0.2832 | 0.9029 | | 0.1364 | 22.0 | 396 | 0.2830 | 0.9029 | | 0.1294 | 23.0 | 414 | 0.2954 | 0.8914 | | 0.122 | 24.0 | 432 | 0.3801 | 0.8743 | | 0.1114 | 25.0 | 450 | 0.3375 | 0.9029 | | 0.12 | 26.0 | 468 | 0.3696 | 0.8743 | | 0.121 | 27.0 | 486 | 0.3460 | 0.8857 | | 0.1056 | 28.0 | 504 | 0.3296 | 0.9029 | | 0.0941 | 29.0 | 522 | 0.3977 | 0.8971 | | 0.0882 | 30.0 | 540 | 0.3436 | 0.8914 | | 0.1131 | 31.0 | 558 | 0.3397 | 0.8914 | | 0.0959 | 32.0 | 576 | 0.3420 | 0.8971 | | 0.1058 | 33.0 | 594 | 0.3312 | 0.8971 | | 0.0707 | 34.0 | 612 | 0.3917 | 0.8857 | | 0.0885 | 35.0 | 630 | 0.3855 | 0.88 | | 0.0788 | 36.0 | 648 | 0.3519 | 0.8857 | | 0.112 | 37.0 | 666 | 0.3473 | 0.8914 | | 0.0588 | 38.0 | 684 | 0.3718 | 0.9029 | | 0.0963 | 39.0 | 702 | 0.4022 | 0.88 | | 0.0681 | 40.0 | 720 | 0.3574 | 0.8971 | | 0.0841 | 41.0 | 738 | 0.3621 | 0.88 | | 0.0739 | 42.0 | 756 | 0.3782 | 0.8914 | | 0.0649 | 42.5217 | 765 | 0.3766 | 0.8914 | ### Framework versions - Transformers 4.49.0 - Pytorch 2.6.0+cu124 - Datasets 3.4.1 - Tokenizers 0.21.1
[ "avanzada", "avanzada humeda", "no dmae" ]
RobertoSonic/swinv2-tiny-patch4-window8-256-dmae-humeda-DAV68
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swinv2-tiny-patch4-window8-256-dmae-humeda-DAV68 This model is a fine-tuned version of [microsoft/swinv2-tiny-patch4-window8-256](https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2868 - Accuracy: 0.9314 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 45 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-------:|:----:|:---------------:|:--------:| | 1.0651 | 1.0 | 18 | 1.0769 | 0.4686 | | 0.9503 | 2.0 | 36 | 0.8111 | 0.7257 | | 0.5745 | 3.0 | 54 | 0.4972 | 0.7314 | | 0.4746 | 4.0 | 72 | 0.4788 | 0.7486 | | 0.4363 | 5.0 | 90 | 0.5427 | 0.7314 | | 0.4362 | 6.0 | 108 | 0.3581 | 0.8686 | | 0.3476 | 7.0 | 126 | 0.3572 | 0.8686 | | 0.3113 | 8.0 | 144 | 0.4335 | 0.7886 | | 0.3943 | 9.0 | 162 | 0.2782 | 0.8686 | | 0.2574 | 10.0 | 180 | 0.3320 | 0.8686 | | 0.2345 | 11.0 | 198 | 0.4383 | 0.8343 | | 0.3002 | 12.0 | 216 | 0.3053 | 0.8686 | | 0.2038 | 13.0 | 234 | 0.3189 | 0.8743 | | 0.2244 | 14.0 | 252 | 0.2766 | 0.8743 | | 0.2277 | 15.0 | 270 | 0.2637 | 0.8857 | | 0.2318 | 16.0 | 288 | 0.4612 | 0.8114 | | 0.1908 | 17.0 | 306 | 0.3167 | 0.8857 | | 0.1932 | 18.0 | 324 | 0.2949 | 0.9029 | | 0.1676 | 19.0 | 342 | 0.2627 | 0.9086 | | 0.1442 | 20.0 | 360 | 0.2584 | 0.9143 | | 0.1606 | 21.0 | 378 | 0.2626 | 0.9143 | | 0.1624 | 22.0 | 396 | 0.2351 | 0.9257 | | 0.1735 | 23.0 | 414 | 0.2746 | 0.9257 | | 0.1604 | 24.0 | 432 | 0.3237 | 0.8914 | | 0.122 | 25.0 | 450 | 0.2852 | 0.8914 | | 0.1447 | 26.0 | 468 | 0.2594 | 0.92 | | 0.1265 | 27.0 | 486 | 0.2857 | 0.9029 | | 0.1265 | 28.0 | 504 | 0.3238 | 0.8743 | | 0.122 | 29.0 | 522 | 0.3029 | 0.8857 | | 0.0929 | 30.0 | 540 | 0.2936 | 0.9029 | | 0.1276 | 31.0 | 558 | 0.2777 | 0.9143 | | 0.1118 | 32.0 | 576 | 0.2812 | 0.9143 | | 0.1058 | 33.0 | 594 | 0.2925 | 0.92 | | 0.0824 | 34.0 | 612 | 0.3519 | 0.8914 | | 0.1084 | 35.0 | 630 | 0.2847 | 0.92 | | 0.1074 | 36.0 | 648 | 0.2735 | 0.9143 | | 0.1415 | 37.0 | 666 | 0.2724 | 0.9257 | | 0.0702 | 38.0 | 684 | 0.2873 | 0.92 | | 0.0987 | 39.0 | 702 | 0.2924 | 0.92 | | 0.0637 | 40.0 | 720 | 0.2868 | 0.9314 | | 0.1183 | 41.0 | 738 | 0.2892 | 0.92 | | 0.096 | 42.0 | 756 | 0.2910 | 0.9143 | | 0.0719 | 42.5217 | 765 | 0.2897 | 0.9143 | ### Framework versions - Transformers 4.49.0 - Pytorch 2.6.0+cu124 - Datasets 3.4.1 - Tokenizers 0.21.1
[ "avanzada", "avanzada humeda", "no dmae" ]
prithivMLmods/Alphabet-Sign-Language-Detection
![dzfgdf.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/gFcXjzt_OA-46WpFfz-9L.png) # **Alphabet-Sign-Language-Detection** > **Alphabet-Sign-Language-Detection** is an image classification vision-language encoder model fine-tuned from **google/siglip2-base-patch16-224** for a single-label classification task. It is designed to classify images into **sign language alphabet** categories using the **SiglipForImageClassification** architecture. ```py Classification Report: precision recall f1-score support A 0.9995 1.0000 0.9998 4384 B 1.0000 1.0000 1.0000 4441 C 1.0000 1.0000 1.0000 3993 D 1.0000 0.9998 0.9999 4940 E 1.0000 1.0000 1.0000 4658 F 1.0000 1.0000 1.0000 5750 G 0.9992 0.9996 0.9994 4978 H 1.0000 0.9979 0.9990 4807 I 0.9992 1.0000 0.9996 4856 J 1.0000 0.9996 0.9998 5227 K 0.9972 1.0000 0.9986 5426 L 1.0000 0.9998 0.9999 5089 M 1.0000 0.9964 0.9982 3328 N 0.9955 1.0000 0.9977 2635 O 0.9998 1.0000 0.9999 4564 P 1.0000 0.9993 0.9996 4100 Q 1.0000 1.0000 1.0000 4187 R 0.9998 0.9984 0.9991 5122 S 0.9998 0.9998 0.9998 5147 T 1.0000 1.0000 1.0000 4722 U 0.9984 0.9998 0.9991 5041 V 1.0000 0.9984 0.9992 5116 W 0.9998 1.0000 0.9999 4926 X 1.0000 0.9995 0.9998 4387 Y 1.0000 1.0000 1.0000 5185 Z 0.9996 1.0000 0.9998 4760 accuracy 0.9996 121769 macro avg 0.9995 0.9996 0.9995 121769 weighted avg 0.9996 0.9996 0.9996 121769 ``` ![demo.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/AVpi4xPsVq6PV9NzonHoi.png) The model categorizes images into the following 26 classes: - **Class 0:** "A" - **Class 1:** "B" - **Class 2:** "C" - **Class 3:** "D" - **Class 4:** "E" - **Class 5:** "F" - **Class 6:** "G" - **Class 7:** "H" - **Class 8:** "I" - **Class 9:** "J" - **Class 10:** "K" - **Class 11:** "L" - **Class 12:** "M" - **Class 13:** "N" - **Class 14:** "O" - **Class 15:** "P" - **Class 16:** "Q" - **Class 17:** "R" - **Class 18:** "S" - **Class 19:** "T" - **Class 20:** "U" - **Class 21:** "V" - **Class 22:** "W" - **Class 23:** "X" - **Class 24:** "Y" - **Class 25:** "Z" # **Run with Transformers🤗** ```python !pip install -q transformers torch pillow gradio ``` ```python import gradio as gr from transformers import AutoImageProcessor from transformers import SiglipForImageClassification from transformers.image_utils import load_image from PIL import Image import torch # Load model and processor model_name = "prithivMLmods/Alphabet-Sign-Language-Detection" model = SiglipForImageClassification.from_pretrained(model_name) processor = AutoImageProcessor.from_pretrained(model_name) def sign_language_classification(image): """Predicts sign language alphabet category for an image.""" image = Image.fromarray(image).convert("RGB") inputs = processor(images=image, return_tensors="pt") with torch.no_grad(): outputs = model(**inputs) logits = outputs.logits probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist() labels = { "0": "A", "1": "B", "2": "C", "3": "D", "4": "E", "5": "F", "6": "G", "7": "H", "8": "I", "9": "J", "10": "K", "11": "L", "12": "M", "13": "N", "14": "O", "15": "P", "16": "Q", "17": "R", "18": "S", "19": "T", "20": "U", "21": "V", "22": "W", "23": "X", "24": "Y", "25": "Z" } predictions = {labels[str(i)]: round(probs[i], 3) for i in range(len(probs))} return predictions # Create Gradio interface iface = gr.Interface( fn=sign_language_classification, inputs=gr.Image(type="numpy"), outputs=gr.Label(label="Prediction Scores"), title="Alphabet Sign Language Detection", description="Upload an image to classify it into one of the 26 sign language alphabet categories." ) # Launch the app if __name__ == "__main__": iface.launch() ``` # **Intended Use:** The **Alphabet-Sign-Language-Detection** model is designed for sign language image classification. It helps categorize images of hand signs into predefined alphabet categories. Potential use cases include: - **Sign Language Education:** Assisting learners in recognizing and practicing sign language alphabets. - **Accessibility Enhancement:** Supporting applications that improve communication for the hearing impaired. - **AI Research:** Advancing computer vision models in sign language recognition. - **Gesture Recognition Systems:** Enabling interactive applications with real-time sign language detection.
[ "a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t", "u", "v", "w", "x", "y", "z" ]
prithivMLmods/Fashion-Mnist-SigLIP2
![szxdd.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/qo_A-fhC-cK0kwwPUfevV.png) # **Fashion-Mnist-SigLIP2** > **Fashion-Mnist-SigLIP2** is an image classification vision-language encoder model fine-tuned from **google/siglip2-base-patch16-224** for a single-label classification task. It is designed to classify images into **Fashion-MNIST** categories using the **SiglipForImageClassification** architecture. ![- visual selection.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/ZTVZYShywtf52cgBMV583.png) *SigLIP 2: Multilingual Vision-Language Encoders with Improved Semantic Understanding, Localization, and Dense Features* https://arxiv.org/pdf/2502.14786 ```py Classification Report: precision recall f1-score support T-shirt / top 0.8142 0.9147 0.8615 6000 Trouser 0.9935 0.9870 0.9902 6000 Pullover 0.8901 0.8610 0.8753 6000 Dress 0.9098 0.9300 0.9198 6000 Coat 0.8636 0.8865 0.8749 6000 Sandal 0.9857 0.9847 0.9852 6000 Shirt 0.8076 0.6962 0.7478 6000 Sneaker 0.9663 0.9695 0.9679 6000 Bag 0.9779 0.9805 0.9792 6000 Ankle boot 0.9698 0.9700 0.9699 6000 accuracy 0.9180 60000 macro avg 0.9179 0.9180 0.9172 60000 weighted avg 0.9179 0.9180 0.9172 60000 ``` ![Untitled.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/4RcQ0vyPssALOOCIhpNqu.png) The model categorizes images into the following 10 classes: - **Class 0:** "T-shirt / top" - **Class 1:** "Trouser" - **Class 2:** "Pullover" - **Class 3:** "Dress" - **Class 4:** "Coat" - **Class 5:** "Sandal" - **Class 6:** "Shirt" - **Class 7:** "Sneaker" - **Class 8:** "Bag" - **Class 9:** "Ankle boot" # **Run with Transformers🤗** ```python !pip install -q transformers torch pillow gradio ``` ```python import gradio as gr from transformers import AutoImageProcessor from transformers import SiglipForImageClassification from transformers.image_utils import load_image from PIL import Image import torch # Load model and processor model_name = "prithivMLmods/Fashion-Mnist-SigLIP2" model = SiglipForImageClassification.from_pretrained(model_name) processor = AutoImageProcessor.from_pretrained(model_name) def fashion_mnist_classification(image): """Predicts fashion category for an image.""" image = Image.fromarray(image).convert("RGB") inputs = processor(images=image, return_tensors="pt") with torch.no_grad(): outputs = model(**inputs) logits = outputs.logits probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist() labels = { "0": "T-shirt / top", "1": "Trouser", "2": "Pullover", "3": "Dress", "4": "Coat", "5": "Sandal", "6": "Shirt", "7": "Sneaker", "8": "Bag", "9": "Ankle boot" } predictions = {labels[str(i)]: round(probs[i], 3) for i in range(len(probs))} return predictions # Create Gradio interface iface = gr.Interface( fn=fashion_mnist_classification, inputs=gr.Image(type="numpy"), outputs=gr.Label(label="Prediction Scores"), title="Fashion MNIST Classification Labels", description="Upload an image to classify it into one of the 10 Fashion-MNIST categories." ) # Launch the app if __name__ == "__main__": iface.launch() ``` # **Intended Use:** The **Fashion-Mnist-SigLIP2** model is designed for fashion image classification. It helps categorize clothing and footwear items into predefined Fashion-MNIST classes. Potential use cases include: - **Fashion Recognition:** Classifying fashion images into common categories like shirts, sneakers, and dresses. - **E-commerce Applications:** Assisting online retailers in organizing and tagging clothing items for better search and recommendations. - **Automated Fashion Sorting:** Helping automated inventory management systems classify fashion items. - **Educational Purposes:** Supporting AI and ML research in vision-based fashion classification models.
[ "t-shirt / top", "trouser", "pullover", "dress", "coat", "sandal", "shirt", "sneaker", "bag", "ankle boot" ]
Ivanrs/vit-base-kidney-stone-2-Jonathan_El-Beze_-w256_1k_v1-_MIX
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-kidney-stone-2-Jonathan_El-Beze_-w256_1k_v1-_MIX This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.5205 - Accuracy: 0.8642 - Precision: 0.8742 - Recall: 0.8642 - F1: 0.8636 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.3382 | 0.1667 | 100 | 0.7037 | 0.7592 | 0.8533 | 0.7592 | 0.7413 | | 0.2441 | 0.3333 | 200 | 0.5509 | 0.8167 | 0.8354 | 0.8167 | 0.8179 | | 0.1033 | 0.5 | 300 | 0.5433 | 0.8508 | 0.8663 | 0.8508 | 0.8492 | | 0.0863 | 0.6667 | 400 | 0.5815 | 0.8104 | 0.8328 | 0.8104 | 0.7969 | | 0.1032 | 0.8333 | 500 | 0.7683 | 0.7908 | 0.8394 | 0.7908 | 0.7771 | | 0.0681 | 1.0 | 600 | 0.6216 | 0.8392 | 0.8451 | 0.8392 | 0.8393 | | 0.0098 | 1.1667 | 700 | 0.8241 | 0.8087 | 0.8317 | 0.8087 | 0.8010 | | 0.1486 | 1.3333 | 800 | 0.5205 | 0.8642 | 0.8742 | 0.8642 | 0.8636 | | 0.0552 | 1.5 | 900 | 0.8228 | 0.8092 | 0.8290 | 0.8092 | 0.8074 | | 0.1194 | 1.6667 | 1000 | 0.9466 | 0.7479 | 0.8266 | 0.7479 | 0.7067 | | 0.1081 | 1.8333 | 1100 | 0.7999 | 0.8379 | 0.8586 | 0.8379 | 0.8334 | | 0.0024 | 2.0 | 1200 | 0.8330 | 0.8438 | 0.8629 | 0.8438 | 0.8434 | | 0.0799 | 2.1667 | 1300 | 0.7392 | 0.8588 | 0.8771 | 0.8588 | 0.8560 | | 0.0018 | 2.3333 | 1400 | 0.9487 | 0.8158 | 0.8222 | 0.8158 | 0.8153 | | 0.0052 | 2.5 | 1500 | 0.6795 | 0.8712 | 0.8739 | 0.8712 | 0.8678 | | 0.0012 | 2.6667 | 1600 | 0.7281 | 0.8821 | 0.8859 | 0.8821 | 0.8812 | | 0.0022 | 2.8333 | 1700 | 1.2392 | 0.795 | 0.7874 | 0.795 | 0.7857 | | 0.0835 | 3.0 | 1800 | 1.0174 | 0.8163 | 0.8503 | 0.8163 | 0.8178 | | 0.063 | 3.1667 | 1900 | 0.6986 | 0.8275 | 0.8288 | 0.8275 | 0.8258 | | 0.0124 | 3.3333 | 2000 | 1.3449 | 0.7354 | 0.7889 | 0.7354 | 0.7215 | | 0.0751 | 3.5 | 2100 | 0.9783 | 0.8292 | 0.8578 | 0.8292 | 0.8224 | | 0.0089 | 3.6667 | 2200 | 0.6416 | 0.8871 | 0.8909 | 0.8871 | 0.8851 | | 0.0833 | 3.8333 | 2300 | 0.9829 | 0.8025 | 0.8282 | 0.8025 | 0.8019 | | 0.024 | 4.0 | 2400 | 0.7989 | 0.8508 | 0.8659 | 0.8508 | 0.8475 | | 0.0221 | 4.1667 | 2500 | 0.6812 | 0.8842 | 0.8845 | 0.8842 | 0.8837 | | 0.0005 | 4.3333 | 2600 | 0.9451 | 0.8429 | 0.8614 | 0.8429 | 0.8360 | | 0.0005 | 4.5 | 2700 | 0.6669 | 0.8875 | 0.8882 | 0.8875 | 0.8865 | | 0.0005 | 4.6667 | 2800 | 1.2303 | 0.8017 | 0.8330 | 0.8017 | 0.7984 | | 0.0071 | 4.8333 | 2900 | 0.7767 | 0.8725 | 0.8790 | 0.8725 | 0.8725 | | 0.1049 | 5.0 | 3000 | 0.7006 | 0.8646 | 0.8834 | 0.8646 | 0.8665 | | 0.0761 | 5.1667 | 3100 | 0.7335 | 0.8892 | 0.8912 | 0.8892 | 0.8867 | | 0.0007 | 5.3333 | 3200 | 0.6957 | 0.8867 | 0.8934 | 0.8867 | 0.8861 | | 0.0006 | 5.5 | 3300 | 0.7774 | 0.8629 | 0.8739 | 0.8629 | 0.8637 | | 0.0387 | 5.6667 | 3400 | 1.3677 | 0.7971 | 0.8275 | 0.7971 | 0.7944 | | 0.0032 | 5.8333 | 3500 | 0.7322 | 0.8729 | 0.8836 | 0.8729 | 0.8710 | | 0.0008 | 6.0 | 3600 | 0.9531 | 0.8517 | 0.8768 | 0.8517 | 0.8438 | | 0.0014 | 6.1667 | 3700 | 0.8285 | 0.8654 | 0.8687 | 0.8654 | 0.8632 | | 0.0004 | 6.3333 | 3800 | 0.7225 | 0.8875 | 0.8897 | 0.8875 | 0.8865 | | 0.0009 | 6.5 | 3900 | 0.8248 | 0.87 | 0.8797 | 0.87 | 0.8705 | | 0.0003 | 6.6667 | 4000 | 0.8972 | 0.8658 | 0.8805 | 0.8658 | 0.8665 | | 0.0002 | 6.8333 | 4100 | 0.8997 | 0.8654 | 0.8800 | 0.8654 | 0.8662 | | 0.0002 | 7.0 | 4200 | 0.8968 | 0.8667 | 0.8808 | 0.8667 | 0.8674 | | 0.0002 | 7.1667 | 4300 | 0.8712 | 0.8725 | 0.8839 | 0.8725 | 0.8728 | | 0.0002 | 7.3333 | 4400 | 0.8688 | 0.8838 | 0.8971 | 0.8838 | 0.8827 | | 0.0002 | 7.5 | 4500 | 0.8917 | 0.8712 | 0.8818 | 0.8712 | 0.8686 | | 0.0477 | 7.6667 | 4600 | 0.8017 | 0.8692 | 0.8832 | 0.8692 | 0.8703 | | 0.0002 | 7.8333 | 4700 | 0.9936 | 0.85 | 0.8654 | 0.85 | 0.8445 | | 0.0004 | 8.0 | 4800 | 0.9378 | 0.8396 | 0.8719 | 0.8396 | 0.8411 | | 0.0007 | 8.1667 | 4900 | 1.2102 | 0.8013 | 0.8376 | 0.8013 | 0.7975 | | 0.0004 | 8.3333 | 5000 | 0.7613 | 0.8883 | 0.9041 | 0.8883 | 0.8885 | | 0.0005 | 8.5 | 5100 | 0.9156 | 0.8571 | 0.8821 | 0.8571 | 0.8573 | | 0.0002 | 8.6667 | 5200 | 0.6973 | 0.8996 | 0.9065 | 0.8996 | 0.8969 | | 0.0002 | 8.8333 | 5300 | 0.9252 | 0.8625 | 0.8938 | 0.8625 | 0.8636 | | 0.0002 | 9.0 | 5400 | 0.7714 | 0.8854 | 0.9038 | 0.8854 | 0.8857 | | 0.0001 | 9.1667 | 5500 | 0.7521 | 0.8892 | 0.9048 | 0.8892 | 0.8893 | | 0.0002 | 9.3333 | 5600 | 0.7296 | 0.8971 | 0.9053 | 0.8971 | 0.8961 | | 0.0002 | 9.5 | 5700 | 0.8592 | 0.8812 | 0.8882 | 0.8812 | 0.8807 | | 0.027 | 9.6667 | 5800 | 1.0926 | 0.8346 | 0.8684 | 0.8346 | 0.8350 | | 0.0002 | 9.8333 | 5900 | 0.8884 | 0.8654 | 0.8749 | 0.8654 | 0.8650 | | 0.0255 | 10.0 | 6000 | 0.8784 | 0.8708 | 0.8809 | 0.8708 | 0.8704 | | 0.0002 | 10.1667 | 6100 | 1.2491 | 0.7992 | 0.8409 | 0.7992 | 0.7816 | | 0.0003 | 10.3333 | 6200 | 0.6981 | 0.8796 | 0.8850 | 0.8796 | 0.8776 | | 0.0002 | 10.5 | 6300 | 0.8654 | 0.8725 | 0.8861 | 0.8725 | 0.8679 | | 0.0002 | 10.6667 | 6400 | 0.5566 | 0.9012 | 0.9041 | 0.9012 | 0.8998 | | 0.0002 | 10.8333 | 6500 | 0.6042 | 0.9025 | 0.9048 | 0.9025 | 0.9010 | | 0.0002 | 11.0 | 6600 | 0.6078 | 0.9042 | 0.9062 | 0.9042 | 0.9027 | | 0.0001 | 11.1667 | 6700 | 0.6105 | 0.9046 | 0.9066 | 0.9046 | 0.9030 | | 0.0001 | 11.3333 | 6800 | 0.6138 | 0.9025 | 0.9047 | 0.9025 | 0.9010 | | 0.0001 | 11.5 | 6900 | 0.6188 | 0.9025 | 0.9047 | 0.9025 | 0.9010 | | 0.0001 | 11.6667 | 7000 | 0.6243 | 0.9017 | 0.9038 | 0.9017 | 0.9001 | | 0.0001 | 11.8333 | 7100 | 0.6208 | 0.8992 | 0.9001 | 0.8992 | 0.8982 | | 0.0067 | 12.0 | 7200 | 0.7476 | 0.8846 | 0.8948 | 0.8846 | 0.8835 | | 0.0139 | 12.1667 | 7300 | 0.6116 | 0.9025 | 0.9042 | 0.9025 | 0.9013 | | 0.0001 | 12.3333 | 7400 | 0.6976 | 0.8971 | 0.9053 | 0.8971 | 0.8962 | | 0.0001 | 12.5 | 7500 | 0.7213 | 0.8946 | 0.9041 | 0.8946 | 0.8938 | | 0.0001 | 12.6667 | 7600 | 0.7205 | 0.8954 | 0.9047 | 0.8954 | 0.8946 | | 0.0001 | 12.8333 | 7700 | 0.6671 | 0.9029 | 0.9075 | 0.9029 | 0.9008 | | 0.0001 | 13.0 | 7800 | 0.6448 | 0.9071 | 0.9130 | 0.9071 | 0.9059 | | 0.0001 | 13.1667 | 7900 | 0.6449 | 0.9071 | 0.9130 | 0.9071 | 0.9059 | | 0.0001 | 13.3333 | 8000 | 0.6453 | 0.9071 | 0.9130 | 0.9071 | 0.9059 | | 0.0001 | 13.5 | 8100 | 0.6340 | 0.9087 | 0.9136 | 0.9087 | 0.9075 | | 0.0001 | 13.6667 | 8200 | 0.6347 | 0.9087 | 0.9136 | 0.9087 | 0.9075 | | 0.0001 | 13.8333 | 8300 | 0.6350 | 0.9092 | 0.9141 | 0.9092 | 0.9079 | | 0.0001 | 14.0 | 8400 | 0.6355 | 0.9096 | 0.9144 | 0.9096 | 0.9084 | | 0.0001 | 14.1667 | 8500 | 0.6358 | 0.9092 | 0.9139 | 0.9092 | 0.9080 | | 0.0001 | 14.3333 | 8600 | 0.6360 | 0.9092 | 0.9139 | 0.9092 | 0.9080 | | 0.0001 | 14.5 | 8700 | 0.6363 | 0.9092 | 0.9139 | 0.9092 | 0.9080 | | 0.0001 | 14.6667 | 8800 | 0.6365 | 0.9096 | 0.9143 | 0.9096 | 0.9084 | | 0.0001 | 14.8333 | 8900 | 0.6367 | 0.9096 | 0.9143 | 0.9096 | 0.9084 | | 0.0001 | 15.0 | 9000 | 0.6369 | 0.9096 | 0.9143 | 0.9096 | 0.9084 | ### Framework versions - Transformers 4.48.2 - Pytorch 2.6.0+cu126 - Datasets 3.1.0 - Tokenizers 0.21.0
[ "mix-subtype_iiia", "mix-subtype_iia", "mix-subtype_ivc", "mix-subtype_ivd", "mix-subtype_ia", "mix-subtype_va" ]
Ivanrs/vit-base-kidney-stone-2-Jonathan_El-Beze_-w256_1k_v1-_SEC
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-kidney-stone-2-Jonathan_El-Beze_-w256_1k_v1-_SEC This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.1129 - Accuracy: 0.9708 - Precision: 0.9708 - Recall: 0.9708 - F1: 0.9708 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.2926 | 0.3333 | 100 | 0.6214 | 0.8408 | 0.8814 | 0.8408 | 0.8038 | | 0.0637 | 0.6667 | 200 | 0.6714 | 0.8083 | 0.8903 | 0.8083 | 0.8003 | | 0.058 | 1.0 | 300 | 1.0799 | 0.745 | 0.8358 | 0.745 | 0.7350 | | 0.156 | 1.3333 | 400 | 1.1535 | 0.7142 | 0.8241 | 0.7142 | 0.6937 | | 0.0075 | 1.6667 | 500 | 1.6682 | 0.6625 | 0.7947 | 0.6625 | 0.6207 | | 0.0076 | 2.0 | 600 | 0.5363 | 0.8517 | 0.9048 | 0.8517 | 0.8568 | | 0.0436 | 2.3333 | 700 | 0.1960 | 0.9558 | 0.9615 | 0.9558 | 0.9564 | | 0.0019 | 2.6667 | 800 | 0.1241 | 0.975 | 0.9763 | 0.975 | 0.9746 | | 0.0015 | 3.0 | 900 | 0.1129 | 0.9708 | 0.9708 | 0.9708 | 0.9708 | | 0.0012 | 3.3333 | 1000 | 0.1154 | 0.9708 | 0.9708 | 0.9708 | 0.9708 | | 0.001 | 3.6667 | 1100 | 0.1176 | 0.9717 | 0.9717 | 0.9717 | 0.9716 | | 0.0009 | 4.0 | 1200 | 0.1204 | 0.9717 | 0.9717 | 0.9717 | 0.9717 | | 0.0007 | 4.3333 | 1300 | 0.1223 | 0.9725 | 0.9725 | 0.9725 | 0.9725 | | 0.0007 | 4.6667 | 1400 | 0.1246 | 0.9742 | 0.9742 | 0.9742 | 0.9742 | | 0.0006 | 5.0 | 1500 | 0.1260 | 0.975 | 0.9751 | 0.975 | 0.9750 | | 0.0005 | 5.3333 | 1600 | 0.1281 | 0.975 | 0.9751 | 0.975 | 0.9750 | | 0.0005 | 5.6667 | 1700 | 0.1289 | 0.975 | 0.9751 | 0.975 | 0.9750 | | 0.0004 | 6.0 | 1800 | 0.1306 | 0.975 | 0.9751 | 0.975 | 0.9750 | | 0.0004 | 6.3333 | 1900 | 0.1321 | 0.975 | 0.9751 | 0.975 | 0.9750 | | 0.0004 | 6.6667 | 2000 | 0.1330 | 0.975 | 0.9751 | 0.975 | 0.9750 | | 0.0003 | 7.0 | 2100 | 0.1345 | 0.975 | 0.9751 | 0.975 | 0.9750 | | 0.0003 | 7.3333 | 2200 | 0.1357 | 0.975 | 0.9751 | 0.975 | 0.9750 | | 0.0003 | 7.6667 | 2300 | 0.1371 | 0.975 | 0.9751 | 0.975 | 0.9750 | | 0.0003 | 8.0 | 2400 | 0.1380 | 0.975 | 0.9751 | 0.975 | 0.9750 | | 0.0003 | 8.3333 | 2500 | 0.1392 | 0.975 | 0.9751 | 0.975 | 0.9750 | | 0.0002 | 8.6667 | 2600 | 0.1400 | 0.975 | 0.9751 | 0.975 | 0.9750 | | 0.0002 | 9.0 | 2700 | 0.1408 | 0.975 | 0.9751 | 0.975 | 0.9750 | | 0.0002 | 9.3333 | 2800 | 0.1417 | 0.975 | 0.9751 | 0.975 | 0.9750 | | 0.0002 | 9.6667 | 2900 | 0.1426 | 0.975 | 0.9751 | 0.975 | 0.9750 | | 0.0002 | 10.0 | 3000 | 0.1432 | 0.975 | 0.9751 | 0.975 | 0.9750 | | 0.0002 | 10.3333 | 3100 | 0.1441 | 0.975 | 0.9751 | 0.975 | 0.9750 | | 0.0002 | 10.6667 | 3200 | 0.1448 | 0.975 | 0.9751 | 0.975 | 0.9750 | | 0.0002 | 11.0 | 3300 | 0.1454 | 0.975 | 0.9751 | 0.975 | 0.9750 | | 0.0002 | 11.3333 | 3400 | 0.1460 | 0.975 | 0.9751 | 0.975 | 0.9750 | | 0.0002 | 11.6667 | 3500 | 0.1466 | 0.975 | 0.9751 | 0.975 | 0.9750 | | 0.0001 | 12.0 | 3600 | 0.1471 | 0.9758 | 0.9760 | 0.9758 | 0.9759 | | 0.0001 | 12.3333 | 3700 | 0.1476 | 0.975 | 0.9752 | 0.975 | 0.9751 | | 0.0001 | 12.6667 | 3800 | 0.1480 | 0.975 | 0.9752 | 0.975 | 0.9751 | | 0.0001 | 13.0 | 3900 | 0.1484 | 0.975 | 0.9752 | 0.975 | 0.9751 | | 0.0001 | 13.3333 | 4000 | 0.1487 | 0.975 | 0.9752 | 0.975 | 0.9751 | | 0.0001 | 13.6667 | 4100 | 0.1490 | 0.975 | 0.9752 | 0.975 | 0.9751 | | 0.0001 | 14.0 | 4200 | 0.1493 | 0.975 | 0.9752 | 0.975 | 0.9751 | | 0.0001 | 14.3333 | 4300 | 0.1494 | 0.975 | 0.9752 | 0.975 | 0.9751 | | 0.0001 | 14.6667 | 4400 | 0.1495 | 0.975 | 0.9752 | 0.975 | 0.9751 | | 0.0001 | 15.0 | 4500 | 0.1496 | 0.975 | 0.9752 | 0.975 | 0.9751 | ### Framework versions - Transformers 4.48.2 - Pytorch 2.6.0+cu126 - Datasets 3.1.0 - Tokenizers 0.21.0
[ "sec-subtype_iiia", "sec-subtype_iia", "sec-subtype_ivc", "sec-subtype_ivd", "sec-subtype_ia", "sec-subtype_va" ]
Ivanrs/vit-base-kidney-stone-2-Jonathan_El-Beze_-w256_1k_v1-_SUR
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-kidney-stone-2-Jonathan_El-Beze_-w256_1k_v1-_SUR This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.5352 - Accuracy: 0.8542 - Precision: 0.8593 - Recall: 0.8542 - F1: 0.8516 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.3658 | 0.3333 | 100 | 0.7426 | 0.7017 | 0.6844 | 0.7017 | 0.6699 | | 0.3256 | 0.6667 | 200 | 0.7536 | 0.7608 | 0.8199 | 0.7608 | 0.7638 | | 0.0727 | 1.0 | 300 | 0.5352 | 0.8542 | 0.8593 | 0.8542 | 0.8516 | | 0.0553 | 1.3333 | 400 | 0.5903 | 0.8575 | 0.8636 | 0.8575 | 0.8547 | | 0.116 | 1.6667 | 500 | 0.8102 | 0.8075 | 0.8478 | 0.8075 | 0.8036 | | 0.1034 | 2.0 | 600 | 0.9591 | 0.79 | 0.8360 | 0.79 | 0.7929 | | 0.0921 | 2.3333 | 700 | 1.0530 | 0.7917 | 0.8153 | 0.7917 | 0.7890 | | 0.0845 | 2.6667 | 800 | 0.8513 | 0.81 | 0.8188 | 0.81 | 0.8074 | | 0.0027 | 3.0 | 900 | 1.1166 | 0.7883 | 0.8020 | 0.7883 | 0.7852 | | 0.0046 | 3.3333 | 1000 | 1.0594 | 0.8075 | 0.8496 | 0.8075 | 0.7994 | | 0.1194 | 3.6667 | 1100 | 1.1294 | 0.7992 | 0.8259 | 0.7992 | 0.7985 | | 0.0865 | 4.0 | 1200 | 1.0208 | 0.7908 | 0.8241 | 0.7908 | 0.7874 | | 0.0015 | 4.3333 | 1300 | 0.6127 | 0.8783 | 0.8875 | 0.8783 | 0.8778 | | 0.0086 | 4.6667 | 1400 | 0.9398 | 0.8383 | 0.8601 | 0.8383 | 0.8352 | | 0.0016 | 5.0 | 1500 | 0.9671 | 0.835 | 0.8414 | 0.835 | 0.8361 | | 0.0031 | 5.3333 | 1600 | 0.7669 | 0.8425 | 0.8480 | 0.8425 | 0.8379 | | 0.0015 | 5.6667 | 1700 | 1.6634 | 0.7092 | 0.7774 | 0.7092 | 0.6878 | | 0.0011 | 6.0 | 1800 | 0.9625 | 0.8517 | 0.8701 | 0.8517 | 0.8464 | | 0.0015 | 6.3333 | 1900 | 0.9576 | 0.8392 | 0.8558 | 0.8392 | 0.8367 | | 0.0009 | 6.6667 | 2000 | 0.9355 | 0.84 | 0.8615 | 0.84 | 0.8390 | | 0.0629 | 7.0 | 2100 | 0.8580 | 0.8508 | 0.8527 | 0.8508 | 0.8490 | | 0.0446 | 7.3333 | 2200 | 0.7906 | 0.8783 | 0.8798 | 0.8783 | 0.8759 | | 0.0007 | 7.6667 | 2300 | 0.9514 | 0.8283 | 0.8405 | 0.8283 | 0.8258 | | 0.0006 | 8.0 | 2400 | 1.0413 | 0.8317 | 0.8407 | 0.8317 | 0.8298 | | 0.0006 | 8.3333 | 2500 | 1.0492 | 0.8342 | 0.8427 | 0.8342 | 0.8324 | | 0.0478 | 8.6667 | 2600 | 0.7952 | 0.8667 | 0.8701 | 0.8667 | 0.8664 | | 0.0006 | 9.0 | 2700 | 0.8355 | 0.8708 | 0.8827 | 0.8708 | 0.8689 | | 0.0004 | 9.3333 | 2800 | 1.0021 | 0.8508 | 0.8675 | 0.8508 | 0.8501 | | 0.0004 | 9.6667 | 2900 | 1.0899 | 0.84 | 0.8573 | 0.84 | 0.8378 | | 0.0004 | 10.0 | 3000 | 0.9897 | 0.8533 | 0.8614 | 0.8533 | 0.8505 | | 0.0007 | 10.3333 | 3100 | 1.4134 | 0.8008 | 0.8407 | 0.8008 | 0.7956 | | 0.0004 | 10.6667 | 3200 | 1.2195 | 0.8225 | 0.8459 | 0.8225 | 0.8212 | | 0.0003 | 11.0 | 3300 | 1.2032 | 0.8242 | 0.8459 | 0.8242 | 0.8230 | | 0.0003 | 11.3333 | 3400 | 1.1995 | 0.8267 | 0.8479 | 0.8267 | 0.8255 | | 0.0003 | 11.6667 | 3500 | 1.1979 | 0.825 | 0.8453 | 0.825 | 0.8239 | | 0.0003 | 12.0 | 3600 | 1.1959 | 0.8258 | 0.8461 | 0.8258 | 0.8248 | | 0.0003 | 12.3333 | 3700 | 1.1960 | 0.8275 | 0.8473 | 0.8275 | 0.8264 | | 0.0003 | 12.6667 | 3800 | 1.1960 | 0.8275 | 0.8473 | 0.8275 | 0.8264 | | 0.0003 | 13.0 | 3900 | 1.1972 | 0.8275 | 0.8473 | 0.8275 | 0.8264 | | 0.0003 | 13.3333 | 4000 | 1.1986 | 0.8283 | 0.8479 | 0.8283 | 0.8273 | | 0.0003 | 13.6667 | 4100 | 1.1993 | 0.8292 | 0.8484 | 0.8292 | 0.8280 | | 0.0003 | 14.0 | 4200 | 1.1999 | 0.8292 | 0.8484 | 0.8292 | 0.8280 | | 0.0002 | 14.3333 | 4300 | 1.2012 | 0.8292 | 0.8484 | 0.8292 | 0.8280 | | 0.0002 | 14.6667 | 4400 | 1.2014 | 0.8292 | 0.8484 | 0.8292 | 0.8280 | | 0.0002 | 15.0 | 4500 | 1.2016 | 0.8292 | 0.8484 | 0.8292 | 0.8280 | ### Framework versions - Transformers 4.48.2 - Pytorch 2.6.0+cu126 - Datasets 3.1.0 - Tokenizers 0.21.0
[ "sur-subtype_iiia", "sur-subtype_iia", "sur-subtype_ivc", "sur-subtype_ivd", "sur-subtype_ia", "sur-subtype_va" ]
Ivanrs/vit-base-kidney-stone-2-Michel_Daudon_-w256_1k_v1-_MIX
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-kidney-stone-2-Michel_Daudon_-w256_1k_v1-_MIX This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.5737 - Accuracy: 0.8158 - Precision: 0.8397 - Recall: 0.8158 - F1: 0.8059 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.3412 | 0.1667 | 100 | 0.5737 | 0.8158 | 0.8397 | 0.8158 | 0.8059 | | 0.2476 | 0.3333 | 200 | 0.7298 | 0.7883 | 0.7944 | 0.7883 | 0.7866 | | 0.3971 | 0.5 | 300 | 0.9254 | 0.7475 | 0.8222 | 0.7475 | 0.7476 | | 0.2939 | 0.6667 | 400 | 0.7719 | 0.7854 | 0.8224 | 0.7854 | 0.7833 | | 0.0961 | 0.8333 | 500 | 1.1358 | 0.7429 | 0.7665 | 0.7429 | 0.7448 | | 0.238 | 1.0 | 600 | 0.8758 | 0.7904 | 0.8178 | 0.7904 | 0.7896 | | 0.1902 | 1.1667 | 700 | 0.7430 | 0.8271 | 0.8554 | 0.8271 | 0.8101 | | 0.0787 | 1.3333 | 800 | 0.5883 | 0.8525 | 0.8816 | 0.8525 | 0.8557 | | 0.0381 | 1.5 | 900 | 0.7656 | 0.8204 | 0.8333 | 0.8204 | 0.8244 | | 0.1304 | 1.6667 | 1000 | 0.7800 | 0.8275 | 0.8513 | 0.8275 | 0.8225 | | 0.217 | 1.8333 | 1100 | 0.7208 | 0.83 | 0.8507 | 0.83 | 0.8323 | | 0.0806 | 2.0 | 1200 | 0.9077 | 0.805 | 0.8299 | 0.805 | 0.8000 | | 0.0387 | 2.1667 | 1300 | 0.8138 | 0.845 | 0.8725 | 0.845 | 0.8453 | | 0.1055 | 2.3333 | 1400 | 0.7708 | 0.8283 | 0.8588 | 0.8283 | 0.8280 | | 0.0429 | 2.5 | 1500 | 0.8968 | 0.8154 | 0.8358 | 0.8154 | 0.8175 | | 0.198 | 2.6667 | 1600 | 0.9388 | 0.8237 | 0.8290 | 0.8237 | 0.8199 | | 0.099 | 2.8333 | 1700 | 1.0072 | 0.8217 | 0.8562 | 0.8217 | 0.8151 | | 0.0665 | 3.0 | 1800 | 0.8864 | 0.8054 | 0.8032 | 0.8054 | 0.7963 | | 0.0573 | 3.1667 | 1900 | 0.9131 | 0.8196 | 0.8291 | 0.8196 | 0.8162 | | 0.0028 | 3.3333 | 2000 | 0.7288 | 0.8588 | 0.8648 | 0.8588 | 0.8564 | | 0.0016 | 3.5 | 2100 | 1.1735 | 0.785 | 0.8147 | 0.785 | 0.7910 | | 0.004 | 3.6667 | 2200 | 0.9195 | 0.84 | 0.8724 | 0.84 | 0.8414 | | 0.0013 | 3.8333 | 2300 | 0.8082 | 0.8483 | 0.8759 | 0.8483 | 0.8497 | | 0.0141 | 4.0 | 2400 | 0.9805 | 0.8342 | 0.8719 | 0.8342 | 0.8321 | | 0.0015 | 4.1667 | 2500 | 0.7858 | 0.8538 | 0.8766 | 0.8538 | 0.8557 | | 0.0011 | 4.3333 | 2600 | 1.1658 | 0.8037 | 0.8268 | 0.8037 | 0.7992 | | 0.0008 | 4.5 | 2700 | 0.9506 | 0.8562 | 0.8762 | 0.8562 | 0.8578 | | 0.0429 | 4.6667 | 2800 | 0.9533 | 0.8458 | 0.8712 | 0.8458 | 0.8437 | | 0.0014 | 4.8333 | 2900 | 1.0837 | 0.81 | 0.8275 | 0.81 | 0.8072 | | 0.1233 | 5.0 | 3000 | 1.0915 | 0.8104 | 0.8363 | 0.8104 | 0.8123 | | 0.004 | 5.1667 | 3100 | 0.8199 | 0.8421 | 0.8415 | 0.8421 | 0.8401 | | 0.0012 | 5.3333 | 3200 | 0.9103 | 0.8496 | 0.8690 | 0.8496 | 0.8538 | | 0.0009 | 5.5 | 3300 | 1.0330 | 0.84 | 0.8761 | 0.84 | 0.8448 | | 0.001 | 5.6667 | 3400 | 1.0544 | 0.8379 | 0.8699 | 0.8379 | 0.8385 | | 0.0006 | 5.8333 | 3500 | 0.9087 | 0.8542 | 0.8699 | 0.8542 | 0.8560 | | 0.0465 | 6.0 | 3600 | 0.9690 | 0.8504 | 0.8530 | 0.8504 | 0.8471 | | 0.0015 | 6.1667 | 3700 | 0.9574 | 0.8425 | 0.8561 | 0.8425 | 0.8385 | | 0.0022 | 6.3333 | 3800 | 1.0041 | 0.8325 | 0.8584 | 0.8325 | 0.8324 | | 0.0774 | 6.5 | 3900 | 1.1730 | 0.8079 | 0.8185 | 0.8079 | 0.8044 | | 0.0024 | 6.6667 | 4000 | 1.1644 | 0.8179 | 0.8302 | 0.8179 | 0.8154 | | 0.0005 | 6.8333 | 4100 | 1.0119 | 0.84 | 0.8419 | 0.84 | 0.8347 | | 0.0004 | 7.0 | 4200 | 1.0782 | 0.8217 | 0.8278 | 0.8217 | 0.8222 | | 0.0752 | 7.1667 | 4300 | 1.3249 | 0.8 | 0.8340 | 0.8 | 0.7931 | | 0.0315 | 7.3333 | 4400 | 0.8367 | 0.8446 | 0.8556 | 0.8446 | 0.8455 | | 0.002 | 7.5 | 4500 | 1.0440 | 0.8417 | 0.8638 | 0.8417 | 0.8408 | | 0.0006 | 7.6667 | 4600 | 0.9891 | 0.8554 | 0.8557 | 0.8554 | 0.8518 | | 0.0006 | 7.8333 | 4700 | 1.0665 | 0.8275 | 0.8457 | 0.8275 | 0.8255 | | 0.0005 | 8.0 | 4800 | 1.0764 | 0.8308 | 0.8458 | 0.8308 | 0.8308 | | 0.0004 | 8.1667 | 4900 | 1.0959 | 0.8292 | 0.8517 | 0.8292 | 0.8298 | | 0.0003 | 8.3333 | 5000 | 1.0436 | 0.8442 | 0.8650 | 0.8442 | 0.8445 | | 0.0355 | 8.5 | 5100 | 1.2265 | 0.8183 | 0.8401 | 0.8183 | 0.8074 | | 0.0026 | 8.6667 | 5200 | 0.9908 | 0.8492 | 0.8567 | 0.8492 | 0.8431 | | 0.0006 | 8.8333 | 5300 | 1.0108 | 0.8492 | 0.8758 | 0.8492 | 0.8510 | | 0.0009 | 9.0 | 5400 | 1.0780 | 0.8258 | 0.8473 | 0.8258 | 0.8275 | | 0.0003 | 9.1667 | 5500 | 0.8827 | 0.8538 | 0.8674 | 0.8538 | 0.8553 | | 0.0009 | 9.3333 | 5600 | 0.8098 | 0.8792 | 0.8974 | 0.8792 | 0.8813 | | 0.0003 | 9.5 | 5700 | 0.7615 | 0.8871 | 0.8989 | 0.8871 | 0.8870 | | 0.0003 | 9.6667 | 5800 | 0.7723 | 0.8867 | 0.8978 | 0.8867 | 0.8865 | | 0.0002 | 9.8333 | 5900 | 0.7841 | 0.8838 | 0.8949 | 0.8838 | 0.8837 | | 0.0002 | 10.0 | 6000 | 0.7924 | 0.8833 | 0.8944 | 0.8833 | 0.8833 | | 0.0002 | 10.1667 | 6100 | 0.7995 | 0.8838 | 0.8949 | 0.8838 | 0.8837 | | 0.0002 | 10.3333 | 6200 | 0.8072 | 0.8829 | 0.8944 | 0.8829 | 0.8830 | | 0.0002 | 10.5 | 6300 | 0.8127 | 0.8825 | 0.8942 | 0.8825 | 0.8826 | | 0.0002 | 10.6667 | 6400 | 0.8188 | 0.8825 | 0.8940 | 0.8825 | 0.8826 | | 0.0002 | 10.8333 | 6500 | 0.8247 | 0.8825 | 0.8940 | 0.8825 | 0.8826 | | 0.0002 | 11.0 | 6600 | 0.8301 | 0.8821 | 0.8934 | 0.8821 | 0.8820 | | 0.0002 | 11.1667 | 6700 | 0.8340 | 0.8821 | 0.8933 | 0.8821 | 0.8819 | | 0.0001 | 11.3333 | 6800 | 0.8387 | 0.8821 | 0.8931 | 0.8821 | 0.8819 | | 0.0001 | 11.5 | 6900 | 0.8439 | 0.8821 | 0.8931 | 0.8821 | 0.8819 | | 0.0001 | 11.6667 | 7000 | 0.8475 | 0.8821 | 0.8934 | 0.8821 | 0.8820 | | 0.0001 | 11.8333 | 7100 | 0.8511 | 0.8821 | 0.8935 | 0.8821 | 0.8821 | | 0.0001 | 12.0 | 7200 | 0.8555 | 0.8817 | 0.8932 | 0.8817 | 0.8817 | | 0.0001 | 12.1667 | 7300 | 0.8588 | 0.8817 | 0.8932 | 0.8817 | 0.8817 | | 0.0001 | 12.3333 | 7400 | 0.8621 | 0.8817 | 0.8932 | 0.8817 | 0.8817 | | 0.0001 | 12.5 | 7500 | 0.8649 | 0.8817 | 0.8935 | 0.8817 | 0.8817 | | 0.0001 | 12.6667 | 7600 | 0.8681 | 0.8812 | 0.8933 | 0.8812 | 0.8814 | | 0.0001 | 12.8333 | 7700 | 0.8708 | 0.8812 | 0.8933 | 0.8812 | 0.8814 | | 0.0001 | 13.0 | 7800 | 0.8738 | 0.8812 | 0.8933 | 0.8812 | 0.8814 | | 0.0001 | 13.1667 | 7900 | 0.8767 | 0.8812 | 0.8932 | 0.8812 | 0.8813 | | 0.0001 | 13.3333 | 8000 | 0.8787 | 0.8808 | 0.8929 | 0.8808 | 0.8810 | | 0.0001 | 13.5 | 8100 | 0.8809 | 0.8808 | 0.8929 | 0.8808 | 0.8810 | | 0.0001 | 13.6667 | 8200 | 0.8830 | 0.8812 | 0.8934 | 0.8812 | 0.8814 | | 0.0001 | 13.8333 | 8300 | 0.8847 | 0.8812 | 0.8934 | 0.8812 | 0.8814 | | 0.0001 | 14.0 | 8400 | 0.8861 | 0.8812 | 0.8934 | 0.8812 | 0.8814 | | 0.0001 | 14.1667 | 8500 | 0.8877 | 0.8812 | 0.8934 | 0.8812 | 0.8814 | | 0.0001 | 14.3333 | 8600 | 0.8887 | 0.8812 | 0.8936 | 0.8812 | 0.8814 | | 0.0001 | 14.5 | 8700 | 0.8896 | 0.8808 | 0.8933 | 0.8808 | 0.8811 | | 0.0001 | 14.6667 | 8800 | 0.8903 | 0.8812 | 0.8937 | 0.8812 | 0.8816 | | 0.0001 | 14.8333 | 8900 | 0.8907 | 0.8812 | 0.8937 | 0.8812 | 0.8816 | | 0.0001 | 15.0 | 9000 | 0.8909 | 0.8812 | 0.8937 | 0.8812 | 0.8816 | ### Framework versions - Transformers 4.48.2 - Pytorch 2.6.0+cu126 - Datasets 3.1.0 - Tokenizers 0.21.0
[ "mix-subtype_iva", "mix-subtype_iva2", "mix-subtype_ivc", "mix-subtype_ivd", "mix-subtype_ia", "mix-subtype_va" ]
Ivanrs/vit-base-kidney-stone-2-Michel_Daudon_-w256_1k_v1-_SEC
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-kidney-stone-2-Michel_Daudon_-w256_1k_v1-_SEC This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.3420 - Accuracy: 0.9192 - Precision: 0.9216 - Recall: 0.9192 - F1: 0.9190 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.2755 | 0.3333 | 100 | 0.7287 | 0.7708 | 0.7925 | 0.7708 | 0.7574 | | 0.1543 | 0.6667 | 200 | 0.4145 | 0.8708 | 0.8855 | 0.8708 | 0.8705 | | 0.0739 | 1.0 | 300 | 0.5222 | 0.8467 | 0.8812 | 0.8467 | 0.8463 | | 0.0491 | 1.3333 | 400 | 0.5282 | 0.8408 | 0.8582 | 0.8408 | 0.8427 | | 0.0666 | 1.6667 | 500 | 0.6483 | 0.8592 | 0.8691 | 0.8592 | 0.8596 | | 0.078 | 2.0 | 600 | 0.6382 | 0.8592 | 0.8602 | 0.8592 | 0.8580 | | 0.011 | 2.3333 | 700 | 0.8982 | 0.8217 | 0.8582 | 0.8217 | 0.8191 | | 0.0499 | 2.6667 | 800 | 0.8965 | 0.8475 | 0.8902 | 0.8475 | 0.8470 | | 0.0035 | 3.0 | 900 | 0.8278 | 0.8392 | 0.8674 | 0.8392 | 0.8398 | | 0.0707 | 3.3333 | 1000 | 0.3420 | 0.9192 | 0.9216 | 0.9192 | 0.9190 | | 0.003 | 3.6667 | 1100 | 0.5066 | 0.88 | 0.8971 | 0.88 | 0.8810 | | 0.0587 | 4.0 | 1200 | 0.6408 | 0.8817 | 0.8882 | 0.8817 | 0.8825 | | 0.0018 | 4.3333 | 1300 | 0.6582 | 0.8692 | 0.8759 | 0.8692 | 0.8693 | | 0.1528 | 4.6667 | 1400 | 0.6080 | 0.8758 | 0.9034 | 0.8758 | 0.8728 | | 0.0266 | 5.0 | 1500 | 0.5895 | 0.8708 | 0.8943 | 0.8708 | 0.8688 | | 0.0019 | 5.3333 | 1600 | 0.4804 | 0.8967 | 0.9022 | 0.8967 | 0.8966 | | 0.0011 | 5.6667 | 1700 | 0.6821 | 0.885 | 0.8926 | 0.885 | 0.8813 | | 0.0009 | 6.0 | 1800 | 0.6932 | 0.8683 | 0.8733 | 0.8683 | 0.8645 | | 0.0299 | 6.3333 | 1900 | 0.7787 | 0.8667 | 0.8843 | 0.8667 | 0.8663 | | 0.0007 | 6.6667 | 2000 | 0.5522 | 0.9042 | 0.9057 | 0.9042 | 0.9027 | | 0.0007 | 7.0 | 2100 | 0.5208 | 0.9067 | 0.9096 | 0.9067 | 0.9072 | | 0.0006 | 7.3333 | 2200 | 0.5342 | 0.905 | 0.9076 | 0.905 | 0.9053 | | 0.0006 | 7.6667 | 2300 | 0.7917 | 0.8517 | 0.8734 | 0.8517 | 0.8516 | | 0.0008 | 8.0 | 2400 | 0.9942 | 0.85 | 0.8666 | 0.85 | 0.8483 | | 0.0005 | 8.3333 | 2500 | 0.7367 | 0.8842 | 0.8853 | 0.8842 | 0.8815 | | 0.0075 | 8.6667 | 2600 | 0.6106 | 0.8833 | 0.8934 | 0.8833 | 0.8842 | | 0.0007 | 9.0 | 2700 | 0.6440 | 0.8817 | 0.8837 | 0.8817 | 0.8781 | | 0.0005 | 9.3333 | 2800 | 0.5905 | 0.905 | 0.9065 | 0.905 | 0.9047 | | 0.0004 | 9.6667 | 2900 | 0.5889 | 0.9033 | 0.9046 | 0.9033 | 0.9030 | | 0.0004 | 10.0 | 3000 | 0.7286 | 0.89 | 0.8981 | 0.89 | 0.8889 | | 0.0003 | 10.3333 | 3100 | 0.8314 | 0.875 | 0.8883 | 0.875 | 0.8754 | | 0.0003 | 10.6667 | 3200 | 0.7812 | 0.8808 | 0.8902 | 0.8808 | 0.8802 | | 0.0003 | 11.0 | 3300 | 0.7806 | 0.8817 | 0.8908 | 0.8817 | 0.8811 | | 0.0003 | 11.3333 | 3400 | 0.7808 | 0.8825 | 0.8910 | 0.8825 | 0.8821 | | 0.0003 | 11.6667 | 3500 | 0.5853 | 0.9025 | 0.9026 | 0.9025 | 0.9023 | | 0.0003 | 12.0 | 3600 | 0.8102 | 0.88 | 0.8876 | 0.88 | 0.8804 | | 0.0003 | 12.3333 | 3700 | 0.8667 | 0.8742 | 0.8802 | 0.8742 | 0.8744 | | 0.0003 | 12.6667 | 3800 | 0.8161 | 0.8783 | 0.8838 | 0.8783 | 0.8786 | | 0.0003 | 13.0 | 3900 | 0.8035 | 0.88 | 0.8854 | 0.88 | 0.8803 | | 0.0003 | 13.3333 | 4000 | 0.7989 | 0.88 | 0.8854 | 0.88 | 0.8803 | | 0.0002 | 13.6667 | 4100 | 0.8006 | 0.88 | 0.8850 | 0.88 | 0.8803 | | 0.0002 | 14.0 | 4200 | 0.8021 | 0.88 | 0.8850 | 0.88 | 0.8803 | | 0.0002 | 14.3333 | 4300 | 0.8028 | 0.8808 | 0.8858 | 0.8808 | 0.8811 | | 0.0002 | 14.6667 | 4400 | 0.8035 | 0.8808 | 0.8858 | 0.8808 | 0.8811 | | 0.0002 | 15.0 | 4500 | 0.8036 | 0.8808 | 0.8858 | 0.8808 | 0.8811 | ### Framework versions - Transformers 4.48.2 - Pytorch 2.6.0+cu126 - Datasets 3.1.0 - Tokenizers 0.21.0
[ "sec-subtype_iva", "sec-subtype_iva2", "sec-subtype_ivc", "sec-subtype_ivd", "sec-subtype_ia", "sec-subtype_va" ]
prithivMLmods/Traffic-Density-Classification
![dsfsdef.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/bpucqawIvBlE7i0YCG6ba.png) # **Traffic-Density-Classification** > **Traffic-Density-Classification** is an image classification vision-language encoder model fine-tuned from **google/siglip2-base-patch16-224** for a single-label classification task. It is designed to classify images into **traffic density** categories using the **SiglipForImageClassification** architecture. ```py Classification Report: precision recall f1-score support high-traffic 0.8647 0.8410 0.8527 585 low-traffic 0.8778 0.9485 0.9118 3803 medium-traffic 0.7785 0.6453 0.7057 1187 no-traffic 0.8730 0.7292 0.7946 528 accuracy 0.8602 6103 macro avg 0.8485 0.7910 0.8162 6103 weighted avg 0.8568 0.8602 0.8559 6103 ``` ![download.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/xatFDNCVZo5jGHW8njTmz.png) The model categorizes images into the following 4 classes: - **Class 0:** "high-traffic" - **Class 1:** "low-traffic" - **Class 2:** "medium-traffic" - **Class 3:** "no-traffic" # **Run with Transformers🤗** ```python !pip install -q transformers torch pillow gradio ``` ```python import gradio as gr from transformers import AutoImageProcessor from transformers import SiglipForImageClassification from transformers.image_utils import load_image from PIL import Image import torch # Load model and processor model_name = "prithivMLmods/Traffic-Density-Classification" model = SiglipForImageClassification.from_pretrained(model_name) processor = AutoImageProcessor.from_pretrained(model_name) def traffic_density_classification(image): """Predicts traffic density category for an image.""" image = Image.fromarray(image).convert("RGB") inputs = processor(images=image, return_tensors="pt") with torch.no_grad(): outputs = model(**inputs) logits = outputs.logits probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist() labels = { "0": "high-traffic", "1": "low-traffic", "2": "medium-traffic", "3": "no-traffic" } predictions = {labels[str(i)]: round(probs[i], 3) for i in range(len(probs))} return predictions # Create Gradio interface iface = gr.Interface( fn=traffic_density_classification, inputs=gr.Image(type="numpy"), outputs=gr.Label(label="Prediction Scores"), title="Traffic Density Classification", description="Upload an image to classify it into one of the 4 traffic density categories." ) # Launch the app if __name__ == "__main__": iface.launch() ``` # **Intended Use:** The **Traffic-Density-Classification** model is designed for traffic image classification. It helps categorize traffic density levels into predefined categories. Potential use cases include: - **Traffic Monitoring:** Classifying images from traffic cameras to assess congestion levels. - **Smart City Applications:** Assisting in traffic flow management and congestion reduction strategies. - **Automated Traffic Analysis:** Helping transportation authorities analyze and optimize road usage. - **AI Research:** Supporting computer vision-based traffic density classification models.
[ "high-traffic", "low-traffic", "medium-traffic", "no-traffic" ]
Ivanrs/vit-base-kidney-stone-2-Michel_Daudon_-w256_1k_v1-_SUR
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-kidney-stone-2-Michel_Daudon_-w256_1k_v1-_SUR This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.0040 - Accuracy: 0.6917 - Precision: 0.7078 - Recall: 0.6917 - F1: 0.6859 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.3876 | 0.3333 | 100 | 1.0040 | 0.6917 | 0.7078 | 0.6917 | 0.6859 | | 0.1233 | 0.6667 | 200 | 1.0383 | 0.7416 | 0.7515 | 0.7416 | 0.7427 | | 0.0709 | 1.0 | 300 | 1.3706 | 0.7294 | 0.7222 | 0.7294 | 0.7186 | | 0.0379 | 1.3333 | 400 | 1.3745 | 0.7105 | 0.7178 | 0.7105 | 0.7045 | | 0.0256 | 1.6667 | 500 | 1.1379 | 0.7939 | 0.8114 | 0.7939 | 0.7879 | | 0.0722 | 2.0 | 600 | 1.6149 | 0.6966 | 0.7899 | 0.6966 | 0.6896 | | 0.006 | 2.3333 | 700 | 1.2398 | 0.7351 | 0.7541 | 0.7351 | 0.7410 | | 0.0055 | 2.6667 | 800 | 1.6718 | 0.6893 | 0.7319 | 0.6893 | 0.6792 | | 0.0597 | 3.0 | 900 | 1.3485 | 0.7637 | 0.7550 | 0.7637 | 0.7530 | | 0.0621 | 3.3333 | 1000 | 1.2455 | 0.7907 | 0.7990 | 0.7907 | 0.7801 | | 0.049 | 3.6667 | 1100 | 1.3096 | 0.7841 | 0.7851 | 0.7841 | 0.7808 | | 0.0023 | 4.0 | 1200 | 1.3507 | 0.7800 | 0.7836 | 0.7800 | 0.7802 | | 0.0807 | 4.3333 | 1300 | 1.5510 | 0.7318 | 0.7666 | 0.7318 | 0.7421 | | 0.0486 | 4.6667 | 1400 | 1.7065 | 0.6860 | 0.7611 | 0.6860 | 0.6799 | | 0.0861 | 5.0 | 1500 | 1.2896 | 0.7702 | 0.7706 | 0.7702 | 0.7677 | | 0.0046 | 5.3333 | 1600 | 1.4991 | 0.7473 | 0.7584 | 0.7473 | 0.7467 | | 0.0015 | 5.6667 | 1700 | 1.5548 | 0.7539 | 0.7529 | 0.7539 | 0.7502 | | 0.0117 | 6.0 | 1800 | 1.6813 | 0.7261 | 0.7456 | 0.7261 | 0.7325 | | 0.0481 | 6.3333 | 1900 | 1.8190 | 0.7490 | 0.7836 | 0.7490 | 0.7511 | | 0.0011 | 6.6667 | 2000 | 1.8774 | 0.6877 | 0.6960 | 0.6877 | 0.6881 | | 0.0636 | 7.0 | 2100 | 1.8792 | 0.7204 | 0.7292 | 0.7204 | 0.7164 | | 0.0183 | 7.3333 | 2200 | 1.7606 | 0.7596 | 0.8027 | 0.7596 | 0.7589 | | 0.0023 | 7.6667 | 2300 | 1.4724 | 0.7449 | 0.7879 | 0.7449 | 0.7466 | | 0.0007 | 8.0 | 2400 | 1.4367 | 0.7751 | 0.7979 | 0.7751 | 0.7740 | | 0.0007 | 8.3333 | 2500 | 1.4553 | 0.7760 | 0.7965 | 0.7760 | 0.7749 | | 0.0006 | 8.6667 | 2600 | 1.4727 | 0.7776 | 0.7982 | 0.7776 | 0.7767 | | 0.0006 | 9.0 | 2700 | 1.4842 | 0.7768 | 0.7960 | 0.7768 | 0.7758 | | 0.0005 | 9.3333 | 2800 | 1.4965 | 0.7776 | 0.7963 | 0.7776 | 0.7766 | | 0.0005 | 9.6667 | 2900 | 1.5049 | 0.7792 | 0.7966 | 0.7792 | 0.7789 | | 0.0005 | 10.0 | 3000 | 1.5151 | 0.7792 | 0.7966 | 0.7792 | 0.7789 | | 0.0004 | 10.3333 | 3100 | 1.5238 | 0.7792 | 0.7958 | 0.7792 | 0.7792 | | 0.0004 | 10.6667 | 3200 | 1.5329 | 0.7776 | 0.7932 | 0.7776 | 0.7775 | | 0.0004 | 11.0 | 3300 | 1.5415 | 0.7760 | 0.7907 | 0.7760 | 0.7758 | | 0.0004 | 11.3333 | 3400 | 1.5492 | 0.7743 | 0.7882 | 0.7743 | 0.7742 | | 0.0003 | 11.6667 | 3500 | 1.5563 | 0.7735 | 0.7870 | 0.7735 | 0.7734 | | 0.0003 | 12.0 | 3600 | 1.5631 | 0.7735 | 0.7870 | 0.7735 | 0.7734 | | 0.0003 | 12.3333 | 3700 | 1.5691 | 0.7735 | 0.7870 | 0.7735 | 0.7734 | | 0.0003 | 12.6667 | 3800 | 1.5742 | 0.7735 | 0.7870 | 0.7735 | 0.7734 | | 0.0003 | 13.0 | 3900 | 1.5795 | 0.7743 | 0.7878 | 0.7743 | 0.7743 | | 0.0003 | 13.3333 | 4000 | 1.5838 | 0.7743 | 0.7875 | 0.7743 | 0.7745 | | 0.0003 | 13.6667 | 4100 | 1.5876 | 0.7727 | 0.7851 | 0.7727 | 0.7728 | | 0.0003 | 14.0 | 4200 | 1.5903 | 0.7735 | 0.7858 | 0.7735 | 0.7737 | | 0.0003 | 14.3333 | 4300 | 1.5926 | 0.7735 | 0.7858 | 0.7735 | 0.7737 | | 0.0003 | 14.6667 | 4400 | 1.5938 | 0.7735 | 0.7858 | 0.7735 | 0.7737 | | 0.0003 | 15.0 | 4500 | 1.5943 | 0.7735 | 0.7858 | 0.7735 | 0.7737 | ### Framework versions - Transformers 4.48.2 - Pytorch 2.6.0+cu126 - Datasets 3.1.0 - Tokenizers 0.21.0
[ "sur-subtype_iva", "sur-subtype_iva2", "sur-subtype_ivc", "sur-subtype_ivd", "sur-subtype_ia", "sur-subtype_va" ]
Schwa456/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
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
[ "apple_pie", "baby_back_ribs", "bruschetta", "waffles", "caesar_salad", "cannoli", "caprese_salad", "carrot_cake", "ceviche", "cheesecake", "cheese_plate", "chicken_curry", "chicken_quesadilla", "baklava", "chicken_wings", "chocolate_cake", "chocolate_mousse", "churros", "clam_chowder", "club_sandwich", "crab_cakes", "creme_brulee", "croque_madame", "cup_cakes", "beef_carpaccio", "deviled_eggs", "donuts", "dumplings", "edamame", "eggs_benedict", "escargots", "falafel", "filet_mignon", "fish_and_chips", "foie_gras", "beef_tartare", "french_fries", "french_onion_soup", "french_toast", "fried_calamari", "fried_rice", "frozen_yogurt", "garlic_bread", "gnocchi", "greek_salad", "grilled_cheese_sandwich", "beet_salad", "grilled_salmon", "guacamole", "gyoza", "hamburger", "hot_and_sour_soup", "hot_dog", "huevos_rancheros", "hummus", "ice_cream", "lasagna", "beignets", "lobster_bisque", "lobster_roll_sandwich", "macaroni_and_cheese", "macarons", "miso_soup", "mussels", "nachos", "omelette", "onion_rings", "oysters", "bibimbap", "pad_thai", "paella", "pancakes", "panna_cotta", "peking_duck", "pho", "pizza", "pork_chop", "poutine", "prime_rib", "bread_pudding", "pulled_pork_sandwich", "ramen", "ravioli", "red_velvet_cake", "risotto", "samosa", "sashimi", "scallops", "seaweed_salad", "shrimp_and_grits", "breakfast_burrito", "spaghetti_bolognese", "spaghetti_carbonara", "spring_rolls", "steak", "strawberry_shortcake", "sushi", "tacos", "takoyaki", "tiramisu", "tuna_tartare" ]
Schwa456/my_awesome_food_model
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_food_model This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.6731 - Accuracy: 0.872 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.7034 | 1.0 | 63 | 2.5287 | 0.818 | | 1.8181 | 2.0 | 126 | 1.8146 | 0.852 | | 1.5928 | 2.96 | 186 | 1.6731 | 0.872 | ### Framework versions - Transformers 4.49.0 - Pytorch 2.6.0+cpu - Datasets 3.4.1 - Tokenizers 0.21.1
[ "apple_pie", "baby_back_ribs", "bruschetta", "waffles", "caesar_salad", "cannoli", "caprese_salad", "carrot_cake", "ceviche", "cheesecake", "cheese_plate", "chicken_curry", "chicken_quesadilla", "baklava", "chicken_wings", "chocolate_cake", "chocolate_mousse", "churros", "clam_chowder", "club_sandwich", "crab_cakes", "creme_brulee", "croque_madame", "cup_cakes", "beef_carpaccio", "deviled_eggs", "donuts", "dumplings", "edamame", "eggs_benedict", "escargots", "falafel", "filet_mignon", "fish_and_chips", "foie_gras", "beef_tartare", "french_fries", "french_onion_soup", "french_toast", "fried_calamari", "fried_rice", "frozen_yogurt", "garlic_bread", "gnocchi", "greek_salad", "grilled_cheese_sandwich", "beet_salad", "grilled_salmon", "guacamole", "gyoza", "hamburger", "hot_and_sour_soup", "hot_dog", "huevos_rancheros", "hummus", "ice_cream", "lasagna", "beignets", "lobster_bisque", "lobster_roll_sandwich", "macaroni_and_cheese", "macarons", "miso_soup", "mussels", "nachos", "omelette", "onion_rings", "oysters", "bibimbap", "pad_thai", "paella", "pancakes", "panna_cotta", "peking_duck", "pho", "pizza", "pork_chop", "poutine", "prime_rib", "bread_pudding", "pulled_pork_sandwich", "ramen", "ravioli", "red_velvet_cake", "risotto", "samosa", "sashimi", "scallops", "seaweed_salad", "shrimp_and_grits", "breakfast_burrito", "spaghetti_bolognese", "spaghetti_carbonara", "spring_rolls", "steak", "strawberry_shortcake", "sushi", "tacos", "takoyaki", "tiramisu", "tuna_tartare" ]
FatimaK6/vitModelV1
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
[ "not reached", "reached" ]
prithivMLmods/Dog-Breed-120
![bnbxfgbnx.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/XKT2Um6LdpzG64N1djM7s.png) # **Dog-Breed-120** > **Dog-Breed-120** is an image classification vision-language encoder model fine-tuned from **google/siglip2-base-patch16-224** for a single-label classification task. It is designed to classify dog images into specific breed categories using the **SiglipForImageClassification** architecture. > [!Note] > Accuracy : 86.81 ```py {'eval_loss': 0.49717578291893005, 'eval_model_preparation_time': 0.0042, 'eval_accuracy': 0.8681275679906085, 'eval_runtime': 146.2493, 'eval_samples_per_second': 69.894, 'eval_steps_per_second': 8.739, 'epoch': 7.0} ``` The model categorizes images into the following 121 classes (0-120): - **Class 0:** "affenpinscher" - **Class 1:** "afghan_hound" - **Class 2:** "african_hunting_dog" - **Class 3:** "airedale" - **Class 4:** "american_staffordshire_terrier" - **Class 5:** "appenzeller" - **Class 6:** "australian_terrier" - **Class 7:** "basenji" - **Class 8:** "basset" - **Class 9:** "beagle" - **Class 10:** "bedlington_terrier" - **Class 11:** "bernese_mountain_dog" - **Class 12:** "black-and-tan_coonhound" - **Class 13:** "blenheim_spaniel" - **Class 14:** "bloodhound" - **Class 15:** "bluetick" - **Class 16:** "border_collie" - **Class 17:** "border_terrier" - **Class 18:** "borzoi" - **Class 19:** "boston_bull" - **Class 20:** "bouvier_des_flandres" - **Class 21:** "boxer" - **Class 22:** "brabancon_griffon" - **Class 23:** "briard" - **Class 24:** "brittany_spaniel" - **Class 25:** "bull_mastiff" - **Class 26:** "cairn" - **Class 27:** "cardigan" - **Class 28:** "chesapeake_bay_retriever" - **Class 29:** "chihuahua" - **Class 30:** "chow" - **Class 31:** "clumber" - **Class 32:** "cocker_spaniel" - **Class 33:** "collie" - **Class 34:** "curly-coated_retriever" - **Class 35:** "dandie_dinmont" - **Class 36:** "dhole" - **Class 37:** "dingo" - **Class 38:** "doberman" - **Class 39:** "english_foxhound" - **Class 40:** "english_setter" - **Class 41:** "english_springer" - **Class 42:** "entlebucher" - **Class 43:** "eskimo_dog" - **Class 44:** "flat-coated_retriever" - **Class 45:** "french_bulldog" - **Class 46:** "german_shepherd" - **Class 47:** "german_short-haired_pointer" - **Class 48:** "giant_schnauzer" - **Class 49:** "golden_retriever" - **Class 50:** "gordon_setter" - **Class 51:** "great_dane" - **Class 52:** "great_pyrenees" - **Class 53:** "greater_swiss_mountain_dog" - **Class 54:** "groenendael" - **Class 55:** "ibizan_hound" - **Class 56:** "irish_setter" - **Class 57:** "irish_terrier" - **Class 58:** "irish_water_spaniel" - **Class 59:** "irish_wolfhound" - **Class 60:** "italian_greyhound" - **Class 61:** "japanese_spaniel" - **Class 62:** "keeshond" - **Class 63:** "kelpie" - **Class 64:** "kerry_blue_terrier" - **Class 65:** "komondor" - **Class 66:** "kuvasz" - **Class 67:** "labrador_retriever" - **Class 68:** "lakeland_terrier" - **Class 69:** "leonberg" - **Class 70:** "lhasa" - **Class 71:** "malamute" - **Class 72:** "malinois" - **Class 73:** "maltese_dog" - **Class 74:** "mexican_hairless" - **Class 75:** "miniature_pinscher" - **Class 76:** "miniature_poodle" - **Class 77:** "miniature_schnauzer" - **Class 78:** "newfoundland" - **Class 79:** "norfolk_terrier" - **Class 80:** "norwegian_elkhound" - **Class 81:** "norwich_terrier" - **Class 82:** "old_english_sheepdog" - **Class 83:** "otterhound" - **Class 84:** "papillon" - **Class 85:** "pekinese" - **Class 86:** "pembroke" - **Class 87:** "pomeranian" - **Class 88:** "pug" - **Class 89:** "redbone" - **Class 90:** "rhodesian_ridgeback" - **Class 91:** "rottweiler" - **Class 92:** "saint_bernard" - **Class 93:** "saluki" - **Class 94:** "samoyed" - **Class 95:** "schipperke" - **Class 96:** "scotch_terrier" - **Class 97:** "scottish_deerhound" - **Class 98:** "sealyham_terrier" - **Class 99:** "shetland_sheepdog" - **Class 100:** "shih-tzu" - **Class 101:** "siberian_husky" - **Class 102:** "silky_terrier" - **Class 103:** "soft-coated_wheaten_terrier" - **Class 104:** "staffordshire_bullterrier" - **Class 105:** "standard_poodle" - **Class 106:** "standard_schnauzer" - **Class 107:** "sussex_spaniel" - **Class 108:** "test" - **Class 109:** "tibetan_mastiff" - **Class 110:** "tibetan_terrier" - **Class 111:** "toy_poodle" - **Class 112:** "toy_terrier" - **Class 113:** "vizsla" - **Class 114:** "walker_hound" - **Class 115:** "weimaraner" - **Class 116:** "welsh_springer_spaniel" - **Class 117:** "west_highland_white_terrier" - **Class 118:** "whippet" - **Class 119:** "wire-haired_fox_terrier" - **Class 120:** "yorkshire_terrier" # **Run with Transformers🤗** ```python !pip install -q transformers torch pillow gradio ``` ```python import gradio as gr from transformers import AutoImageProcessor, SiglipForImageClassification from PIL import Image import torch # Load model and processor model_name = "prithivMLmods/Dog-Breed-120" model = SiglipForImageClassification.from_pretrained(model_name) processor = AutoImageProcessor.from_pretrained(model_name) def dog_breed_classification(image): """Predicts the dog breed for an image.""" image = Image.fromarray(image).convert("RGB") inputs = processor(images=image, return_tensors="pt") with torch.no_grad(): outputs = model(**inputs) logits = outputs.logits probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist() labels = { "0": "affenpinscher", "1": "afghan_hound", "2": "african_hunting_dog", "3": "airedale", "4": "american_staffordshire_terrier", "5": "appenzeller", "6": "australian_terrier", "7": "basenji", "8": "basset", "9": "beagle", "10": "bedlington_terrier", "11": "bernese_mountain_dog", "12": "black-and-tan_coonhound", "13": "blenheim_spaniel", "14": "bloodhound", "15": "bluetick", "16": "border_collie", "17": "border_terrier", "18": "borzoi", "19": "boston_bull", "20": "bouvier_des_flandres", "21": "boxer", "22": "brabancon_griffon", "23": "briard", "24": "brittany_spaniel", "25": "bull_mastiff", "26": "cairn", "27": "cardigan", "28": "chesapeake_bay_retriever", "29": "chihuahua", "30": "chow", "31": "clumber", "32": "cocker_spaniel", "33": "collie", "34": "curly-coated_retriever", "35": "dandie_dinmont", "36": "dhole", "37": "dingo", "38": "doberman", "39": "english_foxhound", "40": "english_setter", "41": "english_springer", "42": "entlebucher", "43": "eskimo_dog", "44": "flat-coated_retriever", "45": "french_bulldog", "46": "german_shepherd", "47": "german_short-haired_pointer", "48": "giant_schnauzer", "49": "golden_retriever", "50": "gordon_setter", "51": "great_dane", "52": "great_pyrenees", "53": "greater_swiss_mountain_dog", "54": "groenendael", "55": "ibizan_hound", "56": "irish_setter", "57": "irish_terrier", "58": "irish_water_spaniel", "59": "irish_wolfhound", "60": "italian_greyhound", "61": "japanese_spaniel", "62": "keeshond", "63": "kelpie", "64": "kerry_blue_terrier", "65": "komondor", "66": "kuvasz", "67": "labrador_retriever", "68": "lakeland_terrier", "69": "leonberg", "70": "lhasa", "71": "malamute", "72": "malinois", "73": "maltese_dog", "74": "mexican_hairless", "75": "miniature_pinscher", "76": "miniature_poodle", "77": "miniature_schnauzer", "78": "newfoundland", "79": "norfolk_terrier", "80": "norwegian_elkhound", "81": "norwich_terrier", "82": "old_english_sheepdog", "83": "otterhound", "84": "papillon", "85": "pekinese", "86": "pembroke", "87": "pomeranian", "88": "pug", "89": "redbone", "90": "rhodesian_ridgeback", "91": "rottweiler", "92": "saint_bernard", "93": "saluki", "94": "samoyed", "95": "schipperke", "96": "scotch_terrier", "97": "scottish_deerhound", "98": "sealyham_terrier", "99": "shetland_sheepdog", "100": "shih-tzu", "101": "siberian_husky", "102": "silky_terrier", "103": "soft-coated_wheaten_terrier", "104": "staffordshire_bullterrier", "105": "standard_poodle", "106": "standard_schnauzer", "107": "sussex_spaniel", "108": "test", "109": "tibetan_mastiff", "110": "tibetan_terrier", "111": "toy_poodle", "112": "toy_terrier", "113": "vizsla", "114": "walker_hound", "115": "weimaraner", "116": "welsh_springer_spaniel", "117": "west_highland_white_terrier", "118": "whippet", "119": "wire-haired_fox_terrier", "120": "yorkshire_terrier" } predictions = {labels[str(i)]: round(probs[i], 3) for i in range(len(probs))} return predictions # Create Gradio interface iface = gr.Interface( fn=dog_breed_classification, inputs=gr.Image(type="numpy"), outputs=gr.Label(label="Prediction Scores"), title="Dog Breed Classification", description="Upload an image to classify it into one of the 121 dog breed categories." ) # Launch the app if __name__ == "__main__": iface.launch() ``` # **Intended Use:** The **Dog-Breed-120** model is designed for dog breed image classification. It helps categorize dog images into 121 specific breed categories. Potential use cases include: - **Pet Identification:** Assisting pet owners and veterinarians in identifying dog breeds. - **Animal Research:** Supporting research in canine genetics and behavior studies. - **E-commerce Applications:** Enhancing pet-related product recommendations and searches. - **Educational Purposes:** Aiding in learning and teaching about various dog breeds.
[ "affenpinscher", "afghan_hound", "african_hunting_dog", "airedale", "american_staffordshire_terrier", "appenzeller", "australian_terrier", "basenji", "basset", "beagle", "bedlington_terrier", "bernese_mountain_dog", "black-and-tan_coonhound", "blenheim_spaniel", "bloodhound", "bluetick", "border_collie", "border_terrier", "borzoi", "boston_bull", "bouvier_des_flandres", "boxer", "brabancon_griffon", "briard", "brittany_spaniel", "bull_mastiff", "cairn", "cardigan", "chesapeake_bay_retriever", "chihuahua", "chow", "clumber", "cocker_spaniel", "collie", "curly-coated_retriever", "dandie_dinmont", "dhole", "dingo", "doberman", "english_foxhound", "english_setter", "english_springer", "entlebucher", "eskimo_dog", "flat-coated_retriever", "french_bulldog", "german_shepherd", "german_short-haired_pointer", "giant_schnauzer", "golden_retriever", "gordon_setter", "great_dane", "great_pyrenees", "greater_swiss_mountain_dog", "groenendael", "ibizan_hound", "irish_setter", "irish_terrier", "irish_water_spaniel", "irish_wolfhound", "italian_greyhound", "japanese_spaniel", "keeshond", "kelpie", "kerry_blue_terrier", "komondor", "kuvasz", "labrador_retriever", "lakeland_terrier", "leonberg", "lhasa", "malamute", "malinois", "maltese_dog", "mexican_hairless", "miniature_pinscher", "miniature_poodle", "miniature_schnauzer", "newfoundland", "norfolk_terrier", "norwegian_elkhound", "norwich_terrier", "old_english_sheepdog", "otterhound", "papillon", "pekinese", "pembroke", "pomeranian", "pug", "redbone", "rhodesian_ridgeback", "rottweiler", "saint_bernard", "saluki", "samoyed", "schipperke", "scotch_terrier", "scottish_deerhound", "sealyham_terrier", "shetland_sheepdog", "shih-tzu", "siberian_husky", "silky_terrier", "soft-coated_wheaten_terrier", "staffordshire_bullterrier", "standard_poodle", "standard_schnauzer", "sussex_spaniel", "test", "tibetan_mastiff", "tibetan_terrier", "toy_poodle", "toy_terrier", "vizsla", "walker_hound", "weimaraner", "welsh_springer_spaniel", "west_highland_white_terrier", "whippet", "wire-haired_fox_terrier", "yorkshire_terrier" ]
prithivMLmods/BrainTumor-Classification-Mini
![zdssfvgdsfgv.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/c2PfLRNepMDxjhwfO8Tmy.png) # **BrainTumor-Classification-Mini** > **BrainTumor-Classification-Mini** is an image classification vision-language encoder model fine-tuned from **google/siglip2-base-patch16-224** for a single-label classification task. It is designed to classify brain tumor images using the **SiglipForImageClassification** architecture. ```py Classification Report: precision recall f1-score support No Tumor 0.9975 0.9962 0.9969 1595 Glioma 0.9872 0.9947 0.9910 1321 Meningioma 0.9880 0.9821 0.9850 1339 Pituitary 0.9931 0.9931 0.9931 1457 accuracy 0.9918 5712 macro avg 0.9915 0.9915 0.9915 5712 weighted avg 0.9918 0.9918 0.9918 5712 ``` ![download.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/AzW7SbNOuh9cxrV-8Kq8q.png) The model categorizes images into the following 4 classes: - **Class 0:** "No Tumor" - **Class 1:** "Glioma" - **Class 2:** "Meningioma" - **Class 3:** "Pituitary" # **Run with Transformers🤗** ```python !pip install -q transformers torch pillow gradio ``` ```python import gradio as gr from transformers import AutoImageProcessor from transformers import SiglipForImageClassification from transformers.image_utils import load_image from PIL import Image import torch # Load model and processor model_name = "prithivMLmods/BrainTumor-Classification-Mini" model = SiglipForImageClassification.from_pretrained(model_name) processor = AutoImageProcessor.from_pretrained(model_name) def brain_tumor_classification(image): """Predicts brain tumor category for an image.""" image = Image.fromarray(image).convert("RGB") inputs = processor(images=image, return_tensors="pt") with torch.no_grad(): outputs = model(**inputs) logits = outputs.logits probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist() labels = { "0": "No Tumor", "1": "Glioma", "2": "Meningioma", "3": "Pituitary" } predictions = {labels[str(i)]: round(probs[i], 3) for i in range(len(probs))} return predictions # Create Gradio interface iface = gr.Interface( fn=brain_tumor_classification, inputs=gr.Image(type="numpy"), outputs=gr.Label(label="Prediction Scores"), title="Brain Tumor Classification", description="Upload an image to classify it into one of the 4 brain tumor categories." ) # Launch the app if __name__ == "__main__": iface.launch() ``` # **Intended Use:** The **BrainTumor-Classification-Mini** model is designed for brain tumor image classification. It helps categorize MRI images into predefined tumor types. Potential use cases include: - **Medical Diagnosis Assistance:** Supporting radiologists in preliminary tumor classification. - **AI-Assisted Healthcare:** Enhancing automated tumor detection in medical imaging. - **Research & Development:** Facilitating studies in AI-driven medical imaging solutions. - **Educational Purposes:** Helping students and professionals learn about tumor classification using AI.
[ "no tumor", "glioma", "meningioma", "pituitary" ]
Ivanrs/vit-base-kidney-stone-3-Jonathan_El-Beze_-w256_1k_v1-_MIX
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-kidney-stone-3-Jonathan_El-Beze_-w256_1k_v1-_MIX This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.4696 - Accuracy: 0.895 - Precision: 0.9027 - Recall: 0.895 - F1: 0.8932 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.4341 | 0.1667 | 100 | 0.6618 | 0.7542 | 0.8323 | 0.7542 | 0.7028 | | 0.1842 | 0.3333 | 200 | 0.5375 | 0.8292 | 0.8571 | 0.8292 | 0.8250 | | 0.1017 | 0.5 | 300 | 0.5146 | 0.8446 | 0.8707 | 0.8446 | 0.8440 | | 0.1571 | 0.6667 | 400 | 0.6456 | 0.8213 | 0.8446 | 0.8213 | 0.8214 | | 0.2427 | 0.8333 | 500 | 1.0066 | 0.7275 | 0.7704 | 0.7275 | 0.7065 | | 0.0171 | 1.0 | 600 | 0.8354 | 0.7738 | 0.8158 | 0.7738 | 0.7607 | | 0.0093 | 1.1667 | 700 | 0.5837 | 0.8558 | 0.8664 | 0.8558 | 0.8568 | | 0.0892 | 1.3333 | 800 | 0.9045 | 0.7779 | 0.8225 | 0.7779 | 0.7605 | | 0.0053 | 1.5 | 900 | 0.5252 | 0.8771 | 0.8890 | 0.8771 | 0.8744 | | 0.0345 | 1.6667 | 1000 | 0.4696 | 0.895 | 0.9027 | 0.895 | 0.8932 | | 0.1789 | 1.8333 | 1100 | 1.3185 | 0.7338 | 0.7993 | 0.7338 | 0.7002 | | 0.0037 | 2.0 | 1200 | 0.9742 | 0.7746 | 0.8050 | 0.7746 | 0.7705 | | 0.0034 | 2.1667 | 1300 | 0.5805 | 0.8704 | 0.8765 | 0.8704 | 0.8711 | | 0.0026 | 2.3333 | 1400 | 0.8349 | 0.8346 | 0.8663 | 0.8346 | 0.8260 | | 0.1052 | 2.5 | 1500 | 0.5899 | 0.8571 | 0.8584 | 0.8571 | 0.8566 | | 0.1003 | 2.6667 | 1600 | 1.1080 | 0.7846 | 0.7992 | 0.7846 | 0.7588 | | 0.0012 | 2.8333 | 1700 | 0.5852 | 0.885 | 0.8915 | 0.885 | 0.8845 | | 0.0013 | 3.0 | 1800 | 1.4393 | 0.7429 | 0.8031 | 0.7429 | 0.7125 | | 0.0499 | 3.1667 | 1900 | 0.9394 | 0.8067 | 0.8500 | 0.8067 | 0.7941 | | 0.013 | 3.3333 | 2000 | 0.7218 | 0.8558 | 0.8681 | 0.8558 | 0.8488 | | 0.0034 | 3.5 | 2100 | 0.8017 | 0.8467 | 0.8627 | 0.8467 | 0.8401 | | 0.0084 | 3.6667 | 2200 | 0.6204 | 0.85 | 0.8566 | 0.85 | 0.8502 | | 0.0009 | 3.8333 | 2300 | 0.6290 | 0.8788 | 0.8819 | 0.8788 | 0.8786 | | 0.0076 | 4.0 | 2400 | 1.3498 | 0.7921 | 0.8431 | 0.7921 | 0.7847 | | 0.0011 | 4.1667 | 2500 | 0.6609 | 0.8812 | 0.8936 | 0.8812 | 0.8813 | | 0.0573 | 4.3333 | 2600 | 0.5998 | 0.8983 | 0.9000 | 0.8983 | 0.8974 | | 0.0007 | 4.5 | 2700 | 0.9958 | 0.8158 | 0.8427 | 0.8158 | 0.8092 | | 0.0011 | 4.6667 | 2800 | 0.7610 | 0.8775 | 0.8800 | 0.8775 | 0.8759 | | 0.0014 | 4.8333 | 2900 | 0.9071 | 0.8538 | 0.8722 | 0.8538 | 0.8548 | | 0.001 | 5.0 | 3000 | 0.9948 | 0.8258 | 0.8567 | 0.8258 | 0.8229 | | 0.0377 | 5.1667 | 3100 | 0.8527 | 0.8525 | 0.8921 | 0.8525 | 0.8519 | | 0.0008 | 5.3333 | 3200 | 1.0262 | 0.8225 | 0.8494 | 0.8225 | 0.8189 | | 0.0006 | 5.5 | 3300 | 0.8837 | 0.8433 | 0.8668 | 0.8433 | 0.8389 | | 0.0007 | 5.6667 | 3400 | 1.1268 | 0.8113 | 0.8290 | 0.8113 | 0.8061 | | 0.0005 | 5.8333 | 3500 | 0.6874 | 0.89 | 0.8925 | 0.89 | 0.8898 | | 0.0009 | 6.0 | 3600 | 0.6892 | 0.8742 | 0.8738 | 0.8742 | 0.8733 | | 0.0006 | 6.1667 | 3700 | 0.5795 | 0.8812 | 0.8820 | 0.8812 | 0.8810 | | 0.0009 | 6.3333 | 3800 | 1.6193 | 0.7342 | 0.7824 | 0.7342 | 0.7179 | | 0.0007 | 6.5 | 3900 | 1.0575 | 0.835 | 0.8548 | 0.835 | 0.8268 | | 0.0594 | 6.6667 | 4000 | 1.1842 | 0.7858 | 0.8102 | 0.7858 | 0.7794 | | 0.0003 | 6.8333 | 4100 | 0.9934 | 0.8517 | 0.8720 | 0.8517 | 0.8469 | | 0.1235 | 7.0 | 4200 | 0.9902 | 0.8183 | 0.8452 | 0.8183 | 0.8132 | | 0.0007 | 7.1667 | 4300 | 0.8515 | 0.8604 | 0.8711 | 0.8604 | 0.8574 | | 0.0005 | 7.3333 | 4400 | 0.6680 | 0.8929 | 0.9026 | 0.8929 | 0.8911 | | 0.0003 | 7.5 | 4500 | 1.5196 | 0.7696 | 0.8260 | 0.7696 | 0.7366 | | 0.0003 | 7.6667 | 4600 | 1.3149 | 0.7883 | 0.8369 | 0.7883 | 0.7865 | | 0.0003 | 7.8333 | 4700 | 0.7309 | 0.8717 | 0.8818 | 0.8717 | 0.8710 | | 0.0002 | 8.0 | 4800 | 0.8831 | 0.8638 | 0.8734 | 0.8638 | 0.8648 | | 0.0002 | 8.1667 | 4900 | 1.1670 | 0.8133 | 0.8512 | 0.8133 | 0.8105 | | 0.0003 | 8.3333 | 5000 | 0.6684 | 0.8979 | 0.9055 | 0.8979 | 0.8985 | | 0.0002 | 8.5 | 5100 | 0.6811 | 0.8971 | 0.9046 | 0.8971 | 0.8977 | | 0.0002 | 8.6667 | 5200 | 0.6814 | 0.8971 | 0.9044 | 0.8971 | 0.8977 | | 0.0002 | 8.8333 | 5300 | 0.6898 | 0.8979 | 0.9059 | 0.8979 | 0.8986 | | 0.0002 | 9.0 | 5400 | 0.6942 | 0.8992 | 0.9073 | 0.8992 | 0.8999 | | 0.0002 | 9.1667 | 5500 | 0.6987 | 0.8992 | 0.9073 | 0.8992 | 0.8999 | | 0.0002 | 9.3333 | 5600 | 0.7072 | 0.8992 | 0.9076 | 0.8992 | 0.8999 | | 0.0001 | 9.5 | 5700 | 0.7091 | 0.8983 | 0.9066 | 0.8983 | 0.8990 | | 0.0001 | 9.6667 | 5800 | 0.7138 | 0.8983 | 0.9067 | 0.8983 | 0.8990 | | 0.0001 | 9.8333 | 5900 | 0.7185 | 0.8992 | 0.9074 | 0.8992 | 0.8998 | | 0.0001 | 10.0 | 6000 | 0.7225 | 0.8992 | 0.9074 | 0.8992 | 0.8998 | | 0.0001 | 10.1667 | 6100 | 0.7255 | 0.9 | 0.9082 | 0.9 | 0.9006 | | 0.0001 | 10.3333 | 6200 | 0.7305 | 0.8992 | 0.9076 | 0.8992 | 0.8998 | | 0.0001 | 10.5 | 6300 | 0.7354 | 0.8992 | 0.9076 | 0.8992 | 0.8998 | | 0.0001 | 10.6667 | 6400 | 0.7386 | 0.8988 | 0.9072 | 0.8988 | 0.8995 | | 0.0001 | 10.8333 | 6500 | 0.7436 | 0.8988 | 0.9072 | 0.8988 | 0.8995 | | 0.0001 | 11.0 | 6600 | 0.7478 | 0.8983 | 0.9069 | 0.8983 | 0.8991 | | 0.0001 | 11.1667 | 6700 | 0.7506 | 0.8983 | 0.9069 | 0.8983 | 0.8991 | | 0.0001 | 11.3333 | 6800 | 0.7561 | 0.8979 | 0.9067 | 0.8979 | 0.8987 | | 0.0001 | 11.5 | 6900 | 0.7599 | 0.8975 | 0.9062 | 0.8975 | 0.8983 | | 0.0001 | 11.6667 | 7000 | 0.7634 | 0.8979 | 0.9067 | 0.8979 | 0.8987 | | 0.0001 | 11.8333 | 7100 | 0.7652 | 0.8988 | 0.9074 | 0.8988 | 0.8995 | | 0.0001 | 12.0 | 7200 | 0.7675 | 0.8988 | 0.9074 | 0.8988 | 0.8995 | | 0.0001 | 12.1667 | 7300 | 0.7700 | 0.8988 | 0.9074 | 0.8988 | 0.8995 | | 0.0001 | 12.3333 | 7400 | 0.7727 | 0.8988 | 0.9074 | 0.8988 | 0.8995 | | 0.0001 | 12.5 | 7500 | 0.7764 | 0.8979 | 0.9069 | 0.8979 | 0.8987 | | 0.0001 | 12.6667 | 7600 | 0.7793 | 0.8979 | 0.9069 | 0.8979 | 0.8987 | | 0.0001 | 12.8333 | 7700 | 0.7809 | 0.8979 | 0.9069 | 0.8979 | 0.8987 | | 0.0001 | 13.0 | 7800 | 0.7831 | 0.8979 | 0.9069 | 0.8979 | 0.8987 | | 0.0001 | 13.1667 | 7900 | 0.7857 | 0.8979 | 0.9069 | 0.8979 | 0.8987 | | 0.0001 | 13.3333 | 8000 | 0.7878 | 0.8979 | 0.9069 | 0.8979 | 0.8987 | | 0.0001 | 13.5 | 8100 | 0.7895 | 0.8979 | 0.9070 | 0.8979 | 0.8986 | | 0.0001 | 13.6667 | 8200 | 0.7910 | 0.8979 | 0.9070 | 0.8979 | 0.8986 | | 0.0001 | 13.8333 | 8300 | 0.7926 | 0.8979 | 0.9070 | 0.8979 | 0.8986 | | 0.0001 | 14.0 | 8400 | 0.7939 | 0.8979 | 0.9070 | 0.8979 | 0.8986 | | 0.0001 | 14.1667 | 8500 | 0.7955 | 0.8979 | 0.9070 | 0.8979 | 0.8986 | | 0.0001 | 14.3333 | 8600 | 0.7961 | 0.8979 | 0.9070 | 0.8979 | 0.8986 | | 0.0001 | 14.5 | 8700 | 0.7970 | 0.8979 | 0.9070 | 0.8979 | 0.8986 | | 0.0001 | 14.6667 | 8800 | 0.7977 | 0.8983 | 0.9076 | 0.8983 | 0.8991 | | 0.0001 | 14.8333 | 8900 | 0.7982 | 0.8983 | 0.9076 | 0.8983 | 0.8991 | | 0.0001 | 15.0 | 9000 | 0.7983 | 0.8983 | 0.9076 | 0.8983 | 0.8991 | ### Framework versions - Transformers 4.48.2 - Pytorch 2.6.0+cu126 - Datasets 3.1.0 - Tokenizers 0.21.0
[ "mix-subtype_iiia", "mix-subtype_iia", "mix-subtype_ivc", "mix-subtype_ivd", "mix-subtype_ia", "mix-subtype_va" ]
Ivanrs/vit-base-kidney-stone-3-Jonathan_El-Beze_-w256_1k_v1-_SEC
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-kidney-stone-3-Jonathan_El-Beze_-w256_1k_v1-_SEC This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.1421 - Accuracy: 0.97 - Precision: 0.9711 - Recall: 0.97 - F1: 0.9700 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.1782 | 0.3333 | 100 | 1.5537 | 0.59 | 0.6419 | 0.59 | 0.5106 | | 0.0982 | 0.6667 | 200 | 1.5012 | 0.6658 | 0.6563 | 0.6658 | 0.6262 | | 0.1236 | 1.0 | 300 | 0.3710 | 0.895 | 0.9085 | 0.895 | 0.8958 | | 0.0078 | 1.3333 | 400 | 1.4374 | 0.6992 | 0.7299 | 0.6992 | 0.6613 | | 0.0049 | 1.6667 | 500 | 0.4037 | 0.9058 | 0.9181 | 0.9058 | 0.9064 | | 0.0047 | 2.0 | 600 | 1.7908 | 0.675 | 0.7138 | 0.675 | 0.6297 | | 0.0032 | 2.3333 | 700 | 1.1430 | 0.8233 | 0.8831 | 0.8233 | 0.7906 | | 0.0027 | 2.6667 | 800 | 1.1627 | 0.735 | 0.8254 | 0.735 | 0.7005 | | 0.0018 | 3.0 | 900 | 0.8254 | 0.8292 | 0.8864 | 0.8292 | 0.8050 | | 0.0016 | 3.3333 | 1000 | 1.2364 | 0.7625 | 0.8527 | 0.7625 | 0.7462 | | 0.0027 | 3.6667 | 1100 | 0.2785 | 0.9267 | 0.9359 | 0.9267 | 0.9271 | | 0.001 | 4.0 | 1200 | 0.6703 | 0.8775 | 0.9013 | 0.8775 | 0.8784 | | 0.001 | 4.3333 | 1300 | 0.8848 | 0.8458 | 0.8925 | 0.8458 | 0.8397 | | 0.0009 | 4.6667 | 1400 | 0.3603 | 0.9183 | 0.9325 | 0.9183 | 0.9199 | | 0.0007 | 5.0 | 1500 | 0.4274 | 0.9183 | 0.9325 | 0.9183 | 0.9144 | | 0.0006 | 5.3333 | 1600 | 0.3995 | 0.9233 | 0.9368 | 0.9233 | 0.9200 | | 0.0005 | 5.6667 | 1700 | 0.3866 | 0.9258 | 0.9384 | 0.9258 | 0.9229 | | 0.0012 | 6.0 | 1800 | 0.5027 | 0.9083 | 0.9401 | 0.9083 | 0.9110 | | 0.0004 | 6.3333 | 1900 | 0.1421 | 0.97 | 0.9711 | 0.97 | 0.9700 | | 0.0004 | 6.6667 | 2000 | 0.1475 | 0.97 | 0.9713 | 0.97 | 0.9700 | | 0.0004 | 7.0 | 2100 | 0.1484 | 0.9708 | 0.9720 | 0.9708 | 0.9709 | | 0.0003 | 7.3333 | 2200 | 0.1502 | 0.97 | 0.9712 | 0.97 | 0.9700 | | 0.0003 | 7.6667 | 2300 | 0.1530 | 0.97 | 0.9712 | 0.97 | 0.9700 | | 0.0003 | 8.0 | 2400 | 0.1539 | 0.9708 | 0.9720 | 0.9708 | 0.9709 | | 0.0003 | 8.3333 | 2500 | 0.1565 | 0.9708 | 0.9719 | 0.9708 | 0.9708 | | 0.0003 | 8.6667 | 2600 | 0.1574 | 0.9708 | 0.9719 | 0.9708 | 0.9708 | | 0.0002 | 9.0 | 2700 | 0.1592 | 0.9717 | 0.9727 | 0.9717 | 0.9717 | | 0.0002 | 9.3333 | 2800 | 0.1610 | 0.9717 | 0.9727 | 0.9717 | 0.9717 | | 0.0002 | 9.6667 | 2900 | 0.1626 | 0.9708 | 0.9719 | 0.9708 | 0.9708 | | 0.0002 | 10.0 | 3000 | 0.1636 | 0.9708 | 0.9719 | 0.9708 | 0.9708 | | 0.0002 | 10.3333 | 3100 | 0.1645 | 0.9708 | 0.9719 | 0.9708 | 0.9708 | | 0.0002 | 10.6667 | 3200 | 0.1657 | 0.9708 | 0.9719 | 0.9708 | 0.9708 | | 0.0002 | 11.0 | 3300 | 0.1669 | 0.9708 | 0.9719 | 0.9708 | 0.9708 | | 0.0002 | 11.3333 | 3400 | 0.1682 | 0.97 | 0.9712 | 0.97 | 0.9700 | | 0.0002 | 11.6667 | 3500 | 0.1691 | 0.97 | 0.9712 | 0.97 | 0.9700 | | 0.0002 | 12.0 | 3600 | 0.1697 | 0.97 | 0.9712 | 0.97 | 0.9700 | | 0.0002 | 12.3333 | 3700 | 0.1704 | 0.97 | 0.9712 | 0.97 | 0.9700 | | 0.0002 | 12.6667 | 3800 | 0.1709 | 0.97 | 0.9712 | 0.97 | 0.9700 | | 0.0001 | 13.0 | 3900 | 0.1715 | 0.9692 | 0.9704 | 0.9692 | 0.9692 | | 0.0001 | 13.3333 | 4000 | 0.1721 | 0.9692 | 0.9704 | 0.9692 | 0.9692 | | 0.0001 | 13.6667 | 4100 | 0.1727 | 0.9692 | 0.9704 | 0.9692 | 0.9692 | | 0.0001 | 14.0 | 4200 | 0.1730 | 0.9692 | 0.9704 | 0.9692 | 0.9692 | | 0.0001 | 14.3333 | 4300 | 0.1731 | 0.9692 | 0.9704 | 0.9692 | 0.9692 | | 0.0001 | 14.6667 | 4400 | 0.1733 | 0.9692 | 0.9704 | 0.9692 | 0.9692 | | 0.0001 | 15.0 | 4500 | 0.1734 | 0.9692 | 0.9704 | 0.9692 | 0.9692 | ### Framework versions - Transformers 4.48.2 - Pytorch 2.6.0+cu126 - Datasets 3.1.0 - Tokenizers 0.21.0
[ "sec-subtype_iiia", "sec-subtype_iia", "sec-subtype_ivc", "sec-subtype_ivd", "sec-subtype_ia", "sec-subtype_va" ]
Ivanrs/vit-base-kidney-stone-3-Jonathan_El-Beze_-w256_1k_v1-_SUR
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-kidney-stone-3-Jonathan_El-Beze_-w256_1k_v1-_SUR This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.5478 - Accuracy: 0.8875 - Precision: 0.8942 - Recall: 0.8875 - F1: 0.8875 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.3968 | 0.3333 | 100 | 0.7205 | 0.7083 | 0.7287 | 0.7083 | 0.6701 | | 0.0922 | 0.6667 | 200 | 0.7700 | 0.7433 | 0.7885 | 0.7433 | 0.7336 | | 0.216 | 1.0 | 300 | 0.7658 | 0.7875 | 0.8259 | 0.7875 | 0.7863 | | 0.0292 | 1.3333 | 400 | 0.7448 | 0.7983 | 0.8228 | 0.7983 | 0.7899 | | 0.0139 | 1.6667 | 500 | 0.7137 | 0.8433 | 0.8527 | 0.8433 | 0.8416 | | 0.0841 | 2.0 | 600 | 0.6836 | 0.8608 | 0.8715 | 0.8608 | 0.8603 | | 0.0769 | 2.3333 | 700 | 0.5478 | 0.8875 | 0.8942 | 0.8875 | 0.8875 | | 0.0046 | 2.6667 | 800 | 0.8076 | 0.8308 | 0.8564 | 0.8308 | 0.8314 | | 0.019 | 3.0 | 900 | 0.8791 | 0.8408 | 0.8617 | 0.8408 | 0.8297 | | 0.0451 | 3.3333 | 1000 | 0.7948 | 0.8567 | 0.8578 | 0.8567 | 0.8549 | | 0.0022 | 3.6667 | 1100 | 0.7782 | 0.8592 | 0.8610 | 0.8592 | 0.8592 | | 0.1346 | 4.0 | 1200 | 2.1560 | 0.62 | 0.7251 | 0.62 | 0.5922 | | 0.0825 | 4.3333 | 1300 | 0.8192 | 0.8317 | 0.8600 | 0.8317 | 0.8297 | | 0.0035 | 4.6667 | 1400 | 0.9398 | 0.8325 | 0.8360 | 0.8325 | 0.8265 | | 0.0015 | 5.0 | 1500 | 0.8447 | 0.8367 | 0.8504 | 0.8367 | 0.8321 | | 0.0013 | 5.3333 | 1600 | 1.1910 | 0.765 | 0.7940 | 0.765 | 0.7562 | | 0.0009 | 5.6667 | 1700 | 0.9889 | 0.8317 | 0.8360 | 0.8317 | 0.8288 | | 0.009 | 6.0 | 1800 | 0.8982 | 0.8517 | 0.8577 | 0.8517 | 0.8497 | | 0.0007 | 6.3333 | 1900 | 0.8245 | 0.8683 | 0.8690 | 0.8683 | 0.8659 | | 0.0006 | 6.6667 | 2000 | 0.8204 | 0.8708 | 0.8718 | 0.8708 | 0.8686 | | 0.001 | 7.0 | 2100 | 1.3166 | 0.8 | 0.7992 | 0.8 | 0.7964 | | 0.0006 | 7.3333 | 2200 | 1.0597 | 0.8383 | 0.8440 | 0.8383 | 0.8306 | | 0.001 | 7.6667 | 2300 | 0.8703 | 0.8617 | 0.8592 | 0.8617 | 0.8586 | | 0.0005 | 8.0 | 2400 | 1.0801 | 0.835 | 0.8377 | 0.835 | 0.8334 | | 0.0007 | 8.3333 | 2500 | 1.3133 | 0.7975 | 0.8092 | 0.7975 | 0.7974 | | 0.0004 | 8.6667 | 2600 | 1.0982 | 0.845 | 0.8581 | 0.845 | 0.8420 | | 0.0004 | 9.0 | 2700 | 0.9103 | 0.8575 | 0.8742 | 0.8575 | 0.8558 | | 0.0003 | 9.3333 | 2800 | 0.9156 | 0.8517 | 0.8642 | 0.8517 | 0.8506 | | 0.0003 | 9.6667 | 2900 | 0.9209 | 0.8517 | 0.8645 | 0.8517 | 0.8506 | | 0.0003 | 10.0 | 3000 | 0.9283 | 0.8517 | 0.8645 | 0.8517 | 0.8506 | | 0.0003 | 10.3333 | 3100 | 0.9326 | 0.8533 | 0.8658 | 0.8533 | 0.8524 | | 0.0003 | 10.6667 | 3200 | 0.9352 | 0.8542 | 0.8664 | 0.8542 | 0.8531 | | 0.0003 | 11.0 | 3300 | 0.9393 | 0.8533 | 0.8655 | 0.8533 | 0.8522 | | 0.0003 | 11.3333 | 3400 | 0.9418 | 0.8558 | 0.8672 | 0.8558 | 0.8545 | | 0.0002 | 11.6667 | 3500 | 0.9446 | 0.855 | 0.8662 | 0.855 | 0.8537 | | 0.0002 | 12.0 | 3600 | 0.9476 | 0.8567 | 0.8681 | 0.8567 | 0.8553 | | 0.0002 | 12.3333 | 3700 | 0.9502 | 0.8567 | 0.8681 | 0.8567 | 0.8553 | | 0.0002 | 12.6667 | 3800 | 0.9523 | 0.8567 | 0.8681 | 0.8567 | 0.8553 | | 0.0002 | 13.0 | 3900 | 0.9538 | 0.8567 | 0.8681 | 0.8567 | 0.8553 | | 0.0002 | 13.3333 | 4000 | 0.9558 | 0.8567 | 0.8681 | 0.8567 | 0.8553 | | 0.0002 | 13.6667 | 4100 | 0.9572 | 0.8567 | 0.8681 | 0.8567 | 0.8553 | | 0.0002 | 14.0 | 4200 | 0.9584 | 0.8567 | 0.8681 | 0.8567 | 0.8553 | | 0.0002 | 14.3333 | 4300 | 0.9588 | 0.8567 | 0.8681 | 0.8567 | 0.8553 | | 0.0002 | 14.6667 | 4400 | 0.9595 | 0.8558 | 0.8669 | 0.8558 | 0.8545 | | 0.0002 | 15.0 | 4500 | 0.9597 | 0.8558 | 0.8669 | 0.8558 | 0.8545 | ### Framework versions - Transformers 4.48.2 - Pytorch 2.6.0+cu126 - Datasets 3.1.0 - Tokenizers 0.21.0
[ "sur-subtype_iiia", "sur-subtype_iia", "sur-subtype_ivc", "sur-subtype_ivd", "sur-subtype_ia", "sur-subtype_va" ]
Ivanrs/vit-base-kidney-stone-3-Michel_Daudon_-w256_1k_v1-_MIX
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-kidney-stone-3-Michel_Daudon_-w256_1k_v1-_MIX This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.6275 - Accuracy: 0.8742 - Precision: 0.8819 - Recall: 0.8742 - F1: 0.8750 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.3615 | 0.1667 | 100 | 0.7152 | 0.7458 | 0.8206 | 0.7458 | 0.7378 | | 0.2196 | 0.3333 | 200 | 0.6798 | 0.775 | 0.8188 | 0.775 | 0.7769 | | 0.2042 | 0.5 | 300 | 0.6700 | 0.7971 | 0.8383 | 0.7971 | 0.8057 | | 0.177 | 0.6667 | 400 | 0.7327 | 0.8092 | 0.8387 | 0.8092 | 0.8142 | | 0.2132 | 0.8333 | 500 | 0.7204 | 0.8054 | 0.8224 | 0.8054 | 0.8087 | | 0.4081 | 1.0 | 600 | 0.8022 | 0.8067 | 0.8246 | 0.8067 | 0.8045 | | 0.138 | 1.1667 | 700 | 0.7309 | 0.82 | 0.8416 | 0.82 | 0.8224 | | 0.0145 | 1.3333 | 800 | 0.6764 | 0.8367 | 0.8514 | 0.8367 | 0.8408 | | 0.0566 | 1.5 | 900 | 0.7420 | 0.8192 | 0.8387 | 0.8192 | 0.8223 | | 0.0072 | 1.6667 | 1000 | 0.6850 | 0.8313 | 0.8399 | 0.8313 | 0.8328 | | 0.0273 | 1.8333 | 1100 | 1.0173 | 0.8013 | 0.7947 | 0.8013 | 0.7908 | | 0.0378 | 2.0 | 1200 | 0.7624 | 0.83 | 0.8341 | 0.83 | 0.8281 | | 0.01 | 2.1667 | 1300 | 1.0041 | 0.7971 | 0.8459 | 0.7971 | 0.7972 | | 0.2192 | 2.3333 | 1400 | 0.9177 | 0.81 | 0.8593 | 0.81 | 0.8109 | | 0.045 | 2.5 | 1500 | 0.9214 | 0.8008 | 0.8468 | 0.8008 | 0.8065 | | 0.0032 | 2.6667 | 1600 | 0.8712 | 0.8171 | 0.8436 | 0.8171 | 0.8208 | | 0.134 | 2.8333 | 1700 | 0.9849 | 0.8129 | 0.8288 | 0.8129 | 0.8129 | | 0.0571 | 3.0 | 1800 | 1.0024 | 0.8175 | 0.8620 | 0.8175 | 0.8214 | | 0.0015 | 3.1667 | 1900 | 0.6275 | 0.8742 | 0.8819 | 0.8742 | 0.8750 | | 0.0013 | 3.3333 | 2000 | 0.8558 | 0.84 | 0.8442 | 0.84 | 0.8409 | | 0.1176 | 3.5 | 2100 | 0.9387 | 0.8379 | 0.8570 | 0.8379 | 0.8375 | | 0.0081 | 3.6667 | 2200 | 1.3262 | 0.7858 | 0.8560 | 0.7858 | 0.7928 | | 0.0012 | 3.8333 | 2300 | 1.2201 | 0.8033 | 0.8241 | 0.8033 | 0.8030 | | 0.0018 | 4.0 | 2400 | 0.9460 | 0.8325 | 0.8694 | 0.8325 | 0.8389 | | 0.0412 | 4.1667 | 2500 | 0.9619 | 0.8387 | 0.8617 | 0.8387 | 0.8425 | | 0.0013 | 4.3333 | 2600 | 1.3212 | 0.8037 | 0.8370 | 0.8037 | 0.8037 | | 0.011 | 4.5 | 2700 | 1.1590 | 0.8113 | 0.8201 | 0.8113 | 0.8085 | | 0.0835 | 4.6667 | 2800 | 1.0838 | 0.8154 | 0.8495 | 0.8154 | 0.8194 | | 0.162 | 4.8333 | 2900 | 1.1564 | 0.8071 | 0.8309 | 0.8071 | 0.8045 | | 0.0013 | 5.0 | 3000 | 1.1460 | 0.785 | 0.8074 | 0.785 | 0.7915 | | 0.0043 | 5.1667 | 3100 | 0.7268 | 0.8371 | 0.8578 | 0.8371 | 0.8383 | | 0.0064 | 5.3333 | 3200 | 1.1635 | 0.8163 | 0.8599 | 0.8163 | 0.8171 | | 0.0669 | 5.5 | 3300 | 1.1532 | 0.8008 | 0.8245 | 0.8008 | 0.8030 | | 0.0009 | 5.6667 | 3400 | 0.9171 | 0.8342 | 0.8579 | 0.8342 | 0.8309 | | 0.0307 | 5.8333 | 3500 | 1.0002 | 0.8333 | 0.8535 | 0.8333 | 0.8355 | | 0.037 | 6.0 | 3600 | 1.1057 | 0.7979 | 0.8193 | 0.7979 | 0.8046 | | 0.0008 | 6.1667 | 3700 | 0.9506 | 0.8342 | 0.8477 | 0.8342 | 0.8336 | | 0.0039 | 6.3333 | 3800 | 0.9781 | 0.8317 | 0.8335 | 0.8317 | 0.8293 | | 0.0006 | 6.5 | 3900 | 0.9525 | 0.8554 | 0.8659 | 0.8554 | 0.8510 | | 0.0204 | 6.6667 | 4000 | 0.8203 | 0.8558 | 0.8536 | 0.8558 | 0.8535 | | 0.0007 | 6.8333 | 4100 | 1.0635 | 0.8392 | 0.8640 | 0.8392 | 0.8346 | | 0.0364 | 7.0 | 4200 | 0.8218 | 0.8508 | 0.8667 | 0.8508 | 0.8495 | | 0.0011 | 7.1667 | 4300 | 1.1496 | 0.8217 | 0.8489 | 0.8217 | 0.8214 | | 0.0754 | 7.3333 | 4400 | 0.7383 | 0.8521 | 0.8567 | 0.8521 | 0.8509 | | 0.0007 | 7.5 | 4500 | 1.0083 | 0.8246 | 0.8397 | 0.8246 | 0.8216 | | 0.0005 | 7.6667 | 4600 | 0.8850 | 0.8458 | 0.8587 | 0.8458 | 0.8456 | | 0.0004 | 7.8333 | 4700 | 0.8987 | 0.8488 | 0.8621 | 0.8488 | 0.8483 | | 0.0067 | 8.0 | 4800 | 0.8969 | 0.8421 | 0.8541 | 0.8421 | 0.8432 | | 0.0003 | 8.1667 | 4900 | 1.1115 | 0.8171 | 0.8233 | 0.8171 | 0.8175 | | 0.0002 | 8.3333 | 5000 | 1.1313 | 0.8154 | 0.8225 | 0.8154 | 0.8165 | | 0.0004 | 8.5 | 5100 | 1.5668 | 0.8017 | 0.8439 | 0.8017 | 0.7970 | | 0.0003 | 8.6667 | 5200 | 1.2458 | 0.8237 | 0.8579 | 0.8237 | 0.8247 | | 0.0009 | 8.8333 | 5300 | 1.1443 | 0.815 | 0.8376 | 0.815 | 0.8158 | | 0.0014 | 9.0 | 5400 | 1.3838 | 0.8092 | 0.8375 | 0.8092 | 0.8114 | | 0.0554 | 9.1667 | 5500 | 1.2331 | 0.8108 | 0.8576 | 0.8108 | 0.8192 | | 0.0003 | 9.3333 | 5600 | 0.9874 | 0.8504 | 0.8658 | 0.8504 | 0.8529 | | 0.0003 | 9.5 | 5700 | 0.9882 | 0.8488 | 0.8602 | 0.8488 | 0.8514 | | 0.0002 | 9.6667 | 5800 | 1.0519 | 0.8492 | 0.8653 | 0.8492 | 0.8524 | | 0.0002 | 9.8333 | 5900 | 1.1310 | 0.8371 | 0.8587 | 0.8371 | 0.8414 | | 0.0002 | 10.0 | 6000 | 1.1190 | 0.8333 | 0.8570 | 0.8333 | 0.8387 | | 0.0002 | 10.1667 | 6100 | 1.1356 | 0.8333 | 0.8547 | 0.8333 | 0.8388 | | 0.0002 | 10.3333 | 6200 | 1.2443 | 0.8279 | 0.8492 | 0.8279 | 0.8304 | | 0.0002 | 10.5 | 6300 | 1.2286 | 0.8246 | 0.8534 | 0.8246 | 0.8304 | | 0.0002 | 10.6667 | 6400 | 1.2313 | 0.8275 | 0.8508 | 0.8275 | 0.8319 | | 0.0002 | 10.8333 | 6500 | 1.2065 | 0.8283 | 0.8377 | 0.8283 | 0.8289 | | 0.0002 | 11.0 | 6600 | 1.3052 | 0.8046 | 0.8181 | 0.8046 | 0.8056 | | 0.0001 | 11.1667 | 6700 | 1.2192 | 0.8233 | 0.8403 | 0.8233 | 0.8270 | | 0.0002 | 11.3333 | 6800 | 1.2350 | 0.8233 | 0.8331 | 0.8233 | 0.8261 | | 0.0013 | 11.5 | 6900 | 1.2510 | 0.8283 | 0.8474 | 0.8283 | 0.8317 | | 0.004 | 11.6667 | 7000 | 1.4225 | 0.8075 | 0.8197 | 0.8075 | 0.8082 | | 0.0002 | 11.8333 | 7100 | 1.5583 | 0.7904 | 0.8012 | 0.7904 | 0.7876 | | 0.0003 | 12.0 | 7200 | 1.7201 | 0.7696 | 0.7996 | 0.7696 | 0.7696 | | 0.0001 | 12.1667 | 7300 | 1.4283 | 0.8075 | 0.8297 | 0.8075 | 0.8113 | | 0.0001 | 12.3333 | 7400 | 1.2310 | 0.8246 | 0.8425 | 0.8246 | 0.8280 | | 0.0001 | 12.5 | 7500 | 1.2366 | 0.8279 | 0.8447 | 0.8279 | 0.8309 | | 0.0002 | 12.6667 | 7600 | 1.2410 | 0.8279 | 0.8448 | 0.8279 | 0.8309 | | 0.0001 | 12.8333 | 7700 | 1.2434 | 0.8287 | 0.8457 | 0.8287 | 0.8317 | | 0.0001 | 13.0 | 7800 | 1.2539 | 0.8263 | 0.8438 | 0.8263 | 0.8293 | | 0.0001 | 13.1667 | 7900 | 1.2479 | 0.8287 | 0.8444 | 0.8287 | 0.8313 | | 0.0001 | 13.3333 | 8000 | 1.2510 | 0.8292 | 0.8449 | 0.8292 | 0.8317 | | 0.0001 | 13.5 | 8100 | 1.2544 | 0.8296 | 0.8451 | 0.8296 | 0.8321 | | 0.0001 | 13.6667 | 8200 | 1.2575 | 0.8296 | 0.8452 | 0.8296 | 0.8321 | | 0.0001 | 13.8333 | 8300 | 1.2597 | 0.8296 | 0.8452 | 0.8296 | 0.8321 | | 0.0001 | 14.0 | 8400 | 1.2618 | 0.8292 | 0.8447 | 0.8292 | 0.8316 | | 0.0001 | 14.1667 | 8500 | 1.2632 | 0.8292 | 0.8447 | 0.8292 | 0.8316 | | 0.0001 | 14.3333 | 8600 | 1.2651 | 0.8292 | 0.8447 | 0.8292 | 0.8316 | | 0.0001 | 14.5 | 8700 | 1.2662 | 0.8292 | 0.8447 | 0.8292 | 0.8316 | | 0.0001 | 14.6667 | 8800 | 1.2672 | 0.8292 | 0.8447 | 0.8292 | 0.8316 | | 0.0001 | 14.8333 | 8900 | 1.2678 | 0.8292 | 0.8447 | 0.8292 | 0.8316 | | 0.0001 | 15.0 | 9000 | 1.2680 | 0.8292 | 0.8447 | 0.8292 | 0.8316 | ### Framework versions - Transformers 4.48.2 - Pytorch 2.6.0+cu126 - Datasets 3.1.0 - Tokenizers 0.21.0
[ "mix-subtype_iva", "mix-subtype_iva2", "mix-subtype_ivc", "mix-subtype_ivd", "mix-subtype_ia", "mix-subtype_va" ]
Ivanrs/vit-base-kidney-stone-3-Michel_Daudon_-w256_1k_v1-_SEC
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-kidney-stone-3-Michel_Daudon_-w256_1k_v1-_SEC This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.4251 - Accuracy: 0.885 - Precision: 0.9079 - Recall: 0.885 - F1: 0.8879 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.2433 | 0.3333 | 100 | 0.6496 | 0.7967 | 0.8609 | 0.7967 | 0.7672 | | 0.2097 | 0.6667 | 200 | 0.7346 | 0.7875 | 0.8299 | 0.7875 | 0.7848 | | 0.1057 | 1.0 | 300 | 0.4491 | 0.8725 | 0.8916 | 0.8725 | 0.8719 | | 0.0154 | 1.3333 | 400 | 0.6859 | 0.8508 | 0.8583 | 0.8508 | 0.8379 | | 0.1202 | 1.6667 | 500 | 0.6336 | 0.8525 | 0.8773 | 0.8525 | 0.8478 | | 0.0187 | 2.0 | 600 | 0.4251 | 0.885 | 0.9079 | 0.885 | 0.8879 | | 0.0527 | 2.3333 | 700 | 0.6578 | 0.8533 | 0.8676 | 0.8533 | 0.8524 | | 0.0191 | 2.6667 | 800 | 0.8956 | 0.8308 | 0.8736 | 0.8308 | 0.8306 | | 0.0616 | 3.0 | 900 | 1.0589 | 0.8042 | 0.8572 | 0.8042 | 0.8088 | | 0.0187 | 3.3333 | 1000 | 0.8005 | 0.8425 | 0.8624 | 0.8425 | 0.8383 | | 0.0355 | 3.6667 | 1100 | 0.7664 | 0.865 | 0.8956 | 0.865 | 0.8614 | | 0.0777 | 4.0 | 1200 | 0.9895 | 0.8158 | 0.8409 | 0.8158 | 0.8131 | | 0.0017 | 4.3333 | 1300 | 0.5217 | 0.8983 | 0.9122 | 0.8983 | 0.8960 | | 0.0013 | 4.6667 | 1400 | 0.5152 | 0.9 | 0.9129 | 0.9 | 0.8981 | | 0.0011 | 5.0 | 1500 | 0.5119 | 0.905 | 0.9168 | 0.905 | 0.9036 | | 0.0009 | 5.3333 | 1600 | 0.5259 | 0.905 | 0.9170 | 0.905 | 0.9038 | | 0.0008 | 5.6667 | 1700 | 0.5235 | 0.9033 | 0.9151 | 0.9033 | 0.9020 | | 0.0007 | 6.0 | 1800 | 0.5293 | 0.9042 | 0.9157 | 0.9042 | 0.9030 | | 0.0007 | 6.3333 | 1900 | 0.5337 | 0.905 | 0.9163 | 0.905 | 0.9039 | | 0.0006 | 6.6667 | 2000 | 0.5352 | 0.905 | 0.9165 | 0.905 | 0.9040 | | 0.0005 | 7.0 | 2100 | 0.5415 | 0.9058 | 0.9170 | 0.9058 | 0.9049 | | 0.0005 | 7.3333 | 2200 | 0.5467 | 0.9042 | 0.9152 | 0.9042 | 0.9033 | | 0.0005 | 7.6667 | 2300 | 0.5490 | 0.905 | 0.9159 | 0.905 | 0.9040 | | 0.0004 | 8.0 | 2400 | 0.5517 | 0.9067 | 0.9172 | 0.9067 | 0.9059 | | 0.0004 | 8.3333 | 2500 | 0.5559 | 0.9075 | 0.9179 | 0.9075 | 0.9068 | | 0.0004 | 8.6667 | 2600 | 0.5575 | 0.9075 | 0.9179 | 0.9075 | 0.9068 | | 0.0003 | 9.0 | 2700 | 0.5613 | 0.9075 | 0.9179 | 0.9075 | 0.9068 | | 0.0003 | 9.3333 | 2800 | 0.5647 | 0.9075 | 0.9183 | 0.9075 | 0.9069 | | 0.0003 | 9.6667 | 2900 | 0.5675 | 0.9075 | 0.9183 | 0.9075 | 0.9069 | | 0.0003 | 10.0 | 3000 | 0.5700 | 0.9075 | 0.9177 | 0.9075 | 0.9069 | | 0.0003 | 10.3333 | 3100 | 0.5712 | 0.9067 | 0.9165 | 0.9067 | 0.9060 | | 0.0003 | 10.6667 | 3200 | 0.5738 | 0.9067 | 0.9159 | 0.9067 | 0.9061 | | 0.0003 | 11.0 | 3300 | 0.5768 | 0.9067 | 0.9159 | 0.9067 | 0.9061 | | 0.0003 | 11.3333 | 3400 | 0.5792 | 0.9067 | 0.9159 | 0.9067 | 0.9061 | | 0.0002 | 11.6667 | 3500 | 0.5806 | 0.9067 | 0.9159 | 0.9067 | 0.9061 | | 0.0002 | 12.0 | 3600 | 0.5830 | 0.9067 | 0.9159 | 0.9067 | 0.9061 | | 0.0002 | 12.3333 | 3700 | 0.5847 | 0.9067 | 0.9159 | 0.9067 | 0.9061 | | 0.0002 | 12.6667 | 3800 | 0.5860 | 0.9067 | 0.9159 | 0.9067 | 0.9061 | | 0.0002 | 13.0 | 3900 | 0.5875 | 0.9067 | 0.9159 | 0.9067 | 0.9061 | | 0.0002 | 13.3333 | 4000 | 0.5889 | 0.9067 | 0.9159 | 0.9067 | 0.9061 | | 0.0002 | 13.6667 | 4100 | 0.5898 | 0.9067 | 0.9159 | 0.9067 | 0.9061 | | 0.0002 | 14.0 | 4200 | 0.5906 | 0.9067 | 0.9159 | 0.9067 | 0.9061 | | 0.0002 | 14.3333 | 4300 | 0.5914 | 0.9067 | 0.9159 | 0.9067 | 0.9061 | | 0.0002 | 14.6667 | 4400 | 0.5918 | 0.9067 | 0.9159 | 0.9067 | 0.9061 | | 0.0002 | 15.0 | 4500 | 0.5919 | 0.9067 | 0.9159 | 0.9067 | 0.9061 | ### Framework versions - Transformers 4.48.2 - Pytorch 2.6.0+cu126 - Datasets 3.1.0 - Tokenizers 0.21.0
[ "sec-subtype_iva", "sec-subtype_iva2", "sec-subtype_ivc", "sec-subtype_ivd", "sec-subtype_ia", "sec-subtype_va" ]
Ivanrs/vit-base-kidney-stone-3-Michel_Daudon_-w256_1k_v1-_SUR
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-kidney-stone-3-Michel_Daudon_-w256_1k_v1-_SUR This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.0259 - Accuracy: 0.7850 - Precision: 0.7927 - Recall: 0.7850 - F1: 0.7850 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.3729 | 0.3333 | 100 | 1.0563 | 0.6631 | 0.7502 | 0.6631 | 0.6797 | | 0.2029 | 0.6667 | 200 | 1.2777 | 0.7056 | 0.7455 | 0.7056 | 0.6872 | | 0.1969 | 1.0 | 300 | 1.1211 | 0.7653 | 0.7679 | 0.7653 | 0.7600 | | 0.1467 | 1.3333 | 400 | 1.2951 | 0.7048 | 0.7488 | 0.7048 | 0.7088 | | 0.1034 | 1.6667 | 500 | 1.1112 | 0.8087 | 0.8384 | 0.8087 | 0.8075 | | 0.0749 | 2.0 | 600 | 1.3484 | 0.7441 | 0.7662 | 0.7441 | 0.7478 | | 0.0913 | 2.3333 | 700 | 1.0259 | 0.7850 | 0.7927 | 0.7850 | 0.7850 | | 0.0138 | 2.6667 | 800 | 1.4442 | 0.7457 | 0.8109 | 0.7457 | 0.7557 | | 0.0551 | 3.0 | 900 | 1.3089 | 0.7449 | 0.8007 | 0.7449 | 0.7480 | | 0.0209 | 3.3333 | 1000 | 1.5728 | 0.7441 | 0.8047 | 0.7441 | 0.7321 | | 0.0243 | 3.6667 | 1100 | 1.2074 | 0.7817 | 0.8299 | 0.7817 | 0.7875 | | 0.0015 | 4.0 | 1200 | 1.2362 | 0.7817 | 0.8110 | 0.7817 | 0.7755 | | 0.0491 | 4.3333 | 1300 | 1.6820 | 0.7089 | 0.7648 | 0.7089 | 0.7121 | | 0.0041 | 4.6667 | 1400 | 1.2421 | 0.7629 | 0.7794 | 0.7629 | 0.7656 | | 0.0014 | 5.0 | 1500 | 1.5195 | 0.7400 | 0.7439 | 0.7400 | 0.7395 | | 0.001 | 5.3333 | 1600 | 1.3705 | 0.7596 | 0.7567 | 0.7596 | 0.7551 | | 0.0008 | 5.6667 | 1700 | 1.3614 | 0.7637 | 0.7652 | 0.7637 | 0.7619 | | 0.0007 | 6.0 | 1800 | 1.3627 | 0.7694 | 0.7676 | 0.7694 | 0.7662 | | 0.0006 | 6.3333 | 1900 | 1.3871 | 0.7694 | 0.7682 | 0.7694 | 0.7667 | | 0.0006 | 6.6667 | 2000 | 1.4079 | 0.7678 | 0.7664 | 0.7678 | 0.7649 | | 0.0005 | 7.0 | 2100 | 1.4300 | 0.7653 | 0.7636 | 0.7653 | 0.7622 | | 0.0005 | 7.3333 | 2200 | 1.4476 | 0.7661 | 0.7658 | 0.7661 | 0.7637 | | 0.0004 | 7.6667 | 2300 | 1.4655 | 0.7678 | 0.7680 | 0.7678 | 0.7655 | | 0.0004 | 8.0 | 2400 | 1.4802 | 0.7678 | 0.7675 | 0.7678 | 0.7652 | | 0.0004 | 8.3333 | 2500 | 1.4962 | 0.7678 | 0.7682 | 0.7678 | 0.7655 | | 0.0004 | 8.6667 | 2600 | 1.5100 | 0.7678 | 0.7690 | 0.7678 | 0.7658 | | 0.0003 | 9.0 | 2700 | 1.5230 | 0.7678 | 0.7690 | 0.7678 | 0.7658 | | 0.0003 | 9.3333 | 2800 | 1.5361 | 0.7678 | 0.7699 | 0.7678 | 0.7662 | | 0.0003 | 9.6667 | 2900 | 1.5466 | 0.7686 | 0.7711 | 0.7686 | 0.7673 | | 0.0003 | 10.0 | 3000 | 1.5581 | 0.7686 | 0.7711 | 0.7686 | 0.7673 | | 0.0003 | 10.3333 | 3100 | 1.5686 | 0.7686 | 0.7711 | 0.7686 | 0.7673 | | 0.0003 | 10.6667 | 3200 | 1.5787 | 0.7686 | 0.7710 | 0.7686 | 0.7672 | | 0.0002 | 11.0 | 3300 | 1.5877 | 0.7686 | 0.7717 | 0.7686 | 0.7675 | | 0.0002 | 11.3333 | 3400 | 1.5963 | 0.7686 | 0.7717 | 0.7686 | 0.7675 | | 0.0002 | 11.6667 | 3500 | 1.6044 | 0.7686 | 0.7722 | 0.7686 | 0.7677 | | 0.0002 | 12.0 | 3600 | 1.6116 | 0.7686 | 0.7726 | 0.7686 | 0.7679 | | 0.0002 | 12.3333 | 3700 | 1.6187 | 0.7686 | 0.7726 | 0.7686 | 0.7679 | | 0.0002 | 12.6667 | 3800 | 1.6238 | 0.7686 | 0.7726 | 0.7686 | 0.7679 | | 0.0002 | 13.0 | 3900 | 1.6295 | 0.7686 | 0.7722 | 0.7686 | 0.7679 | | 0.0002 | 13.3333 | 4000 | 1.6344 | 0.7686 | 0.7726 | 0.7686 | 0.7679 | | 0.0002 | 13.6667 | 4100 | 1.6379 | 0.7686 | 0.7726 | 0.7686 | 0.7679 | | 0.0002 | 14.0 | 4200 | 1.6415 | 0.7686 | 0.7726 | 0.7686 | 0.7679 | | 0.0002 | 14.3333 | 4300 | 1.6436 | 0.7678 | 0.7719 | 0.7678 | 0.7671 | | 0.0002 | 14.6667 | 4400 | 1.6450 | 0.7678 | 0.7719 | 0.7678 | 0.7671 | | 0.0002 | 15.0 | 4500 | 1.6454 | 0.7678 | 0.7719 | 0.7678 | 0.7671 | ### Framework versions - Transformers 4.48.2 - Pytorch 2.6.0+cu126 - Datasets 3.1.0 - Tokenizers 0.21.0
[ "sur-subtype_iva", "sur-subtype_iva2", "sur-subtype_ivc", "sur-subtype_ivd", "sur-subtype_ia", "sur-subtype_va" ]
sparshgarg57/swin-tiny-patch4-window7-224-finetuned-birdclef
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224-finetuned-birdclef This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 4.5162 - Accuracy: 0.0702 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 4.7582 | 0.9958 | 178 | 4.7242 | 0.0478 | | 4.6596 | 1.9972 | 357 | 4.6146 | 0.0618 | | 4.618 | 2.9874 | 534 | 4.5162 | 0.0702 | ### Framework versions - Transformers 4.45.2 - Pytorch 2.4.1+cu121 - Datasets 3.0.1 - Tokenizers 0.20.1
[ "1139490", "1192948", "1194042", "126247", "1346504", "134933", "135045", "1462711", "1462737", "1564122", "21038", "21116", "21211", "22333", "22973", "22976", "24272", "24292", "24322", "41663", "41778", "41970", "42007", "42087", "42113", "46010", "47067", "476537", "476538", "48124", "50186", "517119", "523060", "528041", "52884", "548639", "555086", "555142", "566513", "64862", "65336", "65344", "65349", "65373", "65419", "65448", "65547", "65962", "66016", "66531", "66578", "66893", "67082", "67252", "714022", "715170", "787625", "81930", "868458", "963335", "amakin1", "amekes", "ampkin1", "anhing", "babwar", "bafibi1", "banana", "baymac", "bbwduc", "bicwre1", "bkcdon", "bkmtou1", "blbgra1", "blbwre1", "blcant4", "blchaw1", "blcjay1", "blctit1", "blhpar1", "blkvul", "bobfly1", "bobher1", "brtpar1", "bubcur1", "bubwre1", "bucmot3", "bugtan", "butsal1", "cargra1", "cattyr", "chbant1", "chfmac1", "cinbec1", "cocher1", "cocwoo1", "colara1", "colcha1", "compau", "compot1", "cotfly1", "crbtan1", "crcwoo1", "crebob1", "cregua1", "creoro1", "eardov1", "fotfly", "gohman1", "grasal4", "grbhaw1", "greani1", "greegr", "greibi1", "grekis", "grepot1", "gretin1", "grnkin", "grysee1", "gybmar", "gycwor1", "labter1", "laufal1", "leagre", "linwoo1", "littin1", "mastit1", "neocor", "norscr1", "olipic1", "orcpar", "palhor2", "paltan1", "pavpig2", "piepuf1", "pirfly1", "piwtyr1", "plbwoo1", "plctan1", "plukit1", "purgal2", "ragmac1", "rebbla1", "recwoo1", "rinkin1", "roahaw", "rosspo1", "royfly1", "rtlhum", "rubsee1", "rufmot1", "rugdov", "rumfly1", "ruther1", "rutjac1", "rutpuf1", "saffin", "sahpar1", "savhaw1", "secfly1", "shghum1", "shtfly1", "smbani", "snoegr", "sobtyr1", "socfly1", "solsan", "soulap1", "spbwoo1", "speowl1", "spepar1", "srwswa1", "stbwoo2", "strcuc1", "strfly1", "strher", "strowl1", "tbsfin1", "thbeup1", "thlsch3", "trokin", "tropar", "trsowl", "turvul", "verfly", "watjac1", "wbwwre1", "whbant1", "whbman1", "whfant1", "whmtyr1", "whtdov", "whttro1", "whwswa1", "woosto", "y00678", "yebela1", "yebfly1", "yebsee1", "yecspi2", "yectyr1", "yehbla2", "yehcar1", "yelori1", "yeofly1", "yercac1", "ywcpar" ]
Ivanrs/vit-base-kidney-stone-4-Jonathan_El-Beze_-w256_1k_v1-_MIX
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-kidney-stone-4-Jonathan_El-Beze_-w256_1k_v1-_MIX This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.5049 - Accuracy: 0.9046 - Precision: 0.9119 - Recall: 0.9046 - F1: 0.9032 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.3582 | 0.1667 | 100 | 0.6579 | 0.7746 | 0.8010 | 0.7746 | 0.7645 | | 0.152 | 0.3333 | 200 | 0.8315 | 0.7492 | 0.8132 | 0.7492 | 0.7457 | | 0.1642 | 0.5 | 300 | 0.6003 | 0.8383 | 0.8506 | 0.8383 | 0.8390 | | 0.088 | 0.6667 | 400 | 0.6790 | 0.81 | 0.8451 | 0.81 | 0.8064 | | 0.0268 | 0.8333 | 500 | 0.5720 | 0.8596 | 0.8815 | 0.8596 | 0.8560 | | 0.0503 | 1.0 | 600 | 0.5348 | 0.8671 | 0.8820 | 0.8671 | 0.8661 | | 0.1888 | 1.1667 | 700 | 0.7472 | 0.8225 | 0.8405 | 0.8225 | 0.8233 | | 0.0983 | 1.3333 | 800 | 0.9774 | 0.7875 | 0.8528 | 0.7875 | 0.7892 | | 0.1343 | 1.5 | 900 | 0.9097 | 0.7983 | 0.8273 | 0.7983 | 0.7919 | | 0.0681 | 1.6667 | 1000 | 0.6611 | 0.845 | 0.8639 | 0.845 | 0.8432 | | 0.0768 | 1.8333 | 1100 | 0.8916 | 0.8133 | 0.8677 | 0.8133 | 0.8163 | | 0.0447 | 2.0 | 1200 | 0.7102 | 0.8462 | 0.8541 | 0.8462 | 0.8450 | | 0.0417 | 2.1667 | 1300 | 0.7364 | 0.8438 | 0.8549 | 0.8438 | 0.8404 | | 0.0049 | 2.3333 | 1400 | 1.1942 | 0.7567 | 0.8037 | 0.7567 | 0.7570 | | 0.1265 | 2.5 | 1500 | 0.5920 | 0.8812 | 0.8828 | 0.8812 | 0.8793 | | 0.0117 | 2.6667 | 1600 | 0.7807 | 0.8421 | 0.8723 | 0.8421 | 0.8394 | | 0.0256 | 2.8333 | 1700 | 0.5049 | 0.9046 | 0.9119 | 0.9046 | 0.9032 | | 0.0776 | 3.0 | 1800 | 0.7417 | 0.8558 | 0.8685 | 0.8558 | 0.8564 | | 0.0535 | 3.1667 | 1900 | 0.6490 | 0.8717 | 0.8771 | 0.8717 | 0.8711 | | 0.1292 | 3.3333 | 2000 | 0.7179 | 0.87 | 0.8759 | 0.87 | 0.8681 | | 0.0013 | 3.5 | 2100 | 0.6103 | 0.8921 | 0.8946 | 0.8921 | 0.8918 | | 0.0015 | 3.6667 | 2200 | 0.8573 | 0.8558 | 0.8668 | 0.8558 | 0.8523 | | 0.0006 | 3.8333 | 2300 | 0.6061 | 0.8896 | 0.8993 | 0.8896 | 0.8891 | | 0.0015 | 4.0 | 2400 | 0.7029 | 0.8658 | 0.8758 | 0.8658 | 0.8638 | | 0.0005 | 4.1667 | 2500 | 0.7734 | 0.8804 | 0.8928 | 0.8804 | 0.8808 | | 0.0019 | 4.3333 | 2600 | 0.7360 | 0.8742 | 0.8911 | 0.8742 | 0.8746 | | 0.001 | 4.5 | 2700 | 0.8893 | 0.8358 | 0.8531 | 0.8358 | 0.8346 | | 0.0267 | 4.6667 | 2800 | 0.8946 | 0.8612 | 0.8830 | 0.8612 | 0.8545 | | 0.0004 | 4.8333 | 2900 | 0.6665 | 0.8983 | 0.9081 | 0.8983 | 0.8981 | | 0.0015 | 5.0 | 3000 | 0.7736 | 0.8788 | 0.8931 | 0.8788 | 0.8774 | | 0.0005 | 5.1667 | 3100 | 0.7346 | 0.8846 | 0.8936 | 0.8846 | 0.8854 | | 0.0005 | 5.3333 | 3200 | 1.0391 | 0.8512 | 0.8657 | 0.8512 | 0.8506 | | 0.1055 | 5.5 | 3300 | 1.8161 | 0.73 | 0.7998 | 0.73 | 0.7148 | | 0.0007 | 5.6667 | 3400 | 1.1328 | 0.8392 | 0.8677 | 0.8392 | 0.8361 | | 0.0108 | 5.8333 | 3500 | 0.7424 | 0.8788 | 0.8821 | 0.8788 | 0.8782 | | 0.0021 | 6.0 | 3600 | 1.0478 | 0.8271 | 0.8424 | 0.8271 | 0.8239 | | 0.01 | 6.1667 | 3700 | 1.0144 | 0.8475 | 0.8719 | 0.8475 | 0.8478 | | 0.0014 | 6.3333 | 3800 | 0.7536 | 0.8708 | 0.8837 | 0.8708 | 0.8697 | | 0.0005 | 6.5 | 3900 | 0.9003 | 0.8567 | 0.8758 | 0.8567 | 0.8544 | | 0.0003 | 6.6667 | 4000 | 0.8318 | 0.8667 | 0.8816 | 0.8667 | 0.8660 | | 0.0003 | 6.8333 | 4100 | 0.8213 | 0.8679 | 0.8817 | 0.8679 | 0.8673 | | 0.0003 | 7.0 | 4200 | 0.8114 | 0.8721 | 0.8849 | 0.8721 | 0.8716 | | 0.0003 | 7.1667 | 4300 | 0.8461 | 0.8683 | 0.8825 | 0.8683 | 0.8681 | | 0.0002 | 7.3333 | 4400 | 0.8416 | 0.8692 | 0.8820 | 0.8692 | 0.8690 | | 0.048 | 7.5 | 4500 | 1.1867 | 0.8163 | 0.8539 | 0.8163 | 0.8168 | | 0.0373 | 7.6667 | 4600 | 0.8870 | 0.8596 | 0.8829 | 0.8596 | 0.8587 | | 0.0004 | 7.8333 | 4700 | 1.1816 | 0.7913 | 0.8061 | 0.7913 | 0.7769 | | 0.0013 | 8.0 | 4800 | 1.2743 | 0.8087 | 0.8456 | 0.8087 | 0.7974 | | 0.0002 | 8.1667 | 4900 | 0.8387 | 0.8712 | 0.8773 | 0.8712 | 0.8692 | | 0.0002 | 8.3333 | 5000 | 0.8463 | 0.8688 | 0.8732 | 0.8688 | 0.8673 | | 0.0002 | 8.5 | 5100 | 0.8732 | 0.8721 | 0.8751 | 0.8721 | 0.8713 | | 0.0002 | 8.6667 | 5200 | 0.9575 | 0.8546 | 0.8654 | 0.8546 | 0.8539 | | 0.0002 | 8.8333 | 5300 | 0.9553 | 0.8654 | 0.8651 | 0.8654 | 0.8646 | | 0.0005 | 9.0 | 5400 | 0.9674 | 0.8583 | 0.8681 | 0.8583 | 0.8586 | | 0.0002 | 9.1667 | 5500 | 0.7823 | 0.885 | 0.8842 | 0.885 | 0.8842 | | 0.0002 | 9.3333 | 5600 | 0.9682 | 0.8621 | 0.8837 | 0.8621 | 0.8600 | | 0.0002 | 9.5 | 5700 | 0.8930 | 0.8629 | 0.8739 | 0.8629 | 0.8616 | | 0.0002 | 9.6667 | 5800 | 1.1100 | 0.8475 | 0.8764 | 0.8475 | 0.8417 | | 0.0001 | 9.8333 | 5900 | 0.9290 | 0.8646 | 0.8646 | 0.8646 | 0.8634 | | 0.0001 | 10.0 | 6000 | 0.9349 | 0.8629 | 0.8633 | 0.8629 | 0.8617 | | 0.0001 | 10.1667 | 6100 | 0.9423 | 0.8629 | 0.8635 | 0.8629 | 0.8617 | | 0.0001 | 10.3333 | 6200 | 0.9459 | 0.8633 | 0.8639 | 0.8633 | 0.8622 | | 0.0001 | 10.5 | 6300 | 0.9522 | 0.8625 | 0.8631 | 0.8625 | 0.8613 | | 0.0001 | 10.6667 | 6400 | 0.9575 | 0.8629 | 0.8634 | 0.8629 | 0.8617 | | 0.0001 | 10.8333 | 6500 | 0.9637 | 0.8629 | 0.8638 | 0.8629 | 0.8618 | | 0.0001 | 11.0 | 6600 | 0.9643 | 0.8642 | 0.8649 | 0.8642 | 0.8631 | | 0.0001 | 11.1667 | 6700 | 0.9678 | 0.8646 | 0.8653 | 0.8646 | 0.8635 | | 0.0001 | 11.3333 | 6800 | 0.9722 | 0.8646 | 0.8654 | 0.8646 | 0.8635 | | 0.0001 | 11.5 | 6900 | 0.9772 | 0.8633 | 0.8642 | 0.8633 | 0.8623 | | 0.0001 | 11.6667 | 7000 | 0.9795 | 0.8646 | 0.8653 | 0.8646 | 0.8635 | | 0.0001 | 11.8333 | 7100 | 0.9828 | 0.8642 | 0.8650 | 0.8642 | 0.8631 | | 0.0001 | 12.0 | 7200 | 0.9851 | 0.8646 | 0.8654 | 0.8646 | 0.8635 | | 0.0001 | 12.1667 | 7300 | 0.9879 | 0.8646 | 0.8654 | 0.8646 | 0.8635 | | 0.0001 | 12.3333 | 7400 | 0.9903 | 0.8646 | 0.8654 | 0.8646 | 0.8635 | | 0.0001 | 12.5 | 7500 | 0.9937 | 0.865 | 0.8658 | 0.865 | 0.8639 | | 0.0001 | 12.6667 | 7600 | 0.9963 | 0.865 | 0.8658 | 0.865 | 0.8639 | | 0.0001 | 12.8333 | 7700 | 0.9989 | 0.8646 | 0.8654 | 0.8646 | 0.8635 | | 0.0001 | 13.0 | 7800 | 1.0018 | 0.8646 | 0.8654 | 0.8646 | 0.8635 | | 0.0001 | 13.1667 | 7900 | 1.0047 | 0.8646 | 0.8654 | 0.8646 | 0.8635 | | 0.0001 | 13.3333 | 8000 | 1.0069 | 0.8646 | 0.8654 | 0.8646 | 0.8635 | | 0.0001 | 13.5 | 8100 | 1.0088 | 0.8646 | 0.8654 | 0.8646 | 0.8635 | | 0.0001 | 13.6667 | 8200 | 1.0108 | 0.8646 | 0.8654 | 0.8646 | 0.8635 | | 0.0001 | 13.8333 | 8300 | 1.0124 | 0.8646 | 0.8654 | 0.8646 | 0.8635 | | 0.0001 | 14.0 | 8400 | 1.0135 | 0.8646 | 0.8654 | 0.8646 | 0.8635 | | 0.0001 | 14.1667 | 8500 | 1.0150 | 0.8646 | 0.8654 | 0.8646 | 0.8635 | | 0.0001 | 14.3333 | 8600 | 1.0160 | 0.8646 | 0.8654 | 0.8646 | 0.8635 | | 0.0001 | 14.5 | 8700 | 1.0172 | 0.8646 | 0.8654 | 0.8646 | 0.8635 | | 0.0001 | 14.6667 | 8800 | 1.0178 | 0.8646 | 0.8654 | 0.8646 | 0.8635 | | 0.0001 | 14.8333 | 8900 | 1.0183 | 0.8646 | 0.8654 | 0.8646 | 0.8635 | | 0.0001 | 15.0 | 9000 | 1.0184 | 0.8646 | 0.8654 | 0.8646 | 0.8635 | ### Framework versions - Transformers 4.48.2 - Pytorch 2.6.0+cu126 - Datasets 3.1.0 - Tokenizers 0.21.0
[ "mix-subtype_iiia", "mix-subtype_iia", "mix-subtype_ivc", "mix-subtype_ivd", "mix-subtype_ia", "mix-subtype_va" ]
Ivanrs/vit-base-kidney-stone-4-Jonathan_El-Beze_-w256_1k_v1-_SEC
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-kidney-stone-4-Jonathan_El-Beze_-w256_1k_v1-_SEC This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.2940 - Accuracy: 0.9242 - Precision: 0.9321 - Recall: 0.9242 - F1: 0.9251 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.1207 | 0.3333 | 100 | 0.5525 | 0.8333 | 0.8760 | 0.8333 | 0.8303 | | 0.0178 | 0.6667 | 200 | 0.3368 | 0.8883 | 0.9298 | 0.8883 | 0.8927 | | 0.0396 | 1.0 | 300 | 0.3187 | 0.9108 | 0.9213 | 0.9108 | 0.9104 | | 0.0074 | 1.3333 | 400 | 1.1846 | 0.7583 | 0.8167 | 0.7583 | 0.7339 | | 0.0125 | 1.6667 | 500 | 0.2940 | 0.9242 | 0.9321 | 0.9242 | 0.9251 | | 0.0029 | 2.0 | 600 | 0.5031 | 0.8958 | 0.9051 | 0.8958 | 0.8929 | | 0.0021 | 2.3333 | 700 | 0.5150 | 0.9008 | 0.9114 | 0.9008 | 0.8977 | | 0.0016 | 2.6667 | 800 | 0.4894 | 0.9092 | 0.9191 | 0.9092 | 0.9069 | | 0.0013 | 3.0 | 900 | 0.5048 | 0.9092 | 0.9194 | 0.9092 | 0.9067 | | 0.0011 | 3.3333 | 1000 | 0.5066 | 0.9092 | 0.9187 | 0.9092 | 0.9070 | | 0.001 | 3.6667 | 1100 | 0.5179 | 0.9092 | 0.9189 | 0.9092 | 0.9070 | | 0.0008 | 4.0 | 1200 | 0.5369 | 0.9092 | 0.9198 | 0.9092 | 0.9069 | | 0.0007 | 4.3333 | 1300 | 0.5459 | 0.9092 | 0.9198 | 0.9092 | 0.9069 | | 0.0006 | 4.6667 | 1400 | 0.5508 | 0.9092 | 0.9198 | 0.9092 | 0.9069 | | 0.0006 | 5.0 | 1500 | 0.5557 | 0.91 | 0.9203 | 0.91 | 0.9079 | | 0.0005 | 5.3333 | 1600 | 0.5605 | 0.9108 | 0.9210 | 0.9108 | 0.9088 | | 0.0004 | 5.6667 | 1700 | 0.5647 | 0.9108 | 0.9210 | 0.9108 | 0.9088 | | 0.0004 | 6.0 | 1800 | 0.5735 | 0.9108 | 0.9210 | 0.9108 | 0.9088 | | 0.0004 | 6.3333 | 1900 | 0.5797 | 0.9108 | 0.9210 | 0.9108 | 0.9088 | | 0.0003 | 6.6667 | 2000 | 0.5840 | 0.9108 | 0.9210 | 0.9108 | 0.9088 | | 0.0003 | 7.0 | 2100 | 0.5877 | 0.9108 | 0.9210 | 0.9108 | 0.9088 | | 0.0003 | 7.3333 | 2200 | 0.5942 | 0.9108 | 0.9210 | 0.9108 | 0.9088 | | 0.0003 | 7.6667 | 2300 | 0.6003 | 0.9117 | 0.9222 | 0.9117 | 0.9096 | | 0.0003 | 8.0 | 2400 | 0.5999 | 0.9108 | 0.9210 | 0.9108 | 0.9088 | | 0.0002 | 8.3333 | 2500 | 0.6042 | 0.91 | 0.9203 | 0.91 | 0.9080 | | 0.0002 | 8.6667 | 2600 | 0.6076 | 0.9108 | 0.9215 | 0.9108 | 0.9088 | | 0.0002 | 9.0 | 2700 | 0.6098 | 0.9108 | 0.9210 | 0.9108 | 0.9088 | | 0.0002 | 9.3333 | 2800 | 0.6135 | 0.9108 | 0.9215 | 0.9108 | 0.9088 | | 0.0002 | 9.6667 | 2900 | 0.6157 | 0.9108 | 0.9215 | 0.9108 | 0.9088 | | 0.0002 | 10.0 | 3000 | 0.6191 | 0.9108 | 0.9215 | 0.9108 | 0.9088 | | 0.0002 | 10.3333 | 3100 | 0.6216 | 0.9108 | 0.9215 | 0.9108 | 0.9088 | | 0.0002 | 10.6667 | 3200 | 0.6241 | 0.9108 | 0.9215 | 0.9108 | 0.9088 | | 0.0002 | 11.0 | 3300 | 0.6265 | 0.9108 | 0.9215 | 0.9108 | 0.9088 | | 0.0002 | 11.3333 | 3400 | 0.6291 | 0.9108 | 0.9215 | 0.9108 | 0.9088 | | 0.0001 | 11.6667 | 3500 | 0.6308 | 0.9108 | 0.9215 | 0.9108 | 0.9088 | | 0.0001 | 12.0 | 3600 | 0.6325 | 0.9108 | 0.9215 | 0.9108 | 0.9088 | | 0.0001 | 12.3333 | 3700 | 0.6339 | 0.9108 | 0.9215 | 0.9108 | 0.9088 | | 0.0001 | 12.6667 | 3800 | 0.6351 | 0.9108 | 0.9215 | 0.9108 | 0.9088 | | 0.0001 | 13.0 | 3900 | 0.6371 | 0.9108 | 0.9215 | 0.9108 | 0.9088 | | 0.0001 | 13.3333 | 4000 | 0.6376 | 0.9108 | 0.9215 | 0.9108 | 0.9088 | | 0.0001 | 13.6667 | 4100 | 0.6393 | 0.9108 | 0.9215 | 0.9108 | 0.9088 | | 0.0001 | 14.0 | 4200 | 0.6403 | 0.9108 | 0.9215 | 0.9108 | 0.9088 | | 0.0001 | 14.3333 | 4300 | 0.6410 | 0.9108 | 0.9215 | 0.9108 | 0.9088 | | 0.0001 | 14.6667 | 4400 | 0.6413 | 0.9108 | 0.9215 | 0.9108 | 0.9088 | | 0.0001 | 15.0 | 4500 | 0.6414 | 0.9108 | 0.9215 | 0.9108 | 0.9088 | ### Framework versions - Transformers 4.48.2 - Pytorch 2.6.0+cu126 - Datasets 3.1.0 - Tokenizers 0.21.0
[ "sec-subtype_iiia", "sec-subtype_iia", "sec-subtype_ivc", "sec-subtype_ivd", "sec-subtype_ia", "sec-subtype_va" ]
Ivanrs/vit-base-kidney-stone-4-Jonathan_El-Beze_-w256_1k_v1-_SUR
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-kidney-stone-4-Jonathan_El-Beze_-w256_1k_v1-_SUR This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.6379 - Accuracy: 0.745 - Precision: 0.7537 - Recall: 0.745 - F1: 0.7067 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.3911 | 0.3333 | 100 | 0.6379 | 0.745 | 0.7537 | 0.745 | 0.7067 | | 0.2601 | 0.6667 | 200 | 1.0005 | 0.6842 | 0.7312 | 0.6842 | 0.6523 | | 0.1349 | 1.0 | 300 | 0.6380 | 0.8533 | 0.8720 | 0.8533 | 0.8518 | | 0.0601 | 1.3333 | 400 | 1.1014 | 0.7217 | 0.7753 | 0.7217 | 0.7044 | | 0.2132 | 1.6667 | 500 | 0.7327 | 0.8208 | 0.8438 | 0.8208 | 0.8197 | | 0.0894 | 2.0 | 600 | 1.4871 | 0.7083 | 0.7449 | 0.7083 | 0.6682 | | 0.0135 | 2.3333 | 700 | 0.9952 | 0.7883 | 0.8495 | 0.7883 | 0.7799 | | 0.0042 | 2.6667 | 800 | 0.6547 | 0.8683 | 0.8729 | 0.8683 | 0.8679 | | 0.0037 | 3.0 | 900 | 0.7970 | 0.8367 | 0.8739 | 0.8367 | 0.8370 | | 0.0578 | 3.3333 | 1000 | 0.8231 | 0.845 | 0.8641 | 0.845 | 0.8436 | | 0.0019 | 3.6667 | 1100 | 0.7459 | 0.8667 | 0.8771 | 0.8667 | 0.8655 | | 0.2931 | 4.0 | 1200 | 0.9539 | 0.8292 | 0.8349 | 0.8292 | 0.8275 | | 0.0017 | 4.3333 | 1300 | 0.8095 | 0.8408 | 0.8607 | 0.8408 | 0.8413 | | 0.0018 | 4.6667 | 1400 | 0.7471 | 0.865 | 0.8690 | 0.865 | 0.8629 | | 0.0014 | 5.0 | 1500 | 1.0642 | 0.7925 | 0.8148 | 0.7925 | 0.7915 | | 0.0012 | 5.3333 | 1600 | 0.8130 | 0.8333 | 0.8372 | 0.8333 | 0.8334 | | 0.001 | 5.6667 | 1700 | 1.1121 | 0.8133 | 0.8222 | 0.8133 | 0.8113 | | 0.001 | 6.0 | 1800 | 0.7986 | 0.8475 | 0.8528 | 0.8475 | 0.8492 | | 0.0008 | 6.3333 | 1900 | 0.7908 | 0.8708 | 0.8928 | 0.8708 | 0.8718 | | 0.0007 | 6.6667 | 2000 | 0.7444 | 0.8842 | 0.8981 | 0.8842 | 0.8818 | | 0.0028 | 7.0 | 2100 | 0.7492 | 0.87 | 0.8749 | 0.87 | 0.8677 | | 0.0007 | 7.3333 | 2200 | 1.5649 | 0.7433 | 0.8440 | 0.7433 | 0.7117 | | 0.0007 | 7.6667 | 2300 | 0.8539 | 0.8492 | 0.8679 | 0.8492 | 0.8492 | | 0.0015 | 8.0 | 2400 | 0.8743 | 0.835 | 0.8553 | 0.835 | 0.8342 | | 0.0006 | 8.3333 | 2500 | 0.7659 | 0.8583 | 0.8608 | 0.8583 | 0.8569 | | 0.0005 | 8.6667 | 2600 | 0.7448 | 0.8642 | 0.8681 | 0.8642 | 0.8627 | | 0.0005 | 9.0 | 2700 | 0.7439 | 0.8683 | 0.8726 | 0.8683 | 0.8666 | | 0.0004 | 9.3333 | 2800 | 0.7444 | 0.8742 | 0.8807 | 0.8742 | 0.8725 | | 0.0004 | 9.6667 | 2900 | 0.7484 | 0.8725 | 0.8790 | 0.8725 | 0.8707 | | 0.0003 | 10.0 | 3000 | 0.7491 | 0.8708 | 0.8781 | 0.8708 | 0.8691 | | 0.0003 | 10.3333 | 3100 | 0.7509 | 0.8717 | 0.8788 | 0.8717 | 0.8699 | | 0.0003 | 10.6667 | 3200 | 0.7539 | 0.875 | 0.8827 | 0.875 | 0.8732 | | 0.0003 | 11.0 | 3300 | 0.7572 | 0.8775 | 0.8853 | 0.8775 | 0.8756 | | 0.0003 | 11.3333 | 3400 | 0.7598 | 0.8783 | 0.8866 | 0.8783 | 0.8765 | | 0.0003 | 11.6667 | 3500 | 0.7626 | 0.8792 | 0.8873 | 0.8792 | 0.8772 | | 0.0003 | 12.0 | 3600 | 0.7655 | 0.8792 | 0.8873 | 0.8792 | 0.8772 | | 0.0003 | 12.3333 | 3700 | 0.7682 | 0.8792 | 0.8873 | 0.8792 | 0.8772 | | 0.0003 | 12.6667 | 3800 | 0.7699 | 0.88 | 0.8880 | 0.88 | 0.8780 | | 0.0002 | 13.0 | 3900 | 0.7723 | 0.8808 | 0.8887 | 0.8808 | 0.8788 | | 0.0003 | 13.3333 | 4000 | 0.7747 | 0.88 | 0.8881 | 0.88 | 0.8779 | | 0.0003 | 13.6667 | 4100 | 0.7761 | 0.88 | 0.8881 | 0.88 | 0.8779 | | 0.0002 | 14.0 | 4200 | 0.7771 | 0.88 | 0.8881 | 0.88 | 0.8779 | | 0.0002 | 14.3333 | 4300 | 0.7778 | 0.88 | 0.8881 | 0.88 | 0.8779 | | 0.0002 | 14.6667 | 4400 | 0.7785 | 0.88 | 0.8881 | 0.88 | 0.8779 | | 0.0002 | 15.0 | 4500 | 0.7787 | 0.88 | 0.8881 | 0.88 | 0.8779 | ### Framework versions - Transformers 4.48.2 - Pytorch 2.6.0+cu126 - Datasets 3.1.0 - Tokenizers 0.21.0
[ "sur-subtype_iiia", "sur-subtype_iia", "sur-subtype_ivc", "sur-subtype_ivd", "sur-subtype_ia", "sur-subtype_va" ]
Ivanrs/vit-base-kidney-stone-4-Michel_Daudon_-w256_1k_v1-_MIX
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-kidney-stone-4-Michel_Daudon_-w256_1k_v1-_MIX This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.5183 - Accuracy: 0.8333 - Precision: 0.8596 - Recall: 0.8333 - F1: 0.8313 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.4337 | 0.1667 | 100 | 0.6415 | 0.7688 | 0.7866 | 0.7688 | 0.7620 | | 0.5458 | 0.3333 | 200 | 1.0270 | 0.7204 | 0.8072 | 0.7204 | 0.6929 | | 0.1893 | 0.5 | 300 | 0.5183 | 0.8333 | 0.8596 | 0.8333 | 0.8313 | | 0.2041 | 0.6667 | 400 | 0.5611 | 0.8333 | 0.8651 | 0.8333 | 0.8360 | | 0.2087 | 0.8333 | 500 | 0.8036 | 0.7846 | 0.8253 | 0.7846 | 0.7916 | | 0.1888 | 1.0 | 600 | 0.7427 | 0.8046 | 0.8312 | 0.8046 | 0.7960 | | 0.1175 | 1.1667 | 700 | 0.7927 | 0.7837 | 0.7906 | 0.7837 | 0.7770 | | 0.5783 | 1.3333 | 800 | 0.9454 | 0.7521 | 0.8095 | 0.7521 | 0.7551 | | 0.1242 | 1.5 | 900 | 1.0772 | 0.7704 | 0.8102 | 0.7704 | 0.7796 | | 0.1045 | 1.6667 | 1000 | 0.8234 | 0.8296 | 0.8333 | 0.8296 | 0.8223 | | 0.1007 | 1.8333 | 1100 | 1.1756 | 0.7546 | 0.7483 | 0.7546 | 0.7460 | | 0.0101 | 2.0 | 1200 | 0.7921 | 0.8446 | 0.8782 | 0.8446 | 0.8486 | | 0.0079 | 2.1667 | 1300 | 0.9626 | 0.8204 | 0.8644 | 0.8204 | 0.8241 | | 0.0626 | 2.3333 | 1400 | 1.0140 | 0.8025 | 0.8441 | 0.8025 | 0.8040 | | 0.0216 | 2.5 | 1500 | 0.9297 | 0.8358 | 0.8540 | 0.8358 | 0.8364 | | 0.0707 | 2.6667 | 1600 | 0.9193 | 0.8196 | 0.8425 | 0.8196 | 0.8203 | | 0.0308 | 2.8333 | 1700 | 0.9988 | 0.8246 | 0.8429 | 0.8246 | 0.8209 | | 0.0863 | 3.0 | 1800 | 0.8083 | 0.83 | 0.8592 | 0.83 | 0.8332 | | 0.0016 | 3.1667 | 1900 | 1.1933 | 0.8029 | 0.8475 | 0.8029 | 0.8079 | | 0.0014 | 3.3333 | 2000 | 1.0995 | 0.8142 | 0.8376 | 0.8142 | 0.8132 | | 0.0745 | 3.5 | 2100 | 1.0348 | 0.8154 | 0.8720 | 0.8154 | 0.8259 | | 0.0226 | 3.6667 | 2200 | 0.8861 | 0.8275 | 0.8576 | 0.8275 | 0.8303 | | 0.0159 | 3.8333 | 2300 | 1.1476 | 0.79 | 0.8251 | 0.79 | 0.7981 | | 0.1398 | 4.0 | 2400 | 1.2559 | 0.7879 | 0.8284 | 0.7879 | 0.7845 | | 0.0011 | 4.1667 | 2500 | 1.2795 | 0.8008 | 0.8419 | 0.8008 | 0.8061 | | 0.0016 | 4.3333 | 2600 | 1.1345 | 0.8108 | 0.8472 | 0.8108 | 0.8154 | | 0.001 | 4.5 | 2700 | 1.0013 | 0.8242 | 0.8419 | 0.8242 | 0.8220 | | 0.0888 | 4.6667 | 2800 | 1.0708 | 0.8313 | 0.8614 | 0.8313 | 0.8357 | | 0.0212 | 4.8333 | 2900 | 1.1488 | 0.8113 | 0.8435 | 0.8113 | 0.8123 | | 0.0857 | 5.0 | 3000 | 1.0805 | 0.8113 | 0.8506 | 0.8113 | 0.8182 | | 0.0029 | 5.1667 | 3100 | 0.8731 | 0.8588 | 0.8762 | 0.8588 | 0.8619 | | 0.0226 | 5.3333 | 3200 | 1.2513 | 0.8113 | 0.8410 | 0.8113 | 0.8128 | | 0.0627 | 5.5 | 3300 | 1.1715 | 0.8063 | 0.8394 | 0.8063 | 0.8066 | | 0.1471 | 5.6667 | 3400 | 0.8260 | 0.8325 | 0.8434 | 0.8325 | 0.8341 | | 0.0008 | 5.8333 | 3500 | 0.8541 | 0.8404 | 0.8636 | 0.8404 | 0.8430 | | 0.0005 | 6.0 | 3600 | 1.1119 | 0.8129 | 0.8340 | 0.8129 | 0.8165 | | 0.0005 | 6.1667 | 3700 | 1.6586 | 0.7754 | 0.8261 | 0.7754 | 0.7762 | | 0.0693 | 6.3333 | 3800 | 1.2959 | 0.8067 | 0.8427 | 0.8067 | 0.8107 | | 0.0007 | 6.5 | 3900 | 1.0675 | 0.8142 | 0.8195 | 0.8142 | 0.8140 | | 0.0008 | 6.6667 | 4000 | 1.3692 | 0.7904 | 0.8078 | 0.7904 | 0.7903 | | 0.0063 | 6.8333 | 4100 | 1.2463 | 0.8092 | 0.8326 | 0.8092 | 0.8073 | | 0.0006 | 7.0 | 4200 | 1.2368 | 0.8171 | 0.8433 | 0.8171 | 0.8187 | | 0.0014 | 7.1667 | 4300 | 1.2245 | 0.7979 | 0.8126 | 0.7979 | 0.8004 | | 0.0005 | 7.3333 | 4400 | 1.2486 | 0.7996 | 0.8134 | 0.7996 | 0.7996 | | 0.0793 | 7.5 | 4500 | 1.3575 | 0.7762 | 0.8005 | 0.7762 | 0.7696 | | 0.0006 | 7.6667 | 4600 | 1.2693 | 0.8013 | 0.8151 | 0.8013 | 0.7996 | | 0.0005 | 7.8333 | 4700 | 1.1999 | 0.8192 | 0.8405 | 0.8192 | 0.8199 | | 0.0007 | 8.0 | 4800 | 1.0169 | 0.8346 | 0.8517 | 0.8346 | 0.8353 | | 0.067 | 8.1667 | 4900 | 1.0823 | 0.8346 | 0.8602 | 0.8346 | 0.8325 | | 0.0007 | 8.3333 | 5000 | 1.3014 | 0.7996 | 0.8439 | 0.7996 | 0.7978 | | 0.0003 | 8.5 | 5100 | 1.3176 | 0.7954 | 0.8398 | 0.7954 | 0.7986 | | 0.0003 | 8.6667 | 5200 | 1.2994 | 0.8113 | 0.8559 | 0.8113 | 0.8124 | | 0.0002 | 8.8333 | 5300 | 1.3460 | 0.7937 | 0.8308 | 0.7937 | 0.7908 | | 0.0003 | 9.0 | 5400 | 1.0408 | 0.8346 | 0.8541 | 0.8346 | 0.8363 | | 0.0002 | 9.1667 | 5500 | 1.1659 | 0.8246 | 0.8651 | 0.8246 | 0.8258 | | 0.0002 | 9.3333 | 5600 | 1.1821 | 0.8263 | 0.8657 | 0.8263 | 0.8270 | | 0.0002 | 9.5 | 5700 | 1.2786 | 0.8233 | 0.8607 | 0.8233 | 0.8227 | | 0.0002 | 9.6667 | 5800 | 1.2611 | 0.8217 | 0.8577 | 0.8217 | 0.8210 | | 0.0002 | 9.8333 | 5900 | 1.2556 | 0.8213 | 0.8568 | 0.8213 | 0.8206 | | 0.0002 | 10.0 | 6000 | 1.3472 | 0.8158 | 0.8491 | 0.8158 | 0.8158 | | 0.0002 | 10.1667 | 6100 | 1.3345 | 0.8175 | 0.8502 | 0.8175 | 0.8176 | | 0.0001 | 10.3333 | 6200 | 1.3366 | 0.8187 | 0.8512 | 0.8187 | 0.8188 | | 0.0001 | 10.5 | 6300 | 1.3363 | 0.8171 | 0.8497 | 0.8171 | 0.8174 | | 0.0001 | 10.6667 | 6400 | 1.3340 | 0.8196 | 0.8517 | 0.8196 | 0.8198 | | 0.0001 | 10.8333 | 6500 | 1.3658 | 0.8233 | 0.8593 | 0.8233 | 0.8243 | | 0.0001 | 11.0 | 6600 | 1.3709 | 0.8237 | 0.8595 | 0.8237 | 0.8247 | | 0.0001 | 11.1667 | 6700 | 1.3652 | 0.8242 | 0.8585 | 0.8242 | 0.8249 | | 0.0001 | 11.3333 | 6800 | 1.3703 | 0.825 | 0.8594 | 0.825 | 0.8258 | | 0.0001 | 11.5 | 6900 | 1.3755 | 0.8237 | 0.8579 | 0.8237 | 0.8247 | | 0.0001 | 11.6667 | 7000 | 1.3781 | 0.8237 | 0.8579 | 0.8237 | 0.8247 | | 0.0001 | 11.8333 | 7100 | 1.3811 | 0.8242 | 0.8582 | 0.8242 | 0.8251 | | 0.0001 | 12.0 | 7200 | 1.3851 | 0.8237 | 0.8578 | 0.8237 | 0.8247 | | 0.0001 | 12.1667 | 7300 | 1.3881 | 0.8242 | 0.8580 | 0.8242 | 0.8251 | | 0.0001 | 12.3333 | 7400 | 1.3910 | 0.8246 | 0.8580 | 0.8246 | 0.8257 | | 0.0001 | 12.5 | 7500 | 1.3937 | 0.8246 | 0.8580 | 0.8246 | 0.8257 | | 0.0001 | 12.6667 | 7600 | 1.3977 | 0.8246 | 0.8580 | 0.8246 | 0.8257 | | 0.0001 | 12.8333 | 7700 | 1.3995 | 0.8246 | 0.8580 | 0.8246 | 0.8257 | | 0.0001 | 13.0 | 7800 | 1.4021 | 0.8246 | 0.8580 | 0.8246 | 0.8257 | | 0.0001 | 13.1667 | 7900 | 1.4048 | 0.8246 | 0.8580 | 0.8246 | 0.8257 | | 0.0001 | 13.3333 | 8000 | 1.4074 | 0.8246 | 0.8580 | 0.8246 | 0.8257 | | 0.0001 | 13.5 | 8100 | 1.4099 | 0.8246 | 0.8580 | 0.8246 | 0.8257 | | 0.0001 | 13.6667 | 8200 | 1.4117 | 0.8246 | 0.8580 | 0.8246 | 0.8257 | | 0.0001 | 13.8333 | 8300 | 1.4134 | 0.825 | 0.8582 | 0.825 | 0.8261 | | 0.0001 | 14.0 | 8400 | 1.4150 | 0.825 | 0.8582 | 0.825 | 0.8261 | | 0.0001 | 14.1667 | 8500 | 1.4164 | 0.8246 | 0.8578 | 0.8246 | 0.8258 | | 0.0001 | 14.3333 | 8600 | 1.4176 | 0.8242 | 0.8574 | 0.8242 | 0.8254 | | 0.0001 | 14.5 | 8700 | 1.4186 | 0.8242 | 0.8574 | 0.8242 | 0.8254 | | 0.0001 | 14.6667 | 8800 | 1.4192 | 0.8242 | 0.8574 | 0.8242 | 0.8254 | | 0.0001 | 14.8333 | 8900 | 1.4197 | 0.8242 | 0.8574 | 0.8242 | 0.8254 | | 0.0001 | 15.0 | 9000 | 1.4200 | 0.8242 | 0.8574 | 0.8242 | 0.8254 | ### Framework versions - Transformers 4.48.2 - Pytorch 2.6.0+cu126 - Datasets 3.1.0 - Tokenizers 0.21.0
[ "mix-subtype_iva", "mix-subtype_iva2", "mix-subtype_ivc", "mix-subtype_ivd", "mix-subtype_ia", "mix-subtype_va" ]
Ivanrs/vit-base-kidney-stone-4-Michel_Daudon_-w256_1k_v1-_SEC
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-kidney-stone-4-Michel_Daudon_-w256_1k_v1-_SEC This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.2879 - Accuracy: 0.9242 - Precision: 0.9296 - Recall: 0.9242 - F1: 0.9248 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.2837 | 0.3333 | 100 | 0.5470 | 0.8333 | 0.8693 | 0.8333 | 0.8325 | | 0.1498 | 0.6667 | 200 | 0.4199 | 0.8658 | 0.8833 | 0.8658 | 0.8647 | | 0.0979 | 1.0 | 300 | 0.4712 | 0.8783 | 0.9015 | 0.8783 | 0.8799 | | 0.009 | 1.3333 | 400 | 0.4957 | 0.885 | 0.8933 | 0.885 | 0.8819 | | 0.0226 | 1.6667 | 500 | 0.2879 | 0.9242 | 0.9296 | 0.9242 | 0.9248 | | 0.0722 | 2.0 | 600 | 0.4449 | 0.8875 | 0.8906 | 0.8875 | 0.8869 | | 0.0043 | 2.3333 | 700 | 0.3699 | 0.9125 | 0.9221 | 0.9125 | 0.9104 | | 0.0678 | 2.6667 | 800 | 0.6081 | 0.8792 | 0.8872 | 0.8792 | 0.8760 | | 0.1178 | 3.0 | 900 | 0.5728 | 0.8767 | 0.8748 | 0.8767 | 0.8744 | | 0.0297 | 3.3333 | 1000 | 0.3977 | 0.9258 | 0.9267 | 0.9258 | 0.9257 | | 0.0813 | 3.6667 | 1100 | 1.1116 | 0.8283 | 0.8462 | 0.8283 | 0.8153 | | 0.0336 | 4.0 | 1200 | 0.9246 | 0.82 | 0.8215 | 0.82 | 0.8155 | | 0.0291 | 4.3333 | 1300 | 0.6674 | 0.8808 | 0.8980 | 0.8808 | 0.8819 | | 0.1018 | 4.6667 | 1400 | 0.7256 | 0.8667 | 0.8760 | 0.8667 | 0.8641 | | 0.0739 | 5.0 | 1500 | 0.4149 | 0.8908 | 0.9082 | 0.8908 | 0.8913 | | 0.0017 | 5.3333 | 1600 | 0.3553 | 0.9208 | 0.9291 | 0.9208 | 0.9219 | | 0.0011 | 5.6667 | 1700 | 0.3934 | 0.915 | 0.9188 | 0.915 | 0.9157 | | 0.0056 | 6.0 | 1800 | 0.8180 | 0.8725 | 0.9139 | 0.8725 | 0.8733 | | 0.001 | 6.3333 | 1900 | 0.3790 | 0.9225 | 0.9216 | 0.9225 | 0.9217 | | 0.0055 | 6.6667 | 2000 | 0.6404 | 0.88 | 0.8910 | 0.88 | 0.8765 | | 0.0007 | 7.0 | 2100 | 0.5133 | 0.9017 | 0.9073 | 0.9017 | 0.9023 | | 0.0009 | 7.3333 | 2200 | 0.4628 | 0.92 | 0.9296 | 0.92 | 0.9189 | | 0.0007 | 7.6667 | 2300 | 0.8405 | 0.8617 | 0.8744 | 0.8617 | 0.8581 | | 0.1144 | 8.0 | 2400 | 1.0096 | 0.8592 | 0.8954 | 0.8592 | 0.8567 | | 0.0007 | 8.3333 | 2500 | 0.6318 | 0.8983 | 0.9113 | 0.8983 | 0.8977 | | 0.0005 | 8.6667 | 2600 | 0.4929 | 0.9075 | 0.9135 | 0.9075 | 0.9076 | | 0.0013 | 9.0 | 2700 | 0.6148 | 0.8883 | 0.8955 | 0.8883 | 0.8866 | | 0.001 | 9.3333 | 2800 | 1.0043 | 0.8392 | 0.8538 | 0.8392 | 0.8355 | | 0.0004 | 9.6667 | 2900 | 0.9713 | 0.8425 | 0.8556 | 0.8425 | 0.8390 | | 0.0004 | 10.0 | 3000 | 0.9737 | 0.865 | 0.8977 | 0.865 | 0.8634 | | 0.0004 | 10.3333 | 3100 | 0.8766 | 0.8683 | 0.8835 | 0.8683 | 0.8673 | | 0.0004 | 10.6667 | 3200 | 0.8620 | 0.8683 | 0.8808 | 0.8683 | 0.8672 | | 0.0003 | 11.0 | 3300 | 0.8669 | 0.8675 | 0.8803 | 0.8675 | 0.8665 | | 0.0003 | 11.3333 | 3400 | 0.8712 | 0.8667 | 0.8789 | 0.8667 | 0.8656 | | 0.0003 | 11.6667 | 3500 | 0.8732 | 0.8675 | 0.8797 | 0.8675 | 0.8665 | | 0.0003 | 12.0 | 3600 | 0.8754 | 0.8658 | 0.8782 | 0.8658 | 0.8648 | | 0.0003 | 12.3333 | 3700 | 0.8775 | 0.8658 | 0.8782 | 0.8658 | 0.8648 | | 0.0003 | 12.6667 | 3800 | 0.8797 | 0.865 | 0.8772 | 0.865 | 0.8640 | | 0.0003 | 13.0 | 3900 | 0.8816 | 0.865 | 0.8772 | 0.865 | 0.8640 | | 0.0003 | 13.3333 | 4000 | 0.8835 | 0.865 | 0.8772 | 0.865 | 0.8640 | | 0.0003 | 13.6667 | 4100 | 0.8844 | 0.865 | 0.8769 | 0.865 | 0.8639 | | 0.0003 | 14.0 | 4200 | 0.8852 | 0.8658 | 0.8775 | 0.8658 | 0.8648 | | 0.0002 | 14.3333 | 4300 | 0.8859 | 0.8667 | 0.8780 | 0.8667 | 0.8655 | | 0.0002 | 14.6667 | 4400 | 0.8865 | 0.8675 | 0.8786 | 0.8675 | 0.8664 | | 0.0002 | 15.0 | 4500 | 0.8868 | 0.8675 | 0.8786 | 0.8675 | 0.8664 | ### Framework versions - Transformers 4.48.2 - Pytorch 2.6.0+cu126 - Datasets 3.1.0 - Tokenizers 0.21.0
[ "sec-subtype_iva", "sec-subtype_iva2", "sec-subtype_ivc", "sec-subtype_ivd", "sec-subtype_ia", "sec-subtype_va" ]
Ivanrs/vit-base-kidney-stone-4-Michel_Daudon_-w256_1k_v1-_SUR
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-kidney-stone-4-Michel_Daudon_-w256_1k_v1-_SUR This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.6804 - Accuracy: 0.8136 - Precision: 0.8643 - Recall: 0.8136 - F1: 0.8124 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.1898 | 0.3333 | 100 | 0.9163 | 0.7294 | 0.7512 | 0.7294 | 0.7288 | | 0.2681 | 0.6667 | 200 | 0.6804 | 0.8136 | 0.8643 | 0.8136 | 0.8124 | | 0.1036 | 1.0 | 300 | 0.9091 | 0.7939 | 0.8124 | 0.7939 | 0.7880 | | 0.1047 | 1.3333 | 400 | 1.5065 | 0.6566 | 0.6964 | 0.6566 | 0.6685 | | 0.0449 | 1.6667 | 500 | 0.9248 | 0.7833 | 0.7988 | 0.7833 | 0.7893 | | 0.1781 | 2.0 | 600 | 1.1234 | 0.7621 | 0.7926 | 0.7621 | 0.7607 | | 0.1509 | 2.3333 | 700 | 1.1867 | 0.7465 | 0.7468 | 0.7465 | 0.7396 | | 0.1324 | 2.6667 | 800 | 1.3904 | 0.7433 | 0.7586 | 0.7433 | 0.7329 | | 0.0037 | 3.0 | 900 | 1.3699 | 0.7408 | 0.7950 | 0.7408 | 0.7441 | | 0.0025 | 3.3333 | 1000 | 1.2225 | 0.7433 | 0.7667 | 0.7433 | 0.7448 | | 0.0587 | 3.6667 | 1100 | 1.4635 | 0.7244 | 0.7766 | 0.7244 | 0.7274 | | 0.0422 | 4.0 | 1200 | 1.4949 | 0.7433 | 0.7599 | 0.7433 | 0.7398 | | 0.0084 | 4.3333 | 1300 | 1.2363 | 0.7841 | 0.7863 | 0.7841 | 0.7788 | | 0.0796 | 4.6667 | 1400 | 1.5322 | 0.7392 | 0.7473 | 0.7392 | 0.7419 | | 0.003 | 5.0 | 1500 | 1.6031 | 0.7294 | 0.7752 | 0.7294 | 0.7319 | | 0.0012 | 5.3333 | 1600 | 1.0992 | 0.8062 | 0.8066 | 0.8062 | 0.8056 | | 0.0009 | 5.6667 | 1700 | 2.1569 | 0.6999 | 0.7144 | 0.6999 | 0.6907 | | 0.0022 | 6.0 | 1800 | 2.2827 | 0.6312 | 0.6385 | 0.6312 | 0.6195 | | 0.0009 | 6.3333 | 1900 | 1.8713 | 0.7089 | 0.7476 | 0.7089 | 0.6997 | | 0.0012 | 6.6667 | 2000 | 1.9461 | 0.6983 | 0.6983 | 0.6983 | 0.6788 | | 0.0006 | 7.0 | 2100 | 1.8889 | 0.7114 | 0.7217 | 0.7114 | 0.6998 | | 0.0006 | 7.3333 | 2200 | 1.9514 | 0.6991 | 0.7212 | 0.6991 | 0.6794 | | 0.0005 | 7.6667 | 2300 | 1.9619 | 0.7138 | 0.6644 | 0.7138 | 0.6726 | | 0.0013 | 8.0 | 2400 | 1.7297 | 0.7490 | 0.7589 | 0.7490 | 0.7493 | | 0.0005 | 8.3333 | 2500 | 2.2490 | 0.6950 | 0.7015 | 0.6950 | 0.6914 | | 0.0004 | 8.6667 | 2600 | 2.2431 | 0.6975 | 0.7039 | 0.6975 | 0.6932 | | 0.0009 | 9.0 | 2700 | 1.8096 | 0.7490 | 0.7593 | 0.7490 | 0.7443 | | 0.0003 | 9.3333 | 2800 | 1.9490 | 0.7375 | 0.7450 | 0.7375 | 0.7353 | | 0.0011 | 9.6667 | 2900 | 2.0860 | 0.7294 | 0.7239 | 0.7294 | 0.7153 | | 0.0003 | 10.0 | 3000 | 1.9343 | 0.7383 | 0.7468 | 0.7383 | 0.7399 | | 0.0004 | 10.3333 | 3100 | 1.9158 | 0.7457 | 0.7513 | 0.7457 | 0.7464 | | 0.0003 | 10.6667 | 3200 | 1.9289 | 0.7465 | 0.7526 | 0.7465 | 0.7475 | | 0.0802 | 11.0 | 3300 | 2.0591 | 0.7375 | 0.7487 | 0.7375 | 0.7404 | | 0.0565 | 11.3333 | 3400 | 2.2480 | 0.7016 | 0.7854 | 0.7016 | 0.7131 | | 0.0003 | 11.6667 | 3500 | 1.7115 | 0.7539 | 0.8088 | 0.7539 | 0.7572 | | 0.0003 | 12.0 | 3600 | 1.9888 | 0.7195 | 0.7679 | 0.7195 | 0.7222 | | 0.0003 | 12.3333 | 3700 | 2.0141 | 0.7179 | 0.7227 | 0.7179 | 0.7133 | | 0.0002 | 12.6667 | 3800 | 2.0314 | 0.7089 | 0.7158 | 0.7089 | 0.7081 | | 0.0002 | 13.0 | 3900 | 1.8735 | 0.7187 | 0.7291 | 0.7187 | 0.7220 | | 0.0002 | 13.3333 | 4000 | 1.8854 | 0.7179 | 0.7281 | 0.7179 | 0.7210 | | 0.0002 | 13.6667 | 4100 | 1.8931 | 0.7179 | 0.7281 | 0.7179 | 0.7210 | | 0.0002 | 14.0 | 4200 | 1.8992 | 0.7179 | 0.7285 | 0.7179 | 0.7212 | | 0.0002 | 14.3333 | 4300 | 1.9039 | 0.7179 | 0.7285 | 0.7179 | 0.7212 | | 0.0002 | 14.6667 | 4400 | 1.9063 | 0.7179 | 0.7285 | 0.7179 | 0.7212 | | 0.0002 | 15.0 | 4500 | 1.9073 | 0.7179 | 0.7285 | 0.7179 | 0.7212 | ### Framework versions - Transformers 4.48.2 - Pytorch 2.6.0+cu126 - Datasets 3.1.0 - Tokenizers 0.21.0
[ "sur-subtype_iva", "sur-subtype_iva2", "sur-subtype_ivc", "sur-subtype_ivd", "sur-subtype_ia", "sur-subtype_va" ]
Ivanrs/vit-base-kidney-stone-5-Jonathan_El-Beze_-w256_1k_v1-_MIX
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-kidney-stone-5-Jonathan_El-Beze_-w256_1k_v1-_MIX This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.4482 - Accuracy: 0.8683 - Precision: 0.8788 - Recall: 0.8683 - F1: 0.8688 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.2457 | 0.1667 | 100 | 0.5382 | 0.8258 | 0.8382 | 0.8258 | 0.8180 | | 0.0854 | 0.3333 | 200 | 0.7377 | 0.7875 | 0.8422 | 0.7875 | 0.7795 | | 0.1279 | 0.5 | 300 | 0.6710 | 0.7883 | 0.8568 | 0.7883 | 0.7883 | | 0.1442 | 0.6667 | 400 | 0.5535 | 0.8192 | 0.8342 | 0.8192 | 0.8192 | | 0.2868 | 0.8333 | 500 | 1.0679 | 0.7242 | 0.7910 | 0.7242 | 0.7163 | | 0.1327 | 1.0 | 600 | 0.4482 | 0.8683 | 0.8788 | 0.8683 | 0.8688 | | 0.1097 | 1.1667 | 700 | 0.8910 | 0.7983 | 0.8425 | 0.7983 | 0.7898 | | 0.0725 | 1.3333 | 800 | 0.6816 | 0.8037 | 0.8375 | 0.8037 | 0.8015 | | 0.0152 | 1.5 | 900 | 0.8366 | 0.8175 | 0.8466 | 0.8175 | 0.8169 | | 0.0057 | 1.6667 | 1000 | 0.5298 | 0.8812 | 0.8924 | 0.8812 | 0.8810 | | 0.0804 | 1.8333 | 1100 | 1.1549 | 0.7425 | 0.8162 | 0.7425 | 0.7228 | | 0.0655 | 2.0 | 1200 | 0.9445 | 0.795 | 0.8350 | 0.795 | 0.7907 | | 0.1261 | 2.1667 | 1300 | 0.8882 | 0.8121 | 0.8449 | 0.8121 | 0.8067 | | 0.0418 | 2.3333 | 1400 | 0.6411 | 0.8638 | 0.8682 | 0.8638 | 0.8636 | | 0.0809 | 2.5 | 1500 | 0.5780 | 0.8708 | 0.8811 | 0.8708 | 0.8683 | | 0.1062 | 2.6667 | 1600 | 1.1595 | 0.7875 | 0.8249 | 0.7875 | 0.7623 | | 0.0021 | 2.8333 | 1700 | 1.4652 | 0.7525 | 0.8050 | 0.7525 | 0.7379 | | 0.0031 | 3.0 | 1800 | 1.1441 | 0.7904 | 0.8277 | 0.7904 | 0.7647 | | 0.0026 | 3.1667 | 1900 | 0.6132 | 0.8479 | 0.8537 | 0.8479 | 0.8471 | | 0.0011 | 3.3333 | 2000 | 0.5269 | 0.8925 | 0.8948 | 0.8925 | 0.8913 | | 0.0014 | 3.5 | 2100 | 0.8908 | 0.7808 | 0.8294 | 0.7808 | 0.7723 | | 0.0013 | 3.6667 | 2200 | 0.8869 | 0.8075 | 0.8466 | 0.8075 | 0.8101 | | 0.0007 | 3.8333 | 2300 | 0.6948 | 0.8667 | 0.8817 | 0.8667 | 0.8662 | | 0.0824 | 4.0 | 2400 | 0.4991 | 0.8929 | 0.8962 | 0.8929 | 0.8934 | | 0.0021 | 4.1667 | 2500 | 0.5147 | 0.9038 | 0.9116 | 0.9038 | 0.9025 | | 0.0006 | 4.3333 | 2600 | 0.5748 | 0.8967 | 0.9043 | 0.8967 | 0.8970 | | 0.0005 | 4.5 | 2700 | 0.5797 | 0.8962 | 0.9035 | 0.8962 | 0.8966 | | 0.0006 | 4.6667 | 2800 | 0.8573 | 0.855 | 0.8741 | 0.855 | 0.8534 | | 0.0006 | 4.8333 | 2900 | 0.7548 | 0.8446 | 0.8617 | 0.8446 | 0.8415 | | 0.0019 | 5.0 | 3000 | 0.6473 | 0.8733 | 0.8850 | 0.8733 | 0.8714 | | 0.0469 | 5.1667 | 3100 | 0.8790 | 0.8258 | 0.8368 | 0.8258 | 0.8274 | | 0.0271 | 5.3333 | 3200 | 1.6532 | 0.7525 | 0.8328 | 0.7525 | 0.7430 | | 0.0005 | 5.5 | 3300 | 0.7739 | 0.8654 | 0.8743 | 0.8654 | 0.8660 | | 0.1697 | 5.6667 | 3400 | 0.7311 | 0.8592 | 0.8816 | 0.8592 | 0.8612 | | 0.0162 | 5.8333 | 3500 | 0.7819 | 0.8621 | 0.8678 | 0.8621 | 0.8620 | | 0.0039 | 6.0 | 3600 | 1.1462 | 0.8092 | 0.8282 | 0.8092 | 0.8073 | | 0.0005 | 6.1667 | 3700 | 0.6625 | 0.8692 | 0.8750 | 0.8692 | 0.8699 | | 0.0022 | 6.3333 | 3800 | 1.1395 | 0.8079 | 0.8245 | 0.8079 | 0.7988 | | 0.0039 | 6.5 | 3900 | 0.5258 | 0.9104 | 0.9145 | 0.9104 | 0.9111 | | 0.0003 | 6.6667 | 4000 | 0.8170 | 0.8438 | 0.8598 | 0.8438 | 0.8445 | | 0.0005 | 6.8333 | 4100 | 0.6582 | 0.8862 | 0.8906 | 0.8862 | 0.8847 | | 0.0003 | 7.0 | 4200 | 0.8093 | 0.8571 | 0.8707 | 0.8571 | 0.8585 | | 0.0002 | 7.1667 | 4300 | 0.7803 | 0.8633 | 0.8744 | 0.8633 | 0.8645 | | 0.0002 | 7.3333 | 4400 | 0.7809 | 0.865 | 0.8767 | 0.865 | 0.8660 | | 0.0002 | 7.5 | 4500 | 0.7817 | 0.8671 | 0.8788 | 0.8671 | 0.8680 | | 0.0002 | 7.6667 | 4600 | 0.7804 | 0.8683 | 0.8792 | 0.8683 | 0.8692 | | 0.0001 | 7.8333 | 4700 | 0.7560 | 0.8762 | 0.8840 | 0.8762 | 0.8766 | | 0.0002 | 8.0 | 4800 | 0.7634 | 0.8767 | 0.8848 | 0.8767 | 0.8771 | | 0.0001 | 8.1667 | 4900 | 0.7603 | 0.8792 | 0.8866 | 0.8792 | 0.8794 | | 0.0001 | 8.3333 | 5000 | 0.7596 | 0.8792 | 0.8864 | 0.8792 | 0.8794 | | 0.0001 | 8.5 | 5100 | 0.7636 | 0.8804 | 0.8875 | 0.8804 | 0.8806 | | 0.0001 | 8.6667 | 5200 | 0.7681 | 0.8792 | 0.8869 | 0.8792 | 0.8794 | | 0.0001 | 8.8333 | 5300 | 0.7720 | 0.8796 | 0.8877 | 0.8796 | 0.8799 | | 0.0001 | 9.0 | 5400 | 0.7743 | 0.8796 | 0.8876 | 0.8796 | 0.8798 | | 0.0001 | 9.1667 | 5500 | 0.7771 | 0.88 | 0.8880 | 0.88 | 0.8802 | | 0.0001 | 9.3333 | 5600 | 0.7801 | 0.8804 | 0.8883 | 0.8804 | 0.8806 | | 0.0001 | 9.5 | 5700 | 0.7823 | 0.8804 | 0.8883 | 0.8804 | 0.8806 | | 0.0001 | 9.6667 | 5800 | 0.7851 | 0.8808 | 0.8885 | 0.8808 | 0.8810 | | 0.0001 | 9.8333 | 5900 | 0.7873 | 0.8808 | 0.8885 | 0.8808 | 0.8810 | | 0.0001 | 10.0 | 6000 | 0.7907 | 0.8812 | 0.8890 | 0.8812 | 0.8814 | | 0.0001 | 10.1667 | 6100 | 0.7934 | 0.8817 | 0.8893 | 0.8817 | 0.8818 | | 0.0001 | 10.3333 | 6200 | 0.7968 | 0.8817 | 0.8896 | 0.8817 | 0.8818 | | 0.0001 | 10.5 | 6300 | 0.8003 | 0.8817 | 0.8896 | 0.8817 | 0.8818 | | 0.0001 | 10.6667 | 6400 | 0.8027 | 0.8817 | 0.8896 | 0.8817 | 0.8818 | | 0.0001 | 10.8333 | 6500 | 0.8035 | 0.8812 | 0.8894 | 0.8812 | 0.8815 | | 0.0001 | 11.0 | 6600 | 0.8049 | 0.8812 | 0.8894 | 0.8812 | 0.8815 | | 0.0001 | 11.1667 | 6700 | 0.8070 | 0.8812 | 0.8894 | 0.8812 | 0.8815 | | 0.0001 | 11.3333 | 6800 | 0.8091 | 0.8812 | 0.8894 | 0.8812 | 0.8815 | | 0.0001 | 11.5 | 6900 | 0.8124 | 0.8817 | 0.8897 | 0.8817 | 0.8818 | | 0.0001 | 11.6667 | 7000 | 0.8147 | 0.8817 | 0.8897 | 0.8817 | 0.8818 | | 0.0001 | 11.8333 | 7100 | 0.8163 | 0.8821 | 0.8899 | 0.8821 | 0.8822 | | 0.0001 | 12.0 | 7200 | 0.8181 | 0.8829 | 0.8908 | 0.8829 | 0.8830 | | 0.0 | 12.1667 | 7300 | 0.8204 | 0.8833 | 0.8911 | 0.8833 | 0.8834 | | 0.0 | 12.3333 | 7400 | 0.8224 | 0.8833 | 0.8911 | 0.8833 | 0.8834 | | 0.0 | 12.5 | 7500 | 0.8246 | 0.8825 | 0.8902 | 0.8825 | 0.8826 | | 0.0 | 12.6667 | 7600 | 0.8267 | 0.8821 | 0.8898 | 0.8821 | 0.8821 | | 0.0 | 12.8333 | 7700 | 0.8280 | 0.8821 | 0.8898 | 0.8821 | 0.8821 | | 0.0 | 13.0 | 7800 | 0.8290 | 0.8825 | 0.8902 | 0.8825 | 0.8826 | | 0.0 | 13.1667 | 7900 | 0.8309 | 0.8821 | 0.8898 | 0.8821 | 0.8821 | | 0.0 | 13.3333 | 8000 | 0.8328 | 0.8821 | 0.8898 | 0.8821 | 0.8821 | | 0.0 | 13.5 | 8100 | 0.8340 | 0.8825 | 0.8902 | 0.8825 | 0.8826 | | 0.0 | 13.6667 | 8200 | 0.8348 | 0.8821 | 0.8898 | 0.8821 | 0.8821 | | 0.0 | 13.8333 | 8300 | 0.8360 | 0.8821 | 0.8898 | 0.8821 | 0.8821 | | 0.0 | 14.0 | 8400 | 0.8369 | 0.8825 | 0.8902 | 0.8825 | 0.8826 | | 0.0 | 14.1667 | 8500 | 0.8379 | 0.8821 | 0.8898 | 0.8821 | 0.8821 | | 0.0 | 14.3333 | 8600 | 0.8386 | 0.8821 | 0.8898 | 0.8821 | 0.8821 | | 0.0 | 14.5 | 8700 | 0.8390 | 0.8829 | 0.8905 | 0.8829 | 0.8830 | | 0.0 | 14.6667 | 8800 | 0.8397 | 0.8825 | 0.8901 | 0.8825 | 0.8825 | | 0.0 | 14.8333 | 8900 | 0.8401 | 0.8825 | 0.8901 | 0.8825 | 0.8825 | | 0.0 | 15.0 | 9000 | 0.8401 | 0.8825 | 0.8901 | 0.8825 | 0.8825 | ### Framework versions - Transformers 4.48.2 - Pytorch 2.6.0+cu126 - Datasets 3.1.0 - Tokenizers 0.21.0
[ "mix-subtype_iiia", "mix-subtype_iia", "mix-subtype_ivc", "mix-subtype_ivd", "mix-subtype_ia", "mix-subtype_va" ]
Ivanrs/vit-base-kidney-stone-5-Jonathan_El-Beze_-w256_1k_v1-_SEC
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-kidney-stone-5-Jonathan_El-Beze_-w256_1k_v1-_SEC This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.2317 - Accuracy: 0.9583 - Precision: 0.9611 - Recall: 0.9583 - F1: 0.9575 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.1048 | 0.3333 | 100 | 0.2766 | 0.9125 | 0.9266 | 0.9125 | 0.9148 | | 0.1694 | 0.6667 | 200 | 0.5766 | 0.855 | 0.8878 | 0.855 | 0.8515 | | 0.1116 | 1.0 | 300 | 0.8084 | 0.8233 | 0.8730 | 0.8233 | 0.8067 | | 0.0071 | 1.3333 | 400 | 0.6568 | 0.8783 | 0.9098 | 0.8783 | 0.8717 | | 0.0606 | 1.6667 | 500 | 0.6522 | 0.8767 | 0.9201 | 0.8767 | 0.8796 | | 0.0069 | 2.0 | 600 | 1.3007 | 0.7383 | 0.7651 | 0.7383 | 0.7228 | | 0.003 | 2.3333 | 700 | 0.3122 | 0.925 | 0.9287 | 0.925 | 0.9253 | | 0.002 | 2.6667 | 800 | 0.5233 | 0.89 | 0.9141 | 0.89 | 0.8863 | | 0.0023 | 3.0 | 900 | 0.7763 | 0.8567 | 0.8853 | 0.8567 | 0.8499 | | 0.1048 | 3.3333 | 1000 | 0.5440 | 0.8983 | 0.9024 | 0.8983 | 0.8971 | | 0.0023 | 3.6667 | 1100 | 0.3234 | 0.9367 | 0.9471 | 0.9367 | 0.9366 | | 0.0943 | 4.0 | 1200 | 0.9164 | 0.84 | 0.9062 | 0.84 | 0.8402 | | 0.0858 | 4.3333 | 1300 | 0.2317 | 0.9583 | 0.9611 | 0.9583 | 0.9575 | | 0.0011 | 4.6667 | 1400 | 1.0192 | 0.82 | 0.8376 | 0.82 | 0.8045 | | 0.0009 | 5.0 | 1500 | 0.5853 | 0.8725 | 0.9008 | 0.8725 | 0.8718 | | 0.0007 | 5.3333 | 1600 | 0.5612 | 0.8842 | 0.9086 | 0.8842 | 0.8841 | | 0.0006 | 5.6667 | 1700 | 0.5591 | 0.8842 | 0.9085 | 0.8842 | 0.8842 | | 0.0006 | 6.0 | 1800 | 0.5744 | 0.8833 | 0.9085 | 0.8833 | 0.8832 | | 0.0005 | 6.3333 | 1900 | 0.5831 | 0.8817 | 0.9065 | 0.8817 | 0.8816 | | 0.0005 | 6.6667 | 2000 | 0.5819 | 0.8842 | 0.9075 | 0.8842 | 0.8842 | | 0.0004 | 7.0 | 2100 | 0.5861 | 0.8842 | 0.9076 | 0.8842 | 0.8843 | | 0.0004 | 7.3333 | 2200 | 0.5866 | 0.8867 | 0.9092 | 0.8867 | 0.8869 | | 0.0004 | 7.6667 | 2300 | 0.5911 | 0.8867 | 0.9092 | 0.8867 | 0.8869 | | 0.0004 | 8.0 | 2400 | 0.5931 | 0.8867 | 0.9092 | 0.8867 | 0.8869 | | 0.0003 | 8.3333 | 2500 | 0.5992 | 0.8867 | 0.9092 | 0.8867 | 0.8869 | | 0.0003 | 8.6667 | 2600 | 0.5975 | 0.8892 | 0.9108 | 0.8892 | 0.8895 | | 0.0003 | 9.0 | 2700 | 0.5978 | 0.89 | 0.9112 | 0.89 | 0.8904 | | 0.0003 | 9.3333 | 2800 | 0.6015 | 0.89 | 0.9115 | 0.89 | 0.8905 | | 0.0003 | 9.6667 | 2900 | 0.6045 | 0.89 | 0.9115 | 0.89 | 0.8905 | | 0.0002 | 10.0 | 3000 | 0.6030 | 0.89 | 0.9115 | 0.89 | 0.8905 | | 0.0002 | 10.3333 | 3100 | 0.6025 | 0.8917 | 0.9124 | 0.8917 | 0.8922 | | 0.0002 | 10.6667 | 3200 | 0.6038 | 0.8917 | 0.9124 | 0.8917 | 0.8922 | | 0.0002 | 11.0 | 3300 | 0.6075 | 0.8908 | 0.9112 | 0.8908 | 0.8913 | | 0.0002 | 11.3333 | 3400 | 0.6090 | 0.8917 | 0.9116 | 0.8917 | 0.8922 | | 0.0002 | 11.6667 | 3500 | 0.6109 | 0.8917 | 0.9116 | 0.8917 | 0.8923 | | 0.0002 | 12.0 | 3600 | 0.6111 | 0.8917 | 0.9116 | 0.8917 | 0.8923 | | 0.0002 | 12.3333 | 3700 | 0.6121 | 0.8917 | 0.9116 | 0.8917 | 0.8923 | | 0.0002 | 12.6667 | 3800 | 0.6126 | 0.8917 | 0.9116 | 0.8917 | 0.8923 | | 0.0002 | 13.0 | 3900 | 0.6135 | 0.8917 | 0.9119 | 0.8917 | 0.8923 | | 0.0002 | 13.3333 | 4000 | 0.6142 | 0.8917 | 0.9119 | 0.8917 | 0.8923 | | 0.0002 | 13.6667 | 4100 | 0.6154 | 0.8917 | 0.9119 | 0.8917 | 0.8923 | | 0.0002 | 14.0 | 4200 | 0.6156 | 0.8917 | 0.9119 | 0.8917 | 0.8923 | | 0.0002 | 14.3333 | 4300 | 0.6159 | 0.8917 | 0.9119 | 0.8917 | 0.8923 | | 0.0002 | 14.6667 | 4400 | 0.6162 | 0.8917 | 0.9119 | 0.8917 | 0.8923 | | 0.0002 | 15.0 | 4500 | 0.6163 | 0.8917 | 0.9119 | 0.8917 | 0.8923 | ### Framework versions - Transformers 4.48.2 - Pytorch 2.6.0+cu126 - Datasets 3.1.0 - Tokenizers 0.21.0
[ "sec-subtype_iiia", "sec-subtype_iia", "sec-subtype_ivc", "sec-subtype_ivd", "sec-subtype_ia", "sec-subtype_va" ]
Ivanrs/vit-base-kidney-stone-5-Jonathan_El-Beze_-w256_1k_v1-_SUR
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-kidney-stone-5-Jonathan_El-Beze_-w256_1k_v1-_SUR This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.5091 - Accuracy: 0.8617 - Precision: 0.8757 - Recall: 0.8617 - F1: 0.8604 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.2613 | 0.3333 | 100 | 0.6234 | 0.7883 | 0.8364 | 0.7883 | 0.7915 | | 0.1745 | 0.6667 | 200 | 0.7693 | 0.7342 | 0.7739 | 0.7342 | 0.7088 | | 0.1303 | 1.0 | 300 | 0.5091 | 0.8617 | 0.8757 | 0.8617 | 0.8604 | | 0.0163 | 1.3333 | 400 | 0.5309 | 0.8708 | 0.8869 | 0.8708 | 0.8706 | | 0.009 | 1.6667 | 500 | 0.9663 | 0.7725 | 0.8345 | 0.7725 | 0.7706 | | 0.0221 | 2.0 | 600 | 1.3265 | 0.7225 | 0.8133 | 0.7225 | 0.7219 | | 0.0053 | 2.3333 | 700 | 0.8728 | 0.8408 | 0.8727 | 0.8408 | 0.8366 | | 0.0031 | 2.6667 | 800 | 0.9499 | 0.8258 | 0.8596 | 0.8258 | 0.8225 | | 0.0733 | 3.0 | 900 | 0.8135 | 0.8558 | 0.8840 | 0.8558 | 0.8554 | | 0.0026 | 3.3333 | 1000 | 0.6858 | 0.885 | 0.8963 | 0.885 | 0.8826 | | 0.0028 | 3.6667 | 1100 | 0.8497 | 0.8608 | 0.9004 | 0.8608 | 0.8631 | | 0.0021 | 4.0 | 1200 | 1.0722 | 0.81 | 0.8493 | 0.81 | 0.8114 | | 0.0023 | 4.3333 | 1300 | 0.7217 | 0.8742 | 0.8742 | 0.8742 | 0.8737 | | 0.0243 | 4.6667 | 1400 | 0.8721 | 0.8467 | 0.8627 | 0.8467 | 0.8449 | | 0.004 | 5.0 | 1500 | 0.8314 | 0.8425 | 0.8500 | 0.8425 | 0.8402 | | 0.0011 | 5.3333 | 1600 | 0.9170 | 0.8367 | 0.8362 | 0.8367 | 0.8347 | | 0.0008 | 5.6667 | 1700 | 0.9080 | 0.8475 | 0.8536 | 0.8475 | 0.8452 | | 0.0017 | 6.0 | 1800 | 0.8709 | 0.855 | 0.8642 | 0.855 | 0.8527 | | 0.0007 | 6.3333 | 1900 | 0.7878 | 0.8808 | 0.8899 | 0.8808 | 0.8777 | | 0.0006 | 6.6667 | 2000 | 0.7954 | 0.8825 | 0.8926 | 0.8825 | 0.8795 | | 0.0007 | 7.0 | 2100 | 1.0196 | 0.8475 | 0.8640 | 0.8475 | 0.8438 | | 0.0005 | 7.3333 | 2200 | 1.0647 | 0.8508 | 0.8665 | 0.8508 | 0.8463 | | 0.0005 | 7.6667 | 2300 | 1.2970 | 0.8125 | 0.8430 | 0.8125 | 0.8111 | | 0.0005 | 8.0 | 2400 | 1.2049 | 0.8167 | 0.8214 | 0.8167 | 0.8143 | | 0.0021 | 8.3333 | 2500 | 0.9407 | 0.8642 | 0.8663 | 0.8642 | 0.8602 | | 0.0006 | 8.6667 | 2600 | 1.8421 | 0.7258 | 0.8273 | 0.7258 | 0.7256 | | 0.0005 | 9.0 | 2700 | 1.6230 | 0.76 | 0.7921 | 0.76 | 0.7555 | | 0.0116 | 9.3333 | 2800 | 1.2096 | 0.8258 | 0.8495 | 0.8258 | 0.8182 | | 0.0004 | 9.6667 | 2900 | 1.4233 | 0.8158 | 0.8258 | 0.8158 | 0.8111 | | 0.0006 | 10.0 | 3000 | 1.5142 | 0.7775 | 0.8340 | 0.7775 | 0.7760 | | 0.0004 | 10.3333 | 3100 | 0.8260 | 0.875 | 0.8833 | 0.875 | 0.8715 | | 0.0004 | 10.6667 | 3200 | 0.8945 | 0.8642 | 0.8754 | 0.8642 | 0.8631 | | 0.0003 | 11.0 | 3300 | 0.9189 | 0.865 | 0.8658 | 0.865 | 0.8596 | | 0.0003 | 11.3333 | 3400 | 0.6929 | 0.8917 | 0.8926 | 0.8917 | 0.8882 | | 0.0003 | 11.6667 | 3500 | 0.7764 | 0.8908 | 0.9000 | 0.8908 | 0.8879 | | 0.0003 | 12.0 | 3600 | 0.9250 | 0.8617 | 0.8749 | 0.8617 | 0.8598 | | 0.0002 | 12.3333 | 3700 | 0.9109 | 0.865 | 0.8772 | 0.865 | 0.8628 | | 0.0002 | 12.6667 | 3800 | 0.9101 | 0.865 | 0.8772 | 0.865 | 0.8628 | | 0.0002 | 13.0 | 3900 | 0.9113 | 0.8675 | 0.8792 | 0.8675 | 0.8653 | | 0.0002 | 13.3333 | 4000 | 0.9124 | 0.8683 | 0.8800 | 0.8683 | 0.8662 | | 0.0002 | 13.6667 | 4100 | 0.9130 | 0.8683 | 0.8800 | 0.8683 | 0.8662 | | 0.0002 | 14.0 | 4200 | 0.9124 | 0.8683 | 0.8800 | 0.8683 | 0.8662 | | 0.0002 | 14.3333 | 4300 | 0.9125 | 0.8683 | 0.8800 | 0.8683 | 0.8662 | | 0.0002 | 14.6667 | 4400 | 0.9130 | 0.8683 | 0.8800 | 0.8683 | 0.8662 | | 0.0002 | 15.0 | 4500 | 0.9131 | 0.8683 | 0.8800 | 0.8683 | 0.8662 | ### Framework versions - Transformers 4.48.2 - Pytorch 2.6.0+cu126 - Datasets 3.1.0 - Tokenizers 0.21.0
[ "sur-subtype_iiia", "sur-subtype_iia", "sur-subtype_ivc", "sur-subtype_ivd", "sur-subtype_ia", "sur-subtype_va" ]
Ivanrs/vit-base-kidney-stone-5-Michel_Daudon_-w256_1k_v1-_MIX
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-kidney-stone-5-Michel_Daudon_-w256_1k_v1-_MIX This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.3946 - Accuracy: 0.8888 - Precision: 0.8975 - Recall: 0.8888 - F1: 0.8871 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.5771 | 0.1667 | 100 | 0.6379 | 0.7929 | 0.8436 | 0.7929 | 0.7925 | | 0.3294 | 0.3333 | 200 | 0.7346 | 0.7992 | 0.8342 | 0.7992 | 0.7915 | | 0.5113 | 0.5 | 300 | 0.5429 | 0.8638 | 0.8829 | 0.8638 | 0.8625 | | 0.1584 | 0.6667 | 400 | 0.6327 | 0.8304 | 0.8612 | 0.8304 | 0.8308 | | 0.2638 | 0.8333 | 500 | 1.0157 | 0.7575 | 0.7964 | 0.7575 | 0.7623 | | 0.2057 | 1.0 | 600 | 0.3946 | 0.8888 | 0.8975 | 0.8888 | 0.8871 | | 0.1699 | 1.1667 | 700 | 0.7519 | 0.7987 | 0.8373 | 0.7987 | 0.8004 | | 0.1526 | 1.3333 | 800 | 0.7253 | 0.8342 | 0.8727 | 0.8342 | 0.8372 | | 0.0361 | 1.5 | 900 | 1.0151 | 0.7829 | 0.8064 | 0.7829 | 0.7748 | | 0.0756 | 1.6667 | 1000 | 0.6614 | 0.8625 | 0.8860 | 0.8625 | 0.8647 | | 0.0267 | 1.8333 | 1100 | 0.9163 | 0.8154 | 0.8321 | 0.8154 | 0.8195 | | 0.1447 | 2.0 | 1200 | 0.7084 | 0.8271 | 0.8381 | 0.8271 | 0.8244 | | 0.0132 | 2.1667 | 1300 | 0.8919 | 0.8354 | 0.8758 | 0.8354 | 0.8378 | | 0.0254 | 2.3333 | 1400 | 0.7531 | 0.8488 | 0.8772 | 0.8488 | 0.8505 | | 0.0848 | 2.5 | 1500 | 0.6491 | 0.8733 | 0.8841 | 0.8733 | 0.8765 | | 0.0605 | 2.6667 | 1600 | 0.7045 | 0.855 | 0.8708 | 0.855 | 0.8515 | | 0.0085 | 2.8333 | 1700 | 1.1652 | 0.7992 | 0.8305 | 0.7992 | 0.7879 | | 0.1798 | 3.0 | 1800 | 0.9389 | 0.8075 | 0.8350 | 0.8075 | 0.8075 | | 0.0555 | 3.1667 | 1900 | 0.7451 | 0.8421 | 0.8593 | 0.8421 | 0.8452 | | 0.0245 | 3.3333 | 2000 | 0.4729 | 0.8888 | 0.8942 | 0.8888 | 0.8880 | | 0.0017 | 3.5 | 2100 | 0.7608 | 0.8629 | 0.8859 | 0.8629 | 0.8663 | | 0.0266 | 3.6667 | 2200 | 0.7795 | 0.8571 | 0.8668 | 0.8571 | 0.8578 | | 0.0072 | 3.8333 | 2300 | 0.6487 | 0.8596 | 0.8862 | 0.8596 | 0.8600 | | 0.0019 | 4.0 | 2400 | 0.6297 | 0.8712 | 0.8846 | 0.8712 | 0.8723 | | 0.001 | 4.1667 | 2500 | 0.8346 | 0.8679 | 0.8849 | 0.8679 | 0.8692 | | 0.0014 | 4.3333 | 2600 | 0.8441 | 0.8633 | 0.8869 | 0.8633 | 0.8671 | | 0.0068 | 4.5 | 2700 | 0.7032 | 0.8662 | 0.8769 | 0.8662 | 0.8649 | | 0.0014 | 4.6667 | 2800 | 0.7379 | 0.86 | 0.8795 | 0.86 | 0.8565 | | 0.0951 | 4.8333 | 2900 | 0.5960 | 0.8979 | 0.9086 | 0.8979 | 0.8984 | | 0.0439 | 5.0 | 3000 | 0.6975 | 0.8708 | 0.8902 | 0.8708 | 0.8699 | | 0.1022 | 5.1667 | 3100 | 1.0231 | 0.8363 | 0.8703 | 0.8363 | 0.8312 | | 0.0239 | 5.3333 | 3200 | 0.7746 | 0.8683 | 0.8767 | 0.8683 | 0.8690 | | 0.0087 | 5.5 | 3300 | 0.8246 | 0.8567 | 0.8700 | 0.8567 | 0.8561 | | 0.001 | 5.6667 | 3400 | 1.0921 | 0.8237 | 0.8484 | 0.8237 | 0.8208 | | 0.0056 | 5.8333 | 3500 | 0.7431 | 0.8533 | 0.8562 | 0.8533 | 0.8524 | | 0.0007 | 6.0 | 3600 | 0.8992 | 0.8213 | 0.8463 | 0.8213 | 0.8270 | | 0.0041 | 6.1667 | 3700 | 0.8531 | 0.8438 | 0.8757 | 0.8438 | 0.8454 | | 0.0138 | 6.3333 | 3800 | 0.6643 | 0.8821 | 0.8918 | 0.8821 | 0.8809 | | 0.0005 | 6.5 | 3900 | 0.6779 | 0.8862 | 0.8970 | 0.8862 | 0.8877 | | 0.0005 | 6.6667 | 4000 | 0.7109 | 0.8892 | 0.9030 | 0.8892 | 0.8903 | | 0.0005 | 6.8333 | 4100 | 0.7191 | 0.8908 | 0.9013 | 0.8908 | 0.8911 | | 0.0006 | 7.0 | 4200 | 0.8573 | 0.8675 | 0.8846 | 0.8675 | 0.8635 | | 0.064 | 7.1667 | 4300 | 0.9180 | 0.8608 | 0.8743 | 0.8608 | 0.8603 | | 0.0005 | 7.3333 | 4400 | 0.7651 | 0.8767 | 0.8885 | 0.8767 | 0.8763 | | 0.0007 | 7.5 | 4500 | 0.8158 | 0.8571 | 0.8703 | 0.8571 | 0.8569 | | 0.0004 | 7.6667 | 4600 | 0.8329 | 0.8504 | 0.8709 | 0.8504 | 0.8517 | | 0.0003 | 7.8333 | 4700 | 0.9078 | 0.8454 | 0.8605 | 0.8454 | 0.8446 | | 0.0003 | 8.0 | 4800 | 0.8859 | 0.8529 | 0.8684 | 0.8529 | 0.8538 | | 0.0003 | 8.1667 | 4900 | 0.9303 | 0.8479 | 0.8669 | 0.8479 | 0.8491 | | 0.0002 | 8.3333 | 5000 | 0.9324 | 0.8475 | 0.8676 | 0.8475 | 0.8483 | | 0.0002 | 8.5 | 5100 | 0.9206 | 0.8533 | 0.8733 | 0.8533 | 0.8544 | | 0.0002 | 8.6667 | 5200 | 0.8745 | 0.8621 | 0.8813 | 0.8621 | 0.8630 | | 0.0002 | 8.8333 | 5300 | 0.9208 | 0.8567 | 0.8764 | 0.8567 | 0.8575 | | 0.0002 | 9.0 | 5400 | 0.9221 | 0.8583 | 0.8776 | 0.8583 | 0.8592 | | 0.0002 | 9.1667 | 5500 | 0.9255 | 0.8588 | 0.8777 | 0.8588 | 0.8596 | | 0.0002 | 9.3333 | 5600 | 0.9285 | 0.8583 | 0.8772 | 0.8583 | 0.8592 | | 0.0001 | 9.5 | 5700 | 0.9288 | 0.8592 | 0.8780 | 0.8592 | 0.8601 | | 0.0001 | 9.6667 | 5800 | 0.9305 | 0.8596 | 0.8782 | 0.8596 | 0.8605 | | 0.0002 | 9.8333 | 5900 | 0.9323 | 0.8596 | 0.8782 | 0.8596 | 0.8605 | | 0.0001 | 10.0 | 6000 | 0.9335 | 0.8596 | 0.8782 | 0.8596 | 0.8606 | | 0.0001 | 10.1667 | 6100 | 0.9336 | 0.8608 | 0.8791 | 0.8608 | 0.8619 | | 0.0001 | 10.3333 | 6200 | 0.9360 | 0.8612 | 0.8795 | 0.8612 | 0.8623 | | 0.0001 | 10.5 | 6300 | 0.9374 | 0.8625 | 0.8803 | 0.8625 | 0.8635 | | 0.0001 | 10.6667 | 6400 | 0.9406 | 0.8629 | 0.8809 | 0.8629 | 0.8640 | | 0.0001 | 10.8333 | 6500 | 0.9420 | 0.8633 | 0.8810 | 0.8633 | 0.8643 | | 0.0001 | 11.0 | 6600 | 0.9443 | 0.8633 | 0.8810 | 0.8633 | 0.8643 | | 0.0001 | 11.1667 | 6700 | 0.9452 | 0.8633 | 0.8810 | 0.8633 | 0.8643 | | 0.0001 | 11.3333 | 6800 | 0.9476 | 0.8638 | 0.8813 | 0.8638 | 0.8647 | | 0.0001 | 11.5 | 6900 | 0.9495 | 0.8638 | 0.8813 | 0.8638 | 0.8647 | | 0.0001 | 11.6667 | 7000 | 0.9501 | 0.8642 | 0.8818 | 0.8642 | 0.8652 | | 0.0001 | 11.8333 | 7100 | 0.9528 | 0.8646 | 0.8820 | 0.8646 | 0.8656 | | 0.0001 | 12.0 | 7200 | 0.9547 | 0.8646 | 0.8820 | 0.8646 | 0.8656 | | 0.0001 | 12.1667 | 7300 | 0.9574 | 0.8646 | 0.8820 | 0.8646 | 0.8656 | | 0.0001 | 12.3333 | 7400 | 0.9586 | 0.8646 | 0.8820 | 0.8646 | 0.8656 | | 0.0001 | 12.5 | 7500 | 0.9594 | 0.8646 | 0.8820 | 0.8646 | 0.8656 | | 0.0001 | 12.6667 | 7600 | 0.9611 | 0.8646 | 0.8820 | 0.8646 | 0.8656 | | 0.0001 | 12.8333 | 7700 | 0.9627 | 0.8646 | 0.8820 | 0.8646 | 0.8656 | | 0.0001 | 13.0 | 7800 | 0.9639 | 0.8646 | 0.8820 | 0.8646 | 0.8656 | | 0.0001 | 13.1667 | 7900 | 0.9656 | 0.8646 | 0.8820 | 0.8646 | 0.8656 | | 0.0001 | 13.3333 | 8000 | 0.9662 | 0.8646 | 0.8820 | 0.8646 | 0.8655 | | 0.0001 | 13.5 | 8100 | 0.9675 | 0.8642 | 0.8815 | 0.8642 | 0.8651 | | 0.0001 | 13.6667 | 8200 | 0.9684 | 0.8642 | 0.8814 | 0.8642 | 0.8651 | | 0.0001 | 13.8333 | 8300 | 0.9695 | 0.8646 | 0.8818 | 0.8646 | 0.8656 | | 0.0001 | 14.0 | 8400 | 0.9706 | 0.8646 | 0.8818 | 0.8646 | 0.8656 | | 0.0001 | 14.1667 | 8500 | 0.9714 | 0.8646 | 0.8818 | 0.8646 | 0.8656 | | 0.0001 | 14.3333 | 8600 | 0.9724 | 0.8646 | 0.8818 | 0.8646 | 0.8656 | | 0.0001 | 14.5 | 8700 | 0.9727 | 0.8646 | 0.8818 | 0.8646 | 0.8656 | | 0.0001 | 14.6667 | 8800 | 0.9733 | 0.8646 | 0.8818 | 0.8646 | 0.8656 | | 0.0001 | 14.8333 | 8900 | 0.9734 | 0.8646 | 0.8818 | 0.8646 | 0.8656 | | 0.0001 | 15.0 | 9000 | 0.9736 | 0.8646 | 0.8818 | 0.8646 | 0.8656 | ### Framework versions - Transformers 4.48.2 - Pytorch 2.6.0+cu126 - Datasets 3.1.0 - Tokenizers 0.21.0
[ "mix-subtype_iva", "mix-subtype_iva2", "mix-subtype_ivc", "mix-subtype_ivd", "mix-subtype_ia", "mix-subtype_va" ]
Ivanrs/vit-base-kidney-stone-5-Michel_Daudon_-w256_1k_v1-_SEC
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-kidney-stone-5-Michel_Daudon_-w256_1k_v1-_SEC This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.3821 - Accuracy: 0.9283 - Precision: 0.9298 - Recall: 0.9283 - F1: 0.9282 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.3259 | 0.3333 | 100 | 0.6052 | 0.8142 | 0.8678 | 0.8142 | 0.8113 | | 0.1852 | 0.6667 | 200 | 0.4605 | 0.8525 | 0.8799 | 0.8525 | 0.8505 | | 0.1342 | 1.0 | 300 | 0.5787 | 0.8583 | 0.8939 | 0.8583 | 0.8592 | | 0.0984 | 1.3333 | 400 | 0.4582 | 0.8875 | 0.8938 | 0.8875 | 0.8863 | | 0.0555 | 1.6667 | 500 | 0.3914 | 0.8825 | 0.8955 | 0.8825 | 0.8844 | | 0.2228 | 2.0 | 600 | 0.5982 | 0.865 | 0.8807 | 0.865 | 0.8668 | | 0.016 | 2.3333 | 700 | 0.5747 | 0.8708 | 0.8929 | 0.8708 | 0.8729 | | 0.2215 | 2.6667 | 800 | 0.6513 | 0.8575 | 0.8777 | 0.8575 | 0.8564 | | 0.0118 | 3.0 | 900 | 0.8234 | 0.8492 | 0.8687 | 0.8492 | 0.8498 | | 0.0028 | 3.3333 | 1000 | 0.6503 | 0.88 | 0.8949 | 0.88 | 0.8804 | | 0.0035 | 3.6667 | 1100 | 0.4011 | 0.9133 | 0.9207 | 0.9133 | 0.9145 | | 0.0742 | 4.0 | 1200 | 0.5671 | 0.8833 | 0.9069 | 0.8833 | 0.8833 | | 0.0074 | 4.3333 | 1300 | 0.6269 | 0.8742 | 0.8902 | 0.8742 | 0.8711 | | 0.0043 | 4.6667 | 1400 | 0.6497 | 0.8792 | 0.8998 | 0.8792 | 0.8800 | | 0.133 | 5.0 | 1500 | 0.7292 | 0.8733 | 0.9075 | 0.8733 | 0.8738 | | 0.0012 | 5.3333 | 1600 | 0.7823 | 0.8633 | 0.8799 | 0.8633 | 0.8637 | | 0.0009 | 5.6667 | 1700 | 0.4115 | 0.915 | 0.9186 | 0.915 | 0.9156 | | 0.0011 | 6.0 | 1800 | 0.8521 | 0.85 | 0.8619 | 0.85 | 0.8493 | | 0.001 | 6.3333 | 1900 | 0.4895 | 0.9108 | 0.9263 | 0.9108 | 0.9126 | | 0.0219 | 6.6667 | 2000 | 0.3821 | 0.9283 | 0.9298 | 0.9283 | 0.9282 | | 0.0008 | 7.0 | 2100 | 0.7710 | 0.8683 | 0.8868 | 0.8683 | 0.8666 | | 0.0007 | 7.3333 | 2200 | 0.5704 | 0.9108 | 0.9179 | 0.9108 | 0.9073 | | 0.0014 | 7.6667 | 2300 | 0.6604 | 0.8925 | 0.8981 | 0.8925 | 0.8902 | | 0.0005 | 8.0 | 2400 | 0.5364 | 0.9075 | 0.9095 | 0.9075 | 0.9061 | | 0.0005 | 8.3333 | 2500 | 0.5356 | 0.9075 | 0.9093 | 0.9075 | 0.9062 | | 0.0004 | 8.6667 | 2600 | 0.5364 | 0.9067 | 0.9082 | 0.9067 | 0.9053 | | 0.0004 | 9.0 | 2700 | 0.7982 | 0.8692 | 0.8722 | 0.8692 | 0.8636 | | 0.0004 | 9.3333 | 2800 | 0.7586 | 0.875 | 0.8774 | 0.875 | 0.8706 | | 0.0004 | 9.6667 | 2900 | 0.7252 | 0.8808 | 0.8837 | 0.8808 | 0.8774 | | 0.0003 | 10.0 | 3000 | 0.6126 | 0.8992 | 0.9037 | 0.8992 | 0.8995 | | 0.0003 | 10.3333 | 3100 | 0.6417 | 0.8917 | 0.8889 | 0.8917 | 0.8899 | | 0.0003 | 10.6667 | 3200 | 0.6489 | 0.8925 | 0.8901 | 0.8925 | 0.8909 | | 0.0003 | 11.0 | 3300 | 0.6508 | 0.8917 | 0.8892 | 0.8917 | 0.8900 | | 0.0003 | 11.3333 | 3400 | 0.6529 | 0.8917 | 0.8892 | 0.8917 | 0.8900 | | 0.0003 | 11.6667 | 3500 | 0.6544 | 0.8917 | 0.8892 | 0.8917 | 0.8900 | | 0.0003 | 12.0 | 3600 | 0.6561 | 0.8917 | 0.8892 | 0.8917 | 0.8900 | | 0.0003 | 12.3333 | 3700 | 0.6577 | 0.8925 | 0.8899 | 0.8925 | 0.8907 | | 0.0002 | 12.6667 | 3800 | 0.6592 | 0.8933 | 0.8906 | 0.8933 | 0.8915 | | 0.0002 | 13.0 | 3900 | 0.6601 | 0.8933 | 0.8906 | 0.8933 | 0.8915 | | 0.0002 | 13.3333 | 4000 | 0.6613 | 0.8933 | 0.8906 | 0.8933 | 0.8915 | | 0.0002 | 13.6667 | 4100 | 0.6622 | 0.8933 | 0.8906 | 0.8933 | 0.8915 | | 0.0002 | 14.0 | 4200 | 0.6629 | 0.8933 | 0.8906 | 0.8933 | 0.8915 | | 0.0002 | 14.3333 | 4300 | 0.6635 | 0.8933 | 0.8906 | 0.8933 | 0.8915 | | 0.0002 | 14.6667 | 4400 | 0.6638 | 0.8933 | 0.8906 | 0.8933 | 0.8915 | | 0.0002 | 15.0 | 4500 | 0.6640 | 0.8933 | 0.8906 | 0.8933 | 0.8915 | ### Framework versions - Transformers 4.48.2 - Pytorch 2.6.0+cu126 - Datasets 3.1.0 - Tokenizers 0.21.0
[ "sec-subtype_iva", "sec-subtype_iva2", "sec-subtype_ivc", "sec-subtype_ivd", "sec-subtype_ia", "sec-subtype_va" ]
Ivanrs/vit-base-kidney-stone-5-Michel_Daudon_-w256_1k_v1-_SUR
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-kidney-stone-5-Michel_Daudon_-w256_1k_v1-_SUR This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.0850 - Accuracy: 0.7195 - Precision: 0.7506 - Recall: 0.7195 - F1: 0.7206 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.2033 | 0.3333 | 100 | 1.2261 | 0.6361 | 0.6932 | 0.6361 | 0.6400 | | 0.0929 | 0.6667 | 200 | 1.0850 | 0.7195 | 0.7506 | 0.7195 | 0.7206 | | 0.0625 | 1.0 | 300 | 1.3736 | 0.6909 | 0.7185 | 0.6909 | 0.6945 | | 0.1293 | 1.3333 | 400 | 1.6858 | 0.6819 | 0.7413 | 0.6819 | 0.6573 | | 0.0786 | 1.6667 | 500 | 1.6693 | 0.6746 | 0.7054 | 0.6746 | 0.6852 | | 0.0769 | 2.0 | 600 | 1.2500 | 0.7653 | 0.7741 | 0.7653 | 0.7659 | | 0.0675 | 2.3333 | 700 | 1.2728 | 0.7277 | 0.7905 | 0.7277 | 0.7006 | | 0.0577 | 2.6667 | 800 | 1.7467 | 0.6942 | 0.7236 | 0.6942 | 0.7024 | | 0.1206 | 3.0 | 900 | 1.9383 | 0.7105 | 0.7649 | 0.7105 | 0.6852 | | 0.0516 | 3.3333 | 1000 | 1.6047 | 0.6999 | 0.6905 | 0.6999 | 0.6914 | | 0.0235 | 3.6667 | 1100 | 1.2994 | 0.7686 | 0.7826 | 0.7686 | 0.7676 | | 0.0016 | 4.0 | 1200 | 1.5717 | 0.7424 | 0.7565 | 0.7424 | 0.7443 | | 0.0015 | 4.3333 | 1300 | 1.4555 | 0.7809 | 0.7935 | 0.7809 | 0.7757 | | 0.0276 | 4.6667 | 1400 | 1.2971 | 0.7751 | 0.7664 | 0.7751 | 0.7679 | | 0.0132 | 5.0 | 1500 | 1.6617 | 0.7555 | 0.7683 | 0.7555 | 0.7538 | | 0.0015 | 5.3333 | 1600 | 1.5638 | 0.7383 | 0.7585 | 0.7383 | 0.7419 | | 0.0009 | 5.6667 | 1700 | 1.8707 | 0.7383 | 0.7490 | 0.7383 | 0.7428 | | 0.0008 | 6.0 | 1800 | 1.8055 | 0.7539 | 0.7631 | 0.7539 | 0.7570 | | 0.0008 | 6.3333 | 1900 | 1.9551 | 0.7294 | 0.7480 | 0.7294 | 0.7338 | | 0.0006 | 6.6667 | 2000 | 1.9497 | 0.7318 | 0.7496 | 0.7318 | 0.7361 | | 0.0007 | 7.0 | 2100 | 1.9260 | 0.7343 | 0.7472 | 0.7343 | 0.7380 | | 0.0006 | 7.3333 | 2200 | 1.9289 | 0.7326 | 0.7452 | 0.7326 | 0.7360 | | 0.0024 | 7.6667 | 2300 | 1.8358 | 0.7261 | 0.7435 | 0.7261 | 0.7333 | | 0.0005 | 8.0 | 2400 | 1.9143 | 0.7302 | 0.7482 | 0.7302 | 0.7359 | | 0.0004 | 8.3333 | 2500 | 1.9815 | 0.7220 | 0.7419 | 0.7220 | 0.7279 | | 0.0181 | 8.6667 | 2600 | 2.2374 | 0.6926 | 0.7291 | 0.6926 | 0.6944 | | 0.0004 | 9.0 | 2700 | 1.9174 | 0.7482 | 0.7919 | 0.7482 | 0.7498 | | 0.0004 | 9.3333 | 2800 | 1.9026 | 0.7473 | 0.7795 | 0.7473 | 0.7529 | | 0.0003 | 9.6667 | 2900 | 1.9087 | 0.7522 | 0.7823 | 0.7522 | 0.7575 | | 0.0004 | 10.0 | 3000 | 1.9171 | 0.7514 | 0.7817 | 0.7514 | 0.7567 | | 0.0003 | 10.3333 | 3100 | 1.9246 | 0.7539 | 0.7839 | 0.7539 | 0.7591 | | 0.0003 | 10.6667 | 3200 | 1.9318 | 0.7539 | 0.7839 | 0.7539 | 0.7591 | | 0.0003 | 11.0 | 3300 | 1.9402 | 0.7506 | 0.7795 | 0.7506 | 0.7562 | | 0.0002 | 11.3333 | 3400 | 1.9475 | 0.7506 | 0.7784 | 0.7506 | 0.7560 | | 0.0003 | 11.6667 | 3500 | 1.9540 | 0.7522 | 0.7792 | 0.7522 | 0.7574 | | 0.0003 | 12.0 | 3600 | 1.9608 | 0.7522 | 0.7792 | 0.7522 | 0.7574 | | 0.0003 | 12.3333 | 3700 | 1.9678 | 0.7506 | 0.7765 | 0.7506 | 0.7559 | | 0.0002 | 12.6667 | 3800 | 1.9732 | 0.7514 | 0.7771 | 0.7514 | 0.7567 | | 0.0002 | 13.0 | 3900 | 1.9782 | 0.7522 | 0.7773 | 0.7522 | 0.7574 | | 0.0002 | 13.3333 | 4000 | 1.9827 | 0.7514 | 0.7763 | 0.7514 | 0.7566 | | 0.0002 | 13.6667 | 4100 | 1.9861 | 0.7514 | 0.7759 | 0.7514 | 0.7567 | | 0.0002 | 14.0 | 4200 | 1.9894 | 0.7506 | 0.7749 | 0.7506 | 0.7560 | | 0.0002 | 14.3333 | 4300 | 1.9920 | 0.7506 | 0.7749 | 0.7506 | 0.7560 | | 0.0002 | 14.6667 | 4400 | 1.9933 | 0.7498 | 0.7739 | 0.7498 | 0.7552 | | 0.0002 | 15.0 | 4500 | 1.9939 | 0.7498 | 0.7739 | 0.7498 | 0.7552 | ### Framework versions - Transformers 4.48.2 - Pytorch 2.6.0+cu126 - Datasets 3.1.0 - Tokenizers 0.21.0
[ "sur-subtype_iva", "sur-subtype_iva2", "sur-subtype_ivc", "sur-subtype_ivd", "sur-subtype_ia", "sur-subtype_va" ]
rban01/vit-xray-pneumonia-classification
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
[ "normal", "pneumonia" ]
darthraider/vit-4-veggies
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-4-veggies This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the darthraider/fruit-ripeness-detection-dataset dataset. It achieves the following results on the evaluation set: - Loss: 0.0606 - Accuracy: 0.9879 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 8 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 0.3154 | 0.6494 | 100 | 0.3098 | 0.9435 | | 0.1446 | 1.2987 | 200 | 0.2217 | 0.9435 | | 0.0814 | 1.9481 | 300 | 0.1310 | 0.9717 | | 0.0438 | 2.5974 | 400 | 0.0875 | 0.9830 | | 0.0212 | 3.2468 | 500 | 0.1199 | 0.9766 | | 0.0212 | 3.8961 | 600 | 0.0606 | 0.9879 | | 0.002 | 4.5455 | 700 | 0.0803 | 0.9863 | | 0.0011 | 5.1948 | 800 | 0.0745 | 0.9871 | | 0.0008 | 5.8442 | 900 | 0.0809 | 0.9879 | | 0.0005 | 6.4935 | 1000 | 0.0861 | 0.9887 | | 0.0005 | 7.1429 | 1100 | 0.0865 | 0.9879 | | 0.0004 | 7.7922 | 1200 | 0.0788 | 0.9879 | ### Framework versions - Transformers 4.47.0 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0
[ "damaged", "dried", "old", "ripe", "unripe" ]
prithivMLmods/SAT-Landforms-Classifier
![3.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/6rEQLpCqxSb1JECmzNCKz.png) # **SAT-Landforms-Classifier** > **SAT-Landforms-Classifier** is an image classification vision-language encoder model fine-tuned from **google/siglip2-base-patch16-224** for a single-label classification task. It is designed to classify satellite images into different landform categories using the **SiglipForImageClassification** architecture. ```py Accuracy: 0.9863 F1 Score: 0.9858 Classification Report: precision recall f1-score support Annual Crop 0.9866 0.9810 0.9838 3000 Forest 0.9927 0.9957 0.9942 3000 Herbaceous Vegetation 0.9697 0.9800 0.9748 3000 Highway 0.9826 0.9928 0.9877 2500 Industrial 0.9964 0.9916 0.9940 2500 Pasture 0.9882 0.9610 0.9744 2000 Permanent Crop 0.9690 0.9760 0.9725 2500 Residential 0.9940 0.9970 0.9955 3000 River 0.9864 0.9872 0.9868 2500 Sea Lake 0.9963 0.9923 0.9943 3000 accuracy 0.9863 27000 macro avg 0.9862 0.9855 0.9858 27000 weighted avg 0.9863 0.9863 0.9863 27000 ``` ![download.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/Vt95rKi7pcP_6mV9fkIkS.png) The model categorizes images into ten classes: - **Class 0:** "Annual Crop" - **Class 1:** "Forest" - **Class 2:** "Herbaceous Vegetation" - **Class 3:** "Highway" - **Class 4:** "Industrial" - **Class 5:** "Pasture" - **Class 6:** "Permanent Crop" - **Class 7:** "Residential" - **Class 8:** "River" - **Class 9:** "Sea Lake" # **Run with Transformers🤗** ```python !pip install -q transformers torch pillow gradio ``` ```python import gradio as gr from transformers import AutoImageProcessor from transformers import SiglipForImageClassification from transformers.image_utils import load_image from PIL import Image import torch # Load model and processor model_name = "prithivMLmods/SAT-Landforms-Classifier" model = SiglipForImageClassification.from_pretrained(model_name) processor = AutoImageProcessor.from_pretrained(model_name) def landform_classification(image): """Predicts landform category for a satellite image.""" image = Image.fromarray(image).convert("RGB") inputs = processor(images=image, return_tensors="pt") with torch.no_grad(): outputs = model(**inputs) logits = outputs.logits probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist() labels = { "0": "Annual Crop", "1": "Forest", "2": "Herbaceous Vegetation", "3": "Highway", "4": "Industrial", "5": "Pasture", "6": "Permanent Crop", "7": "Residential", "8": "River", "9": "Sea Lake" } predictions = {labels[str(i)]: round(probs[i], 3) for i in range(len(probs))} return predictions # Create Gradio interface iface = gr.Interface( fn=landform_classification, inputs=gr.Image(type="numpy"), outputs=gr.Label(label="Prediction Scores"), title="SAT Landforms Classification", description="Upload a satellite image to classify its landform type." ) # Launch the app if __name__ == "__main__": iface.launch() ``` # **Intended Use:** The **SAT-Landforms-Classifier** model is designed to classify satellite images into various landform types. Potential use cases include: - **Land Use Monitoring:** Identifying different land use patterns from satellite imagery. - **Environmental Studies:** Supporting researchers in tracking changes in vegetation and water bodies. - **Urban Planning:** Assisting planners in analyzing residential, industrial, and infrastructure distributions. - **Agricultural Analysis:** Helping assess crop distribution and pastureland areas. - **Disaster Management:** Providing insights into land coverage for emergency response and recovery planning.
[ "annual crop", "forest", "herbaceous vegetation", "highway", "industrial", "pasture", "permanent crop", "residential", "river", "sea lake" ]
prithivMLmods/Gender-Classifier-Mini
![2.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/gfvc6sCbh9saiVnczYH2c.png) # **Gender-Classifier-Mini** > **Gender-Classifier-Mini** is an image classification vision-language encoder model fine-tuned from **google/siglip2-base-patch16-224** for a single-label classification task. It is designed to classify images based on gender using the **SiglipForImageClassification** architecture. ```py Accuracy: 0.9720 F1 Score: 0.9720 Classification Report: precision recall f1-score support Female ♀ 0.9660 0.9796 0.9727 2549 Male ♂ 0.9785 0.9641 0.9712 2451 accuracy 0.9720 5000 macro avg 0.9722 0.9718 0.9720 5000 weighted avg 0.9721 0.9720 0.9720 5000 ``` ![Untitled.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/MNO7bk_1wr5lvfyTDnhjF.png) The model categorizes images into two classes: - **Class 0:** "Female ♀" - **Class 1:** "Male ♂" # **Run with Transformers🤗** ```python !pip install -q transformers torch pillow gradio ``` ```python import gradio as gr from transformers import AutoImageProcessor from transformers import SiglipForImageClassification from transformers.image_utils import load_image from PIL import Image import torch # Load model and processor model_name = "prithivMLmods/Gender-Classifier-Mini" model = SiglipForImageClassification.from_pretrained(model_name) processor = AutoImageProcessor.from_pretrained(model_name) def gender_classification(image): """Predicts gender category for an image.""" image = Image.fromarray(image).convert("RGB") inputs = processor(images=image, return_tensors="pt") with torch.no_grad(): outputs = model(**inputs) logits = outputs.logits probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist() labels = {"0": "Female ♀", "1": "Male ♂"} predictions = {labels[str(i)]: round(probs[i], 3) for i in range(len(probs))} return predictions # Create Gradio interface iface = gr.Interface( fn=gender_classification, inputs=gr.Image(type="numpy"), outputs=gr.Label(label="Prediction Scores"), title="Gender Classification", description="Upload an image to classify its gender." ) # Launch the app if __name__ == "__main__": iface.launch() ``` # **Intended Use:** The **Gender-Classifier-Mini** model is designed to classify images into gender categories. Potential use cases include: - **Demographic Analysis:** Assisting in understanding gender distribution in datasets. - **Face Recognition Systems:** Enhancing identity verification processes. - **Marketing & Advertising:** Personalizing content based on demographic insights. - **Healthcare & Research:** Supporting gender-based analysis in medical imaging.
[ "female ♀", "male ♂" ]
ehdgnsllee/vit-cifar100-finetuned
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
[ "label_0", "label_1", "label_2", "label_3", "label_4", "label_5", "label_6", "label_7", "label_8", "label_9", "label_10", "label_11", "label_12", "label_13", "label_14", "label_15", "label_16", "label_17", "label_18", "label_19", "label_20", "label_21", "label_22", "label_23", "label_24", "label_25", "label_26", "label_27", "label_28", "label_29", "label_30", "label_31", "label_32", "label_33", "label_34", "label_35", "label_36", "label_37", "label_38", "label_39", "label_40", "label_41", "label_42", "label_43", "label_44", "label_45", "label_46", "label_47", "label_48", "label_49", "label_50", "label_51", "label_52", "label_53", "label_54", "label_55", "label_56", "label_57", "label_58", "label_59", "label_60", "label_61", "label_62", "label_63", "label_64", "label_65", "label_66", "label_67", "label_68", "label_69", "label_70", "label_71", "label_72", "label_73", "label_74", "label_75", "label_76", "label_77", "label_78", "label_79", "label_80", "label_81", "label_82", "label_83", "label_84", "label_85", "label_86", "label_87", "label_88", "label_89", "label_90", "label_91", "label_92", "label_93", "label_94", "label_95", "label_96", "label_97", "label_98", "label_99" ]
prithivMLmods/WBC-Type-Classifier
![dfgx.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/p9wGZsE5Jt0DrJ8oOJYQ1.png) # **WBC-Type-Classifier** > **WBC-Type-Classifier** is an image classification vision-language encoder model fine-tuned from **google/siglip2-base-patch16-224** for a single-label classification task. It is designed to classify different types of white blood cells (WBCs) using the **SiglipForImageClassification** architecture. ```py Accuracy: 0.9891 F1 Score: 0.9893 Classification Report: precision recall f1-score support basophil 0.9822 0.9959 0.9890 1218 eosinophil 0.9994 0.9984 0.9989 3117 erythroblast 0.9835 0.9974 0.9904 1551 ig 0.9787 0.9693 0.9740 2895 lymphocyte 0.9893 0.9942 0.9918 1214 monocyte 0.9852 0.9852 0.9852 1420 neutrophil 0.9876 0.9838 0.9857 3329 platelet 1.0000 0.9996 0.9998 2348 accuracy 0.9891 17092 macro avg 0.9882 0.9905 0.9893 17092 weighted avg 0.9891 0.9891 0.9891 17092 ``` ![download.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/ohM3P0nwh1LxVr7VNuQz2.png) The model categorizes images into eight classes: - **Class 0:** "Basophil" - **Class 1:** "Eosinophil" - **Class 2:** "Erythroblast" - **Class 3:** "IG" - **Class 4:** "Lymphocyte" - **Class 5:** "Monocyte" - **Class 6:** "Neutrophil" - **Class 7:** "Platelet" # **Run with Transformers🤗** ```python !pip install -q transformers torch pillow gradio ``` ```python import gradio as gr from transformers import AutoImageProcessor from transformers import SiglipForImageClassification from transformers.image_utils import load_image from PIL import Image import torch # Load model and processor model_name = "prithivMLmods/WBC-Type-Classifier" model = SiglipForImageClassification.from_pretrained(model_name) processor = AutoImageProcessor.from_pretrained(model_name) def wbc_classification(image): """Predicts WBC type for a given blood cell image.""" image = Image.fromarray(image).convert("RGB") inputs = processor(images=image, return_tensors="pt") with torch.no_grad(): outputs = model(**inputs) logits = outputs.logits probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist() labels = { "0": "Basophil", "1": "Eosinophil", "2": "Erythroblast", "3": "IG", "4": "Lymphocyte", "5": "Monocyte", "6": "Neutrophil", "7": "Platelet" } predictions = {labels[str(i)]: round(probs[i], 3) for i in range(len(probs))} return predictions # Create Gradio interface iface = gr.Interface( fn=wbc_classification, inputs=gr.Image(type="numpy"), outputs=gr.Label(label="Prediction Scores"), title="WBC Type Classification", description="Upload a blood cell image to classify its WBC type." ) # Launch the app if __name__ == "__main__": iface.launch() ``` # **Intended Use:** The **WBC-Type-Classifier** model is designed to classify different types of white blood cells from blood smear images. Potential use cases include: - **Medical Diagnostics:** Assisting pathologists in identifying different WBC types for diagnosis. - **Hematology Research:** Supporting studies related to blood cell morphology and disease detection. - **Automated Blood Analysis:** Enhancing automated diagnostic tools for rapid blood cell classification. - **Educational Purposes:** Providing insights and training data for medical students and researchers.
[ "basophil", "eosinophil", "erythroblast", "ig", "lymphocyte", "monocyte", "neutrophil", "platelet" ]
kakaon1/kakaon1
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
[ "tench, tinca tinca", "goldfish, carassius auratus", "great white shark, white shark, man-eater, man-eating shark, carcharodon carcharias", "tiger shark, galeocerdo cuvieri", "hammerhead, hammerhead shark", "electric ray, crampfish, numbfish, torpedo", "stingray", "cock", "hen", "ostrich, struthio camelus", "brambling, fringilla montifringilla", "goldfinch, carduelis carduelis", "house finch, linnet, carpodacus mexicanus", "junco, snowbird", "indigo bunting, indigo finch, indigo bird, passerina cyanea", "robin, american robin, turdus migratorius", "bulbul", "jay", "magpie", "chickadee", "water ouzel, dipper", "kite", "bald eagle, american eagle, haliaeetus leucocephalus", "vulture", "great grey owl, great gray owl, strix nebulosa", "european fire salamander, salamandra salamandra", "common newt, triturus vulgaris", "eft", "spotted salamander, ambystoma maculatum", "axolotl, mud puppy, ambystoma mexicanum", "bullfrog, rana catesbeiana", "tree frog, tree-frog", "tailed frog, bell toad, ribbed toad, tailed toad, ascaphus trui", "loggerhead, loggerhead turtle, caretta caretta", "leatherback turtle, leatherback, leathery turtle, dermochelys coriacea", "mud turtle", "terrapin", "box turtle, box tortoise", "banded gecko", "common iguana, iguana, iguana iguana", "american chameleon, anole, anolis carolinensis", "whiptail, whiptail lizard", "agama", "frilled lizard, chlamydosaurus kingi", "alligator lizard", "gila monster, heloderma suspectum", "green lizard, lacerta viridis", "african chameleon, chamaeleo chamaeleon", "komodo dragon, komodo lizard, dragon lizard, giant lizard, varanus komodoensis", "african crocodile, nile crocodile, crocodylus niloticus", "american alligator, alligator mississipiensis", "triceratops", "thunder snake, worm snake, carphophis amoenus", "ringneck snake, ring-necked snake, ring snake", "hognose snake, puff adder, sand viper", "green snake, grass snake", "king snake, kingsnake", "garter snake, grass snake", "water snake", "vine snake", "night snake, hypsiglena torquata", "boa constrictor, constrictor constrictor", "rock python, rock snake, python sebae", "indian cobra, naja naja", "green mamba", "sea snake", "horned viper, cerastes, sand viper, horned asp, cerastes cornutus", "diamondback, diamondback rattlesnake, crotalus adamanteus", "sidewinder, horned rattlesnake, crotalus cerastes", "trilobite", "harvestman, daddy longlegs, phalangium opilio", "scorpion", "black and gold garden spider, argiope aurantia", "barn spider, araneus cavaticus", "garden spider, aranea diademata", "black widow, latrodectus mactans", "tarantula", "wolf spider, hunting spider", "tick", "centipede", "black grouse", "ptarmigan", "ruffed grouse, partridge, bonasa umbellus", "prairie chicken, prairie grouse, prairie fowl", "peacock", "quail", "partridge", "african grey, african gray, psittacus erithacus", "macaw", "sulphur-crested cockatoo, kakatoe galerita, cacatua galerita", "lorikeet", "coucal", "bee eater", "hornbill", "hummingbird", "jacamar", "toucan", "drake", "red-breasted merganser, mergus serrator", "goose", "black swan, cygnus atratus", "tusker", "echidna, spiny anteater, anteater", "platypus, duckbill, duckbilled platypus, duck-billed platypus, ornithorhynchus anatinus", "wallaby, brush kangaroo", "koala, koala bear, kangaroo bear, native bear, phascolarctos cinereus", "wombat", "jellyfish", "sea anemone, anemone", "brain coral", "flatworm, platyhelminth", "nematode, nematode worm, roundworm", "conch", "snail", "slug", "sea slug, nudibranch", "chiton, coat-of-mail shell, sea cradle, polyplacophore", "chambered nautilus, pearly nautilus, nautilus", "dungeness crab, cancer magister", "rock crab, cancer irroratus", "fiddler crab", "king crab, alaska crab, alaskan king crab, alaska king crab, paralithodes camtschatica", "american lobster, northern lobster, maine lobster, homarus americanus", "spiny lobster, langouste, rock lobster, crawfish, crayfish, sea crawfish", "crayfish, crawfish, crawdad, crawdaddy", "hermit crab", "isopod", "white stork, ciconia ciconia", "black stork, ciconia nigra", "spoonbill", "flamingo", "little blue heron, egretta caerulea", "american egret, great white heron, egretta albus", "bittern", "crane", "limpkin, aramus pictus", "european gallinule, porphyrio porphyrio", "american coot, marsh hen, mud hen, water hen, fulica americana", "bustard", "ruddy turnstone, arenaria interpres", "red-backed sandpiper, dunlin, erolia alpina", "redshank, tringa totanus", "dowitcher", "oystercatcher, oyster catcher", "pelican", "king penguin, aptenodytes patagonica", "albatross, mollymawk", "grey whale, gray whale, devilfish, eschrichtius gibbosus, eschrichtius robustus", "killer whale, killer, orca, grampus, sea wolf, orcinus orca", "dugong, dugong dugon", "sea lion", "chihuahua", "japanese spaniel", "maltese dog, maltese terrier, maltese", "pekinese, pekingese, peke", "shih-tzu", "blenheim spaniel", "papillon", "toy terrier", "rhodesian ridgeback", "afghan hound, afghan", "basset, basset hound", "beagle", "bloodhound, sleuthhound", "bluetick", "black-and-tan coonhound", "walker hound, walker foxhound", "english foxhound", "redbone", "borzoi, russian wolfhound", "irish wolfhound", "italian greyhound", "whippet", "ibizan hound, ibizan podenco", "norwegian elkhound, elkhound", "otterhound, otter hound", "saluki, gazelle hound", "scottish deerhound, deerhound", "weimaraner", "staffordshire bullterrier, staffordshire bull terrier", "american staffordshire terrier, staffordshire terrier, american pit bull terrier, pit bull terrier", "bedlington terrier", "border terrier", "kerry blue terrier", "irish terrier", "norfolk terrier", "norwich terrier", "yorkshire terrier", "wire-haired fox terrier", "lakeland terrier", "sealyham terrier, sealyham", "airedale, airedale terrier", "cairn, cairn terrier", "australian terrier", "dandie dinmont, dandie dinmont terrier", "boston bull, boston terrier", "miniature schnauzer", "giant schnauzer", "standard schnauzer", "scotch terrier, scottish terrier, scottie", "tibetan terrier, chrysanthemum dog", "silky terrier, sydney silky", "soft-coated wheaten terrier", "west highland white terrier", "lhasa, lhasa apso", "flat-coated retriever", "curly-coated retriever", "golden retriever", "labrador retriever", "chesapeake bay retriever", "german short-haired pointer", "vizsla, hungarian pointer", "english setter", "irish setter, red setter", "gordon setter", "brittany spaniel", "clumber, clumber spaniel", "english springer, english springer spaniel", "welsh springer spaniel", "cocker spaniel, english cocker spaniel, cocker", "sussex spaniel", "irish water spaniel", "kuvasz", "schipperke", "groenendael", "malinois", "briard", "kelpie", "komondor", "old english sheepdog, bobtail", "shetland sheepdog, shetland sheep dog, shetland", "collie", "border collie", "bouvier des flandres, bouviers des flandres", "rottweiler", "german shepherd, german shepherd dog, german police dog, alsatian", "doberman, doberman pinscher", "miniature pinscher", "greater swiss mountain dog", "bernese mountain dog", "appenzeller", "entlebucher", "boxer", "bull mastiff", "tibetan mastiff", "french bulldog", "great dane", "saint bernard, st bernard", "eskimo dog, husky", "malamute, malemute, alaskan malamute", "siberian husky", "dalmatian, coach dog, carriage dog", "affenpinscher, monkey pinscher, monkey dog", "basenji", "pug, pug-dog", "leonberg", "newfoundland, newfoundland dog", "great pyrenees", "samoyed, samoyede", "pomeranian", "chow, chow chow", "keeshond", "brabancon griffon", "pembroke, pembroke welsh corgi", "cardigan, cardigan welsh corgi", "toy poodle", "miniature poodle", "standard poodle", "mexican hairless", "timber wolf, grey wolf, gray wolf, canis lupus", "white wolf, arctic wolf, canis lupus tundrarum", "red wolf, maned wolf, canis rufus, canis niger", "coyote, prairie wolf, brush wolf, canis latrans", "dingo, warrigal, warragal, canis dingo", "dhole, cuon alpinus", "african hunting dog, hyena dog, cape hunting dog, lycaon pictus", "hyena, hyaena", "red fox, vulpes vulpes", "kit fox, vulpes macrotis", "arctic fox, white fox, alopex lagopus", "grey fox, gray fox, urocyon cinereoargenteus", "tabby, tabby cat", "tiger cat", "persian cat", "siamese cat, siamese", "egyptian cat", "cougar, puma, catamount, mountain lion, painter, panther, felis concolor", "lynx, catamount", "leopard, panthera pardus", "snow leopard, ounce, panthera uncia", "jaguar, panther, panthera onca, felis onca", "lion, king of beasts, panthera leo", "tiger, panthera tigris", "cheetah, chetah, acinonyx jubatus", "brown bear, bruin, ursus arctos", "american black bear, black bear, ursus americanus, euarctos americanus", "ice bear, polar bear, ursus maritimus, thalarctos maritimus", "sloth bear, melursus ursinus, ursus ursinus", "mongoose", "meerkat, mierkat", "tiger beetle", "ladybug, ladybeetle, lady beetle, ladybird, ladybird beetle", "ground beetle, carabid beetle", "long-horned beetle, longicorn, longicorn beetle", "leaf beetle, chrysomelid", "dung beetle", "rhinoceros beetle", "weevil", "fly", "bee", "ant, emmet, pismire", "grasshopper, hopper", "cricket", "walking stick, walkingstick, stick insect", "cockroach, roach", "mantis, mantid", "cicada, cicala", "leafhopper", "lacewing, lacewing fly", "dragonfly, darning needle, devil's darning needle, sewing needle, snake feeder, snake doctor, mosquito hawk, skeeter hawk", "damselfly", "admiral", "ringlet, ringlet butterfly", "monarch, monarch butterfly, milkweed butterfly, danaus plexippus", "cabbage butterfly", "sulphur butterfly, sulfur butterfly", "lycaenid, lycaenid butterfly", "starfish, sea star", "sea urchin", "sea cucumber, holothurian", "wood rabbit, cottontail, cottontail rabbit", "hare", "angora, angora rabbit", "hamster", "porcupine, hedgehog", "fox squirrel, eastern fox squirrel, sciurus niger", "marmot", "beaver", "guinea pig, cavia cobaya", "sorrel", "zebra", "hog, pig, grunter, squealer, sus scrofa", "wild boar, boar, sus scrofa", "warthog", "hippopotamus, hippo, river horse, hippopotamus amphibius", "ox", "water buffalo, water ox, asiatic buffalo, bubalus bubalis", "bison", "ram, tup", "bighorn, bighorn sheep, cimarron, rocky mountain bighorn, rocky mountain sheep, ovis canadensis", "ibex, capra ibex", "hartebeest", "impala, aepyceros melampus", "gazelle", "arabian camel, dromedary, camelus dromedarius", "llama", "weasel", "mink", "polecat, fitch, foulmart, foumart, mustela putorius", "black-footed ferret, ferret, mustela nigripes", "otter", "skunk, polecat, wood pussy", "badger", "armadillo", "three-toed sloth, ai, bradypus tridactylus", "orangutan, orang, orangutang, pongo pygmaeus", "gorilla, gorilla gorilla", "chimpanzee, chimp, pan troglodytes", "gibbon, hylobates lar", "siamang, hylobates syndactylus, symphalangus syndactylus", "guenon, guenon monkey", "patas, hussar monkey, erythrocebus patas", "baboon", "macaque", "langur", "colobus, colobus monkey", "proboscis monkey, nasalis larvatus", "marmoset", "capuchin, ringtail, cebus capucinus", "howler monkey, howler", "titi, titi monkey", "spider monkey, ateles geoffroyi", "squirrel monkey, saimiri sciureus", "madagascar cat, ring-tailed lemur, lemur catta", "indri, indris, indri indri, indri brevicaudatus", "indian elephant, elephas maximus", "african elephant, loxodonta africana", "lesser panda, red panda, panda, bear cat, cat bear, ailurus fulgens", "giant panda, panda, panda bear, coon bear, ailuropoda melanoleuca", "barracouta, snoek", "eel", "coho, cohoe, coho salmon, blue jack, silver salmon, oncorhynchus kisutch", "rock beauty, holocanthus tricolor", "anemone fish", "sturgeon", "gar, garfish, garpike, billfish, lepisosteus osseus", "lionfish", "puffer, pufferfish, blowfish, globefish", "abacus", "abaya", "academic gown, academic robe, judge's robe", "accordion, piano accordion, squeeze box", "acoustic guitar", "aircraft carrier, carrier, flattop, attack aircraft carrier", "airliner", "airship, dirigible", "altar", "ambulance", "amphibian, amphibious vehicle", "analog clock", "apiary, bee house", "apron", "ashcan, trash can, garbage can, wastebin, ash bin, ash-bin, ashbin, dustbin, trash barrel, trash bin", "assault rifle, assault gun", "backpack, back pack, knapsack, packsack, rucksack, haversack", "bakery, bakeshop, bakehouse", "balance beam, beam", "balloon", "ballpoint, ballpoint pen, ballpen, biro", "band aid", "banjo", "bannister, banister, balustrade, balusters, handrail", "barbell", "barber chair", "barbershop", "barn", "barometer", "barrel, cask", "barrow, garden cart, lawn cart, wheelbarrow", "baseball", "basketball", "bassinet", "bassoon", "bathing cap, swimming cap", "bath towel", "bathtub, bathing tub, bath, tub", "beach wagon, station wagon, wagon, estate car, beach waggon, station waggon, waggon", "beacon, lighthouse, beacon light, pharos", "beaker", "bearskin, busby, shako", "beer bottle", "beer glass", "bell cote, bell cot", "bib", "bicycle-built-for-two, tandem bicycle, tandem", "bikini, two-piece", "binder, ring-binder", "binoculars, field glasses, opera glasses", "birdhouse", "boathouse", "bobsled, bobsleigh, bob", "bolo tie, bolo, bola tie, bola", "bonnet, poke bonnet", "bookcase", "bookshop, bookstore, bookstall", "bottlecap", "bow", "bow tie, bow-tie, bowtie", "brass, memorial tablet, plaque", "brassiere, bra, bandeau", "breakwater, groin, groyne, mole, bulwark, seawall, jetty", "breastplate, aegis, egis", "broom", "bucket, pail", "buckle", "bulletproof vest", "bullet train, bullet", "butcher shop, meat market", "cab, hack, taxi, taxicab", "caldron, cauldron", "candle, taper, wax light", "cannon", "canoe", "can opener, tin opener", "cardigan", "car mirror", "carousel, carrousel, merry-go-round, roundabout, whirligig", "carpenter's kit, tool kit", "carton", "car wheel", "cash machine, cash dispenser, automated teller machine, automatic teller machine, automated teller, automatic teller, atm", "cassette", "cassette player", "castle", "catamaran", "cd player", "cello, violoncello", "cellular telephone, cellular phone, cellphone, cell, mobile phone", "chain", "chainlink fence", "chain mail, ring mail, mail, chain armor, chain armour, ring armor, ring armour", "chain saw, chainsaw", "chest", "chiffonier, commode", "chime, bell, gong", "china cabinet, china closet", "christmas stocking", "church, church building", "cinema, movie theater, movie theatre, movie house, picture palace", "cleaver, meat cleaver, chopper", "cliff dwelling", "cloak", "clog, geta, patten, sabot", "cocktail shaker", "coffee mug", "coffeepot", "coil, spiral, volute, whorl, helix", "combination lock", "computer keyboard, keypad", "confectionery, confectionary, candy store", "container ship, containership, container vessel", "convertible", "corkscrew, bottle screw", "cornet, horn, trumpet, trump", "cowboy boot", "cowboy hat, ten-gallon hat", "cradle", "crane", "crash helmet", "crate", "crib, cot", "crock pot", "croquet ball", "crutch", "cuirass", "dam, dike, dyke", "desk", "desktop computer", "dial telephone, dial phone", "diaper, nappy, napkin", "digital clock", "digital watch", "dining table, board", "dishrag, dishcloth", "dishwasher, dish washer, dishwashing machine", "disk brake, disc brake", "dock, dockage, docking facility", "dogsled, dog sled, dog sleigh", "dome", "doormat, welcome mat", "drilling platform, offshore rig", "drum, membranophone, tympan", "drumstick", "dumbbell", "dutch oven", "electric fan, blower", "electric guitar", "electric locomotive", "entertainment center", "envelope", "espresso maker", "face powder", "feather boa, boa", "file, file cabinet, filing cabinet", "fireboat", "fire engine, fire truck", "fire screen, fireguard", "flagpole, flagstaff", "flute, transverse flute", "folding chair", "football helmet", "forklift", "fountain", "fountain pen", "four-poster", "freight car", "french horn, horn", "frying pan, frypan, skillet", "fur coat", "garbage truck, dustcart", "gasmask, respirator, gas helmet", "gas pump, gasoline pump, petrol pump, island dispenser", "goblet", "go-kart", "golf ball", "golfcart, golf cart", "gondola", "gong, tam-tam", "gown", "grand piano, grand", "greenhouse, nursery, glasshouse", "grille, radiator grille", "grocery store, grocery, food market, market", "guillotine", "hair slide", "hair spray", "half track", "hammer", "hamper", "hand blower, blow dryer, blow drier, hair dryer, hair drier", "hand-held computer, hand-held microcomputer", "handkerchief, hankie, hanky, hankey", "hard disc, hard disk, fixed disk", "harmonica, mouth organ, harp, mouth harp", "harp", "harvester, reaper", "hatchet", "holster", "home theater, home theatre", "honeycomb", "hook, claw", "hoopskirt, crinoline", "horizontal bar, high bar", "horse cart, horse-cart", "hourglass", "ipod", "iron, smoothing iron", "jack-o'-lantern", "jean, blue jean, denim", "jeep, landrover", "jersey, t-shirt, tee shirt", "jigsaw puzzle", "jinrikisha, ricksha, rickshaw", "joystick", "kimono", "knee pad", "knot", "lab coat, laboratory coat", "ladle", "lampshade, lamp shade", "laptop, laptop computer", "lawn mower, mower", "lens cap, lens cover", "letter opener, paper knife, paperknife", "library", "lifeboat", "lighter, light, igniter, ignitor", "limousine, limo", "liner, ocean liner", "lipstick, lip rouge", "loafer", "lotion", "loudspeaker, speaker, speaker unit, loudspeaker system, speaker system", "loupe, jeweler's loupe", "lumbermill, sawmill", "magnetic compass", "mailbag, postbag", "mailbox, letter box", "maillot", "maillot, tank suit", "manhole cover", "maraca", "marimba, xylophone", "mask", "matchstick", "maypole", "maze, labyrinth", "measuring cup", "medicine chest, medicine cabinet", "megalith, megalithic structure", "microphone, mike", "microwave, microwave oven", "military uniform", "milk can", "minibus", "miniskirt, mini", "minivan", "missile", "mitten", "mixing bowl", "mobile home, manufactured home", "model t", "modem", "monastery", "monitor", "moped", "mortar", "mortarboard", "mosque", "mosquito net", "motor scooter, scooter", "mountain bike, all-terrain bike, off-roader", "mountain tent", "mouse, computer mouse", "mousetrap", "moving van", "muzzle", "nail", "neck brace", "necklace", "nipple", "notebook, notebook computer", "obelisk", "oboe, hautboy, hautbois", "ocarina, sweet potato", "odometer, hodometer, mileometer, milometer", "oil filter", "organ, pipe organ", "oscilloscope, scope, cathode-ray oscilloscope, cro", "overskirt", "oxcart", "oxygen mask", "packet", "paddle, boat paddle", "paddlewheel, paddle wheel", "padlock", "paintbrush", "pajama, pyjama, pj's, jammies", "palace", "panpipe, pandean pipe, syrinx", "paper towel", "parachute, chute", "parallel bars, bars", "park bench", "parking meter", "passenger car, coach, carriage", "patio, terrace", "pay-phone, pay-station", "pedestal, plinth, footstall", "pencil box, pencil case", "pencil sharpener", "perfume, essence", "petri dish", "photocopier", "pick, plectrum, plectron", "pickelhaube", "picket fence, paling", "pickup, pickup truck", "pier", "piggy bank, penny bank", "pill bottle", "pillow", "ping-pong ball", "pinwheel", "pirate, pirate ship", "pitcher, ewer", "plane, carpenter's plane, woodworking plane", "planetarium", "plastic bag", "plate rack", "plow, plough", "plunger, plumber's helper", "polaroid camera, polaroid land camera", "pole", "police van, police wagon, paddy wagon, patrol wagon, wagon, black maria", "poncho", "pool table, billiard table, snooker table", "pop bottle, soda bottle", "pot, flowerpot", "potter's wheel", "power drill", "prayer rug, prayer mat", "printer", "prison, prison house", "projectile, missile", "projector", "puck, hockey puck", "punching bag, punch bag, punching ball, punchball", "purse", "quill, quill pen", "quilt, comforter, comfort, puff", "racer, race car, racing car", "racket, racquet", "radiator", "radio, wireless", "radio telescope, radio reflector", "rain barrel", "recreational vehicle, rv, r.v.", "reel", "reflex camera", "refrigerator, icebox", "remote control, remote", "restaurant, eating house, eating place, eatery", "revolver, six-gun, six-shooter", "rifle", "rocking chair, rocker", "rotisserie", "rubber eraser, rubber, pencil eraser", "rugby ball", "rule, ruler", "running shoe", "safe", "safety pin", "saltshaker, salt shaker", "sandal", "sarong", "sax, saxophone", "scabbard", "scale, weighing machine", "school bus", "schooner", "scoreboard", "screen, crt screen", "screw", "screwdriver", "seat belt, seatbelt", "sewing machine", "shield, buckler", "shoe shop, shoe-shop, shoe store", "shoji", "shopping basket", "shopping cart", "shovel", "shower cap", "shower curtain", "ski", "ski mask", "sleeping bag", "slide rule, slipstick", "sliding door", "slot, one-armed bandit", "snorkel", "snowmobile", "snowplow, snowplough", "soap dispenser", "soccer ball", "sock", "solar dish, solar collector, solar furnace", "sombrero", "soup bowl", "space bar", "space heater", "space shuttle", "spatula", "speedboat", "spider web, spider's web", "spindle", "sports car, sport car", "spotlight, spot", "stage", "steam locomotive", "steel arch bridge", "steel drum", "stethoscope", "stole", "stone wall", "stopwatch, stop watch", "stove", "strainer", "streetcar, tram, tramcar, trolley, trolley car", "stretcher", "studio couch, day bed", "stupa, tope", "submarine, pigboat, sub, u-boat", "suit, suit of clothes", "sundial", "sunglass", "sunglasses, dark glasses, shades", "sunscreen, sunblock, sun blocker", "suspension bridge", "swab, swob, mop", "sweatshirt", "swimming trunks, bathing trunks", "swing", "switch, electric switch, electrical switch", "syringe", "table lamp", "tank, army tank, armored combat vehicle, armoured combat vehicle", "tape player", "teapot", "teddy, teddy bear", "television, television system", "tennis ball", "thatch, thatched roof", "theater curtain, theatre curtain", "thimble", "thresher, thrasher, threshing machine", "throne", "tile roof", "toaster", "tobacco shop, tobacconist shop, tobacconist", "toilet seat", "torch", "totem pole", "tow truck, tow car, wrecker", "toyshop", "tractor", "trailer truck, tractor trailer, trucking rig, rig, articulated lorry, semi", "tray", "trench coat", "tricycle, trike, velocipede", "trimaran", "tripod", "triumphal arch", "trolleybus, trolley coach, trackless trolley", "trombone", "tub, vat", "turnstile", "typewriter keyboard", "umbrella", "unicycle, monocycle", "upright, upright piano", "vacuum, vacuum cleaner", "vase", "vault", "velvet", "vending machine", "vestment", "viaduct", "violin, fiddle", "volleyball", "waffle iron", "wall clock", "wallet, billfold, notecase, pocketbook", "wardrobe, closet, press", "warplane, military plane", "washbasin, handbasin, washbowl, lavabo, wash-hand basin", "washer, automatic washer, washing machine", "water bottle", "water jug", "water tower", "whiskey jug", "whistle", "wig", "window screen", "window shade", "windsor tie", "wine bottle", "wing", "wok", "wooden spoon", "wool, woolen, woollen", "worm fence, snake fence, snake-rail fence, virginia fence", "wreck", "yawl", "yurt", "web site, website, internet site, site", "comic book", "crossword puzzle, crossword", "street sign", "traffic light, traffic signal, stoplight", "book jacket, dust cover, dust jacket, dust wrapper", "menu", "plate", "guacamole", "consomme", "hot pot, hotpot", "trifle", "ice cream, icecream", "ice lolly, lolly, lollipop, popsicle", "french loaf", "bagel, beigel", "pretzel", "cheeseburger", "hotdog, hot dog, red hot", "mashed potato", "head cabbage", "broccoli", "cauliflower", "zucchini, courgette", "spaghetti squash", "acorn squash", "butternut squash", "cucumber, cuke", "artichoke, globe artichoke", "bell pepper", "cardoon", "mushroom", "granny smith", "strawberry", "orange", "lemon", "fig", "pineapple, ananas", "banana", "jackfruit, jak, jack", "custard apple", "pomegranate", "hay", "carbonara", "chocolate sauce, chocolate syrup", "dough", "meat loaf, meatloaf", "pizza, pizza pie", "potpie", "burrito", "red wine", "espresso", "cup", "eggnog", "alp", "bubble", "cliff, drop, drop-off", "coral reef", "geyser", "lakeside, lakeshore", "promontory, headland, head, foreland", "sandbar, sand bar", "seashore, coast, seacoast, sea-coast", "valley, vale", "volcano", "ballplayer, baseball player", "groom, bridegroom", "scuba diver", "rapeseed", "daisy", "yellow lady's slipper, yellow lady-slipper, cypripedium calceolus, cypripedium parviflorum", "corn", "acorn", "hip, rose hip, rosehip", "buckeye, horse chestnut, conker", "coral fungus", "agaric", "gyromitra", "stinkhorn, carrion fungus", "earthstar", "hen-of-the-woods, hen of the woods, polyporus frondosus, grifola frondosa", "bolete", "ear, spike, capitulum", "toilet tissue, toilet paper, bathroom tissue" ]
ehdgnsllee/general-vit-cifar100-fine-tune
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
[ "label_0", "label_1", "label_2", "label_3", "label_4", "label_5", "label_6", "label_7", "label_8", "label_9", "label_10", "label_11", "label_12", "label_13", "label_14", "label_15", "label_16", "label_17", "label_18", "label_19", "label_20", "label_21", "label_22", "label_23", "label_24", "label_25", "label_26", "label_27", "label_28", "label_29", "label_30", "label_31", "label_32", "label_33", "label_34", "label_35", "label_36", "label_37", "label_38", "label_39", "label_40", "label_41", "label_42", "label_43", "label_44", "label_45", "label_46", "label_47", "label_48", "label_49", "label_50", "label_51", "label_52", "label_53", "label_54", "label_55", "label_56", "label_57", "label_58", "label_59", "label_60", "label_61", "label_62", "label_63", "label_64", "label_65", "label_66", "label_67", "label_68", "label_69", "label_70", "label_71", "label_72", "label_73", "label_74", "label_75", "label_76", "label_77", "label_78", "label_79", "label_80", "label_81", "label_82", "label_83", "label_84", "label_85", "label_86", "label_87", "label_88", "label_89", "label_90", "label_91", "label_92", "label_93", "label_94", "label_95", "label_96", "label_97", "label_98", "label_99" ]
prithivMLmods/Painting-126-DomainNet
![ddf.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/uzBpL2zr2SvxtSX4V2m9H.png) # **Painting-126-DomainNet** > **Painting-126-DomainNet** is an image classification vision-language encoder model fine-tuned from **google/siglip2-base-patch16-224** for a single-label classification task. It is designed to classify paintings into 126 domain categories using the **SiglipForImageClassification** architecture. ![- visual selection(1).png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/UQ1T3CLDEbmbErA9-pCwQ.png) *Moment Matching for Multi-Source Domain Adaptation* : https://arxiv.org/pdf/1812.01754 *SigLIP 2: Multilingual Vision-Language Encoders with Improved Semantic Understanding, Localization, and Dense Features* https://arxiv.org/pdf/2502.14786 ```py Classification Report: precision recall f1-score support aircraft_carrier 0.8065 0.4717 0.5952 106 alarm_clock 1.0000 0.7612 0.8644 67 ant 0.8095 0.7234 0.7640 188 anvil 0.3205 0.2066 0.2513 121 asparagus 0.8242 0.8827 0.8525 324 axe 0.4028 0.4857 0.4404 175 banana 0.8986 0.8986 0.8986 286 basket 0.7251 0.7492 0.7370 331 bathtub 0.0000 0.0000 0.0000 35 bear 0.8704 0.8647 0.8675 303 bee 0.9478 0.9440 0.9459 250 bird 0.8031 0.8807 0.8401 176 blackberry 0.0000 0.0000 0.0000 11 blueberry 0.8258 0.8258 0.8258 132 bottlecap 0.6487 0.8173 0.7233 427 broccoli 0.8961 0.8625 0.8790 80 bus 0.6909 0.8444 0.7600 90 butterfly 0.9313 0.9613 0.9460 310 cactus 0.9583 0.9388 0.9485 98 cake 0.5290 0.5984 0.5615 122 calculator 0.0000 0.0000 0.0000 10 camel 0.8244 0.9351 0.8763 231 camera 0.9725 0.8480 0.9060 125 candle 0.7763 0.8551 0.8138 207 cannon 0.0000 0.0000 0.0000 43 canoe 0.8400 0.9161 0.8764 298 carrot 0.9744 0.9005 0.9360 211 castle 0.9027 0.9278 0.9151 180 cat 0.8824 0.9818 0.9294 275 ceiling_fan 1.0000 0.1333 0.2353 30 cell_phone 0.7117 0.7453 0.7281 106 cello 0.8647 0.9127 0.8880 126 chair 0.8750 0.1667 0.2800 42 chandelier 0.9773 0.9348 0.9556 46 coffee_cup 0.9015 0.8095 0.8530 147 compass 0.9483 0.8871 0.9167 62 computer 0.0000 0.0000 0.0000 14 cow 0.9590 0.9360 0.9474 125 crab 0.9829 0.9426 0.9623 122 crocodile 0.9468 0.9271 0.9368 96 cruise_ship 0.8977 0.8977 0.8977 176 dog 0.9149 0.9739 0.9435 574 dolphin 0.8928 0.9595 0.9249 321 dragon 0.9278 0.9730 0.9499 185 drums 0.8457 0.8405 0.8431 163 duck 0.9335 0.9642 0.9486 335 dumbbell 0.9539 0.9603 0.9571 151 elephant 0.9405 0.9794 0.9595 339 eyeglasses 0.5417 0.1970 0.2889 66 feather 0.9314 0.9416 0.9365 274 fence 0.0000 0.0000 0.0000 39 fish 0.8829 0.9671 0.9231 304 flamingo 0.9778 0.9888 0.9832 178 flower 0.7188 0.7706 0.7438 388 foot 0.5893 0.4853 0.5323 68 fork 0.9500 0.2836 0.4368 67 frog 0.9172 0.9925 0.9534 134 giraffe 0.9762 0.9762 0.9762 84 goatee 0.4565 0.4828 0.4693 87 grapes 0.8761 0.8200 0.8471 250 guitar 0.8827 0.8827 0.8827 162 hammer 0.0000 0.0000 0.0000 36 helicopter 0.9733 0.8835 0.9262 206 helmet 0.0000 0.0000 0.0000 22 horse 0.9514 0.9856 0.9682 417 kangaroo 0.9387 0.9053 0.9217 169 lantern 0.6263 0.7126 0.6667 174 laptop 0.8800 0.8871 0.8835 124 leaf 0.7754 0.8930 0.8301 402 lion 0.9347 0.8883 0.9109 403 lipstick 0.9281 0.9045 0.9161 157 lobster 0.9646 0.9455 0.9550 202 microphone 0.9231 0.8136 0.8649 118 monkey 0.7892 0.8656 0.8256 320 mosquito 0.8696 0.3846 0.5333 52 mouse 0.8610 0.9174 0.8883 351 mug 0.8669 0.9365 0.9003 299 mushroom 0.9070 0.9653 0.9353 202 onion 0.8700 0.9231 0.8958 377 panda 0.9631 0.9952 0.9789 210 peanut 0.5000 0.1212 0.1951 66 pear 0.9278 0.9356 0.9317 357 peas 0.8281 0.7465 0.7852 71 pencil 0.4902 0.5245 0.5068 143 penguin 0.9496 0.9576 0.9536 354 pig 0.9392 0.9500 0.9446 260 pillow 0.7273 0.0727 0.1322 110 pineapple 0.9849 0.9812 0.9831 266 potato 1.0000 0.0652 0.1224 46 power_outlet 0.9600 0.8889 0.9231 81 purse 0.5000 0.0513 0.0930 39 rabbit 0.8961 0.9673 0.9303 214 raccoon 0.9490 0.9394 0.9442 198 rhinoceros 0.9657 0.9657 0.9657 175 rifle 0.8200 0.8542 0.8367 192 saxophone 0.8100 0.8556 0.8322 284 screwdriver 0.7083 0.6296 0.6667 54 sea_turtle 0.9757 0.9969 0.9862 322 see_saw 0.3527 0.6077 0.4463 130 sheep 0.9328 0.9398 0.9363 266 shoe 0.9522 0.9567 0.9544 208 skateboard 0.4464 0.2083 0.2841 120 snake 0.8627 0.8550 0.8588 338 speedboat 0.8710 0.6835 0.7660 79 spider 0.8129 0.6975 0.7508 162 squirrel 0.9325 0.9063 0.9192 427 strawberry 0.9316 0.9470 0.9392 302 streetlight 0.7493 0.7948 0.7714 346 string_bean 0.8636 0.4130 0.5588 46 submarine 0.5845 0.7423 0.6541 326 swan 0.9222 0.8910 0.9063 266 table 0.0000 0.0000 0.0000 81 teapot 0.8619 0.9318 0.8955 308 teddy-bear 0.8517 0.9136 0.8816 220 television 0.0000 0.0000 0.0000 40 the_Eiffel_Tower 0.9366 0.9882 0.9617 254 the_Great_Wall_of_China 0.8244 0.8710 0.8471 124 tiger 0.9504 0.9702 0.9602 336 toe 0.0000 0.0000 0.0000 1 train 0.9367 0.9628 0.9496 323 truck 0.8864 0.7959 0.8387 98 umbrella 0.6309 0.8174 0.7121 230 vase 0.7382 0.8309 0.7818 207 watermelon 0.9479 0.9450 0.9464 327 whale 0.8877 0.8657 0.8766 283 zebra 0.9832 0.9832 0.9832 238 accuracy 0.8533 24032 macro avg 0.7686 0.7273 0.7299 24032 weighted avg 0.8445 0.8533 0.8424 24032 ``` The model categorizes images into the following 126 classes: - **Class 0:** "aircraft_carrier" - **Class 1:** "alarm_clock" - **Class 2:** "ant" - **Class 3:** "anvil" - **Class 4:** "asparagus" - **Class 5:** "axe" - **Class 6:** "banana" - **Class 7:** "basket" - **Class 8:** "bathtub" - **Class 9:** "bear" - **Class 10:** "bee" - **Class 11:** "bird" - **Class 12:** "blackberry" - **Class 13:** "blueberry" - **Class 14:** "bottlecap" - **Class 15:** "broccoli" - **Class 16:** "bus" - **Class 17:** "butterfly" - **Class 18:** "cactus" - **Class 19:** "cake" - **Class 20:** "calculator" - **Class 21:** "camel" - **Class 22:** "camera" - **Class 23:** "candle" - **Class 24:** "cannon" - **Class 25:** "canoe" - **Class 26:** "carrot" - **Class 27:** "castle" - **Class 28:** "cat" - **Class 29:** "ceiling_fan" - **Class 30:** "cell_phone" - **Class 31:** "cello" - **Class 32:** "chair" - **Class 33:** "chandelier" - **Class 34:** "coffee_cup" - **Class 35:** "compass" - **Class 36:** "computer" - **Class 37:** "cow" - **Class 38:** "crab" - **Class 39:** "crocodile" - **Class 40:** "cruise_ship" - **Class 41:** "dog" - **Class 42:** "dolphin" - **Class 43:** "dragon" - **Class 44:** "drums" - **Class 45:** "duck" - **Class 46:** "dumbbell" - **Class 47:** "elephant" - **Class 48:** "eyeglasses" - **Class 49:** "feather" - **Class 50:** "fence" - **Class 51:** "fish" - **Class 52:** "flamingo" - **Class 53:** "flower" - **Class 54:** "foot" - **Class 55:** "fork" - **Class 56:** "frog" - **Class 57:** "giraffe" - **Class 58:** "goatee" - **Class 59:** "grapes" - **Class 60:** "guitar" - **Class 61:** "hammer" - **Class 62:** "helicopter" - **Class 63:** "helmet" - **Class 64:** "horse" - **Class 65:** "kangaroo" - **Class 66:** "lantern" - **Class 67:** "laptop" - **Class 68:** "leaf" - **Class 69:** "lion" - **Class 70:** "lipstick" - **Class 71:** "lobster" - **Class 72:** "microphone" - **Class 73:** "monkey" - **Class 74:** "mosquito" - **Class 75:** "mouse" - **Class 76:** "mug" - **Class 77:** "mushroom" - **Class 78:** "onion" - **Class 79:** "panda" - **Class 80:** "peanut" - **Class 81:** "pear" - **Class 82:** "peas" - **Class 83:** "pencil" - **Class 84:** "penguin" - **Class 85:** "pig" - **Class 86:** "pillow" - **Class 87:** "pineapple" - **Class 88:** "potato" - **Class 89:** "power_outlet" - **Class 90:** "purse" - **Class 91:** "rabbit" - **Class 92:** "raccoon" - **Class 93:** "rhinoceros" - **Class 94:** "rifle" - **Class 95:** "saxophone" - **Class 96:** "screwdriver" - **Class 97:** "sea_turtle" - **Class 98:** "see_saw" - **Class 99:** "sheep" - **Class 100:** "shoe" - **Class 101:** "skateboard" - **Class 102:** "snake" - **Class 103:** "speedboat" - **Class 104:** "spider" - **Class 105:** "squirrel" - **Class 106:** "strawberry" - **Class 107:** "streetlight" - **Class 108:** "string_bean" - **Class 109:** "submarine" - **Class 110:** "swan" - **Class 111:** "table" - **Class 112:** "teapot" - **Class 113:** "teddy-bear" - **Class 114:** "television" - **Class 115:** "the_Eiffel_Tower" - **Class 116:** "the_Great_Wall_of_China" - **Class 117:** "tiger" - **Class 118:** "toe" - **Class 119:** "train" - **Class 120:** "truck" - **Class 121:** "umbrella" - **Class 122:** "vase" - **Class 123:** "watermelon" - **Class 124:** "whale" - **Class 125:** "zebra" # **Run with Transformers🤗** ```python !pip install -q transformers torch pillow gradio ``` ```python import gradio as gr from transformers import AutoImageProcessor, SiglipForImageClassification from transformers.image_utils import load_image from PIL import Image import torch # Load model and processor model_name = "prithivMLmods/Painting-126-DomainNet" model = SiglipForImageClassification.from_pretrained(model_name) processor = AutoImageProcessor.from_pretrained(model_name) def painting_classification(image): """Predicts the painting category for an input image.""" # Convert the input numpy array to a PIL image and ensure it is in RGB format image = Image.fromarray(image).convert("RGB") # Process the image for the model inputs = processor(images=image, return_tensors="pt") # Get predictions from the model without gradient computation with torch.no_grad(): outputs = model(**inputs) logits = outputs.logits # Convert logits to probabilities using softmax probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist() # Define the label mapping for each class index labels = { "0": "aircraft_carrier", "1": "alarm_clock", "2": "ant", "3": "anvil", "4": "asparagus", "5": "axe", "6": "banana", "7": "basket", "8": "bathtub", "9": "bear", "10": "bee", "11": "bird", "12": "blackberry", "13": "blueberry", "14": "bottlecap", "15": "broccoli", "16": "bus", "17": "butterfly", "18": "cactus", "19": "cake", "20": "calculator", "21": "camel", "22": "camera", "23": "candle", "24": "cannon", "25": "canoe", "26": "carrot", "27": "castle", "28": "cat", "29": "ceiling_fan", "30": "cell_phone", "31": "cello", "32": "chair", "33": "chandelier", "34": "coffee_cup", "35": "compass", "36": "computer", "37": "cow", "38": "crab", "39": "crocodile", "40": "cruise_ship", "41": "dog", "42": "dolphin", "43": "dragon", "44": "drums", "45": "duck", "46": "dumbbell", "47": "elephant", "48": "eyeglasses", "49": "feather", "50": "fence", "51": "fish", "52": "flamingo", "53": "flower", "54": "foot", "55": "fork", "56": "frog", "57": "giraffe", "58": "goatee", "59": "grapes", "60": "guitar", "61": "hammer", "62": "helicopter", "63": "helmet", "64": "horse", "65": "kangaroo", "66": "lantern", "67": "laptop", "68": "leaf", "69": "lion", "70": "lipstick", "71": "lobster", "72": "microphone", "73": "monkey", "74": "mosquito", "75": "mouse", "76": "mug", "77": "mushroom", "78": "onion", "79": "panda", "80": "peanut", "81": "pear", "82": "peas", "83": "pencil", "84": "penguin", "85": "pig", "86": "pillow", "87": "pineapple", "88": "potato", "89": "power_outlet", "90": "purse", "91": "rabbit", "92": "raccoon", "93": "rhinoceros", "94": "rifle", "95": "saxophone", "96": "screwdriver", "97": "sea_turtle", "98": "see_saw", "99": "sheep", "100": "shoe", "101": "skateboard", "102": "snake", "103": "speedboat", "104": "spider", "105": "squirrel", "106": "strawberry", "107": "streetlight", "108": "string_bean", "109": "submarine", "110": "swan", "111": "table", "112": "teapot", "113": "teddy-bear", "114": "television", "115": "the_Eiffel_Tower", "116": "the_Great_Wall_of_China", "117": "tiger", "118": "toe", "119": "train", "120": "truck", "121": "umbrella", "122": "vase", "123": "watermelon", "124": "whale", "125": "zebra" } # Map each label to its corresponding probability (rounded) predictions = {labels[str(i)]: round(probs[i], 3) for i in range(len(probs))} return predictions # Create Gradio interface for the painting classifier iface = gr.Interface( fn=painting_classification, inputs=gr.Image(type="numpy"), outputs=gr.Label(label="Prediction Scores"), title="Painting-126-DomainNet Classification", description="Upload a painting to classify it into one of 126 categories." ) # Launch the app if __name__ == "__main__": iface.launch() ``` # **Intended Use:** The **Painting-126-DomainNet** model is designed for painting image classification. It categorizes paintings into a wide range of domains—from objects like an "aircraft_carrier" or "alarm_clock" to animals, plants, and everyday items. Potential use cases include: - **Art Curation & Analysis:** Assisting galleries and museums in organizing and categorizing artworks. - **Creative Search Engines:** Enabling painting-based search for art inspiration and research. - **Educational Tools:** Supporting art education by categorizing and retrieving visual resources. - **Computer Vision Research:** Providing a benchmark dataset for studies in painting recognition and domain adaptation tasks.
[ "aircraft_carrier", "alarm_clock", "ant", "anvil", "asparagus", "axe", "banana", "basket", "bathtub", "bear", "bee", "bird", "blackberry", "blueberry", "bottlecap", "broccoli", "bus", "butterfly", "cactus", "cake", "calculator", "camel", "camera", "candle", "cannon", "canoe", "carrot", "castle", "cat", "ceiling_fan", "cell_phone", "cello", "chair", "chandelier", "coffee_cup", "compass", "computer", "cow", "crab", "crocodile", "cruise_ship", "dog", "dolphin", "dragon", "drums", "duck", "dumbbell", "elephant", "eyeglasses", "feather", "fence", "fish", "flamingo", "flower", "foot", "fork", "frog", "giraffe", "goatee", "grapes", "guitar", "hammer", "helicopter", "helmet", "horse", "kangaroo", "lantern", "laptop", "leaf", "lion", "lipstick", "lobster", "microphone", "monkey", "mosquito", "mouse", "mug", "mushroom", "onion", "panda", "peanut", "pear", "peas", "pencil", "penguin", "pig", "pillow", "pineapple", "potato", "power_outlet", "purse", "rabbit", "raccoon", "rhinoceros", "rifle", "saxophone", "screwdriver", "sea_turtle", "see_saw", "sheep", "shoe", "skateboard", "snake", "speedboat", "spider", "squirrel", "strawberry", "streetlight", "string_bean", "submarine", "swan", "table", "teapot", "teddy-bear", "television", "the_eiffel_tower", "the_great_wall_of_china", "tiger", "toe", "train", "truck", "umbrella", "vase", "watermelon", "whale", "zebra" ]
nvidia/MambaVision-B-21K
[**MambaVision: A Hybrid Mamba-Transformer Vision Backbone**](https://arxiv.org/abs/2407.08083). ## Model Overview We have developed the first hybrid model for computer vision which leverages the strengths of Mamba and Transformers. Specifically, our core contribution includes redesigning the Mamba formulation to enhance its capability for efficient modeling of visual features. In addition, we conducted a comprehensive ablation study on the feasibility of integrating Vision Transformers (ViT) with Mamba. Our results demonstrate that equipping the Mamba architecture with several self-attention blocks at the final layers greatly improves the modeling capacity to capture long-range spatial dependencies. Based on our findings, we introduce a family of MambaVision models with a hierarchical architecture to meet various design criteria. ## Model Performance MambaVision-B-21K is pretrained on ImageNet-21K dataset and finetuned on ImageNet-1K. <table> <tr> <th>Name</th> <th>Acc@1(%)</th> <th>Acc@5(%)</th> <th>#Params(M)</th> <th>FLOPs(G)</th> <th>Resolution</th> </tr> <tr> <td>MambaVision-B-21K</td> <td>84.9</td> <td>97.5</td> <td>97.7</td> <td>15.0</td> <td>224x224</td> </tr> </table> In addition, the MambaVision models demonstrate a strong performance by achieving a new SOTA Pareto-front in terms of Top-1 accuracy and throughput. <p align="center"> <img src="https://github.com/NVlabs/MambaVision/assets/26806394/79dcf841-3966-4b77-883d-76cd5e1d4320" width=70% height=70% class="center"> </p> ## Model Usage It is highly recommended to install the requirements for MambaVision by running the following: Code: https://github.com/NVlabs/MambaVision ```Bash pip install mambavision ``` For each model, we offer two variants for image classification and feature extraction that can be imported with 1 line of code. ### Image Classification In the following example, we demonstrate how MambaVision can be used for image classification. Given the following image from [COCO dataset](https://cocodataset.org/#home) val set as an input: <p align="center"> <img src="https://hf.fast360.xyz/production/uploads/64414b62603214724ebd2636/4duSnqLf4lrNiAHczSmAN.jpeg" width=70% height=70% class="center"> </p> The following snippet can be used for image classification: ```Python from transformers import AutoModelForImageClassification from PIL import Image from timm.data.transforms_factory import create_transform import requests model = AutoModelForImageClassification.from_pretrained("nvidia/MambaVision-B-21K", trust_remote_code=True) # eval mode for inference model.cuda().eval() # prepare image for the model url = 'http://images.cocodataset.org/val2017/000000020247.jpg' image = Image.open(requests.get(url, stream=True).raw) input_resolution = (3, 224, 224) # MambaVision supports any input resolutions transform = create_transform(input_size=input_resolution, is_training=False, mean=model.config.mean, std=model.config.std, crop_mode=model.config.crop_mode, crop_pct=model.config.crop_pct) inputs = transform(image).unsqueeze(0).cuda() # model inference outputs = model(inputs) logits = outputs['logits'] predicted_class_idx = logits.argmax(-1).item() print("Predicted class:", model.config.id2label[predicted_class_idx]) ``` The predicted label is ```brown bear, bruin, Ursus arctos.``` ### Feature Extraction MambaVision can also be used as a generic feature extractor. Specifically, we can extract the outputs of each stage of model (4 stages) as well as the final averaged-pool features that are flattened. The following snippet can be used for feature extraction: ```Python from transformers import AutoModel from PIL import Image from timm.data.transforms_factory import create_transform import requests model = AutoModel.from_pretrained("nvidia/MambaVision-B-21K", trust_remote_code=True) # eval mode for inference model.cuda().eval() # prepare image for the model url = 'http://images.cocodataset.org/val2017/000000020247.jpg' image = Image.open(requests.get(url, stream=True).raw) input_resolution = (3, 224, 224) # MambaVision supports any input resolutions transform = create_transform(input_size=input_resolution, is_training=False, mean=model.config.mean, std=model.config.std, crop_mode=model.config.crop_pct, crop_pct=model.config.crop_pct) inputs = transform(image).unsqueeze(0).cuda() # model inference out_avg_pool, features = model(inputs) print("Size of the averaged pool features:", out_avg_pool.size()) # torch.Size([1, 640]) print("Number of stages in extracted features:", len(features)) # 4 stages print("Size of extracted features in stage 1:", features[0].size()) # torch.Size([1, 80, 56, 56]) print("Size of extracted features in stage 4:", features[3].size()) # torch.Size([1, 640, 7, 7]) ``` ### License: [NVIDIA Source Code License-NC](https://huggingface.co/nvidia/MambaVision-B-21K/blob/main/LICENSE)
[ "tench, tinca tinca", "goldfish, carassius auratus", "great white shark, white shark, man-eater, man-eating shark, carcharodon carcharias", "tiger shark, galeocerdo cuvieri", "hammerhead, hammerhead shark", "electric ray, crampfish, numbfish, torpedo", "stingray", "cock", "hen", "ostrich, struthio camelus", "brambling, fringilla montifringilla", "goldfinch, carduelis carduelis", "house finch, linnet, carpodacus mexicanus", "junco, snowbird", "indigo bunting, indigo finch, indigo bird, passerina cyanea", "robin, american robin, turdus migratorius", "bulbul", "jay", "magpie", "chickadee", "water ouzel, dipper", "kite", "bald eagle, american eagle, haliaeetus leucocephalus", "vulture", "great grey owl, great gray owl, strix nebulosa", "european fire salamander, salamandra salamandra", "common newt, triturus vulgaris", "eft", "spotted salamander, ambystoma maculatum", "axolotl, mud puppy, ambystoma mexicanum", "bullfrog, rana catesbeiana", "tree frog, tree-frog", "tailed frog, bell toad, ribbed toad, tailed toad, ascaphus trui", "loggerhead, loggerhead turtle, caretta caretta", "leatherback turtle, leatherback, leathery turtle, dermochelys coriacea", "mud turtle", "terrapin", "box turtle, box tortoise", "banded gecko", "common iguana, iguana, iguana iguana", "american chameleon, anole, anolis carolinensis", "whiptail, whiptail lizard", "agama", "frilled lizard, chlamydosaurus kingi", "alligator lizard", "gila monster, heloderma suspectum", "green lizard, lacerta viridis", "african chameleon, chamaeleo chamaeleon", "komodo dragon, komodo lizard, dragon lizard, giant lizard, varanus komodoensis", "african crocodile, nile crocodile, crocodylus niloticus", "american alligator, alligator mississipiensis", "triceratops", "thunder snake, worm snake, carphophis amoenus", "ringneck snake, ring-necked snake, ring snake", "hognose snake, puff adder, sand viper", "green snake, grass snake", "king snake, kingsnake", "garter snake, grass snake", "water snake", "vine snake", "night snake, hypsiglena torquata", "boa constrictor, constrictor constrictor", "rock python, rock snake, python sebae", "indian cobra, naja naja", "green mamba", "sea snake", "horned viper, cerastes, sand viper, horned asp, cerastes cornutus", "diamondback, diamondback rattlesnake, crotalus adamanteus", "sidewinder, horned rattlesnake, crotalus cerastes", "trilobite", "harvestman, daddy longlegs, phalangium opilio", "scorpion", "black and gold garden spider, argiope aurantia", "barn spider, araneus cavaticus", "garden spider, aranea diademata", "black widow, latrodectus mactans", "tarantula", "wolf spider, hunting spider", "tick", "centipede", "black grouse", "ptarmigan", "ruffed grouse, partridge, bonasa umbellus", "prairie chicken, prairie grouse, prairie fowl", "peacock", "quail", "partridge", "african grey, african gray, psittacus erithacus", "macaw", "sulphur-crested cockatoo, kakatoe galerita, cacatua galerita", "lorikeet", "coucal", "bee eater", "hornbill", "hummingbird", "jacamar", "toucan", "drake", "red-breasted merganser, mergus serrator", "goose", "black swan, cygnus atratus", "tusker", "echidna, spiny anteater, anteater", "platypus, duckbill, duckbilled platypus, duck-billed platypus, ornithorhynchus anatinus", "wallaby, brush kangaroo", "koala, koala bear, kangaroo bear, native bear, phascolarctos cinereus", "wombat", "jellyfish", "sea anemone, anemone", "brain coral", "flatworm, platyhelminth", "nematode, nematode worm, roundworm", "conch", "snail", "slug", "sea slug, nudibranch", "chiton, coat-of-mail shell, sea cradle, polyplacophore", "chambered nautilus, pearly nautilus, nautilus", "dungeness crab, cancer magister", "rock crab, cancer irroratus", "fiddler crab", "king crab, alaska crab, alaskan king crab, alaska king crab, paralithodes camtschatica", "american lobster, northern lobster, maine lobster, homarus americanus", "spiny lobster, langouste, rock lobster, crawfish, crayfish, sea crawfish", "crayfish, crawfish, crawdad, crawdaddy", "hermit crab", "isopod", "white stork, ciconia ciconia", "black stork, ciconia nigra", "spoonbill", "flamingo", "little blue heron, egretta caerulea", "american egret, great white heron, egretta albus", "bittern", "crane", "limpkin, aramus pictus", "european gallinule, porphyrio porphyrio", "american coot, marsh hen, mud hen, water hen, fulica americana", "bustard", "ruddy turnstone, arenaria interpres", "red-backed sandpiper, dunlin, erolia alpina", "redshank, tringa totanus", "dowitcher", "oystercatcher, oyster catcher", "pelican", "king penguin, aptenodytes patagonica", "albatross, mollymawk", "grey whale, gray whale, devilfish, eschrichtius gibbosus, eschrichtius robustus", "killer whale, killer, orca, grampus, sea wolf, orcinus orca", "dugong, dugong dugon", "sea lion", "chihuahua", "japanese spaniel", "maltese dog, maltese terrier, maltese", "pekinese, pekingese, peke", "shih-tzu", "blenheim spaniel", "papillon", "toy terrier", "rhodesian ridgeback", "afghan hound, afghan", "basset, basset hound", "beagle", "bloodhound, sleuthhound", "bluetick", "black-and-tan coonhound", "walker hound, walker foxhound", "english foxhound", "redbone", "borzoi, russian wolfhound", "irish wolfhound", "italian greyhound", "whippet", "ibizan hound, ibizan podenco", "norwegian elkhound, elkhound", "otterhound, otter hound", "saluki, gazelle hound", "scottish deerhound, deerhound", "weimaraner", "staffordshire bullterrier, staffordshire bull terrier", "american staffordshire terrier, staffordshire terrier, american pit bull terrier, pit bull terrier", "bedlington terrier", "border terrier", "kerry blue terrier", "irish terrier", "norfolk terrier", "norwich terrier", "yorkshire terrier", "wire-haired fox terrier", "lakeland terrier", "sealyham terrier, sealyham", "airedale, airedale terrier", "cairn, cairn terrier", "australian terrier", "dandie dinmont, dandie dinmont terrier", "boston bull, boston terrier", "miniature schnauzer", "giant schnauzer", "standard schnauzer", "scotch terrier, scottish terrier, scottie", "tibetan terrier, chrysanthemum dog", "silky terrier, sydney silky", "soft-coated wheaten terrier", "west highland white terrier", "lhasa, lhasa apso", "flat-coated retriever", "curly-coated retriever", "golden retriever", "labrador retriever", "chesapeake bay retriever", "german short-haired pointer", "vizsla, hungarian pointer", "english setter", "irish setter, red setter", "gordon setter", "brittany spaniel", "clumber, clumber spaniel", "english springer, english springer spaniel", "welsh springer spaniel", "cocker spaniel, english cocker spaniel, cocker", "sussex spaniel", "irish water spaniel", "kuvasz", "schipperke", "groenendael", "malinois", "briard", "kelpie", "komondor", "old english sheepdog, bobtail", "shetland sheepdog, shetland sheep dog, shetland", "collie", "border collie", "bouvier des flandres, bouviers des flandres", "rottweiler", "german shepherd, german shepherd dog, german police dog, alsatian", "doberman, doberman pinscher", "miniature pinscher", "greater swiss mountain dog", "bernese mountain dog", "appenzeller", "entlebucher", "boxer", "bull mastiff", "tibetan mastiff", "french bulldog", "great dane", "saint bernard, st bernard", "eskimo dog, husky", "malamute, malemute, alaskan malamute", "siberian husky", "dalmatian, coach dog, carriage dog", "affenpinscher, monkey pinscher, monkey dog", "basenji", "pug, pug-dog", "leonberg", "newfoundland, newfoundland dog", "great pyrenees", "samoyed, samoyede", "pomeranian", "chow, chow chow", "keeshond", "brabancon griffon", "pembroke, pembroke welsh corgi", "cardigan, cardigan welsh corgi", "toy poodle", "miniature poodle", "standard poodle", "mexican hairless", "timber wolf, grey wolf, gray wolf, canis lupus", "white wolf, arctic wolf, canis lupus tundrarum", "red wolf, maned wolf, canis rufus, canis niger", "coyote, prairie wolf, brush wolf, canis latrans", "dingo, warrigal, warragal, canis dingo", "dhole, cuon alpinus", "african hunting dog, hyena dog, cape hunting dog, lycaon pictus", "hyena, hyaena", "red fox, vulpes vulpes", "kit fox, vulpes macrotis", "arctic fox, white fox, alopex lagopus", "grey fox, gray fox, urocyon cinereoargenteus", "tabby, tabby cat", "tiger cat", "persian cat", "siamese cat, siamese", "egyptian cat", "cougar, puma, catamount, mountain lion, painter, panther, felis concolor", "lynx, catamount", "leopard, panthera pardus", "snow leopard, ounce, panthera uncia", "jaguar, panther, panthera onca, felis onca", "lion, king of beasts, panthera leo", "tiger, panthera tigris", "cheetah, chetah, acinonyx jubatus", "brown bear, bruin, ursus arctos", "american black bear, black bear, ursus americanus, euarctos americanus", "ice bear, polar bear, ursus maritimus, thalarctos maritimus", "sloth bear, melursus ursinus, ursus ursinus", "mongoose", "meerkat, mierkat", "tiger beetle", "ladybug, ladybeetle, lady beetle, ladybird, ladybird beetle", "ground beetle, carabid beetle", "long-horned beetle, longicorn, longicorn beetle", "leaf beetle, chrysomelid", "dung beetle", "rhinoceros beetle", "weevil", "fly", "bee", "ant, emmet, pismire", "grasshopper, hopper", "cricket", "walking stick, walkingstick, stick insect", "cockroach, roach", "mantis, mantid", "cicada, cicala", "leafhopper", "lacewing, lacewing fly", "dragonfly, darning needle, devil's darning needle, sewing needle, snake feeder, snake doctor, mosquito hawk, skeeter hawk", "damselfly", "admiral", "ringlet, ringlet butterfly", "monarch, monarch butterfly, milkweed butterfly, danaus plexippus", "cabbage butterfly", "sulphur butterfly, sulfur butterfly", "lycaenid, lycaenid butterfly", "starfish, sea star", "sea urchin", "sea cucumber, holothurian", "wood rabbit, cottontail, cottontail rabbit", "hare", "angora, angora rabbit", "hamster", "porcupine, hedgehog", "fox squirrel, eastern fox squirrel, sciurus niger", "marmot", "beaver", "guinea pig, cavia cobaya", "sorrel", "zebra", "hog, pig, grunter, squealer, sus scrofa", "wild boar, boar, sus scrofa", "warthog", "hippopotamus, hippo, river horse, hippopotamus amphibius", "ox", "water buffalo, water ox, asiatic buffalo, bubalus bubalis", "bison", "ram, tup", "bighorn, bighorn sheep, cimarron, rocky mountain bighorn, rocky mountain sheep, ovis canadensis", "ibex, capra ibex", "hartebeest", "impala, aepyceros melampus", "gazelle", "arabian camel, dromedary, camelus dromedarius", "llama", "weasel", "mink", "polecat, fitch, foulmart, foumart, mustela putorius", "black-footed ferret, ferret, mustela nigripes", "otter", "skunk, polecat, wood pussy", "badger", "armadillo", "three-toed sloth, ai, bradypus tridactylus", "orangutan, orang, orangutang, pongo pygmaeus", "gorilla, gorilla gorilla", "chimpanzee, chimp, pan troglodytes", "gibbon, hylobates lar", "siamang, hylobates syndactylus, symphalangus syndactylus", "guenon, guenon monkey", "patas, hussar monkey, erythrocebus patas", "baboon", "macaque", "langur", "colobus, colobus monkey", "proboscis monkey, nasalis larvatus", "marmoset", "capuchin, ringtail, cebus capucinus", "howler monkey, howler", "titi, titi monkey", "spider monkey, ateles geoffroyi", "squirrel monkey, saimiri sciureus", "madagascar cat, ring-tailed lemur, lemur catta", "indri, indris, indri indri, indri brevicaudatus", "indian elephant, elephas maximus", "african elephant, loxodonta africana", "lesser panda, red panda, panda, bear cat, cat bear, ailurus fulgens", "giant panda, panda, panda bear, coon bear, ailuropoda melanoleuca", "barracouta, snoek", "eel", "coho, cohoe, coho salmon, blue jack, silver salmon, oncorhynchus kisutch", "rock beauty, holocanthus tricolor", "anemone fish", "sturgeon", "gar, garfish, garpike, billfish, lepisosteus osseus", "lionfish", "puffer, pufferfish, blowfish, globefish", "abacus", "abaya", "academic gown, academic robe, judge's robe", "accordion, piano accordion, squeeze box", "acoustic guitar", "aircraft carrier, carrier, flattop, attack aircraft carrier", "airliner", "airship, dirigible", "altar", "ambulance", "amphibian, amphibious vehicle", "analog clock", "apiary, bee house", "apron", "ashcan, trash can, garbage can, wastebin, ash bin, ash-bin, ashbin, dustbin, trash barrel, trash bin", "assault rifle, assault gun", "backpack, back pack, knapsack, packsack, rucksack, haversack", "bakery, bakeshop, bakehouse", "balance beam, beam", "balloon", "ballpoint, ballpoint pen, ballpen, biro", "band aid", "banjo", "bannister, banister, balustrade, balusters, handrail", "barbell", "barber chair", "barbershop", "barn", "barometer", "barrel, cask", "barrow, garden cart, lawn cart, wheelbarrow", "baseball", "basketball", "bassinet", "bassoon", "bathing cap, swimming cap", "bath towel", "bathtub, bathing tub, bath, tub", "beach wagon, station wagon, wagon, estate car, beach waggon, station waggon, waggon", "beacon, lighthouse, beacon light, pharos", "beaker", "bearskin, busby, shako", "beer bottle", "beer glass", "bell cote, bell cot", "bib", "bicycle-built-for-two, tandem bicycle, tandem", "bikini, two-piece", "binder, ring-binder", "binoculars, field glasses, opera glasses", "birdhouse", "boathouse", "bobsled, bobsleigh, bob", "bolo tie, bolo, bola tie, bola", "bonnet, poke bonnet", "bookcase", "bookshop, bookstore, bookstall", "bottlecap", "bow", "bow tie, bow-tie, bowtie", "brass, memorial tablet, plaque", "brassiere, bra, bandeau", "breakwater, groin, groyne, mole, bulwark, seawall, jetty", "breastplate, aegis, egis", "broom", "bucket, pail", "buckle", "bulletproof vest", "bullet train, bullet", "butcher shop, meat market", "cab, hack, taxi, taxicab", "caldron, cauldron", "candle, taper, wax light", "cannon", "canoe", "can opener, tin opener", "cardigan", "car mirror", "carousel, carrousel, merry-go-round, roundabout, whirligig", "carpenter's kit, tool kit", "carton", "car wheel", "cash machine, cash dispenser, automated teller machine, automatic teller machine, automated teller, automatic teller, atm", "cassette", "cassette player", "castle", "catamaran", "cd player", "cello, violoncello", "cellular telephone, cellular phone, cellphone, cell, mobile phone", "chain", "chainlink fence", "chain mail, ring mail, mail, chain armor, chain armour, ring armor, ring armour", "chain saw, chainsaw", "chest", "chiffonier, commode", "chime, bell, gong", "china cabinet, china closet", "christmas stocking", "church, church building", "cinema, movie theater, movie theatre, movie house, picture palace", "cleaver, meat cleaver, chopper", "cliff dwelling", "cloak", "clog, geta, patten, sabot", "cocktail shaker", "coffee mug", "coffeepot", "coil, spiral, volute, whorl, helix", "combination lock", "computer keyboard, keypad", "confectionery, confectionary, candy store", "container ship, containership, container vessel", "convertible", "corkscrew, bottle screw", "cornet, horn, trumpet, trump", "cowboy boot", "cowboy hat, ten-gallon hat", "cradle", "crane", "crash helmet", "crate", "crib, cot", "crock pot", "croquet ball", "crutch", "cuirass", "dam, dike, dyke", "desk", "desktop computer", "dial telephone, dial phone", "diaper, nappy, napkin", "digital clock", "digital watch", "dining table, board", "dishrag, dishcloth", "dishwasher, dish washer, dishwashing machine", "disk brake, disc brake", "dock, dockage, docking facility", "dogsled, dog sled, dog sleigh", "dome", "doormat, welcome mat", "drilling platform, offshore rig", "drum, membranophone, tympan", "drumstick", "dumbbell", "dutch oven", "electric fan, blower", "electric guitar", "electric locomotive", "entertainment center", "envelope", "espresso maker", "face powder", "feather boa, boa", "file, file cabinet, filing cabinet", "fireboat", "fire engine, fire truck", "fire screen, fireguard", "flagpole, flagstaff", "flute, transverse flute", "folding chair", "football helmet", "forklift", "fountain", "fountain pen", "four-poster", "freight car", "french horn, horn", "frying pan, frypan, skillet", "fur coat", "garbage truck, dustcart", "gasmask, respirator, gas helmet", "gas pump, gasoline pump, petrol pump, island dispenser", "goblet", "go-kart", "golf ball", "golfcart, golf cart", "gondola", "gong, tam-tam", "gown", "grand piano, grand", "greenhouse, nursery, glasshouse", "grille, radiator grille", "grocery store, grocery, food market, market", "guillotine", "hair slide", "hair spray", "half track", "hammer", "hamper", "hand blower, blow dryer, blow drier, hair dryer, hair drier", "hand-held computer, hand-held microcomputer", "handkerchief, hankie, hanky, hankey", "hard disc, hard disk, fixed disk", "harmonica, mouth organ, harp, mouth harp", "harp", "harvester, reaper", "hatchet", "holster", "home theater, home theatre", "honeycomb", "hook, claw", "hoopskirt, crinoline", "horizontal bar, high bar", "horse cart, horse-cart", "hourglass", "ipod", "iron, smoothing iron", "jack-o'-lantern", "jean, blue jean, denim", "jeep, landrover", "jersey, t-shirt, tee shirt", "jigsaw puzzle", "jinrikisha, ricksha, rickshaw", "joystick", "kimono", "knee pad", "knot", "lab coat, laboratory coat", "ladle", "lampshade, lamp shade", "laptop, laptop computer", "lawn mower, mower", "lens cap, lens cover", "letter opener, paper knife, paperknife", "library", "lifeboat", "lighter, light, igniter, ignitor", "limousine, limo", "liner, ocean liner", "lipstick, lip rouge", "loafer", "lotion", "loudspeaker, speaker, speaker unit, loudspeaker system, speaker system", "loupe, jeweler's loupe", "lumbermill, sawmill", "magnetic compass", "mailbag, postbag", "mailbox, letter box", "maillot", "maillot, tank suit", "manhole cover", "maraca", "marimba, xylophone", "mask", "matchstick", "maypole", "maze, labyrinth", "measuring cup", "medicine chest, medicine cabinet", "megalith, megalithic structure", "microphone, mike", "microwave, microwave oven", "military uniform", "milk can", "minibus", "miniskirt, mini", "minivan", "missile", "mitten", "mixing bowl", "mobile home, manufactured home", "model t", "modem", "monastery", "monitor", "moped", "mortar", "mortarboard", "mosque", "mosquito net", "motor scooter, scooter", "mountain bike, all-terrain bike, off-roader", "mountain tent", "mouse, computer mouse", "mousetrap", "moving van", "muzzle", "nail", "neck brace", "necklace", "nipple", "notebook, notebook computer", "obelisk", "oboe, hautboy, hautbois", "ocarina, sweet potato", "odometer, hodometer, mileometer, milometer", "oil filter", "organ, pipe organ", "oscilloscope, scope, cathode-ray oscilloscope, cro", "overskirt", "oxcart", "oxygen mask", "packet", "paddle, boat paddle", "paddlewheel, paddle wheel", "padlock", "paintbrush", "pajama, pyjama, pj's, jammies", "palace", "panpipe, pandean pipe, syrinx", "paper towel", "parachute, chute", "parallel bars, bars", "park bench", "parking meter", "passenger car, coach, carriage", "patio, terrace", "pay-phone, pay-station", "pedestal, plinth, footstall", "pencil box, pencil case", "pencil sharpener", "perfume, essence", "petri dish", "photocopier", "pick, plectrum, plectron", "pickelhaube", "picket fence, paling", "pickup, pickup truck", "pier", "piggy bank, penny bank", "pill bottle", "pillow", "ping-pong ball", "pinwheel", "pirate, pirate ship", "pitcher, ewer", "plane, carpenter's plane, woodworking plane", "planetarium", "plastic bag", "plate rack", "plow, plough", "plunger, plumber's helper", "polaroid camera, polaroid land camera", "pole", "police van, police wagon, paddy wagon, patrol wagon, wagon, black maria", "poncho", "pool table, billiard table, snooker table", "pop bottle, soda bottle", "pot, flowerpot", "potter's wheel", "power drill", "prayer rug, prayer mat", "printer", "prison, prison house", "projectile, missile", "projector", "puck, hockey puck", "punching bag, punch bag, punching ball, punchball", "purse", "quill, quill pen", "quilt, comforter, comfort, puff", "racer, race car, racing car", "racket, racquet", "radiator", "radio, wireless", "radio telescope, radio reflector", "rain barrel", "recreational vehicle, rv, r.v.", "reel", "reflex camera", "refrigerator, icebox", "remote control, remote", "restaurant, eating house, eating place, eatery", "revolver, six-gun, six-shooter", "rifle", "rocking chair, rocker", "rotisserie", "rubber eraser, rubber, pencil eraser", "rugby ball", "rule, ruler", "running shoe", "safe", "safety pin", "saltshaker, salt shaker", "sandal", "sarong", "sax, saxophone", "scabbard", "scale, weighing machine", "school bus", "schooner", "scoreboard", "screen, crt screen", "screw", "screwdriver", "seat belt, seatbelt", "sewing machine", "shield, buckler", "shoe shop, shoe-shop, shoe store", "shoji", "shopping basket", "shopping cart", "shovel", "shower cap", "shower curtain", "ski", "ski mask", "sleeping bag", "slide rule, slipstick", "sliding door", "slot, one-armed bandit", "snorkel", "snowmobile", "snowplow, snowplough", "soap dispenser", "soccer ball", "sock", "solar dish, solar collector, solar furnace", "sombrero", "soup bowl", "space bar", "space heater", "space shuttle", "spatula", "speedboat", "spider web, spider's web", "spindle", "sports car, sport car", "spotlight, spot", "stage", "steam locomotive", "steel arch bridge", "steel drum", "stethoscope", "stole", "stone wall", "stopwatch, stop watch", "stove", "strainer", "streetcar, tram, tramcar, trolley, trolley car", "stretcher", "studio couch, day bed", "stupa, tope", "submarine, pigboat, sub, u-boat", "suit, suit of clothes", "sundial", "sunglass", "sunglasses, dark glasses, shades", "sunscreen, sunblock, sun blocker", "suspension bridge", "swab, swob, mop", "sweatshirt", "swimming trunks, bathing trunks", "swing", "switch, electric switch, electrical switch", "syringe", "table lamp", "tank, army tank, armored combat vehicle, armoured combat vehicle", "tape player", "teapot", "teddy, teddy bear", "television, television system", "tennis ball", "thatch, thatched roof", "theater curtain, theatre curtain", "thimble", "thresher, thrasher, threshing machine", "throne", "tile roof", "toaster", "tobacco shop, tobacconist shop, tobacconist", "toilet seat", "torch", "totem pole", "tow truck, tow car, wrecker", "toyshop", "tractor", "trailer truck, tractor trailer, trucking rig, rig, articulated lorry, semi", "tray", "trench coat", "tricycle, trike, velocipede", "trimaran", "tripod", "triumphal arch", "trolleybus, trolley coach, trackless trolley", "trombone", "tub, vat", "turnstile", "typewriter keyboard", "umbrella", "unicycle, monocycle", "upright, upright piano", "vacuum, vacuum cleaner", "vase", "vault", "velvet", "vending machine", "vestment", "viaduct", "violin, fiddle", "volleyball", "waffle iron", "wall clock", "wallet, billfold, notecase, pocketbook", "wardrobe, closet, press", "warplane, military plane", "washbasin, handbasin, washbowl, lavabo, wash-hand basin", "washer, automatic washer, washing machine", "water bottle", "water jug", "water tower", "whiskey jug", "whistle", "wig", "window screen", "window shade", "windsor tie", "wine bottle", "wing", "wok", "wooden spoon", "wool, woolen, woollen", "worm fence, snake fence, snake-rail fence, virginia fence", "wreck", "yawl", "yurt", "web site, website, internet site, site", "comic book", "crossword puzzle, crossword", "street sign", "traffic light, traffic signal, stoplight", "book jacket, dust cover, dust jacket, dust wrapper", "menu", "plate", "guacamole", "consomme", "hot pot, hotpot", "trifle", "ice cream, icecream", "ice lolly, lolly, lollipop, popsicle", "french loaf", "bagel, beigel", "pretzel", "cheeseburger", "hotdog, hot dog, red hot", "mashed potato", "head cabbage", "broccoli", "cauliflower", "zucchini, courgette", "spaghetti squash", "acorn squash", "butternut squash", "cucumber, cuke", "artichoke, globe artichoke", "bell pepper", "cardoon", "mushroom", "granny smith", "strawberry", "orange", "lemon", "fig", "pineapple, ananas", "banana", "jackfruit, jak, jack", "custard apple", "pomegranate", "hay", "carbonara", "chocolate sauce, chocolate syrup", "dough", "meat loaf, meatloaf", "pizza, pizza pie", "potpie", "burrito", "red wine", "espresso", "cup", "eggnog", "alp", "bubble", "cliff, drop, drop-off", "coral reef", "geyser", "lakeside, lakeshore", "promontory, headland, head, foreland", "sandbar, sand bar", "seashore, coast, seacoast, sea-coast", "valley, vale", "volcano", "ballplayer, baseball player", "groom, bridegroom", "scuba diver", "rapeseed", "daisy", "yellow lady's slipper, yellow lady-slipper, cypripedium calceolus, cypripedium parviflorum", "corn", "acorn", "hip, rose hip, rosehip", "buckeye, horse chestnut, conker", "coral fungus", "agaric", "gyromitra", "stinkhorn, carrion fungus", "earthstar", "hen-of-the-woods, hen of the woods, polyporus frondosus, grifola frondosa", "bolete", "ear, spike, capitulum", "toilet tissue, toilet paper, bathroom tissue" ]
prithivMLmods/Sketch-126-DomainNet
![fdhsdftghd.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/iS8BrTcPZ38592IP_NW3z.png) # **Sketch-126-DomainNet** > **Sketch-126-DomainNet** is an image classification vision-language encoder model fine-tuned from **google/siglip2-base-patch16-224** for a single-label classification task. It is designed to classify sketches into 126 domain categories using the **SiglipForImageClassification** architecture. ![Sketch-126-DomainNet - visual selection.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/Rc6Q9-9_nSTV2mRicSqj1.png) *Moment Matching for Multi-Source Domain Adaptation* : https://arxiv.org/pdf/1812.01754 *SigLIP 2: Multilingual Vision-Language Encoders with Improved Semantic Understanding, Localization, and Dense Features* https://arxiv.org/pdf/2502.14786 ```py Classification Report: precision recall f1-score support aircraft_carrier 1.0000 0.2200 0.3607 50 alarm_clock 0.9873 0.9568 0.9718 162 ant 0.9432 0.9326 0.9379 89 anvil 0.2727 0.0423 0.0732 71 asparagus 0.9673 0.8916 0.9279 166 axe 0.8034 0.8773 0.8387 163 banana 0.9744 0.9383 0.9560 162 basket 0.7160 0.7682 0.7412 151 bathtub 0.8073 0.9281 0.8635 167 bear 0.8636 0.6690 0.7540 142 bee 0.9196 0.8957 0.9075 115 bird 0.9094 0.9429 0.9259 245 blackberry 1.0000 0.1250 0.2222 48 blueberry 0.6744 0.8529 0.7532 102 bottlecap 0.7468 0.5315 0.6211 111 broccoli 0.7727 0.9444 0.8500 144 bus 0.9302 0.8989 0.9143 178 butterfly 0.9594 0.9497 0.9545 199 cactus 1.0000 0.6735 0.8049 49 cake 0.0000 0.0000 0.0000 54 calculator 0.9298 0.9636 0.9464 55 camel 0.9208 0.8942 0.9073 104 camera 0.9200 0.7931 0.8519 87 candle 0.9556 0.6935 0.8037 62 cannon 0.7500 0.2027 0.3191 74 canoe 0.8000 0.5825 0.6742 103 carrot 0.0000 0.0000 0.0000 27 castle 0.9583 0.5111 0.6667 45 cat 0.8961 0.6635 0.7624 104 ceiling_fan 0.0000 0.0000 0.0000 20 cell_phone 0.0000 0.0000 0.0000 18 cello 0.9600 0.4706 0.6316 51 chair 0.8043 0.4805 0.6016 77 chandelier 0.0000 0.0000 0.0000 27 coffee_cup 0.0000 0.0000 0.0000 26 compass 0.0000 0.0000 0.0000 10 computer 0.2500 0.0435 0.0741 23 cow 0.0000 0.0000 0.0000 14 crab 0.9123 0.8525 0.8814 122 crocodile 0.9280 0.8992 0.9134 129 cruise_ship 0.7467 0.9032 0.8175 124 dog 0.8533 0.8911 0.8718 248 dolphin 0.9091 0.8824 0.8955 68 dragon 0.7914 0.8269 0.8088 156 drums 0.9259 0.8772 0.9009 171 duck 0.8409 0.8409 0.8409 220 dumbbell 0.9507 0.9184 0.9343 147 elephant 0.9630 0.9765 0.9697 213 eyeglasses 0.8155 0.7919 0.8035 173 feather 0.9344 0.9344 0.9344 244 fence 0.8796 0.8482 0.8636 112 fish 0.9527 0.9495 0.9511 297 flamingo 0.9818 0.9474 0.9643 114 flower 0.8267 0.9219 0.8717 269 foot 0.7743 0.8578 0.8140 204 fork 0.9366 0.9433 0.9399 141 frog 0.9620 0.9383 0.9500 162 giraffe 0.9655 0.9396 0.9524 149 goatee 0.7914 0.8897 0.8377 145 grapes 0.9132 0.9609 0.9364 230 guitar 0.8462 0.9862 0.9108 145 hammer 0.8333 0.4386 0.5747 57 helicopter 0.9441 0.9620 0.9530 158 helmet 0.8509 0.8204 0.8354 167 horse 0.9091 0.9877 0.9467 81 kangaroo 0.9592 0.9691 0.9641 97 lantern 0.0000 0.0000 0.0000 30 laptop 0.8273 0.9200 0.8712 250 leaf 0.8449 0.8870 0.8655 301 lion 0.9697 0.9734 0.9715 263 lipstick 0.9634 0.8977 0.9294 88 lobster 0.9265 0.9130 0.9197 138 microphone 0.8917 0.8770 0.8843 122 monkey 0.9297 0.8947 0.9119 133 mosquito 0.9052 0.9211 0.9130 114 mouse 0.8632 0.8039 0.8325 102 mug 0.6928 0.7737 0.7310 137 mushroom 0.8174 0.8861 0.8504 202 onion 0.9538 0.9841 0.9688 126 panda 0.9643 0.8710 0.9153 62 peanut 0.8302 0.8462 0.8381 104 pear 0.7966 0.9658 0.8731 146 peas 0.6667 0.8438 0.7448 64 pencil 0.0000 0.0000 0.0000 21 penguin 0.9586 0.9701 0.9643 167 pig 0.8983 0.8785 0.8883 181 pillow 0.9570 0.9674 0.9622 92 pineapple 0.9808 0.9714 0.9761 105 potato 0.9444 0.5231 0.6733 65 power_outlet 0.5556 0.0676 0.1205 74 purse 0.9220 0.7182 0.8075 181 rabbit 0.9697 0.8767 0.9209 73 raccoon 0.7850 0.9097 0.8428 277 rhinoceros 0.9863 0.9863 0.9863 146 rifle 0.9143 0.9796 0.9458 98 saxophone 0.9381 0.8618 0.8983 246 screwdriver 0.7709 0.8706 0.8177 286 sea_turtle 0.9698 0.9507 0.9602 203 see_saw 0.3296 0.5738 0.4187 413 sheep 0.9254 0.9153 0.9203 366 shoe 0.9395 0.9688 0.9539 513 skateboard 0.7365 0.7831 0.7591 332 snake 0.8005 0.8737 0.8355 372 speedboat 0.8388 0.8833 0.8605 377 spider 0.7954 0.8696 0.8309 514 squirrel 0.8511 0.8484 0.8498 310 strawberry 0.8313 0.8471 0.8391 157 streetlight 0.7944 0.8134 0.8038 209 string_bean 0.7143 0.3000 0.4225 50 submarine 0.5916 0.6975 0.6402 162 swan 0.8966 0.8387 0.8667 186 table 0.6705 0.7522 0.7090 230 teapot 0.8464 0.8968 0.8709 252 teddy-bear 0.6818 0.8385 0.7521 161 television 0.8974 0.7071 0.7910 99 the_Eiffel_Tower 0.9860 0.9679 0.9769 218 the_Great_Wall_of_China 0.6389 0.8440 0.7273 109 tiger 0.9417 0.9604 0.9510 303 toe 0.0000 0.0000 0.0000 53 train 0.8650 0.9010 0.8827 192 truck 0.8136 0.9372 0.8710 191 umbrella 0.8650 0.8913 0.8779 230 vase 0.8082 0.8082 0.8082 146 watermelon 0.8947 0.8333 0.8629 102 whale 0.8910 0.8744 0.8826 215 zebra 0.9817 0.9727 0.9772 220 accuracy 0.8440 19317 macro avg 0.7818 0.7419 0.7475 19317 weighted avg 0.8404 0.8440 0.8352 19317 ``` The model categorizes images into the following 126 classes: - **Class 0:** "aircraft_carrier" - **Class 1:** "alarm_clock" - **Class 2:** "ant" - **Class 3:** "anvil" - **Class 4:** "asparagus" - **Class 5:** "axe" - **Class 6:** "banana" - **Class 7:** "basket" - **Class 8:** "bathtub" - **Class 9:** "bear" - **Class 10:** "bee" - **Class 11:** "bird" - **Class 12:** "blackberry" - **Class 13:** "blueberry" - **Class 14:** "bottlecap" - **Class 15:** "broccoli" - **Class 16:** "bus" - **Class 17:** "butterfly" - **Class 18:** "cactus" - **Class 19:** "cake" - **Class 20:** "calculator" - **Class 21:** "camel" - **Class 22:** "camera" - **Class 23:** "candle" - **Class 24:** "cannon" - **Class 25:** "canoe" - **Class 26:** "carrot" - **Class 27:** "castle" - **Class 28:** "cat" - **Class 29:** "ceiling_fan" - **Class 30:** "cell_phone" - **Class 31:** "cello" - **Class 32:** "chair" - **Class 33:** "chandelier" - **Class 34:** "coffee_cup" - **Class 35:** "compass" - **Class 36:** "computer" - **Class 37:** "cow" - **Class 38:** "crab" - **Class 39:** "crocodile" - **Class 40:** "cruise_ship" - **Class 41:** "dog" - **Class 42:** "dolphin" - **Class 43:** "dragon" - **Class 44:** "drums" - **Class 45:** "duck" - **Class 46:** "dumbbell" - **Class 47:** "elephant" - **Class 48:** "eyeglasses" - **Class 49:** "feather" - **Class 50:** "fence" - **Class 51:** "fish" - **Class 52:** "flamingo" - **Class 53:** "flower" - **Class 54:** "foot" - **Class 55:** "fork" - **Class 56:** "frog" - **Class 57:** "giraffe" - **Class 58:** "goatee" - **Class 59:** "grapes" - **Class 60:** "guitar" - **Class 61:** "hammer" - **Class 62:** "helicopter" - **Class 63:** "helmet" - **Class 64:** "horse" - **Class 65:** "kangaroo" - **Class 66:** "lantern" - **Class 67:** "laptop" - **Class 68:** "leaf" - **Class 69:** "lion" - **Class 70:** "lipstick" - **Class 71:** "lobster" - **Class 72:** "microphone" - **Class 73:** "monkey" - **Class 74:** "mosquito" - **Class 75:** "mouse" - **Class 76:** "mug" - **Class 77:** "mushroom" - **Class 78:** "onion" - **Class 79:** "panda" - **Class 80:** "peanut" - **Class 81:** "pear" - **Class 82:** "peas" - **Class 83:** "pencil" - **Class 84:** "penguin" - **Class 85:** "pig" - **Class 86:** "pillow" - **Class 87:** "pineapple" - **Class 88:** "potato" - **Class 89:** "power_outlet" - **Class 90:** "purse" - **Class 91:** "rabbit" - **Class 92:** "raccoon" - **Class 93:** "rhinoceros" - **Class 94:** "rifle" - **Class 95:** "saxophone" - **Class 96:** "screwdriver" - **Class 97:** "sea_turtle" - **Class 98:** "see_saw" - **Class 99:** "sheep" - **Class 100:** "shoe" - **Class 101:** "skateboard" - **Class 102:** "snake" - **Class 103:** "speedboat" - **Class 104:** "spider" - **Class 105:** "squirrel" - **Class 106:** "strawberry" - **Class 107:** "streetlight" - **Class 108:** "string_bean" - **Class 109:** "submarine" - **Class 110:** "swan" - **Class 111:** "table" - **Class 112:** "teapot" - **Class 113:** "teddy-bear" - **Class 114:** "television" - **Class 115:** "the_Eiffel_Tower" - **Class 116:** "the_Great_Wall_of_China" - **Class 117:** "tiger" - **Class 118:** "toe" - **Class 119:** "train" - **Class 120:** "truck" - **Class 121:** "umbrella" - **Class 122:** "vase" - **Class 123:** "watermelon" - **Class 124:** "whale" - **Class 125:** "zebra" # **Run with Transformers🤗** ```python !pip install -q transformers torch pillow gradio ``` ```python import gradio as gr from transformers import AutoImageProcessor, SiglipForImageClassification from transformers.image_utils import load_image from PIL import Image import torch # Load model and processor model_name = "prithivMLmods/Sketch-126-DomainNet" model = SiglipForImageClassification.from_pretrained(model_name) processor = AutoImageProcessor.from_pretrained(model_name) def sketch_classification(image): """Predicts the sketch category for an input image.""" # Convert the input numpy array to a PIL Image and ensure it has 3 channels (RGB) image = Image.fromarray(image).convert("RGB") # Process the image and prepare it for the model inputs = processor(images=image, return_tensors="pt") # Perform inference without gradient calculation with torch.no_grad(): outputs = model(**inputs) logits = outputs.logits # Convert logits to probabilities using softmax probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist() # Mapping from indices to corresponding sketch category labels labels = { "0": "aircraft_carrier", "1": "alarm_clock", "2": "ant", "3": "anvil", "4": "asparagus", "5": "axe", "6": "banana", "7": "basket", "8": "bathtub", "9": "bear", "10": "bee", "11": "bird", "12": "blackberry", "13": "blueberry", "14": "bottlecap", "15": "broccoli", "16": "bus", "17": "butterfly", "18": "cactus", "19": "cake", "20": "calculator", "21": "camel", "22": "camera", "23": "candle", "24": "cannon", "25": "canoe", "26": "carrot", "27": "castle", "28": "cat", "29": "ceiling_fan", "30": "cell_phone", "31": "cello", "32": "chair", "33": "chandelier", "34": "coffee_cup", "35": "compass", "36": "computer", "37": "cow", "38": "crab", "39": "crocodile", "40": "cruise_ship", "41": "dog", "42": "dolphin", "43": "dragon", "44": "drums", "45": "duck", "46": "dumbbell", "47": "elephant", "48": "eyeglasses", "49": "feather", "50": "fence", "51": "fish", "52": "flamingo", "53": "flower", "54": "foot", "55": "fork", "56": "frog", "57": "giraffe", "58": "goatee", "59": "grapes", "60": "guitar", "61": "hammer", "62": "helicopter", "63": "helmet", "64": "horse", "65": "kangaroo", "66": "lantern", "67": "laptop", "68": "leaf", "69": "lion", "70": "lipstick", "71": "lobster", "72": "microphone", "73": "monkey", "74": "mosquito", "75": "mouse", "76": "mug", "77": "mushroom", "78": "onion", "79": "panda", "80": "peanut", "81": "pear", "82": "peas", "83": "pencil", "84": "penguin", "85": "pig", "86": "pillow", "87": "pineapple", "88": "potato", "89": "power_outlet", "90": "purse", "91": "rabbit", "92": "raccoon", "93": "rhinoceros", "94": "rifle", "95": "saxophone", "96": "screwdriver", "97": "sea_turtle", "98": "see_saw", "99": "sheep", "100": "shoe", "101": "skateboard", "102": "snake", "103": "speedboat", "104": "spider", "105": "squirrel", "106": "strawberry", "107": "streetlight", "108": "string_bean", "109": "submarine", "110": "swan", "111": "table", "112": "teapot", "113": "teddy-bear", "114": "television", "115": "the_Eiffel_Tower", "116": "the_Great_Wall_of_China", "117": "tiger", "118": "toe", "119": "train", "120": "truck", "121": "umbrella", "122": "vase", "123": "watermelon", "124": "whale", "125": "zebra" } # Create a dictionary mapping each label to its predicted probability (rounded) predictions = {labels[str(i)]: round(probs[i], 3) for i in range(len(probs))} return predictions # Create Gradio interface iface = gr.Interface( fn=sketch_classification, inputs=gr.Image(type="numpy"), outputs=gr.Label(label="Prediction Scores"), title="Sketch-126-DomainNet Classification", description="Upload a sketch to classify it into one of 126 categories." ) # Launch the app if __name__ == "__main__": iface.launch() ``` --- # **Intended Use:** The **Sketch-126-DomainNet** model is designed for sketch image classification. It is capable of categorizing sketches into a wide range of domains—from objects like an "aircraft_carrier" or "alarm_clock" to animals, plants, and everyday items. Potential use cases include: - **Art and Design Applications:** Assisting artists and designers in organizing and retrieving sketches based on content. - **Creative Search Engines:** Enabling sketch-based search for design inspiration. - **Educational Tools:** Helping students and educators in art and design fields with categorization and retrieval of visual resources. - **Computer Vision Research:** Providing a benchmark dataset for sketch recognition and domain adaptation tasks.
[ "aircraft_carrier", "alarm_clock", "ant", "anvil", "asparagus", "axe", "banana", "basket", "bathtub", "bear", "bee", "bird", "blackberry", "blueberry", "bottlecap", "broccoli", "bus", "butterfly", "cactus", "cake", "calculator", "camel", "camera", "candle", "cannon", "canoe", "carrot", "castle", "cat", "ceiling_fan", "cell_phone", "cello", "chair", "chandelier", "coffee_cup", "compass", "computer", "cow", "crab", "crocodile", "cruise_ship", "dog", "dolphin", "dragon", "drums", "duck", "dumbbell", "elephant", "eyeglasses", "feather", "fence", "fish", "flamingo", "flower", "foot", "fork", "frog", "giraffe", "goatee", "grapes", "guitar", "hammer", "helicopter", "helmet", "horse", "kangaroo", "lantern", "laptop", "leaf", "lion", "lipstick", "lobster", "microphone", "monkey", "mosquito", "mouse", "mug", "mushroom", "onion", "panda", "peanut", "pear", "peas", "pencil", "penguin", "pig", "pillow", "pineapple", "potato", "power_outlet", "purse", "rabbit", "raccoon", "rhinoceros", "rifle", "saxophone", "screwdriver", "sea_turtle", "see_saw", "sheep", "shoe", "skateboard", "snake", "speedboat", "spider", "squirrel", "strawberry", "streetlight", "string_bean", "submarine", "swan", "table", "teapot", "teddy-bear", "television", "the_eiffel_tower", "the_great_wall_of_china", "tiger", "toe", "train", "truck", "umbrella", "vase", "watermelon", "whale", "zebra" ]
Ratihd/results
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # results This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 4.1652 - Accuracy: 0.0187 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 40 | 3.8639 | 0.0063 | | No log | 2.0 | 80 | 4.1054 | 0.0063 | | No log | 3.0 | 120 | 4.1652 | 0.0187 | ### Framework versions - Transformers 4.50.0 - Pytorch 2.6.0+cu124 - Datasets 3.5.0 - Tokenizers 0.21.1
[ "anger", "contempt", "disgust", "fear", "happy", "neutral", "sad", "surprise" ]
nvidia/MambaVision-L-21K
# MambaVision: A Hybrid Mamba-Transformer Vision Backbone [**MambaVision: A Hybrid Mamba-Transformer Vision Backbone**](https://arxiv.org/abs/2407.08083) ## Model Description We propose a novel hybrid Mamba-Transformer backbone, denoted as MambaVision, which is specifically tailored for vision applications. Our core contribution includes redesigning the Mamba formulation to enhance its capability for efficient modeling of visual features. In addition, we conduct a comprehensive ablation study on the feasibility of integrating Vision Transformers (ViT) with Mamba. Our results demonstrate that equipping the Mamba architecture with several self-attention blocks at the final layers greatly improves the modeling capacity to capture long-range spatial dependencies. Based on our findings, we introduce a family of MambaVision models with a hierarchical architecture to meet various design criteria. For Image classification on ImageNet-1K dataset, MambaVision model variants achieve a new State-of-the-Art (SOTA) performance in terms of Top-1 accuracy and image throughput. In downstream tasks such as object detection, instance segmentation and semantic segmentation on MS COCO and ADE20K datasets, MambaVision outperforms comparably-sized backbones and demonstrates more favorable performance. Code: https://github.com/NVlabs/MambaVision. ## Model Performance MambaVision-L-21K is pretrained on ImageNet-21K dataset and finetuned on ImageNet-1K. <table> <tr> <th>Name</th> <th>Acc@1(%)</th> <th>Acc@5(%)</th> <th>#Params(M)</th> <th>FLOPs(G)</th> <th>Resolution</th> </tr> <tr> <td>MambaVision-L-21K</td> <td>86.1</td> <td>97.9</td> <td>227.9</td> <td>34.9</td> <td>224x224</td> </tr> </table> In addition, the MambaVision models demonstrate a strong performance by achieving a new SOTA Pareto-front in terms of Top-1 accuracy and throughput. <p align="center"> <img src="https://github.com/NVlabs/MambaVision/assets/26806394/79dcf841-3966-4b77-883d-76cd5e1d4320" width=70% height=70% class="center"> </p> ## Model Usage It is highly recommended to install the requirements for MambaVision by running the following: ```Bash pip install mambavision ``` For each model, we offer two variants for image classification and feature extraction that can be imported with 1 line of code. ### Image Classification In the following example, we demonstrate how MambaVision can be used for image classification. Given the following image from [COCO dataset](https://cocodataset.org/#home) val set as an input: <p align="center"> <img src="https://hf.fast360.xyz/production/uploads/64414b62603214724ebd2636/4duSnqLf4lrNiAHczSmAN.jpeg" width=70% height=70% class="center"> </p> The following snippet can be used for image classification: ```Python from transformers import AutoModelForImageClassification from PIL import Image from timm.data.transforms_factory import create_transform import requests model = AutoModelForImageClassification.from_pretrained("nvidia/MambaVision-L-21K", trust_remote_code=True) # eval mode for inference model.cuda().eval() # prepare image for the model url = 'http://images.cocodataset.org/val2017/000000020247.jpg' image = Image.open(requests.get(url, stream=True).raw) input_resolution = (3, 224, 224) # MambaVision supports any input resolutions transform = create_transform(input_size=input_resolution, is_training=False, mean=model.config.mean, std=model.config.std, crop_mode=model.config.crop_mode, crop_pct=model.config.crop_pct) inputs = transform(image).unsqueeze(0).cuda() # model inference outputs = model(inputs) logits = outputs['logits'] predicted_class_idx = logits.argmax(-1).item() print("Predicted class:", model.config.id2label[predicted_class_idx]) ``` The predicted label is ```brown bear, bruin, Ursus arctos.``` ### Feature Extraction MambaVision can also be used as a generic feature extractor. Specifically, we can extract the outputs of each stage of model (4 stages) as well as the final averaged-pool features that are flattened. The following snippet can be used for feature extraction: ```Python from transformers import AutoModel from PIL import Image from timm.data.transforms_factory import create_transform import requests model = AutoModel.from_pretrained("nvidia/MambaVision-L-21K", trust_remote_code=True) # eval mode for inference model.cuda().eval() # prepare image for the model url = 'http://images.cocodataset.org/val2017/000000020247.jpg' image = Image.open(requests.get(url, stream=True).raw) input_resolution = (3, 224, 224) # MambaVision supports any input resolutions transform = create_transform(input_size=input_resolution, is_training=False, mean=model.config.mean, std=model.config.std, crop_mode=model.config.crop_mode, crop_pct=model.config.crop_pct) inputs = transform(image).unsqueeze(0).cuda() # model inference out_avg_pool, features = model(inputs) print("Size of the averaged pool features:", out_avg_pool.size()) # torch.Size([1, 640]) print("Number of stages in extracted features:", len(features)) # 4 stages print("Size of extracted features in stage 1:", features[0].size()) # torch.Size([1, 80, 56, 56]) print("Size of extracted features in stage 4:", features[3].size()) # torch.Size([1, 640, 7, 7]) ``` ### License: [NVIDIA Source Code License-NC](https://huggingface.co/nvidia/MambaVision-L-21K/blob/main/LICENSE)
[ "tench, tinca tinca", "goldfish, carassius auratus", "great white shark, white shark, man-eater, man-eating shark, carcharodon carcharias", "tiger shark, galeocerdo cuvieri", "hammerhead, hammerhead shark", "electric ray, crampfish, numbfish, torpedo", "stingray", "cock", "hen", "ostrich, struthio camelus", "brambling, fringilla montifringilla", "goldfinch, carduelis carduelis", "house finch, linnet, carpodacus mexicanus", "junco, snowbird", "indigo bunting, indigo finch, indigo bird, passerina cyanea", "robin, american robin, turdus migratorius", "bulbul", "jay", "magpie", "chickadee", "water ouzel, dipper", "kite", "bald eagle, american eagle, haliaeetus leucocephalus", "vulture", "great grey owl, great gray owl, strix nebulosa", "european fire salamander, salamandra salamandra", "common newt, triturus vulgaris", "eft", "spotted salamander, ambystoma maculatum", "axolotl, mud puppy, ambystoma mexicanum", "bullfrog, rana catesbeiana", "tree frog, tree-frog", "tailed frog, bell toad, ribbed toad, tailed toad, ascaphus trui", "loggerhead, loggerhead turtle, caretta caretta", "leatherback turtle, leatherback, leathery turtle, dermochelys coriacea", "mud turtle", "terrapin", "box turtle, box tortoise", "banded gecko", "common iguana, iguana, iguana iguana", "american chameleon, anole, anolis carolinensis", "whiptail, whiptail lizard", "agama", "frilled lizard, chlamydosaurus kingi", "alligator lizard", "gila monster, heloderma suspectum", "green lizard, lacerta viridis", "african chameleon, chamaeleo chamaeleon", "komodo dragon, komodo lizard, dragon lizard, giant lizard, varanus komodoensis", "african crocodile, nile crocodile, crocodylus niloticus", "american alligator, alligator mississipiensis", "triceratops", "thunder snake, worm snake, carphophis amoenus", "ringneck snake, ring-necked snake, ring snake", "hognose snake, puff adder, sand viper", "green snake, grass snake", "king snake, kingsnake", "garter snake, grass snake", "water snake", "vine snake", "night snake, hypsiglena torquata", "boa constrictor, constrictor constrictor", "rock python, rock snake, python sebae", "indian cobra, naja naja", "green mamba", "sea snake", "horned viper, cerastes, sand viper, horned asp, cerastes cornutus", "diamondback, diamondback rattlesnake, crotalus adamanteus", "sidewinder, horned rattlesnake, crotalus cerastes", "trilobite", "harvestman, daddy longlegs, phalangium opilio", "scorpion", "black and gold garden spider, argiope aurantia", "barn spider, araneus cavaticus", "garden spider, aranea diademata", "black widow, latrodectus mactans", "tarantula", "wolf spider, hunting spider", "tick", "centipede", "black grouse", "ptarmigan", "ruffed grouse, partridge, bonasa umbellus", "prairie chicken, prairie grouse, prairie fowl", "peacock", "quail", "partridge", "african grey, african gray, psittacus erithacus", "macaw", "sulphur-crested cockatoo, kakatoe galerita, cacatua galerita", "lorikeet", "coucal", "bee eater", "hornbill", "hummingbird", "jacamar", "toucan", "drake", "red-breasted merganser, mergus serrator", "goose", "black swan, cygnus atratus", "tusker", "echidna, spiny anteater, anteater", "platypus, duckbill, duckbilled platypus, duck-billed platypus, ornithorhynchus anatinus", "wallaby, brush kangaroo", "koala, koala bear, kangaroo bear, native bear, phascolarctos cinereus", "wombat", "jellyfish", "sea anemone, anemone", "brain coral", "flatworm, platyhelminth", "nematode, nematode worm, roundworm", "conch", "snail", "slug", "sea slug, nudibranch", "chiton, coat-of-mail shell, sea cradle, polyplacophore", "chambered nautilus, pearly nautilus, nautilus", "dungeness crab, cancer magister", "rock crab, cancer irroratus", "fiddler crab", "king crab, alaska crab, alaskan king crab, alaska king crab, paralithodes camtschatica", "american lobster, northern lobster, maine lobster, homarus americanus", "spiny lobster, langouste, rock lobster, crawfish, crayfish, sea crawfish", "crayfish, crawfish, crawdad, crawdaddy", "hermit crab", "isopod", "white stork, ciconia ciconia", "black stork, ciconia nigra", "spoonbill", "flamingo", "little blue heron, egretta caerulea", "american egret, great white heron, egretta albus", "bittern", "crane", "limpkin, aramus pictus", "european gallinule, porphyrio porphyrio", "american coot, marsh hen, mud hen, water hen, fulica americana", "bustard", "ruddy turnstone, arenaria interpres", "red-backed sandpiper, dunlin, erolia alpina", "redshank, tringa totanus", "dowitcher", "oystercatcher, oyster catcher", "pelican", "king penguin, aptenodytes patagonica", "albatross, mollymawk", "grey whale, gray whale, devilfish, eschrichtius gibbosus, eschrichtius robustus", "killer whale, killer, orca, grampus, sea wolf, orcinus orca", "dugong, dugong dugon", "sea lion", "chihuahua", "japanese spaniel", "maltese dog, maltese terrier, maltese", "pekinese, pekingese, peke", "shih-tzu", "blenheim spaniel", "papillon", "toy terrier", "rhodesian ridgeback", "afghan hound, afghan", "basset, basset hound", "beagle", "bloodhound, sleuthhound", "bluetick", "black-and-tan coonhound", "walker hound, walker foxhound", "english foxhound", "redbone", "borzoi, russian wolfhound", "irish wolfhound", "italian greyhound", "whippet", "ibizan hound, ibizan podenco", "norwegian elkhound, elkhound", "otterhound, otter hound", "saluki, gazelle hound", "scottish deerhound, deerhound", "weimaraner", "staffordshire bullterrier, staffordshire bull terrier", "american staffordshire terrier, staffordshire terrier, american pit bull terrier, pit bull terrier", "bedlington terrier", "border terrier", "kerry blue terrier", "irish terrier", "norfolk terrier", "norwich terrier", "yorkshire terrier", "wire-haired fox terrier", "lakeland terrier", "sealyham terrier, sealyham", "airedale, airedale terrier", "cairn, cairn terrier", "australian terrier", "dandie dinmont, dandie dinmont terrier", "boston bull, boston terrier", "miniature schnauzer", "giant schnauzer", "standard schnauzer", "scotch terrier, scottish terrier, scottie", "tibetan terrier, chrysanthemum dog", "silky terrier, sydney silky", "soft-coated wheaten terrier", "west highland white terrier", "lhasa, lhasa apso", "flat-coated retriever", "curly-coated retriever", "golden retriever", "labrador retriever", "chesapeake bay retriever", "german short-haired pointer", "vizsla, hungarian pointer", "english setter", "irish setter, red setter", "gordon setter", "brittany spaniel", "clumber, clumber spaniel", "english springer, english springer spaniel", "welsh springer spaniel", "cocker spaniel, english cocker spaniel, cocker", "sussex spaniel", "irish water spaniel", "kuvasz", "schipperke", "groenendael", "malinois", "briard", "kelpie", "komondor", "old english sheepdog, bobtail", "shetland sheepdog, shetland sheep dog, shetland", "collie", "border collie", "bouvier des flandres, bouviers des flandres", "rottweiler", "german shepherd, german shepherd dog, german police dog, alsatian", "doberman, doberman pinscher", "miniature pinscher", "greater swiss mountain dog", "bernese mountain dog", "appenzeller", "entlebucher", "boxer", "bull mastiff", "tibetan mastiff", "french bulldog", "great dane", "saint bernard, st bernard", "eskimo dog, husky", "malamute, malemute, alaskan malamute", "siberian husky", "dalmatian, coach dog, carriage dog", "affenpinscher, monkey pinscher, monkey dog", "basenji", "pug, pug-dog", "leonberg", "newfoundland, newfoundland dog", "great pyrenees", "samoyed, samoyede", "pomeranian", "chow, chow chow", "keeshond", "brabancon griffon", "pembroke, pembroke welsh corgi", "cardigan, cardigan welsh corgi", "toy poodle", "miniature poodle", "standard poodle", "mexican hairless", "timber wolf, grey wolf, gray wolf, canis lupus", "white wolf, arctic wolf, canis lupus tundrarum", "red wolf, maned wolf, canis rufus, canis niger", "coyote, prairie wolf, brush wolf, canis latrans", "dingo, warrigal, warragal, canis dingo", "dhole, cuon alpinus", "african hunting dog, hyena dog, cape hunting dog, lycaon pictus", "hyena, hyaena", "red fox, vulpes vulpes", "kit fox, vulpes macrotis", "arctic fox, white fox, alopex lagopus", "grey fox, gray fox, urocyon cinereoargenteus", "tabby, tabby cat", "tiger cat", "persian cat", "siamese cat, siamese", "egyptian cat", "cougar, puma, catamount, mountain lion, painter, panther, felis concolor", "lynx, catamount", "leopard, panthera pardus", "snow leopard, ounce, panthera uncia", "jaguar, panther, panthera onca, felis onca", "lion, king of beasts, panthera leo", "tiger, panthera tigris", "cheetah, chetah, acinonyx jubatus", "brown bear, bruin, ursus arctos", "american black bear, black bear, ursus americanus, euarctos americanus", "ice bear, polar bear, ursus maritimus, thalarctos maritimus", "sloth bear, melursus ursinus, ursus ursinus", "mongoose", "meerkat, mierkat", "tiger beetle", "ladybug, ladybeetle, lady beetle, ladybird, ladybird beetle", "ground beetle, carabid beetle", "long-horned beetle, longicorn, longicorn beetle", "leaf beetle, chrysomelid", "dung beetle", "rhinoceros beetle", "weevil", "fly", "bee", "ant, emmet, pismire", "grasshopper, hopper", "cricket", "walking stick, walkingstick, stick insect", "cockroach, roach", "mantis, mantid", "cicada, cicala", "leafhopper", "lacewing, lacewing fly", "dragonfly, darning needle, devil's darning needle, sewing needle, snake feeder, snake doctor, mosquito hawk, skeeter hawk", "damselfly", "admiral", "ringlet, ringlet butterfly", "monarch, monarch butterfly, milkweed butterfly, danaus plexippus", "cabbage butterfly", "sulphur butterfly, sulfur butterfly", "lycaenid, lycaenid butterfly", "starfish, sea star", "sea urchin", "sea cucumber, holothurian", "wood rabbit, cottontail, cottontail rabbit", "hare", "angora, angora rabbit", "hamster", "porcupine, hedgehog", "fox squirrel, eastern fox squirrel, sciurus niger", "marmot", "beaver", "guinea pig, cavia cobaya", "sorrel", "zebra", "hog, pig, grunter, squealer, sus scrofa", "wild boar, boar, sus scrofa", "warthog", "hippopotamus, hippo, river horse, hippopotamus amphibius", "ox", "water buffalo, water ox, asiatic buffalo, bubalus bubalis", "bison", "ram, tup", "bighorn, bighorn sheep, cimarron, rocky mountain bighorn, rocky mountain sheep, ovis canadensis", "ibex, capra ibex", "hartebeest", "impala, aepyceros melampus", "gazelle", "arabian camel, dromedary, camelus dromedarius", "llama", "weasel", "mink", "polecat, fitch, foulmart, foumart, mustela putorius", "black-footed ferret, ferret, mustela nigripes", "otter", "skunk, polecat, wood pussy", "badger", "armadillo", "three-toed sloth, ai, bradypus tridactylus", "orangutan, orang, orangutang, pongo pygmaeus", "gorilla, gorilla gorilla", "chimpanzee, chimp, pan troglodytes", "gibbon, hylobates lar", "siamang, hylobates syndactylus, symphalangus syndactylus", "guenon, guenon monkey", "patas, hussar monkey, erythrocebus patas", "baboon", "macaque", "langur", "colobus, colobus monkey", "proboscis monkey, nasalis larvatus", "marmoset", "capuchin, ringtail, cebus capucinus", "howler monkey, howler", "titi, titi monkey", "spider monkey, ateles geoffroyi", "squirrel monkey, saimiri sciureus", "madagascar cat, ring-tailed lemur, lemur catta", "indri, indris, indri indri, indri brevicaudatus", "indian elephant, elephas maximus", "african elephant, loxodonta africana", "lesser panda, red panda, panda, bear cat, cat bear, ailurus fulgens", "giant panda, panda, panda bear, coon bear, ailuropoda melanoleuca", "barracouta, snoek", "eel", "coho, cohoe, coho salmon, blue jack, silver salmon, oncorhynchus kisutch", "rock beauty, holocanthus tricolor", "anemone fish", "sturgeon", "gar, garfish, garpike, billfish, lepisosteus osseus", "lionfish", "puffer, pufferfish, blowfish, globefish", "abacus", "abaya", "academic gown, academic robe, judge's robe", "accordion, piano accordion, squeeze box", "acoustic guitar", "aircraft carrier, carrier, flattop, attack aircraft carrier", "airliner", "airship, dirigible", "altar", "ambulance", "amphibian, amphibious vehicle", "analog clock", "apiary, bee house", "apron", "ashcan, trash can, garbage can, wastebin, ash bin, ash-bin, ashbin, dustbin, trash barrel, trash bin", "assault rifle, assault gun", "backpack, back pack, knapsack, packsack, rucksack, haversack", "bakery, bakeshop, bakehouse", "balance beam, beam", "balloon", "ballpoint, ballpoint pen, ballpen, biro", "band aid", "banjo", "bannister, banister, balustrade, balusters, handrail", "barbell", "barber chair", "barbershop", "barn", "barometer", "barrel, cask", "barrow, garden cart, lawn cart, wheelbarrow", "baseball", "basketball", "bassinet", "bassoon", "bathing cap, swimming cap", "bath towel", "bathtub, bathing tub, bath, tub", "beach wagon, station wagon, wagon, estate car, beach waggon, station waggon, waggon", "beacon, lighthouse, beacon light, pharos", "beaker", "bearskin, busby, shako", "beer bottle", "beer glass", "bell cote, bell cot", "bib", "bicycle-built-for-two, tandem bicycle, tandem", "bikini, two-piece", "binder, ring-binder", "binoculars, field glasses, opera glasses", "birdhouse", "boathouse", "bobsled, bobsleigh, bob", "bolo tie, bolo, bola tie, bola", "bonnet, poke bonnet", "bookcase", "bookshop, bookstore, bookstall", "bottlecap", "bow", "bow tie, bow-tie, bowtie", "brass, memorial tablet, plaque", "brassiere, bra, bandeau", "breakwater, groin, groyne, mole, bulwark, seawall, jetty", "breastplate, aegis, egis", "broom", "bucket, pail", "buckle", "bulletproof vest", "bullet train, bullet", "butcher shop, meat market", "cab, hack, taxi, taxicab", "caldron, cauldron", "candle, taper, wax light", "cannon", "canoe", "can opener, tin opener", "cardigan", "car mirror", "carousel, carrousel, merry-go-round, roundabout, whirligig", "carpenter's kit, tool kit", "carton", "car wheel", "cash machine, cash dispenser, automated teller machine, automatic teller machine, automated teller, automatic teller, atm", "cassette", "cassette player", "castle", "catamaran", "cd player", "cello, violoncello", "cellular telephone, cellular phone, cellphone, cell, mobile phone", "chain", "chainlink fence", "chain mail, ring mail, mail, chain armor, chain armour, ring armor, ring armour", "chain saw, chainsaw", "chest", "chiffonier, commode", "chime, bell, gong", "china cabinet, china closet", "christmas stocking", "church, church building", "cinema, movie theater, movie theatre, movie house, picture palace", "cleaver, meat cleaver, chopper", "cliff dwelling", "cloak", "clog, geta, patten, sabot", "cocktail shaker", "coffee mug", "coffeepot", "coil, spiral, volute, whorl, helix", "combination lock", "computer keyboard, keypad", "confectionery, confectionary, candy store", "container ship, containership, container vessel", "convertible", "corkscrew, bottle screw", "cornet, horn, trumpet, trump", "cowboy boot", "cowboy hat, ten-gallon hat", "cradle", "crane", "crash helmet", "crate", "crib, cot", "crock pot", "croquet ball", "crutch", "cuirass", "dam, dike, dyke", "desk", "desktop computer", "dial telephone, dial phone", "diaper, nappy, napkin", "digital clock", "digital watch", "dining table, board", "dishrag, dishcloth", "dishwasher, dish washer, dishwashing machine", "disk brake, disc brake", "dock, dockage, docking facility", "dogsled, dog sled, dog sleigh", "dome", "doormat, welcome mat", "drilling platform, offshore rig", "drum, membranophone, tympan", "drumstick", "dumbbell", "dutch oven", "electric fan, blower", "electric guitar", "electric locomotive", "entertainment center", "envelope", "espresso maker", "face powder", "feather boa, boa", "file, file cabinet, filing cabinet", "fireboat", "fire engine, fire truck", "fire screen, fireguard", "flagpole, flagstaff", "flute, transverse flute", "folding chair", "football helmet", "forklift", "fountain", "fountain pen", "four-poster", "freight car", "french horn, horn", "frying pan, frypan, skillet", "fur coat", "garbage truck, dustcart", "gasmask, respirator, gas helmet", "gas pump, gasoline pump, petrol pump, island dispenser", "goblet", "go-kart", "golf ball", "golfcart, golf cart", "gondola", "gong, tam-tam", "gown", "grand piano, grand", "greenhouse, nursery, glasshouse", "grille, radiator grille", "grocery store, grocery, food market, market", "guillotine", "hair slide", "hair spray", "half track", "hammer", "hamper", "hand blower, blow dryer, blow drier, hair dryer, hair drier", "hand-held computer, hand-held microcomputer", "handkerchief, hankie, hanky, hankey", "hard disc, hard disk, fixed disk", "harmonica, mouth organ, harp, mouth harp", "harp", "harvester, reaper", "hatchet", "holster", "home theater, home theatre", "honeycomb", "hook, claw", "hoopskirt, crinoline", "horizontal bar, high bar", "horse cart, horse-cart", "hourglass", "ipod", "iron, smoothing iron", "jack-o'-lantern", "jean, blue jean, denim", "jeep, landrover", "jersey, t-shirt, tee shirt", "jigsaw puzzle", "jinrikisha, ricksha, rickshaw", "joystick", "kimono", "knee pad", "knot", "lab coat, laboratory coat", "ladle", "lampshade, lamp shade", "laptop, laptop computer", "lawn mower, mower", "lens cap, lens cover", "letter opener, paper knife, paperknife", "library", "lifeboat", "lighter, light, igniter, ignitor", "limousine, limo", "liner, ocean liner", "lipstick, lip rouge", "loafer", "lotion", "loudspeaker, speaker, speaker unit, loudspeaker system, speaker system", "loupe, jeweler's loupe", "lumbermill, sawmill", "magnetic compass", "mailbag, postbag", "mailbox, letter box", "maillot", "maillot, tank suit", "manhole cover", "maraca", "marimba, xylophone", "mask", "matchstick", "maypole", "maze, labyrinth", "measuring cup", "medicine chest, medicine cabinet", "megalith, megalithic structure", "microphone, mike", "microwave, microwave oven", "military uniform", "milk can", "minibus", "miniskirt, mini", "minivan", "missile", "mitten", "mixing bowl", "mobile home, manufactured home", "model t", "modem", "monastery", "monitor", "moped", "mortar", "mortarboard", "mosque", "mosquito net", "motor scooter, scooter", "mountain bike, all-terrain bike, off-roader", "mountain tent", "mouse, computer mouse", "mousetrap", "moving van", "muzzle", "nail", "neck brace", "necklace", "nipple", "notebook, notebook computer", "obelisk", "oboe, hautboy, hautbois", "ocarina, sweet potato", "odometer, hodometer, mileometer, milometer", "oil filter", "organ, pipe organ", "oscilloscope, scope, cathode-ray oscilloscope, cro", "overskirt", "oxcart", "oxygen mask", "packet", "paddle, boat paddle", "paddlewheel, paddle wheel", "padlock", "paintbrush", "pajama, pyjama, pj's, jammies", "palace", "panpipe, pandean pipe, syrinx", "paper towel", "parachute, chute", "parallel bars, bars", "park bench", "parking meter", "passenger car, coach, carriage", "patio, terrace", "pay-phone, pay-station", "pedestal, plinth, footstall", "pencil box, pencil case", "pencil sharpener", "perfume, essence", "petri dish", "photocopier", "pick, plectrum, plectron", "pickelhaube", "picket fence, paling", "pickup, pickup truck", "pier", "piggy bank, penny bank", "pill bottle", "pillow", "ping-pong ball", "pinwheel", "pirate, pirate ship", "pitcher, ewer", "plane, carpenter's plane, woodworking plane", "planetarium", "plastic bag", "plate rack", "plow, plough", "plunger, plumber's helper", "polaroid camera, polaroid land camera", "pole", "police van, police wagon, paddy wagon, patrol wagon, wagon, black maria", "poncho", "pool table, billiard table, snooker table", "pop bottle, soda bottle", "pot, flowerpot", "potter's wheel", "power drill", "prayer rug, prayer mat", "printer", "prison, prison house", "projectile, missile", "projector", "puck, hockey puck", "punching bag, punch bag, punching ball, punchball", "purse", "quill, quill pen", "quilt, comforter, comfort, puff", "racer, race car, racing car", "racket, racquet", "radiator", "radio, wireless", "radio telescope, radio reflector", "rain barrel", "recreational vehicle, rv, r.v.", "reel", "reflex camera", "refrigerator, icebox", "remote control, remote", "restaurant, eating house, eating place, eatery", "revolver, six-gun, six-shooter", "rifle", "rocking chair, rocker", "rotisserie", "rubber eraser, rubber, pencil eraser", "rugby ball", "rule, ruler", "running shoe", "safe", "safety pin", "saltshaker, salt shaker", "sandal", "sarong", "sax, saxophone", "scabbard", "scale, weighing machine", "school bus", "schooner", "scoreboard", "screen, crt screen", "screw", "screwdriver", "seat belt, seatbelt", "sewing machine", "shield, buckler", "shoe shop, shoe-shop, shoe store", "shoji", "shopping basket", "shopping cart", "shovel", "shower cap", "shower curtain", "ski", "ski mask", "sleeping bag", "slide rule, slipstick", "sliding door", "slot, one-armed bandit", "snorkel", "snowmobile", "snowplow, snowplough", "soap dispenser", "soccer ball", "sock", "solar dish, solar collector, solar furnace", "sombrero", "soup bowl", "space bar", "space heater", "space shuttle", "spatula", "speedboat", "spider web, spider's web", "spindle", "sports car, sport car", "spotlight, spot", "stage", "steam locomotive", "steel arch bridge", "steel drum", "stethoscope", "stole", "stone wall", "stopwatch, stop watch", "stove", "strainer", "streetcar, tram, tramcar, trolley, trolley car", "stretcher", "studio couch, day bed", "stupa, tope", "submarine, pigboat, sub, u-boat", "suit, suit of clothes", "sundial", "sunglass", "sunglasses, dark glasses, shades", "sunscreen, sunblock, sun blocker", "suspension bridge", "swab, swob, mop", "sweatshirt", "swimming trunks, bathing trunks", "swing", "switch, electric switch, electrical switch", "syringe", "table lamp", "tank, army tank, armored combat vehicle, armoured combat vehicle", "tape player", "teapot", "teddy, teddy bear", "television, television system", "tennis ball", "thatch, thatched roof", "theater curtain, theatre curtain", "thimble", "thresher, thrasher, threshing machine", "throne", "tile roof", "toaster", "tobacco shop, tobacconist shop, tobacconist", "toilet seat", "torch", "totem pole", "tow truck, tow car, wrecker", "toyshop", "tractor", "trailer truck, tractor trailer, trucking rig, rig, articulated lorry, semi", "tray", "trench coat", "tricycle, trike, velocipede", "trimaran", "tripod", "triumphal arch", "trolleybus, trolley coach, trackless trolley", "trombone", "tub, vat", "turnstile", "typewriter keyboard", "umbrella", "unicycle, monocycle", "upright, upright piano", "vacuum, vacuum cleaner", "vase", "vault", "velvet", "vending machine", "vestment", "viaduct", "violin, fiddle", "volleyball", "waffle iron", "wall clock", "wallet, billfold, notecase, pocketbook", "wardrobe, closet, press", "warplane, military plane", "washbasin, handbasin, washbowl, lavabo, wash-hand basin", "washer, automatic washer, washing machine", "water bottle", "water jug", "water tower", "whiskey jug", "whistle", "wig", "window screen", "window shade", "windsor tie", "wine bottle", "wing", "wok", "wooden spoon", "wool, woolen, woollen", "worm fence, snake fence, snake-rail fence, virginia fence", "wreck", "yawl", "yurt", "web site, website, internet site, site", "comic book", "crossword puzzle, crossword", "street sign", "traffic light, traffic signal, stoplight", "book jacket, dust cover, dust jacket, dust wrapper", "menu", "plate", "guacamole", "consomme", "hot pot, hotpot", "trifle", "ice cream, icecream", "ice lolly, lolly, lollipop, popsicle", "french loaf", "bagel, beigel", "pretzel", "cheeseburger", "hotdog, hot dog, red hot", "mashed potato", "head cabbage", "broccoli", "cauliflower", "zucchini, courgette", "spaghetti squash", "acorn squash", "butternut squash", "cucumber, cuke", "artichoke, globe artichoke", "bell pepper", "cardoon", "mushroom", "granny smith", "strawberry", "orange", "lemon", "fig", "pineapple, ananas", "banana", "jackfruit, jak, jack", "custard apple", "pomegranate", "hay", "carbonara", "chocolate sauce, chocolate syrup", "dough", "meat loaf, meatloaf", "pizza, pizza pie", "potpie", "burrito", "red wine", "espresso", "cup", "eggnog", "alp", "bubble", "cliff, drop, drop-off", "coral reef", "geyser", "lakeside, lakeshore", "promontory, headland, head, foreland", "sandbar, sand bar", "seashore, coast, seacoast, sea-coast", "valley, vale", "volcano", "ballplayer, baseball player", "groom, bridegroom", "scuba diver", "rapeseed", "daisy", "yellow lady's slipper, yellow lady-slipper, cypripedium calceolus, cypripedium parviflorum", "corn", "acorn", "hip, rose hip, rosehip", "buckeye, horse chestnut, conker", "coral fungus", "agaric", "gyromitra", "stinkhorn, carrion fungus", "earthstar", "hen-of-the-woods, hen of the woods, polyporus frondosus, grifola frondosa", "bolete", "ear, spike, capitulum", "toilet tissue, toilet paper, bathroom tissue" ]
nvidia/MambaVision-L2-512-21K
[**MambaVision: A Hybrid Mamba-Transformer Vision Backbone**](https://arxiv.org/abs/2407.08083). ## Model Overview We have developed the first hybrid model for computer vision which leverages the strengths of Mamba and Transformers. Specifically, our core contribution includes redesigning the Mamba formulation to enhance its capability for efficient modeling of visual features. In addition, we conducted a comprehensive ablation study on the feasibility of integrating Vision Transformers (ViT) with Mamba. Our results demonstrate that equipping the Mamba architecture with several self-attention blocks at the final layers greatly improves the modeling capacity to capture long-range spatial dependencies. Based on our findings, we introduce a family of MambaVision models with a hierarchical architecture to meet various design criteria. ## Model Performance MambaVision-L2-512-21K is pretrained on ImageNet-21K dataset and finetuned on ImageNet-1K at 512 x 512 resolution. <table> <tr> <th>Name</th> <th>Acc@1(%)</th> <th>Acc@5(%)</th> <th>#Params(M)</th> <th>FLOPs(G)</th> <th>Resolution</th> </tr> <tr> <td>MambaVision-L2-512-21K</td> <td>87.3</td> <td>98.4</td> <td>241.5</td> <td>196.3</td> <td>512x512</td> </tr> </table> In addition, the MambaVision models demonstrate a strong performance by achieving a new SOTA Pareto-front in terms of Top-1 accuracy and throughput. <p align="center"> <img src="https://github.com/NVlabs/MambaVision/assets/26806394/79dcf841-3966-4b77-883d-76cd5e1d4320" width=70% height=70% class="center"> </p> ## Model Usage It is highly recommended to install the requirements for MambaVision by running the following: ```Bash pip install mambavision ``` For each model, we offer two variants for image classification and feature extraction that can be imported with 1 line of code. ### Image Classification In the following example, we demonstrate how MambaVision can be used for image classification. Given the following image from [COCO dataset](https://cocodataset.org/#home) val set as an input: <p align="center"> <img src="https://hf.fast360.xyz/production/uploads/64414b62603214724ebd2636/4duSnqLf4lrNiAHczSmAN.jpeg" width=70% height=70% class="center"> </p> The following snippet can be used for image classification: ```Python from transformers import AutoModelForImageClassification from PIL import Image from timm.data.transforms_factory import create_transform import requests model = AutoModelForImageClassification.from_pretrained("nvidia/MambaVision-L2-512-21K", trust_remote_code=True) # eval mode for inference model.cuda().eval() # prepare image for the model url = 'http://images.cocodataset.org/val2017/000000020247.jpg' image = Image.open(requests.get(url, stream=True).raw) input_resolution = (3, 512, 512) # MambaVision supports any input resolutions transform = create_transform(input_size=input_resolution, is_training=False, mean=model.config.mean, std=model.config.std, crop_mode=model.config.crop_mode, crop_pct=model.config.crop_pct) inputs = transform(image).unsqueeze(0).cuda() # model inference outputs = model(inputs) logits = outputs['logits'] predicted_class_idx = logits.argmax(-1).item() print("Predicted class:", model.config.id2label[predicted_class_idx]) ``` The predicted label is ```brown bear, bruin, Ursus arctos.``` ### Feature Extraction MambaVision can also be used as a generic feature extractor. Specifically, we can extract the outputs of each stage of model (4 stages) as well as the final averaged-pool features that are flattened. The following snippet can be used for feature extraction: ```Python from transformers import AutoModel from PIL import Image from timm.data.transforms_factory import create_transform import requests model = AutoModel.from_pretrained("nvidia/MambaVision-L2-512-21K", trust_remote_code=True) # eval mode for inference model.cuda().eval() # prepare image for the model url = 'http://images.cocodataset.org/val2017/000000020247.jpg' image = Image.open(requests.get(url, stream=True).raw) input_resolution = (3, 512, 512) # MambaVision supports any input resolutions transform = create_transform(input_size=input_resolution, is_training=False, mean=model.config.mean, std=model.config.std, crop_mode=model.config.crop_mode, crop_pct=model.config.crop_pct) inputs = transform(image).unsqueeze(0).cuda() # model inference out_avg_pool, features = model(inputs) print("Size of the averaged pool features:", out_avg_pool.size()) # torch.Size([1, 1568]) print("Number of stages in extracted features:", len(features)) # 4 stages print("Size of extracted features in stage 1:", features[0].size()) # torch.Size([1, 196, 128, 128]) print("Size of extracted features in stage 4:", features[3].size()) # torch.Size([1, 1568, 16, 16]) ``` ### License: [NVIDIA Source Code License-NC](https://huggingface.co/nvidia/MambaVision-L2-512-21K/blob/main/LICENSE)
[ "tench, tinca tinca", "goldfish, carassius auratus", "great white shark, white shark, man-eater, man-eating shark, carcharodon carcharias", "tiger shark, galeocerdo cuvieri", "hammerhead, hammerhead shark", "electric ray, crampfish, numbfish, torpedo", "stingray", "cock", "hen", "ostrich, struthio camelus", "brambling, fringilla montifringilla", "goldfinch, carduelis carduelis", "house finch, linnet, carpodacus mexicanus", "junco, snowbird", "indigo bunting, indigo finch, indigo bird, passerina cyanea", "robin, american robin, turdus migratorius", "bulbul", "jay", "magpie", "chickadee", "water ouzel, dipper", "kite", "bald eagle, american eagle, haliaeetus leucocephalus", "vulture", "great grey owl, great gray owl, strix nebulosa", "european fire salamander, salamandra salamandra", "common newt, triturus vulgaris", "eft", "spotted salamander, ambystoma maculatum", "axolotl, mud puppy, ambystoma mexicanum", "bullfrog, rana catesbeiana", "tree frog, tree-frog", "tailed frog, bell toad, ribbed toad, tailed toad, ascaphus trui", "loggerhead, loggerhead turtle, caretta caretta", "leatherback turtle, leatherback, leathery turtle, dermochelys coriacea", "mud turtle", "terrapin", "box turtle, box tortoise", "banded gecko", "common iguana, iguana, iguana iguana", "american chameleon, anole, anolis carolinensis", "whiptail, whiptail lizard", "agama", "frilled lizard, chlamydosaurus kingi", "alligator lizard", "gila monster, heloderma suspectum", "green lizard, lacerta viridis", "african chameleon, chamaeleo chamaeleon", "komodo dragon, komodo lizard, dragon lizard, giant lizard, varanus komodoensis", "african crocodile, nile crocodile, crocodylus niloticus", "american alligator, alligator mississipiensis", "triceratops", "thunder snake, worm snake, carphophis amoenus", "ringneck snake, ring-necked snake, ring snake", "hognose snake, puff adder, sand viper", "green snake, grass snake", "king snake, kingsnake", "garter snake, grass snake", "water snake", "vine snake", "night snake, hypsiglena torquata", "boa constrictor, constrictor constrictor", "rock python, rock snake, python sebae", "indian cobra, naja naja", "green mamba", "sea snake", "horned viper, cerastes, sand viper, horned asp, cerastes cornutus", "diamondback, diamondback rattlesnake, crotalus adamanteus", "sidewinder, horned rattlesnake, crotalus cerastes", "trilobite", "harvestman, daddy longlegs, phalangium opilio", "scorpion", "black and gold garden spider, argiope aurantia", "barn spider, araneus cavaticus", "garden spider, aranea diademata", "black widow, latrodectus mactans", "tarantula", "wolf spider, hunting spider", "tick", "centipede", "black grouse", "ptarmigan", "ruffed grouse, partridge, bonasa umbellus", "prairie chicken, prairie grouse, prairie fowl", "peacock", "quail", "partridge", "african grey, african gray, psittacus erithacus", "macaw", "sulphur-crested cockatoo, kakatoe galerita, cacatua galerita", "lorikeet", "coucal", "bee eater", "hornbill", "hummingbird", "jacamar", "toucan", "drake", "red-breasted merganser, mergus serrator", "goose", "black swan, cygnus atratus", "tusker", "echidna, spiny anteater, anteater", "platypus, duckbill, duckbilled platypus, duck-billed platypus, ornithorhynchus anatinus", "wallaby, brush kangaroo", "koala, koala bear, kangaroo bear, native bear, phascolarctos cinereus", "wombat", "jellyfish", "sea anemone, anemone", "brain coral", "flatworm, platyhelminth", "nematode, nematode worm, roundworm", "conch", "snail", "slug", "sea slug, nudibranch", "chiton, coat-of-mail shell, sea cradle, polyplacophore", "chambered nautilus, pearly nautilus, nautilus", "dungeness crab, cancer magister", "rock crab, cancer irroratus", "fiddler crab", "king crab, alaska crab, alaskan king crab, alaska king crab, paralithodes camtschatica", "american lobster, northern lobster, maine lobster, homarus americanus", "spiny lobster, langouste, rock lobster, crawfish, crayfish, sea crawfish", "crayfish, crawfish, crawdad, crawdaddy", "hermit crab", "isopod", "white stork, ciconia ciconia", "black stork, ciconia nigra", "spoonbill", "flamingo", "little blue heron, egretta caerulea", "american egret, great white heron, egretta albus", "bittern", "crane", "limpkin, aramus pictus", "european gallinule, porphyrio porphyrio", "american coot, marsh hen, mud hen, water hen, fulica americana", "bustard", "ruddy turnstone, arenaria interpres", "red-backed sandpiper, dunlin, erolia alpina", "redshank, tringa totanus", "dowitcher", "oystercatcher, oyster catcher", "pelican", "king penguin, aptenodytes patagonica", "albatross, mollymawk", "grey whale, gray whale, devilfish, eschrichtius gibbosus, eschrichtius robustus", "killer whale, killer, orca, grampus, sea wolf, orcinus orca", "dugong, dugong dugon", "sea lion", "chihuahua", "japanese spaniel", "maltese dog, maltese terrier, maltese", "pekinese, pekingese, peke", "shih-tzu", "blenheim spaniel", "papillon", "toy terrier", "rhodesian ridgeback", "afghan hound, afghan", "basset, basset hound", "beagle", "bloodhound, sleuthhound", "bluetick", "black-and-tan coonhound", "walker hound, walker foxhound", "english foxhound", "redbone", "borzoi, russian wolfhound", "irish wolfhound", "italian greyhound", "whippet", "ibizan hound, ibizan podenco", "norwegian elkhound, elkhound", "otterhound, otter hound", "saluki, gazelle hound", "scottish deerhound, deerhound", "weimaraner", "staffordshire bullterrier, staffordshire bull terrier", "american staffordshire terrier, staffordshire terrier, american pit bull terrier, pit bull terrier", "bedlington terrier", "border terrier", "kerry blue terrier", "irish terrier", "norfolk terrier", "norwich terrier", "yorkshire terrier", "wire-haired fox terrier", "lakeland terrier", "sealyham terrier, sealyham", "airedale, airedale terrier", "cairn, cairn terrier", "australian terrier", "dandie dinmont, dandie dinmont terrier", "boston bull, boston terrier", "miniature schnauzer", "giant schnauzer", "standard schnauzer", "scotch terrier, scottish terrier, scottie", "tibetan terrier, chrysanthemum dog", "silky terrier, sydney silky", "soft-coated wheaten terrier", "west highland white terrier", "lhasa, lhasa apso", "flat-coated retriever", "curly-coated retriever", "golden retriever", "labrador retriever", "chesapeake bay retriever", "german short-haired pointer", "vizsla, hungarian pointer", "english setter", "irish setter, red setter", "gordon setter", "brittany spaniel", "clumber, clumber spaniel", "english springer, english springer spaniel", "welsh springer spaniel", "cocker spaniel, english cocker spaniel, cocker", "sussex spaniel", "irish water spaniel", "kuvasz", "schipperke", "groenendael", "malinois", "briard", "kelpie", "komondor", "old english sheepdog, bobtail", "shetland sheepdog, shetland sheep dog, shetland", "collie", "border collie", "bouvier des flandres, bouviers des flandres", "rottweiler", "german shepherd, german shepherd dog, german police dog, alsatian", "doberman, doberman pinscher", "miniature pinscher", "greater swiss mountain dog", "bernese mountain dog", "appenzeller", "entlebucher", "boxer", "bull mastiff", "tibetan mastiff", "french bulldog", "great dane", "saint bernard, st bernard", "eskimo dog, husky", "malamute, malemute, alaskan malamute", "siberian husky", "dalmatian, coach dog, carriage dog", "affenpinscher, monkey pinscher, monkey dog", "basenji", "pug, pug-dog", "leonberg", "newfoundland, newfoundland dog", "great pyrenees", "samoyed, samoyede", "pomeranian", "chow, chow chow", "keeshond", "brabancon griffon", "pembroke, pembroke welsh corgi", "cardigan, cardigan welsh corgi", "toy poodle", "miniature poodle", "standard poodle", "mexican hairless", "timber wolf, grey wolf, gray wolf, canis lupus", "white wolf, arctic wolf, canis lupus tundrarum", "red wolf, maned wolf, canis rufus, canis niger", "coyote, prairie wolf, brush wolf, canis latrans", "dingo, warrigal, warragal, canis dingo", "dhole, cuon alpinus", "african hunting dog, hyena dog, cape hunting dog, lycaon pictus", "hyena, hyaena", "red fox, vulpes vulpes", "kit fox, vulpes macrotis", "arctic fox, white fox, alopex lagopus", "grey fox, gray fox, urocyon cinereoargenteus", "tabby, tabby cat", "tiger cat", "persian cat", "siamese cat, siamese", "egyptian cat", "cougar, puma, catamount, mountain lion, painter, panther, felis concolor", "lynx, catamount", "leopard, panthera pardus", "snow leopard, ounce, panthera uncia", "jaguar, panther, panthera onca, felis onca", "lion, king of beasts, panthera leo", "tiger, panthera tigris", "cheetah, chetah, acinonyx jubatus", "brown bear, bruin, ursus arctos", "american black bear, black bear, ursus americanus, euarctos americanus", "ice bear, polar bear, ursus maritimus, thalarctos maritimus", "sloth bear, melursus ursinus, ursus ursinus", "mongoose", "meerkat, mierkat", "tiger beetle", "ladybug, ladybeetle, lady beetle, ladybird, ladybird beetle", "ground beetle, carabid beetle", "long-horned beetle, longicorn, longicorn beetle", "leaf beetle, chrysomelid", "dung beetle", "rhinoceros beetle", "weevil", "fly", "bee", "ant, emmet, pismire", "grasshopper, hopper", "cricket", "walking stick, walkingstick, stick insect", "cockroach, roach", "mantis, mantid", "cicada, cicala", "leafhopper", "lacewing, lacewing fly", "dragonfly, darning needle, devil's darning needle, sewing needle, snake feeder, snake doctor, mosquito hawk, skeeter hawk", "damselfly", "admiral", "ringlet, ringlet butterfly", "monarch, monarch butterfly, milkweed butterfly, danaus plexippus", "cabbage butterfly", "sulphur butterfly, sulfur butterfly", "lycaenid, lycaenid butterfly", "starfish, sea star", "sea urchin", "sea cucumber, holothurian", "wood rabbit, cottontail, cottontail rabbit", "hare", "angora, angora rabbit", "hamster", "porcupine, hedgehog", "fox squirrel, eastern fox squirrel, sciurus niger", "marmot", "beaver", "guinea pig, cavia cobaya", "sorrel", "zebra", "hog, pig, grunter, squealer, sus scrofa", "wild boar, boar, sus scrofa", "warthog", "hippopotamus, hippo, river horse, hippopotamus amphibius", "ox", "water buffalo, water ox, asiatic buffalo, bubalus bubalis", "bison", "ram, tup", "bighorn, bighorn sheep, cimarron, rocky mountain bighorn, rocky mountain sheep, ovis canadensis", "ibex, capra ibex", "hartebeest", "impala, aepyceros melampus", "gazelle", "arabian camel, dromedary, camelus dromedarius", "llama", "weasel", "mink", "polecat, fitch, foulmart, foumart, mustela putorius", "black-footed ferret, ferret, mustela nigripes", "otter", "skunk, polecat, wood pussy", "badger", "armadillo", "three-toed sloth, ai, bradypus tridactylus", "orangutan, orang, orangutang, pongo pygmaeus", "gorilla, gorilla gorilla", "chimpanzee, chimp, pan troglodytes", "gibbon, hylobates lar", "siamang, hylobates syndactylus, symphalangus syndactylus", "guenon, guenon monkey", "patas, hussar monkey, erythrocebus patas", "baboon", "macaque", "langur", "colobus, colobus monkey", "proboscis monkey, nasalis larvatus", "marmoset", "capuchin, ringtail, cebus capucinus", "howler monkey, howler", "titi, titi monkey", "spider monkey, ateles geoffroyi", "squirrel monkey, saimiri sciureus", "madagascar cat, ring-tailed lemur, lemur catta", "indri, indris, indri indri, indri brevicaudatus", "indian elephant, elephas maximus", "african elephant, loxodonta africana", "lesser panda, red panda, panda, bear cat, cat bear, ailurus fulgens", "giant panda, panda, panda bear, coon bear, ailuropoda melanoleuca", "barracouta, snoek", "eel", "coho, cohoe, coho salmon, blue jack, silver salmon, oncorhynchus kisutch", "rock beauty, holocanthus tricolor", "anemone fish", "sturgeon", "gar, garfish, garpike, billfish, lepisosteus osseus", "lionfish", "puffer, pufferfish, blowfish, globefish", "abacus", "abaya", "academic gown, academic robe, judge's robe", "accordion, piano accordion, squeeze box", "acoustic guitar", "aircraft carrier, carrier, flattop, attack aircraft carrier", "airliner", "airship, dirigible", "altar", "ambulance", "amphibian, amphibious vehicle", "analog clock", "apiary, bee house", "apron", "ashcan, trash can, garbage can, wastebin, ash bin, ash-bin, ashbin, dustbin, trash barrel, trash bin", "assault rifle, assault gun", "backpack, back pack, knapsack, packsack, rucksack, haversack", "bakery, bakeshop, bakehouse", "balance beam, beam", "balloon", "ballpoint, ballpoint pen, ballpen, biro", "band aid", "banjo", "bannister, banister, balustrade, balusters, handrail", "barbell", "barber chair", "barbershop", "barn", "barometer", "barrel, cask", "barrow, garden cart, lawn cart, wheelbarrow", "baseball", "basketball", "bassinet", "bassoon", "bathing cap, swimming cap", "bath towel", "bathtub, bathing tub, bath, tub", "beach wagon, station wagon, wagon, estate car, beach waggon, station waggon, waggon", "beacon, lighthouse, beacon light, pharos", "beaker", "bearskin, busby, shako", "beer bottle", "beer glass", "bell cote, bell cot", "bib", "bicycle-built-for-two, tandem bicycle, tandem", "bikini, two-piece", "binder, ring-binder", "binoculars, field glasses, opera glasses", "birdhouse", "boathouse", "bobsled, bobsleigh, bob", "bolo tie, bolo, bola tie, bola", "bonnet, poke bonnet", "bookcase", "bookshop, bookstore, bookstall", "bottlecap", "bow", "bow tie, bow-tie, bowtie", "brass, memorial tablet, plaque", "brassiere, bra, bandeau", "breakwater, groin, groyne, mole, bulwark, seawall, jetty", "breastplate, aegis, egis", "broom", "bucket, pail", "buckle", "bulletproof vest", "bullet train, bullet", "butcher shop, meat market", "cab, hack, taxi, taxicab", "caldron, cauldron", "candle, taper, wax light", "cannon", "canoe", "can opener, tin opener", "cardigan", "car mirror", "carousel, carrousel, merry-go-round, roundabout, whirligig", "carpenter's kit, tool kit", "carton", "car wheel", "cash machine, cash dispenser, automated teller machine, automatic teller machine, automated teller, automatic teller, atm", "cassette", "cassette player", "castle", "catamaran", "cd player", "cello, violoncello", "cellular telephone, cellular phone, cellphone, cell, mobile phone", "chain", "chainlink fence", "chain mail, ring mail, mail, chain armor, chain armour, ring armor, ring armour", "chain saw, chainsaw", "chest", "chiffonier, commode", "chime, bell, gong", "china cabinet, china closet", "christmas stocking", "church, church building", "cinema, movie theater, movie theatre, movie house, picture palace", "cleaver, meat cleaver, chopper", "cliff dwelling", "cloak", "clog, geta, patten, sabot", "cocktail shaker", "coffee mug", "coffeepot", "coil, spiral, volute, whorl, helix", "combination lock", "computer keyboard, keypad", "confectionery, confectionary, candy store", "container ship, containership, container vessel", "convertible", "corkscrew, bottle screw", "cornet, horn, trumpet, trump", "cowboy boot", "cowboy hat, ten-gallon hat", "cradle", "crane", "crash helmet", "crate", "crib, cot", "crock pot", "croquet ball", "crutch", "cuirass", "dam, dike, dyke", "desk", "desktop computer", "dial telephone, dial phone", "diaper, nappy, napkin", "digital clock", "digital watch", "dining table, board", "dishrag, dishcloth", "dishwasher, dish washer, dishwashing machine", "disk brake, disc brake", "dock, dockage, docking facility", "dogsled, dog sled, dog sleigh", "dome", "doormat, welcome mat", "drilling platform, offshore rig", "drum, membranophone, tympan", "drumstick", "dumbbell", "dutch oven", "electric fan, blower", "electric guitar", "electric locomotive", "entertainment center", "envelope", "espresso maker", "face powder", "feather boa, boa", "file, file cabinet, filing cabinet", "fireboat", "fire engine, fire truck", "fire screen, fireguard", "flagpole, flagstaff", "flute, transverse flute", "folding chair", "football helmet", "forklift", "fountain", "fountain pen", "four-poster", "freight car", "french horn, horn", "frying pan, frypan, skillet", "fur coat", "garbage truck, dustcart", "gasmask, respirator, gas helmet", "gas pump, gasoline pump, petrol pump, island dispenser", "goblet", "go-kart", "golf ball", "golfcart, golf cart", "gondola", "gong, tam-tam", "gown", "grand piano, grand", "greenhouse, nursery, glasshouse", "grille, radiator grille", "grocery store, grocery, food market, market", "guillotine", "hair slide", "hair spray", "half track", "hammer", "hamper", "hand blower, blow dryer, blow drier, hair dryer, hair drier", "hand-held computer, hand-held microcomputer", "handkerchief, hankie, hanky, hankey", "hard disc, hard disk, fixed disk", "harmonica, mouth organ, harp, mouth harp", "harp", "harvester, reaper", "hatchet", "holster", "home theater, home theatre", "honeycomb", "hook, claw", "hoopskirt, crinoline", "horizontal bar, high bar", "horse cart, horse-cart", "hourglass", "ipod", "iron, smoothing iron", "jack-o'-lantern", "jean, blue jean, denim", "jeep, landrover", "jersey, t-shirt, tee shirt", "jigsaw puzzle", "jinrikisha, ricksha, rickshaw", "joystick", "kimono", "knee pad", "knot", "lab coat, laboratory coat", "ladle", "lampshade, lamp shade", "laptop, laptop computer", "lawn mower, mower", "lens cap, lens cover", "letter opener, paper knife, paperknife", "library", "lifeboat", "lighter, light, igniter, ignitor", "limousine, limo", "liner, ocean liner", "lipstick, lip rouge", "loafer", "lotion", "loudspeaker, speaker, speaker unit, loudspeaker system, speaker system", "loupe, jeweler's loupe", "lumbermill, sawmill", "magnetic compass", "mailbag, postbag", "mailbox, letter box", "maillot", "maillot, tank suit", "manhole cover", "maraca", "marimba, xylophone", "mask", "matchstick", "maypole", "maze, labyrinth", "measuring cup", "medicine chest, medicine cabinet", "megalith, megalithic structure", "microphone, mike", "microwave, microwave oven", "military uniform", "milk can", "minibus", "miniskirt, mini", "minivan", "missile", "mitten", "mixing bowl", "mobile home, manufactured home", "model t", "modem", "monastery", "monitor", "moped", "mortar", "mortarboard", "mosque", "mosquito net", "motor scooter, scooter", "mountain bike, all-terrain bike, off-roader", "mountain tent", "mouse, computer mouse", "mousetrap", "moving van", "muzzle", "nail", "neck brace", "necklace", "nipple", "notebook, notebook computer", "obelisk", "oboe, hautboy, hautbois", "ocarina, sweet potato", "odometer, hodometer, mileometer, milometer", "oil filter", "organ, pipe organ", "oscilloscope, scope, cathode-ray oscilloscope, cro", "overskirt", "oxcart", "oxygen mask", "packet", "paddle, boat paddle", "paddlewheel, paddle wheel", "padlock", "paintbrush", "pajama, pyjama, pj's, jammies", "palace", "panpipe, pandean pipe, syrinx", "paper towel", "parachute, chute", "parallel bars, bars", "park bench", "parking meter", "passenger car, coach, carriage", "patio, terrace", "pay-phone, pay-station", "pedestal, plinth, footstall", "pencil box, pencil case", "pencil sharpener", "perfume, essence", "petri dish", "photocopier", "pick, plectrum, plectron", "pickelhaube", "picket fence, paling", "pickup, pickup truck", "pier", "piggy bank, penny bank", "pill bottle", "pillow", "ping-pong ball", "pinwheel", "pirate, pirate ship", "pitcher, ewer", "plane, carpenter's plane, woodworking plane", "planetarium", "plastic bag", "plate rack", "plow, plough", "plunger, plumber's helper", "polaroid camera, polaroid land camera", "pole", "police van, police wagon, paddy wagon, patrol wagon, wagon, black maria", "poncho", "pool table, billiard table, snooker table", "pop bottle, soda bottle", "pot, flowerpot", "potter's wheel", "power drill", "prayer rug, prayer mat", "printer", "prison, prison house", "projectile, missile", "projector", "puck, hockey puck", "punching bag, punch bag, punching ball, punchball", "purse", "quill, quill pen", "quilt, comforter, comfort, puff", "racer, race car, racing car", "racket, racquet", "radiator", "radio, wireless", "radio telescope, radio reflector", "rain barrel", "recreational vehicle, rv, r.v.", "reel", "reflex camera", "refrigerator, icebox", "remote control, remote", "restaurant, eating house, eating place, eatery", "revolver, six-gun, six-shooter", "rifle", "rocking chair, rocker", "rotisserie", "rubber eraser, rubber, pencil eraser", "rugby ball", "rule, ruler", "running shoe", "safe", "safety pin", "saltshaker, salt shaker", "sandal", "sarong", "sax, saxophone", "scabbard", "scale, weighing machine", "school bus", "schooner", "scoreboard", "screen, crt screen", "screw", "screwdriver", "seat belt, seatbelt", "sewing machine", "shield, buckler", "shoe shop, shoe-shop, shoe store", "shoji", "shopping basket", "shopping cart", "shovel", "shower cap", "shower curtain", "ski", "ski mask", "sleeping bag", "slide rule, slipstick", "sliding door", "slot, one-armed bandit", "snorkel", "snowmobile", "snowplow, snowplough", "soap dispenser", "soccer ball", "sock", "solar dish, solar collector, solar furnace", "sombrero", "soup bowl", "space bar", "space heater", "space shuttle", "spatula", "speedboat", "spider web, spider's web", "spindle", "sports car, sport car", "spotlight, spot", "stage", "steam locomotive", "steel arch bridge", "steel drum", "stethoscope", "stole", "stone wall", "stopwatch, stop watch", "stove", "strainer", "streetcar, tram, tramcar, trolley, trolley car", "stretcher", "studio couch, day bed", "stupa, tope", "submarine, pigboat, sub, u-boat", "suit, suit of clothes", "sundial", "sunglass", "sunglasses, dark glasses, shades", "sunscreen, sunblock, sun blocker", "suspension bridge", "swab, swob, mop", "sweatshirt", "swimming trunks, bathing trunks", "swing", "switch, electric switch, electrical switch", "syringe", "table lamp", "tank, army tank, armored combat vehicle, armoured combat vehicle", "tape player", "teapot", "teddy, teddy bear", "television, television system", "tennis ball", "thatch, thatched roof", "theater curtain, theatre curtain", "thimble", "thresher, thrasher, threshing machine", "throne", "tile roof", "toaster", "tobacco shop, tobacconist shop, tobacconist", "toilet seat", "torch", "totem pole", "tow truck, tow car, wrecker", "toyshop", "tractor", "trailer truck, tractor trailer, trucking rig, rig, articulated lorry, semi", "tray", "trench coat", "tricycle, trike, velocipede", "trimaran", "tripod", "triumphal arch", "trolleybus, trolley coach, trackless trolley", "trombone", "tub, vat", "turnstile", "typewriter keyboard", "umbrella", "unicycle, monocycle", "upright, upright piano", "vacuum, vacuum cleaner", "vase", "vault", "velvet", "vending machine", "vestment", "viaduct", "violin, fiddle", "volleyball", "waffle iron", "wall clock", "wallet, billfold, notecase, pocketbook", "wardrobe, closet, press", "warplane, military plane", "washbasin, handbasin, washbowl, lavabo, wash-hand basin", "washer, automatic washer, washing machine", "water bottle", "water jug", "water tower", "whiskey jug", "whistle", "wig", "window screen", "window shade", "windsor tie", "wine bottle", "wing", "wok", "wooden spoon", "wool, woolen, woollen", "worm fence, snake fence, snake-rail fence, virginia fence", "wreck", "yawl", "yurt", "web site, website, internet site, site", "comic book", "crossword puzzle, crossword", "street sign", "traffic light, traffic signal, stoplight", "book jacket, dust cover, dust jacket, dust wrapper", "menu", "plate", "guacamole", "consomme", "hot pot, hotpot", "trifle", "ice cream, icecream", "ice lolly, lolly, lollipop, popsicle", "french loaf", "bagel, beigel", "pretzel", "cheeseburger", "hotdog, hot dog, red hot", "mashed potato", "head cabbage", "broccoli", "cauliflower", "zucchini, courgette", "spaghetti squash", "acorn squash", "butternut squash", "cucumber, cuke", "artichoke, globe artichoke", "bell pepper", "cardoon", "mushroom", "granny smith", "strawberry", "orange", "lemon", "fig", "pineapple, ananas", "banana", "jackfruit, jak, jack", "custard apple", "pomegranate", "hay", "carbonara", "chocolate sauce, chocolate syrup", "dough", "meat loaf, meatloaf", "pizza, pizza pie", "potpie", "burrito", "red wine", "espresso", "cup", "eggnog", "alp", "bubble", "cliff, drop, drop-off", "coral reef", "geyser", "lakeside, lakeshore", "promontory, headland, head, foreland", "sandbar, sand bar", "seashore, coast, seacoast, sea-coast", "valley, vale", "volcano", "ballplayer, baseball player", "groom, bridegroom", "scuba diver", "rapeseed", "daisy", "yellow lady's slipper, yellow lady-slipper, cypripedium calceolus, cypripedium parviflorum", "corn", "acorn", "hip, rose hip, rosehip", "buckeye, horse chestnut, conker", "coral fungus", "agaric", "gyromitra", "stinkhorn, carrion fungus", "earthstar", "hen-of-the-woods, hen of the woods, polyporus frondosus, grifola frondosa", "bolete", "ear, spike, capitulum", "toilet tissue, toilet paper, bathroom tissue" ]
nvidia/MambaVision-L3-512-21K
[**MambaVision: A Hybrid Mamba-Transformer Vision Backbone**](https://arxiv.org/abs/2407.08083). [Project page](https://github.com/NVlabs/MambaVision) ## Model Overview We have developed the first hybrid model for computer vision which leverages the strengths of Mamba and Transformers. Specifically, our core contribution includes redesigning the Mamba formulation to enhance its capability for efficient modeling of visual features. In addition, we conducted a comprehensive ablation study on the feasibility of integrating Vision Transformers (ViT) with Mamba. Our results demonstrate that equipping the Mamba architecture with several self-attention blocks at the final layers greatly improves the modeling capacity to capture long-range spatial dependencies. Based on our findings, we introduce a family of MambaVision models with a hierarchical architecture to meet various design criteria. ## Model Performance MambaVision-L3-512-21K is pretrained on ImageNet-21K dataset and finetuned on ImageNet-1K at 512 x 512 resolution. <table> <tr> <th>Name</th> <th>Acc@1(%)</th> <th>Acc@5(%)</th> <th>#Params(M)</th> <th>FLOPs(G)</th> <th>Resolution</th> </tr> <tr> <td>MambaVision-L3-512-21K</td> <td>88.1</td> <td>98.6</td> <td>739.6</td> <td>489.1</td> <td>512x512</td> </tr> </table> In addition, the MambaVision models demonstrate a strong performance by achieving a new SOTA Pareto-front in terms of Top-1 accuracy and throughput. <p align="center"> <img src="https://github.com/NVlabs/MambaVision/assets/26806394/79dcf841-3966-4b77-883d-76cd5e1d4320" width=70% height=70% class="center"> </p> ## Model Usage It is highly recommended to install the requirements for MambaVision by running the following: ```Bash pip install mambavision ``` For each model, we offer two variants for image classification and feature extraction that can be imported with 1 line of code. ### Image Classification In the following example, we demonstrate how MambaVision can be used for image classification. Given the following image from [COCO dataset](https://cocodataset.org/#home) val set as an input: <p align="center"> <img src="https://hf.fast360.xyz/production/uploads/64414b62603214724ebd2636/4duSnqLf4lrNiAHczSmAN.jpeg" width=70% height=70% class="center"> </p> The following snippet can be used for image classification: ```Python from transformers import AutoModelForImageClassification from PIL import Image from timm.data.transforms_factory import create_transform import requests model = AutoModelForImageClassification.from_pretrained("nvidia/MambaVision-L3-512-21K", trust_remote_code=True) # eval mode for inference model.cuda().eval() # prepare image for the model url = 'http://images.cocodataset.org/val2017/000000020247.jpg' image = Image.open(requests.get(url, stream=True).raw) input_resolution = (3, 512, 512) # MambaVision supports any input resolutions transform = create_transform(input_size=input_resolution, is_training=False, mean=model.config.mean, std=model.config.std, crop_mode=model.config.crop_mode, crop_pct=model.config.crop_pct) inputs = transform(image).unsqueeze(0).cuda() # model inference outputs = model(inputs) logits = outputs['logits'] predicted_class_idx = logits.argmax(-1).item() print("Predicted class:", model.config.id2label[predicted_class_idx]) ``` The predicted label is ```brown bear, bruin, Ursus arctos.``` ### Feature Extraction MambaVision can also be used as a generic feature extractor. Specifically, we can extract the outputs of each stage of model (4 stages) as well as the final averaged-pool features that are flattened. The following snippet can be used for feature extraction: ```Python from transformers import AutoModel from PIL import Image from timm.data.transforms_factory import create_transform import requests model = AutoModel.from_pretrained("nvidia/MambaVision-L3-512-21K", trust_remote_code=True) # eval mode for inference model.cuda().eval() # prepare image for the model url = 'http://images.cocodataset.org/val2017/000000020247.jpg' image = Image.open(requests.get(url, stream=True).raw) input_resolution = (3, 512, 512) # MambaVision supports any input resolutions transform = create_transform(input_size=input_resolution, is_training=False, mean=model.config.mean, std=model.config.std, crop_mode=model.config.crop_mode, crop_pct=model.config.crop_pct) inputs = transform(image).unsqueeze(0).cuda() # model inference out_avg_pool, features = model(inputs) print("Size of the averaged pool features:", out_avg_pool.size()) # torch.Size([1, 1568]) print("Number of stages in extracted features:", len(features)) # 4 stages print("Size of extracted features in stage 1:", features[0].size()) # torch.Size([1, 196, 128, 128]) print("Size of extracted features in stage 4:", features[3].size()) # torch.Size([1, 1568, 16, 16]) ``` ### License: [NVIDIA Source Code License-NC](https://huggingface.co/nvidia/MambaVision-L3-512-21K/blob/main/LICENSE) ## Results + Pretrained Models ### ImageNet-21K <table> <tr> <th>Name</th> <th>Acc@1(%)</th> <th>Acc@5(%)</th> <th>#Params(M)</th> <th>FLOPs(G)</th> <th>Resolution</th> <th>HF</th> <th>Download</th> </tr> <tr> <td>MambaVision-B-21K</td> <td>84.9</td> <td>97.5</td> <td>97.7</td> <td>15.0</td> <td>224x224</td> <td><a href="https://huggingface.co/nvidia/MambaVision-B-21K">link</a></td> <td><a href="https://huggingface.co/nvidia/MambaVision-B-21K/resolve/main/mambavision_base_21k.pth.tar">model</a></td> </tr> <tr> <td>MambaVision-L-21K</td> <td>86.1</td> <td>97.9</td> <td>227.9</td> <td>34.9</td> <td>224x224</td> <td><a href="https://huggingface.co/nvidia/MambaVision-L-21K">link</a></td> <td><a href="https://huggingface.co/nvidia/MambaVision-L-21K/resolve/main/mambavision_large_21k.pth.tar">model</a></td> </tr> <tr> <td>MambaVision-L2-512-21K</td> <td>87.3</td> <td>98.4</td> <td>241.5</td> <td>196.3</td> <td>512x512</td> <td><a href="https://huggingface.co/nvidia/MambaVision-L2-512-21K">link</a></td> <td><a href="https://huggingface.co/nvidia/MambaVision-L2-512-21K/resolve/main/mambavision_L2_21k_240m_512.pth.tar">model</a></td> </tr> <tr> <td>MambaVision-L3-256-21K</td> <td>87.3</td> <td>98.3</td> <td>739.6</td> <td>122.3</td> <td>256x256</td> <td><a href="https://huggingface.co/nvidia/MambaVision-L3-256-21K">link</a></td> <td><a href="https://huggingface.co/nvidia/MambaVision-L3-256-21K/resolve/main/mambavision_L3_21k_740m_256.pth.tar">model</a></td> </tr> <tr> <td>MambaVision-L3-512-21K</td> <td>88.1</td> <td>98.6</td> <td>739.6</td> <td>489.1</td> <td>512x512</td> <td><a href="https://huggingface.co/nvidia/MambaVision-L3-512-21K">link</a></td> <td><a href="https://huggingface.co/nvidia/MambaVision-L3-512-21K/resolve/main/mambavision_L3_21k_740m_512.pth.tar">model</a></td> </tr> </table> ### ImageNet-1K <table> <tr> <th>Name</th> <th>Acc@1(%)</th> <th>Acc@5(%)</th> <th>Throughput(Img/Sec)</th> <th>Resolution</th> <th>#Params(M)</th> <th>FLOPs(G)</th> <th>HF</th> <th>Download</th> </tr> <tr> <td>MambaVision-T</td> <td>82.3</td> <td>96.2</td> <td>6298</td> <td>224x224</td> <td>31.8</td> <td>4.4</td> <td><a href="https://huggingface.co/nvidia/MambaVision-T-1K">link</a></td> <td><a href="https://huggingface.co/nvidia/MambaVision-T-1K/resolve/main/mambavision_tiny_1k.pth.tar">model</a></td> </tr> <tr> <td>MambaVision-T2</td> <td>82.7</td> <td>96.3</td> <td>5990</td> <td>224x224</td> <td>35.1</td> <td>5.1</td> <td><a href="https://huggingface.co/nvidia/MambaVision-T2-1K">link</a></td> <td><a href="https://huggingface.co/nvidia/MambaVision-T2-1K/resolve/main/mambavision_tiny2_1k.pth.tar">model</a></td> </tr> <tr> <td>MambaVision-S</td> <td>83.3</td> <td>96.5</td> <td>4700</td> <td>224x224</td> <td>50.1</td> <td>7.5</td> <td><a href="https://huggingface.co/nvidia/MambaVision-S-1K">link</a></td> <td><a href="https://huggingface.co/nvidia/MambaVision-S-1K/resolve/main/mambavision_small_1k.pth.tar">model</a></td> </tr> <tr> <td>MambaVision-B</td> <td>84.2</td> <td>96.9</td> <td>3670</td> <td>224x224</td> <td>97.7</td> <td>15.0</td> <td><a href="https://huggingface.co/nvidia/MambaVision-B-1K">link</a></td> <td><a href="https://huggingface.co/nvidia/MambaVision-B-1K/resolve/main/mambavision_base_1k.pth.tar">model</a></td> </tr> <tr> <td>MambaVision-L</td> <td>85.0</td> <td>97.1</td> <td>2190</td> <td>224x224</td> <td>227.9</td> <td>34.9</td> <td><a href="https://huggingface.co/nvidia/MambaVision-L-1K">link</a></td> <td><a href="https://huggingface.co/nvidia/MambaVision-L-1K/resolve/main/mambavision_large_1k.pth.tar">model</a></td> </tr> <tr> <td>MambaVision-L2</td> <td>85.3</td> <td>97.2</td> <td>1021</td> <td>224x224</td> <td>241.5</td> <td>37.5</td> <td><a href="https://huggingface.co/nvidia/MambaVision-L2-1K">link</a></td> <td><a href="https://huggingface.co/nvidia/MambaVision-L2-1K/resolve/main/mambavision_large2_1k.pth.tar">model</a></td> </tr> </table> ## Installation We provide a [docker file](./Dockerfile). In addition, assuming that a recent [PyTorch](https://pytorch.org/get-started/locally/) package is installed, the dependencies can be installed by running: ```bash pip install -r requirements.txt ```
[ "tench, tinca tinca", "goldfish, carassius auratus", "great white shark, white shark, man-eater, man-eating shark, carcharodon carcharias", "tiger shark, galeocerdo cuvieri", "hammerhead, hammerhead shark", "electric ray, crampfish, numbfish, torpedo", "stingray", "cock", "hen", "ostrich, struthio camelus", "brambling, fringilla montifringilla", "goldfinch, carduelis carduelis", "house finch, linnet, carpodacus mexicanus", "junco, snowbird", "indigo bunting, indigo finch, indigo bird, passerina cyanea", "robin, american robin, turdus migratorius", "bulbul", "jay", "magpie", "chickadee", "water ouzel, dipper", "kite", "bald eagle, american eagle, haliaeetus leucocephalus", "vulture", "great grey owl, great gray owl, strix nebulosa", "european fire salamander, salamandra salamandra", "common newt, triturus vulgaris", "eft", "spotted salamander, ambystoma maculatum", "axolotl, mud puppy, ambystoma mexicanum", "bullfrog, rana catesbeiana", "tree frog, tree-frog", "tailed frog, bell toad, ribbed toad, tailed toad, ascaphus trui", "loggerhead, loggerhead turtle, caretta caretta", "leatherback turtle, leatherback, leathery turtle, dermochelys coriacea", "mud turtle", "terrapin", "box turtle, box tortoise", "banded gecko", "common iguana, iguana, iguana iguana", "american chameleon, anole, anolis carolinensis", "whiptail, whiptail lizard", "agama", "frilled lizard, chlamydosaurus kingi", "alligator lizard", "gila monster, heloderma suspectum", "green lizard, lacerta viridis", "african chameleon, chamaeleo chamaeleon", "komodo dragon, komodo lizard, dragon lizard, giant lizard, varanus komodoensis", "african crocodile, nile crocodile, crocodylus niloticus", "american alligator, alligator mississipiensis", "triceratops", "thunder snake, worm snake, carphophis amoenus", "ringneck snake, ring-necked snake, ring snake", "hognose snake, puff adder, sand viper", "green snake, grass snake", "king snake, kingsnake", "garter snake, grass snake", "water snake", "vine snake", "night snake, hypsiglena torquata", "boa constrictor, constrictor constrictor", "rock python, rock snake, python sebae", "indian cobra, naja naja", "green mamba", "sea snake", "horned viper, cerastes, sand viper, horned asp, cerastes cornutus", "diamondback, diamondback rattlesnake, crotalus adamanteus", "sidewinder, horned rattlesnake, crotalus cerastes", "trilobite", "harvestman, daddy longlegs, phalangium opilio", "scorpion", "black and gold garden spider, argiope aurantia", "barn spider, araneus cavaticus", "garden spider, aranea diademata", "black widow, latrodectus mactans", "tarantula", "wolf spider, hunting spider", "tick", "centipede", "black grouse", "ptarmigan", "ruffed grouse, partridge, bonasa umbellus", "prairie chicken, prairie grouse, prairie fowl", "peacock", "quail", "partridge", "african grey, african gray, psittacus erithacus", "macaw", "sulphur-crested cockatoo, kakatoe galerita, cacatua galerita", "lorikeet", "coucal", "bee eater", "hornbill", "hummingbird", "jacamar", "toucan", "drake", "red-breasted merganser, mergus serrator", "goose", "black swan, cygnus atratus", "tusker", "echidna, spiny anteater, anteater", "platypus, duckbill, duckbilled platypus, duck-billed platypus, ornithorhynchus anatinus", "wallaby, brush kangaroo", "koala, koala bear, kangaroo bear, native bear, phascolarctos cinereus", "wombat", "jellyfish", "sea anemone, anemone", "brain coral", "flatworm, platyhelminth", "nematode, nematode worm, roundworm", "conch", "snail", "slug", "sea slug, nudibranch", "chiton, coat-of-mail shell, sea cradle, polyplacophore", "chambered nautilus, pearly nautilus, nautilus", "dungeness crab, cancer magister", "rock crab, cancer irroratus", "fiddler crab", "king crab, alaska crab, alaskan king crab, alaska king crab, paralithodes camtschatica", "american lobster, northern lobster, maine lobster, homarus americanus", "spiny lobster, langouste, rock lobster, crawfish, crayfish, sea crawfish", "crayfish, crawfish, crawdad, crawdaddy", "hermit crab", "isopod", "white stork, ciconia ciconia", "black stork, ciconia nigra", "spoonbill", "flamingo", "little blue heron, egretta caerulea", "american egret, great white heron, egretta albus", "bittern", "crane", "limpkin, aramus pictus", "european gallinule, porphyrio porphyrio", "american coot, marsh hen, mud hen, water hen, fulica americana", "bustard", "ruddy turnstone, arenaria interpres", "red-backed sandpiper, dunlin, erolia alpina", "redshank, tringa totanus", "dowitcher", "oystercatcher, oyster catcher", "pelican", "king penguin, aptenodytes patagonica", "albatross, mollymawk", "grey whale, gray whale, devilfish, eschrichtius gibbosus, eschrichtius robustus", "killer whale, killer, orca, grampus, sea wolf, orcinus orca", "dugong, dugong dugon", "sea lion", "chihuahua", "japanese spaniel", "maltese dog, maltese terrier, maltese", "pekinese, pekingese, peke", "shih-tzu", "blenheim spaniel", "papillon", "toy terrier", "rhodesian ridgeback", "afghan hound, afghan", "basset, basset hound", "beagle", "bloodhound, sleuthhound", "bluetick", "black-and-tan coonhound", "walker hound, walker foxhound", "english foxhound", "redbone", "borzoi, russian wolfhound", "irish wolfhound", "italian greyhound", "whippet", "ibizan hound, ibizan podenco", "norwegian elkhound, elkhound", "otterhound, otter hound", "saluki, gazelle hound", "scottish deerhound, deerhound", "weimaraner", "staffordshire bullterrier, staffordshire bull terrier", "american staffordshire terrier, staffordshire terrier, american pit bull terrier, pit bull terrier", "bedlington terrier", "border terrier", "kerry blue terrier", "irish terrier", "norfolk terrier", "norwich terrier", "yorkshire terrier", "wire-haired fox terrier", "lakeland terrier", "sealyham terrier, sealyham", "airedale, airedale terrier", "cairn, cairn terrier", "australian terrier", "dandie dinmont, dandie dinmont terrier", "boston bull, boston terrier", "miniature schnauzer", "giant schnauzer", "standard schnauzer", "scotch terrier, scottish terrier, scottie", "tibetan terrier, chrysanthemum dog", "silky terrier, sydney silky", "soft-coated wheaten terrier", "west highland white terrier", "lhasa, lhasa apso", "flat-coated retriever", "curly-coated retriever", "golden retriever", "labrador retriever", "chesapeake bay retriever", "german short-haired pointer", "vizsla, hungarian pointer", "english setter", "irish setter, red setter", "gordon setter", "brittany spaniel", "clumber, clumber spaniel", "english springer, english springer spaniel", "welsh springer spaniel", "cocker spaniel, english cocker spaniel, cocker", "sussex spaniel", "irish water spaniel", "kuvasz", "schipperke", "groenendael", "malinois", "briard", "kelpie", "komondor", "old english sheepdog, bobtail", "shetland sheepdog, shetland sheep dog, shetland", "collie", "border collie", "bouvier des flandres, bouviers des flandres", "rottweiler", "german shepherd, german shepherd dog, german police dog, alsatian", "doberman, doberman pinscher", "miniature pinscher", "greater swiss mountain dog", "bernese mountain dog", "appenzeller", "entlebucher", "boxer", "bull mastiff", "tibetan mastiff", "french bulldog", "great dane", "saint bernard, st bernard", "eskimo dog, husky", "malamute, malemute, alaskan malamute", "siberian husky", "dalmatian, coach dog, carriage dog", "affenpinscher, monkey pinscher, monkey dog", "basenji", "pug, pug-dog", "leonberg", "newfoundland, newfoundland dog", "great pyrenees", "samoyed, samoyede", "pomeranian", "chow, chow chow", "keeshond", "brabancon griffon", "pembroke, pembroke welsh corgi", "cardigan, cardigan welsh corgi", "toy poodle", "miniature poodle", "standard poodle", "mexican hairless", "timber wolf, grey wolf, gray wolf, canis lupus", "white wolf, arctic wolf, canis lupus tundrarum", "red wolf, maned wolf, canis rufus, canis niger", "coyote, prairie wolf, brush wolf, canis latrans", "dingo, warrigal, warragal, canis dingo", "dhole, cuon alpinus", "african hunting dog, hyena dog, cape hunting dog, lycaon pictus", "hyena, hyaena", "red fox, vulpes vulpes", "kit fox, vulpes macrotis", "arctic fox, white fox, alopex lagopus", "grey fox, gray fox, urocyon cinereoargenteus", "tabby, tabby cat", "tiger cat", "persian cat", "siamese cat, siamese", "egyptian cat", "cougar, puma, catamount, mountain lion, painter, panther, felis concolor", "lynx, catamount", "leopard, panthera pardus", "snow leopard, ounce, panthera uncia", "jaguar, panther, panthera onca, felis onca", "lion, king of beasts, panthera leo", "tiger, panthera tigris", "cheetah, chetah, acinonyx jubatus", "brown bear, bruin, ursus arctos", "american black bear, black bear, ursus americanus, euarctos americanus", "ice bear, polar bear, ursus maritimus, thalarctos maritimus", "sloth bear, melursus ursinus, ursus ursinus", "mongoose", "meerkat, mierkat", "tiger beetle", "ladybug, ladybeetle, lady beetle, ladybird, ladybird beetle", "ground beetle, carabid beetle", "long-horned beetle, longicorn, longicorn beetle", "leaf beetle, chrysomelid", "dung beetle", "rhinoceros beetle", "weevil", "fly", "bee", "ant, emmet, pismire", "grasshopper, hopper", "cricket", "walking stick, walkingstick, stick insect", "cockroach, roach", "mantis, mantid", "cicada, cicala", "leafhopper", "lacewing, lacewing fly", "dragonfly, darning needle, devil's darning needle, sewing needle, snake feeder, snake doctor, mosquito hawk, skeeter hawk", "damselfly", "admiral", "ringlet, ringlet butterfly", "monarch, monarch butterfly, milkweed butterfly, danaus plexippus", "cabbage butterfly", "sulphur butterfly, sulfur butterfly", "lycaenid, lycaenid butterfly", "starfish, sea star", "sea urchin", "sea cucumber, holothurian", "wood rabbit, cottontail, cottontail rabbit", "hare", "angora, angora rabbit", "hamster", "porcupine, hedgehog", "fox squirrel, eastern fox squirrel, sciurus niger", "marmot", "beaver", "guinea pig, cavia cobaya", "sorrel", "zebra", "hog, pig, grunter, squealer, sus scrofa", "wild boar, boar, sus scrofa", "warthog", "hippopotamus, hippo, river horse, hippopotamus amphibius", "ox", "water buffalo, water ox, asiatic buffalo, bubalus bubalis", "bison", "ram, tup", "bighorn, bighorn sheep, cimarron, rocky mountain bighorn, rocky mountain sheep, ovis canadensis", "ibex, capra ibex", "hartebeest", "impala, aepyceros melampus", "gazelle", "arabian camel, dromedary, camelus dromedarius", "llama", "weasel", "mink", "polecat, fitch, foulmart, foumart, mustela putorius", "black-footed ferret, ferret, mustela nigripes", "otter", "skunk, polecat, wood pussy", "badger", "armadillo", "three-toed sloth, ai, bradypus tridactylus", "orangutan, orang, orangutang, pongo pygmaeus", "gorilla, gorilla gorilla", "chimpanzee, chimp, pan troglodytes", "gibbon, hylobates lar", "siamang, hylobates syndactylus, symphalangus syndactylus", "guenon, guenon monkey", "patas, hussar monkey, erythrocebus patas", "baboon", "macaque", "langur", "colobus, colobus monkey", "proboscis monkey, nasalis larvatus", "marmoset", "capuchin, ringtail, cebus capucinus", "howler monkey, howler", "titi, titi monkey", "spider monkey, ateles geoffroyi", "squirrel monkey, saimiri sciureus", "madagascar cat, ring-tailed lemur, lemur catta", "indri, indris, indri indri, indri brevicaudatus", "indian elephant, elephas maximus", "african elephant, loxodonta africana", "lesser panda, red panda, panda, bear cat, cat bear, ailurus fulgens", "giant panda, panda, panda bear, coon bear, ailuropoda melanoleuca", "barracouta, snoek", "eel", "coho, cohoe, coho salmon, blue jack, silver salmon, oncorhynchus kisutch", "rock beauty, holocanthus tricolor", "anemone fish", "sturgeon", "gar, garfish, garpike, billfish, lepisosteus osseus", "lionfish", "puffer, pufferfish, blowfish, globefish", "abacus", "abaya", "academic gown, academic robe, judge's robe", "accordion, piano accordion, squeeze box", "acoustic guitar", "aircraft carrier, carrier, flattop, attack aircraft carrier", "airliner", "airship, dirigible", "altar", "ambulance", "amphibian, amphibious vehicle", "analog clock", "apiary, bee house", "apron", "ashcan, trash can, garbage can, wastebin, ash bin, ash-bin, ashbin, dustbin, trash barrel, trash bin", "assault rifle, assault gun", "backpack, back pack, knapsack, packsack, rucksack, haversack", "bakery, bakeshop, bakehouse", "balance beam, beam", "balloon", "ballpoint, ballpoint pen, ballpen, biro", "band aid", "banjo", "bannister, banister, balustrade, balusters, handrail", "barbell", "barber chair", "barbershop", "barn", "barometer", "barrel, cask", "barrow, garden cart, lawn cart, wheelbarrow", "baseball", "basketball", "bassinet", "bassoon", "bathing cap, swimming cap", "bath towel", "bathtub, bathing tub, bath, tub", "beach wagon, station wagon, wagon, estate car, beach waggon, station waggon, waggon", "beacon, lighthouse, beacon light, pharos", "beaker", "bearskin, busby, shako", "beer bottle", "beer glass", "bell cote, bell cot", "bib", "bicycle-built-for-two, tandem bicycle, tandem", "bikini, two-piece", "binder, ring-binder", "binoculars, field glasses, opera glasses", "birdhouse", "boathouse", "bobsled, bobsleigh, bob", "bolo tie, bolo, bola tie, bola", "bonnet, poke bonnet", "bookcase", "bookshop, bookstore, bookstall", "bottlecap", "bow", "bow tie, bow-tie, bowtie", "brass, memorial tablet, plaque", "brassiere, bra, bandeau", "breakwater, groin, groyne, mole, bulwark, seawall, jetty", "breastplate, aegis, egis", "broom", "bucket, pail", "buckle", "bulletproof vest", "bullet train, bullet", "butcher shop, meat market", "cab, hack, taxi, taxicab", "caldron, cauldron", "candle, taper, wax light", "cannon", "canoe", "can opener, tin opener", "cardigan", "car mirror", "carousel, carrousel, merry-go-round, roundabout, whirligig", "carpenter's kit, tool kit", "carton", "car wheel", "cash machine, cash dispenser, automated teller machine, automatic teller machine, automated teller, automatic teller, atm", "cassette", "cassette player", "castle", "catamaran", "cd player", "cello, violoncello", "cellular telephone, cellular phone, cellphone, cell, mobile phone", "chain", "chainlink fence", "chain mail, ring mail, mail, chain armor, chain armour, ring armor, ring armour", "chain saw, chainsaw", "chest", "chiffonier, commode", "chime, bell, gong", "china cabinet, china closet", "christmas stocking", "church, church building", "cinema, movie theater, movie theatre, movie house, picture palace", "cleaver, meat cleaver, chopper", "cliff dwelling", "cloak", "clog, geta, patten, sabot", "cocktail shaker", "coffee mug", "coffeepot", "coil, spiral, volute, whorl, helix", "combination lock", "computer keyboard, keypad", "confectionery, confectionary, candy store", "container ship, containership, container vessel", "convertible", "corkscrew, bottle screw", "cornet, horn, trumpet, trump", "cowboy boot", "cowboy hat, ten-gallon hat", "cradle", "crane", "crash helmet", "crate", "crib, cot", "crock pot", "croquet ball", "crutch", "cuirass", "dam, dike, dyke", "desk", "desktop computer", "dial telephone, dial phone", "diaper, nappy, napkin", "digital clock", "digital watch", "dining table, board", "dishrag, dishcloth", "dishwasher, dish washer, dishwashing machine", "disk brake, disc brake", "dock, dockage, docking facility", "dogsled, dog sled, dog sleigh", "dome", "doormat, welcome mat", "drilling platform, offshore rig", "drum, membranophone, tympan", "drumstick", "dumbbell", "dutch oven", "electric fan, blower", "electric guitar", "electric locomotive", "entertainment center", "envelope", "espresso maker", "face powder", "feather boa, boa", "file, file cabinet, filing cabinet", "fireboat", "fire engine, fire truck", "fire screen, fireguard", "flagpole, flagstaff", "flute, transverse flute", "folding chair", "football helmet", "forklift", "fountain", "fountain pen", "four-poster", "freight car", "french horn, horn", "frying pan, frypan, skillet", "fur coat", "garbage truck, dustcart", "gasmask, respirator, gas helmet", "gas pump, gasoline pump, petrol pump, island dispenser", "goblet", "go-kart", "golf ball", "golfcart, golf cart", "gondola", "gong, tam-tam", "gown", "grand piano, grand", "greenhouse, nursery, glasshouse", "grille, radiator grille", "grocery store, grocery, food market, market", "guillotine", "hair slide", "hair spray", "half track", "hammer", "hamper", "hand blower, blow dryer, blow drier, hair dryer, hair drier", "hand-held computer, hand-held microcomputer", "handkerchief, hankie, hanky, hankey", "hard disc, hard disk, fixed disk", "harmonica, mouth organ, harp, mouth harp", "harp", "harvester, reaper", "hatchet", "holster", "home theater, home theatre", "honeycomb", "hook, claw", "hoopskirt, crinoline", "horizontal bar, high bar", "horse cart, horse-cart", "hourglass", "ipod", "iron, smoothing iron", "jack-o'-lantern", "jean, blue jean, denim", "jeep, landrover", "jersey, t-shirt, tee shirt", "jigsaw puzzle", "jinrikisha, ricksha, rickshaw", "joystick", "kimono", "knee pad", "knot", "lab coat, laboratory coat", "ladle", "lampshade, lamp shade", "laptop, laptop computer", "lawn mower, mower", "lens cap, lens cover", "letter opener, paper knife, paperknife", "library", "lifeboat", "lighter, light, igniter, ignitor", "limousine, limo", "liner, ocean liner", "lipstick, lip rouge", "loafer", "lotion", "loudspeaker, speaker, speaker unit, loudspeaker system, speaker system", "loupe, jeweler's loupe", "lumbermill, sawmill", "magnetic compass", "mailbag, postbag", "mailbox, letter box", "maillot", "maillot, tank suit", "manhole cover", "maraca", "marimba, xylophone", "mask", "matchstick", "maypole", "maze, labyrinth", "measuring cup", "medicine chest, medicine cabinet", "megalith, megalithic structure", "microphone, mike", "microwave, microwave oven", "military uniform", "milk can", "minibus", "miniskirt, mini", "minivan", "missile", "mitten", "mixing bowl", "mobile home, manufactured home", "model t", "modem", "monastery", "monitor", "moped", "mortar", "mortarboard", "mosque", "mosquito net", "motor scooter, scooter", "mountain bike, all-terrain bike, off-roader", "mountain tent", "mouse, computer mouse", "mousetrap", "moving van", "muzzle", "nail", "neck brace", "necklace", "nipple", "notebook, notebook computer", "obelisk", "oboe, hautboy, hautbois", "ocarina, sweet potato", "odometer, hodometer, mileometer, milometer", "oil filter", "organ, pipe organ", "oscilloscope, scope, cathode-ray oscilloscope, cro", "overskirt", "oxcart", "oxygen mask", "packet", "paddle, boat paddle", "paddlewheel, paddle wheel", "padlock", "paintbrush", "pajama, pyjama, pj's, jammies", "palace", "panpipe, pandean pipe, syrinx", "paper towel", "parachute, chute", "parallel bars, bars", "park bench", "parking meter", "passenger car, coach, carriage", "patio, terrace", "pay-phone, pay-station", "pedestal, plinth, footstall", "pencil box, pencil case", "pencil sharpener", "perfume, essence", "petri dish", "photocopier", "pick, plectrum, plectron", "pickelhaube", "picket fence, paling", "pickup, pickup truck", "pier", "piggy bank, penny bank", "pill bottle", "pillow", "ping-pong ball", "pinwheel", "pirate, pirate ship", "pitcher, ewer", "plane, carpenter's plane, woodworking plane", "planetarium", "plastic bag", "plate rack", "plow, plough", "plunger, plumber's helper", "polaroid camera, polaroid land camera", "pole", "police van, police wagon, paddy wagon, patrol wagon, wagon, black maria", "poncho", "pool table, billiard table, snooker table", "pop bottle, soda bottle", "pot, flowerpot", "potter's wheel", "power drill", "prayer rug, prayer mat", "printer", "prison, prison house", "projectile, missile", "projector", "puck, hockey puck", "punching bag, punch bag, punching ball, punchball", "purse", "quill, quill pen", "quilt, comforter, comfort, puff", "racer, race car, racing car", "racket, racquet", "radiator", "radio, wireless", "radio telescope, radio reflector", "rain barrel", "recreational vehicle, rv, r.v.", "reel", "reflex camera", "refrigerator, icebox", "remote control, remote", "restaurant, eating house, eating place, eatery", "revolver, six-gun, six-shooter", "rifle", "rocking chair, rocker", "rotisserie", "rubber eraser, rubber, pencil eraser", "rugby ball", "rule, ruler", "running shoe", "safe", "safety pin", "saltshaker, salt shaker", "sandal", "sarong", "sax, saxophone", "scabbard", "scale, weighing machine", "school bus", "schooner", "scoreboard", "screen, crt screen", "screw", "screwdriver", "seat belt, seatbelt", "sewing machine", "shield, buckler", "shoe shop, shoe-shop, shoe store", "shoji", "shopping basket", "shopping cart", "shovel", "shower cap", "shower curtain", "ski", "ski mask", "sleeping bag", "slide rule, slipstick", "sliding door", "slot, one-armed bandit", "snorkel", "snowmobile", "snowplow, snowplough", "soap dispenser", "soccer ball", "sock", "solar dish, solar collector, solar furnace", "sombrero", "soup bowl", "space bar", "space heater", "space shuttle", "spatula", "speedboat", "spider web, spider's web", "spindle", "sports car, sport car", "spotlight, spot", "stage", "steam locomotive", "steel arch bridge", "steel drum", "stethoscope", "stole", "stone wall", "stopwatch, stop watch", "stove", "strainer", "streetcar, tram, tramcar, trolley, trolley car", "stretcher", "studio couch, day bed", "stupa, tope", "submarine, pigboat, sub, u-boat", "suit, suit of clothes", "sundial", "sunglass", "sunglasses, dark glasses, shades", "sunscreen, sunblock, sun blocker", "suspension bridge", "swab, swob, mop", "sweatshirt", "swimming trunks, bathing trunks", "swing", "switch, electric switch, electrical switch", "syringe", "table lamp", "tank, army tank, armored combat vehicle, armoured combat vehicle", "tape player", "teapot", "teddy, teddy bear", "television, television system", "tennis ball", "thatch, thatched roof", "theater curtain, theatre curtain", "thimble", "thresher, thrasher, threshing machine", "throne", "tile roof", "toaster", "tobacco shop, tobacconist shop, tobacconist", "toilet seat", "torch", "totem pole", "tow truck, tow car, wrecker", "toyshop", "tractor", "trailer truck, tractor trailer, trucking rig, rig, articulated lorry, semi", "tray", "trench coat", "tricycle, trike, velocipede", "trimaran", "tripod", "triumphal arch", "trolleybus, trolley coach, trackless trolley", "trombone", "tub, vat", "turnstile", "typewriter keyboard", "umbrella", "unicycle, monocycle", "upright, upright piano", "vacuum, vacuum cleaner", "vase", "vault", "velvet", "vending machine", "vestment", "viaduct", "violin, fiddle", "volleyball", "waffle iron", "wall clock", "wallet, billfold, notecase, pocketbook", "wardrobe, closet, press", "warplane, military plane", "washbasin, handbasin, washbowl, lavabo, wash-hand basin", "washer, automatic washer, washing machine", "water bottle", "water jug", "water tower", "whiskey jug", "whistle", "wig", "window screen", "window shade", "windsor tie", "wine bottle", "wing", "wok", "wooden spoon", "wool, woolen, woollen", "worm fence, snake fence, snake-rail fence, virginia fence", "wreck", "yawl", "yurt", "web site, website, internet site, site", "comic book", "crossword puzzle, crossword", "street sign", "traffic light, traffic signal, stoplight", "book jacket, dust cover, dust jacket, dust wrapper", "menu", "plate", "guacamole", "consomme", "hot pot, hotpot", "trifle", "ice cream, icecream", "ice lolly, lolly, lollipop, popsicle", "french loaf", "bagel, beigel", "pretzel", "cheeseburger", "hotdog, hot dog, red hot", "mashed potato", "head cabbage", "broccoli", "cauliflower", "zucchini, courgette", "spaghetti squash", "acorn squash", "butternut squash", "cucumber, cuke", "artichoke, globe artichoke", "bell pepper", "cardoon", "mushroom", "granny smith", "strawberry", "orange", "lemon", "fig", "pineapple, ananas", "banana", "jackfruit, jak, jack", "custard apple", "pomegranate", "hay", "carbonara", "chocolate sauce, chocolate syrup", "dough", "meat loaf, meatloaf", "pizza, pizza pie", "potpie", "burrito", "red wine", "espresso", "cup", "eggnog", "alp", "bubble", "cliff, drop, drop-off", "coral reef", "geyser", "lakeside, lakeshore", "promontory, headland, head, foreland", "sandbar, sand bar", "seashore, coast, seacoast, sea-coast", "valley, vale", "volcano", "ballplayer, baseball player", "groom, bridegroom", "scuba diver", "rapeseed", "daisy", "yellow lady's slipper, yellow lady-slipper, cypripedium calceolus, cypripedium parviflorum", "corn", "acorn", "hip, rose hip, rosehip", "buckeye, horse chestnut, conker", "coral fungus", "agaric", "gyromitra", "stinkhorn, carrion fungus", "earthstar", "hen-of-the-woods, hen of the woods, polyporus frondosus, grifola frondosa", "bolete", "ear, spike, capitulum", "toilet tissue, toilet paper, bathroom tissue" ]
prithivMLmods/Multisource-121-DomainNet
![zddfdxzdf.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/MoMzO3b8sULhwKf45yfrj.png) # **Multisource-121-DomainNet** > **Multisource-121-DomainNet** is an image classification vision-language encoder model fine-tuned from **google/siglip2-base-patch16-224** for a single-label classification task. It is designed to classify images into 121 domain categories using the **SiglipForImageClassification** architecture. ![- visual selection(2).png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/yfp_IYXqDyZfgZsJQ-7Bo.png) *Moment Matching for Multi-Source Domain Adaptation* : https://arxiv.org/pdf/1812.01754 *SigLIP 2: Multilingual Vision-Language Encoders with Improved Semantic Understanding, Localization, and Dense Features* https://arxiv.org/pdf/2502.14786 ```py Classification Report: precision recall f1-score support barn 0.7483 0.8370 0.7902 270 baseball_bat 0.9197 0.9333 0.9265 270 basket 0.8302 0.8148 0.8224 270 beach 0.7059 0.7556 0.7299 270 bear 0.7500 0.7444 0.7472 270 beard 0.5496 0.5741 0.5616 270 bee 0.9004 0.9037 0.9020 270 bird 0.7352 0.7815 0.7576 270 blueberry 0.7230 0.7926 0.7562 270 bowtie 0.8726 0.8370 0.8544 270 bracelet 0.7328 0.7111 0.7218 270 brain 0.8925 0.9222 0.9071 270 bread 0.5573 0.6667 0.6071 270 broccoli 0.9200 0.7667 0.8364 270 bus 0.8442 0.8630 0.8535 270 butterfly 0.9321 0.9148 0.9234 270 circle 0.6038 0.8185 0.6950 270 cloud 0.8201 0.8444 0.8321 270 cruise_ship 0.8545 0.8481 0.8513 270 dolphin 0.8286 0.8593 0.8436 270 dumbbell 0.8705 0.8963 0.8832 270 elephant 0.8598 0.8630 0.8614 270 eye 0.8603 0.8667 0.8635 270 eyeglasses 0.8425 0.7926 0.8168 270 feather 0.8413 0.7852 0.8123 270 fish 0.8169 0.8593 0.8375 270 flower 0.7973 0.8741 0.8339 270 foot 0.8152 0.8333 0.8242 270 frog 0.9270 0.8000 0.8588 270 giraffe 0.9026 0.8926 0.8976 270 goatee 0.5171 0.5037 0.5103 270 golf_club 0.6466 0.6778 0.6618 270 grapes 0.8731 0.8407 0.8566 270 grass 0.7359 0.6296 0.6786 270 guitar 0.8386 0.8852 0.8613 270 hamburger 0.8535 0.8630 0.8582 270 hand 0.7824 0.6926 0.7348 270 hat 0.7333 0.7741 0.7532 270 headphones 0.8971 0.9037 0.9004 270 helicopter 0.8992 0.8259 0.8610 270 hexagon 0.9113 0.8370 0.8726 270 hockey_stick 0.8419 0.8481 0.8450 270 horse 0.8081 0.8889 0.8466 270 hourglass 0.9161 0.9296 0.9228 270 house 0.7524 0.8778 0.8103 270 ice_cream 0.8821 0.8593 0.8705 270 jacket 0.8621 0.7407 0.7968 270 ladder 0.7051 0.8148 0.7560 270 leg 0.5916 0.5741 0.5827 270 lipstick 0.8889 0.8000 0.8421 270 megaphone 0.8710 0.9000 0.8852 270 monkey 0.8370 0.8556 0.8462 270 moon 0.8527 0.8148 0.8333 270 mushroom 0.8774 0.8481 0.8625 270 necklace 0.8670 0.7481 0.8032 270 owl 0.9179 0.9111 0.9145 270 panda 0.9490 0.8963 0.9219 270 pear 0.8832 0.8963 0.8897 270 peas 0.7743 0.8259 0.7993 270 penguin 0.8618 0.8778 0.8697 270 pig 0.6767 0.8296 0.7454 270 pillow 0.7359 0.6296 0.6786 270 pineapple 0.9213 0.9111 0.9162 270 pizza 0.9173 0.9444 0.9307 270 pool 0.6717 0.6593 0.6654 270 popsicle 0.7390 0.8074 0.7717 270 rabbit 0.8345 0.8778 0.8556 270 rhinoceros 0.9219 0.9185 0.9202 270 rifle 0.9256 0.8296 0.8750 270 river 0.6067 0.7370 0.6656 270 sailboat 0.8606 0.9148 0.8869 270 sandwich 0.7638 0.7667 0.7652 270 sea_turtle 0.8794 0.9185 0.8986 270 shark 0.8114 0.8444 0.8276 270 shoe 0.8097 0.8667 0.8372 270 skyscraper 0.7727 0.8185 0.7950 270 snorkel 0.8238 0.6926 0.7525 270 snowman 0.8736 0.8444 0.8588 270 soccer_ball 0.9395 0.8630 0.8996 270 speedboat 0.7649 0.7593 0.7621 270 spider 0.9212 0.8222 0.8689 270 spoon 0.8165 0.8074 0.8119 270 square 0.4669 0.6259 0.5348 270 squirrel 0.8394 0.7741 0.8054 270 stethoscope 0.8566 0.8630 0.8598 270 strawberry 0.8629 0.7926 0.8263 270 streetlight 0.5000 0.6852 0.5781 270 submarine 0.6850 0.6926 0.6888 270 suitcase 0.8259 0.7556 0.7892 270 sun 0.8082 0.6556 0.7239 270 sweater 0.5912 0.6963 0.6395 270 sword 0.8258 0.8074 0.8165 270 table 0.5502 0.5481 0.5492 270 teapot 0.9019 0.8852 0.8935 270 teddy-bear 0.7906 0.8111 0.8007 270 telephone 0.7836 0.7778 0.7807 270 tent 0.7579 0.7074 0.7318 270 The_Eiffel_Tower 0.8633 0.8889 0.8759 270 The_Great_Wall_of_China 0.8893 0.8333 0.8604 270 The_Mona_Lisa 0.8152 0.9148 0.8621 270 tiger 0.8577 0.8259 0.8415 270 toaster 0.6788 0.6889 0.6838 270 tooth 0.8807 0.7926 0.8343 270 tornado 0.7530 0.7000 0.7255 270 tractor 0.9372 0.8296 0.8802 270 train 0.7692 0.7407 0.7547 270 tree 0.7639 0.8148 0.7885 270 triangle 0.8852 0.8000 0.8405 270 trombone 0.6653 0.5963 0.6289 270 truck 0.7049 0.7963 0.7478 270 trumpet 0.7463 0.5667 0.6442 270 umbrella 0.9144 0.8704 0.8918 270 vase 0.8148 0.7333 0.7719 270 violin 0.8966 0.7704 0.8287 270 watermelon 0.7970 0.8000 0.7985 270 whale 0.7769 0.6963 0.7344 270 windmill 0.8963 0.8963 0.8963 270 wine_glass 0.8996 0.8630 0.8809 270 yoga 0.7406 0.8037 0.7709 270 zebra 0.9144 0.7519 0.8252 270 zigzag 0.6502 0.6333 0.6417 270 accuracy 0.7995 32670 macro avg 0.8052 0.7995 0.8006 32670 weighted avg 0.8052 0.7995 0.8006 32670 ``` The model categorizes images into the following 121 classes: - **Class 0:** "barn" - **Class 1:** "baseball_bat" - **Class 2:** "basket" - **Class 3:** "beach" - **Class 4:** "bear" - **Class 5:** "beard" - **Class 6:** "bee" - **Class 7:** "bird" - **Class 8:** "blueberry" - **Class 9:** "bowtie" - **Class 10:** "bracelet" - **Class 11:** "brain" - **Class 12:** "bread" - **Class 13:** "broccoli" - **Class 14:** "bus" - **Class 15:** "butterfly" - **Class 16:** "circle" - **Class 17:** "cloud" - **Class 18:** "cruise_ship" - **Class 19:** "dolphin" - **Class 20:** "dumbbell" - **Class 21:** "elephant" - **Class 22:** "eye" - **Class 23:** "eyeglasses" - **Class 24:** "feather" - **Class 25:** "fish" - **Class 26:** "flower" - **Class 27:** "foot" - **Class 28:** "frog" - **Class 29:** "giraffe" - **Class 30:** "goatee" - **Class 31:** "golf_club" - **Class 32:** "grapes" - **Class 33:** "grass" - **Class 34:** "guitar" - **Class 35:** "hamburger" - **Class 36:** "hand" - **Class 37:** "hat" - **Class 38:** "headphones" - **Class 39:** "helicopter" - **Class 40:** "hexagon" - **Class 41:** "hockey_stick" - **Class 42:** "horse" - **Class 43:** "hourglass" - **Class 44:** "house" - **Class 45:** "ice_cream" - **Class 46:** "jacket" - **Class 47:** "ladder" - **Class 48:** "leg" - **Class 49:** "lipstick" - **Class 50:** "megaphone" - **Class 51:** "monkey" - **Class 52:** "moon" - **Class 53:** "mushroom" - **Class 54:** "necklace" - **Class 55:** "owl" - **Class 56:** "panda" - **Class 57:** "pear" - **Class 58:** "peas" - **Class 59:** "penguin" - **Class 60:** "pig" - **Class 61:** "pillow" - **Class 62:** "pineapple" - **Class 63:** "pizza" - **Class 64:** "pool" - **Class 65:** "popsicle" - **Class 66:** "rabbit" - **Class 67:** "rhinoceros" - **Class 68:** "rifle" - **Class 69:** "river" - **Class 70:** "sailboat" - **Class 71:** "sandwich" - **Class 72:** "sea_turtle" - **Class 73:** "shark" - **Class 74:** "shoe" - **Class 75:** "skyscraper" - **Class 76:** "snorkel" - **Class 77:** "snowman" - **Class 78:** "soccer_ball" - **Class 79:** "speedboat" - **Class 80:** "spider" - **Class 81:** "spoon" - **Class 82:** "square" - **Class 83:** "squirrel" - **Class 84:** "stethoscope" - **Class 85:** "strawberry" - **Class 86:** "streetlight" - **Class 87:** "submarine" - **Class 88:** "suitcase" - **Class 89:** "sun" - **Class 90:** "sweater" - **Class 91:** "sword" - **Class 92:** "table" - **Class 93:** "teapot" - **Class 94:** "teddy-bear" - **Class 95:** "telephone" - **Class 96:** "tent" - **Class 97:** "The_Eiffel_Tower" - **Class 98:** "The_Great_Wall_of_China" - **Class 99:** "The_Mona_Lisa" - **Class 100:** "tiger" - **Class 101:** "toaster" - **Class 102:** "tooth" - **Class 103:** "tornado" - **Class 104:** "tractor" - **Class 105:** "train" - **Class 106:** "tree" - **Class 107:** "triangle" - **Class 108:** "trombone" - **Class 109:** "truck" - **Class 110:** "trumpet" - **Class 111:** "umbrella" - **Class 112:** "vase" - **Class 113:** "violin" - **Class 114:** "watermelon" - **Class 115:** "whale" - **Class 116:** "windmill" - **Class 117:** "wine_glass" - **Class 118:** "yoga" - **Class 119:** "zebra" - **Class 120:** "zigzag" # **Run with Transformers🤗** ```python !pip install -q transformers torch pillow gradio ``` ```python import gradio as gr from transformers import AutoImageProcessor, SiglipForImageClassification from transformers.image_utils import load_image from PIL import Image import torch # Load model and processor model_name = "prithivMLmods/Multisource-121-DomainNet" model = SiglipForImageClassification.from_pretrained(model_name) processor = AutoImageProcessor.from_pretrained(model_name) def multisource_classification(image): """Predicts the domain category for an input image.""" # Convert the input numpy array to a PIL Image and ensure it is in RGB format image = Image.fromarray(image).convert("RGB") # Process the image and convert it to model inputs inputs = processor(images=image, return_tensors="pt") # Get model predictions without gradient calculations with torch.no_grad(): outputs = model(**inputs) logits = outputs.logits # Convert logits to probabilities using softmax probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist() # Mapping from class indices to domain labels labels = { "0": "barn", "1": "baseball_bat", "2": "basket", "3": "beach", "4": "bear", "5": "beard", "6": "bee", "7": "bird", "8": "blueberry", "9": "bowtie", "10": "bracelet", "11": "brain", "12": "bread", "13": "broccoli", "14": "bus", "15": "butterfly", "16": "circle", "17": "cloud", "18": "cruise_ship", "19": "dolphin", "20": "dumbbell", "21": "elephant", "22": "eye", "23": "eyeglasses", "24": "feather", "25": "fish", "26": "flower", "27": "foot", "28": "frog", "29": "giraffe", "30": "goatee", "31": "golf_club", "32": "grapes", "33": "grass", "34": "guitar", "35": "hamburger", "36": "hand", "37": "hat", "38": "headphones", "39": "helicopter", "40": "hexagon", "41": "hockey_stick", "42": "horse", "43": "hourglass", "44": "house", "45": "ice_cream", "46": "jacket", "47": "ladder", "48": "leg", "49": "lipstick", "50": "megaphone", "51": "monkey", "52": "moon", "53": "mushroom", "54": "necklace", "55": "owl", "56": "panda", "57": "pear", "58": "peas", "59": "penguin", "60": "pig", "61": "pillow", "62": "pineapple", "63": "pizza", "64": "pool", "65": "popsicle", "66": "rabbit", "67": "rhinoceros", "68": "rifle", "69": "river", "70": "sailboat", "71": "sandwich", "72": "sea_turtle", "73": "shark", "74": "shoe", "75": "skyscraper", "76": "snorkel", "77": "snowman", "78": "soccer_ball", "79": "speedboat", "80": "spider", "81": "spoon", "82": "square", "83": "squirrel", "84": "stethoscope", "85": "strawberry", "86": "streetlight", "87": "submarine", "88": "suitcase", "89": "sun", "90": "sweater", "91": "sword", "92": "table", "93": "teapot", "94": "teddy-bear", "95": "telephone", "96": "tent", "97": "The_Eiffel_Tower", "98": "The_Great_Wall_of_China", "99": "The_Mona_Lisa", "100": "tiger", "101": "toaster", "102": "tooth", "103": "tornado", "104": "tractor", "105": "train", "106": "tree", "107": "triangle", "108": "trombone", "109": "truck", "110": "trumpet", "111": "umbrella", "112": "vase", "113": "violin", "114": "watermelon", "115": "whale", "116": "windmill", "117": "wine_glass", "118": "yoga", "119": "zebra", "120": "zigzag" } # Create a dictionary mapping each label to its corresponding probability (rounded) predictions = {labels[str(i)]: round(probs[i], 3) for i in range(len(probs))} return predictions # Create Gradio interface iface = gr.Interface( fn=multisource_classification, inputs=gr.Image(type="numpy"), outputs=gr.Label(label="Prediction Scores"), title="Multisource-121-DomainNet Classification", description="Upload an image to classify it into one of 121 domain categories." ) # Launch the app if __name__ == "__main__": iface.launch() ``` --- # **Intended Use:** The **Multisource-121-DomainNet** model is designed for multi-source image classification. It can categorize images into a diverse set of 121 domains, covering various objects, scenes, and landmarks. Potential use cases include: - **Cross-Domain Image Analysis:** Enabling robust classification across a wide range of visual domains. - **Multimedia Retrieval:** Assisting in content organization and retrieval in multimedia databases. - **Computer Vision Research:** Serving as a benchmark for evaluating domain adaptation and transfer learning techniques. - **Interactive Applications:** Enhancing user interfaces with diverse, real-time image recognition capabilities.
[ "barn", "baseball_bat", "basket", "beach", "bear", "beard", "bee", "bird", "blueberry", "bowtie", "bracelet", "brain", "bread", "broccoli", "bus", "butterfly", "circle", "cloud", "cruise_ship", "dolphin", "dumbbell", "elephant", "eye", "eyeglasses", "feather", "fish", "flower", "foot", "frog", "giraffe", "goatee", "golf_club", "grapes", "grass", "guitar", "hamburger", "hand", "hat", "headphones", "helicopter", "hexagon", "hockey_stick", "horse", "hourglass", "house", "ice_cream", "jacket", "ladder", "leg", "lipstick", "megaphone", "monkey", "moon", "mushroom", "necklace", "owl", "panda", "pear", "peas", "penguin", "pig", "pillow", "pineapple", "pizza", "pool", "popsicle", "rabbit", "rhinoceros", "rifle", "river", "sailboat", "sandwich", "sea_turtle", "shark", "shoe", "skyscraper", "snorkel", "snowman", "soccer_ball", "speedboat", "spider", "spoon", "square", "squirrel", "stethoscope", "strawberry", "streetlight", "submarine", "suitcase", "sun", "sweater", "sword", "table", "teapot", "teddy-bear", "telephone", "tent", "the_eiffel_tower", "the_great_wall_of_china", "the_mona_lisa", "tiger", "toaster", "tooth", "tornado", "tractor", "train", "tree", "triangle", "trombone", "truck", "trumpet", "umbrella", "vase", "violin", "watermelon", "whale", "windmill", "wine_glass", "yoga", "zebra", "zigzag" ]
nvidia/MambaVision-L3-256-21K
[**MambaVision: A Hybrid Mamba-Transformer Vision Backbone**](https://arxiv.org/abs/2407.08083). Code: https://github.com/NVlabs/MambaVision ## Model Overview We have developed the first hybrid model for computer vision which leverages the strengths of Mamba and Transformers. Specifically, our core contribution includes redesigning the Mamba formulation to enhance its capability for efficient modeling of visual features. In addition, we conducted a comprehensive ablation study on the feasibility of integrating Vision Transformers (ViT) with Mamba. Our results demonstrate that equipping the Mamba architecture with several self-attention blocks at the final layers greatly improves the modeling capacity to capture long-range spatial dependencies. Based on our findings, we introduce a family of MambaVision models with a hierarchical architecture to meet various design criteria. ## Model Performance MambaVision-L3-256-21K is pretrained on ImageNet-21K dataset and finetuned on ImageNet-1K. Both pretraining and finetuning are performed at 256 x 256 resolution. <table> <tr> <th>Name</th> <th>Acc@1(%)</th> <th>Acc@5(%)</th> <th>#Params(M)</th> <th>FLOPs(G)</th> <th>Resolution</th> </tr> <tr> <td>MambaVision-L3-256-21K</td> <td>87.3</td> <td>98.3</td> <td>739.6</td> <td>122.3</td> <td>256x256</td> </tr> </table> In addition, the MambaVision models demonstrate a strong performance by achieving a new SOTA Pareto-front in terms of Top-1 accuracy and throughput. <p align="center"> <img src="https://github.com/NVlabs/MambaVision/assets/26806394/79dcf841-3966-4b77-883d-76cd5e1d4320" width=70% height=70% class="center"> </p> ## Model Usage It is highly recommended to install the requirements for MambaVision by running the following: ```Bash pip install mambavision ``` For each model, we offer two variants for image classification and feature extraction that can be imported with 1 line of code. ### Image Classification In the following example, we demonstrate how MambaVision can be used for image classification. Given the following image from [COCO dataset](https://cocodataset.org/#home) val set as an input: <p align="center"> <img src="https://hf.fast360.xyz/production/uploads/64414b62603214724ebd2636/4duSnqLf4lrNiAHczSmAN.jpeg" width=70% height=70% class="center"> </p> The following snippet can be used for image classification: ```Python from transformers import AutoModelForImageClassification from PIL import Image from timm.data.transforms_factory import create_transform import requests model = AutoModelForImageClassification.from_pretrained("nvidia/MambaVision-L3-256-21K", trust_remote_code=True) # eval mode for inference model.cuda().eval() # prepare image for the model url = 'http://images.cocodataset.org/val2017/000000020247.jpg' image = Image.open(requests.get(url, stream=True).raw) input_resolution = (3, 256, 256) # MambaVision supports any input resolutions transform = create_transform(input_size=input_resolution, is_training=False, mean=model.config.mean, std=model.config.std, crop_mode=model.config.crop_mode, crop_pct=model.config.crop_pct) inputs = transform(image).unsqueeze(0).cuda() # model inference outputs = model(inputs) logits = outputs['logits'] predicted_class_idx = logits.argmax(-1).item() print("Predicted class:", model.config.id2label[predicted_class_idx]) ``` The predicted label is ```brown bear, bruin, Ursus arctos.``` ### Feature Extraction MambaVision can also be used as a generic feature extractor. Specifically, we can extract the outputs of each stage of model (4 stages) as well as the final averaged-pool features that are flattened. The following snippet can be used for feature extraction: ```Python from transformers import AutoModel from PIL import Image from timm.data.transforms_factory import create_transform import requests model = AutoModel.from_pretrained("nvidia/MambaVision-L3-256-21K", trust_remote_code=True) # eval mode for inference model.cuda().eval() # prepare image for the model url = 'http://images.cocodataset.org/val2017/000000020247.jpg' image = Image.open(requests.get(url, stream=True).raw) input_resolution = (3, 256, 256) # MambaVision supports any input resolutions transform = create_transform(input_size=input_resolution, is_training=False, mean=model.config.mean, std=model.config.std, crop_mode=model.config.crop_mode, crop_pct=model.config.crop_pct) inputs = transform(image).unsqueeze(0).cuda() # model inference out_avg_pool, features = model(inputs) print("Size of the averaged pool features:", out_avg_pool.size()) # torch.Size([1, 1568]) print("Number of stages in extracted features:", len(features)) # 4 stages print("Size of extracted features in stage 1:", features[0].size()) # torch.Size([1, 196, 128, 128]) print("Size of extracted features in stage 4:", features[3].size()) # torch.Size([1, 1568, 16, 16]) ``` ### License: [NVIDIA Source Code License-NC](https://huggingface.co/nvidia/MambaVision-L3-256-21K/blob/main/LICENSE)
[ "tench, tinca tinca", "goldfish, carassius auratus", "great white shark, white shark, man-eater, man-eating shark, carcharodon carcharias", "tiger shark, galeocerdo cuvieri", "hammerhead, hammerhead shark", "electric ray, crampfish, numbfish, torpedo", "stingray", "cock", "hen", "ostrich, struthio camelus", "brambling, fringilla montifringilla", "goldfinch, carduelis carduelis", "house finch, linnet, carpodacus mexicanus", "junco, snowbird", "indigo bunting, indigo finch, indigo bird, passerina cyanea", "robin, american robin, turdus migratorius", "bulbul", "jay", "magpie", "chickadee", "water ouzel, dipper", "kite", "bald eagle, american eagle, haliaeetus leucocephalus", "vulture", "great grey owl, great gray owl, strix nebulosa", "european fire salamander, salamandra salamandra", "common newt, triturus vulgaris", "eft", "spotted salamander, ambystoma maculatum", "axolotl, mud puppy, ambystoma mexicanum", "bullfrog, rana catesbeiana", "tree frog, tree-frog", "tailed frog, bell toad, ribbed toad, tailed toad, ascaphus trui", "loggerhead, loggerhead turtle, caretta caretta", "leatherback turtle, leatherback, leathery turtle, dermochelys coriacea", "mud turtle", "terrapin", "box turtle, box tortoise", "banded gecko", "common iguana, iguana, iguana iguana", "american chameleon, anole, anolis carolinensis", "whiptail, whiptail lizard", "agama", "frilled lizard, chlamydosaurus kingi", "alligator lizard", "gila monster, heloderma suspectum", "green lizard, lacerta viridis", "african chameleon, chamaeleo chamaeleon", "komodo dragon, komodo lizard, dragon lizard, giant lizard, varanus komodoensis", "african crocodile, nile crocodile, crocodylus niloticus", "american alligator, alligator mississipiensis", "triceratops", "thunder snake, worm snake, carphophis amoenus", "ringneck snake, ring-necked snake, ring snake", "hognose snake, puff adder, sand viper", "green snake, grass snake", "king snake, kingsnake", "garter snake, grass snake", "water snake", "vine snake", "night snake, hypsiglena torquata", "boa constrictor, constrictor constrictor", "rock python, rock snake, python sebae", "indian cobra, naja naja", "green mamba", "sea snake", "horned viper, cerastes, sand viper, horned asp, cerastes cornutus", "diamondback, diamondback rattlesnake, crotalus adamanteus", "sidewinder, horned rattlesnake, crotalus cerastes", "trilobite", "harvestman, daddy longlegs, phalangium opilio", "scorpion", "black and gold garden spider, argiope aurantia", "barn spider, araneus cavaticus", "garden spider, aranea diademata", "black widow, latrodectus mactans", "tarantula", "wolf spider, hunting spider", "tick", "centipede", "black grouse", "ptarmigan", "ruffed grouse, partridge, bonasa umbellus", "prairie chicken, prairie grouse, prairie fowl", "peacock", "quail", "partridge", "african grey, african gray, psittacus erithacus", "macaw", "sulphur-crested cockatoo, kakatoe galerita, cacatua galerita", "lorikeet", "coucal", "bee eater", "hornbill", "hummingbird", "jacamar", "toucan", "drake", "red-breasted merganser, mergus serrator", "goose", "black swan, cygnus atratus", "tusker", "echidna, spiny anteater, anteater", "platypus, duckbill, duckbilled platypus, duck-billed platypus, ornithorhynchus anatinus", "wallaby, brush kangaroo", "koala, koala bear, kangaroo bear, native bear, phascolarctos cinereus", "wombat", "jellyfish", "sea anemone, anemone", "brain coral", "flatworm, platyhelminth", "nematode, nematode worm, roundworm", "conch", "snail", "slug", "sea slug, nudibranch", "chiton, coat-of-mail shell, sea cradle, polyplacophore", "chambered nautilus, pearly nautilus, nautilus", "dungeness crab, cancer magister", "rock crab, cancer irroratus", "fiddler crab", "king crab, alaska crab, alaskan king crab, alaska king crab, paralithodes camtschatica", "american lobster, northern lobster, maine lobster, homarus americanus", "spiny lobster, langouste, rock lobster, crawfish, crayfish, sea crawfish", "crayfish, crawfish, crawdad, crawdaddy", "hermit crab", "isopod", "white stork, ciconia ciconia", "black stork, ciconia nigra", "spoonbill", "flamingo", "little blue heron, egretta caerulea", "american egret, great white heron, egretta albus", "bittern", "crane", "limpkin, aramus pictus", "european gallinule, porphyrio porphyrio", "american coot, marsh hen, mud hen, water hen, fulica americana", "bustard", "ruddy turnstone, arenaria interpres", "red-backed sandpiper, dunlin, erolia alpina", "redshank, tringa totanus", "dowitcher", "oystercatcher, oyster catcher", "pelican", "king penguin, aptenodytes patagonica", "albatross, mollymawk", "grey whale, gray whale, devilfish, eschrichtius gibbosus, eschrichtius robustus", "killer whale, killer, orca, grampus, sea wolf, orcinus orca", "dugong, dugong dugon", "sea lion", "chihuahua", "japanese spaniel", "maltese dog, maltese terrier, maltese", "pekinese, pekingese, peke", "shih-tzu", "blenheim spaniel", "papillon", "toy terrier", "rhodesian ridgeback", "afghan hound, afghan", "basset, basset hound", "beagle", "bloodhound, sleuthhound", "bluetick", "black-and-tan coonhound", "walker hound, walker foxhound", "english foxhound", "redbone", "borzoi, russian wolfhound", "irish wolfhound", "italian greyhound", "whippet", "ibizan hound, ibizan podenco", "norwegian elkhound, elkhound", "otterhound, otter hound", "saluki, gazelle hound", "scottish deerhound, deerhound", "weimaraner", "staffordshire bullterrier, staffordshire bull terrier", "american staffordshire terrier, staffordshire terrier, american pit bull terrier, pit bull terrier", "bedlington terrier", "border terrier", "kerry blue terrier", "irish terrier", "norfolk terrier", "norwich terrier", "yorkshire terrier", "wire-haired fox terrier", "lakeland terrier", "sealyham terrier, sealyham", "airedale, airedale terrier", "cairn, cairn terrier", "australian terrier", "dandie dinmont, dandie dinmont terrier", "boston bull, boston terrier", "miniature schnauzer", "giant schnauzer", "standard schnauzer", "scotch terrier, scottish terrier, scottie", "tibetan terrier, chrysanthemum dog", "silky terrier, sydney silky", "soft-coated wheaten terrier", "west highland white terrier", "lhasa, lhasa apso", "flat-coated retriever", "curly-coated retriever", "golden retriever", "labrador retriever", "chesapeake bay retriever", "german short-haired pointer", "vizsla, hungarian pointer", "english setter", "irish setter, red setter", "gordon setter", "brittany spaniel", "clumber, clumber spaniel", "english springer, english springer spaniel", "welsh springer spaniel", "cocker spaniel, english cocker spaniel, cocker", "sussex spaniel", "irish water spaniel", "kuvasz", "schipperke", "groenendael", "malinois", "briard", "kelpie", "komondor", "old english sheepdog, bobtail", "shetland sheepdog, shetland sheep dog, shetland", "collie", "border collie", "bouvier des flandres, bouviers des flandres", "rottweiler", "german shepherd, german shepherd dog, german police dog, alsatian", "doberman, doberman pinscher", "miniature pinscher", "greater swiss mountain dog", "bernese mountain dog", "appenzeller", "entlebucher", "boxer", "bull mastiff", "tibetan mastiff", "french bulldog", "great dane", "saint bernard, st bernard", "eskimo dog, husky", "malamute, malemute, alaskan malamute", "siberian husky", "dalmatian, coach dog, carriage dog", "affenpinscher, monkey pinscher, monkey dog", "basenji", "pug, pug-dog", "leonberg", "newfoundland, newfoundland dog", "great pyrenees", "samoyed, samoyede", "pomeranian", "chow, chow chow", "keeshond", "brabancon griffon", "pembroke, pembroke welsh corgi", "cardigan, cardigan welsh corgi", "toy poodle", "miniature poodle", "standard poodle", "mexican hairless", "timber wolf, grey wolf, gray wolf, canis lupus", "white wolf, arctic wolf, canis lupus tundrarum", "red wolf, maned wolf, canis rufus, canis niger", "coyote, prairie wolf, brush wolf, canis latrans", "dingo, warrigal, warragal, canis dingo", "dhole, cuon alpinus", "african hunting dog, hyena dog, cape hunting dog, lycaon pictus", "hyena, hyaena", "red fox, vulpes vulpes", "kit fox, vulpes macrotis", "arctic fox, white fox, alopex lagopus", "grey fox, gray fox, urocyon cinereoargenteus", "tabby, tabby cat", "tiger cat", "persian cat", "siamese cat, siamese", "egyptian cat", "cougar, puma, catamount, mountain lion, painter, panther, felis concolor", "lynx, catamount", "leopard, panthera pardus", "snow leopard, ounce, panthera uncia", "jaguar, panther, panthera onca, felis onca", "lion, king of beasts, panthera leo", "tiger, panthera tigris", "cheetah, chetah, acinonyx jubatus", "brown bear, bruin, ursus arctos", "american black bear, black bear, ursus americanus, euarctos americanus", "ice bear, polar bear, ursus maritimus, thalarctos maritimus", "sloth bear, melursus ursinus, ursus ursinus", "mongoose", "meerkat, mierkat", "tiger beetle", "ladybug, ladybeetle, lady beetle, ladybird, ladybird beetle", "ground beetle, carabid beetle", "long-horned beetle, longicorn, longicorn beetle", "leaf beetle, chrysomelid", "dung beetle", "rhinoceros beetle", "weevil", "fly", "bee", "ant, emmet, pismire", "grasshopper, hopper", "cricket", "walking stick, walkingstick, stick insect", "cockroach, roach", "mantis, mantid", "cicada, cicala", "leafhopper", "lacewing, lacewing fly", "dragonfly, darning needle, devil's darning needle, sewing needle, snake feeder, snake doctor, mosquito hawk, skeeter hawk", "damselfly", "admiral", "ringlet, ringlet butterfly", "monarch, monarch butterfly, milkweed butterfly, danaus plexippus", "cabbage butterfly", "sulphur butterfly, sulfur butterfly", "lycaenid, lycaenid butterfly", "starfish, sea star", "sea urchin", "sea cucumber, holothurian", "wood rabbit, cottontail, cottontail rabbit", "hare", "angora, angora rabbit", "hamster", "porcupine, hedgehog", "fox squirrel, eastern fox squirrel, sciurus niger", "marmot", "beaver", "guinea pig, cavia cobaya", "sorrel", "zebra", "hog, pig, grunter, squealer, sus scrofa", "wild boar, boar, sus scrofa", "warthog", "hippopotamus, hippo, river horse, hippopotamus amphibius", "ox", "water buffalo, water ox, asiatic buffalo, bubalus bubalis", "bison", "ram, tup", "bighorn, bighorn sheep, cimarron, rocky mountain bighorn, rocky mountain sheep, ovis canadensis", "ibex, capra ibex", "hartebeest", "impala, aepyceros melampus", "gazelle", "arabian camel, dromedary, camelus dromedarius", "llama", "weasel", "mink", "polecat, fitch, foulmart, foumart, mustela putorius", "black-footed ferret, ferret, mustela nigripes", "otter", "skunk, polecat, wood pussy", "badger", "armadillo", "three-toed sloth, ai, bradypus tridactylus", "orangutan, orang, orangutang, pongo pygmaeus", "gorilla, gorilla gorilla", "chimpanzee, chimp, pan troglodytes", "gibbon, hylobates lar", "siamang, hylobates syndactylus, symphalangus syndactylus", "guenon, guenon monkey", "patas, hussar monkey, erythrocebus patas", "baboon", "macaque", "langur", "colobus, colobus monkey", "proboscis monkey, nasalis larvatus", "marmoset", "capuchin, ringtail, cebus capucinus", "howler monkey, howler", "titi, titi monkey", "spider monkey, ateles geoffroyi", "squirrel monkey, saimiri sciureus", "madagascar cat, ring-tailed lemur, lemur catta", "indri, indris, indri indri, indri brevicaudatus", "indian elephant, elephas maximus", "african elephant, loxodonta africana", "lesser panda, red panda, panda, bear cat, cat bear, ailurus fulgens", "giant panda, panda, panda bear, coon bear, ailuropoda melanoleuca", "barracouta, snoek", "eel", "coho, cohoe, coho salmon, blue jack, silver salmon, oncorhynchus kisutch", "rock beauty, holocanthus tricolor", "anemone fish", "sturgeon", "gar, garfish, garpike, billfish, lepisosteus osseus", "lionfish", "puffer, pufferfish, blowfish, globefish", "abacus", "abaya", "academic gown, academic robe, judge's robe", "accordion, piano accordion, squeeze box", "acoustic guitar", "aircraft carrier, carrier, flattop, attack aircraft carrier", "airliner", "airship, dirigible", "altar", "ambulance", "amphibian, amphibious vehicle", "analog clock", "apiary, bee house", "apron", "ashcan, trash can, garbage can, wastebin, ash bin, ash-bin, ashbin, dustbin, trash barrel, trash bin", "assault rifle, assault gun", "backpack, back pack, knapsack, packsack, rucksack, haversack", "bakery, bakeshop, bakehouse", "balance beam, beam", "balloon", "ballpoint, ballpoint pen, ballpen, biro", "band aid", "banjo", "bannister, banister, balustrade, balusters, handrail", "barbell", "barber chair", "barbershop", "barn", "barometer", "barrel, cask", "barrow, garden cart, lawn cart, wheelbarrow", "baseball", "basketball", "bassinet", "bassoon", "bathing cap, swimming cap", "bath towel", "bathtub, bathing tub, bath, tub", "beach wagon, station wagon, wagon, estate car, beach waggon, station waggon, waggon", "beacon, lighthouse, beacon light, pharos", "beaker", "bearskin, busby, shako", "beer bottle", "beer glass", "bell cote, bell cot", "bib", "bicycle-built-for-two, tandem bicycle, tandem", "bikini, two-piece", "binder, ring-binder", "binoculars, field glasses, opera glasses", "birdhouse", "boathouse", "bobsled, bobsleigh, bob", "bolo tie, bolo, bola tie, bola", "bonnet, poke bonnet", "bookcase", "bookshop, bookstore, bookstall", "bottlecap", "bow", "bow tie, bow-tie, bowtie", "brass, memorial tablet, plaque", "brassiere, bra, bandeau", "breakwater, groin, groyne, mole, bulwark, seawall, jetty", "breastplate, aegis, egis", "broom", "bucket, pail", "buckle", "bulletproof vest", "bullet train, bullet", "butcher shop, meat market", "cab, hack, taxi, taxicab", "caldron, cauldron", "candle, taper, wax light", "cannon", "canoe", "can opener, tin opener", "cardigan", "car mirror", "carousel, carrousel, merry-go-round, roundabout, whirligig", "carpenter's kit, tool kit", "carton", "car wheel", "cash machine, cash dispenser, automated teller machine, automatic teller machine, automated teller, automatic teller, atm", "cassette", "cassette player", "castle", "catamaran", "cd player", "cello, violoncello", "cellular telephone, cellular phone, cellphone, cell, mobile phone", "chain", "chainlink fence", "chain mail, ring mail, mail, chain armor, chain armour, ring armor, ring armour", "chain saw, chainsaw", "chest", "chiffonier, commode", "chime, bell, gong", "china cabinet, china closet", "christmas stocking", "church, church building", "cinema, movie theater, movie theatre, movie house, picture palace", "cleaver, meat cleaver, chopper", "cliff dwelling", "cloak", "clog, geta, patten, sabot", "cocktail shaker", "coffee mug", "coffeepot", "coil, spiral, volute, whorl, helix", "combination lock", "computer keyboard, keypad", "confectionery, confectionary, candy store", "container ship, containership, container vessel", "convertible", "corkscrew, bottle screw", "cornet, horn, trumpet, trump", "cowboy boot", "cowboy hat, ten-gallon hat", "cradle", "crane", "crash helmet", "crate", "crib, cot", "crock pot", "croquet ball", "crutch", "cuirass", "dam, dike, dyke", "desk", "desktop computer", "dial telephone, dial phone", "diaper, nappy, napkin", "digital clock", "digital watch", "dining table, board", "dishrag, dishcloth", "dishwasher, dish washer, dishwashing machine", "disk brake, disc brake", "dock, dockage, docking facility", "dogsled, dog sled, dog sleigh", "dome", "doormat, welcome mat", "drilling platform, offshore rig", "drum, membranophone, tympan", "drumstick", "dumbbell", "dutch oven", "electric fan, blower", "electric guitar", "electric locomotive", "entertainment center", "envelope", "espresso maker", "face powder", "feather boa, boa", "file, file cabinet, filing cabinet", "fireboat", "fire engine, fire truck", "fire screen, fireguard", "flagpole, flagstaff", "flute, transverse flute", "folding chair", "football helmet", "forklift", "fountain", "fountain pen", "four-poster", "freight car", "french horn, horn", "frying pan, frypan, skillet", "fur coat", "garbage truck, dustcart", "gasmask, respirator, gas helmet", "gas pump, gasoline pump, petrol pump, island dispenser", "goblet", "go-kart", "golf ball", "golfcart, golf cart", "gondola", "gong, tam-tam", "gown", "grand piano, grand", "greenhouse, nursery, glasshouse", "grille, radiator grille", "grocery store, grocery, food market, market", "guillotine", "hair slide", "hair spray", "half track", "hammer", "hamper", "hand blower, blow dryer, blow drier, hair dryer, hair drier", "hand-held computer, hand-held microcomputer", "handkerchief, hankie, hanky, hankey", "hard disc, hard disk, fixed disk", "harmonica, mouth organ, harp, mouth harp", "harp", "harvester, reaper", "hatchet", "holster", "home theater, home theatre", "honeycomb", "hook, claw", "hoopskirt, crinoline", "horizontal bar, high bar", "horse cart, horse-cart", "hourglass", "ipod", "iron, smoothing iron", "jack-o'-lantern", "jean, blue jean, denim", "jeep, landrover", "jersey, t-shirt, tee shirt", "jigsaw puzzle", "jinrikisha, ricksha, rickshaw", "joystick", "kimono", "knee pad", "knot", "lab coat, laboratory coat", "ladle", "lampshade, lamp shade", "laptop, laptop computer", "lawn mower, mower", "lens cap, lens cover", "letter opener, paper knife, paperknife", "library", "lifeboat", "lighter, light, igniter, ignitor", "limousine, limo", "liner, ocean liner", "lipstick, lip rouge", "loafer", "lotion", "loudspeaker, speaker, speaker unit, loudspeaker system, speaker system", "loupe, jeweler's loupe", "lumbermill, sawmill", "magnetic compass", "mailbag, postbag", "mailbox, letter box", "maillot", "maillot, tank suit", "manhole cover", "maraca", "marimba, xylophone", "mask", "matchstick", "maypole", "maze, labyrinth", "measuring cup", "medicine chest, medicine cabinet", "megalith, megalithic structure", "microphone, mike", "microwave, microwave oven", "military uniform", "milk can", "minibus", "miniskirt, mini", "minivan", "missile", "mitten", "mixing bowl", "mobile home, manufactured home", "model t", "modem", "monastery", "monitor", "moped", "mortar", "mortarboard", "mosque", "mosquito net", "motor scooter, scooter", "mountain bike, all-terrain bike, off-roader", "mountain tent", "mouse, computer mouse", "mousetrap", "moving van", "muzzle", "nail", "neck brace", "necklace", "nipple", "notebook, notebook computer", "obelisk", "oboe, hautboy, hautbois", "ocarina, sweet potato", "odometer, hodometer, mileometer, milometer", "oil filter", "organ, pipe organ", "oscilloscope, scope, cathode-ray oscilloscope, cro", "overskirt", "oxcart", "oxygen mask", "packet", "paddle, boat paddle", "paddlewheel, paddle wheel", "padlock", "paintbrush", "pajama, pyjama, pj's, jammies", "palace", "panpipe, pandean pipe, syrinx", "paper towel", "parachute, chute", "parallel bars, bars", "park bench", "parking meter", "passenger car, coach, carriage", "patio, terrace", "pay-phone, pay-station", "pedestal, plinth, footstall", "pencil box, pencil case", "pencil sharpener", "perfume, essence", "petri dish", "photocopier", "pick, plectrum, plectron", "pickelhaube", "picket fence, paling", "pickup, pickup truck", "pier", "piggy bank, penny bank", "pill bottle", "pillow", "ping-pong ball", "pinwheel", "pirate, pirate ship", "pitcher, ewer", "plane, carpenter's plane, woodworking plane", "planetarium", "plastic bag", "plate rack", "plow, plough", "plunger, plumber's helper", "polaroid camera, polaroid land camera", "pole", "police van, police wagon, paddy wagon, patrol wagon, wagon, black maria", "poncho", "pool table, billiard table, snooker table", "pop bottle, soda bottle", "pot, flowerpot", "potter's wheel", "power drill", "prayer rug, prayer mat", "printer", "prison, prison house", "projectile, missile", "projector", "puck, hockey puck", "punching bag, punch bag, punching ball, punchball", "purse", "quill, quill pen", "quilt, comforter, comfort, puff", "racer, race car, racing car", "racket, racquet", "radiator", "radio, wireless", "radio telescope, radio reflector", "rain barrel", "recreational vehicle, rv, r.v.", "reel", "reflex camera", "refrigerator, icebox", "remote control, remote", "restaurant, eating house, eating place, eatery", "revolver, six-gun, six-shooter", "rifle", "rocking chair, rocker", "rotisserie", "rubber eraser, rubber, pencil eraser", "rugby ball", "rule, ruler", "running shoe", "safe", "safety pin", "saltshaker, salt shaker", "sandal", "sarong", "sax, saxophone", "scabbard", "scale, weighing machine", "school bus", "schooner", "scoreboard", "screen, crt screen", "screw", "screwdriver", "seat belt, seatbelt", "sewing machine", "shield, buckler", "shoe shop, shoe-shop, shoe store", "shoji", "shopping basket", "shopping cart", "shovel", "shower cap", "shower curtain", "ski", "ski mask", "sleeping bag", "slide rule, slipstick", "sliding door", "slot, one-armed bandit", "snorkel", "snowmobile", "snowplow, snowplough", "soap dispenser", "soccer ball", "sock", "solar dish, solar collector, solar furnace", "sombrero", "soup bowl", "space bar", "space heater", "space shuttle", "spatula", "speedboat", "spider web, spider's web", "spindle", "sports car, sport car", "spotlight, spot", "stage", "steam locomotive", "steel arch bridge", "steel drum", "stethoscope", "stole", "stone wall", "stopwatch, stop watch", "stove", "strainer", "streetcar, tram, tramcar, trolley, trolley car", "stretcher", "studio couch, day bed", "stupa, tope", "submarine, pigboat, sub, u-boat", "suit, suit of clothes", "sundial", "sunglass", "sunglasses, dark glasses, shades", "sunscreen, sunblock, sun blocker", "suspension bridge", "swab, swob, mop", "sweatshirt", "swimming trunks, bathing trunks", "swing", "switch, electric switch, electrical switch", "syringe", "table lamp", "tank, army tank, armored combat vehicle, armoured combat vehicle", "tape player", "teapot", "teddy, teddy bear", "television, television system", "tennis ball", "thatch, thatched roof", "theater curtain, theatre curtain", "thimble", "thresher, thrasher, threshing machine", "throne", "tile roof", "toaster", "tobacco shop, tobacconist shop, tobacconist", "toilet seat", "torch", "totem pole", "tow truck, tow car, wrecker", "toyshop", "tractor", "trailer truck, tractor trailer, trucking rig, rig, articulated lorry, semi", "tray", "trench coat", "tricycle, trike, velocipede", "trimaran", "tripod", "triumphal arch", "trolleybus, trolley coach, trackless trolley", "trombone", "tub, vat", "turnstile", "typewriter keyboard", "umbrella", "unicycle, monocycle", "upright, upright piano", "vacuum, vacuum cleaner", "vase", "vault", "velvet", "vending machine", "vestment", "viaduct", "violin, fiddle", "volleyball", "waffle iron", "wall clock", "wallet, billfold, notecase, pocketbook", "wardrobe, closet, press", "warplane, military plane", "washbasin, handbasin, washbowl, lavabo, wash-hand basin", "washer, automatic washer, washing machine", "water bottle", "water jug", "water tower", "whiskey jug", "whistle", "wig", "window screen", "window shade", "windsor tie", "wine bottle", "wing", "wok", "wooden spoon", "wool, woolen, woollen", "worm fence, snake fence, snake-rail fence, virginia fence", "wreck", "yawl", "yurt", "web site, website, internet site, site", "comic book", "crossword puzzle, crossword", "street sign", "traffic light, traffic signal, stoplight", "book jacket, dust cover, dust jacket, dust wrapper", "menu", "plate", "guacamole", "consomme", "hot pot, hotpot", "trifle", "ice cream, icecream", "ice lolly, lolly, lollipop, popsicle", "french loaf", "bagel, beigel", "pretzel", "cheeseburger", "hotdog, hot dog, red hot", "mashed potato", "head cabbage", "broccoli", "cauliflower", "zucchini, courgette", "spaghetti squash", "acorn squash", "butternut squash", "cucumber, cuke", "artichoke, globe artichoke", "bell pepper", "cardoon", "mushroom", "granny smith", "strawberry", "orange", "lemon", "fig", "pineapple, ananas", "banana", "jackfruit, jak, jack", "custard apple", "pomegranate", "hay", "carbonara", "chocolate sauce, chocolate syrup", "dough", "meat loaf, meatloaf", "pizza, pizza pie", "potpie", "burrito", "red wine", "espresso", "cup", "eggnog", "alp", "bubble", "cliff, drop, drop-off", "coral reef", "geyser", "lakeside, lakeshore", "promontory, headland, head, foreland", "sandbar, sand bar", "seashore, coast, seacoast, sea-coast", "valley, vale", "volcano", "ballplayer, baseball player", "groom, bridegroom", "scuba diver", "rapeseed", "daisy", "yellow lady's slipper, yellow lady-slipper, cypripedium calceolus, cypripedium parviflorum", "corn", "acorn", "hip, rose hip, rosehip", "buckeye, horse chestnut, conker", "coral fungus", "agaric", "gyromitra", "stinkhorn, carrion fungus", "earthstar", "hen-of-the-woods, hen of the woods, polyporus frondosus, grifola frondosa", "bolete", "ear, spike, capitulum", "toilet tissue, toilet paper, bathroom tissue" ]
prithivMLmods/Clipart-126-DomainNet
![zxvdzxxfvgdf.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/BpfY3BKv4KtfZL2gRLquF.png) # **Clipart-126-DomainNet** > **Clipart-126-DomainNet** is an image classification vision-language encoder model fine-tuned from **google/siglip2-base-patch16-224** for a single-label classification task. It is designed to classify clipart images into 126 domain categories using the **SiglipForImageClassification** architecture. ![- visual selection(3).png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/MvDgSuvhK2mGBgUl8gcnO.png) *Moment Matching for Multi-Source Domain Adaptation* : https://arxiv.org/pdf/1812.01754 *SigLIP 2: Multilingual Vision-Language Encoders with Improved Semantic Understanding, Localization, and Dense Features* https://arxiv.org/pdf/2502.14786 ```py Classification Report: precision recall f1-score support aircraft_carrier 0.8667 0.4643 0.6047 56 alarm_clock 0.9706 0.8919 0.9296 74 ant 0.8889 0.8615 0.8750 65 anvil 0.5984 0.6083 0.6033 120 asparagus 0.8158 0.6078 0.6966 51 axe 0.7544 0.5309 0.6232 81 banana 0.7111 0.5517 0.6214 58 basket 0.8571 0.8182 0.8372 66 bathtub 0.7531 0.7821 0.7673 78 bear 0.9118 0.6458 0.7561 48 bee 0.9636 0.9636 0.9636 165 bird 0.8967 0.9529 0.9240 255 blackberry 0.8082 0.8429 0.8252 70 blueberry 0.8661 0.8981 0.8818 108 bottlecap 0.7821 0.8299 0.8053 147 broccoli 0.8947 0.8947 0.8947 95 bus 0.9663 0.9348 0.9503 92 butterfly 0.9333 0.9545 0.9438 132 cactus 0.9677 0.9091 0.9375 99 cake 0.8750 0.8099 0.8412 121 calculator 0.9583 0.5897 0.7302 39 camel 0.9391 0.9310 0.9351 116 camera 0.8846 0.8679 0.8762 53 candle 0.8298 0.8478 0.8387 92 cannon 0.8551 0.8551 0.8551 69 canoe 0.8462 0.7432 0.7914 74 carrot 0.8800 0.7719 0.8224 57 castle 1.0000 0.8511 0.9195 47 cat 0.8167 0.7903 0.8033 62 ceiling_fan 1.0000 0.2000 0.3333 30 cell_phone 0.7400 0.6491 0.6916 57 cello 0.8372 0.9114 0.8727 79 chair 0.8986 0.8378 0.8671 74 chandelier 0.9617 0.9263 0.9437 190 coffee_cup 0.8811 0.9389 0.9091 229 compass 0.9799 0.9012 0.9389 162 computer 0.7124 0.9045 0.7970 178 cow 0.9517 0.9718 0.9617 142 crab 0.8738 0.9000 0.8867 100 crocodile 0.9778 0.9167 0.9462 144 cruise_ship 0.8544 0.9072 0.8800 194 dog 0.8125 0.7761 0.7939 67 dolphin 0.7680 0.7500 0.7589 128 dragon 0.9512 0.9176 0.9341 85 drums 0.8919 0.9635 0.9263 137 duck 0.8774 0.8447 0.8608 161 dumbbell 0.9048 0.9500 0.9268 280 elephant 0.9038 0.8952 0.8995 105 eyeglasses 0.8636 0.8488 0.8562 291 feather 0.8564 0.9227 0.8883 181 fence 0.9211 0.8400 0.8787 125 fish 0.8963 0.8768 0.8864 138 flamingo 0.9636 0.9381 0.9507 226 flower 0.9146 0.9454 0.9298 238 foot 0.8780 0.8889 0.8834 81 fork 0.9032 0.9091 0.9061 154 frog 0.9420 0.9489 0.9455 137 giraffe 0.9643 0.9153 0.9391 118 goatee 0.8763 0.9422 0.9081 173 grapes 0.9114 0.8571 0.8834 84 guitar 0.9595 0.8554 0.9045 83 hammer 0.6111 0.7719 0.6822 114 helicopter 0.9444 0.9533 0.9488 107 helmet 0.7368 0.8550 0.7915 131 horse 0.9588 0.9819 0.9702 166 kangaroo 0.9125 0.8488 0.8795 86 lantern 0.8254 0.7536 0.7879 69 laptop 0.8108 0.5000 0.6186 60 leaf 0.7143 0.3333 0.4545 30 lion 0.9744 0.8085 0.8837 47 lipstick 0.7875 0.6632 0.7200 95 lobster 0.8963 0.9130 0.9046 161 microphone 0.7925 0.9231 0.8528 91 monkey 0.9623 0.9027 0.9315 113 mosquito 0.8636 0.8444 0.8539 45 mouse 0.9167 0.8333 0.8730 66 mug 0.8989 0.8163 0.8556 98 mushroom 0.9429 0.9429 0.9429 105 onion 0.9365 0.8429 0.8872 140 panda 1.0000 0.9726 0.9861 73 peanut 0.5900 0.7195 0.6484 82 pear 0.7692 0.7246 0.7463 69 peas 0.8000 0.7429 0.7704 70 pencil 0.6667 0.0909 0.1600 44 penguin 0.9717 0.9279 0.9493 111 pig 0.9551 0.8252 0.8854 103 pillow 0.6290 0.5571 0.5909 70 pineapple 0.9846 0.8889 0.9343 72 potato 0.6038 0.6531 0.6275 98 power_outlet 0.8636 0.4043 0.5507 47 purse 0.0000 0.0000 0.0000 27 rabbit 0.9341 0.8586 0.8947 99 raccoon 0.8836 0.9021 0.8927 143 rhinoceros 0.8750 0.9459 0.9091 74 rifle 0.7595 0.7500 0.7547 80 saxophone 0.9454 0.9886 0.9665 175 screwdriver 0.7521 0.6929 0.7213 127 sea_turtle 0.9677 0.9626 0.9651 187 see_saw 0.6679 0.8698 0.7556 215 sheep 0.9355 0.9158 0.9255 95 shoe 0.8969 0.8700 0.8832 100 skateboard 0.8632 0.8673 0.8652 211 snake 0.9302 0.9160 0.9231 131 speedboat 0.8187 0.8976 0.8563 166 spider 0.9043 0.9286 0.9163 112 squirrel 0.7945 0.8855 0.8375 131 strawberry 0.8687 0.9923 0.9264 260 streetlight 0.8178 0.9293 0.8700 198 string_bean 0.8525 0.8000 0.8254 65 submarine 0.8022 0.8902 0.8439 164 swan 0.8397 0.9003 0.8690 291 table 0.8564 0.9200 0.8871 175 teapot 0.8763 0.9189 0.8971 185 teddy-bear 0.9006 0.8953 0.8980 172 television 0.8509 0.8220 0.8362 118 the_Eiffel_Tower 0.9468 0.9082 0.9271 98 the_Great_Wall_of_China 0.9462 0.9462 0.9462 93 tiger 0.9417 0.9826 0.9617 230 toe 0.8250 0.6600 0.7333 50 train 0.9362 0.9778 0.9565 90 truck 0.9367 0.8916 0.9136 83 umbrella 0.9633 0.9545 0.9589 110 vase 0.7642 0.8393 0.8000 112 watermelon 0.9527 0.9527 0.9527 148 whale 0.7453 0.8144 0.7783 194 zebra 0.9275 0.9676 0.9471 185 accuracy 0.8691 14818 macro avg 0.8613 0.8251 0.8351 14818 weighted avg 0.8705 0.8691 0.8661 14818 ``` The model categorizes images into the following 126 classes: - **Class 0:** "aircraft_carrier" - **Class 1:** "alarm_clock" - **Class 2:** "ant" - **Class 3:** "anvil" - **Class 4:** "asparagus" - **Class 5:** "axe" - **Class 6:** "banana" - **Class 7:** "basket" - **Class 8:** "bathtub" - **Class 9:** "bear" - **Class 10:** "bee" - **Class 11:** "bird" - **Class 12:** "blackberry" - **Class 13:** "blueberry" - **Class 14:** "bottlecap" - **Class 15:** "broccoli" - **Class 16:** "bus" - **Class 17:** "butterfly" - **Class 18:** "cactus" - **Class 19:** "cake" - **Class 20:** "calculator" - **Class 21:** "camel" - **Class 22:** "camera" - **Class 23:** "candle" - **Class 24:** "cannon" - **Class 25:** "canoe" - **Class 26:** "carrot" - **Class 27:** "castle" - **Class 28:** "cat" - **Class 29:** "ceiling_fan" - **Class 30:** "cell_phone" - **Class 31:** "cello" - **Class 32:** "chair" - **Class 33:** "chandelier" - **Class 34:** "coffee_cup" - **Class 35:** "compass" - **Class 36:** "computer" - **Class 37:** "cow" - **Class 38:** "crab" - **Class 39:** "crocodile" - **Class 40:** "cruise_ship" - **Class 41:** "dog" - **Class 42:** "dolphin" - **Class 43:** "dragon" - **Class 44:** "drums" - **Class 45:** "duck" - **Class 46:** "dumbbell" - **Class 47:** "elephant" - **Class 48:** "eyeglasses" - **Class 49:** "feather" - **Class 50:** "fence" - **Class 51:** "fish" - **Class 52:** "flamingo" - **Class 53:** "flower" - **Class 54:** "foot" - **Class 55:** "fork" - **Class 56:** "frog" - **Class 57:** "giraffe" - **Class 58:** "goatee" - **Class 59:** "grapes" - **Class 60:** "guitar" - **Class 61:** "hammer" - **Class 62:** "helicopter" - **Class 63:** "helmet" - **Class 64:** "horse" - **Class 65:** "kangaroo" - **Class 66:** "lantern" - **Class 67:** "laptop" - **Class 68:** "leaf" - **Class 69:** "lion" - **Class 70:** "lipstick" - **Class 71:** "lobster" - **Class 72:** "microphone" - **Class 73:** "monkey" - **Class 74:** "mosquito" - **Class 75:** "mouse" - **Class 76:** "mug" - **Class 77:** "mushroom" - **Class 78:** "onion" - **Class 79:** "panda" - **Class 80:** "peanut" - **Class 81:** "pear" - **Class 82:** "peas" - **Class 83:** "pencil" - **Class 84:** "penguin" - **Class 85:** "pig" - **Class 86:** "pillow" - **Class 87:** "pineapple" - **Class 88:** "potato" - **Class 89:** "power_outlet" - **Class 90:** "purse" - **Class 91:** "rabbit" - **Class 92:** "raccoon" - **Class 93:** "rhinoceros" - **Class 94:** "rifle" - **Class 95:** "saxophone" - **Class 96:** "screwdriver" - **Class 97:** "sea_turtle" - **Class 98:** "see_saw" - **Class 99:** "sheep" - **Class 100:** "shoe" - **Class 101:** "skateboard" - **Class 102:** "snake" - **Class 103:** "speedboat" - **Class 104:** "spider" - **Class 105:** "squirrel" - **Class 106:** "strawberry" - **Class 107:** "streetlight" - **Class 108:** "string_bean" - **Class 109:** "submarine" - **Class 110:** "swan" - **Class 111:** "table" - **Class 112:** "teapot" - **Class 113:** "teddy-bear" - **Class 114:** "television" - **Class 115:** "the_Eiffel_Tower" - **Class 116:** "the_Great_Wall_of_China" - **Class 117:** "tiger" - **Class 118:** "toe" - **Class 119:** "train" - **Class 120:** "truck" - **Class 121:** "umbrella" - **Class 122:** "vase" - **Class 123:** "watermelon" - **Class 124:** "whale" - **Class 125:** "zebra" # **Run with Transformers🤗** ```python !pip install -q transformers torch pillow gradio ``` ```python import gradio as gr from transformers import AutoImageProcessor, SiglipForImageClassification from transformers.image_utils import load_image from PIL import Image import torch # Load model and processor model_name = "prithivMLmods/Clipart-126-DomainNet" model = SiglipForImageClassification.from_pretrained(model_name) processor = AutoImageProcessor.from_pretrained(model_name) def clipart_classification(image): """Predicts the clipart category for an input image.""" # Convert the input numpy array to a PIL Image and ensure it's in RGB format image = Image.fromarray(image).convert("RGB") # Process the image and prepare it for the model inputs = processor(images=image, return_tensors="pt") # Perform inference without gradient computation with torch.no_grad(): outputs = model(**inputs) logits = outputs.logits # Apply softmax to obtain probabilities for each class probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist() # Mapping from indices to clipart category labels labels = { "0": "aircraft_carrier", "1": "alarm_clock", "2": "ant", "3": "anvil", "4": "asparagus", "5": "axe", "6": "banana", "7": "basket", "8": "bathtub", "9": "bear", "10": "bee", "11": "bird", "12": "blackberry", "13": "blueberry", "14": "bottlecap", "15": "broccoli", "16": "bus", "17": "butterfly", "18": "cactus", "19": "cake", "20": "calculator", "21": "camel", "22": "camera", "23": "candle", "24": "cannon", "25": "canoe", "26": "carrot", "27": "castle", "28": "cat", "29": "ceiling_fan", "30": "cell_phone", "31": "cello", "32": "chair", "33": "chandelier", "34": "coffee_cup", "35": "compass", "36": "computer", "37": "cow", "38": "crab", "39": "crocodile", "40": "cruise_ship", "41": "dog", "42": "dolphin", "43": "dragon", "44": "drums", "45": "duck", "46": "dumbbell", "47": "elephant", "48": "eyeglasses", "49": "feather", "50": "fence", "51": "fish", "52": "flamingo", "53": "flower", "54": "foot", "55": "fork", "56": "frog", "57": "giraffe", "58": "goatee", "59": "grapes", "60": "guitar", "61": "hammer", "62": "helicopter", "63": "helmet", "64": "horse", "65": "kangaroo", "66": "lantern", "67": "laptop", "68": "leaf", "69": "lion", "70": "lipstick", "71": "lobster", "72": "microphone", "73": "monkey", "74": "mosquito", "75": "mouse", "76": "mug", "77": "mushroom", "78": "onion", "79": "panda", "80": "peanut", "81": "pear", "82": "peas", "83": "pencil", "84": "penguin", "85": "pig", "86": "pillow", "87": "pineapple", "88": "potato", "89": "power_outlet", "90": "purse", "91": "rabbit", "92": "raccoon", "93": "rhinoceros", "94": "rifle", "95": "saxophone", "96": "screwdriver", "97": "sea_turtle", "98": "see_saw", "99": "sheep", "100": "shoe", "101": "skateboard", "102": "snake", "103": "speedboat", "104": "spider", "105": "squirrel", "106": "strawberry", "107": "streetlight", "108": "string_bean", "109": "submarine", "110": "swan", "111": "table", "112": "teapot", "113": "teddy-bear", "114": "television", "115": "the_Eiffel_Tower", "116": "the_Great_Wall_of_China", "117": "tiger", "118": "toe", "119": "train", "120": "truck", "121": "umbrella", "122": "vase", "123": "watermelon", "124": "whale", "125": "zebra" } # Create a dictionary mapping each label to its corresponding probability (rounded) predictions = {labels[str(i)]: round(probs[i], 3) for i in range(len(probs))} return predictions # Create Gradio interface iface = gr.Interface( fn=clipart_classification, inputs=gr.Image(type="numpy"), outputs=gr.Label(label="Prediction Scores"), title="Clipart-126-DomainNet Classification", description="Upload a clipart image to classify it into one of 126 domain categories." ) # Launch the app if __name__ == "__main__": iface.launch() ``` --- # **Intended Use:** The **Clipart-126-DomainNet** model is designed for clipart image classification. It categorizes clipart images into a wide range of domains—from objects like an "aircraft_carrier" or "alarm_clock" to various everyday items. Potential use cases include: - **Digital Art and Design:** Assisting designers in organizing and retrieving clipart assets. - **Content Management:** Enhancing digital asset management systems with robust clipart classification. - **Creative Search Engines:** Enabling clipart-based search for design inspiration and resource curation. - **Computer Vision Research:** Serving as a benchmark for studies in clipart recognition and domain adaptation.
[ "aircraft_carrier", "alarm_clock", "ant", "anvil", "asparagus", "axe", "banana", "basket", "bathtub", "bear", "bee", "bird", "blackberry", "blueberry", "bottlecap", "broccoli", "bus", "butterfly", "cactus", "cake", "calculator", "camel", "camera", "candle", "cannon", "canoe", "carrot", "castle", "cat", "ceiling_fan", "cell_phone", "cello", "chair", "chandelier", "coffee_cup", "compass", "computer", "cow", "crab", "crocodile", "cruise_ship", "dog", "dolphin", "dragon", "drums", "duck", "dumbbell", "elephant", "eyeglasses", "feather", "fence", "fish", "flamingo", "flower", "foot", "fork", "frog", "giraffe", "goatee", "grapes", "guitar", "hammer", "helicopter", "helmet", "horse", "kangaroo", "lantern", "laptop", "leaf", "lion", "lipstick", "lobster", "microphone", "monkey", "mosquito", "mouse", "mug", "mushroom", "onion", "panda", "peanut", "pear", "peas", "pencil", "penguin", "pig", "pillow", "pineapple", "potato", "power_outlet", "purse", "rabbit", "raccoon", "rhinoceros", "rifle", "saxophone", "screwdriver", "sea_turtle", "see_saw", "sheep", "shoe", "skateboard", "snake", "speedboat", "spider", "squirrel", "strawberry", "streetlight", "string_bean", "submarine", "swan", "table", "teapot", "teddy-bear", "television", "the_eiffel_tower", "the_great_wall_of_china", "tiger", "toe", "train", "truck", "umbrella", "vase", "watermelon", "whale", "zebra" ]
tschosbert/swin-tiny-patch4-window7-224-finetuned-eurosat
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224-finetuned-eurosat This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 3.2455 - Accuracy: 0.5116 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 3 | 4.2463 | 0.5116 | | No log | 2.0 | 6 | 3.5920 | 0.5116 | | No log | 3.0 | 9 | 3.2455 | 0.5116 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.4.1+cpu - Datasets 3.1.0 - Tokenizers 0.20.3
[ "accordion_roller_conveyor", "accumulating_pallet_stopping", "accumulation_conveyor_chain", "acrylic_oil_cylinder_glass", "actima_clamping_device", "actima_clamping_system", "active_bridge_connection_kit", "active_charging_station", "active_shuttle_charger", "actuation_indexer", "actuation_indexing_plunger", "actuation_status_plunger", "actuator_connector_clamp", "adapter_plate", "adapter_set_for_various", "adapter_slot", "adapter_slot_connector", "adhesive_levelling_wedge", "adhesive_remover", "adhesive_steel_magnets", "adjustable_angle", "adjustable_angle_joint", "adjustable_axial_joint", "adjustable_ball_joint", "adjustable_ball_joint_clamp", "adjustable_ball_nut", "adjustable_ball_pads", "adjustable_cam_clamp", "adjustable_cam_lever", "adjustable_cam_levers", "adjustable_centre_holder", "adjustable_chain_tensioner", "adjustable_clamp_element", "adjustable_clamp_strap", "adjustable_clamp_straps", "adjustable_clamping_joint", "adjustable_clamping_latch", "adjustable_clamping_lever", "adjustable_clamping_nut", "adjustable_clamping_pin", "adjustable_clamping_screw", "adjustable_compression_latch", "adjustable_control_cover", "adjustable_control_knob", "adjustable_conveyor_legs", "adjustable_detectable_lever", "adjustable_die-cast_zinc_hinge", "adjustable_directional_knob", "adjustable_down_thrust_clamp", "adjustable_drip_oil_feeder", "adjustable_elevating_castor", "adjustable_feet_plates", "adjustable_form_a_clamp", "adjustable_form_c_gripper", "adjustable_friction_hinge", "adjustable_friction_hinges", "adjustable_gauge_arm", "adjustable_grip_clamp", "adjustable_gripper", "adjustable_grippers", "adjustable_hand_lever", "adjustable_hand_levers", "adjustable_height_cylinders", "adjustable_hinge", "adjustable_hinge_lock", "adjustable_hinge_mechanism", "adjustable_hinge_mould", "adjustable_hook_clamp", "adjustable_industrial_latch", "adjustable_industrial_stop", "adjustable_latch", "adjustable_lateral_holder", "adjustable_leveling_feet", "adjustable_leveling_foot", "adjustable_lifting_column", "adjustable_linear_bushing", "adjustable_locking_system", "adjustable_logic_cover", "adjustable_mounting_clamp", "adjustable_mounting_clamps", "adjustable_plastic_hinge", "adjustable_position_switch_actuator", "adjustable_power_clamp", "adjustable_profile_connector", "adjustable_ratchet_connectors", "adjustable_ratchet_element", "adjustable_relay_housing", "adjustable_rest_pads", "adjustable_revolving_handle", "adjustable_roller_carriage", "adjustable_rotation_bearing", "adjustable_screw_block", "adjustable_screw_blocks", "adjustable_screw_stops", "adjustable_seating_block", "adjustable_shaft_collar", "adjustable_shock_absorber", "adjustable_side_clamp", "adjustable_side_clamps", "adjustable_single_nut", "adjustable_slide_connectors", "adjustable_slide_unit", "adjustable_sliding_hub", "adjustable_slotted_hinge", "adjustable_snap_clamps", "adjustable_spirit_level", "adjustable_spirit_level_mount", "adjustable_spirit_levels", "adjustable_spring_plunger", "adjustable_stainless_hinge", "adjustable_stainless_steel_hinge", "adjustable_stainless_steel_hinges", "adjustable_stainless_steel_lever", "adjustable_stainless_steel_tension_lever", "adjustable_standard_knob", "adjustable_star_knob", "adjustable_steel_angle", "adjustable_steel_clamping_pads", "adjustable_steel_clamps", "adjustable_stop_assembly", "adjustable_stop_gate", "adjustable_suspension_bracket", "adjustable_swing_clamp", "adjustable_swing_latch", "adjustable_swivel_clamp", "adjustable_swivel_clamp_kit", "adjustable_swivel_foot", "adjustable_swivel_joint" ]
shraddha117/my-awesome-model
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
[ "benign", "malignant" ]
soliv11/ocularAllergen
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
[ "label_0", "label_1", "label_2", "label_3" ]
diegojuse/vit-base-oxford-iiit-pets
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-oxford-iiit-pets This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the pcuenq/oxford-pets dataset. It achieves the following results on the evaluation set: - Loss: 0.1970 - Accuracy: 0.9418 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.3871 | 1.0 | 370 | 0.3112 | 0.9269 | | 0.2117 | 2.0 | 740 | 0.2410 | 0.9323 | | 0.1636 | 3.0 | 1110 | 0.2264 | 0.9296 | | 0.1428 | 4.0 | 1480 | 0.2164 | 0.9337 | | 0.1274 | 5.0 | 1850 | 0.2148 | 0.9337 | ### Framework versions - Transformers 4.49.0 - Pytorch 2.6.0+cu124 - Datasets 3.4.1 - Tokenizers 0.21.1
[ "siamese", "birman", "shiba inu", "staffordshire bull terrier", "basset hound", "bombay", "japanese chin", "chihuahua", "german shorthaired", "pomeranian", "beagle", "english cocker spaniel", "american pit bull terrier", "ragdoll", "persian", "egyptian mau", "miniature pinscher", "sphynx", "maine coon", "keeshond", "yorkshire terrier", "havanese", "leonberger", "wheaten terrier", "american bulldog", "english setter", "boxer", "newfoundland", "bengal", "samoyed", "british shorthair", "great pyrenees", "abyssinian", "pug", "saint bernard", "russian blue", "scottish terrier" ]
FatimaK6/breast_cancer_convnext_large
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
[ "not reached", "reached" ]
kaisest1/vit-base-oxford-iiit-pets
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-oxford-iiit-pets This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the pcuenq/oxford-pets dataset. It achieves the following results on the evaluation set: - Loss: 0.1868 - Accuracy: 0.9378 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.371 | 1.0 | 370 | 0.3024 | 0.9296 | | 0.2148 | 2.0 | 740 | 0.2295 | 0.9391 | | 0.1603 | 3.0 | 1110 | 0.2134 | 0.9432 | | 0.1395 | 4.0 | 1480 | 0.2047 | 0.9391 | | 0.129 | 5.0 | 1850 | 0.2039 | 0.9432 | ### Framework versions - Transformers 4.50.0 - Pytorch 2.6.0+cu124 - Datasets 3.4.1 - Tokenizers 0.21.1 ### Report the results (Accuracy, Precision, and Recall) for the Oxford-Pet dataset using a zero-shot classification model - Accuracy: 0.8800 - Precision: 0.8768 - Recall: 0.8800
[ "siamese", "birman", "shiba inu", "staffordshire bull terrier", "basset hound", "bombay", "japanese chin", "chihuahua", "german shorthaired", "pomeranian", "beagle", "english cocker spaniel", "american pit bull terrier", "ragdoll", "persian", "egyptian mau", "miniature pinscher", "sphynx", "maine coon", "keeshond", "yorkshire terrier", "havanese", "leonberger", "wheaten terrier", "american bulldog", "english setter", "boxer", "newfoundland", "bengal", "samoyed", "british shorthair", "great pyrenees", "abyssinian", "pug", "saint bernard", "russian blue", "scottish terrier" ]
Dhruvt7707/swin-tiny-patch4-window7-224-finetuned-eurosat
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224-finetuned-eurosat This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6330 - Accuracy: 0.836 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 1.6895 | 1.0 | 704 | 0.8515 | 0.7828 | | 1.3324 | 2.0 | 1408 | 0.6900 | 0.8208 | | 1.2539 | 2.9968 | 2109 | 0.6330 | 0.836 | ### Framework versions - Transformers 4.50.3 - Pytorch 2.6.0+cu124 - Datasets 3.5.0 - Tokenizers 0.21.1
[ "n01443537", "n01629819", "n01641577", "n01644900", "n01698640", "n01742172", "n01768244", "n01770393", "n01774384", "n01774750", "n01784675", "n01882714", "n01910747", "n01917289", "n01944390", "n01950731", "n01983481", "n01984695", "n02002724", "n02056570", "n02058221", "n02074367", "n02094433", "n02099601", "n02099712", "n02106662", "n02113799", "n02123045", "n02123394", "n02124075", "n02125311", "n02129165", "n02132136", "n02165456", "n02226429", "n02231487", "n02233338", "n02236044", "n02268443", "n02279972", "n02281406", "n02321529", "n02364673", "n02395406", "n02403003", "n02410509", "n02415577", "n02423022", "n02437312", "n02480495", "n02481823", "n02486410", "n02504458", "n02509815", "n02666347", "n02669723", "n02699494", "n02769748", "n02788148", "n02791270", "n02793495", "n02795169", "n02802426", "n02808440", "n02814533", "n02814860", "n02815834", "n02823428", "n02837789", "n02841315", "n02843684", "n02883205", "n02892201", "n02909870", "n02917067", "n02927161", "n02948072", "n02950826", "n02963159", "n02977058", "n02988304", "n03014705", "n03026506", "n03042490", "n03085013", "n03089624", "n03100240", "n03126707", "n03160309", "n03179701", "n03201208", "n03255030", "n03355925", "n03373237", "n03388043", "n03393912", "n03400231", "n03404251", "n03424325", "n03444034", "n03447447", "n03544143", "n03584254", "n03599486", "n03617480", "n03637318", "n03649909", "n03662601", "n03670208", "n03706229", "n03733131", "n03763968", "n03770439", "n03796401", "n03814639", "n03837869", "n03838899", "n03854065", "n03891332", "n03902125", "n03930313", "n03937543", "n03970156", "n03977966", "n03980874", "n03983396", "n03992509", "n04008634", "n04023962", "n04070727", "n04074963", "n04099969", "n04118538", "n04133789", "n04146614", "n04149813", "n04179913", "n04251144", "n04254777", "n04259630", "n04265275", "n04275548", "n04285008", "n04311004", "n04328186", "n04356056", "n04366367", "n04371430", "n04376876", "n04398044", "n04399382", "n04417672", "n04456115", "n04465666", "n04486054", "n04487081", "n04501370", "n04507155", "n04532106", "n04532670", "n04540053", "n04560804", "n04562935", "n04596742", "n04598010", "n06596364", "n07056680", "n07583066", "n07614500", "n07615774", "n07646821", "n07647870", "n07657664", "n07695742", "n07711569", "n07715103", "n07720875", "n07749582", "n07753592", "n07768694", "n07871810", "n07873807", "n07875152", "n07920052", "n07975909", "n08496334", "n08620881", "n08742578", "n09193705", "n09246464", "n09256479", "n09332890", "n09428293", "n12267677", "n12520864", "n13001041", "n13652335", "n13652994", "n13719102", "n14991210" ]
brothersen/food-classifier
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # food-classifier This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.6384 - Accuracy: 0.892 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.5596 | 1.0 | 63 | 2.4049 | 0.837 | | 1.871 | 2.0 | 126 | 1.7607 | 0.895 | | 1.6474 | 2.96 | 186 | 1.6384 | 0.892 | ### Framework versions - Transformers 4.48.3 - Pytorch 2.6.0+cpu - Datasets 2.16.1 - Tokenizers 0.21.0
[ "apple_pie", "baby_back_ribs", "bruschetta", "waffles", "caesar_salad", "cannoli", "caprese_salad", "carrot_cake", "ceviche", "cheesecake", "cheese_plate", "chicken_curry", "chicken_quesadilla", "baklava", "chicken_wings", "chocolate_cake", "chocolate_mousse", "churros", "clam_chowder", "club_sandwich", "crab_cakes", "creme_brulee", "croque_madame", "cup_cakes", "beef_carpaccio", "deviled_eggs", "donuts", "dumplings", "edamame", "eggs_benedict", "escargots", "falafel", "filet_mignon", "fish_and_chips", "foie_gras", "beef_tartare", "french_fries", "french_onion_soup", "french_toast", "fried_calamari", "fried_rice", "frozen_yogurt", "garlic_bread", "gnocchi", "greek_salad", "grilled_cheese_sandwich", "beet_salad", "grilled_salmon", "guacamole", "gyoza", "hamburger", "hot_and_sour_soup", "hot_dog", "huevos_rancheros", "hummus", "ice_cream", "lasagna", "beignets", "lobster_bisque", "lobster_roll_sandwich", "macaroni_and_cheese", "macarons", "miso_soup", "mussels", "nachos", "omelette", "onion_rings", "oysters", "bibimbap", "pad_thai", "paella", "pancakes", "panna_cotta", "peking_duck", "pho", "pizza", "pork_chop", "poutine", "prime_rib", "bread_pudding", "pulled_pork_sandwich", "ramen", "ravioli", "red_velvet_cake", "risotto", "samosa", "sashimi", "scallops", "seaweed_salad", "shrimp_and_grits", "breakfast_burrito", "spaghetti_bolognese", "spaghetti_carbonara", "spring_rolls", "steak", "strawberry_shortcake", "sushi", "tacos", "takoyaki", "tiramisu", "tuna_tartare" ]
mariamoracrossitcr/vit-base-beans-demo-v25marzo
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-beans-demo-v25marzo This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the beans dataset. It achieves the following results on the evaluation set: - Loss: 0.0275 - Accuracy: 0.9925 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 0.0301 | 1.5385 | 100 | 0.0442 | 0.9850 | | 0.0084 | 3.0769 | 200 | 0.0275 | 0.9925 | ### Framework versions - Transformers 4.50.0 - Pytorch 2.6.0+cu124 - Datasets 2.17.0 - Tokenizers 0.21.1
[ "angular_leaf_spot", "bean_rust", "healthy" ]
prithivMLmods/Deepfake-vs-Real-8000
![6.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/vA2N-JPgpmrjDNw5-8Wmx.png) # **Deepfake-vs-Real-8000** > **Deepfake-vs-Real-8000** is an image classification vision-language encoder model fine-tuned from **google/siglip2-base-patch16-224** for a single-label classification task. It is designed to detect whether an image is a deepfake or a real one using the **SiglipForImageClassification** architecture. ```py Classification Report: precision recall f1-score support Deepfake 0.9990 0.9972 0.9981 4000 Real one 0.9973 0.9990 0.9981 4000 accuracy 0.9981 8000 macro avg 0.9981 0.9981 0.9981 8000 weighted avg 0.9981 0.9981 0.9981 8000 ``` ![download.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/MqyYUuGb-gZDsCtusIQOr.png) The model categorizes images into two classes: - **Class 0:** "Deepfake" - **Class 1:** "Real one" --- # **Run with Transformers🤗** ```python !pip install -q transformers torch pillow gradio ``` ```python import gradio as gr from transformers import AutoImageProcessor from transformers import SiglipForImageClassification from transformers.image_utils import load_image from PIL import Image import torch # Load model and processor model_name = "prithivMLmods/Deepfake-vs-Real-8000" model = SiglipForImageClassification.from_pretrained(model_name) processor = AutoImageProcessor.from_pretrained(model_name) def deepfake_classification(image): """Predicts whether an image is a Deepfake or Real.""" image = Image.fromarray(image).convert("RGB") inputs = processor(images=image, return_tensors="pt") with torch.no_grad(): outputs = model(**inputs) logits = outputs.logits probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist() labels = { "0": "Deepfake", "1": "Real one" } predictions = {labels[str(i)]: round(probs[i], 3) for i in range(len(probs))} return predictions # Create Gradio interface iface = gr.Interface( fn=deepfake_classification, inputs=gr.Image(type="numpy"), outputs=gr.Label(label="Prediction Scores"), title="Deepfake vs. Real Image Classification", description="Upload an image to determine if it's a Deepfake or a Real one." ) # Launch the app if __name__ == "__main__": iface.launch() ``` --- # **Intended Use:** The **Deepfake-vs-Real-8000** model is designed to detect deepfake images from real ones. Potential use cases include: - **Deepfake Detection:** Assisting cybersecurity experts and forensic teams in detecting synthetic media. - **Media Verification:** Helping journalists and fact-checkers verify the authenticity of images. - **AI Ethics & Research:** Contributing to studies on AI-generated content detection. - **Social Media Moderation:** Enhancing tools to prevent misinformation and digital deception.
[ "deepfake", "real one" ]
prithivMLmods/AI-vs-Deepfake-vs-Real-9999
![7.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/nIqLiFYrhj1XEF9xeDPI4.png) # **AI-vs-Deepfake-vs-Real-9999** > **AI-vs-Deepfake-vs-Real-9999** is an image classification vision-language encoder model fine-tuned from **google/siglip2-base-patch16-224** for a single-label classification task. It is designed to detect whether an image is AI-generated, a deepfake, or a real one using the **SiglipForImageClassification** architecture. ```py Classification Report: precision recall f1-score support Artificial 0.9994 0.9979 0.9986 3333 Deepfake 0.9979 0.9994 0.9987 3333 Real one 0.9994 0.9994 0.9994 3333 accuracy 0.9989 9999 macro avg 0.9989 0.9989 0.9989 9999 weighted avg 0.9989 0.9989 0.9989 9999 ``` ![sdsxzdcvxzdcv.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/uZE8mfoCjc_hbCJg17xy1.png) The model categorizes images into three classes: - **Class 0:** "Artificial" - **Class 1:** "Deepfake" - **Class 2:** "Real one" --- # **Run with Transformers🤗** ```python !pip install -q transformers torch pillow gradio ``` ```python import gradio as gr from transformers import AutoImageProcessor from transformers import SiglipForImageClassification from transformers.image_utils import load_image from PIL import Image import torch # Load model and processor model_name = "prithivMLmods/AI-vs-Deepfake-vs-Real-9999" model = SiglipForImageClassification.from_pretrained(model_name) processor = AutoImageProcessor.from_pretrained(model_name) def classify_image(image): """Predicts whether an image is Artificial, Deepfake, or Real.""" image = Image.fromarray(image).convert("RGB") inputs = processor(images=image, return_tensors="pt") with torch.no_grad(): outputs = model(**inputs) logits = outputs.logits probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist() labels = { "0": "Artificial", "1": "Deepfake", "2": "Real one" } predictions = {labels[str(i)]: round(probs[i], 3) for i in range(len(probs))} return predictions # Create Gradio interface iface = gr.Interface( fn=classify_image, inputs=gr.Image(type="numpy"), outputs=gr.Label(label="Prediction Scores"), title="AI vs. Deepfake vs. Real Image Classification", description="Upload an image to determine if it's AI-generated, a Deepfake, or a Real one." ) # Launch the app if __name__ == "__main__": iface.launch() ``` --- # **Intended Use:** The **AI-vs-Deepfake-vs-Real-9999** model is designed to classify images into three categories: AI-generated, deepfake, or real. Potential use cases include: - **AI Content Detection:** Identifying AI-generated images from real ones. - **Deepfake Detection:** Assisting cybersecurity experts and forensic teams in detecting synthetic media. - **Media Verification:** Helping journalists and fact-checkers verify the authenticity of images. - **AI Ethics & Research:** Contributing to studies on AI-generated content detection. - **Social Media Moderation:** Enhancing tools to prevent misinformation and digital deception.
[ "artificial", "deepfake", "real one" ]
svdb01/swin-tiny-patch4-window7-224-finetuned-eurosat
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224-finetuned-eurosat This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0473 - Accuracy: 0.9867 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2151 | 1.0 | 190 | 0.0894 | 0.9726 | | 0.1873 | 2.0 | 380 | 0.0569 | 0.9822 | | 0.1161 | 3.0 | 570 | 0.0473 | 0.9867 | ### Framework versions - Transformers 4.50.0 - Pytorch 2.6.0+cu124 - Datasets 3.4.1 - Tokenizers 0.21.1
[ "annualcrop", "forest", "herbaceousvegetation", "highway", "industrial", "pasture", "permanentcrop", "residential", "river", "sealake" ]
towa-kato/swin-tiny-patch4-window7-224-finetuned-eurosat
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224-finetuned-eurosat This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0757 - Accuracy: 0.9728 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 0.4642 | 1.0 | 352 | 0.1344 | 0.9532 | | 0.367 | 2.0 | 704 | 0.0884 | 0.9688 | | 0.3387 | 2.9922 | 1053 | 0.0757 | 0.9728 | ### Framework versions - Transformers 4.50.0 - Pytorch 2.6.0+cu124 - Datasets 3.4.1 - Tokenizers 0.21.1
[ "airplane", "automobile", "bird", "cat", "deer", "dog", "frog", "horse", "ship", "truck" ]
towa-kato/convnext-tiny-224-finetuned-eurosat-albumentations
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # convnext-tiny-224-finetuned-eurosat-albumentations This model is a fine-tuned version of [facebook/convnext-tiny-224](https://huggingface.co/facebook/convnext-tiny-224) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2066 - Accuracy: 0.9342 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 0.4905 | 1.0 | 352 | 0.3714 | 0.8934 | | 0.3144 | 2.0 | 704 | 0.2355 | 0.9294 | | 0.2465 | 2.9922 | 1053 | 0.2066 | 0.9342 | ### Framework versions - Transformers 4.50.0 - Pytorch 2.6.0+cu124 - Datasets 3.4.1 - Tokenizers 0.21.1
[ "airplane", "automobile", "bird", "cat", "deer", "dog", "frog", "horse", "ship", "truck" ]
towa-kato/swin-tiny-patch4-window7-224-finetuned-eurosat-kornia
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224-finetuned-eurosat-kornia This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0677 - Accuracy: 0.9776 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 0.1188 | 1.0 | 352 | 0.1105 | 0.9614 | | 0.0698 | 2.0 | 704 | 0.0780 | 0.9738 | | 0.016 | 2.9922 | 1053 | 0.0677 | 0.9776 | ### Framework versions - Transformers 4.50.0 - Pytorch 2.6.0+cu124 - Datasets 3.4.1 - Tokenizers 0.21.1
[ "airplane", "automobile", "bird", "cat", "deer", "dog", "frog", "horse", "ship", "truck" ]
Jared1125/swin-tiny-patch4-window7-224-finetuned-eurosat
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224-finetuned-eurosat This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the cifar10 dataset. It achieves the following results on the evaluation set: - Loss: 0.0868 - Accuracy: 0.9684 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 0.4506 | 1.0 | 352 | 0.1273 | 0.958 | | 0.3144 | 2.0 | 704 | 0.0971 | 0.9658 | | 0.3258 | 2.9922 | 1053 | 0.0868 | 0.9684 | ### Framework versions - Transformers 4.50.0 - Pytorch 2.6.0+cu124 - Datasets 1.18.3 - Tokenizers 0.21.1
[ "airplane", "automobile", "bird", "cat", "deer", "dog", "frog", "horse", "ship", "truck" ]
Schram03/vit-base-oxford-iiit-pets
# oxford-pets-zero-shot This model achieves the following results: - Accuracy: 0.8800 - Precision: 0.8768 - Recall: 0.8800 # vit-base-oxford-iiit-pets (Transfer learning) This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the pcuenq/oxford-pets dataset. It achieves the following results on the evaluation set: - Loss: 0.1814 - Accuracy: 0.9499 ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.3645 | 1.0 | 370 | 0.3259 | 0.9296 | | 0.2118 | 2.0 | 740 | 0.2660 | 0.9350 | | 0.1643 | 3.0 | 1110 | 0.2436 | 0.9323 | | 0.1482 | 4.0 | 1480 | 0.2364 | 0.9364 | | 0.1412 | 5.0 | 1850 | 0.2357 | 0.9350 | ### Framework versions - Transformers 4.50.0 - Pytorch 2.6.0+cu124 - Datasets 3.4.1 - Tokenizers 0.21.1
[ "siamese", "birman", "shiba inu", "staffordshire bull terrier", "basset hound", "bombay", "japanese chin", "chihuahua", "german shorthaired", "pomeranian", "beagle", "english cocker spaniel", "american pit bull terrier", "ragdoll", "persian", "egyptian mau", "miniature pinscher", "sphynx", "maine coon", "keeshond", "yorkshire terrier", "havanese", "leonberger", "wheaten terrier", "american bulldog", "english setter", "boxer", "newfoundland", "bengal", "samoyed", "british shorthair", "great pyrenees", "abyssinian", "pug", "saint bernard", "russian blue", "scottish terrier" ]
weileluc/vit-base-oxford-iiit-pets
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-oxford-iiit-pets This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the pcuenq/oxford-pets dataset. It achieves the following results on the evaluation set: - Loss: 0.2027 - Accuracy: 0.9432 ## Model description This model is a fine-tuned version of Google's ViT base model (`vit-base-patch16-224`) adapted for image classification on the Oxford-IIIT Pet dataset. It distinguishes between 37 cat and dog breeds using transfer learning and achieves strong performance with minimal training effort. The model was trained using the Hugging Face `Trainer` API and can be used for pet image classification tasks or as a base for further fine-tuning. ## Intended uses & limitations **Intended uses:** - Classifying pet images (dogs and cats) by breed - Educational purposes for transfer learning and computer vision - Comparisons with zero-shot models such as CLIP **Limitations:** - The model is only trained on 37 specific breeds from the Oxford-IIIT Pet dataset - May perform poorly on images outside this dataset (e.g. unusual angles, bad lighting, non-pets) ## Training and evaluation data The model was fine-tuned on the [Oxford-IIIT Pet dataset](https://www.robots.ox.ac.uk/~vgg/data/pets/), which contains 7,349 images of 37 different dog and cat breeds. The dataset was split into: - 80% for training - 10% for validation - 10% for testing The evaluation results are reported on the validation set. ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.3729 | 1.0 | 370 | 0.3053 | 0.9175 | | 0.2022 | 2.0 | 740 | 0.2266 | 0.9323 | | 0.1653 | 3.0 | 1110 | 0.2137 | 0.9350 | | 0.1555 | 4.0 | 1480 | 0.2052 | 0.9391 | | 0.1224 | 5.0 | 1850 | 0.2024 | 0.9405 | ### Framework versions - Transformers 4.50.3 - Pytorch 2.6.0+cpu - Datasets 3.5.0 - Tokenizers 0.21.1 ## 🔍 Zero-Shot Classification Comparison This model (`vit-base-oxford-iiit-pets`) was compared to a zero-shot model using **CLIP** ([openai/clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)) on the **Oxford-IIIT Pet** dataset. **Zero-Shot CLIP Evaluation Results:** - Accuracy: 0.8800 % - Precision: 0.8768 % - Recall: 0.8800 % The fine-tuned ViT model achieved: - Accuracy: 94.32 % This shows that transfer learning using ViT outperforms CLIP on this dataset. ## 🧪 Live Demo 👉 Try it live: [Gradio App on Hugging Face Spaces](https://huggingface.co/spaces/weileluc/pet-classifier)
[ "siamese", "birman", "shiba inu", "staffordshire bull terrier", "basset hound", "bombay", "japanese chin", "chihuahua", "german shorthaired", "pomeranian", "beagle", "english cocker spaniel", "american pit bull terrier", "ragdoll", "persian", "egyptian mau", "miniature pinscher", "sphynx", "maine coon", "keeshond", "yorkshire terrier", "havanese", "leonberger", "wheaten terrier", "american bulldog", "english setter", "boxer", "newfoundland", "bengal", "samoyed", "british shorthair", "great pyrenees", "abyssinian", "pug", "saint bernard", "russian blue", "scottish terrier" ]
kitty365/vit-base-oxford-iiit-pets
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-oxford-iiit-pets This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the pcuenq/oxford-pets dataset. It achieves the following results on the evaluation set: - Loss: 0.2038 - Accuracy: 0.9445 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.373 | 1.0 | 370 | 0.2732 | 0.9337 | | 0.2127 | 2.0 | 740 | 0.2148 | 0.9405 | | 0.1801 | 3.0 | 1110 | 0.1918 | 0.9445 | | 0.1448 | 4.0 | 1480 | 0.1857 | 0.9472 | | 0.1308 | 5.0 | 1850 | 0.1814 | 0.9445 | ### Framework versions - Transformers 4.50.0 - Pytorch 2.6.0+cu124 - Datasets 3.4.1 - Tokenizers 0.21.1 ### Zero-Shot Evaluation - Model used: `openai/clip-vit-large-patch14` - Dataset: Oxford-IIIT-Pets (`pcuenq/oxford-pets`) - Accuracy: 0.8800 - Precision: 0.8768 - Recall: 0.8800 The zero-shot evaluation was done using Hugging Face Transformers and the CLIP model on the Oxford-Pet dataset.
[ "siamese", "birman", "shiba inu", "staffordshire bull terrier", "basset hound", "bombay", "japanese chin", "chihuahua", "german shorthaired", "pomeranian", "beagle", "english cocker spaniel", "american pit bull terrier", "ragdoll", "persian", "egyptian mau", "miniature pinscher", "sphynx", "maine coon", "keeshond", "yorkshire terrier", "havanese", "leonberger", "wheaten terrier", "american bulldog", "english setter", "boxer", "newfoundland", "bengal", "samoyed", "british shorthair", "great pyrenees", "abyssinian", "pug", "saint bernard", "russian blue", "scottish terrier" ]
thini77/vit-base-oxford-iiit-pets
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-oxford-iiit-pets This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the pcuenq/oxford-pets dataset. It achieves the following results on the evaluation set: - Loss: 0.2023 - Accuracy: 0.9459 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.3878 | 1.0 | 370 | 0.2921 | 0.9215 | | 0.2188 | 2.0 | 740 | 0.2260 | 0.9269 | | 0.1832 | 3.0 | 1110 | 0.2136 | 0.9283 | | 0.14 | 4.0 | 1480 | 0.2050 | 0.9323 | | 0.1322 | 5.0 | 1850 | 0.2030 | 0.9323 | ### Framework versions - Transformers 4.50.0 - Pytorch 2.6.0+cu124 - Datasets 3.4.1 - Tokenizers 0.21.1 Zero-Shot Evaluation Model used: ⁠ openai/clip-vit-large-patch14 ⁠ Dataset: Oxford-IIIT-Pets (⁠ pcuenq/oxford-pets ⁠) Accuracy: 0.8800 Precision: 0.8768 Recall: 0.8800 The zero-shot evaluation was done using Hugging Face Transformers and the CLIP model on the Oxford-Pet dataset.
[ "siamese", "birman", "shiba inu", "staffordshire bull terrier", "basset hound", "bombay", "japanese chin", "chihuahua", "german shorthaired", "pomeranian", "beagle", "english cocker spaniel", "american pit bull terrier", "ragdoll", "persian", "egyptian mau", "miniature pinscher", "sphynx", "maine coon", "keeshond", "yorkshire terrier", "havanese", "leonberger", "wheaten terrier", "american bulldog", "english setter", "boxer", "newfoundland", "bengal", "samoyed", "british shorthair", "great pyrenees", "abyssinian", "pug", "saint bernard", "russian blue", "scottish terrier" ]
kleemyan/vit-base-oxford-iiit-pets
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-oxford-iiit-pets This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the pcuenq/oxford-pets dataset. It achieves the following results on the evaluation set: - Loss: 0.1814 - Accuracy: 0.9418 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.381 | 1.0 | 370 | 0.3033 | 0.9323 | | 0.2102 | 2.0 | 740 | 0.2452 | 0.9310 | | 0.1771 | 3.0 | 1110 | 0.2192 | 0.9364 | | 0.14 | 4.0 | 1480 | 0.2116 | 0.9364 | | 0.1369 | 5.0 | 1850 | 0.2113 | 0.9391 | ### Framework versions - Transformers 4.50.0 - Pytorch 2.6.0+cu124 - Datasets 3.4.1 - Tokenizers 0.21.1 Zero-Shot Evaluation Model used: ⁠ openai/clip-vit-large-patch14 ⁠ Dataset: Oxford-IIIT-Pets (⁠ pcuenq/oxford-pets ⁠) Accuracy: 0.8800 Precision: 0.8768 Recall: 0.8800 The zero-shot evaluation was done using Hugging Face Transformers and the CLIP model on the Oxford-Pet dataset.
[ "siamese", "birman", "shiba inu", "staffordshire bull terrier", "basset hound", "bombay", "japanese chin", "chihuahua", "german shorthaired", "pomeranian", "beagle", "english cocker spaniel", "american pit bull terrier", "ragdoll", "persian", "egyptian mau", "miniature pinscher", "sphynx", "maine coon", "keeshond", "yorkshire terrier", "havanese", "leonberger", "wheaten terrier", "american bulldog", "english setter", "boxer", "newfoundland", "bengal", "samoyed", "british shorthair", "great pyrenees", "abyssinian", "pug", "saint bernard", "russian blue", "scottish terrier" ]
n1kooo/vit-base-oxford-iiit-pets
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-oxford-iiit-pets This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the pcuenq/oxford-pets dataset. It achieves the following results on the evaluation set: - Loss: 0.1782 - Accuracy: 0.9513 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.3652 | 1.0 | 370 | 0.2811 | 0.9269 | | 0.2181 | 2.0 | 740 | 0.2083 | 0.9378 | | 0.1688 | 3.0 | 1110 | 0.1952 | 0.9364 | | 0.1353 | 4.0 | 1480 | 0.1847 | 0.9405 | | 0.1506 | 5.0 | 1850 | 0.1849 | 0.9350 | ### Framework versions - Transformers 4.50.0 - Pytorch 2.6.0+cu124 - Datasets 3.4.1 - Tokenizers 0.21.1 ### Zero-Shot Evaluation - Model used: ⁠ openai/clip-vit-large-patch14 ⁠ - Dataset: Oxford-IIIT-Pets (⁠ pcuenq/oxford-pets ⁠) - ⁠Accuracy: 0.8785 - ⁠Precision: 0.8761 - ⁠Recall: 0.8785 The zero-shot evaluation was done using Hugging Face Transformers and the CLIP model on the Oxford-Pet dataset.
[ "19", "29", "0", "11", "1", "86", "90", "28", "23", "31", "39", "96", "82", "17", "71", "8", "97", "80", "74", "59", "70", "87", "84", "64", "52", "42", "47", "65", "21", "22", "81", "24", "78", "45", "49", "56", "76", "89", "73", "14", "9", "6", "20", "98", "36", "55", "72", "43", "51", "35", "83", "33", "27", "53", "92", "50", "15", "18", "46", "75", "38", "66", "77", "69", "95", "99", "93", "4", "61", "94", "68", "34", "32", "88", "67", "30", "62", "63", "40", "26", "48", "79", "85", "54", "44", "7", "12", "2", "41", "37", "13", "25", "10", "57", "5", "60", "91", "3", "58", "16" ]
prithivMLmods/Rice-Leaf-Disease
![sdsffsdf.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/RZ0c2zsJESPWMy4avejVY.png) # **Rice-Leaf-Disease** 🌾 > **Rice-Leaf-Disease** is an image classification model fine-tuned from **google/siglip2-base-patch16-224** for detecting and categorizing diseases in rice leaves. It is built using the **SiglipForImageClassification** architecture and helps in early identification of plant diseases for better crop management. > ```py Classification Report: precision recall f1-score support Bacterialblight 0.8853 0.9596 0.9210 1585 Blast 0.9271 0.8472 0.8853 1440 Brownspot 0.9746 0.9369 0.9554 1600 Healthy 1.0000 1.0000 1.0000 1488 Tungro 0.9589 0.9977 0.9779 1308 accuracy 0.9477 7421 macro avg 0.9492 0.9483 0.9479 7421 weighted avg 0.9486 0.9477 0.9474 7421 ``` ![download (1).png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/iuXCriQpPXJmLeMy--WJr.png) ### **Disease Categories:** - **Class 0:** Bacterial Blight - **Class 1:** Blast - **Class 2:** Brown Spot - **Class 3:** Healthy - **Class 4:** Tungro --- # **Run with Transformers 🤗** ```python !pip install -q transformers torch pillow gradio ``` ```python import gradio as gr from transformers import AutoImageProcessor, SiglipForImageClassification from transformers.image_utils import load_image from PIL import Image import torch # Load model and processor model_name = "prithivMLmods/Rice-Leaf-Disease" model = SiglipForImageClassification.from_pretrained(model_name) processor = AutoImageProcessor.from_pretrained(model_name) def classify_leaf_disease(image): """Predicts the disease type in a rice leaf image.""" image = Image.fromarray(image).convert("RGB") inputs = processor(images=image, return_tensors="pt") with torch.no_grad(): outputs = model(**inputs) logits = outputs.logits probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist() labels = { "0": "Bacterial Blight", "1": "Blast", "2": "Brown Spot", "3": "Healthy", "4": "Tungro" } predictions = {labels[str(i)]: round(probs[i], 3) for i in range(len(probs))} return predictions # Create Gradio interface iface = gr.Interface( fn=classify_leaf_disease, inputs=gr.Image(type="numpy"), outputs=gr.Label(label="Prediction Scores"), title="Rice Leaf Disease Classification 🌾", description="Upload an image of a rice leaf to identify if it is healthy or affected by diseases like Bacterial Blight, Blast, Brown Spot, or Tungro." ) # Launch the app if __name__ == "__main__": iface.launch() ``` --- # **Intended Use:** The **Rice-Leaf-Disease** model helps in detecting and classifying rice leaf diseases early, supporting: ✅ **Farmers & Agriculturists:** Quick disease detection for better crop management. ✅ **Agricultural Research:** Monitoring and analyzing plant disease patterns. ✅ **AI & Machine Learning Projects:** Applying AI to real-world agricultural challenges.
[ "bacterialblight", "blast", "brownspot", "healthy", "tungro" ]
prithivMLmods/Age-Classification-SigLIP2
![AAAAAAAA.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/hWrRztXlZ0j87BEajVNtA.png) # **Age-Classification-SigLIP2** > **Age-Classification-SigLIP2** is an image classification vision-language encoder model fine-tuned from **google/siglip2-base-patch16-224** for a single-label classification task. It is designed to predict the age group of a person from an image using the **SiglipForImageClassification** architecture. ```py Classification Report: precision recall f1-score support Child 0-12 0.9744 0.9562 0.9652 2193 Teenager 13-20 0.8675 0.7032 0.7768 1779 Adult 21-44 0.9053 0.9769 0.9397 9999 Middle Age 45-64 0.9059 0.8317 0.8672 3785 Aged 65+ 0.9144 0.8397 0.8755 1260 accuracy 0.9109 19016 macro avg 0.9135 0.8615 0.8849 19016 weighted avg 0.9105 0.9109 0.9087 19016 ``` ![download (1).png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/rgfZs4duAb09vRvFmO3Qy.png) The model categorizes images into five age groups: - **Class 0:** "Child 0-12" - **Class 1:** "Teenager 13-20" - **Class 2:** "Adult 21-44" - **Class 3:** "Middle Age 45-64" - **Class 4:** "Aged 65+" # **Run with Transformers🤗** ```python !pip install -q transformers torch pillow gradio ``` ```python import gradio as gr from transformers import AutoImageProcessor from transformers import SiglipForImageClassification from transformers.image_utils import load_image from PIL import Image import torch # Load model and processor model_name = "prithivMLmods/Age-Classification-SigLIP2" model = SiglipForImageClassification.from_pretrained(model_name) processor = AutoImageProcessor.from_pretrained(model_name) def age_classification(image): """Predicts the age group of a person from an image.""" image = Image.fromarray(image).convert("RGB") inputs = processor(images=image, return_tensors="pt") with torch.no_grad(): outputs = model(**inputs) logits = outputs.logits probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist() labels = { "0": "Child 0-12", "1": "Teenager 13-20", "2": "Adult 21-44", "3": "Middle Age 45-64", "4": "Aged 65+" } predictions = {labels[str(i)]: round(probs[i], 3) for i in range(len(probs))} return predictions # Create Gradio interface iface = gr.Interface( fn=age_classification, inputs=gr.Image(type="numpy"), outputs=gr.Label(label="Prediction Scores"), title="Age Group Classification", description="Upload an image to predict the person's age group." ) # Launch the app if __name__ == "__main__": iface.launch() ``` # **Sample Inference:** ![Screenshot 2025-03-28 at 12-25-46 Age Group Classification.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/ARlNhc-ZxqfBntu-SkIVH.png) ![Screenshot 2025-03-28 at 12-36-49 Age Group Classification.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/tvZ2VMoaQqNKdIx39DrTe.png) # **Intended Use:** The **Age-Classification-SigLIP2** model is designed to classify images into five age categories. Potential use cases include: - **Demographic Analysis:** Helping businesses and researchers analyze age distribution. - **Health & Fitness Applications:** Assisting in age-based health recommendations. - **Security & Access Control:** Implementing age verification in digital systems. - **Retail & Marketing:** Enhancing personalized customer experiences. - **Forensics & Surveillance:** Aiding in age estimation for security purposes.
[ "child 0-12", "teenager 13-20", "adult 21-44", "middle age 45-64", "aged 65+" ]
prithivMLmods/Indian-Western-Food-34
![fffffff.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/jNpPqvnYKDNV-LqGpgnI-.png) # **Indian-Western-Food-34** > **Indian-Western-Food-34** is an image classification vision-language encoder model fine-tuned from **google/siglip2-base-patch16-224** for a single-label classification task. It is designed to classify food images into various Indian and Western dishes using the **SiglipForImageClassification** architecture. ```py Classification Report: precision recall f1-score support Baked Potato 0.9912 0.9780 0.9846 1500 Crispy Chicken 0.9811 0.9707 0.9759 1500 Donut 0.9893 0.9893 0.9893 1500 Fries 0.9742 0.9827 0.9784 1500 Hot Dog 0.9830 0.9735 0.9783 1548 Sandwich 0.9898 0.9673 0.9784 1500 Taco 0.9327 0.9427 0.9377 1500 Taquito 0.9624 0.9387 0.9504 1500 Apple Pie 0.9666 0.9540 0.9602 1000 Burger 0.9114 0.9940 0.9509 331 Butter Naan 0.9691 0.9186 0.9431 307 Chai 0.9801 1.0000 0.9899 344 Chapati 0.9188 0.9694 0.9435 327 Cheesecake 0.9573 0.9640 0.9606 1000 Chicken Curry 0.9610 0.9850 0.9728 1000 Chole Bhature 0.9841 0.9867 0.9854 376 Dal Makhani 0.9698 0.9797 0.9747 295 Dhokla 0.9959 0.9959 0.9959 245 Fried Rice 0.9485 1.0000 0.9736 350 Ice Cream 0.9569 0.9770 0.9668 1000 Idli 0.9934 1.0000 0.9967 302 Jalebi 0.9931 1.0000 0.9965 288 Kaathi Rolls 0.9640 0.9606 0.9623 279 Kadai Paneer 0.9848 0.9731 0.9789 334 Kulfi 0.9810 0.9673 0.9741 214 Masala Dosa 0.9890 0.9890 0.9890 273 Momos 0.9908 0.9969 0.9938 323 Omelette 0.9829 0.9790 0.9810 1000 Paani Puri 0.9281 0.9861 0.9562 144 Pakode 0.9738 0.9665 0.9701 269 Pav Bhaji 0.9901 0.9803 0.9852 305 Pizza 0.9647 0.9927 0.9785 275 Samosa 0.9878 0.9959 0.9918 244 Sushi 0.9969 0.9800 0.9884 1000 accuracy 0.9729 23873 macro avg 0.9719 0.9775 0.9745 23873 weighted avg 0.9731 0.9729 0.9729 23873 ``` --- The model categorizes images into 34 food classes: ### **Western Foods** - **Class 0:** "Baked Potato" - **Class 1:** "Crispy Chicken" - **Class 2:** "Donut" - **Class 3:** "Fries" - **Class 4:** "Hot Dog" - **Class 5:** "Sandwich" - **Class 6:** "Taco" - **Class 7:** "Taquito" - **Class 8:** "Apple Pie" - **Class 9:** "Burger" - **Class 13:** "Cheesecake" - **Class 18:** "Fried Rice" - **Class 19:** "Ice Cream" - **Class 27:** "Omelette" - **Class 31:** "Pizza" - **Class 33:** "Sushi" ### **Indian Foods** - **Class 10:** "Butter Naan" - **Class 11:** "Chai" - **Class 12:** "Chapati" - **Class 14:** "Chicken Curry" - **Class 15:** "Chole Bhature" - **Class 16:** "Dal Makhani" - **Class 17:** "Dhokla" - **Class 20:** "Idli" - **Class 21:** "Jalebi" - **Class 22:** "Kaathi Rolls" - **Class 23:** "Kadai Paneer" - **Class 24:** "Kulfi" - **Class 25:** "Masala Dosa" - **Class 26:** "Momos" - **Class 28:** "Paani Puri" - **Class 29:** "Pakode" - **Class 30:** "Pav Bhaji" - **Class 32:** "Samosa" --- # **Run with Transformers🤗** ```python !pip install -q transformers torch pillow gradio ``` ```python import gradio as gr from transformers import AutoImageProcessor from transformers import SiglipForImageClassification from transformers.image_utils import load_image from PIL import Image import torch # Load model and processor model_name = "prithivMLmods/Indian-Western-Food-34" model = SiglipForImageClassification.from_pretrained(model_name) processor = AutoImageProcessor.from_pretrained(model_name) def food_classification(image): """Predicts the type of food in an image.""" image = Image.fromarray(image).convert("RGB") inputs = processor(images=image, return_tensors="pt") with torch.no_grad(): outputs = model(**inputs) logits = outputs.logits probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist() labels = { "0": "Baked Potato", "1": "Crispy Chicken", "2": "Donut", "3": "Fries", "4": "Hot Dog", "5": "Sandwich", "6": "Taco", "7": "Taquito", "8": "Apple Pie", "9": "Burger", "10": "Butter Naan", "11": "Chai", "12": "Chapati", "13": "Cheesecake", "14": "Chicken Curry", "15": "Chole Bhature", "16": "Dal Makhani", "17": "Dhokla", "18": "Fried Rice", "19": "Ice Cream", "20": "Idli", "21": "Jalebi", "22": "Kaathi Rolls", "23": "Kadai Paneer", "24": "Kulfi", "25": "Masala Dosa", "26": "Momos", "27": "Omelette", "28": "Paani Puri", "29": "Pakode", "30": "Pav Bhaji", "31": "Pizza", "32": "Samosa", "33": "Sushi" } predictions = {labels[str(i)]: round(probs[i], 3) for i in range(len(probs))} return predictions # Create Gradio interface iface = gr.Interface( fn=food_classification, inputs=gr.Image(type="numpy"), outputs=gr.Label(label="Prediction Scores"), title="Indian & Western Food Classification", description="Upload a food image to classify it into one of the 34 food types." ) # Launch the app if __name__ == "__main__": iface.launch() ``` --- # **Intended Use:** The **Indian-Western-Food-34** model is designed to classify food images into Indian and Western dishes. Potential use cases include: - **Restaurant & Food Delivery Apps:** Enhancing food recognition for better menu recommendations. - **Health & Nutrition Apps:** Tracking calorie intake and diet preferences. - **Food Blogging & Social Media:** Auto-tagging food items in posts. - **Educational Purposes:** Teaching AI-based food classification.
[ "baked potato", "crispy chicken", "donut", "fries", "hot dog", "sandwich", "taco", "taquito", "apple pie", "burger", "butter naan", "chai", "chapati", "cheesecake", "chicken curry", "chole bhature", "dal makhani", "dhokla", "fried rice", "ice cream", "idli", "jalebi", "kaathi rolls", "kadai paneer", "kulfi", "masala dosa", "momos", "omelette", "paani puri", "pakode", "pav bhaji", "pizza", "samosa", "sushi" ]
startanalytics/autotrain-melanoma-vit-v1
# Model Trained Using AutoTrain - Problem type: Image Classification ## Validation Metrics loss: 0.4700036942958832 f1_macro: 0.8440663933220411 f1_micro: 0.9007633587786259 f1_weighted: 0.8993592040241694 precision_macro: 0.8985460933094256 precision_micro: 0.9007633587786259 precision_weighted: 0.9004997984022535 recall_macro: 0.8042197414881518 recall_micro: 0.9007633587786259 recall_weighted: 0.9007633587786259 accuracy: 0.9007633587786259
[ "actinic keratosis", "basal cell carcinoma", "dermatofibroma", "melanoma", "melanoma metastasis", "nevus", "seborrheic keratosis", "solar lentigo", "squamous cell carcinoma", "vascular lesion" ]
prithivMLmods/Mnist-Digits-SigLIP2
![fQPjrpOKabPgt_9vCH4Qj.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/rB4X4q0YZkX0WJW6fZ83F.png) ![ssdsdsdfsdfcsdfc.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/cyqhEw4goojpJ2shwDdEb.png) # **Mnist-Digits-SigLIP2** > **Mnist-Digits-SigLIP2** is an image classification model fine-tuned from **google/siglip2-base-patch16-224** to classify handwritten digits (0-9) using the **SiglipForImageClassification** architecture. It is trained on the MNIST dataset for accurate digit recognition. ```py Classification Report: precision recall f1-score support 0 0.9988 0.9959 0.9974 5923 1 0.9987 0.9918 0.9952 6742 2 0.9918 0.9943 0.9930 5958 3 0.9975 0.9938 0.9957 6131 4 0.9892 0.9882 0.9887 5842 5 0.9859 0.9937 0.9898 5421 6 0.9936 0.9939 0.9937 5918 7 0.9856 0.9943 0.9899 6265 8 0.9932 0.9921 0.9926 5851 9 0.9926 0.9897 0.9912 5949 accuracy 0.9928 60000 macro avg 0.9927 0.9928 0.9927 60000 weighted avg 0.9928 0.9928 0.9928 60000 ``` ![download (2).png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/qUaioZfL840_BrRhReCqd.png) ### **Classes:** - **Class 0:** "0" - **Class 1:** "1" - **Class 2:** "2" - **Class 3:** "3" - **Class 4:** "4" - **Class 5:** "5" - **Class 6:** "6" - **Class 7:** "7" - **Class 8:** "8" - **Class 9:** "9" --- # **Run with Transformers🤗** ```python !pip install -q transformers torch pillow gradio ``` ```python import gradio as gr from transformers import AutoImageProcessor, SiglipForImageClassification from transformers.image_utils import load_image from PIL import Image import torch # Load model and processor model_name = "prithivMLmods/Mnist-Digits-SigLIP2" model = SiglipForImageClassification.from_pretrained(model_name) processor = AutoImageProcessor.from_pretrained(model_name) def classify_digit(image): """Predicts the digit in the given handwritten digit image.""" image = Image.fromarray(image).convert("RGB") inputs = processor(images=image, return_tensors="pt") with torch.no_grad(): outputs = model(**inputs) logits = outputs.logits probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist() labels = { "0": "0", "1": "1", "2": "2", "3": "3", "4": "4", "5": "5", "6": "6", "7": "7", "8": "8", "9": "9" } predictions = {labels[str(i)]: round(probs[i], 3) for i in range(len(probs))} return predictions # Create Gradio interface iface = gr.Interface( fn=classify_digit, inputs=gr.Image(type="numpy"), outputs=gr.Label(label="Prediction Scores"), title="MNIST Digit Classification 🔢", description="Upload a handwritten digit image (0-9) to recognize it using MNIST-Digits-SigLIP2." ) # Launch the app if __name__ == "__main__": iface.launch() ``` --- # **Sample Inference** ![Screenshot 2025-03-28 at 23-23-02 MNIST Digit Classification 🔢.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/o0YinTlr6or3V_wOJMCf3.png) ![Screenshot 2025-03-28 at 23-25-22 MNIST Digit Classification 🔢.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/LP4upkfHfUa3wdRSSS9tp.png) ![Screenshot 2025-03-28 at 23-25-52 MNIST Digit Classification 🔢.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/XJ0AmEg0Com-KN32jtGDu.png) ![Screenshot 2025-03-28 at 23-26-52 MNIST Digit Classification 🔢.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/rboO-rw7BxK7S8vJMF-To.png) # **Intended Use:** The **Mnist-Digits-SigLIP2** model is designed for handwritten digit recognition. Potential applications include: - **Optical Character Recognition (OCR):** Digit recognition for various documents. - **Banking & Finance:** Automated check processing. - **Education & Learning:** AI-powered handwriting assessment. - **Embedded Systems:** Handwriting input in smart devices.
[ "0", "1", "2", "3", "4", "5", "6", "7", "8", "9" ]
alealejandro1/ABC_food_model
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ABC_food_model This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.3009 - Accuracy: 0.845 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.356 | 0.992 | 62 | 2.3009 | 0.845 | ### Framework versions - Transformers 4.50.0 - Pytorch 2.6.0+cu124 - Datasets 3.5.0 - Tokenizers 0.21.1
[ "apple_pie", "baby_back_ribs", "bruschetta", "waffles", "caesar_salad", "cannoli", "caprese_salad", "carrot_cake", "ceviche", "cheesecake", "cheese_plate", "chicken_curry", "chicken_quesadilla", "baklava", "chicken_wings", "chocolate_cake", "chocolate_mousse", "churros", "clam_chowder", "club_sandwich", "crab_cakes", "creme_brulee", "croque_madame", "cup_cakes", "beef_carpaccio", "deviled_eggs", "donuts", "dumplings", "edamame", "eggs_benedict", "escargots", "falafel", "filet_mignon", "fish_and_chips", "foie_gras", "beef_tartare", "french_fries", "french_onion_soup", "french_toast", "fried_calamari", "fried_rice", "frozen_yogurt", "garlic_bread", "gnocchi", "greek_salad", "grilled_cheese_sandwich", "beet_salad", "grilled_salmon", "guacamole", "gyoza", "hamburger", "hot_and_sour_soup", "hot_dog", "huevos_rancheros", "hummus", "ice_cream", "lasagna", "beignets", "lobster_bisque", "lobster_roll_sandwich", "macaroni_and_cheese", "macarons", "miso_soup", "mussels", "nachos", "omelette", "onion_rings", "oysters", "bibimbap", "pad_thai", "paella", "pancakes", "panna_cotta", "peking_duck", "pho", "pizza", "pork_chop", "poutine", "prime_rib", "bread_pudding", "pulled_pork_sandwich", "ramen", "ravioli", "red_velvet_cake", "risotto", "samosa", "sashimi", "scallops", "seaweed_salad", "shrimp_and_grits", "breakfast_burrito", "spaghetti_bolognese", "spaghetti_carbonara", "spring_rolls", "steak", "strawberry_shortcake", "sushi", "tacos", "takoyaki", "tiramisu", "tuna_tartare" ]
Snppuzzle/Lanna-model-convnextv2-base-22k-224
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
[ "aabnam", "amnat", "anong", "anu", "aphet", "athik", "banman", "binbon", "bochai", "bokin", "bolao", "bopen", "boron", "buppe", "chaehom", "chaeyang", "chaidi", "chanan", "changhan", "chaofa", "chaomom", "chaomueang", "chata", "chatu", "chaya", "chiangdao", "chiangmai", "chingchang", "chokdi", "dangsaap", "deklek", "deumnai", "doilo", "doiluang", "doitao", "dokbua", "eka", "fanhan", "hangdong", "hangsat", "hungtam", "huwai", "inta", "iti", "itom", "jara", "kadi", "kamyao", "kanmo", "kapmo", "kephet", "kepphak", "khaikai", "khaipa", "khamaen", "khaoma", "khata", "kheumnguem", "khomchai", "khongbo", "khongtua", "khunyuam", "khwaluat", "khwamsuk", "kinkhao", "kinkhong", "kinmuea", "kinru", "kluaibo", "laemai", "laichiao", "lailong", "lampang", "lattho", "loka", "luathak", "luatok", "maechaem", "maechai", "maechan", "maecharim", "maelao", "maelim", "maemo", "maephrik", "maetaeng", "maeth", "maetha", "maewang", "maha", "mahachai", "mam", "manpen", "manu", "mueangphan", "mueangyong", "nakrian", "nambo", "nanglong", "nangsue", "naokhong", "nara", "newin", "nganban", "nguenchae", "nguenchat", "omkoi", "oprom", "oram", "osot", "padaet", "phaideuan", "phaka", "phakhawa", "phayao", "phoenwai", "phuphiang", "phusang", "phuttha", "phuttho", "pikat", "pikot", "piso", "puri", "rakha", "ratna", "roisai", "ruluem", "saichai", "saket", "sana", "sanam", "sanya", "sapha", "sawa", "sayong", "siri", "sitth", "soekho", "soekman", "somkhuan", "songkho", "sukhato", "sukka", "taefai", "taehai", "tanam", "taro", "thairat", "thamam", "thawai", "thewa", "thuti", "uru", "wailang", "wasa", "wati", "wihan", "witcha", "witwo", "yapheng", "yukloek" ]
Snppuzzle/Lanna-model-efficientnet-b0
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
[ "aabnam", "amnat", "anong", "anu", "aphet", "athik", "banman", "binbon", "bochai", "bokin", "bolao", "bopen", "boron", "buppe", "chaehom", "chaeyang", "chaidi", "chanan", "changhan", "chaofa", "chaomom", "chaomueang", "chata", "chatu", "chaya", "chiangdao", "chiangmai", "chingchang", "chokdi", "dangsaap", "deklek", "deumnai", "doilo", "doiluang", "doitao", "dokbua", "eka", "fanhan", "hangdong", "hangsat", "hungtam", "huwai", "inta", "iti", "itom", "jara", "kadi", "kamyao", "kanmo", "kapmo", "kephet", "kepphak", "khaikai", "khaipa", "khamaen", "khaoma", "khata", "kheumnguem", "khomchai", "khongbo", "khongtua", "khunyuam", "khwaluat", "khwamsuk", "kinkhao", "kinkhong", "kinmuea", "kinru", "kluaibo", "laemai", "laichiao", "lailong", "lampang", "lattho", "loka", "luathak", "luatok", "maechaem", "maechai", "maechan", "maecharim", "maelao", "maelim", "maemo", "maephrik", "maetaeng", "maeth", "maetha", "maewang", "maha", "mahachai", "mam", "manpen", "manu", "mueangphan", "mueangyong", "nakrian", "nambo", "nanglong", "nangsue", "naokhong", "nara", "newin", "nganban", "nguenchae", "nguenchat", "omkoi", "oprom", "oram", "osot", "padaet", "phaideuan", "phaka", "phakhawa", "phayao", "phoenwai", "phuphiang", "phusang", "phuttha", "phuttho", "pikat", "pikot", "piso", "puri", "rakha", "ratna", "roisai", "ruluem", "saichai", "saket", "sana", "sanam", "sanya", "sapha", "sawa", "sayong", "siri", "sitth", "soekho", "soekman", "somkhuan", "songkho", "sukhato", "sukka", "taefai", "taehai", "tanam", "taro", "thairat", "thamam", "thawai", "thewa", "thuti", "uru", "wailang", "wasa", "wati", "wihan", "witcha", "witwo", "yapheng", "yukloek" ]
mizikfischer/vit-base-oxford-iiit-pets
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-oxford-iiit-pets This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the pcuenq/oxford-pets dataset. It achieves the following results on the evaluation set: - Loss: 0.2527 - Accuracy: 0.9445 ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 64 - eval_batch_size: 32 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 93 | 0.6027 | 0.8958 | | 1.5772 | 2.0 | 186 | 0.3632 | 0.9161 | | 0.3807 | 3.0 | 279 | 0.3124 | 0.9202 | | 0.2645 | 4.0 | 372 | 0.2945 | 0.9242 | | 0.2288 | 5.0 | 465 | 0.2890 | 0.9242 | ### Framework versions - Transformers 4.50.0 - Pytorch 2.6.0+cu124 - Datasets 3.4.1 - Tokenizers 0.21.1 ## Zero-Shot Classification Results (CLIP) **Model used:** `openai/clip-vit-large-patch14` **Oxford-Pet Dataset** - **Accuracy:** 87.86 % - **Precision:** 87.61 % - **Recall:** 87.86 %
[ "siamese", "birman", "shiba inu", "staffordshire bull terrier", "basset hound", "bombay", "japanese chin", "chihuahua", "german shorthaired", "pomeranian", "beagle", "english cocker spaniel", "american pit bull terrier", "ragdoll", "persian", "egyptian mau", "miniature pinscher", "sphynx", "maine coon", "keeshond", "yorkshire terrier", "havanese", "leonberger", "wheaten terrier", "american bulldog", "english setter", "boxer", "newfoundland", "bengal", "samoyed", "british shorthair", "great pyrenees", "abyssinian", "pug", "saint bernard", "russian blue", "scottish terrier" ]
alxfgh/dinov2-base-finetuned-dermnet-lr3-5-0.05wd-csr
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # dinov2-base-finetuned-dermnet-lr3-5-0.05wd-csr This model is a fine-tuned version of [facebook/dinov2-base](https://huggingface.co/facebook/dinov2-base) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.8119 - Accuracy: 0.7958 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-------:|:----:|:---------------:|:--------:| | 2.7488 | 1.0 | 98 | 2.5158 | 0.3722 | | 1.9402 | 2.0 | 196 | 1.7710 | 0.5170 | | 1.4938 | 3.0 | 294 | 1.4939 | 0.5996 | | 1.1226 | 4.0 | 392 | 1.3168 | 0.6256 | | 0.9329 | 5.0 | 490 | 1.1906 | 0.6705 | | 0.8039 | 6.0 | 588 | 1.0882 | 0.7067 | | 0.6426 | 7.0 | 686 | 1.1061 | 0.6930 | | 0.5777 | 8.0 | 784 | 1.0133 | 0.7227 | | 0.477 | 9.0 | 882 | 0.9681 | 0.7364 | | 0.3961 | 10.0 | 980 | 0.9402 | 0.7581 | | 0.3451 | 11.0 | 1078 | 0.9311 | 0.7509 | | 0.337 | 12.0 | 1176 | 0.8897 | 0.7661 | | 0.2348 | 13.0 | 1274 | 0.8616 | 0.7762 | | 0.1992 | 14.0 | 1372 | 0.8241 | 0.7951 | | 0.182 | 15.0 | 1470 | 0.8312 | 0.7878 | | 0.1556 | 16.0 | 1568 | 0.8245 | 0.7857 | | 0.1516 | 17.0 | 1666 | 0.8170 | 0.7958 | | 0.1569 | 18.0 | 1764 | 0.8202 | 0.7878 | | 0.1364 | 19.0 | 1862 | 0.8117 | 0.7951 | | 0.1427 | 19.8021 | 1940 | 0.8119 | 0.7958 | ### Framework versions - Transformers 4.50.3 - Pytorch 2.6.0+cu124 - Datasets 3.5.0 - Tokenizers 0.21.1
[ "aids", "acanthosis nigricans", "acne", "acne keloidalis nuchae", "actinic cheilitis", "actinic keratosis", "alopecia areata", "amyloidosis", "angular cheilitis", "atopic dermatitis", "basal cell carcinoma", "bowen's disease", "bullous pemphigoid", "candidiasis", "cellulitis", "chondrodermatitis nodularis", "cutaneous t-cell lymphoma", "dermatitis", "dermatitis herpetiformis", "dermatofibroma", "drug-induced photosensitivity and eruptions", "dyshidrosis eczema", "eczema", "eczema herpetiformis", "epidermolysis bullosa", "fifth disease", "flat warts", "folliculitis", "furuncle", "genital warts", "grover's disease", "hailey–hailey disease", "hand-foot-and-mouth disease", "herpes simplex 1 or 2", "herpes zoster", "hidradenitis suppurativa", "ichthyosis", "impetigo", "kawasaki syndrome", "keratoacanthom", "keratosis follicularis", "larva migrans", "lentigo", "lentigo maligna", "leprosy borderline", "leprosy lepromatous", "leprosy tuberculoid", "lichen planus", "lichen sclerosus", "lichen simplex chronicus", "lupus erythematosus chronicus discoides", "melanoma", "molluscum contagiosum", "necrobiosis lipoidica", "neurofibromatosis 1", "nevus", "nevus sebaceous", "nummular eczema", "onychomycosis", "papilomatosis confluentes and reticulate", "paronychia", "pediculosis capitis", "perioral dermatitis", "phototoxic reaction", "pityriasis rosea", "porokeratosis", "porokeratosis actinic", "psoriasis", "rosacea", "scarlet fever", "scleroderma", "sebaceous hyperplasia", "seborrheic dermatitis", "seborrheic keratosis", "squamous cell carcinoma", "stasis dermatitis", "tinea capitis", "tinea corporis", "tinea cruris", "tinea faciei", "tinea incognita", "tinea manuum", "tinea nigra", "tinea pedis", "tinea versicolor", "tuberous sclerosis", "tungiasis", "varicella", "vasculitis", "vitiligo", "pigmented benign keratosis" ]
yuus2733/toyotacars_classifier
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # yuus2733/toyotacars_classifier This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.3304 - Validation Loss: 1.1095 - Train Accuracy: 0.7028 - Epoch: 29 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 3e-05, 'decay_steps': 43110, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': np.float32(0.9), 'beta_2': np.float32(0.999), 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Accuracy | Epoch | |:----------:|:---------------:|:--------------:|:-----:| | 2.9793 | 2.8834 | 0.1556 | 0 | | 2.8141 | 2.7550 | 0.25 | 1 | | 2.6444 | 2.5301 | 0.3361 | 2 | | 2.4691 | 2.3374 | 0.4722 | 3 | | 2.2959 | 2.1452 | 0.5333 | 4 | | 2.0945 | 2.0539 | 0.5389 | 5 | | 1.9633 | 1.8626 | 0.5722 | 6 | | 1.8124 | 1.8536 | 0.55 | 7 | | 1.6898 | 1.6423 | 0.6083 | 8 | | 1.5422 | 1.5292 | 0.6222 | 9 | | 1.4272 | 1.4585 | 0.6306 | 10 | | 1.3109 | 1.4785 | 0.6222 | 11 | | 1.1907 | 1.3007 | 0.6861 | 12 | | 1.0850 | 1.2980 | 0.6833 | 13 | | 1.0577 | 1.2130 | 0.7056 | 14 | | 0.9468 | 1.1251 | 0.7167 | 15 | | 0.8517 | 1.3172 | 0.6472 | 16 | | 0.8206 | 1.1645 | 0.7083 | 17 | | 0.7459 | 1.1768 | 0.6972 | 18 | | 0.6864 | 1.1457 | 0.6778 | 19 | | 0.6379 | 1.1162 | 0.6972 | 20 | | 0.5928 | 1.0945 | 0.7056 | 21 | | 0.5569 | 1.0542 | 0.7139 | 22 | | 0.5276 | 1.1110 | 0.7083 | 23 | | 0.4715 | 1.0347 | 0.7222 | 24 | | 0.4470 | 0.9403 | 0.7222 | 25 | | 0.4112 | 0.9729 | 0.7222 | 26 | | 0.4101 | 1.0422 | 0.6944 | 27 | | 0.3707 | 1.0415 | 0.6917 | 28 | | 0.3304 | 1.1095 | 0.7028 | 29 | ### Framework versions - Transformers 4.50.3 - TensorFlow 2.19.0 - Datasets 3.5.0 - Tokenizers 0.21.1
[ "alphard", "aqua", "hiace", "highlander", "hilux", "iq", "prius", "rav4", "rush", "soarer", "starlet", "supra", "camry", "vitz", "yaris", "celica", "corolla", "corona", "crown", "estima", "etios", "fortuner" ]
SY750/swin-tiny-patch4-window7-224-finetuned-eurosat
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224-finetuned-eurosat This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.2590 - Accuracy: 0.8955 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 0.3556 | 1.0 | 101 | 0.3509 | 0.8596 | | 0.2608 | 2.0 | 202 | 0.3039 | 0.8863 | | 0.181 | 2.9751 | 300 | 0.2590 | 0.8955 | ### Framework versions - Transformers 4.47.0 - Pytorch 2.5.1+cu121 - Datasets 3.3.1 - Tokenizers 0.21.0
[ "adenocarcinoma", "high-grade in", "low-grade in", "normal", "polyp" ]
Inhasw/swin-tiny-patch4-window7-224-finetuned-eurosat
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224-finetuned-eurosat This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.6247 - Accuracy: 0.8279 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-------:|:----:|:---------------:|:--------:| | 1.6684 | 1.0 | 43 | 1.5274 | 0.5386 | | 1.422 | 2.0 | 86 | 1.2167 | 0.5964 | | 1.2303 | 3.0 | 129 | 0.9840 | 0.6617 | | 1.0419 | 4.0 | 172 | 0.8583 | 0.7255 | | 0.886 | 5.0 | 215 | 0.7485 | 0.7389 | | 0.8443 | 6.0 | 258 | 0.7898 | 0.7463 | | 0.7685 | 7.0 | 301 | 0.6678 | 0.7745 | | 0.6999 | 8.0 | 344 | 0.7002 | 0.7730 | | 0.6128 | 9.0 | 387 | 0.6634 | 0.7982 | | 0.5588 | 10.0 | 430 | 0.6644 | 0.7789 | | 0.5829 | 11.0 | 473 | 0.6318 | 0.8116 | | 0.5234 | 12.0 | 516 | 0.6662 | 0.7864 | | 0.4712 | 13.0 | 559 | 0.6781 | 0.8042 | | 0.4042 | 14.0 | 602 | 0.6542 | 0.8131 | | 0.3966 | 15.0 | 645 | 0.6432 | 0.8086 | | 0.41 | 16.0 | 688 | 0.6346 | 0.8145 | | 0.3848 | 17.0 | 731 | 0.6295 | 0.8323 | | 0.3612 | 18.0 | 774 | 0.6841 | 0.8042 | | 0.3258 | 19.0 | 817 | 0.6613 | 0.8145 | | 0.3163 | 20.0 | 860 | 0.6340 | 0.8279 | | 0.3469 | 21.0 | 903 | 0.6621 | 0.8205 | | 0.3523 | 22.0 | 946 | 0.6655 | 0.8131 | | 0.3533 | 23.0 | 989 | 0.6541 | 0.8131 | | 0.3312 | 24.0 | 1032 | 0.6445 | 0.8116 | | 0.3095 | 25.0 | 1075 | 0.6519 | 0.8205 | | 0.2425 | 26.0 | 1118 | 0.6363 | 0.8145 | | 0.2956 | 27.0 | 1161 | 0.6318 | 0.8294 | | 0.2629 | 28.0 | 1204 | 0.6217 | 0.8249 | | 0.2755 | 29.0 | 1247 | 0.6243 | 0.8279 | | 0.29 | 29.3077 | 1260 | 0.6247 | 0.8279 | ### Framework versions - Transformers 4.50.0 - Pytorch 2.6.0+cu124 - Datasets 3.5.0 - Tokenizers 0.21.1
[ "가디건", "니트웨어", "드레스", "래깅스", "베스트", "브라탑", "블라우스", "셔츠", "스커트", "재킷", "점퍼", "점프수트", "조거팬츠", "짚업", "청바지", "코트", "티셔츠", "패딩", "팬츠", "후드티" ]
zekicalb/vit-base-oxford-iiit-pets
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-oxford-iiit-pets This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the pcuenq/oxford-pets dataset. It achieves the following results on the evaluation set: - Loss: 0.1984 - Accuracy: 0.9391 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.392 | 1.0 | 370 | 0.3038 | 0.9256 | | 0.2276 | 2.0 | 740 | 0.2278 | 0.9364 | | 0.1625 | 3.0 | 1110 | 0.2089 | 0.9364 | | 0.1596 | 4.0 | 1480 | 0.1997 | 0.9405 | | 0.1454 | 5.0 | 1850 | 0.1969 | 0.9405 | ### Framework versions - Transformers 4.50.0 - Pytorch 2.6.0+cu124 - Datasets 3.4.1 - Tokenizers 0.21.1 ## Zero-Shot Classification Results - **Accuracy**: 0.8800 - **Precision (macro)**: 0.8768 - **Recall (macro)**: 0.8800 This was done using [openai/clip-vit-large-patch14] on the Oxford-Pets dataset.
[ "siamese", "birman", "shiba inu", "staffordshire bull terrier", "basset hound", "bombay", "japanese chin", "chihuahua", "german shorthaired", "pomeranian", "beagle", "english cocker spaniel", "american pit bull terrier", "ragdoll", "persian", "egyptian mau", "miniature pinscher", "sphynx", "maine coon", "keeshond", "yorkshire terrier", "havanese", "leonberger", "wheaten terrier", "american bulldog", "english setter", "boxer", "newfoundland", "bengal", "samoyed", "british shorthair", "great pyrenees", "abyssinian", "pug", "saint bernard", "russian blue", "scottish terrier" ]
Louloubib/my_awesome_food_model
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_food_model This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.6492 - Accuracy: 0.882 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.7174 | 1.0 | 63 | 2.5482 | 0.807 | | 1.8634 | 2.0 | 126 | 1.8092 | 0.848 | | 1.6128 | 2.96 | 186 | 1.6492 | 0.882 | ### Framework versions - Transformers 4.50.0 - Pytorch 2.6.0+cu124 - Datasets 3.5.0 - Tokenizers 0.21.1
[ "apple_pie", "baby_back_ribs", "bruschetta", "waffles", "caesar_salad", "cannoli", "caprese_salad", "carrot_cake", "ceviche", "cheesecake", "cheese_plate", "chicken_curry", "chicken_quesadilla", "baklava", "chicken_wings", "chocolate_cake", "chocolate_mousse", "churros", "clam_chowder", "club_sandwich", "crab_cakes", "creme_brulee", "croque_madame", "cup_cakes", "beef_carpaccio", "deviled_eggs", "donuts", "dumplings", "edamame", "eggs_benedict", "escargots", "falafel", "filet_mignon", "fish_and_chips", "foie_gras", "beef_tartare", "french_fries", "french_onion_soup", "french_toast", "fried_calamari", "fried_rice", "frozen_yogurt", "garlic_bread", "gnocchi", "greek_salad", "grilled_cheese_sandwich", "beet_salad", "grilled_salmon", "guacamole", "gyoza", "hamburger", "hot_and_sour_soup", "hot_dog", "huevos_rancheros", "hummus", "ice_cream", "lasagna", "beignets", "lobster_bisque", "lobster_roll_sandwich", "macaroni_and_cheese", "macarons", "miso_soup", "mussels", "nachos", "omelette", "onion_rings", "oysters", "bibimbap", "pad_thai", "paella", "pancakes", "panna_cotta", "peking_duck", "pho", "pizza", "pork_chop", "poutine", "prime_rib", "bread_pudding", "pulled_pork_sandwich", "ramen", "ravioli", "red_velvet_cake", "risotto", "samosa", "sashimi", "scallops", "seaweed_salad", "shrimp_and_grits", "breakfast_burrito", "spaghetti_bolognese", "spaghetti_carbonara", "spring_rolls", "steak", "strawberry_shortcake", "sushi", "tacos", "takoyaki", "tiramisu", "tuna_tartare" ]
affal01/vit-base-oxford-iiit-pets
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-oxford-iiit-pets This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the pcuenq/oxford-pets dataset. It achieves the following results on the evaluation set: - Loss: 0.1858 - Accuracy: 0.9472 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.3958 | 1.0 | 370 | 0.2588 | 0.9405 | | 0.2184 | 2.0 | 740 | 0.1908 | 0.9486 | | 0.1666 | 3.0 | 1110 | 0.1737 | 0.9405 | | 0.1558 | 4.0 | 1480 | 0.1658 | 0.9472 | | 0.1395 | 5.0 | 1850 | 0.1648 | 0.9459 | ### Framework versions - Transformers 4.50.0 - Pytorch 2.6.0+cu124 - Datasets 3.4.1 - Tokenizers 0.21.1 ### Zero shot Accuracy: 0.8800 Precision: 0.8768 Recall: 0.8800 Wurde mit [openai/clip-vit-base-patch32] & dem the Oxford-Pets dataset durchgeführt.
[ "siamese", "birman", "shiba inu", "staffordshire bull terrier", "basset hound", "bombay", "japanese chin", "chihuahua", "german shorthaired", "pomeranian", "beagle", "english cocker spaniel", "american pit bull terrier", "ragdoll", "persian", "egyptian mau", "miniature pinscher", "sphynx", "maine coon", "keeshond", "yorkshire terrier", "havanese", "leonberger", "wheaten terrier", "american bulldog", "english setter", "boxer", "newfoundland", "bengal", "samoyed", "british shorthair", "great pyrenees", "abyssinian", "pug", "saint bernard", "russian blue", "scottish terrier" ]
Inhasw/swin-small-patch4-window7-224-finetuned-eurosat
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-small-patch4-window7-224-finetuned-eurosat This model is a fine-tuned version of [microsoft/swin-small-patch4-window7-224](https://huggingface.co/microsoft/swin-small-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.5541 - Accuracy: 0.8472 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-------:|:----:|:---------------:|:--------:| | 2.8572 | 1.0 | 48 | 2.6775 | 0.2226 | | 1.6357 | 2.0 | 96 | 1.3411 | 0.5519 | | 1.076 | 3.0 | 144 | 0.9200 | 0.6973 | | 1.0091 | 4.0 | 192 | 0.8266 | 0.7062 | | 0.777 | 5.0 | 240 | 0.6904 | 0.7685 | | 0.6453 | 6.0 | 288 | 0.6149 | 0.7864 | | 0.6124 | 7.0 | 336 | 0.6207 | 0.7923 | | 0.5204 | 8.0 | 384 | 0.6130 | 0.7908 | | 0.529 | 9.0 | 432 | 0.6334 | 0.8042 | | 0.4394 | 10.0 | 480 | 0.5370 | 0.8249 | | 0.4398 | 11.0 | 528 | 0.5589 | 0.8249 | | 0.3996 | 12.0 | 576 | 0.5391 | 0.8501 | | 0.3585 | 13.0 | 624 | 0.5796 | 0.8205 | | 0.3276 | 14.0 | 672 | 0.5851 | 0.8338 | | 0.3382 | 15.0 | 720 | 0.5508 | 0.8457 | | 0.3212 | 16.0 | 768 | 0.5279 | 0.8605 | | 0.3226 | 17.0 | 816 | 0.5769 | 0.8338 | | 0.2836 | 18.0 | 864 | 0.5942 | 0.8294 | | 0.2743 | 19.0 | 912 | 0.5862 | 0.8309 | | 0.2637 | 20.0 | 960 | 0.5586 | 0.8234 | | 0.2567 | 21.0 | 1008 | 0.5335 | 0.8427 | | 0.2932 | 22.0 | 1056 | 0.5653 | 0.8383 | | 0.2532 | 23.0 | 1104 | 0.5493 | 0.8368 | | 0.2286 | 24.0 | 1152 | 0.5798 | 0.8383 | | 0.206 | 25.0 | 1200 | 0.5623 | 0.8487 | | 0.2288 | 26.0 | 1248 | 0.5566 | 0.8442 | | 0.2059 | 27.0 | 1296 | 0.5437 | 0.8457 | | 0.1904 | 28.0 | 1344 | 0.5500 | 0.8338 | | 0.2416 | 29.0 | 1392 | 0.5563 | 0.8487 | | 0.1967 | 29.3789 | 1410 | 0.5541 | 0.8472 | ### Framework versions - Transformers 4.50.0 - Pytorch 2.6.0+cu124 - Datasets 3.5.0 - Tokenizers 0.21.1
[ "가디건", "니트웨어", "드레스", "래깅스", "베스트", "브라탑", "블라우스", "셔츠", "스커트", "재킷", "점퍼", "점프수트", "조거팬츠", "짚업", "청바지", "코트", "티셔츠", "패딩", "팬츠", "후드티" ]
Inhasw/beit-base-patch16-224-pt22k-ft22k-finetuned-eurosat
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # beit-base-patch16-224-pt22k-ft22k-finetuned-eurosat This model is a fine-tuned version of [microsoft/beit-base-patch16-224-pt22k-ft22k](https://huggingface.co/microsoft/beit-base-patch16-224-pt22k-ft22k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.1650 - Accuracy: 0.7003 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-------:|:----:|:---------------:|:--------:| | 3.0558 | 1.0 | 43 | 3.0721 | 0.0519 | | 2.9535 | 2.0 | 86 | 2.9192 | 0.1068 | | 2.7928 | 3.0 | 129 | 2.6951 | 0.2315 | | 2.5368 | 4.0 | 172 | 2.4673 | 0.3457 | | 2.3928 | 5.0 | 215 | 2.2777 | 0.4303 | | 2.1938 | 6.0 | 258 | 2.1163 | 0.4896 | | 2.0454 | 7.0 | 301 | 1.9760 | 0.5208 | | 1.9604 | 8.0 | 344 | 1.8527 | 0.5593 | | 1.8495 | 9.0 | 387 | 1.7479 | 0.5890 | | 1.6308 | 10.0 | 430 | 1.6564 | 0.6231 | | 1.6896 | 11.0 | 473 | 1.5779 | 0.6424 | | 1.6121 | 12.0 | 516 | 1.5088 | 0.6632 | | 1.5673 | 13.0 | 559 | 1.4500 | 0.6751 | | 1.4859 | 14.0 | 602 | 1.3988 | 0.6869 | | 1.4813 | 15.0 | 645 | 1.3561 | 0.6958 | | 1.4414 | 16.0 | 688 | 1.3177 | 0.7062 | | 1.4252 | 17.0 | 731 | 1.2833 | 0.7136 | | 1.3811 | 18.0 | 774 | 1.2549 | 0.7226 | | 1.3464 | 19.0 | 817 | 1.2304 | 0.7240 | | 1.2451 | 20.0 | 860 | 1.2093 | 0.7270 | | 1.2871 | 21.0 | 903 | 1.1904 | 0.7315 | | 1.2546 | 22.0 | 946 | 1.1746 | 0.7315 | | 1.2464 | 23.0 | 989 | 1.1611 | 0.7329 | | 1.3012 | 24.0 | 1032 | 1.1499 | 0.7374 | | 1.2477 | 25.0 | 1075 | 1.1409 | 0.7404 | | 1.2761 | 26.0 | 1118 | 1.1337 | 0.7404 | | 1.2687 | 27.0 | 1161 | 1.1289 | 0.7404 | | 1.2304 | 28.0 | 1204 | 1.1258 | 0.7433 | | 1.2628 | 29.0 | 1247 | 1.1244 | 0.7433 | | 1.2639 | 29.3077 | 1260 | 1.1243 | 0.7433 | ### Framework versions - Transformers 4.50.0 - Pytorch 2.6.0+cu124 - Datasets 3.5.0 - Tokenizers 0.21.1
[ "가디건", "니트웨어", "드레스", "래깅스", "베스트", "브라탑", "블라우스", "셔츠", "스커트", "재킷", "점퍼", "점프수트", "조거팬츠", "짚업", "청바지", "코트", "티셔츠", "패딩", "팬츠", "후드티" ]
Inhasw/swinv2-base-patch4-window12to16-192to256-22kto1k-ft-finetuned-eurosat
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swinv2-base-patch4-window12to16-192to256-22kto1k-ft-finetuned-eurosat This model is a fine-tuned version of [microsoft/swinv2-base-patch4-window12to16-192to256-22kto1k-ft](https://huggingface.co/microsoft/swinv2-base-patch4-window12to16-192to256-22kto1k-ft) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.4454 - Accuracy: 0.9036 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-------:|:----:|:---------------:|:--------:| | 2.5802 | 1.0 | 48 | 1.6596 | 0.5445 | | 0.9821 | 2.0 | 96 | 0.6121 | 0.8012 | | 0.767 | 3.0 | 144 | 0.5143 | 0.8323 | | 0.6452 | 4.0 | 192 | 0.4496 | 0.8516 | | 0.4403 | 5.0 | 240 | 0.5212 | 0.8472 | | 0.4859 | 6.0 | 288 | 0.4766 | 0.8828 | | 0.4177 | 7.0 | 336 | 0.4704 | 0.8516 | | 0.3815 | 8.0 | 384 | 0.4597 | 0.8694 | | 0.4111 | 9.0 | 432 | 0.4289 | 0.8828 | | 0.3375 | 10.0 | 480 | 0.4603 | 0.8709 | | 0.3267 | 11.0 | 528 | 0.5173 | 0.8739 | | 0.2948 | 12.0 | 576 | 0.4379 | 0.8932 | | 0.2322 | 13.0 | 624 | 0.4454 | 0.9036 | | 0.2612 | 14.0 | 672 | 0.5133 | 0.8739 | | 0.2259 | 15.0 | 720 | 0.4377 | 0.8947 | | 0.2534 | 16.0 | 768 | 0.5072 | 0.8724 | | 0.1852 | 17.0 | 816 | 0.4951 | 0.8843 | | 0.1976 | 18.0 | 864 | 0.5063 | 0.8902 | | 0.2377 | 19.0 | 912 | 0.4767 | 0.8843 | | 0.189 | 20.0 | 960 | 0.4763 | 0.8917 | | 0.1744 | 21.0 | 1008 | 0.5027 | 0.8813 | | 0.1546 | 22.0 | 1056 | 0.5021 | 0.8961 | | 0.1451 | 23.0 | 1104 | 0.4772 | 0.9006 | | 0.1681 | 24.0 | 1152 | 0.4767 | 0.8976 | | 0.1539 | 25.0 | 1200 | 0.5087 | 0.8902 | | 0.1054 | 26.0 | 1248 | 0.5186 | 0.8902 | | 0.1111 | 27.0 | 1296 | 0.5066 | 0.9006 | | 0.1057 | 28.0 | 1344 | 0.5019 | 0.8947 | | 0.1498 | 29.0 | 1392 | 0.5147 | 0.9006 | | 0.1255 | 29.3789 | 1410 | 0.5148 | 0.8991 | ### Framework versions - Transformers 4.50.0 - Pytorch 2.6.0+cu124 - Datasets 3.5.0 - Tokenizers 0.21.1
[ "가디건", "니트웨어", "드레스", "래깅스", "베스트", "브라탑", "블라우스", "셔츠", "스커트", "재킷", "점퍼", "점프수트", "조거팬츠", "짚업", "청바지", "코트", "티셔츠", "패딩", "팬츠", "후드티" ]
saurabhati/VMamba_ImageNet_82.6
# VMamba: Visual State Space Model VMamba is a bidirectional state-space model finetuned on Imagenet dataset. It was introduced in the paper: [VMamba: Visual State Space Model](https://arxiv.org/pdf/2401.10166) and was first released in [this repo](https://github.com/MzeroMiko/VMamba/tree/main). Disclaimer: This is not the official implementation, please refer to the [official repo](https://github.com/MzeroMiko/VMamba/tree/main). This is work is progress to add VMamba backbone for Image, Audio Classification tasks by me, Saurabhchand Bhati. ## How to Get Started with the Model Use the code below to get started with the model. ```python import torch from PIL import Image import torchvision.transforms as T from transformers import AutoConfig, AutoModelForImageClassification config = AutoConfig.from_pretrained('saurabhati/VMamba_ImageNet_82.6',trust_remote_code=True) vmamba_model = AutoModelForImageClassification.from_pretrained('saurabhati/VMamba_ImageNet_82.6',trust_remote_code=True) preprocess = T.Compose([ T.Resize(224, interpolation=Image.BICUBIC), T.CenterCrop(224), T.ToTensor(), T.Normalize( mean=[0.4850, 0.4560, 0.4060], std=[0.2290, 0.2240, 0.2250] )]) input_image = Image.open('/data/sls/scratch/sbhati/data/Imagenet/train/n02009912/n02009912_16160.JPEG') input_image = preprocess(input_image) with torch.no_grad(): logits = vmamba_model(input_image.unsqueeze(0)).logits predicted_label = vmamba_model.config.id2label[logits.argmax().item()] predicted_label 'crane' ``` ## Citation ```bibtex @article{liu2024vmamba, title={VMamba: Visual State Space Model}, author={Liu, Yue and Tian, Yunjie and Zhao, Yuzhong and Yu, Hongtian and Xie, Lingxi and Wang, Yaowei and Ye, Qixiang and Liu, Yunfan}, journal={arXiv preprint arXiv:2401.10166}, year={2024} } ```
[ "tench, tinca tinca", "goldfish, carassius auratus", "great white shark, white shark, man-eater, man-eating shark, carcharodon carcharias", "tiger shark, galeocerdo cuvieri", "hammerhead, hammerhead shark", "electric ray, crampfish, numbfish, torpedo", "stingray", "cock", "hen", "ostrich, struthio camelus", "brambling, fringilla montifringilla", "goldfinch, carduelis carduelis", "house finch, linnet, carpodacus mexicanus", "junco, snowbird", "indigo bunting, indigo finch, indigo bird, passerina cyanea", "robin, american robin, turdus migratorius", "bulbul", "jay", "magpie", "chickadee", "water ouzel, dipper", "kite", "bald eagle, american eagle, haliaeetus leucocephalus", "vulture", "great grey owl, great gray owl, strix nebulosa", "european fire salamander, salamandra salamandra", "common newt, triturus vulgaris", "eft", "spotted salamander, ambystoma maculatum", "axolotl, mud puppy, ambystoma mexicanum", "bullfrog, rana catesbeiana", "tree frog, tree-frog", "tailed frog, bell toad, ribbed toad, tailed toad, ascaphus trui", "loggerhead, loggerhead turtle, caretta caretta", "leatherback turtle, leatherback, leathery turtle, dermochelys coriacea", "mud turtle", "terrapin", "box turtle, box tortoise", "banded gecko", "common iguana, iguana, iguana iguana", "american chameleon, anole, anolis carolinensis", "whiptail, whiptail lizard", "agama", "frilled lizard, chlamydosaurus kingi", "alligator lizard", "gila monster, heloderma suspectum", "green lizard, lacerta viridis", "african chameleon, chamaeleo chamaeleon", "komodo dragon, komodo lizard, dragon lizard, giant lizard, varanus komodoensis", "african crocodile, nile crocodile, crocodylus niloticus", "american alligator, alligator mississipiensis", "triceratops", "thunder snake, worm snake, carphophis amoenus", "ringneck snake, ring-necked snake, ring snake", "hognose snake, puff adder, sand viper", "green snake, grass snake", "king snake, kingsnake", "garter snake, grass snake", "water snake", "vine snake", "night snake, hypsiglena torquata", "boa constrictor, constrictor constrictor", "rock python, rock snake, python sebae", "indian cobra, naja naja", "green mamba", "sea snake", "horned viper, cerastes, sand viper, horned asp, cerastes cornutus", "diamondback, diamondback rattlesnake, crotalus adamanteus", "sidewinder, horned rattlesnake, crotalus cerastes", "trilobite", "harvestman, daddy longlegs, phalangium opilio", "scorpion", "black and gold garden spider, argiope aurantia", "barn spider, araneus cavaticus", "garden spider, aranea diademata", "black widow, latrodectus mactans", "tarantula", "wolf spider, hunting spider", "tick", "centipede", "black grouse", "ptarmigan", "ruffed grouse, partridge, bonasa umbellus", "prairie chicken, prairie grouse, prairie fowl", "peacock", "quail", "partridge", "african grey, african gray, psittacus erithacus", "macaw", "sulphur-crested cockatoo, kakatoe galerita, cacatua galerita", "lorikeet", "coucal", "bee eater", "hornbill", "hummingbird", "jacamar", "toucan", "drake", "red-breasted merganser, mergus serrator", "goose", "black swan, cygnus atratus", "tusker", "echidna, spiny anteater, anteater", "platypus, duckbill, duckbilled platypus, duck-billed platypus, ornithorhynchus anatinus", "wallaby, brush kangaroo", "koala, koala bear, kangaroo bear, native bear, phascolarctos cinereus", "wombat", "jellyfish", "sea anemone, anemone", "brain coral", "flatworm, platyhelminth", "nematode, nematode worm, roundworm", "conch", "snail", "slug", "sea slug, nudibranch", "chiton, coat-of-mail shell, sea cradle, polyplacophore", "chambered nautilus, pearly nautilus, nautilus", "dungeness crab, cancer magister", "rock crab, cancer irroratus", "fiddler crab", "king crab, alaska crab, alaskan king crab, alaska king crab, paralithodes camtschatica", "american lobster, northern lobster, maine lobster, homarus americanus", "spiny lobster, langouste, rock lobster, crawfish, crayfish, sea crawfish", "crayfish, crawfish, crawdad, crawdaddy", "hermit crab", "isopod", "white stork, ciconia ciconia", "black stork, ciconia nigra", "spoonbill", "flamingo", "little blue heron, egretta caerulea", "american egret, great white heron, egretta albus", "bittern", "crane", "limpkin, aramus pictus", "european gallinule, porphyrio porphyrio", "american coot, marsh hen, mud hen, water hen, fulica americana", "bustard", "ruddy turnstone, arenaria interpres", "red-backed sandpiper, dunlin, erolia alpina", "redshank, tringa totanus", "dowitcher", "oystercatcher, oyster catcher", "pelican", "king penguin, aptenodytes patagonica", "albatross, mollymawk", "grey whale, gray whale, devilfish, eschrichtius gibbosus, eschrichtius robustus", "killer whale, killer, orca, grampus, sea wolf, orcinus orca", "dugong, dugong dugon", "sea lion", "chihuahua", "japanese spaniel", "maltese dog, maltese terrier, maltese", "pekinese, pekingese, peke", "shih-tzu", "blenheim spaniel", "papillon", "toy terrier", "rhodesian ridgeback", "afghan hound, afghan", "basset, basset hound", "beagle", "bloodhound, sleuthhound", "bluetick", "black-and-tan coonhound", "walker hound, walker foxhound", "english foxhound", "redbone", "borzoi, russian wolfhound", "irish wolfhound", "italian greyhound", "whippet", "ibizan hound, ibizan podenco", "norwegian elkhound, elkhound", "otterhound, otter hound", "saluki, gazelle hound", "scottish deerhound, deerhound", "weimaraner", "staffordshire bullterrier, staffordshire bull terrier", "american staffordshire terrier, staffordshire terrier, american pit bull terrier, pit bull terrier", "bedlington terrier", "border terrier", "kerry blue terrier", "irish terrier", "norfolk terrier", "norwich terrier", "yorkshire terrier", "wire-haired fox terrier", "lakeland terrier", "sealyham terrier, sealyham", "airedale, airedale terrier", "cairn, cairn terrier", "australian terrier", "dandie dinmont, dandie dinmont terrier", "boston bull, boston terrier", "miniature schnauzer", "giant schnauzer", "standard schnauzer", "scotch terrier, scottish terrier, scottie", "tibetan terrier, chrysanthemum dog", "silky terrier, sydney silky", "soft-coated wheaten terrier", "west highland white terrier", "lhasa, lhasa apso", "flat-coated retriever", "curly-coated retriever", "golden retriever", "labrador retriever", "chesapeake bay retriever", "german short-haired pointer", "vizsla, hungarian pointer", "english setter", "irish setter, red setter", "gordon setter", "brittany spaniel", "clumber, clumber spaniel", "english springer, english springer spaniel", "welsh springer spaniel", "cocker spaniel, english cocker spaniel, cocker", "sussex spaniel", "irish water spaniel", "kuvasz", "schipperke", "groenendael", "malinois", "briard", "kelpie", "komondor", "old english sheepdog, bobtail", "shetland sheepdog, shetland sheep dog, shetland", "collie", "border collie", "bouvier des flandres, bouviers des flandres", "rottweiler", "german shepherd, german shepherd dog, german police dog, alsatian", "doberman, doberman pinscher", "miniature pinscher", "greater swiss mountain dog", "bernese mountain dog", "appenzeller", "entlebucher", "boxer", "bull mastiff", "tibetan mastiff", "french bulldog", "great dane", "saint bernard, st bernard", "eskimo dog, husky", "malamute, malemute, alaskan malamute", "siberian husky", "dalmatian, coach dog, carriage dog", "affenpinscher, monkey pinscher, monkey dog", "basenji", "pug, pug-dog", "leonberg", "newfoundland, newfoundland dog", "great pyrenees", "samoyed, samoyede", "pomeranian", "chow, chow chow", "keeshond", "brabancon griffon", "pembroke, pembroke welsh corgi", "cardigan, cardigan welsh corgi", "toy poodle", "miniature poodle", "standard poodle", "mexican hairless", "timber wolf, grey wolf, gray wolf, canis lupus", "white wolf, arctic wolf, canis lupus tundrarum", "red wolf, maned wolf, canis rufus, canis niger", "coyote, prairie wolf, brush wolf, canis latrans", "dingo, warrigal, warragal, canis dingo", "dhole, cuon alpinus", "african hunting dog, hyena dog, cape hunting dog, lycaon pictus", "hyena, hyaena", "red fox, vulpes vulpes", "kit fox, vulpes macrotis", "arctic fox, white fox, alopex lagopus", "grey fox, gray fox, urocyon cinereoargenteus", "tabby, tabby cat", "tiger cat", "persian cat", "siamese cat, siamese", "egyptian cat", "cougar, puma, catamount, mountain lion, painter, panther, felis concolor", "lynx, catamount", "leopard, panthera pardus", "snow leopard, ounce, panthera uncia", "jaguar, panther, panthera onca, felis onca", "lion, king of beasts, panthera leo", "tiger, panthera tigris", "cheetah, chetah, acinonyx jubatus", "brown bear, bruin, ursus arctos", "american black bear, black bear, ursus americanus, euarctos americanus", "ice bear, polar bear, ursus maritimus, thalarctos maritimus", "sloth bear, melursus ursinus, ursus ursinus", "mongoose", "meerkat, mierkat", "tiger beetle", "ladybug, ladybeetle, lady beetle, ladybird, ladybird beetle", "ground beetle, carabid beetle", "long-horned beetle, longicorn, longicorn beetle", "leaf beetle, chrysomelid", "dung beetle", "rhinoceros beetle", "weevil", "fly", "bee", "ant, emmet, pismire", "grasshopper, hopper", "cricket", "walking stick, walkingstick, stick insect", "cockroach, roach", "mantis, mantid", "cicada, cicala", "leafhopper", "lacewing, lacewing fly", "dragonfly, darning needle, devil's darning needle, sewing needle, snake feeder, snake doctor, mosquito hawk, skeeter hawk", "damselfly", "admiral", "ringlet, ringlet butterfly", "monarch, monarch butterfly, milkweed butterfly, danaus plexippus", "cabbage butterfly", "sulphur butterfly, sulfur butterfly", "lycaenid, lycaenid butterfly", "starfish, sea star", "sea urchin", "sea cucumber, holothurian", "wood rabbit, cottontail, cottontail rabbit", "hare", "angora, angora rabbit", "hamster", "porcupine, hedgehog", "fox squirrel, eastern fox squirrel, sciurus niger", "marmot", "beaver", "guinea pig, cavia cobaya", "sorrel", "zebra", "hog, pig, grunter, squealer, sus scrofa", "wild boar, boar, sus scrofa", "warthog", "hippopotamus, hippo, river horse, hippopotamus amphibius", "ox", "water buffalo, water ox, asiatic buffalo, bubalus bubalis", "bison", "ram, tup", "bighorn, bighorn sheep, cimarron, rocky mountain bighorn, rocky mountain sheep, ovis canadensis", "ibex, capra ibex", "hartebeest", "impala, aepyceros melampus", "gazelle", "arabian camel, dromedary, camelus dromedarius", "llama", "weasel", "mink", "polecat, fitch, foulmart, foumart, mustela putorius", "black-footed ferret, ferret, mustela nigripes", "otter", "skunk, polecat, wood pussy", "badger", "armadillo", "three-toed sloth, ai, bradypus tridactylus", "orangutan, orang, orangutang, pongo pygmaeus", "gorilla, gorilla gorilla", "chimpanzee, chimp, pan troglodytes", "gibbon, hylobates lar", "siamang, hylobates syndactylus, symphalangus syndactylus", "guenon, guenon monkey", "patas, hussar monkey, erythrocebus patas", "baboon", "macaque", "langur", "colobus, colobus monkey", "proboscis monkey, nasalis larvatus", "marmoset", "capuchin, ringtail, cebus capucinus", "howler monkey, howler", "titi, titi monkey", "spider monkey, ateles geoffroyi", "squirrel monkey, saimiri sciureus", "madagascar cat, ring-tailed lemur, lemur catta", "indri, indris, indri indri, indri brevicaudatus", "indian elephant, elephas maximus", "african elephant, loxodonta africana", "lesser panda, red panda, panda, bear cat, cat bear, ailurus fulgens", "giant panda, panda, panda bear, coon bear, ailuropoda melanoleuca", "barracouta, snoek", "eel", "coho, cohoe, coho salmon, blue jack, silver salmon, oncorhynchus kisutch", "rock beauty, holocanthus tricolor", "anemone fish", "sturgeon", "gar, garfish, garpike, billfish, lepisosteus osseus", "lionfish", "puffer, pufferfish, blowfish, globefish", "abacus", "abaya", "academic gown, academic robe, judge's robe", "accordion, piano accordion, squeeze box", "acoustic guitar", "aircraft carrier, carrier, flattop, attack aircraft carrier", "airliner", "airship, dirigible", "altar", "ambulance", "amphibian, amphibious vehicle", "analog clock", "apiary, bee house", "apron", "ashcan, trash can, garbage can, wastebin, ash bin, ash-bin, ashbin, dustbin, trash barrel, trash bin", "assault rifle, assault gun", "backpack, back pack, knapsack, packsack, rucksack, haversack", "bakery, bakeshop, bakehouse", "balance beam, beam", "balloon", "ballpoint, ballpoint pen, ballpen, biro", "band aid", "banjo", "bannister, banister, balustrade, balusters, handrail", "barbell", "barber chair", "barbershop", "barn", "barometer", "barrel, cask", "barrow, garden cart, lawn cart, wheelbarrow", "baseball", "basketball", "bassinet", "bassoon", "bathing cap, swimming cap", "bath towel", "bathtub, bathing tub, bath, tub", "beach wagon, station wagon, wagon, estate car, beach waggon, station waggon, waggon", "beacon, lighthouse, beacon light, pharos", "beaker", "bearskin, busby, shako", "beer bottle", "beer glass", "bell cote, bell cot", "bib", "bicycle-built-for-two, tandem bicycle, tandem", "bikini, two-piece", "binder, ring-binder", "binoculars, field glasses, opera glasses", "birdhouse", "boathouse", "bobsled, bobsleigh, bob", "bolo tie, bolo, bola tie, bola", "bonnet, poke bonnet", "bookcase", "bookshop, bookstore, bookstall", "bottlecap", "bow", "bow tie, bow-tie, bowtie", "brass, memorial tablet, plaque", "brassiere, bra, bandeau", "breakwater, groin, groyne, mole, bulwark, seawall, jetty", "breastplate, aegis, egis", "broom", "bucket, pail", "buckle", "bulletproof vest", "bullet train, bullet", "butcher shop, meat market", "cab, hack, taxi, taxicab", "caldron, cauldron", "candle, taper, wax light", "cannon", "canoe", "can opener, tin opener", "cardigan", "car mirror", "carousel, carrousel, merry-go-round, roundabout, whirligig", "carpenter's kit, tool kit", "carton", "car wheel", "cash machine, cash dispenser, automated teller machine, automatic teller machine, automated teller, automatic teller, atm", "cassette", "cassette player", "castle", "catamaran", "cd player", "cello, violoncello", "cellular telephone, cellular phone, cellphone, cell, mobile phone", "chain", "chainlink fence", "chain mail, ring mail, mail, chain armor, chain armour, ring armor, ring armour", "chain saw, chainsaw", "chest", "chiffonier, commode", "chime, bell, gong", "china cabinet, china closet", "christmas stocking", "church, church building", "cinema, movie theater, movie theatre, movie house, picture palace", "cleaver, meat cleaver, chopper", "cliff dwelling", "cloak", "clog, geta, patten, sabot", "cocktail shaker", "coffee mug", "coffeepot", "coil, spiral, volute, whorl, helix", "combination lock", "computer keyboard, keypad", "confectionery, confectionary, candy store", "container ship, containership, container vessel", "convertible", "corkscrew, bottle screw", "cornet, horn, trumpet, trump", "cowboy boot", "cowboy hat, ten-gallon hat", "cradle", "crane", "crash helmet", "crate", "crib, cot", "crock pot", "croquet ball", "crutch", "cuirass", "dam, dike, dyke", "desk", "desktop computer", "dial telephone, dial phone", "diaper, nappy, napkin", "digital clock", "digital watch", "dining table, board", "dishrag, dishcloth", "dishwasher, dish washer, dishwashing machine", "disk brake, disc brake", "dock, dockage, docking facility", "dogsled, dog sled, dog sleigh", "dome", "doormat, welcome mat", "drilling platform, offshore rig", "drum, membranophone, tympan", "drumstick", "dumbbell", "dutch oven", "electric fan, blower", "electric guitar", "electric locomotive", "entertainment center", "envelope", "espresso maker", "face powder", "feather boa, boa", "file, file cabinet, filing cabinet", "fireboat", "fire engine, fire truck", "fire screen, fireguard", "flagpole, flagstaff", "flute, transverse flute", "folding chair", "football helmet", "forklift", "fountain", "fountain pen", "four-poster", "freight car", "french horn, horn", "frying pan, frypan, skillet", "fur coat", "garbage truck, dustcart", "gasmask, respirator, gas helmet", "gas pump, gasoline pump, petrol pump, island dispenser", "goblet", "go-kart", "golf ball", "golfcart, golf cart", "gondola", "gong, tam-tam", "gown", "grand piano, grand", "greenhouse, nursery, glasshouse", "grille, radiator grille", "grocery store, grocery, food market, market", "guillotine", "hair slide", "hair spray", "half track", "hammer", "hamper", "hand blower, blow dryer, blow drier, hair dryer, hair drier", "hand-held computer, hand-held microcomputer", "handkerchief, hankie, hanky, hankey", "hard disc, hard disk, fixed disk", "harmonica, mouth organ, harp, mouth harp", "harp", "harvester, reaper", "hatchet", "holster", "home theater, home theatre", "honeycomb", "hook, claw", "hoopskirt, crinoline", "horizontal bar, high bar", "horse cart, horse-cart", "hourglass", "ipod", "iron, smoothing iron", "jack-o'-lantern", "jean, blue jean, denim", "jeep, landrover", "jersey, t-shirt, tee shirt", "jigsaw puzzle", "jinrikisha, ricksha, rickshaw", "joystick", "kimono", "knee pad", "knot", "lab coat, laboratory coat", "ladle", "lampshade, lamp shade", "laptop, laptop computer", "lawn mower, mower", "lens cap, lens cover", "letter opener, paper knife, paperknife", "library", "lifeboat", "lighter, light, igniter, ignitor", "limousine, limo", "liner, ocean liner", "lipstick, lip rouge", "loafer", "lotion", "loudspeaker, speaker, speaker unit, loudspeaker system, speaker system", "loupe, jeweler's loupe", "lumbermill, sawmill", "magnetic compass", "mailbag, postbag", "mailbox, letter box", "maillot", "maillot, tank suit", "manhole cover", "maraca", "marimba, xylophone", "mask", "matchstick", "maypole", "maze, labyrinth", "measuring cup", "medicine chest, medicine cabinet", "megalith, megalithic structure", "microphone, mike", "microwave, microwave oven", "military uniform", "milk can", "minibus", "miniskirt, mini", "minivan", "missile", "mitten", "mixing bowl", "mobile home, manufactured home", "model t", "modem", "monastery", "monitor", "moped", "mortar", "mortarboard", "mosque", "mosquito net", "motor scooter, scooter", "mountain bike, all-terrain bike, off-roader", "mountain tent", "mouse, computer mouse", "mousetrap", "moving van", "muzzle", "nail", "neck brace", "necklace", "nipple", "notebook, notebook computer", "obelisk", "oboe, hautboy, hautbois", "ocarina, sweet potato", "odometer, hodometer, mileometer, milometer", "oil filter", "organ, pipe organ", "oscilloscope, scope, cathode-ray oscilloscope, cro", "overskirt", "oxcart", "oxygen mask", "packet", "paddle, boat paddle", "paddlewheel, paddle wheel", "padlock", "paintbrush", "pajama, pyjama, pj's, jammies", "palace", "panpipe, pandean pipe, syrinx", "paper towel", "parachute, chute", "parallel bars, bars", "park bench", "parking meter", "passenger car, coach, carriage", "patio, terrace", "pay-phone, pay-station", "pedestal, plinth, footstall", "pencil box, pencil case", "pencil sharpener", "perfume, essence", "petri dish", "photocopier", "pick, plectrum, plectron", "pickelhaube", "picket fence, paling", "pickup, pickup truck", "pier", "piggy bank, penny bank", "pill bottle", "pillow", "ping-pong ball", "pinwheel", "pirate, pirate ship", "pitcher, ewer", "plane, carpenter's plane, woodworking plane", "planetarium", "plastic bag", "plate rack", "plow, plough", "plunger, plumber's helper", "polaroid camera, polaroid land camera", "pole", "police van, police wagon, paddy wagon, patrol wagon, wagon, black maria", "poncho", "pool table, billiard table, snooker table", "pop bottle, soda bottle", "pot, flowerpot", "potter's wheel", "power drill", "prayer rug, prayer mat", "printer", "prison, prison house", "projectile, missile", "projector", "puck, hockey puck", "punching bag, punch bag, punching ball, punchball", "purse", "quill, quill pen", "quilt, comforter, comfort, puff", "racer, race car, racing car", "racket, racquet", "radiator", "radio, wireless", "radio telescope, radio reflector", "rain barrel", "recreational vehicle, rv, r.v.", "reel", "reflex camera", "refrigerator, icebox", "remote control, remote", "restaurant, eating house, eating place, eatery", "revolver, six-gun, six-shooter", "rifle", "rocking chair, rocker", "rotisserie", "rubber eraser, rubber, pencil eraser", "rugby ball", "rule, ruler", "running shoe", "safe", "safety pin", "saltshaker, salt shaker", "sandal", "sarong", "sax, saxophone", "scabbard", "scale, weighing machine", "school bus", "schooner", "scoreboard", "screen, crt screen", "screw", "screwdriver", "seat belt, seatbelt", "sewing machine", "shield, buckler", "shoe shop, shoe-shop, shoe store", "shoji", "shopping basket", "shopping cart", "shovel", "shower cap", "shower curtain", "ski", "ski mask", "sleeping bag", "slide rule, slipstick", "sliding door", "slot, one-armed bandit", "snorkel", "snowmobile", "snowplow, snowplough", "soap dispenser", "soccer ball", "sock", "solar dish, solar collector, solar furnace", "sombrero", "soup bowl", "space bar", "space heater", "space shuttle", "spatula", "speedboat", "spider web, spider's web", "spindle", "sports car, sport car", "spotlight, spot", "stage", "steam locomotive", "steel arch bridge", "steel drum", "stethoscope", "stole", "stone wall", "stopwatch, stop watch", "stove", "strainer", "streetcar, tram, tramcar, trolley, trolley car", "stretcher", "studio couch, day bed", "stupa, tope", "submarine, pigboat, sub, u-boat", "suit, suit of clothes", "sundial", "sunglass", "sunglasses, dark glasses, shades", "sunscreen, sunblock, sun blocker", "suspension bridge", "swab, swob, mop", "sweatshirt", "swimming trunks, bathing trunks", "swing", "switch, electric switch, electrical switch", "syringe", "table lamp", "tank, army tank, armored combat vehicle, armoured combat vehicle", "tape player", "teapot", "teddy, teddy bear", "television, television system", "tennis ball", "thatch, thatched roof", "theater curtain, theatre curtain", "thimble", "thresher, thrasher, threshing machine", "throne", "tile roof", "toaster", "tobacco shop, tobacconist shop, tobacconist", "toilet seat", "torch", "totem pole", "tow truck, tow car, wrecker", "toyshop", "tractor", "trailer truck, tractor trailer, trucking rig, rig, articulated lorry, semi", "tray", "trench coat", "tricycle, trike, velocipede", "trimaran", "tripod", "triumphal arch", "trolleybus, trolley coach, trackless trolley", "trombone", "tub, vat", "turnstile", "typewriter keyboard", "umbrella", "unicycle, monocycle", "upright, upright piano", "vacuum, vacuum cleaner", "vase", "vault", "velvet", "vending machine", "vestment", "viaduct", "violin, fiddle", "volleyball", "waffle iron", "wall clock", "wallet, billfold, notecase, pocketbook", "wardrobe, closet, press", "warplane, military plane", "washbasin, handbasin, washbowl, lavabo, wash-hand basin", "washer, automatic washer, washing machine", "water bottle", "water jug", "water tower", "whiskey jug", "whistle", "wig", "window screen", "window shade", "windsor tie", "wine bottle", "wing", "wok", "wooden spoon", "wool, woolen, woollen", "worm fence, snake fence, snake-rail fence, virginia fence", "wreck", "yawl", "yurt", "web site, website, internet site, site", "comic book", "crossword puzzle, crossword", "street sign", "traffic light, traffic signal, stoplight", "book jacket, dust cover, dust jacket, dust wrapper", "menu", "plate", "guacamole", "consomme", "hot pot, hotpot", "trifle", "ice cream, icecream", "ice lolly, lolly, lollipop, popsicle", "french loaf", "bagel, beigel", "pretzel", "cheeseburger", "hotdog, hot dog, red hot", "mashed potato", "head cabbage", "broccoli", "cauliflower", "zucchini, courgette", "spaghetti squash", "acorn squash", "butternut squash", "cucumber, cuke", "artichoke, globe artichoke", "bell pepper", "cardoon", "mushroom", "granny smith", "strawberry", "orange", "lemon", "fig", "pineapple, ananas", "banana", "jackfruit, jak, jack", "custard apple", "pomegranate", "hay", "carbonara", "chocolate sauce, chocolate syrup", "dough", "meat loaf, meatloaf", "pizza, pizza pie", "potpie", "burrito", "red wine", "espresso", "cup", "eggnog", "alp", "bubble", "cliff, drop, drop-off", "coral reef", "geyser", "lakeside, lakeshore", "promontory, headland, head, foreland", "sandbar, sand bar", "seashore, coast, seacoast, sea-coast", "valley, vale", "volcano", "ballplayer, baseball player", "groom, bridegroom", "scuba diver", "rapeseed", "daisy", "yellow lady's slipper, yellow lady-slipper, cypripedium calceolus, cypripedium parviflorum", "corn", "acorn", "hip, rose hip, rosehip", "buckeye, horse chestnut, conker", "coral fungus", "agaric", "gyromitra", "stinkhorn, carrion fungus", "earthstar", "hen-of-the-woods, hen of the woods, polyporus frondosus, grifola frondosa", "bolete", "ear, spike, capitulum", "toilet tissue, toilet paper, bathroom tissue" ]
saurabhati/VMamba_ImageNet_83.6
# VMamba: Visual State Space Model VMamba is a bidirectional state-space model finetuned on Imagenet dataset. It was introduced in the paper: [VMamba: Visual State Space Model](https://arxiv.org/pdf/2401.10166) and was first released in [this repo](https://github.com/MzeroMiko/VMamba/tree/main). Disclaimer: This is not the official implementation, please refer to the [official repo](https://github.com/MzeroMiko/VMamba/tree/main). ## How to Get Started with the Model Use the code below to get started with the model. ```python import torch from PIL import Image import torchvision.transforms as T from transformers import AutoConfig, AutoModelForImageClassification config = AutoConfig.from_pretrained('saurabhati/VMamba_ImageNet_82.6',trust_remote_code=True) vmamba_model = AutoModelForImageClassification.from_pretrained('saurabhati/VMamba_ImageNet_82.6',trust_remote_code=True) preprocess = T.Compose([ T.Resize(224, interpolation=Image.BICUBIC), T.CenterCrop(224), T.ToTensor(), T.Normalize( mean=[0.4850, 0.4560, 0.4060], std=[0.2290, 0.2240, 0.2250] )]) input_image = Image.open('/data/sls/scratch/sbhati/data/Imagenet/train/n02009912/n02009912_16160.JPEG') input_image = preprocess(input_image) with torch.no_grad(): logits = vmamba_model(input_image.unsqueeze(0)).logits predicted_label = vmamba_model.config.id2label[logits.argmax().item()] predicted_label 'crane' ``` ## Citation ```bibtex @article{liu2024vmamba, title={VMamba: Visual State Space Model}, author={Liu, Yue and Tian, Yunjie and Zhao, Yuzhong and Yu, Hongtian and Xie, Lingxi and Wang, Yaowei and Ye, Qixiang and Liu, Yunfan}, journal={arXiv preprint arXiv:2401.10166}, year={2024} } ```
[ "tench, tinca tinca", "goldfish, carassius auratus", "great white shark, white shark, man-eater, man-eating shark, carcharodon carcharias", "tiger shark, galeocerdo cuvieri", "hammerhead, hammerhead shark", "electric ray, crampfish, numbfish, torpedo", "stingray", "cock", "hen", "ostrich, struthio camelus", "brambling, fringilla montifringilla", "goldfinch, carduelis carduelis", "house finch, linnet, carpodacus mexicanus", "junco, snowbird", "indigo bunting, indigo finch, indigo bird, passerina cyanea", "robin, american robin, turdus migratorius", "bulbul", "jay", "magpie", "chickadee", "water ouzel, dipper", "kite", "bald eagle, american eagle, haliaeetus leucocephalus", "vulture", "great grey owl, great gray owl, strix nebulosa", "european fire salamander, salamandra salamandra", "common newt, triturus vulgaris", "eft", "spotted salamander, ambystoma maculatum", "axolotl, mud puppy, ambystoma mexicanum", "bullfrog, rana catesbeiana", "tree frog, tree-frog", "tailed frog, bell toad, ribbed toad, tailed toad, ascaphus trui", "loggerhead, loggerhead turtle, caretta caretta", "leatherback turtle, leatherback, leathery turtle, dermochelys coriacea", "mud turtle", "terrapin", "box turtle, box tortoise", "banded gecko", "common iguana, iguana, iguana iguana", "american chameleon, anole, anolis carolinensis", "whiptail, whiptail lizard", "agama", "frilled lizard, chlamydosaurus kingi", "alligator lizard", "gila monster, heloderma suspectum", "green lizard, lacerta viridis", "african chameleon, chamaeleo chamaeleon", "komodo dragon, komodo lizard, dragon lizard, giant lizard, varanus komodoensis", "african crocodile, nile crocodile, crocodylus niloticus", "american alligator, alligator mississipiensis", "triceratops", "thunder snake, worm snake, carphophis amoenus", "ringneck snake, ring-necked snake, ring snake", "hognose snake, puff adder, sand viper", "green snake, grass snake", "king snake, kingsnake", "garter snake, grass snake", "water snake", "vine snake", "night snake, hypsiglena torquata", "boa constrictor, constrictor constrictor", "rock python, rock snake, python sebae", "indian cobra, naja naja", "green mamba", "sea snake", "horned viper, cerastes, sand viper, horned asp, cerastes cornutus", "diamondback, diamondback rattlesnake, crotalus adamanteus", "sidewinder, horned rattlesnake, crotalus cerastes", "trilobite", "harvestman, daddy longlegs, phalangium opilio", "scorpion", "black and gold garden spider, argiope aurantia", "barn spider, araneus cavaticus", "garden spider, aranea diademata", "black widow, latrodectus mactans", "tarantula", "wolf spider, hunting spider", "tick", "centipede", "black grouse", "ptarmigan", "ruffed grouse, partridge, bonasa umbellus", "prairie chicken, prairie grouse, prairie fowl", "peacock", "quail", "partridge", "african grey, african gray, psittacus erithacus", "macaw", "sulphur-crested cockatoo, kakatoe galerita, cacatua galerita", "lorikeet", "coucal", "bee eater", "hornbill", "hummingbird", "jacamar", "toucan", "drake", "red-breasted merganser, mergus serrator", "goose", "black swan, cygnus atratus", "tusker", "echidna, spiny anteater, anteater", "platypus, duckbill, duckbilled platypus, duck-billed platypus, ornithorhynchus anatinus", "wallaby, brush kangaroo", "koala, koala bear, kangaroo bear, native bear, phascolarctos cinereus", "wombat", "jellyfish", "sea anemone, anemone", "brain coral", "flatworm, platyhelminth", "nematode, nematode worm, roundworm", "conch", "snail", "slug", "sea slug, nudibranch", "chiton, coat-of-mail shell, sea cradle, polyplacophore", "chambered nautilus, pearly nautilus, nautilus", "dungeness crab, cancer magister", "rock crab, cancer irroratus", "fiddler crab", "king crab, alaska crab, alaskan king crab, alaska king crab, paralithodes camtschatica", "american lobster, northern lobster, maine lobster, homarus americanus", "spiny lobster, langouste, rock lobster, crawfish, crayfish, sea crawfish", "crayfish, crawfish, crawdad, crawdaddy", "hermit crab", "isopod", "white stork, ciconia ciconia", "black stork, ciconia nigra", "spoonbill", "flamingo", "little blue heron, egretta caerulea", "american egret, great white heron, egretta albus", "bittern", "crane", "limpkin, aramus pictus", "european gallinule, porphyrio porphyrio", "american coot, marsh hen, mud hen, water hen, fulica americana", "bustard", "ruddy turnstone, arenaria interpres", "red-backed sandpiper, dunlin, erolia alpina", "redshank, tringa totanus", "dowitcher", "oystercatcher, oyster catcher", "pelican", "king penguin, aptenodytes patagonica", "albatross, mollymawk", "grey whale, gray whale, devilfish, eschrichtius gibbosus, eschrichtius robustus", "killer whale, killer, orca, grampus, sea wolf, orcinus orca", "dugong, dugong dugon", "sea lion", "chihuahua", "japanese spaniel", "maltese dog, maltese terrier, maltese", "pekinese, pekingese, peke", "shih-tzu", "blenheim spaniel", "papillon", "toy terrier", "rhodesian ridgeback", "afghan hound, afghan", "basset, basset hound", "beagle", "bloodhound, sleuthhound", "bluetick", "black-and-tan coonhound", "walker hound, walker foxhound", "english foxhound", "redbone", "borzoi, russian wolfhound", "irish wolfhound", "italian greyhound", "whippet", "ibizan hound, ibizan podenco", "norwegian elkhound, elkhound", "otterhound, otter hound", "saluki, gazelle hound", "scottish deerhound, deerhound", "weimaraner", "staffordshire bullterrier, staffordshire bull terrier", "american staffordshire terrier, staffordshire terrier, american pit bull terrier, pit bull terrier", "bedlington terrier", "border terrier", "kerry blue terrier", "irish terrier", "norfolk terrier", "norwich terrier", "yorkshire terrier", "wire-haired fox terrier", "lakeland terrier", "sealyham terrier, sealyham", "airedale, airedale terrier", "cairn, cairn terrier", "australian terrier", "dandie dinmont, dandie dinmont terrier", "boston bull, boston terrier", "miniature schnauzer", "giant schnauzer", "standard schnauzer", "scotch terrier, scottish terrier, scottie", "tibetan terrier, chrysanthemum dog", "silky terrier, sydney silky", "soft-coated wheaten terrier", "west highland white terrier", "lhasa, lhasa apso", "flat-coated retriever", "curly-coated retriever", "golden retriever", "labrador retriever", "chesapeake bay retriever", "german short-haired pointer", "vizsla, hungarian pointer", "english setter", "irish setter, red setter", "gordon setter", "brittany spaniel", "clumber, clumber spaniel", "english springer, english springer spaniel", "welsh springer spaniel", "cocker spaniel, english cocker spaniel, cocker", "sussex spaniel", "irish water spaniel", "kuvasz", "schipperke", "groenendael", "malinois", "briard", "kelpie", "komondor", "old english sheepdog, bobtail", "shetland sheepdog, shetland sheep dog, shetland", "collie", "border collie", "bouvier des flandres, bouviers des flandres", "rottweiler", "german shepherd, german shepherd dog, german police dog, alsatian", "doberman, doberman pinscher", "miniature pinscher", "greater swiss mountain dog", "bernese mountain dog", "appenzeller", "entlebucher", "boxer", "bull mastiff", "tibetan mastiff", "french bulldog", "great dane", "saint bernard, st bernard", "eskimo dog, husky", "malamute, malemute, alaskan malamute", "siberian husky", "dalmatian, coach dog, carriage dog", "affenpinscher, monkey pinscher, monkey dog", "basenji", "pug, pug-dog", "leonberg", "newfoundland, newfoundland dog", "great pyrenees", "samoyed, samoyede", "pomeranian", "chow, chow chow", "keeshond", "brabancon griffon", "pembroke, pembroke welsh corgi", "cardigan, cardigan welsh corgi", "toy poodle", "miniature poodle", "standard poodle", "mexican hairless", "timber wolf, grey wolf, gray wolf, canis lupus", "white wolf, arctic wolf, canis lupus tundrarum", "red wolf, maned wolf, canis rufus, canis niger", "coyote, prairie wolf, brush wolf, canis latrans", "dingo, warrigal, warragal, canis dingo", "dhole, cuon alpinus", "african hunting dog, hyena dog, cape hunting dog, lycaon pictus", "hyena, hyaena", "red fox, vulpes vulpes", "kit fox, vulpes macrotis", "arctic fox, white fox, alopex lagopus", "grey fox, gray fox, urocyon cinereoargenteus", "tabby, tabby cat", "tiger cat", "persian cat", "siamese cat, siamese", "egyptian cat", "cougar, puma, catamount, mountain lion, painter, panther, felis concolor", "lynx, catamount", "leopard, panthera pardus", "snow leopard, ounce, panthera uncia", "jaguar, panther, panthera onca, felis onca", "lion, king of beasts, panthera leo", "tiger, panthera tigris", "cheetah, chetah, acinonyx jubatus", "brown bear, bruin, ursus arctos", "american black bear, black bear, ursus americanus, euarctos americanus", "ice bear, polar bear, ursus maritimus, thalarctos maritimus", "sloth bear, melursus ursinus, ursus ursinus", "mongoose", "meerkat, mierkat", "tiger beetle", "ladybug, ladybeetle, lady beetle, ladybird, ladybird beetle", "ground beetle, carabid beetle", "long-horned beetle, longicorn, longicorn beetle", "leaf beetle, chrysomelid", "dung beetle", "rhinoceros beetle", "weevil", "fly", "bee", "ant, emmet, pismire", "grasshopper, hopper", "cricket", "walking stick, walkingstick, stick insect", "cockroach, roach", "mantis, mantid", "cicada, cicala", "leafhopper", "lacewing, lacewing fly", "dragonfly, darning needle, devil's darning needle, sewing needle, snake feeder, snake doctor, mosquito hawk, skeeter hawk", "damselfly", "admiral", "ringlet, ringlet butterfly", "monarch, monarch butterfly, milkweed butterfly, danaus plexippus", "cabbage butterfly", "sulphur butterfly, sulfur butterfly", "lycaenid, lycaenid butterfly", "starfish, sea star", "sea urchin", "sea cucumber, holothurian", "wood rabbit, cottontail, cottontail rabbit", "hare", "angora, angora rabbit", "hamster", "porcupine, hedgehog", "fox squirrel, eastern fox squirrel, sciurus niger", "marmot", "beaver", "guinea pig, cavia cobaya", "sorrel", "zebra", "hog, pig, grunter, squealer, sus scrofa", "wild boar, boar, sus scrofa", "warthog", "hippopotamus, hippo, river horse, hippopotamus amphibius", "ox", "water buffalo, water ox, asiatic buffalo, bubalus bubalis", "bison", "ram, tup", "bighorn, bighorn sheep, cimarron, rocky mountain bighorn, rocky mountain sheep, ovis canadensis", "ibex, capra ibex", "hartebeest", "impala, aepyceros melampus", "gazelle", "arabian camel, dromedary, camelus dromedarius", "llama", "weasel", "mink", "polecat, fitch, foulmart, foumart, mustela putorius", "black-footed ferret, ferret, mustela nigripes", "otter", "skunk, polecat, wood pussy", "badger", "armadillo", "three-toed sloth, ai, bradypus tridactylus", "orangutan, orang, orangutang, pongo pygmaeus", "gorilla, gorilla gorilla", "chimpanzee, chimp, pan troglodytes", "gibbon, hylobates lar", "siamang, hylobates syndactylus, symphalangus syndactylus", "guenon, guenon monkey", "patas, hussar monkey, erythrocebus patas", "baboon", "macaque", "langur", "colobus, colobus monkey", "proboscis monkey, nasalis larvatus", "marmoset", "capuchin, ringtail, cebus capucinus", "howler monkey, howler", "titi, titi monkey", "spider monkey, ateles geoffroyi", "squirrel monkey, saimiri sciureus", "madagascar cat, ring-tailed lemur, lemur catta", "indri, indris, indri indri, indri brevicaudatus", "indian elephant, elephas maximus", "african elephant, loxodonta africana", "lesser panda, red panda, panda, bear cat, cat bear, ailurus fulgens", "giant panda, panda, panda bear, coon bear, ailuropoda melanoleuca", "barracouta, snoek", "eel", "coho, cohoe, coho salmon, blue jack, silver salmon, oncorhynchus kisutch", "rock beauty, holocanthus tricolor", "anemone fish", "sturgeon", "gar, garfish, garpike, billfish, lepisosteus osseus", "lionfish", "puffer, pufferfish, blowfish, globefish", "abacus", "abaya", "academic gown, academic robe, judge's robe", "accordion, piano accordion, squeeze box", "acoustic guitar", "aircraft carrier, carrier, flattop, attack aircraft carrier", "airliner", "airship, dirigible", "altar", "ambulance", "amphibian, amphibious vehicle", "analog clock", "apiary, bee house", "apron", "ashcan, trash can, garbage can, wastebin, ash bin, ash-bin, ashbin, dustbin, trash barrel, trash bin", "assault rifle, assault gun", "backpack, back pack, knapsack, packsack, rucksack, haversack", "bakery, bakeshop, bakehouse", "balance beam, beam", "balloon", "ballpoint, ballpoint pen, ballpen, biro", "band aid", "banjo", "bannister, banister, balustrade, balusters, handrail", "barbell", "barber chair", "barbershop", "barn", "barometer", "barrel, cask", "barrow, garden cart, lawn cart, wheelbarrow", "baseball", "basketball", "bassinet", "bassoon", "bathing cap, swimming cap", "bath towel", "bathtub, bathing tub, bath, tub", "beach wagon, station wagon, wagon, estate car, beach waggon, station waggon, waggon", "beacon, lighthouse, beacon light, pharos", "beaker", "bearskin, busby, shako", "beer bottle", "beer glass", "bell cote, bell cot", "bib", "bicycle-built-for-two, tandem bicycle, tandem", "bikini, two-piece", "binder, ring-binder", "binoculars, field glasses, opera glasses", "birdhouse", "boathouse", "bobsled, bobsleigh, bob", "bolo tie, bolo, bola tie, bola", "bonnet, poke bonnet", "bookcase", "bookshop, bookstore, bookstall", "bottlecap", "bow", "bow tie, bow-tie, bowtie", "brass, memorial tablet, plaque", "brassiere, bra, bandeau", "breakwater, groin, groyne, mole, bulwark, seawall, jetty", "breastplate, aegis, egis", "broom", "bucket, pail", "buckle", "bulletproof vest", "bullet train, bullet", "butcher shop, meat market", "cab, hack, taxi, taxicab", "caldron, cauldron", "candle, taper, wax light", "cannon", "canoe", "can opener, tin opener", "cardigan", "car mirror", "carousel, carrousel, merry-go-round, roundabout, whirligig", "carpenter's kit, tool kit", "carton", "car wheel", "cash machine, cash dispenser, automated teller machine, automatic teller machine, automated teller, automatic teller, atm", "cassette", "cassette player", "castle", "catamaran", "cd player", "cello, violoncello", "cellular telephone, cellular phone, cellphone, cell, mobile phone", "chain", "chainlink fence", "chain mail, ring mail, mail, chain armor, chain armour, ring armor, ring armour", "chain saw, chainsaw", "chest", "chiffonier, commode", "chime, bell, gong", "china cabinet, china closet", "christmas stocking", "church, church building", "cinema, movie theater, movie theatre, movie house, picture palace", "cleaver, meat cleaver, chopper", "cliff dwelling", "cloak", "clog, geta, patten, sabot", "cocktail shaker", "coffee mug", "coffeepot", "coil, spiral, volute, whorl, helix", "combination lock", "computer keyboard, keypad", "confectionery, confectionary, candy store", "container ship, containership, container vessel", "convertible", "corkscrew, bottle screw", "cornet, horn, trumpet, trump", "cowboy boot", "cowboy hat, ten-gallon hat", "cradle", "crane", "crash helmet", "crate", "crib, cot", "crock pot", "croquet ball", "crutch", "cuirass", "dam, dike, dyke", "desk", "desktop computer", "dial telephone, dial phone", "diaper, nappy, napkin", "digital clock", "digital watch", "dining table, board", "dishrag, dishcloth", "dishwasher, dish washer, dishwashing machine", "disk brake, disc brake", "dock, dockage, docking facility", "dogsled, dog sled, dog sleigh", "dome", "doormat, welcome mat", "drilling platform, offshore rig", "drum, membranophone, tympan", "drumstick", "dumbbell", "dutch oven", "electric fan, blower", "electric guitar", "electric locomotive", "entertainment center", "envelope", "espresso maker", "face powder", "feather boa, boa", "file, file cabinet, filing cabinet", "fireboat", "fire engine, fire truck", "fire screen, fireguard", "flagpole, flagstaff", "flute, transverse flute", "folding chair", "football helmet", "forklift", "fountain", "fountain pen", "four-poster", "freight car", "french horn, horn", "frying pan, frypan, skillet", "fur coat", "garbage truck, dustcart", "gasmask, respirator, gas helmet", "gas pump, gasoline pump, petrol pump, island dispenser", "goblet", "go-kart", "golf ball", "golfcart, golf cart", "gondola", "gong, tam-tam", "gown", "grand piano, grand", "greenhouse, nursery, glasshouse", "grille, radiator grille", "grocery store, grocery, food market, market", "guillotine", "hair slide", "hair spray", "half track", "hammer", "hamper", "hand blower, blow dryer, blow drier, hair dryer, hair drier", "hand-held computer, hand-held microcomputer", "handkerchief, hankie, hanky, hankey", "hard disc, hard disk, fixed disk", "harmonica, mouth organ, harp, mouth harp", "harp", "harvester, reaper", "hatchet", "holster", "home theater, home theatre", "honeycomb", "hook, claw", "hoopskirt, crinoline", "horizontal bar, high bar", "horse cart, horse-cart", "hourglass", "ipod", "iron, smoothing iron", "jack-o'-lantern", "jean, blue jean, denim", "jeep, landrover", "jersey, t-shirt, tee shirt", "jigsaw puzzle", "jinrikisha, ricksha, rickshaw", "joystick", "kimono", "knee pad", "knot", "lab coat, laboratory coat", "ladle", "lampshade, lamp shade", "laptop, laptop computer", "lawn mower, mower", "lens cap, lens cover", "letter opener, paper knife, paperknife", "library", "lifeboat", "lighter, light, igniter, ignitor", "limousine, limo", "liner, ocean liner", "lipstick, lip rouge", "loafer", "lotion", "loudspeaker, speaker, speaker unit, loudspeaker system, speaker system", "loupe, jeweler's loupe", "lumbermill, sawmill", "magnetic compass", "mailbag, postbag", "mailbox, letter box", "maillot", "maillot, tank suit", "manhole cover", "maraca", "marimba, xylophone", "mask", "matchstick", "maypole", "maze, labyrinth", "measuring cup", "medicine chest, medicine cabinet", "megalith, megalithic structure", "microphone, mike", "microwave, microwave oven", "military uniform", "milk can", "minibus", "miniskirt, mini", "minivan", "missile", "mitten", "mixing bowl", "mobile home, manufactured home", "model t", "modem", "monastery", "monitor", "moped", "mortar", "mortarboard", "mosque", "mosquito net", "motor scooter, scooter", "mountain bike, all-terrain bike, off-roader", "mountain tent", "mouse, computer mouse", "mousetrap", "moving van", "muzzle", "nail", "neck brace", "necklace", "nipple", "notebook, notebook computer", "obelisk", "oboe, hautboy, hautbois", "ocarina, sweet potato", "odometer, hodometer, mileometer, milometer", "oil filter", "organ, pipe organ", "oscilloscope, scope, cathode-ray oscilloscope, cro", "overskirt", "oxcart", "oxygen mask", "packet", "paddle, boat paddle", "paddlewheel, paddle wheel", "padlock", "paintbrush", "pajama, pyjama, pj's, jammies", "palace", "panpipe, pandean pipe, syrinx", "paper towel", "parachute, chute", "parallel bars, bars", "park bench", "parking meter", "passenger car, coach, carriage", "patio, terrace", "pay-phone, pay-station", "pedestal, plinth, footstall", "pencil box, pencil case", "pencil sharpener", "perfume, essence", "petri dish", "photocopier", "pick, plectrum, plectron", "pickelhaube", "picket fence, paling", "pickup, pickup truck", "pier", "piggy bank, penny bank", "pill bottle", "pillow", "ping-pong ball", "pinwheel", "pirate, pirate ship", "pitcher, ewer", "plane, carpenter's plane, woodworking plane", "planetarium", "plastic bag", "plate rack", "plow, plough", "plunger, plumber's helper", "polaroid camera, polaroid land camera", "pole", "police van, police wagon, paddy wagon, patrol wagon, wagon, black maria", "poncho", "pool table, billiard table, snooker table", "pop bottle, soda bottle", "pot, flowerpot", "potter's wheel", "power drill", "prayer rug, prayer mat", "printer", "prison, prison house", "projectile, missile", "projector", "puck, hockey puck", "punching bag, punch bag, punching ball, punchball", "purse", "quill, quill pen", "quilt, comforter, comfort, puff", "racer, race car, racing car", "racket, racquet", "radiator", "radio, wireless", "radio telescope, radio reflector", "rain barrel", "recreational vehicle, rv, r.v.", "reel", "reflex camera", "refrigerator, icebox", "remote control, remote", "restaurant, eating house, eating place, eatery", "revolver, six-gun, six-shooter", "rifle", "rocking chair, rocker", "rotisserie", "rubber eraser, rubber, pencil eraser", "rugby ball", "rule, ruler", "running shoe", "safe", "safety pin", "saltshaker, salt shaker", "sandal", "sarong", "sax, saxophone", "scabbard", "scale, weighing machine", "school bus", "schooner", "scoreboard", "screen, crt screen", "screw", "screwdriver", "seat belt, seatbelt", "sewing machine", "shield, buckler", "shoe shop, shoe-shop, shoe store", "shoji", "shopping basket", "shopping cart", "shovel", "shower cap", "shower curtain", "ski", "ski mask", "sleeping bag", "slide rule, slipstick", "sliding door", "slot, one-armed bandit", "snorkel", "snowmobile", "snowplow, snowplough", "soap dispenser", "soccer ball", "sock", "solar dish, solar collector, solar furnace", "sombrero", "soup bowl", "space bar", "space heater", "space shuttle", "spatula", "speedboat", "spider web, spider's web", "spindle", "sports car, sport car", "spotlight, spot", "stage", "steam locomotive", "steel arch bridge", "steel drum", "stethoscope", "stole", "stone wall", "stopwatch, stop watch", "stove", "strainer", "streetcar, tram, tramcar, trolley, trolley car", "stretcher", "studio couch, day bed", "stupa, tope", "submarine, pigboat, sub, u-boat", "suit, suit of clothes", "sundial", "sunglass", "sunglasses, dark glasses, shades", "sunscreen, sunblock, sun blocker", "suspension bridge", "swab, swob, mop", "sweatshirt", "swimming trunks, bathing trunks", "swing", "switch, electric switch, electrical switch", "syringe", "table lamp", "tank, army tank, armored combat vehicle, armoured combat vehicle", "tape player", "teapot", "teddy, teddy bear", "television, television system", "tennis ball", "thatch, thatched roof", "theater curtain, theatre curtain", "thimble", "thresher, thrasher, threshing machine", "throne", "tile roof", "toaster", "tobacco shop, tobacconist shop, tobacconist", "toilet seat", "torch", "totem pole", "tow truck, tow car, wrecker", "toyshop", "tractor", "trailer truck, tractor trailer, trucking rig, rig, articulated lorry, semi", "tray", "trench coat", "tricycle, trike, velocipede", "trimaran", "tripod", "triumphal arch", "trolleybus, trolley coach, trackless trolley", "trombone", "tub, vat", "turnstile", "typewriter keyboard", "umbrella", "unicycle, monocycle", "upright, upright piano", "vacuum, vacuum cleaner", "vase", "vault", "velvet", "vending machine", "vestment", "viaduct", "violin, fiddle", "volleyball", "waffle iron", "wall clock", "wallet, billfold, notecase, pocketbook", "wardrobe, closet, press", "warplane, military plane", "washbasin, handbasin, washbowl, lavabo, wash-hand basin", "washer, automatic washer, washing machine", "water bottle", "water jug", "water tower", "whiskey jug", "whistle", "wig", "window screen", "window shade", "windsor tie", "wine bottle", "wing", "wok", "wooden spoon", "wool, woolen, woollen", "worm fence, snake fence, snake-rail fence, virginia fence", "wreck", "yawl", "yurt", "web site, website, internet site, site", "comic book", "crossword puzzle, crossword", "street sign", "traffic light, traffic signal, stoplight", "book jacket, dust cover, dust jacket, dust wrapper", "menu", "plate", "guacamole", "consomme", "hot pot, hotpot", "trifle", "ice cream, icecream", "ice lolly, lolly, lollipop, popsicle", "french loaf", "bagel, beigel", "pretzel", "cheeseburger", "hotdog, hot dog, red hot", "mashed potato", "head cabbage", "broccoli", "cauliflower", "zucchini, courgette", "spaghetti squash", "acorn squash", "butternut squash", "cucumber, cuke", "artichoke, globe artichoke", "bell pepper", "cardoon", "mushroom", "granny smith", "strawberry", "orange", "lemon", "fig", "pineapple, ananas", "banana", "jackfruit, jak, jack", "custard apple", "pomegranate", "hay", "carbonara", "chocolate sauce, chocolate syrup", "dough", "meat loaf, meatloaf", "pizza, pizza pie", "potpie", "burrito", "red wine", "espresso", "cup", "eggnog", "alp", "bubble", "cliff, drop, drop-off", "coral reef", "geyser", "lakeside, lakeshore", "promontory, headland, head, foreland", "sandbar, sand bar", "seashore, coast, seacoast, sea-coast", "valley, vale", "volcano", "ballplayer, baseball player", "groom, bridegroom", "scuba diver", "rapeseed", "daisy", "yellow lady's slipper, yellow lady-slipper, cypripedium calceolus, cypripedium parviflorum", "corn", "acorn", "hip, rose hip, rosehip", "buckeye, horse chestnut, conker", "coral fungus", "agaric", "gyromitra", "stinkhorn, carrion fungus", "earthstar", "hen-of-the-woods, hen of the woods, polyporus frondosus, grifola frondosa", "bolete", "ear, spike, capitulum", "toilet tissue, toilet paper, bathroom tissue" ]
halimalm/vit-base-oxford-iiit-pets
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-oxford-iiit-pets This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the pcuenq/oxford-pets dataset. It achieves the following results on the evaluation set: - Loss: 0.2081 - Accuracy: 0.9296 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.385 | 1.0 | 370 | 0.2946 | 0.9283 | | 0.2121 | 2.0 | 740 | 0.2315 | 0.9364 | | 0.1545 | 3.0 | 1110 | 0.2084 | 0.9364 | | 0.1476 | 4.0 | 1480 | 0.2036 | 0.9391 | | 0.1198 | 5.0 | 1850 | 0.2018 | 0.9405 | ### Framework versions - Transformers 4.50.0 - Pytorch 2.6.0+cu124 - Datasets 3.4.1 - Tokenizers 0.21.1 ## Zero-Shot classification model This section compares the performance of a zero-shot model (`openai/clip-vit-large-patch14`) on the Oxford Pets dataset (`pcuenq/oxford-pets`). - **Model used**: `openai/clip-vit-large-patch14` - **Dataset**: `pcuenq/oxford-pets` (train split) - **Evaluation Task**: Zero-Shot Image Classification - **Candidate Labels**: 37 pet breeds from the dataset ### Results: Zero-Shot Evaluation mit CLIP: Accuracy: 0.8800 Precision: 0.8768 Recall: 0.8800 Evaluated using Hugging Face `transformers` pipeline and `sklearn.metrics` on the full training set.
[ "siamese", "birman", "shiba inu", "staffordshire bull terrier", "basset hound", "bombay", "japanese chin", "chihuahua", "german shorthaired", "pomeranian", "beagle", "english cocker spaniel", "american pit bull terrier", "ragdoll", "persian", "egyptian mau", "miniature pinscher", "sphynx", "maine coon", "keeshond", "yorkshire terrier", "havanese", "leonberger", "wheaten terrier", "american bulldog", "english setter", "boxer", "newfoundland", "bengal", "samoyed", "british shorthair", "great pyrenees", "abyssinian", "pug", "saint bernard", "russian blue", "scottish terrier" ]
drj0731/wikibooks-huggingface
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
[ "tench, tinca tinca", "goldfish, carassius auratus", "great white shark, white shark, man-eater, man-eating shark, carcharodon carcharias", "tiger shark, galeocerdo cuvieri", "hammerhead, hammerhead shark", "electric ray, crampfish, numbfish, torpedo", "stingray", "cock", "hen", "ostrich, struthio camelus", "brambling, fringilla montifringilla", "goldfinch, carduelis carduelis", "house finch, linnet, carpodacus mexicanus", "junco, snowbird", "indigo bunting, indigo finch, indigo bird, passerina cyanea", "robin, american robin, turdus migratorius", "bulbul", "jay", "magpie", "chickadee", "water ouzel, dipper", "kite", "bald eagle, american eagle, haliaeetus leucocephalus", "vulture", "great grey owl, great gray owl, strix nebulosa", "european fire salamander, salamandra salamandra", "common newt, triturus vulgaris", "eft", "spotted salamander, ambystoma maculatum", "axolotl, mud puppy, ambystoma mexicanum", "bullfrog, rana catesbeiana", "tree frog, tree-frog", "tailed frog, bell toad, ribbed toad, tailed toad, ascaphus trui", "loggerhead, loggerhead turtle, caretta caretta", "leatherback turtle, leatherback, leathery turtle, dermochelys coriacea", "mud turtle", "terrapin", "box turtle, box tortoise", "banded gecko", "common iguana, iguana, iguana iguana", "american chameleon, anole, anolis carolinensis", "whiptail, whiptail lizard", "agama", "frilled lizard, chlamydosaurus kingi", "alligator lizard", "gila monster, heloderma suspectum", "green lizard, lacerta viridis", "african chameleon, chamaeleo chamaeleon", "komodo dragon, komodo lizard, dragon lizard, giant lizard, varanus komodoensis", "african crocodile, nile crocodile, crocodylus niloticus", "american alligator, alligator mississipiensis", "triceratops", "thunder snake, worm snake, carphophis amoenus", "ringneck snake, ring-necked snake, ring snake", "hognose snake, puff adder, sand viper", "green snake, grass snake", "king snake, kingsnake", "garter snake, grass snake", "water snake", "vine snake", "night snake, hypsiglena torquata", "boa constrictor, constrictor constrictor", "rock python, rock snake, python sebae", "indian cobra, naja naja", "green mamba", "sea snake", "horned viper, cerastes, sand viper, horned asp, cerastes cornutus", "diamondback, diamondback rattlesnake, crotalus adamanteus", "sidewinder, horned rattlesnake, crotalus cerastes", "trilobite", "harvestman, daddy longlegs, phalangium opilio", "scorpion", "black and gold garden spider, argiope aurantia", "barn spider, araneus cavaticus", "garden spider, aranea diademata", "black widow, latrodectus mactans", "tarantula", "wolf spider, hunting spider", "tick", "centipede", "black grouse", "ptarmigan", "ruffed grouse, partridge, bonasa umbellus", "prairie chicken, prairie grouse, prairie fowl", "peacock", "quail", "partridge", "african grey, african gray, psittacus erithacus", "macaw", "sulphur-crested cockatoo, kakatoe galerita, cacatua galerita", "lorikeet", "coucal", "bee eater", "hornbill", "hummingbird", "jacamar", "toucan", "drake", "red-breasted merganser, mergus serrator", "goose", "black swan, cygnus atratus", "tusker", "echidna, spiny anteater, anteater", "platypus, duckbill, duckbilled platypus, duck-billed platypus, ornithorhynchus anatinus", "wallaby, brush kangaroo", "koala, koala bear, kangaroo bear, native bear, phascolarctos cinereus", "wombat", "jellyfish", "sea anemone, anemone", "brain coral", "flatworm, platyhelminth", "nematode, nematode worm, roundworm", "conch", "snail", "slug", "sea slug, nudibranch", "chiton, coat-of-mail shell, sea cradle, polyplacophore", "chambered nautilus, pearly nautilus, nautilus", "dungeness crab, cancer magister", "rock crab, cancer irroratus", "fiddler crab", "king crab, alaska crab, alaskan king crab, alaska king crab, paralithodes camtschatica", "american lobster, northern lobster, maine lobster, homarus americanus", "spiny lobster, langouste, rock lobster, crawfish, crayfish, sea crawfish", "crayfish, crawfish, crawdad, crawdaddy", "hermit crab", "isopod", "white stork, ciconia ciconia", "black stork, ciconia nigra", "spoonbill", "flamingo", "little blue heron, egretta caerulea", "american egret, great white heron, egretta albus", "bittern", "crane", "limpkin, aramus pictus", "european gallinule, porphyrio porphyrio", "american coot, marsh hen, mud hen, water hen, fulica americana", "bustard", "ruddy turnstone, arenaria interpres", "red-backed sandpiper, dunlin, erolia alpina", "redshank, tringa totanus", "dowitcher", "oystercatcher, oyster catcher", "pelican", "king penguin, aptenodytes patagonica", "albatross, mollymawk", "grey whale, gray whale, devilfish, eschrichtius gibbosus, eschrichtius robustus", "killer whale, killer, orca, grampus, sea wolf, orcinus orca", "dugong, dugong dugon", "sea lion", "chihuahua", "japanese spaniel", "maltese dog, maltese terrier, maltese", "pekinese, pekingese, peke", "shih-tzu", "blenheim spaniel", "papillon", "toy terrier", "rhodesian ridgeback", "afghan hound, afghan", "basset, basset hound", "beagle", "bloodhound, sleuthhound", "bluetick", "black-and-tan coonhound", "walker hound, walker foxhound", "english foxhound", "redbone", "borzoi, russian wolfhound", "irish wolfhound", "italian greyhound", "whippet", "ibizan hound, ibizan podenco", "norwegian elkhound, elkhound", "otterhound, otter hound", "saluki, gazelle hound", "scottish deerhound, deerhound", "weimaraner", "staffordshire bullterrier, staffordshire bull terrier", "american staffordshire terrier, staffordshire terrier, american pit bull terrier, pit bull terrier", "bedlington terrier", "border terrier", "kerry blue terrier", "irish terrier", "norfolk terrier", "norwich terrier", "yorkshire terrier", "wire-haired fox terrier", "lakeland terrier", "sealyham terrier, sealyham", "airedale, airedale terrier", "cairn, cairn terrier", "australian terrier", "dandie dinmont, dandie dinmont terrier", "boston bull, boston terrier", "miniature schnauzer", "giant schnauzer", "standard schnauzer", "scotch terrier, scottish terrier, scottie", "tibetan terrier, chrysanthemum dog", "silky terrier, sydney silky", "soft-coated wheaten terrier", "west highland white terrier", "lhasa, lhasa apso", "flat-coated retriever", "curly-coated retriever", "golden retriever", "labrador retriever", "chesapeake bay retriever", "german short-haired pointer", "vizsla, hungarian pointer", "english setter", "irish setter, red setter", "gordon setter", "brittany spaniel", "clumber, clumber spaniel", "english springer, english springer spaniel", "welsh springer spaniel", "cocker spaniel, english cocker spaniel, cocker", "sussex spaniel", "irish water spaniel", "kuvasz", "schipperke", "groenendael", "malinois", "briard", "kelpie", "komondor", "old english sheepdog, bobtail", "shetland sheepdog, shetland sheep dog, shetland", "collie", "border collie", "bouvier des flandres, bouviers des flandres", "rottweiler", "german shepherd, german shepherd dog, german police dog, alsatian", "doberman, doberman pinscher", "miniature pinscher", "greater swiss mountain dog", "bernese mountain dog", "appenzeller", "entlebucher", "boxer", "bull mastiff", "tibetan mastiff", "french bulldog", "great dane", "saint bernard, st bernard", "eskimo dog, husky", "malamute, malemute, alaskan malamute", "siberian husky", "dalmatian, coach dog, carriage dog", "affenpinscher, monkey pinscher, monkey dog", "basenji", "pug, pug-dog", "leonberg", "newfoundland, newfoundland dog", "great pyrenees", "samoyed, samoyede", "pomeranian", "chow, chow chow", "keeshond", "brabancon griffon", "pembroke, pembroke welsh corgi", "cardigan, cardigan welsh corgi", "toy poodle", "miniature poodle", "standard poodle", "mexican hairless", "timber wolf, grey wolf, gray wolf, canis lupus", "white wolf, arctic wolf, canis lupus tundrarum", "red wolf, maned wolf, canis rufus, canis niger", "coyote, prairie wolf, brush wolf, canis latrans", "dingo, warrigal, warragal, canis dingo", "dhole, cuon alpinus", "african hunting dog, hyena dog, cape hunting dog, lycaon pictus", "hyena, hyaena", "red fox, vulpes vulpes", "kit fox, vulpes macrotis", "arctic fox, white fox, alopex lagopus", "grey fox, gray fox, urocyon cinereoargenteus", "tabby, tabby cat", "tiger cat", "persian cat", "siamese cat, siamese", "egyptian cat", "cougar, puma, catamount, mountain lion, painter, panther, felis concolor", "lynx, catamount", "leopard, panthera pardus", "snow leopard, ounce, panthera uncia", "jaguar, panther, panthera onca, felis onca", "lion, king of beasts, panthera leo", "tiger, panthera tigris", "cheetah, chetah, acinonyx jubatus", "brown bear, bruin, ursus arctos", "american black bear, black bear, ursus americanus, euarctos americanus", "ice bear, polar bear, ursus maritimus, thalarctos maritimus", "sloth bear, melursus ursinus, ursus ursinus", "mongoose", "meerkat, mierkat", "tiger beetle", "ladybug, ladybeetle, lady beetle, ladybird, ladybird beetle", "ground beetle, carabid beetle", "long-horned beetle, longicorn, longicorn beetle", "leaf beetle, chrysomelid", "dung beetle", "rhinoceros beetle", "weevil", "fly", "bee", "ant, emmet, pismire", "grasshopper, hopper", "cricket", "walking stick, walkingstick, stick insect", "cockroach, roach", "mantis, mantid", "cicada, cicala", "leafhopper", "lacewing, lacewing fly", "dragonfly, darning needle, devil's darning needle, sewing needle, snake feeder, snake doctor, mosquito hawk, skeeter hawk", "damselfly", "admiral", "ringlet, ringlet butterfly", "monarch, monarch butterfly, milkweed butterfly, danaus plexippus", "cabbage butterfly", "sulphur butterfly, sulfur butterfly", "lycaenid, lycaenid butterfly", "starfish, sea star", "sea urchin", "sea cucumber, holothurian", "wood rabbit, cottontail, cottontail rabbit", "hare", "angora, angora rabbit", "hamster", "porcupine, hedgehog", "fox squirrel, eastern fox squirrel, sciurus niger", "marmot", "beaver", "guinea pig, cavia cobaya", "sorrel", "zebra", "hog, pig, grunter, squealer, sus scrofa", "wild boar, boar, sus scrofa", "warthog", "hippopotamus, hippo, river horse, hippopotamus amphibius", "ox", "water buffalo, water ox, asiatic buffalo, bubalus bubalis", "bison", "ram, tup", "bighorn, bighorn sheep, cimarron, rocky mountain bighorn, rocky mountain sheep, ovis canadensis", "ibex, capra ibex", "hartebeest", "impala, aepyceros melampus", "gazelle", "arabian camel, dromedary, camelus dromedarius", "llama", "weasel", "mink", "polecat, fitch, foulmart, foumart, mustela putorius", "black-footed ferret, ferret, mustela nigripes", "otter", "skunk, polecat, wood pussy", "badger", "armadillo", "three-toed sloth, ai, bradypus tridactylus", "orangutan, orang, orangutang, pongo pygmaeus", "gorilla, gorilla gorilla", "chimpanzee, chimp, pan troglodytes", "gibbon, hylobates lar", "siamang, hylobates syndactylus, symphalangus syndactylus", "guenon, guenon monkey", "patas, hussar monkey, erythrocebus patas", "baboon", "macaque", "langur", "colobus, colobus monkey", "proboscis monkey, nasalis larvatus", "marmoset", "capuchin, ringtail, cebus capucinus", "howler monkey, howler", "titi, titi monkey", "spider monkey, ateles geoffroyi", "squirrel monkey, saimiri sciureus", "madagascar cat, ring-tailed lemur, lemur catta", "indri, indris, indri indri, indri brevicaudatus", "indian elephant, elephas maximus", "african elephant, loxodonta africana", "lesser panda, red panda, panda, bear cat, cat bear, ailurus fulgens", "giant panda, panda, panda bear, coon bear, ailuropoda melanoleuca", "barracouta, snoek", "eel", "coho, cohoe, coho salmon, blue jack, silver salmon, oncorhynchus kisutch", "rock beauty, holocanthus tricolor", "anemone fish", "sturgeon", "gar, garfish, garpike, billfish, lepisosteus osseus", "lionfish", "puffer, pufferfish, blowfish, globefish", "abacus", "abaya", "academic gown, academic robe, judge's robe", "accordion, piano accordion, squeeze box", "acoustic guitar", "aircraft carrier, carrier, flattop, attack aircraft carrier", "airliner", "airship, dirigible", "altar", "ambulance", "amphibian, amphibious vehicle", "analog clock", "apiary, bee house", "apron", "ashcan, trash can, garbage can, wastebin, ash bin, ash-bin, ashbin, dustbin, trash barrel, trash bin", "assault rifle, assault gun", "backpack, back pack, knapsack, packsack, rucksack, haversack", "bakery, bakeshop, bakehouse", "balance beam, beam", "balloon", "ballpoint, ballpoint pen, ballpen, biro", "band aid", "banjo", "bannister, banister, balustrade, balusters, handrail", "barbell", "barber chair", "barbershop", "barn", "barometer", "barrel, cask", "barrow, garden cart, lawn cart, wheelbarrow", "baseball", "basketball", "bassinet", "bassoon", "bathing cap, swimming cap", "bath towel", "bathtub, bathing tub, bath, tub", "beach wagon, station wagon, wagon, estate car, beach waggon, station waggon, waggon", "beacon, lighthouse, beacon light, pharos", "beaker", "bearskin, busby, shako", "beer bottle", "beer glass", "bell cote, bell cot", "bib", "bicycle-built-for-two, tandem bicycle, tandem", "bikini, two-piece", "binder, ring-binder", "binoculars, field glasses, opera glasses", "birdhouse", "boathouse", "bobsled, bobsleigh, bob", "bolo tie, bolo, bola tie, bola", "bonnet, poke bonnet", "bookcase", "bookshop, bookstore, bookstall", "bottlecap", "bow", "bow tie, bow-tie, bowtie", "brass, memorial tablet, plaque", "brassiere, bra, bandeau", "breakwater, groin, groyne, mole, bulwark, seawall, jetty", "breastplate, aegis, egis", "broom", "bucket, pail", "buckle", "bulletproof vest", "bullet train, bullet", "butcher shop, meat market", "cab, hack, taxi, taxicab", "caldron, cauldron", "candle, taper, wax light", "cannon", "canoe", "can opener, tin opener", "cardigan", "car mirror", "carousel, carrousel, merry-go-round, roundabout, whirligig", "carpenter's kit, tool kit", "carton", "car wheel", "cash machine, cash dispenser, automated teller machine, automatic teller machine, automated teller, automatic teller, atm", "cassette", "cassette player", "castle", "catamaran", "cd player", "cello, violoncello", "cellular telephone, cellular phone, cellphone, cell, mobile phone", "chain", "chainlink fence", "chain mail, ring mail, mail, chain armor, chain armour, ring armor, ring armour", "chain saw, chainsaw", "chest", "chiffonier, commode", "chime, bell, gong", "china cabinet, china closet", "christmas stocking", "church, church building", "cinema, movie theater, movie theatre, movie house, picture palace", "cleaver, meat cleaver, chopper", "cliff dwelling", "cloak", "clog, geta, patten, sabot", "cocktail shaker", "coffee mug", "coffeepot", "coil, spiral, volute, whorl, helix", "combination lock", "computer keyboard, keypad", "confectionery, confectionary, candy store", "container ship, containership, container vessel", "convertible", "corkscrew, bottle screw", "cornet, horn, trumpet, trump", "cowboy boot", "cowboy hat, ten-gallon hat", "cradle", "crane", "crash helmet", "crate", "crib, cot", "crock pot", "croquet ball", "crutch", "cuirass", "dam, dike, dyke", "desk", "desktop computer", "dial telephone, dial phone", "diaper, nappy, napkin", "digital clock", "digital watch", "dining table, board", "dishrag, dishcloth", "dishwasher, dish washer, dishwashing machine", "disk brake, disc brake", "dock, dockage, docking facility", "dogsled, dog sled, dog sleigh", "dome", "doormat, welcome mat", "drilling platform, offshore rig", "drum, membranophone, tympan", "drumstick", "dumbbell", "dutch oven", "electric fan, blower", "electric guitar", "electric locomotive", "entertainment center", "envelope", "espresso maker", "face powder", "feather boa, boa", "file, file cabinet, filing cabinet", "fireboat", "fire engine, fire truck", "fire screen, fireguard", "flagpole, flagstaff", "flute, transverse flute", "folding chair", "football helmet", "forklift", "fountain", "fountain pen", "four-poster", "freight car", "french horn, horn", "frying pan, frypan, skillet", "fur coat", "garbage truck, dustcart", "gasmask, respirator, gas helmet", "gas pump, gasoline pump, petrol pump, island dispenser", "goblet", "go-kart", "golf ball", "golfcart, golf cart", "gondola", "gong, tam-tam", "gown", "grand piano, grand", "greenhouse, nursery, glasshouse", "grille, radiator grille", "grocery store, grocery, food market, market", "guillotine", "hair slide", "hair spray", "half track", "hammer", "hamper", "hand blower, blow dryer, blow drier, hair dryer, hair drier", "hand-held computer, hand-held microcomputer", "handkerchief, hankie, hanky, hankey", "hard disc, hard disk, fixed disk", "harmonica, mouth organ, harp, mouth harp", "harp", "harvester, reaper", "hatchet", "holster", "home theater, home theatre", "honeycomb", "hook, claw", "hoopskirt, crinoline", "horizontal bar, high bar", "horse cart, horse-cart", "hourglass", "ipod", "iron, smoothing iron", "jack-o'-lantern", "jean, blue jean, denim", "jeep, landrover", "jersey, t-shirt, tee shirt", "jigsaw puzzle", "jinrikisha, ricksha, rickshaw", "joystick", "kimono", "knee pad", "knot", "lab coat, laboratory coat", "ladle", "lampshade, lamp shade", "laptop, laptop computer", "lawn mower, mower", "lens cap, lens cover", "letter opener, paper knife, paperknife", "library", "lifeboat", "lighter, light, igniter, ignitor", "limousine, limo", "liner, ocean liner", "lipstick, lip rouge", "loafer", "lotion", "loudspeaker, speaker, speaker unit, loudspeaker system, speaker system", "loupe, jeweler's loupe", "lumbermill, sawmill", "magnetic compass", "mailbag, postbag", "mailbox, letter box", "maillot", "maillot, tank suit", "manhole cover", "maraca", "marimba, xylophone", "mask", "matchstick", "maypole", "maze, labyrinth", "measuring cup", "medicine chest, medicine cabinet", "megalith, megalithic structure", "microphone, mike", "microwave, microwave oven", "military uniform", "milk can", "minibus", "miniskirt, mini", "minivan", "missile", "mitten", "mixing bowl", "mobile home, manufactured home", "model t", "modem", "monastery", "monitor", "moped", "mortar", "mortarboard", "mosque", "mosquito net", "motor scooter, scooter", "mountain bike, all-terrain bike, off-roader", "mountain tent", "mouse, computer mouse", "mousetrap", "moving van", "muzzle", "nail", "neck brace", "necklace", "nipple", "notebook, notebook computer", "obelisk", "oboe, hautboy, hautbois", "ocarina, sweet potato", "odometer, hodometer, mileometer, milometer", "oil filter", "organ, pipe organ", "oscilloscope, scope, cathode-ray oscilloscope, cro", "overskirt", "oxcart", "oxygen mask", "packet", "paddle, boat paddle", "paddlewheel, paddle wheel", "padlock", "paintbrush", "pajama, pyjama, pj's, jammies", "palace", "panpipe, pandean pipe, syrinx", "paper towel", "parachute, chute", "parallel bars, bars", "park bench", "parking meter", "passenger car, coach, carriage", "patio, terrace", "pay-phone, pay-station", "pedestal, plinth, footstall", "pencil box, pencil case", "pencil sharpener", "perfume, essence", "petri dish", "photocopier", "pick, plectrum, plectron", "pickelhaube", "picket fence, paling", "pickup, pickup truck", "pier", "piggy bank, penny bank", "pill bottle", "pillow", "ping-pong ball", "pinwheel", "pirate, pirate ship", "pitcher, ewer", "plane, carpenter's plane, woodworking plane", "planetarium", "plastic bag", "plate rack", "plow, plough", "plunger, plumber's helper", "polaroid camera, polaroid land camera", "pole", "police van, police wagon, paddy wagon, patrol wagon, wagon, black maria", "poncho", "pool table, billiard table, snooker table", "pop bottle, soda bottle", "pot, flowerpot", "potter's wheel", "power drill", "prayer rug, prayer mat", "printer", "prison, prison house", "projectile, missile", "projector", "puck, hockey puck", "punching bag, punch bag, punching ball, punchball", "purse", "quill, quill pen", "quilt, comforter, comfort, puff", "racer, race car, racing car", "racket, racquet", "radiator", "radio, wireless", "radio telescope, radio reflector", "rain barrel", "recreational vehicle, rv, r.v.", "reel", "reflex camera", "refrigerator, icebox", "remote control, remote", "restaurant, eating house, eating place, eatery", "revolver, six-gun, six-shooter", "rifle", "rocking chair, rocker", "rotisserie", "rubber eraser, rubber, pencil eraser", "rugby ball", "rule, ruler", "running shoe", "safe", "safety pin", "saltshaker, salt shaker", "sandal", "sarong", "sax, saxophone", "scabbard", "scale, weighing machine", "school bus", "schooner", "scoreboard", "screen, crt screen", "screw", "screwdriver", "seat belt, seatbelt", "sewing machine", "shield, buckler", "shoe shop, shoe-shop, shoe store", "shoji", "shopping basket", "shopping cart", "shovel", "shower cap", "shower curtain", "ski", "ski mask", "sleeping bag", "slide rule, slipstick", "sliding door", "slot, one-armed bandit", "snorkel", "snowmobile", "snowplow, snowplough", "soap dispenser", "soccer ball", "sock", "solar dish, solar collector, solar furnace", "sombrero", "soup bowl", "space bar", "space heater", "space shuttle", "spatula", "speedboat", "spider web, spider's web", "spindle", "sports car, sport car", "spotlight, spot", "stage", "steam locomotive", "steel arch bridge", "steel drum", "stethoscope", "stole", "stone wall", "stopwatch, stop watch", "stove", "strainer", "streetcar, tram, tramcar, trolley, trolley car", "stretcher", "studio couch, day bed", "stupa, tope", "submarine, pigboat, sub, u-boat", "suit, suit of clothes", "sundial", "sunglass", "sunglasses, dark glasses, shades", "sunscreen, sunblock, sun blocker", "suspension bridge", "swab, swob, mop", "sweatshirt", "swimming trunks, bathing trunks", "swing", "switch, electric switch, electrical switch", "syringe", "table lamp", "tank, army tank, armored combat vehicle, armoured combat vehicle", "tape player", "teapot", "teddy, teddy bear", "television, television system", "tennis ball", "thatch, thatched roof", "theater curtain, theatre curtain", "thimble", "thresher, thrasher, threshing machine", "throne", "tile roof", "toaster", "tobacco shop, tobacconist shop, tobacconist", "toilet seat", "torch", "totem pole", "tow truck, tow car, wrecker", "toyshop", "tractor", "trailer truck, tractor trailer, trucking rig, rig, articulated lorry, semi", "tray", "trench coat", "tricycle, trike, velocipede", "trimaran", "tripod", "triumphal arch", "trolleybus, trolley coach, trackless trolley", "trombone", "tub, vat", "turnstile", "typewriter keyboard", "umbrella", "unicycle, monocycle", "upright, upright piano", "vacuum, vacuum cleaner", "vase", "vault", "velvet", "vending machine", "vestment", "viaduct", "violin, fiddle", "volleyball", "waffle iron", "wall clock", "wallet, billfold, notecase, pocketbook", "wardrobe, closet, press", "warplane, military plane", "washbasin, handbasin, washbowl, lavabo, wash-hand basin", "washer, automatic washer, washing machine", "water bottle", "water jug", "water tower", "whiskey jug", "whistle", "wig", "window screen", "window shade", "windsor tie", "wine bottle", "wing", "wok", "wooden spoon", "wool, woolen, woollen", "worm fence, snake fence, snake-rail fence, virginia fence", "wreck", "yawl", "yurt", "web site, website, internet site, site", "comic book", "crossword puzzle, crossword", "street sign", "traffic light, traffic signal, stoplight", "book jacket, dust cover, dust jacket, dust wrapper", "menu", "plate", "guacamole", "consomme", "hot pot, hotpot", "trifle", "ice cream, icecream", "ice lolly, lolly, lollipop, popsicle", "french loaf", "bagel, beigel", "pretzel", "cheeseburger", "hotdog, hot dog, red hot", "mashed potato", "head cabbage", "broccoli", "cauliflower", "zucchini, courgette", "spaghetti squash", "acorn squash", "butternut squash", "cucumber, cuke", "artichoke, globe artichoke", "bell pepper", "cardoon", "mushroom", "granny smith", "strawberry", "orange", "lemon", "fig", "pineapple, ananas", "banana", "jackfruit, jak, jack", "custard apple", "pomegranate", "hay", "carbonara", "chocolate sauce, chocolate syrup", "dough", "meat loaf, meatloaf", "pizza, pizza pie", "potpie", "burrito", "red wine", "espresso", "cup", "eggnog", "alp", "bubble", "cliff, drop, drop-off", "coral reef", "geyser", "lakeside, lakeshore", "promontory, headland, head, foreland", "sandbar, sand bar", "seashore, coast, seacoast, sea-coast", "valley, vale", "volcano", "ballplayer, baseball player", "groom, bridegroom", "scuba diver", "rapeseed", "daisy", "yellow lady's slipper, yellow lady-slipper, cypripedium calceolus, cypripedium parviflorum", "corn", "acorn", "hip, rose hip, rosehip", "buckeye, horse chestnut, conker", "coral fungus", "agaric", "gyromitra", "stinkhorn, carrion fungus", "earthstar", "hen-of-the-woods, hen of the woods, polyporus frondosus, grifola frondosa", "bolete", "ear, spike, capitulum", "toilet tissue, toilet paper, bathroom tissue" ]
Eraly-ml/centraasia-Swinv2
# Central Asian Food Classification ## Model Information - **Base Model**: [microsoft/swinv2-base-patch4-window16-256](https://huggingface.co/microsoft/swinv2-base-patch4-window16-256) - **Dataset**: [issai/Central_Asian_Food_Dataset](https://huggingface.co/datasets/issai/Central_Asian_Food_Dataset) - **Library**: `transformers`, `pytorch` - **Pipeline**: Image Classification - **License**: Creative Commons Attribution Non Commercial 4.0 ## Model Description - This model classifies images of Central Asian dishes into 42 different categories. - The model is fine-tuned on the Central Asian Food Dataset using Swin Transformer v2 architecture. - The training was conducted on 2 Tesla T4 GPUs in Oregon, USA. ## Labels (Classes) ```python class_names = [ "achichuk", "airan-katyk", "asip", "bauyrsak", "beshbarmak-w-kazy", "beshbarmak-wo-kazy", "chak-chak", "cheburek", "doner-lavash", "doner-nan", "hvorost", "irimshik", "kattama-nan", "kazy-karta", "kurt", "kuyrdak", "kymyz-kymyran", "lagman-fried", "lagman-w-soup", "lagman-wo-soup", "manty", "naryn", "nauryz-kozhe", "orama", "plov", "samsa", "shashlyk-chicken", "shashlyk-chicken-v", "shashlyk-kuskovoi", "shashlyk-kuskovoi-v", "shashlyk-minced-meat", "sheep-head", "shelpek", "shorpa", "soup-plain", "sushki", "suzbe", "taba-nan", "talkan-zhent", "tushpara-fried", "tushpara-w-soup", "tushpara-wo-soup" ] ``` ## Training ``` training_args = TrainingArguments( output_dir="./swinv2_classification", evaluation_strategy="epoch", save_strategy="epoch", per_device_train_batch_size=16, per_device_eval_batch_size=16, num_train_epochs=5, weight_decay=0.01, logging_dir="./logs", logging_steps=10 ) ``` ``` Epoch Training Loss Validation Loss 1 0.815700 0.741029 2 0.454500 0.641849 3 0.100500 0.680114 4 0.030000 0.704669 5 0.009000 0.661318 ``` ## Evaluation Metrics The model achieved **87% accuracy** on the validation set. Below is the classification report with precision, recall, and F1-score for each class: ``` accuracy 0.87 2735 macro avg 0.86 0.85 0.85 2735 weighted avg 0.88 0.87 0.87 2735 ``` ![confusion matrix](matrix.png) ## Environmental Impact The estimated carbon emissions from training this model: - **Emissions**: 0.054843 grams CO2 - **Source**: Code Carbon - **Training Type**: Fine-tuning - **Location**: Oregon, USA (45.5999, -121.1871) - **Hardware Used**: 2x Tesla T4 GPUs, Intel Xeon CPU (4 cores), 31.35 GB RAM ## Usage To use this model for inference: ```python import requests from io import BytesIO from PIL import Image from transformers import pipeline # Load the model pipe = pipeline("image-classification", model="Eraly-ml/centraasia-Swinv2", device=0) # Image URL image_url = "https://avatars.mds.yandex.net/get-altay/12813969/2a0000018e10a3da6a2a1d1d2c2745548220/XXXL" # Download the image from the internet response = requests.get(image_url) image = Image.open(BytesIO(response.content)) # Model classes class_names = [ "achichuk", "airan-katyk", "asip", "bauyrsak", "beshbarmak-w-kazy", "beshbarmak-wo-kazy", "chak-chak", "cheburek", "doner-lavash", "doner-nan", "hvorost", "irimshik", "kattama-nan", "kazy-karta", "kurt", "kuyrdak", "kymyz-kymyran", "lagman-fried", "lagman-w-soup", "lagman-wo-soup", "manty", "naryn", "nauryz-kozhe", "orama", "plov", "samsa", "shashlyk-chicken", "shashlyk-chicken-v", "shashlyk-kuskovoi", "shashlyk-kuskovoi-v", "shashlyk-minced-meat", "sheep-head", "shelpek", "shorpa", "soup-plain", "sushki", "suzbe", "taba-nan", "talkan-zhent", "tushpara-fried", "tushpara-w-soup", "tushpara-wo-soup" ] # Make a prediction predictions = pipe(image) # Display results with correct labels for pred in predictions: label_id = int(pred["label"].replace("LABEL_", "")) # Extract the number class_name = class_names[label_id] # Get the class name score = pred["score"] # Probability print(f"Class: {class_name}, probability: {score:.4f}") ``` ## Citation If you use this model, please cite: ``` @misc{CentralAsianFood, author = {Eraly Gainulla}, title = {Central Asian Food Classification Model}, year = {2025}, publisher = {Hugging Face}, url = {https://huggingface.co/Eraly-ml/centraasia-Swinv2} } ```
[ "label_0", "label_1", "label_2", "label_3", "label_4", "label_5", "label_6", "label_7", "label_8", "label_9", "label_10", "label_11", "label_12", "label_13", "label_14", "label_15", "label_16", "label_17", "label_18", "label_19", "label_20", "label_21", "label_22", "label_23", "label_24", "label_25", "label_26", "label_27", "label_28", "label_29", "label_30", "label_31", "label_32", "label_33", "label_34", "label_35", "label_36", "label_37", "label_38", "label_39", "label_40", "label_41" ]
svdb01/swin-tiny-patch4-window7-224-finetuned-tig-5083
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224-finetuned-tig-5083 This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0028 - Accuracy: 0.9996 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.1123 | 1.0 | 188 | 0.0139 | 0.9963 | | 0.0899 | 2.0 | 376 | 0.0087 | 0.9974 | | 0.0666 | 3.0 | 564 | 0.0028 | 0.9996 | ### Framework versions - Transformers 4.52.2 - Pytorch 2.6.0+cu124 - Datasets 2.14.4 - Tokenizers 0.21.1
[ "0", "1", "2", "3", "4", "5" ]