model_id
stringlengths
7
105
model_card
stringlengths
1
130k
model_labels
listlengths
2
80k
tiennguyenbnbk/teacher-status-van-tiny-256-2
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # teacher-status-van-tiny-256-2 This model is a fine-tuned version of [Visual-Attention-Network/van-tiny](https://huggingface.co/Visual-Attention-Network/van-tiny) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0916 - Accuracy: 0.9759 - F1 Score: 0.9842 - Recall: 0.9757 - Precision: 0.9929 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Score | Recall | Precision | |:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|:------:|:---------:| | 0.6896 | 0.99 | 26 | 0.6707 | 0.7701 | 0.8701 | 1.0 | 0.7701 | | 0.5438 | 1.98 | 52 | 0.4302 | 0.7701 | 0.8701 | 1.0 | 0.7701 | | 0.3756 | 2.97 | 78 | 0.2762 | 0.8850 | 0.9285 | 0.9688 | 0.8914 | | 0.3017 | 4.0 | 105 | 0.2002 | 0.9225 | 0.9503 | 0.9618 | 0.9390 | | 0.257 | 4.99 | 131 | 0.1794 | 0.9385 | 0.9605 | 0.9722 | 0.9492 | | 0.2345 | 5.98 | 157 | 0.1485 | 0.9358 | 0.9582 | 0.9549 | 0.9615 | | 0.2318 | 6.97 | 183 | 0.1302 | 0.9439 | 0.9631 | 0.9514 | 0.9751 | | 0.2173 | 8.0 | 210 | 0.1277 | 0.9519 | 0.9689 | 0.9722 | 0.9655 | | 0.2058 | 8.99 | 236 | 0.1269 | 0.9572 | 0.9722 | 0.9722 | 0.9722 | | 0.1955 | 9.98 | 262 | 0.1146 | 0.9572 | 0.9724 | 0.9792 | 0.9658 | | 0.2083 | 10.97 | 288 | 0.1083 | 0.9652 | 0.9772 | 0.9688 | 0.9859 | | 0.1886 | 12.0 | 315 | 0.1048 | 0.9599 | 0.9741 | 0.9792 | 0.9691 | | 0.1618 | 12.99 | 341 | 0.1033 | 0.9626 | 0.9757 | 0.9757 | 0.9757 | | 0.1908 | 13.98 | 367 | 0.1044 | 0.9599 | 0.9739 | 0.9722 | 0.9756 | | 0.1594 | 14.97 | 393 | 0.0915 | 0.9626 | 0.9758 | 0.9792 | 0.9724 | | 0.1474 | 16.0 | 420 | 0.0916 | 0.9759 | 0.9842 | 0.9757 | 0.9929 | | 0.1734 | 16.99 | 446 | 0.0951 | 0.9652 | 0.9773 | 0.9722 | 0.9825 | | 0.1484 | 17.98 | 472 | 0.1049 | 0.9706 | 0.9809 | 0.9792 | 0.9826 | | 0.1495 | 18.97 | 498 | 0.0930 | 0.9679 | 0.9791 | 0.9757 | 0.9825 | | 0.1385 | 20.0 | 525 | 0.0955 | 0.9626 | 0.9759 | 0.9826 | 0.9692 | | 0.1492 | 20.99 | 551 | 0.0911 | 0.9599 | 0.9741 | 0.9792 | 0.9691 | | 0.1401 | 21.98 | 577 | 0.0927 | 0.9706 | 0.9809 | 0.9792 | 0.9826 | | 0.1288 | 22.97 | 603 | 0.0940 | 0.9706 | 0.9809 | 0.9792 | 0.9826 | | 0.1304 | 24.0 | 630 | 0.0913 | 0.9652 | 0.9775 | 0.9826 | 0.9725 | | 0.14 | 24.99 | 656 | 0.0979 | 0.9652 | 0.9776 | 0.9861 | 0.9693 | | 0.1461 | 25.98 | 682 | 0.0874 | 0.9706 | 0.9810 | 0.9861 | 0.9759 | | 0.1429 | 26.97 | 708 | 0.0837 | 0.9706 | 0.9808 | 0.9757 | 0.9860 | | 0.1444 | 28.0 | 735 | 0.0876 | 0.9679 | 0.9792 | 0.9792 | 0.9792 | | 0.145 | 28.99 | 761 | 0.0903 | 0.9706 | 0.9809 | 0.9792 | 0.9826 | | 0.1445 | 29.71 | 780 | 0.0882 | 0.9679 | 0.9791 | 0.9757 | 0.9825 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.0 - Tokenizers 0.15.0
[ "abnormal", "normal" ]
harshkhare/swin-tiny-patch4-window7-224-finetuned-eurosat
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224-finetuned-eurosat This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.6844 - Accuracy: 0.7917 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 0.57 | 1 | 0.9324 | 0.6667 | | No log | 1.71 | 3 | 0.7241 | 0.75 | | No log | 2.29 | 4 | 0.6844 | 0.7917 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.0 - Tokenizers 0.15.0
[ "cloudy", "green_area", "water" ]
hkivancoral/hushem_40x_beit_large_adamax_001_fold1
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hushem_40x_beit_large_adamax_001_fold1 This model is a fine-tuned version of [microsoft/beit-large-patch16-224](https://huggingface.co/microsoft/beit-large-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 3.2476 - Accuracy: 0.7333 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.3238 | 1.0 | 215 | 0.6915 | 0.7333 | | 0.1477 | 2.0 | 430 | 1.2081 | 0.6444 | | 0.0434 | 3.0 | 645 | 1.8202 | 0.6444 | | 0.0459 | 4.0 | 860 | 1.9604 | 0.6222 | | 0.0376 | 5.0 | 1075 | 0.7965 | 0.7778 | | 0.0151 | 6.0 | 1290 | 1.6449 | 0.7111 | | 0.0084 | 7.0 | 1505 | 2.7172 | 0.6222 | | 0.0085 | 8.0 | 1720 | 2.4588 | 0.6667 | | 0.0105 | 9.0 | 1935 | 3.0173 | 0.5333 | | 0.0465 | 10.0 | 2150 | 1.5242 | 0.7778 | | 0.0056 | 11.0 | 2365 | 2.2494 | 0.7333 | | 0.0106 | 12.0 | 2580 | 2.3865 | 0.6889 | | 0.0614 | 13.0 | 2795 | 1.3048 | 0.7778 | | 0.0068 | 14.0 | 3010 | 2.7128 | 0.6889 | | 0.0 | 15.0 | 3225 | 2.3042 | 0.7778 | | 0.0001 | 16.0 | 3440 | 2.6333 | 0.7333 | | 0.0483 | 17.0 | 3655 | 2.9792 | 0.7111 | | 0.0 | 18.0 | 3870 | 2.6692 | 0.7111 | | 0.0 | 19.0 | 4085 | 2.7990 | 0.7556 | | 0.0 | 20.0 | 4300 | 2.7968 | 0.7333 | | 0.0 | 21.0 | 4515 | 2.8289 | 0.7333 | | 0.0 | 22.0 | 4730 | 2.8734 | 0.7333 | | 0.0 | 23.0 | 4945 | 2.7220 | 0.7556 | | 0.0742 | 24.0 | 5160 | 2.8716 | 0.7111 | | 0.0011 | 25.0 | 5375 | 2.8927 | 0.7333 | | 0.0 | 26.0 | 5590 | 2.8101 | 0.7333 | | 0.0 | 27.0 | 5805 | 2.9619 | 0.7111 | | 0.0 | 28.0 | 6020 | 3.0313 | 0.7111 | | 0.0 | 29.0 | 6235 | 3.1395 | 0.7111 | | 0.0 | 30.0 | 6450 | 3.4589 | 0.7111 | | 0.0 | 31.0 | 6665 | 3.5502 | 0.6889 | | 0.0 | 32.0 | 6880 | 3.7038 | 0.6667 | | 0.0 | 33.0 | 7095 | 2.9949 | 0.7111 | | 0.0 | 34.0 | 7310 | 3.0364 | 0.7111 | | 0.0 | 35.0 | 7525 | 3.1096 | 0.7111 | | 0.0 | 36.0 | 7740 | 3.1633 | 0.7333 | | 0.0 | 37.0 | 7955 | 3.1868 | 0.7333 | | 0.0 | 38.0 | 8170 | 3.2061 | 0.7333 | | 0.0 | 39.0 | 8385 | 3.2444 | 0.7333 | | 0.0 | 40.0 | 8600 | 3.2660 | 0.7333 | | 0.0 | 41.0 | 8815 | 3.2861 | 0.7333 | | 0.0 | 42.0 | 9030 | 3.3090 | 0.7333 | | 0.0 | 43.0 | 9245 | 3.3340 | 0.7333 | | 0.0 | 44.0 | 9460 | 3.3547 | 0.7333 | | 0.0 | 45.0 | 9675 | 3.3742 | 0.7333 | | 0.0 | 46.0 | 9890 | 3.3879 | 0.7333 | | 0.0 | 47.0 | 10105 | 3.4047 | 0.7333 | | 0.0 | 48.0 | 10320 | 3.2184 | 0.7333 | | 0.0 | 49.0 | 10535 | 3.2219 | 0.7333 | | 0.0 | 50.0 | 10750 | 3.2476 | 0.7333 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.0+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2
[ "01_normal", "02_tapered", "03_pyriform", "04_amorphous" ]
yuanhuaisen/autotrain-q7md9-qtgfu
# Model Trained Using AutoTrain - Problem type: Image Classification ## Validation Metricsg loss: 0.4186987578868866 f1_macro: 0.8215900897948484 f1_micro: 0.881578947368421 f1_weighted: 0.8716990992917834 precision_macro: 0.9090909090909092 precision_micro: 0.881578947368421 precision_weighted: 0.9138755980861244 recall_macro: 0.8132132132132132 recall_micro: 0.881578947368421 recall_weighted: 0.881578947368421 accuracy: 0.881578947368421
[ "11covered_with_a_quilt_and_only_the_head_exposed", "12covered_with_a_quilt_and_exposed_other_parts_of_the_body", "13has_nothing_to_do_with_11_and_12_above" ]
hkivancoral/hushem_40x_beit_large_adamax_001_fold2
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hushem_40x_beit_large_adamax_001_fold2 This model is a fine-tuned version of [microsoft/beit-large-patch16-224](https://huggingface.co/microsoft/beit-large-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 4.4537 - Accuracy: 0.6889 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.3184 | 1.0 | 215 | 1.1233 | 0.7333 | | 0.1436 | 2.0 | 430 | 1.6198 | 0.6889 | | 0.047 | 3.0 | 645 | 1.8592 | 0.6667 | | 0.0527 | 4.0 | 860 | 1.5842 | 0.7111 | | 0.0463 | 5.0 | 1075 | 2.7619 | 0.6889 | | 0.0137 | 6.0 | 1290 | 1.4680 | 0.7556 | | 0.0665 | 7.0 | 1505 | 2.2491 | 0.6889 | | 0.0121 | 8.0 | 1720 | 1.7706 | 0.7556 | | 0.0005 | 9.0 | 1935 | 2.1035 | 0.7556 | | 0.0192 | 10.0 | 2150 | 3.0002 | 0.6889 | | 0.02 | 11.0 | 2365 | 2.1406 | 0.6667 | | 0.011 | 12.0 | 2580 | 2.2828 | 0.6667 | | 0.0346 | 13.0 | 2795 | 2.5178 | 0.6667 | | 0.0045 | 14.0 | 3010 | 2.0578 | 0.7333 | | 0.0021 | 15.0 | 3225 | 1.4918 | 0.7556 | | 0.0002 | 16.0 | 3440 | 2.6023 | 0.7111 | | 0.0007 | 17.0 | 3655 | 2.4242 | 0.7111 | | 0.0019 | 18.0 | 3870 | 2.8391 | 0.6667 | | 0.0005 | 19.0 | 4085 | 2.9921 | 0.7556 | | 0.0 | 20.0 | 4300 | 3.1529 | 0.6667 | | 0.0 | 21.0 | 4515 | 2.7412 | 0.7556 | | 0.0 | 22.0 | 4730 | 2.8583 | 0.7333 | | 0.0 | 23.0 | 4945 | 2.9971 | 0.7333 | | 0.0 | 24.0 | 5160 | 3.0142 | 0.7556 | | 0.0 | 25.0 | 5375 | 3.0328 | 0.7556 | | 0.0 | 26.0 | 5590 | 3.0307 | 0.7778 | | 0.0 | 27.0 | 5805 | 3.2285 | 0.7556 | | 0.0 | 28.0 | 6020 | 3.2719 | 0.7111 | | 0.0 | 29.0 | 6235 | 2.7270 | 0.7778 | | 0.0 | 30.0 | 6450 | 3.4979 | 0.7111 | | 0.0 | 31.0 | 6665 | 3.4752 | 0.7333 | | 0.0 | 32.0 | 6880 | 3.4952 | 0.7333 | | 0.0 | 33.0 | 7095 | 3.5111 | 0.7333 | | 0.0 | 34.0 | 7310 | 3.5230 | 0.7333 | | 0.0 | 35.0 | 7525 | 3.5422 | 0.7333 | | 0.0 | 36.0 | 7740 | 3.5606 | 0.7333 | | 0.0 | 37.0 | 7955 | 3.5754 | 0.7333 | | 0.0 | 38.0 | 8170 | 3.5859 | 0.7333 | | 0.0 | 39.0 | 8385 | 3.5773 | 0.7333 | | 0.0 | 40.0 | 8600 | 4.7039 | 0.6 | | 0.0 | 41.0 | 8815 | 4.7831 | 0.6 | | 0.0 | 42.0 | 9030 | 4.4812 | 0.6667 | | 0.0 | 43.0 | 9245 | 4.4224 | 0.6889 | | 0.0 | 44.0 | 9460 | 4.4294 | 0.6889 | | 0.0 | 45.0 | 9675 | 4.4285 | 0.6889 | | 0.0 | 46.0 | 9890 | 4.4304 | 0.6889 | | 0.0 | 47.0 | 10105 | 4.4476 | 0.6889 | | 0.0 | 48.0 | 10320 | 4.4513 | 0.6889 | | 0.0 | 49.0 | 10535 | 4.4531 | 0.6889 | | 0.0 | 50.0 | 10750 | 4.4537 | 0.6889 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.0+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2
[ "01_normal", "02_tapered", "03_pyriform", "04_amorphous" ]
yuanhuaisen/autotrain-31b7i-w1ict
# Model Trained Using AutoTrain - Problem type: Image Classification ## Validation Metricsg loss: 0.4175724387168884 f1_macro: 0.7720961603314546 f1_micro: 0.8767123287671232 f1_weighted: 0.8574316899860817 precision_macro: 0.8490555071200232 precision_micro: 0.8767123287671232 precision_weighted: 0.8791869200176757 recall_macro: 0.7687687687687688 recall_micro: 0.8767123287671232 recall_weighted: 0.8767123287671232 accuracy: 0.8767123287671232
[ "11covered_with_a_quilt_and_only_the_head_exposed", "12covered_with_a_quilt_and_exposed_other_parts_of_the_body", "13has_nothing_to_do_with_11_and_12_above" ]
hkivancoral/hushem_40x_beit_large_adamax_001_fold3
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hushem_40x_beit_large_adamax_001_fold3 This model is a fine-tuned version of [microsoft/beit-large-patch16-224](https://huggingface.co/microsoft/beit-large-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 3.1862 - Accuracy: 0.7674 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.3341 | 1.0 | 217 | 1.0412 | 0.6512 | | 0.1567 | 2.0 | 434 | 0.8679 | 0.7907 | | 0.1261 | 3.0 | 651 | 0.9519 | 0.7907 | | 0.0451 | 4.0 | 868 | 1.0258 | 0.7674 | | 0.0494 | 5.0 | 1085 | 1.2986 | 0.8140 | | 0.0356 | 6.0 | 1302 | 1.5169 | 0.7442 | | 0.0142 | 7.0 | 1519 | 1.4785 | 0.7907 | | 0.048 | 8.0 | 1736 | 1.4460 | 0.8140 | | 0.0363 | 9.0 | 1953 | 1.0943 | 0.7674 | | 0.0409 | 10.0 | 2170 | 1.6345 | 0.7907 | | 0.0021 | 11.0 | 2387 | 1.2558 | 0.8140 | | 0.0072 | 12.0 | 2604 | 1.1994 | 0.8372 | | 0.0193 | 13.0 | 2821 | 1.2732 | 0.8372 | | 0.0006 | 14.0 | 3038 | 1.5708 | 0.7674 | | 0.0013 | 15.0 | 3255 | 1.1380 | 0.8837 | | 0.0001 | 16.0 | 3472 | 1.3578 | 0.8837 | | 0.0 | 17.0 | 3689 | 1.3940 | 0.8837 | | 0.0 | 18.0 | 3906 | 1.4630 | 0.8605 | | 0.0 | 19.0 | 4123 | 1.4804 | 0.8140 | | 0.0 | 20.0 | 4340 | 1.5039 | 0.8372 | | 0.0 | 21.0 | 4557 | 1.5153 | 0.8605 | | 0.0 | 22.0 | 4774 | 1.6110 | 0.8372 | | 0.0 | 23.0 | 4991 | 1.6351 | 0.8372 | | 0.0 | 24.0 | 5208 | 1.6586 | 0.8372 | | 0.0 | 25.0 | 5425 | 1.6837 | 0.8605 | | 0.0 | 26.0 | 5642 | 2.1644 | 0.8140 | | 0.0 | 27.0 | 5859 | 1.8231 | 0.8372 | | 0.0 | 28.0 | 6076 | 1.8592 | 0.8837 | | 0.0 | 29.0 | 6293 | 2.3766 | 0.7907 | | 0.0004 | 30.0 | 6510 | 2.2802 | 0.7674 | | 0.0 | 31.0 | 6727 | 2.0919 | 0.7907 | | 0.0 | 32.0 | 6944 | 2.0989 | 0.7907 | | 0.0 | 33.0 | 7161 | 2.1214 | 0.7907 | | 0.0 | 34.0 | 7378 | 2.1583 | 0.7907 | | 0.0 | 35.0 | 7595 | 2.1876 | 0.7907 | | 0.0 | 36.0 | 7812 | 2.1795 | 0.7907 | | 0.0007 | 37.0 | 8029 | 3.1536 | 0.7674 | | 0.0 | 38.0 | 8246 | 3.0845 | 0.7674 | | 0.0 | 39.0 | 8463 | 2.9748 | 0.7907 | | 0.0 | 40.0 | 8680 | 2.9984 | 0.7907 | | 0.0 | 41.0 | 8897 | 3.0029 | 0.7907 | | 0.0 | 42.0 | 9114 | 3.0143 | 0.7907 | | 0.0 | 43.0 | 9331 | 3.0354 | 0.7907 | | 0.0 | 44.0 | 9548 | 3.0480 | 0.7907 | | 0.0 | 45.0 | 9765 | 3.0564 | 0.7907 | | 0.0 | 46.0 | 9982 | 3.1685 | 0.7674 | | 0.0 | 47.0 | 10199 | 3.1763 | 0.7674 | | 0.0 | 48.0 | 10416 | 3.1810 | 0.7674 | | 0.0 | 49.0 | 10633 | 3.1846 | 0.7674 | | 0.0 | 50.0 | 10850 | 3.1862 | 0.7674 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.0+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2
[ "01_normal", "02_tapered", "03_pyriform", "04_amorphous" ]
hkivancoral/hushem_40x_beit_large_adamax_001_fold4
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hushem_40x_beit_large_adamax_001_fold4 This model is a fine-tuned version of [microsoft/beit-large-patch16-224](https://huggingface.co/microsoft/beit-large-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0452 - Accuracy: 0.9762 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.4622 | 1.0 | 219 | 0.6192 | 0.7143 | | 0.1812 | 2.0 | 438 | 0.3334 | 0.8810 | | 0.1061 | 3.0 | 657 | 0.3100 | 0.8810 | | 0.061 | 4.0 | 876 | 0.3909 | 0.9048 | | 0.07 | 5.0 | 1095 | 0.5029 | 0.8095 | | 0.0116 | 6.0 | 1314 | 0.1841 | 0.9286 | | 0.0286 | 7.0 | 1533 | 0.1625 | 0.9524 | | 0.0589 | 8.0 | 1752 | 0.3628 | 0.9286 | | 0.0111 | 9.0 | 1971 | 0.1004 | 0.9762 | | 0.0199 | 10.0 | 2190 | 0.2149 | 0.9524 | | 0.0026 | 11.0 | 2409 | 0.2299 | 0.9524 | | 0.003 | 12.0 | 2628 | 0.0798 | 0.9524 | | 0.0002 | 13.0 | 2847 | 0.3767 | 0.9524 | | 0.0 | 14.0 | 3066 | 0.3423 | 0.9524 | | 0.0 | 15.0 | 3285 | 0.3097 | 0.9524 | | 0.0 | 16.0 | 3504 | 0.3620 | 0.9524 | | 0.0 | 17.0 | 3723 | 0.3599 | 0.9524 | | 0.0109 | 18.0 | 3942 | 1.0112 | 0.8810 | | 0.0058 | 19.0 | 4161 | 0.3536 | 0.9286 | | 0.0 | 20.0 | 4380 | 0.1749 | 0.9524 | | 0.0 | 21.0 | 4599 | 0.1549 | 0.9762 | | 0.0 | 22.0 | 4818 | 0.1579 | 0.9762 | | 0.0001 | 23.0 | 5037 | 0.2020 | 0.9762 | | 0.0 | 24.0 | 5256 | 0.1981 | 0.9524 | | 0.0 | 25.0 | 5475 | 0.2004 | 0.9524 | | 0.0 | 26.0 | 5694 | 0.2385 | 0.9524 | | 0.0 | 27.0 | 5913 | 0.2312 | 0.9762 | | 0.0 | 28.0 | 6132 | 0.2326 | 0.9524 | | 0.0 | 29.0 | 6351 | 0.2329 | 0.9762 | | 0.0 | 30.0 | 6570 | 0.2354 | 0.9762 | | 0.0 | 31.0 | 6789 | 0.2406 | 0.9762 | | 0.0 | 32.0 | 7008 | 0.1614 | 0.9524 | | 0.0 | 33.0 | 7227 | 0.7242 | 0.8810 | | 0.0 | 34.0 | 7446 | 0.6237 | 0.9048 | | 0.0 | 35.0 | 7665 | 0.2046 | 0.9762 | | 0.0 | 36.0 | 7884 | 0.3311 | 0.9524 | | 0.0 | 37.0 | 8103 | 0.0102 | 1.0 | | 0.0 | 38.0 | 8322 | 0.0205 | 0.9762 | | 0.0 | 39.0 | 8541 | 0.4064 | 0.9286 | | 0.0 | 40.0 | 8760 | 0.2152 | 0.9524 | | 0.0 | 41.0 | 8979 | 0.0320 | 0.9762 | | 0.0 | 42.0 | 9198 | 0.0414 | 0.9762 | | 0.0 | 43.0 | 9417 | 0.0410 | 0.9762 | | 0.0 | 44.0 | 9636 | 0.0475 | 0.9762 | | 0.0 | 45.0 | 9855 | 0.0475 | 0.9762 | | 0.0 | 46.0 | 10074 | 0.0463 | 0.9762 | | 0.0 | 47.0 | 10293 | 0.0463 | 0.9762 | | 0.0 | 48.0 | 10512 | 0.0476 | 0.9762 | | 0.0 | 49.0 | 10731 | 0.0481 | 0.9762 | | 0.0 | 50.0 | 10950 | 0.0452 | 0.9762 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.0+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2
[ "01_normal", "02_tapered", "03_pyriform", "04_amorphous" ]
hkivancoral/hushem_40x_beit_large_adamax_001_fold5
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hushem_40x_beit_large_adamax_001_fold5 This model is a fine-tuned version of [microsoft/beit-large-patch16-224](https://huggingface.co/microsoft/beit-large-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.1906 - Accuracy: 0.8049 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.3728 | 1.0 | 220 | 0.2484 | 0.9024 | | 0.2424 | 2.0 | 440 | 1.0593 | 0.7805 | | 0.1221 | 3.0 | 660 | 0.9944 | 0.7317 | | 0.0746 | 4.0 | 880 | 1.4179 | 0.7073 | | 0.0501 | 5.0 | 1100 | 0.6557 | 0.8049 | | 0.0914 | 6.0 | 1320 | 1.5051 | 0.7073 | | 0.0408 | 7.0 | 1540 | 0.1238 | 0.9512 | | 0.0281 | 8.0 | 1760 | 0.6572 | 0.8537 | | 0.0024 | 9.0 | 1980 | 0.9478 | 0.8049 | | 0.0097 | 10.0 | 2200 | 0.6899 | 0.8537 | | 0.0507 | 11.0 | 2420 | 1.0591 | 0.8049 | | 0.0001 | 12.0 | 2640 | 0.9070 | 0.8780 | | 0.0056 | 13.0 | 2860 | 1.1233 | 0.7805 | | 0.0168 | 14.0 | 3080 | 1.3279 | 0.8049 | | 0.0205 | 15.0 | 3300 | 1.4696 | 0.8049 | | 0.0004 | 16.0 | 3520 | 1.8691 | 0.7561 | | 0.0001 | 17.0 | 3740 | 1.4193 | 0.8293 | | 0.0029 | 18.0 | 3960 | 1.9471 | 0.8049 | | 0.0 | 19.0 | 4180 | 1.9190 | 0.7317 | | 0.0 | 20.0 | 4400 | 2.0689 | 0.7317 | | 0.0021 | 21.0 | 4620 | 0.3369 | 0.9024 | | 0.0001 | 22.0 | 4840 | 0.9862 | 0.8537 | | 0.0001 | 23.0 | 5060 | 0.9863 | 0.8780 | | 0.0118 | 24.0 | 5280 | 1.0405 | 0.8049 | | 0.0016 | 25.0 | 5500 | 1.4400 | 0.7805 | | 0.0379 | 26.0 | 5720 | 1.0773 | 0.8537 | | 0.0 | 27.0 | 5940 | 0.9902 | 0.8537 | | 0.0 | 28.0 | 6160 | 0.9125 | 0.8293 | | 0.0 | 29.0 | 6380 | 0.8492 | 0.8293 | | 0.0 | 30.0 | 6600 | 1.3170 | 0.8293 | | 0.0 | 31.0 | 6820 | 1.3145 | 0.7805 | | 0.0 | 32.0 | 7040 | 0.7274 | 0.8780 | | 0.0 | 33.0 | 7260 | 0.7992 | 0.8780 | | 0.0 | 34.0 | 7480 | 0.7001 | 0.9024 | | 0.0 | 35.0 | 7700 | 0.7059 | 0.9024 | | 0.0 | 36.0 | 7920 | 0.7509 | 0.9024 | | 0.0 | 37.0 | 8140 | 0.7646 | 0.9024 | | 0.0 | 38.0 | 8360 | 1.2149 | 0.8293 | | 0.0 | 39.0 | 8580 | 1.2146 | 0.8293 | | 0.0 | 40.0 | 8800 | 1.2180 | 0.8293 | | 0.0 | 41.0 | 9020 | 1.1864 | 0.8049 | | 0.0 | 42.0 | 9240 | 1.1736 | 0.8049 | | 0.0 | 43.0 | 9460 | 1.1601 | 0.8049 | | 0.0 | 44.0 | 9680 | 1.1683 | 0.8049 | | 0.0 | 45.0 | 9900 | 1.1682 | 0.8049 | | 0.0 | 46.0 | 10120 | 1.1690 | 0.8049 | | 0.0 | 47.0 | 10340 | 1.1691 | 0.8049 | | 0.0 | 48.0 | 10560 | 1.1738 | 0.8049 | | 0.0 | 49.0 | 10780 | 1.1753 | 0.8049 | | 0.0 | 50.0 | 11000 | 1.1906 | 0.8049 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.0+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2
[ "01_normal", "02_tapered", "03_pyriform", "04_amorphous" ]
moock/swinv2-tiny-patch4-window8-256-finetuned-gardner-exp-max
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swinv2-tiny-patch4-window8-256-finetuned-gardner-exp-max This model is a fine-tuned version of [microsoft/swinv2-tiny-patch4-window8-256](https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.5312 - Accuracy: 0.8389 ## Model description Predict Expansion Grade - Gardner Score from an embryo image ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.6068 | 0.97 | 14 | 1.5809 | 0.5415 | | 1.56 | 2.0 | 29 | 1.2830 | 0.5415 | | 1.1852 | 2.97 | 43 | 1.0794 | 0.5415 | | 1.1132 | 4.0 | 58 | 0.9314 | 0.6488 | | 0.9416 | 4.97 | 72 | 0.8935 | 0.6341 | | 0.9143 | 6.0 | 87 | 0.8009 | 0.6829 | | 0.8243 | 6.97 | 101 | 0.8067 | 0.6634 | | 0.8171 | 8.0 | 116 | 0.7783 | 0.6780 | | 0.7901 | 8.97 | 130 | 0.7871 | 0.6585 | | 0.7944 | 10.0 | 145 | 0.7414 | 0.6976 | | 0.7669 | 10.97 | 159 | 0.6977 | 0.7122 | | 0.7478 | 12.0 | 174 | 0.7043 | 0.7122 | | 0.766 | 12.97 | 188 | 0.7778 | 0.6585 | | 0.7322 | 14.0 | 203 | 0.7504 | 0.6780 | | 0.7242 | 14.97 | 217 | 0.7291 | 0.6829 | | 0.7554 | 16.0 | 232 | 0.7694 | 0.6634 | | 0.7422 | 16.97 | 246 | 0.7569 | 0.6829 | | 0.7292 | 18.0 | 261 | 0.7389 | 0.6780 | | 0.7354 | 18.97 | 275 | 0.6684 | 0.7122 | | 0.6847 | 20.0 | 290 | 0.6821 | 0.7122 | | 0.7231 | 20.97 | 304 | 0.6839 | 0.7024 | | 0.6962 | 22.0 | 319 | 0.6958 | 0.6878 | | 0.7079 | 22.97 | 333 | 0.7039 | 0.6878 | | 0.7088 | 24.0 | 348 | 0.6974 | 0.6878 | | 0.7106 | 24.14 | 350 | 0.6975 | 0.6878 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2 - Datasets 2.16.0 - Tokenizers 0.15.0
[ "0", "1", "2", "3", "4" ]
hkivancoral/hushem_40x_beit_large_adamax_00001_fold1
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hushem_40x_beit_large_adamax_00001_fold1 This model is a fine-tuned version of [microsoft/beit-large-patch16-224](https://huggingface.co/microsoft/beit-large-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.6462 - Accuracy: 0.8667 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.0076 | 1.0 | 215 | 0.3905 | 0.8222 | | 0.0024 | 2.0 | 430 | 0.2614 | 0.8889 | | 0.0002 | 3.0 | 645 | 0.3363 | 0.8889 | | 0.0012 | 4.0 | 860 | 0.2896 | 0.8889 | | 0.0012 | 5.0 | 1075 | 0.4297 | 0.8667 | | 0.0001 | 6.0 | 1290 | 0.4692 | 0.8667 | | 0.0001 | 7.0 | 1505 | 0.4005 | 0.8444 | | 0.0001 | 8.0 | 1720 | 0.5343 | 0.8444 | | 0.0004 | 9.0 | 1935 | 0.6104 | 0.8667 | | 0.0 | 10.0 | 2150 | 0.6182 | 0.8667 | | 0.0 | 11.0 | 2365 | 0.5923 | 0.8 | | 0.0 | 12.0 | 2580 | 0.5080 | 0.8667 | | 0.0 | 13.0 | 2795 | 0.3680 | 0.8444 | | 0.0 | 14.0 | 3010 | 0.5787 | 0.8667 | | 0.0 | 15.0 | 3225 | 0.5592 | 0.8667 | | 0.0 | 16.0 | 3440 | 0.6399 | 0.8667 | | 0.0 | 17.0 | 3655 | 0.7482 | 0.8444 | | 0.0 | 18.0 | 3870 | 0.6724 | 0.8444 | | 0.0 | 19.0 | 4085 | 0.7872 | 0.8222 | | 0.0 | 20.0 | 4300 | 0.5260 | 0.8667 | | 0.0 | 21.0 | 4515 | 0.5473 | 0.8667 | | 0.0 | 22.0 | 4730 | 0.7409 | 0.8222 | | 0.0 | 23.0 | 4945 | 0.4466 | 0.8667 | | 0.0 | 24.0 | 5160 | 0.4166 | 0.8889 | | 0.0 | 25.0 | 5375 | 0.5144 | 0.8667 | | 0.0 | 26.0 | 5590 | 0.4960 | 0.8889 | | 0.0 | 27.0 | 5805 | 0.4646 | 0.8889 | | 0.0 | 28.0 | 6020 | 0.5759 | 0.8444 | | 0.0 | 29.0 | 6235 | 0.7279 | 0.8444 | | 0.0 | 30.0 | 6450 | 0.5042 | 0.8889 | | 0.0 | 31.0 | 6665 | 0.6050 | 0.8667 | | 0.0 | 32.0 | 6880 | 0.6602 | 0.8222 | | 0.0 | 33.0 | 7095 | 0.6359 | 0.8222 | | 0.0 | 34.0 | 7310 | 0.5725 | 0.8667 | | 0.0 | 35.0 | 7525 | 0.6179 | 0.8444 | | 0.0 | 36.0 | 7740 | 0.6579 | 0.8889 | | 0.0 | 37.0 | 7955 | 0.7260 | 0.8222 | | 0.0 | 38.0 | 8170 | 0.6510 | 0.8667 | | 0.0 | 39.0 | 8385 | 0.6445 | 0.8667 | | 0.0 | 40.0 | 8600 | 0.6364 | 0.8444 | | 0.0001 | 41.0 | 8815 | 0.6206 | 0.8444 | | 0.0 | 42.0 | 9030 | 0.6766 | 0.8667 | | 0.0 | 43.0 | 9245 | 0.7659 | 0.8667 | | 0.0003 | 44.0 | 9460 | 0.7574 | 0.8667 | | 0.0 | 45.0 | 9675 | 0.7168 | 0.8667 | | 0.0 | 46.0 | 9890 | 0.6864 | 0.8667 | | 0.0 | 47.0 | 10105 | 0.6531 | 0.8667 | | 0.0 | 48.0 | 10320 | 0.6563 | 0.8667 | | 0.0 | 49.0 | 10535 | 0.6461 | 0.8667 | | 0.0001 | 50.0 | 10750 | 0.6462 | 0.8667 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.0+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2
[ "01_normal", "02_tapered", "03_pyriform", "04_amorphous" ]
hkivancoral/hushem_40x_beit_large_adamax_00001_fold2
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hushem_40x_beit_large_adamax_00001_fold2 This model is a fine-tuned version of [microsoft/beit-large-patch16-224](https://huggingface.co/microsoft/beit-large-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.5239 - Accuracy: 0.8444 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.0134 | 1.0 | 215 | 0.7143 | 0.7556 | | 0.0005 | 2.0 | 430 | 0.8825 | 0.8444 | | 0.0002 | 3.0 | 645 | 1.1645 | 0.8 | | 0.0002 | 4.0 | 860 | 1.1853 | 0.8 | | 0.0001 | 5.0 | 1075 | 1.2007 | 0.8 | | 0.0001 | 6.0 | 1290 | 1.1677 | 0.8222 | | 0.0006 | 7.0 | 1505 | 1.1023 | 0.8222 | | 0.0001 | 8.0 | 1720 | 1.5156 | 0.7333 | | 0.0 | 9.0 | 1935 | 1.1716 | 0.8222 | | 0.0 | 10.0 | 2150 | 1.2763 | 0.8222 | | 0.0 | 11.0 | 2365 | 1.1176 | 0.8444 | | 0.0 | 12.0 | 2580 | 1.2233 | 0.8444 | | 0.0023 | 13.0 | 2795 | 1.5312 | 0.8 | | 0.0 | 14.0 | 3010 | 1.3548 | 0.8 | | 0.0 | 15.0 | 3225 | 1.2898 | 0.8222 | | 0.0 | 16.0 | 3440 | 1.2810 | 0.8222 | | 0.0 | 17.0 | 3655 | 1.3480 | 0.8222 | | 0.0 | 18.0 | 3870 | 1.2231 | 0.8444 | | 0.0 | 19.0 | 4085 | 1.2120 | 0.8444 | | 0.0 | 20.0 | 4300 | 1.3990 | 0.8222 | | 0.0 | 21.0 | 4515 | 1.3925 | 0.8222 | | 0.0 | 22.0 | 4730 | 1.3055 | 0.8444 | | 0.0 | 23.0 | 4945 | 1.3624 | 0.8222 | | 0.0 | 24.0 | 5160 | 1.3420 | 0.8222 | | 0.0 | 25.0 | 5375 | 1.3903 | 0.8222 | | 0.0 | 26.0 | 5590 | 1.3025 | 0.8444 | | 0.0 | 27.0 | 5805 | 1.3676 | 0.8444 | | 0.0 | 28.0 | 6020 | 1.3843 | 0.8444 | | 0.0 | 29.0 | 6235 | 1.4718 | 0.8 | | 0.0 | 30.0 | 6450 | 1.4946 | 0.8222 | | 0.0 | 31.0 | 6665 | 1.5006 | 0.8222 | | 0.0 | 32.0 | 6880 | 1.5270 | 0.8222 | | 0.0 | 33.0 | 7095 | 1.6386 | 0.8 | | 0.0 | 34.0 | 7310 | 1.5335 | 0.8222 | | 0.0 | 35.0 | 7525 | 1.5020 | 0.8444 | | 0.0 | 36.0 | 7740 | 1.5220 | 0.8444 | | 0.0 | 37.0 | 7955 | 1.6305 | 0.8 | | 0.0 | 38.0 | 8170 | 1.5482 | 0.8 | | 0.0 | 39.0 | 8385 | 1.5491 | 0.8 | | 0.0 | 40.0 | 8600 | 1.5716 | 0.8222 | | 0.0 | 41.0 | 8815 | 1.5929 | 0.8222 | | 0.0 | 42.0 | 9030 | 1.5745 | 0.8222 | | 0.0 | 43.0 | 9245 | 1.4702 | 0.8444 | | 0.0 | 44.0 | 9460 | 1.4777 | 0.8444 | | 0.0 | 45.0 | 9675 | 1.4961 | 0.8444 | | 0.0 | 46.0 | 9890 | 1.5108 | 0.8444 | | 0.0 | 47.0 | 10105 | 1.5228 | 0.8444 | | 0.0 | 48.0 | 10320 | 1.5215 | 0.8444 | | 0.0 | 49.0 | 10535 | 1.5246 | 0.8444 | | 0.0032 | 50.0 | 10750 | 1.5239 | 0.8444 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.0+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2
[ "01_normal", "02_tapered", "03_pyriform", "04_amorphous" ]
hkivancoral/hushem_40x_beit_large_adamax_00001_fold3
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hushem_40x_beit_large_adamax_00001_fold3 This model is a fine-tuned version of [microsoft/beit-large-patch16-224](https://huggingface.co/microsoft/beit-large-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.0094 - Accuracy: 0.8837 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.0088 | 1.0 | 217 | 0.5009 | 0.8605 | | 0.0048 | 2.0 | 434 | 0.5720 | 0.8837 | | 0.0002 | 3.0 | 651 | 0.6684 | 0.8605 | | 0.0005 | 4.0 | 868 | 0.6185 | 0.8605 | | 0.0001 | 5.0 | 1085 | 0.7115 | 0.8837 | | 0.0002 | 6.0 | 1302 | 0.7630 | 0.8837 | | 0.0001 | 7.0 | 1519 | 0.6588 | 0.8837 | | 0.0 | 8.0 | 1736 | 0.6227 | 0.8837 | | 0.0001 | 9.0 | 1953 | 0.5468 | 0.9070 | | 0.0 | 10.0 | 2170 | 0.7021 | 0.8837 | | 0.0 | 11.0 | 2387 | 0.7605 | 0.8605 | | 0.0002 | 12.0 | 2604 | 0.7994 | 0.8837 | | 0.0 | 13.0 | 2821 | 1.0881 | 0.8372 | | 0.0002 | 14.0 | 3038 | 0.8413 | 0.8605 | | 0.0002 | 15.0 | 3255 | 0.9237 | 0.8837 | | 0.0 | 16.0 | 3472 | 0.9623 | 0.8605 | | 0.0 | 17.0 | 3689 | 0.9912 | 0.8605 | | 0.0001 | 18.0 | 3906 | 0.7287 | 0.9070 | | 0.0 | 19.0 | 4123 | 0.9687 | 0.8372 | | 0.0 | 20.0 | 4340 | 0.6790 | 0.9070 | | 0.0 | 21.0 | 4557 | 0.8424 | 0.9070 | | 0.0 | 22.0 | 4774 | 0.7674 | 0.9070 | | 0.0 | 23.0 | 4991 | 0.8450 | 0.9070 | | 0.0 | 24.0 | 5208 | 0.8947 | 0.8837 | | 0.0 | 25.0 | 5425 | 0.8485 | 0.8837 | | 0.0 | 26.0 | 5642 | 0.9138 | 0.8837 | | 0.0 | 27.0 | 5859 | 0.9516 | 0.8837 | | 0.0 | 28.0 | 6076 | 0.8628 | 0.9070 | | 0.0 | 29.0 | 6293 | 0.9458 | 0.8837 | | 0.0 | 30.0 | 6510 | 0.9582 | 0.8837 | | 0.0 | 31.0 | 6727 | 1.1730 | 0.8837 | | 0.0 | 32.0 | 6944 | 1.0331 | 0.8837 | | 0.0 | 33.0 | 7161 | 1.1055 | 0.8605 | | 0.0 | 34.0 | 7378 | 0.9893 | 0.8837 | | 0.0 | 35.0 | 7595 | 1.0353 | 0.8837 | | 0.0 | 36.0 | 7812 | 1.0373 | 0.8837 | | 0.0 | 37.0 | 8029 | 1.0358 | 0.8837 | | 0.0 | 38.0 | 8246 | 1.0426 | 0.8837 | | 0.0 | 39.0 | 8463 | 1.1391 | 0.8837 | | 0.0 | 40.0 | 8680 | 1.0647 | 0.8837 | | 0.0 | 41.0 | 8897 | 1.0082 | 0.8837 | | 0.0 | 42.0 | 9114 | 1.0681 | 0.8837 | | 0.0 | 43.0 | 9331 | 1.0189 | 0.8837 | | 0.0 | 44.0 | 9548 | 1.0129 | 0.8837 | | 0.0 | 45.0 | 9765 | 1.0237 | 0.8837 | | 0.0 | 46.0 | 9982 | 1.0239 | 0.8837 | | 0.0 | 47.0 | 10199 | 1.0008 | 0.8837 | | 0.0 | 48.0 | 10416 | 1.0075 | 0.8837 | | 0.0001 | 49.0 | 10633 | 1.0115 | 0.8837 | | 0.0 | 50.0 | 10850 | 1.0094 | 0.8837 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.0+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2
[ "01_normal", "02_tapered", "03_pyriform", "04_amorphous" ]
hkivancoral/hushem_40x_beit_large_adamax_00001_fold4
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hushem_40x_beit_large_adamax_00001_fold4 This model is a fine-tuned version of [microsoft/beit-large-patch16-224](https://huggingface.co/microsoft/beit-large-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0038 - Accuracy: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.0209 | 1.0 | 219 | 0.0613 | 0.9762 | | 0.0077 | 2.0 | 438 | 0.0174 | 1.0 | | 0.0003 | 3.0 | 657 | 0.0464 | 0.9762 | | 0.0004 | 4.0 | 876 | 0.0760 | 0.9762 | | 0.0062 | 5.0 | 1095 | 0.0813 | 0.9762 | | 0.0001 | 6.0 | 1314 | 0.0164 | 1.0 | | 0.0002 | 7.0 | 1533 | 0.0181 | 1.0 | | 0.0002 | 8.0 | 1752 | 0.0299 | 0.9762 | | 0.0 | 9.0 | 1971 | 0.0028 | 1.0 | | 0.0001 | 10.0 | 2190 | 0.0137 | 1.0 | | 0.0001 | 11.0 | 2409 | 0.0028 | 1.0 | | 0.0 | 12.0 | 2628 | 0.0068 | 1.0 | | 0.0 | 13.0 | 2847 | 0.0011 | 1.0 | | 0.0 | 14.0 | 3066 | 0.0415 | 0.9762 | | 0.0 | 15.0 | 3285 | 0.0029 | 1.0 | | 0.0003 | 16.0 | 3504 | 0.0012 | 1.0 | | 0.0 | 17.0 | 3723 | 0.0002 | 1.0 | | 0.0 | 18.0 | 3942 | 0.0203 | 0.9762 | | 0.0 | 19.0 | 4161 | 0.0016 | 1.0 | | 0.0 | 20.0 | 4380 | 0.0412 | 0.9762 | | 0.0 | 21.0 | 4599 | 0.0007 | 1.0 | | 0.0 | 22.0 | 4818 | 0.0079 | 1.0 | | 0.0 | 23.0 | 5037 | 0.0005 | 1.0 | | 0.0001 | 24.0 | 5256 | 0.0050 | 1.0 | | 0.0 | 25.0 | 5475 | 0.0077 | 1.0 | | 0.0 | 26.0 | 5694 | 0.0021 | 1.0 | | 0.0 | 27.0 | 5913 | 0.0004 | 1.0 | | 0.0 | 28.0 | 6132 | 0.0003 | 1.0 | | 0.0 | 29.0 | 6351 | 0.0021 | 1.0 | | 0.0 | 30.0 | 6570 | 0.0005 | 1.0 | | 0.0 | 31.0 | 6789 | 0.0002 | 1.0 | | 0.0 | 32.0 | 7008 | 0.0010 | 1.0 | | 0.0 | 33.0 | 7227 | 0.0045 | 1.0 | | 0.0 | 34.0 | 7446 | 0.0082 | 1.0 | | 0.0 | 35.0 | 7665 | 0.0066 | 1.0 | | 0.0 | 36.0 | 7884 | 0.0009 | 1.0 | | 0.0 | 37.0 | 8103 | 0.0004 | 1.0 | | 0.0 | 38.0 | 8322 | 0.0004 | 1.0 | | 0.0 | 39.0 | 8541 | 0.0101 | 1.0 | | 0.0 | 40.0 | 8760 | 0.0083 | 1.0 | | 0.0 | 41.0 | 8979 | 0.0080 | 1.0 | | 0.0001 | 42.0 | 9198 | 0.0073 | 1.0 | | 0.0 | 43.0 | 9417 | 0.0042 | 1.0 | | 0.0 | 44.0 | 9636 | 0.0040 | 1.0 | | 0.0 | 45.0 | 9855 | 0.0049 | 1.0 | | 0.0 | 46.0 | 10074 | 0.0031 | 1.0 | | 0.0 | 47.0 | 10293 | 0.0031 | 1.0 | | 0.0 | 48.0 | 10512 | 0.0039 | 1.0 | | 0.0 | 49.0 | 10731 | 0.0040 | 1.0 | | 0.0 | 50.0 | 10950 | 0.0038 | 1.0 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.0+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2
[ "01_normal", "02_tapered", "03_pyriform", "04_amorphous" ]
chanhua/autotrain-krvpy-mebgz
# Model Trained Using AutoTrain - Problem type: Image Classification ## Validation Metricsg loss: 1.0846457481384277 f1_macro: 0.26666666666666666 f1_micro: 0.5 f1_weighted: 0.4 precision_macro: 0.2222222222222222 precision_micro: 0.5 precision_weighted: 0.3333333333333333 recall_macro: 0.3333333333333333 recall_micro: 0.5 recall_weighted: 0.5 accuracy: 0.5
[ "11covered_with_a_quilt_and_only_the_head_exposed", "12covered_with_a_quilt_and_exposed_other_parts_of_the_body", "13has_nothing_to_do_with_11_and_12_above" ]
chanhua/autotrain-rnjto-gg00g
# Model Trained Using AutoTrain - Problem type: Image Classification ## Validation Metricsg loss: 1.0826029777526855 f1_macro: 0.5555555555555555 f1_micro: 0.6666666666666666 f1_weighted: 0.5555555555555555 precision_macro: 0.5 precision_micro: 0.6666666666666666 precision_weighted: 0.5 recall_macro: 0.6666666666666666 recall_micro: 0.6666666666666666 recall_weighted: 0.6666666666666666 accuracy: 0.6666666666666666
[ "11covered_with_a_quilt_and_only_the_head_exposed", "12covered_with_a_quilt_and_exposed_other_parts_of_the_body", "13has_nothing_to_do_with_11_and_12_above" ]
hkivancoral/hushem_40x_beit_large_adamax_00001_fold5
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hushem_40x_beit_large_adamax_00001_fold5 This model is a fine-tuned version of [microsoft/beit-large-patch16-224](https://huggingface.co/microsoft/beit-large-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.3633 - Accuracy: 0.9268 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.0116 | 1.0 | 220 | 0.3464 | 0.8780 | | 0.0008 | 2.0 | 440 | 0.2183 | 0.9512 | | 0.0009 | 3.0 | 660 | 0.2250 | 0.9268 | | 0.0006 | 4.0 | 880 | 0.2906 | 0.9268 | | 0.0001 | 5.0 | 1100 | 0.3626 | 0.9268 | | 0.0004 | 6.0 | 1320 | 0.2649 | 0.9512 | | 0.0 | 7.0 | 1540 | 0.4436 | 0.8780 | | 0.0004 | 8.0 | 1760 | 0.4765 | 0.9024 | | 0.0001 | 9.0 | 1980 | 0.4469 | 0.9024 | | 0.0 | 10.0 | 2200 | 0.4327 | 0.8780 | | 0.0 | 11.0 | 2420 | 0.4850 | 0.9268 | | 0.0 | 12.0 | 2640 | 0.4853 | 0.8780 | | 0.0 | 13.0 | 2860 | 0.5574 | 0.8537 | | 0.0 | 14.0 | 3080 | 0.5001 | 0.9024 | | 0.0 | 15.0 | 3300 | 0.4709 | 0.8537 | | 0.0 | 16.0 | 3520 | 0.6659 | 0.8293 | | 0.0 | 17.0 | 3740 | 0.8132 | 0.8293 | | 0.0 | 18.0 | 3960 | 0.7367 | 0.8780 | | 0.0005 | 19.0 | 4180 | 0.2607 | 0.9512 | | 0.0 | 20.0 | 4400 | 0.3217 | 0.9512 | | 0.0 | 21.0 | 4620 | 0.2845 | 0.9512 | | 0.0 | 22.0 | 4840 | 0.5419 | 0.8780 | | 0.0 | 23.0 | 5060 | 0.4106 | 0.9024 | | 0.0 | 24.0 | 5280 | 0.3477 | 0.9024 | | 0.0 | 25.0 | 5500 | 0.4515 | 0.8780 | | 0.0 | 26.0 | 5720 | 0.3857 | 0.9024 | | 0.0 | 27.0 | 5940 | 0.4374 | 0.9024 | | 0.0 | 28.0 | 6160 | 0.5116 | 0.8780 | | 0.0 | 29.0 | 6380 | 0.6248 | 0.8537 | | 0.0 | 30.0 | 6600 | 0.5380 | 0.8780 | | 0.0 | 31.0 | 6820 | 0.5231 | 0.8780 | | 0.0 | 32.0 | 7040 | 0.5186 | 0.8780 | | 0.0 | 33.0 | 7260 | 0.4301 | 0.9024 | | 0.0 | 34.0 | 7480 | 0.4552 | 0.9024 | | 0.0 | 35.0 | 7700 | 0.4309 | 0.9024 | | 0.0 | 36.0 | 7920 | 0.5631 | 0.8780 | | 0.0 | 37.0 | 8140 | 0.5187 | 0.8780 | | 0.0 | 38.0 | 8360 | 0.3960 | 0.9268 | | 0.0 | 39.0 | 8580 | 0.5497 | 0.9024 | | 0.0 | 40.0 | 8800 | 0.4890 | 0.9024 | | 0.0 | 41.0 | 9020 | 0.3987 | 0.9268 | | 0.0 | 42.0 | 9240 | 0.4184 | 0.9268 | | 0.0 | 43.0 | 9460 | 0.3286 | 0.9512 | | 0.0 | 44.0 | 9680 | 0.3483 | 0.9268 | | 0.0 | 45.0 | 9900 | 0.3614 | 0.9268 | | 0.0 | 46.0 | 10120 | 0.3697 | 0.9268 | | 0.0 | 47.0 | 10340 | 0.3577 | 0.9512 | | 0.0 | 48.0 | 10560 | 0.3575 | 0.9512 | | 0.0 | 49.0 | 10780 | 0.3626 | 0.9268 | | 0.0 | 50.0 | 11000 | 0.3633 | 0.9268 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.0+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2
[ "01_normal", "02_tapered", "03_pyriform", "04_amorphous" ]
chanhua/autotrain-izefx-v3qh0
# Model Trained Using AutoTrain - Problem type: Image Classification ## Validation Metricsg loss: 0.9459153413772583 f1_macro: 0.26666666666666666 f1_micro: 0.5 f1_weighted: 0.4 precision_macro: 0.2222222222222222 precision_micro: 0.5 precision_weighted: 0.3333333333333333 recall_macro: 0.3333333333333333 recall_micro: 0.5 recall_weighted: 0.5 accuracy: 0.5
[ "11covered_with_a_quilt_and_only_the_head_exposed", "12covered_with_a_quilt_and_exposed_other_parts_of_the_body", "13has_nothing_to_do_with_11_and_12_above" ]
tfyxj/autotrain-bl992-mguwi
# Model Trained Using AutoTrain - Problem type: Image Classification ## Validation Metricsg loss: nan f1_macro: 0.12179487179487179 f1_micro: 0.2235294117647059 f1_weighted: 0.08167420814479637 precision_macro: 0.07450980392156863 precision_micro: 0.2235294117647059 precision_weighted: 0.04996539792387543 recall_macro: 0.3333333333333333 recall_micro: 0.2235294117647059 recall_weighted: 0.2235294117647059 accuracy: 0.2235294117647059
[ "11covered_with_a_quilt_and_only_the_head_exposed", "12covered_with_a_quilt_and_exposed_other_parts_of_the_body", "13has_nothing_to_do_with_11_and_12_above" ]
tiennguyenbnbk/teacher-status-van-tiny-256-0
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # teacher-status-van-tiny-256-0 This model is a fine-tuned version of [Visual-Attention-Network/van-tiny](https://huggingface.co/Visual-Attention-Network/van-tiny) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0672 - Accuracy: 0.9778 - F1 Score: 0.9841 - Recall: 0.9893 - Precision: 0.9789 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Score | Recall | Precision | |:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|:------:|:---------:| | 0.6788 | 0.99 | 47 | 0.6437 | 0.6933 | 0.8189 | 1.0 | 0.6933 | | 0.463 | 2.0 | 95 | 0.3406 | 0.8756 | 0.9162 | 0.9808 | 0.8596 | | 0.3596 | 2.99 | 142 | 0.2072 | 0.9304 | 0.9504 | 0.9615 | 0.9395 | | 0.3505 | 4.0 | 190 | 0.1564 | 0.9526 | 0.9661 | 0.9744 | 0.9580 | | 0.2962 | 4.99 | 237 | 0.1262 | 0.9556 | 0.9681 | 0.9722 | 0.9640 | | 0.2762 | 6.0 | 285 | 0.1038 | 0.9644 | 0.9745 | 0.9808 | 0.9684 | | 0.2604 | 6.99 | 332 | 0.0932 | 0.9719 | 0.9798 | 0.9829 | 0.9766 | | 0.2427 | 8.0 | 380 | 0.0928 | 0.9719 | 0.9797 | 0.9786 | 0.9807 | | 0.2465 | 8.99 | 427 | 0.0898 | 0.9719 | 0.9797 | 0.9786 | 0.9807 | | 0.2519 | 10.0 | 475 | 0.0913 | 0.9689 | 0.9775 | 0.9765 | 0.9786 | | 0.2258 | 10.99 | 522 | 0.0847 | 0.9733 | 0.9809 | 0.9872 | 0.9747 | | 0.2184 | 12.0 | 570 | 0.0812 | 0.9793 | 0.9851 | 0.9893 | 0.9809 | | 0.2208 | 12.99 | 617 | 0.0693 | 0.9807 | 0.9861 | 0.9872 | 0.9851 | | 0.2201 | 14.0 | 665 | 0.0628 | 0.9763 | 0.9829 | 0.9850 | 0.9809 | | 0.2251 | 14.99 | 712 | 0.0811 | 0.9733 | 0.9810 | 0.9915 | 0.9707 | | 0.2135 | 16.0 | 760 | 0.0718 | 0.9763 | 0.9829 | 0.9850 | 0.9809 | | 0.1851 | 16.99 | 807 | 0.0791 | 0.9763 | 0.9830 | 0.9872 | 0.9788 | | 0.2152 | 18.0 | 855 | 0.0737 | 0.9748 | 0.9818 | 0.9808 | 0.9829 | | 0.1871 | 18.99 | 902 | 0.0814 | 0.9763 | 0.9830 | 0.9872 | 0.9788 | | 0.1714 | 20.0 | 950 | 0.0692 | 0.9763 | 0.9830 | 0.9893 | 0.9768 | | 0.188 | 20.99 | 997 | 0.0641 | 0.9778 | 0.9840 | 0.9850 | 0.9829 | | 0.191 | 22.0 | 1045 | 0.0644 | 0.9793 | 0.9851 | 0.9872 | 0.9830 | | 0.2025 | 22.99 | 1092 | 0.0675 | 0.9793 | 0.9850 | 0.9829 | 0.9871 | | 0.1753 | 24.0 | 1140 | 0.0655 | 0.9822 | 0.9872 | 0.9893 | 0.9851 | | 0.1857 | 24.99 | 1187 | 0.0731 | 0.9793 | 0.9851 | 0.9915 | 0.9789 | | 0.2007 | 26.0 | 1235 | 0.0677 | 0.9793 | 0.9851 | 0.9915 | 0.9789 | | 0.2086 | 26.99 | 1282 | 0.0640 | 0.9793 | 0.9851 | 0.9893 | 0.9809 | | 0.1666 | 28.0 | 1330 | 0.0712 | 0.9778 | 0.9841 | 0.9893 | 0.9789 | | 0.157 | 28.99 | 1377 | 0.0661 | 0.9807 | 0.9862 | 0.9893 | 0.9830 | | 0.1758 | 29.68 | 1410 | 0.0672 | 0.9778 | 0.9841 | 0.9893 | 0.9789 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.0 - Tokenizers 0.15.0
[ "abnormal", "normal" ]
hkivancoral/smids_10x_beit_large_adamax_001_fold1
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # smids_10x_beit_large_adamax_001_fold1 This model is a fine-tuned version of [microsoft/beit-large-patch16-224](https://huggingface.co/microsoft/beit-large-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.9751 - Accuracy: 0.9048 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.3471 | 1.0 | 751 | 0.3720 | 0.8631 | | 0.2879 | 2.0 | 1502 | 0.4078 | 0.8364 | | 0.2355 | 3.0 | 2253 | 0.4002 | 0.8831 | | 0.2335 | 4.0 | 3004 | 0.2992 | 0.8831 | | 0.1816 | 5.0 | 3755 | 0.3290 | 0.8965 | | 0.1386 | 6.0 | 4506 | 0.3986 | 0.8898 | | 0.1637 | 7.0 | 5257 | 0.4542 | 0.8681 | | 0.0627 | 8.0 | 6008 | 0.4567 | 0.8965 | | 0.0985 | 9.0 | 6759 | 0.3926 | 0.9015 | | 0.1363 | 10.0 | 7510 | 0.4519 | 0.8848 | | 0.0463 | 11.0 | 8261 | 0.5853 | 0.8898 | | 0.023 | 12.0 | 9012 | 0.5711 | 0.8865 | | 0.0292 | 13.0 | 9763 | 0.5829 | 0.8932 | | 0.0137 | 14.0 | 10514 | 0.5739 | 0.8965 | | 0.0034 | 15.0 | 11265 | 0.6922 | 0.8815 | | 0.0201 | 16.0 | 12016 | 0.6833 | 0.8948 | | 0.0068 | 17.0 | 12767 | 0.7845 | 0.8898 | | 0.0084 | 18.0 | 13518 | 0.6851 | 0.8781 | | 0.0033 | 19.0 | 14269 | 0.6219 | 0.8998 | | 0.0023 | 20.0 | 15020 | 0.5986 | 0.8982 | | 0.0011 | 21.0 | 15771 | 0.6825 | 0.8965 | | 0.0011 | 22.0 | 16522 | 0.7971 | 0.8932 | | 0.027 | 23.0 | 17273 | 0.5546 | 0.9098 | | 0.0061 | 24.0 | 18024 | 0.6400 | 0.8932 | | 0.0001 | 25.0 | 18775 | 0.6875 | 0.8965 | | 0.0111 | 26.0 | 19526 | 0.7316 | 0.8965 | | 0.0029 | 27.0 | 20277 | 0.8142 | 0.8865 | | 0.0004 | 28.0 | 21028 | 0.7441 | 0.8915 | | 0.0043 | 29.0 | 21779 | 0.7052 | 0.8965 | | 0.0 | 30.0 | 22530 | 0.7049 | 0.9048 | | 0.0 | 31.0 | 23281 | 0.8253 | 0.9149 | | 0.0005 | 32.0 | 24032 | 0.6696 | 0.9065 | | 0.0001 | 33.0 | 24783 | 0.8050 | 0.9065 | | 0.0 | 34.0 | 25534 | 0.8833 | 0.9015 | | 0.0 | 35.0 | 26285 | 0.8344 | 0.9032 | | 0.0 | 36.0 | 27036 | 0.8190 | 0.8982 | | 0.0 | 37.0 | 27787 | 0.8357 | 0.9032 | | 0.0 | 38.0 | 28538 | 0.9401 | 0.9015 | | 0.0 | 39.0 | 29289 | 0.7726 | 0.9115 | | 0.0 | 40.0 | 30040 | 0.8975 | 0.8965 | | 0.0 | 41.0 | 30791 | 0.8489 | 0.9065 | | 0.0 | 42.0 | 31542 | 0.9519 | 0.8998 | | 0.0 | 43.0 | 32293 | 0.9084 | 0.9032 | | 0.0 | 44.0 | 33044 | 0.9097 | 0.9048 | | 0.0 | 45.0 | 33795 | 0.9438 | 0.9098 | | 0.0 | 46.0 | 34546 | 0.9461 | 0.9082 | | 0.0 | 47.0 | 35297 | 0.9632 | 0.9048 | | 0.0 | 48.0 | 36048 | 0.9598 | 0.9065 | | 0.0 | 49.0 | 36799 | 0.9723 | 0.9048 | | 0.0 | 50.0 | 37550 | 0.9751 | 0.9048 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.0+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2
[ "abnormal_sperm", "non-sperm", "normal_sperm" ]
hkivancoral/smids_10x_beit_large_adamax_001_fold2
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # smids_10x_beit_large_adamax_001_fold2 This model is a fine-tuned version of [microsoft/beit-large-patch16-224](https://huggingface.co/microsoft/beit-large-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.4058 - Accuracy: 0.8536 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.6414 | 1.0 | 750 | 0.6828 | 0.6639 | | 0.5428 | 2.0 | 1500 | 0.5438 | 0.7754 | | 0.4614 | 3.0 | 2250 | 0.4523 | 0.8336 | | 0.4233 | 4.0 | 3000 | 0.4215 | 0.8236 | | 0.4304 | 5.0 | 3750 | 0.4599 | 0.7903 | | 0.3335 | 6.0 | 4500 | 0.4118 | 0.8336 | | 0.3481 | 7.0 | 5250 | 0.4939 | 0.8253 | | 0.3092 | 8.0 | 6000 | 0.4308 | 0.8486 | | 0.2568 | 9.0 | 6750 | 0.4756 | 0.8353 | | 0.331 | 10.0 | 7500 | 0.4715 | 0.8619 | | 0.2403 | 11.0 | 8250 | 0.5349 | 0.8469 | | 0.2162 | 12.0 | 9000 | 0.5922 | 0.8136 | | 0.2489 | 13.0 | 9750 | 0.5818 | 0.8419 | | 0.0972 | 14.0 | 10500 | 0.6218 | 0.8419 | | 0.1212 | 15.0 | 11250 | 0.5371 | 0.8436 | | 0.1175 | 16.0 | 12000 | 0.6818 | 0.8286 | | 0.1011 | 17.0 | 12750 | 0.8719 | 0.8120 | | 0.179 | 18.0 | 13500 | 0.7106 | 0.8486 | | 0.1325 | 19.0 | 14250 | 0.6119 | 0.8552 | | 0.111 | 20.0 | 15000 | 0.7905 | 0.8552 | | 0.0431 | 21.0 | 15750 | 0.8636 | 0.8469 | | 0.0973 | 22.0 | 16500 | 0.9921 | 0.8403 | | 0.0529 | 23.0 | 17250 | 0.7563 | 0.8536 | | 0.1212 | 24.0 | 18000 | 1.1228 | 0.8103 | | 0.0377 | 25.0 | 18750 | 1.0572 | 0.8386 | | 0.035 | 26.0 | 19500 | 0.8767 | 0.8536 | | 0.0591 | 27.0 | 20250 | 0.9535 | 0.8652 | | 0.0188 | 28.0 | 21000 | 1.1035 | 0.8536 | | 0.0402 | 29.0 | 21750 | 1.1575 | 0.8586 | | 0.0333 | 30.0 | 22500 | 1.1473 | 0.8669 | | 0.0255 | 31.0 | 23250 | 1.0948 | 0.8469 | | 0.0283 | 32.0 | 24000 | 1.4345 | 0.8419 | | 0.0262 | 33.0 | 24750 | 1.1277 | 0.8552 | | 0.0004 | 34.0 | 25500 | 1.2002 | 0.8519 | | 0.0058 | 35.0 | 26250 | 1.1085 | 0.8586 | | 0.0265 | 36.0 | 27000 | 1.2506 | 0.8436 | | 0.0298 | 37.0 | 27750 | 1.1890 | 0.8602 | | 0.0146 | 38.0 | 28500 | 1.5719 | 0.8486 | | 0.0266 | 39.0 | 29250 | 1.2137 | 0.8486 | | 0.0079 | 40.0 | 30000 | 1.2207 | 0.8586 | | 0.0077 | 41.0 | 30750 | 1.1783 | 0.8636 | | 0.0004 | 42.0 | 31500 | 1.2606 | 0.8552 | | 0.0014 | 43.0 | 32250 | 1.6455 | 0.8453 | | 0.0004 | 44.0 | 33000 | 1.4264 | 0.8436 | | 0.015 | 45.0 | 33750 | 1.4403 | 0.8536 | | 0.0002 | 46.0 | 34500 | 1.2419 | 0.8552 | | 0.002 | 47.0 | 35250 | 1.3338 | 0.8536 | | 0.0101 | 48.0 | 36000 | 1.5464 | 0.8469 | | 0.0086 | 49.0 | 36750 | 1.3979 | 0.8536 | | 0.0061 | 50.0 | 37500 | 1.4058 | 0.8536 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.0+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2
[ "abnormal_sperm", "non-sperm", "normal_sperm" ]
gehug/vit-base-patch16-224-finetuned-flower
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-patch16-224-finetuned-flower This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the imagefolder dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results ### Framework versions - Transformers 4.24.0 - Pytorch 2.1.0+cu121 - Datasets 2.7.1 - Tokenizers 0.13.3
[ "daisy", "dandelion", "roses", "sunflowers", "tulips" ]
yuanhuaisen/autotrain-7n06d-9fa4u
# Model Trained Using AutoTrain - Problem type: Image Classification ## Validation Metricsg loss: 0.3695702850818634 f1_macro: 0.9200292729704493 f1_micro: 0.9333333333333333 f1_weighted: 0.9333333333333333 precision_macro: 0.9200292729704493 precision_micro: 0.9333333333333333 precision_weighted: 0.9333333333333333 recall_macro: 0.9200292729704493 recall_micro: 0.9333333333333333 recall_weighted: 0.9333333333333333 accuracy: 0.9333333333333333
[ "11covered_with_a_quilt_and_only_the_head_exposed", "12covered_with_a_quilt_and_exposed_other_parts_of_the_body", "13has_nothing_to_do_with_11_and_12_above" ]
Sai1212/swin-finetuned-class_mi_a4c
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-finetuned-class_mi_a4c This model is a fine-tuned version of [microsoft/swin-base-patch4-window7-224](https://huggingface.co/microsoft/swin-base-patch4-window7-224) on the None dataset. It achieves the following results on the evaluation set: - Loss: 187691964027097262850048.0000 - Accuracy: 0.4324 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: reduce_lr_on_plateau - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-----------------------------:|:-----:|:----:|:-----------------------------:|:--------:| | No log | 0.84 | 4 | 187691964027097262850048.0000 | 0.4324 | | No log | 1.89 | 9 | 187691964027097262850048.0000 | 0.4324 | | 197383793291431707148288.0000 | 2.95 | 14 | 187691964027097262850048.0000 | 0.4324 | | 197383793291431707148288.0000 | 4.0 | 19 | 187691964027097262850048.0000 | 0.4324 | | 201517492465567910592512.0000 | 4.84 | 23 | 187691964027097262850048.0000 | 0.4324 | | 201517492465567910592512.0000 | 5.89 | 28 | 187691964027097262850048.0000 | 0.4324 | | 190149859368370083725312.0000 | 6.95 | 33 | 187691964027097262850048.0000 | 0.4324 | | 190149859368370083725312.0000 | 8.0 | 38 | 187691964027097262850048.0000 | 0.4324 | | 203584363669914227048448.0000 | 8.42 | 40 | 187691964027097262850048.0000 | 0.4324 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0
[ "0", "1" ]
hkivancoral/smids_10x_beit_large_adamax_001_fold3
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # smids_10x_beit_large_adamax_001_fold3 This model is a fine-tuned version of [microsoft/beit-large-patch16-224](https://huggingface.co/microsoft/beit-large-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.0324 - Accuracy: 0.9017 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.3438 | 1.0 | 750 | 0.3826 | 0.8517 | | 0.2931 | 2.0 | 1500 | 0.3034 | 0.89 | | 0.2025 | 3.0 | 2250 | 0.3971 | 0.8783 | | 0.2582 | 4.0 | 3000 | 0.3086 | 0.8867 | | 0.2483 | 5.0 | 3750 | 0.3346 | 0.8917 | | 0.1606 | 6.0 | 4500 | 0.3908 | 0.8717 | | 0.1236 | 7.0 | 5250 | 0.4286 | 0.8783 | | 0.1197 | 8.0 | 6000 | 0.3887 | 0.9 | | 0.0412 | 9.0 | 6750 | 0.4924 | 0.885 | | 0.0384 | 10.0 | 7500 | 0.5551 | 0.89 | | 0.0583 | 11.0 | 8250 | 0.4882 | 0.9017 | | 0.0806 | 12.0 | 9000 | 0.5902 | 0.88 | | 0.0489 | 13.0 | 9750 | 0.5212 | 0.88 | | 0.0353 | 14.0 | 10500 | 0.5171 | 0.9 | | 0.0094 | 15.0 | 11250 | 0.6341 | 0.895 | | 0.0154 | 16.0 | 12000 | 0.5409 | 0.9133 | | 0.0118 | 17.0 | 12750 | 0.6110 | 0.8833 | | 0.0159 | 18.0 | 13500 | 0.6873 | 0.9033 | | 0.0026 | 19.0 | 14250 | 0.7871 | 0.8983 | | 0.0163 | 20.0 | 15000 | 0.6341 | 0.895 | | 0.0002 | 21.0 | 15750 | 0.7139 | 0.9017 | | 0.0006 | 22.0 | 16500 | 0.6717 | 0.9033 | | 0.0266 | 23.0 | 17250 | 0.6268 | 0.895 | | 0.0051 | 24.0 | 18000 | 0.6425 | 0.905 | | 0.0 | 25.0 | 18750 | 0.7506 | 0.91 | | 0.0004 | 26.0 | 19500 | 0.6864 | 0.9017 | | 0.0002 | 27.0 | 20250 | 0.6111 | 0.9117 | | 0.0163 | 28.0 | 21000 | 0.6875 | 0.9017 | | 0.0001 | 29.0 | 21750 | 0.8050 | 0.8967 | | 0.0002 | 30.0 | 22500 | 0.7397 | 0.8967 | | 0.0004 | 31.0 | 23250 | 0.8218 | 0.8983 | | 0.0 | 32.0 | 24000 | 0.8725 | 0.8983 | | 0.0 | 33.0 | 24750 | 0.9662 | 0.8967 | | 0.0 | 34.0 | 25500 | 0.9148 | 0.9083 | | 0.0 | 35.0 | 26250 | 0.8492 | 0.9083 | | 0.0001 | 36.0 | 27000 | 0.8264 | 0.9067 | | 0.0 | 37.0 | 27750 | 0.8650 | 0.895 | | 0.0004 | 38.0 | 28500 | 0.9030 | 0.91 | | 0.0 | 39.0 | 29250 | 0.9540 | 0.9 | | 0.0 | 40.0 | 30000 | 1.0292 | 0.8883 | | 0.0 | 41.0 | 30750 | 1.0282 | 0.8917 | | 0.0 | 42.0 | 31500 | 1.0128 | 0.8933 | | 0.0 | 43.0 | 32250 | 1.0147 | 0.8983 | | 0.0 | 44.0 | 33000 | 0.9709 | 0.8983 | | 0.0 | 45.0 | 33750 | 0.9643 | 0.9067 | | 0.0 | 46.0 | 34500 | 0.9770 | 0.9017 | | 0.0 | 47.0 | 35250 | 1.0000 | 0.8983 | | 0.0 | 48.0 | 36000 | 1.0223 | 0.9017 | | 0.0 | 49.0 | 36750 | 1.0291 | 0.9017 | | 0.0 | 50.0 | 37500 | 1.0324 | 0.9017 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.0+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2
[ "abnormal_sperm", "non-sperm", "normal_sperm" ]
Dulfary/platzi-vit-model-omar-espejel
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # platzi-vit-model-omar-espejel This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1062 - Accuracy: 0.9774 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.1461 | 3.85 | 500 | 0.1062 | 0.9774 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.0 - Tokenizers 0.15.0
[ "angular_leaf_spot", "bean_rust", "healthy" ]
hkivancoral/smids_10x_beit_large_adamax_001_fold4
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # smids_10x_beit_large_adamax_001_fold4 This model is a fine-tuned version of [microsoft/beit-large-patch16-224](https://huggingface.co/microsoft/beit-large-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.6842 - Accuracy: 0.8717 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.3361 | 1.0 | 750 | 0.4333 | 0.8367 | | 0.2968 | 2.0 | 1500 | 0.4495 | 0.8467 | | 0.288 | 3.0 | 2250 | 0.4264 | 0.8383 | | 0.2379 | 4.0 | 3000 | 0.4907 | 0.85 | | 0.1893 | 5.0 | 3750 | 0.4876 | 0.8533 | | 0.1419 | 6.0 | 4500 | 0.4376 | 0.8667 | | 0.1288 | 7.0 | 5250 | 0.5742 | 0.84 | | 0.079 | 8.0 | 6000 | 0.6426 | 0.86 | | 0.0885 | 9.0 | 6750 | 0.6694 | 0.8617 | | 0.0513 | 10.0 | 7500 | 0.7772 | 0.8483 | | 0.0371 | 11.0 | 8250 | 0.7425 | 0.8667 | | 0.0559 | 12.0 | 9000 | 0.7844 | 0.8633 | | 0.0437 | 13.0 | 9750 | 0.9475 | 0.8617 | | 0.0237 | 14.0 | 10500 | 0.8539 | 0.86 | | 0.0064 | 15.0 | 11250 | 1.1662 | 0.8683 | | 0.0766 | 16.0 | 12000 | 1.1003 | 0.8683 | | 0.0045 | 17.0 | 12750 | 1.1294 | 0.8633 | | 0.0012 | 18.0 | 13500 | 1.0595 | 0.8717 | | 0.0107 | 19.0 | 14250 | 1.0246 | 0.875 | | 0.0098 | 20.0 | 15000 | 0.9670 | 0.8633 | | 0.0227 | 21.0 | 15750 | 1.0829 | 0.8633 | | 0.0004 | 22.0 | 16500 | 1.0091 | 0.855 | | 0.0026 | 23.0 | 17250 | 1.0123 | 0.8667 | | 0.001 | 24.0 | 18000 | 1.0183 | 0.8783 | | 0.0083 | 25.0 | 18750 | 1.2133 | 0.8533 | | 0.0076 | 26.0 | 19500 | 1.0638 | 0.865 | | 0.0045 | 27.0 | 20250 | 1.1546 | 0.8717 | | 0.0001 | 28.0 | 21000 | 1.0902 | 0.8567 | | 0.0003 | 29.0 | 21750 | 1.1809 | 0.86 | | 0.0 | 30.0 | 22500 | 1.2715 | 0.8733 | | 0.0001 | 31.0 | 23250 | 1.1922 | 0.8767 | | 0.0 | 32.0 | 24000 | 1.4076 | 0.87 | | 0.0075 | 33.0 | 24750 | 1.3961 | 0.8617 | | 0.0 | 34.0 | 25500 | 1.4345 | 0.875 | | 0.0 | 35.0 | 26250 | 1.6125 | 0.8683 | | 0.0 | 36.0 | 27000 | 1.5456 | 0.8567 | | 0.0 | 37.0 | 27750 | 1.5632 | 0.865 | | 0.0 | 38.0 | 28500 | 1.6349 | 0.8617 | | 0.0 | 39.0 | 29250 | 1.5362 | 0.8617 | | 0.0 | 40.0 | 30000 | 1.6434 | 0.8667 | | 0.0 | 41.0 | 30750 | 1.6815 | 0.87 | | 0.0 | 42.0 | 31500 | 1.6593 | 0.8667 | | 0.0 | 43.0 | 32250 | 1.6757 | 0.87 | | 0.0 | 44.0 | 33000 | 1.6503 | 0.8683 | | 0.0 | 45.0 | 33750 | 1.6999 | 0.8667 | | 0.0 | 46.0 | 34500 | 1.6868 | 0.8667 | | 0.0 | 47.0 | 35250 | 1.6803 | 0.87 | | 0.0 | 48.0 | 36000 | 1.6872 | 0.8733 | | 0.0 | 49.0 | 36750 | 1.6911 | 0.8717 | | 0.0 | 50.0 | 37500 | 1.6842 | 0.8717 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.0+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2
[ "abnormal_sperm", "non-sperm", "normal_sperm" ]
hkivancoral/smids_10x_beit_large_adamax_001_fold5
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # smids_10x_beit_large_adamax_001_fold5 This model is a fine-tuned version of [microsoft/beit-large-patch16-224](https://huggingface.co/microsoft/beit-large-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.8836 - Accuracy: 0.905 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.3665 | 1.0 | 750 | 0.3594 | 0.8583 | | 0.2964 | 2.0 | 1500 | 0.4126 | 0.8483 | | 0.2817 | 3.0 | 2250 | 0.2955 | 0.895 | | 0.2107 | 4.0 | 3000 | 0.4285 | 0.8483 | | 0.2441 | 5.0 | 3750 | 0.2917 | 0.905 | | 0.2284 | 6.0 | 4500 | 0.3000 | 0.8933 | | 0.1417 | 7.0 | 5250 | 0.3775 | 0.9033 | | 0.1212 | 8.0 | 6000 | 0.4010 | 0.9 | | 0.1114 | 9.0 | 6750 | 0.3900 | 0.8917 | | 0.1229 | 10.0 | 7500 | 0.5863 | 0.8833 | | 0.0978 | 11.0 | 8250 | 0.5114 | 0.8883 | | 0.019 | 12.0 | 9000 | 0.6596 | 0.9033 | | 0.0244 | 13.0 | 9750 | 0.6428 | 0.9017 | | 0.0242 | 14.0 | 10500 | 0.6293 | 0.9 | | 0.0159 | 15.0 | 11250 | 0.5943 | 0.9067 | | 0.0287 | 16.0 | 12000 | 0.4876 | 0.9033 | | 0.0161 | 17.0 | 12750 | 0.7094 | 0.8933 | | 0.0033 | 18.0 | 13500 | 0.7392 | 0.9117 | | 0.0133 | 19.0 | 14250 | 0.6855 | 0.9017 | | 0.0009 | 20.0 | 15000 | 0.7025 | 0.895 | | 0.033 | 21.0 | 15750 | 0.5767 | 0.895 | | 0.0007 | 22.0 | 16500 | 0.6533 | 0.8983 | | 0.0005 | 23.0 | 17250 | 0.8501 | 0.8883 | | 0.0041 | 24.0 | 18000 | 0.6751 | 0.91 | | 0.0016 | 25.0 | 18750 | 0.8175 | 0.8983 | | 0.022 | 26.0 | 19500 | 0.7166 | 0.9067 | | 0.002 | 27.0 | 20250 | 0.7746 | 0.9033 | | 0.0002 | 28.0 | 21000 | 0.7048 | 0.91 | | 0.0002 | 29.0 | 21750 | 0.8217 | 0.9083 | | 0.0187 | 30.0 | 22500 | 0.7107 | 0.8983 | | 0.0002 | 31.0 | 23250 | 0.7863 | 0.9133 | | 0.0 | 32.0 | 24000 | 0.8314 | 0.8983 | | 0.0 | 33.0 | 24750 | 0.7909 | 0.8967 | | 0.0003 | 34.0 | 25500 | 0.8566 | 0.905 | | 0.0 | 35.0 | 26250 | 0.7280 | 0.9117 | | 0.0 | 36.0 | 27000 | 0.8236 | 0.9017 | | 0.0068 | 37.0 | 27750 | 0.7886 | 0.92 | | 0.0 | 38.0 | 28500 | 0.8302 | 0.9017 | | 0.0 | 39.0 | 29250 | 0.8589 | 0.9067 | | 0.0 | 40.0 | 30000 | 0.8152 | 0.9017 | | 0.0 | 41.0 | 30750 | 0.8501 | 0.905 | | 0.0 | 42.0 | 31500 | 0.8563 | 0.91 | | 0.0 | 43.0 | 32250 | 0.7690 | 0.9117 | | 0.0 | 44.0 | 33000 | 0.8007 | 0.9083 | | 0.0 | 45.0 | 33750 | 0.8622 | 0.9033 | | 0.0001 | 46.0 | 34500 | 0.8624 | 0.905 | | 0.0 | 47.0 | 35250 | 0.8665 | 0.9067 | | 0.0 | 48.0 | 36000 | 0.8739 | 0.9067 | | 0.0 | 49.0 | 36750 | 0.8825 | 0.9067 | | 0.0 | 50.0 | 37500 | 0.8836 | 0.905 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.0+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2
[ "abnormal_sperm", "non-sperm", "normal_sperm" ]
bookworm88/vitbase224
Model Trained Using Model google/vit-base-patch16-224 Problem type: Image Classification Validate Metrics Accuracy: 0.8317757009345794 Precision: 0.7731769036116862 Recall: 0.7727598566308244 F1 Score: 0.756015135878913
[ "11covered_with_a_quilt_and_only_the_head_exposed", "12covered_with_a_quilt_and_exposed_other_parts_of_the_body", "13has_nothing_to_do_with_11_and_12_above" ]
yuanhuaisen/autotrain-r8wab-qlqlg
# Model Trained Using AutoTrain - Problem type: Image Classification ## Validation Metricsg loss: 0.476613849401474 f1_macro: 0.9019633297479075 f1_micro: 0.9210526315789473 f1_weighted: 0.9196370878793735 precision_macro: 0.9094932844932844 precision_micro: 0.9210526315789473 precision_weighted: 0.9195042895700791 recall_macro: 0.8957219251336898 recall_micro: 0.9210526315789473 recall_weighted: 0.9210526315789473 accuracy: 0.9210526315789473
[ "11covered_with_a_quilt_and_only_the_head_exposed", "12covered_with_a_quilt_and_exposed_other_parts_of_the_body", "13has_nothing_to_do_with_11_and_12_above" ]
hkivancoral/smids_10x_beit_large_adamax_00001_fold1
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # smids_10x_beit_large_adamax_00001_fold1 This model is a fine-tuned version of [microsoft/beit-large-patch16-224](https://huggingface.co/microsoft/beit-large-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.8887 - Accuracy: 0.9282 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.1288 | 1.0 | 751 | 0.2785 | 0.9065 | | 0.0676 | 2.0 | 1502 | 0.3146 | 0.9149 | | 0.0264 | 3.0 | 2253 | 0.4181 | 0.9115 | | 0.025 | 4.0 | 3004 | 0.5488 | 0.9199 | | 0.0069 | 5.0 | 3755 | 0.5526 | 0.9182 | | 0.0049 | 6.0 | 4506 | 0.6296 | 0.9165 | | 0.0005 | 7.0 | 5257 | 0.7054 | 0.9149 | | 0.0001 | 8.0 | 6008 | 0.7404 | 0.9182 | | 0.0362 | 9.0 | 6759 | 0.7520 | 0.9132 | | 0.0001 | 10.0 | 7510 | 0.8011 | 0.9149 | | 0.0001 | 11.0 | 8261 | 0.7591 | 0.9199 | | 0.0002 | 12.0 | 9012 | 0.7216 | 0.9215 | | 0.0024 | 13.0 | 9763 | 0.8101 | 0.9132 | | 0.0 | 14.0 | 10514 | 0.8382 | 0.9249 | | 0.0 | 15.0 | 11265 | 0.8571 | 0.9165 | | 0.0 | 16.0 | 12016 | 0.8307 | 0.9249 | | 0.0002 | 17.0 | 12767 | 0.8135 | 0.9098 | | 0.0 | 18.0 | 13518 | 0.9070 | 0.9132 | | 0.0 | 19.0 | 14269 | 0.8650 | 0.9115 | | 0.0 | 20.0 | 15020 | 0.8297 | 0.9265 | | 0.0 | 21.0 | 15771 | 0.8359 | 0.9282 | | 0.0 | 22.0 | 16522 | 0.8827 | 0.9265 | | 0.0 | 23.0 | 17273 | 0.8484 | 0.9215 | | 0.0 | 24.0 | 18024 | 0.8739 | 0.9182 | | 0.0004 | 25.0 | 18775 | 0.8728 | 0.9232 | | 0.0 | 26.0 | 19526 | 0.8742 | 0.9149 | | 0.0 | 27.0 | 20277 | 0.9029 | 0.9199 | | 0.0 | 28.0 | 21028 | 0.8812 | 0.9232 | | 0.0109 | 29.0 | 21779 | 0.9326 | 0.9215 | | 0.0 | 30.0 | 22530 | 0.9197 | 0.9115 | | 0.0001 | 31.0 | 23281 | 0.8910 | 0.9215 | | 0.0 | 32.0 | 24032 | 0.8659 | 0.9215 | | 0.0 | 33.0 | 24783 | 0.8759 | 0.9232 | | 0.0 | 34.0 | 25534 | 0.9176 | 0.9199 | | 0.0 | 35.0 | 26285 | 0.8674 | 0.9249 | | 0.0 | 36.0 | 27036 | 0.8364 | 0.9249 | | 0.0 | 37.0 | 27787 | 0.8518 | 0.9265 | | 0.0 | 38.0 | 28538 | 0.8614 | 0.9232 | | 0.0 | 39.0 | 29289 | 0.8789 | 0.9215 | | 0.0 | 40.0 | 30040 | 0.8979 | 0.9215 | | 0.0 | 41.0 | 30791 | 0.9262 | 0.9199 | | 0.0107 | 42.0 | 31542 | 0.8969 | 0.9232 | | 0.0 | 43.0 | 32293 | 0.9021 | 0.9265 | | 0.0 | 44.0 | 33044 | 0.8921 | 0.9282 | | 0.0 | 45.0 | 33795 | 0.9002 | 0.9249 | | 0.0007 | 46.0 | 34546 | 0.9147 | 0.9199 | | 0.0 | 47.0 | 35297 | 0.8904 | 0.9249 | | 0.0 | 48.0 | 36048 | 0.8842 | 0.9282 | | 0.0 | 49.0 | 36799 | 0.8899 | 0.9265 | | 0.0 | 50.0 | 37550 | 0.8887 | 0.9282 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.0+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2
[ "abnormal_sperm", "non-sperm", "normal_sperm" ]
AutumnQiu/finetuned-classficatin-fer2013
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned-classficatin-fer2013 This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the fer2013 dataset. It achieves the following results on the evaluation set: - Loss: 1.0586 - Accuracy: 0.6952 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.5814 | 0.06 | 100 | 1.1124 | 0.6525 | | 0.3856 | 0.11 | 200 | 1.1988 | 0.6428 | | 0.4073 | 0.17 | 300 | 1.2319 | 0.6492 | | 0.3408 | 0.22 | 400 | 1.1527 | 0.6581 | | 0.4001 | 0.28 | 500 | 1.1861 | 0.6601 | | 0.3973 | 0.33 | 600 | 1.1161 | 0.6637 | | 0.3897 | 0.39 | 700 | 1.2955 | 0.6464 | | 0.4689 | 0.45 | 800 | 1.1492 | 0.6578 | | 0.4173 | 0.5 | 900 | 1.1538 | 0.6659 | | 0.3238 | 0.56 | 1000 | 1.1742 | 0.6704 | | 0.2774 | 0.61 | 1100 | 1.1426 | 0.6771 | | 0.3948 | 0.67 | 1200 | 1.1533 | 0.6701 | | 0.3258 | 0.72 | 1300 | 1.1405 | 0.6743 | | 0.3816 | 0.78 | 1400 | 1.1101 | 0.6838 | | 0.308 | 0.84 | 1500 | 1.1281 | 0.6871 | | 0.4592 | 0.89 | 1600 | 1.0971 | 0.6938 | | 0.3957 | 0.95 | 1700 | 1.0586 | 0.6952 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.1.0+cu121 - Datasets 2.16.0 - Tokenizers 0.13.3
[ "angry", "disgust", "fear", "happy", "sad", "surprise", "neutral" ]
hkivancoral/smids_10x_beit_large_adamax_00001_fold2
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # smids_10x_beit_large_adamax_00001_fold2 This model is a fine-tuned version of [microsoft/beit-large-patch16-224](https://huggingface.co/microsoft/beit-large-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.9196 - Accuracy: 0.9151 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.1587 | 1.0 | 750 | 0.2691 | 0.9101 | | 0.0471 | 2.0 | 1500 | 0.3138 | 0.9135 | | 0.0407 | 3.0 | 2250 | 0.4729 | 0.9118 | | 0.0287 | 4.0 | 3000 | 0.5798 | 0.9068 | | 0.012 | 5.0 | 3750 | 0.7233 | 0.9118 | | 0.0109 | 6.0 | 4500 | 0.7175 | 0.9168 | | 0.0017 | 7.0 | 5250 | 0.7940 | 0.9085 | | 0.0129 | 8.0 | 6000 | 0.7917 | 0.9068 | | 0.0001 | 9.0 | 6750 | 0.8466 | 0.9068 | | 0.0033 | 10.0 | 7500 | 0.8662 | 0.9002 | | 0.0001 | 11.0 | 8250 | 0.9262 | 0.9035 | | 0.0005 | 12.0 | 9000 | 0.8648 | 0.9035 | | 0.0001 | 13.0 | 9750 | 0.9176 | 0.9101 | | 0.0001 | 14.0 | 10500 | 0.9531 | 0.8985 | | 0.0002 | 15.0 | 11250 | 0.9250 | 0.9035 | | 0.0418 | 16.0 | 12000 | 0.9389 | 0.9085 | | 0.0 | 17.0 | 12750 | 0.9725 | 0.9035 | | 0.0001 | 18.0 | 13500 | 0.9072 | 0.9101 | | 0.0173 | 19.0 | 14250 | 0.9123 | 0.9151 | | 0.0042 | 20.0 | 15000 | 0.9275 | 0.9068 | | 0.0 | 21.0 | 15750 | 0.9111 | 0.9101 | | 0.0243 | 22.0 | 16500 | 0.9348 | 0.9101 | | 0.0002 | 23.0 | 17250 | 1.0125 | 0.9052 | | 0.0002 | 24.0 | 18000 | 0.8943 | 0.9101 | | 0.0 | 25.0 | 18750 | 1.0215 | 0.9035 | | 0.0001 | 26.0 | 19500 | 0.9907 | 0.9085 | | 0.0358 | 27.0 | 20250 | 0.9413 | 0.9101 | | 0.0003 | 28.0 | 21000 | 0.8860 | 0.9201 | | 0.0 | 29.0 | 21750 | 0.9273 | 0.9218 | | 0.0 | 30.0 | 22500 | 0.9583 | 0.9068 | | 0.0 | 31.0 | 23250 | 0.9280 | 0.9218 | | 0.0 | 32.0 | 24000 | 0.9420 | 0.9168 | | 0.0 | 33.0 | 24750 | 0.9244 | 0.9185 | | 0.0 | 34.0 | 25500 | 0.9598 | 0.9085 | | 0.0 | 35.0 | 26250 | 0.9576 | 0.9101 | | 0.0 | 36.0 | 27000 | 0.9574 | 0.9101 | | 0.0013 | 37.0 | 27750 | 0.9671 | 0.9101 | | 0.0 | 38.0 | 28500 | 0.9627 | 0.9101 | | 0.0 | 39.0 | 29250 | 0.9639 | 0.9118 | | 0.0001 | 40.0 | 30000 | 0.9418 | 0.9118 | | 0.0003 | 41.0 | 30750 | 0.9216 | 0.9135 | | 0.0 | 42.0 | 31500 | 0.9226 | 0.9185 | | 0.0 | 43.0 | 32250 | 0.9076 | 0.9218 | | 0.0 | 44.0 | 33000 | 0.9133 | 0.9151 | | 0.0006 | 45.0 | 33750 | 0.9164 | 0.9151 | | 0.0 | 46.0 | 34500 | 0.9118 | 0.9168 | | 0.0 | 47.0 | 35250 | 0.9173 | 0.9151 | | 0.0 | 48.0 | 36000 | 0.9178 | 0.9101 | | 0.0 | 49.0 | 36750 | 0.9196 | 0.9135 | | 0.0 | 50.0 | 37500 | 0.9196 | 0.9151 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.0+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2
[ "abnormal_sperm", "non-sperm", "normal_sperm" ]
Optikan/V3_Image_classification__points_durs__google_vit-base-patch16-224-in21k
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # V3_Image_classification__points_durs__google_vit-base-patch16-224-in21k This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0411 - Accuracy: 0.9927 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6667 | 1.0 | 15 | 0.5893 | 0.9121 | | 0.4394 | 2.0 | 30 | 0.3294 | 0.9487 | | 0.2685 | 3.0 | 45 | 0.1365 | 0.9707 | | 0.0936 | 4.0 | 60 | 0.0752 | 0.9853 | | 0.0517 | 5.0 | 75 | 0.0553 | 0.9890 | | 0.0436 | 6.0 | 90 | 0.0556 | 0.9890 | | 0.018 | 7.0 | 105 | 0.0557 | 0.9890 | | 0.0189 | 8.0 | 120 | 0.0457 | 0.9890 | | 0.013 | 9.0 | 135 | 0.0343 | 0.9927 | | 0.0115 | 10.0 | 150 | 0.0270 | 0.9963 | | 0.0101 | 11.0 | 165 | 0.0355 | 0.9927 | | 0.0085 | 12.0 | 180 | 0.0356 | 0.9927 | | 0.0079 | 13.0 | 195 | 0.0259 | 0.9963 | | 0.0069 | 14.0 | 210 | 0.0345 | 0.9927 | | 0.0066 | 15.0 | 225 | 0.0360 | 0.9927 | | 0.0061 | 16.0 | 240 | 0.0359 | 0.9927 | | 0.0059 | 17.0 | 255 | 0.0360 | 0.9927 | | 0.0055 | 18.0 | 270 | 0.0368 | 0.9927 | | 0.0054 | 19.0 | 285 | 0.0375 | 0.9927 | | 0.0051 | 20.0 | 300 | 0.0375 | 0.9927 | | 0.0049 | 21.0 | 315 | 0.0380 | 0.9927 | | 0.0047 | 22.0 | 330 | 0.0380 | 0.9927 | | 0.0046 | 23.0 | 345 | 0.0383 | 0.9927 | | 0.0044 | 24.0 | 360 | 0.0386 | 0.9927 | | 0.0043 | 25.0 | 375 | 0.0388 | 0.9927 | | 0.0041 | 26.0 | 390 | 0.0388 | 0.9927 | | 0.0041 | 27.0 | 405 | 0.0391 | 0.9927 | | 0.0039 | 28.0 | 420 | 0.0392 | 0.9927 | | 0.0038 | 29.0 | 435 | 0.0396 | 0.9927 | | 0.0037 | 30.0 | 450 | 0.0397 | 0.9927 | | 0.0037 | 31.0 | 465 | 0.0397 | 0.9927 | | 0.0036 | 32.0 | 480 | 0.0399 | 0.9927 | | 0.0035 | 33.0 | 495 | 0.0401 | 0.9927 | | 0.0034 | 34.0 | 510 | 0.0402 | 0.9927 | | 0.0034 | 35.0 | 525 | 0.0403 | 0.9927 | | 0.0033 | 36.0 | 540 | 0.0403 | 0.9927 | | 0.0033 | 37.0 | 555 | 0.0405 | 0.9927 | | 0.0032 | 38.0 | 570 | 0.0406 | 0.9927 | | 0.0032 | 39.0 | 585 | 0.0406 | 0.9927 | | 0.0031 | 40.0 | 600 | 0.0407 | 0.9927 | | 0.0031 | 41.0 | 615 | 0.0408 | 0.9927 | | 0.0031 | 42.0 | 630 | 0.0408 | 0.9927 | | 0.003 | 43.0 | 645 | 0.0409 | 0.9927 | | 0.003 | 44.0 | 660 | 0.0410 | 0.9927 | | 0.003 | 45.0 | 675 | 0.0410 | 0.9927 | | 0.003 | 46.0 | 690 | 0.0410 | 0.9927 | | 0.003 | 47.0 | 705 | 0.0410 | 0.9927 | | 0.0029 | 48.0 | 720 | 0.0411 | 0.9927 | | 0.0029 | 49.0 | 735 | 0.0411 | 0.9927 | | 0.0029 | 50.0 | 750 | 0.0411 | 0.9927 | ### Framework versions - Transformers 4.30.0 - Pytorch 2.1.1 - Datasets 2.15.0 - Tokenizers 0.13.3
[ "avec_points_durs", "sans_points_durs" ]
moock/swinv2-tiny-patch4-window8-256-finetuned-gardner-icm-max
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swinv2-tiny-patch4-window8-256-finetuned-gardner-icm-max This model is a fine-tuned version of [microsoft/swinv2-tiny-patch4-window8-256](https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.0741 - Accuracy: 0.6429 ## Model description Predict Inner Cell Mass Grade - Gardner Score from an embryo image ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.0925 | 0.94 | 11 | 1.0631 | 0.7952 | | 0.9552 | 1.96 | 23 | 0.6336 | 0.7952 | | 0.6566 | 2.98 | 35 | 0.5356 | 0.7952 | | 0.5686 | 4.0 | 47 | 0.5150 | 0.7952 | | 0.5703 | 4.94 | 58 | 0.5129 | 0.7952 | | 0.5726 | 5.96 | 70 | 0.5154 | 0.7952 | | 0.5482 | 6.98 | 82 | 0.5142 | 0.7952 | | 0.568 | 8.0 | 94 | 0.5109 | 0.7952 | | 0.5245 | 8.94 | 105 | 0.5134 | 0.7952 | | 0.5979 | 9.96 | 117 | 0.5238 | 0.7952 | | 0.5442 | 10.98 | 129 | 0.5076 | 0.7952 | | 0.545 | 12.0 | 141 | 0.5062 | 0.7952 | | 0.5514 | 12.94 | 152 | 0.5013 | 0.7952 | | 0.5377 | 13.96 | 164 | 0.5045 | 0.7952 | | 0.5282 | 14.98 | 176 | 0.5038 | 0.7952 | | 0.5389 | 16.0 | 188 | 0.4994 | 0.7952 | | 0.5039 | 16.94 | 199 | 0.4996 | 0.7952 | | 0.5348 | 17.96 | 211 | 0.4940 | 0.7952 | | 0.5426 | 18.72 | 220 | 0.4947 | 0.7952 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2 - Datasets 2.16.0 - Tokenizers 0.15.0
[ "0", "1", "2" ]
moock/swinv2-tiny-patch4-window8-256-finetuned-gardner-te-max
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swinv2-tiny-patch4-window8-256-finetuned-gardner-te-max This model is a fine-tuned version of [microsoft/swinv2-tiny-patch4-window8-256](https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.8795 - Accuracy: 0.5940 ## Model description Predict Trophectoderm Grade - Gardner Score from an embryo image ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.0943 | 0.94 | 11 | 1.0750 | 0.6325 | | 0.9996 | 1.96 | 23 | 0.8011 | 0.6325 | | 0.7731 | 2.98 | 35 | 0.7182 | 0.6325 | | 0.7564 | 4.0 | 47 | 0.7109 | 0.6325 | | 0.7331 | 4.94 | 58 | 0.7026 | 0.6325 | | 0.7336 | 5.96 | 70 | 0.6848 | 0.6325 | | 0.7305 | 6.98 | 82 | 0.6938 | 0.6325 | | 0.7314 | 8.0 | 94 | 0.6549 | 0.6325 | | 0.6905 | 8.94 | 105 | 0.6364 | 0.6867 | | 0.7315 | 9.96 | 117 | 0.6223 | 0.6687 | | 0.6839 | 10.98 | 129 | 0.6528 | 0.7530 | | 0.6931 | 12.0 | 141 | 0.6209 | 0.7410 | | 0.6705 | 12.94 | 152 | 0.6296 | 0.7169 | | 0.7227 | 13.96 | 164 | 0.6039 | 0.7108 | | 0.6695 | 14.98 | 176 | 0.6049 | 0.7530 | | 0.6981 | 16.0 | 188 | 0.5965 | 0.7048 | | 0.6566 | 16.94 | 199 | 0.6111 | 0.7410 | | 0.6828 | 17.96 | 211 | 0.5969 | 0.7530 | | 0.6632 | 18.72 | 220 | 0.5947 | 0.7530 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2 - Datasets 2.16.0 - Tokenizers 0.15.0
[ "0", "1", "2" ]
hkivancoral/smids_10x_beit_large_adamax_00001_fold3
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # smids_10x_beit_large_adamax_00001_fold3 This model is a fine-tuned version of [microsoft/beit-large-patch16-224](https://huggingface.co/microsoft/beit-large-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.7342 - Accuracy: 0.93 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.1234 | 1.0 | 750 | 0.2380 | 0.9133 | | 0.0658 | 2.0 | 1500 | 0.2732 | 0.9317 | | 0.0204 | 3.0 | 2250 | 0.3498 | 0.9217 | | 0.0213 | 4.0 | 3000 | 0.4104 | 0.925 | | 0.0054 | 5.0 | 3750 | 0.4509 | 0.9317 | | 0.0002 | 6.0 | 4500 | 0.5343 | 0.9233 | | 0.0104 | 7.0 | 5250 | 0.5450 | 0.9267 | | 0.0001 | 8.0 | 6000 | 0.6214 | 0.9217 | | 0.0002 | 9.0 | 6750 | 0.5669 | 0.9333 | | 0.0 | 10.0 | 7500 | 0.5842 | 0.9233 | | 0.0003 | 11.0 | 8250 | 0.5405 | 0.9267 | | 0.0007 | 12.0 | 9000 | 0.6365 | 0.9233 | | 0.0 | 13.0 | 9750 | 0.6437 | 0.9267 | | 0.0006 | 14.0 | 10500 | 0.6868 | 0.92 | | 0.0 | 15.0 | 11250 | 0.6484 | 0.93 | | 0.0 | 16.0 | 12000 | 0.6945 | 0.925 | | 0.0 | 17.0 | 12750 | 0.6473 | 0.925 | | 0.0 | 18.0 | 13500 | 0.7329 | 0.9233 | | 0.0 | 19.0 | 14250 | 0.6697 | 0.9283 | | 0.0 | 20.0 | 15000 | 0.7054 | 0.9317 | | 0.0 | 21.0 | 15750 | 0.7229 | 0.9267 | | 0.0001 | 22.0 | 16500 | 0.6657 | 0.9267 | | 0.0 | 23.0 | 17250 | 0.6845 | 0.925 | | 0.0 | 24.0 | 18000 | 0.7071 | 0.9233 | | 0.0 | 25.0 | 18750 | 0.7119 | 0.9267 | | 0.0 | 26.0 | 19500 | 0.7250 | 0.9283 | | 0.0 | 27.0 | 20250 | 0.7491 | 0.93 | | 0.0 | 28.0 | 21000 | 0.7325 | 0.9267 | | 0.0 | 29.0 | 21750 | 0.7225 | 0.93 | | 0.0 | 30.0 | 22500 | 0.7702 | 0.93 | | 0.0 | 31.0 | 23250 | 0.7702 | 0.93 | | 0.0 | 32.0 | 24000 | 0.7279 | 0.93 | | 0.0 | 33.0 | 24750 | 0.7215 | 0.9283 | | 0.0 | 34.0 | 25500 | 0.7215 | 0.9267 | | 0.0 | 35.0 | 26250 | 0.7456 | 0.9267 | | 0.0 | 36.0 | 27000 | 0.7430 | 0.9267 | | 0.0 | 37.0 | 27750 | 0.7363 | 0.9283 | | 0.0 | 38.0 | 28500 | 0.7489 | 0.93 | | 0.0 | 39.0 | 29250 | 0.7854 | 0.9267 | | 0.0 | 40.0 | 30000 | 0.7378 | 0.9283 | | 0.0 | 41.0 | 30750 | 0.7334 | 0.93 | | 0.0 | 42.0 | 31500 | 0.7235 | 0.9333 | | 0.0 | 43.0 | 32250 | 0.7203 | 0.93 | | 0.0 | 44.0 | 33000 | 0.7319 | 0.9267 | | 0.0 | 45.0 | 33750 | 0.7326 | 0.93 | | 0.0 | 46.0 | 34500 | 0.7443 | 0.93 | | 0.0 | 47.0 | 35250 | 0.7511 | 0.93 | | 0.0 | 48.0 | 36000 | 0.7575 | 0.93 | | 0.0 | 49.0 | 36750 | 0.7357 | 0.93 | | 0.0 | 50.0 | 37500 | 0.7342 | 0.93 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.0+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2
[ "abnormal_sperm", "non-sperm", "normal_sperm" ]
kjlkjl/vit-base-patch16-224-in21k
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-patch16-224-in21k This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 2.0500 - Accuracy: 0.2143 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 1 | 2.0641 | 0.1429 | | No log | 2.0 | 2 | 2.0558 | 0.2857 | | No log | 3.0 | 3 | 2.0500 | 0.2143 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.2+cu121 - Datasets 2.16.0 - Tokenizers 0.15.0
[ "disability", "healthy", "osteochondrosis", "osteoporosis", "other", "scoliosis", "spondylolisthesis", "vertebral_compression_fracture" ]
kjlkjl/swin-tiny-patch4-window7-224
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224 This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 2.1087 - Accuracy: 0.1429 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 1 | 2.1404 | 0.0714 | | No log | 2.0 | 2 | 2.1244 | 0.1429 | | No log | 3.0 | 3 | 2.1087 | 0.1429 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.2+cu121 - Datasets 2.16.0 - Tokenizers 0.15.0
[ "disability", "healthy", "osteochondrosis", "osteoporosis", "other", "scoliosis", "spondylolisthesis", "vertebral_compression_fracture" ]
Muinez/artwork-scorer
Trained on 120,000 images collected from Pixiv rankings, the score is the normalized ratio of likes to views This model is a fine-tuned version of [facebook/convnextv2-base-22k-384](https://huggingface.co/facebook/convnextv2-base-22k-384)
[ "score", "views", "date" ]
bookworm88/vit224-2
Usage:<br> &nbsp;&nbsp;Image classification<br> Project:<br> &nbsp;&nbsp;Cover quilt<br> Labels:<br> &nbsp;&nbsp;11covered_with_a_quilt_and_only_the_head_exposed<br> &nbsp;&nbsp;12covered_with_a_quilt_and_exposed_other_parts_of_the_body<br> <br> Indicators:<br> &nbsp;&nbsp;Accuracy: 0.9591836734693877<br> &nbsp;&nbsp;Precision: 0.9545454545454546<br> &nbsp;&nbsp;Recall: 0.9655172413793103<br> &nbsp;&nbsp;F1 Score: 0.9583333333333333<br>
[ "11covered_with_a_quilt_and_only_the_head_exposed", "12covered_with_a_quilt_and_exposed_other_parts_of_the_body" ]
enverkulahli/my_awesome_catSound_model
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_catSound_model This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.9396 - Accuracy: 0.7653 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.4061 | 0.99 | 74 | 1.3136 | 0.6770 | | 1.0114 | 2.0 | 149 | 1.0185 | 0.7393 | | 0.8646 | 2.98 | 222 | 0.9396 | 0.7653 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.0 - Tokenizers 0.15.0
[ "angry", "defence", "fighting", "happy", "huntingmind", "mating", "mothercall", "paining", "resting", "warning" ]
TrieuNguyen/chest_xray_pneumonia
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # chest_xray_pneumonia This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2508 - Accuracy: 0.9151 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.1091 | 0.99 | 81 | 0.2422 | 0.9119 | | 0.1085 | 2.0 | 163 | 0.2777 | 0.9167 | | 0.1131 | 2.99 | 244 | 0.1875 | 0.9407 | | 0.1129 | 4.0 | 326 | 0.2339 | 0.9183 | | 0.0698 | 4.99 | 407 | 0.2581 | 0.9263 | | 0.0904 | 6.0 | 489 | 0.2544 | 0.9167 | | 0.0851 | 6.99 | 570 | 0.2023 | 0.9407 | | 0.0833 | 8.0 | 652 | 0.2047 | 0.9327 | | 0.0604 | 8.99 | 733 | 0.2738 | 0.9199 | | 0.0671 | 9.94 | 810 | 0.2508 | 0.9151 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.0 - Tokenizers 0.15.0
[ "normal", "pneumonia" ]
yuanhuaisen/autotrain-khvt4-4vmox
# Model Trained Using AutoTrain - Problem type: Image Classification ## Validation Metricsg loss: 0.18480469286441803 f1: 0.962962962962963 precision: 1.0 recall: 0.9285714285714286 auc: 1.0 accuracy: 0.96
[ "11train_covered_with_a_quilt_and_only_the_head_exposed", "12train_covered_with_a_quilt_and_exposed_other_parts_of_the_body" ]
Optikan/V4_Image_classification__points_durs__google_vit-base-patch16-224-in21k
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # V4_Image_classification__points_durs__google_vit-base-patch16-224-in21k This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2221 - Accuracy: 0.9560 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6743 | 1.0 | 13 | 0.6315 | 0.7566 | | 0.6051 | 2.0 | 26 | 0.4384 | 0.9150 | | 0.4588 | 3.0 | 39 | 0.2402 | 0.9326 | | 0.1818 | 4.0 | 52 | 0.1702 | 0.9384 | | 0.1102 | 5.0 | 65 | 0.1409 | 0.9413 | | 0.0733 | 6.0 | 78 | 0.1516 | 0.9501 | | 0.0423 | 7.0 | 91 | 0.1613 | 0.9560 | | 0.0286 | 8.0 | 104 | 0.1843 | 0.9501 | | 0.0192 | 9.0 | 117 | 0.1672 | 0.9560 | | 0.0159 | 10.0 | 130 | 0.1703 | 0.9589 | | 0.0173 | 11.0 | 143 | 0.1729 | 0.9560 | | 0.0143 | 12.0 | 156 | 0.1786 | 0.9560 | | 0.0105 | 13.0 | 169 | 0.1821 | 0.9560 | | 0.0091 | 14.0 | 182 | 0.1827 | 0.9589 | | 0.0096 | 15.0 | 195 | 0.1859 | 0.9560 | | 0.0081 | 16.0 | 208 | 0.1989 | 0.9560 | | 0.0075 | 17.0 | 221 | 0.2012 | 0.9560 | | 0.0347 | 18.0 | 234 | 0.2507 | 0.9384 | | 0.0232 | 19.0 | 247 | 0.2271 | 0.9413 | | 0.0065 | 20.0 | 260 | 0.1950 | 0.9589 | | 0.0102 | 21.0 | 273 | 0.2378 | 0.9472 | | 0.0064 | 22.0 | 286 | 0.2265 | 0.9501 | | 0.0058 | 23.0 | 299 | 0.2033 | 0.9560 | | 0.0055 | 24.0 | 312 | 0.2402 | 0.9501 | | 0.005 | 25.0 | 325 | 0.2500 | 0.9443 | | 0.0054 | 26.0 | 338 | 0.2450 | 0.9472 | | 0.0048 | 27.0 | 351 | 0.2431 | 0.9501 | | 0.0047 | 28.0 | 364 | 0.2439 | 0.9472 | | 0.0046 | 29.0 | 377 | 0.2445 | 0.9472 | | 0.0044 | 30.0 | 390 | 0.2434 | 0.9472 | | 0.0042 | 31.0 | 403 | 0.2441 | 0.9472 | | 0.0042 | 32.0 | 416 | 0.2426 | 0.9472 | | 0.0042 | 33.0 | 429 | 0.2414 | 0.9472 | | 0.004 | 34.0 | 442 | 0.2383 | 0.9472 | | 0.004 | 35.0 | 455 | 0.2349 | 0.9472 | | 0.0039 | 36.0 | 468 | 0.2340 | 0.9472 | | 0.0038 | 37.0 | 481 | 0.2325 | 0.9472 | | 0.0037 | 38.0 | 494 | 0.2311 | 0.9501 | | 0.0038 | 39.0 | 507 | 0.2280 | 0.9501 | | 0.0037 | 40.0 | 520 | 0.2263 | 0.9531 | | 0.0036 | 41.0 | 533 | 0.2248 | 0.9531 | | 0.0036 | 42.0 | 546 | 0.2242 | 0.9531 | | 0.0036 | 43.0 | 559 | 0.2236 | 0.9531 | | 0.0035 | 44.0 | 572 | 0.2231 | 0.9560 | | 0.0035 | 45.0 | 585 | 0.2224 | 0.9560 | | 0.0035 | 46.0 | 598 | 0.2223 | 0.9560 | | 0.0035 | 47.0 | 611 | 0.2220 | 0.9560 | | 0.0035 | 48.0 | 624 | 0.2221 | 0.9560 | | 0.0034 | 49.0 | 637 | 0.2221 | 0.9560 | | 0.0035 | 50.0 | 650 | 0.2221 | 0.9560 | ### Framework versions - Transformers 4.30.0 - Pytorch 2.1.1 - Datasets 2.15.0 - Tokenizers 0.13.3
[ "hard_points", "no_hard_points" ]
yuanhuaisen/autotrain-koz62-88avl
# Model Trained Using AutoTrain - Problem type: Image Classification ## Validation Metricsg loss: 0.5237402319908142 f1: 0.9333333333333333 precision: 0.875 recall: 1.0 auc: 0.9805194805194805 accuracy: 0.92
[ "11covered_with_a_quilt_and_only_the_head_exposed", "12covered_with_a_quilt_and_exposed_other_parts_of_the_body" ]
kg59/vit-base-patch16-224-finetuned-cedar
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-patch16-224-finetuned-cedar This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.4667 - Accuracy: 0.7883 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.5419 | 1.0 | 54 | 0.5085 | 0.7657 | | 0.4541 | 2.0 | 108 | 0.4667 | 0.7883 | | 0.3847 | 3.0 | 162 | 0.5603 | 0.7320 | | 0.3669 | 4.0 | 216 | 0.4869 | 0.7749 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.0 - Tokenizers 0.15.0
[ "full_forg", "full_org" ]
99spokes/autotrain-xanso-s7ois
# Model Trained Using AutoTrain - Problem type: Image Classification ## Validation Metricsg loss: 1.8660757541656494 f1_macro: 0.08333333333333334 f1_micro: 0.2923076923076923 f1_weighted: 0.14923076923076925 precision_macro: 0.0890937019969278 precision_micro: 0.2923076923076923 precision_weighted: 0.14193548387096774 recall_macro: 0.15476190476190474 recall_micro: 0.2923076923076923 recall_weighted: 0.2923076923076923 accuracy: 0.2923076923076923
[ "action", "frameset", "geometry", "other", "placeholder", "studio-other", "studio-side" ]
99spokes/autotrain-vit
# Model Trained Using AutoTrain - Problem type: Image Classification ## Validation Metricsg loss: nan f1_macro: 0.020408163265306124 f1_micro: 0.07692307692307693 f1_weighted: 0.010989010989010992 precision_macro: 0.01098901098901099 precision_micro: 0.07692307692307693 precision_weighted: 0.00591715976331361 recall_macro: 0.14285714285714285 recall_micro: 0.07692307692307693 recall_weighted: 0.07692307692307693 accuracy: 0.07692307692307693
[ "action", "frameset", "geometry", "other", "placeholder", "studio-other", "studio-side" ]
kjlkjl/resnet-50
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # resnet-50 This model is a fine-tuned version of [microsoft/resnet-50](https://huggingface.co/microsoft/resnet-50) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.0320 - Accuracy: 0.5186 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.3301 | 1.0 | 32 | 1.3377 | 0.3477 | | 1.2001 | 2.0 | 64 | 1.2172 | 0.4414 | | 1.1188 | 3.0 | 96 | 1.1265 | 0.5010 | | 1.0655 | 4.0 | 128 | 1.1025 | 0.5010 | | 1.0437 | 5.0 | 160 | 1.0753 | 0.5010 | | 1.0374 | 6.0 | 192 | 1.0629 | 0.5029 | | 1.0181 | 7.0 | 224 | 1.0452 | 0.5137 | | 1.0011 | 8.0 | 256 | 1.0381 | 0.5127 | | 1.0074 | 9.0 | 288 | 1.0268 | 0.5098 | | 0.9977 | 10.0 | 320 | 1.0320 | 0.5186 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.2+cu121 - Datasets 2.16.0 - Tokenizers 0.15.0
[ "mild_demented", "moderate_demented", "non_demented", "very_mild_demented" ]
hkivancoral/smids_10x_beit_large_adamax_00001_fold4
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # smids_10x_beit_large_adamax_00001_fold4 This model is a fine-tuned version of [microsoft/beit-large-patch16-224](https://huggingface.co/microsoft/beit-large-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.1774 - Accuracy: 0.8933 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.174 | 1.0 | 750 | 0.3318 | 0.8817 | | 0.0694 | 2.0 | 1500 | 0.3979 | 0.8833 | | 0.0385 | 3.0 | 2250 | 0.6069 | 0.8817 | | 0.0028 | 4.0 | 3000 | 0.7041 | 0.8767 | | 0.0151 | 5.0 | 3750 | 0.8263 | 0.8783 | | 0.017 | 6.0 | 4500 | 0.8468 | 0.8917 | | 0.0004 | 7.0 | 5250 | 0.9156 | 0.8817 | | 0.0149 | 8.0 | 6000 | 0.9947 | 0.8883 | | 0.0019 | 9.0 | 6750 | 0.9986 | 0.8833 | | 0.0 | 10.0 | 7500 | 1.0174 | 0.89 | | 0.0002 | 11.0 | 8250 | 1.0347 | 0.8983 | | 0.0006 | 12.0 | 9000 | 1.1212 | 0.8883 | | 0.0007 | 13.0 | 9750 | 1.1145 | 0.9 | | 0.002 | 14.0 | 10500 | 1.1511 | 0.895 | | 0.0113 | 15.0 | 11250 | 1.1891 | 0.8833 | | 0.0193 | 16.0 | 12000 | 1.1467 | 0.8833 | | 0.0 | 17.0 | 12750 | 1.2067 | 0.8833 | | 0.0 | 18.0 | 13500 | 1.1030 | 0.8917 | | 0.0 | 19.0 | 14250 | 1.2269 | 0.8817 | | 0.0 | 20.0 | 15000 | 1.2142 | 0.8983 | | 0.0 | 21.0 | 15750 | 1.2333 | 0.8833 | | 0.0 | 22.0 | 16500 | 1.2215 | 0.89 | | 0.0 | 23.0 | 17250 | 1.1755 | 0.88 | | 0.0001 | 24.0 | 18000 | 1.2025 | 0.89 | | 0.0 | 25.0 | 18750 | 1.1234 | 0.8967 | | 0.0 | 26.0 | 19500 | 1.1299 | 0.8933 | | 0.0 | 27.0 | 20250 | 1.1278 | 0.8933 | | 0.0 | 28.0 | 21000 | 1.1853 | 0.89 | | 0.0 | 29.0 | 21750 | 1.1366 | 0.8967 | | 0.0 | 30.0 | 22500 | 1.2109 | 0.8817 | | 0.0 | 31.0 | 23250 | 1.2247 | 0.88 | | 0.0124 | 32.0 | 24000 | 1.2057 | 0.885 | | 0.0 | 33.0 | 24750 | 1.2082 | 0.8933 | | 0.0 | 34.0 | 25500 | 1.1875 | 0.8933 | | 0.0 | 35.0 | 26250 | 1.1823 | 0.8983 | | 0.0 | 36.0 | 27000 | 1.1794 | 0.8883 | | 0.0 | 37.0 | 27750 | 1.1760 | 0.8917 | | 0.0 | 38.0 | 28500 | 1.1363 | 0.895 | | 0.0 | 39.0 | 29250 | 1.1574 | 0.895 | | 0.0 | 40.0 | 30000 | 1.1725 | 0.8933 | | 0.0 | 41.0 | 30750 | 1.1844 | 0.8867 | | 0.0 | 42.0 | 31500 | 1.1542 | 0.8933 | | 0.0 | 43.0 | 32250 | 1.1472 | 0.895 | | 0.0 | 44.0 | 33000 | 1.1640 | 0.8917 | | 0.0 | 45.0 | 33750 | 1.1642 | 0.89 | | 0.0 | 46.0 | 34500 | 1.1680 | 0.8933 | | 0.0 | 47.0 | 35250 | 1.1880 | 0.895 | | 0.0 | 48.0 | 36000 | 1.1744 | 0.8933 | | 0.0 | 49.0 | 36750 | 1.1763 | 0.8933 | | 0.0008 | 50.0 | 37500 | 1.1774 | 0.8933 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.0+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2
[ "abnormal_sperm", "non-sperm", "normal_sperm" ]
hkivancoral/smids_10x_beit_large_adamax_00001_fold5
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # smids_10x_beit_large_adamax_00001_fold5 This model is a fine-tuned version of [microsoft/beit-large-patch16-224](https://huggingface.co/microsoft/beit-large-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.8705 - Accuracy: 0.9183 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.151 | 1.0 | 750 | 0.2341 | 0.9117 | | 0.085 | 2.0 | 1500 | 0.2729 | 0.9117 | | 0.0389 | 3.0 | 2250 | 0.3555 | 0.9183 | | 0.0354 | 4.0 | 3000 | 0.4728 | 0.92 | | 0.0161 | 5.0 | 3750 | 0.5494 | 0.9117 | | 0.0006 | 6.0 | 4500 | 0.5920 | 0.9167 | | 0.0191 | 7.0 | 5250 | 0.7177 | 0.9083 | | 0.0025 | 8.0 | 6000 | 0.7193 | 0.9183 | | 0.0296 | 9.0 | 6750 | 0.7219 | 0.9183 | | 0.0071 | 10.0 | 7500 | 0.7346 | 0.9067 | | 0.0001 | 11.0 | 8250 | 0.8516 | 0.9133 | | 0.0012 | 12.0 | 9000 | 0.7790 | 0.9217 | | 0.0009 | 13.0 | 9750 | 0.7769 | 0.9117 | | 0.0 | 14.0 | 10500 | 0.8050 | 0.92 | | 0.0 | 15.0 | 11250 | 0.7869 | 0.9167 | | 0.0001 | 16.0 | 12000 | 0.8102 | 0.9133 | | 0.0588 | 17.0 | 12750 | 0.7913 | 0.9183 | | 0.0 | 18.0 | 13500 | 0.9080 | 0.9117 | | 0.0 | 19.0 | 14250 | 0.7883 | 0.915 | | 0.0 | 20.0 | 15000 | 0.8588 | 0.9183 | | 0.0001 | 21.0 | 15750 | 0.8772 | 0.9167 | | 0.0001 | 22.0 | 16500 | 0.8747 | 0.9133 | | 0.0001 | 23.0 | 17250 | 0.7911 | 0.9217 | | 0.0 | 24.0 | 18000 | 0.7828 | 0.9217 | | 0.0 | 25.0 | 18750 | 0.7802 | 0.9233 | | 0.0 | 26.0 | 19500 | 0.8237 | 0.92 | | 0.0 | 27.0 | 20250 | 0.8003 | 0.9217 | | 0.0 | 28.0 | 21000 | 0.8936 | 0.9133 | | 0.0009 | 29.0 | 21750 | 0.8831 | 0.915 | | 0.0181 | 30.0 | 22500 | 0.8036 | 0.9217 | | 0.0 | 31.0 | 23250 | 0.7557 | 0.9267 | | 0.0 | 32.0 | 24000 | 0.8859 | 0.92 | | 0.0 | 33.0 | 24750 | 0.8754 | 0.92 | | 0.0001 | 34.0 | 25500 | 0.8554 | 0.9117 | | 0.0 | 35.0 | 26250 | 0.8615 | 0.9167 | | 0.0 | 36.0 | 27000 | 0.8299 | 0.9217 | | 0.0035 | 37.0 | 27750 | 0.8816 | 0.9167 | | 0.0 | 38.0 | 28500 | 0.8681 | 0.9233 | | 0.0 | 39.0 | 29250 | 0.8281 | 0.92 | | 0.0 | 40.0 | 30000 | 0.8247 | 0.9183 | | 0.0008 | 41.0 | 30750 | 0.8595 | 0.9183 | | 0.0 | 42.0 | 31500 | 0.8563 | 0.92 | | 0.0038 | 43.0 | 32250 | 0.8322 | 0.925 | | 0.0 | 44.0 | 33000 | 0.8334 | 0.9183 | | 0.0 | 45.0 | 33750 | 0.8475 | 0.9183 | | 0.0 | 46.0 | 34500 | 0.8657 | 0.92 | | 0.0 | 47.0 | 35250 | 0.8614 | 0.9183 | | 0.0 | 48.0 | 36000 | 0.8662 | 0.92 | | 0.0 | 49.0 | 36750 | 0.8708 | 0.9183 | | 0.0 | 50.0 | 37500 | 0.8705 | 0.9183 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.0+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2
[ "abnormal_sperm", "non-sperm", "normal_sperm" ]
BhavanaMalla/image_classification_food101VITmodel
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # image_classification_food101VITmodel This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.5424 - Accuracy: 0.7 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 4.2504 | 0.96 | 12 | 3.4853 | 0.695 | | 3.1914 | 2.0 | 25 | 2.7080 | 0.695 | | 2.6501 | 2.88 | 36 | 2.5424 | 0.7 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.0 - Tokenizers 0.15.0
[ "apple_pie", "baby_back_ribs", "bruschetta", "waffles", "caesar_salad", "cannoli", "caprese_salad", "carrot_cake", "ceviche", "cheesecake", "cheese_plate", "chicken_curry", "chicken_quesadilla", "baklava", "chicken_wings", "chocolate_cake", "chocolate_mousse", "churros", "clam_chowder", "club_sandwich", "crab_cakes", "creme_brulee", "croque_madame", "cup_cakes", "beef_carpaccio", "deviled_eggs", "donuts", "dumplings", "edamame", "eggs_benedict", "escargots", "falafel", "filet_mignon", "fish_and_chips", "foie_gras", "beef_tartare", "french_fries", "french_onion_soup", "french_toast", "fried_calamari", "fried_rice", "frozen_yogurt", "garlic_bread", "gnocchi", "greek_salad", "grilled_cheese_sandwich", "beet_salad", "grilled_salmon", "guacamole", "gyoza", "hamburger", "hot_and_sour_soup", "hot_dog", "huevos_rancheros", "hummus", "ice_cream", "lasagna", "beignets", "lobster_bisque", "lobster_roll_sandwich", "macaroni_and_cheese", "macarons", "miso_soup", "mussels", "nachos", "omelette", "onion_rings", "oysters", "bibimbap", "pad_thai", "paella", "pancakes", "panna_cotta", "peking_duck", "pho", "pizza", "pork_chop", "poutine", "prime_rib", "bread_pudding", "pulled_pork_sandwich", "ramen", "ravioli", "red_velvet_cake", "risotto", "samosa", "sashimi", "scallops", "seaweed_salad", "shrimp_and_grits", "breakfast_burrito", "spaghetti_bolognese", "spaghetti_carbonara", "spring_rolls", "steak", "strawberry_shortcake", "sushi", "tacos", "takoyaki", "tiramisu", "tuna_tartare" ]
yuanhuaisen/autotrain-sfnkd-pexdp
# Model Trained Using AutoTrain - Problem type: Image Classification ## Validation Metricsg loss: 0.5256543159484863 f1: 0.9285714285714286 precision: 0.9285714285714286 recall: 0.9285714285714286 auc: 0.9805194805194806 accuracy: 0.92
[ "11covered_with_a_quilt_and_only_the_head_exposed", "12covered_with_a_quilt_and_exposed_other_parts_of_the_body" ]
99spokes/bike-image-classifier-autotrain-resnet
# Model Trained Using AutoTrain - Problem type: Image Classification ## Validation Metricsg loss: nan f1_macro: 0.029761904761904757 f1_micro: 0.09803921568627451 f1_weighted: 0.01750700280112045 precision_macro: 0.016339869281045753 precision_micro: 0.09803921568627451 precision_weighted: 0.009611687812379853 recall_macro: 0.16666666666666666 recall_micro: 0.09803921568627451 recall_weighted: 0.09803921568627451 accuracy: 0.09803921568627451
[ "action", "frameset", "geometry", "placeholder", "studio-other", "studio-side" ]
99spokes/autotrain-uzhlw-t4qte
# Model Trained Using AutoTrain - Problem type: Image Classification ## Validation Metricsg loss: nan f1_macro: 0.029761904761904757 f1_micro: 0.09803921568627451 f1_weighted: 0.01750700280112045 precision_macro: 0.016339869281045753 precision_micro: 0.09803921568627451 precision_weighted: 0.009611687812379853 recall_macro: 0.16666666666666666 recall_micro: 0.09803921568627451 recall_weighted: 0.09803921568627451 accuracy: 0.09803921568627451
[ "action", "frameset", "geometry", "placeholder", "studio-other", "studio-side" ]
rsadaphule/vit-base-patch16-224-finetuned-flower
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-patch16-224-finetuned-flower This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the imagefolder dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results ### Framework versions - Transformers 4.24.0 - Pytorch 2.1.0+cu121 - Datasets 2.7.1 - Tokenizers 0.13.3
[ "daisy", "dandelion", "roses", "sunflowers", "tulips" ]
yuanhuaisen/autotrain-vz7yn-mlwzp
# Model Trained Using AutoTrain - Problem type: Image Classification ## Validation Metricsg loss: 0.5804179310798645 f1: 0.8275862068965518 precision: 0.8 recall: 0.8571428571428571 auc: 0.9365079365079365 accuracy: 0.782608695652174
[ "11covered_with_a_quilt,_only_the_head_and_shoulders_exposed", "12covered_with_a_quilt,_exposed_head_and_shoulders_except_for_other_organs" ]
dima806/movie_identification_by_frame
Calculates (with about 50% accuracy) the probability that a given image is a screenshot from a movie (currently 804 movies). See https://www.kaggle.com/code/dima806/movie-identification-by-frame-vit for details. ``` Accuracy: 0.4962 F1 Score: 0.4704 Classification report: precision recall f1-score support 10 Things I Hate About You (1999) 0.4675 0.4489 0.4580 401 12 Monkeys (1995) 0.5800 0.3625 0.4462 400 12 Years a Slave (2013) 0.6916 0.5761 0.6286 401 127 Hours (2010) 0.7647 0.1950 0.3108 400 13 Hours The Secret Soldiers Of Benghazi (2016) 0.4322 0.6758 0.5272 401 1917 (2019) 0.4668 0.7550 0.5769 400 21 Grams (2003) 0.5523 0.6185 0.5835 401 25th Hour (2002) 0.4489 0.5375 0.4892 400 300 (2006) 0.6368 0.9401 0.7593 401 310 to Yuma (2007) 0.6020 0.7600 0.6718 400 500 Days Of Summer (2009) 0.5332 0.6608 0.5902 401 A Beautiful Mind (2001) 0.3358 0.1125 0.1685 400 A Bronx Tale (1993) 0.4377 0.3242 0.3725 401 A Bugs Life (1998) 0.6303 0.7481 0.6842 401 A Few Good Men (1992) 0.4194 0.7531 0.5388 401 A Fish Called Wanda (1988) 0.4833 0.5062 0.4945 401 A Good Person (2023) 0.4541 0.2344 0.3092 401 A History of Violence (2005) 0.3919 0.7525 0.5154 400 A League of Their Own (1992) 0.4160 0.6608 0.5106 401 A Man Called Otto (2022) 0.4394 0.8250 0.5734 400 A Scanner Darkly (2006) 0.6934 0.9476 0.8008 401 A Serious Man (2009) 0.4785 0.6658 0.5568 401 A Single Man (2009) 0.5440 0.6950 0.6103 400 A Star Is Born (2018) 0.5349 0.3450 0.4195 400 A Time To Kill (1996) 0.2938 0.4525 0.3563 400 A Walk to Remember (2002) 0.6078 0.3875 0.4733 400 About Schmidt (2002) 0.3822 0.3317 0.3551 401 About Time (2013) 0.7922 0.3050 0.4404 400 About a Boy (2002) 0.4556 0.5636 0.5039 401 Across the Universe (2007) 0.5882 0.1750 0.2697 400 Adaptation (2002) 0.4970 0.2100 0.2953 400 Air (2023) 0.5606 0.6808 0.6149 401 Aladdin (1992) 0.7545 0.9501 0.8411 401 Aliens Special Edition (1986) 0.5860 0.3150 0.4098 400 Allied (2016) 0.4563 0.1175 0.1869 400 Almost Famous EXTENDED (2000) 0.4524 0.1900 0.2676 400 American Beauty (1999) 0.5031 0.1995 0.2857 401 American Gangster (2007) 0.4225 0.5925 0.4932 400 American History X (1998) 0.5837 0.3575 0.4434 400 American Hustle (2013) 0.3896 0.5250 0.4473 400 American Sniper (2014) 0.5473 0.4775 0.5100 400 An Education (2009) 0.5523 0.7650 0.6415 400 Anastasia (1997) 0.5950 0.6575 0.6247 400 Anchorman The Legend Of Ron Burgundy (2004) 0.6169 0.4539 0.5230 401 Apocalypto (2006) 0.6258 0.7650 0.6884 400 Apollo 13 (1995) 0.4957 0.4289 0.4599 401 Argo (2012) 0.6806 0.3242 0.4392 401 Army of Darkness (1992) 0.4411 0.5137 0.4747 401 As Good as It Gets (1997) 0.5657 0.6350 0.5984 400 Atonement (2007) 0.5414 0.1796 0.2697 401 August Rush (2007) 0.4650 0.2825 0.3515 400 Austin Powers - International Man of Mystery (1997) 0.4349 0.5425 0.4828 400 Avatar (2009) 0.4305 0.5561 0.4853 401 Avatar The Way Of Water (2022) 0.3958 0.7925 0.5279 400 Awakenings (1990) 0.4224 0.7332 0.5360 401 Babel (2006) 0.8529 0.9975 0.9195 401 Baby Driver (2017) 0.4347 0.4825 0.4573 400 Babylon (2022) 0.4830 0.3550 0.4092 400 Back to the Future II (1989) 0.4207 0.3650 0.3909 400 Back to the Future III (1990) 0.4579 0.5575 0.5028 400 Bad Times At The El Royale (2018) 0.4291 0.2718 0.3328 401 Barbie (2023) 0.5725 0.7300 0.6418 400 Basic Instinct (1992) 0.6657 0.5525 0.6038 400 Batman (1989) 0.4143 0.4050 0.4096 400 Batman Begins (2005) 0.4061 0.2643 0.3202 401 Batman Returns (1992) 0.3465 0.1975 0.2516 400 Beauty And The Beast (2017) 0.3610 0.5875 0.4472 400 Beauty and the Beast (1991) 0.6111 0.7132 0.6582 401 Before Midnight (2013) 0.3444 0.8850 0.4958 400 Before Sunrise (1995) 0.5096 0.7930 0.6205 401 Before Sunset (2004) 0.5900 0.9100 0.7158 400 Before The Devil Knows Youre Dead (2007) 0.6827 0.7100 0.6961 400 Begin Again (2013) 0.6944 0.7100 0.7021 400 Being John Malkovich (1999) 0.5675 0.5137 0.5393 401 Ben-Hur (1959) 0.5110 0.8653 0.6426 401 Beveryly Hills Cop (1984) 0.6194 0.2075 0.3109 400 Big (1988) 0.4834 0.4000 0.4378 400 Big Fish (2003) 0.7500 0.0225 0.0437 400 Billy Elliot (2000) 0.4154 0.2700 0.3273 400 Birdman (2014) 0.6000 0.4938 0.5417 401 Black Hawk Down (2001) 0.5740 0.7950 0.6667 400 Black Mirror Bandersnatch (2018) 0.7234 0.1696 0.2747 401 Black Panther (2018) 0.3932 0.1150 0.1779 400 Blade (1998) 0.5460 0.6808 0.6060 401 Blade Runner 2049 (2017) 0.4245 0.3375 0.3760 400 Blow (2001) 0.5455 0.0300 0.0569 400 Blue Jasmine (2013) 0.5518 0.9027 0.6850 401 Blue Valentine (2010) 0.5621 0.4300 0.4873 400 Bohemian Rhapsody (2018) 0.4554 0.1147 0.1833 401 Boogie Nights (1997) 0.4167 0.1621 0.2334 401 Booksmart (2019) 0.3597 0.6600 0.4656 400 Bowling For Columbine (2002) 0.5402 0.3017 0.3872 401 Boyhood (2014) 0.6552 0.0475 0.0886 400 Boys Dont Cry (1999) 0.4224 0.3400 0.3767 400 Boyz n The Hood (1991) 0.5281 0.3525 0.4228 400 Braveheart (1995) 0.5973 0.7750 0.6746 400 Brick (2005) 0.4208 0.5975 0.4938 400 Bridge Of Spies (2015) 0.5356 0.6384 0.5825 401 Bridge to Terabithia (2007) 0.6087 0.6633 0.6348 401 Brokeback Mountain (2005) 0.4667 0.1397 0.2150 401 Broken Flowers (2005) 0.3615 0.4589 0.4044 401 Bronson (2008) 0.6792 0.7250 0.7013 400 Brooklyn (2015) 0.5604 0.5087 0.5333 401 Brothers (2009) 0.4767 0.6150 0.5371 400 Buried (2010) 0.9056 0.5262 0.6656 401 Burn After Reading (2008) 0.5084 0.6060 0.5529 401 CODA (2021) 0.4135 0.7525 0.5337 400 Call Me By Your Name (2017) 0.7761 0.3900 0.5191 400 Cape Fear (1991) 0.3873 0.3350 0.3592 400 Captain America Civil War (2016) 0.2727 0.1272 0.1735 401 Captain Fantastic (2016) 0.7941 0.1347 0.2303 401 Captain Phillips (2013) 0.4706 0.0399 0.0736 401 Carnage (2011) 0.4212 0.9800 0.5892 401 Carol (2015) 0.5092 0.4825 0.4955 400 Cars (2006) 0.6806 0.6500 0.6650 400 Casino (1995) 0.4848 0.3192 0.3850 401 Cast Away (2000) 0.4423 0.0575 0.1018 400 Catch Me If You Can (2002) 0.7660 0.2693 0.3985 401 Changeling (2008) 0.6246 0.9900 0.7660 400 Charlie Wilsons War (2007) 0.5405 0.4000 0.4598 400 Charlie and the Chocolate Factory (2005) 0.6007 0.4325 0.5029 400 Chasing Amy (1997) 0.4301 0.5910 0.4979 401 Chef (2014) 0.3592 0.7157 0.4783 401 Chicago (2002) 0.4568 0.1850 0.2633 400 Chicken Run (2000) 0.5065 0.7800 0.6142 400 Children of Men (2006) 0.6284 0.6300 0.6292 400 Chocolat (2000) 0.4712 0.6125 0.5326 400 Chronicle (2012) 0.6849 0.2500 0.3663 400 Cinderella Man (2005) 0.6649 0.6334 0.6488 401 Clerks 2 (2006) 0.6344 0.7375 0.6821 400 Closer (2004) 0.7283 0.1671 0.2718 401 Cloud Atlas (2012) 0.5375 0.3392 0.4159 401 Cloverfield (2008) 0.0633 0.2125 0.0975 400 Coach Carter (2005) 0.5401 0.3700 0.4392 400 Coherence (2013) 0.7790 0.8878 0.8298 401 Cold Moutians (2003) 0.6169 0.2369 0.3423 401 Collateral (2004) 0.4896 0.5875 0.5341 400 Constantine (2005) 0.5385 0.1400 0.2222 400 Contact (1997) 0.4515 0.3017 0.3617 401 Cop Land (1997) 0.5867 0.3975 0.4739 400 Coraline (2009) 0.4883 0.5200 0.5036 400 Corpse Bride (2005) 0.4240 0.8279 0.5608 401 Crash (2004) 1.0000 0.0150 0.0296 400 Creed (2015) 0.4984 0.3800 0.4312 400 Creed II (2018) 0.4828 0.1746 0.2564 401 Crimson Tide (1995) 0.2789 0.6825 0.3959 400 Cruella (2021) 0.7612 0.3825 0.5092 400 Cube (1997) 0.6314 0.7750 0.6958 400 Dancer In The Dark (2000) 0.8243 0.9476 0.8817 401 Dances with Wolves (1990) 0.3623 0.4165 0.3875 401 Dark City (1998) 0.4119 0.4663 0.4374 401 Darkest Hour (2017) 0.5393 0.8575 0.6622 400 Dawn of the Dead (2004) 0.5874 0.4200 0.4898 400 Dawn of the Planet of the Apes (2014) 0.6397 0.2170 0.3240 401 Dazed and Confused (1993) 0.3855 0.4239 0.4038 401 Dead Man (1995) 0.6473 0.7506 0.6952 401 Death At A Funeral (2007) 0.6453 0.9050 0.7534 400 Death Proof (2007) 0.5085 0.3741 0.4310 401 Definitely Maybe (2008) 0.6334 0.7300 0.6783 400 Deja Vu (2006) 0.4304 0.6858 0.5288 401 Demolition (2015) 0.6358 0.4963 0.5574 401 Desperado (1995) 0.4580 0.5037 0.4798 401 Despicable Me (2010) 0.4851 0.6100 0.5404 400 Die Hard 2 (1990) 0.3333 0.5775 0.4227 400 Die Hard 3 (1995) 0.3422 0.1925 0.2464 400 Die Hard 4 (2007) 0.4777 0.5900 0.5280 400 Dirty Harry (1971) 0.5743 0.1446 0.2311 401 Doctor Strange (2016) 0.2684 0.1272 0.1726 401 Doctor Strange In The Multiverse Of Madness (2022) 0.4114 0.1621 0.2326 401 Dogma (1999) 0.3211 0.6575 0.4315 400 Dogville (2003) 0.6399 0.9375 0.7606 400 Donnie Brasco (1997) 0.4615 0.0150 0.0290 401 Donnie Darko DIRECTORS CUT (2001) 0.5274 0.4564 0.4893 401 Dont Look Up (2021) 0.3617 0.2125 0.2677 400 Doubt (2008) 0.5845 0.8300 0.6860 400 Dr. No (1962) 0.4274 0.6250 0.5076 400 Dr. Strangelove or How I Learned to Stop Worrying and Love the Bomb (1964) 0.8429 0.8828 0.8624 401 Dredd (2012) 0.4962 0.6475 0.5618 400 Drive (2011) 0.6131 0.7232 0.6636 401 Dune (2021) 0.3126 0.5525 0.3993 400 Dungeons Dragons Honor Among Thieves (2023) 0.3658 0.6085 0.4569 401 Dunkirk (2017) 0.4873 0.8155 0.6101 401 Eastern Promises (2007) 0.6000 0.0898 0.1562 401 Election (1999) 0.6210 0.4875 0.5462 400 Elemental (2023) 0.7438 0.8275 0.7834 400 Elf (2003) 0.5519 0.2525 0.3465 400 Elizabeth (1998) 0.5720 0.3475 0.4323 400 Elvis (2022) 0.5714 0.0300 0.0570 400 Encanto (2021) 0.5725 0.5625 0.5675 400 Enchanted (2007) 0.6989 0.3067 0.4263 401 End of Watch (2012) 0.8321 0.2850 0.4246 400 Enemy At The Gates (2001) 0.4373 0.3750 0.4038 400 Enemy of the State (1998) 0.3907 0.3575 0.3734 400 Enter the Dragon (1973) 0.4813 0.7075 0.5729 400 Equilibrium (2002) 0.3710 0.3766 0.3738 401 Erin Brockovich (2000) 0.4535 0.6100 0.5203 400 Escape from New York (1981) 0.5314 0.6550 0.5868 400 Eternal Sunshine of the Spotless Mind (2004) 0.5868 0.2450 0.3457 400 Ever After A Cinderella Story (1998) 0.4197 0.6384 0.5064 401 Everest (2015) 0.5763 0.1700 0.2625 400 Everything Everywhere All At Once (2022) 0.6729 0.4514 0.5403 401 Extraction 2 (2023) 0.5024 0.2575 0.3405 400 Eyes Wide Shut (1999) 0.4530 0.6875 0.5462 400 Face Off (1997) 0.4286 0.0900 0.1488 400 Fahrenheit 9 11 (2004) 0.5141 0.5475 0.5303 400 Falling Down (1993) 0.4659 0.6309 0.5360 401 Fantastic Mr Fox (2009) 0.6060 0.9150 0.7291 400 Fargo (1996) 0.4914 0.5000 0.4957 400 Fear And Loathing In Las Vegas (1998) 0.3647 0.5425 0.4362 400 Fences (2016) 0.6453 0.8050 0.7164 400 Filth (2013) 0.4505 0.7850 0.5725 400 Finding Dory (2016) 0.5707 0.5337 0.5515 401 Finding Nemo (2003) 0.6402 0.6434 0.6418 401 Finding Neverland (2004) 0.6667 0.3791 0.4833 401 First Man (2018) 0.3619 0.2425 0.2904 400 Flags of our Fathers (2006) 0.4214 0.4225 0.4220 400 Flight (2012) 0.6275 0.7200 0.6705 400 Ford V Ferrari (2019) 0.3139 0.5761 0.4063 401 Forgetting Sarah Marshall (2008) 0.5434 0.7050 0.6137 400 Four Weddings And A Funeral (1994) 0.4599 0.4450 0.4524 400 Foxcatcher (2014) 0.7547 0.1995 0.3156 401 Fracture (2007) 0.4901 0.2475 0.3289 400 Frequency (2000) 0.4344 0.6359 0.5162 401 Friday (1995) 0.5417 0.8579 0.6641 401 From Dusk Till Dawn (1996) 0.4107 0.6550 0.5048 400 Frost Nixon (2008) 0.6730 0.3541 0.4641 401 Frozen (2013) 0.5543 0.3700 0.4438 400 Furious 6 (2013) 0.5133 0.5325 0.5227 400 Furious Seven (2015) 0.4783 0.0274 0.0519 401 Galaxy Quest (1999) 0.3480 0.5750 0.4336 400 Gangs of New York (2002) 0.4893 0.7955 0.6059 401 Gattaca (1997) 0.4605 0.1750 0.2536 400 Ghandi (1982) 0.3921 0.5675 0.4637 400 Ghost (1990) 0.4714 0.0825 0.1404 400 Ghost World (2001) 0.3862 0.4200 0.4024 400 Ghostbusters (1984) 0.4612 0.4888 0.4746 401 Ghostbusters Afterlife (2021) 0.4624 0.2000 0.2792 400 Gifted (2017) 0.4340 0.2544 0.3208 401 Girl Interrupted (1999) 0.3745 0.6584 0.4774 401 Gladiator EXTENDED REMASTERED (2000) 0.6000 0.0150 0.0293 400 Glengarry Glen Ross (1992) 0.4643 0.8753 0.6067 401 Goldfinger (1964) 0.7381 0.3092 0.4359 401 Gone Baby Gone (2007) 0.5096 0.5985 0.5505 401 Gone Girl (2014) 0.6461 0.3915 0.4876 401 Good Time (2017) 0.3783 0.4700 0.4192 400 Good Will Hunting (1997) 0.4571 0.2793 0.3467 401 Goodfellas (1990) 0.4783 0.1925 0.2745 400 Gran Torino (2008) 0.5175 0.8875 0.6538 400 Gravity (2013) 0.3351 0.6300 0.4375 400 Grease (1978) 0.4117 0.7750 0.5377 400 Green Book (2018) 0.4980 0.3125 0.3840 400 Green Street Hooligans (2005) 0.7321 0.2045 0.3197 401 Greyhound (2020) 0.3626 0.4750 0.4113 400 Grindhouse (2007) 0.0000 0.0000 0.0000 401 Guardians Of The Galaxy Vol. 2 (2017) 0.3212 0.3100 0.3155 400 Guardians of the Galaxy (2014) 0.2684 0.4539 0.3373 401 Hachiko - A Dogs Tale (2009) 0.9924 0.9800 0.9862 400 Hacksaw Ridge (2016) 0.5899 0.2050 0.3043 400 Hamilton (2020) 0.7315 0.9377 0.8219 401 Happy Gilmore (1996) 0.5366 0.6035 0.5681 401 Harry Potter And The Chamber Of Secrets (2002) 0.3698 0.3541 0.3618 401 Harry Potter And The Half-Blood Prince (2009) 0.5278 0.4275 0.4724 400 Harry Potter And The Prisoner Of Azkaban (2004) 0.5857 0.7581 0.6609 401 Heat (1995) 0.3906 0.6025 0.4739 400 Hell Or High Water (2016) 0.5047 0.6675 0.5748 400 Hellboy The Golden Army (2008) 0.5198 0.7207 0.6040 401 Her (2013) 0.6650 0.6633 0.6642 401 Hidden Figures (2016) 0.4391 0.5050 0.4698 400 High Fidelity (2000) 0.4891 0.3342 0.3970 401 Highlander (1986) 0.5047 0.2675 0.3497 400 Home Alone (1990) 0.4371 0.6775 0.5314 400 Hot Fuzz (2007) 0.5371 0.4525 0.4912 400 Hotel Rawanda (2008) 0.5241 0.5960 0.5578 401 Hotel Transylvania (2012) 0.6493 0.5600 0.6013 400 Hotel Transylvania 4 Transformania (2022) 0.4869 0.4175 0.4495 400 How To Train Your Dragon The Hidden World (2019) 0.7035 0.6983 0.7009 401 How to Train Your Dragon 2 (2014) 0.3696 0.8055 0.5067 401 Hugo (2011) 0.5254 0.8775 0.6573 400 Hustle (2022) 0.6454 0.5037 0.5658 401 I Love You, Man (2009) 0.5434 0.8925 0.6755 400 I Origins (2014) 0.3971 0.6225 0.4849 400 I am Sam (2001) 0.4188 0.5800 0.4864 400 I, Tonya (2017) 0.4985 0.4275 0.4603 400 Identity (2003) 0.3569 0.2525 0.2958 400 Imagine That (2009) 0.5058 0.6550 0.5708 400 In Bruges (2008) 0.6141 0.7581 0.6786 401 In The Line Of Fire (1993) 0.3857 0.6434 0.4822 401 In The Name Of The Father (1993) 0.4167 0.3750 0.3947 400 Independence Day (1996) 0.4118 0.0350 0.0645 400 Indiana Jones And The Temple Of Doom (1984) 0.4417 0.3975 0.4184 400 Indiana Jones and the Last Crusade (1989) 0.5397 0.2550 0.3463 400 Inside Llewyn Davis (2013) 0.4910 0.8155 0.6129 401 Inside Man (2006) 0.5354 0.2650 0.3545 400 Inside Out (2015) 0.5568 0.7225 0.6289 400 Insomnia (2002) 0.4602 0.5337 0.4942 401 Interstellar (2014) 0.7161 0.5675 0.6332 400 Invictus (2009) 0.5784 0.6534 0.6136 401 Iron Man (2008) 0.4757 0.1225 0.1948 400 Isle Of Dogs (2018) 0.4271 0.6209 0.5061 401 Its Kind of a Funny Story (2010) 0.6229 0.7332 0.6735 401 JFK (1991) 0.5198 0.2950 0.3764 400 Jackie Brown (1997) 0.5113 0.5650 0.5368 400 James Bond Casino Royale (2006) 0.4816 0.6200 0.5421 400 James Bond GoldenEye (1995) 0.3321 0.2319 0.2731 401 John Q (2002) 0.4425 0.7581 0.5588 401 John Wick (2014) 0.4337 0.3350 0.3780 400 John Wick Chapter 2 (2017) 0.3462 0.1575 0.2165 400 John Wick Chapter 3 - Parabellum (2019) 0.5728 0.8650 0.6892 400 John Wick Chapter 4 (2023) 0.4349 0.7332 0.5460 401 Jojo Rabbit (2019) 0.4565 0.8000 0.5813 400 Julie and Julia (2009) 0.4080 0.8130 0.5433 401 Jumanji (1995) 0.6978 0.3175 0.4364 400 Jumanji Welcome To The Jungle (2017) 0.3811 0.5650 0.4552 400 Juno (2007) 0.5521 0.4375 0.4881 400 K-PAX (2001) 0.3978 0.2725 0.3234 400 Kick-Ass (2010) 0.4708 0.6450 0.5443 400 Kill Bill Vol 1 (2003) 0.4098 0.1875 0.2573 400 Kill Bill Vol 2 (2004) 0.4803 0.1825 0.2645 400 King Kong (2005) 0.5021 0.3050 0.3795 400 King Richard (2021) 0.6642 0.4489 0.5357 401 Kingdom Of Heaven (2005) 0.4310 0.2575 0.3224 400 Kiss Kiss Bang Bang (2005) 0.5429 0.0475 0.0874 400 Klaus (2019) 0.5604 0.7057 0.6247 401 Kubo And The Two Strings (2016) 0.4464 0.8225 0.5787 400 Kung Fu Panda 2 0.4828 0.4564 0.4692 401 L.A Confidential (1997) 0.3678 0.4000 0.3832 400 La La Land (2016) 0.4234 0.4339 0.4286 401 Lady Bird (2017) 0.3975 0.3150 0.3515 400 Lars and the Real Girl (2007) 0.3608 0.7756 0.4925 401 Lawless (2012) 0.5496 0.5675 0.5584 400 Layer Cake (2004) 0.6143 0.2145 0.3179 401 Leaving Las Vegas (1995) 0.3705 0.3575 0.3639 400 Legends of the Fall (1994) 0.4750 0.1425 0.2192 400 Leon The Professional Extended (1994) 0.4083 0.7900 0.5383 400 Les Misérables (2012) 0.5637 0.7057 0.6268 401 Letters From Iwo Jima (2006) 0.4654 0.8750 0.6076 400 Licorice Pizza (2021) 0.5920 0.5536 0.5722 401 Life of Brian (1979) 720p 0.4094 0.6708 0.5085 401 Life of Pi (2012) 0.8214 0.0574 0.1072 401 Limitless (2011) 0.4527 0.2750 0.3421 400 Lincoln (2012) 0.6193 0.8155 0.7040 401 Lion (2016) 0.8121 0.3025 0.4408 400 Little Children (2006) 0.4741 0.4800 0.4770 400 Little Miss Sunshine (2006) 0.4305 0.6350 0.5131 400 Little Women (2019) 0.7701 0.1675 0.2752 400 Lock Stock and Two Smoking Barrels (1998) 0.5707 0.8775 0.6916 400 Locke (2013) 0.8129 0.9125 0.8598 400 Logan (2017) 0.3846 0.1247 0.1883 401 Logan Lucky (2017) 0.4597 0.5686 0.5084 401 Looper (2012) 0.5689 0.2369 0.3345 401 Lord of War (2005) 0.6066 0.6475 0.6264 400 Lost Highway (1997) 0.4565 0.5250 0.4884 400 Lost in Translation (2003) 0.4158 0.7900 0.5448 400 Love Actually (2003) 0.7599 0.5775 0.6562 400 Love, Simon (2018) 0.7603 0.6025 0.6722 400 Lucky Number Slevin (2006) 0.5444 0.4750 0.5073 400 Mad Max 2 The Road Warrior (1981) 0.4420 0.4575 0.4496 400 Magnolia (1999) 0.4142 0.3200 0.3611 400 Mallrats (1995) 0.7746 0.2750 0.4059 400 Man On The Moon (1999) 0.4678 0.5436 0.5029 401 Man of Steel (2013) 0.4728 0.2175 0.2979 400 Man on Fire (2004) 0.8738 0.9327 0.9023 401 Manchester By The Sea (2016) 0.5994 0.4750 0.5300 400 Margin Call (2011) 0.6493 0.7175 0.6817 400 Marley and Me (2008) 0.4409 0.5225 0.4783 400 Marriage Story (2019) 0.5712 0.8325 0.6775 400 Master and Commander The Far Side of the World (2003) 0.3432 0.4065 0.3721 401 Match Point (2005) 0.5094 0.4713 0.4896 401 Matchstick Men (2003) 0.4962 0.3267 0.3940 401 Matilda (1996) 0.6205 0.6933 0.6549 401 Maverick (1994) 0.4429 0.6200 0.5167 400 Me Before You (2016) 0.4805 0.5835 0.5270 401 Mean Girls (2004) 0.4496 0.7925 0.5738 400 Meet Joe Black (1998) 0.4892 0.7350 0.5874 400 Megamind (2010) 0.5087 0.4375 0.4704 400 Melancholia (2011) 0.7687 0.2575 0.3858 400 Memento (2000) 0.5581 0.3000 0.3902 400 Memoirs of a Geisha (2005) 0.5223 0.4975 0.5096 400 Men of Honor (2000) 0.5177 0.1820 0.2694 401 Michael Clayton (2007) 0.5187 0.6925 0.5931 400 Midnight In Paris (2011) 0.4034 0.9377 0.5641 401 Milk (2008) 0.4388 0.4289 0.4338 401 Millers Crossing (1990) 0.5395 0.4763 0.5060 401 Million Dollar Baby (2004) 0.6497 0.5750 0.6101 400 Misery (1990) 0.3380 0.7875 0.4730 400 Mission Impossible (1996) 0.4398 0.5750 0.4984 400 Mission Impossible - Fallout (2018) 0.4907 0.1322 0.2083 401 Mission Impossible Ghost Protocol (2011) 0.4176 0.4625 0.4389 400 Mission Impossible Rogue Nation (2015) 0.4069 0.2950 0.3420 400 Moana (2016) 0.5353 0.3591 0.4299 401 Mollys Game (2017) 0.4598 0.2575 0.3301 400 Monster (2003) 0.5258 0.3825 0.4428 400 Monsters Inc (2001) 0.5963 0.7257 0.6547 401 Monsters University (2013) 0.7132 0.6775 0.6949 400 Moon (2009) 0.6856 0.3925 0.4992 400 Moonlight (2016) 0.5952 0.4300 0.4993 400 Moonrise Kingdom (2012) 0.6000 0.5175 0.5557 400 Moulin Rouge! (2001) 0.5224 0.6425 0.5762 400 Mr Brooks (2007) 0.6138 0.5325 0.5703 400 Mr Nobody (2009) 0.5854 0.1796 0.2748 401 Mud (2012) 0.4898 0.1800 0.2633 400 Mulan (1998) 0.7275 0.7456 0.7365 401 Mulholland Drive (2001) 0.3871 0.1496 0.2158 401 Munich (2005) 0.5506 0.1225 0.2004 400 My Cousin Vinny (1992) 0.4281 0.6175 0.5056 400 Mystic River (2003) 0.3042 0.6775 0.4198 400 Napoleon Dynamite (2004) 0.3962 0.6758 0.4995 401 National Lampoons Christmas Vacation (1989) 0.5644 0.6025 0.5828 400 Natural Born Killers (1994) 0.4461 0.2269 0.3008 401 Nebraska (2013) 0.7076 0.7925 0.7476 400 Never Let Me Go (2010) 0.5848 0.4050 0.4786 400 Nightcrawler (2014) 0.4161 0.3225 0.3634 400 Nightmare Alley (2021) 0.5771 0.6175 0.5966 400 No Country For Old Men (2007) 0.6327 0.3100 0.4161 400 No Time To Die (2021) 0.3163 0.2469 0.2773 401 Nobody (2021) 0.7236 0.5810 0.6445 401 Nocturnal Animals (2016) 0.4408 0.4638 0.4520 401 Nomadland (2020) 0.4560 0.6600 0.5393 400 Notting Hill (1999) 0.4463 0.4675 0.4567 400 Now You See Me (2013) 0.3529 0.5250 0.4221 400 Oblivion (2013) 0.3903 0.3017 0.3404 401 Oceans Eleven (2001) 0.4604 0.5675 0.5084 400 Okja (2017) 0.5016 0.3850 0.4356 400 Old School (2003) 0.5448 0.3641 0.4365 401 Once (2006) 0.6199 0.2643 0.3706 401 One Day (2011) 0.6077 0.3940 0.4781 401 One Hundred And One Dalmatians (1961) 0.9373 0.9327 0.9350 401 Only Lovers Left Alive (2013) 0.5747 0.4425 0.5000 400 Paddington (2014) 0.5673 0.1471 0.2337 401 Paranorman (2012) 0.4834 0.6550 0.5563 400 Passengers (2016) 0.4547 0.5900 0.5136 400 Past Lives (2023) 0.8246 0.2350 0.3658 400 Patriots Day (2016) 0.5385 0.2275 0.3199 400 Pay It Forward (2000) 0.4623 0.2294 0.3067 401 Payback (1999) 0.4663 0.9350 0.6223 400 Perfume - The Story Of A Murderer (2006) 0.6254 0.5300 0.5737 400 Phantom Thread (2017) 0.5599 0.6409 0.5977 401 Philadelphia (1993) 0.4553 0.5600 0.5022 400 Philomena (2013) 0.5709 0.4015 0.4714 401 Phone Booth (2002) 0.5202 0.9000 0.6593 400 Pi (1998) 0.9211 0.9050 0.9130 400 Pitch Black (2000) 0.4224 0.2450 0.3101 400 Planes, Trains Automobiles (1987) 0.4868 0.0925 0.1555 400 Planet Of The Apes (1968) 0.3930 0.8450 0.5365 400 Planet Terror (2007) 0.6043 0.6933 0.6458 401 Platoon (1986) 0.5235 0.6975 0.5981 400 Pleasantville (1998) 0.4378 0.5436 0.4850 401 Point Break (1991) 0.4038 0.0525 0.0929 400 Precious (2009) 0.5941 0.5985 0.5963 401 Predestination (2014) 0.4545 0.2244 0.3005 401 Pretty Woman (1990) 0.5459 0.7575 0.6346 400 Pride and Prejudice (2005) 0.5903 0.6683 0.6269 401 Primal Fear (1996) 0.4868 0.3675 0.4188 400 Prisoners (2013) 0.4582 0.5062 0.4810 401 Promising Young Woman (2020) 0.2519 0.6608 0.3648 401 Pulp Fiction (1994) 0.3475 0.6933 0.4629 401 Punch Drunk Love (2002) 0.4899 0.8525 0.6223 400 Puss In Boots The Last Wish (2022) 0.5405 0.5000 0.5195 400 Rambo (2008) 0.5714 0.0798 0.1400 401 Rango (2009) 0.5197 0.4950 0.5070 400 Ray (2004) 0.5421 0.7400 0.6258 400 Ready Player One (2018) 0.3582 0.1796 0.2392 401 Real Steel (2011) 0.5627 0.4150 0.4777 400 Red (2010) 0.5368 0.3100 0.3930 400 Red Dragon (2002) 0.4467 0.4500 0.4483 400 Remeber The Titans (2000) 0.5893 0.1650 0.2578 400 Remember Me (2010) 0.4601 0.7182 0.5609 401 Requiem for a Dream DIRECTORS CUT (2000) 0.5714 0.1100 0.1845 400 Rescue Dawn (2006) 0.6337 0.3840 0.4783 401 Reservoir Dogs (1992) 0.5990 0.8625 0.7070 400 Revolutionary Road (2008) 0.5553 0.6135 0.5829 401 Rio (2011) 0.4704 0.4375 0.4534 400 Rio 2 (2014) 0.5060 0.7406 0.6012 401 Road to Predition (2002) 0.4278 0.3925 0.4094 400 RoboCop (1987) 0.5237 0.4700 0.4954 400 Rock n Rolla (2008) 0.6222 0.9100 0.7391 400 Rocketman (2019) 0.4236 0.3325 0.3725 400 Rocky Balboa (2006) 0.7449 0.6350 0.6856 400 Rogue One (2016) 0.2613 0.3325 0.2926 400 Ronin (1998) 0.4873 0.4300 0.4568 400 Room (2015) 0.3964 0.6075 0.4798 400 Rounders (1998) 0.5740 0.6484 0.6089 401 Ruby Gillman Teenage Kraken (2023) 0.4572 0.6275 0.5290 400 Ruby Sparks (2012) 0.5032 0.3900 0.4394 400 Runaway Jury (2003) 0.4435 0.2750 0.3395 400 Running Scared (2006) 0.5732 0.5661 0.5696 401 Rush (2013) 0.4595 0.8925 0.6066 400 Rushmore (1998) 0.4171 0.6475 0.5073 400 Saving Mr. Banks (2013) 0.3780 0.6775 0.4852 400 Saving Private Ryan (1998) 0.5335 0.7575 0.6260 400 Scent of a Woman (1992) 0.4619 0.7107 0.5599 401 Schindlers List (1993) 0.5674 0.5985 0.5825 401 Scott Pilgrim vs the World (2010) 0.6708 0.2693 0.3843 401 Se7en (1995) 0.4619 0.2725 0.3428 400 Searching (2018) 0.4832 0.7925 0.6004 400 Sense And Sensibility (1995) 0.5941 0.4500 0.5121 400 Serenity (2005) 0.5090 0.7100 0.5929 400 Seven Pounds (2008) 0.7059 0.4190 0.5258 401 Seven Psychopaths (2012) 0.5377 0.5350 0.5363 400 Seven Years In Tibet (1997) 0.4008 0.2475 0.3060 400 Shakespeare In Love (1998) 0.5076 0.6700 0.5776 400 Shame (2011) 0.5136 0.6125 0.5587 400 Shaun Of The Dead (2004) 0.4636 0.5237 0.4918 401 Sherlock Holmes (2009) 0.5751 0.7830 0.6631 401 Sherlock Holmes A Game Of Shadows (2011) 0.5191 0.6085 0.5603 401 Shrek (2001) 0.4619 0.6675 0.5460 400 Shrek 2 (2004) 0.5172 0.5262 0.5216 401 Side Effects (2013) 0.3844 0.6400 0.4803 400 Sideways (2004) 0.4768 0.3850 0.4260 400 Silence (2016) 0.5423 0.2718 0.3621 401 Silver Linings Playbook (2012) 0.6556 0.4414 0.5276 401 Sin City EXTENDED and UNRATED (2005) 0.6287 0.9626 0.7606 401 Sing (2016) 0.5808 0.3775 0.4576 400 Sing 2 (2021) 0.4771 0.1820 0.2635 401 Sing Street (2016) 0.6000 0.3516 0.4434 401 Skull (2022) 0.2971 0.3825 0.3344 400 Skyfall (2012) 0.5909 0.1950 0.2932 400 Sleepers (1996) 0.3111 0.0350 0.0629 400 Slumdog Millionaire (2008) 0.7642 0.2344 0.3588 401 Snatch (2000) 0.5456 0.8504 0.6647 401 Snowden (2016) 0.4133 0.0775 0.1305 400 Soul (2020) 0.4853 0.3300 0.3929 400 Sound Of Metal (2019) 0.7364 0.6075 0.6658 400 Source Code (2011) 0.5785 0.9002 0.7044 401 South Park Bigger Longer and Uncut (1999) 0.8966 0.8675 0.8818 400 Southpaw (2015) 0.5204 0.1275 0.2048 400 Speed (1994) 0.4054 0.1875 0.2564 400 Spider Man 2 (2004) 0.5273 0.4350 0.4767 400 Spider-Man Across The Spider-Verse (2023) 0.4315 0.6908 0.5312 401 Spider-Man Into The Spider-Verse (2018) 0.4130 0.3025 0.3492 400 Spider-Man No Way Home (2021) 0.2647 0.1347 0.1785 401 Spirited Away (2001) 0.8676 0.7375 0.7973 400 Spotlight (2015) 0.4403 0.6450 0.5233 400 Spy (2015) 0.3617 0.4250 0.3908 400 Spy Game (2001) 0.4286 0.2843 0.3418 401 St. Vincent (2014) 0.5396 0.3575 0.4301 400 Star Trek (2009) 0.4545 0.0500 0.0901 400 Star Trek Beyond (2016) 0.3930 0.3625 0.3771 400 Star Trek First Contact (1996) 0.3602 0.5686 0.4410 401 Star Trek II The Wrath of Khan (1982) 0.5143 0.7650 0.6151 400 Star Trek Into Darkness (2013) 0.2690 0.6883 0.3868 401 Star Wars Episode III - Revenge Of The Sith (2005) 0.2980 0.2600 0.2777 400 Star Wars Episode IV - A New Hope (1977) 0.4824 0.3775 0.4236 400 Star Wars Episode V - The Empire Strikes Back (1980) 0.2594 0.3092 0.2821 401 Star Wars Episode VI - Return Of The Jedi (1983) 0.3585 0.3666 0.3625 401 Star Wars Episode VII - The Force Awakens (2015) 0.3946 0.1446 0.2117 401 Stardust (2007) 0.4772 0.7307 0.5773 401 Starship Troopers (1997) 0.2371 0.1150 0.1549 400 State Of Play (2009) 0.5658 0.4300 0.4886 400 Steve Jobs (2015) 0.4419 0.2950 0.3538 400 Still Alice (2014) 0.4340 0.5175 0.4721 400 Straight Outta Compton (2015) 0.5160 0.2825 0.3651 400 Stranger Than Fiction (2006) 0.5509 0.6883 0.6120 401 Sunshine (2007) 0.7303 0.5536 0.6298 401 Super 8 (2011) 0.4876 0.2450 0.3261 400 Super Size Me (2004) 0.7339 0.6825 0.7073 400 Superman (1978) 0.3103 0.6075 0.4108 400 T2 Trainspotting (2017) 0.6030 0.8105 0.6915 401 TMNT (2007) 0.6096 0.8529 0.7110 401 Taken (2008) 0.3659 0.6000 0.4545 400 Tangled (2010) 0.4848 0.5561 0.5180 401 Tarzan (1999) 0.9054 0.8375 0.8701 400 Team America World Police (2004) 0.5423 0.7050 0.6130 400 Terminator 2 (1991) 0.5593 0.1646 0.2543 401 Terms And Conditions May Apply (2013) 0.4271 0.3075 0.3576 400 Thank You For Smoking (2005) 0.4132 0.7500 0.5329 400 The Abyss (1989) 0.3123 0.3100 0.3112 400 The Adjustment Bureau (2011) 0.4576 0.7406 0.5657 401 The Adventures of Tintin (2011) 0.5122 0.3150 0.3901 400 The Assassination Of Jesse James By The Coward Robert Ford (2007) 0.7204 0.5475 0.6222 400 The Aviator (2004) 0.5211 0.5860 0.5516 401 The Ballad Of Buster Scruggs (2018) 0.6377 0.2200 0.3271 400 The Bank Job (2008) 0.6955 0.8828 0.7780 401 The Banshees Of Inisherin (2022) 0.4099 0.2275 0.2926 400 The Basketball Diaries (1995) 0.5607 0.4500 0.4993 400 The Batman (2022) 0.6495 0.6300 0.6396 400 The Big Short (2015) 0.4253 0.5550 0.4816 400 The Big Sick (2017) 0.3757 0.8425 0.5197 400 The Blind Side (2009) 0.5442 0.6000 0.5707 400 The Boat That Rocked (2009) 0.5050 0.1275 0.2036 400 The Book Thief (2013) 0.5443 0.5375 0.5409 400 The Boondock Saints (1999) 0.4439 0.2175 0.2919 400 The Bourne Supremacy (2004) 0.6262 0.6309 0.6286 401 The Bourne Ultimatum (2007) 0.4662 0.3267 0.3842 401 The Bourne identity (2002) 0.4932 0.1825 0.2664 400 The Boy in the Striped Pyjamas (2008) 0.5362 0.7600 0.6287 400 The Breakfast Club (1985) 0.5585 0.9075 0.6914 400 The Bucket List (2007) 0.5329 0.6875 0.6004 400 The Butler (2013) 0.5242 0.6209 0.5685 401 The Butterfly Effect (2004) 0.5735 0.0975 0.1667 400 The Chronicles of Narnia - The Lion, The Witch, and The Wardrobe (2005) 0.3104 0.3275 0.3187 400 The Cider House Rules (1999) 0.4052 0.4314 0.4179 401 The Constant Gardener (2005) 0.7692 0.0750 0.1367 400 The Count Of Monte Cristo (2002) 0.3188 0.0549 0.0936 401 The Covenant (2023) 0.5000 0.7175 0.5893 400 The Croods (2013) 0.4897 0.5950 0.5372 400 The Crow (1994) 0.6378 0.6983 0.6667 401 The Curious Case of Benjamin Button (2008) 0.7069 0.1025 0.1790 400 The Curse Of The Were-Rabbit (2005) 0.6110 0.5575 0.5830 400 The Danish Girl (2015) 0.6807 0.7282 0.7036 401 The Darjeeling Limited (2007) 0.6205 0.9075 0.7371 400 The Dark Knight Rises (2012) 0.5973 0.6675 0.6305 400 The Death Of Stalin (2017) 0.6165 0.6150 0.6158 400 The Departed (2006) 0.5228 0.6300 0.5714 400 The Descendants(2011) 0.4817 0.4913 0.4864 401 The Devil All The Time (2020) 0.7143 0.0125 0.0245 401 The Disaster Artist (2017) 0.7800 0.0975 0.1733 400 The Dreamers (2003) 0.4368 0.6650 0.5273 400 The Drop (2014) 0.5186 0.6975 0.5949 400 The Emperors New Groove (2000) 0.7377 0.7506 0.7441 401 The English Patient (1996) 0.4708 0.3217 0.3822 401 The Equalizer (2014) 0.4343 0.5686 0.4924 401 The Fall (2006) 0.5392 0.6683 0.5969 401 The Father (2020) 0.4088 0.9300 0.5679 400 The Favourite (2018) 0.6642 0.6808 0.6724 401 The Fifth Element Remastered (1997) 0.5172 0.2244 0.3130 401 The Fighter (2010) 0.6929 0.7032 0.6980 401 The Florida Project (2017) 0.4411 0.7950 0.5674 400 The Founder (2016) 0.4231 0.6325 0.5070 400 The Fountian (2004) 0.5434 0.5950 0.5680 400 The French Connection (1971) 0.5509 0.4600 0.5014 400 The Fugitive (1993) 0.6111 0.0274 0.0525 401 The Full Monty (1997) 0.5539 0.6409 0.5942 401 The Game (1997) 0.4141 0.4100 0.4121 400 The Gentlemen (2019) 0.5000 0.0773 0.1339 401 The Ghost Writer (2010 0.5058 0.3267 0.3970 401 The Gift (2015) 0.8000 0.0698 0.1284 401 The Girl with the Dragon Tattoo (2011) 0.4755 0.4125 0.4418 400 The Godfather Part 3 (1990) 0.6612 0.9125 0.7668 400 The Grand Budapest Hotel (2014) 0.7329 0.9400 0.8237 400 The Greatest Showman (2017) 0.2654 0.5500 0.3580 400 The Green Mile (1999) 0.4332 0.8025 0.5627 400 The Hateful Eight (2015) 0.6427 0.9400 0.7635 400 The Help (2011) 0.4945 0.6783 0.5720 401 The Hobbit An Unexpected Journey (2012) 0.3852 0.7925 0.5184 400 The Hobbit The Battle of the Five Armies (2014) 0.4437 0.8055 0.5722 401 The Hobbit The Desolation of Smaug (2013) 0.4663 0.6035 0.5261 401 The Hours (2002) 0.4442 0.4364 0.4403 401 The Hunchback of Notre Dame (1996) 0.6394 0.5675 0.6013 400 The Hunger Games (2012) 0.6432 0.3865 0.4829 401 The Hunger Games Catching Fire (2013) 0.7429 0.5850 0.6545 400 The Hunt for Red October (1990) 0.3553 0.4564 0.3996 401 The Hurricane (1999) 0.5380 0.2475 0.3390 400 The Hurt Locker (2008) 0.6114 0.5611 0.5852 401 The Ides of March (2011) 0.5154 0.5450 0.5298 400 The Illusionist (2006) 0.5594 0.8825 0.6848 400 The Imitation Game (2014) 0.3608 0.7325 0.4835 400 The Impossible (2012) 0.6523 0.6409 0.6465 401 The Incredibles (2004) 0.3755 0.4750 0.4194 400 The Intern (2015) 0.5917 0.6434 0.6165 401 The Irishman (2019) 0.5424 0.4000 0.4604 400 The Iron Giant (1999) 0.7792 0.7850 0.7821 400 The Italian Job (2003) 0.4212 0.3267 0.3680 401 The Jacket (2005) 0.6386 0.1322 0.2190 401 The Judge (2014) 0.3123 0.6925 0.4305 400 The Jungle Book (2016) 0.3856 0.7357 0.5060 401 The Karate Kid (1984) 0.5647 0.2394 0.3363 401 The Karate Kid (2010) 0.5909 0.6808 0.6327 401 The Kids Are All Right (2010) 0.5639 0.8825 0.6881 400 The Killing Of A Sacred Deer (2017) 0.4893 0.5112 0.5000 401 The King (2019) 0.5880 0.6100 0.5988 400 The Kingdom (2007) 0.5493 0.5575 0.5533 400 The Kings Speech (2010) 0.5477 0.8475 0.6654 400 The LEGO Batman Movie (2017) 0.5838 0.7382 0.6520 401 The Last Boy Scout (1991) 0.4732 0.3975 0.4321 400 The Last Duel (2021) 0.3384 0.3875 0.3613 400 The Last King of Scotland (2006) 0.6667 0.1995 0.3071 401 The Last Samurai (2003) 0.4664 0.3125 0.3743 400 The Last of the Mohicans DDC (1992) 0.7755 0.9500 0.8539 400 The Lego Movie (2014) 0.6085 0.7132 0.6567 401 The Life Aquatic with Steve Zissou (2004) 0.4473 0.8275 0.5807 400 The Life Of David Gale (2013) 0.4576 0.4450 0.4512 400 The Lighthouse (2019) 0.6576 0.9052 0.7618 401 The Lincoln Lawyer (2011) 0.5935 0.6900 0.6382 400 The Little Mermaid (2023) 0.3161 0.3525 0.3333 400 The Lobster (2015) 0.6875 0.1650 0.2661 400 The Lord Of The Rings The Fellowship Of The Ring (2001) 0.4149 0.0975 0.1579 400 The Lord Of The Rings The Return Of The King (2003) 0.3679 0.3541 0.3609 401 The Lord Of The Rings The Two Towers (2002) 0.2681 0.3525 0.3045 400 The Machinist (2004) 0.4915 0.5775 0.5310 400 The Man From U.N.C.L.E. (2015) 0.4177 0.0825 0.1378 400 The Man From the Earth (2007) 0.3890 0.7032 0.5009 401 The Man Who Wasnt There (2001) 0.6651 0.7132 0.6883 401 The Martian (2015) 0.5208 0.2500 0.3378 400 The Master (2012) 0.7697 0.3175 0.4496 400 The Matrix (1999) 0.4371 0.6600 0.5259 400 The Mitchells Vs The Machines (2021) 0.4017 0.3625 0.3811 400 The Mule (2018) 0.3420 0.4275 0.3800 400 The Mummy (1999) 0.4104 0.3150 0.3564 400 The Next Three Days (2010) 0.4321 0.4763 0.4531 401 The Nightmare Before Christmas (1993) 0.3862 0.5175 0.4423 400 The Northman (2022) 0.3975 0.6250 0.4859 400 The Notebook (2004) 0.4864 0.5786 0.5285 401 The Passion Of The Christ (2004) 0.4553 0.8400 0.5905 400 The Patriot Extended Cut (2000) 0.4876 0.2444 0.3256 401 The Perks of Being a Wallflower (2012) 0.5978 0.6800 0.6363 400 The Phantom of the Opera (2004) 0.4534 0.5225 0.4855 400 The Pianist (2002) 0.4419 0.3791 0.4081 401 The Place Beyond the Pines (2012) 0.8906 0.4264 0.5767 401 The Post (2017) 0.6421 0.4350 0.5186 400 The Prestige (2006) 0.3506 0.4725 0.4026 400 The Prince Of Egypt (1998) 0.6712 0.6175 0.6432 400 The Princess Bride (1987) 0.3838 0.5686 0.4583 401 The Princess and the Frog (2009) 0.6174 0.5325 0.5718 400 The Pursuit of Happyness (2006) 0.5430 0.7575 0.6326 400 The Queen (2006) 0.4670 0.6550 0.5453 400 The Reader (2008) 0.6516 0.5750 0.6109 400 The Revenant (2015) 0.3069 0.7731 0.4394 401 The Road (2009) 0.5704 0.8300 0.6762 400 The Rock (1996) 0.2138 0.1625 0.1847 400 The School of Rock (2003) 0.3681 0.8300 0.5100 400 The Sea Beast (2022) 0.5568 0.2444 0.3397 401 The Secret Life Of Pets (2016) 0.5756 0.5411 0.5578 401 The Secret Life Of Pets 2 (2019) 0.4808 0.5000 0.4902 400 The Shape Of Water (2017) 0.4975 0.7325 0.5925 400 The Silence Of The Lambs (1991) 0.5263 0.2244 0.3147 401 The Simpsons Movie (2007) 0.8548 0.9125 0.8827 400 The Sixth Sense (1999) 0.4706 0.4190 0.4433 401 The Spectacular Now (2013) 0.4679 0.3100 0.3729 400 The Suicide Squad (2021) 0.6483 0.3815 0.4804 401 The Super Mario Bros. Movie (2023) 0.6221 0.6035 0.6127 401 The Talented Mr. Ripley (1999) 0.5183 0.7425 0.6105 400 The Theory of Everything (2014) 0.5816 0.2843 0.3819 401 The Thin Red Line (1998) 0.4088 0.5761 0.4783 401 The Time Travelers Wife (2009) 0.5364 0.5900 0.5619 400 The Town EXTENDED (2010) 0.4769 0.5411 0.5070 401 The Trial Of The Chicago 7 (2020) 0.4139 0.7431 0.5317 401 The Two Popes (2019) 0.9231 0.1500 0.2581 400 The Unforgivable (2021) 0.5938 0.8150 0.6870 400 The Usual Suspects (1995) 0.4131 0.2675 0.3247 400 The Virgin Suicides (1999) 0.4605 0.3342 0.3873 401 The Walk (2015) 0.5257 0.2294 0.3194 401 The Warriors (1979) 0.5491 0.5175 0.5328 400 The Way Back (2010) 0.6550 0.3275 0.4367 400 The Way Way Back (2013) 0.4791 0.5450 0.5099 400 The Wrestler (2008) 0.6657 0.5711 0.6148 401 The X Files (1998) 0.1875 0.0150 0.0277 401 Thelma And Louise (1991) 0.4890 0.3875 0.4324 400 There Will Be Blood (2007) 0.4554 0.1275 0.1992 400 Theres Something About Mary EXTENDED (1998) 0.3823 0.5910 0.4643 401 They Live (1988) 0.8525 0.1297 0.2251 401 This Is England (2006) 0.5714 0.5686 0.5700 401 Thor (2011) 0.3333 0.0274 0.0507 401 Three Billboards Outside Ebbing, Missouri (2017) 0.2487 0.2425 0.2456 400 Three Kings (1999) 0.5838 0.5225 0.5515 400 Tick Tick...Boom (2021) 0.2479 0.0723 0.1120 401 Tinker Tailor Soldier Spy (2011) 0.6074 0.7425 0.6682 400 To All The Boys Ive Loved Before (2018) 0.7866 0.9377 0.8555 401 Tombstone (1993) 0.4777 0.5337 0.5041 401 Total Recall (1990) 0.7984 0.5137 0.6252 401 Traffic (2000) 0.4630 0.5475 0.5017 400 Training Day (2001) 0.4545 0.3000 0.3614 400 Transformers (2007) 0.4972 0.4425 0.4683 400 Treasure Planet (2002) 0.6865 0.7225 0.7040 400 Tremors (1990) 0.3796 0.7506 0.5042 401 Troy (2004) 0.5641 0.2750 0.3697 400 True Grit (2010) 0.6935 0.3225 0.4403 400 True Lies (1994) 0.4106 0.1550 0.2250 400 True Romance (1993) 0.3758 0.3100 0.3397 400 Turning Red (2022) 0.5662 0.7375 0.6406 400 Unbreakable (2000) 0.4908 0.2000 0.2842 400 Unbroken (2014) 0.4465 0.4264 0.4362 401 Uncut Gems (2019) 0.2834 0.5761 0.3799 401 Underworld - Extended Edition (2003) 0.4193 0.7925 0.5484 400 Unforgiven (1992) 0.5133 0.3850 0.4400 400 United 93 (2006) 0.7197 0.2369 0.3565 401 Unleashed (2005) 0.5491 0.6833 0.6089 401 Up (2009) 0.5058 0.3267 0.3970 401 Up In The Air (2009) 0.4252 0.4963 0.4580 401 Upgrade (2018) 0.3430 0.4439 0.3870 401 V for Vendetta (2006) 0.5000 0.1825 0.2674 400 Valkyrie (2008) 0.4815 0.6175 0.5411 400 Vice (2018) 0.8776 0.1075 0.1915 400 Vicky Cristina Barcelona (2008) 0.4326 0.8404 0.5712 401 Walk the Line EXTENDED (2005) 0.3889 0.3491 0.3679 401 War Dogs (2016) 0.8361 0.1272 0.2208 401 War For The Planet Of The Apes (2017) 0.3387 0.1571 0.2147 401 War Horse (2011) 0.5603 0.3242 0.4107 401 Warrior (2011) 0.5812 0.2768 0.3750 401 Watchmen (2009) 0.4901 0.7406 0.5899 401 We Bought a Zoo (2011) 0.6930 0.7431 0.7172 401 We Need to Talk About Kevin (2011) 0.4674 0.6259 0.5352 401 Wedding Crashers (2005) 0.6978 0.6334 0.6641 401 Were Were Soldiers (2002) 0.5098 0.7175 0.5961 400 What We Do in the Shadows (2014) 0.5335 0.7556 0.6254 401 Whats Eating Gilbert Grape (1993) 0.5360 0.8000 0.6419 400 Where The Crawdads Sing (2022) 0.4861 0.0875 0.1483 400 Whiplash (2014) 0.4488 0.6025 0.5144 400 Wild (2014) 0.5556 0.4988 0.5256 401 Willow (1988) 0.2898 0.6359 0.3981 401 Wind River (2017) 0.4966 0.7225 0.5886 400 Winters Bone (2010) 0.7907 0.4250 0.5528 400 Wonder (2017) 0.4894 0.2875 0.3622 400 World War Z (2013) 0.4301 0.2075 0.2799 400 Wrath Of Man (2021) 0.6048 0.5700 0.5869 400 X Men Days of Future Past (2014) 0.3333 0.0025 0.0050 400 X Men First Class (2011) 0.7027 0.0648 0.1187 401 X-Men (2000) 0.2745 0.2450 0.2589 400 X-Men 2 (2003) 0.3333 0.0249 0.0464 401 Zack Snyders Justice League (2021) 0.4468 0.8400 0.5833 400 Zero Dark Thirty (2012) 0.3645 0.2825 0.3183 400 Zodiac (2007) 0.4566 0.7481 0.5671 401 Zootopia (2016) 0.6239 0.3650 0.4606 400 shooter (2007) 0.5710 0.4725 0.5171 400 accuracy 0.4962 321922 macro avg 0.5183 0.4962 0.4704 321922 weighted avg 0.5183 0.4962 0.4704 321922 ```
[ "10 things i hate about you (1999)", "12 monkeys (1995)", "12 years a slave (2013)", "127 hours (2010)", "13 hours the secret soldiers of benghazi (2016)", "1917 (2019)", "21 grams (2003)", "25th hour (2002)", "300 (2006)", "310 to yuma (2007)", "500 days of summer (2009)", "a beautiful mind (2001)", "a bronx tale (1993)", "a bugs life (1998)", "a few good men (1992)", "a fish called wanda (1988)", "a good person (2023)", "a history of violence (2005)", "a league of their own (1992)", "a man called otto (2022)", "a scanner darkly (2006)", "a serious man (2009)", "a single man (2009)", "a star is born (2018)", "a time to kill (1996)", "a walk to remember (2002)", "about schmidt (2002)", "about time (2013)", "about a boy (2002)", "across the universe (2007)", "adaptation (2002)", "air (2023)", "aladdin (1992)", "aliens special edition (1986)", "allied (2016)", "almost famous extended (2000)", "american beauty (1999)", "american gangster (2007)", "american history x (1998)", "american hustle (2013)", "american sniper (2014)", "an education (2009)", "anastasia (1997)", "anchorman the legend of ron burgundy (2004)", "apocalypto (2006)", "apollo 13 (1995)", "argo (2012)", "army of darkness (1992)", "as good as it gets (1997)", "atonement (2007)", "august rush (2007)", "austin powers - international man of mystery (1997)", "avatar (2009)", "avatar the way of water (2022)", "awakenings (1990)", "babel (2006)", "baby driver (2017)", "babylon (2022)", "back to the future ii (1989)", "back to the future iii (1990)", "bad times at the el royale (2018)", "barbie (2023)", "basic instinct (1992)", "batman (1989)", "batman begins (2005)", "batman returns (1992)", "beauty and the beast (2017)", "beauty and the beast (1991)", "before midnight (2013)", "before sunrise (1995)", "before sunset (2004)", "before the devil knows youre dead (2007)", "begin again (2013)", "being john malkovich (1999)", "ben-hur (1959)", "beveryly hills cop (1984)", "big (1988)", "big fish (2003)", "billy elliot (2000)", "birdman (2014)", "black hawk down (2001)", "black mirror bandersnatch (2018)", "black panther (2018)", "blade (1998)", "blade runner 2049 (2017)", "blow (2001)", "blue jasmine (2013)", "blue valentine (2010)", "bohemian rhapsody (2018)", "boogie nights (1997)", "booksmart (2019)", "bowling for columbine (2002)", "boyhood (2014)", "boys dont cry (1999)", "boyz n the hood (1991)", "braveheart (1995)", "brick (2005)", "bridge of spies (2015)", "bridge to terabithia (2007)", "brokeback mountain (2005)", "broken flowers (2005)", "bronson (2008)", "brooklyn (2015)", "brothers (2009)", "buried (2010)", "burn after reading (2008)", "coda (2021)", "call me by your name (2017)", "cape fear (1991)", "captain america civil war (2016)", "captain fantastic (2016)", "captain phillips (2013)", "carnage (2011)", "carol (2015)", "cars (2006)", "casino (1995)", "cast away (2000)", "catch me if you can (2002)", "changeling (2008)", "charlie wilsons war (2007)", "charlie and the chocolate factory (2005)", "chasing amy (1997)", "chef (2014)", "chicago (2002)", "chicken run (2000)", "children of men (2006)", "chocolat (2000)", "chronicle (2012)", "cinderella man (2005)", "clerks 2 (2006)", "closer (2004)", "cloud atlas (2012)", "cloverfield (2008)", "coach carter (2005)", "coherence (2013)", "cold moutians (2003)", "collateral (2004)", "constantine (2005)", "contact (1997)", "cop land (1997)", "coraline (2009)", "corpse bride (2005)", "crash (2004)", "creed (2015)", "creed ii (2018)", "crimson tide (1995)", "cruella (2021)", "cube (1997)", "dancer in the dark (2000)", "dances with wolves (1990)", "dark city (1998)", "darkest hour (2017)", "dawn of the dead (2004)", "dawn of the planet of the apes (2014)", "dazed and confused (1993)", "dead man (1995)", "death at a funeral (2007)", "death proof (2007)", "definitely maybe (2008)", "deja vu (2006)", "demolition (2015)", "desperado (1995)", "despicable me (2010)", "die hard 2 (1990)", "die hard 3 (1995)", "die hard 4 (2007)", "dirty harry (1971)", "doctor strange (2016)", "doctor strange in the multiverse of madness (2022)", "dogma (1999)", "dogville (2003)", "donnie brasco (1997)", "donnie darko directors cut (2001)", "dont look up (2021)", "doubt (2008)", "dr. no (1962)", "dr. strangelove or how i learned to stop worrying and love the bomb (1964)", "dredd (2012)", "drive (2011)", "dune (2021)", "dungeons dragons honor among thieves (2023)", "dunkirk (2017)", "eastern promises (2007)", "election (1999)", "elemental (2023)", "elf (2003)", "elizabeth (1998)", "elvis (2022)", "encanto (2021)", "enchanted (2007)", "end of watch (2012)", "enemy at the gates (2001)", "enemy of the state (1998)", "enter the dragon (1973)", "equilibrium (2002)", "erin brockovich (2000)", "escape from new york (1981)", "eternal sunshine of the spotless mind (2004)", "ever after a cinderella story (1998)", "everest (2015)", "everything everywhere all at once (2022)", "extraction 2 (2023)", "eyes wide shut (1999)", "face off (1997)", "fahrenheit 9 11 (2004)", "falling down (1993)", "fantastic mr fox (2009)", "fargo (1996)", "fear and loathing in las vegas (1998)", "fences (2016)", "filth (2013)", "finding dory (2016)", "finding nemo (2003)", "finding neverland (2004)", "first man (2018)", "flags of our fathers (2006)", "flight (2012)", "ford v ferrari (2019)", "forgetting sarah marshall (2008)", "four weddings and a funeral (1994)", "foxcatcher (2014)", "fracture (2007)", "frequency (2000)", "friday (1995)", "from dusk till dawn (1996)", "frost nixon (2008)", "frozen (2013)", "furious 6 (2013)", "furious seven (2015)", "galaxy quest (1999)", "gangs of new york (2002)", "gattaca (1997)", "ghandi (1982)", "ghost (1990)", "ghost world (2001)", "ghostbusters (1984)", "ghostbusters afterlife (2021)", "gifted (2017)", "girl interrupted (1999)", "gladiator extended remastered (2000)", "glengarry glen ross (1992)", "goldfinger (1964)", "gone baby gone (2007)", "gone girl (2014)", "good time (2017)", "good will hunting (1997)", "goodfellas (1990)", "gran torino (2008)", "gravity (2013)", "grease (1978)", "green book (2018)", "green street hooligans (2005)", "greyhound (2020)", "grindhouse (2007)", "guardians of the galaxy vol. 2 (2017)", "guardians of the galaxy (2014)", "hachiko - a dogs tale (2009)", "hacksaw ridge (2016)", "hamilton (2020)", "happy gilmore (1996)", "harry potter and the chamber of secrets (2002)", "harry potter and the half-blood prince (2009)", "harry potter and the prisoner of azkaban (2004)", "heat (1995)", "hell or high water (2016)", "hellboy the golden army (2008)", "her (2013)", "hidden figures (2016)", "high fidelity (2000)", "highlander (1986)", "home alone (1990)", "hot fuzz (2007)", "hotel rawanda (2008)", "hotel transylvania (2012)", "hotel transylvania 4 transformania (2022)", "how to train your dragon the hidden world (2019)", "how to train your dragon 2 (2014)", "hugo (2011)", "hustle (2022)", "i love you, man (2009)", "i origins (2014)", "i am sam (2001)", "i, tonya (2017)", "identity (2003)", "imagine that (2009)", "in bruges (2008)", "in the line of fire (1993)", "in the name of the father (1993)", "independence day (1996)", "indiana jones and the temple of doom (1984)", "indiana jones and the last crusade (1989)", "inside llewyn davis (2013)", "inside man (2006)", "inside out (2015)", "insomnia (2002)", "interstellar (2014)", "invictus (2009)", "iron man (2008)", "isle of dogs (2018)", "its kind of a funny story (2010)", "jfk (1991)", "jackie brown (1997)", "james bond casino royale (2006)", "james bond goldeneye (1995)", "john q (2002)", "john wick (2014)", "john wick chapter 2 (2017)", "john wick chapter 3 - parabellum (2019)", "john wick chapter 4 (2023)", "jojo rabbit (2019)", "julie and julia (2009)", "jumanji (1995)", "jumanji welcome to the jungle (2017)", "juno (2007)", "k-pax (2001)", "kick-ass (2010)", "kill bill vol 1 (2003)", "kill bill vol 2 (2004)", "king kong (2005)", "king richard (2021)", "kingdom of heaven (2005)", "kiss kiss bang bang (2005)", "klaus (2019)", "kubo and the two strings (2016)", "kung fu panda 2", "l.a confidential (1997)", "la la land (2016)", "lady bird (2017)", "lars and the real girl (2007)", "lawless (2012)", "layer cake (2004)", "leaving las vegas (1995)", "legends of the fall (1994)", "leon the professional extended (1994)", "les misérables (2012)", "letters from iwo jima (2006)", "licorice pizza (2021)", "life of brian (1979) 720p", "life of pi (2012)", "limitless (2011)", "lincoln (2012)", "lion (2016)", "little children (2006)", "little miss sunshine (2006)", "little women (2019)", "lock stock and two smoking barrels (1998)", "locke (2013)", "logan (2017)", "logan lucky (2017)", "looper (2012)", "lord of war (2005)", "lost highway (1997)", "lost in translation (2003)", "love actually (2003)", "love, simon (2018)", "lucky number slevin (2006)", "mad max 2 the road warrior (1981)", "magnolia (1999)", "mallrats (1995)", "man on the moon (1999)", "man of steel (2013)", "man on fire (2004)", "manchester by the sea (2016)", "margin call (2011)", "marley and me (2008)", "marriage story (2019)", "master and commander the far side of the world (2003)", "match point (2005)", "matchstick men (2003)", "matilda (1996)", "maverick (1994)", "me before you (2016)", "mean girls (2004)", "meet joe black (1998)", "megamind (2010)", "melancholia (2011)", "memento (2000)", "memoirs of a geisha (2005)", "men of honor (2000)", "michael clayton (2007)", "midnight in paris (2011)", "milk (2008)", "millers crossing (1990)", "million dollar baby (2004)", "misery (1990)", "mission impossible (1996)", "mission impossible - fallout (2018)", "mission impossible ghost protocol (2011)", "mission impossible rogue nation (2015)", "moana (2016)", "mollys game (2017)", "monster (2003)", "monsters inc (2001)", "monsters university (2013)", "moon (2009)", "moonlight (2016)", "moonrise kingdom (2012)", "moulin rouge! (2001)", "mr brooks (2007)", "mr nobody (2009)", "mud (2012)", "mulan (1998)", "mulholland drive (2001)", "munich (2005)", "my cousin vinny (1992)", "mystic river (2003)", "napoleon dynamite (2004)", "national lampoons christmas vacation (1989)", "natural born killers (1994)", "nebraska (2013)", "never let me go (2010)", "nightcrawler (2014)", "nightmare alley (2021)", "no country for old men (2007)", "no time to die (2021)", "nobody (2021)", "nocturnal animals (2016)", "nomadland (2020)", "notting hill (1999)", "now you see me (2013)", "oblivion (2013)", "oceans eleven (2001)", "okja (2017)", "old school (2003)", "once (2006)", "one day (2011)", "one hundred and one dalmatians (1961)", "only lovers left alive (2013)", "paddington (2014)", "paranorman (2012)", "passengers (2016)", "past lives (2023)", "patriots day (2016)", "pay it forward (2000)", "payback (1999)", "perfume - the story of a murderer (2006)", "phantom thread (2017)", "philadelphia (1993)", "philomena (2013)", "phone booth (2002)", "pi (1998)", "pitch black (2000)", "planes, trains automobiles (1987)", "planet of the apes (1968)", "planet terror (2007)", "platoon (1986)", "pleasantville (1998)", "point break (1991)", "precious (2009)", "predestination (2014)", "pretty woman (1990)", "pride and prejudice (2005)", "primal fear (1996)", "prisoners (2013)", "promising young woman (2020)", "pulp fiction (1994)", "punch drunk love (2002)", "puss in boots the last wish (2022)", "rambo (2008)", "rango (2009)", "ray (2004)", "ready player one (2018)", "real steel (2011)", "red (2010)", "red dragon (2002)", "remeber the titans (2000)", "remember me (2010)", "requiem for a dream directors cut (2000)", "rescue dawn (2006)", "reservoir dogs (1992)", "revolutionary road (2008)", "rio (2011)", "rio 2 (2014)", "road to predition (2002)", "robocop (1987)", "rock n rolla (2008)", "rocketman (2019)", "rocky balboa (2006)", "rogue one (2016)", "ronin (1998)", "room (2015)", "rounders (1998)", "ruby gillman teenage kraken (2023)", "ruby sparks (2012)", "runaway jury (2003)", "running scared (2006)", "rush (2013)", "rushmore (1998)", "saving mr. banks (2013)", "saving private ryan (1998)", "scent of a woman (1992)", "schindlers list (1993)", "scott pilgrim vs the world (2010)", "se7en (1995)", "searching (2018)", "sense and sensibility (1995)", "serenity (2005)", "seven pounds (2008)", "seven psychopaths (2012)", "seven years in tibet (1997)", "shakespeare in love (1998)", "shame (2011)", "shaun of the dead (2004)", "sherlock holmes (2009)", "sherlock holmes a game of shadows (2011)", "shrek (2001)", "shrek 2 (2004)", "side effects (2013)", "sideways (2004)", "silence (2016)", "silver linings playbook (2012)", "sin city extended and unrated (2005)", "sing (2016)", "sing 2 (2021)", "sing street (2016)", "skull (2022)", "skyfall (2012)", "sleepers (1996)", "slumdog millionaire (2008)", "snatch (2000)", "snowden (2016)", "soul (2020)", "sound of metal (2019)", "source code (2011)", "south park bigger longer and uncut (1999)", "southpaw (2015)", "speed (1994)", "spider man 2 (2004)", "spider-man across the spider-verse (2023)", "spider-man into the spider-verse (2018)", "spider-man no way home (2021)", "spirited away (2001)", "spotlight (2015)", "spy (2015)", "spy game (2001)", "st. vincent (2014)", "star trek (2009)", "star trek beyond (2016)", "star trek first contact (1996)", "star trek ii the wrath of khan (1982)", "star trek into darkness (2013)", "star wars episode iii - revenge of the sith (2005)", "star wars episode iv - a new hope (1977)", "star wars episode v - the empire strikes back (1980)", "star wars episode vi - return of the jedi (1983)", "star wars episode vii - the force awakens (2015)", "stardust (2007)", "starship troopers (1997)", "state of play (2009)", "steve jobs (2015)", "still alice (2014)", "straight outta compton (2015)", "stranger than fiction (2006)", "sunshine (2007)", "super 8 (2011)", "super size me (2004)", "superman (1978)", "t2 trainspotting (2017)", "tmnt (2007)", "taken (2008)", "tangled (2010)", "tarzan (1999)", "team america world police (2004)", "terminator 2 (1991)", "terms and conditions may apply (2013)", "thank you for smoking (2005)", "the abyss (1989)", "the adjustment bureau (2011)", "the adventures of tintin (2011)", "the assassination of jesse james by the coward robert ford (2007)", "the aviator (2004)", "the ballad of buster scruggs (2018)", "the bank job (2008)", "the banshees of inisherin (2022)", "the basketball diaries (1995)", "the batman (2022)", "the big short (2015)", "the big sick (2017)", "the blind side (2009)", "the boat that rocked (2009)", "the book thief (2013)", "the boondock saints (1999)", "the bourne supremacy (2004)", "the bourne ultimatum (2007)", "the bourne identity (2002)", "the boy in the striped pyjamas (2008)", "the breakfast club (1985)", "the bucket list (2007)", "the butler (2013)", "the butterfly effect (2004)", "the chronicles of narnia - the lion, the witch, and the wardrobe (2005)", "the cider house rules (1999)", "the constant gardener (2005)", "the count of monte cristo (2002)", "the covenant (2023)", "the croods (2013)", "the crow (1994)", "the curious case of benjamin button (2008)", "the curse of the were-rabbit (2005)", "the danish girl (2015)", "the darjeeling limited (2007)", "the dark knight rises (2012)", "the death of stalin (2017)", "the departed (2006)", "the descendants(2011)", "the devil all the time (2020)", "the disaster artist (2017)", "the dreamers (2003)", "the drop (2014)", "the emperors new groove (2000)", "the english patient (1996)", "the equalizer (2014)", "the fall (2006)", "the father (2020)", "the favourite (2018)", "the fifth element remastered (1997)", "the fighter (2010)", "the florida project (2017)", "the founder (2016)", "the fountian (2004)", "the french connection (1971)", "the fugitive (1993)", "the full monty (1997)", "the game (1997)", "the gentlemen (2019)", "the ghost writer (2010", "the gift (2015)", "the girl with the dragon tattoo (2011)", "the godfather part 3 (1990)", "the grand budapest hotel (2014)", "the greatest showman (2017)", "the green mile (1999)", "the hateful eight (2015)", "the help (2011)", "the hobbit an unexpected journey (2012)", "the hobbit the battle of the five armies (2014)", "the hobbit the desolation of smaug (2013)", "the hours (2002)", "the hunchback of notre dame (1996)", "the hunger games (2012)", "the hunger games catching fire (2013)", "the hunt for red october (1990)", "the hurricane (1999)", "the hurt locker (2008)", "the ides of march (2011)", "the illusionist (2006)", "the imitation game (2014)", "the impossible (2012)", "the incredibles (2004)", "the intern (2015)", "the irishman (2019)", "the iron giant (1999)", "the italian job (2003)", "the jacket (2005)", "the judge (2014)", "the jungle book (2016)", "the karate kid (1984)", "the karate kid (2010)", "the kids are all right (2010)", "the killing of a sacred deer (2017)", "the king (2019)", "the kingdom (2007)", "the kings speech (2010)", "the lego batman movie (2017)", "the last boy scout (1991)", "the last duel (2021)", "the last king of scotland (2006)", "the last samurai (2003)", "the last of the mohicans ddc (1992)", "the lego movie (2014)", "the life aquatic with steve zissou (2004)", "the life of david gale (2013)", "the lighthouse (2019)", "the lincoln lawyer (2011)", "the little mermaid (2023)", "the lobster (2015)", "the lord of the rings the fellowship of the ring (2001)", "the lord of the rings the return of the king (2003)", "the lord of the rings the two towers (2002)", "the machinist (2004)", "the man from u.n.c.l.e. (2015)", "the man from the earth (2007)", "the man who wasnt there (2001)", "the martian (2015)", "the master (2012)", "the matrix (1999)", "the mitchells vs the machines (2021)", "the mule (2018)", "the mummy (1999)", "the next three days (2010)", "the nightmare before christmas (1993)", "the northman (2022)", "the notebook (2004)", "the passion of the christ (2004)", "the patriot extended cut (2000)", "the perks of being a wallflower (2012)", "the phantom of the opera (2004)", "the pianist (2002)", "the place beyond the pines (2012)", "the post (2017)", "the prestige (2006)", "the prince of egypt (1998)", "the princess bride (1987)", "the princess and the frog (2009)", "the pursuit of happyness (2006)", "the queen (2006)", "the reader (2008)", "the revenant (2015)", "the road (2009)", "the rock (1996)", "the school of rock (2003)", "the sea beast (2022)", "the secret life of pets (2016)", "the secret life of pets 2 (2019)", "the shape of water (2017)", "the silence of the lambs (1991)", "the simpsons movie (2007)", "the sixth sense (1999)", "the spectacular now (2013)", "the suicide squad (2021)", "the super mario bros. movie (2023)", "the talented mr. ripley (1999)", "the theory of everything (2014)", "the thin red line (1998)", "the time travelers wife (2009)", "the town extended (2010)", "the trial of the chicago 7 (2020)", "the two popes (2019)", "the unforgivable (2021)", "the usual suspects (1995)", "the virgin suicides (1999)", "the walk (2015)", "the warriors (1979)", "the way back (2010)", "the way way back (2013)", "the wrestler (2008)", "the x files (1998)", "thelma and louise (1991)", "there will be blood (2007)", "theres something about mary extended (1998)", "they live (1988)", "this is england (2006)", "thor (2011)", "three billboards outside ebbing, missouri (2017)", "three kings (1999)", "tick tick...boom (2021)", "tinker tailor soldier spy (2011)", "to all the boys ive loved before (2018)", "tombstone (1993)", "total recall (1990)", "traffic (2000)", "training day (2001)", "transformers (2007)", "treasure planet (2002)", "tremors (1990)", "troy (2004)", "true grit (2010)", "true lies (1994)", "true romance (1993)", "turning red (2022)", "unbreakable (2000)", "unbroken (2014)", "uncut gems (2019)", "underworld - extended edition (2003)", "unforgiven (1992)", "united 93 (2006)", "unleashed (2005)", "up (2009)", "up in the air (2009)", "upgrade (2018)", "v for vendetta (2006)", "valkyrie (2008)", "vice (2018)", "vicky cristina barcelona (2008)", "walk the line extended (2005)", "war dogs (2016)", "war for the planet of the apes (2017)", "war horse (2011)", "warrior (2011)", "watchmen (2009)", "we bought a zoo (2011)", "we need to talk about kevin (2011)", "wedding crashers (2005)", "were were soldiers (2002)", "what we do in the shadows (2014)", "whats eating gilbert grape (1993)", "where the crawdads sing (2022)", "whiplash (2014)", "wild (2014)", "willow (1988)", "wind river (2017)", "winters bone (2010)", "wonder (2017)", "world war z (2013)", "wrath of man (2021)", "x men days of future past (2014)", "x men first class (2011)", "x-men (2000)", "x-men 2 (2003)", "zack snyders justice league (2021)", "zero dark thirty (2012)", "zodiac (2007)", "zootopia (2016)", "shooter (2007)" ]
rsadaphule/vit-base-patch16-224-finetuned-wildcats
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-patch16-224-finetuned-wildcats This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the wildcat image dataset. ## Model description Demo is hosted at https://huggingface.co/spaces/rsadaphule/wildcats ## Intended uses & limitations Classify wildcats ## Training and evaluation data Model has been trained on wildcat images ## Training procedure Fine tune Vision Transformer on wildcat images ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results accuracy : 97% ### Framework versions - Transformers 4.24.0 - Pytorch 2.1.0+cu121 - Datasets 2.7.1 - Tokenizers 0.13.3
[ "african leopard", "caracal", "cheetah", "clouded leopard", "jaguar", "lions", "ocelot", "puma", "snow leopard", "tiger" ]
Mansour2002/vit-base-patch16-224-finetuned-flower
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-patch16-224-finetuned-flower This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the imagefolder dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results ### Framework versions - Transformers 4.24.0 - Pytorch 2.1.0+cu121 - Datasets 2.7.1 - Tokenizers 0.13.3
[ "daisy", "dandelion", "roses", "sunflowers", "tulips" ]
Organika/sdxl-detector
# SDXL Detector This model was created by fine-tuning the [umm-maybe AI art detector](https://huggingface.co/umm-maybe/AI-image-detector) on a dataset of Wikimedia-SDXL image pairs, where the SDXL image is generated using a prompt based upon a BLIP-generated caption describing the Wikimedia image. This model demonstrates greatly improved performance over the umm-maybe detector on images generated by more recent diffusion models as well as non-artistic imagery (given the broader range of subjects depicted in the random sample drawn from Wikimedia). However, its performance may be lower for images generated using models other than SDXL. In particular, this model underperforms the original detector for images generated using older models (such as VQGAN+CLIP). The data used for this fine-tune is either synthetic (generated by SDXL) and therefore non-copyrightable, or downloaded from Wikimedia and therefore meeting their definition of "free data" (see https://commons.wikimedia.org/wiki/Commons:Licensing for details). However, the original umm-maybe AI art detector was trained on data scraped from image links in Reddit posts, some of which may be copyrighted. Therefore this model as well as its predecessor should be considered appropriate for non-commercial (i.e. personal or educational) fair uses only. # Model Trained Using AutoTrain - Problem type: Image Classification ## Validation Metrics loss: 0.08717025071382523 f1: 0.9732620320855615 precision: 0.994535519125683 recall: 0.9528795811518325 auc: 0.9980461893059392 accuracy: 0.9812734082397003
[ "artificial", "human" ]
dylanmontoya22/vit_model
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit_model This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0069 - Accuracy: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.1328 | 3.85 | 500 | 0.0069 | 1.0 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
[ "angular_leaf_spot", "bean_rust", "healthy" ]
3una/finetuned-AffectNet
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned-AffectNet This model is a fine-tuned version of [microsoft/beit-base-patch16-224-pt22k-ft22k](https://huggingface.co/microsoft/beit-base-patch16-224-pt22k-ft22k) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8122 - Accuracy: 0.7345 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 2.0686 | 1.0 | 163 | 2.0963 | 0.1549 | | 1.7148 | 2.0 | 327 | 1.7250 | 0.2943 | | 1.4591 | 3.0 | 490 | 1.4418 | 0.4204 | | 1.3351 | 4.0 | 654 | 1.2648 | 0.5194 | | 1.1343 | 5.0 | 817 | 1.0728 | 0.5908 | | 1.1022 | 6.0 | 981 | 0.9741 | 0.6355 | | 1.0476 | 7.0 | 1144 | 0.9203 | 0.6631 | | 1.0049 | 8.0 | 1308 | 0.8769 | 0.6760 | | 0.9561 | 9.0 | 1471 | 0.8438 | 0.6966 | | 0.9409 | 10.0 | 1635 | 0.8283 | 0.6988 | | 0.9419 | 11.0 | 1798 | 0.7867 | 0.7164 | | 0.89 | 12.0 | 1962 | 0.7858 | 0.7139 | | 0.8761 | 13.0 | 2125 | 0.7704 | 0.7147 | | 0.8662 | 14.0 | 2289 | 0.7590 | 0.7225 | | 0.8561 | 15.0 | 2452 | 0.7574 | 0.7199 | | 0.8234 | 16.0 | 2616 | 0.7457 | 0.7238 | | 0.844 | 17.0 | 2779 | 0.7416 | 0.7255 | | 0.7908 | 18.0 | 2943 | 0.7485 | 0.7255 | | 0.809 | 19.0 | 3106 | 0.7428 | 0.7250 | | 0.7976 | 20.0 | 3270 | 0.7597 | 0.7203 | | 0.7691 | 21.0 | 3433 | 0.7333 | 0.7345 | | 0.7408 | 22.0 | 3597 | 0.7362 | 0.7246 | | 0.7516 | 23.0 | 3760 | 0.7301 | 0.7298 | | 0.7887 | 24.0 | 3924 | 0.7263 | 0.7332 | | 0.7475 | 25.0 | 4087 | 0.7301 | 0.7293 | | 0.7619 | 26.0 | 4251 | 0.7334 | 0.7298 | | 0.7509 | 27.0 | 4414 | 0.7332 | 0.7345 | | 0.7212 | 28.0 | 4578 | 0.7301 | 0.7367 | | 0.7053 | 29.0 | 4741 | 0.7293 | 0.7328 | | 0.6634 | 30.0 | 4905 | 0.7412 | 0.7298 | | 0.677 | 31.0 | 5068 | 0.7221 | 0.7375 | | 0.6453 | 32.0 | 5232 | 0.7281 | 0.7392 | | 0.6961 | 33.0 | 5395 | 0.7280 | 0.7392 | | 0.7135 | 34.0 | 5559 | 0.7348 | 0.7362 | | 0.6871 | 35.0 | 5722 | 0.7334 | 0.7293 | | 0.6829 | 36.0 | 5886 | 0.7281 | 0.7328 | | 0.6742 | 37.0 | 6049 | 0.7332 | 0.7354 | | 0.6167 | 38.0 | 6213 | 0.7274 | 0.7384 | | 0.665 | 39.0 | 6376 | 0.7322 | 0.7311 | | 0.6433 | 40.0 | 6540 | 0.7473 | 0.7345 | | 0.6661 | 41.0 | 6703 | 0.7358 | 0.7341 | | 0.6424 | 42.0 | 6867 | 0.7413 | 0.7324 | | 0.6369 | 43.0 | 7030 | 0.7314 | 0.7414 | | 0.611 | 44.0 | 7194 | 0.7325 | 0.7388 | | 0.6556 | 45.0 | 7357 | 0.7485 | 0.7354 | | 0.6524 | 46.0 | 7521 | 0.7434 | 0.7418 | | 0.6176 | 47.0 | 7684 | 0.7402 | 0.7410 | | 0.6142 | 48.0 | 7848 | 0.7480 | 0.7315 | | 0.5968 | 49.0 | 8011 | 0.7457 | 0.7384 | | 0.6132 | 50.0 | 8175 | 0.7514 | 0.7328 | | 0.592 | 51.0 | 8338 | 0.7500 | 0.7375 | | 0.6347 | 52.0 | 8502 | 0.7533 | 0.7345 | | 0.5976 | 53.0 | 8665 | 0.7539 | 0.7324 | | 0.5496 | 54.0 | 8829 | 0.7495 | 0.7388 | | 0.5845 | 55.0 | 8992 | 0.7550 | 0.7367 | | 0.5624 | 56.0 | 9156 | 0.7606 | 0.7362 | | 0.5582 | 57.0 | 9319 | 0.7598 | 0.7341 | | 0.6206 | 58.0 | 9483 | 0.7608 | 0.7345 | | 0.5647 | 59.0 | 9646 | 0.7578 | 0.7388 | | 0.6093 | 60.0 | 9810 | 0.7646 | 0.7358 | | 0.5625 | 61.0 | 9973 | 0.7622 | 0.7388 | | 0.6114 | 62.0 | 10137 | 0.7702 | 0.7324 | | 0.5304 | 63.0 | 10300 | 0.7710 | 0.7367 | | 0.5646 | 64.0 | 10464 | 0.7807 | 0.7298 | | 0.5774 | 65.0 | 10627 | 0.7793 | 0.7328 | | 0.5825 | 66.0 | 10791 | 0.7786 | 0.7375 | | 0.5111 | 67.0 | 10954 | 0.7742 | 0.7380 | | 0.5849 | 68.0 | 11118 | 0.7779 | 0.7349 | | 0.5454 | 69.0 | 11281 | 0.7795 | 0.7367 | | 0.5158 | 70.0 | 11445 | 0.7806 | 0.7345 | | 0.5576 | 71.0 | 11608 | 0.7903 | 0.7345 | | 0.5394 | 72.0 | 11772 | 0.7812 | 0.7380 | | 0.5099 | 73.0 | 11935 | 0.7808 | 0.7354 | | 0.5209 | 74.0 | 12099 | 0.7851 | 0.7319 | | 0.5322 | 75.0 | 12262 | 0.7908 | 0.7401 | | 0.5351 | 76.0 | 12426 | 0.7960 | 0.7306 | | 0.5272 | 77.0 | 12589 | 0.7924 | 0.7324 | | 0.477 | 78.0 | 12753 | 0.7981 | 0.7332 | | 0.5186 | 79.0 | 12916 | 0.7942 | 0.7341 | | 0.5366 | 80.0 | 13080 | 0.8016 | 0.7367 | | 0.4809 | 81.0 | 13243 | 0.8014 | 0.7341 | | 0.4889 | 82.0 | 13407 | 0.8008 | 0.7354 | | 0.5287 | 83.0 | 13570 | 0.8010 | 0.7349 | | 0.4926 | 84.0 | 13734 | 0.8047 | 0.7371 | | 0.4989 | 85.0 | 13897 | 0.8046 | 0.7384 | | 0.5483 | 86.0 | 14061 | 0.8022 | 0.7371 | | 0.5157 | 87.0 | 14224 | 0.8055 | 0.7358 | | 0.4999 | 88.0 | 14388 | 0.8071 | 0.7319 | | 0.519 | 89.0 | 14551 | 0.8083 | 0.7362 | | 0.4534 | 90.0 | 14715 | 0.8082 | 0.7384 | | 0.429 | 91.0 | 14878 | 0.8103 | 0.7354 | | 0.5073 | 92.0 | 15042 | 0.8116 | 0.7336 | | 0.5358 | 93.0 | 15205 | 0.8106 | 0.7341 | | 0.5049 | 94.0 | 15369 | 0.8111 | 0.7315 | | 0.4745 | 95.0 | 15532 | 0.8118 | 0.7336 | | 0.5052 | 96.0 | 15696 | 0.8104 | 0.7371 | | 0.495 | 97.0 | 15859 | 0.8101 | 0.7354 | | 0.4752 | 98.0 | 16023 | 0.8117 | 0.7349 | | 0.4927 | 99.0 | 16186 | 0.8120 | 0.7336 | | 0.4875 | 99.69 | 16300 | 0.8122 | 0.7345 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
[ "anger", "contempt", "disgust", "fear", "happy", "neutral", "sad", "surprise" ]
omersubasi/vit-base-patch16-224-finetuned-flower
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-patch16-224-finetuned-flower This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the imagefolder dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results ### Framework versions - Transformers 4.24.0 - Pytorch 2.1.0+cu121 - Datasets 2.7.1 - Tokenizers 0.13.3
[ "daisy", "dandelion", "roses", "sunflowers", "tulips" ]
BhavanaMalla/distill_ViT_to_MobileNet
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distill_ViT_to_MobileNet This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: -16.9518 - Accuracy: 0.3759 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | -17.0436 | 1.0 | 130 | -16.9518 | 0.3759 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
[ "label_0", "label_1", "label_2" ]
21nao3/swin-tiny-patch4-window7-224-finetuned-eurosat
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224-finetuned-eurosat This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the image_folder dataset. It achieves the following results on the evaluation set: - Loss: nan - Accuracy: 0.3896 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 0.91 | 5 | nan | 0.3896 | | 0.0 | 2.0 | 11 | nan | 0.3896 | | 0.0 | 2.73 | 15 | nan | 0.3896 | ### Framework versions - Transformers 4.36.0 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.15.0
[ "healthy", "powdery", "rust" ]
MaulikMadhavi/vit-base-flowers102
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-flowers102 This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the nelorth/oxford-flowers dataset. It achieves the following results on the evaluation set: - Loss: 0.0770 - Accuracy: 0.9853 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.5779 | 0.22 | 100 | 2.8895 | 0.7775 | | 1.2226 | 0.45 | 200 | 1.5942 | 0.9255 | | 0.606 | 0.67 | 300 | 0.8012 | 0.9529 | | 0.3413 | 0.89 | 400 | 0.4845 | 0.9706 | | 0.1571 | 1.11 | 500 | 0.2611 | 0.9814 | | 0.1237 | 1.34 | 600 | 0.1691 | 0.9784 | | 0.049 | 1.56 | 700 | 0.1146 | 0.9892 | | 0.0763 | 1.78 | 800 | 0.1209 | 0.9863 | | 0.0864 | 2.0 | 900 | 0.1223 | 0.9804 | | 0.0786 | 2.23 | 1000 | 0.1075 | 0.9833 | | 0.0269 | 2.45 | 1100 | 0.0919 | 0.9843 | | 0.0178 | 2.67 | 1200 | 0.0795 | 0.9873 | | 0.0165 | 2.9 | 1300 | 0.0727 | 0.9873 | | 0.0144 | 3.12 | 1400 | 0.0784 | 0.9853 | | 0.0138 | 3.34 | 1500 | 0.0759 | 0.9853 | | 0.0135 | 3.56 | 1600 | 0.0737 | 0.9863 | | 0.0123 | 3.79 | 1700 | 0.0770 | 0.9853 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
[ "1", "10", "16", "98", "99", "17", "18", "19", "2", "20", "21", "22", "23", "24", "100", "25", "26", "27", "28", "29", "3", "30", "31", "32", "33", "101", "34", "35", "36", "37", "38", "39", "4", "40", "41", "42", "102", "43", "44", "45", "46", "47", "48", "49", "5", "50", "51", "11", "52", "53", "54", "55", "56", "57", "58", "59", "6", "60", "12", "61", "62", "63", "64", "65", "66", "67", "68", "69", "7", "13", "70", "71", "72", "73", "74", "75", "76", "77", "78", "79", "14", "8", "80", "81", "82", "83", "84", "85", "86", "87", "88", "15", "89", "9", "90", "91", "92", "93", "94", "95", "96", "97" ]
sooks/id1
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # id1 This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the sooks/id1 dataset. It achieves the following results on the evaluation set: - Loss: 0.6181 - Accuracy: 0.6535 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:------:|:---------------:|:--------:| | 0.6933 | 0.53 | 10000 | 0.6932 | 0.5008 | | 0.6933 | 1.06 | 20000 | 0.6933 | 0.4992 | | 0.6933 | 1.59 | 30000 | 0.6931 | 0.5008 | | 0.6933 | 2.12 | 40000 | 0.6931 | 0.5161 | | 0.6931 | 2.65 | 50000 | 0.6933 | 0.4991 | | 0.6932 | 3.19 | 60000 | 0.6932 | 0.4991 | | 0.6746 | 3.72 | 70000 | 0.6725 | 0.5796 | | 0.6582 | 4.25 | 80000 | 0.6614 | 0.6032 | | 0.6455 | 4.78 | 90000 | 0.6466 | 0.6132 | | 0.6256 | 5.31 | 100000 | 0.6325 | 0.6391 | | 0.6144 | 5.84 | 110000 | 0.6181 | 0.6535 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
[ "ai", "human" ]
TeeA/resnet-50-finetuned-pokemon
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # resnet-50-finetuned-pokemon-finetuned-pokemon This model is a fine-tuned version of [TeeA/resnet-50-finetuned-pokemon](https://huggingface.co/TeeA/resnet-50-finetuned-pokemon) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 14.1746 - Accuracy: 0.0849 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.1894 | 0.99 | 38 | 9.2115 | 0.0137 | | 1.1389 | 1.99 | 76 | 9.2521 | 0.0129 | | 1.0432 | 2.98 | 114 | 9.4765 | 0.0144 | | 1.0625 | 4.0 | 153 | 9.7668 | 0.0137 | | 1.0805 | 4.99 | 191 | 10.2526 | 0.0137 | | 1.0353 | 5.99 | 229 | 10.3238 | 0.0129 | | 0.9747 | 6.98 | 267 | 10.5779 | 0.0165 | | 0.9708 | 8.0 | 306 | 10.7458 | 0.0180 | | 0.8886 | 8.99 | 344 | 11.0072 | 0.0194 | | 0.8408 | 9.99 | 382 | 11.3171 | 0.0223 | | 0.802 | 10.98 | 420 | 11.5545 | 0.0245 | | 0.7903 | 12.0 | 459 | 11.7722 | 0.0288 | | 0.7553 | 12.99 | 497 | 11.9834 | 0.0353 | | 0.7413 | 13.99 | 535 | 11.9815 | 0.0446 | | 0.6272 | 14.98 | 573 | 12.0871 | 0.0496 | | 0.6944 | 16.0 | 612 | 12.3713 | 0.0590 | | 0.6322 | 16.99 | 650 | 12.6826 | 0.0554 | | 0.6131 | 17.99 | 688 | 12.4819 | 0.0612 | | 0.5916 | 18.98 | 726 | 12.6246 | 0.0647 | | 0.5094 | 20.0 | 765 | 12.6641 | 0.0669 | | 0.5201 | 20.99 | 803 | 12.8861 | 0.0662 | | 0.4731 | 21.99 | 841 | 12.7431 | 0.0655 | | 0.5132 | 22.98 | 879 | 12.7786 | 0.0705 | | 0.5036 | 24.0 | 918 | 12.9990 | 0.0727 | | 0.4863 | 24.99 | 956 | 13.0419 | 0.0727 | | 0.4852 | 25.99 | 994 | 13.0573 | 0.0734 | | 0.4983 | 26.98 | 1032 | 13.1310 | 0.0719 | | 0.459 | 28.0 | 1071 | 13.0688 | 0.0748 | | 0.4556 | 28.99 | 1109 | 13.4128 | 0.0748 | | 0.4729 | 29.99 | 1147 | 13.3530 | 0.0741 | | 0.4659 | 30.98 | 1185 | 13.2308 | 0.0763 | | 0.4337 | 32.0 | 1224 | 13.3264 | 0.0748 | | 0.456 | 32.99 | 1262 | 13.3506 | 0.0741 | | 0.4423 | 33.99 | 1300 | 13.3607 | 0.0784 | | 0.4037 | 34.98 | 1338 | 13.2521 | 0.0734 | | 0.3891 | 36.0 | 1377 | 13.3702 | 0.0777 | | 0.3992 | 36.99 | 1415 | 13.4762 | 0.0777 | | 0.4014 | 37.99 | 1453 | 13.5382 | 0.0791 | | 0.3549 | 38.98 | 1491 | 13.5550 | 0.0791 | | 0.4048 | 40.0 | 1530 | 13.6406 | 0.0799 | | 0.3711 | 40.99 | 1568 | 13.5120 | 0.0777 | | 0.3834 | 41.99 | 1606 | 13.9230 | 0.0799 | | 0.3475 | 42.98 | 1644 | 13.8602 | 0.0791 | | 0.3465 | 44.0 | 1683 | 13.6931 | 0.0806 | | 0.3682 | 44.99 | 1721 | 13.7774 | 0.0784 | | 0.3613 | 45.99 | 1759 | 14.0235 | 0.0791 | | 0.368 | 46.98 | 1797 | 13.9289 | 0.0813 | | 0.3961 | 48.0 | 1836 | 14.2549 | 0.0806 | | 0.365 | 48.99 | 1874 | 14.1114 | 0.0813 | | 0.3259 | 49.99 | 1912 | 13.9710 | 0.0806 | | 0.2998 | 50.98 | 1950 | 14.0288 | 0.0806 | | 0.3203 | 52.0 | 1989 | 13.9398 | 0.0813 | | 0.3104 | 52.99 | 2027 | 14.0255 | 0.0820 | | 0.3232 | 53.99 | 2065 | 13.9355 | 0.0827 | | 0.3521 | 54.98 | 2103 | 13.8627 | 0.0806 | | 0.3322 | 56.0 | 2142 | 14.0179 | 0.0806 | | 0.3129 | 56.99 | 2180 | 13.9640 | 0.0820 | | 0.3159 | 57.99 | 2218 | 14.1997 | 0.0799 | | 0.3118 | 58.98 | 2256 | 14.1639 | 0.0820 | | 0.3196 | 60.0 | 2295 | 14.0334 | 0.0806 | | 0.301 | 60.99 | 2333 | 13.9954 | 0.0820 | | 0.3142 | 61.99 | 2371 | 14.1432 | 0.0799 | | 0.3192 | 62.98 | 2409 | 14.0269 | 0.0784 | | 0.3342 | 64.0 | 2448 | 14.0450 | 0.0806 | | 0.3045 | 64.99 | 2486 | 14.1746 | 0.0849 | | 0.2991 | 65.99 | 2524 | 14.3192 | 0.0806 | | 0.3228 | 66.98 | 2562 | 14.1782 | 0.0784 | | 0.2711 | 68.0 | 2601 | 14.4261 | 0.0849 | | 0.2473 | 68.99 | 2639 | 14.2303 | 0.0827 | | 0.3287 | 69.99 | 2677 | 14.2750 | 0.0827 | | 0.2673 | 70.98 | 2715 | 14.2303 | 0.0820 | | 0.2843 | 72.0 | 2754 | 14.4086 | 0.0806 | | 0.3099 | 72.99 | 2792 | 14.5184 | 0.0827 | | 0.3102 | 73.99 | 2830 | 14.2768 | 0.0835 | | 0.2911 | 74.98 | 2868 | 14.1010 | 0.0835 | | 0.2927 | 76.0 | 2907 | 14.4618 | 0.0813 | | 0.2967 | 76.99 | 2945 | 14.3581 | 0.0820 | | 0.2446 | 77.99 | 2983 | 14.4562 | 0.0835 | | 0.3035 | 78.98 | 3021 | 14.2681 | 0.0835 | | 0.2989 | 80.0 | 3060 | 14.2768 | 0.0827 | | 0.2486 | 80.99 | 3098 | 14.4242 | 0.0820 | | 0.2622 | 81.99 | 3136 | 14.3810 | 0.0835 | | 0.2892 | 82.98 | 3174 | 14.4637 | 0.0827 | | 0.2668 | 84.0 | 3213 | 14.4597 | 0.0835 | | 0.2527 | 84.99 | 3251 | 14.3098 | 0.0820 | | 0.2636 | 85.99 | 3289 | 14.3741 | 0.0835 | | 0.247 | 86.98 | 3327 | 14.5369 | 0.0842 | | 0.2693 | 88.0 | 3366 | 14.4039 | 0.0835 | | 0.2692 | 88.99 | 3404 | 14.6161 | 0.0835 | | 0.28 | 89.99 | 3442 | 14.5244 | 0.0835 | | 0.2535 | 90.98 | 3480 | 14.4062 | 0.0842 | | 0.2887 | 92.0 | 3519 | 14.4113 | 0.0806 | | 0.257 | 92.99 | 3557 | 14.3442 | 0.0842 | | 0.2627 | 93.99 | 3595 | 14.4693 | 0.0835 | | 0.2804 | 94.98 | 3633 | 14.3223 | 0.0835 | | 0.2529 | 96.0 | 3672 | 14.3844 | 0.0835 | | 0.2327 | 96.99 | 3710 | 14.4284 | 0.0835 | | 0.2643 | 97.99 | 3748 | 14.5567 | 0.0835 | | 0.284 | 98.98 | 3786 | 14.6738 | 0.0813 | | 0.2503 | 99.35 | 3800 | 14.5363 | 0.0842 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
[ "porygon", "goldeen", "hitmonlee", "hitmonchan", "gloom", "aerodactyl", "mankey", "seadra", "gengar", "venonat", "articuno", "seaking", "dugtrio", "machop", "jynx", "oddish", "dodrio", "dragonair", "weedle", "golduck", "flareon", "krabby", "parasect", "ninetales", "nidoqueen", "kabutops", "drowzee", "caterpie", "jigglypuff", "machamp", "clefairy", "kangaskhan", "dragonite", "weepinbell", "fearow", "bellsprout", "grimer", "nidorina", "staryu", "horsea", "electabuzz", "dratini", "machoke", "magnemite", "squirtle", "gyarados", "pidgeot", "bulbasaur", "nidoking", "golem", "dewgong", "moltres", "zapdos", "poliwrath", "vulpix", "beedrill", "charmander", "abra", "zubat", "golbat", "wigglytuff", "charizard", "slowpoke", "poliwag", "tentacruel", "rhyhorn", "onix", "butterfree", "exeggcute", "sandslash", "pinsir", "rattata", "growlithe", "haunter", "pidgey", "ditto", "farfetchd", "pikachu", "raticate", "wartortle", "vaporeon", "cloyster", "hypno", "arbok", "metapod", "tangela", "kingler", "exeggutor", "kadabra", "seel", "voltorb", "chansey", "venomoth", "ponyta", "vileplume", "koffing", "blastoise", "tentacool", "lickitung", "paras", "clefable", "cubone", "marowak", "nidorino", "jolteon", "muk", "magikarp", "slowbro", "tauros", "kabuto", "spearow", "sandshrew", "eevee", "kakuna", "omastar", "ekans", "geodude", "magmar", "snorlax", "meowth", "pidgeotto", "venusaur", "persian", "rhydon", "starmie", "charmeleon", "lapras", "alakazam", "graveler", "psyduck", "rapidash", "doduo", "magneton", "arcanine", "electrode", "omanyte", "poliwhirl", "mew", "alolan sandslash", "mewtwo", "weezing", "gastly", "victreebel", "ivysaur", "mrmime", "shellder", "scyther", "diglett", "primeape", "raichu" ]
Nusri7/Age_classifier
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Nusri7/Age_classifier This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.1550 - Validation Loss: 0.1649 - Train Accuracy: 0.933 - Epoch: 4 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 3e-05, 'decay_steps': 20000, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Accuracy | Epoch | |:----------:|:---------------:|:--------------:|:-----:| | 0.3846 | 0.3390 | 0.891 | 0 | | 0.2197 | 0.1807 | 0.936 | 1 | | 0.1885 | 0.1659 | 0.935 | 2 | | 0.1706 | 0.1495 | 0.946 | 3 | | 0.1550 | 0.1649 | 0.933 | 4 | ### Framework versions - Transformers 4.35.2 - TensorFlow 2.15.0 - Datasets 2.16.1 - Tokenizers 0.15.0
[ "age_0-20", "age_20-40", "age_40-60", "age_60-80" ]
spolivin/food-vit-tutorial
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # food-vit-tutorial This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on food101 dataset. It achieves the following results on the evaluation set: - Loss: 1.0267 - Accuracy: 0.916 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.7889 | 0.99 | 62 | 2.5577 | 0.838 | | 1.7142 | 2.0 | 125 | 1.6126 | 0.879 | | 1.2887 | 2.99 | 187 | 1.2513 | 0.903 | | 1.0307 | 4.0 | 250 | 1.0673 | 0.922 | | 1.0022 | 4.96 | 310 | 1.0267 | 0.916 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
[ "apple_pie", "baby_back_ribs", "baklava", "beef_carpaccio", "beef_tartare", "beet_salad", "beignets", "bibimbap", "bread_pudding", "breakfast_burrito", "bruschetta", "caesar_salad", "cannoli", "caprese_salad", "carrot_cake", "ceviche", "cheesecake", "cheese_plate", "chicken_curry", "chicken_quesadilla", "chicken_wings", "chocolate_cake", "chocolate_mousse", "churros", "clam_chowder", "club_sandwich", "crab_cakes", "creme_brulee", "croque_madame", "cup_cakes", "deviled_eggs", "donuts", "dumplings", "edamame", "eggs_benedict", "escargots", "falafel", "filet_mignon", "fish_and_chips", "foie_gras", "french_fries", "french_onion_soup", "french_toast", "fried_calamari", "fried_rice", "frozen_yogurt", "garlic_bread", "gnocchi", "greek_salad", "grilled_cheese_sandwich", "grilled_salmon", "guacamole", "gyoza", "hamburger", "hot_and_sour_soup", "hot_dog", "huevos_rancheros", "hummus", "ice_cream", "lasagna", "lobster_bisque", "lobster_roll_sandwich", "macaroni_and_cheese", "macarons", "miso_soup", "mussels", "nachos", "omelette", "onion_rings", "oysters", "pad_thai", "paella", "pancakes", "panna_cotta", "peking_duck", "pho", "pizza", "pork_chop", "poutine", "prime_rib", "pulled_pork_sandwich", "ramen", "ravioli", "red_velvet_cake", "risotto", "samosa", "sashimi", "scallops", "seaweed_salad", "shrimp_and_grits", "spaghetti_bolognese", "spaghetti_carbonara", "spring_rolls", "steak", "strawberry_shortcake", "sushi", "tacos", "takoyaki", "tiramisu", "tuna_tartare", "waffles" ]
johncban/vit-base-patch16-224-finetuned-flower
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-patch16-224-finetuned-flower This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the imagefolder dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results ### Framework versions - Transformers 4.24.0 - Pytorch 2.1.0+cu121 - Datasets 2.7.1 - Tokenizers 0.13.3
[ "daisy", "dandelion", "roses", "sunflowers", "tulips" ]
alirzb/S1_M1_R1_vit_42498800
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # S1_M1_R1_vit_42498800 This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0086 - Accuracy: 0.9978 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.1858 | 0.99 | 57 | 0.2279 | 0.9253 | | 0.0313 | 1.99 | 115 | 0.0156 | 0.9968 | | 0.0126 | 3.0 | 173 | 0.0210 | 0.9957 | | 0.0039 | 4.0 | 231 | 0.0083 | 0.9989 | | 0.0034 | 4.94 | 285 | 0.0086 | 0.9978 | ### Framework versions - Transformers 4.36.2 - Pytorch 1.11.0+cu102 - Datasets 2.16.0 - Tokenizers 0.15.0
[ "none_seizures", "seizures" ]
alirzb/S1_M1_R2_vit_42498972
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # S1_M1_R2_vit_42498972 This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0113 - Accuracy: 0.9981 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.1457 | 0.99 | 66 | 0.1152 | 0.9661 | | 0.038 | 2.0 | 133 | 0.0171 | 0.9972 | | 0.0083 | 2.99 | 199 | 0.0122 | 0.9972 | | 0.0045 | 4.0 | 266 | 0.0116 | 0.9972 | | 0.0025 | 4.96 | 330 | 0.0113 | 0.9981 | ### Framework versions - Transformers 4.36.2 - Pytorch 1.11.0+cu102 - Datasets 2.16.0 - Tokenizers 0.15.0
[ "none_seizures", "seizures" ]
alirzb/S1_M1_R3_vit_42499444
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # S1_M1_R3_vit_42499444 This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0076 - Accuracy: 0.9983 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.0799 | 0.99 | 73 | 0.0444 | 0.9958 | | 0.0309 | 1.99 | 147 | 0.0085 | 0.9992 | | 0.0072 | 3.0 | 221 | 0.0090 | 0.9983 | | 0.0021 | 4.0 | 295 | 0.0076 | 0.9992 | | 0.0018 | 4.95 | 365 | 0.0076 | 0.9983 | ### Framework versions - Transformers 4.36.2 - Pytorch 1.11.0+cu102 - Datasets 2.16.0 - Tokenizers 0.15.0
[ "none_seizures", "seizures" ]
alirzb/S2_M1_R1_vit_42499480
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # S2_M1_R1_vit_42499480 This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0083 - Accuracy: 0.9989 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.1704 | 1.0 | 58 | 0.1195 | 0.9784 | | 0.0533 | 2.0 | 116 | 0.0143 | 0.9978 | | 0.0184 | 3.0 | 174 | 0.0051 | 1.0 | | 0.0044 | 4.0 | 232 | 0.0031 | 1.0 | | 0.0027 | 5.0 | 290 | 0.0083 | 0.9989 | ### Framework versions - Transformers 4.36.2 - Pytorch 1.11.0+cu102 - Datasets 2.16.0 - Tokenizers 0.15.0
[ "none_seizures", "seizures" ]
alirzb/S2_M1_R2_vit_42499499
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # S2_M1_R2_vit_42499499 This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0063 - Accuracy: 0.9981 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.1394 | 0.99 | 66 | 0.0669 | 0.9915 | | 0.0058 | 2.0 | 133 | 0.0206 | 0.9953 | | 0.0118 | 2.99 | 199 | 0.0100 | 0.9981 | | 0.0037 | 4.0 | 266 | 0.0097 | 0.9981 | | 0.002 | 4.96 | 330 | 0.0063 | 0.9981 | ### Framework versions - Transformers 4.36.2 - Pytorch 1.11.0+cu102 - Datasets 2.16.0 - Tokenizers 0.15.0
[ "none_seizures", "seizures" ]
alirzb/S2_M1_R3_vit_42499514
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # S2_M1_R3_vit_42499514 This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0101 - Accuracy: 0.9975 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.0599 | 0.99 | 73 | 0.0336 | 0.9983 | | 0.0232 | 1.99 | 147 | 0.0114 | 0.9975 | | 0.0036 | 3.0 | 221 | 0.0147 | 0.9966 | | 0.0027 | 4.0 | 295 | 0.0120 | 0.9975 | | 0.002 | 4.95 | 365 | 0.0101 | 0.9975 | ### Framework versions - Transformers 4.36.2 - Pytorch 1.11.0+cu102 - Datasets 2.16.0 - Tokenizers 0.15.0
[ "none_seizures", "seizures" ]
tiennguyenbnbk/teacher-status-van-tiny-256-1-2
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # teacher-status-van-tiny-256-1-2 This model is a fine-tuned version of [Visual-Attention-Network/van-tiny](https://huggingface.co/Visual-Attention-Network/van-tiny) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0859 - Accuracy: 0.9717 - F1 Score: 0.9778 - Recall: 0.9754 - Precision: 0.9802 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Score | Recall | Precision | |:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|:------:|:---------:| | 0.6722 | 0.99 | 33 | 0.6499 | 0.6401 | 0.7806 | 1.0 | 0.6401 | | 0.5431 | 2.0 | 67 | 0.4164 | 0.7817 | 0.8531 | 0.9902 | 0.7494 | | 0.393 | 2.99 | 100 | 0.2833 | 0.8877 | 0.9078 | 0.8639 | 0.9564 | | 0.354 | 4.0 | 134 | 0.1930 | 0.9276 | 0.9436 | 0.9459 | 0.9413 | | 0.3007 | 4.99 | 167 | 0.1585 | 0.9370 | 0.9511 | 0.9557 | 0.9464 | | 0.2898 | 6.0 | 201 | 0.1445 | 0.9465 | 0.9581 | 0.9557 | 0.9605 | | 0.2824 | 6.99 | 234 | 0.1353 | 0.9465 | 0.9580 | 0.9525 | 0.9635 | | 0.2763 | 8.0 | 268 | 0.1359 | 0.9486 | 0.9603 | 0.9721 | 0.9488 | | 0.2473 | 8.99 | 301 | 0.1213 | 0.9570 | 0.9664 | 0.9672 | 0.9656 | | 0.2598 | 10.0 | 335 | 0.1091 | 0.9570 | 0.9665 | 0.9705 | 0.9626 | | 0.2476 | 10.99 | 368 | 0.1041 | 0.9633 | 0.9714 | 0.9754 | 0.9675 | | 0.2376 | 12.0 | 402 | 0.0997 | 0.9601 | 0.9686 | 0.9623 | 0.9751 | | 0.2402 | 12.99 | 435 | 0.0972 | 0.9622 | 0.9704 | 0.9672 | 0.9736 | | 0.2324 | 14.0 | 469 | 0.0950 | 0.9664 | 0.9739 | 0.9803 | 0.9676 | | 0.2256 | 14.99 | 502 | 0.0909 | 0.9706 | 0.9770 | 0.9754 | 0.9786 | | 0.21 | 16.0 | 536 | 0.0922 | 0.9622 | 0.9703 | 0.9656 | 0.9752 | | 0.217 | 16.99 | 569 | 0.0933 | 0.9612 | 0.9695 | 0.9656 | 0.9736 | | 0.2092 | 18.0 | 603 | 0.0891 | 0.9664 | 0.9738 | 0.9754 | 0.9722 | | 0.2063 | 18.99 | 636 | 0.0913 | 0.9654 | 0.9730 | 0.9738 | 0.9722 | | 0.2217 | 20.0 | 670 | 0.0917 | 0.9643 | 0.9720 | 0.9672 | 0.9768 | | 0.1952 | 20.99 | 703 | 0.0859 | 0.9717 | 0.9778 | 0.9754 | 0.9802 | | 0.2068 | 22.0 | 737 | 0.0907 | 0.9685 | 0.9755 | 0.9770 | 0.9739 | | 0.1914 | 22.99 | 770 | 0.0847 | 0.9696 | 0.9763 | 0.9787 | 0.9739 | | 0.1961 | 24.0 | 804 | 0.0870 | 0.9685 | 0.9755 | 0.9770 | 0.9739 | | 0.1911 | 24.99 | 837 | 0.0884 | 0.9664 | 0.9739 | 0.9770 | 0.9707 | | 0.1961 | 26.0 | 871 | 0.0870 | 0.9685 | 0.9754 | 0.9738 | 0.9770 | | 0.1978 | 26.99 | 904 | 0.0871 | 0.9685 | 0.9754 | 0.9754 | 0.9754 | | 0.1854 | 28.0 | 938 | 0.0858 | 0.9685 | 0.9755 | 0.9770 | 0.9739 | | 0.1733 | 28.99 | 971 | 0.0860 | 0.9685 | 0.9754 | 0.9738 | 0.9770 | | 0.1762 | 29.55 | 990 | 0.0858 | 0.9664 | 0.9738 | 0.9738 | 0.9738 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
[ "abnormal", "normal" ]
alirzb/S5_M1_fold1_vit_42499955
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # S5_M1_fold1_vit_42499955 This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0169 - Accuracy: 0.9968 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.0731 | 1.0 | 79 | 0.0361 | 0.9945 | | 0.0164 | 1.99 | 158 | 0.0198 | 0.9961 | | 0.0087 | 2.99 | 237 | 0.0215 | 0.9953 | | 0.0018 | 4.0 | 317 | 0.0206 | 0.9968 | | 0.0016 | 4.98 | 395 | 0.0169 | 0.9968 | ### Framework versions - Transformers 4.36.2 - Pytorch 1.11.0+cu102 - Datasets 2.16.0 - Tokenizers 0.15.0
[ "none_seizures", "seizures" ]
alirzb/S5_M1_fold2_vit_42499968
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # S5_M1_fold2_vit_42499968 This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0081 - Accuracy: 0.9976 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.0883 | 1.0 | 79 | 0.0413 | 0.9945 | | 0.0258 | 1.99 | 158 | 0.0134 | 0.9968 | | 0.0033 | 2.99 | 237 | 0.0133 | 0.9968 | | 0.0022 | 4.0 | 317 | 0.0080 | 0.9984 | | 0.0015 | 4.98 | 395 | 0.0081 | 0.9976 | ### Framework versions - Transformers 4.36.2 - Pytorch 1.11.0+cu102 - Datasets 2.16.0 - Tokenizers 0.15.0
[ "none_seizures", "seizures" ]
alirzb/S5_M1_fold3_vit_42499983
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # S5_M1_fold3_vit_42499983 This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0057 - Accuracy: 0.9984 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.0823 | 1.0 | 79 | 0.0786 | 0.9834 | | 0.0209 | 1.99 | 158 | 0.0370 | 0.9913 | | 0.0074 | 2.99 | 237 | 0.0062 | 0.9984 | | 0.0018 | 4.0 | 317 | 0.0057 | 0.9984 | | 0.0016 | 4.98 | 395 | 0.0057 | 0.9984 | ### Framework versions - Transformers 4.36.2 - Pytorch 1.11.0+cu102 - Datasets 2.16.0 - Tokenizers 0.15.0
[ "none_seizures", "seizures" ]
alirzb/S5_M1_fold4_vit_42499997
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # S5_M1_fold4_vit_42499997 This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0063 - Accuracy: 0.9992 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.1207 | 1.0 | 79 | 0.0699 | 0.9834 | | 0.014 | 1.99 | 158 | 0.0094 | 0.9984 | | 0.0027 | 2.99 | 237 | 0.0070 | 0.9992 | | 0.002 | 4.0 | 317 | 0.0091 | 0.9984 | | 0.0016 | 4.98 | 395 | 0.0063 | 0.9992 | ### Framework versions - Transformers 4.36.2 - Pytorch 1.11.0+cu102 - Datasets 2.16.0 - Tokenizers 0.15.0
[ "none_seizures", "seizures" ]
alirzb/S5_M1_fold5_vit_42500027
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # S5_M1_fold5_vit_42500027 This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0080 - Accuracy: 0.9984 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.087 | 1.0 | 79 | 0.0385 | 0.9961 | | 0.0116 | 1.99 | 158 | 0.0212 | 0.9953 | | 0.0235 | 2.99 | 237 | 0.0064 | 0.9992 | | 0.007 | 4.0 | 317 | 0.0068 | 0.9992 | | 0.0016 | 4.98 | 395 | 0.0080 | 0.9984 | ### Framework versions - Transformers 4.36.2 - Pytorch 1.11.0+cu102 - Datasets 2.16.0 - Tokenizers 0.15.0
[ "none_seizures", "seizures" ]
alirzb/S1_M1_R2_swint_42500764
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # S1_M1_R2_swint_42500764 This model is a fine-tuned version of [microsoft/swin-base-patch4-window7-224](https://huggingface.co/microsoft/swin-base-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0047 - Accuracy: 0.9981 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.0625 | 0.99 | 66 | 0.0473 | 0.9868 | | 0.006 | 2.0 | 133 | 0.0091 | 0.9962 | | 0.0023 | 2.99 | 199 | 0.0180 | 0.9962 | | 0.0117 | 4.0 | 266 | 0.0049 | 0.9991 | | 0.0175 | 4.96 | 330 | 0.0047 | 0.9981 | ### Framework versions - Transformers 4.36.2 - Pytorch 1.11.0+cu102 - Datasets 2.16.0 - Tokenizers 0.15.0
[ "none_seizures", "seizures" ]
alirzb/S1_M1_R3_swint_42500766
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # S1_M1_R3_swint_42500766 This model is a fine-tuned version of [microsoft/swin-base-patch4-window7-224](https://huggingface.co/microsoft/swin-base-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0133 - Accuracy: 0.9975 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.034 | 0.99 | 73 | 0.0062 | 0.9966 | | 0.012 | 1.99 | 147 | 0.0010 | 1.0 | | 0.0144 | 3.0 | 221 | 0.0112 | 0.9975 | | 0.0006 | 4.0 | 295 | 0.0134 | 0.9975 | | 0.0192 | 4.95 | 365 | 0.0133 | 0.9975 | ### Framework versions - Transformers 4.36.2 - Pytorch 1.11.0+cu102 - Datasets 2.16.0 - Tokenizers 0.15.0
[ "none_seizures", "seizures" ]
alirzb/S1_M1_R1_swint_42500767
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # S1_M1_R1_swint_42500767 This model is a fine-tuned version of [microsoft/swin-base-patch4-window7-224](https://huggingface.co/microsoft/swin-base-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0079 - Accuracy: 0.9989 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.0579 | 0.99 | 57 | 0.0150 | 0.9968 | | 0.018 | 1.99 | 115 | 0.0076 | 0.9978 | | 0.0251 | 3.0 | 173 | 0.0160 | 0.9957 | | 0.0011 | 4.0 | 231 | 0.0055 | 0.9989 | | 0.0011 | 4.94 | 285 | 0.0079 | 0.9989 | ### Framework versions - Transformers 4.36.2 - Pytorch 1.11.0+cu102 - Datasets 2.16.0 - Tokenizers 0.15.0
[ "none_seizures", "seizures" ]
alirzb/S5_M1_fold3_swint_42500769
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # S5_M1_fold3_swint_42500769 This model is a fine-tuned version of [microsoft/swin-base-patch4-window7-224](https://huggingface.co/microsoft/swin-base-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0158 - Accuracy: 0.9968 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.0382 | 1.0 | 79 | 0.0472 | 0.9897 | | 0.0065 | 1.99 | 158 | 0.0091 | 0.9968 | | 0.0496 | 2.99 | 237 | 0.0103 | 0.9961 | | 0.0003 | 4.0 | 317 | 0.0107 | 0.9968 | | 0.0002 | 4.98 | 395 | 0.0158 | 0.9968 | ### Framework versions - Transformers 4.36.2 - Pytorch 1.11.0+cu102 - Datasets 2.16.0 - Tokenizers 0.15.0
[ "none_seizures", "seizures" ]
alirzb/S5_M1_fold2_swint_42500768
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # S5_M1_fold2_swint_42500768 This model is a fine-tuned version of [microsoft/swin-base-patch4-window7-224](https://huggingface.co/microsoft/swin-base-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0071 - Accuracy: 0.9992 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.0485 | 1.0 | 79 | 0.0253 | 0.9937 | | 0.0072 | 1.99 | 158 | 0.0075 | 0.9984 | | 0.0096 | 2.99 | 237 | 0.0070 | 0.9992 | | 0.0003 | 4.0 | 317 | 0.0150 | 0.9961 | | 0.0069 | 4.98 | 395 | 0.0071 | 0.9992 | ### Framework versions - Transformers 4.36.2 - Pytorch 1.11.0+cu102 - Datasets 2.16.0 - Tokenizers 0.15.0
[ "none_seizures", "seizures" ]
alirzb/S5_M1_fold4_swint_42500770
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # S5_M1_fold4_swint_42500770 This model is a fine-tuned version of [microsoft/swin-base-patch4-window7-224](https://huggingface.co/microsoft/swin-base-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0109 - Accuracy: 0.9976 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.0316 | 1.0 | 79 | 0.0222 | 0.9953 | | 0.0042 | 1.99 | 158 | 0.0357 | 0.9905 | | 0.0107 | 2.99 | 237 | 0.0092 | 0.9961 | | 0.0003 | 4.0 | 317 | 0.0059 | 0.9984 | | 0.0019 | 4.98 | 395 | 0.0109 | 0.9976 | ### Framework versions - Transformers 4.36.2 - Pytorch 1.11.0+cu102 - Datasets 2.16.0 - Tokenizers 0.15.0
[ "none_seizures", "seizures" ]
alirzb/S5_M1_fold5_swint_42500771
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # S5_M1_fold5_swint_42500771 This model is a fine-tuned version of [microsoft/swin-base-patch4-window7-224](https://huggingface.co/microsoft/swin-base-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0073 - Accuracy: 0.9984 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.0816 | 1.0 | 79 | 0.0136 | 0.9968 | | 0.0189 | 1.99 | 158 | 0.0124 | 0.9976 | | 0.0061 | 2.99 | 237 | 0.0085 | 0.9984 | | 0.0003 | 4.0 | 317 | 0.0044 | 0.9992 | | 0.0149 | 4.98 | 395 | 0.0073 | 0.9984 | ### Framework versions - Transformers 4.36.2 - Pytorch 1.11.0+cu102 - Datasets 2.16.0 - Tokenizers 0.15.0
[ "none_seizures", "seizures" ]
alirzb/S1_M1_R2_deit_42502103
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # S1_M1_R2_deit_42502103 This model is a fine-tuned version of [facebook/deit-base-distilled-patch16-224](https://huggingface.co/facebook/deit-base-distilled-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0223 - Accuracy: 0.9934 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.0669 | 0.99 | 66 | 0.0171 | 0.9896 | | 0.0082 | 2.0 | 133 | 0.0229 | 0.9934 | | 0.0003 | 2.99 | 199 | 0.0231 | 0.9953 | | 0.0056 | 4.0 | 266 | 0.0216 | 0.9925 | | 0.0001 | 4.96 | 330 | 0.0223 | 0.9934 | ### Framework versions - Transformers 4.36.2 - Pytorch 1.11.0+cu102 - Datasets 2.16.0 - Tokenizers 0.15.0
[ "none_seizures", "seizures" ]
alirzb/S1_M1_R3_deit_42502104
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # S1_M1_R3_deit_42502104 This model is a fine-tuned version of [facebook/deit-base-distilled-patch16-224](https://huggingface.co/facebook/deit-base-distilled-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0000 - Accuracy: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.0106 | 0.99 | 73 | 0.0038 | 0.9992 | | 0.0365 | 1.99 | 147 | 0.0084 | 0.9983 | | 0.0048 | 3.0 | 221 | 0.0009 | 1.0 | | 0.0016 | 4.0 | 295 | 0.0016 | 0.9992 | | 0.0 | 4.95 | 365 | 0.0000 | 1.0 | ### Framework versions - Transformers 4.36.2 - Pytorch 1.11.0+cu102 - Datasets 2.16.0 - Tokenizers 0.15.0
[ "none_seizures", "seizures" ]
alirzb/S1_M1_R1_deit_42502105
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # S1_M1_R1_deit_42502105 This model is a fine-tuned version of [facebook/deit-base-distilled-patch16-224](https://huggingface.co/facebook/deit-base-distilled-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0090 - Accuracy: 0.9968 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.033 | 0.99 | 57 | 0.0372 | 0.9870 | | 0.0069 | 1.99 | 115 | 0.1166 | 0.9719 | | 0.0008 | 3.0 | 173 | 0.0089 | 0.9978 | | 0.0 | 4.0 | 231 | 0.0099 | 0.9978 | | 0.0 | 4.94 | 285 | 0.0090 | 0.9968 | ### Framework versions - Transformers 4.36.2 - Pytorch 1.11.0+cu102 - Datasets 2.16.0 - Tokenizers 0.15.0
[ "none_seizures", "seizures" ]
alirzb/S5_M1_fold2_deit_42502106
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # S5_M1_fold2_deit_42502106 This model is a fine-tuned version of [facebook/deit-base-distilled-patch16-224](https://huggingface.co/facebook/deit-base-distilled-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0079 - Accuracy: 0.9976 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.0182 | 1.0 | 79 | 0.0090 | 0.9984 | | 0.0176 | 1.99 | 158 | 0.0263 | 0.9913 | | 0.0091 | 2.99 | 237 | 0.0271 | 0.9937 | | 0.0 | 4.0 | 317 | 0.0080 | 0.9968 | | 0.0 | 4.98 | 395 | 0.0079 | 0.9976 | ### Framework versions - Transformers 4.36.2 - Pytorch 1.11.0+cu102 - Datasets 2.16.0 - Tokenizers 0.15.0
[ "none_seizures", "seizures" ]
alirzb/S5_M1_fold3_deit_42502107
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # S5_M1_fold3_deit_42502107 This model is a fine-tuned version of [facebook/deit-base-distilled-patch16-224](https://huggingface.co/facebook/deit-base-distilled-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0154 - Accuracy: 0.9976 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.0606 | 1.0 | 79 | 0.0476 | 0.9866 | | 0.0023 | 1.99 | 158 | 0.0305 | 0.9913 | | 0.0001 | 2.99 | 237 | 0.0103 | 0.9976 | | 0.0 | 4.0 | 317 | 0.0147 | 0.9976 | | 0.0 | 4.98 | 395 | 0.0154 | 0.9976 | ### Framework versions - Transformers 4.36.2 - Pytorch 1.11.0+cu102 - Datasets 2.16.0 - Tokenizers 0.15.0
[ "none_seizures", "seizures" ]
alirzb/S5_M1_fold4_deit_42502108
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # S5_M1_fold4_deit_42502108 This model is a fine-tuned version of [facebook/deit-base-distilled-patch16-224](https://huggingface.co/facebook/deit-base-distilled-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0060 - Accuracy: 0.9984 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.0171 | 1.0 | 79 | 0.0099 | 0.9968 | | 0.0279 | 1.99 | 158 | 0.0310 | 0.9929 | | 0.0038 | 2.99 | 237 | 0.0052 | 0.9976 | | 0.0 | 4.0 | 317 | 0.0106 | 0.9984 | | 0.0 | 4.98 | 395 | 0.0060 | 0.9984 | ### Framework versions - Transformers 4.36.2 - Pytorch 1.11.0+cu102 - Datasets 2.16.0 - Tokenizers 0.15.0
[ "none_seizures", "seizures" ]
alirzb/S5_M1_fold5_deit_42502109
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # S5_M1_fold5_deit_42502109 This model is a fine-tuned version of [facebook/deit-base-distilled-patch16-224](https://huggingface.co/facebook/deit-base-distilled-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0121 - Accuracy: 0.9976 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.0411 | 1.0 | 79 | 0.0058 | 0.9984 | | 0.0079 | 1.99 | 158 | 0.0085 | 0.9976 | | 0.0013 | 2.99 | 237 | 0.0107 | 0.9984 | | 0.0019 | 4.0 | 317 | 0.0124 | 0.9976 | | 0.0 | 4.98 | 395 | 0.0121 | 0.9976 | ### Framework versions - Transformers 4.36.2 - Pytorch 1.11.0+cu102 - Datasets 2.16.0 - Tokenizers 0.15.0
[ "none_seizures", "seizures" ]