model_id
stringlengths
7
105
model_card
stringlengths
1
130k
model_labels
listlengths
2
80k
hkivancoral/smids_5x_deit_tiny_sgd_0001_fold5
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # smids_5x_deit_tiny_sgd_0001_fold5 This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co/facebook/deit-tiny-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.4623 - Accuracy: 0.8217 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 1.1763 | 1.0 | 375 | 1.1547 | 0.3917 | | 1.0966 | 2.0 | 750 | 1.0897 | 0.42 | | 1.0223 | 3.0 | 1125 | 1.0444 | 0.46 | | 0.9886 | 4.0 | 1500 | 1.0052 | 0.4917 | | 0.9546 | 5.0 | 1875 | 0.9693 | 0.515 | | 0.932 | 6.0 | 2250 | 0.9344 | 0.54 | | 0.8619 | 7.0 | 2625 | 0.9000 | 0.57 | | 0.857 | 8.0 | 3000 | 0.8647 | 0.5967 | | 0.8079 | 9.0 | 3375 | 0.8304 | 0.62 | | 0.7619 | 10.0 | 3750 | 0.7976 | 0.645 | | 0.7316 | 11.0 | 4125 | 0.7657 | 0.665 | | 0.6666 | 12.0 | 4500 | 0.7355 | 0.68 | | 0.6961 | 13.0 | 4875 | 0.7078 | 0.69 | | 0.6607 | 14.0 | 5250 | 0.6819 | 0.7083 | | 0.6448 | 15.0 | 5625 | 0.6579 | 0.725 | | 0.6031 | 16.0 | 6000 | 0.6371 | 0.7333 | | 0.633 | 17.0 | 6375 | 0.6195 | 0.7433 | | 0.6177 | 18.0 | 6750 | 0.6022 | 0.7533 | | 0.5854 | 19.0 | 7125 | 0.5875 | 0.765 | | 0.5213 | 20.0 | 7500 | 0.5748 | 0.77 | | 0.5296 | 21.0 | 7875 | 0.5628 | 0.7833 | | 0.5226 | 22.0 | 8250 | 0.5527 | 0.7917 | | 0.5777 | 23.0 | 8625 | 0.5439 | 0.795 | | 0.5616 | 24.0 | 9000 | 0.5354 | 0.8017 | | 0.5254 | 25.0 | 9375 | 0.5279 | 0.8067 | | 0.5443 | 26.0 | 9750 | 0.5213 | 0.8067 | | 0.5349 | 27.0 | 10125 | 0.5152 | 0.8133 | | 0.5476 | 28.0 | 10500 | 0.5090 | 0.8133 | | 0.5198 | 29.0 | 10875 | 0.5041 | 0.815 | | 0.4665 | 30.0 | 11250 | 0.4997 | 0.8167 | | 0.5013 | 31.0 | 11625 | 0.4955 | 0.8167 | | 0.5242 | 32.0 | 12000 | 0.4917 | 0.8167 | | 0.5162 | 33.0 | 12375 | 0.4881 | 0.8167 | | 0.5094 | 34.0 | 12750 | 0.4847 | 0.815 | | 0.4537 | 35.0 | 13125 | 0.4817 | 0.8167 | | 0.4056 | 36.0 | 13500 | 0.4788 | 0.8167 | | 0.4566 | 37.0 | 13875 | 0.4763 | 0.8167 | | 0.4864 | 38.0 | 14250 | 0.4740 | 0.8183 | | 0.4572 | 39.0 | 14625 | 0.4721 | 0.82 | | 0.5272 | 40.0 | 15000 | 0.4702 | 0.82 | | 0.4662 | 41.0 | 15375 | 0.4685 | 0.82 | | 0.4598 | 42.0 | 15750 | 0.4671 | 0.82 | | 0.4764 | 43.0 | 16125 | 0.4660 | 0.82 | | 0.4497 | 44.0 | 16500 | 0.4650 | 0.82 | | 0.4734 | 45.0 | 16875 | 0.4641 | 0.82 | | 0.4953 | 46.0 | 17250 | 0.4634 | 0.82 | | 0.4817 | 47.0 | 17625 | 0.4629 | 0.8217 | | 0.4691 | 48.0 | 18000 | 0.4625 | 0.8217 | | 0.4502 | 49.0 | 18375 | 0.4623 | 0.8217 | | 0.4257 | 50.0 | 18750 | 0.4623 | 0.8217 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.1+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2
[ "abnormal_sperm", "non-sperm", "normal_sperm" ]
hkivancoral/smids_5x_beit_base_sgd_0001_fold4
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # smids_5x_beit_base_sgd_0001_fold4 This model is a fine-tuned version of [microsoft/beit-base-patch16-224](https://huggingface.co/microsoft/beit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.4817 - Accuracy: 0.7983 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 1.1553 | 1.0 | 375 | 1.2548 | 0.355 | | 1.0974 | 2.0 | 750 | 1.1671 | 0.3783 | | 0.9812 | 3.0 | 1125 | 1.0817 | 0.4167 | | 0.9358 | 4.0 | 1500 | 1.0016 | 0.455 | | 0.8746 | 5.0 | 1875 | 0.9264 | 0.53 | | 0.8021 | 6.0 | 2250 | 0.8621 | 0.5983 | | 0.7908 | 7.0 | 2625 | 0.8069 | 0.6717 | | 0.763 | 8.0 | 3000 | 0.7629 | 0.69 | | 0.6997 | 9.0 | 3375 | 0.7270 | 0.7133 | | 0.6962 | 10.0 | 3750 | 0.6950 | 0.7167 | | 0.6391 | 11.0 | 4125 | 0.6689 | 0.7283 | | 0.6231 | 12.0 | 4500 | 0.6467 | 0.735 | | 0.6127 | 13.0 | 4875 | 0.6274 | 0.7483 | | 0.6297 | 14.0 | 5250 | 0.6106 | 0.7517 | | 0.6056 | 15.0 | 5625 | 0.5959 | 0.7633 | | 0.5383 | 16.0 | 6000 | 0.5842 | 0.76 | | 0.5862 | 17.0 | 6375 | 0.5727 | 0.76 | | 0.5466 | 18.0 | 6750 | 0.5631 | 0.7683 | | 0.6063 | 19.0 | 7125 | 0.5554 | 0.77 | | 0.5382 | 20.0 | 7500 | 0.5477 | 0.7733 | | 0.5719 | 21.0 | 7875 | 0.5406 | 0.7733 | | 0.5194 | 22.0 | 8250 | 0.5342 | 0.7833 | | 0.5408 | 23.0 | 8625 | 0.5290 | 0.7833 | | 0.5327 | 24.0 | 9000 | 0.5248 | 0.7817 | | 0.5341 | 25.0 | 9375 | 0.5207 | 0.7833 | | 0.5248 | 26.0 | 9750 | 0.5168 | 0.7833 | | 0.5823 | 27.0 | 10125 | 0.5128 | 0.7867 | | 0.4919 | 28.0 | 10500 | 0.5098 | 0.79 | | 0.4902 | 29.0 | 10875 | 0.5067 | 0.7933 | | 0.5047 | 30.0 | 11250 | 0.5038 | 0.795 | | 0.4943 | 31.0 | 11625 | 0.5008 | 0.7983 | | 0.5058 | 32.0 | 12000 | 0.4990 | 0.7983 | | 0.4976 | 33.0 | 12375 | 0.4965 | 0.7967 | | 0.5168 | 34.0 | 12750 | 0.4952 | 0.795 | | 0.5069 | 35.0 | 13125 | 0.4933 | 0.795 | | 0.4844 | 36.0 | 13500 | 0.4915 | 0.7967 | | 0.5181 | 37.0 | 13875 | 0.4900 | 0.7983 | | 0.5125 | 38.0 | 14250 | 0.4886 | 0.7983 | | 0.5414 | 39.0 | 14625 | 0.4875 | 0.7983 | | 0.5265 | 40.0 | 15000 | 0.4865 | 0.7983 | | 0.5089 | 41.0 | 15375 | 0.4855 | 0.7983 | | 0.5041 | 42.0 | 15750 | 0.4845 | 0.7983 | | 0.5029 | 43.0 | 16125 | 0.4836 | 0.7983 | | 0.4723 | 44.0 | 16500 | 0.4830 | 0.7983 | | 0.4754 | 45.0 | 16875 | 0.4827 | 0.7983 | | 0.4906 | 46.0 | 17250 | 0.4823 | 0.7983 | | 0.5249 | 47.0 | 17625 | 0.4820 | 0.7983 | | 0.4858 | 48.0 | 18000 | 0.4818 | 0.7983 | | 0.4635 | 49.0 | 18375 | 0.4818 | 0.7983 | | 0.4753 | 50.0 | 18750 | 0.4817 | 0.7983 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.0+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2
[ "abnormal_sperm", "non-sperm", "normal_sperm" ]
hkivancoral/smids_5x_beit_base_sgd_001_fold4
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # smids_5x_beit_base_sgd_001_fold4 This model is a fine-tuned version of [microsoft/beit-base-patch16-224](https://huggingface.co/microsoft/beit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.4156 - Accuracy: 0.8467 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.6893 | 1.0 | 375 | 0.6764 | 0.7333 | | 0.5522 | 2.0 | 750 | 0.5194 | 0.7917 | | 0.409 | 3.0 | 1125 | 0.4634 | 0.805 | | 0.4507 | 4.0 | 1500 | 0.4337 | 0.81 | | 0.416 | 5.0 | 1875 | 0.4157 | 0.8233 | | 0.3067 | 6.0 | 2250 | 0.4110 | 0.825 | | 0.3644 | 7.0 | 2625 | 0.3987 | 0.8333 | | 0.3243 | 8.0 | 3000 | 0.3991 | 0.835 | | 0.3062 | 9.0 | 3375 | 0.3919 | 0.8383 | | 0.308 | 10.0 | 3750 | 0.3990 | 0.8383 | | 0.2735 | 11.0 | 4125 | 0.3981 | 0.835 | | 0.2384 | 12.0 | 4500 | 0.3880 | 0.8417 | | 0.2357 | 13.0 | 4875 | 0.3907 | 0.845 | | 0.3175 | 14.0 | 5250 | 0.3900 | 0.8417 | | 0.2423 | 15.0 | 5625 | 0.3853 | 0.8517 | | 0.1987 | 16.0 | 6000 | 0.3848 | 0.8433 | | 0.2594 | 17.0 | 6375 | 0.3874 | 0.845 | | 0.2225 | 18.0 | 6750 | 0.3883 | 0.8533 | | 0.247 | 19.0 | 7125 | 0.3920 | 0.8383 | | 0.2235 | 20.0 | 7500 | 0.3894 | 0.8433 | | 0.2203 | 21.0 | 7875 | 0.3971 | 0.8417 | | 0.2258 | 22.0 | 8250 | 0.3954 | 0.8533 | | 0.2363 | 23.0 | 8625 | 0.3968 | 0.845 | | 0.2288 | 24.0 | 9000 | 0.3993 | 0.8467 | | 0.2646 | 25.0 | 9375 | 0.4039 | 0.84 | | 0.1839 | 26.0 | 9750 | 0.3987 | 0.8433 | | 0.2779 | 27.0 | 10125 | 0.4000 | 0.845 | | 0.1848 | 28.0 | 10500 | 0.4019 | 0.8367 | | 0.2029 | 29.0 | 10875 | 0.4110 | 0.84 | | 0.2593 | 30.0 | 11250 | 0.4030 | 0.845 | | 0.2187 | 31.0 | 11625 | 0.4051 | 0.8417 | | 0.1821 | 32.0 | 12000 | 0.4072 | 0.8467 | | 0.2095 | 33.0 | 12375 | 0.4076 | 0.8433 | | 0.2109 | 34.0 | 12750 | 0.4087 | 0.8433 | | 0.1759 | 35.0 | 13125 | 0.4129 | 0.84 | | 0.1595 | 36.0 | 13500 | 0.4130 | 0.8433 | | 0.2131 | 37.0 | 13875 | 0.4150 | 0.84 | | 0.2036 | 38.0 | 14250 | 0.4132 | 0.85 | | 0.247 | 39.0 | 14625 | 0.4135 | 0.8433 | | 0.2148 | 40.0 | 15000 | 0.4147 | 0.8433 | | 0.2333 | 41.0 | 15375 | 0.4120 | 0.8433 | | 0.213 | 42.0 | 15750 | 0.4128 | 0.8433 | | 0.1929 | 43.0 | 16125 | 0.4163 | 0.84 | | 0.1822 | 44.0 | 16500 | 0.4161 | 0.845 | | 0.2316 | 45.0 | 16875 | 0.4158 | 0.845 | | 0.1873 | 46.0 | 17250 | 0.4147 | 0.845 | | 0.2645 | 47.0 | 17625 | 0.4157 | 0.845 | | 0.1954 | 48.0 | 18000 | 0.4157 | 0.845 | | 0.1804 | 49.0 | 18375 | 0.4155 | 0.8467 | | 0.1952 | 50.0 | 18750 | 0.4156 | 0.8467 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.0+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2
[ "abnormal_sperm", "non-sperm", "normal_sperm" ]
hkivancoral/smids_5x_beit_base_sgd_0001_fold5
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # smids_5x_beit_base_sgd_0001_fold5 This model is a fine-tuned version of [microsoft/beit-base-patch16-224](https://huggingface.co/microsoft/beit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.4509 - Accuracy: 0.8217 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 1.119 | 1.0 | 375 | 1.2346 | 0.355 | | 1.0823 | 2.0 | 750 | 1.1546 | 0.3883 | | 0.9626 | 3.0 | 1125 | 1.0734 | 0.4317 | | 0.8877 | 4.0 | 1500 | 0.9982 | 0.49 | | 0.8704 | 5.0 | 1875 | 0.9307 | 0.5383 | | 0.82 | 6.0 | 2250 | 0.8704 | 0.5833 | | 0.7688 | 7.0 | 2625 | 0.8174 | 0.63 | | 0.7442 | 8.0 | 3000 | 0.7715 | 0.6583 | | 0.726 | 9.0 | 3375 | 0.7322 | 0.6833 | | 0.6394 | 10.0 | 3750 | 0.6995 | 0.695 | | 0.6379 | 11.0 | 4125 | 0.6704 | 0.7167 | | 0.6169 | 12.0 | 4500 | 0.6463 | 0.735 | | 0.5956 | 13.0 | 4875 | 0.6254 | 0.7483 | | 0.617 | 14.0 | 5250 | 0.6064 | 0.7617 | | 0.6108 | 15.0 | 5625 | 0.5908 | 0.7717 | | 0.578 | 16.0 | 6000 | 0.5757 | 0.7767 | | 0.591 | 17.0 | 6375 | 0.5636 | 0.7817 | | 0.5966 | 18.0 | 6750 | 0.5528 | 0.785 | | 0.6007 | 19.0 | 7125 | 0.5440 | 0.7883 | | 0.5282 | 20.0 | 7500 | 0.5352 | 0.7983 | | 0.5197 | 21.0 | 7875 | 0.5276 | 0.8033 | | 0.5125 | 22.0 | 8250 | 0.5198 | 0.8067 | | 0.5868 | 23.0 | 8625 | 0.5131 | 0.8083 | | 0.5885 | 24.0 | 9000 | 0.5069 | 0.8117 | | 0.5176 | 25.0 | 9375 | 0.5018 | 0.8133 | | 0.5257 | 26.0 | 9750 | 0.4968 | 0.8167 | | 0.563 | 27.0 | 10125 | 0.4923 | 0.8167 | | 0.5177 | 28.0 | 10500 | 0.4880 | 0.815 | | 0.5208 | 29.0 | 10875 | 0.4843 | 0.8183 | | 0.4749 | 30.0 | 11250 | 0.4801 | 0.8183 | | 0.5211 | 31.0 | 11625 | 0.4762 | 0.8167 | | 0.5578 | 32.0 | 12000 | 0.4734 | 0.8167 | | 0.5196 | 33.0 | 12375 | 0.4707 | 0.8183 | | 0.5191 | 34.0 | 12750 | 0.4684 | 0.82 | | 0.4852 | 35.0 | 13125 | 0.4662 | 0.82 | | 0.4553 | 36.0 | 13500 | 0.4634 | 0.8183 | | 0.4575 | 37.0 | 13875 | 0.4613 | 0.82 | | 0.5121 | 38.0 | 14250 | 0.4600 | 0.82 | | 0.4948 | 39.0 | 14625 | 0.4580 | 0.82 | | 0.5112 | 40.0 | 15000 | 0.4566 | 0.82 | | 0.5002 | 41.0 | 15375 | 0.4556 | 0.82 | | 0.4865 | 42.0 | 15750 | 0.4545 | 0.82 | | 0.5291 | 43.0 | 16125 | 0.4534 | 0.82 | | 0.4479 | 44.0 | 16500 | 0.4529 | 0.82 | | 0.4858 | 45.0 | 16875 | 0.4523 | 0.82 | | 0.5195 | 46.0 | 17250 | 0.4518 | 0.82 | | 0.5088 | 47.0 | 17625 | 0.4513 | 0.8217 | | 0.4798 | 48.0 | 18000 | 0.4511 | 0.8217 | | 0.4938 | 49.0 | 18375 | 0.4509 | 0.8217 | | 0.4932 | 50.0 | 18750 | 0.4509 | 0.8217 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.0+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2
[ "abnormal_sperm", "non-sperm", "normal_sperm" ]
hkivancoral/smids_5x_beit_base_sgd_001_fold5
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # smids_5x_beit_base_sgd_001_fold5 This model is a fine-tuned version of [microsoft/beit-base-patch16-224](https://huggingface.co/microsoft/beit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.2832 - Accuracy: 0.8867 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.6263 | 1.0 | 375 | 0.6777 | 0.725 | | 0.5866 | 2.0 | 750 | 0.4870 | 0.81 | | 0.4483 | 3.0 | 1125 | 0.4247 | 0.825 | | 0.4271 | 4.0 | 1500 | 0.3855 | 0.84 | | 0.4066 | 5.0 | 1875 | 0.3633 | 0.8467 | | 0.3828 | 6.0 | 2250 | 0.3474 | 0.8417 | | 0.309 | 7.0 | 2625 | 0.3371 | 0.8583 | | 0.3188 | 8.0 | 3000 | 0.3295 | 0.86 | | 0.3147 | 9.0 | 3375 | 0.3210 | 0.8633 | | 0.2842 | 10.0 | 3750 | 0.3163 | 0.8633 | | 0.258 | 11.0 | 4125 | 0.3059 | 0.87 | | 0.2796 | 12.0 | 4500 | 0.3036 | 0.8717 | | 0.2552 | 13.0 | 4875 | 0.2994 | 0.87 | | 0.2763 | 14.0 | 5250 | 0.2979 | 0.8633 | | 0.2925 | 15.0 | 5625 | 0.3004 | 0.865 | | 0.2222 | 16.0 | 6000 | 0.2915 | 0.8767 | | 0.2839 | 17.0 | 6375 | 0.2879 | 0.8783 | | 0.2546 | 18.0 | 6750 | 0.2876 | 0.88 | | 0.2528 | 19.0 | 7125 | 0.2899 | 0.8817 | | 0.1895 | 20.0 | 7500 | 0.2841 | 0.885 | | 0.2366 | 21.0 | 7875 | 0.2901 | 0.8767 | | 0.2149 | 22.0 | 8250 | 0.2831 | 0.8883 | | 0.2987 | 23.0 | 8625 | 0.2845 | 0.8833 | | 0.232 | 24.0 | 9000 | 0.2818 | 0.885 | | 0.2416 | 25.0 | 9375 | 0.2809 | 0.8883 | | 0.2147 | 26.0 | 9750 | 0.2789 | 0.8867 | | 0.2824 | 27.0 | 10125 | 0.2796 | 0.8883 | | 0.2229 | 28.0 | 10500 | 0.2814 | 0.8883 | | 0.2625 | 29.0 | 10875 | 0.2884 | 0.8767 | | 0.1908 | 30.0 | 11250 | 0.2826 | 0.885 | | 0.2464 | 31.0 | 11625 | 0.2786 | 0.8867 | | 0.2333 | 32.0 | 12000 | 0.2809 | 0.89 | | 0.2568 | 33.0 | 12375 | 0.2768 | 0.8867 | | 0.2444 | 34.0 | 12750 | 0.2777 | 0.8883 | | 0.1971 | 35.0 | 13125 | 0.2787 | 0.8883 | | 0.1586 | 36.0 | 13500 | 0.2808 | 0.8867 | | 0.1628 | 37.0 | 13875 | 0.2838 | 0.8817 | | 0.2206 | 38.0 | 14250 | 0.2772 | 0.8867 | | 0.1707 | 39.0 | 14625 | 0.2818 | 0.8833 | | 0.2328 | 40.0 | 15000 | 0.2820 | 0.8867 | | 0.1705 | 41.0 | 15375 | 0.2828 | 0.89 | | 0.1753 | 42.0 | 15750 | 0.2851 | 0.8867 | | 0.2269 | 43.0 | 16125 | 0.2832 | 0.8933 | | 0.1772 | 44.0 | 16500 | 0.2830 | 0.8883 | | 0.235 | 45.0 | 16875 | 0.2841 | 0.8883 | | 0.251 | 46.0 | 17250 | 0.2828 | 0.8867 | | 0.2199 | 47.0 | 17625 | 0.2831 | 0.8883 | | 0.1679 | 48.0 | 18000 | 0.2835 | 0.8867 | | 0.2096 | 49.0 | 18375 | 0.2833 | 0.8867 | | 0.22 | 50.0 | 18750 | 0.2832 | 0.8867 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.0+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2
[ "abnormal_sperm", "non-sperm", "normal_sperm" ]
hkivancoral/smids_5x_deit_tiny_sgd_00001_fold1
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # smids_5x_deit_tiny_sgd_00001_fold1 This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co/facebook/deit-tiny-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.0635 - Accuracy: 0.4541 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 1.346 | 1.0 | 376 | 1.2991 | 0.3489 | | 1.3817 | 2.0 | 752 | 1.2686 | 0.3589 | | 1.3103 | 3.0 | 1128 | 1.2425 | 0.3656 | | 1.3556 | 4.0 | 1504 | 1.2205 | 0.3656 | | 1.2443 | 5.0 | 1880 | 1.2020 | 0.3723 | | 1.1947 | 6.0 | 2256 | 1.1865 | 0.3806 | | 1.184 | 7.0 | 2632 | 1.1737 | 0.3940 | | 1.2121 | 8.0 | 3008 | 1.1630 | 0.3873 | | 1.1793 | 9.0 | 3384 | 1.1540 | 0.3773 | | 1.1564 | 10.0 | 3760 | 1.1464 | 0.3740 | | 1.148 | 11.0 | 4136 | 1.1397 | 0.3756 | | 1.1774 | 12.0 | 4512 | 1.1340 | 0.3756 | | 1.1493 | 13.0 | 4888 | 1.1288 | 0.3790 | | 1.1491 | 14.0 | 5264 | 1.1241 | 0.3790 | | 1.1465 | 15.0 | 5640 | 1.1198 | 0.3856 | | 1.1089 | 16.0 | 6016 | 1.1159 | 0.3990 | | 1.1015 | 17.0 | 6392 | 1.1122 | 0.4057 | | 1.1166 | 18.0 | 6768 | 1.1086 | 0.4073 | | 1.1502 | 19.0 | 7144 | 1.1053 | 0.4124 | | 1.124 | 20.0 | 7520 | 1.1022 | 0.4174 | | 1.1102 | 21.0 | 7896 | 1.0992 | 0.4207 | | 1.0904 | 22.0 | 8272 | 1.0964 | 0.4190 | | 1.0897 | 23.0 | 8648 | 1.0937 | 0.4207 | | 1.1449 | 24.0 | 9024 | 1.0912 | 0.4190 | | 1.0609 | 25.0 | 9400 | 1.0888 | 0.4157 | | 1.0747 | 26.0 | 9776 | 1.0865 | 0.4207 | | 1.0631 | 27.0 | 10152 | 1.0844 | 0.4240 | | 1.0872 | 28.0 | 10528 | 1.0823 | 0.4274 | | 1.0811 | 29.0 | 10904 | 1.0804 | 0.4290 | | 1.1082 | 30.0 | 11280 | 1.0786 | 0.4307 | | 1.0863 | 31.0 | 11656 | 1.0769 | 0.4324 | | 1.103 | 32.0 | 12032 | 1.0753 | 0.4290 | | 1.0918 | 33.0 | 12408 | 1.0738 | 0.4324 | | 1.06 | 34.0 | 12784 | 1.0725 | 0.4391 | | 1.0723 | 35.0 | 13160 | 1.0712 | 0.4424 | | 1.0366 | 36.0 | 13536 | 1.0701 | 0.4457 | | 1.0655 | 37.0 | 13912 | 1.0690 | 0.4474 | | 1.0787 | 38.0 | 14288 | 1.0681 | 0.4457 | | 1.0751 | 39.0 | 14664 | 1.0672 | 0.4474 | | 1.0508 | 40.0 | 15040 | 1.0665 | 0.4541 | | 1.0565 | 41.0 | 15416 | 1.0658 | 0.4541 | | 1.0404 | 42.0 | 15792 | 1.0652 | 0.4541 | | 1.0767 | 43.0 | 16168 | 1.0648 | 0.4541 | | 1.076 | 44.0 | 16544 | 1.0644 | 0.4541 | | 1.0183 | 45.0 | 16920 | 1.0640 | 0.4541 | | 1.0393 | 46.0 | 17296 | 1.0638 | 0.4541 | | 1.065 | 47.0 | 17672 | 1.0636 | 0.4541 | | 1.0432 | 48.0 | 18048 | 1.0635 | 0.4541 | | 1.0432 | 49.0 | 18424 | 1.0635 | 0.4541 | | 1.0255 | 50.0 | 18800 | 1.0635 | 0.4541 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.1+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2
[ "abnormal_sperm", "non-sperm", "normal_sperm" ]
hkivancoral/smids_5x_deit_tiny_sgd_00001_fold2
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # smids_5x_deit_tiny_sgd_00001_fold2 This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co/facebook/deit-tiny-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.0573 - Accuracy: 0.4476 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 1.3977 | 1.0 | 375 | 1.3189 | 0.3428 | | 1.3124 | 2.0 | 750 | 1.2870 | 0.3411 | | 1.2542 | 3.0 | 1125 | 1.2595 | 0.3378 | | 1.2046 | 4.0 | 1500 | 1.2361 | 0.3478 | | 1.2563 | 5.0 | 1875 | 1.2165 | 0.3544 | | 1.2759 | 6.0 | 2250 | 1.1999 | 0.3561 | | 1.1771 | 7.0 | 2625 | 1.1858 | 0.3527 | | 1.1858 | 8.0 | 3000 | 1.1739 | 0.3710 | | 1.1713 | 9.0 | 3375 | 1.1636 | 0.3644 | | 1.1774 | 10.0 | 3750 | 1.1549 | 0.3760 | | 1.1522 | 11.0 | 4125 | 1.1472 | 0.3760 | | 1.1182 | 12.0 | 4500 | 1.1403 | 0.3744 | | 1.1161 | 13.0 | 4875 | 1.1344 | 0.3827 | | 1.1676 | 14.0 | 5250 | 1.1289 | 0.3827 | | 1.1382 | 15.0 | 5625 | 1.1238 | 0.3860 | | 1.129 | 16.0 | 6000 | 1.1191 | 0.3943 | | 1.1144 | 17.0 | 6375 | 1.1146 | 0.3910 | | 1.1043 | 18.0 | 6750 | 1.1105 | 0.3894 | | 1.1008 | 19.0 | 7125 | 1.1065 | 0.3960 | | 1.1097 | 20.0 | 7500 | 1.1028 | 0.4077 | | 1.1084 | 21.0 | 7875 | 1.0993 | 0.4093 | | 1.0777 | 22.0 | 8250 | 1.0960 | 0.4110 | | 1.0857 | 23.0 | 8625 | 1.0928 | 0.4126 | | 1.096 | 24.0 | 9000 | 1.0898 | 0.4126 | | 1.1016 | 25.0 | 9375 | 1.0869 | 0.4176 | | 1.0637 | 26.0 | 9750 | 1.0843 | 0.4226 | | 1.0804 | 27.0 | 10125 | 1.0817 | 0.4226 | | 1.0961 | 28.0 | 10500 | 1.0793 | 0.4226 | | 1.0888 | 29.0 | 10875 | 1.0771 | 0.4293 | | 1.0508 | 30.0 | 11250 | 1.0750 | 0.4293 | | 1.0685 | 31.0 | 11625 | 1.0730 | 0.4326 | | 1.1026 | 32.0 | 12000 | 1.0712 | 0.4309 | | 1.0612 | 33.0 | 12375 | 1.0694 | 0.4359 | | 1.0734 | 34.0 | 12750 | 1.0679 | 0.4393 | | 1.0868 | 35.0 | 13125 | 1.0664 | 0.4393 | | 1.0597 | 36.0 | 13500 | 1.0650 | 0.4393 | | 1.0653 | 37.0 | 13875 | 1.0638 | 0.4409 | | 1.0598 | 38.0 | 14250 | 1.0627 | 0.4443 | | 1.0773 | 39.0 | 14625 | 1.0617 | 0.4443 | | 1.0819 | 40.0 | 15000 | 1.0608 | 0.4443 | | 1.0608 | 41.0 | 15375 | 1.0600 | 0.4459 | | 1.0652 | 42.0 | 15750 | 1.0594 | 0.4459 | | 1.04 | 43.0 | 16125 | 1.0588 | 0.4476 | | 1.0518 | 44.0 | 16500 | 1.0583 | 0.4476 | | 1.0814 | 45.0 | 16875 | 1.0580 | 0.4476 | | 1.0536 | 46.0 | 17250 | 1.0577 | 0.4476 | | 1.0612 | 47.0 | 17625 | 1.0575 | 0.4476 | | 1.0833 | 48.0 | 18000 | 1.0574 | 0.4476 | | 1.0816 | 49.0 | 18375 | 1.0573 | 0.4476 | | 1.0754 | 50.0 | 18750 | 1.0573 | 0.4476 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.1+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2
[ "abnormal_sperm", "non-sperm", "normal_sperm" ]
hkivancoral/smids_5x_beit_base_sgd_00001_fold1
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # smids_5x_beit_base_sgd_00001_fold1 This model is a fine-tuned version of [microsoft/beit-base-patch16-224](https://huggingface.co/microsoft/beit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.1524 - Accuracy: 0.3706 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 1.2623 | 1.0 | 376 | 1.3473 | 0.3088 | | 1.2409 | 2.0 | 752 | 1.3383 | 0.3122 | | 1.2444 | 3.0 | 1128 | 1.3298 | 0.3105 | | 1.1982 | 4.0 | 1504 | 1.3215 | 0.3105 | | 1.2082 | 5.0 | 1880 | 1.3136 | 0.3105 | | 1.1814 | 6.0 | 2256 | 1.3057 | 0.3139 | | 1.1633 | 7.0 | 2632 | 1.2980 | 0.3172 | | 1.2064 | 8.0 | 3008 | 1.2906 | 0.3205 | | 1.1298 | 9.0 | 3384 | 1.2834 | 0.3205 | | 1.1231 | 10.0 | 3760 | 1.2765 | 0.3322 | | 1.171 | 11.0 | 4136 | 1.2696 | 0.3372 | | 1.1505 | 12.0 | 4512 | 1.2632 | 0.3439 | | 1.1137 | 13.0 | 4888 | 1.2569 | 0.3472 | | 1.1229 | 14.0 | 5264 | 1.2508 | 0.3456 | | 1.1641 | 15.0 | 5640 | 1.2450 | 0.3439 | | 1.1335 | 16.0 | 6016 | 1.2391 | 0.3439 | | 1.0584 | 17.0 | 6392 | 1.2337 | 0.3439 | | 1.1251 | 18.0 | 6768 | 1.2284 | 0.3456 | | 1.105 | 19.0 | 7144 | 1.2233 | 0.3506 | | 1.0972 | 20.0 | 7520 | 1.2186 | 0.3506 | | 1.0751 | 21.0 | 7896 | 1.2139 | 0.3539 | | 1.0864 | 22.0 | 8272 | 1.2094 | 0.3539 | | 1.1021 | 23.0 | 8648 | 1.2051 | 0.3539 | | 1.1159 | 24.0 | 9024 | 1.2011 | 0.3539 | | 1.0862 | 25.0 | 9400 | 1.1972 | 0.3556 | | 1.0706 | 26.0 | 9776 | 1.1934 | 0.3589 | | 1.0809 | 27.0 | 10152 | 1.1898 | 0.3589 | | 1.0663 | 28.0 | 10528 | 1.1865 | 0.3589 | | 1.0982 | 29.0 | 10904 | 1.1833 | 0.3606 | | 1.1121 | 30.0 | 11280 | 1.1802 | 0.3623 | | 1.0485 | 31.0 | 11656 | 1.1773 | 0.3656 | | 1.0472 | 32.0 | 12032 | 1.1746 | 0.3656 | | 1.0601 | 33.0 | 12408 | 1.1721 | 0.3689 | | 1.0381 | 34.0 | 12784 | 1.1697 | 0.3689 | | 1.072 | 35.0 | 13160 | 1.1675 | 0.3689 | | 1.087 | 36.0 | 13536 | 1.1654 | 0.3689 | | 1.0074 | 37.0 | 13912 | 1.1635 | 0.3706 | | 1.0562 | 38.0 | 14288 | 1.1618 | 0.3689 | | 1.0371 | 39.0 | 14664 | 1.1602 | 0.3689 | | 1.0517 | 40.0 | 15040 | 1.1588 | 0.3706 | | 1.0384 | 41.0 | 15416 | 1.1575 | 0.3706 | | 1.0222 | 42.0 | 15792 | 1.1563 | 0.3706 | | 1.0143 | 43.0 | 16168 | 1.1553 | 0.3706 | | 0.9973 | 44.0 | 16544 | 1.1545 | 0.3689 | | 1.0445 | 45.0 | 16920 | 1.1538 | 0.3689 | | 1.0408 | 46.0 | 17296 | 1.1532 | 0.3706 | | 1.0166 | 47.0 | 17672 | 1.1528 | 0.3706 | | 1.0266 | 48.0 | 18048 | 1.1525 | 0.3706 | | 1.0337 | 49.0 | 18424 | 1.1524 | 0.3706 | | 1.0214 | 50.0 | 18800 | 1.1524 | 0.3706 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.0+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2
[ "abnormal_sperm", "non-sperm", "normal_sperm" ]
hkivancoral/smids_5x_beit_base_rms_001_fold1
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # smids_5x_beit_base_rms_001_fold1 This model is a fine-tuned version of [microsoft/beit-base-patch16-224](https://huggingface.co/microsoft/beit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.7105 - Accuracy: 0.7396 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 1.1123 | 1.0 | 376 | 1.1251 | 0.3356 | | 0.9352 | 2.0 | 752 | 0.8920 | 0.5259 | | 0.794 | 3.0 | 1128 | 0.7965 | 0.5526 | | 0.8608 | 4.0 | 1504 | 0.8108 | 0.5643 | | 0.8805 | 5.0 | 1880 | 0.7967 | 0.5543 | | 0.7654 | 6.0 | 2256 | 0.8049 | 0.5693 | | 0.7409 | 7.0 | 2632 | 0.7866 | 0.5726 | | 0.7913 | 8.0 | 3008 | 0.7897 | 0.5893 | | 0.7475 | 9.0 | 3384 | 0.7603 | 0.6127 | | 0.7457 | 10.0 | 3760 | 0.7604 | 0.5810 | | 0.6765 | 11.0 | 4136 | 0.7505 | 0.6060 | | 0.7009 | 12.0 | 4512 | 0.7036 | 0.6628 | | 0.682 | 13.0 | 4888 | 0.7131 | 0.6477 | | 0.665 | 14.0 | 5264 | 0.7097 | 0.6628 | | 0.6075 | 15.0 | 5640 | 0.7283 | 0.6361 | | 0.6104 | 16.0 | 6016 | 0.7252 | 0.6845 | | 0.5756 | 17.0 | 6392 | 0.7019 | 0.6761 | | 0.6308 | 18.0 | 6768 | 0.7144 | 0.6678 | | 0.6215 | 19.0 | 7144 | 0.6989 | 0.6644 | | 0.5991 | 20.0 | 7520 | 0.6580 | 0.7262 | | 0.644 | 21.0 | 7896 | 0.6509 | 0.7129 | | 0.5561 | 22.0 | 8272 | 0.6219 | 0.7112 | | 0.5743 | 23.0 | 8648 | 0.6259 | 0.7095 | | 0.5779 | 24.0 | 9024 | 0.7360 | 0.6611 | | 0.5703 | 25.0 | 9400 | 0.7402 | 0.6544 | | 0.59 | 26.0 | 9776 | 0.6505 | 0.7179 | | 0.4484 | 27.0 | 10152 | 0.7061 | 0.6945 | | 0.5078 | 28.0 | 10528 | 0.6625 | 0.7012 | | 0.4947 | 29.0 | 10904 | 0.7197 | 0.6878 | | 0.4804 | 30.0 | 11280 | 0.6601 | 0.7129 | | 0.571 | 31.0 | 11656 | 0.6610 | 0.6978 | | 0.5506 | 32.0 | 12032 | 0.6726 | 0.7012 | | 0.4066 | 33.0 | 12408 | 0.6633 | 0.7095 | | 0.4713 | 34.0 | 12784 | 0.6198 | 0.7245 | | 0.4603 | 35.0 | 13160 | 0.6655 | 0.7145 | | 0.4936 | 36.0 | 13536 | 0.6620 | 0.7212 | | 0.4422 | 37.0 | 13912 | 0.6199 | 0.7446 | | 0.4404 | 38.0 | 14288 | 0.6881 | 0.7062 | | 0.4643 | 39.0 | 14664 | 0.6209 | 0.7412 | | 0.4403 | 40.0 | 15040 | 0.6524 | 0.7496 | | 0.4197 | 41.0 | 15416 | 0.6575 | 0.7229 | | 0.3846 | 42.0 | 15792 | 0.6496 | 0.7295 | | 0.3794 | 43.0 | 16168 | 0.6583 | 0.7179 | | 0.4461 | 44.0 | 16544 | 0.6644 | 0.7329 | | 0.3616 | 45.0 | 16920 | 0.6911 | 0.7396 | | 0.3764 | 46.0 | 17296 | 0.7023 | 0.7279 | | 0.39 | 47.0 | 17672 | 0.6999 | 0.7379 | | 0.3595 | 48.0 | 18048 | 0.7003 | 0.7379 | | 0.3678 | 49.0 | 18424 | 0.6974 | 0.7379 | | 0.2726 | 50.0 | 18800 | 0.7105 | 0.7396 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.0+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2
[ "abnormal_sperm", "non-sperm", "normal_sperm" ]
Nubletz/msi-resnet-pretrain
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # msi-resnet-pretrain This model is a fine-tuned version of [microsoft/resnet-50](https://huggingface.co/microsoft/resnet-50) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.3514 - Accuracy: 0.8862 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.4387 | 1.0 | 1562 | 0.3894 | 0.8795 | | 0.2626 | 2.0 | 3125 | 0.3142 | 0.9024 | | 0.2134 | 3.0 | 4687 | 0.3767 | 0.8694 | | 0.1452 | 4.0 | 6250 | 0.3211 | 0.8947 | | 0.1773 | 5.0 | 7810 | 0.3514 | 0.8862 | ### Framework versions - Transformers 4.36.1 - Pytorch 2.0.1+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0
[ "adi", "back", "deb", "lym", "muc", "mus", "norm", "str", "tum" ]
hkivancoral/smids_5x_deit_tiny_sgd_00001_fold3
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # smids_5x_deit_tiny_sgd_00001_fold3 This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co/facebook/deit-tiny-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.0782 - Accuracy: 0.445 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 1.4131 | 1.0 | 375 | 1.3423 | 0.3433 | | 1.3593 | 2.0 | 750 | 1.3099 | 0.3483 | | 1.3082 | 3.0 | 1125 | 1.2818 | 0.3517 | | 1.3385 | 4.0 | 1500 | 1.2580 | 0.36 | | 1.2471 | 5.0 | 1875 | 1.2378 | 0.3633 | | 1.2728 | 6.0 | 2250 | 1.2206 | 0.3667 | | 1.2244 | 7.0 | 2625 | 1.2061 | 0.3767 | | 1.1927 | 8.0 | 3000 | 1.1938 | 0.385 | | 1.1353 | 9.0 | 3375 | 1.1833 | 0.39 | | 1.1411 | 10.0 | 3750 | 1.1743 | 0.39 | | 1.1528 | 11.0 | 4125 | 1.1664 | 0.395 | | 1.1479 | 12.0 | 4500 | 1.1594 | 0.3917 | | 1.1757 | 13.0 | 4875 | 1.1532 | 0.3917 | | 1.1667 | 14.0 | 5250 | 1.1477 | 0.4017 | | 1.1486 | 15.0 | 5625 | 1.1425 | 0.3967 | | 1.0937 | 16.0 | 6000 | 1.1378 | 0.4017 | | 1.1232 | 17.0 | 6375 | 1.1333 | 0.4133 | | 1.1438 | 18.0 | 6750 | 1.1292 | 0.4183 | | 1.0814 | 19.0 | 7125 | 1.1253 | 0.42 | | 1.101 | 20.0 | 7500 | 1.1217 | 0.4183 | | 1.0634 | 21.0 | 7875 | 1.1182 | 0.42 | | 1.0937 | 22.0 | 8250 | 1.1150 | 0.4167 | | 1.107 | 23.0 | 8625 | 1.1120 | 0.4183 | | 1.1086 | 24.0 | 9000 | 1.1091 | 0.42 | | 1.0802 | 25.0 | 9375 | 1.1064 | 0.4217 | | 1.1004 | 26.0 | 9750 | 1.1038 | 0.4233 | | 1.0865 | 27.0 | 10125 | 1.1014 | 0.4267 | | 1.0686 | 28.0 | 10500 | 1.0991 | 0.425 | | 1.0719 | 29.0 | 10875 | 1.0969 | 0.4267 | | 1.0892 | 30.0 | 11250 | 1.0949 | 0.4267 | | 1.0865 | 31.0 | 11625 | 1.0931 | 0.4233 | | 1.1008 | 32.0 | 12000 | 1.0913 | 0.425 | | 1.0834 | 33.0 | 12375 | 1.0897 | 0.4267 | | 1.085 | 34.0 | 12750 | 1.0882 | 0.4317 | | 1.0201 | 35.0 | 13125 | 1.0868 | 0.4367 | | 1.043 | 36.0 | 13500 | 1.0855 | 0.4367 | | 1.0791 | 37.0 | 13875 | 1.0844 | 0.4367 | | 1.0443 | 38.0 | 14250 | 1.0833 | 0.4367 | | 1.0648 | 39.0 | 14625 | 1.0824 | 0.4383 | | 1.0415 | 40.0 | 15000 | 1.0816 | 0.4417 | | 1.025 | 41.0 | 15375 | 1.0808 | 0.4417 | | 1.0078 | 42.0 | 15750 | 1.0802 | 0.4417 | | 1.0383 | 43.0 | 16125 | 1.0797 | 0.4433 | | 1.061 | 44.0 | 16500 | 1.0792 | 0.4433 | | 1.0733 | 45.0 | 16875 | 1.0789 | 0.4433 | | 1.039 | 46.0 | 17250 | 1.0786 | 0.4433 | | 1.091 | 47.0 | 17625 | 1.0784 | 0.445 | | 1.0592 | 48.0 | 18000 | 1.0783 | 0.445 | | 1.0783 | 49.0 | 18375 | 1.0782 | 0.445 | | 1.066 | 50.0 | 18750 | 1.0782 | 0.445 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.1+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2
[ "abnormal_sperm", "non-sperm", "normal_sperm" ]
hkivancoral/smids_5x_beit_base_sgd_00001_fold2
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # smids_5x_beit_base_sgd_00001_fold2 This model is a fine-tuned version of [microsoft/beit-base-patch16-224](https://huggingface.co/microsoft/beit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.1209 - Accuracy: 0.4010 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 1.1533 | 1.0 | 375 | 1.3089 | 0.3344 | | 1.2124 | 2.0 | 750 | 1.2999 | 0.3344 | | 1.1985 | 3.0 | 1125 | 1.2914 | 0.3428 | | 1.1579 | 4.0 | 1500 | 1.2833 | 0.3461 | | 1.1291 | 5.0 | 1875 | 1.2755 | 0.3461 | | 1.194 | 6.0 | 2250 | 1.2681 | 0.3478 | | 1.2016 | 7.0 | 2625 | 1.2608 | 0.3494 | | 1.1347 | 8.0 | 3000 | 1.2537 | 0.3527 | | 1.1472 | 9.0 | 3375 | 1.2468 | 0.3577 | | 1.15 | 10.0 | 3750 | 1.2403 | 0.3611 | | 1.1134 | 11.0 | 4125 | 1.2339 | 0.3661 | | 1.1681 | 12.0 | 4500 | 1.2277 | 0.3694 | | 1.1002 | 13.0 | 4875 | 1.2218 | 0.3677 | | 1.1221 | 14.0 | 5250 | 1.2161 | 0.3677 | | 1.0969 | 15.0 | 5625 | 1.2104 | 0.3694 | | 1.1378 | 16.0 | 6000 | 1.2051 | 0.3694 | | 1.0509 | 17.0 | 6375 | 1.1999 | 0.3727 | | 1.0539 | 18.0 | 6750 | 1.1948 | 0.3727 | | 1.1469 | 19.0 | 7125 | 1.1900 | 0.3760 | | 1.0806 | 20.0 | 7500 | 1.1853 | 0.3760 | | 1.1095 | 21.0 | 7875 | 1.1807 | 0.3760 | | 1.0474 | 22.0 | 8250 | 1.1764 | 0.3760 | | 1.0756 | 23.0 | 8625 | 1.1722 | 0.3810 | | 1.1044 | 24.0 | 9000 | 1.1682 | 0.3794 | | 1.1189 | 25.0 | 9375 | 1.1645 | 0.3844 | | 1.0607 | 26.0 | 9750 | 1.1609 | 0.3844 | | 1.1097 | 27.0 | 10125 | 1.1574 | 0.3844 | | 1.0713 | 28.0 | 10500 | 1.1541 | 0.3860 | | 1.0338 | 29.0 | 10875 | 1.1510 | 0.3877 | | 1.0753 | 30.0 | 11250 | 1.1479 | 0.3910 | | 1.0493 | 31.0 | 11625 | 1.1452 | 0.3910 | | 1.0423 | 32.0 | 12000 | 1.1425 | 0.3910 | | 1.0585 | 33.0 | 12375 | 1.1400 | 0.3943 | | 1.0104 | 34.0 | 12750 | 1.1377 | 0.3960 | | 1.0421 | 35.0 | 13125 | 1.1356 | 0.3960 | | 1.0328 | 36.0 | 13500 | 1.1336 | 0.3977 | | 1.0499 | 37.0 | 13875 | 1.1317 | 0.3993 | | 1.0006 | 38.0 | 14250 | 1.1300 | 0.4010 | | 1.0528 | 39.0 | 14625 | 1.1285 | 0.4010 | | 1.0416 | 40.0 | 15000 | 1.1271 | 0.4010 | | 1.0633 | 41.0 | 15375 | 1.1258 | 0.4010 | | 1.0643 | 42.0 | 15750 | 1.1247 | 0.4027 | | 1.0051 | 43.0 | 16125 | 1.1238 | 0.4027 | | 1.0289 | 44.0 | 16500 | 1.1230 | 0.4027 | | 0.9766 | 45.0 | 16875 | 1.1223 | 0.4010 | | 1.0401 | 46.0 | 17250 | 1.1218 | 0.4010 | | 1.0257 | 47.0 | 17625 | 1.1214 | 0.4010 | | 1.0309 | 48.0 | 18000 | 1.1211 | 0.4010 | | 1.0074 | 49.0 | 18375 | 1.1210 | 0.4010 | | 1.0327 | 50.0 | 18750 | 1.1209 | 0.4010 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.0+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2
[ "abnormal_sperm", "non-sperm", "normal_sperm" ]
hkivancoral/smids_5x_beit_base_rms_001_fold2
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # smids_5x_beit_base_rms_001_fold2 This model is a fine-tuned version of [microsoft/beit-base-patch16-224](https://huggingface.co/microsoft/beit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.5865 - Accuracy: 0.7953 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 1.0449 | 1.0 | 375 | 0.9946 | 0.4576 | | 0.9062 | 2.0 | 750 | 0.8678 | 0.5341 | | 0.8013 | 3.0 | 1125 | 1.1322 | 0.4709 | | 0.7159 | 4.0 | 1500 | 0.7319 | 0.6373 | | 0.717 | 5.0 | 1875 | 0.7090 | 0.6672 | | 0.6942 | 6.0 | 2250 | 0.6958 | 0.6356 | | 0.7767 | 7.0 | 2625 | 0.6812 | 0.7022 | | 0.7025 | 8.0 | 3000 | 0.6844 | 0.6406 | | 0.731 | 9.0 | 3375 | 0.6703 | 0.6872 | | 0.712 | 10.0 | 3750 | 0.7094 | 0.6789 | | 0.6865 | 11.0 | 4125 | 0.6498 | 0.6972 | | 0.7524 | 12.0 | 4500 | 0.6865 | 0.6955 | | 0.6624 | 13.0 | 4875 | 0.6872 | 0.6772 | | 0.6979 | 14.0 | 5250 | 0.6496 | 0.6972 | | 0.6174 | 15.0 | 5625 | 0.6736 | 0.6805 | | 0.6379 | 16.0 | 6000 | 0.6464 | 0.6889 | | 0.6532 | 17.0 | 6375 | 0.6449 | 0.7271 | | 0.6218 | 18.0 | 6750 | 0.6026 | 0.7421 | | 0.6018 | 19.0 | 7125 | 0.6684 | 0.6988 | | 0.6058 | 20.0 | 7500 | 0.6198 | 0.7205 | | 0.6269 | 21.0 | 7875 | 0.6185 | 0.7338 | | 0.586 | 22.0 | 8250 | 0.5945 | 0.7571 | | 0.6047 | 23.0 | 8625 | 0.5838 | 0.7404 | | 0.5645 | 24.0 | 9000 | 0.5895 | 0.7304 | | 0.5266 | 25.0 | 9375 | 0.6076 | 0.7554 | | 0.5433 | 26.0 | 9750 | 0.6078 | 0.7205 | | 0.6677 | 27.0 | 10125 | 0.5591 | 0.7837 | | 0.5463 | 28.0 | 10500 | 0.6091 | 0.7488 | | 0.5494 | 29.0 | 10875 | 0.5955 | 0.7471 | | 0.4887 | 30.0 | 11250 | 0.5393 | 0.7987 | | 0.5572 | 31.0 | 11625 | 0.5935 | 0.7537 | | 0.5382 | 32.0 | 12000 | 0.6529 | 0.7288 | | 0.5356 | 33.0 | 12375 | 0.5723 | 0.7787 | | 0.5102 | 34.0 | 12750 | 0.5659 | 0.7720 | | 0.5047 | 35.0 | 13125 | 0.5433 | 0.7887 | | 0.4869 | 36.0 | 13500 | 0.5564 | 0.7687 | | 0.4821 | 37.0 | 13875 | 0.5581 | 0.7754 | | 0.455 | 38.0 | 14250 | 0.5595 | 0.7837 | | 0.4345 | 39.0 | 14625 | 0.5481 | 0.7854 | | 0.4695 | 40.0 | 15000 | 0.5459 | 0.8003 | | 0.4129 | 41.0 | 15375 | 0.5458 | 0.8020 | | 0.4369 | 42.0 | 15750 | 0.5508 | 0.7953 | | 0.4043 | 43.0 | 16125 | 0.5495 | 0.7854 | | 0.4715 | 44.0 | 16500 | 0.5470 | 0.7987 | | 0.4036 | 45.0 | 16875 | 0.5777 | 0.7887 | | 0.3786 | 46.0 | 17250 | 0.5867 | 0.8003 | | 0.4177 | 47.0 | 17625 | 0.5806 | 0.7770 | | 0.3538 | 48.0 | 18000 | 0.5857 | 0.7937 | | 0.3987 | 49.0 | 18375 | 0.5813 | 0.8020 | | 0.3452 | 50.0 | 18750 | 0.5865 | 0.7953 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.0+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2
[ "abnormal_sperm", "non-sperm", "normal_sperm" ]
hkivancoral/smids_5x_deit_tiny_sgd_00001_fold4
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # smids_5x_deit_tiny_sgd_00001_fold4 This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co/facebook/deit-tiny-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.0682 - Accuracy: 0.4133 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 1.3789 | 1.0 | 375 | 1.3304 | 0.3467 | | 1.3522 | 2.0 | 750 | 1.2980 | 0.3417 | | 1.2851 | 3.0 | 1125 | 1.2700 | 0.3467 | | 1.3268 | 4.0 | 1500 | 1.2462 | 0.35 | | 1.2083 | 5.0 | 1875 | 1.2264 | 0.3533 | | 1.2564 | 6.0 | 2250 | 1.2096 | 0.3667 | | 1.2076 | 7.0 | 2625 | 1.1953 | 0.375 | | 1.1738 | 8.0 | 3000 | 1.1833 | 0.375 | | 1.1964 | 9.0 | 3375 | 1.1730 | 0.3767 | | 1.1824 | 10.0 | 3750 | 1.1642 | 0.375 | | 1.1746 | 11.0 | 4125 | 1.1567 | 0.375 | | 1.0941 | 12.0 | 4500 | 1.1499 | 0.3783 | | 1.1561 | 13.0 | 4875 | 1.1439 | 0.3817 | | 1.1702 | 14.0 | 5250 | 1.1384 | 0.3817 | | 1.1181 | 15.0 | 5625 | 1.1334 | 0.3867 | | 1.149 | 16.0 | 6000 | 1.1288 | 0.3833 | | 1.1131 | 17.0 | 6375 | 1.1244 | 0.3867 | | 1.1335 | 18.0 | 6750 | 1.1203 | 0.39 | | 1.105 | 19.0 | 7125 | 1.1164 | 0.3933 | | 1.0655 | 20.0 | 7500 | 1.1128 | 0.3933 | | 1.1098 | 21.0 | 7875 | 1.1094 | 0.395 | | 1.0972 | 22.0 | 8250 | 1.1061 | 0.3933 | | 1.112 | 23.0 | 8625 | 1.1030 | 0.3917 | | 1.0932 | 24.0 | 9000 | 1.1001 | 0.395 | | 1.0801 | 25.0 | 9375 | 1.0974 | 0.3933 | | 1.1085 | 26.0 | 9750 | 1.0947 | 0.4 | | 1.1153 | 27.0 | 10125 | 1.0922 | 0.4 | | 1.0883 | 28.0 | 10500 | 1.0899 | 0.4 | | 1.0621 | 29.0 | 10875 | 1.0877 | 0.4017 | | 1.0559 | 30.0 | 11250 | 1.0856 | 0.4017 | | 1.0795 | 31.0 | 11625 | 1.0837 | 0.4 | | 1.1076 | 32.0 | 12000 | 1.0819 | 0.4017 | | 1.1027 | 33.0 | 12375 | 1.0802 | 0.405 | | 1.0471 | 34.0 | 12750 | 1.0787 | 0.41 | | 1.032 | 35.0 | 13125 | 1.0772 | 0.4117 | | 1.0529 | 36.0 | 13500 | 1.0759 | 0.4083 | | 1.0365 | 37.0 | 13875 | 1.0747 | 0.4067 | | 1.0659 | 38.0 | 14250 | 1.0736 | 0.4067 | | 1.073 | 39.0 | 14625 | 1.0726 | 0.4117 | | 1.1034 | 40.0 | 15000 | 1.0717 | 0.4117 | | 1.0918 | 41.0 | 15375 | 1.0710 | 0.4117 | | 1.0873 | 42.0 | 15750 | 1.0703 | 0.4133 | | 1.0582 | 43.0 | 16125 | 1.0697 | 0.4133 | | 1.0527 | 44.0 | 16500 | 1.0693 | 0.4133 | | 1.0394 | 45.0 | 16875 | 1.0689 | 0.4133 | | 1.0718 | 46.0 | 17250 | 1.0686 | 0.4133 | | 1.0719 | 47.0 | 17625 | 1.0684 | 0.4133 | | 1.0655 | 48.0 | 18000 | 1.0683 | 0.4133 | | 1.0516 | 49.0 | 18375 | 1.0682 | 0.4133 | | 1.0396 | 50.0 | 18750 | 1.0682 | 0.4133 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.1+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2
[ "abnormal_sperm", "non-sperm", "normal_sperm" ]
zabir735/outputs
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # outputs This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0483 - Accuracy: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.36.0.dev0 - Pytorch 2.1.1+cpu - Datasets 2.15.0 - Tokenizers 0.15.0
[ "bad oil palm seed", "good oil palm seed" ]
hkivancoral/smids_5x_beit_base_sgd_00001_fold3
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # smids_5x_beit_base_sgd_00001_fold3 This model is a fine-tuned version of [microsoft/beit-base-patch16-224](https://huggingface.co/microsoft/beit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.1248 - Accuracy: 0.3967 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 1.2551 | 1.0 | 375 | 1.3211 | 0.3167 | | 1.2561 | 2.0 | 750 | 1.3119 | 0.32 | | 1.2134 | 3.0 | 1125 | 1.3028 | 0.325 | | 1.226 | 4.0 | 1500 | 1.2942 | 0.325 | | 1.1635 | 5.0 | 1875 | 1.2859 | 0.3267 | | 1.2304 | 6.0 | 2250 | 1.2778 | 0.3333 | | 1.1734 | 7.0 | 2625 | 1.2702 | 0.3383 | | 1.1724 | 8.0 | 3000 | 1.2625 | 0.3417 | | 1.1336 | 9.0 | 3375 | 1.2554 | 0.3467 | | 1.1266 | 10.0 | 3750 | 1.2486 | 0.3517 | | 1.1276 | 11.0 | 4125 | 1.2419 | 0.355 | | 1.1538 | 12.0 | 4500 | 1.2355 | 0.355 | | 1.1425 | 13.0 | 4875 | 1.2292 | 0.3567 | | 1.1463 | 14.0 | 5250 | 1.2233 | 0.36 | | 1.1661 | 15.0 | 5625 | 1.2174 | 0.3633 | | 1.1118 | 16.0 | 6000 | 1.2118 | 0.365 | | 1.123 | 17.0 | 6375 | 1.2063 | 0.3667 | | 1.1065 | 18.0 | 6750 | 1.2010 | 0.3667 | | 1.1074 | 19.0 | 7125 | 1.1959 | 0.365 | | 1.0742 | 20.0 | 7500 | 1.1911 | 0.3717 | | 1.0616 | 21.0 | 7875 | 1.1865 | 0.3717 | | 1.0745 | 22.0 | 8250 | 1.1820 | 0.3717 | | 1.0871 | 23.0 | 8625 | 1.1777 | 0.3717 | | 1.031 | 24.0 | 9000 | 1.1737 | 0.3717 | | 1.0843 | 25.0 | 9375 | 1.1697 | 0.375 | | 1.0616 | 26.0 | 9750 | 1.1660 | 0.3767 | | 1.0414 | 27.0 | 10125 | 1.1624 | 0.3783 | | 1.0303 | 28.0 | 10500 | 1.1590 | 0.3783 | | 0.9887 | 29.0 | 10875 | 1.1558 | 0.38 | | 1.0267 | 30.0 | 11250 | 1.1528 | 0.38 | | 1.0792 | 31.0 | 11625 | 1.1499 | 0.3833 | | 1.0736 | 32.0 | 12000 | 1.1472 | 0.3883 | | 1.0868 | 33.0 | 12375 | 1.1446 | 0.39 | | 1.0257 | 34.0 | 12750 | 1.1422 | 0.3883 | | 1.0237 | 35.0 | 13125 | 1.1400 | 0.39 | | 1.0201 | 36.0 | 13500 | 1.1379 | 0.39 | | 1.0769 | 37.0 | 13875 | 1.1360 | 0.3917 | | 1.032 | 38.0 | 14250 | 1.1343 | 0.3933 | | 1.0317 | 39.0 | 14625 | 1.1327 | 0.395 | | 1.0402 | 40.0 | 15000 | 1.1312 | 0.395 | | 0.957 | 41.0 | 15375 | 1.1300 | 0.395 | | 1.0445 | 42.0 | 15750 | 1.1288 | 0.395 | | 1.0399 | 43.0 | 16125 | 1.1278 | 0.395 | | 1.0323 | 44.0 | 16500 | 1.1270 | 0.3967 | | 1.0444 | 45.0 | 16875 | 1.1263 | 0.3967 | | 0.9983 | 46.0 | 17250 | 1.1257 | 0.3967 | | 1.042 | 47.0 | 17625 | 1.1253 | 0.3967 | | 1.0685 | 48.0 | 18000 | 1.1250 | 0.3967 | | 1.0486 | 49.0 | 18375 | 1.1249 | 0.3967 | | 1.0457 | 50.0 | 18750 | 1.1248 | 0.3967 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.0+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2
[ "abnormal_sperm", "non-sperm", "normal_sperm" ]
hkivancoral/smids_5x_deit_tiny_sgd_00001_fold5
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # smids_5x_deit_tiny_sgd_00001_fold5 This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co/facebook/deit-tiny-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.0692 - Accuracy: 0.45 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 1.4013 | 1.0 | 375 | 1.3267 | 0.3533 | | 1.3461 | 2.0 | 750 | 1.2947 | 0.36 | | 1.2972 | 3.0 | 1125 | 1.2670 | 0.3617 | | 1.31 | 4.0 | 1500 | 1.2433 | 0.3683 | | 1.2221 | 5.0 | 1875 | 1.2236 | 0.3717 | | 1.2656 | 6.0 | 2250 | 1.2067 | 0.375 | | 1.2312 | 7.0 | 2625 | 1.1923 | 0.3817 | | 1.1861 | 8.0 | 3000 | 1.1803 | 0.3817 | | 1.1289 | 9.0 | 3375 | 1.1699 | 0.385 | | 1.218 | 10.0 | 3750 | 1.1612 | 0.3867 | | 1.1921 | 11.0 | 4125 | 1.1535 | 0.3983 | | 1.1315 | 12.0 | 4500 | 1.1468 | 0.405 | | 1.1732 | 13.0 | 4875 | 1.1407 | 0.4133 | | 1.1412 | 14.0 | 5250 | 1.1354 | 0.41 | | 1.1502 | 15.0 | 5625 | 1.1305 | 0.4133 | | 1.126 | 16.0 | 6000 | 1.1259 | 0.4133 | | 1.1098 | 17.0 | 6375 | 1.1217 | 0.4117 | | 1.1197 | 18.0 | 6750 | 1.1177 | 0.4083 | | 1.1329 | 19.0 | 7125 | 1.1140 | 0.4083 | | 1.0741 | 20.0 | 7500 | 1.1105 | 0.4117 | | 1.0617 | 21.0 | 7875 | 1.1072 | 0.4117 | | 1.0917 | 22.0 | 8250 | 1.1041 | 0.41 | | 1.0822 | 23.0 | 8625 | 1.1011 | 0.41 | | 1.1336 | 24.0 | 9000 | 1.0984 | 0.4167 | | 1.0665 | 25.0 | 9375 | 1.0958 | 0.415 | | 1.1097 | 26.0 | 9750 | 1.0934 | 0.415 | | 1.0499 | 27.0 | 10125 | 1.0911 | 0.4183 | | 1.1202 | 28.0 | 10500 | 1.0889 | 0.4167 | | 1.1038 | 29.0 | 10875 | 1.0869 | 0.4283 | | 1.0838 | 30.0 | 11250 | 1.0850 | 0.4333 | | 1.0717 | 31.0 | 11625 | 1.0832 | 0.4367 | | 1.0773 | 32.0 | 12000 | 1.0816 | 0.4383 | | 1.0858 | 33.0 | 12375 | 1.0800 | 0.44 | | 1.0072 | 34.0 | 12750 | 1.0786 | 0.44 | | 1.0435 | 35.0 | 13125 | 1.0773 | 0.4417 | | 1.047 | 36.0 | 13500 | 1.0761 | 0.4433 | | 1.0361 | 37.0 | 13875 | 1.0750 | 0.4483 | | 1.0477 | 38.0 | 14250 | 1.0740 | 0.45 | | 1.0658 | 39.0 | 14625 | 1.0731 | 0.4483 | | 1.0711 | 40.0 | 15000 | 1.0723 | 0.445 | | 1.0473 | 41.0 | 15375 | 1.0716 | 0.445 | | 1.0521 | 42.0 | 15750 | 1.0711 | 0.445 | | 1.0368 | 43.0 | 16125 | 1.0705 | 0.4467 | | 1.0636 | 44.0 | 16500 | 1.0701 | 0.4483 | | 1.0424 | 45.0 | 16875 | 1.0698 | 0.4483 | | 1.0442 | 46.0 | 17250 | 1.0695 | 0.45 | | 1.0667 | 47.0 | 17625 | 1.0694 | 0.45 | | 1.0523 | 48.0 | 18000 | 1.0693 | 0.45 | | 1.0135 | 49.0 | 18375 | 1.0692 | 0.45 | | 1.0393 | 50.0 | 18750 | 1.0692 | 0.45 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.1+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2
[ "abnormal_sperm", "non-sperm", "normal_sperm" ]
hkivancoral/smids_5x_beit_base_rms_001_fold3
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # smids_5x_beit_base_rms_001_fold3 This model is a fine-tuned version of [microsoft/beit-base-patch16-224](https://huggingface.co/microsoft/beit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.2450 - Accuracy: 0.7883 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.8383 | 1.0 | 375 | 0.9251 | 0.4967 | | 0.7811 | 2.0 | 750 | 0.8274 | 0.55 | | 0.7757 | 3.0 | 1125 | 0.8322 | 0.55 | | 0.774 | 4.0 | 1500 | 0.7903 | 0.5667 | | 0.7988 | 5.0 | 1875 | 0.7818 | 0.59 | | 0.7926 | 6.0 | 2250 | 0.7711 | 0.595 | | 0.7549 | 7.0 | 2625 | 0.7682 | 0.6267 | | 0.7997 | 8.0 | 3000 | 0.7569 | 0.61 | | 0.6926 | 9.0 | 3375 | 0.7561 | 0.6417 | | 0.7413 | 10.0 | 3750 | 0.7251 | 0.6567 | | 0.6722 | 11.0 | 4125 | 0.7285 | 0.6533 | | 0.7582 | 12.0 | 4500 | 0.7029 | 0.66 | | 0.6728 | 13.0 | 4875 | 0.7283 | 0.6433 | | 0.6373 | 14.0 | 5250 | 0.7252 | 0.6333 | | 0.648 | 15.0 | 5625 | 0.7000 | 0.67 | | 0.6675 | 16.0 | 6000 | 0.7072 | 0.6683 | | 0.7316 | 17.0 | 6375 | 0.7063 | 0.6717 | | 0.7151 | 18.0 | 6750 | 0.6856 | 0.6683 | | 0.6082 | 19.0 | 7125 | 0.6800 | 0.6817 | | 0.6879 | 20.0 | 7500 | 0.6816 | 0.6733 | | 0.5586 | 21.0 | 7875 | 0.6735 | 0.695 | | 0.6065 | 22.0 | 8250 | 0.6507 | 0.71 | | 0.5783 | 23.0 | 8625 | 0.6597 | 0.69 | | 0.6456 | 24.0 | 9000 | 0.6102 | 0.74 | | 0.5238 | 25.0 | 9375 | 0.6683 | 0.7117 | | 0.5326 | 26.0 | 9750 | 0.6240 | 0.7183 | | 0.5499 | 27.0 | 10125 | 0.6403 | 0.7083 | | 0.5607 | 28.0 | 10500 | 0.5945 | 0.7417 | | 0.4887 | 29.0 | 10875 | 0.6536 | 0.71 | | 0.5354 | 30.0 | 11250 | 0.5785 | 0.725 | | 0.5136 | 31.0 | 11625 | 0.6072 | 0.7517 | | 0.5448 | 32.0 | 12000 | 0.6265 | 0.7383 | | 0.4542 | 33.0 | 12375 | 0.6265 | 0.7417 | | 0.4208 | 34.0 | 12750 | 0.6113 | 0.745 | | 0.3509 | 35.0 | 13125 | 0.6279 | 0.7467 | | 0.4112 | 36.0 | 13500 | 0.6145 | 0.74 | | 0.3719 | 37.0 | 13875 | 0.6674 | 0.745 | | 0.3029 | 38.0 | 14250 | 0.6977 | 0.7583 | | 0.3416 | 39.0 | 14625 | 0.6751 | 0.7717 | | 0.3246 | 40.0 | 15000 | 0.6878 | 0.7633 | | 0.2432 | 41.0 | 15375 | 0.6417 | 0.79 | | 0.2014 | 42.0 | 15750 | 0.7882 | 0.78 | | 0.2354 | 43.0 | 16125 | 0.8175 | 0.7817 | | 0.1797 | 44.0 | 16500 | 0.8553 | 0.79 | | 0.1419 | 45.0 | 16875 | 0.9481 | 0.765 | | 0.1815 | 46.0 | 17250 | 1.0306 | 0.765 | | 0.1604 | 47.0 | 17625 | 1.0263 | 0.765 | | 0.103 | 48.0 | 18000 | 1.1281 | 0.7833 | | 0.0441 | 49.0 | 18375 | 1.2055 | 0.79 | | 0.0741 | 50.0 | 18750 | 1.2450 | 0.7883 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.0+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2
[ "abnormal_sperm", "non-sperm", "normal_sperm" ]
hkivancoral/smids_5x_beit_base_sgd_00001_fold4
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # smids_5x_beit_base_sgd_00001_fold4 This model is a fine-tuned version of [microsoft/beit-base-patch16-224](https://huggingface.co/microsoft/beit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.1429 - Accuracy: 0.3883 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 1.2481 | 1.0 | 375 | 1.3387 | 0.3367 | | 1.2853 | 2.0 | 750 | 1.3297 | 0.34 | | 1.2245 | 3.0 | 1125 | 1.3209 | 0.34 | | 1.2269 | 4.0 | 1500 | 1.3124 | 0.34 | | 1.1881 | 5.0 | 1875 | 1.3044 | 0.34 | | 1.1962 | 6.0 | 2250 | 1.2965 | 0.3417 | | 1.1766 | 7.0 | 2625 | 1.2890 | 0.345 | | 1.1422 | 8.0 | 3000 | 1.2816 | 0.3467 | | 1.1265 | 9.0 | 3375 | 1.2745 | 0.3483 | | 1.1532 | 10.0 | 3750 | 1.2676 | 0.3517 | | 1.1456 | 11.0 | 4125 | 1.2609 | 0.3533 | | 1.1221 | 12.0 | 4500 | 1.2545 | 0.355 | | 1.1397 | 13.0 | 4875 | 1.2483 | 0.355 | | 1.1323 | 14.0 | 5250 | 1.2422 | 0.3583 | | 1.1113 | 15.0 | 5625 | 1.2362 | 0.3617 | | 1.1197 | 16.0 | 6000 | 1.2307 | 0.3633 | | 1.1175 | 17.0 | 6375 | 1.2251 | 0.3667 | | 1.1137 | 18.0 | 6750 | 1.2199 | 0.3683 | | 1.1317 | 19.0 | 7125 | 1.2149 | 0.3667 | | 1.0985 | 20.0 | 7500 | 1.2099 | 0.37 | | 1.1037 | 21.0 | 7875 | 1.2054 | 0.37 | | 1.1051 | 22.0 | 8250 | 1.2008 | 0.3717 | | 1.1012 | 23.0 | 8625 | 1.1965 | 0.3717 | | 1.0418 | 24.0 | 9000 | 1.1925 | 0.375 | | 1.0922 | 25.0 | 9375 | 1.1886 | 0.3767 | | 1.0809 | 26.0 | 9750 | 1.1848 | 0.3767 | | 1.096 | 27.0 | 10125 | 1.1812 | 0.3767 | | 1.0328 | 28.0 | 10500 | 1.1778 | 0.375 | | 1.0501 | 29.0 | 10875 | 1.1745 | 0.3767 | | 1.065 | 30.0 | 11250 | 1.1714 | 0.3767 | | 1.0717 | 31.0 | 11625 | 1.1685 | 0.3783 | | 1.104 | 32.0 | 12000 | 1.1658 | 0.3767 | | 1.0567 | 33.0 | 12375 | 1.1632 | 0.3783 | | 1.0632 | 34.0 | 12750 | 1.1607 | 0.3783 | | 1.0635 | 35.0 | 13125 | 1.1585 | 0.3783 | | 1.0477 | 36.0 | 13500 | 1.1563 | 0.3833 | | 1.0721 | 37.0 | 13875 | 1.1544 | 0.385 | | 1.0594 | 38.0 | 14250 | 1.1526 | 0.385 | | 1.0484 | 39.0 | 14625 | 1.1510 | 0.3867 | | 1.0408 | 40.0 | 15000 | 1.1495 | 0.3883 | | 1.0421 | 41.0 | 15375 | 1.1482 | 0.39 | | 1.0561 | 42.0 | 15750 | 1.1470 | 0.3883 | | 1.0338 | 43.0 | 16125 | 1.1460 | 0.3883 | | 1.0224 | 44.0 | 16500 | 1.1451 | 0.3883 | | 1.0269 | 45.0 | 16875 | 1.1444 | 0.3883 | | 1.0608 | 46.0 | 17250 | 1.1438 | 0.3883 | | 1.0652 | 47.0 | 17625 | 1.1434 | 0.3883 | | 1.0189 | 48.0 | 18000 | 1.1431 | 0.3883 | | 1.0225 | 49.0 | 18375 | 1.1429 | 0.3883 | | 1.0356 | 50.0 | 18750 | 1.1429 | 0.3883 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.0+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2
[ "abnormal_sperm", "non-sperm", "normal_sperm" ]
hkivancoral/smids_5x_beit_base_rms_001_fold4
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # smids_5x_beit_base_rms_001_fold4 This model is a fine-tuned version of [microsoft/beit-base-patch16-224](https://huggingface.co/microsoft/beit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.7051 - Accuracy: 0.7983 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.7798 | 1.0 | 375 | 0.7672 | 0.5633 | | 0.803 | 2.0 | 750 | 0.7688 | 0.58 | | 0.7686 | 3.0 | 1125 | 0.7514 | 0.61 | | 0.7375 | 4.0 | 1500 | 0.8350 | 0.5517 | | 0.7507 | 5.0 | 1875 | 0.8001 | 0.595 | | 0.7083 | 6.0 | 2250 | 0.7244 | 0.65 | | 0.708 | 7.0 | 2625 | 0.7289 | 0.6467 | | 0.7266 | 8.0 | 3000 | 0.7325 | 0.6633 | | 0.6418 | 9.0 | 3375 | 0.6940 | 0.6917 | | 0.673 | 10.0 | 3750 | 0.7042 | 0.6617 | | 0.6803 | 11.0 | 4125 | 0.6907 | 0.6817 | | 0.64 | 12.0 | 4500 | 0.6890 | 0.675 | | 0.6467 | 13.0 | 4875 | 0.7095 | 0.67 | | 0.6428 | 14.0 | 5250 | 0.6543 | 0.7083 | | 0.6389 | 15.0 | 5625 | 0.5890 | 0.7383 | | 0.5885 | 16.0 | 6000 | 0.5874 | 0.7383 | | 0.5689 | 17.0 | 6375 | 0.6828 | 0.705 | | 0.5988 | 18.0 | 6750 | 0.6153 | 0.74 | | 0.5869 | 19.0 | 7125 | 0.5556 | 0.745 | | 0.5829 | 20.0 | 7500 | 0.5816 | 0.7417 | | 0.5202 | 21.0 | 7875 | 0.6299 | 0.7267 | | 0.4671 | 22.0 | 8250 | 0.5955 | 0.7383 | | 0.4713 | 23.0 | 8625 | 0.5489 | 0.7783 | | 0.4814 | 24.0 | 9000 | 0.6063 | 0.76 | | 0.4578 | 25.0 | 9375 | 0.6548 | 0.7367 | | 0.4226 | 26.0 | 9750 | 0.5459 | 0.75 | | 0.349 | 27.0 | 10125 | 0.6223 | 0.76 | | 0.3499 | 28.0 | 10500 | 0.5682 | 0.7817 | | 0.2869 | 29.0 | 10875 | 0.7135 | 0.7717 | | 0.3419 | 30.0 | 11250 | 0.6094 | 0.7833 | | 0.3402 | 31.0 | 11625 | 0.6473 | 0.785 | | 0.3025 | 32.0 | 12000 | 0.6500 | 0.7783 | | 0.2278 | 33.0 | 12375 | 0.7439 | 0.7633 | | 0.2211 | 34.0 | 12750 | 0.7227 | 0.775 | | 0.1813 | 35.0 | 13125 | 0.7187 | 0.8033 | | 0.1887 | 36.0 | 13500 | 0.7980 | 0.7883 | | 0.2308 | 37.0 | 13875 | 0.8180 | 0.8 | | 0.1362 | 38.0 | 14250 | 0.8499 | 0.7867 | | 0.1204 | 39.0 | 14625 | 0.8914 | 0.8033 | | 0.1182 | 40.0 | 15000 | 0.9026 | 0.7933 | | 0.1271 | 41.0 | 15375 | 1.1021 | 0.775 | | 0.0646 | 42.0 | 15750 | 1.1489 | 0.7967 | | 0.0428 | 43.0 | 16125 | 1.2387 | 0.8067 | | 0.0277 | 44.0 | 16500 | 1.2320 | 0.81 | | 0.0276 | 45.0 | 16875 | 1.3879 | 0.79 | | 0.0246 | 46.0 | 17250 | 1.4881 | 0.8033 | | 0.0344 | 47.0 | 17625 | 1.5278 | 0.7983 | | 0.006 | 48.0 | 18000 | 1.5757 | 0.8017 | | 0.0048 | 49.0 | 18375 | 1.6617 | 0.8033 | | 0.0042 | 50.0 | 18750 | 1.7051 | 0.7983 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.0+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2
[ "abnormal_sperm", "non-sperm", "normal_sperm" ]
hkivancoral/smids_5x_beit_base_sgd_00001_fold5
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # smids_5x_beit_base_sgd_00001_fold5 This model is a fine-tuned version of [microsoft/beit-base-patch16-224](https://huggingface.co/microsoft/beit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.1301 - Accuracy: 0.4017 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 1.2159 | 1.0 | 375 | 1.3104 | 0.3133 | | 1.2415 | 2.0 | 750 | 1.3020 | 0.3233 | | 1.2057 | 3.0 | 1125 | 1.2939 | 0.3233 | | 1.176 | 4.0 | 1500 | 1.2863 | 0.3267 | | 1.2191 | 5.0 | 1875 | 1.2790 | 0.3267 | | 1.1863 | 6.0 | 2250 | 1.2719 | 0.3333 | | 1.2037 | 7.0 | 2625 | 1.2651 | 0.34 | | 1.177 | 8.0 | 3000 | 1.2586 | 0.3483 | | 1.1576 | 9.0 | 3375 | 1.2521 | 0.35 | | 1.0865 | 10.0 | 3750 | 1.2459 | 0.3517 | | 1.1578 | 11.0 | 4125 | 1.2399 | 0.3533 | | 1.1516 | 12.0 | 4500 | 1.2341 | 0.355 | | 1.1216 | 13.0 | 4875 | 1.2282 | 0.355 | | 1.1365 | 14.0 | 5250 | 1.2228 | 0.3583 | | 1.1282 | 15.0 | 5625 | 1.2175 | 0.3583 | | 1.1187 | 16.0 | 6000 | 1.2123 | 0.3633 | | 1.1048 | 17.0 | 6375 | 1.2074 | 0.365 | | 1.1548 | 18.0 | 6750 | 1.2025 | 0.365 | | 1.1271 | 19.0 | 7125 | 1.1978 | 0.3683 | | 1.1003 | 20.0 | 7500 | 1.1934 | 0.3717 | | 1.0771 | 21.0 | 7875 | 1.1891 | 0.3733 | | 1.0833 | 22.0 | 8250 | 1.1849 | 0.3767 | | 1.1002 | 23.0 | 8625 | 1.1809 | 0.3783 | | 1.0994 | 24.0 | 9000 | 1.1772 | 0.3833 | | 1.0715 | 25.0 | 9375 | 1.1735 | 0.385 | | 1.1029 | 26.0 | 9750 | 1.1700 | 0.3867 | | 1.1056 | 27.0 | 10125 | 1.1666 | 0.3867 | | 1.022 | 28.0 | 10500 | 1.1633 | 0.3883 | | 1.0343 | 29.0 | 10875 | 1.1602 | 0.3867 | | 1.0325 | 30.0 | 11250 | 1.1573 | 0.3883 | | 1.0378 | 31.0 | 11625 | 1.1546 | 0.3883 | | 1.0659 | 32.0 | 12000 | 1.1519 | 0.3867 | | 1.0282 | 33.0 | 12375 | 1.1495 | 0.3867 | | 1.0519 | 34.0 | 12750 | 1.1472 | 0.3883 | | 1.0399 | 35.0 | 13125 | 1.1451 | 0.3883 | | 1.0632 | 36.0 | 13500 | 1.1430 | 0.39 | | 1.015 | 37.0 | 13875 | 1.1411 | 0.39 | | 1.0714 | 38.0 | 14250 | 1.1394 | 0.39 | | 0.9921 | 39.0 | 14625 | 1.1379 | 0.3917 | | 1.0391 | 40.0 | 15000 | 1.1365 | 0.3917 | | 1.0121 | 41.0 | 15375 | 1.1352 | 0.395 | | 1.0675 | 42.0 | 15750 | 1.1341 | 0.3967 | | 1.0815 | 43.0 | 16125 | 1.1331 | 0.3967 | | 1.0054 | 44.0 | 16500 | 1.1322 | 0.3967 | | 1.0674 | 45.0 | 16875 | 1.1316 | 0.3983 | | 1.0115 | 46.0 | 17250 | 1.1310 | 0.4 | | 1.0426 | 47.0 | 17625 | 1.1306 | 0.4017 | | 1.0416 | 48.0 | 18000 | 1.1303 | 0.4017 | | 1.0297 | 49.0 | 18375 | 1.1302 | 0.4017 | | 1.0431 | 50.0 | 18750 | 1.1301 | 0.4017 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.0+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2
[ "abnormal_sperm", "non-sperm", "normal_sperm" ]
hkivancoral/smids_5x_beit_base_rms_001_fold5
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # smids_5x_beit_base_rms_001_fold5 This model is a fine-tuned version of [microsoft/beit-base-patch16-224](https://huggingface.co/microsoft/beit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.3262 - Accuracy: 0.8217 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.931 | 1.0 | 375 | 0.8668 | 0.5083 | | 0.8597 | 2.0 | 750 | 0.7892 | 0.6017 | | 0.7587 | 3.0 | 1125 | 0.7350 | 0.6383 | | 0.7046 | 4.0 | 1500 | 0.7282 | 0.65 | | 0.6817 | 5.0 | 1875 | 0.7027 | 0.6567 | | 0.6292 | 6.0 | 2250 | 0.6987 | 0.6683 | | 0.6024 | 7.0 | 2625 | 0.5984 | 0.7267 | | 0.6528 | 8.0 | 3000 | 0.5956 | 0.7267 | | 0.5546 | 9.0 | 3375 | 0.5629 | 0.765 | | 0.4767 | 10.0 | 3750 | 0.5576 | 0.75 | | 0.4967 | 11.0 | 4125 | 0.4703 | 0.8017 | | 0.3904 | 12.0 | 4500 | 0.4630 | 0.8083 | | 0.395 | 13.0 | 4875 | 0.4837 | 0.8 | | 0.4102 | 14.0 | 5250 | 0.4887 | 0.815 | | 0.4425 | 15.0 | 5625 | 0.4472 | 0.8317 | | 0.269 | 16.0 | 6000 | 0.4817 | 0.8133 | | 0.3554 | 17.0 | 6375 | 0.4030 | 0.8483 | | 0.3667 | 18.0 | 6750 | 0.4187 | 0.83 | | 0.2943 | 19.0 | 7125 | 0.4575 | 0.8333 | | 0.2361 | 20.0 | 7500 | 0.4670 | 0.8317 | | 0.2672 | 21.0 | 7875 | 0.4447 | 0.8383 | | 0.2065 | 22.0 | 8250 | 0.4671 | 0.8267 | | 0.3036 | 23.0 | 8625 | 0.5659 | 0.8167 | | 0.1998 | 24.0 | 9000 | 0.5359 | 0.8233 | | 0.1813 | 25.0 | 9375 | 0.4898 | 0.85 | | 0.16 | 26.0 | 9750 | 0.5701 | 0.835 | | 0.1617 | 27.0 | 10125 | 0.5423 | 0.8333 | | 0.1338 | 28.0 | 10500 | 0.5644 | 0.8483 | | 0.1411 | 29.0 | 10875 | 0.5853 | 0.8267 | | 0.0859 | 30.0 | 11250 | 0.6605 | 0.8217 | | 0.101 | 31.0 | 11625 | 0.7234 | 0.8317 | | 0.0828 | 32.0 | 12000 | 0.6563 | 0.8367 | | 0.1039 | 33.0 | 12375 | 0.7913 | 0.82 | | 0.0772 | 34.0 | 12750 | 0.8613 | 0.82 | | 0.0737 | 35.0 | 13125 | 0.7477 | 0.8283 | | 0.0714 | 36.0 | 13500 | 0.9064 | 0.83 | | 0.0337 | 37.0 | 13875 | 0.8383 | 0.8367 | | 0.094 | 38.0 | 14250 | 0.9398 | 0.8233 | | 0.0203 | 39.0 | 14625 | 0.9121 | 0.8267 | | 0.0289 | 40.0 | 15000 | 1.0830 | 0.8283 | | 0.0242 | 41.0 | 15375 | 1.1069 | 0.825 | | 0.0154 | 42.0 | 15750 | 1.1781 | 0.8117 | | 0.009 | 43.0 | 16125 | 1.1755 | 0.8167 | | 0.0144 | 44.0 | 16500 | 1.1730 | 0.8233 | | 0.0239 | 45.0 | 16875 | 1.4682 | 0.8083 | | 0.0221 | 46.0 | 17250 | 1.3105 | 0.82 | | 0.0362 | 47.0 | 17625 | 1.3368 | 0.8317 | | 0.0008 | 48.0 | 18000 | 1.2965 | 0.8317 | | 0.0038 | 49.0 | 18375 | 1.2931 | 0.8317 | | 0.0178 | 50.0 | 18750 | 1.3262 | 0.8217 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.0+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2
[ "abnormal_sperm", "non-sperm", "normal_sperm" ]
aaa12963337/msi-dinat-mini-pretrain
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # msi-dinat-mini-pretrain This model is a fine-tuned version of [shi-labs/dinat-mini-in1k-224](https://huggingface.co/shi-labs/dinat-mini-in1k-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.5378 - Accuracy: 0.8937 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.1041 | 1.0 | 1562 | 0.4092 | 0.8756 | | 0.0527 | 2.0 | 3125 | 0.6298 | 0.8765 | | 0.0611 | 3.0 | 4686 | 0.5378 | 0.8937 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.0.1+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0
[ "adi", "back", "deb", "lym", "muc", "mus", "norm", "str", "tum" ]
aaa12963337/msi-resnet-18-pretrain
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # msi-resnet-18-pretrain This model is a fine-tuned version of [microsoft/resnet-18](https://huggingface.co/microsoft/resnet-18) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.4121 - Accuracy: 0.8675 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.1724 | 1.0 | 1562 | 0.3597 | 0.8806 | | 0.0543 | 2.0 | 3125 | 0.3707 | 0.8875 | | 0.0834 | 3.0 | 4686 | 0.4121 | 0.8675 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.0.1+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0
[ "adi", "back", "deb", "lym", "muc", "mus", "norm", "str", "tum" ]
aaa12963337/msi-dinat-mini
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # msi-dinat-mini This model was trained from scratch on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.8735 - Accuracy: 0.6308 - F1: 0.4532 - Precision: 0.6338 - Recall: 0.3526 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.5414 | 1.0 | 2015 | 0.7584 | 0.5874 | 0.3960 | 0.5427 | 0.3117 | | 0.4715 | 2.0 | 4031 | 0.7695 | 0.6208 | 0.4593 | 0.6021 | 0.3712 | | 0.4159 | 3.0 | 6047 | 0.7922 | 0.6230 | 0.4637 | 0.6056 | 0.3757 | | 0.3774 | 4.0 | 8063 | 0.8166 | 0.6286 | 0.4589 | 0.6235 | 0.3630 | | 0.3635 | 5.0 | 10078 | 0.8123 | 0.6349 | 0.4889 | 0.6225 | 0.4026 | | 0.3471 | 6.0 | 12094 | 0.8481 | 0.6265 | 0.4575 | 0.6186 | 0.3630 | | 0.3616 | 7.0 | 14110 | 0.8605 | 0.6284 | 0.4514 | 0.6279 | 0.3524 | | 0.3517 | 8.0 | 16126 | 0.8661 | 0.6329 | 0.4600 | 0.6356 | 0.3604 | | 0.3476 | 9.0 | 18141 | 0.8631 | 0.6330 | 0.4619 | 0.6346 | 0.3631 | | 0.3469 | 10.0 | 20150 | 0.8735 | 0.6308 | 0.4532 | 0.6338 | 0.3526 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.0.1+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0
[ "0", "1" ]
aaa12963337/msi-resnet-18
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # msi-resnet-18 This model was trained from scratch on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.6854 - Accuracy: 0.6337 - F1: 0.5299 - Precision: 0.5977 - Recall: 0.4760 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.499 | 1.0 | 2015 | 0.7028 | 0.6189 | 0.4730 | 0.5911 | 0.3942 | | 0.4738 | 2.0 | 4031 | 0.7003 | 0.6268 | 0.4981 | 0.5979 | 0.4268 | | 0.4788 | 3.0 | 6047 | 0.7195 | 0.6148 | 0.4517 | 0.5906 | 0.3657 | | 0.4523 | 4.0 | 8060 | 0.6854 | 0.6337 | 0.5299 | 0.5977 | 0.4760 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.0.1+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0
[ "0", "1" ]
dima806/face_emotions_image_detection
Predicts face emotion based on facial image. See https://www.kaggle.com/code/dima806/face-emotions-image-detection-vit for more details. ``` Classification report: precision recall f1-score support Ahegao 0.9738 0.9919 0.9828 1611 Angry 0.8439 0.6580 0.7394 1611 Happy 0.8939 0.9261 0.9098 1611 Neutral 0.6056 0.7635 0.6755 1611 Sad 0.6661 0.5140 0.5802 1611 Surprise 0.7704 0.8733 0.8186 1610 accuracy 0.7878 9665 macro avg 0.7923 0.7878 0.7844 9665 weighted avg 0.7923 0.7878 0.7844 9665 ```
[ "ahegao", "angry", "happy", "neutral", "sad", "surprise" ]
hkivancoral/smids_5x_beit_base_rms_0001_fold1
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # smids_5x_beit_base_rms_0001_fold1 This model is a fine-tuned version of [microsoft/beit-base-patch16-224](https://huggingface.co/microsoft/beit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.9099 - Accuracy: 0.9032 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.2877 | 1.0 | 376 | 0.3734 | 0.8397 | | 0.263 | 2.0 | 752 | 0.2897 | 0.8898 | | 0.214 | 3.0 | 1128 | 0.4392 | 0.8815 | | 0.1401 | 4.0 | 1504 | 0.3640 | 0.8865 | | 0.0913 | 5.0 | 1880 | 0.4071 | 0.8982 | | 0.0792 | 6.0 | 2256 | 0.5796 | 0.8765 | | 0.0326 | 7.0 | 2632 | 0.5828 | 0.8781 | | 0.0613 | 8.0 | 3008 | 0.5485 | 0.8965 | | 0.0614 | 9.0 | 3384 | 0.5394 | 0.8815 | | 0.0378 | 10.0 | 3760 | 0.5802 | 0.8932 | | 0.016 | 11.0 | 4136 | 0.5517 | 0.8998 | | 0.1114 | 12.0 | 4512 | 0.5851 | 0.8798 | | 0.0304 | 13.0 | 4888 | 0.5301 | 0.8731 | | 0.0236 | 14.0 | 5264 | 0.6243 | 0.8965 | | 0.0147 | 15.0 | 5640 | 0.5697 | 0.8998 | | 0.0009 | 16.0 | 6016 | 0.5289 | 0.9098 | | 0.003 | 17.0 | 6392 | 0.6450 | 0.8932 | | 0.045 | 18.0 | 6768 | 0.7662 | 0.8915 | | 0.0003 | 19.0 | 7144 | 0.6709 | 0.8898 | | 0.0083 | 20.0 | 7520 | 0.7941 | 0.8865 | | 0.0011 | 21.0 | 7896 | 0.8204 | 0.8831 | | 0.0265 | 22.0 | 8272 | 0.7663 | 0.8798 | | 0.0065 | 23.0 | 8648 | 0.7543 | 0.8865 | | 0.0005 | 24.0 | 9024 | 0.8605 | 0.8881 | | 0.0223 | 25.0 | 9400 | 0.7879 | 0.8815 | | 0.0093 | 26.0 | 9776 | 0.8444 | 0.8748 | | 0.0004 | 27.0 | 10152 | 0.7708 | 0.8781 | | 0.0001 | 28.0 | 10528 | 0.7477 | 0.8948 | | 0.0051 | 29.0 | 10904 | 0.7865 | 0.8831 | | 0.0131 | 30.0 | 11280 | 0.8049 | 0.9098 | | 0.0 | 31.0 | 11656 | 0.8832 | 0.8915 | | 0.0001 | 32.0 | 12032 | 0.8723 | 0.8965 | | 0.0007 | 33.0 | 12408 | 1.0043 | 0.8865 | | 0.0001 | 34.0 | 12784 | 0.9137 | 0.8881 | | 0.0019 | 35.0 | 13160 | 0.7356 | 0.9048 | | 0.0 | 36.0 | 13536 | 0.7048 | 0.9032 | | 0.0 | 37.0 | 13912 | 0.8706 | 0.9015 | | 0.0 | 38.0 | 14288 | 0.7699 | 0.9032 | | 0.0 | 39.0 | 14664 | 0.8383 | 0.8982 | | 0.0 | 40.0 | 15040 | 0.8533 | 0.9048 | | 0.0008 | 41.0 | 15416 | 0.8710 | 0.9015 | | 0.0001 | 42.0 | 15792 | 0.9271 | 0.8898 | | 0.0 | 43.0 | 16168 | 0.9308 | 0.8982 | | 0.0 | 44.0 | 16544 | 0.9577 | 0.8982 | | 0.0 | 45.0 | 16920 | 0.9412 | 0.8898 | | 0.0033 | 46.0 | 17296 | 0.9423 | 0.8998 | | 0.0 | 47.0 | 17672 | 0.9136 | 0.9048 | | 0.0 | 48.0 | 18048 | 0.9005 | 0.9065 | | 0.0001 | 49.0 | 18424 | 0.9138 | 0.9048 | | 0.0023 | 50.0 | 18800 | 0.9099 | 0.9032 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.0+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2
[ "abnormal_sperm", "non-sperm", "normal_sperm" ]
hkivancoral/smids_5x_beit_base_rms_00001_fold1
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # smids_5x_beit_base_rms_00001_fold1 This model is a fine-tuned version of [microsoft/beit-base-patch16-224](https://huggingface.co/microsoft/beit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.0277 - Accuracy: 0.8965 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.169 | 1.0 | 376 | 0.2845 | 0.8848 | | 0.1527 | 2.0 | 752 | 0.2709 | 0.9132 | | 0.1446 | 3.0 | 1128 | 0.3421 | 0.8998 | | 0.0485 | 4.0 | 1504 | 0.4474 | 0.9065 | | 0.0159 | 5.0 | 1880 | 0.4847 | 0.8965 | | 0.0162 | 6.0 | 2256 | 0.6046 | 0.8982 | | 0.0753 | 7.0 | 2632 | 0.6419 | 0.8898 | | 0.0455 | 8.0 | 3008 | 0.7218 | 0.8965 | | 0.0437 | 9.0 | 3384 | 0.8405 | 0.8815 | | 0.007 | 10.0 | 3760 | 0.7349 | 0.9015 | | 0.0254 | 11.0 | 4136 | 0.8461 | 0.8915 | | 0.0214 | 12.0 | 4512 | 0.7638 | 0.8898 | | 0.0283 | 13.0 | 4888 | 0.8735 | 0.8948 | | 0.0331 | 14.0 | 5264 | 0.8577 | 0.8932 | | 0.0029 | 15.0 | 5640 | 0.9013 | 0.8982 | | 0.0041 | 16.0 | 6016 | 0.9992 | 0.8698 | | 0.0007 | 17.0 | 6392 | 0.9147 | 0.8865 | | 0.0019 | 18.0 | 6768 | 0.9339 | 0.8915 | | 0.0002 | 19.0 | 7144 | 0.8625 | 0.8982 | | 0.0341 | 20.0 | 7520 | 0.9287 | 0.8815 | | 0.0 | 21.0 | 7896 | 1.0011 | 0.8831 | | 0.0 | 22.0 | 8272 | 0.8805 | 0.8948 | | 0.0028 | 23.0 | 8648 | 0.9347 | 0.8965 | | 0.0001 | 24.0 | 9024 | 0.9930 | 0.8965 | | 0.001 | 25.0 | 9400 | 1.0054 | 0.8982 | | 0.029 | 26.0 | 9776 | 0.8994 | 0.8932 | | 0.0028 | 27.0 | 10152 | 0.9209 | 0.8865 | | 0.0009 | 28.0 | 10528 | 0.9409 | 0.8998 | | 0.0018 | 29.0 | 10904 | 1.0441 | 0.8848 | | 0.0163 | 30.0 | 11280 | 0.9017 | 0.9032 | | 0.0 | 31.0 | 11656 | 0.8554 | 0.9015 | | 0.0 | 32.0 | 12032 | 0.8702 | 0.9048 | | 0.0001 | 33.0 | 12408 | 0.9551 | 0.8965 | | 0.0 | 34.0 | 12784 | 0.9265 | 0.8982 | | 0.0004 | 35.0 | 13160 | 1.0253 | 0.8865 | | 0.0044 | 36.0 | 13536 | 0.9098 | 0.8948 | | 0.0003 | 37.0 | 13912 | 0.9290 | 0.9032 | | 0.0 | 38.0 | 14288 | 1.0072 | 0.8948 | | 0.0 | 39.0 | 14664 | 1.0677 | 0.8948 | | 0.0 | 40.0 | 15040 | 1.0064 | 0.8982 | | 0.0 | 41.0 | 15416 | 0.9891 | 0.8982 | | 0.0 | 42.0 | 15792 | 1.0628 | 0.8948 | | 0.0 | 43.0 | 16168 | 1.0396 | 0.8915 | | 0.0 | 44.0 | 16544 | 1.0033 | 0.8982 | | 0.0 | 45.0 | 16920 | 1.0214 | 0.8998 | | 0.0033 | 46.0 | 17296 | 1.0498 | 0.8898 | | 0.0 | 47.0 | 17672 | 1.0375 | 0.8932 | | 0.0 | 48.0 | 18048 | 1.0305 | 0.8898 | | 0.0 | 49.0 | 18424 | 1.0285 | 0.8948 | | 0.0028 | 50.0 | 18800 | 1.0277 | 0.8965 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.0+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2
[ "abnormal_sperm", "non-sperm", "normal_sperm" ]
hkivancoral/smids_5x_deit_tiny_rms_001_fold1
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # smids_5x_deit_tiny_rms_001_fold1 This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co/facebook/deit-tiny-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.6720 - Accuracy: 0.7563 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.9519 | 1.0 | 376 | 0.9699 | 0.4808 | | 0.8617 | 2.0 | 752 | 0.8618 | 0.5392 | | 0.8149 | 3.0 | 1128 | 0.8048 | 0.5893 | | 0.8075 | 4.0 | 1504 | 0.7999 | 0.5609 | | 0.9135 | 5.0 | 1880 | 0.7865 | 0.6160 | | 0.783 | 6.0 | 2256 | 0.8586 | 0.5893 | | 0.725 | 7.0 | 2632 | 0.8054 | 0.6227 | | 0.6972 | 8.0 | 3008 | 0.7248 | 0.6444 | | 0.72 | 9.0 | 3384 | 0.7167 | 0.6661 | | 0.7292 | 10.0 | 3760 | 0.7657 | 0.6795 | | 0.645 | 11.0 | 4136 | 0.6894 | 0.6861 | | 0.7059 | 12.0 | 4512 | 0.7066 | 0.6928 | | 0.7086 | 13.0 | 4888 | 0.7125 | 0.6995 | | 0.6705 | 14.0 | 5264 | 0.6700 | 0.7078 | | 0.6566 | 15.0 | 5640 | 0.6881 | 0.6861 | | 0.5734 | 16.0 | 6016 | 0.7052 | 0.6694 | | 0.5199 | 17.0 | 6392 | 0.7378 | 0.6628 | | 0.659 | 18.0 | 6768 | 0.6486 | 0.7112 | | 0.6288 | 19.0 | 7144 | 0.7161 | 0.6528 | | 0.566 | 20.0 | 7520 | 0.6171 | 0.7212 | | 0.6474 | 21.0 | 7896 | 0.6184 | 0.7262 | | 0.5542 | 22.0 | 8272 | 0.6826 | 0.6861 | | 0.5759 | 23.0 | 8648 | 0.6131 | 0.7229 | | 0.6266 | 24.0 | 9024 | 0.6647 | 0.7112 | | 0.6436 | 25.0 | 9400 | 0.6298 | 0.7078 | | 0.5378 | 26.0 | 9776 | 0.6147 | 0.7229 | | 0.534 | 27.0 | 10152 | 0.6258 | 0.7179 | | 0.4794 | 28.0 | 10528 | 0.6515 | 0.7095 | | 0.5282 | 29.0 | 10904 | 0.6735 | 0.6912 | | 0.4828 | 30.0 | 11280 | 0.6279 | 0.7179 | | 0.5597 | 31.0 | 11656 | 0.6003 | 0.7295 | | 0.5931 | 32.0 | 12032 | 0.6323 | 0.7362 | | 0.4604 | 33.0 | 12408 | 0.6185 | 0.7446 | | 0.473 | 34.0 | 12784 | 0.6171 | 0.7396 | | 0.5357 | 35.0 | 13160 | 0.6139 | 0.7279 | | 0.5273 | 36.0 | 13536 | 0.6022 | 0.7379 | | 0.446 | 37.0 | 13912 | 0.6164 | 0.7362 | | 0.5051 | 38.0 | 14288 | 0.6160 | 0.7329 | | 0.5127 | 39.0 | 14664 | 0.6147 | 0.7629 | | 0.5424 | 40.0 | 15040 | 0.5988 | 0.7579 | | 0.4672 | 41.0 | 15416 | 0.6152 | 0.7613 | | 0.4259 | 42.0 | 15792 | 0.6298 | 0.7429 | | 0.4313 | 43.0 | 16168 | 0.6086 | 0.7462 | | 0.4716 | 44.0 | 16544 | 0.6307 | 0.7496 | | 0.4303 | 45.0 | 16920 | 0.6176 | 0.7513 | | 0.3889 | 46.0 | 17296 | 0.6198 | 0.7479 | | 0.4191 | 47.0 | 17672 | 0.6340 | 0.7563 | | 0.3752 | 48.0 | 18048 | 0.6420 | 0.7596 | | 0.3744 | 49.0 | 18424 | 0.6614 | 0.7529 | | 0.3137 | 50.0 | 18800 | 0.6720 | 0.7563 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.1+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2
[ "abnormal_sperm", "non-sperm", "normal_sperm" ]
hkivancoral/smids_5x_deit_tiny_rms_001_fold2
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # smids_5x_deit_tiny_rms_001_fold2 This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co/facebook/deit-tiny-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.4964 - Accuracy: 0.8486 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 1.0328 | 1.0 | 375 | 0.9569 | 0.4459 | | 0.8929 | 2.0 | 750 | 0.8978 | 0.5374 | | 0.8224 | 3.0 | 1125 | 0.7888 | 0.5574 | | 0.8327 | 4.0 | 1500 | 0.8571 | 0.5641 | | 0.7266 | 5.0 | 1875 | 1.1729 | 0.5025 | | 0.6507 | 6.0 | 2250 | 0.7875 | 0.6456 | | 0.6983 | 7.0 | 2625 | 0.6489 | 0.6972 | | 0.6312 | 8.0 | 3000 | 0.7326 | 0.6789 | | 0.641 | 9.0 | 3375 | 0.5505 | 0.7488 | | 0.6354 | 10.0 | 3750 | 0.5766 | 0.7354 | | 0.5813 | 11.0 | 4125 | 0.4910 | 0.7920 | | 0.6084 | 12.0 | 4500 | 0.5458 | 0.7720 | | 0.4944 | 13.0 | 4875 | 0.4657 | 0.8020 | | 0.5555 | 14.0 | 5250 | 0.5401 | 0.7621 | | 0.526 | 15.0 | 5625 | 0.4958 | 0.7837 | | 0.3751 | 16.0 | 6000 | 0.4911 | 0.8037 | | 0.4264 | 17.0 | 6375 | 0.5204 | 0.7837 | | 0.4312 | 18.0 | 6750 | 0.5011 | 0.7953 | | 0.3686 | 19.0 | 7125 | 0.4979 | 0.7970 | | 0.3954 | 20.0 | 7500 | 0.4812 | 0.8120 | | 0.3782 | 21.0 | 7875 | 0.4706 | 0.8120 | | 0.3544 | 22.0 | 8250 | 0.4461 | 0.8353 | | 0.3759 | 23.0 | 8625 | 0.4516 | 0.8319 | | 0.3473 | 24.0 | 9000 | 0.4332 | 0.8270 | | 0.2572 | 25.0 | 9375 | 0.5951 | 0.8203 | | 0.3628 | 26.0 | 9750 | 0.5630 | 0.7887 | | 0.2737 | 27.0 | 10125 | 0.5304 | 0.8336 | | 0.2272 | 28.0 | 10500 | 0.5597 | 0.8319 | | 0.2226 | 29.0 | 10875 | 0.5680 | 0.8419 | | 0.1778 | 30.0 | 11250 | 0.6295 | 0.8170 | | 0.2382 | 31.0 | 11625 | 0.6223 | 0.8270 | | 0.1721 | 32.0 | 12000 | 0.6049 | 0.8469 | | 0.219 | 33.0 | 12375 | 0.5556 | 0.8569 | | 0.0972 | 34.0 | 12750 | 0.6389 | 0.8502 | | 0.1781 | 35.0 | 13125 | 0.7873 | 0.8253 | | 0.1052 | 36.0 | 13500 | 0.8815 | 0.8236 | | 0.1087 | 37.0 | 13875 | 0.7444 | 0.8453 | | 0.09 | 38.0 | 14250 | 0.9779 | 0.8253 | | 0.0859 | 39.0 | 14625 | 0.8817 | 0.8386 | | 0.0521 | 40.0 | 15000 | 0.9849 | 0.8453 | | 0.081 | 41.0 | 15375 | 1.0555 | 0.8203 | | 0.0225 | 42.0 | 15750 | 1.1081 | 0.8303 | | 0.0521 | 43.0 | 16125 | 1.2294 | 0.8253 | | 0.0259 | 44.0 | 16500 | 1.3035 | 0.8336 | | 0.0403 | 45.0 | 16875 | 1.3613 | 0.8253 | | 0.0225 | 46.0 | 17250 | 1.4500 | 0.8103 | | 0.0235 | 47.0 | 17625 | 1.5096 | 0.8270 | | 0.0002 | 48.0 | 18000 | 1.5022 | 0.8469 | | 0.0101 | 49.0 | 18375 | 1.4968 | 0.8469 | | 0.0029 | 50.0 | 18750 | 1.4964 | 0.8486 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.1+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2
[ "abnormal_sperm", "non-sperm", "normal_sperm" ]
hkivancoral/smids_5x_beit_base_rms_0001_fold2
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # smids_5x_beit_base_rms_0001_fold2 This model is a fine-tuned version of [microsoft/beit-base-patch16-224](https://huggingface.co/microsoft/beit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.9869 - Accuracy: 0.9068 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.3386 | 1.0 | 375 | 0.2631 | 0.8902 | | 0.2769 | 2.0 | 750 | 0.2812 | 0.8852 | | 0.1948 | 3.0 | 1125 | 0.4161 | 0.8686 | | 0.1489 | 4.0 | 1500 | 0.3316 | 0.8852 | | 0.1015 | 5.0 | 1875 | 0.3966 | 0.8835 | | 0.0659 | 6.0 | 2250 | 0.5521 | 0.8686 | | 0.0987 | 7.0 | 2625 | 0.4706 | 0.8852 | | 0.0304 | 8.0 | 3000 | 0.6100 | 0.8835 | | 0.0177 | 9.0 | 3375 | 0.5599 | 0.8835 | | 0.0365 | 10.0 | 3750 | 0.5970 | 0.8902 | | 0.07 | 11.0 | 4125 | 0.5587 | 0.8869 | | 0.025 | 12.0 | 4500 | 0.6283 | 0.8885 | | 0.013 | 13.0 | 4875 | 0.4540 | 0.9035 | | 0.0155 | 14.0 | 5250 | 0.6593 | 0.8869 | | 0.0612 | 15.0 | 5625 | 0.6571 | 0.8935 | | 0.0058 | 16.0 | 6000 | 0.6333 | 0.8835 | | 0.0564 | 17.0 | 6375 | 0.5490 | 0.8918 | | 0.0204 | 18.0 | 6750 | 0.7225 | 0.8985 | | 0.0128 | 19.0 | 7125 | 0.4844 | 0.9135 | | 0.0241 | 20.0 | 7500 | 0.5085 | 0.9018 | | 0.0042 | 21.0 | 7875 | 0.5500 | 0.9135 | | 0.0209 | 22.0 | 8250 | 0.6987 | 0.8869 | | 0.0277 | 23.0 | 8625 | 0.7227 | 0.8902 | | 0.027 | 24.0 | 9000 | 0.8023 | 0.8769 | | 0.0061 | 25.0 | 9375 | 0.7219 | 0.8985 | | 0.0004 | 26.0 | 9750 | 0.7303 | 0.8935 | | 0.0002 | 27.0 | 10125 | 0.6194 | 0.9118 | | 0.0002 | 28.0 | 10500 | 0.7358 | 0.9085 | | 0.0068 | 29.0 | 10875 | 0.7598 | 0.9002 | | 0.0002 | 30.0 | 11250 | 0.7703 | 0.8935 | | 0.0136 | 31.0 | 11625 | 0.7951 | 0.8902 | | 0.0053 | 32.0 | 12000 | 0.8891 | 0.8918 | | 0.0038 | 33.0 | 12375 | 0.7625 | 0.9018 | | 0.0002 | 34.0 | 12750 | 0.8776 | 0.9052 | | 0.0 | 35.0 | 13125 | 0.9210 | 0.9002 | | 0.0195 | 36.0 | 13500 | 0.7510 | 0.9151 | | 0.0008 | 37.0 | 13875 | 0.7794 | 0.9135 | | 0.0007 | 38.0 | 14250 | 0.8315 | 0.9085 | | 0.0005 | 39.0 | 14625 | 0.7854 | 0.9151 | | 0.0033 | 40.0 | 15000 | 0.8459 | 0.9101 | | 0.0001 | 41.0 | 15375 | 0.9023 | 0.9002 | | 0.0027 | 42.0 | 15750 | 1.0108 | 0.9018 | | 0.0026 | 43.0 | 16125 | 1.0264 | 0.8952 | | 0.0026 | 44.0 | 16500 | 0.9790 | 0.9035 | | 0.0027 | 45.0 | 16875 | 0.9445 | 0.9101 | | 0.0 | 46.0 | 17250 | 0.9135 | 0.9185 | | 0.0057 | 47.0 | 17625 | 0.9222 | 0.9085 | | 0.0 | 48.0 | 18000 | 0.9390 | 0.9085 | | 0.0052 | 49.0 | 18375 | 0.9876 | 0.9052 | | 0.0025 | 50.0 | 18750 | 0.9869 | 0.9068 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.0+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2
[ "abnormal_sperm", "non-sperm", "normal_sperm" ]
hkivancoral/smids_5x_beit_base_rms_00001_fold2
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # smids_5x_beit_base_rms_00001_fold2 This model is a fine-tuned version of [microsoft/beit-base-patch16-224](https://huggingface.co/microsoft/beit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.9950 - Accuracy: 0.9052 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.2499 | 1.0 | 375 | 0.2304 | 0.9185 | | 0.1775 | 2.0 | 750 | 0.2550 | 0.9018 | | 0.1217 | 3.0 | 1125 | 0.4013 | 0.8869 | | 0.0433 | 4.0 | 1500 | 0.5189 | 0.8819 | | 0.0358 | 5.0 | 1875 | 0.4893 | 0.8985 | | 0.0375 | 6.0 | 2250 | 0.5725 | 0.9052 | | 0.0405 | 7.0 | 2625 | 0.5904 | 0.9101 | | 0.012 | 8.0 | 3000 | 0.7002 | 0.9018 | | 0.0053 | 9.0 | 3375 | 0.7065 | 0.9052 | | 0.0037 | 10.0 | 3750 | 0.7485 | 0.8985 | | 0.0126 | 11.0 | 4125 | 0.7919 | 0.8985 | | 0.0005 | 12.0 | 4500 | 0.7919 | 0.8968 | | 0.0159 | 13.0 | 4875 | 0.8564 | 0.8902 | | 0.0001 | 14.0 | 5250 | 0.8426 | 0.8852 | | 0.0002 | 15.0 | 5625 | 0.8433 | 0.8918 | | 0.0148 | 16.0 | 6000 | 0.7634 | 0.9018 | | 0.0208 | 17.0 | 6375 | 0.8403 | 0.8952 | | 0.0001 | 18.0 | 6750 | 0.8471 | 0.9018 | | 0.0491 | 19.0 | 7125 | 0.8371 | 0.9035 | | 0.0 | 20.0 | 7500 | 0.7423 | 0.9052 | | 0.0126 | 21.0 | 7875 | 0.8759 | 0.8935 | | 0.0008 | 22.0 | 8250 | 0.8648 | 0.9002 | | 0.0 | 23.0 | 8625 | 0.9554 | 0.9002 | | 0.0005 | 24.0 | 9000 | 0.9755 | 0.8918 | | 0.0184 | 25.0 | 9375 | 0.9160 | 0.8918 | | 0.0 | 26.0 | 9750 | 0.9691 | 0.8918 | | 0.0 | 27.0 | 10125 | 0.8701 | 0.8968 | | 0.0002 | 28.0 | 10500 | 0.7677 | 0.9035 | | 0.0001 | 29.0 | 10875 | 0.9258 | 0.9035 | | 0.0033 | 30.0 | 11250 | 0.9080 | 0.9002 | | 0.0045 | 31.0 | 11625 | 1.0210 | 0.8935 | | 0.0045 | 32.0 | 12000 | 0.9883 | 0.8985 | | 0.0017 | 33.0 | 12375 | 0.8984 | 0.9035 | | 0.0 | 34.0 | 12750 | 0.8844 | 0.9101 | | 0.0007 | 35.0 | 13125 | 0.9085 | 0.8918 | | 0.0002 | 36.0 | 13500 | 0.9790 | 0.9035 | | 0.0 | 37.0 | 13875 | 1.0705 | 0.8985 | | 0.0 | 38.0 | 14250 | 1.0172 | 0.9035 | | 0.0 | 39.0 | 14625 | 1.0259 | 0.9052 | | 0.0032 | 40.0 | 15000 | 1.0712 | 0.9018 | | 0.0 | 41.0 | 15375 | 1.0107 | 0.9002 | | 0.0025 | 42.0 | 15750 | 1.0002 | 0.9068 | | 0.0023 | 43.0 | 16125 | 1.0032 | 0.9035 | | 0.003 | 44.0 | 16500 | 0.9837 | 0.9052 | | 0.0018 | 45.0 | 16875 | 1.0127 | 0.9035 | | 0.0 | 46.0 | 17250 | 0.9843 | 0.9068 | | 0.0056 | 47.0 | 17625 | 1.0283 | 0.9002 | | 0.0033 | 48.0 | 18000 | 1.0135 | 0.9052 | | 0.0031 | 49.0 | 18375 | 0.9997 | 0.9052 | | 0.0025 | 50.0 | 18750 | 0.9950 | 0.9052 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.0+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2
[ "abnormal_sperm", "non-sperm", "normal_sperm" ]
aaa12963337/msi-vit-small-pretrain
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # msi-vit-small-pretrain This model is a fine-tuned version of [WinKawaks/vit-small-patch16-224](https://huggingface.co/WinKawaks/vit-small-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 2.4835 - Accuracy: 0.6394 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.0897 | 1.0 | 781 | 1.7652 | 0.6574 | | 0.0539 | 2.0 | 1562 | 2.5512 | 0.6017 | | 0.0127 | 3.0 | 2343 | 2.4835 | 0.6394 | ### Framework versions - Transformers 4.36.0 - Pytorch 2.0.1+cu117 - Datasets 2.15.0 - Tokenizers 0.15.0
[ "adi", "back", "deb", "lym", "muc", "mus", "norm", "str", "tum" ]
hkivancoral/smids_5x_deit_tiny_rms_001_fold3
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # smids_5x_deit_tiny_rms_001_fold3 This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co/facebook/deit-tiny-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.8753 - Accuracy: 0.7767 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.7906 | 1.0 | 375 | 0.9128 | 0.4983 | | 0.7765 | 2.0 | 750 | 0.9232 | 0.4617 | | 0.7977 | 3.0 | 1125 | 0.8743 | 0.5267 | | 0.8093 | 4.0 | 1500 | 0.7926 | 0.5767 | | 0.8508 | 5.0 | 1875 | 0.7894 | 0.5733 | | 0.7532 | 6.0 | 2250 | 0.7991 | 0.6117 | | 0.7584 | 7.0 | 2625 | 0.7566 | 0.625 | | 0.7398 | 8.0 | 3000 | 0.7364 | 0.6083 | | 0.7009 | 9.0 | 3375 | 0.7452 | 0.64 | | 0.7014 | 10.0 | 3750 | 0.7192 | 0.6433 | | 0.7226 | 11.0 | 4125 | 0.7119 | 0.6383 | | 0.7293 | 12.0 | 4500 | 0.7180 | 0.6467 | | 0.6344 | 13.0 | 4875 | 0.7612 | 0.6117 | | 0.6251 | 14.0 | 5250 | 0.7810 | 0.66 | | 0.6301 | 15.0 | 5625 | 0.6950 | 0.6733 | | 0.6252 | 16.0 | 6000 | 0.7106 | 0.6767 | | 0.688 | 17.0 | 6375 | 0.7082 | 0.6883 | | 0.7261 | 18.0 | 6750 | 0.6859 | 0.6883 | | 0.5633 | 19.0 | 7125 | 0.6734 | 0.7033 | | 0.6092 | 20.0 | 7500 | 0.6580 | 0.7283 | | 0.4728 | 21.0 | 7875 | 0.6793 | 0.7033 | | 0.5681 | 22.0 | 8250 | 0.6598 | 0.7217 | | 0.5951 | 23.0 | 8625 | 0.6134 | 0.7533 | | 0.6592 | 24.0 | 9000 | 0.5954 | 0.7467 | | 0.5215 | 25.0 | 9375 | 0.5847 | 0.74 | | 0.5272 | 26.0 | 9750 | 0.6243 | 0.7017 | | 0.5866 | 27.0 | 10125 | 0.6339 | 0.7233 | | 0.5766 | 28.0 | 10500 | 0.5466 | 0.765 | | 0.463 | 29.0 | 10875 | 0.5734 | 0.7583 | | 0.5041 | 30.0 | 11250 | 0.5320 | 0.775 | | 0.5133 | 31.0 | 11625 | 0.5507 | 0.7683 | | 0.5402 | 32.0 | 12000 | 0.5711 | 0.7517 | | 0.4526 | 33.0 | 12375 | 0.5736 | 0.7483 | | 0.4724 | 34.0 | 12750 | 0.5009 | 0.79 | | 0.3951 | 35.0 | 13125 | 0.5483 | 0.77 | | 0.3876 | 36.0 | 13500 | 0.5689 | 0.755 | | 0.3627 | 37.0 | 13875 | 0.5639 | 0.7733 | | 0.4378 | 38.0 | 14250 | 0.5663 | 0.765 | | 0.3725 | 39.0 | 14625 | 0.5574 | 0.7867 | | 0.3444 | 40.0 | 15000 | 0.5740 | 0.7733 | | 0.3158 | 41.0 | 15375 | 0.5671 | 0.7717 | | 0.29 | 42.0 | 15750 | 0.6455 | 0.78 | | 0.3784 | 43.0 | 16125 | 0.6093 | 0.785 | | 0.318 | 44.0 | 16500 | 0.6835 | 0.7683 | | 0.2949 | 45.0 | 16875 | 0.7092 | 0.7733 | | 0.2996 | 46.0 | 17250 | 0.6699 | 0.7767 | | 0.2938 | 47.0 | 17625 | 0.7545 | 0.7917 | | 0.2248 | 48.0 | 18000 | 0.8050 | 0.775 | | 0.2309 | 49.0 | 18375 | 0.8518 | 0.7767 | | 0.1878 | 50.0 | 18750 | 0.8753 | 0.7767 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.1+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2
[ "abnormal_sperm", "non-sperm", "normal_sperm" ]
hkivancoral/smids_5x_beit_base_rms_0001_fold3
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # smids_5x_beit_base_rms_0001_fold3 This model is a fine-tuned version of [microsoft/beit-base-patch16-224](https://huggingface.co/microsoft/beit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.3488 - Accuracy: 0.855 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.5467 | 1.0 | 375 | 0.5969 | 0.7483 | | 0.4112 | 2.0 | 750 | 0.6522 | 0.7967 | | 0.3586 | 3.0 | 1125 | 0.4558 | 0.83 | | 0.3318 | 4.0 | 1500 | 0.3669 | 0.8567 | | 0.318 | 5.0 | 1875 | 0.4227 | 0.8267 | | 0.2611 | 6.0 | 2250 | 0.4142 | 0.8467 | | 0.2866 | 7.0 | 2625 | 0.4534 | 0.83 | | 0.2297 | 8.0 | 3000 | 0.4296 | 0.8517 | | 0.1623 | 9.0 | 3375 | 0.5359 | 0.835 | | 0.1313 | 10.0 | 3750 | 0.5677 | 0.8433 | | 0.1856 | 11.0 | 4125 | 0.5198 | 0.8667 | | 0.087 | 12.0 | 4500 | 0.6463 | 0.8417 | | 0.0974 | 13.0 | 4875 | 0.5874 | 0.8417 | | 0.0478 | 14.0 | 5250 | 0.7058 | 0.84 | | 0.0326 | 15.0 | 5625 | 0.7427 | 0.8283 | | 0.0198 | 16.0 | 6000 | 0.8945 | 0.84 | | 0.0746 | 17.0 | 6375 | 0.8489 | 0.8333 | | 0.1024 | 18.0 | 6750 | 0.7564 | 0.8383 | | 0.0499 | 19.0 | 7125 | 0.8028 | 0.8483 | | 0.0808 | 20.0 | 7500 | 1.0400 | 0.8267 | | 0.0495 | 21.0 | 7875 | 1.0596 | 0.83 | | 0.0441 | 22.0 | 8250 | 0.9512 | 0.85 | | 0.0385 | 23.0 | 8625 | 0.8380 | 0.8483 | | 0.0162 | 24.0 | 9000 | 1.0671 | 0.8517 | | 0.0061 | 25.0 | 9375 | 0.8747 | 0.86 | | 0.0284 | 26.0 | 9750 | 1.0398 | 0.815 | | 0.0446 | 27.0 | 10125 | 0.9748 | 0.845 | | 0.0208 | 28.0 | 10500 | 1.0700 | 0.8517 | | 0.0357 | 29.0 | 10875 | 1.0579 | 0.845 | | 0.0301 | 30.0 | 11250 | 0.9043 | 0.8583 | | 0.0099 | 31.0 | 11625 | 0.9420 | 0.8533 | | 0.0327 | 32.0 | 12000 | 1.0192 | 0.8467 | | 0.0502 | 33.0 | 12375 | 0.8952 | 0.8517 | | 0.0352 | 34.0 | 12750 | 0.9041 | 0.8667 | | 0.0188 | 35.0 | 13125 | 1.2059 | 0.8433 | | 0.0229 | 36.0 | 13500 | 1.2761 | 0.84 | | 0.0123 | 37.0 | 13875 | 1.1077 | 0.8583 | | 0.0002 | 38.0 | 14250 | 1.1468 | 0.85 | | 0.0009 | 39.0 | 14625 | 1.1590 | 0.8617 | | 0.0211 | 40.0 | 15000 | 1.3901 | 0.8683 | | 0.001 | 41.0 | 15375 | 1.2933 | 0.8533 | | 0.0077 | 42.0 | 15750 | 1.1576 | 0.8583 | | 0.0369 | 43.0 | 16125 | 1.3070 | 0.8433 | | 0.0132 | 44.0 | 16500 | 1.0120 | 0.8633 | | 0.0003 | 45.0 | 16875 | 1.2641 | 0.8633 | | 0.0001 | 46.0 | 17250 | 1.2268 | 0.8633 | | 0.0004 | 47.0 | 17625 | 1.1854 | 0.8583 | | 0.0001 | 48.0 | 18000 | 1.3326 | 0.865 | | 0.0187 | 49.0 | 18375 | 1.3505 | 0.8567 | | 0.0011 | 50.0 | 18750 | 1.3488 | 0.855 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.0+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2
[ "abnormal_sperm", "non-sperm", "normal_sperm" ]
hkivancoral/smids_5x_beit_base_rms_00001_fold3
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # smids_5x_beit_base_rms_00001_fold3 This model is a fine-tuned version of [microsoft/beit-base-patch16-224](https://huggingface.co/microsoft/beit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.9185 - Accuracy: 0.9133 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.2283 | 1.0 | 375 | 0.2339 | 0.9183 | | 0.0993 | 2.0 | 750 | 0.2718 | 0.9117 | | 0.0737 | 3.0 | 1125 | 0.3409 | 0.9133 | | 0.0242 | 4.0 | 1500 | 0.3831 | 0.92 | | 0.0583 | 5.0 | 1875 | 0.4502 | 0.915 | | 0.0327 | 6.0 | 2250 | 0.4867 | 0.9183 | | 0.0228 | 7.0 | 2625 | 0.5343 | 0.9333 | | 0.0011 | 8.0 | 3000 | 0.6969 | 0.91 | | 0.0064 | 9.0 | 3375 | 0.8807 | 0.89 | | 0.0562 | 10.0 | 3750 | 0.8333 | 0.9117 | | 0.0104 | 11.0 | 4125 | 0.6930 | 0.9083 | | 0.0118 | 12.0 | 4500 | 0.8317 | 0.8933 | | 0.0001 | 13.0 | 4875 | 0.8634 | 0.9 | | 0.0154 | 14.0 | 5250 | 0.7424 | 0.9233 | | 0.0231 | 15.0 | 5625 | 0.8048 | 0.9133 | | 0.0 | 16.0 | 6000 | 0.8245 | 0.9083 | | 0.0137 | 17.0 | 6375 | 0.7565 | 0.92 | | 0.0069 | 18.0 | 6750 | 0.7751 | 0.9183 | | 0.0115 | 19.0 | 7125 | 0.7824 | 0.9233 | | 0.0051 | 20.0 | 7500 | 0.7691 | 0.9183 | | 0.0 | 21.0 | 7875 | 0.8067 | 0.9117 | | 0.0207 | 22.0 | 8250 | 0.7817 | 0.915 | | 0.0053 | 23.0 | 8625 | 0.8276 | 0.9083 | | 0.0001 | 24.0 | 9000 | 0.7978 | 0.9117 | | 0.0169 | 25.0 | 9375 | 0.8806 | 0.9067 | | 0.0007 | 26.0 | 9750 | 0.8278 | 0.9267 | | 0.0038 | 27.0 | 10125 | 0.9428 | 0.9183 | | 0.0 | 28.0 | 10500 | 0.8806 | 0.9167 | | 0.0 | 29.0 | 10875 | 0.8180 | 0.91 | | 0.0029 | 30.0 | 11250 | 0.9090 | 0.9117 | | 0.0 | 31.0 | 11625 | 0.8537 | 0.9133 | | 0.0002 | 32.0 | 12000 | 0.8596 | 0.915 | | 0.0003 | 33.0 | 12375 | 0.8995 | 0.9183 | | 0.0 | 34.0 | 12750 | 0.8853 | 0.925 | | 0.0 | 35.0 | 13125 | 0.8638 | 0.9133 | | 0.0 | 36.0 | 13500 | 0.8296 | 0.9167 | | 0.0 | 37.0 | 13875 | 0.8113 | 0.9217 | | 0.0 | 38.0 | 14250 | 0.8781 | 0.92 | | 0.027 | 39.0 | 14625 | 0.8890 | 0.92 | | 0.0038 | 40.0 | 15000 | 0.8330 | 0.925 | | 0.0 | 41.0 | 15375 | 0.9306 | 0.9167 | | 0.0 | 42.0 | 15750 | 0.8569 | 0.9183 | | 0.0 | 43.0 | 16125 | 0.9060 | 0.9133 | | 0.0 | 44.0 | 16500 | 0.8854 | 0.9167 | | 0.0 | 45.0 | 16875 | 0.9021 | 0.91 | | 0.0001 | 46.0 | 17250 | 0.9154 | 0.9133 | | 0.0 | 47.0 | 17625 | 0.8802 | 0.915 | | 0.0 | 48.0 | 18000 | 0.8999 | 0.915 | | 0.0 | 49.0 | 18375 | 0.9100 | 0.9117 | | 0.0 | 50.0 | 18750 | 0.9185 | 0.9133 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.0+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2
[ "abnormal_sperm", "non-sperm", "normal_sperm" ]
hkivancoral/smids_5x_deit_tiny_rms_001_fold4
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # smids_5x_deit_tiny_rms_001_fold4 This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co/facebook/deit-tiny-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 2.2524 - Accuracy: 0.7767 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.818 | 1.0 | 375 | 0.8019 | 0.5417 | | 0.7912 | 2.0 | 750 | 0.8025 | 0.57 | | 0.7276 | 3.0 | 1125 | 0.7672 | 0.6083 | | 0.7922 | 4.0 | 1500 | 0.6983 | 0.6533 | | 0.7335 | 5.0 | 1875 | 0.6685 | 0.6917 | | 0.6959 | 6.0 | 2250 | 0.6471 | 0.7233 | | 0.623 | 7.0 | 2625 | 0.6073 | 0.7233 | | 0.6887 | 8.0 | 3000 | 0.6966 | 0.6667 | | 0.6552 | 9.0 | 3375 | 0.5957 | 0.74 | | 0.6126 | 10.0 | 3750 | 0.6205 | 0.7 | | 0.5793 | 11.0 | 4125 | 0.5808 | 0.7567 | | 0.6219 | 12.0 | 4500 | 0.5874 | 0.745 | | 0.5436 | 13.0 | 4875 | 0.6140 | 0.7317 | | 0.6012 | 14.0 | 5250 | 0.5834 | 0.7417 | | 0.6043 | 15.0 | 5625 | 0.5539 | 0.75 | | 0.5011 | 16.0 | 6000 | 0.5531 | 0.7383 | | 0.5057 | 17.0 | 6375 | 0.5890 | 0.75 | | 0.5517 | 18.0 | 6750 | 0.5510 | 0.7583 | | 0.5553 | 19.0 | 7125 | 0.5435 | 0.76 | | 0.5674 | 20.0 | 7500 | 0.4957 | 0.7933 | | 0.4667 | 21.0 | 7875 | 0.5150 | 0.7867 | | 0.4405 | 22.0 | 8250 | 0.5576 | 0.7867 | | 0.4436 | 23.0 | 8625 | 0.4866 | 0.7967 | | 0.454 | 24.0 | 9000 | 0.5354 | 0.775 | | 0.4111 | 25.0 | 9375 | 0.5789 | 0.7717 | | 0.4049 | 26.0 | 9750 | 0.5450 | 0.7817 | | 0.397 | 27.0 | 10125 | 0.5808 | 0.7883 | | 0.3436 | 28.0 | 10500 | 0.5933 | 0.7817 | | 0.3249 | 29.0 | 10875 | 0.5969 | 0.7633 | | 0.3897 | 30.0 | 11250 | 0.5739 | 0.7817 | | 0.3938 | 31.0 | 11625 | 0.5794 | 0.7883 | | 0.2714 | 32.0 | 12000 | 0.6582 | 0.775 | | 0.2808 | 33.0 | 12375 | 0.6348 | 0.775 | | 0.321 | 34.0 | 12750 | 0.7200 | 0.7567 | | 0.2202 | 35.0 | 13125 | 0.6917 | 0.7817 | | 0.1634 | 36.0 | 13500 | 0.7700 | 0.7733 | | 0.3232 | 37.0 | 13875 | 0.7503 | 0.785 | | 0.1845 | 38.0 | 14250 | 0.8724 | 0.7567 | | 0.1357 | 39.0 | 14625 | 1.0521 | 0.7683 | | 0.0994 | 40.0 | 15000 | 1.0716 | 0.77 | | 0.0743 | 41.0 | 15375 | 1.1704 | 0.7717 | | 0.1059 | 42.0 | 15750 | 1.2031 | 0.7783 | | 0.0494 | 43.0 | 16125 | 1.3921 | 0.7633 | | 0.0147 | 44.0 | 16500 | 1.5250 | 0.77 | | 0.0663 | 45.0 | 16875 | 1.6538 | 0.7667 | | 0.0618 | 46.0 | 17250 | 1.8210 | 0.765 | | 0.0041 | 47.0 | 17625 | 1.9243 | 0.7617 | | 0.0018 | 48.0 | 18000 | 2.1515 | 0.7717 | | 0.0025 | 49.0 | 18375 | 2.2407 | 0.7683 | | 0.0002 | 50.0 | 18750 | 2.2524 | 0.7767 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.1+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2
[ "abnormal_sperm", "non-sperm", "normal_sperm" ]
hkivancoral/smids_5x_deit_tiny_rms_001_fold5
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # smids_5x_deit_tiny_rms_001_fold5 This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co/facebook/deit-tiny-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.6094 - Accuracy: 0.7433 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.8822 | 1.0 | 375 | 0.8719 | 0.52 | | 0.8936 | 2.0 | 750 | 0.8470 | 0.535 | | 0.8252 | 3.0 | 1125 | 0.8071 | 0.595 | | 0.8333 | 4.0 | 1500 | 0.7970 | 0.6017 | | 0.8046 | 5.0 | 1875 | 0.8070 | 0.5633 | | 0.8082 | 6.0 | 2250 | 0.9208 | 0.5167 | | 0.7481 | 7.0 | 2625 | 0.7984 | 0.5633 | | 0.8409 | 8.0 | 3000 | 0.7900 | 0.5783 | | 0.7673 | 9.0 | 3375 | 0.7551 | 0.62 | | 0.7321 | 10.0 | 3750 | 0.7485 | 0.6133 | | 0.8282 | 11.0 | 4125 | 0.7517 | 0.6083 | | 0.7206 | 12.0 | 4500 | 0.7745 | 0.6 | | 0.6841 | 13.0 | 4875 | 0.8307 | 0.5917 | | 0.7738 | 14.0 | 5250 | 0.7274 | 0.6683 | | 0.8416 | 15.0 | 5625 | 0.7353 | 0.67 | | 0.704 | 16.0 | 6000 | 0.7258 | 0.65 | | 0.6873 | 17.0 | 6375 | 0.7174 | 0.68 | | 0.714 | 18.0 | 6750 | 0.7557 | 0.6483 | | 0.7105 | 19.0 | 7125 | 0.6868 | 0.6917 | | 0.6559 | 20.0 | 7500 | 0.6845 | 0.6783 | | 0.6717 | 21.0 | 7875 | 0.7043 | 0.67 | | 0.7139 | 22.0 | 8250 | 0.6944 | 0.68 | | 0.6633 | 23.0 | 8625 | 0.7071 | 0.6667 | | 0.6888 | 24.0 | 9000 | 0.6979 | 0.6883 | | 0.6621 | 25.0 | 9375 | 0.6468 | 0.7117 | | 0.6157 | 26.0 | 9750 | 0.6767 | 0.6833 | | 0.6777 | 27.0 | 10125 | 0.7097 | 0.67 | | 0.7108 | 28.0 | 10500 | 0.6811 | 0.6917 | | 0.8139 | 29.0 | 10875 | 0.6750 | 0.7067 | | 0.6291 | 30.0 | 11250 | 0.6415 | 0.7133 | | 0.5725 | 31.0 | 11625 | 0.6769 | 0.6833 | | 0.6243 | 32.0 | 12000 | 0.6733 | 0.7267 | | 0.6311 | 33.0 | 12375 | 0.6227 | 0.7217 | | 0.6254 | 34.0 | 12750 | 0.6222 | 0.72 | | 0.567 | 35.0 | 13125 | 0.6040 | 0.735 | | 0.5363 | 36.0 | 13500 | 0.5935 | 0.7533 | | 0.6308 | 37.0 | 13875 | 0.6047 | 0.7267 | | 0.5334 | 38.0 | 14250 | 0.6481 | 0.7217 | | 0.5951 | 39.0 | 14625 | 0.6059 | 0.7317 | | 0.6325 | 40.0 | 15000 | 0.6172 | 0.735 | | 0.5905 | 41.0 | 15375 | 0.6255 | 0.7233 | | 0.6095 | 42.0 | 15750 | 0.5896 | 0.7433 | | 0.49 | 43.0 | 16125 | 0.5925 | 0.7367 | | 0.4891 | 44.0 | 16500 | 0.5937 | 0.7367 | | 0.4867 | 45.0 | 16875 | 0.5918 | 0.7583 | | 0.5178 | 46.0 | 17250 | 0.6030 | 0.735 | | 0.561 | 47.0 | 17625 | 0.6183 | 0.74 | | 0.4632 | 48.0 | 18000 | 0.5943 | 0.7517 | | 0.4666 | 49.0 | 18375 | 0.6107 | 0.7417 | | 0.4901 | 50.0 | 18750 | 0.6094 | 0.7433 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.1+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2
[ "abnormal_sperm", "non-sperm", "normal_sperm" ]
hkivancoral/smids_5x_beit_base_rms_0001_fold4
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # smids_5x_beit_base_rms_0001_fold4 This model is a fine-tuned version of [microsoft/beit-base-patch16-224](https://huggingface.co/microsoft/beit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.5932 - Accuracy: 0.87 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.3203 | 1.0 | 375 | 0.4417 | 0.8283 | | 0.2426 | 2.0 | 750 | 0.3953 | 0.8467 | | 0.1231 | 3.0 | 1125 | 0.5794 | 0.86 | | 0.1615 | 4.0 | 1500 | 0.5639 | 0.8417 | | 0.0891 | 5.0 | 1875 | 0.5564 | 0.8583 | | 0.0575 | 6.0 | 2250 | 0.6614 | 0.8617 | | 0.0358 | 7.0 | 2625 | 0.6797 | 0.8667 | | 0.0806 | 8.0 | 3000 | 0.6344 | 0.865 | | 0.0789 | 9.0 | 3375 | 0.6957 | 0.8717 | | 0.0241 | 10.0 | 3750 | 0.9064 | 0.8567 | | 0.0385 | 11.0 | 4125 | 0.7288 | 0.865 | | 0.0734 | 12.0 | 4500 | 0.9419 | 0.8617 | | 0.0068 | 13.0 | 4875 | 1.1180 | 0.8417 | | 0.0709 | 14.0 | 5250 | 0.8470 | 0.8517 | | 0.0043 | 15.0 | 5625 | 0.9006 | 0.8733 | | 0.0276 | 16.0 | 6000 | 0.9685 | 0.8617 | | 0.0864 | 17.0 | 6375 | 0.9433 | 0.865 | | 0.0263 | 18.0 | 6750 | 1.0594 | 0.8667 | | 0.0288 | 19.0 | 7125 | 0.9857 | 0.8617 | | 0.0437 | 20.0 | 7500 | 0.9535 | 0.8617 | | 0.0182 | 21.0 | 7875 | 1.0851 | 0.8633 | | 0.0247 | 22.0 | 8250 | 0.9263 | 0.8683 | | 0.0006 | 23.0 | 8625 | 0.9868 | 0.8717 | | 0.0399 | 24.0 | 9000 | 1.0128 | 0.86 | | 0.0299 | 25.0 | 9375 | 0.9782 | 0.8867 | | 0.0002 | 26.0 | 9750 | 1.2403 | 0.8567 | | 0.0051 | 27.0 | 10125 | 1.1638 | 0.8567 | | 0.0126 | 28.0 | 10500 | 1.0178 | 0.87 | | 0.0001 | 29.0 | 10875 | 1.0674 | 0.8717 | | 0.008 | 30.0 | 11250 | 1.0641 | 0.8633 | | 0.0072 | 31.0 | 11625 | 1.1590 | 0.8667 | | 0.0003 | 32.0 | 12000 | 1.3669 | 0.8567 | | 0.0001 | 33.0 | 12375 | 1.2305 | 0.8733 | | 0.0072 | 34.0 | 12750 | 1.1660 | 0.865 | | 0.0 | 35.0 | 13125 | 1.3099 | 0.8683 | | 0.001 | 36.0 | 13500 | 1.3895 | 0.8617 | | 0.0003 | 37.0 | 13875 | 1.2632 | 0.8633 | | 0.0099 | 38.0 | 14250 | 1.2864 | 0.8583 | | 0.0 | 39.0 | 14625 | 1.2372 | 0.87 | | 0.0 | 40.0 | 15000 | 1.3431 | 0.85 | | 0.0 | 41.0 | 15375 | 1.3348 | 0.86 | | 0.0 | 42.0 | 15750 | 1.4149 | 0.8633 | | 0.0 | 43.0 | 16125 | 1.5031 | 0.86 | | 0.0 | 44.0 | 16500 | 1.5165 | 0.8667 | | 0.0 | 45.0 | 16875 | 1.5362 | 0.8633 | | 0.0 | 46.0 | 17250 | 1.5276 | 0.865 | | 0.0 | 47.0 | 17625 | 1.5857 | 0.8667 | | 0.0 | 48.0 | 18000 | 1.5842 | 0.8667 | | 0.0 | 49.0 | 18375 | 1.5927 | 0.8683 | | 0.0 | 50.0 | 18750 | 1.5932 | 0.87 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.0+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2
[ "abnormal_sperm", "non-sperm", "normal_sperm" ]
hkivancoral/smids_5x_beit_base_rms_00001_fold4
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # smids_5x_beit_base_rms_00001_fold4 This model is a fine-tuned version of [microsoft/beit-base-patch16-224](https://huggingface.co/microsoft/beit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.3109 - Accuracy: 0.8933 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.1968 | 1.0 | 375 | 0.3151 | 0.8917 | | 0.1474 | 2.0 | 750 | 0.4474 | 0.8667 | | 0.0741 | 3.0 | 1125 | 0.4618 | 0.89 | | 0.0638 | 4.0 | 1500 | 0.5553 | 0.9083 | | 0.0357 | 5.0 | 1875 | 0.7199 | 0.8767 | | 0.027 | 6.0 | 2250 | 0.8598 | 0.8783 | | 0.0037 | 7.0 | 2625 | 1.0235 | 0.8817 | | 0.0229 | 8.0 | 3000 | 1.0021 | 0.8817 | | 0.0002 | 9.0 | 3375 | 1.0533 | 0.88 | | 0.0003 | 10.0 | 3750 | 1.0170 | 0.8917 | | 0.0047 | 11.0 | 4125 | 1.0274 | 0.885 | | 0.0161 | 12.0 | 4500 | 0.9972 | 0.8883 | | 0.0395 | 13.0 | 4875 | 1.1208 | 0.8817 | | 0.0195 | 14.0 | 5250 | 1.1819 | 0.8833 | | 0.0231 | 15.0 | 5625 | 1.2063 | 0.8867 | | 0.002 | 16.0 | 6000 | 1.1906 | 0.8817 | | 0.0189 | 17.0 | 6375 | 1.3367 | 0.8683 | | 0.006 | 18.0 | 6750 | 1.3216 | 0.8767 | | 0.0201 | 19.0 | 7125 | 1.2482 | 0.8883 | | 0.0004 | 20.0 | 7500 | 1.3064 | 0.88 | | 0.0 | 21.0 | 7875 | 1.2624 | 0.8833 | | 0.0332 | 22.0 | 8250 | 1.2916 | 0.8783 | | 0.0001 | 23.0 | 8625 | 1.2718 | 0.875 | | 0.0134 | 24.0 | 9000 | 1.2861 | 0.8767 | | 0.0091 | 25.0 | 9375 | 1.2558 | 0.8867 | | 0.0 | 26.0 | 9750 | 1.1412 | 0.875 | | 0.0003 | 27.0 | 10125 | 1.1757 | 0.8883 | | 0.0 | 28.0 | 10500 | 1.1969 | 0.885 | | 0.0001 | 29.0 | 10875 | 1.2159 | 0.8833 | | 0.0439 | 30.0 | 11250 | 1.2112 | 0.885 | | 0.0 | 31.0 | 11625 | 1.1996 | 0.8867 | | 0.0011 | 32.0 | 12000 | 1.2726 | 0.8917 | | 0.0 | 33.0 | 12375 | 1.2290 | 0.895 | | 0.003 | 34.0 | 12750 | 1.2689 | 0.885 | | 0.0001 | 35.0 | 13125 | 1.2685 | 0.8833 | | 0.0 | 36.0 | 13500 | 1.2338 | 0.89 | | 0.0 | 37.0 | 13875 | 1.2931 | 0.8817 | | 0.0037 | 38.0 | 14250 | 1.2980 | 0.8833 | | 0.0 | 39.0 | 14625 | 1.3078 | 0.895 | | 0.0 | 40.0 | 15000 | 1.3295 | 0.8867 | | 0.0 | 41.0 | 15375 | 1.2988 | 0.8917 | | 0.0 | 42.0 | 15750 | 1.3679 | 0.8817 | | 0.0 | 43.0 | 16125 | 1.3182 | 0.8833 | | 0.0 | 44.0 | 16500 | 1.3785 | 0.885 | | 0.0 | 45.0 | 16875 | 1.3130 | 0.8833 | | 0.0008 | 46.0 | 17250 | 1.3226 | 0.8917 | | 0.028 | 47.0 | 17625 | 1.3211 | 0.89 | | 0.0214 | 48.0 | 18000 | 1.3040 | 0.8933 | | 0.0 | 49.0 | 18375 | 1.3082 | 0.8917 | | 0.0 | 50.0 | 18750 | 1.3109 | 0.8933 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.0+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2
[ "abnormal_sperm", "non-sperm", "normal_sperm" ]
aaa12963337/msi-vit-small
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # msi-vit-small This model was trained from scratch on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.5796 - Accuracy: 0.6000 - F1: 0.2863 - Precision: 0.6336 - Recall: 0.1849 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.3142 | 1.0 | 1008 | 0.8965 | 0.6329 | 0.5060 | 0.6079 | 0.4333 | | 0.2063 | 2.0 | 2016 | 1.5189 | 0.6062 | 0.3005 | 0.6550 | 0.1950 | | 0.19 | 3.0 | 3024 | 1.4818 | 0.6270 | 0.3399 | 0.7318 | 0.2213 | | 0.1718 | 4.0 | 4032 | 1.2353 | 0.6046 | 0.4096 | 0.5816 | 0.3161 | | 0.161 | 5.0 | 5040 | 1.5953 | 0.6342 | 0.3508 | 0.7623 | 0.2278 | | 0.1805 | 6.0 | 6048 | 1.0789 | 0.6552 | 0.4647 | 0.7119 | 0.3449 | | 0.1619 | 7.0 | 7056 | 1.2646 | 0.5479 | 0.2591 | 0.4484 | 0.1822 | | 0.1655 | 8.0 | 8064 | 1.7155 | 0.5910 | 0.2654 | 0.6011 | 0.1703 | | 0.17 | 9.0 | 9072 | 2.1142 | 0.5797 | 0.1729 | 0.5913 | 0.1012 | | 0.1703 | 10.0 | 10080 | 1.5796 | 0.6000 | 0.2863 | 0.6336 | 0.1849 | ### Framework versions - Transformers 4.36.0 - Pytorch 2.0.1+cu117 - Datasets 2.15.0 - Tokenizers 0.15.0
[ "adi", "back", "deb", "lym", "muc", "mus", "norm", "str", "tum" ]
hkivancoral/smids_5x_deit_tiny_rms_0001_fold1
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # smids_5x_deit_tiny_rms_0001_fold1 This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co/facebook/deit-tiny-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.9972 - Accuracy: 0.9048 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.2949 | 1.0 | 376 | 0.4792 | 0.7896 | | 0.1877 | 2.0 | 752 | 0.3869 | 0.8631 | | 0.1943 | 3.0 | 1128 | 0.4273 | 0.8514 | | 0.1151 | 4.0 | 1504 | 0.4170 | 0.8932 | | 0.1309 | 5.0 | 1880 | 0.4159 | 0.8748 | | 0.0937 | 6.0 | 2256 | 0.5222 | 0.8831 | | 0.0299 | 7.0 | 2632 | 0.5974 | 0.8932 | | 0.0659 | 8.0 | 3008 | 0.6171 | 0.8715 | | 0.0586 | 9.0 | 3384 | 0.7200 | 0.8781 | | 0.0715 | 10.0 | 3760 | 0.9149 | 0.8664 | | 0.0752 | 11.0 | 4136 | 0.7964 | 0.8765 | | 0.0401 | 12.0 | 4512 | 0.6968 | 0.8831 | | 0.0094 | 13.0 | 4888 | 0.6898 | 0.8865 | | 0.0111 | 14.0 | 5264 | 0.7411 | 0.8932 | | 0.0334 | 15.0 | 5640 | 0.8411 | 0.8798 | | 0.0369 | 16.0 | 6016 | 0.7849 | 0.8798 | | 0.0017 | 17.0 | 6392 | 0.7191 | 0.8898 | | 0.0026 | 18.0 | 6768 | 0.8047 | 0.8815 | | 0.0265 | 19.0 | 7144 | 0.6550 | 0.8982 | | 0.0527 | 20.0 | 7520 | 0.7590 | 0.8798 | | 0.0052 | 21.0 | 7896 | 0.7860 | 0.8881 | | 0.001 | 22.0 | 8272 | 0.8487 | 0.8965 | | 0.0432 | 23.0 | 8648 | 0.8524 | 0.8865 | | 0.0032 | 24.0 | 9024 | 0.8174 | 0.9015 | | 0.0001 | 25.0 | 9400 | 0.8214 | 0.8815 | | 0.0146 | 26.0 | 9776 | 0.9080 | 0.8765 | | 0.0 | 27.0 | 10152 | 0.8028 | 0.9032 | | 0.0001 | 28.0 | 10528 | 0.9579 | 0.8915 | | 0.0043 | 29.0 | 10904 | 0.8349 | 0.8982 | | 0.0053 | 30.0 | 11280 | 0.9140 | 0.8831 | | 0.0204 | 31.0 | 11656 | 0.9273 | 0.8898 | | 0.0001 | 32.0 | 12032 | 0.9480 | 0.8848 | | 0.0006 | 33.0 | 12408 | 1.0366 | 0.8865 | | 0.0042 | 34.0 | 12784 | 1.0682 | 0.8798 | | 0.0025 | 35.0 | 13160 | 0.9542 | 0.8932 | | 0.0006 | 36.0 | 13536 | 0.8930 | 0.9048 | | 0.0001 | 37.0 | 13912 | 0.9451 | 0.8932 | | 0.0112 | 38.0 | 14288 | 1.0303 | 0.8848 | | 0.0 | 39.0 | 14664 | 1.0298 | 0.8932 | | 0.0 | 40.0 | 15040 | 0.9996 | 0.8932 | | 0.0 | 41.0 | 15416 | 0.9909 | 0.8998 | | 0.0 | 42.0 | 15792 | 0.9652 | 0.9015 | | 0.0 | 43.0 | 16168 | 0.9547 | 0.9032 | | 0.0 | 44.0 | 16544 | 0.9994 | 0.8982 | | 0.0 | 45.0 | 16920 | 0.9802 | 0.9015 | | 0.003 | 46.0 | 17296 | 0.9911 | 0.9032 | | 0.0 | 47.0 | 17672 | 0.9936 | 0.9048 | | 0.0 | 48.0 | 18048 | 0.9937 | 0.9048 | | 0.0 | 49.0 | 18424 | 0.9932 | 0.9048 | | 0.0025 | 50.0 | 18800 | 0.9972 | 0.9048 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.1+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2
[ "abnormal_sperm", "non-sperm", "normal_sperm" ]
aaa12963337/msi-efficientnet-pretrain
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # msi-efficientnet-pretrain This model is a fine-tuned version of [google/efficientnet-b0](https://huggingface.co/google/efficientnet-b0) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.4941 - Accuracy: 0.8613 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.317 | 1.0 | 781 | 0.9029 | 0.7535 | | 0.2009 | 2.0 | 1562 | 0.4094 | 0.8840 | | 0.1405 | 3.0 | 2343 | 0.4941 | 0.8613 | ### Framework versions - Transformers 4.36.0 - Pytorch 2.0.1+cu117 - Datasets 2.15.0 - Tokenizers 0.15.0
[ "adi", "back", "deb", "lym", "muc", "mus", "norm", "str", "tum" ]
hkivancoral/smids_5x_beit_base_rms_0001_fold5
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # smids_5x_beit_base_rms_0001_fold5 This model is a fine-tuned version of [microsoft/beit-base-patch16-224](https://huggingface.co/microsoft/beit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.0211 - Accuracy: 0.905 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.3069 | 1.0 | 375 | 0.3920 | 0.8783 | | 0.2324 | 2.0 | 750 | 0.2994 | 0.8883 | | 0.2111 | 3.0 | 1125 | 0.4025 | 0.8883 | | 0.1469 | 4.0 | 1500 | 0.4730 | 0.8933 | | 0.1348 | 5.0 | 1875 | 0.5021 | 0.8667 | | 0.1083 | 6.0 | 2250 | 0.5547 | 0.875 | | 0.074 | 7.0 | 2625 | 0.8070 | 0.865 | | 0.0264 | 8.0 | 3000 | 0.6666 | 0.8817 | | 0.0566 | 9.0 | 3375 | 0.5845 | 0.8817 | | 0.0498 | 10.0 | 3750 | 0.6165 | 0.8717 | | 0.0562 | 11.0 | 4125 | 0.6616 | 0.9017 | | 0.0419 | 12.0 | 4500 | 0.5768 | 0.9 | | 0.042 | 13.0 | 4875 | 0.6169 | 0.89 | | 0.0428 | 14.0 | 5250 | 0.6006 | 0.8967 | | 0.065 | 15.0 | 5625 | 0.6268 | 0.875 | | 0.0169 | 16.0 | 6000 | 0.6699 | 0.9017 | | 0.0201 | 17.0 | 6375 | 0.7528 | 0.8933 | | 0.0241 | 18.0 | 6750 | 0.6629 | 0.89 | | 0.0027 | 19.0 | 7125 | 0.6425 | 0.9017 | | 0.0221 | 20.0 | 7500 | 0.6769 | 0.8917 | | 0.0018 | 21.0 | 7875 | 0.8187 | 0.8867 | | 0.0303 | 22.0 | 8250 | 0.6653 | 0.8933 | | 0.0112 | 23.0 | 8625 | 0.7146 | 0.88 | | 0.002 | 24.0 | 9000 | 0.7847 | 0.8983 | | 0.0001 | 25.0 | 9375 | 0.7706 | 0.8933 | | 0.001 | 26.0 | 9750 | 0.8815 | 0.8933 | | 0.0089 | 27.0 | 10125 | 0.9055 | 0.8833 | | 0.0011 | 28.0 | 10500 | 0.8721 | 0.8883 | | 0.0031 | 29.0 | 10875 | 0.8475 | 0.8917 | | 0.0096 | 30.0 | 11250 | 0.7033 | 0.9067 | | 0.0084 | 31.0 | 11625 | 0.7845 | 0.9033 | | 0.0003 | 32.0 | 12000 | 0.8241 | 0.8967 | | 0.0002 | 33.0 | 12375 | 0.7939 | 0.905 | | 0.0 | 34.0 | 12750 | 0.8492 | 0.9117 | | 0.0039 | 35.0 | 13125 | 0.7919 | 0.905 | | 0.0 | 36.0 | 13500 | 0.9132 | 0.9017 | | 0.001 | 37.0 | 13875 | 0.9026 | 0.91 | | 0.0073 | 38.0 | 14250 | 0.9238 | 0.9 | | 0.0 | 39.0 | 14625 | 1.0700 | 0.895 | | 0.0 | 40.0 | 15000 | 1.0185 | 0.9083 | | 0.0 | 41.0 | 15375 | 1.0113 | 0.9 | | 0.0 | 42.0 | 15750 | 0.9606 | 0.9033 | | 0.0 | 43.0 | 16125 | 1.0356 | 0.9 | | 0.0 | 44.0 | 16500 | 1.0382 | 0.9017 | | 0.0 | 45.0 | 16875 | 1.0522 | 0.9 | | 0.0 | 46.0 | 17250 | 1.0733 | 0.8967 | | 0.0031 | 47.0 | 17625 | 1.0418 | 0.9017 | | 0.0 | 48.0 | 18000 | 1.0244 | 0.9067 | | 0.0 | 49.0 | 18375 | 1.0206 | 0.905 | | 0.0019 | 50.0 | 18750 | 1.0211 | 0.905 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.0+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2
[ "abnormal_sperm", "non-sperm", "normal_sperm" ]
hkivancoral/smids_5x_beit_base_rms_00001_fold5
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # smids_5x_beit_base_rms_00001_fold5 This model is a fine-tuned version of [microsoft/beit-base-patch16-224](https://huggingface.co/microsoft/beit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.9550 - Accuracy: 0.91 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.1871 | 1.0 | 375 | 0.3400 | 0.865 | | 0.1042 | 2.0 | 750 | 0.2834 | 0.9017 | | 0.1083 | 3.0 | 1125 | 0.3546 | 0.9033 | | 0.0201 | 4.0 | 1500 | 0.3961 | 0.9133 | | 0.0166 | 5.0 | 1875 | 0.6199 | 0.9083 | | 0.0246 | 6.0 | 2250 | 0.6057 | 0.8967 | | 0.0224 | 7.0 | 2625 | 0.7547 | 0.9117 | | 0.0003 | 8.0 | 3000 | 0.7052 | 0.9133 | | 0.0111 | 9.0 | 3375 | 0.7830 | 0.8983 | | 0.0518 | 10.0 | 3750 | 0.8521 | 0.8967 | | 0.02 | 11.0 | 4125 | 0.9299 | 0.8933 | | 0.0138 | 12.0 | 4500 | 0.9525 | 0.8983 | | 0.0001 | 13.0 | 4875 | 0.8824 | 0.9067 | | 0.013 | 14.0 | 5250 | 0.9828 | 0.8833 | | 0.0349 | 15.0 | 5625 | 0.8057 | 0.9033 | | 0.0008 | 16.0 | 6000 | 0.9444 | 0.8983 | | 0.0016 | 17.0 | 6375 | 0.8486 | 0.905 | | 0.0093 | 18.0 | 6750 | 0.8485 | 0.9083 | | 0.0057 | 19.0 | 7125 | 0.8351 | 0.895 | | 0.0146 | 20.0 | 7500 | 0.8068 | 0.915 | | 0.0088 | 21.0 | 7875 | 0.8372 | 0.9117 | | 0.0074 | 22.0 | 8250 | 0.8780 | 0.905 | | 0.0068 | 23.0 | 8625 | 0.9227 | 0.9067 | | 0.0 | 24.0 | 9000 | 0.8408 | 0.9067 | | 0.0 | 25.0 | 9375 | 0.8878 | 0.9067 | | 0.0001 | 26.0 | 9750 | 0.6996 | 0.9217 | | 0.0043 | 27.0 | 10125 | 0.7960 | 0.915 | | 0.0021 | 28.0 | 10500 | 0.8288 | 0.91 | | 0.002 | 29.0 | 10875 | 0.8059 | 0.9133 | | 0.0055 | 30.0 | 11250 | 0.8992 | 0.9117 | | 0.0001 | 31.0 | 11625 | 0.9502 | 0.9083 | | 0.0001 | 32.0 | 12000 | 1.0009 | 0.9067 | | 0.0047 | 33.0 | 12375 | 0.9429 | 0.91 | | 0.0 | 34.0 | 12750 | 0.9564 | 0.905 | | 0.0 | 35.0 | 13125 | 0.9119 | 0.9217 | | 0.0 | 36.0 | 13500 | 1.0028 | 0.9033 | | 0.0 | 37.0 | 13875 | 0.9150 | 0.91 | | 0.0054 | 38.0 | 14250 | 0.9393 | 0.91 | | 0.0 | 39.0 | 14625 | 1.0004 | 0.9067 | | 0.0 | 40.0 | 15000 | 0.9733 | 0.9083 | | 0.0001 | 41.0 | 15375 | 0.9774 | 0.9067 | | 0.0 | 42.0 | 15750 | 0.9404 | 0.9133 | | 0.0 | 43.0 | 16125 | 0.9724 | 0.9117 | | 0.0 | 44.0 | 16500 | 0.9389 | 0.915 | | 0.0 | 45.0 | 16875 | 0.9342 | 0.9167 | | 0.0 | 46.0 | 17250 | 0.9815 | 0.9117 | | 0.0058 | 47.0 | 17625 | 0.9724 | 0.9067 | | 0.0 | 48.0 | 18000 | 0.9650 | 0.9067 | | 0.0 | 49.0 | 18375 | 0.9572 | 0.9083 | | 0.0012 | 50.0 | 18750 | 0.9550 | 0.91 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.0+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2
[ "abnormal_sperm", "non-sperm", "normal_sperm" ]
hkivancoral/smids_5x_deit_tiny_rms_0001_fold2
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # smids_5x_deit_tiny_rms_0001_fold2 This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co/facebook/deit-tiny-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.1259 - Accuracy: 0.8735 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.3139 | 1.0 | 375 | 0.2920 | 0.8835 | | 0.213 | 2.0 | 750 | 0.3450 | 0.8785 | | 0.2004 | 3.0 | 1125 | 0.4306 | 0.8719 | | 0.1151 | 4.0 | 1500 | 0.4856 | 0.8702 | | 0.1363 | 5.0 | 1875 | 0.5483 | 0.8752 | | 0.0415 | 6.0 | 2250 | 0.6014 | 0.8719 | | 0.0888 | 7.0 | 2625 | 0.6594 | 0.8636 | | 0.0129 | 8.0 | 3000 | 0.7394 | 0.8702 | | 0.0606 | 9.0 | 3375 | 0.7551 | 0.8619 | | 0.0273 | 10.0 | 3750 | 0.7977 | 0.8536 | | 0.0575 | 11.0 | 4125 | 0.7927 | 0.8702 | | 0.0142 | 12.0 | 4500 | 0.8285 | 0.8619 | | 0.006 | 13.0 | 4875 | 0.8594 | 0.8819 | | 0.0339 | 14.0 | 5250 | 0.8600 | 0.8686 | | 0.0029 | 15.0 | 5625 | 0.9289 | 0.8719 | | 0.0348 | 16.0 | 6000 | 0.7828 | 0.8819 | | 0.0273 | 17.0 | 6375 | 0.7381 | 0.8885 | | 0.029 | 18.0 | 6750 | 0.9087 | 0.8686 | | 0.0306 | 19.0 | 7125 | 0.9194 | 0.8785 | | 0.0034 | 20.0 | 7500 | 1.0978 | 0.8619 | | 0.0052 | 21.0 | 7875 | 0.9530 | 0.8785 | | 0.0001 | 22.0 | 8250 | 0.9575 | 0.8752 | | 0.0447 | 23.0 | 8625 | 0.9869 | 0.8819 | | 0.0122 | 24.0 | 9000 | 0.8869 | 0.8785 | | 0.0018 | 25.0 | 9375 | 1.0324 | 0.8669 | | 0.0117 | 26.0 | 9750 | 0.9387 | 0.8852 | | 0.0206 | 27.0 | 10125 | 1.0468 | 0.8719 | | 0.0002 | 28.0 | 10500 | 0.9421 | 0.8785 | | 0.0001 | 29.0 | 10875 | 0.8621 | 0.8968 | | 0.0027 | 30.0 | 11250 | 0.9653 | 0.8769 | | 0.0116 | 31.0 | 11625 | 0.9958 | 0.8785 | | 0.0019 | 32.0 | 12000 | 1.1300 | 0.8752 | | 0.0084 | 33.0 | 12375 | 1.0346 | 0.8802 | | 0.0 | 34.0 | 12750 | 1.0458 | 0.8719 | | 0.0 | 35.0 | 13125 | 1.0740 | 0.8719 | | 0.0001 | 36.0 | 13500 | 1.0706 | 0.8719 | | 0.0 | 37.0 | 13875 | 1.2116 | 0.8735 | | 0.0 | 38.0 | 14250 | 1.1598 | 0.8735 | | 0.0 | 39.0 | 14625 | 1.1682 | 0.8785 | | 0.0029 | 40.0 | 15000 | 1.0573 | 0.8835 | | 0.0 | 41.0 | 15375 | 1.1307 | 0.8735 | | 0.0028 | 42.0 | 15750 | 1.1484 | 0.8702 | | 0.0032 | 43.0 | 16125 | 1.1289 | 0.8752 | | 0.0031 | 44.0 | 16500 | 1.1224 | 0.8769 | | 0.0027 | 45.0 | 16875 | 1.1287 | 0.8719 | | 0.0 | 46.0 | 17250 | 1.1176 | 0.8752 | | 0.006 | 47.0 | 17625 | 1.1207 | 0.8752 | | 0.0 | 48.0 | 18000 | 1.1234 | 0.8752 | | 0.0024 | 49.0 | 18375 | 1.1256 | 0.8752 | | 0.0022 | 50.0 | 18750 | 1.1259 | 0.8735 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.1+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2
[ "abnormal_sperm", "non-sperm", "normal_sperm" ]
hkivancoral/smids_5x_deit_tiny_rms_0001_fold3
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # smids_5x_deit_tiny_rms_0001_fold3 This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co/facebook/deit-tiny-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.0235 - Accuracy: 0.9017 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.3072 | 1.0 | 375 | 0.3497 | 0.8733 | | 0.1839 | 2.0 | 750 | 0.4255 | 0.87 | | 0.1528 | 3.0 | 1125 | 0.4557 | 0.8567 | | 0.1267 | 4.0 | 1500 | 0.3726 | 0.89 | | 0.1353 | 5.0 | 1875 | 0.4467 | 0.8917 | | 0.0943 | 6.0 | 2250 | 0.4927 | 0.91 | | 0.1102 | 7.0 | 2625 | 0.6801 | 0.8833 | | 0.1057 | 8.0 | 3000 | 0.6555 | 0.88 | | 0.032 | 9.0 | 3375 | 0.7410 | 0.8783 | | 0.0843 | 10.0 | 3750 | 0.8478 | 0.8667 | | 0.0459 | 11.0 | 4125 | 0.6987 | 0.8917 | | 0.0092 | 12.0 | 4500 | 0.7040 | 0.8917 | | 0.0349 | 13.0 | 4875 | 0.7908 | 0.885 | | 0.0111 | 14.0 | 5250 | 0.7260 | 0.8983 | | 0.0286 | 15.0 | 5625 | 0.7556 | 0.89 | | 0.0202 | 16.0 | 6000 | 0.7922 | 0.885 | | 0.0017 | 17.0 | 6375 | 0.7780 | 0.89 | | 0.0426 | 18.0 | 6750 | 0.7356 | 0.9033 | | 0.0036 | 19.0 | 7125 | 0.7906 | 0.88 | | 0.0088 | 20.0 | 7500 | 0.8591 | 0.8883 | | 0.014 | 21.0 | 7875 | 0.9590 | 0.8867 | | 0.0 | 22.0 | 8250 | 0.9929 | 0.8783 | | 0.0363 | 23.0 | 8625 | 0.9559 | 0.89 | | 0.0156 | 24.0 | 9000 | 0.9344 | 0.88 | | 0.0345 | 25.0 | 9375 | 0.8898 | 0.8917 | | 0.0005 | 26.0 | 9750 | 0.9066 | 0.9 | | 0.0104 | 27.0 | 10125 | 0.9018 | 0.8983 | | 0.0026 | 28.0 | 10500 | 0.8354 | 0.89 | | 0.0098 | 29.0 | 10875 | 1.0679 | 0.885 | | 0.0077 | 30.0 | 11250 | 0.8084 | 0.8933 | | 0.007 | 31.0 | 11625 | 0.9761 | 0.8833 | | 0.0079 | 32.0 | 12000 | 0.8798 | 0.8867 | | 0.0211 | 33.0 | 12375 | 0.9152 | 0.8967 | | 0.0205 | 34.0 | 12750 | 0.8595 | 0.8967 | | 0.0 | 35.0 | 13125 | 0.9123 | 0.8983 | | 0.0 | 36.0 | 13500 | 1.0918 | 0.8817 | | 0.0001 | 37.0 | 13875 | 0.9598 | 0.8917 | | 0.0 | 38.0 | 14250 | 0.9005 | 0.8933 | | 0.0 | 39.0 | 14625 | 0.9817 | 0.895 | | 0.003 | 40.0 | 15000 | 1.0214 | 0.8933 | | 0.0 | 41.0 | 15375 | 1.0132 | 0.895 | | 0.0012 | 42.0 | 15750 | 1.0443 | 0.8933 | | 0.0 | 43.0 | 16125 | 1.0086 | 0.895 | | 0.0 | 44.0 | 16500 | 1.0148 | 0.895 | | 0.0 | 45.0 | 16875 | 1.0171 | 0.895 | | 0.0 | 46.0 | 17250 | 1.0091 | 0.8967 | | 0.0 | 47.0 | 17625 | 1.0118 | 0.8983 | | 0.0 | 48.0 | 18000 | 1.0184 | 0.9017 | | 0.0 | 49.0 | 18375 | 1.0213 | 0.9017 | | 0.0 | 50.0 | 18750 | 1.0235 | 0.9017 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.1+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2
[ "abnormal_sperm", "non-sperm", "normal_sperm" ]
hkivancoral/smids_5x_deit_base_adamax_001_fold1
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # smids_5x_deit_base_adamax_001_fold1 This model is a fine-tuned version of [facebook/deit-base-patch16-224](https://huggingface.co/facebook/deit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.7497 - Accuracy: 0.9132 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.329 | 1.0 | 376 | 0.4277 | 0.8464 | | 0.2087 | 2.0 | 752 | 0.3407 | 0.8698 | | 0.2485 | 3.0 | 1128 | 0.3788 | 0.8598 | | 0.178 | 4.0 | 1504 | 0.4197 | 0.8531 | | 0.1258 | 5.0 | 1880 | 0.4173 | 0.8648 | | 0.1206 | 6.0 | 2256 | 0.3586 | 0.8848 | | 0.1282 | 7.0 | 2632 | 0.3517 | 0.8865 | | 0.0583 | 8.0 | 3008 | 0.5359 | 0.8765 | | 0.0747 | 9.0 | 3384 | 0.5100 | 0.8731 | | 0.0435 | 10.0 | 3760 | 0.5516 | 0.8781 | | 0.06 | 11.0 | 4136 | 0.3933 | 0.8998 | | 0.0257 | 12.0 | 4512 | 0.5267 | 0.8848 | | 0.0686 | 13.0 | 4888 | 0.4896 | 0.9065 | | 0.016 | 14.0 | 5264 | 0.5666 | 0.8881 | | 0.011 | 15.0 | 5640 | 0.5612 | 0.8965 | | 0.0019 | 16.0 | 6016 | 0.6453 | 0.8848 | | 0.0015 | 17.0 | 6392 | 0.5726 | 0.8948 | | 0.0354 | 18.0 | 6768 | 0.5332 | 0.9048 | | 0.0037 | 19.0 | 7144 | 0.5726 | 0.8965 | | 0.0094 | 20.0 | 7520 | 0.5926 | 0.9032 | | 0.0008 | 21.0 | 7896 | 0.5520 | 0.8998 | | 0.0004 | 22.0 | 8272 | 0.4436 | 0.9165 | | 0.0006 | 23.0 | 8648 | 0.6077 | 0.8965 | | 0.001 | 24.0 | 9024 | 0.6248 | 0.9132 | | 0.0003 | 25.0 | 9400 | 0.6715 | 0.8982 | | 0.0035 | 26.0 | 9776 | 0.6641 | 0.9082 | | 0.0 | 27.0 | 10152 | 0.6982 | 0.9048 | | 0.0 | 28.0 | 10528 | 0.7269 | 0.8982 | | 0.0054 | 29.0 | 10904 | 0.6756 | 0.9098 | | 0.0034 | 30.0 | 11280 | 0.6451 | 0.9065 | | 0.0 | 31.0 | 11656 | 0.6535 | 0.9098 | | 0.0 | 32.0 | 12032 | 0.6650 | 0.9065 | | 0.0 | 33.0 | 12408 | 0.6759 | 0.9082 | | 0.0 | 34.0 | 12784 | 0.6731 | 0.9048 | | 0.0 | 35.0 | 13160 | 0.6782 | 0.9082 | | 0.0001 | 36.0 | 13536 | 0.6755 | 0.9032 | | 0.0 | 37.0 | 13912 | 0.7594 | 0.9098 | | 0.0 | 38.0 | 14288 | 0.7065 | 0.9115 | | 0.0 | 39.0 | 14664 | 0.7005 | 0.9082 | | 0.0 | 40.0 | 15040 | 0.7058 | 0.9149 | | 0.0 | 41.0 | 15416 | 0.6924 | 0.9115 | | 0.0 | 42.0 | 15792 | 0.7078 | 0.9149 | | 0.0 | 43.0 | 16168 | 0.7156 | 0.9149 | | 0.0 | 44.0 | 16544 | 0.7204 | 0.9165 | | 0.0 | 45.0 | 16920 | 0.7358 | 0.9149 | | 0.003 | 46.0 | 17296 | 0.7278 | 0.9165 | | 0.0 | 47.0 | 17672 | 0.7349 | 0.9149 | | 0.0 | 48.0 | 18048 | 0.7414 | 0.9149 | | 0.0 | 49.0 | 18424 | 0.7464 | 0.9149 | | 0.0023 | 50.0 | 18800 | 0.7497 | 0.9132 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.0+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2
[ "abnormal_sperm", "non-sperm", "normal_sperm" ]
hkivancoral/smids_5x_deit_base_adamax_0001_fold1
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # smids_5x_deit_base_adamax_0001_fold1 This model is a fine-tuned version of [facebook/deit-base-patch16-224](https://huggingface.co/facebook/deit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.6997 - Accuracy: 0.9182 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.2162 | 1.0 | 376 | 0.2261 | 0.9082 | | 0.1041 | 2.0 | 752 | 0.2663 | 0.8965 | | 0.0837 | 3.0 | 1128 | 0.3441 | 0.9015 | | 0.0172 | 4.0 | 1504 | 0.4099 | 0.9048 | | 0.0131 | 5.0 | 1880 | 0.4724 | 0.9048 | | 0.0004 | 6.0 | 2256 | 0.4925 | 0.9065 | | 0.0017 | 7.0 | 2632 | 0.6831 | 0.8965 | | 0.0006 | 8.0 | 3008 | 0.5273 | 0.9015 | | 0.0324 | 9.0 | 3384 | 0.5755 | 0.8998 | | 0.0 | 10.0 | 3760 | 0.6569 | 0.9048 | | 0.0009 | 11.0 | 4136 | 0.5873 | 0.9082 | | 0.0003 | 12.0 | 4512 | 0.6069 | 0.9065 | | 0.0 | 13.0 | 4888 | 0.5862 | 0.9082 | | 0.0063 | 14.0 | 5264 | 0.6445 | 0.9048 | | 0.0 | 15.0 | 5640 | 0.6277 | 0.9132 | | 0.0 | 16.0 | 6016 | 0.7053 | 0.9032 | | 0.0 | 17.0 | 6392 | 0.6033 | 0.9098 | | 0.0 | 18.0 | 6768 | 0.6638 | 0.9065 | | 0.0 | 19.0 | 7144 | 0.6432 | 0.9082 | | 0.004 | 20.0 | 7520 | 0.6467 | 0.9115 | | 0.0 | 21.0 | 7896 | 0.7009 | 0.9115 | | 0.0 | 22.0 | 8272 | 0.7221 | 0.9048 | | 0.0 | 23.0 | 8648 | 0.6516 | 0.9149 | | 0.0 | 24.0 | 9024 | 0.6399 | 0.9149 | | 0.0 | 25.0 | 9400 | 0.6382 | 0.9182 | | 0.0034 | 26.0 | 9776 | 0.6520 | 0.9098 | | 0.0 | 27.0 | 10152 | 0.6761 | 0.9115 | | 0.0 | 28.0 | 10528 | 0.6436 | 0.9182 | | 0.003 | 29.0 | 10904 | 0.6339 | 0.9115 | | 0.0041 | 30.0 | 11280 | 0.6392 | 0.9132 | | 0.0 | 31.0 | 11656 | 0.6548 | 0.9182 | | 0.0 | 32.0 | 12032 | 0.6680 | 0.9149 | | 0.0 | 33.0 | 12408 | 0.6562 | 0.9115 | | 0.0 | 34.0 | 12784 | 0.6705 | 0.9165 | | 0.0 | 35.0 | 13160 | 0.6801 | 0.9098 | | 0.0 | 36.0 | 13536 | 0.6653 | 0.9182 | | 0.0 | 37.0 | 13912 | 0.6565 | 0.9165 | | 0.0 | 38.0 | 14288 | 0.6618 | 0.9215 | | 0.0 | 39.0 | 14664 | 0.6597 | 0.9149 | | 0.0 | 40.0 | 15040 | 0.6689 | 0.9165 | | 0.0 | 41.0 | 15416 | 0.6826 | 0.9149 | | 0.0 | 42.0 | 15792 | 0.6835 | 0.9132 | | 0.0 | 43.0 | 16168 | 0.6862 | 0.9149 | | 0.0 | 44.0 | 16544 | 0.6860 | 0.9182 | | 0.0 | 45.0 | 16920 | 0.6904 | 0.9182 | | 0.0027 | 46.0 | 17296 | 0.6967 | 0.9132 | | 0.0 | 47.0 | 17672 | 0.6971 | 0.9182 | | 0.0 | 48.0 | 18048 | 0.6989 | 0.9182 | | 0.0 | 49.0 | 18424 | 0.7000 | 0.9182 | | 0.0022 | 50.0 | 18800 | 0.6997 | 0.9182 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.0+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2
[ "abnormal_sperm", "non-sperm", "normal_sperm" ]
hkivancoral/smids_5x_deit_tiny_rms_0001_fold4
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # smids_5x_deit_tiny_rms_0001_fold4 This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co/facebook/deit-tiny-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.4357 - Accuracy: 0.8667 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.3287 | 1.0 | 375 | 0.3863 | 0.85 | | 0.2455 | 2.0 | 750 | 0.3649 | 0.8717 | | 0.1213 | 3.0 | 1125 | 0.4642 | 0.8583 | | 0.1727 | 4.0 | 1500 | 0.5805 | 0.8617 | | 0.1128 | 5.0 | 1875 | 0.6371 | 0.8483 | | 0.0689 | 6.0 | 2250 | 0.6331 | 0.8683 | | 0.0983 | 7.0 | 2625 | 0.6829 | 0.865 | | 0.1105 | 8.0 | 3000 | 0.6645 | 0.8617 | | 0.0716 | 9.0 | 3375 | 0.9136 | 0.8583 | | 0.0639 | 10.0 | 3750 | 0.7869 | 0.8867 | | 0.0325 | 11.0 | 4125 | 0.8744 | 0.8733 | | 0.0627 | 12.0 | 4500 | 0.9757 | 0.8567 | | 0.0409 | 13.0 | 4875 | 0.9654 | 0.8633 | | 0.0848 | 14.0 | 5250 | 0.8074 | 0.8667 | | 0.0374 | 15.0 | 5625 | 0.9236 | 0.8667 | | 0.037 | 16.0 | 6000 | 1.0898 | 0.8617 | | 0.0497 | 17.0 | 6375 | 1.1236 | 0.8583 | | 0.0095 | 18.0 | 6750 | 1.0183 | 0.87 | | 0.0289 | 19.0 | 7125 | 1.0208 | 0.8783 | | 0.0255 | 20.0 | 7500 | 1.1375 | 0.8667 | | 0.0016 | 21.0 | 7875 | 1.1251 | 0.8617 | | 0.0005 | 22.0 | 8250 | 1.0252 | 0.8717 | | 0.015 | 23.0 | 8625 | 1.1223 | 0.865 | | 0.0375 | 24.0 | 9000 | 1.0372 | 0.8733 | | 0.0379 | 25.0 | 9375 | 0.9869 | 0.8667 | | 0.0001 | 26.0 | 9750 | 1.0331 | 0.8733 | | 0.0134 | 27.0 | 10125 | 0.9754 | 0.885 | | 0.0 | 28.0 | 10500 | 1.0742 | 0.8583 | | 0.0001 | 29.0 | 10875 | 1.0378 | 0.88 | | 0.0 | 30.0 | 11250 | 1.1203 | 0.875 | | 0.0077 | 31.0 | 11625 | 1.1471 | 0.8783 | | 0.0003 | 32.0 | 12000 | 1.1437 | 0.8783 | | 0.0 | 33.0 | 12375 | 1.1521 | 0.875 | | 0.0003 | 34.0 | 12750 | 1.2362 | 0.865 | | 0.0 | 35.0 | 13125 | 1.2535 | 0.8567 | | 0.0 | 36.0 | 13500 | 1.2428 | 0.865 | | 0.0002 | 37.0 | 13875 | 1.3504 | 0.8583 | | 0.0191 | 38.0 | 14250 | 1.2705 | 0.87 | | 0.0 | 39.0 | 14625 | 1.3466 | 0.8667 | | 0.0 | 40.0 | 15000 | 1.3575 | 0.8617 | | 0.0 | 41.0 | 15375 | 1.3681 | 0.8667 | | 0.0 | 42.0 | 15750 | 1.3681 | 0.87 | | 0.0 | 43.0 | 16125 | 1.3799 | 0.865 | | 0.0 | 44.0 | 16500 | 1.3559 | 0.8667 | | 0.0 | 45.0 | 16875 | 1.3770 | 0.865 | | 0.0 | 46.0 | 17250 | 1.4044 | 0.8667 | | 0.0 | 47.0 | 17625 | 1.4188 | 0.8683 | | 0.0 | 48.0 | 18000 | 1.4286 | 0.8667 | | 0.0 | 49.0 | 18375 | 1.4343 | 0.8667 | | 0.0 | 50.0 | 18750 | 1.4357 | 0.8667 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.1+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2
[ "abnormal_sperm", "non-sperm", "normal_sperm" ]
hkivancoral/smids_5x_deit_tiny_rms_0001_fold5
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # smids_5x_deit_tiny_rms_0001_fold5 This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co/facebook/deit-tiny-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.9895 - Accuracy: 0.9067 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.3055 | 1.0 | 375 | 0.4440 | 0.825 | | 0.2222 | 2.0 | 750 | 0.3224 | 0.8867 | | 0.2186 | 3.0 | 1125 | 0.3702 | 0.8883 | | 0.1592 | 4.0 | 1500 | 0.4759 | 0.85 | | 0.0922 | 5.0 | 1875 | 0.4560 | 0.8767 | | 0.0977 | 6.0 | 2250 | 0.5531 | 0.875 | | 0.0567 | 7.0 | 2625 | 0.5054 | 0.8883 | | 0.0612 | 8.0 | 3000 | 0.5016 | 0.9067 | | 0.0471 | 9.0 | 3375 | 0.6558 | 0.895 | | 0.0783 | 10.0 | 3750 | 0.7144 | 0.89 | | 0.0337 | 11.0 | 4125 | 0.7483 | 0.8833 | | 0.0522 | 12.0 | 4500 | 0.6408 | 0.8967 | | 0.0122 | 13.0 | 4875 | 0.5578 | 0.8917 | | 0.0456 | 14.0 | 5250 | 0.6886 | 0.9 | | 0.0505 | 15.0 | 5625 | 0.6222 | 0.9067 | | 0.0186 | 16.0 | 6000 | 0.7341 | 0.8867 | | 0.0232 | 17.0 | 6375 | 0.6650 | 0.9083 | | 0.0384 | 18.0 | 6750 | 0.6731 | 0.9133 | | 0.0134 | 19.0 | 7125 | 0.7917 | 0.8883 | | 0.0197 | 20.0 | 7500 | 0.7544 | 0.9033 | | 0.006 | 21.0 | 7875 | 0.7694 | 0.8983 | | 0.084 | 22.0 | 8250 | 0.7873 | 0.8917 | | 0.0405 | 23.0 | 8625 | 0.7521 | 0.8967 | | 0.0002 | 24.0 | 9000 | 0.9409 | 0.8883 | | 0.0009 | 25.0 | 9375 | 0.8364 | 0.8967 | | 0.0273 | 26.0 | 9750 | 0.7668 | 0.8933 | | 0.001 | 27.0 | 10125 | 0.7995 | 0.88 | | 0.0262 | 28.0 | 10500 | 0.8060 | 0.8883 | | 0.0003 | 29.0 | 10875 | 0.7588 | 0.9083 | | 0.0189 | 30.0 | 11250 | 0.9019 | 0.8867 | | 0.0003 | 31.0 | 11625 | 1.0397 | 0.8867 | | 0.0 | 32.0 | 12000 | 0.9253 | 0.895 | | 0.0002 | 33.0 | 12375 | 0.8619 | 0.905 | | 0.0003 | 34.0 | 12750 | 0.9328 | 0.9 | | 0.0 | 35.0 | 13125 | 0.9364 | 0.905 | | 0.0002 | 36.0 | 13500 | 0.9470 | 0.8967 | | 0.0001 | 37.0 | 13875 | 0.9360 | 0.9033 | | 0.0033 | 38.0 | 14250 | 1.0063 | 0.9033 | | 0.0 | 39.0 | 14625 | 0.9618 | 0.9017 | | 0.0 | 40.0 | 15000 | 0.9713 | 0.9083 | | 0.0 | 41.0 | 15375 | 0.9440 | 0.9083 | | 0.0 | 42.0 | 15750 | 0.9330 | 0.91 | | 0.0 | 43.0 | 16125 | 0.9519 | 0.9083 | | 0.0 | 44.0 | 16500 | 0.9407 | 0.905 | | 0.0 | 45.0 | 16875 | 0.9804 | 0.9033 | | 0.0 | 46.0 | 17250 | 0.9891 | 0.9033 | | 0.0031 | 47.0 | 17625 | 0.9794 | 0.9033 | | 0.0 | 48.0 | 18000 | 0.9842 | 0.9033 | | 0.0 | 49.0 | 18375 | 0.9888 | 0.9067 | | 0.0021 | 50.0 | 18750 | 0.9895 | 0.9067 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.1+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2
[ "abnormal_sperm", "non-sperm", "normal_sperm" ]
hkivancoral/smids_5x_deit_base_adamax_001_fold2
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # smids_5x_deit_base_adamax_001_fold2 This model is a fine-tuned version of [facebook/deit-base-patch16-224](https://huggingface.co/facebook/deit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.1252 - Accuracy: 0.8852 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.3593 | 1.0 | 375 | 0.2868 | 0.8902 | | 0.3012 | 2.0 | 750 | 0.2473 | 0.9085 | | 0.3836 | 3.0 | 1125 | 0.3500 | 0.8619 | | 0.1484 | 4.0 | 1500 | 0.3561 | 0.8819 | | 0.142 | 5.0 | 1875 | 0.3496 | 0.8619 | | 0.1054 | 6.0 | 2250 | 0.5030 | 0.8519 | | 0.1132 | 7.0 | 2625 | 0.4021 | 0.8769 | | 0.0387 | 8.0 | 3000 | 0.5600 | 0.8752 | | 0.0412 | 9.0 | 3375 | 0.4804 | 0.8935 | | 0.049 | 10.0 | 3750 | 0.4670 | 0.8902 | | 0.0223 | 11.0 | 4125 | 0.5161 | 0.8852 | | 0.0227 | 12.0 | 4500 | 0.5268 | 0.8802 | | 0.029 | 13.0 | 4875 | 0.5511 | 0.8819 | | 0.0101 | 14.0 | 5250 | 0.5655 | 0.8935 | | 0.0239 | 15.0 | 5625 | 0.5903 | 0.8885 | | 0.0204 | 16.0 | 6000 | 0.6826 | 0.8869 | | 0.0387 | 17.0 | 6375 | 0.6581 | 0.8835 | | 0.0045 | 18.0 | 6750 | 0.5940 | 0.8869 | | 0.0004 | 19.0 | 7125 | 0.7563 | 0.8885 | | 0.0271 | 20.0 | 7500 | 0.5791 | 0.9035 | | 0.0211 | 21.0 | 7875 | 0.5981 | 0.8869 | | 0.0086 | 22.0 | 8250 | 0.6990 | 0.8869 | | 0.0146 | 23.0 | 8625 | 0.6527 | 0.8935 | | 0.0006 | 24.0 | 9000 | 0.5903 | 0.8885 | | 0.02 | 25.0 | 9375 | 0.6548 | 0.8952 | | 0.0007 | 26.0 | 9750 | 0.7230 | 0.8952 | | 0.0 | 27.0 | 10125 | 0.7646 | 0.9002 | | 0.0 | 28.0 | 10500 | 0.8095 | 0.8852 | | 0.0 | 29.0 | 10875 | 0.8926 | 0.8835 | | 0.0 | 30.0 | 11250 | 0.8629 | 0.8819 | | 0.0041 | 31.0 | 11625 | 0.8782 | 0.8819 | | 0.0047 | 32.0 | 12000 | 0.8948 | 0.8819 | | 0.0063 | 33.0 | 12375 | 0.9158 | 0.8752 | | 0.0001 | 34.0 | 12750 | 0.9726 | 0.8918 | | 0.0 | 35.0 | 13125 | 1.0164 | 0.8819 | | 0.0 | 36.0 | 13500 | 1.0004 | 0.8869 | | 0.0 | 37.0 | 13875 | 1.0193 | 0.8869 | | 0.0 | 38.0 | 14250 | 1.0151 | 0.8935 | | 0.0 | 39.0 | 14625 | 1.0231 | 0.8902 | | 0.0035 | 40.0 | 15000 | 1.0298 | 0.8852 | | 0.0 | 41.0 | 15375 | 1.0402 | 0.8902 | | 0.0028 | 42.0 | 15750 | 1.0577 | 0.8869 | | 0.0026 | 43.0 | 16125 | 1.0687 | 0.8819 | | 0.0027 | 44.0 | 16500 | 1.0626 | 0.8852 | | 0.0029 | 45.0 | 16875 | 1.0972 | 0.8835 | | 0.0 | 46.0 | 17250 | 1.0976 | 0.8819 | | 0.0055 | 47.0 | 17625 | 1.1056 | 0.8819 | | 0.0 | 48.0 | 18000 | 1.1143 | 0.8852 | | 0.0025 | 49.0 | 18375 | 1.1213 | 0.8835 | | 0.0024 | 50.0 | 18750 | 1.1252 | 0.8852 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.0+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2
[ "abnormal_sperm", "non-sperm", "normal_sperm" ]
hkivancoral/smids_5x_deit_base_adamax_0001_fold2
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # smids_5x_deit_base_adamax_0001_fold2 This model is a fine-tuned version of [facebook/deit-base-patch16-224](https://huggingface.co/facebook/deit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.8969 - Accuracy: 0.8985 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.2012 | 1.0 | 375 | 0.2802 | 0.8835 | | 0.1424 | 2.0 | 750 | 0.3530 | 0.8985 | | 0.0484 | 3.0 | 1125 | 0.5841 | 0.8769 | | 0.0171 | 4.0 | 1500 | 0.5393 | 0.8968 | | 0.0016 | 5.0 | 1875 | 0.6879 | 0.8835 | | 0.0133 | 6.0 | 2250 | 0.7421 | 0.8885 | | 0.0004 | 7.0 | 2625 | 0.7382 | 0.8869 | | 0.0224 | 8.0 | 3000 | 0.6881 | 0.8902 | | 0.0004 | 9.0 | 3375 | 0.7760 | 0.8902 | | 0.0002 | 10.0 | 3750 | 0.7986 | 0.8852 | | 0.0045 | 11.0 | 4125 | 0.7173 | 0.8935 | | 0.0002 | 12.0 | 4500 | 0.8875 | 0.8802 | | 0.0106 | 13.0 | 4875 | 0.8591 | 0.8918 | | 0.0009 | 14.0 | 5250 | 0.9035 | 0.8902 | | 0.0101 | 15.0 | 5625 | 0.8626 | 0.8918 | | 0.0 | 16.0 | 6000 | 0.9182 | 0.8852 | | 0.0029 | 17.0 | 6375 | 0.7794 | 0.8952 | | 0.0 | 18.0 | 6750 | 0.7848 | 0.8935 | | 0.0001 | 19.0 | 7125 | 0.8673 | 0.8902 | | 0.0 | 20.0 | 7500 | 0.8428 | 0.8918 | | 0.0 | 21.0 | 7875 | 0.8282 | 0.8952 | | 0.0 | 22.0 | 8250 | 0.8604 | 0.8918 | | 0.0 | 23.0 | 8625 | 0.8223 | 0.8935 | | 0.0 | 24.0 | 9000 | 0.8436 | 0.8952 | | 0.0 | 25.0 | 9375 | 0.8078 | 0.8902 | | 0.0 | 26.0 | 9750 | 0.8487 | 0.8968 | | 0.0 | 27.0 | 10125 | 0.8273 | 0.8902 | | 0.0 | 28.0 | 10500 | 0.8385 | 0.8902 | | 0.0 | 29.0 | 10875 | 0.8210 | 0.8985 | | 0.0 | 30.0 | 11250 | 0.8440 | 0.8918 | | 0.0029 | 31.0 | 11625 | 0.8614 | 0.8852 | | 0.0034 | 32.0 | 12000 | 0.8524 | 0.8935 | | 0.0033 | 33.0 | 12375 | 0.8611 | 0.8918 | | 0.0 | 34.0 | 12750 | 0.8778 | 0.8985 | | 0.0 | 35.0 | 13125 | 0.8525 | 0.8952 | | 0.0 | 36.0 | 13500 | 0.8763 | 0.8952 | | 0.0 | 37.0 | 13875 | 0.8733 | 0.9002 | | 0.0 | 38.0 | 14250 | 0.8847 | 0.8952 | | 0.0 | 39.0 | 14625 | 0.8741 | 0.8952 | | 0.0027 | 40.0 | 15000 | 0.8864 | 0.8952 | | 0.0 | 41.0 | 15375 | 0.8807 | 0.8952 | | 0.0025 | 42.0 | 15750 | 0.8886 | 0.8952 | | 0.0024 | 43.0 | 16125 | 0.8857 | 0.8985 | | 0.0024 | 44.0 | 16500 | 0.8867 | 0.8968 | | 0.0023 | 45.0 | 16875 | 0.8921 | 0.8985 | | 0.0 | 46.0 | 17250 | 0.8968 | 0.8985 | | 0.0048 | 47.0 | 17625 | 0.8952 | 0.8985 | | 0.0 | 48.0 | 18000 | 0.8977 | 0.8985 | | 0.0023 | 49.0 | 18375 | 0.8974 | 0.8985 | | 0.0023 | 50.0 | 18750 | 0.8969 | 0.8985 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.0+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2
[ "abnormal_sperm", "non-sperm", "normal_sperm" ]
hkivancoral/smids_5x_deit_tiny_rms_00001_fold1
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # smids_5x_deit_tiny_rms_00001_fold1 This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co/facebook/deit-tiny-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.9495 - Accuracy: 0.8982 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.2593 | 1.0 | 376 | 0.3151 | 0.8765 | | 0.1718 | 2.0 | 752 | 0.2623 | 0.8998 | | 0.1615 | 3.0 | 1128 | 0.2861 | 0.8965 | | 0.0982 | 4.0 | 1504 | 0.3444 | 0.8881 | | 0.0553 | 5.0 | 1880 | 0.3784 | 0.9098 | | 0.0747 | 6.0 | 2256 | 0.5204 | 0.8881 | | 0.0183 | 7.0 | 2632 | 0.5683 | 0.8948 | | 0.0068 | 8.0 | 3008 | 0.6428 | 0.8998 | | 0.0727 | 9.0 | 3384 | 0.7962 | 0.8815 | | 0.0001 | 10.0 | 3760 | 0.7940 | 0.8965 | | 0.001 | 11.0 | 4136 | 0.9819 | 0.8681 | | 0.0 | 12.0 | 4512 | 0.8908 | 0.8848 | | 0.0018 | 13.0 | 4888 | 0.8621 | 0.8865 | | 0.0198 | 14.0 | 5264 | 0.8948 | 0.8881 | | 0.0291 | 15.0 | 5640 | 0.9361 | 0.8915 | | 0.0001 | 16.0 | 6016 | 0.7825 | 0.8948 | | 0.0 | 17.0 | 6392 | 0.8996 | 0.8815 | | 0.0001 | 18.0 | 6768 | 0.8212 | 0.8948 | | 0.0026 | 19.0 | 7144 | 0.8543 | 0.8831 | | 0.0145 | 20.0 | 7520 | 0.8936 | 0.8881 | | 0.004 | 21.0 | 7896 | 0.9825 | 0.8815 | | 0.0 | 22.0 | 8272 | 0.9004 | 0.8932 | | 0.0001 | 23.0 | 8648 | 0.8961 | 0.8965 | | 0.0 | 24.0 | 9024 | 1.0000 | 0.8915 | | 0.0 | 25.0 | 9400 | 0.9507 | 0.8865 | | 0.079 | 26.0 | 9776 | 1.0040 | 0.8865 | | 0.0 | 27.0 | 10152 | 0.9365 | 0.8998 | | 0.0 | 28.0 | 10528 | 0.9689 | 0.8815 | | 0.0089 | 29.0 | 10904 | 0.9542 | 0.8898 | | 0.0105 | 30.0 | 11280 | 0.9853 | 0.8898 | | 0.0 | 31.0 | 11656 | 0.9962 | 0.8965 | | 0.0 | 32.0 | 12032 | 0.9324 | 0.8982 | | 0.0 | 33.0 | 12408 | 1.0542 | 0.8881 | | 0.0 | 34.0 | 12784 | 0.9887 | 0.8932 | | 0.0 | 35.0 | 13160 | 0.8827 | 0.9082 | | 0.0 | 36.0 | 13536 | 0.8957 | 0.8982 | | 0.0 | 37.0 | 13912 | 0.9316 | 0.8932 | | 0.0 | 38.0 | 14288 | 0.9562 | 0.8915 | | 0.0 | 39.0 | 14664 | 0.9229 | 0.8982 | | 0.0 | 40.0 | 15040 | 0.9352 | 0.8932 | | 0.0 | 41.0 | 15416 | 0.9221 | 0.8915 | | 0.0 | 42.0 | 15792 | 0.9253 | 0.8965 | | 0.0 | 43.0 | 16168 | 0.9330 | 0.8881 | | 0.0 | 44.0 | 16544 | 0.9447 | 0.8965 | | 0.0 | 45.0 | 16920 | 0.9432 | 0.8965 | | 0.0047 | 46.0 | 17296 | 0.9445 | 0.8965 | | 0.0 | 47.0 | 17672 | 0.9464 | 0.8948 | | 0.0 | 48.0 | 18048 | 0.9465 | 0.8948 | | 0.0 | 49.0 | 18424 | 0.9475 | 0.8982 | | 0.0039 | 50.0 | 18800 | 0.9495 | 0.8982 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.1+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2
[ "abnormal_sperm", "non-sperm", "normal_sperm" ]
hkivancoral/smids_5x_deit_base_adamax_001_fold3
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # smids_5x_deit_base_adamax_001_fold3 This model is a fine-tuned version of [facebook/deit-base-patch16-224](https://huggingface.co/facebook/deit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.1005 - Accuracy: 0.89 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.307 | 1.0 | 375 | 0.3243 | 0.88 | | 0.1951 | 2.0 | 750 | 0.2848 | 0.8967 | | 0.1756 | 3.0 | 1125 | 0.3260 | 0.8767 | | 0.1301 | 4.0 | 1500 | 0.3461 | 0.8933 | | 0.1724 | 5.0 | 1875 | 0.3433 | 0.8783 | | 0.1105 | 6.0 | 2250 | 0.5327 | 0.8517 | | 0.105 | 7.0 | 2625 | 0.4495 | 0.89 | | 0.1373 | 8.0 | 3000 | 0.3477 | 0.8933 | | 0.0545 | 9.0 | 3375 | 0.5403 | 0.8767 | | 0.026 | 10.0 | 3750 | 0.6392 | 0.8717 | | 0.0547 | 11.0 | 4125 | 0.6160 | 0.875 | | 0.0385 | 12.0 | 4500 | 0.5572 | 0.885 | | 0.0376 | 13.0 | 4875 | 0.6146 | 0.8967 | | 0.0031 | 14.0 | 5250 | 0.6509 | 0.8883 | | 0.0185 | 15.0 | 5625 | 0.6515 | 0.885 | | 0.0353 | 16.0 | 6000 | 0.7637 | 0.885 | | 0.0052 | 17.0 | 6375 | 0.7211 | 0.8817 | | 0.011 | 18.0 | 6750 | 0.5915 | 0.9067 | | 0.0053 | 19.0 | 7125 | 0.6576 | 0.89 | | 0.0044 | 20.0 | 7500 | 0.6728 | 0.8983 | | 0.0003 | 21.0 | 7875 | 0.7362 | 0.8817 | | 0.0001 | 22.0 | 8250 | 0.7370 | 0.8817 | | 0.0265 | 23.0 | 8625 | 0.6954 | 0.895 | | 0.0011 | 24.0 | 9000 | 0.7244 | 0.8883 | | 0.0056 | 25.0 | 9375 | 0.7383 | 0.8917 | | 0.0 | 26.0 | 9750 | 0.6944 | 0.9033 | | 0.0001 | 27.0 | 10125 | 0.8581 | 0.8933 | | 0.0002 | 28.0 | 10500 | 0.7732 | 0.8917 | | 0.0001 | 29.0 | 10875 | 0.9540 | 0.8867 | | 0.005 | 30.0 | 11250 | 0.8145 | 0.8933 | | 0.0003 | 31.0 | 11625 | 0.8223 | 0.8967 | | 0.0 | 32.0 | 12000 | 0.8225 | 0.89 | | 0.0 | 33.0 | 12375 | 0.8479 | 0.8933 | | 0.0 | 34.0 | 12750 | 0.8571 | 0.895 | | 0.0 | 35.0 | 13125 | 0.9119 | 0.8917 | | 0.0 | 36.0 | 13500 | 0.9029 | 0.8917 | | 0.0 | 37.0 | 13875 | 0.9226 | 0.8967 | | 0.0 | 38.0 | 14250 | 0.9083 | 0.895 | | 0.0 | 39.0 | 14625 | 1.0048 | 0.8933 | | 0.0026 | 40.0 | 15000 | 1.0018 | 0.8883 | | 0.0 | 41.0 | 15375 | 1.0177 | 0.8917 | | 0.0 | 42.0 | 15750 | 1.0273 | 0.8917 | | 0.0 | 43.0 | 16125 | 1.0393 | 0.8933 | | 0.0 | 44.0 | 16500 | 1.0649 | 0.895 | | 0.0 | 45.0 | 16875 | 1.0825 | 0.8883 | | 0.0 | 46.0 | 17250 | 1.0743 | 0.895 | | 0.0 | 47.0 | 17625 | 1.0848 | 0.8917 | | 0.0 | 48.0 | 18000 | 1.0902 | 0.8917 | | 0.0 | 49.0 | 18375 | 1.0954 | 0.89 | | 0.0 | 50.0 | 18750 | 1.1005 | 0.89 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.0+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2
[ "abnormal_sperm", "non-sperm", "normal_sperm" ]
hkivancoral/smids_5x_deit_base_adamax_0001_fold3
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # smids_5x_deit_base_adamax_0001_fold3 This model is a fine-tuned version of [facebook/deit-base-patch16-224](https://huggingface.co/facebook/deit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.9417 - Accuracy: 0.9067 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.2147 | 1.0 | 375 | 0.4092 | 0.8317 | | 0.1408 | 2.0 | 750 | 0.3269 | 0.915 | | 0.0228 | 3.0 | 1125 | 0.4567 | 0.9067 | | 0.0111 | 4.0 | 1500 | 0.5788 | 0.9033 | | 0.0156 | 5.0 | 1875 | 0.6062 | 0.9 | | 0.0288 | 6.0 | 2250 | 0.6656 | 0.8917 | | 0.0007 | 7.0 | 2625 | 0.6456 | 0.9017 | | 0.0002 | 8.0 | 3000 | 0.6407 | 0.8917 | | 0.0002 | 9.0 | 3375 | 0.6824 | 0.9083 | | 0.0084 | 10.0 | 3750 | 0.6593 | 0.905 | | 0.0203 | 11.0 | 4125 | 0.7617 | 0.9017 | | 0.0033 | 12.0 | 4500 | 0.7022 | 0.9167 | | 0.0 | 13.0 | 4875 | 0.8023 | 0.9033 | | 0.0 | 14.0 | 5250 | 0.8062 | 0.9083 | | 0.0 | 15.0 | 5625 | 0.8735 | 0.905 | | 0.0293 | 16.0 | 6000 | 0.8124 | 0.9133 | | 0.0 | 17.0 | 6375 | 0.8110 | 0.915 | | 0.0 | 18.0 | 6750 | 0.7934 | 0.9167 | | 0.0 | 19.0 | 7125 | 0.8257 | 0.9117 | | 0.0 | 20.0 | 7500 | 0.8169 | 0.905 | | 0.0 | 21.0 | 7875 | 0.7971 | 0.9167 | | 0.0 | 22.0 | 8250 | 0.8206 | 0.905 | | 0.0031 | 23.0 | 8625 | 0.8887 | 0.9067 | | 0.0 | 24.0 | 9000 | 0.8570 | 0.91 | | 0.0 | 25.0 | 9375 | 0.9027 | 0.9017 | | 0.0 | 26.0 | 9750 | 0.8809 | 0.9067 | | 0.0 | 27.0 | 10125 | 0.8772 | 0.9083 | | 0.0 | 28.0 | 10500 | 0.8815 | 0.9083 | | 0.0 | 29.0 | 10875 | 0.8462 | 0.91 | | 0.0028 | 30.0 | 11250 | 0.8854 | 0.9083 | | 0.0 | 31.0 | 11625 | 0.8584 | 0.9083 | | 0.0 | 32.0 | 12000 | 0.8933 | 0.905 | | 0.0 | 33.0 | 12375 | 0.8718 | 0.9083 | | 0.0 | 34.0 | 12750 | 0.8798 | 0.9067 | | 0.0 | 35.0 | 13125 | 0.8653 | 0.9083 | | 0.0 | 36.0 | 13500 | 0.8742 | 0.9133 | | 0.0 | 37.0 | 13875 | 0.8914 | 0.9083 | | 0.0 | 38.0 | 14250 | 0.8921 | 0.91 | | 0.0 | 39.0 | 14625 | 0.9001 | 0.9083 | | 0.0025 | 40.0 | 15000 | 0.9101 | 0.9083 | | 0.0 | 41.0 | 15375 | 0.9161 | 0.9067 | | 0.0 | 42.0 | 15750 | 0.9182 | 0.9083 | | 0.0 | 43.0 | 16125 | 0.9246 | 0.905 | | 0.0 | 44.0 | 16500 | 0.9291 | 0.9083 | | 0.0 | 45.0 | 16875 | 0.9302 | 0.9067 | | 0.0 | 46.0 | 17250 | 0.9341 | 0.9067 | | 0.0 | 47.0 | 17625 | 0.9378 | 0.9067 | | 0.0 | 48.0 | 18000 | 0.9402 | 0.9067 | | 0.0 | 49.0 | 18375 | 0.9417 | 0.9067 | | 0.0 | 50.0 | 18750 | 0.9417 | 0.9067 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.0+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2
[ "abnormal_sperm", "non-sperm", "normal_sperm" ]
hkivancoral/smids_5x_deit_tiny_rms_00001_fold2
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # smids_5x_deit_tiny_rms_00001_fold2 This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co/facebook/deit-tiny-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.2381 - Accuracy: 0.8769 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.3659 | 1.0 | 375 | 0.3296 | 0.8686 | | 0.2195 | 2.0 | 750 | 0.3046 | 0.8802 | | 0.1328 | 3.0 | 1125 | 0.3414 | 0.8752 | | 0.0957 | 4.0 | 1500 | 0.3842 | 0.8802 | | 0.0592 | 5.0 | 1875 | 0.4781 | 0.8885 | | 0.0554 | 6.0 | 2250 | 0.5329 | 0.8902 | | 0.0561 | 7.0 | 2625 | 0.7030 | 0.8735 | | 0.0111 | 8.0 | 3000 | 0.7077 | 0.8785 | | 0.0138 | 9.0 | 3375 | 0.8845 | 0.8852 | | 0.0035 | 10.0 | 3750 | 0.8403 | 0.8819 | | 0.0539 | 11.0 | 4125 | 0.9586 | 0.8702 | | 0.009 | 12.0 | 4500 | 0.9960 | 0.8802 | | 0.0001 | 13.0 | 4875 | 1.0306 | 0.8719 | | 0.0001 | 14.0 | 5250 | 1.0127 | 0.8835 | | 0.0171 | 15.0 | 5625 | 1.0184 | 0.8885 | | 0.0071 | 16.0 | 6000 | 0.9932 | 0.8869 | | 0.0241 | 17.0 | 6375 | 1.0882 | 0.8752 | | 0.0005 | 18.0 | 6750 | 1.0661 | 0.8902 | | 0.0877 | 19.0 | 7125 | 1.0148 | 0.8785 | | 0.0001 | 20.0 | 7500 | 1.0786 | 0.8735 | | 0.0 | 21.0 | 7875 | 1.0833 | 0.8852 | | 0.0 | 22.0 | 8250 | 1.1111 | 0.8785 | | 0.0001 | 23.0 | 8625 | 1.2212 | 0.8752 | | 0.0 | 24.0 | 9000 | 1.0341 | 0.8752 | | 0.0 | 25.0 | 9375 | 1.1693 | 0.8752 | | 0.0 | 26.0 | 9750 | 1.1184 | 0.8819 | | 0.0 | 27.0 | 10125 | 1.0601 | 0.8785 | | 0.0009 | 28.0 | 10500 | 1.1933 | 0.8702 | | 0.0 | 29.0 | 10875 | 1.2058 | 0.8785 | | 0.0 | 30.0 | 11250 | 1.1743 | 0.8735 | | 0.0039 | 31.0 | 11625 | 1.2100 | 0.8785 | | 0.0108 | 32.0 | 12000 | 1.2237 | 0.8769 | | 0.0031 | 33.0 | 12375 | 1.2193 | 0.8735 | | 0.0 | 34.0 | 12750 | 1.2009 | 0.8769 | | 0.0 | 35.0 | 13125 | 1.1695 | 0.8802 | | 0.0 | 36.0 | 13500 | 1.1623 | 0.8819 | | 0.0 | 37.0 | 13875 | 1.2497 | 0.8702 | | 0.0 | 38.0 | 14250 | 1.2770 | 0.8769 | | 0.0 | 39.0 | 14625 | 1.2424 | 0.8769 | | 0.0042 | 40.0 | 15000 | 1.2342 | 0.8819 | | 0.0 | 41.0 | 15375 | 1.2571 | 0.8785 | | 0.0026 | 42.0 | 15750 | 1.2422 | 0.8702 | | 0.0032 | 43.0 | 16125 | 1.2321 | 0.8835 | | 0.0033 | 44.0 | 16500 | 1.2366 | 0.8852 | | 0.0026 | 45.0 | 16875 | 1.2353 | 0.8802 | | 0.0 | 46.0 | 17250 | 1.2327 | 0.8785 | | 0.0046 | 47.0 | 17625 | 1.2346 | 0.8785 | | 0.0 | 48.0 | 18000 | 1.2359 | 0.8769 | | 0.0024 | 49.0 | 18375 | 1.2368 | 0.8769 | | 0.0026 | 50.0 | 18750 | 1.2381 | 0.8769 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.1+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2
[ "abnormal_sperm", "non-sperm", "normal_sperm" ]
hkivancoral/smids_5x_deit_tiny_rms_00001_fold3
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # smids_5x_deit_tiny_rms_00001_fold3 This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co/facebook/deit-tiny-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.9537 - Accuracy: 0.905 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.2762 | 1.0 | 375 | 0.2896 | 0.895 | | 0.1644 | 2.0 | 750 | 0.3438 | 0.8783 | | 0.0979 | 3.0 | 1125 | 0.3168 | 0.89 | | 0.0564 | 4.0 | 1500 | 0.3257 | 0.9033 | | 0.0779 | 5.0 | 1875 | 0.3885 | 0.8983 | | 0.0908 | 6.0 | 2250 | 0.5137 | 0.8917 | | 0.0272 | 7.0 | 2625 | 0.6097 | 0.9 | | 0.0302 | 8.0 | 3000 | 0.6164 | 0.905 | | 0.0116 | 9.0 | 3375 | 0.6445 | 0.905 | | 0.03 | 10.0 | 3750 | 0.8252 | 0.8983 | | 0.0134 | 11.0 | 4125 | 0.8460 | 0.8933 | | 0.0063 | 12.0 | 4500 | 0.8830 | 0.8933 | | 0.0001 | 13.0 | 4875 | 0.7641 | 0.8967 | | 0.0003 | 14.0 | 5250 | 0.6936 | 0.9067 | | 0.0001 | 15.0 | 5625 | 0.8158 | 0.8933 | | 0.0147 | 16.0 | 6000 | 0.8005 | 0.9 | | 0.0 | 17.0 | 6375 | 0.8369 | 0.9083 | | 0.0 | 18.0 | 6750 | 0.7801 | 0.9117 | | 0.0003 | 19.0 | 7125 | 0.8314 | 0.9 | | 0.0272 | 20.0 | 7500 | 0.7717 | 0.9067 | | 0.0197 | 21.0 | 7875 | 0.7616 | 0.91 | | 0.0022 | 22.0 | 8250 | 0.8297 | 0.9017 | | 0.0082 | 23.0 | 8625 | 0.9830 | 0.8967 | | 0.0 | 24.0 | 9000 | 0.8304 | 0.9033 | | 0.0 | 25.0 | 9375 | 0.9362 | 0.8967 | | 0.0 | 26.0 | 9750 | 1.0186 | 0.885 | | 0.0 | 27.0 | 10125 | 0.9660 | 0.895 | | 0.0 | 28.0 | 10500 | 0.8565 | 0.9067 | | 0.0 | 29.0 | 10875 | 1.0314 | 0.9 | | 0.004 | 30.0 | 11250 | 1.0325 | 0.8917 | | 0.0 | 31.0 | 11625 | 0.9803 | 0.905 | | 0.0 | 32.0 | 12000 | 0.9230 | 0.8967 | | 0.0 | 33.0 | 12375 | 0.9577 | 0.8983 | | 0.0055 | 34.0 | 12750 | 1.0448 | 0.89 | | 0.0 | 35.0 | 13125 | 0.9488 | 0.9017 | | 0.0 | 36.0 | 13500 | 0.9198 | 0.9083 | | 0.0 | 37.0 | 13875 | 0.9232 | 0.905 | | 0.0 | 38.0 | 14250 | 1.0528 | 0.89 | | 0.0 | 39.0 | 14625 | 0.9516 | 0.8983 | | 0.0039 | 40.0 | 15000 | 0.9539 | 0.8983 | | 0.0 | 41.0 | 15375 | 0.9633 | 0.8983 | | 0.0 | 42.0 | 15750 | 0.9250 | 0.9033 | | 0.0 | 43.0 | 16125 | 0.9440 | 0.9017 | | 0.0 | 44.0 | 16500 | 0.9475 | 0.905 | | 0.0 | 45.0 | 16875 | 0.9408 | 0.905 | | 0.0 | 46.0 | 17250 | 0.9488 | 0.905 | | 0.0 | 47.0 | 17625 | 0.9474 | 0.905 | | 0.0 | 48.0 | 18000 | 0.9524 | 0.905 | | 0.0 | 49.0 | 18375 | 0.9540 | 0.9033 | | 0.0 | 50.0 | 18750 | 0.9537 | 0.905 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.1+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2
[ "abnormal_sperm", "non-sperm", "normal_sperm" ]
hkivancoral/smids_5x_deit_base_adamax_001_fold4
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # smids_5x_deit_base_adamax_001_fold4 This model is a fine-tuned version of [facebook/deit-base-patch16-224](https://huggingface.co/facebook/deit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.4274 - Accuracy: 0.8733 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.3484 | 1.0 | 375 | 0.4288 | 0.8417 | | 0.3018 | 2.0 | 750 | 0.4109 | 0.84 | | 0.131 | 3.0 | 1125 | 0.4491 | 0.8367 | | 0.167 | 4.0 | 1500 | 0.4912 | 0.8583 | | 0.1356 | 5.0 | 1875 | 0.4970 | 0.8617 | | 0.074 | 6.0 | 2250 | 0.5520 | 0.8617 | | 0.126 | 7.0 | 2625 | 0.5266 | 0.8683 | | 0.1043 | 8.0 | 3000 | 0.5883 | 0.86 | | 0.0184 | 9.0 | 3375 | 0.7003 | 0.8583 | | 0.0576 | 10.0 | 3750 | 0.6626 | 0.87 | | 0.0647 | 11.0 | 4125 | 0.5819 | 0.8667 | | 0.0295 | 12.0 | 4500 | 0.8380 | 0.855 | | 0.0198 | 13.0 | 4875 | 0.7725 | 0.8667 | | 0.0803 | 14.0 | 5250 | 0.7242 | 0.86 | | 0.0028 | 15.0 | 5625 | 0.5735 | 0.88 | | 0.018 | 16.0 | 6000 | 0.9546 | 0.855 | | 0.0295 | 17.0 | 6375 | 0.8527 | 0.8683 | | 0.0122 | 18.0 | 6750 | 0.8464 | 0.8617 | | 0.0006 | 19.0 | 7125 | 0.8600 | 0.8683 | | 0.0121 | 20.0 | 7500 | 0.8637 | 0.8667 | | 0.0034 | 21.0 | 7875 | 0.8894 | 0.8783 | | 0.0002 | 22.0 | 8250 | 0.9509 | 0.855 | | 0.0032 | 23.0 | 8625 | 1.0099 | 0.865 | | 0.0103 | 24.0 | 9000 | 1.0826 | 0.8783 | | 0.0066 | 25.0 | 9375 | 1.2355 | 0.8367 | | 0.0001 | 26.0 | 9750 | 1.1335 | 0.8683 | | 0.0066 | 27.0 | 10125 | 0.8709 | 0.88 | | 0.0 | 28.0 | 10500 | 1.0074 | 0.88 | | 0.0 | 29.0 | 10875 | 1.1392 | 0.8633 | | 0.0 | 30.0 | 11250 | 1.2579 | 0.8617 | | 0.0009 | 31.0 | 11625 | 1.1228 | 0.87 | | 0.0 | 32.0 | 12000 | 1.2029 | 0.8733 | | 0.0 | 33.0 | 12375 | 1.1147 | 0.87 | | 0.0 | 34.0 | 12750 | 1.1837 | 0.865 | | 0.0 | 35.0 | 13125 | 1.2046 | 0.87 | | 0.0 | 36.0 | 13500 | 1.2160 | 0.8717 | | 0.0 | 37.0 | 13875 | 1.2236 | 0.8767 | | 0.004 | 38.0 | 14250 | 1.2489 | 0.8767 | | 0.0 | 39.0 | 14625 | 1.2705 | 0.8767 | | 0.0 | 40.0 | 15000 | 1.2929 | 0.8767 | | 0.0 | 41.0 | 15375 | 1.3044 | 0.8767 | | 0.0 | 42.0 | 15750 | 1.3306 | 0.8733 | | 0.0 | 43.0 | 16125 | 1.3359 | 0.875 | | 0.0 | 44.0 | 16500 | 1.3566 | 0.8733 | | 0.0 | 45.0 | 16875 | 1.3753 | 0.875 | | 0.0 | 46.0 | 17250 | 1.3919 | 0.875 | | 0.0 | 47.0 | 17625 | 1.4064 | 0.875 | | 0.0 | 48.0 | 18000 | 1.4171 | 0.8733 | | 0.0 | 49.0 | 18375 | 1.4242 | 0.8733 | | 0.0 | 50.0 | 18750 | 1.4274 | 0.8733 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.0+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2
[ "abnormal_sperm", "non-sperm", "normal_sperm" ]
hkivancoral/smids_5x_deit_base_adamax_0001_fold4
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # smids_5x_deit_base_adamax_0001_fold4 This model is a fine-tuned version of [facebook/deit-base-patch16-224](https://huggingface.co/facebook/deit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.3050 - Accuracy: 0.8833 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.2254 | 1.0 | 375 | 0.3701 | 0.855 | | 0.1315 | 2.0 | 750 | 0.4134 | 0.86 | | 0.0805 | 3.0 | 1125 | 0.5790 | 0.8933 | | 0.0294 | 4.0 | 1500 | 0.6055 | 0.8917 | | 0.0147 | 5.0 | 1875 | 0.8763 | 0.8667 | | 0.0107 | 6.0 | 2250 | 0.7925 | 0.8817 | | 0.0094 | 7.0 | 2625 | 0.8429 | 0.8833 | | 0.0086 | 8.0 | 3000 | 0.8991 | 0.89 | | 0.0002 | 9.0 | 3375 | 0.9026 | 0.8933 | | 0.0003 | 10.0 | 3750 | 1.0478 | 0.8683 | | 0.0026 | 11.0 | 4125 | 1.0371 | 0.8817 | | 0.0 | 12.0 | 4500 | 1.0179 | 0.88 | | 0.0 | 13.0 | 4875 | 1.0263 | 0.8733 | | 0.0038 | 14.0 | 5250 | 1.0099 | 0.8783 | | 0.0 | 15.0 | 5625 | 1.0357 | 0.875 | | 0.0 | 16.0 | 6000 | 1.0401 | 0.8733 | | 0.0 | 17.0 | 6375 | 1.0642 | 0.8767 | | 0.0051 | 18.0 | 6750 | 1.0754 | 0.875 | | 0.0 | 19.0 | 7125 | 1.0660 | 0.8767 | | 0.0 | 20.0 | 7500 | 1.0944 | 0.8783 | | 0.0 | 21.0 | 7875 | 1.1121 | 0.88 | | 0.0 | 22.0 | 8250 | 1.0926 | 0.8817 | | 0.0 | 23.0 | 8625 | 1.0773 | 0.8767 | | 0.0 | 24.0 | 9000 | 1.1261 | 0.875 | | 0.0 | 25.0 | 9375 | 1.1126 | 0.8833 | | 0.0 | 26.0 | 9750 | 1.1400 | 0.8867 | | 0.0 | 27.0 | 10125 | 1.1471 | 0.8833 | | 0.0 | 28.0 | 10500 | 1.1463 | 0.8833 | | 0.0 | 29.0 | 10875 | 1.1486 | 0.885 | | 0.0 | 30.0 | 11250 | 1.1954 | 0.8783 | | 0.0 | 31.0 | 11625 | 1.1951 | 0.88 | | 0.0 | 32.0 | 12000 | 1.2025 | 0.8833 | | 0.0 | 33.0 | 12375 | 1.2060 | 0.8783 | | 0.0 | 34.0 | 12750 | 1.2510 | 0.88 | | 0.0 | 35.0 | 13125 | 1.2394 | 0.885 | | 0.0 | 36.0 | 13500 | 1.2452 | 0.885 | | 0.0 | 37.0 | 13875 | 1.2431 | 0.885 | | 0.0025 | 38.0 | 14250 | 1.2453 | 0.8833 | | 0.0 | 39.0 | 14625 | 1.2570 | 0.8867 | | 0.0 | 40.0 | 15000 | 1.2692 | 0.885 | | 0.0 | 41.0 | 15375 | 1.2782 | 0.885 | | 0.0 | 42.0 | 15750 | 1.2837 | 0.8833 | | 0.0 | 43.0 | 16125 | 1.2874 | 0.885 | | 0.0 | 44.0 | 16500 | 1.2939 | 0.8833 | | 0.0 | 45.0 | 16875 | 1.2976 | 0.885 | | 0.0 | 46.0 | 17250 | 1.3011 | 0.885 | | 0.0 | 47.0 | 17625 | 1.3035 | 0.885 | | 0.0 | 48.0 | 18000 | 1.3049 | 0.885 | | 0.0 | 49.0 | 18375 | 1.3052 | 0.8833 | | 0.0 | 50.0 | 18750 | 1.3050 | 0.8833 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.0+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2
[ "abnormal_sperm", "non-sperm", "normal_sperm" ]
hkivancoral/smids_5x_deit_tiny_rms_00001_fold4
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # smids_5x_deit_tiny_rms_00001_fold4 This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co/facebook/deit-tiny-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.4112 - Accuracy: 0.8783 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.2498 | 1.0 | 375 | 0.3750 | 0.8583 | | 0.2126 | 2.0 | 750 | 0.3946 | 0.8617 | | 0.0815 | 3.0 | 1125 | 0.3928 | 0.8817 | | 0.1183 | 4.0 | 1500 | 0.4272 | 0.8733 | | 0.1029 | 5.0 | 1875 | 0.5782 | 0.8833 | | 0.0245 | 6.0 | 2250 | 0.6426 | 0.8867 | | 0.0551 | 7.0 | 2625 | 0.8096 | 0.8733 | | 0.0319 | 8.0 | 3000 | 0.8011 | 0.8733 | | 0.0533 | 9.0 | 3375 | 0.8429 | 0.875 | | 0.0056 | 10.0 | 3750 | 0.9672 | 0.8617 | | 0.0136 | 11.0 | 4125 | 1.0120 | 0.8667 | | 0.0031 | 12.0 | 4500 | 0.9881 | 0.87 | | 0.0176 | 13.0 | 4875 | 1.1184 | 0.8767 | | 0.0127 | 14.0 | 5250 | 1.1325 | 0.8583 | | 0.0003 | 15.0 | 5625 | 1.2848 | 0.8683 | | 0.0058 | 16.0 | 6000 | 1.1232 | 0.87 | | 0.0002 | 17.0 | 6375 | 1.0571 | 0.8817 | | 0.0421 | 18.0 | 6750 | 1.2079 | 0.8717 | | 0.0004 | 19.0 | 7125 | 1.2753 | 0.87 | | 0.0001 | 20.0 | 7500 | 1.3783 | 0.86 | | 0.0 | 21.0 | 7875 | 1.3177 | 0.865 | | 0.002 | 22.0 | 8250 | 1.3637 | 0.8633 | | 0.0002 | 23.0 | 8625 | 1.4459 | 0.87 | | 0.0005 | 24.0 | 9000 | 1.2813 | 0.875 | | 0.0 | 25.0 | 9375 | 1.2487 | 0.88 | | 0.0 | 26.0 | 9750 | 1.2405 | 0.875 | | 0.0008 | 27.0 | 10125 | 1.3345 | 0.885 | | 0.0001 | 28.0 | 10500 | 1.5106 | 0.865 | | 0.0 | 29.0 | 10875 | 1.2765 | 0.8733 | | 0.0 | 30.0 | 11250 | 1.2626 | 0.875 | | 0.0332 | 31.0 | 11625 | 1.3653 | 0.8667 | | 0.0 | 32.0 | 12000 | 1.3469 | 0.8683 | | 0.0 | 33.0 | 12375 | 1.2524 | 0.8817 | | 0.0 | 34.0 | 12750 | 1.2947 | 0.8767 | | 0.0 | 35.0 | 13125 | 1.2962 | 0.8733 | | 0.0 | 36.0 | 13500 | 1.3559 | 0.8783 | | 0.0 | 37.0 | 13875 | 1.3878 | 0.8817 | | 0.0033 | 38.0 | 14250 | 1.3553 | 0.8767 | | 0.0 | 39.0 | 14625 | 1.4121 | 0.875 | | 0.0 | 40.0 | 15000 | 1.4174 | 0.875 | | 0.0 | 41.0 | 15375 | 1.4132 | 0.875 | | 0.0 | 42.0 | 15750 | 1.4182 | 0.8767 | | 0.0 | 43.0 | 16125 | 1.4186 | 0.8767 | | 0.0 | 44.0 | 16500 | 1.4200 | 0.8767 | | 0.0 | 45.0 | 16875 | 1.4125 | 0.8783 | | 0.0 | 46.0 | 17250 | 1.4134 | 0.88 | | 0.0 | 47.0 | 17625 | 1.4114 | 0.8783 | | 0.0 | 48.0 | 18000 | 1.4108 | 0.8783 | | 0.0 | 49.0 | 18375 | 1.4113 | 0.8783 | | 0.0 | 50.0 | 18750 | 1.4112 | 0.8783 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.1+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2
[ "abnormal_sperm", "non-sperm", "normal_sperm" ]
hkivancoral/smids_5x_deit_base_adamax_001_fold5
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # smids_5x_deit_base_adamax_001_fold5 This model is a fine-tuned version of [facebook/deit-base-patch16-224](https://huggingface.co/facebook/deit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.8666 - Accuracy: 0.9067 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.3384 | 1.0 | 375 | 0.4257 | 0.8267 | | 0.3243 | 2.0 | 750 | 0.3051 | 0.8883 | | 0.2315 | 3.0 | 1125 | 0.3393 | 0.8783 | | 0.1699 | 4.0 | 1500 | 0.4297 | 0.8583 | | 0.1105 | 5.0 | 1875 | 0.3821 | 0.8983 | | 0.1049 | 6.0 | 2250 | 0.3824 | 0.895 | | 0.0625 | 7.0 | 2625 | 0.5340 | 0.8967 | | 0.0706 | 8.0 | 3000 | 0.5827 | 0.8783 | | 0.039 | 9.0 | 3375 | 0.4159 | 0.895 | | 0.0887 | 10.0 | 3750 | 0.4518 | 0.905 | | 0.042 | 11.0 | 4125 | 0.4385 | 0.91 | | 0.0677 | 12.0 | 4500 | 0.5266 | 0.8983 | | 0.0355 | 13.0 | 4875 | 0.4982 | 0.8883 | | 0.0188 | 14.0 | 5250 | 0.5825 | 0.9083 | | 0.0091 | 15.0 | 5625 | 0.4685 | 0.915 | | 0.0008 | 16.0 | 6000 | 0.6661 | 0.8983 | | 0.026 | 17.0 | 6375 | 0.5630 | 0.9 | | 0.0121 | 18.0 | 6750 | 0.6999 | 0.8967 | | 0.0069 | 19.0 | 7125 | 0.5495 | 0.9083 | | 0.0011 | 20.0 | 7500 | 0.6260 | 0.9033 | | 0.0026 | 21.0 | 7875 | 0.6616 | 0.91 | | 0.0056 | 22.0 | 8250 | 0.6236 | 0.915 | | 0.0072 | 23.0 | 8625 | 0.7060 | 0.905 | | 0.0005 | 24.0 | 9000 | 0.7311 | 0.9067 | | 0.0 | 25.0 | 9375 | 0.7450 | 0.91 | | 0.0001 | 26.0 | 9750 | 0.7238 | 0.91 | | 0.0019 | 27.0 | 10125 | 0.7673 | 0.9 | | 0.0007 | 28.0 | 10500 | 0.7394 | 0.91 | | 0.0072 | 29.0 | 10875 | 0.7457 | 0.91 | | 0.0069 | 30.0 | 11250 | 0.9604 | 0.8883 | | 0.0 | 31.0 | 11625 | 0.7446 | 0.91 | | 0.0 | 32.0 | 12000 | 0.7855 | 0.905 | | 0.0 | 33.0 | 12375 | 0.7691 | 0.905 | | 0.0 | 34.0 | 12750 | 0.7719 | 0.9067 | | 0.0 | 35.0 | 13125 | 0.7976 | 0.9017 | | 0.0 | 36.0 | 13500 | 0.8067 | 0.9033 | | 0.0 | 37.0 | 13875 | 0.7973 | 0.9067 | | 0.0041 | 38.0 | 14250 | 0.8120 | 0.9067 | | 0.0 | 39.0 | 14625 | 0.8149 | 0.9067 | | 0.0 | 40.0 | 15000 | 0.7879 | 0.9067 | | 0.0 | 41.0 | 15375 | 0.8013 | 0.9067 | | 0.0 | 42.0 | 15750 | 0.8079 | 0.905 | | 0.0 | 43.0 | 16125 | 0.8212 | 0.9017 | | 0.0 | 44.0 | 16500 | 0.8180 | 0.905 | | 0.0 | 45.0 | 16875 | 0.8381 | 0.9067 | | 0.0 | 46.0 | 17250 | 0.8519 | 0.905 | | 0.003 | 47.0 | 17625 | 0.8539 | 0.9067 | | 0.0 | 48.0 | 18000 | 0.8604 | 0.9083 | | 0.0 | 49.0 | 18375 | 0.8650 | 0.9067 | | 0.0021 | 50.0 | 18750 | 0.8666 | 0.9067 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.0+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2
[ "abnormal_sperm", "non-sperm", "normal_sperm" ]
hkivancoral/smids_5x_deit_base_adamax_0001_fold5
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # smids_5x_deit_base_adamax_0001_fold5 This model is a fine-tuned version of [facebook/deit-base-patch16-224](https://huggingface.co/facebook/deit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.9013 - Accuracy: 0.9017 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.1558 | 1.0 | 375 | 0.3339 | 0.8717 | | 0.0801 | 2.0 | 750 | 0.2674 | 0.9 | | 0.064 | 3.0 | 1125 | 0.4397 | 0.9033 | | 0.0238 | 4.0 | 1500 | 0.5225 | 0.875 | | 0.0319 | 5.0 | 1875 | 0.5721 | 0.905 | | 0.0056 | 6.0 | 2250 | 0.5081 | 0.9083 | | 0.0107 | 7.0 | 2625 | 0.5806 | 0.91 | | 0.0108 | 8.0 | 3000 | 0.6004 | 0.9067 | | 0.0023 | 9.0 | 3375 | 0.7259 | 0.895 | | 0.0005 | 10.0 | 3750 | 0.7347 | 0.9033 | | 0.0001 | 11.0 | 4125 | 0.7841 | 0.8967 | | 0.0 | 12.0 | 4500 | 0.7216 | 0.9167 | | 0.0 | 13.0 | 4875 | 0.7364 | 0.9083 | | 0.0053 | 14.0 | 5250 | 0.7059 | 0.9067 | | 0.0001 | 15.0 | 5625 | 0.7607 | 0.9017 | | 0.0 | 16.0 | 6000 | 0.7546 | 0.9083 | | 0.0001 | 17.0 | 6375 | 0.7848 | 0.9033 | | 0.0042 | 18.0 | 6750 | 0.7392 | 0.8983 | | 0.0 | 19.0 | 7125 | 0.7453 | 0.9183 | | 0.0 | 20.0 | 7500 | 0.8298 | 0.9067 | | 0.0 | 21.0 | 7875 | 0.8069 | 0.9067 | | 0.0038 | 22.0 | 8250 | 0.7995 | 0.9067 | | 0.0 | 23.0 | 8625 | 0.8015 | 0.91 | | 0.0 | 24.0 | 9000 | 0.8099 | 0.9067 | | 0.0 | 25.0 | 9375 | 0.7950 | 0.9117 | | 0.0 | 26.0 | 9750 | 0.8272 | 0.91 | | 0.0 | 27.0 | 10125 | 0.7940 | 0.905 | | 0.0 | 28.0 | 10500 | 0.8281 | 0.915 | | 0.0 | 29.0 | 10875 | 0.8337 | 0.9067 | | 0.0031 | 30.0 | 11250 | 0.8245 | 0.9067 | | 0.0 | 31.0 | 11625 | 0.8597 | 0.9033 | | 0.0 | 32.0 | 12000 | 0.8445 | 0.9067 | | 0.0 | 33.0 | 12375 | 0.8424 | 0.9033 | | 0.0 | 34.0 | 12750 | 0.8455 | 0.9017 | | 0.0 | 35.0 | 13125 | 0.8539 | 0.9017 | | 0.0 | 36.0 | 13500 | 0.8610 | 0.8967 | | 0.0 | 37.0 | 13875 | 0.8681 | 0.905 | | 0.0026 | 38.0 | 14250 | 0.8625 | 0.9017 | | 0.0 | 39.0 | 14625 | 0.8694 | 0.9067 | | 0.0 | 40.0 | 15000 | 0.8718 | 0.9 | | 0.0 | 41.0 | 15375 | 0.8794 | 0.905 | | 0.0 | 42.0 | 15750 | 0.8824 | 0.9 | | 0.0 | 43.0 | 16125 | 0.8842 | 0.905 | | 0.0 | 44.0 | 16500 | 0.8874 | 0.9017 | | 0.0 | 45.0 | 16875 | 0.8897 | 0.9017 | | 0.0 | 46.0 | 17250 | 0.8954 | 0.9017 | | 0.0025 | 47.0 | 17625 | 0.8975 | 0.9017 | | 0.0 | 48.0 | 18000 | 0.9000 | 0.9017 | | 0.0 | 49.0 | 18375 | 0.9014 | 0.9017 | | 0.0023 | 50.0 | 18750 | 0.9013 | 0.9017 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.0+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2
[ "abnormal_sperm", "non-sperm", "normal_sperm" ]
hkivancoral/smids_5x_deit_tiny_rms_00001_fold5
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # smids_5x_deit_tiny_rms_00001_fold5 This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co/facebook/deit-tiny-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.8603 - Accuracy: 0.905 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.2338 | 1.0 | 375 | 0.3930 | 0.8433 | | 0.1865 | 2.0 | 750 | 0.3259 | 0.8733 | | 0.1356 | 3.0 | 1125 | 0.2805 | 0.9033 | | 0.0896 | 4.0 | 1500 | 0.3878 | 0.88 | | 0.0385 | 5.0 | 1875 | 0.4177 | 0.8883 | | 0.0314 | 6.0 | 2250 | 0.4802 | 0.8967 | | 0.0588 | 7.0 | 2625 | 0.6345 | 0.895 | | 0.0141 | 8.0 | 3000 | 0.7091 | 0.9033 | | 0.0524 | 9.0 | 3375 | 0.8142 | 0.8817 | | 0.0425 | 10.0 | 3750 | 0.7582 | 0.8983 | | 0.0006 | 11.0 | 4125 | 0.7258 | 0.9 | | 0.0097 | 12.0 | 4500 | 0.7403 | 0.9 | | 0.0104 | 13.0 | 4875 | 0.9310 | 0.89 | | 0.0001 | 14.0 | 5250 | 0.7672 | 0.9 | | 0.0 | 15.0 | 5625 | 0.9240 | 0.8917 | | 0.0003 | 16.0 | 6000 | 0.8712 | 0.8983 | | 0.0135 | 17.0 | 6375 | 0.7633 | 0.9033 | | 0.0335 | 18.0 | 6750 | 1.0118 | 0.8917 | | 0.0155 | 19.0 | 7125 | 0.8189 | 0.905 | | 0.0 | 20.0 | 7500 | 0.8004 | 0.8983 | | 0.0 | 21.0 | 7875 | 1.0772 | 0.88 | | 0.0255 | 22.0 | 8250 | 0.7694 | 0.91 | | 0.0019 | 23.0 | 8625 | 0.8682 | 0.8983 | | 0.0 | 24.0 | 9000 | 0.8775 | 0.8933 | | 0.0 | 25.0 | 9375 | 0.9259 | 0.9017 | | 0.0 | 26.0 | 9750 | 0.8433 | 0.895 | | 0.0119 | 27.0 | 10125 | 0.9223 | 0.8983 | | 0.0 | 28.0 | 10500 | 0.7870 | 0.91 | | 0.0 | 29.0 | 10875 | 0.9279 | 0.895 | | 0.0131 | 30.0 | 11250 | 0.9531 | 0.8933 | | 0.0 | 31.0 | 11625 | 0.8850 | 0.8967 | | 0.0 | 32.0 | 12000 | 0.8772 | 0.8983 | | 0.0 | 33.0 | 12375 | 0.8996 | 0.8917 | | 0.0 | 34.0 | 12750 | 0.9022 | 0.8983 | | 0.0 | 35.0 | 13125 | 0.8990 | 0.8933 | | 0.0 | 36.0 | 13500 | 0.8690 | 0.9033 | | 0.0 | 37.0 | 13875 | 0.8890 | 0.9 | | 0.0071 | 38.0 | 14250 | 0.8769 | 0.9017 | | 0.0 | 39.0 | 14625 | 0.8323 | 0.9067 | | 0.0 | 40.0 | 15000 | 0.8920 | 0.9033 | | 0.0 | 41.0 | 15375 | 0.8465 | 0.9083 | | 0.0 | 42.0 | 15750 | 0.8536 | 0.905 | | 0.0 | 43.0 | 16125 | 0.8497 | 0.905 | | 0.0 | 44.0 | 16500 | 0.8492 | 0.905 | | 0.0 | 45.0 | 16875 | 0.8481 | 0.9067 | | 0.0 | 46.0 | 17250 | 0.8573 | 0.9067 | | 0.0029 | 47.0 | 17625 | 0.8575 | 0.9067 | | 0.0 | 48.0 | 18000 | 0.8605 | 0.905 | | 0.0 | 49.0 | 18375 | 0.8627 | 0.905 | | 0.0013 | 50.0 | 18750 | 0.8603 | 0.905 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.1+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2
[ "abnormal_sperm", "non-sperm", "normal_sperm" ]
hkivancoral/smids_5x_deit_base_adamax_00001_fold1
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # smids_5x_deit_base_adamax_00001_fold1 This model is a fine-tuned version of [facebook/deit-base-patch16-224](https://huggingface.co/facebook/deit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.5548 - Accuracy: 0.9115 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.2913 | 1.0 | 376 | 0.3175 | 0.8815 | | 0.197 | 2.0 | 752 | 0.2822 | 0.8865 | | 0.1857 | 3.0 | 1128 | 0.2733 | 0.8915 | | 0.0801 | 4.0 | 1504 | 0.2769 | 0.8965 | | 0.062 | 5.0 | 1880 | 0.2932 | 0.9048 | | 0.0559 | 6.0 | 2256 | 0.3199 | 0.9115 | | 0.0331 | 7.0 | 2632 | 0.3568 | 0.9098 | | 0.0024 | 8.0 | 3008 | 0.4098 | 0.8982 | | 0.0164 | 9.0 | 3384 | 0.4359 | 0.9065 | | 0.0004 | 10.0 | 3760 | 0.4455 | 0.9082 | | 0.0127 | 11.0 | 4136 | 0.4881 | 0.9082 | | 0.0001 | 12.0 | 4512 | 0.4919 | 0.9032 | | 0.0001 | 13.0 | 4888 | 0.4968 | 0.9115 | | 0.0037 | 14.0 | 5264 | 0.5278 | 0.9065 | | 0.0001 | 15.0 | 5640 | 0.5316 | 0.9115 | | 0.0001 | 16.0 | 6016 | 0.5363 | 0.9032 | | 0.0001 | 17.0 | 6392 | 0.5212 | 0.9149 | | 0.0001 | 18.0 | 6768 | 0.5353 | 0.9098 | | 0.0 | 19.0 | 7144 | 0.5265 | 0.9098 | | 0.0147 | 20.0 | 7520 | 0.5277 | 0.9115 | | 0.0 | 21.0 | 7896 | 0.5565 | 0.9065 | | 0.0 | 22.0 | 8272 | 0.5728 | 0.9098 | | 0.0 | 23.0 | 8648 | 0.5461 | 0.9115 | | 0.0 | 24.0 | 9024 | 0.5300 | 0.9065 | | 0.0 | 25.0 | 9400 | 0.5373 | 0.9065 | | 0.0042 | 26.0 | 9776 | 0.5315 | 0.9082 | | 0.0 | 27.0 | 10152 | 0.5779 | 0.9065 | | 0.0 | 28.0 | 10528 | 0.5457 | 0.9098 | | 0.0079 | 29.0 | 10904 | 0.5511 | 0.9098 | | 0.003 | 30.0 | 11280 | 0.5454 | 0.9048 | | 0.0 | 31.0 | 11656 | 0.5479 | 0.9098 | | 0.0 | 32.0 | 12032 | 0.5371 | 0.9082 | | 0.0 | 33.0 | 12408 | 0.5701 | 0.9065 | | 0.0 | 34.0 | 12784 | 0.5431 | 0.9032 | | 0.0 | 35.0 | 13160 | 0.5470 | 0.9048 | | 0.0 | 36.0 | 13536 | 0.5461 | 0.9015 | | 0.0 | 37.0 | 13912 | 0.5481 | 0.9115 | | 0.0 | 38.0 | 14288 | 0.5522 | 0.9098 | | 0.0 | 39.0 | 14664 | 0.5539 | 0.9082 | | 0.0 | 40.0 | 15040 | 0.5537 | 0.9115 | | 0.0 | 41.0 | 15416 | 0.5471 | 0.9048 | | 0.0 | 42.0 | 15792 | 0.5483 | 0.9115 | | 0.0 | 43.0 | 16168 | 0.5497 | 0.9132 | | 0.0 | 44.0 | 16544 | 0.5527 | 0.9115 | | 0.0 | 45.0 | 16920 | 0.5532 | 0.9115 | | 0.0053 | 46.0 | 17296 | 0.5512 | 0.9098 | | 0.0 | 47.0 | 17672 | 0.5538 | 0.9115 | | 0.0 | 48.0 | 18048 | 0.5539 | 0.9098 | | 0.0 | 49.0 | 18424 | 0.5540 | 0.9115 | | 0.0012 | 50.0 | 18800 | 0.5548 | 0.9115 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.0+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2
[ "abnormal_sperm", "non-sperm", "normal_sperm" ]
hkivancoral/smids_5x_deit_base_sgd_001_fold1
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # smids_5x_deit_base_sgd_001_fold1 This model is a fine-tuned version of [facebook/deit-base-patch16-224](https://huggingface.co/facebook/deit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.2661 - Accuracy: 0.8932 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.7985 | 1.0 | 376 | 0.8182 | 0.6978 | | 0.594 | 2.0 | 752 | 0.5849 | 0.7746 | | 0.4653 | 3.0 | 1128 | 0.4811 | 0.8197 | | 0.4509 | 4.0 | 1504 | 0.4265 | 0.8264 | | 0.406 | 5.0 | 1880 | 0.3929 | 0.8447 | | 0.3758 | 6.0 | 2256 | 0.3696 | 0.8581 | | 0.3147 | 7.0 | 2632 | 0.3531 | 0.8698 | | 0.3421 | 8.0 | 3008 | 0.3417 | 0.8664 | | 0.3606 | 9.0 | 3384 | 0.3307 | 0.8798 | | 0.2866 | 10.0 | 3760 | 0.3222 | 0.8865 | | 0.2912 | 11.0 | 4136 | 0.3153 | 0.8798 | | 0.2629 | 12.0 | 4512 | 0.3094 | 0.8865 | | 0.2464 | 13.0 | 4888 | 0.3048 | 0.8848 | | 0.2413 | 14.0 | 5264 | 0.3005 | 0.8881 | | 0.3125 | 15.0 | 5640 | 0.2955 | 0.8932 | | 0.226 | 16.0 | 6016 | 0.2931 | 0.8865 | | 0.2346 | 17.0 | 6392 | 0.2899 | 0.8915 | | 0.2997 | 18.0 | 6768 | 0.2867 | 0.8881 | | 0.2564 | 19.0 | 7144 | 0.2849 | 0.8898 | | 0.1951 | 20.0 | 7520 | 0.2838 | 0.8898 | | 0.2828 | 21.0 | 7896 | 0.2817 | 0.8898 | | 0.2327 | 22.0 | 8272 | 0.2806 | 0.8898 | | 0.2604 | 23.0 | 8648 | 0.2786 | 0.8865 | | 0.2065 | 24.0 | 9024 | 0.2780 | 0.8881 | | 0.2338 | 25.0 | 9400 | 0.2766 | 0.8881 | | 0.2197 | 26.0 | 9776 | 0.2745 | 0.8898 | | 0.1797 | 27.0 | 10152 | 0.2743 | 0.8898 | | 0.199 | 28.0 | 10528 | 0.2732 | 0.8915 | | 0.2002 | 29.0 | 10904 | 0.2724 | 0.8898 | | 0.1586 | 30.0 | 11280 | 0.2714 | 0.8932 | | 0.1861 | 31.0 | 11656 | 0.2710 | 0.8932 | | 0.2539 | 32.0 | 12032 | 0.2706 | 0.8948 | | 0.1906 | 33.0 | 12408 | 0.2700 | 0.8948 | | 0.1642 | 34.0 | 12784 | 0.2697 | 0.8915 | | 0.1856 | 35.0 | 13160 | 0.2694 | 0.8915 | | 0.2084 | 36.0 | 13536 | 0.2691 | 0.8932 | | 0.1812 | 37.0 | 13912 | 0.2681 | 0.8948 | | 0.2073 | 38.0 | 14288 | 0.2680 | 0.8948 | | 0.1854 | 39.0 | 14664 | 0.2677 | 0.8915 | | 0.1953 | 40.0 | 15040 | 0.2671 | 0.8932 | | 0.1912 | 41.0 | 15416 | 0.2672 | 0.8948 | | 0.1646 | 42.0 | 15792 | 0.2669 | 0.8932 | | 0.1689 | 43.0 | 16168 | 0.2666 | 0.8932 | | 0.1894 | 44.0 | 16544 | 0.2664 | 0.8932 | | 0.173 | 45.0 | 16920 | 0.2663 | 0.8932 | | 0.2186 | 46.0 | 17296 | 0.2661 | 0.8932 | | 0.1671 | 47.0 | 17672 | 0.2661 | 0.8932 | | 0.1916 | 48.0 | 18048 | 0.2661 | 0.8932 | | 0.1583 | 49.0 | 18424 | 0.2661 | 0.8932 | | 0.137 | 50.0 | 18800 | 0.2661 | 0.8932 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.0+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2
[ "abnormal_sperm", "non-sperm", "normal_sperm" ]
hkivancoral/smids_5x_deit_base_sgd_001_fold2
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # smids_5x_deit_base_sgd_001_fold2 This model is a fine-tuned version of [facebook/deit-base-patch16-224](https://huggingface.co/facebook/deit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.3080 - Accuracy: 0.8835 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.848 | 1.0 | 375 | 0.8270 | 0.6972 | | 0.5847 | 2.0 | 750 | 0.5900 | 0.7787 | | 0.4307 | 3.0 | 1125 | 0.4834 | 0.8087 | | 0.3555 | 4.0 | 1500 | 0.4305 | 0.8170 | | 0.3374 | 5.0 | 1875 | 0.3988 | 0.8386 | | 0.2952 | 6.0 | 2250 | 0.3778 | 0.8419 | | 0.2869 | 7.0 | 2625 | 0.3638 | 0.8469 | | 0.3216 | 8.0 | 3000 | 0.3556 | 0.8519 | | 0.2811 | 9.0 | 3375 | 0.3457 | 0.8502 | | 0.2716 | 10.0 | 3750 | 0.3402 | 0.8536 | | 0.2527 | 11.0 | 4125 | 0.3330 | 0.8586 | | 0.2868 | 12.0 | 4500 | 0.3315 | 0.8586 | | 0.2215 | 13.0 | 4875 | 0.3264 | 0.8569 | | 0.2463 | 14.0 | 5250 | 0.3210 | 0.8652 | | 0.2529 | 15.0 | 5625 | 0.3196 | 0.8702 | | 0.2264 | 16.0 | 6000 | 0.3180 | 0.8702 | | 0.2664 | 17.0 | 6375 | 0.3174 | 0.8686 | | 0.2072 | 18.0 | 6750 | 0.3154 | 0.8719 | | 0.2246 | 19.0 | 7125 | 0.3137 | 0.8735 | | 0.2657 | 20.0 | 7500 | 0.3140 | 0.8785 | | 0.2076 | 21.0 | 7875 | 0.3137 | 0.8752 | | 0.2093 | 22.0 | 8250 | 0.3110 | 0.8752 | | 0.2136 | 23.0 | 8625 | 0.3099 | 0.8802 | | 0.1894 | 24.0 | 9000 | 0.3103 | 0.8752 | | 0.1535 | 25.0 | 9375 | 0.3079 | 0.8802 | | 0.2471 | 26.0 | 9750 | 0.3091 | 0.8785 | | 0.1996 | 27.0 | 10125 | 0.3086 | 0.8785 | | 0.1679 | 28.0 | 10500 | 0.3082 | 0.8802 | | 0.2106 | 29.0 | 10875 | 0.3091 | 0.8819 | | 0.1991 | 30.0 | 11250 | 0.3064 | 0.8852 | | 0.2072 | 31.0 | 11625 | 0.3086 | 0.8869 | | 0.1837 | 32.0 | 12000 | 0.3065 | 0.8852 | | 0.1829 | 33.0 | 12375 | 0.3083 | 0.8869 | | 0.146 | 34.0 | 12750 | 0.3077 | 0.8852 | | 0.2024 | 35.0 | 13125 | 0.3064 | 0.8885 | | 0.1685 | 36.0 | 13500 | 0.3081 | 0.8852 | | 0.1849 | 37.0 | 13875 | 0.3080 | 0.8852 | | 0.1672 | 38.0 | 14250 | 0.3074 | 0.8835 | | 0.1673 | 39.0 | 14625 | 0.3082 | 0.8835 | | 0.1726 | 40.0 | 15000 | 0.3082 | 0.8852 | | 0.1673 | 41.0 | 15375 | 0.3089 | 0.8835 | | 0.177 | 42.0 | 15750 | 0.3082 | 0.8835 | | 0.1916 | 43.0 | 16125 | 0.3076 | 0.8835 | | 0.1782 | 44.0 | 16500 | 0.3080 | 0.8835 | | 0.1543 | 45.0 | 16875 | 0.3089 | 0.8835 | | 0.2141 | 46.0 | 17250 | 0.3081 | 0.8835 | | 0.1912 | 47.0 | 17625 | 0.3084 | 0.8835 | | 0.1718 | 48.0 | 18000 | 0.3084 | 0.8835 | | 0.1897 | 49.0 | 18375 | 0.3080 | 0.8835 | | 0.1329 | 50.0 | 18750 | 0.3080 | 0.8835 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.0+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2
[ "abnormal_sperm", "non-sperm", "normal_sperm" ]
hkivancoral/smids_5x_deit_base_adamax_00001_fold2
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # smids_5x_deit_base_adamax_00001_fold2 This model is a fine-tuned version of [facebook/deit-base-patch16-224](https://huggingface.co/facebook/deit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.8137 - Accuracy: 0.8885 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.2996 | 1.0 | 375 | 0.3210 | 0.8735 | | 0.2177 | 2.0 | 750 | 0.2936 | 0.8902 | | 0.1354 | 3.0 | 1125 | 0.3183 | 0.8852 | | 0.0424 | 4.0 | 1500 | 0.3451 | 0.8902 | | 0.0243 | 5.0 | 1875 | 0.3990 | 0.8852 | | 0.0226 | 6.0 | 2250 | 0.4326 | 0.8869 | | 0.0168 | 7.0 | 2625 | 0.4792 | 0.8985 | | 0.0076 | 8.0 | 3000 | 0.5341 | 0.8885 | | 0.0045 | 9.0 | 3375 | 0.5636 | 0.8852 | | 0.0004 | 10.0 | 3750 | 0.5967 | 0.8902 | | 0.0098 | 11.0 | 4125 | 0.6469 | 0.8819 | | 0.0003 | 12.0 | 4500 | 0.6549 | 0.8835 | | 0.0002 | 13.0 | 4875 | 0.6787 | 0.8819 | | 0.0001 | 14.0 | 5250 | 0.6859 | 0.8902 | | 0.0001 | 15.0 | 5625 | 0.6864 | 0.8902 | | 0.0001 | 16.0 | 6000 | 0.6911 | 0.8852 | | 0.0065 | 17.0 | 6375 | 0.7430 | 0.8852 | | 0.0 | 18.0 | 6750 | 0.7047 | 0.8869 | | 0.0 | 19.0 | 7125 | 0.7306 | 0.8835 | | 0.0 | 20.0 | 7500 | 0.7458 | 0.8835 | | 0.0 | 21.0 | 7875 | 0.7324 | 0.8752 | | 0.0 | 22.0 | 8250 | 0.7468 | 0.8802 | | 0.0 | 23.0 | 8625 | 0.7452 | 0.8869 | | 0.0 | 24.0 | 9000 | 0.7743 | 0.8785 | | 0.0 | 25.0 | 9375 | 0.7579 | 0.8852 | | 0.0 | 26.0 | 9750 | 0.7668 | 0.8802 | | 0.0 | 27.0 | 10125 | 0.7673 | 0.8852 | | 0.0 | 28.0 | 10500 | 0.7789 | 0.8802 | | 0.0 | 29.0 | 10875 | 0.7704 | 0.8902 | | 0.0 | 30.0 | 11250 | 0.7833 | 0.8869 | | 0.003 | 31.0 | 11625 | 0.7716 | 0.8819 | | 0.0119 | 32.0 | 12000 | 0.7822 | 0.8902 | | 0.0022 | 33.0 | 12375 | 0.7945 | 0.8869 | | 0.0 | 34.0 | 12750 | 0.7824 | 0.8902 | | 0.0 | 35.0 | 13125 | 0.8058 | 0.8835 | | 0.0 | 36.0 | 13500 | 0.7871 | 0.8835 | | 0.0 | 37.0 | 13875 | 0.7901 | 0.8852 | | 0.0 | 38.0 | 14250 | 0.7886 | 0.8885 | | 0.0 | 39.0 | 14625 | 0.8070 | 0.8885 | | 0.0023 | 40.0 | 15000 | 0.8050 | 0.8935 | | 0.0 | 41.0 | 15375 | 0.8034 | 0.8918 | | 0.003 | 42.0 | 15750 | 0.8038 | 0.8918 | | 0.0024 | 43.0 | 16125 | 0.8073 | 0.8902 | | 0.0024 | 44.0 | 16500 | 0.8102 | 0.8869 | | 0.0028 | 45.0 | 16875 | 0.8121 | 0.8885 | | 0.0 | 46.0 | 17250 | 0.8095 | 0.8918 | | 0.0035 | 47.0 | 17625 | 0.8116 | 0.8885 | | 0.0 | 48.0 | 18000 | 0.8125 | 0.8885 | | 0.0026 | 49.0 | 18375 | 0.8131 | 0.8885 | | 0.0022 | 50.0 | 18750 | 0.8137 | 0.8885 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.0+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2
[ "abnormal_sperm", "non-sperm", "normal_sperm" ]
hkivancoral/smids_5x_deit_base_sgd_001_fold3
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # smids_5x_deit_base_sgd_001_fold3 This model is a fine-tuned version of [facebook/deit-base-patch16-224](https://huggingface.co/facebook/deit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.2756 - Accuracy: 0.9017 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.8095 | 1.0 | 375 | 0.8274 | 0.695 | | 0.5875 | 2.0 | 750 | 0.5872 | 0.8033 | | 0.4116 | 3.0 | 1125 | 0.4743 | 0.83 | | 0.3737 | 4.0 | 1500 | 0.4186 | 0.855 | | 0.4258 | 5.0 | 1875 | 0.3874 | 0.86 | | 0.3489 | 6.0 | 2250 | 0.3641 | 0.8633 | | 0.3464 | 7.0 | 2625 | 0.3477 | 0.8667 | | 0.3297 | 8.0 | 3000 | 0.3357 | 0.8667 | | 0.277 | 9.0 | 3375 | 0.3288 | 0.8683 | | 0.2815 | 10.0 | 3750 | 0.3210 | 0.8733 | | 0.2355 | 11.0 | 4125 | 0.3122 | 0.8767 | | 0.2863 | 12.0 | 4500 | 0.3078 | 0.8833 | | 0.2701 | 13.0 | 4875 | 0.3051 | 0.8833 | | 0.2736 | 14.0 | 5250 | 0.3025 | 0.8833 | | 0.2395 | 15.0 | 5625 | 0.2961 | 0.885 | | 0.2031 | 16.0 | 6000 | 0.2952 | 0.885 | | 0.2473 | 17.0 | 6375 | 0.2943 | 0.885 | | 0.2814 | 18.0 | 6750 | 0.2910 | 0.8883 | | 0.2316 | 19.0 | 7125 | 0.2893 | 0.89 | | 0.2303 | 20.0 | 7500 | 0.2871 | 0.8883 | | 0.1561 | 21.0 | 7875 | 0.2852 | 0.8883 | | 0.1795 | 22.0 | 8250 | 0.2878 | 0.8933 | | 0.2424 | 23.0 | 8625 | 0.2847 | 0.8933 | | 0.234 | 24.0 | 9000 | 0.2843 | 0.89 | | 0.2148 | 25.0 | 9375 | 0.2840 | 0.8883 | | 0.2353 | 26.0 | 9750 | 0.2810 | 0.8967 | | 0.2055 | 27.0 | 10125 | 0.2823 | 0.895 | | 0.2361 | 28.0 | 10500 | 0.2802 | 0.8967 | | 0.1834 | 29.0 | 10875 | 0.2796 | 0.895 | | 0.2029 | 30.0 | 11250 | 0.2813 | 0.8967 | | 0.2296 | 31.0 | 11625 | 0.2806 | 0.8983 | | 0.2077 | 32.0 | 12000 | 0.2800 | 0.8983 | | 0.2574 | 33.0 | 12375 | 0.2785 | 0.8983 | | 0.1786 | 34.0 | 12750 | 0.2764 | 0.8967 | | 0.1549 | 35.0 | 13125 | 0.2758 | 0.9 | | 0.1665 | 36.0 | 13500 | 0.2763 | 0.8983 | | 0.187 | 37.0 | 13875 | 0.2766 | 0.9 | | 0.1745 | 38.0 | 14250 | 0.2765 | 0.9 | | 0.1886 | 39.0 | 14625 | 0.2765 | 0.9 | | 0.1628 | 40.0 | 15000 | 0.2755 | 0.9017 | | 0.1471 | 41.0 | 15375 | 0.2749 | 0.9017 | | 0.1795 | 42.0 | 15750 | 0.2759 | 0.9017 | | 0.2305 | 43.0 | 16125 | 0.2754 | 0.9017 | | 0.168 | 44.0 | 16500 | 0.2757 | 0.9017 | | 0.1598 | 45.0 | 16875 | 0.2757 | 0.9033 | | 0.1914 | 46.0 | 17250 | 0.2755 | 0.9017 | | 0.2052 | 47.0 | 17625 | 0.2754 | 0.9017 | | 0.1945 | 48.0 | 18000 | 0.2755 | 0.9017 | | 0.1764 | 49.0 | 18375 | 0.2755 | 0.9017 | | 0.1798 | 50.0 | 18750 | 0.2756 | 0.9017 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.0+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2
[ "abnormal_sperm", "non-sperm", "normal_sperm" ]
hkivancoral/smids_5x_deit_base_adamax_00001_fold3
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # smids_5x_deit_base_adamax_00001_fold3 This model is a fine-tuned version of [facebook/deit-base-patch16-224](https://huggingface.co/facebook/deit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.6633 - Accuracy: 0.9183 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.2813 | 1.0 | 375 | 0.3216 | 0.8783 | | 0.2111 | 2.0 | 750 | 0.2635 | 0.905 | | 0.0915 | 3.0 | 1125 | 0.2534 | 0.92 | | 0.0599 | 4.0 | 1500 | 0.2640 | 0.92 | | 0.1269 | 5.0 | 1875 | 0.2938 | 0.9217 | | 0.0531 | 6.0 | 2250 | 0.3570 | 0.9133 | | 0.0327 | 7.0 | 2625 | 0.3536 | 0.9183 | | 0.0024 | 8.0 | 3000 | 0.4103 | 0.915 | | 0.0012 | 9.0 | 3375 | 0.4352 | 0.92 | | 0.0003 | 10.0 | 3750 | 0.4932 | 0.9133 | | 0.0002 | 11.0 | 4125 | 0.4821 | 0.9167 | | 0.0002 | 12.0 | 4500 | 0.5091 | 0.9133 | | 0.0001 | 13.0 | 4875 | 0.5337 | 0.9167 | | 0.0001 | 14.0 | 5250 | 0.5297 | 0.9167 | | 0.0001 | 15.0 | 5625 | 0.5462 | 0.9117 | | 0.0 | 16.0 | 6000 | 0.5551 | 0.92 | | 0.0001 | 17.0 | 6375 | 0.5844 | 0.915 | | 0.0 | 18.0 | 6750 | 0.5622 | 0.9133 | | 0.0 | 19.0 | 7125 | 0.5918 | 0.9167 | | 0.0 | 20.0 | 7500 | 0.5875 | 0.915 | | 0.0 | 21.0 | 7875 | 0.5930 | 0.915 | | 0.0 | 22.0 | 8250 | 0.6046 | 0.915 | | 0.0049 | 23.0 | 8625 | 0.6585 | 0.9083 | | 0.0 | 24.0 | 9000 | 0.6134 | 0.9183 | | 0.0 | 25.0 | 9375 | 0.6543 | 0.91 | | 0.0 | 26.0 | 9750 | 0.6179 | 0.9183 | | 0.0 | 27.0 | 10125 | 0.6159 | 0.9167 | | 0.0 | 28.0 | 10500 | 0.6181 | 0.9183 | | 0.0 | 29.0 | 10875 | 0.6318 | 0.9167 | | 0.0036 | 30.0 | 11250 | 0.6693 | 0.9133 | | 0.0 | 31.0 | 11625 | 0.6325 | 0.9183 | | 0.0 | 32.0 | 12000 | 0.6427 | 0.9183 | | 0.0 | 33.0 | 12375 | 0.6557 | 0.915 | | 0.0 | 34.0 | 12750 | 0.6550 | 0.915 | | 0.0 | 35.0 | 13125 | 0.6439 | 0.915 | | 0.0 | 36.0 | 13500 | 0.6513 | 0.915 | | 0.0 | 37.0 | 13875 | 0.6496 | 0.915 | | 0.0 | 38.0 | 14250 | 0.6546 | 0.915 | | 0.0 | 39.0 | 14625 | 0.6548 | 0.9167 | | 0.0036 | 40.0 | 15000 | 0.6572 | 0.9167 | | 0.0 | 41.0 | 15375 | 0.6550 | 0.9183 | | 0.0 | 42.0 | 15750 | 0.6572 | 0.9167 | | 0.0 | 43.0 | 16125 | 0.6583 | 0.9183 | | 0.0 | 44.0 | 16500 | 0.6596 | 0.9183 | | 0.0 | 45.0 | 16875 | 0.6608 | 0.9183 | | 0.0 | 46.0 | 17250 | 0.6619 | 0.9183 | | 0.0 | 47.0 | 17625 | 0.6626 | 0.9183 | | 0.0 | 48.0 | 18000 | 0.6632 | 0.9183 | | 0.0 | 49.0 | 18375 | 0.6634 | 0.9183 | | 0.0 | 50.0 | 18750 | 0.6633 | 0.9183 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.0+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2
[ "abnormal_sperm", "non-sperm", "normal_sperm" ]
hkivancoral/smids_5x_deit_base_sgd_001_fold4
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # smids_5x_deit_base_sgd_001_fold4 This model is a fine-tuned version of [facebook/deit-base-patch16-224](https://huggingface.co/facebook/deit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.3268 - Accuracy: 0.8683 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.8132 | 1.0 | 375 | 0.8089 | 0.7267 | | 0.5876 | 2.0 | 750 | 0.5635 | 0.8067 | | 0.4083 | 3.0 | 1125 | 0.4614 | 0.8267 | | 0.4267 | 4.0 | 1500 | 0.4160 | 0.8333 | | 0.3511 | 5.0 | 1875 | 0.3904 | 0.845 | | 0.2917 | 6.0 | 2250 | 0.3744 | 0.85 | | 0.3158 | 7.0 | 2625 | 0.3647 | 0.8583 | | 0.2749 | 8.0 | 3000 | 0.3555 | 0.86 | | 0.3058 | 9.0 | 3375 | 0.3495 | 0.8583 | | 0.2616 | 10.0 | 3750 | 0.3455 | 0.8667 | | 0.2281 | 11.0 | 4125 | 0.3414 | 0.8683 | | 0.2203 | 12.0 | 4500 | 0.3404 | 0.87 | | 0.1983 | 13.0 | 4875 | 0.3366 | 0.8733 | | 0.2917 | 14.0 | 5250 | 0.3335 | 0.875 | | 0.2068 | 15.0 | 5625 | 0.3331 | 0.8767 | | 0.1668 | 16.0 | 6000 | 0.3311 | 0.8767 | | 0.2429 | 17.0 | 6375 | 0.3309 | 0.88 | | 0.2255 | 18.0 | 6750 | 0.3295 | 0.8817 | | 0.217 | 19.0 | 7125 | 0.3289 | 0.88 | | 0.1858 | 20.0 | 7500 | 0.3267 | 0.875 | | 0.1989 | 21.0 | 7875 | 0.3279 | 0.875 | | 0.1971 | 22.0 | 8250 | 0.3262 | 0.8767 | | 0.1898 | 23.0 | 8625 | 0.3266 | 0.875 | | 0.1832 | 24.0 | 9000 | 0.3251 | 0.8767 | | 0.2234 | 25.0 | 9375 | 0.3260 | 0.875 | | 0.1745 | 26.0 | 9750 | 0.3248 | 0.8767 | | 0.2157 | 27.0 | 10125 | 0.3261 | 0.875 | | 0.1917 | 28.0 | 10500 | 0.3254 | 0.8717 | | 0.169 | 29.0 | 10875 | 0.3264 | 0.87 | | 0.238 | 30.0 | 11250 | 0.3268 | 0.8683 | | 0.1975 | 31.0 | 11625 | 0.3288 | 0.87 | | 0.139 | 32.0 | 12000 | 0.3247 | 0.8717 | | 0.1975 | 33.0 | 12375 | 0.3257 | 0.8683 | | 0.1914 | 34.0 | 12750 | 0.3239 | 0.875 | | 0.1455 | 35.0 | 13125 | 0.3252 | 0.8717 | | 0.1611 | 36.0 | 13500 | 0.3266 | 0.8683 | | 0.2074 | 37.0 | 13875 | 0.3252 | 0.8767 | | 0.1665 | 38.0 | 14250 | 0.3262 | 0.8683 | | 0.2306 | 39.0 | 14625 | 0.3258 | 0.8683 | | 0.1821 | 40.0 | 15000 | 0.3259 | 0.8683 | | 0.154 | 41.0 | 15375 | 0.3262 | 0.8683 | | 0.1817 | 42.0 | 15750 | 0.3261 | 0.8683 | | 0.2063 | 43.0 | 16125 | 0.3258 | 0.8717 | | 0.1391 | 44.0 | 16500 | 0.3266 | 0.8683 | | 0.2228 | 45.0 | 16875 | 0.3270 | 0.8683 | | 0.1476 | 46.0 | 17250 | 0.3269 | 0.87 | | 0.2362 | 47.0 | 17625 | 0.3264 | 0.8683 | | 0.1702 | 48.0 | 18000 | 0.3268 | 0.8683 | | 0.1619 | 49.0 | 18375 | 0.3268 | 0.8683 | | 0.1838 | 50.0 | 18750 | 0.3268 | 0.8683 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.0+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2
[ "abnormal_sperm", "non-sperm", "normal_sperm" ]
hkivancoral/smids_5x_deit_base_adamax_00001_fold4
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # smids_5x_deit_base_adamax_00001_fold4 This model is a fine-tuned version of [facebook/deit-base-patch16-224](https://huggingface.co/facebook/deit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.1380 - Accuracy: 0.8667 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.2793 | 1.0 | 375 | 0.3375 | 0.8733 | | 0.2086 | 2.0 | 750 | 0.3220 | 0.8767 | | 0.0773 | 3.0 | 1125 | 0.3501 | 0.87 | | 0.1352 | 4.0 | 1500 | 0.3537 | 0.8883 | | 0.0451 | 5.0 | 1875 | 0.4252 | 0.8733 | | 0.0092 | 6.0 | 2250 | 0.5239 | 0.8683 | | 0.0099 | 7.0 | 2625 | 0.6333 | 0.8617 | | 0.0011 | 8.0 | 3000 | 0.6345 | 0.8783 | | 0.0007 | 9.0 | 3375 | 0.6729 | 0.87 | | 0.0003 | 10.0 | 3750 | 0.7305 | 0.87 | | 0.0078 | 11.0 | 4125 | 0.8099 | 0.8533 | | 0.0001 | 12.0 | 4500 | 0.8279 | 0.8633 | | 0.0001 | 13.0 | 4875 | 0.8432 | 0.865 | | 0.0241 | 14.0 | 5250 | 0.8671 | 0.8617 | | 0.0001 | 15.0 | 5625 | 0.9017 | 0.8733 | | 0.0 | 16.0 | 6000 | 0.9098 | 0.8683 | | 0.0001 | 17.0 | 6375 | 0.9302 | 0.8683 | | 0.021 | 18.0 | 6750 | 0.9362 | 0.865 | | 0.0 | 19.0 | 7125 | 0.9767 | 0.8767 | | 0.0 | 20.0 | 7500 | 0.9642 | 0.87 | | 0.0 | 21.0 | 7875 | 0.9726 | 0.8683 | | 0.0 | 22.0 | 8250 | 0.9924 | 0.87 | | 0.0 | 23.0 | 8625 | 1.0407 | 0.8683 | | 0.0 | 24.0 | 9000 | 0.9983 | 0.865 | | 0.0 | 25.0 | 9375 | 1.0050 | 0.8767 | | 0.0 | 26.0 | 9750 | 1.1029 | 0.8683 | | 0.0 | 27.0 | 10125 | 1.0432 | 0.8633 | | 0.0 | 28.0 | 10500 | 1.0623 | 0.87 | | 0.0 | 29.0 | 10875 | 1.0507 | 0.8667 | | 0.0 | 30.0 | 11250 | 1.0651 | 0.8717 | | 0.0 | 31.0 | 11625 | 1.0597 | 0.8667 | | 0.0 | 32.0 | 12000 | 1.0584 | 0.8633 | | 0.0 | 33.0 | 12375 | 1.0660 | 0.8633 | | 0.0 | 34.0 | 12750 | 1.0722 | 0.865 | | 0.0 | 35.0 | 13125 | 1.0821 | 0.865 | | 0.0 | 36.0 | 13500 | 1.0843 | 0.8617 | | 0.0 | 37.0 | 13875 | 1.0957 | 0.8683 | | 0.0089 | 38.0 | 14250 | 1.1135 | 0.8717 | | 0.0 | 39.0 | 14625 | 1.1105 | 0.8683 | | 0.0 | 40.0 | 15000 | 1.1158 | 0.8683 | | 0.0 | 41.0 | 15375 | 1.1145 | 0.8667 | | 0.0 | 42.0 | 15750 | 1.1172 | 0.8683 | | 0.0 | 43.0 | 16125 | 1.1213 | 0.8683 | | 0.0 | 44.0 | 16500 | 1.1274 | 0.8683 | | 0.0 | 45.0 | 16875 | 1.1305 | 0.8683 | | 0.0 | 46.0 | 17250 | 1.1329 | 0.8683 | | 0.0 | 47.0 | 17625 | 1.1347 | 0.8683 | | 0.0 | 48.0 | 18000 | 1.1363 | 0.8667 | | 0.0 | 49.0 | 18375 | 1.1373 | 0.8667 | | 0.0 | 50.0 | 18750 | 1.1380 | 0.8667 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.0+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2
[ "abnormal_sperm", "non-sperm", "normal_sperm" ]
hkivancoral/smids_5x_deit_base_sgd_001_fold5
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # smids_5x_deit_base_sgd_001_fold5 This model is a fine-tuned version of [facebook/deit-base-patch16-224](https://huggingface.co/facebook/deit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.2653 - Accuracy: 0.89 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.816 | 1.0 | 375 | 0.8299 | 0.6983 | | 0.6079 | 2.0 | 750 | 0.5776 | 0.79 | | 0.4275 | 3.0 | 1125 | 0.4639 | 0.815 | | 0.435 | 4.0 | 1500 | 0.4090 | 0.8217 | | 0.3764 | 5.0 | 1875 | 0.3770 | 0.83 | | 0.3648 | 6.0 | 2250 | 0.3546 | 0.8333 | | 0.2762 | 7.0 | 2625 | 0.3403 | 0.8383 | | 0.295 | 8.0 | 3000 | 0.3285 | 0.85 | | 0.2923 | 9.0 | 3375 | 0.3205 | 0.8517 | | 0.2438 | 10.0 | 3750 | 0.3147 | 0.855 | | 0.2438 | 11.0 | 4125 | 0.3070 | 0.86 | | 0.2431 | 12.0 | 4500 | 0.3020 | 0.8667 | | 0.2192 | 13.0 | 4875 | 0.2993 | 0.865 | | 0.2554 | 14.0 | 5250 | 0.2960 | 0.8717 | | 0.2885 | 15.0 | 5625 | 0.2913 | 0.8783 | | 0.1896 | 16.0 | 6000 | 0.2879 | 0.88 | | 0.3057 | 17.0 | 6375 | 0.2870 | 0.8733 | | 0.2444 | 18.0 | 6750 | 0.2845 | 0.88 | | 0.2179 | 19.0 | 7125 | 0.2810 | 0.8783 | | 0.1663 | 20.0 | 7500 | 0.2810 | 0.8783 | | 0.2067 | 21.0 | 7875 | 0.2763 | 0.8833 | | 0.197 | 22.0 | 8250 | 0.2779 | 0.8817 | | 0.3036 | 23.0 | 8625 | 0.2762 | 0.8817 | | 0.2123 | 24.0 | 9000 | 0.2743 | 0.8817 | | 0.2471 | 25.0 | 9375 | 0.2741 | 0.8783 | | 0.2004 | 26.0 | 9750 | 0.2742 | 0.88 | | 0.2358 | 27.0 | 10125 | 0.2736 | 0.88 | | 0.2033 | 28.0 | 10500 | 0.2701 | 0.88 | | 0.2195 | 29.0 | 10875 | 0.2687 | 0.8833 | | 0.1807 | 30.0 | 11250 | 0.2702 | 0.8817 | | 0.2285 | 31.0 | 11625 | 0.2693 | 0.8833 | | 0.2043 | 32.0 | 12000 | 0.2686 | 0.8883 | | 0.2113 | 33.0 | 12375 | 0.2682 | 0.89 | | 0.253 | 34.0 | 12750 | 0.2667 | 0.8883 | | 0.1854 | 35.0 | 13125 | 0.2674 | 0.885 | | 0.1505 | 36.0 | 13500 | 0.2668 | 0.8867 | | 0.2105 | 37.0 | 13875 | 0.2666 | 0.885 | | 0.184 | 38.0 | 14250 | 0.2661 | 0.8867 | | 0.1486 | 39.0 | 14625 | 0.2664 | 0.8867 | | 0.2231 | 40.0 | 15000 | 0.2660 | 0.8883 | | 0.185 | 41.0 | 15375 | 0.2658 | 0.8867 | | 0.166 | 42.0 | 15750 | 0.2657 | 0.8883 | | 0.1944 | 43.0 | 16125 | 0.2649 | 0.8933 | | 0.1752 | 44.0 | 16500 | 0.2656 | 0.8883 | | 0.1859 | 45.0 | 16875 | 0.2655 | 0.89 | | 0.2257 | 46.0 | 17250 | 0.2655 | 0.8867 | | 0.2194 | 47.0 | 17625 | 0.2653 | 0.8883 | | 0.1536 | 48.0 | 18000 | 0.2653 | 0.8883 | | 0.1835 | 49.0 | 18375 | 0.2652 | 0.89 | | 0.1852 | 50.0 | 18750 | 0.2653 | 0.89 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.0+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2
[ "abnormal_sperm", "non-sperm", "normal_sperm" ]
Nubletz/msi-resnet-50
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # msi-resnet-50 This model is a fine-tuned version of [Nubletz/msi-resnet-pretrain](https://huggingface.co/Nubletz/msi-resnet-pretrain) on the imagefolder dataset. It achieves the following results on the evaluation set: - eval_loss: 29628148372356011655168.0000 - eval_accuracy: 0.5662 - eval_runtime: 362.9719 - eval_samples_per_second: 78.838 - eval_steps_per_second: 4.929 - epoch: 5.0 - step: 10078 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Framework versions - Transformers 4.36.1 - Pytorch 2.0.1+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0
[ "0", "1" ]
hkivancoral/smids_5x_deit_base_adamax_00001_fold5
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # smids_5x_deit_base_adamax_00001_fold5 This model is a fine-tuned version of [facebook/deit-base-patch16-224](https://huggingface.co/facebook/deit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.6879 - Accuracy: 0.9 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.2538 | 1.0 | 375 | 0.3339 | 0.8467 | | 0.1892 | 2.0 | 750 | 0.2698 | 0.8917 | | 0.1183 | 3.0 | 1125 | 0.2626 | 0.9 | | 0.1141 | 4.0 | 1500 | 0.2917 | 0.8883 | | 0.071 | 5.0 | 1875 | 0.3136 | 0.9 | | 0.0217 | 6.0 | 2250 | 0.3618 | 0.8933 | | 0.0346 | 7.0 | 2625 | 0.4213 | 0.89 | | 0.0047 | 8.0 | 3000 | 0.4689 | 0.8983 | | 0.022 | 9.0 | 3375 | 0.5039 | 0.8983 | | 0.0024 | 10.0 | 3750 | 0.5358 | 0.8917 | | 0.0059 | 11.0 | 4125 | 0.5640 | 0.895 | | 0.0001 | 12.0 | 4500 | 0.5647 | 0.8967 | | 0.0001 | 13.0 | 4875 | 0.6088 | 0.895 | | 0.0002 | 14.0 | 5250 | 0.5907 | 0.9017 | | 0.0001 | 15.0 | 5625 | 0.6332 | 0.8967 | | 0.0001 | 16.0 | 6000 | 0.6424 | 0.8833 | | 0.0001 | 17.0 | 6375 | 0.6207 | 0.8983 | | 0.0068 | 18.0 | 6750 | 0.6552 | 0.895 | | 0.0 | 19.0 | 7125 | 0.6642 | 0.9017 | | 0.0 | 20.0 | 7500 | 0.6453 | 0.8883 | | 0.0001 | 21.0 | 7875 | 0.6986 | 0.895 | | 0.0265 | 22.0 | 8250 | 0.7065 | 0.8883 | | 0.0 | 23.0 | 8625 | 0.6670 | 0.8967 | | 0.0 | 24.0 | 9000 | 0.6793 | 0.8967 | | 0.0 | 25.0 | 9375 | 0.6516 | 0.9017 | | 0.0 | 26.0 | 9750 | 0.6626 | 0.89 | | 0.0 | 27.0 | 10125 | 0.6877 | 0.895 | | 0.0 | 28.0 | 10500 | 0.6598 | 0.8967 | | 0.0 | 29.0 | 10875 | 0.6682 | 0.8933 | | 0.0145 | 30.0 | 11250 | 0.6761 | 0.8983 | | 0.0 | 31.0 | 11625 | 0.6763 | 0.8983 | | 0.0 | 32.0 | 12000 | 0.6749 | 0.8967 | | 0.0 | 33.0 | 12375 | 0.6798 | 0.8983 | | 0.0 | 34.0 | 12750 | 0.6830 | 0.8967 | | 0.0 | 35.0 | 13125 | 0.6787 | 0.9 | | 0.0 | 36.0 | 13500 | 0.6883 | 0.895 | | 0.0 | 37.0 | 13875 | 0.6805 | 0.8983 | | 0.003 | 38.0 | 14250 | 0.6825 | 0.895 | | 0.0 | 39.0 | 14625 | 0.6851 | 0.8967 | | 0.0 | 40.0 | 15000 | 0.6877 | 0.8983 | | 0.0 | 41.0 | 15375 | 0.6804 | 0.8983 | | 0.0 | 42.0 | 15750 | 0.6888 | 0.8983 | | 0.0 | 43.0 | 16125 | 0.6877 | 0.8983 | | 0.0 | 44.0 | 16500 | 0.6899 | 0.8983 | | 0.0 | 45.0 | 16875 | 0.6911 | 0.8967 | | 0.0 | 46.0 | 17250 | 0.6870 | 0.8983 | | 0.0023 | 47.0 | 17625 | 0.6868 | 0.8983 | | 0.0 | 48.0 | 18000 | 0.6892 | 0.9 | | 0.0 | 49.0 | 18375 | 0.6892 | 0.9 | | 0.0021 | 50.0 | 18750 | 0.6879 | 0.9 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.0+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2
[ "abnormal_sperm", "non-sperm", "normal_sperm" ]
hkivancoral/smids_5x_deit_base_sgd_0001_fold1
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # smids_5x_deit_base_sgd_0001_fold1 This model is a fine-tuned version of [facebook/deit-base-patch16-224](https://huggingface.co/facebook/deit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.5141 - Accuracy: 0.8063 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 1.073 | 1.0 | 376 | 1.0746 | 0.4391 | | 1.0668 | 2.0 | 752 | 1.0543 | 0.4775 | | 1.0508 | 3.0 | 1128 | 1.0329 | 0.5326 | | 1.0204 | 4.0 | 1504 | 1.0085 | 0.5676 | | 0.9684 | 5.0 | 1880 | 0.9803 | 0.6110 | | 0.9344 | 6.0 | 2256 | 0.9504 | 0.6344 | | 0.9026 | 7.0 | 2632 | 0.9203 | 0.6511 | | 0.9041 | 8.0 | 3008 | 0.8901 | 0.6694 | | 0.8974 | 9.0 | 3384 | 0.8608 | 0.6828 | | 0.8237 | 10.0 | 3760 | 0.8327 | 0.6945 | | 0.7953 | 11.0 | 4136 | 0.8062 | 0.6962 | | 0.7905 | 12.0 | 4512 | 0.7820 | 0.7028 | | 0.7556 | 13.0 | 4888 | 0.7593 | 0.7129 | | 0.7345 | 14.0 | 5264 | 0.7385 | 0.7262 | | 0.7177 | 15.0 | 5640 | 0.7192 | 0.7346 | | 0.6509 | 16.0 | 6016 | 0.7013 | 0.7412 | | 0.6656 | 17.0 | 6392 | 0.6845 | 0.7479 | | 0.6821 | 18.0 | 6768 | 0.6693 | 0.7496 | | 0.6446 | 19.0 | 7144 | 0.6551 | 0.7546 | | 0.6223 | 20.0 | 7520 | 0.6422 | 0.7629 | | 0.6135 | 21.0 | 7896 | 0.6303 | 0.7679 | | 0.5755 | 22.0 | 8272 | 0.6195 | 0.7713 | | 0.5973 | 23.0 | 8648 | 0.6095 | 0.7730 | | 0.6156 | 24.0 | 9024 | 0.6004 | 0.7746 | | 0.6003 | 25.0 | 9400 | 0.5920 | 0.7780 | | 0.5642 | 26.0 | 9776 | 0.5842 | 0.7796 | | 0.5302 | 27.0 | 10152 | 0.5770 | 0.7813 | | 0.5137 | 28.0 | 10528 | 0.5704 | 0.7863 | | 0.5415 | 29.0 | 10904 | 0.5643 | 0.7880 | | 0.5224 | 30.0 | 11280 | 0.5587 | 0.7880 | | 0.5509 | 31.0 | 11656 | 0.5535 | 0.7930 | | 0.5721 | 32.0 | 12032 | 0.5488 | 0.7913 | | 0.5247 | 33.0 | 12408 | 0.5445 | 0.7930 | | 0.4916 | 34.0 | 12784 | 0.5406 | 0.7963 | | 0.5191 | 35.0 | 13160 | 0.5369 | 0.7980 | | 0.5171 | 36.0 | 13536 | 0.5337 | 0.8013 | | 0.4685 | 37.0 | 13912 | 0.5307 | 0.8063 | | 0.5439 | 38.0 | 14288 | 0.5280 | 0.8063 | | 0.4686 | 39.0 | 14664 | 0.5255 | 0.8080 | | 0.4898 | 40.0 | 15040 | 0.5234 | 0.8063 | | 0.509 | 41.0 | 15416 | 0.5214 | 0.8063 | | 0.4464 | 42.0 | 15792 | 0.5198 | 0.8063 | | 0.4635 | 43.0 | 16168 | 0.5183 | 0.8063 | | 0.5321 | 44.0 | 16544 | 0.5171 | 0.8063 | | 0.4939 | 45.0 | 16920 | 0.5161 | 0.8063 | | 0.4922 | 46.0 | 17296 | 0.5153 | 0.8063 | | 0.4738 | 47.0 | 17672 | 0.5147 | 0.8063 | | 0.5216 | 48.0 | 18048 | 0.5143 | 0.8063 | | 0.4726 | 49.0 | 18424 | 0.5141 | 0.8063 | | 0.4528 | 50.0 | 18800 | 0.5141 | 0.8063 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.0+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2
[ "abnormal_sperm", "non-sperm", "normal_sperm" ]
hkivancoral/smids_5x_deit_base_sgd_00001_fold1
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # smids_5x_deit_base_sgd_00001_fold1 This model is a fine-tuned version of [facebook/deit-base-patch16-224](https://huggingface.co/facebook/deit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.0498 - Accuracy: 0.5008 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 1.1042 | 1.0 | 376 | 1.0929 | 0.3856 | | 1.1057 | 2.0 | 752 | 1.0909 | 0.3923 | | 1.1149 | 3.0 | 1128 | 1.0890 | 0.3940 | | 1.1189 | 4.0 | 1504 | 1.0872 | 0.3907 | | 1.1034 | 5.0 | 1880 | 1.0854 | 0.3973 | | 1.0984 | 6.0 | 2256 | 1.0837 | 0.4023 | | 1.1017 | 7.0 | 2632 | 1.0821 | 0.4073 | | 1.0896 | 8.0 | 3008 | 1.0805 | 0.4157 | | 1.0923 | 9.0 | 3384 | 1.0789 | 0.4240 | | 1.0904 | 10.0 | 3760 | 1.0774 | 0.4257 | | 1.0756 | 11.0 | 4136 | 1.0759 | 0.4324 | | 1.0821 | 12.0 | 4512 | 1.0745 | 0.4357 | | 1.0908 | 13.0 | 4888 | 1.0731 | 0.4424 | | 1.0966 | 14.0 | 5264 | 1.0718 | 0.4441 | | 1.0817 | 15.0 | 5640 | 1.0706 | 0.4441 | | 1.0679 | 16.0 | 6016 | 1.0693 | 0.4457 | | 1.0876 | 17.0 | 6392 | 1.0681 | 0.4457 | | 1.064 | 18.0 | 6768 | 1.0670 | 0.4474 | | 1.072 | 19.0 | 7144 | 1.0658 | 0.4474 | | 1.09 | 20.0 | 7520 | 1.0648 | 0.4474 | | 1.081 | 21.0 | 7896 | 1.0637 | 0.4508 | | 1.0655 | 22.0 | 8272 | 1.0627 | 0.4558 | | 1.0774 | 23.0 | 8648 | 1.0618 | 0.4574 | | 1.0736 | 24.0 | 9024 | 1.0609 | 0.4608 | | 1.0774 | 25.0 | 9400 | 1.0600 | 0.4691 | | 1.055 | 26.0 | 9776 | 1.0591 | 0.4691 | | 1.0689 | 27.0 | 10152 | 1.0583 | 0.4674 | | 1.0612 | 28.0 | 10528 | 1.0576 | 0.4691 | | 1.0701 | 29.0 | 10904 | 1.0568 | 0.4691 | | 1.0631 | 30.0 | 11280 | 1.0561 | 0.4741 | | 1.0623 | 31.0 | 11656 | 1.0555 | 0.4758 | | 1.0571 | 32.0 | 12032 | 1.0549 | 0.4791 | | 1.0769 | 33.0 | 12408 | 1.0543 | 0.4841 | | 1.0511 | 34.0 | 12784 | 1.0537 | 0.4891 | | 1.0652 | 35.0 | 13160 | 1.0532 | 0.4891 | | 1.0631 | 36.0 | 13536 | 1.0527 | 0.4908 | | 1.0446 | 37.0 | 13912 | 1.0523 | 0.4908 | | 1.0591 | 38.0 | 14288 | 1.0519 | 0.4925 | | 1.0589 | 39.0 | 14664 | 1.0516 | 0.4925 | | 1.0552 | 40.0 | 15040 | 1.0512 | 0.4942 | | 1.0353 | 41.0 | 15416 | 1.0509 | 0.4925 | | 1.0348 | 42.0 | 15792 | 1.0507 | 0.4958 | | 1.0561 | 43.0 | 16168 | 1.0505 | 0.4992 | | 1.0679 | 44.0 | 16544 | 1.0503 | 0.4992 | | 1.0611 | 45.0 | 16920 | 1.0501 | 0.5008 | | 1.0413 | 46.0 | 17296 | 1.0500 | 0.5008 | | 1.0517 | 47.0 | 17672 | 1.0499 | 0.5008 | | 1.0644 | 48.0 | 18048 | 1.0499 | 0.5008 | | 1.052 | 49.0 | 18424 | 1.0498 | 0.5008 | | 1.0428 | 50.0 | 18800 | 1.0498 | 0.5008 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.0+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2
[ "abnormal_sperm", "non-sperm", "normal_sperm" ]
hkivancoral/smids_5x_deit_base_sgd_0001_fold2
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # smids_5x_deit_base_sgd_0001_fold2 This model is a fine-tuned version of [facebook/deit-base-patch16-224](https://huggingface.co/facebook/deit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.5171 - Accuracy: 0.7937 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 1.0836 | 1.0 | 375 | 1.0885 | 0.3760 | | 1.0675 | 2.0 | 750 | 1.0687 | 0.4210 | | 1.0197 | 3.0 | 1125 | 1.0472 | 0.4792 | | 1.0069 | 4.0 | 1500 | 1.0227 | 0.5291 | | 0.9845 | 5.0 | 1875 | 0.9951 | 0.5757 | | 0.9186 | 6.0 | 2250 | 0.9649 | 0.6023 | | 0.8937 | 7.0 | 2625 | 0.9335 | 0.6240 | | 0.9019 | 8.0 | 3000 | 0.9023 | 0.6306 | | 0.8424 | 9.0 | 3375 | 0.8722 | 0.6539 | | 0.8294 | 10.0 | 3750 | 0.8441 | 0.6755 | | 0.7985 | 11.0 | 4125 | 0.8177 | 0.7038 | | 0.7783 | 12.0 | 4500 | 0.7929 | 0.7138 | | 0.7207 | 13.0 | 4875 | 0.7700 | 0.7238 | | 0.7333 | 14.0 | 5250 | 0.7486 | 0.7321 | | 0.7101 | 15.0 | 5625 | 0.7288 | 0.7471 | | 0.6525 | 16.0 | 6000 | 0.7103 | 0.7554 | | 0.6829 | 17.0 | 6375 | 0.6933 | 0.7521 | | 0.6709 | 18.0 | 6750 | 0.6776 | 0.7604 | | 0.637 | 19.0 | 7125 | 0.6631 | 0.7654 | | 0.6386 | 20.0 | 7500 | 0.6498 | 0.7704 | | 0.6136 | 21.0 | 7875 | 0.6376 | 0.7704 | | 0.6058 | 22.0 | 8250 | 0.6264 | 0.7704 | | 0.5884 | 23.0 | 8625 | 0.6162 | 0.7704 | | 0.5772 | 24.0 | 9000 | 0.6067 | 0.7737 | | 0.5613 | 25.0 | 9375 | 0.5979 | 0.7754 | | 0.5696 | 26.0 | 9750 | 0.5898 | 0.7787 | | 0.5932 | 27.0 | 10125 | 0.5824 | 0.7804 | | 0.5407 | 28.0 | 10500 | 0.5756 | 0.7837 | | 0.561 | 29.0 | 10875 | 0.5693 | 0.7837 | | 0.5293 | 30.0 | 11250 | 0.5636 | 0.7854 | | 0.5123 | 31.0 | 11625 | 0.5583 | 0.7870 | | 0.5488 | 32.0 | 12000 | 0.5534 | 0.7870 | | 0.4911 | 33.0 | 12375 | 0.5488 | 0.7870 | | 0.5069 | 34.0 | 12750 | 0.5447 | 0.7870 | | 0.5187 | 35.0 | 13125 | 0.5409 | 0.7887 | | 0.5044 | 36.0 | 13500 | 0.5375 | 0.7903 | | 0.5147 | 37.0 | 13875 | 0.5344 | 0.7903 | | 0.4787 | 38.0 | 14250 | 0.5316 | 0.7920 | | 0.5048 | 39.0 | 14625 | 0.5290 | 0.7920 | | 0.5066 | 40.0 | 15000 | 0.5268 | 0.7920 | | 0.5145 | 41.0 | 15375 | 0.5248 | 0.7937 | | 0.4726 | 42.0 | 15750 | 0.5230 | 0.7937 | | 0.4727 | 43.0 | 16125 | 0.5215 | 0.7937 | | 0.5222 | 44.0 | 16500 | 0.5202 | 0.7937 | | 0.4881 | 45.0 | 16875 | 0.5192 | 0.7937 | | 0.5004 | 46.0 | 17250 | 0.5184 | 0.7937 | | 0.4865 | 47.0 | 17625 | 0.5178 | 0.7937 | | 0.4651 | 48.0 | 18000 | 0.5174 | 0.7937 | | 0.4822 | 49.0 | 18375 | 0.5172 | 0.7937 | | 0.4937 | 50.0 | 18750 | 0.5171 | 0.7937 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.0+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2
[ "abnormal_sperm", "non-sperm", "normal_sperm" ]
hkivancoral/smids_5x_deit_base_sgd_00001_fold2
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # smids_5x_deit_base_sgd_00001_fold2 This model is a fine-tuned version of [facebook/deit-base-patch16-224](https://huggingface.co/facebook/deit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.0641 - Accuracy: 0.4459 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 1.1035 | 1.0 | 375 | 1.1062 | 0.3344 | | 1.1126 | 2.0 | 750 | 1.1043 | 0.3344 | | 1.104 | 3.0 | 1125 | 1.1024 | 0.3344 | | 1.1172 | 4.0 | 1500 | 1.1007 | 0.3428 | | 1.1218 | 5.0 | 1875 | 1.0990 | 0.3494 | | 1.103 | 6.0 | 2250 | 1.0973 | 0.3544 | | 1.0899 | 7.0 | 2625 | 1.0957 | 0.3594 | | 1.1072 | 8.0 | 3000 | 1.0942 | 0.3661 | | 1.0922 | 9.0 | 3375 | 1.0926 | 0.3744 | | 1.0843 | 10.0 | 3750 | 1.0912 | 0.3727 | | 1.081 | 11.0 | 4125 | 1.0898 | 0.3710 | | 1.0891 | 12.0 | 4500 | 1.0884 | 0.3760 | | 1.0709 | 13.0 | 4875 | 1.0871 | 0.3777 | | 1.0708 | 14.0 | 5250 | 1.0858 | 0.3827 | | 1.0647 | 15.0 | 5625 | 1.0846 | 0.3827 | | 1.0675 | 16.0 | 6000 | 1.0834 | 0.3877 | | 1.0777 | 17.0 | 6375 | 1.0822 | 0.3927 | | 1.1021 | 18.0 | 6750 | 1.0811 | 0.3943 | | 1.075 | 19.0 | 7125 | 1.0800 | 0.3993 | | 1.08 | 20.0 | 7500 | 1.0789 | 0.3977 | | 1.0665 | 21.0 | 7875 | 1.0779 | 0.4010 | | 1.0636 | 22.0 | 8250 | 1.0769 | 0.4010 | | 1.0724 | 23.0 | 8625 | 1.0760 | 0.4043 | | 1.075 | 24.0 | 9000 | 1.0751 | 0.4093 | | 1.0668 | 25.0 | 9375 | 1.0742 | 0.4077 | | 1.0648 | 26.0 | 9750 | 1.0734 | 0.4160 | | 1.0792 | 27.0 | 10125 | 1.0726 | 0.4176 | | 1.068 | 28.0 | 10500 | 1.0718 | 0.4160 | | 1.0536 | 29.0 | 10875 | 1.0711 | 0.4160 | | 1.0571 | 30.0 | 11250 | 1.0704 | 0.4193 | | 1.055 | 31.0 | 11625 | 1.0698 | 0.4226 | | 1.0604 | 32.0 | 12000 | 1.0691 | 0.4226 | | 1.0502 | 33.0 | 12375 | 1.0686 | 0.4260 | | 1.0518 | 34.0 | 12750 | 1.0680 | 0.4243 | | 1.0472 | 35.0 | 13125 | 1.0675 | 0.4276 | | 1.0642 | 36.0 | 13500 | 1.0670 | 0.4309 | | 1.052 | 37.0 | 13875 | 1.0666 | 0.4309 | | 1.0617 | 38.0 | 14250 | 1.0662 | 0.4309 | | 1.0473 | 39.0 | 14625 | 1.0658 | 0.4359 | | 1.0678 | 40.0 | 15000 | 1.0655 | 0.4393 | | 1.0397 | 41.0 | 15375 | 1.0652 | 0.4393 | | 1.0482 | 42.0 | 15750 | 1.0650 | 0.4393 | | 1.0333 | 43.0 | 16125 | 1.0647 | 0.4393 | | 1.0512 | 44.0 | 16500 | 1.0645 | 0.4409 | | 1.0593 | 45.0 | 16875 | 1.0644 | 0.4409 | | 1.0581 | 46.0 | 17250 | 1.0643 | 0.4409 | | 1.043 | 47.0 | 17625 | 1.0642 | 0.4426 | | 1.0454 | 48.0 | 18000 | 1.0641 | 0.4443 | | 1.0474 | 49.0 | 18375 | 1.0641 | 0.4459 | | 1.0427 | 50.0 | 18750 | 1.0641 | 0.4459 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.0+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2
[ "abnormal_sperm", "non-sperm", "normal_sperm" ]
hkivancoral/smids_5x_deit_base_sgd_0001_fold3
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # smids_5x_deit_base_sgd_0001_fold3 This model is a fine-tuned version of [facebook/deit-base-patch16-224](https://huggingface.co/facebook/deit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.5127 - Accuracy: 0.8183 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 1.086 | 1.0 | 375 | 1.0870 | 0.4083 | | 1.0544 | 2.0 | 750 | 1.0666 | 0.4433 | | 1.0309 | 3.0 | 1125 | 1.0448 | 0.48 | | 0.9851 | 4.0 | 1500 | 1.0206 | 0.5333 | | 0.9784 | 5.0 | 1875 | 0.9932 | 0.575 | | 0.9454 | 6.0 | 2250 | 0.9632 | 0.6017 | | 0.9054 | 7.0 | 2625 | 0.9323 | 0.6317 | | 0.8859 | 8.0 | 3000 | 0.9017 | 0.6617 | | 0.8212 | 9.0 | 3375 | 0.8722 | 0.675 | | 0.846 | 10.0 | 3750 | 0.8441 | 0.69 | | 0.7793 | 11.0 | 4125 | 0.8178 | 0.6967 | | 0.7556 | 12.0 | 4500 | 0.7933 | 0.72 | | 0.753 | 13.0 | 4875 | 0.7705 | 0.7333 | | 0.7537 | 14.0 | 5250 | 0.7493 | 0.7433 | | 0.7009 | 15.0 | 5625 | 0.7292 | 0.7517 | | 0.6573 | 16.0 | 6000 | 0.7106 | 0.7517 | | 0.6888 | 17.0 | 6375 | 0.6931 | 0.7583 | | 0.6952 | 18.0 | 6750 | 0.6769 | 0.765 | | 0.6154 | 19.0 | 7125 | 0.6622 | 0.7733 | | 0.6418 | 20.0 | 7500 | 0.6487 | 0.7833 | | 0.5745 | 21.0 | 7875 | 0.6362 | 0.7883 | | 0.5966 | 22.0 | 8250 | 0.6248 | 0.7933 | | 0.6053 | 23.0 | 8625 | 0.6144 | 0.7983 | | 0.6111 | 24.0 | 9000 | 0.6047 | 0.8 | | 0.5758 | 25.0 | 9375 | 0.5959 | 0.805 | | 0.5916 | 26.0 | 9750 | 0.5876 | 0.8067 | | 0.5804 | 27.0 | 10125 | 0.5800 | 0.81 | | 0.5956 | 28.0 | 10500 | 0.5730 | 0.81 | | 0.5266 | 29.0 | 10875 | 0.5666 | 0.81 | | 0.5435 | 30.0 | 11250 | 0.5607 | 0.8117 | | 0.566 | 31.0 | 11625 | 0.5553 | 0.8133 | | 0.5691 | 32.0 | 12000 | 0.5503 | 0.8133 | | 0.6036 | 33.0 | 12375 | 0.5456 | 0.815 | | 0.5178 | 34.0 | 12750 | 0.5415 | 0.8133 | | 0.4823 | 35.0 | 13125 | 0.5375 | 0.8167 | | 0.4738 | 36.0 | 13500 | 0.5340 | 0.8183 | | 0.5126 | 37.0 | 13875 | 0.5307 | 0.8183 | | 0.4971 | 38.0 | 14250 | 0.5278 | 0.8183 | | 0.5124 | 39.0 | 14625 | 0.5252 | 0.82 | | 0.4766 | 40.0 | 15000 | 0.5229 | 0.82 | | 0.4547 | 41.0 | 15375 | 0.5208 | 0.82 | | 0.5009 | 42.0 | 15750 | 0.5190 | 0.82 | | 0.5345 | 43.0 | 16125 | 0.5174 | 0.82 | | 0.5032 | 44.0 | 16500 | 0.5161 | 0.8183 | | 0.4932 | 45.0 | 16875 | 0.5150 | 0.8183 | | 0.5003 | 46.0 | 17250 | 0.5141 | 0.8183 | | 0.5538 | 47.0 | 17625 | 0.5134 | 0.8183 | | 0.5053 | 48.0 | 18000 | 0.5130 | 0.8183 | | 0.5053 | 49.0 | 18375 | 0.5128 | 0.8183 | | 0.4871 | 50.0 | 18750 | 0.5127 | 0.8183 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.0+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2
[ "abnormal_sperm", "non-sperm", "normal_sperm" ]
hkivancoral/smids_5x_deit_base_sgd_00001_fold3
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # smids_5x_deit_base_sgd_00001_fold3 This model is a fine-tuned version of [facebook/deit-base-patch16-224](https://huggingface.co/facebook/deit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.0622 - Accuracy: 0.4483 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 1.1145 | 1.0 | 375 | 1.1057 | 0.3517 | | 1.1046 | 2.0 | 750 | 1.1036 | 0.365 | | 1.1155 | 3.0 | 1125 | 1.1017 | 0.3617 | | 1.0962 | 4.0 | 1500 | 1.0998 | 0.3733 | | 1.1039 | 5.0 | 1875 | 1.0980 | 0.375 | | 1.1203 | 6.0 | 2250 | 1.0963 | 0.3833 | | 1.072 | 7.0 | 2625 | 1.0946 | 0.3833 | | 1.0855 | 8.0 | 3000 | 1.0930 | 0.3883 | | 1.0787 | 9.0 | 3375 | 1.0914 | 0.395 | | 1.1082 | 10.0 | 3750 | 1.0899 | 0.3933 | | 1.0738 | 11.0 | 4125 | 1.0885 | 0.4033 | | 1.0788 | 12.0 | 4500 | 1.0870 | 0.4067 | | 1.0872 | 13.0 | 4875 | 1.0857 | 0.415 | | 1.0927 | 14.0 | 5250 | 1.0844 | 0.4133 | | 1.0769 | 15.0 | 5625 | 1.0831 | 0.4167 | | 1.085 | 16.0 | 6000 | 1.0819 | 0.4217 | | 1.0634 | 17.0 | 6375 | 1.0806 | 0.42 | | 1.0703 | 18.0 | 6750 | 1.0795 | 0.42 | | 1.0536 | 19.0 | 7125 | 1.0783 | 0.4233 | | 1.0852 | 20.0 | 7500 | 1.0773 | 0.4267 | | 1.076 | 21.0 | 7875 | 1.0762 | 0.43 | | 1.0765 | 22.0 | 8250 | 1.0752 | 0.4333 | | 1.0647 | 23.0 | 8625 | 1.0743 | 0.435 | | 1.061 | 24.0 | 9000 | 1.0734 | 0.4367 | | 1.0648 | 25.0 | 9375 | 1.0725 | 0.445 | | 1.0459 | 26.0 | 9750 | 1.0716 | 0.4417 | | 1.0405 | 27.0 | 10125 | 1.0708 | 0.4417 | | 1.062 | 28.0 | 10500 | 1.0700 | 0.4433 | | 1.0508 | 29.0 | 10875 | 1.0693 | 0.445 | | 1.06 | 30.0 | 11250 | 1.0686 | 0.445 | | 1.062 | 31.0 | 11625 | 1.0679 | 0.4433 | | 1.0622 | 32.0 | 12000 | 1.0673 | 0.4417 | | 1.056 | 33.0 | 12375 | 1.0667 | 0.44 | | 1.0406 | 34.0 | 12750 | 1.0662 | 0.4417 | | 1.0456 | 35.0 | 13125 | 1.0657 | 0.4433 | | 1.0409 | 36.0 | 13500 | 1.0652 | 0.4483 | | 1.0536 | 37.0 | 13875 | 1.0648 | 0.4483 | | 1.0481 | 38.0 | 14250 | 1.0643 | 0.445 | | 1.0612 | 39.0 | 14625 | 1.0640 | 0.445 | | 1.0364 | 40.0 | 15000 | 1.0637 | 0.45 | | 1.0455 | 41.0 | 15375 | 1.0634 | 0.45 | | 1.0602 | 42.0 | 15750 | 1.0631 | 0.45 | | 1.0611 | 43.0 | 16125 | 1.0629 | 0.45 | | 1.0352 | 44.0 | 16500 | 1.0627 | 0.45 | | 1.0491 | 45.0 | 16875 | 1.0625 | 0.45 | | 1.0436 | 46.0 | 17250 | 1.0624 | 0.45 | | 1.0657 | 47.0 | 17625 | 1.0623 | 0.45 | | 1.0594 | 48.0 | 18000 | 1.0622 | 0.4483 | | 1.0541 | 49.0 | 18375 | 1.0622 | 0.4483 | | 1.0444 | 50.0 | 18750 | 1.0622 | 0.4483 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.0+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2
[ "abnormal_sperm", "non-sperm", "normal_sperm" ]
hkivancoral/smids_5x_deit_base_sgd_00001_fold4
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # smids_5x_deit_base_sgd_00001_fold4 This model is a fine-tuned version of [facebook/deit-base-patch16-224](https://huggingface.co/facebook/deit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.0653 - Accuracy: 0.475 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 1.1101 | 1.0 | 375 | 1.1105 | 0.3333 | | 1.1112 | 2.0 | 750 | 1.1084 | 0.3483 | | 1.1096 | 3.0 | 1125 | 1.1064 | 0.3533 | | 1.1002 | 4.0 | 1500 | 1.1045 | 0.3633 | | 1.1197 | 5.0 | 1875 | 1.1027 | 0.3667 | | 1.0859 | 6.0 | 2250 | 1.1009 | 0.3733 | | 1.0856 | 7.0 | 2625 | 1.0992 | 0.3833 | | 1.0857 | 8.0 | 3000 | 1.0975 | 0.3883 | | 1.0995 | 9.0 | 3375 | 1.0959 | 0.3933 | | 1.1123 | 10.0 | 3750 | 1.0943 | 0.4 | | 1.0849 | 11.0 | 4125 | 1.0928 | 0.405 | | 1.0866 | 12.0 | 4500 | 1.0914 | 0.4067 | | 1.08 | 13.0 | 4875 | 1.0899 | 0.42 | | 1.0796 | 14.0 | 5250 | 1.0886 | 0.4217 | | 1.082 | 15.0 | 5625 | 1.0872 | 0.425 | | 1.0851 | 16.0 | 6000 | 1.0859 | 0.4283 | | 1.0643 | 17.0 | 6375 | 1.0847 | 0.4283 | | 1.0676 | 18.0 | 6750 | 1.0834 | 0.4283 | | 1.0655 | 19.0 | 7125 | 1.0823 | 0.43 | | 1.0761 | 20.0 | 7500 | 1.0811 | 0.4283 | | 1.069 | 21.0 | 7875 | 1.0800 | 0.4333 | | 1.0634 | 22.0 | 8250 | 1.0790 | 0.435 | | 1.0576 | 23.0 | 8625 | 1.0780 | 0.4383 | | 1.0581 | 24.0 | 9000 | 1.0770 | 0.4367 | | 1.0635 | 25.0 | 9375 | 1.0761 | 0.44 | | 1.0553 | 26.0 | 9750 | 1.0752 | 0.4417 | | 1.0268 | 27.0 | 10125 | 1.0743 | 0.4433 | | 1.0755 | 28.0 | 10500 | 1.0735 | 0.4483 | | 1.0483 | 29.0 | 10875 | 1.0727 | 0.455 | | 1.0533 | 30.0 | 11250 | 1.0720 | 0.455 | | 1.0638 | 31.0 | 11625 | 1.0713 | 0.455 | | 1.0617 | 32.0 | 12000 | 1.0707 | 0.4567 | | 1.0624 | 33.0 | 12375 | 1.0700 | 0.46 | | 1.052 | 34.0 | 12750 | 1.0695 | 0.4667 | | 1.0462 | 35.0 | 13125 | 1.0689 | 0.4683 | | 1.0582 | 36.0 | 13500 | 1.0684 | 0.4683 | | 1.0432 | 37.0 | 13875 | 1.0680 | 0.4683 | | 1.0468 | 38.0 | 14250 | 1.0675 | 0.47 | | 1.0664 | 39.0 | 14625 | 1.0671 | 0.4717 | | 1.0442 | 40.0 | 15000 | 1.0668 | 0.47 | | 1.0443 | 41.0 | 15375 | 1.0665 | 0.4717 | | 1.0372 | 42.0 | 15750 | 1.0662 | 0.4717 | | 1.0389 | 43.0 | 16125 | 1.0660 | 0.4717 | | 1.044 | 44.0 | 16500 | 1.0658 | 0.4717 | | 1.0519 | 45.0 | 16875 | 1.0656 | 0.4717 | | 1.0549 | 46.0 | 17250 | 1.0655 | 0.475 | | 1.0727 | 47.0 | 17625 | 1.0654 | 0.475 | | 1.0653 | 48.0 | 18000 | 1.0653 | 0.475 | | 1.0698 | 49.0 | 18375 | 1.0653 | 0.475 | | 1.0509 | 50.0 | 18750 | 1.0653 | 0.475 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.0+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2
[ "abnormal_sperm", "non-sperm", "normal_sperm" ]
hkivancoral/smids_5x_deit_base_sgd_0001_fold4
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # smids_5x_deit_base_sgd_0001_fold4 This model is a fine-tuned version of [facebook/deit-base-patch16-224](https://huggingface.co/facebook/deit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.4947 - Accuracy: 0.8217 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 1.0807 | 1.0 | 375 | 1.0913 | 0.4067 | | 1.0601 | 2.0 | 750 | 1.0697 | 0.46 | | 1.0228 | 3.0 | 1125 | 1.0461 | 0.515 | | 0.9878 | 4.0 | 1500 | 1.0193 | 0.5683 | | 1.0067 | 5.0 | 1875 | 0.9894 | 0.6 | | 0.9245 | 6.0 | 2250 | 0.9567 | 0.6167 | | 0.9152 | 7.0 | 2625 | 0.9222 | 0.6367 | | 0.8904 | 8.0 | 3000 | 0.8874 | 0.665 | | 0.8675 | 9.0 | 3375 | 0.8548 | 0.69 | | 0.8528 | 10.0 | 3750 | 0.8243 | 0.7217 | | 0.7884 | 11.0 | 4125 | 0.7961 | 0.7333 | | 0.7678 | 12.0 | 4500 | 0.7701 | 0.7483 | | 0.7258 | 13.0 | 4875 | 0.7462 | 0.75 | | 0.7401 | 14.0 | 5250 | 0.7242 | 0.7633 | | 0.7231 | 15.0 | 5625 | 0.7037 | 0.7683 | | 0.6595 | 16.0 | 6000 | 0.6848 | 0.7817 | | 0.6613 | 17.0 | 6375 | 0.6674 | 0.785 | | 0.6469 | 18.0 | 6750 | 0.6514 | 0.7867 | | 0.6638 | 19.0 | 7125 | 0.6367 | 0.79 | | 0.6264 | 20.0 | 7500 | 0.6233 | 0.7917 | | 0.615 | 21.0 | 7875 | 0.6112 | 0.795 | | 0.6208 | 22.0 | 8250 | 0.6000 | 0.795 | | 0.573 | 23.0 | 8625 | 0.5898 | 0.805 | | 0.5775 | 24.0 | 9000 | 0.5804 | 0.8033 | | 0.6018 | 25.0 | 9375 | 0.5718 | 0.8033 | | 0.5747 | 26.0 | 9750 | 0.5639 | 0.8033 | | 0.5711 | 27.0 | 10125 | 0.5567 | 0.805 | | 0.5703 | 28.0 | 10500 | 0.5501 | 0.81 | | 0.5047 | 29.0 | 10875 | 0.5441 | 0.81 | | 0.5419 | 30.0 | 11250 | 0.5386 | 0.81 | | 0.5562 | 31.0 | 11625 | 0.5335 | 0.8167 | | 0.4909 | 32.0 | 12000 | 0.5288 | 0.8183 | | 0.5437 | 33.0 | 12375 | 0.5245 | 0.82 | | 0.5223 | 34.0 | 12750 | 0.5206 | 0.8183 | | 0.4818 | 35.0 | 13125 | 0.5170 | 0.8183 | | 0.4831 | 36.0 | 13500 | 0.5138 | 0.8183 | | 0.5242 | 37.0 | 13875 | 0.5109 | 0.82 | | 0.4897 | 38.0 | 14250 | 0.5083 | 0.8217 | | 0.5618 | 39.0 | 14625 | 0.5059 | 0.8217 | | 0.5176 | 40.0 | 15000 | 0.5038 | 0.8217 | | 0.4753 | 41.0 | 15375 | 0.5019 | 0.8217 | | 0.464 | 42.0 | 15750 | 0.5003 | 0.8217 | | 0.5062 | 43.0 | 16125 | 0.4989 | 0.8217 | | 0.4853 | 44.0 | 16500 | 0.4977 | 0.8217 | | 0.5132 | 45.0 | 16875 | 0.4967 | 0.8217 | | 0.4927 | 46.0 | 17250 | 0.4960 | 0.8217 | | 0.5364 | 47.0 | 17625 | 0.4954 | 0.8217 | | 0.5219 | 48.0 | 18000 | 0.4950 | 0.8217 | | 0.4998 | 49.0 | 18375 | 0.4948 | 0.8217 | | 0.495 | 50.0 | 18750 | 0.4947 | 0.8217 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.0+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2
[ "abnormal_sperm", "non-sperm", "normal_sperm" ]
ndarocha/swin-tiny-patch4-window7-224-breastdensity
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224-breastdensity This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.0571 - Accuracy: 0.5236 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.1872 | 0.99 | 49 | 1.2194 | 0.4320 | | 1.0998 | 1.99 | 98 | 1.0917 | 0.4807 | | 1.0623 | 2.98 | 147 | 1.0571 | 0.5236 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0
[ "breastdensity1", "breastdensity2", "breastdensity3", "breastdensity4" ]
hkivancoral/smids_5x_deit_base_sgd_0001_fold5
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # smids_5x_deit_base_sgd_0001_fold5 This model is a fine-tuned version of [facebook/deit-base-patch16-224](https://huggingface.co/facebook/deit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.5006 - Accuracy: 0.8133 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 1.0891 | 1.0 | 375 | 1.0922 | 0.36 | | 1.0632 | 2.0 | 750 | 1.0728 | 0.4133 | | 1.0234 | 3.0 | 1125 | 1.0519 | 0.4667 | | 1.0095 | 4.0 | 1500 | 1.0279 | 0.505 | | 0.9691 | 5.0 | 1875 | 1.0014 | 0.54 | | 0.9521 | 6.0 | 2250 | 0.9722 | 0.5683 | | 0.9099 | 7.0 | 2625 | 0.9405 | 0.6033 | | 0.8832 | 8.0 | 3000 | 0.9085 | 0.6267 | | 0.8563 | 9.0 | 3375 | 0.8771 | 0.6533 | | 0.8097 | 10.0 | 3750 | 0.8470 | 0.685 | | 0.7629 | 11.0 | 4125 | 0.8186 | 0.705 | | 0.7531 | 12.0 | 4500 | 0.7923 | 0.715 | | 0.7082 | 13.0 | 4875 | 0.7677 | 0.7333 | | 0.7318 | 14.0 | 5250 | 0.7449 | 0.7433 | | 0.7243 | 15.0 | 5625 | 0.7237 | 0.7533 | | 0.6668 | 16.0 | 6000 | 0.7041 | 0.7567 | | 0.6939 | 17.0 | 6375 | 0.6860 | 0.76 | | 0.6736 | 18.0 | 6750 | 0.6692 | 0.77 | | 0.6795 | 19.0 | 7125 | 0.6538 | 0.78 | | 0.6094 | 20.0 | 7500 | 0.6398 | 0.7833 | | 0.5982 | 21.0 | 7875 | 0.6269 | 0.7817 | | 0.5784 | 22.0 | 8250 | 0.6150 | 0.7867 | | 0.6034 | 23.0 | 8625 | 0.6042 | 0.7933 | | 0.6235 | 24.0 | 9000 | 0.5942 | 0.7967 | | 0.5888 | 25.0 | 9375 | 0.5851 | 0.7933 | | 0.5892 | 26.0 | 9750 | 0.5766 | 0.7933 | | 0.5908 | 27.0 | 10125 | 0.5688 | 0.7983 | | 0.5781 | 28.0 | 10500 | 0.5616 | 0.7983 | | 0.5631 | 29.0 | 10875 | 0.5551 | 0.8 | | 0.5055 | 30.0 | 11250 | 0.5492 | 0.8017 | | 0.5168 | 31.0 | 11625 | 0.5436 | 0.805 | | 0.5659 | 32.0 | 12000 | 0.5386 | 0.81 | | 0.568 | 33.0 | 12375 | 0.5339 | 0.8083 | | 0.5472 | 34.0 | 12750 | 0.5295 | 0.8117 | | 0.5227 | 35.0 | 13125 | 0.5256 | 0.81 | | 0.4679 | 36.0 | 13500 | 0.5220 | 0.81 | | 0.5236 | 37.0 | 13875 | 0.5188 | 0.8117 | | 0.5206 | 38.0 | 14250 | 0.5158 | 0.8117 | | 0.5047 | 39.0 | 14625 | 0.5132 | 0.8133 | | 0.5461 | 40.0 | 15000 | 0.5108 | 0.8133 | | 0.495 | 41.0 | 15375 | 0.5087 | 0.8133 | | 0.508 | 42.0 | 15750 | 0.5069 | 0.8133 | | 0.5153 | 43.0 | 16125 | 0.5053 | 0.8133 | | 0.4846 | 44.0 | 16500 | 0.5040 | 0.8133 | | 0.5055 | 45.0 | 16875 | 0.5029 | 0.8133 | | 0.5156 | 46.0 | 17250 | 0.5020 | 0.8133 | | 0.525 | 47.0 | 17625 | 0.5013 | 0.8133 | | 0.4795 | 48.0 | 18000 | 0.5009 | 0.8133 | | 0.4888 | 49.0 | 18375 | 0.5006 | 0.8133 | | 0.4989 | 50.0 | 18750 | 0.5006 | 0.8133 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.0+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2
[ "abnormal_sperm", "non-sperm", "normal_sperm" ]
hkivancoral/smids_5x_deit_base_sgd_00001_fold5
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # smids_5x_deit_base_sgd_00001_fold5 This model is a fine-tuned version of [facebook/deit-base-patch16-224](https://huggingface.co/facebook/deit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.0685 - Accuracy: 0.4283 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 1.1186 | 1.0 | 375 | 1.1098 | 0.3483 | | 1.1102 | 2.0 | 750 | 1.1079 | 0.3417 | | 1.1136 | 3.0 | 1125 | 1.1060 | 0.345 | | 1.1131 | 4.0 | 1500 | 1.1043 | 0.35 | | 1.0975 | 5.0 | 1875 | 1.1026 | 0.3433 | | 1.1051 | 6.0 | 2250 | 1.1010 | 0.345 | | 1.0892 | 7.0 | 2625 | 1.0994 | 0.3417 | | 1.0802 | 8.0 | 3000 | 1.0978 | 0.3533 | | 1.0951 | 9.0 | 3375 | 1.0964 | 0.3517 | | 1.0929 | 10.0 | 3750 | 1.0949 | 0.3517 | | 1.0628 | 11.0 | 4125 | 1.0935 | 0.3533 | | 1.0809 | 12.0 | 4500 | 1.0922 | 0.36 | | 1.0566 | 13.0 | 4875 | 1.0909 | 0.375 | | 1.0849 | 14.0 | 5250 | 1.0897 | 0.38 | | 1.0684 | 15.0 | 5625 | 1.0884 | 0.3817 | | 1.0868 | 16.0 | 6000 | 1.0873 | 0.3817 | | 1.0653 | 17.0 | 6375 | 1.0861 | 0.3817 | | 1.0768 | 18.0 | 6750 | 1.0850 | 0.385 | | 1.0758 | 19.0 | 7125 | 1.0839 | 0.385 | | 1.0932 | 20.0 | 7500 | 1.0829 | 0.3883 | | 1.072 | 21.0 | 7875 | 1.0819 | 0.39 | | 1.06 | 22.0 | 8250 | 1.0809 | 0.3917 | | 1.0521 | 23.0 | 8625 | 1.0800 | 0.3967 | | 1.0558 | 24.0 | 9000 | 1.0792 | 0.3983 | | 1.0773 | 25.0 | 9375 | 1.0783 | 0.4 | | 1.0609 | 26.0 | 9750 | 1.0775 | 0.4 | | 1.0495 | 27.0 | 10125 | 1.0767 | 0.4017 | | 1.0658 | 28.0 | 10500 | 1.0760 | 0.4 | | 1.0475 | 29.0 | 10875 | 1.0753 | 0.4083 | | 1.0538 | 30.0 | 11250 | 1.0746 | 0.415 | | 1.0455 | 31.0 | 11625 | 1.0740 | 0.4133 | | 1.0741 | 32.0 | 12000 | 1.0734 | 0.415 | | 1.0518 | 33.0 | 12375 | 1.0728 | 0.4167 | | 1.04 | 34.0 | 12750 | 1.0723 | 0.4183 | | 1.0566 | 35.0 | 13125 | 1.0718 | 0.4167 | | 1.0416 | 36.0 | 13500 | 1.0714 | 0.4167 | | 1.0546 | 37.0 | 13875 | 1.0709 | 0.4217 | | 1.0514 | 38.0 | 14250 | 1.0706 | 0.4233 | | 1.0481 | 39.0 | 14625 | 1.0702 | 0.425 | | 1.0581 | 40.0 | 15000 | 1.0699 | 0.4267 | | 1.0484 | 41.0 | 15375 | 1.0696 | 0.4267 | | 1.0544 | 42.0 | 15750 | 1.0694 | 0.4267 | | 1.0499 | 43.0 | 16125 | 1.0691 | 0.4267 | | 1.0424 | 44.0 | 16500 | 1.0690 | 0.4267 | | 1.0515 | 45.0 | 16875 | 1.0688 | 0.4283 | | 1.0389 | 46.0 | 17250 | 1.0687 | 0.4283 | | 1.0556 | 47.0 | 17625 | 1.0686 | 0.4283 | | 1.0595 | 48.0 | 18000 | 1.0685 | 0.4283 | | 1.0528 | 49.0 | 18375 | 1.0685 | 0.4283 | | 1.0533 | 50.0 | 18750 | 1.0685 | 0.4283 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.0+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2
[ "abnormal_sperm", "non-sperm", "normal_sperm" ]
MichalGas/swin-tiny-patch4-window7-224-finetuned-mgasior
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224-finetuned-mgasior This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 46788898816.0 - F1: 0.1890 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 9 | 46788898816.0 | 0.1890 | | 40845207142.4 | 2.0 | 18 | 46788898816.0 | 0.1732 | | 41037873152.0 | 3.0 | 27 | 46788898816.0 | 0.1732 | ### Framework versions - Transformers 4.36.1 - Pytorch 2.1.2+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0
[ "bipolars", "clippers", "graspers", "hooks", "irrigators", "scissorss" ]
andakm/bmw_classifier
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # andakm/bmw_classifier This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.1751 - Train Accuracy: 0.7941 - Epoch: 4 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 3e-05, 'decay_steps': 2040, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Epoch | |:----------:|:--------------:|:-----:| | 0.3531 | 0.7353 | 0 | | 0.3083 | 0.7941 | 1 | | 0.2895 | 0.6863 | 2 | | 0.2210 | 0.7843 | 3 | | 0.1751 | 0.7941 | 4 | ### Framework versions - Transformers 4.36.2 - TensorFlow 2.15.0 - Datasets 2.15.0 - Tokenizers 0.15.0
[ "1-series", "3-series", "4-series", "5-series", "6-series", "7-series", "8-series", "m3", "m4", "m5" ]
OkabeRintaro/vit-base-patch16-224-finetuned-imagegpt
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-patch16-224-finetuned-imagegpt This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the image_folder dataset. It achieves the following results on the evaluation set: - Loss: 1.2569 - Accuracy: 0.6296 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7934 | 0.99 | 58 | 1.2569 | 0.6296 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.0.0+cpu - Datasets 2.1.0 - Tokenizers 0.15.0
[ "adialer.c", "agent.fyi", "allaple.a", "allaple.l", "alueron.gen!j", "autorun.k", "c2lop.p", "c2lop.gen!g", "dialplatform.b", "dontovo.a", "fakerean", "instantaccess", "lolyda.aa1", "lolyda.aa2", "lolyda.aa3", "lolyda.at", "malex.gen!j", "obfuscator.ad", "rbot!gen", "skintrim.n", "swizzor.gen!e", "swizzor.gen!i", "vb.at", "wintrim.bx", "yuner.a" ]
hkivancoral/smids_5x_deit_base_rms_001_fold1
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # smids_5x_deit_base_rms_001_fold1 This model is a fine-tuned version of [facebook/deit-base-patch16-224](https://huggingface.co/facebook/deit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.6839 - Accuracy: 0.7863 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 1.1051 | 1.0 | 376 | 1.0840 | 0.3356 | | 0.8654 | 2.0 | 752 | 0.8754 | 0.4841 | | 0.7982 | 3.0 | 1128 | 0.7992 | 0.5843 | | 0.8215 | 4.0 | 1504 | 0.8640 | 0.5509 | | 0.8937 | 5.0 | 1880 | 0.7446 | 0.6678 | | 0.7292 | 6.0 | 2256 | 0.7760 | 0.6361 | | 0.6914 | 7.0 | 2632 | 0.7052 | 0.6694 | | 0.6499 | 8.0 | 3008 | 0.7542 | 0.6511 | | 0.6981 | 9.0 | 3384 | 0.6919 | 0.6912 | | 0.6852 | 10.0 | 3760 | 0.6488 | 0.6995 | | 0.5929 | 11.0 | 4136 | 0.6360 | 0.7162 | | 0.6018 | 12.0 | 4512 | 0.6410 | 0.7212 | | 0.578 | 13.0 | 4888 | 0.6824 | 0.7078 | | 0.5646 | 14.0 | 5264 | 0.6123 | 0.7546 | | 0.5813 | 15.0 | 5640 | 0.6611 | 0.7479 | | 0.5334 | 16.0 | 6016 | 0.6911 | 0.7012 | | 0.4401 | 17.0 | 6392 | 0.6234 | 0.7362 | | 0.5629 | 18.0 | 6768 | 0.5782 | 0.7412 | | 0.5062 | 19.0 | 7144 | 0.6504 | 0.7329 | | 0.444 | 20.0 | 7520 | 0.5828 | 0.7696 | | 0.4995 | 21.0 | 7896 | 0.5919 | 0.7446 | | 0.4251 | 22.0 | 8272 | 0.6276 | 0.7629 | | 0.4812 | 23.0 | 8648 | 0.6155 | 0.7462 | | 0.4775 | 24.0 | 9024 | 0.6984 | 0.7179 | | 0.4597 | 25.0 | 9400 | 0.6577 | 0.7295 | | 0.4394 | 26.0 | 9776 | 0.5934 | 0.7429 | | 0.4129 | 27.0 | 10152 | 0.6066 | 0.7563 | | 0.4098 | 28.0 | 10528 | 0.5792 | 0.7579 | | 0.4483 | 29.0 | 10904 | 0.5708 | 0.7613 | | 0.3862 | 30.0 | 11280 | 0.5970 | 0.7679 | | 0.4253 | 31.0 | 11656 | 0.6053 | 0.7546 | | 0.4815 | 32.0 | 12032 | 0.5808 | 0.7479 | | 0.3892 | 33.0 | 12408 | 0.5698 | 0.7613 | | 0.35 | 34.0 | 12784 | 0.5670 | 0.7563 | | 0.3952 | 35.0 | 13160 | 0.5921 | 0.7696 | | 0.4191 | 36.0 | 13536 | 0.5999 | 0.7863 | | 0.3174 | 37.0 | 13912 | 0.5845 | 0.7679 | | 0.3864 | 38.0 | 14288 | 0.6529 | 0.7496 | | 0.4036 | 39.0 | 14664 | 0.6327 | 0.7679 | | 0.4274 | 40.0 | 15040 | 0.5923 | 0.7646 | | 0.357 | 41.0 | 15416 | 0.6017 | 0.7863 | | 0.348 | 42.0 | 15792 | 0.6309 | 0.7763 | | 0.2967 | 43.0 | 16168 | 0.6418 | 0.7679 | | 0.3292 | 44.0 | 16544 | 0.6405 | 0.7780 | | 0.3428 | 45.0 | 16920 | 0.6600 | 0.7813 | | 0.3127 | 46.0 | 17296 | 0.6429 | 0.7780 | | 0.2979 | 47.0 | 17672 | 0.6618 | 0.7813 | | 0.3209 | 48.0 | 18048 | 0.6803 | 0.7796 | | 0.2866 | 49.0 | 18424 | 0.6856 | 0.7880 | | 0.2611 | 50.0 | 18800 | 0.6839 | 0.7863 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.0+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2
[ "abnormal_sperm", "non-sperm", "normal_sperm" ]
merve/pokemon-classifier
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pokemon-classifier This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the pokemon-classification dataset. It achieves the following results on the evaluation set: - Loss: 5.3367 - Accuracy: 0.0109 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 4.7242 | 1.0 | 76 | 5.2859 | 0.0068 | | 4.2781 | 1.99 | 152 | 5.3334 | 0.0109 | | 4.0798 | 2.99 | 228 | 5.3367 | 0.0109 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0
[ "golbat", "machoke", "raichu", "dragonite", "fearow", "slowpoke", "weezing", "beedrill", "weedle", "cloyster", "vaporeon", "gyarados", "golduck", "zapdos", "machamp", "hitmonlee", "primeape", "cubone", "sandslash", "scyther", "haunter", "metapod", "tentacruel", "aerodactyl", "raticate", "kabutops", "ninetales", "zubat", "rhydon", "mew", "pinsir", "ditto", "victreebel", "omanyte", "horsea", "magnemite", "pikachu", "blastoise", "venomoth", "charizard", "seadra", "muk", "spearow", "bulbasaur", "bellsprout", "electrode", "ivysaur", "gloom", "poliwhirl", "flareon", "seaking", "hypno", "wartortle", "mankey", "tentacool", "exeggcute", "meowth", "growlithe", "tangela", "drowzee", "rapidash", "venonat", "omastar", "pidgeot", "nidorino", "porygon", "lickitung", "rattata", "machop", "charmeleon", "slowbro", "parasect", "eevee", "diglett", "starmie", "staryu", "psyduck", "dragonair", "magikarp", "vileplume", "marowak", "pidgeotto", "shellder", "mewtwo", "lapras", "farfetchd", "kingler", "seel", "kakuna", "doduo", "electabuzz", "charmander", "rhyhorn", "tauros", "dugtrio", "kabuto", "poliwrath", "gengar", "exeggutor", "dewgong", "jigglypuff", "geodude", "kadabra", "nidorina", "sandshrew", "grimer", "persian", "mrmime", "pidgey", "koffing", "ekans", "alolan sandslash", "venusaur", "snorlax", "paras", "jynx", "chansey", "weepinbell", "hitmonchan", "gastly", "kangaskhan", "oddish", "wigglytuff", "graveler", "arcanine", "clefairy", "articuno", "poliwag", "golem", "abra", "squirtle", "voltorb", "ponyta", "moltres", "nidoqueen", "magmar", "onix", "vulpix", "butterfree", "dodrio", "krabby", "arbok", "clefable", "goldeen", "magneton", "dratini", "caterpie", "jolteon", "nidoking", "alakazam" ]
hkivancoral/smids_5x_deit_base_rms_001_fold2
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # smids_5x_deit_base_rms_001_fold2 This model is a fine-tuned version of [facebook/deit-base-patch16-224](https://huggingface.co/facebook/deit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.6861 - Accuracy: 0.7953 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.9457 | 1.0 | 375 | 0.8476 | 0.5324 | | 0.8382 | 2.0 | 750 | 0.8448 | 0.5391 | | 0.809 | 3.0 | 1125 | 0.7879 | 0.5424 | | 0.745 | 4.0 | 1500 | 0.7390 | 0.6323 | | 0.7171 | 5.0 | 1875 | 0.7030 | 0.6622 | | 0.6968 | 6.0 | 2250 | 0.7889 | 0.6456 | | 0.6875 | 7.0 | 2625 | 0.6388 | 0.7072 | | 0.6501 | 8.0 | 3000 | 0.6553 | 0.7038 | | 0.651 | 9.0 | 3375 | 0.5748 | 0.7354 | | 0.6283 | 10.0 | 3750 | 0.5788 | 0.7421 | | 0.6238 | 11.0 | 4125 | 0.5592 | 0.7621 | | 0.6557 | 12.0 | 4500 | 0.5567 | 0.7471 | | 0.5365 | 13.0 | 4875 | 0.5457 | 0.7704 | | 0.6238 | 14.0 | 5250 | 0.5542 | 0.7571 | | 0.5702 | 15.0 | 5625 | 0.5827 | 0.7321 | | 0.4879 | 16.0 | 6000 | 0.5598 | 0.7671 | | 0.5127 | 17.0 | 6375 | 0.5330 | 0.7687 | | 0.4935 | 18.0 | 6750 | 0.5680 | 0.7537 | | 0.5245 | 19.0 | 7125 | 0.5110 | 0.7837 | | 0.4876 | 20.0 | 7500 | 0.5252 | 0.7804 | | 0.4771 | 21.0 | 7875 | 0.5233 | 0.7770 | | 0.5009 | 22.0 | 8250 | 0.5096 | 0.8003 | | 0.4963 | 23.0 | 8625 | 0.5344 | 0.7870 | | 0.4814 | 24.0 | 9000 | 0.5289 | 0.8087 | | 0.4304 | 25.0 | 9375 | 0.5706 | 0.7854 | | 0.4721 | 26.0 | 9750 | 0.5627 | 0.7637 | | 0.4743 | 27.0 | 10125 | 0.5566 | 0.7770 | | 0.387 | 28.0 | 10500 | 0.5497 | 0.7953 | | 0.4853 | 29.0 | 10875 | 0.5210 | 0.7887 | | 0.347 | 30.0 | 11250 | 0.5276 | 0.8120 | | 0.4668 | 31.0 | 11625 | 0.5138 | 0.8136 | | 0.424 | 32.0 | 12000 | 0.5446 | 0.7787 | | 0.4005 | 33.0 | 12375 | 0.5357 | 0.8020 | | 0.4114 | 34.0 | 12750 | 0.5259 | 0.7903 | | 0.3661 | 35.0 | 13125 | 0.5604 | 0.7903 | | 0.3542 | 36.0 | 13500 | 0.5807 | 0.7987 | | 0.3711 | 37.0 | 13875 | 0.5589 | 0.8037 | | 0.3372 | 38.0 | 14250 | 0.5483 | 0.8003 | | 0.3656 | 39.0 | 14625 | 0.6008 | 0.7704 | | 0.3244 | 40.0 | 15000 | 0.5754 | 0.8120 | | 0.3484 | 41.0 | 15375 | 0.5934 | 0.7970 | | 0.3143 | 42.0 | 15750 | 0.6293 | 0.7937 | | 0.3053 | 43.0 | 16125 | 0.5834 | 0.7920 | | 0.3117 | 44.0 | 16500 | 0.5894 | 0.7970 | | 0.3041 | 45.0 | 16875 | 0.6216 | 0.7887 | | 0.284 | 46.0 | 17250 | 0.6533 | 0.7953 | | 0.36 | 47.0 | 17625 | 0.6167 | 0.7987 | | 0.2345 | 48.0 | 18000 | 0.6554 | 0.8003 | | 0.2899 | 49.0 | 18375 | 0.6795 | 0.7937 | | 0.264 | 50.0 | 18750 | 0.6861 | 0.7953 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.0+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2
[ "abnormal_sperm", "non-sperm", "normal_sperm" ]
hkivancoral/smids_5x_deit_base_rms_001_fold3
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # smids_5x_deit_base_rms_001_fold3 This model is a fine-tuned version of [facebook/deit-base-patch16-224](https://huggingface.co/facebook/deit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.7864 - Accuracy: 0.775 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.8829 | 1.0 | 375 | 0.8947 | 0.4967 | | 0.7778 | 2.0 | 750 | 0.8858 | 0.5283 | | 0.8311 | 3.0 | 1125 | 0.8355 | 0.55 | | 0.8294 | 4.0 | 1500 | 0.7887 | 0.6067 | | 0.8799 | 5.0 | 1875 | 0.8054 | 0.6217 | | 0.7828 | 6.0 | 2250 | 0.8032 | 0.5883 | | 0.7591 | 7.0 | 2625 | 0.7342 | 0.6533 | | 0.7195 | 8.0 | 3000 | 0.7320 | 0.6317 | | 0.6862 | 9.0 | 3375 | 0.8798 | 0.5583 | | 0.6609 | 10.0 | 3750 | 0.6983 | 0.6717 | | 0.6813 | 11.0 | 4125 | 0.7308 | 0.67 | | 0.7021 | 12.0 | 4500 | 0.7207 | 0.63 | | 0.6223 | 13.0 | 4875 | 0.6947 | 0.685 | | 0.5883 | 14.0 | 5250 | 0.6340 | 0.7217 | | 0.6307 | 15.0 | 5625 | 0.6616 | 0.7033 | | 0.6001 | 16.0 | 6000 | 0.6868 | 0.6983 | | 0.6448 | 17.0 | 6375 | 0.6323 | 0.7233 | | 0.6618 | 18.0 | 6750 | 0.6385 | 0.7233 | | 0.5927 | 19.0 | 7125 | 0.6305 | 0.71 | | 0.5637 | 20.0 | 7500 | 0.6279 | 0.7033 | | 0.5052 | 21.0 | 7875 | 0.6248 | 0.7217 | | 0.5232 | 22.0 | 8250 | 0.6213 | 0.7133 | | 0.586 | 23.0 | 8625 | 0.6387 | 0.7217 | | 0.6497 | 24.0 | 9000 | 0.5879 | 0.7367 | | 0.5103 | 25.0 | 9375 | 0.6071 | 0.7317 | | 0.5081 | 26.0 | 9750 | 0.6415 | 0.725 | | 0.5448 | 27.0 | 10125 | 0.5744 | 0.725 | | 0.5273 | 28.0 | 10500 | 0.6005 | 0.7333 | | 0.5173 | 29.0 | 10875 | 0.6315 | 0.725 | | 0.4436 | 30.0 | 11250 | 0.5604 | 0.7617 | | 0.5135 | 31.0 | 11625 | 0.5861 | 0.7633 | | 0.5481 | 32.0 | 12000 | 0.5892 | 0.7467 | | 0.5389 | 33.0 | 12375 | 0.5940 | 0.7533 | | 0.5388 | 34.0 | 12750 | 0.5721 | 0.74 | | 0.4177 | 35.0 | 13125 | 0.6397 | 0.7317 | | 0.4044 | 36.0 | 13500 | 0.6157 | 0.74 | | 0.4195 | 37.0 | 13875 | 0.6245 | 0.75 | | 0.4242 | 38.0 | 14250 | 0.5771 | 0.7567 | | 0.4027 | 39.0 | 14625 | 0.5507 | 0.7533 | | 0.3811 | 40.0 | 15000 | 0.6123 | 0.7483 | | 0.3735 | 41.0 | 15375 | 0.6056 | 0.7583 | | 0.3892 | 42.0 | 15750 | 0.6319 | 0.7633 | | 0.3928 | 43.0 | 16125 | 0.6475 | 0.7683 | | 0.3524 | 44.0 | 16500 | 0.6335 | 0.7783 | | 0.2896 | 45.0 | 16875 | 0.6766 | 0.7683 | | 0.3014 | 46.0 | 17250 | 0.7029 | 0.775 | | 0.2555 | 47.0 | 17625 | 0.6873 | 0.7967 | | 0.2601 | 48.0 | 18000 | 0.7571 | 0.78 | | 0.2142 | 49.0 | 18375 | 0.7689 | 0.7833 | | 0.2176 | 50.0 | 18750 | 0.7864 | 0.775 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.0+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2
[ "abnormal_sperm", "non-sperm", "normal_sperm" ]
nicolasdupuisroy/vit-letter-identification-v2
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-letter-identification-v2 This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.1135 - Accuracy: 0.8627 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 100 - eval_batch_size: 102 - seed: 1337 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 120.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 6 | 3.2331 | 0.0882 | | 3.2363 | 2.0 | 12 | 3.2025 | 0.1373 | | 3.2363 | 3.0 | 18 | 3.1761 | 0.1863 | | 3.1622 | 4.0 | 24 | 3.1238 | 0.2255 | | 3.0918 | 5.0 | 30 | 3.0789 | 0.3137 | | 3.0918 | 6.0 | 36 | 3.0280 | 0.3235 | | 3.0081 | 7.0 | 42 | 2.9878 | 0.3431 | | 3.0081 | 8.0 | 48 | 2.9316 | 0.3824 | | 2.9118 | 9.0 | 54 | 2.8864 | 0.4314 | | 2.8231 | 10.0 | 60 | 2.8314 | 0.4510 | | 2.8231 | 11.0 | 66 | 2.7817 | 0.5196 | | 2.7149 | 12.0 | 72 | 2.7278 | 0.5196 | | 2.7149 | 13.0 | 78 | 2.6796 | 0.5588 | | 2.6202 | 14.0 | 84 | 2.6203 | 0.5882 | | 2.5243 | 15.0 | 90 | 2.5674 | 0.5882 | | 2.5243 | 16.0 | 96 | 2.5170 | 0.6078 | | 2.4279 | 17.0 | 102 | 2.4672 | 0.6176 | | 2.4279 | 18.0 | 108 | 2.4285 | 0.5980 | | 2.3404 | 19.0 | 114 | 2.3784 | 0.6569 | | 2.2633 | 20.0 | 120 | 2.3348 | 0.6471 | | 2.2633 | 21.0 | 126 | 2.2872 | 0.6667 | | 2.1838 | 22.0 | 132 | 2.2539 | 0.6569 | | 2.1838 | 23.0 | 138 | 2.2232 | 0.6765 | | 2.1022 | 24.0 | 144 | 2.1867 | 0.6471 | | 2.0364 | 25.0 | 150 | 2.1489 | 0.6863 | | 2.0364 | 26.0 | 156 | 2.1099 | 0.7255 | | 1.96 | 27.0 | 162 | 2.0767 | 0.7157 | | 1.96 | 28.0 | 168 | 2.0417 | 0.7157 | | 1.9235 | 29.0 | 174 | 2.0162 | 0.7353 | | 1.8484 | 30.0 | 180 | 1.9787 | 0.7451 | | 1.8484 | 31.0 | 186 | 1.9548 | 0.7451 | | 1.7971 | 32.0 | 192 | 1.9329 | 0.7549 | | 1.7971 | 33.0 | 198 | 1.9052 | 0.7647 | | 1.7409 | 34.0 | 204 | 1.8827 | 0.7549 | | 1.7006 | 35.0 | 210 | 1.8589 | 0.7745 | | 1.7006 | 36.0 | 216 | 1.8294 | 0.7843 | | 1.6426 | 37.0 | 222 | 1.8098 | 0.7843 | | 1.6426 | 38.0 | 228 | 1.7809 | 0.7647 | | 1.6102 | 39.0 | 234 | 1.7643 | 0.7843 | | 1.5704 | 40.0 | 240 | 1.7399 | 0.8039 | | 1.5704 | 41.0 | 246 | 1.7193 | 0.8137 | | 1.5264 | 42.0 | 252 | 1.6980 | 0.8333 | | 1.5264 | 43.0 | 258 | 1.6840 | 0.8039 | | 1.4821 | 44.0 | 264 | 1.6644 | 0.8235 | | 1.4506 | 45.0 | 270 | 1.6467 | 0.8235 | | 1.4506 | 46.0 | 276 | 1.6333 | 0.8235 | | 1.4358 | 47.0 | 282 | 1.6095 | 0.8235 | | 1.4358 | 48.0 | 288 | 1.5906 | 0.8235 | | 1.3695 | 49.0 | 294 | 1.5720 | 0.8431 | | 1.367 | 50.0 | 300 | 1.5610 | 0.8333 | | 1.367 | 51.0 | 306 | 1.5440 | 0.8529 | | 1.3299 | 52.0 | 312 | 1.5359 | 0.8333 | | 1.3299 | 53.0 | 318 | 1.5129 | 0.8333 | | 1.2765 | 54.0 | 324 | 1.5057 | 0.8235 | | 1.2785 | 55.0 | 330 | 1.4867 | 0.8235 | | 1.2785 | 56.0 | 336 | 1.4751 | 0.8333 | | 1.2355 | 57.0 | 342 | 1.4553 | 0.8235 | | 1.2355 | 58.0 | 348 | 1.4491 | 0.8235 | | 1.2418 | 59.0 | 354 | 1.4289 | 0.8431 | | 1.2058 | 60.0 | 360 | 1.4185 | 0.8235 | | 1.2058 | 61.0 | 366 | 1.4104 | 0.8333 | | 1.164 | 62.0 | 372 | 1.3968 | 0.8333 | | 1.164 | 63.0 | 378 | 1.3846 | 0.8431 | | 1.1529 | 64.0 | 384 | 1.3697 | 0.8431 | | 1.1408 | 65.0 | 390 | 1.3633 | 0.8431 | | 1.1408 | 66.0 | 396 | 1.3505 | 0.8431 | | 1.1102 | 67.0 | 402 | 1.3371 | 0.8529 | | 1.1102 | 68.0 | 408 | 1.3282 | 0.8529 | | 1.0906 | 69.0 | 414 | 1.3240 | 0.8431 | | 1.0759 | 70.0 | 420 | 1.3163 | 0.8431 | | 1.0759 | 71.0 | 426 | 1.3044 | 0.8529 | | 1.0651 | 72.0 | 432 | 1.2924 | 0.8431 | | 1.0651 | 73.0 | 438 | 1.2867 | 0.8529 | | 1.0501 | 74.0 | 444 | 1.2749 | 0.8529 | | 1.0238 | 75.0 | 450 | 1.2688 | 0.8431 | | 1.0238 | 76.0 | 456 | 1.2568 | 0.8529 | | 1.0046 | 77.0 | 462 | 1.2502 | 0.8529 | | 1.0046 | 78.0 | 468 | 1.2460 | 0.8529 | | 0.9946 | 79.0 | 474 | 1.2455 | 0.8431 | | 0.9998 | 80.0 | 480 | 1.2343 | 0.8529 | | 0.9998 | 81.0 | 486 | 1.2286 | 0.8529 | | 0.9709 | 82.0 | 492 | 1.2195 | 0.8431 | | 0.9709 | 83.0 | 498 | 1.2126 | 0.8529 | | 0.963 | 84.0 | 504 | 1.2102 | 0.8431 | | 0.9499 | 85.0 | 510 | 1.2024 | 0.8431 | | 0.9499 | 86.0 | 516 | 1.1980 | 0.8529 | | 0.937 | 87.0 | 522 | 1.1912 | 0.8529 | | 0.937 | 88.0 | 528 | 1.1883 | 0.8431 | | 0.9389 | 89.0 | 534 | 1.1845 | 0.8529 | | 0.9181 | 90.0 | 540 | 1.1811 | 0.8529 | | 0.9181 | 91.0 | 546 | 1.1777 | 0.8431 | | 0.9219 | 92.0 | 552 | 1.1743 | 0.8627 | | 0.9219 | 93.0 | 558 | 1.1675 | 0.8627 | | 0.9067 | 94.0 | 564 | 1.1598 | 0.8627 | | 0.9009 | 95.0 | 570 | 1.1601 | 0.8627 | | 0.9009 | 96.0 | 576 | 1.1564 | 0.8529 | | 0.8914 | 97.0 | 582 | 1.1505 | 0.8529 | | 0.8914 | 98.0 | 588 | 1.1487 | 0.8529 | | 0.8739 | 99.0 | 594 | 1.1480 | 0.8627 | | 0.8742 | 100.0 | 600 | 1.1413 | 0.8529 | | 0.8742 | 101.0 | 606 | 1.1368 | 0.8627 | | 0.8679 | 102.0 | 612 | 1.1361 | 0.8627 | | 0.8679 | 103.0 | 618 | 1.1317 | 0.8627 | | 0.8516 | 104.0 | 624 | 1.1296 | 0.8529 | | 0.876 | 105.0 | 630 | 1.1288 | 0.8627 | | 0.876 | 106.0 | 636 | 1.1264 | 0.8627 | | 0.8591 | 107.0 | 642 | 1.1238 | 0.8627 | | 0.8591 | 108.0 | 648 | 1.1227 | 0.8627 | | 0.8586 | 109.0 | 654 | 1.1208 | 0.8627 | | 0.8415 | 110.0 | 660 | 1.1194 | 0.8627 | | 0.8415 | 111.0 | 666 | 1.1185 | 0.8627 | | 0.8465 | 112.0 | 672 | 1.1178 | 0.8529 | | 0.8465 | 113.0 | 678 | 1.1184 | 0.8529 | | 0.8503 | 114.0 | 684 | 1.1183 | 0.8431 | | 0.8332 | 115.0 | 690 | 1.1174 | 0.8431 | | 0.8332 | 116.0 | 696 | 1.1165 | 0.8431 | | 0.8476 | 117.0 | 702 | 1.1153 | 0.8529 | | 0.8476 | 118.0 | 708 | 1.1142 | 0.8529 | | 0.8382 | 119.0 | 714 | 1.1137 | 0.8627 | | 0.8527 | 120.0 | 720 | 1.1135 | 0.8627 | ### Framework versions - Transformers 4.37.0.dev0 - Pytorch 2.1.0+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0
[ "a", "b", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t", "c", "u", "v", "w", "x", "y", "z", "d", "e", "f", "g", "h", "i", "j" ]
hkivancoral/smids_5x_deit_base_rms_001_fold4
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # smids_5x_deit_base_rms_001_fold4 This model is a fine-tuned version of [facebook/deit-base-patch16-224](https://huggingface.co/facebook/deit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.7070 - Accuracy: 0.8 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 1.11 | 1.0 | 375 | 1.0993 | 0.325 | | 0.9143 | 2.0 | 750 | 0.8093 | 0.5633 | | 0.8119 | 3.0 | 1125 | 0.7905 | 0.58 | | 0.8256 | 4.0 | 1500 | 0.7664 | 0.5933 | | 0.7841 | 5.0 | 1875 | 0.7359 | 0.6383 | | 0.7919 | 6.0 | 2250 | 0.7445 | 0.6033 | | 0.7749 | 7.0 | 2625 | 0.6951 | 0.6567 | | 0.741 | 8.0 | 3000 | 0.7702 | 0.6017 | | 0.6745 | 9.0 | 3375 | 0.6771 | 0.6967 | | 0.6495 | 10.0 | 3750 | 0.6304 | 0.7267 | | 0.6291 | 11.0 | 4125 | 0.6937 | 0.665 | | 0.6399 | 12.0 | 4500 | 0.6515 | 0.7017 | | 0.559 | 13.0 | 4875 | 0.7230 | 0.6783 | | 0.6232 | 14.0 | 5250 | 0.5711 | 0.76 | | 0.6438 | 15.0 | 5625 | 0.5759 | 0.725 | | 0.5708 | 16.0 | 6000 | 0.5672 | 0.7433 | | 0.5817 | 17.0 | 6375 | 0.5983 | 0.7367 | | 0.5534 | 18.0 | 6750 | 0.5595 | 0.7633 | | 0.5539 | 19.0 | 7125 | 0.5109 | 0.7767 | | 0.5681 | 20.0 | 7500 | 0.5115 | 0.7667 | | 0.481 | 21.0 | 7875 | 0.5451 | 0.765 | | 0.5126 | 22.0 | 8250 | 0.5810 | 0.7383 | | 0.5213 | 23.0 | 8625 | 0.5434 | 0.7467 | | 0.4811 | 24.0 | 9000 | 0.5453 | 0.7833 | | 0.4831 | 25.0 | 9375 | 0.5703 | 0.7617 | | 0.4515 | 26.0 | 9750 | 0.5020 | 0.795 | | 0.4363 | 27.0 | 10125 | 0.5213 | 0.7733 | | 0.4104 | 28.0 | 10500 | 0.5450 | 0.76 | | 0.4526 | 29.0 | 10875 | 0.5543 | 0.76 | | 0.4959 | 30.0 | 11250 | 0.5151 | 0.7683 | | 0.5018 | 31.0 | 11625 | 0.5269 | 0.7933 | | 0.4267 | 32.0 | 12000 | 0.5138 | 0.7933 | | 0.464 | 33.0 | 12375 | 0.5486 | 0.7883 | | 0.4612 | 34.0 | 12750 | 0.5500 | 0.7867 | | 0.3667 | 35.0 | 13125 | 0.5319 | 0.7983 | | 0.3692 | 36.0 | 13500 | 0.6112 | 0.77 | | 0.443 | 37.0 | 13875 | 0.5427 | 0.8 | | 0.431 | 38.0 | 14250 | 0.5062 | 0.7967 | | 0.3837 | 39.0 | 14625 | 0.5492 | 0.7867 | | 0.421 | 40.0 | 15000 | 0.6140 | 0.7883 | | 0.3456 | 41.0 | 15375 | 0.6505 | 0.7817 | | 0.3528 | 42.0 | 15750 | 0.6246 | 0.7733 | | 0.383 | 43.0 | 16125 | 0.6178 | 0.7933 | | 0.3235 | 44.0 | 16500 | 0.6286 | 0.7933 | | 0.3165 | 45.0 | 16875 | 0.6316 | 0.7933 | | 0.3289 | 46.0 | 17250 | 0.6422 | 0.7933 | | 0.3499 | 47.0 | 17625 | 0.6701 | 0.8 | | 0.2803 | 48.0 | 18000 | 0.6802 | 0.7917 | | 0.279 | 49.0 | 18375 | 0.6961 | 0.8017 | | 0.2671 | 50.0 | 18750 | 0.7070 | 0.8 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.0+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2
[ "abnormal_sperm", "non-sperm", "normal_sperm" ]
hkivancoral/smids_5x_deit_base_rms_001_fold5
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # smids_5x_deit_base_rms_001_fold5 This model is a fine-tuned version of [facebook/deit-base-patch16-224](https://huggingface.co/facebook/deit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.5070 - Accuracy: 0.8067 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 1.0986 | 1.0 | 375 | 1.0985 | 0.3517 | | 0.9277 | 2.0 | 750 | 0.8963 | 0.5367 | | 0.8868 | 3.0 | 1125 | 0.8248 | 0.5567 | | 0.8432 | 4.0 | 1500 | 0.8168 | 0.5367 | | 0.7756 | 5.0 | 1875 | 0.8234 | 0.555 | | 0.7692 | 6.0 | 2250 | 0.7291 | 0.6617 | | 0.7096 | 7.0 | 2625 | 0.7367 | 0.6533 | | 0.8553 | 8.0 | 3000 | 0.7548 | 0.63 | | 0.7339 | 9.0 | 3375 | 0.7547 | 0.6233 | | 0.6755 | 10.0 | 3750 | 0.7150 | 0.665 | | 0.7434 | 11.0 | 4125 | 0.7034 | 0.685 | | 0.6966 | 12.0 | 4500 | 0.6998 | 0.6833 | | 0.6638 | 13.0 | 4875 | 0.8188 | 0.615 | | 0.7005 | 14.0 | 5250 | 0.6380 | 0.7233 | | 0.7307 | 15.0 | 5625 | 0.6467 | 0.7017 | | 0.6252 | 16.0 | 6000 | 0.6189 | 0.7317 | | 0.6235 | 17.0 | 6375 | 0.5966 | 0.7267 | | 0.6067 | 18.0 | 6750 | 0.5889 | 0.7367 | | 0.6586 | 19.0 | 7125 | 0.5888 | 0.745 | | 0.553 | 20.0 | 7500 | 0.5461 | 0.7583 | | 0.5457 | 21.0 | 7875 | 0.5458 | 0.7717 | | 0.535 | 22.0 | 8250 | 0.5661 | 0.745 | | 0.5802 | 23.0 | 8625 | 0.5673 | 0.7633 | | 0.585 | 24.0 | 9000 | 0.5456 | 0.7767 | | 0.5034 | 25.0 | 9375 | 0.5600 | 0.7517 | | 0.519 | 26.0 | 9750 | 0.5101 | 0.7767 | | 0.578 | 27.0 | 10125 | 0.5562 | 0.7517 | | 0.5681 | 28.0 | 10500 | 0.5592 | 0.7633 | | 0.5613 | 29.0 | 10875 | 0.5207 | 0.7733 | | 0.4923 | 30.0 | 11250 | 0.5540 | 0.7683 | | 0.4514 | 31.0 | 11625 | 0.5170 | 0.795 | | 0.4948 | 32.0 | 12000 | 0.5569 | 0.775 | | 0.4729 | 33.0 | 12375 | 0.5006 | 0.7967 | | 0.4583 | 34.0 | 12750 | 0.5008 | 0.7917 | | 0.4376 | 35.0 | 13125 | 0.4986 | 0.815 | | 0.3894 | 36.0 | 13500 | 0.5048 | 0.8033 | | 0.4227 | 37.0 | 13875 | 0.5449 | 0.7883 | | 0.4237 | 38.0 | 14250 | 0.4850 | 0.81 | | 0.3609 | 39.0 | 14625 | 0.4881 | 0.8017 | | 0.4451 | 40.0 | 15000 | 0.5131 | 0.8067 | | 0.411 | 41.0 | 15375 | 0.5305 | 0.7983 | | 0.4629 | 42.0 | 15750 | 0.4959 | 0.8 | | 0.4034 | 43.0 | 16125 | 0.5125 | 0.8083 | | 0.3681 | 44.0 | 16500 | 0.5034 | 0.8033 | | 0.4332 | 45.0 | 16875 | 0.4946 | 0.8017 | | 0.3808 | 46.0 | 17250 | 0.4987 | 0.8067 | | 0.3828 | 47.0 | 17625 | 0.5113 | 0.8183 | | 0.2902 | 48.0 | 18000 | 0.5081 | 0.8 | | 0.3255 | 49.0 | 18375 | 0.5035 | 0.8083 | | 0.3922 | 50.0 | 18750 | 0.5070 | 0.8067 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.0+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2
[ "abnormal_sperm", "non-sperm", "normal_sperm" ]
ongkn/attraction-classifier-swin
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # attraction-classifier-swin This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.5367 - Accuracy: 0.7390 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 69 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6207 | 0.49 | 100 | 0.5599 | 0.7115 | | 0.6256 | 0.98 | 200 | 0.5238 | 0.7225 | | 0.597 | 1.46 | 300 | 0.5003 | 0.7418 | | 0.6121 | 1.95 | 400 | 0.5409 | 0.7610 | | 0.5457 | 2.44 | 500 | 0.5123 | 0.7555 | | 0.5258 | 2.93 | 600 | 0.4792 | 0.7637 | | 0.504 | 3.41 | 700 | 0.5169 | 0.7390 | | 0.541 | 3.9 | 800 | 0.4858 | 0.7582 | | 0.5704 | 4.39 | 900 | 0.5367 | 0.7390 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.0.1+cu117 - Datasets 2.15.0 - Tokenizers 0.15.0
[ "neg", "pos" ]
suncy13/Foot
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Foot This model is a fine-tuned version of [facebook/dinov2-base-imagenet1k-1-layer](https://huggingface.co/facebook/dinov2-base-imagenet1k-1-layer) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.0747 - Accuracy: 0.4865 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 10 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 20 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 2 | 1.2201 | 0.3378 | | No log | 2.0 | 4 | 1.2243 | 0.2568 | | No log | 3.0 | 6 | 1.2672 | 0.2703 | | No log | 4.0 | 8 | 1.2501 | 0.2297 | | 1.2006 | 5.0 | 10 | 1.1975 | 0.2973 | | 1.2006 | 6.0 | 12 | 1.1270 | 0.3919 | | 1.2006 | 7.0 | 14 | 1.0999 | 0.3243 | | 1.2006 | 8.0 | 16 | 1.1497 | 0.3649 | | 1.2006 | 9.0 | 18 | 1.1006 | 0.3108 | | 1.1058 | 10.0 | 20 | 1.1271 | 0.3514 | | 1.1058 | 11.0 | 22 | 1.1273 | 0.3784 | | 1.1058 | 12.0 | 24 | 1.1639 | 0.2838 | | 1.1058 | 13.0 | 26 | 1.1421 | 0.4054 | | 1.1058 | 14.0 | 28 | 1.1190 | 0.3514 | | 1.0489 | 15.0 | 30 | 1.1735 | 0.3243 | | 1.0489 | 16.0 | 32 | 1.1422 | 0.3378 | | 1.0489 | 17.0 | 34 | 1.1414 | 0.3649 | | 1.0489 | 18.0 | 36 | 1.1033 | 0.4189 | | 1.0489 | 19.0 | 38 | 1.0747 | 0.3919 | | 0.9717 | 20.0 | 40 | 1.0952 | 0.3919 | | 0.9717 | 21.0 | 42 | 1.1063 | 0.3784 | | 0.9717 | 22.0 | 44 | 1.0822 | 0.3649 | | 0.9717 | 23.0 | 46 | 1.0768 | 0.3784 | | 0.9717 | 24.0 | 48 | 1.0753 | 0.4595 | | 0.9816 | 25.0 | 50 | 1.0531 | 0.4054 | | 0.9816 | 26.0 | 52 | 1.0624 | 0.4189 | | 0.9816 | 27.0 | 54 | 1.0690 | 0.4459 | | 0.9816 | 28.0 | 56 | 1.1392 | 0.3514 | | 0.9816 | 29.0 | 58 | 1.0696 | 0.4054 | | 0.9576 | 30.0 | 60 | 1.0747 | 0.4865 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0
[ "flat arch", "high arch", "normal arch" ]
aaa12963337/msi-vit-pretrain_1218
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # msi-vit-pretrain_1218 This model is a fine-tuned version of [WinKawaks/vit-small-patch16-224](https://huggingface.co/WinKawaks/vit-small-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 2.7293 - Accuracy: 0.5866 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.1183 | 1.0 | 781 | 1.3771 | 0.6737 | | 0.0548 | 2.0 | 1562 | 2.6272 | 0.5738 | | 0.014 | 3.0 | 2343 | 2.7293 | 0.5866 | ### Framework versions - Transformers 4.36.0 - Pytorch 2.0.1+cu117 - Datasets 2.15.0 - Tokenizers 0.15.0
[ "adi", "back", "deb", "lym", "muc", "mus", "norm", "str", "tum" ]