model_id
stringlengths
7
105
model_card
stringlengths
1
130k
model_labels
listlengths
2
80k
vision7111/vit-base-oxford-iiit-pets
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-oxford-iiit-pets This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the pcuenq/oxford-pets dataset. It achieves the following results on the evaluation set: - Loss: 0.2031 - Accuracy: 0.9459 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.3727 | 1.0 | 370 | 0.2756 | 0.9337 | | 0.2145 | 2.0 | 740 | 0.2168 | 0.9378 | | 0.1835 | 3.0 | 1110 | 0.1918 | 0.9459 | | 0.147 | 4.0 | 1480 | 0.1857 | 0.9472 | | 0.1315 | 5.0 | 1850 | 0.1818 | 0.9472 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.20.3
[ "siamese", "birman", "shiba inu", "staffordshire bull terrier", "basset hound", "bombay", "japanese chin", "chihuahua", "german shorthaired", "pomeranian", "beagle", "english cocker spaniel", "american pit bull terrier", "ragdoll", "persian", "egyptian mau", "miniature pinscher", "sphynx", "maine coon", "keeshond", "yorkshire terrier", "havanese", "leonberger", "wheaten terrier", "american bulldog", "english setter", "boxer", "newfoundland", "bengal", "samoyed", "british shorthair", "great pyrenees", "abyssinian", "pug", "saint bernard", "russian blue", "scottish terrier" ]
Melo1512/vit-msn-small-wbc-classifier-mono-V-all
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-msn-small-wbc-classifier-mono-V-all This model is a fine-tuned version of [facebook/vit-msn-small](https://huggingface.co/facebook/vit-msn-small) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.1140 - Accuracy: 0.9585 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.1974 | 1.0 | 208 | 0.1642 | 0.9372 | | 0.1589 | 2.0 | 416 | 0.1334 | 0.9508 | | 0.134 | 3.0 | 624 | 0.1466 | 0.9431 | | 0.1488 | 4.0 | 832 | 0.1155 | 0.9566 | | 0.1169 | 5.0 | 1040 | 0.1140 | 0.9585 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 3.2.0 - Tokenizers 0.19.1
[ "monocytes", "others" ]
ArtiSikhwal/headlight_12_12_2024_google_vit-base-patch16-224-in21k
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # headlight_12_12_2024_google_vit-base-patch16-224-in21k This model is a fine-tuned version of [ArtiSikhwal/headlight_11_12_2024_google_vit-base-patch16-224-in21k](https://huggingface.co/ArtiSikhwal/headlight_11_12_2024_google_vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.2587 - Accuracy: 0.9015 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 512 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | No log | 0.9995 | 492 | 0.2682 | 0.8973 | | 0.1998 | 1.9990 | 984 | 0.2701 | 0.8982 | | 0.1988 | 2.9985 | 1476 | 0.2708 | 0.8974 | | 0.1976 | 4.0 | 1969 | 0.2609 | 0.9013 | | 0.2131 | 4.9995 | 2461 | 0.2584 | 0.9011 | | 0.2169 | 5.9970 | 2952 | 0.2587 | 0.9015 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.4.0 - Datasets 3.1.0 - Tokenizers 0.20.3
[ "damage", "no-damage" ]
Melo1512/vit-msn-small-wbc-classifier-lowlr-500
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-msn-small-wbc-classifier-lowlr-500 This model is a fine-tuned version of [facebook/vit-msn-small](https://huggingface.co/facebook/vit-msn-small) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.2021 - Accuracy: 0.9250 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-07 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 500 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:------:|:---------------:|:--------:| | 1.5458 | 1.0 | 208 | 1.6083 | 0.3335 | | 1.5553 | 2.0 | 416 | 1.5834 | 0.3335 | | 1.5144 | 3.0 | 624 | 1.5428 | 0.3335 | | 1.4408 | 4.0 | 832 | 1.4865 | 0.3335 | | 1.3689 | 5.0 | 1040 | 1.4168 | 0.3335 | | 1.3224 | 6.0 | 1248 | 1.3352 | 0.3343 | | 1.228 | 7.0 | 1456 | 1.2446 | 0.3462 | | 1.1529 | 8.0 | 1664 | 1.1526 | 0.4247 | | 1.0773 | 9.0 | 1872 | 1.0670 | 0.5535 | | 1.0057 | 10.0 | 2080 | 1.0025 | 0.6327 | | 0.9576 | 11.0 | 2288 | 0.9550 | 0.6800 | | 0.9039 | 12.0 | 2496 | 0.9114 | 0.7124 | | 0.8684 | 13.0 | 2704 | 0.8636 | 0.7392 | | 0.8352 | 14.0 | 2912 | 0.8112 | 0.7623 | | 0.782 | 15.0 | 3120 | 0.7614 | 0.7764 | | 0.7359 | 16.0 | 3328 | 0.7145 | 0.7867 | | 0.7044 | 17.0 | 3536 | 0.6702 | 0.7948 | | 0.6568 | 18.0 | 3744 | 0.6311 | 0.8020 | | 0.6296 | 19.0 | 3952 | 0.5987 | 0.8069 | | 0.6315 | 20.0 | 4160 | 0.5693 | 0.8136 | | 0.6146 | 21.0 | 4368 | 0.5437 | 0.8181 | | 0.5632 | 22.0 | 4576 | 0.5216 | 0.8247 | | 0.5705 | 23.0 | 4784 | 0.5022 | 0.8309 | | 0.5503 | 24.0 | 4992 | 0.4832 | 0.8363 | | 0.5541 | 25.0 | 5200 | 0.4666 | 0.8425 | | 0.5263 | 26.0 | 5408 | 0.4504 | 0.8468 | | 0.4947 | 27.0 | 5616 | 0.4357 | 0.8514 | | 0.5 | 28.0 | 5824 | 0.4245 | 0.8547 | | 0.4959 | 29.0 | 6032 | 0.4112 | 0.8582 | | 0.4929 | 30.0 | 6240 | 0.4005 | 0.8609 | | 0.4578 | 31.0 | 6448 | 0.3910 | 0.8628 | | 0.4565 | 32.0 | 6656 | 0.3816 | 0.8654 | | 0.4492 | 33.0 | 6864 | 0.3737 | 0.8684 | | 0.4319 | 34.0 | 7072 | 0.3654 | 0.8705 | | 0.4395 | 35.0 | 7280 | 0.3587 | 0.8722 | | 0.4436 | 36.0 | 7488 | 0.3498 | 0.8751 | | 0.4196 | 37.0 | 7696 | 0.3440 | 0.8769 | | 0.4138 | 38.0 | 7904 | 0.3381 | 0.8789 | | 0.4414 | 39.0 | 8112 | 0.3336 | 0.8805 | | 0.424 | 40.0 | 8320 | 0.3303 | 0.8813 | | 0.4058 | 41.0 | 8528 | 0.3241 | 0.8832 | | 0.3714 | 42.0 | 8736 | 0.3210 | 0.8844 | | 0.384 | 43.0 | 8944 | 0.3196 | 0.8848 | | 0.3795 | 44.0 | 9152 | 0.3163 | 0.8861 | | 0.4052 | 45.0 | 9360 | 0.3080 | 0.8895 | | 0.3864 | 46.0 | 9568 | 0.3097 | 0.8865 | | 0.3881 | 47.0 | 9776 | 0.3012 | 0.8910 | | 0.3606 | 48.0 | 9984 | 0.3056 | 0.8877 | | 0.3765 | 49.0 | 10192 | 0.2981 | 0.8907 | | 0.3762 | 50.0 | 10400 | 0.2946 | 0.8922 | | 0.3535 | 51.0 | 10608 | 0.3004 | 0.8899 | | 0.3667 | 52.0 | 10816 | 0.2918 | 0.8924 | | 0.3663 | 53.0 | 11024 | 0.2921 | 0.8923 | | 0.3735 | 54.0 | 11232 | 0.2874 | 0.8942 | | 0.3649 | 55.0 | 11440 | 0.2867 | 0.8947 | | 0.3531 | 56.0 | 11648 | 0.2828 | 0.8967 | | 0.3608 | 57.0 | 11856 | 0.2825 | 0.8963 | | 0.3483 | 58.0 | 12064 | 0.2811 | 0.8970 | | 0.3544 | 59.0 | 12272 | 0.2785 | 0.8982 | | 0.3768 | 60.0 | 12480 | 0.2730 | 0.9002 | | 0.3659 | 61.0 | 12688 | 0.2735 | 0.8995 | | 0.3547 | 62.0 | 12896 | 0.2732 | 0.8999 | | 0.3403 | 63.0 | 13104 | 0.2696 | 0.9003 | | 0.3482 | 64.0 | 13312 | 0.2687 | 0.9014 | | 0.3503 | 65.0 | 13520 | 0.2673 | 0.9011 | | 0.3249 | 66.0 | 13728 | 0.2678 | 0.9012 | | 0.3334 | 67.0 | 13936 | 0.2679 | 0.9014 | | 0.3308 | 68.0 | 14144 | 0.2646 | 0.9018 | | 0.3297 | 69.0 | 14352 | 0.2676 | 0.9007 | | 0.3566 | 70.0 | 14560 | 0.2609 | 0.9037 | | 0.3256 | 71.0 | 14768 | 0.2635 | 0.9027 | | 0.3439 | 72.0 | 14976 | 0.2606 | 0.9036 | | 0.3324 | 73.0 | 15184 | 0.2578 | 0.9051 | | 0.3316 | 74.0 | 15392 | 0.2552 | 0.9058 | | 0.3224 | 75.0 | 15600 | 0.2555 | 0.9060 | | 0.3294 | 76.0 | 15808 | 0.2543 | 0.9061 | | 0.3211 | 77.0 | 16016 | 0.2538 | 0.9063 | | 0.3326 | 78.0 | 16224 | 0.2561 | 0.9047 | | 0.3261 | 79.0 | 16432 | 0.2547 | 0.9059 | | 0.3082 | 80.0 | 16640 | 0.2554 | 0.9048 | | 0.3341 | 81.0 | 16848 | 0.2538 | 0.9057 | | 0.3355 | 82.0 | 17056 | 0.2508 | 0.9073 | | 0.3311 | 83.0 | 17264 | 0.2486 | 0.9081 | | 0.3511 | 84.0 | 17472 | 0.2478 | 0.9085 | | 0.3467 | 85.0 | 17680 | 0.2503 | 0.9070 | | 0.312 | 86.0 | 17888 | 0.2467 | 0.9086 | | 0.336 | 87.0 | 18096 | 0.2455 | 0.9090 | | 0.3065 | 88.0 | 18304 | 0.2484 | 0.9080 | | 0.3365 | 89.0 | 18512 | 0.2453 | 0.9094 | | 0.3106 | 90.0 | 18720 | 0.2454 | 0.9092 | | 0.2984 | 91.0 | 18928 | 0.2489 | 0.9089 | | 0.309 | 92.0 | 19136 | 0.2440 | 0.9102 | | 0.31 | 93.0 | 19344 | 0.2407 | 0.9108 | | 0.3294 | 94.0 | 19552 | 0.2416 | 0.9105 | | 0.309 | 95.0 | 19760 | 0.2423 | 0.9106 | | 0.3141 | 96.0 | 19968 | 0.2442 | 0.9096 | | 0.3098 | 97.0 | 20176 | 0.2404 | 0.9112 | | 0.3206 | 98.0 | 20384 | 0.2414 | 0.9111 | | 0.3258 | 99.0 | 20592 | 0.2393 | 0.9112 | | 0.319 | 100.0 | 20800 | 0.2383 | 0.9116 | | 0.3035 | 101.0 | 21008 | 0.2396 | 0.9114 | | 0.2899 | 102.0 | 21216 | 0.2410 | 0.9113 | | 0.3058 | 103.0 | 21424 | 0.2355 | 0.9124 | | 0.3028 | 104.0 | 21632 | 0.2373 | 0.9121 | | 0.3021 | 105.0 | 21840 | 0.2386 | 0.9116 | | 0.3012 | 106.0 | 22048 | 0.2379 | 0.9124 | | 0.2955 | 107.0 | 22256 | 0.2356 | 0.9125 | | 0.2948 | 108.0 | 22464 | 0.2342 | 0.9128 | | 0.309 | 109.0 | 22672 | 0.2321 | 0.9134 | | 0.3321 | 110.0 | 22880 | 0.2328 | 0.9133 | | 0.289 | 111.0 | 23088 | 0.2331 | 0.9132 | | 0.3103 | 112.0 | 23296 | 0.2343 | 0.9131 | | 0.3124 | 113.0 | 23504 | 0.2330 | 0.9136 | | 0.3305 | 114.0 | 23712 | 0.2320 | 0.9138 | | 0.2994 | 115.0 | 23920 | 0.2323 | 0.9135 | | 0.3011 | 116.0 | 24128 | 0.2316 | 0.9136 | | 0.2999 | 117.0 | 24336 | 0.2318 | 0.9143 | | 0.3082 | 118.0 | 24544 | 0.2322 | 0.9144 | | 0.2923 | 119.0 | 24752 | 0.2302 | 0.9142 | | 0.315 | 120.0 | 24960 | 0.2309 | 0.9142 | | 0.3058 | 121.0 | 25168 | 0.2292 | 0.9143 | | 0.3044 | 122.0 | 25376 | 0.2270 | 0.9160 | | 0.2679 | 123.0 | 25584 | 0.2301 | 0.9146 | | 0.3091 | 124.0 | 25792 | 0.2289 | 0.9152 | | 0.2926 | 125.0 | 26000 | 0.2273 | 0.9156 | | 0.2961 | 126.0 | 26208 | 0.2266 | 0.9156 | | 0.2738 | 127.0 | 26416 | 0.2301 | 0.9146 | | 0.3074 | 128.0 | 26624 | 0.2277 | 0.9153 | | 0.303 | 129.0 | 26832 | 0.2271 | 0.9153 | | 0.3062 | 130.0 | 27040 | 0.2268 | 0.9154 | | 0.3262 | 131.0 | 27248 | 0.2276 | 0.9158 | | 0.2775 | 132.0 | 27456 | 0.2287 | 0.9154 | | 0.2845 | 133.0 | 27664 | 0.2260 | 0.9157 | | 0.2846 | 134.0 | 27872 | 0.2272 | 0.9155 | | 0.2878 | 135.0 | 28080 | 0.2224 | 0.9168 | | 0.2933 | 136.0 | 28288 | 0.2256 | 0.9159 | | 0.3003 | 137.0 | 28496 | 0.2237 | 0.9164 | | 0.3087 | 138.0 | 28704 | 0.2256 | 0.9166 | | 0.3039 | 139.0 | 28912 | 0.2218 | 0.9174 | | 0.2938 | 140.0 | 29120 | 0.2218 | 0.9168 | | 0.2836 | 141.0 | 29328 | 0.2237 | 0.9168 | | 0.2978 | 142.0 | 29536 | 0.2237 | 0.9169 | | 0.2968 | 143.0 | 29744 | 0.2219 | 0.9176 | | 0.2889 | 144.0 | 29952 | 0.2219 | 0.9177 | | 0.2781 | 145.0 | 30160 | 0.2251 | 0.9163 | | 0.2977 | 146.0 | 30368 | 0.2234 | 0.9173 | | 0.318 | 147.0 | 30576 | 0.2217 | 0.9181 | | 0.3054 | 148.0 | 30784 | 0.2222 | 0.9178 | | 0.2889 | 149.0 | 30992 | 0.2223 | 0.9176 | | 0.2739 | 150.0 | 31200 | 0.2195 | 0.9187 | | 0.2746 | 151.0 | 31408 | 0.2223 | 0.9175 | | 0.3057 | 152.0 | 31616 | 0.2202 | 0.9182 | | 0.2913 | 153.0 | 31824 | 0.2187 | 0.9193 | | 0.3006 | 154.0 | 32032 | 0.2186 | 0.9192 | | 0.3062 | 155.0 | 32240 | 0.2180 | 0.9190 | | 0.2891 | 156.0 | 32448 | 0.2202 | 0.9185 | | 0.3066 | 157.0 | 32656 | 0.2190 | 0.9182 | | 0.2989 | 158.0 | 32864 | 0.2185 | 0.9191 | | 0.2885 | 159.0 | 33072 | 0.2204 | 0.9184 | | 0.2936 | 160.0 | 33280 | 0.2173 | 0.9194 | | 0.2872 | 161.0 | 33488 | 0.2209 | 0.9179 | | 0.3034 | 162.0 | 33696 | 0.2185 | 0.9191 | | 0.2966 | 163.0 | 33904 | 0.2188 | 0.9187 | | 0.3209 | 164.0 | 34112 | 0.2179 | 0.9191 | | 0.2718 | 165.0 | 34320 | 0.2188 | 0.9190 | | 0.299 | 166.0 | 34528 | 0.2199 | 0.9185 | | 0.2725 | 167.0 | 34736 | 0.2180 | 0.9194 | | 0.3013 | 168.0 | 34944 | 0.2166 | 0.9198 | | 0.3017 | 169.0 | 35152 | 0.2162 | 0.9193 | | 0.3002 | 170.0 | 35360 | 0.2186 | 0.9191 | | 0.2901 | 171.0 | 35568 | 0.2189 | 0.9184 | | 0.2687 | 172.0 | 35776 | 0.2159 | 0.9200 | | 0.2929 | 173.0 | 35984 | 0.2165 | 0.9196 | | 0.2932 | 174.0 | 36192 | 0.2169 | 0.9195 | | 0.2915 | 175.0 | 36400 | 0.2165 | 0.9201 | | 0.2853 | 176.0 | 36608 | 0.2166 | 0.9199 | | 0.287 | 177.0 | 36816 | 0.2162 | 0.9196 | | 0.2843 | 178.0 | 37024 | 0.2157 | 0.9193 | | 0.2882 | 179.0 | 37232 | 0.2176 | 0.9194 | | 0.3024 | 180.0 | 37440 | 0.2150 | 0.9205 | | 0.2963 | 181.0 | 37648 | 0.2161 | 0.9194 | | 0.2707 | 182.0 | 37856 | 0.2157 | 0.9201 | | 0.2589 | 183.0 | 38064 | 0.2147 | 0.9203 | | 0.2898 | 184.0 | 38272 | 0.2128 | 0.9205 | | 0.3106 | 185.0 | 38480 | 0.2141 | 0.9209 | | 0.297 | 186.0 | 38688 | 0.2131 | 0.9212 | | 0.2949 | 187.0 | 38896 | 0.2158 | 0.9198 | | 0.28 | 188.0 | 39104 | 0.2124 | 0.9209 | | 0.2713 | 189.0 | 39312 | 0.2131 | 0.9203 | | 0.2969 | 190.0 | 39520 | 0.2156 | 0.9197 | | 0.2944 | 191.0 | 39728 | 0.2140 | 0.9201 | | 0.2872 | 192.0 | 39936 | 0.2126 | 0.9209 | | 0.2891 | 193.0 | 40144 | 0.2145 | 0.9203 | | 0.3068 | 194.0 | 40352 | 0.2116 | 0.9217 | | 0.2745 | 195.0 | 40560 | 0.2144 | 0.9206 | | 0.2958 | 196.0 | 40768 | 0.2142 | 0.9208 | | 0.3056 | 197.0 | 40976 | 0.2122 | 0.9206 | | 0.3078 | 198.0 | 41184 | 0.2154 | 0.9199 | | 0.2847 | 199.0 | 41392 | 0.2124 | 0.9210 | | 0.2914 | 200.0 | 41600 | 0.2145 | 0.9203 | | 0.2753 | 201.0 | 41808 | 0.2138 | 0.9203 | | 0.2694 | 202.0 | 42016 | 0.2121 | 0.9211 | | 0.2918 | 203.0 | 42224 | 0.2113 | 0.9212 | | 0.2839 | 204.0 | 42432 | 0.2142 | 0.9200 | | 0.2802 | 205.0 | 42640 | 0.2117 | 0.9211 | | 0.2809 | 206.0 | 42848 | 0.2127 | 0.9210 | | 0.302 | 207.0 | 43056 | 0.2121 | 0.9208 | | 0.278 | 208.0 | 43264 | 0.2122 | 0.9208 | | 0.2817 | 209.0 | 43472 | 0.2118 | 0.9212 | | 0.2786 | 210.0 | 43680 | 0.2130 | 0.9207 | | 0.2766 | 211.0 | 43888 | 0.2140 | 0.9207 | | 0.2768 | 212.0 | 44096 | 0.2120 | 0.9215 | | 0.2946 | 213.0 | 44304 | 0.2101 | 0.9218 | | 0.2882 | 214.0 | 44512 | 0.2106 | 0.9213 | | 0.2786 | 215.0 | 44720 | 0.2117 | 0.9213 | | 0.2775 | 216.0 | 44928 | 0.2117 | 0.9210 | | 0.2904 | 217.0 | 45136 | 0.2097 | 0.9213 | | 0.2791 | 218.0 | 45344 | 0.2103 | 0.9216 | | 0.2776 | 219.0 | 45552 | 0.2101 | 0.9215 | | 0.2786 | 220.0 | 45760 | 0.2092 | 0.9217 | | 0.2867 | 221.0 | 45968 | 0.2092 | 0.9219 | | 0.2858 | 222.0 | 46176 | 0.2086 | 0.9218 | | 0.2833 | 223.0 | 46384 | 0.2096 | 0.9218 | | 0.2873 | 224.0 | 46592 | 0.2105 | 0.9216 | | 0.2816 | 225.0 | 46800 | 0.2085 | 0.9220 | | 0.2639 | 226.0 | 47008 | 0.2101 | 0.9213 | | 0.2841 | 227.0 | 47216 | 0.2103 | 0.9214 | | 0.2686 | 228.0 | 47424 | 0.2100 | 0.9210 | | 0.2766 | 229.0 | 47632 | 0.2092 | 0.9215 | | 0.2817 | 230.0 | 47840 | 0.2098 | 0.9214 | | 0.2556 | 231.0 | 48048 | 0.2096 | 0.9219 | | 0.2806 | 232.0 | 48256 | 0.2090 | 0.9214 | | 0.2661 | 233.0 | 48464 | 0.2105 | 0.9216 | | 0.3061 | 234.0 | 48672 | 0.2088 | 0.9216 | | 0.2879 | 235.0 | 48880 | 0.2087 | 0.9222 | | 0.2808 | 236.0 | 49088 | 0.2093 | 0.9218 | | 0.281 | 237.0 | 49296 | 0.2103 | 0.9216 | | 0.2884 | 238.0 | 49504 | 0.2083 | 0.9223 | | 0.2664 | 239.0 | 49712 | 0.2090 | 0.9223 | | 0.2873 | 240.0 | 49920 | 0.2080 | 0.9229 | | 0.3102 | 241.0 | 50128 | 0.2100 | 0.9218 | | 0.269 | 242.0 | 50336 | 0.2097 | 0.9220 | | 0.2735 | 243.0 | 50544 | 0.2084 | 0.9220 | | 0.2562 | 244.0 | 50752 | 0.2074 | 0.9221 | | 0.2835 | 245.0 | 50960 | 0.2089 | 0.9217 | | 0.2906 | 246.0 | 51168 | 0.2086 | 0.9219 | | 0.2747 | 247.0 | 51376 | 0.2082 | 0.9221 | | 0.2738 | 248.0 | 51584 | 0.2074 | 0.9228 | | 0.2888 | 249.0 | 51792 | 0.2080 | 0.9224 | | 0.2908 | 250.0 | 52000 | 0.2080 | 0.9222 | | 0.2685 | 251.0 | 52208 | 0.2078 | 0.9223 | | 0.2771 | 252.0 | 52416 | 0.2089 | 0.9224 | | 0.2773 | 253.0 | 52624 | 0.2089 | 0.9225 | | 0.2764 | 254.0 | 52832 | 0.2102 | 0.9221 | | 0.2686 | 255.0 | 53040 | 0.2075 | 0.9225 | | 0.2897 | 256.0 | 53248 | 0.2074 | 0.9223 | | 0.2919 | 257.0 | 53456 | 0.2083 | 0.9229 | | 0.2787 | 258.0 | 53664 | 0.2067 | 0.9230 | | 0.2931 | 259.0 | 53872 | 0.2093 | 0.9227 | | 0.2774 | 260.0 | 54080 | 0.2067 | 0.9232 | | 0.2822 | 261.0 | 54288 | 0.2077 | 0.9229 | | 0.2836 | 262.0 | 54496 | 0.2070 | 0.9230 | | 0.2837 | 263.0 | 54704 | 0.2070 | 0.9228 | | 0.2791 | 264.0 | 54912 | 0.2084 | 0.9224 | | 0.2585 | 265.0 | 55120 | 0.2066 | 0.9232 | | 0.282 | 266.0 | 55328 | 0.2076 | 0.9227 | | 0.2534 | 267.0 | 55536 | 0.2098 | 0.9223 | | 0.2724 | 268.0 | 55744 | 0.2079 | 0.9228 | | 0.2799 | 269.0 | 55952 | 0.2068 | 0.9233 | | 0.2671 | 270.0 | 56160 | 0.2073 | 0.9232 | | 0.2793 | 271.0 | 56368 | 0.2054 | 0.9231 | | 0.2792 | 272.0 | 56576 | 0.2066 | 0.9233 | | 0.2718 | 273.0 | 56784 | 0.2057 | 0.9231 | | 0.2777 | 274.0 | 56992 | 0.2062 | 0.9233 | | 0.2826 | 275.0 | 57200 | 0.2074 | 0.9230 | | 0.2887 | 276.0 | 57408 | 0.2076 | 0.9228 | | 0.2751 | 277.0 | 57616 | 0.2053 | 0.9235 | | 0.2892 | 278.0 | 57824 | 0.2059 | 0.9232 | | 0.2681 | 279.0 | 58032 | 0.2065 | 0.9234 | | 0.2845 | 280.0 | 58240 | 0.2062 | 0.9233 | | 0.2568 | 281.0 | 58448 | 0.2056 | 0.9237 | | 0.297 | 282.0 | 58656 | 0.2059 | 0.9235 | | 0.2665 | 283.0 | 58864 | 0.2049 | 0.9233 | | 0.2694 | 284.0 | 59072 | 0.2073 | 0.9228 | | 0.2616 | 285.0 | 59280 | 0.2066 | 0.9234 | | 0.2644 | 286.0 | 59488 | 0.2066 | 0.9232 | | 0.2733 | 287.0 | 59696 | 0.2061 | 0.9235 | | 0.2772 | 288.0 | 59904 | 0.2067 | 0.9230 | | 0.2699 | 289.0 | 60112 | 0.2050 | 0.9239 | | 0.2778 | 290.0 | 60320 | 0.2046 | 0.9238 | | 0.2738 | 291.0 | 60528 | 0.2058 | 0.9235 | | 0.2466 | 292.0 | 60736 | 0.2061 | 0.9236 | | 0.2711 | 293.0 | 60944 | 0.2046 | 0.9236 | | 0.2759 | 294.0 | 61152 | 0.2055 | 0.9234 | | 0.2819 | 295.0 | 61360 | 0.2044 | 0.9235 | | 0.2572 | 296.0 | 61568 | 0.2057 | 0.9236 | | 0.2801 | 297.0 | 61776 | 0.2047 | 0.9235 | | 0.2974 | 298.0 | 61984 | 0.2055 | 0.9235 | | 0.2688 | 299.0 | 62192 | 0.2060 | 0.9232 | | 0.2581 | 300.0 | 62400 | 0.2048 | 0.9237 | | 0.2443 | 301.0 | 62608 | 0.2048 | 0.9236 | | 0.2646 | 302.0 | 62816 | 0.2065 | 0.9230 | | 0.277 | 303.0 | 63024 | 0.2050 | 0.9240 | | 0.2617 | 304.0 | 63232 | 0.2061 | 0.9239 | | 0.2602 | 305.0 | 63440 | 0.2054 | 0.9238 | | 0.3001 | 306.0 | 63648 | 0.2055 | 0.9236 | | 0.2729 | 307.0 | 63856 | 0.2039 | 0.9240 | | 0.2725 | 308.0 | 64064 | 0.2063 | 0.9235 | | 0.2785 | 309.0 | 64272 | 0.2063 | 0.9236 | | 0.2886 | 310.0 | 64480 | 0.2054 | 0.9238 | | 0.2784 | 311.0 | 64688 | 0.2062 | 0.9237 | | 0.2771 | 312.0 | 64896 | 0.2040 | 0.9240 | | 0.2707 | 313.0 | 65104 | 0.2052 | 0.9238 | | 0.2684 | 314.0 | 65312 | 0.2048 | 0.9241 | | 0.2789 | 315.0 | 65520 | 0.2041 | 0.9239 | | 0.2439 | 316.0 | 65728 | 0.2051 | 0.9241 | | 0.272 | 317.0 | 65936 | 0.2045 | 0.9242 | | 0.2668 | 318.0 | 66144 | 0.2037 | 0.9240 | | 0.2657 | 319.0 | 66352 | 0.2042 | 0.9245 | | 0.2845 | 320.0 | 66560 | 0.2042 | 0.9244 | | 0.272 | 321.0 | 66768 | 0.2039 | 0.9241 | | 0.2883 | 322.0 | 66976 | 0.2067 | 0.9235 | | 0.2751 | 323.0 | 67184 | 0.2048 | 0.9244 | | 0.311 | 324.0 | 67392 | 0.2037 | 0.9243 | | 0.2746 | 325.0 | 67600 | 0.2068 | 0.9237 | | 0.2625 | 326.0 | 67808 | 0.2037 | 0.9240 | | 0.27 | 327.0 | 68016 | 0.2034 | 0.9239 | | 0.2549 | 328.0 | 68224 | 0.2044 | 0.9245 | | 0.2624 | 329.0 | 68432 | 0.2035 | 0.9245 | | 0.2751 | 330.0 | 68640 | 0.2045 | 0.9242 | | 0.2672 | 331.0 | 68848 | 0.2032 | 0.9243 | | 0.277 | 332.0 | 69056 | 0.2038 | 0.9246 | | 0.2806 | 333.0 | 69264 | 0.2041 | 0.9243 | | 0.2896 | 334.0 | 69472 | 0.2038 | 0.9244 | | 0.2967 | 335.0 | 69680 | 0.2039 | 0.9243 | | 0.2538 | 336.0 | 69888 | 0.2048 | 0.9238 | | 0.2787 | 337.0 | 70096 | 0.2042 | 0.9240 | | 0.2687 | 338.0 | 70304 | 0.2031 | 0.9250 | | 0.2823 | 339.0 | 70512 | 0.2028 | 0.9247 | | 0.2511 | 340.0 | 70720 | 0.2032 | 0.9248 | | 0.2753 | 341.0 | 70928 | 0.2036 | 0.9243 | | 0.2714 | 342.0 | 71136 | 0.2035 | 0.9242 | | 0.2426 | 343.0 | 71344 | 0.2047 | 0.9240 | | 0.261 | 344.0 | 71552 | 0.2049 | 0.9242 | | 0.2765 | 345.0 | 71760 | 0.2040 | 0.9248 | | 0.292 | 346.0 | 71968 | 0.2041 | 0.9240 | | 0.2762 | 347.0 | 72176 | 0.2032 | 0.9245 | | 0.263 | 348.0 | 72384 | 0.2030 | 0.9247 | | 0.2718 | 349.0 | 72592 | 0.2038 | 0.9243 | | 0.2721 | 350.0 | 72800 | 0.2043 | 0.9240 | | 0.2677 | 351.0 | 73008 | 0.2034 | 0.9247 | | 0.2677 | 352.0 | 73216 | 0.2028 | 0.9248 | | 0.2617 | 353.0 | 73424 | 0.2038 | 0.9241 | | 0.29 | 354.0 | 73632 | 0.2039 | 0.9243 | | 0.2682 | 355.0 | 73840 | 0.2035 | 0.9245 | | 0.2775 | 356.0 | 74048 | 0.2042 | 0.9240 | | 0.2515 | 357.0 | 74256 | 0.2030 | 0.9249 | | 0.2775 | 358.0 | 74464 | 0.2029 | 0.9248 | | 0.2699 | 359.0 | 74672 | 0.2033 | 0.9242 | | 0.2719 | 360.0 | 74880 | 0.2025 | 0.9242 | | 0.2631 | 361.0 | 75088 | 0.2028 | 0.9244 | | 0.2694 | 362.0 | 75296 | 0.2029 | 0.9242 | | 0.2643 | 363.0 | 75504 | 0.2043 | 0.9239 | | 0.2737 | 364.0 | 75712 | 0.2042 | 0.9243 | | 0.261 | 365.0 | 75920 | 0.2033 | 0.9245 | | 0.2564 | 366.0 | 76128 | 0.2031 | 0.9243 | | 0.2931 | 367.0 | 76336 | 0.2032 | 0.9242 | | 0.2688 | 368.0 | 76544 | 0.2035 | 0.9246 | | 0.249 | 369.0 | 76752 | 0.2042 | 0.9238 | | 0.2859 | 370.0 | 76960 | 0.2026 | 0.9245 | | 0.2632 | 371.0 | 77168 | 0.2028 | 0.9243 | | 0.2572 | 372.0 | 77376 | 0.2031 | 0.9246 | | 0.2604 | 373.0 | 77584 | 0.2026 | 0.9243 | | 0.2643 | 374.0 | 77792 | 0.2036 | 0.9246 | | 0.2668 | 375.0 | 78000 | 0.2037 | 0.9249 | | 0.2739 | 376.0 | 78208 | 0.2028 | 0.9242 | | 0.272 | 377.0 | 78416 | 0.2039 | 0.9238 | | 0.2757 | 378.0 | 78624 | 0.2032 | 0.9242 | | 0.251 | 379.0 | 78832 | 0.2033 | 0.9250 | | 0.26 | 380.0 | 79040 | 0.2035 | 0.9245 | | 0.2734 | 381.0 | 79248 | 0.2035 | 0.9241 | | 0.2742 | 382.0 | 79456 | 0.2026 | 0.9247 | | 0.2552 | 383.0 | 79664 | 0.2034 | 0.9242 | | 0.2709 | 384.0 | 79872 | 0.2028 | 0.9244 | | 0.28 | 385.0 | 80080 | 0.2029 | 0.9244 | | 0.2587 | 386.0 | 80288 | 0.2037 | 0.9243 | | 0.2706 | 387.0 | 80496 | 0.2032 | 0.9246 | | 0.2774 | 388.0 | 80704 | 0.2036 | 0.9239 | | 0.2755 | 389.0 | 80912 | 0.2025 | 0.9244 | | 0.2586 | 390.0 | 81120 | 0.2034 | 0.9241 | | 0.2715 | 391.0 | 81328 | 0.2024 | 0.9246 | | 0.2844 | 392.0 | 81536 | 0.2030 | 0.9241 | | 0.2626 | 393.0 | 81744 | 0.2035 | 0.9243 | | 0.2567 | 394.0 | 81952 | 0.2027 | 0.9247 | | 0.2789 | 395.0 | 82160 | 0.2024 | 0.9242 | | 0.2695 | 396.0 | 82368 | 0.2019 | 0.9247 | | 0.2829 | 397.0 | 82576 | 0.2016 | 0.9247 | | 0.2784 | 398.0 | 82784 | 0.2025 | 0.9243 | | 0.2765 | 399.0 | 82992 | 0.2033 | 0.9243 | | 0.2673 | 400.0 | 83200 | 0.2024 | 0.9248 | | 0.275 | 401.0 | 83408 | 0.2041 | 0.9240 | | 0.2499 | 402.0 | 83616 | 0.2028 | 0.9241 | | 0.2702 | 403.0 | 83824 | 0.2028 | 0.9246 | | 0.285 | 404.0 | 84032 | 0.2028 | 0.9243 | | 0.2615 | 405.0 | 84240 | 0.2038 | 0.9244 | | 0.2849 | 406.0 | 84448 | 0.2021 | 0.9247 | | 0.2414 | 407.0 | 84656 | 0.2023 | 0.9245 | | 0.2777 | 408.0 | 84864 | 0.2020 | 0.9247 | | 0.2601 | 409.0 | 85072 | 0.2024 | 0.9242 | | 0.2873 | 410.0 | 85280 | 0.2026 | 0.9243 | | 0.2616 | 411.0 | 85488 | 0.2032 | 0.9246 | | 0.2794 | 412.0 | 85696 | 0.2024 | 0.9243 | | 0.2596 | 413.0 | 85904 | 0.2026 | 0.9246 | | 0.2585 | 414.0 | 86112 | 0.2027 | 0.9245 | | 0.2588 | 415.0 | 86320 | 0.2029 | 0.9245 | | 0.2685 | 416.0 | 86528 | 0.2025 | 0.9243 | | 0.2923 | 417.0 | 86736 | 0.2026 | 0.9245 | | 0.2641 | 418.0 | 86944 | 0.2030 | 0.9246 | | 0.2821 | 419.0 | 87152 | 0.2021 | 0.9249 | | 0.2674 | 420.0 | 87360 | 0.2021 | 0.9250 | | 0.2745 | 421.0 | 87568 | 0.2023 | 0.9247 | | 0.2703 | 422.0 | 87776 | 0.2022 | 0.9248 | | 0.2653 | 423.0 | 87984 | 0.2032 | 0.9248 | | 0.2763 | 424.0 | 88192 | 0.2022 | 0.9245 | | 0.2572 | 425.0 | 88400 | 0.2019 | 0.9247 | | 0.2577 | 426.0 | 88608 | 0.2028 | 0.9245 | | 0.2966 | 427.0 | 88816 | 0.2023 | 0.9246 | | 0.2667 | 428.0 | 89024 | 0.2025 | 0.9249 | | 0.2388 | 429.0 | 89232 | 0.2028 | 0.9247 | | 0.2856 | 430.0 | 89440 | 0.2019 | 0.9247 | | 0.2842 | 431.0 | 89648 | 0.2020 | 0.9248 | | 0.2806 | 432.0 | 89856 | 0.2025 | 0.9248 | | 0.2627 | 433.0 | 90064 | 0.2027 | 0.9245 | | 0.2582 | 434.0 | 90272 | 0.2025 | 0.9247 | | 0.2594 | 435.0 | 90480 | 0.2032 | 0.9243 | | 0.2557 | 436.0 | 90688 | 0.2029 | 0.9244 | | 0.266 | 437.0 | 90896 | 0.2026 | 0.9245 | | 0.2718 | 438.0 | 91104 | 0.2030 | 0.9242 | | 0.2577 | 439.0 | 91312 | 0.2024 | 0.9246 | | 0.2996 | 440.0 | 91520 | 0.2016 | 0.9250 | | 0.2613 | 441.0 | 91728 | 0.2021 | 0.9247 | | 0.2669 | 442.0 | 91936 | 0.2022 | 0.9246 | | 0.2695 | 443.0 | 92144 | 0.2023 | 0.9246 | | 0.267 | 444.0 | 92352 | 0.2017 | 0.9247 | | 0.2704 | 445.0 | 92560 | 0.2020 | 0.9246 | | 0.2529 | 446.0 | 92768 | 0.2018 | 0.9248 | | 0.2743 | 447.0 | 92976 | 0.2014 | 0.9248 | | 0.2664 | 448.0 | 93184 | 0.2025 | 0.9246 | | 0.272 | 449.0 | 93392 | 0.2015 | 0.9248 | | 0.2761 | 450.0 | 93600 | 0.2019 | 0.9248 | | 0.2751 | 451.0 | 93808 | 0.2019 | 0.9247 | | 0.2698 | 452.0 | 94016 | 0.2024 | 0.9246 | | 0.2678 | 453.0 | 94224 | 0.2018 | 0.9249 | | 0.2691 | 454.0 | 94432 | 0.2018 | 0.9250 | | 0.2635 | 455.0 | 94640 | 0.2022 | 0.9248 | | 0.2711 | 456.0 | 94848 | 0.2024 | 0.9247 | | 0.2767 | 457.0 | 95056 | 0.2025 | 0.9248 | | 0.2781 | 458.0 | 95264 | 0.2023 | 0.9247 | | 0.2756 | 459.0 | 95472 | 0.2018 | 0.9249 | | 0.2948 | 460.0 | 95680 | 0.2023 | 0.9248 | | 0.267 | 461.0 | 95888 | 0.2017 | 0.9250 | | 0.2626 | 462.0 | 96096 | 0.2018 | 0.9249 | | 0.2559 | 463.0 | 96304 | 0.2022 | 0.9245 | | 0.275 | 464.0 | 96512 | 0.2023 | 0.9248 | | 0.2326 | 465.0 | 96720 | 0.2019 | 0.9248 | | 0.2492 | 466.0 | 96928 | 0.2015 | 0.9248 | | 0.2686 | 467.0 | 97136 | 0.2017 | 0.9248 | | 0.2778 | 468.0 | 97344 | 0.2021 | 0.9245 | | 0.2946 | 469.0 | 97552 | 0.2021 | 0.9248 | | 0.2567 | 470.0 | 97760 | 0.2021 | 0.9247 | | 0.2505 | 471.0 | 97968 | 0.2021 | 0.9248 | | 0.2659 | 472.0 | 98176 | 0.2020 | 0.9247 | | 0.2659 | 473.0 | 98384 | 0.2018 | 0.9248 | | 0.2766 | 474.0 | 98592 | 0.2022 | 0.9247 | | 0.2687 | 475.0 | 98800 | 0.2020 | 0.9248 | | 0.2568 | 476.0 | 99008 | 0.2020 | 0.9247 | | 0.2644 | 477.0 | 99216 | 0.2024 | 0.9246 | | 0.2657 | 478.0 | 99424 | 0.2018 | 0.9248 | | 0.263 | 479.0 | 99632 | 0.2020 | 0.9247 | | 0.2499 | 480.0 | 99840 | 0.2019 | 0.9248 | | 0.2963 | 481.0 | 100048 | 0.2019 | 0.9249 | | 0.2778 | 482.0 | 100256 | 0.2019 | 0.9248 | | 0.2593 | 483.0 | 100464 | 0.2021 | 0.9247 | | 0.2644 | 484.0 | 100672 | 0.2022 | 0.9247 | | 0.2849 | 485.0 | 100880 | 0.2020 | 0.9248 | | 0.2727 | 486.0 | 101088 | 0.2019 | 0.9248 | | 0.2668 | 487.0 | 101296 | 0.2020 | 0.9247 | | 0.2624 | 488.0 | 101504 | 0.2018 | 0.9249 | | 0.2445 | 489.0 | 101712 | 0.2020 | 0.9248 | | 0.2541 | 490.0 | 101920 | 0.2018 | 0.9250 | | 0.2646 | 491.0 | 102128 | 0.2019 | 0.9248 | | 0.2658 | 492.0 | 102336 | 0.2019 | 0.9248 | | 0.2677 | 493.0 | 102544 | 0.2020 | 0.9248 | | 0.2505 | 494.0 | 102752 | 0.2020 | 0.9248 | | 0.2593 | 495.0 | 102960 | 0.2019 | 0.9248 | | 0.2411 | 496.0 | 103168 | 0.2019 | 0.9248 | | 0.2682 | 497.0 | 103376 | 0.2019 | 0.9248 | | 0.2693 | 498.0 | 103584 | 0.2019 | 0.9248 | | 0.2568 | 499.0 | 103792 | 0.2019 | 0.9248 | | 0.2589 | 500.0 | 104000 | 0.2019 | 0.9248 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 3.2.0 - Tokenizers 0.19.1
[ "eosinophils", "lymphocytes", "monocytes", "neutrophils" ]
bikekowal/models_diff
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # models_diff This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0001 - Accuracy: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 500.0 ### Training results ### Framework versions - Transformers 4.48.0.dev0 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0
[ "d", "n" ]
thien-nguyen/vit-base-oxford-iiit-pets
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-oxford-iiit-pets This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the pcuenq/oxford-pets dataset. It achieves the following results on the evaluation set: - Loss: 0.1978 - Accuracy: 0.9418 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.3745 | 1.0 | 370 | 0.2968 | 0.9229 | | 0.2178 | 2.0 | 740 | 0.2262 | 0.9405 | | 0.159 | 3.0 | 1110 | 0.2067 | 0.9364 | | 0.1545 | 4.0 | 1480 | 0.1974 | 0.9350 | | 0.1217 | 5.0 | 1850 | 0.1944 | 0.9337 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.20.3
[ "siamese", "birman", "shiba inu", "staffordshire bull terrier", "basset hound", "bombay", "japanese chin", "chihuahua", "german shorthaired", "pomeranian", "beagle", "english cocker spaniel", "american pit bull terrier", "ragdoll", "persian", "egyptian mau", "miniature pinscher", "sphynx", "maine coon", "keeshond", "yorkshire terrier", "havanese", "leonberger", "wheaten terrier", "american bulldog", "english setter", "boxer", "newfoundland", "bengal", "samoyed", "british shorthair", "great pyrenees", "abyssinian", "pug", "saint bernard", "russian blue", "scottish terrier" ]
qubvel-hf/my_awesome_food_model
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_food_model This model is a fine-tuned version of [timm/mobilenetv4_conv_small.e2400_r224_in1k](https://huggingface.co/timm/mobilenetv4_conv_small.e2400_r224_in1k) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.7294 - Accuracy: 0.818 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 4.8009 | 1.0 | 63 | 0.9982 | 0.791 | | 3.8041 | 2.0 | 126 | 0.7726 | 0.82 | | 3.5834 | 2.96 | 186 | 0.7294 | 0.818 | ### Framework versions - Transformers 4.48.0.dev0 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0
[ "apple_pie", "baby_back_ribs", "bruschetta", "waffles", "caesar_salad", "cannoli", "caprese_salad", "carrot_cake", "ceviche", "cheesecake", "cheese_plate", "chicken_curry", "chicken_quesadilla", "baklava", "chicken_wings", "chocolate_cake", "chocolate_mousse", "churros", "clam_chowder", "club_sandwich", "crab_cakes", "creme_brulee", "croque_madame", "cup_cakes", "beef_carpaccio", "deviled_eggs", "donuts", "dumplings", "edamame", "eggs_benedict", "escargots", "falafel", "filet_mignon", "fish_and_chips", "foie_gras", "beef_tartare", "french_fries", "french_onion_soup", "french_toast", "fried_calamari", "fried_rice", "frozen_yogurt", "garlic_bread", "gnocchi", "greek_salad", "grilled_cheese_sandwich", "beet_salad", "grilled_salmon", "guacamole", "gyoza", "hamburger", "hot_and_sour_soup", "hot_dog", "huevos_rancheros", "hummus", "ice_cream", "lasagna", "beignets", "lobster_bisque", "lobster_roll_sandwich", "macaroni_and_cheese", "macarons", "miso_soup", "mussels", "nachos", "omelette", "onion_rings", "oysters", "bibimbap", "pad_thai", "paella", "pancakes", "panna_cotta", "peking_duck", "pho", "pizza", "pork_chop", "poutine", "prime_rib", "bread_pudding", "pulled_pork_sandwich", "ramen", "ravioli", "red_velvet_cake", "risotto", "samosa", "sashimi", "scallops", "seaweed_salad", "shrimp_and_grits", "breakfast_burrito", "spaghetti_bolognese", "spaghetti_carbonara", "spring_rolls", "steak", "strawberry_shortcake", "sushi", "tacos", "takoyaki", "tiramisu", "tuna_tartare" ]
till-onethousand/beans_model
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # beans_model This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0264 - Model Preparation Time: 0.0048 - Accuracy: 0.9925 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Model Preparation Time | Accuracy | |:-------------:|:------:|:----:|:---------------:|:----------------------:|:--------:| | 0.1068 | 1.5385 | 100 | 0.0307 | 0.0048 | 1.0 | | 0.0316 | 3.0769 | 200 | 0.0264 | 0.0048 | 0.9925 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.20.3
[ "angular_leaf_spot", "bean_rust", "healthy" ]
osvaldotr07/beans-classification
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
[ "angular_leaf_spot", "bean_rust", "healthy" ]
till-onethousand/hurricane_model
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hurricane_model This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the jonathan-roberts1/Satellite-Images-of-Hurricane-Damage dataset. It achieves the following results on the evaluation set: - Loss: 0.0224 - Model Preparation Time: 0.0051 - Accuracy: 0.9948 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Model Preparation Time | Accuracy | |:-------------:|:------:|:----:|:---------------:|:----------------------:|:--------:| | 0.1118 | 0.3195 | 100 | 0.1486 | 0.0051 | 0.9476 | | 0.1112 | 0.6390 | 200 | 0.0701 | 0.0051 | 0.9752 | | 0.0694 | 0.9585 | 300 | 0.0608 | 0.0051 | 0.9808 | | 0.0048 | 1.2780 | 400 | 0.0917 | 0.0051 | 0.9744 | | 0.036 | 1.5974 | 500 | 0.0552 | 0.0051 | 0.9836 | | 0.0594 | 1.9169 | 600 | 0.0547 | 0.0051 | 0.9808 | | 0.0115 | 2.2364 | 700 | 0.0627 | 0.0051 | 0.9844 | | 0.0016 | 2.5559 | 800 | 0.0296 | 0.0051 | 0.9936 | | 0.004 | 2.8754 | 900 | 0.0325 | 0.0051 | 0.9916 | | 0.0009 | 3.1949 | 1000 | 0.0224 | 0.0051 | 0.9948 | | 0.0008 | 3.5144 | 1100 | 0.0270 | 0.0051 | 0.9936 | | 0.0008 | 3.8339 | 1200 | 0.0256 | 0.0051 | 0.994 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.20.3
[ "flooded or damaged buildings", "undamaged buildings" ]
fernandabufon/ft_stable_diffusion
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ft_stable_diffusion This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the generated by stable diffusion dataset. It achieves the following results on the evaluation set: - Loss: 0.3650 - Accuracy: 0.9194 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 70 | 0.9239 | 0.7705 | | 1.1759 | 2.0 | 140 | 0.5778 | 0.8852 | | 0.5081 | 3.0 | 210 | 0.4438 | 0.9180 | | 0.5081 | 4.0 | 280 | 0.3857 | 0.9344 | | 0.3442 | 5.0 | 350 | 0.3700 | 0.9344 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.20.3
[ "coffee", "oil", "rice", "bread", "sugar", "black_beans", "beans", "flour", "milk" ]
Shk4/vit_ana_0.89
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224-finetuned-eurosat This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.3768 - Accuracy: 0.8989 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-------:|:----:|:---------------:|:--------:| | No log | 0.9231 | 3 | 1.8889 | 0.2472 | | No log | 1.8462 | 6 | 1.7625 | 0.3820 | | No log | 2.7692 | 9 | 1.5603 | 0.4494 | | 1.7854 | 4.0 | 13 | 1.3005 | 0.5281 | | 1.7854 | 4.9231 | 16 | 1.0408 | 0.6292 | | 1.7854 | 5.8462 | 19 | 0.8925 | 0.6854 | | 1.1431 | 6.7692 | 22 | 0.7614 | 0.7303 | | 1.1431 | 8.0 | 26 | 0.6343 | 0.7753 | | 1.1431 | 8.9231 | 29 | 0.5810 | 0.7978 | | 0.7715 | 9.8462 | 32 | 0.5551 | 0.8427 | | 0.7715 | 10.7692 | 35 | 0.5209 | 0.8539 | | 0.7715 | 12.0 | 39 | 0.5690 | 0.8202 | | 0.5645 | 12.9231 | 42 | 0.4431 | 0.8876 | | 0.5645 | 13.8462 | 45 | 0.4922 | 0.8202 | | 0.5645 | 14.7692 | 48 | 0.4914 | 0.8315 | | 0.4999 | 16.0 | 52 | 0.3768 | 0.8989 | | 0.4999 | 16.9231 | 55 | 0.4292 | 0.8539 | | 0.4999 | 17.8462 | 58 | 0.3846 | 0.8652 | | 0.4555 | 18.7692 | 61 | 0.3498 | 0.8876 | | 0.4555 | 20.0 | 65 | 0.3523 | 0.8652 | | 0.4555 | 20.9231 | 68 | 0.3541 | 0.8876 | | 0.3941 | 21.8462 | 71 | 0.3240 | 0.8989 | | 0.3941 | 22.7692 | 74 | 0.3169 | 0.8989 | | 0.3941 | 24.0 | 78 | 0.3317 | 0.8764 | | 0.361 | 24.9231 | 81 | 0.3251 | 0.8876 | | 0.361 | 25.8462 | 84 | 0.3198 | 0.8764 | | 0.361 | 26.7692 | 87 | 0.3117 | 0.8764 | | 0.3485 | 27.6923 | 90 | 0.3101 | 0.8764 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.4.0 - Datasets 3.1.0 - Tokenizers 0.20.3
[ "speckled", "centromere", "dfs", "nucleolar", "nuclear envelope", "nuclear dots", "homogeneous" ]
dan-lara/Garbage-Classifier-Resnet-50-Finetuning
# Garbage Classification Model (Fine-tuned ResNet-50) Ce modèle est une version fine-tunée de ResNet-50 pour la classification des images de déchets en 8 catégories, utilisant le [Garbage Dataset](https://www.kaggle.com/datasets/danielferreiralara/normalized-garbage-dataset-for-resnet). Ce modèle est conçu pour des applications environnementales telles que le tri automatique des déchets et la sensibilisation au recyclage. ## Modèle de base Ce modèle est basé sur [ResNet-50 v1.5](https://huggingface.co/microsoft/resnet-50), qui est pré-entraîné sur [ImageNet-1k](https://huggingface.co/datasets/ILSVRC/imagenet-1k). ResNet est une architecture de réseau de neurones convolutionnels qui a introduit les concepts d’apprentissage résiduel et de connexions par saut, permettant ainsi l’entraînement de modèles beaucoup plus profonds. ResNet-50 v1.5 inclut une amélioration dans les blocs de bottleneck, utilisant une stride de 2 dans la convolution 3x3, ce qui le rend légèrement plus précis que v1 (∼0,5 % en top-1). ## Description du Modèle ### Classes cibles Le modèle classifie les images dans les 8 catégories suivantes : - 🔋 Batterie - 📦 Carton - 🔗 Métal - 🍓 Organique - 🗳️ Papier - 🧳 Plastique - 🫙 Verre - 👖 Vêtements ### Prétraitement Les images du dataset ont été normalisées et redimensionnées à une résolution de 224x224, compatible avec l’entrée du modèle ResNet-50. ### Performance Le modèle atteint un **taux de précision global de 94 %** sur le jeu de test du Dataset. Les performances varient légèrement entre les classes en fonction de la diversité des images et des similarités visuelles entre certaines catégories. Voici un simulateur([EcoMind AI](https://ecomind-ai.streamlit.app/)) qui compare notre modèle au ResNet de base et à d'autres technologies telles que Yolo et LLMs (Llama 3.2). ## Utilisation prévue & limitations ### Cas d'utilisation - Automatisation du tri des déchets pour le recyclage. - Développement d'applications éducatives et interactives sur la gestion des déchets. - Recherche en vision par ordinateur appliquée à l'environnement. ### Limitations Ce modèle a été entraîné sur un dataset limité à 8 catégories. Les scénarios impliquant des déchets très spécifiques ou des catégories en dehors de celles mentionnées pourraient nécessiter un retrain ou une extension du dataset. ## Comment utiliser ce modèle Voici un exemple de code pour utiliser ce modèle afin de classifier une image : ```python ``` ## Citations et Références Si vous utilisez ce modèle, merci de citer à la fois le modèle de base ResNet-50 et le Dataset : ### Modèle de base : ```bibtex @inproceedings{he2016deep, title={Deep residual learning for image recognition}, author={He, Kaiming and Zhang, Xiangyu and Ren, Shaoqing and Sun, Jian}, booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition}, pages={770--778}, year={2016} } ``` ### Dataset Waste Classification : ```bibtex @misc{garbageDatasetResNet24, author = {Ferreira et al.}, title = {8 classes Garbage Dataset for ResNet}, year = {2024}, publisher = {Kaggle}, howpublished = {\url{[https://kaggle.com](https://www.kaggle.com/datasets/danielferreiralara/normalized-garbage-dataset-for-resnet)}} } ``` ## Contact Pour toute question ou suggestion, n’hésitez pas à me contacter à [[email protected]](mailto:[email protected]).
[ "batterie", "carton", "metal", "organique", "papier", "plastique", "verre", "vetements" ]
hoanbklucky/swin-tiny-patch4-window7-224-finetuned-eurosat
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224-finetuned-eurosat This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3611 - Accuracy: 0.9022 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.5267 | 1.0 | 26 | 0.7457 | 0.8288 | | 0.6287 | 2.0 | 52 | 0.4085 | 0.8967 | | 0.5212 | 3.0 | 78 | 0.3611 | 0.9022 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.20.3
[ "abyssinian", "american_bulldog", "american_pit_bull_terrier", "basset_hound", "beagle", "bengal", "birman", "bombay", "boxer", "british_shorthair", "chihuahua", "egyptian_mau", "english_cocker_spaniel", "english_setter", "german_shorthaired", "great_pyrenees", "havanese", "japanese_chin", "keeshond", "leonberger", "maine_coon", "miniature_pinscher", "newfoundland", "persian", "pomeranian", "pug", "ragdoll", "russian_blue", "saint_bernard", "samoyed", "scottish_terrier", "shiba_inu", "siamese", "sphynx", "staffordshire_bull_terrier", "wheaten_terrier", "yorkshire_terrier" ]
hoanbklucky/dinov2-small-imagenet1k-1-layer-finetuned-eurosat
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # dinov2-small-imagenet1k-1-layer-finetuned-eurosat This model is a fine-tuned version of [facebook/dinov2-small-imagenet1k-1-layer](https://huggingface.co/facebook/dinov2-small-imagenet1k-1-layer) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2994 - Accuracy: 0.9212 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.9886 | 1.0 | 26 | 0.8828 | 0.7717 | | 0.645 | 2.0 | 52 | 0.4112 | 0.8859 | | 0.4834 | 3.0 | 78 | 0.2994 | 0.9212 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.20.3
[ "abyssinian", "american_bulldog", "american_pit_bull_terrier", "basset_hound", "beagle", "bengal", "birman", "bombay", "boxer", "british_shorthair", "chihuahua", "egyptian_mau", "english_cocker_spaniel", "english_setter", "german_shorthaired", "great_pyrenees", "havanese", "japanese_chin", "keeshond", "leonberger", "maine_coon", "miniature_pinscher", "newfoundland", "persian", "pomeranian", "pug", "ragdoll", "russian_blue", "saint_bernard", "samoyed", "scottish_terrier", "shiba_inu", "siamese", "sphynx", "staffordshire_bull_terrier", "wheaten_terrier", "yorkshire_terrier" ]
hoanbklucky/dinov2-small-imagenet1k-1-layer-finetuned-noh
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # dinov2-small-imagenet1k-1-layer-finetuned-noh This model is a fine-tuned version of [facebook/dinov2-small-imagenet1k-1-layer](https://huggingface.co/facebook/dinov2-small-imagenet1k-1-layer) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3366 - Accuracy: 0.8982 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 0.4924 | 1.0 | 23 | 0.5212 | 0.8325 | | 0.5732 | 2.0 | 46 | 0.3366 | 0.8982 | | 0.5639 | 3.0 | 69 | 0.3907 | 0.8489 | | 0.4759 | 4.0 | 92 | 0.3482 | 0.8818 | | 0.3757 | 5.0 | 115 | 0.3921 | 0.8276 | | 0.3356 | 6.0 | 138 | 0.3184 | 0.8966 | | 0.2521 | 7.0 | 161 | 0.3992 | 0.8571 | | 0.2981 | 8.0 | 184 | 0.3904 | 0.8703 | | 0.2302 | 9.0 | 207 | 0.3987 | 0.8719 | | 0.1979 | 9.5778 | 220 | 0.4129 | 0.8604 | ### Framework versions - Transformers 4.47.0 - Pytorch 2.5.1 - Datasets 2.19.1 - Tokenizers 0.21.0
[ "normal", "cancer" ]
hoanbklucky/vit-base-oxford-iiit-pets
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-oxford-iiit-pets This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the pcuenq/oxford-pets dataset. It achieves the following results on the evaluation set: - Loss: 0.1773 - Accuracy: 0.9432 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.3928 | 1.0 | 370 | 0.2696 | 0.9323 | | 0.206 | 2.0 | 740 | 0.2022 | 0.9405 | | 0.1689 | 3.0 | 1110 | 0.1863 | 0.9405 | | 0.1298 | 4.0 | 1480 | 0.1801 | 0.9472 | | 0.1358 | 5.0 | 1850 | 0.1783 | 0.9418 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.20.3
[ "siamese", "birman", "shiba inu", "staffordshire bull terrier", "basset hound", "bombay", "japanese chin", "chihuahua", "german shorthaired", "pomeranian", "beagle", "english cocker spaniel", "american pit bull terrier", "ragdoll", "persian", "egyptian mau", "miniature pinscher", "sphynx", "maine coon", "keeshond", "yorkshire terrier", "havanese", "leonberger", "wheaten terrier", "american bulldog", "english setter", "boxer", "newfoundland", "bengal", "samoyed", "british shorthair", "great pyrenees", "abyssinian", "pug", "saint bernard", "russian blue", "scottish terrier" ]
cz6879/vit-base-oxford-iiit-pets
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-oxford-iiit-pets This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the pcuenq/oxford-pets dataset. It achieves the following results on the evaluation set: - Loss: 0.1848 - Accuracy: 0.9486 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.3895 | 1.0 | 370 | 0.2942 | 0.9229 | | 0.2122 | 2.0 | 740 | 0.2150 | 0.9418 | | 0.1657 | 3.0 | 1110 | 0.1969 | 0.9445 | | 0.1393 | 4.0 | 1480 | 0.1901 | 0.9459 | | 0.1364 | 5.0 | 1850 | 0.1877 | 0.9486 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.20.3
[ "siamese", "birman", "shiba inu", "staffordshire bull terrier", "basset hound", "bombay", "japanese chin", "chihuahua", "german shorthaired", "pomeranian", "beagle", "english cocker spaniel", "american pit bull terrier", "ragdoll", "persian", "egyptian mau", "miniature pinscher", "sphynx", "maine coon", "keeshond", "yorkshire terrier", "havanese", "leonberger", "wheaten terrier", "american bulldog", "english setter", "boxer", "newfoundland", "bengal", "samoyed", "british shorthair", "great pyrenees", "abyssinian", "pug", "saint bernard", "russian blue", "scottish terrier" ]
kaanyvvz/ky-finetuned-skindiseaseicthuawei32
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ky-finetuned-skindiseaseicthuawei32 This model is a fine-tuned version of [facebook/dinov2-base](https://huggingface.co/facebook/dinov2-base) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.1058 - Accuracy: 0.9623 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.3894 | 1.0 | 300 | 0.6160 | 0.8061 | | 0.6543 | 2.0 | 600 | 0.4378 | 0.8635 | | 0.471 | 3.0 | 900 | 0.2566 | 0.9161 | | 0.3853 | 4.0 | 1200 | 0.2498 | 0.9135 | | 0.3225 | 5.0 | 1500 | 0.2157 | 0.9290 | | 0.2769 | 6.0 | 1800 | 0.1747 | 0.9407 | | 0.2364 | 7.0 | 2100 | 0.1502 | 0.9487 | | 0.2005 | 8.0 | 2400 | 0.1282 | 0.9547 | | 0.1737 | 9.0 | 2700 | 0.1129 | 0.9597 | | 0.1468 | 10.0 | 3000 | 0.1058 | 0.9623 | ### Framework versions - Transformers 4.47.0 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0
[ "basal cell carcinoma", "darier_s disease", "epidermolysis bullosa pruriginosa", "hailey-hailey disease", "herpes simplex", "impetigo", "larva migrans", "leprosy borderline", "leprosy lepromatous", "leprosy tuberculoid", "lichen planus", "lupus erythematosus chronicus discoides", "melanoma", "molluscum contagiosum", "mycosis fungoides", "neurofibromatosis", "papilomatosis confluentes and reticulate", "pediculosis capitis", "pityriasis rosea", "porokeratosis actinic", "psoriasis", "tinea corporis", "tinea nigra", "tungiasis", "unknown", "vitiligo", "actinic keratosis", "dermatofibroma", "nevus", "seborrheic keratosis", "squamous cell carcinoma", "vascular lesion" ]
CooperAharon/white-blood-cell-classifier
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
[ "basophil", "eosinophil", "lymphocyte", "monocyte", "neutrophil" ]
Melo1512/vit-msn-small-wbc-classifier-0316-cleandataset-10
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-msn-small-wbc-classifier-0316-cleandataset-10 This model is a fine-tuned version of [Melo1512/vit-msn-small-wbc-classifier-0316-cleandataset-10](https://huggingface.co/Melo1512/vit-msn-small-wbc-classifier-0316-cleandataset-10) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.3943 - Accuracy: 0.8599 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-07 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-------:|:----:|:---------------:|:--------:| | 0.3785 | 0.9730 | 18 | 0.3985 | 0.8569 | | 0.3432 | 2.0 | 37 | 0.3996 | 0.8557 | | 0.3454 | 2.9730 | 55 | 0.4011 | 0.8553 | | 0.3639 | 4.0 | 74 | 0.4034 | 0.8538 | | 0.3544 | 4.9730 | 92 | 0.4049 | 0.8546 | | 0.3607 | 6.0 | 111 | 0.4057 | 0.8538 | | 0.3652 | 6.9730 | 129 | 0.4046 | 0.8561 | | 0.3639 | 8.0 | 148 | 0.4046 | 0.8553 | | 0.3472 | 8.9730 | 166 | 0.4048 | 0.8561 | | 0.3704 | 10.0 | 185 | 0.4033 | 0.8546 | | 0.3954 | 10.9730 | 203 | 0.4009 | 0.8565 | | 0.372 | 12.0 | 222 | 0.4022 | 0.8546 | | 0.3599 | 12.9730 | 240 | 0.4005 | 0.8561 | | 0.3689 | 14.0 | 259 | 0.4018 | 0.8550 | | 0.3687 | 14.9730 | 277 | 0.4016 | 0.8553 | | 0.3521 | 16.0 | 296 | 0.4000 | 0.8561 | | 0.3817 | 16.9730 | 314 | 0.4001 | 0.8553 | | 0.3768 | 18.0 | 333 | 0.3994 | 0.8550 | | 0.3835 | 18.9730 | 351 | 0.4041 | 0.8546 | | 0.3833 | 20.0 | 370 | 0.4042 | 0.8553 | | 0.36 | 20.9730 | 388 | 0.4012 | 0.8561 | | 0.3729 | 22.0 | 407 | 0.4023 | 0.8565 | | 0.3647 | 22.9730 | 425 | 0.4029 | 0.8546 | | 0.3811 | 24.0 | 444 | 0.4011 | 0.8561 | | 0.38 | 24.9730 | 462 | 0.3999 | 0.8569 | | 0.3588 | 26.0 | 481 | 0.3994 | 0.8557 | | 0.3554 | 26.9730 | 499 | 0.3991 | 0.8561 | | 0.354 | 28.0 | 518 | 0.3995 | 0.8561 | | 0.3577 | 28.9730 | 536 | 0.3986 | 0.8557 | | 0.3723 | 30.0 | 555 | 0.3998 | 0.8561 | | 0.3763 | 30.9730 | 573 | 0.3994 | 0.8561 | | 0.3701 | 32.0 | 592 | 0.3994 | 0.8569 | | 0.3728 | 32.9730 | 610 | 0.3980 | 0.8553 | | 0.3649 | 34.0 | 629 | 0.3964 | 0.8565 | | 0.3551 | 34.9730 | 647 | 0.3982 | 0.8569 | | 0.3832 | 36.0 | 666 | 0.3977 | 0.8576 | | 0.3459 | 36.9730 | 684 | 0.3968 | 0.8561 | | 0.3613 | 38.0 | 703 | 0.3966 | 0.8561 | | 0.3588 | 38.9730 | 721 | 0.3968 | 0.8565 | | 0.3483 | 40.0 | 740 | 0.3958 | 0.8573 | | 0.3693 | 40.9730 | 758 | 0.3967 | 0.8576 | | 0.3544 | 42.0 | 777 | 0.3988 | 0.8576 | | 0.3701 | 42.9730 | 795 | 0.3976 | 0.8573 | | 0.3649 | 44.0 | 814 | 0.3984 | 0.8565 | | 0.3621 | 44.9730 | 832 | 0.3966 | 0.8573 | | 0.3494 | 46.0 | 851 | 0.3989 | 0.8573 | | 0.373 | 46.9730 | 869 | 0.3993 | 0.8573 | | 0.3911 | 48.0 | 888 | 0.3978 | 0.8576 | | 0.3716 | 48.9730 | 906 | 0.3967 | 0.8576 | | 0.3685 | 50.0 | 925 | 0.3968 | 0.8576 | | 0.3879 | 50.9730 | 943 | 0.3950 | 0.8573 | | 0.3774 | 52.0 | 962 | 0.3951 | 0.8580 | | 0.3588 | 52.9730 | 980 | 0.3950 | 0.8584 | | 0.3746 | 54.0 | 999 | 0.3959 | 0.8584 | | 0.3677 | 54.9730 | 1017 | 0.3960 | 0.8584 | | 0.3608 | 56.0 | 1036 | 0.3965 | 0.8588 | | 0.3518 | 56.9730 | 1054 | 0.3963 | 0.8580 | | 0.3554 | 58.0 | 1073 | 0.3957 | 0.8588 | | 0.3584 | 58.9730 | 1091 | 0.3957 | 0.8584 | | 0.3776 | 60.0 | 1110 | 0.3948 | 0.8592 | | 0.364 | 60.9730 | 1128 | 0.3942 | 0.8588 | | 0.3647 | 62.0 | 1147 | 0.3942 | 0.8584 | | 0.3613 | 62.9730 | 1165 | 0.3949 | 0.8588 | | 0.3509 | 64.0 | 1184 | 0.3961 | 0.8584 | | 0.3816 | 64.9730 | 1202 | 0.3967 | 0.8584 | | 0.3552 | 66.0 | 1221 | 0.3957 | 0.8588 | | 0.3461 | 66.9730 | 1239 | 0.3946 | 0.8588 | | 0.364 | 68.0 | 1258 | 0.3940 | 0.8588 | | 0.372 | 68.9730 | 1276 | 0.3943 | 0.8599 | | 0.347 | 70.0 | 1295 | 0.3939 | 0.8592 | | 0.3537 | 70.9730 | 1313 | 0.3943 | 0.8599 | | 0.3537 | 72.0 | 1332 | 0.3950 | 0.8595 | | 0.3823 | 72.9730 | 1350 | 0.3951 | 0.8592 | | 0.3454 | 74.0 | 1369 | 0.3947 | 0.8592 | | 0.3667 | 74.9730 | 1387 | 0.3949 | 0.8592 | | 0.3585 | 76.0 | 1406 | 0.3945 | 0.8592 | | 0.356 | 76.9730 | 1424 | 0.3947 | 0.8592 | | 0.337 | 78.0 | 1443 | 0.3949 | 0.8592 | | 0.3588 | 78.9730 | 1461 | 0.3944 | 0.8592 | | 0.3591 | 80.0 | 1480 | 0.3941 | 0.8592 | | 0.3638 | 80.9730 | 1498 | 0.3943 | 0.8592 | | 0.367 | 82.0 | 1517 | 0.3941 | 0.8592 | | 0.3694 | 82.9730 | 1535 | 0.3943 | 0.8592 | | 0.3779 | 84.0 | 1554 | 0.3941 | 0.8592 | | 0.344 | 84.9730 | 1572 | 0.3939 | 0.8595 | | 0.3619 | 86.0 | 1591 | 0.3935 | 0.8592 | | 0.342 | 86.9730 | 1609 | 0.3934 | 0.8595 | | 0.3686 | 88.0 | 1628 | 0.3931 | 0.8595 | | 0.3407 | 88.9730 | 1646 | 0.3931 | 0.8595 | | 0.3553 | 90.0 | 1665 | 0.3933 | 0.8599 | | 0.367 | 90.9730 | 1683 | 0.3934 | 0.8595 | | 0.3665 | 92.0 | 1702 | 0.3932 | 0.8599 | | 0.3684 | 92.9730 | 1720 | 0.3932 | 0.8599 | | 0.3685 | 94.0 | 1739 | 0.3934 | 0.8595 | | 0.375 | 94.9730 | 1757 | 0.3934 | 0.8592 | | 0.3564 | 96.0 | 1776 | 0.3934 | 0.8592 | | 0.362 | 96.9730 | 1794 | 0.3934 | 0.8592 | | 0.3688 | 97.2973 | 1800 | 0.3934 | 0.8592 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 3.2.0 - Tokenizers 0.19.1
[ "eosinophils", "lymphocytes", "monocytes", "neutrophils" ]
Melo1512/vit-msn-small-wbc-classifier-0316-cleaned-dataset-10
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-msn-small-wbc-classifier-0316-cleaned-dataset-10 This model is a fine-tuned version of [facebook/vit-msn-small](https://huggingface.co/facebook/vit-msn-small) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.3538 - Accuracy: 0.8935 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.5193 | 1.0 | 16 | 0.6823 | 0.7945 | | 0.5339 | 2.0 | 32 | 0.4553 | 0.8438 | | 0.4778 | 3.0 | 48 | 0.4525 | 0.8478 | | 0.4253 | 4.0 | 64 | 0.4077 | 0.8473 | | 0.4086 | 5.0 | 80 | 0.4218 | 0.8575 | | 0.3673 | 6.0 | 96 | 0.4002 | 0.8693 | | 0.3275 | 7.0 | 112 | 0.3302 | 0.8773 | | 0.3231 | 8.0 | 128 | 0.3672 | 0.8803 | | 0.302 | 9.0 | 144 | 0.3363 | 0.8900 | | 0.3122 | 10.0 | 160 | 0.3284 | 0.8843 | | 0.2686 | 11.0 | 176 | 0.3317 | 0.8874 | | 0.2786 | 12.0 | 192 | 0.3660 | 0.8883 | | 0.2338 | 13.0 | 208 | 0.3520 | 0.8834 | | 0.2466 | 14.0 | 224 | 0.3414 | 0.8896 | | 0.2296 | 15.0 | 240 | 0.3531 | 0.8874 | | 0.1961 | 16.0 | 256 | 0.3844 | 0.8847 | | 0.2056 | 17.0 | 272 | 0.3705 | 0.8900 | | 0.197 | 18.0 | 288 | 0.3538 | 0.8935 | | 0.1748 | 19.0 | 304 | 0.3717 | 0.8887 | | 0.1807 | 20.0 | 320 | 0.4075 | 0.8843 | | 0.177 | 21.0 | 336 | 0.3881 | 0.8830 | | 0.1433 | 22.0 | 352 | 0.4014 | 0.8856 | | 0.1522 | 23.0 | 368 | 0.3918 | 0.8874 | | 0.1322 | 24.0 | 384 | 0.4199 | 0.8905 | | 0.1396 | 25.0 | 400 | 0.4142 | 0.8896 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 3.2.0 - Tokenizers 0.19.1
[ "eosinophils", "lymphocytes", "monocytes", "neutrophils" ]
Melo1512/vit-msn-small-wbc-classifier-0316-cropped-cleaned-dataset-10
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-msn-small-wbc-classifier-0316-cropped-cleaned-dataset-10 This model is a fine-tuned version of [facebook/vit-msn-small](https://huggingface.co/facebook/vit-msn-small) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.3986 - Accuracy: 0.8855 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.3709 | 1.0 | 17 | 0.6977 | 0.8050 | | 0.5673 | 2.0 | 34 | 0.5949 | 0.8099 | | 0.5227 | 3.0 | 51 | 0.6152 | 0.7931 | | 0.4958 | 4.0 | 68 | 0.4351 | 0.8436 | | 0.4402 | 5.0 | 85 | 0.3777 | 0.8580 | | 0.3878 | 6.0 | 102 | 0.3970 | 0.8699 | | 0.3646 | 7.0 | 119 | 0.3793 | 0.8641 | | 0.3452 | 8.0 | 136 | 0.3550 | 0.8805 | | 0.344 | 9.0 | 153 | 0.4003 | 0.8736 | | 0.3365 | 10.0 | 170 | 0.3654 | 0.8830 | | 0.3223 | 11.0 | 187 | 0.3571 | 0.8764 | | 0.2819 | 12.0 | 204 | 0.3665 | 0.8789 | | 0.2998 | 13.0 | 221 | 0.3609 | 0.8838 | | 0.2959 | 14.0 | 238 | 0.4335 | 0.8719 | | 0.2662 | 15.0 | 255 | 0.4245 | 0.8785 | | 0.2668 | 16.0 | 272 | 0.3760 | 0.8846 | | 0.2576 | 17.0 | 289 | 0.3728 | 0.8830 | | 0.2398 | 18.0 | 306 | 0.4192 | 0.8814 | | 0.2278 | 19.0 | 323 | 0.4156 | 0.8805 | | 0.2033 | 20.0 | 340 | 0.4159 | 0.8851 | | 0.2037 | 21.0 | 357 | 0.3986 | 0.8855 | | 0.1934 | 22.0 | 374 | 0.4220 | 0.8822 | | 0.1983 | 23.0 | 391 | 0.4159 | 0.8855 | | 0.1746 | 24.0 | 408 | 0.4179 | 0.8855 | | 0.1776 | 25.0 | 425 | 0.4247 | 0.8834 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 3.2.0 - Tokenizers 0.19.1
[ "eosinophils", "lymphocytes", "monocytes", "neutrophils" ]
WillyIde545/dog_classifier
# Model Card for Model ID Model classifies dogs given a pictures between 120 different breeds of dogs. ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model. This model takes in a picture of a dog, resizes it, and then classifies the dog as one of 120 dog breeds. - **Developed by:** [Wilson Ide] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations This model was only trained on the stanfor dogs dataset, which is not a super wide dataset. Additionally, it is only about 86% accurate. [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
[ "label_0", "label_1", "label_2", "label_3", "label_4", "label_5", "label_6", "label_7", "label_8", "label_9", "label_10", "label_11", "label_12", "label_13", "label_14", "label_15", "label_16", "label_17", "label_18", "label_19", "label_20", "label_21", "label_22", "label_23", "label_24", "label_25", "label_26", "label_27", "label_28", "label_29", "label_30", "label_31", "label_32", "label_33", "label_34", "label_35", "label_36", "label_37", "label_38", "label_39", "label_40", "label_41", "label_42", "label_43", "label_44", "label_45", "label_46", "label_47", "label_48", "label_49", "label_50", "label_51", "label_52", "label_53", "label_54", "label_55", "label_56", "label_57", "label_58", "label_59", "label_60", "label_61", "label_62", "label_63", "label_64", "label_65", "label_66", "label_67", "label_68", "label_69", "label_70", "label_71", "label_72", "label_73", "label_74", "label_75", "label_76", "label_77", "label_78", "label_79", "label_80", "label_81", "label_82", "label_83", "label_84", "label_85", "label_86", "label_87", "label_88", "label_89", "label_90", "label_91", "label_92", "label_93", "label_94", "label_95", "label_96", "label_97", "label_98", "label_99", "label_100", "label_101", "label_102", "label_103", "label_104", "label_105", "label_106", "label_107", "label_108", "label_109", "label_110", "label_111", "label_112", "label_113", "label_114", "label_115", "label_116", "label_117", "label_118", "label_119" ]
shoni/comic-sans-detector
# Comic Sans Detector This repository contains a fine-tuned ResNet-18 model, specifically trained to detect whether an image contains Comic Sans font. It is a fine-tuning of a previously fine-tuned font classification model, based on the ResNet-18 foundation model. ## Features - Distinguishes between Comic Sans and non-Comic Sans images. - Built using a custom dataset with two classes: `comic` and `not-comic`. ## Usage To use this model with the Hugging Face Inference API: ```python from transformers import pipeline classifier = pipeline("image-classification", model="shoni/comic-sans-detector") result = classifier("path/to/image.jpg") print(result) # Comic Sans Detector This repository contains a fine-tuned ResNet-18 model, specifically trained to detect whether an image contains Comic Sans font. It is a fine-tuning of a previously fine-tuned font classification model, based on the ResNet-18 foundation model. ## Repository Contents - **`comic-detector.ipynb`**: A notebook that demonstrates the training and evaluation process for the Comic Sans detector using the fine-tuned ResNet-18 model. - **`image-format-generalizer.ipynb`**: A utility notebook for preparing and normalizing image datasets, ensuring consistent formatting across `/data` folders. ## Dataset Structure (Not Included) The dataset used for training and evaluation should follow this structure: ``` /data ├── comic/ │ ├── image1.jpg │ ├── image2.png │ └── ... ├── not-comic/ │ ├── image1.jpg │ ├── image2.png │ └── ... ``` - **`comic/`**: Contains images labeled as featuring Comic Sans font. - **`not-comic/`**: Contains images labeled as not featuring Comic Sans font. ⚠️ The dataset itself is not included in this repository. You must prepare and structure your dataset as described. ## How to Use ### 1. Clone the Repository ```bash git clone https://huggingface.co/shoni/comic-sans-detector cd comic-sans-detector ``` ### 2. Prepare the Dataset Ensure your dataset is properly structured under a `/data` directory with `comic/` and `not-comic/` folders. ### 3. Run the Training Notebook Open `comic-detector.ipynb` in Jupyter Notebook or an equivalent environment to retrain the model or evaluate it. ### 4. Format Images (Optional) If your dataset images are not in a consistent format, use `image-format-generalizer.ipynb` to preprocess them. ## Model Usage The fine-tuned model can be deployed directly via the Hugging Face Inference API. Once uploaded, the model can be used to classify whether an image contains Comic Sans font. Example API usage (replace `shoni/comic-sans-detector` with your repository name): ```python from transformers import pipeline classifier = pipeline("image-classification", model="shoni/comic-sans-detector") result = classifier("path/to/image.jpg") print(result) ``` ## Fine-Tuning Process This model was fine-tuned on a previously fine-tuned font classification model, which itself was based on the ResNet-18 foundation model. The fine-tuning process was conducted using a custom dataset with two classes: `comic` and `not-comic`. ## Acknowledgments This project is based on the original font identifier repository by [gaborcselle](https://huggingface.co/gaborcselle/font-identifier). ## License Include your preferred license here (e.g., MIT, Apache 2.0, etc.).
[ "comic", "not-comic" ]
rbenrejeb/vit-Facial-Expression-Recognition
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-Facial-Expression-Recognition This model is a fine-tuned version of [motheecreator/vit-Facial-Expression-Recognition](https://huggingface.co/motheecreator/vit-Facial-Expression-Recognition) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3720 - Accuracy: 0.8732 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 256 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 0.5752 | 0.2164 | 100 | 0.3737 | 0.8740 | | 0.568 | 0.4328 | 200 | 0.3759 | 0.8720 | | 0.551 | 0.6492 | 300 | 0.3722 | 0.8734 | | 0.5604 | 0.8656 | 400 | 0.3747 | 0.8733 | | 0.5391 | 1.0820 | 500 | 0.3720 | 0.8732 | | 0.5751 | 1.2984 | 600 | 0.3761 | 0.8718 | | 0.5678 | 1.5147 | 700 | 0.3824 | 0.8691 | | 0.5493 | 1.7311 | 800 | 0.3870 | 0.8672 | | 0.5766 | 1.9475 | 900 | 0.3942 | 0.8629 | | 0.5301 | 2.1639 | 1000 | 0.3947 | 0.8639 | | 0.5092 | 2.3803 | 1100 | 0.3896 | 0.8656 | | 0.5164 | 2.5967 | 1200 | 0.3778 | 0.8703 | | 0.4971 | 2.8131 | 1300 | 0.3731 | 0.8730 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.4.0 - Datasets 3.1.0 - Tokenizers 0.20.3
[ "angry", "disgust", "fear", "happy", "neutral", "sad", "surprise" ]
MHTrXz/fire_classification
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
[ "fire_images", "non_fire_images" ]
kaleemullah0005/results
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # results This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.5130 - Accuracy: 0.9678 - F1 Macro: 0.3279 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Macro | |:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:| | 0.9582 | 1.0 | 326 | 0.6083 | 0.9570 | 0.3720 | | 0.9225 | 2.0 | 652 | 0.5519 | 0.9455 | 0.3759 | | 0.8664 | 3.0 | 978 | 0.4927 | 0.9677 | 0.3454 | | 0.6536 | 4.0 | 1304 | 0.5522 | 0.8848 | 0.3702 | | 0.6793 | 5.0 | 1630 | 0.4951 | 0.9455 | 0.3830 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 3.2.0 - Tokenizers 0.19.1
[ "0", "1", "2" ]
Melo1512/vit-msn-small-wbc-classifier-cells-separated-dataset-agregates-25
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-msn-small-wbc-classifier-cells-separated-dataset-agregates-25 This model is a fine-tuned version of [facebook/vit-msn-small](https://huggingface.co/facebook/vit-msn-small) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.1790 - Accuracy: 0.9401 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-------:|:----:|:---------------:|:--------:| | 0.351 | 0.9937 | 119 | 0.2523 | 0.9151 | | 0.3364 | 1.9958 | 239 | 0.2355 | 0.9195 | | 0.2999 | 2.9979 | 359 | 0.2384 | 0.9169 | | 0.2861 | 4.0 | 479 | 0.1902 | 0.9341 | | 0.3014 | 4.9937 | 598 | 0.2154 | 0.9290 | | 0.292 | 5.9958 | 718 | 0.1764 | 0.9383 | | 0.2441 | 6.9979 | 838 | 0.1894 | 0.9348 | | 0.2416 | 8.0 | 958 | 0.1913 | 0.9349 | | 0.2642 | 8.9937 | 1077 | 0.1738 | 0.9385 | | 0.2482 | 9.9958 | 1197 | 0.1911 | 0.9371 | | 0.2279 | 10.9979 | 1317 | 0.1867 | 0.9381 | | 0.2331 | 12.0 | 1437 | 0.1814 | 0.9389 | | 0.2208 | 12.9937 | 1556 | 0.1790 | 0.9401 | | 0.2326 | 13.9958 | 1676 | 0.1926 | 0.9366 | | 0.1899 | 14.9979 | 1796 | 0.1975 | 0.9372 | | 0.1822 | 16.0 | 1916 | 0.2052 | 0.9352 | | 0.1837 | 16.9937 | 2035 | 0.2078 | 0.9364 | | 0.1712 | 17.9958 | 2155 | 0.2345 | 0.9288 | | 0.1715 | 18.9979 | 2275 | 0.2156 | 0.9368 | | 0.1516 | 20.0 | 2395 | 0.2279 | 0.9368 | | 0.1504 | 20.9937 | 2514 | 0.2213 | 0.9382 | | 0.139 | 21.9958 | 2634 | 0.2247 | 0.9370 | | 0.1264 | 22.9979 | 2754 | 0.2357 | 0.9384 | | 0.1266 | 24.0 | 2874 | 0.2360 | 0.9381 | | 0.1144 | 24.8434 | 2975 | 0.2370 | 0.9375 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 3.2.0 - Tokenizers 0.19.1
[ "agregados", "eosinophils", "lymphocytes", "monocytes", "neutrophils" ]
Melo1512/vit-msn-small-wbc-classifier-cells-separated-dataset-no-agregates-10
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-msn-small-wbc-classifier-cells-separated-dataset-no-agregates-10 This model is a fine-tuned version of [facebook/vit-msn-small](https://huggingface.co/facebook/vit-msn-small) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.1504 - Accuracy: 0.9463 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 0.3353 | 0.9937 | 118 | 0.2299 | 0.9214 | | 0.2884 | 1.9958 | 237 | 0.2378 | 0.9172 | | 0.2487 | 2.9979 | 356 | 0.1871 | 0.9360 | | 0.2347 | 4.0 | 475 | 0.1920 | 0.9328 | | 0.2343 | 4.9937 | 593 | 0.1674 | 0.9405 | | 0.2285 | 5.9958 | 712 | 0.1642 | 0.9426 | | 0.2079 | 6.9979 | 831 | 0.1836 | 0.9344 | | 0.2155 | 8.0 | 950 | 0.1661 | 0.9442 | | 0.1954 | 8.9937 | 1068 | 0.1504 | 0.9463 | | 0.1763 | 9.9368 | 1180 | 0.1588 | 0.9450 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 3.2.0 - Tokenizers 0.19.1
[ "eosinophils", "lymphocytes", "monocytes", "neutrophils" ]
Audi24/OptoAI
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Audi24/OptoAI This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 1.1247 - Validation Loss: 1.0296 - Train Accuracy: 0.6167 - Epoch: 4 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 3e-05, 'decay_steps': 2400, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Accuracy | Epoch | |:----------:|:---------------:|:--------------:|:-----:| | 1.2671 | 1.1720 | 0.5 | 0 | | 1.1998 | 1.0899 | 0.5417 | 1 | | 1.1785 | 1.0827 | 0.6167 | 2 | | 1.1651 | 1.0569 | 0.5917 | 3 | | 1.1247 | 1.0296 | 0.6167 | 4 | ### Framework versions - Transformers 4.47.0 - TensorFlow 2.17.1 - Datasets 3.2.0 - Tokenizers 0.21.0
[ "normal", "cataract", "glaucoma", "retinal disease" ]
Audi24/OptoAI2.0
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Audi24/OptoAI2.0 This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 1.2258 - Validation Loss: 1.1361 - Train Accuracy: 0.4875 - Epoch: 4 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 3e-05, 'decay_steps': 1600, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Accuracy | Epoch | |:----------:|:---------------:|:--------------:|:-----:| | 1.3733 | 1.3181 | 0.425 | 0 | | 1.3350 | 1.2704 | 0.4375 | 1 | | 1.3132 | 1.2019 | 0.5125 | 2 | | 1.2711 | 1.2010 | 0.5 | 3 | | 1.2258 | 1.1361 | 0.4875 | 4 | ### Framework versions - Transformers 4.47.0 - TensorFlow 2.17.1 - Datasets 3.2.0 - Tokenizers 0.21.0
[ "normal", "cataract", "glaucoma", "retinal disease" ]
Audi24/Opto_AI
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Audi24/Opto_AI This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.3912 - Validation Loss: 0.3749 - Train Accuracy: 0.8619 - Epoch: 4 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 3e-05, 'decay_steps': 16885, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Accuracy | Epoch | |:----------:|:---------------:|:--------------:|:-----:| | 0.8641 | 0.5357 | 0.8012 | 0 | | 0.5990 | 0.4117 | 0.8702 | 1 | | 0.4826 | 0.3584 | 0.8857 | 2 | | 0.4381 | 0.3717 | 0.8655 | 3 | | 0.3912 | 0.3749 | 0.8619 | 4 | ### Framework versions - Transformers 4.47.0 - TensorFlow 2.17.1 - Datasets 3.2.0 - Tokenizers 0.21.0
[ "cataract", "diabetic retinopathy", "glaucoma", "normal" ]
Emiel/cub-200-bird-classifier-swin
# Model Card for Model ID ![image/png](https://cdn-uploads.huggingface.co/production/uploads/624d888b0ce29222ad64c3d6/X7cXpayiKgUCUycIen22S.png) ### Model Description This model was finetuned for the "Feather in Focus!" Kaggle competition of the Information Studies Master's Applied Machine Learning course at the University of Amsterdam. The goal of the competition was to apply novel approaches to achieve the highest possible accuracy on a bird classification task with 200 classes. We were given a labeled dataset of 3926 images and an unlabeled dataset of 4000 test images. Out of 32 groups and 1083 submissions, we achieved the #1 accuracy on the test set with a score of 0.87950. ### Training Details The model we are finetuning, microsoft/swin-large-patch4-window12-384-in22k, was pre-trained on imagenet-21k, see https://huggingface.co/microsoft/swin-large-patch4-window12-384-in22k. #### Preprocessing Data augmentation was applied to the training data in a custom Torch dataset class. Because of the size of the dataset, images were not replaced but were duplicated and augmented. The only augmentations applied were HorizontalFlips and Rotations (10 degrees) to align with the relatively homogeneous dataset. # Finetuning Finetuning was done on some 50 different models including different VTs and CNNs. All models were trained for 10 epochs with the best model, based on the evaluation acccuracy, saved every epoch. ### Finetuning Data The finetuning data is a subset of the cub-200-2011 dataset, http://www.vision.caltech.edu/datasets/cub_200_2011/. We finetuned the model on 3533 samples of the labeled dataset we were given, stratified on the label (7066 including augmented images). #### Finetuning Hyperparameters | Hyperparameter | Value | |-----------------------|----------------------------| | Optimizer | AdamW | | Learning Rate | 1e-4 | | Batch Size | 32 | | Epochs | 2 | | Weight Decay | * | | Class Weight | * | | Label Smoothing | * | | Scheduler | * | | Mixed Precision | Torch AMP | *parameters were intentionally not set because of poor results ### Evaluation Data The evaluation data is a subset of the cub-200-2011 dataset, http://www.vision.caltech.edu/datasets/cub_200_2011/. We evaluated the model on 393 samples of the labeled dataset we were given, stratified on the label. #### Testing Data The testing data is a subset of an unlabeled subset of the cub-200-2011 dataset, http://www.vision.caltech.edu/datasets/cub_200_2011/ of 4000 images. After model finetuning the best model, based on the evaluation data, would be loaded. This model would then be used to predict the labels of the unlabeled test set. These predicted labels were submitted to the Kaggle competition via CSV which returned the test accuracy. ### Poster ![image/png](https://cdn-uploads.huggingface.co/production/uploads/624d888b0ce29222ad64c3d6/XbH4M6aL8iE4Hy75xfaHc.png) *novel approaches were not applied when finetuning the final model as they did not improve accuracy.
[ "black_footed_albatross", "laysan_albatross", "sooty_albatross", "groove_billed_ani", "crested_auklet", "least_auklet", "parakeet_auklet", "rhinoceros_auklet", "brewer_blackbird", "red_winged_blackbird", "rusty_blackbird", "yellow_headed_blackbird", "bobolink", "indigo_bunting", "lazuli_bunting", "painted_bunting", "cardinal", "spotted_catbird", "gray_catbird", "yellow_breasted_chat", "eastern_towhee", "chuck_will_widow", "brandt_cormorant", "red_faced_cormorant", "pelagic_cormorant", "bronzed_cowbird", "shiny_cowbird", "brown_creeper", "american_crow", "fish_crow", "black_billed_cuckoo", "mangrove_cuckoo", "yellow_billed_cuckoo", "gray_crowned_rosy_finch", "purple_finch", "northern_flicker", "acadian_flycatcher", "great_crested_flycatcher", "least_flycatcher", "olive_sided_flycatcher", "scissor_tailed_flycatcher", "vermilion_flycatcher", "yellow_bellied_flycatcher", "frigatebird", "northern_fulmar", "gadwall", "american_goldfinch", "european_goldfinch", "boat_tailed_grackle", "eared_grebe", "horned_grebe", "pied_billed_grebe", "western_grebe", "blue_grosbeak", "evening_grosbeak", "pine_grosbeak", "rose_breasted_grosbeak", "pigeon_guillemot", "california_gull", "glaucous_winged_gull", "heermann_gull", "herring_gull", "ivory_gull", "ring_billed_gull", "slaty_backed_gull", "western_gull", "anna_hummingbird", "ruby_throated_hummingbird", "rufous_hummingbird", "green_violetear", "long_tailed_jaeger", "pomarine_jaeger", "blue_jay", "florida_jay", "green_jay", "dark_eyed_junco", "tropical_kingbird", "gray_kingbird", "belted_kingfisher", "green_kingfisher", "pied_kingfisher", "ringed_kingfisher", "white_breasted_kingfisher", "red_legged_kittiwake", "horned_lark", "pacific_loon", "mallard", "western_meadowlark", "hooded_merganser", "red_breasted_merganser", "mockingbird", "nighthawk", "clark_nutcracker", "white_breasted_nuthatch", "baltimore_oriole", "hooded_oriole", "orchard_oriole", "scott_oriole", "ovenbird", "brown_pelican", "white_pelican", "western_wood_pewee", "sayornis", "american_pipit", "whip_poor_will", "horned_puffin", "common_raven", "white_necked_raven", "american_redstart", "geococcyx", "loggerhead_shrike", "great_grey_shrike", "baird_sparrow", "black_throated_sparrow", "brewer_sparrow", "chipping_sparrow", "clay_colored_sparrow", "house_sparrow", "field_sparrow", "fox_sparrow", "grasshopper_sparrow", "harris_sparrow", "henslow_sparrow", "le_conte_sparrow", "lincoln_sparrow", "nelson_sharp_tailed_sparrow", "savannah_sparrow", "seaside_sparrow", "song_sparrow", "tree_sparrow", "vesper_sparrow", "white_crowned_sparrow", "white_throated_sparrow", "cape_glossy_starling", "bank_swallow", "barn_swallow", "cliff_swallow", "tree_swallow", "scarlet_tanager", "summer_tanager", "artic_tern", "black_tern", "caspian_tern", "common_tern", "elegant_tern", "forsters_tern", "least_tern", "green_tailed_towhee", "brown_thrasher", "sage_thrasher", "black_capped_vireo", "blue_headed_vireo", "philadelphia_vireo", "red_eyed_vireo", "warbling_vireo", "white_eyed_vireo", "yellow_throated_vireo", "bay_breasted_warbler", "black_and_white_warbler", "black_throated_blue_warbler", "blue_winged_warbler", "canada_warbler", "cape_may_warbler", "cerulean_warbler", "chestnut_sided_warbler", "golden_winged_warbler", "hooded_warbler", "kentucky_warbler", "magnolia_warbler", "mourning_warbler", "myrtle_warbler", "nashville_warbler", "orange_crowned_warbler", "palm_warbler", "pine_warbler", "prairie_warbler", "prothonotary_warbler", "swainson_warbler", "tennessee_warbler", "wilson_warbler", "worm_eating_warbler", "yellow_warbler", "northern_waterthrush", "louisiana_waterthrush", "bohemian_waxwing", "cedar_waxwing", "american_three_toed_woodpecker", "pileated_woodpecker", "red_bellied_woodpecker", "red_cockaded_woodpecker", "red_headed_woodpecker", "downy_woodpecker", "bewick_wren", "cactus_wren", "carolina_wren", "house_wren", "marsh_wren", "rock_wren", "winter_wren", "common_yellowthroat" ]
thainq107/flowers-vit-base-patch16-224-in21k
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # flowers-vit-base-patch16-224-in21k This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2048 - Model Preparation Time: 0.0068 - Accuracy: 0.9673 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Model Preparation Time | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:----------------------:|:--------:| | No log | 1.0 | 92 | 0.6178 | 0.0068 | 0.9700 | | No log | 2.0 | 184 | 0.3102 | 0.0068 | 0.9646 | | No log | 3.0 | 276 | 0.2315 | 0.0068 | 0.9700 | | No log | 4.0 | 368 | 0.2097 | 0.0068 | 0.9673 | | No log | 5.0 | 460 | 0.2048 | 0.0068 | 0.9673 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu121 - Tokenizers 0.21.0
[ "daisy", "dandelion", "roses", "sunflowers", "tulips" ]
wellCh4n/tomato-leaf-disease-classification-vit
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tomato-leaf-disease-classification-vit This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the wellCh4n/tomato-leaf-disease-image dataset. It achieves the following results on the evaluation set: - Loss: 0.0170 - Accuracy: 0.9967 ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 1337 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.1879 | 1.0 | 1930 | 0.0915 | 0.9842 | | 0.1685 | 2.0 | 3860 | 0.0688 | 0.9838 | | 0.0118 | 3.0 | 5790 | 0.0271 | 0.9952 | | 0.1 | 4.0 | 7720 | 0.0244 | 0.9952 | | 0.0629 | 5.0 | 9650 | 0.0170 | 0.9967 | ### Framework versions - Transformers 4.48.0.dev0 - Pytorch 2.2.2+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0
[ "a healthy tomato leaf", "a tomato leaf with leaf mold", "a tomato leaf with target spot", "a tomato leaf with late blight", "a tomato leaf with early blight", "a tomato leaf with bacterial spot", "a tomato leaf with septoria leaf spot", "a tomato leaf with tomato mosaic virus", "a tomato leaf with tomato yellow leaf curl virus", "a tomato leaf with spider mites two-spotted spider mite" ]
wellCh4n/tomato-leaf-disease-classification-resnet50
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tomato-leaf-disease-classification-resnet50 This model is a fine-tuned version of [microsoft/resnet-50](https://huggingface.co/microsoft/resnet-50) on the wellCh4n/tomato-leaf-disease-image dataset. It achieves the following results on the evaluation set: - Loss: 0.0197 - Accuracy: 0.9956 ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 1337 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 100.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 1.6891 | 1.0 | 965 | 1.6572 | 0.3488 | | 1.1351 | 2.0 | 1930 | 1.1593 | 0.7126 | | 0.7767 | 3.0 | 2895 | 0.6135 | 0.8168 | | 0.7963 | 4.0 | 3860 | 0.3818 | 0.8796 | | 0.547 | 5.0 | 4825 | 0.2581 | 0.9302 | | 0.5104 | 6.0 | 5790 | 0.2106 | 0.9438 | | 0.3997 | 7.0 | 6755 | 0.1579 | 0.9563 | | 0.2527 | 8.0 | 7720 | 0.1292 | 0.9604 | | 0.3268 | 9.0 | 8685 | 0.1154 | 0.9659 | | 0.2595 | 10.0 | 9650 | 0.1018 | 0.9699 | | 0.2269 | 11.0 | 10615 | 0.0869 | 0.9743 | | 0.2515 | 12.0 | 11580 | 0.0783 | 0.9747 | | 0.2604 | 13.0 | 12545 | 0.0710 | 0.9794 | | 0.2583 | 14.0 | 13510 | 0.0704 | 0.9783 | | 0.2004 | 15.0 | 14475 | 0.0603 | 0.9824 | | 0.2552 | 16.0 | 15440 | 0.0565 | 0.9835 | | 0.2192 | 17.0 | 16405 | 0.0553 | 0.9846 | | 0.3443 | 18.0 | 17370 | 0.0508 | 0.9831 | | 0.1954 | 19.0 | 18335 | 0.0530 | 0.9846 | | 0.2685 | 20.0 | 19300 | 0.0430 | 0.9864 | | 0.1277 | 21.0 | 20265 | 0.0406 | 0.9864 | | 0.1388 | 22.0 | 21230 | 0.0404 | 0.9872 | | 0.2379 | 23.0 | 22195 | 0.0399 | 0.9875 | | 0.1018 | 24.0 | 23160 | 0.0441 | 0.9879 | | 0.2155 | 25.0 | 24125 | 0.0364 | 0.9905 | | 0.1699 | 26.0 | 25090 | 0.0398 | 0.9875 | | 0.2772 | 27.0 | 26055 | 0.0364 | 0.9872 | | 0.1669 | 28.0 | 27020 | 0.0369 | 0.9894 | | 0.0867 | 29.0 | 27985 | 0.0339 | 0.9901 | | 0.1314 | 30.0 | 28950 | 0.0322 | 0.9905 | | 0.082 | 31.0 | 29915 | 0.0362 | 0.9879 | | 0.0393 | 32.0 | 30880 | 0.0332 | 0.9908 | | 0.0812 | 33.0 | 31845 | 0.0329 | 0.9905 | | 0.2634 | 34.0 | 32810 | 0.0333 | 0.9897 | | 0.1581 | 35.0 | 33775 | 0.0337 | 0.9901 | | 0.168 | 36.0 | 34740 | 0.0298 | 0.9890 | | 0.0653 | 37.0 | 35705 | 0.0311 | 0.9905 | | 0.0998 | 38.0 | 36670 | 0.0326 | 0.9901 | | 0.0947 | 39.0 | 37635 | 0.0288 | 0.9919 | | 0.1126 | 40.0 | 38600 | 0.0272 | 0.9916 | | 0.1319 | 41.0 | 39565 | 0.0272 | 0.9919 | | 0.0446 | 42.0 | 40530 | 0.0283 | 0.9916 | | 0.2453 | 43.0 | 41495 | 0.0281 | 0.9919 | | 0.0708 | 44.0 | 42460 | 0.0263 | 0.9923 | | 0.0441 | 45.0 | 43425 | 0.0262 | 0.9916 | | 0.0936 | 46.0 | 44390 | 0.0252 | 0.9919 | | 0.1565 | 47.0 | 45355 | 0.0284 | 0.9923 | | 0.0404 | 48.0 | 46320 | 0.0263 | 0.9930 | | 0.0357 | 49.0 | 47285 | 0.0240 | 0.9930 | | 0.0971 | 50.0 | 48250 | 0.0285 | 0.9916 | | 0.0582 | 51.0 | 49215 | 0.0251 | 0.9923 | | 0.048 | 52.0 | 50180 | 0.0257 | 0.9919 | | 0.1218 | 53.0 | 51145 | 0.0252 | 0.9930 | | 0.0576 | 54.0 | 52110 | 0.0227 | 0.9930 | | 0.0723 | 55.0 | 53075 | 0.0227 | 0.9930 | | 0.1347 | 56.0 | 54040 | 0.0242 | 0.9941 | | 0.1684 | 57.0 | 55005 | 0.0255 | 0.9927 | | 0.0525 | 58.0 | 55970 | 0.0250 | 0.9938 | | 0.1031 | 59.0 | 56935 | 0.0265 | 0.9923 | | 0.0768 | 60.0 | 57900 | 0.0244 | 0.9941 | | 0.0416 | 61.0 | 58865 | 0.0207 | 0.9934 | | 0.1783 | 62.0 | 59830 | 0.0237 | 0.9941 | | 0.1253 | 63.0 | 60795 | 0.0269 | 0.9912 | | 0.0448 | 64.0 | 61760 | 0.0236 | 0.9941 | | 0.0967 | 65.0 | 62725 | 0.0230 | 0.9934 | | 0.0486 | 66.0 | 63690 | 0.0229 | 0.9941 | | 0.0442 | 67.0 | 64655 | 0.0256 | 0.9934 | | 0.0526 | 68.0 | 65620 | 0.0210 | 0.9945 | | 0.0949 | 69.0 | 66585 | 0.0250 | 0.9938 | | 0.0674 | 70.0 | 67550 | 0.0228 | 0.9938 | | 0.1554 | 71.0 | 68515 | 0.0240 | 0.9941 | | 0.0598 | 72.0 | 69480 | 0.0233 | 0.9945 | | 0.0632 | 73.0 | 70445 | 0.0218 | 0.9949 | | 0.0951 | 74.0 | 71410 | 0.0234 | 0.9945 | | 0.1634 | 75.0 | 72375 | 0.0245 | 0.9945 | | 0.2039 | 76.0 | 73340 | 0.0222 | 0.9938 | | 0.0741 | 77.0 | 74305 | 0.0226 | 0.9949 | | 0.0923 | 78.0 | 75270 | 0.0218 | 0.9949 | | 0.0351 | 79.0 | 76235 | 0.0230 | 0.9945 | | 0.1234 | 80.0 | 77200 | 0.0244 | 0.9934 | | 0.0659 | 81.0 | 78165 | 0.0232 | 0.9945 | | 0.0393 | 82.0 | 79130 | 0.0210 | 0.9949 | | 0.053 | 83.0 | 80095 | 0.0205 | 0.9945 | | 0.0575 | 84.0 | 81060 | 0.0210 | 0.9945 | | 0.0651 | 85.0 | 82025 | 0.0198 | 0.9949 | | 0.0875 | 86.0 | 82990 | 0.0210 | 0.9945 | | 0.1006 | 87.0 | 83955 | 0.0214 | 0.9949 | | 0.0466 | 88.0 | 84920 | 0.0211 | 0.9941 | | 0.088 | 89.0 | 85885 | 0.0233 | 0.9923 | | 0.1162 | 90.0 | 86850 | 0.0197 | 0.9956 | | 0.0641 | 91.0 | 87815 | 0.0213 | 0.9949 | | 0.0867 | 92.0 | 88780 | 0.0203 | 0.9952 | | 0.0305 | 93.0 | 89745 | 0.0212 | 0.9941 | | 0.1009 | 94.0 | 90710 | 0.0200 | 0.9956 | | 0.084 | 95.0 | 91675 | 0.0200 | 0.9960 | | 0.0409 | 96.0 | 92640 | 0.0213 | 0.9949 | | 0.107 | 97.0 | 93605 | 0.0210 | 0.9934 | | 0.0558 | 98.0 | 94570 | 0.0206 | 0.9952 | | 0.0644 | 99.0 | 95535 | 0.0219 | 0.9949 | | 0.0617 | 100.0 | 96500 | 0.0205 | 0.9941 | ### Framework versions - Transformers 4.48.0.dev0 - Pytorch 2.2.2+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0
[ "a healthy tomato leaf", "a tomato leaf with leaf mold", "a tomato leaf with target spot", "a tomato leaf with late blight", "a tomato leaf with early blight", "a tomato leaf with bacterial spot", "a tomato leaf with septoria leaf spot", "a tomato leaf with tomato mosaic virus", "a tomato leaf with tomato yellow leaf curl virus", "a tomato leaf with spider mites two-spotted spider mite" ]
rostcherno/food_classifier
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # rostcherno/food_classifier This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.3671 - Validation Loss: 0.3437 - Train Accuracy: 0.912 - Epoch: 4 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 3e-05, 'decay_steps': 20000, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Accuracy | Epoch | |:----------:|:---------------:|:--------------:|:-----:| | 2.7715 | 1.6111 | 0.823 | 0 | | 1.1907 | 0.8209 | 0.889 | 1 | | 0.6760 | 0.5247 | 0.905 | 2 | | 0.4748 | 0.4012 | 0.903 | 3 | | 0.3671 | 0.3437 | 0.912 | 4 | ### Framework versions - Transformers 4.47.1 - TensorFlow 2.17.1 - Tokenizers 0.21.0
[ "apple_pie", "baby_back_ribs", "bruschetta", "waffles", "caesar_salad", "cannoli", "caprese_salad", "carrot_cake", "ceviche", "cheesecake", "cheese_plate", "chicken_curry", "chicken_quesadilla", "baklava", "chicken_wings", "chocolate_cake", "chocolate_mousse", "churros", "clam_chowder", "club_sandwich", "crab_cakes", "creme_brulee", "croque_madame", "cup_cakes", "beef_carpaccio", "deviled_eggs", "donuts", "dumplings", "edamame", "eggs_benedict", "escargots", "falafel", "filet_mignon", "fish_and_chips", "foie_gras", "beef_tartare", "french_fries", "french_onion_soup", "french_toast", "fried_calamari", "fried_rice", "frozen_yogurt", "garlic_bread", "gnocchi", "greek_salad", "grilled_cheese_sandwich", "beet_salad", "grilled_salmon", "guacamole", "gyoza", "hamburger", "hot_and_sour_soup", "hot_dog", "huevos_rancheros", "hummus", "ice_cream", "lasagna", "beignets", "lobster_bisque", "lobster_roll_sandwich", "macaroni_and_cheese", "macarons", "miso_soup", "mussels", "nachos", "omelette", "onion_rings", "oysters", "bibimbap", "pad_thai", "paella", "pancakes", "panna_cotta", "peking_duck", "pho", "pizza", "pork_chop", "poutine", "prime_rib", "bread_pudding", "pulled_pork_sandwich", "ramen", "ravioli", "red_velvet_cake", "risotto", "samosa", "sashimi", "scallops", "seaweed_salad", "shrimp_and_grits", "breakfast_burrito", "spaghetti_bolognese", "spaghetti_carbonara", "spring_rolls", "steak", "strawberry_shortcake", "sushi", "tacos", "takoyaki", "tiramisu", "tuna_tartare" ]
heloula/vit-Facial-Expression-Recognition
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-Facial-Expression-Recognition This model is a fine-tuned version of [motheecreator/vit-Facial-Expression-Recognition](https://huggingface.co/motheecreator/vit-Facial-Expression-Recognition) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3652 - Accuracy: 0.8771 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 0.5697 | 0.2164 | 100 | 0.3684 | 0.8756 | | 0.5697 | 0.4328 | 200 | 0.3664 | 0.8763 | | 0.5708 | 0.6492 | 300 | 0.3643 | 0.8763 | | 0.5829 | 0.8656 | 400 | 0.3661 | 0.8754 | | 0.5458 | 1.0820 | 500 | 0.3652 | 0.8771 | | 0.5635 | 1.2984 | 600 | 0.3702 | 0.8748 | | 0.5495 | 1.5147 | 700 | 0.3767 | 0.8694 | | 0.5633 | 1.7311 | 800 | 0.3848 | 0.8659 | | 0.5666 | 1.9475 | 900 | 0.3882 | 0.8655 | | 0.5284 | 2.1639 | 1000 | 0.3914 | 0.8640 | | 0.5135 | 2.3803 | 1100 | 0.3824 | 0.8679 | | 0.5036 | 2.5967 | 1200 | 0.3726 | 0.8722 | | 0.4927 | 2.8131 | 1300 | 0.3664 | 0.8739 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 3.2.0 - Tokenizers 0.19.1
[ "angry", "disgust", "fear", "happy", "neutral", "sad", "surprise" ]
rostcherno/ai-and-human-art-classifier
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # rostcherno/ai-and-human-art-classifier This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.1332 - Validation Loss: 0.1122 - Train Accuracy: 0.9628 - Epoch: 4 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 3e-05, 'decay_steps': 6325, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Accuracy | Epoch | |:----------:|:---------------:|:--------------:|:-----:| | 0.5634 | 0.3687 | 0.8862 | 0 | | 0.2924 | 0.2816 | 0.8917 | 1 | | 0.2152 | 0.1730 | 0.9423 | 2 | | 0.1681 | 0.1308 | 0.9502 | 3 | | 0.1332 | 0.1122 | 0.9628 | 4 | ### Framework versions - Transformers 4.47.1 - TensorFlow 2.17.1 - Datasets 3.2.0 - Tokenizers 0.21.0
[ "ai_generated", "non_ai_generated" ]
anh-dangminh/resnet-50-finetuned-oxfordflowers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # resnet-50-finetuned-oxfordflowers This model is a fine-tuned version of [microsoft/resnet-50](https://huggingface.co/microsoft/resnet-50) on the oxford102_flower_dataset dataset. It achieves the following results on the evaluation set: - Loss: 0.6561 - Accuracy: 0.8330 - Precision: 0.8531 - Recall: 0.8330 - F1: 0.8319 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 4.4813 | 1.0 | 32 | 4.1934 | 0.3176 | 0.3522 | 0.3176 | 0.2599 | | 2.6507 | 2.0 | 64 | 1.8716 | 0.5382 | 0.5792 | 0.5382 | 0.4930 | | 1.257 | 3.0 | 96 | 1.0998 | 0.7216 | 0.7663 | 0.7216 | 0.7085 | | 0.5333 | 4.0 | 128 | 0.9724 | 0.7422 | 0.7875 | 0.7422 | 0.7296 | | 0.2506 | 5.0 | 160 | 0.8243 | 0.7627 | 0.7975 | 0.7627 | 0.7566 | | 0.0689 | 6.0 | 192 | 0.7067 | 0.8147 | 0.8482 | 0.8147 | 0.8111 | | 0.0325 | 7.0 | 224 | 0.6370 | 0.8206 | 0.8428 | 0.8206 | 0.8175 | | 0.0132 | 8.0 | 256 | 0.5774 | 0.8412 | 0.8617 | 0.8412 | 0.8389 | | 0.0117 | 9.0 | 288 | 0.5469 | 0.8559 | 0.8726 | 0.8559 | 0.8542 | | 0.0066 | 10.0 | 320 | 0.5384 | 0.8608 | 0.8722 | 0.8608 | 0.8575 | | 0.0072 | 11.0 | 352 | 0.5246 | 0.8686 | 0.8783 | 0.8686 | 0.8650 | | 0.0068 | 12.0 | 384 | 0.5130 | 0.8716 | 0.8790 | 0.8716 | 0.8679 | | 0.0045 | 13.0 | 416 | 0.5038 | 0.8716 | 0.8814 | 0.8716 | 0.8691 | | 0.0025 | 14.0 | 448 | 0.5486 | 0.85 | 0.8627 | 0.85 | 0.8448 | | 0.0029 | 15.0 | 480 | 0.4992 | 0.8637 | 0.8736 | 0.8637 | 0.8619 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0
[ "pink primrose", "hard-leaved pocket orchid", "canterbury bells", "sweet pea", "english marigold", "tiger lily", "moon orchid", "bird of paradise", "monkshood", "globe thistle", "snapdragon", "colt's foot", "king protea", "spear thistle", "yellow iris", "globe-flower", "purple coneflower", "peruvian lily", "balloon flower", "giant white arum lily", "fire lily", "pincushion flower", "fritillary", "red ginger", "grape hyacinth", "corn poppy", "prince of wales feathers", "stemless gentian", "artichoke", "sweet william", "carnation", "garden phlox", "love in the mist", "mexican aster", "alpine sea holly", "ruby-lipped cattleya", "cape flower", "great masterwort", "siam tulip", "lenten rose", "barbeton daisy", "daffodil", "sword lily", "poinsettia", "bolero deep blue", "wallflower", "marigold", "buttercup", "oxeye daisy", "common dandelion", "petunia", "wild pansy", "primula", "sunflower", "pelargonium", "bishop of llandaff", "gaura", "geranium", "orange dahlia", "pink-yellow dahlia?", "cautleya spicata", "japanese anemone", "black-eyed susan", "silverbush", "californian poppy", "osteospermum", "spring crocus", "bearded iris", "windflower", "tree poppy", "gazania", "azalea", "water lily", "rose", "thorn apple", "morning glory", "passion flower", "lotus", "toad lily", "anthurium", "frangipani", "clematis", "hibiscus", "columbine", "desert-rose", "tree mallow", "magnolia", "cyclamen", "watercress", "canna lily", "hippeastrum", "bee balm", "ball moss", "foxglove", "bougainvillea", "camellia", "mallow", "mexican petunia", "bromelia", "blanket flower", "trumpet creeper", "blackberry lily" ]
facebook/dinov2-with-registers-small-imagenet1k-1-layer
# Vision Transformer (small-sized model) trained using DINOv2, with registers Vision Transformer (ViT) model introduced in the paper [Vision Transformers Need Registers](https://arxiv.org/abs/2309.16588) by Darcet et al. and first released in [this repository](https://github.com/facebookresearch/dinov2). Disclaimer: The team releasing DINOv2 with registers did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description The Vision Transformer (ViT) is a transformer encoder model (BERT-like) [originally introduced](https://arxiv.org/abs/2010.11929) to do supervised image classification on ImageNet. Next, people figured out ways to make ViT work really well on self-supervised image feature extraction (i.e. learning meaningful features, also called embeddings) on images without requiring any labels. Some example papers here include [DINOv2](https://huggingface.co/papers/2304.07193) and [MAE](https://arxiv.org/abs/2111.06377). The authors of DINOv2 noticed that ViTs have artifacts in attention maps. It’s due to the model using some image patches as “registers”. The authors propose a fix: just add some new tokens (called "register" tokens), which you only use during pre-training (and throw away afterwards). This results in: - no artifacts - interpretable attention maps - and improved performances. <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/dinov2_with_registers_visualization.png" alt="drawing" width="600"/> <small> Visualization of attention maps of various models trained with vs. without registers. Taken from the <a href="https://arxiv.org/abs/2309.16588">original paper</a>. </small> Note that this model does not include any fine-tuned heads. By pre-training the model, it learns an inner representation of images that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled images for instance, you can train a standard classifier by placing a linear layer on top of the pre-trained encoder. One typically places a linear layer on top of the [CLS] token, as the last hidden state of this token can be seen as a representation of an entire image. ## Intended uses & limitations You can use the raw model to classify an image into one of the 1000 possible ImageNet classes. See the [model hub](https://huggingface.co/models?other=dinov2_with_registers) to look for fine-tuned versions on a task that interests you. ### How to use Here is how to use this model: ```python from transformers import AutoImageProcessor, AutoModelForImageClassification import torch from PIL import Image import requests url = 'http://images.cocodataset.org/val2017/000000039769.jpg' image = Image.open(requests.get(url, stream=True).raw) processor = AutoImageProcessor.from_pretrained('facebook/dinov2-with-registers-small-imagenet1k-1-layer') model = AutoModelForImageClassification.from_pretrained('facebook/dinov2-with-registers-small-imagenet1k-1-layer') inputs = processor(images=image, return_tensors="pt") with torch.no_grad(): outputs = model(**inputs) logits = outputs.logits class_idx = outputs.logits.argmax(-1).item() print("Predicted class:", model.config.id2label[class_idx]) ``` ### BibTeX entry and citation info ```bibtex @misc{darcet2024visiontransformersneedregisters, title={Vision Transformers Need Registers}, author={Timothée Darcet and Maxime Oquab and Julien Mairal and Piotr Bojanowski}, year={2024}, eprint={2309.16588}, archivePrefix={arXiv}, primaryClass={cs.CV}, url={https://arxiv.org/abs/2309.16588}, } ```
[ "tench, tinca tinca", "goldfish, carassius auratus", "great white shark, white shark, man-eater, man-eating shark, carcharodon carcharias", "tiger shark, galeocerdo cuvieri", "hammerhead, hammerhead shark", "electric ray, crampfish, numbfish, torpedo", "stingray", "cock", "hen", "ostrich, struthio camelus", "brambling, fringilla montifringilla", "goldfinch, carduelis carduelis", "house finch, linnet, carpodacus mexicanus", "junco, snowbird", "indigo bunting, indigo finch, indigo bird, passerina cyanea", "robin, american robin, turdus migratorius", "bulbul", "jay", "magpie", "chickadee", "water ouzel, dipper", "kite", "bald eagle, american eagle, haliaeetus leucocephalus", "vulture", "great grey owl, great gray owl, strix nebulosa", "european fire salamander, salamandra salamandra", "common newt, triturus vulgaris", "eft", "spotted salamander, ambystoma maculatum", "axolotl, mud puppy, ambystoma mexicanum", "bullfrog, rana catesbeiana", "tree frog, tree-frog", "tailed frog, bell toad, ribbed toad, tailed toad, ascaphus trui", "loggerhead, loggerhead turtle, caretta caretta", "leatherback turtle, leatherback, leathery turtle, dermochelys coriacea", "mud turtle", "terrapin", "box turtle, box tortoise", "banded gecko", "common iguana, iguana, iguana iguana", "american chameleon, anole, anolis carolinensis", "whiptail, whiptail lizard", "agama", "frilled lizard, chlamydosaurus kingi", "alligator lizard", "gila monster, heloderma suspectum", "green lizard, lacerta viridis", "african chameleon, chamaeleo chamaeleon", "komodo dragon, komodo lizard, dragon lizard, giant lizard, varanus komodoensis", "african crocodile, nile crocodile, crocodylus niloticus", "american alligator, alligator mississipiensis", "triceratops", "thunder snake, worm snake, carphophis amoenus", "ringneck snake, ring-necked snake, ring snake", "hognose snake, puff adder, sand viper", "green snake, grass snake", "king snake, kingsnake", "garter snake, grass snake", "water snake", "vine snake", "night snake, hypsiglena torquata", "boa constrictor, constrictor constrictor", "rock python, rock snake, python sebae", "indian cobra, naja naja", "green mamba", "sea snake", "horned viper, cerastes, sand viper, horned asp, cerastes cornutus", "diamondback, diamondback rattlesnake, crotalus adamanteus", "sidewinder, horned rattlesnake, crotalus cerastes", "trilobite", "harvestman, daddy longlegs, phalangium opilio", "scorpion", "black and gold garden spider, argiope aurantia", "barn spider, araneus cavaticus", "garden spider, aranea diademata", "black widow, latrodectus mactans", "tarantula", "wolf spider, hunting spider", "tick", "centipede", "black grouse", "ptarmigan", "ruffed grouse, partridge, bonasa umbellus", "prairie chicken, prairie grouse, prairie fowl", "peacock", "quail", "partridge", "african grey, african gray, psittacus erithacus", "macaw", "sulphur-crested cockatoo, kakatoe galerita, cacatua galerita", "lorikeet", "coucal", "bee eater", "hornbill", "hummingbird", "jacamar", "toucan", "drake", "red-breasted merganser, mergus serrator", "goose", "black swan, cygnus atratus", "tusker", "echidna, spiny anteater, anteater", "platypus, duckbill, duckbilled platypus, duck-billed platypus, ornithorhynchus anatinus", "wallaby, brush kangaroo", "koala, koala bear, kangaroo bear, native bear, phascolarctos cinereus", "wombat", "jellyfish", "sea anemone, anemone", "brain coral", "flatworm, platyhelminth", "nematode, nematode worm, roundworm", "conch", "snail", "slug", "sea slug, nudibranch", "chiton, coat-of-mail shell, sea cradle, polyplacophore", "chambered nautilus, pearly nautilus, nautilus", "dungeness crab, cancer magister", "rock crab, cancer irroratus", "fiddler crab", "king crab, alaska crab, alaskan king crab, alaska king crab, paralithodes camtschatica", "american lobster, northern lobster, maine lobster, homarus americanus", "spiny lobster, langouste, rock lobster, crawfish, crayfish, sea crawfish", "crayfish, crawfish, crawdad, crawdaddy", "hermit crab", "isopod", "white stork, ciconia ciconia", "black stork, ciconia nigra", "spoonbill", "flamingo", "little blue heron, egretta caerulea", "american egret, great white heron, egretta albus", "bittern", "crane", "limpkin, aramus pictus", "european gallinule, porphyrio porphyrio", "american coot, marsh hen, mud hen, water hen, fulica americana", "bustard", "ruddy turnstone, arenaria interpres", "red-backed sandpiper, dunlin, erolia alpina", "redshank, tringa totanus", "dowitcher", "oystercatcher, oyster catcher", "pelican", "king penguin, aptenodytes patagonica", "albatross, mollymawk", "grey whale, gray whale, devilfish, eschrichtius gibbosus, eschrichtius robustus", "killer whale, killer, orca, grampus, sea wolf, orcinus orca", "dugong, dugong dugon", "sea lion", "chihuahua", "japanese spaniel", "maltese dog, maltese terrier, maltese", "pekinese, pekingese, peke", "shih-tzu", "blenheim spaniel", "papillon", "toy terrier", "rhodesian ridgeback", "afghan hound, afghan", "basset, basset hound", "beagle", "bloodhound, sleuthhound", "bluetick", "black-and-tan coonhound", "walker hound, walker foxhound", "english foxhound", "redbone", "borzoi, russian wolfhound", "irish wolfhound", "italian greyhound", "whippet", "ibizan hound, ibizan podenco", "norwegian elkhound, elkhound", "otterhound, otter hound", "saluki, gazelle hound", "scottish deerhound, deerhound", "weimaraner", "staffordshire bullterrier, staffordshire bull terrier", "american staffordshire terrier, staffordshire terrier, american pit bull terrier, pit bull terrier", "bedlington terrier", "border terrier", "kerry blue terrier", "irish terrier", "norfolk terrier", "norwich terrier", "yorkshire terrier", "wire-haired fox terrier", "lakeland terrier", "sealyham terrier, sealyham", "airedale, airedale terrier", "cairn, cairn terrier", "australian terrier", "dandie dinmont, dandie dinmont terrier", "boston bull, boston terrier", "miniature schnauzer", "giant schnauzer", "standard schnauzer", "scotch terrier, scottish terrier, scottie", "tibetan terrier, chrysanthemum dog", "silky terrier, sydney silky", "soft-coated wheaten terrier", "west highland white terrier", "lhasa, lhasa apso", "flat-coated retriever", "curly-coated retriever", "golden retriever", "labrador retriever", "chesapeake bay retriever", "german short-haired pointer", "vizsla, hungarian pointer", "english setter", "irish setter, red setter", "gordon setter", "brittany spaniel", "clumber, clumber spaniel", "english springer, english springer spaniel", "welsh springer spaniel", "cocker spaniel, english cocker spaniel, cocker", "sussex spaniel", "irish water spaniel", "kuvasz", "schipperke", "groenendael", "malinois", "briard", "kelpie", "komondor", "old english sheepdog, bobtail", "shetland sheepdog, shetland sheep dog, shetland", "collie", "border collie", "bouvier des flandres, bouviers des flandres", "rottweiler", "german shepherd, german shepherd dog, german police dog, alsatian", "doberman, doberman pinscher", "miniature pinscher", "greater swiss mountain dog", "bernese mountain dog", "appenzeller", "entlebucher", "boxer", "bull mastiff", "tibetan mastiff", "french bulldog", "great dane", "saint bernard, st bernard", "eskimo dog, husky", "malamute, malemute, alaskan malamute", "siberian husky", "dalmatian, coach dog, carriage dog", "affenpinscher, monkey pinscher, monkey dog", "basenji", "pug, pug-dog", "leonberg", "newfoundland, newfoundland dog", "great pyrenees", "samoyed, samoyede", "pomeranian", "chow, chow chow", "keeshond", "brabancon griffon", "pembroke, pembroke welsh corgi", "cardigan, cardigan welsh corgi", "toy poodle", "miniature poodle", "standard poodle", "mexican hairless", "timber wolf, grey wolf, gray wolf, canis lupus", "white wolf, arctic wolf, canis lupus tundrarum", "red wolf, maned wolf, canis rufus, canis niger", "coyote, prairie wolf, brush wolf, canis latrans", "dingo, warrigal, warragal, canis dingo", "dhole, cuon alpinus", "african hunting dog, hyena dog, cape hunting dog, lycaon pictus", "hyena, hyaena", "red fox, vulpes vulpes", "kit fox, vulpes macrotis", "arctic fox, white fox, alopex lagopus", "grey fox, gray fox, urocyon cinereoargenteus", "tabby, tabby cat", "tiger cat", "persian cat", "siamese cat, siamese", "egyptian cat", "cougar, puma, catamount, mountain lion, painter, panther, felis concolor", "lynx, catamount", "leopard, panthera pardus", "snow leopard, ounce, panthera uncia", "jaguar, panther, panthera onca, felis onca", "lion, king of beasts, panthera leo", "tiger, panthera tigris", "cheetah, chetah, acinonyx jubatus", "brown bear, bruin, ursus arctos", "american black bear, black bear, ursus americanus, euarctos americanus", "ice bear, polar bear, ursus maritimus, thalarctos maritimus", "sloth bear, melursus ursinus, ursus ursinus", "mongoose", "meerkat, mierkat", "tiger beetle", "ladybug, ladybeetle, lady beetle, ladybird, ladybird beetle", "ground beetle, carabid beetle", "long-horned beetle, longicorn, longicorn beetle", "leaf beetle, chrysomelid", "dung beetle", "rhinoceros beetle", "weevil", "fly", "bee", "ant, emmet, pismire", "grasshopper, hopper", "cricket", "walking stick, walkingstick, stick insect", "cockroach, roach", "mantis, mantid", "cicada, cicala", "leafhopper", "lacewing, lacewing fly", "dragonfly, darning needle, devil's darning needle, sewing needle, snake feeder, snake doctor, mosquito hawk, skeeter hawk", "damselfly", "admiral", "ringlet, ringlet butterfly", "monarch, monarch butterfly, milkweed butterfly, danaus plexippus", "cabbage butterfly", "sulphur butterfly, sulfur butterfly", "lycaenid, lycaenid butterfly", "starfish, sea star", "sea urchin", "sea cucumber, holothurian", "wood rabbit, cottontail, cottontail rabbit", "hare", "angora, angora rabbit", "hamster", "porcupine, hedgehog", "fox squirrel, eastern fox squirrel, sciurus niger", "marmot", "beaver", "guinea pig, cavia cobaya", "sorrel", "zebra", "hog, pig, grunter, squealer, sus scrofa", "wild boar, boar, sus scrofa", "warthog", "hippopotamus, hippo, river horse, hippopotamus amphibius", "ox", "water buffalo, water ox, asiatic buffalo, bubalus bubalis", "bison", "ram, tup", "bighorn, bighorn sheep, cimarron, rocky mountain bighorn, rocky mountain sheep, ovis canadensis", "ibex, capra ibex", "hartebeest", "impala, aepyceros melampus", "gazelle", "arabian camel, dromedary, camelus dromedarius", "llama", "weasel", "mink", "polecat, fitch, foulmart, foumart, mustela putorius", "black-footed ferret, ferret, mustela nigripes", "otter", "skunk, polecat, wood pussy", "badger", "armadillo", "three-toed sloth, ai, bradypus tridactylus", "orangutan, orang, orangutang, pongo pygmaeus", "gorilla, gorilla gorilla", "chimpanzee, chimp, pan troglodytes", "gibbon, hylobates lar", "siamang, hylobates syndactylus, symphalangus syndactylus", "guenon, guenon monkey", "patas, hussar monkey, erythrocebus patas", "baboon", "macaque", "langur", "colobus, colobus monkey", "proboscis monkey, nasalis larvatus", "marmoset", "capuchin, ringtail, cebus capucinus", "howler monkey, howler", "titi, titi monkey", "spider monkey, ateles geoffroyi", "squirrel monkey, saimiri sciureus", "madagascar cat, ring-tailed lemur, lemur catta", "indri, indris, indri indri, indri brevicaudatus", "indian elephant, elephas maximus", "african elephant, loxodonta africana", "lesser panda, red panda, panda, bear cat, cat bear, ailurus fulgens", "giant panda, panda, panda bear, coon bear, ailuropoda melanoleuca", "barracouta, snoek", "eel", "coho, cohoe, coho salmon, blue jack, silver salmon, oncorhynchus kisutch", "rock beauty, holocanthus tricolor", "anemone fish", "sturgeon", "gar, garfish, garpike, billfish, lepisosteus osseus", "lionfish", "puffer, pufferfish, blowfish, globefish", "abacus", "abaya", "academic gown, academic robe, judge's robe", "accordion, piano accordion, squeeze box", "acoustic guitar", "aircraft carrier, carrier, flattop, attack aircraft carrier", "airliner", "airship, dirigible", "altar", "ambulance", "amphibian, amphibious vehicle", "analog clock", "apiary, bee house", "apron", "ashcan, trash can, garbage can, wastebin, ash bin, ash-bin, ashbin, dustbin, trash barrel, trash bin", "assault rifle, assault gun", "backpack, back pack, knapsack, packsack, rucksack, haversack", "bakery, bakeshop, bakehouse", "balance beam, beam", "balloon", "ballpoint, ballpoint pen, ballpen, biro", "band aid", "banjo", "bannister, banister, balustrade, balusters, handrail", "barbell", "barber chair", "barbershop", "barn", "barometer", "barrel, cask", "barrow, garden cart, lawn cart, wheelbarrow", "baseball", "basketball", "bassinet", "bassoon", "bathing cap, swimming cap", "bath towel", "bathtub, bathing tub, bath, tub", "beach wagon, station wagon, wagon, estate car, beach waggon, station waggon, waggon", "beacon, lighthouse, beacon light, pharos", "beaker", "bearskin, busby, shako", "beer bottle", "beer glass", "bell cote, bell cot", "bib", "bicycle-built-for-two, tandem bicycle, tandem", "bikini, two-piece", "binder, ring-binder", "binoculars, field glasses, opera glasses", "birdhouse", "boathouse", "bobsled, bobsleigh, bob", "bolo tie, bolo, bola tie, bola", "bonnet, poke bonnet", "bookcase", "bookshop, bookstore, bookstall", "bottlecap", "bow", "bow tie, bow-tie, bowtie", "brass, memorial tablet, plaque", "brassiere, bra, bandeau", "breakwater, groin, groyne, mole, bulwark, seawall, jetty", "breastplate, aegis, egis", "broom", "bucket, pail", "buckle", "bulletproof vest", "bullet train, bullet", "butcher shop, meat market", "cab, hack, taxi, taxicab", "caldron, cauldron", "candle, taper, wax light", "cannon", "canoe", "can opener, tin opener", "cardigan", "car mirror", "carousel, carrousel, merry-go-round, roundabout, whirligig", "carpenter's kit, tool kit", "carton", "car wheel", "cash machine, cash dispenser, automated teller machine, automatic teller machine, automated teller, automatic teller, atm", "cassette", "cassette player", "castle", "catamaran", "cd player", "cello, violoncello", "cellular telephone, cellular phone, cellphone, cell, mobile phone", "chain", "chainlink fence", "chain mail, ring mail, mail, chain armor, chain armour, ring armor, ring armour", "chain saw, chainsaw", "chest", "chiffonier, commode", "chime, bell, gong", "china cabinet, china closet", "christmas stocking", "church, church building", "cinema, movie theater, movie theatre, movie house, picture palace", "cleaver, meat cleaver, chopper", "cliff dwelling", "cloak", "clog, geta, patten, sabot", "cocktail shaker", "coffee mug", "coffeepot", "coil, spiral, volute, whorl, helix", "combination lock", "computer keyboard, keypad", "confectionery, confectionary, candy store", "container ship, containership, container vessel", "convertible", "corkscrew, bottle screw", "cornet, horn, trumpet, trump", "cowboy boot", "cowboy hat, ten-gallon hat", "cradle", "crane", "crash helmet", "crate", "crib, cot", "crock pot", "croquet ball", "crutch", "cuirass", "dam, dike, dyke", "desk", "desktop computer", "dial telephone, dial phone", "diaper, nappy, napkin", "digital clock", "digital watch", "dining table, board", "dishrag, dishcloth", "dishwasher, dish washer, dishwashing machine", "disk brake, disc brake", "dock, dockage, docking facility", "dogsled, dog sled, dog sleigh", "dome", "doormat, welcome mat", "drilling platform, offshore rig", "drum, membranophone, tympan", "drumstick", "dumbbell", "dutch oven", "electric fan, blower", "electric guitar", "electric locomotive", "entertainment center", "envelope", "espresso maker", "face powder", "feather boa, boa", "file, file cabinet, filing cabinet", "fireboat", "fire engine, fire truck", "fire screen, fireguard", "flagpole, flagstaff", "flute, transverse flute", "folding chair", "football helmet", "forklift", "fountain", "fountain pen", "four-poster", "freight car", "french horn, horn", "frying pan, frypan, skillet", "fur coat", "garbage truck, dustcart", "gasmask, respirator, gas helmet", "gas pump, gasoline pump, petrol pump, island dispenser", "goblet", "go-kart", "golf ball", "golfcart, golf cart", "gondola", "gong, tam-tam", "gown", "grand piano, grand", "greenhouse, nursery, glasshouse", "grille, radiator grille", "grocery store, grocery, food market, market", "guillotine", "hair slide", "hair spray", "half track", "hammer", "hamper", "hand blower, blow dryer, blow drier, hair dryer, hair drier", "hand-held computer, hand-held microcomputer", "handkerchief, hankie, hanky, hankey", "hard disc, hard disk, fixed disk", "harmonica, mouth organ, harp, mouth harp", "harp", "harvester, reaper", "hatchet", "holster", "home theater, home theatre", "honeycomb", "hook, claw", "hoopskirt, crinoline", "horizontal bar, high bar", "horse cart, horse-cart", "hourglass", "ipod", "iron, smoothing iron", "jack-o'-lantern", "jean, blue jean, denim", "jeep, landrover", "jersey, t-shirt, tee shirt", "jigsaw puzzle", "jinrikisha, ricksha, rickshaw", "joystick", "kimono", "knee pad", "knot", "lab coat, laboratory coat", "ladle", "lampshade, lamp shade", "laptop, laptop computer", "lawn mower, mower", "lens cap, lens cover", "letter opener, paper knife, paperknife", "library", "lifeboat", "lighter, light, igniter, ignitor", "limousine, limo", "liner, ocean liner", "lipstick, lip rouge", "loafer", "lotion", "loudspeaker, speaker, speaker unit, loudspeaker system, speaker system", "loupe, jeweler's loupe", "lumbermill, sawmill", "magnetic compass", "mailbag, postbag", "mailbox, letter box", "maillot", "maillot, tank suit", "manhole cover", "maraca", "marimba, xylophone", "mask", "matchstick", "maypole", "maze, labyrinth", "measuring cup", "medicine chest, medicine cabinet", "megalith, megalithic structure", "microphone, mike", "microwave, microwave oven", "military uniform", "milk can", "minibus", "miniskirt, mini", "minivan", "missile", "mitten", "mixing bowl", "mobile home, manufactured home", "model t", "modem", "monastery", "monitor", "moped", "mortar", "mortarboard", "mosque", "mosquito net", "motor scooter, scooter", "mountain bike, all-terrain bike, off-roader", "mountain tent", "mouse, computer mouse", "mousetrap", "moving van", "muzzle", "nail", "neck brace", "necklace", "nipple", "notebook, notebook computer", "obelisk", "oboe, hautboy, hautbois", "ocarina, sweet potato", "odometer, hodometer, mileometer, milometer", "oil filter", "organ, pipe organ", "oscilloscope, scope, cathode-ray oscilloscope, cro", "overskirt", "oxcart", "oxygen mask", "packet", "paddle, boat paddle", "paddlewheel, paddle wheel", "padlock", "paintbrush", "pajama, pyjama, pj's, jammies", "palace", "panpipe, pandean pipe, syrinx", "paper towel", "parachute, chute", "parallel bars, bars", "park bench", "parking meter", "passenger car, coach, carriage", "patio, terrace", "pay-phone, pay-station", "pedestal, plinth, footstall", "pencil box, pencil case", "pencil sharpener", "perfume, essence", "petri dish", "photocopier", "pick, plectrum, plectron", "pickelhaube", "picket fence, paling", "pickup, pickup truck", "pier", "piggy bank, penny bank", "pill bottle", "pillow", "ping-pong ball", "pinwheel", "pirate, pirate ship", "pitcher, ewer", "plane, carpenter's plane, woodworking plane", "planetarium", "plastic bag", "plate rack", "plow, plough", "plunger, plumber's helper", "polaroid camera, polaroid land camera", "pole", "police van, police wagon, paddy wagon, patrol wagon, wagon, black maria", "poncho", "pool table, billiard table, snooker table", "pop bottle, soda bottle", "pot, flowerpot", "potter's wheel", "power drill", "prayer rug, prayer mat", "printer", "prison, prison house", "projectile, missile", "projector", "puck, hockey puck", "punching bag, punch bag, punching ball, punchball", "purse", "quill, quill pen", "quilt, comforter, comfort, puff", "racer, race car, racing car", "racket, racquet", "radiator", "radio, wireless", "radio telescope, radio reflector", "rain barrel", "recreational vehicle, rv, r.v.", "reel", "reflex camera", "refrigerator, icebox", "remote control, remote", "restaurant, eating house, eating place, eatery", "revolver, six-gun, six-shooter", "rifle", "rocking chair, rocker", "rotisserie", "rubber eraser, rubber, pencil eraser", "rugby ball", "rule, ruler", "running shoe", "safe", "safety pin", "saltshaker, salt shaker", "sandal", "sarong", "sax, saxophone", "scabbard", "scale, weighing machine", "school bus", "schooner", "scoreboard", "screen, crt screen", "screw", "screwdriver", "seat belt, seatbelt", "sewing machine", "shield, buckler", "shoe shop, shoe-shop, shoe store", "shoji", "shopping basket", "shopping cart", "shovel", "shower cap", "shower curtain", "ski", "ski mask", "sleeping bag", "slide rule, slipstick", "sliding door", "slot, one-armed bandit", "snorkel", "snowmobile", "snowplow, snowplough", "soap dispenser", "soccer ball", "sock", "solar dish, solar collector, solar furnace", "sombrero", "soup bowl", "space bar", "space heater", "space shuttle", "spatula", "speedboat", "spider web, spider's web", "spindle", "sports car, sport car", "spotlight, spot", "stage", "steam locomotive", "steel arch bridge", "steel drum", "stethoscope", "stole", "stone wall", "stopwatch, stop watch", "stove", "strainer", "streetcar, tram, tramcar, trolley, trolley car", "stretcher", "studio couch, day bed", "stupa, tope", "submarine, pigboat, sub, u-boat", "suit, suit of clothes", "sundial", "sunglass", "sunglasses, dark glasses, shades", "sunscreen, sunblock, sun blocker", "suspension bridge", "swab, swob, mop", "sweatshirt", "swimming trunks, bathing trunks", "swing", "switch, electric switch, electrical switch", "syringe", "table lamp", "tank, army tank, armored combat vehicle, armoured combat vehicle", "tape player", "teapot", "teddy, teddy bear", "television, television system", "tennis ball", "thatch, thatched roof", "theater curtain, theatre curtain", "thimble", "thresher, thrasher, threshing machine", "throne", "tile roof", "toaster", "tobacco shop, tobacconist shop, tobacconist", "toilet seat", "torch", "totem pole", "tow truck, tow car, wrecker", "toyshop", "tractor", "trailer truck, tractor trailer, trucking rig, rig, articulated lorry, semi", "tray", "trench coat", "tricycle, trike, velocipede", "trimaran", "tripod", "triumphal arch", "trolleybus, trolley coach, trackless trolley", "trombone", "tub, vat", "turnstile", "typewriter keyboard", "umbrella", "unicycle, monocycle", "upright, upright piano", "vacuum, vacuum cleaner", "vase", "vault", "velvet", "vending machine", "vestment", "viaduct", "violin, fiddle", "volleyball", "waffle iron", "wall clock", "wallet, billfold, notecase, pocketbook", "wardrobe, closet, press", "warplane, military plane", "washbasin, handbasin, washbowl, lavabo, wash-hand basin", "washer, automatic washer, washing machine", "water bottle", "water jug", "water tower", "whiskey jug", "whistle", "wig", "window screen", "window shade", "windsor tie", "wine bottle", "wing", "wok", "wooden spoon", "wool, woolen, woollen", "worm fence, snake fence, snake-rail fence, virginia fence", "wreck", "yawl", "yurt", "web site, website, internet site, site", "comic book", "crossword puzzle, crossword", "street sign", "traffic light, traffic signal, stoplight", "book jacket, dust cover, dust jacket, dust wrapper", "menu", "plate", "guacamole", "consomme", "hot pot, hotpot", "trifle", "ice cream, icecream", "ice lolly, lolly, lollipop, popsicle", "french loaf", "bagel, beigel", "pretzel", "cheeseburger", "hotdog, hot dog, red hot", "mashed potato", "head cabbage", "broccoli", "cauliflower", "zucchini, courgette", "spaghetti squash", "acorn squash", "butternut squash", "cucumber, cuke", "artichoke, globe artichoke", "bell pepper", "cardoon", "mushroom", "granny smith", "strawberry", "orange", "lemon", "fig", "pineapple, ananas", "banana", "jackfruit, jak, jack", "custard apple", "pomegranate", "hay", "carbonara", "chocolate sauce, chocolate syrup", "dough", "meat loaf, meatloaf", "pizza, pizza pie", "potpie", "burrito", "red wine", "espresso", "cup", "eggnog", "alp", "bubble", "cliff, drop, drop-off", "coral reef", "geyser", "lakeside, lakeshore", "promontory, headland, head, foreland", "sandbar, sand bar", "seashore, coast, seacoast, sea-coast", "valley, vale", "volcano", "ballplayer, baseball player", "groom, bridegroom", "scuba diver", "rapeseed", "daisy", "yellow lady's slipper, yellow lady-slipper, cypripedium calceolus, cypripedium parviflorum", "corn", "acorn", "hip, rose hip, rosehip", "buckeye, horse chestnut, conker", "coral fungus", "agaric", "gyromitra", "stinkhorn, carrion fungus", "earthstar", "hen-of-the-woods, hen of the woods, polyporus frondosus, grifola frondosa", "bolete", "ear, spike, capitulum", "toilet tissue, toilet paper, bathroom tissue" ]
facebook/dinov2-with-registers-base-imagenet1k-1-layer
# Vision Transformer (base-sized model) trained using DINOv2, with registers Vision Transformer (ViT) model introduced in the paper [Vision Transformers Need Registers](https://arxiv.org/abs/2309.16588) by Darcet et al. and first released in [this repository](https://github.com/facebookresearch/dinov2). Disclaimer: The team releasing DINOv2 with registers did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description The Vision Transformer (ViT) is a transformer encoder model (BERT-like) [originally introduced](https://arxiv.org/abs/2010.11929) to do supervised image classification on ImageNet. Next, people figured out ways to make ViT work really well on self-supervised image feature extraction (i.e. learning meaningful features, also called embeddings) on images without requiring any labels. Some example papers here include [DINOv2](https://huggingface.co/papers/2304.07193) and [MAE](https://arxiv.org/abs/2111.06377). The authors of DINOv2 noticed that ViTs have artifacts in attention maps. It’s due to the model using some image patches as “registers”. The authors propose a fix: just add some new tokens (called "register" tokens), which you only use during pre-training (and throw away afterwards). This results in: - no artifacts - interpretable attention maps - and improved performances. <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/dinov2_with_registers_visualization.png" alt="drawing" width="600"/> <small> Visualization of attention maps of various models trained with vs. without registers. Taken from the <a href="https://arxiv.org/abs/2309.16588">original paper</a>. </small> Note that this model does not include any fine-tuned heads. By pre-training the model, it learns an inner representation of images that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled images for instance, you can train a standard classifier by placing a linear layer on top of the pre-trained encoder. One typically places a linear layer on top of the [CLS] token, as the last hidden state of this token can be seen as a representation of an entire image. ## Intended uses & limitations You can use the raw model to classify an image into one of the 1000 possible ImageNet classes. See the [model hub](https://huggingface.co/models?other=dinov2_with_registers) to look for fine-tuned versions on a task that interests you. ### How to use Here is how to use this model: ```python from transformers import AutoImageProcessor, AutoModelForImageClassification import torch from PIL import Image import requests url = 'http://images.cocodataset.org/val2017/000000039769.jpg' image = Image.open(requests.get(url, stream=True).raw) processor = AutoImageProcessor.from_pretrained('facebook/dinov2-with-registers-base-imagenet1k-1-layer') model = AutoModelForImageClassification.from_pretrained('facebook/dinov2-with-registers-base-imagenet1k-1-layer') inputs = processor(images=image, return_tensors="pt") with torch.no_grad(): outputs = model(**inputs) logits = outputs.logits class_idx = outputs.logits.argmax(-1).item() print("Predicted class:", model.config.id2label[class_idx]) ``` ### BibTeX entry and citation info ```bibtex @misc{darcet2024visiontransformersneedregisters, title={Vision Transformers Need Registers}, author={Timothée Darcet and Maxime Oquab and Julien Mairal and Piotr Bojanowski}, year={2024}, eprint={2309.16588}, archivePrefix={arXiv}, primaryClass={cs.CV}, url={https://arxiv.org/abs/2309.16588}, } ```
[ "tench, tinca tinca", "goldfish, carassius auratus", "great white shark, white shark, man-eater, man-eating shark, carcharodon carcharias", "tiger shark, galeocerdo cuvieri", "hammerhead, hammerhead shark", "electric ray, crampfish, numbfish, torpedo", "stingray", "cock", "hen", "ostrich, struthio camelus", "brambling, fringilla montifringilla", "goldfinch, carduelis carduelis", "house finch, linnet, carpodacus mexicanus", "junco, snowbird", "indigo bunting, indigo finch, indigo bird, passerina cyanea", "robin, american robin, turdus migratorius", "bulbul", "jay", "magpie", "chickadee", "water ouzel, dipper", "kite", "bald eagle, american eagle, haliaeetus leucocephalus", "vulture", "great grey owl, great gray owl, strix nebulosa", "european fire salamander, salamandra salamandra", "common newt, triturus vulgaris", "eft", "spotted salamander, ambystoma maculatum", "axolotl, mud puppy, ambystoma mexicanum", "bullfrog, rana catesbeiana", "tree frog, tree-frog", "tailed frog, bell toad, ribbed toad, tailed toad, ascaphus trui", "loggerhead, loggerhead turtle, caretta caretta", "leatherback turtle, leatherback, leathery turtle, dermochelys coriacea", "mud turtle", "terrapin", "box turtle, box tortoise", "banded gecko", "common iguana, iguana, iguana iguana", "american chameleon, anole, anolis carolinensis", "whiptail, whiptail lizard", "agama", "frilled lizard, chlamydosaurus kingi", "alligator lizard", "gila monster, heloderma suspectum", "green lizard, lacerta viridis", "african chameleon, chamaeleo chamaeleon", "komodo dragon, komodo lizard, dragon lizard, giant lizard, varanus komodoensis", "african crocodile, nile crocodile, crocodylus niloticus", "american alligator, alligator mississipiensis", "triceratops", "thunder snake, worm snake, carphophis amoenus", "ringneck snake, ring-necked snake, ring snake", "hognose snake, puff adder, sand viper", "green snake, grass snake", "king snake, kingsnake", "garter snake, grass snake", "water snake", "vine snake", "night snake, hypsiglena torquata", "boa constrictor, constrictor constrictor", "rock python, rock snake, python sebae", "indian cobra, naja naja", "green mamba", "sea snake", "horned viper, cerastes, sand viper, horned asp, cerastes cornutus", "diamondback, diamondback rattlesnake, crotalus adamanteus", "sidewinder, horned rattlesnake, crotalus cerastes", "trilobite", "harvestman, daddy longlegs, phalangium opilio", "scorpion", "black and gold garden spider, argiope aurantia", "barn spider, araneus cavaticus", "garden spider, aranea diademata", "black widow, latrodectus mactans", "tarantula", "wolf spider, hunting spider", "tick", "centipede", "black grouse", "ptarmigan", "ruffed grouse, partridge, bonasa umbellus", "prairie chicken, prairie grouse, prairie fowl", "peacock", "quail", "partridge", "african grey, african gray, psittacus erithacus", "macaw", "sulphur-crested cockatoo, kakatoe galerita, cacatua galerita", "lorikeet", "coucal", "bee eater", "hornbill", "hummingbird", "jacamar", "toucan", "drake", "red-breasted merganser, mergus serrator", "goose", "black swan, cygnus atratus", "tusker", "echidna, spiny anteater, anteater", "platypus, duckbill, duckbilled platypus, duck-billed platypus, ornithorhynchus anatinus", "wallaby, brush kangaroo", "koala, koala bear, kangaroo bear, native bear, phascolarctos cinereus", "wombat", "jellyfish", "sea anemone, anemone", "brain coral", "flatworm, platyhelminth", "nematode, nematode worm, roundworm", "conch", "snail", "slug", "sea slug, nudibranch", "chiton, coat-of-mail shell, sea cradle, polyplacophore", "chambered nautilus, pearly nautilus, nautilus", "dungeness crab, cancer magister", "rock crab, cancer irroratus", "fiddler crab", "king crab, alaska crab, alaskan king crab, alaska king crab, paralithodes camtschatica", "american lobster, northern lobster, maine lobster, homarus americanus", "spiny lobster, langouste, rock lobster, crawfish, crayfish, sea crawfish", "crayfish, crawfish, crawdad, crawdaddy", "hermit crab", "isopod", "white stork, ciconia ciconia", "black stork, ciconia nigra", "spoonbill", "flamingo", "little blue heron, egretta caerulea", "american egret, great white heron, egretta albus", "bittern", "crane", "limpkin, aramus pictus", "european gallinule, porphyrio porphyrio", "american coot, marsh hen, mud hen, water hen, fulica americana", "bustard", "ruddy turnstone, arenaria interpres", "red-backed sandpiper, dunlin, erolia alpina", "redshank, tringa totanus", "dowitcher", "oystercatcher, oyster catcher", "pelican", "king penguin, aptenodytes patagonica", "albatross, mollymawk", "grey whale, gray whale, devilfish, eschrichtius gibbosus, eschrichtius robustus", "killer whale, killer, orca, grampus, sea wolf, orcinus orca", "dugong, dugong dugon", "sea lion", "chihuahua", "japanese spaniel", "maltese dog, maltese terrier, maltese", "pekinese, pekingese, peke", "shih-tzu", "blenheim spaniel", "papillon", "toy terrier", "rhodesian ridgeback", "afghan hound, afghan", "basset, basset hound", "beagle", "bloodhound, sleuthhound", "bluetick", "black-and-tan coonhound", "walker hound, walker foxhound", "english foxhound", "redbone", "borzoi, russian wolfhound", "irish wolfhound", "italian greyhound", "whippet", "ibizan hound, ibizan podenco", "norwegian elkhound, elkhound", "otterhound, otter hound", "saluki, gazelle hound", "scottish deerhound, deerhound", "weimaraner", "staffordshire bullterrier, staffordshire bull terrier", "american staffordshire terrier, staffordshire terrier, american pit bull terrier, pit bull terrier", "bedlington terrier", "border terrier", "kerry blue terrier", "irish terrier", "norfolk terrier", "norwich terrier", "yorkshire terrier", "wire-haired fox terrier", "lakeland terrier", "sealyham terrier, sealyham", "airedale, airedale terrier", "cairn, cairn terrier", "australian terrier", "dandie dinmont, dandie dinmont terrier", "boston bull, boston terrier", "miniature schnauzer", "giant schnauzer", "standard schnauzer", "scotch terrier, scottish terrier, scottie", "tibetan terrier, chrysanthemum dog", "silky terrier, sydney silky", "soft-coated wheaten terrier", "west highland white terrier", "lhasa, lhasa apso", "flat-coated retriever", "curly-coated retriever", "golden retriever", "labrador retriever", "chesapeake bay retriever", "german short-haired pointer", "vizsla, hungarian pointer", "english setter", "irish setter, red setter", "gordon setter", "brittany spaniel", "clumber, clumber spaniel", "english springer, english springer spaniel", "welsh springer spaniel", "cocker spaniel, english cocker spaniel, cocker", "sussex spaniel", "irish water spaniel", "kuvasz", "schipperke", "groenendael", "malinois", "briard", "kelpie", "komondor", "old english sheepdog, bobtail", "shetland sheepdog, shetland sheep dog, shetland", "collie", "border collie", "bouvier des flandres, bouviers des flandres", "rottweiler", "german shepherd, german shepherd dog, german police dog, alsatian", "doberman, doberman pinscher", "miniature pinscher", "greater swiss mountain dog", "bernese mountain dog", "appenzeller", "entlebucher", "boxer", "bull mastiff", "tibetan mastiff", "french bulldog", "great dane", "saint bernard, st bernard", "eskimo dog, husky", "malamute, malemute, alaskan malamute", "siberian husky", "dalmatian, coach dog, carriage dog", "affenpinscher, monkey pinscher, monkey dog", "basenji", "pug, pug-dog", "leonberg", "newfoundland, newfoundland dog", "great pyrenees", "samoyed, samoyede", "pomeranian", "chow, chow chow", "keeshond", "brabancon griffon", "pembroke, pembroke welsh corgi", "cardigan, cardigan welsh corgi", "toy poodle", "miniature poodle", "standard poodle", "mexican hairless", "timber wolf, grey wolf, gray wolf, canis lupus", "white wolf, arctic wolf, canis lupus tundrarum", "red wolf, maned wolf, canis rufus, canis niger", "coyote, prairie wolf, brush wolf, canis latrans", "dingo, warrigal, warragal, canis dingo", "dhole, cuon alpinus", "african hunting dog, hyena dog, cape hunting dog, lycaon pictus", "hyena, hyaena", "red fox, vulpes vulpes", "kit fox, vulpes macrotis", "arctic fox, white fox, alopex lagopus", "grey fox, gray fox, urocyon cinereoargenteus", "tabby, tabby cat", "tiger cat", "persian cat", "siamese cat, siamese", "egyptian cat", "cougar, puma, catamount, mountain lion, painter, panther, felis concolor", "lynx, catamount", "leopard, panthera pardus", "snow leopard, ounce, panthera uncia", "jaguar, panther, panthera onca, felis onca", "lion, king of beasts, panthera leo", "tiger, panthera tigris", "cheetah, chetah, acinonyx jubatus", "brown bear, bruin, ursus arctos", "american black bear, black bear, ursus americanus, euarctos americanus", "ice bear, polar bear, ursus maritimus, thalarctos maritimus", "sloth bear, melursus ursinus, ursus ursinus", "mongoose", "meerkat, mierkat", "tiger beetle", "ladybug, ladybeetle, lady beetle, ladybird, ladybird beetle", "ground beetle, carabid beetle", "long-horned beetle, longicorn, longicorn beetle", "leaf beetle, chrysomelid", "dung beetle", "rhinoceros beetle", "weevil", "fly", "bee", "ant, emmet, pismire", "grasshopper, hopper", "cricket", "walking stick, walkingstick, stick insect", "cockroach, roach", "mantis, mantid", "cicada, cicala", "leafhopper", "lacewing, lacewing fly", "dragonfly, darning needle, devil's darning needle, sewing needle, snake feeder, snake doctor, mosquito hawk, skeeter hawk", "damselfly", "admiral", "ringlet, ringlet butterfly", "monarch, monarch butterfly, milkweed butterfly, danaus plexippus", "cabbage butterfly", "sulphur butterfly, sulfur butterfly", "lycaenid, lycaenid butterfly", "starfish, sea star", "sea urchin", "sea cucumber, holothurian", "wood rabbit, cottontail, cottontail rabbit", "hare", "angora, angora rabbit", "hamster", "porcupine, hedgehog", "fox squirrel, eastern fox squirrel, sciurus niger", "marmot", "beaver", "guinea pig, cavia cobaya", "sorrel", "zebra", "hog, pig, grunter, squealer, sus scrofa", "wild boar, boar, sus scrofa", "warthog", "hippopotamus, hippo, river horse, hippopotamus amphibius", "ox", "water buffalo, water ox, asiatic buffalo, bubalus bubalis", "bison", "ram, tup", "bighorn, bighorn sheep, cimarron, rocky mountain bighorn, rocky mountain sheep, ovis canadensis", "ibex, capra ibex", "hartebeest", "impala, aepyceros melampus", "gazelle", "arabian camel, dromedary, camelus dromedarius", "llama", "weasel", "mink", "polecat, fitch, foulmart, foumart, mustela putorius", "black-footed ferret, ferret, mustela nigripes", "otter", "skunk, polecat, wood pussy", "badger", "armadillo", "three-toed sloth, ai, bradypus tridactylus", "orangutan, orang, orangutang, pongo pygmaeus", "gorilla, gorilla gorilla", "chimpanzee, chimp, pan troglodytes", "gibbon, hylobates lar", "siamang, hylobates syndactylus, symphalangus syndactylus", "guenon, guenon monkey", "patas, hussar monkey, erythrocebus patas", "baboon", "macaque", "langur", "colobus, colobus monkey", "proboscis monkey, nasalis larvatus", "marmoset", "capuchin, ringtail, cebus capucinus", "howler monkey, howler", "titi, titi monkey", "spider monkey, ateles geoffroyi", "squirrel monkey, saimiri sciureus", "madagascar cat, ring-tailed lemur, lemur catta", "indri, indris, indri indri, indri brevicaudatus", "indian elephant, elephas maximus", "african elephant, loxodonta africana", "lesser panda, red panda, panda, bear cat, cat bear, ailurus fulgens", "giant panda, panda, panda bear, coon bear, ailuropoda melanoleuca", "barracouta, snoek", "eel", "coho, cohoe, coho salmon, blue jack, silver salmon, oncorhynchus kisutch", "rock beauty, holocanthus tricolor", "anemone fish", "sturgeon", "gar, garfish, garpike, billfish, lepisosteus osseus", "lionfish", "puffer, pufferfish, blowfish, globefish", "abacus", "abaya", "academic gown, academic robe, judge's robe", "accordion, piano accordion, squeeze box", "acoustic guitar", "aircraft carrier, carrier, flattop, attack aircraft carrier", "airliner", "airship, dirigible", "altar", "ambulance", "amphibian, amphibious vehicle", "analog clock", "apiary, bee house", "apron", "ashcan, trash can, garbage can, wastebin, ash bin, ash-bin, ashbin, dustbin, trash barrel, trash bin", "assault rifle, assault gun", "backpack, back pack, knapsack, packsack, rucksack, haversack", "bakery, bakeshop, bakehouse", "balance beam, beam", "balloon", "ballpoint, ballpoint pen, ballpen, biro", "band aid", "banjo", "bannister, banister, balustrade, balusters, handrail", "barbell", "barber chair", "barbershop", "barn", "barometer", "barrel, cask", "barrow, garden cart, lawn cart, wheelbarrow", "baseball", "basketball", "bassinet", "bassoon", "bathing cap, swimming cap", "bath towel", "bathtub, bathing tub, bath, tub", "beach wagon, station wagon, wagon, estate car, beach waggon, station waggon, waggon", "beacon, lighthouse, beacon light, pharos", "beaker", "bearskin, busby, shako", "beer bottle", "beer glass", "bell cote, bell cot", "bib", "bicycle-built-for-two, tandem bicycle, tandem", "bikini, two-piece", "binder, ring-binder", "binoculars, field glasses, opera glasses", "birdhouse", "boathouse", "bobsled, bobsleigh, bob", "bolo tie, bolo, bola tie, bola", "bonnet, poke bonnet", "bookcase", "bookshop, bookstore, bookstall", "bottlecap", "bow", "bow tie, bow-tie, bowtie", "brass, memorial tablet, plaque", "brassiere, bra, bandeau", "breakwater, groin, groyne, mole, bulwark, seawall, jetty", "breastplate, aegis, egis", "broom", "bucket, pail", "buckle", "bulletproof vest", "bullet train, bullet", "butcher shop, meat market", "cab, hack, taxi, taxicab", "caldron, cauldron", "candle, taper, wax light", "cannon", "canoe", "can opener, tin opener", "cardigan", "car mirror", "carousel, carrousel, merry-go-round, roundabout, whirligig", "carpenter's kit, tool kit", "carton", "car wheel", "cash machine, cash dispenser, automated teller machine, automatic teller machine, automated teller, automatic teller, atm", "cassette", "cassette player", "castle", "catamaran", "cd player", "cello, violoncello", "cellular telephone, cellular phone, cellphone, cell, mobile phone", "chain", "chainlink fence", "chain mail, ring mail, mail, chain armor, chain armour, ring armor, ring armour", "chain saw, chainsaw", "chest", "chiffonier, commode", "chime, bell, gong", "china cabinet, china closet", "christmas stocking", "church, church building", "cinema, movie theater, movie theatre, movie house, picture palace", "cleaver, meat cleaver, chopper", "cliff dwelling", "cloak", "clog, geta, patten, sabot", "cocktail shaker", "coffee mug", "coffeepot", "coil, spiral, volute, whorl, helix", "combination lock", "computer keyboard, keypad", "confectionery, confectionary, candy store", "container ship, containership, container vessel", "convertible", "corkscrew, bottle screw", "cornet, horn, trumpet, trump", "cowboy boot", "cowboy hat, ten-gallon hat", "cradle", "crane", "crash helmet", "crate", "crib, cot", "crock pot", "croquet ball", "crutch", "cuirass", "dam, dike, dyke", "desk", "desktop computer", "dial telephone, dial phone", "diaper, nappy, napkin", "digital clock", "digital watch", "dining table, board", "dishrag, dishcloth", "dishwasher, dish washer, dishwashing machine", "disk brake, disc brake", "dock, dockage, docking facility", "dogsled, dog sled, dog sleigh", "dome", "doormat, welcome mat", "drilling platform, offshore rig", "drum, membranophone, tympan", "drumstick", "dumbbell", "dutch oven", "electric fan, blower", "electric guitar", "electric locomotive", "entertainment center", "envelope", "espresso maker", "face powder", "feather boa, boa", "file, file cabinet, filing cabinet", "fireboat", "fire engine, fire truck", "fire screen, fireguard", "flagpole, flagstaff", "flute, transverse flute", "folding chair", "football helmet", "forklift", "fountain", "fountain pen", "four-poster", "freight car", "french horn, horn", "frying pan, frypan, skillet", "fur coat", "garbage truck, dustcart", "gasmask, respirator, gas helmet", "gas pump, gasoline pump, petrol pump, island dispenser", "goblet", "go-kart", "golf ball", "golfcart, golf cart", "gondola", "gong, tam-tam", "gown", "grand piano, grand", "greenhouse, nursery, glasshouse", "grille, radiator grille", "grocery store, grocery, food market, market", "guillotine", "hair slide", "hair spray", "half track", "hammer", "hamper", "hand blower, blow dryer, blow drier, hair dryer, hair drier", "hand-held computer, hand-held microcomputer", "handkerchief, hankie, hanky, hankey", "hard disc, hard disk, fixed disk", "harmonica, mouth organ, harp, mouth harp", "harp", "harvester, reaper", "hatchet", "holster", "home theater, home theatre", "honeycomb", "hook, claw", "hoopskirt, crinoline", "horizontal bar, high bar", "horse cart, horse-cart", "hourglass", "ipod", "iron, smoothing iron", "jack-o'-lantern", "jean, blue jean, denim", "jeep, landrover", "jersey, t-shirt, tee shirt", "jigsaw puzzle", "jinrikisha, ricksha, rickshaw", "joystick", "kimono", "knee pad", "knot", "lab coat, laboratory coat", "ladle", "lampshade, lamp shade", "laptop, laptop computer", "lawn mower, mower", "lens cap, lens cover", "letter opener, paper knife, paperknife", "library", "lifeboat", "lighter, light, igniter, ignitor", "limousine, limo", "liner, ocean liner", "lipstick, lip rouge", "loafer", "lotion", "loudspeaker, speaker, speaker unit, loudspeaker system, speaker system", "loupe, jeweler's loupe", "lumbermill, sawmill", "magnetic compass", "mailbag, postbag", "mailbox, letter box", "maillot", "maillot, tank suit", "manhole cover", "maraca", "marimba, xylophone", "mask", "matchstick", "maypole", "maze, labyrinth", "measuring cup", "medicine chest, medicine cabinet", "megalith, megalithic structure", "microphone, mike", "microwave, microwave oven", "military uniform", "milk can", "minibus", "miniskirt, mini", "minivan", "missile", "mitten", "mixing bowl", "mobile home, manufactured home", "model t", "modem", "monastery", "monitor", "moped", "mortar", "mortarboard", "mosque", "mosquito net", "motor scooter, scooter", "mountain bike, all-terrain bike, off-roader", "mountain tent", "mouse, computer mouse", "mousetrap", "moving van", "muzzle", "nail", "neck brace", "necklace", "nipple", "notebook, notebook computer", "obelisk", "oboe, hautboy, hautbois", "ocarina, sweet potato", "odometer, hodometer, mileometer, milometer", "oil filter", "organ, pipe organ", "oscilloscope, scope, cathode-ray oscilloscope, cro", "overskirt", "oxcart", "oxygen mask", "packet", "paddle, boat paddle", "paddlewheel, paddle wheel", "padlock", "paintbrush", "pajama, pyjama, pj's, jammies", "palace", "panpipe, pandean pipe, syrinx", "paper towel", "parachute, chute", "parallel bars, bars", "park bench", "parking meter", "passenger car, coach, carriage", "patio, terrace", "pay-phone, pay-station", "pedestal, plinth, footstall", "pencil box, pencil case", "pencil sharpener", "perfume, essence", "petri dish", "photocopier", "pick, plectrum, plectron", "pickelhaube", "picket fence, paling", "pickup, pickup truck", "pier", "piggy bank, penny bank", "pill bottle", "pillow", "ping-pong ball", "pinwheel", "pirate, pirate ship", "pitcher, ewer", "plane, carpenter's plane, woodworking plane", "planetarium", "plastic bag", "plate rack", "plow, plough", "plunger, plumber's helper", "polaroid camera, polaroid land camera", "pole", "police van, police wagon, paddy wagon, patrol wagon, wagon, black maria", "poncho", "pool table, billiard table, snooker table", "pop bottle, soda bottle", "pot, flowerpot", "potter's wheel", "power drill", "prayer rug, prayer mat", "printer", "prison, prison house", "projectile, missile", "projector", "puck, hockey puck", "punching bag, punch bag, punching ball, punchball", "purse", "quill, quill pen", "quilt, comforter, comfort, puff", "racer, race car, racing car", "racket, racquet", "radiator", "radio, wireless", "radio telescope, radio reflector", "rain barrel", "recreational vehicle, rv, r.v.", "reel", "reflex camera", "refrigerator, icebox", "remote control, remote", "restaurant, eating house, eating place, eatery", "revolver, six-gun, six-shooter", "rifle", "rocking chair, rocker", "rotisserie", "rubber eraser, rubber, pencil eraser", "rugby ball", "rule, ruler", "running shoe", "safe", "safety pin", "saltshaker, salt shaker", "sandal", "sarong", "sax, saxophone", "scabbard", "scale, weighing machine", "school bus", "schooner", "scoreboard", "screen, crt screen", "screw", "screwdriver", "seat belt, seatbelt", "sewing machine", "shield, buckler", "shoe shop, shoe-shop, shoe store", "shoji", "shopping basket", "shopping cart", "shovel", "shower cap", "shower curtain", "ski", "ski mask", "sleeping bag", "slide rule, slipstick", "sliding door", "slot, one-armed bandit", "snorkel", "snowmobile", "snowplow, snowplough", "soap dispenser", "soccer ball", "sock", "solar dish, solar collector, solar furnace", "sombrero", "soup bowl", "space bar", "space heater", "space shuttle", "spatula", "speedboat", "spider web, spider's web", "spindle", "sports car, sport car", "spotlight, spot", "stage", "steam locomotive", "steel arch bridge", "steel drum", "stethoscope", "stole", "stone wall", "stopwatch, stop watch", "stove", "strainer", "streetcar, tram, tramcar, trolley, trolley car", "stretcher", "studio couch, day bed", "stupa, tope", "submarine, pigboat, sub, u-boat", "suit, suit of clothes", "sundial", "sunglass", "sunglasses, dark glasses, shades", "sunscreen, sunblock, sun blocker", "suspension bridge", "swab, swob, mop", "sweatshirt", "swimming trunks, bathing trunks", "swing", "switch, electric switch, electrical switch", "syringe", "table lamp", "tank, army tank, armored combat vehicle, armoured combat vehicle", "tape player", "teapot", "teddy, teddy bear", "television, television system", "tennis ball", "thatch, thatched roof", "theater curtain, theatre curtain", "thimble", "thresher, thrasher, threshing machine", "throne", "tile roof", "toaster", "tobacco shop, tobacconist shop, tobacconist", "toilet seat", "torch", "totem pole", "tow truck, tow car, wrecker", "toyshop", "tractor", "trailer truck, tractor trailer, trucking rig, rig, articulated lorry, semi", "tray", "trench coat", "tricycle, trike, velocipede", "trimaran", "tripod", "triumphal arch", "trolleybus, trolley coach, trackless trolley", "trombone", "tub, vat", "turnstile", "typewriter keyboard", "umbrella", "unicycle, monocycle", "upright, upright piano", "vacuum, vacuum cleaner", "vase", "vault", "velvet", "vending machine", "vestment", "viaduct", "violin, fiddle", "volleyball", "waffle iron", "wall clock", "wallet, billfold, notecase, pocketbook", "wardrobe, closet, press", "warplane, military plane", "washbasin, handbasin, washbowl, lavabo, wash-hand basin", "washer, automatic washer, washing machine", "water bottle", "water jug", "water tower", "whiskey jug", "whistle", "wig", "window screen", "window shade", "windsor tie", "wine bottle", "wing", "wok", "wooden spoon", "wool, woolen, woollen", "worm fence, snake fence, snake-rail fence, virginia fence", "wreck", "yawl", "yurt", "web site, website, internet site, site", "comic book", "crossword puzzle, crossword", "street sign", "traffic light, traffic signal, stoplight", "book jacket, dust cover, dust jacket, dust wrapper", "menu", "plate", "guacamole", "consomme", "hot pot, hotpot", "trifle", "ice cream, icecream", "ice lolly, lolly, lollipop, popsicle", "french loaf", "bagel, beigel", "pretzel", "cheeseburger", "hotdog, hot dog, red hot", "mashed potato", "head cabbage", "broccoli", "cauliflower", "zucchini, courgette", "spaghetti squash", "acorn squash", "butternut squash", "cucumber, cuke", "artichoke, globe artichoke", "bell pepper", "cardoon", "mushroom", "granny smith", "strawberry", "orange", "lemon", "fig", "pineapple, ananas", "banana", "jackfruit, jak, jack", "custard apple", "pomegranate", "hay", "carbonara", "chocolate sauce, chocolate syrup", "dough", "meat loaf, meatloaf", "pizza, pizza pie", "potpie", "burrito", "red wine", "espresso", "cup", "eggnog", "alp", "bubble", "cliff, drop, drop-off", "coral reef", "geyser", "lakeside, lakeshore", "promontory, headland, head, foreland", "sandbar, sand bar", "seashore, coast, seacoast, sea-coast", "valley, vale", "volcano", "ballplayer, baseball player", "groom, bridegroom", "scuba diver", "rapeseed", "daisy", "yellow lady's slipper, yellow lady-slipper, cypripedium calceolus, cypripedium parviflorum", "corn", "acorn", "hip, rose hip, rosehip", "buckeye, horse chestnut, conker", "coral fungus", "agaric", "gyromitra", "stinkhorn, carrion fungus", "earthstar", "hen-of-the-woods, hen of the woods, polyporus frondosus, grifola frondosa", "bolete", "ear, spike, capitulum", "toilet tissue, toilet paper, bathroom tissue" ]
facebook/dinov2-with-registers-large-imagenet1k-1-layer
# Vision Transformer (large-sized model) trained using DINOv2, with registers Vision Transformer (ViT) model introduced in the paper [Vision Transformers Need Registers](https://arxiv.org/abs/2309.16588) by Darcet et al. and first released in [this repository](https://github.com/facebookresearch/dinov2). Disclaimer: The team releasing DINOv2 with registers did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description The Vision Transformer (ViT) is a transformer encoder model (BERT-like) [originally introduced](https://arxiv.org/abs/2010.11929) to do supervised image classification on ImageNet. Next, people figured out ways to make ViT work really well on self-supervised image feature extraction (i.e. learning meaningful features, also called embeddings) on images without requiring any labels. Some example papers here include [DINOv2](https://huggingface.co/papers/2304.07193) and [MAE](https://arxiv.org/abs/2111.06377). The authors of DINOv2 noticed that ViTs have artifacts in attention maps. It’s due to the model using some image patches as “registers”. The authors propose a fix: just add some new tokens (called "register" tokens), which you only use during pre-training (and throw away afterwards). This results in: - no artifacts - interpretable attention maps - and improved performances. <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/dinov2_with_registers_visualization.png" alt="drawing" width="600"/> <small> Visualization of attention maps of various models trained with vs. without registers. Taken from the <a href="https://arxiv.org/abs/2309.16588">original paper</a>. </small> Note that this model does not include any fine-tuned heads. By pre-training the model, it learns an inner representation of images that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled images for instance, you can train a standard classifier by placing a linear layer on top of the pre-trained encoder. One typically places a linear layer on top of the [CLS] token, as the last hidden state of this token can be seen as a representation of an entire image. ## Intended uses & limitations You can use the raw model to classify an image into one of the 1000 possible ImageNet classes. See the [model hub](https://huggingface.co/models?other=dinov2_with_registers) to look for fine-tuned versions on a task that interests you. ### How to use Here is how to use this model: ```python from transformers import AutoImageProcessor, AutoModelForImageClassification import torch from PIL import Image import requests url = 'http://images.cocodataset.org/val2017/000000039769.jpg' image = Image.open(requests.get(url, stream=True).raw) processor = AutoImageProcessor.from_pretrained('facebook/dinov2-with-registers-large-imagenet1k-1-layer') model = AutoModelForImageClassification.from_pretrained('facebook/dinov2-with-registers-large-imagenet1k-1-layer') inputs = processor(images=image, return_tensors="pt") with torch.no_grad(): outputs = model(**inputs) logits = outputs.logits class_idx = outputs.logits.argmax(-1).item() print("Predicted class:", model.config.id2label[class_idx]) ``` ### BibTeX entry and citation info ```bibtex @misc{darcet2024visiontransformersneedregisters, title={Vision Transformers Need Registers}, author={Timothée Darcet and Maxime Oquab and Julien Mairal and Piotr Bojanowski}, year={2024}, eprint={2309.16588}, archivePrefix={arXiv}, primaryClass={cs.CV}, url={https://arxiv.org/abs/2309.16588}, } ```
[ "tench, tinca tinca", "goldfish, carassius auratus", "great white shark, white shark, man-eater, man-eating shark, carcharodon carcharias", "tiger shark, galeocerdo cuvieri", "hammerhead, hammerhead shark", "electric ray, crampfish, numbfish, torpedo", "stingray", "cock", "hen", "ostrich, struthio camelus", "brambling, fringilla montifringilla", "goldfinch, carduelis carduelis", "house finch, linnet, carpodacus mexicanus", "junco, snowbird", "indigo bunting, indigo finch, indigo bird, passerina cyanea", "robin, american robin, turdus migratorius", "bulbul", "jay", "magpie", "chickadee", "water ouzel, dipper", "kite", "bald eagle, american eagle, haliaeetus leucocephalus", "vulture", "great grey owl, great gray owl, strix nebulosa", "european fire salamander, salamandra salamandra", "common newt, triturus vulgaris", "eft", "spotted salamander, ambystoma maculatum", "axolotl, mud puppy, ambystoma mexicanum", "bullfrog, rana catesbeiana", "tree frog, tree-frog", "tailed frog, bell toad, ribbed toad, tailed toad, ascaphus trui", "loggerhead, loggerhead turtle, caretta caretta", "leatherback turtle, leatherback, leathery turtle, dermochelys coriacea", "mud turtle", "terrapin", "box turtle, box tortoise", "banded gecko", "common iguana, iguana, iguana iguana", "american chameleon, anole, anolis carolinensis", "whiptail, whiptail lizard", "agama", "frilled lizard, chlamydosaurus kingi", "alligator lizard", "gila monster, heloderma suspectum", "green lizard, lacerta viridis", "african chameleon, chamaeleo chamaeleon", "komodo dragon, komodo lizard, dragon lizard, giant lizard, varanus komodoensis", "african crocodile, nile crocodile, crocodylus niloticus", "american alligator, alligator mississipiensis", "triceratops", "thunder snake, worm snake, carphophis amoenus", "ringneck snake, ring-necked snake, ring snake", "hognose snake, puff adder, sand viper", "green snake, grass snake", "king snake, kingsnake", "garter snake, grass snake", "water snake", "vine snake", "night snake, hypsiglena torquata", "boa constrictor, constrictor constrictor", "rock python, rock snake, python sebae", "indian cobra, naja naja", "green mamba", "sea snake", "horned viper, cerastes, sand viper, horned asp, cerastes cornutus", "diamondback, diamondback rattlesnake, crotalus adamanteus", "sidewinder, horned rattlesnake, crotalus cerastes", "trilobite", "harvestman, daddy longlegs, phalangium opilio", "scorpion", "black and gold garden spider, argiope aurantia", "barn spider, araneus cavaticus", "garden spider, aranea diademata", "black widow, latrodectus mactans", "tarantula", "wolf spider, hunting spider", "tick", "centipede", "black grouse", "ptarmigan", "ruffed grouse, partridge, bonasa umbellus", "prairie chicken, prairie grouse, prairie fowl", "peacock", "quail", "partridge", "african grey, african gray, psittacus erithacus", "macaw", "sulphur-crested cockatoo, kakatoe galerita, cacatua galerita", "lorikeet", "coucal", "bee eater", "hornbill", "hummingbird", "jacamar", "toucan", "drake", "red-breasted merganser, mergus serrator", "goose", "black swan, cygnus atratus", "tusker", "echidna, spiny anteater, anteater", "platypus, duckbill, duckbilled platypus, duck-billed platypus, ornithorhynchus anatinus", "wallaby, brush kangaroo", "koala, koala bear, kangaroo bear, native bear, phascolarctos cinereus", "wombat", "jellyfish", "sea anemone, anemone", "brain coral", "flatworm, platyhelminth", "nematode, nematode worm, roundworm", "conch", "snail", "slug", "sea slug, nudibranch", "chiton, coat-of-mail shell, sea cradle, polyplacophore", "chambered nautilus, pearly nautilus, nautilus", "dungeness crab, cancer magister", "rock crab, cancer irroratus", "fiddler crab", "king crab, alaska crab, alaskan king crab, alaska king crab, paralithodes camtschatica", "american lobster, northern lobster, maine lobster, homarus americanus", "spiny lobster, langouste, rock lobster, crawfish, crayfish, sea crawfish", "crayfish, crawfish, crawdad, crawdaddy", "hermit crab", "isopod", "white stork, ciconia ciconia", "black stork, ciconia nigra", "spoonbill", "flamingo", "little blue heron, egretta caerulea", "american egret, great white heron, egretta albus", "bittern", "crane", "limpkin, aramus pictus", "european gallinule, porphyrio porphyrio", "american coot, marsh hen, mud hen, water hen, fulica americana", "bustard", "ruddy turnstone, arenaria interpres", "red-backed sandpiper, dunlin, erolia alpina", "redshank, tringa totanus", "dowitcher", "oystercatcher, oyster catcher", "pelican", "king penguin, aptenodytes patagonica", "albatross, mollymawk", "grey whale, gray whale, devilfish, eschrichtius gibbosus, eschrichtius robustus", "killer whale, killer, orca, grampus, sea wolf, orcinus orca", "dugong, dugong dugon", "sea lion", "chihuahua", "japanese spaniel", "maltese dog, maltese terrier, maltese", "pekinese, pekingese, peke", "shih-tzu", "blenheim spaniel", "papillon", "toy terrier", "rhodesian ridgeback", "afghan hound, afghan", "basset, basset hound", "beagle", "bloodhound, sleuthhound", "bluetick", "black-and-tan coonhound", "walker hound, walker foxhound", "english foxhound", "redbone", "borzoi, russian wolfhound", "irish wolfhound", "italian greyhound", "whippet", "ibizan hound, ibizan podenco", "norwegian elkhound, elkhound", "otterhound, otter hound", "saluki, gazelle hound", "scottish deerhound, deerhound", "weimaraner", "staffordshire bullterrier, staffordshire bull terrier", "american staffordshire terrier, staffordshire terrier, american pit bull terrier, pit bull terrier", "bedlington terrier", "border terrier", "kerry blue terrier", "irish terrier", "norfolk terrier", "norwich terrier", "yorkshire terrier", "wire-haired fox terrier", "lakeland terrier", "sealyham terrier, sealyham", "airedale, airedale terrier", "cairn, cairn terrier", "australian terrier", "dandie dinmont, dandie dinmont terrier", "boston bull, boston terrier", "miniature schnauzer", "giant schnauzer", "standard schnauzer", "scotch terrier, scottish terrier, scottie", "tibetan terrier, chrysanthemum dog", "silky terrier, sydney silky", "soft-coated wheaten terrier", "west highland white terrier", "lhasa, lhasa apso", "flat-coated retriever", "curly-coated retriever", "golden retriever", "labrador retriever", "chesapeake bay retriever", "german short-haired pointer", "vizsla, hungarian pointer", "english setter", "irish setter, red setter", "gordon setter", "brittany spaniel", "clumber, clumber spaniel", "english springer, english springer spaniel", "welsh springer spaniel", "cocker spaniel, english cocker spaniel, cocker", "sussex spaniel", "irish water spaniel", "kuvasz", "schipperke", "groenendael", "malinois", "briard", "kelpie", "komondor", "old english sheepdog, bobtail", "shetland sheepdog, shetland sheep dog, shetland", "collie", "border collie", "bouvier des flandres, bouviers des flandres", "rottweiler", "german shepherd, german shepherd dog, german police dog, alsatian", "doberman, doberman pinscher", "miniature pinscher", "greater swiss mountain dog", "bernese mountain dog", "appenzeller", "entlebucher", "boxer", "bull mastiff", "tibetan mastiff", "french bulldog", "great dane", "saint bernard, st bernard", "eskimo dog, husky", "malamute, malemute, alaskan malamute", "siberian husky", "dalmatian, coach dog, carriage dog", "affenpinscher, monkey pinscher, monkey dog", "basenji", "pug, pug-dog", "leonberg", "newfoundland, newfoundland dog", "great pyrenees", "samoyed, samoyede", "pomeranian", "chow, chow chow", "keeshond", "brabancon griffon", "pembroke, pembroke welsh corgi", "cardigan, cardigan welsh corgi", "toy poodle", "miniature poodle", "standard poodle", "mexican hairless", "timber wolf, grey wolf, gray wolf, canis lupus", "white wolf, arctic wolf, canis lupus tundrarum", "red wolf, maned wolf, canis rufus, canis niger", "coyote, prairie wolf, brush wolf, canis latrans", "dingo, warrigal, warragal, canis dingo", "dhole, cuon alpinus", "african hunting dog, hyena dog, cape hunting dog, lycaon pictus", "hyena, hyaena", "red fox, vulpes vulpes", "kit fox, vulpes macrotis", "arctic fox, white fox, alopex lagopus", "grey fox, gray fox, urocyon cinereoargenteus", "tabby, tabby cat", "tiger cat", "persian cat", "siamese cat, siamese", "egyptian cat", "cougar, puma, catamount, mountain lion, painter, panther, felis concolor", "lynx, catamount", "leopard, panthera pardus", "snow leopard, ounce, panthera uncia", "jaguar, panther, panthera onca, felis onca", "lion, king of beasts, panthera leo", "tiger, panthera tigris", "cheetah, chetah, acinonyx jubatus", "brown bear, bruin, ursus arctos", "american black bear, black bear, ursus americanus, euarctos americanus", "ice bear, polar bear, ursus maritimus, thalarctos maritimus", "sloth bear, melursus ursinus, ursus ursinus", "mongoose", "meerkat, mierkat", "tiger beetle", "ladybug, ladybeetle, lady beetle, ladybird, ladybird beetle", "ground beetle, carabid beetle", "long-horned beetle, longicorn, longicorn beetle", "leaf beetle, chrysomelid", "dung beetle", "rhinoceros beetle", "weevil", "fly", "bee", "ant, emmet, pismire", "grasshopper, hopper", "cricket", "walking stick, walkingstick, stick insect", "cockroach, roach", "mantis, mantid", "cicada, cicala", "leafhopper", "lacewing, lacewing fly", "dragonfly, darning needle, devil's darning needle, sewing needle, snake feeder, snake doctor, mosquito hawk, skeeter hawk", "damselfly", "admiral", "ringlet, ringlet butterfly", "monarch, monarch butterfly, milkweed butterfly, danaus plexippus", "cabbage butterfly", "sulphur butterfly, sulfur butterfly", "lycaenid, lycaenid butterfly", "starfish, sea star", "sea urchin", "sea cucumber, holothurian", "wood rabbit, cottontail, cottontail rabbit", "hare", "angora, angora rabbit", "hamster", "porcupine, hedgehog", "fox squirrel, eastern fox squirrel, sciurus niger", "marmot", "beaver", "guinea pig, cavia cobaya", "sorrel", "zebra", "hog, pig, grunter, squealer, sus scrofa", "wild boar, boar, sus scrofa", "warthog", "hippopotamus, hippo, river horse, hippopotamus amphibius", "ox", "water buffalo, water ox, asiatic buffalo, bubalus bubalis", "bison", "ram, tup", "bighorn, bighorn sheep, cimarron, rocky mountain bighorn, rocky mountain sheep, ovis canadensis", "ibex, capra ibex", "hartebeest", "impala, aepyceros melampus", "gazelle", "arabian camel, dromedary, camelus dromedarius", "llama", "weasel", "mink", "polecat, fitch, foulmart, foumart, mustela putorius", "black-footed ferret, ferret, mustela nigripes", "otter", "skunk, polecat, wood pussy", "badger", "armadillo", "three-toed sloth, ai, bradypus tridactylus", "orangutan, orang, orangutang, pongo pygmaeus", "gorilla, gorilla gorilla", "chimpanzee, chimp, pan troglodytes", "gibbon, hylobates lar", "siamang, hylobates syndactylus, symphalangus syndactylus", "guenon, guenon monkey", "patas, hussar monkey, erythrocebus patas", "baboon", "macaque", "langur", "colobus, colobus monkey", "proboscis monkey, nasalis larvatus", "marmoset", "capuchin, ringtail, cebus capucinus", "howler monkey, howler", "titi, titi monkey", "spider monkey, ateles geoffroyi", "squirrel monkey, saimiri sciureus", "madagascar cat, ring-tailed lemur, lemur catta", "indri, indris, indri indri, indri brevicaudatus", "indian elephant, elephas maximus", "african elephant, loxodonta africana", "lesser panda, red panda, panda, bear cat, cat bear, ailurus fulgens", "giant panda, panda, panda bear, coon bear, ailuropoda melanoleuca", "barracouta, snoek", "eel", "coho, cohoe, coho salmon, blue jack, silver salmon, oncorhynchus kisutch", "rock beauty, holocanthus tricolor", "anemone fish", "sturgeon", "gar, garfish, garpike, billfish, lepisosteus osseus", "lionfish", "puffer, pufferfish, blowfish, globefish", "abacus", "abaya", "academic gown, academic robe, judge's robe", "accordion, piano accordion, squeeze box", "acoustic guitar", "aircraft carrier, carrier, flattop, attack aircraft carrier", "airliner", "airship, dirigible", "altar", "ambulance", "amphibian, amphibious vehicle", "analog clock", "apiary, bee house", "apron", "ashcan, trash can, garbage can, wastebin, ash bin, ash-bin, ashbin, dustbin, trash barrel, trash bin", "assault rifle, assault gun", "backpack, back pack, knapsack, packsack, rucksack, haversack", "bakery, bakeshop, bakehouse", "balance beam, beam", "balloon", "ballpoint, ballpoint pen, ballpen, biro", "band aid", "banjo", "bannister, banister, balustrade, balusters, handrail", "barbell", "barber chair", "barbershop", "barn", "barometer", "barrel, cask", "barrow, garden cart, lawn cart, wheelbarrow", "baseball", "basketball", "bassinet", "bassoon", "bathing cap, swimming cap", "bath towel", "bathtub, bathing tub, bath, tub", "beach wagon, station wagon, wagon, estate car, beach waggon, station waggon, waggon", "beacon, lighthouse, beacon light, pharos", "beaker", "bearskin, busby, shako", "beer bottle", "beer glass", "bell cote, bell cot", "bib", "bicycle-built-for-two, tandem bicycle, tandem", "bikini, two-piece", "binder, ring-binder", "binoculars, field glasses, opera glasses", "birdhouse", "boathouse", "bobsled, bobsleigh, bob", "bolo tie, bolo, bola tie, bola", "bonnet, poke bonnet", "bookcase", "bookshop, bookstore, bookstall", "bottlecap", "bow", "bow tie, bow-tie, bowtie", "brass, memorial tablet, plaque", "brassiere, bra, bandeau", "breakwater, groin, groyne, mole, bulwark, seawall, jetty", "breastplate, aegis, egis", "broom", "bucket, pail", "buckle", "bulletproof vest", "bullet train, bullet", "butcher shop, meat market", "cab, hack, taxi, taxicab", "caldron, cauldron", "candle, taper, wax light", "cannon", "canoe", "can opener, tin opener", "cardigan", "car mirror", "carousel, carrousel, merry-go-round, roundabout, whirligig", "carpenter's kit, tool kit", "carton", "car wheel", "cash machine, cash dispenser, automated teller machine, automatic teller machine, automated teller, automatic teller, atm", "cassette", "cassette player", "castle", "catamaran", "cd player", "cello, violoncello", "cellular telephone, cellular phone, cellphone, cell, mobile phone", "chain", "chainlink fence", "chain mail, ring mail, mail, chain armor, chain armour, ring armor, ring armour", "chain saw, chainsaw", "chest", "chiffonier, commode", "chime, bell, gong", "china cabinet, china closet", "christmas stocking", "church, church building", "cinema, movie theater, movie theatre, movie house, picture palace", "cleaver, meat cleaver, chopper", "cliff dwelling", "cloak", "clog, geta, patten, sabot", "cocktail shaker", "coffee mug", "coffeepot", "coil, spiral, volute, whorl, helix", "combination lock", "computer keyboard, keypad", "confectionery, confectionary, candy store", "container ship, containership, container vessel", "convertible", "corkscrew, bottle screw", "cornet, horn, trumpet, trump", "cowboy boot", "cowboy hat, ten-gallon hat", "cradle", "crane", "crash helmet", "crate", "crib, cot", "crock pot", "croquet ball", "crutch", "cuirass", "dam, dike, dyke", "desk", "desktop computer", "dial telephone, dial phone", "diaper, nappy, napkin", "digital clock", "digital watch", "dining table, board", "dishrag, dishcloth", "dishwasher, dish washer, dishwashing machine", "disk brake, disc brake", "dock, dockage, docking facility", "dogsled, dog sled, dog sleigh", "dome", "doormat, welcome mat", "drilling platform, offshore rig", "drum, membranophone, tympan", "drumstick", "dumbbell", "dutch oven", "electric fan, blower", "electric guitar", "electric locomotive", "entertainment center", "envelope", "espresso maker", "face powder", "feather boa, boa", "file, file cabinet, filing cabinet", "fireboat", "fire engine, fire truck", "fire screen, fireguard", "flagpole, flagstaff", "flute, transverse flute", "folding chair", "football helmet", "forklift", "fountain", "fountain pen", "four-poster", "freight car", "french horn, horn", "frying pan, frypan, skillet", "fur coat", "garbage truck, dustcart", "gasmask, respirator, gas helmet", "gas pump, gasoline pump, petrol pump, island dispenser", "goblet", "go-kart", "golf ball", "golfcart, golf cart", "gondola", "gong, tam-tam", "gown", "grand piano, grand", "greenhouse, nursery, glasshouse", "grille, radiator grille", "grocery store, grocery, food market, market", "guillotine", "hair slide", "hair spray", "half track", "hammer", "hamper", "hand blower, blow dryer, blow drier, hair dryer, hair drier", "hand-held computer, hand-held microcomputer", "handkerchief, hankie, hanky, hankey", "hard disc, hard disk, fixed disk", "harmonica, mouth organ, harp, mouth harp", "harp", "harvester, reaper", "hatchet", "holster", "home theater, home theatre", "honeycomb", "hook, claw", "hoopskirt, crinoline", "horizontal bar, high bar", "horse cart, horse-cart", "hourglass", "ipod", "iron, smoothing iron", "jack-o'-lantern", "jean, blue jean, denim", "jeep, landrover", "jersey, t-shirt, tee shirt", "jigsaw puzzle", "jinrikisha, ricksha, rickshaw", "joystick", "kimono", "knee pad", "knot", "lab coat, laboratory coat", "ladle", "lampshade, lamp shade", "laptop, laptop computer", "lawn mower, mower", "lens cap, lens cover", "letter opener, paper knife, paperknife", "library", "lifeboat", "lighter, light, igniter, ignitor", "limousine, limo", "liner, ocean liner", "lipstick, lip rouge", "loafer", "lotion", "loudspeaker, speaker, speaker unit, loudspeaker system, speaker system", "loupe, jeweler's loupe", "lumbermill, sawmill", "magnetic compass", "mailbag, postbag", "mailbox, letter box", "maillot", "maillot, tank suit", "manhole cover", "maraca", "marimba, xylophone", "mask", "matchstick", "maypole", "maze, labyrinth", "measuring cup", "medicine chest, medicine cabinet", "megalith, megalithic structure", "microphone, mike", "microwave, microwave oven", "military uniform", "milk can", "minibus", "miniskirt, mini", "minivan", "missile", "mitten", "mixing bowl", "mobile home, manufactured home", "model t", "modem", "monastery", "monitor", "moped", "mortar", "mortarboard", "mosque", "mosquito net", "motor scooter, scooter", "mountain bike, all-terrain bike, off-roader", "mountain tent", "mouse, computer mouse", "mousetrap", "moving van", "muzzle", "nail", "neck brace", "necklace", "nipple", "notebook, notebook computer", "obelisk", "oboe, hautboy, hautbois", "ocarina, sweet potato", "odometer, hodometer, mileometer, milometer", "oil filter", "organ, pipe organ", "oscilloscope, scope, cathode-ray oscilloscope, cro", "overskirt", "oxcart", "oxygen mask", "packet", "paddle, boat paddle", "paddlewheel, paddle wheel", "padlock", "paintbrush", "pajama, pyjama, pj's, jammies", "palace", "panpipe, pandean pipe, syrinx", "paper towel", "parachute, chute", "parallel bars, bars", "park bench", "parking meter", "passenger car, coach, carriage", "patio, terrace", "pay-phone, pay-station", "pedestal, plinth, footstall", "pencil box, pencil case", "pencil sharpener", "perfume, essence", "petri dish", "photocopier", "pick, plectrum, plectron", "pickelhaube", "picket fence, paling", "pickup, pickup truck", "pier", "piggy bank, penny bank", "pill bottle", "pillow", "ping-pong ball", "pinwheel", "pirate, pirate ship", "pitcher, ewer", "plane, carpenter's plane, woodworking plane", "planetarium", "plastic bag", "plate rack", "plow, plough", "plunger, plumber's helper", "polaroid camera, polaroid land camera", "pole", "police van, police wagon, paddy wagon, patrol wagon, wagon, black maria", "poncho", "pool table, billiard table, snooker table", "pop bottle, soda bottle", "pot, flowerpot", "potter's wheel", "power drill", "prayer rug, prayer mat", "printer", "prison, prison house", "projectile, missile", "projector", "puck, hockey puck", "punching bag, punch bag, punching ball, punchball", "purse", "quill, quill pen", "quilt, comforter, comfort, puff", "racer, race car, racing car", "racket, racquet", "radiator", "radio, wireless", "radio telescope, radio reflector", "rain barrel", "recreational vehicle, rv, r.v.", "reel", "reflex camera", "refrigerator, icebox", "remote control, remote", "restaurant, eating house, eating place, eatery", "revolver, six-gun, six-shooter", "rifle", "rocking chair, rocker", "rotisserie", "rubber eraser, rubber, pencil eraser", "rugby ball", "rule, ruler", "running shoe", "safe", "safety pin", "saltshaker, salt shaker", "sandal", "sarong", "sax, saxophone", "scabbard", "scale, weighing machine", "school bus", "schooner", "scoreboard", "screen, crt screen", "screw", "screwdriver", "seat belt, seatbelt", "sewing machine", "shield, buckler", "shoe shop, shoe-shop, shoe store", "shoji", "shopping basket", "shopping cart", "shovel", "shower cap", "shower curtain", "ski", "ski mask", "sleeping bag", "slide rule, slipstick", "sliding door", "slot, one-armed bandit", "snorkel", "snowmobile", "snowplow, snowplough", "soap dispenser", "soccer ball", "sock", "solar dish, solar collector, solar furnace", "sombrero", "soup bowl", "space bar", "space heater", "space shuttle", "spatula", "speedboat", "spider web, spider's web", "spindle", "sports car, sport car", "spotlight, spot", "stage", "steam locomotive", "steel arch bridge", "steel drum", "stethoscope", "stole", "stone wall", "stopwatch, stop watch", "stove", "strainer", "streetcar, tram, tramcar, trolley, trolley car", "stretcher", "studio couch, day bed", "stupa, tope", "submarine, pigboat, sub, u-boat", "suit, suit of clothes", "sundial", "sunglass", "sunglasses, dark glasses, shades", "sunscreen, sunblock, sun blocker", "suspension bridge", "swab, swob, mop", "sweatshirt", "swimming trunks, bathing trunks", "swing", "switch, electric switch, electrical switch", "syringe", "table lamp", "tank, army tank, armored combat vehicle, armoured combat vehicle", "tape player", "teapot", "teddy, teddy bear", "television, television system", "tennis ball", "thatch, thatched roof", "theater curtain, theatre curtain", "thimble", "thresher, thrasher, threshing machine", "throne", "tile roof", "toaster", "tobacco shop, tobacconist shop, tobacconist", "toilet seat", "torch", "totem pole", "tow truck, tow car, wrecker", "toyshop", "tractor", "trailer truck, tractor trailer, trucking rig, rig, articulated lorry, semi", "tray", "trench coat", "tricycle, trike, velocipede", "trimaran", "tripod", "triumphal arch", "trolleybus, trolley coach, trackless trolley", "trombone", "tub, vat", "turnstile", "typewriter keyboard", "umbrella", "unicycle, monocycle", "upright, upright piano", "vacuum, vacuum cleaner", "vase", "vault", "velvet", "vending machine", "vestment", "viaduct", "violin, fiddle", "volleyball", "waffle iron", "wall clock", "wallet, billfold, notecase, pocketbook", "wardrobe, closet, press", "warplane, military plane", "washbasin, handbasin, washbowl, lavabo, wash-hand basin", "washer, automatic washer, washing machine", "water bottle", "water jug", "water tower", "whiskey jug", "whistle", "wig", "window screen", "window shade", "windsor tie", "wine bottle", "wing", "wok", "wooden spoon", "wool, woolen, woollen", "worm fence, snake fence, snake-rail fence, virginia fence", "wreck", "yawl", "yurt", "web site, website, internet site, site", "comic book", "crossword puzzle, crossword", "street sign", "traffic light, traffic signal, stoplight", "book jacket, dust cover, dust jacket, dust wrapper", "menu", "plate", "guacamole", "consomme", "hot pot, hotpot", "trifle", "ice cream, icecream", "ice lolly, lolly, lollipop, popsicle", "french loaf", "bagel, beigel", "pretzel", "cheeseburger", "hotdog, hot dog, red hot", "mashed potato", "head cabbage", "broccoli", "cauliflower", "zucchini, courgette", "spaghetti squash", "acorn squash", "butternut squash", "cucumber, cuke", "artichoke, globe artichoke", "bell pepper", "cardoon", "mushroom", "granny smith", "strawberry", "orange", "lemon", "fig", "pineapple, ananas", "banana", "jackfruit, jak, jack", "custard apple", "pomegranate", "hay", "carbonara", "chocolate sauce, chocolate syrup", "dough", "meat loaf, meatloaf", "pizza, pizza pie", "potpie", "burrito", "red wine", "espresso", "cup", "eggnog", "alp", "bubble", "cliff, drop, drop-off", "coral reef", "geyser", "lakeside, lakeshore", "promontory, headland, head, foreland", "sandbar, sand bar", "seashore, coast, seacoast, sea-coast", "valley, vale", "volcano", "ballplayer, baseball player", "groom, bridegroom", "scuba diver", "rapeseed", "daisy", "yellow lady's slipper, yellow lady-slipper, cypripedium calceolus, cypripedium parviflorum", "corn", "acorn", "hip, rose hip, rosehip", "buckeye, horse chestnut, conker", "coral fungus", "agaric", "gyromitra", "stinkhorn, carrion fungus", "earthstar", "hen-of-the-woods, hen of the woods, polyporus frondosus, grifola frondosa", "bolete", "ear, spike, capitulum", "toilet tissue, toilet paper, bathroom tissue" ]
facebook/dinov2-with-registers-giant-imagenet1k-1-layer
# Vision Transformer (giant-sized model) trained using DINOv2, with registers Vision Transformer (ViT) model introduced in the paper [Vision Transformers Need Registers](https://arxiv.org/abs/2309.16588) by Darcet et al. and first released in [this repository](https://github.com/facebookresearch/dinov2). Disclaimer: The team releasing DINOv2 with registers did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description The Vision Transformer (ViT) is a transformer encoder model (BERT-like) [originally introduced](https://arxiv.org/abs/2010.11929) to do supervised image classification on ImageNet. Next, people figured out ways to make ViT work really well on self-supervised image feature extraction (i.e. learning meaningful features, also called embeddings) on images without requiring any labels. Some example papers here include [DINOv2](https://huggingface.co/papers/2304.07193) and [MAE](https://arxiv.org/abs/2111.06377). The authors of DINOv2 noticed that ViTs have artifacts in attention maps. It’s due to the model using some image patches as “registers”. The authors propose a fix: just add some new tokens (called "register" tokens), which you only use during pre-training (and throw away afterwards). This results in: - no artifacts - interpretable attention maps - and improved performances. <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/dinov2_with_registers_visualization.png" alt="drawing" width="600"/> <small> Visualization of attention maps of various models trained with vs. without registers. Taken from the <a href="https://arxiv.org/abs/2309.16588">original paper</a>. </small> Note that this model does not include any fine-tuned heads. By pre-training the model, it learns an inner representation of images that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled images for instance, you can train a standard classifier by placing a linear layer on top of the pre-trained encoder. One typically places a linear layer on top of the [CLS] token, as the last hidden state of this token can be seen as a representation of an entire image. ## Intended uses & limitations You can use the raw model to classify an image into one of the 1000 possible ImageNet classes. See the [model hub](https://huggingface.co/models?other=dinov2_with_registers) to look for fine-tuned versions on a task that interests you. ### How to use Here is how to use this model: ```python from transformers import AutoImageProcessor, AutoModelForImageClassification import torch from PIL import Image import requests url = 'http://images.cocodataset.org/val2017/000000039769.jpg' image = Image.open(requests.get(url, stream=True).raw) processor = AutoImageProcessor.from_pretrained('facebook/dinov2-with-registers-giant-imagenet1k-1-layer') model = AutoModelForImageClassification.from_pretrained('facebook/dinov2-with-registers-giant-imagenet1k-1-layer') inputs = processor(images=image, return_tensors="pt") with torch.no_grad(): outputs = model(**inputs) logits = outputs.logits class_idx = outputs.logits.argmax(-1).item() print("Predicted class:", model.config.id2label[class_idx]) ``` ### BibTeX entry and citation info ```bibtex @misc{darcet2024visiontransformersneedregisters, title={Vision Transformers Need Registers}, author={Timothée Darcet and Maxime Oquab and Julien Mairal and Piotr Bojanowski}, year={2024}, eprint={2309.16588}, archivePrefix={arXiv}, primaryClass={cs.CV}, url={https://arxiv.org/abs/2309.16588}, } ```
[ "tench, tinca tinca", "goldfish, carassius auratus", "great white shark, white shark, man-eater, man-eating shark, carcharodon carcharias", "tiger shark, galeocerdo cuvieri", "hammerhead, hammerhead shark", "electric ray, crampfish, numbfish, torpedo", "stingray", "cock", "hen", "ostrich, struthio camelus", "brambling, fringilla montifringilla", "goldfinch, carduelis carduelis", "house finch, linnet, carpodacus mexicanus", "junco, snowbird", "indigo bunting, indigo finch, indigo bird, passerina cyanea", "robin, american robin, turdus migratorius", "bulbul", "jay", "magpie", "chickadee", "water ouzel, dipper", "kite", "bald eagle, american eagle, haliaeetus leucocephalus", "vulture", "great grey owl, great gray owl, strix nebulosa", "european fire salamander, salamandra salamandra", "common newt, triturus vulgaris", "eft", "spotted salamander, ambystoma maculatum", "axolotl, mud puppy, ambystoma mexicanum", "bullfrog, rana catesbeiana", "tree frog, tree-frog", "tailed frog, bell toad, ribbed toad, tailed toad, ascaphus trui", "loggerhead, loggerhead turtle, caretta caretta", "leatherback turtle, leatherback, leathery turtle, dermochelys coriacea", "mud turtle", "terrapin", "box turtle, box tortoise", "banded gecko", "common iguana, iguana, iguana iguana", "american chameleon, anole, anolis carolinensis", "whiptail, whiptail lizard", "agama", "frilled lizard, chlamydosaurus kingi", "alligator lizard", "gila monster, heloderma suspectum", "green lizard, lacerta viridis", "african chameleon, chamaeleo chamaeleon", "komodo dragon, komodo lizard, dragon lizard, giant lizard, varanus komodoensis", "african crocodile, nile crocodile, crocodylus niloticus", "american alligator, alligator mississipiensis", "triceratops", "thunder snake, worm snake, carphophis amoenus", "ringneck snake, ring-necked snake, ring snake", "hognose snake, puff adder, sand viper", "green snake, grass snake", "king snake, kingsnake", "garter snake, grass snake", "water snake", "vine snake", "night snake, hypsiglena torquata", "boa constrictor, constrictor constrictor", "rock python, rock snake, python sebae", "indian cobra, naja naja", "green mamba", "sea snake", "horned viper, cerastes, sand viper, horned asp, cerastes cornutus", "diamondback, diamondback rattlesnake, crotalus adamanteus", "sidewinder, horned rattlesnake, crotalus cerastes", "trilobite", "harvestman, daddy longlegs, phalangium opilio", "scorpion", "black and gold garden spider, argiope aurantia", "barn spider, araneus cavaticus", "garden spider, aranea diademata", "black widow, latrodectus mactans", "tarantula", "wolf spider, hunting spider", "tick", "centipede", "black grouse", "ptarmigan", "ruffed grouse, partridge, bonasa umbellus", "prairie chicken, prairie grouse, prairie fowl", "peacock", "quail", "partridge", "african grey, african gray, psittacus erithacus", "macaw", "sulphur-crested cockatoo, kakatoe galerita, cacatua galerita", "lorikeet", "coucal", "bee eater", "hornbill", "hummingbird", "jacamar", "toucan", "drake", "red-breasted merganser, mergus serrator", "goose", "black swan, cygnus atratus", "tusker", "echidna, spiny anteater, anteater", "platypus, duckbill, duckbilled platypus, duck-billed platypus, ornithorhynchus anatinus", "wallaby, brush kangaroo", "koala, koala bear, kangaroo bear, native bear, phascolarctos cinereus", "wombat", "jellyfish", "sea anemone, anemone", "brain coral", "flatworm, platyhelminth", "nematode, nematode worm, roundworm", "conch", "snail", "slug", "sea slug, nudibranch", "chiton, coat-of-mail shell, sea cradle, polyplacophore", "chambered nautilus, pearly nautilus, nautilus", "dungeness crab, cancer magister", "rock crab, cancer irroratus", "fiddler crab", "king crab, alaska crab, alaskan king crab, alaska king crab, paralithodes camtschatica", "american lobster, northern lobster, maine lobster, homarus americanus", "spiny lobster, langouste, rock lobster, crawfish, crayfish, sea crawfish", "crayfish, crawfish, crawdad, crawdaddy", "hermit crab", "isopod", "white stork, ciconia ciconia", "black stork, ciconia nigra", "spoonbill", "flamingo", "little blue heron, egretta caerulea", "american egret, great white heron, egretta albus", "bittern", "crane", "limpkin, aramus pictus", "european gallinule, porphyrio porphyrio", "american coot, marsh hen, mud hen, water hen, fulica americana", "bustard", "ruddy turnstone, arenaria interpres", "red-backed sandpiper, dunlin, erolia alpina", "redshank, tringa totanus", "dowitcher", "oystercatcher, oyster catcher", "pelican", "king penguin, aptenodytes patagonica", "albatross, mollymawk", "grey whale, gray whale, devilfish, eschrichtius gibbosus, eschrichtius robustus", "killer whale, killer, orca, grampus, sea wolf, orcinus orca", "dugong, dugong dugon", "sea lion", "chihuahua", "japanese spaniel", "maltese dog, maltese terrier, maltese", "pekinese, pekingese, peke", "shih-tzu", "blenheim spaniel", "papillon", "toy terrier", "rhodesian ridgeback", "afghan hound, afghan", "basset, basset hound", "beagle", "bloodhound, sleuthhound", "bluetick", "black-and-tan coonhound", "walker hound, walker foxhound", "english foxhound", "redbone", "borzoi, russian wolfhound", "irish wolfhound", "italian greyhound", "whippet", "ibizan hound, ibizan podenco", "norwegian elkhound, elkhound", "otterhound, otter hound", "saluki, gazelle hound", "scottish deerhound, deerhound", "weimaraner", "staffordshire bullterrier, staffordshire bull terrier", "american staffordshire terrier, staffordshire terrier, american pit bull terrier, pit bull terrier", "bedlington terrier", "border terrier", "kerry blue terrier", "irish terrier", "norfolk terrier", "norwich terrier", "yorkshire terrier", "wire-haired fox terrier", "lakeland terrier", "sealyham terrier, sealyham", "airedale, airedale terrier", "cairn, cairn terrier", "australian terrier", "dandie dinmont, dandie dinmont terrier", "boston bull, boston terrier", "miniature schnauzer", "giant schnauzer", "standard schnauzer", "scotch terrier, scottish terrier, scottie", "tibetan terrier, chrysanthemum dog", "silky terrier, sydney silky", "soft-coated wheaten terrier", "west highland white terrier", "lhasa, lhasa apso", "flat-coated retriever", "curly-coated retriever", "golden retriever", "labrador retriever", "chesapeake bay retriever", "german short-haired pointer", "vizsla, hungarian pointer", "english setter", "irish setter, red setter", "gordon setter", "brittany spaniel", "clumber, clumber spaniel", "english springer, english springer spaniel", "welsh springer spaniel", "cocker spaniel, english cocker spaniel, cocker", "sussex spaniel", "irish water spaniel", "kuvasz", "schipperke", "groenendael", "malinois", "briard", "kelpie", "komondor", "old english sheepdog, bobtail", "shetland sheepdog, shetland sheep dog, shetland", "collie", "border collie", "bouvier des flandres, bouviers des flandres", "rottweiler", "german shepherd, german shepherd dog, german police dog, alsatian", "doberman, doberman pinscher", "miniature pinscher", "greater swiss mountain dog", "bernese mountain dog", "appenzeller", "entlebucher", "boxer", "bull mastiff", "tibetan mastiff", "french bulldog", "great dane", "saint bernard, st bernard", "eskimo dog, husky", "malamute, malemute, alaskan malamute", "siberian husky", "dalmatian, coach dog, carriage dog", "affenpinscher, monkey pinscher, monkey dog", "basenji", "pug, pug-dog", "leonberg", "newfoundland, newfoundland dog", "great pyrenees", "samoyed, samoyede", "pomeranian", "chow, chow chow", "keeshond", "brabancon griffon", "pembroke, pembroke welsh corgi", "cardigan, cardigan welsh corgi", "toy poodle", "miniature poodle", "standard poodle", "mexican hairless", "timber wolf, grey wolf, gray wolf, canis lupus", "white wolf, arctic wolf, canis lupus tundrarum", "red wolf, maned wolf, canis rufus, canis niger", "coyote, prairie wolf, brush wolf, canis latrans", "dingo, warrigal, warragal, canis dingo", "dhole, cuon alpinus", "african hunting dog, hyena dog, cape hunting dog, lycaon pictus", "hyena, hyaena", "red fox, vulpes vulpes", "kit fox, vulpes macrotis", "arctic fox, white fox, alopex lagopus", "grey fox, gray fox, urocyon cinereoargenteus", "tabby, tabby cat", "tiger cat", "persian cat", "siamese cat, siamese", "egyptian cat", "cougar, puma, catamount, mountain lion, painter, panther, felis concolor", "lynx, catamount", "leopard, panthera pardus", "snow leopard, ounce, panthera uncia", "jaguar, panther, panthera onca, felis onca", "lion, king of beasts, panthera leo", "tiger, panthera tigris", "cheetah, chetah, acinonyx jubatus", "brown bear, bruin, ursus arctos", "american black bear, black bear, ursus americanus, euarctos americanus", "ice bear, polar bear, ursus maritimus, thalarctos maritimus", "sloth bear, melursus ursinus, ursus ursinus", "mongoose", "meerkat, mierkat", "tiger beetle", "ladybug, ladybeetle, lady beetle, ladybird, ladybird beetle", "ground beetle, carabid beetle", "long-horned beetle, longicorn, longicorn beetle", "leaf beetle, chrysomelid", "dung beetle", "rhinoceros beetle", "weevil", "fly", "bee", "ant, emmet, pismire", "grasshopper, hopper", "cricket", "walking stick, walkingstick, stick insect", "cockroach, roach", "mantis, mantid", "cicada, cicala", "leafhopper", "lacewing, lacewing fly", "dragonfly, darning needle, devil's darning needle, sewing needle, snake feeder, snake doctor, mosquito hawk, skeeter hawk", "damselfly", "admiral", "ringlet, ringlet butterfly", "monarch, monarch butterfly, milkweed butterfly, danaus plexippus", "cabbage butterfly", "sulphur butterfly, sulfur butterfly", "lycaenid, lycaenid butterfly", "starfish, sea star", "sea urchin", "sea cucumber, holothurian", "wood rabbit, cottontail, cottontail rabbit", "hare", "angora, angora rabbit", "hamster", "porcupine, hedgehog", "fox squirrel, eastern fox squirrel, sciurus niger", "marmot", "beaver", "guinea pig, cavia cobaya", "sorrel", "zebra", "hog, pig, grunter, squealer, sus scrofa", "wild boar, boar, sus scrofa", "warthog", "hippopotamus, hippo, river horse, hippopotamus amphibius", "ox", "water buffalo, water ox, asiatic buffalo, bubalus bubalis", "bison", "ram, tup", "bighorn, bighorn sheep, cimarron, rocky mountain bighorn, rocky mountain sheep, ovis canadensis", "ibex, capra ibex", "hartebeest", "impala, aepyceros melampus", "gazelle", "arabian camel, dromedary, camelus dromedarius", "llama", "weasel", "mink", "polecat, fitch, foulmart, foumart, mustela putorius", "black-footed ferret, ferret, mustela nigripes", "otter", "skunk, polecat, wood pussy", "badger", "armadillo", "three-toed sloth, ai, bradypus tridactylus", "orangutan, orang, orangutang, pongo pygmaeus", "gorilla, gorilla gorilla", "chimpanzee, chimp, pan troglodytes", "gibbon, hylobates lar", "siamang, hylobates syndactylus, symphalangus syndactylus", "guenon, guenon monkey", "patas, hussar monkey, erythrocebus patas", "baboon", "macaque", "langur", "colobus, colobus monkey", "proboscis monkey, nasalis larvatus", "marmoset", "capuchin, ringtail, cebus capucinus", "howler monkey, howler", "titi, titi monkey", "spider monkey, ateles geoffroyi", "squirrel monkey, saimiri sciureus", "madagascar cat, ring-tailed lemur, lemur catta", "indri, indris, indri indri, indri brevicaudatus", "indian elephant, elephas maximus", "african elephant, loxodonta africana", "lesser panda, red panda, panda, bear cat, cat bear, ailurus fulgens", "giant panda, panda, panda bear, coon bear, ailuropoda melanoleuca", "barracouta, snoek", "eel", "coho, cohoe, coho salmon, blue jack, silver salmon, oncorhynchus kisutch", "rock beauty, holocanthus tricolor", "anemone fish", "sturgeon", "gar, garfish, garpike, billfish, lepisosteus osseus", "lionfish", "puffer, pufferfish, blowfish, globefish", "abacus", "abaya", "academic gown, academic robe, judge's robe", "accordion, piano accordion, squeeze box", "acoustic guitar", "aircraft carrier, carrier, flattop, attack aircraft carrier", "airliner", "airship, dirigible", "altar", "ambulance", "amphibian, amphibious vehicle", "analog clock", "apiary, bee house", "apron", "ashcan, trash can, garbage can, wastebin, ash bin, ash-bin, ashbin, dustbin, trash barrel, trash bin", "assault rifle, assault gun", "backpack, back pack, knapsack, packsack, rucksack, haversack", "bakery, bakeshop, bakehouse", "balance beam, beam", "balloon", "ballpoint, ballpoint pen, ballpen, biro", "band aid", "banjo", "bannister, banister, balustrade, balusters, handrail", "barbell", "barber chair", "barbershop", "barn", "barometer", "barrel, cask", "barrow, garden cart, lawn cart, wheelbarrow", "baseball", "basketball", "bassinet", "bassoon", "bathing cap, swimming cap", "bath towel", "bathtub, bathing tub, bath, tub", "beach wagon, station wagon, wagon, estate car, beach waggon, station waggon, waggon", "beacon, lighthouse, beacon light, pharos", "beaker", "bearskin, busby, shako", "beer bottle", "beer glass", "bell cote, bell cot", "bib", "bicycle-built-for-two, tandem bicycle, tandem", "bikini, two-piece", "binder, ring-binder", "binoculars, field glasses, opera glasses", "birdhouse", "boathouse", "bobsled, bobsleigh, bob", "bolo tie, bolo, bola tie, bola", "bonnet, poke bonnet", "bookcase", "bookshop, bookstore, bookstall", "bottlecap", "bow", "bow tie, bow-tie, bowtie", "brass, memorial tablet, plaque", "brassiere, bra, bandeau", "breakwater, groin, groyne, mole, bulwark, seawall, jetty", "breastplate, aegis, egis", "broom", "bucket, pail", "buckle", "bulletproof vest", "bullet train, bullet", "butcher shop, meat market", "cab, hack, taxi, taxicab", "caldron, cauldron", "candle, taper, wax light", "cannon", "canoe", "can opener, tin opener", "cardigan", "car mirror", "carousel, carrousel, merry-go-round, roundabout, whirligig", "carpenter's kit, tool kit", "carton", "car wheel", "cash machine, cash dispenser, automated teller machine, automatic teller machine, automated teller, automatic teller, atm", "cassette", "cassette player", "castle", "catamaran", "cd player", "cello, violoncello", "cellular telephone, cellular phone, cellphone, cell, mobile phone", "chain", "chainlink fence", "chain mail, ring mail, mail, chain armor, chain armour, ring armor, ring armour", "chain saw, chainsaw", "chest", "chiffonier, commode", "chime, bell, gong", "china cabinet, china closet", "christmas stocking", "church, church building", "cinema, movie theater, movie theatre, movie house, picture palace", "cleaver, meat cleaver, chopper", "cliff dwelling", "cloak", "clog, geta, patten, sabot", "cocktail shaker", "coffee mug", "coffeepot", "coil, spiral, volute, whorl, helix", "combination lock", "computer keyboard, keypad", "confectionery, confectionary, candy store", "container ship, containership, container vessel", "convertible", "corkscrew, bottle screw", "cornet, horn, trumpet, trump", "cowboy boot", "cowboy hat, ten-gallon hat", "cradle", "crane", "crash helmet", "crate", "crib, cot", "crock pot", "croquet ball", "crutch", "cuirass", "dam, dike, dyke", "desk", "desktop computer", "dial telephone, dial phone", "diaper, nappy, napkin", "digital clock", "digital watch", "dining table, board", "dishrag, dishcloth", "dishwasher, dish washer, dishwashing machine", "disk brake, disc brake", "dock, dockage, docking facility", "dogsled, dog sled, dog sleigh", "dome", "doormat, welcome mat", "drilling platform, offshore rig", "drum, membranophone, tympan", "drumstick", "dumbbell", "dutch oven", "electric fan, blower", "electric guitar", "electric locomotive", "entertainment center", "envelope", "espresso maker", "face powder", "feather boa, boa", "file, file cabinet, filing cabinet", "fireboat", "fire engine, fire truck", "fire screen, fireguard", "flagpole, flagstaff", "flute, transverse flute", "folding chair", "football helmet", "forklift", "fountain", "fountain pen", "four-poster", "freight car", "french horn, horn", "frying pan, frypan, skillet", "fur coat", "garbage truck, dustcart", "gasmask, respirator, gas helmet", "gas pump, gasoline pump, petrol pump, island dispenser", "goblet", "go-kart", "golf ball", "golfcart, golf cart", "gondola", "gong, tam-tam", "gown", "grand piano, grand", "greenhouse, nursery, glasshouse", "grille, radiator grille", "grocery store, grocery, food market, market", "guillotine", "hair slide", "hair spray", "half track", "hammer", "hamper", "hand blower, blow dryer, blow drier, hair dryer, hair drier", "hand-held computer, hand-held microcomputer", "handkerchief, hankie, hanky, hankey", "hard disc, hard disk, fixed disk", "harmonica, mouth organ, harp, mouth harp", "harp", "harvester, reaper", "hatchet", "holster", "home theater, home theatre", "honeycomb", "hook, claw", "hoopskirt, crinoline", "horizontal bar, high bar", "horse cart, horse-cart", "hourglass", "ipod", "iron, smoothing iron", "jack-o'-lantern", "jean, blue jean, denim", "jeep, landrover", "jersey, t-shirt, tee shirt", "jigsaw puzzle", "jinrikisha, ricksha, rickshaw", "joystick", "kimono", "knee pad", "knot", "lab coat, laboratory coat", "ladle", "lampshade, lamp shade", "laptop, laptop computer", "lawn mower, mower", "lens cap, lens cover", "letter opener, paper knife, paperknife", "library", "lifeboat", "lighter, light, igniter, ignitor", "limousine, limo", "liner, ocean liner", "lipstick, lip rouge", "loafer", "lotion", "loudspeaker, speaker, speaker unit, loudspeaker system, speaker system", "loupe, jeweler's loupe", "lumbermill, sawmill", "magnetic compass", "mailbag, postbag", "mailbox, letter box", "maillot", "maillot, tank suit", "manhole cover", "maraca", "marimba, xylophone", "mask", "matchstick", "maypole", "maze, labyrinth", "measuring cup", "medicine chest, medicine cabinet", "megalith, megalithic structure", "microphone, mike", "microwave, microwave oven", "military uniform", "milk can", "minibus", "miniskirt, mini", "minivan", "missile", "mitten", "mixing bowl", "mobile home, manufactured home", "model t", "modem", "monastery", "monitor", "moped", "mortar", "mortarboard", "mosque", "mosquito net", "motor scooter, scooter", "mountain bike, all-terrain bike, off-roader", "mountain tent", "mouse, computer mouse", "mousetrap", "moving van", "muzzle", "nail", "neck brace", "necklace", "nipple", "notebook, notebook computer", "obelisk", "oboe, hautboy, hautbois", "ocarina, sweet potato", "odometer, hodometer, mileometer, milometer", "oil filter", "organ, pipe organ", "oscilloscope, scope, cathode-ray oscilloscope, cro", "overskirt", "oxcart", "oxygen mask", "packet", "paddle, boat paddle", "paddlewheel, paddle wheel", "padlock", "paintbrush", "pajama, pyjama, pj's, jammies", "palace", "panpipe, pandean pipe, syrinx", "paper towel", "parachute, chute", "parallel bars, bars", "park bench", "parking meter", "passenger car, coach, carriage", "patio, terrace", "pay-phone, pay-station", "pedestal, plinth, footstall", "pencil box, pencil case", "pencil sharpener", "perfume, essence", "petri dish", "photocopier", "pick, plectrum, plectron", "pickelhaube", "picket fence, paling", "pickup, pickup truck", "pier", "piggy bank, penny bank", "pill bottle", "pillow", "ping-pong ball", "pinwheel", "pirate, pirate ship", "pitcher, ewer", "plane, carpenter's plane, woodworking plane", "planetarium", "plastic bag", "plate rack", "plow, plough", "plunger, plumber's helper", "polaroid camera, polaroid land camera", "pole", "police van, police wagon, paddy wagon, patrol wagon, wagon, black maria", "poncho", "pool table, billiard table, snooker table", "pop bottle, soda bottle", "pot, flowerpot", "potter's wheel", "power drill", "prayer rug, prayer mat", "printer", "prison, prison house", "projectile, missile", "projector", "puck, hockey puck", "punching bag, punch bag, punching ball, punchball", "purse", "quill, quill pen", "quilt, comforter, comfort, puff", "racer, race car, racing car", "racket, racquet", "radiator", "radio, wireless", "radio telescope, radio reflector", "rain barrel", "recreational vehicle, rv, r.v.", "reel", "reflex camera", "refrigerator, icebox", "remote control, remote", "restaurant, eating house, eating place, eatery", "revolver, six-gun, six-shooter", "rifle", "rocking chair, rocker", "rotisserie", "rubber eraser, rubber, pencil eraser", "rugby ball", "rule, ruler", "running shoe", "safe", "safety pin", "saltshaker, salt shaker", "sandal", "sarong", "sax, saxophone", "scabbard", "scale, weighing machine", "school bus", "schooner", "scoreboard", "screen, crt screen", "screw", "screwdriver", "seat belt, seatbelt", "sewing machine", "shield, buckler", "shoe shop, shoe-shop, shoe store", "shoji", "shopping basket", "shopping cart", "shovel", "shower cap", "shower curtain", "ski", "ski mask", "sleeping bag", "slide rule, slipstick", "sliding door", "slot, one-armed bandit", "snorkel", "snowmobile", "snowplow, snowplough", "soap dispenser", "soccer ball", "sock", "solar dish, solar collector, solar furnace", "sombrero", "soup bowl", "space bar", "space heater", "space shuttle", "spatula", "speedboat", "spider web, spider's web", "spindle", "sports car, sport car", "spotlight, spot", "stage", "steam locomotive", "steel arch bridge", "steel drum", "stethoscope", "stole", "stone wall", "stopwatch, stop watch", "stove", "strainer", "streetcar, tram, tramcar, trolley, trolley car", "stretcher", "studio couch, day bed", "stupa, tope", "submarine, pigboat, sub, u-boat", "suit, suit of clothes", "sundial", "sunglass", "sunglasses, dark glasses, shades", "sunscreen, sunblock, sun blocker", "suspension bridge", "swab, swob, mop", "sweatshirt", "swimming trunks, bathing trunks", "swing", "switch, electric switch, electrical switch", "syringe", "table lamp", "tank, army tank, armored combat vehicle, armoured combat vehicle", "tape player", "teapot", "teddy, teddy bear", "television, television system", "tennis ball", "thatch, thatched roof", "theater curtain, theatre curtain", "thimble", "thresher, thrasher, threshing machine", "throne", "tile roof", "toaster", "tobacco shop, tobacconist shop, tobacconist", "toilet seat", "torch", "totem pole", "tow truck, tow car, wrecker", "toyshop", "tractor", "trailer truck, tractor trailer, trucking rig, rig, articulated lorry, semi", "tray", "trench coat", "tricycle, trike, velocipede", "trimaran", "tripod", "triumphal arch", "trolleybus, trolley coach, trackless trolley", "trombone", "tub, vat", "turnstile", "typewriter keyboard", "umbrella", "unicycle, monocycle", "upright, upright piano", "vacuum, vacuum cleaner", "vase", "vault", "velvet", "vending machine", "vestment", "viaduct", "violin, fiddle", "volleyball", "waffle iron", "wall clock", "wallet, billfold, notecase, pocketbook", "wardrobe, closet, press", "warplane, military plane", "washbasin, handbasin, washbowl, lavabo, wash-hand basin", "washer, automatic washer, washing machine", "water bottle", "water jug", "water tower", "whiskey jug", "whistle", "wig", "window screen", "window shade", "windsor tie", "wine bottle", "wing", "wok", "wooden spoon", "wool, woolen, woollen", "worm fence, snake fence, snake-rail fence, virginia fence", "wreck", "yawl", "yurt", "web site, website, internet site, site", "comic book", "crossword puzzle, crossword", "street sign", "traffic light, traffic signal, stoplight", "book jacket, dust cover, dust jacket, dust wrapper", "menu", "plate", "guacamole", "consomme", "hot pot, hotpot", "trifle", "ice cream, icecream", "ice lolly, lolly, lollipop, popsicle", "french loaf", "bagel, beigel", "pretzel", "cheeseburger", "hotdog, hot dog, red hot", "mashed potato", "head cabbage", "broccoli", "cauliflower", "zucchini, courgette", "spaghetti squash", "acorn squash", "butternut squash", "cucumber, cuke", "artichoke, globe artichoke", "bell pepper", "cardoon", "mushroom", "granny smith", "strawberry", "orange", "lemon", "fig", "pineapple, ananas", "banana", "jackfruit, jak, jack", "custard apple", "pomegranate", "hay", "carbonara", "chocolate sauce, chocolate syrup", "dough", "meat loaf, meatloaf", "pizza, pizza pie", "potpie", "burrito", "red wine", "espresso", "cup", "eggnog", "alp", "bubble", "cliff, drop, drop-off", "coral reef", "geyser", "lakeside, lakeshore", "promontory, headland, head, foreland", "sandbar, sand bar", "seashore, coast, seacoast, sea-coast", "valley, vale", "volcano", "ballplayer, baseball player", "groom, bridegroom", "scuba diver", "rapeseed", "daisy", "yellow lady's slipper, yellow lady-slipper, cypripedium calceolus, cypripedium parviflorum", "corn", "acorn", "hip, rose hip, rosehip", "buckeye, horse chestnut, conker", "coral fungus", "agaric", "gyromitra", "stinkhorn, carrion fungus", "earthstar", "hen-of-the-woods, hen of the woods, polyporus frondosus, grifola frondosa", "bolete", "ear, spike, capitulum", "toilet tissue, toilet paper, bathroom tissue" ]
tribber93/my-trash-classification
# Trash Image Classification using Vision Transformer (ViT) This repository contains an implementation of an image classification model using a pre-trained Vision Transformer (ViT) model from Hugging Face. The model is fine-tuned to classify images into six categories: cardboard, glass, metal, paper, plastic, and trash. ## Dataset The dataset consists of images from six categories from [`garythung/trashnet`](https://huggingface.co/datasets/garythung/trashnet) with the following distribution: - Cardboard: 806 images - Glass: 1002 images - Metal: 820 images - Paper: 1188 images - Plastic: 964 images - Trash: 274 images ## Model We utilize the pre-trained Vision Transformer model [`google/vit-base-patch16-224-in21k`](https://huggingface.co/google/vit-base-patch16-224-in21k) from Hugging Face for image classification. The model is fine-tuned on the dataset to achieve optimal performance. The trained model is accessible on Hugging Face Hub at: [tribber93/my-trash-classification](https://huggingface.co/tribber93/my-trash-classification) ## Usage To use the model for inference, follow these steps: ```python import torch import requests from PIL import Image from transformers import AutoModelForImageClassification, AutoImageProcessor url = 'https://cdn.grid.id/crop/0x0:0x0/700x465/photo/grid/original/127308_kaleng-bekas.jpg' image = Image.open(requests.get(url, stream=True).raw) model_name = "tribber93/my-trash-classification" model = AutoModelForImageClassification.from_pretrained(model_name) processor = AutoImageProcessor.from_pretrained(model_name) inputs = processor(image, return_tensors="pt") outputs = model(**inputs) predictions = torch.argmax(outputs.logits, dim=-1) print("Predicted class:", model.config.id2label[predictions.item()]) ``` ## Results After training, the model achieved the following performance: | Epoch | Training Loss | Validation Loss | Accuracy | |-------|---------------|-----------------|----------| | 1 | 3.3200 | 0.7011 | 86.25% | | 2 | 1.6611 | 0.4298 | 91.49% | | 3 | 1.4353 | 0.3563 | 94.26% |
[ "cardboard", "glass", "metal", "paper", "plastic", "trash" ]
maxsop/food_classifier
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # maxsop/food_classifier This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.3005 - Validation Loss: 0.2724 - Train Accuracy: 0.928 - Epoch: 4 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 3e-05, 'decay_steps': 20000, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': np.float32(0.9), 'beta_2': np.float32(0.999), 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Accuracy | Epoch | |:----------:|:---------------:|:--------------:|:-----:| | 1.1637 | 0.7682 | 0.897 | 0 | | 0.6543 | 0.5160 | 0.907 | 1 | | 0.4626 | 0.4016 | 0.907 | 2 | | 0.3701 | 0.3274 | 0.918 | 3 | | 0.3005 | 0.2724 | 0.928 | 4 | ### Framework versions - Transformers 4.47.1 - TensorFlow 2.18.0 - Datasets 3.2.0 - Tokenizers 0.21.0
[ "apple_pie", "baby_back_ribs", "bruschetta", "waffles", "caesar_salad", "cannoli", "caprese_salad", "carrot_cake", "ceviche", "cheesecake", "cheese_plate", "chicken_curry", "chicken_quesadilla", "baklava", "chicken_wings", "chocolate_cake", "chocolate_mousse", "churros", "clam_chowder", "club_sandwich", "crab_cakes", "creme_brulee", "croque_madame", "cup_cakes", "beef_carpaccio", "deviled_eggs", "donuts", "dumplings", "edamame", "eggs_benedict", "escargots", "falafel", "filet_mignon", "fish_and_chips", "foie_gras", "beef_tartare", "french_fries", "french_onion_soup", "french_toast", "fried_calamari", "fried_rice", "frozen_yogurt", "garlic_bread", "gnocchi", "greek_salad", "grilled_cheese_sandwich", "beet_salad", "grilled_salmon", "guacamole", "gyoza", "hamburger", "hot_and_sour_soup", "hot_dog", "huevos_rancheros", "hummus", "ice_cream", "lasagna", "beignets", "lobster_bisque", "lobster_roll_sandwich", "macaroni_and_cheese", "macarons", "miso_soup", "mussels", "nachos", "omelette", "onion_rings", "oysters", "bibimbap", "pad_thai", "paella", "pancakes", "panna_cotta", "peking_duck", "pho", "pizza", "pork_chop", "poutine", "prime_rib", "bread_pudding", "pulled_pork_sandwich", "ramen", "ravioli", "red_velvet_cake", "risotto", "samosa", "sashimi", "scallops", "seaweed_salad", "shrimp_and_grits", "breakfast_burrito", "spaghetti_bolognese", "spaghetti_carbonara", "spring_rolls", "steak", "strawberry_shortcake", "sushi", "tacos", "takoyaki", "tiramisu", "tuna_tartare" ]
YunsangJoo/vit-base-oxford-iiit-pets
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-oxford-iiit-pets This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the pcuenq/oxford-pets dataset. It achieves the following results on the evaluation set: - Loss: 0.1843 - Accuracy: 0.9472 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.4007 | 1.0 | 370 | 0.2966 | 0.9229 | | 0.2175 | 2.0 | 740 | 0.2327 | 0.9269 | | 0.1569 | 3.0 | 1110 | 0.2143 | 0.9378 | | 0.1353 | 4.0 | 1480 | 0.2093 | 0.9323 | | 0.1428 | 5.0 | 1850 | 0.2062 | 0.9350 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.1.0 - Datasets 3.2.0 - Tokenizers 0.21.0
[ "siamese", "birman", "shiba inu", "staffordshire bull terrier", "basset hound", "bombay", "japanese chin", "chihuahua", "german shorthaired", "pomeranian", "beagle", "english cocker spaniel", "american pit bull terrier", "ragdoll", "persian", "egyptian mau", "miniature pinscher", "sphynx", "maine coon", "keeshond", "yorkshire terrier", "havanese", "leonberger", "wheaten terrier", "american bulldog", "english setter", "boxer", "newfoundland", "bengal", "samoyed", "british shorthair", "great pyrenees", "abyssinian", "pug", "saint bernard", "russian blue", "scottish terrier" ]
dantepalacio/my_awesome_food_model
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_food_model This model is a fine-tuned version of [microsoft/swinv2-tiny-patch4-window16-256](https://huggingface.co/microsoft/swinv2-tiny-patch4-window16-256) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.6589 - Accuracy: 0.7124 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 3.2193 | 1.0 | 76 | 0.7354 | 0.6446 | | 2.7694 | 2.0 | 152 | 0.6906 | 0.6909 | | 2.9082 | 2.9637 | 225 | 0.6589 | 0.7124 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0
[ "0", "1", "2", "moderate_condition", "modern_renovation", "needs_repair" ]
dima806/pokemons_1000_types_image_detection
Returns pokemon name (from the 1,000 pokemons list) with about 94.1% accuracy given an image. See https://www.kaggle.com/code/dima806/pokemons-1000-types-image-detection-vit for details. ``` Accuracy: 0.9413 F1 Score: 0.9389 Classification report: precision recall f1-score support abomasnow 1.0000 1.0000 1.0000 16 abra 0.5000 0.9375 0.6522 16 absol 1.0000 1.0000 1.0000 16 accelgor 1.0000 1.0000 1.0000 16 aegislash-shield 1.0000 1.0000 1.0000 16 aerodactyl 0.8182 0.5625 0.6667 16 aggron 1.0000 1.0000 1.0000 16 aipom 0.8421 1.0000 0.9143 16 alakazam 0.4444 0.7500 0.5581 16 alcremie 1.0000 1.0000 1.0000 16 alomomola 0.9412 1.0000 0.9697 16 altaria 1.0000 0.9375 0.9677 16 amaura 1.0000 1.0000 1.0000 16 ambipom 1.0000 1.0000 1.0000 16 amoonguss 1.0000 1.0000 1.0000 16 ampharos 1.0000 0.6875 0.8148 16 annihilape 1.0000 1.0000 1.0000 16 anorith 1.0000 0.9375 0.9677 16 appletun 1.0000 1.0000 1.0000 16 applin 0.9412 1.0000 0.9697 16 araquanid 1.0000 1.0000 1.0000 16 arbok 1.0000 0.4375 0.6087 16 arboliva 1.0000 1.0000 1.0000 16 arcanine 0.3721 1.0000 0.5424 16 arceus 1.0000 1.0000 1.0000 16 archen 1.0000 1.0000 1.0000 16 archeops 1.0000 1.0000 1.0000 16 arctibax 1.0000 1.0000 1.0000 16 arctovish 1.0000 1.0000 1.0000 16 arctozolt 1.0000 1.0000 1.0000 16 ariados 1.0000 1.0000 1.0000 16 armaldo 1.0000 1.0000 1.0000 16 armarouge 1.0000 1.0000 1.0000 16 aromatisse 1.0000 1.0000 1.0000 16 aron 0.9412 1.0000 0.9697 16 arrokuda 1.0000 1.0000 1.0000 16 articuno 0.5357 0.9375 0.6818 16 audino 1.0000 1.0000 1.0000 16 aurorus 1.0000 1.0000 1.0000 16 avalugg 1.0000 1.0000 1.0000 16 axew 0.9412 1.0000 0.9697 16 azelf 1.0000 1.0000 1.0000 16 azumarill 1.0000 1.0000 1.0000 16 azurill 0.8889 1.0000 0.9412 16 bagon 1.0000 1.0000 1.0000 16 baltoy 1.0000 1.0000 1.0000 16 banette 1.0000 0.9375 0.9677 16 barbaracle 1.0000 1.0000 1.0000 16 barboach 1.0000 1.0000 1.0000 16 barraskewda 1.0000 1.0000 1.0000 16 basculegion-male 1.0000 1.0000 1.0000 16 basculin-red-striped 1.0000 1.0000 1.0000 16 bastiodon 1.0000 1.0000 1.0000 16 baxcalibur 1.0000 1.0000 1.0000 16 bayleef 1.0000 0.8125 0.8966 16 beartic 1.0000 1.0000 1.0000 16 beautifly 1.0000 1.0000 1.0000 16 beedrill 1.0000 0.6875 0.8148 16 beheeyem 1.0000 1.0000 1.0000 16 beldum 0.9375 0.9375 0.9375 16 bellibolt 1.0000 1.0000 1.0000 16 bellossom 1.0000 0.9375 0.9677 16 bellsprout 1.0000 0.8125 0.8966 16 bergmite 1.0000 1.0000 1.0000 16 bewear 1.0000 1.0000 1.0000 16 bibarel 1.0000 0.8750 0.9333 16 bidoof 0.8889 1.0000 0.9412 16 binacle 1.0000 1.0000 1.0000 16 bisharp 1.0000 1.0000 1.0000 16 blacephalon 1.0000 1.0000 1.0000 16 blastoise 0.7143 0.6250 0.6667 16 blaziken 1.0000 1.0000 1.0000 16 blipbug 1.0000 1.0000 1.0000 16 blissey 0.4324 1.0000 0.6038 16 blitzle 1.0000 1.0000 1.0000 16 boldore 1.0000 1.0000 1.0000 16 boltund 0.9412 1.0000 0.9697 16 bombirdier 1.0000 1.0000 1.0000 16 bonsly 1.0000 1.0000 1.0000 16 bouffalant 1.0000 1.0000 1.0000 16 bounsweet 1.0000 1.0000 1.0000 16 braixen 0.9412 1.0000 0.9697 16 brambleghast 1.0000 1.0000 1.0000 16 bramblin 1.0000 1.0000 1.0000 16 braviary 1.0000 1.0000 1.0000 16 breloom 1.0000 1.0000 1.0000 16 brionne 1.0000 1.0000 1.0000 16 bronzong 1.0000 1.0000 1.0000 16 bronzor 1.0000 1.0000 1.0000 16 brute-bonnet 1.0000 1.0000 1.0000 16 bruxish 1.0000 1.0000 1.0000 16 budew 0.6957 1.0000 0.8205 16 buizel 0.9412 1.0000 0.9697 16 bulbasaur 0.7857 0.6875 0.7333 16 buneary 0.9412 1.0000 0.9697 16 bunnelby 1.0000 1.0000 1.0000 16 burmy 1.0000 1.0000 1.0000 16 butterfree 0.9333 0.8750 0.9032 16 buzzwole 0.9412 1.0000 0.9697 16 cacnea 1.0000 1.0000 1.0000 16 cacturne 0.9412 1.0000 0.9697 16 calyrex 1.0000 1.0000 1.0000 16 camerupt 1.0000 1.0000 1.0000 16 capsakid 1.0000 1.0000 1.0000 16 carbink 1.0000 1.0000 1.0000 16 carkol 1.0000 1.0000 1.0000 16 carnivine 0.9412 1.0000 0.9697 16 carracosta 1.0000 0.9375 0.9677 16 carvanha 1.0000 1.0000 1.0000 16 cascoon 1.0000 0.8750 0.9333 16 castform 1.0000 1.0000 1.0000 16 caterpie 0.9286 0.8125 0.8667 16 celebi 1.0000 0.8750 0.9333 16 celesteela 1.0000 1.0000 1.0000 16 centiskorch 1.0000 1.0000 1.0000 16 ceruledge 1.0000 1.0000 1.0000 16 cetitan 1.0000 1.0000 1.0000 16 cetoddle 1.0000 1.0000 1.0000 16 chandelure 1.0000 1.0000 1.0000 16 chansey 0.8182 0.5625 0.6667 16 charcadet 1.0000 1.0000 1.0000 16 charizard 1.0000 0.1250 0.2222 16 charjabug 1.0000 1.0000 1.0000 16 charmander 0.5500 0.6875 0.6111 16 charmeleon 0.9091 0.6250 0.7407 16 chatot 1.0000 1.0000 1.0000 16 cherrim 0.9412 1.0000 0.9697 16 cherubi 1.0000 1.0000 1.0000 16 chesnaught 1.0000 1.0000 1.0000 16 chespin 1.0000 1.0000 1.0000 16 chewtle 1.0000 1.0000 1.0000 16 chikorita 1.0000 1.0000 1.0000 16 chimchar 0.9412 1.0000 0.9697 16 chimecho 0.9412 1.0000 0.9697 16 chinchou 1.0000 1.0000 1.0000 16 chingling 1.0000 1.0000 1.0000 16 cinccino 1.0000 1.0000 1.0000 16 cinderace 1.0000 1.0000 1.0000 16 clamperl 1.0000 0.8750 0.9333 16 clauncher 1.0000 1.0000 1.0000 16 clawitzer 1.0000 1.0000 1.0000 16 claydol 1.0000 1.0000 1.0000 16 clefable 0.9091 0.6250 0.7407 16 clefairy 0.5500 0.6875 0.6111 16 cleffa 0.8333 0.9375 0.8824 16 clobbopus 1.0000 1.0000 1.0000 16 clodsire 1.0000 1.0000 1.0000 16 cloyster 0.7222 0.8125 0.7647 16 coalossal 1.0000 1.0000 1.0000 16 cobalion 1.0000 1.0000 1.0000 16 cofagrigus 1.0000 1.0000 1.0000 16 combee 0.8889 1.0000 0.9412 16 combusken 1.0000 1.0000 1.0000 16 comfey 1.0000 1.0000 1.0000 16 conkeldurr 1.0000 1.0000 1.0000 16 copperajah 1.0000 1.0000 1.0000 16 corphish 1.0000 1.0000 1.0000 16 corsola 1.0000 1.0000 1.0000 16 corviknight 0.8889 1.0000 0.9412 16 corvisquire 1.0000 0.8750 0.9333 16 cosmoem 1.0000 1.0000 1.0000 16 cosmog 1.0000 1.0000 1.0000 16 cottonee 1.0000 1.0000 1.0000 16 crabominable 1.0000 1.0000 1.0000 16 crabrawler 1.0000 1.0000 1.0000 16 cradily 1.0000 1.0000 1.0000 16 cramorant 1.0000 1.0000 1.0000 16 cranidos 1.0000 1.0000 1.0000 16 crawdaunt 1.0000 1.0000 1.0000 16 cresselia 1.0000 1.0000 1.0000 16 croagunk 0.9412 1.0000 0.9697 16 crobat 0.5161 1.0000 0.6809 16 crocalor 1.0000 1.0000 1.0000 16 croconaw 0.9167 0.6875 0.7857 16 crustle 0.8889 1.0000 0.9412 16 cryogonal 1.0000 1.0000 1.0000 16 cubchoo 1.0000 1.0000 1.0000 16 cubone 1.0000 0.4375 0.6087 16 cufant 1.0000 1.0000 1.0000 16 cursola 1.0000 1.0000 1.0000 16 cutiefly 1.0000 1.0000 1.0000 16 cyclizar 1.0000 1.0000 1.0000 16 cyndaquil 0.8889 1.0000 0.9412 16 dachsbun 1.0000 1.0000 1.0000 16 darkrai 1.0000 1.0000 1.0000 16 darmanitan-standard 1.0000 1.0000 1.0000 16 dartrix 1.0000 0.8750 0.9333 16 darumaka 1.0000 1.0000 1.0000 16 decidueye 1.0000 1.0000 1.0000 16 dedenne 1.0000 1.0000 1.0000 16 deerling 1.0000 1.0000 1.0000 16 deino 1.0000 1.0000 1.0000 16 delcatty 1.0000 1.0000 1.0000 16 delibird 0.9412 1.0000 0.9697 16 delphox 1.0000 1.0000 1.0000 16 deoxys-normal 0.9412 1.0000 0.9697 16 dewgong 0.3721 1.0000 0.5424 16 dewott 0.9412 1.0000 0.9697 16 dewpider 1.0000 1.0000 1.0000 16 dhelmise 1.0000 1.0000 1.0000 16 dialga 1.0000 1.0000 1.0000 16 diancie 1.0000 1.0000 1.0000 16 diggersby 0.9412 1.0000 0.9697 16 diglett 0.6316 0.7500 0.6857 16 ditto 0.7895 0.9375 0.8571 16 dodrio 1.0000 0.6875 0.8148 16 doduo 0.8235 0.8750 0.8485 16 dolliv 1.0000 1.0000 1.0000 16 dondozo 1.0000 1.0000 1.0000 16 donphan 1.0000 0.9375 0.9677 16 dottler 1.0000 1.0000 1.0000 16 doublade 1.0000 1.0000 1.0000 16 dracovish 1.0000 1.0000 1.0000 16 dracozolt 1.0000 1.0000 1.0000 16 dragalge 1.0000 1.0000 1.0000 16 dragapult 1.0000 1.0000 1.0000 16 dragonair 0.5263 0.6250 0.5714 16 dragonite 1.0000 0.5000 0.6667 16 drakloak 1.0000 1.0000 1.0000 16 drampa 1.0000 1.0000 1.0000 16 drapion 0.9412 1.0000 0.9697 16 dratini 0.7143 0.6250 0.6667 16 drednaw 1.0000 1.0000 1.0000 16 dreepy 1.0000 1.0000 1.0000 16 drifblim 1.0000 1.0000 1.0000 16 drifloon 1.0000 1.0000 1.0000 16 drilbur 1.0000 1.0000 1.0000 16 drizzile 1.0000 1.0000 1.0000 16 drowzee 1.0000 0.3125 0.4762 16 druddigon 1.0000 1.0000 1.0000 16 dubwool 1.0000 1.0000 1.0000 16 ducklett 0.9412 1.0000 0.9697 16 dudunsparce-two-segment 0.7273 1.0000 0.8421 16 dugtrio 0.5909 0.8125 0.6842 16 dunsparce 1.0000 0.6250 0.7692 16 duosion 0.9375 0.9375 0.9375 16 duraludon 1.0000 1.0000 1.0000 16 durant 1.0000 1.0000 1.0000 16 dusclops 1.0000 1.0000 1.0000 16 dusknoir 0.8421 1.0000 0.9143 16 duskull 0.9412 1.0000 0.9697 16 dustox 1.0000 1.0000 1.0000 16 dwebble 0.9412 1.0000 0.9697 16 eelektrik 1.0000 1.0000 1.0000 16 eelektross 0.9412 1.0000 0.9697 16 eevee 0.7647 0.8125 0.7879 16 eiscue-ice 1.0000 1.0000 1.0000 16 ekans 0.9091 0.6250 0.7407 16 eldegoss 1.0000 1.0000 1.0000 16 electabuzz 0.8571 0.7500 0.8000 16 electivire 1.0000 1.0000 1.0000 16 electrike 1.0000 1.0000 1.0000 16 electrode 0.7619 1.0000 0.8649 16 elekid 0.6667 1.0000 0.8000 16 elgyem 1.0000 1.0000 1.0000 16 emboar 1.0000 0.9375 0.9677 16 emolga 1.0000 1.0000 1.0000 16 empoleon 1.0000 1.0000 1.0000 16 enamorus-incarnate 1.0000 1.0000 1.0000 16 entei 0.9286 0.8125 0.8667 16 escavalier 1.0000 1.0000 1.0000 16 espathra 0.9412 1.0000 0.9697 16 espeon 0.8125 0.8125 0.8125 16 espurr 1.0000 1.0000 1.0000 16 eternatus 1.0000 1.0000 1.0000 16 excadrill 1.0000 1.0000 1.0000 16 exeggcute 1.0000 0.8750 0.9333 16 exeggutor 0.7778 0.8750 0.8235 16 exploud 0.9412 1.0000 0.9697 16 falinks 1.0000 1.0000 1.0000 16 farfetchd 1.0000 0.6250 0.7692 16 farigiraf 1.0000 1.0000 1.0000 16 fearow 0.5833 0.8750 0.7000 16 feebas 1.0000 1.0000 1.0000 16 fennekin 1.0000 1.0000 1.0000 16 feraligatr 0.8889 1.0000 0.9412 16 ferroseed 1.0000 0.8750 0.9333 16 ferrothorn 1.0000 1.0000 1.0000 16 fidough 1.0000 1.0000 1.0000 16 finizen 0.7143 0.3125 0.4348 16 finneon 0.8889 1.0000 0.9412 16 flaaffy 0.9412 1.0000 0.9697 16 flabebe 1.0000 1.0000 1.0000 16 flamigo 0.9412 1.0000 0.9697 16 flapple 0.9412 1.0000 0.9697 16 flareon 0.6667 0.8750 0.7568 16 fletchinder 1.0000 0.8125 0.8966 16 fletchling 0.8421 1.0000 0.9143 16 flittle 1.0000 1.0000 1.0000 16 floatzel 1.0000 1.0000 1.0000 16 floette 1.0000 1.0000 1.0000 16 floragato 1.0000 1.0000 1.0000 16 florges 1.0000 1.0000 1.0000 16 flutter-mane 0.8889 1.0000 0.9412 16 flygon 1.0000 0.9375 0.9677 16 fomantis 0.9412 1.0000 0.9697 16 foongus 0.9412 1.0000 0.9697 16 forretress 0.9286 0.8125 0.8667 16 fraxure 0.9412 1.0000 0.9697 16 frigibax 1.0000 1.0000 1.0000 16 frillish 1.0000 1.0000 1.0000 16 froakie 1.0000 1.0000 1.0000 16 frogadier 0.9412 1.0000 0.9697 16 froslass 1.0000 1.0000 1.0000 16 frosmoth 0.9412 1.0000 0.9697 16 fuecoco 1.0000 1.0000 1.0000 16 furfrou 1.0000 1.0000 1.0000 16 furret 1.0000 1.0000 1.0000 16 gabite 1.0000 1.0000 1.0000 16 gallade 1.0000 1.0000 1.0000 16 galvantula 1.0000 1.0000 1.0000 16 garbodor 1.0000 1.0000 1.0000 16 garchomp 1.0000 1.0000 1.0000 16 gardevoir 1.0000 1.0000 1.0000 16 garganacl 0.8889 1.0000 0.9412 16 gastly 1.0000 1.0000 1.0000 16 gastrodon 1.0000 1.0000 1.0000 16 genesect 1.0000 1.0000 1.0000 16 gengar 0.7500 0.7500 0.7500 16 geodude 0.7692 0.6250 0.6897 16 gholdengo 1.0000 1.0000 1.0000 16 gible 0.8889 1.0000 0.9412 16 gigalith 1.0000 1.0000 1.0000 16 gimmighoul 1.0000 1.0000 1.0000 16 girafarig 1.0000 1.0000 1.0000 16 giratina-altered 1.0000 1.0000 1.0000 16 glaceon 1.0000 1.0000 1.0000 16 glalie 1.0000 1.0000 1.0000 16 glameow 1.0000 1.0000 1.0000 16 glastrier 1.0000 1.0000 1.0000 16 gligar 1.0000 1.0000 1.0000 16 glimmet 1.0000 1.0000 1.0000 16 glimmora 1.0000 1.0000 1.0000 16 gliscor 1.0000 1.0000 1.0000 16 gloom 0.9412 1.0000 0.9697 16 gogoat 1.0000 0.8750 0.9333 16 golbat 1.0000 0.5000 0.6667 16 goldeen 0.9167 0.6875 0.7857 16 golduck 0.8235 0.8750 0.8485 16 golem 0.5909 0.8125 0.6842 16 golett 1.0000 1.0000 1.0000 16 golisopod 1.0000 1.0000 1.0000 16 golurk 1.0000 1.0000 1.0000 16 goodra 0.8889 1.0000 0.9412 16 goomy 1.0000 1.0000 1.0000 16 gorebyss 0.8889 1.0000 0.9412 16 gossifleur 1.0000 1.0000 1.0000 16 gothita 1.0000 1.0000 1.0000 16 gothitelle 1.0000 1.0000 1.0000 16 gothorita 0.8889 1.0000 0.9412 16 gourgeist-average 1.0000 1.0000 1.0000 16 grafaiai 1.0000 1.0000 1.0000 16 granbull 0.9000 0.5625 0.6923 16 grapploct 1.0000 1.0000 1.0000 16 graveler 0.7500 0.9375 0.8333 16 great-tusk 1.0000 1.0000 1.0000 16 greavard 1.0000 1.0000 1.0000 16 greedent 1.0000 1.0000 1.0000 16 greninja 1.0000 1.0000 1.0000 16 grimer 0.7500 0.3750 0.5000 16 grimmsnarl 1.0000 1.0000 1.0000 16 grookey 1.0000 1.0000 1.0000 16 grotle 1.0000 1.0000 1.0000 16 groudon 0.9412 1.0000 0.9697 16 grovyle 1.0000 0.9375 0.9677 16 growlithe 0.7500 0.3750 0.5000 16 grubbin 1.0000 1.0000 1.0000 16 grumpig 1.0000 1.0000 1.0000 16 gulpin 1.0000 1.0000 1.0000 16 gumshoos 0.9333 0.8750 0.9032 16 gurdurr 1.0000 1.0000 1.0000 16 guzzlord 1.0000 0.8125 0.8966 16 gyarados 1.0000 0.5625 0.7200 16 hakamo-o 1.0000 1.0000 1.0000 16 happiny 0.8421 1.0000 0.9143 16 hariyama 1.0000 1.0000 1.0000 16 hatenna 0.8889 1.0000 0.9412 16 hatterene 1.0000 1.0000 1.0000 16 hattrem 1.0000 1.0000 1.0000 16 haunter 0.8235 0.8750 0.8485 16 hawlucha 1.0000 1.0000 1.0000 16 haxorus 1.0000 1.0000 1.0000 16 heatmor 1.0000 1.0000 1.0000 16 heatran 0.9375 0.9375 0.9375 16 heliolisk 1.0000 1.0000 1.0000 16 helioptile 1.0000 1.0000 1.0000 16 heracross 0.8889 1.0000 0.9412 16 herdier 1.0000 1.0000 1.0000 16 hippopotas 1.0000 1.0000 1.0000 16 hippowdon 1.0000 1.0000 1.0000 16 hitmonchan 1.0000 0.4375 0.6087 16 hitmonlee 1.0000 0.6250 0.7692 16 hitmontop 1.0000 0.9375 0.9677 16 ho-oh 0.8889 1.0000 0.9412 16 honchkrow 1.0000 1.0000 1.0000 16 honedge 1.0000 1.0000 1.0000 16 hoopa 1.0000 1.0000 1.0000 16 hoothoot 1.0000 1.0000 1.0000 16 hoppip 0.9412 1.0000 0.9697 16 horsea 0.7857 0.6875 0.7333 16 houndoom 0.9412 1.0000 0.9697 16 houndour 1.0000 0.5000 0.6667 16 houndstone 1.0000 1.0000 1.0000 16 huntail 1.0000 0.9375 0.9677 16 hydreigon 0.9412 1.0000 0.9697 16 hypno 1.0000 0.1875 0.3158 16 igglybuff 0.7619 1.0000 0.8649 16 illumise 0.9412 1.0000 0.9697 16 impidimp 1.0000 0.9375 0.9677 16 incineroar 1.0000 1.0000 1.0000 16 indeedee-male 1.0000 1.0000 1.0000 16 infernape 0.8421 1.0000 0.9143 16 inkay 1.0000 1.0000 1.0000 16 inteleon 1.0000 1.0000 1.0000 16 iron-bundle 1.0000 1.0000 1.0000 16 iron-hands 1.0000 1.0000 1.0000 16 iron-jugulis 1.0000 1.0000 1.0000 16 iron-moth 1.0000 1.0000 1.0000 16 iron-thorns 1.0000 1.0000 1.0000 16 iron-treads 1.0000 1.0000 1.0000 16 ivysaur 0.7692 0.6250 0.6897 16 jangmo-o 0.9412 1.0000 0.9697 16 jellicent 0.9412 1.0000 0.9697 16 jigglypuff 0.8182 0.5625 0.6667 16 jirachi 1.0000 1.0000 1.0000 16 jolteon 0.9286 0.8125 0.8667 16 joltik 0.8889 1.0000 0.9412 16 jumpluff 0.9412 1.0000 0.9697 16 jynx 1.0000 0.7500 0.8571 16 kabuto 0.9286 0.8125 0.8667 16 kabutops 0.5161 1.0000 0.6809 16 kadabra 0.6154 0.5000 0.5517 16 kakuna 0.8571 0.7500 0.8000 16 kangaskhan 0.4333 0.8125 0.5652 16 karrablast 1.0000 1.0000 1.0000 16 kartana 1.0000 1.0000 1.0000 16 kecleon 1.0000 1.0000 1.0000 16 keldeo-ordinary 1.0000 1.0000 1.0000 16 kilowattrel 1.0000 1.0000 1.0000 16 kingambit 1.0000 1.0000 1.0000 16 kingdra 1.0000 1.0000 1.0000 16 kingler 0.4500 0.5625 0.5000 16 kirlia 1.0000 1.0000 1.0000 16 klang 0.7273 1.0000 0.8421 16 klawf 1.0000 1.0000 1.0000 16 kleavor 1.0000 1.0000 1.0000 16 klefki 1.0000 1.0000 1.0000 16 klink 1.0000 1.0000 1.0000 16 klinklang 1.0000 0.6250 0.7692 16 koffing 0.5333 1.0000 0.6957 16 komala 0.9412 1.0000 0.9697 16 kommo-o 1.0000 1.0000 1.0000 16 krabby 0.6923 0.5625 0.6207 16 kricketot 1.0000 1.0000 1.0000 16 kricketune 0.9412 1.0000 0.9697 16 krokorok 0.8421 1.0000 0.9143 16 krookodile 1.0000 0.8750 0.9333 16 kubfu 0.9412 1.0000 0.9697 16 kyogre 1.0000 1.0000 1.0000 16 kyurem 1.0000 1.0000 1.0000 16 lairon 1.0000 1.0000 1.0000 16 lampent 1.0000 1.0000 1.0000 16 landorus-incarnate 1.0000 1.0000 1.0000 16 lanturn 1.0000 1.0000 1.0000 16 lapras 1.0000 0.5000 0.6667 16 larvesta 1.0000 1.0000 1.0000 16 larvitar 0.9412 1.0000 0.9697 16 latias 1.0000 1.0000 1.0000 16 latios 1.0000 1.0000 1.0000 16 leafeon 1.0000 1.0000 1.0000 16 leavanny 1.0000 1.0000 1.0000 16 lechonk 1.0000 1.0000 1.0000 16 ledian 0.8421 1.0000 0.9143 16 ledyba 0.8889 1.0000 0.9412 16 lickilicky 0.9412 1.0000 0.9697 16 lickitung 0.8667 0.8125 0.8387 16 liepard 1.0000 1.0000 1.0000 16 lileep 1.0000 1.0000 1.0000 16 lilligant 1.0000 1.0000 1.0000 16 lillipup 1.0000 1.0000 1.0000 16 linoone 0.9412 1.0000 0.9697 16 litleo 1.0000 1.0000 1.0000 16 litten 1.0000 1.0000 1.0000 16 litwick 1.0000 1.0000 1.0000 16 lokix 1.0000 1.0000 1.0000 16 lombre 1.0000 1.0000 1.0000 16 lopunny 1.0000 1.0000 1.0000 16 lotad 1.0000 0.9375 0.9677 16 loudred 1.0000 1.0000 1.0000 16 lucario 1.0000 1.0000 1.0000 16 ludicolo 0.9412 1.0000 0.9697 16 lugia 0.9333 0.8750 0.9032 16 lumineon 1.0000 1.0000 1.0000 16 lunala 1.0000 1.0000 1.0000 16 lunatone 0.8889 1.0000 0.9412 16 lurantis 1.0000 1.0000 1.0000 16 luvdisc 0.8889 1.0000 0.9412 16 luxio 1.0000 1.0000 1.0000 16 luxray 0.9412 1.0000 0.9697 16 lycanroc-midday 0.9412 1.0000 0.9697 16 mabosstiff 1.0000 1.0000 1.0000 16 machamp 0.6000 0.7500 0.6667 16 machoke 0.7895 0.9375 0.8571 16 machop 0.5652 0.8125 0.6667 16 magby 0.8421 1.0000 0.9143 16 magcargo 1.0000 1.0000 1.0000 16 magearna 1.0000 1.0000 1.0000 16 magikarp 0.7778 0.4375 0.5600 16 magmar 0.7143 0.3125 0.4348 16 magmortar 0.8889 1.0000 0.9412 16 magnemite 1.0000 0.4375 0.6087 16 magneton 0.7273 1.0000 0.8421 16 magnezone 1.0000 1.0000 1.0000 16 makuhita 1.0000 1.0000 1.0000 16 malamar 1.0000 1.0000 1.0000 16 mamoswine 1.0000 1.0000 1.0000 16 manaphy 0.8750 0.8750 0.8750 16 mandibuzz 1.0000 1.0000 1.0000 16 manectric 1.0000 1.0000 1.0000 16 mankey 0.5455 0.7500 0.6316 16 mantine 0.9286 0.8125 0.8667 16 mantyke 0.9412 1.0000 0.9697 16 maractus 0.9412 1.0000 0.9697 16 mareanie 1.0000 1.0000 1.0000 16 mareep 0.9286 0.8125 0.8667 16 marill 0.9375 0.9375 0.9375 16 marowak 0.5200 0.8125 0.6341 16 marshadow 1.0000 1.0000 1.0000 16 marshtomp 0.9375 0.9375 0.9375 16 maschiff 1.0000 1.0000 1.0000 16 masquerain 1.0000 1.0000 1.0000 16 maushold-family-of-four 1.0000 1.0000 1.0000 16 mawile 0.9412 1.0000 0.9697 16 medicham 1.0000 1.0000 1.0000 16 meditite 1.0000 1.0000 1.0000 16 meganium 0.9412 1.0000 0.9697 16 melmetal 1.0000 1.0000 1.0000 16 meloetta-aria 1.0000 1.0000 1.0000 16 meltan 1.0000 1.0000 1.0000 16 meowscarada 1.0000 1.0000 1.0000 16 meowstic-male 1.0000 0.9375 0.9677 16 meowth 1.0000 0.7500 0.8571 16 mesprit 1.0000 1.0000 1.0000 16 metagross 1.0000 1.0000 1.0000 16 metang 1.0000 1.0000 1.0000 16 metapod 0.6667 0.8750 0.7568 16 mew 0.6000 0.9375 0.7317 16 mewtwo 0.8750 0.4375 0.5833 16 mienfoo 1.0000 1.0000 1.0000 16 mienshao 1.0000 1.0000 1.0000 16 mightyena 0.9412 1.0000 0.9697 16 milcery 0.8421 1.0000 0.9143 16 milotic 1.0000 1.0000 1.0000 16 miltank 1.0000 1.0000 1.0000 16 mime-jr 1.0000 1.0000 1.0000 16 mimikyu-disguised 1.0000 1.0000 1.0000 16 minccino 0.8421 1.0000 0.9143 16 minior-red-meteor 1.0000 1.0000 1.0000 16 minun 1.0000 1.0000 1.0000 16 misdreavus 1.0000 0.7500 0.8571 16 mismagius 1.0000 1.0000 1.0000 16 moltres 1.0000 0.4375 0.6087 16 monferno 1.0000 0.8125 0.8966 16 morelull 1.0000 1.0000 1.0000 16 morgrem 1.0000 1.0000 1.0000 16 morpeko-full-belly 1.0000 1.0000 1.0000 16 mothim 1.0000 1.0000 1.0000 16 mr-mime 1.0000 0.8750 0.9333 16 mr-rime 1.0000 1.0000 1.0000 16 mudbray 1.0000 1.0000 1.0000 16 mudkip 0.9286 0.8125 0.8667 16 mudsdale 1.0000 1.0000 1.0000 16 muk 0.4706 0.5000 0.4848 16 munchlax 0.8421 1.0000 0.9143 16 munna 1.0000 1.0000 1.0000 16 murkrow 1.0000 1.0000 1.0000 16 musharna 1.0000 1.0000 1.0000 16 nacli 1.0000 1.0000 1.0000 16 naclstack 1.0000 1.0000 1.0000 16 naganadel 1.0000 1.0000 1.0000 16 natu 0.8889 1.0000 0.9412 16 necrozma 1.0000 1.0000 1.0000 16 nickit 1.0000 1.0000 1.0000 16 nidoking 0.6522 0.9375 0.7692 16 nidoqueen 1.0000 0.3125 0.4762 16 nidoran-f 0.8182 0.5625 0.6667 16 nidoran-m 0.8667 0.8125 0.8387 16 nidorina 0.7857 0.6875 0.7333 16 nidorino 0.8889 0.5000 0.6400 16 nihilego 1.0000 1.0000 1.0000 16 nincada 1.0000 0.8750 0.9333 16 ninetales 0.5417 0.8125 0.6500 16 ninjask 0.8889 1.0000 0.9412 16 noctowl 1.0000 0.8125 0.8966 16 noibat 1.0000 1.0000 1.0000 16 noivern 1.0000 1.0000 1.0000 16 nosepass 1.0000 1.0000 1.0000 16 numel 1.0000 1.0000 1.0000 16 nuzleaf 1.0000 1.0000 1.0000 16 nymble 0.9412 1.0000 0.9697 16 obstagoon 1.0000 1.0000 1.0000 16 octillery 0.9412 1.0000 0.9697 16 oddish 0.9412 1.0000 0.9697 16 oinkologne-male 1.0000 1.0000 1.0000 16 omanyte 0.6667 1.0000 0.8000 16 omastar 0.6923 0.5625 0.6207 16 onix 0.8571 0.7500 0.8000 16 oranguru 1.0000 1.0000 1.0000 16 orbeetle 1.0000 1.0000 1.0000 16 oricorio-baile 1.0000 1.0000 1.0000 16 orthworm 1.0000 1.0000 1.0000 16 oshawott 1.0000 1.0000 1.0000 16 overqwil 1.0000 1.0000 1.0000 16 pachirisu 1.0000 1.0000 1.0000 16 palafin-zero 0.5600 0.8750 0.6829 16 palkia 1.0000 1.0000 1.0000 16 palossand 1.0000 1.0000 1.0000 16 palpitoad 1.0000 1.0000 1.0000 16 pancham 1.0000 1.0000 1.0000 16 pangoro 1.0000 1.0000 1.0000 16 panpour 1.0000 1.0000 1.0000 16 pansage 1.0000 1.0000 1.0000 16 pansear 0.9412 1.0000 0.9697 16 paras 0.7857 0.6875 0.7333 16 parasect 0.9167 0.6875 0.7857 16 passimian 1.0000 1.0000 1.0000 16 patrat 1.0000 1.0000 1.0000 16 pawmi 1.0000 1.0000 1.0000 16 pawmo 1.0000 1.0000 1.0000 16 pawmot 0.8889 1.0000 0.9412 16 pawniard 1.0000 1.0000 1.0000 16 pelipper 0.9412 1.0000 0.9697 16 perrserker 1.0000 1.0000 1.0000 16 persian 0.8000 0.7500 0.7742 16 petilil 1.0000 1.0000 1.0000 16 phanpy 1.0000 1.0000 1.0000 16 phantump 1.0000 1.0000 1.0000 16 pheromosa 1.0000 1.0000 1.0000 16 phione 0.8000 1.0000 0.8889 16 pichu 1.0000 0.8750 0.9333 16 pidgeot 0.7143 0.6250 0.6667 16 pidgeotto 0.7273 0.5000 0.5926 16 pidgey 0.8333 0.3125 0.4545 16 pidove 1.0000 1.0000 1.0000 16 pignite 0.8889 1.0000 0.9412 16 pikachu 0.8333 0.9375 0.8824 16 pikipek 1.0000 1.0000 1.0000 16 piloswine 1.0000 1.0000 1.0000 16 pincurchin 1.0000 1.0000 1.0000 16 pineco 1.0000 0.7500 0.8571 16 pinsir 0.8571 0.7500 0.8000 16 piplup 0.8421 1.0000 0.9143 16 plusle 0.9412 1.0000 0.9697 16 poipole 1.0000 1.0000 1.0000 16 politoed 0.9231 0.7500 0.8276 16 poliwag 1.0000 0.6875 0.8148 16 poliwhirl 0.5357 0.9375 0.6818 16 poliwrath 0.8889 0.5000 0.6400 16 polteageist 1.0000 1.0000 1.0000 16 ponyta 0.6667 0.6250 0.6452 16 poochyena 0.8889 1.0000 0.9412 16 popplio 1.0000 1.0000 1.0000 16 porygon 0.9231 0.7500 0.8276 16 porygon-z 0.8889 1.0000 0.9412 16 porygon2 0.9375 0.9375 0.9375 16 primarina 1.0000 1.0000 1.0000 16 primeape 0.8333 0.9375 0.8824 16 prinplup 0.9412 1.0000 0.9697 16 probopass 0.8889 1.0000 0.9412 16 psyduck 0.6875 0.6875 0.6875 16 pumpkaboo-average 1.0000 1.0000 1.0000 16 pupitar 0.8421 1.0000 0.9143 16 purrloin 1.0000 1.0000 1.0000 16 purugly 1.0000 1.0000 1.0000 16 pyroar 1.0000 1.0000 1.0000 16 pyukumuku 1.0000 1.0000 1.0000 16 quagsire 0.8889 1.0000 0.9412 16 quaquaval 1.0000 1.0000 1.0000 16 quaxly 1.0000 1.0000 1.0000 16 quaxwell 1.0000 1.0000 1.0000 16 quilava 0.9412 1.0000 0.9697 16 quilladin 1.0000 1.0000 1.0000 16 qwilfish 1.0000 0.5625 0.7200 16 raboot 1.0000 1.0000 1.0000 16 rabsca 1.0000 1.0000 1.0000 16 raichu 1.0000 0.6250 0.7692 16 raikou 1.0000 0.6875 0.8148 16 ralts 1.0000 1.0000 1.0000 16 rampardos 1.0000 1.0000 1.0000 16 rapidash 0.7000 0.4375 0.5385 16 raticate 1.0000 0.8125 0.8966 16 rattata 1.0000 0.3125 0.4762 16 rayquaza 1.0000 1.0000 1.0000 16 regice 0.8421 1.0000 0.9143 16 regidrago 1.0000 1.0000 1.0000 16 regieleki 1.0000 1.0000 1.0000 16 regigigas 1.0000 1.0000 1.0000 16 regirock 0.9412 1.0000 0.9697 16 registeel 1.0000 1.0000 1.0000 16 relicanth 1.0000 1.0000 1.0000 16 rellor 1.0000 1.0000 1.0000 16 remoraid 1.0000 0.9375 0.9677 16 reshiram 0.9412 1.0000 0.9697 16 reuniclus 1.0000 1.0000 1.0000 16 revavroom 1.0000 1.0000 1.0000 16 rhydon 1.0000 0.6875 0.8148 16 rhyhorn 0.5200 0.8125 0.6341 16 rhyperior 1.0000 1.0000 1.0000 16 ribombee 1.0000 1.0000 1.0000 16 rillaboom 1.0000 1.0000 1.0000 16 riolu 1.0000 0.9375 0.9677 16 rockruff 1.0000 1.0000 1.0000 16 roggenrola 1.0000 1.0000 1.0000 16 rolycoly 1.0000 1.0000 1.0000 16 rookidee 1.0000 1.0000 1.0000 16 roselia 0.9412 1.0000 0.9697 16 roserade 1.0000 1.0000 1.0000 16 rotom 0.8421 1.0000 0.9143 16 rowlet 1.0000 1.0000 1.0000 16 rufflet 1.0000 1.0000 1.0000 16 runerigus 1.0000 1.0000 1.0000 16 sableye 1.0000 1.0000 1.0000 16 salamence 1.0000 1.0000 1.0000 16 salandit 1.0000 1.0000 1.0000 16 salazzle 0.9412 1.0000 0.9697 16 samurott 1.0000 1.0000 1.0000 16 sandaconda 1.0000 1.0000 1.0000 16 sandile 1.0000 1.0000 1.0000 16 sandshrew 0.9167 0.6875 0.7857 16 sandslash 0.5652 0.8125 0.6667 16 sandy-shocks 1.0000 1.0000 1.0000 16 sandygast 1.0000 1.0000 1.0000 16 sawk 1.0000 1.0000 1.0000 16 sawsbuck 1.0000 1.0000 1.0000 16 scatterbug 0.9412 1.0000 0.9697 16 sceptile 1.0000 1.0000 1.0000 16 scizor 1.0000 0.9375 0.9677 16 scolipede 1.0000 1.0000 1.0000 16 scorbunny 1.0000 1.0000 1.0000 16 scovillain 1.0000 1.0000 1.0000 16 scrafty 1.0000 1.0000 1.0000 16 scraggy 1.0000 1.0000 1.0000 16 scream-tail 0.8889 1.0000 0.9412 16 scyther 0.9375 0.9375 0.9375 16 seadra 0.8824 0.9375 0.9091 16 seaking 1.0000 0.9375 0.9677 16 sealeo 1.0000 1.0000 1.0000 16 seedot 1.0000 1.0000 1.0000 16 seel 0.5000 0.6875 0.5789 16 seismitoad 0.9412 1.0000 0.9697 16 sentret 0.8235 0.8750 0.8485 16 serperior 1.0000 1.0000 1.0000 16 servine 1.0000 1.0000 1.0000 16 seviper 1.0000 1.0000 1.0000 16 sewaddle 0.9412 1.0000 0.9697 16 sharpedo 1.0000 1.0000 1.0000 16 shaymin-land 0.9412 1.0000 0.9697 16 shedinja 1.0000 1.0000 1.0000 16 shelgon 1.0000 1.0000 1.0000 16 shellder 0.8000 0.2500 0.3810 16 shellos 1.0000 1.0000 1.0000 16 shelmet 0.9412 1.0000 0.9697 16 shieldon 1.0000 1.0000 1.0000 16 shiftry 1.0000 0.8750 0.9333 16 shiinotic 0.9412 1.0000 0.9697 16 shinx 1.0000 1.0000 1.0000 16 shroodle 1.0000 1.0000 1.0000 16 shroomish 1.0000 1.0000 1.0000 16 shuckle 1.0000 1.0000 1.0000 16 shuppet 1.0000 1.0000 1.0000 16 sigilyph 1.0000 1.0000 1.0000 16 silcoon 1.0000 1.0000 1.0000 16 silicobra 0.9412 1.0000 0.9697 16 silvally 1.0000 1.0000 1.0000 16 simipour 0.9412 1.0000 0.9697 16 simisage 1.0000 1.0000 1.0000 16 simisear 1.0000 0.9375 0.9677 16 sinistea 1.0000 1.0000 1.0000 16 sirfetchd 1.0000 1.0000 1.0000 16 sizzlipede 1.0000 1.0000 1.0000 16 skarmory 1.0000 0.8750 0.9333 16 skeledirge 1.0000 1.0000 1.0000 16 skiddo 0.8889 1.0000 0.9412 16 skiploom 1.0000 0.8750 0.9333 16 skitty 1.0000 1.0000 1.0000 16 skorupi 0.9412 1.0000 0.9697 16 skrelp 1.0000 1.0000 1.0000 16 skuntank 1.0000 1.0000 1.0000 16 skwovet 1.0000 1.0000 1.0000 16 slaking 1.0000 1.0000 1.0000 16 slakoth 1.0000 0.8125 0.8966 16 sliggoo 1.0000 1.0000 1.0000 16 slither-wing 1.0000 1.0000 1.0000 16 slowbro 0.9091 0.6250 0.7407 16 slowking 0.9375 0.9375 0.9375 16 slowpoke 1.0000 0.3125 0.4762 16 slugma 0.9091 0.6250 0.7407 16 slurpuff 1.0000 1.0000 1.0000 16 smeargle 1.0000 0.6250 0.7692 16 smoliv 1.0000 1.0000 1.0000 16 smoochum 0.9412 1.0000 0.9697 16 sneasel 1.0000 0.8750 0.9333 16 sneasler 1.0000 1.0000 1.0000 16 snivy 0.9412 1.0000 0.9697 16 snom 1.0000 1.0000 1.0000 16 snorlax 1.0000 0.5625 0.7200 16 snorunt 1.0000 1.0000 1.0000 16 snover 1.0000 1.0000 1.0000 16 snubbull 1.0000 0.9375 0.9677 16 sobble 0.9412 1.0000 0.9697 16 solgaleo 1.0000 1.0000 1.0000 16 solosis 0.8421 1.0000 0.9143 16 solrock 1.0000 1.0000 1.0000 16 spearow 1.0000 0.3125 0.4762 16 spectrier 1.0000 1.0000 1.0000 16 spewpa 1.0000 1.0000 1.0000 16 spheal 0.8889 1.0000 0.9412 16 spidops 1.0000 1.0000 1.0000 16 spinarak 1.0000 0.9375 0.9677 16 spinda 1.0000 1.0000 1.0000 16 spiritomb 1.0000 1.0000 1.0000 16 spoink 1.0000 1.0000 1.0000 16 sprigatito 1.0000 1.0000 1.0000 16 spritzee 1.0000 1.0000 1.0000 16 squawkabilly-green-plumage 0.8421 1.0000 0.9143 16 squirtle 0.9231 0.7500 0.8276 16 stakataka 1.0000 1.0000 1.0000 16 stantler 0.7778 0.8750 0.8235 16 staraptor 0.9412 1.0000 0.9697 16 staravia 1.0000 1.0000 1.0000 16 starly 1.0000 1.0000 1.0000 16 starmie 0.8667 0.8125 0.8387 16 staryu 0.7222 0.8125 0.7647 16 steelix 1.0000 0.9375 0.9677 16 steenee 1.0000 1.0000 1.0000 16 stonjourner 1.0000 1.0000 1.0000 16 stoutland 1.0000 1.0000 1.0000 16 stufful 1.0000 1.0000 1.0000 16 stunfisk 1.0000 0.8125 0.8966 16 stunky 1.0000 1.0000 1.0000 16 sudowoodo 1.0000 1.0000 1.0000 16 suicune 0.9412 1.0000 0.9697 16 sunflora 1.0000 1.0000 1.0000 16 sunkern 0.8889 1.0000 0.9412 16 surskit 1.0000 1.0000 1.0000 16 swablu 0.9412 1.0000 0.9697 16 swadloon 0.9412 1.0000 0.9697 16 swalot 0.9412 1.0000 0.9697 16 swampert 1.0000 1.0000 1.0000 16 swanna 1.0000 1.0000 1.0000 16 swellow 1.0000 0.9375 0.9677 16 swinub 1.0000 1.0000 1.0000 16 swirlix 1.0000 1.0000 1.0000 16 swoobat 1.0000 1.0000 1.0000 16 sylveon 1.0000 1.0000 1.0000 16 tadbulb 1.0000 1.0000 1.0000 16 taillow 0.9412 1.0000 0.9697 16 talonflame 1.0000 1.0000 1.0000 16 tandemaus 1.0000 1.0000 1.0000 16 tangela 0.9375 0.9375 0.9375 16 tangrowth 0.9412 1.0000 0.9697 16 tapu-bulu 1.0000 1.0000 1.0000 16 tapu-fini 1.0000 1.0000 1.0000 16 tapu-koko 1.0000 1.0000 1.0000 16 tapu-lele 1.0000 1.0000 1.0000 16 tarountula 1.0000 1.0000 1.0000 16 tatsugiri-curly 0.9412 1.0000 0.9697 16 tauros 1.0000 0.3125 0.4762 16 teddiursa 1.0000 0.6250 0.7692 16 tentacool 0.8667 0.8125 0.8387 16 tentacruel 1.0000 0.8125 0.8966 16 tepig 0.9412 1.0000 0.9697 16 terrakion 1.0000 1.0000 1.0000 16 thievul 1.0000 1.0000 1.0000 16 throh 1.0000 1.0000 1.0000 16 thundurus-incarnate 1.0000 1.0000 1.0000 16 thwackey 1.0000 1.0000 1.0000 16 timburr 1.0000 1.0000 1.0000 16 tinkatink 0.9412 1.0000 0.9697 16 tinkaton 1.0000 1.0000 1.0000 16 tinkatuff 1.0000 1.0000 1.0000 16 tirtouga 0.9412 1.0000 0.9697 16 toedscool 1.0000 1.0000 1.0000 16 toedscruel 1.0000 1.0000 1.0000 16 togedemaru 1.0000 1.0000 1.0000 16 togekiss 1.0000 1.0000 1.0000 16 togepi 1.0000 1.0000 1.0000 16 togetic 0.8889 1.0000 0.9412 16 torchic 1.0000 1.0000 1.0000 16 torkoal 1.0000 1.0000 1.0000 16 tornadus-incarnate 1.0000 1.0000 1.0000 16 torracat 0.9412 1.0000 0.9697 16 torterra 1.0000 1.0000 1.0000 16 totodile 0.8824 0.9375 0.9091 16 toucannon 1.0000 1.0000 1.0000 16 toxapex 1.0000 1.0000 1.0000 16 toxel 1.0000 1.0000 1.0000 16 toxicroak 1.0000 1.0000 1.0000 16 toxtricity-amped 1.0000 1.0000 1.0000 16 tranquill 1.0000 1.0000 1.0000 16 trapinch 1.0000 1.0000 1.0000 16 treecko 1.0000 1.0000 1.0000 16 trevenant 1.0000 1.0000 1.0000 16 tropius 1.0000 1.0000 1.0000 16 trubbish 1.0000 1.0000 1.0000 16 trumbeak 1.0000 1.0000 1.0000 16 tsareena 0.9412 1.0000 0.9697 16 turtonator 0.9412 1.0000 0.9697 16 turtwig 0.9412 1.0000 0.9697 16 tympole 0.8421 1.0000 0.9143 16 tynamo 0.8889 1.0000 0.9412 16 type-null 0.9412 1.0000 0.9697 16 typhlosion 1.0000 0.8750 0.9333 16 tyranitar 1.0000 1.0000 1.0000 16 tyrantrum 0.8889 1.0000 0.9412 16 tyrogue 1.0000 0.9375 0.9677 16 tyrunt 0.9412 1.0000 0.9697 16 umbreon 1.0000 1.0000 1.0000 16 unfezant 1.0000 1.0000 1.0000 16 unown 0.9412 1.0000 0.9697 16 ursaluna 1.0000 1.0000 1.0000 16 ursaring 0.8889 1.0000 0.9412 16 urshifu-single-strike 1.0000 1.0000 1.0000 16 uxie 1.0000 1.0000 1.0000 16 vanillish 1.0000 1.0000 1.0000 16 vanillite 1.0000 1.0000 1.0000 16 vanilluxe 1.0000 1.0000 1.0000 16 vaporeon 0.6667 0.2500 0.3636 16 varoom 1.0000 1.0000 1.0000 16 veluza 1.0000 1.0000 1.0000 16 venipede 1.0000 1.0000 1.0000 16 venomoth 1.0000 1.0000 1.0000 16 venonat 0.9286 0.8125 0.8667 16 venusaur 0.9286 0.8125 0.8667 16 vespiquen 1.0000 1.0000 1.0000 16 vibrava 1.0000 0.9375 0.9677 16 victini 1.0000 1.0000 1.0000 16 victreebel 1.0000 0.8750 0.9333 16 vigoroth 1.0000 1.0000 1.0000 16 vikavolt 0.9412 1.0000 0.9697 16 vileplume 0.9375 0.9375 0.9375 16 virizion 1.0000 1.0000 1.0000 16 vivillon 1.0000 1.0000 1.0000 16 volbeat 1.0000 0.9375 0.9677 16 volcanion 1.0000 1.0000 1.0000 16 volcarona 1.0000 1.0000 1.0000 16 voltorb 1.0000 0.8125 0.8966 16 vullaby 1.0000 1.0000 1.0000 16 vulpix 0.9167 0.6875 0.7857 16 wailmer 1.0000 0.9375 0.9677 16 wailord 0.8889 1.0000 0.9412 16 walrein 0.9412 1.0000 0.9697 16 wartortle 0.5714 1.0000 0.7273 16 watchog 1.0000 1.0000 1.0000 16 wattrel 1.0000 1.0000 1.0000 16 weavile 0.9412 1.0000 0.9697 16 weedle 0.7333 0.6875 0.7097 16 weepinbell 0.7333 0.6875 0.7097 16 weezing 0.3333 0.0625 0.1053 16 whimsicott 1.0000 1.0000 1.0000 16 whirlipede 1.0000 1.0000 1.0000 16 whiscash 1.0000 1.0000 1.0000 16 whismur 0.9412 1.0000 0.9697 16 wigglytuff 0.8667 0.8125 0.8387 16 wiglett 1.0000 1.0000 1.0000 16 wimpod 1.0000 1.0000 1.0000 16 wingull 1.0000 1.0000 1.0000 16 wishiwashi-solo 1.0000 1.0000 1.0000 16 wobbuffet 0.9333 0.8750 0.9032 16 woobat 1.0000 1.0000 1.0000 16 wooloo 1.0000 1.0000 1.0000 16 wooper 1.0000 1.0000 1.0000 16 wormadam-plant 1.0000 1.0000 1.0000 16 wugtrio 1.0000 1.0000 1.0000 16 wurmple 1.0000 1.0000 1.0000 16 wynaut 0.9333 0.8750 0.9032 16 wyrdeer 0.8889 1.0000 0.9412 16 xatu 1.0000 1.0000 1.0000 16 xerneas 1.0000 1.0000 1.0000 16 xurkitree 1.0000 1.0000 1.0000 16 yamask 0.9412 1.0000 0.9697 16 yamper 1.0000 1.0000 1.0000 16 yanma 1.0000 1.0000 1.0000 16 yanmega 1.0000 0.9375 0.9677 16 yungoos 0.8000 1.0000 0.8889 16 yveltal 1.0000 1.0000 1.0000 16 zacian 0.9412 1.0000 0.9697 16 zamazenta 1.0000 1.0000 1.0000 16 zangoose 1.0000 1.0000 1.0000 16 zapdos 0.8889 1.0000 0.9412 16 zarude 1.0000 1.0000 1.0000 16 zebstrika 1.0000 1.0000 1.0000 16 zekrom 0.9412 1.0000 0.9697 16 zeraora 1.0000 1.0000 1.0000 16 zigzagoon 1.0000 1.0000 1.0000 16 zoroark 1.0000 1.0000 1.0000 16 zorua 0.8889 1.0000 0.9412 16 zubat 1.0000 0.3125 0.4762 16 zweilous 1.0000 1.0000 1.0000 16 zygarde-50 1.0000 1.0000 1.0000 16 accuracy 0.9413 16000 macro avg 0.9509 0.9413 0.9389 16000 weighted avg 0.9509 0.9413 0.9389 16000 ```
[ "abomasnow", "abra", "absol", "accelgor", "aegislash-shield", "aerodactyl", "aggron", "aipom", "alakazam", "alcremie", "alomomola", "altaria", "amaura", "ambipom", "amoonguss", "ampharos", "annihilape", "anorith", "appletun", "applin", "araquanid", "arbok", "arboliva", "arcanine", "arceus", "archen", "archeops", "arctibax", "arctovish", "arctozolt", "ariados", "armaldo", "armarouge", "aromatisse", "aron", "arrokuda", "articuno", "audino", "aurorus", "avalugg", "axew", "azelf", "azumarill", "azurill", "bagon", "baltoy", "banette", "barbaracle", "barboach", "barraskewda", "basculegion-male", "basculin-red-striped", "bastiodon", "baxcalibur", "bayleef", "beartic", "beautifly", "beedrill", "beheeyem", "beldum", "bellibolt", "bellossom", "bellsprout", "bergmite", "bewear", "bibarel", "bidoof", "binacle", "bisharp", "blacephalon", "blastoise", "blaziken", "blipbug", "blissey", "blitzle", "boldore", "boltund", "bombirdier", "bonsly", "bouffalant", "bounsweet", "braixen", "brambleghast", "bramblin", "braviary", "breloom", "brionne", "bronzong", "bronzor", "brute-bonnet", "bruxish", "budew", "buizel", "bulbasaur", "buneary", "bunnelby", "burmy", "butterfree", "buzzwole", "cacnea", "cacturne", "calyrex", "camerupt", "capsakid", "carbink", "carkol", "carnivine", "carracosta", "carvanha", "cascoon", "castform", "caterpie", "celebi", "celesteela", "centiskorch", "ceruledge", "cetitan", "cetoddle", "chandelure", "chansey", "charcadet", "charizard", "charjabug", "charmander", "charmeleon", "chatot", "cherrim", "cherubi", "chesnaught", "chespin", "chewtle", "chikorita", "chimchar", "chimecho", "chinchou", "chingling", "cinccino", "cinderace", "clamperl", "clauncher", "clawitzer", "claydol", "clefable", "clefairy", "cleffa", "clobbopus", "clodsire", "cloyster", "coalossal", "cobalion", "cofagrigus", "combee", "combusken", "comfey", "conkeldurr", "copperajah", "corphish", "corsola", "corviknight", "corvisquire", "cosmoem", "cosmog", "cottonee", "crabominable", "crabrawler", "cradily", "cramorant", "cranidos", "crawdaunt", "cresselia", "croagunk", "crobat", "crocalor", "croconaw", "crustle", "cryogonal", "cubchoo", "cubone", "cufant", "cursola", "cutiefly", "cyclizar", "cyndaquil", "dachsbun", "darkrai", "darmanitan-standard", "dartrix", "darumaka", "decidueye", "dedenne", "deerling", "deino", "delcatty", "delibird", "delphox", "deoxys-normal", "dewgong", "dewott", "dewpider", "dhelmise", "dialga", "diancie", "diggersby", "diglett", "ditto", "dodrio", "doduo", "dolliv", "dondozo", "donphan", "dottler", "doublade", "dracovish", "dracozolt", "dragalge", "dragapult", "dragonair", "dragonite", "drakloak", "drampa", "drapion", "dratini", "drednaw", "dreepy", "drifblim", "drifloon", "drilbur", "drizzile", "drowzee", "druddigon", "dubwool", "ducklett", "dudunsparce-two-segment", "dugtrio", "dunsparce", "duosion", "duraludon", "durant", "dusclops", "dusknoir", "duskull", "dustox", "dwebble", "eelektrik", "eelektross", "eevee", "eiscue-ice", "ekans", "eldegoss", "electabuzz", "electivire", "electrike", "electrode", "elekid", "elgyem", "emboar", "emolga", "empoleon", "enamorus-incarnate", "entei", "escavalier", "espathra", "espeon", "espurr", "eternatus", "excadrill", "exeggcute", "exeggutor", "exploud", "falinks", "farfetchd", "farigiraf", "fearow", "feebas", "fennekin", "feraligatr", "ferroseed", "ferrothorn", "fidough", "finizen", "finneon", "flaaffy", "flabebe", "flamigo", "flapple", "flareon", "fletchinder", "fletchling", "flittle", "floatzel", "floette", "floragato", "florges", "flutter-mane", "flygon", "fomantis", "foongus", "forretress", "fraxure", "frigibax", "frillish", "froakie", "frogadier", "froslass", "frosmoth", "fuecoco", "furfrou", "furret", "gabite", "gallade", "galvantula", "garbodor", "garchomp", "gardevoir", "garganacl", "gastly", "gastrodon", "genesect", "gengar", "geodude", "gholdengo", "gible", "gigalith", "gimmighoul", "girafarig", "giratina-altered", "glaceon", "glalie", "glameow", "glastrier", "gligar", "glimmet", "glimmora", "gliscor", "gloom", "gogoat", "golbat", "goldeen", "golduck", "golem", "golett", "golisopod", "golurk", "goodra", "goomy", "gorebyss", "gossifleur", "gothita", "gothitelle", "gothorita", "gourgeist-average", "grafaiai", "granbull", "grapploct", "graveler", "great-tusk", "greavard", "greedent", "greninja", "grimer", "grimmsnarl", "grookey", "grotle", "groudon", "grovyle", "growlithe", "grubbin", "grumpig", "gulpin", "gumshoos", "gurdurr", "guzzlord", "gyarados", "hakamo-o", "happiny", "hariyama", "hatenna", "hatterene", "hattrem", "haunter", "hawlucha", "haxorus", "heatmor", "heatran", "heliolisk", "helioptile", "heracross", "herdier", "hippopotas", "hippowdon", "hitmonchan", "hitmonlee", "hitmontop", "ho-oh", "honchkrow", "honedge", "hoopa", "hoothoot", "hoppip", "horsea", "houndoom", "houndour", "houndstone", "huntail", "hydreigon", "hypno", "igglybuff", "illumise", "impidimp", "incineroar", "indeedee-male", "infernape", "inkay", "inteleon", "iron-bundle", "iron-hands", "iron-jugulis", "iron-moth", "iron-thorns", "iron-treads", "ivysaur", "jangmo-o", "jellicent", "jigglypuff", "jirachi", "jolteon", "joltik", "jumpluff", "jynx", "kabuto", "kabutops", "kadabra", "kakuna", "kangaskhan", "karrablast", "kartana", "kecleon", "keldeo-ordinary", "kilowattrel", "kingambit", "kingdra", "kingler", "kirlia", "klang", "klawf", "kleavor", "klefki", "klink", "klinklang", "koffing", "komala", "kommo-o", "krabby", "kricketot", "kricketune", "krokorok", "krookodile", "kubfu", "kyogre", "kyurem", "lairon", "lampent", "landorus-incarnate", "lanturn", "lapras", "larvesta", "larvitar", "latias", "latios", "leafeon", "leavanny", "lechonk", "ledian", "ledyba", "lickilicky", "lickitung", "liepard", "lileep", "lilligant", "lillipup", "linoone", "litleo", "litten", "litwick", "lokix", "lombre", "lopunny", "lotad", "loudred", "lucario", "ludicolo", "lugia", "lumineon", "lunala", "lunatone", "lurantis", "luvdisc", "luxio", "luxray", "lycanroc-midday", "mabosstiff", "machamp", "machoke", "machop", "magby", "magcargo", "magearna", "magikarp", "magmar", "magmortar", "magnemite", "magneton", "magnezone", "makuhita", "malamar", "mamoswine", "manaphy", "mandibuzz", "manectric", "mankey", "mantine", "mantyke", "maractus", "mareanie", "mareep", "marill", "marowak", "marshadow", "marshtomp", "maschiff", "masquerain", "maushold-family-of-four", "mawile", "medicham", "meditite", "meganium", "melmetal", "meloetta-aria", "meltan", "meowscarada", "meowstic-male", "meowth", "mesprit", "metagross", "metang", "metapod", "mew", "mewtwo", "mienfoo", "mienshao", "mightyena", "milcery", "milotic", "miltank", "mime-jr", "mimikyu-disguised", "minccino", "minior-red-meteor", "minun", "misdreavus", "mismagius", "moltres", "monferno", "morelull", "morgrem", "morpeko-full-belly", "mothim", "mr-mime", "mr-rime", "mudbray", "mudkip", "mudsdale", "muk", "munchlax", "munna", "murkrow", "musharna", "nacli", "naclstack", "naganadel", "natu", "necrozma", "nickit", "nidoking", "nidoqueen", "nidoran-f", "nidoran-m", "nidorina", "nidorino", "nihilego", "nincada", "ninetales", "ninjask", "noctowl", "noibat", "noivern", "nosepass", "numel", "nuzleaf", "nymble", "obstagoon", "octillery", "oddish", "oinkologne-male", "omanyte", "omastar", "onix", "oranguru", "orbeetle", "oricorio-baile", "orthworm", "oshawott", "overqwil", "pachirisu", "palafin-zero", "palkia", "palossand", "palpitoad", "pancham", "pangoro", "panpour", "pansage", "pansear", "paras", "parasect", "passimian", "patrat", "pawmi", "pawmo", "pawmot", "pawniard", "pelipper", "perrserker", "persian", "petilil", "phanpy", "phantump", "pheromosa", "phione", "pichu", "pidgeot", "pidgeotto", "pidgey", "pidove", "pignite", "pikachu", "pikipek", "piloswine", "pincurchin", "pineco", "pinsir", "piplup", "plusle", "poipole", "politoed", "poliwag", "poliwhirl", "poliwrath", "polteageist", "ponyta", "poochyena", "popplio", "porygon", "porygon-z", "porygon2", "primarina", "primeape", "prinplup", "probopass", "psyduck", "pumpkaboo-average", "pupitar", "purrloin", "purugly", "pyroar", "pyukumuku", "quagsire", "quaquaval", "quaxly", "quaxwell", "quilava", "quilladin", "qwilfish", "raboot", "rabsca", "raichu", "raikou", "ralts", "rampardos", "rapidash", "raticate", "rattata", "rayquaza", "regice", "regidrago", "regieleki", "regigigas", "regirock", "registeel", "relicanth", "rellor", "remoraid", "reshiram", "reuniclus", "revavroom", "rhydon", "rhyhorn", "rhyperior", "ribombee", "rillaboom", "riolu", "rockruff", "roggenrola", "rolycoly", "rookidee", "roselia", "roserade", "rotom", "rowlet", "rufflet", "runerigus", "sableye", "salamence", "salandit", "salazzle", "samurott", "sandaconda", "sandile", "sandshrew", "sandslash", "sandy-shocks", "sandygast", "sawk", "sawsbuck", "scatterbug", "sceptile", "scizor", "scolipede", "scorbunny", "scovillain", "scrafty", "scraggy", "scream-tail", "scyther", "seadra", "seaking", "sealeo", "seedot", "seel", "seismitoad", "sentret", "serperior", "servine", "seviper", "sewaddle", "sharpedo", "shaymin-land", "shedinja", "shelgon", "shellder", "shellos", "shelmet", "shieldon", "shiftry", "shiinotic", "shinx", "shroodle", "shroomish", "shuckle", "shuppet", "sigilyph", "silcoon", "silicobra", "silvally", "simipour", "simisage", "simisear", "sinistea", "sirfetchd", "sizzlipede", "skarmory", "skeledirge", "skiddo", "skiploom", "skitty", "skorupi", "skrelp", "skuntank", "skwovet", "slaking", "slakoth", "sliggoo", "slither-wing", "slowbro", "slowking", "slowpoke", "slugma", "slurpuff", "smeargle", "smoliv", "smoochum", "sneasel", "sneasler", "snivy", "snom", "snorlax", "snorunt", "snover", "snubbull", "sobble", "solgaleo", "solosis", "solrock", "spearow", "spectrier", "spewpa", "spheal", "spidops", "spinarak", "spinda", "spiritomb", "spoink", "sprigatito", "spritzee", "squawkabilly-green-plumage", "squirtle", "stakataka", "stantler", "staraptor", "staravia", "starly", "starmie", "staryu", "steelix", "steenee", "stonjourner", "stoutland", "stufful", "stunfisk", "stunky", "sudowoodo", "suicune", "sunflora", "sunkern", "surskit", "swablu", "swadloon", "swalot", "swampert", "swanna", "swellow", "swinub", "swirlix", "swoobat", "sylveon", "tadbulb", "taillow", "talonflame", "tandemaus", "tangela", "tangrowth", "tapu-bulu", "tapu-fini", "tapu-koko", "tapu-lele", "tarountula", "tatsugiri-curly", "tauros", "teddiursa", "tentacool", "tentacruel", "tepig", "terrakion", "thievul", "throh", "thundurus-incarnate", "thwackey", "timburr", "tinkatink", "tinkaton", "tinkatuff", "tirtouga", "toedscool", "toedscruel", "togedemaru", "togekiss", "togepi", "togetic", "torchic", "torkoal", "tornadus-incarnate", "torracat", "torterra", "totodile", "toucannon", "toxapex", "toxel", "toxicroak", "toxtricity-amped", "tranquill", "trapinch", "treecko", "trevenant", "tropius", "trubbish", "trumbeak", "tsareena", "turtonator", "turtwig", "tympole", "tynamo", "type-null", "typhlosion", "tyranitar", "tyrantrum", "tyrogue", "tyrunt", "umbreon", "unfezant", "unown", "ursaluna", "ursaring", "urshifu-single-strike", "uxie", "vanillish", "vanillite", "vanilluxe", "vaporeon", "varoom", "veluza", "venipede", "venomoth", "venonat", "venusaur", "vespiquen", "vibrava", "victini", "victreebel", "vigoroth", "vikavolt", "vileplume", "virizion", "vivillon", "volbeat", "volcanion", "volcarona", "voltorb", "vullaby", "vulpix", "wailmer", "wailord", "walrein", "wartortle", "watchog", "wattrel", "weavile", "weedle", "weepinbell", "weezing", "whimsicott", "whirlipede", "whiscash", "whismur", "wigglytuff", "wiglett", "wimpod", "wingull", "wishiwashi-solo", "wobbuffet", "woobat", "wooloo", "wooper", "wormadam-plant", "wugtrio", "wurmple", "wynaut", "wyrdeer", "xatu", "xerneas", "xurkitree", "yamask", "yamper", "yanma", "yanmega", "yungoos", "yveltal", "zacian", "zamazenta", "zangoose", "zapdos", "zarude", "zebstrika", "zekrom", "zeraora", "zigzagoon", "zoroark", "zorua", "zubat", "zweilous", "zygarde-50" ]
MiroJ/win_eurosat
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # win_eurosat This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the image_folder dataset. It achieves the following results on the evaluation set: - Loss: 0.0414 - Accuracy: 0.9866 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 0.6619 | 1.0 | 608 | 0.0794 | 0.9731 | | 0.7688 | 2.0 | 1216 | 0.0729 | 0.9778 | | 0.3537 | 2.9959 | 1821 | 0.0414 | 0.9866 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.2.0+cpu - Datasets 2.0.0 - Tokenizers 0.21.0
[ "annualcrop", "forest", "herbaceousvegetation", "highway", "industrial", "pasture", "permanentcrop", "residential", "river", "sealake" ]
vieanh/vit-sports-cls
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-sports-cls This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0838 - Accuracy: 0.9742 - Precision: 0.9743 - Recall: 0.9742 - F1: 0.9741 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.171 | 1.0 | 104 | 0.1729 | 0.9489 | 0.9493 | 0.9489 | 0.9489 | | 0.0979 | 2.0 | 208 | 0.1356 | 0.9585 | 0.9597 | 0.9585 | 0.9583 | | 0.0408 | 3.0 | 312 | 0.1184 | 0.9561 | 0.9571 | 0.9561 | 0.9561 | | 0.0703 | 4.0 | 416 | 0.0892 | 0.9700 | 0.9701 | 0.9700 | 0.9699 | | 0.1375 | 5.0 | 520 | 0.1029 | 0.9681 | 0.9683 | 0.9681 | 0.9682 | | 0.0061 | 6.0 | 624 | 0.1073 | 0.9681 | 0.9688 | 0.9681 | 0.9682 | | 0.0083 | 7.0 | 728 | 0.0795 | 0.9700 | 0.9701 | 0.9700 | 0.9700 | | 0.0079 | 8.0 | 832 | 0.0754 | 0.9814 | 0.9816 | 0.9814 | 0.9814 | | 0.0594 | 9.0 | 936 | 0.0714 | 0.9754 | 0.9756 | 0.9754 | 0.9754 | | 0.0391 | 10.0 | 1040 | 0.0838 | 0.9742 | 0.9743 | 0.9742 | 0.9741 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0
[ "badminton", "cricket", "football", "karate", "swimming", "tennis", "wrestling" ]
kclee111/swin-tiny-patch4-window7-224-finetuned-eurosat
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224-finetuned-eurosat This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0681 - Accuracy: 0.9773 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.8977 | 1.0 | 152 | 0.1133 | 0.9653 | | 0.6553 | 2.0 | 304 | 0.0772 | 0.9745 | | 0.537 | 3.0 | 456 | 0.0681 | 0.9773 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0
[ "river", "sealake", "annualcrop", "forest", "residential", "highway", "permanentcrop", "pasture", "herbaceousvegetation", "industrial" ]
Luan220703/vit-base-VietnameseFood
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-VietnameseFood This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on a Vietnamese Food dataset (https://huggingface.co/datasets/TuyenTrungLe/vietnamese_food_images) with More than 17k images were on the train set, 2k5 were on the validation set, and 5k were on the test set. ![image/png](https://cdn-uploads.huggingface.co/production/uploads/658c12791260e506f157abcd/LaCXyFNSgw9PyNaRUK4FK.png) It achieves the following results on the evaluation set: - Loss: 1.2489 - Accuracy: 0.8925 Although the loss is quite high, the model predicted well with test set with 0.8639 accuracy and a loss of 0.4871 ![image/png](https://cdn-uploads.huggingface.co/production/uploads/658c12791260e506f157abcd/gY9dSYt7hJ_Sf11bTbO6X.png) ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 1.4936 | 0.1818 | 100 | 1.5493 | 0.6901 | | 0.848 | 0.3636 | 200 | 0.9488 | 0.7851 | | 0.6619 | 0.5455 | 300 | 0.8240 | 0.7865 | | 0.6868 | 0.7273 | 400 | 0.6671 | 0.8298 | | 0.6127 | 0.9091 | 500 | 0.6296 | 0.8296 | | 0.4413 | 1.0909 | 600 | 0.6003 | 0.8339 | | 0.3484 | 1.2727 | 700 | 0.6349 | 0.8153 | | 0.3529 | 1.4545 | 800 | 0.5235 | 0.8581 | | 0.4104 | 1.6364 | 900 | 0.5407 | 0.8512 | | 0.3097 | 1.8182 | 1000 | 0.5537 | 0.8423 | | 0.2527 | 2.0 | 1100 | 0.4871 | 0.8639 | | 0.1571 | 2.1818 | 1200 | 0.5507 | 0.8587 | | 0.2164 | 2.3636 | 1300 | 0.5598 | 0.8585 | | 0.1875 | 2.5455 | 1400 | 0.5787 | 0.8522 | | 0.1314 | 2.7273 | 1500 | 0.5262 | 0.8643 | | 0.1671 | 2.9091 | 1600 | 0.5686 | 0.8587 | | 0.0807 | 3.0909 | 1700 | 0.5912 | 0.8633 | | 0.0989 | 3.2727 | 1800 | 0.6392 | 0.8679 | | 0.0586 | 3.4545 | 1900 | 0.6587 | 0.8651 | | 0.0672 | 3.6364 | 2000 | 0.6542 | 0.8758 | | 0.0342 | 3.8182 | 2100 | 0.6533 | 0.8786 | | 0.0484 | 4.0 | 2200 | 0.7314 | 0.8756 | | 0.0678 | 4.1818 | 2300 | 0.8517 | 0.8788 | | 0.075 | 4.3636 | 2400 | 0.9576 | 0.8843 | | 0.0201 | 4.5455 | 2500 | 1.0758 | 0.8845 | | 0.1238 | 4.7273 | 2600 | 1.1375 | 0.8871 | | 0.0434 | 4.9091 | 2700 | 1.2226 | 0.8877 | | 0.0493 | 5.0909 | 2800 | 1.1938 | 0.8923 | | 0.0055 | 5.2727 | 2900 | 1.2594 | 0.8903 | | 0.0039 | 5.4545 | 3000 | 1.2709 | 0.8887 | | 0.0445 | 5.6364 | 3100 | 1.2420 | 0.8921 | | 0.0347 | 5.8182 | 3200 | 1.2609 | 0.8915 | | 0.0657 | 6.0 | 3300 | 1.2489 | 0.8925 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 3.2.0 - Tokenizers 0.19.1
[ "banh beo", "banh bot loc", "banh pia", "banh tet", "banh trang nuong", "banh xeo", "bun bo hue", "bun dau mam tom", "bun mam", "bun rieu", "bun thit nuong", "ca kho to", "banh can", "canh chua", "cao lau", "chao long", "com tam", "goi cuon", "hu tieu", "mi quang", "nem chua", "pho", "xoi xeo", "banh canh", "banh chung", "banh cuon", "banh duc", "banh gio", "banh khot", "banh mi" ]
alexasophia-24/Human-Action-Recognition-VIT-Base-patch16-224
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Human-Action-Recognition-VIT-Base-patch16-224 This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4367 - Accuracy: 0.8687 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-------:|:----:|:---------------:|:--------:| | 10.2084 | 1.0 | 40 | 2.0027 | 0.4877 | | 5.7018 | 2.0 | 80 | 0.7764 | 0.7774 | | 3.1984 | 3.0 | 120 | 0.5612 | 0.8329 | | 2.6944 | 4.0 | 160 | 0.5205 | 0.8437 | | 2.4232 | 5.0 | 200 | 0.4874 | 0.8508 | | 2.2387 | 6.0 | 240 | 0.4712 | 0.8567 | | 2.0735 | 7.0 | 280 | 0.4715 | 0.8552 | | 1.9519 | 8.0 | 320 | 0.4472 | 0.8587 | | 1.8481 | 9.0 | 360 | 0.4504 | 0.8563 | | 1.6348 | 10.0 | 400 | 0.4512 | 0.8583 | | 1.6713 | 11.0 | 440 | 0.4621 | 0.8579 | | 1.5573 | 12.0 | 480 | 0.4380 | 0.8659 | | 1.5445 | 13.0 | 520 | 0.4347 | 0.8635 | | 1.4436 | 14.0 | 560 | 0.4385 | 0.8683 | | 1.388 | 15.0 | 600 | 0.4379 | 0.8679 | | 1.4061 | 16.0 | 640 | 0.4391 | 0.8647 | | 1.3256 | 17.0 | 680 | 0.4353 | 0.8671 | | 1.3634 | 18.0 | 720 | 0.4360 | 0.8671 | | 1.3661 | 19.0 | 760 | 0.4366 | 0.8679 | | 1.3606 | 19.5063 | 780 | 0.4367 | 0.8687 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu121 - Tokenizers 0.21.0
[ "calling", "clapping", "cycling", "dancing", "drinking", "eating", "fighting", "hugging", "laughing", "listening_to_music", "running", "sitting", "sleeping", "texting", "using_laptop" ]
MiroJ/google_eurosat
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # google_eurosat This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the image_folder dataset. It achieves the following results on the evaluation set: - Loss: 0.0650 - Accuracy: 0.9894 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 1.1819 | 1.0 | 608 | 0.1604 | 0.9759 | | 0.6554 | 2.0 | 1216 | 0.0953 | 0.9824 | | 0.4079 | 2.9959 | 1821 | 0.0650 | 0.9894 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.2.0+cpu - Datasets 2.0.0 - Tokenizers 0.21.0
[ "annualcrop", "forest", "herbaceousvegetation", "highway", "industrial", "pasture", "permanentcrop", "residential", "river", "sealake" ]
Augusto777/swinv2-tiny-patch4-window8-256-RD-FIX
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swinv2-tiny-patch4-window8-256-RD-FIX This model is a fine-tuned version of [microsoft/swinv2-tiny-patch4-window8-256](https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.5014 - Accuracy: 0.7826 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 40 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-------:|:----:|:---------------:|:--------:| | No log | 0.8571 | 3 | 1.1955 | 0.4565 | | No log | 1.8571 | 6 | 1.1280 | 0.5 | | No log | 2.8571 | 9 | 1.0565 | 0.4783 | | 4.8751 | 3.8571 | 12 | 0.9184 | 0.5870 | | 4.8751 | 4.8571 | 15 | 0.8208 | 0.5870 | | 4.8751 | 5.8571 | 18 | 0.7310 | 0.6087 | | 3.6315 | 6.8571 | 21 | 0.6951 | 0.7174 | | 3.6315 | 7.8571 | 24 | 0.6772 | 0.7174 | | 3.6315 | 8.8571 | 27 | 0.6626 | 0.7174 | | 2.8559 | 9.8571 | 30 | 0.5987 | 0.7826 | | 2.8559 | 10.8571 | 33 | 0.5431 | 0.8261 | | 2.8559 | 11.8571 | 36 | 0.6193 | 0.6739 | | 2.8559 | 12.8571 | 39 | 0.6475 | 0.7174 | | 2.3617 | 13.8571 | 42 | 0.5725 | 0.7174 | | 2.3617 | 14.8571 | 45 | 0.5794 | 0.7826 | | 2.3617 | 15.8571 | 48 | 0.5292 | 0.7826 | | 2.1506 | 16.8571 | 51 | 0.5988 | 0.7391 | | 2.1506 | 17.8571 | 54 | 0.6548 | 0.7174 | | 2.1506 | 18.8571 | 57 | 0.5131 | 0.8261 | | 1.9498 | 19.8571 | 60 | 0.4700 | 0.8478 | | 1.9498 | 20.8571 | 63 | 0.5254 | 0.8043 | | 1.9498 | 21.8571 | 66 | 0.5451 | 0.7826 | | 1.9498 | 22.8571 | 69 | 0.5304 | 0.7609 | | 1.422 | 23.8571 | 72 | 0.5105 | 0.8043 | | 1.422 | 24.8571 | 75 | 0.4685 | 0.7826 | | 1.422 | 25.8571 | 78 | 0.4875 | 0.8261 | | 1.3044 | 26.8571 | 81 | 0.5492 | 0.7826 | | 1.3044 | 27.8571 | 84 | 0.5202 | 0.7826 | | 1.3044 | 28.8571 | 87 | 0.4737 | 0.8261 | | 1.2464 | 29.8571 | 90 | 0.4398 | 0.8478 | | 1.2464 | 30.8571 | 93 | 0.4753 | 0.8043 | | 1.2464 | 31.8571 | 96 | 0.4913 | 0.8043 | | 1.2464 | 32.8571 | 99 | 0.5262 | 0.7826 | | 1.1614 | 33.8571 | 102 | 0.5280 | 0.7826 | | 1.1614 | 34.8571 | 105 | 0.5252 | 0.7609 | | 1.1614 | 35.8571 | 108 | 0.5127 | 0.7826 | | 1.045 | 36.8571 | 111 | 0.5061 | 0.7826 | | 1.045 | 37.8571 | 114 | 0.5012 | 0.7826 | | 1.045 | 38.8571 | 117 | 0.5025 | 0.7826 | | 0.9391 | 39.8571 | 120 | 0.5014 | 0.7826 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0
[ "avanzada", "leve", "moderada", "no dmae" ]
hhffxx/my-food-model
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my-food-model This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2693 - Accuracy: 0.94 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.4352 | 1.0 | 125 | 0.4475 | 0.924 | | 0.2204 | 2.0 | 250 | 0.2962 | 0.939 | | 0.1395 | 3.0 | 375 | 0.2693 | 0.94 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.20.3
[ "beignets", "bruschetta", "chicken_wings", "hamburger", "pork_chop", "prime_rib", "ramen" ]
Felipecordeiiro/swin-tiny-patch4-window7-224-finetuned-eurosat
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224-finetuned-eurosat This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0383 - Accuracy: 0.9887 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.4709 | 1.0 | 422 | 0.0610 | 0.9807 | | 1.5976 | 2.0 | 844 | 0.0406 | 0.9868 | | 1.1605 | 3.0 | 1266 | 0.0383 | 0.9887 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0
[ "0", "1", "2", "3", "4", "5", "6", "7", "8", "9" ]
bmedeiros/vit-msn-small-ultralytics_yolo_cropped_lateral_flow_ivalidation
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-msn-small-ultralytics_yolo_cropped_lateral_flow_ivalidation This model is a fine-tuned version of [facebook/vit-msn-small](https://huggingface.co/facebook/vit-msn-small) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.4550 - Accuracy: 0.8373 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 40 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-------:|:----:|:---------------:|:--------:| | No log | 0.9032 | 7 | 0.6079 | 0.7263 | | 0.4464 | 1.9355 | 15 | 0.4912 | 0.8107 | | 0.3464 | 2.9677 | 23 | 0.6082 | 0.6820 | | 0.2864 | 4.0 | 31 | 0.5636 | 0.7234 | | 0.2864 | 4.9032 | 38 | 0.4431 | 0.8121 | | 0.2617 | 5.9355 | 46 | 0.5066 | 0.7322 | | 0.2504 | 6.9677 | 54 | 0.4550 | 0.8373 | | 0.2319 | 8.0 | 62 | 0.7023 | 0.6686 | | 0.2319 | 8.9032 | 69 | 0.6887 | 0.6346 | | 0.2338 | 9.9355 | 77 | 0.5075 | 0.8107 | | 0.2163 | 10.9677 | 85 | 0.6170 | 0.7189 | | 0.2024 | 12.0 | 93 | 0.7783 | 0.6139 | | 0.2027 | 12.9032 | 100 | 0.9525 | 0.5059 | | 0.2027 | 13.9355 | 108 | 0.7353 | 0.6805 | | 0.2086 | 14.9677 | 116 | 0.7734 | 0.6479 | | 0.1921 | 16.0 | 124 | 0.9112 | 0.5251 | | 0.1827 | 16.9032 | 131 | 0.6997 | 0.6997 | | 0.1827 | 17.9355 | 139 | 0.7572 | 0.6731 | | 0.1854 | 18.9677 | 147 | 0.6843 | 0.7041 | | 0.172 | 20.0 | 155 | 0.7237 | 0.6997 | | 0.1703 | 20.9032 | 162 | 0.7698 | 0.6598 | | 0.1587 | 21.9355 | 170 | 0.7597 | 0.6420 | | 0.1587 | 22.9677 | 178 | 0.8517 | 0.5976 | | 0.1673 | 24.0 | 186 | 0.6763 | 0.6672 | | 0.1474 | 24.9032 | 193 | 0.8353 | 0.6420 | | 0.1512 | 25.9355 | 201 | 0.7117 | 0.6953 | | 0.1512 | 26.9677 | 209 | 0.8383 | 0.6169 | | 0.1427 | 28.0 | 217 | 1.0619 | 0.5399 | | 0.1501 | 28.9032 | 224 | 0.7946 | 0.6760 | | 0.1325 | 29.9355 | 232 | 1.0962 | 0.5222 | | 0.1314 | 30.9677 | 240 | 0.8824 | 0.6183 | | 0.1314 | 32.0 | 248 | 0.8409 | 0.6331 | | 0.1294 | 32.9032 | 255 | 0.8754 | 0.6021 | | 0.1204 | 33.9355 | 263 | 0.8036 | 0.6716 | | 0.1218 | 34.9677 | 271 | 0.8477 | 0.6568 | | 0.1218 | 36.0 | 279 | 0.8739 | 0.6331 | | 0.1217 | 36.1290 | 280 | 0.8748 | 0.6331 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 3.2.0 - Tokenizers 0.19.1
[ "invalid", "valid" ]
SouthMemphis/vit-military-aircraft
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-beans This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.3643 - Accuracy: 0.9027 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 3.5924 | 0.0620 | 100 | 3.5675 | 0.1927 | | 3.0189 | 0.1239 | 200 | 3.0313 | 0.3047 | | 2.5541 | 0.1859 | 300 | 2.5575 | 0.3956 | | 2.114 | 0.2478 | 400 | 2.2332 | 0.4571 | | 1.9624 | 0.3098 | 500 | 1.9455 | 0.5596 | | 1.6749 | 0.3717 | 600 | 1.7370 | 0.5787 | | 1.5852 | 0.4337 | 700 | 1.4947 | 0.6439 | | 1.1875 | 0.4957 | 800 | 1.4151 | 0.6468 | | 1.5114 | 0.5576 | 900 | 1.2709 | 0.6820 | | 1.3122 | 0.6196 | 1000 | 1.1940 | 0.6939 | | 1.0721 | 0.6815 | 1100 | 1.0757 | 0.7261 | | 0.8249 | 0.7435 | 1200 | 0.9666 | 0.7576 | | 0.7944 | 0.8055 | 1300 | 0.9101 | 0.7708 | | 0.8032 | 0.8674 | 1400 | 0.9011 | 0.7691 | | 0.7479 | 0.9294 | 1500 | 0.7409 | 0.8067 | | 0.5997 | 0.9913 | 1600 | 0.7326 | 0.8110 | | 0.5005 | 1.0533 | 1700 | 0.6769 | 0.8211 | | 0.4107 | 1.1152 | 1800 | 0.6375 | 0.8374 | | 0.4596 | 1.1772 | 1900 | 0.6302 | 0.8304 | | 0.2544 | 1.2392 | 2000 | 0.5805 | 0.8400 | | 0.2983 | 1.3011 | 2100 | 0.5480 | 0.8501 | | 0.3214 | 1.3631 | 2200 | 0.5053 | 0.8683 | | 0.2384 | 1.4250 | 2300 | 0.4929 | 0.8713 | | 0.2397 | 1.4870 | 2400 | 0.4664 | 0.8742 | | 0.3448 | 1.5489 | 2500 | 0.4690 | 0.8755 | | 0.3129 | 1.6109 | 2600 | 0.4351 | 0.8843 | | 0.1027 | 1.6729 | 2700 | 0.4311 | 0.8846 | | 0.2086 | 1.7348 | 2800 | 0.4088 | 0.8897 | | 0.1683 | 1.7968 | 2900 | 0.4133 | 0.8919 | | 0.2767 | 1.8587 | 3000 | 0.3851 | 0.8964 | | 0.1582 | 1.9207 | 3100 | 0.3703 | 0.9018 | | 0.1421 | 1.9827 | 3200 | 0.3643 | 0.9027 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 3.2.0 - Tokenizers 0.19.1
[ "a10", "a400m", "ag600", "ah64", "av8b", "an124", "an22", "an225", "an72", "b1", "b2", "b21", "b52", "be200", "c130", "c17", "c2", "c390", "c5", "ch47", "cl415", "e2", "e7", "ef2000", "f117", "f14", "f15", "f16", "f18", "f22", "f35", "f4", "h6", "j10", "j20", "jas39", "jf17", "jh7", "kc135", "kf21", "kj600", "ka27", "ka52", "mq9", "mi24", "mi26", "mi28", "mig29", "mig31", "mirage2000", "p3", "rq4", "rafale", "sr71", "su24", "su25", "su34", "su57", "tb001", "tb2", "tornado", "tu160", "tu22m", "tu95", "u2", "uh60", "us2", "v22", "vulcan", "wz7", "xb70", "y20", "yf23", "z19" ]
JMMM77/pneumonia_image_classification_model
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pneumonia_image_classification_model This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.9616 - Accuracy: 0.625 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 0.7397 | 1.0 | 82 | 1.4402 | 0.5625 | | 0.6347 | 2.0 | 164 | 1.3682 | 0.625 | | 0.5134 | 2.9693 | 243 | 0.9616 | 0.625 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0
[ "normal", "pneumonia" ]
Bastik22/pneumonia
# Model Trained Using AutoTrain - Problem type: Image Classification ## Validation Metrics loss: 0.5226172208786011 f1: 0.8527472527472527 precision: 0.7432950191570882 recall: 1.0 auc: 0.9095966687182644 accuracy: 0.7432950191570882
[ "normal", "pneumonia" ]
Bastik22/pneumonia1
# Model Trained Using AutoTrain - Problem type: Image Classification ## Validation Metrics loss: 0.5015742182731628 f1: 0.8527472527472527 precision: 0.7432950191570882 recall: 1.0 auc: 0.9162130712417295 accuracy: 0.7432950191570882
[ "normal", "pneumonia" ]
a838264168/kvasir-v2-classifier
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
[ "dyed-lifted-polyps", "dyed-resection-margins", "esophagitis", "normal-cecum", "normal-pylorus", "normal-z-line", "polyps", "ulcerative-colitis" ]
Brightmzb/vit-base-beans-demo-v5
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-beans-demo-v5 This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the beans dataset. It achieves the following results on the evaluation set: - Loss: 0.0147 - Accuracy: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 0.0541 | 1.5385 | 100 | 0.0242 | 1.0 | | 0.014 | 3.0769 | 200 | 0.0147 | 1.0 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0
[ "angular_leaf_spot", "bean_rust", "healthy" ]
MiroJ/facebook_eurosat
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # facebook_eurosat This model is a fine-tuned version of [facebook/deit-base-patch16-224](https://huggingface.co/facebook/deit-base-patch16-224) on the image_folder dataset. It achieves the following results on the evaluation set: - Loss: 0.0341 - Accuracy: 0.9894 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 0.5235 | 1.0 | 608 | 0.0824 | 0.9727 | | 0.8113 | 2.0 | 1216 | 0.0579 | 0.9815 | | 0.3605 | 2.9959 | 1821 | 0.0341 | 0.9894 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.2.0+cpu - Datasets 2.0.0 - Tokenizers 0.21.0
[ "annualcrop", "forest", "herbaceousvegetation", "highway", "industrial", "pasture", "permanentcrop", "residential", "river", "sealake" ]
Renegade-888/vit-base-oxford-iiit-pets
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-oxford-iiit-pets This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the pcuenq/oxford-pets dataset. It achieves the following results on the evaluation set: - Loss: 0.2264 - Accuracy: 0.9350 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.3603 | 1.0 | 370 | 0.3164 | 0.9120 | | 0.1989 | 2.0 | 740 | 0.2547 | 0.9269 | | 0.1646 | 3.0 | 1110 | 0.2423 | 0.9242 | | 0.1393 | 4.0 | 1480 | 0.2316 | 0.9283 | | 0.1231 | 5.0 | 1850 | 0.2303 | 0.9310 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0
[ "siamese", "birman", "shiba inu", "staffordshire bull terrier", "basset hound", "bombay", "japanese chin", "chihuahua", "german shorthaired", "pomeranian", "beagle", "english cocker spaniel", "american pit bull terrier", "ragdoll", "persian", "egyptian mau", "miniature pinscher", "sphynx", "maine coon", "keeshond", "yorkshire terrier", "havanese", "leonberger", "wheaten terrier", "american bulldog", "english setter", "boxer", "newfoundland", "bengal", "samoyed", "british shorthair", "great pyrenees", "abyssinian", "pug", "saint bernard", "russian blue", "scottish terrier" ]
desarrolloasesoreslocales/cvt-13-finetuned-eurosat
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # cvt-13-finetuned-eurosat This model is a fine-tuned version of [microsoft/cvt-13](https://huggingface.co/microsoft/cvt-13) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.9738 - Accuracy: 0.496 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 12.096 | 1.0 | 18 | 2.5771 | 0.258 | | 10.7352 | 2.0 | 36 | 2.3322 | 0.39 | | 9.976 | 3.0 | 54 | 2.1288 | 0.456 | | 9.4697 | 4.0 | 72 | 1.9970 | 0.496 | | 8.751 | 4.7429 | 85 | 1.9738 | 0.496 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0
[ "circulación prohibida", "circular por carriles de circulación reservada", "estacionar en carril-taxi o en carril-bus", "estacionar en el centro de la calzada", "estacionar en espacio reservado", "estacionar en espacio reservado para personas de movilidad reducida", "estacionar en espacio reservado para vehículo eléctrico, sin tener esa condición", "estacionar en intersección", "estacionar en lugar prohibido por línea amarilla discontinua", "estacionar en lugar prohibido por línea amarilla en zig-zag", "estacionar en un carril bici", "estacionar en un lugar donde se impide la retirada o vaciado de contenedores", "estacionar en vado señalizado", "estacionar en zonas de carga y descarga", "estacionar o parar donde está prohibida la parada por la señal vertical correspondiente", "estacionar o parar en doble fila", "estacionar o parar en paso para peatones", "estacionar o parar en un lugar prohibido por linea amarilla continua", "estacionar o parar sobre acera", "estacionar o parar un vehículo en rebaje en la acera para disminuidos físicos", "estacionar un vehículo en zonas señalizadas con franjas en el pavimento (isleta)" ]
desarrolloasesoreslocales/cvt-13-finetuned-AL
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # cvt-13-finetuned-AL This model is a fine-tuned version of [microsoft/cvt-13](https://huggingface.co/microsoft/cvt-13) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 2.6319 - Accuracy: 0.2619 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.2095 | 1.0 | 11 | 2.6973 | 0.1905 | | 2.1537 | 2.0 | 22 | 2.6885 | 0.1667 | | 2.3281 | 3.0 | 33 | 2.6838 | 0.1429 | | 2.3004 | 4.0 | 44 | 2.6759 | 0.1667 | | 2.3531 | 5.0 | 55 | 2.6765 | 0.1905 | | 2.4045 | 6.0 | 66 | 2.6647 | 0.1905 | | 2.3842 | 7.0 | 77 | 2.6552 | 0.2143 | | 2.4049 | 8.0 | 88 | 2.6505 | 0.2381 | | 2.3972 | 9.0 | 99 | 2.6470 | 0.2143 | | 2.4238 | 10.0 | 110 | 2.6428 | 0.2143 | | 2.4359 | 11.0 | 121 | 2.6429 | 0.1905 | | 2.4042 | 12.0 | 132 | 2.6383 | 0.2619 | | 2.4737 | 13.0 | 143 | 2.6364 | 0.2381 | | 2.4003 | 14.0 | 154 | 2.6280 | 0.2143 | | 2.382 | 15.0 | 165 | 2.6319 | 0.2619 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0
[ "circulación prohibida", "circular por carriles de circulación reservada", "estacionar en carril-taxi o en carril-bus", "estacionar en el centro de la calzada", "estacionar en espacio reservado", "estacionar en espacio reservado para personas de movilidad reducida", "estacionar en espacio reservado para vehículo eléctrico, sin tener esa condición", "estacionar en intersección", "estacionar en lugar prohibido por línea amarilla discontinua", "estacionar en lugar prohibido por línea amarilla en zig-zag", "estacionar en un carril bici", "estacionar en un lugar donde se impide la retirada o vaciado de contenedores", "estacionar en vado señalizado", "estacionar en zonas de carga y descarga", "estacionar o parar donde está prohibida la parada por la señal vertical correspondiente", "estacionar o parar en doble fila", "estacionar o parar en paso para peatones", "estacionar o parar en un lugar prohibido por linea amarilla continua", "estacionar o parar sobre acera", "estacionar o parar un vehículo en rebaje en la acera para disminuidos físicos", "estacionar un vehículo en zonas señalizadas con franjas en el pavimento (isleta)" ]
Bastik22/pneumonia3
# Model Trained Using AutoTrain - Problem type: Image Classification ## Validation Metrics loss: 1.8160488605499268 f1: 0.6666666666666666 precision: 0.5 recall: 1.0 auc: 0.8125 accuracy: 0.5
[ "normal", "pneumonia" ]
zavora/vit-beans-classifier
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-beans-classifier This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0681 - Accuracy: 0.9624 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 65 | 0.1897 | 0.9248 | | No log | 2.0 | 130 | 0.0980 | 0.9624 | | No log | 3.0 | 195 | 0.0736 | 0.9699 | | No log | 4.0 | 260 | 0.0687 | 0.9624 | | No log | 5.0 | 325 | 0.0681 | 0.9624 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0
[ "angular_leaf_spot", "bean_rust", "healthy" ]
Prahaladha/Indian_Food_Classification
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
[ "burger", "butter_naan", "chai", "chapati", "chole_bhature", "dal_makhani", "dhokla", "fried_rice", "idli", "jalebi", "kaathi_rolls", "kadai_paneer", "kulfi", "masala_dosa", "momos", "paani_puri", "pakode", "pav_bhaji", "pizza", "samosa" ]
sunnyday910/vit-base-oxford-iiit-pets
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-oxford-iiit-pets This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the pcuenq/oxford-pets dataset. It achieves the following results on the evaluation set: - Loss: 0.1903 - Accuracy: 0.9405 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.3761 | 1.0 | 370 | 0.2990 | 0.9283 | | 0.2121 | 2.0 | 740 | 0.2239 | 0.9391 | | 0.1462 | 3.0 | 1110 | 0.1997 | 0.9418 | | 0.1392 | 4.0 | 1480 | 0.1912 | 0.9432 | | 0.1417 | 5.0 | 1850 | 0.1865 | 0.9445 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0
[ "siamese", "birman", "shiba inu", "staffordshire bull terrier", "basset hound", "bombay", "japanese chin", "chihuahua", "german shorthaired", "pomeranian", "beagle", "english cocker spaniel", "american pit bull terrier", "ragdoll", "persian", "egyptian mau", "miniature pinscher", "sphynx", "maine coon", "keeshond", "yorkshire terrier", "havanese", "leonberger", "wheaten terrier", "american bulldog", "english setter", "boxer", "newfoundland", "bengal", "samoyed", "british shorthair", "great pyrenees", "abyssinian", "pug", "saint bernard", "russian blue", "scottish terrier" ]
hoanbklucky/swin-tiny-patch4-window7-224-finetuned-noh
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224-finetuned-noh This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4349 - Accuracy: 0.8621 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 0.5322 | 1.0 | 23 | 0.4647 | 0.7619 | | 0.4535 | 2.0 | 46 | 0.4359 | 0.8194 | | 0.3854 | 3.0 | 69 | 0.3514 | 0.8539 | | 0.302 | 4.0 | 92 | 0.4349 | 0.8621 | | 0.2571 | 5.0 | 115 | 0.5112 | 0.8095 | | 0.2104 | 6.0 | 138 | 0.4453 | 0.8259 | | 0.1702 | 7.0 | 161 | 0.5550 | 0.7833 | | 0.1682 | 8.0 | 184 | 0.5313 | 0.7947 | | 0.136 | 9.0 | 207 | 0.5452 | 0.8276 | | 0.1415 | 9.5778 | 220 | 0.5352 | 0.8210 | ### Framework versions - Transformers 4.47.0 - Pytorch 2.5.1 - Datasets 2.19.1 - Tokenizers 0.21.0
[ "normal", "cancer" ]
hoanbklucky/vit-base-patch16-224-finetuned-noh
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-patch16-224-finetuned-noh This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5148 - Accuracy: 0.8210 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 0.4728 | 1.0 | 23 | 0.4540 | 0.7750 | | 0.3998 | 2.0 | 46 | 0.4063 | 0.8128 | | 0.3388 | 3.0 | 69 | 0.3919 | 0.8358 | | 0.2665 | 4.0 | 92 | 0.4299 | 0.8539 | | 0.2112 | 5.0 | 115 | 0.4299 | 0.8227 | | 0.187 | 6.0 | 138 | 0.4721 | 0.8259 | | 0.1363 | 7.0 | 161 | 0.4639 | 0.8440 | | 0.119 | 8.0 | 184 | 0.5293 | 0.7898 | | 0.1042 | 9.0 | 207 | 0.5141 | 0.8161 | | 0.1153 | 9.5778 | 220 | 0.5148 | 0.8210 | ### Framework versions - Transformers 4.47.0 - Pytorch 2.5.1 - Datasets 2.19.1 - Tokenizers 0.21.0
[ "normal", "cancer" ]
hoanbklucky/convnext-tiny-224-finetuned-noh
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # convnext-tiny-224-finetuned-noh This model is a fine-tuned version of [facebook/convnext-tiny-224](https://huggingface.co/facebook/convnext-tiny-224) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3730 - Accuracy: 0.8801 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 0.5518 | 1.0 | 23 | 0.5414 | 0.7619 | | 0.5027 | 2.0 | 46 | 0.4834 | 0.7619 | | 0.4616 | 3.0 | 69 | 0.4075 | 0.8358 | | 0.4001 | 4.0 | 92 | 0.3601 | 0.8571 | | 0.3698 | 5.0 | 115 | 0.3467 | 0.8768 | | 0.3261 | 6.0 | 138 | 0.3730 | 0.8801 | | 0.301 | 7.0 | 161 | 0.3728 | 0.8736 | | 0.3071 | 8.0 | 184 | 0.3959 | 0.8374 | | 0.264 | 9.0 | 207 | 0.3865 | 0.8604 | | 0.2769 | 9.5778 | 220 | 0.3873 | 0.8621 | ### Framework versions - Transformers 4.47.0 - Pytorch 2.5.1 - Datasets 2.19.1 - Tokenizers 0.21.0
[ "normal", "cancer" ]
hoanbklucky/efficientnet-b0-finetuned-noh
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # efficientnet-b0-finetuned-noh This model is a fine-tuned version of [google/efficientnet-b0](https://huggingface.co/google/efficientnet-b0) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3784 - Accuracy: 0.8883 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 0.6146 | 1.0 | 23 | 0.6139 | 0.7291 | | 0.5116 | 2.0 | 46 | 0.4704 | 0.8309 | | 0.4655 | 3.0 | 69 | 0.4233 | 0.8588 | | 0.4331 | 4.0 | 92 | 0.4119 | 0.8604 | | 0.4281 | 5.0 | 115 | 0.3897 | 0.8752 | | 0.4001 | 6.0 | 138 | 0.4012 | 0.8719 | | 0.3721 | 7.0 | 161 | 0.3861 | 0.8818 | | 0.3979 | 8.0 | 184 | 0.3784 | 0.8883 | | 0.3376 | 9.0 | 207 | 0.4171 | 0.8604 | | 0.3984 | 9.5778 | 220 | 0.4139 | 0.8621 | ### Framework versions - Transformers 4.47.0 - Pytorch 2.5.1 - Datasets 2.19.1 - Tokenizers 0.21.0
[ "normal", "cancer" ]
Kankanaghosh/vit-base-beans
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-beans This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0099 - Accuracy: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 0.0865 | 1.5385 | 100 | 0.1435 | 0.9624 | | 0.0347 | 3.0769 | 200 | 0.0099 | 1.0 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0
[ "angular_leaf_spot", "bean_rust", "healthy" ]
vikas117/finetuned-ai-real
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned-ai-real This model is a fine-tuned version of [google/vit-large-patch16-224](https://huggingface.co/google/vit-large-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.2686 - Accuracy: 0.9073 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 0.5454 | 0.5682 | 25 | 0.2972 | 0.8911 | | 0.4058 | 1.1364 | 50 | 0.6324 | 0.7581 | | 0.236 | 1.7045 | 75 | 0.2686 | 0.9073 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0
[ "ai", "real" ]
bikekowal/vit-base-oxford-iiit-pets
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-oxford-iiit-pets This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on an unknown dataset. It achieves the following results on the evaluation set: - eval_loss: 3.5198 - eval_accuracy: 0.0392 - eval_runtime: 5.7122 - eval_samples_per_second: 129.373 - eval_steps_per_second: 8.228 - step: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 10 ### Framework versions - Transformers 4.48.0.dev0 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0
[ "siamese", "birman", "shiba inu", "staffordshire bull terrier", "basset hound", "bombay", "japanese chin", "chihuahua", "german shorthaired", "pomeranian", "beagle", "english cocker spaniel", "american pit bull terrier", "ragdoll", "persian", "egyptian mau", "miniature pinscher", "sphynx", "maine coon", "keeshond", "yorkshire terrier", "havanese", "leonberger", "wheaten terrier", "american bulldog", "english setter", "boxer", "newfoundland", "bengal", "samoyed", "british shorthair", "great pyrenees", "abyssinian", "pug", "saint bernard", "russian blue", "scottish terrier" ]
skshmjn/Pokemon-classifier-gen9-1025
# Model Card for Pokemon Classifier Gen9 ## Model Overview This is a fine-tuned ViT (Vision Transformer) model for Pokémon image classification. The model is trained to classify upto Gen9 (1025) Pokémon images. ## Intended Use This model is designed for image classification tasks, specifically for identifying Pokémon characters. It can be used for: - Pokémon-themed apps - Educational projects - Pokémon identification in images **Note**: The model is not designed for general-purpose image classification. ## How to Use Here's how you can load and use the model with the Hugging Face `transformers` library: ```python from transformers import ViTForImageClassification, ViTImageProcessor from PIL import Image import torch # Define the device device = "cuda" if torch.cuda.is_available() else "cpu" # Load the model and image processor model_id = "skshmjn/Pokemon-classifier-gen9-1025" model = ViTForImageClassification.from_pretrained(model_id).to(device) image_processor = ViTImageProcessor.from_pretrained(model_id) # Load and process an image img = Image.open('test.jpg').convert("RGB") inputs = image_processor(images=img, return_tensors='pt').to(device) # Make predictions outputs = model(**inputs) predicted_id = outputs.logits.argmax(-1).item() predicted_pokemon = model.config.id2label[predicted_id] # Print predicted class print(f"Predicted Pokémon Pokédex number: {predicted_id+1}") print(f"Predicted Pokémon: {predicted_pokemon}")
[ "bulbasaur", "ivysaur", "venusaur", "charmander", "charmeleon", "charizard", "squirtle", "wartortle", "blastoise", "caterpie", "metapod", "butterfree", "weedle", "kakuna", "beedrill", "pidgey", "pidgeotto", "pidgeot", "rattata", "raticate", "spearow", "fearow", "ekans", "arbok", "pikachu", "raichu", "sandshrew", "sandslash", "nidoran♀", "nidorina", "nidoqueen", "nidoran♂", "nidorino", "nidoking", "clefairy", "clefable", "vulpix", "ninetales", "jigglypuff", "wigglytuff", "zubat", "golbat", "oddish", "gloom", "vileplume", "paras", "parasect", "venonat", "venomoth", "diglett", "dugtrio", "meowth", "persian", "psyduck", "golduck", "mankey", "primeape", "growlithe", "arcanine", "poliwag", "poliwhirl", "poliwrath", "abra", "kadabra", "alakazam", "machop", "machoke", "machamp", "bellsprout", "weepinbell", "victreebel", "tentacool", "tentacruel", "geodude", "graveler", "golem", "ponyta", "rapidash", "slowpoke", "slowbro", "magnemite", "magneton", "farfetch'd", "doduo", "dodrio", "seel", "dewgong", "grimer", "muk", "shellder", "cloyster", "gastly", "haunter", "gengar", "onix", "drowzee", "hypno", "krabby", "kingler", "voltorb", "electrode", "exeggcute", "exeggutor", "cubone", "marowak", "hitmonlee", "hitmonchan", "lickitung", "koffing", "weezing", "rhyhorn", "rhydon", "chansey", "tangela", "kangaskhan", "horsea", "seadra", "goldeen", "seaking", "staryu", "starmie", "mr. mime", "scyther", "jynx", "electabuzz", "magmar", "pinsir", "tauros", "magikarp", "gyarados", "lapras", "ditto", "eevee", "vaporeon", "jolteon", "flareon", "porygon", "omanyte", "omastar", "kabuto", "kabutops", "aerodactyl", "snorlax", "articuno", "zapdos", "moltres", "dratini", "dragonair", "dragonite", "mewtwo", "mew", "chikorita", "bayleef", "meganium", "cyndaquil", "quilava", "typhlosion", "totodile", "croconaw", "feraligatr", "sentret", "furret", "hoothoot", "noctowl", "ledyba", "ledian", "spinarak", "ariados", "crobat", "chinchou", "lanturn", "pichu", "cleffa", "igglybuff", "togepi", "togetic", "natu", "xatu", "mareep", "flaaffy", "ampharos", "bellossom", "marill", "azumarill", "sudowoodo", "politoed", "hoppip", "skiploom", "jumpluff", "aipom", "sunkern", "sunflora", "yanma", "wooper", "quagsire", "espeon", "umbreon", "murkrow", "slowking", "misdreavus", "unown", "wobbuffet", "girafarig", "pineco", "forretress", "dunsparce", "gligar", "steelix", "snubbull", "granbull", "qwilfish", "scizor", "shuckle", "heracross", "sneasel", "teddiursa", "ursaring", "slugma", "magcargo", "swinub", "piloswine", "corsola", "remoraid", "octillery", "delibird", "mantine", "skarmory", "houndour", "houndoom", "kingdra", "phanpy", "donphan", "porygon2", "stantler", "smeargle", "tyrogue", "hitmontop", "smoochum", "elekid", "magby", "miltank", "blissey", "raikou", "entei", "suicune", "larvitar", "pupitar", "tyranitar", "lugia", "ho-oh", "celebi", "treecko", "grovyle", "sceptile", "torchic", "combusken", "blaziken", "mudkip", "marshtomp", "swampert", "poochyena", "mightyena", "zigzagoon", "linoone", "wurmple", "silcoon", "beautifly", "cascoon", "dustox", "lotad", "lombre", "ludicolo", "seedot", "nuzleaf", "shiftry", "taillow", "swellow", "wingull", "pelipper", "ralts", "kirlia", "gardevoir", "surskit", "masquerain", "shroomish", "breloom", "slakoth", "vigoroth", "slaking", "nincada", "ninjask", "shedinja", "whismur", "loudred", "exploud", "makuhita", "hariyama", "azurill", "nosepass", "skitty", "delcatty", "sableye", "mawile", "aron", "lairon", "aggron", "meditite", "medicham", "electrike", "manectric", "plusle", "minun", "volbeat", "illumise", "roselia", "gulpin", "swalot", "carvanha", "sharpedo", "wailmer", "wailord", "numel", "camerupt", "torkoal", "spoink", "grumpig", "spinda", "trapinch", "vibrava", "flygon", "cacnea", "cacturne", "swablu", "altaria", "zangoose", "seviper", "lunatone", "solrock", "barboach", "whiscash", "corphish", "crawdaunt", "baltoy", "claydol", "lileep", "cradily", "anorith", "armaldo", "feebas", "milotic", "castform", "kecleon", "shuppet", "banette", "duskull", "dusclops", "tropius", "chimecho", "absol", "wynaut", "snorunt", "glalie", "spheal", "sealeo", "walrein", "clamperl", "huntail", "gorebyss", "relicanth", "luvdisc", "bagon", "shelgon", "salamence", "beldum", "metang", "metagross", "regirock", "regice", "registeel", "latias", "latios", "kyogre", "groudon", "rayquaza", "jirachi", "deoxys", "turtwig", "grotle", "torterra", "chimchar", "monferno", "infernape", "piplup", "prinplup", "empoleon", "starly", "staravia", "staraptor", "bidoof", "bibarel", "kricketot", "kricketune", "shinx", "luxio", "luxray", "budew", "roserade", "cranidos", "rampardos", "shieldon", "bastiodon", "burmy", "wormadam", "mothim", "combee", "vespiquen", "pachirisu", "buizel", "floatzel", "cherubi", "cherrim", "shellos", "gastrodon", "ambipom", "drifloon", "drifblim", "buneary", "lopunny", "mismagius", "honchkrow", "glameow", "purugly", "chingling", "stunky", "skuntank", "bronzor", "bronzong", "bonsly", "mime jr.", "happiny", "chatot", "spiritomb", "gible", "gabite", "garchomp", "munchlax", "riolu", "lucario", "hippopotas", "hippowdon", "skorupi", "drapion", "croagunk", "toxicroak", "carnivine", "finneon", "lumineon", "mantyke", "snover", "abomasnow", "weavile", "magnezone", "lickilicky", "rhyperior", "tangrowth", "electivire", "magmortar", "togekiss", "yanmega", "leafeon", "glaceon", "gliscor", "mamoswine", "porygon-z", "gallade", "probopass", "dusknoir", "froslass", "rotom", "uxie", "mesprit", "azelf", "dialga", "palkia", "heatran", "regigigas", "giratina", "cresselia", "phione", "manaphy", "darkrai", "shaymin", "arceus", "victini", "snivy", "servine", "serperior", "tepig", "pignite", "emboar", "oshawott", "dewott", "samurott", "patrat", "watchog", "lillipup", "herdier", "stoutland", "purrloin", "liepard", "pansage", "simisage", "pansear", "simisear", "panpour", "simipour", "munna", "musharna", "pidove", "tranquill", "unfezant", "blitzle", "zebstrika", "roggenrola", "boldore", "gigalith", "woobat", "swoobat", "drilbur", "excadrill", "audino", "timburr", "gurdurr", "conkeldurr", "tympole", "palpitoad", "seismitoad", "throh", "sawk", "sewaddle", "swadloon", "leavanny", "venipede", "whirlipede", "scolipede", "cottonee", "whimsicott", "petilil", "lilligant", "basculin", "sandile", "krokorok", "krookodile", "darumaka", "darmanitan", "maractus", "dwebble", "crustle", "scraggy", "scrafty", "sigilyph", "yamask", "cofagrigus", "tirtouga", "carracosta", "archen", "archeops", "trubbish", "garbodor", "zorua", "zoroark", "minccino", "cinccino", "gothita", "gothorita", "gothitelle", "solosis", "duosion", "reuniclus", "ducklett", "swanna", "vanillite", "vanillish", "vanilluxe", "deerling", "sawsbuck", "emolga", "karrablast", "escavalier", "foongus", "amoonguss", "frillish", "jellicent", "alomomola", "joltik", "galvantula", "ferroseed", "ferrothorn", "klink", "klang", "klinklang", "tynamo", "eelektrik", "eelektross", "elgyem", "beheeyem", "litwick", "lampent", "chandelure", "axew", "fraxure", "haxorus", "cubchoo", "beartic", "cryogonal", "shelmet", "accelgor", "stunfisk", "mienfoo", "mienshao", "druddigon", "golett", "golurk", "pawniard", "bisharp", "bouffalant", "rufflet", "braviary", "vullaby", "mandibuzz", "heatmor", "durant", "deino", "zweilous", "hydreigon", "larvesta", "volcarona", "cobalion", "terrakion", "virizion", "tornadus", "thundurus", "reshiram", "zekrom", "landorus", "kyurem", "keldeo", "meloetta", "genesect", "chespin", "quilladin", "chesnaught", "fennekin", "braixen", "delphox", "froakie", "frogadier", "greninja", "bunnelby", "diggersby", "fletchling", "fletchinder", "talonflame", "scatterbug", "spewpa", "vivillon", "litleo", "pyroar", "flabébé", "floette", "florges", "skiddo", "gogoat", "pancham", "pangoro", "furfrou", "espurr", "meowstic", "honedge", "doublade", "aegislash", "spritzee", "aromatisse", "swirlix", "slurpuff", "inkay", "malamar", "binacle", "barbaracle", "skrelp", "dragalge", "clauncher", "clawitzer", "helioptile", "heliolisk", "tyrunt", "tyrantrum", "amaura", "aurorus", "sylveon", "hawlucha", "dedenne", "carbink", "goomy", "sliggoo", "goodra", "klefki", "phantump", "trevenant", "pumpkaboo", "gourgeist", "bergmite", "avalugg", "noibat", "noivern", "xerneas", "yveltal", "zygarde", "diancie", "hoopa", "volcanion", "rowlet", "dartrix", "decidueye", "litten", "torracat", "incineroar", "popplio", "brionne", "primarina", "pikipek", "trumbeak", "toucannon", "yungoos", "gumshoos", "grubbin", "charjabug", "vikavolt", "crabrawler", "crabominable", "oricorio", "cutiefly", "ribombee", "rockruff", "lycanroc", "wishiwashi", "mareanie", "toxapex", "mudbray", "mudsdale", "dewpider", "araquanid", "fomantis", "lurantis", "morelull", "shiinotic", "salandit", "salazzle", "stufful", "bewear", "bounsweet", "steenee", "tsareena", "comfey", "oranguru", "passimian", "wimpod", "golisopod", "sandygast", "palossand", "pyukumuku", "type: null", "silvally", "minior", "komala", "turtonator", "togedemaru", "mimikyu", "bruxish", "drampa", "dhelmise", "jangmo-o", "hakamo-o", "kommo-o", "tapu koko", "tapu lele", "tapu bulu", "tapu fini", "cosmog", "cosmoem", "solgaleo", "lunala", "nihilego", "buzzwole", "pheromosa", "xurkitree", "celesteela", "kartana", "guzzlord", "necrozma", "magearna", "marshadow", "poipole", "naganadel", "stakataka", "blacephalon", "zeraora", "meltan", "melmetal", "grookey", "thwackey", "rillaboom", "scorbunny", "raboot", "cinderace", "sobble", "drizzile", "inteleon", "skwovet", "greedent", "rookidee", "corvisquire", "corviknight", "blipbug", "dottler", "orbeetle", "nickit", "thievul", "gossifleur", "eldegoss", "wooloo", "dubwool", "chewtle", "drednaw", "yamper", "boltund", "rolycoly", "carkol", "coalossal", "applin", "flapple", "appletun", "silicobra", "sandaconda", "cramorant", "arrokuda", "barraskewda", "toxel", "toxtricity", "sizzlipede", "centiskorch", "clobbopus", "grapploct", "sinistea", "polteageist", "hatenna", "hattrem", "hatterene", "impidimp", "morgrem", "grimmsnarl", "obstagoon", "perrserker", "cursola", "sirfetch'd", "mr. rime", "runerigus", "milcery", "alcremie", "falinks", "pincurchin", "snom", "frosmoth", "stonjourner", "eiscue", "indeedee", "morpeko", "cufant", "copperajah", "dracozolt", "arctozolt", "dracovish", "arctovish", "duraludon", "dreepy", "drakloak", "dragapult", "zacian", "zamazenta", "eternatus", "kubfu", "urshifu", "zarude", "regieleki", "regidrago", "glastrier", "spectrier", "calyrex", "wyrdeer", "kleavor", "ursaluna", "basculegion", "sneasler", "overqwil", "enamorus", "sprigatito", "floragato", "meowscarada", "fuecoco", "crocalor", "skeledirge", "quaxly", "quaxwell", "quaquaval", "lechonk", "oinkologne", "tarountula", "spidops", "nymble", "lokix", "pawmi", "pawmo", "pawmot", "tandemaus", "maushold", "fidough", "dachsbun", "smoliv", "dolliv", "arboliva", "squawkabilly", "nacli", "naclstack", "garganacl", "charcadet", "armarouge", "ceruledge", "tadbulb", "bellibolt", "wattrel", "kilowattrel", "maschiff", "mabosstiff", "shroodle", "grafaiai", "bramblin", "brambleghast", "toedscool", "toedscruel", "klawf", "capsakid", "scovillain", "rellor", "rabsca", "flittle", "espathra", "tinkatink", "tinkatuff", "tinkaton", "wiglett", "wugtrio", "bombirdier", "finizen", "palafin", "varoom", "revavroom", "cyclizar", "orthworm", "glimmet", "glimmora", "greavard", "houndstone", "flamigo", "cetoddle", "cetitan", "veluza", "dondozo", "tatsugiri", "annihilape", "clodsire", "farigiraf", "dudunsparce", "kingambit", "great tusk", "scream tail", "brute bonnet", "flutter mane", "slither wing", "sandy shocks", "iron treads", "iron bundle", "iron hands", "iron jugulis", "iron moth", "iron thorns", "frigibax", "arctibax", "baxcalibur", "gimmighoul", "gholdengo", "wo-chien", "chien-pao", "ting-lu", "chi-yu", "roaring moon", "iron valiant", "koraidon", "miraidon", "walking wake", "iron leaves", "dipplin", "poltchageist", "sinistcha", "okidogi", "munkidori", "fezandipiti", "ogerpon", "archaludon", "hydrapple", "gouging fire", "raging bolt", "iron boulder", "iron crown", "terapagos", "pecharunt" ]
janjibDEV/vit-plantnet300k
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-plantnet300k This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the mikehemberger/plantnet300K dataset. It achieves the following results on the evaluation set: - Loss: 0.8831 - Accuracy: 0.8046 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - training_steps: 1000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 6.2973 | 0.04 | 100 | 2.0799 | 0.6139 | | 3.413 | 0.08 | 200 | 1.4738 | 0.7076 | | 2.6718 | 0.12 | 300 | 1.2331 | 0.7479 | | 2.308 | 0.16 | 400 | 1.0966 | 0.7701 | | 2.2116 | 0.2 | 500 | 1.0115 | 0.7834 | | 1.9719 | 0.24 | 600 | 0.9609 | 0.7910 | | 1.8785 | 0.28 | 700 | 0.9247 | 0.798 | | 1.7549 | 0.32 | 800 | 0.9014 | 0.8002 | | 1.8103 | 0.36 | 900 | 0.8874 | 0.8031 | | 1.7776 | 0.4 | 1000 | 0.8831 | 0.8046 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0
[ "60", "41", "40", "45", "164", "172", "88", "2", "181", "162", "35", "46", "203", "124", "84", "153", "31", "3", "11", "4", "189", "8", "201", "19", "122", "83", "25", "0", "17", "196", "173", "30", "66", "135", "104", "112", "32", "193", "68", "14", "152", "141", "198", "171", "170", "16", "42", "187", "125", "200", "26", "123", "197", "61", "98", "165", "54", "131", "137", "47", "74", "87", "27", "144", "100", "36", "167", "199", "7", "175", "9", "166", "15", "138", "168", "92", "28", "97", "140", "149", "174", "73", "154", "55", "157", "191", "139", "5", "49", "176", "184", "148", "51", "188", "103", "132", "118", "108", "113", "126", "202", "146", "186", "1", "38", "151", "6", "133", "52", "72", "99", "147", "20", "34", "56", "109", "102", "114", "29", "39", "89", "10", "65", "121", "75", "80", "78", "59", "53", "79", "143", "136", "82", "185", "128", "120", "81", "158", "94", "48", "76", "13", "64", "43", "182", "119", "50", "192", "101", "12", "85", "159", "190", "24", "111", "18", "150", "155", "90", "77", "44", "91", "22", "179", "161", "62", "63", "160", "115", "70", "110", "180", "96", "130", "142", "23", "67", "58", "169", "177", "163", "116", "71", "178", "129", "106", "105", "37", "107", "134", "195", "21", "156", "57", "127", "183", "69", "86", "95", "93", "194", "145", "117", "33" ]
Prahaladha/pose_classification
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
[ "calling", "clapping", "cycling", "dancing", "drinking", "eating", "fighting", "hugging", "laughing", "listening_to_music", "running", "sitting", "sleeping", "texting", "using_laptop" ]
SaketR1/road-conditions
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # road-conditions This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1556 - Accuracy: 0.9518 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 10 - eval_batch_size: 4 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 187 | 0.1757 | 0.9518 | | No log | 2.0 | 374 | 0.1682 | 0.9578 | | 0.1014 | 3.0 | 561 | 0.1556 | 0.9518 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu121 - Tokenizers 0.21.0
[ "good", "poor", "satisfactory", "very_poor" ]
vikas117/finetuned-ai-real-swin
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned-ai-real-swin This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.2812 - Accuracy: 0.8871 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 0.3707 | 0.5682 | 25 | 0.2812 | 0.8871 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0
[ "ai", "real" ]
hannalj/swin-tiny-patch4-window7-224-finetuned-eurosat
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224-finetuned-eurosat This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.7072 - Accuracy: 0.98 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | No log | 1.0 | 8 | 1.3674 | 0.91 | | 7.0705 | 2.0 | 16 | 0.7072 | 0.98 | | 3.4816 | 2.6897 | 21 | 0.5873 | 0.98 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0
[ "architecture", "beach", "bus", "dinosaur", "elephant", "flower", "food", "horse", "mountain", "tribe" ]
Thao2202/vit-Facial-Expression-Recognition
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-Facial-Expression-Recognition This model is a fine-tuned version of [motheecreator/vit-Facial-Expression-Recognition](https://huggingface.co/motheecreator/vit-Facial-Expression-Recognition) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3658 - Accuracy: 0.8753 - F1: 0.8737 - Precision: 0.8749 - Recall: 0.8753 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 256 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:------:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 4.5618 | 0.2164 | 100 | 0.3710 | 0.8762 | 0.8746 | 0.8752 | 0.8762 | | 4.6091 | 0.4328 | 200 | 0.3677 | 0.8761 | 0.8747 | 0.8762 | 0.8761 | | 4.5423 | 0.6492 | 300 | 0.3695 | 0.8748 | 0.8730 | 0.8745 | 0.8748 | | 4.6307 | 0.8656 | 400 | 0.3745 | 0.8711 | 0.8692 | 0.8730 | 0.8711 | | 4.3953 | 1.0801 | 500 | 0.3745 | 0.8727 | 0.8711 | 0.8724 | 0.8727 | | 4.341 | 1.2965 | 600 | 0.3803 | 0.8688 | 0.8674 | 0.8688 | 0.8688 | | 4.5471 | 1.5128 | 700 | 0.3841 | 0.8713 | 0.8699 | 0.8710 | 0.8713 | | 4.522 | 1.7292 | 800 | 0.3836 | 0.8679 | 0.8662 | 0.8678 | 0.8679 | | 4.5596 | 1.9456 | 900 | 0.3885 | 0.8672 | 0.8649 | 0.8678 | 0.8672 | | 4.1491 | 2.1601 | 1000 | 0.3849 | 0.8691 | 0.8677 | 0.8689 | 0.8691 | | 4.1037 | 2.3765 | 1100 | 0.3906 | 0.8667 | 0.8647 | 0.8669 | 0.8667 | | 4.0033 | 2.5929 | 1200 | 0.3784 | 0.8704 | 0.8687 | 0.8699 | 0.8704 | | 3.9759 | 2.8093 | 1300 | 0.3677 | 0.8752 | 0.8737 | 0.8747 | 0.8752 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0
[ "angry", "disgust", "fear", "happy", "neutral", "sad", "surprise" ]
jcguerra10/vit-platzi-beans
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-platzi-beans This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0068 - Accuracy: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 0.1275 | 3.8462 | 500 | 0.0068 | 1.0 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0
[ "angular_leaf_spot", "bean_rust", "healthy" ]
lohasingh/vit-Facial-Expression-Recognition
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-Facial-Expression-Recognition This model is a fine-tuned version of [motheecreator/vit-Facial-Expression-Recognition](https://huggingface.co/motheecreator/vit-Facial-Expression-Recognition) on the None dataset. It achieves the following results on the evaluation set: - eval_loss: 0.3806 - eval_accuracy: 0.8748 - eval_runtime: 375.2927 - eval_samples_per_second: 78.792 - eval_steps_per_second: 2.465 - epoch: 0.0433 - step: 20 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 256 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 3 ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0
[ "angry", "disgust", "fear", "happy", "neutral", "sad", "surprise" ]
victorwkey/vit_model
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit_model This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0137 - Accuracy: 0.9925 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 0.1295 | 3.8462 | 500 | 0.0137 | 0.9925 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0
[ "angular_leaf_spot", "bean_rust", "healthy" ]
JacobChao/vit-xray-pneumonia-classification
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-xray-pneumonia-classification This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0867 - Accuracy: 0.9700 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-------:|:----:|:---------------:|:--------:| | 2.0067 | 0.9882 | 63 | 0.2101 | 0.9313 | | 0.8054 | 1.9882 | 126 | 0.1542 | 0.9519 | | 0.7482 | 2.9882 | 189 | 0.1328 | 0.9451 | | 0.6 | 3.9882 | 252 | 0.1121 | 0.9588 | | 0.5436 | 4.9882 | 315 | 0.1295 | 0.9494 | | 0.4978 | 5.9882 | 378 | 0.1167 | 0.9605 | | 0.4683 | 6.9882 | 441 | 0.1033 | 0.9622 | | 0.4701 | 7.9882 | 504 | 0.1176 | 0.9579 | | 0.3527 | 8.9882 | 567 | 0.1119 | 0.9571 | | 0.3545 | 9.9882 | 630 | 0.0990 | 0.9639 | | 0.3264 | 10.9882 | 693 | 0.0838 | 0.9717 | | 0.3305 | 11.9882 | 756 | 0.0733 | 0.9734 | | 0.2702 | 12.9882 | 819 | 0.0834 | 0.9717 | | 0.2764 | 13.9882 | 882 | 0.0763 | 0.9734 | | 0.286 | 14.9882 | 945 | 0.0867 | 0.9700 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0
[ "normal", "pneumonia" ]
tinutmap/my_awesome_food_model
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_food_model This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.6238 - Accuracy: 0.903 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 10.9945 | 1.0 | 63 | 2.5462 | 0.829 | | 7.5619 | 2.0 | 126 | 1.8143 | 0.883 | | 6.5257 | 2.96 | 186 | 1.6238 | 0.903 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1.post306 - Datasets 3.2.0 - Tokenizers 0.21.0
[ "apple_pie", "baby_back_ribs", "bruschetta", "waffles", "caesar_salad", "cannoli", "caprese_salad", "carrot_cake", "ceviche", "cheesecake", "cheese_plate", "chicken_curry", "chicken_quesadilla", "baklava", "chicken_wings", "chocolate_cake", "chocolate_mousse", "churros", "clam_chowder", "club_sandwich", "crab_cakes", "creme_brulee", "croque_madame", "cup_cakes", "beef_carpaccio", "deviled_eggs", "donuts", "dumplings", "edamame", "eggs_benedict", "escargots", "falafel", "filet_mignon", "fish_and_chips", "foie_gras", "beef_tartare", "french_fries", "french_onion_soup", "french_toast", "fried_calamari", "fried_rice", "frozen_yogurt", "garlic_bread", "gnocchi", "greek_salad", "grilled_cheese_sandwich", "beet_salad", "grilled_salmon", "guacamole", "gyoza", "hamburger", "hot_and_sour_soup", "hot_dog", "huevos_rancheros", "hummus", "ice_cream", "lasagna", "beignets", "lobster_bisque", "lobster_roll_sandwich", "macaroni_and_cheese", "macarons", "miso_soup", "mussels", "nachos", "omelette", "onion_rings", "oysters", "bibimbap", "pad_thai", "paella", "pancakes", "panna_cotta", "peking_duck", "pho", "pizza", "pork_chop", "poutine", "prime_rib", "bread_pudding", "pulled_pork_sandwich", "ramen", "ravioli", "red_velvet_cake", "risotto", "samosa", "sashimi", "scallops", "seaweed_salad", "shrimp_and_grits", "breakfast_burrito", "spaghetti_bolognese", "spaghetti_carbonara", "spring_rolls", "steak", "strawberry_shortcake", "sushi", "tacos", "takoyaki", "tiramisu", "tuna_tartare" ]
desarrolloasesoreslocales/cvt-13-normal
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # cvt-13-normal This model is a fine-tuned version of [microsoft/cvt-13](https://huggingface.co/microsoft/cvt-13) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.0613 - Accuracy: 0.7790 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 142 - eval_batch_size: 142 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 568 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 7 | 0.8652 | 0.7946 | | 2.3799 | 2.0 | 14 | 0.8683 | 0.7912 | | 2.4491 | 3.0 | 21 | 0.8807 | 0.7825 | | 2.4491 | 4.0 | 28 | 0.9120 | 0.7851 | | 2.3011 | 5.0 | 35 | 0.9865 | 0.7565 | | 2.5444 | 6.0 | 42 | 0.9863 | 0.7643 | | 2.5444 | 7.0 | 49 | 1.1580 | 0.7513 | | 2.4127 | 8.0 | 56 | 1.1091 | 0.7383 | | 2.8757 | 9.0 | 63 | 1.0644 | 0.7496 | | 2.5231 | 10.0 | 70 | 1.0888 | 0.7400 | | 2.5231 | 11.0 | 77 | 1.0668 | 0.7548 | | 2.7538 | 12.0 | 84 | 1.0946 | 0.7435 | | 2.7032 | 13.0 | 91 | 1.0676 | 0.7608 | | 2.7032 | 14.0 | 98 | 1.0409 | 0.7426 | | 2.4581 | 15.0 | 105 | 1.0679 | 0.7548 | | 2.7023 | 16.0 | 112 | 1.0129 | 0.7487 | | 2.7023 | 17.0 | 119 | 1.1501 | 0.7366 | | 2.5456 | 18.0 | 126 | 1.0452 | 0.7426 | | 2.7061 | 19.0 | 133 | 1.0034 | 0.7565 | | 2.3491 | 20.0 | 140 | 1.0389 | 0.7574 | | 2.3491 | 21.0 | 147 | 0.9999 | 0.7782 | | 2.4926 | 22.0 | 154 | 1.0131 | 0.7652 | | 2.5111 | 23.0 | 161 | 1.0940 | 0.7340 | | 2.5111 | 24.0 | 168 | 1.0786 | 0.7582 | | 2.3443 | 25.0 | 175 | 1.0768 | 0.7617 | | 2.5738 | 26.0 | 182 | 0.9781 | 0.7782 | | 2.5738 | 27.0 | 189 | 0.9955 | 0.7574 | | 2.3528 | 28.0 | 196 | 1.0117 | 0.7669 | | 2.599 | 29.0 | 203 | 1.0806 | 0.7660 | | 2.3279 | 30.0 | 210 | 1.0101 | 0.7738 | | 2.3279 | 31.0 | 217 | 1.0981 | 0.7617 | | 2.5649 | 32.0 | 224 | 1.0185 | 0.7782 | | 2.5432 | 33.0 | 231 | 1.1070 | 0.7591 | | 2.5432 | 34.0 | 238 | 1.0705 | 0.7626 | | 2.3521 | 35.0 | 245 | 1.0749 | 0.7574 | | 2.5948 | 36.0 | 252 | 1.0508 | 0.7626 | | 2.5948 | 37.0 | 259 | 1.0374 | 0.7712 | | 2.3305 | 38.0 | 266 | 1.0249 | 0.7643 | | 2.4833 | 39.0 | 273 | 1.0345 | 0.7712 | | 2.1504 | 40.0 | 280 | 1.0252 | 0.7617 | | 2.1504 | 41.0 | 287 | 1.0361 | 0.7574 | | 2.4083 | 42.0 | 294 | 0.9939 | 0.7678 | | 2.37 | 43.0 | 301 | 1.0186 | 0.7695 | | 2.37 | 44.0 | 308 | 1.0861 | 0.7643 | | 2.2043 | 45.0 | 315 | 1.0182 | 0.7643 | | 2.3554 | 46.0 | 322 | 1.0584 | 0.7539 | | 2.3554 | 47.0 | 329 | 1.0541 | 0.7617 | | 2.1541 | 48.0 | 336 | 1.0967 | 0.7686 | | 2.3739 | 49.0 | 343 | 1.1266 | 0.7721 | | 2.1028 | 50.0 | 350 | 1.1116 | 0.7652 | | 2.1028 | 51.0 | 357 | 1.0804 | 0.7643 | | 2.3381 | 52.0 | 364 | 1.1142 | 0.7556 | | 2.2902 | 53.0 | 371 | 1.1135 | 0.7652 | | 2.2902 | 54.0 | 378 | 1.1024 | 0.7461 | | 2.2452 | 55.0 | 385 | 1.0722 | 0.7626 | | 2.4121 | 56.0 | 392 | 1.1089 | 0.7704 | | 2.4121 | 57.0 | 399 | 1.0923 | 0.7548 | | 2.2067 | 58.0 | 406 | 1.0811 | 0.7591 | | 2.3894 | 59.0 | 413 | 1.1097 | 0.7634 | | 2.2188 | 60.0 | 420 | 1.0988 | 0.7643 | | 2.2188 | 61.0 | 427 | 1.0558 | 0.7686 | | 2.2859 | 62.0 | 434 | 1.0569 | 0.7695 | | 2.2293 | 63.0 | 441 | 1.1053 | 0.7643 | | 2.2293 | 64.0 | 448 | 1.0962 | 0.7652 | | 2.136 | 65.0 | 455 | 1.0505 | 0.7756 | | 2.2507 | 66.0 | 462 | 1.0425 | 0.7799 | | 2.2507 | 67.0 | 469 | 1.0703 | 0.7756 | | 2.0269 | 68.0 | 476 | 1.0826 | 0.7695 | | 2.2972 | 69.0 | 483 | 1.0569 | 0.7747 | | 2.0192 | 70.0 | 490 | 1.0773 | 0.7695 | | 2.0192 | 71.0 | 497 | 1.1000 | 0.7669 | | 2.3668 | 72.0 | 504 | 1.1048 | 0.7712 | | 2.1285 | 73.0 | 511 | 1.0883 | 0.7712 | | 2.1285 | 74.0 | 518 | 1.0893 | 0.7738 | | 2.0487 | 75.0 | 525 | 1.0644 | 0.7799 | | 2.2508 | 76.0 | 532 | 1.0686 | 0.7764 | | 2.2508 | 77.0 | 539 | 1.0759 | 0.7764 | | 2.0141 | 78.0 | 546 | 1.0673 | 0.7756 | | 2.1662 | 79.0 | 553 | 1.0610 | 0.7842 | | 2.0567 | 80.0 | 560 | 1.0571 | 0.7851 | | 2.0567 | 81.0 | 567 | 1.0682 | 0.7799 | | 2.2602 | 82.0 | 574 | 1.0700 | 0.7782 | | 2.3018 | 83.0 | 581 | 1.0703 | 0.7790 | | 2.3018 | 84.0 | 588 | 1.0597 | 0.7825 | | 2.0309 | 85.0 | 595 | 1.0560 | 0.7825 | | 2.108 | 85.8 | 600 | 1.0613 | 0.7790 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0
[ "circulación prohibida", "circular por carriles de circulación reservada", "estacionar en carril-taxi o en carril-bus", "estacionar en el centro de la calzada", "estacionar en espacio reservado", "estacionar en espacio reservado para personas de movilidad reducida", "estacionar en espacio reservado para vehículo eléctrico, sin tener esa condición", "estacionar en intersección", "estacionar en lugar prohibido por línea amarilla discontinua", "estacionar en lugar prohibido por línea amarilla en zig-zag", "estacionar en un carril bici", "estacionar en un lugar donde se impide la retirada o vaciado de contenedores", "estacionar en vado señalizado", "estacionar en zonas de carga y descarga", "estacionar o parar donde está prohibida la parada por la señal vertical correspondiente", "estacionar o parar en doble fila", "estacionar o parar en paso para peatones", "estacionar o parar en un lugar prohibido por linea amarilla continua", "estacionar o parar sobre acera", "estacionar o parar un vehículo en rebaje en la acera para disminuidos físicos", "estacionar un vehículo en zonas señalizadas con franjas en el pavimento (isleta)" ]
athiraet97/run_name
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # run_name This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the indian_food_images dataset. It achieves the following results on the evaluation set: - Loss: 1.8473 - Accuracy: 0.2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0
[ "kulfi", "masala_dosa", "momos", "pav_bhaji", "pizza", "samosa" ]
liu-you/convnext-tiny-224-finetuned-eurosat-albumentations
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # convnext-tiny-224-finetuned-eurosat-albumentations This model is a fine-tuned version of [facebook/convnext-tiny-224](https://huggingface.co/facebook/convnext-tiny-224) on the imagefolder dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0
[ "annualcrop", "forest", "herbaceousvegetation", "highway", "industrial", "pasture", "permanentcrop", "residential", "river", "sealake" ]
audaipurwala/my_awesome_food_model
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_food_model This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.6098 - Accuracy: 0.908 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 10.8023 | 1.0 | 63 | 2.4896 | 0.834 | | 7.2983 | 2.0 | 126 | 1.7776 | 0.879 | | 6.402 | 2.96 | 186 | 1.6098 | 0.908 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0
[ "apple_pie", "baby_back_ribs", "bruschetta", "waffles", "caesar_salad", "cannoli", "caprese_salad", "carrot_cake", "ceviche", "cheesecake", "cheese_plate", "chicken_curry", "chicken_quesadilla", "baklava", "chicken_wings", "chocolate_cake", "chocolate_mousse", "churros", "clam_chowder", "club_sandwich", "crab_cakes", "creme_brulee", "croque_madame", "cup_cakes", "beef_carpaccio", "deviled_eggs", "donuts", "dumplings", "edamame", "eggs_benedict", "escargots", "falafel", "filet_mignon", "fish_and_chips", "foie_gras", "beef_tartare", "french_fries", "french_onion_soup", "french_toast", "fried_calamari", "fried_rice", "frozen_yogurt", "garlic_bread", "gnocchi", "greek_salad", "grilled_cheese_sandwich", "beet_salad", "grilled_salmon", "guacamole", "gyoza", "hamburger", "hot_and_sour_soup", "hot_dog", "huevos_rancheros", "hummus", "ice_cream", "lasagna", "beignets", "lobster_bisque", "lobster_roll_sandwich", "macaroni_and_cheese", "macarons", "miso_soup", "mussels", "nachos", "omelette", "onion_rings", "oysters", "bibimbap", "pad_thai", "paella", "pancakes", "panna_cotta", "peking_duck", "pho", "pizza", "pork_chop", "poutine", "prime_rib", "bread_pudding", "pulled_pork_sandwich", "ramen", "ravioli", "red_velvet_cake", "risotto", "samosa", "sashimi", "scallops", "seaweed_salad", "shrimp_and_grits", "breakfast_burrito", "spaghetti_bolognese", "spaghetti_carbonara", "spring_rolls", "steak", "strawberry_shortcake", "sushi", "tacos", "takoyaki", "tiramisu", "tuna_tartare" ]
ariG23498/vit_base_patch16_224.orig_in21k_ft_in1k.ft_food101
# Food Classification with ViTs This repo contains a fine tuned version of the ViT Base, on the Food101 dataset. This showcases the `timm` model being fine tuned with `transformer`'s `Trainer` API.
[ "apple_pie", "baby_back_ribs", "baklava", "beef_carpaccio", "beef_tartare", "beet_salad", "beignets", "bibimbap", "bread_pudding", "breakfast_burrito", "bruschetta", "caesar_salad", "cannoli", "caprese_salad", "carrot_cake", "ceviche", "cheesecake", "cheese_plate", "chicken_curry", "chicken_quesadilla", "chicken_wings", "chocolate_cake", "chocolate_mousse", "churros", "clam_chowder", "club_sandwich", "crab_cakes", "creme_brulee", "croque_madame", "cup_cakes", "deviled_eggs", "donuts", "dumplings", "edamame", "eggs_benedict", "escargots", "falafel", "filet_mignon", "fish_and_chips", "foie_gras", "french_fries", "french_onion_soup", "french_toast", "fried_calamari", "fried_rice", "frozen_yogurt", "garlic_bread", "gnocchi", "greek_salad", "grilled_cheese_sandwich", "grilled_salmon", "guacamole", "gyoza", "hamburger", "hot_and_sour_soup", "hot_dog", "huevos_rancheros", "hummus", "ice_cream", "lasagna", "lobster_bisque", "lobster_roll_sandwich", "macaroni_and_cheese", "macarons", "miso_soup", "mussels", "nachos", "omelette", "onion_rings", "oysters", "pad_thai", "paella", "pancakes", "panna_cotta", "peking_duck", "pho", "pizza", "pork_chop", "poutine", "prime_rib", "pulled_pork_sandwich", "ramen", "ravioli", "red_velvet_cake", "risotto", "samosa", "sashimi", "scallops", "seaweed_salad", "shrimp_and_grits", "spaghetti_bolognese", "spaghetti_carbonara", "spring_rolls", "steak", "strawberry_shortcake", "sushi", "tacos", "takoyaki", "tiramisu", "tuna_tartare", "waffles" ]
ITSheep/breastcancer-ultrasound-ViT
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
[ "benign", "malignant", "normal" ]
victorwkey/vit-food101
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-food101 This model is a fine-tuned version of [Falconsai/nsfw_image_detection](https://huggingface.co/Falconsai/nsfw_image_detection) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0192 - Accuracy: 0.9925 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 0.1276 | 3.8462 | 500 | 0.0192 | 0.9925 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0
[ "among us", "apex legends", "fortnite", "forza horizon", "free fire", "genshin impact", "god of war", "minecraft", "roblox", "terraria" ]