model_id
stringlengths
7
105
model_card
stringlengths
1
130k
model_labels
listlengths
2
80k
rajistics/finetuned-indian-food
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned-indian-food This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the indian_food_images dataset. It achieves the following results on the evaluation set: - Loss: 0.2632 - Accuracy: 0.9330 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.1794 | 0.3 | 100 | 0.9208 | 0.8565 | | 0.6513 | 0.6 | 200 | 0.5410 | 0.8842 | | 0.5904 | 0.9 | 300 | 0.4978 | 0.8799 | | 0.4461 | 1.2 | 400 | 0.3669 | 0.9192 | | 0.5633 | 1.5 | 500 | 0.4340 | 0.8842 | | 0.2489 | 1.8 | 600 | 0.3355 | 0.9171 | | 0.3171 | 2.1 | 700 | 0.3286 | 0.9192 | | 0.3785 | 2.4 | 800 | 0.3232 | 0.9171 | | 0.2278 | 2.7 | 900 | 0.3338 | 0.9192 | | 0.0894 | 3.0 | 1000 | 0.2870 | 0.9245 | | 0.2092 | 3.3 | 1100 | 0.2884 | 0.9288 | | 0.1466 | 3.6 | 1200 | 0.2673 | 0.9320 | | 0.1789 | 3.9 | 1300 | 0.2632 | 0.9330 | ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
[ "burger", "butter_naan", "kaathi_rolls", "kadai_paneer", "kulfi", "masala_dosa", "momos", "paani_puri", "pakode", "pav_bhaji", "pizza", "samosa", "chai", "chapati", "chole_bhature", "dal_makhani", "dhokla", "fried_rice", "idli", "jalebi" ]
himal/swin-tiny-patch4-window7-224-finetuned-eurosat
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224-finetuned-eurosat This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0738 - Accuracy: 0.9756 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2469 | 1.0 | 190 | 0.1173 | 0.9622 | | 0.1471 | 2.0 | 380 | 0.0806 | 0.9748 | | 0.1588 | 3.0 | 570 | 0.0738 | 0.9756 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
[ "annualcrop", "forest", "herbaceousvegetation", "highway", "industrial", "pasture", "permanentcrop", "residential", "river", "sealake" ]
Migga/ViT-chess-V4
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ViT-chess-V4 This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. It achieves the following results on the evaluation set: - Loss: 4.2867 - Accuracy: 0.1942 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 10 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:------:|:---------------:|:--------:| | 5.4877 | 1.0 | 45000 | 5.4554 | 0.1044 | | 4.9794 | 2.0 | 90000 | 5.0001 | 0.1371 | | 4.5956 | 3.0 | 135000 | 4.6720 | 0.1596 | | 4.3402 | 4.0 | 180000 | 4.4082 | 0.1834 | | 4.097 | 5.0 | 225000 | 4.2867 | 0.1942 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
[ "label_0", "label_1", "label_2", "label_3", "label_4", "label_5", "label_6", "label_7", "label_8", "label_9", "label_10", "label_11", "label_12", "label_13", "label_14", "label_15", "label_16", "label_17", "label_18", "label_19", "label_20", "label_21", "label_22", "label_23", "label_24", "label_25", "label_26", "label_27", "label_28", "label_29", "label_30", "label_31", "label_32", "label_33", "label_34", "label_35", "label_36", "label_37", "label_38", "label_39", "label_40", "label_41", "label_42", "label_43", "label_44", "label_45", "label_46", "label_47", "label_48", "label_49", "label_50", "label_51", "label_52", "label_53", "label_54", "label_55", "label_56", "label_57", "label_58", "label_59", "label_60", "label_61", "label_62", "label_63", "label_64", "label_65", "label_66", "label_67", "label_68", "label_69", "label_70", "label_71", "label_72", "label_73", "label_74", "label_75", "label_76", "label_77", "label_78", "label_79", "label_80", "label_81", "label_82", "label_83", "label_84", "label_85", "label_86", "label_87", "label_88", "label_89", "label_90", "label_91", "label_92", "label_93", "label_94", "label_95", "label_96", "label_97", "label_98", "label_99", "label_100", "label_101", "label_102", "label_103", "label_104", "label_105", "label_106", "label_107", "label_108", "label_109", "label_110", "label_111", "label_112", "label_113", "label_114", "label_115", "label_116", "label_117", "label_118", "label_119", "label_120", "label_121", "label_122", "label_123", "label_124", "label_125", "label_126", "label_127", "label_128", "label_129", "label_130", "label_131", "label_132", "label_133", "label_134", "label_135", "label_136", "label_137", "label_138", "label_139", "label_140", "label_141", "label_142", "label_143", "label_144", "label_145", "label_146", "label_147", "label_148", "label_149", "label_150", "label_151", "label_152", "label_153", "label_154", "label_155", "label_156", "label_157", "label_158", "label_159", "label_160", "label_161", "label_162", "label_163", "label_164", "label_165", "label_166", "label_167", "label_168", "label_169", "label_170", "label_171", "label_172", "label_173", "label_174", "label_175", "label_176", "label_177", "label_178", "label_179", "label_180", "label_181", "label_182", "label_183", "label_184", "label_185", "label_186", "label_187", "label_188", "label_189", "label_190", "label_191", "label_192", "label_193", "label_194", "label_195", "label_196", "label_197", "label_198", "label_199", "label_200", "label_201", "label_202", "label_203", "label_204", "label_205", "label_206", "label_207", "label_208", "label_209", "label_210", "label_211", "label_212", "label_213", "label_214", "label_215", "label_216", "label_217", "label_218", "label_219", "label_220", "label_221", "label_222", "label_223", "label_224", "label_225", "label_226", "label_227", "label_228", "label_229", "label_230", "label_231", "label_232", "label_233", "label_234", "label_235", "label_236", "label_237", "label_238", "label_239", "label_240", "label_241", "label_242", "label_243", "label_244", "label_245", "label_246", "label_247", "label_248", "label_249", "label_250", "label_251", "label_252", "label_253", "label_254", "label_255", "label_256", "label_257", "label_258", "label_259", "label_260", "label_261", "label_262", "label_263", "label_264", "label_265", "label_266", "label_267", "label_268", "label_269", "label_270", "label_271", "label_272", "label_273", "label_274", "label_275", "label_276", "label_277", "label_278", "label_279", "label_280", "label_281", "label_282", "label_283", "label_284", "label_285", "label_286", "label_287", "label_288", "label_289", "label_290", "label_291", "label_292", "label_293", "label_294", "label_295", "label_296", "label_297", "label_298", "label_299", "label_300", "label_301", "label_302", "label_303", "label_304", "label_305", "label_306", "label_307", "label_308", "label_309", "label_310", "label_311", "label_312", "label_313", "label_314", "label_315", "label_316", "label_317", "label_318", "label_319", "label_320", "label_321", "label_322", "label_323", "label_324", "label_325", "label_326", "label_327", "label_328", "label_329", "label_330", "label_331", "label_332", "label_333", "label_334", "label_335", "label_336", "label_337", "label_338", "label_339", "label_340", "label_341", "label_342", "label_343", "label_344", "label_345", "label_346", "label_347", "label_348", "label_349", "label_350", "label_351", "label_352", "label_353", "label_354", "label_355", "label_356", "label_357", "label_358", "label_359", "label_360", "label_361", "label_362", "label_363", "label_364", "label_365", "label_366", "label_367", "label_368", "label_369", "label_370", "label_371", "label_372", "label_373", "label_374", "label_375", "label_376", "label_377", "label_378", "label_379", "label_380", "label_381", "label_382", "label_383", "label_384", "label_385", "label_386", "label_387", "label_388", "label_389", "label_390", "label_391", "label_392", "label_393", "label_394", "label_395", "label_396", "label_397", "label_398", "label_399", "label_400", "label_401", "label_402", "label_403", "label_404", "label_405", "label_406", "label_407", "label_408", "label_409", "label_410", "label_411", "label_412", "label_413", "label_414", "label_415", "label_416", "label_417", "label_418", "label_419", "label_420", "label_421", "label_422", "label_423", "label_424", "label_425", "label_426", "label_427", "label_428", "label_429", "label_430", "label_431", "label_432", "label_433", "label_434", "label_435", "label_436", "label_437", "label_438", "label_439", "label_440", "label_441", "label_442", "label_443", "label_444", "label_445", "label_446", "label_447", "label_448", "label_449", "label_450", "label_451", "label_452", "label_453", "label_454", "label_455", "label_456", "label_457", "label_458", "label_459", "label_460", "label_461", "label_462", "label_463", "label_464", "label_465", "label_466", "label_467", "label_468", "label_469", "label_470", "label_471", "label_472", "label_473", "label_474", "label_475", "label_476", "label_477", "label_478", "label_479", "label_480", "label_481", "label_482", "label_483", "label_484", "label_485", "label_486", "label_487", "label_488", "label_489", "label_490", "label_491", "label_492", "label_493", "label_494", "label_495", "label_496", "label_497", "label_498", "label_499", "label_500", "label_501", "label_502", "label_503", "label_504", "label_505", "label_506", "label_507", "label_508", "label_509", "label_510", "label_511", "label_512", "label_513", "label_514", "label_515", "label_516", "label_517", "label_518", "label_519", "label_520", "label_521", "label_522", "label_523", "label_524", "label_525", "label_526", "label_527", "label_528", "label_529", "label_530", "label_531", "label_532", "label_533", "label_534", "label_535", "label_536", "label_537", "label_538", "label_539", "label_540", "label_541", "label_542", "label_543", "label_544", "label_545", "label_546", "label_547", "label_548", "label_549", "label_550", "label_551", "label_552", "label_553", "label_554", "label_555", "label_556", "label_557", "label_558", "label_559", "label_560", "label_561", "label_562", "label_563", "label_564", "label_565", "label_566", "label_567", "label_568", "label_569", "label_570", "label_571", "label_572", "label_573", "label_574", "label_575", "label_576", "label_577", "label_578", "label_579", "label_580", "label_581", "label_582", "label_583", "label_584", "label_585", "label_586", "label_587", "label_588", "label_589", "label_590", "label_591", "label_592", "label_593", "label_594", "label_595", "label_596", "label_597", "label_598", "label_599", "label_600", "label_601", "label_602", "label_603", "label_604", "label_605", "label_606", "label_607", "label_608", "label_609", "label_610", "label_611", "label_612", "label_613", "label_614", "label_615", "label_616", "label_617", "label_618", "label_619", "label_620", "label_621", "label_622", "label_623", "label_624", "label_625", "label_626", "label_627", "label_628", "label_629", "label_630", "label_631", "label_632", "label_633", "label_634", "label_635", "label_636", "label_637", "label_638", "label_639", "label_640", "label_641", "label_642", "label_643", "label_644", "label_645", "label_646", "label_647", "label_648", "label_649", "label_650", "label_651", "label_652", "label_653", "label_654", "label_655", "label_656", "label_657", "label_658", "label_659", "label_660", "label_661", "label_662", "label_663", "label_664", "label_665", "label_666", "label_667", "label_668", "label_669", "label_670", "label_671", "label_672", "label_673", "label_674", "label_675", "label_676", "label_677", "label_678", "label_679", "label_680", "label_681", "label_682", "label_683", "label_684", "label_685", "label_686", "label_687", "label_688", "label_689", "label_690", "label_691", "label_692", "label_693", "label_694", "label_695", "label_696", "label_697", "label_698", "label_699", "label_700", "label_701", "label_702", "label_703", "label_704", "label_705", "label_706", "label_707", "label_708", "label_709", "label_710", "label_711", "label_712", "label_713", "label_714", "label_715", "label_716", "label_717", "label_718", "label_719", "label_720", "label_721", "label_722", "label_723", "label_724", "label_725", "label_726", "label_727", "label_728", "label_729", "label_730", "label_731", "label_732", "label_733", "label_734", "label_735", "label_736", "label_737", "label_738", "label_739", "label_740", "label_741", "label_742", "label_743", "label_744", "label_745", "label_746", "label_747", "label_748", "label_749", "label_750", "label_751", "label_752", "label_753", "label_754", "label_755", "label_756", "label_757", "label_758", "label_759", "label_760", "label_761", "label_762", "label_763", "label_764", "label_765", "label_766", "label_767", "label_768", "label_769", "label_770", "label_771", "label_772", "label_773", "label_774", "label_775", "label_776", "label_777", "label_778", "label_779", "label_780", "label_781", "label_782", "label_783", "label_784", "label_785", "label_786", "label_787", "label_788", "label_789", "label_790", "label_791", "label_792", "label_793", "label_794", "label_795", "label_796", "label_797", "label_798", "label_799", "label_800", "label_801", "label_802", "label_803", "label_804", "label_805", "label_806", "label_807", "label_808", "label_809", "label_810", "label_811", "label_812", "label_813", "label_814", "label_815", "label_816", "label_817", "label_818", "label_819", "label_820", "label_821", "label_822", "label_823", "label_824", "label_825", "label_826", "label_827", "label_828", "label_829", "label_830", "label_831", "label_832", "label_833", "label_834", "label_835", "label_836", "label_837", "label_838", "label_839", "label_840", "label_841", "label_842", "label_843", "label_844", "label_845", "label_846", "label_847", "label_848", "label_849", "label_850", "label_851", "label_852", "label_853", "label_854", "label_855", "label_856", "label_857", "label_858", "label_859", "label_860", "label_861", "label_862", "label_863", "label_864", "label_865", "label_866", "label_867", "label_868", "label_869", "label_870", "label_871", "label_872", "label_873", "label_874", "label_875", "label_876", "label_877", "label_878", "label_879", "label_880", "label_881", "label_882", "label_883", "label_884", "label_885", "label_886", "label_887", "label_888", "label_889", "label_890", "label_891", "label_892", "label_893", "label_894", "label_895", "label_896", "label_897", "label_898", "label_899", "label_900", "label_901", "label_902", "label_903", "label_904", "label_905", "label_906", "label_907", "label_908", "label_909", "label_910", "label_911", "label_912", "label_913", "label_914", "label_915", "label_916", "label_917", "label_918", "label_919", "label_920", "label_921", "label_922", "label_923", "label_924", "label_925", "label_926", "label_927", "label_928", "label_929", "label_930", "label_931", "label_932", "label_933", "label_934", "label_935", "label_936", "label_937", "label_938", "label_939", "label_940", "label_941", "label_942", "label_943", "label_944", "label_945", "label_946", "label_947", "label_948", "label_949", "label_950", "label_951", "label_952", "label_953", "label_954", "label_955", "label_956", "label_957", "label_958", "label_959", "label_960", "label_961", "label_962", "label_963", "label_964", "label_965", "label_966", "label_967", "label_968", "label_969", "label_970", "label_971", "label_972", "label_973", "label_974", "label_975", "label_976", "label_977", "label_978", "label_979", "label_980", "label_981", "label_982", "label_983", "label_984", "label_985", "label_986", "label_987", "label_988", "label_989", "label_990", "label_991", "label_992", "label_993", "label_994", "label_995", "label_996", "label_997", "label_998", "label_999", "label_1000", "label_1001", "label_1002", "label_1003", "label_1004", "label_1005", "label_1006", "label_1007", "label_1008", "label_1009", "label_1010", "label_1011", "label_1012", "label_1013", "label_1014", "label_1015", "label_1016", "label_1017", "label_1018", "label_1019", "label_1020", "label_1021", "label_1022", "label_1023", "label_1024", "label_1025", "label_1026", "label_1027", "label_1028", "label_1029", "label_1030", "label_1031", "label_1032", "label_1033", "label_1034", "label_1035", "label_1036", "label_1037", "label_1038", "label_1039", "label_1040", "label_1041", "label_1042", "label_1043", "label_1044", "label_1045", "label_1046", "label_1047", "label_1048", "label_1049", "label_1050", "label_1051", "label_1052", "label_1053", "label_1054", "label_1055", "label_1056", "label_1057", "label_1058", "label_1059", "label_1060", "label_1061", "label_1062", "label_1063", "label_1064", "label_1065", "label_1066", "label_1067", "label_1068", "label_1069", "label_1070", "label_1071", "label_1072", "label_1073", "label_1074", "label_1075", "label_1076", "label_1077", "label_1078", "label_1079", "label_1080", "label_1081", "label_1082", "label_1083", "label_1084", "label_1085", "label_1086", "label_1087", "label_1088", "label_1089", "label_1090", "label_1091", "label_1092", "label_1093", "label_1094", "label_1095", "label_1096", "label_1097", "label_1098", "label_1099", "label_1100", "label_1101", "label_1102", "label_1103", "label_1104", "label_1105", "label_1106", "label_1107", "label_1108", "label_1109", "label_1110", "label_1111", "label_1112", "label_1113", "label_1114", "label_1115", "label_1116", "label_1117", "label_1118", "label_1119", "label_1120", "label_1121", "label_1122", "label_1123", "label_1124", "label_1125", "label_1126", "label_1127", "label_1128", "label_1129", "label_1130", "label_1131", "label_1132", "label_1133", "label_1134", "label_1135", "label_1136", "label_1137", "label_1138", "label_1139", "label_1140", "label_1141", "label_1142", "label_1143", "label_1144", "label_1145", "label_1146", "label_1147", "label_1148", "label_1149", "label_1150", "label_1151", "label_1152", "label_1153", "label_1154", "label_1155", "label_1156", "label_1157", "label_1158", "label_1159", "label_1160", "label_1161", "label_1162", "label_1163", "label_1164", "label_1165", "label_1166", "label_1167", "label_1168", "label_1169", "label_1170", "label_1171", "label_1172", "label_1173", "label_1174", "label_1175", "label_1176", "label_1177", "label_1178", "label_1179", "label_1180", "label_1181", "label_1182", "label_1183", "label_1184", "label_1185", "label_1186", "label_1187", "label_1188", "label_1189", "label_1190", "label_1191", "label_1192", "label_1193", "label_1194", "label_1195", "label_1196", "label_1197", "label_1198", "label_1199", "label_1200", "label_1201", "label_1202", "label_1203", "label_1204", "label_1205", "label_1206", "label_1207", "label_1208", "label_1209", "label_1210", "label_1211", "label_1212", "label_1213", "label_1214", "label_1215", "label_1216", "label_1217", "label_1218", "label_1219", "label_1220", "label_1221", "label_1222", "label_1223", "label_1224", "label_1225", "label_1226", "label_1227", "label_1228", "label_1229", "label_1230", "label_1231", "label_1232", "label_1233", "label_1234", "label_1235", "label_1236", "label_1237", "label_1238", "label_1239", "label_1240", "label_1241", "label_1242", "label_1243", "label_1244", "label_1245", "label_1246", "label_1247", "label_1248", "label_1249", "label_1250", "label_1251", "label_1252", "label_1253", "label_1254", "label_1255", "label_1256", "label_1257", "label_1258", "label_1259", "label_1260", "label_1261", "label_1262", "label_1263", "label_1264", "label_1265", "label_1266", "label_1267", "label_1268", "label_1269", "label_1270", "label_1271", "label_1272", "label_1273", "label_1274", "label_1275", "label_1276", "label_1277", "label_1278", "label_1279", "label_1280", "label_1281", "label_1282", "label_1283", "label_1284", "label_1285", "label_1286", "label_1287", "label_1288", "label_1289", "label_1290", "label_1291", "label_1292", "label_1293", "label_1294", "label_1295", "label_1296", "label_1297", "label_1298", "label_1299", "label_1300", "label_1301", "label_1302", "label_1303", "label_1304", "label_1305", "label_1306", "label_1307", "label_1308", "label_1309", "label_1310", "label_1311", "label_1312", "label_1313", "label_1314", "label_1315", "label_1316", "label_1317", "label_1318", "label_1319", "label_1320", "label_1321", "label_1322", "label_1323", "label_1324", "label_1325", "label_1326", "label_1327", "label_1328", "label_1329", "label_1330", "label_1331", "label_1332", "label_1333", "label_1334", "label_1335", "label_1336", "label_1337", "label_1338", "label_1339", "label_1340", "label_1341", "label_1342", "label_1343", "label_1344", "label_1345", "label_1346", "label_1347", "label_1348", "label_1349", "label_1350", "label_1351", "label_1352", "label_1353", "label_1354", "label_1355", "label_1356", "label_1357", "label_1358", "label_1359", "label_1360", "label_1361", "label_1362", "label_1363", "label_1364", "label_1365", "label_1366", "label_1367", "label_1368", "label_1369", "label_1370", "label_1371", "label_1372", "label_1373", "label_1374", "label_1375", "label_1376", "label_1377", "label_1378", "label_1379", "label_1380", "label_1381", "label_1382", "label_1383", "label_1384", "label_1385", "label_1386", "label_1387", "label_1388", "label_1389", "label_1390", "label_1391", "label_1392", "label_1393", "label_1394", "label_1395", "label_1396", "label_1397", "label_1398", "label_1399", "label_1400", "label_1401", "label_1402", "label_1403", "label_1404", "label_1405", "label_1406", "label_1407", "label_1408", "label_1409", "label_1410", "label_1411", "label_1412", "label_1413", "label_1414", "label_1415", "label_1416", "label_1417", "label_1418", "label_1419", "label_1420", "label_1421", "label_1422", "label_1423", "label_1424", "label_1425", "label_1426", "label_1427", "label_1428", "label_1429", "label_1430", "label_1431", "label_1432", "label_1433", "label_1434", "label_1435", "label_1436", "label_1437", "label_1438", "label_1439", "label_1440", "label_1441", "label_1442", "label_1443", "label_1444", "label_1445", "label_1446", "label_1447", "label_1448", "label_1449", "label_1450", "label_1451", "label_1452", "label_1453", "label_1454", "label_1455", "label_1456", "label_1457", "label_1458", "label_1459", "label_1460", "label_1461", "label_1462", "label_1463", "label_1464", "label_1465", "label_1466", "label_1467", "label_1468", "label_1469", "label_1470", "label_1471", "label_1472", "label_1473", "label_1474", "label_1475", "label_1476", "label_1477", "label_1478", "label_1479", "label_1480", "label_1481", "label_1482", "label_1483", "label_1484", "label_1485", "label_1486", "label_1487", "label_1488", "label_1489", "label_1490", "label_1491", "label_1492", "label_1493", "label_1494", "label_1495", "label_1496", "label_1497", "label_1498", "label_1499", "label_1500", "label_1501", "label_1502", "label_1503", "label_1504", "label_1505", "label_1506", "label_1507", "label_1508", "label_1509", "label_1510", "label_1511", "label_1512", "label_1513", "label_1514", "label_1515", "label_1516", "label_1517", "label_1518", "label_1519", "label_1520", "label_1521", "label_1522", "label_1523", "label_1524", "label_1525", "label_1526", "label_1527", "label_1528", "label_1529", "label_1530", "label_1531", "label_1532", "label_1533", "label_1534", "label_1535", "label_1536", "label_1537", "label_1538", "label_1539", "label_1540", "label_1541", "label_1542", "label_1543", "label_1544", "label_1545", "label_1546", "label_1547", "label_1548", "label_1549", "label_1550", "label_1551", "label_1552", "label_1553", "label_1554", "label_1555", "label_1556", "label_1557", "label_1558", "label_1559", "label_1560", "label_1561", "label_1562", "label_1563", "label_1564", "label_1565", "label_1566", "label_1567", "label_1568", "label_1569", "label_1570", "label_1571", "label_1572", "label_1573", "label_1574", "label_1575", "label_1576", "label_1577", "label_1578", "label_1579", "label_1580", "label_1581", "label_1582", "label_1583", "label_1584", "label_1585", "label_1586", "label_1587", "label_1588", "label_1589", "label_1590", "label_1591", "label_1592", "label_1593", "label_1594", "label_1595", "label_1596", "label_1597", "label_1598", "label_1599", "label_1600", "label_1601", "label_1602", "label_1603", "label_1604", "label_1605", "label_1606", "label_1607", "label_1608", "label_1609", "label_1610", "label_1611", "label_1612", "label_1613", "label_1614", "label_1615", "label_1616", "label_1617", "label_1618", "label_1619", "label_1620", "label_1621", "label_1622", "label_1623", "label_1624", "label_1625", "label_1626", "label_1627", "label_1628", "label_1629", "label_1630", "label_1631", "label_1632", "label_1633", "label_1634", "label_1635", "label_1636", "label_1637", "label_1638", "label_1639", "label_1640", "label_1641", "label_1642", "label_1643", "label_1644", "label_1645", "label_1646", "label_1647", "label_1648", "label_1649", "label_1650", "label_1651", "label_1652", "label_1653", "label_1654", "label_1655", "label_1656", "label_1657", "label_1658", "label_1659", "label_1660", "label_1661", "label_1662", "label_1663", "label_1664", "label_1665", "label_1666", "label_1667", "label_1668", "label_1669", "label_1670", "label_1671", "label_1672", "label_1673", "label_1674", "label_1675", "label_1676", "label_1677", "label_1678", "label_1679", "label_1680", "label_1681", "label_1682", "label_1683", "label_1684", "label_1685", "label_1686", "label_1687", "label_1688", "label_1689", "label_1690", "label_1691", "label_1692", "label_1693", "label_1694", "label_1695", "label_1696", "label_1697", "label_1698", "label_1699", "label_1700", "label_1701", "label_1702", "label_1703", "label_1704", "label_1705", "label_1706", "label_1707", "label_1708", "label_1709", "label_1710", "label_1711", "label_1712", "label_1713", "label_1714", "label_1715", "label_1716", "label_1717", "label_1718", "label_1719", "label_1720", "label_1721", "label_1722", "label_1723", "label_1724", "label_1725", "label_1726", "label_1727", "label_1728", "label_1729", "label_1730", "label_1731", "label_1732", "label_1733", "label_1734", "label_1735", "label_1736", "label_1737", "label_1738", "label_1739", "label_1740", "label_1741", "label_1742", "label_1743", "label_1744", "label_1745", "label_1746", "label_1747", "label_1748", "label_1749", "label_1750", "label_1751", "label_1752", "label_1753", "label_1754", "label_1755", "label_1756", "label_1757", "label_1758", "label_1759", "label_1760", "label_1761", "label_1762", "label_1763", "label_1764", "label_1765", "label_1766", "label_1767", "label_1768", "label_1769", "label_1770", "label_1771", "label_1772", "label_1773", "label_1774", "label_1775", "label_1776", "label_1777", "label_1778", "label_1779", "label_1780", "label_1781", "label_1782", "label_1783", "label_1784", "label_1785", "label_1786", "label_1787", "label_1788", "label_1789", "label_1790", "label_1791", "label_1792", "label_1793", "label_1794", "label_1795", "label_1796", "label_1797", "label_1798", "label_1799", "label_1800", "label_1801", "label_1802", "label_1803", "label_1804", "label_1805", "label_1806", "label_1807", "label_1808", "label_1809", "label_1810", "label_1811", "label_1812", "label_1813", "label_1814", "label_1815", "label_1816", "label_1817", "label_1818", "label_1819", "label_1820", "label_1821", "label_1822", "label_1823", "label_1824", "label_1825", "label_1826", "label_1827", "label_1828", "label_1829", "label_1830", "label_1831", "label_1832", "label_1833", "label_1834", "label_1835", "label_1836", "label_1837", "label_1838", "label_1839", "label_1840", "label_1841", "label_1842", "label_1843", "label_1844", "label_1845", "label_1846", "label_1847", "label_1848", "label_1849", "label_1850", "label_1851", "label_1852", "label_1853", "label_1854", "label_1855", "label_1856", "label_1857", "label_1858", "label_1859", "label_1860", "label_1861", "label_1862", "label_1863", "label_1864", "label_1865", "label_1866", "label_1867", "label_1868", "label_1869", "label_1870", "label_1871", "label_1872", "label_1873", "label_1874", "label_1875", "label_1876", "label_1877", "label_1878", "label_1879", "label_1880", "label_1881", "label_1882", "label_1883", "label_1884", "label_1885", "label_1886", "label_1887", "label_1888", "label_1889", "label_1890", "label_1891", "label_1892", "label_1893", "label_1894", "label_1895", "label_1896", "label_1897", "label_1898", "label_1899", "label_1900", "label_1901", "label_1902", "label_1903", "label_1904", "label_1905", "label_1906", "label_1907", "label_1908", "label_1909", "label_1910", "label_1911", "label_1912", "label_1913", "label_1914", "label_1915", "label_1916", "label_1917", "label_1918", "label_1919", "label_1920", "label_1921", "label_1922", "label_1923", "label_1924", "label_1925", "label_1926", "label_1927", "label_1928", "label_1929", "label_1930", "label_1931", "label_1932", "label_1933", "label_1934", "label_1935", "label_1936", "label_1937", "label_1938", "label_1939", "label_1940", "label_1941", "label_1942", "label_1943", "label_1944", "label_1945", "label_1946", "label_1947", "label_1948", "label_1949", "label_1950", "label_1951", "label_1952", "label_1953", "label_1954", "label_1955", "label_1956", "label_1957", "label_1958", "label_1959", "label_1960", "label_1961", "label_1962", "label_1963", "label_1964", "label_1965", "label_1966", "label_1967" ]
arize-ai/resnet-50-cifar10-quality-drift
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # resnet-50-cifar10-quality-drift This model is a fine-tuned version of [microsoft/resnet-50](https://huggingface.co/microsoft/resnet-50) on the cifar10_quality_drift dataset. It achieves the following results on the evaluation set: - Loss: 0.8235 - Accuracy: 0.724 - F1: 0.7222 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 1.7311 | 1.0 | 750 | 1.1310 | 0.6333 | 0.6300 | | 1.1728 | 2.0 | 1500 | 0.8495 | 0.7153 | 0.7155 | | 1.0322 | 3.0 | 2250 | 0.8235 | 0.724 | 0.7222 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
[ "airplane", "automobile", "bird", "cat", "deer", "dog", "frog", "horse", "ship", "truck" ]
sudo-s/exper1_mesum5
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # exper1_mesum5 This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the sudo-s/herbier_mesuem5 dataset. It achieves the following results on the evaluation set: - Loss: 0.6401 - Accuracy: 0.8278 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 3.9352 | 0.23 | 100 | 3.8550 | 0.1959 | | 3.1536 | 0.47 | 200 | 3.1755 | 0.2888 | | 2.6937 | 0.7 | 300 | 2.6332 | 0.4272 | | 2.3748 | 0.93 | 400 | 2.2833 | 0.4970 | | 1.5575 | 1.16 | 500 | 1.8712 | 0.5888 | | 1.4063 | 1.4 | 600 | 1.6048 | 0.6314 | | 1.1841 | 1.63 | 700 | 1.4109 | 0.6621 | | 1.0857 | 1.86 | 800 | 1.1832 | 0.7112 | | 0.582 | 2.09 | 900 | 1.0371 | 0.7479 | | 0.5971 | 2.33 | 1000 | 0.9839 | 0.7462 | | 0.4617 | 2.56 | 1100 | 0.9233 | 0.7657 | | 0.4621 | 2.79 | 1200 | 0.8417 | 0.7828 | | 0.2128 | 3.02 | 1300 | 0.7644 | 0.7970 | | 0.1883 | 3.26 | 1400 | 0.7001 | 0.8183 | | 0.1501 | 3.49 | 1500 | 0.6826 | 0.8201 | | 0.1626 | 3.72 | 1600 | 0.6568 | 0.8254 | | 0.1053 | 3.95 | 1700 | 0.6401 | 0.8278 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
[ "0", "1", "10", "100", "101", "102", "103", "104", "105", "106", "107", "108", "109", "11", "110", "111", "112", "113", "114", "115", "116", "117", "118", "119", "12", "120", "121", "122", "123", "124", "125", "126", "127", "128", "129", "13", "130", "131", "132", "133", "134", "135", "136", "137", "138", "139", "14", "140", "141", "142", "143", "144", "145", "146", "147", "148", "15", "16", "17", "18", "19", "2", "20", "21", "22", "23", "24", "25", "26", "27", "28", "29", "3", "30", "31", "32", "33", "34", "35", "36", "37", "38", "39", "4", "40", "41", "42", "43", "44", "45", "46", "47", "48", "49", "5", "50", "51", "52", "53", "54", "55", "56", "57", "58", "59", "6", "60", "61", "62", "63", "64", "65", "66", "67", "68", "69", "7", "70", "71", "72", "73", "74", "75", "76", "77", "78", "79", "8", "80", "81", "82", "83", "84", "85", "86", "87", "88", "89", "9", "90", "91", "92", "93", "94", "95", "96", "97", "98", "99" ]
sudo-s/exper2_mesum5
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # exper2_mesum5 This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the sudo-s/herbier_mesuem5 dataset. It achieves the following results on the evaluation set: - Loss: 3.4589 - Accuracy: 0.1308 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 4.4265 | 0.23 | 100 | 4.3676 | 0.0296 | | 4.1144 | 0.47 | 200 | 4.1606 | 0.0544 | | 4.0912 | 0.7 | 300 | 4.1071 | 0.0509 | | 4.0361 | 0.93 | 400 | 4.0625 | 0.0669 | | 4.0257 | 1.16 | 500 | 3.9682 | 0.0822 | | 3.8846 | 1.4 | 600 | 3.9311 | 0.0834 | | 3.9504 | 1.63 | 700 | 3.9255 | 0.0698 | | 3.9884 | 1.86 | 800 | 3.9404 | 0.0722 | | 3.7191 | 2.09 | 900 | 3.8262 | 0.0935 | | 3.7952 | 2.33 | 1000 | 3.8236 | 0.0734 | | 3.8085 | 2.56 | 1100 | 3.7694 | 0.0964 | | 3.7535 | 2.79 | 1200 | 3.6757 | 0.1059 | | 3.4218 | 3.02 | 1300 | 3.6474 | 0.1095 | | 3.5172 | 3.26 | 1400 | 3.5621 | 0.1166 | | 3.5173 | 3.49 | 1500 | 3.5579 | 0.1207 | | 3.4346 | 3.72 | 1600 | 3.4817 | 0.1249 | | 3.3995 | 3.95 | 1700 | 3.4589 | 0.1308 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
[ "0", "1", "10", "100", "101", "102", "103", "104", "105", "106", "107", "108", "109", "11", "110", "111", "112", "113", "114", "115", "116", "117", "118", "119", "12", "120", "121", "122", "123", "124", "125", "126", "127", "128", "129", "13", "130", "131", "132", "133", "134", "135", "136", "137", "138", "139", "14", "140", "141", "142", "143", "144", "145", "146", "147", "148", "15", "16", "17", "18", "19", "2", "20", "21", "22", "23", "24", "25", "26", "27", "28", "29", "3", "30", "31", "32", "33", "34", "35", "36", "37", "38", "39", "4", "40", "41", "42", "43", "44", "45", "46", "47", "48", "49", "5", "50", "51", "52", "53", "54", "55", "56", "57", "58", "59", "6", "60", "61", "62", "63", "64", "65", "66", "67", "68", "69", "7", "70", "71", "72", "73", "74", "75", "76", "77", "78", "79", "8", "80", "81", "82", "83", "84", "85", "86", "87", "88", "89", "9", "90", "91", "92", "93", "94", "95", "96", "97", "98", "99" ]
sudo-s/exper3_mesum5
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # exper3_mesum5 This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the sudo-s/herbier_mesuem5 dataset. It achieves the following results on the evaluation set: - Loss: 0.6366 - Accuracy: 0.8367 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 3.895 | 0.23 | 100 | 3.8276 | 0.1935 | | 3.1174 | 0.47 | 200 | 3.1217 | 0.3107 | | 2.6 | 0.7 | 300 | 2.5399 | 0.4207 | | 2.256 | 0.93 | 400 | 2.1767 | 0.5160 | | 1.5441 | 1.16 | 500 | 1.8086 | 0.5852 | | 1.3834 | 1.4 | 600 | 1.5565 | 0.6325 | | 1.1995 | 1.63 | 700 | 1.3339 | 0.6763 | | 1.0845 | 1.86 | 800 | 1.3299 | 0.6533 | | 0.6472 | 2.09 | 900 | 1.0679 | 0.7219 | | 0.5948 | 2.33 | 1000 | 1.0286 | 0.7124 | | 0.5565 | 2.56 | 1100 | 0.9595 | 0.7284 | | 0.4879 | 2.79 | 1200 | 0.8915 | 0.7420 | | 0.2816 | 3.02 | 1300 | 0.8159 | 0.7763 | | 0.2412 | 3.26 | 1400 | 0.7766 | 0.7911 | | 0.2015 | 3.49 | 1500 | 0.7850 | 0.7828 | | 0.274 | 3.72 | 1600 | 0.7361 | 0.7935 | | 0.1244 | 3.95 | 1700 | 0.7299 | 0.7911 | | 0.0794 | 4.19 | 1800 | 0.7441 | 0.7846 | | 0.0915 | 4.42 | 1900 | 0.7614 | 0.7941 | | 0.0817 | 4.65 | 2000 | 0.7310 | 0.8012 | | 0.0561 | 4.88 | 2100 | 0.7222 | 0.8065 | | 0.0165 | 5.12 | 2200 | 0.7515 | 0.8059 | | 0.0168 | 5.35 | 2300 | 0.6687 | 0.8213 | | 0.0212 | 5.58 | 2400 | 0.6671 | 0.8249 | | 0.0389 | 5.81 | 2500 | 0.6893 | 0.8278 | | 0.0087 | 6.05 | 2600 | 0.6839 | 0.8260 | | 0.0087 | 6.28 | 2700 | 0.6412 | 0.8320 | | 0.0077 | 6.51 | 2800 | 0.6366 | 0.8367 | | 0.0065 | 6.74 | 2900 | 0.6697 | 0.8272 | | 0.0061 | 6.98 | 3000 | 0.6510 | 0.8349 | | 0.0185 | 7.21 | 3100 | 0.6452 | 0.8367 | | 0.0059 | 7.44 | 3200 | 0.6426 | 0.8379 | | 0.0062 | 7.67 | 3300 | 0.6398 | 0.8379 | | 0.0315 | 7.91 | 3400 | 0.6397 | 0.8385 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
[ "0", "1", "10", "100", "101", "102", "103", "104", "105", "106", "107", "108", "109", "11", "110", "111", "112", "113", "114", "115", "116", "117", "118", "119", "12", "120", "121", "122", "123", "124", "125", "126", "127", "128", "129", "13", "130", "131", "132", "133", "134", "135", "136", "137", "138", "139", "14", "140", "141", "142", "143", "144", "145", "146", "147", "148", "15", "16", "17", "18", "19", "2", "20", "21", "22", "23", "24", "25", "26", "27", "28", "29", "3", "30", "31", "32", "33", "34", "35", "36", "37", "38", "39", "4", "40", "41", "42", "43", "44", "45", "46", "47", "48", "49", "5", "50", "51", "52", "53", "54", "55", "56", "57", "58", "59", "6", "60", "61", "62", "63", "64", "65", "66", "67", "68", "69", "7", "70", "71", "72", "73", "74", "75", "76", "77", "78", "79", "8", "80", "81", "82", "83", "84", "85", "86", "87", "88", "89", "9", "90", "91", "92", "93", "94", "95", "96", "97", "98", "99" ]
sudo-s/exper4_mesum5
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # exper4_mesum5 This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the sudo-s/herbier_mesuem5 dataset. It achieves the following results on the evaluation set: - Loss: 3.4389 - Accuracy: 0.1331 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 3.3793 | 0.23 | 100 | 3.4527 | 0.1308 | | 3.2492 | 0.47 | 200 | 3.4501 | 0.1331 | | 3.3847 | 0.7 | 300 | 3.4500 | 0.1272 | | 3.3739 | 0.93 | 400 | 3.4504 | 0.1320 | | 3.4181 | 1.16 | 500 | 3.4452 | 0.1320 | | 3.214 | 1.4 | 600 | 3.4503 | 0.1320 | | 3.282 | 1.63 | 700 | 3.4444 | 0.1325 | | 3.5308 | 1.86 | 800 | 3.4473 | 0.1337 | | 3.2251 | 2.09 | 900 | 3.4415 | 0.1361 | | 3.4385 | 2.33 | 1000 | 3.4408 | 0.1343 | | 3.3702 | 2.56 | 1100 | 3.4406 | 0.1325 | | 3.366 | 2.79 | 1200 | 3.4411 | 0.1355 | | 3.2022 | 3.02 | 1300 | 3.4403 | 0.1308 | | 3.2768 | 3.26 | 1400 | 3.4394 | 0.1320 | | 3.3444 | 3.49 | 1500 | 3.4394 | 0.1314 | | 3.2981 | 3.72 | 1600 | 3.4391 | 0.1331 | | 3.3349 | 3.95 | 1700 | 3.4389 | 0.1331 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
[ "0", "1", "10", "100", "101", "102", "103", "104", "105", "106", "107", "108", "109", "11", "110", "111", "112", "113", "114", "115", "116", "117", "118", "119", "12", "120", "121", "122", "123", "124", "125", "126", "127", "128", "129", "13", "130", "131", "132", "133", "134", "135", "136", "137", "138", "139", "14", "140", "141", "142", "143", "144", "145", "146", "147", "148", "15", "16", "17", "18", "19", "2", "20", "21", "22", "23", "24", "25", "26", "27", "28", "29", "3", "30", "31", "32", "33", "34", "35", "36", "37", "38", "39", "4", "40", "41", "42", "43", "44", "45", "46", "47", "48", "49", "5", "50", "51", "52", "53", "54", "55", "56", "57", "58", "59", "6", "60", "61", "62", "63", "64", "65", "66", "67", "68", "69", "7", "70", "71", "72", "73", "74", "75", "76", "77", "78", "79", "8", "80", "81", "82", "83", "84", "85", "86", "87", "88", "89", "9", "90", "91", "92", "93", "94", "95", "96", "97", "98", "99" ]
sudo-s/exper6_mesum5
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # exper6_mesum5 This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the sudo-s/herbier_mesuem5 dataset. It achieves the following results on the evaluation set: - Loss: 0.8241 - Accuracy: 0.8036 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 16 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 3.9276 | 0.23 | 100 | 3.8550 | 0.2089 | | 3.0853 | 0.47 | 200 | 3.1106 | 0.3414 | | 2.604 | 0.7 | 300 | 2.5732 | 0.4379 | | 2.3183 | 0.93 | 400 | 2.2308 | 0.4882 | | 1.5326 | 1.16 | 500 | 1.7903 | 0.5828 | | 1.3367 | 1.4 | 600 | 1.5524 | 0.6349 | | 1.1544 | 1.63 | 700 | 1.3167 | 0.6645 | | 1.0788 | 1.86 | 800 | 1.3423 | 0.6385 | | 0.6762 | 2.09 | 900 | 1.0780 | 0.7124 | | 0.6483 | 2.33 | 1000 | 1.0090 | 0.7284 | | 0.6321 | 2.56 | 1100 | 1.0861 | 0.7024 | | 0.5558 | 2.79 | 1200 | 0.9933 | 0.7183 | | 0.342 | 3.02 | 1300 | 0.8871 | 0.7462 | | 0.2964 | 3.26 | 1400 | 0.9330 | 0.7408 | | 0.1959 | 3.49 | 1500 | 0.9367 | 0.7343 | | 0.368 | 3.72 | 1600 | 0.8472 | 0.7550 | | 0.1821 | 3.95 | 1700 | 0.8937 | 0.7568 | | 0.1851 | 4.19 | 1800 | 0.9546 | 0.7485 | | 0.1648 | 4.42 | 1900 | 0.9790 | 0.7355 | | 0.172 | 4.65 | 2000 | 0.8947 | 0.7627 | | 0.0928 | 4.88 | 2100 | 1.0093 | 0.7462 | | 0.0699 | 5.12 | 2200 | 0.8374 | 0.7639 | | 0.0988 | 5.35 | 2300 | 0.9189 | 0.7645 | | 0.0822 | 5.58 | 2400 | 0.9512 | 0.7580 | | 0.1223 | 5.81 | 2500 | 1.0809 | 0.7349 | | 0.0509 | 6.05 | 2600 | 0.9297 | 0.7769 | | 0.0511 | 6.28 | 2700 | 0.8981 | 0.7822 | | 0.0596 | 6.51 | 2800 | 0.9468 | 0.7704 | | 0.0494 | 6.74 | 2900 | 0.9045 | 0.7870 | | 0.0643 | 6.98 | 3000 | 1.1559 | 0.7391 | | 0.0158 | 7.21 | 3100 | 0.8450 | 0.7899 | | 0.0129 | 7.44 | 3200 | 0.8241 | 0.8036 | | 0.0441 | 7.67 | 3300 | 0.9679 | 0.7751 | | 0.0697 | 7.91 | 3400 | 1.0387 | 0.7751 | | 0.0084 | 8.14 | 3500 | 0.9441 | 0.7947 | | 0.0182 | 8.37 | 3600 | 0.8967 | 0.7994 | | 0.0042 | 8.6 | 3700 | 0.8750 | 0.8041 | | 0.0028 | 8.84 | 3800 | 0.9349 | 0.8041 | | 0.0053 | 9.07 | 3900 | 0.9403 | 0.7982 | | 0.0266 | 9.3 | 4000 | 0.9966 | 0.7959 | | 0.0022 | 9.53 | 4100 | 0.9472 | 0.8018 | | 0.0018 | 9.77 | 4200 | 0.8717 | 0.8136 | | 0.0018 | 10.0 | 4300 | 0.8964 | 0.8083 | | 0.0046 | 10.23 | 4400 | 0.8623 | 0.8160 | | 0.0037 | 10.47 | 4500 | 0.8762 | 0.8172 | | 0.0013 | 10.7 | 4600 | 0.9028 | 0.8142 | | 0.0013 | 10.93 | 4700 | 0.9084 | 0.8178 | | 0.0013 | 11.16 | 4800 | 0.8733 | 0.8213 | | 0.001 | 11.4 | 4900 | 0.8823 | 0.8207 | | 0.0009 | 11.63 | 5000 | 0.8769 | 0.8213 | | 0.0282 | 11.86 | 5100 | 0.8791 | 0.8219 | | 0.001 | 12.09 | 5200 | 0.8673 | 0.8249 | | 0.0016 | 12.33 | 5300 | 0.8633 | 0.8225 | | 0.0008 | 12.56 | 5400 | 0.8766 | 0.8195 | | 0.0008 | 12.79 | 5500 | 0.8743 | 0.8225 | | 0.0008 | 13.02 | 5600 | 0.8752 | 0.8231 | | 0.0008 | 13.26 | 5700 | 0.8676 | 0.8237 | | 0.0007 | 13.49 | 5800 | 0.8677 | 0.8237 | | 0.0008 | 13.72 | 5900 | 0.8703 | 0.8237 | | 0.0007 | 13.95 | 6000 | 0.8725 | 0.8237 | | 0.0006 | 14.19 | 6100 | 0.8741 | 0.8231 | | 0.0006 | 14.42 | 6200 | 0.8758 | 0.8237 | | 0.0008 | 14.65 | 6300 | 0.8746 | 0.8243 | | 0.0007 | 14.88 | 6400 | 0.8759 | 0.8243 | | 0.0007 | 15.12 | 6500 | 0.8803 | 0.8231 | | 0.0007 | 15.35 | 6600 | 0.8808 | 0.8237 | | 0.0007 | 15.58 | 6700 | 0.8798 | 0.8243 | | 0.0007 | 15.81 | 6800 | 0.8805 | 0.8243 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
[ "0", "1", "10", "100", "101", "102", "103", "104", "105", "106", "107", "108", "109", "11", "110", "111", "112", "113", "114", "115", "116", "117", "118", "119", "12", "120", "121", "122", "123", "124", "125", "126", "127", "128", "129", "13", "130", "131", "132", "133", "134", "135", "136", "137", "138", "139", "14", "140", "141", "142", "143", "144", "145", "146", "147", "148", "15", "16", "17", "18", "19", "2", "20", "21", "22", "23", "24", "25", "26", "27", "28", "29", "3", "30", "31", "32", "33", "34", "35", "36", "37", "38", "39", "4", "40", "41", "42", "43", "44", "45", "46", "47", "48", "49", "5", "50", "51", "52", "53", "54", "55", "56", "57", "58", "59", "6", "60", "61", "62", "63", "64", "65", "66", "67", "68", "69", "7", "70", "71", "72", "73", "74", "75", "76", "77", "78", "79", "8", "80", "81", "82", "83", "84", "85", "86", "87", "88", "89", "9", "90", "91", "92", "93", "94", "95", "96", "97", "98", "99" ]
sudo-s/exper7_mesum5
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # exper7_mesum5 This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the sudo-s/herbier_mesuem5 dataset. It achieves the following results on the evaluation set: - Loss: 0.5889 - Accuracy: 0.8538 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 4.2072 | 0.23 | 100 | 4.1532 | 0.1923 | | 3.5433 | 0.47 | 200 | 3.5680 | 0.2888 | | 3.1388 | 0.7 | 300 | 3.1202 | 0.3911 | | 2.7924 | 0.93 | 400 | 2.7434 | 0.4787 | | 2.1269 | 1.16 | 500 | 2.3262 | 0.5781 | | 1.8589 | 1.4 | 600 | 1.9754 | 0.6272 | | 1.7155 | 1.63 | 700 | 1.7627 | 0.6840 | | 1.4689 | 1.86 | 800 | 1.5937 | 0.6994 | | 1.0149 | 2.09 | 900 | 1.3168 | 0.7497 | | 0.8148 | 2.33 | 1000 | 1.1630 | 0.7615 | | 0.7159 | 2.56 | 1100 | 1.0869 | 0.7675 | | 0.7257 | 2.79 | 1200 | 0.9607 | 0.7893 | | 0.4171 | 3.02 | 1300 | 0.8835 | 0.7935 | | 0.2969 | 3.26 | 1400 | 0.8259 | 0.8130 | | 0.2405 | 3.49 | 1500 | 0.7711 | 0.8142 | | 0.2948 | 3.72 | 1600 | 0.7629 | 0.8112 | | 0.1765 | 3.95 | 1700 | 0.7117 | 0.8124 | | 0.1603 | 4.19 | 1800 | 0.6946 | 0.8237 | | 0.0955 | 4.42 | 1900 | 0.6597 | 0.8349 | | 0.0769 | 4.65 | 2000 | 0.6531 | 0.8266 | | 0.0816 | 4.88 | 2100 | 0.6335 | 0.8337 | | 0.0315 | 5.12 | 2200 | 0.6087 | 0.8402 | | 0.0368 | 5.35 | 2300 | 0.6026 | 0.8444 | | 0.0377 | 5.58 | 2400 | 0.6450 | 0.8278 | | 0.0603 | 5.81 | 2500 | 0.6564 | 0.8343 | | 0.0205 | 6.05 | 2600 | 0.6119 | 0.8467 | | 0.019 | 6.28 | 2700 | 0.6070 | 0.8479 | | 0.0249 | 6.51 | 2800 | 0.6002 | 0.8538 | | 0.0145 | 6.74 | 2900 | 0.6012 | 0.8497 | | 0.0134 | 6.98 | 3000 | 0.5991 | 0.8521 | | 0.0271 | 7.21 | 3100 | 0.5972 | 0.8503 | | 0.0128 | 7.44 | 3200 | 0.5911 | 0.8521 | | 0.0123 | 7.67 | 3300 | 0.5889 | 0.8538 | | 0.0278 | 7.91 | 3400 | 0.6135 | 0.8491 | | 0.0106 | 8.14 | 3500 | 0.5934 | 0.8533 | | 0.0109 | 8.37 | 3600 | 0.5929 | 0.8533 | | 0.0095 | 8.6 | 3700 | 0.5953 | 0.8550 | | 0.009 | 8.84 | 3800 | 0.5933 | 0.8574 | | 0.009 | 9.07 | 3900 | 0.5948 | 0.8550 | | 0.0089 | 9.3 | 4000 | 0.5953 | 0.8556 | | 0.0086 | 9.53 | 4100 | 0.5956 | 0.8544 | | 0.0085 | 9.77 | 4200 | 0.5955 | 0.8556 | | 0.0087 | 10.0 | 4300 | 0.5954 | 0.8538 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
[ "0", "1", "10", "100", "101", "102", "103", "104", "105", "106", "107", "108", "109", "11", "110", "111", "112", "113", "114", "115", "116", "117", "118", "119", "12", "120", "121", "122", "123", "124", "125", "126", "127", "128", "129", "13", "130", "131", "132", "133", "134", "135", "136", "137", "138", "139", "14", "140", "141", "142", "143", "144", "145", "146", "147", "148", "15", "16", "17", "18", "19", "2", "20", "21", "22", "23", "24", "25", "26", "27", "28", "29", "3", "30", "31", "32", "33", "34", "35", "36", "37", "38", "39", "4", "40", "41", "42", "43", "44", "45", "46", "47", "48", "49", "5", "50", "51", "52", "53", "54", "55", "56", "57", "58", "59", "6", "60", "61", "62", "63", "64", "65", "66", "67", "68", "69", "7", "70", "71", "72", "73", "74", "75", "76", "77", "78", "79", "8", "80", "81", "82", "83", "84", "85", "86", "87", "88", "89", "9", "90", "91", "92", "93", "94", "95", "96", "97", "98", "99" ]
sudo-s/robot22
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # robot22 This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the sudo-s/herbier_mesuem6 dataset. It achieves the following results on the evaluation set: - Loss: 2.5674 - Accuracy: 0.5077 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 3.9154 | 0.23 | 100 | 3.8417 | 0.2213 | | 3.1764 | 0.47 | 200 | 3.2243 | 0.3201 | | 2.8186 | 0.7 | 300 | 2.7973 | 0.4284 | | 2.632 | 0.93 | 400 | 2.5674 | 0.5077 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0 - Datasets 2.3.2 - Tokenizers 0.12.1
[ "0", "1", "10", "100", "101", "102", "103", "104", "105", "106", "107", "108", "109", "11", "110", "111", "112", "113", "114", "115", "116", "117", "118", "119", "12", "120", "121", "122", "123", "124", "125", "126", "127", "128", "129", "13", "130", "131", "132", "133", "134", "135", "136", "137", "138", "139", "14", "140", "141", "142", "143", "144", "145", "146", "147", "148", "15", "16", "17", "18", "19", "2", "20", "21", "22", "23", "24", "25", "26", "27", "28", "29", "3", "30", "31", "32", "33", "34", "35", "36", "37", "38", "39", "4", "40", "41", "42", "43", "44", "45", "46", "47", "48", "49", "5", "50", "51", "52", "53", "54", "55", "56", "57", "58", "59", "6", "60", "61", "62", "63", "64", "65", "66", "67", "68", "69", "7", "70", "71", "72", "73", "74", "75", "76", "77", "78", "79", "8", "80", "81", "82", "83", "84", "85", "86", "87", "88", "89", "9", "90", "91", "92", "93", "94", "95", "96", "97", "98", "99" ]
sudo-s/modeversion1_m7_e4
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # modeversion1_m7_e4 This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the sudo-s/herbier_mesuem7 dataset. It achieves the following results on the evaluation set: - Loss: 0.0902 - Accuracy: 0.9731 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 4.073 | 0.06 | 100 | 3.9370 | 0.1768 | | 3.4186 | 0.12 | 200 | 3.2721 | 0.2590 | | 2.6745 | 0.18 | 300 | 2.6465 | 0.3856 | | 2.2806 | 0.23 | 400 | 2.2600 | 0.4523 | | 1.9275 | 0.29 | 500 | 1.9653 | 0.5109 | | 1.6958 | 0.35 | 600 | 1.6815 | 0.6078 | | 1.2797 | 0.41 | 700 | 1.4514 | 0.6419 | | 1.3772 | 0.47 | 800 | 1.3212 | 0.6762 | | 1.1765 | 0.53 | 900 | 1.1476 | 0.7028 | | 1.0152 | 0.59 | 1000 | 1.0357 | 0.7313 | | 0.7861 | 0.64 | 1100 | 1.0230 | 0.7184 | | 1.0262 | 0.7 | 1200 | 0.9469 | 0.7386 | | 0.8905 | 0.76 | 1300 | 0.8184 | 0.7756 | | 0.6919 | 0.82 | 1400 | 0.8083 | 0.7711 | | 0.7494 | 0.88 | 1500 | 0.7601 | 0.7825 | | 0.5078 | 0.94 | 1600 | 0.6884 | 0.8056 | | 0.7134 | 1.0 | 1700 | 0.6311 | 0.8160 | | 0.4328 | 1.06 | 1800 | 0.5740 | 0.8252 | | 0.4971 | 1.11 | 1900 | 0.5856 | 0.8290 | | 0.5207 | 1.17 | 2000 | 0.6219 | 0.8167 | | 0.4027 | 1.23 | 2100 | 0.5703 | 0.8266 | | 0.5605 | 1.29 | 2200 | 0.5217 | 0.8372 | | 0.2723 | 1.35 | 2300 | 0.4805 | 0.8565 | | 0.401 | 1.41 | 2400 | 0.4811 | 0.8490 | | 0.3419 | 1.47 | 2500 | 0.4619 | 0.8608 | | 0.301 | 1.52 | 2600 | 0.4318 | 0.8712 | | 0.2872 | 1.58 | 2700 | 0.4698 | 0.8573 | | 0.2451 | 1.64 | 2800 | 0.4210 | 0.8729 | | 0.2211 | 1.7 | 2900 | 0.3645 | 0.8851 | | 0.3145 | 1.76 | 3000 | 0.4139 | 0.8715 | | 0.2001 | 1.82 | 3100 | 0.3605 | 0.8864 | | 0.3095 | 1.88 | 3200 | 0.4274 | 0.8675 | | 0.1915 | 1.93 | 3300 | 0.2910 | 0.9101 | | 0.2465 | 1.99 | 3400 | 0.2726 | 0.9103 | | 0.1218 | 2.05 | 3500 | 0.2742 | 0.9129 | | 0.0752 | 2.11 | 3600 | 0.2572 | 0.9183 | | 0.1067 | 2.17 | 3700 | 0.2584 | 0.9203 | | 0.0838 | 2.23 | 3800 | 0.2458 | 0.9212 | | 0.1106 | 2.29 | 3900 | 0.2412 | 0.9237 | | 0.092 | 2.34 | 4000 | 0.2232 | 0.9277 | | 0.1056 | 2.4 | 4100 | 0.2817 | 0.9077 | | 0.0696 | 2.46 | 4200 | 0.2334 | 0.9285 | | 0.0444 | 2.52 | 4300 | 0.2142 | 0.9363 | | 0.1046 | 2.58 | 4400 | 0.2036 | 0.9352 | | 0.066 | 2.64 | 4500 | 0.2115 | 0.9365 | | 0.0649 | 2.7 | 4600 | 0.1730 | 0.9448 | | 0.0513 | 2.75 | 4700 | 0.2148 | 0.9339 | | 0.0917 | 2.81 | 4800 | 0.1810 | 0.9438 | | 0.0879 | 2.87 | 4900 | 0.1971 | 0.9388 | | 0.1052 | 2.93 | 5000 | 0.1602 | 0.9508 | | 0.0362 | 2.99 | 5100 | 0.1475 | 0.9556 | | 0.041 | 3.05 | 5200 | 0.1328 | 0.9585 | | 0.0156 | 3.11 | 5300 | 0.1389 | 0.9571 | | 0.0047 | 3.17 | 5400 | 0.1224 | 0.9638 | | 0.0174 | 3.22 | 5500 | 0.1193 | 0.9651 | | 0.0087 | 3.28 | 5600 | 0.1276 | 0.9622 | | 0.0084 | 3.34 | 5700 | 0.1134 | 0.9662 | | 0.0141 | 3.4 | 5800 | 0.1239 | 0.9631 | | 0.0291 | 3.46 | 5900 | 0.1199 | 0.9645 | | 0.0049 | 3.52 | 6000 | 0.1103 | 0.9679 | | 0.0055 | 3.58 | 6100 | 0.1120 | 0.9662 | | 0.0061 | 3.63 | 6200 | 0.1071 | 0.9668 | | 0.0054 | 3.69 | 6300 | 0.1032 | 0.9697 | | 0.0041 | 3.75 | 6400 | 0.0961 | 0.9711 | | 0.0018 | 3.81 | 6500 | 0.0930 | 0.9718 | | 0.0032 | 3.87 | 6600 | 0.0918 | 0.9730 | | 0.0048 | 3.93 | 6700 | 0.0906 | 0.9732 | | 0.002 | 3.99 | 6800 | 0.0902 | 0.9731 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0 - Datasets 2.3.2 - Tokenizers 0.12.1
[ "0", "1", "10", "100", "101", "102", "103", "104", "105", "106", "107", "108", "109", "11", "110", "111", "112", "113", "114", "115", "116", "117", "118", "119", "12", "120", "121", "122", "123", "124", "125", "126", "127", "128", "129", "13", "130", "131", "132", "133", "134", "135", "136", "137", "138", "139", "14", "140", "141", "142", "143", "144", "145", "146", "147", "148", "15", "16", "17", "18", "19", "2", "20", "21", "22", "23", "24", "25", "26", "27", "28", "29", "3", "30", "31", "32", "33", "34", "35", "36", "37", "38", "39", "4", "40", "41", "42", "43", "44", "45", "46", "47", "48", "49", "5", "50", "51", "52", "53", "54", "55", "56", "57", "58", "59", "6", "60", "61", "62", "63", "64", "65", "66", "67", "68", "69", "7", "70", "71", "72", "73", "74", "75", "76", "77", "78", "79", "8", "80", "81", "82", "83", "84", "85", "86", "87", "88", "89", "9", "90", "91", "92", "93", "94", "95", "96", "97", "98", "99" ]
Isaacks/swin-tiny-patch4-window7-224-finetuned-cars
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224-finetuned-cars This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.2192 - Accuracy: 0.9135 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.4522 | 1.0 | 13 | 0.3636 | 0.8432 | | 0.3308 | 2.0 | 26 | 0.2472 | 0.9027 | | 0.2714 | 3.0 | 39 | 0.2192 | 0.9135 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
[ "audi", "porsche", "toyota", "volkswagen" ]
sudo-s/modeversion2_m7_e8
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # modeversion2_m7_e8 This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the sudo-s/herbier_mesuem7 dataset. It achieves the following results on the evaluation set: - Loss: 0.1060 - Accuracy: 0.9761 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 4.0231 | 0.06 | 100 | 3.8568 | 0.1883 | | 3.3863 | 0.12 | 200 | 3.2510 | 0.2596 | | 2.6187 | 0.18 | 300 | 2.6243 | 0.3882 | | 2.3097 | 0.23 | 400 | 2.2189 | 0.4527 | | 1.9016 | 0.29 | 500 | 1.9495 | 0.5244 | | 1.7478 | 0.35 | 600 | 1.6609 | 0.6091 | | 1.2345 | 0.41 | 700 | 1.4335 | 0.6426 | | 1.4129 | 0.47 | 800 | 1.3001 | 0.6752 | | 1.1722 | 0.53 | 900 | 1.2030 | 0.6785 | | 1.0808 | 0.59 | 1000 | 1.0051 | 0.7273 | | 0.8814 | 0.64 | 1100 | 1.0715 | 0.7063 | | 0.9831 | 0.7 | 1200 | 0.9283 | 0.7334 | | 0.8118 | 0.76 | 1300 | 0.8525 | 0.7631 | | 0.7203 | 0.82 | 1400 | 0.7849 | 0.7756 | | 0.8881 | 0.88 | 1500 | 0.8786 | 0.7487 | | 0.6407 | 0.94 | 1600 | 0.6896 | 0.8000 | | 0.7574 | 1.0 | 1700 | 0.7314 | 0.7754 | | 0.6063 | 1.06 | 1800 | 0.6312 | 0.8068 | | 0.4797 | 1.11 | 1900 | 0.5792 | 0.8296 | | 0.4973 | 1.17 | 2000 | 0.5846 | 0.8221 | | 0.4432 | 1.23 | 2100 | 0.7057 | 0.7905 | | 0.5518 | 1.29 | 2200 | 0.5621 | 0.8304 | | 0.3256 | 1.35 | 2300 | 0.5890 | 0.8143 | | 0.4284 | 1.41 | 2400 | 0.5204 | 0.8485 | | 0.3702 | 1.47 | 2500 | 0.5699 | 0.8256 | | 0.2858 | 1.52 | 2600 | 0.5815 | 0.8287 | | 0.3706 | 1.58 | 2700 | 0.4615 | 0.8571 | | 0.3484 | 1.64 | 2800 | 0.4812 | 0.8518 | | 0.2865 | 1.7 | 2900 | 0.4285 | 0.8638 | | 0.4474 | 1.76 | 3000 | 0.5217 | 0.8377 | | 0.2101 | 1.82 | 3100 | 0.4478 | 0.8589 | | 0.3545 | 1.88 | 3200 | 0.4444 | 0.8612 | | 0.2728 | 1.93 | 3300 | 0.4213 | 0.8645 | | 0.3525 | 1.99 | 3400 | 0.3551 | 0.8848 | | 0.0936 | 2.05 | 3500 | 0.4074 | 0.8748 | | 0.2118 | 2.11 | 3600 | 0.4089 | 0.8812 | | 0.2744 | 2.17 | 3700 | 0.3534 | 0.8894 | | 0.211 | 2.23 | 3800 | 0.4422 | 0.8599 | | 0.1684 | 2.29 | 3900 | 0.3705 | 0.8858 | | 0.1885 | 2.34 | 4000 | 0.3651 | 0.8862 | | 0.249 | 2.4 | 4100 | 0.4234 | 0.8687 | | 0.1485 | 2.46 | 4200 | 0.3784 | 0.8798 | | 0.1188 | 2.52 | 4300 | 0.3589 | 0.8873 | | 0.1274 | 2.58 | 4400 | 0.3570 | 0.8917 | | 0.2206 | 2.64 | 4500 | 0.3377 | 0.8920 | | 0.1287 | 2.7 | 4600 | 0.3170 | 0.9023 | | 0.1805 | 2.75 | 4700 | 0.3469 | 0.8934 | | 0.1505 | 2.81 | 4800 | 0.4258 | 0.8757 | | 0.1592 | 2.87 | 4900 | 0.3415 | 0.8948 | | 0.1297 | 2.93 | 5000 | 0.3168 | 0.9028 | | 0.1284 | 2.99 | 5100 | 0.3060 | 0.9089 | | 0.0833 | 3.05 | 5200 | 0.2610 | 0.9207 | | 0.0334 | 3.11 | 5300 | 0.2766 | 0.9197 | | 0.0847 | 3.17 | 5400 | 0.3366 | 0.9016 | | 0.1112 | 3.22 | 5500 | 0.3098 | 0.9079 | | 0.0477 | 3.28 | 5600 | 0.3385 | 0.9041 | | 0.0419 | 3.34 | 5700 | 0.2944 | 0.9139 | | 0.0827 | 3.4 | 5800 | 0.2715 | 0.9239 | | 0.0659 | 3.46 | 5900 | 0.2695 | 0.9230 | | 0.0244 | 3.52 | 6000 | 0.3050 | 0.9147 | | 0.0883 | 3.58 | 6100 | 0.2862 | 0.9203 | | 0.0527 | 3.63 | 6200 | 0.2383 | 0.9319 | | 0.0828 | 3.69 | 6300 | 0.2984 | 0.9182 | | 0.0678 | 3.75 | 6400 | 0.2135 | 0.9436 | | 0.0492 | 3.81 | 6500 | 0.2605 | 0.9296 | | 0.0374 | 3.87 | 6600 | 0.2192 | 0.9380 | | 0.1846 | 3.93 | 6700 | 0.2804 | 0.9187 | | 0.0557 | 3.99 | 6800 | 0.2599 | 0.9253 | | 0.0127 | 4.04 | 6900 | 0.2412 | 0.9336 | | 0.0203 | 4.1 | 7000 | 0.2214 | 0.9415 | | 0.0272 | 4.16 | 7100 | 0.2322 | 0.9356 | | 0.066 | 4.22 | 7200 | 0.2643 | 0.9325 | | 0.0628 | 4.28 | 7300 | 0.2170 | 0.9406 | | 0.0108 | 4.34 | 7400 | 0.2388 | 0.9405 | | 0.026 | 4.4 | 7500 | 0.2533 | 0.9372 | | 0.0401 | 4.45 | 7600 | 0.2407 | 0.9358 | | 0.0493 | 4.51 | 7700 | 0.2213 | 0.9415 | | 0.0951 | 4.57 | 7800 | 0.3016 | 0.9237 | | 0.0017 | 4.63 | 7900 | 0.2183 | 0.9448 | | 0.0561 | 4.69 | 8000 | 0.1962 | 0.9492 | | 0.0063 | 4.75 | 8100 | 0.1868 | 0.9522 | | 0.0054 | 4.81 | 8200 | 0.2068 | 0.9459 | | 0.0519 | 4.87 | 8300 | 0.2141 | 0.9429 | | 0.027 | 4.92 | 8400 | 0.2138 | 0.9438 | | 0.0034 | 4.98 | 8500 | 0.1774 | 0.9529 | | 0.0096 | 5.04 | 8600 | 0.1778 | 0.9512 | | 0.0011 | 5.1 | 8700 | 0.1854 | 0.9512 | | 0.0195 | 5.16 | 8800 | 0.1914 | 0.9483 | | 0.0245 | 5.22 | 8900 | 0.2156 | 0.9471 | | 0.0055 | 5.28 | 9000 | 0.1640 | 0.9574 | | 0.0166 | 5.33 | 9100 | 0.1770 | 0.9568 | | 0.0217 | 5.39 | 9200 | 0.2011 | 0.9479 | | 0.0017 | 5.45 | 9300 | 0.2210 | 0.9462 | | 0.0161 | 5.51 | 9400 | 0.1510 | 0.9621 | | 0.0193 | 5.57 | 9500 | 0.1643 | 0.9586 | | 0.0121 | 5.63 | 9600 | 0.1716 | 0.9535 | | 0.0146 | 5.69 | 9700 | 0.1720 | 0.9554 | | 0.0071 | 5.74 | 9800 | 0.1831 | 0.9541 | | 0.0018 | 5.8 | 9900 | 0.2076 | 0.9485 | | 0.0007 | 5.86 | 10000 | 0.1636 | 0.9599 | | 0.0005 | 5.92 | 10100 | 0.1625 | 0.9602 | | 0.0277 | 5.98 | 10200 | 0.1874 | 0.9546 | | 0.0005 | 6.04 | 10300 | 0.1790 | 0.9579 | | 0.0012 | 6.1 | 10400 | 0.1840 | 0.9544 | | 0.0431 | 6.15 | 10500 | 0.1571 | 0.9628 | | 0.0332 | 6.21 | 10600 | 0.1599 | 0.9591 | | 0.0014 | 6.27 | 10700 | 0.1493 | 0.9632 | | 0.0014 | 6.33 | 10800 | 0.1366 | 0.9661 | | 0.0006 | 6.39 | 10900 | 0.1582 | 0.9609 | | 0.0005 | 6.45 | 11000 | 0.1704 | 0.9589 | | 0.0004 | 6.51 | 11100 | 0.1376 | 0.9671 | | 0.0755 | 6.57 | 11200 | 0.1375 | 0.9654 | | 0.0002 | 6.62 | 11300 | 0.1361 | 0.9661 | | 0.0006 | 6.68 | 11400 | 0.1323 | 0.9675 | | 0.0009 | 6.74 | 11500 | 0.1239 | 0.9692 | | 0.0004 | 6.8 | 11600 | 0.1514 | 0.9631 | | 0.0002 | 6.86 | 11700 | 0.1386 | 0.9664 | | 0.0004 | 6.92 | 11800 | 0.1368 | 0.9659 | | 0.0004 | 6.98 | 11900 | 0.1276 | 0.9684 | | 0.0002 | 7.03 | 12000 | 0.1171 | 0.9712 | | 0.0002 | 7.09 | 12100 | 0.1142 | 0.9711 | | 0.0001 | 7.15 | 12200 | 0.1183 | 0.9727 | | 0.0002 | 7.21 | 12300 | 0.1167 | 0.9732 | | 0.0002 | 7.27 | 12400 | 0.1143 | 0.9737 | | 0.0001 | 7.33 | 12500 | 0.1129 | 0.9737 | | 0.0002 | 7.39 | 12600 | 0.1116 | 0.9742 | | 0.0002 | 7.44 | 12700 | 0.1126 | 0.9745 | | 0.0002 | 7.5 | 12800 | 0.1111 | 0.9748 | | 0.0002 | 7.56 | 12900 | 0.1102 | 0.9747 | | 0.0001 | 7.62 | 13000 | 0.1094 | 0.9747 | | 0.0001 | 7.68 | 13100 | 0.1086 | 0.9742 | | 0.0001 | 7.74 | 13200 | 0.1079 | 0.9748 | | 0.0002 | 7.8 | 13300 | 0.1062 | 0.9754 | | 0.0002 | 7.85 | 13400 | 0.1068 | 0.9757 | | 0.0001 | 7.91 | 13500 | 0.1061 | 0.9762 | | 0.0001 | 7.97 | 13600 | 0.1060 | 0.9761 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0 - Datasets 2.3.2 - Tokenizers 0.12.1
[ "0", "1", "10", "100", "101", "102", "103", "104", "105", "106", "107", "108", "109", "11", "110", "111", "112", "113", "114", "115", "116", "117", "118", "119", "12", "120", "121", "122", "123", "124", "125", "126", "127", "128", "129", "13", "130", "131", "132", "133", "134", "135", "136", "137", "138", "139", "14", "140", "141", "142", "143", "144", "145", "146", "147", "148", "15", "16", "17", "18", "19", "2", "20", "21", "22", "23", "24", "25", "26", "27", "28", "29", "3", "30", "31", "32", "33", "34", "35", "36", "37", "38", "39", "4", "40", "41", "42", "43", "44", "45", "46", "47", "48", "49", "5", "50", "51", "52", "53", "54", "55", "56", "57", "58", "59", "6", "60", "61", "62", "63", "64", "65", "66", "67", "68", "69", "7", "70", "71", "72", "73", "74", "75", "76", "77", "78", "79", "8", "80", "81", "82", "83", "84", "85", "86", "87", "88", "89", "9", "90", "91", "92", "93", "94", "95", "96", "97", "98", "99" ]
HaoHu/vit-base-patch16-224-in21k-classify-4scence
train this model on the Contest the original dataset is 链接: https://pan.baidu.com/s/1pr094NZ2QMj3nLy12gfa6g 密码: kb7a
[ "city_road", "fog", "rain", "snow" ]
AykeeSalazar/vc-bantai-vit-withoutAMBI-adunest
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vc-bantai-vit-withoutAMBI-adunest This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.1950 - Accuracy: 0.9389 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.4821 | 0.11 | 100 | 0.7644 | 0.6714 | | 0.7032 | 0.23 | 200 | 0.5568 | 0.75 | | 0.5262 | 0.34 | 300 | 0.4440 | 0.7806 | | 0.4719 | 0.45 | 400 | 0.3893 | 0.8144 | | 0.5021 | 0.57 | 500 | 0.5129 | 0.8090 | | 0.3123 | 0.68 | 600 | 0.4536 | 0.7980 | | 0.3606 | 0.79 | 700 | 0.3679 | 0.8483 | | 0.4081 | 0.91 | 800 | 0.3335 | 0.8559 | | 0.3624 | 1.02 | 900 | 0.3149 | 0.8592 | | 0.1903 | 1.14 | 1000 | 0.3296 | 0.8766 | | 0.334 | 1.25 | 1100 | 0.2832 | 0.8897 | | 0.2731 | 1.36 | 1200 | 0.2546 | 0.8930 | | 0.311 | 1.48 | 1300 | 0.2585 | 0.8908 | | 0.3209 | 1.59 | 1400 | 0.2701 | 0.8854 | | 0.4005 | 1.7 | 1500 | 0.2643 | 0.8897 | | 0.3128 | 1.82 | 1600 | 0.2864 | 0.8843 | | 0.3376 | 1.93 | 1700 | 0.2882 | 0.8657 | | 0.2698 | 2.04 | 1800 | 0.2876 | 0.9028 | | 0.2347 | 2.16 | 1900 | 0.2405 | 0.8974 | | 0.2436 | 2.27 | 2000 | 0.2804 | 0.8886 | | 0.1764 | 2.38 | 2100 | 0.2852 | 0.8952 | | 0.1197 | 2.5 | 2200 | 0.2312 | 0.9127 | | 0.1082 | 2.61 | 2300 | 0.2133 | 0.9116 | | 0.1245 | 2.72 | 2400 | 0.2677 | 0.8985 | | 0.1335 | 2.84 | 2500 | 0.2098 | 0.9181 | | 0.2194 | 2.95 | 2600 | 0.1911 | 0.9127 | | 0.089 | 3.06 | 2700 | 0.2062 | 0.9181 | | 0.0465 | 3.18 | 2800 | 0.2414 | 0.9247 | | 0.0985 | 3.29 | 2900 | 0.1869 | 0.9389 | | 0.1113 | 3.41 | 3000 | 0.1819 | 0.9323 | | 0.1392 | 3.52 | 3100 | 0.2101 | 0.9312 | | 0.0621 | 3.63 | 3200 | 0.2201 | 0.9367 | | 0.1168 | 3.75 | 3300 | 0.1935 | 0.9389 | | 0.059 | 3.86 | 3400 | 0.1946 | 0.9367 | | 0.0513 | 3.97 | 3500 | 0.1950 | 0.9389 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
[ "nonviolation", "publicdrinking", "publicsmoking" ]
rwang5688/vit-base-patch16-224-finetuned-eurosat
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-patch16-224-finetuned-eurosat This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0469 - Accuracy: 0.9856 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.1491 | 1.0 | 190 | 0.0890 | 0.9715 | | 0.1021 | 2.0 | 380 | 0.0578 | 0.9811 | | 0.0694 | 3.0 | 570 | 0.0469 | 0.9856 | ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.1+cu102 - Datasets 2.4.0 - Tokenizers 0.12.1
[ "annualcrop", "forest", "herbaceousvegetation", "highway", "industrial", "pasture", "permanentcrop", "residential", "river", "sealake" ]
fxmarty/resnet-tiny-beans
A model trained on the beans dataset, just for testing and having a really tiny model.
[ "angular_leaf_spot", "bean_rust", "healthy" ]
AykeeSalazar/vc-bantai-vit-withoutAMBI-adunest-trial
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vc-bantai-vit-withoutAMBI-adunest-trial This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.4289 - Accuracy: 0.7798 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 0.4 | 100 | 1.0782 | 0.4451 | | No log | 0.8 | 200 | 0.5634 | 0.7156 | | No log | 1.2 | 300 | 0.7181 | 0.6684 | | No log | 1.61 | 400 | 0.4289 | 0.7798 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
[ "nonviolation", "publicdrinking", "publicsmoking" ]
AykeeSalazar/vc-bantai-vit-withoutAMBI-adunest-v1
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vc-bantai-vit-withoutAMBI-adunest-v1 This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.3318 - Accuracy: 0.9181 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 200 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 0.23 | 100 | 0.3365 | 0.8581 | | No log | 0.45 | 200 | 0.3552 | 0.8472 | | No log | 0.68 | 300 | 0.3165 | 0.8581 | | No log | 0.91 | 400 | 0.2882 | 0.8690 | | 0.3813 | 1.13 | 500 | 0.2825 | 0.8745 | | 0.3813 | 1.36 | 600 | 0.2686 | 0.9007 | | 0.3813 | 1.59 | 700 | 0.2381 | 0.9017 | | 0.3813 | 1.81 | 800 | 0.3643 | 0.8734 | | 0.3813 | 2.04 | 900 | 0.2873 | 0.8930 | | 0.2736 | 2.27 | 1000 | 0.2236 | 0.9039 | | 0.2736 | 2.49 | 1100 | 0.2652 | 0.8723 | | 0.2736 | 2.72 | 1200 | 0.2793 | 0.8952 | | 0.2736 | 2.95 | 1300 | 0.2158 | 0.8974 | | 0.2736 | 3.17 | 1400 | 0.2410 | 0.8886 | | 0.2093 | 3.4 | 1500 | 0.2262 | 0.9017 | | 0.2093 | 3.63 | 1600 | 0.2110 | 0.9214 | | 0.2093 | 3.85 | 1700 | 0.2048 | 0.9138 | | 0.2093 | 4.08 | 1800 | 0.2044 | 0.9127 | | 0.2093 | 4.31 | 1900 | 0.2591 | 0.9007 | | 0.1764 | 4.54 | 2000 | 0.2466 | 0.8952 | | 0.1764 | 4.76 | 2100 | 0.2554 | 0.9017 | | 0.1764 | 4.99 | 2200 | 0.2145 | 0.9203 | | 0.1764 | 5.22 | 2300 | 0.3187 | 0.9039 | | 0.1764 | 5.44 | 2400 | 0.3336 | 0.9050 | | 0.1454 | 5.67 | 2500 | 0.2542 | 0.9127 | | 0.1454 | 5.9 | 2600 | 0.2796 | 0.8952 | | 0.1454 | 6.12 | 2700 | 0.2410 | 0.9181 | | 0.1454 | 6.35 | 2800 | 0.2503 | 0.9148 | | 0.1454 | 6.58 | 2900 | 0.2966 | 0.8996 | | 0.1216 | 6.8 | 3000 | 0.1978 | 0.9312 | | 0.1216 | 7.03 | 3100 | 0.2297 | 0.9214 | | 0.1216 | 7.26 | 3200 | 0.2768 | 0.9203 | | 0.1216 | 7.48 | 3300 | 0.3356 | 0.9083 | | 0.1216 | 7.71 | 3400 | 0.3415 | 0.9138 | | 0.1038 | 7.94 | 3500 | 0.2398 | 0.9061 | | 0.1038 | 8.16 | 3600 | 0.3347 | 0.8963 | | 0.1038 | 8.39 | 3700 | 0.2199 | 0.9203 | | 0.1038 | 8.62 | 3800 | 0.2943 | 0.9061 | | 0.1038 | 8.84 | 3900 | 0.2561 | 0.9181 | | 0.0925 | 9.07 | 4000 | 0.4170 | 0.8777 | | 0.0925 | 9.3 | 4100 | 0.3638 | 0.8974 | | 0.0925 | 9.52 | 4200 | 0.3233 | 0.9094 | | 0.0925 | 9.75 | 4300 | 0.3496 | 0.9203 | | 0.0925 | 9.98 | 4400 | 0.3621 | 0.8996 | | 0.0788 | 10.2 | 4500 | 0.3260 | 0.9116 | | 0.0788 | 10.43 | 4600 | 0.3979 | 0.9061 | | 0.0788 | 10.66 | 4700 | 0.3301 | 0.8974 | | 0.0788 | 10.88 | 4800 | 0.2197 | 0.9105 | | 0.0788 | 11.11 | 4900 | 0.3306 | 0.9148 | | 0.0708 | 11.34 | 5000 | 0.3318 | 0.9181 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
[ "nonviolation", "publicdrinking", "publicsmoking" ]
AlexKolosov/my_first_model
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_first_model This model is a fine-tuned version of [microsoft/resnet-50](https://huggingface.co/microsoft/resnet-50) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.6853 - Accuracy: 0.6 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6918 | 1.0 | 23 | 0.6895 | 0.8 | | 0.7019 | 2.0 | 46 | 0.6859 | 0.6 | | 0.69 | 3.0 | 69 | 0.6853 | 0.6 | ### Framework versions - Transformers 4.22.0.dev0 - Pytorch 1.12.0+cu102 - Datasets 2.4.0 - Tokenizers 0.12.1
[ "cats", "dogs" ]
espejelomar/vit-base-beans
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-beans This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the beans dataset. It achieves the following results on the evaluation set: - Loss: 0.0637 - Accuracy: 0.9850 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.1387 | 3.85 | 500 | 0.0637 | 0.9850 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
[ "angular_leaf_spot", "bean_rust", "healthy" ]
platzi/platzi-vit-base-beans-omar-espejel
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # platzi-vit-base-beans This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the beans dataset. It achieves the following results on the evaluation set: - Loss: 0.0336 - Accuracy: 0.9925 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.1381 | 3.85 | 500 | 0.0336 | 0.9925 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
[ "angular_leaf_spot", "bean_rust", "healthy" ]
keithanpai/swin-tiny-patch4-window7-224-finetuned-eurosat
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224-finetuned-eurosat This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.5603 - Accuracy: 0.7914 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.67 | 0.99 | 70 | 0.7920 | 0.7265 | | 0.5856 | 1.99 | 140 | 0.6192 | 0.7804 | | 0.5612 | 2.99 | 210 | 0.5603 | 0.7914 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.8.0 - Tokenizers 0.13.2
[ "akiecf", "bccf", "bklf", "dff", "melf", "nvf", "vascf" ]
keithanpai/vit-base-patch16-224-finetuned-eurosat
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-patch16-224-finetuned-eurosat This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.3953 - Accuracy: 0.8633 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6081 | 0.99 | 70 | 0.5482 | 0.8004 | | 0.4515 | 1.99 | 140 | 0.4245 | 0.8533 | | 0.3967 | 2.99 | 210 | 0.3953 | 0.8633 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
[ "akiecf", "bccf", "bklf", "dff", "melf", "nvf", "vascf" ]
keithanpai/vit-base-patch32-384-finetuned-eurosat
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-patch32-384-finetuned-eurosat This model is a fine-tuned version of [google/vit-base-patch32-384](https://huggingface.co/google/vit-base-patch32-384) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.4381 - Accuracy: 0.8423 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.607 | 0.99 | 70 | 0.5609 | 0.8014 | | 0.5047 | 1.99 | 140 | 0.4634 | 0.8373 | | 0.4089 | 2.99 | 210 | 0.4381 | 0.8423 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
[ "akiecf", "bccf", "bklf", "dff", "melf", "nvf", "vascf" ]
keithanpai/resnet-50-finetuned-eurosat
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # resnet-50-finetuned-eurosat This model is a fine-tuned version of [microsoft/resnet-50](https://huggingface.co/microsoft/resnet-50) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.1981 - Accuracy: 0.6677 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.5279 | 0.99 | 70 | 1.5218 | 0.6677 | | 1.1982 | 1.99 | 140 | 1.2405 | 0.6677 | | 1.0836 | 2.99 | 210 | 1.1981 | 0.6677 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
[ "akiecf", "bccf", "bklf", "dff", "melf", "nvf", "vascf" ]
keithanpai/tiny-random-vit-finetuned-eurosat
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tiny-random-vit-finetuned-eurosat This model is a fine-tuned version of [hf-internal-testing/tiny-random-vit](https://huggingface.co/hf-internal-testing/tiny-random-vit) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.0488 - Accuracy: 0.6647 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.1192 | 0.99 | 70 | 1.0867 | 0.6627 | | 1.067 | 1.99 | 140 | 1.0563 | 0.6657 | | 0.9719 | 2.99 | 210 | 1.0488 | 0.6647 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
[ "akiecf", "bccf", "bklf", "dff", "melf", "nvf", "vascf" ]
keithanpai/dit-base-finetuned-rvlcdip-finetuned-eurosat
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # dit-base-finetuned-rvlcdip-finetuned-eurosat This model is a fine-tuned version of [microsoft/dit-base-finetuned-rvlcdip](https://huggingface.co/microsoft/dit-base-finetuned-rvlcdip) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.7997 - Accuracy: 0.7315 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.9844 | 0.99 | 70 | 0.9493 | 0.6647 | | 0.8775 | 1.99 | 140 | 0.8594 | 0.7016 | | 0.8192 | 2.99 | 210 | 0.7997 | 0.7315 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
[ "akiecf", "bccf", "bklf", "dff", "melf", "nvf", "vascf" ]
AykeeSalazar/vc-bantai-vit-withoutAMBI-adunest-v2
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vc-bantai-vit-withoutAMBI-adunest-v2 This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.8271 - Accuracy: 0.7705 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 200 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 0.4 | 100 | 0.3811 | 0.8511 | | No log | 0.81 | 200 | 0.3707 | 0.8609 | | No log | 1.21 | 300 | 0.5708 | 0.7325 | | No log | 1.61 | 400 | 0.3121 | 0.8778 | | 0.3308 | 2.02 | 500 | 0.3358 | 0.8445 | | 0.3308 | 2.42 | 600 | 0.2820 | 0.8768 | | 0.3308 | 2.82 | 700 | 0.4825 | 0.7695 | | 0.3308 | 3.23 | 800 | 0.3133 | 0.8640 | | 0.3308 | 3.63 | 900 | 0.4509 | 0.8219 | | 0.2028 | 4.03 | 1000 | 0.5426 | 0.7551 | | 0.2028 | 4.44 | 1100 | 0.4886 | 0.8552 | | 0.2028 | 4.84 | 1200 | 0.5649 | 0.7695 | | 0.2028 | 5.24 | 1300 | 0.5925 | 0.7900 | | 0.2028 | 5.65 | 1400 | 0.4203 | 0.8439 | | 0.1471 | 6.05 | 1500 | 0.4275 | 0.8486 | | 0.1471 | 6.45 | 1600 | 0.3683 | 0.8727 | | 0.1471 | 6.85 | 1700 | 0.5709 | 0.8121 | | 0.1471 | 7.26 | 1800 | 0.6209 | 0.7680 | | 0.1471 | 7.66 | 1900 | 0.4971 | 0.8147 | | 0.101 | 8.06 | 2000 | 0.8792 | 0.7567 | | 0.101 | 8.47 | 2100 | 0.3288 | 0.8670 | | 0.101 | 8.87 | 2200 | 0.3643 | 0.8342 | | 0.101 | 9.27 | 2300 | 0.4883 | 0.8711 | | 0.101 | 9.68 | 2400 | 0.2892 | 0.8943 | | 0.0667 | 10.08 | 2500 | 0.5437 | 0.8398 | | 0.0667 | 10.48 | 2600 | 0.5841 | 0.8450 | | 0.0667 | 10.89 | 2700 | 0.8016 | 0.8219 | | 0.0667 | 11.29 | 2800 | 0.6389 | 0.7772 | | 0.0667 | 11.69 | 2900 | 0.3714 | 0.8753 | | 0.0674 | 12.1 | 3000 | 0.9811 | 0.7130 | | 0.0674 | 12.5 | 3100 | 0.6359 | 0.8101 | | 0.0674 | 12.9 | 3200 | 0.5691 | 0.8285 | | 0.0674 | 13.31 | 3300 | 0.6123 | 0.8316 | | 0.0674 | 13.71 | 3400 | 0.3655 | 0.8978 | | 0.0525 | 14.11 | 3500 | 0.4988 | 0.8583 | | 0.0525 | 14.52 | 3600 | 0.6153 | 0.8450 | | 0.0525 | 14.92 | 3700 | 0.4189 | 0.8881 | | 0.0525 | 15.32 | 3800 | 0.9713 | 0.7967 | | 0.0525 | 15.73 | 3900 | 1.1224 | 0.7967 | | 0.0438 | 16.13 | 4000 | 0.5725 | 0.8578 | | 0.0438 | 16.53 | 4100 | 0.4725 | 0.8532 | | 0.0438 | 16.94 | 4200 | 0.4696 | 0.8640 | | 0.0438 | 17.34 | 4300 | 0.4028 | 0.8789 | | 0.0438 | 17.74 | 4400 | 0.9452 | 0.7746 | | 0.0462 | 18.15 | 4500 | 0.4455 | 0.8783 | | 0.0462 | 18.55 | 4600 | 0.6328 | 0.8311 | | 0.0462 | 18.95 | 4700 | 0.6707 | 0.8296 | | 0.0462 | 19.35 | 4800 | 0.7771 | 0.8429 | | 0.0462 | 19.76 | 4900 | 1.2832 | 0.7408 | | 0.0381 | 20.16 | 5000 | 0.5415 | 0.8737 | | 0.0381 | 20.56 | 5100 | 0.8932 | 0.7977 | | 0.0381 | 20.97 | 5200 | 0.5182 | 0.8691 | | 0.0381 | 21.37 | 5300 | 0.5967 | 0.8794 | | 0.0381 | 21.77 | 5400 | 0.8271 | 0.7705 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
[ "nonviolation", "publicdrinking", "publicsmoking" ]
arize-ai/resnet-50-fashion-mnist-quality-drift
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # resnet-50-fashion-mnist-quality-drift This model is a fine-tuned version of [microsoft/resnet-50](https://huggingface.co/microsoft/resnet-50) on the fashion_mnist_quality_drift dataset. It achieves the following results on the evaluation set: - Loss: 0.7473 - Accuracy: 0.73 - F1: 0.7289 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 1.5138 | 1.0 | 750 | 0.9237 | 0.684 | 0.6826 | | 0.9377 | 2.0 | 1500 | 0.7861 | 0.722 | 0.7253 | | 0.8276 | 3.0 | 2250 | 0.7473 | 0.73 | 0.7289 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
[ "t-shirt", "trouser", "pullover", "dress", "coat", "sandal", "shirt", "sneaker", "bag", "ankle-boot" ]
alkzar90/croupier-creature-classifier
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # croupier-creature-classifier This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the croupier-mtg-dataset dataset. It achieves the following results on the evaluation set: - Loss: 0.7583 - Accuracy: 0.7471 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6663 | 1.1 | 100 | 1.0179 | 0.5941 | | 0.4924 | 2.2 | 200 | 0.7036 | 0.7529 | | 0.4552 | 3.3 | 300 | 0.6123 | 0.7824 | | 0.2355 | 4.4 | 400 | 0.5748 | 0.7647 | ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
[ "elf", "goblin", "knight", "zombie" ]
Chandanab/swin-tiny-patch4-window7-224-finetuned-eurosat
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224-finetuned-eurosat This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the image_folder dataset. It achieves the following results on the evaluation set: - Loss: 0.1677 - Accuracy: 0.9394 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 7 | 0.3554 | 0.8081 | | 0.4819 | 2.0 | 14 | 0.2077 | 0.9091 | | 0.1985 | 3.0 | 21 | 0.1677 | 0.9394 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cpu - Datasets 2.2.0 - Tokenizers 0.12.1
[ "defense_images", "non_defense images" ]
AykeeSalazar/vc-bantai-vit-withoutAMBI-adunest-v3
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vc-bantai-vit-withoutAMBI-adunest-v3 This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.8889 - Accuracy: 0.8218 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 200 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 0.38 | 100 | 0.8208 | 0.7147 | | No log | 0.76 | 200 | 0.8861 | 0.7595 | | No log | 1.14 | 300 | 0.4306 | 0.7910 | | No log | 1.52 | 400 | 0.5222 | 0.8245 | | 0.3448 | 1.9 | 500 | 0.8621 | 0.7602 | | 0.3448 | 2.28 | 600 | 0.2902 | 0.8801 | | 0.3448 | 2.66 | 700 | 0.3687 | 0.8426 | | 0.3448 | 3.04 | 800 | 0.3585 | 0.8694 | | 0.3448 | 3.42 | 900 | 0.6546 | 0.7897 | | 0.2183 | 3.8 | 1000 | 0.3881 | 0.8272 | | 0.2183 | 4.18 | 1100 | 0.9650 | 0.7709 | | 0.2183 | 4.56 | 1200 | 0.6444 | 0.7917 | | 0.2183 | 4.94 | 1300 | 0.4685 | 0.8707 | | 0.2183 | 5.32 | 1400 | 0.4972 | 0.8506 | | 0.157 | 5.7 | 1500 | 0.4010 | 0.8513 | | 0.157 | 6.08 | 1600 | 0.4629 | 0.8419 | | 0.157 | 6.46 | 1700 | 0.4258 | 0.8714 | | 0.157 | 6.84 | 1800 | 0.4383 | 0.8573 | | 0.157 | 7.22 | 1900 | 0.5324 | 0.8493 | | 0.113 | 7.6 | 2000 | 0.3212 | 0.8942 | | 0.113 | 7.98 | 2100 | 0.8621 | 0.8326 | | 0.113 | 8.37 | 2200 | 0.6050 | 0.8131 | | 0.113 | 8.75 | 2300 | 0.7173 | 0.7991 | | 0.113 | 9.13 | 2400 | 0.5313 | 0.8125 | | 0.0921 | 9.51 | 2500 | 0.6584 | 0.8158 | | 0.0921 | 9.89 | 2600 | 0.8727 | 0.7930 | | 0.0921 | 10.27 | 2700 | 0.4222 | 0.8922 | | 0.0921 | 10.65 | 2800 | 0.5811 | 0.8265 | | 0.0921 | 11.03 | 2900 | 0.6175 | 0.8372 | | 0.0701 | 11.41 | 3000 | 0.3914 | 0.8835 | | 0.0701 | 11.79 | 3100 | 0.3364 | 0.8654 | | 0.0701 | 12.17 | 3200 | 0.6223 | 0.8359 | | 0.0701 | 12.55 | 3300 | 0.7830 | 0.8125 | | 0.0701 | 12.93 | 3400 | 0.4356 | 0.8942 | | 0.0552 | 13.31 | 3500 | 0.7553 | 0.8232 | | 0.0552 | 13.69 | 3600 | 0.9107 | 0.8292 | | 0.0552 | 14.07 | 3700 | 0.6108 | 0.8580 | | 0.0552 | 14.45 | 3800 | 0.5732 | 0.8567 | | 0.0552 | 14.83 | 3900 | 0.5087 | 0.8614 | | 0.0482 | 15.21 | 4000 | 0.8889 | 0.8218 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
[ "nonviolation", "publicdrinking", "publicsmoking" ]
woojinSong/my_bean_VIT
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_bean_VIT This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the beans dataset. It achieves the following results on the evaluation set: - Loss: 0.0321 - Accuracy: 0.9925 ## Model description Bean datasets based Vision Transformer model. ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2698 | 1.54 | 100 | 0.1350 | 0.9549 | | 0.0147 | 3.08 | 200 | 0.0321 | 0.9925 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
[ "angular_leaf_spot", "bean_rust", "healthy" ]
fedihch/InvoiceReceiptClassifier
**InvoiceReceiptClassifier** is a fine-tuned LayoutLMv2 model that classifies a document to an invoice or receipt. ## Quick start: using the raw model ```python from transformers import ( AutoModelForSequenceClassification, AutoProcessor, ) from PIL import Image from urllib.request import urlopen model = AutoModelForSequenceClassification.from_pretrained("fedihch/InvoiceReceiptClassifier") processor = AutoProcessor.from_pretrained("fedihch/InvoiceReceiptClassifier") input_img_url = "https://upload.wikimedia.org/wikipedia/commons/thumb/0/0b/ReceiptSwiss.jpg/1024px-ReceiptSwiss.jpg" with urlopen(input_img_url) as testImage: input_img = Image.open(testImage).convert("RGB") encoded_inputs = processor(input_img, padding="max_length", return_tensors="pt") outputs = model(**encoded_inputs) logits = outputs.logits predicted_class_idx = logits.argmax(-1).item() id2label = {0: "invoice", 1: "receipt"} print(id2label[predicted_class_idx]) ```
[ "label_0", "label_1", "label_2", "label_3", "label_4", "label_5", "label_6", "label_7", "label_8", "label_9", "label_10", "label_11", "label_12", "label_13", "label_14", "label_15", "label_16", "label_17", "label_18", "label_19" ]
therealcyberlord/stanford-car-vit-patch16
# ViT Fine-tuned on Stanford Car Dataset Base model: https://huggingface.co/google/vit-base-patch16-224 This achieves around 86% on the testing set, you can use it as a baseline for further tuning. # Dataset Description The Stanford car dataset contains 16,185 images of 196 classes of cars. Classes are typically at the level of Make, Model, Year, e.g. 2012 Tesla Model S or 2012 BMW M3 coupe. The data is split into 8144 training images, 6,041 testing images, and 2000 validation images in this case. ** Please note: this dataset does not contain newer car models ** # Using the Model in the Transformer Library ``` from transformers import AutoFeatureExtractor, AutoModelForImageClassification extractor = AutoFeatureExtractor.from_pretrained("therealcyberlord/stanford-car-vit-patch16") model = AutoModelForImageClassification.from_pretrained("therealcyberlord/stanford-car-vit-patch16") ``` # Citations 3D Object Representations for Fine-Grained Categorization Jonathan Krause, Michael Stark, Jia Deng, Li Fei-Fei 4th IEEE Workshop on 3D Representation and Recognition, at ICCV 2013 (3dRR-13). Sydney, Australia. Dec. 8, 2013.
[ "dodge ram pickup 3500 crew cab 2010", "cadillac cts-v sedan 2012", "buick regal gs 2012", "daewoo nubira wagon 2002", "mercedes-benz e-class sedan 2012", "dodge caravan minivan 1997", "bentley continental flying spur sedan 2007", "cadillac srx suv 2012", "maybach landaulet convertible 2012", "fiat 500 convertible 2012", "bentley arnage sedan 2009", "hyundai tucson suv 2012", "lamborghini aventador coupe 2012", "aston martin v8 vantage convertible 2012", "chevrolet silverado 1500 classic extended cab 2007", "ford f-450 super duty crew cab 2012", "hyundai veloster hatchback 2012", "dodge magnum wagon 2008", "gmc canyon extended cab 2012", "infiniti qx56 suv 2011", "lamborghini gallardo lp 570-4 superleggera 2012", "chrysler sebring convertible 2010", "chevrolet silverado 2500hd regular cab 2012", "chevrolet cobalt ss 2010", "rolls-royce phantom drophead coupe convertible 2012", "hummer h2 sut crew cab 2009", "scion xd hatchback 2012", "spyker c8 coupe 2009", "ford e-series wagon van 2012", "toyota 4runner suv 2012", "porsche panamera sedan 2012", "nissan nv passenger van 2012", "audi s6 sedan 2011", "nissan 240sx coupe 1998", "toyota camry sedan 2012", "audi tt hatchback 2011", "acura rl sedan 2012", "spyker c8 convertible 2009", "bmw m5 sedan 2010", "hyundai sonata hybrid sedan 2012", "mercedes-benz s-class sedan 2012", "hyundai santa fe suv 2012", "bmw 1 series convertible 2012", "ford fiesta sedan 2012", "dodge charger srt-8 2009", "aston martin virage convertible 2012", "chevrolet malibu hybrid sedan 2010", "ford freestar minivan 2007", "dodge dakota club cab 2007", "am general hummer suv 2000", "aston martin v8 vantage coupe 2012", "ford f-150 regular cab 2012", "volkswagen golf hatchback 1991", "volkswagen golf hatchback 2012", "ferrari 458 italia convertible 2012", "audi a5 coupe 2012", "volvo c30 hatchback 2012", "honda odyssey minivan 2012", "dodge journey suv 2012", "hummer h3t crew cab 2010", "chevrolet silverado 1500 extended cab 2012", "dodge ram pickup 3500 quad cab 2009", "dodge durango suv 2007", "ford edge suv 2012", "ford expedition el suv 2009", "ferrari ff coupe 2012", "honda odyssey minivan 2007", "hyundai elantra sedan 2007", "bmw x6 suv 2012", "ford ranger supercab 2011", "nissan leaf hatchback 2012", "chevrolet silverado 1500 hybrid crew cab 2012", "volkswagen beetle hatchback 2012", "nissan juke hatchback 2012", "dodge sprinter cargo van 2009", "ford f-150 regular cab 2007", "honda accord coupe 2012", "ferrari california convertible 2012", "bmw 6 series convertible 2007", "audi 100 wagon 1994", "audi s4 sedan 2007", "jeep patriot suv 2012", "chevrolet avalanche crew cab 2012", "chevrolet trailblazer ss 2009", "audi r8 coupe 2012", "eagle talon hatchback 1998", "bentley continental supersports conv. convertible 2012", "mercedes-benz sl-class coupe 2009", "volvo xc90 suv 2007", "mercedes-benz c-class sedan 2012", "volvo 240 sedan 1993", "bmw 1 series coupe 2012", "bmw x3 suv 2012", "dodge charger sedan 2012", "chevrolet silverado 1500 regular cab 2012", "acura integra type r 2001", "suzuki sx4 hatchback 2012", "ford mustang convertible 2007", "bentley continental gt coupe 2012", "chevrolet sonic sedan 2012", "lamborghini diablo coupe 2001", "plymouth neon coupe 1999", "cadillac escalade ext crew cab 2007", "chevrolet corvette ron fellows edition z06 2007", "chevrolet camaro convertible 2012", "mini cooper roadster convertible 2012", "gmc acadia suv 2012", "chevrolet impala sedan 2007", "audi s5 convertible 2012", "ford focus sedan 2007", "ford gt coupe 2006", "mclaren mp4-12c coupe 2012", "dodge caliber wagon 2012", "acura tsx sedan 2012", "chrysler 300 srt-8 2010", "jeep wrangler suv 2012", "chevrolet monte carlo coupe 2007", "chevrolet hhr ss 2010", "dodge dakota crew cab 2010", "ram c-v cargo van minivan 2012", "jeep compass suv 2012", "hyundai veracruz suv 2012", "buick verano sedan 2012", "isuzu ascender suv 2008", "hyundai accent sedan 2012", "audi tt rs coupe 2012", "geo metro convertible 1993", "buick enclave suv 2012", "mercedes-benz 300-class convertible 1993", "dodge caliber wagon 2007", "smart fortwo convertible 2012", "hyundai genesis sedan 2012", "jeep liberty suv 2012", "chevrolet traverse suv 2012", "bmw m6 convertible 2010", "bentley mulsanne sedan 2011", "jaguar xk xkr 2012", "dodge challenger srt8 2011", "chevrolet malibu sedan 2007", "hyundai sonata sedan 2012", "land rover lr2 suv 2012", "audi v8 sedan 1994", "infiniti g coupe ipl 2012", "bugatti veyron 16.4 coupe 2009", "acura zdx hatchback 2012", "hyundai elantra touring hatchback 2012", "suzuki aerio sedan 2007", "ferrari 458 italia coupe 2012", "bmw z4 convertible 2012", "chevrolet corvette zr1 2012", "honda accord sedan 2012", "rolls-royce ghost sedan 2012", "suzuki kizashi sedan 2012", "audi s5 coupe 2012", "audi s4 sedan 2012", "lamborghini reventon coupe 2008", "chevrolet express cargo van 2007", "jeep grand cherokee suv 2012", "lincoln town car sedan 2011", "gmc terrain suv 2012", "toyota corolla sedan 2012", "toyota sequoia suv 2012", "mitsubishi lancer sedan 2012", "chevrolet express van 2007", "bmw activehybrid 5 sedan 2012", "acura tl type-s 2008", "land rover range rover suv 2012", "chevrolet corvette convertible 2012", "gmc yukon hybrid suv 2012", "bmw 3 series sedan 2012", "chevrolet tahoe hybrid suv 2012", "bugatti veyron 16.4 convertible 2009", "dodge durango suv 2012", "aston martin virage coupe 2012", "chrysler town and country minivan 2012", "suzuki sx4 sedan 2012", "chrysler crossfire convertible 2008", "audi 100 sedan 1994", "audi tts coupe 2012", "bentley continental gt coupe 2007", "buick rainier suv 2007", "mazda tribute suv 2011", "bmw m3 coupe 2012", "bmw x5 suv 2007", "fiat 500 abarth 2012", "rolls-royce phantom sedan 2012", "gmc savana van 2012", "chrysler pt cruiser convertible 2008", "fisker karma sedan 2012", "tesla model s sedan 2012", "bmw 3 series wagon 2012", "mercedes-benz sprinter van 2012", "hyundai azera sedan 2012", "chrysler aspen suv 2009", "acura tl sedan 2012", "audi rs 4 convertible 2008" ]
Chandanab/vit-base-patch16-224-in21k-finetuned-eurosat
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-patch16-224-in21k-finetuned-eurosat This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the image_folder dataset. It achieves the following results on the evaluation set: - Loss: 0.3648 - Accuracy: 0.9017 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 0.91 | 5 | 0.5982 | 0.7492 | | 0.645 | 1.91 | 10 | 0.4862 | 0.7593 | | 0.645 | 2.91 | 15 | 0.4191 | 0.7966 | | 0.465 | 3.91 | 20 | 0.3803 | 0.8780 | | 0.465 | 4.91 | 25 | 0.3648 | 0.9017 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cpu - Datasets 2.2.0 - Tokenizers 0.12.1
[ "defense_images", "non_defense images" ]
Chandanab/deit-tiny-patch16-224-finetuned-eurosat
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deit-tiny-patch16-224-finetuned-eurosat This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co/facebook/deit-tiny-patch16-224) on the image_folder dataset. It achieves the following results on the evaluation set: - Loss: 0.1779 - Accuracy: 0.9192 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 7 | 0.3528 | 0.8283 | | 0.5571 | 2.0 | 14 | 0.2141 | 0.8788 | | 0.197 | 3.0 | 21 | 0.1779 | 0.9192 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cpu - Datasets 2.2.0 - Tokenizers 0.12.1
[ "defense_images", "non_defense images" ]
Chandanab/beit-base-patch16-224-pt22k-finetuned-eurosat
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # beit-base-patch16-224-pt22k-finetuned-eurosat This model is a fine-tuned version of [microsoft/beit-base-patch16-224-pt22k](https://huggingface.co/microsoft/beit-base-patch16-224-pt22k) on the image_folder dataset. It achieves the following results on the evaluation set: - Loss: 0.3045 - Accuracy: 0.8586 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 7 | 0.5181 | 0.7071 | | 0.6727 | 2.0 | 14 | 0.4030 | 0.8182 | | 0.3522 | 3.0 | 21 | 0.3045 | 0.8586 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cpu - Datasets 2.2.0 - Tokenizers 0.12.1
[ "defense_images", "non_defense images" ]
ahsanjavid/convnext-tiny-finetuned-cifar10
# ConvNext-tiny-finetuned-cifar10 (tiny-sized model) ConvNeXT model trained on ImageNet-1k at resolution 224x224. It was introduced in the paper [A ConvNet for the 2020s](https://arxiv.org/abs/2201.03545) by Liu et al. and first released in [this repository](https://github.com/facebookresearch/ConvNeXt). Convnext tiny finetuned on cifar 10 dataset. Which has ten classes. Disclaimer: The team releasing ConvNeXT did not write a model card for this model so this model card has been written by the Hugging Face team.
[ "airplane", "automobile", "bird", "cat", "deer", "dog", "frog", "horse", "ship", "truck" ]
fxmarty/levit-256-onnx
This model is a fork of [facebook/levit-256](https://huggingface.co/facebook/levit-256), where: * `nn.BatchNorm2d` and `nn.Conv2d` are fused * `nn.BatchNorm1d` and `nn.Linear` are fused and the optimized model is converted to the onnx format. The fusion of layers leverages torch.fx, using the transformations `FuseBatchNorm2dInConv2d` and `FuseBatchNorm1dInLinear` soon to be available to use out-of-the-box with 🤗 Optimum, check it out: https://huggingface.co/docs/optimum/main/en/fx/optimization#the-transformation-guide . ## How to use ```python from optimum.onnxruntime.modeling_ort import ORTModelForImageClassification from transformers import AutoFeatureExtractor from PIL import Image import requests preprocessor = AutoFeatureExtractor.from_pretrained("fxmarty/levit-256-onnx") ort_model = ORTModelForImageClassification.from_pretrained("fxmarty/levit-256-onnx") url = 'http://images.cocodataset.org/val2017/000000039769.jpg' image = Image.open(requests.get(url, stream=True).raw) inputs = preprocessor(images=image, return_tensors="pt") outputs = model(**inputs) predicted_class_idx = outputs.logits.argmax(-1).item() print("Predicted class:", model.config.id2label[predicted_class_idx]) ``` To be safe, check as well that the onnx model returns the same logits as the PyTorch model: ```python from optimum.onnxruntime.modeling_ort import ORTModelForImageClassification from transformers import AutoModelForImageClassification pt_model = AutoModelForImageClassification.from_pretrained("facebook/levit-256") pt_model.eval() ort_model = ORTModelForImageClassification.from_pretrained("fxmarty/levit-256-onnx") inp = {"pixel_values": torch.rand(1, 3, 224, 224)} with torch.no_grad(): res = pt_model(**inp) res_ort = ort_model(**inp) assert torch.allclose(res.logits, res_ort.logits, atol=1e-4) ``` ## Benchmarking More than x2 throughput with batch normalization folding and onnxruntime 🔥 Below you can find latency percentiles and mean (in ms), and the models throughput (in iterations/s). ``` PyTorch runtime: {'latency_50': 22.3024695, 'latency_90': 23.1230725, 'latency_95': 23.2653985, 'latency_99': 23.60095705, 'latency_999': 23.865580469999998, 'latency_mean': 22.442956878923766, 'latency_std': 0.46544295612971265, 'nb_forwards': 446, 'throughput': 44.6} Optimum-onnxruntime runtime: {'latency_50': 9.302445, 'latency_90': 9.782875, 'latency_95': 9.9071944, 'latency_99': 11.084606999999997, 'latency_999': 12.035858692000001, 'latency_mean': 9.357703552853133, 'latency_std': 0.4018553286992142, 'nb_forwards': 1069, 'throughput': 106.9} ``` Run on your own machine with: ```python from optimum.runs_base import TimeBenchmark from pprint import pprint time_benchmark_ort = TimeBenchmark( model=ort_model, batch_size=1, input_length=224, model_input_names={"pixel_values"}, warmup_runs=10, duration=10 ) results_ort = time_benchmark_ort.execute() with torch.no_grad(): time_benchmark_pt = TimeBenchmark( model=pt_model, batch_size=1, input_length=224, model_input_names={"pixel_values"}, warmup_runs=10, duration=10 ) results_pt = time_benchmark_pt.execute() print("PyTorch runtime:\n") pprint(results_pt) print("\nOptimum-onnxruntime runtime:\n") pprint(results_ort) ```
[ "tench, tinca tinca", "goldfish, carassius auratus", "great white shark, white shark, man-eater, man-eating shark, carcharodon carcharias", "tiger shark, galeocerdo cuvieri", "hammerhead, hammerhead shark", "electric ray, crampfish, numbfish, torpedo", "stingray", "cock", "hen", "ostrich, struthio camelus", "brambling, fringilla montifringilla", "goldfinch, carduelis carduelis", "house finch, linnet, carpodacus mexicanus", "junco, snowbird", "indigo bunting, indigo finch, indigo bird, passerina cyanea", "robin, american robin, turdus migratorius", "bulbul", "jay", "magpie", "chickadee", "water ouzel, dipper", "kite", "bald eagle, american eagle, haliaeetus leucocephalus", "vulture", "great grey owl, great gray owl, strix nebulosa", "european fire salamander, salamandra salamandra", "common newt, triturus vulgaris", "eft", "spotted salamander, ambystoma maculatum", "axolotl, mud puppy, ambystoma mexicanum", "bullfrog, rana catesbeiana", "tree frog, tree-frog", "tailed frog, bell toad, ribbed toad, tailed toad, ascaphus trui", "loggerhead, loggerhead turtle, caretta caretta", "leatherback turtle, leatherback, leathery turtle, dermochelys coriacea", "mud turtle", "terrapin", "box turtle, box tortoise", "banded gecko", "common iguana, iguana, iguana iguana", "american chameleon, anole, anolis carolinensis", "whiptail, whiptail lizard", "agama", "frilled lizard, chlamydosaurus kingi", "alligator lizard", "gila monster, heloderma suspectum", "green lizard, lacerta viridis", "african chameleon, chamaeleo chamaeleon", "komodo dragon, komodo lizard, dragon lizard, giant lizard, varanus komodoensis", "african crocodile, nile crocodile, crocodylus niloticus", "american alligator, alligator mississipiensis", "triceratops", "thunder snake, worm snake, carphophis amoenus", "ringneck snake, ring-necked snake, ring snake", "hognose snake, puff adder, sand viper", "green snake, grass snake", "king snake, kingsnake", "garter snake, grass snake", "water snake", "vine snake", "night snake, hypsiglena torquata", "boa constrictor, constrictor constrictor", "rock python, rock snake, python sebae", "indian cobra, naja naja", "green mamba", "sea snake", "horned viper, cerastes, sand viper, horned asp, cerastes cornutus", "diamondback, diamondback rattlesnake, crotalus adamanteus", "sidewinder, horned rattlesnake, crotalus cerastes", "trilobite", "harvestman, daddy longlegs, phalangium opilio", "scorpion", "black and gold garden spider, argiope aurantia", "barn spider, araneus cavaticus", "garden spider, aranea diademata", "black widow, latrodectus mactans", "tarantula", "wolf spider, hunting spider", "tick", "centipede", "black grouse", "ptarmigan", "ruffed grouse, partridge, bonasa umbellus", "prairie chicken, prairie grouse, prairie fowl", "peacock", "quail", "partridge", "african grey, african gray, psittacus erithacus", "macaw", "sulphur-crested cockatoo, kakatoe galerita, cacatua galerita", "lorikeet", "coucal", "bee eater", "hornbill", "hummingbird", "jacamar", "toucan", "drake", "red-breasted merganser, mergus serrator", "goose", "black swan, cygnus atratus", "tusker", "echidna, spiny anteater, anteater", "platypus, duckbill, duckbilled platypus, duck-billed platypus, ornithorhynchus anatinus", "wallaby, brush kangaroo", "koala, koala bear, kangaroo bear, native bear, phascolarctos cinereus", "wombat", "jellyfish", "sea anemone, anemone", "brain coral", "flatworm, platyhelminth", "nematode, nematode worm, roundworm", "conch", "snail", "slug", "sea slug, nudibranch", "chiton, coat-of-mail shell, sea cradle, polyplacophore", "chambered nautilus, pearly nautilus, nautilus", "dungeness crab, cancer magister", "rock crab, cancer irroratus", "fiddler crab", "king crab, alaska crab, alaskan king crab, alaska king crab, paralithodes camtschatica", "american lobster, northern lobster, maine lobster, homarus americanus", "spiny lobster, langouste, rock lobster, crawfish, crayfish, sea crawfish", "crayfish, crawfish, crawdad, crawdaddy", "hermit crab", "isopod", "white stork, ciconia ciconia", "black stork, ciconia nigra", "spoonbill", "flamingo", "little blue heron, egretta caerulea", "american egret, great white heron, egretta albus", "bittern", "crane", "limpkin, aramus pictus", "european gallinule, porphyrio porphyrio", "american coot, marsh hen, mud hen, water hen, fulica americana", "bustard", "ruddy turnstone, arenaria interpres", "red-backed sandpiper, dunlin, erolia alpina", "redshank, tringa totanus", "dowitcher", "oystercatcher, oyster catcher", "pelican", "king penguin, aptenodytes patagonica", "albatross, mollymawk", "grey whale, gray whale, devilfish, eschrichtius gibbosus, eschrichtius robustus", "killer whale, killer, orca, grampus, sea wolf, orcinus orca", "dugong, dugong dugon", "sea lion", "chihuahua", "japanese spaniel", "maltese dog, maltese terrier, maltese", "pekinese, pekingese, peke", "shih-tzu", "blenheim spaniel", "papillon", "toy terrier", "rhodesian ridgeback", "afghan hound, afghan", "basset, basset hound", "beagle", "bloodhound, sleuthhound", "bluetick", "black-and-tan coonhound", "walker hound, walker foxhound", "english foxhound", "redbone", "borzoi, russian wolfhound", "irish wolfhound", "italian greyhound", "whippet", "ibizan hound, ibizan podenco", "norwegian elkhound, elkhound", "otterhound, otter hound", "saluki, gazelle hound", "scottish deerhound, deerhound", "weimaraner", "staffordshire bullterrier, staffordshire bull terrier", "american staffordshire terrier, staffordshire terrier, american pit bull terrier, pit bull terrier", "bedlington terrier", "border terrier", "kerry blue terrier", "irish terrier", "norfolk terrier", "norwich terrier", "yorkshire terrier", "wire-haired fox terrier", "lakeland terrier", "sealyham terrier, sealyham", "airedale, airedale terrier", "cairn, cairn terrier", "australian terrier", "dandie dinmont, dandie dinmont terrier", "boston bull, boston terrier", "miniature schnauzer", "giant schnauzer", "standard schnauzer", "scotch terrier, scottish terrier, scottie", "tibetan terrier, chrysanthemum dog", "silky terrier, sydney silky", "soft-coated wheaten terrier", "west highland white terrier", "lhasa, lhasa apso", "flat-coated retriever", "curly-coated retriever", "golden retriever", "labrador retriever", "chesapeake bay retriever", "german short-haired pointer", "vizsla, hungarian pointer", "english setter", "irish setter, red setter", "gordon setter", "brittany spaniel", "clumber, clumber spaniel", "english springer, english springer spaniel", "welsh springer spaniel", "cocker spaniel, english cocker spaniel, cocker", "sussex spaniel", "irish water spaniel", "kuvasz", "schipperke", "groenendael", "malinois", "briard", "kelpie", "komondor", "old english sheepdog, bobtail", "shetland sheepdog, shetland sheep dog, shetland", "collie", "border collie", "bouvier des flandres, bouviers des flandres", "rottweiler", "german shepherd, german shepherd dog, german police dog, alsatian", "doberman, doberman pinscher", "miniature pinscher", "greater swiss mountain dog", "bernese mountain dog", "appenzeller", "entlebucher", "boxer", "bull mastiff", "tibetan mastiff", "french bulldog", "great dane", "saint bernard, st bernard", "eskimo dog, husky", "malamute, malemute, alaskan malamute", "siberian husky", "dalmatian, coach dog, carriage dog", "affenpinscher, monkey pinscher, monkey dog", "basenji", "pug, pug-dog", "leonberg", "newfoundland, newfoundland dog", "great pyrenees", "samoyed, samoyede", "pomeranian", "chow, chow chow", "keeshond", "brabancon griffon", "pembroke, pembroke welsh corgi", "cardigan, cardigan welsh corgi", "toy poodle", "miniature poodle", "standard poodle", "mexican hairless", "timber wolf, grey wolf, gray wolf, canis lupus", "white wolf, arctic wolf, canis lupus tundrarum", "red wolf, maned wolf, canis rufus, canis niger", "coyote, prairie wolf, brush wolf, canis latrans", "dingo, warrigal, warragal, canis dingo", "dhole, cuon alpinus", "african hunting dog, hyena dog, cape hunting dog, lycaon pictus", "hyena, hyaena", "red fox, vulpes vulpes", "kit fox, vulpes macrotis", "arctic fox, white fox, alopex lagopus", "grey fox, gray fox, urocyon cinereoargenteus", "tabby, tabby cat", "tiger cat", "persian cat", "siamese cat, siamese", "egyptian cat", "cougar, puma, catamount, mountain lion, painter, panther, felis concolor", "lynx, catamount", "leopard, panthera pardus", "snow leopard, ounce, panthera uncia", "jaguar, panther, panthera onca, felis onca", "lion, king of beasts, panthera leo", "tiger, panthera tigris", "cheetah, chetah, acinonyx jubatus", "brown bear, bruin, ursus arctos", "american black bear, black bear, ursus americanus, euarctos americanus", "ice bear, polar bear, ursus maritimus, thalarctos maritimus", "sloth bear, melursus ursinus, ursus ursinus", "mongoose", "meerkat, mierkat", "tiger beetle", "ladybug, ladybeetle, lady beetle, ladybird, ladybird beetle", "ground beetle, carabid beetle", "long-horned beetle, longicorn, longicorn beetle", "leaf beetle, chrysomelid", "dung beetle", "rhinoceros beetle", "weevil", "fly", "bee", "ant, emmet, pismire", "grasshopper, hopper", "cricket", "walking stick, walkingstick, stick insect", "cockroach, roach", "mantis, mantid", "cicada, cicala", "leafhopper", "lacewing, lacewing fly", "dragonfly, darning needle, devil's darning needle, sewing needle, snake feeder, snake doctor, mosquito hawk, skeeter hawk", "damselfly", "admiral", "ringlet, ringlet butterfly", "monarch, monarch butterfly, milkweed butterfly, danaus plexippus", "cabbage butterfly", "sulphur butterfly, sulfur butterfly", "lycaenid, lycaenid butterfly", "starfish, sea star", "sea urchin", "sea cucumber, holothurian", "wood rabbit, cottontail, cottontail rabbit", "hare", "angora, angora rabbit", "hamster", "porcupine, hedgehog", "fox squirrel, eastern fox squirrel, sciurus niger", "marmot", "beaver", "guinea pig, cavia cobaya", "sorrel", "zebra", "hog, pig, grunter, squealer, sus scrofa", "wild boar, boar, sus scrofa", "warthog", "hippopotamus, hippo, river horse, hippopotamus amphibius", "ox", "water buffalo, water ox, asiatic buffalo, bubalus bubalis", "bison", "ram, tup", "bighorn, bighorn sheep, cimarron, rocky mountain bighorn, rocky mountain sheep, ovis canadensis", "ibex, capra ibex", "hartebeest", "impala, aepyceros melampus", "gazelle", "arabian camel, dromedary, camelus dromedarius", "llama", "weasel", "mink", "polecat, fitch, foulmart, foumart, mustela putorius", "black-footed ferret, ferret, mustela nigripes", "otter", "skunk, polecat, wood pussy", "badger", "armadillo", "three-toed sloth, ai, bradypus tridactylus", "orangutan, orang, orangutang, pongo pygmaeus", "gorilla, gorilla gorilla", "chimpanzee, chimp, pan troglodytes", "gibbon, hylobates lar", "siamang, hylobates syndactylus, symphalangus syndactylus", "guenon, guenon monkey", "patas, hussar monkey, erythrocebus patas", "baboon", "macaque", "langur", "colobus, colobus monkey", "proboscis monkey, nasalis larvatus", "marmoset", "capuchin, ringtail, cebus capucinus", "howler monkey, howler", "titi, titi monkey", "spider monkey, ateles geoffroyi", "squirrel monkey, saimiri sciureus", "madagascar cat, ring-tailed lemur, lemur catta", "indri, indris, indri indri, indri brevicaudatus", "indian elephant, elephas maximus", "african elephant, loxodonta africana", "lesser panda, red panda, panda, bear cat, cat bear, ailurus fulgens", "giant panda, panda, panda bear, coon bear, ailuropoda melanoleuca", "barracouta, snoek", "eel", "coho, cohoe, coho salmon, blue jack, silver salmon, oncorhynchus kisutch", "rock beauty, holocanthus tricolor", "anemone fish", "sturgeon", "gar, garfish, garpike, billfish, lepisosteus osseus", "lionfish", "puffer, pufferfish, blowfish, globefish", "abacus", "abaya", "academic gown, academic robe, judge's robe", "accordion, piano accordion, squeeze box", "acoustic guitar", "aircraft carrier, carrier, flattop, attack aircraft carrier", "airliner", "airship, dirigible", "altar", "ambulance", "amphibian, amphibious vehicle", "analog clock", "apiary, bee house", "apron", "ashcan, trash can, garbage can, wastebin, ash bin, ash-bin, ashbin, dustbin, trash barrel, trash bin", "assault rifle, assault gun", "backpack, back pack, knapsack, packsack, rucksack, haversack", "bakery, bakeshop, bakehouse", "balance beam, beam", "balloon", "ballpoint, ballpoint pen, ballpen, biro", "band aid", "banjo", "bannister, banister, balustrade, balusters, handrail", "barbell", "barber chair", "barbershop", "barn", "barometer", "barrel, cask", "barrow, garden cart, lawn cart, wheelbarrow", "baseball", "basketball", "bassinet", "bassoon", "bathing cap, swimming cap", "bath towel", "bathtub, bathing tub, bath, tub", "beach wagon, station wagon, wagon, estate car, beach waggon, station waggon, waggon", "beacon, lighthouse, beacon light, pharos", "beaker", "bearskin, busby, shako", "beer bottle", "beer glass", "bell cote, bell cot", "bib", "bicycle-built-for-two, tandem bicycle, tandem", "bikini, two-piece", "binder, ring-binder", "binoculars, field glasses, opera glasses", "birdhouse", "boathouse", "bobsled, bobsleigh, bob", "bolo tie, bolo, bola tie, bola", "bonnet, poke bonnet", "bookcase", "bookshop, bookstore, bookstall", "bottlecap", "bow", "bow tie, bow-tie, bowtie", "brass, memorial tablet, plaque", "brassiere, bra, bandeau", "breakwater, groin, groyne, mole, bulwark, seawall, jetty", "breastplate, aegis, egis", "broom", "bucket, pail", "buckle", "bulletproof vest", "bullet train, bullet", "butcher shop, meat market", "cab, hack, taxi, taxicab", "caldron, cauldron", "candle, taper, wax light", "cannon", "canoe", "can opener, tin opener", "cardigan", "car mirror", "carousel, carrousel, merry-go-round, roundabout, whirligig", "carpenter's kit, tool kit", "carton", "car wheel", "cash machine, cash dispenser, automated teller machine, automatic teller machine, automated teller, automatic teller, atm", "cassette", "cassette player", "castle", "catamaran", "cd player", "cello, violoncello", "cellular telephone, cellular phone, cellphone, cell, mobile phone", "chain", "chainlink fence", "chain mail, ring mail, mail, chain armor, chain armour, ring armor, ring armour", "chain saw, chainsaw", "chest", "chiffonier, commode", "chime, bell, gong", "china cabinet, china closet", "christmas stocking", "church, church building", "cinema, movie theater, movie theatre, movie house, picture palace", "cleaver, meat cleaver, chopper", "cliff dwelling", "cloak", "clog, geta, patten, sabot", "cocktail shaker", "coffee mug", "coffeepot", "coil, spiral, volute, whorl, helix", "combination lock", "computer keyboard, keypad", "confectionery, confectionary, candy store", "container ship, containership, container vessel", "convertible", "corkscrew, bottle screw", "cornet, horn, trumpet, trump", "cowboy boot", "cowboy hat, ten-gallon hat", "cradle", "crane", "crash helmet", "crate", "crib, cot", "crock pot", "croquet ball", "crutch", "cuirass", "dam, dike, dyke", "desk", "desktop computer", "dial telephone, dial phone", "diaper, nappy, napkin", "digital clock", "digital watch", "dining table, board", "dishrag, dishcloth", "dishwasher, dish washer, dishwashing machine", "disk brake, disc brake", "dock, dockage, docking facility", "dogsled, dog sled, dog sleigh", "dome", "doormat, welcome mat", "drilling platform, offshore rig", "drum, membranophone, tympan", "drumstick", "dumbbell", "dutch oven", "electric fan, blower", "electric guitar", "electric locomotive", "entertainment center", "envelope", "espresso maker", "face powder", "feather boa, boa", "file, file cabinet, filing cabinet", "fireboat", "fire engine, fire truck", "fire screen, fireguard", "flagpole, flagstaff", "flute, transverse flute", "folding chair", "football helmet", "forklift", "fountain", "fountain pen", "four-poster", "freight car", "french horn, horn", "frying pan, frypan, skillet", "fur coat", "garbage truck, dustcart", "gasmask, respirator, gas helmet", "gas pump, gasoline pump, petrol pump, island dispenser", "goblet", "go-kart", "golf ball", "golfcart, golf cart", "gondola", "gong, tam-tam", "gown", "grand piano, grand", "greenhouse, nursery, glasshouse", "grille, radiator grille", "grocery store, grocery, food market, market", "guillotine", "hair slide", "hair spray", "half track", "hammer", "hamper", "hand blower, blow dryer, blow drier, hair dryer, hair drier", "hand-held computer, hand-held microcomputer", "handkerchief, hankie, hanky, hankey", "hard disc, hard disk, fixed disk", "harmonica, mouth organ, harp, mouth harp", "harp", "harvester, reaper", "hatchet", "holster", "home theater, home theatre", "honeycomb", "hook, claw", "hoopskirt, crinoline", "horizontal bar, high bar", "horse cart, horse-cart", "hourglass", "ipod", "iron, smoothing iron", "jack-o'-lantern", "jean, blue jean, denim", "jeep, landrover", "jersey, t-shirt, tee shirt", "jigsaw puzzle", "jinrikisha, ricksha, rickshaw", "joystick", "kimono", "knee pad", "knot", "lab coat, laboratory coat", "ladle", "lampshade, lamp shade", "laptop, laptop computer", "lawn mower, mower", "lens cap, lens cover", "letter opener, paper knife, paperknife", "library", "lifeboat", "lighter, light, igniter, ignitor", "limousine, limo", "liner, ocean liner", "lipstick, lip rouge", "loafer", "lotion", "loudspeaker, speaker, speaker unit, loudspeaker system, speaker system", "loupe, jeweler's loupe", "lumbermill, sawmill", "magnetic compass", "mailbag, postbag", "mailbox, letter box", "maillot", "maillot, tank suit", "manhole cover", "maraca", "marimba, xylophone", "mask", "matchstick", "maypole", "maze, labyrinth", "measuring cup", "medicine chest, medicine cabinet", "megalith, megalithic structure", "microphone, mike", "microwave, microwave oven", "military uniform", "milk can", "minibus", "miniskirt, mini", "minivan", "missile", "mitten", "mixing bowl", "mobile home, manufactured home", "model t", "modem", "monastery", "monitor", "moped", "mortar", "mortarboard", "mosque", "mosquito net", "motor scooter, scooter", "mountain bike, all-terrain bike, off-roader", "mountain tent", "mouse, computer mouse", "mousetrap", "moving van", "muzzle", "nail", "neck brace", "necklace", "nipple", "notebook, notebook computer", "obelisk", "oboe, hautboy, hautbois", "ocarina, sweet potato", "odometer, hodometer, mileometer, milometer", "oil filter", "organ, pipe organ", "oscilloscope, scope, cathode-ray oscilloscope, cro", "overskirt", "oxcart", "oxygen mask", "packet", "paddle, boat paddle", "paddlewheel, paddle wheel", "padlock", "paintbrush", "pajama, pyjama, pj's, jammies", "palace", "panpipe, pandean pipe, syrinx", "paper towel", "parachute, chute", "parallel bars, bars", "park bench", "parking meter", "passenger car, coach, carriage", "patio, terrace", "pay-phone, pay-station", "pedestal, plinth, footstall", "pencil box, pencil case", "pencil sharpener", "perfume, essence", "petri dish", "photocopier", "pick, plectrum, plectron", "pickelhaube", "picket fence, paling", "pickup, pickup truck", "pier", "piggy bank, penny bank", "pill bottle", "pillow", "ping-pong ball", "pinwheel", "pirate, pirate ship", "pitcher, ewer", "plane, carpenter's plane, woodworking plane", "planetarium", "plastic bag", "plate rack", "plow, plough", "plunger, plumber's helper", "polaroid camera, polaroid land camera", "pole", "police van, police wagon, paddy wagon, patrol wagon, wagon, black maria", "poncho", "pool table, billiard table, snooker table", "pop bottle, soda bottle", "pot, flowerpot", "potter's wheel", "power drill", "prayer rug, prayer mat", "printer", "prison, prison house", "projectile, missile", "projector", "puck, hockey puck", "punching bag, punch bag, punching ball, punchball", "purse", "quill, quill pen", "quilt, comforter, comfort, puff", "racer, race car, racing car", "racket, racquet", "radiator", "radio, wireless", "radio telescope, radio reflector", "rain barrel", "recreational vehicle, rv, r.v.", "reel", "reflex camera", "refrigerator, icebox", "remote control, remote", "restaurant, eating house, eating place, eatery", "revolver, six-gun, six-shooter", "rifle", "rocking chair, rocker", "rotisserie", "rubber eraser, rubber, pencil eraser", "rugby ball", "rule, ruler", "running shoe", "safe", "safety pin", "saltshaker, salt shaker", "sandal", "sarong", "sax, saxophone", "scabbard", "scale, weighing machine", "school bus", "schooner", "scoreboard", "screen, crt screen", "screw", "screwdriver", "seat belt, seatbelt", "sewing machine", "shield, buckler", "shoe shop, shoe-shop, shoe store", "shoji", "shopping basket", "shopping cart", "shovel", "shower cap", "shower curtain", "ski", "ski mask", "sleeping bag", "slide rule, slipstick", "sliding door", "slot, one-armed bandit", "snorkel", "snowmobile", "snowplow, snowplough", "soap dispenser", "soccer ball", "sock", "solar dish, solar collector, solar furnace", "sombrero", "soup bowl", "space bar", "space heater", "space shuttle", "spatula", "speedboat", "spider web, spider's web", "spindle", "sports car, sport car", "spotlight, spot", "stage", "steam locomotive", "steel arch bridge", "steel drum", "stethoscope", "stole", "stone wall", "stopwatch, stop watch", "stove", "strainer", "streetcar, tram, tramcar, trolley, trolley car", "stretcher", "studio couch, day bed", "stupa, tope", "submarine, pigboat, sub, u-boat", "suit, suit of clothes", "sundial", "sunglass", "sunglasses, dark glasses, shades", "sunscreen, sunblock, sun blocker", "suspension bridge", "swab, swob, mop", "sweatshirt", "swimming trunks, bathing trunks", "swing", "switch, electric switch, electrical switch", "syringe", "table lamp", "tank, army tank, armored combat vehicle, armoured combat vehicle", "tape player", "teapot", "teddy, teddy bear", "television, television system", "tennis ball", "thatch, thatched roof", "theater curtain, theatre curtain", "thimble", "thresher, thrasher, threshing machine", "throne", "tile roof", "toaster", "tobacco shop, tobacconist shop, tobacconist", "toilet seat", "torch", "totem pole", "tow truck, tow car, wrecker", "toyshop", "tractor", "trailer truck, tractor trailer, trucking rig, rig, articulated lorry, semi", "tray", "trench coat", "tricycle, trike, velocipede", "trimaran", "tripod", "triumphal arch", "trolleybus, trolley coach, trackless trolley", "trombone", "tub, vat", "turnstile", "typewriter keyboard", "umbrella", "unicycle, monocycle", "upright, upright piano", "vacuum, vacuum cleaner", "vase", "vault", "velvet", "vending machine", "vestment", "viaduct", "violin, fiddle", "volleyball", "waffle iron", "wall clock", "wallet, billfold, notecase, pocketbook", "wardrobe, closet, press", "warplane, military plane", "washbasin, handbasin, washbowl, lavabo, wash-hand basin", "washer, automatic washer, washing machine", "water bottle", "water jug", "water tower", "whiskey jug", "whistle", "wig", "window screen", "window shade", "windsor tie", "wine bottle", "wing", "wok", "wooden spoon", "wool, woolen, woollen", "worm fence, snake fence, snake-rail fence, virginia fence", "wreck", "yawl", "yurt", "web site, website, internet site, site", "comic book", "crossword puzzle, crossword", "street sign", "traffic light, traffic signal, stoplight", "book jacket, dust cover, dust jacket, dust wrapper", "menu", "plate", "guacamole", "consomme", "hot pot, hotpot", "trifle", "ice cream, icecream", "ice lolly, lolly, lollipop, popsicle", "french loaf", "bagel, beigel", "pretzel", "cheeseburger", "hotdog, hot dog, red hot", "mashed potato", "head cabbage", "broccoli", "cauliflower", "zucchini, courgette", "spaghetti squash", "acorn squash", "butternut squash", "cucumber, cuke", "artichoke, globe artichoke", "bell pepper", "cardoon", "mushroom", "granny smith", "strawberry", "orange", "lemon", "fig", "pineapple, ananas", "banana", "jackfruit, jak, jack", "custard apple", "pomegranate", "hay", "carbonara", "chocolate sauce, chocolate syrup", "dough", "meat loaf, meatloaf", "pizza, pizza pie", "potpie", "burrito", "red wine", "espresso", "cup", "eggnog", "alp", "bubble", "cliff, drop, drop-off", "coral reef", "geyser", "lakeside, lakeshore", "promontory, headland, head, foreland", "sandbar, sand bar", "seashore, coast, seacoast, sea-coast", "valley, vale", "volcano", "ballplayer, baseball player", "groom, bridegroom", "scuba diver", "rapeseed", "daisy", "yellow lady's slipper, yellow lady-slipper, cypripedium calceolus, cypripedium parviflorum", "corn", "acorn", "hip, rose hip, rosehip", "buckeye, horse chestnut, conker", "coral fungus", "agaric", "gyromitra", "stinkhorn, carrion fungus", "earthstar", "hen-of-the-woods, hen of the woods, polyporus frondosus, grifola frondosa", "bolete", "ear, spike, capitulum", "toilet tissue, toilet paper, bathroom tissue" ]
XC/swin-tiny-patch4-window7-224-finetuned-eurosat
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224-finetuned-eurosat This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0483 - Accuracy: 0.9811 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2623 | 1.0 | 379 | 0.1006 | 0.9674 | | 0.1712 | 2.0 | 758 | 0.0620 | 0.9804 | | 0.1206 | 3.0 | 1137 | 0.0483 | 0.9811 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.8.1+cu101 - Datasets 2.4.1.dev0 - Tokenizers 0.12.0
[ "annualcrop", "forest", "herbaceousvegetation", "highway", "industrial", "pasture", "permanentcrop", "residential", "river", "sealake" ]
csr2000/UCF_Crime
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # UCF_Crime This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the imagefolder dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.1+cpu - Datasets 2.4.0 - Tokenizers 0.12.1
[ "abuse", "arrest", "shooting", "shoplifting", "stealing", "vandalism", "arson", "assault", "burglary", "explosion", "fighting", "normalvideos", "roadaccidents", "robbery" ]
diegopetrola/vit-for-kaggle-mayo-clinic
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-for-kaggle-mayo-clinic This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5538 - Accuracy: 0.7616 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 10 | 0.5944 | 0.7483 | | No log | 2.0 | 20 | 0.5640 | 0.7483 | | No log | 3.0 | 30 | 0.5582 | 0.7483 | | No log | 4.0 | 40 | 0.5585 | 0.7483 | | No log | 5.0 | 50 | 0.5598 | 0.7483 | | No log | 6.0 | 60 | 0.5484 | 0.7483 | | No log | 7.0 | 70 | 0.5524 | 0.7417 | | No log | 8.0 | 80 | 0.5538 | 0.7616 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
[ "ce", "laa" ]
mrgiraffe/vit-large-dataset-model-v3
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-large-dataset-model-v3 This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0630 - Accuracy: 0.9850 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.0465 | 0.36 | 500 | 0.1289 | 0.9612 | | 0.0253 | 0.71 | 1000 | 0.0983 | 0.9693 | | 0.008 | 1.07 | 1500 | 0.0957 | 0.9728 | | 0.0569 | 1.43 | 2000 | 0.0668 | 0.9793 | | 0.035 | 1.79 | 2500 | 0.0865 | 0.9752 | | 0.0034 | 2.14 | 3000 | 0.0748 | 0.9773 | | 0.0638 | 2.5 | 3500 | 0.0708 | 0.9805 | | 0.0195 | 2.86 | 4000 | 0.0782 | 0.9821 | | 0.0012 | 3.21 | 4500 | 0.0739 | 0.9820 | | 0.0013 | 3.57 | 5000 | 0.0680 | 0.9845 | | 0.0417 | 3.93 | 5500 | 0.0630 | 0.9850 | ### Framework versions - Transformers 4.22.0.dev0 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
[ "chart", "notchart" ]
racheltong/swin-tiny-patch4-window7-224-finetuned-eurosat
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224-finetuned-eurosat This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0665 - Accuracy: 0.9785 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.286 | 1.0 | 190 | 0.1254 | 0.9581 | | 0.1916 | 2.0 | 380 | 0.0802 | 0.9744 | | 0.1155 | 3.0 | 570 | 0.0665 | 0.9785 | ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
[ "annualcrop", "forest", "herbaceousvegetation", "highway", "industrial", "pasture", "permanentcrop", "residential", "river", "sealake" ]
Chandanab/mit-b0-finetuned-eurosat
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mit-b0-finetuned-eurosat This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the image_folder dataset. It achieves the following results on the evaluation set: - Loss: 0.1782 - Accuracy: 0.9495 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 7 | 0.3828 | 0.8081 | | 0.4864 | 2.0 | 14 | 0.2224 | 0.9192 | | 0.2035 | 3.0 | 21 | 0.1782 | 0.9495 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cpu - Datasets 2.2.0 - Tokenizers 0.12.1
[ "defense_images", "non_defense images" ]
fedihch/InvoiceReceiptClassifier_LayoutLMv3
**InvoiceReceiptClassifier_LayoutLMv3** is a fine-tuned LayoutLMv3 model that classifies a document to an invoice or receipt. ## Quick start: using the raw model ```python from transformers import ( AutoModelForSequenceClassification, AutoProcessor, ) from PIL import Image from urllib.request import urlopen model = AutoModelForSequenceClassification.from_pretrained("fedihch/InvoiceReceiptClassifier_LayoutLMv3") processor = AutoProcessor.from_pretrained("fedihch/InvoiceReceiptClassifier_LayoutLMv3") input_img_url = "https://upload.wikimedia.org/wikipedia/commons/thumb/0/0b/ReceiptSwiss.jpg/1024px-ReceiptSwiss.jpg" with urlopen(input_img_url) as testImage: input_img = Image.open(testImage).convert("RGB") encoded_inputs = processor(input_img, padding="max_length", return_tensors="pt") outputs = model(**encoded_inputs) logits = outputs.logits predicted_class_idx = logits.argmax(-1).item() id2label = {0: "invoice", 1: "receipt"} print(id2label[predicted_class_idx]) ```
[ "label_0", "label_1", "label_2", "label_3", "label_4", "label_5", "label_6", "label_7", "label_8", "label_9", "label_10", "label_11", "label_12", "label_13", "label_14", "label_15", "label_16", "label_17", "label_18", "label_19" ]
nicjac/swin-tiny-patch4-window7-224-finetuned-eurosat
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224-finetuned-eurosat This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0755 - Accuracy: 0.9752 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2481 | 1.0 | 190 | 0.1280 | 0.9589 | | 0.1534 | 2.0 | 380 | 0.0936 | 0.9678 | | 0.1332 | 3.0 | 570 | 0.0755 | 0.9752 | ### Framework versions - Transformers 4.21.1 - Pytorch 1.10.2+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
[ "annualcrop", "forest", "herbaceousvegetation", "highway", "industrial", "pasture", "permanentcrop", "residential", "river", "sealake" ]
farleyknight-org-username/vit-base-mnist
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-mnist This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the mnist dataset. It achieves the following results on the evaluation set: - Loss: 0.0236 - Accuracy: 0.9949 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 1337 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.3717 | 1.0 | 6375 | 0.0522 | 0.9893 | | 0.3453 | 2.0 | 12750 | 0.0370 | 0.9906 | | 0.3736 | 3.0 | 19125 | 0.0308 | 0.9916 | | 0.3224 | 4.0 | 25500 | 0.0269 | 0.9939 | | 0.2846 | 5.0 | 31875 | 0.0236 | 0.9949 | ### Framework versions - Transformers 4.22.0.dev0 - Pytorch 1.11.0a0+17540c5 - Datasets 2.4.0 - Tokenizers 0.12.1
[ "0", "1", "2", "3", "4", "5", "6", "7", "8", "9" ]
morganchen1007/swin-tiny-patch4-window7-224-finetuned-eurosat
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224-finetuned-eurosat This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.1507 - Accuracy: 0.9342 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 12 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2891 | 1.0 | 146 | 0.2322 | 0.9068 | | 0.2609 | 2.0 | 292 | 0.1710 | 0.9227 | | 0.2417 | 3.0 | 438 | 0.1830 | 0.9251 | | 0.2406 | 4.0 | 584 | 0.1809 | 0.9198 | | 0.2113 | 5.0 | 730 | 0.1631 | 0.9289 | | 0.1812 | 6.0 | 876 | 0.1561 | 0.9308 | | 0.2082 | 7.0 | 1022 | 0.1507 | 0.9342 | | 0.1922 | 8.0 | 1168 | 0.1611 | 0.9294 | | 0.1715 | 9.0 | 1314 | 0.1536 | 0.9308 | | 0.1675 | 10.0 | 1460 | 0.1609 | 0.9289 | | 0.194 | 11.0 | 1606 | 0.1499 | 0.9337 | | 0.1706 | 12.0 | 1752 | 0.1514 | 0.9323 | ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.1 - Datasets 2.4.0 - Tokenizers 0.12.1
[ "content", "cover" ]
farleyknight/vit-base-roman-numeral
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-roman-numeral This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the farleyknight/roman_numerals dataset. It achieves the following results on the evaluation set: - Loss: 0.6891 - Accuracy: 0.8309 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 1337 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.9053 | 1.0 | 289 | 1.3241 | 0.7108 | | 1.3293 | 2.0 | 578 | 0.9333 | 0.7892 | | 1.1251 | 3.0 | 867 | 0.7989 | 0.7843 | | 0.9837 | 4.0 | 1156 | 0.6956 | 0.8186 | | 0.999 | 5.0 | 1445 | 0.6891 | 0.8309 | ### Framework versions - Transformers 4.22.0.dev0 - Pytorch 1.11.0a0+17540c5 - Datasets 2.4.0 - Tokenizers 0.12.1
[ "i", "ii", "iii", "iv", "ix", "v", "vi", "vii", "viii", "x" ]
marvind434/swin-tiny-patch4-window7-224-finetuned-eurosat
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224-finetuned-eurosat This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.3026 - Accuracy: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 1 | 1.0940 | 0.25 | | No log | 2.0 | 2 | 0.9836 | 0.25 | | No log | 3.0 | 3 | 0.7624 | 0.25 | | No log | 4.0 | 4 | 0.6527 | 0.5 | | No log | 5.0 | 5 | 0.5697 | 0.75 | | No log | 6.0 | 6 | 0.5167 | 1.0 | | No log | 7.0 | 7 | 0.4898 | 0.75 | | No log | 8.0 | 8 | 0.4572 | 0.75 | | No log | 9.0 | 9 | 0.4286 | 0.75 | | 0.299 | 10.0 | 10 | 0.3976 | 0.75 | | 0.299 | 11.0 | 11 | 0.3678 | 1.0 | | 0.299 | 12.0 | 12 | 0.3531 | 1.0 | | 0.299 | 13.0 | 13 | 0.3384 | 1.0 | | 0.299 | 14.0 | 14 | 0.3264 | 1.0 | | 0.299 | 15.0 | 15 | 0.3188 | 1.0 | | 0.299 | 16.0 | 16 | 0.3114 | 1.0 | | 0.299 | 17.0 | 17 | 0.3083 | 1.0 | | 0.299 | 18.0 | 18 | 0.3071 | 1.0 | | 0.299 | 19.0 | 19 | 0.3041 | 1.0 | | 0.2051 | 20.0 | 20 | 0.3026 | 1.0 | ### Framework versions - Transformers 4.21.3 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
[ "canes", "nocanes" ]
Kulinwot/swin-tiny-patch4-window7-224-finetuned-eurosat
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224-finetuned-eurosat This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.0179 - Accuracy: 0.7656 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 3.2064 | 1.0 | 57 | 2.6102 | 0.4151 | | 1.6522 | 2.0 | 114 | 1.2683 | 0.7065 | | 1.339 | 3.0 | 171 | 1.0179 | 0.7656 | ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
[ "afghanistan", "albania", "andorra", "angola", "argentina", "armenia", "australia", "austria", "azerbaijan", "bahamas", "bahrain", "bangladesh", "barbados", "belarus", "bhutan", "bolivia", "brazil", "bulgaria", "cambodia", "canada", "capeverde", "chile", "china", "christmas island", "colombia", "congo", "cook island", "costa rica", "cuba", "cyprus", "czech", "democratic republic of the congo", "france", "german", "india", "iran", "iraq", "israel", "japan", "jordan", "laos", "lebanon", "malaysia", "myanmar", "newzealand", "northkoera", "palestine", "philippines", "russia", "saudi arabia", "singapore", "slovakia", "southkoera", "spain", "sverige", "switzerland", "syrian", "tailand", "the central african republic", "turkey", "uk", "us", "ukraine", "vietnam" ]
liangy2/vit-base-beans
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-beans This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the beans dataset. It achieves the following results on the evaluation set: - Accuracy: 0.9850 - Loss: 0.0711 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 1337 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Accuracy | Validation Loss | |:-------------:|:-----:|:----:|:--------:|:---------------:| | 0.3303 | 1.0 | 130 | 0.9624 | 0.2543 | | 0.1519 | 2.0 | 260 | 0.9850 | 0.1059 | | 0.1879 | 3.0 | 390 | 0.9850 | 0.0908 | | 0.1189 | 4.0 | 520 | 0.9850 | 0.0714 | | 0.1095 | 5.0 | 650 | 0.9850 | 0.0711 | ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.1+cu102 - Datasets 2.4.0 - Tokenizers 0.12.1
[ "angular_leaf_spot", "bean_rust", "healthy" ]
jjmcarrascosa/vit_receipts_classifier
# vit_receipts_classifier This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the cord, rvl-cdip, visual-genome and an external receipt dataset to carry out Binary Classification (`ticket` vs `no_ticket`). Ticket here is used as a synonym to "receipt". It achieves the following results on the evaluation set, which contain pictures from the above datasets in scanned, photography or mobile picture formats (color and grayscale): - Loss: 0.0116 - F1: 0.9991 ## Model description This model is a Binary Classifier finetuned version of ViT, to predict if an input image is a picture / scan of receipts(s) o something else. ## Intended uses & limitations Use this model to classify your images into tickets or not tickers. WIth the tickets group, you can use Multimodal Information Extraction, as Visual Named Entity Recognition, to extract the ticket items, amounts, total, etc. Check the Cord dataset for more information. ## Training and evaluation data This model used 2 datasets as positive class (`ticket`): - `cord` - `https://expressexpense.com/blog/free-receipt-images-ocr-machine-learning-dataset/` For the negative class (`no_ticket`), the following datasets were used: - A subset of `RVL-CDIP` - A subset of `visual-genome` ## Training procedure Datasets were loaded with different distributions of data for positive and negative classes. Then, normalization and resizing is carried out to adapt it to ViT expected input. Different runs were carried out changing the data distribution and the hyperparameters to maximize F1. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.0026 | 0.28 | 500 | 0.0187 | 0.9982 | | 0.0186 | 0.56 | 1000 | 0.0116 | 0.9991 | | 0.0006 | 0.84 | 1500 | 0.0044 | 0.9997 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.11.0+cu102 - Datasets 2.4.0 - Tokenizers 0.12.1
[ "ticket", "no_ticket" ]
RohanK447/swin-tiny-patch4-window7-224-finetuned-eurosat
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224-finetuned-eurosat This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0741 - Accuracy: 0.9748 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2868 | 1.0 | 190 | 0.1234 | 0.9574 | | 0.1519 | 2.0 | 380 | 0.0741 | 0.9748 | | 0.1211 | 3.0 | 570 | 0.0724 | 0.9744 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
[ "annualcrop", "forest", "herbaceousvegetation", "highway", "industrial", "pasture", "permanentcrop", "residential", "river", "sealake" ]
JEdward7777/delivery_truck_classification
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # delivery_truck_classification This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.1787 - Accuracy: 0.9733 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 60 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 0.91 | 5 | 0.1787 | 0.9733 | | No log | 1.91 | 10 | 0.1787 | 0.9733 | | No log | 2.91 | 15 | 0.1787 | 0.9733 | | 0.3799 | 3.91 | 20 | 0.1787 | 0.9733 | | 0.3799 | 4.91 | 25 | 0.1787 | 0.9733 | | 0.3799 | 5.91 | 30 | 0.1787 | 0.9733 | | 0.3799 | 6.91 | 35 | 0.1787 | 0.9733 | | 0.3648 | 7.91 | 40 | 0.1787 | 0.9733 | | 0.3648 | 8.91 | 45 | 0.1787 | 0.9733 | | 0.3648 | 9.91 | 50 | 0.1787 | 0.9733 | | 0.3648 | 10.91 | 55 | 0.1787 | 0.9733 | | 0.3954 | 11.91 | 60 | 0.1787 | 0.9733 | | 0.3954 | 12.91 | 65 | 0.1787 | 0.9733 | | 0.3954 | 13.91 | 70 | 0.1787 | 0.9733 | | 0.3954 | 14.91 | 75 | 0.1787 | 0.9733 | | 0.3926 | 15.91 | 80 | 0.1787 | 0.9733 | | 0.3926 | 16.91 | 85 | 0.1787 | 0.9733 | | 0.3926 | 17.91 | 90 | 0.1787 | 0.9733 | | 0.3926 | 18.91 | 95 | 0.1787 | 0.9733 | | 0.3801 | 19.91 | 100 | 0.1787 | 0.9733 | | 0.3801 | 20.91 | 105 | 0.1787 | 0.9733 | | 0.3801 | 21.91 | 110 | 0.1787 | 0.9733 | | 0.3801 | 22.91 | 115 | 0.1787 | 0.9733 | | 0.3815 | 23.91 | 120 | 0.1787 | 0.9733 | | 0.3815 | 24.91 | 125 | 0.1787 | 0.9733 | | 0.3815 | 25.91 | 130 | 0.1787 | 0.9733 | | 0.3815 | 26.91 | 135 | 0.1787 | 0.9733 | | 0.3955 | 27.91 | 140 | 0.1787 | 0.9733 | | 0.3955 | 28.91 | 145 | 0.1787 | 0.9733 | | 0.3955 | 29.91 | 150 | 0.1787 | 0.9733 | | 0.3955 | 30.91 | 155 | 0.1787 | 0.9733 | | 0.3854 | 31.91 | 160 | 0.1787 | 0.9733 | | 0.3854 | 32.91 | 165 | 0.1787 | 0.9733 | | 0.3854 | 33.91 | 170 | 0.1787 | 0.9733 | | 0.3854 | 34.91 | 175 | 0.1787 | 0.9733 | | 0.3949 | 35.91 | 180 | 0.1787 | 0.9733 | | 0.3949 | 36.91 | 185 | 0.1787 | 0.9733 | | 0.3949 | 37.91 | 190 | 0.1787 | 0.9733 | | 0.3949 | 38.91 | 195 | 0.1787 | 0.9733 | | 0.423 | 39.91 | 200 | 0.1787 | 0.9733 | | 0.423 | 40.91 | 205 | 0.1787 | 0.9733 | | 0.423 | 41.91 | 210 | 0.1787 | 0.9733 | | 0.423 | 42.91 | 215 | 0.1787 | 0.9733 | | 0.3761 | 43.91 | 220 | 0.1787 | 0.9733 | | 0.3761 | 44.91 | 225 | 0.1787 | 0.9733 | | 0.3761 | 45.91 | 230 | 0.1787 | 0.9733 | | 0.3761 | 46.91 | 235 | 0.1787 | 0.9733 | | 0.3673 | 47.91 | 240 | 0.1787 | 0.9733 | | 0.3673 | 48.91 | 245 | 0.1787 | 0.9733 | | 0.3673 | 49.91 | 250 | 0.1787 | 0.9733 | | 0.3673 | 50.91 | 255 | 0.1787 | 0.9733 | | 0.3639 | 51.91 | 260 | 0.1787 | 0.9733 | | 0.3639 | 52.91 | 265 | 0.1787 | 0.9733 | | 0.3639 | 53.91 | 270 | 0.1787 | 0.9733 | | 0.3639 | 54.91 | 275 | 0.1787 | 0.9733 | | 0.4031 | 55.91 | 280 | 0.1787 | 0.9733 | | 0.4031 | 56.91 | 285 | 0.1787 | 0.9733 | | 0.4031 | 57.91 | 290 | 0.1787 | 0.9733 | | 0.4031 | 58.91 | 295 | 0.1787 | 0.9733 | | 0.3787 | 59.91 | 300 | 0.1787 | 0.9733 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
[ "dhl", "empty", "fedex", "prime", "trash", "unknown", "ups" ]
jkson/swin-tiny-patch4-window7-224-finetuned-eurosat
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224-finetuned-eurosat This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0610 - Accuracy: 0.9807 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2601 | 1.0 | 190 | 0.1154 | 0.9615 | | 0.1928 | 2.0 | 380 | 0.0748 | 0.9752 | | 0.1365 | 3.0 | 570 | 0.0610 | 0.9807 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
[ "annualcrop", "forest", "herbaceousvegetation", "highway", "industrial", "pasture", "permanentcrop", "residential", "river", "sealake" ]
nielsr/swin-tiny-patch4-window7-224-finetuned-eurosat-kornia
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224-finetuned-eurosat-kornia This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0540 - Accuracy: 0.9830 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.0859 | 1.0 | 190 | 0.0969 | 0.9685 | | 0.0664 | 2.0 | 380 | 0.0627 | 0.9815 | | 0.0359 | 3.0 | 570 | 0.0540 | 0.9830 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
[ "annualcrop", "forest", "herbaceousvegetation", "highway", "industrial", "pasture", "permanentcrop", "residential", "river", "sealake" ]
djoels/swin-tiny-patch4-window7-224-finetuned-eurosat
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224-finetuned-eurosat This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0590 - Accuracy: 0.9830 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2589 | 1.0 | 190 | 0.1036 | 0.9648 | | 0.1845 | 2.0 | 380 | 0.0707 | 0.9763 | | 0.1179 | 3.0 | 570 | 0.0590 | 0.9830 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
[ "annualcrop", "forest", "herbaceousvegetation", "highway", "industrial", "pasture", "permanentcrop", "residential", "river", "sealake" ]
morganchen1007/resnet-50-finetuned-resnet50_0831
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # resnet-50-finetuned-resnet50_0831 This model is a fine-tuned version of [microsoft/resnet-50](https://huggingface.co/microsoft/resnet-50) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0862 - Accuracy: 0.9764 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.9066 | 1.0 | 223 | 0.8770 | 0.6659 | | 0.5407 | 2.0 | 446 | 0.4251 | 0.7867 | | 0.3614 | 3.0 | 669 | 0.2009 | 0.9390 | | 0.3016 | 4.0 | 892 | 0.1362 | 0.9582 | | 0.2358 | 5.0 | 1115 | 0.1139 | 0.9676 | | 0.247 | 6.0 | 1338 | 0.1081 | 0.9698 | | 0.2135 | 7.0 | 1561 | 0.1027 | 0.9720 | | 0.2043 | 8.0 | 1784 | 0.1026 | 0.9695 | | 0.2165 | 9.0 | 2007 | 0.0957 | 0.9733 | | 0.1983 | 10.0 | 2230 | 0.0936 | 0.9736 | | 0.2116 | 11.0 | 2453 | 0.0949 | 0.9736 | | 0.2341 | 12.0 | 2676 | 0.0905 | 0.9755 | | 0.2004 | 13.0 | 2899 | 0.0901 | 0.9739 | | 0.1956 | 14.0 | 3122 | 0.0877 | 0.9755 | | 0.1668 | 15.0 | 3345 | 0.0847 | 0.9764 | | 0.1855 | 16.0 | 3568 | 0.0850 | 0.9755 | | 0.18 | 17.0 | 3791 | 0.0897 | 0.9745 | | 0.1772 | 18.0 | 4014 | 0.0852 | 0.9755 | | 0.1881 | 19.0 | 4237 | 0.0845 | 0.9764 | | 0.2145 | 20.0 | 4460 | 0.0862 | 0.9764 | ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.1 - Datasets 2.4.0 - Tokenizers 0.12.1
[ "content", "cover", "doi" ]
DrishtiSharma/finetuned-ViT-human-action-recognition-v1
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned-ViT-human-action-recognition-v1 This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the Human_Action_Recognition dataset. It achieves the following results on the evaluation set: - Loss: 3.1427 - Accuracy: 0.0791 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.4986 | 0.13 | 100 | 3.1427 | 0.0791 | | 1.1929 | 0.25 | 200 | 3.4083 | 0.0726 | | 1.2673 | 0.38 | 300 | 3.4615 | 0.0769 | | 0.9805 | 0.51 | 400 | 3.9192 | 0.0824 | | 1.158 | 0.63 | 500 | 4.2648 | 0.0698 | | 1.2544 | 0.76 | 600 | 4.5536 | 0.0574 | | 1.0073 | 0.89 | 700 | 4.0310 | 0.0819 | | 0.9315 | 1.02 | 800 | 4.5154 | 0.0702 | | 0.9063 | 1.14 | 900 | 4.7162 | 0.0633 | | 0.6756 | 1.27 | 1000 | 4.6482 | 0.0626 | | 1.0239 | 1.4 | 1100 | 4.6437 | 0.0635 | | 0.7634 | 1.52 | 1200 | 4.5625 | 0.0752 | | 0.8365 | 1.65 | 1300 | 4.9912 | 0.0561 | | 0.8979 | 1.78 | 1400 | 5.1739 | 0.0356 | | 0.9448 | 1.9 | 1500 | 4.8946 | 0.0541 | | 0.697 | 2.03 | 1600 | 4.9516 | 0.0741 | | 0.7861 | 2.16 | 1700 | 5.0090 | 0.0776 | | 0.6404 | 2.28 | 1800 | 5.3905 | 0.0643 | | 0.7939 | 2.41 | 1900 | 4.9159 | 0.1015 | | 0.6331 | 2.54 | 2000 | 5.3083 | 0.0589 | | 0.6082 | 2.66 | 2100 | 4.8538 | 0.0857 | | 0.6229 | 2.79 | 2200 | 5.3086 | 0.0689 | | 0.6964 | 2.92 | 2300 | 5.3745 | 0.0713 | | 0.5246 | 3.05 | 2400 | 5.0369 | 0.0796 | | 0.6097 | 3.17 | 2500 | 5.2935 | 0.0743 | | 0.5778 | 3.3 | 2600 | 5.5431 | 0.0709 | | 0.4196 | 3.43 | 2700 | 5.5508 | 0.0759 | | 0.5495 | 3.55 | 2800 | 5.5728 | 0.0813 | | 0.5932 | 3.68 | 2900 | 5.7992 | 0.0663 | | 0.4382 | 3.81 | 3000 | 5.8010 | 0.0643 | | 0.4827 | 3.93 | 3100 | 5.7529 | 0.0680 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
[ "calling", "clapping", "running", "sitting", "sleeping", "texting", "using_laptop", "cycling", "dancing", "drinking", "eating", "fighting", "hugging", "laughing", "listening_to_music" ]
DrishtiSharma/finetuned-ViT-Indian-Food-Classification-v1
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned-ViT-Indian-Food-Classification-v1 This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the Human_Action_Recognition dataset. It achieves the following results on the evaluation set: - Loss: 0.2665 - Accuracy: 0.9341 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.2019 | 0.3 | 100 | 0.9317 | 0.8555 | | 0.6664 | 0.6 | 200 | 0.5432 | 0.8959 | | 0.5096 | 0.9 | 300 | 0.4700 | 0.8990 | | 0.6116 | 1.2 | 400 | 0.4504 | 0.8799 | | 0.4326 | 1.5 | 500 | 0.3856 | 0.8980 | | 0.3349 | 1.8 | 600 | 0.3471 | 0.9129 | | 0.5141 | 2.1 | 700 | 0.3708 | 0.9033 | | 0.32 | 2.4 | 800 | 0.3338 | 0.9139 | | 0.2611 | 2.7 | 900 | 0.3159 | 0.9171 | | 0.1836 | 3.0 | 1000 | 0.2696 | 0.9299 | | 0.2492 | 3.3 | 1100 | 0.2979 | 0.9214 | | 0.1846 | 3.6 | 1200 | 0.3165 | 0.9203 | | 0.1505 | 3.9 | 1300 | 0.2806 | 0.9288 | | 0.1854 | 4.2 | 1400 | 0.2665 | 0.9341 | | 0.124 | 4.5 | 1500 | 0.2695 | 0.9341 | | 0.0719 | 4.8 | 1600 | 0.2668 | 0.9320 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
[ "burger", "butter_naan", "kaathi_rolls", "kadai_paneer", "kulfi", "masala_dosa", "momos", "paani_puri", "pakode", "pav_bhaji", "pizza", "samosa", "chai", "chapati", "chole_bhature", "dal_makhani", "dhokla", "fried_rice", "idli", "jalebi" ]
Imene/vit-base-patch16-224-in21k-wwwwwi
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Imene/vit-base-patch16-224-in21k-wwwwwi This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 3.2187 - Train Accuracy: 0.5652 - Train Top-3-accuracy: 0.7611 - Validation Loss: 3.8221 - Validation Accuracy: 0.2540 - Validation Top-3-accuracy: 0.4409 - Epoch: 9 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'inner_optimizer': {'class_name': 'AdamWeightDecay', 'config': {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 3e-05, 'decay_steps': 4920, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}}, 'dynamic': True, 'initial_scale': 32768.0, 'dynamic_growth_steps': 2000} - training_precision: mixed_float16 ### Training results | Train Loss | Train Accuracy | Train Top-3-accuracy | Validation Loss | Validation Accuracy | Validation Top-3-accuracy | Epoch | |:----------:|:--------------:|:--------------------:|:---------------:|:-------------------:|:-------------------------:|:-----:| | 5.3476 | 0.0283 | 0.0716 | 5.1306 | 0.0483 | 0.1240 | 0 | | 4.9357 | 0.0914 | 0.2057 | 4.7998 | 0.1158 | 0.2385 | 1 | | 4.6155 | 0.1641 | 0.3230 | 4.5616 | 0.1430 | 0.2891 | 2 | | 4.3325 | 0.2269 | 0.4188 | 4.3480 | 0.1722 | 0.3391 | 3 | | 4.0702 | 0.2915 | 0.4984 | 4.1662 | 0.2042 | 0.3886 | 4 | | 3.8262 | 0.3638 | 0.5758 | 4.0416 | 0.2296 | 0.4067 | 5 | | 3.6117 | 0.4258 | 0.6415 | 3.9451 | 0.2329 | 0.4234 | 6 | | 3.4324 | 0.4855 | 0.6956 | 3.8690 | 0.2499 | 0.4397 | 7 | | 3.2991 | 0.5320 | 0.7376 | 3.8351 | 0.2553 | 0.4359 | 8 | | 3.2187 | 0.5652 | 0.7611 | 3.8221 | 0.2540 | 0.4409 | 9 | ### Framework versions - Transformers 4.21.2 - TensorFlow 2.8.2 - Datasets 2.4.0 - Tokenizers 0.12.1
[ "writer_43", "writer_22", "zoubir_sirine", "masouni_maram", "mekati_aymen", "maroua_boutraa", "medjani_yasine", "mebarek lydia", "marouf_mohamed", "meriem", "massilia", "menani_rania", "meriem02", "yettou", "madji_zakaria", "mahdji", "maalem_abdelmoumene", "malek_soumia", "manel", "maroua", "mahdi_maya", "maissa", "madani_lilya", "manal", "yasmine2", "lyna", "lina matart", "aya_rezzoug", "lounes", "aymen", "lilia_maria", "lounes_selma", "lydya", "lydia_tair", "aya_sebti", "yamina", "attallah_assia", "arkoub", "aya", "aroua", "anonym01", "anonym02", "anonym03", "assad_manel", "assia_mlhoubi", "amir", "zinedinne", "amine", "amazouz_melissa", "amrane_sanaa", "anahid", "amani", "amira", "anfel", "amadouche", "anonym", "guellour_chahrazed", "zaidi", "gherbi_madjda", "hakem_zoubida", "hakime_bekkouche", "hafidi_amel", "glass", "guermat_malak", "gouabi_maria", "guidoum_wissam", "gousmine_cerine", "ghedadbia_nadjib", "younsi", "ghazli", "djouhri", "djennadi_yasmine", "dria_mabila", "fatima zohra", "fella", "gazoum_samah", "fadel_ikram", "fella02", "djaafer_amir", "yousra_belbaki", "djallal", "djebbal", "daidji_aya_meriem", "dellici_ikram", "damache", "dahmani_sarah", "djennadi_elhadi", "dahou_amine", "djebbar_hind", "brahim_djerourou", "yasmine_hadjali", "bouzidi_romaissa", "cherif_raouf", "dahmani_nesrine", "chelioui_basma", "chahrazed", "cheniti_amine", "cerine", "cherbi_ikhlas", "chaima_radouani", "boutiche_maria", "youcef_reddam", "bouremel_walid", "boulhad_abir", "bouras_amira", "bouhadadou_asma", "bouras_feriel", "bouhoaya khadidja", "boukhri_abdrahman", "bourahla_lotfi", "boulares_hadjer", "benzine_imene", "writer_27", "wafa", "bensouda_alaa", "benzertiha_asma", "bouakkaz_youcef", "boufenar", "boualbani_lamis", "betrouni", "biba", "boughanem_sirine", "boughareb", "beldi_amira", "timizar_hakim", "belkessa_imane", "bekhti_djamila", "belkessa_nawel", "belhous_fahima", "benguea_amina", "basma_benboutid", "benbekhma_marwa", "belferroum_assin", "bedder", "kheira", "touati_assia", "lalou_sarah", "lahouaoui", "khowter_amer", "khawla_benarous", "khouloud", "kheir_sohaib", "kocheida_imen", "kebbab", "kenza", "kacimi", "walid", "iline", "ibtissem", "idjer_khadidja", "hounaci_med", "henni_walid", "imene_siserir", "kaouther_tim", "kaeima_rahali", "imene", "hani", "tortebim_ryad", "ali_daoudi", "harek_sofia", "aliche_khadidja", "alim", "halilou_afaf", "hamidi", "allaf", "haniche_fouzia", "hanaa", "ali", "touati_narimane", "ait_saadi", "ailane_abir", "abrous", "abir_dendani", "addache_fares", "aboellar", "abd_slam", "adlane", "adem_kara_ali", "abdelaziz_lameya", "tinhinan", "abarham_sarah", "abaraka_mohamed", "timizar_imene", "warda_djemel", "timizar_saliha", "writer_14", "tabet_borhane", "tarek", "tesnime", "taouari_hanaa", "souhila02", "tilmatine_anis", "souhila", "tali", "talha_mohamed", "taky dinne", "writer_17", "samira", "samy", "sara_aithoucine", "semroud_ikram", "samar_madjda", "sanaa_a", "samia", "sofia mb", "sarah", "sarah02", "writer_11", "sakhi_sara", "roukia", "sabrina", "saidi_sabah", "sadji_warda", "roufaida", "saadi_maria", "sahili_falek_mehdi", "sabrine_bouhais", "said_radjaa", "writer_16", "riadh_hadjsadouk", "regoui_zineb", "regoui_youcef", "rosa", "ribaoui_aya", "regoui_meriem", "rouag_lina", "rimase", "regoui_riad", "riane_chakib", "writer_1", "rabab", "regoui_amine", "rania_ladoul", "regoui_assia", "radia", "rania_amira", "regoui", "regoui_amira_rym", "oueldsaid_seif_eddine", "rayan", "writer_7", "nadir_taileb", "naruto", "nedjet_boumediene", "naila_aissani", "nassiba", "nael", "nassim_2", "nassim", "neggazi", "nesrine", "writer_10", "moughdad_yasmine", "midoune_imane", "mouhoub", "meziane_mustapha", "nada", "milaoubi_abdelhakim", "moncef", "messad_abir", "moussa_billel", "mohamed" ]
Imene/vit-base-patch16-224-in21k-wwwwii
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Imene/vit-base-patch16-224-in21k-wwwwii This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.8024 - Train Accuracy: 0.9939 - Train Top-3-accuracy: 0.9997 - Validation Loss: 1.6739 - Validation Accuracy: 0.6267 - Validation Top-3-accuracy: 0.8349 - Epoch: 9 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'inner_optimizer': {'class_name': 'AdamWeightDecay', 'config': {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 4e-05, 'decay_steps': 1620, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.001}}, 'dynamic': True, 'initial_scale': 32768.0, 'dynamic_growth_steps': 2000} - training_precision: mixed_float16 ### Training results | Train Loss | Train Accuracy | Train Top-3-accuracy | Validation Loss | Validation Accuracy | Validation Top-3-accuracy | Epoch | |:----------:|:--------------:|:--------------------:|:---------------:|:-------------------:|:-------------------------:|:-----:| | 3.6793 | 0.125 | 0.2805 | 3.4078 | 0.2151 | 0.4756 | 0 | | 3.1763 | 0.3448 | 0.6265 | 3.0167 | 0.4209 | 0.6640 | 1 | | 2.7546 | 0.5419 | 0.7852 | 2.6634 | 0.5326 | 0.7651 | 2 | | 2.3537 | 0.6855 | 0.8843 | 2.3971 | 0.5547 | 0.7860 | 3 | | 1.9989 | 0.7814 | 0.9279 | 2.2236 | 0.5837 | 0.7907 | 4 | | 1.6670 | 0.875 | 0.9698 | 2.0757 | 0.5977 | 0.7907 | 5 | | 1.3815 | 0.9352 | 0.9890 | 1.8921 | 0.6198 | 0.8174 | 6 | | 1.1407 | 0.9651 | 0.9956 | 1.7976 | 0.6244 | 0.8174 | 7 | | 0.9451 | 0.9866 | 0.9983 | 1.7227 | 0.6349 | 0.8267 | 8 | | 0.8024 | 0.9939 | 0.9997 | 1.6739 | 0.6267 | 0.8349 | 9 | ### Framework versions - Transformers 4.21.2 - TensorFlow 2.8.2 - Datasets 2.4.0 - Tokenizers 0.12.1
[ "writer_2", "writer_9", "writer_16", "writer_11", "writer_12", "writer_19", "writer_15", "writer_20", "writer_17", "writer_18", "writer_14", "writer_13", "writer_10", "writer_27", "writer_28", "writer_22", "writer_23", "writer_26", "writer_25", "writer_29", "writer_30", "writer_21", "writer_24", "writer_3", "writer_35", "writer_31", "writer_39", "writer_37", "writer_36", "writer_40", "writer_32", "writer_34", "writer_38", "writer_33", "writer_7", "writer_44", "writer_42", "writer_47", "writer_48", "writer_46", "writer_43", "writer_41", "writer_50", "writer_45", "writer_49", "writer_4", "writer_53", "writer_52", "writer_51", "writer_1", "writer_6", "writer_8", "writer_5" ]
DrishtiSharma/finetuned-SwinT-Indian-Food-Classification-v1
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned-SwinT-Indian-Food-Classification-v1 This model is a fine-tuned version of [microsoft/swin-base-patch4-window7-224-in22k](https://huggingface.co/microsoft/swin-base-patch4-window7-224-in22k) on the Indian-Food-Images dataset. It achieves the following results on the evaluation set: - Loss: 0.2868 - Accuracy: 0.9373 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.2433 | 0.3 | 100 | 0.7067 | 0.8193 | | 0.6458 | 0.6 | 200 | 0.4692 | 0.8789 | | 0.635 | 0.9 | 300 | 0.4864 | 0.8682 | | 0.6219 | 1.2 | 400 | 0.4240 | 0.8831 | | 0.4889 | 1.5 | 500 | 0.3840 | 0.8948 | | 0.2963 | 1.8 | 600 | 0.4279 | 0.8959 | | 0.4405 | 2.1 | 700 | 0.3508 | 0.9118 | | 0.3803 | 2.4 | 800 | 0.3659 | 0.9086 | | 0.3499 | 2.7 | 900 | 0.3347 | 0.9214 | | 0.3131 | 3.0 | 1000 | 0.2910 | 0.9277 | | 0.3036 | 3.3 | 1100 | 0.3938 | 0.9107 | | 0.2697 | 3.6 | 1200 | 0.3566 | 0.9171 | | 0.1551 | 3.9 | 1300 | 0.3369 | 0.9341 | | 0.0752 | 4.2 | 1400 | 0.2868 | 0.9373 | | 0.132 | 4.5 | 1500 | 0.3023 | 0.9373 | | 0.1133 | 4.8 | 1600 | 0.2978 | 0.9416 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
[ "organism, being", "benthos", "heterotroph", "cell", "person, individual, someone, somebody, mortal, soul", "animal, animate_being, beast, brute, creature, fauna", "plant, flora, plant_life", "food, nutrient", "artifact, artefact", "hop", "check-in", "dressage", "curvet, vaulting", "piaffe", "funambulism, tightrope_walking", "rock_climbing", "contact_sport", "outdoor_sport, field_sport", "gymnastics, gymnastic_exercise", "acrobatics, tumbling", "track_and_field", "track, running", "jumping", "broad_jump, long_jump", "high_jump", "fosbury_flop", "skiing", "cross-country_skiing", "ski_jumping", "water_sport, aquatics", "swimming, swim", "bathe", "dip, plunge", "dive, diving", "floating, natation", "dead-man's_float, prone_float", "belly_flop, belly_flopper, belly_whop, belly_whopper", "cliff_diving", "flip", "gainer, full_gainer", "half_gainer", "jackknife", "swan_dive, swallow_dive", "skin_diving, skin-dive", "scuba_diving", "snorkeling, snorkel_diving", "surfing, surfboarding, surfriding", "water-skiing", "rowing, row", "sculling", "boxing, pugilism, fisticuffs", "professional_boxing", "in-fighting", "fight", "rope-a-dope", "spar, sparring", "archery", "sledding", "tobogganing", "luging", "bobsledding", "wrestling, rassling, grappling", "greco-roman_wrestling", "professional_wrestling", "sumo", "skating", "ice_skating", "figure_skating", "rollerblading", "roller_skating", "skateboarding", "speed_skating", "racing", "auto_racing, car_racing", "boat_racing", "hydroplane_racing", "camel_racing", "greyhound_racing", "horse_racing", "riding, horseback_riding, equitation", "equestrian_sport", "pony-trekking", "showjumping, stadium_jumping", "cross-country_riding, cross-country_jumping", "cycling", "bicycling", "motorcycling", "dune_cycling", "blood_sport", "bullfighting, tauromachy", "cockfighting", "hunt, hunting", "battue", "beagling", "coursing", "deer_hunting, deer_hunt", "ducking, duck_hunting", "fox_hunting, foxhunt", "pigsticking", "fishing, sportfishing", "angling", "fly-fishing", "troll, trolling", "casting, cast", "bait_casting", "fly_casting", "overcast", "surf_casting, surf_fishing", "day_game", "athletic_game", "ice_hockey, hockey, hockey_game", "tetherball", "water_polo", "outdoor_game", "golf, golf_game", "professional_golf", "round_of_golf, round", "medal_play, stroke_play", "match_play", "miniature_golf", "croquet", "quoits, horseshoes", "shuffleboard, shovelboard", "field_game", "field_hockey, hockey", "shinny, shinney", "football, football_game", "american_football, american_football_game", "professional_football", "touch_football", "hurling", "rugby, rugby_football, rugger", "ball_game, ballgame", "baseball, baseball_game", "ball", "professional_baseball", "hardball", "perfect_game", "no-hit_game, no-hitter", "one-hitter, 1-hitter", "two-hitter, 2-hitter", "three-hitter, 3-hitter", "four-hitter, 4-hitter", "five-hitter, 5-hitter", "softball, softball_game", "rounders", "stickball, stickball_game", "cricket", "lacrosse", "polo", "pushball", "soccer, association_football", "court_game", "handball", "racquetball", "fives", "squash, squash_racquets, squash_rackets", "volleyball, volleyball_game", "jai_alai, pelota", "badminton", "battledore, battledore_and_shuttlecock", "basketball, basketball_game, hoops", "professional_basketball", "deck_tennis", "netball", "tennis, lawn_tennis", "professional_tennis", "singles", "singles", "doubles", "doubles", "royal_tennis, real_tennis, court_tennis", "pallone", "sport, athletics", "clasp, clench, clutch, clutches, grasp, grip, hold", "judo", "team_sport", "last_supper, lord's_supper", "seder, passover_supper", "camping, encampment, bivouacking, tenting", "pest", "critter", "creepy-crawly", "darter", "peeper", "homeotherm, homoiotherm, homotherm", "poikilotherm, ectotherm", "range_animal", "scavenger", "bottom-feeder, bottom-dweller", "bottom-feeder", "work_animal", "beast_of_burden, jument", "draft_animal", "pack_animal, sumpter", "domestic_animal, domesticated_animal", "feeder", "feeder", "stocker", "hatchling", "head", "migrator", "molter, moulter", "pet", "stayer", "stunt", "marine_animal, marine_creature, sea_animal, sea_creature", "by-catch, bycatch", "female", "hen", "male", "adult", "young, offspring", "orphan", "young_mammal", "baby", "pup, whelp", "wolf_pup, wolf_cub", "puppy", "cub, young_carnivore", "lion_cub", "bear_cub", "tiger_cub", "kit", "suckling", "sire", "dam", "thoroughbred, purebred, pureblood", "giant", "mutant", "carnivore", "herbivore", "insectivore", "acrodont", "pleurodont", "microorganism, micro-organism", "monohybrid", "arbovirus, arborvirus", "adenovirus", "arenavirus", "marburg_virus", "arenaviridae", "vesiculovirus", "reoviridae", "variola_major, variola_major_virus", "viroid, virusoid", "coliphage", "paramyxovirus", "poliovirus", "herpes, herpes_virus", "herpes_simplex_1, hs1, hsv-1, hsv-i", "herpes_zoster, herpes_zoster_virus", "herpes_varicella_zoster, herpes_varicella_zoster_virus", "cytomegalovirus, cmv", "varicella_zoster_virus", "polyoma, polyoma_virus", "lyssavirus", "reovirus", "rotavirus", "moneran, moneron", "archaebacteria, archaebacterium, archaeobacteria, archeobacteria", "bacteroid", "bacillus_anthracis, anthrax_bacillus", "yersinia_pestis", "brucella", "spirillum, spirilla", "botulinus, botulinum, clostridium_botulinum", "clostridium_perfringens", "cyanobacteria, blue-green_algae", "trichodesmium", "nitric_bacteria, nitrobacteria", "spirillum", "francisella, genus_francisella", "gonococcus, neisseria_gonorrhoeae", "corynebacterium_diphtheriae, c._diphtheriae, klebs-loeffler_bacillus", "enteric_bacteria, enterobacteria, enterics, entric", "klebsiella", "salmonella_typhimurium", "typhoid_bacillus, salmonella_typhosa, salmonella_typhi", "nitrate_bacterium, nitric_bacterium", "nitrite_bacterium, nitrous_bacterium", "actinomycete", "streptomyces", "streptomyces_erythreus", "streptomyces_griseus", "tubercle_bacillus, mycobacterium_tuberculosis", "pus-forming_bacteria", "streptobacillus", "myxobacteria, myxobacterium, myxobacter, gliding_bacteria, slime_bacteria", "staphylococcus, staphylococci, staph", "diplococcus", "pneumococcus, diplococcus_pneumoniae", "streptococcus, streptococci, strep", "spirochete, spirochaete", "planktonic_algae", "zooplankton", "parasite", "endoparasite, entoparasite, entozoan, entozoon, endozoan", "ectoparasite, ectozoan, ectozoon, epizoan, epizoon", "pathogen", "commensal", "myrmecophile", "protoctist", "protozoan, protozoon", "sarcodinian, sarcodine", "heliozoan", "endameba", "ameba, amoeba", "globigerina", "testacean", "arcella", "difflugia", "ciliate, ciliated_protozoan, ciliophoran", "paramecium, paramecia", "stentor", "alga, algae", "arame", "seagrass", "golden_algae", "yellow-green_algae", "brown_algae", "kelp", "fucoid, fucoid_algae", "fucoid", "fucus", "bladderwrack, ascophyllum_nodosum", "green_algae, chlorophyte", "pond_scum", "chlorella", "stonewort", "desmid", "sea_moss", "eukaryote, eucaryote", "prokaryote, procaryote", "zooid", "leishmania, genus_leishmania", "zoomastigote, zooflagellate", "polymastigote", "costia, costia_necatrix", "giardia", "cryptomonad, cryptophyte", "sporozoan", "sporozoite", "trophozoite", "merozoite", "coccidium, eimeria", "gregarine", "plasmodium, plasmodium_vivax, malaria_parasite", "leucocytozoan, leucocytozoon", "microsporidian", "ostariophysi, order_ostariophysi", "cypriniform_fish", "loach", "cyprinid, cyprinid_fish", "carp", "domestic_carp, cyprinus_carpio", "leather_carp", "mirror_carp", "european_bream, abramis_brama", "tench, tinca_tinca", "dace, leuciscus_leuciscus", "chub, leuciscus_cephalus", "shiner", "common_shiner, silversides, notropis_cornutus", "roach, rutilus_rutilus", "rudd, scardinius_erythrophthalmus", "minnow, phoxinus_phoxinus", "gudgeon, gobio_gobio", "goldfish, carassius_auratus", "crucian_carp, carassius_carassius, carassius_vulgaris", "electric_eel, electrophorus_electric", "catostomid", "buffalo_fish, buffalofish", "black_buffalo, ictiobus_niger", "hog_sucker, hog_molly, hypentelium_nigricans", "redhorse, redhorse_sucker", "cyprinodont", "killifish", "mummichog, fundulus_heteroclitus", "striped_killifish, mayfish, may_fish, fundulus_majalis", "rivulus", "flagfish, american_flagfish, jordanella_floridae", "swordtail, helleri, topminnow, xyphophorus_helleri", "guppy, rainbow_fish, lebistes_reticulatus", "topminnow, poeciliid_fish, poeciliid, live-bearer", "mosquitofish, gambusia_affinis", "platy, platypoecilus_maculatus", "mollie, molly", "squirrelfish", "reef_squirrelfish, holocentrus_coruscus", "deepwater_squirrelfish, holocentrus_bullisi", "holocentrus_ascensionis", "soldierfish, soldier-fish", "anomalops, flashlight_fish", "flashlight_fish, photoblepharon_palpebratus", "john_dory, zeus_faber", "boarfish, capros_aper", "boarfish", "cornetfish", "stickleback, prickleback", "three-spined_stickleback, gasterosteus_aculeatus", "ten-spined_stickleback, gasterosteus_pungitius", "pipefish, needlefish", "dwarf_pipefish, syngnathus_hildebrandi", "deepwater_pipefish, cosmocampus_profundus", "seahorse, sea_horse", "snipefish, bellows_fish", "shrimpfish, shrimp-fish", "trumpetfish, aulostomus_maculatus", "pellicle", "embryo, conceptus, fertilized_egg", "fetus, foetus", "abortus", "spawn", "blastula, blastosphere", "blastocyst, blastodermic_vessicle", "gastrula", "morula", "yolk, vitellus", "chordate", "cephalochordate", "lancelet, amphioxus", "tunicate, urochordate, urochord", "ascidian", "sea_squirt", "salp, salpa", "doliolum", "larvacean", "appendicularia", "ascidian_tadpole", "vertebrate, craniate", "amniota", "amniote", "aquatic_vertebrate", "jawless_vertebrate, jawless_fish, agnathan", "ostracoderm", "heterostracan", "anaspid", "conodont", "cyclostome", "lamprey, lamprey_eel, lamper_eel", "sea_lamprey, petromyzon_marinus", "hagfish, hag, slime_eels", "myxine_glutinosa", "eptatretus", "gnathostome", "placoderm", "cartilaginous_fish, chondrichthian", "holocephalan, holocephalian", "chimaera", "rabbitfish, chimaera_monstrosa", "elasmobranch, selachian", "shark", "cow_shark, six-gilled_shark, hexanchus_griseus", "mackerel_shark", "porbeagle, lamna_nasus", "mako, mako_shark", "shortfin_mako, isurus_oxyrhincus", "longfin_mako, isurus_paucus", "bonito_shark, blue_pointed, isurus_glaucus", "great_white_shark, white_shark, man-eater, man-eating_shark, carcharodon_carcharias", "basking_shark, cetorhinus_maximus", "thresher, thrasher, thresher_shark, fox_shark, alopius_vulpinus", "carpet_shark, orectolobus_barbatus", "nurse_shark, ginglymostoma_cirratum", "sand_tiger, sand_shark, carcharias_taurus, odontaspis_taurus", "whale_shark, rhincodon_typus", "requiem_shark", "bull_shark, cub_shark, carcharhinus_leucas", "sandbar_shark, carcharhinus_plumbeus", "blacktip_shark, sandbar_shark, carcharhinus_limbatus", "whitetip_shark, oceanic_whitetip_shark, white-tipped_shark, carcharinus_longimanus", "dusky_shark, carcharhinus_obscurus", "lemon_shark, negaprion_brevirostris", "blue_shark, great_blue_shark, prionace_glauca", "tiger_shark, galeocerdo_cuvieri", "soupfin_shark, soupfin, soup-fin, galeorhinus_zyopterus", "dogfish", "smooth_dogfish", "smoothhound, smoothhound_shark, mustelus_mustelus", "american_smooth_dogfish, mustelus_canis", "florida_smoothhound, mustelus_norrisi", "whitetip_shark, reef_whitetip_shark, triaenodon_obseus", "spiny_dogfish", "atlantic_spiny_dogfish, squalus_acanthias", "pacific_spiny_dogfish, squalus_suckleyi", "hammerhead, hammerhead_shark", "smooth_hammerhead, sphyrna_zygaena", "smalleye_hammerhead, sphyrna_tudes", "shovelhead, bonnethead, bonnet_shark, sphyrna_tiburo", "angel_shark, angelfish, squatina_squatina, monkfish", "ray", "electric_ray, crampfish, numbfish, torpedo", "sawfish", "smalltooth_sawfish, pristis_pectinatus", "guitarfish", "stingray", "roughtail_stingray, dasyatis_centroura", "butterfly_ray", "eagle_ray", "spotted_eagle_ray, spotted_ray, aetobatus_narinari", "cownose_ray, cow-nosed_ray, rhinoptera_bonasus", "manta, manta_ray, devilfish", "atlantic_manta, manta_birostris", "devil_ray, mobula_hypostoma", "skate", "grey_skate, gray_skate, raja_batis", "little_skate, raja_erinacea", "thorny_skate, raja_radiata", "barndoor_skate, raja_laevis", "bird", "dickeybird, dickey-bird, dickybird, dicky-bird", "fledgling, fledgeling", "nestling, baby_bird", "cock", "gamecock, fighting_cock", "hen", "nester", "night_bird", "night_raven", "bird_of_passage", "archaeopteryx, archeopteryx, archaeopteryx_lithographica", "archaeornis", "ratite, ratite_bird, flightless_bird", "carinate, carinate_bird, flying_bird", "ostrich, struthio_camelus", "cassowary", "emu, dromaius_novaehollandiae, emu_novaehollandiae", "kiwi, apteryx", "rhea, rhea_americana", "rhea, nandu, pterocnemia_pennata", "elephant_bird, aepyornis", "moa", "passerine, passeriform_bird", "nonpasserine_bird", "oscine, oscine_bird", "songbird, songster", "honey_eater, honeysucker", "accentor", "hedge_sparrow, sparrow, dunnock, prunella_modularis", "lark", "skylark, alauda_arvensis", "wagtail", "pipit, titlark, lark", "meadow_pipit, anthus_pratensis", "finch", "chaffinch, fringilla_coelebs", "brambling, fringilla_montifringilla", "goldfinch, carduelis_carduelis", "linnet, lintwhite, carduelis_cannabina", "siskin, carduelis_spinus", "red_siskin, carduelis_cucullata", "redpoll, carduelis_flammea", "redpoll, carduelis_hornemanni", "new_world_goldfinch, goldfinch, yellowbird, spinus_tristis", "pine_siskin, pine_finch, spinus_pinus", "house_finch, linnet, carpodacus_mexicanus", "purple_finch, carpodacus_purpureus", "canary, canary_bird", "common_canary, serinus_canaria", "serin", "crossbill, loxia_curvirostra", "bullfinch, pyrrhula_pyrrhula", "junco, snowbird", "dark-eyed_junco, slate-colored_junco, junco_hyemalis", "new_world_sparrow", "vesper_sparrow, grass_finch, pooecetes_gramineus", "white-throated_sparrow, whitethroat, zonotrichia_albicollis", "white-crowned_sparrow, zonotrichia_leucophrys", "chipping_sparrow, spizella_passerina", "field_sparrow, spizella_pusilla", "tree_sparrow, spizella_arborea", "song_sparrow, melospiza_melodia", "swamp_sparrow, melospiza_georgiana", "bunting", "indigo_bunting, indigo_finch, indigo_bird, passerina_cyanea", "ortolan, ortolan_bunting, emberiza_hortulana", "reed_bunting, emberiza_schoeniclus", "yellowhammer, yellow_bunting, emberiza_citrinella", "yellow-breasted_bunting, emberiza_aureola", "snow_bunting, snowbird, snowflake, plectrophenax_nivalis", "honeycreeper", "banana_quit", "sparrow, true_sparrow", "english_sparrow, house_sparrow, passer_domesticus", "tree_sparrow, passer_montanus", "grosbeak, grossbeak", "evening_grosbeak, hesperiphona_vespertina", "hawfinch, coccothraustes_coccothraustes", "pine_grosbeak, pinicola_enucleator", "cardinal, cardinal_grosbeak, richmondena_cardinalis, cardinalis_cardinalis, redbird", "pyrrhuloxia, pyrrhuloxia_sinuata", "towhee", "chewink, cheewink, pipilo_erythrophthalmus", "green-tailed_towhee, chlorura_chlorura", "weaver, weaverbird, weaver_finch", "baya, ploceus_philippinus", "whydah, whidah, widow_bird", "java_sparrow, java_finch, ricebird, padda_oryzivora", "avadavat, amadavat", "grassfinch, grass_finch", "zebra_finch, poephila_castanotis", "honeycreeper, hawaiian_honeycreeper", "lyrebird", "scrubbird, scrub-bird, scrub_bird", "broadbill", "tyrannid", "new_world_flycatcher, flycatcher, tyrant_flycatcher, tyrant_bird", "kingbird, tyrannus_tyrannus", "arkansas_kingbird, western_kingbird", "cassin's_kingbird, tyrannus_vociferans", "eastern_kingbird", "grey_kingbird, gray_kingbird, petchary, tyrannus_domenicensis_domenicensis", "pewee, peewee, peewit, pewit, wood_pewee, contopus_virens", "western_wood_pewee, contopus_sordidulus", "phoebe, phoebe_bird, sayornis_phoebe", "vermillion_flycatcher, firebird, pyrocephalus_rubinus_mexicanus", "cotinga, chatterer", "cock_of_the_rock, rupicola_rupicola", "cock_of_the_rock, rupicola_peruviana", "manakin", "bellbird", "umbrella_bird, cephalopterus_ornatus", "ovenbird", "antbird, ant_bird", "ant_thrush", "ant_shrike", "spotted_antbird, hylophylax_naevioides", "woodhewer, woodcreeper, wood-creeper, tree_creeper", "pitta", "scissortail, scissortailed_flycatcher, muscivora-forficata", "old_world_flycatcher, true_flycatcher, flycatcher", "spotted_flycatcher, muscicapa_striata, muscicapa_grisola", "thickhead, whistler", "thrush", "missel_thrush, mistle_thrush, mistletoe_thrush, turdus_viscivorus", "song_thrush, mavis, throstle, turdus_philomelos", "fieldfare, snowbird, turdus_pilaris", "redwing, turdus_iliacus", "blackbird, merl, merle, ouzel, ousel, european_blackbird, turdus_merula", "ring_ouzel, ring_blackbird, ring_thrush, turdus_torquatus", "robin, american_robin, turdus_migratorius", "clay-colored_robin, turdus_greyi", "hermit_thrush, hylocichla_guttata", "veery, wilson's_thrush, hylocichla_fuscescens", "wood_thrush, hylocichla_mustelina", "nightingale, luscinia_megarhynchos", "thrush_nightingale, luscinia_luscinia", "bulbul", "old_world_chat, chat", "stonechat, saxicola_torquata", "whinchat, saxicola_rubetra", "solitaire", "redstart, redtail", "wheatear", "bluebird", "robin, redbreast, robin_redbreast, old_world_robin, erithacus_rubecola", "bluethroat, erithacus_svecicus", "warbler", "gnatcatcher", "kinglet", "goldcrest, golden-crested_kinglet, regulus_regulus", "gold-crowned_kinglet, regulus_satrata", "ruby-crowned_kinglet, ruby-crowned_wren, regulus_calendula", "old_world_warbler, true_warbler", "blackcap, silvia_atricapilla", "greater_whitethroat, whitethroat, sylvia_communis", "lesser_whitethroat, whitethroat, sylvia_curruca", "wood_warbler, phylloscopus_sibilatrix", "sedge_warbler, sedge_bird, sedge_wren, reedbird, acrocephalus_schoenobaenus", "wren_warbler", "tailorbird, orthotomus_sutorius", "babbler, cackler", "new_world_warbler, wood_warbler", "parula_warbler, northern_parula, parula_americana", "wilson's_warbler, wilson's_blackcap, wilsonia_pusilla", "flycatching_warbler", "american_redstart, redstart, setophaga_ruticilla", "cape_may_warbler, dendroica_tigrina", "yellow_warbler, golden_warbler, yellowbird, dendroica_petechia", "blackburn, blackburnian_warbler, dendroica_fusca", "audubon's_warbler, audubon_warbler, dendroica_auduboni", "myrtle_warbler, myrtle_bird, dendroica_coronata", "blackpoll, dendroica_striate", "new_world_chat, chat", "yellow-breasted_chat, icteria_virens", "ovenbird, seiurus_aurocapillus", "water_thrush", "yellowthroat", "common_yellowthroat, maryland_yellowthroat, geothlypis_trichas", "riflebird, ptloris_paradisea", "new_world_oriole, american_oriole, oriole", "northern_oriole, icterus_galbula", "baltimore_oriole, baltimore_bird, hangbird, firebird, icterus_galbula_galbula", "bullock's_oriole, icterus_galbula_bullockii", "orchard_oriole, icterus_spurius", "meadowlark, lark", "eastern_meadowlark, sturnella_magna", "western_meadowlark, sturnella_neglecta", "cacique, cazique", "bobolink, ricebird, reedbird, dolichonyx_oryzivorus", "new_world_blackbird, blackbird", "grackle, crow_blackbird", "purple_grackle, quiscalus_quiscula", "rusty_blackbird, rusty_grackle, euphagus_carilonus", "cowbird", "red-winged_blackbird, redwing, agelaius_phoeniceus", "old_world_oriole, oriole", "golden_oriole, oriolus_oriolus", "fig-bird", "starling", "common_starling, sturnus_vulgaris", "rose-colored_starling, rose-colored_pastor, pastor_sturnus, pastor_roseus", "myna, mynah, mina, minah, myna_bird, mynah_bird", "crested_myna, acridotheres_tristis", "hill_myna, indian_grackle, grackle, gracula_religiosa", "corvine_bird", "crow", "american_crow, corvus_brachyrhyncos", "raven, corvus_corax", "rook, corvus_frugilegus", "jackdaw, daw, corvus_monedula", "chough", "jay", "old_world_jay", "common_european_jay, garullus_garullus", "new_world_jay", "blue_jay, jaybird, cyanocitta_cristata", "canada_jay, grey_jay, gray_jay, camp_robber, whisker_jack, perisoreus_canadensis", "rocky_mountain_jay, perisoreus_canadensis_capitalis", "nutcracker", "common_nutcracker, nucifraga_caryocatactes", "clark's_nutcracker, nucifraga_columbiana", "magpie", "european_magpie, pica_pica", "american_magpie, pica_pica_hudsonia", "australian_magpie", "butcherbird", "currawong, bell_magpie", "piping_crow, piping_crow-shrike, gymnorhina_tibicen", "wren, jenny_wren", "winter_wren, troglodytes_troglodytes", "house_wren, troglodytes_aedon", "marsh_wren", "long-billed_marsh_wren, cistothorus_palustris", "sedge_wren, short-billed_marsh_wren, cistothorus_platensis", "rock_wren, salpinctes_obsoletus", "carolina_wren, thryothorus_ludovicianus", "cactus_wren", "mockingbird, mocker, mimus_polyglotktos", "blue_mockingbird, melanotis_caerulescens", "catbird, grey_catbird, gray_catbird, dumetella_carolinensis", "thrasher, mocking_thrush", "brown_thrasher, brown_thrush, toxostoma_rufums", "new_zealand_wren", "rock_wren, xenicus_gilviventris", "rifleman_bird, acanthisitta_chloris", "creeper, tree_creeper", "brown_creeper, american_creeper, certhia_americana", "european_creeper, certhia_familiaris", "wall_creeper, tichodrome, tichodroma_muriaria", "european_nuthatch, sitta_europaea", "red-breasted_nuthatch, sitta_canadensis", "white-breasted_nuthatch, sitta_carolinensis", "titmouse, tit", "chickadee", "black-capped_chickadee, blackcap, parus_atricapillus", "tufted_titmouse, parus_bicolor", "carolina_chickadee, parus_carolinensis", "blue_tit, tomtit, parus_caeruleus", "bushtit, bush_tit", "wren-tit, chamaea_fasciata", "verdin, auriparus_flaviceps", "fairy_bluebird, bluebird", "swallow", "barn_swallow, chimney_swallow, hirundo_rustica", "cliff_swallow, hirundo_pyrrhonota", "tree_swallow, tree_martin, hirundo_nigricans", "white-bellied_swallow, tree_swallow, iridoprocne_bicolor", "martin", "house_martin, delichon_urbica", "bank_martin, bank_swallow, sand_martin, riparia_riparia", "purple_martin, progne_subis", "wood_swallow, swallow_shrike", "tanager", "scarlet_tanager, piranga_olivacea, redbird, firebird", "western_tanager, piranga_ludoviciana", "summer_tanager, summer_redbird, piranga_rubra", "hepatic_tanager, piranga_flava_hepatica", "shrike", "butcherbird", "european_shrike, lanius_excubitor", "northern_shrike, lanius_borealis", "white-rumped_shrike, lanius_ludovicianus_excubitorides", "loggerhead_shrike, lanius_lucovicianus", "migrant_shrike, lanius_ludovicianus_migrans", "bush_shrike", "black-fronted_bush_shrike, chlorophoneus_nigrifrons", "bowerbird, catbird", "satin_bowerbird, satin_bird, ptilonorhynchus_violaceus", "great_bowerbird, chlamydera_nuchalis", "water_ouzel, dipper", "european_water_ouzel, cinclus_aquaticus", "american_water_ouzel, cinclus_mexicanus", "vireo", "red-eyed_vireo, vireo_olivaceous", "solitary_vireo, vireo_solitarius", "blue-headed_vireo, vireo_solitarius_solitarius", "waxwing", "cedar_waxwing, cedarbird, bombycilla_cedrorun", "bohemian_waxwing, bombycilla_garrulus", "bird_of_prey, raptor, raptorial_bird", "accipitriformes, order_accipitriformes", "hawk", "eyas", "tiercel, tercel, tercelet", "goshawk, accipiter_gentilis", "sparrow_hawk, accipiter_nisus", "cooper's_hawk, blue_darter, accipiter_cooperii", "chicken_hawk, hen_hawk", "buteonine", "redtail, red-tailed_hawk, buteo_jamaicensis", "rough-legged_hawk, roughleg, buteo_lagopus", "red-shouldered_hawk, buteo_lineatus", "buzzard, buteo_buteo", "honey_buzzard, pernis_apivorus", "kite", "black_kite, milvus_migrans", "swallow-tailed_kite, swallow-tailed_hawk, elanoides_forficatus", "white-tailed_kite, elanus_leucurus", "harrier", "marsh_harrier, circus_aeruginosus", "montagu's_harrier, circus_pygargus", "marsh_hawk, northern_harrier, hen_harrier, circus_cyaneus", "harrier_eagle, short-toed_eagle", "falcon", "peregrine, peregrine_falcon, falco_peregrinus", "falcon-gentle, falcon-gentil", "gyrfalcon, gerfalcon, falco_rusticolus", "kestrel, falco_tinnunculus", "sparrow_hawk, american_kestrel, kestrel, falco_sparverius", "pigeon_hawk, merlin, falco_columbarius", "hobby, falco_subbuteo", "caracara", "audubon's_caracara, polyborus_cheriway_audubonii", "carancha, polyborus_plancus", "eagle, bird_of_jove", "young_bird", "eaglet", "harpy, harpy_eagle, harpia_harpyja", "golden_eagle, aquila_chrysaetos", "tawny_eagle, aquila_rapax", "bald_eagle, american_eagle, haliaeetus_leucocephalus", "sea_eagle", "kamchatkan_sea_eagle, stellar's_sea_eagle, haliaeetus_pelagicus", "ern, erne, grey_sea_eagle, gray_sea_eagle, european_sea_eagle, white-tailed_sea_eagle, haliatus_albicilla", "fishing_eagle, haliaeetus_leucorhyphus", "osprey, fish_hawk, fish_eagle, sea_eagle, pandion_haliaetus", "vulture", "aegypiidae, family_aegypiidae", "old_world_vulture", "griffon_vulture, griffon, gyps_fulvus", "bearded_vulture, lammergeier, lammergeyer, gypaetus_barbatus", "egyptian_vulture, pharaoh's_chicken, neophron_percnopterus", "black_vulture, aegypius_monachus", "secretary_bird, sagittarius_serpentarius", "new_world_vulture, cathartid", "buzzard, turkey_buzzard, turkey_vulture, cathartes_aura", "condor", "andean_condor, vultur_gryphus", "california_condor, gymnogyps_californianus", "black_vulture, carrion_crow, coragyps_atratus", "king_vulture, sarcorhamphus_papa", "owl, bird_of_minerva, bird_of_night, hooter", "owlet", "little_owl, athene_noctua", "horned_owl", "great_horned_owl, bubo_virginianus", "great_grey_owl, great_gray_owl, strix_nebulosa", "tawny_owl, strix_aluco", "barred_owl, strix_varia", "screech_owl, otus_asio", "screech_owl", "scops_owl", "spotted_owl, strix_occidentalis", "old_world_scops_owl, otus_scops", "oriental_scops_owl, otus_sunia", "hoot_owl", "hawk_owl, surnia_ulula", "long-eared_owl, asio_otus", "laughing_owl, laughing_jackass, sceloglaux_albifacies", "barn_owl, tyto_alba", "amphibian", "ichyostega", "urodele, caudate", "salamander", "european_fire_salamander, salamandra_salamandra", "spotted_salamander, fire_salamander, salamandra_maculosa", "alpine_salamander, salamandra_atra", "newt, triton", "common_newt, triturus_vulgaris", "red_eft, notophthalmus_viridescens", "pacific_newt", "rough-skinned_newt, taricha_granulosa", "california_newt, taricha_torosa", "eft", "ambystomid, ambystomid_salamander", "mole_salamander, ambystoma_talpoideum", "spotted_salamander, ambystoma_maculatum", "tiger_salamander, ambystoma_tigrinum", "axolotl, mud_puppy, ambystoma_mexicanum", "waterdog", "hellbender, mud_puppy, cryptobranchus_alleganiensis", "giant_salamander, megalobatrachus_maximus", "olm, proteus_anguinus", "mud_puppy, necturus_maculosus", "dicamptodon, dicamptodontid", "pacific_giant_salamander, dicamptodon_ensatus", "olympic_salamander, rhyacotriton_olympicus", "lungless_salamander, plethodont", "eastern_red-backed_salamander, plethodon_cinereus", "western_red-backed_salamander, plethodon_vehiculum", "dusky_salamander", "climbing_salamander", "arboreal_salamander, aneides_lugubris", "slender_salamander, worm_salamander", "web-toed_salamander", "shasta_salamander, hydromantes_shastae", "limestone_salamander, hydromantes_brunus", "amphiuma, congo_snake, congo_eel, blind_eel", "siren", "frog, toad, toad_frog, anuran, batrachian, salientian", "true_frog, ranid", "wood-frog, wood_frog, rana_sylvatica", "leopard_frog, spring_frog, rana_pipiens", "bullfrog, rana_catesbeiana", "green_frog, spring_frog, rana_clamitans", "cascades_frog, rana_cascadae", "goliath_frog, rana_goliath", "pickerel_frog, rana_palustris", "tarahumara_frog, rana_tarahumarae", "grass_frog, rana_temporaria", "leptodactylid_frog, leptodactylid", "robber_frog", "barking_frog, robber_frog, hylactophryne_augusti", "crapaud, south_american_bullfrog, leptodactylus_pentadactylus", "tree_frog, tree-frog", "tailed_frog, bell_toad, ribbed_toad, tailed_toad, ascaphus_trui", "liopelma_hamiltoni", "true_toad", "bufo", "agua, agua_toad, bufo_marinus", "european_toad, bufo_bufo", "natterjack, bufo_calamita", "american_toad, bufo_americanus", "eurasian_green_toad, bufo_viridis", "american_green_toad, bufo_debilis", "yosemite_toad, bufo_canorus", "texas_toad, bufo_speciosus", "southwestern_toad, bufo_microscaphus", "western_toad, bufo_boreas", "obstetrical_toad, midwife_toad, alytes_obstetricans", "midwife_toad, alytes_cisternasi", "fire-bellied_toad, bombina_bombina", "spadefoot, spadefoot_toad", "western_spadefoot, scaphiopus_hammondii", "southern_spadefoot, scaphiopus_multiplicatus", "plains_spadefoot, scaphiopus_bombifrons", "tree_toad, tree_frog, tree-frog", "spring_peeper, hyla_crucifer", "pacific_tree_toad, hyla_regilla", "canyon_treefrog, hyla_arenicolor", "chameleon_tree_frog", "cricket_frog", "northern_cricket_frog, acris_crepitans", "eastern_cricket_frog, acris_gryllus", "chorus_frog", "lowland_burrowing_treefrog, northern_casque-headed_frog, pternohyla_fodiens", "western_narrow-mouthed_toad, gastrophryne_olivacea", "eastern_narrow-mouthed_toad, gastrophryne_carolinensis", "sheep_frog", "tongueless_frog", "surinam_toad, pipa_pipa, pipa_americana", "african_clawed_frog, xenopus_laevis", "south_american_poison_toad", "caecilian, blindworm", "reptile, reptilian", "anapsid, anapsid_reptile", "diapsid, diapsid_reptile", "diapsida, subclass_diapsida", "chelonian, chelonian_reptile", "turtle", "sea_turtle, marine_turtle", "green_turtle, chelonia_mydas", "loggerhead, loggerhead_turtle, caretta_caretta", "ridley", "atlantic_ridley, bastard_ridley, bastard_turtle, lepidochelys_kempii", "pacific_ridley, olive_ridley, lepidochelys_olivacea", "hawksbill_turtle, hawksbill, hawkbill, tortoiseshell_turtle, eretmochelys_imbricata", "leatherback_turtle, leatherback, leathery_turtle, dermochelys_coriacea", "snapping_turtle", "common_snapping_turtle, snapper, chelydra_serpentina", "alligator_snapping_turtle, alligator_snapper, macroclemys_temmincki", "mud_turtle", "musk_turtle, stinkpot", "terrapin", "diamondback_terrapin, malaclemys_centrata", "red-bellied_terrapin, red-bellied_turtle, redbelly, pseudemys_rubriventris", "slider, yellow-bellied_terrapin, pseudemys_scripta", "cooter, river_cooter, pseudemys_concinna", "box_turtle, box_tortoise", "western_box_turtle, terrapene_ornata", "painted_turtle, painted_terrapin, painted_tortoise, chrysemys_picta", "tortoise", "european_tortoise, testudo_graeca", "giant_tortoise", "gopher_tortoise, gopher_turtle, gopher, gopherus_polypemus", "desert_tortoise, gopherus_agassizii", "texas_tortoise", "soft-shelled_turtle, pancake_turtle", "spiny_softshell, trionyx_spiniferus", "smooth_softshell, trionyx_muticus", "tuatara, sphenodon_punctatum", "saurian", "lizard", "gecko", "flying_gecko, fringed_gecko, ptychozoon_homalocephalum", "banded_gecko", "iguanid, iguanid_lizard", "common_iguana, iguana, iguana_iguana", "marine_iguana, amblyrhynchus_cristatus", "desert_iguana, dipsosaurus_dorsalis", "chuckwalla, sauromalus_obesus", "zebra-tailed_lizard, gridiron-tailed_lizard, callisaurus_draconoides", "fringe-toed_lizard, uma_notata", "earless_lizard", "collared_lizard", "leopard_lizard", "spiny_lizard", "fence_lizard", "western_fence_lizard, swift, blue-belly, sceloporus_occidentalis", "eastern_fence_lizard, pine_lizard, sceloporus_undulatus", "sagebrush_lizard, sceloporus_graciosus", "side-blotched_lizard, sand_lizard, uta_stansburiana", "tree_lizard, urosaurus_ornatus", "horned_lizard, horned_toad, horny_frog", "texas_horned_lizard, phrynosoma_cornutum", "basilisk", "american_chameleon, anole, anolis_carolinensis", "worm_lizard", "night_lizard", "skink, scincid, scincid_lizard", "western_skink, eumeces_skiltonianus", "mountain_skink, eumeces_callicephalus", "teiid_lizard, teiid", "whiptail, whiptail_lizard", "racerunner, race_runner, six-lined_racerunner, cnemidophorus_sexlineatus", "plateau_striped_whiptail, cnemidophorus_velox", "chihuahuan_spotted_whiptail, cnemidophorus_exsanguis", "western_whiptail, cnemidophorus_tigris", "checkered_whiptail, cnemidophorus_tesselatus", "teju", "caiman_lizard", "agamid, agamid_lizard", "agama", "frilled_lizard, chlamydosaurus_kingi", "moloch", "mountain_devil, spiny_lizard, moloch_horridus", "anguid_lizard", "alligator_lizard", "blindworm, slowworm, anguis_fragilis", "glass_lizard, glass_snake, joint_snake", "legless_lizard", "lanthanotus_borneensis", "venomous_lizard", "gila_monster, heloderma_suspectum", "beaded_lizard, mexican_beaded_lizard, heloderma_horridum", "lacertid_lizard, lacertid", "sand_lizard, lacerta_agilis", "green_lizard, lacerta_viridis", "chameleon, chamaeleon", "african_chameleon, chamaeleo_chamaeleon", "horned_chameleon, chamaeleo_oweni", "monitor, monitor_lizard, varan", "african_monitor, varanus_niloticus", "komodo_dragon, komodo_lizard, dragon_lizard, giant_lizard, varanus_komodoensis", "crocodilian_reptile, crocodilian", "crocodile", "african_crocodile, nile_crocodile, crocodylus_niloticus", "asian_crocodile, crocodylus_porosus", "morlett's_crocodile", "false_gavial, tomistoma_schlegeli", "alligator, gator", "american_alligator, alligator_mississipiensis", "chinese_alligator, alligator_sinensis", "caiman, cayman", "spectacled_caiman, caiman_sclerops", "gavial, gavialis_gangeticus", "armored_dinosaur", "stegosaur, stegosaurus, stegosaur_stenops", "ankylosaur, ankylosaurus", "edmontonia", "bone-headed_dinosaur", "pachycephalosaur, pachycephalosaurus", "ceratopsian, horned_dinosaur", "protoceratops", "triceratops", "styracosaur, styracosaurus", "psittacosaur, psittacosaurus", "ornithopod, ornithopod_dinosaur", "hadrosaur, hadrosaurus, duck-billed_dinosaur", "trachodon, trachodont", "saurischian, saurischian_dinosaur", "sauropod, sauropod_dinosaur", "apatosaur, apatosaurus, brontosaur, brontosaurus, thunder_lizard, apatosaurus_excelsus", "barosaur, barosaurus", "diplodocus", "argentinosaur", "theropod, theropod_dinosaur, bird-footed_dinosaur", "ceratosaur, ceratosaurus", "coelophysis", "tyrannosaur, tyrannosaurus, tyrannosaurus_rex", "allosaur, allosaurus", "ornithomimid", "maniraptor", "oviraptorid", "velociraptor", "deinonychus", "utahraptor, superslasher", "synapsid, synapsid_reptile", "dicynodont", "pelycosaur", "dimetrodon", "pterosaur, flying_reptile", "pterodactyl", "ichthyosaur", "ichthyosaurus", "stenopterygius, stenopterygius_quadrisicissus", "plesiosaur, plesiosaurus", "nothosaur", "snake, serpent, ophidian", "colubrid_snake, colubrid", "hoop_snake", "thunder_snake, worm_snake, carphophis_amoenus", "ringneck_snake, ring-necked_snake, ring_snake", "hognose_snake, puff_adder, sand_viper", "leaf-nosed_snake", "green_snake, grass_snake", "smooth_green_snake, opheodrys_vernalis", "rough_green_snake, opheodrys_aestivus", "green_snake", "racer", "blacksnake, black_racer, coluber_constrictor", "blue_racer, coluber_constrictor_flaviventris", "horseshoe_whipsnake, coluber_hippocrepis", "whip-snake, whip_snake, whipsnake", "coachwhip, coachwhip_snake, masticophis_flagellum", "california_whipsnake, striped_racer, masticophis_lateralis", "sonoran_whipsnake, masticophis_bilineatus", "rat_snake", "corn_snake, red_rat_snake, elaphe_guttata", "black_rat_snake, blacksnake, pilot_blacksnake, mountain_blacksnake, elaphe_obsoleta", "chicken_snake", "indian_rat_snake, ptyas_mucosus", "glossy_snake, arizona_elegans", "bull_snake, bull-snake", "gopher_snake, pituophis_melanoleucus", "pine_snake", "king_snake, kingsnake", "common_kingsnake, lampropeltis_getulus", "milk_snake, house_snake, milk_adder, checkered_adder, lampropeltis_triangulum", "garter_snake, grass_snake", "common_garter_snake, thamnophis_sirtalis", "ribbon_snake, thamnophis_sauritus", "western_ribbon_snake, thamnophis_proximus", "lined_snake, tropidoclonion_lineatum", "ground_snake, sonora_semiannulata", "eastern_ground_snake, potamophis_striatula, haldea_striatula", "water_snake", "common_water_snake, banded_water_snake, natrix_sipedon, nerodia_sipedon", "water_moccasin", "grass_snake, ring_snake, ringed_snake, natrix_natrix", "viperine_grass_snake, natrix_maura", "red-bellied_snake, storeria_occipitamaculata", "sand_snake", "banded_sand_snake, chilomeniscus_cinctus", "black-headed_snake", "vine_snake", "lyre_snake", "sonoran_lyre_snake, trimorphodon_lambda", "night_snake, hypsiglena_torquata", "blind_snake, worm_snake", "western_blind_snake, leptotyphlops_humilis", "indigo_snake, gopher_snake, drymarchon_corais", "eastern_indigo_snake, drymarchon_corais_couperi", "constrictor", "boa", "boa_constrictor, constrictor_constrictor", "rubber_boa, tow-headed_snake, charina_bottae", "rosy_boa, lichanura_trivirgata", "anaconda, eunectes_murinus", "python", "carpet_snake, python_variegatus, morelia_spilotes_variegatus", "reticulated_python, python_reticulatus", "indian_python, python_molurus", "rock_python, rock_snake, python_sebae", "amethystine_python", "elapid, elapid_snake", "coral_snake, harlequin-snake, new_world_coral_snake", "eastern_coral_snake, micrurus_fulvius", "western_coral_snake, micruroides_euryxanthus", "coral_snake, old_world_coral_snake", "african_coral_snake, aspidelaps_lubricus", "australian_coral_snake, rhynchoelaps_australis", "copperhead, denisonia_superba", "cobra", "indian_cobra, naja_naja", "asp, egyptian_cobra, naja_haje", "black-necked_cobra, spitting_cobra, naja_nigricollis", "hamadryad, king_cobra, ophiophagus_hannah, naja_hannah", "ringhals, rinkhals, spitting_snake, hemachatus_haemachatus", "mamba", "black_mamba, dendroaspis_augusticeps", "green_mamba", "death_adder, acanthophis_antarcticus", "tiger_snake, notechis_scutatus", "australian_blacksnake, pseudechis_porphyriacus", "krait", "banded_krait, banded_adder, bungarus_fasciatus", "taipan, oxyuranus_scutellatus", "sea_snake", "viper", "adder, common_viper, vipera_berus", "asp, asp_viper, vipera_aspis", "puff_adder, bitis_arietans", "gaboon_viper, bitis_gabonica", "horned_viper, cerastes, sand_viper, horned_asp, cerastes_cornutus", "pit_viper", "copperhead, agkistrodon_contortrix", "water_moccasin, cottonmouth, cottonmouth_moccasin, agkistrodon_piscivorus", "rattlesnake, rattler", "diamondback, diamondback_rattlesnake, crotalus_adamanteus", "timber_rattlesnake, banded_rattlesnake, crotalus_horridus_horridus", "canebrake_rattlesnake, canebrake_rattler, crotalus_horridus_atricaudatus", "prairie_rattlesnake, prairie_rattler, western_rattlesnake, crotalus_viridis", "sidewinder, horned_rattlesnake, crotalus_cerastes", "western_diamondback, western_diamondback_rattlesnake, crotalus_atrox", "rock_rattlesnake, crotalus_lepidus", "tiger_rattlesnake, crotalus_tigris", "mojave_rattlesnake, crotalus_scutulatus", "speckled_rattlesnake, crotalus_mitchellii", "massasauga, massasauga_rattler, sistrurus_catenatus", "ground_rattler, massasauga, sistrurus_miliaris", "fer-de-lance, bothrops_atrops", "carcase, carcass", "carrion", "arthropod", "trilobite", "arachnid, arachnoid", "harvestman, daddy_longlegs, phalangium_opilio", "scorpion", "false_scorpion, pseudoscorpion", "book_scorpion, chelifer_cancroides", "whip-scorpion, whip_scorpion", "vinegarroon, mastigoproctus_giganteus", "spider", "orb-weaving_spider", "black_and_gold_garden_spider, argiope_aurantia", "barn_spider, araneus_cavaticus", "garden_spider, aranea_diademata", "comb-footed_spider, theridiid", "black_widow, latrodectus_mactans", "tarantula", "wolf_spider, hunting_spider", "european_wolf_spider, tarantula, lycosa_tarentula", "trap-door_spider", "acarine", "tick", "hard_tick, ixodid", "ixodes_dammini, deer_tick", "ixodes_neotomae", "ixodes_pacificus, western_black-legged_tick", "ixodes_scapularis, black-legged_tick", "sheep-tick, sheep_tick, ixodes_ricinus", "ixodes_persulcatus", "ixodes_dentatus", "ixodes_spinipalpis", "wood_tick, american_dog_tick, dermacentor_variabilis", "soft_tick, argasid", "mite", "web-spinning_mite", "acarid", "trombidiid", "trombiculid", "harvest_mite, chigger, jigger, redbug", "acarus, genus_acarus", "itch_mite, sarcoptid", "rust_mite", "spider_mite, tetranychid", "red_spider, red_spider_mite, panonychus_ulmi", "myriapod", "garden_centipede, garden_symphilid, symphilid, scutigerella_immaculata", "tardigrade", "centipede", "house_centipede, scutigera_coleoptrata", "millipede, millepede, milliped", "sea_spider, pycnogonid", "merostomata, class_merostomata", "horseshoe_crab, king_crab, limulus_polyphemus, xiphosurus_polyphemus", "asian_horseshoe_crab", "eurypterid", "tongue_worm, pentastomid", "gallinaceous_bird, gallinacean", "domestic_fowl, fowl, poultry", "dorking", "plymouth_rock", "cornish, cornish_fowl", "rock_cornish", "game_fowl", "cochin, cochin_china", "jungle_fowl, gallina", "jungle_cock", "jungle_hen", "red_jungle_fowl, gallus_gallus", "chicken, gallus_gallus", "bantam", "chick, biddy", "cock, rooster", "cockerel", "capon", "hen, biddy", "cackler", "brood_hen, broody, broody_hen, setting_hen, sitter", "mother_hen", "layer", "pullet", "spring_chicken", "rhode_island_red", "dominique, dominick", "orpington", "turkey, meleagris_gallopavo", "turkey_cock, gobbler, tom, tom_turkey", "ocellated_turkey, agriocharis_ocellata", "grouse", "black_grouse", "european_black_grouse, heathfowl, lyrurus_tetrix", "asian_black_grouse, lyrurus_mlokosiewiczi", "blackcock, black_cock", "greyhen, grayhen, grey_hen, gray_hen, heath_hen", "ptarmigan", "red_grouse, moorfowl, moorbird, moor-bird, moorgame, lagopus_scoticus", "moorhen", "capercaillie, capercailzie, horse_of_the_wood, tetrao_urogallus", "spruce_grouse, canachites_canadensis", "sage_grouse, sage_hen, centrocercus_urophasianus", "ruffed_grouse, partridge, bonasa_umbellus", "sharp-tailed_grouse, sprigtail, sprig_tail, pedioecetes_phasianellus", "prairie_chicken, prairie_grouse, prairie_fowl", "greater_prairie_chicken, tympanuchus_cupido", "lesser_prairie_chicken, tympanuchus_pallidicinctus", "heath_hen, tympanuchus_cupido_cupido", "guan", "curassow", "piping_guan", "chachalaca", "texas_chachalaca, ortilis_vetula_macalli", "megapode, mound_bird, mound-bird, mound_builder, scrub_fowl", "mallee_fowl, leipoa, lowan, leipoa_ocellata", "mallee_hen", "brush_turkey, alectura_lathami", "maleo, macrocephalon_maleo", "phasianid", "pheasant", "ring-necked_pheasant, phasianus_colchicus", "afropavo, congo_peafowl, afropavo_congensis", "argus, argus_pheasant", "golden_pheasant, chrysolophus_pictus", "bobwhite, bobwhite_quail, partridge", "northern_bobwhite, colinus_virginianus", "old_world_quail", "migratory_quail, coturnix_coturnix, coturnix_communis", "monal, monaul", "peafowl, bird_of_juno", "peachick, pea-chick", "peacock", "peahen", "blue_peafowl, pavo_cristatus", "green_peafowl, pavo_muticus", "quail", "california_quail, lofortyx_californicus", "tragopan", "partridge", "hungarian_partridge, grey_partridge, gray_partridge, perdix_perdix", "red-legged_partridge, alectoris_ruffa", "greek_partridge, rock_partridge, alectoris_graeca", "mountain_quail, mountain_partridge, oreortyx_picta_palmeri", "guinea_fowl, guinea, numida_meleagris", "guinea_hen", "hoatzin, hoactzin, stinkbird, opisthocomus_hoazin", "tinamou, partridge", "columbiform_bird", "dodo, raphus_cucullatus", "pigeon", "pouter_pigeon, pouter", "dove", "rock_dove, rock_pigeon, columba_livia", "band-tailed_pigeon, band-tail_pigeon, bandtail, columba_fasciata", "wood_pigeon, ringdove, cushat, columba_palumbus", "turtledove", "streptopelia_turtur", "ringdove, streptopelia_risoria", "australian_turtledove, turtledove, stictopelia_cuneata", "mourning_dove, zenaidura_macroura", "domestic_pigeon", "squab", "fairy_swallow", "roller, tumbler, tumbler_pigeon", "homing_pigeon, homer", "carrier_pigeon", "passenger_pigeon, ectopistes_migratorius", "sandgrouse, sand_grouse", "painted_sandgrouse, pterocles_indicus", "pin-tailed_sandgrouse, pin-tailed_grouse, pterocles_alchata", "pallas's_sandgrouse, syrrhaptes_paradoxus", "parrot", "popinjay", "poll, poll_parrot", "african_grey, african_gray, psittacus_erithacus", "amazon", "macaw", "kea, nestor_notabilis", "cockatoo", "sulphur-crested_cockatoo, kakatoe_galerita, cacatua_galerita", "pink_cockatoo, kakatoe_leadbeateri", "cockateel, cockatiel, cockatoo_parrot, nymphicus_hollandicus", "lovebird", "lory", "lorikeet", "varied_lorikeet, glossopsitta_versicolor", "rainbow_lorikeet, trichoglossus_moluccanus", "parakeet, parrakeet, parroket, paraquet, paroquet, parroquet", "carolina_parakeet, conuropsis_carolinensis", "budgerigar, budgereegah, budgerygah, budgie, grass_parakeet, lovebird, shell_parakeet, melopsittacus_undulatus", "ring-necked_parakeet, psittacula_krameri", "cuculiform_bird", "cuckoo", "european_cuckoo, cuculus_canorus", "black-billed_cuckoo, coccyzus_erythropthalmus", "roadrunner, chaparral_cock, geococcyx_californianus", "ani", "coucal", "crow_pheasant, centropus_sinensis", "touraco, turaco, turacou, turakoo", "coraciiform_bird", "roller", "european_roller, coracias_garrulus", "ground_roller", "kingfisher", "eurasian_kingfisher, alcedo_atthis", "belted_kingfisher, ceryle_alcyon", "kookaburra, laughing_jackass, dacelo_gigas", "bee_eater", "hornbill", "hoopoe, hoopoo", "euopean_hoopoe, upupa_epops", "wood_hoopoe", "motmot, momot", "tody", "apodiform_bird", "swift", "european_swift, apus_apus", "chimney_swift, chimney_swallow, chateura_pelagica", "swiftlet, collocalia_inexpectata", "tree_swift, crested_swift", "hummingbird", "archilochus_colubris", "thornbill", "goatsucker, nightjar, caprimulgid", "european_goatsucker, european_nightjar, caprimulgus_europaeus", "chuck-will's-widow, caprimulgus_carolinensis", "whippoorwill, caprimulgus_vociferus", "poorwill, phalaenoptilus_nuttallii", "frogmouth", "oilbird, guacharo, steatornis_caripensis", "piciform_bird", "woodpecker, peckerwood, pecker", "green_woodpecker, picus_viridis", "downy_woodpecker", "flicker", "yellow-shafted_flicker, colaptes_auratus, yellowhammer", "gilded_flicker, colaptes_chrysoides", "red-shafted_flicker, colaptes_caper_collaris", "ivorybill, ivory-billed_woodpecker, campephilus_principalis", "redheaded_woodpecker, redhead, melanerpes_erythrocephalus", "sapsucker", "yellow-bellied_sapsucker, sphyrapicus_varius", "red-breasted_sapsucker, sphyrapicus_varius_ruber", "wryneck", "piculet", "barbet", "puffbird", "honey_guide", "jacamar", "toucan", "toucanet", "trogon", "quetzal, quetzal_bird", "resplendent_quetzel, resplendent_trogon, pharomacrus_mocino", "aquatic_bird", "waterfowl, water_bird, waterbird", "anseriform_bird", "duck", "drake", "quack-quack", "duckling", "diving_duck", "dabbling_duck, dabbler", "mallard, anas_platyrhynchos", "black_duck, anas_rubripes", "teal", "greenwing, green-winged_teal, anas_crecca", "bluewing, blue-winged_teal, anas_discors", "garganey, anas_querquedula", "widgeon, wigeon, anas_penelope", "american_widgeon, baldpate, anas_americana", "shoveler, shoveller, broadbill, anas_clypeata", "pintail, pin-tailed_duck, anas_acuta", "sheldrake", "shelduck", "ruddy_duck, oxyura_jamaicensis", "bufflehead, butterball, dipper, bucephela_albeola", "goldeneye, whistler, bucephela_clangula", "barrow's_goldeneye, bucephala_islandica", "canvasback, canvasback_duck, aythya_valisineria", "pochard, aythya_ferina", "redhead, aythya_americana", "scaup, scaup_duck, bluebill, broadbill", "greater_scaup, aythya_marila", "lesser_scaup, lesser_scaup_duck, lake_duck, aythya_affinis", "wild_duck", "wood_duck, summer_duck, wood_widgeon, aix_sponsa", "wood_drake", "mandarin_duck, aix_galericulata", "muscovy_duck, musk_duck, cairina_moschata", "sea_duck", "eider, eider_duck", "scoter, scooter", "common_scoter, melanitta_nigra", "old_squaw, oldwife, clangula_hyemalis", "merganser, fish_duck, sawbill, sheldrake", "goosander, mergus_merganser", "american_merganser, mergus_merganser_americanus", "red-breasted_merganser, mergus_serrator", "smew, mergus_albellus", "hooded_merganser, hooded_sheldrake, lophodytes_cucullatus", "goose", "gosling", "gander", "chinese_goose, anser_cygnoides", "greylag, graylag, greylag_goose, graylag_goose, anser_anser", "blue_goose, chen_caerulescens", "snow_goose", "brant, brant_goose, brent, brent_goose", "common_brant_goose, branta_bernicla", "honker, canada_goose, canadian_goose, branta_canadensis", "barnacle_goose, barnacle, branta_leucopsis", "coscoroba", "swan", "cob", "pen", "cygnet", "mute_swan, cygnus_olor", "whooper, whooper_swan, cygnus_cygnus", "tundra_swan, cygnus_columbianus", "whistling_swan, cygnus_columbianus_columbianus", "bewick's_swan, cygnus_columbianus_bewickii", "trumpeter, trumpeter_swan, cygnus_buccinator", "black_swan, cygnus_atratus", "screamer", "horned_screamer, anhima_cornuta", "crested_screamer", "chaja, chauna_torquata", "mammal, mammalian", "female_mammal", "tusker", "prototherian", "monotreme, egg-laying_mammal", "echidna, spiny_anteater, anteater", "echidna, spiny_anteater, anteater", "platypus, duckbill, duckbilled_platypus, duck-billed_platypus, ornithorhynchus_anatinus", "marsupial, pouched_mammal", "opossum, possum", "common_opossum, didelphis_virginiana, didelphis_marsupialis", "crab-eating_opossum", "opossum_rat", "bandicoot", "rabbit-eared_bandicoot, rabbit_bandicoot, bilby, macrotis_lagotis", "kangaroo", "giant_kangaroo, great_grey_kangaroo, macropus_giganteus", "wallaby, brush_kangaroo", "common_wallaby, macropus_agiles", "hare_wallaby, kangaroo_hare", "nail-tailed_wallaby, nail-tailed_kangaroo", "rock_wallaby, rock_kangaroo", "pademelon, paddymelon", "tree_wallaby, tree_kangaroo", "musk_kangaroo, hypsiprymnodon_moschatus", "rat_kangaroo, kangaroo_rat", "potoroo", "bettong", "jerboa_kangaroo, kangaroo_jerboa", "phalanger, opossum, possum", "cuscus", "brush-tailed_phalanger, trichosurus_vulpecula", "flying_phalanger, flying_opossum, flying_squirrel", "koala, koala_bear, kangaroo_bear, native_bear, phascolarctos_cinereus", "wombat", "dasyurid_marsupial, dasyurid", "dasyure", "eastern_dasyure, dasyurus_quoll", "native_cat, dasyurus_viverrinus", "thylacine, tasmanian_wolf, tasmanian_tiger, thylacinus_cynocephalus", "tasmanian_devil, ursine_dasyure, sarcophilus_hariisi", "pouched_mouse, marsupial_mouse, marsupial_rat", "numbat, banded_anteater, anteater, myrmecobius_fasciatus", "pouched_mole, marsupial_mole, notoryctus_typhlops", "placental, placental_mammal, eutherian, eutherian_mammal", "livestock, stock, farm_animal", "bull", "cow", "calf", "calf", "yearling", "buck", "doe", "insectivore", "mole", "starnose_mole, star-nosed_mole, condylura_cristata", "brewer's_mole, hair-tailed_mole, parascalops_breweri", "golden_mole", "shrew_mole", "asiatic_shrew_mole, uropsilus_soricipes", "american_shrew_mole, neurotrichus_gibbsii", "shrew, shrewmouse", "common_shrew, sorex_araneus", "masked_shrew, sorex_cinereus", "short-tailed_shrew, blarina_brevicauda", "water_shrew", "american_water_shrew, sorex_palustris", "european_water_shrew, neomys_fodiens", "mediterranean_water_shrew, neomys_anomalus", "least_shrew, cryptotis_parva", "hedgehog, erinaceus_europaeus, erinaceus_europeaeus", "tenrec, tendrac", "tailless_tenrec, tenrec_ecaudatus", "otter_shrew, potamogale, potamogale_velox", "eiderdown", "aftershaft", "sickle_feather", "contour_feather", "bastard_wing, alula, spurious_wing", "saddle_hackle, saddle_feather", "encolure", "hair", "squama", "scute", "sclerite", "plastron", "scallop_shell", "oyster_shell", "theca", "invertebrate", "sponge, poriferan, parazoan", "choanocyte, collar_cell", "glass_sponge", "venus's_flower_basket", "metazoan", "coelenterate, cnidarian", "planula", "polyp", "medusa, medusoid, medusan", "jellyfish", "scyphozoan", "chrysaora_quinquecirrha", "hydrozoan, hydroid", "hydra", "siphonophore", "nanomia", "portuguese_man-of-war, man-of-war, jellyfish", "praya", "apolemia", "anthozoan, actinozoan", "sea_anemone, anemone", "actinia, actinian, actiniarian", "sea_pen", "coral", "gorgonian, gorgonian_coral", "sea_feather", "sea_fan", "red_coral", "stony_coral, madrepore, madriporian_coral", "brain_coral", "staghorn_coral, stag's-horn_coral", "mushroom_coral", "ctenophore, comb_jelly", "beroe", "platyctenean", "sea_gooseberry", "venus's_girdle, cestum_veneris", "worm", "helminth, parasitic_worm", "woodworm", "woodborer, borer", "acanthocephalan, spiny-headed_worm", "arrowworm, chaetognath", "bladder_worm", "flatworm, platyhelminth", "planarian, planaria", "fluke, trematode, trematode_worm", "cercaria", "liver_fluke, fasciola_hepatica", "fasciolopsis_buski", "schistosome, blood_fluke", "tapeworm, cestode", "echinococcus", "taenia", "ribbon_worm, nemertean, nemertine, proboscis_worm", "beard_worm, pogonophoran", "rotifer", "nematode, nematode_worm, roundworm", "common_roundworm, ascaris_lumbricoides", "chicken_roundworm, ascaridia_galli", "pinworm, threadworm, enterobius_vermicularis", "eelworm", "vinegar_eel, vinegar_worm, anguillula_aceti, turbatrix_aceti", "trichina, trichinella_spiralis", "hookworm", "filaria", "guinea_worm, dracunculus_medinensis", "annelid, annelid_worm, segmented_worm", "archiannelid", "oligochaete, oligochaete_worm", "earthworm, angleworm, fishworm, fishing_worm, wiggler, nightwalker, nightcrawler, crawler, dew_worm, red_worm", "polychaete, polychete, polychaete_worm, polychete_worm", "lugworm, lug, lobworm", "sea_mouse", "bloodworm", "leech, bloodsucker, hirudinean", "medicinal_leech, hirudo_medicinalis", "horseleech", "mollusk, mollusc, shellfish", "scaphopod", "tooth_shell, tusk_shell", "gastropod, univalve", "abalone, ear-shell", "ormer, sea-ear, haliotis_tuberculata", "scorpion_shell", "conch", "giant_conch, strombus_gigas", "snail", "edible_snail, helix_pomatia", "garden_snail", "brown_snail, helix_aspersa", "helix_hortensis", "slug", "seasnail", "neritid, neritid_gastropod", "nerita", "bleeding_tooth, nerita_peloronta", "neritina", "whelk", "moon_shell, moonshell", "periwinkle, winkle", "limpet", "common_limpet, patella_vulgata", "keyhole_limpet, fissurella_apertura, diodora_apertura", "river_limpet, freshwater_limpet, ancylus_fluviatilis", "sea_slug, nudibranch", "sea_hare, aplysia_punctata", "hermissenda_crassicornis", "bubble_shell", "physa", "cowrie, cowry", "money_cowrie, cypraea_moneta", "tiger_cowrie, cypraea_tigris", "solenogaster, aplacophoran", "chiton, coat-of-mail_shell, sea_cradle, polyplacophore", "bivalve, pelecypod, lamellibranch", "spat", "clam", "seashell", "soft-shell_clam, steamer, steamer_clam, long-neck_clam, mya_arenaria", "quahog, quahaug, hard-shell_clam, hard_clam, round_clam, venus_mercenaria, mercenaria_mercenaria", "littleneck, littleneck_clam", "cherrystone, cherrystone_clam", "geoduck", "razor_clam, jackknife_clam, knife-handle", "giant_clam, tridacna_gigas", "cockle", "edible_cockle, cardium_edule", "oyster", "japanese_oyster, ostrea_gigas", "virginia_oyster", "pearl_oyster, pinctada_margaritifera", "saddle_oyster, anomia_ephippium", "window_oyster, windowpane_oyster, capiz, placuna_placenta", "ark_shell", "blood_clam", "mussel", "marine_mussel, mytilid", "edible_mussel, mytilus_edulis", "freshwater_mussel, freshwater_clam", "pearly-shelled_mussel", "thin-shelled_mussel", "zebra_mussel, dreissena_polymorpha", "scallop, scollop, escallop", "bay_scallop, pecten_irradians", "sea_scallop, giant_scallop, pecten_magellanicus", "shipworm, teredinid", "teredo", "piddock", "cephalopod, cephalopod_mollusk", "chambered_nautilus, pearly_nautilus, nautilus", "octopod", "octopus, devilfish", "paper_nautilus, nautilus, argonaut, argonauta_argo", "decapod", "squid", "loligo", "ommastrephes", "architeuthis, giant_squid", "cuttlefish, cuttle", "spirula, spirula_peronii", "crustacean", "malacostracan_crustacean", "decapod_crustacean, decapod", "brachyuran", "crab", "stone_crab, menippe_mercenaria", "hard-shell_crab", "soft-shell_crab, soft-shelled_crab", "dungeness_crab, cancer_magister", "rock_crab, cancer_irroratus", "jonah_crab, cancer_borealis", "swimming_crab", "english_lady_crab, portunus_puber", "american_lady_crab, lady_crab, calico_crab, ovalipes_ocellatus", "blue_crab, callinectes_sapidus", "fiddler_crab", "pea_crab", "king_crab, alaska_crab, alaskan_king_crab, alaska_king_crab, paralithodes_camtschatica", "spider_crab", "european_spider_crab, king_crab, maja_squinado", "giant_crab, macrocheira_kaempferi", "lobster", "true_lobster", "american_lobster, northern_lobster, maine_lobster, homarus_americanus", "european_lobster, homarus_vulgaris", "cape_lobster, homarus_capensis", "norway_lobster, nephrops_norvegicus", "spiny_lobster, langouste, rock_lobster, crawfish, crayfish, sea_crawfish", "crayfish, crawfish, crawdad, crawdaddy", "old_world_crayfish, ecrevisse", "american_crayfish", "hermit_crab", "shrimp", "snapping_shrimp, pistol_shrimp", "prawn", "long-clawed_prawn, river_prawn, palaemon_australis", "tropical_prawn", "krill", "euphausia_pacifica", "opossum_shrimp", "stomatopod, stomatopod_crustacean", "mantis_shrimp, mantis_crab", "squilla, mantis_prawn", "isopod", "woodlouse, slater", "pill_bug", "sow_bug", "sea_louse, sea_slater", "amphipod", "skeleton_shrimp", "whale_louse", "daphnia, water_flea", "fairy_shrimp", "brine_shrimp, artemia_salina", "tadpole_shrimp", "copepod, copepod_crustacean", "cyclops, water_flea", "seed_shrimp, mussel_shrimp, ostracod", "barnacle, cirriped, cirripede", "acorn_barnacle, rock_barnacle, balanus_balanoides", "goose_barnacle, gooseneck_barnacle, lepas_fascicularis", "onychophoran, velvet_worm, peripatus", "wading_bird, wader", "stork", "white_stork, ciconia_ciconia", "black_stork, ciconia_nigra", "adjutant_bird, adjutant, adjutant_stork, leptoptilus_dubius", "marabou, marabout, marabou_stork, leptoptilus_crumeniferus", "openbill", "jabiru, jabiru_mycteria", "saddlebill, jabiru, ephippiorhynchus_senegalensis", "policeman_bird, black-necked_stork, jabiru, xenorhyncus_asiaticus", "wood_ibis, wood_stork, flinthead, mycteria_americana", "shoebill, shoebird, balaeniceps_rex", "ibis", "wood_ibis, wood_stork, ibis_ibis", "sacred_ibis, threskiornis_aethiopica", "spoonbill", "common_spoonbill, platalea_leucorodia", "roseate_spoonbill, ajaia_ajaja", "flamingo", "heron", "great_blue_heron, ardea_herodius", "great_white_heron, ardea_occidentalis", "egret", "little_blue_heron, egretta_caerulea", "snowy_egret, snowy_heron, egretta_thula", "little_egret, egretta_garzetta", "great_white_heron, casmerodius_albus", "american_egret, great_white_heron, egretta_albus", "cattle_egret, bubulcus_ibis", "night_heron, night_raven", "black-crowned_night_heron, nycticorax_nycticorax", "yellow-crowned_night_heron, nyctanassa_violacea", "boatbill, boat-billed_heron, broadbill, cochlearius_cochlearius", "bittern", "american_bittern, stake_driver, botaurus_lentiginosus", "european_bittern, botaurus_stellaris", "least_bittern, ixobrychus_exilis", "crane", "whooping_crane, whooper, grus_americana", "courlan, aramus_guarauna", "limpkin, aramus_pictus", "crested_cariama, seriema, cariama_cristata", "chunga, seriema, chunga_burmeisteri", "rail", "weka, maori_hen, wood_hen", "crake", "corncrake, land_rail, crex_crex", "spotted_crake, porzana_porzana", "gallinule, marsh_hen, water_hen, swamphen", "florida_gallinule, gallinula_chloropus_cachinnans", "moorhen, gallinula_chloropus", "purple_gallinule", "european_gallinule, porphyrio_porphyrio", "american_gallinule, porphyrula_martinica", "notornis, takahe, notornis_mantelli", "coot", "american_coot, marsh_hen, mud_hen, water_hen, fulica_americana", "old_world_coot, fulica_atra", "bustard", "great_bustard, otis_tarda", "plain_turkey, choriotis_australis", "button_quail, button-quail, bustard_quail, hemipode", "striped_button_quail, turnix_sylvatica", "plain_wanderer, pedionomus_torquatus", "trumpeter", "brazilian_trumpeter, psophia_crepitans", "seabird, sea_bird, seafowl", "shorebird, shore_bird, limicoline_bird", "plover", "piping_plover, charadrius_melodus", "killdeer, kildeer, killdeer_plover, charadrius_vociferus", "dotterel, dotrel, charadrius_morinellus, eudromias_morinellus", "golden_plover", "lapwing, green_plover, peewit, pewit", "turnstone", "ruddy_turnstone, arenaria_interpres", "black_turnstone, arenaria-melanocephala", "sandpiper", "surfbird, aphriza_virgata", "european_sandpiper, actitis_hypoleucos", "spotted_sandpiper, actitis_macularia", "least_sandpiper, stint, erolia_minutilla", "red-backed_sandpiper, dunlin, erolia_alpina", "greenshank, tringa_nebularia", "redshank, tringa_totanus", "yellowlegs", "greater_yellowlegs, tringa_melanoleuca", "lesser_yellowlegs, tringa_flavipes", "pectoral_sandpiper, jacksnipe, calidris_melanotos", "knot, greyback, grayback, calidris_canutus", "curlew_sandpiper, calidris_ferruginea", "sanderling, crocethia_alba", "upland_sandpiper, upland_plover, bartramian_sandpiper, bartramia_longicauda", "ruff, philomachus_pugnax", "reeve", "tattler", "polynesian_tattler, heteroscelus_incanus", "willet, catoptrophorus_semipalmatus", "woodcock", "eurasian_woodcock, scolopax_rusticola", "american_woodcock, woodcock_snipe, philohela_minor", "snipe", "whole_snipe, gallinago_gallinago", "wilson's_snipe, gallinago_gallinago_delicata", "great_snipe, woodcock_snipe, gallinago_media", "jacksnipe, half_snipe, limnocryptes_minima", "dowitcher", "greyback, grayback, limnodromus_griseus", "red-breasted_snipe, limnodromus_scolopaceus", "curlew", "european_curlew, numenius_arquata", "eskimo_curlew, numenius_borealis", "godwit", "hudsonian_godwit, limosa_haemastica", "stilt, stiltbird, longlegs, long-legs, stilt_plover, himantopus_stilt", "black-necked_stilt, himantopus_mexicanus", "black-winged_stilt, himantopus_himantopus", "white-headed_stilt, himantopus_himantopus_leucocephalus", "kaki, himantopus_novae-zelandiae", "stilt, australian_stilt", "banded_stilt, cladorhyncus_leucocephalum", "avocet", "oystercatcher, oyster_catcher", "phalarope", "red_phalarope, phalaropus_fulicarius", "northern_phalarope, lobipes_lobatus", "wilson's_phalarope, steganopus_tricolor", "pratincole, glareole", "courser", "cream-colored_courser, cursorius_cursor", "crocodile_bird, pluvianus_aegyptius", "stone_curlew, thick-knee, burhinus_oedicnemus", "coastal_diving_bird", "larid", "gull, seagull, sea_gull", "mew, mew_gull, sea_mew, larus_canus", "black-backed_gull, great_black-backed_gull, cob, larus_marinus", "herring_gull, larus_argentatus", "laughing_gull, blackcap, pewit, pewit_gull, larus_ridibundus", "ivory_gull, pagophila_eburnea", "kittiwake", "tern", "sea_swallow, sterna_hirundo", "skimmer", "jaeger", "parasitic_jaeger, arctic_skua, stercorarius_parasiticus", "skua, bonxie", "great_skua, catharacta_skua", "auk", "auklet", "razorbill, razor-billed_auk, alca_torda", "little_auk, dovekie, plautus_alle", "guillemot", "black_guillemot, cepphus_grylle", "pigeon_guillemot, cepphus_columba", "murre", "common_murre, uria_aalge", "thick-billed_murre, uria_lomvia", "puffin", "atlantic_puffin, fratercula_arctica", "horned_puffin, fratercula_corniculata", "tufted_puffin, lunda_cirrhata", "gaviiform_seabird", "loon, diver", "podicipitiform_seabird", "grebe", "great_crested_grebe, podiceps_cristatus", "red-necked_grebe, podiceps_grisegena", "black-necked_grebe, eared_grebe, podiceps_nigricollis", "dabchick, little_grebe, podiceps_ruficollis", "pied-billed_grebe, podilymbus_podiceps", "pelecaniform_seabird", "pelican", "white_pelican, pelecanus_erythrorhynchos", "old_world_white_pelican, pelecanus_onocrotalus", "frigate_bird, man-of-war_bird", "gannet", "solan, solan_goose, solant_goose, sula_bassana", "booby", "cormorant, phalacrocorax_carbo", "snakebird, anhinga, darter", "water_turkey, anhinga_anhinga", "tropic_bird, tropicbird, boatswain_bird", "sphenisciform_seabird", "penguin", "adelie, adelie_penguin, pygoscelis_adeliae", "king_penguin, aptenodytes_patagonica", "emperor_penguin, aptenodytes_forsteri", "jackass_penguin, spheniscus_demersus", "rock_hopper, crested_penguin", "pelagic_bird, oceanic_bird", "procellariiform_seabird", "albatross, mollymawk", "wandering_albatross, diomedea_exulans", "black-footed_albatross, gooney, gooney_bird, goonie, goony, diomedea_nigripes", "petrel", "white-chinned_petrel, procellaria_aequinoctialis", "giant_petrel, giant_fulmar, macronectes_giganteus", "fulmar, fulmar_petrel, fulmarus_glacialis", "shearwater", "manx_shearwater, puffinus_puffinus", "storm_petrel", "stormy_petrel, northern_storm_petrel, hydrobates_pelagicus", "mother_carey's_chicken, mother_carey's_hen, oceanites_oceanicus", "diving_petrel", "aquatic_mammal", "cetacean, cetacean_mammal, blower", "whale", "baleen_whale, whalebone_whale", "right_whale", "bowhead, bowhead_whale, greenland_whale, balaena_mysticetus", "rorqual, razorback", "blue_whale, sulfur_bottom, balaenoptera_musculus", "finback, finback_whale, fin_whale, common_rorqual, balaenoptera_physalus", "sei_whale, balaenoptera_borealis", "lesser_rorqual, piked_whale, minke_whale, balaenoptera_acutorostrata", "humpback, humpback_whale, megaptera_novaeangliae", "grey_whale, gray_whale, devilfish, eschrichtius_gibbosus, eschrichtius_robustus", "toothed_whale", "sperm_whale, cachalot, black_whale, physeter_catodon", "pygmy_sperm_whale, kogia_breviceps", "dwarf_sperm_whale, kogia_simus", "beaked_whale", "bottle-nosed_whale, bottlenose_whale, bottlenose, hyperoodon_ampullatus", "dolphin", "common_dolphin, delphinus_delphis", "bottlenose_dolphin, bottle-nosed_dolphin, bottlenose", "atlantic_bottlenose_dolphin, tursiops_truncatus", "pacific_bottlenose_dolphin, tursiops_gilli", "porpoise", "harbor_porpoise, herring_hog, phocoena_phocoena", "vaquita, phocoena_sinus", "grampus, grampus_griseus", "killer_whale, killer, orca, grampus, sea_wolf, orcinus_orca", "pilot_whale, black_whale, common_blackfish, blackfish, globicephala_melaena", "river_dolphin", "narwhal, narwal, narwhale, monodon_monoceros", "white_whale, beluga, delphinapterus_leucas", "sea_cow, sirenian_mammal, sirenian", "manatee, trichechus_manatus", "dugong, dugong_dugon", "steller's_sea_cow, hydrodamalis_gigas", "carnivore", "omnivore", "pinniped_mammal, pinniped, pinnatiped", "seal", "crabeater_seal, crab-eating_seal", "eared_seal", "fur_seal", "guadalupe_fur_seal, arctocephalus_philippi", "fur_seal", "alaska_fur_seal, callorhinus_ursinus", "sea_lion", "south_american_sea_lion, otaria_byronia", "california_sea_lion, zalophus_californianus, zalophus_californicus", "australian_sea_lion, zalophus_lobatus", "steller_sea_lion, steller's_sea_lion, eumetopias_jubatus", "earless_seal, true_seal, hair_seal", "harbor_seal, common_seal, phoca_vitulina", "harp_seal, pagophilus_groenlandicus", "elephant_seal, sea_elephant", "bearded_seal, squareflipper_square_flipper, erignathus_barbatus", "hooded_seal, bladdernose, cystophora_cristata", "walrus, seahorse, sea_horse", "atlantic_walrus, odobenus_rosmarus", "pacific_walrus, odobenus_divergens", "fissipedia", "fissiped_mammal, fissiped", "aardvark, ant_bear, anteater, orycteropus_afer", "canine, canid", "bitch", "brood_bitch", "dog, domestic_dog, canis_familiaris", "pooch, doggie, doggy, barker, bow-wow", "cur, mongrel, mutt", "feist, fice", "pariah_dog, pye-dog, pie-dog", "lapdog", "toy_dog, toy", "chihuahua", "japanese_spaniel", "maltese_dog, maltese_terrier, maltese", "pekinese, pekingese, peke", "shih-tzu", "toy_spaniel", "english_toy_spaniel", "blenheim_spaniel", "king_charles_spaniel", "papillon", "toy_terrier", "hunting_dog", "courser", "rhodesian_ridgeback", "hound, hound_dog", "afghan_hound, afghan", "basset, basset_hound", "beagle", "bloodhound, sleuthhound", "bluetick", "boarhound", "coonhound", "coondog", "black-and-tan_coonhound", "dachshund, dachsie, badger_dog", "sausage_dog, sausage_hound", "foxhound", "american_foxhound", "walker_hound, walker_foxhound", "english_foxhound", "harrier", "plott_hound", "redbone", "wolfhound", "borzoi, russian_wolfhound", "irish_wolfhound", "greyhound", "italian_greyhound", "whippet", "ibizan_hound, ibizan_podenco", "norwegian_elkhound, elkhound", "otterhound, otter_hound", "saluki, gazelle_hound", "scottish_deerhound, deerhound", "staghound", "weimaraner", "terrier", "bullterrier, bull_terrier", "staffordshire_bullterrier, staffordshire_bull_terrier", "american_staffordshire_terrier, staffordshire_terrier, american_pit_bull_terrier, pit_bull_terrier", "bedlington_terrier", "border_terrier", "kerry_blue_terrier", "irish_terrier", "norfolk_terrier", "norwich_terrier", "yorkshire_terrier", "rat_terrier, ratter", "manchester_terrier, black-and-tan_terrier", "toy_manchester, toy_manchester_terrier", "fox_terrier", "smooth-haired_fox_terrier", "wire-haired_fox_terrier", "wirehair, wirehaired_terrier, wire-haired_terrier", "lakeland_terrier", "welsh_terrier", "sealyham_terrier, sealyham", "airedale, airedale_terrier", "cairn, cairn_terrier", "australian_terrier", "dandie_dinmont, dandie_dinmont_terrier", "boston_bull, boston_terrier", "schnauzer", "miniature_schnauzer", "giant_schnauzer", "standard_schnauzer", "scotch_terrier, scottish_terrier, scottie", "tibetan_terrier, chrysanthemum_dog", "silky_terrier, sydney_silky", "skye_terrier", "clydesdale_terrier", "soft-coated_wheaten_terrier", "west_highland_white_terrier", "lhasa, lhasa_apso", "sporting_dog, gun_dog", "bird_dog", "water_dog", "retriever", "flat-coated_retriever", "curly-coated_retriever", "golden_retriever", "labrador_retriever", "chesapeake_bay_retriever", "pointer, spanish_pointer", "german_short-haired_pointer", "setter", "vizsla, hungarian_pointer", "english_setter", "irish_setter, red_setter", "gordon_setter", "spaniel", "brittany_spaniel", "clumber, clumber_spaniel", "field_spaniel", "springer_spaniel, springer", "english_springer, english_springer_spaniel", "welsh_springer_spaniel", "cocker_spaniel, english_cocker_spaniel, cocker", "sussex_spaniel", "water_spaniel", "american_water_spaniel", "irish_water_spaniel", "griffon, wire-haired_pointing_griffon", "working_dog", "watchdog, guard_dog", "kuvasz", "attack_dog", "housedog", "schipperke", "shepherd_dog, sheepdog, sheep_dog", "belgian_sheepdog, belgian_shepherd", "groenendael", "malinois", "briard", "kelpie", "komondor", "old_english_sheepdog, bobtail", "shetland_sheepdog, shetland_sheep_dog, shetland", "collie", "border_collie", "bouvier_des_flandres, bouviers_des_flandres", "rottweiler", "german_shepherd, german_shepherd_dog, german_police_dog, alsatian", "police_dog", "pinscher", "doberman, doberman_pinscher", "miniature_pinscher", "sennenhunde", "greater_swiss_mountain_dog", "bernese_mountain_dog", "appenzeller", "entlebucher", "boxer", "mastiff", "bull_mastiff", "tibetan_mastiff", "bulldog, english_bulldog", "french_bulldog", "great_dane", "guide_dog", "seeing_eye_dog", "hearing_dog", "saint_bernard, st_bernard", "seizure-alert_dog", "sled_dog, sledge_dog", "eskimo_dog, husky", "malamute, malemute, alaskan_malamute", "siberian_husky", "dalmatian, coach_dog, carriage_dog", "liver-spotted_dalmatian", "affenpinscher, monkey_pinscher, monkey_dog", "basenji", "pug, pug-dog", "leonberg", "newfoundland, newfoundland_dog", "great_pyrenees", "spitz", "samoyed, samoyede", "pomeranian", "chow, chow_chow", "keeshond", "griffon, brussels_griffon, belgian_griffon", "brabancon_griffon", "corgi, welsh_corgi", "pembroke, pembroke_welsh_corgi", "cardigan, cardigan_welsh_corgi", "poodle, poodle_dog", "toy_poodle", "miniature_poodle", "standard_poodle", "large_poodle", "mexican_hairless", "wolf", "timber_wolf, grey_wolf, gray_wolf, canis_lupus", "white_wolf, arctic_wolf, canis_lupus_tundrarum", "red_wolf, maned_wolf, canis_rufus, canis_niger", "coyote, prairie_wolf, brush_wolf, canis_latrans", "coydog", "jackal, canis_aureus", "wild_dog", "dingo, warrigal, warragal, canis_dingo", "dhole, cuon_alpinus", "crab-eating_dog, crab-eating_fox, dusicyon_cancrivorus", "raccoon_dog, nyctereutes_procyonides", "african_hunting_dog, hyena_dog, cape_hunting_dog, lycaon_pictus", "hyena, hyaena", "striped_hyena, hyaena_hyaena", "brown_hyena, strand_wolf, hyaena_brunnea", "spotted_hyena, laughing_hyena, crocuta_crocuta", "aardwolf, proteles_cristata", "fox", "vixen", "reynard", "red_fox, vulpes_vulpes", "black_fox", "silver_fox", "red_fox, vulpes_fulva", "kit_fox, prairie_fox, vulpes_velox", "kit_fox, vulpes_macrotis", "arctic_fox, white_fox, alopex_lagopus", "blue_fox", "grey_fox, gray_fox, urocyon_cinereoargenteus", "feline, felid", "cat, true_cat", "domestic_cat, house_cat, felis_domesticus, felis_catus", "kitty, kitty-cat, puss, pussy, pussycat", "mouser", "alley_cat", "stray", "tom, tomcat", "gib", "tabby, queen", "kitten, kitty", "tabby, tabby_cat", "tiger_cat", "tortoiseshell, tortoiseshell-cat, calico_cat", "persian_cat", "angora, angora_cat", "siamese_cat, siamese", "blue_point_siamese", "burmese_cat", "egyptian_cat", "maltese, maltese_cat", "abyssinian, abyssinian_cat", "manx, manx_cat", "wildcat", "sand_cat", "european_wildcat, catamountain, felis_silvestris", "cougar, puma, catamount, mountain_lion, painter, panther, felis_concolor", "ocelot, panther_cat, felis_pardalis", "jaguarundi, jaguarundi_cat, jaguarondi, eyra, felis_yagouaroundi", "kaffir_cat, caffer_cat, felis_ocreata", "jungle_cat, felis_chaus", "serval, felis_serval", "leopard_cat, felis_bengalensis", "margay, margay_cat, felis_wiedi", "manul, pallas's_cat, felis_manul", "lynx, catamount", "common_lynx, lynx_lynx", "canada_lynx, lynx_canadensis", "bobcat, bay_lynx, lynx_rufus", "spotted_lynx, lynx_pardina", "caracal, desert_lynx, lynx_caracal", "big_cat, cat", "leopard, panthera_pardus", "leopardess", "panther", "snow_leopard, ounce, panthera_uncia", "jaguar, panther, panthera_onca, felis_onca", "lion, king_of_beasts, panthera_leo", "lioness", "lionet", "tiger, panthera_tigris", "bengal_tiger", "tigress", "liger", "tiglon, tigon", "cheetah, chetah, acinonyx_jubatus", "saber-toothed_tiger, sabertooth", "smiledon_californicus", "bear", "brown_bear, bruin, ursus_arctos", "bruin", "syrian_bear, ursus_arctos_syriacus", "grizzly, grizzly_bear, silvertip, silver-tip, ursus_horribilis, ursus_arctos_horribilis", "alaskan_brown_bear, kodiak_bear, kodiak, ursus_middendorffi, ursus_arctos_middendorffi", "american_black_bear, black_bear, ursus_americanus, euarctos_americanus", "cinnamon_bear", "asiatic_black_bear, black_bear, ursus_thibetanus, selenarctos_thibetanus", "ice_bear, polar_bear, ursus_maritimus, thalarctos_maritimus", "sloth_bear, melursus_ursinus, ursus_ursinus", "viverrine, viverrine_mammal", "civet, civet_cat", "large_civet, viverra_zibetha", "small_civet, viverricula_indica, viverricula_malaccensis", "binturong, bearcat, arctictis_bintourong", "cryptoprocta, genus_cryptoprocta", "fossa, fossa_cat, cryptoprocta_ferox", "fanaloka, fossa_fossa", "genet, genetta_genetta", "banded_palm_civet, hemigalus_hardwickii", "mongoose", "indian_mongoose, herpestes_nyula", "ichneumon, herpestes_ichneumon", "palm_cat, palm_civet", "meerkat, mierkat", "slender-tailed_meerkat, suricata_suricatta", "suricate, suricata_tetradactyla", "bat, chiropteran", "fruit_bat, megabat", "flying_fox", "pteropus_capestratus", "pteropus_hypomelanus", "harpy, harpy_bat, tube-nosed_bat, tube-nosed_fruit_bat", "cynopterus_sphinx", "carnivorous_bat, microbat", "mouse-eared_bat", "leafnose_bat, leaf-nosed_bat", "macrotus, macrotus_californicus", "spearnose_bat", "phyllostomus_hastatus", "hognose_bat, choeronycteris_mexicana", "horseshoe_bat", "horseshoe_bat", "orange_bat, orange_horseshoe_bat, rhinonicteris_aurantius", "false_vampire, false_vampire_bat", "big-eared_bat, megaderma_lyra", "vespertilian_bat, vespertilionid", "frosted_bat, vespertilio_murinus", "red_bat, lasiurus_borealis", "brown_bat", "little_brown_bat, little_brown_myotis, myotis_leucifugus", "cave_myotis, myotis_velifer", "big_brown_bat, eptesicus_fuscus", "serotine, european_brown_bat, eptesicus_serotinus", "pallid_bat, cave_bat, antrozous_pallidus", "pipistrelle, pipistrel, pipistrellus_pipistrellus", "eastern_pipistrel, pipistrellus_subflavus", "jackass_bat, spotted_bat, euderma_maculata", "long-eared_bat", "western_big-eared_bat, plecotus_townsendi", "freetail, free-tailed_bat, freetailed_bat", "guano_bat, mexican_freetail_bat, tadarida_brasiliensis", "pocketed_bat, pocketed_freetail_bat, tadirida_femorosacca", "mastiff_bat", "vampire_bat, true_vampire_bat", "desmodus_rotundus", "hairy-legged_vampire_bat, diphylla_ecaudata", "predator, predatory_animal", "prey, quarry", "game", "big_game", "game_bird", "fossorial_mammal", "tetrapod", "quadruped", "hexapod", "biped", "insect", "social_insect", "holometabola, metabola", "defoliator", "pollinator", "gallfly", "scorpion_fly", "hanging_fly", "collembolan, springtail", "beetle", "tiger_beetle", "ladybug, ladybeetle, lady_beetle, ladybird, ladybird_beetle", "two-spotted_ladybug, adalia_bipunctata", "mexican_bean_beetle, bean_beetle, epilachna_varivestis", "hippodamia_convergens", "vedalia, rodolia_cardinalis", "ground_beetle, carabid_beetle", "bombardier_beetle", "calosoma", "searcher, searcher_beetle, calosoma_scrutator", "firefly, lightning_bug", "glowworm", "long-horned_beetle, longicorn, longicorn_beetle", "sawyer, sawyer_beetle", "pine_sawyer", "leaf_beetle, chrysomelid", "flea_beetle", "colorado_potato_beetle, colorado_beetle, potato_bug, potato_beetle, leptinotarsa_decemlineata", "carpet_beetle, carpet_bug", "buffalo_carpet_beetle, anthrenus_scrophulariae", "black_carpet_beetle", "clerid_beetle, clerid", "bee_beetle", "lamellicorn_beetle", "scarabaeid_beetle, scarabaeid, scarabaean", "dung_beetle", "scarab, scarabaeus, scarabaeus_sacer", "tumblebug", "dorbeetle", "june_beetle, june_bug, may_bug, may_beetle", "green_june_beetle, figeater", "japanese_beetle, popillia_japonica", "oriental_beetle, asiatic_beetle, anomala_orientalis", "rhinoceros_beetle", "melolonthid_beetle", "cockchafer, may_bug, may_beetle, melolontha_melolontha", "rose_chafer, rose_bug, macrodactylus_subspinosus", "rose_chafer, rose_beetle, cetonia_aurata", "stag_beetle", "elaterid_beetle, elater, elaterid", "click_beetle, skipjack, snapping_beetle", "firefly, fire_beetle, pyrophorus_noctiluca", "wireworm", "water_beetle", "whirligig_beetle", "deathwatch_beetle, deathwatch, xestobium_rufovillosum", "weevil", "snout_beetle", "boll_weevil, anthonomus_grandis", "blister_beetle, meloid", "oil_beetle", "spanish_fly", "dutch-elm_beetle, scolytus_multistriatus", "bark_beetle", "spruce_bark_beetle, dendroctonus_rufipennis", "rove_beetle", "darkling_beetle, darkling_groung_beetle, tenebrionid", "mealworm", "flour_beetle, flour_weevil", "seed_beetle, seed_weevil", "pea_weevil, bruchus_pisorum", "bean_weevil, acanthoscelides_obtectus", "rice_weevil, black_weevil, sitophylus_oryzae", "asian_longhorned_beetle, anoplophora_glabripennis", "web_spinner", "louse, sucking_louse", "common_louse, pediculus_humanus", "head_louse, pediculus_capitis", "body_louse, cootie, pediculus_corporis", "crab_louse, pubic_louse, crab, phthirius_pubis", "bird_louse, biting_louse, louse", "flea", "pulex_irritans", "dog_flea, ctenocephalides_canis", "cat_flea, ctenocephalides_felis", "chigoe, chigger, chigoe_flea, tunga_penetrans", "sticktight, sticktight_flea, echidnophaga_gallinacea", "dipterous_insect, two-winged_insects, dipteran, dipteron", "gall_midge, gallfly, gall_gnat", "hessian_fly, mayetiola_destructor", "fly", "housefly, house_fly, musca_domestica", "tsetse_fly, tsetse, tzetze_fly, tzetze, glossina", "blowfly, blow_fly", "bluebottle, calliphora_vicina", "greenbottle, greenbottle_fly", "flesh_fly, sarcophaga_carnaria", "tachina_fly", "gadfly", "botfly", "human_botfly, dermatobia_hominis", "sheep_botfly, sheep_gadfly, oestrus_ovis", "warble_fly", "horsefly, cleg, clegg, horse_fly", "bee_fly", "robber_fly, bee_killer", "fruit_fly, pomace_fly", "apple_maggot, railroad_worm, rhagoletis_pomonella", "mediterranean_fruit_fly, medfly, ceratitis_capitata", "drosophila, drosophila_melanogaster", "vinegar_fly", "leaf_miner, leaf-miner", "louse_fly, hippoboscid", "horse_tick, horsefly, hippobosca_equina", "sheep_ked, sheep-tick, sheep_tick, melophagus_ovinus", "horn_fly, haematobia_irritans", "mosquito", "wiggler, wriggler", "gnat", "yellow-fever_mosquito, aedes_aegypti", "asian_tiger_mosquito, aedes_albopictus", "anopheline", "malarial_mosquito, malaria_mosquito", "common_mosquito, culex_pipiens", "culex_quinquefasciatus, culex_fatigans", "gnat", "punkie, punky, punkey, no-see-um, biting_midge", "midge", "fungus_gnat", "psychodid", "sand_fly, sandfly, phlebotomus_papatasii", "fungus_gnat, sciara, sciarid", "armyworm", "crane_fly, daddy_longlegs", "blackfly, black_fly, buffalo_gnat", "hymenopterous_insect, hymenopteran, hymenopteron, hymenopter", "bee", "drone", "queen_bee", "worker", "soldier", "worker_bee", "honeybee, apis_mellifera", "africanized_bee, africanized_honey_bee, killer_bee, apis_mellifera_scutellata, apis_mellifera_adansonii", "black_bee, german_bee", "carniolan_bee", "italian_bee", "carpenter_bee", "bumblebee, humblebee", "cuckoo-bumblebee", "andrena, andrenid, mining_bee", "nomia_melanderi, alkali_bee", "leaf-cutting_bee, leaf-cutter, leaf-cutter_bee", "mason_bee", "potter_bee", "wasp", "vespid, vespid_wasp", "paper_wasp", "hornet", "giant_hornet, vespa_crabro", "common_wasp, vespula_vulgaris", "bald-faced_hornet, white-faced_hornet, vespula_maculata", "yellow_jacket, yellow_hornet, vespula_maculifrons", "polistes_annularis", "mason_wasp", "potter_wasp", "mutillidae, family_mutillidae", "velvet_ant", "sphecoid_wasp, sphecoid", "mason_wasp", "digger_wasp", "cicada_killer, sphecius_speciosis", "mud_dauber", "gall_wasp, gallfly, cynipid_wasp, cynipid_gall_wasp", "chalcid_fly, chalcidfly, chalcid, chalcid_wasp", "strawworm, jointworm", "chalcis_fly", "ichneumon_fly", "sawfly", "birch_leaf_miner, fenusa_pusilla", "ant, emmet, pismire", "pharaoh_ant, pharaoh's_ant, monomorium_pharaonis", "little_black_ant, monomorium_minimum", "army_ant, driver_ant, legionary_ant", "carpenter_ant", "fire_ant", "wood_ant, formica_rufa", "slave_ant", "formica_fusca", "slave-making_ant, slave-maker", "sanguinary_ant, formica_sanguinea", "bulldog_ant", "amazon_ant, polyergus_rufescens", "termite, white_ant", "dry-wood_termite", "reticulitermes_lucifugus", "mastotermes_darwiniensis", "mastotermes_electrodominicus", "powder-post_termite, cryptotermes_brevis", "orthopterous_insect, orthopteron, orthopteran", "grasshopper, hopper", "short-horned_grasshopper, acridid", "locust", "migratory_locust, locusta_migratoria", "migratory_grasshopper", "long-horned_grasshopper, tettigoniid", "katydid", "mormon_cricket, anabrus_simplex", "sand_cricket, jerusalem_cricket, stenopelmatus_fuscus", "cricket", "mole_cricket", "european_house_cricket, acheta_domestica", "field_cricket, acheta_assimilis", "tree_cricket", "snowy_tree_cricket, oecanthus_fultoni", "phasmid, phasmid_insect", "walking_stick, walkingstick, stick_insect", "diapheromera, diapheromera_femorata", "walking_leaf, leaf_insect", "cockroach, roach", "oriental_cockroach, oriental_roach, asiatic_cockroach, blackbeetle, blatta_orientalis", "american_cockroach, periplaneta_americana", "australian_cockroach, periplaneta_australasiae", "german_cockroach, croton_bug, crotonbug, water_bug, blattella_germanica", "giant_cockroach", "mantis, mantid", "praying_mantis, praying_mantid, mantis_religioso", "bug", "hemipterous_insect, bug, hemipteran, hemipteron", "leaf_bug, plant_bug", "mirid_bug, mirid, capsid", "four-lined_plant_bug, four-lined_leaf_bug, poecilocapsus_lineatus", "lygus_bug", "tarnished_plant_bug, lygus_lineolaris", "lace_bug", "lygaeid, lygaeid_bug", "chinch_bug, blissus_leucopterus", "coreid_bug, coreid", "squash_bug, anasa_tristis", "leaf-footed_bug, leaf-foot_bug", "bedbug, bed_bug, chinch, cimex_lectularius", "backswimmer, notonecta_undulata", "true_bug", "heteropterous_insect", "water_bug", "giant_water_bug", "water_scorpion", "water_boatman, boat_bug", "water_strider, pond-skater, water_skater", "common_pond-skater, gerris_lacustris", "assassin_bug, reduviid", "conenose, cone-nosed_bug, conenose_bug, big_bedbug, kissing_bug", "wheel_bug, arilus_cristatus", "firebug", "cotton_stainer", "homopterous_insect, homopteran", "whitefly", "citrus_whitefly, dialeurodes_citri", "greenhouse_whitefly, trialeurodes_vaporariorum", "sweet-potato_whitefly", "superbug, bemisia_tabaci, poinsettia_strain", "cotton_strain", "coccid_insect", "scale_insect", "soft_scale", "brown_soft_scale, coccus_hesperidum", "armored_scale", "san_jose_scale, aspidiotus_perniciosus", "cochineal_insect, cochineal, dactylopius_coccus", "mealybug, mealy_bug", "citrophilous_mealybug, citrophilus_mealybug, pseudococcus_fragilis", "comstock_mealybug, comstock's_mealybug, pseudococcus_comstocki", "citrus_mealybug, planococcus_citri", "plant_louse, louse", "aphid", "apple_aphid, green_apple_aphid, aphis_pomi", "blackfly, bean_aphid, aphis_fabae", "greenfly", "green_peach_aphid", "ant_cow", "woolly_aphid, woolly_plant_louse", "woolly_apple_aphid, american_blight, eriosoma_lanigerum", "woolly_alder_aphid, prociphilus_tessellatus", "adelgid", "balsam_woolly_aphid, adelges_piceae", "spruce_gall_aphid, adelges_abietis", "woolly_adelgid", "jumping_plant_louse, psylla, psyllid", "cicada, cicala", "dog-day_cicada, harvest_fly", "seventeen-year_locust, periodical_cicada, magicicada_septendecim", "spittle_insect, spittlebug", "froghopper", "meadow_spittlebug, philaenus_spumarius", "pine_spittlebug", "saratoga_spittlebug, aphrophora_saratogensis", "leafhopper", "plant_hopper, planthopper", "treehopper", "lantern_fly, lantern-fly", "psocopterous_insect", "psocid", "bark-louse, bark_louse", "booklouse, book_louse, deathwatch, liposcelis_divinatorius", "common_booklouse, trogium_pulsatorium", "ephemerid, ephemeropteran", "mayfly, dayfly, shadfly", "stonefly, stone_fly, plecopteran", "neuropteron, neuropteran, neuropterous_insect", "ant_lion, antlion, antlion_fly", "doodlebug, ant_lion, antlion", "lacewing, lacewing_fly", "aphid_lion, aphis_lion", "green_lacewing, chrysopid, stink_fly", "brown_lacewing, hemerobiid, hemerobiid_fly", "dobson, dobsonfly, dobson_fly, corydalus_cornutus", "hellgrammiate, dobson", "fish_fly, fish-fly", "alderfly, alder_fly, sialis_lutaria", "snakefly", "mantispid", "odonate", "dragonfly, darning_needle, devil's_darning_needle, sewing_needle, snake_feeder, snake_doctor, mosquito_hawk, skeeter_hawk", "damselfly", "trichopterous_insect, trichopteran, trichopteron", "caddis_fly, caddis-fly, caddice_fly, caddice-fly", "caseworm", "caddisworm, strawworm", "thysanuran_insect, thysanuron", "bristletail", "silverfish, lepisma_saccharina", "firebrat, thermobia_domestica", "jumping_bristletail, machilid", "thysanopter, thysanopteron, thysanopterous_insect", "thrips, thrip, thripid", "tobacco_thrips, frankliniella_fusca", "onion_thrips, onion_louse, thrips_tobaci", "earwig", "common_european_earwig, forficula_auricularia", "lepidopterous_insect, lepidopteron, lepidopteran", "butterfly", "nymphalid, nymphalid_butterfly, brush-footed_butterfly, four-footed_butterfly", "mourning_cloak, mourning_cloak_butterfly, camberwell_beauty, nymphalis_antiopa", "tortoiseshell, tortoiseshell_butterfly", "painted_beauty, vanessa_virginiensis", "admiral", "red_admiral, vanessa_atalanta", "white_admiral, limenitis_camilla", "banded_purple, white_admiral, limenitis_arthemis", "red-spotted_purple, limenitis_astyanax", "viceroy, limenitis_archippus", "anglewing", "ringlet, ringlet_butterfly", "comma, comma_butterfly, polygonia_comma", "fritillary", "silverspot", "emperor_butterfly, emperor", "purple_emperor, apatura_iris", "peacock, peacock_butterfly, inachis_io", "danaid, danaid_butterfly", "monarch, monarch_butterfly, milkweed_butterfly, danaus_plexippus", "pierid, pierid_butterfly", "cabbage_butterfly", "small_white, pieris_rapae", "large_white, pieris_brassicae", "southern_cabbage_butterfly, pieris_protodice", "sulphur_butterfly, sulfur_butterfly", "lycaenid, lycaenid_butterfly", "blue", "copper", "american_copper, lycaena_hypophlaeas", "hairstreak, hairstreak_butterfly", "strymon_melinus", "moth", "moth_miller, miller", "tortricid, tortricid_moth", "leaf_roller, leaf-roller", "tea_tortrix, tortrix, homona_coffearia", "orange_tortrix, tortrix, argyrotaenia_citrana", "codling_moth, codlin_moth, carpocapsa_pomonella", "lymantriid, tussock_moth", "tussock_caterpillar", "gypsy_moth, gipsy_moth, lymantria_dispar", "browntail, brown-tail_moth, euproctis_phaeorrhoea", "gold-tail_moth, euproctis_chrysorrhoea", "geometrid, geometrid_moth", "paleacrita_vernata", "alsophila_pometaria", "cankerworm", "spring_cankerworm", "fall_cankerworm", "measuring_worm, inchworm, looper", "pyralid, pyralid_moth", "bee_moth, wax_moth, galleria_mellonella", "corn_borer, european_corn_borer_moth, corn_borer_moth, pyrausta_nubilalis", "mediterranean_flour_moth, anagasta_kuehniella", "tobacco_moth, cacao_moth, ephestia_elutella", "almond_moth, fig_moth, cadra_cautella", "raisin_moth, cadra_figulilella", "tineoid, tineoid_moth", "tineid, tineid_moth", "clothes_moth", "casemaking_clothes_moth, tinea_pellionella", "webbing_clothes_moth, webbing_moth, tineola_bisselliella", "carpet_moth, tapestry_moth, trichophaga_tapetzella", "gelechiid, gelechiid_moth", "grain_moth", "angoumois_moth, angoumois_grain_moth, sitotroga_cerealella", "potato_moth, potato_tuber_moth, splitworm, phthorimaea_operculella", "potato_tuberworm, phthorimaea_operculella", "noctuid_moth, noctuid, owlet_moth", "cutworm", "underwing", "red_underwing, catocala_nupta", "antler_moth, cerapteryx_graminis", "heliothis_moth, heliothis_zia", "army_cutworm, chorizagrotis_auxiliaris", "armyworm, pseudaletia_unipuncta", "armyworm, army_worm, pseudaletia_unipuncta", "spodoptera_exigua", "beet_armyworm, spodoptera_exigua", "spodoptera_frugiperda", "fall_armyworm, spodoptera_frugiperda", "hawkmoth, hawk_moth, sphingid, sphinx_moth, hummingbird_moth", "manduca_sexta", "tobacco_hornworm, tomato_worm, manduca_sexta", "manduca_quinquemaculata", "tomato_hornworm, potato_worm, manduca_quinquemaculata", "death's-head_moth, acherontia_atropos", "bombycid, bombycid_moth, silkworm_moth", "domestic_silkworm_moth, domesticated_silkworm_moth, bombyx_mori", "silkworm", "saturniid, saturniid_moth", "emperor, emperor_moth, saturnia_pavonia", "imperial_moth, eacles_imperialis", "giant_silkworm_moth, silkworm_moth", "silkworm, giant_silkworm, wild_wilkworm", "luna_moth, actias_luna", "cecropia, cecropia_moth, hyalophora_cecropia", "cynthia_moth, samia_cynthia, samia_walkeri", "ailanthus_silkworm, samia_cynthia", "io_moth, automeris_io", "polyphemus_moth, antheraea_polyphemus", "pernyi_moth, antheraea_pernyi", "tussah, tusseh, tussur, tussore, tusser, antheraea_mylitta", "atlas_moth, atticus_atlas", "arctiid, arctiid_moth", "tiger_moth", "cinnabar, cinnabar_moth, callimorpha_jacobeae", "lasiocampid, lasiocampid_moth", "eggar, egger", "tent-caterpillar_moth, malacosoma_americana", "tent_caterpillar", "tent-caterpillar_moth, malacosoma_disstria", "forest_tent_caterpillar, malacosoma_disstria", "lappet, lappet_moth", "lappet_caterpillar", "webworm", "webworm_moth", "hyphantria_cunea", "fall_webworm, hyphantria_cunea", "garden_webworm, loxostege_similalis", "instar", "caterpillar", "corn_borer, pyrausta_nubilalis", "bollworm", "pink_bollworm, gelechia_gossypiella", "corn_earworm, cotton_bollworm, tomato_fruitworm, tobacco_budworm, vetchworm, heliothis_zia", "cabbageworm, pieris_rapae", "woolly_bear, woolly_bear_caterpillar", "woolly_bear_moth", "larva", "nymph", "leptocephalus", "grub", "maggot", "leatherjacket", "pupa", "chrysalis", "imago", "queen", "phoronid", "bryozoan, polyzoan, sea_mat, sea_moss, moss_animal", "brachiopod, lamp_shell, lampshell", "peanut_worm, sipunculid", "echinoderm", "starfish, sea_star", "brittle_star, brittle-star, serpent_star", "basket_star, basket_fish", "astrophyton_muricatum", "sea_urchin", "edible_sea_urchin, echinus_esculentus", "sand_dollar", "heart_urchin", "crinoid", "sea_lily", "feather_star, comatulid", "sea_cucumber, holothurian", "trepang, holothuria_edulis", "duplicidentata", "lagomorph, gnawing_mammal", "leporid, leporid_mammal", "rabbit, coney, cony", "rabbit_ears", "lapin", "bunny, bunny_rabbit", "european_rabbit, old_world_rabbit, oryctolagus_cuniculus", "wood_rabbit, cottontail, cottontail_rabbit", "eastern_cottontail, sylvilagus_floridanus", "swamp_rabbit, canecutter, swamp_hare, sylvilagus_aquaticus", "marsh_hare, swamp_rabbit, sylvilagus_palustris", "hare", "leveret", "european_hare, lepus_europaeus", "jackrabbit", "white-tailed_jackrabbit, whitetail_jackrabbit, lepus_townsendi", "blacktail_jackrabbit, lepus_californicus", "polar_hare, arctic_hare, lepus_arcticus", "snowshoe_hare, snowshoe_rabbit, varying_hare, lepus_americanus", "belgian_hare, leporide", "angora, angora_rabbit", "pika, mouse_hare, rock_rabbit, coney, cony", "little_chief_hare, ochotona_princeps", "collared_pika, ochotona_collaris", "rodent, gnawer", "mouse", "rat", "pocket_rat", "murine", "house_mouse, mus_musculus", "harvest_mouse, micromyx_minutus", "field_mouse, fieldmouse", "nude_mouse", "european_wood_mouse, apodemus_sylvaticus", "brown_rat, norway_rat, rattus_norvegicus", "wharf_rat", "sewer_rat", "black_rat, roof_rat, rattus_rattus", "bandicoot_rat, mole_rat", "jerboa_rat", "kangaroo_mouse", "water_rat", "beaver_rat", "new_world_mouse", "american_harvest_mouse, harvest_mouse", "wood_mouse", "white-footed_mouse, vesper_mouse, peromyscus_leucopus", "deer_mouse, peromyscus_maniculatus", "cactus_mouse, peromyscus_eremicus", "cotton_mouse, peromyscus_gossypinus", "pygmy_mouse, baiomys_taylori", "grasshopper_mouse", "muskrat, musquash, ondatra_zibethica", "round-tailed_muskrat, florida_water_rat, neofiber_alleni", "cotton_rat, sigmodon_hispidus", "wood_rat, wood-rat", "dusky-footed_wood_rat", "vole, field_mouse", "packrat, pack_rat, trade_rat, bushytail_woodrat, neotoma_cinerea", "dusky-footed_woodrat, neotoma_fuscipes", "eastern_woodrat, neotoma_floridana", "rice_rat, oryzomys_palustris", "pine_vole, pine_mouse, pitymys_pinetorum", "meadow_vole, meadow_mouse, microtus_pennsylvaticus", "water_vole, richardson_vole, microtus_richardsoni", "prairie_vole, microtus_ochrogaster", "water_vole, water_rat, arvicola_amphibius", "red-backed_mouse, redback_vole", "phenacomys", "hamster", "eurasian_hamster, cricetus_cricetus", "golden_hamster, syrian_hamster, mesocricetus_auratus", "gerbil, gerbille", "jird", "tamarisk_gerbil, meriones_unguiculatus", "sand_rat, meriones_longifrons", "lemming", "european_lemming, lemmus_lemmus", "brown_lemming, lemmus_trimucronatus", "grey_lemming, gray_lemming, red-backed_lemming", "pied_lemming", "hudson_bay_collared_lemming, dicrostonyx_hudsonius", "southern_bog_lemming, synaptomys_cooperi", "northern_bog_lemming, synaptomys_borealis", "porcupine, hedgehog", "old_world_porcupine", "brush-tailed_porcupine, brush-tail_porcupine", "long-tailed_porcupine, trichys_lipura", "new_world_porcupine", "canada_porcupine, erethizon_dorsatum", "pocket_mouse", "silky_pocket_mouse, perognathus_flavus", "plains_pocket_mouse, perognathus_flavescens", "hispid_pocket_mouse, perognathus_hispidus", "mexican_pocket_mouse, liomys_irroratus", "kangaroo_rat, desert_rat, dipodomys_phillipsii", "ord_kangaroo_rat, dipodomys_ordi", "kangaroo_mouse, dwarf_pocket_rat", "jumping_mouse", "meadow_jumping_mouse, zapus_hudsonius", "jerboa", "typical_jerboa", "jaculus_jaculus", "dormouse", "loir, glis_glis", "hazel_mouse, muscardinus_avellanarius", "lerot", "gopher, pocket_gopher, pouched_rat", "plains_pocket_gopher, geomys_bursarius", "southeastern_pocket_gopher, geomys_pinetis", "valley_pocket_gopher, thomomys_bottae", "northern_pocket_gopher, thomomys_talpoides", "squirrel", "tree_squirrel", "eastern_grey_squirrel, eastern_gray_squirrel, cat_squirrel, sciurus_carolinensis", "western_grey_squirrel, western_gray_squirrel, sciurus_griseus", "fox_squirrel, eastern_fox_squirrel, sciurus_niger", "black_squirrel", "red_squirrel, cat_squirrel, sciurus_vulgaris", "american_red_squirrel, spruce_squirrel, red_squirrel, sciurus_hudsonicus, tamiasciurus_hudsonicus", "chickeree, douglas_squirrel, tamiasciurus_douglasi", "antelope_squirrel, whitetail_antelope_squirrel, antelope_chipmunk, citellus_leucurus", "ground_squirrel, gopher, spermophile", "mantled_ground_squirrel, citellus_lateralis", "suslik, souslik, citellus_citellus", "flickertail, richardson_ground_squirrel, citellus_richardsoni", "rock_squirrel, citellus_variegatus", "arctic_ground_squirrel, parka_squirrel, citellus_parryi", "prairie_dog, prairie_marmot", "blacktail_prairie_dog, cynomys_ludovicianus", "whitetail_prairie_dog, cynomys_gunnisoni", "eastern_chipmunk, hackee, striped_squirrel, ground_squirrel, tamias_striatus", "chipmunk", "baronduki, baranduki, barunduki, burunduki, eutamius_asiaticus, eutamius_sibiricus", "american_flying_squirrel", "southern_flying_squirrel, glaucomys_volans", "northern_flying_squirrel, glaucomys_sabrinus", "marmot", "groundhog, woodchuck, marmota_monax", "hoary_marmot, whistler, whistling_marmot, marmota_caligata", "yellowbelly_marmot, rockchuck, marmota_flaviventris", "asiatic_flying_squirrel", "beaver", "old_world_beaver, castor_fiber", "new_world_beaver, castor_canadensis", "mountain_beaver, sewellel, aplodontia_rufa", "cavy", "guinea_pig, cavia_cobaya", "aperea, wild_cavy, cavia_porcellus", "mara, dolichotis_patagonum", "capybara, capibara, hydrochoerus_hydrochaeris", "agouti, dasyprocta_aguti", "paca, cuniculus_paca", "mountain_paca", "coypu, nutria, myocastor_coypus", "chinchilla, chinchilla_laniger", "mountain_chinchilla, mountain_viscacha", "viscacha, chinchillon, lagostomus_maximus", "abrocome, chinchilla_rat, rat_chinchilla", "mole_rat", "mole_rat", "sand_rat", "naked_mole_rat", "queen, queen_mole_rat", "damaraland_mole_rat", "ungulata", "ungulate, hoofed_mammal", "unguiculate, unguiculate_mammal", "dinoceras, uintathere", "hyrax, coney, cony, dassie, das", "rock_hyrax, rock_rabbit, procavia_capensis", "odd-toed_ungulate, perissodactyl, perissodactyl_mammal", "equine, equid", "horse, equus_caballus", "roan", "stablemate, stable_companion", "gee-gee", "eohippus, dawn_horse", "foal", "filly", "colt", "male_horse", "ridgeling, ridgling, ridgel, ridgil", "stallion, entire", "stud, studhorse", "gelding", "mare, female_horse", "broodmare, stud_mare", "saddle_horse, riding_horse, mount", "remount", "palfrey", "warhorse", "cavalry_horse", "charger, courser", "steed", "prancer", "hack", "cow_pony", "quarter_horse", "morgan", "tennessee_walker, tennessee_walking_horse, walking_horse, plantation_walking_horse", "american_saddle_horse", "appaloosa", "arabian, arab", "lippizan, lipizzan, lippizaner", "pony", "polo_pony", "mustang", "bronco, bronc, broncho", "bucking_bronco", "buckskin", "crowbait, crow-bait", "dun", "grey, gray", "wild_horse", "tarpan, equus_caballus_gomelini", "przewalski's_horse, przevalski's_horse, equus_caballus_przewalskii, equus_caballus_przevalskii", "cayuse, indian_pony", "hack", "hack, jade, nag, plug", "plow_horse, plough_horse", "pony", "shetland_pony", "welsh_pony", "exmoor", "racehorse, race_horse, bangtail", "thoroughbred", "steeplechaser", "racer", "finisher", "pony", "yearling", "dark_horse", "mudder", "nonstarter", "stalking-horse", "harness_horse", "cob", "hackney", "workhorse", "draft_horse, draught_horse, dray_horse", "packhorse", "carthorse, cart_horse, drayhorse", "clydesdale", "percheron", "farm_horse, dobbin", "shire, shire_horse", "pole_horse, poler", "post_horse, post-horse, poster", "coach_horse", "pacer", "pacer, pacemaker, pacesetter", "trotting_horse, trotter", "pole_horse", "stepper, high_stepper", "chestnut", "liver_chestnut", "bay", "sorrel", "palomino", "pinto", "ass", "domestic_ass, donkey, equus_asinus", "burro", "moke", "jack, jackass", "jennet, jenny, jenny_ass", "mule", "hinny", "wild_ass", "african_wild_ass, equus_asinus", "kiang, equus_kiang", "onager, equus_hemionus", "chigetai, dziggetai, equus_hemionus_hemionus", "zebra", "common_zebra, burchell's_zebra, equus_burchelli", "mountain_zebra, equus_zebra_zebra", "grevy's_zebra, equus_grevyi", "quagga, equus_quagga", "rhinoceros, rhino", "indian_rhinoceros, rhinoceros_unicornis", "woolly_rhinoceros, rhinoceros_antiquitatis", "white_rhinoceros, ceratotherium_simum, diceros_simus", "black_rhinoceros, diceros_bicornis", "tapir", "new_world_tapir, tapirus_terrestris", "malayan_tapir, indian_tapir, tapirus_indicus", "even-toed_ungulate, artiodactyl, artiodactyl_mammal", "swine", "hog, pig, grunter, squealer, sus_scrofa", "piglet, piggy, shoat, shote", "sucking_pig", "porker", "boar", "sow", "razorback, razorback_hog, razorbacked_hog", "wild_boar, boar, sus_scrofa", "babirusa, babiroussa, babirussa, babyrousa_babyrussa", "warthog", "peccary, musk_hog", "collared_peccary, javelina, tayassu_angulatus, tayassu_tajacu, peccari_angulatus", "white-lipped_peccary, tayassu_pecari", "hippopotamus, hippo, river_horse, hippopotamus_amphibius", "ruminant", "bovid", "bovine", "ox, wild_ox", "cattle, cows, kine, oxen, bos_taurus", "ox", "stirk", "bullock, steer", "bull", "cow, moo-cow", "heifer", "bullock", "dogie, dogy, leppy", "maverick", "beef, beef_cattle", "longhorn, texas_longhorn", "brahman, brahma, brahmin, bos_indicus", "zebu", "aurochs, urus, bos_primigenius", "yak, bos_grunniens", "banteng, banting, tsine, bos_banteng", "welsh, welsh_black", "red_poll", "santa_gertrudis", "aberdeen_angus, angus, black_angus", "africander", "dairy_cattle, dairy_cow, milch_cow, milk_cow, milcher, milker", "ayrshire", "brown_swiss", "charolais", "jersey", "devon", "grade", "durham, shorthorn", "milking_shorthorn", "galloway", "friesian, holstein, holstein-friesian", "guernsey", "hereford, whiteface", "cattalo, beefalo", "old_world_buffalo, buffalo", "water_buffalo, water_ox, asiatic_buffalo, bubalus_bubalis", "indian_buffalo", "carabao", "anoa, dwarf_buffalo, anoa_depressicornis", "tamarau, tamarao, bubalus_mindorensis, anoa_mindorensis", "cape_buffalo, synercus_caffer", "asian_wild_ox", "gaur, bibos_gaurus", "gayal, mithan, bibos_frontalis", "bison", "american_bison, american_buffalo, buffalo, bison_bison", "wisent, aurochs, bison_bonasus", "musk_ox, musk_sheep, ovibos_moschatus", "sheep", "ewe", "ram, tup", "wether", "lamb", "lambkin", "baa-lamb", "hog, hogget, hogg", "teg", "persian_lamb", "black_sheep", "domestic_sheep, ovis_aries", "cotswold", "hampshire, hampshire_down", "lincoln", "exmoor", "cheviot", "broadtail, caracul, karakul", "longwool", "merino, merino_sheep", "rambouillet", "wild_sheep", "argali, argal, ovis_ammon", "marco_polo_sheep, marco_polo's_sheep, ovis_poli", "urial, ovis_vignei", "dall_sheep, dall's_sheep, white_sheep, ovis_montana_dalli", "mountain_sheep", "bighorn, bighorn_sheep, cimarron, rocky_mountain_bighorn, rocky_mountain_sheep, ovis_canadensis", "mouflon, moufflon, ovis_musimon", "aoudad, arui, audad, barbary_sheep, maned_sheep, ammotragus_lervia", "goat, caprine_animal", "kid", "billy, billy_goat, he-goat", "nanny, nanny-goat, she-goat", "domestic_goat, capra_hircus", "cashmere_goat, kashmir_goat", "angora, angora_goat", "wild_goat", "bezoar_goat, pasang, capra_aegagrus", "markhor, markhoor, capra_falconeri", "ibex, capra_ibex", "goat_antelope", "mountain_goat, rocky_mountain_goat, oreamnos_americanus", "goral, naemorhedus_goral", "serow", "chamois, rupicapra_rupicapra", "takin, gnu_goat, budorcas_taxicolor", "antelope", "blackbuck, black_buck, antilope_cervicapra", "gerenuk, litocranius_walleri", "addax, addax_nasomaculatus", "gnu, wildebeest", "dik-dik", "hartebeest", "sassaby, topi, damaliscus_lunatus", "impala, aepyceros_melampus", "gazelle", "thomson's_gazelle, gazella_thomsoni", "gazella_subgutturosa", "springbok, springbuck, antidorcas_marsupialis, antidorcas_euchore", "bongo, tragelaphus_eurycerus, boocercus_eurycerus", "kudu, koodoo, koudou", "greater_kudu, tragelaphus_strepsiceros", "lesser_kudu, tragelaphus_imberbis", "harnessed_antelope", "nyala, tragelaphus_angasi", "mountain_nyala, tragelaphus_buxtoni", "bushbuck, guib, tragelaphus_scriptus", "nilgai, nylghai, nylghau, blue_bull, boselaphus_tragocamelus", "sable_antelope, hippotragus_niger", "saiga, saiga_tatarica", "steenbok, steinbok, raphicerus_campestris", "eland", "common_eland, taurotragus_oryx", "giant_eland, taurotragus_derbianus", "kob, kobus_kob", "lechwe, kobus_leche", "waterbuck", "puku, adenota_vardoni", "oryx, pasang", "gemsbok, gemsbuck, oryx_gazella", "forest_goat, spindle_horn, pseudoryx_nghetinhensis", "pronghorn, prongbuck, pronghorn_antelope, american_antelope, antilocapra_americana", "deer, cervid", "stag", "royal, royal_stag", "pricket", "fawn", "red_deer, elk, american_elk, wapiti, cervus_elaphus", "hart, stag", "hind", "brocket", "sambar, sambur, cervus_unicolor", "wapiti, elk, american_elk, cervus_elaphus_canadensis", "japanese_deer, sika, cervus_nipon, cervus_sika", "virginia_deer, white_tail, whitetail, white-tailed_deer, whitetail_deer, odocoileus_virginianus", "mule_deer, burro_deer, odocoileus_hemionus", "black-tailed_deer, blacktail_deer, blacktail, odocoileus_hemionus_columbianus", "elk, european_elk, moose, alces_alces", "fallow_deer, dama_dama", "roe_deer, capreolus_capreolus", "roebuck", "caribou, reindeer, greenland_caribou, rangifer_tarandus", "woodland_caribou, rangifer_caribou", "barren_ground_caribou, rangifer_arcticus", "brocket", "muntjac, barking_deer", "musk_deer, moschus_moschiferus", "pere_david's_deer, elaphure, elaphurus_davidianus", "chevrotain, mouse_deer", "kanchil, tragulus_kanchil", "napu, tragulus_javanicus", "water_chevrotain, water_deer, hyemoschus_aquaticus", "camel", "arabian_camel, dromedary, camelus_dromedarius", "bactrian_camel, camelus_bactrianus", "llama", "domestic_llama, lama_peruana", "guanaco, lama_guanicoe", "alpaca, lama_pacos", "vicuna, vicugna_vicugna", "giraffe, camelopard, giraffa_camelopardalis", "okapi, okapia_johnstoni", "musteline_mammal, mustelid, musteline", "weasel", "ermine, shorttail_weasel, mustela_erminea", "stoat", "new_world_least_weasel, mustela_rixosa", "old_world_least_weasel, mustela_nivalis", "longtail_weasel, long-tailed_weasel, mustela_frenata", "mink", "american_mink, mustela_vison", "polecat, fitch, foulmart, foumart, mustela_putorius", "ferret", "black-footed_ferret, ferret, mustela_nigripes", "muishond", "snake_muishond, poecilogale_albinucha", "striped_muishond, ictonyx_striata", "otter", "river_otter, lutra_canadensis", "eurasian_otter, lutra_lutra", "sea_otter, enhydra_lutris", "skunk, polecat, wood_pussy", "striped_skunk, mephitis_mephitis", "hooded_skunk, mephitis_macroura", "hog-nosed_skunk, hognosed_skunk, badger_skunk, rooter_skunk, conepatus_leuconotus", "spotted_skunk, little_spotted_skunk, spilogale_putorius", "badger", "american_badger, taxidea_taxus", "eurasian_badger, meles_meles", "ratel, honey_badger, mellivora_capensis", "ferret_badger", "hog_badger, hog-nosed_badger, sand_badger, arctonyx_collaris", "wolverine, carcajou, skunk_bear, gulo_luscus", "glutton, gulo_gulo, wolverine", "grison, grison_vittatus, galictis_vittatus", "marten, marten_cat", "pine_marten, martes_martes", "sable, martes_zibellina", "american_marten, american_sable, martes_americana", "stone_marten, beech_marten, martes_foina", "fisher, pekan, fisher_cat, black_cat, martes_pennanti", "yellow-throated_marten, charronia_flavigula", "tayra, taira, eira_barbara", "fictional_animal", "pachyderm", "edentate", "armadillo", "peba, nine-banded_armadillo, texas_armadillo, dasypus_novemcinctus", "apar, three-banded_armadillo, tolypeutes_tricinctus", "tatouay, cabassous, cabassous_unicinctus", "peludo, poyou, euphractus_sexcinctus", "giant_armadillo, tatou, tatu, priodontes_giganteus", "pichiciago, pichiciego, fairy_armadillo, chlamyphore, chlamyphorus_truncatus", "sloth, tree_sloth", "three-toed_sloth, ai, bradypus_tridactylus", "two-toed_sloth, unau, unai, choloepus_didactylus", "two-toed_sloth, unau, unai, choloepus_hoffmanni", "megatherian, megatheriid, megatherian_mammal", "mylodontid", "anteater, new_world_anteater", "ant_bear, giant_anteater, great_anteater, tamanoir, myrmecophaga_jubata", "silky_anteater, two-toed_anteater, cyclopes_didactylus", "tamandua, tamandu, lesser_anteater, tamandua_tetradactyla", "pangolin, scaly_anteater, anteater", "coronet", "scapular", "tadpole, polliwog, pollywog", "primate", "simian", "ape", "anthropoid", "anthropoid_ape", "hominoid", "hominid", "homo, man, human_being, human", "world, human_race, humanity, humankind, human_beings, humans, mankind, man", "homo_erectus", "pithecanthropus, pithecanthropus_erectus, genus_pithecanthropus", "java_man, trinil_man", "peking_man", "sinanthropus, genus_sinanthropus", "homo_soloensis", "javanthropus, genus_javanthropus", "homo_habilis", "homo_sapiens", "neandertal_man, neanderthal_man, neandertal, neanderthal, homo_sapiens_neanderthalensis", "cro-magnon", "homo_sapiens_sapiens, modern_man", "australopithecine", "australopithecus_afarensis", "australopithecus_africanus", "australopithecus_boisei", "zinjanthropus, genus_zinjanthropus", "australopithecus_robustus", "paranthropus, genus_paranthropus", "sivapithecus", "rudapithecus, dryopithecus_rudapithecus_hungaricus", "proconsul", "aegyptopithecus", "great_ape, pongid", "orangutan, orang, orangutang, pongo_pygmaeus", "gorilla, gorilla_gorilla", "western_lowland_gorilla, gorilla_gorilla_gorilla", "eastern_lowland_gorilla, gorilla_gorilla_grauri", "mountain_gorilla, gorilla_gorilla_beringei", "silverback", "chimpanzee, chimp, pan_troglodytes", "western_chimpanzee, pan_troglodytes_verus", "eastern_chimpanzee, pan_troglodytes_schweinfurthii", "central_chimpanzee, pan_troglodytes_troglodytes", "pygmy_chimpanzee, bonobo, pan_paniscus", "lesser_ape", "gibbon, hylobates_lar", "siamang, hylobates_syndactylus, symphalangus_syndactylus", "monkey", "old_world_monkey, catarrhine", "guenon, guenon_monkey", "talapoin, cercopithecus_talapoin", "grivet, cercopithecus_aethiops", "vervet, vervet_monkey, cercopithecus_aethiops_pygerythrus", "green_monkey, african_green_monkey, cercopithecus_aethiops_sabaeus", "mangabey", "patas, hussar_monkey, erythrocebus_patas", "baboon", "chacma, chacma_baboon, papio_ursinus", "mandrill, mandrillus_sphinx", "drill, mandrillus_leucophaeus", "macaque", "rhesus, rhesus_monkey, macaca_mulatta", "bonnet_macaque, bonnet_monkey, capped_macaque, crown_monkey, macaca_radiata", "barbary_ape, macaca_sylvana", "crab-eating_macaque, croo_monkey, macaca_irus", "langur", "entellus, hanuman, presbytes_entellus, semnopithecus_entellus", "colobus, colobus_monkey", "guereza, colobus_guereza", "proboscis_monkey, nasalis_larvatus", "new_world_monkey, platyrrhine, platyrrhinian", "marmoset", "true_marmoset", "pygmy_marmoset, cebuella_pygmaea", "tamarin, lion_monkey, lion_marmoset, leoncita", "silky_tamarin, leontocebus_rosalia", "pinche, leontocebus_oedipus", "capuchin, ringtail, cebus_capucinus", "douroucouli, aotus_trivirgatus", "howler_monkey, howler", "saki", "uakari", "titi, titi_monkey", "spider_monkey, ateles_geoffroyi", "squirrel_monkey, saimiri_sciureus", "woolly_monkey", "tree_shrew", "prosimian", "lemur", "madagascar_cat, ring-tailed_lemur, lemur_catta", "aye-aye, daubentonia_madagascariensis", "slender_loris, loris_gracilis", "slow_loris, nycticebus_tardigradua, nycticebus_pygmaeus", "potto, kinkajou, perodicticus_potto", "angwantibo, golden_potto, arctocebus_calabarensis", "galago, bushbaby, bush_baby", "indri, indris, indri_indri, indri_brevicaudatus", "woolly_indris, avahi_laniger", "tarsier", "tarsius_syrichta", "tarsius_glis", "flying_lemur, flying_cat, colugo", "cynocephalus_variegatus", "proboscidean, proboscidian", "elephant", "rogue_elephant", "indian_elephant, elephas_maximus", "african_elephant, loxodonta_africana", "mammoth", "woolly_mammoth, northern_mammoth, mammuthus_primigenius", "columbian_mammoth, mammuthus_columbi", "imperial_mammoth, imperial_elephant, archidiskidon_imperator", "mastodon, mastodont", "plantigrade_mammal, plantigrade", "digitigrade_mammal, digitigrade", "procyonid", "raccoon, racoon", "common_raccoon, common_racoon, coon, ringtail, procyon_lotor", "crab-eating_raccoon, procyon_cancrivorus", "bassarisk, cacomistle, cacomixle, coon_cat, raccoon_fox, ringtail, ring-tailed_cat, civet_cat, miner's_cat, bassariscus_astutus", "kinkajou, honey_bear, potto, potos_flavus, potos_caudivolvulus", "coati, coati-mondi, coati-mundi, coon_cat, nasua_narica", "lesser_panda, red_panda, panda, bear_cat, cat_bear, ailurus_fulgens", "giant_panda, panda, panda_bear, coon_bear, ailuropoda_melanoleuca", "twitterer", "fish", "fingerling", "game_fish, sport_fish", "food_fish", "rough_fish", "groundfish, bottom_fish", "young_fish", "parr", "mouthbreeder", "spawner", "barracouta, snoek", "crossopterygian, lobefin, lobe-finned_fish", "coelacanth, latimeria_chalumnae", "lungfish", "ceratodus", "catfish, siluriform_fish", "silurid, silurid_fish", "european_catfish, sheatfish, silurus_glanis", "electric_catfish, malopterurus_electricus", "bullhead, bullhead_catfish", "horned_pout, hornpout, pout, ameiurus_melas", "brown_bullhead", "channel_catfish, channel_cat, ictalurus_punctatus", "blue_catfish, blue_cat, blue_channel_catfish, blue_channel_cat", "flathead_catfish, mudcat, goujon, shovelnose_catfish, spoonbill_catfish, pylodictus_olivaris", "armored_catfish", "sea_catfish", "gadoid, gadoid_fish", "cod, codfish", "codling", "atlantic_cod, gadus_morhua", "pacific_cod, alaska_cod, gadus_macrocephalus", "whiting, merlangus_merlangus, gadus_merlangus", "burbot, eelpout, ling, cusk, lota_lota", "haddock, melanogrammus_aeglefinus", "pollack, pollock, pollachius_pollachius", "hake", "silver_hake, merluccius_bilinearis, whiting", "ling", "cusk, torsk, brosme_brosme", "grenadier, rattail, rattail_fish", "eel", "elver", "common_eel, freshwater_eel", "tuna, anguilla_sucklandii", "moray, moray_eel", "conger, conger_eel", "teleost_fish, teleost, teleostan", "beaked_salmon, sandfish, gonorhynchus_gonorhynchus", "clupeid_fish, clupeid", "whitebait", "brit, britt", "shad", "common_american_shad, alosa_sapidissima", "river_shad, alosa_chrysocloris", "allice_shad, allis_shad, allice, allis, alosa_alosa", "alewife, alosa_pseudoharengus, pomolobus_pseudoharengus", "menhaden, brevoortia_tyrannis", "herring, clupea_harangus", "atlantic_herring, clupea_harengus_harengus", "pacific_herring, clupea_harengus_pallasii", "sardine", "sild", "brisling, sprat, clupea_sprattus", "pilchard, sardine, sardina_pilchardus", "pacific_sardine, sardinops_caerulea", "anchovy", "mediterranean_anchovy, engraulis_encrasicholus", "salmonid", "salmon", "parr", "blackfish", "redfish", "atlantic_salmon, salmo_salar", "landlocked_salmon, lake_salmon", "sockeye, sockeye_salmon, red_salmon, blueback_salmon, oncorhynchus_nerka", "chinook, chinook_salmon, king_salmon, quinnat_salmon, oncorhynchus_tshawytscha", "coho, cohoe, coho_salmon, blue_jack, silver_salmon, oncorhynchus_kisutch", "trout", "brown_trout, salmon_trout, salmo_trutta", "rainbow_trout, salmo_gairdneri", "sea_trout", "lake_trout, salmon_trout, salvelinus_namaycush", "brook_trout, speckled_trout, salvelinus_fontinalis", "char, charr", "arctic_char, salvelinus_alpinus", "whitefish", "lake_whitefish, coregonus_clupeaformis", "cisco, lake_herring, coregonus_artedi", "round_whitefish, menominee_whitefish, prosopium_cylindraceum", "smelt", "sparling, european_smelt, osmerus_eperlanus", "capelin, capelan, caplin", "tarpon, tarpon_atlanticus", "ladyfish, tenpounder, elops_saurus", "bonefish, albula_vulpes", "argentine", "lanternfish", "lizardfish, snakefish, snake-fish", "lancetfish, lancet_fish, wolffish", "opah, moonfish, lampris_regius", "new_world_opah, lampris_guttatus", "ribbonfish", "dealfish, trachipterus_arcticus", "oarfish, king_of_the_herring, ribbonfish, regalecus_glesne", "batfish", "goosefish, angler, anglerfish, angler_fish, monkfish, lotte, allmouth, lophius_americanus", "toadfish, opsanus_tau", "oyster_fish, oyster-fish, oysterfish", "frogfish", "sargassum_fish", "needlefish, gar, billfish", "timucu", "flying_fish", "monoplane_flying_fish, two-wing_flying_fish", "halfbeak", "saury, billfish, scomberesox_saurus", "spiny-finned_fish, acanthopterygian", "lingcod, ophiodon_elongatus", "percoid_fish, percoid, percoidean", "perch", "climbing_perch, anabas_testudineus, a._testudineus", "perch", "yellow_perch, perca_flavescens", "european_perch, perca_fluviatilis", "pike-perch, pike_perch", "walleye, walleyed_pike, jack_salmon, dory, stizostedion_vitreum", "blue_pike, blue_pickerel, blue_pikeperch, blue_walleye, strizostedion_vitreum_glaucum", "snail_darter, percina_tanasi", "cusk-eel", "brotula", "pearlfish, pearl-fish", "robalo", "snook", "pike", "northern_pike, esox_lucius", "muskellunge, esox_masquinongy", "pickerel", "chain_pickerel, chain_pike, esox_niger", "redfin_pickerel, barred_pickerel, esox_americanus", "sunfish, centrarchid", "crappie", "black_crappie, pomoxis_nigromaculatus", "white_crappie, pomoxis_annularis", "freshwater_bream, bream", "pumpkinseed, lepomis_gibbosus", "bluegill, lepomis_macrochirus", "spotted_sunfish, stumpknocker, lepomis_punctatus", "freshwater_bass", "rock_bass, rock_sunfish, ambloplites_rupestris", "black_bass", "kentucky_black_bass, spotted_black_bass, micropterus_pseudoplites", "smallmouth, smallmouth_bass, smallmouthed_bass, smallmouth_black_bass, smallmouthed_black_bass, micropterus_dolomieu", "largemouth, largemouth_bass, largemouthed_bass, largemouth_black_bass, largemouthed_black_bass, micropterus_salmoides", "bass", "serranid_fish, serranid", "white_perch, silver_perch, morone_americana", "yellow_bass, morone_interrupta", "blackmouth_bass, synagrops_bellus", "rock_sea_bass, rock_bass, centropristis_philadelphica", "striped_bass, striper, roccus_saxatilis, rockfish", "stone_bass, wreckfish, polyprion_americanus", "grouper", "hind", "rock_hind, epinephelus_adscensionis", "creole-fish, paranthias_furcifer", "jewfish, mycteroperca_bonaci", "soapfish", "surfperch, surffish, surf_fish", "rainbow_seaperch, rainbow_perch, hipsurus_caryi", "bigeye", "catalufa, priacanthus_arenatus", "cardinalfish", "flame_fish, flamefish, apogon_maculatus", "tilefish, lopholatilus_chamaeleonticeps", "bluefish, pomatomus_saltatrix", "cobia, rachycentron_canadum, sergeant_fish", "remora, suckerfish, sucking_fish", "sharksucker, echeneis_naucrates", "whale_sucker, whalesucker, remilegia_australis", "carangid_fish, carangid", "jack", "crevalle_jack, jack_crevalle, caranx_hippos", "yellow_jack, caranx_bartholomaei", "runner, blue_runner, caranx_crysos", "rainbow_runner, elagatis_bipinnulata", "leatherjacket, leatherjack", "threadfish, thread-fish, alectis_ciliaris", "moonfish, atlantic_moonfish, horsefish, horsehead, horse-head, dollarfish, selene_setapinnis", "lookdown, lookdown_fish, selene_vomer", "amberjack, amberfish", "yellowtail, seriola_dorsalis", "kingfish, seriola_grandis", "pompano", "florida_pompano, trachinotus_carolinus", "permit, trachinotus_falcatus", "scad", "horse_mackerel, jack_mackerel, spanish_mackerel, saurel, trachurus_symmetricus", "horse_mackerel, saurel, trachurus_trachurus", "bigeye_scad, big-eyed_scad, goggle-eye, selar_crumenophthalmus", "mackerel_scad, mackerel_shad, decapterus_macarellus", "round_scad, cigarfish, quiaquia, decapterus_punctatus", "dolphinfish, dolphin, mahimahi", "coryphaena_hippurus", "coryphaena_equisetis", "pomfret, brama_raii", "characin, characin_fish, characid", "tetra", "cardinal_tetra, paracheirodon_axelrodi", "piranha, pirana, caribe", "cichlid, cichlid_fish", "bolti, tilapia_nilotica", "snapper", "red_snapper, lutjanus_blackfordi", "grey_snapper, gray_snapper, mangrove_snapper, lutjanus_griseus", "mutton_snapper, muttonfish, lutjanus_analis", "schoolmaster, lutjanus_apodus", "yellowtail, yellowtail_snapper, ocyurus_chrysurus", "grunt", "margate, haemulon_album", "spanish_grunt, haemulon_macrostomum", "tomtate, haemulon_aurolineatum", "cottonwick, haemulon_malanurum", "sailor's-choice, sailors_choice, haemulon_parra", "porkfish, pork-fish, anisotremus_virginicus", "pompon, black_margate, anisotremus_surinamensis", "pigfish, hogfish, orthopristis_chrysopterus", "sparid, sparid_fish", "sea_bream, bream", "porgy", "red_porgy, pagrus_pagrus", "european_sea_bream, pagellus_centrodontus", "atlantic_sea_bream, archosargus_rhomboidalis", "sheepshead, archosargus_probatocephalus", "pinfish, sailor's-choice, squirrelfish, lagodon_rhomboides", "sheepshead_porgy, calamus_penna", "snapper, chrysophrys_auratus", "black_bream, chrysophrys_australis", "scup, northern_porgy, northern_scup, stenotomus_chrysops", "scup, southern_porgy, southern_scup, stenotomus_aculeatus", "sciaenid_fish, sciaenid", "striped_drum, equetus_pulcher", "jackknife-fish, equetus_lanceolatus", "silver_perch, mademoiselle, bairdiella_chrysoura", "red_drum, channel_bass, redfish, sciaenops_ocellatus", "mulloway, jewfish, sciaena_antarctica", "maigre, maiger, sciaena_aquila", "croaker", "atlantic_croaker, micropogonias_undulatus", "yellowfin_croaker, surffish, surf_fish, umbrina_roncador", "whiting", "kingfish", "king_whiting, menticirrhus_americanus", "northern_whiting, menticirrhus_saxatilis", "corbina, menticirrhus_undulatus", "white_croaker, chenfish, kingfish, genyonemus_lineatus", "white_croaker, queenfish, seriphus_politus", "sea_trout", "weakfish, cynoscion_regalis", "spotted_weakfish, spotted_sea_trout, spotted_squeateague, cynoscion_nebulosus", "mullet", "goatfish, red_mullet, surmullet, mullus_surmuletus", "red_goatfish, mullus_auratus", "yellow_goatfish, mulloidichthys_martinicus", "mullet, grey_mullet, gray_mullet", "striped_mullet, mugil_cephalus", "white_mullet, mugil_curema", "liza, mugil_liza", "silversides, silverside", "jacksmelt, atherinopsis_californiensis", "barracuda", "great_barracuda, sphyraena_barracuda", "sweeper", "sea_chub", "bermuda_chub, rudderfish, kyphosus_sectatrix", "spadefish, angelfish, chaetodipterus_faber", "butterfly_fish", "chaetodon", "angelfish", "rock_beauty, holocanthus_tricolor", "damselfish, demoiselle", "beaugregory, pomacentrus_leucostictus", "anemone_fish", "clown_anemone_fish, amphiprion_percula", "sergeant_major, abudefduf_saxatilis", "wrasse", "pigfish, giant_pigfish, achoerodus_gouldii", "hogfish, hog_snapper, lachnolaimus_maximus", "slippery_dick, halicoeres_bivittatus", "puddingwife, pudding-wife, halicoeres_radiatus", "bluehead, thalassoma_bifasciatum", "pearly_razorfish, hemipteronatus_novacula", "tautog, blackfish, tautoga_onitis", "cunner, bergall, tautogolabrus_adspersus", "parrotfish, polly_fish, pollyfish", "threadfin", "jawfish", "stargazer", "sand_stargazer", "blenny, combtooth_blenny", "shanny, blennius_pholis", "molly_miller, scartella_cristata", "clinid, clinid_fish", "pikeblenny", "bluethroat_pikeblenny, chaenopsis_ocellata", "gunnel, bracketed_blenny", "rock_gunnel, butterfish, pholis_gunnellus", "eelblenny", "wrymouth, ghostfish, cryptacanthodes_maculatus", "wolffish, wolf_fish, catfish", "viviparous_eelpout, zoarces_viviparus", "ocean_pout, macrozoarces_americanus", "sand_lance, sand_launce, sand_eel, launce", "dragonet", "goby, gudgeon", "mudskipper, mudspringer", "sleeper, sleeper_goby", "flathead", "archerfish, toxotes_jaculatrix", "surgeonfish", "gempylid", "snake_mackerel, gempylus_serpens", "escolar, lepidocybium_flavobrunneum", "oilfish, ruvettus_pretiosus", "cutlassfish, frost_fish, hairtail", "scombroid, scombroid_fish", "mackerel", "common_mackerel, shiner, scomber_scombrus", "spanish_mackerel, scomber_colias", "chub_mackerel, tinker, scomber_japonicus", "wahoo, acanthocybium_solandri", "spanish_mackerel", "king_mackerel, cavalla, cero, scomberomorus_cavalla", "scomberomorus_maculatus", "cero, pintado, kingfish, scomberomorus_regalis", "sierra, scomberomorus_sierra", "tuna, tunny", "albacore, long-fin_tunny, thunnus_alalunga", "bluefin, bluefin_tuna, horse_mackerel, thunnus_thynnus", "yellowfin, yellowfin_tuna, thunnus_albacares", "bonito", "skipjack, atlantic_bonito, sarda_sarda", "chile_bonito, chilean_bonito, pacific_bonito, sarda_chiliensis", "skipjack, skipjack_tuna, euthynnus_pelamis", "bonito, oceanic_bonito, katsuwonus_pelamis", "swordfish, xiphias_gladius", "sailfish", "atlantic_sailfish, istiophorus_albicans", "billfish", "marlin", "blue_marlin, makaira_nigricans", "black_marlin, makaira_mazara, makaira_marlina", "striped_marlin, makaira_mitsukurii", "white_marlin, makaira_albida", "spearfish", "louvar, luvarus_imperialis", "dollarfish, poronotus_triacanthus", "palometa, california_pompano, palometa_simillima", "harvestfish, paprilus_alepidotus", "driftfish", "barrelfish, black_rudderfish, hyperglyphe_perciformis", "clingfish", "tripletail", "atlantic_tripletail, lobotes_surinamensis", "pacific_tripletail, lobotes_pacificus", "mojarra", "yellowfin_mojarra, gerres_cinereus", "silver_jenny, eucinostomus_gula", "whiting", "ganoid, ganoid_fish", "bowfin, grindle, dogfish, amia_calva", "paddlefish, duckbill, polyodon_spathula", "chinese_paddlefish, psephurus_gladis", "sturgeon", "pacific_sturgeon, white_sturgeon, sacramento_sturgeon, acipenser_transmontanus", "beluga, hausen, white_sturgeon, acipenser_huso", "gar, garfish, garpike, billfish, lepisosteus_osseus", "scorpaenoid, scorpaenoid_fish", "scorpaenid, scorpaenid_fish", "scorpionfish, scorpion_fish, sea_scorpion", "plumed_scorpionfish, scorpaena_grandicornis", "lionfish", "stonefish, synanceja_verrucosa", "rockfish", "copper_rockfish, sebastodes_caurinus", "vermillion_rockfish, rasher, sebastodes_miniatus", "red_rockfish, sebastodes_ruberrimus", "rosefish, ocean_perch, sebastodes_marinus", "bullhead", "miller's-thumb", "sea_raven, hemitripterus_americanus", "lumpfish, cyclopterus_lumpus", "lumpsucker", "pogge, armed_bullhead, agonus_cataphractus", "greenling", "kelp_greenling, hexagrammos_decagrammus", "painted_greenling, convict_fish, convictfish, oxylebius_pictus", "flathead", "gurnard", "tub_gurnard, yellow_gurnard, trigla_lucerna", "sea_robin, searobin", "northern_sea_robin, prionotus_carolinus", "flying_gurnard, flying_robin, butterflyfish", "plectognath, plectognath_fish", "triggerfish", "queen_triggerfish, bessy_cerca, oldwench, oldwife, balistes_vetula", "filefish", "leatherjacket, leatherfish", "boxfish, trunkfish", "cowfish, lactophrys_quadricornis", "puffer, pufferfish, blowfish, globefish", "spiny_puffer", "porcupinefish, porcupine_fish, diodon_hystrix", "balloonfish, diodon_holocanthus", "burrfish", "ocean_sunfish, sunfish, mola, headfish", "sharptail_mola, mola_lanceolata", "flatfish", "flounder", "righteye_flounder, righteyed_flounder", "plaice, pleuronectes_platessa", "european_flatfish, platichthys_flesus", "yellowtail_flounder, limanda_ferruginea", "winter_flounder, blackback_flounder, lemon_sole, pseudopleuronectes_americanus", "lemon_sole, microstomus_kitt", "american_plaice, hippoglossoides_platessoides", "halibut, holibut", "atlantic_halibut, hippoglossus_hippoglossus", "pacific_halibut, hippoglossus_stenolepsis", "lefteye_flounder, lefteyed_flounder", "southern_flounder, paralichthys_lethostigmus", "summer_flounder, paralichthys_dentatus", "whiff", "horned_whiff, citharichthys_cornutus", "sand_dab", "windowpane, scophthalmus_aquosus", "brill, scophthalmus_rhombus", "turbot, psetta_maxima", "tonguefish, tongue-fish", "sole", "european_sole, solea_solea", "english_sole, lemon_sole, parophrys_vitulus", "hogchoker, trinectes_maculatus", "aba", "abacus", "abandoned_ship, derelict", "a_battery", "abattoir, butchery, shambles, slaughterhouse", "abaya", "abbe_condenser", "abbey", "abbey", "abbey", "abney_level", "abrader, abradant", "abrading_stone", "abutment", "abutment_arch", "academic_costume", "academic_gown, academic_robe, judge's_robe", "accelerator, throttle, throttle_valve", "accelerator, particle_accelerator, atom_smasher", "accelerator, accelerator_pedal, gas_pedal, gas, throttle, gun", "accelerometer", "accessory, accoutrement, accouterment", "accommodating_lens_implant, accommodating_iol", "accommodation", "accordion, piano_accordion, squeeze_box", "acetate_disk, phonograph_recording_disk", "acetate_rayon, acetate", "achromatic_lens", "acoustic_delay_line, sonic_delay_line", "acoustic_device", "acoustic_guitar", "acoustic_modem", "acropolis", "acrylic", "acrylic, acrylic_paint", "actinometer", "action, action_mechanism", "active_matrix_screen", "actuator", "adapter, adaptor", "adder", "adding_machine, totalizer, totaliser", "addressing_machine, addressograph", "adhesive_bandage", "adit", "adjoining_room", "adjustable_wrench, adjustable_spanner", "adobe, adobe_brick", "adz, adze", "aeolian_harp, aeolian_lyre, wind_harp", "aerator", "aerial_torpedo", "aerosol, aerosol_container, aerosol_can, aerosol_bomb, spray_can", "aertex", "afghan", "afro-wig", "afterburner", "after-shave, after-shave_lotion", "agateware", "agglomerator", "aglet, aiglet, aiguilette", "aglet, aiglet", "agora, public_square", "aigrette, aigret", "aileron", "air_bag", "airbrake", "airbrush", "airbus", "air_compressor", "air_conditioner, air_conditioning", "aircraft", "aircraft_carrier, carrier, flattop, attack_aircraft_carrier", "aircraft_engine", "air_cushion, air_spring", "airdock, hangar, repair_shed", "airfield, landing_field, flying_field, field", "air_filter, air_cleaner", "airfoil, aerofoil, control_surface, surface", "airframe", "air_gun, airgun, air_rifle", "air_hammer, jackhammer, pneumatic_hammer", "air_horn", "airing_cupboard", "airliner", "airmailer", "airplane, aeroplane, plane", "airplane_propeller, airscrew, prop", "airport, airdrome, aerodrome, drome", "air_pump, vacuum_pump", "air_search_radar", "airship, dirigible", "air_terminal, airport_terminal", "air-to-air_missile", "air-to-ground_missile, air-to-surface_missile", "aisle", "aladdin's_lamp", "alarm, warning_device, alarm_system", "alarm_clock, alarm", "alb", "alcazar", "alcohol_thermometer, alcohol-in-glass_thermometer", "alehouse", "alembic", "algometer", "alidade, alidad", "alidade, alidad", "a-line", "allen_screw", "allen_wrench", "alligator_wrench", "alms_dish, alms_tray", "alpaca", "alpenstock", "altar", "altar, communion_table, lord's_table", "altarpiece, reredos", "altazimuth", "alternator", "altimeter", "amati", "ambulance", "amen_corner", "american_organ", "ammeter", "ammonia_clock", "ammunition, ammo", "amphibian, amphibious_aircraft", "amphibian, amphibious_vehicle", "amphitheater, amphitheatre, coliseum", "amphitheater, amphitheatre", "amphora", "amplifier", "ampulla", "amusement_arcade", "analog_clock", "analog_computer, analogue_computer", "analog_watch", "analytical_balance, chemical_balance", "analyzer, analyser", "anamorphosis, anamorphism", "anastigmat", "anchor, ground_tackle", "anchor_chain, anchor_rope", "anchor_light, riding_light, riding_lamp", "and_circuit, and_gate", "andiron, firedog, dog, dog-iron", "android, humanoid, mechanical_man", "anechoic_chamber", "anemometer, wind_gauge, wind_gage", "aneroid_barometer, aneroid", "angiocardiogram", "angioscope", "angle_bracket, angle_iron", "angledozer", "ankle_brace", "anklet, anklets, bobbysock, bobbysocks", "anklet", "ankus", "anode", "anode", "answering_machine", "antenna, aerial, transmitting_aerial", "anteroom, antechamber, entrance_hall, hall, foyer, lobby, vestibule", "antiaircraft, antiaircraft_gun, flak, flack, pom-pom, ack-ack, ack-ack_gun", "antiballistic_missile, abm", "antifouling_paint", "anti-g_suit, g_suit", "antimacassar", "antiperspirant", "anti-submarine_rocket", "anvil", "ao_dai", "apadana", "apartment, flat", "apartment_building, apartment_house", "aperture", "aperture", "apiary, bee_house", "apparatus, setup", "apparel, wearing_apparel, dress, clothes", "applecart", "appliance", "appliance, contraption, contrivance, convenience, gadget, gizmo, gismo, widget", "applicator, applier", "appointment, fitting", "apron", "apron_string", "apse, apsis", "aqualung, aqua-lung, scuba", "aquaplane", "aquarium, fish_tank, marine_museum", "arabesque", "arbor, arbour, bower, pergola", "arcade, colonnade", "arch", "architecture", "architrave", "arch_support", "arc_lamp, arc_light", "arctic, galosh, golosh, rubber, gumshoe", "area", "areaway", "argyle, argyll", "ark", "arm", "armament", "armature", "armband", "armchair", "armet", "arm_guard, arm_pad", "armhole", "armilla", "armlet, arm_band", "armoire", "armor, armour", "armored_car, armoured_car", "armored_car, armoured_car", "armored_personnel_carrier, armoured_personnel_carrier, apc", "armored_vehicle, armoured_vehicle", "armor_plate, armour_plate, armor_plating, plate_armor, plate_armour", "armory, armoury, arsenal", "armrest", "arquebus, harquebus, hackbut, hagbut", "array", "array, raiment, regalia", "arrester, arrester_hook", "arrow", "arsenal, armory, armoury", "arterial_road", "arthrogram", "arthroscope", "artificial_heart", "artificial_horizon, gyro_horizon, flight_indicator", "artificial_joint", "artificial_kidney, hemodialyzer", "artificial_skin", "artillery, heavy_weapon, gun, ordnance", "artillery_shell", "artist's_loft", "art_school", "ascot", "ashcan, trash_can, garbage_can, wastebin, ash_bin, ash-bin, ashbin, dustbin, trash_barrel, trash_bin", "ash-pan", "ashtray", "aspergill, aspersorium", "aspersorium", "aspirator", "aspirin_powder, headache_powder", "assault_gun", "assault_rifle, assault_gun", "assegai, assagai", "assembly", "assembly", "assembly_hall", "assembly_plant", "astatic_coils", "astatic_galvanometer", "astrodome", "astrolabe", "astronomical_telescope", "astronomy_satellite", "athenaeum, atheneum", "athletic_sock, sweat_sock, varsity_sock", "athletic_supporter, supporter, suspensor, jockstrap, jock", "atlas, telamon", "atmometer, evaporometer", "atom_bomb, atomic_bomb, a-bomb, fission_bomb, plutonium_bomb", "atomic_clock", "atomic_pile, atomic_reactor, pile, chain_reactor", "atomizer, atomiser, spray, sprayer, nebulizer, nebuliser", "atrium", "attache_case, attache", "attachment, bond", "attack_submarine", "attenuator", "attic", "attic_fan", "attire, garb, dress", "audio_amplifier", "audiocassette", "audio_cd, audio_compact_disc", "audiometer, sonometer", "audio_system, sound_system", "audiotape", "audiotape", "audiovisual, audiovisual_aid", "auditorium", "auger, gimlet, screw_auger, wimble", "autobahn", "autoclave, sterilizer, steriliser", "autofocus", "autogiro, autogyro, gyroplane", "autoinjector", "autoloader, self-loader", "automat", "automat", "automatic_choke", "automatic_firearm, automatic_gun, automatic_weapon", "automatic_pistol, automatic", "automatic_rifle, automatic, machine_rifle", "automatic_transmission, automatic_drive", "automation", "automaton, robot, golem", "automobile_engine", "automobile_factory, auto_factory, car_factory", "automobile_horn, car_horn, motor_horn, horn, hooter", "autopilot, automatic_pilot, robot_pilot", "autoradiograph", "autostrada", "auxiliary_boiler, donkey_boiler", "auxiliary_engine, donkey_engine", "auxiliary_pump, donkey_pump", "auxiliary_research_submarine", "auxiliary_storage, external_storage, secondary_storage", "aviary, bird_sanctuary, volary", "awl", "awning, sunshade, sunblind", "ax, axe", "ax_handle, axe_handle", "ax_head, axe_head", "axis, axis_of_rotation", "axle", "axle_bar", "axletree", "babushka", "baby_bed, baby's_bed", "baby_buggy, baby_carriage, carriage, perambulator, pram, stroller, go-cart, pushchair, pusher", "baby_grand, baby_grand_piano, parlor_grand, parlor_grand_piano, parlour_grand, parlour_grand_piano", "baby_powder", "baby_shoe", "back, backrest", "back", "backbench", "backboard", "backboard, basketball_backboard", "backbone", "back_brace", "backgammon_board", "background, desktop, screen_background", "backhoe", "backlighting", "backpack, back_pack, knapsack, packsack, rucksack, haversack", "backpacking_tent, pack_tent", "backplate", "back_porch", "backsaw, back_saw", "backscratcher", "backseat", "backspace_key, backspace, backspacer", "backstairs", "backstay", "backstop", "backsword", "backup_system", "badminton_court", "badminton_equipment", "badminton_racket, badminton_racquet, battledore", "bag", "bag, traveling_bag, travelling_bag, grip, suitcase", "bag, handbag, pocketbook, purse", "baggage, luggage", "baggage", "baggage_car, luggage_van", "baggage_claim", "bagpipe", "bailey", "bailey", "bailey_bridge", "bain-marie", "bait, decoy, lure", "baize", "bakery, bakeshop, bakehouse", "balaclava, balaclava_helmet", "balalaika", "balance", "balance_beam, beam", "balance_wheel, balance", "balbriggan", "balcony", "balcony", "baldachin", "baldric, baldrick", "bale", "baling_wire", "ball", "ball", "ball_and_chain", "ball-and-socket_joint", "ballast, light_ballast", "ball_bearing, needle_bearing, roller_bearing", "ball_cartridge", "ballcock, ball_cock", "balldress", "ballet_skirt, tutu", "ball_gown", "ballistic_galvanometer", "ballistic_missile", "ballistic_pendulum", "ballistocardiograph, cardiograph", "balloon", "balloon_bomb, fugo", "balloon_sail", "ballot_box", "ballpark, park", "ball-peen_hammer", "ballpoint, ballpoint_pen, ballpen, biro", "ballroom, dance_hall, dance_palace", "ball_valve", "balsa_raft, kon_tiki", "baluster", "banana_boat", "band", "bandage, patch", "band_aid", "bandanna, bandana", "bandbox", "banderilla", "bandoleer, bandolier", "bandoneon", "bandsaw, band_saw", "bandwagon", "bangalore_torpedo", "bangle, bauble, gaud, gewgaw, novelty, fallal, trinket", "banjo", "banner, streamer", "bannister, banister, balustrade, balusters, handrail", "banquette", "banyan, banian", "baptismal_font, baptistry, baptistery, font", "bar", "bar", "barbecue, barbeque", "barbed_wire, barbwire", "barbell", "barber_chair", "barbershop", "barbette_carriage", "barbican, barbacan", "bar_bit", "bareboat", "barge, flatboat, hoy, lighter", "barge_pole", "baritone, baritone_horn", "bark, barque", "bar_magnet", "bar_mask", "barn", "barndoor", "barn_door", "barnyard", "barograph", "barometer", "barong", "barouche", "bar_printer", "barrack", "barrage_balloon", "barrel, cask", "barrel, gun_barrel", "barrelhouse, honky-tonk", "barrel_knot, blood_knot", "barrel_organ, grind_organ, hand_organ, hurdy_gurdy, hurdy-gurdy, street_organ", "barrel_vault", "barrette", "barricade", "barrier", "barroom, bar, saloon, ginmill, taproom", "barrow, garden_cart, lawn_cart, wheelbarrow", "bascule", "base, pedestal, stand", "base, bag", "baseball", "baseball_bat, lumber", "baseball_cap, jockey_cap, golf_cap", "baseball_equipment", "baseball_glove, glove, baseball_mitt, mitt", "basement, cellar", "basement", "basic_point_defense_missile_system", "basilica, roman_basilica", "basilica", "basilisk", "basin", "basinet", "basket, handbasket", "basket, basketball_hoop, hoop", "basketball", "basketball_court", "basketball_equipment", "basket_weave", "bass", "bass_clarinet", "bass_drum, gran_casa", "basset_horn", "bass_fiddle, bass_viol, bull_fiddle, double_bass, contrabass, string_bass", "bass_guitar", "bass_horn, sousaphone, tuba", "bassinet", "bassinet", "bassoon", "baster", "bastinado", "bastion", "bastion, citadel", "bat", "bath", "bath_chair", "bathhouse, bagnio", "bathhouse, bathing_machine", "bathing_cap, swimming_cap", "bath_oil", "bathrobe", "bathroom, bath", "bath_salts", "bath_towel", "bathtub, bathing_tub, bath, tub", "bathyscaphe, bathyscaph, bathyscape", "bathysphere", "batik", "batiste", "baton, wand", "baton", "baton", "baton", "battering_ram", "batter's_box", "battery, electric_battery", "battery, stamp_battery", "batting_cage, cage", "batting_glove", "batting_helmet", "battle-ax, battle-axe", "battle_cruiser", "battle_dress", "battlement, crenelation, crenellation", "battleship, battlewagon", "battle_sight, battlesight", "bay", "bay", "bayonet", "bay_rum", "bay_window, bow_window", "bazaar, bazar", "bazaar, bazar", "bazooka", "b_battery", "bb_gun", "beach_house", "beach_towel", "beach_wagon, station_wagon, wagon, estate_car, beach_waggon, station_waggon, waggon", "beachwear", "beacon, lighthouse, beacon_light, pharos", "beading_plane", "beaker", "beaker", "beam", "beam_balance", "beanbag", "beanie, beany", "bearing", "bearing_rein, checkrein", "bearing_wall", "bearskin, busby, shako", "beater", "beating-reed_instrument, reed_instrument, reed", "beaver, castor", "beaver", "beckman_thermometer", "bed", "bed", "bed_and_breakfast, bed-and-breakfast", "bedclothes, bed_clothing, bedding", "bedford_cord", "bed_jacket", "bedpan", "bedpost", "bedroll", "bedroom, sleeping_room, sleeping_accommodation, chamber, bedchamber", "bedroom_furniture", "bedsitting_room, bedsitter, bedsit", "bedspread, bedcover, bed_cover, bed_covering, counterpane, spread", "bedspring", "bedstead, bedframe", "beefcake", "beehive, hive", "beeper, pager", "beer_barrel, beer_keg", "beer_bottle", "beer_can", "beer_garden", "beer_glass", "beer_hall", "beer_mat", "beer_mug, stein", "belaying_pin", "belfry", "bell", "bell_arch", "bellarmine, longbeard, long-beard, greybeard", "bellbottom_trousers, bell-bottoms, bellbottom_pants", "bell_cote, bell_cot", "bell_foundry", "bell_gable", "bell_jar, bell_glass", "bellows", "bellpull", "bell_push", "bell_seat, balloon_seat", "bell_tent", "bell_tower", "bellyband", "belt", "belt, belt_ammunition, belted_ammunition", "belt_buckle", "belting", "bench", "bench_clamp", "bench_hook", "bench_lathe", "bench_press", "bender", "beret", "berlin", "bermuda_shorts, jamaica_shorts", "berth, bunk, built_in_bed", "besom", "bessemer_converter", "bethel", "betting_shop", "bevatron", "bevel, bevel_square", "bevel_gear, pinion_and_crown_wheel, pinion_and_ring_gear", "b-flat_clarinet, licorice_stick", "bib", "bib-and-tucker", "bicorn, bicorne", "bicycle, bike, wheel, cycle", "bicycle-built-for-two, tandem_bicycle, tandem", "bicycle_chain", "bicycle_clip, trouser_clip", "bicycle_pump", "bicycle_rack", "bicycle_seat, saddle", "bicycle_wheel", "bidet", "bier", "bier", "bi-fold_door", "bifocals", "big_blue, blu-82", "big_board", "bight", "bikini, two-piece", "bikini_pants", "bilge", "bilge_keel", "bilge_pump", "bilge_well", "bill, peak, eyeshade, visor, vizor", "bill, billhook", "billboard, hoarding", "billiard_ball", "billiard_room, billiard_saloon, billiard_parlor, billiard_parlour, billiard_hall", "bin", "binder, ligature", "binder, ring-binder", "bindery", "binding, book_binding, cover, back", "bin_liner", "binnacle", "binoculars, field_glasses, opera_glasses", "binocular_microscope", "biochip", "biohazard_suit", "bioscope", "biplane", "birch, birch_rod", "birchbark_canoe, birchbark, birch_bark", "birdbath", "birdcage", "birdcall", "bird_feeder, birdfeeder, feeder", "birdhouse", "bird_shot, buckshot, duck_shot", "biretta, berretta, birretta", "bishop", "bistro", "bit", "bit", "bite_plate, biteplate", "bitewing", "bitumastic", "black", "black", "blackboard, chalkboard", "blackboard_eraser", "black_box", "blackface", "blackjack, cosh, sap", "black_tie", "blackwash", "bladder", "blade", "blade, vane", "blade", "blank, dummy, blank_shell", "blanket, cover", "blast_furnace", "blasting_cap", "blazer, sport_jacket, sport_coat, sports_jacket, sports_coat", "blender, liquidizer, liquidiser", "blimp, sausage_balloon, sausage", "blind, screen", "blind_curve, blind_bend", "blindfold", "bling, bling_bling", "blinker, flasher", "blister_pack, bubble_pack", "block", "blockade", "blockade-runner", "block_and_tackle", "blockbuster", "blockhouse", "block_plane", "bloodmobile", "bloomers, pants, drawers, knickers", "blouse", "blower", "blowtorch, torch, blowlamp", "blucher", "bludgeon", "blue", "blue_chip", "blunderbuss", "blunt_file", "boarding", "boarding_house, boardinghouse", "boardroom, council_chamber", "boards", "boat", "boater, leghorn, panama, panama_hat, sailor, skimmer, straw_hat", "boat_hook", "boathouse", "boatswain's_chair, bosun's_chair", "boat_train", "boatyard", "bobbin, spool, reel", "bobby_pin, hairgrip, grip", "bobsled, bobsleigh, bob", "bobsled, bobsleigh", "bocce_ball, bocci_ball, boccie_ball", "bodega", "bodice", "bodkin, threader", "bodkin", "bodkin", "body", "body_armor, body_armour, suit_of_armor, suit_of_armour, coat_of_mail, cataphract", "body_lotion", "body_stocking", "body_plethysmograph", "body_pad", "bodywork", "bofors_gun", "bogy, bogie, bogey", "boiler, steam_boiler", "boiling_water_reactor, bwr", "bolero", "bollard, bitt", "bolo, bolo_knife", "bolo_tie, bolo, bola_tie, bola", "bolt", "bolt, deadbolt", "bolt", "bolt_cutter", "bomb", "bombazine", "bomb_calorimeter, bomb", "bomber", "bomber_jacket", "bomblet, cluster_bomblet", "bomb_rack", "bombshell", "bomb_shelter, air-raid_shelter, bombproof", "bone-ash_cup, cupel, refractory_pot", "bone_china", "bones, castanets, clappers, finger_cymbals", "boneshaker", "bongo, bongo_drum", "bonnet, poke_bonnet", "book", "book_bag", "bookbindery", "bookcase", "bookend", "bookmark, bookmarker", "bookmobile", "bookshelf", "bookshop, bookstore, bookstall", "boom", "boom, microphone_boom", "boomerang, throwing_stick, throw_stick", "booster, booster_rocket, booster_unit, takeoff_booster, takeoff_rocket", "booster, booster_amplifier, booster_station, relay_link, relay_station, relay_transmitter", "boot", "boot", "boot_camp", "bootee, bootie", "booth, cubicle, stall, kiosk", "booth", "booth", "boothose", "bootjack", "bootlace", "bootleg", "bootstrap", "bore_bit, borer, rock_drill, stone_drill", "boron_chamber", "borstal", "bosom", "boston_rocker", "bota", "bottle", "bottle, feeding_bottle, nursing_bottle", "bottle_bank", "bottlebrush", "bottlecap", "bottle_opener", "bottling_plant", "bottom, freighter, merchantman, merchant_ship", "boucle", "boudoir", "boulle, boule, buhl", "bouncing_betty", "bouquet, corsage, posy, nosegay", "boutique, dress_shop", "boutonniere", "bow", "bow", "bow, bowknot", "bow_and_arrow", "bowed_stringed_instrument, string", "bowie_knife", "bowl", "bowl", "bowl", "bowler_hat, bowler, derby_hat, derby, plug_hat", "bowline, bowline_knot", "bowling_alley", "bowling_ball, bowl", "bowling_equipment", "bowling_pin, pin", "bowling_shoe", "bowsprit", "bowstring", "bow_tie, bow-tie, bowtie", "box", "box, loge", "box, box_seat", "box_beam, box_girder", "box_camera, box_kodak", "boxcar", "box_coat", "boxing_equipment", "boxing_glove, glove", "box_office, ticket_office, ticket_booth", "box_spring", "box_wrench, box_end_wrench", "brace, bracing", "brace, braces, orthodontic_braces", "brace", "brace, suspender, gallus", "brace_and_bit", "bracelet, bangle", "bracer, armguard", "brace_wrench", "bracket, wall_bracket", "bradawl, pricker", "brake", "brake", "brake_band", "brake_cylinder, hydraulic_brake_cylinder, master_cylinder", "brake_disk", "brake_drum, drum", "brake_lining", "brake_pad", "brake_pedal", "brake_shoe, shoe, skid", "brake_system, brakes", "brass, brass_instrument", "brass, memorial_tablet, plaque", "brass", "brassard", "brasserie", "brassie", "brassiere, bra, bandeau", "brass_knucks, knucks, brass_knuckles, knuckles, knuckle_duster", "brattice", "brazier, brasier", "breadbasket", "bread-bin, breadbox", "bread_knife", "breakable", "breakfast_area, breakfast_nook", "breakfast_table", "breakwater, groin, groyne, mole, bulwark, seawall, jetty", "breast_drill", "breast_implant", "breastplate, aegis, egis", "breast_pocket", "breathalyzer, breathalyser", "breechblock, breech_closer", "breechcloth, breechclout, loincloth", "breeches, knee_breeches, knee_pants, knickerbockers, knickers", "breeches_buoy", "breechloader", "breeder_reactor", "bren, bren_gun", "brewpub", "brick", "brickkiln", "bricklayer's_hammer", "brick_trowel, mason's_trowel", "brickwork", "bridal_gown, wedding_gown, wedding_dress", "bridge, span", "bridge, nosepiece", "bridle", "bridle_path, bridle_road", "bridoon", "briefcase", "briefcase_bomb", "briefcase_computer", "briefs, jockey_shorts", "brig", "brig", "brigandine", "brigantine, hermaphrodite_brig", "brilliantine", "brilliant_pebble", "brim", "bristle_brush", "britches", "broad_arrow", "broadax, broadaxe", "brochette", "broadcaster, spreader", "broadcloth", "broadcloth", "broad_hatchet", "broadloom", "broadside", "broadsword", "brocade", "brogan, brogue, clodhopper, work_shoe", "broiler", "broken_arch", "bronchoscope", "broom", "broom_closet", "broomstick, broom_handle", "brougham", "browning_automatic_rifle, bar", "browning_machine_gun, peacemaker", "brownstone", "brunch_coat", "brush", "brussels_carpet", "brussels_lace", "bubble", "bubble_chamber", "bubble_jet_printer, bubble-jet_printer, bubblejet", "buckboard", "bucket, pail", "bucket_seat", "bucket_shop", "buckle", "buckram", "bucksaw", "buckskins", "buff, buffer", "buffer, polisher", "buffer, buffer_storage, buffer_store", "buffet, counter, sideboard", "buffing_wheel", "buggy, roadster", "bugle", "building, edifice", "building_complex, complex", "bulldog_clip, alligator_clip", "bulldog_wrench", "bulldozer, dozer", "bullet, slug", "bulletproof_vest", "bullet_train, bullet", "bullhorn, loud_hailer, loud-hailer", "bullion", "bullnose, bullnosed_plane", "bullpen, detention_cell, detention_centre", "bullpen", "bullring", "bulwark", "bumboat", "bumper", "bumper", "bumper_car, dodgem", "bumper_guard", "bumper_jack", "bundle, sheaf", "bung, spile", "bungalow, cottage", "bungee, bungee_cord", "bunghole", "bunk", "bunk, feed_bunk", "bunk_bed, bunk", "bunker, sand_trap, trap", "bunker, dugout", "bunker", "bunsen_burner, bunsen, etna", "bunting", "bur, burr", "burberry", "burette, buret", "burglar_alarm", "burial_chamber, sepulcher, sepulchre, sepulture", "burial_garment", "burial_mound, grave_mound, barrow, tumulus", "burin", "burqa, burka", "burlap, gunny", "burn_bag", "burner", "burnous, burnoose, burnouse", "burp_gun, machine_pistol", "burr", "bus, autobus, coach, charabanc, double-decker, jitney, motorbus, motorcoach, omnibus, passenger_vehicle", "bushel_basket", "bushing, cylindrical_lining", "bush_jacket", "business_suit", "buskin, combat_boot, desert_boot, half_boot, top_boot", "bustier", "bustle", "butcher_knife", "butcher_shop, meat_market", "butter_dish", "butterfly_valve", "butter_knife", "butt_hinge", "butt_joint, butt", "button", "buttonhook", "buttress, buttressing", "butt_shaft", "butt_weld, butt-weld", "buzz_bomb, robot_bomb, flying_bomb, doodlebug, v-1", "buzzer", "bvd, bvd's", "bypass_condenser, bypass_capacitor", "byway, bypath, byroad", "cab, hack, taxi, taxicab", "cab, cabriolet", "cab", "cabana", "cabaret, nightclub, night_club, club, nightspot", "caber", "cabin", "cabin", "cabin_car, caboose", "cabin_class, second_class, economy_class", "cabin_cruiser, cruiser, pleasure_boat, pleasure_craft", "cabinet", "cabinet, console", "cabinet, locker, storage_locker", "cabinetwork", "cabin_liner", "cable, cable_television, cable_system, cable_television_service", "cable, line, transmission_line", "cable_car, car", "cache, memory_cache", "caddy, tea_caddy", "caesium_clock", "cafe, coffeehouse, coffee_shop, coffee_bar", "cafeteria", "cafeteria_tray", "caff", "caftan, kaftan", "caftan, kaftan", "cage, coop", "cage", "cagoule", "caisson", "calash, caleche, calash_top", "calceus", "calcimine", "calculator, calculating_machine", "caldron, cauldron", "calico", "caliper, calliper", "call-board", "call_center, call_centre", "caller_id", "calliope, steam_organ", "calorimeter", "calpac, calpack, kalpac", "camail, aventail, ventail", "camber_arch", "cambric", "camcorder", "camel's_hair, camelhair", "camera, photographic_camera", "camera_lens, optical_lens", "camera_lucida", "camera_obscura", "camera_tripod", "camise", "camisole", "camisole, underbodice", "camlet", "camouflage", "camouflage, camo", "camp, encampment, cantonment, bivouac", "camp", "camp, refugee_camp", "campaign_hat", "campanile, belfry", "camp_chair", "camper, camping_bus, motor_home", "camper_trailer", "campstool", "camshaft", "can, tin, tin_can", "canal", "canal_boat, narrow_boat, narrowboat", "candelabrum, candelabra", "candid_camera", "candle, taper, wax_light", "candlepin", "candlesnuffer", "candlestick, candle_holder", "candlewick", "candy_thermometer", "cane", "cane", "cangue", "canister, cannister, tin", "cannery", "cannikin", "cannikin", "cannon", "cannon", "cannon", "cannon", "cannonball, cannon_ball, round_shot", "canoe", "can_opener, tin_opener", "canopic_jar, canopic_vase", "canopy", "canopy", "canopy", "canteen", "canteen", "canteen", "canteen, mobile_canteen", "canteen", "cant_hook", "cantilever", "cantilever_bridge", "cantle", "canton_crepe", "canvas, canvass", "canvas, canvass", "canvas_tent, canvas, canvass", "cap", "cap", "cap", "capacitor, capacitance, condenser, electrical_condenser", "caparison, trapping, housing", "cape, mantle", "capital_ship", "capitol", "cap_opener", "capote, hooded_cloak", "capote, hooded_coat", "cap_screw", "capstan", "capstone, copestone, coping_stone, stretcher", "capsule", "captain's_chair", "car, auto, automobile, machine, motorcar", "car, railcar, railway_car, railroad_car", "car, elevator_car", "carabiner, karabiner, snap_ring", "carafe, decanter", "caravansary, caravanserai, khan, caravan_inn", "car_battery, automobile_battery", "carbine", "car_bomb", "carbon_arc_lamp, carbon_arc", "carboy", "carburetor, carburettor", "car_carrier", "cardcase", "cardiac_monitor, heart_monitor", "cardigan", "card_index, card_catalog, card_catalogue", "cardiograph, electrocardiograph", "cardioid_microphone", "car_door", "cardroom", "card_table", "card_table", "car-ferry", "cargo_area, cargo_deck, cargo_hold, hold, storage_area", "cargo_container", "cargo_door", "cargo_hatch", "cargo_helicopter", "cargo_liner", "cargo_ship, cargo_vessel", "carillon", "car_mirror", "caroche", "carousel, carrousel, merry-go-round, roundabout, whirligig", "carpenter's_hammer, claw_hammer, clawhammer", "carpenter's_kit, tool_kit", "carpenter's_level", "carpenter's_mallet", "carpenter's_rule", "carpenter's_square", "carpetbag", "carpet_beater, rug_beater", "carpet_loom", "carpet_pad, rug_pad, underlay, underlayment", "carpet_sweeper, sweeper", "carpet_tack", "carport, car_port", "carrack, carack", "carrel, carrell, cubicle, stall", "carriage, equipage, rig", "carriage", "carriage_bolt", "carriageway", "carriage_wrench", "carrick_bend", "carrier", "carryall, holdall, tote, tote_bag", "carrycot", "car_seat", "cart", "car_tire, automobile_tire, auto_tire, rubber_tire", "carton", "cartouche, cartouch", "car_train", "cartridge", "cartridge, pickup", "cartridge_belt", "cartridge_extractor, cartridge_remover, extractor", "cartridge_fuse", "cartridge_holder, cartridge_clip, clip, magazine", "cartwheel", "carving_fork", "carving_knife", "car_wheel", "caryatid", "cascade_liquefier", "cascade_transformer", "case", "case, display_case, showcase, vitrine", "case, compositor's_case, typesetter's_case", "casein_paint, casein", "case_knife, sheath_knife", "case_knife", "casement", "casement_window", "casern", "case_shot, canister, canister_shot", "cash_bar", "cashbox, money_box, till", "cash_machine, cash_dispenser, automated_teller_machine, automatic_teller_machine, automated_teller, automatic_teller, atm", "cashmere", "cash_register, register", "casing, case", "casino, gambling_casino", "casket, jewel_casket", "casque", "casquet, casquetel", "cassegrainian_telescope, gregorian_telescope", "casserole", "cassette", "cassette_deck", "cassette_player", "cassette_recorder", "cassette_tape", "cassock", "cast, plaster_cast, plaster_bandage", "caster, castor", "caster, castor", "castle", "castle, rook", "catacomb", "catafalque", "catalytic_converter", "catalytic_cracker, cat_cracker", "catamaran", "catapult, arbalest, arbalist, ballista, bricole, mangonel, onager, trebuchet, trebucket", "catapult, launcher", "catboat", "cat_box", "catch", "catchall", "catcher's_mask", "catchment", "caterpillar, cat", "cathedra, bishop's_throne", "cathedral", "cathedral, duomo", "catheter", "cathode", "cathode-ray_tube, crt", "cat-o'-nine-tails, cat", "cat's-paw", "catsup_bottle, ketchup_bottle", "cattle_car", "cattle_guard, cattle_grid", "cattleship, cattle_boat", "cautery, cauterant", "cavalier_hat, slouch_hat", "cavalry_sword, saber, sabre", "cavetto", "cavity_wall", "c_battery", "c-clamp", "cd_drive", "cd_player", "cd-r, compact_disc_recordable, cd-wo, compact_disc_write-once", "cd-rom, compact_disc_read-only_memory", "cd-rom_drive", "cedar_chest", "ceiling", "celesta", "cell, electric_cell", "cell, jail_cell, prison_cell", "cellar, wine_cellar", "cellblock, ward", "cello, violoncello", "cellophane", "cellular_telephone, cellular_phone, cellphone, cell, mobile_phone", "cellulose_tape, scotch_tape, sellotape", "cenotaph, empty_tomb", "censer, thurible", "center, centre", "center_punch", "centigrade_thermometer", "central_processing_unit, cpu, c.p.u., central_processor, processor, mainframe", "centrifugal_pump", "centrifuge, extractor, separator", "ceramic", "ceramic_ware", "cereal_bowl", "cereal_box", "cerecloth", "cesspool, cesspit, sink, sump", "chachka, tsatske, tshatshke, tchotchke", "chador, chadar, chaddar, chuddar", "chafing_dish", "chain", "chain", "chainlink_fence", "chain_mail, ring_mail, mail, chain_armor, chain_armour, ring_armor, ring_armour", "chain_printer", "chain_saw, chainsaw", "chain_store", "chain_tongs", "chain_wrench", "chair", "chair", "chair_of_state", "chairlift, chair_lift", "chaise, shay", "chaise_longue, chaise, daybed", "chalet", "chalice, goblet", "chalk", "challis", "chamberpot, potty, thunder_mug", "chambray", "chamfer_bit", "chamfer_plane", "chamois_cloth", "chancel, sanctuary, bema", "chancellery", "chancery", "chandelier, pendant, pendent", "chandlery", "chanfron, chamfron, testiere, frontstall, front-stall", "chanter, melody_pipe", "chantry", "chap", "chapel", "chapterhouse, fraternity_house, frat_house", "chapterhouse", "character_printer, character-at-a-time_printer, serial_printer", "charcuterie", "charge-exchange_accelerator", "charger, battery_charger", "chariot", "chariot", "charnel_house, charnel", "chassis", "chassis", "chasuble", "chateau", "chatelaine", "checker, chequer", "checkout, checkout_counter", "cheekpiece", "cheeseboard, cheese_tray", "cheesecloth", "cheese_cutter", "cheese_press", "chemical_bomb, gas_bomb", "chemical_plant", "chemical_reactor", "chemise, sack, shift", "chemise, shimmy, shift, slip, teddy", "chenille", "chessman, chess_piece", "chest", "chesterfield", "chest_of_drawers, chest, bureau, dresser", "chest_protector", "cheval-de-frise, chevaux-de-frise", "cheval_glass", "chicane", "chicken_coop, coop, hencoop, henhouse", "chicken_wire", "chicken_yard, hen_yard, chicken_run, fowl_run", "chiffon", "chiffonier, commode", "child's_room", "chime, bell, gong", "chimney_breast", "chimney_corner, inglenook", "china", "china_cabinet, china_closet", "chinchilla", "chinese_lantern", "chinese_puzzle", "chinning_bar", "chino", "chino", "chin_rest", "chin_strap", "chintz", "chip, microchip, micro_chip, silicon_chip, microprocessor_chip", "chip, poker_chip", "chisel", "chlamys", "choir", "choir_loft", "choke", "choke, choke_coil, choking_coil", "chokey, choky", "choo-choo", "chopine, platform", "chordophone", "christmas_stocking", "chronograph", "chronometer", "chronoscope", "chuck", "chuck_wagon", "chukka, chukka_boot", "church, church_building", "church_bell", "church_hat", "church_key", "church_tower", "churidars", "churn, butter_churn", "ciderpress", "cigar_band", "cigar_box", "cigar_cutter", "cigarette_butt", "cigarette_case", "cigarette_holder", "cigar_lighter, cigarette_lighter, pocket_lighter", "cinch, girth", "cinema, movie_theater, movie_theatre, movie_house, picture_palace", "cinquefoil", "circle, round", "circlet", "circuit, electrical_circuit, electric_circuit", "circuit_board, circuit_card, board, card, plug-in, add-in", "circuit_breaker, breaker", "circuitry", "circular_plane, compass_plane", "circular_saw, buzz_saw", "circus_tent, big_top, round_top, top", "cistern", "cistern, water_tank", "cittern, cithern, cither, citole, gittern", "city_hall", "cityscape", "city_university", "civies, civvies", "civilian_clothing, civilian_dress, civilian_garb, plain_clothes", "clack_valve, clack, clapper_valve", "clamp, clinch", "clamshell, grapple", "clapper, tongue", "clapperboard", "clarence", "clarinet", "clark_cell, clark_standard_cell", "clasp", "clasp_knife, jackknife", "classroom, schoolroom", "clavichord", "clavier, klavier", "clay_pigeon", "claymore_mine, claymore", "claymore", "cleaners, dry_cleaners", "cleaning_implement, cleaning_device, cleaning_equipment", "cleaning_pad", "clean_room, white_room", "clearway", "cleat", "cleat", "cleats", "cleaver, meat_cleaver, chopper", "clerestory, clearstory", "clevis", "clews", "cliff_dwelling", "climbing_frame", "clinch", "clinch, clench", "clincher", "clinic", "clinical_thermometer, mercury-in-glass_clinical_thermometer", "clinker, clinker_brick", "clinometer, inclinometer", "clip", "clip_lead", "clip-on", "clipper", "clipper", "clipper, clipper_ship", "cloak", "cloak", "cloakroom, coatroom", "cloche", "cloche", "clock", "clock_pendulum", "clock_radio", "clock_tower", "clockwork", "clog, geta, patten, sabot", "cloisonne", "cloister", "closed_circuit, loop", "closed-circuit_television", "closed_loop, closed-loop_system", "closet", "closeup_lens", "cloth_cap, flat_cap", "cloth_covering", "clothesbrush", "clothes_closet, clothespress", "clothes_dryer, clothes_drier", "clothes_hamper, laundry_basket, clothes_basket, voider", "clotheshorse", "clothespin, clothes_pin, clothes_peg", "clothes_tree, coat_tree, coat_stand", "clothing, article_of_clothing, vesture, wear, wearable, habiliment", "clothing_store, haberdashery, haberdashery_store, mens_store", "clout_nail, clout", "clove_hitch", "club_car, lounge_car", "clubroom", "cluster_bomb", "clutch", "clutch, clutch_pedal", "clutch_bag, clutch", "coach, four-in-hand, coach-and-four", "coach_house, carriage_house, remise", "coal_car", "coal_chute", "coal_house", "coal_shovel", "coaming", "coaster_brake", "coat", "coat_button", "coat_closet", "coatdress", "coatee", "coat_hanger, clothes_hanger, dress_hanger", "coating, coat", "coating", "coat_of_paint", "coatrack, coat_rack, hatrack", "coattail", "coaxial_cable, coax, coax_cable", "cobweb", "cobweb", "cockcroft_and_walton_accelerator, cockcroft-walton_accelerator, cockcroft_and_walton_voltage_multiplier, cockcroft-walton_voltage_multiplier", "cocked_hat", "cockhorse", "cockleshell", "cockpit", "cockpit", "cockpit", "cockscomb, coxcomb", "cocktail_dress, sheath", "cocktail_lounge", "cocktail_shaker", "cocotte", "codpiece", "coelostat", "coffee_can", "coffee_cup", "coffee_filter", "coffee_maker", "coffee_mill, coffee_grinder", "coffee_mug", "coffeepot", "coffee_stall", "coffee_table, cocktail_table", "coffee_urn", "coffer", "coffey_still", "coffin, casket", "cog, sprocket", "coif", "coil, spiral, volute, whorl, helix", "coil", "coil", "coil_spring, volute_spring", "coin_box", "colander, cullender", "cold_cathode", "cold_chisel, set_chisel", "cold_cream, coldcream, face_cream, vanishing_cream", "cold_frame", "collar, neckband", "collar", "college", "collet, collet_chuck", "collider", "colliery, pit", "collimator", "collimator", "cologne, cologne_water, eau_de_cologne", "colonnade", "colonoscope", "colorimeter, tintometer", "colors, colours", "color_television, colour_television, color_television_system, colour_television_system, color_tv, colour_tv", "color_tube, colour_tube, color_television_tube, colour_television_tube, color_tv_tube, colour_tv_tube", "color_wash, colour_wash", "colt", "colter, coulter", "columbarium", "columbarium, cinerarium", "column, pillar", "column, pillar", "comb", "comb", "comber", "combination_lock", "combination_plane", "combine", "comforter, pacifier, baby's_dummy, teething_ring", "command_module", "commissary", "commissary", "commodity, trade_good, good", "common_ax, common_axe, dayton_ax, dayton_axe", "common_room", "communications_satellite", "communication_system", "community_center, civic_center", "commutator", "commuter, commuter_train", "compact, powder_compact", "compact, compact_car", "compact_disk, compact_disc, cd", "compact-disk_burner, cd_burner", "companionway", "compartment", "compartment", "compass", "compass", "compass_card, mariner's_compass", "compass_saw", "compound", "compound_lens", "compound_lever", "compound_microscope", "compress", "compression_bandage, tourniquet", "compressor", "computer, computing_machine, computing_device, data_processor, electronic_computer, information_processing_system", "computer_circuit", "computerized_axial_tomography_scanner, cat_scanner", "computer_keyboard, keypad", "computer_monitor", "computer_network", "computer_screen, computer_display", "computer_store", "computer_system, computing_system, automatic_data_processing_system, adp_system, adps", "concentration_camp, stockade", "concert_grand, concert_piano", "concert_hall", "concertina", "concertina", "concrete_mixer, cement_mixer", "condensation_pump, diffusion_pump", "condenser, optical_condenser", "condenser", "condenser", "condenser_microphone, capacitor_microphone", "condominium", "condominium, condo", "conductor", "cone_clutch, cone_friction_clutch", "confectionery, confectionary, candy_store", "conference_center, conference_house", "conference_room", "conference_table, council_table, council_board", "confessional", "conformal_projection, orthomorphic_projection", "congress_boot, congress_shoe, congress_gaiter", "conic_projection, conical_projection", "connecting_rod", "connecting_room", "connection, connexion, connector, connecter, connective", "conning_tower", "conning_tower", "conservatory, hothouse, indoor_garden", "conservatory, conservatoire", "console", "console", "console_table, console", "consulate", "contact, tangency", "contact, contact_lens", "container", "container_ship, containership, container_vessel", "containment", "contrabassoon, contrafagotto, double_bassoon", "control, controller", "control_center", "control_circuit, negative_feedback_circuit", "control_key, command_key", "control_panel, instrument_panel, control_board, board, panel", "control_rod", "control_room", "control_system", "control_tower", "convector", "convenience_store", "convent", "conventicle, meetinghouse", "converging_lens, convex_lens", "converter, convertor", "convertible", "convertible, sofa_bed", "conveyance, transport", "conveyer_belt, conveyor_belt, conveyer, conveyor, transporter", "cooker", "cookfire", "cookhouse", "cookie_cutter", "cookie_jar, cooky_jar", "cookie_sheet, baking_tray", "cooking_utensil, cookware", "cookstove", "coolant_system", "cooler, ice_chest", "cooling_system, cooling", "cooling_system, engine_cooling_system", "cooling_tower", "coonskin_cap, coonskin", "cope", "coping_saw", "copperware", "copyholder", "coquille", "coracle", "corbel, truss", "corbel_arch", "corbel_step, corbie-step, corbiestep, crow_step", "corbie_gable", "cord, corduroy", "cord, electric_cord", "cordage", "cords, corduroys", "core", "core_bit", "core_drill", "corer", "cork, bottle_cork", "corker", "corkscrew, bottle_screw", "corncrib", "corner, quoin", "corner, nook", "corner_post", "cornet, horn, trumpet, trump", "cornice", "cornice", "cornice, valance, valance_board, pelmet", "correctional_institution", "corrugated_fastener, wiggle_nail", "corselet, corslet", "corset, girdle, stays", "cosmetic", "cosmotron", "costume", "costume", "costume", "costume", "cosy, tea_cosy, cozy, tea_cozy", "cot, camp_bed", "cottage_tent", "cotter, cottar", "cotter_pin", "cotton", "cotton_flannel, canton_flannel", "cotton_mill", "couch", "couch", "couchette", "coude_telescope, coude_system", "counter", "counter, tabulator", "counter", "counterbore, countersink, countersink_bit", "counter_tube", "country_house", "country_store, general_store, trading_post", "coupe", "coupling, coupler", "court, courtyard", "court", "court, courtroom", "court", "courtelle", "courthouse", "courthouse", "coverall", "covered_bridge", "covered_couch", "covered_wagon, conestoga_wagon, conestoga, prairie_wagon, prairie_schooner", "covering", "coverlet", "cover_plate", "cowbarn, cowshed, cow_barn, cowhouse, byre", "cowbell", "cowboy_boot", "cowboy_hat, ten-gallon_hat", "cowhide", "cowl", "cow_pen, cattle_pen, corral", "cpu_board, mother_board", "crackle, crackleware, crackle_china", "cradle", "craft", "cramp, cramp_iron", "crampon, crampoon, climbing_iron, climber", "crampon, crampoon", "crane", "craniometer", "crank, starter", "crankcase", "crankshaft", "crash_barrier", "crash_helmet", "crate", "cravat", "crayon, wax_crayon", "crazy_quilt", "cream, ointment, emollient", "cream_pitcher, creamer", "creche, foundling_hospital", "creche", "credenza, credence", "creel", "crematory, crematorium, cremation_chamber", "crematory, crematorium", "crepe, crape", "crepe_de_chine", "crescent_wrench", "cretonne", "crib, cot", "crib", "cricket_ball", "cricket_bat, bat", "cricket_equipment", "cringle, eyelet, loop, grommet, grummet", "crinoline", "crinoline", "crochet_needle, crochet_hook", "crock, earthenware_jar", "crock_pot", "crook, shepherd's_crook", "crookes_radiometer", "crookes_tube", "croquet_ball", "croquet_equipment", "croquet_mallet", "cross", "crossbar", "crossbar", "crossbar", "crossbench", "cross_bit", "crossbow", "crosscut_saw, crosscut_handsaw, cutoff_saw", "crossjack, mizzen_course", "crosspiece", "crotchet", "croupier's_rake", "crowbar, wrecking_bar, pry, pry_bar", "crown, diadem", "crown, crownwork, jacket, jacket_crown, cap", "crown_jewels", "crown_lens", "crow's_nest", "crucible, melting_pot", "crucifix, rood, rood-tree", "cruet, crewet", "cruet-stand", "cruise_control", "cruise_missile", "cruiser", "cruiser, police_cruiser, patrol_car, police_car, prowl_car, squad_car", "cruise_ship, cruise_liner", "crupper", "cruse", "crusher", "crutch", "cryometer", "cryoscope", "cryostat", "crypt", "crystal, watch_crystal, watch_glass", "crystal_detector", "crystal_microphone", "crystal_oscillator, quartz_oscillator", "crystal_set", "cubitiere", "cucking_stool, ducking_stool", "cuckoo_clock", "cuddy", "cudgel", "cue, cue_stick, pool_cue, pool_stick", "cue_ball", "cuff, turnup", "cuirass", "cuisse", "cul, cul_de_sac, dead_end", "culdoscope", "cullis", "culotte", "cultivator, tiller", "culverin", "culverin", "culvert", "cup", "cupboard, closet", "cup_hook", "cupola", "cupola", "curb, curb_bit", "curb_roof", "curbstone, kerbstone", "curette, curet", "curler, hair_curler, roller, crimper", "curling_iron", "currycomb", "cursor, pointer", "curtain, drape, drapery, mantle, pall", "customhouse, customshouse", "cutaway, cutaway_drawing, cutaway_model", "cutlas, cutlass", "cutoff", "cutout", "cutter, cutlery, cutting_tool", "cutter", "cutting_implement", "cutting_room", "cutty_stool", "cutwork", "cybercafe", "cyclopean_masonry", "cyclostyle", "cyclotron", "cylinder", "cylinder, piston_chamber", "cylinder_lock", "cymbal", "dacha", "dacron, terylene", "dado", "dado_plane", "dagger, sticker", "dairy, dairy_farm", "dais, podium, pulpit, rostrum, ambo, stump, soapbox", "daisy_print_wheel, daisy_wheel", "daisywheel_printer", "dam, dike, dyke", "damask", "dampener, moistener", "damper, muffler", "damper_block, piano_damper", "dark_lantern, bull's-eye", "darkroom", "darning_needle, embroidery_needle", "dart", "dart", "dashboard, fascia", "dashiki, daishiki", "dash-pot", "data_converter", "data_input_device, input_device", "data_multiplexer", "data_system, information_system", "davenport", "davenport", "davit", "daybed, divan_bed", "daybook, ledger", "day_nursery, day_care_center", "day_school", "dead_axle", "deadeye", "deadhead", "deanery", "deathbed", "death_camp", "death_house, death_row", "death_knell, death_bell", "death_seat", "deck", "deck", "deck_chair, beach_chair", "deck-house", "deckle", "deckle_edge, deckle", "declinometer, transit_declinometer", "decoder", "decolletage", "decoupage", "dedicated_file_server", "deep-freeze, deepfreeze, deep_freezer, freezer", "deerstalker", "defense_system, defence_system", "defensive_structure, defense, defence", "defibrillator", "defilade", "deflector", "delayed_action", "delay_line", "delft", "delicatessen, deli, food_shop", "delivery_truck, delivery_van, panel_truck", "delta_wing", "demijohn", "demitasse", "den", "denim, dungaree, jean", "densimeter, densitometer", "densitometer", "dental_appliance", "dental_floss, floss", "dental_implant", "dentist's_drill, burr_drill", "denture, dental_plate, plate", "deodorant, deodourant", "department_store, emporium", "departure_lounge", "depilatory, depilator, epilator", "depressor", "depth_finder", "depth_gauge, depth_gage", "derrick", "derrick", "derringer", "desk", "desk_phone", "desktop_computer", "dessert_spoon", "destroyer, guided_missile_destroyer", "destroyer_escort", "detached_house, single_dwelling", "detector, sensor, sensing_element", "detector", "detention_home, detention_house, house_of_detention, detention_camp", "detonating_fuse", "detonator, detonating_device, cap", "developer", "device", "dewar_flask, dewar", "dhoti", "dhow", "dial, telephone_dial", "dial", "dial", "dialog_box, panel", "dial_telephone, dial_phone", "dialyzer, dialysis_machine", "diamante", "diaper, nappy, napkin", "diaper", "diaphone", "diaphragm, stop", "diaphragm", "diathermy_machine", "dibble, dibber", "dice_cup, dice_box", "dicer", "dickey, dickie, dicky, shirtfront", "dickey, dickie, dicky, dickey-seat, dickie-seat, dicky-seat", "dictaphone", "die", "diesel, diesel_engine, diesel_motor", "diesel-electric_locomotive, diesel-electric", "diesel-hydraulic_locomotive, diesel-hydraulic", "diesel_locomotive", "diestock", "differential_analyzer", "differential_gear, differential", "diffuser, diffusor", "diffuser, diffusor", "digester", "diggings, digs, domiciliation, lodgings, pad", "digital-analog_converter, digital-to-analog_converter", "digital_audiotape, dat", "digital_camera", "digital_clock", "digital_computer", "digital_display, alphanumeric_display", "digital_subscriber_line, dsl", "digital_voltmeter", "digital_watch", "digitizer, digitiser, analog-digital_converter, analog-to-digital_converter", "dilator, dilater", "dildo", "dimity", "dimmer", "diner", "dinette", "dinghy, dory, rowboat", "dining_area", "dining_car, diner, dining_compartment, buffet_car", "dining-hall", "dining_room, dining-room", "dining-room_furniture", "dining-room_table", "dining_table, board", "dinner_bell", "dinner_dress, dinner_gown, formal, evening_gown", "dinner_jacket, tux, tuxedo, black_tie", "dinner_napkin", "dinner_pail, dinner_bucket", "dinner_table", "dinner_theater, dinner_theatre", "diode, semiconductor_diode, junction_rectifier, crystal_rectifier", "diode, rectifying_tube, rectifying_valve", "dip", "diplomatic_building", "dipole, dipole_antenna", "dipper", "dipstick", "dip_switch, dual_inline_package_switch", "directional_antenna", "directional_microphone", "direction_finder", "dirk", "dirndl", "dirndl", "dirty_bomb", "discharge_lamp", "discharge_pipe", "disco, discotheque", "discount_house, discount_store, discounter, wholesale_house", "discus, saucer", "disguise", "dish", "dish, dish_aerial, dish_antenna, saucer", "dishpan", "dish_rack", "dishrag, dishcloth", "dishtowel, dish_towel, tea_towel", "dishwasher, dish_washer, dishwashing_machine", "disk, disc", "disk_brake, disc_brake", "disk_clutch", "disk_controller", "disk_drive, disc_drive, hard_drive, winchester_drive", "diskette, floppy, floppy_disk", "disk_harrow, disc_harrow", "dispatch_case, dispatch_box", "dispensary", "dispenser", "display, video_display", "display_adapter, display_adaptor", "display_panel, display_board, board", "display_window, shop_window, shopwindow, show_window", "disposal, electric_pig, garbage_disposal", "disrupting_explosive, bursting_explosive", "distaff", "distillery, still", "distributor, distributer, electrical_distributor", "distributor_cam", "distributor_cap", "distributor_housing", "distributor_point, breaker_point, point", "ditch", "ditch_spade, long-handled_spade", "ditty_bag", "divan", "divan, diwan", "dive_bomber", "diverging_lens, concave_lens", "divided_highway, dual_carriageway", "divider", "diving_bell", "divining_rod, dowser, dowsing_rod, waterfinder, water_finder", "diving_suit, diving_dress", "dixie", "dixie_cup, paper_cup", "dock, dockage, docking_facility", "doeskin", "dogcart", "doggie_bag, doggy_bag", "dogsled, dog_sled, dog_sleigh", "dog_wrench", "doily, doyley, doyly", "doll, dolly", "dollhouse, doll's_house", "dolly", "dolman", "dolman, dolman_jacket", "dolman_sleeve", "dolmen, cromlech, portal_tomb", "dome", "dome, domed_stadium, covered_stadium", "domino, half_mask, eye_mask", "dongle", "donkey_jacket", "door", "door", "door", "doorbell, bell, buzzer", "doorframe, doorcase", "doorjamb, doorpost", "doorlock", "doormat, welcome_mat", "doornail", "doorplate", "doorsill, doorstep, threshold", "doorstop, doorstopper", "doppler_radar", "dormer, dormer_window", "dormer_window", "dormitory, dorm, residence_hall, hall, student_residence", "dormitory, dormitory_room, dorm_room", "dosemeter, dosimeter", "dossal, dossel", "dot_matrix_printer, matrix_printer, dot_printer", "double_bed", "double-bitted_ax, double-bitted_axe, western_ax, western_axe", "double_boiler, double_saucepan", "double-breasted_jacket", "double-breasted_suit", "double_door", "double_glazing", "double-hung_window", "double_knit", "doubler", "double_reed", "double-reed_instrument, double_reed", "doublet", "doubletree", "douche, douche_bag", "dovecote, columbarium, columbary", "dover's_powder", "dovetail, dovetail_joint", "dovetail_plane", "dowel, dowel_pin, joggle", "downstage", "drafting_instrument", "drafting_table, drawing_table", "dragunov", "drainage_ditch", "drainage_system", "drain_basket", "drainplug", "drape", "drapery", "drawbar", "drawbridge, lift_bridge", "drawer", "drawers, underdrawers, shorts, boxers, boxershorts", "drawing_chalk", "drawing_room, withdrawing_room", "drawing_room", "drawknife, drawshave", "drawstring_bag", "dray, camion", "dreadnought, dreadnaught", "dredge", "dredger", "dredging_bucket", "dress, frock", "dress_blues, dress_whites", "dresser", "dress_hat, high_hat, opera_hat, silk_hat, stovepipe, top_hat, topper, beaver", "dressing, medical_dressing", "dressing_case", "dressing_gown, robe-de-chambre, lounging_robe", "dressing_room", "dressing_sack, dressing_sacque", "dressing_table, dresser, vanity, toilet_table", "dress_rack", "dress_shirt, evening_shirt", "dress_suit, full_dress, tailcoat, tail_coat, tails, white_tie, white_tie_and_tails", "dress_uniform", "drift_net", "drill", "electric_drill", "drilling_platform, offshore_rig", "drill_press", "drill_rig, drilling_rig, oilrig, oil_rig", "drinking_fountain, water_fountain, bubbler", "drinking_vessel", "drip_loop", "drip_mat", "drip_pan", "dripping_pan, drip_pan", "drip_pot", "drive", "drive", "drive_line, drive_line_system", "driver, number_one_wood", "driveshaft", "driveway, drive, private_road", "driving_iron, one_iron", "driving_wheel", "drogue, drogue_chute, drogue_parachute", "drogue_parachute", "drone, drone_pipe, bourdon", "drone, pilotless_aircraft, radio-controlled_aircraft", "drop_arch", "drop_cloth", "drop_curtain, drop_cloth, drop", "drop_forge, drop_hammer, drop_press", "drop-leaf_table", "dropper, eye_dropper", "droshky, drosky", "drove, drove_chisel", "drugget", "drugstore, apothecary's_shop, chemist's, chemist's_shop, pharmacy", "drum, membranophone, tympan", "drum, metal_drum", "drum_brake", "drumhead, head", "drum_printer", "drum_sander, electric_sander, sander, smoother", "drumstick", "dry_battery", "dry-bulb_thermometer", "dry_cell", "dry_dock, drydock, graving_dock", "dryer, drier", "dry_fly", "dry_kiln", "dry_masonry", "dry_point", "dry_wall, dry-stone_wall", "dual_scan_display", "duck", "duckboard", "duckpin", "dudeen", "duffel, duffle", "duffel_bag, duffle_bag, duffel, duffle", "duffel_coat, duffle_coat", "dugout", "dugout_canoe, dugout, pirogue", "dulciana", "dulcimer", "dulcimer", "dumbbell", "dumb_bomb, gravity_bomb", "dumbwaiter, food_elevator", "dumdum, dumdum_bullet", "dumpcart", "dumpster", "dump_truck, dumper, tipper_truck, tipper_lorry, tip_truck, tipper", "dumpy_level", "dunce_cap, dunce's_cap, fool's_cap", "dune_buggy, beach_buggy", "dungeon", "duplex_apartment, duplex", "duplex_house, duplex, semidetached_house", "duplicator, copier", "dust_bag, vacuum_bag", "dustcloth, dustrag, duster", "dust_cover", "dust_cover, dust_sheet", "dustmop, dust_mop, dry_mop", "dustpan", "dutch_oven", "dutch_oven", "dwelling, home, domicile, abode, habitation, dwelling_house", "dye-works", "dynamo", "dynamometer, ergometer", "eames_chair", "earflap, earlap", "early_warning_radar", "early_warning_system", "earmuff", "earphone, earpiece, headphone, phone", "earplug", "earplug", "earthenware", "earthwork", "easel", "easy_chair, lounge_chair, overstuffed_chair", "eaves", "ecclesiastical_attire, ecclesiastical_robe", "echinus", "echocardiograph", "edger", "edge_tool", "efficiency_apartment", "egg-and-dart, egg-and-anchor, egg-and-tongue", "eggbeater, eggwhisk", "egg_timer", "eiderdown, duvet, continental_quilt", "eight_ball", "ejection_seat, ejector_seat, capsule", "elastic", "elastic_bandage", "elastoplast", "elbow", "elbow_pad", "electric, electric_automobile, electric_car", "electrical_cable", "electrical_contact", "electrical_converter", "electrical_device", "electrical_system", "electric_bell", "electric_blanket", "electric_chair, chair, death_chair, hot_seat", "electric_clock", "electric-discharge_lamp, gas-discharge_lamp", "electric_fan, blower", "electric_frying_pan", "electric_furnace", "electric_guitar", "electric_hammer", "electric_heater, electric_fire", "electric_lamp", "electric_locomotive", "electric_meter, power_meter", "electric_mixer", "electric_motor", "electric_organ, electronic_organ, hammond_organ, organ", "electric_range", "electric_refrigerator, fridge", "electric_toothbrush", "electric_typewriter", "electro-acoustic_transducer", "electrode", "electrodynamometer", "electroencephalograph", "electrograph", "electrolytic, electrolytic_capacitor, electrolytic_condenser", "electrolytic_cell", "electromagnet", "electrometer", "electromyograph", "electron_accelerator", "electron_gun", "electronic_balance", "electronic_converter", "electronic_device", "electronic_equipment", "electronic_fetal_monitor, electronic_foetal_monitor, fetal_monitor, foetal_monitor", "electronic_instrument, electronic_musical_instrument", "electronic_voltmeter", "electron_microscope", "electron_multiplier", "electrophorus", "electroscope", "electrostatic_generator, electrostatic_machine, wimshurst_machine, van_de_graaff_generator", "electrostatic_printer", "elevator, lift", "elevator", "elevator_shaft", "embankment", "embassy", "embellishment", "emergency_room, er", "emesis_basin", "emitter", "empty", "emulsion, photographic_emulsion", "enamel", "enamel", "enamelware", "encaustic", "encephalogram, pneumoencephalogram", "enclosure", "endoscope", "energizer, energiser", "engine", "engine", "engineering, engine_room", "enginery", "english_horn, cor_anglais", "english_saddle, english_cavalry_saddle", "enlarger", "ensemble", "ensign", "entablature", "entertainment_center", "entrenching_tool, trenching_spade", "entrenchment, intrenchment", "envelope", "envelope", "envelope, gasbag", "eolith", "epauliere", "epee", "epergne", "epicyclic_train, epicyclic_gear_train", "epidiascope", "epilating_wax", "equalizer, equaliser", "equatorial", "equipment", "erasable_programmable_read-only_memory, eprom", "eraser", "erecting_prism", "erection", "erlenmeyer_flask", "escape_hatch", "escapement", "escape_wheel", "escarpment, escarp, scarp, protective_embankment", "escutcheon, scutcheon", "esophagoscope, oesophagoscope", "espadrille", "espalier", "espresso_maker", "espresso_shop", "establishment", "estaminet", "estradiol_patch", "etagere", "etamine, etamin", "etching", "ethernet", "ethernet_cable", "eton_jacket", "etui", "eudiometer", "euphonium", "evaporative_cooler", "evening_bag", "exercise_bike, exercycle", "exercise_device", "exhaust, exhaust_system", "exhaust_fan", "exhaust_valve", "exhibition_hall, exhibition_area", "exocet", "expansion_bit, expansive_bit", "expansion_bolt", "explosive_detection_system, eds", "explosive_device", "explosive_trace_detection, etd", "express, limited", "extension, telephone_extension, extension_phone", "extension_cord", "external-combustion_engine", "external_drive", "extractor", "eyebrow_pencil", "eyecup, eyebath, eye_cup", "eyeliner", "eyepatch, patch", "eyepiece, ocular", "eyeshadow", "fabric, cloth, material, textile", "facade, frontage, frontal", "face_guard", "face_mask", "faceplate", "face_powder", "face_veil", "facing, cladding", "facing", "facing, veneer", "facsimile, facsimile_machine, fax", "factory, mill, manufacturing_plant, manufactory", "factory_ship", "fagot, faggot", "fagot_stitch, faggot_stitch", "fahrenheit_thermometer", "faience", "faille", "fairlead", "fairy_light", "falchion", "fallboard, fall-board", "fallout_shelter", "false_face", "false_teeth", "family_room", "fan", "fan_belt", "fan_blade", "fancy_dress, masquerade, masquerade_costume", "fanion", "fanlight", "fanjet, fan-jet, fanjet_engine, turbojet, turbojet_engine, turbofan, turbofan_engine", "fanjet, fan-jet, turbofan, turbojet", "fanny_pack, butt_pack", "fan_tracery", "fan_vaulting", "farm_building", "farmer's_market, green_market, greenmarket", "farmhouse", "farm_machine", "farmplace, farm-place, farmstead", "farmyard", "farthingale", "fastener, fastening, holdfast, fixing", "fast_reactor", "fat_farm", "fatigues", "faucet, spigot", "fauld", "fauteuil", "feather_boa, boa", "featheredge", "fedora, felt_hat, homburg, stetson, trilby", "feedback_circuit, feedback_loop", "feedlot", "fell, felled_seam", "felloe, felly", "felt", "felt-tip_pen, felt-tipped_pen, felt_tip, magic_marker", "felucca", "fence, fencing", "fencing_mask, fencer's_mask", "fencing_sword", "fender, wing", "fender, buffer, cowcatcher, pilot", "ferris_wheel", "ferrule, collet", "ferry, ferryboat", "ferule", "festoon", "fetoscope, foetoscope", "fetter, hobble", "fez, tarboosh", "fiber, fibre, vulcanized_fiber", "fiber_optic_cable, fibre_optic_cable", "fiberscope", "fichu", "fiddlestick, violin_bow", "field_artillery, field_gun", "field_coil, field_winding", "field-effect_transistor, fet", "field-emission_microscope", "field_glass, glass, spyglass", "field_hockey_ball", "field_hospital", "field_house, sports_arena", "field_lens", "field_magnet", "field-sequential_color_television, field-sequential_color_tv, field-sequential_color_television_system, field-sequential_color_tv_system", "field_tent", "fieldwork", "fife", "fifth_wheel, spare", "fighter, fighter_aircraft, attack_aircraft", "fighting_chair", "fig_leaf", "figure_eight, figure_of_eight", "figure_loom, figured-fabric_loom", "figure_skate", "filament", "filature", "file", "file, file_cabinet, filing_cabinet", "file_folder", "file_server", "filigree, filagree, fillagree", "filling", "film, photographic_film", "film, plastic_film", "film_advance", "filter", "filter", "finder, viewfinder, view_finder", "finery", "fine-tooth_comb, fine-toothed_comb", "finger", "fingerboard", "finger_bowl", "finger_paint, fingerpaint", "finger-painting", "finger_plate, escutcheon, scutcheon", "fingerstall, cot", "finish_coat, finishing_coat", "finish_coat, finishing_coat", "finisher", "fin_keel", "fipple", "fipple_flute, fipple_pipe, recorder, vertical_flute", "fire", "fire_alarm, smoke_alarm", "firearm, piece, small-arm", "fire_bell", "fireboat", "firebox", "firebrick", "fire_control_radar", "fire_control_system", "fire_engine, fire_truck", "fire_extinguisher, extinguisher, asphyxiator", "fire_iron", "fireman's_ax, fireman's_axe", "fireplace, hearth, open_fireplace", "fire_screen, fireguard", "fire_tongs, coal_tongs", "fire_tower", "firewall", "firing_chamber, gun_chamber", "firing_pin", "firkin", "firmer_chisel", "first-aid_kit", "first-aid_station", "first_base", "first_class", "fishbowl, fish_bowl, goldfish_bowl", "fisherman's_bend", "fisherman's_knot, true_lover's_knot, truelove_knot", "fisherman's_lure, fish_lure", "fishhook", "fishing_boat, fishing_smack, fishing_vessel", "fishing_gear, tackle, fishing_tackle, fishing_rig, rig", "fishing_rod, fishing_pole", "fish_joint", "fish_knife", "fishnet, fishing_net", "fish_slice", "fitment", "fixative", "fixer-upper", "flag", "flageolet, treble_recorder, shepherd's_pipe", "flagon", "flagpole, flagstaff", "flagship", "flail", "flambeau", "flamethrower", "flange, rim", "flannel", "flannel, gabardine, tweed, white", "flannelette", "flap, flaps", "flash, photoflash, flash_lamp, flashgun, flashbulb, flash_bulb", "flash", "flash_camera", "flasher", "flashlight, torch", "flashlight_battery", "flash_memory", "flask", "flat_arch, straight_arch", "flatbed", "flatbed_press, cylinder_press", "flat_bench", "flatcar, flatbed, flat", "flat_file", "flatlet", "flat_panel_display, fpd", "flats", "flat_tip_screwdriver", "fleece", "fleet_ballistic_missile_submarine", "fleur-de-lis, fleur-de-lys", "flight_simulator, trainer", "flintlock", "flintlock, firelock", "flip-flop, thong", "flipper, fin", "float, plasterer's_float", "floating_dock, floating_dry_dock", "floatplane, pontoon_plane", "flood, floodlight, flood_lamp, photoflood", "floor, flooring", "floor, level, storey, story", "floor", "floorboard", "floor_cover, floor_covering", "floor_joist", "floor_lamp", "flophouse, dosshouse", "florist, florist_shop, flower_store", "floss", "flotsam, jetsam", "flour_bin", "flour_mill", "flowerbed, flower_bed, bed_of_flowers", "flugelhorn, fluegelhorn", "fluid_drive", "fluid_flywheel", "flume", "fluorescent_lamp", "fluoroscope, roentgenoscope", "flush_toilet, lavatory", "flute, transverse_flute", "flute, flute_glass, champagne_flute", "flux_applicator", "fluxmeter", "fly", "flying_boat", "flying_buttress, arc-boutant", "flying_carpet", "flying_jib", "fly_rod", "fly_tent", "flytrap", "flywheel", "fob, watch_chain, watch_guard", "foghorn", "foglamp", "foil", "fold, sheepfold, sheep_pen, sheepcote", "folder", "folding_chair", "folding_door, accordion_door", "folding_saw", "food_court", "food_processor", "food_hamper", "foot", "footage", "football", "football_helmet", "football_stadium", "footbath", "foot_brake", "footbridge, overcrossing, pedestrian_bridge", "foothold, footing", "footlocker, locker", "foot_rule", "footstool, footrest, ottoman, tuffet", "footwear, footgear", "footwear", "forceps", "force_pump", "fore-and-after", "fore-and-aft_sail", "forecastle, fo'c'sle", "forecourt", "foredeck", "fore_edge, foredge", "foreground", "foremast", "fore_plane", "foresail", "forestay", "foretop", "fore-topmast", "fore-topsail", "forge", "fork", "forklift", "formalwear, eveningwear, evening_dress, evening_clothes", "formica", "fortification, munition", "fortress, fort", "forty-five", "foucault_pendulum", "foulard", "foul-weather_gear", "foundation_garment, foundation", "foundry, metalworks", "fountain", "fountain_pen", "four-in-hand", "four-poster", "four-pounder", "four-stroke_engine, four-stroke_internal-combustion_engine", "four-wheel_drive, 4wd", "four-wheel_drive, 4wd", "four-wheeler", "fowling_piece", "foxhole, fox_hole", "fragmentation_bomb, antipersonnel_bomb, anti-personnel_bomb, daisy_cutter", "frail", "fraise", "frame, framing", "frame", "frame_buffer", "framework", "francis_turbine", "franking_machine", "free_house", "free-reed", "free-reed_instrument", "freewheel", "freight_car", "freight_elevator, service_elevator", "freight_liner, liner_train", "freight_train, rattler", "french_door", "french_horn, horn", "french_polish, french_polish_shellac", "french_roof", "french_window", "fresnel_lens", "fret", "friary", "friction_clutch", "frieze", "frieze", "frigate", "frigate", "frill, flounce, ruffle, furbelow", "frisbee", "frock", "frock_coat", "frontlet, frontal", "front_porch", "front_projector", "fruit_machine", "frying_pan, frypan, skillet", "fuel_filter", "fuel_gauge, fuel_indicator", "fuel_injection, fuel_injection_system", "fuel_system", "full-dress_uniform", "full_metal_jacket", "full_skirt", "fumigator", "funeral_home, funeral_parlor, funeral_parlour, funeral_chapel, funeral_church, funeral-residence", "funnel", "funny_wagon", "fur", "fur_coat", "fur_hat", "furnace", "furnace_lining, refractory", "furnace_room", "furnishing", "furnishing, trappings", "furniture, piece_of_furniture, article_of_furniture", "fur-piece", "furrow", "fuse, electrical_fuse, safety_fuse", "fusee_drive, fusee", "fuselage", "fusil", "fustian", "futon", "gabardine", "gable, gable_end, gable_wall", "gable_roof, saddle_roof, saddleback, saddleback_roof", "gadgetry", "gaff", "gaff", "gaff", "gaffsail, gaff-headed_sail", "gaff_topsail, fore-and-aft_topsail", "gag, muzzle", "gaiter", "gaiter", "galilean_telescope", "galleon", "gallery", "gallery, art_gallery, picture_gallery", "galley, ship's_galley, caboose, cookhouse", "galley", "galley", "gallows", "gallows_tree, gallows-tree, gibbet, gallous", "galvanometer", "gambling_house, gambling_den, gambling_hell, gaming_house", "gambrel, gambrel_roof", "game", "gamebag", "game_equipment", "gaming_table", "gamp, brolly", "gangplank, gangboard, gangway", "gangsaw", "gangway", "gantlet", "gantry, gauntry", "garage", "garage, service_department", "garand_rifle, garand, m-1, m-1_rifle", "garbage", "garbage_truck, dustcart", "garboard, garboard_plank, garboard_strake", "garden", "garden", "garden_rake", "garden_spade", "garden_tool, lawn_tool", "garden_trowel", "gargoyle", "garibaldi", "garlic_press", "garment", "garment_bag", "garrison_cap, overseas_cap", "garrote, garotte, garrotte, iron_collar", "garter, supporter", "garter_belt, suspender_belt", "garter_stitch", "gas_guzzler", "gas_shell", "gas_bracket", "gas_burner, gas_jet", "gas-cooled_reactor", "gas-discharge_tube", "gas_engine", "gas_fixture", "gas_furnace", "gas_gun", "gas_heater", "gas_holder, gasometer", "gasket", "gas_lamp", "gas_maser", "gasmask, respirator, gas_helmet", "gas_meter, gasometer", "gasoline_engine, petrol_engine", "gasoline_gauge, gasoline_gage, gas_gauge, gas_gage, petrol_gauge, petrol_gage", "gas_oven", "gas_oven", "gas_pump, gasoline_pump, petrol_pump, island_dispenser", "gas_range, gas_stove, gas_cooker", "gas_ring", "gas_tank, gasoline_tank, petrol_tank", "gas_thermometer, air_thermometer", "gastroscope", "gas_turbine", "gas-turbine_ship", "gat, rod", "gate", "gatehouse", "gateleg_table", "gatepost", "gathered_skirt", "gatling_gun", "gauge, gage", "gauntlet, gantlet", "gauntlet, gantlet, metal_glove", "gauze, netting, veiling", "gauze, gauze_bandage", "gavel", "gazebo, summerhouse", "gear, gear_wheel, geared_wheel, cogwheel", "gear, paraphernalia, appurtenance", "gear, gear_mechanism", "gearbox, gear_box, gear_case", "gearing, gear, geartrain, power_train, train", "gearset", "gearshift, gearstick, shifter, gear_lever", "geiger_counter, geiger-muller_counter", "geiger_tube, geiger-muller_tube", "gene_chip, dna_chip", "general-purpose_bomb, gp_bomb", "generator", "generator", "generator", "geneva_gown", "geodesic_dome", "georgette", "gharry", "ghat", "ghetto_blaster, boom_box", "gift_shop, novelty_shop", "gift_wrapping", "gig", "gig", "gig", "gig", "gildhall", "gill_net", "gilt, gilding", "gimbal", "gingham", "girandole, girandola", "girder", "girdle, cincture, sash, waistband, waistcloth", "glass, drinking_glass", "glass", "glass_cutter", "glasses_case", "glebe_house", "glengarry", "glider, sailplane", "global_positioning_system, gps", "glockenspiel, orchestral_bells", "glory_hole, lazaretto", "glove", "glove_compartment", "glow_lamp", "glow_tube", "glyptic_art, glyptography", "glyptics, lithoglyptics", "gnomon", "goal", "goalmouth", "goalpost", "goblet", "godown", "goggles", "go-kart", "gold_plate", "golf_bag", "golf_ball", "golfcart, golf_cart", "golf_club, golf-club, club", "golf-club_head, club_head, club-head, clubhead", "golf_equipment", "golf_glove", "golliwog, golliwogg", "gondola", "gong, tam-tam", "goniometer", "gordian_knot", "gorget", "gossamer", "gothic_arch", "gouache", "gouge", "gourd, calabash", "government_building", "government_office", "gown", "gown, robe", "gown, surgical_gown, scrubs", "grab", "grab_bag", "grab_bar", "grace_cup", "grade_separation", "graduated_cylinder", "graffito, graffiti", "gramophone, acoustic_gramophone", "granary, garner", "grandfather_clock, longcase_clock", "grand_piano, grand", "graniteware", "granny_knot, granny", "grape_arbor, grape_arbour", "grapnel, grapnel_anchor", "grapnel, grapple, grappler, grappling_hook, grappling_iron", "grass_skirt", "grate, grating", "grate, grating", "grater", "graver, graving_tool, pointel, pointrel", "gravestone, headstone, tombstone", "gravimeter, gravity_meter", "gravure, photogravure, heliogravure", "gravy_boat, gravy_holder, sauceboat, boat", "grey, gray", "grease-gun, gun", "greasepaint", "greasy_spoon", "greatcoat, overcoat, topcoat", "great_hall", "greave, jambeau", "greengrocery", "greenhouse, nursery, glasshouse", "grenade", "grid, gridiron", "griddle", "grill, grille, grillwork", "grille, radiator_grille", "grillroom, grill", "grinder", "grinding_wheel, emery_wheel", "grindstone", "gripsack", "gristmill", "grocery_bag", "grocery_store, grocery, food_market, market", "grogram", "groined_vault", "groover", "grosgrain", "gros_point", "ground, earth", "ground_bait", "ground_control", "ground_floor, first_floor, ground_level", "groundsheet, ground_cloth", "g-string, thong", "guard, safety, safety_device", "guard_boat", "guardroom", "guardroom", "guard_ship", "guard's_van", "gueridon", "guarnerius", "guesthouse", "guestroom", "guidance_system, guidance_device", "guided_missile", "guided_missile_cruiser", "guided_missile_frigate", "guildhall", "guilloche", "guillotine", "guimpe", "guimpe", "guitar", "guitar_pick", "gulag", "gun", "gunboat", "gun_carriage", "gun_case", "gun_emplacement, weapons_emplacement", "gun_enclosure, gun_turret, turret", "gunlock, firing_mechanism", "gunnery", "gunnysack, gunny_sack, burlap_bag", "gun_pendulum", "gun_room", "gunsight, gun-sight", "gun_trigger, trigger", "gurney", "gusher", "gusset, inset", "gusset, gusset_plate", "guy, guy_cable, guy_wire, guy_rope", "gymnastic_apparatus, exerciser", "gym_shoe, sneaker, tennis_shoe", "gym_suit", "gymslip", "gypsy_cab", "gyrocompass", "gyroscope, gyro", "gyrostabilizer, gyrostabiliser", "habergeon", "habit", "habit, riding_habit", "hacienda", "hacksaw, hack_saw, metal_saw", "haft, helve", "hairbrush", "haircloth, hair", "hairdressing, hair_tonic, hair_oil, hair_grease", "hairnet", "hairpiece, false_hair, postiche", "hairpin", "hair_shirt", "hair_slide", "hair_spray", "hairspring", "hair_trigger", "halberd", "half_binding", "half_hatchet", "half_hitch", "half_track", "hall", "hall", "hall", "hall_of_fame", "hall_of_residence", "hallstand", "halter", "halter, hackamore", "hame", "hammer", "hammer, power_hammer", "hammer", "hammerhead", "hammock, sack", "hamper", "hand", "handball", "handbarrow", "handbell", "hand_blower, blow_dryer, blow_drier, hair_dryer, hair_drier", "handbow", "hand_brake, emergency, emergency_brake, parking_brake", "hand_calculator, pocket_calculator", "handcar", "handcart, pushcart, cart, go-cart", "hand_cream", "handcuff, cuff, handlock, manacle", "hand_drill, handheld_drill", "hand_glass, simple_microscope, magnifying_glass", "hand_glass, hand_mirror", "hand_grenade", "hand-held_computer, hand-held_microcomputer", "handhold", "handkerchief, hankie, hanky, hankey", "handlebar", "handloom", "hand_lotion", "hand_luggage", "hand-me-down", "hand_mower", "hand_pump", "handrest", "handsaw, hand_saw, carpenter's_saw", "handset, french_telephone", "hand_shovel", "handspike", "handstamp, rubber_stamp", "hand_throttle", "hand_tool", "hand_towel, face_towel", "hand_truck, truck", "handwear, hand_wear", "handwheel", "handwheel", "hangar_queen", "hanger", "hang_glider", "hangman's_rope, hangman's_halter, halter, hemp, hempen_necktie", "hank", "hansom, hansom_cab", "harbor, harbour", "hard_disc, hard_disk, fixed_disk", "hard_hat, tin_hat, safety_hat", "hardtop", "hardware, ironware", "hardware_store, ironmonger, ironmonger's_shop", "harmonica, mouth_organ, harp, mouth_harp", "harmonium, organ, reed_organ", "harness", "harness", "harp", "harp", "harpoon", "harpoon_gun", "harpoon_log", "harpsichord, cembalo", "harris_tweed", "harrow", "harvester, reaper", "hash_house", "hasp", "hat, chapeau, lid", "hatbox", "hatch", "hatchback, hatchback_door", "hatchback", "hatchel, heckle", "hatchet", "hatpin", "hauberk, byrnie", "hawaiian_guitar, steel_guitar", "hawse, hawsehole, hawsepipe", "hawser", "hawser_bend", "hay_bale", "hayfork", "hayloft, haymow, mow", "haymaker, hay_conditioner", "hayrack, hayrig", "hayrack", "hazard", "head", "head", "head", "headboard", "head_covering, veil", "headdress, headgear", "header", "header", "header, coping, cope", "header, lintel", "headfast", "head_gasket", "head_gate", "headgear", "headlight, headlamp", "headpiece", "headpin, kingpin", "headquarters, central_office, main_office, home_office, home_base", "headrace", "headrest", "headsail", "headscarf", "headset", "head_shop", "headstall, headpiece", "headstock", "health_spa, spa, health_club", "hearing_aid, ear_trumpet", "hearing_aid, deaf-aid", "hearse", "hearth, fireside", "hearthrug", "heart-lung_machine", "heat_engine", "heater, warmer", "heat_exchanger", "heating_pad, hot_pad", "heat_lamp, infrared_lamp", "heat_pump", "heat-seeking_missile", "heat_shield", "heat_sink", "heaume", "heaver", "heavier-than-air_craft", "heckelphone, basset_oboe", "hectograph, heliotype", "hedge, hedgerow", "hedge_trimmer", "helicon, bombardon", "helicopter, chopper, whirlybird, eggbeater", "heliograph", "heliometer", "helm", "helmet", "helmet", "hematocrit, haematocrit", "hemming-stitch", "hemostat, haemostat", "hemstitch, hemstitching", "henroost", "heraldry", "hermitage", "herringbone", "herringbone, herringbone_pattern", "herschelian_telescope, off-axis_reflector", "hessian_boot, hessian, jackboot, wellington, wellington_boot", "heterodyne_receiver, superheterodyne_receiver, superhet", "hibachi", "hideaway, retreat", "hi-fi, high_fidelity_sound_system", "high_altar", "high-angle_gun", "highball_glass", "highboard", "highboy, tallboy", "highchair, feeding_chair", "high_gear, high", "high-hat_cymbal, high_hat", "highlighter", "highlighter", "high-pass_filter", "high-rise, tower_block", "high_table", "high-warp_loom", "hijab", "hinge, flexible_joint", "hinging_post, swinging_post", "hip_boot, thigh_boot", "hipflask, pocket_flask", "hip_pad", "hip_pocket", "hippodrome", "hip_roof, hipped_roof", "hitch", "hitch", "hitching_post", "hitchrack, hitching_bar", "hob", "hobble_skirt", "hockey_skate", "hockey_stick", "hod", "hodoscope", "hoe", "hoe_handle", "hogshead", "hoist", "hold, keep", "holder", "holding_cell", "holding_device", "holding_pen, holding_paddock, holding_yard", "hollowware, holloware", "holster", "holster", "holy_of_holies, sanctum_sanctorum", "home, nursing_home, rest_home", "home_appliance, household_appliance", "home_computer", "home_plate, home_base, home, plate", "home_room, homeroom", "homespun", "homestead", "home_theater, home_theatre", "homing_torpedo", "hone", "honeycomb", "hood, bonnet, cowl, cowling", "hood", "hood", "hood, exhaust_hood", "hood", "hood_latch", "hook", "hook, claw", "hook", "hookah, narghile, nargileh, sheesha, shisha, chicha, calean, kalian, water_pipe, hubble-bubble, hubbly-bubbly", "hook_and_eye", "hookup, assemblage", "hookup", "hook_wrench, hook_spanner", "hoopskirt, crinoline", "hoosegow, hoosgow", "hoover", "hope_chest, wedding_chest", "hopper", "hopsacking, hopsack", "horizontal_bar, high_bar", "horizontal_stabilizer, horizontal_stabiliser, tailplane", "horizontal_tail", "horn", "horn", "horn", "horn_button", "hornpipe, pibgorn, stockhorn", "horse, gymnastic_horse", "horsebox", "horsecar", "horse_cart, horse-cart", "horsecloth", "horse-drawn_vehicle", "horsehair", "horsehair_wig", "horseless_carriage", "horse_pistol, horse-pistol", "horseshoe, shoe", "horseshoe", "horse-trail", "horsewhip", "hose", "hosiery, hose", "hospice", "hospital, infirmary", "hospital_bed", "hospital_room", "hospital_ship", "hospital_train", "hostel, youth_hostel, student_lodging", "hostel, hostelry, inn, lodge, auberge", "hot-air_balloon", "hotel", "hotel-casino, casino-hotel", "hotel-casino, casino-hotel", "hotel_room", "hot_line", "hot_pants", "hot_plate, hotplate", "hot_rod, hot-rod", "hot_spot, hotspot", "hot_tub", "hot-water_bottle, hot-water_bag", "houndstooth_check, hound's-tooth_check, dogstooth_check, dogs-tooth_check, dog's-tooth_check", "hourglass", "hour_hand, little_hand", "house", "house", "houseboat", "houselights", "house_of_cards, cardhouse, card-house, cardcastle", "house_of_correction", "house_paint, housepaint", "housetop", "housing, lodging, living_accommodations", "hovel, hut, hutch, shack, shanty", "hovercraft, ground-effect_machine", "howdah, houdah", "huarache, huaraches", "hub-and-spoke, hub-and-spoke_system", "hubcap", "huck, huckaback", "hug-me-tight", "hula-hoop", "hulk", "hull", "humeral_veil, veil", "humvee, hum-vee", "hunter, hunting_watch", "hunting_knife", "hurdle", "hurricane_deck, hurricane_roof, promenade_deck, awning_deck", "hurricane_lamp, hurricane_lantern, tornado_lantern, storm_lantern, storm_lamp", "hut, army_hut, field_hut", "hutch", "hutment", "hydraulic_brake, hydraulic_brakes", "hydraulic_press", "hydraulic_pump, hydraulic_ram", "hydraulic_system", "hydraulic_transmission, hydraulic_transmission_system", "hydroelectric_turbine", "hydrofoil, hydroplane", "hydrofoil, foil", "hydrogen_bomb, h-bomb, fusion_bomb, thermonuclear_bomb", "hydrometer, gravimeter", "hygrodeik", "hygrometer", "hygroscope", "hyperbaric_chamber", "hypercoaster", "hypermarket", "hypodermic_needle", "hypodermic_syringe, hypodermic, hypo", "hypsometer", "hysterosalpingogram", "i-beam", "ice_ax, ice_axe, piolet", "iceboat, ice_yacht, scooter", "icebreaker, iceboat", "iced-tea_spoon", "ice_hockey_rink, ice-hockey_rink", "ice_machine", "ice_maker", "ice_pack, ice_bag", "icepick, ice_pick", "ice_rink, ice-skating_rink, ice", "ice_skate", "ice_tongs", "icetray", "iconoscope", "identikit, identikit_picture", "idle_pulley, idler_pulley, idle_wheel", "igloo, iglu", "ignition_coil", "ignition_key", "ignition_switch", "imaret", "immovable_bandage", "impact_printer", "impeller", "implant", "implement", "impression", "imprint", "improvised_explosive_device, i.e.d., ied", "impulse_turbine", "in-basket, in-tray", "incendiary_bomb, incendiary, firebomb", "incinerator", "inclined_plane", "inclinometer, dip_circle", "inclinometer", "incrustation, encrustation", "incubator, brooder", "index_register", "indiaman", "indian_club", "indicator", "induction_coil", "inductor, inductance", "industrial_watercourse", "inertial_guidance_system, inertial_navigation_system", "inflater, inflator", "inhaler, inhalator", "injector", "ink_bottle, inkpot", "ink_eraser", "ink-jet_printer", "inkle", "inkstand", "inkwell, inkstand", "inlay", "inside_caliper", "insole, innersole", "instep", "instillator", "institution", "instrument", "instrument_of_punishment", "instrument_of_torture", "intaglio, diaglyph", "intake_valve", "integrated_circuit, microcircuit", "integrator, planimeter", "intelnet", "interceptor", "interchange", "intercommunication_system, intercom", "intercontinental_ballistic_missile, icbm", "interface, port", "interferometer", "interior_door", "internal-combustion_engine, ice", "internal_drive", "internet, net, cyberspace", "interphone", "interrupter", "intersection, crossroad, crossway, crossing, carrefour", "interstice", "intraocular_lens", "intravenous_pyelogram, ivp", "inverter", "ion_engine", "ionization_chamber, ionization_tube", "ipod", "video_ipod", "iron, smoothing_iron", "iron", "iron, branding_iron", "irons, chains", "ironclad", "iron_foundry", "iron_horse", "ironing", "iron_lung", "ironmongery", "ironworks", "irrigation_ditch", "izar", "jabot", "jack", "jack, jackstones", "jack", "jack", "jacket", "jacket", "jacket", "jack-in-the-box", "jack-o'-lantern", "jack_plane", "jacob's_ladder, jack_ladder, pilot_ladder", "jaconet", "jacquard_loom, jacquard", "jacquard", "jag, dag", "jail, jailhouse, gaol, clink, slammer, poky, pokey", "jalousie", "jamb", "jammer", "jampot, jamjar", "japan", "jar", "jarvik_heart, jarvik_artificial_heart", "jaunting_car, jaunty_car", "javelin", "jaw", "jaws_of_life", "jean, blue_jean, denim", "jeep, landrover", "jellaba", "jerkin", "jeroboam, double-magnum", "jersey", "jersey, t-shirt, tee_shirt", "jet, jet_plane, jet-propelled_plane", "jet_bridge", "jet_engine", "jetliner", "jeweler's_glass", "jewelled_headdress, jeweled_headdress", "jew's_harp, jews'_harp, mouth_bow", "jib", "jibboom", "jig", "jig", "jiggermast, jigger", "jigsaw, scroll_saw, fretsaw", "jigsaw_puzzle", "jinrikisha, ricksha, rickshaw", "jobcentre", "jodhpurs, jodhpur_breeches, riding_breeches", "jodhpur, jodhpur_boot, jodhpur_shoe", "joinery", "joint", "joint_direct_attack_munition, jdam", "jointer, jointer_plane, jointing_plane, long_plane", "joist", "jolly_boat, jolly", "jorum", "joss_house", "journal_bearing", "journal_box", "joystick", "jungle_gym", "junk", "jug", "jukebox, nickelodeon", "jumbojet, jumbo_jet", "jumper, pinafore, pinny", "jumper", "jumper", "jumper", "jumper_cable, jumper_lead, lead, booster_cable", "jump_seat", "jump_suit", "jump_suit, jumpsuit", "junction", "junction, conjunction", "junction_barrier, barrier_strip", "junk_shop", "jury_box", "jury_mast", "kachina", "kaffiyeh", "kalansuwa", "kalashnikov", "kameez", "kanzu", "katharometer", "kayak", "kazoo", "keel", "keelboat", "keelson", "keep, donjon, dungeon", "keg", "kennel, doghouse, dog_house", "kepi, peaked_cap, service_cap, yachting_cap", "keratoscope", "kerchief", "ketch", "kettle, boiler", "kettle, kettledrum, tympanum, tympani, timpani", "key", "key", "keyboard", "keyboard_buffer", "keyboard_instrument", "keyhole", "keyhole_saw", "khadi, khaddar", "khaki", "khakis", "khimar", "khukuri", "kick_pleat", "kicksorter, pulse_height_analyzer", "kickstand", "kick_starter, kick_start", "kid_glove, suede_glove", "kiln", "kilt", "kimono", "kinescope, picture_tube, television_tube", "kinetoscope", "king", "king", "kingbolt, kingpin, swivel_pin", "king_post", "kipp's_apparatus", "kirk", "kirpan", "kirtle", "kirtle", "kit, outfit", "kit", "kitbag, kit_bag", "kitchen", "kitchen_appliance", "kitchenette", "kitchen_table", "kitchen_utensil", "kitchenware", "kite_balloon", "klaxon, claxon", "klieg_light", "klystron", "knee_brace", "knee-high, knee-hi", "knee_pad", "knee_piece", "knife", "knife", "knife_blade", "knight, horse", "knit", "knitting_machine", "knitting_needle", "knitwear", "knob, boss", "knob, pommel", "knobble", "knobkerrie, knobkerry", "knocker, doorknocker, rapper", "knot", "knuckle_joint, hinge_joint", "kohl", "koto", "kraal", "kremlin", "kris, creese, crease", "krummhorn, crumhorn, cromorne", "kundt's_tube", "kurdistan", "kurta", "kylix, cylix", "kymograph, cymograph", "lab_bench, laboratory_bench", "lab_coat, laboratory_coat", "lace", "lacquer", "lacquerware", "lacrosse_ball", "ladder-back", "ladder-back, ladder-back_chair", "ladder_truck, aerial_ladder_truck", "ladies'_room, powder_room", "ladle", "lady_chapel", "lagerphone", "lag_screw, lag_bolt", "lake_dwelling, pile_dwelling", "lally, lally_column", "lamasery", "lambrequin", "lame", "laminar_flow_clean_room", "laminate", "lamination", "lamp", "lamp", "lamp_house, lamphouse, lamp_housing", "lamppost", "lampshade, lamp_shade", "lanai", "lancet_arch, lancet", "lancet_window", "landau", "lander", "landing_craft", "landing_flap", "landing_gear", "landing_net", "landing_skid", "land_line, landline", "land_mine, ground-emplaced_mine, booby_trap", "land_office", "lanolin", "lantern", "lanyard, laniard", "lap, lap_covering", "laparoscope", "lapboard", "lapel", "lap_joint, splice", "laptop, laptop_computer", "laryngoscope", "laser, optical_maser", "laser-guided_bomb, lgb", "laser_printer", "lash, thong", "lashing", "lasso, lariat, riata, reata", "latch", "latch, door_latch", "latchet", "latchkey", "lateen, lateen_sail", "latex_paint, latex, rubber-base_paint", "lath", "lathe", "latrine", "lattice, latticework, fretwork", "launch", "launcher, rocket_launcher", "laundry, wash, washing, washables", "laundry_cart", "laundry_truck", "lavalava", "lavaliere, lavalier, lavalliere", "laver", "lawn_chair, garden_chair", "lawn_furniture", "lawn_mower, mower", "layette", "lead-acid_battery, lead-acid_accumulator", "lead-in", "leading_rein", "lead_pencil", "leaf_spring", "lean-to", "lean-to_tent", "leash, tether, lead", "leatherette, imitation_leather", "leather_strip", "leclanche_cell", "lectern, reading_desk", "lecture_room", "lederhosen", "ledger_board", "leg", "leg", "legging, leging, leg_covering", "leiden_jar, leyden_jar", "leisure_wear", "lens, lense, lens_system", "lens, electron_lens", "lens_cap, lens_cover", "lens_implant, interocular_lens_implant, iol", "leotard, unitard, body_suit, cat_suit", "letter_case", "letter_opener, paper_knife, paperknife", "levee", "level, spirit_level", "lever", "lever, lever_tumbler", "lever", "lever_lock", "levi's, levis", "liberty_ship", "library", "library", "lid", "liebig_condenser", "lie_detector", "lifeboat", "life_buoy, lifesaver, life_belt, life_ring", "life_jacket, life_vest, cork_jacket", "life_office", "life_preserver, preserver, flotation_device", "life-support_system, life_support", "life-support_system, life_support", "lifting_device", "lift_pump", "ligament", "ligature", "light, light_source", "light_arm", "light_bulb, lightbulb, bulb, incandescent_lamp, electric_light, electric-light_bulb", "light_circuit, lighting_circuit", "light-emitting_diode, led", "lighter, light, igniter, ignitor", "lighter-than-air_craft", "light_filter, diffusing_screen", "lighting", "light_machine_gun", "light_meter, exposure_meter, photometer", "light_microscope", "lightning_rod, lightning_conductor", "light_pen, electronic_stylus", "lightship", "lilo", "limber", "limekiln", "limiter, clipper", "limousine, limo", "linear_accelerator, linac", "linen", "line_printer, line-at-a-time_printer", "liner, ocean_liner", "liner, lining", "lingerie, intimate_apparel", "lining, liner", "link, data_link", "linkage", "link_trainer", "linocut", "linoleum_knife, linoleum_cutter", "linotype, linotype_machine", "linsey-woolsey", "linstock", "lion-jaw_forceps", "lip-gloss", "lipstick, lip_rouge", "liqueur_glass", "liquid_crystal_display, lcd", "liquid_metal_reactor", "lisle", "lister, lister_plow, lister_plough, middlebreaker, middle_buster", "litterbin, litter_basket, litter-basket", "little_theater, little_theatre", "live_axle, driving_axle", "living_quarters, quarters", "living_room, living-room, sitting_room, front_room, parlor, parlour", "load", "loafer", "loaner", "lobe", "lobster_pot", "local", "local_area_network, lan", "local_oscillator, heterodyne_oscillator", "lochaber_ax", "lock", "lock, ignition_lock", "lock, lock_chamber", "lock", "lockage", "locker", "locker_room", "locket", "lock-gate", "locking_pliers", "lockring, lock_ring, lock_washer", "lockstitch", "lockup", "locomotive, engine, locomotive_engine, railway_locomotive", "lodge, indian_lodge", "lodge, hunting_lodge", "lodge", "lodging_house, rooming_house", "loft, attic, garret", "loft, pigeon_loft", "loft", "log_cabin", "loggia", "longbow", "long_iron", "long_johns", "long_sleeve", "long_tom", "long_trousers, long_pants", "long_underwear, union_suit", "looking_glass, glass", "lookout, observation_tower, lookout_station, observatory", "loom", "loop_knot", "lorgnette", "lorraine_cross, cross_of_lorraine", "lorry, camion", "lota", "lotion", "loudspeaker, speaker, speaker_unit, loudspeaker_system, speaker_system", "lounge, waiting_room, waiting_area", "lounger", "lounging_jacket, smoking_jacket", "lounging_pajama, lounging_pyjama", "loungewear", "loupe, jeweler's_loupe", "louvered_window, jalousie", "love_knot, lovers'_knot, lover's_knot, true_lovers'_knot, true_lover's_knot", "love_seat, loveseat, tete-a-tete, vis-a-vis", "loving_cup", "lowboy", "low-pass_filter", "low-warp-loom", "lp, l-p", "l-plate", "lubber's_hole", "lubricating_system, force-feed_lubricating_system, force_feed, pressure-feed_lubricating_system, pressure_feed", "luff", "lug", "luge", "luger", "luggage_carrier", "luggage_compartment, automobile_trunk, trunk", "luggage_rack, roof_rack", "lugger", "lugsail, lug", "lug_wrench", "lumberjack, lumber_jacket", "lumbermill, sawmill", "lunar_excursion_module, lunar_module, lem", "lunchroom", "lunette", "lungi, lungyi, longyi", "lunula", "lusterware", "lute", "luxury_liner, express_luxury_liner", "lyceum", "lychgate, lichgate", "lyre", "machete, matchet, panga", "machicolation", "machine", "machine, simple_machine", "machine_bolt", "machine_gun", "machinery", "machine_screw", "machine_tool", "machinist's_vise, metalworking_vise", "machmeter", "mackinaw", "mackinaw, mackinaw_boat", "mackinaw, mackinaw_coat", "mackintosh, macintosh", "macrame", "madras", "mae_west, air_jacket", "magazine_rack", "magic_lantern", "magnet", "magnetic_bottle", "magnetic_compass", "magnetic_core_memory, core_memory", "magnetic_disk, magnetic_disc, disk, disc", "magnetic_head", "magnetic_mine", "magnetic_needle", "magnetic_recorder", "magnetic_stripe", "magnetic_tape, mag_tape, tape", "magneto, magnetoelectric_machine", "magnetometer, gaussmeter", "magnetron", "magnifier", "magnum", "magnus_hitch", "mail", "mailbag, postbag", "mailbag, mail_pouch", "mailboat, mail_boat, packet, packet_boat", "mailbox, letter_box", "mail_car", "maildrop", "mailer", "maillot", "maillot, tank_suit", "mailsorter", "mail_train", "mainframe, mainframe_computer", "mainmast", "main_rotor", "mainsail", "mainspring", "main-topmast", "main-topsail", "main_yard", "maisonette, maisonnette", "majolica, maiolica", "makeup, make-up, war_paint", "maksutov_telescope", "malacca, malacca_cane", "mallet, beetle", "mallet, hammer", "mallet", "mammogram", "mandola", "mandolin", "manger, trough", "mangle", "manhole", "manhole_cover", "man-of-war, ship_of_the_line", "manometer", "manor, manor_house", "manor_hall, hall", "manpad", "mansard, mansard_roof", "manse", "mansion, mansion_house, manse, hall, residence", "mantel, mantelpiece, mantle, mantlepiece, chimneypiece", "mantelet, mantilla", "mantilla", "mao_jacket", "map", "maquiladora", "maraca", "marble", "marching_order", "marimba, xylophone", "marina", "marker", "marketplace, market_place, mart, market", "marlinespike, marlinspike, marlingspike", "marocain, crepe_marocain", "marquee, marquise", "marquetry, marqueterie", "marriage_bed", "martello_tower", "martingale", "mascara", "maser", "masher", "mashie, five_iron", "mashie_niblick, seven_iron", "masjid, musjid", "mask", "mask", "masonite", "mason_jar", "masonry", "mason's_level", "massage_parlor", "massage_parlor", "mass_spectrograph", "mass_spectrometer, spectrometer", "mast", "mast", "mastaba, mastabah", "master_bedroom", "masterpiece, chef-d'oeuvre", "mat", "mat, gym_mat", "match, lucifer, friction_match", "match", "matchboard", "matchbook", "matchbox", "matchlock", "match_plane, tonguing_and_grooving_plane", "matchstick", "material", "materiel, equipage", "maternity_hospital", "maternity_ward", "matrix", "matthew_walker, matthew_walker_knot", "matting", "mattock", "mattress_cover", "maul, sledge, sledgehammer", "maulstick, mahlstick", "mauser", "mausoleum", "maxi", "maxim_gun", "maximum_and_minimum_thermometer", "maypole", "maze, labyrinth", "mazer", "means", "measure", "measuring_cup", "measuring_instrument, measuring_system, measuring_device", "measuring_stick, measure, measuring_rod", "meat_counter", "meat_grinder", "meat_hook", "meat_house", "meat_safe", "meat_thermometer", "mechanical_device", "mechanical_piano, pianola, player_piano", "mechanical_system", "mechanism", "medical_building, health_facility, healthcare_facility", "medical_instrument", "medicine_ball", "medicine_chest, medicine_cabinet", "medline", "megalith, megalithic_structure", "megaphone", "memorial, monument", "memory, computer_memory, storage, computer_storage, store, memory_board", "memory_chip", "memory_device, storage_device", "menagerie, zoo, zoological_garden", "mending", "menhir, standing_stone", "menorah", "menorah", "man's_clothing", "men's_room, men's", "mercantile_establishment, retail_store, sales_outlet, outlet", "mercury_barometer", "mercury_cell", "mercury_thermometer, mercury-in-glass_thermometer", "mercury-vapor_lamp", "mercy_seat", "merlon", "mess, mess_hall", "mess_jacket, monkey_jacket, shell_jacket", "mess_kit", "messuage", "metal_detector", "metallic", "metal_screw", "metal_wood", "meteorological_balloon", "meter", "meterstick, metrestick", "metronome", "mezzanine, mezzanine_floor, entresol", "mezzanine, first_balcony", "microbalance", "microbrewery", "microfiche", "microfilm", "micrometer, micrometer_gauge, micrometer_caliper", "microphone, mike", "microprocessor", "microscope", "microtome", "microwave, microwave_oven", "microwave_diathermy_machine", "microwave_linear_accelerator", "middy, middy_blouse", "midiron, two_iron", "mihrab", "mihrab", "military_hospital", "military_quarters", "military_uniform", "military_vehicle", "milk_bar", "milk_can", "milk_float", "milking_machine", "milking_stool", "milk_wagon, milkwagon", "mill, grinder, milling_machinery", "milldam", "miller, milling_machine", "milliammeter", "millinery, woman's_hat", "millinery, hat_shop", "milling", "millivoltmeter", "millstone", "millstone", "millwheel, mill_wheel", "mimeograph, mimeo, mimeograph_machine, roneo, roneograph", "minaret", "mincer, mincing_machine", "mine", "mine_detector", "minelayer", "mineshaft", "minibar, cellaret", "minibike, motorbike", "minibus", "minicar", "minicomputer", "ministry", "miniskirt, mini", "minisub, minisubmarine", "minivan", "miniver", "mink, mink_coat", "minster", "mint", "minute_hand, big_hand", "minuteman", "mirror", "missile", "missile_defense_system, missile_defence_system", "miter_box, mitre_box", "miter_joint, mitre_joint, miter, mitre", "mitten", "mixer", "mixer", "mixing_bowl", "mixing_faucet", "mizzen, mizen", "mizzenmast, mizenmast, mizzen, mizen", "mobcap", "mobile_home, manufactured_home", "moccasin, mocassin", "mock-up", "mod_con", "model_t", "modem", "modillion", "module", "module", "mohair", "moire, watered-silk", "mold, mould, cast", "moldboard, mouldboard", "moldboard_plow, mouldboard_plough", "moleskin", "molotov_cocktail, petrol_bomb, gasoline_bomb", "monastery", "monastic_habit", "moneybag", "money_belt", "monitor", "monitor", "monitor, monitoring_device", "monkey-wrench, monkey_wrench", "monk's_cloth", "monochrome", "monocle, eyeglass", "monofocal_lens_implant, monofocal_iol", "monoplane", "monotype", "monstrance, ostensorium", "mooring_tower, mooring_mast", "moorish_arch, horseshoe_arch", "moped", "mop_handle", "moquette", "morgue, mortuary, dead_room", "morion, cabasset", "morning_dress", "morning_dress", "morning_room", "morris_chair", "mortar, howitzer, trench_mortar", "mortar", "mortarboard", "mortise_joint, mortise-and-tenon_joint", "mosaic", "mosque", "mosquito_net", "motel", "motel_room", "mother_hubbard, muumuu", "motion-picture_camera, movie_camera, cine-camera", "motion-picture_film, movie_film, cine-film", "motley", "motley", "motor", "motorboat, powerboat", "motorcycle, bike", "motor_hotel, motor_inn, motor_lodge, tourist_court, court", "motorized_wheelchair", "motor_scooter, scooter", "motor_vehicle, automotive_vehicle", "mound, hill", "mound, hill, pitcher's_mound", "mount, setting", "mountain_bike, all-terrain_bike, off-roader", "mountain_tent", "mouse, computer_mouse", "mouse_button", "mousetrap", "mousse, hair_mousse, hair_gel", "mouthpiece, embouchure", "mouthpiece", "mouthpiece, gumshield", "movement", "movie_projector, cine_projector, film_projector", "moving-coil_galvanometer", "moving_van", "mud_brick", "mudguard, splash_guard, splash-guard", "mudhif", "muff", "muffle", "muffler", "mufti", "mug", "mulch", "mule, scuff", "multichannel_recorder", "multiengine_airplane, multiengine_plane", "multiplex", "multiplexer", "multiprocessor", "multistage_rocket, step_rocket", "munition, ordnance, ordnance_store", "murphy_bed", "musette, shepherd's_pipe", "musette_pipe", "museum", "mushroom_anchor", "musical_instrument, instrument", "music_box, musical_box", "music_hall, vaudeville_theater, vaudeville_theatre", "music_school", "music_stand, music_rack", "music_stool, piano_stool", "musket", "musket_ball, ball", "muslin", "mustache_cup, moustache_cup", "mustard_plaster, sinapism", "mute", "muzzle_loader", "muzzle", "myelogram", "nacelle", "nail", "nailbrush", "nailfile", "nailhead", "nailhead", "nail_polish, nail_enamel, nail_varnish", "nainsook", "napier's_bones, napier's_rods", "nard, spikenard", "narrowbody_aircraft, narrow-body_aircraft, narrow-body", "narrow_wale", "narthex", "narthex", "nasotracheal_tube", "national_monument", "nautilus, nuclear_submarine, nuclear-powered_submarine", "navigational_system", "naval_equipment", "naval_gun", "naval_missile", "naval_radar", "naval_tactical_data_system", "naval_weaponry", "nave", "navigational_instrument", "nebuchadnezzar", "neckband", "neck_brace", "neckcloth, stock", "neckerchief", "necklace", "necklet", "neckline", "neckpiece", "necktie, tie", "neckwear", "needle", "needle", "needlenose_pliers", "needlework, needlecraft", "negative", "negative_magnetic_pole, negative_pole, south-seeking_pole", "negative_pole", "negligee, neglige, peignoir, wrapper, housecoat", "neolith", "neon_lamp, neon_induction_lamp, neon_tube", "nephoscope", "nest", "nest_egg", "net, network, mesh, meshing, meshwork", "net", "net", "net", "network, electronic_network", "network", "neutron_bomb", "newel", "newel_post, newel", "newspaper, paper", "newsroom", "newsroom", "newsstand", "newtonian_telescope, newtonian_reflector", "nib, pen_nib", "niblick, nine_iron", "nicad, nickel-cadmium_accumulator", "nickel-iron_battery, nickel-iron_accumulator", "nicol_prism", "night_bell", "nightcap", "nightgown, gown, nightie, night-robe, nightdress", "night_latch", "night-light", "nightshirt", "nightwear, sleepwear, nightclothes", "ninepin, skittle, skittle_pin", "ninepin_ball, skittle_ball", "ninon", "nipple", "nipple_shield", "niqab", "nissen_hut, quonset_hut", "nogging", "noisemaker", "nonsmoker, nonsmoking_car", "non-volatile_storage, nonvolatile_storage", "norfolk_jacket", "noria", "nosebag, feedbag", "noseband, nosepiece", "nose_flute", "nosewheel", "notebook, notebook_computer", "nuclear-powered_ship", "nuclear_reactor, reactor", "nuclear_rocket", "nuclear_weapon, atomic_weapon", "nude, nude_painting", "numdah, numdah_rug, nammad", "nun's_habit", "nursery, baby's_room", "nut_and_bolt", "nutcracker", "nylon", "nylons, nylon_stocking, rayons, rayon_stocking, silk_stocking", "oar", "oast", "oast_house", "obelisk", "object_ball", "objective, objective_lens, object_lens, object_glass", "oblique_bandage", "oboe, hautboy, hautbois", "oboe_da_caccia", "oboe_d'amore", "observation_dome", "observatory", "obstacle", "obturator", "ocarina, sweet_potato", "octant", "odd-leg_caliper", "odometer, hodometer, mileometer, milometer", "oeil_de_boeuf", "office, business_office", "office_building, office_block", "office_furniture", "officer's_mess", "off-line_equipment, auxiliary_equipment", "ogee, cyma_reversa", "ogee_arch, keel_arch", "ohmmeter", "oil, oil_color, oil_colour", "oilcan", "oilcloth", "oil_filter", "oil_heater, oilstove, kerosene_heater, kerosine_heater", "oil_lamp, kerosene_lamp, kerosine_lamp", "oil_paint", "oil_pump", "oil_refinery, petroleum_refinery", "oilskin, slicker", "oil_slick", "oilstone", "oil_tanker, oiler, tanker, tank_ship", "old_school_tie", "olive_drab", "olive_drab, olive-drab_uniform", "olympian_zeus", "omelet_pan, omelette_pan", "omnidirectional_antenna, nondirectional_antenna", "omnirange, omnidirectional_range, omnidirectional_radio_range", "onion_dome", "open-air_market, open-air_marketplace, market_square", "open_circuit", "open-end_wrench, tappet_wrench", "opener", "open-hearth_furnace", "openside_plane, rabbet_plane", "open_sight", "openwork", "opera, opera_house", "opera_cloak, opera_hood", "operating_microscope", "operating_room, or, operating_theater, operating_theatre, surgery", "operating_table", "ophthalmoscope", "optical_device", "optical_disk, optical_disc", "optical_instrument", "optical_pyrometer, pyroscope", "optical_telescope", "orchestra_pit, pit", "ordinary, ordinary_bicycle", "organ, pipe_organ", "organdy, organdie", "organic_light-emitting_diode, oled", "organ_loft", "organ_pipe, pipe, pipework", "organza", "oriel, oriel_window", "oriflamme", "o_ring", "orlon", "orlop_deck, orlop, fourth_deck", "orphanage, orphans'_asylum", "orphrey", "orrery", "orthicon, image_orthicon", "orthochromatic_film", "orthopter, ornithopter", "orthoscope", "oscillograph", "oscilloscope, scope, cathode-ray_oscilloscope, cro", "ossuary", "otoscope, auriscope, auroscope", "ottoman, pouf, pouffe, puff, hassock", "oubliette", "out-basket, out-tray", "outboard_motor, outboard", "outboard_motorboat, outboard", "outbuilding", "outerwear, overclothes", "outfall", "outfit, getup, rig, turnout", "outfitter", "outhouse, privy, earth-closet, jakes", "output_device", "outrigger", "outrigger_canoe", "outside_caliper", "outside_mirror", "outwork", "oven", "oven_thermometer", "overall", "overall, boilersuit, boilers_suit", "overcoat, overcoating", "overdrive", "overgarment, outer_garment", "overhand_knot", "overhang", "overhead_projector", "overmantel", "overnighter, overnight_bag, overnight_case", "overpass, flyover", "override", "overshoe", "overskirt", "oxbow", "oxbridge", "oxcart", "oxeye", "oxford", "oximeter", "oxyacetylene_torch", "oxygen_mask", "oyster_bar", "oyster_bed, oyster_bank, oyster_park", "pace_car", "pacemaker, artificial_pacemaker", "pack", "pack", "pack, face_pack", "package, parcel", "package_store, liquor_store, off-licence", "packaging", "packet", "packing_box, packing_case", "packinghouse, packing_plant", "packinghouse", "packing_needle", "packsaddle", "paddle, boat_paddle", "paddle", "paddle", "paddle_box, paddle-box", "paddle_steamer, paddle-wheeler", "paddlewheel, paddle_wheel", "paddock", "padlock", "page_printer, page-at-a-time_printer", "paint, pigment", "paintball", "paintball_gun", "paintbox", "paintbrush", "paisley", "pajama, pyjama, pj's, jammies", "pajama, pyjama", "palace", "palace, castle", "palace", "palanquin, palankeen", "paleolith", "palestra, palaestra", "palette, pallet", "palette_knife", "palisade", "pallet", "pallette, palette", "pallium", "pallium", "pan", "pan, cooking_pan", "pancake_turner", "panchromatic_film", "panda_car", "paneling, panelling, pane", "panhandle", "panic_button", "pannier", "pannier", "pannikin", "panopticon", "panopticon", "panpipe, pandean_pipe, syrinx", "pantaloon", "pantechnicon", "pantheon", "pantheon", "pantie, panty, scanty, step-in", "panting, trousering", "pant_leg, trouser_leg", "pantograph", "pantry, larder, buttery", "pants_suit, pantsuit", "panty_girdle", "pantyhose", "panzer", "paper_chain", "paper_clip, paperclip, gem_clip", "paper_cutter", "paper_fastener", "paper_feed", "paper_mill", "paper_towel", "parabolic_mirror", "parabolic_reflector, paraboloid_reflector", "parachute, chute", "parallel_bars, bars", "parallel_circuit, shunt_circuit", "parallel_interface, parallel_port", "parang", "parapet, breastwork", "parapet", "parasail", "parasol, sunshade", "parer, paring_knife", "parfait_glass", "pargeting, pargetting, pargetry", "pari-mutuel_machine, totalizer, totaliser, totalizator, totalisator", "parka, windbreaker, windcheater, anorak", "park_bench", "parking_meter", "parlor, parlour", "parquet, parquet_floor", "parquetry, parqueterie", "parsonage, vicarage, rectory", "parsons_table", "partial_denture", "particle_detector", "partition, divider", "parts_bin", "party_line", "party_wall", "parvis", "passenger_car, coach, carriage", "passenger_ship", "passenger_train", "passenger_van", "passe-partout", "passive_matrix_display", "passkey, passe-partout, master_key, master", "pass-through", "pastry_cart", "patch", "patchcord", "patchouli, patchouly, pachouli", "patch_pocket", "patchwork, patchwork_quilt", "patent_log, screw_log, taffrail_log", "paternoster", "patina", "patio, terrace", "patisserie", "patka", "patrol_boat, patrol_ship", "patty-pan", "pave", "pavilion, marquee", "pavior, paviour, paving_machine", "pavis, pavise", "pawn", "pawnbroker's_shop, pawnshop, loan_office", "pay-phone, pay-station", "pc_board", "peach_orchard", "pea_jacket, peacoat", "peavey, peavy, cant_dog, dog_hook", "pectoral, pectoral_medallion", "pedal, treadle, foot_pedal, foot_lever", "pedal_pusher, toreador_pants", "pedestal, plinth, footstall", "pedestal_table", "pedestrian_crossing, zebra_crossing", "pedicab, cycle_rickshaw", "pediment", "pedometer", "peeler", "peep_sight", "peg, nog", "peg, pin, thole, tholepin, rowlock, oarlock", "peg", "peg, wooden_leg, leg, pegleg", "pegboard", "pelham", "pelican_crossing", "pelisse", "pelvimeter", "pen", "penal_colony", "penal_institution, penal_facility", "penalty_box", "pen-and-ink", "pencil", "pencil", "pencil_box, pencil_case", "pencil_sharpener", "pendant_earring, drop_earring, eardrop", "pendulum", "pendulum_clock", "pendulum_watch", "penetration_bomb", "penile_implant", "penitentiary, pen", "penknife", "penlight", "pennant, pennon, streamer, waft", "pennywhistle, tin_whistle, whistle", "penthouse", "pentode", "peplos, peplus, peplum", "peplum", "pepper_mill, pepper_grinder", "pepper_shaker, pepper_box, pepper_pot", "pepper_spray", "percale", "percolator", "percussion_cap", "percussion_instrument, percussive_instrument", "perforation", "perfume, essence", "perfumery", "perfumery", "perfumery", "peripheral, computer_peripheral, peripheral_device", "periscope", "peristyle", "periwig, peruke", "permanent_press, durable_press", "perpetual_motion_machine", "personal_computer, pc, microcomputer", "personal_digital_assistant, pda, personal_organizer, personal_organiser, organizer, organiser", "personnel_carrier", "pestle", "pestle, muller, pounder", "petcock", "petri_dish", "petrolatum_gauze", "pet_shop", "petticoat, half-slip, underskirt", "pew, church_bench", "phial, vial, ampule, ampul, ampoule", "phillips_screw", "phillips_screwdriver", "phonograph_needle, needle", "phonograph_record, phonograph_recording, record, disk, disc, platter", "photocathode", "photocoagulator", "photocopier", "photographic_equipment", "photographic_paper, photographic_material", "photometer", "photomicrograph", "photostat, photostat_machine", "photostat", "physical_pendulum, compound_pendulum", "piano, pianoforte, forte-piano", "piano_action", "piano_keyboard, fingerboard, clavier", "piano_wire", "piccolo", "pick, pickax, pickaxe", "pick", "pick, plectrum, plectron", "pickelhaube", "picket_boat", "picket_fence, paling", "picket_ship", "pickle_barrel", "pickup, pickup_truck", "picture_frame", "picture_hat", "picture_rail", "picture_window", "piece_of_cloth, piece_of_material", "pied-a-terre", "pier", "pier", "pier_arch", "pier_glass, pier_mirror", "pier_table", "pieta", "piezometer", "pig_bed, pig", "piggery, pig_farm", "piggy_bank, penny_bank", "pilaster", "pile, spile, piling, stilt", "pile_driver", "pill_bottle", "pillbox, toque, turban", "pillion", "pillory", "pillow", "pillow_block", "pillow_lace, bobbin_lace", "pillow_sham", "pilot_bit", "pilot_boat", "pilot_burner, pilot_light, pilot", "pilot_cloth", "pilot_engine", "pilothouse, wheelhouse", "pilot_light, pilot_lamp, indicator_lamp", "pin", "pin, flag", "pin, pin_tumbler", "pinata", "pinball_machine, pin_table", "pince-nez", "pincer, pair_of_pincers, tweezer, pair_of_tweezers", "pinch_bar", "pincurl_clip", "pinfold", "ping-pong_ball", "pinhead", "pinion", "pinnacle", "pinprick", "pinstripe", "pinstripe", "pinstripe", "pintle", "pinwheel, pinwheel_wind_collector", "pinwheel", "tabor_pipe", "pipe", "pipe_bomb", "pipe_cleaner", "pipe_cutter", "pipefitting, pipe_fitting", "pipet, pipette", "pipe_vise, pipe_clamp", "pipe_wrench, tube_wrench", "pique", "pirate, pirate_ship", "piste", "pistol, handgun, side_arm, shooting_iron", "pistol_grip", "piston, plunger", "piston_ring", "piston_rod", "pit", "pitcher, ewer", "pitchfork", "pitching_wedge", "pitch_pipe", "pith_hat, pith_helmet, sun_helmet, topee, topi", "piton", "pitot-static_tube, pitot_head, pitot_tube", "pitot_tube, pitot", "pitsaw", "pivot, pin", "pivoting_window", "pizzeria, pizza_shop, pizza_parlor", "place_of_business, business_establishment", "place_of_worship, house_of_prayer, house_of_god, house_of_worship", "placket", "planchet, coin_blank", "plane, carpenter's_plane, woodworking_plane", "plane, planer, planing_machine", "plane_seat", "planetarium", "planetarium", "planetarium", "planetary_gear, epicyclic_gear, planet_wheel, planet_gear", "plank-bed", "planking", "planner", "plant, works, industrial_plant", "planter", "plaster, adhesive_plaster, sticking_plaster", "plasterboard, gypsum_board", "plastering_trowel", "plastic_bag", "plastic_bomb", "plastic_laminate", "plastic_wrap", "plastron", "plastron", "plastron", "plate, scale, shell", "plate, collection_plate", "plate", "platen", "platen", "plate_rack", "plate_rail", "platform", "platform, weapons_platform", "platform", "platform_bed", "platform_rocker", "plating, metal_plating", "platter", "playback", "playbox, play-box", "playground", "playpen, pen", "playsuit", "plaza, mall, center, shopping_mall, shopping_center, shopping_centre", "pleat, plait", "plenum", "plethysmograph", "pleximeter, plessimeter", "plexor, plessor, percussor", "pliers, pair_of_pliers, plyers", "plimsoll", "plotter", "plow, plough", "plug, stopper, stopple", "plug, male_plug", "plug_fuse", "plughole", "plumb_bob, plumb, plummet", "plumb_level", "plunger, plumber's_helper", "plus_fours", "plush", "plywood, plyboard", "pneumatic_drill", "p-n_junction", "p-n-p_transistor", "poacher", "pocket", "pocket_battleship", "pocketcomb, pocket_comb", "pocket_flap", "pocket-handkerchief", "pocketknife, pocket_knife", "pocket_watch", "pod, fuel_pod", "pogo_stick", "point-and-shoot_camera", "pointed_arch", "pointing_trowel", "point_lace, needlepoint", "poker, stove_poker, fire_hook, salamander", "polarimeter, polariscope", "polaroid", "polaroid_camera, polaroid_land_camera", "pole", "pole", "poleax, poleaxe", "poleax, poleaxe", "police_boat", "police_van, police_wagon, paddy_wagon, patrol_wagon, wagon, black_maria", "polling_booth", "polo_ball", "polo_mallet, polo_stick", "polonaise", "polo_shirt, sport_shirt", "polyester", "polygraph", "pomade, pomatum", "pommel_horse, side_horse", "poncho", "pongee", "poniard, bodkin", "pontifical", "pontoon", "pontoon_bridge, bateau_bridge, floating_bridge", "pony_cart, ponycart, donkey_cart, tub-cart", "pool_ball", "poolroom", "pool_table, billiard_table, snooker_table", "poop_deck", "poor_box, alms_box, mite_box", "poorhouse", "pop_bottle, soda_bottle", "popgun", "poplin", "popper", "poppet, poppet_valve", "pop_tent", "porcelain", "porch", "porkpie, porkpie_hat", "porringer", "portable", "portable_computer", "portable_circular_saw, portable_saw", "portcullis", "porte-cochere", "porte-cochere", "portfolio", "porthole", "portico", "portiere", "portmanteau, gladstone, gladstone_bag", "portrait_camera", "portrait_lens", "positive_pole, positive_magnetic_pole, north-seeking_pole", "positive_pole", "positron_emission_tomography_scanner, pet_scanner", "post", "postage_meter", "post_and_lintel", "post_chaise", "postern", "post_exchange, px", "posthole_digger, post-hole_digger", "post_horn", "posthouse, post_house", "pot", "pot, flowerpot", "potbelly, potbelly_stove", "potemkin_village", "potential_divider, voltage_divider", "potentiometer, pot", "potentiometer", "potpourri", "potsherd", "potter's_wheel", "pottery, clayware", "pottle", "potty_seat, potty_chair", "pouch", "poultice, cataplasm, plaster", "pound, dog_pound", "pound_net", "powder", "powder_and_shot", "powdered_mustard, dry_mustard", "powder_horn, powder_flask", "powder_keg", "power_brake", "power_cord", "power_drill", "power_line, power_cable", "power_loom", "power_mower, motor_mower", "power_pack", "power_saw, saw, sawing_machine", "power_shovel, excavator, digger, shovel", "power_steering, power-assisted_steering", "power_takeoff, pto", "power_tool", "praetorium, pretorium", "prayer_rug, prayer_mat", "prayer_shawl, tallith, tallis", "precipitator, electrostatic_precipitator, cottrell_precipitator", "prefab", "presbytery", "presence_chamber", "press, mechanical_press", "press, printing_press", "press", "press_box", "press_gallery", "press_of_sail, press_of_canvas", "pressure_cabin", "pressure_cooker", "pressure_dome", "pressure_gauge, pressure_gage", "pressurized_water_reactor, pwr", "pressure_suit", "pricket", "prie-dieu", "primary_coil, primary_winding, primary", "primus_stove, primus", "prince_albert", "print", "print_buffer", "printed_circuit", "printer, printing_machine", "printer", "printer_cable", "priory", "prison, prison_house", "prison_camp, internment_camp, prisoner_of_war_camp, pow_camp", "privateer", "private_line", "privet_hedge", "probe", "proctoscope", "prod, goad", "production_line, assembly_line, line", "projectile, missile", "projector", "projector", "prolonge", "prolonge_knot, sailor's_breastplate", "prompter, autocue", "prong", "propeller, propellor", "propeller_plane", "propjet, turboprop, turbo-propeller_plane", "proportional_counter_tube, proportional_counter", "propulsion_system", "proscenium, proscenium_wall", "proscenium_arch", "prosthesis, prosthetic_device", "protective_covering, protective_cover, protection", "protective_garment", "proton_accelerator", "protractor", "pruner, pruning_hook, lopper", "pruning_knife", "pruning_saw", "pruning_shears", "psaltery", "psychrometer", "pt_boat, mosquito_boat, mosquito_craft, motor_torpedo_boat", "public_address_system, p.a._system, pa_system, p.a., pa", "public_house, pub, saloon, pothouse, gin_mill, taphouse", "public_toilet, comfort_station, public_convenience, convenience, public_lavatory, restroom, toilet_facility, wash_room", "public_transport", "public_works", "puck, hockey_puck", "pull", "pullback, tieback", "pull_chain", "pulley, pulley-block, pulley_block, block", "pull-off, rest_area, rest_stop, layby, lay-by", "pullman, pullman_car", "pullover, slipover", "pull-through", "pulse_counter", "pulse_generator", "pulse_timing_circuit", "pump", "pump", "pump_action, slide_action", "pump_house, pumping_station", "pump_room", "pump-type_pliers", "pump_well", "punch, puncher", "punchboard", "punch_bowl", "punching_bag, punch_bag, punching_ball, punchball", "punch_pliers", "punch_press", "punnet", "punt", "pup_tent, shelter_tent", "purdah", "purifier", "purl, purl_stitch", "purse", "push-bike", "push_broom", "push_button, push, button", "push-button_radio", "pusher, zori", "put-put", "puttee", "putter, putting_iron", "putty_knife", "puzzle", "pylon, power_pylon", "pylon", "pyramidal_tent", "pyrograph", "pyrometer", "pyrometric_cone", "pyrostat", "pyx, pix", "pyx, pix, pyx_chest, pix_chest", "pyxis", "quad, quadrangle", "quadrant", "quadraphony, quadraphonic_system, quadriphonic_system", "quartering", "quarterstaff", "quartz_battery, quartz_mill", "quartz_lamp", "queen", "queen", "queen_post", "quern", "quill, quill_pen", "quilt, comforter, comfort, puff", "quilted_bedspread", "quilting", "quipu", "quirk_molding, quirk_moulding", "quirt", "quiver", "quoin, coign, coigne", "quoit", "qwerty_keyboard", "rabbet, rebate", "rabbet_joint", "rabbit_ears", "rabbit_hutch", "raceabout", "racer, race_car, racing_car", "raceway, race", "racing_boat", "racing_gig", "racing_skiff, single_shell", "rack, stand", "rack", "rack, wheel", "rack_and_pinion", "racket, racquet", "racquetball", "radar, microwave_radar, radio_detection_and_ranging, radiolocation", "radial, radial_tire, radial-ply_tire", "radial_engine, rotary_engine", "radiation_pyrometer", "radiator", "radiator", "radiator_cap", "radiator_hose", "radio, wireless", "radio_antenna, radio_aerial", "radio_chassis", "radio_compass", "radiogram, radiograph, shadowgraph, skiagraph, skiagram", "radio_interferometer", "radio_link, link", "radiometer", "radiomicrometer", "radio-phonograph, radio-gramophone", "radio_receiver, receiving_set, radio_set, radio, tuner, wireless", "radiotelegraph, radiotelegraphy, wireless_telegraph, wireless_telegraphy", "radiotelephone, radiophone, wireless_telephone", "radio_telescope, radio_reflector", "radiotherapy_equipment", "radio_transmitter", "radome, radar_dome", "raft", "rafter, balk, baulk", "raft_foundation", "rag, shred, tag, tag_end, tatter", "ragbag", "raglan", "raglan_sleeve", "rail", "rail_fence", "railhead", "railing, rail", "railing", "railroad_bed", "railroad_tunnel", "rain_barrel", "raincoat, waterproof", "rain_gauge, rain_gage, pluviometer, udometer", "rain_stick", "rake", "rake_handle", "ram_disk", "ramekin, ramequin", "ramjet, ramjet_engine, atherodyde, athodyd, flying_drainpipe", "rammer", "ramp, incline", "rampant_arch", "rampart, bulwark, wall", "ramrod", "ramrod", "ranch, spread, cattle_ranch, cattle_farm", "ranch_house", "random-access_memory, random_access_memory, random_memory, ram, read/write_memory", "rangefinder, range_finder", "range_hood", "range_pole, ranging_pole, flagpole", "rapier, tuck", "rariora", "rasp, wood_file", "ratchet, rachet, ratch", "ratchet_wheel", "rathskeller", "ratline, ratlin", "rat-tail_file", "rattan, ratan", "rattrap", "rayon", "razor", "razorblade", "reaction-propulsion_engine, reaction_engine", "reaction_turbine", "reactor", "reading_lamp", "reading_room", "read-only_memory, rom, read-only_storage, fixed_storage", "read-only_memory_chip", "readout, read-out", "read/write_head, head", "ready-to-wear", "real_storage", "reamer", "reamer, juicer, juice_reamer", "rearview_mirror", "reaumur_thermometer", "rebozo", "receiver, receiving_system", "receptacle", "reception_desk", "reception_room", "recess, niche", "reciprocating_engine", "recliner, reclining_chair, lounger", "reconnaissance_plane", "reconnaissance_vehicle, scout_car", "record_changer, auto-changer, changer", "recorder, recording_equipment, recording_machine", "recording", "recording_system", "record_player, phonograph", "record_sleeve, record_cover", "recovery_room", "recreational_vehicle, rv, r.v.", "recreation_room, rec_room", "recycling_bin", "recycling_plant", "redbrick_university", "red_carpet", "redoubt", "redoubt", "reduction_gear", "reed_pipe", "reed_stop", "reef_knot, flat_knot", "reel", "reel", "refectory", "refectory_table", "refinery", "reflecting_telescope, reflector", "reflectometer", "reflector", "reflex_camera", "reflux_condenser", "reformatory, reform_school, training_school", "reformer", "refracting_telescope", "refractometer", "refrigeration_system", "refrigerator, icebox", "refrigerator_car", "refuge, sanctuary, asylum", "regalia", "regimentals", "regulator", "rein", "relay, electrical_relay", "release, button", "religious_residence, cloister", "reliquary", "remote_control, remote", "remote_terminal, link-attached_terminal, remote_station, link-attached_station", "removable_disk", "rendering", "rep, repp", "repair_shop, fix-it_shop", "repeater", "repeating_firearm, repeater", "repository, monument", "reproducer", "rerebrace, upper_cannon", "rescue_equipment", "research_center, research_facility", "reseau", "reservoir", "reset", "reset_button", "residence", "resistance_pyrometer", "resistor, resistance", "resonator", "resonator, cavity_resonator, resonating_chamber", "resort_hotel, spa", "respirator, inhalator", "restaurant, eating_house, eating_place, eatery", "rest_house", "restraint, constraint", "resuscitator", "retainer", "retaining_wall", "reticle, reticule, graticule", "reticulation", "reticule", "retort", "retractor", "return_key, return", "reverberatory_furnace", "revers, revere", "reverse, reverse_gear", "reversible", "revetment, revetement, stone_facing", "revetment", "revolver, six-gun, six-shooter", "revolving_door, revolver", "rheometer", "rheostat, variable_resistor", "rhinoscope", "rib", "riband, ribband", "ribbed_vault", "ribbing", "ribbon_development", "rib_joint_pliers", "ricer", "riddle", "ride", "ridge, ridgepole, rooftree", "ridge_rope", "riding_boot", "riding_crop, hunting_crop", "riding_mower", "rifle", "rifle_ball", "rifle_grenade", "rig", "rigger, rigger_brush", "rigger", "rigging, tackle", "rigout", "ringlet", "rings", "rink, skating_rink", "riot_gun", "ripcord", "ripcord", "ripping_bar", "ripping_chisel", "ripsaw, splitsaw", "riser", "riser, riser_pipe, riser_pipeline, riser_main", "ritz", "river_boat", "rivet", "riveting_machine, riveter, rivetter", "roach_clip, roach_holder", "road, route", "roadbed", "roadblock, barricade", "roadhouse", "roadster, runabout, two-seater", "roadway", "roaster", "robe", "robotics_equipment", "rochon_prism, wollaston_prism", "rock_bit, roller_bit", "rocker", "rocker, cradle", "rocker_arm, valve_rocker", "rocket, rocket_engine", "rocket, projectile", "rocking_chair, rocker", "rod", "rodeo", "roll", "roller", "roller", "roller_bandage", "in-line_skate", "rollerblade", "roller_blind", "roller_coaster, big_dipper, chute-the-chute", "roller_skate", "roller_towel", "roll_film", "rolling_hitch", "rolling_mill", "rolling_pin", "rolling_stock", "roll-on", "roll-on", "roll-on_roll-off", "rolodex", "roman_arch, semicircular_arch", "roman_building", "romper, romper_suit", "rood_screen", "roof", "roof", "roofing", "room", "roomette", "room_light", "roost", "rope", "rope_bridge", "rope_tow", "rose_water", "rose_window, rosette", "rosin_bag", "rotary_actuator, positioner", "rotary_engine", "rotary_press", "rotating_mechanism", "rotating_shaft, shaft", "rotisserie", "rotisserie", "rotor", "rotor, rotor_coil", "rotor", "rotor_blade, rotary_wing", "rotor_head, rotor_shaft", "rotunda", "rotunda", "rouge, paint, blusher", "roughcast", "rouleau", "roulette, toothed_wheel", "roulette_ball", "roulette_wheel, wheel", "round, unit_of_ammunition, one_shot", "round_arch", "round-bottom_flask", "roundel", "round_file", "roundhouse", "router", "router", "router_plane", "rowel", "row_house, town_house", "rowing_boat", "rowlock_arch", "royal", "royal_mast", "rubber_band, elastic_band, elastic", "rubber_boot, gum_boot", "rubber_bullet", "rubber_eraser, rubber, pencil_eraser", "rudder", "rudder", "rudder_blade", "rug, carpet, carpeting", "rugby_ball", "ruin", "rule, ruler", "rumble", "rumble_seat", "rummer", "rumpus_room, playroom, game_room", "runcible_spoon", "rundle, spoke, rung", "running_shoe", "running_suit", "runway", "rushlight, rush_candle", "russet", "rya, rya_rug", "saber, sabre", "saber_saw, jigsaw, reciprocating_saw", "sable", "sable, sable_brush, sable's_hair_pencil", "sable_coat", "sabot, wooden_shoe", "sachet", "sack, poke, paper_bag, carrier_bag", "sack, sacque", "sackbut", "sackcloth", "sackcloth", "sack_coat", "sacking, bagging", "saddle", "saddlebag", "saddle_blanket, saddlecloth, horse_blanket", "saddle_oxford, saddle_shoe", "saddlery", "saddle_seat", "saddle_stitch", "safe", "safe", "safe-deposit, safe-deposit_box, safety-deposit, safety_deposit_box, deposit_box, lockbox", "safe_house", "safety_arch", "safety_belt, life_belt, safety_harness", "safety_bicycle, safety_bike", "safety_bolt, safety_lock", "safety_curtain", "safety_fuse", "safety_lamp, davy_lamp", "safety_match, book_matches", "safety_net", "safety_pin", "safety_rail, guardrail", "safety_razor", "safety_valve, relief_valve, escape_valve, escape_cock, escape", "sail, canvas, canvass, sheet", "sail", "sailboat, sailing_boat", "sailcloth", "sailing_vessel, sailing_ship", "sailing_warship", "sailor_cap", "sailor_suit", "salad_bar", "salad_bowl", "salinometer", "sallet, salade", "salon", "salon", "salon, beauty_salon, beauty_parlor, beauty_parlour, beauty_shop", "saltbox", "saltcellar", "saltshaker, salt_shaker", "saltworks", "salver", "salwar, shalwar", "sam_browne_belt", "samisen, shamisen", "samite", "samovar", "sampan", "sandal", "sandbag", "sandblaster", "sandbox", "sandglass", "sand_wedge", "sandwich_board", "sanitary_napkin, sanitary_towel, kotex", "cling_film, clingfilm, saran_wrap", "sarcenet, sarsenet", "sarcophagus", "sari, saree", "sarong", "sash, window_sash", "sash_fastener, sash_lock, window_lock", "sash_window", "satchel", "sateen", "satellite, artificial_satellite, orbiter", "satellite_receiver", "satellite_television, satellite_tv", "satellite_transmitter", "satin", "saturday_night_special", "saucepan", "saucepot", "sauna, sweat_room", "savings_bank, coin_bank, money_box, bank", "saw", "sawed-off_shotgun", "sawhorse, horse, sawbuck, buck", "sawmill", "saw_set", "sax, saxophone", "saxhorn", "scabbard", "scaffolding, staging", "scale", "scale, weighing_machine", "scaler", "scaling_ladder", "scalpel", "scanner, electronic_scanner", "scanner", "scanner, digital_scanner, image_scanner", "scantling, stud", "scarf", "scarf_joint, scarf", "scatter_rug, throw_rug", "scauper, scorper", "schmidt_telescope, schmidt_camera", "school, schoolhouse", "schoolbag", "school_bell", "school_bus", "school_ship, training_ship", "school_system", "schooner", "schooner", "scientific_instrument", "scimitar", "scintillation_counter", "scissors, pair_of_scissors", "sclerometer", "scoinson_arch, sconcheon_arch", "sconce", "sconce", "scoop", "scooter", "scoreboard", "scouring_pad", "scow", "scow", "scraper", "scratcher", "screen", "screen, cover, covert, concealment", "screen", "screen, crt_screen", "screen_door, screen", "screening", "screw", "screw, screw_propeller", "screw", "screwdriver", "screw_eye", "screw_key", "screw_thread, thread", "screwtop", "screw_wrench", "scriber, scribe, scratch_awl", "scrim", "scrimshaw", "scriptorium", "scrubber", "scrub_brush, scrubbing_brush, scrubber", "scrub_plane", "scuffer", "scuffle, scuffle_hoe, dutch_hoe", "scull", "scull", "scullery", "sculpture", "scuttle, coal_scuttle", "scyphus", "scythe", "seabag", "sea_boat", "sea_chest", "sealing_wax, seal", "sealskin", "seam", "seaplane, hydroplane", "searchlight", "searing_iron", "seat", "seat", "seat", "seat_belt, seatbelt", "secateurs", "secondary_coil, secondary_winding, secondary", "second_balcony, family_circle, upper_balcony, peanut_gallery", "second_base", "second_hand", "secretary, writing_table, escritoire, secretaire", "sectional", "security_blanket", "security_system, security_measure, security", "security_system", "sedan, saloon", "sedan, sedan_chair", "seeder", "seeker", "seersucker", "segmental_arch", "segway, segway_human_transporter, segway_ht", "seidel", "seine", "seismograph", "selector, selector_switch", "selenium_cell", "self-propelled_vehicle", "self-registering_thermometer", "self-starter", "selsyn, synchro", "selvage, selvedge", "semaphore", "semiautomatic_firearm", "semiautomatic_pistol, semiautomatic", "semiconductor_device, semiconductor_unit, semiconductor", "semi-detached_house", "semigloss", "semitrailer, semi", "sennit", "sensitometer", "sentry_box", "separate", "septic_tank", "sequence, episode", "sequencer, sequenator", "serape, sarape", "serge", "serger", "serial_port", "serpent", "serration", "server", "server, host", "service_club", "serving_cart", "serving_dish", "servo, servomechanism, servosystem", "set", "set_gun, spring_gun", "setscrew", "setscrew", "set_square", "settee", "settle, settee", "settlement_house", "seventy-eight, 78", "seven_wonders_of_the_ancient_world, seven_wonders_of_the_world", "sewage_disposal_plant, disposal_plant", "sewer, sewerage, cloaca", "sewing_basket", "sewing_kit", "sewing_machine", "sewing_needle", "sewing_room", "sextant", "sgraffito", "shackle, bond, hamper, trammel", "shackle", "shade", "shadow_box", "shaft", "shag_rug", "shaker", "shank", "shank, stem", "shantung", "shaper, shaping_machine", "shaping_tool", "sharkskin", "sharpener", "sharpie", "shaver, electric_shaver, electric_razor", "shaving_brush", "shaving_cream, shaving_soap", "shaving_foam", "shawl", "shawm", "shears", "sheath", "sheathing, overlay, overlayer", "shed", "sheep_bell", "sheepshank", "sheepskin_coat, afghan", "sheepwalk, sheeprun", "sheet, bed_sheet", "sheet_bend, becket_bend, weaver's_knot, weaver's_hitch", "sheeting", "sheet_pile, sheath_pile, sheet_piling", "sheetrock", "shelf", "shelf_bracket", "shell", "shell, case, casing", "shell, racing_shell", "shellac, shellac_varnish", "shelter", "shelter", "shelter", "sheltered_workshop", "sheraton", "shield, buckler", "shield", "shielding", "shift_key, shift", "shillelagh, shillalah", "shim", "shingle", "shin_guard, shinpad", "ship", "shipboard_system", "shipping, cargo_ships, merchant_marine, merchant_vessels", "shipping_room", "ship-towed_long-range_acoustic_detection_system", "shipwreck", "shirt", "shirt_button", "shirtdress", "shirtfront", "shirting", "shirtsleeve", "shirttail", "shirtwaist, shirtwaister", "shiv", "shock_absorber, shock, cushion", "shoe", "shoe", "shoebox", "shoehorn", "shoe_shop, shoe-shop, shoe_store", "shoetree", "shofar, shophar", "shoji", "shooting_brake", "shooting_lodge, shooting_box", "shooting_stick", "shop, store", "shop_bell", "shopping_bag", "shopping_basket", "shopping_cart", "short_circuit, short", "short_iron", "short_pants, shorts, trunks", "short_sleeve", "shortwave_diathermy_machine", "shot", "shot_glass, jigger, pony", "shotgun, scattergun", "shotgun_shell", "shot_tower", "shoulder", "shoulder_bag", "shouldered_arch", "shoulder_holster", "shoulder_pad", "shoulder_patch", "shovel", "shovel", "shovel_hat", "showboat", "shower", "shower_cap", "shower_curtain", "shower_room", "shower_stall, shower_bath", "showroom, salesroom, saleroom", "shrapnel", "shredder", "shrimper", "shrine", "shrink-wrap", "shunt", "shunt, electrical_shunt, bypass", "shunter", "shutter", "shutter", "shuttle", "shuttle", "shuttle_bus", "shuttlecock, bird, birdie, shuttle", "shuttle_helicopter", "sibley_tent", "sickbay, sick_berth", "sickbed", "sickle, reaping_hook, reap_hook", "sickroom", "sideboard", "sidecar", "side_chapel", "sidelight, running_light", "sidesaddle", "sidewalk, pavement", "sidewall", "side-wheeler", "sidewinder", "sieve, screen", "sifter", "sights", "sigmoidoscope, flexible_sigmoidoscope", "signal_box, signal_tower", "signaling_device", "signboard, sign", "silencer, muffler", "silent_butler", "silex", "silk", "silks", "silo", "silver_plate", "silverpoint", "simple_pendulum", "simulator", "single_bed", "single-breasted_jacket", "single-breasted_suit", "single_prop, single-propeller_plane", "single-reed_instrument, single-reed_woodwind", "single-rotor_helicopter", "singlestick, fencing_stick, backsword", "singlet, vest, undershirt", "siren", "sister_ship", "sitar", "sitz_bath, hip_bath", "six-pack, six_pack, sixpack", "skate", "skateboard", "skeg", "skein", "skeleton, skeletal_frame, frame, underframe", "skeleton_key", "skep", "skep", "sketch, study", "sketcher", "skew_arch", "skewer", "ski", "ski_binding, binding", "skibob", "ski_boot", "ski_cap, stocking_cap, toboggan_cap", "skidder", "skid_lid", "skiff", "ski_jump", "ski_lodge", "ski_mask", "skimmer", "ski_parka, ski_jacket", "ski-plane", "ski_pole", "ski_rack", "skirt", "skirt", "ski_tow, ski_lift, lift", "skivvies", "skullcap", "skybox", "skyhook", "skylight, fanlight", "skysail", "skyscraper", "skywalk", "slacks", "slack_suit", "slasher", "slash_pocket", "slat, spline", "slate", "slate_pencil", "slate_roof", "sled, sledge, sleigh", "sleeper", "sleeper", "sleeping_bag", "sleeping_car, sleeper, wagon-lit", "sleeve, arm", "sleeve", "sleigh_bed", "sleigh_bell, cascabel", "slice_bar", "slicer", "slicer", "slide, playground_slide, sliding_board", "slide_fastener, zip, zipper, zip_fastener", "slide_projector", "slide_rule, slipstick", "slide_valve", "sliding_door", "sliding_seat", "sliding_window", "sling, scarf_bandage, triangular_bandage", "sling", "slingback, sling", "slinger_ring", "slip_clutch, slip_friction_clutch", "slipcover", "slip-joint_pliers", "slipknot", "slip-on", "slipper, carpet_slipper", "slip_ring", "slit_lamp", "slit_trench", "sloop", "sloop_of_war", "slop_basin, slop_bowl", "slop_pail, slop_jar", "slops", "slopshop, slopseller's_shop", "slot, one-armed_bandit", "slot_machine, coin_machine", "sluice, sluiceway, penstock", "smack", "small_boat", "small_computer_system_interface, scsi", "small_ship", "small_stores", "smart_bomb", "smelling_bottle", "smocking", "smoke_bomb, smoke_grenade", "smokehouse, meat_house", "smoker, smoking_car, smoking_carriage, smoking_compartment", "smoke_screen, smokescreen", "smoking_room", "smoothbore", "smooth_plane, smoothing_plane", "snack_bar, snack_counter, buffet", "snaffle, snaffle_bit", "snap, snap_fastener, press_stud", "snap_brim", "snap-brim_hat", "snare, gin, noose", "snare_drum, snare, side_drum", "snatch_block", "snifter, brandy_snifter, brandy_glass", "sniper_rifle, precision_rifle", "snips, tinsnips", "sno-cat", "snood", "snorkel, schnorkel, schnorchel, snorkel_breather, breather", "snorkel", "snowbank, snow_bank", "snowboard", "snowmobile", "snowplow, snowplough", "snowshoe", "snowsuit", "snow_thrower, snow_blower", "snuffbox", "snuffer", "snuffers", "soapbox", "soap_dish", "soap_dispenser", "soap_pad", "soccer_ball", "sock", "socket", "socket_wrench", "socle", "soda_can", "soda_fountain", "soda_fountain", "sod_house, soddy, adobe_house", "sodium-vapor_lamp, sodium-vapour_lamp", "sofa, couch, lounge", "soffit", "softball, playground_ball", "soft_pedal", "soil_pipe", "solar_array, solar_battery, solar_panel", "solar_cell, photovoltaic_cell", "solar_dish, solar_collector, solar_furnace", "solar_heater", "solar_house", "solar_telescope", "solar_thermal_system", "soldering_iron", "solenoid", "solleret, sabaton", "sombrero", "sonic_depth_finder, fathometer", "sonogram, echogram", "sonograph", "sorter", "souk", "sound_bow", "soundbox, body", "sound_camera", "sounder", "sound_film", "sounding_board, soundboard", "sounding_rocket", "sound_recording, audio_recording, audio", "sound_spectrograph", "soup_bowl", "soup_ladle", "soupspoon, soup_spoon", "source_of_illumination", "sourdine", "soutache", "soutane", "sou'wester", "soybean_future", "space_bar", "space_capsule, capsule", "spacecraft, ballistic_capsule, space_vehicle", "space_heater", "space_helmet", "space_rocket", "space_shuttle", "space_station, space_platform, space_laboratory", "spacesuit", "spade", "spade_bit", "spaghetti_junction", "spandau", "spandex", "spandrel, spandril", "spanker", "spar", "sparge_pipe", "spark_arrester, sparker", "spark_arrester", "spark_chamber, spark_counter", "spark_coil", "spark_gap", "spark_lever", "spark_plug, sparking_plug, plug", "sparkplug_wrench", "spark_transmitter", "spat, gaiter", "spatula", "spatula", "speakerphone", "speaking_trumpet", "spear, lance, shaft", "spear, gig, fizgig, fishgig, lance", "specialty_store", "specimen_bottle", "spectacle", "spectacles, specs, eyeglasses, glasses", "spectator_pump, spectator", "spectrograph", "spectrophotometer", "spectroscope, prism_spectroscope", "speculum", "speedboat", "speed_bump", "speedometer, speed_indicator", "speed_skate, racing_skate", "spherometer", "sphygmomanometer", "spicemill", "spice_rack", "spider", "spider_web, spider's_web", "spike", "spike", "spindle", "spindle, mandrel, mandril, arbor", "spindle", "spin_dryer, spin_drier", "spinet", "spinet", "spinnaker", "spinner", "spinning_frame", "spinning_jenny", "spinning_machine", "spinning_rod", "spinning_wheel", "spiral_bandage", "spiral_ratchet_screwdriver, ratchet_screwdriver", "spiral_spring", "spirit_lamp", "spirit_stove", "spirometer", "spit", "spittoon, cuspidor", "splashboard, splasher, dashboard", "splasher", "splice, splicing", "splicer", "splint", "split_rail, fence_rail", "spode", "spoiler", "spoiler", "spoke, wheel_spoke, radius", "spokeshave", "sponge_cloth", "sponge_mop", "spoon", "spoon", "spork", "sporran", "sport_kite, stunt_kite", "sports_car, sport_car", "sports_equipment", "sports_implement", "sportswear, athletic_wear, activewear", "sport_utility, sport_utility_vehicle, s.u.v., suv", "spot", "spotlight, spot", "spot_weld, spot-weld", "spouter", "sprag", "spray_gun", "spray_paint", "spreader", "sprig", "spring", "spring_balance, spring_scale", "springboard", "sprinkler", "sprinkler_system", "sprit", "spritsail", "sprocket, sprocket_wheel", "sprocket", "spun_yarn", "spur, gad", "spur_gear, spur_wheel", "sputnik", "spy_satellite", "squad_room", "square", "square_knot", "square-rigger", "square_sail", "squash_ball", "squash_racket, squash_racquet, bat", "squawk_box, squawker, intercom_speaker", "squeegee", "squeezer", "squelch_circuit, squelch, squelcher", "squinch", "stabilizer, stabiliser", "stabilizer", "stabilizer_bar, anti-sway_bar", "stable, stalls, horse_barn", "stable_gear, saddlery, tack", "stabling", "stacks", "staddle", "stadium, bowl, arena, sports_stadium", "stage", "stagecoach, stage", "stained-glass_window", "stair-carpet", "stair-rod", "stairwell", "stake", "stall, stand, sales_booth", "stall", "stamp", "stamp_mill, stamping_mill", "stamping_machine, stamper", "stanchion", "stand", "standard", "standard_cell", "standard_transmission, stick_shift", "standing_press", "stanhope", "stanley_steamer", "staple", "staple", "staple_gun, staplegun, tacker", "stapler, stapling_machine", "starship, spaceship", "starter, starter_motor, starting_motor", "starting_gate, starting_stall", "stassano_furnace, electric-arc_furnace", "statehouse", "stately_home", "state_prison", "stateroom", "static_tube", "station", "stator, stator_coil", "statue", "stay", "staysail", "steakhouse, chophouse", "steak_knife", "stealth_aircraft", "stealth_bomber", "stealth_fighter", "steam_bath, steam_room, vapor_bath, vapour_bath", "steamboat", "steam_chest", "steam_engine", "steamer, steamship", "steamer", "steam_iron", "steam_locomotive", "steamroller, road_roller", "steam_shovel", "steam_turbine", "steam_whistle", "steel", "steel_arch_bridge", "steel_drum", "steel_mill, steelworks, steel_plant, steel_factory", "steel-wool_pad", "steelyard, lever_scale, beam_scale", "steeple, spire", "steerage", "steering_gear", "steering_linkage", "steering_system, steering_mechanism", "steering_wheel, wheel", "stele, stela", "stem-winder", "stencil", "sten_gun", "stenograph", "step, stair", "step-down_transformer", "step_stool", "step-up_transformer", "stereo, stereophony, stereo_system, stereophonic_system", "stereoscope", "stern_chaser", "sternpost", "sternwheeler", "stethoscope", "stewing_pan, stewpan", "stick", "stick", "stick, control_stick, joystick", "stick", "stile", "stiletto", "still", "stillroom, still_room", "stillson_wrench", "stilt", "stinger", "stink_bomb, stench_bomb", "stirrer", "stirrup, stirrup_iron", "stirrup_pump", "stob", "stock, gunstock", "stockade", "stockcar", "stock_car", "stockinet, stockinette", "stocking", "stock-in-trade", "stockpot", "stockroom, stock_room", "stocks", "stock_saddle, western_saddle", "stockyard", "stole", "stomacher", "stomach_pump", "stone_wall", "stoneware", "stonework", "stool", "stoop, stoep", "stop_bath, short-stop, short-stop_bath", "stopcock, cock, turncock", "stopper_knot", "stopwatch, stop_watch", "storage_battery, accumulator", "storage_cell, secondary_cell", "storage_ring", "storage_space", "storeroom, storage_room, stowage", "storm_cellar, cyclone_cellar, tornado_cellar", "storm_door", "storm_window, storm_sash", "stoup, stoop", "stoup", "stove", "stove, kitchen_stove, range, kitchen_range, cooking_stove", "stove_bolt", "stovepipe", "stovepipe_iron", "stradavarius, strad", "straight_chair, side_chair", "straightedge", "straightener", "straight_flute, straight-fluted_drill", "straight_pin", "straight_razor", "strainer", "straitjacket, straightjacket", "strap", "strap", "strap_hinge, joint_hinge", "strapless", "streamer_fly", "streamliner", "street", "street", "streetcar, tram, tramcar, trolley, trolley_car", "street_clothes", "streetlight, street_lamp", "stretcher", "stretcher", "stretch_pants", "strickle", "strickle", "stringed_instrument", "stringer", "stringer", "string_tie", "strip", "strip_lighting", "strip_mall", "stroboscope, strobe, strobe_light", "strongbox, deedbox", "stronghold, fastness", "strongroom", "strop", "structural_member", "structure, construction", "student_center", "student_lamp", "student_union", "stud_finder", "studio_apartment, studio", "studio_couch, day_bed", "study", "study_hall", "stuffing_nut, packing_nut", "stump", "stun_gun, stun_baton", "stupa, tope", "sty, pigsty, pigpen", "stylus, style", "stylus", "sub-assembly", "subcompact, subcompact_car", "submachine_gun", "submarine, pigboat, sub, u-boat", "submarine_torpedo", "submersible, submersible_warship", "submersible", "subtracter", "subway_token", "subway_train", "subwoofer", "suction_cup", "suction_pump", "sudatorium, sudatory", "suede_cloth, suede", "sugar_bowl", "sugar_refinery", "sugar_spoon, sugar_shell", "suit, suit_of_clothes", "suite, rooms", "suiting", "sulky", "summer_house", "sumo_ring", "sump", "sump_pump", "sunbonnet", "sunday_best, sunday_clothes", "sun_deck", "sundial", "sundress", "sundries", "sun_gear", "sunglass", "sunglasses, dark_glasses, shades", "sunhat, sun_hat", "sunlamp, sun_lamp, sunray_lamp, sun-ray_lamp", "sun_parlor, sun_parlour, sun_porch, sunporch, sunroom, sun_lounge, solarium", "sunroof, sunshine-roof", "sunscreen, sunblock, sun_blocker", "sunsuit", "supercharger", "supercomputer", "superconducting_supercollider", "superhighway, information_superhighway", "supermarket", "superstructure", "supertanker", "supper_club", "supplejack", "supply_chamber", "supply_closet", "support", "support", "support_column", "support_hose, support_stocking", "supporting_structure", "supporting_tower", "surcoat", "surface_gauge, surface_gage, scribing_block", "surface_lift", "surface_search_radar", "surface_ship", "surface-to-air_missile, sam", "surface-to-air_missile_system", "surfboat", "surcoat", "surgeon's_knot", "surgery", "surge_suppressor, surge_protector, spike_suppressor, spike_arrester, lightning_arrester", "surgical_dressing", "surgical_instrument", "surgical_knife", "surplice", "surrey", "surtout", "surveillance_system", "surveying_instrument, surveyor's_instrument", "surveyor's_level", "sushi_bar", "suspension, suspension_system", "suspension_bridge", "suspensory, suspensory_bandage", "sustaining_pedal, loud_pedal", "suture, surgical_seam", "swab, swob, mop", "swab", "swaddling_clothes, swaddling_bands", "swag", "swage_block", "swagger_stick", "swallow-tailed_coat, swallowtail, morning_coat", "swamp_buggy, marsh_buggy", "swan's_down", "swathe, wrapping", "swatter, flyswatter, flyswat", "sweat_bag", "sweatband", "sweater, jumper", "sweat_pants, sweatpants", "sweatshirt", "sweatshop", "sweat_suit, sweatsuit, sweats, workout_suit", "sweep, sweep_oar", "sweep_hand, sweep-second", "swimming_trunks, bathing_trunks", "swimsuit, swimwear, bathing_suit, swimming_costume, bathing_costume", "swing", "swing_door, swinging_door", "switch, electric_switch, electrical_switch", "switchblade, switchblade_knife, flick-knife, flick_knife", "switch_engine, donkey_engine", "swivel", "swivel_chair", "swizzle_stick", "sword, blade, brand, steel", "sword_cane, sword_stick", "s_wrench", "synagogue, temple, tabernacle", "synchrocyclotron", "synchroflash", "synchromesh", "synchronous_converter, rotary, rotary_converter", "synchronous_motor", "synchrotron", "synchroscope, synchronoscope, synchronizer, synchroniser", "synthesizer, synthesiser", "syringe", "system", "tabard", "tabernacle", "tabi, tabis", "tab_key, tab", "table", "table", "tablefork", "table_knife", "table_lamp", "table_saw", "tablespoon", "tablet-armed_chair", "table-tennis_table, ping-pong_table, pingpong_table", "table-tennis_racquet, table-tennis_bat, pingpong_paddle", "tabletop", "tableware", "tabor, tabour", "taboret, tabouret", "tachistoscope, t-scope", "tachograph", "tachometer, tach", "tachymeter, tacheometer", "tack", "tack_hammer", "taffeta", "taffrail", "tailgate, tailboard", "taillight, tail_lamp, rear_light, rear_lamp", "tailor-made", "tailor's_chalk", "tailpipe", "tail_rotor, anti-torque_rotor", "tailstock", "take-up", "talaria", "talcum, talcum_powder", "tam, tam-o'-shanter, tammy", "tambour", "tambour, embroidery_frame, embroidery_hoop", "tambourine", "tammy", "tamp, tamper, tamping_bar", "tampax", "tampion, tompion", "tampon", "tandoor", "tangram", "tank, storage_tank", "tank, army_tank, armored_combat_vehicle, armoured_combat_vehicle", "tankard", "tank_car, tank", "tank_destroyer", "tank_engine, tank_locomotive", "tanker_plane", "tank_shell", "tank_top", "tannoy", "tap, spigot", "tapa, tappa", "tape, tape_recording, taping", "tape, tapeline, tape_measure", "tape_deck", "tape_drive, tape_transport, transport", "tape_player", "tape_recorder, tape_machine", "taper_file", "tapestry, tapis", "tappet", "tap_wrench", "tare", "target, butt", "target_acquisition_system", "tarmacadam, tarmac, macadam", "tarpaulin, tarp", "tartan, plaid", "tasset, tasse", "tattoo", "tavern, tap_house", "tawse", "taximeter", "t-bar_lift, t-bar, alpine_lift", "tea_bag", "tea_ball", "tea_cart, teacart, tea_trolley, tea_wagon", "tea_chest", "teaching_aid", "teacup", "tea_gown", "teakettle", "tea_maker", "teapot", "teashop, teahouse, tearoom, tea_parlor, tea_parlour", "teaspoon", "tea-strainer", "tea_table", "tea_tray", "tea_urn", "tee, golf_tee", "tee_hinge, t_hinge", "telecom_hotel, telco_building", "telecommunication_system, telecom_system, telecommunication_equipment, telecom_equipment", "telegraph, telegraphy", "telegraph_key", "telemeter", "telephone, phone, telephone_set", "telephone_bell", "telephone_booth, phone_booth, call_box, telephone_box, telephone_kiosk", "telephone_cord, phone_cord", "telephone_jack, phone_jack", "telephone_line, phone_line, telephone_circuit, subscriber_line, line", "telephone_plug, phone_plug", "telephone_pole, telegraph_pole, telegraph_post", "telephone_receiver, receiver", "telephone_system, phone_system", "telephone_wire, telephone_line, telegraph_wire, telegraph_line", "telephoto_lens, zoom_lens", "teleprompter", "telescope, scope", "telescopic_sight, telescope_sight", "telethermometer", "teletypewriter, teleprinter, teletype_machine, telex, telex_machine", "television, television_system", "television_antenna, tv-antenna", "television_camera, tv_camera, camera", "television_equipment, video_equipment", "television_monitor, tv_monitor", "television_receiver, television, television_set, tv, tv_set, idiot_box, boob_tube, telly, goggle_box", "television_room, tv_room", "television_transmitter", "telpher, telfer", "telpherage, telferage", "tempera, poster_paint, poster_color, poster_colour", "temple", "temple", "temporary_hookup, patch", "tender, supply_ship", "tender, ship's_boat, pinnace, cutter", "tender", "tenement, tenement_house", "tennis_ball", "tennis_camp", "tennis_racket, tennis_racquet", "tenon", "tenor_drum, tom-tom", "tenoroon", "tenpenny_nail", "tenpin", "tensimeter", "tensiometer", "tensiometer", "tensiometer", "tent, collapsible_shelter", "tenter", "tenterhook", "tent-fly, rainfly, fly_sheet, fly, tent_flap", "tent_peg", "tepee, tipi, teepee", "terminal, pole", "terminal", "terraced_house", "terra_cotta", "terrarium", "terra_sigillata, samian_ware", "terry, terry_cloth, terrycloth", "tesla_coil", "tessera", "test_equipment", "test_rocket, research_rocket, test_instrument_vehicle", "test_room, testing_room", "testudo", "tetraskelion, tetraskele", "tetrode", "textile_machine", "textile_mill", "thatch, thatched_roof", "theater, theatre, house", "theater_curtain, theatre_curtain", "theater_light", "theodolite, transit", "theremin", "thermal_printer", "thermal_reactor", "thermocouple, thermocouple_junction", "thermoelectric_thermometer, thermel, electric_thermometer", "thermograph, thermometrograph", "thermograph", "thermohydrometer, thermogravimeter", "thermojunction", "thermometer", "thermonuclear_reactor, fusion_reactor", "thermopile", "thermos, thermos_bottle, thermos_flask", "thermostat, thermoregulator", "thigh_pad", "thill", "thimble", "thinning_shears", "third_base, third", "third_gear, third", "third_rail", "thong", "thong", "three-centered_arch, basket-handle_arch", "three-decker", "three-dimensional_radar, 3d_radar", "three-piece_suit", "three-quarter_binding", "three-way_switch, three-point_switch", "thresher, thrasher, threshing_machine", "threshing_floor", "thriftshop, second-hand_store", "throat_protector", "throne", "thrust_bearing", "thruster", "thumb", "thumbhole", "thumbscrew", "thumbstall", "thumbtack, drawing_pin, pushpin", "thunderer", "thwart, cross_thwart", "tiara", "ticking", "tickler_coil", "tie, tie_beam", "tie, railroad_tie, crosstie, sleeper", "tie_rack", "tie_rod", "tights, leotards", "tile", "tile_cutter", "tile_roof", "tiller", "tilter", "tilt-top_table, tip-top_table, tip_table", "timber", "timber", "timber_hitch", "timbrel", "time_bomb, infernal_machine", "time_capsule", "time_clock", "time-delay_measuring_instrument, time-delay_measuring_system", "time-fuse", "timepiece, timekeeper, horologe", "timer", "timer", "time-switch", "tin", "tinderbox", "tine", "tinfoil, tin_foil", "tippet", "tire_chain, snow_chain", "tire_iron, tire_tool", "titfer", "tithe_barn", "titrator", "toaster", "toaster_oven", "toasting_fork", "toastrack", "tobacco_pouch", "tobacco_shop, tobacconist_shop, tobacconist", "toboggan", "toby, toby_jug, toby_fillpot_jug", "tocsin, warning_bell", "toe", "toecap", "toehold", "toga", "toga_virilis", "toggle", "toggle_bolt", "toggle_joint", "toggle_switch, toggle, on-off_switch, on/off_switch", "togs, threads, duds", "toilet, lavatory, lav, can, john, privy, bathroom", "toilet_bag, sponge_bag", "toilet_bowl", "toilet_kit, travel_kit", "toilet_powder, bath_powder, dusting_powder", "toiletry, toilet_articles", "toilet_seat", "toilet_water, eau_de_toilette", "tokamak", "token", "tollbooth, tolbooth, tollhouse", "toll_bridge", "tollgate, tollbar", "toll_line", "tomahawk, hatchet", "tommy_gun, thompson_submachine_gun", "tomograph", "tone_arm, pickup, pickup_arm", "toner", "tongs, pair_of_tongs", "tongue", "tongue_and_groove_joint", "tongue_depressor", "tonometer", "tool", "tool_bag", "toolbox, tool_chest, tool_cabinet, tool_case", "toolshed, toolhouse", "tooth", "tooth", "toothbrush", "toothpick", "top", "top, cover", "topgallant, topgallant_mast", "topgallant, topgallant_sail", "topiary", "topknot", "topmast", "topper", "topsail", "toque", "torch", "torpedo", "torpedo", "torpedo", "torpedo_boat", "torpedo-boat_destroyer", "torpedo_tube", "torque_converter", "torque_wrench", "torture_chamber", "totem_pole", "touch_screen, touchscreen", "toupee, toupe", "touring_car, phaeton, tourer", "tourist_class, third_class", "towel", "toweling, towelling", "towel_rack, towel_horse", "towel_rail, towel_bar", "tower", "town_hall", "towpath, towing_path", "tow_truck, tow_car, wrecker", "toy", "toy_box, toy_chest", "toyshop", "trace_detector", "track, rail, rails, runway", "track", "trackball", "tracked_vehicle", "tract_house", "tract_housing", "traction_engine", "tractor", "tractor", "trail_bike, dirt_bike, scrambler", "trailer, house_trailer", "trailer", "trailer_camp, trailer_park", "trailer_truck, tractor_trailer, trucking_rig, rig, articulated_lorry, semi", "trailing_edge", "train, railroad_train", "tramline, tramway, streetcar_track", "trammel", "trampoline", "tramp_steamer, tramp", "tramway, tram, aerial_tramway, cable_tramway, ropeway", "transdermal_patch, skin_patch", "transept", "transformer", "transistor, junction_transistor, electronic_transistor", "transit_instrument", "transmission, transmission_system", "transmission_shaft", "transmitter, sender", "transom, traverse", "transom, transom_window, fanlight", "transponder", "transporter", "transporter, car_transporter", "transport_ship", "trap", "trap_door", "trapeze", "trave, traverse, crossbeam, crosspiece", "travel_iron", "trawl, dragnet, trawl_net", "trawl, trawl_line, spiller, setline, trotline", "trawler, dragger", "tray", "tray_cloth", "tread", "tread", "treadmill, treadwheel, tread-wheel", "treadmill", "treasure_chest", "treasure_ship", "treenail, trenail, trunnel", "trefoil_arch", "trellis, treillage", "trench", "trench_coat", "trench_knife", "trepan", "trepan, trephine", "trestle", "trestle", "trestle_bridge", "trestle_table", "trestlework", "trews", "trial_balloon", "triangle", "triangle", "triclinium", "triclinium", "tricorn, tricorne", "tricot", "tricycle, trike, velocipede", "trident", "trigger", "trimaran", "trimmer", "trimmer_arch", "triode", "tripod", "triptych", "trip_wire", "trireme", "triskelion, triskele", "triumphal_arch", "trivet", "trivet", "troika", "troll", "trolleybus, trolley_coach, trackless_trolley", "trombone", "troop_carrier, troop_transport", "troopship", "trophy_case", "trough", "trouser", "trouser_cuff", "trouser_press, pants_presser", "trouser, pant", "trousseau", "trowel", "truck, motortruck", "trumpet_arch", "truncheon, nightstick, baton, billy, billystick, billy_club", "trundle_bed, trundle, truckle_bed, truckle", "trunk", "trunk_hose", "trunk_lid", "trunk_line", "truss", "truss_bridge", "try_square", "t-square", "tub, vat", "tube, vacuum_tube, thermionic_vacuum_tube, thermionic_tube, electron_tube, thermionic_valve", "tuck_box", "tucker", "tucker-bag", "tuck_shop", "tudor_arch, four-centered_arch", "tudung", "tugboat, tug, towboat, tower", "tulle", "tumble-dryer, tumble_drier", "tumbler", "tumbrel, tumbril", "tun", "tunic", "tuning_fork", "tupik, tupek, sealskin_tent", "turban", "turbine", "turbogenerator", "tureen", "turkish_bath", "turkish_towel, terry_towel", "turk's_head", "turnbuckle", "turner, food_turner", "turnery", "turnpike", "turnspit", "turnstile", "turntable", "turntable, lazy_susan", "turret", "turret_clock", "turtleneck, turtle, polo-neck", "tweed", "tweeter", "twenty-two, .22", "twenty-two_pistol", "twenty-two_rifle", "twill", "twill, twill_weave", "twin_bed", "twinjet", "twist_bit, twist_drill", "two-by-four", "two-man_tent", "two-piece, two-piece_suit, lounge_suit", "typesetting_machine", "typewriter", "typewriter_carriage", "typewriter_keyboard", "tyrolean, tirolean", "uke, ukulele", "ulster", "ultracentrifuge", "ultramicroscope, dark-field_microscope", "ultrasuede", "ultraviolet_lamp, ultraviolet_source", "umbrella", "umbrella_tent", "undercarriage", "undercoat, underseal", "undergarment, unmentionable", "underpants", "underwear, underclothes, underclothing", "undies", "uneven_parallel_bars, uneven_bars", "unicycle, monocycle", "uniform", "universal_joint, universal", "university", "upholstery", "upholstery_material", "upholstery_needle", "uplift", "upper_berth, upper", "upright, upright_piano", "upset, swage", "upstairs", "urceole", "urn", "urn", "used-car, secondhand_car", "utensil", "uzi", "vacation_home", "vacuum, vacuum_cleaner", "vacuum_chamber", "vacuum_flask, vacuum_bottle", "vacuum_gauge, vacuum_gage", "valenciennes, valenciennes_lace", "valise", "valve", "valve", "valve-in-head_engine", "vambrace, lower_cannon", "van", "van, caravan", "vane", "vaporizer, vaporiser", "variable-pitch_propeller", "variometer", "varnish", "vase", "vault", "vault, bank_vault", "vaulting_horse, long_horse, buck", "vehicle", "velcro", "velocipede", "velour, velours", "velvet", "velveteen", "vending_machine", "veneer, veneering", "venetian_blind", "venn_diagram, venn's_diagram", "ventilation, ventilation_system, ventilating_system", "ventilation_shaft", "ventilator", "veranda, verandah, gallery", "verdigris", "vernier_caliper, vernier_micrometer", "vernier_scale, vernier", "vertical_file", "vertical_stabilizer, vertical_stabiliser, vertical_fin, tail_fin, tailfin", "vertical_tail", "very_pistol, verey_pistol", "vessel, watercraft", "vessel", "vest, waistcoat", "vestiture", "vestment", "vest_pocket", "vestry, sacristy", "viaduct", "vibraphone, vibraharp, vibes", "vibrator", "vibrator", "victrola", "vicuna", "videocassette", "videocassette_recorder, vcr", "videodisk, videodisc, dvd", "video_recording, video", "videotape", "videotape", "vigil_light, vigil_candle", "villa", "villa", "villa", "viol", "viola", "viola_da_braccio", "viola_da_gamba, gamba, bass_viol", "viola_d'amore", "violin, fiddle", "virginal, pair_of_virginals", "viscometer, viscosimeter", "viscose_rayon, viscose", "vise, bench_vise", "visor, vizor", "visual_display_unit, vdu", "vivarium", "viyella", "voile", "volleyball", "volleyball_net", "voltage_regulator", "voltaic_cell, galvanic_cell, primary_cell", "voltaic_pile, pile, galvanic_pile", "voltmeter", "vomitory", "von_neumann_machine", "voting_booth", "voting_machine", "voussoir", "vox_angelica, voix_celeste", "vox_humana", "waders", "wading_pool", "waffle_iron", "wagon, waggon", "wagon, coaster_wagon", "wagon_tire", "wagon_wheel", "wain", "wainscot, wainscoting, wainscotting", "wainscoting, wainscotting", "waist_pack, belt_bag", "walker, baby-walker, go-cart", "walker, zimmer, zimmer_frame", "walker", "walkie-talkie, walky-talky", "walk-in", "walking_shoe", "walking_stick", "walkman", "walk-up_apartment, walk-up", "wall", "wall", "wall_clock", "wallet, billfold, notecase, pocketbook", "wall_tent", "wall_unit", "wand", "wankel_engine, wankel_rotary_engine, epitrochoidal_engine", "ward, hospital_ward", "wardrobe, closet, press", "wardroom", "warehouse, storage_warehouse", "warming_pan", "war_paint", "warplane, military_plane", "war_room", "warship, war_vessel, combat_ship", "wash", "wash-and-wear", "washbasin, handbasin, washbowl, lavabo, wash-hand_basin", "washboard, splashboard", "washboard", "washer, automatic_washer, washing_machine", "washer", "washhouse", "washroom", "washstand, wash-hand_stand", "washtub", "wastepaper_basket, waste-paper_basket, wastebasket, waste_basket, circular_file", "watch, ticker", "watch_cap", "watch_case", "watch_glass", "watchtower", "water-base_paint", "water_bed", "water_bottle", "water_butt", "water_cart", "water_chute", "water_closet, closet, w.c., loo", "watercolor, water-color, watercolour, water-colour", "water-cooled_reactor", "water_cooler", "water_faucet, water_tap, tap, hydrant", "water_filter", "water_gauge, water_gage, water_glass", "water_glass", "water_hazard", "water_heater, hot-water_heater, hot-water_tank", "watering_can, watering_pot", "watering_cart", "water_jacket", "water_jug", "water_jump", "water_level", "water_meter", "water_mill", "waterproof", "waterproofing", "water_pump", "water_scooter, sea_scooter, scooter", "water_ski", "waterspout", "water_tower", "water_wagon, water_waggon", "waterwheel, water_wheel", "waterwheel, water_wheel", "water_wings", "waterworks", "wattmeter", "waxwork, wax_figure", "ways, shipway, slipway", "weapon, arm, weapon_system", "weaponry, arms, implements_of_war, weapons_system, munition", "weapons_carrier", "weathercock", "weatherglass", "weather_satellite, meteorological_satellite", "weather_ship", "weathervane, weather_vane, vane, wind_vane", "web, entanglement", "web", "webbing", "webcam", "wedge", "wedge", "wedgie", "wedgwood", "weeder, weed-whacker", "weeds, widow's_weeds", "weekender", "weighbridge", "weight, free_weight, exercising_weight", "weir", "weir", "welcome_wagon", "weld", "welder's_mask", "weldment", "well", "wellhead", "welt", "weston_cell, cadmium_cell", "wet_bar", "wet-bulb_thermometer", "wet_cell", "wet_fly", "wet_suit", "whaleboat", "whaler, whaling_ship", "whaling_gun", "wheel", "wheel", "wheel_and_axle", "wheelchair", "wheeled_vehicle", "wheelwork", "wherry", "wherry, norfolk_wherry", "whetstone", "whiffletree, whippletree, swingletree", "whip", "whipcord", "whipping_post", "whipstitch, whipping, whipstitching", "whirler", "whisk, whisk_broom", "whisk", "whiskey_bottle", "whiskey_jug", "whispering_gallery, whispering_dome", "whistle", "whistle", "white", "white_goods", "whitewash", "whorehouse, brothel, bordello, bagnio, house_of_prostitution, house_of_ill_repute, bawdyhouse, cathouse, sporting_house", "wick, taper", "wicker, wickerwork, caning", "wicker_basket", "wicket, hoop", "wicket", "wickiup, wikiup", "wide-angle_lens, fisheye_lens", "widebody_aircraft, wide-body_aircraft, wide-body, twin-aisle_airplane", "wide_wale", "widow's_walk", "wiffle, wiffle_ball", "wig", "wigwam", "wilton, wilton_carpet", "wimple", "wincey", "winceyette", "winch, windlass", "winchester", "windbreak, shelterbelt", "winder, key", "wind_instrument, wind", "windjammer", "windmill, aerogenerator, wind_generator", "windmill", "window", "window", "window_blind", "window_box", "window_envelope", "window_frame", "window_screen", "window_seat", "window_shade", "windowsill", "windshield, windscreen", "windshield_wiper, windscreen_wiper, wiper, wiper_blade", "windsor_chair", "windsor_knot", "windsor_tie", "wind_tee", "wind_tunnel", "wind_turbine", "wine_bar", "wine_bottle", "wine_bucket, wine_cooler", "wine_cask, wine_barrel", "wineglass", "winepress", "winery, wine_maker", "wineskin", "wing", "wing_chair", "wing_nut, wing-nut, wing_screw, butterfly_nut, thumbnut", "wing_tip", "wing_tip", "winker, blinker, blinder", "wiper, wiper_arm, contact_arm", "wiper_motor", "wire", "wire, conducting_wire", "wire_cloth", "wire_cutter", "wire_gauge, wire_gage", "wireless_local_area_network, wlan, wireless_fidelity, wifi", "wire_matrix_printer, wire_printer, stylus_printer", "wire_recorder", "wire_stripper", "wirework, grillwork", "wiring", "wishing_cap", "witness_box, witness_stand", "wok", "woman's_clothing", "wood", "woodcarving", "wood_chisel", "woodenware", "wooden_spoon", "woodscrew", "woodshed", "wood_vise, woodworking_vise, shoulder_vise", "woodwind, woodwind_instrument, wood", "woof, weft, filling, pick", "woofer", "wool, woolen, woollen", "workbasket, workbox, workbag", "workbench, work_bench, bench", "work-clothing, work-clothes", "workhouse", "workhouse", "workpiece", "workroom", "works, workings", "work-shirt", "workstation", "worktable, work_table", "workwear", "world_wide_web, www, web", "worm_fence, snake_fence, snake-rail_fence, virginia_fence", "worm_gear", "worm_wheel", "worsted", "worsted, worsted_yarn", "wrap, wrapper", "wraparound", "wrapping, wrap, wrapper", "wreck", "wrench, spanner", "wrestling_mat", "wringer", "wrist_pad", "wrist_pin, gudgeon_pin", "wristwatch, wrist_watch", "writing_arm", "writing_desk", "writing_desk", "writing_implement", "xerographic_printer", "xerox, xerographic_copier, xerox_machine", "x-ray_film", "x-ray_machine", "x-ray_tube", "yacht, racing_yacht", "yacht_chair", "yagi, yagi_aerial", "yard", "yard", "yardarm", "yard_marker", "yardstick, yard_measure", "yarmulke, yarmulka, yarmelke", "yashmak, yashmac", "yataghan", "yawl, dandy", "yawl", "yoke", "yoke", "yoke, coupling", "yurt", "zamboni", "zero", "ziggurat, zikkurat, zikurat", "zill", "zip_gun", "zither, cither, zithern", "zoot_suit", "shading", "grain", "wood_grain, woodgrain, woodiness", "graining, woodgraining", "marbleization, marbleisation, marbleizing, marbleising", "light, lightness", "aura, aureole, halo, nimbus, glory, gloriole", "sunniness", "glint", "opalescence, iridescence", "polish, gloss, glossiness, burnish", "primary_color_for_pigments, primary_colour_for_pigments", "primary_color_for_light, primary_colour_for_light", "colorlessness, colourlessness, achromatism, achromaticity", "mottle", "achromia", "shade, tint, tincture, tone", "chromatic_color, chromatic_colour, spectral_color, spectral_colour", "black, blackness, inkiness", "coal_black, ebony, jet_black, pitch_black, sable, soot_black", "alabaster", "bone, ivory, pearl, off-white", "gray, grayness, grey, greyness", "ash_grey, ash_gray, silver, silver_grey, silver_gray", "charcoal, charcoal_grey, charcoal_gray, oxford_grey, oxford_gray", "sanguine", "turkey_red, alizarine_red", "crimson, ruby, deep_red", "dark_red", "claret", "fuschia", "maroon", "orange, orangeness", "reddish_orange", "yellow, yellowness", "gamboge, lemon, lemon_yellow, maize", "pale_yellow, straw, wheat", "green, greenness, viridity", "greenishness", "sea_green", "sage_green", "bottle_green", "emerald", "olive_green, olive-green", "jade_green, jade", "blue, blueness", "azure, cerulean, sapphire, lazuline, sky-blue", "steel_blue", "greenish_blue, aqua, aquamarine, turquoise, cobalt_blue, peacock_blue", "purplish_blue, royal_blue", "purple, purpleness", "tyrian_purple", "indigo", "lavender", "reddish_purple, royal_purple", "pink", "carnation", "rose, rosiness", "chestnut", "chocolate, coffee, deep_brown, umber, burnt_umber", "light_brown", "tan, topaz", "beige, ecru", "reddish_brown, sepia, burnt_sienna, venetian_red, mahogany", "brick_red", "copper, copper_color", "indian_red", "puce", "olive", "ultramarine", "complementary_color, complementary", "pigmentation", "complexion, skin_color, skin_colour", "ruddiness, rosiness", "nonsolid_color, nonsolid_colour, dithered_color, dithered_colour", "aposematic_coloration, warning_coloration", "cryptic_coloration", "ring", "center_of_curvature, centre_of_curvature", "cadaver, corpse, stiff, clay, remains", "mandibular_notch", "rib", "skin, tegument, cutis", "skin_graft", "epidermal_cell", "melanocyte", "prickle_cell", "columnar_cell, columnar_epithelial_cell", "spongioblast", "squamous_cell", "amyloid_plaque, amyloid_protein_plaque", "dental_plaque, bacterial_plaque", "macule, macula", "freckle, lentigo", "bouffant", "sausage_curl", "forelock", "spit_curl, kiss_curl", "pigtail", "pageboy", "pompadour", "thatch", "soup-strainer, toothbrush", "mustachio, moustachio, handle-bars", "walrus_mustache, walrus_moustache", "stubble", "vandyke_beard, vandyke", "soul_patch, attilio", "esophageal_smear", "paraduodenal_smear, duodenal_smear", "specimen", "punctum", "glenoid_fossa, glenoid_cavity", "diastema", "marrow, bone_marrow", "mouth, oral_cavity, oral_fissure, rima_oris", "canthus", "milk", "mother's_milk", "colostrum, foremilk", "vein, vena, venous_blood_vessel", "ganglion_cell, gangliocyte", "x_chromosome", "embryonic_cell, formative_cell", "myeloblast", "sideroblast", "osteocyte", "megalocyte, macrocyte", "leukocyte, leucocyte, white_blood_cell, white_cell, white_blood_corpuscle, white_corpuscle, wbc", "histiocyte", "fixed_phagocyte", "lymphocyte, lymph_cell", "monoblast", "neutrophil, neutrophile", "microphage", "sickle_cell", "siderocyte", "spherocyte", "ootid", "oocyte", "spermatid", "leydig_cell, leydig's_cell", "striated_muscle_cell, striated_muscle_fiber", "smooth_muscle_cell", "ranvier's_nodes, nodes_of_ranvier", "neuroglia, glia", "astrocyte", "protoplasmic_astrocyte", "oligodendrocyte", "proprioceptor", "dendrite", "sensory_fiber, afferent_fiber", "subarachnoid_space", "cerebral_cortex, cerebral_mantle, pallium, cortex", "renal_cortex", "prepuce, foreskin", "head, caput", "scalp", "frontal_eminence", "suture, sutura, fibrous_joint", "foramen_magnum", "esophagogastric_junction, oesophagogastric_junction", "heel", "cuticle", "hangnail, agnail", "exoskeleton", "abdominal_wall", "lemon", "coordinate_axis", "landscape", "medium", "vehicle", "paper", "channel, transmission_channel", "film, cinema, celluloid", "silver_screen", "free_press", "press, public_press", "print_media", "storage_medium, data-storage_medium", "magnetic_storage_medium, magnetic_medium, magnetic_storage", "journalism, news_media", "fleet_street", "photojournalism", "news_photography", "rotogravure", "newspaper, paper", "daily", "gazette", "school_newspaper, school_paper", "tabloid, rag, sheet", "yellow_journalism, tabloid, tab", "telecommunication, telecom", "telephone, telephony", "voice_mail, voicemail", "call, phone_call, telephone_call", "call-back", "collect_call", "call_forwarding", "call-in", "call_waiting", "crank_call", "local_call", "long_distance, long-distance_call, trunk_call", "toll_call", "wake-up_call", "three-way_calling", "telegraphy", "cable, cablegram, overseas_telegram", "wireless", "radiotelegraph, radiotelegraphy, wireless_telegraphy", "radiotelephone, radiotelephony, wireless_telephone", "broadcasting", "rediffusion", "multiplex", "radio, radiocommunication, wireless", "television, telecasting, tv, video", "cable_television, cable", "high-definition_television, hdtv", "reception", "signal_detection, detection", "hakham", "web_site, website, internet_site, site", "chat_room, chatroom", "portal_site, portal", "jotter", "breviary", "wordbook", "desk_dictionary, collegiate_dictionary", "reckoner, ready_reckoner", "document, written_document, papers", "album, record_album", "concept_album", "rock_opera", "tribute_album, benefit_album", "magazine, mag", "colour_supplement", "comic_book", "news_magazine", "pulp, pulp_magazine", "slick, slick_magazine, glossy", "trade_magazine", "movie, film, picture, moving_picture, moving-picture_show, motion_picture, motion-picture_show, picture_show, pic, flick", "outtake", "shoot-'em-up", "spaghetti_western", "encyclical, encyclical_letter", "crossword_puzzle, crossword", "sign", "street_sign", "traffic_light, traffic_signal, stoplight", "swastika, hakenkreuz", "concert", "artwork, art, graphics, nontextual_matter", "lobe", "book_jacket, dust_cover, dust_jacket, dust_wrapper", "cairn", "three-day_event", "comfort_food", "comestible, edible, eatable, pabulum, victual, victuals", "tuck", "course", "dainty, delicacy, goody, kickshaw, treat", "dish", "fast_food", "finger_food", "ingesta", "kosher", "fare", "diet", "diet", "dietary", "balanced_diet", "bland_diet, ulcer_diet", "clear_liquid_diet", "diabetic_diet", "dietary_supplement", "carbohydrate_loading, carbo_loading", "fad_diet", "gluten-free_diet", "high-protein_diet", "high-vitamin_diet, vitamin-deficiency_diet", "light_diet", "liquid_diet", "low-calorie_diet", "low-fat_diet", "low-sodium_diet, low-salt_diet, salt-free_diet", "macrobiotic_diet", "reducing_diet, obesity_diet", "soft_diet, pap, spoon_food", "vegetarianism", "menu", "chow, chuck, eats, grub", "board, table", "mess", "ration", "field_ration", "k_ration", "c-ration", "foodstuff, food_product", "starches", "breadstuff", "coloring, colouring, food_coloring, food_colouring, food_color, food_colour", "concentrate", "tomato_concentrate", "meal", "kibble", "cornmeal, indian_meal", "farina", "matzo_meal, matzoh_meal, matzah_meal", "oatmeal, rolled_oats", "pea_flour", "roughage, fiber", "bran", "flour", "plain_flour", "wheat_flour", "whole_wheat_flour, graham_flour, graham, whole_meal_flour", "soybean_meal, soybean_flour, soy_flour", "semolina", "corn_gluten_feed", "nutriment, nourishment, nutrition, sustenance, aliment, alimentation, victuals", "commissariat, provisions, provender, viands, victuals", "larder", "frozen_food, frozen_foods", "canned_food, canned_foods, canned_goods, tinned_goods", "canned_meat, tinned_meat", "spam", "dehydrated_food, dehydrated_foods", "square_meal", "meal, repast", "potluck", "refection", "refreshment", "breakfast", "continental_breakfast, petit_dejeuner", "brunch", "lunch, luncheon, tiffin, dejeuner", "business_lunch", "high_tea", "tea, afternoon_tea, teatime", "dinner", "supper", "buffet", "picnic", "cookout", "barbecue, barbeque", "clambake", "fish_fry", "bite, collation, snack", "nosh", "nosh-up", "ploughman's_lunch", "coffee_break, tea_break", "banquet, feast, spread", "entree, main_course", "piece_de_resistance", "plate", "adobo", "side_dish, side_order, entremets", "special", "casserole", "chicken_casserole", "chicken_cacciatore, chicken_cacciatora, hunter's_chicken", "antipasto", "appetizer, appetiser, starter", "canape", "cocktail", "fruit_cocktail", "crab_cocktail", "shrimp_cocktail", "hors_d'oeuvre", "relish", "dip", "bean_dip", "cheese_dip", "clam_dip", "guacamole", "soup", "soup_du_jour", "alphabet_soup", "consomme", "madrilene", "bisque", "borsch, borsh, borscht, borsht, borshch, bortsch", "broth", "barley_water", "bouillon", "beef_broth, beef_stock", "chicken_broth, chicken_stock", "broth, stock", "stock_cube", "chicken_soup", "cock-a-leekie, cocky-leeky", "gazpacho", "gumbo", "julienne", "marmite", "mock_turtle_soup", "mulligatawny", "oxtail_soup", "pea_soup", "pepper_pot, philadelphia_pepper_pot", "petite_marmite, minestrone, vegetable_soup", "potage, pottage", "pottage", "turtle_soup, green_turtle_soup", "eggdrop_soup", "chowder", "corn_chowder", "clam_chowder", "manhattan_clam_chowder", "new_england_clam_chowder", "fish_chowder", "won_ton, wonton, wonton_soup", "split-pea_soup", "green_pea_soup, potage_st._germain", "lentil_soup", "scotch_broth", "vichyssoise", "stew", "bigos", "brunswick_stew", "burgoo", "burgoo", "olla_podrida, spanish_burgoo", "mulligan_stew, mulligan, irish_burgoo", "purloo, chicken_purloo, poilu", "goulash, hungarian_goulash, gulyas", "hotchpotch", "hot_pot, hotpot", "beef_goulash", "pork-and-veal_goulash", "porkholt", "irish_stew", "oyster_stew", "lobster_stew", "lobscouse, lobscuse, scouse", "fish_stew", "bouillabaisse", "matelote", "paella", "fricassee", "chicken_stew", "turkey_stew", "beef_stew", "ragout", "ratatouille", "salmi", "pot-au-feu", "slumgullion", "smorgasbord", "viand", "ready-mix", "brownie_mix", "cake_mix", "lemonade_mix", "self-rising_flour, self-raising_flour", "choice_morsel, tidbit, titbit", "savory, savoury", "calf's-foot_jelly", "caramel, caramelized_sugar", "lump_sugar", "cane_sugar", "castor_sugar, caster_sugar", "powdered_sugar", "granulated_sugar", "icing_sugar", "corn_sugar", "brown_sugar", "demerara, demerara_sugar", "sweet, confection", "confectionery", "confiture", "sweetmeat", "candy, confect", "candy_bar", "carob_bar", "hardbake", "hard_candy", "barley-sugar, barley_candy", "brandyball", "jawbreaker", "lemon_drop", "sourball", "patty", "peppermint_patty", "bonbon", "brittle, toffee, toffy", "peanut_brittle", "chewing_gum, gum", "gum_ball", "bubble_gum", "butterscotch", "candied_fruit, succade, crystallized_fruit", "candied_apple, candy_apple, taffy_apple, caramel_apple, toffee_apple", "crystallized_ginger", "grapefruit_peel", "lemon_peel", "orange_peel", "candied_citrus_peel", "candy_cane", "candy_corn", "caramel", "center, centre", "comfit", "cotton_candy, spun_sugar, candyfloss", "dragee", "dragee", "fondant", "fudge", "chocolate_fudge", "divinity, divinity_fudge", "penuche, penoche, panoche, panocha", "gumdrop", "jujube", "honey_crisp", "mint, mint_candy", "horehound", "peppermint, peppermint_candy", "jelly_bean, jelly_egg", "kiss, candy_kiss", "molasses_kiss", "meringue_kiss", "chocolate_kiss", "licorice, liquorice", "life_saver", "lollipop, sucker, all-day_sucker", "lozenge", "cachou", "cough_drop, troche, pastille, pastil", "marshmallow", "marzipan, marchpane", "nougat", "nougat_bar", "nut_bar", "peanut_bar", "popcorn_ball", "praline", "rock_candy", "rock_candy, rock", "sugar_candy", "sugarplum", "taffy", "molasses_taffy", "truffle, chocolate_truffle", "turkish_delight", "dessert, sweet, afters", "ambrosia, nectar", "ambrosia", "baked_alaska", "blancmange", "charlotte", "compote, fruit_compote", "dumpling", "flan", "frozen_dessert", "junket", "mousse", "mousse", "pavlova", "peach_melba", "whip", "prune_whip", "pudding", "pudding, pud", "syllabub, sillabub", "tiramisu", "trifle", "tipsy_cake", "jello, jell-o", "apple_dumpling", "ice, frappe", "water_ice, sorbet", "ice_cream, icecream", "ice-cream_cone", "chocolate_ice_cream", "neapolitan_ice_cream", "peach_ice_cream", "sherbert, sherbet", "strawberry_ice_cream", "tutti-frutti", "vanilla_ice_cream", "ice_lolly, lolly, lollipop, popsicle", "ice_milk", "frozen_yogurt", "snowball", "snowball", "parfait", "ice-cream_sundae, sundae", "split", "banana_split", "frozen_pudding", "frozen_custard, soft_ice_cream", "pudding", "flummery", "fish_mousse", "chicken_mousse", "chocolate_mousse", "plum_pudding, christmas_pudding", "carrot_pudding", "corn_pudding", "steamed_pudding", "duff, plum_duff", "vanilla_pudding", "chocolate_pudding", "brown_betty", "nesselrode, nesselrode_pudding", "pease_pudding", "custard", "creme_caramel", "creme_anglais", "creme_brulee", "fruit_custard", "tapioca", "tapioca_pudding", "roly-poly, roly-poly_pudding", "suet_pudding", "bavarian_cream", "maraschino, maraschino_cherry", "nonpareil", "zabaglione, sabayon", "garnish", "pastry, pastry_dough", "turnover", "apple_turnover", "knish", "pirogi, piroshki, pirozhki", "samosa", "timbale", "puff_paste, pate_feuillete", "phyllo", "puff_batter, pouf_paste, pate_a_choux", "ice-cream_cake, icebox_cake", "doughnut, donut, sinker", "fish_cake, fish_ball", "fish_stick, fish_finger", "conserve, preserve, conserves, preserves", "apple_butter", "chowchow", "jam", "lemon_curd, lemon_cheese", "strawberry_jam, strawberry_preserves", "jelly", "apple_jelly", "crabapple_jelly", "grape_jelly", "marmalade", "orange_marmalade", "gelatin, jelly", "gelatin_dessert", "buffalo_wing", "barbecued_wing", "mess", "mince", "puree", "barbecue, barbeque", "biryani, biriani", "escalope_de_veau_orloff", "saute", "patty, cake", "veal_parmesan, veal_parmigiana", "veal_cordon_bleu", "margarine, margarin, oleo, oleomargarine, marge", "mincemeat", "stuffing, dressing", "turkey_stuffing", "oyster_stuffing, oyster_dressing", "forcemeat, farce", "bread, breadstuff, staff_of_life", "anadama_bread", "bap", "barmbrack", "breadstick, bread-stick", "grissino", "brown_bread, boston_brown_bread", "bun, roll", "tea_bread", "caraway_seed_bread", "challah, hallah", "cinnamon_bread", "cracked-wheat_bread", "cracker", "crouton", "dark_bread, whole_wheat_bread, whole_meal_bread, brown_bread", "english_muffin", "flatbread", "garlic_bread", "gluten_bread", "graham_bread", "host", "flatbrod", "bannock", "chapatti, chapati", "pita, pocket_bread", "loaf_of_bread, loaf", "french_loaf", "matzo, matzoh, matzah, unleavened_bread", "nan, naan", "onion_bread", "raisin_bread", "quick_bread", "banana_bread", "date_bread", "date-nut_bread", "nut_bread", "oatcake", "irish_soda_bread", "skillet_bread, fry_bread", "rye_bread", "black_bread, pumpernickel", "jewish_rye_bread, jewish_rye", "limpa", "swedish_rye_bread, swedish_rye", "salt-rising_bread", "simnel", "sour_bread, sourdough_bread", "toast", "wafer", "white_bread, light_bread", "baguet, baguette", "french_bread", "italian_bread", "cornbread", "corn_cake", "skillet_corn_bread", "ashcake, ash_cake, corn_tash", "hoecake", "cornpone, pone", "corn_dab, corn_dodger, dodger", "hush_puppy, hushpuppy", "johnnycake, johnny_cake, journey_cake", "shawnee_cake", "spoon_bread, batter_bread", "cinnamon_toast", "orange_toast", "melba_toast", "zwieback, rusk, brussels_biscuit, twice-baked_bread", "frankfurter_bun, hotdog_bun", "hamburger_bun, hamburger_roll", "muffin, gem", "bran_muffin", "corn_muffin", "yorkshire_pudding", "popover", "scone", "drop_scone, griddlecake, scotch_pancake", "cross_bun, hot_cross_bun", "brioche", "crescent_roll, croissant", "hard_roll, vienna_roll", "soft_roll", "kaiser_roll", "parker_house_roll", "clover-leaf_roll", "onion_roll", "bialy, bialystoker", "sweet_roll, coffee_roll", "bear_claw, bear_paw", "cinnamon_roll, cinnamon_bun, cinnamon_snail", "honey_bun, sticky_bun, caramel_bun, schnecken", "pinwheel_roll", "danish, danish_pastry", "bagel, beigel", "onion_bagel", "biscuit", "rolled_biscuit", "baking-powder_biscuit", "buttermilk_biscuit, soda_biscuit", "shortcake", "hardtack, pilot_biscuit, pilot_bread, sea_biscuit, ship_biscuit", "saltine", "soda_cracker", "oyster_cracker", "water_biscuit", "graham_cracker", "pretzel", "soft_pretzel", "sandwich", "sandwich_plate", "butty", "ham_sandwich", "chicken_sandwich", "club_sandwich, three-decker, triple-decker", "open-face_sandwich, open_sandwich", "hamburger, beefburger, burger", "cheeseburger", "tunaburger", "hotdog, hot_dog, red_hot", "sloppy_joe", "bomber, grinder, hero, hero_sandwich, hoagie, hoagy, cuban_sandwich, italian_sandwich, poor_boy, sub, submarine, submarine_sandwich, torpedo, wedge, zep", "gyro", "bacon-lettuce-tomato_sandwich, blt", "reuben", "western, western_sandwich", "wrap", "spaghetti", "hasty_pudding", "gruel", "congee, jook", "skilly", "edible_fruit", "vegetable, veggie, veg", "julienne, julienne_vegetable", "raw_vegetable, rabbit_food", "crudites", "celery_stick", "legume", "pulse", "potherb", "greens, green, leafy_vegetable", "chop-suey_greens", "bean_curd, tofu", "solanaceous_vegetable", "root_vegetable", "potato, white_potato, irish_potato, murphy, spud, tater", "baked_potato", "french_fries, french-fried_potatoes, fries, chips", "home_fries, home-fried_potatoes", "jacket_potato", "mashed_potato", "potato_skin, potato_peel, potato_peelings", "uruguay_potato", "yam", "sweet_potato", "yam", "snack_food", "chip, crisp, potato_chip, saratoga_chip", "corn_chip", "tortilla_chip", "nacho", "eggplant, aubergine, mad_apple", "pieplant, rhubarb", "cruciferous_vegetable", "mustard, mustard_greens, leaf_mustard, indian_mustard", "cabbage, chou", "kale, kail, cole", "collards, collard_greens", "chinese_cabbage, celery_cabbage, chinese_celery", "bok_choy, bok_choi", "head_cabbage", "red_cabbage", "savoy_cabbage, savoy", "broccoli", "cauliflower", "brussels_sprouts", "broccoli_rabe, broccoli_raab", "squash", "summer_squash", "yellow_squash", "crookneck, crookneck_squash, summer_crookneck", "zucchini, courgette", "marrow, vegetable_marrow", "cocozelle", "pattypan_squash", "spaghetti_squash", "winter_squash", "acorn_squash", "butternut_squash", "hubbard_squash", "turban_squash", "buttercup_squash", "cushaw", "winter_crookneck_squash", "cucumber, cuke", "gherkin", "artichoke, globe_artichoke", "artichoke_heart", "jerusalem_artichoke, sunchoke", "asparagus", "bamboo_shoot", "sprout", "bean_sprout", "alfalfa_sprout", "beet, beetroot", "beet_green", "sugar_beet", "mangel-wurzel", "chard, swiss_chard, spinach_beet, leaf_beet", "pepper", "sweet_pepper", "bell_pepper", "green_pepper", "globe_pepper", "pimento, pimiento", "hot_pepper", "chili, chili_pepper, chilli, chilly, chile", "jalapeno, jalapeno_pepper", "chipotle", "cayenne, cayenne_pepper", "tabasco, red_pepper", "onion", "bermuda_onion", "green_onion, spring_onion, scallion", "vidalia_onion", "spanish_onion", "purple_onion, red_onion", "leek", "shallot", "salad_green, salad_greens", "lettuce", "butterhead_lettuce", "buttercrunch", "bibb_lettuce", "boston_lettuce", "crisphead_lettuce, iceberg_lettuce, iceberg", "cos, cos_lettuce, romaine, romaine_lettuce", "leaf_lettuce, loose-leaf_lettuce", "celtuce", "bean, edible_bean", "goa_bean", "lentil", "pea", "green_pea, garden_pea", "marrowfat_pea", "snow_pea, sugar_pea", "sugar_snap_pea", "split-pea", "chickpea, garbanzo", "cajan_pea, pigeon_pea, dahl", "field_pea", "mushy_peas", "black-eyed_pea, cowpea", "common_bean", "kidney_bean", "navy_bean, pea_bean, white_bean", "pinto_bean", "frijole", "black_bean, turtle_bean", "fresh_bean", "flageolet, haricot", "green_bean", "snap_bean, snap", "string_bean", "kentucky_wonder, kentucky_wonder_bean", "scarlet_runner, scarlet_runner_bean, runner_bean, english_runner_bean", "haricot_vert, haricots_verts, french_bean", "wax_bean, yellow_bean", "shell_bean", "lima_bean", "fordhooks", "sieva_bean, butter_bean, butterbean, civet_bean", "fava_bean, broad_bean", "soy, soybean, soya, soya_bean", "green_soybean", "field_soybean", "cardoon", "carrot", "carrot_stick", "celery", "pascal_celery, paschal_celery", "celeriac, celery_root", "chicory, curly_endive", "radicchio", "coffee_substitute", "chicory, chicory_root", "postum", "chicory_escarole, endive, escarole", "belgian_endive, french_endive, witloof", "corn, edible_corn", "sweet_corn, green_corn", "hominy", "lye_hominy", "pearl_hominy", "popcorn", "cress", "watercress", "garden_cress", "winter_cress", "dandelion_green", "gumbo, okra", "kohlrabi, turnip_cabbage", "lamb's-quarter, pigweed, wild_spinach", "wild_spinach", "tomato", "beefsteak_tomato", "cherry_tomato", "plum_tomato", "tomatillo, husk_tomato, mexican_husk_tomato", "mushroom", "stuffed_mushroom", "salsify", "oyster_plant, vegetable_oyster", "scorzonera, black_salsify", "parsnip", "pumpkin", "radish", "turnip", "white_turnip", "rutabaga, swede, swedish_turnip, yellow_turnip", "turnip_greens", "sorrel, common_sorrel", "french_sorrel", "spinach", "taro, taro_root, cocoyam, dasheen, edda", "truffle, earthnut", "edible_nut", "bunya_bunya", "peanut, earthnut, goober, goober_pea, groundnut, monkey_nut", "freestone", "cling, clingstone", "windfall", "apple", "crab_apple, crabapple", "eating_apple, dessert_apple", "baldwin", "cortland", "cox's_orange_pippin", "delicious", "golden_delicious, yellow_delicious", "red_delicious", "empire", "grimes'_golden", "jonathan", "mcintosh", "macoun", "northern_spy", "pearmain", "pippin", "prima", "stayman", "winesap", "stayman_winesap", "cooking_apple", "bramley's_seedling", "granny_smith", "lane's_prince_albert", "newtown_wonder", "rome_beauty", "berry", "bilberry, whortleberry, european_blueberry", "huckleberry", "blueberry", "wintergreen, boxberry, checkerberry, teaberry, spiceberry", "cranberry", "lingonberry, mountain_cranberry, cowberry, lowbush_cranberry", "currant", "gooseberry", "black_currant", "red_currant", "blackberry", "boysenberry", "dewberry", "loganberry", "raspberry", "saskatoon, serviceberry, shadberry, juneberry", "strawberry", "sugarberry, hackberry", "persimmon", "acerola, barbados_cherry, surinam_cherry, west_indian_cherry", "carambola, star_fruit", "ceriman, monstera", "carissa_plum, natal_plum", "citrus, citrus_fruit, citrous_fruit", "orange", "temple_orange", "mandarin, mandarin_orange", "clementine", "satsuma", "tangerine", "tangelo, ugli, ugli_fruit", "bitter_orange, seville_orange, sour_orange", "sweet_orange", "jaffa_orange", "navel_orange", "valencia_orange", "kumquat", "lemon", "lime", "key_lime", "grapefruit", "pomelo, shaddock", "citrange", "citron", "almond", "jordan_almond", "apricot", "peach", "nectarine", "pitahaya", "plum", "damson, damson_plum", "greengage, greengage_plum", "beach_plum", "sloe", "victoria_plum", "dried_fruit", "dried_apricot", "prune", "raisin", "seedless_raisin, sultana", "seeded_raisin", "currant", "fig", "pineapple, ananas", "anchovy_pear, river_pear", "banana", "passion_fruit", "granadilla", "sweet_calabash", "bell_apple, sweet_cup, water_lemon, yellow_granadilla", "breadfruit", "jackfruit, jak, jack", "cacao_bean, cocoa_bean", "cocoa", "canistel, eggfruit", "melon", "melon_ball", "muskmelon, sweet_melon", "cantaloup, cantaloupe", "winter_melon", "honeydew, honeydew_melon", "persian_melon", "net_melon, netted_melon, nutmeg_melon", "casaba, casaba_melon", "watermelon", "cherry", "sweet_cherry, black_cherry", "bing_cherry", "heart_cherry, oxheart, oxheart_cherry", "blackheart, blackheart_cherry", "capulin, mexican_black_cherry", "sour_cherry", "amarelle", "morello", "cocoa_plum, coco_plum, icaco", "gherkin", "grape", "fox_grape", "concord_grape", "catawba", "muscadine, bullace_grape", "scuppernong", "slipskin_grape", "vinifera_grape", "emperor", "muscat, muscatel, muscat_grape", "ribier", "sultana", "tokay", "flame_tokay", "thompson_seedless", "custard_apple", "cherimoya, cherimolla", "soursop, guanabana", "sweetsop, annon, sugar_apple", "ilama", "pond_apple", "papaw, pawpaw", "papaya", "kai_apple", "ketembilla, kitembilla, kitambilla", "ackee, akee", "durian", "feijoa, pineapple_guava", "genip, spanish_lime", "genipap, genipap_fruit", "kiwi, kiwi_fruit, chinese_gooseberry", "loquat, japanese_plum", "mangosteen", "mango", "sapodilla, sapodilla_plum, sapota", "sapote, mammee, marmalade_plum", "tamarind, tamarindo", "avocado, alligator_pear, avocado_pear, aguacate", "date", "elderberry", "guava", "mombin", "hog_plum, yellow_mombin", "hog_plum, wild_plum", "jaboticaba", "jujube, chinese_date, chinese_jujube", "litchi, litchi_nut, litchee, lichi, leechee, lichee, lychee", "longanberry, dragon's_eye", "mamey, mammee, mammee_apple", "marang", "medlar", "medlar", "mulberry", "olive", "black_olive, ripe_olive", "green_olive", "pear", "bosc", "anjou", "bartlett, bartlett_pear", "seckel, seckel_pear", "plantain", "plumcot", "pomegranate", "prickly_pear", "barbados_gooseberry, blade_apple", "quandong, quandang, quantong, native_peach", "quandong_nut", "quince", "rambutan, rambotan", "pulasan, pulassan", "rose_apple", "sorb, sorb_apple", "sour_gourd, monkey_bread", "edible_seed", "pumpkin_seed", "betel_nut, areca_nut", "beechnut", "walnut", "black_walnut", "english_walnut", "brazil_nut, brazil", "butternut", "souari_nut", "cashew, cashew_nut", "chestnut", "chincapin, chinkapin, chinquapin", "hazelnut, filbert, cobnut, cob", "coconut, cocoanut", "coconut_milk, coconut_water", "grugru_nut", "hickory_nut", "cola_extract", "macadamia_nut", "pecan", "pine_nut, pignolia, pinon_nut", "pistachio, pistachio_nut", "sunflower_seed", "anchovy_paste", "rollmops", "feed, provender", "cattle_cake", "creep_feed", "fodder", "feed_grain", "eatage, forage, pasture, pasturage, grass", "silage, ensilage", "oil_cake", "oil_meal", "alfalfa", "broad_bean, horse_bean", "hay", "timothy", "stover", "grain, food_grain, cereal", "grist", "groats", "millet", "barley, barleycorn", "pearl_barley", "buckwheat", "bulgur, bulghur, bulgur_wheat", "wheat, wheat_berry", "cracked_wheat", "stodge", "wheat_germ", "oat", "rice", "brown_rice", "white_rice, polished_rice", "wild_rice, indian_rice", "paddy", "slop, slops, swill, pigswill, pigwash", "mash", "chicken_feed, scratch", "cud, rechewed_food", "bird_feed, bird_food, birdseed", "petfood, pet-food, pet_food", "dog_food", "cat_food", "canary_seed", "salad", "tossed_salad", "green_salad", "caesar_salad", "salmagundi", "salad_nicoise", "combination_salad", "chef's_salad", "potato_salad", "pasta_salad", "macaroni_salad", "fruit_salad", "waldorf_salad", "crab_louis", "herring_salad", "tuna_fish_salad, tuna_salad", "chicken_salad", "coleslaw, slaw", "aspic", "molded_salad", "tabbouleh, tabooli", "ingredient, fixings", "flavorer, flavourer, flavoring, flavouring, seasoner, seasoning", "bouillon_cube", "condiment", "herb", "fines_herbes", "spice", "spearmint_oil", "lemon_oil", "wintergreen_oil, oil_of_wintergreen", "salt, table_salt, common_salt", "celery_salt", "onion_salt", "seasoned_salt", "sour_salt", "five_spice_powder", "allspice", "cinnamon", "stick_cinnamon", "clove", "cumin, cumin_seed", "fennel", "ginger, gingerroot", "ginger, powdered_ginger", "mace", "nutmeg", "pepper, peppercorn", "black_pepper", "white_pepper", "sassafras", "basil, sweet_basil", "bay_leaf", "borage", "hyssop", "caraway", "chervil", "chives", "comfrey, healing_herb", "coriander, chinese_parsley, cilantro", "coriander, coriander_seed", "costmary", "fennel, common_fennel", "fennel, florence_fennel, finocchio", "fennel_seed", "fenugreek, fenugreek_seed", "garlic, ail", "clove, garlic_clove", "garlic_chive", "lemon_balm", "lovage", "marjoram, oregano", "mint", "mustard_seed", "mustard, table_mustard", "chinese_mustard", "nasturtium", "parsley", "salad_burnet", "rosemary", "rue", "sage", "clary_sage", "savory, savoury", "summer_savory, summer_savoury", "winter_savory, winter_savoury", "sweet_woodruff, waldmeister", "sweet_cicely", "tarragon, estragon", "thyme", "turmeric", "caper", "catsup, ketchup, cetchup, tomato_ketchup", "cardamom, cardamon, cardamum", "cayenne, cayenne_pepper, red_pepper", "chili_powder", "chili_sauce", "chutney, indian_relish", "steak_sauce", "taco_sauce", "salsa", "mint_sauce", "cranberry_sauce", "curry_powder", "curry", "lamb_curry", "duck_sauce, hoisin_sauce", "horseradish", "marinade", "paprika", "spanish_paprika", "pickle", "dill_pickle", "bread_and_butter_pickle", "pickle_relish", "piccalilli", "sweet_pickle", "applesauce, apple_sauce", "soy_sauce, soy", "tabasco, tabasco_sauce", "tomato_paste", "angelica", "angelica", "almond_extract", "anise, aniseed, anise_seed", "chinese_anise, star_anise, star_aniseed", "juniper_berries", "saffron", "sesame_seed, benniseed", "caraway_seed", "poppy_seed", "dill, dill_weed", "dill_seed", "celery_seed", "lemon_extract", "monosodium_glutamate, msg", "vanilla_bean", "vinegar, acetum", "cider_vinegar", "wine_vinegar", "sauce", "anchovy_sauce", "hot_sauce", "hard_sauce", "horseradish_sauce, sauce_albert", "bolognese_pasta_sauce", "carbonara", "tomato_sauce", "tartare_sauce, tartar_sauce", "wine_sauce", "marchand_de_vin, mushroom_wine_sauce", "bread_sauce", "plum_sauce", "peach_sauce", "apricot_sauce", "pesto", "ravigote, ravigotte", "remoulade_sauce", "dressing, salad_dressing", "sauce_louis", "bleu_cheese_dressing, blue_cheese_dressing", "blue_cheese_dressing, roquefort_dressing", "french_dressing, vinaigrette, sauce_vinaigrette", "lorenzo_dressing", "anchovy_dressing", "italian_dressing", "half-and-half_dressing", "mayonnaise, mayo", "green_mayonnaise, sauce_verte", "aioli, aioli_sauce, garlic_sauce", "russian_dressing, russian_mayonnaise", "salad_cream", "thousand_island_dressing", "barbecue_sauce", "hollandaise", "bearnaise", "bercy, bercy_butter", "bordelaise", "bourguignon, bourguignon_sauce, burgundy_sauce", "brown_sauce, sauce_espagnole", "espagnole, sauce_espagnole", "chinese_brown_sauce, brown_sauce", "blanc", "cheese_sauce", "chocolate_sauce, chocolate_syrup", "hot-fudge_sauce, fudge_sauce", "cocktail_sauce, seafood_sauce", "colbert, colbert_butter", "white_sauce, bechamel_sauce, bechamel", "cream_sauce", "mornay_sauce", "demiglace, demi-glaze", "gravy, pan_gravy", "gravy", "spaghetti_sauce, pasta_sauce", "marinara", "mole", "hunter's_sauce, sauce_chausseur", "mushroom_sauce", "mustard_sauce", "nantua, shrimp_sauce", "hungarian_sauce, paprika_sauce", "pepper_sauce, poivrade", "roux", "smitane", "soubise, white_onion_sauce", "lyonnaise_sauce, brown_onion_sauce", "veloute", "allemande, allemande_sauce", "caper_sauce", "poulette", "curry_sauce", "worcester_sauce, worcestershire, worcestershire_sauce", "coconut_milk, coconut_cream", "egg, eggs", "egg_white, white, albumen, ovalbumin", "egg_yolk, yolk", "boiled_egg, coddled_egg", "hard-boiled_egg, hard-cooked_egg", "easter_egg", "easter_egg", "chocolate_egg", "candy_egg", "poached_egg, dropped_egg", "scrambled_eggs", "deviled_egg, stuffed_egg", "shirred_egg, baked_egg, egg_en_cocotte", "omelet, omelette", "firm_omelet", "french_omelet", "fluffy_omelet", "western_omelet", "souffle", "fried_egg", "dairy_product", "milk", "milk", "sour_milk", "soya_milk, soybean_milk, soymilk", "formula", "pasteurized_milk", "cows'_milk", "yak's_milk", "goats'_milk", "acidophilus_milk", "raw_milk", "scalded_milk", "homogenized_milk", "certified_milk", "powdered_milk, dry_milk, dried_milk, milk_powder", "nonfat_dry_milk", "evaporated_milk", "condensed_milk", "skim_milk, skimmed_milk", "semi-skimmed_milk", "whole_milk", "low-fat_milk", "buttermilk", "cream", "clotted_cream, devonshire_cream", "double_creme, heavy_whipping_cream", "half-and-half", "heavy_cream", "light_cream, coffee_cream, single_cream", "sour_cream, soured_cream", "whipping_cream, light_whipping_cream", "butter", "clarified_butter, drawn_butter", "ghee", "brown_butter, beurre_noisette", "meuniere_butter, lemon_butter", "yogurt, yoghurt, yoghourt", "blueberry_yogurt", "raita", "whey", "curd", "curd", "clabber", "cheese", "paring", "cream_cheese", "double_cream", "mascarpone", "triple_cream, triple_creme", "cottage_cheese, pot_cheese, farm_cheese, farmer's_cheese", "process_cheese, processed_cheese", "bleu, blue_cheese", "stilton", "roquefort", "gorgonzola", "danish_blue", "bavarian_blue", "brie", "brick_cheese", "camembert", "cheddar, cheddar_cheese, armerican_cheddar, american_cheese", "rat_cheese, store_cheese", "cheshire_cheese", "double_gloucester", "edam", "goat_cheese, chevre", "gouda, gouda_cheese", "grated_cheese", "hand_cheese", "liederkranz", "limburger", "mozzarella", "muenster", "parmesan", "quark_cheese, quark", "ricotta", "string_cheese", "swiss_cheese", "emmenthal, emmental, emmenthaler, emmentaler", "gruyere", "sapsago", "velveeta", "nut_butter", "peanut_butter", "marshmallow_fluff", "onion_butter", "pimento_butter", "shrimp_butter", "lobster_butter", "yak_butter", "spread, paste", "cheese_spread", "anchovy_butter", "fishpaste", "garlic_butter", "miso", "wasabi", "snail_butter", "hummus, humus, hommos, hoummos, humous", "pate", "duck_pate", "foie_gras, pate_de_foie_gras", "tapenade", "tahini", "sweetening, sweetener", "aspartame", "honey", "saccharin", "sugar, refined_sugar", "syrup, sirup", "sugar_syrup", "molasses", "sorghum, sorghum_molasses", "treacle, golden_syrup", "grenadine", "maple_syrup", "corn_syrup", "miraculous_food, manna, manna_from_heaven", "batter", "dough", "bread_dough", "pancake_batter", "fritter_batter", "coq_au_vin", "chicken_provencale", "chicken_and_rice", "moo_goo_gai_pan", "arroz_con_pollo", "bacon_and_eggs", "barbecued_spareribs, spareribs", "beef_bourguignonne, boeuf_bourguignonne", "beef_wellington, filet_de_boeuf_en_croute", "bitok", "boiled_dinner, new_england_boiled_dinner", "boston_baked_beans", "bubble_and_squeak", "pasta", "cannelloni", "carbonnade_flamande, belgian_beef_stew", "cheese_souffle", "chicken_marengo", "chicken_cordon_bleu", "maryland_chicken", "chicken_paprika, chicken_paprikash", "chicken_tetrazzini", "tetrazzini", "chicken_kiev", "chili, chili_con_carne", "chili_dog", "chop_suey", "chow_mein", "codfish_ball, codfish_cake", "coquille", "coquilles_saint-jacques", "croquette", "cottage_pie", "rissole", "dolmas, stuffed_grape_leaves", "egg_foo_yong, egg_fu_yung", "egg_roll, spring_roll", "eggs_benedict", "enchilada", "falafel, felafel", "fish_and_chips", "fondue, fondu", "cheese_fondue", "chocolate_fondue", "fondue, fondu", "beef_fondue, boeuf_fondu_bourguignon", "french_toast", "fried_rice, chinese_fried_rice", "frittata", "frog_legs", "galantine", "gefilte_fish, fish_ball", "haggis", "ham_and_eggs", "hash", "corned_beef_hash", "jambalaya", "kabob, kebab, shish_kebab", "kedgeree", "souvlaki, souvlakia", "lasagna, lasagne", "seafood_newburg", "lobster_newburg, lobster_a_la_newburg", "shrimp_newburg", "newburg_sauce", "lobster_thermidor", "lutefisk, lutfisk", "macaroni_and_cheese", "macedoine", "meatball", "porcupine_ball, porcupines", "swedish_meatball", "meat_loaf, meatloaf", "moussaka", "osso_buco", "marrow, bone_marrow", "pheasant_under_glass", "pigs_in_blankets", "pilaf, pilaff, pilau, pilaw", "bulgur_pilaf", "pizza, pizza_pie", "sausage_pizza", "pepperoni_pizza", "cheese_pizza", "anchovy_pizza", "sicilian_pizza", "poi", "pork_and_beans", "porridge", "oatmeal, burgoo", "loblolly", "potpie", "rijsttaffel, rijstaffel, rijstafel", "risotto, italian_rice", "roulade", "fish_loaf", "salmon_loaf", "salisbury_steak", "sauerbraten", "sauerkraut", "scallopine, scallopini", "veal_scallopini", "scampi", "scotch_egg", "scotch_woodcock", "scrapple", "spaghetti_and_meatballs", "spanish_rice", "steak_tartare, tartar_steak, cannibal_mound", "pepper_steak", "steak_au_poivre, peppered_steak, pepper_steak", "beef_stroganoff", "stuffed_cabbage", "kishke, stuffed_derma", "stuffed_peppers", "stuffed_tomato, hot_stuffed_tomato", "stuffed_tomato, cold_stuffed_tomato", "succotash", "sukiyaki", "sashimi", "sushi", "swiss_steak", "tamale", "tamale_pie", "tempura", "teriyaki", "terrine", "welsh_rarebit, welsh_rabbit, rarebit", "schnitzel, wiener_schnitzel", "taco", "chicken_taco", "burrito", "beef_burrito", "quesadilla", "tostada", "bean_tostada", "refried_beans, frijoles_refritos", "beverage, drink, drinkable, potable", "wish-wash", "concoction, mixture, intermixture", "mix, premix", "filling", "lekvar", "potion", "elixir", "elixir_of_life", "philter, philtre, love-potion, love-philter, love-philtre", "alcohol, alcoholic_drink, alcoholic_beverage, intoxicant, inebriant", "proof_spirit", "home_brew, homebrew", "hooch, hootch", "kava, kavakava", "aperitif", "brew, brewage", "beer", "draft_beer, draught_beer", "suds", "munich_beer, munchener", "bock, bock_beer", "lager, lager_beer", "light_beer", "oktoberfest, octoberfest", "pilsner, pilsener", "shebeen", "weissbier, white_beer, wheat_beer", "weizenbock", "malt", "wort", "malt, malt_liquor", "ale", "bitter", "burton", "pale_ale", "porter, porter's_beer", "stout", "guinness", "kvass", "mead", "metheglin", "hydromel", "oenomel", "near_beer", "ginger_beer", "sake, saki, rice_beer", "wine, vino", "vintage", "red_wine", "white_wine", "blush_wine, pink_wine, rose, rose_wine", "altar_wine, sacramental_wine", "sparkling_wine", "champagne, bubbly", "cold_duck", "burgundy, burgundy_wine", "beaujolais", "medoc", "canary_wine", "chablis, white_burgundy", "montrachet", "chardonnay, pinot_chardonnay", "pinot_noir", "pinot_blanc", "bordeaux, bordeaux_wine", "claret, red_bordeaux", "chianti", "cabernet, cabernet_sauvignon", "merlot", "sauvignon_blanc", "california_wine", "cotes_de_provence", "dessert_wine", "dubonnet", "jug_wine", "macon, maconnais", "moselle", "muscadet", "plonk", "retsina", "rhine_wine, rhenish, hock", "riesling", "liebfraumilch", "rhone_wine", "rioja", "sack", "saint_emilion", "soave", "zinfandel", "sauterne, sauternes", "straw_wine", "table_wine", "tokay", "vin_ordinaire", "vermouth", "sweet_vermouth, italian_vermouth", "dry_vermouth, french_vermouth", "chenin_blanc", "verdicchio", "vouvray", "yquem", "generic, generic_wine", "varietal, varietal_wine", "fortified_wine", "madeira", "malmsey", "port, port_wine", "sherry", "marsala", "muscat, muscatel, muscadel, muscadelle", "liquor, spirits, booze, hard_drink, hard_liquor, john_barleycorn, strong_drink", "neutral_spirits, ethyl_alcohol", "aqua_vitae, ardent_spirits", "eau_de_vie", "moonshine, bootleg, corn_liquor", "bathtub_gin", "aquavit, akvavit", "arrack, arak", "bitters", "brandy", "applejack", "calvados", "armagnac", "cognac", "grappa", "kirsch", "slivovitz", "gin", "sloe_gin", "geneva, holland_gin, hollands", "grog", "ouzo", "rum", "demerara, demerara_rum", "jamaica_rum", "schnapps, schnaps", "pulque", "mescal", "tequila", "vodka", "whiskey, whisky", "blended_whiskey, blended_whisky", "bourbon", "corn_whiskey, corn_whisky, corn", "firewater", "irish, irish_whiskey, irish_whisky", "poteen", "rye, rye_whiskey, rye_whisky", "scotch, scotch_whiskey, scotch_whisky, malt_whiskey, malt_whisky, scotch_malt_whiskey, scotch_malt_whisky", "sour_mash, sour_mash_whiskey", "liqueur, cordial", "absinth, absinthe", "amaretto", "anisette, anisette_de_bordeaux", "benedictine", "chartreuse", "coffee_liqueur", "creme_de_cacao", "creme_de_menthe", "creme_de_fraise", "drambuie", "galliano", "orange_liqueur", "curacao, curacoa", "triple_sec", "grand_marnier", "kummel", "maraschino, maraschino_liqueur", "pastis", "pernod", "pousse-cafe", "kahlua", "ratafia, ratafee", "sambuca", "mixed_drink", "cocktail", "dom_pedro", "highball", "mixer", "bishop", "bloody_mary", "virgin_mary, bloody_shame", "bullshot", "cobbler", "collins, tom_collins", "cooler", "refresher", "smoothie", "daiquiri, rum_cocktail", "strawberry_daiquiri", "nada_daiquiri", "spritzer", "flip", "gimlet", "gin_and_tonic", "grasshopper", "harvey_wallbanger", "julep, mint_julep", "manhattan", "rob_roy", "margarita", "martini", "gin_and_it", "vodka_martini", "old_fashioned", "pink_lady", "sazerac", "screwdriver", "sidecar", "scotch_and_soda", "sling", "brandy_sling", "gin_sling", "rum_sling", "sour", "whiskey_sour, whisky_sour", "stinger", "swizzle", "hot_toddy, toddy", "zombie, zombi", "fizz", "irish_coffee", "cafe_au_lait", "cafe_noir, demitasse", "decaffeinated_coffee, decaf", "drip_coffee", "espresso", "caffe_latte, latte", "cappuccino, cappuccino_coffee, coffee_cappuccino", "iced_coffee, ice_coffee", "instant_coffee", "mocha, mocha_coffee", "mocha", "cassareep", "turkish_coffee", "chocolate_milk", "cider, cyder", "hard_cider", "scrumpy", "sweet_cider", "mulled_cider", "perry", "rotgut", "slug", "cocoa, chocolate, hot_chocolate, drinking_chocolate", "criollo", "juice", "fruit_juice, fruit_crush", "nectar", "apple_juice", "cranberry_juice", "grape_juice", "must", "grapefruit_juice", "orange_juice", "frozen_orange_juice, orange-juice_concentrate", "pineapple_juice", "lemon_juice", "lime_juice", "papaya_juice", "tomato_juice", "carrot_juice", "v-8_juice", "koumiss, kumis", "fruit_drink, ade", "lemonade", "limeade", "orangeade", "malted_milk", "mate", "mulled_wine", "negus", "soft_drink", "pop, soda, soda_pop, soda_water, tonic", "birch_beer", "bitter_lemon", "cola, dope", "cream_soda", "egg_cream", "ginger_ale, ginger_pop", "orange_soda", "phosphate", "coca_cola, coke", "pepsi, pepsi_cola", "root_beer", "sarsaparilla", "tonic, tonic_water, quinine_water", "coffee_bean, coffee_berry, coffee", "coffee, java", "cafe_royale, coffee_royal", "fruit_punch", "milk_punch", "mimosa, buck's_fizz", "pina_colada", "punch", "cup", "champagne_cup", "claret_cup", "wassail", "planter's_punch", "white_russian", "fish_house_punch", "may_wine", "eggnog", "cassiri", "spruce_beer", "rickey", "gin_rickey", "tea, tea_leaf", "tea_bag", "tea", "tea-like_drink", "cambric_tea", "cuppa, cupper", "herb_tea, herbal_tea, herbal", "tisane", "camomile_tea", "ice_tea, iced_tea", "sun_tea", "black_tea", "congou, congo, congou_tea, english_breakfast_tea", "darjeeling", "orange_pekoe, pekoe", "souchong, soochong", "green_tea", "hyson", "oolong", "water", "bottled_water", "branch_water", "spring_water", "sugar_water", "drinking_water", "ice_water", "soda_water, carbonated_water, club_soda, seltzer, sparkling_water", "mineral_water", "seltzer", "vichy_water", "perishable, spoilable", "couscous", "ramekin, ramequin", "multivitamin, multivitamin_pill", "vitamin_pill", "soul_food", "mold, mould", "people", "collection, aggregation, accumulation, assemblage", "book, rule_book", "library", "baseball_club, ball_club, club, nine", "crowd", "class, form, grade, course", "core, nucleus, core_group", "concert_band, military_band", "dance", "wedding, wedding_party", "chain, concatenation", "power_breakfast", "aerie, aery, eyrie, eyry", "agora", "amusement_park, funfair, pleasure_ground", "aphelion", "apron", "interplanetary_space", "interstellar_space", "intergalactic_space", "bush", "semidesert", "beam-ends", "bridgehead", "bus_stop", "campsite, campground, camping_site, camping_ground, bivouac, encampment, camping_area", "detention_basin", "cemetery, graveyard, burial_site, burial_ground, burying_ground, memorial_park, necropolis", "trichion, crinion", "city, metropolis, urban_center", "business_district, downtown", "outskirts", "borough", "cow_pasture", "crest", "eparchy, exarchate", "suburb, suburbia, suburban_area", "stockbroker_belt", "crawlspace, crawl_space", "sheikdom, sheikhdom", "residence, abode", "domicile, legal_residence", "dude_ranch", "farmland, farming_area", "midfield", "firebreak, fireguard", "flea_market", "battlefront, front, front_line", "garbage_heap, junk_heap, rubbish_heap, scrapheap, trash_heap, junk_pile, trash_pile, refuse_heap", "benthos, benthic_division, benthonic_zone", "goldfield", "grainfield, grain_field", "half-mast, half-staff", "hemline", "heronry", "hipline", "hipline", "hole-in-the-wall", "junkyard", "isoclinic_line, isoclinal", "littoral, litoral, littoral_zone, sands", "magnetic_pole", "grassland", "mecca", "observer's_meridian", "prime_meridian", "nombril", "no-parking_zone", "outdoors, out-of-doors, open_air, open", "fairground", "pasture, pastureland, grazing_land, lea, ley", "perihelion", "periselene, perilune", "locus_of_infection", "kasbah, casbah", "waterfront", "resort, resort_hotel, holiday_resort", "resort_area, playground, vacation_spot", "rough", "ashram", "harborage, harbourage", "scrubland", "weald", "wold", "schoolyard", "showplace", "bedside", "sideline, out_of_bounds", "ski_resort", "soil_horizon", "geological_horizon", "coal_seam", "coalface", "field", "oilfield", "temperate_zone", "terreplein", "three-mile_limit", "desktop", "top", "kampong, campong", "subtropics, semitropics", "barrio", "veld, veldt", "vertex, peak, apex, acme", "waterline, water_line, water_level", "high-water_mark", "low-water_mark", "continental_divide", "zodiac", "aegean_island", "sultanate", "swiss_canton", "abyssal_zone", "aerie, aery, eyrie, eyry", "air_bubble", "alluvial_flat, alluvial_plain", "alp", "alpine_glacier, alpine_type_of_glacier", "anthill, formicary", "aquifer", "archipelago", "arete", "arroyo", "ascent, acclivity, rise, raise, climb, upgrade", "asterism", "asthenosphere", "atoll", "bank", "bank", "bar", "barbecue_pit", "barrier_reef", "baryon, heavy_particle", "basin", "beach", "honeycomb", "belay", "ben", "berm", "bladder_stone, cystolith", "bluff", "borrow_pit", "brae", "bubble", "burrow, tunnel", "butte", "caldera", "canyon, canon", "canyonside", "cave", "cavern", "chasm", "cirque, corrie, cwm", "cliff, drop, drop-off", "cloud", "coast", "coastland", "col, gap", "collector", "comet", "continental_glacier", "coral_reef", "cove", "crag", "crater", "cultivated_land, farmland, plowland, ploughland, tilled_land, tillage, tilth", "dale", "defile, gorge", "delta", "descent, declivity, fall, decline, declination, declension, downslope", "diapir", "divot", "divot", "down", "downhill", "draw", "drey", "drumlin", "dune, sand_dune", "escarpment, scarp", "esker", "fireball", "flare_star", "floor", "fomite, vehicle", "foothill", "footwall", "foreland", "foreshore", "gauge_boson", "geological_formation, formation", "geyser", "glacier", "glen", "gopher_hole", "gorge", "grotto, grot", "growler", "gulch, flume", "gully", "hail", "highland, upland", "hill", "hillside", "hole, hollow", "hollow, holler", "hot_spring, thermal_spring", "iceberg, berg", "icecap, ice_cap", "ice_field", "ice_floe, floe", "ice_mass", "inclined_fault", "ion", "isthmus", "kidney_stone, urinary_calculus, nephrolith, renal_calculus", "knoll, mound, hillock, hummock, hammock", "kopje, koppie", "kuiper_belt, edgeworth-kuiper_belt", "lake_bed, lake_bottom", "lakefront", "lakeside, lakeshore", "landfall", "landfill", "lather", "leak", "ledge, shelf", "lepton", "lithosphere, geosphere", "lowland", "lunar_crater", "maar", "massif", "meander", "mesa, table", "meteorite", "microfossil", "midstream", "molehill", "monocline", "mountain, mount", "mountainside, versant", "mouth", "mull", "natural_depression, depression", "natural_elevation, elevation", "nullah", "ocean", "ocean_floor, sea_floor, ocean_bottom, seabed, sea_bottom, davy_jones's_locker, davy_jones", "oceanfront", "outcrop, outcropping, rock_outcrop", "oxbow", "pallasite", "perforation", "photosphere", "piedmont", "piedmont_glacier, piedmont_type_of_glacier", "pinetum", "plage", "plain, field, champaign", "point", "polar_glacier", "pothole, chuckhole", "precipice", "promontory, headland, head, foreland", "ptyalith", "pulsar", "quicksand", "rabbit_burrow, rabbit_hole", "radiator", "rainbow", "range, mountain_range, range_of_mountains, chain, mountain_chain, chain_of_mountains", "rangeland", "ravine", "reef", "ridge", "ridge, ridgeline", "rift_valley", "riparian_forest", "ripple_mark", "riverbank, riverside", "riverbed, river_bottom", "rock, stone", "roof", "saltpan", "sandbank", "sandbar, sand_bar", "sandpit", "sanitary_landfill", "sawpit", "scablands", "seashore, coast, seacoast, sea-coast", "seaside, seaboard", "seif_dune", "shell", "shiner", "shoal", "shore", "shoreline", "sinkhole, sink, swallow_hole", "ski_slope", "sky", "slope, incline, side", "snowcap", "snowdrift", "snowfield", "soapsuds, suds, lather", "spit, tongue", "spoor", "spume", "star", "steep", "steppe", "strand", "streambed, creek_bed", "sun, sun", "supernova", "swale", "swamp, swampland", "swell", "tableland, plateau", "talus, scree", "tangle", "tar_pit", "terrace, bench", "tidal_basin", "tideland", "tor", "tor", "trapezium", "troposphere", "tundra", "twinkler", "uphill", "urolith", "valley, vale", "vehicle-borne_transmission", "vein, mineral_vein", "volcanic_crater, crater", "volcano", "wadi", "wall", "warren, rabbit_warren", "wasp's_nest, wasps'_nest, hornet's_nest, hornets'_nest", "watercourse", "waterside", "water_table, water_level, groundwater_level", "whinstone, whin", "wormcast", "xenolith", "circe", "gryphon, griffin, griffon", "spiritual_leader", "messiah, christ", "rhea_silvia, rea_silvia", "number_one", "adventurer, venturer", "anomaly, unusual_person", "appointee, appointment", "argonaut", "ashkenazi", "benefactor, helper", "color-blind_person", "commoner, common_man, common_person", "conservator", "contrarian", "contadino", "contestant", "cosigner, cosignatory", "discussant", "enologist, oenologist, fermentologist", "entertainer", "eulogist, panegyrist", "ex-gambler", "experimenter", "experimenter", "exponent", "ex-president", "face", "female, female_person", "finisher", "inhabitant, habitant, dweller, denizen, indweller", "native, indigen, indigene, aborigine, aboriginal", "native", "juvenile, juvenile_person", "lover", "male, male_person", "mediator, go-between, intermediator, intermediary, intercessor", "mediatrix", "national, subject", "peer, equal, match, compeer", "prize_winner, lottery_winner", "recipient, receiver", "religionist", "sensualist", "traveler, traveller", "unwelcome_person, persona_non_grata", "unskilled_person", "worker", "wrongdoer, offender", "black_african", "afrikaner, afrikander, boer", "aryan", "black, black_person, blackamoor, negro, negroid", "black_woman", "mulatto", "white, white_person, caucasian", "circassian", "semite", "chaldean, chaldaean, chaldee", "elamite", "white_man", "wasp, white_anglo-saxon_protestant", "gook, slant-eye", "mongol, mongolian", "tatar, tartar, mongol_tatar", "nahuatl", "aztec", "olmec", "biloxi", "blackfoot", "brule", "caddo", "cheyenne", "chickasaw", "cocopa, cocopah", "comanche", "creek", "delaware", "diegueno", "esselen", "eyeish", "havasupai", "hunkpapa", "iowa, ioway", "kalapooia, kalapuya, calapooya, calapuya", "kamia", "kekchi", "kichai", "kickapoo", "kiliwa, kiliwi", "malecite", "maricopa", "mohican, mahican", "muskhogean, muskogean", "navaho, navajo", "nootka", "oglala, ogalala", "osage", "oneida", "paiute, piute", "passamaquody", "penobscot", "penutian", "potawatomi", "powhatan", "kachina", "salish", "shahaptian, sahaptin, sahaptino", "shasta", "shawnee", "sihasapa", "teton, lakota, teton_sioux, teton_dakota", "taracahitian", "tarahumara", "tuscarora", "tutelo", "yana", "yavapai", "yokuts", "yuma", "gadaba", "kolam", "kui", "toda", "tulu", "gujarati, gujerati", "kashmiri", "punjabi, panjabi", "slav", "anabaptist", "adventist, second_adventist", "gentile, non-jew, goy", "gentile", "catholic", "old_catholic", "uniat, uniate, uniate_christian", "copt", "jewess", "jihadist", "buddhist", "zen_buddhist", "mahayanist", "swami", "hare_krishna", "shintoist", "eurafrican", "eurasian", "gael", "frank", "afghan, afghanistani", "albanian", "algerian", "altaic", "andorran", "angolan", "anguillan", "austrian", "bahamian", "bahraini, bahreini", "basotho", "herero", "luba, chiluba", "barbadian", "bolivian", "bornean", "carioca", "tupi", "bruneian", "bulgarian", "byelorussian, belorussian, white_russian", "cameroonian", "canadian", "french_canadian", "central_american", "chilean", "congolese", "cypriot, cypriote, cyprian", "dane", "djiboutian", "britisher, briton, brit", "english_person", "englishwoman", "anglo-saxon", "angle", "west_saxon", "lombard, langobard", "limey, john_bull", "cantabrigian", "cornishman", "cornishwoman", "lancastrian", "lancastrian", "geordie", "oxonian", "ethiopian", "amhara", "eritrean", "finn", "komi", "livonian", "lithuanian", "selkup, ostyak-samoyed", "parisian", "parisienne", "creole", "creole", "gabonese", "greek, hellene", "dorian", "athenian", "laconian", "guyanese", "haitian", "malay, malayan", "moro", "netherlander, dutchman, hollander", "icelander", "iraqi, iraki", "irishman", "irishwoman", "dubliner", "italian", "roman", "sabine", "japanese, nipponese", "jordanian", "korean", "kenyan", "lao, laotian", "lapp, lapplander, sami, saami, same, saame", "latin_american, latino", "lebanese", "levantine", "liberian", "luxemburger, luxembourger", "macedonian", "sabahan", "mexican", "chicano", "mexican-american, mexicano", "namibian", "nauruan", "gurkha", "new_zealander, kiwi", "nicaraguan", "nigerian", "hausa, haussa", "north_american", "nova_scotian, bluenose", "omani", "pakistani", "brahui", "south_american_indian", "carib, carib_indian", "filipino", "polynesian", "qatari, katari", "romanian, rumanian", "muscovite", "georgian", "sarawakian", "scandinavian, norse, northman", "senegalese", "slovene", "south_african", "south_american", "sudanese", "syrian", "tahitian", "tanzanian", "tibetan", "togolese", "tuareg", "turki", "chuvash", "turkoman, turkmen, turcoman", "uzbek, uzbeg, uzbak, usbek, usbeg", "ugandan", "ukranian", "yakut", "tungus, evenk", "igbo", "american", "anglo-american", "alaska_native, alaskan_native, native_alaskan", "arkansan, arkansawyer", "carolinian", "coloradan", "connecticuter", "delawarean, delawarian", "floridian", "german_american", "illinoisan", "mainer, down_easter", "marylander", "minnesotan, gopher", "nebraskan, cornhusker", "new_hampshirite, granite_stater", "new_jerseyan, new_jerseyite, garden_stater", "new_yorker", "north_carolinian, tarheel", "oregonian, beaver", "pennsylvanian, keystone_stater", "texan", "utahan", "uruguayan", "vietnamese, annamese", "gambian", "east_german", "berliner", "prussian", "ghanian", "guinean", "papuan", "walloon", "yemeni", "yugoslav, jugoslav, yugoslavian, jugoslavian", "serbian, serb", "xhosa", "zairese, zairean", "zimbabwean", "zulu", "gemini, twin", "sagittarius, archer", "pisces, fish", "abbe", "abbess, mother_superior, prioress", "abnegator", "abridger, abbreviator", "abstractor, abstracter", "absconder", "absolver", "abecedarian", "aberrant", "abettor, abetter", "abhorrer", "abomination", "abseiler, rappeller", "abstainer, ascetic", "academic_administrator", "academician", "accessory_before_the_fact", "companion", "accompanist, accompanyist", "accomplice, confederate", "account_executive, account_representative, registered_representative, customer's_broker, customer's_man", "accused", "accuser", "acid_head", "acquaintance, friend", "acquirer", "aerialist", "action_officer", "active", "active_citizen", "actor, histrion, player, thespian, role_player", "actor, doer, worker", "addict, nut, freak, junkie, junky", "adducer", "adjuster, adjustor, claims_adjuster, claims_adjustor, claim_agent", "adjutant, aide, aide-de-camp", "adjutant_general", "admirer, adorer", "adoptee", "adulterer, fornicator", "adulteress, fornicatress, hussy, jade, loose_woman, slut, strumpet, trollop", "advertiser, advertizer, adman", "advisee", "advocate, advocator, proponent, exponent", "aeronautical_engineer", "affiliate", "affluent", "aficionado", "buck_sergeant", "agent-in-place", "aggravator, annoyance", "agitator, fomenter", "agnostic", "agnostic, doubter", "agonist", "agony_aunt", "agriculturist, agriculturalist, cultivator, grower, raiser", "air_attache", "air_force_officer, commander", "airhead", "air_traveler, air_traveller", "alarmist", "albino", "alcoholic, alky, dipsomaniac, boozer, lush, soaker, souse", "alderman", "alexic", "alienee, grantee", "alienor", "aliterate, aliterate_person", "algebraist", "allegorizer, allegoriser", "alliterator", "almoner, medical_social_worker", "alpinist", "altar_boy", "alto", "ambassador, embassador", "ambassador", "ambusher", "amicus_curiae, friend_of_the_court", "amoralist", "amputee", "analogist", "analphabet, analphabetic", "analyst", "industry_analyst", "market_strategist", "anarchist, nihilist, syndicalist", "anathema, bete_noire", "ancestor, ascendant, ascendent, antecedent, root", "anchor, anchorman, anchorperson", "ancient", "anecdotist, raconteur", "angler, troller", "animator", "animist", "annotator", "announcer", "announcer", "anti", "anti-american", "anti-semite, jew-baiter", "anzac", "ape-man", "aphakic", "appellant, plaintiff_in_error", "appointee", "apprehender", "april_fool", "aspirant, aspirer, hopeful, wannabe, wannabee", "appreciator", "appropriator", "arabist", "archaist", "archbishop", "archer, bowman", "architect, designer", "archivist", "archpriest, hierarch, high_priest, prelate, primate", "aristotelian, aristotelean, peripatetic", "armiger", "army_attache", "army_engineer, military_engineer", "army_officer", "arranger, adapter, transcriber", "arrival, arriver, comer", "arthritic", "articulator", "artilleryman, cannoneer, gunner, machine_gunner", "artist's_model, sitter", "assayer", "assemblyman", "assemblywoman", "assenter", "asserter, declarer, affirmer, asseverator, avower", "assignee", "assistant, helper, help, supporter", "assistant_professor", "associate", "associate", "associate_professor", "astronaut, spaceman, cosmonaut", "cosmographer, cosmographist", "atheist", "athlete, jock", "attendant, attender, tender", "attorney_general", "auditor", "augur, auspex", "aunt, auntie, aunty", "au_pair_girl", "authoritarian, dictator", "authority", "authorizer, authoriser", "automobile_mechanic, auto-mechanic, car-mechanic, mechanic, grease_monkey", "aviator, aeronaut, airman, flier, flyer", "aviatrix, airwoman, aviatress", "ayah", "babu, baboo", "baby, babe, sister", "baby", "baby_boomer, boomer", "baby_farmer", "back", "backbencher", "backpacker, packer", "backroom_boy, brain_truster", "backscratcher", "bad_person", "baggage", "bag_lady", "bailee", "bailiff", "bailor", "bairn", "baker, bread_maker", "balancer", "balker, baulker, noncompliant", "ball-buster, ball-breaker", "ball_carrier, runner", "ballet_dancer", "ballet_master", "ballet_mistress", "balletomane", "ball_hawk", "balloonist", "ballplayer, baseball_player", "bullfighter, toreador", "banderillero", "matador", "picador", "bandsman", "banker", "bank_robber", "bankrupt, insolvent", "bantamweight", "barmaid", "baron, big_businessman, business_leader, king, magnate, mogul, power, top_executive, tycoon", "baron", "baron", "bartender, barman, barkeep, barkeeper, mixologist", "baseball_coach, baseball_manager", "base_runner, runner", "basketball_player, basketeer, cager", "basketweaver, basketmaker", "basket_maker", "bass, basso", "bastard, by-blow, love_child, illegitimate_child, illegitimate, whoreson", "bat_boy", "bather", "batman", "baton_twirler, twirler", "bavarian", "beadsman, bedesman", "beard", "beatnik, beat", "beauty_consultant", "bedouin, beduin", "bedwetter, bed_wetter, wetter", "beekeeper, apiarist, apiculturist", "beer_drinker, ale_drinker", "beggarman", "beggarwoman", "beldam, beldame", "theist", "believer, truster", "bell_founder", "benedick, benedict", "berserker, berserk", "besieger", "best, topper", "betrothed", "big_brother", "bigot", "big_shot, big_gun, big_wheel, big_cheese, big_deal, big_enchilada, big_fish, head_honcho", "big_sister", "billiard_player", "biochemist", "biographer", "bird_fancier", "birth", "birth-control_campaigner, birth-control_reformer", "bisexual, bisexual_person", "black_belt", "blackmailer, extortioner, extortionist", "black_muslim", "blacksmith", "blade", "blind_date", "bluecoat", "bluestocking, bas_bleu", "boatbuilder", "boatman, boater, waterman", "boatswain, bos'n, bo's'n, bosun, bo'sun", "bobby", "bodyguard, escort", "boffin", "bolshevik, marxist, red, bolshie, bolshy", "bolshevik, bolshevist", "bombshell", "bondman, bondsman", "bondwoman, bondswoman, bondmaid", "bondwoman, bondswoman, bondmaid", "bond_servant", "book_agent", "bookbinder", "bookkeeper", "bookmaker", "bookworm", "booster, shoplifter, lifter", "bootblack, shoeblack", "bootlegger, moonshiner", "bootmaker, boot_maker", "borderer", "border_patrolman", "botanist, phytologist, plant_scientist", "bottom_feeder", "boulevardier", "bounty_hunter", "bounty_hunter", "bourbon", "bowler", "slugger, slogger", "cub, lad, laddie, sonny, sonny_boy", "boy_scout", "boy_scout", "boy_wonder", "bragger, braggart, boaster, blowhard, line-shooter, vaunter", "brahman, brahmin", "brawler", "breadwinner", "breaststroker", "breeder, stock_breeder", "brick", "bride", "bridesmaid, maid_of_honor", "bridge_agent", "broadcast_journalist", "brother", "brother-in-law", "browser", "brummie, brummy", "buddy, brother, chum, crony, pal, sidekick", "bull", "bully", "bunny, bunny_girl", "burglar", "bursar", "busboy, waiter's_assistant", "business_editor", "business_traveler", "buster", "busybody, nosy-parker, nosey-parker, quidnunc", "buttinsky", "cabinetmaker, furniture_maker", "caddie, golf_caddie", "cadet, plebe", "caller, caller-out", "call_girl", "calligrapher, calligraphist", "campaigner, candidate, nominee", "camper", "camp_follower", "candidate, prospect", "canonist", "capitalist", "captain, headwaiter, maitre_d'hotel, maitre_d'", "captain, senior_pilot", "captain", "captain, chieftain", "captive", "captive", "cardinal", "cardiologist, heart_specialist, heart_surgeon", "card_player", "cardsharp, card_sharp, cardsharper, card_sharper, sharper, sharpie, sharpy, card_shark", "careerist", "career_man", "caregiver", "caretaker", "caretaker", "caricaturist", "carillonneur", "caroler, caroller", "carpenter", "carper, niggler", "cartesian", "cashier", "casualty, injured_party", "casualty", "casuist, sophist", "catechist", "catechumen, neophyte", "caterer", "catholicos", "cat_fancier", "cavalier, royalist", "cavalryman, trooper", "caveman, cave_man, cave_dweller, troglodyte", "celebrant", "celebrant, celebrator, celebrater", "celebrity, famous_person", "cellist, violoncellist", "censor", "censor", "centenarian", "centrist, middle_of_the_roader, moderate, moderationist", "centurion", "certified_public_accountant, cpa", "chachka, tsatske, tshatshke, tchotchke, tchotchkeleh", "chambermaid, fille_de_chambre", "chameleon", "champion, champ, title-holder", "chandler", "prison_chaplain", "charcoal_burner", "charge_d'affaires", "charioteer", "charmer, beguiler", "chartered_accountant", "chartist, technical_analyst", "charwoman, char, cleaning_woman, cleaning_lady, woman", "male_chauvinist, sexist", "cheapskate, tightwad", "chechen", "checker", "cheerer", "cheerleader", "cheerleader", "cheops, khufu", "chess_master", "chief_executive_officer, ceo, chief_operating_officer", "chief_of_staff", "chief_petty_officer", "chief_secretary", "child, kid, youngster, minor, shaver, nipper, small_fry, tiddler, tike, tyke, fry, nestling", "child, kid", "child, baby", "child_prodigy, infant_prodigy, wonder_child", "chimneysweeper, chimneysweep, sweep", "chiropractor", "chit", "choker", "choragus", "choreographer", "chorus_girl, showgirl, chorine", "chosen", "cicerone", "cigar_smoker", "cipher, cypher, nobody, nonentity", "circus_acrobat", "citizen", "city_editor", "city_father", "city_man", "city_slicker, city_boy", "civic_leader, civil_leader", "civil_rights_leader, civil_rights_worker, civil_rights_activist", "cleaner", "clergyman, reverend, man_of_the_cloth", "cleric, churchman, divine, ecclesiastic", "clerk", "clever_dick, clever_clogs", "climatologist", "climber", "clinician", "closer, finisher", "closet_queen", "clown, buffoon, goof, goofball, merry_andrew", "clown, buffoon", "coach, private_instructor, tutor", "coach, manager, handler", "pitching_coach", "coachman", "coal_miner, collier, pitman", "coastguardsman", "cobber", "cobbler, shoemaker", "codger, old_codger", "co-beneficiary", "cog", "cognitive_neuroscientist", "coiffeur", "coiner", "collaborator, cooperator, partner, pardner", "colleen", "college_student, university_student", "collegian, college_man, college_boy", "colonial", "colonialist", "colonizer, coloniser", "coloratura, coloratura_soprano", "color_guard", "colossus, behemoth, giant, heavyweight, titan", "comedian", "comedienne", "comer", "commander", "commander_in_chief, generalissimo", "commanding_officer, commandant, commander", "commissar, political_commissar", "commissioned_officer", "commissioned_military_officer", "commissioner", "commissioner", "committee_member", "committeewoman", "commodore", "communicant", "communist, commie", "communist", "commuter", "compere", "complexifier", "compulsive", "computational_linguist", "computer_scientist", "computer_user", "comrade", "concert-goer, music_lover", "conciliator, make-peace, pacifier, peacemaker, reconciler", "conductor", "confectioner, candymaker", "confederate", "confessor", "confidant, intimate", "confucian, confucianist", "rep", "conqueror, vanquisher", "conservative", "nonconformist, chapelgoer", "anglican", "consignee", "consigner, consignor", "constable", "constructivist", "contractor", "contralto", "contributor", "control_freak", "convalescent", "convener", "convict, con, inmate, yard_bird, yardbird", "copilot, co-pilot", "copycat, imitator, emulator, ape, aper", "coreligionist", "cornerback", "corporatist", "correspondent, letter_writer", "cosmetician", "cosmopolitan, cosmopolite", "cossack", "cost_accountant", "co-star", "costumier, costumer, costume_designer", "cotter, cottier", "cotter, cottar", "counselor, counsellor", "counterterrorist", "counterspy, mole", "countess", "compromiser", "countrywoman", "county_agent, agricultural_agent, extension_agent", "courtier", "cousin, first_cousin, cousin-german, full_cousin", "cover_girl, pin-up, lovely", "cow", "craftsman, artisan, journeyman, artificer", "craftsman, crafter", "crapshooter", "crazy, loony, looney, nutcase, weirdo", "creature, wight", "creditor", "creep, weirdo, weirdie, weirdy, spook", "criminologist", "critic", "croesus", "cross-examiner, cross-questioner", "crossover_voter, crossover", "croupier", "crown_prince", "crown_princess", "cryptanalyst, cryptographer, cryptologist", "cub_scout", "cuckold", "cultist", "curandera", "curate, minister_of_religion, minister, parson, pastor, rector", "curator, conservator", "customer_agent", "cutter, carver", "cyberpunk", "cyborg, bionic_man, bionic_woman", "cymbalist", "cynic", "cytogeneticist", "cytologist", "czar", "czar, tsar, tzar", "dad, dada, daddy, pa, papa, pappa, pop", "dairyman", "dalai_lama, grand_lama", "dallier, dillydallier, dilly-dallier, mope, lounger", "dancer, professional_dancer, terpsichorean", "dancer, social_dancer", "clog_dancer", "dancing-master, dance_master", "dark_horse", "darling, favorite, favourite, pet, dearie, deary, ducky", "date, escort", "daughter, girl", "dawdler, drone, laggard, lagger, trailer, poke", "day_boarder", "day_laborer, day_labourer", "deacon, protestant_deacon", "deaconess", "deadeye", "deipnosophist", "dropout", "deadhead", "deaf_person", "debtor, debitor", "deckhand, roustabout", "defamer, maligner, slanderer, vilifier, libeler, backbiter, traducer", "defense_contractor", "deist, freethinker", "delegate", "deliveryman, delivery_boy, deliverer", "demagogue, demagog, rabble-rouser", "demigod, superman, ubermensch", "demographer, demographist, population_scientist", "demonstrator, protester", "den_mother", "department_head", "depositor", "deputy", "dermatologist, skin_doctor", "descender", "designated_hitter", "designer, intriguer", "desk_clerk, hotel_desk_clerk, hotel_clerk", "desk_officer", "desk_sergeant, deskman, station_keeper", "detainee, political_detainee", "detective, investigator, tec, police_detective", "detective", "detractor, disparager, depreciator, knocker", "developer", "deviationist", "devisee", "devisor", "devourer", "dialectician", "diarist, diary_keeper, journalist", "dietician, dietitian, nutritionist", "diocesan", "director, theater_director, theatre_director", "director", "dirty_old_man", "disbeliever, nonbeliever, unbeliever", "disk_jockey, disc_jockey, dj", "dispatcher", "distortionist", "distributor, distributer", "district_attorney, da", "district_manager", "diver, plunger", "divorcee, grass_widow", "ex-wife, ex", "divorce_lawyer", "docent", "doctor, doc, physician, md, dr., medico", "dodo, fogy, fogey, fossil", "doge", "dog_in_the_manger", "dogmatist, doctrinaire", "dolichocephalic", "domestic_partner, significant_other, spousal_equivalent, spouse_equivalent", "dominican", "dominus, dominie, domine, dominee", "don, father", "donatist", "donna", "dosser, street_person", "double, image, look-alike", "double-crosser, double-dealer, two-timer, betrayer, traitor", "down-and-out", "doyenne", "draftsman, drawer", "dramatist, playwright", "dreamer", "dressmaker, modiste, needlewoman, seamstress, sempstress", "dressmaker's_model", "dribbler, driveller, slobberer, drooler", "dribbler", "drinker, imbiber, toper, juicer", "drinker", "drug_addict, junkie, junky", "drug_user, substance_abuser, user", "druid", "drum_majorette, majorette", "drummer", "drunk", "drunkard, drunk, rummy, sot, inebriate, wino", "druze, druse", "dry, prohibitionist", "dry_nurse", "duchess", "duke", "duffer", "dunker", "dutch_uncle", "dyspeptic", "eager_beaver, busy_bee, live_wire, sharpie, sharpy", "earl", "earner, wage_earner", "eavesdropper", "eccentric, eccentric_person, flake, oddball, geek", "eclectic, eclecticist", "econometrician, econometrist", "economist, economic_expert", "ectomorph", "editor, editor_in_chief", "egocentric, egoist", "egotist, egoist, swellhead", "ejaculator", "elder", "elder_statesman", "elected_official", "electrician, lineman, linesman", "elegist", "elocutionist", "emancipator, manumitter", "embryologist", "emeritus", "emigrant, emigre, emigree, outgoer", "emissary, envoy", "empress", "employee", "employer", "enchantress, witch", "enchantress, temptress, siren, delilah, femme_fatale", "encyclopedist, encyclopaedist", "endomorph", "enemy, foe, foeman, opposition", "energizer, energiser, vitalizer, vitaliser, animator", "end_man", "end_man, corner_man", "endorser, indorser", "enjoyer", "enlisted_woman", "enophile, oenophile", "entrant", "entrant", "entrepreneur, enterpriser", "envoy, envoy_extraordinary, minister_plenipotentiary", "enzymologist", "eparch", "epidemiologist", "epigone, epigon", "epileptic", "episcopalian", "equerry", "equerry", "erotic", "escapee", "escapist, dreamer, wishful_thinker", "eskimo, esquimau, inuit", "espionage_agent", "esthetician, aesthetician", "etcher", "ethnologist", "etonian", "etymologist", "evangelist, revivalist, gospeler, gospeller", "evangelist", "event_planner", "examiner, inspector", "examiner, tester, quizzer", "exarch", "executant", "executive_secretary", "executive_vice_president", "executrix", "exegete", "exhibitor, exhibitioner, shower", "exhibitionist, show-off", "exile, expatriate, expat", "existentialist, existentialist_philosopher, existential_philosopher", "exorcist, exorciser", "ex-spouse", "extern, medical_extern", "extremist", "extrovert, extravert", "eyewitness", "facilitator", "fairy_godmother", "falangist, phalangist", "falconer, hawker", "falsifier", "familiar", "fan, buff, devotee, lover", "fanatic, fiend", "fancier, enthusiast", "farm_boy", "farmer, husbandman, granger, sodbuster", "farmhand, fieldhand, field_hand, farm_worker", "fascist", "fascista", "fatalist, determinist, predestinarian, predestinationist", "father, male_parent, begetter", "father, padre", "father-figure", "father-in-law", "fauntleroy, little_lord_fauntleroy", "fauve, fauvist", "favorite_son", "featherweight", "federalist", "fellow_traveler, fellow_traveller", "female_aristocrat", "female_offspring", "female_child, girl, little_girl", "fence", "fiance, groom-to-be", "fielder, fieldsman", "field_judge", "fighter_pilot", "filer", "film_director, director", "finder", "fire_chief, fire_marshal", "fire-eater, fire-swallower", "fire-eater, hothead", "fireman, firefighter, fire_fighter, fire-eater", "fire_marshall", "fire_walker", "first_baseman, first_sacker", "firstborn, eldest", "first_lady", "first_lieutenant, 1st_lieutenant", "first_offender", "first_sergeant, sergeant_first_class", "fishmonger, fishwife", "flagellant", "flag_officer", "flak_catcher, flak, flack_catcher, flack", "flanker_back, flanker", "flapper", "flatmate", "flatterer, adulator", "flibbertigibbet, foolish_woman", "flight_surgeon", "floorwalker, shopwalker", "flop, dud, washout", "florentine", "flower_girl", "flower_girl", "flutist, flautist, flute_player", "fly-by-night", "flyweight", "flyweight", "foe, enemy", "folk_dancer", "folk_poet", "follower", "football_hero", "football_player, footballer", "footman", "forefather, father, sire", "foremother", "foreign_agent", "foreigner, outsider", "boss", "foreman", "forester, tree_farmer, arboriculturist", "forewoman", "forger, counterfeiter", "forward", "foster-brother, foster_brother", "foster-father, foster_father", "foster-mother, foster_mother", "foster-sister, foster_sister", "foster-son, foster_son", "founder, beginner, founding_father, father", "foundress", "four-minute_man", "framer", "francophobe", "freak, monster, monstrosity, lusus_naturae", "free_agent, free_spirit, freewheeler", "free_agent", "freedom_rider", "free-liver", "freeloader", "free_trader", "freudian", "friar, mendicant", "monk, monastic", "frontierswoman", "front_man, front, figurehead, nominal_head, straw_man, strawman", "frotteur", "fucker", "fucker", "fuddy-duddy", "fullback", "funambulist, tightrope_walker", "fundamentalist", "fundraiser", "futurist", "gadgeteer", "gagman, gagster, gagwriter", "gagman, standup_comedian", "gainer, weight_gainer", "gal", "galoot", "gambist", "gambler", "gamine", "garbage_man, garbageman, garbage_collector, garbage_carter, garbage_hauler, refuse_collector, dustman", "gardener", "garment_cutter", "garroter, garrotter, strangler, throttler, choker", "gasman", "gastroenterologist", "gatherer", "gawker", "gendarme", "general, full_general", "generator, source, author", "geneticist", "genitor", "gent", "geologist", "geophysicist", "ghostwriter, ghost", "gibson_girl", "girl, miss, missy, young_lady, young_woman, fille", "girlfriend, girl, lady_friend", "girlfriend", "girl_wonder", "girondist, girondin", "gitano", "gladiator", "glassblower", "gleaner", "goat_herder, goatherd", "godchild", "godfather", "godparent", "godson", "gofer", "goffer, gopher", "goldsmith, goldworker, gold-worker", "golfer, golf_player, linksman", "gondolier, gondoliere", "good_guy", "good_old_boy, good_ole_boy, good_ol'_boy", "good_samaritan", "gossip_columnist", "gouger", "governor_general", "grabber", "grader", "graduate_nurse, trained_nurse", "grammarian, syntactician", "granddaughter", "grande_dame", "grandfather, gramps, granddad, grandad, granddaddy, grandpa", "grand_inquisitor", "grandma, grandmother, granny, grannie, gran, nan, nanna", "grandmaster", "grandparent", "grantee", "granter", "grass_widower, divorced_man", "great-aunt, grandaunt", "great_grandchild", "great_granddaughter", "great_grandmother", "great_grandparent", "great_grandson", "great-nephew, grandnephew", "great-niece, grandniece", "green_beret", "grenadier, grenade_thrower", "greeter, saluter, welcomer", "gringo", "grinner", "grocer", "groom, bridegroom", "groom, bridegroom", "grouch, grump, crank, churl, crosspatch", "group_captain", "grunter", "prison_guard, jailer, jailor, gaoler, screw, turnkey", "guard", "guesser", "guest, invitee", "guest", "guest_of_honor", "guest_worker, guestworker", "guide", "guitarist, guitar_player", "gunnery_sergeant", "guru", "guru", "guvnor", "guy, cat, hombre, bozo", "gymnast", "gym_rat", "gynecologist, gynaecologist, woman's_doctor", "gypsy, gipsy, romany, rommany, romani, roma, bohemian", "hack, drudge, hacker", "hacker, cyber-terrorist, cyberpunk", "haggler", "hairdresser, hairstylist, stylist, styler", "hakim, hakeem", "hakka", "halberdier", "halfback", "half_blood", "hand", "animal_trainer, handler", "handyman, jack_of_all_trades, odd-job_man", "hang_glider", "hardliner", "harlequin", "harmonizer, harmoniser", "hash_head", "hatchet_man, iceman", "hater", "hatmaker, hatter, milliner, modiste", "headman, tribal_chief, chieftain, chief", "headmaster, schoolmaster, master", "head_nurse", "hearer, listener, auditor, attender", "heartbreaker", "heathen, pagan, gentile, infidel", "heavyweight", "heavy", "heckler, badgerer", "hedger", "hedger, equivocator, tergiversator", "hedonist, pagan, pleasure_seeker", "heir, inheritor, heritor", "heir_apparent", "heiress, inheritress, inheritrix", "heir_presumptive", "hellion, heller, devil", "helmsman, steersman, steerer", "hire", "hematologist, haematologist", "hemiplegic", "herald, trumpeter", "herbalist, herb_doctor", "herder, herdsman, drover", "hermaphrodite, intersex, gynandromorph, androgyne, epicene, epicene_person", "heroine", "heroin_addict", "hero_worshiper, hero_worshipper", "herr", "highbinder", "highbrow", "high_commissioner", "highflier, highflyer", "highlander, scottish_highlander, highland_scot", "high-muck-a-muck, pooh-bah", "high_priest", "highjacker, hijacker", "hireling, pensionary", "historian, historiographer", "hitchhiker", "hitter, striker", "hobbyist", "holdout", "holdover, hangover", "holdup_man, stickup_man", "homeboy", "homeboy", "home_buyer", "homegirl", "homeless, homeless_person", "homeopath, homoeopath", "honest_woman", "honor_guard, guard_of_honor", "hooker", "hoper", "hornist", "horseman, equestrian, horseback_rider", "horse_trader", "horsewoman", "horse_wrangler, wrangler", "horticulturist, plantsman", "hospital_chaplain", "host, innkeeper, boniface", "host", "hostess", "hotelier, hotelkeeper, hotel_manager, hotelman, hosteller", "housekeeper", "housemaster", "housemate", "house_physician, resident, resident_physician", "house_sitter", "housing_commissioner", "huckster, cheap-jack", "hugger", "humanist, humanitarian", "humanitarian, do-gooder, improver", "hunk", "huntress", "ex-husband, ex", "hydrologist", "hyperope", "hypertensive", "hypnotist, hypnotizer, hypnotiser, mesmerist, mesmerizer", "hypocrite, dissembler, dissimulator, phony, phoney, pretender", "iceman", "iconoclast", "ideologist, ideologue", "idol, matinee_idol", "idolizer, idoliser", "imam, imaum", "imperialist", "important_person, influential_person, personage", "inamorato", "incumbent, officeholder", "incurable", "inductee", "industrialist", "infanticide", "inferior", "infernal", "infielder", "infiltrator", "informer, betrayer, rat, squealer, blabber", "ingenue", "ingenue", "polymath", "in-law, relative-in-law", "inquiry_agent", "inspector", "inspector_general", "instigator, initiator", "insurance_broker, insurance_agent, general_agent, underwriter", "insurgent, insurrectionist, freedom_fighter, rebel", "intelligence_analyst", "interior_designer, designer, interior_decorator, house_decorator, room_decorator, decorator", "interlocutor, conversational_partner", "interlocutor, middleman", "international_grandmaster", "internationalist", "internist", "interpreter, translator", "interpreter", "intervenor", "introvert", "invader, encroacher", "invalidator, voider, nullifier", "investigator", "investor", "invigilator", "irreligionist", "ivy_leaguer", "jack_of_all_trades", "jacksonian", "jane_doe", "janissary", "jat", "javanese, javan", "jekyll_and_hyde", "jester, fool, motley_fool", "jesuit", "jezebel", "jilt", "jobber, middleman, wholesaler", "job_candidate", "job's_comforter", "jockey", "john_doe", "journalist", "judge, justice, jurist", "judge_advocate", "juggler", "jungian", "junior", "junior", "junior, jr, jnr", "junior_lightweight", "junior_middleweight", "jurist, legal_expert", "juror, juryman, jurywoman", "justice_of_the_peace", "justiciar, justiciary", "kachina", "keyboardist", "khedive", "kingmaker", "king, queen, world-beater", "king's_counsel", "counsel_to_the_crown", "kin, kinsperson, family", "enate, matrikin, matrilineal_kin, matrisib, matrilineal_sib", "kink", "kinswoman", "kisser, osculator", "kitchen_help", "kitchen_police, kp", "klansman, ku_kluxer, kluxer", "kleptomaniac", "kneeler", "knight", "knocker", "knower, apprehender", "know-it-all, know-all", "kolkhoznik", "kshatriya", "labor_coach, birthing_coach, doula, monitrice", "laborer, manual_laborer, labourer, jack", "labourite", "lady", "lady-in-waiting", "lady's_maid", "lama", "lamb, dear", "lame_duck", "lamplighter", "land_agent", "landgrave", "landlubber, lubber, landsman", "landlubber, landsman, landman", "landowner, landholder, property_owner", "landscape_architect, landscape_gardener, landscaper, landscapist", "langlaufer", "languisher", "lapidary, lapidarist", "lass, lassie, young_girl, jeune_fille", "latin", "latin", "latitudinarian", "jehovah's_witness", "law_agent", "lawgiver, lawmaker", "lawman, law_officer, peace_officer", "law_student", "lawyer, attorney", "lay_reader", "lazybones", "leaker", "leaseholder, lessee", "lector, lecturer, reader", "lector, reader", "lecturer", "left-hander, lefty, southpaw", "legal_representative", "legate, official_emissary", "legatee", "legionnaire, legionary", "letterman", "liberator", "licenser", "licentiate", "lieutenant", "lieutenant_colonel, light_colonel", "lieutenant_commander", "lieutenant_junior_grade, lieutenant_jg", "life", "lifeguard, lifesaver", "life_tenant", "light_flyweight", "light_heavyweight, cruiserweight", "light_heavyweight", "light-o'-love, light-of-love", "lightweight", "lightweight", "lightweight", "lilliputian", "limnologist", "lineman", "line_officer", "lion-hunter", "lisper", "lister", "literary_critic", "literate, literate_person", "litigant, litigator", "litterer, litterbug, litter_lout", "little_brother", "little_sister", "lobbyist", "locksmith", "locum_tenens, locum", "lord, noble, nobleman", "loser", "loser, also-ran", "failure, loser, nonstarter, unsuccessful_person", "lothario", "loudmouth, blusterer", "lowerclassman, underclassman", "lowlander, scottish_lowlander, lowland_scot", "loyalist, stalwart", "luddite", "lumberman, lumberjack, logger, feller, faller", "lumper", "bedlamite", "pyromaniac", "lutist, lutanist, lutenist", "lutheran", "lyricist, lyrist", "macebearer, mace, macer", "machinist, mechanic, shop_mechanic", "madame", "maenad", "maestro, master", "magdalen", "magician, prestidigitator, conjurer, conjuror, illusionist", "magus", "maharani, maharanee", "mahatma", "maid, maiden", "maid, maidservant, housemaid, amah", "major", "major", "major-domo, seneschal", "maker, shaper", "malahini", "malcontent", "malik", "malingerer, skulker, shammer", "malthusian", "adonis", "man", "man", "manageress", "mandarin", "maneuverer, manoeuvrer", "maniac", "manichaean, manichean, manichee", "manicurist", "manipulator", "man-at-arms", "man_of_action, man_of_deeds", "man_of_letters", "manufacturer, producer", "marcher, parader", "marchioness, marquise", "margrave", "margrave", "marine, devil_dog, leatherneck, shipboard_soldier", "marquess", "marquis, marquess", "marshal, marshall", "martinet, disciplinarian, moralist", "mascot", "masochist", "mason, stonemason", "masquerader, masker, masquer", "masseur", "masseuse", "master", "master, captain, sea_captain, skipper", "master-at-arms", "master_of_ceremonies, emcee, host", "masturbator, onanist", "matchmaker, matcher, marriage_broker", "mate, first_mate", "mate", "mate", "mater", "material", "materialist", "matriarch, materfamilias", "matriarch", "matriculate", "matron", "mayor, city_manager", "mayoress", "mechanical_engineer", "medalist, medallist, medal_winner", "medical_officer, medic", "medical_practitioner, medical_man", "medical_scientist", "medium, spiritualist, sensitive", "megalomaniac", "melancholic, melancholiac", "melkite, melchite", "melter", "nonmember", "board_member", "clansman, clanswoman, clan_member", "memorizer, memoriser", "mendelian", "mender, repairer, fixer", "mesoamerican", "messmate", "mestiza", "meteorologist", "meter_maid", "methodist", "metis", "metropolitan", "mezzo-soprano, mezzo", "microeconomist, microeconomic_expert", "middle-aged_man", "middlebrow", "middleweight", "midwife, accoucheuse", "mikado, tenno", "milanese", "miler", "miles_gloriosus", "military_attache", "military_chaplain, padre, holy_joe, sky_pilot", "military_leader", "military_officer, officer", "military_policeman, mp", "mill_agent", "mill-hand, factory_worker", "millionairess", "millwright", "minder", "mining_engineer", "minister, government_minister", "ministrant", "minor_leaguer, bush_leaguer", "minuteman", "misanthrope, misanthropist", "misfit", "mistress", "mistress, kept_woman, fancy_woman", "mixed-blood", "model, poser", "class_act", "modeler, modeller", "modifier", "molecular_biologist", "monegasque, monacan", "monetarist", "moneygrubber", "moneymaker", "mongoloid", "monolingual", "monologist", "moonlighter", "moralist", "morosoph", "morris_dancer", "mortal_enemy", "mortgagee, mortgage_holder", "mortician, undertaker, funeral_undertaker, funeral_director", "moss-trooper", "mother, female_parent", "mother", "mother", "mother_figure", "mother_hen", "mother-in-law", "mother's_boy, mamma's_boy, mama's_boy", "mother's_daughter", "motorcycle_cop, motorcycle_policeman, speed_cop", "motorcyclist", "mound_builder", "mountebank, charlatan", "mourner, griever, sorrower, lamenter", "mouthpiece, mouth", "mover", "moviegoer, motion-picture_fan", "muffin_man", "mugwump, independent, fencesitter", "mullah, mollah, mulla", "muncher", "murderess", "murder_suspect", "musher", "musician, instrumentalist, player", "musicologist", "music_teacher", "musketeer", "muslimah", "mutilator, maimer, mangler", "mutineer", "mute, deaf-mute, deaf-and-dumb_person", "mutterer, mumbler, murmurer", "muzzler", "mycenaen", "mycologist", "myope", "myrmidon", "mystic, religious_mystic", "mythologist", "naif", "nailer", "namby-pamby", "name_dropper", "namer", "nan", "nanny, nursemaid, nurse", "narc, nark, narcotics_agent", "narcissist, narcist", "nark, copper's_nark", "nationalist", "nautch_girl", "naval_commander", "navy_seal, seal", "obstructionist, obstructor, obstructer, resister, thwarter", "nazarene", "nazarene, ebionite", "nazi, german_nazi", "nebbish, nebbech", "necker", "neonate, newborn, newborn_infant, newborn_baby", "nephew", "neurobiologist", "neurologist, brain_doctor", "neurosurgeon, brain_surgeon", "neutral", "neutralist", "newcomer, fledgling, fledgeling, starter, neophyte, freshman, newbie, entrant", "newcomer", "new_dealer", "newspaper_editor", "newsreader, news_reader", "newtonian", "niece", "niggard, skinflint, scrooge, churl", "night_porter", "night_rider, nightrider", "nimby", "niqaabi", "nitpicker", "nobelist, nobel_laureate", "noc", "noncandidate", "noncommissioned_officer, noncom, enlisted_officer", "nondescript", "nondriver", "nonparticipant", "nonperson, unperson", "nonresident", "nonsmoker", "northern_baptist", "noticer", "novelist", "novitiate, novice", "nuclear_chemist, radiochemist", "nudger", "nullipara", "number_theorist", "nurse", "nursling, nurseling, suckling", "nymph, houri", "nymphet", "nympholept", "nymphomaniac, nympho", "oarswoman", "oboist", "obscurantist", "observer, commentator", "obstetrician, accoucheur", "occupier", "occultist", "wine_lover", "offerer, offeror", "office-bearer", "office_boy", "officeholder, officer", "officiant", "federal, fed, federal_official", "oilman", "oil_tycoon", "old-age_pensioner", "old_boy", "old_lady", "old_man", "oldster, old_person, senior_citizen, golden_ager", "old-timer, oldtimer, gaffer, old_geezer, antique", "old_woman", "oligarch", "olympian", "omnivore", "oncologist", "onlooker, looker-on", "onomancer", "operator", "opportunist, self-seeker", "optimist", "orangeman", "orator, speechmaker, rhetorician, public_speaker, speechifier", "orderly, hospital_attendant", "orderly", "orderly_sergeant", "ordinand", "ordinary", "organ-grinder", "organist", "organization_man", "organizer, organiser, arranger", "organizer, organiser, labor_organizer", "originator, conceiver, mastermind", "ornithologist, bird_watcher", "orphan", "orphan", "osteopath, osteopathist", "out-and-outer", "outdoorswoman", "outfielder", "outfielder", "right_fielder", "right-handed_pitcher, right-hander", "outlier", "owner-occupier", "oyabun", "packrat", "padrone", "padrone", "page, pageboy", "painter", "paleo-american, paleo-amerind, paleo-indian", "paleontologist, palaeontologist, fossilist", "pallbearer, bearer", "palmist, palmister, chiromancer", "pamperer, spoiler, coddler, mollycoddler", "panchen_lama", "panelist, panellist", "panhandler", "paparazzo", "paperboy", "paperhanger, paperer", "paperhanger", "papoose, pappoose", "pardoner", "paretic", "parishioner", "park_commissioner", "parliamentarian, member_of_parliament", "parliamentary_agent", "parodist, lampooner", "parricide", "parrot", "partaker, sharer", "part-timer", "party", "party_man, party_liner", "passenger, rider", "passer", "paster", "pater", "patient", "patriarch", "patriarch", "patriarch, paterfamilias", "patriot, nationalist", "patron, sponsor, supporter", "patternmaker", "pawnbroker", "payer, remunerator", "peacekeeper", "peasant", "pedant, bookworm, scholastic", "peddler, pedlar, packman, hawker, pitchman", "pederast, paederast, child_molester", "penologist", "pentathlete", "pentecostal, pentecostalist", "percussionist", "periodontist", "peshmerga", "personality", "personal_representative", "personage", "persona_grata", "persona_non_grata", "personification", "perspirer, sweater", "pervert, deviant, deviate, degenerate", "pessimist", "pest, blighter, cuss, pesterer, gadfly", "peter_pan", "petitioner, suppliant, supplicant, requester", "petit_juror, petty_juror", "pet_sitter, critter_sitter", "petter, fondler", "pharaoh, pharaoh_of_egypt", "pharmacist, druggist, chemist, apothecary, pill_pusher, pill_roller", "philanthropist, altruist", "philatelist, stamp_collector", "philosopher", "phonetician", "phonologist", "photojournalist", "photometrist, photometrician", "physical_therapist, physiotherapist", "physicist", "piano_maker", "picker, chooser, selector", "picnicker, picknicker", "pilgrim", "pill", "pillar, mainstay", "pill_head", "pilot", "piltdown_man, piltdown_hoax", "pimp, procurer, panderer, pander, pandar, fancy_man, ponce", "pipe_smoker", "pip-squeak, squirt, small_fry", "pisser, urinator", "pitcher, hurler, twirler", "pitchman", "placeman, placeseeker", "placer_miner", "plagiarist, plagiarizer, plagiariser, literary_pirate, pirate", "plainsman", "planner, contriver, deviser", "planter, plantation_owner", "plasterer", "platinum_blond, platinum_blonde", "platitudinarian", "playboy, man-about-town, corinthian", "player, participant", "playmate, playfellow", "pleaser", "pledger", "plenipotentiary", "plier, plyer", "plodder, slowpoke, stick-in-the-mud, slowcoach", "plodder, slogger", "plotter, mapper", "plumber, pipe_fitter", "pluralist", "pluralist", "poet", "pointsman", "point_woman", "policyholder", "political_prisoner", "political_scientist", "politician, politico, pol, political_leader", "politician", "pollster, poll_taker, headcounter, canvasser", "polluter, defiler", "pool_player", "portraitist, portrait_painter, portrayer, limner", "poseuse", "positivist, rationalist", "postdoc, post_doc", "poster_girl", "postulator", "private_citizen", "problem_solver, solver, convergent_thinker", "pro-lifer", "prosthetist", "postulant", "potboy, potman", "poultryman, poulterer", "power_user", "power_worker, power-station_worker", "practitioner, practician", "prayer, supplicant", "preceptor, don", "predecessor", "preemptor, pre-emptor", "preemptor, pre-emptor", "premature_baby, preterm_baby, premature_infant, preterm_infant, preemie, premie", "presbyter", "presenter, sponsor", "presentist", "preserver", "president", "president_of_the_united_states, united_states_president, president, chief_executive", "president, prexy", "press_agent, publicity_man, public_relations_man, pr_man", "press_photographer", "priest", "prima_ballerina", "prima_donna, diva", "prima_donna", "primigravida, gravida_i", "primordial_dwarf, hypoplastic_dwarf, true_dwarf, normal_dwarf", "prince_charming", "prince_consort", "princeling", "prince_of_wales", "princess", "princess_royal", "principal, dealer", "principal, school_principal, head_teacher, head", "print_seller", "prior", "private, buck_private, common_soldier", "probationer, student_nurse", "processor", "process-server", "proconsul", "proconsul", "proctologist", "proctor, monitor", "procurator", "procurer, securer", "profit_taker", "programmer, computer_programmer, coder, software_engineer", "promiser, promisor", "promoter, booster, plugger", "promulgator", "propagandist", "propagator, disseminator", "property_man, propman, property_master", "prophetess", "prophet", "prosecutor, public_prosecutor, prosecuting_officer, prosecuting_attorney", "prospector", "protectionist", "protegee", "protozoologist", "provost_marshal", "pruner, trimmer", "psalmist", "psephologist", "psychiatrist, head-shrinker, shrink", "psychic", "psycholinguist", "psychophysicist", "publican, tavern_keeper", "pudge", "puerpera", "punching_bag", "punter", "punter", "puppeteer", "puppy, pup", "purchasing_agent", "puritan", "puritan", "pursuer", "pusher, shover", "pusher, drug_peddler, peddler, drug_dealer, drug_trafficker", "pusher, thruster", "putz", "pygmy, pigmy", "qadi", "quadriplegic", "quadruplet, quad", "quaker, trembler", "quarter", "quarterback, signal_caller, field_general", "quartermaster", "quartermaster_general", "quebecois", "queen, queen_regnant, female_monarch", "queen_of_england", "queen", "queen", "queen_consort", "queen_mother", "queen's_counsel", "question_master, quizmaster", "quick_study, sponge", "quietist", "quitter", "rabbi", "racist, racialist", "radiobiologist", "radiologic_technologist", "radiologist, radiotherapist", "rainmaker", "raiser", "raja, rajah", "rake, rakehell, profligate, rip, blood, roue", "ramrod", "ranch_hand", "ranker", "ranter, raver", "rape_suspect", "rapper", "rapporteur", "rare_bird, rara_avis", "ratepayer", "raw_recruit", "reader", "reading_teacher", "realist", "real_estate_broker, real_estate_agent, estate_agent, land_agent, house_agent", "rear_admiral", "receiver", "reciter", "recruit, enlistee", "recruit, military_recruit", "recruiter", "recruiting-sergeant", "redcap", "redhead, redheader, red-header, carrottop", "redneck, cracker", "reeler", "reenactor", "referral", "referee, ref", "refiner", "reform_jew", "registered_nurse, rn", "registrar", "regius_professor", "reliever, allayer, comforter", "anchorite, hermit", "religious_leader", "remover", "renaissance_man, generalist", "renegade", "rentier", "repairman, maintenance_man, service_man", "reporter, newsman, newsperson", "newswoman", "representative", "reprobate, miscreant", "rescuer, recoverer, saver", "reservist", "resident_commissioner", "respecter", "restaurateur, restauranter", "restrainer, controller", "retailer, retail_merchant", "retiree, retired_person", "returning_officer", "revenant", "revisionist", "revolutionist, revolutionary, subversive, subverter", "rheumatologist", "rhodesian_man, homo_rhodesiensis", "rhymer, rhymester, versifier, poetizer, poetiser", "rich_person, wealthy_person, have", "rider", "riding_master", "rifleman", "right-hander, right_hander, righthander", "right-hand_man, chief_assistant, man_friday", "ringer", "ringleader", "roadman, road_mender", "roarer, bawler, bellower, screamer, screecher, shouter, yeller", "rocket_engineer, rocket_scientist", "rocket_scientist", "rock_star", "romanov, romanoff", "romanticist, romantic", "ropemaker, rope-maker, roper", "roper", "roper", "ropewalker, ropedancer", "rosebud", "rosicrucian", "mountie", "rough_rider", "roundhead", "civil_authority, civil_officer", "runner", "runner", "runner", "running_back", "rusher", "rustic", "saboteur, wrecker, diversionist", "sadist", "sailing_master, navigator", "sailor, crewman", "salesgirl, saleswoman, saleslady", "salesman", "salesperson, sales_representative, sales_rep", "salvager, salvor", "sandwichman", "sangoma", "sannup", "sapper", "sassenach", "satrap", "saunterer, stroller, ambler", "savoyard", "sawyer", "scalper", "scandalmonger", "scapegrace, black_sheep", "scene_painter", "schemer, plotter", "schizophrenic", "schlemiel, shlemiel", "schlockmeister, shlockmeister", "scholar, scholarly_person, bookman, student", "scholiast", "schoolchild, school-age_child, pupil", "schoolfriend", "schoolman, medieval_schoolman", "schoolmaster", "schoolmate, classmate, schoolfellow, class_fellow", "scientist", "scion", "scoffer, flouter, mocker, jeerer", "scofflaw", "scorekeeper, scorer", "scorer", "scourer", "scout, talent_scout", "scoutmaster", "scrambler", "scratcher", "screen_actor, movie_actor", "scrutineer, canvasser", "scuba_diver", "sculptor, sculpturer, carver, statue_maker", "sea_scout", "seasonal_worker, seasonal", "seasoner", "second_baseman, second_sacker", "second_cousin", "seconder", "second_fiddle, second_banana", "second-in-command", "second_lieutenant, 2nd_lieutenant", "second-rater, mediocrity", "secretary", "secretary_of_agriculture, agriculture_secretary", "secretary_of_health_and_human_services", "secretary_of_state", "secretary_of_the_interior, interior_secretary", "sectarian, sectary, sectarist", "section_hand", "secularist", "security_consultant", "seeded_player, seed", "seeder, cloud_seeder", "seeker, searcher, quester", "segregate", "segregator, segregationist", "selectman", "selectwoman", "selfish_person", "self-starter", "seller, marketer, vender, vendor, trafficker", "selling_agent", "semanticist, semiotician", "semifinalist", "seminarian, seminarist", "senator", "sendee", "senior", "senior_vice_president", "separatist, separationist", "septuagenarian", "serf, helot, villein", "spree_killer", "serjeant-at-law, serjeant, sergeant-at-law, sergeant", "server", "serviceman, military_man, man, military_personnel", "settler, colonist", "settler", "sex_symbol", "sexton, sacristan", "shaheed", "shakespearian, shakespearean", "shanghaier, seizer", "sharecropper, cropper, sharecrop_farmer", "shaver", "shavian", "sheep", "sheik, tribal_sheik, sheikh, tribal_sheikh, arab_chief", "shelver", "shepherd", "ship-breaker", "shipmate", "shipowner", "shipping_agent", "shirtmaker", "shogun", "shopaholic", "shop_girl", "shop_steward, steward", "shot_putter", "shrew, termagant", "shuffler", "shyster, pettifogger", "sibling, sib", "sick_person, diseased_person, sufferer", "sightreader", "signaler, signaller", "signer", "signor, signior", "signora", "signore", "signorina", "silent_partner, sleeping_partner", "addle-head, addlehead, loon, birdbrain", "simperer", "singer, vocalist, vocalizer, vocaliser", "sinologist", "sipper", "sirrah", "sister", "sister, sis", "waverer, vacillator, hesitator, hesitater", "sitar_player", "sixth-former", "skateboarder", "skeptic, sceptic, doubter", "sketcher", "skidder", "skier", "skinny-dipper", "skin-diver, aquanaut", "skinhead", "slasher", "slattern, slut, slovenly_woman, trollop", "sleeper, slumberer", "sleeper", "sleeping_beauty", "sleuth, sleuthhound", "slob, sloven, pig, slovenly_person", "sloganeer", "slopseller, slop-seller", "smasher, stunner, knockout, beauty, ravisher, sweetheart, peach, lulu, looker, mantrap, dish", "smirker", "smith, metalworker", "smoothie, smoothy, sweet_talker, charmer", "smuggler, runner, contrabandist, moon_curser, moon-curser", "sneezer", "snob, prig, snot, snoot", "snoop, snooper", "snorer", "sob_sister", "soccer_player", "social_anthropologist, cultural_anthropologist", "social_climber, climber", "socialist", "socializer, socialiser", "social_scientist", "social_secretary", "socinian", "sociolinguist", "sociologist", "soda_jerk, soda_jerker", "sodalist", "sodomite, sodomist, sod, bugger", "soldier", "son, boy", "songster", "songstress", "songwriter, songster, ballad_maker", "sorcerer, magician, wizard, necromancer, thaumaturge, thaumaturgist", "sorehead", "soul_mate", "southern_baptist", "sovereign, crowned_head, monarch", "spacewalker", "spanish_american, hispanic_american, hispanic", "sparring_partner, sparring_mate", "spastic", "speaker, talker, utterer, verbalizer, verbaliser", "native_speaker", "speaker", "speechwriter", "specialist, medical_specialist", "specifier", "spectator, witness, viewer, watcher, looker", "speech_therapist", "speedskater, speed_skater", "spellbinder", "sphinx", "spinster, old_maid", "split_end", "sport, sportsman, sportswoman", "sport, summercater", "sporting_man, outdoor_man", "sports_announcer, sportscaster, sports_commentator", "sports_editor", "sprog", "square_dancer", "square_shooter, straight_shooter, straight_arrow", "squatter", "squire", "squire", "staff_member, staffer", "staff_sergeant", "stage_director", "stainer", "stakeholder", "stalker", "stalking-horse", "stammerer, stutterer", "stamper, stomper, tramper, trampler", "standee", "stand-in, substitute, relief, reliever, backup, backup_man, fill-in", "star, principal, lead", "starlet", "starter, dispatcher", "statesman, solon, national_leader", "state_treasurer", "stationer, stationery_seller", "stenographer, amanuensis, shorthand_typist", "stentor", "stepbrother, half-brother, half_brother", "stepmother", "stepparent", "stevedore, loader, longshoreman, docker, dockhand, dock_worker, dockworker, dock-walloper, lumper", "steward", "steward, flight_attendant", "steward", "stickler", "stiff", "stifler, smotherer", "stipendiary, stipendiary_magistrate", "stitcher", "stockjobber", "stock_trader", "stockist", "stoker, fireman", "stooper", "store_detective", "strafer", "straight_man, second_banana", "stranger, alien, unknown", "stranger", "strategist, strategian", "straw_boss, assistant_foreman", "streetwalker, street_girl, hooker, hustler, floozy, floozie, slattern", "stretcher-bearer, litter-bearer", "struggler", "stud, he-man, macho-man", "student, pupil, educatee", "stumblebum, palooka", "stylist", "subaltern", "subcontractor", "subduer, surmounter, overcomer", "subject, case, guinea_pig", "subordinate, subsidiary, underling, foot_soldier", "substitute, reserve, second-stringer", "successor, heir", "successor, replacement", "succorer, succourer", "sufi", "suffragan, suffragan_bishop", "suffragette", "sugar_daddy", "suicide_bomber", "suitor, suer, wooer", "sumo_wrestler", "sunbather", "sundowner", "super_heavyweight", "superior, higher-up, superordinate", "supermom", "supernumerary, spear_carrier, extra", "supremo", "surgeon, operating_surgeon, sawbones", "surgeon_general", "surgeon_general", "surpriser", "surveyor", "surveyor", "survivor, subsister", "sutler, victualer, victualler, provisioner", "sweeper", "sweetheart, sweetie, steady, truelove", "swinger, tramp", "switcher, whipper", "swot, grind, nerd, wonk, dweeb", "sycophant, toady, crawler, lackey, ass-kisser", "sylph", "sympathizer, sympathiser, well-wisher", "symphonist", "syncopator", "syndic", "tactician", "tagger", "tailback", "tallyman, tally_clerk", "tallyman", "tanker, tank_driver", "tapper, wiretapper, phone_tapper", "tartuffe, tartufe", "tarzan", "taster, taste_tester, taste-tester, sampler", "tax_assessor, assessor", "taxer", "taxi_dancer", "taxonomist, taxonomer, systematist", "teacher, instructor", "teaching_fellow", "tearaway", "technical_sergeant", "technician", "ted, teddy_boy", "teetotaler, teetotaller, teetotalist", "television_reporter, television_newscaster, tv_reporter, tv_newsman", "temporizer, temporiser", "tempter", "term_infant", "toiler", "tenant, renter", "tenant", "tenderfoot", "tennis_player", "tennis_pro, professional_tennis_player", "tenor_saxophonist, tenorist", "termer", "terror, scourge, threat", "tertigravida, gravida_iii", "testator, testate", "testatrix", "testee, examinee", "test-tube_baby", "texas_ranger, ranger", "thane", "theatrical_producer", "theologian, theologist, theologizer, theologiser", "theorist, theoretician, theorizer, theoriser, idealogue", "theosophist", "therapist, healer", "thessalonian", "thinker, creative_thinker, mind", "thinker", "thrower", "thurifer", "ticket_collector, ticket_taker", "tight_end", "tiler", "timekeeper, timer", "timorese", "tinkerer, fiddler", "tinsmith, tinner", "tinter", "tippler, social_drinker", "tipster, tout", "t-man", "toastmaster, symposiarch", "toast_mistress", "tobogganist", "tomboy, romp, hoyden", "toolmaker", "torchbearer", "tory", "tory", "tosser", "tosser, jerk-off, wanker", "totalitarian", "tourist, tourer, holidaymaker", "tout, touter", "tout, ticket_tout", "tovarich, tovarisch", "towhead", "town_clerk", "town_crier, crier", "townsman, towner", "toxicologist", "track_star", "trader, bargainer, dealer, monger", "trade_unionist, unionist, union_member", "traditionalist, diehard", "traffic_cop", "tragedian", "tragedian", "tragedienne", "trail_boss", "trainer", "traitor, treasonist", "traitress", "transactor", "transcriber", "transfer, transferee", "transferee", "translator, transcriber", "transvestite, cross-dresser", "traveling_salesman, travelling_salesman, commercial_traveler, commercial_traveller, roadman, bagman", "traverser", "trawler", "treasury, first_lord_of_the_treasury", "trencher", "trend-setter, taste-maker, fashion_arbiter", "tribesman", "trier, attempter, essayer", "trifler", "trooper", "trooper, state_trooper", "trotskyite, trotskyist, trot", "truant, hooky_player", "trumpeter, cornetist", "trusty", "tudor", "tumbler", "tutee", "twin", "two-timer", "tyke", "tympanist, timpanist", "typist", "tyrant, autocrat, despot", "umpire, ump", "understudy, standby", "undesirable", "unicyclist", "unilateralist", "unitarian", "arminian", "universal_donor", "unix_guru", "unknown_soldier", "upsetter", "upstager", "upstart, parvenu, nouveau-riche, arriviste", "upstart", "urchin", "urologist", "usherette", "usher, doorkeeper", "usurper, supplanter", "utility_man", "utilizer, utiliser", "utopian", "uxoricide", "vacationer, vacationist", "valedictorian, valedictory_speaker", "valley_girl", "vaulter, pole_vaulter, pole_jumper", "vegetarian", "vegan", "venerator", "venture_capitalist", "venturer, merchant-venturer", "vermin, varmint", "very_important_person, vip, high-up, dignitary, panjandrum, high_muckamuck", "vibist, vibraphonist", "vicar", "vicar", "vicar-general", "vice_chancellor", "vicegerent", "vice_president, v.p.", "vice-regent", "victim, dupe", "victorian", "victualer, victualler", "vigilante, vigilance_man", "villager", "vintager", "vintner, wine_merchant", "violator, debaucher, ravisher", "violator, lawbreaker, law_offender", "violist", "virago", "virologist", "visayan, bisayan", "viscountess", "viscount", "visigoth", "visionary", "visiting_fireman", "visiting_professor", "visualizer, visualiser", "vixen, harpy, hellcat", "vizier", "voicer", "volunteer, unpaid_worker", "volunteer, military_volunteer, voluntary", "votary", "votary", "vouchee", "vower", "voyager", "voyeur, peeping_tom, peeper", "vulcanizer, vulcaniser", "waffler", "wagnerian", "waif, street_child", "wailer", "waiter, server", "waitress", "walking_delegate", "walk-on", "wallah", "wally", "waltzer", "wanderer, roamer, rover, bird_of_passage", "wandering_jew", "wanton", "warrantee", "warrantee", "washer", "washerman, laundryman", "washwoman, washerwoman, laundrywoman, laundress", "wassailer, carouser", "wastrel, waster", "wave", "weatherman, weather_forecaster", "weekend_warrior", "weeder", "welder", "welfare_case, charity_case", "westerner", "west-sider", "wetter", "whaler", "whig", "whiner, complainer, moaner, sniveller, crybaby, bellyacher, grumbler, squawker", "whipper-in", "whisperer", "whiteface", "carmelite, white_friar", "augustinian", "white_hope, great_white_hope", "white_supremacist", "whoremaster, whoremonger", "whoremaster, whoremonger, john, trick", "widow, widow_woman", "wife, married_woman", "wiggler, wriggler, squirmer", "wimp, chicken, crybaby", "wing_commander", "winger", "winner", "winner, victor", "window_dresser, window_trimmer", "winker", "wiper", "wireman, wirer", "wise_guy, smart_aleck, wiseacre, wisenheimer, weisenheimer", "witch_doctor", "withdrawer", "withdrawer", "woman, adult_female", "woman", "wonder_boy, golden_boy", "wonderer", "working_girl", "workman, workingman, working_man, working_person", "workmate", "worldling", "worshiper, worshipper", "worthy", "wrecker", "wright", "write-in_candidate, write-in", "writer, author", "wykehamist", "yakuza", "yard_bird, yardbird", "yardie", "yardman", "yardmaster, trainmaster, train_dispatcher", "yenta", "yogi", "young_buck, young_man", "young_turk", "young_turk", "zionist", "zoo_keeper", "genet, edmund_charles_edouard_genet, citizen_genet", "kennan, george_f._kennan, george_frost_kennan", "munro, h._h._munro, hector_hugh_munro, saki", "popper, karl_popper, sir_karl_raimund_popper", "stoker, bram_stoker, abraham_stoker", "townes, charles_townes, charles_hard_townes", "dust_storm, duster, sandstorm, sirocco", "parhelion, mock_sun, sundog", "snow, snowfall", "facula", "wave", "microflora", "wilding", "semi-climber", "volva", "basidiocarp", "domatium", "apomict", "aquatic", "bryophyte, nonvascular_plant", "acrocarp, acrocarpous_moss", "sphagnum, sphagnum_moss, peat_moss, bog_moss", "liverwort, hepatic", "hepatica, marchantia_polymorpha", "pecopteris", "pteridophyte, nonflowering_plant", "fern", "fern_ally", "spore", "carpospore", "chlamydospore", "conidium, conidiospore", "oospore", "tetraspore", "zoospore", "cryptogam", "spermatophyte, phanerogam, seed_plant", "seedling", "annual", "biennial", "perennial", "hygrophyte", "gymnosperm", "gnetum, gnetum_gnemon", "catha_edulis", "ephedra, joint_fir", "mahuang, ephedra_sinica", "welwitschia, welwitschia_mirabilis", "cycad", "sago_palm, cycas_revoluta", "false_sago, fern_palm, cycas_circinalis", "zamia", "coontie, florida_arrowroot, seminole_bread, zamia_pumila", "ceratozamia", "dioon", "encephalartos", "kaffir_bread, encephalartos_caffer", "macrozamia", "burrawong, macrozamia_communis, macrozamia_spiralis", "pine, pine_tree, true_pine", "pinon, pinyon", "nut_pine", "pinon_pine, mexican_nut_pine, pinus_cembroides", "rocky_mountain_pinon, pinus_edulis", "single-leaf, single-leaf_pine, single-leaf_pinyon, pinus_monophylla", "bishop_pine, bishop's_pine, pinus_muricata", "california_single-leaf_pinyon, pinus_californiarum", "parry's_pinyon, pinus_quadrifolia, pinus_parryana", "spruce_pine, pinus_glabra", "black_pine, pinus_nigra", "pitch_pine, northern_pitch_pine, pinus_rigida", "pond_pine, pinus_serotina", "stone_pine, umbrella_pine, european_nut_pine, pinus_pinea", "swiss_pine, swiss_stone_pine, arolla_pine, cembra_nut_tree, pinus_cembra", "cembra_nut, cedar_nut", "swiss_mountain_pine, mountain_pine, dwarf_mountain_pine, mugho_pine, mugo_pine, pinus_mugo", "ancient_pine, pinus_longaeva", "white_pine", "american_white_pine, eastern_white_pine, weymouth_pine, pinus_strobus", "western_white_pine, silver_pine, mountain_pine, pinus_monticola", "southwestern_white_pine, pinus_strobiformis", "limber_pine, pinus_flexilis", "whitebark_pine, whitebarked_pine, pinus_albicaulis", "yellow_pine", "ponderosa, ponderosa_pine, western_yellow_pine, bull_pine, pinus_ponderosa", "jeffrey_pine, jeffrey's_pine, black_pine, pinus_jeffreyi", "shore_pine, lodgepole, lodgepole_pine, spruce_pine, pinus_contorta", "sierra_lodgepole_pine, pinus_contorta_murrayana", "loblolly_pine, frankincense_pine, pinus_taeda", "jack_pine, pinus_banksiana", "swamp_pine", "longleaf_pine, pitch_pine, southern_yellow_pine, georgia_pine, pinus_palustris", "shortleaf_pine, short-leaf_pine, shortleaf_yellow_pine, pinus_echinata", "red_pine, canadian_red_pine, pinus_resinosa", "scotch_pine, scots_pine, scotch_fir, pinus_sylvestris", "scrub_pine, virginia_pine, jersey_pine, pinus_virginiana", "monterey_pine, pinus_radiata", "bristlecone_pine, rocky_mountain_bristlecone_pine, pinus_aristata", "table-mountain_pine, prickly_pine, hickory_pine, pinus_pungens", "knobcone_pine, pinus_attenuata", "japanese_red_pine, japanese_table_pine, pinus_densiflora", "japanese_black_pine, black_pine, pinus_thunbergii", "torrey_pine, torrey's_pine, soledad_pine, grey-leaf_pine, sabine_pine, pinus_torreyana", "larch, larch_tree", "american_larch, tamarack, black_larch, larix_laricina", "western_larch, western_tamarack, oregon_larch, larix_occidentalis", "subalpine_larch, larix_lyallii", "european_larch, larix_decidua", "siberian_larch, larix_siberica, larix_russica", "golden_larch, pseudolarix_amabilis", "fir, fir_tree, true_fir", "silver_fir", "amabilis_fir, white_fir, pacific_silver_fir, red_silver_fir, christmas_tree, abies_amabilis", "european_silver_fir, christmas_tree, abies_alba", "white_fir, colorado_fir, california_white_fir, abies_concolor, abies_lowiana", "balsam_fir, balm_of_gilead, canada_balsam, abies_balsamea", "fraser_fir, abies_fraseri", "lowland_fir, lowland_white_fir, giant_fir, grand_fir, abies_grandis", "alpine_fir, subalpine_fir, abies_lasiocarpa", "santa_lucia_fir, bristlecone_fir, abies_bracteata, abies_venusta", "cedar, cedar_tree, true_cedar", "cedar_of_lebanon, cedrus_libani", "deodar, deodar_cedar, himalayan_cedar, cedrus_deodara", "atlas_cedar, cedrus_atlantica", "spruce", "norway_spruce, picea_abies", "weeping_spruce, brewer's_spruce, picea_breweriana", "engelmann_spruce, engelmann's_spruce, picea_engelmannii", "white_spruce, picea_glauca", "black_spruce, picea_mariana, spruce_pine", "siberian_spruce, picea_obovata", "sitka_spruce, picea_sitchensis", "oriental_spruce, picea_orientalis", "colorado_spruce, colorado_blue_spruce, silver_spruce, picea_pungens", "red_spruce, eastern_spruce, yellow_spruce, picea_rubens", "hemlock, hemlock_tree", "eastern_hemlock, canadian_hemlock, spruce_pine, tsuga_canadensis", "carolina_hemlock, tsuga_caroliniana", "mountain_hemlock, black_hemlock, tsuga_mertensiana", "western_hemlock, pacific_hemlock, west_coast_hemlock, tsuga_heterophylla", "douglas_fir", "green_douglas_fir, douglas_spruce, douglas_pine, douglas_hemlock, oregon_fir, oregon_pine, pseudotsuga_menziesii", "big-cone_spruce, big-cone_douglas_fir, pseudotsuga_macrocarpa", "cathaya", "cedar, cedar_tree", "cypress, cypress_tree", "gowen_cypress, cupressus_goveniana", "pygmy_cypress, cupressus_pigmaea, cupressus_goveniana_pigmaea", "santa_cruz_cypress, cupressus_abramsiana, cupressus_goveniana_abramsiana", "arizona_cypress, cupressus_arizonica", "guadalupe_cypress, cupressus_guadalupensis", "monterey_cypress, cupressus_macrocarpa", "mexican_cypress, cedar_of_goa, portuguese_cypress, cupressus_lusitanica", "italian_cypress, mediterranean_cypress, cupressus_sempervirens", "king_william_pine, athrotaxis_selaginoides", "chilean_cedar, austrocedrus_chilensis", "incense_cedar, red_cedar, calocedrus_decurrens, libocedrus_decurrens", "southern_white_cedar, coast_white_cedar, atlantic_white_cedar, white_cypress, white_cedar, chamaecyparis_thyoides", "oregon_cedar, port_orford_cedar, lawson's_cypress, lawson's_cedar, chamaecyparis_lawsoniana", "yellow_cypress, yellow_cedar, nootka_cypress, alaska_cedar, chamaecyparis_nootkatensis", "japanese_cedar, japan_cedar, sugi, cryptomeria_japonica", "juniper_berry", "incense_cedar", "kawaka, libocedrus_plumosa", "pahautea, libocedrus_bidwillii, mountain_pine", "metasequoia, dawn_redwood, metasequoia_glyptostrodoides", "arborvitae", "western_red_cedar, red_cedar, canoe_cedar, thuja_plicata", "american_arborvitae, northern_white_cedar, white_cedar, thuja_occidentalis", "oriental_arborvitae, thuja_orientalis, platycladus_orientalis", "hiba_arborvitae, thujopsis_dolobrata", "keteleeria", "wollemi_pine", "araucaria", "monkey_puzzle, chile_pine, araucaria_araucana", "norfolk_island_pine, araucaria_heterophylla, araucaria_excelsa", "new_caledonian_pine, araucaria_columnaris", "bunya_bunya, bunya_bunya_tree, araucaria_bidwillii", "hoop_pine, moreton_bay_pine, araucaria_cunninghamii", "kauri_pine, dammar_pine", "kauri, kaury, agathis_australis", "amboina_pine, amboyna_pine, agathis_dammara, agathis_alba", "dundathu_pine, queensland_kauri, smooth_bark_kauri, agathis_robusta", "red_kauri, agathis_lanceolata", "plum-yew", "california_nutmeg, nutmeg-yew, torreya_californica", "stinking_cedar, stinking_yew, torrey_tree, torreya_taxifolia", "celery_pine", "celery_top_pine, celery-topped_pine, phyllocladus_asplenifolius", "tanekaha, phyllocladus_trichomanoides", "alpine_celery_pine, phyllocladus_alpinus", "yellowwood, yellowwood_tree", "gymnospermous_yellowwood", "podocarp", "yacca, yacca_podocarp, podocarpus_coriaceus", "brown_pine, rockingham_podocarp, podocarpus_elatus", "cape_yellowwood, african_yellowwood, podocarpus_elongatus", "south-african_yellowwood, podocarpus_latifolius", "alpine_totara, podocarpus_nivalis", "totara, podocarpus_totara", "common_yellowwood, bastard_yellowwood, afrocarpus_falcata", "kahikatea, new_zealand_dacryberry, new_zealand_white_pine, dacrycarpus_dacrydioides, podocarpus_dacrydioides", "rimu, imou_pine, red_pine, dacrydium_cupressinum", "tarwood, tar-wood, dacrydium_colensoi", "common_sickle_pine, falcatifolium_falciforme", "yellow-leaf_sickle_pine, falcatifolium_taxoides", "tarwood, tar-wood, new_zealand_mountain_pine, halocarpus_bidwilli, dacrydium_bidwilli", "westland_pine, silver_pine, lagarostrobus_colensoi", "huon_pine, lagarostrobus_franklinii, dacrydium_franklinii", "chilean_rimu, lepidothamnus_fonkii", "mountain_rimu, lepidothamnus_laxifolius, dacridium_laxifolius", "nagi, nageia_nagi", "miro, black_pine, prumnopitys_ferruginea, podocarpus_ferruginea", "matai, black_pine, prumnopitys_taxifolia, podocarpus_spicata", "plum-fruited_yew, prumnopitys_andina, prumnopitys_elegans", "prince_albert_yew, prince_albert's_yew, saxe-gothea_conspicua", "sundacarpus_amara, prumnopitys_amara, podocarpus_amara", "japanese_umbrella_pine, sciadopitys_verticillata", "yew", "old_world_yew, english_yew, taxus_baccata", "pacific_yew, california_yew, western_yew, taxus_brevifolia", "japanese_yew, taxus_cuspidata", "florida_yew, taxus_floridana", "new_caledonian_yew, austrotaxus_spicata", "white-berry_yew, pseudotaxus_chienii", "ginkgo, gingko, maidenhair_tree, ginkgo_biloba", "angiosperm, flowering_plant", "dicot, dicotyledon, magnoliopsid, exogen", "monocot, monocotyledon, liliopsid, endogen", "floret, floweret", "flower", "bloomer", "wildflower, wild_flower", "apetalous_flower", "inflorescence", "rosebud", "gynostegium", "pollinium", "pistil", "gynobase", "gynophore", "stylopodium", "carpophore", "cornstalk, corn_stalk", "petiolule", "mericarp", "micropyle", "germ_tube", "pollen_tube", "gemma", "galbulus", "nectary, honey_gland", "pericarp, seed_vessel", "epicarp, exocarp", "mesocarp", "pip", "silique, siliqua", "cataphyll", "perisperm", "monocarp, monocarpic_plant, monocarpous_plant", "sporophyte", "gametophyte", "megasporangium, macrosporangium", "microspore", "microsporangium", "microsporophyll", "archespore, archesporium", "bonduc_nut, nicker_nut, nicker_seed", "job's_tears", "oilseed, oil-rich_seed", "castor_bean", "cottonseed", "candlenut", "peach_pit", "hypanthium, floral_cup, calyx_tube", "petal, flower_petal", "corolla", "lip", "perianth, chlamys, floral_envelope, perigone, perigonium", "thistledown", "custard_apple, custard_apple_tree", "cherimoya, cherimoya_tree, annona_cherimola", "ilama, ilama_tree, annona_diversifolia", "soursop, prickly_custard_apple, soursop_tree, annona_muricata", "bullock's_heart, bullock's_heart_tree, bullock_heart, annona_reticulata", "sweetsop, sweetsop_tree, annona_squamosa", "pond_apple, pond-apple_tree, annona_glabra", "pawpaw, papaw, papaw_tree, asimina_triloba", "ilang-ilang, ylang-ylang, cananga_odorata", "lancewood, lancewood_tree, oxandra_lanceolata", "guinea_pepper, negro_pepper, xylopia_aethiopica", "barberry", "american_barberry, berberis_canadensis", "common_barberry, european_barberry, berberis_vulgaris", "japanese_barberry, berberis_thunbergii", "oregon_grape, oregon_holly_grape, hollygrape, mountain_grape, holly-leaves_barberry, mahonia_aquifolium", "oregon_grape, mahonia_nervosa", "mayapple, may_apple, wild_mandrake, podophyllum_peltatum", "may_apple", "allspice", "carolina_allspice, strawberry_shrub, strawberry_bush, sweet_shrub, calycanthus_floridus", "spicebush, california_allspice, calycanthus_occidentalis", "katsura_tree, cercidiphyllum_japonicum", "laurel", "true_laurel, bay, bay_laurel, bay_tree, laurus_nobilis", "camphor_tree, cinnamomum_camphora", "cinnamon, ceylon_cinnamon, ceylon_cinnamon_tree, cinnamomum_zeylanicum", "cassia, cassia-bark_tree, cinnamomum_cassia", "cassia_bark, chinese_cinnamon", "saigon_cinnamon, cinnamomum_loureirii", "cinnamon_bark", "spicebush, spice_bush, american_spicebush, benjamin_bush, lindera_benzoin, benzoin_odoriferum", "avocado, avocado_tree, persea_americana", "laurel-tree, red_bay, persea_borbonia", "sassafras, sassafras_tree, sassafras_albidum", "california_laurel, california_bay_tree, oregon_myrtle, pepperwood, spice_tree, sassafras_laurel, california_olive, mountain_laurel, umbellularia_californica", "anise_tree", "purple_anise, illicium_floridanum", "star_anise, illicium_anisatum", "star_anise, chinese_anise, illicium_verum", "magnolia", "southern_magnolia, evergreen_magnolia, large-flowering_magnolia, bull_bay, magnolia_grandiflora", "umbrella_tree, umbrella_magnolia, elkwood, elk-wood, magnolia_tripetala", "earleaved_umbrella_tree, magnolia_fraseri", "cucumber_tree, magnolia_acuminata", "large-leaved_magnolia, large-leaved_cucumber_tree, great-leaved_macrophylla, magnolia_macrophylla", "saucer_magnolia, chinese_magnolia, magnolia_soulangiana", "star_magnolia, magnolia_stellata", "sweet_bay, swamp_bay, swamp_laurel, magnolia_virginiana", "manglietia, genus_manglietia", "tulip_tree, tulip_poplar, yellow_poplar, canary_whitewood, liriodendron_tulipifera", "moonseed", "common_moonseed, canada_moonseed, yellow_parilla, menispermum_canadense", "carolina_moonseed, cocculus_carolinus", "nutmeg, nutmeg_tree, myristica_fragrans", "water_nymph, fragrant_water_lily, pond_lily, nymphaea_odorata", "european_white_lily, nymphaea_alba", "southern_spatterdock, nuphar_sagittifolium", "lotus, indian_lotus, sacred_lotus, nelumbo_nucifera", "water_chinquapin, american_lotus, yanquapin, nelumbo_lutea", "water-shield, fanwort, cabomba_caroliniana", "water-shield, brasenia_schreberi, water-target", "peony, paeony", "buttercup, butterflower, butter-flower, crowfoot, goldcup, kingcup", "meadow_buttercup, tall_buttercup, tall_crowfoot, tall_field_buttercup, ranunculus_acris", "water_crowfoot, water_buttercup, ranunculus_aquatilis", "lesser_celandine, pilewort, ranunculus_ficaria", "lesser_spearwort, ranunculus_flammula", "greater_spearwort, ranunculus_lingua", "western_buttercup, ranunculus_occidentalis", "creeping_buttercup, creeping_crowfoot, ranunculus_repens", "cursed_crowfoot, celery-leaved_buttercup, ranunculus_sceleratus", "aconite", "monkshood, helmetflower, helmet_flower, aconitum_napellus", "wolfsbane, wolfbane, wolf's_bane, aconitum_lycoctonum", "baneberry, cohosh, herb_christopher", "baneberry", "red_baneberry, redberry, red-berry, snakeberry, actaea_rubra", "pheasant's-eye, adonis_annua", "anemone, windflower", "alpine_anemone, mountain_anemone, anemone_tetonensis", "canada_anemone, anemone_canadensis", "thimbleweed, anemone_cylindrica", "wood_anemone, anemone_nemorosa", "wood_anemone, snowdrop, anemone_quinquefolia", "longheaded_thimbleweed, anemone_riparia", "snowdrop_anemone, snowdrop_windflower, anemone_sylvestris", "virginia_thimbleweed, anemone_virginiana", "rue_anemone, anemonella_thalictroides", "columbine, aquilegia, aquilege", "meeting_house, honeysuckle, aquilegia_canadensis", "blue_columbine, aquilegia_caerulea, aquilegia_scopulorum_calcarea", "granny's_bonnets, aquilegia_vulgaris", "marsh_marigold, kingcup, meadow_bright, may_blob, cowslip, water_dragon, caltha_palustris", "american_bugbane, summer_cohosh, cimicifuga_americana", "black_cohosh, black_snakeroot, rattle-top, cimicifuga_racemosa", "fetid_bugbane, foetid_bugbane, cimicifuga_foetida", "clematis", "pine_hyacinth, clematis_baldwinii, viorna_baldwinii", "blue_jasmine, blue_jessamine, curly_clematis, marsh_clematis, clematis_crispa", "golden_clematis, clematis_tangutica", "scarlet_clematis, clematis_texensis", "leather_flower, clematis_versicolor", "leather_flower, vase-fine, vase_vine, clematis_viorna", "virgin's_bower, old_man's_beard, devil's_darning_needle, clematis_virginiana", "purple_clematis, purple_virgin's_bower, mountain_clematis, clematis_verticillaris", "goldthread, golden_thread, coptis_groenlandica, coptis_trifolia_groenlandica", "rocket_larkspur, consolida_ambigua, delphinium_ajacis", "delphinium", "larkspur", "winter_aconite, eranthis_hyemalis", "lenten_rose, black_hellebore, helleborus_orientalis", "green_hellebore, helleborus_viridis", "hepatica, liverleaf", "goldenseal, golden_seal, yellow_root, turmeric_root, hydrastis_canadensis", "false_rue_anemone, false_rue, isopyrum_biternatum", "giant_buttercup, laccopetalum_giganteum", "nigella", "love-in-a-mist, nigella_damascena", "fennel_flower, nigella_hispanica", "black_caraway, nutmeg_flower, roman_coriander, nigella_sativa", "pasqueflower, pasque_flower", "meadow_rue", "false_bugbane, trautvetteria_carolinensis", "globeflower, globe_flower", "winter's_bark, winter's_bark_tree, drimys_winteri", "pepper_shrub, pseudowintera_colorata, wintera_colorata", "sweet_gale, scotch_gale, myrica_gale", "wax_myrtle", "bay_myrtle, puckerbush, myrica_cerifera", "bayberry, candleberry, swamp_candleberry, waxberry, myrica_pensylvanica", "sweet_fern, comptonia_peregrina, comptonia_asplenifolia", "corkwood, corkwood_tree, leitneria_floridana", "jointed_rush, juncus_articulatus", "toad_rush, juncus_bufonius", "slender_rush, juncus_tenuis", "zebrawood, zebrawood_tree", "connarus_guianensis", "legume, leguminous_plant", "legume", "peanut", "granadilla_tree, granadillo, brya_ebenus", "arariba, centrolobium_robustum", "tonka_bean, coumara_nut", "courbaril, hymenaea_courbaril", "melilotus, melilot, sweet_clover", "darling_pea, poison_bush", "smooth_darling_pea, swainsona_galegifolia", "clover, trefoil", "alpine_clover, trifolium_alpinum", "hop_clover, shamrock, lesser_yellow_trefoil, trifolium_dubium", "crimson_clover, italian_clover, trifolium_incarnatum", "red_clover, purple_clover, trifolium_pratense", "buffalo_clover, trifolium_reflexum, trifolium_stoloniferum", "white_clover, dutch_clover, shamrock, trifolium_repens", "mimosa", "acacia", "shittah, shittah_tree", "wattle", "black_wattle, acacia_auriculiformis", "gidgee, stinking_wattle, acacia_cambegei", "catechu, jerusalem_thorn, acacia_catechu", "silver_wattle, mimosa, acacia_dealbata", "huisache, cassie, mimosa_bush, sweet_wattle, sweet_acacia, scented_wattle, flame_tree, acacia_farnesiana", "lightwood, acacia_melanoxylon", "golden_wattle, acacia_pycnantha", "fever_tree, acacia_xanthophloea", "coralwood, coral-wood, red_sandalwood, barbados_pride, peacock_flower_fence, adenanthera_pavonina", "albizzia, albizia", "silk_tree, albizia_julibrissin, albizzia_julibrissin", "siris, siris_tree, albizia_lebbeck, albizzia_lebbeck", "rain_tree, saman, monkeypod, monkey_pod, zaman, zamang, albizia_saman", "calliandra", "conacaste, elephant's_ear, enterolobium_cyclocarpa", "inga", "ice-cream_bean, inga_edulis", "guama, inga_laurina", "lead_tree, white_popinac, leucaena_glauca, leucaena_leucocephala", "wild_tamarind, lysiloma_latisiliqua, lysiloma_bahamensis", "sabicu, lysiloma_sabicu", "nitta_tree", "parkia_javanica", "manila_tamarind, camachile, huamachil, wild_tamarind, pithecellobium_dulce", "cat's-claw, catclaw, black_bead, pithecellodium_unguis-cati", "honey_mesquite, western_honey_mesquite, prosopis_glandulosa", "algarroba, algarrobilla, algarobilla", "screw_bean, screwbean, tornillo, screwbean_mesquite, prosopis_pubescens", "screw_bean", "dogbane", "indian_hemp, rheumatism_weed, apocynum_cannabinum", "bushman's_poison, ordeal_tree, acocanthera_oppositifolia, acocanthera_venenata", "impala_lily, mock_azalia, desert_rose, kudu_lily, adenium_obesum, adenium_multiflorum", "allamanda", "common_allamanda, golden_trumpet, allamanda_cathartica", "dita, dita_bark, devil_tree, alstonia_scholaris", "nepal_trumpet_flower, easter_lily_vine, beaumontia_grandiflora", "carissa", "hedge_thorn, natal_plum, carissa_bispinosa", "natal_plum, amatungulu, carissa_macrocarpa, carissa_grandiflora", "periwinkle, rose_periwinkle, madagascar_periwinkle, old_maid, cape_periwinkle, red_periwinkle, cayenne_jasmine, catharanthus_roseus, vinca_rosea", "ivory_tree, conessi, kurchi, kurchee, holarrhena_pubescens, holarrhena_antidysenterica", "white_dipladenia, mandevilla_boliviensis, dipladenia_boliviensis", "chilean_jasmine, mandevilla_laxa", "oleander, rose_bay, nerium_oleander", "frangipani, frangipanni", "west_indian_jasmine, pagoda_tree, plumeria_alba", "rauwolfia, rauvolfia", "snakewood, rauwolfia_serpentina", "strophanthus_kombe", "yellow_oleander, thevetia_peruviana, thevetia_neriifolia", "myrtle, vinca_minor", "large_periwinkle, vinca_major", "arum, aroid", "cuckoopint, lords-and-ladies, jack-in-the-pulpit, arum_maculatum", "black_calla, arum_palaestinum", "calamus", "alocasia, elephant's_ear, elephant_ear", "giant_taro, alocasia_macrorrhiza", "amorphophallus", "pungapung, telingo_potato, elephant_yam, amorphophallus_paeonifolius, amorphophallus_campanulatus", "devil's_tongue, snake_palm, umbrella_arum, amorphophallus_rivieri", "anthurium, tailflower, tail-flower", "flamingo_flower, flamingo_plant, anthurium_andraeanum, anthurium_scherzerianum", "jack-in-the-pulpit, indian_turnip, wake-robin, arisaema_triphyllum, arisaema_atrorubens", "friar's-cowl, arisarum_vulgare", "caladium", "caladium_bicolor", "wild_calla, water_arum, calla_palustris", "taro, taro_plant, dalo, dasheen, colocasia_esculenta", "taro, cocoyam, dasheen, eddo", "cryptocoryne, water_trumpet", "dracontium", "golden_pothos, pothos, ivy_arum, epipremnum_aureum, scindapsus_aureus", "skunk_cabbage, lysichiton_americanum", "monstera", "ceriman, monstera_deliciosa", "nephthytis", "nephthytis_afzelii", "arrow_arum", "green_arrow_arum, tuckahoe, peltandra_virginica", "philodendron", "pistia, water_lettuce, water_cabbage, pistia_stratiotes, pistia_stratoites", "pothos", "spathiphyllum, peace_lily, spathe_flower", "skunk_cabbage, polecat_weed, foetid_pothos, symplocarpus_foetidus", "yautia, tannia, spoonflower, malanga, xanthosoma_sagittifolium, xanthosoma_atrovirens", "calla_lily, calla, arum_lily, zantedeschia_aethiopica", "pink_calla, zantedeschia_rehmanii", "golden_calla", "duckweed", "common_duckweed, lesser_duckweed, lemna_minor", "star-duckweed, lemna_trisulca", "great_duckweed, water_flaxseed, spirodela_polyrrhiza", "watermeal", "common_wolffia, wolffia_columbiana", "aralia", "american_angelica_tree, devil's_walking_stick, hercules'-club, aralia_spinosa", "american_spikenard, petty_morel, life-of-man, aralia_racemosa", "bristly_sarsaparilla, bristly_sarsparilla, dwarf_elder, aralia_hispida", "japanese_angelica_tree, aralia_elata", "chinese_angelica, chinese_angelica_tree, aralia_stipulata", "ivy, common_ivy, english_ivy, hedera_helix", "puka, meryta_sinclairii", "ginseng, nin-sin, panax_ginseng, panax_schinseng, panax_pseudoginseng", "ginseng", "umbrella_tree, schefflera_actinophylla, brassaia_actinophylla", "birthwort, aristolochia_clematitis", "dutchman's-pipe, pipe_vine, aristolochia_macrophylla, aristolochia_durior", "virginia_snakeroot, virginia_serpentaria, virginia_serpentary, aristolochia_serpentaria", "canada_ginger, black_snakeroot, asarum_canadense", "heartleaf, heart-leaf, asarum_virginicum", "heartleaf, heart-leaf, asarum_shuttleworthii", "asarabacca, asarum_europaeum", "caryophyllaceous_plant", "corn_cockle, corn_campion, crown-of-the-field, agrostemma_githago", "sandwort", "mountain_sandwort, mountain_starwort, mountain_daisy, arenaria_groenlandica", "pine-barren_sandwort, longroot, arenaria_caroliniana", "seabeach_sandwort, arenaria_peploides", "rock_sandwort, arenaria_stricta", "thyme-leaved_sandwort, arenaria_serpyllifolia", "mouse-ear_chickweed, mouse_eared_chickweed, mouse_ear, clammy_chickweed, chickweed", "snow-in-summer, love-in-a-mist, cerastium_tomentosum", "alpine_mouse-ear, arctic_mouse-ear, cerastium_alpinum", "pink, garden_pink", "sweet_william, dianthus_barbatus", "carnation, clove_pink, gillyflower, dianthus_caryophyllus", "china_pink, rainbow_pink, dianthus_chinensis", "japanese_pink, dianthus_chinensis_heddewigii", "maiden_pink, dianthus_deltoides", "cheddar_pink, diangus_gratianopolitanus", "button_pink, dianthus_latifolius", "cottage_pink, grass_pink, dianthus_plumarius", "fringed_pink, dianthus_supurbus", "drypis", "baby's_breath, babies'-breath, gypsophila_paniculata", "coral_necklace, illecebrum_verticullatum", "lychnis, catchfly", "ragged_robin, cuckoo_flower, lychnis_flos-cuculi, lychins_floscuculi", "scarlet_lychnis, maltese_cross, lychins_chalcedonica", "mullein_pink, rose_campion, gardener's_delight, dusty_miller, lychnis_coronaria", "sandwort, moehringia_lateriflora", "sandwort, moehringia_mucosa", "soapwort, hedge_pink, bouncing_bet, bouncing_bess, saponaria_officinalis", "knawel, knawe, scleranthus_annuus", "silene, campion, catchfly", "moss_campion, silene_acaulis", "wild_pink, silene_caroliniana", "red_campion, red_bird's_eye, silene_dioica, lychnis_dioica", "white_campion, evening_lychnis, white_cockle, bladder_campion, silene_latifolia, lychnis_alba", "fire_pink, silene_virginica", "bladder_campion, silene_uniflora, silene_vulgaris", "corn_spurry, corn_spurrey, spergula_arvensis", "sand_spurry, sea_spurry, spergularia_rubra", "chickweed", "common_chickweed, stellaria_media", "cowherb, cow_cockle, vaccaria_hispanica, vaccaria_pyramidata, saponaria_vaccaria", "hottentot_fig, hottentot's_fig, sour_fig, carpobrotus_edulis, mesembryanthemum_edule", "livingstone_daisy, dorotheanthus_bellidiformis", "fig_marigold, pebble_plant", "ice_plant, icicle_plant, mesembryanthemum_crystallinum", "new_zealand_spinach, tetragonia_tetragonioides, tetragonia_expansa", "amaranth", "amaranth", "tumbleweed, amaranthus_albus, amaranthus_graecizans", "prince's-feather, gentleman's-cane, prince's-plume, red_amaranth, purple_amaranth, amaranthus_cruentus, amaranthus_hybridus_hypochondriacus, amaranthus_hybridus_erythrostachys", "pigweed, amaranthus_hypochondriacus", "thorny_amaranth, amaranthus_spinosus", "alligator_weed, alligator_grass, alternanthera_philoxeroides", "cockscomb, common_cockscomb, celosia_cristata, celosia_argentea_cristata", "cottonweed", "globe_amaranth, bachelor's_button, gomphrena_globosa", "bloodleaf", "saltwort, batis_maritima", "lamb's-quarters, pigweed, wild_spinach, chenopodium_album", "good-king-henry, allgood, fat_hen, wild_spinach, chenopodium_bonus-henricus", "jerusalem_oak, feather_geranium, mexican_tea, chenopodium_botrys, atriplex_mexicana", "oak-leaved_goosefoot, oakleaf_goosefoot, chenopodium_glaucum", "sowbane, red_goosefoot, chenopodium_hybridum", "nettle-leaved_goosefoot, nettleleaf_goosefoot, chenopodium_murale", "red_goosefoot, french_spinach, chenopodium_rubrum", "stinking_goosefoot, chenopodium_vulvaria", "orach, orache", "saltbush", "garden_orache, mountain_spinach, atriplex_hortensis", "desert_holly, atriplex_hymenelytra", "quail_bush, quail_brush, white_thistle, atriplex_lentiformis", "beet, common_beet, beta_vulgaris", "beetroot, beta_vulgaris_rubra", "chard, swiss_chard, spinach_beet, leaf_beet, chard_plant, beta_vulgaris_cicla", "mangel-wurzel, mangold-wurzel, mangold, beta_vulgaris_vulgaris", "winged_pigweed, tumbleweed, cycloloma_atriplicifolium", "halogeton, halogeton_glomeratus", "glasswort, samphire, salicornia_europaea", "saltwort, barilla, glasswort, kali, kelpwort, salsola_kali, salsola_soda", "russian_thistle, russian_tumbleweed, russian_cactus, tumbleweed, salsola_kali_tenuifolia", "greasewood, black_greasewood, sarcobatus_vermiculatus", "scarlet_musk_flower, nyctaginia_capitata", "sand_verbena", "sweet_sand_verbena, abronia_fragrans", "yellow_sand_verbena, abronia_latifolia", "beach_pancake, abronia_maritima", "beach_sand_verbena, pink_sand_verbena, abronia_umbellata", "desert_sand_verbena, abronia_villosa", "trailing_four_o'clock, trailing_windmills, allionia_incarnata", "bougainvillea", "umbrellawort", "four_o'clock", "common_four-o'clock, marvel-of-peru, mirabilis_jalapa, mirabilis_uniflora", "california_four_o'clock, mirabilis_laevis, mirabilis_californica", "sweet_four_o'clock, maravilla, mirabilis_longiflora", "desert_four_o'clock, colorado_four_o'clock, maravilla, mirabilis_multiflora", "mountain_four_o'clock, mirabilis_oblongifolia", "cockspur, pisonia_aculeata", "rattail_cactus, rat's-tail_cactus, aporocactus_flagelliformis", "saguaro, sahuaro, carnegiea_gigantea", "night-blooming_cereus", "echinocactus, barrel_cactus", "hedgehog_cactus", "golden_barrel_cactus, echinocactus_grusonii", "hedgehog_cereus", "rainbow_cactus", "epiphyllum, orchid_cactus", "barrel_cactus", "night-blooming_cereus", "chichipe, lemaireocereus_chichipe", "mescal, mezcal, peyote, lophophora_williamsii", "mescal_button, sacred_mushroom, magic_mushroom", "mammillaria", "feather_ball, mammillaria_plumosa", "garambulla, garambulla_cactus, myrtillocactus_geometrizans", "knowlton's_cactus, pediocactus_knowltonii", "nopal", "prickly_pear, prickly_pear_cactus", "cholla, opuntia_cholla", "nopal, opuntia_lindheimeri", "tuna, opuntia_tuna", "barbados_gooseberry, barbados-gooseberry_vine, pereskia_aculeata", "mistletoe_cactus", "christmas_cactus, schlumbergera_buckleyi, schlumbergera_baridgesii", "night-blooming_cereus", "crab_cactus, thanksgiving_cactus, zygocactus_truncatus, schlumbergera_truncatus", "pokeweed", "indian_poke, phytolacca_acinosa", "poke, pigeon_berry, garget, scoke, phytolacca_americana", "ombu, bella_sombra, phytolacca_dioica", "bloodberry, blood_berry, rougeberry, rouge_plant, rivina_humilis", "portulaca", "rose_moss, sun_plant, portulaca_grandiflora", "common_purslane, pussley, pussly, verdolagas, portulaca_oleracea", "rock_purslane", "red_maids, redmaids, calandrinia_ciliata", "carolina_spring_beauty, claytonia_caroliniana", "spring_beauty, clatonia_lanceolata", "virginia_spring_beauty, claytonia_virginica", "siskiyou_lewisia, lewisia_cotyledon", "bitterroot, lewisia_rediviva", "broad-leaved_montia, montia_cordifolia", "blinks, blinking_chickweed, water_chickweed, montia_lamprosperma", "toad_lily, montia_chamissoi", "winter_purslane, miner's_lettuce, cuban_spinach, montia_perfoliata", "flame_flower, flame-flower, flameflower, talinum_aurantiacum", "pigmy_talinum, talinum_brevifolium", "jewels-of-opar, talinum_paniculatum", "caper", "native_pomegranate, capparis_arborea", "caper_tree, jamaica_caper_tree, capparis_cynophallophora", "caper_tree, bay-leaved_caper, capparis_flexuosa", "common_caper, capparis_spinosa", "spiderflower, cleome", "rocky_mountain_bee_plant, stinking_clover, cleome_serrulata", "clammyweed, polanisia_graveolens, polanisia_dodecandra", "crucifer, cruciferous_plant", "cress, cress_plant", "watercress", "stonecress, stone_cress", "garlic_mustard, hedge_garlic, sauce-alone, jack-by-the-hedge, alliaria_officinalis", "alyssum, madwort", "rose_of_jericho, resurrection_plant, anastatica_hierochuntica", "arabidopsis_thaliana, mouse-ear_cress", "arabidopsis_lyrata", "rock_cress, rockcress", "sicklepod, arabis_canadensis", "tower_mustard, tower_cress, turritis_glabra, arabis_glabra", "horseradish, horseradish_root", "winter_cress, st._barbara's_herb, scurvy_grass", "yellow_rocket, rockcress, rocket_cress, barbarea_vulgaris, sisymbrium_barbarea", "hoary_alison, hoary_alyssum, berteroa_incana", "buckler_mustard, biscutalla_laevigata", "wild_cabbage, brassica_oleracea", "cabbage, cultivated_cabbage, brassica_oleracea", "head_cabbage, head_cabbage_plant, brassica_oleracea_capitata", "savoy_cabbage", "brussels_sprout, brassica_oleracea_gemmifera", "cauliflower, brassica_oleracea_botrytis", "broccoli, brassica_oleracea_italica", "collard", "kohlrabi, brassica_oleracea_gongylodes", "turnip_plant", "turnip, white_turnip, brassica_rapa", "rutabaga, turnip_cabbage, swede, swedish_turnip, rutabaga_plant, brassica_napus_napobrassica", "broccoli_raab, broccoli_rabe, brassica_rapa_ruvo", "mustard", "chinese_mustard, indian_mustard, leaf_mustard, gai_choi, brassica_juncea", "bok_choy, bok_choi, pakchoi, pak_choi, chinese_white_cabbage, brassica_rapa_chinensis", "rape, colza, brassica_napus", "rapeseed", "shepherd's_purse, shepherd's_pouch, capsella_bursa-pastoris", "lady's_smock, cuckooflower, cuckoo_flower, meadow_cress, cardamine_pratensis", "coral-root_bittercress, coralroot, coralwort, cardamine_bulbifera, dentaria_bulbifera", "crinkleroot, crinkle-root, crinkle_root, pepper_root, toothwort, cardamine_diphylla, dentaria_diphylla", "american_watercress, mountain_watercress, cardamine_rotundifolia", "spring_cress, cardamine_bulbosa", "purple_cress, cardamine_douglasii", "wallflower, cheiranthus_cheiri, erysimum_cheiri", "prairie_rocket", "scurvy_grass, common_scurvy_grass, cochlearia_officinalis", "sea_kale, sea_cole, crambe_maritima", "tansy_mustard, descurainia_pinnata", "draba", "wallflower", "prairie_rocket", "siberian_wall_flower, erysimum_allionii, cheiranthus_allionii", "western_wall_flower, erysimum_asperum, cheiranthus_asperus, erysimum_arkansanum", "wormseed_mustard, erysimum_cheiranthoides", "heliophila", "damask_violet, dame's_violet, sweet_rocket, hesperis_matronalis", "tansy-leaved_rocket, hugueninia_tanacetifolia, sisymbrium_tanacetifolia", "candytuft", "woad", "dyer's_woad, isatis_tinctoria", "bladderpod", "sweet_alyssum, sweet_alison, lobularia_maritima", "malcolm_stock, stock", "virginian_stock, virginia_stock, malcolmia_maritima", "stock, gillyflower", "brompton_stock, matthiola_incana", "bladderpod", "chamois_cress, pritzelago_alpina, lepidium_alpina", "radish_plant, radish", "jointed_charlock, wild_radish, wild_rape, runch, raphanus_raphanistrum", "radish, raphanus_sativus", "radish, daikon, japanese_radish, raphanus_sativus_longipinnatus", "marsh_cress, yellow_watercress, rorippa_islandica", "great_yellowcress, rorippa_amphibia, nasturtium_amphibium", "schizopetalon, schizopetalon_walkeri", "field_mustard, wild_mustard, charlock, chadlock, brassica_kaber, sinapis_arvensis", "hedge_mustard, sisymbrium_officinale", "desert_plume, prince's-plume, stanleya_pinnata, cleome_pinnata", "pennycress", "field_pennycress, french_weed, fanweed, penny_grass, stinkweed, mithridate_mustard, thlaspi_arvense", "fringepod, lacepod", "bladderpod", "wasabi", "poppy", "iceland_poppy, papaver_alpinum", "western_poppy, papaver_californicum", "prickly_poppy, papaver_argemone", "iceland_poppy, arctic_poppy, papaver_nudicaule", "oriental_poppy, papaver_orientale", "corn_poppy, field_poppy, flanders_poppy, papaver_rhoeas", "opium_poppy, papaver_somniferum", "prickly_poppy, argemone, white_thistle, devil's_fig", "mexican_poppy, argemone_mexicana", "bocconia, tree_celandine, bocconia_frutescens", "celandine, greater_celandine, swallowwort, swallow_wort, chelidonium_majus", "corydalis", "climbing_corydalis, corydalis_claviculata, fumaria_claviculata", "california_poppy, eschscholtzia_californica", "horn_poppy, horned_poppy, yellow_horned_poppy, sea_poppy, glaucium_flavum", "golden_cup, mexican_tulip_poppy, hunnemania_fumariifolia", "plume_poppy, bocconia, macleaya_cordata", "blue_poppy, meconopsis_betonicifolia", "welsh_poppy, meconopsis_cambrica", "creamcups, platystemon_californicus", "matilija_poppy, california_tree_poppy, romneya_coulteri", "wind_poppy, flaming_poppy, stylomecon_heterophyllum, papaver_heterophyllum", "celandine_poppy, wood_poppy, stylophorum_diphyllum", "climbing_fumitory, allegheny_vine, adlumia_fungosa, fumaria_fungosa", "bleeding_heart, lyreflower, lyre-flower, dicentra_spectabilis", "dutchman's_breeches, dicentra_cucullaria", "squirrel_corn, dicentra_canadensis", "composite, composite_plant", "compass_plant, compass_flower", "everlasting, everlasting_flower", "achillea", "yarrow, milfoil, achillea_millefolium", "pink-and-white_everlasting, pink_paper_daisy, acroclinium_roseum", "white_snakeroot, white_sanicle, ageratina_altissima, eupatorium_rugosum", "ageratum", "common_ageratum, ageratum_houstonianum", "sweet_sultan, amberboa_moschata, centaurea_moschata", "ragweed, ambrosia, bitterweed", "common_ragweed, ambrosia_artemisiifolia", "great_ragweed, ambrosia_trifida", "western_ragweed, perennial_ragweed, ambrosia_psilostachya", "ammobium", "winged_everlasting, ammobium_alatum", "pellitory, pellitory-of-spain, anacyclus_pyrethrum", "pearly_everlasting, cottonweed, anaphalis_margaritacea", "andryala", "plantain-leaved_pussytoes", "field_pussytoes", "solitary_pussytoes", "mountain_everlasting", "mayweed, dog_fennel, stinking_mayweed, stinking_chamomile, anthemis_cotula", "yellow_chamomile, golden_marguerite, dyers'_chamomile, anthemis_tinctoria", "corn_chamomile, field_chamomile, corn_mayweed, anthemis_arvensis", "woolly_daisy, dwarf_daisy, antheropeas_wallacei, eriophyllum_wallacei", "burdock, clotbur", "great_burdock, greater_burdock, cocklebur, arctium_lappa", "african_daisy", "blue-eyed_african_daisy, arctotis_stoechadifolia, arctotis_venusta", "marguerite, marguerite_daisy, paris_daisy, chrysanthemum_frutescens, argyranthemum_frutescens", "silversword, argyroxiphium_sandwicense", "arnica", "heartleaf_arnica, arnica_cordifolia", "arnica_montana", "lamb_succory, dwarf_nipplewort, arnoseris_minima", "artemisia", "mugwort", "sweet_wormwood, artemisia_annua", "field_wormwood, artemisia_campestris", "tarragon, estragon, artemisia_dracunculus", "sand_sage, silvery_wormwood, artemisia_filifolia", "wormwood_sage, prairie_sagewort, artemisia_frigida", "western_mugwort, white_sage, cudweed, prairie_sage, artemisia_ludoviciana, artemisia_gnaphalodes", "roman_wormwood, artemis_pontica", "bud_brush, bud_sagebrush, artemis_spinescens", "common_mugwort, artemisia_vulgaris", "aster", "wood_aster", "whorled_aster, aster_acuminatus", "heath_aster, aster_arenosus", "heart-leaved_aster, aster_cordifolius", "white_wood_aster, aster_divaricatus", "bushy_aster, aster_dumosus", "heath_aster, aster_ericoides", "white_prairie_aster, aster_falcatus", "stiff_aster, aster_linarifolius", "goldilocks, goldilocks_aster, aster_linosyris, linosyris_vulgaris", "large-leaved_aster, aster_macrophyllus", "new_england_aster, aster_novae-angliae", "michaelmas_daisy, new_york_aster, aster_novi-belgii", "upland_white_aster, aster_ptarmicoides", "short's_aster, aster_shortii", "sea_aster, sea_starwort, aster_tripolium", "prairie_aster, aster_turbinellis", "annual_salt-marsh_aster", "aromatic_aster", "arrow_leaved_aster", "azure_aster", "bog_aster", "crooked-stemmed_aster", "eastern_silvery_aster", "flat-topped_white_aster", "late_purple_aster", "panicled_aster", "perennial_salt_marsh_aster", "purple-stemmed_aster", "rough-leaved_aster", "rush_aster", "schreiber's_aster", "small_white_aster", "smooth_aster", "southern_aster", "starved_aster, calico_aster", "tradescant's_aster", "wavy-leaved_aster", "western_silvery_aster", "willow_aster", "ayapana, ayapana_triplinervis, eupatorium_aya-pana", "mule_fat, baccharis_viminea", "balsamroot", "daisy", "common_daisy, english_daisy, bellis_perennis", "bur_marigold, burr_marigold, beggar-ticks, beggar's-ticks, sticktight", "spanish_needles, bidens_bipinnata", "tickseed_sunflower, bidens_coronata, bidens_trichosperma", "european_beggar-ticks, trifid_beggar-ticks, trifid_bur_marigold, bidens_tripartita", "slender_knapweed", "false_chamomile", "swan_river_daisy, brachycome_iberidifolia", "woodland_oxeye, buphthalmum_salicifolium", "indian_plantain", "calendula", "common_marigold, pot_marigold, ruddles, scotch_marigold, calendula_officinalis", "china_aster, callistephus_chinensis", "thistle", "welted_thistle, carduus_crispus", "musk_thistle, nodding_thistle, carduus_nutans", "carline_thistle", "stemless_carline_thistle, carlina_acaulis", "common_carline_thistle, carlina_vulgaris", "safflower, false_saffron, carthamus_tinctorius", "safflower_seed", "catananche", "blue_succory, cupid's_dart, catananche_caerulea", "centaury", "dusty_miller, centaurea_cineraria, centaurea_gymnocarpa", "cornflower, bachelor's_button, bluebottle, centaurea_cyanus", "star-thistle, caltrop, centauria_calcitrapa", "knapweed", "sweet_sultan, centaurea_imperialis", "great_knapweed, greater_knapweed, centaurea_scabiosa", "barnaby's_thistle, yellow_star-thistle, centaurea_solstitialis", "chamomile, camomile, chamaemelum_nobilis, anthemis_nobilis", "chaenactis", "chrysanthemum", "corn_marigold, field_marigold, chrysanthemum_segetum", "crown_daisy, chrysanthemum_coronarium", "chop-suey_greens, tong_ho, shun_giku, chrysanthemum_coronarium_spatiosum", "golden_aster", "maryland_golden_aster, chrysopsis_mariana", "goldenbush", "rabbit_brush, rabbit_bush, chrysothamnus_nauseosus", "chicory, succory, chicory_plant, cichorium_intybus", "endive, witloof, cichorium_endivia", "chicory, chicory_root", "plume_thistle, plumed_thistle", "canada_thistle, creeping_thistle, cirsium_arvense", "field_thistle, cirsium_discolor", "woolly_thistle, cirsium_flodmanii", "european_woolly_thistle, cirsium_eriophorum", "melancholy_thistle, cirsium_heterophylum, cirsium_helenioides", "brook_thistle, cirsium_rivulare", "bull_thistle, boar_thistle, spear_thistle, cirsium_vulgare, cirsium_lanceolatum", "blessed_thistle, sweet_sultan, cnicus_benedictus", "mistflower, mist-flower, ageratum, conoclinium_coelestinum, eupatorium_coelestinum", "horseweed, canadian_fleabane, fleabane, conyza_canadensis, erigeron_canadensis", "coreopsis, tickseed, tickweed, tick-weed", "giant_coreopsis, coreopsis_gigantea", "sea_dahlia, coreopsis_maritima", "calliopsis, coreopsis_tinctoria", "cosmos, cosmea", "brass_buttons, cotula_coronopifolia", "billy_buttons", "hawk's-beard, hawk's-beards", "artichoke, globe_artichoke, artichoke_plant, cynara_scolymus", "cardoon, cynara_cardunculus", "dahlia, dahlia_pinnata", "german_ivy, delairea_odorata, senecio_milkanioides", "florist's_chrysanthemum, florists'_chrysanthemum, mum, dendranthema_grandifloruom, chrysanthemum_morifolium", "cape_marigold, sun_marigold, star_of_the_veldt", "leopard's-bane, leopardbane", "coneflower", "globe_thistle", "elephant's-foot", "tassel_flower, emilia_sagitta", "brittlebush, brittle_bush, incienso, encelia_farinosa", "sunray, enceliopsis_nudicaulis", "engelmannia", "fireweed, erechtites_hieracifolia", "fleabane", "blue_fleabane, erigeron_acer", "daisy_fleabane, erigeron_annuus", "orange_daisy, orange_fleabane, erigeron_aurantiacus", "spreading_fleabane, erigeron_divergens", "seaside_daisy, beach_aster, erigeron_glaucous", "philadelphia_fleabane, erigeron_philadelphicus", "robin's_plantain, erigeron_pulchellus", "showy_daisy, erigeron_speciosus", "woolly_sunflower", "golden_yarrow, eriophyllum_lanatum", "dog_fennel, eupatorium_capillifolium", "joe-pye_weed, spotted_joe-pye_weed, eupatorium_maculatum", "boneset, agueweed, thoroughwort, eupatorium_perfoliatum", "joe-pye_weed, purple_boneset, trumpet_weed, marsh_milkweed, eupatorium_purpureum", "blue_daisy, blue_marguerite, felicia_amelloides", "kingfisher_daisy, felicia_bergeriana", "cotton_rose, cudweed, filago", "herba_impia, filago_germanica", "gaillardia", "gazania", "treasure_flower, gazania_rigens", "african_daisy", "barberton_daisy, transvaal_daisy, gerbera_jamesonii", "desert_sunflower, gerea_canescens", "cudweed", "chafeweed, wood_cudweed, gnaphalium_sylvaticum", "gumweed, gum_plant, tarweed, rosinweed", "grindelia_robusta", "curlycup_gumweed, grindelia_squarrosa", "little-head_snakeweed, gutierrezia_microcephala", "rabbitweed, rabbit-weed, snakeweed, broom_snakeweed, broom_snakeroot, turpentine_weed, gutierrezia_sarothrae", "broomweed, broom-weed, gutierrezia_texana", "velvet_plant, purple_velvet_plant, royal_velvet_plant, gynura_aurantiaca", "goldenbush", "camphor_daisy, haplopappus_phyllocephalus", "yellow_spiny_daisy, haplopappus_spinulosus", "hoary_golden_bush, hazardia_cana", "sneezeweed", "orange_sneezeweed, owlclaws, helenium_hoopesii", "rosilla, helenium_puberulum", "sunflower, helianthus", "swamp_sunflower, helianthus_angustifolius", "common_sunflower, mirasol, helianthus_annuus", "giant_sunflower, tall_sunflower, indian_potato, helianthus_giganteus", "showy_sunflower, helianthus_laetiflorus", "maximilian's_sunflower, helianthus_maximilianii", "prairie_sunflower, helianthus_petiolaris", "jerusalem_artichoke, girasol, jerusalem_artichoke_sunflower, helianthus_tuberosus", "jerusalem_artichoke", "strawflower, golden_everlasting, yellow_paper_daisy, helichrysum_bracteatum", "heliopsis, oxeye", "strawflower", "hairy_golden_aster, prairie_golden_aster, heterotheca_villosa, chrysopsis_villosa", "hawkweed", "rattlesnake_weed, hieracium_venosum", "alpine_coltsfoot, homogyne_alpina, tussilago_alpina", "alpine_gold, alpine_hulsea, hulsea_algida", "dwarf_hulsea, hulsea_nana", "cat's-ear, california_dandelion, capeweed, gosmore, hypochaeris_radicata", "inula", "marsh_elder, iva", "burweed_marsh_elder, false_ragweed, iva_xanthifolia", "krigia", "dwarf_dandelion, krigia_dandelion, krigia_bulbosa", "garden_lettuce, common_lettuce, lactuca_sativa", "cos_lettuce, romaine_lettuce, lactuca_sativa_longifolia", "leaf_lettuce, lactuca_sativa_crispa", "celtuce, stem_lettuce, lactuca_sativa_asparagina", "prickly_lettuce, horse_thistle, lactuca_serriola, lactuca_scariola", "goldfields, lasthenia_chrysostoma", "tidytips, tidy_tips, layia_platyglossa", "hawkbit", "fall_dandelion, arnica_bud, leontodon_autumnalis", "edelweiss, leontopodium_alpinum", "oxeye_daisy, ox-eyed_daisy, marguerite, moon_daisy, white_daisy, leucanthemum_vulgare, chrysanthemum_leucanthemum", "oxeye_daisy, leucanthemum_maximum, chrysanthemum_maximum", "shasta_daisy, leucanthemum_superbum, chrysanthemum_maximum_maximum", "pyrenees_daisy, leucanthemum_lacustre, chrysanthemum_lacustre", "north_island_edelweiss, leucogenes_leontopodium", "blazing_star, button_snakeroot, gayfeather, gay-feather, snakeroot", "dotted_gayfeather, liatris_punctata", "dense_blazing_star, liatris_pycnostachya", "texas_star, lindheimera_texana", "african_daisy, yellow_ageratum, lonas_inodora, lonas_annua", "tahoka_daisy, tansy_leaf_aster, machaeranthera_tanacetifolia", "sticky_aster, machaeranthera_bigelovii", "mojave_aster, machaeranthera_tortifoloia", "tarweed", "sweet_false_chamomile, wild_chamomile, german_chamomile, matricaria_recutita, matricaria_chamomilla", "pineapple_weed, rayless_chamomile, matricaria_matricarioides", "climbing_hempweed, climbing_boneset, wild_climbing_hempweed, climbing_hemp-vine, mikania_scandens", "mutisia", "rattlesnake_root", "white_lettuce, cankerweed, nabalus_alba, prenanthes_alba", "daisybush, daisy-bush, daisy_bush", "new_zealand_daisybush, olearia_haastii", "cotton_thistle, woolly_thistle, scotch_thistle, onopordum_acanthium, onopordon_acanthium", "othonna", "cascade_everlasting, ozothamnus_secundiflorus, helichrysum_secundiflorum", "butterweed", "american_feverfew, wild_quinine, prairie_dock, parthenium_integrifolium", "cineraria, pericallis_cruenta, senecio_cruentus", "florest's_cineraria, pericallis_hybrida", "butterbur, bog_rhubarb, petasites_hybridus, petasites_vulgaris", "winter_heliotrope, sweet_coltsfoot, petasites_fragrans", "sweet_coltsfoot, petasites_sagitattus", "oxtongue, bristly_oxtongue, bitterweed, bugloss, picris_echioides", "hawkweed", "mouse-ear_hawkweed, pilosella_officinarum, hieracium_pilocella", "stevia", "rattlesnake_root, prenanthes_purpurea", "fleabane, feabane_mullet, pulicaria_dysenterica", "sheep_plant, vegetable_sheep, raoulia_lutescens, raoulia_australis", "coneflower", "mexican_hat, ratibida_columnaris", "long-head_coneflower, prairie_coneflower, ratibida_columnifera", "prairie_coneflower, ratibida_tagetes", "swan_river_everlasting, rhodanthe, rhodanthe_manglesii, helipterum_manglesii", "coneflower", "black-eyed_susan, rudbeckia_hirta, rudbeckia_serotina", "cutleaved_coneflower, rudbeckia_laciniata", "golden_glow, double_gold, hortensia, rudbeckia_laciniata_hortensia", "lavender_cotton, santolina_chamaecyparissus", "creeping_zinnia, sanvitalia_procumbens", "golden_thistle", "spanish_oyster_plant, scolymus_hispanicus", "nodding_groundsel, senecio_bigelovii", "dusty_miller, senecio_cineraria, cineraria_maritima", "butterweed, ragwort, senecio_glabellus", "ragwort, tansy_ragwort, ragweed, benweed, senecio_jacobaea", "arrowleaf_groundsel, senecio_triangularis", "black_salsify, viper's_grass, scorzonera, scorzonera_hispanica", "white-topped_aster", "narrow-leaved_white-topped_aster", "silver_sage, silver_sagebrush, grey_sage, gray_sage, seriphidium_canum, artemisia_cana", "sea_wormwood, seriphidium_maritimum, artemisia_maritima", "sawwort, serratula_tinctoria", "rosinweed, silphium_laciniatum", "milk_thistle, lady's_thistle, our_lady's_mild_thistle, holy_thistle, blessed_thistle, silybum_marianum", "goldenrod", "silverrod, solidago_bicolor", "meadow_goldenrod, canadian_goldenrod, solidago_canadensis", "missouri_goldenrod, solidago_missouriensis", "alpine_goldenrod, solidago_multiradiata", "grey_goldenrod, gray_goldenrod, solidago_nemoralis", "blue_mountain_tea, sweet_goldenrod, solidago_odora", "dyer's_weed, solidago_rugosa", "seaside_goldenrod, beach_goldenrod, solidago_sempervirens", "narrow_goldenrod, solidago_spathulata", "boott's_goldenrod", "elliott's_goldenrod", "ohio_goldenrod", "rough-stemmed_goldenrod", "showy_goldenrod", "tall_goldenrod", "zigzag_goldenrod, broad_leaved_goldenrod", "sow_thistle, milk_thistle", "milkweed, sonchus_oleraceus", "stevia", "stokes'_aster, cornflower_aster, stokesia_laevis", "marigold", "african_marigold, big_marigold, aztec_marigold, tagetes_erecta", "french_marigold, tagetes_patula", "painted_daisy, pyrethrum, tanacetum_coccineum, chrysanthemum_coccineum", "pyrethrum, dalmatian_pyrethrum, dalmatia_pyrethrum, tanacetum_cinerariifolium, chrysanthemum_cinerariifolium", "northern_dune_tansy, tanacetum_douglasii", "feverfew, tanacetum_parthenium, chrysanthemum_parthenium", "dusty_miller, silver-lace, silver_lace, tanacetum_ptarmiciflorum, chrysanthemum_ptarmiciflorum", "tansy, golden_buttons, scented_fern, tanacetum_vulgare", "dandelion, blowball", "common_dandelion, taraxacum_ruderalia, taraxacum_officinale", "dandelion_green", "russian_dandelion, kok-saghyz, kok-sagyz, taraxacum_kok-saghyz", "stemless_hymenoxys, tetraneuris_acaulis, hymenoxys_acaulis", "mexican_sunflower, tithonia", "easter_daisy, stemless_daisy, townsendia_exscapa", "yellow_salsify, tragopogon_dubius", "salsify, oyster_plant, vegetable_oyster, tragopogon_porrifolius", "meadow_salsify, goatsbeard, shepherd's_clock, tragopogon_pratensis", "scentless_camomile, scentless_false_camomile, scentless_mayweed, scentless_hayweed, corn_mayweed, tripleurospermum_inodorum, matricaria_inodorum", "turfing_daisy, tripleurospermum_tchihatchewii, matricaria_tchihatchewii", "coltsfoot, tussilago_farfara", "ursinia", "crownbeard, crown-beard, crown_beard", "wingstem, golden_ironweed, yellow_ironweed, golden_honey_plant, verbesina_alternifolia, actinomeris_alternifolia", "cowpen_daisy, golden_crownbeard, golden_crown_beard, butter_daisy, verbesina_encelioides, ximenesia_encelioides", "gravelweed, verbesina_helianthoides", "virginia_crownbeard, frostweed, frost-weed, verbesina_virginica", "ironweed, vernonia", "mule's_ears, wyethia_amplexicaulis", "white-rayed_mule's_ears, wyethia_helianthoides", "cocklebur, cockle-bur, cockleburr, cockle-burr", "xeranthemum", "immortelle, xeranthemum_annuum", "zinnia, old_maid, old_maid_flower", "white_zinnia, zinnia_acerosa", "little_golden_zinnia, zinnia_grandiflora", "blazing_star, mentzelia_livicaulis, mentzelia_laevicaulis", "bartonia, mentzelia_lindleyi", "achene", "samara, key_fruit, key", "campanula, bellflower", "creeping_bellflower, campanula_rapunculoides", "canterbury_bell, cup_and_saucer, campanula_medium", "tall_bellflower, campanula_americana", "marsh_bellflower, campanula_aparinoides", "clustered_bellflower, campanula_glomerata", "peach_bells, peach_bell, willow_bell, campanula_persicifolia", "chimney_plant, chimney_bellflower, campanula_pyramidalis", "rampion, rampion_bellflower, campanula_rapunculus", "tussock_bellflower, spreading_bellflower, campanula_carpatica", "orchid, orchidaceous_plant", "orchis", "male_orchis, early_purple_orchid, orchis_mascula", "butterfly_orchid, butterfly_orchis, orchis_papilionaceae", "showy_orchis, purple_orchis, purple-hooded_orchis, orchis_spectabilis", "aerides", "angrecum", "jewel_orchid", "puttyroot, adam-and-eve, aplectrum_hyemale", "arethusa", "bog_rose, wild_pink, dragon's_mouth, arethusa_bulbosa", "bletia", "bletilla_striata, bletia_striata", "brassavola", "spider_orchid, brassia_lawrenceana", "spider_orchid, brassia_verrucosa", "caladenia", "calanthe", "grass_pink, calopogon_pulchellum, calopogon_tuberosum", "calypso, fairy-slipper, calypso_bulbosa", "cattleya", "helleborine", "red_helleborine, cephalanthera_rubra", "spreading_pogonia, funnel-crest_rosebud_orchid, cleistes_divaricata, pogonia_divaricata", "rosebud_orchid, cleistes_rosea, pogonia_rosea", "satyr_orchid, coeloglossum_bracteatum", "frog_orchid, coeloglossum_viride", "coelogyne", "coral_root", "spotted_coral_root, corallorhiza_maculata", "striped_coral_root, corallorhiza_striata", "early_coral_root, pale_coral_root, corallorhiza_trifida", "swan_orchid, swanflower, swan-flower, swanneck, swan-neck", "cymbid, cymbidium", "cypripedia", "lady's_slipper, lady-slipper, ladies'_slipper, slipper_orchid", "moccasin_flower, nerveroot, cypripedium_acaule", "common_lady's-slipper, showy_lady's-slipper, showy_lady_slipper, cypripedium_reginae, cypripedium_album", "ram's-head, ram's-head_lady's_slipper, cypripedium_arietinum", "yellow_lady's_slipper, yellow_lady-slipper, cypripedium_calceolus, cypripedium_parviflorum", "large_yellow_lady's_slipper, cypripedium_calceolus_pubescens", "california_lady's_slipper, cypripedium_californicum", "clustered_lady's_slipper, cypripedium_fasciculatum", "mountain_lady's_slipper, cypripedium_montanum", "marsh_orchid", "common_spotted_orchid, dactylorhiza_fuchsii, dactylorhiza_maculata_fuchsii", "dendrobium", "disa", "phantom_orchid, snow_orchid, eburophyton_austinae", "tulip_orchid, encyclia_citrina, cattleya_citrina", "butterfly_orchid, encyclia_tampensis, epidendrum_tampense", "butterfly_orchid, butterfly_orchis, epidendrum_venosum, encyclia_venosa", "epidendron", "helleborine", "epipactis_helleborine", "stream_orchid, chatterbox, giant_helleborine, epipactis_gigantea", "tongueflower, tongue-flower", "rattlesnake_plantain, helleborine", "fragrant_orchid, gymnadenia_conopsea", "short-spurred_fragrant_orchid, gymnadenia_odoratissima", "fringed_orchis, fringed_orchid", "frog_orchid", "rein_orchid, rein_orchis", "bog_rein_orchid, bog_candles, habenaria_dilatata", "white_fringed_orchis, white_fringed_orchid, habenaria_albiflora", "elegant_habenaria, habenaria_elegans", "purple-fringed_orchid, purple-fringed_orchis, habenaria_fimbriata", "coastal_rein_orchid, habenaria_greenei", "hooker's_orchid, habenaria_hookeri", "ragged_orchid, ragged_orchis, ragged-fringed_orchid, green_fringed_orchis, habenaria_lacera", "prairie_orchid, prairie_white-fringed_orchis, habenaria_leucophaea", "snowy_orchid, habenaria_nivea", "round-leaved_rein_orchid, habenaria_orbiculata", "purple_fringeless_orchid, purple_fringeless_orchis, habenaria_peramoena", "purple-fringed_orchid, purple-fringed_orchis, habenaria_psycodes", "alaska_rein_orchid, habenaria_unalascensis", "crested_coral_root, hexalectris_spicata", "texas_purple_spike, hexalectris_warnockii", "lizard_orchid, himantoglossum_hircinum", "laelia", "liparis", "twayblade", "fen_orchid, fen_orchis, liparis_loeselii", "broad-leaved_twayblade, listera_convallarioides", "lesser_twayblade, listera_cordata", "twayblade, listera_ovata", "green_adder's_mouth, malaxis-unifolia, malaxis_ophioglossoides", "masdevallia", "maxillaria", "pansy_orchid", "odontoglossum", "oncidium, dancing_lady_orchid, butterfly_plant, butterfly_orchid", "bee_orchid, ophrys_apifera", "fly_orchid, ophrys_insectifera, ophrys_muscifera", "spider_orchid", "early_spider_orchid, ophrys_sphegodes", "venus'_slipper, venus's_slipper, venus's_shoe", "phaius", "moth_orchid, moth_plant", "butterfly_plant, phalaenopsis_amabilis", "rattlesnake_orchid", "lesser_butterfly_orchid, platanthera_bifolia, habenaria_bifolia", "greater_butterfly_orchid, platanthera_chlorantha, habenaria_chlorantha", "prairie_white-fringed_orchid, platanthera_leucophea", "tangle_orchid", "indian_crocus", "pleurothallis", "pogonia", "butterfly_orchid", "psychopsis_krameriana, oncidium_papilio_kramerianum", "psychopsis_papilio, oncidium_papilio", "helmet_orchid, greenhood", "foxtail_orchid", "orange-blossom_orchid, sarcochilus_falcatus", "sobralia", "ladies'_tresses, lady's_tresses", "screw_augur, spiranthes_cernua", "hooded_ladies'_tresses, spiranthes_romanzoffiana", "western_ladies'_tresses, spiranthes_porrifolia", "european_ladies'_tresses, spiranthes_spiralis", "stanhopea", "stelis", "fly_orchid", "vanda", "blue_orchid, vanda_caerulea", "vanilla", "vanilla_orchid, vanilla_planifolia", "yam, yam_plant", "yam", "white_yam, water_yam, dioscorea_alata", "cinnamon_vine, chinese_yam, dioscorea_batata", "elephant's-foot, tortoise_plant, hottentot_bread_vine, hottentot's_bread_vine, dioscorea_elephantipes", "wild_yam, dioscorea_paniculata", "cush-cush, dioscorea_trifida", "black_bryony, black_bindweed, tamus_communis", "primrose, primula", "english_primrose, primula_vulgaris", "cowslip, paigle, primula_veris", "oxlip, paigle, primula_elatior", "chinese_primrose, primula_sinensis", "polyanthus, primula_polyantha", "pimpernel", "scarlet_pimpernel, red_pimpernel, poor_man's_weatherglass, anagallis_arvensis", "bog_pimpernel, anagallis_tenella", "chaffweed, bastard_pimpernel, false_pimpernel", "cyclamen, cyclamen_purpurascens", "sowbread, cyclamen_hederifolium, cyclamen_neopolitanum", "sea_milkwort, sea_trifoly, black_saltwort, glaux_maritima", "featherfoil, feather-foil", "water_gillyflower, american_featherfoil, hottonia_inflata", "water_violet, hottonia_palustris", "loosestrife", "gooseneck_loosestrife, lysimachia_clethroides_duby", "yellow_pimpernel, lysimachia_nemorum", "fringed_loosestrife, lysimachia_ciliatum", "moneywort, creeping_jenny, creeping_charlie, lysimachia_nummularia", "swamp_candles, lysimachia_terrestris", "whorled_loosestrife, lysimachia_quadrifolia", "water_pimpernel", "brookweed, samolus_valerandii", "brookweed, samolus_parviflorus, samolus_floribundus", "coralberry, spiceberry, ardisia_crenata", "marlberry, ardisia_escallonoides, ardisia_paniculata", "plumbago", "leadwort, plumbago_europaea", "thrift", "sea_lavender, marsh_rosemary, statice", "barbasco, joewood, jacquinia_keyensis", "gramineous_plant, graminaceous_plant", "grass", "midgrass", "shortgrass, short-grass", "sword_grass", "tallgrass, tall-grass", "herbage, pasturage", "goat_grass, aegilops_triuncalis", "wheatgrass, wheat-grass", "crested_wheatgrass, crested_wheat_grass, fairway_crested_wheat_grass, agropyron_cristatum", "bearded_wheatgrass, agropyron_subsecundum", "western_wheatgrass, bluestem_wheatgrass, agropyron_smithii", "intermediate_wheatgrass, agropyron_intermedium, elymus_hispidus", "slender_wheatgrass, agropyron_trachycaulum, agropyron_pauciflorum, elymus_trachycaulos", "velvet_bent, velvet_bent_grass, brown_bent, rhode_island_bent, dog_bent, agrostis_canina", "cloud_grass, agrostis_nebulosa", "meadow_foxtail, alopecurus_pratensis", "foxtail, foxtail_grass", "broom_grass", "broom_sedge, andropogon_virginicus", "tall_oat_grass, tall_meadow_grass, evergreen_grass, false_oat, french_rye, arrhenatherum_elatius", "toetoe, toitoi, arundo_conspicua, chionochloa_conspicua", "oat", "cereal_oat, avena_sativa", "wild_oat, wild_oat_grass, avena_fatua", "slender_wild_oat, avena_barbata", "wild_red_oat, animated_oat, avene_sterilis", "brome, bromegrass", "chess, cheat, bromus_secalinus", "field_brome, bromus_arvensis", "grama, grama_grass, gramma, gramma_grass", "black_grama, bouteloua_eriopoda", "buffalo_grass, buchloe_dactyloides", "reed_grass", "feather_reed_grass, feathertop, calamagrostis_acutiflora", "australian_reed_grass, calamagrostic_quadriseta", "burgrass, bur_grass", "buffel_grass, cenchrus_ciliaris, pennisetum_cenchroides", "rhodes_grass, chloris_gayana", "pampas_grass, cortaderia_selloana", "giant_star_grass, cynodon_plectostachyum", "orchard_grass, cocksfoot, cockspur, dactylis_glomerata", "egyptian_grass, crowfoot_grass, dactyloctenium_aegypticum", "crabgrass, crab_grass, finger_grass", "smooth_crabgrass, digitaria_ischaemum", "large_crabgrass, hairy_finger_grass, digitaria_sanguinalis", "barnyard_grass, barn_grass, barn_millet, echinochloa_crusgalli", "japanese_millet, billion-dollar_grass, japanese_barnyard_millet, sanwa_millet, echinochloa_frumentacea", "yardgrass, yard_grass, wire_grass, goose_grass, eleusine_indica", "finger_millet, ragi, ragee, african_millet, coracan, corakan, kurakkan, eleusine_coracana", "lyme_grass", "wild_rye", "giant_ryegrass, elymus_condensatus, leymus_condensatus", "sea_lyme_grass, european_dune_grass, elymus_arenarius, leymus_arenaria", "canada_wild_rye, elymus_canadensis", "teff, teff_grass, eragrostis_tef, eragrostic_abyssinica", "weeping_love_grass, african_love_grass, eragrostis_curvula", "plume_grass", "ravenna_grass, wool_grass, erianthus_ravennae", "fescue, fescue_grass, meadow_fescue, festuca_elatior", "reed_meadow_grass, glyceria_grandis", "velvet_grass, yorkshire_fog, holcus_lanatus", "creeping_soft_grass, holcus_mollis", "barleycorn", "barley_grass, wall_barley, hordeum_murinum", "little_barley, hordeum_pusillum", "rye_grass, ryegrass", "perennial_ryegrass, english_ryegrass, lolium_perenne", "italian_ryegrass, italian_rye, lolium_multiflorum", "darnel, tare, bearded_darnel, cheat, lolium_temulentum", "nimblewill, nimble_will, muhlenbergia_schreberi", "cultivated_rice, oryza_sativa", "ricegrass, rice_grass", "smilo, smilo_grass, oryzopsis_miliacea", "switch_grass, panicum_virgatum", "broomcorn_millet, hog_millet, panicum_miliaceum", "goose_grass, texas_millet, panicum_texanum", "dallisgrass, dallis_grass, paspalum, paspalum_dilatatum", "bahia_grass, paspalum_notatum", "knotgrass, paspalum_distichum", "fountain_grass, pennisetum_ruppelii, pennisetum_setaceum", "reed_canary_grass, gardener's_garters, lady's_laces, ribbon_grass, phalaris_arundinacea", "canary_grass, birdseed_grass, phalaris_canariensis", "timothy, herd's_grass, phleum_pratense", "bluegrass, blue_grass", "meadowgrass, meadow_grass", "wood_meadowgrass, poa_nemoralis, agrostis_alba", "noble_cane", "munj, munja, saccharum_bengalense, saccharum_munja", "broom_beard_grass, prairie_grass, wire_grass, andropogon_scoparius, schizachyrium_scoparium", "bluestem, blue_stem, andropogon_furcatus, andropogon_gerardii", "rye, secale_cereale", "bristlegrass, bristle_grass", "giant_foxtail", "yellow_bristlegrass, yellow_bristle_grass, yellow_foxtail, glaucous_bristlegrass, setaria_glauca", "green_bristlegrass, green_foxtail, rough_bristlegrass, bottle-grass, bottle_grass, setaria_viridis", "siberian_millet, setaria_italica_rubrofructa", "german_millet, golden_wonder_millet, setaria_italica_stramineofructa", "millet", "rattan, rattan_cane", "malacca", "reed", "sorghum", "grain_sorghum", "durra, doura, dourah, egyptian_corn, indian_millet, guinea_corn", "feterita, federita, sorghum_vulgare_caudatum", "hegari", "kaoliang", "milo, milo_maize", "shallu, sorghum_vulgare_rosburghii", "broomcorn, sorghum_vulgare_technicum", "cordgrass, cord_grass", "salt_reed_grass, spartina_cynosuroides", "prairie_cordgrass, freshwater_cordgrass, slough_grass, spartina_pectinmata", "smut_grass, blackseed, carpet_grass, sporobolus_poiretii", "sand_dropseed, sporobolus_cryptandrus", "rush_grass, rush-grass", "st._augustine_grass, stenotaphrum_secundatum, buffalo_grass", "grain", "cereal, cereal_grass", "wheat", "wheat_berry", "durum, durum_wheat, hard_wheat, triticum_durum, triticum_turgidum, macaroni_wheat", "spelt, triticum_spelta, triticum_aestivum_spelta", "emmer, starch_wheat, two-grain_spelt, triticum_dicoccum", "wild_wheat, wild_emmer, triticum_dicoccum_dicoccoides", "corn, maize, indian_corn, zea_mays", "mealie", "corn", "dent_corn, zea_mays_indentata", "flint_corn, flint_maize, yankee_corn, zea_mays_indurata", "popcorn, zea_mays_everta", "zoysia", "manila_grass, japanese_carpet_grass, zoysia_matrella", "korean_lawn_grass, japanese_lawn_grass, zoysia_japonica", "bamboo", "common_bamboo, bambusa_vulgaris", "giant_bamboo, kyo-chiku, dendrocalamus_giganteus", "umbrella_plant, umbrella_sedge, cyperus_alternifolius", "chufa, yellow_nutgrass, earth_almond, ground_almond, rush_nut, cyperus_esculentus", "galingale, galangal, cyperus_longus", "nutgrass, nut_grass, nutsedge, nut_sedge, cyperus_rotundus", "sand_sedge, sand_reed, carex_arenaria", "cypress_sedge, carex_pseudocyperus", "cotton_grass, cotton_rush", "common_cotton_grass, eriophorum_angustifolium", "hardstem_bulrush, hardstemmed_bulrush, scirpus_acutus", "wool_grass, scirpus_cyperinus", "spike_rush", "water_chestnut, chinese_water_chestnut, eleocharis_dulcis", "needle_spike_rush, needle_rush, slender_spike_rush, hair_grass, eleocharis_acicularis", "creeping_spike_rush, eleocharis_palustris", "pandanus, screw_pine", "textile_screw_pine, lauhala, pandanus_tectorius", "cattail", "cat's-tail, bullrush, bulrush, nailrod, reed_mace, reedmace, typha_latifolia", "bur_reed", "grain, caryopsis", "kernel", "rye", "gourd, gourd_vine", "gourd", "pumpkin, pumpkin_vine, autumn_pumpkin, cucurbita_pepo", "squash, squash_vine", "summer_squash, summer_squash_vine, cucurbita_pepo_melopepo", "yellow_squash", "marrow, marrow_squash, vegetable_marrow", "zucchini, courgette", "cocozelle, italian_vegetable_marrow", "cymling, pattypan_squash", "spaghetti_squash", "winter_squash, winter_squash_plant", "acorn_squash", "hubbard_squash, cucurbita_maxima", "turban_squash, cucurbita_maxima_turbaniformis", "buttercup_squash", "butternut_squash, cucurbita_maxima", "winter_crookneck, winter_crookneck_squash, cucurbita_moschata", "cushaw, cucurbita_mixta, cucurbita_argyrosperma", "prairie_gourd, prairie_gourd_vine, missouri_gourd, wild_pumpkin, buffalo_gourd, calabazilla, cucurbita_foetidissima", "prairie_gourd", "bryony, briony", "white_bryony, devil's_turnip, bryonia_alba", "sweet_melon, muskmelon, sweet_melon_vine, cucumis_melo", "cantaloupe, cantaloup, cantaloupe_vine, cantaloup_vine, cucumis_melo_cantalupensis", "winter_melon, persian_melon, honeydew_melon, winter_melon_vine, cucumis_melo_inodorus", "net_melon, netted_melon, nutmeg_melon, cucumis_melo_reticulatus", "cucumber, cucumber_vine, cucumis_sativus", "squirting_cucumber, exploding_cucumber, touch-me-not, ecballium_elaterium", "bottle_gourd, calabash, lagenaria_siceraria", "luffa, dishcloth_gourd, sponge_gourd, rag_gourd, strainer_vine", "loofah, vegetable_sponge, luffa_cylindrica", "angled_loofah, sing-kwa, luffa_acutangula", "loofa, loofah, luffa, loufah_sponge", "balsam_apple, momordica_balsamina", "balsam_pear, momordica_charantia", "lobelia", "water_lobelia, lobelia_dortmanna", "mallow", "musk_mallow, mus_rose, malva_moschata", "common_mallow, malva_neglecta", "okra, gumbo, okra_plant, lady's-finger, abelmoschus_esculentus, hibiscus_esculentus", "okra", "abelmosk, musk_mallow, abelmoschus_moschatus, hibiscus_moschatus", "flowering_maple", "velvetleaf, velvet-leaf, velvetweed, indian_mallow, butter-print, china_jute, abutilon_theophrasti", "hollyhock", "rose_mallow, alcea_rosea, althea_rosea", "althea, althaea, hollyhock", "marsh_mallow, white_mallow, althea_officinalis", "poppy_mallow", "fringed_poppy_mallow, callirhoe_digitata", "purple_poppy_mallow, callirhoe_involucrata", "clustered_poppy_mallow, callirhoe_triangulata", "sea_island_cotton, tree_cotton, gossypium_barbadense", "levant_cotton, gossypium_herbaceum", "upland_cotton, gossypium_hirsutum", "peruvian_cotton, gossypium_peruvianum", "wild_cotton, arizona_wild_cotton, gossypium_thurberi", "kenaf, kanaf, deccan_hemp, bimli, bimli_hemp, indian_hemp, bombay_hemp, hibiscus_cannabinus", "sorrel_tree, hibiscus_heterophyllus", "rose_mallow, swamp_mallow, common_rose_mallow, swamp_rose_mallow, hibiscus_moscheutos", "cotton_rose, confederate_rose, confederate_rose_mallow, hibiscus_mutabilis", "roselle, rozelle, sorrel, red_sorrel, jamaica_sorrel, hibiscus_sabdariffa", "mahoe, majagua, mahagua, balibago, purau, hibiscus_tiliaceus", "flower-of-an-hour, flowers-of-an-hour, bladder_ketmia, black-eyed_susan, hibiscus_trionum", "lacebark, ribbonwood, houhere, hoheria_populnea", "wild_hollyhock, iliamna_remota, sphaeralcea_remota", "mountain_hollyhock, iliamna_ruvularis, iliamna_acerifolia", "seashore_mallow", "salt_marsh_mallow, kosteletzya_virginica", "chaparral_mallow, malacothamnus_fasciculatus, sphaeralcea_fasciculata", "malope, malope_trifida", "false_mallow", "waxmallow, wax_mallow, sleeping_hibiscus", "glade_mallow, napaea_dioica", "pavonia", "ribbon_tree, ribbonwood, plagianthus_regius, plagianthus_betulinus", "bush_hibiscus, radyera_farragei, hibiscus_farragei", "virginia_mallow, sida_hermaphrodita", "queensland_hemp, jellyleaf, sida_rhombifolia", "indian_mallow, sida_spinosa", "checkerbloom, wild_hollyhock, sidalcea_malviflora", "globe_mallow, false_mallow", "prairie_mallow, red_false_mallow, sphaeralcea_coccinea, malvastrum_coccineum", "tulipwood_tree", "portia_tree, bendy_tree, seaside_mahoe, thespesia_populnea", "red_silk-cotton_tree, simal, bombax_ceiba, bombax_malabarica", "cream-of-tartar_tree, sour_gourd, adansonia_gregorii", "baobab, monkey-bread_tree, adansonia_digitata", "kapok, ceiba_tree, silk-cotton_tree, white_silk-cotton_tree, bombay_ceiba, god_tree, ceiba_pentandra", "durian, durion, durian_tree, durio_zibethinus", "montezuma", "shaving-brush_tree, pseudobombax_ellipticum", "quandong, quandong_tree, brisbane_quandong, silver_quandong_tree, blue_fig, elaeocarpus_grandis", "quandong, blue_fig", "makomako, new_zealand_wine_berry, wineberry, aristotelia_serrata, aristotelia_racemosa", "jamaican_cherry, calabur_tree, calabura, silk_wood, silkwood, muntingia_calabura", "breakax, breakaxe, break-axe, sloanea_jamaicensis", "sterculia", "panama_tree, sterculia_apetala", "kalumpang, java_olives, sterculia_foetida", "bottle-tree, bottle_tree", "flame_tree, flame_durrajong, brachychiton_acerifolius, sterculia_acerifolia", "flame_tree, broad-leaved_bottletree, brachychiton_australis", "kurrajong, currajong, brachychiton_populneus", "queensland_bottletree, narrow-leaved_bottletree, brachychiton_rupestris, sterculia_rupestris", "kola, kola_nut, kola_nut_tree, goora_nut, cola_acuminata", "kola_nut, cola_nut", "chinese_parasol_tree, chinese_parasol, japanese_varnish_tree, phoenix_tree, firmiana_simplex", "flannelbush, flannel_bush, california_beauty", "screw_tree", "nut-leaved_screw_tree, helicteres_isora", "red_beech, brown_oak, booyong, crow's_foot, stave_wood, silky_elm, heritiera_trifoliolata, terrietia_trifoliolata", "looking_glass_tree, heritiera_macrophylla", "looking-glass_plant, heritiera_littoralis", "honey_bell, honeybells, hermannia_verticillata, mahernia_verticillata", "mayeng, maple-leaved_bayur, pterospermum_acerifolium", "silver_tree, tarrietia_argyrodendron", "cacao, cacao_tree, chocolate_tree, theobroma_cacao", "obeche, obechi, arere, samba, triplochiton_scleroxcylon", "linden, linden_tree, basswood, lime, lime_tree", "american_basswood, american_lime, tilia_americana", "small-leaved_linden, small-leaved_lime, tilia_cordata", "white_basswood, cottonwood, tilia_heterophylla", "japanese_linden, japanese_lime, tilia_japonica", "silver_lime, silver_linden, tilia_tomentosa", "corchorus", "african_hemp, sparmannia_africana", "herb, herbaceous_plant", "protea", "honeypot, king_protea, protea_cynaroides", "honeyflower, honey-flower, protea_mellifera", "banksia", "honeysuckle, australian_honeysuckle, coast_banksia, banksia_integrifolia", "smoke_bush", "chilean_firebush, chilean_flameflower, embothrium_coccineum", "chilean_nut, chile_nut, chile_hazel, chilean_hazelnut, guevina_heterophylla, guevina_avellana", "grevillea", "red-flowered_silky_oak, grevillea_banksii", "silky_oak, grevillea_robusta", "beefwood, grevillea_striata", "cushion_flower, pincushion_hakea, hakea_laurina", "rewa-rewa, new_zealand_honeysuckle", "honeyflower, honey-flower, mountain_devil, lambertia_formosa", "silver_tree, leucadendron_argenteum", "lomatia", "macadamia, macadamia_tree", "macadamia_integrifolia", "macadamia_nut, macadamia_nut_tree, macadamia_ternifolia", "queensland_nut, macadamia_tetraphylla", "prickly_ash, orites_excelsa", "geebung", "wheel_tree, firewheel_tree, stenocarpus_sinuatus", "scrub_beefwood, beefwood, stenocarpus_salignus", "waratah, telopea_oreades", "waratah, telopea_speciosissima", "casuarina", "she-oak", "beefwood", "australian_pine, casuarina_equisetfolia", "heath", "tree_heath, briar, brier, erica_arborea", "briarroot", "winter_heath, spring_heath, erica_carnea", "bell_heather, heather_bell, fine-leaved_heath, erica_cinerea", "cornish_heath, erica_vagans", "spanish_heath, portuguese_heath, erica_lusitanica", "prince-of-wales'-heath, prince_of_wales_heath, erica_perspicua", "bog_rosemary, moorwort, andromeda_glaucophylla", "marsh_andromeda, common_bog_rosemary, andromeda_polifolia", "madrona, madrono, manzanita, arbutus_menziesii", "strawberry_tree, irish_strawberry, arbutus_unedo", "bearberry", "alpine_bearberry, black_bearberry, arctostaphylos_alpina", "heartleaf_manzanita, arctostaphylos_andersonii", "parry_manzanita, arctostaphylos_manzanita", "spike_heath, bruckenthalia_spiculifolia", "bryanthus", "leatherleaf, chamaedaphne_calyculata", "connemara_heath, st._dabeoc's_heath, daboecia_cantabrica", "trailing_arbutus, mayflower, epigaea_repens", "creeping_snowberry, moxie_plum, maidenhair_berry, gaultheria_hispidula", "salal, shallon, gaultheria_shallon", "huckleberry", "black_huckleberry, gaylussacia_baccata", "dangleberry, dangle-berry, gaylussacia_frondosa", "box_huckleberry, gaylussacia_brachycera", "kalmia", "mountain_laurel, wood_laurel, american_laurel, calico_bush, kalmia_latifolia", "swamp_laurel, bog_laurel, bog_kalmia, kalmia_polifolia", "trapper's_tea, glandular_labrador_tea", "wild_rosemary, marsh_tea, ledum_palustre", "sand_myrtle, leiophyllum_buxifolium", "leucothoe", "dog_laurel, dog_hobble, switch-ivy, leucothoe_fontanesiana, leucothoe_editorum", "sweet_bells, leucothoe_racemosa", "alpine_azalea, mountain_azalea, loiseleuria_procumbens", "staggerbush, stagger_bush, lyonia_mariana", "maleberry, male_berry, privet_andromeda, he-huckleberry, lyonia_ligustrina", "fetterbush, fetter_bush, shiny_lyonia, lyonia_lucida", "false_azalea, fool's_huckleberry, menziesia_ferruginea", "minniebush, minnie_bush, menziesia_pilosa", "sorrel_tree, sourwood, titi, oxydendrum_arboreum", "mountain_heath, phyllodoce_caerulea, bryanthus_taxifolius", "purple_heather, brewer's_mountain_heather, phyllodoce_breweri", "fetterbush, mountain_fetterbush, mountain_andromeda, pieris_floribunda", "rhododendron", "coast_rhododendron, rhododendron_californicum", "rosebay, rhododendron_maxima", "swamp_azalea, swamp_honeysuckle, white_honeysuckle, rhododendron_viscosum", "azalea", "cranberry", "american_cranberry, large_cranberry, vaccinium_macrocarpon", "european_cranberry, small_cranberry, vaccinium_oxycoccus", "blueberry, blueberry_bush", "farkleberry, sparkleberry, vaccinium_arboreum", "low-bush_blueberry, low_blueberry, vaccinium_angustifolium, vaccinium_pennsylvanicum", "rabbiteye_blueberry, rabbit-eye_blueberry, rabbiteye, vaccinium_ashei", "dwarf_bilberry, dwarf_blueberry, vaccinium_caespitosum", "evergreen_blueberry, vaccinium_myrsinites", "evergreen_huckleberry, vaccinium_ovatum", "bilberry, thin-leaved_bilberry, mountain_blue_berry, viccinium_membranaceum", "bilberry, whortleberry, whinberry, blaeberry, viccinium_myrtillus", "bog_bilberry, bog_whortleberry, moor_berry, vaccinium_uliginosum_alpinum", "dryland_blueberry, dryland_berry, vaccinium_pallidum", "grouseberry, grouse-berry, grouse_whortleberry, vaccinium_scoparium", "deerberry, squaw_huckleberry, vaccinium_stamineum", "cowberry, mountain_cranberry, lingonberry, lingenberry, lingberry, foxberry, vaccinium_vitis-idaea", "diapensia", "galax, galaxy, wandflower, beetleweed, coltsfoot, galax_urceolata", "pyxie, pixie, pixy, pyxidanthera_barbulata", "shortia", "oconee_bells, shortia_galacifolia", "australian_heath", "epacris", "common_heath, epacris_impressa", "common_heath, blunt-leaf_heath, epacris_obtusifolia", "port_jackson_heath, epacris_purpurascens", "native_cranberry, groundberry, ground-berry, cranberry_heath, astroloma_humifusum, styphelia_humifusum", "pink_fivecorner, styphelia_triflora", "wintergreen, pyrola", "false_wintergreen, pyrola_americana, pyrola_rotundifolia_americana", "lesser_wintergreen, pyrola_minor", "wild_lily_of_the_valley, shinleaf, pyrola_elliptica", "wild_lily_of_the_valley, pyrola_rotundifolia", "pipsissewa, prince's_pine", "love-in-winter, western_prince's_pine, chimaphila_umbellata, chimaphila_corymbosa", "one-flowered_wintergreen, one-flowered_pyrola, moneses_uniflora, pyrola_uniflora", "indian_pipe, waxflower, monotropa_uniflora", "pinesap, false_beachdrops, monotropa_hypopithys", "beech, beech_tree", "common_beech, european_beech, fagus_sylvatica", "copper_beech, purple_beech, fagus_sylvatica_atropunicea, fagus_purpurea, fagus_sylvatica_purpurea", "american_beech, white_beech, red_beech, fagus_grandifolia, fagus_americana", "weeping_beech, fagus_pendula, fagus_sylvatica_pendula", "japanese_beech", "chestnut, chestnut_tree", "american_chestnut, american_sweet_chestnut, castanea_dentata", "european_chestnut, sweet_chestnut, spanish_chestnut, castanea_sativa", "chinese_chestnut, castanea_mollissima", "japanese_chestnut, castanea_crenata", "allegheny_chinkapin, eastern_chinquapin, chinquapin, dwarf_chestnut, castanea_pumila", "ozark_chinkapin, ozark_chinquapin, chinquapin, castanea_ozarkensis", "oak_chestnut", "giant_chinkapin, golden_chinkapin, chrysolepis_chrysophylla, castanea_chrysophylla, castanopsis_chrysophylla", "dwarf_golden_chinkapin, chrysolepis_sempervirens", "tanbark_oak, lithocarpus_densiflorus", "japanese_oak, lithocarpus_glabra, lithocarpus_glaber", "southern_beech, evergreen_beech", "myrtle_beech, nothofagus_cuninghamii", "coigue, nothofagus_dombeyi", "new_zealand_beech", "silver_beech, nothofagus_menziesii", "roble_beech, nothofagus_obliqua", "rauli_beech, nothofagus_procera", "black_beech, nothofagus_solanderi", "hard_beech, nothofagus_truncata", "acorn", "cupule, acorn_cup", "oak, oak_tree", "live_oak", "coast_live_oak, california_live_oak, quercus_agrifolia", "white_oak", "american_white_oak, quercus_alba", "arizona_white_oak, quercus_arizonica", "swamp_white_oak, swamp_oak, quercus_bicolor", "european_turkey_oak, turkey_oak, quercus_cerris", "canyon_oak, canyon_live_oak, maul_oak, iron_oak, quercus_chrysolepis", "scarlet_oak, quercus_coccinea", "jack_oak, northern_pin_oak, quercus_ellipsoidalis", "red_oak", "southern_red_oak, swamp_red_oak, turkey_oak, quercus_falcata", "oregon_white_oak, oregon_oak, garry_oak, quercus_garryana", "holm_oak, holm_tree, holly-leaved_oak, evergreen_oak, quercus_ilex", "bear_oak, quercus_ilicifolia", "shingle_oak, laurel_oak, quercus_imbricaria", "bluejack_oak, turkey_oak, quercus_incana", "california_black_oak, quercus_kelloggii", "american_turkey_oak, turkey_oak, quercus_laevis", "laurel_oak, pin_oak, quercus_laurifolia", "california_white_oak, valley_oak, valley_white_oak, roble, quercus_lobata", "overcup_oak, quercus_lyrata", "bur_oak, burr_oak, mossy-cup_oak, mossycup_oak, quercus_macrocarpa", "scrub_oak", "blackjack_oak, blackjack, jack_oak, quercus_marilandica", "swamp_chestnut_oak, quercus_michauxii", "japanese_oak, quercus_mongolica, quercus_grosseserrata", "chestnut_oak", "chinquapin_oak, chinkapin_oak, yellow_chestnut_oak, quercus_muehlenbergii", "myrtle_oak, seaside_scrub_oak, quercus_myrtifolia", "water_oak, possum_oak, quercus_nigra", "nuttall_oak, nuttall's_oak, quercus_nuttalli", "durmast, quercus_petraea, quercus_sessiliflora", "basket_oak, cow_oak, quercus_prinus, quercus_montana", "pin_oak, swamp_oak, quercus_palustris", "willow_oak, quercus_phellos", "dwarf_chinkapin_oak, dwarf_chinquapin_oak, dwarf_oak, quercus_prinoides", "common_oak, english_oak, pedunculate_oak, quercus_robur", "northern_red_oak, quercus_rubra, quercus_borealis", "shumard_oak, shumard_red_oak, quercus_shumardii", "post_oak, box_white_oak, brash_oak, iron_oak, quercus_stellata", "cork_oak, quercus_suber", "spanish_oak, quercus_texana", "huckleberry_oak, quercus_vaccinifolia", "chinese_cork_oak, quercus_variabilis", "black_oak, yellow_oak, quercitron, quercitron_oak, quercus_velutina", "southern_live_oak, quercus_virginiana", "interior_live_oak, quercus_wislizenii, quercus_wizlizenii", "mast", "birch, birch_tree", "yellow_birch, betula_alleghaniensis, betula_leutea", "american_white_birch, paper_birch, paperbark_birch, canoe_birch, betula_cordifolia, betula_papyrifera", "grey_birch, gray_birch, american_grey_birch, american_gray_birch, betula_populifolia", "silver_birch, common_birch, european_white_birch, betula_pendula", "downy_birch, white_birch, betula_pubescens", "black_birch, river_birch, red_birch, betula_nigra", "sweet_birch, cherry_birch, black_birch, betula_lenta", "yukon_white_birch, betula_neoalaskana", "swamp_birch, water_birch, mountain_birch, western_paper_birch, western_birch, betula_fontinalis", "newfoundland_dwarf_birch, american_dwarf_birch, betula_glandulosa", "alder, alder_tree", "common_alder, european_black_alder, alnus_glutinosa, alnus_vulgaris", "grey_alder, gray_alder, alnus_incana", "seaside_alder, alnus_maritima", "white_alder, mountain_alder, alnus_rhombifolia", "red_alder, oregon_alder, alnus_rubra", "speckled_alder, alnus_rugosa", "smooth_alder, hazel_alder, alnus_serrulata", "green_alder, alnus_veridis", "green_alder, alnus_veridis_crispa, alnus_crispa", "hornbeam", "european_hornbeam, carpinus_betulus", "american_hornbeam, carpinus_caroliniana", "hop_hornbeam", "old_world_hop_hornbeam, ostrya_carpinifolia", "eastern_hop_hornbeam, ironwood, ironwood_tree, ostrya_virginiana", "hazelnut, hazel, hazelnut_tree", "american_hazel, corylus_americana", "cobnut, filbert, corylus_avellana, corylus_avellana_grandis", "beaked_hazelnut, corylus_cornuta", "centaury", "rosita, centaurium_calycosum", "lesser_centaury, centaurium_minus", "seaside_centaury", "slender_centaury", "prairie_gentian, tulip_gentian, bluebell, eustoma_grandiflorum", "persian_violet, exacum_affine", "columbo, american_columbo, deer's-ear, deer's-ears, pyramid_plant, american_gentian", "gentian", "gentianella, gentiana_acaulis", "closed_gentian, blind_gentian, bottle_gentian, gentiana_andrewsii", "explorer's_gentian, gentiana_calycosa", "closed_gentian, blind_gentian, gentiana_clausa", "great_yellow_gentian, gentiana_lutea", "marsh_gentian, calathian_violet, gentiana_pneumonanthe", "soapwort_gentian, gentiana_saponaria", "striped_gentian, gentiana_villosa", "agueweed, ague_weed, five-flowered_gentian, stiff_gentian, gentianella_quinquefolia, gentiana_quinquefolia", "felwort, gentianella_amarella", "fringed_gentian", "gentianopsis_crinita, gentiana_crinita", "gentianopsis_detonsa, gentiana_detonsa", "gentianopsid_procera, gentiana_procera", "gentianopsis_thermalis, gentiana_thermalis", "tufted_gentian, gentianopsis_holopetala, gentiana_holopetala", "spurred_gentian", "sabbatia", "toothbrush_tree, mustard_tree, salvadora_persica", "olive_tree", "olive, european_olive_tree, olea_europaea", "olive", "black_maire, olea_cunninghamii", "white_maire, olea_lanceolata", "fringe_tree", "fringe_bush, chionanthus_virginicus", "forestiera", "forsythia", "ash, ash_tree", "white_ash, fraxinus_americana", "swamp_ash, fraxinus_caroliniana", "flowering_ash, fraxinus_cuspidata", "european_ash, common_european_ash, fraxinus_excelsior", "oregon_ash, fraxinus_latifolia, fraxinus_oregona", "black_ash, basket_ash, brown_ash, hoop_ash, fraxinus_nigra", "manna_ash, flowering_ash, fraxinus_ornus", "red_ash, downy_ash, fraxinus_pennsylvanica", "green_ash, fraxinus_pennsylvanica_subintegerrima", "blue_ash, fraxinus_quadrangulata", "mountain_ash, fraxinus_texensis", "pumpkin_ash, fraxinus_tomentosa", "arizona_ash, fraxinus_velutina", "jasmine", "primrose_jasmine, jasminum_mesnyi", "winter_jasmine, jasminum_nudiflorum", "common_jasmine, true_jasmine, jessamine, jasminum_officinale", "privet", "amur_privet, ligustrum_amurense", "japanese_privet, ligustrum_japonicum", "ligustrum_obtusifolium", "common_privet, ligustrum_vulgare", "devilwood, american_olive, osmanthus_americanus", "mock_privet", "lilac", "himalayan_lilac, syringa_emodi", "persian_lilac, syringa_persica", "japanese_tree_lilac, syringa_reticulata, syringa_amurensis_japonica", "japanese_lilac, syringa_villosa", "common_lilac, syringa_vulgaris", "bloodwort", "kangaroo_paw, kangaroo's_paw, kangaroo's-foot, kangaroo-foot_plant, australian_sword_lily, anigozanthus_manglesii", "virginian_witch_hazel, hamamelis_virginiana", "vernal_witch_hazel, hamamelis_vernalis", "winter_hazel, flowering_hazel", "fothergilla, witch_alder", "liquidambar", "sweet_gum, sweet_gum_tree, bilsted, red_gum, american_sweet_gum, liquidambar_styraciflua", "iron_tree, iron-tree, ironwood, ironwood_tree", "walnut, walnut_tree", "california_black_walnut, juglans_californica", "butternut, butternut_tree, white_walnut, juglans_cinerea", "black_walnut, black_walnut_tree, black_hickory, juglans_nigra", "english_walnut, english_walnut_tree, circassian_walnut, persian_walnut, juglans_regia", "hickory, hickory_tree", "water_hickory, bitter_pecan, water_bitternut, carya_aquatica", "pignut, pignut_hickory, brown_hickory, black_hickory, carya_glabra", "bitternut, bitternut_hickory, bitter_hickory, bitter_pignut, swamp_hickory, carya_cordiformis", "pecan, pecan_tree, carya_illinoensis, carya_illinoinsis", "big_shellbark, big_shellbark_hickory, big_shagbark, king_nut, king_nut_hickory, carya_laciniosa", "nutmeg_hickory, carya_myristicaeformis, carya_myristiciformis", "shagbark, shagbark_hickory, shellbark, shellbark_hickory, carya_ovata", "mockernut, mockernut_hickory, black_hickory, white-heart_hickory, big-bud_hickory, carya_tomentosa", "wing_nut, wing-nut", "caucasian_walnut, pterocarya_fraxinifolia", "dhawa, dhava", "combretum", "hiccup_nut, hiccough_nut, combretum_bracteosum", "bush_willow, combretum_appiculatum", "bush_willow, combretum_erythrophyllum", "button_tree, button_mangrove, conocarpus_erectus", "white_mangrove, laguncularia_racemosa", "oleaster", "water_milfoil", "anchovy_pear, anchovy_pear_tree, grias_cauliflora", "brazil_nut, brazil-nut_tree, bertholletia_excelsa", "loosestrife", "purple_loosestrife, spiked_loosestrife, lythrum_salicaria", "grass_poly, hyssop_loosestrife, lythrum_hyssopifolia", "crape_myrtle, crepe_myrtle, crepe_flower, lagerstroemia_indica", "queen's_crape_myrtle, pride-of-india, lagerstroemia_speciosa", "myrtaceous_tree", "myrtle", "common_myrtle, myrtus_communis", "bayberry, bay-rum_tree, jamaica_bayberry, wild_cinnamon, pimenta_acris", "allspice, allspice_tree, pimento_tree, pimenta_dioica", "allspice_tree, pimenta_officinalis", "sour_cherry, eugenia_corynantha", "nakedwood, eugenia_dicrana", "surinam_cherry, pitanga, eugenia_uniflora", "rose_apple, rose-apple_tree, jambosa, eugenia_jambos", "feijoa, feijoa_bush", "jaboticaba, jaboticaba_tree, myrciaria_cauliflora", "guava, true_guava, guava_bush, psidium_guajava", "guava, strawberry_guava, yellow_cattley_guava, psidium_littorale", "cattley_guava, purple_strawberry_guava, psidium_cattleianum, psidium_littorale_longipes", "brazilian_guava, psidium_guineense", "gum_tree, gum", "eucalyptus, eucalypt, eucalyptus_tree", "flooded_gum", "mallee", "stringybark", "smoothbark", "red_gum, peppermint, peppermint_gum, eucalyptus_amygdalina", "red_gum, marri, eucalyptus_calophylla", "river_red_gum, river_gum, eucalyptus_camaldulensis, eucalyptus_rostrata", "mountain_swamp_gum, eucalyptus_camphora", "snow_gum, ghost_gum, white_ash, eucalyptus_coriacea, eucalyptus_pauciflora", "alpine_ash, mountain_oak, eucalyptus_delegatensis", "white_mallee, congoo_mallee, eucalyptus_dumosa", "white_stringybark, thin-leaved_stringybark, eucalyptusd_eugenioides", "white_mountain_ash, eucalyptus_fraxinoides", "blue_gum, fever_tree, eucalyptus_globulus", "rose_gum, eucalypt_grandis", "cider_gum, eucalypt_gunnii", "swamp_gum, eucalypt_ovata", "spotted_gum, eucalyptus_maculata", "lemon-scented_gum, eucalyptus_citriodora, eucalyptus_maculata_citriodora", "black_mallee, black_sally, black_gum, eucalytus_stellulata", "forest_red_gum, eucalypt_tereticornis", "mountain_ash, eucalyptus_regnans", "manna_gum, eucalyptus_viminalis", "clove, clove_tree, syzygium_aromaticum, eugenia_aromaticum, eugenia_caryophyllatum", "clove", "tupelo, tupelo_tree", "water_gum, nyssa_aquatica", "sour_gum, black_gum, pepperidge, nyssa_sylvatica", "enchanter's_nightshade", "circaea_lutetiana", "willowherb", "fireweed, giant_willowherb, rosebay_willowherb, wickup, epilobium_angustifolium", "california_fuchsia, humming_bird's_trumpet, epilobium_canum_canum, zauschneria_californica", "fuchsia", "lady's-eardrop, ladies'-eardrop, lady's-eardrops, ladies'-eardrops, fuchsia_coccinea", "evening_primrose", "common_evening_primrose, german_rampion, oenothera_biennis", "sundrops, oenothera_fruticosa", "missouri_primrose, ozark_sundrops, oenothera_macrocarpa", "pomegranate, pomegranate_tree, punica_granatum", "mangrove, rhizophora_mangle", "daphne", "garland_flower, daphne_cneorum", "spurge_laurel, wood_laurel, daphne_laureola", "mezereon, february_daphne, daphne_mezereum", "indian_rhododendron, melastoma_malabathricum", "medinilla_magnifica", "deer_grass, meadow_beauty", "canna", "achira, indian_shot, arrowroot, canna_indica, canna_edulis", "arrowroot, american_arrowroot, obedience_plant, maranta_arundinaceae", "banana, banana_tree", "dwarf_banana, musa_acuminata", "japanese_banana, musa_basjoo", "plantain, plantain_tree, musa_paradisiaca", "edible_banana, musa_paradisiaca_sapientum", "abaca, manila_hemp, musa_textilis", "abyssinian_banana, ethiopian_banana, ensete_ventricosum, musa_ensete", "ginger", "common_ginger, canton_ginger, stem_ginger, zingiber_officinale", "turmeric, curcuma_longa, curcuma_domestica", "galangal, alpinia_galanga", "shellflower, shall-flower, shell_ginger, alpinia_zerumbet, alpinia_speciosa, languas_speciosa", "grains_of_paradise, guinea_grains, guinea_pepper, melagueta_pepper, aframomum_melegueta", "cardamom, cardamon, elettaria_cardamomum", "begonia", "fibrous-rooted_begonia", "tuberous_begonia", "rhizomatous_begonia", "christmas_begonia, blooming-fool_begonia, begonia_cheimantha", "angel-wing_begonia, begonia_cocchinea", "beefsteak_begonia, kidney_begonia, begonia_erythrophylla, begonia_feastii", "star_begonia, star-leaf_begonia, begonia_heracleifolia", "rex_begonia, king_begonia, painted-leaf_begonia, beefsteak_geranium, begonia_rex", "wax_begonia, begonia_semperflorens", "socotra_begonia, begonia_socotrana", "hybrid_tuberous_begonia, begonia_tuberhybrida", "dillenia", "guinea_gold_vine, guinea_flower", "poon", "calaba, santa_maria_tree, calophyllum_calaba", "maria, calophyllum_longifolium", "laurelwood, lancewood_tree, calophyllum_candidissimum", "alexandrian_laurel, calophyllum_inophyllum", "clusia", "wild_fig, clusia_flava", "waxflower, clusia_insignis", "pitch_apple, strangler_fig, clusia_rosea, clusia_major", "mangosteen, mangosteen_tree, garcinia_mangostana", "gamboge_tree, garcinia_hanburyi, garcinia_cambogia, garcinia_gummi-gutta", "st_john's_wort", "common_st_john's_wort, tutsan, hypericum_androsaemum", "great_st_john's_wort, hypericum_ascyron, hypericum_pyramidatum", "creeping_st_john's_wort, hypericum_calycinum", "low_st_andrew's_cross, hypericum_hypericoides", "klammath_weed, hypericum_perforatum", "shrubby_st_john's_wort, hypericum_prolificum, hypericum_spathulatum", "st_peter's_wort, hypericum_tetrapterum, hypericum_maculatum", "marsh_st-john's_wort, hypericum_virginianum", "mammee_apple, mammee, mamey, mammee_tree, mammea_americana", "rose_chestnut, ironwood, ironwood_tree, mesua_ferrea", "bower_actinidia, tara_vine, actinidia_arguta", "chinese_gooseberry, kiwi, kiwi_vine, actinidia_chinensis, actinidia_deliciosa", "silvervine, silver_vine, actinidia_polygama", "wild_cinnamon, white_cinnamon_tree, canella_winterana, canella-alba", "papaya, papaia, pawpaw, papaya_tree, melon_tree, carica_papaya", "souari, souari_nut, souari_tree, caryocar_nuciferum", "rockrose, rock_rose", "white-leaved_rockrose, cistus_albidus", "common_gum_cistus, cistus_ladanifer, cistus_ladanum", "frostweed, frost-weed, frostwort, helianthemum_canadense, crocanthemum_canadense", "dipterocarp", "red_lauan, red_lauan_tree, shorea_teysmanniana", "governor's_plum, governor_plum, madagascar_plum, ramontchi, batoko_palm, flacourtia_indica", "kei_apple, kei_apple_bush, dovyalis_caffra", "ketembilla, kitembilla, kitambilla, ketembilla_tree, ceylon_gooseberry, dovyalis_hebecarpa", "chaulmoogra, chaulmoogra_tree, chaulmugra, hydnocarpus_kurzii, taraktagenos_kurzii, taraktogenos_kurzii", "wild_peach, kiggelaria_africana", "candlewood", "boojum_tree, cirio, fouquieria_columnaris, idria_columnaris", "bird's-eye_bush, ochna_serrulata", "granadilla, purple_granadillo, passiflora_edulis", "granadilla, sweet_granadilla, passiflora_ligularis", "granadilla, giant_granadilla, passiflora_quadrangularis", "maypop, passiflora_incarnata", "jamaica_honeysuckle, yellow_granadilla, passiflora_laurifolia", "banana_passion_fruit, passiflora_mollissima", "sweet_calabash, passiflora_maliformis", "love-in-a-mist, running_pop, wild_water_lemon, passiflora_foetida", "reseda", "mignonette, sweet_reseda, reseda_odorata", "dyer's_rocket, dyer's_mignonette, weld, reseda_luteola", "false_tamarisk, german_tamarisk, myricaria_germanica", "halophyte", "viola", "violet", "field_pansy, heartsease, viola_arvensis", "american_dog_violet, viola_conspersa", "dog_violet, heath_violet, viola_canina", "horned_violet, tufted_pansy, viola_cornuta", "two-eyed_violet, heartsease, viola_ocellata", "bird's-foot_violet, pansy_violet, johnny-jump-up, wood_violet, viola_pedata", "downy_yellow_violet, viola_pubescens", "long-spurred_violet, viola_rostrata", "pale_violet, striped_violet, cream_violet, viola_striata", "hedge_violet, wood_violet, viola_sylvatica, viola_reichenbachiana", "nettle", "stinging_nettle, urtica_dioica", "roman_nettle, urtica_pipulifera", "ramie, ramee, chinese_silk_plant, china_grass, boehmeria_nivea", "wood_nettle, laportea_canadensis", "australian_nettle, australian_nettle_tree", "pellitory-of-the-wall, wall_pellitory, pellitory, parietaria_difussa", "richweed, clearweed, dead_nettle, pilea_pumilla", "artillery_plant, pilea_microphylla", "friendship_plant, panamica, panamiga, pilea_involucrata", "queensland_grass-cloth_plant, pipturus_argenteus", "pipturus_albidus", "cannabis, hemp", "indian_hemp, cannabis_indica", "mulberry, mulberry_tree", "white_mulberry, morus_alba", "black_mulberry, morus_nigra", "red_mulberry, morus_rubra", "osage_orange, bow_wood, mock_orange, maclura_pomifera", "breadfruit, breadfruit_tree, artocarpus_communis, artocarpus_altilis", "jackfruit, jackfruit_tree, artocarpus_heterophyllus", "marang, marang_tree, artocarpus_odoratissima", "fig_tree", "fig, common_fig, common_fig_tree, ficus_carica", "caprifig, ficus_carica_sylvestris", "golden_fig, florida_strangler_fig, strangler_fig, wild_fig, ficus_aurea", "banyan, banyan_tree, banian, banian_tree, indian_banyan, east_indian_fig_tree, ficus_bengalensis", "pipal, pipal_tree, pipul, peepul, sacred_fig, bo_tree, ficus_religiosa", "india-rubber_tree, india-rubber_plant, india-rubber_fig, rubber_plant, assam_rubber, ficus_elastica", "mistletoe_fig, mistletoe_rubber_plant, ficus_diversifolia, ficus_deltoidea", "port_jackson_fig, rusty_rig, little-leaf_fig, botany_bay_fig, ficus_rubiginosa", "sycamore, sycamore_fig, mulberry_fig, ficus_sycomorus", "paper_mulberry, broussonetia_papyrifera", "trumpetwood, trumpet-wood, trumpet_tree, snake_wood, imbauba, cecropia_peltata", "elm, elm_tree", "winged_elm, wing_elm, ulmus_alata", "american_elm, white_elm, water_elm, rock_elm, ulmus_americana", "smooth-leaved_elm, european_field_elm, ulmus_carpinifolia", "cedar_elm, ulmus_crassifolia", "witch_elm, wych_elm, ulmus_glabra", "dutch_elm, ulmus_hollandica", "huntingdon_elm, ulmus_hollandica_vegetata", "water_elm, ulmus_laevis", "chinese_elm, ulmus_parvifolia", "english_elm, european_elm, ulmus_procera", "siberian_elm, chinese_elm, dwarf_elm, ulmus_pumila", "slippery_elm, red_elm, ulmus_rubra", "jersey_elm, guernsey_elm, wheately_elm, ulmus_sarniensis, ulmus_campestris_sarniensis, ulmus_campestris_wheatleyi", "september_elm, red_elm, ulmus_serotina", "rock_elm, ulmus_thomasii", "hackberry, nettle_tree", "european_hackberry, mediterranean_hackberry, celtis_australis", "american_hackberry, celtis_occidentalis", "sugarberry, celtis_laevigata", "iridaceous_plant", "bearded_iris", "beardless_iris", "orrisroot, orris", "dwarf_iris, iris_cristata", "dutch_iris, iris_filifolia", "florentine_iris, orris, iris_germanica_florentina, iris_florentina", "stinking_iris, gladdon, gladdon_iris, stinking_gladwyn, roast_beef_plant, iris_foetidissima", "german_iris, iris_germanica", "japanese_iris, iris_kaempferi", "german_iris, iris_kochii", "dalmatian_iris, iris_pallida", "persian_iris, iris_persica", "dutch_iris, iris_tingitana", "dwarf_iris, vernal_iris, iris_verna", "spanish_iris, xiphium_iris, iris_xiphium", "blackberry-lily, leopard_lily, belamcanda_chinensis", "crocus", "saffron, saffron_crocus, crocus_sativus", "corn_lily", "blue-eyed_grass", "wandflower, sparaxis_tricolor", "amaryllis", "salsilla, bomarea_edulis", "salsilla, bomarea_salsilla", "blood_lily", "cape_tulip, haemanthus_coccineus", "hippeastrum, hippeastrum_puniceum", "narcissus", "daffodil, narcissus_pseudonarcissus", "jonquil, narcissus_jonquilla", "jonquil", "jacobean_lily, aztec_lily, strekelia_formosissima", "liliaceous_plant", "mountain_lily, lilium_auratum", "canada_lily, wild_yellow_lily, meadow_lily, wild_meadow_lily, lilium_canadense", "tiger_lily, leopard_lily, pine_lily, lilium_catesbaei", "columbia_tiger_lily, oregon_lily, lilium_columbianum", "tiger_lily, devil_lily, kentan, lilium_lancifolium", "easter_lily, bermuda_lily, white_trumpet_lily, lilium_longiflorum", "coast_lily, lilium_maritinum", "turk's-cap, martagon, lilium_martagon", "michigan_lily, lilium_michiganense", "leopard_lily, panther_lily, lilium_pardalinum", "turk's-cap, turk's_cap-lily, lilium_superbum", "african_lily, african_tulip, blue_african_lily, agapanthus_africanus", "colicroot, colic_root, crow_corn, star_grass, unicorn_root", "ague_root, ague_grass, aletris_farinosa", "yellow_colicroot, aletris_aurea", "alliaceous_plant", "hooker's_onion, allium_acuminatum", "wild_leek, levant_garlic, kurrat, allium_ampeloprasum", "canada_garlic, meadow_leek, rose_leek, allium_canadense", "keeled_garlic, allium_carinatum", "onion", "shallot, eschalot, multiplier_onion, allium_cepa_aggregatum, allium_ascalonicum", "nodding_onion, nodding_wild_onion, lady's_leek, allium_cernuum", "welsh_onion, japanese_leek, allium_fistulosum", "red-skinned_onion, allium_haematochiton", "daffodil_garlic, flowering_onion, naples_garlic, allium_neopolitanum", "few-flowered_leek, allium_paradoxum", "garlic, allium_sativum", "sand_leek, giant_garlic, spanish_garlic, rocambole, allium_scorodoprasum", "chives, chive, cive, schnittlaugh, allium_schoenoprasum", "crow_garlic, false_garlic, field_garlic, stag's_garlic, wild_garlic, allium_vineale", "wild_garlic, wood_garlic, ramsons, allium_ursinum", "garlic_chive, chinese_chive, oriental_garlic, allium_tuberosum", "round-headed_leek, allium_sphaerocephalum", "three-cornered_leek, triquetrous_leek, allium_triquetrum", "cape_aloe, aloe_ferox", "kniphofia, tritoma, flame_flower, flame-flower, flameflower", "poker_plant, kniphofia_uvaria", "red-hot_poker, kniphofia_praecox", "fly_poison, amianthum_muscaetoxicum, amianthum_muscitoxicum", "amber_lily, anthericum_torreyi", "asparagus, edible_asparagus, asparagus_officinales", "asparagus_fern, asparagus_setaceous, asparagus_plumosus", "smilax, asparagus_asparagoides", "asphodel", "jacob's_rod", "aspidistra, cast-iron_plant, bar-room_plant, aspidistra_elatio", "coral_drops, bessera_elegans", "christmas_bells", "climbing_onion, bowiea_volubilis", "mariposa, mariposa_tulip, mariposa_lily", "globe_lily, fairy_lantern", "cat's-ear", "white_globe_lily, white_fairy_lantern, calochortus_albus", "yellow_globe_lily, golden_fairy_lantern, calochortus_amabilis", "rose_globe_lily, calochortus_amoenus", "star_tulip, elegant_cat's_ears, calochortus_elegans", "desert_mariposa_tulip, calochortus_kennedyi", "yellow_mariposa_tulip, calochortus_luteus", "sagebrush_mariposa_tulip, calochortus_macrocarpus", "sego_lily, calochortus_nuttallii", "camas, camass, quamash, camosh, camash", "common_camas, camassia_quamash", "leichtlin's_camas, camassia_leichtlinii", "wild_hyacinth, indigo_squill, camassia_scilloides", "dogtooth_violet, dogtooth, dog's-tooth_violet", "white_dogtooth_violet, white_dog's-tooth_violet, blonde_lilian, erythronium_albidum", "yellow_adder's_tongue, trout_lily, amberbell, erythronium_americanum", "european_dogtooth, erythronium_dens-canis", "fawn_lily, erythronium_californicum", "glacier_lily, snow_lily, erythronium_grandiflorum", "avalanche_lily, erythronium_montanum", "fritillary, checkered_lily", "mission_bells, rice-grain_fritillary, fritillaria_affinis, fritillaria_lanceolata, fritillaria_mutica", "mission_bells, black_fritillary, fritillaria_biflora", "stink_bell, fritillaria_agrestis", "crown_imperial, fritillaria_imperialis", "white_fritillary, fritillaria_liliaceae", "snake's_head_fritillary, guinea-hen_flower, checkered_daffodil, leper_lily, fritillaria_meleagris", "adobe_lily, pink_fritillary, fritillaria_pluriflora", "scarlet_fritillary, fritillaria_recurva", "tulip", "dwarf_tulip, tulipa_armena, tulipa_suaveolens", "lady_tulip, candlestick_tulip, tulipa_clusiana", "tulipa_gesneriana", "cottage_tulip", "darwin_tulip", "gloriosa, glory_lily, climbing_lily, creeping_lily, gloriosa_superba", "lemon_lily, hemerocallis_lilio-asphodelus, hemerocallis_flava", "common_hyacinth, hyacinthus_orientalis", "roman_hyacinth, hyacinthus_orientalis_albulus", "summer_hyacinth, cape_hyacinth, hyacinthus_candicans, galtonia_candicans", "star-of-bethlehem", "bath_asparagus, prussian_asparagus, ornithogalum_pyrenaicum", "grape_hyacinth", "common_grape_hyacinth, muscari_neglectum", "tassel_hyacinth, muscari_comosum", "scilla, squill", "spring_squill, scilla_verna, sea_onion", "false_asphodel", "scotch_asphodel, tofieldia_pusilla", "sea_squill, sea_onion, squill, urginea_maritima", "squill", "butcher's_broom, ruscus_aculeatus", "bog_asphodel", "european_bog_asphodel, narthecium_ossifragum", "american_bog_asphodel, narthecium_americanum", "hellebore, false_hellebore", "white_hellebore, american_hellebore, indian_poke, bugbane, veratrum_viride", "squaw_grass, bear_grass, xerophyllum_tenax", "death_camas, zigadene", "alkali_grass, zigadenus_elegans", "white_camas, zigadenus_glaucus", "poison_camas, zigadenus_nuttalli", "grassy_death_camas, zigadenus_venenosus, zigadenus_venenosus_gramineus", "prairie_wake-robin, prairie_trillium, trillium_recurvatum", "dwarf-white_trillium, snow_trillium, early_wake-robin", "herb_paris, paris_quadrifolia", "sarsaparilla", "bullbrier, greenbrier, catbrier, horse_brier, horse-brier, brier, briar, smilax_rotundifolia", "rough_bindweed, smilax_aspera", "clintonia, clinton's_lily", "false_lily_of_the_valley, maianthemum_canadense", "false_lily_of_the_valley, maianthemum_bifolium", "solomon's-seal", "great_solomon's-seal, polygonatum_biflorum, polygonatum_commutatum", "bellwort, merry_bells, wild_oats", "strawflower, cornflower, uvularia_grandiflora", "pia, indian_arrowroot, tacca_leontopetaloides, tacca_pinnatifida", "agave, century_plant, american_aloe", "american_agave, agave_americana", "sisal, agave_sisalana", "maguey, cantala, agave_cantala", "maguey, agave_atrovirens", "agave_tequilana", "cabbage_tree, grass_tree, cordyline_australis", "dracaena", "tuberose, polianthes_tuberosa", "sansevieria, bowstring_hemp", "african_bowstring_hemp, african_hemp, sansevieria_guineensis", "ceylon_bowstring_hemp, sansevieria_zeylanica", "mother-in-law's_tongue, snake_plant, sansevieria_trifasciata", "spanish_bayonet, yucca_aloifolia", "spanish_bayonet, yucca_baccata", "joshua_tree, yucca_brevifolia", "soapweed, soap-weed, soap_tree, yucca_elata", "adam's_needle, adam's_needle-and-thread, spoonleaf_yucca, needle_palm, yucca_filamentosa", "bear_grass, yucca_glauca", "spanish_dagger, yucca_gloriosa", "our_lord's_candle, yucca_whipplei", "water_shamrock, buckbean, bogbean, bog_myrtle, marsh_trefoil, menyanthes_trifoliata", "butterfly_bush, buddleia", "yellow_jasmine, yellow_jessamine, carolina_jasmine, evening_trumpet_flower, gelsemium_sempervirens", "flax", "calabar_bean, ordeal_bean", "bonduc, bonduc_tree, caesalpinia_bonduc, caesalpinia_bonducella", "divi-divi, caesalpinia_coriaria", "mysore_thorn, caesalpinia_decapetala, caesalpinia_sepiaria", "brazilian_ironwood, caesalpinia_ferrea", "bird_of_paradise, poinciana, caesalpinia_gilliesii, poinciana_gilliesii", "shingle_tree, acrocarpus_fraxinifolius", "mountain_ebony, orchid_tree, bauhinia_variegata", "msasa, brachystegia_speciformis", "cassia", "golden_shower_tree, drumstick_tree, purging_cassia, pudding_pipe_tree, canafistola, canafistula, cassia_fistula", "pink_shower, pink_shower_tree, horse_cassia, cassia_grandis", "rainbow_shower, cassia_javonica", "horse_cassia, cassia_roxburghii, cassia_marginata", "carob, carob_tree, carob_bean_tree, algarroba, ceratonia_siliqua", "carob, carob_bean, algarroba_bean, algarroba, locust_bean, locust_pod", "paloverde", "royal_poinciana, flamboyant, flame_tree, peacock_flower, delonix_regia, poinciana_regia", "locust_tree, locust", "water_locust, swamp_locust, gleditsia_aquatica", "honey_locust, gleditsia_triacanthos", "kentucky_coffee_tree, bonduc, chicot, gymnocladus_dioica", "logwood, logwood_tree, campeachy, bloodwood_tree, haematoxylum_campechianum", "jerusalem_thorn, horsebean, parkinsonia_aculeata", "palo_verde, parkinsonia_florida, cercidium_floridum", "dalmatian_laburnum, petteria_ramentacea, cytisus_ramentaceus", "senna", "avaram, tanner's_cassia, senna_auriculata, cassia_auriculata", "alexandria_senna, alexandrian_senna, true_senna, tinnevelly_senna, indian_senna, senna_alexandrina, cassia_acutifolia, cassia_augustifolia", "wild_senna, senna_marilandica, cassia_marilandica", "sicklepod, senna_obtusifolia, cassia_tora", "coffee_senna, mogdad_coffee, styptic_weed, stinking_weed, senna_occidentalis, cassia_occidentalis", "tamarind, tamarind_tree, tamarindo, tamarindus_indica", "false_indigo, bastard_indigo, amorpha_californica", "false_indigo, bastard_indigo, amorpha_fruticosa", "hog_peanut, wild_peanut, amphicarpaea_bracteata, amphicarpa_bracteata", "angelim, andelmin", "cabbage_bark, cabbage-bark_tree, cabbage_tree, andira_inermis", "kidney_vetch, anthyllis_vulneraria", "groundnut, groundnut_vine, indian_potato, potato_bean, wild_bean, apios_americana, apios_tuberosa", "rooibos, aspalathus_linearis, aspalathus_cedcarbergensis", "milk_vetch, milk-vetch", "alpine_milk_vetch, astragalus_alpinus", "purple_milk_vetch, astragalus_danicus", "camwood, african_sandalwood, baphia_nitida", "wild_indigo, false_indigo", "blue_false_indigo, baptisia_australis", "white_false_indigo, baptisia_lactea", "indigo_broom, horsefly_weed, rattle_weed, baptisia_tinctoria", "dhak, dak, palas, butea_frondosa, butea_monosperma", "pigeon_pea, pigeon-pea_plant, cajan_pea, catjang_pea, red_gram, dhal, dahl, cajanus_cajan", "sword_bean, canavalia_gladiata", "pea_tree, caragana", "siberian_pea_tree, caragana_arborescens", "chinese_pea_tree, caragana_sinica", "moreton_bay_chestnut, australian_chestnut", "butterfly_pea, centrosema_virginianum", "judas_tree, love_tree, circis_siliquastrum", "redbud, cercis_canadensis", "western_redbud, california_redbud, cercis_occidentalis", "tagasaste, chamaecytisus_palmensis, cytesis_proliferus", "weeping_tree_broom", "flame_pea", "chickpea, chickpea_plant, egyptian_pea, cicer_arietinum", "chickpea, garbanzo", "kentucky_yellowwood, gopherwood, cladrastis_lutea, cladrastis_kentukea", "glory_pea, clianthus", "desert_pea, sturt_pea, sturt's_desert_pea, clianthus_formosus, clianthus_speciosus", "parrot's_beak, parrot's_bill, clianthus_puniceus", "butterfly_pea, clitoria_mariana", "blue_pea, butterfly_pea, clitoria_turnatea", "telegraph_plant, semaphore_plant, codariocalyx_motorius, desmodium_motorium, desmodium_gyrans", "bladder_senna, colutea_arborescens", "axseed, crown_vetch, coronilla_varia", "crotalaria, rattlebox", "guar, cluster_bean, cyamopsis_tetragonolobus, cyamopsis_psoraloides", "white_broom, white_spanish_broom, cytisus_albus, cytisus_multiflorus", "common_broom, scotch_broom, green_broom, cytisus_scoparius", "rosewood, rosewood_tree", "indian_blackwood, east_indian_rosewood, east_india_rosewood, indian_rosewood, dalbergia_latifolia", "sissoo, sissu, sisham, dalbergia_sissoo", "kingwood, kingwood_tree, dalbergia_cearensis", "brazilian_rosewood, caviuna_wood, jacaranda, dalbergia_nigra", "cocobolo, dalbergia_retusa", "blackwood, blackwood_tree", "bitter_pea", "derris", "derris_root, tuba_root, derris_elliptica", "prairie_mimosa, prickle-weed, desmanthus_ilinoensis", "tick_trefoil, beggar_lice, beggar's_lice", "beggarweed, desmodium_tortuosum, desmodium_purpureum", "australian_pea, dipogon_lignosus, dolichos_lignosus", "coral_tree, erythrina", "kaffir_boom, cape_kafferboom, erythrina_caffra", "coral_bean_tree, erythrina_corallodendrum", "ceibo, crybaby_tree, cry-baby_tree, common_coral_tree, erythrina_crista-galli", "kaffir_boom, transvaal_kafferboom, erythrina_lysistemon", "indian_coral_tree, erythrina_variegata, erythrina_indica", "cork_tree, erythrina_vespertilio", "goat's_rue, goat_rue, galega_officinalis", "poison_bush, poison_pea, gastrolobium", "spanish_broom, spanish_gorse, genista_hispanica", "woodwaxen, dyer's_greenweed, dyer's-broom, dyeweed, greenweed, whin, woadwaxen, genista_tinctoria", "chanar, chanal, geoffroea_decorticans", "gliricidia", "soy, soybean, soya_bean", "licorice, liquorice, glycyrrhiza_glabra", "wild_licorice, wild_liquorice, american_licorice, american_liquorice, glycyrrhiza_lepidota", "licorice_root", "western_australia_coral_pea, hardenbergia_comnptoniana", "sweet_vetch, hedysarum_boreale", "french_honeysuckle, sulla, hedysarum_coronarium", "anil, indigofera_suffruticosa, indigofera_anil", "scarlet_runner, running_postman, kennedia_prostrata", "hyacinth_bean, bonavist, indian_bean, egyptian_bean, lablab_purpureus, dolichos_lablab", "scotch_laburnum, alpine_golden_chain, laburnum_alpinum", "vetchling", "wild_pea", "everlasting_pea", "beach_pea, sea_pea, lathyrus_maritimus, lathyrus_japonicus", "grass_vetch, grass_vetchling, lathyrus_nissolia", "marsh_pea, lathyrus_palustris", "common_vetchling, meadow_pea, yellow_vetchling, lathyrus_pratensis", "grass_pea, indian_pea, khesari, lathyrus_sativus", "tangier_pea, tangier_peavine, lalthyrus_tingitanus", "heath_pea, earth-nut_pea, earthnut_pea, tuberous_vetch, lathyrus_tuberosus", "bicolor_lespediza, ezo-yama-hagi, lespedeza_bicolor", "japanese_clover, japan_clover, jap_clover, lespedeza_striata", "korean_lespedeza, lespedeza_stipulacea", "sericea_lespedeza, lespedeza_sericea, lespedeza_cuneata", "lentil, lentil_plant, lens_culinaris", "lentil", "prairie_bird's-foot_trefoil, compass_plant, prairie_lotus, prairie_trefoil, lotus_americanus", "bird's_foot_trefoil, bird's_foot_clover, babies'_slippers, bacon_and_eggs, lotus_corniculatus", "winged_pea, asparagus_pea, lotus_tetragonolobus", "lupine, lupin", "white_lupine, field_lupine, wolf_bean, egyptian_lupine, lupinus_albus", "tree_lupine, lupinus_arboreus", "wild_lupine, sundial_lupine, indian_beet, old-maid's_bonnet, lupinus_perennis", "bluebonnet, buffalo_clover, texas_bluebonnet, lupinus_subcarnosus", "texas_bluebonnet, lupinus_texensis", "medic, medick, trefoil", "moon_trefoil, medicago_arborea", "sickle_alfalfa, sickle_lucerne, sickle_medick, medicago_falcata", "calvary_clover, medicago_intertexta, medicago_echinus", "black_medick, hop_clover, yellow_trefoil, nonesuch_clover, medicago_lupulina", "alfalfa, lucerne, medicago_sativa", "millettia", "mucuna", "cowage, velvet_bean, bengal_bean, benghal_bean, florida_bean, mucuna_pruriens_utilis, mucuna_deeringiana, mucuna_aterrima, stizolobium_deeringiana", "tolu_tree, tolu_balsam_tree, myroxylon_balsamum, myroxylon_toluiferum", "peruvian_balsam, myroxylon_pereirae, myroxylon_balsamum_pereirae", "sainfoin, sanfoin, holy_clover, esparcet, onobrychis_viciifolia, onobrychis_viciaefolia", "restharrow, rest-harrow, ononis_repens", "bead_tree, jumby_bean, jumby_tree, ormosia_monosperma", "jumby_bead, jumbie_bead, ormosia_coarctata", "locoweed, crazyweed, crazy_weed", "purple_locoweed, purple_loco, oxytropis_lambertii", "tumbleweed", "yam_bean, pachyrhizus_erosus", "shamrock_pea, parochetus_communis", "pole_bean", "kidney_bean, frijol, frijole", "haricot", "wax_bean", "scarlet_runner, scarlet_runner_bean, dutch_case-knife_bean, runner_bean, phaseolus_coccineus, phaseolus_multiflorus", "lima_bean, lima_bean_plant, phaseolus_limensis", "sieva_bean, butter_bean, butter-bean_plant, lima_bean, phaseolus_lunatus", "tepary_bean, phaseolus_acutifolius_latifolius", "chaparral_pea, stingaree-bush, pickeringia_montana", "jamaica_dogwood, fish_fuddle, piscidia_piscipula, piscidia_erythrina", "pea", "garden_pea", "edible-pod_pea, edible-podded_pea, pisum_sativum_macrocarpon", "sugar_snap_pea, snap_pea", "field_pea, field-pea_plant, austrian_winter_pea, pisum_sativum_arvense, pisum_arvense", "field_pea", "common_flat_pea, native_holly, playlobium_obtusangulum", "quira", "roble, platymiscium_trinitatis", "panama_redwood_tree, panama_redwood, platymiscium_pinnatum", "indian_beech, pongamia_glabra", "winged_bean, winged_pea, goa_bean, goa_bean_vine, manila_bean, psophocarpus_tetragonolobus", "breadroot, indian_breadroot, pomme_blanche, pomme_de_prairie, psoralea_esculenta", "bloodwood_tree, kiaat, pterocarpus_angolensis", "kino, pterocarpus_marsupium", "red_sandalwood, red_sanders, red_sanderswood, red_saunders, pterocarpus_santalinus", "kudzu, kudzu_vine, pueraria_lobata", "bristly_locust, rose_acacia, moss_locust, robinia_hispida", "black_locust, yellow_locust, robinia_pseudoacacia", "clammy_locust, robinia_viscosa", "carib_wood, sabinea_carinalis", "colorado_river_hemp, sesbania_exaltata", "scarlet_wisteria_tree, vegetable_hummingbird, sesbania_grandiflora", "japanese_pagoda_tree, chinese_scholartree, chinese_scholar_tree, sophora_japonica, sophora_sinensis", "mescal_bean, coral_bean, frijolito, frijolillo, sophora_secundiflora", "kowhai, sophora_tetraptera", "jade_vine, emerald_creeper, strongylodon_macrobotrys", "hoary_pea", "bastard_indigo, tephrosia_purpurea", "catgut, goat's_rue, wild_sweet_pea, tephrosia_virginiana", "bush_pea", "false_lupine, golden_pea, yellow_pea, thermopsis_macrophylla", "carolina_lupine, thermopsis_villosa", "tipu, tipu_tree, yellow_jacaranda, pride_of_bolivia", "bird's_foot_trefoil, trigonella_ornithopodioides", "fenugreek, greek_clover, trigonella_foenumgraecum", "gorse, furze, whin, irish_gorse, ulex_europaeus", "vetch", "tufted_vetch, bird_vetch, calnada_pea, vicia_cracca", "broad_bean, fava_bean, horsebean", "bitter_betch, vicia_orobus", "bush_vetch, vicia_sepium", "moth_bean, vigna_aconitifolia, phaseolus_aconitifolius", "snailflower, snail-flower, snail_flower, snail_bean, corkscrew_flower, vigna_caracalla, phaseolus_caracalla", "mung, mung_bean, green_gram, golden_gram, vigna_radiata, phaseolus_aureus", "cowpea, cowpea_plant, black-eyed_pea, vigna_unguiculata, vigna_sinensis", "cowpea, black-eyed_pea", "asparagus_bean, yard-long_bean, vigna_unguiculata_sesquipedalis, vigna_sesquipedalis", "swamp_oak, viminaria_juncea, viminaria_denudata", "keurboom, virgilia_capensis, virgilia_oroboides", "keurboom, virgilia_divaricata", "japanese_wistaria, wisteria_floribunda", "chinese_wistaria, wisteria_chinensis", "american_wistaria, american_wisteria, wisteria_frutescens", "silky_wisteria, wisteria_venusta", "palm, palm_tree", "sago_palm", "feather_palm", "fan_palm", "palmetto", "coyol, coyol_palm, acrocomia_vinifera", "grugru, gri-gri, grugru_palm, macamba, acrocomia_aculeata", "areca", "betel_palm, areca_catechu", "sugar_palm, gomuti, gomuti_palm, arenga_pinnata", "piassava_palm, pissaba_palm, bahia_piassava, bahia_coquilla, attalea_funifera", "coquilla_nut", "palmyra, palmyra_palm, toddy_palm, wine_palm, lontar, longar_palm, borassus_flabellifer", "calamus", "rattan, rattan_palm, calamus_rotang", "lawyer_cane, calamus_australis", "fishtail_palm", "wine_palm, jaggery_palm, kitul, kittul, kitul_tree, toddy_palm, caryota_urens", "wax_palm, ceroxylon_andicola, ceroxylon_alpinum", "coconut, coconut_palm, coco_palm, coco, cocoa_palm, coconut_tree, cocos_nucifera", "carnauba, carnauba_palm, wax_palm, copernicia_prunifera, copernicia_cerifera", "caranday, caranda, caranda_palm, wax_palm, copernicia_australis, copernicia_alba", "corozo, corozo_palm", "gebang_palm, corypha_utan, corypha_gebanga", "latanier, latanier_palm", "talipot, talipot_palm, corypha_umbraculifera", "oil_palm", "african_oil_palm, elaeis_guineensis", "american_oil_palm, elaeis_oleifera", "palm_nut, palm_kernel", "cabbage_palm, euterpe_oleracea", "cabbage_palm, cabbage_tree, livistona_australis", "true_sago_palm, metroxylon_sagu", "nipa_palm, nipa_fruticans", "babassu, babassu_palm, coco_de_macao, orbignya_phalerata, orbignya_spesiosa, orbignya_martiana", "babassu_nut", "cohune_palm, orbignya_cohune, cohune", "cohune_nut", "date_palm, phoenix_dactylifera", "ivory_palm, ivory-nut_palm, ivory_plant, phytelephas_macrocarpa", "raffia_palm, raffia_farinifera, raffia_ruffia", "bamboo_palm, raffia_vinifera", "lady_palm", "miniature_fan_palm, bamboo_palm, fern_rhapis, rhapis_excelsa", "reed_rhapis, slender_lady_palm, rhapis_humilis", "royal_palm, roystonea_regia", "cabbage_palm, roystonea_oleracea", "cabbage_palmetto, cabbage_palm, sabal_palmetto", "saw_palmetto, scrub_palmetto, serenoa_repens", "thatch_palm, thatch_tree, silver_thatch, broom_palm, thrinax_parviflora", "key_palm, silvertop_palmetto, silver_thatch, thrinax_microcarpa, thrinax_morrisii, thrinax_keyensis", "english_plantain, narrow-leaved_plantain, ribgrass, ribwort, ripple-grass, buckthorn, plantago_lanceolata", "broad-leaved_plantain, common_plantain, white-man's_foot, whiteman's_foot, cart-track_plant, plantago_major", "hoary_plantain, plantago_media", "fleawort, psyllium, spanish_psyllium, plantago_psyllium", "rugel's_plantain, broad-leaved_plantain, plantago_rugelii", "hoary_plantain, plantago_virginica", "buckwheat, polygonum_fagopyrum, fagopyrum_esculentum", "prince's-feather, princess_feather, kiss-me-over-the-garden-gate, prince's-plume, polygonum_orientale", "eriogonum", "umbrella_plant, eriogonum_allenii", "wild_buckwheat, california_buckwheat, erigonum_fasciculatum", "rhubarb, rhubarb_plant", "himalayan_rhubarb, indian_rhubarb, red-veined_pie_plant, rheum_australe, rheum_emodi", "pie_plant, garden_rhubarb, rheum_cultorum, rheum_rhabarbarum, rheum_rhaponticum", "chinese_rhubarb, rheum_palmatum", "sour_dock, garden_sorrel, rumex_acetosa", "sheep_sorrel, sheep's_sorrel, rumex_acetosella", "bitter_dock, broad-leaved_dock, yellow_dock, rumex_obtusifolius", "french_sorrel, garden_sorrel, rumex_scutatus", "yellow-eyed_grass", "commelina", "spiderwort, dayflower", "pineapple, pineapple_plant, ananas_comosus", "pipewort, eriocaulon_aquaticum", "water_hyacinth, water_orchid, eichhornia_crassipes, eichhornia_spesiosa", "water_star_grass, mud_plantain, heteranthera_dubia", "naiad, water_nymph", "water_plantain, alisma_plantago-aquatica", "narrow-leaved_water_plantain", "hydrilla, hydrilla_verticillata", "american_frogbit, limnodium_spongia", "waterweed", "canadian_pondweed, elodea_canadensis", "tape_grass, eelgrass, wild_celery, vallisneria_spiralis", "pondweed", "curled_leaf_pondweed, curly_pondweed, potamogeton_crispus", "loddon_pondweed, potamogeton_nodosus, potamogeton_americanus", "frog's_lettuce", "arrow_grass, triglochin_maritima", "horned_pondweed, zannichellia_palustris", "eelgrass, grass_wrack, sea_wrack, zostera_marina", "rose, rosebush", "hip, rose_hip, rosehip", "banksia_rose, rosa_banksia", "damask_rose, summer_damask_rose, rosa_damascena", "sweetbrier, sweetbriar, brier, briar, eglantine, rosa_eglanteria", "cherokee_rose, rosa_laevigata", "musk_rose, rosa_moschata", "agrimonia, agrimony", "harvest-lice, agrimonia_eupatoria", "fragrant_agrimony, agrimonia_procera", "alderleaf_juneberry, alder-leaved_serviceberry, amelanchier_alnifolia", "flowering_quince", "japonica, maule's_quince, chaenomeles_japonica", "coco_plum, coco_plum_tree, cocoa_plum, icaco, chrysobalanus_icaco", "cotoneaster", "cotoneaster_dammeri", "cotoneaster_horizontalis", "parsley_haw, parsley-leaved_thorn, crataegus_apiifolia, crataegus_marshallii", "scarlet_haw, crataegus_biltmoreana", "blackthorn, pear_haw, pear_hawthorn, crataegus_calpodendron, crataegus_tomentosa", "cockspur_thorn, cockspur_hawthorn, crataegus_crus-galli", "mayhaw, summer_haw, crataegus_aestivalis", "red_haw, downy_haw, crataegus_mollis, crataegus_coccinea_mollis", "red_haw, crataegus_pedicellata, crataegus_coccinea", "quince, quince_bush, cydonia_oblonga", "mountain_avens, dryas_octopetala", "loquat, loquat_tree, japanese_medlar, japanese_plum, eriobotrya_japonica", "beach_strawberry, chilean_strawberry, fragaria_chiloensis", "virginia_strawberry, scarlet_strawberry, fragaria_virginiana", "avens", "yellow_avens, geum_alleppicum_strictum, geum_strictum", "yellow_avens, geum_macrophyllum", "prairie_smoke, purple_avens, geum_triflorum", "bennet, white_avens, geum_virginianum", "toyon, tollon, christmasberry, christmas_berry, heteromeles_arbutifolia, photinia_arbutifolia", "apple_tree", "apple, orchard_apple_tree, malus_pumila", "wild_apple, crab_apple, crabapple", "crab_apple, crabapple, cultivated_crab_apple", "siberian_crab, siberian_crab_apple, cherry_apple, cherry_crab, malus_baccata", "wild_crab, malus_sylvestris", "american_crab_apple, garland_crab, malus_coronaria", "oregon_crab_apple, malus_fusca", "southern_crab_apple, flowering_crab, malus_angustifolia", "iowa_crab, iowa_crab_apple, prairie_crab, western_crab_apple, malus_ioensis", "bechtel_crab, flowering_crab", "medlar, medlar_tree, mespilus_germanica", "cinquefoil, five-finger", "silverweed, goose-tansy, goose_grass, potentilla_anserina", "salad_burnet, burnet_bloodwort, pimpernel, poterium_sanguisorba", "plum, plum_tree", "wild_plum, wild_plum_tree", "allegheny_plum, alleghany_plum, sloe, prunus_alleghaniensis", "american_red_plum, august_plum, goose_plum, prunus_americana", "chickasaw_plum, hog_plum, hog_plum_bush, prunus_angustifolia", "beach_plum, beach_plum_bush, prunus_maritima", "common_plum, prunus_domestica", "bullace, prunus_insititia", "damson_plum, damson_plum_tree, prunus_domestica_insititia", "big-tree_plum, prunus_mexicana", "canada_plum, prunus_nigra", "plumcot, plumcot_tree", "apricot, apricot_tree", "japanese_apricot, mei, prunus_mume", "common_apricot, prunus_armeniaca", "purple_apricot, black_apricot, prunus_dasycarpa", "cherry, cherry_tree", "wild_cherry, wild_cherry_tree", "wild_cherry", "sweet_cherry, prunus_avium", "heart_cherry, oxheart, oxheart_cherry", "gean, mazzard, mazzard_cherry", "capulin, capulin_tree, prunus_capuli", "cherry_laurel, laurel_cherry, mock_orange, wild_orange, prunus_caroliniana", "cherry_plum, myrobalan, myrobalan_plum, prunus_cerasifera", "sour_cherry, sour_cherry_tree, prunus_cerasus", "amarelle, prunus_cerasus_caproniana", "morello, prunus_cerasus_austera", "marasca", "almond_tree", "almond, sweet_almond, prunus_dulcis, prunus_amygdalus, amygdalus_communis", "bitter_almond, prunus_dulcis_amara, amygdalus_communis_amara", "jordan_almond", "dwarf_flowering_almond, prunus_glandulosa", "holly-leaved_cherry, holly-leaf_cherry, evergreen_cherry, islay, prunus_ilicifolia", "fuji, fuji_cherry, prunus_incisa", "flowering_almond, oriental_bush_cherry, prunus_japonica", "cherry_laurel, laurel_cherry, prunus_laurocerasus", "catalina_cherry, prunus_lyonii", "bird_cherry, bird_cherry_tree", "hagberry_tree, european_bird_cherry, common_bird_cherry, prunus_padus", "hagberry", "pin_cherry, prunus_pensylvanica", "peach, peach_tree, prunus_persica", "nectarine, nectarine_tree, prunus_persica_nectarina", "sand_cherry, prunus_pumila, prunus_pumilla_susquehanae, prunus_susquehanae, prunus_cuneata", "japanese_plum, prunus_salicina", "black_cherry, black_cherry_tree, rum_cherry, prunus_serotina", "flowering_cherry", "oriental_cherry, japanese_cherry, japanese_flowering_cherry, prunus_serrulata", "japanese_flowering_cherry, prunus_sieboldii", "sierra_plum, pacific_plum, prunus_subcordata", "rosebud_cherry, winter_flowering_cherry, prunus_subhirtella", "russian_almond, dwarf_russian_almond, prunus_tenella", "flowering_almond, prunus_triloba", "chokecherry, chokecherry_tree, prunus_virginiana", "chokecherry", "western_chokecherry, prunus_virginiana_demissa, prunus_demissa", "pyracantha, pyracanth, fire_thorn, firethorn", "pear, pear_tree, pyrus_communis", "fruit_tree", "bramble_bush", "lawyerbush, lawyer_bush, bush_lawyer, rubus_cissoides, rubus_australis", "stone_bramble, rubus_saxatilis", "sand_blackberry, rubus_cuneifolius", "boysenberry, boysenberry_bush", "loganberry, rubus_loganobaccus, rubus_ursinus_loganobaccus", "american_dewberry, rubus_canadensis", "northern_dewberry, american_dewberry, rubus_flagellaris", "southern_dewberry, rubus_trivialis", "swamp_dewberry, swamp_blackberry, rubus_hispidus", "european_dewberry, rubus_caesius", "raspberry, raspberry_bush", "wild_raspberry, european_raspberry, framboise, rubus_idaeus", "american_raspberry, rubus_strigosus, rubus_idaeus_strigosus", "black_raspberry, blackcap, blackcap_raspberry, thimbleberry, rubus_occidentalis", "salmonberry, rubus_spectabilis", "salmonberry, salmon_berry, thimbleberry, rubus_parviflorus", "wineberry, rubus_phoenicolasius", "mountain_ash", "rowan, rowan_tree, european_mountain_ash, sorbus_aucuparia", "rowanberry", "american_mountain_ash, sorbus_americana", "western_mountain_ash, sorbus_sitchensis", "service_tree, sorb_apple, sorb_apple_tree, sorbus_domestica", "wild_service_tree, sorbus_torminalis", "spirea, spiraea", "bridal_wreath, bridal-wreath, saint_peter's_wreath, st._peter's_wreath, spiraea_prunifolia", "madderwort, rubiaceous_plant", "indian_madder, munjeet, rubia_cordifolia", "madder, rubia_tinctorum", "woodruff", "dagame, lemonwood_tree, calycophyllum_candidissimum", "blolly, west_indian_snowberry, chiococca_alba", "coffee, coffee_tree", "arabian_coffee, coffea_arabica", "liberian_coffee, coffea_liberica", "robusta_coffee, rio_nunez_coffee, coffea_robusta, coffea_canephora", "cinchona, chinchona", "cartagena_bark, cinchona_cordifolia, cinchona_lancifolia", "calisaya, cinchona_officinalis, cinchona_ledgeriana, cinchona_calisaya", "cinchona_tree, cinchona_pubescens", "cinchona, cinchona_bark, peruvian_bark, jesuit's_bark", "bedstraw", "sweet_woodruff, waldmeister, woodruff, fragrant_bedstraw, galium_odoratum, asperula_odorata", "northern_bedstraw, northern_snow_bedstraw, galium_boreale", "yellow_bedstraw, yellow_cleavers, our_lady's_bedstraw, galium_verum", "wild_licorice, galium_lanceolatum", "cleavers, clivers, goose_grass, catchweed, spring_cleavers, galium_aparine", "wild_madder, white_madder, white_bedstraw, infant's-breath, false_baby's_breath, galium_mollugo", "cape_jasmine, cape_jessamine, gardenia_jasminoides, gardenia_augusta", "genipa", "genipap_fruit, jagua, marmalade_box, genipa_americana", "hamelia", "scarlet_bush, scarlet_hamelia, coloradillo, hamelia_patens, hamelia_erecta", "lemonwood, lemon-wood, lemonwood_tree, lemon-wood_tree, psychotria_capensis", "negro_peach, sarcocephalus_latifolius, sarcocephalus_esculentus", "wild_medlar, wild_medlar_tree, medlar, vangueria_infausta", "spanish_tamarind, vangueria_madagascariensis", "abelia", "bush_honeysuckle, diervilla_sessilifolia", "american_twinflower, linnaea_borealis_americana", "honeysuckle", "american_fly_honeysuckle, fly_honeysuckle, lonicera_canadensis", "italian_honeysuckle, italian_woodbine, lonicera_caprifolium", "yellow_honeysuckle, lonicera_flava", "hairy_honeysuckle, lonicera_hirsuta", "japanese_honeysuckle, lonicera_japonica", "hall's_honeysuckle, lonicera_japonica_halliana", "morrow's_honeysuckle, lonicera_morrowii", "woodbine, lonicera_periclymenum", "trumpet_honeysuckle, coral_honeysuckle, trumpet_flower, trumpet_vine, lonicera_sempervirens", "european_fly_honeysuckle, european_honeysuckle, lonicera_xylosteum", "swamp_fly_honeysuckle", "snowberry, common_snowberry, waxberry, symphoricarpos_alba", "coralberry, indian_currant, symphoricarpos_orbiculatus", "blue_elder, blue_elderberry, sambucus_caerulea", "dwarf_elder, danewort, sambucus_ebulus", "american_red_elder, red-berried_elder, stinking_elder, sambucus_pubens", "european_red_elder, red-berried_elder, sambucus_racemosa", "feverroot, horse_gentian, tinker's_root, wild_coffee, triostium_perfoliatum", "cranberry_bush, cranberry_tree, american_cranberry_bush, highbush_cranberry, viburnum_trilobum", "wayfaring_tree, twist_wood, twistwood, viburnum_lantana", "guelder_rose, european_cranberrybush, european_cranberry_bush, crampbark, cranberry_tree, viburnum_opulus", "arrow_wood, viburnum_recognitum", "black_haw, viburnum_prunifolium", "weigela, weigela_florida", "teasel, teazel, teasle", "common_teasel, dipsacus_fullonum", "fuller's_teasel, dipsacus_sativus", "wild_teasel, dipsacus_sylvestris", "scabious, scabiosa", "sweet_scabious, pincushion_flower, mournful_widow, scabiosa_atropurpurea", "field_scabious, scabiosa_arvensis", "jewelweed, lady's_earrings, orange_balsam, celandine, touch-me-not, impatiens_capensis", "geranium", "cranesbill, crane's_bill", "wild_geranium, spotted_cranesbill, geranium_maculatum", "meadow_cranesbill, geranium_pratense", "richardson's_geranium, geranium_richardsonii", "herb_robert, herbs_robert, herb_roberts, geranium_robertianum", "sticky_geranium, geranium_viscosissimum", "dove's_foot_geranium, geranium_molle", "rose_geranium, sweet-scented_geranium, pelargonium_graveolens", "fish_geranium, bedding_geranium, zonal_pelargonium, pelargonium_hortorum", "ivy_geranium, ivy-leaved_geranium, hanging_geranium, pelargonium_peltatum", "apple_geranium, nutmeg_geranium, pelargonium_odoratissimum", "lemon_geranium, pelargonium_limoneum", "storksbill, heron's_bill", "musk_clover, muskus_grass, white-stemmed_filaree, erodium_moschatum", "incense_tree", "elephant_tree, bursera_microphylla", "gumbo-limbo, bursera_simaruba", "boswellia_carteri", "salai, boswellia_serrata", "balm_of_gilead, commiphora_meccanensis", "myrrh_tree, commiphora_myrrha", "protium_heptaphyllum", "protium_guianense", "water_starwort", "barbados_cherry, acerola, surinam_cherry, west_indian_cherry, malpighia_glabra", "mahogany, mahogany_tree", "chinaberry, chinaberry_tree, china_tree, persian_lilac, pride-of-india, azederach, azedarach, melia_azederach, melia_azedarach", "neem, neem_tree, nim_tree, margosa, arishth, azadirachta_indica, melia_azadirachta", "neem_seed", "spanish_cedar, spanish_cedar_tree, cedrela_odorata", "satinwood, satinwood_tree, chloroxylon_swietenia", "african_scented_mahogany, cedar_mahogany, sapele_mahogany, entandrophragma_cylindricum", "silver_ash", "native_beech, flindosa, flindosy, flindersia_australis", "bunji-bunji, flindersia_schottiana", "african_mahogany", "lanseh_tree, langsat, langset, lansium_domesticum", "true_mahogany, cuban_mahogany, dominican_mahogany, swietinia_mahogani", "honduras_mahogany, swietinia_macrophylla", "philippine_mahogany, philippine_cedar, kalantas, toona_calantas, cedrela_calantas", "caracolito, ruptiliocarpon_caracolito", "common_wood_sorrel, cuckoo_bread, shamrock, oxalis_acetosella", "bermuda_buttercup, english-weed, oxalis_pes-caprae, oxalis_cernua", "creeping_oxalis, creeping_wood_sorrel, oxalis_corniculata", "goatsfoot, goat's_foot, oxalis_caprina", "violet_wood_sorrel, oxalis_violacea", "oca, oka, oxalis_tuberosa, oxalis_crenata", "carambola, carambola_tree, averrhoa_carambola", "bilimbi, averrhoa_bilimbi", "milkwort", "senega, polygala_alba", "orange_milkwort, yellow_milkwort, candyweed, yellow_bachelor's_button, polygala_lutea", "flowering_wintergreen, gaywings, bird-on-the-wing, fringed_polygala, polygala_paucifolia", "seneca_snakeroot, seneka_snakeroot, senga_root, senega_root, senega_snakeroot, polygala_senega", "common_milkwort, gand_flower, polygala_vulgaris", "rue, herb_of_grace, ruta_graveolens", "citrus, citrus_tree", "orange, orange_tree", "sour_orange, seville_orange, bitter_orange, bitter_orange_tree, bigarade, marmalade_orange, citrus_aurantium", "bergamot, bergamot_orange, citrus_bergamia", "pomelo, pomelo_tree, pummelo, shaddock, citrus_maxima, citrus_grandis, citrus_decumana", "citron, citron_tree, citrus_medica", "grapefruit, citrus_paradisi", "mandarin, mandarin_orange, mandarin_orange_tree, citrus_reticulata", "tangerine, tangerine_tree", "clementine, clementine_tree", "satsuma, satsuma_tree", "sweet_orange, sweet_orange_tree, citrus_sinensis", "temple_orange, temple_orange_tree, tangor, king_orange, citrus_nobilis", "tangelo, tangelo_tree, ugli_fruit, citrus_tangelo", "rangpur, rangpur_lime, lemanderin, citrus_limonia", "lemon, lemon_tree, citrus_limon", "sweet_lemon, sweet_lime, citrus_limetta", "lime, lime_tree, citrus_aurantifolia", "citrange, citrange_tree, citroncirus_webberi", "fraxinella, dittany, burning_bush, gas_plant, dictamnus_alba", "kumquat, cumquat, kumquat_tree", "marumi, marumi_kumquat, round_kumquat, fortunella_japonica", "nagami, nagami_kumquat, oval_kumquat, fortunella_margarita", "cork_tree, phellodendron_amurense", "trifoliate_orange, trifoliata, wild_orange, poncirus_trifoliata", "prickly_ash", "toothache_tree, sea_ash, zanthoxylum_americanum, zanthoxylum_fraxineum", "hercules'-club, hercules'-clubs, hercules-club, zanthoxylum_clava-herculis", "bitterwood_tree", "marupa, simarouba_amara", "paradise_tree, bitterwood, simarouba_glauca", "ailanthus", "tree_of_heaven, tree_of_the_gods, ailanthus_altissima", "wild_mango, dika, wild_mango_tree, irvingia_gabonensis", "pepper_tree, kirkia_wilmsii", "jamaica_quassia, bitterwood, picrasma_excelsa, picrasma_excelsum", "quassia, bitterwood, quassia_amara", "nasturtium", "garden_nasturtium, indian_cress, tropaeolum_majus", "bush_nasturtium, tropaeolum_minus", "canarybird_flower, canarybird_vine, canary_creeper, tropaeolum_peregrinum", "bean_caper, syrian_bean_caper, zygophyllum_fabago", "palo_santo, bulnesia_sarmienti", "lignum_vitae, guaiacum_officinale", "creosote_bush, coville, hediondilla, larrea_tridentata", "caltrop, devil's_weed, tribulus_terestris", "willow, willow_tree", "osier", "white_willow, huntingdon_willow, salix_alba", "silver_willow, silky_willow, salix_alba_sericea, salix_sericea", "golden_willow, salix_alba_vitellina, salix_vitellina", "cricket-bat_willow, salix_alba_caerulea", "arctic_willow, salix_arctica", "weeping_willow, babylonian_weeping_willow, salix_babylonica", "wisconsin_weeping_willow, salix_pendulina, salix_blanda, salix_pendulina_blanda", "pussy_willow, salix_discolor", "sallow", "goat_willow, florist's_willow, pussy_willow, salix_caprea", "peachleaf_willow, peach-leaved_willow, almond-leaves_willow, salix_amygdaloides", "almond_willow, black_hollander, salix_triandra, salix_amygdalina", "hoary_willow, sage_willow, salix_candida", "crack_willow, brittle_willow, snap_willow, salix_fragilis", "prairie_willow, salix_humilis", "dwarf_willow, salix_herbacea", "grey_willow, gray_willow, salix_cinerea", "arroyo_willow, salix_lasiolepis", "shining_willow, salix_lucida", "swamp_willow, black_willow, salix_nigra", "bay_willow, laurel_willow, salix_pentandra", "purple_willow, red_willow, red_osier, basket_willow, purple_osier, salix_purpurea", "balsam_willow, salix_pyrifolia", "creeping_willow, salix_repens", "sitka_willow, silky_willow, salix_sitchensis", "dwarf_grey_willow, dwarf_gray_willow, sage_willow, salix_tristis", "bearberry_willow, salix_uva-ursi", "common_osier, hemp_willow, velvet_osier, salix_viminalis", "poplar, poplar_tree", "balsam_poplar, hackmatack, tacamahac, populus_balsamifera", "white_poplar, white_aspen, abele, aspen_poplar, silver-leaved_poplar, populus_alba", "grey_poplar, gray_poplar, populus_canescens", "black_poplar, populus_nigra", "lombardy_poplar, populus_nigra_italica", "cottonwood", "eastern_cottonwood, necklace_poplar, populus_deltoides", "black_cottonwood, western_balsam_poplar, populus_trichocarpa", "swamp_cottonwood, black_cottonwood, downy_poplar, swamp_poplar, populus_heterophylla", "aspen", "quaking_aspen, european_quaking_aspen, populus_tremula", "american_quaking_aspen, american_aspen, populus_tremuloides", "canadian_aspen, bigtooth_aspen, bigtoothed_aspen, big-toothed_aspen, large-toothed_aspen, large_tooth_aspen, populus_grandidentata", "sandalwood_tree, true_sandalwood, santalum_album", "quandong, quandang, quandong_tree, eucarya_acuminata, fusanus_acuminatus", "rabbitwood, buffalo_nut, pyrularia_pubera", "loranthaceae, family_loranthaceae, mistletoe_family", "mistletoe, loranthus_europaeus", "american_mistletoe, arceuthobium_pusillum", "mistletoe, viscum_album, old_world_mistletoe", "american_mistletoe, phoradendron_serotinum, phoradendron_flavescens", "aalii", "soapberry, soapberry_tree", "wild_china_tree, sapindus_drumondii, sapindus_marginatus", "china_tree, false_dogwood, jaboncillo, chinaberry, sapindus_saponaria", "akee, akee_tree, blighia_sapida", "soapberry_vine", "heartseed, cardiospermum_grandiflorum", "balloon_vine, heart_pea, cardiospermum_halicacabum", "longan, lungen, longanberry, dimocarpus_longan, euphorbia_litchi, nephelium_longana", "harpullia", "harpulla, harpullia_cupanioides", "moreton_bay_tulipwood, harpullia_pendula", "litchi, lichee, litchi_tree, litchi_chinensis, nephelium_litchi", "spanish_lime, spanish_lime_tree, honey_berry, mamoncillo, genip, ginep, melicocca_bijuga, melicocca_bijugatus", "rambutan, rambotan, rambutan_tree, nephelium_lappaceum", "pulasan, pulassan, pulasan_tree, nephelium_mutabile", "pachysandra", "allegheny_spurge, allegheny_mountain_spurge, pachysandra_procumbens", "bittersweet, american_bittersweet, climbing_bittersweet, false_bittersweet, staff_vine, waxwork, shrubby_bittersweet, celastrus_scandens", "spindle_tree, spindleberry, spindleberry_tree", "winged_spindle_tree, euonymous_alatus", "wahoo, burning_bush, euonymus_atropurpureus", "strawberry_bush, wahoo, euonymus_americanus", "evergreen_bittersweet, euonymus_fortunei_radicans, euonymus_radicans_vegetus", "cyrilla, leatherwood, white_titi, cyrilla_racemiflora", "titi, buckwheat_tree, cliftonia_monophylla", "crowberry", "maple", "silver_maple, acer_saccharinum", "sugar_maple, rock_maple, acer_saccharum", "red_maple, scarlet_maple, swamp_maple, acer_rubrum", "moosewood, moose-wood, striped_maple, striped_dogwood, goosefoot_maple, acer_pennsylvanicum", "oregon_maple, big-leaf_maple, acer_macrophyllum", "dwarf_maple, rocky-mountain_maple, acer_glabrum", "mountain_maple, mountain_alder, acer_spicatum", "vine_maple, acer_circinatum", "hedge_maple, field_maple, acer_campestre", "norway_maple, acer_platanoides", "sycamore, great_maple, scottish_maple, acer_pseudoplatanus", "box_elder, ash-leaved_maple, acer_negundo", "california_box_elder, acer_negundo_californicum", "pointed-leaf_maple, acer_argutum", "japanese_maple, full_moon_maple, acer_japonicum", "japanese_maple, acer_palmatum", "holly", "chinese_holly, ilex_cornuta", "bearberry, possum_haw, winterberry, ilex_decidua", "inkberry, gallberry, gall-berry, evergreen_winterberry, ilex_glabra", "mate, paraguay_tea, ilex_paraguariensis", "american_holly, christmas_holly", "low_gallberry_holly", "tall_gallberry_holly", "yaupon_holly", "deciduous_holly", "juneberry_holly", "largeleaf_holly", "geogia_holly", "common_winterberry_holly", "smooth_winterberry_holly", "cashew, cashew_tree, anacardium_occidentale", "goncalo_alves, astronium_fraxinifolium", "venetian_sumac, wig_tree, cotinus_coggygria", "laurel_sumac, malosma_laurina, rhus_laurina", "mango, mango_tree, mangifera_indica", "pistachio, pistacia_vera, pistachio_tree", "terebinth, pistacia_terebinthus", "mastic, mastic_tree, lentisk, pistacia_lentiscus", "australian_sumac, rhodosphaera_rhodanthema, rhus_rhodanthema", "sumac, sumach, shumac", "smooth_sumac, scarlet_sumac, vinegar_tree, rhus_glabra", "sugar-bush, sugar_sumac, rhus_ovata", "staghorn_sumac, velvet_sumac, virginian_sumac, vinegar_tree, rhus_typhina", "squawbush, squaw-bush, skunkbush, rhus_trilobata", "aroeira_blanca, schinus_chichita", "pepper_tree, molle, peruvian_mastic_tree, schinus_molle", "brazilian_pepper_tree, schinus_terebinthifolius", "hog_plum, yellow_mombin, yellow_mombin_tree, spondias_mombin", "mombin, mombin_tree, jocote, spondias_purpurea", "poison_ash, poison_dogwood, poison_sumac, toxicodendron_vernix, rhus_vernix", "poison_ivy, markweed, poison_mercury, poison_oak, toxicodendron_radicans, rhus_radicans", "western_poison_oak, toxicodendron_diversilobum, rhus_diversiloba", "eastern_poison_oak, toxicodendron_quercifolium, rhus_quercifolia, rhus_toxicodenedron", "varnish_tree, lacquer_tree, chinese_lacquer_tree, japanese_lacquer_tree, japanese_varnish_tree, japanese_sumac, toxicodendron_vernicifluum, rhus_verniciflua", "horse_chestnut, buckeye, aesculus_hippocastanum", "buckeye, horse_chestnut, conker", "sweet_buckeye", "ohio_buckeye", "dwarf_buckeye, bottlebrush_buckeye", "red_buckeye", "particolored_buckeye", "ebony, ebony_tree, diospyros_ebenum", "marblewood, marble-wood, andaman_marble, diospyros_kurzii", "marblewood, marble-wood", "persimmon, persimmon_tree", "japanese_persimmon, kaki, diospyros_kaki", "american_persimmon, possumwood, diospyros_virginiana", "date_plum, diospyros_lotus", "buckthorn", "southern_buckthorn, shittimwood, shittim, mock_orange, bumelia_lycioides", "false_buckthorn, chittamwood, chittimwood, shittimwood, black_haw, bumelia_lanuginosa", "star_apple, caimito, chrysophyllum_cainito", "satinleaf, satin_leaf, caimitillo, damson_plum, chrysophyllum_oliviforme", "balata, balata_tree, beefwood, bully_tree, manilkara_bidentata", "sapodilla, sapodilla_tree, manilkara_zapota, achras_zapota", "gutta-percha_tree, palaquium_gutta", "gutta-percha_tree", "canistel, canistel_tree, pouteria_campechiana_nervosa", "marmalade_tree, mammee, sapote, pouteria_zapota, calocarpum_zapota", "sweetleaf, symplocus_tinctoria", "asiatic_sweetleaf, sapphire_berry, symplocus_paniculata", "styrax", "snowbell, styrax_obassia", "japanese_snowbell, styrax_japonicum", "texas_snowbell, texas_snowbells, styrax_texana", "silver-bell_tree, silverbell_tree, snowdrop_tree, opossum_wood, halesia_carolina, halesia_tetraptera", "carnivorous_plant", "pitcher_plant", "common_pitcher_plant, huntsman's_cup, huntsman's_cups, sarracenia_purpurea", "hooded_pitcher_plant, sarracenia_minor", "huntsman's_horn, huntsman's_horns, yellow_trumpet, yellow_pitcher_plant, trumpets, sarracenia_flava", "tropical_pitcher_plant", "sundew, sundew_plant, daily_dew", "venus's_flytrap, venus's_flytraps, dionaea_muscipula", "waterwheel_plant, aldrovanda_vesiculosa", "drosophyllum_lusitanicum", "roridula", "australian_pitcher_plant, cephalotus_follicularis", "sedum", "stonecrop", "rose-root, midsummer-men, sedum_rosea", "orpine, orpin, livelong, live-forever, sedum_telephium", "pinwheel, aeonium_haworthii", "christmas_bush, christmas_tree, ceratopetalum_gummiferum", "hortensia, hydrangea_macrophylla_hortensis", "fall-blooming_hydrangea, hydrangea_paniculata", "carpenteria, carpenteria_californica", "decumary, decumaria_barbata, decumaria_barbara", "deutzia", "philadelphus", "mock_orange, syringa, philadelphus_coronarius", "saxifrage, breakstone, rockfoil", "yellow_mountain_saxifrage, saxifraga_aizoides", "meadow_saxifrage, fair-maids-of-france, saxifraga_granulata", "mossy_saxifrage, saxifraga_hypnoides", "western_saxifrage, saxifraga_occidentalis", "purple_saxifrage, saxifraga_oppositifolia", "star_saxifrage, starry_saxifrage, saxifraga_stellaris", "strawberry_geranium, strawberry_saxifrage, mother-of-thousands, saxifraga_stolonifera, saxifraga_sarmentosam", "astilbe", "false_goatsbeard, astilbe_biternata", "dwarf_astilbe, astilbe_chinensis_pumila", "spirea, spiraea, astilbe_japonica", "bergenia", "coast_boykinia, boykinia_elata, boykinia_occidentalis", "golden_saxifrage, golden_spleen", "umbrella_plant, indian_rhubarb, darmera_peltata, peltiphyllum_peltatum", "bridal_wreath, bridal-wreath, francoa_ramosa", "alumroot, alumbloom", "coralbells, heuchera_sanguinea", "leatherleaf_saxifrage, leptarrhena_pyrolifolia", "woodland_star, lithophragma_affine, lithophragma_affinis, tellima_affinis", "prairie_star, lithophragma_parviflorum", "miterwort, mitrewort, bishop's_cap", "five-point_bishop's_cap, mitella_pentandra", "parnassia, grass-of-parnassus", "bog_star, parnassia_palustris", "fringed_grass_of_parnassus, parnassia_fimbriata", "false_alumroot, fringe_cups, tellima_grandiflora", "foamflower, coolwart, false_miterwort, false_mitrewort, tiarella_cordifolia", "false_miterwort, false_mitrewort, tiarella_unifoliata", "pickaback_plant, piggyback_plant, youth-on-age, tolmiea_menziesii", "currant, currant_bush", "black_currant, european_black_currant, ribes_nigrum", "white_currant, ribes_sativum", "gooseberry, gooseberry_bush, ribes_uva-crispa, ribes_grossularia", "plane_tree, sycamore, platan", "london_plane, platanus_acerifolia", "american_sycamore, american_plane, buttonwood, platanus_occidentalis", "oriental_plane, platanus_orientalis", "california_sycamore, platanus_racemosa", "arizona_sycamore, platanus_wrightii", "greek_valerian, polemonium_reptans", "northern_jacob's_ladder, polemonium_boreale", "skunkweed, skunk-weed, polemonium_viscosum", "phlox", "moss_pink, mountain_phlox, moss_phlox, dwarf_phlox, phlox_subulata", "evening-snow, linanthus_dichotomus", "acanthus", "bear's_breech, bear's_breeches, sea_holly, acanthus_mollis", "caricature_plant, graptophyllum_pictum", "black-eyed_susan, black-eyed_susan_vine, thunbergia_alata", "catalpa, indian_bean", "catalpa_bignioides", "catalpa_speciosa", "desert_willow, chilopsis_linearis", "calabash, calabash_tree, crescentia_cujete", "calabash", "borage, tailwort, borago_officinalis", "common_amsinckia, amsinckia_intermedia", "anchusa", "bugloss, alkanet, anchusa_officinalis", "cape_forget-me-not, anchusa_capensis", "cape_forget-me-not, anchusa_riparia", "spanish_elm, equador_laurel, salmwood, cypre, princewood, cordia_alliodora", "princewood, spanish_elm, cordia_gerascanthus", "chinese_forget-me-not, cynoglossum_amabile", "hound's-tongue, cynoglossum_officinale", "hound's-tongue, cynoglossum_virginaticum", "blueweed, blue_devil, blue_thistle, viper's_bugloss, echium_vulgare", "beggar's_lice, beggar_lice", "gromwell, lithospermum_officinale", "puccoon, lithospermum_caroliniense", "virginia_bluebell, virginia_cowslip, mertensia_virginica", "garden_forget-me-not, myosotis_sylvatica", "forget-me-not, mouse_ear, myosotis_scorpiodes", "false_gromwell", "comfrey, cumfrey", "common_comfrey, boneset, symphytum_officinale", "convolvulus", "bindweed", "field_bindweed, wild_morning-glory, convolvulus_arvensis", "scammony, convolvulus_scammonia", "silverweed", "dodder", "dichondra, dichondra_micrantha", "cypress_vine, star-glory, indian_pink, ipomoea_quamoclit, quamoclit_pennata", "moonflower, belle_de_nuit, ipomoea_alba", "wild_potato_vine, wild_sweet_potato_vine, man-of-the-earth, manroot, scammonyroot, ipomoea_panurata, ipomoea_fastigiata", "red_morning-glory, star_ipomoea, ipomoea_coccinea", "man-of-the-earth, ipomoea_leptophylla", "scammony, ipomoea_orizabensis", "japanese_morning_glory, ipomoea_nil", "imperial_japanese_morning_glory, ipomoea_imperialis", "gesneriad", "gesneria", "achimenes, hot_water_plant", "aeschynanthus", "lace-flower_vine, alsobia_dianthiflora, episcia_dianthiflora", "columnea", "episcia", "gloxinia", "canterbury_bell, gloxinia_perennis", "kohleria", "african_violet, saintpaulia_ionantha", "streptocarpus", "cape_primrose", "waterleaf", "virginia_waterleaf, shawnee_salad, shawny, indian_salad, john's_cabbage, hydrophyllum_virginianum", "yellow_bells, california_yellow_bells, whispering_bells, emmanthe_penduliflora", "yerba_santa, eriodictyon_californicum", "nemophila", "baby_blue-eyes, nemophila_menziesii", "five-spot, nemophila_maculata", "scorpionweed, scorpion_weed, phacelia", "california_bluebell, phacelia_campanularia", "california_bluebell, whitlavia, phacelia_minor, phacelia_whitlavia", "fiddleneck, phacelia_tanacetifolia", "fiesta_flower, pholistoma_auritum, nemophila_aurita", "basil_thyme, basil_balm, mother_of_thyme, acinos_arvensis, satureja_acinos", "giant_hyssop", "yellow_giant_hyssop, agastache_nepetoides", "anise_hyssop, agastache_foeniculum", "mexican_hyssop, agastache_mexicana", "bugle, bugleweed", "creeping_bugle, ajuga_reptans", "erect_bugle, blue_bugle, ajuga_genevensis", "pyramid_bugle, ajuga_pyramidalis", "wood_mint", "hairy_wood_mint, blephilia_hirsuta", "downy_wood_mint, blephilia_celiata", "calamint", "common_calamint, calamintha_sylvatica, satureja_calamintha_officinalis", "large-flowered_calamint, calamintha_grandiflora, clinopodium_grandiflorum, satureja_grandiflora", "lesser_calamint, field_balm, calamintha_nepeta, calamintha_nepeta_glantulosa, satureja_nepeta, satureja_calamintha_glandulosa", "wild_basil, cushion_calamint, clinopodium_vulgare, satureja_vulgaris", "horse_balm, horseweed, stoneroot, stone-root, richweed, stone_root, collinsonia_canadensis", "coleus, flame_nettle", "country_borage, coleus_aromaticus, coleus_amboinicus, plectranthus_amboinicus", "painted_nettle, joseph's_coat, coleus_blumei, solenostemon_blumei, solenostemon_scutellarioides", "apalachicola_rosemary, conradina_glabra", "dragonhead, dragon's_head, dracocephalum_parviflorum", "elsholtzia", "hemp_nettle, dead_nettle, galeopsis_tetrahit", "ground_ivy, alehoof, field_balm, gill-over-the-ground, runaway_robin, glechoma_hederaceae, nepeta_hederaceae", "pennyroyal, american_pennyroyal, hedeoma_pulegioides", "hyssop, hyssopus_officinalis", "dead_nettle", "white_dead_nettle, lamium_album", "henbit, lamium_amplexicaule", "english_lavender, lavandula_angustifolia, lavandula_officinalis", "french_lavender, lavandula_stoechas", "spike_lavender, french_lavender, lavandula_latifolia", "dagga, cape_dagga, red_dagga, wilde_dagga, leonotis_leonurus", "lion's-ear, leonotis_nepetaefolia, leonotis_nepetifolia", "motherwort, leonurus_cardiaca", "pitcher_sage, lepechinia_calycina, sphacele_calycina", "bugleweed, lycopus_virginicus", "water_horehound, lycopus_americanus", "gipsywort, gypsywort, lycopus_europaeus", "origanum", "oregano, marjoram, pot_marjoram, wild_marjoram, winter_sweet, origanum_vulgare", "sweet_marjoram, knotted_marjoram, origanum_majorana, majorana_hortensis", "horehound", "common_horehound, white_horehound, marrubium_vulgare", "lemon_balm, garden_balm, sweet_balm, bee_balm, beebalm, melissa_officinalis", "corn_mint, field_mint, mentha_arvensis", "water-mint, water_mint, mentha_aquatica", "bergamot_mint, lemon_mint, eau_de_cologne_mint, mentha_citrata", "horsemint, mentha_longifolia", "peppermint, mentha_piperita", "spearmint, mentha_spicata", "apple_mint, applemint, mentha_rotundifolia, mentha_suaveolens", "pennyroyal, mentha_pulegium", "yerba_buena, micromeria_chamissonis, micromeria_douglasii, satureja_douglasii", "molucca_balm, bells_of_ireland, molucella_laevis", "monarda, wild_bergamot", "bee_balm, beebalm, bergamot_mint, oswego_tea, monarda_didyma", "horsemint, monarda_punctata", "bee_balm, beebalm, monarda_fistulosa", "lemon_mint, horsemint, monarda_citriodora", "plains_lemon_monarda, monarda_pectinata", "basil_balm, monarda_clinopodia", "mustang_mint, monardella_lanceolata", "catmint, catnip, nepeta_cataria", "basil", "beefsteak_plant, perilla_frutescens_crispa", "phlomis", "jerusalem_sage, phlomis_fruticosa", "physostegia", "plectranthus", "patchouli, patchouly, pachouli, pogostemon_cablin", "self-heal, heal_all, prunella_vulgaris", "mountain_mint", "rosemary, rosmarinus_officinalis", "clary_sage, salvia_clarea", "purple_sage, chaparral_sage, salvia_leucophylla", "cancerweed, cancer_weed, salvia_lyrata", "common_sage, ramona, salvia_officinalis", "meadow_clary, salvia_pratensis", "clary, salvia_sclarea", "pitcher_sage, salvia_spathacea", "mexican_mint, salvia_divinorum", "wild_sage, wild_clary, vervain_sage, salvia_verbenaca", "savory", "summer_savory, satureja_hortensis, satureia_hortensis", "winter_savory, satureja_montana, satureia_montana", "skullcap, helmetflower", "blue_pimpernel, blue_skullcap, mad-dog_skullcap, mad-dog_weed, scutellaria_lateriflora", "hedge_nettle, dead_nettle, stachys_sylvatica", "hedge_nettle, stachys_palustris", "germander", "american_germander, wood_sage, teucrium_canadense", "cat_thyme, marum, teucrium_marum", "wood_sage, teucrium_scorodonia", "thyme", "common_thyme, thymus_vulgaris", "wild_thyme, creeping_thyme, thymus_serpyllum", "blue_curls", "turpentine_camphor_weed, camphorweed, vinegarweed, trichostema_lanceolatum", "bastard_pennyroyal, trichostema_dichotomum", "bladderwort", "butterwort", "genlisea", "martynia, martynia_annua", "common_unicorn_plant, devil's_claw, common_devil's_claw, elephant-tusk, proboscis_flower, ram's_horn, proboscidea_louisianica", "sand_devil's_claw, proboscidea_arenaria, martynia_arenaria", "sweet_unicorn_plant, proboscidea_fragrans, martynia_fragrans", "figwort", "snapdragon", "white_snapdragon, antirrhinum_coulterianum", "yellow_twining_snapdragon, antirrhinum_filipes", "mediterranean_snapdragon, antirrhinum_majus", "kitten-tails", "alpine_besseya, besseya_alpina", "false_foxglove, aureolaria_pedicularia, gerardia_pedicularia", "false_foxglove, aureolaria_virginica, gerardia_virginica", "calceolaria, slipperwort", "indian_paintbrush, painted_cup", "desert_paintbrush, castilleja_chromosa", "giant_red_paintbrush, castilleja_miniata", "great_plains_paintbrush, castilleja_sessiliflora", "sulfur_paintbrush, castilleja_sulphurea", "shellflower, shell-flower, turtlehead, snakehead, snake-head, chelone_glabra", "maiden_blue-eyed_mary, collinsia_parviflora", "blue-eyed_mary, collinsia_verna", "foxglove, digitalis", "common_foxglove, fairy_bell, fingerflower, finger-flower, fingerroot, finger-root, digitalis_purpurea", "yellow_foxglove, straw_foxglove, digitalis_lutea", "gerardia", "blue_toadflax, old-field_toadflax, linaria_canadensis", "toadflax, butter-and-eggs, wild_snapdragon, devil's_flax, linaria_vulgaris", "golden-beard_penstemon, penstemon_barbatus", "scarlet_bugler, penstemon_centranthifolius", "red_shrubby_penstemon, redwood_penstemon", "platte_river_penstemon, penstemon_cyananthus", "hot-rock_penstemon, penstemon_deustus", "jones'_penstemon, penstemon_dolius", "shrubby_penstemon, lowbush_penstemon, penstemon_fruticosus", "narrow-leaf_penstemon, penstemon_linarioides", "balloon_flower, scented_penstemon, penstemon_palmeri", "parry's_penstemon, penstemon_parryi", "rock_penstemon, cliff_penstemon, penstemon_rupicola", "rydberg's_penstemon, penstemon_rydbergii", "cascade_penstemon, penstemon_serrulatus", "whipple's_penstemon, penstemon_whippleanus", "moth_mullein, verbascum_blattaria", "white_mullein, verbascum_lychnitis", "purple_mullein, verbascum_phoeniceum", "common_mullein, great_mullein, aaron's_rod, flannel_mullein, woolly_mullein, torch, verbascum_thapsus", "veronica, speedwell", "field_speedwell, veronica_agrestis", "brooklime, american_brooklime, veronica_americana", "corn_speedwell, veronica_arvensis", "brooklime, european_brooklime, veronica_beccabunga", "germander_speedwell, bird's_eye, veronica_chamaedrys", "water_speedwell, veronica_michauxii, veronica_anagallis-aquatica", "common_speedwell, gypsyweed, veronica_officinalis", "purslane_speedwell, veronica_peregrina", "thyme-leaved_speedwell, veronica_serpyllifolia", "nightshade", "horse_nettle, ball_nettle, bull_nettle, ball_nightshade, solanum_carolinense", "african_holly, solanum_giganteum", "potato_vine, solanum_jasmoides", "garden_huckleberry, wonderberry, sunberry, solanum_nigrum_guineese, solanum_melanocerasum, solanum_burbankii", "naranjilla, solanum_quitoense", "potato_vine, giant_potato_creeper, solanum_wendlandii", "potato_tree, brazilian_potato_tree, solanum_wrightii, solanum_macranthum", "belladonna, belladonna_plant, deadly_nightshade, atropa_belladonna", "bush_violet, browallia", "lady-of-the-night, brunfelsia_americana", "angel's_trumpet, maikoa, brugmansia_arborea, datura_arborea", "angel's_trumpet, brugmansia_suaveolens, datura_suaveolens", "red_angel's_trumpet, brugmansia_sanguinea, datura_sanguinea", "cone_pepper, capsicum_annuum_conoides", "bird_pepper, capsicum_frutescens_baccatum, capsicum_baccatum", "day_jessamine, cestrum_diurnum", "night_jasmine, night_jessamine, cestrum_nocturnum", "tree_tomato, tamarillo", "thorn_apple", "jimsonweed, jimson_weed, jamestown_weed, common_thorn_apple, apple_of_peru, datura_stramonium", "pichi, fabiana_imbricata", "henbane, black_henbane, stinking_nightshade, hyoscyamus_niger", "egyptian_henbane, hyoscyamus_muticus", "matrimony_vine, boxthorn", "common_matrimony_vine, duke_of_argyll's_tea_tree, lycium_barbarum, lycium_halimifolium", "christmasberry, christmas_berry, lycium_carolinianum", "plum_tomato", "mandrake, devil's_apples, mandragora_officinarum", "mandrake_root, mandrake", "apple_of_peru, shoo_fly, nicandra_physaloides", "flowering_tobacco, jasmine_tobacco, nicotiana_alata", "common_tobacco, nicotiana_tabacum", "wild_tobacco, indian_tobacco, nicotiana_rustica", "cupflower, nierembergia", "whitecup, nierembergia_repens, nierembergia_rivularis", "petunia", "large_white_petunia, petunia_axillaris", "violet-flowered_petunia, petunia_integrifolia", "hybrid_petunia, petunia_hybrida", "cape_gooseberry, purple_ground_cherry, physalis_peruviana", "strawberry_tomato, dwarf_cape_gooseberry, physalis_pruinosa", "tomatillo, jamberry, mexican_husk_tomato, physalis_ixocarpa", "tomatillo, miltomate, purple_ground_cherry, jamberry, physalis_philadelphica", "yellow_henbane, physalis_viscosa", "cock's_eggs, salpichroa_organifolia, salpichroa_rhomboidea", "salpiglossis", "painted_tongue, salpiglossis_sinuata", "butterfly_flower, poor_man's_orchid, schizanthus", "scopolia_carniolica", "chalice_vine, trumpet_flower, cupflower, solandra_guttata", "verbena, vervain", "lantana", "black_mangrove, avicennia_marina", "white_mangrove, avicennia_officinalis", "black_mangrove, aegiceras_majus", "teak, tectona_grandis", "spurge", "sun_spurge, wartweed, wartwort, devil's_milk, euphorbia_helioscopia", "petty_spurge, devil's_milk, euphorbia_peplus", "medusa's_head, euphorbia_medusae, euphorbia_caput-medusae", "wild_spurge, flowering_spurge, tramp's_spurge, euphorbia_corollata", "snow-on-the-mountain, snow-in-summer, ghost_weed, euphorbia_marginata", "cypress_spurge, euphorbia_cyparissias", "leafy_spurge, wolf's_milk, euphorbia_esula", "hairy_spurge, euphorbia_hirsuta", "poinsettia, christmas_star, christmas_flower, lobster_plant, mexican_flameleaf, painted_leaf, euphorbia_pulcherrima", "japanese_poinsettia, mole_plant, paint_leaf, euphorbia_heterophylla", "fire-on-the-mountain, painted_leaf, mexican_fire_plant, euphorbia_cyathophora", "wood_spurge, euphorbia_amygdaloides", "dwarf_spurge, euphorbia_exigua", "scarlet_plume, euphorbia_fulgens", "naboom, cactus_euphorbia, euphorbia_ingens", "crown_of_thorns, christ_thorn, christ_plant, euphorbia_milii", "toothed_spurge, euphorbia_dentata", "three-seeded_mercury, acalypha_virginica", "croton, croton_tiglium", "cascarilla, croton_eluteria", "cascarilla_bark, eleuthera_bark, sweetwood_bark", "castor-oil_plant, castor_bean_plant, palma_christi, palma_christ, ricinus_communis", "spurge_nettle, tread-softly, devil_nettle, pica-pica, cnidoscolus_urens, jatropha_urens, jatropha_stimulosus", "physic_nut, jatropha_curcus", "para_rubber_tree, caoutchouc_tree, hevea_brasiliensis", "cassava, casava", "bitter_cassava, manioc, mandioc, mandioca, tapioca_plant, gari, manihot_esculenta, manihot_utilissima", "cassava, manioc", "sweet_cassava, manihot_dulcis", "candlenut, varnish_tree, aleurites_moluccana", "tung_tree, tung, tung-oil_tree, aleurites_fordii", "slipper_spurge, slipper_plant", "candelilla, pedilanthus_bracteatus, pedilanthus_pavonis", "jewbush, jew-bush, jew_bush, redbird_cactus, redbird_flower, pedilanthus_tithymaloides", "jumping_bean, jumping_seed, mexican_jumping_bean", "camellia, camelia", "japonica, camellia_japonica", "umbellifer, umbelliferous_plant", "wild_parsley", "fool's_parsley, lesser_hemlock, aethusa_cynapium", "dill, anethum_graveolens", "angelica, angelique", "garden_angelica, archangel, angelica_archangelica", "wild_angelica, angelica_sylvestris", "chervil, beaked_parsley, anthriscus_cereifolium", "cow_parsley, wild_chervil, anthriscus_sylvestris", "wild_celery, apium_graveolens", "astrantia, masterwort", "greater_masterwort, astrantia_major", "caraway, carum_carvi", "whorled_caraway", "water_hemlock, cicuta_verosa", "spotted_cowbane, spotted_hemlock, spotted_water_hemlock", "hemlock, poison_hemlock, poison_parsley, california_fern, nebraska_fern, winter_fern, conium_maculatum", "earthnut, conopodium_denudatum", "cumin, cuminum_cyminum", "wild_carrot, queen_anne's_lace, daucus_carota", "eryngo, eringo", "sea_holly, sea_holm, sea_eryngium, eryngium_maritimum", "button_snakeroot, eryngium_aquaticum", "rattlesnake_master, rattlesnake's_master, button_snakeroot, eryngium_yuccifolium", "fennel", "common_fennel, foeniculum_vulgare", "florence_fennel, foeniculum_dulce, foeniculum_vulgare_dulce", "cow_parsnip, hogweed, heracleum_sphondylium", "lovage, levisticum_officinale", "sweet_cicely, myrrhis_odorata", "water_fennel, oenanthe_aquatica", "parsnip, pastinaca_sativa", "cultivated_parsnip", "wild_parsnip, madnep", "parsley, petroselinum_crispum", "italian_parsley, flat-leaf_parsley, petroselinum_crispum_neapolitanum", "hamburg_parsley, turnip-rooted_parsley, petroselinum_crispum_tuberosum", "anise, anise_plant, pimpinella_anisum", "sanicle, snakeroot", "purple_sanicle, sanicula_bipinnatifida", "european_sanicle, sanicula_europaea", "water_parsnip, sium_suave", "greater_water_parsnip, sium_latifolium", "skirret, sium_sisarum", "dogwood, dogwood_tree, cornel", "common_white_dogwood, eastern_flowering_dogwood, cornus_florida", "red_osier, red_osier_dogwood, red_dogwood, american_dogwood, redbrush, cornus_stolonifera", "silky_dogwood, cornus_obliqua", "silky_cornel, silky_dogwood, cornus_amomum", "common_european_dogwood, red_dogwood, blood-twig, pedwood, cornus_sanguinea", "bunchberry, dwarf_cornel, crackerberry, pudding_berry, cornus_canadensis", "cornelian_cherry, cornus_mas", "puka, griselinia_lucida", "kapuka, griselinia_littoralis", "valerian", "common_valerian, garden_heliotrope, valeriana_officinalis", "common_corn_salad, lamb's_lettuce, valerianella_olitoria, valerianella_locusta", "red_valerian, french_honeysuckle, centranthus_ruber", "filmy_fern, film_fern", "bristle_fern, filmy_fern", "hare's-foot_bristle_fern, trichomanes_boschianum", "killarney_fern, trichomanes_speciosum", "kidney_fern, trichomanes_reniforme", "flowering_fern, osmund", "royal_fern, royal_osmund, king_fern, ditch_fern, french_bracken, osmunda_regalis", "interrupted_fern, osmunda_clatonia", "crape_fern, prince-of-wales_fern, prince-of-wales_feather, prince-of-wales_plume, leptopteris_superba, todea_superba", "crepe_fern, king_fern, todea_barbara", "curly_grass, curly_grass_fern, schizaea_pusilla", "pine_fern, anemia_adiantifolia", "climbing_fern", "creeping_fern, hartford_fern, lygodium_palmatum", "climbing_maidenhair, climbing_maidenhair_fern, snake_fern, lygodium_microphyllum", "scented_fern, mohria_caffrorum", "clover_fern, pepperwort", "nardoo, nardo, common_nardoo, marsilea_drummondii", "water_clover, marsilea_quadrifolia", "pillwort, pilularia_globulifera", "regnellidium, regnellidium_diphyllum", "floating-moss, salvinia_rotundifolia, salvinia_auriculata", "mosquito_fern, floating_fern, carolina_pond_fern, azolla_caroliniana", "adder's_tongue, adder's_tongue_fern", "ribbon_fern, ophioglossum_pendulum", "grape_fern", "daisyleaf_grape_fern, daisy-leaved_grape_fern, botrychium_matricariifolium", "leathery_grape_fern, botrychium_multifidum", "rattlesnake_fern, botrychium_virginianum", "flowering_fern, helminthostachys_zeylanica", "powdery_mildew", "dutch_elm_fungus, ceratostomella_ulmi", "ergot, claviceps_purpurea", "rye_ergot", "black_root_rot_fungus, xylaria_mali", "dead-man's-fingers, dead-men's-fingers, xylaria_polymorpha", "sclerotinia", "brown_cup", "earthball, false_truffle, puffball, hard-skinned_puffball", "scleroderma_citrinum, scleroderma_aurantium", "scleroderma_flavidium, star_earthball", "scleroderma_bovista, smooth_earthball", "podaxaceae", "stalked_puffball", "stalked_puffball", "false_truffle", "rhizopogon_idahoensis", "truncocolumella_citrina", "mucor", "rhizopus", "bread_mold, rhizopus_nigricans", "slime_mold, slime_mould", "true_slime_mold, acellular_slime_mold, plasmodial_slime_mold, myxomycete", "cellular_slime_mold", "dictostylium", "pond-scum_parasite", "potato_wart_fungus, synchytrium_endobioticum", "white_fungus, saprolegnia_ferax", "water_mold", "downy_mildew, false_mildew", "blue_mold_fungus, peronospora_tabacina", "onion_mildew, peronospora_destructor", "tobacco_mildew, peronospora_hyoscyami", "white_rust", "pythium", "damping_off_fungus, pythium_debaryanum", "phytophthora_citrophthora", "phytophthora_infestans", "clubroot_fungus, plasmodiophora_brassicae", "geglossaceae", "sarcosomataceae", "rufous_rubber_cup", "devil's_cigar", "devil's_urn", "truffle, earthnut, earth-ball", "club_fungus", "coral_fungus", "tooth_fungus", "lichen", "ascolichen", "basidiolichen", "lecanora", "manna_lichen", "archil, orchil", "roccella, roccella_tinctoria", "beard_lichen, beard_moss, usnea_barbata", "horsehair_lichen, horsetail_lichen", "reindeer_moss, reindeer_lichen, arctic_moss, cladonia_rangiferina", "crottle, crottal, crotal", "iceland_moss, iceland_lichen, cetraria_islandica", "fungus", "promycelium", "true_fungus", "basidiomycete, basidiomycetous_fungi", "mushroom", "agaric", "mushroom", "mushroom", "toadstool", "horse_mushroom, agaricus_arvensis", "meadow_mushroom, field_mushroom, agaricus_campestris", "shiitake, shiitake_mushroom, chinese_black_mushroom, golden_oak_mushroom, oriental_black_mushroom, lentinus_edodes", "scaly_lentinus, lentinus_lepideus", "royal_agaric, caesar's_agaric, amanita_caesarea", "false_deathcap, amanita_mappa", "fly_agaric, amanita_muscaria", "death_cap, death_cup, death_angel, destroying_angel, amanita_phalloides", "blushing_mushroom, blusher, amanita_rubescens", "destroying_angel, amanita_verna", "chanterelle, chantarelle, cantharellus_cibarius", "floccose_chanterelle, cantharellus_floccosus", "pig's_ears, cantharellus_clavatus", "cinnabar_chanterelle, cantharellus_cinnabarinus", "jack-o-lantern_fungus, jack-o-lantern, jack-a-lantern, omphalotus_illudens", "inky_cap, inky-cap_mushroom, coprinus_atramentarius", "shaggymane, shaggy_cap, shaggymane_mushroom, coprinus_comatus", "milkcap, lactarius_delicioso", "fairy-ring_mushroom, marasmius_oreades", "fairy_ring, fairy_circle", "oyster_mushroom, oyster_fungus, oyster_agaric, pleurotus_ostreatus", "olive-tree_agaric, pleurotus_phosphoreus", "pholiota_astragalina", "pholiota_aurea, golden_pholiota", "pholiota_destruens", "pholiota_flammans", "pholiota_flavida", "nameko, viscid_mushroom, pholiota_nameko", "pholiota_squarrosa-adiposa", "pholiota_squarrosa, scaly_pholiota", "pholiota_squarrosoides", "stropharia_ambigua", "stropharia_hornemannii", "stropharia_rugoso-annulata", "gill_fungus", "entoloma_lividum, entoloma_sinuatum", "entoloma_aprile", "chlorophyllum_molybdites", "lepiota", "parasol_mushroom, lepiota_procera", "poisonous_parasol, lepiota_morgani", "lepiota_naucina", "lepiota_rhacodes", "american_parasol, lepiota_americana", "lepiota_rubrotincta", "lepiota_clypeolaria", "onion_stem, lepiota_cepaestipes", "pink_disease_fungus, corticium_salmonicolor", "bottom_rot_fungus, corticium_solani", "potato_fungus, pellicularia_filamentosa, rhizoctinia_solani", "coffee_fungus, pellicularia_koleroga", "blewits, clitocybe_nuda", "sandy_mushroom, tricholoma_populinum", "tricholoma_pessundatum", "tricholoma_sejunctum", "man-on-a-horse, tricholoma_flavovirens", "tricholoma_venenata", "tricholoma_pardinum", "tricholoma_vaccinum", "tricholoma_aurantium", "volvaria_bombycina", "pluteus_aurantiorugosus", "pluteus_magnus, sawdust_mushroom", "deer_mushroom, pluteus_cervinus", "straw_mushroom, chinese_mushroom, volvariella_volvacea", "volvariella_bombycina", "clitocybe_clavipes", "clitocybe_dealbata", "clitocybe_inornata", "clitocybe_robusta, clytocybe_alba", "clitocybe_irina, tricholoma_irinum, lepista_irina", "clitocybe_subconnexa", "winter_mushroom, flammulina_velutipes", "mycelium", "sclerotium", "sac_fungus", "ascomycete, ascomycetous_fungus", "clavicipitaceae, grainy_club_mushrooms", "grainy_club", "yeast", "baker's_yeast, brewer's_yeast, saccharomyces_cerevisiae", "wine-maker's_yeast, saccharomyces_ellipsoides", "aspergillus_fumigatus", "brown_root_rot_fungus, thielavia_basicola", "discomycete, cup_fungus", "leotia_lubrica", "mitrula_elegans", "sarcoscypha_coccinea, scarlet_cup", "caloscypha_fulgens", "aleuria_aurantia, orange_peel_fungus", "elf_cup", "peziza_domicilina", "blood_cup, fairy_cup, peziza_coccinea", "urnula_craterium, urn_fungus", "galiella_rufa", "jafnea_semitosta", "morel", "common_morel, morchella_esculenta, sponge_mushroom, sponge_morel", "disciotis_venosa, cup_morel", "verpa, bell_morel", "verpa_bohemica, early_morel", "verpa_conica, conic_verpa", "black_morel, morchella_conica, conic_morel, morchella_angusticeps, narrowhead_morel", "morchella_crassipes, thick-footed_morel", "morchella_semilibera, half-free_morel, cow's_head", "wynnea_americana", "wynnea_sparassoides", "false_morel", "lorchel", "helvella", "helvella_crispa, miter_mushroom", "helvella_acetabulum", "helvella_sulcata", "discina", "gyromitra", "gyromitra_californica, california_false_morel", "gyromitra_sphaerospora, round-spored_gyromitra", "gyromitra_esculenta, brain_mushroom, beefsteak_morel", "gyromitra_infula, saddled-shaped_false_morel", "gyromitra_fastigiata, gyromitra_brunnea", "gyromitra_gigas", "gasteromycete, gastromycete", "stinkhorn, carrion_fungus", "common_stinkhorn, phallus_impudicus", "phallus_ravenelii", "dog_stinkhorn, mutinus_caninus", "calostoma_lutescens", "calostoma_cinnabarina", "calostoma_ravenelii", "stinky_squid, pseudocolus_fusiformis", "puffball, true_puffball", "giant_puffball, calvatia_gigantea", "earthstar", "geastrum_coronatum", "radiigera_fuscogleba", "astreus_pteridis", "astreus_hygrometricus", "bird's-nest_fungus", "gastrocybe_lateritia", "macowanites_americanus", "polypore, pore_fungus, pore_mushroom", "bracket_fungus, shelf_fungus", "albatrellus_dispansus", "albatrellus_ovinus, sheep_polypore", "neolentinus_ponderosus", "oligoporus_leucospongia", "polyporus_tenuiculus", "hen-of-the-woods, hen_of_the_woods, polyporus_frondosus, grifola_frondosa", "polyporus_squamosus, scaly_polypore", "beefsteak_fungus, fistulina_hepatica", "agaric, fomes_igniarius", "bolete", "boletus_chrysenteron", "boletus_edulis", "frost's_bolete, boletus_frostii", "boletus_luridus", "boletus_mirabilis", "boletus_pallidus", "boletus_pulcherrimus", "boletus_pulverulentus", "boletus_roxanae", "boletus_subvelutipes", "boletus_variipes", "boletus_zelleri", "fuscoboletinus_paluster", "fuscoboletinus_serotinus", "leccinum_fibrillosum", "suillus_albivelatus", "old-man-of-the-woods, strobilomyces_floccopus", "boletellus_russellii", "jelly_fungus", "snow_mushroom, tremella_fuciformis", "witches'_butter, tremella_lutescens", "tremella_foliacea", "tremella_reticulata", "jew's-ear, jew's-ears, ear_fungus, auricularia_auricula", "rust, rust_fungus", "aecium", "flax_rust, flax_rust_fungus, melampsora_lini", "blister_rust, cronartium_ribicola", "wheat_rust, puccinia_graminis", "apple_rust, cedar-apple_rust, gymnosporangium_juniperi-virginianae", "smut, smut_fungus", "covered_smut", "loose_smut", "cornsmut, corn_smut", "boil_smut, ustilago_maydis", "sphacelotheca, genus_sphacelotheca", "head_smut, sphacelotheca_reiliana", "bunt, tilletia_caries", "bunt, stinking_smut, tilletia_foetida", "onion_smut, urocystis_cepulae", "flag_smut_fungus", "wheat_flag_smut, urocystis_tritici", "felt_fungus, septobasidium_pseudopedicellatum", "waxycap", "hygrocybe_acutoconica, conic_waxycap", "hygrophorus_borealis", "hygrophorus_caeruleus", "hygrophorus_inocybiformis", "hygrophorus_kauffmanii", "hygrophorus_marzuolus", "hygrophorus_purpurascens", "hygrophorus_russula", "hygrophorus_sordidus", "hygrophorus_tennesseensis", "hygrophorus_turundus", "neohygrophorus_angelesianus", "cortinarius_armillatus", "cortinarius_atkinsonianus", "cortinarius_corrugatus", "cortinarius_gentilis", "cortinarius_mutabilis, purple-staining_cortinarius", "cortinarius_semisanguineus", "cortinarius_subfoetidus", "cortinarius_violaceus", "gymnopilus_spectabilis", "gymnopilus_validipes", "gymnopilus_ventricosus", "mold, mould", "mildew", "verticillium", "monilia", "candida", "candida_albicans, monilia_albicans", "blastomycete", "yellow_spot_fungus, cercospora_kopkei", "green_smut_fungus, ustilaginoidea_virens", "dry_rot", "rhizoctinia", "houseplant", "bedder, bedding_plant", "succulent", "cultivar", "weed", "wort", "brier", "aril", "sporophyll, sporophyl", "sporangium, spore_case, spore_sac", "sporangiophore", "ascus", "ascospore", "arthrospore", "eusporangium", "tetrasporangium", "gametangium", "sorus", "sorus", "partial_veil", "lignum", "vascular_ray, medullary_ray", "phloem, bast", "evergreen, evergreen_plant", "deciduous_plant", "poisonous_plant", "vine", "creeper", "tendril", "root_climber", "lignosae", "arborescent_plant", "snag", "tree", "timber_tree", "treelet", "arbor", "bean_tree", "pollard", "sapling", "shade_tree", "gymnospermous_tree", "conifer, coniferous_tree", "angiospermous_tree, flowering_tree", "nut_tree", "spice_tree", "fever_tree", "stump, tree_stump", "bonsai", "ming_tree", "ming_tree", "undershrub", "subshrub, suffrutex", "bramble", "liana", "geophyte", "desert_plant, xerophyte, xerophytic_plant, xerophile, xerophilous_plant", "mesophyte, mesophytic_plant", "marsh_plant, bog_plant, swamp_plant", "hemiepiphyte, semiepiphyte", "strangler, strangler_tree", "lithophyte, lithophytic_plant", "saprobe", "autophyte, autophytic_plant, autotroph, autotrophic_organism", "root", "taproot", "prop_root", "prophyll", "rootstock", "quickset", "stolon, runner, offset", "tuberous_plant", "rhizome, rootstock, rootstalk", "rachis", "caudex", "cladode, cladophyll, phylloclad, phylloclade", "receptacle", "scape, flower_stalk", "umbel", "petiole, leafstalk", "peduncle", "pedicel, pedicle", "flower_cluster", "raceme", "panicle", "thyrse, thyrsus", "cyme", "cymule", "glomerule", "scorpioid_cyme", "ear, spike, capitulum", "spadix", "bulbous_plant", "bulbil, bulblet", "cormous_plant", "fruit", "fruitlet", "seed", "bean", "nut", "nutlet", "kernel, meat", "syconium", "berry", "aggregate_fruit, multiple_fruit, syncarp", "simple_fruit, bacca", "acinus", "drupe, stone_fruit", "drupelet", "pome, false_fruit", "pod, seedpod", "loment", "pyxidium, pyxis", "husk", "cornhusk", "pod, cod, seedcase", "accessory_fruit, pseudocarp", "buckthorn", "buckthorn_berry, yellow_berry", "cascara_buckthorn, bearberry, bearwood, chittamwood, chittimwood, rhamnus_purshianus", "cascara, cascara_sagrada, chittam_bark, chittem_bark", "carolina_buckthorn, indian_cherry, rhamnus_carolinianus", "coffeeberry, california_buckthorn, california_coffee, rhamnus_californicus", "redberry, red-berry, rhamnus_croceus", "nakedwood", "jujube, jujube_bush, christ's-thorn, jerusalem_thorn, ziziphus_jujuba", "christ's-thorn, jerusalem_thorn, paliurus_spina-christi", "hazel, hazel_tree, pomaderris_apetala", "fox_grape, vitis_labrusca", "muscadine, vitis_rotundifolia", "vinifera, vinifera_grape, common_grape_vine, vitis_vinifera", "pinot_blanc", "sauvignon_grape", "sauvignon_blanc", "muscadet", "riesling", "zinfandel", "chenin_blanc", "malvasia", "verdicchio", "boston_ivy, japanese_ivy, parthenocissus_tricuspidata", "virginia_creeper, american_ivy, woodbine, parthenocissus_quinquefolia", "true_pepper, pepper_vine", "betel, betel_pepper, piper_betel", "cubeb", "schizocarp", "peperomia", "watermelon_begonia, peperomia_argyreia, peperomia_sandersii", "yerba_mansa, anemopsis_californica", "pinna, pinnule", "frond", "bract", "bracteole, bractlet", "involucre", "glume", "palmate_leaf", "pinnate_leaf", "bijugate_leaf, bijugous_leaf, twice-pinnate", "decompound_leaf", "acuminate_leaf", "deltoid_leaf", "ensiform_leaf", "linear_leaf, elongate_leaf", "lyrate_leaf", "obtuse_leaf", "oblanceolate_leaf", "pandurate_leaf, panduriform_leaf", "reniform_leaf", "spatulate_leaf", "even-pinnate_leaf, abruptly-pinnate_leaf", "odd-pinnate_leaf", "pedate_leaf", "crenate_leaf", "dentate_leaf", "denticulate_leaf", "erose_leaf", "runcinate_leaf", "prickly-edged_leaf", "deadwood", "haulm, halm", "branchlet, twig, sprig", "osier", "giant_scrambling_fern, diplopterygium_longissimum", "umbrella_fern, fan_fern, sticherus_flabellatus, gleichenia_flabellata", "floating_fern, water_sprite, ceratopteris_pteridioides", "polypody", "licorice_fern, polypodium_glycyrrhiza", "grey_polypody, gray_polypody, resurrection_fern, polypodium_polypodioides", "leatherleaf, leathery_polypody, coast_polypody, polypodium_scouleri", "rock_polypody, rock_brake, american_wall_fern, polypodium_virgianum", "common_polypody, adder's_fern, wall_fern, golden_maidenhair, golden_polypody, sweet_fern, polypodium_vulgare", "bear's-paw_fern, aglaomorpha_meyeniana", "strap_fern", "florida_strap_fern, cow-tongue_fern, hart's-tongue_fern", "basket_fern, drynaria_rigidula", "snake_polypody, microgramma-piloselloides", "climbing_bird's_nest_fern, microsorium_punctatum", "golden_polypody, serpent_fern, rabbit's-foot_fern, phlebodium_aureum, polypodium_aureum", "staghorn_fern", "south_american_staghorn, platycerium_andinum", "common_staghorn_fern, elkhorn_fern, platycerium_bifurcatum, platycerium_alcicorne", "felt_fern, tongue_fern, pyrrosia_lingua, cyclophorus_lingua", "potato_fern, solanopteris_bifrons", "myrmecophyte", "grass_fern, ribbon_fern, vittaria_lineata", "spleenwort", "black_spleenwort, asplenium_adiantum-nigrum", "bird's_nest_fern, asplenium_nidus", "ebony_spleenwort, scott's_spleenwort, asplenium_platyneuron", "black-stem_spleenwort, black-stemmed_spleenwort, little_ebony_spleenwort", "walking_fern, walking_leaf, asplenium_rhizophyllum, camptosorus_rhizophyllus", "green_spleenwort, asplenium_viride", "mountain_spleenwort, asplenium_montanum", "lobed_spleenwort, asplenium_pinnatifidum", "lanceolate_spleenwort, asplenium_billotii", "hart's-tongue, hart's-tongue_fern, asplenium_scolopendrium, phyllitis_scolopendrium", "scale_fern, scaly_fern, asplenium_ceterach, ceterach_officinarum", "scolopendrium", "deer_fern, blechnum_spicant", "doodia, rasp_fern", "chain_fern", "virginia_chain_fern, woodwardia_virginica", "silver_tree_fern, sago_fern, black_tree_fern, cyathea_medullaris", "davallia", "hare's-foot_fern", "canary_island_hare's_foot_fern, davallia_canariensis", "squirrel's-foot_fern, ball_fern, davalia_bullata, davalia_bullata_mariesii, davallia_mariesii", "bracken, pteridium_esculentum", "soft_tree_fern, dicksonia_antarctica", "scythian_lamb, cibotium_barometz", "false_bracken, culcita_dubia", "thyrsopteris, thyrsopteris_elegans", "shield_fern, buckler_fern", "broad_buckler-fern, dryopteris_dilatata", "fragrant_cliff_fern, fragrant_shield_fern, fragrant_wood_fern, dryopteris_fragrans", "goldie's_fern, goldie's_shield_fern, goldie's_wood_fern, dryopteris_goldiana", "wood_fern, wood-fern, woodfern", "male_fern, dryopteris_filix-mas", "marginal_wood_fern, evergreen_wood_fern, leatherleaf_wood_fern, dryopteris_marginalis", "mountain_male_fern, dryopteris_oreades", "lady_fern, athyrium_filix-femina", "alpine_lady_fern, athyrium_distentifolium", "silvery_spleenwort, glade_fern, narrow-leaved_spleenwort, athyrium_pycnocarpon, diplazium_pycnocarpon", "holly_fern, cyrtomium_aculeatum, polystichum_aculeatum", "bladder_fern", "brittle_bladder_fern, brittle_fern, fragile_fern, cystopteris_fragilis", "mountain_bladder_fern, cystopteris_montana", "bulblet_fern, bulblet_bladder_fern, berry_fern, cystopteris_bulbifera", "silvery_spleenwort, deparia_acrostichoides, athyrium_thelypteroides", "oak_fern, gymnocarpium_dryopteris, thelypteris_dryopteris", "limestone_fern, northern_oak_fern, gymnocarpium_robertianum", "ostrich_fern, shuttlecock_fern, fiddlehead, matteuccia_struthiopteris, pteretis_struthiopteris, onoclea_struthiopteris", "hart's-tongue, hart's-tongue_fern, olfersia_cervina, polybotrya_cervina, polybotria_cervina", "sensitive_fern, bead_fern, onoclea_sensibilis", "christmas_fern, canker_brake, dagger_fern, evergreen_wood_fern, polystichum_acrostichoides", "holly_fern", "braun's_holly_fern, prickly_shield_fern, polystichum_braunii", "western_holly_fern, polystichum_scopulinum", "soft_shield_fern, polystichum_setiferum", "leather_fern, leatherleaf_fern, ten-day_fern, rumohra_adiantiformis, polystichum_adiantiformis", "button_fern, tectaria_cicutaria", "indian_button_fern, tectaria_macrodonta", "woodsia", "rusty_woodsia, fragrant_woodsia, oblong_woodsia, woodsia_ilvensis", "alpine_woodsia, northern_woodsia, flower-cup_fern, woodsia_alpina", "smooth_woodsia, woodsia_glabella", "boston_fern, nephrolepis_exaltata, nephrolepis_exaltata_bostoniensis", "basket_fern, toothed_sword_fern, nephrolepis_pectinata", "golden_fern, leather_fern, acrostichum_aureum", "maidenhair, maidenhair_fern", "common_maidenhair, venushair, venus'-hair_fern, southern_maidenhair, venus_maidenhair, adiantum_capillus-veneris", "american_maidenhair_fern, five-fingered_maidenhair_fern, adiantum_pedatum", "bermuda_maidenhair, bermuda_maidenhair_fern, adiantum_bellum", "brittle_maidenhair, brittle_maidenhair_fern, adiantum_tenerum", "farley_maidenhair, farley_maidenhair_fern, barbados_maidenhair, glory_fern, adiantum_tenerum_farleyense", "annual_fern, jersey_fern, anogramma_leptophylla", "lip_fern, lipfern", "smooth_lip_fern, alabama_lip_fern, cheilanthes_alabamensis", "lace_fern, cheilanthes_gracillima", "wooly_lip_fern, hairy_lip_fern, cheilanthes_lanosa", "southwestern_lip_fern, cheilanthes_eatonii", "bamboo_fern, coniogramme_japonica", "american_rock_brake, american_parsley_fern, cryptogramma_acrostichoides", "european_parsley_fern, mountain_parsley_fern, cryptogramma_crispa", "hand_fern, doryopteris_pedata", "cliff_brake, cliff-brake, rock_brake", "coffee_fern, pellaea_andromedifolia", "purple_rock_brake, pellaea_atropurpurea", "bird's-foot_fern, pellaea_mucronata, pellaea_ornithopus", "button_fern, pellaea_rotundifolia", "silver_fern, pityrogramma_argentea", "golden_fern, pityrogramma_calomelanos_aureoflava", "gold_fern, pityrogramma_chrysophylla", "pteris_cretica", "spider_brake, spider_fern, pteris_multifida", "ribbon_fern, spider_fern, pteris_serrulata", "potato_fern, marattia_salicina", "angiopteris, giant_fern, angiopteris_evecta", "skeleton_fork_fern, psilotum_nudum", "horsetail", "common_horsetail, field_horsetail, equisetum_arvense", "swamp_horsetail, water_horsetail, equisetum_fluviatile", "scouring_rush, rough_horsetail, equisetum_hyemale, equisetum_hyemale_robustum, equisetum_robustum", "marsh_horsetail, equisetum_palustre", "wood_horsetail, equisetum_sylvaticum", "variegated_horsetail, variegated_scouring_rush, equisetum_variegatum", "club_moss, club-moss, lycopod", "shining_clubmoss, lycopodium_lucidulum", "alpine_clubmoss, lycopodium_alpinum", "fir_clubmoss, mountain_clubmoss, little_clubmoss, lycopodium_selago", "ground_cedar, staghorn_moss, lycopodium_complanatum", "ground_fir, princess_pine, tree_clubmoss, lycopodium_obscurum", "foxtail_grass, lycopodium_alopecuroides", "spikemoss, spike_moss, little_club_moss", "meadow_spikemoss, basket_spikemoss, selaginella_apoda", "desert_selaginella, selaginella_eremophila", "resurrection_plant, rose_of_jericho, selaginella_lepidophylla", "florida_selaginella, selaginella_eatonii", "quillwort", "earthtongue, earth-tongue", "snuffbox_fern, meadow_fern, thelypteris_palustris_pubescens, dryopteris_thelypteris_pubescens", "christella", "mountain_fern, oreopteris_limbosperma, dryopteris_oreopteris", "new_york_fern, parathelypteris_novae-boracensis, dryopteris_noveboracensis", "massachusetts_fern, parathelypteris_simulata, thelypteris_simulata", "beech_fern", "broad_beech_fern, southern_beech_fern, phegopteris_hexagonoptera, dryopteris_hexagonoptera, thelypteris_hexagonoptera", "long_beech_fern, narrow_beech_fern, northern_beech_fern, phegopteris_connectilis, dryopteris_phegopteris, thelypteris_phegopteris", "shoestring_fungus", "armillaria_caligata, booted_armillaria", "armillaria_ponderosa, white_matsutake", "armillaria_zelleri", "honey_mushroom, honey_fungus, armillariella_mellea", "milkweed, silkweed", "white_milkweed, asclepias_albicans", "poke_milkweed, asclepias_exaltata", "swamp_milkweed, asclepias_incarnata", "mead's_milkweed, asclepias_meadii, asclepia_meadii", "purple_silkweed, asclepias_purpurascens", "showy_milkweed, asclepias_speciosa", "poison_milkweed, horsetail_milkweed, asclepias_subverticillata", "butterfly_weed, orange_milkweed, chigger_flower, chiggerflower, pleurisy_root, tuber_root, indian_paintbrush, asclepias_tuberosa", "whorled_milkweed, asclepias_verticillata", "cruel_plant, araujia_sericofera", "wax_plant, hoya_carnosa", "silk_vine, periploca_graeca", "stapelia, carrion_flower, starfish_flower", "stapelias_asterias", "stephanotis", "madagascar_jasmine, waxflower, stephanotis_floribunda", "negro_vine, vincetoxicum_hirsutum, vincetoxicum_negrum", "zygospore", "tree_of_knowledge", "orangery", "pocketbook", "shit, dump", "cordage", "yard, pace", "extremum, peak", "leaf_shape, leaf_form", "equilateral", "figure", "pencil", "plane_figure, two-dimensional_figure", "solid_figure, three-dimensional_figure", "line", "bulb", "convex_shape, convexity", "concave_shape, concavity, incurvation, incurvature", "cylinder", "round_shape", "heart", "polygon, polygonal_shape", "convex_polygon", "concave_polygon", "reentrant_polygon, reentering_polygon", "amorphous_shape", "closed_curve", "simple_closed_curve, jordan_curve", "s-shape", "wave, undulation", "extrados", "hook, crotchet", "envelope", "bight", "diameter", "cone, conoid, cone_shape", "funnel, funnel_shape", "oblong", "circle", "circle", "equator", "scallop, crenation, crenature, crenel, crenelle", "ring, halo, annulus, doughnut, anchor_ring", "loop", "bight", "helix, spiral", "element_of_a_cone", "element_of_a_cylinder", "ellipse, oval", "quadrate", "triangle, trigon, trilateral", "acute_triangle, acute-angled_triangle", "isosceles_triangle", "obtuse_triangle, obtuse-angled_triangle", "right_triangle, right-angled_triangle", "scalene_triangle", "parallel", "trapezoid", "star", "pentagon", "hexagon", "heptagon", "octagon", "nonagon", "decagon", "rhombus, rhomb, diamond", "spherical_polygon", "spherical_triangle", "convex_polyhedron", "concave_polyhedron", "cuboid", "quadrangular_prism", "bell, bell_shape, campana", "angular_distance", "true_anomaly", "spherical_angle", "angle_of_refraction", "acute_angle", "groove, channel", "rut", "bulge, bump, hump, swelling, gibbosity, gibbousness, jut, prominence, protuberance, protrusion, extrusion, excrescence", "belly", "bow, arc", "crescent", "ellipsoid", "hypotenuse", "balance, equilibrium, equipoise, counterbalance", "conformation", "symmetry, proportion", "spheroid, ellipsoid_of_revolution", "spherule", "toroid", "column, tower, pillar", "barrel, drum", "pipe, tube", "pellet", "bolus", "dewdrop", "ridge", "rim", "taper", "boundary, edge, bound", "incisure, incisura", "notch", "wrinkle, furrow, crease, crinkle, seam, line", "dermatoglyphic", "frown_line", "line_of_life, life_line, lifeline", "line_of_heart, heart_line, love_line, mensal_line", "crevice, cranny, crack, fissure, chap", "cleft", "roulette, line_roulette", "node", "tree, tree_diagram", "stemma", "brachium", "fork, crotch", "block, cube", "ovoid", "tetrahedron", "pentahedron", "hexahedron", "regular_polyhedron, regular_convex_solid, regular_convex_polyhedron, platonic_body, platonic_solid, ideal_solid", "polyhedral_angle", "cube, regular_hexahedron", "truncated_pyramid", "truncated_cone", "tail, tail_end", "tongue, knife", "trapezohedron", "wedge, wedge_shape, cuneus", "keel", "place, shoes", "herpes", "chlamydia", "wall", "micronutrient", "chyme", "ragweed_pollen", "pina_cloth", "chlorobenzylidenemalononitrile, cs_gas", "carbon, c, atomic_number_6", "charcoal, wood_coal", "rock, stone", "gravel, crushed_rock", "aflatoxin", "alpha-tocopheral", "leopard", "bricks_and_mortar", "lagging", "hydraulic_cement, portland_cement", "choline", "concrete", "glass_wool", "soil, dirt", "high_explosive", "litter", "fish_meal", "greek_fire", "culture_medium, medium", "agar, nutrient_agar", "blood_agar", "hip_tile, hipped_tile", "hyacinth, jacinth", "hydroxide_ion, hydroxyl_ion", "ice, water_ice", "inositol", "linoleum, lino", "lithia_water", "lodestone, loadstone", "pantothenic_acid, pantothen", "paper", "papyrus", "pantile", "blacktop, blacktopping", "tarmacadam, tarmac", "paving, pavement, paving_material", "plaster", "poison_gas", "ridge_tile", "roughcast", "sand", "spackle, spackling_compound", "render", "wattle_and_daub", "stucco", "tear_gas, teargas, lacrimator, lachrymator", "toilet_tissue, toilet_paper, bathroom_tissue", "linseed, flaxseed", "vitamin", "fat-soluble_vitamin", "water-soluble_vitamin", "vitamin_a, antiophthalmic_factor, axerophthol, a", "vitamin_a1, retinol", "vitamin_a2, dehydroretinol", "b-complex_vitamin, b_complex, vitamin_b_complex, vitamin_b, b_vitamin, b", "vitamin_b1, thiamine, thiamin, aneurin, antiberiberi_factor", "vitamin_b12, cobalamin, cyanocobalamin, antipernicious_anemia_factor", "vitamin_b2, vitamin_g, riboflavin, lactoflavin, ovoflavin, hepatoflavin", "vitamin_b6, pyridoxine, pyridoxal, pyridoxamine, adermin", "vitamin_bc, vitamin_m, folate, folic_acid, folacin, pteroylglutamic_acid, pteroylmonoglutamic_acid", "niacin, nicotinic_acid", "vitamin_d, calciferol, viosterol, ergocalciferol, cholecalciferol, d", "vitamin_e, tocopherol, e", "biotin, vitamin_h", "vitamin_k, naphthoquinone, antihemorrhagic_factor", "vitamin_k1, phylloquinone, phytonadione", "vitamin_k3, menadione", "vitamin_p, bioflavinoid, citrin", "vitamin_c, c, ascorbic_acid", "planking", "chipboard, hardboard", "knothole" ]
DrishtiSharma/finetuned-SwinT-Indian-Food-Classification-v2
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned-SwinT-Indian-Food-Classification-v2 This model is a fine-tuned version of [microsoft/swin-base-patch4-window7-224-in22k](https://huggingface.co/microsoft/swin-base-patch4-window7-224-in22k) on the Indian-Food-Images dataset. It achieves the following results on the evaluation set: - Loss: 0.2226 - Accuracy: 0.9458 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.9351 | 0.3 | 100 | 0.6017 | 0.8363 | | 0.5667 | 0.6 | 200 | 0.4384 | 0.8767 | | 0.5548 | 0.9 | 300 | 0.4215 | 0.8767 | | 0.5516 | 1.2 | 400 | 0.4290 | 0.8735 | | 0.3782 | 1.5 | 500 | 0.3502 | 0.8980 | | 0.3115 | 1.8 | 600 | 0.3780 | 0.8937 | | 0.4229 | 2.1 | 700 | 0.3545 | 0.8905 | | 0.3832 | 2.4 | 800 | 0.3446 | 0.9086 | | 0.2745 | 2.7 | 900 | 0.3299 | 0.9150 | | 0.2063 | 3.0 | 1000 | 0.2592 | 0.9277 | | 0.2077 | 3.3 | 1100 | 0.3772 | 0.9150 | | 0.2041 | 3.6 | 1200 | 0.2855 | 0.9214 | | 0.2541 | 3.9 | 1300 | 0.2502 | 0.9330 | | 0.1203 | 4.2 | 1400 | 0.2577 | 0.9362 | | 0.1594 | 4.5 | 1500 | 0.2226 | 0.9458 | | 0.1015 | 4.8 | 1600 | 0.2368 | 0.9437 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
[ "burger", "butter_naan", "kaathi_rolls", "kadai_paneer", "kulfi", "masala_dosa", "momos", "paani_puri", "pakode", "pav_bhaji", "pizza", "samosa", "chai", "chapati", "chole_bhature", "dal_makhani", "dhokla", "fried_rice", "idli", "jalebi" ]
Imene/vit-base-patch16-224-in21k-iiii
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Imene/vit-base-patch16-224-in21k-iiii This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 2.8947 - Train Accuracy: 0.5439 - Train Top-3-accuracy: 0.7916 - Validation Loss: 3.0482 - Validation Accuracy: 0.3907 - Validation Top-3-accuracy: 0.6302 - Epoch: 4 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'inner_optimizer': {'class_name': 'AdamWeightDecay', 'config': {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 3e-05, 'decay_steps': 540, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}}, 'dynamic': True, 'initial_scale': 32768.0, 'dynamic_growth_steps': 2000} - training_precision: mixed_float16 ### Training results | Train Loss | Train Accuracy | Train Top-3-accuracy | Validation Loss | Validation Accuracy | Validation Top-3-accuracy | Epoch | |:----------:|:--------------:|:--------------------:|:---------------:|:-------------------:|:-------------------------:|:-----:| | 3.8068 | 0.0843 | 0.2108 | 3.6116 | 0.1721 | 0.3593 | 0 | | 3.4497 | 0.2735 | 0.4840 | 3.3654 | 0.2779 | 0.4953 | 1 | | 3.1913 | 0.3991 | 0.6314 | 3.1839 | 0.3512 | 0.5977 | 2 | | 3.0017 | 0.4878 | 0.7311 | 3.0867 | 0.3872 | 0.6233 | 3 | | 2.8947 | 0.5439 | 0.7916 | 3.0482 | 0.3907 | 0.6302 | 4 | ### Framework versions - Transformers 4.21.2 - TensorFlow 2.8.2 - Datasets 2.4.0 - Tokenizers 0.12.1
[ "writer_9", "writer_8", "writer_6", "writer_50", "writer_45", "writer_4", "writer_44", "writer_38", "writer_46", "writer_41", "writer_39", "writer_40", "writer_52", "writer_43", "writer_42", "writer_36", "writer_33", "writer_31", "writer_29", "writer_3", "writer_32", "writer_35", "writer_30", "writer_49", "writer_37", "writer_34", "writer_28", "writer_27", "writer_21", "writer_23", "writer_22", "writer_2", "writer_26", "writer_25", "writer_53", "writer_24", "writer_20", "writer_15", "writer_10", "writer_11", "writer_17", "writer_13", "writer_16", "writer_12", "writer_19", "writer_7", "writer_14", "writer_18", "writer_1", "writer_48", "writer_5", "writer_51", "writer_47" ]
Zynovia/vit-base-patch16-224-in21k-wwwwii
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Zynovia/vit-base-patch16-224-in21k-wwwwii This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.8976 - Train Accuracy: 0.8813 - Train Top-3-accuracy: 0.9721 - Validation Loss: 1.6144 - Validation Accuracy: 0.5845 - Validation Top-3-accuracy: 0.7845 - Epoch: 4 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'inner_optimizer': {'class_name': 'AdamWeightDecay', 'config': {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 6e-05, 'decay_steps': 4122, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.001}}, 'dynamic': True, 'initial_scale': 32768.0, 'dynamic_growth_steps': 2000} - training_precision: mixed_float16 ### Training results | Train Loss | Train Accuracy | Train Top-3-accuracy | Validation Loss | Validation Accuracy | Validation Top-3-accuracy | Epoch | |:----------:|:--------------:|:--------------------:|:---------------:|:-------------------:|:-------------------------:|:-----:| | 3.4972 | 0.1475 | 0.3067 | 3.0825 | 0.3240 | 0.5178 | 0 | | 2.7352 | 0.4129 | 0.6613 | 2.4838 | 0.4543 | 0.6930 | 1 | | 2.0429 | 0.6153 | 0.8315 | 1.9934 | 0.5690 | 0.7550 | 2 | | 1.4246 | 0.7672 | 0.9166 | 1.6714 | 0.5876 | 0.8016 | 3 | | 0.8976 | 0.8813 | 0.9721 | 1.6144 | 0.5845 | 0.7845 | 4 | ### Framework versions - Transformers 4.21.2 - TensorFlow 2.8.2 - Datasets 2.4.0 - Tokenizers 0.12.1
[ "writer_2", "writer_9", "writer_16", "writer_11", "writer_12", "writer_19", "writer_15", "writer_20", "writer_17", "writer_18", "writer_14", "writer_13", "writer_10", "writer_27", "writer_28", "writer_22", "writer_23", "writer_26", "writer_25", "writer_29", "writer_30", "writer_21", "writer_24", "writer_3", "writer_35", "writer_31", "writer_39", "writer_37", "writer_36", "writer_40", "writer_32", "writer_34", "writer_38", "writer_33", "writer_7", "writer_44", "writer_42", "writer_47", "writer_48", "writer_46", "writer_43", "writer_41", "writer_50", "writer_45", "writer_49", "writer_4", "writer_53", "writer_52", "writer_51", "writer_1", "writer_6", "writer_8", "writer_5" ]
DrishtiSharma/finetuned-SwinT-Indian-Food-Classification-v3
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned-SwinT-Indian-Food-Classification-v3 This model is a fine-tuned version of [microsoft/swin-base-patch4-window7-224-in22k](https://huggingface.co/microsoft/swin-base-patch4-window7-224-in22k) on the Indian-Food-Images dataset. It achieves the following results on the evaluation set: - Loss: 0.2910 - Accuracy: 0.9437 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.9511 | 0.3 | 100 | 0.6092 | 0.8172 | | 0.6214 | 0.6 | 200 | 0.4406 | 0.8672 | | 0.7355 | 0.9 | 300 | 0.3665 | 0.8927 | | 0.6078 | 1.2 | 400 | 0.3285 | 0.9065 | | 0.439 | 1.5 | 500 | 0.3855 | 0.8916 | | 0.3644 | 1.8 | 600 | 0.4082 | 0.8969 | | 0.4748 | 2.1 | 700 | 0.3496 | 0.9022 | | 0.3966 | 2.4 | 800 | 0.3626 | 0.8905 | | 0.5799 | 2.7 | 900 | 0.4833 | 0.8767 | | 0.2995 | 3.0 | 1000 | 0.3387 | 0.9044 | | 0.3152 | 3.3 | 1100 | 0.3739 | 0.9097 | | 0.3284 | 3.6 | 1200 | 0.4217 | 0.8916 | | 0.3631 | 3.9 | 1300 | 0.4118 | 0.9044 | | 0.219 | 4.2 | 1400 | 0.3721 | 0.9139 | | 0.2874 | 4.5 | 1500 | 0.3030 | 0.9288 | | 0.2819 | 4.8 | 1600 | 0.4056 | 0.9150 | | 0.1755 | 5.11 | 1700 | 0.4039 | 0.9097 | | 0.2462 | 5.41 | 1800 | 0.3550 | 0.9118 | | 0.1737 | 5.71 | 1900 | 0.3444 | 0.9150 | | 0.174 | 6.01 | 2000 | 0.3667 | 0.9160 | | 0.1536 | 6.31 | 2100 | 0.3301 | 0.9288 | | 0.0911 | 6.61 | 2200 | 0.3390 | 0.9299 | | 0.0907 | 6.91 | 2300 | 0.2923 | 0.9288 | | 0.0921 | 7.21 | 2400 | 0.3502 | 0.9256 | | 0.1662 | 7.51 | 2500 | 0.3197 | 0.9341 | | 0.0607 | 7.81 | 2600 | 0.3092 | 0.9362 | | 0.111 | 8.11 | 2700 | 0.3146 | 0.9394 | | 0.0588 | 8.41 | 2800 | 0.3069 | 0.9341 | | 0.131 | 8.71 | 2900 | 0.2971 | 0.9405 | | 0.1903 | 9.01 | 3000 | 0.3078 | 0.9384 | | 0.2116 | 9.31 | 3100 | 0.3112 | 0.9341 | | 0.1415 | 9.61 | 3200 | 0.2956 | 0.9405 | | 0.1106 | 9.91 | 3300 | 0.2910 | 0.9437 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
[ "burger", "butter_naan", "kaathi_rolls", "kadai_paneer", "kulfi", "masala_dosa", "momos", "paani_puri", "pakode", "pav_bhaji", "pizza", "samosa", "chai", "chapati", "chole_bhature", "dal_makhani", "dhokla", "fried_rice", "idli", "jalebi" ]
DrishtiSharma/finetuned-ViT-Indian-Food-Classification-v3
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned-ViT-Indian-Food-Classification-v3 This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the Human_Action_Recognition dataset. It achieves the following results on the evaluation set: - Loss: 0.2878 - Accuracy: 0.9384 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.1913 | 0.3 | 100 | 0.9307 | 0.8395 | | 0.6846 | 0.6 | 200 | 0.5650 | 0.8852 | | 0.5783 | 0.9 | 300 | 0.5147 | 0.8895 | | 0.5635 | 1.2 | 400 | 0.5310 | 0.8650 | | 0.4487 | 1.5 | 500 | 0.4155 | 0.8980 | | 0.2803 | 1.8 | 600 | 0.3848 | 0.9012 | | 0.4496 | 2.1 | 700 | 0.4308 | 0.8852 | | 0.4071 | 2.4 | 800 | 0.4004 | 0.8905 | | 0.3747 | 2.7 | 900 | 0.3795 | 0.8927 | | 0.2665 | 3.0 | 1000 | 0.3618 | 0.8927 | | 0.3696 | 3.3 | 1100 | 0.3588 | 0.8990 | | 0.2808 | 3.6 | 1200 | 0.3794 | 0.8884 | | 0.158 | 3.9 | 1300 | 0.3416 | 0.9054 | | 0.2062 | 4.2 | 1400 | 0.3686 | 0.8916 | | 0.2039 | 4.5 | 1500 | 0.3219 | 0.9118 | | 0.2392 | 4.8 | 1600 | 0.3392 | 0.9086 | | 0.1276 | 5.11 | 1700 | 0.3249 | 0.9192 | | 0.1812 | 5.41 | 1800 | 0.2970 | 0.9245 | | 0.1352 | 5.71 | 1900 | 0.3366 | 0.9118 | | 0.1333 | 6.01 | 2000 | 0.3111 | 0.9203 | | 0.189 | 6.31 | 2100 | 0.3604 | 0.9139 | | 0.1048 | 6.61 | 2200 | 0.3496 | 0.9171 | | 0.0913 | 6.91 | 2300 | 0.3046 | 0.9224 | | 0.1678 | 7.21 | 2400 | 0.3154 | 0.9288 | | 0.0705 | 7.51 | 2500 | 0.3229 | 0.9235 | | 0.1057 | 7.81 | 2600 | 0.2895 | 0.9330 | | 0.1219 | 8.11 | 2700 | 0.2984 | 0.9299 | | 0.0521 | 8.41 | 2800 | 0.3083 | 0.9288 | | 0.1181 | 8.71 | 2900 | 0.3020 | 0.9288 | | 0.1339 | 9.01 | 3000 | 0.2885 | 0.9373 | | 0.2393 | 9.31 | 3100 | 0.2895 | 0.9277 | | 0.1044 | 9.61 | 3200 | 0.2912 | 0.9362 | | 0.096 | 9.91 | 3300 | 0.2878 | 0.9384 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
[ "burger", "butter_naan", "kaathi_rolls", "kadai_paneer", "kulfi", "masala_dosa", "momos", "paani_puri", "pakode", "pav_bhaji", "pizza", "samosa", "chai", "chapati", "chole_bhature", "dal_makhani", "dhokla", "fried_rice", "idli", "jalebi" ]
farleyknight/mnist-digit-classification-2022-09-04
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mnist-digit-classification-2022-09-04 This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the mnist dataset. It achieves the following results on the evaluation set: - Loss: 0.0319 - Accuracy: 0.9923 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results ### Framework versions - Transformers 4.22.0.dev0 - Pytorch 1.12.1+cu102 - Datasets 2.4.0 - Tokenizers 0.12.1
[ "0", "1", "2", "3", "4", "5", "6", "7", "8", "9" ]
farleyknight-org-username/roman-numerals-digit-classification
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roman_numerals-digit-classification-2022-09-04 This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the farleyknight/roman_numerals dataset. It achieves the following results on the evaluation set: - Loss: 0.7018 - Accuracy: 0.8333 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.9053 | 1.0 | 289 | 1.3680 | 0.7132 | | 1.2788 | 2.0 | 578 | 0.9499 | 0.7966 | | 1.1232 | 3.0 | 867 | 0.8679 | 0.7279 | | 1.0373 | 4.0 | 1156 | 0.7324 | 0.8088 | | 0.9658 | 5.0 | 1445 | 0.7018 | 0.8333 | ### Framework versions - Transformers 4.22.0.dev0 - Pytorch 1.12.1+cu102 - Datasets 2.4.0 - Tokenizers 0.12.1
[ "i", "ii", "iii", "iv", "ix", "v", "vi", "vii", "viii", "x" ]
Imene/vit-base-patch16-224-in21k-wi2
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Imene/vit-base-patch16-224-in21k-wi2 This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 2.9892 - Train Accuracy: 0.5568 - Train Top-3-accuracy: 0.8130 - Validation Loss: 3.0923 - Validation Accuracy: 0.4280 - Validation Top-3-accuracy: 0.7034 - Epoch: 4 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'inner_optimizer': {'class_name': 'AdamWeightDecay', 'config': {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 3e-05, 'decay_steps': 500, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}}, 'dynamic': True, 'initial_scale': 32768.0, 'dynamic_growth_steps': 2000} - training_precision: mixed_float16 ### Training results | Train Loss | Train Accuracy | Train Top-3-accuracy | Validation Loss | Validation Accuracy | Validation Top-3-accuracy | Epoch | |:----------:|:--------------:|:--------------------:|:---------------:|:-------------------:|:-------------------------:|:-----:| | 3.8488 | 0.0720 | 0.1713 | 3.7116 | 0.1564 | 0.3617 | 0 | | 3.5246 | 0.2703 | 0.4898 | 3.4122 | 0.3217 | 0.5732 | 1 | | 3.2493 | 0.4150 | 0.6827 | 3.2232 | 0.3880 | 0.6633 | 2 | | 3.0840 | 0.5002 | 0.7670 | 3.1275 | 0.4255 | 0.6921 | 3 | | 2.9892 | 0.5568 | 0.8130 | 3.0923 | 0.4280 | 0.7034 | 4 | ### Framework versions - Transformers 4.21.3 - TensorFlow 2.8.2 - Datasets 2.4.0 - Tokenizers 0.12.1
[ "aboubakr_boulechbak", "addache_fares", "abaraka_mohamed", "bensouda_alaa", "benbaleh_hani", "belkessa_imane", "belhous_fahima", "benguea_amina", "belmostfaoui_dhrifa", "belferroum_assin", "benhaoua_soumia", "benbekhma_marwa", "abdelwahab_bardad", "belkessa_nawel", "benfradj_imane", "aya_sebti", "beldi_amira", "ayoub achor", "azzone_mourad", "aya_rezzoug", "bekhti_djamila", "bedder", "attallah_assia", "abderahman_loutabi", "assia_assia", "assia_mlhoubi", "assia_hamida", "arkoub", "anis_zougari", "assad_manel", "alouach_racha", "amazouz_melissa", "amina_larachi", "amadouche", "abdelrahim_boudali", "amira_tbessi", "amine_cherar", "amrane_sanaa", "anis_ferokhi", "aliane soumia", "allouache_mira", "ali", "adem_kara_ali", "aicha_maghraoui", "ailane_abir", "abdellah achour", "abdelmoumen_melki", "abd elmadjid raib", "abd-eldjalil_safssafi", "abdelhak sebaa" ]
Imene/vit-base-patch16-384-wi3
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Imene/vit-base-patch16-384-wi3 This model is a fine-tuned version of [google/vit-base-patch16-384](https://huggingface.co/google/vit-base-patch16-384) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.2020 - Train Accuracy: 0.9984 - Train Top-3-accuracy: 0.9997 - Validation Loss: 1.4297 - Validation Accuracy: 0.6195 - Validation Top-3-accuracy: 0.8298 - Epoch: 11 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'inner_optimizer': {'class_name': 'AdamWeightDecay', 'config': {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 3e-05, 'decay_steps': 1200, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}}, 'dynamic': True, 'initial_scale': 32768.0, 'dynamic_growth_steps': 2000} - training_precision: mixed_float16 ### Training results | Train Loss | Train Accuracy | Train Top-3-accuracy | Validation Loss | Validation Accuracy | Validation Top-3-accuracy | Epoch | |:----------:|:--------------:|:--------------------:|:---------------:|:-------------------:|:-------------------------:|:-----:| | 3.6575 | 0.0902 | 0.1945 | 3.1772 | 0.2028 | 0.3980 | 0 | | 2.5870 | 0.3473 | 0.6048 | 2.3845 | 0.3717 | 0.6208 | 1 | | 1.8813 | 0.5553 | 0.7895 | 2.0262 | 0.4431 | 0.7196 | 2 | | 1.4326 | 0.6815 | 0.8754 | 1.8856 | 0.4793 | 0.7384 | 3 | | 1.0572 | 0.7989 | 0.9439 | 1.6570 | 0.5369 | 0.7960 | 4 | | 0.7740 | 0.8838 | 0.9749 | 1.6103 | 0.5557 | 0.7960 | 5 | | 0.5593 | 0.9417 | 0.9900 | 1.5303 | 0.5695 | 0.8173 | 6 | | 0.4151 | 0.9709 | 0.9975 | 1.4939 | 0.5795 | 0.8185 | 7 | | 0.3176 | 0.9884 | 0.9978 | 1.4553 | 0.5832 | 0.8248 | 8 | | 0.2582 | 0.9950 | 0.9991 | 1.4500 | 0.6020 | 0.8248 | 9 | | 0.2222 | 0.9978 | 0.9994 | 1.4315 | 0.6108 | 0.8310 | 10 | | 0.2020 | 0.9984 | 0.9997 | 1.4297 | 0.6195 | 0.8298 | 11 | ### Framework versions - Transformers 4.21.3 - TensorFlow 2.8.2 - Datasets 2.4.0 - Tokenizers 0.12.1
[ "aboubakr_boulechbak", "addache_fares", "abaraka_mohamed", "bensouda_alaa", "benbaleh_hani", "belkessa_imane", "belhous_fahima", "benguea_amina", "belmostfaoui_dhrifa", "belferroum_assin", "benhaoua_soumia", "benbekhma_marwa", "abdelwahab_bardad", "belkessa_nawel", "benfradj_imane", "aya_sebti", "beldi_amira", "ayoub achor", "azzone_mourad", "aya_rezzoug", "bekhti_djamila", "bedder", "attallah_assia", "abderahman_loutabi", "assia_assia", "assia_mlhoubi", "assia_hamida", "arkoub", "anis_zougari", "assad_manel", "alouach_racha", "amazouz_melissa", "amina_larachi", "amadouche", "abdelrahim_boudali", "amira_tbessi", "amine_cherar", "amrane_sanaa", "anis_ferokhi", "aliane soumia", "allouache_mira", "ali", "adem_kara_ali", "aicha_maghraoui", "ailane_abir", "abdellah achour", "abdelmoumen_melki", "abd elmadjid raib", "abd-eldjalil_safssafi", "abdelhak sebaa" ]
RohanK447/swin-tiny-patch4-window7-224-finetuned-vosap
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224-finetuned-vosap This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.4894 - Accuracy: 0.75 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 1 | 0.4894 | 0.75 | | No log | 2.0 | 2 | 0.5365 | 0.5 | | No log | 3.0 | 3 | 0.6957 | 0.5 | | No log | 4.0 | 4 | 0.6781 | 0.5 | | No log | 5.0 | 5 | 0.5617 | 0.5 | | No log | 6.0 | 6 | 0.4461 | 0.75 | | No log | 7.0 | 7 | 0.3368 | 0.75 | | No log | 8.0 | 8 | 0.3289 | 0.75 | | No log | 9.0 | 9 | 0.3642 | 0.75 | | 0.0539 | 10.0 | 10 | 0.4334 | 0.75 | | 0.0539 | 11.0 | 11 | 0.5582 | 0.5 | | 0.0539 | 12.0 | 12 | 0.6676 | 0.5 | | 0.0539 | 13.0 | 13 | 0.7586 | 0.5 | | 0.0539 | 14.0 | 14 | 0.7937 | 0.5 | | 0.0539 | 15.0 | 15 | 0.7986 | 0.5 | | 0.0539 | 16.0 | 16 | 0.7619 | 0.5 | | 0.0539 | 17.0 | 17 | 0.7134 | 0.5 | | 0.0539 | 18.0 | 18 | 0.6725 | 0.5 | | 0.0539 | 19.0 | 19 | 0.6390 | 0.5 | | 0.0297 | 20.0 | 20 | 0.6222 | 0.5 | ### Framework versions - Transformers 4.21.3 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
[ "canes", "nocanes" ]
Intel/vit-base-patch16-224-int8-static-inc
# The INT8 model based on vit-base-patch16-224 which finetuned on imagenet-1k ### Post-training static quantization This is an INT8 PyTorch model quantized with [Intel® Neural Compressor](https://github.com/intel/neural-compressor). The original fp32 model comes from the fine-tuned model [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224). The calibration dataloader is the train dataloader. The default calibration sampling size 1000 because of 1000 classes of imagenet-1k. The linear modules **vit.encoder.layer.5.output.dense**, **vit.encoder.layer.9.attention.attention.query.module**, fall back to fp32 for less than 1% relative accuracy loss. ### Evaluation result | |INT8|FP32| |---|:---:|:---:| | **Accuracy (eval-acc)** |80.576|81.326| | **Model size (MB)** |94|331| ### Load with Intel® Neural Compressor: ```python from neural_compressor.utils.load_huggingface import OptimizedModel int8_model = OptimizedModel.from_pretrained( 'Intel/vit-base-patch16-224-int8-static', ) ```
[ "tench, tinca tinca", "goldfish, carassius auratus", "brambling, fringilla montifringilla", "black swan, cygnus atratus", "tusker", "echidna, spiny anteater, anteater", "platypus, duckbill, duckbilled platypus, duck-billed platypus, ornithorhynchus anatinus", "wallaby, brush kangaroo", "koala, koala bear, kangaroo bear, native bear, phascolarctos cinereus", "wombat", "jellyfish", "sea anemone, anemone", "brain coral", "goldfinch, carduelis carduelis", "flatworm, platyhelminth", "nematode, nematode worm, roundworm", "conch", "snail", "slug", "sea slug, nudibranch", "chiton, coat-of-mail shell, sea cradle, polyplacophore", "chambered nautilus, pearly nautilus, nautilus", "dungeness crab, cancer magister", "rock crab, cancer irroratus", "house finch, linnet, carpodacus mexicanus", "fiddler crab", "king crab, alaska crab, alaskan king crab, alaska king crab, paralithodes camtschatica", "american lobster, northern lobster, maine lobster, homarus americanus", "spiny lobster, langouste, rock lobster, crawfish, crayfish, sea crawfish", "crayfish, crawfish, crawdad, crawdaddy", "hermit crab", "isopod", "white stork, ciconia ciconia", "black stork, ciconia nigra", "spoonbill", "junco, snowbird", "flamingo", "little blue heron, egretta caerulea", "american egret, great white heron, egretta albus", "bittern", "crane", "limpkin, aramus pictus", "european gallinule, porphyrio porphyrio", "american coot, marsh hen, mud hen, water hen, fulica americana", "bustard", "ruddy turnstone, arenaria interpres", "indigo bunting, indigo finch, indigo bird, passerina cyanea", "red-backed sandpiper, dunlin, erolia alpina", "redshank, tringa totanus", "dowitcher", "oystercatcher, oyster catcher", "pelican", "king penguin, aptenodytes patagonica", "albatross, mollymawk", "grey whale, gray whale, devilfish, eschrichtius gibbosus, eschrichtius robustus", "killer whale, killer, orca, grampus, sea wolf, orcinus orca", "dugong, dugong dugon", "robin, american robin, turdus migratorius", "sea lion", "chihuahua", "japanese spaniel", "maltese dog, maltese terrier, maltese", "pekinese, pekingese, peke", "shih-tzu", "blenheim spaniel", "papillon", "toy terrier", "rhodesian ridgeback", "bulbul", "afghan hound, afghan", "basset, basset hound", "beagle", "bloodhound, sleuthhound", "bluetick", "black-and-tan coonhound", "walker hound, walker foxhound", "english foxhound", "redbone", "borzoi, russian wolfhound", "jay", "irish wolfhound", "italian greyhound", "whippet", "ibizan hound, ibizan podenco", "norwegian elkhound, elkhound", "otterhound, otter hound", "saluki, gazelle hound", "scottish deerhound, deerhound", "weimaraner", "staffordshire bullterrier, staffordshire bull terrier", "magpie", "american staffordshire terrier, staffordshire terrier, american pit bull terrier, pit bull terrier", "bedlington terrier", "border terrier", "kerry blue terrier", "irish terrier", "norfolk terrier", "norwich terrier", "yorkshire terrier", "wire-haired fox terrier", "lakeland terrier", "chickadee", "sealyham terrier, sealyham", "airedale, airedale terrier", "cairn, cairn terrier", "australian terrier", "dandie dinmont, dandie dinmont terrier", "boston bull, boston terrier", "miniature schnauzer", "giant schnauzer", "standard schnauzer", "scotch terrier, scottish terrier, scottie", "great white shark, white shark, man-eater, man-eating shark, carcharodon carcharias", "water ouzel, dipper", "tibetan terrier, chrysanthemum dog", "silky terrier, sydney silky", "soft-coated wheaten terrier", "west highland white terrier", "lhasa, lhasa apso", "flat-coated retriever", "curly-coated retriever", "golden retriever", "labrador retriever", "chesapeake bay retriever", "kite", "german short-haired pointer", "vizsla, hungarian pointer", "english setter", "irish setter, red setter", "gordon setter", "brittany spaniel", "clumber, clumber spaniel", "english springer, english springer spaniel", "welsh springer spaniel", "cocker spaniel, english cocker spaniel, cocker", "bald eagle, american eagle, haliaeetus leucocephalus", "sussex spaniel", "irish water spaniel", "kuvasz", "schipperke", "groenendael", "malinois", "briard", "kelpie", "komondor", "old english sheepdog, bobtail", "vulture", "shetland sheepdog, shetland sheep dog, shetland", "collie", "border collie", "bouvier des flandres, bouviers des flandres", "rottweiler", "german shepherd, german shepherd dog, german police dog, alsatian", "doberman, doberman pinscher", "miniature pinscher", "greater swiss mountain dog", "bernese mountain dog", "great grey owl, great gray owl, strix nebulosa", "appenzeller", "entlebucher", "boxer", "bull mastiff", "tibetan mastiff", "french bulldog", "great dane", "saint bernard, st bernard", "eskimo dog, husky", "malamute, malemute, alaskan malamute", "european fire salamander, salamandra salamandra", "siberian husky", "dalmatian, coach dog, carriage dog", "affenpinscher, monkey pinscher, monkey dog", "basenji", "pug, pug-dog", "leonberg", "newfoundland, newfoundland dog", "great pyrenees", "samoyed, samoyede", "pomeranian", "common newt, triturus vulgaris", "chow, chow chow", "keeshond", "brabancon griffon", "pembroke, pembroke welsh corgi", "cardigan, cardigan welsh corgi", "toy poodle", "miniature poodle", "standard poodle", "mexican hairless", "timber wolf, grey wolf, gray wolf, canis lupus", "eft", "white wolf, arctic wolf, canis lupus tundrarum", "red wolf, maned wolf, canis rufus, canis niger", "coyote, prairie wolf, brush wolf, canis latrans", "dingo, warrigal, warragal, canis dingo", "dhole, cuon alpinus", "african hunting dog, hyena dog, cape hunting dog, lycaon pictus", "hyena, hyaena", "red fox, vulpes vulpes", "kit fox, vulpes macrotis", "arctic fox, white fox, alopex lagopus", "spotted salamander, ambystoma maculatum", "grey fox, gray fox, urocyon cinereoargenteus", "tabby, tabby cat", "tiger cat", "persian cat", "siamese cat, siamese", "egyptian cat", "cougar, puma, catamount, mountain lion, painter, panther, felis concolor", "lynx, catamount", "leopard, panthera pardus", "snow leopard, ounce, panthera uncia", "axolotl, mud puppy, ambystoma mexicanum", "jaguar, panther, panthera onca, felis onca", "lion, king of beasts, panthera leo", "tiger, panthera tigris", "cheetah, chetah, acinonyx jubatus", "brown bear, bruin, ursus arctos", "american black bear, black bear, ursus americanus, euarctos americanus", "ice bear, polar bear, ursus maritimus, thalarctos maritimus", "sloth bear, melursus ursinus, ursus ursinus", "mongoose", "meerkat, mierkat", "tiger shark, galeocerdo cuvieri", "bullfrog, rana catesbeiana", "tiger beetle", "ladybug, ladybeetle, lady beetle, ladybird, ladybird beetle", "ground beetle, carabid beetle", "long-horned beetle, longicorn, longicorn beetle", "leaf beetle, chrysomelid", "dung beetle", "rhinoceros beetle", "weevil", "fly", "bee", "tree frog, tree-frog", "ant, emmet, pismire", "grasshopper, hopper", "cricket", "walking stick, walkingstick, stick insect", "cockroach, roach", "mantis, mantid", "cicada, cicala", "leafhopper", "lacewing, lacewing fly", "dragonfly, darning needle, devil's darning needle, sewing needle, snake feeder, snake doctor, mosquito hawk, skeeter hawk", "tailed frog, bell toad, ribbed toad, tailed toad, ascaphus trui", "damselfly", "admiral", "ringlet, ringlet butterfly", "monarch, monarch butterfly, milkweed butterfly, danaus plexippus", "cabbage butterfly", "sulphur butterfly, sulfur butterfly", "lycaenid, lycaenid butterfly", "starfish, sea star", "sea urchin", "sea cucumber, holothurian", "loggerhead, loggerhead turtle, caretta caretta", "wood rabbit, cottontail, cottontail rabbit", "hare", "angora, angora rabbit", "hamster", "porcupine, hedgehog", "fox squirrel, eastern fox squirrel, sciurus niger", "marmot", "beaver", "guinea pig, cavia cobaya", "sorrel", "leatherback turtle, leatherback, leathery turtle, dermochelys coriacea", "zebra", "hog, pig, grunter, squealer, sus scrofa", "wild boar, boar, sus scrofa", "warthog", "hippopotamus, hippo, river horse, hippopotamus amphibius", "ox", "water buffalo, water ox, asiatic buffalo, bubalus bubalis", "bison", "ram, tup", "bighorn, bighorn sheep, cimarron, rocky mountain bighorn, rocky mountain sheep, ovis canadensis", "mud turtle", "ibex, capra ibex", "hartebeest", "impala, aepyceros melampus", "gazelle", "arabian camel, dromedary, camelus dromedarius", "llama", "weasel", "mink", "polecat, fitch, foulmart, foumart, mustela putorius", "black-footed ferret, ferret, mustela nigripes", "terrapin", "otter", "skunk, polecat, wood pussy", "badger", "armadillo", "three-toed sloth, ai, bradypus tridactylus", "orangutan, orang, orangutang, pongo pygmaeus", "gorilla, gorilla gorilla", "chimpanzee, chimp, pan troglodytes", "gibbon, hylobates lar", "siamang, hylobates syndactylus, symphalangus syndactylus", "box turtle, box tortoise", "guenon, guenon monkey", "patas, hussar monkey, erythrocebus patas", "baboon", "macaque", "langur", "colobus, colobus monkey", "proboscis monkey, nasalis larvatus", "marmoset", "capuchin, ringtail, cebus capucinus", "howler monkey, howler", "banded gecko", "titi, titi monkey", "spider monkey, ateles geoffroyi", "squirrel monkey, saimiri sciureus", "madagascar cat, ring-tailed lemur, lemur catta", "indri, indris, indri indri, indri brevicaudatus", "indian elephant, elephas maximus", "african elephant, loxodonta africana", "lesser panda, red panda, panda, bear cat, cat bear, ailurus fulgens", "giant panda, panda, panda bear, coon bear, ailuropoda melanoleuca", "barracouta, snoek", "common iguana, iguana, iguana iguana", "eel", "coho, cohoe, coho salmon, blue jack, silver salmon, oncorhynchus kisutch", "rock beauty, holocanthus tricolor", "anemone fish", "sturgeon", "gar, garfish, garpike, billfish, lepisosteus osseus", "lionfish", "puffer, pufferfish, blowfish, globefish", "abacus", "abaya", "hammerhead, hammerhead shark", "american chameleon, anole, anolis carolinensis", "academic gown, academic robe, judge's robe", "accordion, piano accordion, squeeze box", "acoustic guitar", "aircraft carrier, carrier, flattop, attack aircraft carrier", "airliner", "airship, dirigible", "altar", "ambulance", "amphibian, amphibious vehicle", "analog clock", "whiptail, whiptail lizard", "apiary, bee house", "apron", "ashcan, trash can, garbage can, wastebin, ash bin, ash-bin, ashbin, dustbin, trash barrel, trash bin", "assault rifle, assault gun", "backpack, back pack, knapsack, packsack, rucksack, haversack", "bakery, bakeshop, bakehouse", "balance beam, beam", "balloon", "ballpoint, ballpoint pen, ballpen, biro", "band aid", "agama", "banjo", "bannister, banister, balustrade, balusters, handrail", "barbell", "barber chair", "barbershop", "barn", "barometer", "barrel, cask", "barrow, garden cart, lawn cart, wheelbarrow", "baseball", "frilled lizard, chlamydosaurus kingi", "basketball", "bassinet", "bassoon", "bathing cap, swimming cap", "bath towel", "bathtub, bathing tub, bath, tub", "beach wagon, station wagon, wagon, estate car, beach waggon, station waggon, waggon", "beacon, lighthouse, beacon light, pharos", "beaker", "bearskin, busby, shako", "alligator lizard", "beer bottle", "beer glass", "bell cote, bell cot", "bib", "bicycle-built-for-two, tandem bicycle, tandem", "bikini, two-piece", "binder, ring-binder", "binoculars, field glasses, opera glasses", "birdhouse", "boathouse", "gila monster, heloderma suspectum", "bobsled, bobsleigh, bob", "bolo tie, bolo, bola tie, bola", "bonnet, poke bonnet", "bookcase", "bookshop, bookstore, bookstall", "bottlecap", "bow", "bow tie, bow-tie, bowtie", "brass, memorial tablet, plaque", "brassiere, bra, bandeau", "green lizard, lacerta viridis", "breakwater, groin, groyne, mole, bulwark, seawall, jetty", "breastplate, aegis, egis", "broom", "bucket, pail", "buckle", "bulletproof vest", "bullet train, bullet", "butcher shop, meat market", "cab, hack, taxi, taxicab", "caldron, cauldron", "african chameleon, chamaeleo chamaeleon", "candle, taper, wax light", "cannon", "canoe", "can opener, tin opener", "cardigan", "car mirror", "carousel, carrousel, merry-go-round, roundabout, whirligig", "carpenter's kit, tool kit", "carton", "car wheel", "komodo dragon, komodo lizard, dragon lizard, giant lizard, varanus komodoensis", "cash machine, cash dispenser, automated teller machine, automatic teller machine, automated teller, automatic teller, atm", "cassette", "cassette player", "castle", "catamaran", "cd player", "cello, violoncello", "cellular telephone, cellular phone, cellphone, cell, mobile phone", "chain", "chainlink fence", "african crocodile, nile crocodile, crocodylus niloticus", "chain mail, ring mail, mail, chain armor, chain armour, ring armor, ring armour", "chain saw, chainsaw", "chest", "chiffonier, commode", "chime, bell, gong", "china cabinet, china closet", "christmas stocking", "church, church building", "cinema, movie theater, movie theatre, movie house, picture palace", "cleaver, meat cleaver, chopper", "electric ray, crampfish, numbfish, torpedo", "american alligator, alligator mississipiensis", "cliff dwelling", "cloak", "clog, geta, patten, sabot", "cocktail shaker", "coffee mug", "coffeepot", "coil, spiral, volute, whorl, helix", "combination lock", "computer keyboard, keypad", "confectionery, confectionary, candy store", "triceratops", "container ship, containership, container vessel", "convertible", "corkscrew, bottle screw", "cornet, horn, trumpet, trump", "cowboy boot", "cowboy hat, ten-gallon hat", "cradle", "crane2", "crash helmet", "crate", "thunder snake, worm snake, carphophis amoenus", "crib, cot", "crock pot", "croquet ball", "crutch", "cuirass", "dam, dike, dyke", "desk", "desktop computer", "dial telephone, dial phone", "diaper, nappy, napkin", "ringneck snake, ring-necked snake, ring snake", "digital clock", "digital watch", "dining table, board", "dishrag, dishcloth", "dishwasher, dish washer, dishwashing machine", "disk brake, disc brake", "dock, dockage, docking facility", "dogsled, dog sled, dog sleigh", "dome", "doormat, welcome mat", "hognose snake, puff adder, sand viper", "drilling platform, offshore rig", "drum, membranophone, tympan", "drumstick", "dumbbell", "dutch oven", "electric fan, blower", "electric guitar", "electric locomotive", "entertainment center", "envelope", "green snake, grass snake", "espresso maker", "face powder", "feather boa, boa", "file, file cabinet, filing cabinet", "fireboat", "fire engine, fire truck", "fire screen, fireguard", "flagpole, flagstaff", "flute, transverse flute", "folding chair", "king snake, kingsnake", "football helmet", "forklift", "fountain", "fountain pen", "four-poster", "freight car", "french horn, horn", "frying pan, frypan, skillet", "fur coat", "garbage truck, dustcart", "garter snake, grass snake", "gasmask, respirator, gas helmet", "gas pump, gasoline pump, petrol pump, island dispenser", "goblet", "go-kart", "golf ball", "golfcart, golf cart", "gondola", "gong, tam-tam", "gown", "grand piano, grand", "water snake", "greenhouse, nursery, glasshouse", "grille, radiator grille", "grocery store, grocery, food market, market", "guillotine", "hair slide", "hair spray", "half track", "hammer", "hamper", "hand blower, blow dryer, blow drier, hair dryer, hair drier", "vine snake", "hand-held computer, hand-held microcomputer", "handkerchief, hankie, hanky, hankey", "hard disc, hard disk, fixed disk", "harmonica, mouth organ, harp, mouth harp", "harp", "harvester, reaper", "hatchet", "holster", "home theater, home theatre", "honeycomb", "stingray", "night snake, hypsiglena torquata", "hook, claw", "hoopskirt, crinoline", "horizontal bar, high bar", "horse cart, horse-cart", "hourglass", "ipod", "iron, smoothing iron", "jack-o'-lantern", "jean, blue jean, denim", "jeep, landrover", "boa constrictor, constrictor constrictor", "jersey, t-shirt, tee shirt", "jigsaw puzzle", "jinrikisha, ricksha, rickshaw", "joystick", "kimono", "knee pad", "knot", "lab coat, laboratory coat", "ladle", "lampshade, lamp shade", "rock python, rock snake, python sebae", "laptop, laptop computer", "lawn mower, mower", "lens cap, lens cover", "letter opener, paper knife, paperknife", "library", "lifeboat", "lighter, light, igniter, ignitor", "limousine, limo", "liner, ocean liner", "lipstick, lip rouge", "indian cobra, naja naja", "loafer", "lotion", "loudspeaker, speaker, speaker unit, loudspeaker system, speaker system", "loupe, jeweler's loupe", "lumbermill, sawmill", "magnetic compass", "mailbag, postbag", "mailbox, letter box", "maillot", "maillot, tank suit", "green mamba", "manhole cover", "maraca", "marimba, xylophone", "mask", "matchstick", "maypole", "maze, labyrinth", "measuring cup", "medicine chest, medicine cabinet", "megalith, megalithic structure", "sea snake", "microphone, mike", "microwave, microwave oven", "military uniform", "milk can", "minibus", "miniskirt, mini", "minivan", "missile", "mitten", "mixing bowl", "horned viper, cerastes, sand viper, horned asp, cerastes cornutus", "mobile home, manufactured home", "model t", "modem", "monastery", "monitor", "moped", "mortar", "mortarboard", "mosque", "mosquito net", "diamondback, diamondback rattlesnake, crotalus adamanteus", "motor scooter, scooter", "mountain bike, all-terrain bike, off-roader", "mountain tent", "mouse, computer mouse", "mousetrap", "moving van", "muzzle", "nail", "neck brace", "necklace", "sidewinder, horned rattlesnake, crotalus cerastes", "nipple", "notebook, notebook computer", "obelisk", "oboe, hautboy, hautbois", "ocarina, sweet potato", "odometer, hodometer, mileometer, milometer", "oil filter", "organ, pipe organ", "oscilloscope, scope, cathode-ray oscilloscope, cro", "overskirt", "trilobite", "oxcart", "oxygen mask", "packet", "paddle, boat paddle", "paddlewheel, paddle wheel", "padlock", "paintbrush", "pajama, pyjama, pj's, jammies", "palace", "panpipe, pandean pipe, syrinx", "cock", "harvestman, daddy longlegs, phalangium opilio", "paper towel", "parachute, chute", "parallel bars, bars", "park bench", "parking meter", "passenger car, coach, carriage", "patio, terrace", "pay-phone, pay-station", "pedestal, plinth, footstall", "pencil box, pencil case", "scorpion", "pencil sharpener", "perfume, essence", "petri dish", "photocopier", "pick, plectrum, plectron", "pickelhaube", "picket fence, paling", "pickup, pickup truck", "pier", "piggy bank, penny bank", "black and gold garden spider, argiope aurantia", "pill bottle", "pillow", "ping-pong ball", "pinwheel", "pirate, pirate ship", "pitcher, ewer", "plane, carpenter's plane, woodworking plane", "planetarium", "plastic bag", "plate rack", "barn spider, araneus cavaticus", "plow, plough", "plunger, plumber's helper", "polaroid camera, polaroid land camera", "pole", "police van, police wagon, paddy wagon, patrol wagon, wagon, black maria", "poncho", "pool table, billiard table, snooker table", "pop bottle, soda bottle", "pot, flowerpot", "potter's wheel", "garden spider, aranea diademata", "power drill", "prayer rug, prayer mat", "printer", "prison, prison house", "projectile, missile", "projector", "puck, hockey puck", "punching bag, punch bag, punching ball, punchball", "purse", "quill, quill pen", "black widow, latrodectus mactans", "quilt, comforter, comfort, puff", "racer, race car, racing car", "racket, racquet", "radiator", "radio, wireless", "radio telescope, radio reflector", "rain barrel", "recreational vehicle, rv, r.v.", "reel", "reflex camera", "tarantula", "refrigerator, icebox", "remote control, remote", "restaurant, eating house, eating place, eatery", "revolver, six-gun, six-shooter", "rifle", "rocking chair, rocker", "rotisserie", "rubber eraser, rubber, pencil eraser", "rugby ball", "rule, ruler", "wolf spider, hunting spider", "running shoe", "safe", "safety pin", "saltshaker, salt shaker", "sandal", "sarong", "sax, saxophone", "scabbard", "scale, weighing machine", "school bus", "tick", "schooner", "scoreboard", "screen, crt screen", "screw", "screwdriver", "seat belt, seatbelt", "sewing machine", "shield, buckler", "shoe shop, shoe-shop, shoe store", "shoji", "centipede", "shopping basket", "shopping cart", "shovel", "shower cap", "shower curtain", "ski", "ski mask", "sleeping bag", "slide rule, slipstick", "sliding door", "hen", "black grouse", "slot, one-armed bandit", "snorkel", "snowmobile", "snowplow, snowplough", "soap dispenser", "soccer ball", "sock", "solar dish, solar collector, solar furnace", "sombrero", "soup bowl", "ptarmigan", "space bar", "space heater", "space shuttle", "spatula", "speedboat", "spider web, spider's web", "spindle", "sports car, sport car", "spotlight, spot", "stage", "ruffed grouse, partridge, bonasa umbellus", "steam locomotive", "steel arch bridge", "steel drum", "stethoscope", "stole", "stone wall", "stopwatch, stop watch", "stove", "strainer", "streetcar, tram, tramcar, trolley, trolley car", "prairie chicken, prairie grouse, prairie fowl", "stretcher", "studio couch, day bed", "stupa, tope", "submarine, pigboat, sub, u-boat", "suit, suit of clothes", "sundial", "sunglass", "sunglasses, dark glasses, shades", "sunscreen, sunblock, sun blocker", "suspension bridge", "peacock", "swab, swob, mop", "sweatshirt", "swimming trunks, bathing trunks", "swing", "switch, electric switch, electrical switch", "syringe", "table lamp", "tank, army tank, armored combat vehicle, armoured combat vehicle", "tape player", "teapot", "quail", "teddy, teddy bear", "television, television system", "tennis ball", "thatch, thatched roof", "theater curtain, theatre curtain", "thimble", "thresher, thrasher, threshing machine", "throne", "tile roof", "toaster", "partridge", "tobacco shop, tobacconist shop, tobacconist", "toilet seat", "torch", "totem pole", "tow truck, tow car, wrecker", "toyshop", "tractor", "trailer truck, tractor trailer, trucking rig, rig, articulated lorry, semi", "tray", "trench coat", "african grey, african gray, psittacus erithacus", "tricycle, trike, velocipede", "trimaran", "tripod", "triumphal arch", "trolleybus, trolley coach, trackless trolley", "trombone", "tub, vat", "turnstile", "typewriter keyboard", "umbrella", "macaw", "unicycle, monocycle", "upright, upright piano", "vacuum, vacuum cleaner", "vase", "vault", "velvet", "vending machine", "vestment", "viaduct", "violin, fiddle", "sulphur-crested cockatoo, kakatoe galerita, cacatua galerita", "volleyball", "waffle iron", "wall clock", "wallet, billfold, notecase, pocketbook", "wardrobe, closet, press", "warplane, military plane", "washbasin, handbasin, washbowl, lavabo, wash-hand basin", "washer, automatic washer, washing machine", "water bottle", "water jug", "ostrich, struthio camelus", "lorikeet", "water tower", "whiskey jug", "whistle", "wig", "window screen", "window shade", "windsor tie", "wine bottle", "wing", "wok", "coucal", "wooden spoon", "wool, woolen, woollen", "worm fence, snake fence, snake-rail fence, virginia fence", "wreck", "yawl", "yurt", "web site, website, internet site, site", "comic book", "crossword puzzle, crossword", "street sign", "bee eater", "traffic light, traffic signal, stoplight", "book jacket, dust cover, dust jacket, dust wrapper", "menu", "plate", "guacamole", "consomme", "hot pot, hotpot", "trifle", "ice cream, icecream", "ice lolly, lolly, lollipop, popsicle", "hornbill", "french loaf", "bagel, beigel", "pretzel", "cheeseburger", "hotdog, hot dog, red hot", "mashed potato", "head cabbage", "broccoli", "cauliflower", "zucchini, courgette", "hummingbird", "spaghetti squash", "acorn squash", "butternut squash", "cucumber, cuke", "artichoke, globe artichoke", "bell pepper", "cardoon", "mushroom", "granny smith", "strawberry", "jacamar", "orange", "lemon", "fig", "pineapple, ananas", "banana", "jackfruit, jak, jack", "custard apple", "pomegranate", "hay", "carbonara", "toucan", "chocolate sauce, chocolate syrup", "dough", "meat loaf, meatloaf", "pizza, pizza pie", "potpie", "burrito", "red wine", "espresso", "cup", "eggnog", "drake", "alp", "bubble", "cliff, drop, drop-off", "coral reef", "geyser", "lakeside, lakeshore", "promontory, headland, head, foreland", "sandbar, sand bar", "seashore, coast, seacoast, sea-coast", "valley, vale", "red-breasted merganser, mergus serrator", "volcano", "ballplayer, baseball player", "groom, bridegroom", "scuba diver", "rapeseed", "daisy", "yellow lady's slipper, yellow lady-slipper, cypripedium calceolus, cypripedium parviflorum", "corn", "acorn", "hip, rose hip, rosehip", "goose", "buckeye, horse chestnut, conker", "coral fungus", "agaric", "gyromitra", "stinkhorn, carrion fungus", "earthstar", "hen-of-the-woods, hen of the woods, polyporus frondosus, grifola frondosa", "bolete", "ear, spike, capitulum", "toilet tissue, toilet paper, bathroom tissue" ]
Imene/vit-base-patch16-384-wi4
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Imene/vit-base-patch16-384-wi4 This model is a fine-tuned version of [google/vit-base-patch16-384](https://huggingface.co/google/vit-base-patch16-384) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.1742 - Train Accuracy: 0.9982 - Train Top-3-accuracy: 0.9997 - Validation Loss: 1.5010 - Validation Accuracy: 0.5746 - Validation Top-3-accuracy: 0.8040 - Epoch: 10 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'inner_optimizer': {'class_name': 'AdamWeightDecay', 'config': {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 3e-05, 'decay_steps': 1800, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}}, 'dynamic': True, 'initial_scale': 32768.0, 'dynamic_growth_steps': 2000} - training_precision: mixed_float16 ### Training results | Train Loss | Train Accuracy | Train Top-3-accuracy | Validation Loss | Validation Accuracy | Validation Top-3-accuracy | Epoch | |:----------:|:--------------:|:--------------------:|:---------------:|:-------------------:|:-------------------------:|:-----:| | 3.7777 | 0.0845 | 0.1855 | 3.3754 | 0.1543 | 0.3014 | 0 | | 2.7253 | 0.3277 | 0.5560 | 2.4975 | 0.3452 | 0.5892 | 1 | | 2.0079 | 0.5236 | 0.7589 | 2.1228 | 0.4234 | 0.6882 | 2 | | 1.5256 | 0.6663 | 0.8549 | 1.9117 | 0.4734 | 0.7445 | 3 | | 1.1602 | 0.7712 | 0.9270 | 1.8059 | 0.5162 | 0.7560 | 4 | | 0.8509 | 0.8659 | 0.9614 | 1.6534 | 0.5516 | 0.7758 | 5 | | 0.5955 | 0.9353 | 0.9836 | 1.6139 | 0.5610 | 0.7935 | 6 | | 0.4229 | 0.9687 | 0.9940 | 1.5655 | 0.5631 | 0.7925 | 7 | | 0.3045 | 0.9859 | 0.9979 | 1.5290 | 0.5714 | 0.7987 | 8 | | 0.2221 | 0.9958 | 0.9990 | 1.5061 | 0.5954 | 0.8008 | 9 | | 0.1742 | 0.9982 | 0.9997 | 1.5010 | 0.5746 | 0.8040 | 10 | ### Framework versions - Transformers 4.21.3 - TensorFlow 2.8.2 - Datasets 2.4.0 - Tokenizers 0.12.1
[ "timizar_hakim", "regoui_amine", "abd elmadjid raib", "abd-eldjalil_safssafi", "abdelhak sebaa", "abaraka_mohamed", "zineb ourihan", "safsafi_nouha", "regoui_meriem", "radhwane_ezziane", "regoui_amira_rym", "regoui_assia", "regoui", "rayan", "bensouda_alaa", "benbaleh_hani", "belkessa_imane", "belhous_fahima", "benguea_amina", "belmostfaoui_dhrifa", "belferroum_assin", "benhaoua_soumia", "benbekhma_marwa", "aboubakr_boulechbak", "belkessa_nawel", "benfradj_imane", "aya_sebti", "beldi_amira", "ayoub achor", "azzone_mourad", "aya_rezzoug", "bekhti_djamila", "bedder", "attallah_assia", "addache_fares", "assia_assia", "assia_mlhoubi", "assia_hamida", "arkoub", "anis_zougari", "assad_manel", "alouach_racha", "amazouz_melissa", "amina_larachi", "amadouche", "abdelwahab_bardad", "amira_tbessi", "amine_cherar", "amrane_sanaa", "anis_ferokhi", "aliane soumia", "allouache_mira", "ali", "adem_kara_ali", "aicha_maghraoui", "ailane_abir", "abderahman_loutabi", "abdelrahim_boudali", "abdellah achour", "abdelmoumen_melki" ]
Imene/vit-base-patch16-384-wi5
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Imene/vit-base-patch16-384-wi5 This model is a fine-tuned version of [google/vit-base-patch16-384](https://huggingface.co/google/vit-base-patch16-384) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.4102 - Train Accuracy: 0.9755 - Train Top-3-accuracy: 0.9960 - Validation Loss: 1.9021 - Validation Accuracy: 0.4912 - Validation Top-3-accuracy: 0.7302 - Epoch: 8 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'inner_optimizer': {'class_name': 'AdamWeightDecay', 'config': {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 3e-05, 'decay_steps': 3180, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}}, 'dynamic': True, 'initial_scale': 32768.0, 'dynamic_growth_steps': 2000} - training_precision: mixed_float16 ### Training results | Train Loss | Train Accuracy | Train Top-3-accuracy | Validation Loss | Validation Accuracy | Validation Top-3-accuracy | Epoch | |:----------:|:--------------:|:--------------------:|:---------------:|:-------------------:|:-------------------------:|:-----:| | 4.2945 | 0.0568 | 0.1328 | 3.6233 | 0.1387 | 0.2916 | 0 | | 3.1234 | 0.2437 | 0.4585 | 2.8657 | 0.3041 | 0.5330 | 1 | | 2.4383 | 0.4182 | 0.6638 | 2.5499 | 0.3534 | 0.6048 | 2 | | 1.9258 | 0.5698 | 0.7913 | 2.3046 | 0.4202 | 0.6583 | 3 | | 1.4919 | 0.6963 | 0.8758 | 2.1349 | 0.4553 | 0.6784 | 4 | | 1.1127 | 0.7992 | 0.9395 | 2.0878 | 0.4595 | 0.6809 | 5 | | 0.8092 | 0.8889 | 0.9720 | 1.9460 | 0.4962 | 0.7210 | 6 | | 0.5794 | 0.9419 | 0.9883 | 1.9478 | 0.4979 | 0.7201 | 7 | | 0.4102 | 0.9755 | 0.9960 | 1.9021 | 0.4912 | 0.7302 | 8 | ### Framework versions - Transformers 4.21.3 - TensorFlow 2.8.2 - Datasets 2.4.0 - Tokenizers 0.12.1
[ "halilou_afaf", "hakem_zoubida", "dria_mabila", "fatmaelzohra_taleb", "fairouze_senadjki", "elkkad_khaoula", "fadi_quarmouch", "fanan oukhouch", "fadel_ikram", "djennadi_elhadi", "touati_assia", "timizar_saliha", "hafidi_amel", "tinhinan", "timizar_kaouthar", "timizar_imene", "walid", "touati_narimane", "walid amkouken", "tortebim_ryad", "timizar_hakim", "semroud_ikram", "tali", "hafssa hamoudi", "talha_mohamed", "soundous_amour", "tilmatine_anis", "taouari_hanaa", "soundous_samar", "zineb ourihan", "zoubir_sirine", "sidali_merzouga", "saidi_sabah", "serine zouad", "hadjer djadi", "said_radjaa", "sliman_boudali", "sarah_boukahla", "sbaa_mohamed", "samia", "sahili_falek_mehdi", "saadi_maria", "safa achour", "sabah_chemani", "sabrina", "hadil_mabrouk", "sadji_warda", "safsafi_nouha", "sabrine_bouhais", "rzatit_nourelhouda", "hamidi", "halla zdigha", "doaa_lakam", "damache", "dellici_ikram", "deia_chaaraoui", "hadil_guenan", "daidji_aya_meriem", "djennadi_yasmine", "djebbal", "djallal", "djouhri", "djebbar_hind", "dahou_amine", "wassime zougari", "yettou", "yasmine_hadjali", "hadil rezak", "youcef chennoufi", "wissam_feradji", "samar_madjda", "walid_bouakez", "soheib korichi", "walid_saiad", "tabet_borhane", "warda_djemel", "houssam_mk", "harek_sofia", "guidoum_wissam", "hicheme_harchaoui", "ibtissem", "henni_walid", "gouabi_maria", "haniche_fouzia", "hammoudi_yousra", "grahli_youcef", "guermat_malak", "gherbi_madjda", "guellour_chahrazed", "gazoum_samah", "glass", "gousmine_cerine", "hakime_bekkouche", "dahmani_nesrine", "gaouaoui_abdallah", "chouli_abdelraouf", "fodil_aya", "ghazli", "dahmani_sarah", "ghedadbia_nadjib" ]
Imene/vit-base-patch16-224-in21k-Writer-Identification
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Imene/vit-base-patch16-224-in21k-Writer-Identification This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 2.9065 - Train Accuracy: 0.6173 - Train Top-3-accuracy: 0.8384 - Validation Loss: 3.0602 - Validation Accuracy: 0.4255 - Validation Top-3-accuracy: 0.6884 - Epoch: 10 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'inner_optimizer': {'class_name': 'AdamWeightDecay', 'config': {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 1e-05, 'decay_steps': 1500, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}}, 'dynamic': True, 'initial_scale': 32768.0, 'dynamic_growth_steps': 2000} - training_precision: mixed_float16 ### Training results | Train Loss | Train Accuracy | Train Top-3-accuracy | Validation Loss | Validation Accuracy | Validation Top-3-accuracy | Epoch | |:----------:|:--------------:|:--------------------:|:---------------:|:-------------------:|:-------------------------:|:-----:| | 3.8889 | 0.0401 | 0.0971 | 3.8524 | 0.0501 | 0.1577 | 0 | | 3.7785 | 0.1516 | 0.3210 | 3.7267 | 0.1464 | 0.3392 | 1 | | 3.6188 | 0.2656 | 0.4854 | 3.5946 | 0.2115 | 0.4143 | 2 | | 3.4631 | 0.3276 | 0.5860 | 3.4570 | 0.2728 | 0.5232 | 3 | | 3.3386 | 0.3959 | 0.6599 | 3.3664 | 0.3091 | 0.5757 | 4 | | 3.2366 | 0.4500 | 0.7094 | 3.2844 | 0.3342 | 0.5895 | 5 | | 3.1510 | 0.4879 | 0.7526 | 3.2364 | 0.3442 | 0.6170 | 6 | | 3.0757 | 0.5246 | 0.7823 | 3.1752 | 0.3830 | 0.6508 | 7 | | 3.0107 | 0.5612 | 0.8058 | 3.1281 | 0.4043 | 0.6596 | 8 | | 2.9549 | 0.5894 | 0.8212 | 3.0903 | 0.4255 | 0.6834 | 9 | | 2.9065 | 0.6173 | 0.8384 | 3.0602 | 0.4255 | 0.6884 | 10 | ### Framework versions - Transformers 4.21.3 - TensorFlow 2.8.2 - Datasets 2.4.0 - Tokenizers 0.12.1
[ "benbekhma_marwa", "benbaleh_hani", "ayoub achor", "aya_sebti", "aya_rezzoug", "beldi_amira", "attallah_assia", "azzone_mourad", "bekhti_djamila", "bedder", "assia_mlhoubi", "belferroum_assin", "belkessa_imane", "amira_tbessi", "assia_hamida", "amina_larachi", "anis_ferokhi", "arkoub", "assad_manel", "anis_zougari", "amine_cherar", "amrane_sanaa", "assia_assia", "belkessa_nawel", "aicha_maghraoui", "ailane_abir", "adem_kara_ali", "alouach_racha", "allouache_mira", "amazouz_melissa", "ali", "aliane soumia", "amadouche", "addache_fares", "belhous_fahima", "abderahman_loutabi", "abdelrahim_boudali", "abd elmadjid raib", "abdellah achour", "abdelmoumen_melki", "abdelhak sebaa", "aboubakr_boulechbak", "abdelwahab_bardad", "abaraka_mohamed", "abd-eldjalil_safssafi", "belmostfaoui_dhrifa", "benguea_amina", "bensouda_alaa", "benfradj_imane", "benhaoua_soumia" ]
Imene/vit-base-patch16-224-in21k-Wr
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Imene/vit-base-patch16-224-in21k-Wr This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.3104 - Train Accuracy: 0.9956 - Train Top-3-accuracy: 0.9981 - Validation Loss: 1.6041 - Validation Accuracy: 0.5770 - Validation Top-3-accuracy: 0.8035 - Epoch: 7 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'inner_optimizer': {'class_name': 'AdamWeightDecay', 'config': {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 0.0001, 'decay_steps': 1500, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}}, 'dynamic': True, 'initial_scale': 32768.0, 'dynamic_growth_steps': 2000} - training_precision: mixed_float16 ### Training results | Train Loss | Train Accuracy | Train Top-3-accuracy | Validation Loss | Validation Accuracy | Validation Top-3-accuracy | Epoch | |:----------:|:--------------:|:--------------------:|:---------------:|:-------------------:|:-------------------------:|:-----:| | 3.8300 | 0.0583 | 0.1381 | 3.6801 | 0.0951 | 0.2203 | 0 | | 3.2915 | 0.2418 | 0.4557 | 3.0277 | 0.3004 | 0.5507 | 1 | | 2.6535 | 0.4438 | 0.7106 | 2.5932 | 0.3780 | 0.6546 | 2 | | 2.0541 | 0.6308 | 0.8575 | 2.2998 | 0.4556 | 0.6871 | 3 | | 1.4622 | 0.7924 | 0.9496 | 2.0054 | 0.5056 | 0.7234 | 4 | | 0.9098 | 0.9201 | 0.9887 | 1.8079 | 0.5695 | 0.7785 | 5 | | 0.5220 | 0.9821 | 0.9969 | 1.6444 | 0.5845 | 0.7922 | 6 | | 0.3104 | 0.9956 | 0.9981 | 1.6041 | 0.5770 | 0.8035 | 7 | ### Framework versions - Transformers 4.21.3 - TensorFlow 2.8.2 - Datasets 2.4.0 - Tokenizers 0.12.1
[ "benbekhma_marwa", "benbaleh_hani", "ayoub achor", "aya_sebti", "aya_rezzoug", "beldi_amira", "attallah_assia", "azzone_mourad", "bekhti_djamila", "bedder", "assia_mlhoubi", "belferroum_assin", "belkessa_imane", "amira_tbessi", "assia_hamida", "amina_larachi", "anis_ferokhi", "arkoub", "assad_manel", "anis_zougari", "amine_cherar", "amrane_sanaa", "assia_assia", "belkessa_nawel", "aicha_maghraoui", "ailane_abir", "adem_kara_ali", "alouach_racha", "allouache_mira", "amazouz_melissa", "ali", "aliane soumia", "amadouche", "addache_fares", "belhous_fahima", "abderahman_loutabi", "abdelrahim_boudali", "abd elmadjid raib", "abdellah achour", "abdelmoumen_melki", "abdelhak sebaa", "aboubakr_boulechbak", "abdelwahab_bardad", "abaraka_mohamed", "abd-eldjalil_safssafi", "belmostfaoui_dhrifa", "benguea_amina", "bensouda_alaa", "benfradj_imane", "benhaoua_soumia" ]
valadhi/swin-tiny-patch4-window7-224-finetuned-agrivision
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224-finetuned-agrivision This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.3605 - Accuracy: 0.9203 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.5913 | 1.0 | 31 | 0.7046 | 0.7175 | | 0.1409 | 2.0 | 62 | 0.8423 | 0.6788 | | 0.0825 | 3.0 | 93 | 0.6224 | 0.7654 | | 0.0509 | 4.0 | 124 | 0.4379 | 0.8360 | | 0.0439 | 5.0 | 155 | 0.1706 | 0.9317 | | 0.0107 | 6.0 | 186 | 0.1914 | 0.9362 | | 0.0134 | 7.0 | 217 | 0.2491 | 0.9089 | | 0.0338 | 8.0 | 248 | 0.2119 | 0.9362 | | 0.0306 | 9.0 | 279 | 0.4502 | 0.8610 | | 0.0054 | 10.0 | 310 | 0.4990 | 0.8747 | | 0.0033 | 11.0 | 341 | 0.2746 | 0.9112 | | 0.0021 | 12.0 | 372 | 0.2501 | 0.9317 | | 0.0068 | 13.0 | 403 | 0.1883 | 0.9522 | | 0.0038 | 14.0 | 434 | 0.3672 | 0.9134 | | 0.0006 | 15.0 | 465 | 0.2275 | 0.9408 | | 0.0011 | 16.0 | 496 | 0.3349 | 0.9134 | | 0.0017 | 17.0 | 527 | 0.3329 | 0.9157 | | 0.0007 | 18.0 | 558 | 0.2508 | 0.9317 | | 0.0023 | 19.0 | 589 | 0.2338 | 0.9385 | | 0.0003 | 20.0 | 620 | 0.3193 | 0.9226 | | 0.002 | 21.0 | 651 | 0.4604 | 0.9043 | | 0.0023 | 22.0 | 682 | 0.3338 | 0.9203 | | 0.005 | 23.0 | 713 | 0.2925 | 0.9271 | | 0.0001 | 24.0 | 744 | 0.2022 | 0.9522 | | 0.0002 | 25.0 | 775 | 0.2699 | 0.9339 | | 0.0007 | 26.0 | 806 | 0.2603 | 0.9385 | | 0.0005 | 27.0 | 837 | 0.4120 | 0.9134 | | 0.0003 | 28.0 | 868 | 0.3550 | 0.9203 | | 0.0008 | 29.0 | 899 | 0.3657 | 0.9203 | | 0.0 | 30.0 | 930 | 0.3605 | 0.9203 | ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.1 - Datasets 2.4.0 - Tokenizers 0.12.1
[ "castravete", "rosie", "salata" ]
ezzouhri/swin-tiny-patch4-window7-224-finetuned-eurosat
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224-finetuned-eurosat This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.1674 - Accuracy: 0.9517 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.3432 | 1.0 | 266 | 0.1674 | 0.9517 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.1+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
[ "c0", "c1", "c2", "c3", "c4", "c5", "c6", "c7", "c8", "c9" ]
dhruv0808/autotrain-ad_detection_ver_1-1395053127
# Model Trained Using AutoTrain - Problem type: Binary Classification - Model ID: 1395053127 - CO2 Emissions (in grams): 0.0097 ## Validation Metrics - Loss: 0.178 - Accuracy: 0.941 - Precision: 0.947 - Recall: 0.947 - AUC: 0.974 - F1: 0.947
[ "ads", "non_ads" ]
DominikB/autotrain-person-classifier-1401653210
# Model Trained Using AutoTrain - Problem type: Binary Classification - Model ID: 1401653210 - CO2 Emissions (in grams): 0.0143 ## Validation Metrics - Loss: 0.000 - Accuracy: 1.000 - Precision: 1.000 - Recall: 1.000 - AUC: 1.000 - F1: 1.000
[ "jack_black", "johnny_depp" ]
victor/autotrain-donut-vs-croissant-1417653460
# Model Trained Using AutoTrain - Problem type: Binary Classification - Model ID: 1417653460 - CO2 Emissions (in grams): 2.2028 ## Validation Metrics - Loss: 0.023 - Accuracy: 0.994 - Precision: 0.995 - Recall: 0.995 - AUC: 1.000 - F1: 0.995
[ "croissant", "donut" ]
Imene/vit-base-patch16-224-wi2
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Imene/vit-base-patch16-224-wi2 This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.3098 - Train Accuracy: 0.9821 - Train Top-5-accuracy: 0.9971 - Validation Loss: 3.0737 - Validation Accuracy: 0.2491 - Validation Top-5-accuracy: 0.4476 - Epoch: 9 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'inner_optimizer': {'class_name': 'AdamWeightDecay', 'config': {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 0.0003, 'decay_steps': 1750, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.001}}, 'dynamic': True, 'initial_scale': 32768.0, 'dynamic_growth_steps': 2000} - training_precision: mixed_float16 ### Training results | Train Loss | Train Accuracy | Train Top-5-accuracy | Validation Loss | Validation Accuracy | Validation Top-5-accuracy | Epoch | |:----------:|:--------------:|:--------------------:|:---------------:|:-------------------:|:-------------------------:|:-----:| | 4.4859 | 0.0195 | 0.0579 | 4.2995 | 0.0368 | 0.0865 | 0 | | 4.1729 | 0.0355 | 0.0987 | 4.0916 | 0.0472 | 0.1266 | 1 | | 3.9541 | 0.0666 | 0.1641 | 3.8050 | 0.0781 | 0.2035 | 2 | | 3.5823 | 0.1247 | 0.2615 | 3.4015 | 0.1429 | 0.2950 | 3 | | 3.0156 | 0.1913 | 0.3987 | 3.0598 | 0.1880 | 0.3916 | 4 | | 2.4618 | 0.3077 | 0.5572 | 2.9869 | 0.2056 | 0.4129 | 5 | | 1.8979 | 0.4541 | 0.7165 | 2.9507 | 0.2298 | 0.4425 | 6 | | 1.2075 | 0.6914 | 0.8886 | 3.0106 | 0.2394 | 0.4425 | 7 | | 0.6026 | 0.9097 | 0.9810 | 3.0739 | 0.2428 | 0.4413 | 8 | | 0.3098 | 0.9821 | 0.9971 | 3.0737 | 0.2491 | 0.4476 | 9 | ### Framework versions - Transformers 4.21.3 - TensorFlow 2.8.2 - Datasets 2.4.0 - Tokenizers 0.12.1
[ "halilou_afaf", "hakem_zoubida", "dria_mabila", "fatmaelzohra_taleb", "fairouze_senadjki", "elkkad_khaoula", "fadi_quarmouch", "fanan oukhouch", "fadel_ikram", "djennadi_elhadi", "touati_assia", "timizar_saliha", "hafidi_amel", "tinhinan", "timizar_kaouthar", "timizar_imene", "walid", "touati_narimane", "walid amkouken", "tortebim_ryad", "timizar_hakim", "semroud_ikram", "tali", "hafssa hamoudi", "talha_mohamed", "soundous_amour", "tilmatine_anis", "taouari_hanaa", "soundous_samar", "zineb ourihan", "zoubir_sirine", "sidali_merzouga", "saidi_sabah", "serine zouad", "hadjer djadi", "said_radjaa", "sliman_boudali", "sarah_boukahla", "sbaa_mohamed", "samia", "sahili_falek_mehdi", "saadi_maria", "safa achour", "sabah_chemani", "sabrina", "hadil_mabrouk", "sadji_warda", "safsafi_nouha", "sabrine_bouhais", "rzatit_nourelhouda", "hamidi", "halla zdigha", "doaa_lakam", "damache", "dellici_ikram", "deia_chaaraoui", "hadil_guenan", "daidji_aya_meriem", "djennadi_yasmine", "djebbal", "djallal", "djouhri", "djebbar_hind", "dahou_amine", "wassime zougari", "yettou", "yasmine_hadjali", "hadil rezak", "youcef chennoufi", "wissam_feradji", "samar_madjda", "walid_bouakez", "soheib korichi", "walid_saiad", "tabet_borhane", "warda_djemel", "houssam_mk", "harek_sofia", "guidoum_wissam", "hicheme_harchaoui", "ibtissem", "henni_walid", "gouabi_maria", "haniche_fouzia", "hammoudi_yousra", "grahli_youcef", "guermat_malak", "gherbi_madjda", "guellour_chahrazed", "gazoum_samah", "glass", "gousmine_cerine", "hakime_bekkouche", "dahmani_nesrine", "gaouaoui_abdallah", "chouli_abdelraouf", "fodil_aya", "ghazli", "dahmani_sarah", "ghedadbia_nadjib" ]
davanstrien/autotrain-encyclopedia_britannica-1423853554
# Model Trained Using AutoTrain - Problem type: Binary Classification - Model ID: 1423853554 - CO2 Emissions (in grams): 3.1472 ## Validation Metrics - Loss: 0.033 - Accuracy: 0.993 - Precision: 0.993 - Recall: 1.000 - AUC: 0.996 - F1: 0.996
[ "illustrated", "text-only" ]
nuts/autotrain-human_art_or_not-1432453604
# Model Trained Using AutoTrain - Problem type: Binary Classification - Model ID: 1432453604 - CO2 Emissions (in grams): 1.7173 ## Validation Metrics - Loss: 0.000 - Accuracy: 1.000 - Precision: 1.000 - Recall: 1.000 - AUC: 1.000 - F1: 1.000
[ "human_art", "stable_diffusion" ]
shahukareem/hedhikaa-classifier
# Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 1433153614 - CO2 Emissions (in grams): 0.0059 ## Validation Metrics - Loss: 0.177 - Accuracy: 0.976 - Macro F1: 0.961 - Micro F1: 0.976 - Weighted F1: 0.976 - Macro Precision: 0.969 - Micro Precision: 0.976 - Weighted Precision: 0.979 - Macro Recall: 0.958 - Micro Recall: 0.976 - Weighted Recall: 0.976
[ "bajiya", "boakibaa", "gulha", "masroshi" ]
macanoso/swin-tiny-patch4-window7-224-finetuned-eurosat
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224-finetuned-eurosat This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0675 - Accuracy: 0.98 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2602 | 1.0 | 190 | 0.1496 | 0.9504 | | 0.1619 | 2.0 | 380 | 0.0833 | 0.9752 | | 0.112 | 3.0 | 570 | 0.0675 | 0.98 | ### Framework versions - Transformers 4.21.3 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
[ "annualcrop", "forest", "herbaceousvegetation", "highway", "industrial", "pasture", "permanentcrop", "residential", "river", "sealake" ]
NimaBoscarino/butterflies
# Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 1433953639 - CO2 Emissions (in grams): 0.0117 ## Validation Metrics - Loss: 0.606 - Accuracy: 0.880 - Macro F1: 0.844 - Micro F1: 0.880 - Weighted F1: 0.844 - Macro Precision: 0.827 - Micro Precision: 0.880 - Weighted Precision: 0.827 - Macro Recall: 0.880 - Micro Recall: 0.880 - Weighted Recall: 0.880
[ "adonis", "african giant swallowtail", "blue morpho", "blue spotted crow", "brown siproeta", "cabbage white", "cairns birdwing", "checquered skipper", "chestnut", "cleopatra", "clodius parnassian", "clouded sulphur", "american snoot", "common banded awl", "common wood-nymph", "copper tail", "crecent", "crimson patch", "danaid eggfly", "eastern coma", "eastern dapple white", "eastern pine elfin", "elbowed pierrot", "an 88", "gold banded", "great eggfly", "great jay", "green celled cattleheart", "grey hairstreak", "indra swallow", "iphiclus sister", "julia", "large marble", "malachite", "appollo", "mangrove skipper", "mestra", "metalmark", "milberts tortoiseshell", "monarch", "mourning cloak", "orange oakleaf", "orange tip", "orchard swallow", "painted lady", "atala", "paper kite", "peacock", "pine white", "pipevine swallow", "popinjay", "purple hairstreak", "purplish copper", "question mark", "red admiral", "red cracker", "banded orange heliconian", "red postman", "red spotted purple", "scarce swallow", "silver spot skipper", "sleepy orange", "sootywing", "southern dogface", "straited queen", "tropical leafwing", "two barred flasher", "banded peacock", "ulyses", "viceroy", "wood satyr", "yellow swallow tail", "zebra long wing", "beckers white", "black hairstreak" ]
TastyOs/swin-tiny-patch4-window7-224-finetuned-eurosat
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224-finetuned-eurosat This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0765 - Accuracy: 0.9733 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2745 | 1.0 | 190 | 0.1439 | 0.9485 | | 0.1689 | 2.0 | 380 | 0.0851 | 0.9711 | | 0.1593 | 3.0 | 570 | 0.0765 | 0.9733 | ### Framework versions - Transformers 4.21.3 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
[ "annualcrop", "forest", "herbaceousvegetation", "highway", "industrial", "pasture", "permanentcrop", "residential", "river", "sealake" ]
MommySernox/autotrain-furrygendataset-1436353679
# Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 1436353679 - CO2 Emissions (in grams): 2.4820 - Currently,The model has been trained to recognize o ly the following species: -Sergal -Protogen -Wolf -Fox -Synth -Shark -Dragon Works best if submitted image's background isn't plain black/transparent ## Validation Metrics - Loss: 0.302 - Accuracy: 0.896 - Macro F1: 0.895 - Micro F1: 0.896 - Weighted F1: 0.897 - Macro Precision: 0.900 - Micro Precision: 0.896 - Weighted Precision: 0.908 - Macro Recall: 0.900 - Micro Recall: 0.896 - Weighted Recall: 0.896
[ "dragon", "fox", "protogen", "sergal", "shark", "synth", "wolf" ]
erikejw/swin-tiny-patch4-window7-224-finetuned-eurosat
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224-finetuned-eurosat This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0393 - Accuracy: 0.9844 - F1: 0.9845 - Precision: 0.9847 - Recall: 0.9844 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.2 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.3039 | 1.0 | 95 | 0.1300 | 0.9607 | 0.9609 | 0.9619 | 0.9607 | | 0.2357 | 2.0 | 190 | 0.0815 | 0.9678 | 0.9678 | 0.9685 | 0.9678 | | 0.163 | 3.0 | 285 | 0.0559 | 0.9807 | 0.9807 | 0.9809 | 0.9807 | | 0.1267 | 4.0 | 380 | 0.0492 | 0.9837 | 0.9837 | 0.9839 | 0.9837 | | 0.1059 | 5.0 | 475 | 0.0393 | 0.9844 | 0.9845 | 0.9847 | 0.9844 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
[ "annualcrop", "forest", "herbaceousvegetation", "highway", "industrial", "pasture", "permanentcrop", "residential", "river", "sealake" ]
erikejw/swin-base-patch4-window7-224-in22k-finetuned-eurosat
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-base-patch4-window7-224-in22k-finetuned-eurosat This model is a fine-tuned version of [microsoft/swin-base-patch4-window7-224-in22k](https://huggingface.co/microsoft/swin-base-patch4-window7-224-in22k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0390 - Accuracy: 0.9896 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.1691 | 1.0 | 190 | 0.0693 | 0.9789 | | 0.1275 | 2.0 | 380 | 0.0419 | 0.9889 | | 0.1165 | 3.0 | 570 | 0.0390 | 0.9896 | ### Framework versions - Transformers 4.21.3 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
[ "annualcrop", "forest", "herbaceousvegetation", "highway", "industrial", "pasture", "permanentcrop", "residential", "river", "sealake" ]
juliensimon/autotrain-food101-1471154050
# Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 1471154050 - CO2 Emissions (in grams): 135.1875 ## Validation Metrics - Loss: 0.391 - Accuracy: 0.890 - Macro F1: 0.890 - Micro F1: 0.890 - Weighted F1: 0.890 - Macro Precision: 0.892 - Micro Precision: 0.890 - Weighted Precision: 0.892 - Macro Recall: 0.890 - Micro Recall: 0.890 - Weighted Recall: 0.890
[ "apple_pie", "baby_back_ribs", "bruschetta", "waffles", "caesar_salad", "cannoli", "caprese_salad", "carrot_cake", "ceviche", "cheese_plate", "cheesecake", "chicken_curry", "chicken_quesadilla", "baklava", "chicken_wings", "chocolate_cake", "chocolate_mousse", "churros", "clam_chowder", "club_sandwich", "crab_cakes", "creme_brulee", "croque_madame", "cup_cakes", "beef_carpaccio", "deviled_eggs", "donuts", "dumplings", "edamame", "eggs_benedict", "escargots", "falafel", "filet_mignon", "fish_and_chips", "foie_gras", "beef_tartare", "french_fries", "french_onion_soup", "french_toast", "fried_calamari", "fried_rice", "frozen_yogurt", "garlic_bread", "gnocchi", "greek_salad", "grilled_cheese_sandwich", "beet_salad", "grilled_salmon", "guacamole", "gyoza", "hamburger", "hot_and_sour_soup", "hot_dog", "huevos_rancheros", "hummus", "ice_cream", "lasagna", "beignets", "lobster_bisque", "lobster_roll_sandwich", "macaroni_and_cheese", "macarons", "miso_soup", "mussels", "nachos", "omelette", "onion_rings", "oysters", "bibimbap", "pad_thai", "paella", "pancakes", "panna_cotta", "peking_duck", "pho", "pizza", "pork_chop", "poutine", "prime_rib", "bread_pudding", "pulled_pork_sandwich", "ramen", "ravioli", "red_velvet_cake", "risotto", "samosa", "sashimi", "scallops", "seaweed_salad", "shrimp_and_grits", "breakfast_burrito", "spaghetti_bolognese", "spaghetti_carbonara", "spring_rolls", "steak", "strawberry_shortcake", "sushi", "tacos", "takoyaki", "tiramisu", "tuna_tartare" ]
juliensimon/autotrain-food101-1471154053
# Usage ``` from transformers import pipeline p = pipeline("image-classification", model="juliensimon/autotrain-food101-1471154053") result = p("my_image.jpg") ``` # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 1471154053 - CO2 Emissions (in grams): 179.1154 ## Validation Metrics - Loss: 0.301 - Accuracy: 0.915 - Macro F1: 0.915 - Micro F1: 0.915 - Weighted F1: 0.915 - Macro Precision: 0.917 - Micro Precision: 0.915 - Weighted Precision: 0.917 - Macro Recall: 0.915 - Micro Recall: 0.915 - Weighted Recall: 0.915
[ "apple_pie", "baby_back_ribs", "bruschetta", "waffles", "caesar_salad", "cannoli", "caprese_salad", "carrot_cake", "ceviche", "cheese_plate", "cheesecake", "chicken_curry", "chicken_quesadilla", "baklava", "chicken_wings", "chocolate_cake", "chocolate_mousse", "churros", "clam_chowder", "club_sandwich", "crab_cakes", "creme_brulee", "croque_madame", "cup_cakes", "beef_carpaccio", "deviled_eggs", "donuts", "dumplings", "edamame", "eggs_benedict", "escargots", "falafel", "filet_mignon", "fish_and_chips", "foie_gras", "beef_tartare", "french_fries", "french_onion_soup", "french_toast", "fried_calamari", "fried_rice", "frozen_yogurt", "garlic_bread", "gnocchi", "greek_salad", "grilled_cheese_sandwich", "beet_salad", "grilled_salmon", "guacamole", "gyoza", "hamburger", "hot_and_sour_soup", "hot_dog", "huevos_rancheros", "hummus", "ice_cream", "lasagna", "beignets", "lobster_bisque", "lobster_roll_sandwich", "macaroni_and_cheese", "macarons", "miso_soup", "mussels", "nachos", "omelette", "onion_rings", "oysters", "bibimbap", "pad_thai", "paella", "pancakes", "panna_cotta", "peking_duck", "pho", "pizza", "pork_chop", "poutine", "prime_rib", "bread_pudding", "pulled_pork_sandwich", "ramen", "ravioli", "red_velvet_cake", "risotto", "samosa", "sashimi", "scallops", "seaweed_salad", "shrimp_and_grits", "breakfast_burrito", "spaghetti_bolognese", "spaghetti_carbonara", "spring_rolls", "steak", "strawberry_shortcake", "sushi", "tacos", "takoyaki", "tiramisu", "tuna_tartare" ]