model_id
stringlengths 7
105
| model_card
stringlengths 1
130k
| model_labels
listlengths 2
80k
|
---|---|---|
moreover18/hf_images_model1
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# hf_images_model1
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the image_folder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2058
- Accuracy: 0.9178
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.7057 | 0.04 | 10 | 0.7027 | 0.4644 |
| 0.6808 | 0.09 | 20 | 0.6615 | 0.6590 |
| 0.6278 | 0.13 | 30 | 0.5969 | 0.7441 |
| 0.5674 | 0.17 | 40 | 0.5134 | 0.8183 |
| 0.4761 | 0.21 | 50 | 0.4146 | 0.875 |
| 0.3777 | 0.26 | 60 | 0.3362 | 0.8796 |
| 0.303 | 0.3 | 70 | 0.2906 | 0.8854 |
| 0.2385 | 0.34 | 80 | 0.2694 | 0.8937 |
| 0.2452 | 0.39 | 90 | 0.2515 | 0.9012 |
| 0.2771 | 0.43 | 100 | 0.2441 | 0.9050 |
| 0.2332 | 0.47 | 110 | 0.2510 | 0.8975 |
| 0.2495 | 0.51 | 120 | 0.2398 | 0.9052 |
| 0.2611 | 0.56 | 130 | 0.2384 | 0.9063 |
| 0.2292 | 0.6 | 140 | 0.2931 | 0.8865 |
| 0.2518 | 0.64 | 150 | 0.2537 | 0.8994 |
| 0.211 | 0.69 | 160 | 0.2619 | 0.8953 |
| 0.2514 | 0.73 | 170 | 0.2236 | 0.9090 |
| 0.2272 | 0.77 | 180 | 0.2254 | 0.9085 |
| 0.2263 | 0.81 | 190 | 0.2141 | 0.9181 |
| 0.2524 | 0.86 | 200 | 0.2038 | 0.9194 |
| 0.2024 | 0.9 | 210 | 0.2038 | 0.9165 |
| 0.2355 | 0.94 | 220 | 0.2215 | 0.9103 |
| 0.2431 | 0.99 | 230 | 0.2116 | 0.9178 |
| 0.1921 | 1.03 | 240 | 0.2105 | 0.9111 |
| 0.1845 | 1.07 | 250 | 0.2107 | 0.9117 |
| 0.1838 | 1.11 | 260 | 0.2070 | 0.9119 |
| 0.1824 | 1.16 | 270 | 0.2110 | 0.9130 |
| 0.1706 | 1.2 | 280 | 0.2177 | 0.9154 |
| 0.1826 | 1.24 | 290 | 0.2058 | 0.9160 |
| 0.1816 | 1.28 | 300 | 0.2081 | 0.9176 |
| 0.1901 | 1.33 | 310 | 0.2187 | 0.9149 |
| 0.2112 | 1.37 | 320 | 0.2107 | 0.9181 |
| 0.22 | 1.41 | 330 | 0.2065 | 0.9173 |
| 0.2105 | 1.46 | 340 | 0.2090 | 0.9170 |
| 0.2016 | 1.5 | 350 | 0.2044 | 0.9141 |
| 0.2055 | 1.54 | 360 | 0.2029 | 0.9173 |
| 0.1507 | 1.58 | 370 | 0.2103 | 0.9192 |
| 0.1705 | 1.63 | 380 | 0.1960 | 0.9184 |
| 0.1605 | 1.67 | 390 | 0.2070 | 0.9154 |
| 0.2011 | 1.71 | 400 | 0.2096 | 0.9160 |
| 0.1832 | 1.76 | 410 | 0.2023 | 0.9176 |
| 0.1756 | 1.8 | 420 | 0.2005 | 0.9189 |
| 0.1874 | 1.84 | 430 | 0.2050 | 0.9135 |
| 0.1497 | 1.88 | 440 | 0.1936 | 0.9240 |
| 0.1891 | 1.93 | 450 | 0.1991 | 0.9208 |
| 0.1595 | 1.97 | 460 | 0.2014 | 0.9194 |
| 0.2028 | 2.01 | 470 | 0.1994 | 0.9184 |
| 0.1794 | 2.06 | 480 | 0.2068 | 0.9146 |
| 0.1404 | 2.1 | 490 | 0.2046 | 0.9181 |
| 0.1615 | 2.14 | 500 | 0.1955 | 0.9243 |
| 0.1555 | 2.18 | 510 | 0.2027 | 0.9202 |
| 0.151 | 2.23 | 520 | 0.1893 | 0.9261 |
| 0.1676 | 2.27 | 530 | 0.2046 | 0.9192 |
| 0.1744 | 2.31 | 540 | 0.1967 | 0.9218 |
| 0.1644 | 2.36 | 550 | 0.1970 | 0.9226 |
| 0.2048 | 2.4 | 560 | 0.1930 | 0.9243 |
| 0.1649 | 2.44 | 570 | 0.1986 | 0.9218 |
| 0.1435 | 2.48 | 580 | 0.1956 | 0.9213 |
| 0.1598 | 2.53 | 590 | 0.1986 | 0.9197 |
| 0.1513 | 2.57 | 600 | 0.2020 | 0.9173 |
| 0.1769 | 2.61 | 610 | 0.2005 | 0.9170 |
| 0.1488 | 2.66 | 620 | 0.2033 | 0.9197 |
| 0.1636 | 2.7 | 630 | 0.1964 | 0.9216 |
| 0.1583 | 2.74 | 640 | 0.1985 | 0.9189 |
| 0.1294 | 2.78 | 650 | 0.2109 | 0.9151 |
| 0.1585 | 2.83 | 660 | 0.2000 | 0.9186 |
| 0.1531 | 2.87 | 670 | 0.2078 | 0.9178 |
| 0.1294 | 2.91 | 680 | 0.1891 | 0.9272 |
| 0.1612 | 2.96 | 690 | 0.2058 | 0.9178 |
### Framework versions
- Transformers 4.33.0
- Pytorch 2.0.0
- Datasets 2.1.0
- Tokenizers 0.13.3
|
[
"not_people",
"people"
] |
PatcharapornPS/food_classifier
|
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# PatcharapornPS/food_classifier
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.4062
- Validation Loss: 0.3379
- Train Accuracy: 0.922
- Epoch: 4
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 3e-05, 'decay_steps': 20000, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Validation Loss | Train Accuracy | Epoch |
|:----------:|:---------------:|:--------------:|:-----:|
| 2.7669 | 1.6626 | 0.799 | 0 |
| 1.2218 | 0.8541 | 0.872 | 1 |
| 0.7264 | 0.5341 | 0.903 | 2 |
| 0.4953 | 0.4510 | 0.894 | 3 |
| 0.4062 | 0.3379 | 0.922 | 4 |
### Framework versions
- Transformers 4.35.0
- TensorFlow 2.14.0
- Datasets 2.14.6
- Tokenizers 0.14.1
|
[
"apple_pie",
"baby_back_ribs",
"bruschetta",
"waffles",
"caesar_salad",
"cannoli",
"caprese_salad",
"carrot_cake",
"ceviche",
"cheesecake",
"cheese_plate",
"chicken_curry",
"chicken_quesadilla",
"baklava",
"chicken_wings",
"chocolate_cake",
"chocolate_mousse",
"churros",
"clam_chowder",
"club_sandwich",
"crab_cakes",
"creme_brulee",
"croque_madame",
"cup_cakes",
"beef_carpaccio",
"deviled_eggs",
"donuts",
"dumplings",
"edamame",
"eggs_benedict",
"escargots",
"falafel",
"filet_mignon",
"fish_and_chips",
"foie_gras",
"beef_tartare",
"french_fries",
"french_onion_soup",
"french_toast",
"fried_calamari",
"fried_rice",
"frozen_yogurt",
"garlic_bread",
"gnocchi",
"greek_salad",
"grilled_cheese_sandwich",
"beet_salad",
"grilled_salmon",
"guacamole",
"gyoza",
"hamburger",
"hot_and_sour_soup",
"hot_dog",
"huevos_rancheros",
"hummus",
"ice_cream",
"lasagna",
"beignets",
"lobster_bisque",
"lobster_roll_sandwich",
"macaroni_and_cheese",
"macarons",
"miso_soup",
"mussels",
"nachos",
"omelette",
"onion_rings",
"oysters",
"bibimbap",
"pad_thai",
"paella",
"pancakes",
"panna_cotta",
"peking_duck",
"pho",
"pizza",
"pork_chop",
"poutine",
"prime_rib",
"bread_pudding",
"pulled_pork_sandwich",
"ramen",
"ravioli",
"red_velvet_cake",
"risotto",
"samosa",
"sashimi",
"scallops",
"seaweed_salad",
"shrimp_and_grits",
"breakfast_burrito",
"spaghetti_bolognese",
"spaghetti_carbonara",
"spring_rolls",
"steak",
"strawberry_shortcake",
"sushi",
"tacos",
"takoyaki",
"tiramisu",
"tuna_tartare"
] |
dima806/wildfire_types_image_detection
|
Returns wildfire type given an image with about 90% accuracy.
See https://www.kaggle.com/code/dima806/wildfire-image-detection-vit for more details.
```
Classification report:
precision recall f1-score support
Both_smoke_and_fire 0.9623 0.9091 0.9350 253
Fire_confounding_elements 0.9306 0.8976 0.9138 254
Forested_areas_without_confounding_elements 0.9215 0.8780 0.8992 254
Smoke_confounding_elements 0.8370 0.8898 0.8626 254
Smoke_from_fires 0.8755 0.9409 0.9070 254
accuracy 0.9031 1269
macro avg 0.9054 0.9031 0.9035 1269
weighted avg 0.9053 0.9031 0.9035 1269
```
|
[
"both_smoke_and_fire",
"fire_confounding_elements",
"forested_areas_without_confounding_elements",
"smoke_confounding_elements",
"smoke_from_fires"
] |
bdpc/resnet101_rvl-cdip-cnn_rvl_cdip-NK1000_kd
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# resnet101_rvl-cdip-cnn_rvl_cdip-NK1000_kd
This model is a fine-tuned version of [microsoft/resnet-50](https://huggingface.co/microsoft/resnet-50) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6048
- Accuracy: 0.7867
- Brier Loss: 0.3046
- Nll: 2.0167
- F1 Micro: 0.7868
- F1 Macro: 0.7867
- Ece: 0.0468
- Aurc: 0.0597
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Brier Loss | Nll | F1 Micro | F1 Macro | Ece | Aurc |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:----------:|:------:|:--------:|:--------:|:------:|:------:|
| No log | 1.0 | 250 | 4.1589 | 0.1305 | 0.9320 | 7.8922 | 0.1305 | 0.0928 | 0.0637 | 0.8337 |
| 4.1546 | 2.0 | 500 | 3.6898 | 0.3515 | 0.8840 | 4.7696 | 0.3515 | 0.3150 | 0.2354 | 0.5486 |
| 4.1546 | 3.0 | 750 | 2.3450 | 0.4863 | 0.6606 | 3.2068 | 0.4863 | 0.4495 | 0.0978 | 0.2927 |
| 2.419 | 4.0 | 1000 | 1.5206 | 0.6125 | 0.5126 | 2.7884 | 0.6125 | 0.5996 | 0.0512 | 0.1677 |
| 2.419 | 5.0 | 1250 | 1.2545 | 0.6593 | 0.4574 | 2.6041 | 0.6593 | 0.6524 | 0.0483 | 0.1337 |
| 1.1615 | 6.0 | 1500 | 0.9718 | 0.704 | 0.4062 | 2.4047 | 0.704 | 0.7017 | 0.0506 | 0.1043 |
| 1.1615 | 7.0 | 1750 | 0.8636 | 0.73 | 0.3760 | 2.1975 | 0.7300 | 0.7304 | 0.0522 | 0.0902 |
| 0.7217 | 8.0 | 2000 | 0.7892 | 0.737 | 0.3632 | 2.1583 | 0.737 | 0.7377 | 0.0551 | 0.0835 |
| 0.7217 | 9.0 | 2250 | 0.7438 | 0.754 | 0.3470 | 2.0559 | 0.754 | 0.7531 | 0.0534 | 0.0766 |
| 0.5268 | 10.0 | 2500 | 0.7322 | 0.758 | 0.3443 | 2.1043 | 0.7580 | 0.7584 | 0.0510 | 0.0742 |
| 0.5268 | 11.0 | 2750 | 0.7003 | 0.7632 | 0.3335 | 2.0510 | 0.7632 | 0.7639 | 0.0472 | 0.0697 |
| 0.4197 | 12.0 | 3000 | 0.6921 | 0.7665 | 0.3325 | 2.0569 | 0.7665 | 0.7668 | 0.0568 | 0.0694 |
| 0.4197 | 13.0 | 3250 | 0.7003 | 0.7618 | 0.3330 | 2.0293 | 0.7618 | 0.7618 | 0.0465 | 0.0721 |
| 0.3575 | 14.0 | 3500 | 0.6681 | 0.7728 | 0.3244 | 2.0037 | 0.7728 | 0.7739 | 0.0505 | 0.0664 |
| 0.3575 | 15.0 | 3750 | 0.6862 | 0.7718 | 0.3279 | 2.0294 | 0.7717 | 0.7727 | 0.0442 | 0.0693 |
| 0.3181 | 16.0 | 4000 | 0.6681 | 0.7738 | 0.3246 | 2.0559 | 0.7738 | 0.7739 | 0.0509 | 0.0671 |
| 0.3181 | 17.0 | 4250 | 0.6473 | 0.7775 | 0.3177 | 1.9978 | 0.7775 | 0.7784 | 0.0494 | 0.0644 |
| 0.2874 | 18.0 | 4500 | 0.6448 | 0.78 | 0.3172 | 2.0396 | 0.78 | 0.7805 | 0.0495 | 0.0651 |
| 0.2874 | 19.0 | 4750 | 0.6484 | 0.779 | 0.3153 | 2.0251 | 0.779 | 0.7790 | 0.0519 | 0.0636 |
| 0.2691 | 20.0 | 5000 | 0.6430 | 0.7768 | 0.3164 | 2.0897 | 0.7768 | 0.7771 | 0.0489 | 0.0635 |
| 0.2691 | 21.0 | 5250 | 0.6363 | 0.78 | 0.3145 | 2.0663 | 0.78 | 0.7802 | 0.0476 | 0.0640 |
| 0.2509 | 22.0 | 5500 | 0.6327 | 0.782 | 0.3127 | 2.0358 | 0.782 | 0.7820 | 0.0440 | 0.0634 |
| 0.2509 | 23.0 | 5750 | 0.6287 | 0.7863 | 0.3113 | 2.0157 | 0.7863 | 0.7865 | 0.0463 | 0.0630 |
| 0.2393 | 24.0 | 6000 | 0.6315 | 0.7778 | 0.3137 | 2.0623 | 0.7778 | 0.7773 | 0.0492 | 0.0633 |
| 0.2393 | 25.0 | 6250 | 0.6345 | 0.7775 | 0.3149 | 2.0397 | 0.7775 | 0.7773 | 0.0514 | 0.0635 |
| 0.2291 | 26.0 | 6500 | 0.6233 | 0.7815 | 0.3102 | 1.9988 | 0.7815 | 0.7816 | 0.0444 | 0.0626 |
| 0.2291 | 27.0 | 6750 | 0.6224 | 0.783 | 0.3095 | 2.0085 | 0.7830 | 0.7830 | 0.0502 | 0.0615 |
| 0.2191 | 28.0 | 7000 | 0.6159 | 0.7835 | 0.3089 | 2.0340 | 0.7835 | 0.7834 | 0.0499 | 0.0614 |
| 0.2191 | 29.0 | 7250 | 0.6203 | 0.7825 | 0.3096 | 2.0280 | 0.7825 | 0.7825 | 0.0480 | 0.0617 |
| 0.2139 | 30.0 | 7500 | 0.6233 | 0.7802 | 0.3093 | 2.0660 | 0.7802 | 0.7805 | 0.0518 | 0.0609 |
| 0.2139 | 31.0 | 7750 | 0.6128 | 0.785 | 0.3049 | 2.0148 | 0.785 | 0.7851 | 0.0471 | 0.0604 |
| 0.2068 | 32.0 | 8000 | 0.6124 | 0.7855 | 0.3064 | 2.0336 | 0.7855 | 0.7855 | 0.0433 | 0.0604 |
| 0.2068 | 33.0 | 8250 | 0.6117 | 0.7835 | 0.3068 | 2.0208 | 0.7835 | 0.7833 | 0.0469 | 0.0604 |
| 0.202 | 34.0 | 8500 | 0.6105 | 0.7857 | 0.3063 | 1.9918 | 0.7857 | 0.7854 | 0.0454 | 0.0611 |
| 0.202 | 35.0 | 8750 | 0.6136 | 0.7877 | 0.3088 | 2.0272 | 0.7877 | 0.7884 | 0.0444 | 0.0607 |
| 0.1974 | 36.0 | 9000 | 0.6095 | 0.786 | 0.3052 | 2.0275 | 0.786 | 0.7862 | 0.0423 | 0.0600 |
| 0.1974 | 37.0 | 9250 | 0.6108 | 0.786 | 0.3077 | 2.0035 | 0.786 | 0.7860 | 0.0477 | 0.0606 |
| 0.1945 | 38.0 | 9500 | 0.6107 | 0.7817 | 0.3078 | 2.0042 | 0.7817 | 0.7820 | 0.0482 | 0.0611 |
| 0.1945 | 39.0 | 9750 | 0.6077 | 0.7875 | 0.3051 | 1.9959 | 0.7875 | 0.7878 | 0.0510 | 0.0599 |
| 0.1919 | 40.0 | 10000 | 0.6099 | 0.7863 | 0.3072 | 2.0323 | 0.7863 | 0.7866 | 0.0468 | 0.0603 |
| 0.1919 | 41.0 | 10250 | 0.6046 | 0.7847 | 0.3046 | 2.0113 | 0.7847 | 0.7850 | 0.0442 | 0.0600 |
| 0.1874 | 42.0 | 10500 | 0.6062 | 0.7865 | 0.3059 | 2.0055 | 0.7865 | 0.7865 | 0.0486 | 0.0598 |
| 0.1874 | 43.0 | 10750 | 0.6051 | 0.787 | 0.3042 | 2.0151 | 0.787 | 0.7870 | 0.0451 | 0.0596 |
| 0.1859 | 44.0 | 11000 | 0.6082 | 0.7855 | 0.3063 | 2.0123 | 0.7855 | 0.7860 | 0.0470 | 0.0600 |
| 0.1859 | 45.0 | 11250 | 0.6066 | 0.7867 | 0.3047 | 2.0000 | 0.7868 | 0.7865 | 0.0479 | 0.0599 |
| 0.1856 | 46.0 | 11500 | 0.6049 | 0.7863 | 0.3054 | 2.0058 | 0.7863 | 0.7861 | 0.0475 | 0.0598 |
| 0.1856 | 47.0 | 11750 | 0.6041 | 0.7887 | 0.3047 | 1.9992 | 0.7887 | 0.7891 | 0.0482 | 0.0595 |
| 0.1842 | 48.0 | 12000 | 0.6063 | 0.7843 | 0.3055 | 2.0346 | 0.7843 | 0.7843 | 0.0480 | 0.0601 |
| 0.1842 | 49.0 | 12250 | 0.6058 | 0.786 | 0.3051 | 2.0319 | 0.786 | 0.7861 | 0.0481 | 0.0598 |
| 0.1829 | 50.0 | 12500 | 0.6048 | 0.7867 | 0.3046 | 2.0167 | 0.7868 | 0.7867 | 0.0468 | 0.0597 |
### Framework versions
- Transformers 4.33.3
- Pytorch 2.2.0.dev20231002
- Datasets 2.7.1
- Tokenizers 0.13.3
|
[
"letter",
"form",
"email",
"handwritten",
"advertisement",
"scientific_report",
"scientific_publication",
"specification",
"file_folder",
"news_article",
"budget",
"invoice",
"presentation",
"questionnaire",
"resume",
"memo"
] |
jordyvl/vit_rand_rvl-cdip_N1K
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# vit_rand_rvl-cdip_N1K
This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 3.9745
- Accuracy: 0.551
- Brier Loss: 0.8083
- Nll: 3.9609
- F1 Micro: 0.551
- F1 Macro: 0.5474
- Ece: 0.3805
- Aurc: 0.2338
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 100
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Brier Loss | Nll | F1 Micro | F1 Macro | Ece | Aurc |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:----------:|:------:|:--------:|:--------:|:------:|:------:|
| No log | 1.0 | 250 | 2.6207 | 0.171 | 0.9078 | 5.8097 | 0.171 | 0.1129 | 0.0606 | 0.7132 |
| 2.6241 | 2.0 | 500 | 2.4608 | 0.1727 | 0.8843 | 4.0297 | 0.1727 | 0.1156 | 0.0641 | 0.6991 |
| 2.6241 | 3.0 | 750 | 2.4182 | 0.2177 | 0.8659 | 4.1324 | 0.2177 | 0.1603 | 0.0802 | 0.6191 |
| 2.3655 | 4.0 | 1000 | 2.2066 | 0.2828 | 0.8237 | 3.3597 | 0.2828 | 0.2456 | 0.0597 | 0.5384 |
| 2.3655 | 5.0 | 1250 | 2.0873 | 0.3322 | 0.7923 | 3.2747 | 0.3322 | 0.2940 | 0.0613 | 0.4790 |
| 2.0557 | 6.0 | 1500 | 1.9178 | 0.398 | 0.7392 | 3.1146 | 0.398 | 0.3639 | 0.0589 | 0.3937 |
| 2.0557 | 7.0 | 1750 | 1.7861 | 0.458 | 0.7025 | 2.9045 | 0.458 | 0.4450 | 0.0778 | 0.3497 |
| 1.7262 | 8.0 | 2000 | 1.7288 | 0.4535 | 0.6821 | 2.9955 | 0.4535 | 0.4322 | 0.0528 | 0.3262 |
| 1.7262 | 9.0 | 2250 | 1.6881 | 0.472 | 0.6673 | 2.8844 | 0.472 | 0.4561 | 0.0563 | 0.3120 |
| 1.4846 | 10.0 | 2500 | 1.6912 | 0.4688 | 0.6633 | 2.8541 | 0.4688 | 0.4540 | 0.0718 | 0.3006 |
| 1.4846 | 11.0 | 2750 | 1.6094 | 0.5022 | 0.6353 | 2.8239 | 0.5022 | 0.4859 | 0.0759 | 0.2724 |
| 1.1972 | 12.0 | 3000 | 1.5364 | 0.535 | 0.6084 | 2.7911 | 0.535 | 0.5162 | 0.0905 | 0.2413 |
| 1.1972 | 13.0 | 3250 | 1.5683 | 0.521 | 0.6228 | 2.7486 | 0.521 | 0.5268 | 0.1003 | 0.2559 |
| 0.8678 | 14.0 | 3500 | 1.6246 | 0.5325 | 0.6246 | 2.8388 | 0.5325 | 0.5295 | 0.1304 | 0.2486 |
| 0.8678 | 15.0 | 3750 | 1.7502 | 0.5138 | 0.6555 | 2.9705 | 0.5138 | 0.5093 | 0.1750 | 0.2547 |
| 0.5268 | 16.0 | 4000 | 1.8375 | 0.5215 | 0.6677 | 2.9906 | 0.5215 | 0.5186 | 0.2099 | 0.2535 |
| 0.5268 | 17.0 | 4250 | 1.9606 | 0.524 | 0.6895 | 3.2415 | 0.524 | 0.5174 | 0.2425 | 0.2488 |
| 0.2667 | 18.0 | 4500 | 2.0553 | 0.5305 | 0.6953 | 3.2430 | 0.5305 | 0.5223 | 0.2554 | 0.2434 |
| 0.2667 | 19.0 | 4750 | 2.3400 | 0.5228 | 0.7369 | 3.5472 | 0.5228 | 0.5101 | 0.2871 | 0.2605 |
| 0.1513 | 20.0 | 5000 | 2.3720 | 0.5192 | 0.7472 | 3.4681 | 0.5192 | 0.5178 | 0.2982 | 0.2674 |
| 0.1513 | 21.0 | 5250 | 2.4935 | 0.52 | 0.7588 | 3.4578 | 0.52 | 0.5104 | 0.3101 | 0.2586 |
| 0.1164 | 22.0 | 5500 | 2.4916 | 0.5155 | 0.7625 | 3.3908 | 0.5155 | 0.5090 | 0.3129 | 0.2634 |
| 0.1164 | 23.0 | 5750 | 2.5740 | 0.523 | 0.7647 | 3.4298 | 0.523 | 0.5235 | 0.3220 | 0.2601 |
| 0.0883 | 24.0 | 6000 | 2.5887 | 0.5305 | 0.7598 | 3.4432 | 0.5305 | 0.5307 | 0.3194 | 0.2571 |
| 0.0883 | 25.0 | 6250 | 2.7429 | 0.52 | 0.7747 | 3.7692 | 0.52 | 0.5132 | 0.3291 | 0.2696 |
| 0.0739 | 26.0 | 6500 | 2.7728 | 0.5235 | 0.7828 | 3.4718 | 0.5235 | 0.5271 | 0.3399 | 0.2679 |
| 0.0739 | 27.0 | 6750 | 2.7862 | 0.5335 | 0.7680 | 3.5774 | 0.5335 | 0.5352 | 0.3256 | 0.2651 |
| 0.0619 | 28.0 | 7000 | 2.9449 | 0.5222 | 0.7964 | 3.6659 | 0.5222 | 0.5165 | 0.3503 | 0.2697 |
| 0.0619 | 29.0 | 7250 | 2.8872 | 0.5345 | 0.7714 | 3.5298 | 0.5345 | 0.5310 | 0.3376 | 0.2545 |
| 0.0531 | 30.0 | 7500 | 2.9649 | 0.5232 | 0.7994 | 3.6119 | 0.5232 | 0.5191 | 0.3527 | 0.2714 |
| 0.0531 | 31.0 | 7750 | 3.1024 | 0.5182 | 0.8112 | 3.6716 | 0.5182 | 0.5206 | 0.3639 | 0.2748 |
| 0.0446 | 32.0 | 8000 | 3.0895 | 0.5218 | 0.8036 | 3.6731 | 0.5218 | 0.5226 | 0.3609 | 0.2669 |
| 0.0446 | 33.0 | 8250 | 3.1813 | 0.5202 | 0.8130 | 3.6839 | 0.5202 | 0.5236 | 0.3675 | 0.2637 |
| 0.0368 | 34.0 | 8500 | 3.2535 | 0.5335 | 0.8011 | 3.6982 | 0.5335 | 0.5302 | 0.3653 | 0.2572 |
| 0.0368 | 35.0 | 8750 | 3.1969 | 0.5265 | 0.8021 | 3.7238 | 0.5265 | 0.5239 | 0.3649 | 0.2558 |
| 0.0364 | 36.0 | 9000 | 3.3875 | 0.5165 | 0.8174 | 4.0335 | 0.5165 | 0.5051 | 0.3675 | 0.2645 |
| 0.0364 | 37.0 | 9250 | 3.3883 | 0.5248 | 0.8168 | 3.8867 | 0.5248 | 0.5152 | 0.3768 | 0.2529 |
| 0.0338 | 38.0 | 9500 | 3.3876 | 0.5255 | 0.8198 | 3.6397 | 0.5255 | 0.5278 | 0.3791 | 0.2679 |
| 0.0338 | 39.0 | 9750 | 3.3675 | 0.5282 | 0.8201 | 3.7412 | 0.5282 | 0.5317 | 0.3774 | 0.2561 |
| 0.0277 | 40.0 | 10000 | 3.6788 | 0.5005 | 0.8597 | 4.1427 | 0.5005 | 0.4880 | 0.3966 | 0.2757 |
| 0.0277 | 41.0 | 10250 | 3.5608 | 0.522 | 0.8299 | 3.7769 | 0.522 | 0.5230 | 0.3828 | 0.2749 |
| 0.0177 | 42.0 | 10500 | 3.6388 | 0.5275 | 0.8242 | 4.0808 | 0.5275 | 0.5134 | 0.3817 | 0.2508 |
| 0.0177 | 43.0 | 10750 | 3.7068 | 0.532 | 0.8199 | 4.1084 | 0.532 | 0.5198 | 0.3809 | 0.2480 |
| 0.018 | 44.0 | 11000 | 3.7589 | 0.5258 | 0.8315 | 3.9264 | 0.5258 | 0.5172 | 0.3877 | 0.2624 |
| 0.018 | 45.0 | 11250 | 3.7492 | 0.518 | 0.8437 | 3.9257 | 0.518 | 0.5180 | 0.3951 | 0.2684 |
| 0.0186 | 46.0 | 11500 | 3.7641 | 0.5275 | 0.8306 | 3.9749 | 0.5275 | 0.5277 | 0.3877 | 0.2595 |
| 0.0186 | 47.0 | 11750 | 3.8842 | 0.52 | 0.8491 | 4.1807 | 0.52 | 0.5182 | 0.3949 | 0.2658 |
| 0.0159 | 48.0 | 12000 | 3.8731 | 0.5292 | 0.8318 | 3.9345 | 0.5292 | 0.5250 | 0.3902 | 0.2618 |
| 0.0159 | 49.0 | 12250 | 4.0101 | 0.519 | 0.8552 | 4.0796 | 0.519 | 0.5198 | 0.4025 | 0.2713 |
| 0.0118 | 50.0 | 12500 | 3.8631 | 0.5255 | 0.8288 | 4.0855 | 0.5255 | 0.5245 | 0.3891 | 0.2600 |
| 0.0118 | 51.0 | 12750 | 3.7895 | 0.5415 | 0.8143 | 3.9602 | 0.5415 | 0.5441 | 0.3809 | 0.2506 |
| 0.0125 | 52.0 | 13000 | 3.9434 | 0.523 | 0.8385 | 4.2268 | 0.523 | 0.5136 | 0.3951 | 0.2623 |
| 0.0125 | 53.0 | 13250 | 3.9239 | 0.5275 | 0.8391 | 4.0398 | 0.5275 | 0.5255 | 0.3952 | 0.2632 |
| 0.0087 | 54.0 | 13500 | 3.9463 | 0.5323 | 0.8307 | 4.1080 | 0.5323 | 0.5275 | 0.3905 | 0.2580 |
| 0.0087 | 55.0 | 13750 | 3.8462 | 0.5367 | 0.8210 | 3.9693 | 0.5367 | 0.5375 | 0.3825 | 0.2595 |
| 0.0093 | 56.0 | 14000 | 4.0603 | 0.5208 | 0.8449 | 4.2501 | 0.5208 | 0.5181 | 0.4019 | 0.2683 |
| 0.0093 | 57.0 | 14250 | 3.9614 | 0.5323 | 0.8240 | 4.1335 | 0.5323 | 0.5265 | 0.3863 | 0.2517 |
| 0.0082 | 58.0 | 14500 | 3.9553 | 0.548 | 0.8125 | 4.0319 | 0.548 | 0.5412 | 0.3822 | 0.2414 |
| 0.0082 | 59.0 | 14750 | 3.9586 | 0.5335 | 0.8325 | 4.0338 | 0.5335 | 0.5314 | 0.3902 | 0.2582 |
| 0.0069 | 60.0 | 15000 | 4.1072 | 0.531 | 0.8422 | 4.0678 | 0.531 | 0.5250 | 0.3997 | 0.2574 |
| 0.0069 | 61.0 | 15250 | 4.0455 | 0.5425 | 0.8173 | 4.0318 | 0.5425 | 0.5415 | 0.3881 | 0.2480 |
| 0.0054 | 62.0 | 15500 | 4.0208 | 0.531 | 0.8325 | 4.1704 | 0.531 | 0.5261 | 0.3912 | 0.2517 |
| 0.0054 | 63.0 | 15750 | 4.1167 | 0.5345 | 0.8325 | 4.2352 | 0.5345 | 0.5292 | 0.3926 | 0.2537 |
| 0.0054 | 64.0 | 16000 | 4.0246 | 0.5323 | 0.8339 | 4.0084 | 0.5323 | 0.5319 | 0.3940 | 0.2536 |
| 0.0054 | 65.0 | 16250 | 4.0535 | 0.5417 | 0.8203 | 4.1167 | 0.5417 | 0.5340 | 0.3875 | 0.2464 |
| 0.0048 | 66.0 | 16500 | 4.1987 | 0.5325 | 0.8371 | 4.2901 | 0.5325 | 0.5215 | 0.3979 | 0.2529 |
| 0.0048 | 67.0 | 16750 | 4.0956 | 0.5355 | 0.8264 | 4.3477 | 0.5355 | 0.5239 | 0.3889 | 0.2449 |
| 0.004 | 68.0 | 17000 | 3.9999 | 0.5423 | 0.8186 | 4.0645 | 0.5423 | 0.5453 | 0.3877 | 0.2487 |
| 0.004 | 69.0 | 17250 | 4.0824 | 0.538 | 0.8229 | 4.1670 | 0.538 | 0.5350 | 0.3887 | 0.2461 |
| 0.0053 | 70.0 | 17500 | 4.2158 | 0.5305 | 0.8479 | 4.2136 | 0.5305 | 0.5287 | 0.4002 | 0.2572 |
| 0.0053 | 71.0 | 17750 | 4.1586 | 0.533 | 0.8355 | 4.1576 | 0.533 | 0.5261 | 0.3942 | 0.2512 |
| 0.0041 | 72.0 | 18000 | 4.0781 | 0.5375 | 0.8296 | 4.1218 | 0.5375 | 0.5341 | 0.3930 | 0.2427 |
| 0.0041 | 73.0 | 18250 | 4.1389 | 0.5413 | 0.8229 | 4.0890 | 0.5413 | 0.5347 | 0.3918 | 0.2437 |
| 0.0028 | 74.0 | 18500 | 4.0675 | 0.5415 | 0.8212 | 4.0429 | 0.5415 | 0.5404 | 0.3920 | 0.2415 |
| 0.0028 | 75.0 | 18750 | 4.1044 | 0.5377 | 0.8294 | 4.1268 | 0.5377 | 0.5335 | 0.3955 | 0.2439 |
| 0.0027 | 76.0 | 19000 | 4.0731 | 0.5435 | 0.8193 | 4.0913 | 0.5435 | 0.5396 | 0.3892 | 0.2411 |
| 0.0027 | 77.0 | 19250 | 4.0768 | 0.5455 | 0.8158 | 4.0784 | 0.5455 | 0.5398 | 0.3885 | 0.2389 |
| 0.0028 | 78.0 | 19500 | 4.0665 | 0.5447 | 0.8187 | 4.0719 | 0.5447 | 0.5390 | 0.3876 | 0.2392 |
| 0.0028 | 79.0 | 19750 | 4.0475 | 0.5413 | 0.8204 | 4.0408 | 0.5413 | 0.5361 | 0.3927 | 0.2376 |
| 0.0026 | 80.0 | 20000 | 4.0176 | 0.5457 | 0.8101 | 4.0504 | 0.5457 | 0.5424 | 0.3844 | 0.2376 |
| 0.0026 | 81.0 | 20250 | 4.0408 | 0.5427 | 0.8181 | 4.0458 | 0.5427 | 0.5385 | 0.3888 | 0.2385 |
| 0.0027 | 82.0 | 20500 | 4.0392 | 0.5427 | 0.8207 | 4.0317 | 0.5427 | 0.5387 | 0.3897 | 0.2392 |
| 0.0027 | 83.0 | 20750 | 4.0163 | 0.545 | 0.8145 | 4.0292 | 0.545 | 0.5403 | 0.3868 | 0.2375 |
| 0.0026 | 84.0 | 21000 | 4.0057 | 0.5437 | 0.8165 | 4.0096 | 0.5437 | 0.5404 | 0.3867 | 0.2380 |
| 0.0026 | 85.0 | 21250 | 4.0096 | 0.544 | 0.8140 | 4.0733 | 0.544 | 0.5404 | 0.3861 | 0.2368 |
| 0.0026 | 86.0 | 21500 | 3.9696 | 0.5487 | 0.8087 | 4.0527 | 0.5487 | 0.5435 | 0.3824 | 0.2352 |
| 0.0026 | 87.0 | 21750 | 3.9826 | 0.5495 | 0.8103 | 4.0353 | 0.5495 | 0.5460 | 0.3820 | 0.2362 |
| 0.0025 | 88.0 | 22000 | 4.0171 | 0.5455 | 0.8147 | 4.0540 | 0.5455 | 0.5402 | 0.3865 | 0.2359 |
| 0.0025 | 89.0 | 22250 | 3.9745 | 0.5455 | 0.8138 | 3.9683 | 0.5455 | 0.5439 | 0.3867 | 0.2357 |
| 0.0025 | 90.0 | 22500 | 3.9811 | 0.5473 | 0.8098 | 3.9749 | 0.5473 | 0.5437 | 0.3842 | 0.2346 |
| 0.0025 | 91.0 | 22750 | 3.9800 | 0.5475 | 0.8122 | 3.9502 | 0.5475 | 0.5450 | 0.3839 | 0.2353 |
| 0.0025 | 92.0 | 23000 | 3.9844 | 0.5473 | 0.8103 | 3.9825 | 0.5473 | 0.5425 | 0.3840 | 0.2347 |
| 0.0025 | 93.0 | 23250 | 3.9876 | 0.5485 | 0.8107 | 3.9624 | 0.5485 | 0.5441 | 0.3826 | 0.2343 |
| 0.0025 | 94.0 | 23500 | 3.9751 | 0.5485 | 0.8086 | 3.9791 | 0.5485 | 0.5450 | 0.3831 | 0.2337 |
| 0.0025 | 95.0 | 23750 | 3.9765 | 0.548 | 0.8087 | 3.9863 | 0.548 | 0.5440 | 0.3839 | 0.2336 |
| 0.0024 | 96.0 | 24000 | 3.9764 | 0.5507 | 0.8077 | 3.9676 | 0.5507 | 0.5473 | 0.3807 | 0.2339 |
| 0.0024 | 97.0 | 24250 | 3.9695 | 0.549 | 0.8082 | 3.9494 | 0.549 | 0.5456 | 0.3819 | 0.2346 |
| 0.0023 | 98.0 | 24500 | 3.9733 | 0.5497 | 0.8080 | 3.9599 | 0.5497 | 0.5462 | 0.3815 | 0.2338 |
| 0.0023 | 99.0 | 24750 | 3.9727 | 0.5505 | 0.8081 | 3.9563 | 0.5505 | 0.5469 | 0.3807 | 0.2339 |
| 0.0023 | 100.0 | 25000 | 3.9745 | 0.551 | 0.8083 | 3.9609 | 0.551 | 0.5474 | 0.3805 | 0.2338 |
### Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1.post200
- Datasets 2.9.0
- Tokenizers 0.13.2
|
[
"letter",
"form",
"email",
"handwritten",
"advertisement",
"scientific_report",
"scientific_publication",
"specification",
"file_folder",
"news_article",
"budget",
"invoice",
"presentation",
"questionnaire",
"resume",
"memo"
] |
PedroSampaio/swin-base-patch4-window7-224-food101-24-12
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# swin-base-patch4-window7-224-food101-24-12
This model is a fine-tuned version of [microsoft/swin-base-patch4-window7-224](https://huggingface.co/microsoft/swin-base-patch4-window7-224) on the food101 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2529
- Accuracy: 0.9312
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 24
- eval_batch_size: 24
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 96
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 12
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.9481 | 1.0 | 789 | 0.4713 | 0.8665 |
| 0.7584 | 2.0 | 1578 | 0.3561 | 0.8985 |
| 0.7081 | 3.0 | 2367 | 0.3190 | 0.9058 |
| 0.5639 | 4.0 | 3157 | 0.2951 | 0.9127 |
| 0.5106 | 5.0 | 3946 | 0.2863 | 0.9190 |
| 0.4633 | 6.0 | 4735 | 0.2785 | 0.9211 |
| 0.4188 | 7.0 | 5524 | 0.2704 | 0.9240 |
| 0.3308 | 8.0 | 6314 | 0.2739 | 0.9226 |
| 0.3853 | 9.0 | 7103 | 0.2634 | 0.9263 |
| 0.2281 | 10.0 | 7892 | 0.2578 | 0.9283 |
| 0.2648 | 11.0 | 8681 | 0.2586 | 0.9288 |
| 0.2303 | 12.0 | 9468 | 0.2529 | 0.9312 |
### Framework versions
- Transformers 4.35.0
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1
|
[
"apple_pie",
"baby_back_ribs",
"baklava",
"beef_carpaccio",
"beef_tartare",
"beet_salad",
"beignets",
"bibimbap",
"bread_pudding",
"breakfast_burrito",
"bruschetta",
"caesar_salad",
"cannoli",
"caprese_salad",
"carrot_cake",
"ceviche",
"cheesecake",
"cheese_plate",
"chicken_curry",
"chicken_quesadilla",
"chicken_wings",
"chocolate_cake",
"chocolate_mousse",
"churros",
"clam_chowder",
"club_sandwich",
"crab_cakes",
"creme_brulee",
"croque_madame",
"cup_cakes",
"deviled_eggs",
"donuts",
"dumplings",
"edamame",
"eggs_benedict",
"escargots",
"falafel",
"filet_mignon",
"fish_and_chips",
"foie_gras",
"french_fries",
"french_onion_soup",
"french_toast",
"fried_calamari",
"fried_rice",
"frozen_yogurt",
"garlic_bread",
"gnocchi",
"greek_salad",
"grilled_cheese_sandwich",
"grilled_salmon",
"guacamole",
"gyoza",
"hamburger",
"hot_and_sour_soup",
"hot_dog",
"huevos_rancheros",
"hummus",
"ice_cream",
"lasagna",
"lobster_bisque",
"lobster_roll_sandwich",
"macaroni_and_cheese",
"macarons",
"miso_soup",
"mussels",
"nachos",
"omelette",
"onion_rings",
"oysters",
"pad_thai",
"paella",
"pancakes",
"panna_cotta",
"peking_duck",
"pho",
"pizza",
"pork_chop",
"poutine",
"prime_rib",
"pulled_pork_sandwich",
"ramen",
"ravioli",
"red_velvet_cake",
"risotto",
"samosa",
"sashimi",
"scallops",
"seaweed_salad",
"shrimp_and_grits",
"spaghetti_bolognese",
"spaghetti_carbonara",
"spring_rolls",
"steak",
"strawberry_shortcake",
"sushi",
"tacos",
"takoyaki",
"tiramisu",
"tuna_tartare",
"waffles"
] |
PedroSampaio/vit-base-patch16-224-food101-24-12
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# vit-base-patch16-224-food101-24-12
This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the food101 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3328
- Accuracy: 0.9088
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 24
- eval_batch_size: 24
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 96
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 12
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.1313 | 1.0 | 789 | 0.7486 | 0.8388 |
| 0.735 | 2.0 | 1578 | 0.4546 | 0.8795 |
| 0.7166 | 3.0 | 2367 | 0.3896 | 0.8942 |
| 0.5318 | 4.0 | 3157 | 0.3739 | 0.8961 |
| 0.5326 | 5.0 | 3946 | 0.3576 | 0.9013 |
| 0.4753 | 6.0 | 4735 | 0.3557 | 0.9006 |
| 0.3764 | 7.0 | 5524 | 0.3486 | 0.904 |
| 0.3399 | 8.0 | 6314 | 0.3457 | 0.9046 |
| 0.3987 | 9.0 | 7103 | 0.3378 | 0.9065 |
| 0.2592 | 10.0 | 7892 | 0.3393 | 0.9070 |
| 0.2661 | 11.0 | 8681 | 0.3366 | 0.9080 |
| 0.2632 | 12.0 | 9468 | 0.3328 | 0.9088 |
### Framework versions
- Transformers 4.35.0
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1
|
[
"apple_pie",
"baby_back_ribs",
"baklava",
"beef_carpaccio",
"beef_tartare",
"beet_salad",
"beignets",
"bibimbap",
"bread_pudding",
"breakfast_burrito",
"bruschetta",
"caesar_salad",
"cannoli",
"caprese_salad",
"carrot_cake",
"ceviche",
"cheesecake",
"cheese_plate",
"chicken_curry",
"chicken_quesadilla",
"chicken_wings",
"chocolate_cake",
"chocolate_mousse",
"churros",
"clam_chowder",
"club_sandwich",
"crab_cakes",
"creme_brulee",
"croque_madame",
"cup_cakes",
"deviled_eggs",
"donuts",
"dumplings",
"edamame",
"eggs_benedict",
"escargots",
"falafel",
"filet_mignon",
"fish_and_chips",
"foie_gras",
"french_fries",
"french_onion_soup",
"french_toast",
"fried_calamari",
"fried_rice",
"frozen_yogurt",
"garlic_bread",
"gnocchi",
"greek_salad",
"grilled_cheese_sandwich",
"grilled_salmon",
"guacamole",
"gyoza",
"hamburger",
"hot_and_sour_soup",
"hot_dog",
"huevos_rancheros",
"hummus",
"ice_cream",
"lasagna",
"lobster_bisque",
"lobster_roll_sandwich",
"macaroni_and_cheese",
"macarons",
"miso_soup",
"mussels",
"nachos",
"omelette",
"onion_rings",
"oysters",
"pad_thai",
"paella",
"pancakes",
"panna_cotta",
"peking_duck",
"pho",
"pizza",
"pork_chop",
"poutine",
"prime_rib",
"pulled_pork_sandwich",
"ramen",
"ravioli",
"red_velvet_cake",
"risotto",
"samosa",
"sashimi",
"scallops",
"seaweed_salad",
"shrimp_and_grits",
"spaghetti_bolognese",
"spaghetti_carbonara",
"spring_rolls",
"steak",
"strawberry_shortcake",
"sushi",
"tacos",
"takoyaki",
"tiramisu",
"tuna_tartare",
"waffles"
] |
PedroSampaio/vit-base-patch16-224-in21k-food101-24-12
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# vit-base-patch16-224-in21k-food101-24-12
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the food101 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3533
- Accuracy: 0.9069
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 24
- eval_batch_size: 24
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 96
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 12
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 2.7927 | 1.0 | 789 | 2.5629 | 0.7693 |
| 1.256 | 2.0 | 1578 | 0.9637 | 0.8583 |
| 0.94 | 3.0 | 2367 | 0.5866 | 0.8816 |
| 0.6693 | 4.0 | 3157 | 0.4752 | 0.8888 |
| 0.6337 | 5.0 | 3946 | 0.4282 | 0.8941 |
| 0.5811 | 6.0 | 4735 | 0.4110 | 0.8949 |
| 0.4661 | 7.0 | 5524 | 0.3875 | 0.8990 |
| 0.4188 | 8.0 | 6314 | 0.3776 | 0.9010 |
| 0.5045 | 9.0 | 7103 | 0.3633 | 0.9049 |
| 0.3437 | 10.0 | 7892 | 0.3611 | 0.9058 |
| 0.3494 | 11.0 | 8681 | 0.3568 | 0.9060 |
| 0.3381 | 12.0 | 9468 | 0.3533 | 0.9069 |
### Framework versions
- Transformers 4.35.0
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1
|
[
"apple_pie",
"baby_back_ribs",
"baklava",
"beef_carpaccio",
"beef_tartare",
"beet_salad",
"beignets",
"bibimbap",
"bread_pudding",
"breakfast_burrito",
"bruschetta",
"caesar_salad",
"cannoli",
"caprese_salad",
"carrot_cake",
"ceviche",
"cheesecake",
"cheese_plate",
"chicken_curry",
"chicken_quesadilla",
"chicken_wings",
"chocolate_cake",
"chocolate_mousse",
"churros",
"clam_chowder",
"club_sandwich",
"crab_cakes",
"creme_brulee",
"croque_madame",
"cup_cakes",
"deviled_eggs",
"donuts",
"dumplings",
"edamame",
"eggs_benedict",
"escargots",
"falafel",
"filet_mignon",
"fish_and_chips",
"foie_gras",
"french_fries",
"french_onion_soup",
"french_toast",
"fried_calamari",
"fried_rice",
"frozen_yogurt",
"garlic_bread",
"gnocchi",
"greek_salad",
"grilled_cheese_sandwich",
"grilled_salmon",
"guacamole",
"gyoza",
"hamburger",
"hot_and_sour_soup",
"hot_dog",
"huevos_rancheros",
"hummus",
"ice_cream",
"lasagna",
"lobster_bisque",
"lobster_roll_sandwich",
"macaroni_and_cheese",
"macarons",
"miso_soup",
"mussels",
"nachos",
"omelette",
"onion_rings",
"oysters",
"pad_thai",
"paella",
"pancakes",
"panna_cotta",
"peking_duck",
"pho",
"pizza",
"pork_chop",
"poutine",
"prime_rib",
"pulled_pork_sandwich",
"ramen",
"ravioli",
"red_velvet_cake",
"risotto",
"samosa",
"sashimi",
"scallops",
"seaweed_salad",
"shrimp_and_grits",
"spaghetti_bolognese",
"spaghetti_carbonara",
"spring_rolls",
"steak",
"strawberry_shortcake",
"sushi",
"tacos",
"takoyaki",
"tiramisu",
"tuna_tartare",
"waffles"
] |
PedroSampaio/swin-base-patch4-window7-224-in22k-food101-24-12
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# swin-base-patch4-window7-224-in22k-food101-24-12
This model is a fine-tuned version of [microsoft/swin-base-patch4-window7-224-in22k](https://huggingface.co/microsoft/swin-base-patch4-window7-224-in22k) on the food101 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2524
- Accuracy: 0.9312
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 24
- eval_batch_size: 24
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 96
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 12
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.8657 | 1.0 | 789 | 0.4698 | 0.8663 |
| 0.7506 | 2.0 | 1578 | 0.3419 | 0.9006 |
| 0.6379 | 3.0 | 2367 | 0.3061 | 0.9116 |
| 0.5223 | 4.0 | 3157 | 0.2906 | 0.9149 |
| 0.4989 | 5.0 | 3946 | 0.2783 | 0.9205 |
| 0.4163 | 6.0 | 4735 | 0.2732 | 0.9225 |
| 0.3954 | 7.0 | 5524 | 0.2675 | 0.9255 |
| 0.3466 | 8.0 | 6314 | 0.2710 | 0.9240 |
| 0.3666 | 9.0 | 7103 | 0.2625 | 0.9275 |
| 0.2085 | 10.0 | 7892 | 0.2578 | 0.9295 |
| 0.263 | 11.0 | 8681 | 0.2563 | 0.9302 |
| 0.2171 | 12.0 | 9468 | 0.2524 | 0.9312 |
### Framework versions
- Transformers 4.35.0
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1
|
[
"apple_pie",
"baby_back_ribs",
"baklava",
"beef_carpaccio",
"beef_tartare",
"beet_salad",
"beignets",
"bibimbap",
"bread_pudding",
"breakfast_burrito",
"bruschetta",
"caesar_salad",
"cannoli",
"caprese_salad",
"carrot_cake",
"ceviche",
"cheesecake",
"cheese_plate",
"chicken_curry",
"chicken_quesadilla",
"chicken_wings",
"chocolate_cake",
"chocolate_mousse",
"churros",
"clam_chowder",
"club_sandwich",
"crab_cakes",
"creme_brulee",
"croque_madame",
"cup_cakes",
"deviled_eggs",
"donuts",
"dumplings",
"edamame",
"eggs_benedict",
"escargots",
"falafel",
"filet_mignon",
"fish_and_chips",
"foie_gras",
"french_fries",
"french_onion_soup",
"french_toast",
"fried_calamari",
"fried_rice",
"frozen_yogurt",
"garlic_bread",
"gnocchi",
"greek_salad",
"grilled_cheese_sandwich",
"grilled_salmon",
"guacamole",
"gyoza",
"hamburger",
"hot_and_sour_soup",
"hot_dog",
"huevos_rancheros",
"hummus",
"ice_cream",
"lasagna",
"lobster_bisque",
"lobster_roll_sandwich",
"macaroni_and_cheese",
"macarons",
"miso_soup",
"mussels",
"nachos",
"omelette",
"onion_rings",
"oysters",
"pad_thai",
"paella",
"pancakes",
"panna_cotta",
"peking_duck",
"pho",
"pizza",
"pork_chop",
"poutine",
"prime_rib",
"pulled_pork_sandwich",
"ramen",
"ravioli",
"red_velvet_cake",
"risotto",
"samosa",
"sashimi",
"scallops",
"seaweed_salad",
"shrimp_and_grits",
"spaghetti_bolognese",
"spaghetti_carbonara",
"spring_rolls",
"steak",
"strawberry_shortcake",
"sushi",
"tacos",
"takoyaki",
"tiramisu",
"tuna_tartare",
"waffles"
] |
Mahendra42/swin-tiny-patch4-window7-224_RCC_Classifierv4
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# swin-tiny-patch4-window7-224_RCC_Classifierv4
This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 2.7347
- F1: 0.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:---:|
| 0.0296 | 1.0 | 105 | 3.2075 | 0.0 |
| 0.0377 | 2.0 | 210 | 2.6132 | 0.0 |
| 0.0104 | 3.0 | 315 | 2.2246 | 0.0 |
| 0.0177 | 4.0 | 420 | 2.6363 | 0.0 |
| 0.007 | 5.0 | 525 | 2.6364 | 0.0 |
| 0.0082 | 6.0 | 630 | 2.6554 | 0.0 |
| 0.0078 | 7.0 | 735 | 2.6351 | 0.0 |
| 0.0015 | 8.0 | 840 | 2.6925 | 0.0 |
| 0.0073 | 9.0 | 945 | 2.7134 | 0.0 |
| 0.0018 | 10.0 | 1050 | 2.7347 | 0.0 |
### Framework versions
- Transformers 4.34.1
- Pytorch 1.12.1
- Datasets 2.14.5
- Tokenizers 0.14.1
|
[
"clear cell rcc",
"non clear cell"
] |
dima806/fruit_100_types_image_detection
|
Returns fruit type given an image with about 85% accuracy.
See https://www.kaggle.com/code/dima806/fruit-100-types-image-detection-vit for more details.
```
Classification report:
precision recall f1-score support
abiu 0.7799 0.9056 0.8380 180
acai 0.8118 0.8389 0.8251 180
acerola 0.8701 0.8556 0.8627 180
ackee 0.9451 0.9556 0.9503 180
ambarella 0.5696 0.7278 0.6390 180
apple 0.9027 0.9278 0.9151 180
apricot 0.7046 0.9278 0.8010 180
avocado 0.9297 0.9556 0.9425 180
banana 0.9781 0.9944 0.9862 180
barbadine 0.9074 0.5444 0.6806 180
barberry 0.8122 0.8889 0.8488 180
betel_nut 0.9420 0.7222 0.8176 180
bitter_gourd 0.9888 0.9833 0.9861 180
black_berry 0.5260 0.9000 0.6639 180
black_mullberry 0.9641 0.8944 0.9280 180
brazil_nut 0.9298 0.8833 0.9060 180
camu_camu 0.8325 0.9111 0.8700 180
cashew 0.9889 0.9889 0.9889 180
cempedak 0.9706 0.5500 0.7021 180
chenet 0.7422 0.9278 0.8247 180
cherimoya 0.5869 0.6944 0.6361 180
chico 0.5940 0.4389 0.5048 180
chokeberry 0.8444 0.8444 0.8444 180
cluster_fig 0.9236 0.8056 0.8605 180
coconut 0.9167 0.9778 0.9462 180
corn_kernel 0.9781 0.9944 0.9862 180
cranberry 0.9067 0.7556 0.8242 180
cupuacu 0.8846 0.8944 0.8895 180
custard_apple 0.5000 0.0056 0.0110 180
damson 0.8687 0.9556 0.9101 180
dewberry 0.7869 0.2667 0.3983 180
dragonfruit 0.9890 0.9944 0.9917 180
durian 0.9730 1.0000 0.9863 180
eggplant 0.9833 0.9833 0.9833 180
elderberry 0.9553 0.9500 0.9526 180
emblic 0.8927 0.8778 0.8852 180
feijoa 0.9111 0.9111 0.9111 180
fig 0.8696 1.0000 0.9302 180
finger_lime 0.9647 0.9111 0.9371 180
gooseberry 0.8966 0.8667 0.8814 180
goumi 0.8020 0.9000 0.8482 180
grape 0.9661 0.9500 0.9580 180
grapefruit 0.8696 0.7778 0.8211 180
greengage 0.8434 0.7778 0.8092 180
grenadilla 0.6457 0.8000 0.7146 180
guava 0.8122 0.8889 0.8488 180
hard_kiwi 0.8367 0.9111 0.8723 180
hawthorn 0.8246 0.7833 0.8034 180
hog_plum 0.8667 0.0722 0.1333 180
horned_melon 0.9943 0.9722 0.9831 180
indian_strawberry 0.5427 0.4944 0.5174 180
jaboticaba 0.9480 0.9111 0.9292 180
jackfruit 0.6917 0.9722 0.8083 180
jalapeno 0.9728 0.9944 0.9835 180
jamaica_cherry 0.9136 0.8222 0.8655 180
jambul 0.8750 0.8556 0.8652 180
jocote 0.7365 0.6056 0.6646 180
jujube 0.8554 0.7889 0.8208 180
kaffir_lime 0.9672 0.9833 0.9752 180
kumquat 0.8000 0.9333 0.8615 180
lablab 0.9835 0.9944 0.9890 180
langsat 0.8656 0.8944 0.8798 180
longan 0.9016 0.9667 0.9330 180
mabolo 0.9405 0.8778 0.9080 180
malay_apple 0.6173 0.5556 0.5848 180
mandarine 0.7811 0.8722 0.8241 180
mango 0.8071 0.8833 0.8435 180
mangosteen 0.9609 0.9556 0.9582 180
medlar 0.9503 0.9556 0.9529 180
mock_strawberry 0.5568 0.5722 0.5644 180
morinda 0.9727 0.9889 0.9807 180
mountain_soursop 0.9496 0.7333 0.8276 180
oil_palm 0.9053 0.9556 0.9297 180
olive 0.9704 0.9111 0.9398 180
otaheite_apple 0.5736 0.6278 0.5995 180
papaya 0.7882 0.8889 0.8355 180
passion_fruit 0.7720 0.8278 0.7989 180
pawpaw 0.8428 0.7444 0.7906 180
pea 0.9375 1.0000 0.9677 180
pineapple 1.0000 1.0000 1.0000 180
plumcot 0.8525 0.5778 0.6887 180
pomegranate 0.9418 0.9889 0.9648 180
prikly_pear 0.9834 0.9889 0.9861 180
quince 0.9399 0.9556 0.9477 180
rambutan 1.0000 1.0000 1.0000 180
raspberry 0.9206 0.9667 0.9431 180
redcurrant 0.9040 0.9944 0.9471 180
rose_hip 0.8595 0.8833 0.8712 180
rose_leaf_bramble 0.9050 0.9000 0.9025 180
salak 0.8947 0.9444 0.9189 180
santol 0.8870 0.8722 0.8796 180
sapodilla 0.5727 0.7222 0.6388 180
sea_buckthorn 0.9780 0.9889 0.9834 180
strawberry_guava 0.8407 0.8500 0.8453 180
sugar_apple 0.4711 0.9500 0.6298 180
taxus_baccata 0.9676 0.9944 0.9808 180
ugli_fruit 0.9202 0.8333 0.8746 180
white_currant 1.0000 1.0000 1.0000 180
yali_pear 0.9448 0.9500 0.9474 180
yellow_plum 0.7552 0.8056 0.7796 180
accuracy 0.8498 18000
macro avg 0.8570 0.8498 0.8417 18000
weighted avg 0.8570 0.8498 0.8417 18000
```
|
[
"abiu",
"acai",
"acerola",
"ackee",
"ambarella",
"apple",
"apricot",
"avocado",
"banana",
"barbadine",
"barberry",
"betel_nut",
"bitter_gourd",
"black_berry",
"black_mullberry",
"brazil_nut",
"camu_camu",
"cashew",
"cempedak",
"chenet",
"cherimoya",
"chico",
"chokeberry",
"cluster_fig",
"coconut",
"corn_kernel",
"cranberry",
"cupuacu",
"custard_apple",
"damson",
"dewberry",
"dragonfruit",
"durian",
"eggplant",
"elderberry",
"emblic",
"feijoa",
"fig",
"finger_lime",
"gooseberry",
"goumi",
"grape",
"grapefruit",
"greengage",
"grenadilla",
"guava",
"hard_kiwi",
"hawthorn",
"hog_plum",
"horned_melon",
"indian_strawberry",
"jaboticaba",
"jackfruit",
"jalapeno",
"jamaica_cherry",
"jambul",
"jocote",
"jujube",
"kaffir_lime",
"kumquat",
"lablab",
"langsat",
"longan",
"mabolo",
"malay_apple",
"mandarine",
"mango",
"mangosteen",
"medlar",
"mock_strawberry",
"morinda",
"mountain_soursop",
"oil_palm",
"olive",
"otaheite_apple",
"papaya",
"passion_fruit",
"pawpaw",
"pea",
"pineapple",
"plumcot",
"pomegranate",
"prikly_pear",
"quince",
"rambutan",
"raspberry",
"redcurrant",
"rose_hip",
"rose_leaf_bramble",
"salak",
"santol",
"sapodilla",
"sea_buckthorn",
"strawberry_guava",
"sugar_apple",
"taxus_baccata",
"ugli_fruit",
"white_currant",
"yali_pear",
"yellow_plum"
] |
jerryteps/resnet-18
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# resnet-18
This model was trained from scratch on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9476
- Accuracy: 0.6473
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.472 | 1.0 | 252 | 1.3291 | 0.4887 |
| 1.2941 | 2.0 | 505 | 1.1145 | 0.5793 |
| 1.2117 | 3.0 | 757 | 1.0483 | 0.6043 |
| 1.1616 | 4.0 | 1010 | 1.0137 | 0.6233 |
| 1.1654 | 5.0 | 1262 | 0.9975 | 0.6291 |
| 1.1297 | 6.0 | 1515 | 0.9766 | 0.6414 |
| 1.0645 | 7.0 | 1767 | 0.9668 | 0.6372 |
| 1.0692 | 8.0 | 2020 | 0.9603 | 0.6450 |
| 1.0711 | 9.0 | 2272 | 0.9521 | 0.6425 |
| 1.0344 | 9.98 | 2520 | 0.9476 | 0.6473 |
### Framework versions
- Transformers 4.30.0
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.13.3
|
[
"angry",
"disgusted",
"fearful",
"happy",
"neutral",
"sad",
"surprised"
] |
dwiedarioo/vit-base-patch16-224-in21k-euroSat
|
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# dwiedarioo/vit-base-patch16-224-in21k-euroSat
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0088
- Train Accuracy: 0.9996
- Train Top-3-accuracy: 1.0
- Validation Loss: 0.0258
- Validation Accuracy: 0.9948
- Validation Top-3-accuracy: 1.0
- Epoch: 4
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'inner_optimizer': {'module': 'transformers.optimization_tf', 'class_name': 'AdamWeightDecay', 'config': {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 3e-05, 'decay_steps': 2880, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.8999999761581421, 'beta_2': 0.9990000128746033, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}, 'registered_name': 'AdamWeightDecay'}, 'dynamic': True, 'initial_scale': 32768.0, 'dynamic_growth_steps': 2000}
- training_precision: mixed_float16
### Training results
| Train Loss | Train Accuracy | Train Top-3-accuracy | Validation Loss | Validation Accuracy | Validation Top-3-accuracy | Epoch |
|:----------:|:--------------:|:--------------------:|:---------------:|:-------------------:|:-------------------------:|:-----:|
| 0.3131 | 0.9169 | 0.9908 | 0.0886 | 0.9849 | 1.0 | 0 |
| 0.0503 | 0.9920 | 0.9999 | 0.0427 | 0.9920 | 0.9997 | 1 |
| 0.0219 | 0.9972 | 1.0 | 0.0299 | 0.9935 | 1.0 | 2 |
| 0.0112 | 0.9992 | 1.0 | 0.0261 | 0.9954 | 1.0 | 3 |
| 0.0088 | 0.9996 | 1.0 | 0.0258 | 0.9948 | 1.0 | 4 |
### Framework versions
- Transformers 4.35.0
- TensorFlow 2.14.0
- Datasets 2.14.6
- Tokenizers 0.14.1
|
[
"meningioma_tumor",
"normal",
"glioma_tumor",
"pituitary_tumor"
] |
kjlkjl/swin-tiny-patch4-window7-224-finetuned-eurosat
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# swin-tiny-patch4-window7-224-finetuned-eurosat
This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1912
- Accuracy: 0.9312
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.5343 | 1.0 | 422 | 0.2732 | 0.902 |
| 0.4702 | 2.0 | 844 | 0.2152 | 0.9238 |
| 0.391 | 3.0 | 1266 | 0.1912 | 0.9312 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.2+cu121
- Datasets 2.16.0
- Tokenizers 0.15.0
|
[
"t - shirt / top",
"trouser",
"pullover",
"dress",
"coat",
"sandal",
"shirt",
"sneaker",
"bag",
"ankle boot"
] |
JLB-JLB/seizure_vit_jlb_231108_iir_adjusted
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# seizure_vit_jlb_231108_iir_adjusted
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the JLB-JLB/seizure_eeg_iirFilter_greyscale_224x224_6secWindow_adjusted dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4198
- Roc Auc: 0.7773
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Roc Auc |
|:-------------:|:-----:|:-----:|:---------------:|:-------:|
| 0.3803 | 0.34 | 1000 | 0.4734 | 0.7746 |
| 0.3456 | 0.68 | 2000 | 0.4863 | 0.7782 |
| 0.2831 | 1.02 | 3000 | 0.4817 | 0.7897 |
| 0.2781 | 1.36 | 4000 | 0.5418 | 0.7656 |
| 0.2355 | 1.7 | 5000 | 0.5398 | 0.7786 |
| 0.1978 | 2.04 | 6000 | 0.6121 | 0.7649 |
| 0.149 | 2.38 | 7000 | 0.6402 | 0.7706 |
| 0.1766 | 2.72 | 8000 | 0.6768 | 0.7610 |
| 0.1496 | 3.06 | 9000 | 0.6239 | 0.7733 |
| 0.155 | 3.4 | 10000 | 0.7333 | 0.7602 |
| 0.1238 | 3.75 | 11000 | 0.6513 | 0.7726 |
| 0.1054 | 4.09 | 12000 | 0.7551 | 0.7667 |
| 0.1076 | 4.43 | 13000 | 0.8132 | 0.7627 |
| 0.1321 | 4.77 | 14000 | 0.8152 | 0.7587 |


### Framework versions
- Transformers 4.35.0
- Pytorch 2.1.0
- Datasets 2.14.6
- Tokenizers 0.14.1
|
[
"bckg",
"seiz"
] |
dzhao114/vit-base-patch16-224-finetuned-turquoise
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# vit-base-patch16-224-finetuned-turquoise
This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0223
- Accuracy: 0.995
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.5564 | 0.98 | 14 | 0.1073 | 0.975 |
| 0.1181 | 1.96 | 28 | 0.0223 | 0.995 |
| 0.0275 | 2.95 | 42 | 0.0127 | 0.995 |
### Framework versions
- Transformers 4.32.1
- Pytorch 2.1.0+cu121
- Datasets 2.14.6
- Tokenizers 0.13.3
|
[
"fake_turquoise",
"turquoise"
] |
tonyassi/camera-lens-focal-length
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Camera Lens Focal Length
This model predicts the focal length that the camera lens used to capture an image. It takes in an image and returns one of the following labels:
- ULTRA-WIDE
- WIDE
- MEDIUM
- LONG-LENS
- TELEPHOTO
### How to use
```python
from transformers import pipeline
pipe = pipeline("image-classification", model="tonyassi/camera-lens-focal-length")
result = pipe('image.png')
print(result)
```
## Dataset
Trained on a total of 5000 images. 1000 images from each label. Images were taken from popular Hollywood movies.
### ULTRA-WIDE

### WIDE

### MEDIUM

### LONG-LENS

### TELEPHOTO

## Model description
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k).
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5
### Framework versions
- Transformers 4.35.0
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1
|
[
"long-lens",
"medium",
"telephoto",
"ultra-wide",
"wide"
] |
hkivancoral/hushem_40x_deit_small_f1
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# hushem_40x_deit_small_f1
This model is a fine-tuned version of [facebook/deit-small-patch16-224](https://huggingface.co/facebook/deit-small-patch16-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7923
- Accuracy: 0.8
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.1638 | 0.99 | 53 | 0.4948 | 0.8222 |
| 0.018 | 1.99 | 107 | 0.8208 | 0.7556 |
| 0.0086 | 3.0 | 161 | 0.6473 | 0.8667 |
| 0.0011 | 4.0 | 215 | 0.7960 | 0.7556 |
| 0.0003 | 4.99 | 268 | 0.8013 | 0.7556 |
| 0.0001 | 5.99 | 322 | 0.8035 | 0.8 |
| 0.0001 | 7.0 | 376 | 0.7952 | 0.8 |
| 0.0001 | 8.0 | 430 | 0.7939 | 0.8 |
| 0.0001 | 8.99 | 483 | 0.7931 | 0.8 |
| 0.0001 | 9.86 | 530 | 0.7923 | 0.8 |
### Framework versions
- Transformers 4.35.0
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1
|
[
"01_normal",
"02_tapered",
"03_pyriform",
"04_amorphous"
] |
gaborcselle/font-identifier
|
# font-identifier
This model is a fine-tuned version of [microsoft/resnet-18](https://huggingface.co/microsoft/resnet-18) on the imagefolder dataset.
Result: Loss: 0.1172; Accuracy: 0.9633
Try with any screenshot of a font, or any of the examples in [the 'samples' subfolder of this repo](https://huggingface.co/gaborcselle/font-identifier/tree/main/hf_samples).
## Model description
Identify the font used in an image. Visual classifier based on ResNet18.
I built this project in 1 day, with a minute-by-minute journal [on Twitter/X](https://twitter.com/gabor/status/1722300841691103467), [on Pebble.social](https://pebble.social/@gabor/111376050835874755), and [on Threads.net](https://www.threads.net/@gaborcselle/post/CzZJpJCpxTz).
The code used to build this model is in this github rep
## Intended uses & limitations
Identify any of 48 standard fonts from the training data.
## Training and evaluation data
Trained and eval'd on the [gaborcselle/font-examples](https://huggingface.co/datasets/gaborcselle/font-examples) dataset (80/20 split).
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 4.0243 | 0.98 | 30 | 3.9884 | 0.0204 |
| 0.8309 | 10.99 | 338 | 0.5536 | 0.8551 |
| 0.3917 | 20.0 | 615 | 0.2353 | 0.9388 |
| 0.2298 | 30.99 | 953 | 0.1326 | 0.9633 |
| 0.1804 | 40.0 | 1230 | 0.1421 | 0.9571 |
| 0.1987 | 46.99 | 1445 | 0.1250 | 0.9673 |
| 0.1728 | 48.0 | 1476 | 0.1293 | 0.9633 |
| 0.1337 | 48.78 | 1500 | 0.1172 | 0.9633 |
### Confusion Matrix
Confusion matrix on test data.

### Framework versions
- Transformers 4.36.0.dev0
- Pytorch 2.0.0
- Datasets 2.12.0
- Tokenizers 0.14.1
|
[
"agbalumo-regular",
"alfaslabone-regular",
"courier",
"georgia",
"helvetica",
"ibmplexsans-regular",
"inter-regular",
"kaushanscript-regular",
"lato-regular",
"lobster-regular",
"lora-regular",
"merriweather-regular",
"architectsdaughter-regular",
"niconne-regular",
"opensans-bold",
"opensans-italic",
"opensans-light",
"pacifico-regular",
"pixelifysans-regular",
"playfairdisplay-regular",
"poppins-regular",
"rakkas-regular",
"roboto-regular",
"arial",
"robotomono-regular",
"robotoslab-regular",
"rubik-regular",
"spacemono-regular",
"tahoma",
"tahoma bold",
"times new roman",
"times new roman bold",
"times new roman bold italic",
"times new roman italic",
"arial black",
"titilliumweb-regular",
"trebuchet ms",
"trebuchet ms bold",
"trebuchet ms bold italic",
"trebuchet ms italic",
"verdana",
"verdana bold",
"verdana bold italic",
"verdana italic",
"arial bold",
"arial bold italic",
"avenir",
"bangers-regular",
"blackopsone-regular"
] |
1aurent/phikon-distil-mobilenet_v2-kather2016
|
# Model card for phikon-distil-mobilenet_v2-kather2016
This model is a distilled version of [owkin/phikon](https://huggingface.co/owkin/phikon) to a MobileNet-v2 on the [1aurent/Kather-texture-2016](https://huggingface.co/datasets/1aurent/Kather-texture-2016) dataset.
## Model Usage
### Image Classification
```python
from transformers import AutoModelForImageClassification, AutoImageProcessor
from urllib.request import urlopen
from PIL import Image
# get example histology image
img = Image.open(
urlopen(
"https://datasets-server.huggingface.co/assets/1aurent/Kather-texture-2016/--/default/train/0/image/image.jpg"
)
)
# load image_processor and model from the hub
model_name = "1aurent/phikon-distil-mobilenet_v2-kather2016"
image_processor = AutoImageProcessor.from_pretrained(model_name)
model = AutoModelForImageClassification.from_pretrained(model_name)
inputs = image_processor(img, return_tensors="pt")
outputs = model(**inputs)
```
## Citation
```bibtex
@article{Filiot2023.07.21.23292757,
author = {Alexandre Filiot and Ridouane Ghermi and Antoine Olivier and Paul Jacob and Lucas Fidon and Alice Mac Kain and Charlie Saillard and Jean-Baptiste Schiratti},
title = {Scaling Self-Supervised Learning for Histopathology with Masked Image Modeling},
elocation-id = {2023.07.21.23292757},
year = {2023},
doi = {10.1101/2023.07.21.23292757},
publisher = {Cold Spring Harbor Laboratory Press},
url = {https://www.medrxiv.org/content/early/2023/09/14/2023.07.21.23292757},
eprint = {https://www.medrxiv.org/content/early/2023/09/14/2023.07.21.23292757.full.pdf},
journal = {medRxiv}
}
```
|
[
"label_0",
"label_1",
"label_2",
"label_3",
"label_4",
"label_5",
"label_6",
"label_7"
] |
1aurent/phikon-distil-vit-tiny-patch16-224-kather2016
|
# Model card for phikon-distil-vit-tiny-patch16-224-kather2016
This model is a distilled version of [owkin/phikon](https://huggingface.co/owkin/phikon) to a TinyViT on the [1aurent/Kather-texture-2016](https://huggingface.co/datasets/1aurent/Kather-texture-2016) dataset.
## Model Usage
### Image Classification
```python
from transformers import AutoModelForImageClassification, AutoImageProcessor
from urllib.request import urlopen
from PIL import Image
# get example histology image
img = Image.open(
urlopen(
"https://datasets-server.huggingface.co/assets/1aurent/Kather-texture-2016/--/default/train/0/image/image.jpg"
)
)
# load image_processor and model from the hub
model_name = "1aurent/phikon-distil-vit-tiny-patch16-224-kather2016"
image_processor = AutoImageProcessor.from_pretrained(model_name)
model = AutoModelForImageClassification.from_pretrained(model_name)
inputs = image_processor(img, return_tensors="pt")
outputs = model(**inputs)
```
## Citation
```bibtex
@article{Filiot2023.07.21.23292757,
author = {Alexandre Filiot and Ridouane Ghermi and Antoine Olivier and Paul Jacob and Lucas Fidon and Alice Mac Kain and Charlie Saillard and Jean-Baptiste Schiratti},
title = {Scaling Self-Supervised Learning for Histopathology with Masked Image Modeling},
elocation-id = {2023.07.21.23292757},
year = {2023},
doi = {10.1101/2023.07.21.23292757},
publisher = {Cold Spring Harbor Laboratory Press},
url = {https://www.medrxiv.org/content/early/2023/09/14/2023.07.21.23292757},
eprint = {https://www.medrxiv.org/content/early/2023/09/14/2023.07.21.23292757.full.pdf},
journal = {medRxiv}
}
```
|
[
"label_0",
"label_1",
"label_2",
"label_3",
"label_4",
"label_5",
"label_6",
"label_7"
] |
martyyz/vit-base-patch16-224-finetuned-flower
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# vit-base-patch16-224-finetuned-flower
This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the imagefolder dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
### Framework versions
- Transformers 4.24.0
- Pytorch 2.1.0+cu118
- Datasets 2.7.1
- Tokenizers 0.13.3
|
[
"daisy",
"dandelion",
"roses",
"sunflowers",
"tulips"
] |
ISEARobots/vit-base-patch16-224-finetuned-flower
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# vit-base-patch16-224-finetuned-flower
This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the imagefolder dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
### Framework versions
- Transformers 4.24.0
- Pytorch 2.1.0+cu118
- Datasets 2.7.1
- Tokenizers 0.13.3
|
[
"daisy",
"dandelion",
"roses",
"sunflowers",
"tulips"
] |
arieg/spec_cls_80
|
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# arieg/spec_cls_80
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 2.7760
- Validation Loss: 2.7406
- Train Accuracy: 0.975
- Epoch: 4
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'clipnorm': 1.0, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 3e-05, 'decay_steps': 7200, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Validation Loss | Train Accuracy | Epoch |
|:----------:|:---------------:|:--------------:|:-----:|
| 4.2523 | 4.0977 | 0.5312 | 0 |
| 3.8658 | 3.7068 | 0.8562 | 1 |
| 3.4605 | 3.3486 | 0.9375 | 2 |
| 3.0940 | 3.0254 | 0.9563 | 3 |
| 2.7760 | 2.7406 | 0.975 | 4 |
### Framework versions
- Transformers 4.35.0
- TensorFlow 2.14.0
- Datasets 2.14.6
- Tokenizers 0.14.1
|
[
"56248",
"56249",
"56470",
"56471",
"56472",
"56474",
"56493",
"56495",
"56496",
"56497",
"56498",
"56499",
"56273",
"56516",
"56517",
"56518",
"56519",
"56520",
"56521",
"56639",
"56640",
"56641",
"56645",
"56274",
"56646",
"56648",
"56649",
"56650",
"56651",
"56686",
"56687",
"56688",
"56689",
"56690",
"56275",
"56691",
"56692",
"56693",
"56694",
"56695",
"56696",
"56795",
"56796",
"56797",
"56798",
"56465",
"56799",
"56800",
"56801",
"56802",
"56803",
"56804",
"56805",
"56888",
"57164",
"57175",
"56466",
"57176",
"57177",
"57178",
"57179",
"57180",
"57344",
"57360",
"57371",
"57417",
"57418",
"56467",
"57440",
"57442",
"57500",
"57569",
"57626",
"57627",
"57628",
"57629",
"57630",
"57639",
"56468",
"56469"
] |
arieg/spec_cls_80_v2
|
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# arieg/spec_cls_80_v2
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 1.0698
- Validation Loss: 1.0517
- Train Accuracy: 1.0
- Epoch: 9
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'clipnorm': 1.0, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 3e-05, 'decay_steps': 14400, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Validation Loss | Train Accuracy | Epoch |
|:----------:|:---------------:|:--------------:|:-----:|
| 4.2243 | 4.0115 | 0.575 | 0 |
| 3.6964 | 3.4678 | 0.9125 | 1 |
| 3.1703 | 2.9932 | 0.9938 | 2 |
| 2.7155 | 2.5826 | 0.9938 | 3 |
| 2.3313 | 2.2229 | 1.0 | 4 |
| 2.0025 | 1.9208 | 1.0 | 5 |
| 1.7153 | 1.6639 | 1.0 | 6 |
| 1.4721 | 1.4462 | 1.0 | 7 |
| 1.2586 | 1.2279 | 1.0 | 8 |
| 1.0698 | 1.0517 | 1.0 | 9 |
### Framework versions
- Transformers 4.35.0
- TensorFlow 2.14.0
- Datasets 2.14.6
- Tokenizers 0.14.1
|
[
"56248",
"56249",
"56470",
"56471",
"56472",
"56474",
"56493",
"56495",
"56496",
"56497",
"56498",
"56499",
"56273",
"56516",
"56517",
"56518",
"56519",
"56520",
"56521",
"56639",
"56640",
"56641",
"56645",
"56274",
"56646",
"56648",
"56649",
"56650",
"56651",
"56686",
"56687",
"56688",
"56689",
"56690",
"56275",
"56691",
"56692",
"56693",
"56694",
"56695",
"56696",
"56795",
"56796",
"56797",
"56798",
"56465",
"56799",
"56800",
"56801",
"56802",
"56803",
"56804",
"56805",
"56888",
"57164",
"57175",
"56466",
"57176",
"57177",
"57178",
"57179",
"57180",
"57344",
"57360",
"57371",
"57417",
"57418",
"56467",
"57440",
"57442",
"57500",
"57569",
"57626",
"57627",
"57628",
"57629",
"57630",
"57639",
"56468",
"56469"
] |
arieg/spec_cls_80_v4
|
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# arieg/spec_cls_80_v4
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 1.5655
- Validation Loss: 1.5375
- Train Accuracy: 0.9875
- Epoch: 4
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'clipnorm': 1.0, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 3e-05, 'decay_steps': 7200, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Validation Loss | Train Accuracy | Epoch |
|:----------:|:---------------:|:--------------:|:-----:|
| 3.9963 | 3.4778 | 0.8625 | 0 |
| 3.0199 | 2.7171 | 0.9563 | 1 |
| 2.3593 | 2.2002 | 0.9875 | 2 |
| 1.9034 | 1.8255 | 0.9938 | 3 |
| 1.5655 | 1.5375 | 0.9875 | 4 |
### Framework versions
- Transformers 4.35.0
- TensorFlow 2.14.0
- Datasets 2.14.6
- Tokenizers 0.14.1
|
[
"56248",
"56249",
"56470",
"56471",
"56472",
"56474",
"56493",
"56495",
"56496",
"56497",
"56498",
"56499",
"56273",
"56516",
"56517",
"56518",
"56519",
"56520",
"56521",
"56639",
"56640",
"56641",
"56645",
"56274",
"56646",
"56648",
"56649",
"56650",
"56651",
"56686",
"56687",
"56688",
"56689",
"56690",
"56275",
"56691",
"56692",
"56693",
"56694",
"56695",
"56696",
"56795",
"56796",
"56797",
"56798",
"56465",
"56799",
"56800",
"56801",
"56802",
"56803",
"56804",
"56805",
"56888",
"57164",
"57175",
"56466",
"57176",
"57177",
"57178",
"57179",
"57180",
"57344",
"57360",
"57371",
"57417",
"57418",
"56467",
"57440",
"57442",
"57500",
"57569",
"57626",
"57627",
"57628",
"57629",
"57630",
"57639",
"56468",
"56469"
] |
arieg/food
|
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# arieg/food
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 1.0895
- Validation Loss: 1.1136
- Train Accuracy: 0.9938
- Epoch: 4
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'clipnorm': 1.0, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 3e-05, 'decay_steps': 7200, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Validation Loss | Train Accuracy | Epoch |
|:----------:|:---------------:|:--------------:|:-----:|
| 1.9763 | 1.9595 | 1.0 | 0 |
| 1.7042 | 1.7030 | 0.9938 | 1 |
| 1.4680 | 1.4819 | 0.9938 | 2 |
| 1.2665 | 1.2830 | 0.9938 | 3 |
| 1.0895 | 1.1136 | 0.9938 | 4 |
### Framework versions
- Transformers 4.35.0
- TensorFlow 2.14.0
- Datasets 2.14.6
- Tokenizers 0.14.1
|
[
"56248",
"56249",
"56470",
"56471",
"56472",
"56474",
"56493",
"56495",
"56496",
"56497",
"56498",
"56499",
"56273",
"56516",
"56517",
"56518",
"56519",
"56520",
"56521",
"56639",
"56640",
"56641",
"56645",
"56274",
"56646",
"56648",
"56649",
"56650",
"56651",
"56686",
"56687",
"56688",
"56689",
"56690",
"56275",
"56691",
"56692",
"56693",
"56694",
"56695",
"56696",
"56795",
"56796",
"56797",
"56798",
"56465",
"56799",
"56800",
"56801",
"56802",
"56803",
"56804",
"56805",
"56888",
"57164",
"57175",
"56466",
"57176",
"57177",
"57178",
"57179",
"57180",
"57344",
"57360",
"57371",
"57417",
"57418",
"56467",
"57440",
"57442",
"57500",
"57569",
"57626",
"57627",
"57628",
"57629",
"57630",
"57639",
"56468",
"56469"
] |
hkivancoral/hushem_40x_deit_tiny_deneme_f1
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# hushem_40x_deit_tiny_deneme_f1
This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co/facebook/deit-tiny-patch16-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9116
- Accuracy: 0.8222
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.0902 | 1.0 | 107 | 0.7605 | 0.7556 |
| 0.033 | 2.0 | 214 | 1.1867 | 0.7556 |
| 0.01 | 2.99 | 321 | 1.4752 | 0.7111 |
| 0.0002 | 4.0 | 429 | 0.8179 | 0.8444 |
| 0.0025 | 5.0 | 536 | 0.9159 | 0.7778 |
| 0.0 | 6.0 | 643 | 0.8372 | 0.8 |
| 0.0 | 6.99 | 750 | 0.8831 | 0.8 |
| 0.0 | 8.0 | 858 | 0.9010 | 0.8222 |
| 0.0 | 9.0 | 965 | 0.9097 | 0.8222 |
| 0.0 | 9.98 | 1070 | 0.9116 | 0.8222 |
### Framework versions
- Transformers 4.35.0
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1
|
[
"01_normal",
"02_tapered",
"03_pyriform",
"04_amorphous"
] |
Am22000/classifier_image
|
DONE
|
[
"invoice",
"random"
] |
hkivancoral/hushem_40x_deit_tiny_deneme_f2
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# hushem_40x_deit_tiny_deneme_f2
This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co/facebook/deit-tiny-patch16-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3750
- Accuracy: 0.8
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.1308 | 1.0 | 107 | 0.7189 | 0.8 |
| 0.0468 | 2.0 | 214 | 1.0561 | 0.7556 |
| 0.0127 | 2.99 | 321 | 1.2955 | 0.7333 |
| 0.0392 | 4.0 | 429 | 1.0074 | 0.8222 |
| 0.0002 | 5.0 | 536 | 1.2425 | 0.8222 |
| 0.0 | 6.0 | 643 | 1.3825 | 0.7778 |
| 0.0 | 6.99 | 750 | 1.3699 | 0.7778 |
| 0.0 | 8.0 | 858 | 1.3717 | 0.7778 |
| 0.0 | 9.0 | 965 | 1.3739 | 0.8 |
| 0.0 | 9.98 | 1070 | 1.3750 | 0.8 |
### Framework versions
- Transformers 4.35.0
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1
|
[
"01_normal",
"02_tapered",
"03_pyriform",
"04_amorphous"
] |
xanore/results
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Intro
Just a ML-2 HSE course homework done by Zaryvnykh Amaliya, DSBA201
# Results
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0381
- Accuracy: 0.9867
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 16
- seed: 1337
- gradient_accumulation_steps: 16
- total_train_batch_size: 256
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.0984 | 0.98 | 26 | 0.0847 | 0.9725 |
| 0.0493 | 2.0 | 53 | 0.0480 | 0.9842 |
| 0.0407 | 2.97 | 79 | 0.0456 | 0.9867 |
| 0.033 | 3.99 | 106 | 0.0400 | 0.9858 |
| 0.0261 | 4.89 | 130 | 0.0388 | 0.9892 |
### Framework versions
- Transformers 4.35.0
- Pytorch 2.1.0+cu121
- Datasets 2.14.6
- Tokenizers 0.14.1
|
[
"cat",
"dog"
] |
dwiedarioo/vit-base-patch16-224-in21k-brainmri
|
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# dwiedarioo/vit-base-patch16-224-in21k-brainmri
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.2848
- Train Accuracy: 0.9969
- Train Top-3-accuracy: 0.9992
- Validation Loss: 0.3786
- Validation Accuracy: 0.9590
- Validation Top-3-accuracy: 0.9892
- Epoch: 7
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'inner_optimizer': {'module': 'transformers.optimization_tf', 'class_name': 'AdamWeightDecay', 'config': {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 3e-05, 'decay_steps': 1230, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.8999999761581421, 'beta_2': 0.9990000128746033, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}, 'registered_name': 'AdamWeightDecay'}, 'dynamic': True, 'initial_scale': 32768.0, 'dynamic_growth_steps': 2000}
- training_precision: mixed_float16
### Training results
| Train Loss | Train Accuracy | Train Top-3-accuracy | Validation Loss | Validation Accuracy | Validation Top-3-accuracy | Epoch |
|:----------:|:--------------:|:--------------------:|:---------------:|:-------------------:|:-------------------------:|:-----:|
| 2.2199 | 0.4215 | 0.6564 | 1.8634 | 0.5702 | 0.8099 | 0 |
| 1.5448 | 0.6976 | 0.8797 | 1.3110 | 0.7603 | 0.9028 | 1 |
| 1.0494 | 0.8694 | 0.9519 | 0.9507 | 0.8855 | 0.9590 | 2 |
| 0.7408 | 0.9381 | 0.9824 | 0.7499 | 0.9114 | 0.9806 | 3 |
| 0.5428 | 0.9756 | 0.9939 | 0.5831 | 0.9460 | 0.9849 | 4 |
| 0.4169 | 0.9901 | 0.9977 | 0.4895 | 0.9525 | 0.9914 | 5 |
| 0.3371 | 0.9947 | 0.9977 | 0.4194 | 0.9611 | 0.9892 | 6 |
| 0.2848 | 0.9969 | 0.9992 | 0.3786 | 0.9590 | 0.9892 | 7 |
### Framework versions
- Transformers 4.35.0
- TensorFlow 2.14.0
- Datasets 2.14.6
- Tokenizers 0.14.1
|
[
"carcinoma",
"papiloma",
"astrocitoma",
"glioblastoma",
"meningioma",
"tuberculoma",
"schwannoma",
"neurocitoma",
"granuloma",
"_normal",
"ganglioglioma",
"germinoma",
"ependimoma",
"oligodendroglioma",
"meduloblastoma"
] |
Santipab/Braincode-BEiT-2e-5-lion-NSCLC
|
This is model use for competition in the Brain Code Camp 2023.
|
[
"adenocarcinoma",
"large.cell",
"normal",
"squamous.cell"
] |
platzi/platzi-vit-model-edgar-elias
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# platzi-vit-model-edgar-elias
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the beans dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0969
- Accuracy: 0.9774
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.1391 | 3.85 | 500 | 0.0969 | 0.9774 |
### Framework versions
- Transformers 4.29.0
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.13.3
|
[
"angular_leaf_spot",
"bean_rust",
"healthy"
] |
xanore/swin-tiny-patch4-window7-224
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# swin-tiny-patch4-window7-224
This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0220
- Accuracy: 0.9925
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.0963 | 1.0 | 56 | 0.0343 | 0.9875 |
| 0.0481 | 1.99 | 112 | 0.0239 | 0.9912 |
| 0.0338 | 2.99 | 168 | 0.0220 | 0.9925 |
### Framework versions
- Transformers 4.35.0
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1
|
[
"cat",
"dog"
] |
geetanshi/image_classification
|
DONE!!!
|
[
"invoice",
"random"
] |
Siddharta314/beans-model-classification
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# our-model
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the beans dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0134
- Accuracy: 0.9925
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.1469 | 3.85 | 500 | 0.0134 | 0.9925 |
### Framework versions
- Transformers 4.35.0
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1
|
[
"angular_leaf_spot",
"bean_rust",
"healthy"
] |
arieg/4_100_2
|
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# arieg/4_100_2
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.1097
- Validation Loss: 0.1024
- Train Accuracy: 1.0
- Epoch: 4
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'clipnorm': 1.0, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 3e-05, 'decay_steps': 1800, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Validation Loss | Train Accuracy | Epoch |
|:----------:|:---------------:|:--------------:|:-----:|
| 0.9324 | 0.5258 | 1.0 | 0 |
| 0.3769 | 0.2497 | 1.0 | 1 |
| 0.1975 | 0.1603 | 1.0 | 2 |
| 0.1373 | 0.1214 | 1.0 | 3 |
| 0.1097 | 0.1024 | 1.0 | 4 |
### Framework versions
- Transformers 4.35.0
- TensorFlow 2.14.0
- Datasets 2.14.6
- Tokenizers 0.14.1
|
[
"10",
"140",
"2",
"5"
] |
arieg/4_100_s
|
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# arieg/4_100_s
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0361
- Validation Loss: 0.0352
- Train Accuracy: 1.0
- Epoch: 19
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'clipnorm': 1.0, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 3e-05, 'decay_steps': 7200, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Validation Loss | Train Accuracy | Epoch |
|:----------:|:---------------:|:--------------:|:-----:|
| 0.9729 | 0.5902 | 1.0 | 0 |
| 0.4190 | 0.2874 | 1.0 | 1 |
| 0.2212 | 0.1722 | 1.0 | 2 |
| 0.1512 | 0.1305 | 1.0 | 3 |
| 0.1192 | 0.1058 | 1.0 | 4 |
| 0.1007 | 0.0926 | 1.0 | 5 |
| 0.0885 | 0.0827 | 1.0 | 6 |
| 0.0796 | 0.0753 | 1.0 | 7 |
| 0.0726 | 0.0689 | 1.0 | 8 |
| 0.0668 | 0.0636 | 1.0 | 9 |
| 0.0620 | 0.0594 | 1.0 | 10 |
| 0.0578 | 0.0554 | 1.0 | 11 |
| 0.0541 | 0.0524 | 1.0 | 12 |
| 0.0507 | 0.0494 | 1.0 | 13 |
| 0.0477 | 0.0459 | 1.0 | 14 |
| 0.0450 | 0.0436 | 1.0 | 15 |
| 0.0425 | 0.0413 | 1.0 | 16 |
| 0.0402 | 0.0392 | 1.0 | 17 |
| 0.0380 | 0.0371 | 1.0 | 18 |
| 0.0361 | 0.0352 | 1.0 | 19 |
### Framework versions
- Transformers 4.35.0
- TensorFlow 2.14.0
- Datasets 2.14.6
- Tokenizers 0.14.1
|
[
"10",
"140",
"2",
"5"
] |
ailuropod4/swin-tiny-patch4-window7-224-finetuned-eurosat
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# swin-tiny-patch4-window7-224-finetuned-eurosat
This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0800
- Accuracy: 0.9715
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 256
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.2878 | 1.0 | 95 | 0.1676 | 0.9474 |
| 0.2106 | 2.0 | 190 | 0.0828 | 0.9722 |
| 0.1761 | 3.0 | 285 | 0.0800 | 0.9715 |
### Framework versions
- Transformers 4.36.0.dev0
- Pytorch 2.1.0+cu121
- Datasets 2.14.6
- Tokenizers 0.14.1
|
[
"annualcrop",
"forest",
"herbaceousvegetation",
"highway",
"industrial",
"pasture",
"permanentcrop",
"residential",
"river",
"sealake"
] |
hkivancoral/hushem_1x_deit_tiny_adamax_lr001_fold1
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# hushem_1x_deit_tiny_adamax_lr001_fold1
This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co/facebook/deit-tiny-patch16-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 1.5661
- Accuracy: 0.4444
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 0.67 | 1 | 2.2715 | 0.2667 |
| No log | 2.0 | 3 | 2.0269 | 0.4 |
| No log | 2.67 | 4 | 1.6111 | 0.2889 |
| No log | 4.0 | 6 | 1.4755 | 0.2444 |
| No log | 4.67 | 7 | 1.3818 | 0.4667 |
| No log | 6.0 | 9 | 1.3523 | 0.3111 |
| 1.6844 | 6.67 | 10 | 1.4010 | 0.2444 |
| 1.6844 | 8.0 | 12 | 1.2634 | 0.4444 |
| 1.6844 | 8.67 | 13 | 1.3983 | 0.4222 |
| 1.6844 | 10.0 | 15 | 1.7897 | 0.3778 |
| 1.6844 | 10.67 | 16 | 1.7305 | 0.3111 |
| 1.6844 | 12.0 | 18 | 1.3560 | 0.4667 |
| 1.6844 | 12.67 | 19 | 1.8545 | 0.4222 |
| 1.001 | 14.0 | 21 | 2.1000 | 0.3778 |
| 1.001 | 14.67 | 22 | 1.2257 | 0.4889 |
| 1.001 | 16.0 | 24 | 1.2741 | 0.4444 |
| 1.001 | 16.67 | 25 | 1.9098 | 0.3556 |
| 1.001 | 18.0 | 27 | 1.4981 | 0.3778 |
| 1.001 | 18.67 | 28 | 1.0949 | 0.4222 |
| 0.7366 | 20.0 | 30 | 1.1640 | 0.4222 |
| 0.7366 | 20.67 | 31 | 1.5156 | 0.3556 |
| 0.7366 | 22.0 | 33 | 1.8559 | 0.3556 |
| 0.7366 | 22.67 | 34 | 1.5735 | 0.4444 |
| 0.7366 | 24.0 | 36 | 1.3202 | 0.4222 |
| 0.7366 | 24.67 | 37 | 1.3837 | 0.4222 |
| 0.7366 | 26.0 | 39 | 1.6707 | 0.4 |
| 0.4908 | 26.67 | 40 | 1.8712 | 0.3778 |
| 0.4908 | 28.0 | 42 | 2.1885 | 0.3556 |
| 0.4908 | 28.67 | 43 | 2.0505 | 0.3556 |
| 0.4908 | 30.0 | 45 | 1.6855 | 0.4 |
| 0.4908 | 30.67 | 46 | 1.5304 | 0.4222 |
| 0.4908 | 32.0 | 48 | 1.5067 | 0.3778 |
| 0.4908 | 32.67 | 49 | 1.5442 | 0.4222 |
| 0.3287 | 33.33 | 50 | 1.5661 | 0.4444 |
### Framework versions
- Transformers 4.35.0
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1
|
[
"01_normal",
"02_tapered",
"03_pyriform",
"04_amorphous"
] |
hkivancoral/hushem_1x_deit_tiny_adamax_lr001_fold2
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# hushem_1x_deit_tiny_adamax_lr001_fold2
This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co/facebook/deit-tiny-patch16-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 1.4814
- Accuracy: 0.5333
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 0.67 | 1 | 4.5182 | 0.2444 |
| No log | 2.0 | 3 | 1.5416 | 0.2444 |
| No log | 2.67 | 4 | 1.5662 | 0.2667 |
| No log | 4.0 | 6 | 1.4453 | 0.2444 |
| No log | 4.67 | 7 | 1.4082 | 0.2444 |
| No log | 6.0 | 9 | 1.3188 | 0.4222 |
| 1.9051 | 6.67 | 10 | 1.3266 | 0.3556 |
| 1.9051 | 8.0 | 12 | 1.2375 | 0.4667 |
| 1.9051 | 8.67 | 13 | 1.3632 | 0.3778 |
| 1.9051 | 10.0 | 15 | 1.2064 | 0.4 |
| 1.9051 | 10.67 | 16 | 1.5392 | 0.2889 |
| 1.9051 | 12.0 | 18 | 1.1260 | 0.4889 |
| 1.9051 | 12.67 | 19 | 1.0999 | 0.4667 |
| 1.1808 | 14.0 | 21 | 1.2445 | 0.4222 |
| 1.1808 | 14.67 | 22 | 1.2069 | 0.4444 |
| 1.1808 | 16.0 | 24 | 1.0381 | 0.4889 |
| 1.1808 | 16.67 | 25 | 1.0992 | 0.5111 |
| 1.1808 | 18.0 | 27 | 1.1085 | 0.5333 |
| 1.1808 | 18.67 | 28 | 1.0609 | 0.5111 |
| 0.899 | 20.0 | 30 | 1.1754 | 0.5333 |
| 0.899 | 20.67 | 31 | 1.1214 | 0.5333 |
| 0.899 | 22.0 | 33 | 1.2625 | 0.4889 |
| 0.899 | 22.67 | 34 | 1.2586 | 0.5111 |
| 0.899 | 24.0 | 36 | 1.3423 | 0.4667 |
| 0.899 | 24.67 | 37 | 1.4290 | 0.4667 |
| 0.899 | 26.0 | 39 | 1.3722 | 0.5333 |
| 0.4924 | 26.67 | 40 | 1.4024 | 0.5111 |
| 0.4924 | 28.0 | 42 | 1.3396 | 0.5111 |
| 0.4924 | 28.67 | 43 | 1.4100 | 0.4444 |
| 0.4924 | 30.0 | 45 | 1.5561 | 0.4889 |
| 0.4924 | 30.67 | 46 | 1.5223 | 0.5556 |
| 0.4924 | 32.0 | 48 | 1.4581 | 0.5778 |
| 0.4924 | 32.67 | 49 | 1.4627 | 0.5556 |
| 0.1685 | 33.33 | 50 | 1.4814 | 0.5333 |
### Framework versions
- Transformers 4.35.0
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1
|
[
"01_normal",
"02_tapered",
"03_pyriform",
"04_amorphous"
] |
hkivancoral/hushem_1x_deit_tiny_adamax_lr001_fold3
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# hushem_1x_deit_tiny_adamax_lr001_fold3
This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co/facebook/deit-tiny-patch16-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 1.6696
- Accuracy: 0.5814
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 0.67 | 1 | 4.2125 | 0.2558 |
| No log | 2.0 | 3 | 1.4682 | 0.2558 |
| No log | 2.67 | 4 | 1.6910 | 0.2558 |
| No log | 4.0 | 6 | 1.4476 | 0.2558 |
| No log | 4.67 | 7 | 1.3895 | 0.2558 |
| No log | 6.0 | 9 | 1.3751 | 0.2558 |
| 1.9073 | 6.67 | 10 | 1.3741 | 0.3953 |
| 1.9073 | 8.0 | 12 | 1.3957 | 0.3488 |
| 1.9073 | 8.67 | 13 | 1.3369 | 0.4419 |
| 1.9073 | 10.0 | 15 | 1.2847 | 0.4186 |
| 1.9073 | 10.67 | 16 | 1.3400 | 0.3953 |
| 1.9073 | 12.0 | 18 | 1.2676 | 0.3953 |
| 1.9073 | 12.67 | 19 | 1.2806 | 0.3721 |
| 1.1656 | 14.0 | 21 | 1.3652 | 0.3023 |
| 1.1656 | 14.67 | 22 | 1.3370 | 0.4419 |
| 1.1656 | 16.0 | 24 | 1.5165 | 0.3721 |
| 1.1656 | 16.67 | 25 | 1.5828 | 0.3953 |
| 1.1656 | 18.0 | 27 | 1.3210 | 0.3953 |
| 1.1656 | 18.67 | 28 | 1.3473 | 0.4419 |
| 0.9249 | 20.0 | 30 | 1.4346 | 0.4651 |
| 0.9249 | 20.67 | 31 | 1.3840 | 0.3953 |
| 0.9249 | 22.0 | 33 | 1.3578 | 0.4884 |
| 0.9249 | 22.67 | 34 | 1.3339 | 0.4884 |
| 0.9249 | 24.0 | 36 | 1.3509 | 0.4884 |
| 0.9249 | 24.67 | 37 | 1.3931 | 0.4884 |
| 0.9249 | 26.0 | 39 | 1.5691 | 0.5116 |
| 0.5495 | 26.67 | 40 | 1.5953 | 0.5349 |
| 0.5495 | 28.0 | 42 | 1.6688 | 0.5814 |
| 0.5495 | 28.67 | 43 | 1.6795 | 0.5581 |
| 0.5495 | 30.0 | 45 | 1.6839 | 0.5814 |
| 0.5495 | 30.67 | 46 | 1.6666 | 0.5814 |
| 0.5495 | 32.0 | 48 | 1.6555 | 0.5814 |
| 0.5495 | 32.67 | 49 | 1.6646 | 0.5814 |
| 0.2333 | 33.33 | 50 | 1.6696 | 0.5814 |
### Framework versions
- Transformers 4.35.0
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1
|
[
"01_normal",
"02_tapered",
"03_pyriform",
"04_amorphous"
] |
hkivancoral/hushem_1x_deit_tiny_adamax_lr001_fold4
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# hushem_1x_deit_tiny_adamax_lr001_fold4
This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co/facebook/deit-tiny-patch16-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7197
- Accuracy: 0.7619
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 0.67 | 1 | 4.5038 | 0.2619 |
| No log | 2.0 | 3 | 1.5021 | 0.2381 |
| No log | 2.67 | 4 | 1.6655 | 0.2619 |
| No log | 4.0 | 6 | 1.3927 | 0.2381 |
| No log | 4.67 | 7 | 1.4664 | 0.2381 |
| No log | 6.0 | 9 | 1.4341 | 0.2381 |
| 1.9815 | 6.67 | 10 | 1.3866 | 0.5238 |
| 1.9815 | 8.0 | 12 | 1.4168 | 0.2381 |
| 1.9815 | 8.67 | 13 | 1.3770 | 0.2381 |
| 1.9815 | 10.0 | 15 | 1.3099 | 0.2619 |
| 1.9815 | 10.67 | 16 | 1.3229 | 0.2381 |
| 1.9815 | 12.0 | 18 | 1.2134 | 0.5 |
| 1.9815 | 12.67 | 19 | 1.1451 | 0.5238 |
| 1.3526 | 14.0 | 21 | 1.1341 | 0.6429 |
| 1.3526 | 14.67 | 22 | 0.9936 | 0.5952 |
| 1.3526 | 16.0 | 24 | 0.8768 | 0.6905 |
| 1.3526 | 16.67 | 25 | 0.9003 | 0.7143 |
| 1.3526 | 18.0 | 27 | 0.7438 | 0.7857 |
| 1.3526 | 18.67 | 28 | 0.6744 | 0.7143 |
| 1.0291 | 20.0 | 30 | 0.6946 | 0.7381 |
| 1.0291 | 20.67 | 31 | 0.6723 | 0.7381 |
| 1.0291 | 22.0 | 33 | 0.7030 | 0.7619 |
| 1.0291 | 22.67 | 34 | 0.6565 | 0.7857 |
| 1.0291 | 24.0 | 36 | 0.6394 | 0.7619 |
| 1.0291 | 24.67 | 37 | 0.7519 | 0.7143 |
| 1.0291 | 26.0 | 39 | 0.7489 | 0.6667 |
| 0.712 | 26.67 | 40 | 0.5267 | 0.8095 |
| 0.712 | 28.0 | 42 | 0.6166 | 0.7619 |
| 0.712 | 28.67 | 43 | 0.7873 | 0.7143 |
| 0.712 | 30.0 | 45 | 0.8388 | 0.7619 |
| 0.712 | 30.67 | 46 | 0.7831 | 0.7381 |
| 0.712 | 32.0 | 48 | 0.7151 | 0.7619 |
| 0.712 | 32.67 | 49 | 0.7126 | 0.7619 |
| 0.4557 | 33.33 | 50 | 0.7197 | 0.7619 |
### Framework versions
- Transformers 4.35.0
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1
|
[
"01_normal",
"02_tapered",
"03_pyriform",
"04_amorphous"
] |
hkivancoral/hushem_1x_deit_tiny_adamax_lr001_fold5
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# hushem_1x_deit_tiny_adamax_lr001_fold5
This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co/facebook/deit-tiny-patch16-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1657
- Accuracy: 0.6585
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 0.67 | 1 | 4.7722 | 0.2439 |
| No log | 2.0 | 3 | 1.4567 | 0.2439 |
| No log | 2.67 | 4 | 1.8233 | 0.2683 |
| No log | 4.0 | 6 | 1.3918 | 0.2439 |
| No log | 4.67 | 7 | 1.4247 | 0.2195 |
| No log | 6.0 | 9 | 1.3988 | 0.2439 |
| 1.9646 | 6.67 | 10 | 1.3700 | 0.3415 |
| 1.9646 | 8.0 | 12 | 1.3164 | 0.3902 |
| 1.9646 | 8.67 | 13 | 1.2953 | 0.3902 |
| 1.9646 | 10.0 | 15 | 1.0825 | 0.5366 |
| 1.9646 | 10.67 | 16 | 0.9280 | 0.7561 |
| 1.9646 | 12.0 | 18 | 0.9474 | 0.5610 |
| 1.9646 | 12.67 | 19 | 0.9791 | 0.5122 |
| 1.1934 | 14.0 | 21 | 1.3039 | 0.3902 |
| 1.1934 | 14.67 | 22 | 1.3242 | 0.3902 |
| 1.1934 | 16.0 | 24 | 0.8880 | 0.6341 |
| 1.1934 | 16.67 | 25 | 0.8367 | 0.6341 |
| 1.1934 | 18.0 | 27 | 0.8476 | 0.6098 |
| 1.1934 | 18.67 | 28 | 0.9406 | 0.5854 |
| 0.8297 | 20.0 | 30 | 1.1819 | 0.4878 |
| 0.8297 | 20.67 | 31 | 0.9194 | 0.5610 |
| 0.8297 | 22.0 | 33 | 0.7486 | 0.6829 |
| 0.8297 | 22.67 | 34 | 1.1493 | 0.6341 |
| 0.8297 | 24.0 | 36 | 1.2217 | 0.5854 |
| 0.8297 | 24.67 | 37 | 0.7746 | 0.6829 |
| 0.8297 | 26.0 | 39 | 0.8320 | 0.6585 |
| 0.5433 | 26.67 | 40 | 1.2210 | 0.5610 |
| 0.5433 | 28.0 | 42 | 1.3782 | 0.5366 |
| 0.5433 | 28.67 | 43 | 1.1529 | 0.6098 |
| 0.5433 | 30.0 | 45 | 1.0361 | 0.6585 |
| 0.5433 | 30.67 | 46 | 1.1089 | 0.6585 |
| 0.5433 | 32.0 | 48 | 1.1802 | 0.6098 |
| 0.5433 | 32.67 | 49 | 1.1774 | 0.6585 |
| 0.2758 | 33.33 | 50 | 1.1657 | 0.6585 |
### Framework versions
- Transformers 4.35.0
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1
|
[
"01_normal",
"02_tapered",
"03_pyriform",
"04_amorphous"
] |
hkivancoral/hushem_1x_deit_tiny_adamax_lr0001_fold1
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# hushem_1x_deit_tiny_adamax_lr0001_fold1
This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co/facebook/deit-tiny-patch16-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3365
- Accuracy: 0.5778
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 0.67 | 1 | 1.6054 | 0.2444 |
| No log | 2.0 | 3 | 1.3436 | 0.3556 |
| No log | 2.67 | 4 | 1.3392 | 0.2889 |
| No log | 4.0 | 6 | 1.3661 | 0.2444 |
| No log | 4.67 | 7 | 1.3117 | 0.3333 |
| No log | 6.0 | 9 | 1.4031 | 0.2889 |
| 1.1803 | 6.67 | 10 | 1.2845 | 0.4222 |
| 1.1803 | 8.0 | 12 | 1.3559 | 0.3333 |
| 1.1803 | 8.67 | 13 | 1.3178 | 0.4 |
| 1.1803 | 10.0 | 15 | 1.1302 | 0.5778 |
| 1.1803 | 10.67 | 16 | 1.2145 | 0.5556 |
| 1.1803 | 12.0 | 18 | 1.3484 | 0.4 |
| 1.1803 | 12.67 | 19 | 1.1709 | 0.5333 |
| 0.3935 | 14.0 | 21 | 1.1495 | 0.5556 |
| 0.3935 | 14.67 | 22 | 1.2656 | 0.4889 |
| 0.3935 | 16.0 | 24 | 1.1929 | 0.5333 |
| 0.3935 | 16.67 | 25 | 1.1205 | 0.5556 |
| 0.3935 | 18.0 | 27 | 1.1729 | 0.5333 |
| 0.3935 | 18.67 | 28 | 1.2656 | 0.5111 |
| 0.0911 | 20.0 | 30 | 1.3172 | 0.5556 |
| 0.0911 | 20.67 | 31 | 1.2343 | 0.5556 |
| 0.0911 | 22.0 | 33 | 1.1439 | 0.6 |
| 0.0911 | 22.67 | 34 | 1.1167 | 0.6222 |
| 0.0911 | 24.0 | 36 | 1.1537 | 0.6 |
| 0.0911 | 24.67 | 37 | 1.2658 | 0.5778 |
| 0.0911 | 26.0 | 39 | 1.3705 | 0.5556 |
| 0.0269 | 26.67 | 40 | 1.3468 | 0.5778 |
| 0.0269 | 28.0 | 42 | 1.2914 | 0.6 |
| 0.0269 | 28.67 | 43 | 1.2807 | 0.6 |
| 0.0269 | 30.0 | 45 | 1.2833 | 0.6 |
| 0.0269 | 30.67 | 46 | 1.3004 | 0.5778 |
| 0.0269 | 32.0 | 48 | 1.3271 | 0.5778 |
| 0.0269 | 32.67 | 49 | 1.3342 | 0.5778 |
| 0.0102 | 33.33 | 50 | 1.3365 | 0.5778 |
### Framework versions
- Transformers 4.35.0
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1
|
[
"01_normal",
"02_tapered",
"03_pyriform",
"04_amorphous"
] |
hkivancoral/hushem_1x_deit_tiny_adamax_lr0001_fold2
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# hushem_1x_deit_tiny_adamax_lr0001_fold2
This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co/facebook/deit-tiny-patch16-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 1.9509
- Accuracy: 0.4667
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 0.67 | 1 | 1.8647 | 0.2444 |
| No log | 2.0 | 3 | 1.3951 | 0.2667 |
| No log | 2.67 | 4 | 1.3922 | 0.2889 |
| No log | 4.0 | 6 | 1.4419 | 0.2889 |
| No log | 4.67 | 7 | 1.4528 | 0.2889 |
| No log | 6.0 | 9 | 1.4637 | 0.3111 |
| 1.1875 | 6.67 | 10 | 1.3956 | 0.3333 |
| 1.1875 | 8.0 | 12 | 1.3768 | 0.4 |
| 1.1875 | 8.67 | 13 | 1.4359 | 0.3778 |
| 1.1875 | 10.0 | 15 | 1.4704 | 0.4 |
| 1.1875 | 10.67 | 16 | 1.4280 | 0.3778 |
| 1.1875 | 12.0 | 18 | 1.3838 | 0.4667 |
| 1.1875 | 12.67 | 19 | 1.4103 | 0.4444 |
| 0.4412 | 14.0 | 21 | 1.5312 | 0.4222 |
| 0.4412 | 14.67 | 22 | 1.6068 | 0.4444 |
| 0.4412 | 16.0 | 24 | 1.5834 | 0.4222 |
| 0.4412 | 16.67 | 25 | 1.5809 | 0.4222 |
| 0.4412 | 18.0 | 27 | 1.5887 | 0.4444 |
| 0.4412 | 18.67 | 28 | 1.6461 | 0.4222 |
| 0.0689 | 20.0 | 30 | 1.7954 | 0.4222 |
| 0.0689 | 20.67 | 31 | 1.8270 | 0.4444 |
| 0.0689 | 22.0 | 33 | 1.8461 | 0.4667 |
| 0.0689 | 22.67 | 34 | 1.8602 | 0.4667 |
| 0.0689 | 24.0 | 36 | 1.8842 | 0.4444 |
| 0.0689 | 24.67 | 37 | 1.8985 | 0.4444 |
| 0.0689 | 26.0 | 39 | 1.9148 | 0.4444 |
| 0.0084 | 26.67 | 40 | 1.9205 | 0.4222 |
| 0.0084 | 28.0 | 42 | 1.9310 | 0.4444 |
| 0.0084 | 28.67 | 43 | 1.9361 | 0.4444 |
| 0.0084 | 30.0 | 45 | 1.9427 | 0.4444 |
| 0.0084 | 30.67 | 46 | 1.9452 | 0.4667 |
| 0.0084 | 32.0 | 48 | 1.9490 | 0.4667 |
| 0.0084 | 32.67 | 49 | 1.9503 | 0.4667 |
| 0.0036 | 33.33 | 50 | 1.9509 | 0.4667 |
### Framework versions
- Transformers 4.35.0
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1
|
[
"01_normal",
"02_tapered",
"03_pyriform",
"04_amorphous"
] |
hkivancoral/hushem_1x_deit_tiny_adamax_lr0001_fold3
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# hushem_1x_deit_tiny_adamax_lr0001_fold3
This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co/facebook/deit-tiny-patch16-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8641
- Accuracy: 0.6977
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 0.67 | 1 | 1.6041 | 0.2558 |
| No log | 2.0 | 3 | 1.2890 | 0.3953 |
| No log | 2.67 | 4 | 1.2944 | 0.3023 |
| No log | 4.0 | 6 | 1.2013 | 0.4186 |
| No log | 4.67 | 7 | 1.1135 | 0.4186 |
| No log | 6.0 | 9 | 1.0796 | 0.5349 |
| 1.2559 | 6.67 | 10 | 1.0570 | 0.5581 |
| 1.2559 | 8.0 | 12 | 1.1038 | 0.4884 |
| 1.2559 | 8.67 | 13 | 1.0764 | 0.4884 |
| 1.2559 | 10.0 | 15 | 0.9749 | 0.5349 |
| 1.2559 | 10.67 | 16 | 0.9354 | 0.5581 |
| 1.2559 | 12.0 | 18 | 0.9274 | 0.6279 |
| 1.2559 | 12.67 | 19 | 0.9435 | 0.6512 |
| 0.4315 | 14.0 | 21 | 0.9225 | 0.6512 |
| 0.4315 | 14.67 | 22 | 0.9168 | 0.6279 |
| 0.4315 | 16.0 | 24 | 0.8830 | 0.6279 |
| 0.4315 | 16.67 | 25 | 0.8956 | 0.6512 |
| 0.4315 | 18.0 | 27 | 0.9038 | 0.6744 |
| 0.4315 | 18.67 | 28 | 0.8913 | 0.6744 |
| 0.058 | 20.0 | 30 | 0.8683 | 0.6512 |
| 0.058 | 20.67 | 31 | 0.8553 | 0.6744 |
| 0.058 | 22.0 | 33 | 0.8508 | 0.6977 |
| 0.058 | 22.67 | 34 | 0.8546 | 0.6977 |
| 0.058 | 24.0 | 36 | 0.8627 | 0.6977 |
| 0.058 | 24.67 | 37 | 0.8639 | 0.6977 |
| 0.058 | 26.0 | 39 | 0.8636 | 0.7209 |
| 0.0086 | 26.67 | 40 | 0.8627 | 0.7209 |
| 0.0086 | 28.0 | 42 | 0.8622 | 0.7209 |
| 0.0086 | 28.67 | 43 | 0.8622 | 0.6977 |
| 0.0086 | 30.0 | 45 | 0.8629 | 0.6977 |
| 0.0086 | 30.67 | 46 | 0.8632 | 0.6977 |
| 0.0086 | 32.0 | 48 | 0.8638 | 0.6977 |
| 0.0086 | 32.67 | 49 | 0.8640 | 0.6977 |
| 0.004 | 33.33 | 50 | 0.8641 | 0.6977 |
### Framework versions
- Transformers 4.35.0
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1
|
[
"01_normal",
"02_tapered",
"03_pyriform",
"04_amorphous"
] |
hkivancoral/hushem_1x_deit_tiny_adamax_lr0001_fold4
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# hushem_1x_deit_tiny_adamax_lr0001_fold4
This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co/facebook/deit-tiny-patch16-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5599
- Accuracy: 0.8333
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 0.67 | 1 | 1.6749 | 0.3095 |
| No log | 2.0 | 3 | 1.3545 | 0.3333 |
| No log | 2.67 | 4 | 1.3451 | 0.2857 |
| No log | 4.0 | 6 | 1.2535 | 0.5238 |
| No log | 4.67 | 7 | 1.2290 | 0.4286 |
| No log | 6.0 | 9 | 1.1555 | 0.5 |
| 1.2457 | 6.67 | 10 | 1.0938 | 0.5 |
| 1.2457 | 8.0 | 12 | 0.9608 | 0.4762 |
| 1.2457 | 8.67 | 13 | 0.8825 | 0.5952 |
| 1.2457 | 10.0 | 15 | 0.7678 | 0.7143 |
| 1.2457 | 10.67 | 16 | 0.7184 | 0.7857 |
| 1.2457 | 12.0 | 18 | 0.6658 | 0.7619 |
| 1.2457 | 12.67 | 19 | 0.6361 | 0.7619 |
| 0.4167 | 14.0 | 21 | 0.6247 | 0.8095 |
| 0.4167 | 14.67 | 22 | 0.6111 | 0.7857 |
| 0.4167 | 16.0 | 24 | 0.5896 | 0.7857 |
| 0.4167 | 16.67 | 25 | 0.5886 | 0.7381 |
| 0.4167 | 18.0 | 27 | 0.6107 | 0.7619 |
| 0.4167 | 18.67 | 28 | 0.6198 | 0.7619 |
| 0.0627 | 20.0 | 30 | 0.6194 | 0.7619 |
| 0.0627 | 20.67 | 31 | 0.6092 | 0.7619 |
| 0.0627 | 22.0 | 33 | 0.5917 | 0.7857 |
| 0.0627 | 22.67 | 34 | 0.5871 | 0.7857 |
| 0.0627 | 24.0 | 36 | 0.5872 | 0.8095 |
| 0.0627 | 24.67 | 37 | 0.5896 | 0.8095 |
| 0.0627 | 26.0 | 39 | 0.5921 | 0.8095 |
| 0.0081 | 26.67 | 40 | 0.5908 | 0.8095 |
| 0.0081 | 28.0 | 42 | 0.5818 | 0.8095 |
| 0.0081 | 28.67 | 43 | 0.5772 | 0.8095 |
| 0.0081 | 30.0 | 45 | 0.5685 | 0.8095 |
| 0.0081 | 30.67 | 46 | 0.5654 | 0.8095 |
| 0.0081 | 32.0 | 48 | 0.5614 | 0.8333 |
| 0.0081 | 32.67 | 49 | 0.5603 | 0.8333 |
| 0.0038 | 33.33 | 50 | 0.5599 | 0.8333 |
### Framework versions
- Transformers 4.35.0
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1
|
[
"01_normal",
"02_tapered",
"03_pyriform",
"04_amorphous"
] |
hkivancoral/hushem_1x_deit_tiny_adamax_lr0001_fold5
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# hushem_1x_deit_tiny_adamax_lr0001_fold5
This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co/facebook/deit-tiny-patch16-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8924
- Accuracy: 0.6585
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 0.67 | 1 | 1.9330 | 0.2439 |
| No log | 2.0 | 3 | 1.4362 | 0.3659 |
| No log | 2.67 | 4 | 1.3806 | 0.3902 |
| No log | 4.0 | 6 | 1.3304 | 0.4634 |
| No log | 4.67 | 7 | 1.3017 | 0.4390 |
| No log | 6.0 | 9 | 1.1836 | 0.4878 |
| 1.2323 | 6.67 | 10 | 1.1688 | 0.5610 |
| 1.2323 | 8.0 | 12 | 1.1361 | 0.5366 |
| 1.2323 | 8.67 | 13 | 1.1291 | 0.5366 |
| 1.2323 | 10.0 | 15 | 1.0782 | 0.6098 |
| 1.2323 | 10.67 | 16 | 1.0358 | 0.6585 |
| 1.2323 | 12.0 | 18 | 1.0020 | 0.6098 |
| 1.2323 | 12.67 | 19 | 1.0059 | 0.6098 |
| 0.3527 | 14.0 | 21 | 0.9293 | 0.6098 |
| 0.3527 | 14.67 | 22 | 0.9162 | 0.6341 |
| 0.3527 | 16.0 | 24 | 0.9233 | 0.6098 |
| 0.3527 | 16.67 | 25 | 0.9213 | 0.6098 |
| 0.3527 | 18.0 | 27 | 0.9193 | 0.6098 |
| 0.3527 | 18.67 | 28 | 0.9345 | 0.6098 |
| 0.04 | 20.0 | 30 | 0.8872 | 0.6585 |
| 0.04 | 20.67 | 31 | 0.8549 | 0.6829 |
| 0.04 | 22.0 | 33 | 0.8221 | 0.6829 |
| 0.04 | 22.67 | 34 | 0.8117 | 0.7073 |
| 0.04 | 24.0 | 36 | 0.8041 | 0.7561 |
| 0.04 | 24.67 | 37 | 0.8128 | 0.7561 |
| 0.04 | 26.0 | 39 | 0.8413 | 0.6829 |
| 0.0062 | 26.67 | 40 | 0.8565 | 0.6585 |
| 0.0062 | 28.0 | 42 | 0.8789 | 0.6585 |
| 0.0062 | 28.67 | 43 | 0.8864 | 0.6585 |
| 0.0062 | 30.0 | 45 | 0.8920 | 0.6585 |
| 0.0062 | 30.67 | 46 | 0.8925 | 0.6585 |
| 0.0062 | 32.0 | 48 | 0.8929 | 0.6585 |
| 0.0062 | 32.67 | 49 | 0.8927 | 0.6585 |
| 0.0031 | 33.33 | 50 | 0.8924 | 0.6585 |
### Framework versions
- Transformers 4.35.0
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1
|
[
"01_normal",
"02_tapered",
"03_pyriform",
"04_amorphous"
] |
danielcfox/food_classifier
|
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# danielcfox/food_classifier
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.3752
- Validation Loss: 0.3389
- Train Accuracy: 0.917
- Epoch: 4
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 3e-05, 'decay_steps': 20000, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Validation Loss | Train Accuracy | Epoch |
|:----------:|:---------------:|:--------------:|:-----:|
| 2.7929 | 1.6468 | 0.827 | 0 |
| 1.2217 | 0.7691 | 0.92 | 1 |
| 0.7054 | 0.5002 | 0.916 | 2 |
| 0.4851 | 0.3574 | 0.927 | 3 |
| 0.3752 | 0.3389 | 0.917 | 4 |
### Framework versions
- Transformers 4.35.0
- TensorFlow 2.14.0
- Datasets 2.14.6
- Tokenizers 0.14.1
|
[
"apple_pie",
"baby_back_ribs",
"bruschetta",
"waffles",
"caesar_salad",
"cannoli",
"caprese_salad",
"carrot_cake",
"ceviche",
"cheesecake",
"cheese_plate",
"chicken_curry",
"chicken_quesadilla",
"baklava",
"chicken_wings",
"chocolate_cake",
"chocolate_mousse",
"churros",
"clam_chowder",
"club_sandwich",
"crab_cakes",
"creme_brulee",
"croque_madame",
"cup_cakes",
"beef_carpaccio",
"deviled_eggs",
"donuts",
"dumplings",
"edamame",
"eggs_benedict",
"escargots",
"falafel",
"filet_mignon",
"fish_and_chips",
"foie_gras",
"beef_tartare",
"french_fries",
"french_onion_soup",
"french_toast",
"fried_calamari",
"fried_rice",
"frozen_yogurt",
"garlic_bread",
"gnocchi",
"greek_salad",
"grilled_cheese_sandwich",
"beet_salad",
"grilled_salmon",
"guacamole",
"gyoza",
"hamburger",
"hot_and_sour_soup",
"hot_dog",
"huevos_rancheros",
"hummus",
"ice_cream",
"lasagna",
"beignets",
"lobster_bisque",
"lobster_roll_sandwich",
"macaroni_and_cheese",
"macarons",
"miso_soup",
"mussels",
"nachos",
"omelette",
"onion_rings",
"oysters",
"bibimbap",
"pad_thai",
"paella",
"pancakes",
"panna_cotta",
"peking_duck",
"pho",
"pizza",
"pork_chop",
"poutine",
"prime_rib",
"bread_pudding",
"pulled_pork_sandwich",
"ramen",
"ravioli",
"red_velvet_cake",
"risotto",
"samosa",
"sashimi",
"scallops",
"seaweed_salad",
"shrimp_and_grits",
"breakfast_burrito",
"spaghetti_bolognese",
"spaghetti_carbonara",
"spring_rolls",
"steak",
"strawberry_shortcake",
"sushi",
"tacos",
"takoyaki",
"tiramisu",
"tuna_tartare"
] |
hkivancoral/hushem_1x_deit_tiny_adamax_lr00001_fold1
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# hushem_1x_deit_tiny_adamax_lr00001_fold1
This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co/facebook/deit-tiny-patch16-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3005
- Accuracy: 0.4222
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 0.67 | 1 | 1.4838 | 0.2222 |
| No log | 2.0 | 3 | 1.4436 | 0.2222 |
| No log | 2.67 | 4 | 1.4334 | 0.1778 |
| No log | 4.0 | 6 | 1.4190 | 0.2667 |
| No log | 4.67 | 7 | 1.4121 | 0.2889 |
| No log | 6.0 | 9 | 1.3991 | 0.3111 |
| 1.3869 | 6.67 | 10 | 1.3926 | 0.3333 |
| 1.3869 | 8.0 | 12 | 1.3807 | 0.3556 |
| 1.3869 | 8.67 | 13 | 1.3748 | 0.3556 |
| 1.3869 | 10.0 | 15 | 1.3643 | 0.3778 |
| 1.3869 | 10.67 | 16 | 1.3598 | 0.3778 |
| 1.3869 | 12.0 | 18 | 1.3511 | 0.4 |
| 1.3869 | 12.67 | 19 | 1.3478 | 0.3778 |
| 1.1228 | 14.0 | 21 | 1.3405 | 0.4 |
| 1.1228 | 14.67 | 22 | 1.3380 | 0.4 |
| 1.1228 | 16.0 | 24 | 1.3323 | 0.4222 |
| 1.1228 | 16.67 | 25 | 1.3292 | 0.4222 |
| 1.1228 | 18.0 | 27 | 1.3250 | 0.4222 |
| 1.1228 | 18.67 | 28 | 1.3231 | 0.4222 |
| 0.9505 | 20.0 | 30 | 1.3201 | 0.4222 |
| 0.9505 | 20.67 | 31 | 1.3189 | 0.4222 |
| 0.9505 | 22.0 | 33 | 1.3162 | 0.4222 |
| 0.9505 | 22.67 | 34 | 1.3147 | 0.4222 |
| 0.9505 | 24.0 | 36 | 1.3120 | 0.4222 |
| 0.9505 | 24.67 | 37 | 1.3113 | 0.4222 |
| 0.9505 | 26.0 | 39 | 1.3090 | 0.4222 |
| 0.8411 | 26.67 | 40 | 1.3078 | 0.4222 |
| 0.8411 | 28.0 | 42 | 1.3057 | 0.4222 |
| 0.8411 | 28.67 | 43 | 1.3047 | 0.4222 |
| 0.8411 | 30.0 | 45 | 1.3028 | 0.4222 |
| 0.8411 | 30.67 | 46 | 1.3020 | 0.4222 |
| 0.8411 | 32.0 | 48 | 1.3010 | 0.4222 |
| 0.8411 | 32.67 | 49 | 1.3007 | 0.4222 |
| 0.7881 | 33.33 | 50 | 1.3005 | 0.4222 |
### Framework versions
- Transformers 4.35.0
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1
|
[
"01_normal",
"02_tapered",
"03_pyriform",
"04_amorphous"
] |
hkivancoral/hushem_1x_deit_tiny_adamax_lr00001_fold2
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# hushem_1x_deit_tiny_adamax_lr00001_fold2
This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co/facebook/deit-tiny-patch16-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 1.4306
- Accuracy: 0.2889
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 0.67 | 1 | 1.6419 | 0.1111 |
| No log | 2.0 | 3 | 1.5215 | 0.1556 |
| No log | 2.67 | 4 | 1.5000 | 0.1778 |
| No log | 4.0 | 6 | 1.4887 | 0.2444 |
| No log | 4.67 | 7 | 1.4849 | 0.2222 |
| No log | 6.0 | 9 | 1.4754 | 0.2444 |
| 1.3642 | 6.67 | 10 | 1.4684 | 0.2667 |
| 1.3642 | 8.0 | 12 | 1.4571 | 0.2667 |
| 1.3642 | 8.67 | 13 | 1.4523 | 0.2667 |
| 1.3642 | 10.0 | 15 | 1.4422 | 0.2667 |
| 1.3642 | 10.67 | 16 | 1.4392 | 0.2444 |
| 1.3642 | 12.0 | 18 | 1.4341 | 0.2444 |
| 1.3642 | 12.67 | 19 | 1.4327 | 0.2444 |
| 1.1012 | 14.0 | 21 | 1.4319 | 0.2667 |
| 1.1012 | 14.67 | 22 | 1.4329 | 0.2667 |
| 1.1012 | 16.0 | 24 | 1.4330 | 0.2889 |
| 1.1012 | 16.67 | 25 | 1.4333 | 0.2889 |
| 1.1012 | 18.0 | 27 | 1.4342 | 0.2889 |
| 1.1012 | 18.67 | 28 | 1.4339 | 0.2889 |
| 0.9232 | 20.0 | 30 | 1.4351 | 0.2889 |
| 0.9232 | 20.67 | 31 | 1.4354 | 0.2889 |
| 0.9232 | 22.0 | 33 | 1.4352 | 0.2889 |
| 0.9232 | 22.67 | 34 | 1.4353 | 0.2889 |
| 0.9232 | 24.0 | 36 | 1.4349 | 0.2889 |
| 0.9232 | 24.67 | 37 | 1.4347 | 0.2889 |
| 0.9232 | 26.0 | 39 | 1.4341 | 0.2889 |
| 0.8235 | 26.67 | 40 | 1.4334 | 0.2889 |
| 0.8235 | 28.0 | 42 | 1.4325 | 0.2889 |
| 0.8235 | 28.67 | 43 | 1.4325 | 0.2889 |
| 0.8235 | 30.0 | 45 | 1.4317 | 0.2889 |
| 0.8235 | 30.67 | 46 | 1.4312 | 0.2889 |
| 0.8235 | 32.0 | 48 | 1.4307 | 0.2889 |
| 0.8235 | 32.67 | 49 | 1.4307 | 0.2889 |
| 0.7752 | 33.33 | 50 | 1.4306 | 0.2889 |
### Framework versions
- Transformers 4.35.0
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1
|
[
"01_normal",
"02_tapered",
"03_pyriform",
"04_amorphous"
] |
hkivancoral/hushem_1x_deit_tiny_adamax_lr00001_fold3
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# hushem_1x_deit_tiny_adamax_lr00001_fold3
This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co/facebook/deit-tiny-patch16-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0802
- Accuracy: 0.4651
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 0.67 | 1 | 1.5307 | 0.2093 |
| No log | 2.0 | 3 | 1.3769 | 0.3023 |
| No log | 2.67 | 4 | 1.3327 | 0.3721 |
| No log | 4.0 | 6 | 1.2794 | 0.4419 |
| No log | 4.67 | 7 | 1.2620 | 0.4419 |
| No log | 6.0 | 9 | 1.2352 | 0.4884 |
| 1.4092 | 6.67 | 10 | 1.2244 | 0.4884 |
| 1.4092 | 8.0 | 12 | 1.2093 | 0.4884 |
| 1.4092 | 8.67 | 13 | 1.2029 | 0.4884 |
| 1.4092 | 10.0 | 15 | 1.1956 | 0.4651 |
| 1.4092 | 10.67 | 16 | 1.1914 | 0.4651 |
| 1.4092 | 12.0 | 18 | 1.1838 | 0.4651 |
| 1.4092 | 12.67 | 19 | 1.1805 | 0.4651 |
| 1.1598 | 14.0 | 21 | 1.1690 | 0.4419 |
| 1.1598 | 14.67 | 22 | 1.1624 | 0.4419 |
| 1.1598 | 16.0 | 24 | 1.1483 | 0.4186 |
| 1.1598 | 16.67 | 25 | 1.1431 | 0.4186 |
| 1.1598 | 18.0 | 27 | 1.1284 | 0.4186 |
| 1.1598 | 18.67 | 28 | 1.1216 | 0.4419 |
| 0.9892 | 20.0 | 30 | 1.1096 | 0.4419 |
| 0.9892 | 20.67 | 31 | 1.1035 | 0.4651 |
| 0.9892 | 22.0 | 33 | 1.0952 | 0.4651 |
| 0.9892 | 22.67 | 34 | 1.0922 | 0.4651 |
| 0.9892 | 24.0 | 36 | 1.0880 | 0.4651 |
| 0.9892 | 24.67 | 37 | 1.0863 | 0.4651 |
| 0.9892 | 26.0 | 39 | 1.0835 | 0.4651 |
| 0.8902 | 26.67 | 40 | 1.0825 | 0.4651 |
| 0.8902 | 28.0 | 42 | 1.0818 | 0.4651 |
| 0.8902 | 28.67 | 43 | 1.0817 | 0.4651 |
| 0.8902 | 30.0 | 45 | 1.0810 | 0.4651 |
| 0.8902 | 30.67 | 46 | 1.0810 | 0.4651 |
| 0.8902 | 32.0 | 48 | 1.0805 | 0.4651 |
| 0.8902 | 32.67 | 49 | 1.0803 | 0.4651 |
| 0.8497 | 33.33 | 50 | 1.0802 | 0.4651 |
### Framework versions
- Transformers 4.35.0
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1
|
[
"01_normal",
"02_tapered",
"03_pyriform",
"04_amorphous"
] |
hkivancoral/hushem_1x_deit_tiny_adamax_lr00001_fold4
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# hushem_1x_deit_tiny_adamax_lr00001_fold4
This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co/facebook/deit-tiny-patch16-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1208
- Accuracy: 0.5952
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 0.67 | 1 | 1.5521 | 0.1429 |
| No log | 2.0 | 3 | 1.4205 | 0.2857 |
| No log | 2.67 | 4 | 1.3862 | 0.3571 |
| No log | 4.0 | 6 | 1.3478 | 0.5238 |
| No log | 4.67 | 7 | 1.3332 | 0.5238 |
| No log | 6.0 | 9 | 1.3093 | 0.5238 |
| 1.4089 | 6.67 | 10 | 1.2970 | 0.5476 |
| 1.4089 | 8.0 | 12 | 1.2777 | 0.5714 |
| 1.4089 | 8.67 | 13 | 1.2689 | 0.5714 |
| 1.4089 | 10.0 | 15 | 1.2544 | 0.5714 |
| 1.4089 | 10.67 | 16 | 1.2478 | 0.5714 |
| 1.4089 | 12.0 | 18 | 1.2338 | 0.5714 |
| 1.4089 | 12.67 | 19 | 1.2267 | 0.5714 |
| 1.1506 | 14.0 | 21 | 1.2124 | 0.5714 |
| 1.1506 | 14.67 | 22 | 1.2049 | 0.5714 |
| 1.1506 | 16.0 | 24 | 1.1908 | 0.5714 |
| 1.1506 | 16.67 | 25 | 1.1843 | 0.5952 |
| 1.1506 | 18.0 | 27 | 1.1717 | 0.5952 |
| 1.1506 | 18.67 | 28 | 1.1659 | 0.5952 |
| 0.986 | 20.0 | 30 | 1.1576 | 0.5952 |
| 0.986 | 20.67 | 31 | 1.1537 | 0.5952 |
| 0.986 | 22.0 | 33 | 1.1470 | 0.5952 |
| 0.986 | 22.67 | 34 | 1.1439 | 0.5952 |
| 0.986 | 24.0 | 36 | 1.1385 | 0.5714 |
| 0.986 | 24.67 | 37 | 1.1362 | 0.5952 |
| 0.986 | 26.0 | 39 | 1.1320 | 0.5952 |
| 0.8708 | 26.67 | 40 | 1.1301 | 0.5952 |
| 0.8708 | 28.0 | 42 | 1.1268 | 0.5952 |
| 0.8708 | 28.67 | 43 | 1.1256 | 0.5952 |
| 0.8708 | 30.0 | 45 | 1.1234 | 0.5952 |
| 0.8708 | 30.67 | 46 | 1.1226 | 0.5952 |
| 0.8708 | 32.0 | 48 | 1.1214 | 0.5952 |
| 0.8708 | 32.67 | 49 | 1.1210 | 0.5952 |
| 0.8182 | 33.33 | 50 | 1.1208 | 0.5952 |
### Framework versions
- Transformers 4.35.0
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1
|
[
"01_normal",
"02_tapered",
"03_pyriform",
"04_amorphous"
] |
hkivancoral/hushem_1x_deit_tiny_adamax_lr00001_fold5
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# hushem_1x_deit_tiny_adamax_lr00001_fold5
This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co/facebook/deit-tiny-patch16-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2718
- Accuracy: 0.4634
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 0.67 | 1 | 1.6411 | 0.1220 |
| No log | 2.0 | 3 | 1.5318 | 0.1951 |
| No log | 2.67 | 4 | 1.5063 | 0.1707 |
| No log | 4.0 | 6 | 1.4764 | 0.3171 |
| No log | 4.67 | 7 | 1.4625 | 0.3171 |
| No log | 6.0 | 9 | 1.4352 | 0.3902 |
| 1.379 | 6.67 | 10 | 1.4210 | 0.4390 |
| 1.379 | 8.0 | 12 | 1.3993 | 0.4390 |
| 1.379 | 8.67 | 13 | 1.3906 | 0.4390 |
| 1.379 | 10.0 | 15 | 1.3747 | 0.4146 |
| 1.379 | 10.67 | 16 | 1.3676 | 0.4146 |
| 1.379 | 12.0 | 18 | 1.3554 | 0.4146 |
| 1.379 | 12.67 | 19 | 1.3500 | 0.4146 |
| 1.107 | 14.0 | 21 | 1.3389 | 0.4146 |
| 1.107 | 14.67 | 22 | 1.3348 | 0.4146 |
| 1.107 | 16.0 | 24 | 1.3265 | 0.4390 |
| 1.107 | 16.67 | 25 | 1.3236 | 0.4634 |
| 1.107 | 18.0 | 27 | 1.3162 | 0.4634 |
| 1.107 | 18.67 | 28 | 1.3129 | 0.4390 |
| 0.9495 | 20.0 | 30 | 1.3051 | 0.4390 |
| 0.9495 | 20.67 | 31 | 1.3019 | 0.4390 |
| 0.9495 | 22.0 | 33 | 1.2961 | 0.4390 |
| 0.9495 | 22.67 | 34 | 1.2934 | 0.4634 |
| 0.9495 | 24.0 | 36 | 1.2879 | 0.4390 |
| 0.9495 | 24.67 | 37 | 1.2851 | 0.4390 |
| 0.9495 | 26.0 | 39 | 1.2815 | 0.4390 |
| 0.8401 | 26.67 | 40 | 1.2802 | 0.4390 |
| 0.8401 | 28.0 | 42 | 1.2775 | 0.4390 |
| 0.8401 | 28.67 | 43 | 1.2761 | 0.4390 |
| 0.8401 | 30.0 | 45 | 1.2740 | 0.4390 |
| 0.8401 | 30.67 | 46 | 1.2734 | 0.4390 |
| 0.8401 | 32.0 | 48 | 1.2723 | 0.4634 |
| 0.8401 | 32.67 | 49 | 1.2719 | 0.4634 |
| 0.7816 | 33.33 | 50 | 1.2718 | 0.4634 |
### Framework versions
- Transformers 4.35.0
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1
|
[
"01_normal",
"02_tapered",
"03_pyriform",
"04_amorphous"
] |
hkivancoral/hushem_1x_deit_tiny_sgd_lr001_fold1
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# hushem_1x_deit_tiny_sgd_lr001_fold1
This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co/facebook/deit-tiny-patch16-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 1.4305
- Accuracy: 0.3111
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 6 | 1.6118 | 0.1778 |
| 1.6924 | 2.0 | 12 | 1.5735 | 0.2222 |
| 1.6924 | 3.0 | 18 | 1.5416 | 0.2222 |
| 1.5478 | 4.0 | 24 | 1.5201 | 0.2444 |
| 1.5093 | 5.0 | 30 | 1.4995 | 0.2889 |
| 1.5093 | 6.0 | 36 | 1.4836 | 0.2889 |
| 1.4614 | 7.0 | 42 | 1.4737 | 0.2889 |
| 1.4614 | 8.0 | 48 | 1.4656 | 0.2889 |
| 1.3895 | 9.0 | 54 | 1.4578 | 0.2222 |
| 1.4002 | 10.0 | 60 | 1.4519 | 0.2667 |
| 1.4002 | 11.0 | 66 | 1.4464 | 0.2667 |
| 1.3595 | 12.0 | 72 | 1.4429 | 0.2667 |
| 1.3595 | 13.0 | 78 | 1.4392 | 0.2667 |
| 1.3506 | 14.0 | 84 | 1.4366 | 0.2222 |
| 1.2804 | 15.0 | 90 | 1.4347 | 0.2 |
| 1.2804 | 16.0 | 96 | 1.4330 | 0.2 |
| 1.2746 | 17.0 | 102 | 1.4333 | 0.2667 |
| 1.2746 | 18.0 | 108 | 1.4332 | 0.2667 |
| 1.2774 | 19.0 | 114 | 1.4327 | 0.2667 |
| 1.2547 | 20.0 | 120 | 1.4313 | 0.2667 |
| 1.2547 | 21.0 | 126 | 1.4295 | 0.2667 |
| 1.2313 | 22.0 | 132 | 1.4282 | 0.2889 |
| 1.2313 | 23.0 | 138 | 1.4285 | 0.2889 |
| 1.2194 | 24.0 | 144 | 1.4285 | 0.2889 |
| 1.2083 | 25.0 | 150 | 1.4272 | 0.2889 |
| 1.2083 | 26.0 | 156 | 1.4286 | 0.3111 |
| 1.1973 | 27.0 | 162 | 1.4278 | 0.3111 |
| 1.1973 | 28.0 | 168 | 1.4278 | 0.3111 |
| 1.1964 | 29.0 | 174 | 1.4276 | 0.3111 |
| 1.2006 | 30.0 | 180 | 1.4293 | 0.3111 |
| 1.2006 | 31.0 | 186 | 1.4290 | 0.3111 |
| 1.1662 | 32.0 | 192 | 1.4295 | 0.3111 |
| 1.1662 | 33.0 | 198 | 1.4297 | 0.3111 |
| 1.1889 | 34.0 | 204 | 1.4294 | 0.3111 |
| 1.1683 | 35.0 | 210 | 1.4293 | 0.3111 |
| 1.1683 | 36.0 | 216 | 1.4299 | 0.3111 |
| 1.1652 | 37.0 | 222 | 1.4302 | 0.3111 |
| 1.1652 | 38.0 | 228 | 1.4307 | 0.3111 |
| 1.1321 | 39.0 | 234 | 1.4308 | 0.3111 |
| 1.1584 | 40.0 | 240 | 1.4306 | 0.3111 |
| 1.1584 | 41.0 | 246 | 1.4304 | 0.3111 |
| 1.1553 | 42.0 | 252 | 1.4305 | 0.3111 |
| 1.1553 | 43.0 | 258 | 1.4305 | 0.3111 |
| 1.168 | 44.0 | 264 | 1.4305 | 0.3111 |
| 1.1533 | 45.0 | 270 | 1.4305 | 0.3111 |
| 1.1533 | 46.0 | 276 | 1.4305 | 0.3111 |
| 1.1682 | 47.0 | 282 | 1.4305 | 0.3111 |
| 1.1682 | 48.0 | 288 | 1.4305 | 0.3111 |
| 1.1255 | 49.0 | 294 | 1.4305 | 0.3111 |
| 1.1698 | 50.0 | 300 | 1.4305 | 0.3111 |
### Framework versions
- Transformers 4.35.0
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1
|
[
"01_normal",
"02_tapered",
"03_pyriform",
"04_amorphous"
] |
hkivancoral/hushem_1x_deit_tiny_sgd_lr001_fold2
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# hushem_1x_deit_tiny_sgd_lr001_fold2
This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co/facebook/deit-tiny-patch16-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 1.4182
- Accuracy: 0.3556
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 6 | 1.6125 | 0.1333 |
| 1.5852 | 2.0 | 12 | 1.5871 | 0.1333 |
| 1.5852 | 3.0 | 18 | 1.5653 | 0.1556 |
| 1.5028 | 4.0 | 24 | 1.5474 | 0.1556 |
| 1.4795 | 5.0 | 30 | 1.5322 | 0.1556 |
| 1.4795 | 6.0 | 36 | 1.5188 | 0.1556 |
| 1.4252 | 7.0 | 42 | 1.5071 | 0.1556 |
| 1.4252 | 8.0 | 48 | 1.4989 | 0.1556 |
| 1.3707 | 9.0 | 54 | 1.4901 | 0.1778 |
| 1.365 | 10.0 | 60 | 1.4824 | 0.2 |
| 1.365 | 11.0 | 66 | 1.4748 | 0.2 |
| 1.3235 | 12.0 | 72 | 1.4694 | 0.2444 |
| 1.3235 | 13.0 | 78 | 1.4635 | 0.2444 |
| 1.3233 | 14.0 | 84 | 1.4596 | 0.2444 |
| 1.2774 | 15.0 | 90 | 1.4554 | 0.2444 |
| 1.2774 | 16.0 | 96 | 1.4518 | 0.2444 |
| 1.2584 | 17.0 | 102 | 1.4482 | 0.2667 |
| 1.2584 | 18.0 | 108 | 1.4450 | 0.2667 |
| 1.2788 | 19.0 | 114 | 1.4423 | 0.2667 |
| 1.2388 | 20.0 | 120 | 1.4398 | 0.2667 |
| 1.2388 | 21.0 | 126 | 1.4370 | 0.2889 |
| 1.2317 | 22.0 | 132 | 1.4351 | 0.2667 |
| 1.2317 | 23.0 | 138 | 1.4327 | 0.2889 |
| 1.2286 | 24.0 | 144 | 1.4312 | 0.2889 |
| 1.2033 | 25.0 | 150 | 1.4298 | 0.2889 |
| 1.2033 | 26.0 | 156 | 1.4283 | 0.3111 |
| 1.1965 | 27.0 | 162 | 1.4267 | 0.3111 |
| 1.1965 | 28.0 | 168 | 1.4258 | 0.3111 |
| 1.1963 | 29.0 | 174 | 1.4246 | 0.3111 |
| 1.1946 | 30.0 | 180 | 1.4236 | 0.3111 |
| 1.1946 | 31.0 | 186 | 1.4227 | 0.3333 |
| 1.1805 | 32.0 | 192 | 1.4218 | 0.3556 |
| 1.1805 | 33.0 | 198 | 1.4211 | 0.3556 |
| 1.1439 | 34.0 | 204 | 1.4203 | 0.3556 |
| 1.1699 | 35.0 | 210 | 1.4197 | 0.3556 |
| 1.1699 | 36.0 | 216 | 1.4193 | 0.3556 |
| 1.156 | 37.0 | 222 | 1.4190 | 0.3556 |
| 1.156 | 38.0 | 228 | 1.4187 | 0.3556 |
| 1.1475 | 39.0 | 234 | 1.4185 | 0.3556 |
| 1.1517 | 40.0 | 240 | 1.4183 | 0.3556 |
| 1.1517 | 41.0 | 246 | 1.4182 | 0.3556 |
| 1.1468 | 42.0 | 252 | 1.4182 | 0.3556 |
| 1.1468 | 43.0 | 258 | 1.4182 | 0.3556 |
| 1.1597 | 44.0 | 264 | 1.4182 | 0.3556 |
| 1.1542 | 45.0 | 270 | 1.4182 | 0.3556 |
| 1.1542 | 46.0 | 276 | 1.4182 | 0.3556 |
| 1.1604 | 47.0 | 282 | 1.4182 | 0.3556 |
| 1.1604 | 48.0 | 288 | 1.4182 | 0.3556 |
| 1.1576 | 49.0 | 294 | 1.4182 | 0.3556 |
| 1.143 | 50.0 | 300 | 1.4182 | 0.3556 |
### Framework versions
- Transformers 4.35.0
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1
|
[
"01_normal",
"02_tapered",
"03_pyriform",
"04_amorphous"
] |
hkivancoral/hushem_1x_deit_tiny_sgd_lr001_fold3
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# hushem_1x_deit_tiny_sgd_lr001_fold3
This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co/facebook/deit-tiny-patch16-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3137
- Accuracy: 0.4186
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 6 | 1.5163 | 0.3023 |
| 1.6001 | 2.0 | 12 | 1.4936 | 0.3023 |
| 1.6001 | 3.0 | 18 | 1.4729 | 0.3023 |
| 1.5411 | 4.0 | 24 | 1.4550 | 0.3023 |
| 1.4977 | 5.0 | 30 | 1.4401 | 0.3023 |
| 1.4977 | 6.0 | 36 | 1.4267 | 0.3023 |
| 1.4396 | 7.0 | 42 | 1.4159 | 0.3023 |
| 1.4396 | 8.0 | 48 | 1.4066 | 0.3023 |
| 1.4314 | 9.0 | 54 | 1.3991 | 0.3023 |
| 1.3704 | 10.0 | 60 | 1.3909 | 0.3023 |
| 1.3704 | 11.0 | 66 | 1.3847 | 0.3023 |
| 1.3552 | 12.0 | 72 | 1.3793 | 0.3023 |
| 1.3552 | 13.0 | 78 | 1.3735 | 0.3256 |
| 1.3421 | 14.0 | 84 | 1.3686 | 0.3488 |
| 1.3202 | 15.0 | 90 | 1.3638 | 0.3488 |
| 1.3202 | 16.0 | 96 | 1.3593 | 0.3721 |
| 1.2948 | 17.0 | 102 | 1.3558 | 0.3953 |
| 1.2948 | 18.0 | 108 | 1.3518 | 0.3953 |
| 1.2928 | 19.0 | 114 | 1.3488 | 0.3953 |
| 1.2647 | 20.0 | 120 | 1.3454 | 0.3953 |
| 1.2647 | 21.0 | 126 | 1.3427 | 0.3953 |
| 1.2556 | 22.0 | 132 | 1.3402 | 0.3953 |
| 1.2556 | 23.0 | 138 | 1.3379 | 0.3953 |
| 1.253 | 24.0 | 144 | 1.3353 | 0.3953 |
| 1.2437 | 25.0 | 150 | 1.3327 | 0.3953 |
| 1.2437 | 26.0 | 156 | 1.3306 | 0.4186 |
| 1.2239 | 27.0 | 162 | 1.3289 | 0.3953 |
| 1.2239 | 28.0 | 168 | 1.3270 | 0.3953 |
| 1.2275 | 29.0 | 174 | 1.3251 | 0.3953 |
| 1.2028 | 30.0 | 180 | 1.3234 | 0.3953 |
| 1.2028 | 31.0 | 186 | 1.3221 | 0.3953 |
| 1.202 | 32.0 | 192 | 1.3205 | 0.3953 |
| 1.202 | 33.0 | 198 | 1.3191 | 0.3953 |
| 1.194 | 34.0 | 204 | 1.3178 | 0.3953 |
| 1.1993 | 35.0 | 210 | 1.3169 | 0.4186 |
| 1.1993 | 36.0 | 216 | 1.3160 | 0.4186 |
| 1.1904 | 37.0 | 222 | 1.3153 | 0.4186 |
| 1.1904 | 38.0 | 228 | 1.3147 | 0.4186 |
| 1.1785 | 39.0 | 234 | 1.3142 | 0.4186 |
| 1.2086 | 40.0 | 240 | 1.3139 | 0.4186 |
| 1.2086 | 41.0 | 246 | 1.3138 | 0.4186 |
| 1.1893 | 42.0 | 252 | 1.3137 | 0.4186 |
| 1.1893 | 43.0 | 258 | 1.3137 | 0.4186 |
| 1.2 | 44.0 | 264 | 1.3137 | 0.4186 |
| 1.1775 | 45.0 | 270 | 1.3137 | 0.4186 |
| 1.1775 | 46.0 | 276 | 1.3137 | 0.4186 |
| 1.1852 | 47.0 | 282 | 1.3137 | 0.4186 |
| 1.1852 | 48.0 | 288 | 1.3137 | 0.4186 |
| 1.1783 | 49.0 | 294 | 1.3137 | 0.4186 |
| 1.1702 | 50.0 | 300 | 1.3137 | 0.4186 |
### Framework versions
- Transformers 4.35.0
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1
|
[
"01_normal",
"02_tapered",
"03_pyriform",
"04_amorphous"
] |
hkivancoral/hushem_1x_deit_tiny_sgd_lr001_fold4
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# hushem_1x_deit_tiny_sgd_lr001_fold4
This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co/facebook/deit-tiny-patch16-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2453
- Accuracy: 0.4762
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 6 | 1.5316 | 0.1905 |
| 1.5831 | 2.0 | 12 | 1.5015 | 0.1905 |
| 1.5831 | 3.0 | 18 | 1.4762 | 0.1667 |
| 1.5346 | 4.0 | 24 | 1.4541 | 0.1905 |
| 1.5081 | 5.0 | 30 | 1.4366 | 0.2381 |
| 1.5081 | 6.0 | 36 | 1.4200 | 0.2857 |
| 1.4598 | 7.0 | 42 | 1.4054 | 0.2857 |
| 1.4598 | 8.0 | 48 | 1.3912 | 0.2857 |
| 1.4326 | 9.0 | 54 | 1.3788 | 0.3095 |
| 1.3952 | 10.0 | 60 | 1.3675 | 0.3571 |
| 1.3952 | 11.0 | 66 | 1.3571 | 0.3810 |
| 1.3596 | 12.0 | 72 | 1.3480 | 0.3810 |
| 1.3596 | 13.0 | 78 | 1.3393 | 0.3810 |
| 1.363 | 14.0 | 84 | 1.3316 | 0.3810 |
| 1.3301 | 15.0 | 90 | 1.3251 | 0.4048 |
| 1.3301 | 16.0 | 96 | 1.3178 | 0.4048 |
| 1.3095 | 17.0 | 102 | 1.3113 | 0.4048 |
| 1.3095 | 18.0 | 108 | 1.3061 | 0.4048 |
| 1.3044 | 19.0 | 114 | 1.3014 | 0.4048 |
| 1.2995 | 20.0 | 120 | 1.2970 | 0.4048 |
| 1.2995 | 21.0 | 126 | 1.2921 | 0.4048 |
| 1.2717 | 22.0 | 132 | 1.2882 | 0.4048 |
| 1.2717 | 23.0 | 138 | 1.2838 | 0.4048 |
| 1.2926 | 24.0 | 144 | 1.2801 | 0.4048 |
| 1.2458 | 25.0 | 150 | 1.2760 | 0.4048 |
| 1.2458 | 26.0 | 156 | 1.2723 | 0.4286 |
| 1.2592 | 27.0 | 162 | 1.2686 | 0.4286 |
| 1.2592 | 28.0 | 168 | 1.2659 | 0.4286 |
| 1.2355 | 29.0 | 174 | 1.2631 | 0.4286 |
| 1.2526 | 30.0 | 180 | 1.2605 | 0.4286 |
| 1.2526 | 31.0 | 186 | 1.2579 | 0.4524 |
| 1.2439 | 32.0 | 192 | 1.2557 | 0.4524 |
| 1.2439 | 33.0 | 198 | 1.2536 | 0.4524 |
| 1.1949 | 34.0 | 204 | 1.2519 | 0.4524 |
| 1.2285 | 35.0 | 210 | 1.2501 | 0.4524 |
| 1.2285 | 36.0 | 216 | 1.2488 | 0.4524 |
| 1.2118 | 37.0 | 222 | 1.2477 | 0.4524 |
| 1.2118 | 38.0 | 228 | 1.2468 | 0.4762 |
| 1.2136 | 39.0 | 234 | 1.2462 | 0.4762 |
| 1.2259 | 40.0 | 240 | 1.2457 | 0.4762 |
| 1.2259 | 41.0 | 246 | 1.2454 | 0.4762 |
| 1.2204 | 42.0 | 252 | 1.2453 | 0.4762 |
| 1.2204 | 43.0 | 258 | 1.2453 | 0.4762 |
| 1.2061 | 44.0 | 264 | 1.2453 | 0.4762 |
| 1.2146 | 45.0 | 270 | 1.2453 | 0.4762 |
| 1.2146 | 46.0 | 276 | 1.2453 | 0.4762 |
| 1.2137 | 47.0 | 282 | 1.2453 | 0.4762 |
| 1.2137 | 48.0 | 288 | 1.2453 | 0.4762 |
| 1.2227 | 49.0 | 294 | 1.2453 | 0.4762 |
| 1.2027 | 50.0 | 300 | 1.2453 | 0.4762 |
### Framework versions
- Transformers 4.35.0
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1
|
[
"01_normal",
"02_tapered",
"03_pyriform",
"04_amorphous"
] |
hkivancoral/hushem_1x_deit_tiny_sgd_lr001_fold5
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# hushem_1x_deit_tiny_sgd_lr001_fold5
This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co/facebook/deit-tiny-patch16-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3032
- Accuracy: 0.3902
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 6 | 1.6123 | 0.1220 |
| 1.5785 | 2.0 | 12 | 1.5813 | 0.1463 |
| 1.5785 | 3.0 | 18 | 1.5542 | 0.1463 |
| 1.5395 | 4.0 | 24 | 1.5297 | 0.1463 |
| 1.4749 | 5.0 | 30 | 1.5083 | 0.1951 |
| 1.4749 | 6.0 | 36 | 1.4884 | 0.1951 |
| 1.4296 | 7.0 | 42 | 1.4718 | 0.1707 |
| 1.4296 | 8.0 | 48 | 1.4578 | 0.1463 |
| 1.4059 | 9.0 | 54 | 1.4447 | 0.1463 |
| 1.3876 | 10.0 | 60 | 1.4316 | 0.2195 |
| 1.3876 | 11.0 | 66 | 1.4209 | 0.2195 |
| 1.3523 | 12.0 | 72 | 1.4102 | 0.2195 |
| 1.3523 | 13.0 | 78 | 1.4009 | 0.2439 |
| 1.3412 | 14.0 | 84 | 1.3926 | 0.2439 |
| 1.3216 | 15.0 | 90 | 1.3847 | 0.2927 |
| 1.3216 | 16.0 | 96 | 1.3782 | 0.3171 |
| 1.2923 | 17.0 | 102 | 1.3713 | 0.3415 |
| 1.2923 | 18.0 | 108 | 1.3652 | 0.3415 |
| 1.305 | 19.0 | 114 | 1.3592 | 0.3415 |
| 1.2722 | 20.0 | 120 | 1.3536 | 0.3415 |
| 1.2722 | 21.0 | 126 | 1.3490 | 0.3659 |
| 1.2479 | 22.0 | 132 | 1.3441 | 0.3659 |
| 1.2479 | 23.0 | 138 | 1.3399 | 0.3659 |
| 1.2818 | 24.0 | 144 | 1.3360 | 0.3659 |
| 1.2363 | 25.0 | 150 | 1.3318 | 0.3659 |
| 1.2363 | 26.0 | 156 | 1.3281 | 0.3659 |
| 1.2375 | 27.0 | 162 | 1.3249 | 0.3659 |
| 1.2375 | 28.0 | 168 | 1.3220 | 0.3659 |
| 1.2164 | 29.0 | 174 | 1.3194 | 0.3659 |
| 1.2359 | 30.0 | 180 | 1.3171 | 0.3902 |
| 1.2359 | 31.0 | 186 | 1.3148 | 0.3902 |
| 1.2121 | 32.0 | 192 | 1.3127 | 0.3902 |
| 1.2121 | 33.0 | 198 | 1.3110 | 0.3902 |
| 1.2131 | 34.0 | 204 | 1.3092 | 0.3902 |
| 1.1973 | 35.0 | 210 | 1.3077 | 0.3902 |
| 1.1973 | 36.0 | 216 | 1.3064 | 0.3902 |
| 1.1836 | 37.0 | 222 | 1.3054 | 0.3902 |
| 1.1836 | 38.0 | 228 | 1.3046 | 0.3902 |
| 1.2087 | 39.0 | 234 | 1.3039 | 0.3902 |
| 1.2019 | 40.0 | 240 | 1.3035 | 0.3902 |
| 1.2019 | 41.0 | 246 | 1.3033 | 0.3902 |
| 1.2033 | 42.0 | 252 | 1.3032 | 0.3902 |
| 1.2033 | 43.0 | 258 | 1.3032 | 0.3902 |
| 1.1754 | 44.0 | 264 | 1.3032 | 0.3902 |
| 1.1907 | 45.0 | 270 | 1.3032 | 0.3902 |
| 1.1907 | 46.0 | 276 | 1.3032 | 0.3902 |
| 1.2082 | 47.0 | 282 | 1.3032 | 0.3902 |
| 1.2082 | 48.0 | 288 | 1.3032 | 0.3902 |
| 1.1699 | 49.0 | 294 | 1.3032 | 0.3902 |
| 1.2038 | 50.0 | 300 | 1.3032 | 0.3902 |
### Framework versions
- Transformers 4.35.0
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1
|
[
"01_normal",
"02_tapered",
"03_pyriform",
"04_amorphous"
] |
alicelouis/Swin2e-4Lion
|
from transformers import AutoImageProcessor, SwinForImageClassification
from PIL import Image
import requests
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw)
processor = AutoImageProcessor.from_pretrained("alicelouis/Swin2e-4Lion")
model = SwinForImageClassification.from_pretrained("alicelouis/Swin2e-4Lion")
inputs = processor(images=image, return_tensors="pt")
outputs = model(**inputs)
logits = outputs.logits
# model predicts one of the 1000 ImageNet classes
predicted_class_idx = logits.argmax(-1).item()
print("Predicted class:", model.config.id2label[predicted_class_idx])
|
[
"adenocarcinoma",
"large.cell",
"normal",
"squamous.cell"
] |
hkivancoral/hushem_1x_deit_tiny_sgd_lr0001_fold1
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# hushem_1x_deit_tiny_sgd_lr0001_fold1
This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co/facebook/deit-tiny-patch16-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 1.5010
- Accuracy: 0.2444
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 6 | 1.5317 | 0.2667 |
| 1.5768 | 2.0 | 12 | 1.5295 | 0.2444 |
| 1.5768 | 3.0 | 18 | 1.5277 | 0.2444 |
| 1.5217 | 4.0 | 24 | 1.5259 | 0.2444 |
| 1.5806 | 5.0 | 30 | 1.5243 | 0.2444 |
| 1.5806 | 6.0 | 36 | 1.5226 | 0.2444 |
| 1.5608 | 7.0 | 42 | 1.5211 | 0.2444 |
| 1.5608 | 8.0 | 48 | 1.5198 | 0.2444 |
| 1.5538 | 9.0 | 54 | 1.5184 | 0.2444 |
| 1.5354 | 10.0 | 60 | 1.5172 | 0.2444 |
| 1.5354 | 11.0 | 66 | 1.5159 | 0.2444 |
| 1.5529 | 12.0 | 72 | 1.5148 | 0.2444 |
| 1.5529 | 13.0 | 78 | 1.5137 | 0.2444 |
| 1.5094 | 14.0 | 84 | 1.5127 | 0.2444 |
| 1.5228 | 15.0 | 90 | 1.5118 | 0.2444 |
| 1.5228 | 16.0 | 96 | 1.5108 | 0.2444 |
| 1.5295 | 17.0 | 102 | 1.5100 | 0.2444 |
| 1.5295 | 18.0 | 108 | 1.5092 | 0.2444 |
| 1.5298 | 19.0 | 114 | 1.5084 | 0.2444 |
| 1.5372 | 20.0 | 120 | 1.5077 | 0.2444 |
| 1.5372 | 21.0 | 126 | 1.5071 | 0.2444 |
| 1.5336 | 22.0 | 132 | 1.5065 | 0.2444 |
| 1.5336 | 23.0 | 138 | 1.5059 | 0.2444 |
| 1.5077 | 24.0 | 144 | 1.5053 | 0.2444 |
| 1.5022 | 25.0 | 150 | 1.5049 | 0.2444 |
| 1.5022 | 26.0 | 156 | 1.5044 | 0.2444 |
| 1.5158 | 27.0 | 162 | 1.5040 | 0.2444 |
| 1.5158 | 28.0 | 168 | 1.5036 | 0.2444 |
| 1.4961 | 29.0 | 174 | 1.5032 | 0.2444 |
| 1.5155 | 30.0 | 180 | 1.5029 | 0.2444 |
| 1.5155 | 31.0 | 186 | 1.5025 | 0.2444 |
| 1.5093 | 32.0 | 192 | 1.5022 | 0.2444 |
| 1.5093 | 33.0 | 198 | 1.5020 | 0.2444 |
| 1.4596 | 34.0 | 204 | 1.5017 | 0.2444 |
| 1.4894 | 35.0 | 210 | 1.5015 | 0.2444 |
| 1.4894 | 36.0 | 216 | 1.5014 | 0.2444 |
| 1.5058 | 37.0 | 222 | 1.5012 | 0.2444 |
| 1.5058 | 38.0 | 228 | 1.5011 | 0.2444 |
| 1.4675 | 39.0 | 234 | 1.5010 | 0.2444 |
| 1.4822 | 40.0 | 240 | 1.5010 | 0.2444 |
| 1.4822 | 41.0 | 246 | 1.5010 | 0.2444 |
| 1.5008 | 42.0 | 252 | 1.5010 | 0.2444 |
| 1.5008 | 43.0 | 258 | 1.5010 | 0.2444 |
| 1.5075 | 44.0 | 264 | 1.5010 | 0.2444 |
| 1.5338 | 45.0 | 270 | 1.5010 | 0.2444 |
| 1.5338 | 46.0 | 276 | 1.5010 | 0.2444 |
| 1.5016 | 47.0 | 282 | 1.5010 | 0.2444 |
| 1.5016 | 48.0 | 288 | 1.5010 | 0.2444 |
| 1.4777 | 49.0 | 294 | 1.5010 | 0.2444 |
| 1.4813 | 50.0 | 300 | 1.5010 | 0.2444 |
### Framework versions
- Transformers 4.35.0
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1
|
[
"01_normal",
"02_tapered",
"03_pyriform",
"04_amorphous"
] |
hkivancoral/hushem_1x_deit_tiny_sgd_lr0001_fold2
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# hushem_1x_deit_tiny_sgd_lr0001_fold2
This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co/facebook/deit-tiny-patch16-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 1.5853
- Accuracy: 0.1333
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 6 | 1.6380 | 0.1333 |
| 1.612 | 2.0 | 12 | 1.6350 | 0.1333 |
| 1.612 | 3.0 | 18 | 1.6320 | 0.1333 |
| 1.5793 | 4.0 | 24 | 1.6293 | 0.1333 |
| 1.6085 | 5.0 | 30 | 1.6268 | 0.1333 |
| 1.6085 | 6.0 | 36 | 1.6242 | 0.1333 |
| 1.5833 | 7.0 | 42 | 1.6217 | 0.1333 |
| 1.5833 | 8.0 | 48 | 1.6197 | 0.1333 |
| 1.5532 | 9.0 | 54 | 1.6175 | 0.1333 |
| 1.5785 | 10.0 | 60 | 1.6153 | 0.1333 |
| 1.5785 | 11.0 | 66 | 1.6132 | 0.1333 |
| 1.5506 | 12.0 | 72 | 1.6113 | 0.1333 |
| 1.5506 | 13.0 | 78 | 1.6095 | 0.1333 |
| 1.5868 | 14.0 | 84 | 1.6078 | 0.1333 |
| 1.532 | 15.0 | 90 | 1.6062 | 0.1333 |
| 1.532 | 16.0 | 96 | 1.6045 | 0.1333 |
| 1.5321 | 17.0 | 102 | 1.6029 | 0.1333 |
| 1.5321 | 18.0 | 108 | 1.6015 | 0.1333 |
| 1.5965 | 19.0 | 114 | 1.6001 | 0.1333 |
| 1.5428 | 20.0 | 120 | 1.5987 | 0.1333 |
| 1.5428 | 21.0 | 126 | 1.5975 | 0.1333 |
| 1.5622 | 22.0 | 132 | 1.5964 | 0.1333 |
| 1.5622 | 23.0 | 138 | 1.5951 | 0.1333 |
| 1.5259 | 24.0 | 144 | 1.5941 | 0.1333 |
| 1.5339 | 25.0 | 150 | 1.5932 | 0.1333 |
| 1.5339 | 26.0 | 156 | 1.5923 | 0.1333 |
| 1.5237 | 27.0 | 162 | 1.5914 | 0.1333 |
| 1.5237 | 28.0 | 168 | 1.5907 | 0.1333 |
| 1.5539 | 29.0 | 174 | 1.5899 | 0.1333 |
| 1.5487 | 30.0 | 180 | 1.5891 | 0.1333 |
| 1.5487 | 31.0 | 186 | 1.5885 | 0.1333 |
| 1.5317 | 32.0 | 192 | 1.5879 | 0.1333 |
| 1.5317 | 33.0 | 198 | 1.5874 | 0.1333 |
| 1.4989 | 34.0 | 204 | 1.5869 | 0.1333 |
| 1.5301 | 35.0 | 210 | 1.5865 | 0.1333 |
| 1.5301 | 36.0 | 216 | 1.5862 | 0.1333 |
| 1.5061 | 37.0 | 222 | 1.5859 | 0.1333 |
| 1.5061 | 38.0 | 228 | 1.5857 | 0.1333 |
| 1.5205 | 39.0 | 234 | 1.5855 | 0.1333 |
| 1.5267 | 40.0 | 240 | 1.5854 | 0.1333 |
| 1.5267 | 41.0 | 246 | 1.5854 | 0.1333 |
| 1.5211 | 42.0 | 252 | 1.5853 | 0.1333 |
| 1.5211 | 43.0 | 258 | 1.5853 | 0.1333 |
| 1.524 | 44.0 | 264 | 1.5853 | 0.1333 |
| 1.5163 | 45.0 | 270 | 1.5853 | 0.1333 |
| 1.5163 | 46.0 | 276 | 1.5853 | 0.1333 |
| 1.5253 | 47.0 | 282 | 1.5853 | 0.1333 |
| 1.5253 | 48.0 | 288 | 1.5853 | 0.1333 |
| 1.5384 | 49.0 | 294 | 1.5853 | 0.1333 |
| 1.5175 | 50.0 | 300 | 1.5853 | 0.1333 |
### Framework versions
- Transformers 4.35.0
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1
|
[
"01_normal",
"02_tapered",
"03_pyriform",
"04_amorphous"
] |
hkivancoral/hushem_1x_deit_tiny_sgd_lr0001_fold3
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# hushem_1x_deit_sgd_adamax_lr0001_fold3
This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co/facebook/deit-tiny-patch16-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 1.4906
- Accuracy: 0.3023
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 6 | 1.5410 | 0.3023 |
| 1.6256 | 2.0 | 12 | 1.5383 | 0.3023 |
| 1.6256 | 3.0 | 18 | 1.5355 | 0.3023 |
| 1.6209 | 4.0 | 24 | 1.5329 | 0.3023 |
| 1.6213 | 5.0 | 30 | 1.5304 | 0.3023 |
| 1.6213 | 6.0 | 36 | 1.5279 | 0.3023 |
| 1.6054 | 7.0 | 42 | 1.5256 | 0.3023 |
| 1.6054 | 8.0 | 48 | 1.5235 | 0.3023 |
| 1.622 | 9.0 | 54 | 1.5216 | 0.3023 |
| 1.5637 | 10.0 | 60 | 1.5195 | 0.3023 |
| 1.5637 | 11.0 | 66 | 1.5177 | 0.3023 |
| 1.5868 | 12.0 | 72 | 1.5160 | 0.3023 |
| 1.5868 | 13.0 | 78 | 1.5142 | 0.3023 |
| 1.5951 | 14.0 | 84 | 1.5125 | 0.3023 |
| 1.5787 | 15.0 | 90 | 1.5108 | 0.3023 |
| 1.5787 | 16.0 | 96 | 1.5091 | 0.3023 |
| 1.5727 | 17.0 | 102 | 1.5077 | 0.3023 |
| 1.5727 | 18.0 | 108 | 1.5063 | 0.3023 |
| 1.5858 | 19.0 | 114 | 1.5049 | 0.3023 |
| 1.5652 | 20.0 | 120 | 1.5036 | 0.3023 |
| 1.5652 | 21.0 | 126 | 1.5024 | 0.3023 |
| 1.5577 | 22.0 | 132 | 1.5012 | 0.3023 |
| 1.5577 | 23.0 | 138 | 1.5001 | 0.3023 |
| 1.5855 | 24.0 | 144 | 1.4991 | 0.3023 |
| 1.5594 | 25.0 | 150 | 1.4981 | 0.3023 |
| 1.5594 | 26.0 | 156 | 1.4972 | 0.3023 |
| 1.5496 | 27.0 | 162 | 1.4964 | 0.3023 |
| 1.5496 | 28.0 | 168 | 1.4956 | 0.3023 |
| 1.5543 | 29.0 | 174 | 1.4949 | 0.3023 |
| 1.5415 | 30.0 | 180 | 1.4943 | 0.3023 |
| 1.5415 | 31.0 | 186 | 1.4938 | 0.3023 |
| 1.5408 | 32.0 | 192 | 1.4932 | 0.3023 |
| 1.5408 | 33.0 | 198 | 1.4926 | 0.3023 |
| 1.5602 | 34.0 | 204 | 1.4922 | 0.3023 |
| 1.5429 | 35.0 | 210 | 1.4918 | 0.3023 |
| 1.5429 | 36.0 | 216 | 1.4914 | 0.3023 |
| 1.5494 | 37.0 | 222 | 1.4912 | 0.3023 |
| 1.5494 | 38.0 | 228 | 1.4909 | 0.3023 |
| 1.5361 | 39.0 | 234 | 1.4908 | 0.3023 |
| 1.5628 | 40.0 | 240 | 1.4906 | 0.3023 |
| 1.5628 | 41.0 | 246 | 1.4906 | 0.3023 |
| 1.5458 | 42.0 | 252 | 1.4906 | 0.3023 |
| 1.5458 | 43.0 | 258 | 1.4906 | 0.3023 |
| 1.5716 | 44.0 | 264 | 1.4906 | 0.3023 |
| 1.5384 | 45.0 | 270 | 1.4906 | 0.3023 |
| 1.5384 | 46.0 | 276 | 1.4906 | 0.3023 |
| 1.5475 | 47.0 | 282 | 1.4906 | 0.3023 |
| 1.5475 | 48.0 | 288 | 1.4906 | 0.3023 |
| 1.5338 | 49.0 | 294 | 1.4906 | 0.3023 |
| 1.5337 | 50.0 | 300 | 1.4906 | 0.3023 |
### Framework versions
- Transformers 4.35.0
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1
|
[
"01_normal",
"02_tapered",
"03_pyriform",
"04_amorphous"
] |
hkivancoral/hushem_1x_deit_tiny_sgd_lr0001_fold4
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# hushem_1x_deit_tiny_sgd_lr0001_fold4
This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co/facebook/deit-tiny-patch16-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 1.4980
- Accuracy: 0.1667
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 6 | 1.5601 | 0.1905 |
| 1.6045 | 2.0 | 12 | 1.5566 | 0.1905 |
| 1.6045 | 3.0 | 18 | 1.5532 | 0.1905 |
| 1.6142 | 4.0 | 24 | 1.5500 | 0.1905 |
| 1.6266 | 5.0 | 30 | 1.5471 | 0.1905 |
| 1.6266 | 6.0 | 36 | 1.5442 | 0.1905 |
| 1.6101 | 7.0 | 42 | 1.5414 | 0.1905 |
| 1.6101 | 8.0 | 48 | 1.5385 | 0.1905 |
| 1.6089 | 9.0 | 54 | 1.5358 | 0.1905 |
| 1.5908 | 10.0 | 60 | 1.5333 | 0.1905 |
| 1.5908 | 11.0 | 66 | 1.5308 | 0.1905 |
| 1.5657 | 12.0 | 72 | 1.5284 | 0.1905 |
| 1.5657 | 13.0 | 78 | 1.5261 | 0.1905 |
| 1.6049 | 14.0 | 84 | 1.5240 | 0.1905 |
| 1.5586 | 15.0 | 90 | 1.5222 | 0.1905 |
| 1.5586 | 16.0 | 96 | 1.5201 | 0.1905 |
| 1.5639 | 17.0 | 102 | 1.5182 | 0.1905 |
| 1.5639 | 18.0 | 108 | 1.5166 | 0.1905 |
| 1.5536 | 19.0 | 114 | 1.5151 | 0.1905 |
| 1.5821 | 20.0 | 120 | 1.5136 | 0.1905 |
| 1.5821 | 21.0 | 126 | 1.5122 | 0.1905 |
| 1.5341 | 22.0 | 132 | 1.5109 | 0.1905 |
| 1.5341 | 23.0 | 138 | 1.5096 | 0.1905 |
| 1.6078 | 24.0 | 144 | 1.5084 | 0.1905 |
| 1.5121 | 25.0 | 150 | 1.5073 | 0.1905 |
| 1.5121 | 26.0 | 156 | 1.5061 | 0.1905 |
| 1.5521 | 27.0 | 162 | 1.5050 | 0.1905 |
| 1.5521 | 28.0 | 168 | 1.5041 | 0.1905 |
| 1.5505 | 29.0 | 174 | 1.5033 | 0.1905 |
| 1.5712 | 30.0 | 180 | 1.5025 | 0.1905 |
| 1.5712 | 31.0 | 186 | 1.5017 | 0.1905 |
| 1.5865 | 32.0 | 192 | 1.5010 | 0.1905 |
| 1.5865 | 33.0 | 198 | 1.5005 | 0.1905 |
| 1.4766 | 34.0 | 204 | 1.4999 | 0.1905 |
| 1.5501 | 35.0 | 210 | 1.4994 | 0.1905 |
| 1.5501 | 36.0 | 216 | 1.4990 | 0.1905 |
| 1.5465 | 37.0 | 222 | 1.4987 | 0.1667 |
| 1.5465 | 38.0 | 228 | 1.4984 | 0.1667 |
| 1.5254 | 39.0 | 234 | 1.4982 | 0.1667 |
| 1.575 | 40.0 | 240 | 1.4980 | 0.1667 |
| 1.575 | 41.0 | 246 | 1.4980 | 0.1667 |
| 1.5455 | 42.0 | 252 | 1.4980 | 0.1667 |
| 1.5455 | 43.0 | 258 | 1.4980 | 0.1667 |
| 1.5648 | 44.0 | 264 | 1.4980 | 0.1667 |
| 1.5279 | 45.0 | 270 | 1.4980 | 0.1667 |
| 1.5279 | 46.0 | 276 | 1.4980 | 0.1667 |
| 1.5492 | 47.0 | 282 | 1.4980 | 0.1667 |
| 1.5492 | 48.0 | 288 | 1.4980 | 0.1667 |
| 1.5479 | 49.0 | 294 | 1.4980 | 0.1667 |
| 1.5321 | 50.0 | 300 | 1.4980 | 0.1667 |
### Framework versions
- Transformers 4.35.0
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1
|
[
"01_normal",
"02_tapered",
"03_pyriform",
"04_amorphous"
] |
hkivancoral/hushem_1x_deit_tiny_sgd_lr0001_fold5
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# hushem_1x_deit_tiny_sgd_lr0001_fold5
This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co/facebook/deit-tiny-patch16-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 1.5789
- Accuracy: 0.1463
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 6 | 1.6455 | 0.1220 |
| 1.6035 | 2.0 | 12 | 1.6420 | 0.1220 |
| 1.6035 | 3.0 | 18 | 1.6386 | 0.1463 |
| 1.6142 | 4.0 | 24 | 1.6353 | 0.1463 |
| 1.5857 | 5.0 | 30 | 1.6321 | 0.1463 |
| 1.5857 | 6.0 | 36 | 1.6289 | 0.1463 |
| 1.5718 | 7.0 | 42 | 1.6259 | 0.1463 |
| 1.5718 | 8.0 | 48 | 1.6232 | 0.1463 |
| 1.5833 | 9.0 | 54 | 1.6206 | 0.1463 |
| 1.5737 | 10.0 | 60 | 1.6178 | 0.1463 |
| 1.5737 | 11.0 | 66 | 1.6153 | 0.1463 |
| 1.5614 | 12.0 | 72 | 1.6128 | 0.1220 |
| 1.5614 | 13.0 | 78 | 1.6104 | 0.1220 |
| 1.5648 | 14.0 | 84 | 1.6081 | 0.1220 |
| 1.5575 | 15.0 | 90 | 1.6060 | 0.1220 |
| 1.5575 | 16.0 | 96 | 1.6040 | 0.1220 |
| 1.5452 | 17.0 | 102 | 1.6020 | 0.1220 |
| 1.5452 | 18.0 | 108 | 1.6002 | 0.1220 |
| 1.5768 | 19.0 | 114 | 1.5984 | 0.1220 |
| 1.5464 | 20.0 | 120 | 1.5966 | 0.1220 |
| 1.5464 | 21.0 | 126 | 1.5950 | 0.1220 |
| 1.5149 | 22.0 | 132 | 1.5934 | 0.1220 |
| 1.5149 | 23.0 | 138 | 1.5920 | 0.1220 |
| 1.6056 | 24.0 | 144 | 1.5905 | 0.1220 |
| 1.5161 | 25.0 | 150 | 1.5892 | 0.1220 |
| 1.5161 | 26.0 | 156 | 1.5879 | 0.1220 |
| 1.519 | 27.0 | 162 | 1.5868 | 0.1220 |
| 1.519 | 28.0 | 168 | 1.5857 | 0.1220 |
| 1.5531 | 29.0 | 174 | 1.5848 | 0.1220 |
| 1.5347 | 30.0 | 180 | 1.5839 | 0.1220 |
| 1.5347 | 31.0 | 186 | 1.5831 | 0.1220 |
| 1.5238 | 32.0 | 192 | 1.5824 | 0.1220 |
| 1.5238 | 33.0 | 198 | 1.5817 | 0.1463 |
| 1.5463 | 34.0 | 204 | 1.5811 | 0.1463 |
| 1.5219 | 35.0 | 210 | 1.5805 | 0.1463 |
| 1.5219 | 36.0 | 216 | 1.5800 | 0.1463 |
| 1.5056 | 37.0 | 222 | 1.5797 | 0.1463 |
| 1.5056 | 38.0 | 228 | 1.5794 | 0.1463 |
| 1.5505 | 39.0 | 234 | 1.5791 | 0.1463 |
| 1.5261 | 40.0 | 240 | 1.5790 | 0.1463 |
| 1.5261 | 41.0 | 246 | 1.5789 | 0.1463 |
| 1.5175 | 42.0 | 252 | 1.5789 | 0.1463 |
| 1.5175 | 43.0 | 258 | 1.5789 | 0.1463 |
| 1.5317 | 44.0 | 264 | 1.5789 | 0.1463 |
| 1.5241 | 45.0 | 270 | 1.5789 | 0.1463 |
| 1.5241 | 46.0 | 276 | 1.5789 | 0.1463 |
| 1.5533 | 47.0 | 282 | 1.5789 | 0.1463 |
| 1.5533 | 48.0 | 288 | 1.5789 | 0.1463 |
| 1.4945 | 49.0 | 294 | 1.5789 | 0.1463 |
| 1.5379 | 50.0 | 300 | 1.5789 | 0.1463 |
### Framework versions
- Transformers 4.35.0
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1
|
[
"01_normal",
"02_tapered",
"03_pyriform",
"04_amorphous"
] |
moreover18/vit-base-patch16-224-in21k-finetuned-eurosat
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# vit-base-patch16-224-in21k-finetuned-eurosat
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1770
- Accuracy: 0.9361
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.687 | 0.04 | 10 | 0.6778 | 0.6026 |
| 0.6605 | 0.09 | 20 | 0.6359 | 0.7564 |
| 0.6074 | 0.13 | 30 | 0.5734 | 0.7786 |
| 0.5464 | 0.17 | 40 | 0.4877 | 0.8267 |
| 0.4606 | 0.21 | 50 | 0.3836 | 0.8914 |
| 0.379 | 0.26 | 60 | 0.3269 | 0.8877 |
| 0.2746 | 0.3 | 70 | 0.2403 | 0.9198 |
| 0.2974 | 0.34 | 80 | 0.2931 | 0.8890 |
| 0.2459 | 0.39 | 90 | 0.2596 | 0.9016 |
| 0.2507 | 0.43 | 100 | 0.2366 | 0.9123 |
| 0.2627 | 0.47 | 110 | 0.2084 | 0.9224 |
| 0.2481 | 0.51 | 120 | 0.2050 | 0.9270 |
| 0.2372 | 0.56 | 130 | 0.2077 | 0.9267 |
| 0.2468 | 0.6 | 140 | 0.2111 | 0.9230 |
| 0.2272 | 0.64 | 150 | 0.1964 | 0.9267 |
| 0.2568 | 0.68 | 160 | 0.1975 | 0.9270 |
| 0.2608 | 0.73 | 170 | 0.2485 | 0.9048 |
| 0.2641 | 0.77 | 180 | 0.2143 | 0.9227 |
| 0.2347 | 0.81 | 190 | 0.1921 | 0.9307 |
| 0.2231 | 0.86 | 200 | 0.1882 | 0.9315 |
| 0.2147 | 0.9 | 210 | 0.1865 | 0.9329 |
| 0.2028 | 0.94 | 220 | 0.1901 | 0.9294 |
| 0.1792 | 0.98 | 230 | 0.1868 | 0.9297 |
| 0.2471 | 1.03 | 240 | 0.2104 | 0.9190 |
| 0.1896 | 1.07 | 250 | 0.1840 | 0.9321 |
| 0.2181 | 1.11 | 260 | 0.1800 | 0.9318 |
| 0.1861 | 1.16 | 270 | 0.1815 | 0.9305 |
| 0.1761 | 1.2 | 280 | 0.1886 | 0.9299 |
| 0.1703 | 1.24 | 290 | 0.1802 | 0.9315 |
| 0.184 | 1.28 | 300 | 0.1845 | 0.9321 |
| 0.1864 | 1.33 | 310 | 0.1791 | 0.9342 |
| 0.1857 | 1.37 | 320 | 0.1760 | 0.9347 |
| 0.1558 | 1.41 | 330 | 0.1798 | 0.9318 |
| 0.1852 | 1.45 | 340 | 0.1810 | 0.9323 |
| 0.183 | 1.5 | 350 | 0.1775 | 0.9321 |
| 0.2055 | 1.54 | 360 | 0.1789 | 0.9337 |
| 0.207 | 1.58 | 370 | 0.2082 | 0.9208 |
| 0.2264 | 1.63 | 380 | 0.1733 | 0.9339 |
| 0.1954 | 1.67 | 390 | 0.1772 | 0.9337 |
| 0.1676 | 1.71 | 400 | 0.1840 | 0.9302 |
| 0.1727 | 1.75 | 410 | 0.1784 | 0.9305 |
| 0.204 | 1.8 | 420 | 0.1731 | 0.9353 |
| 0.1805 | 1.84 | 430 | 0.1805 | 0.9310 |
| 0.1732 | 1.88 | 440 | 0.1773 | 0.9337 |
| 0.1831 | 1.93 | 450 | 0.1768 | 0.9337 |
| 0.1906 | 1.97 | 460 | 0.1967 | 0.9259 |
| 0.1785 | 2.01 | 470 | 0.1765 | 0.9331 |
| 0.1566 | 2.05 | 480 | 0.1749 | 0.9361 |
| 0.1612 | 2.1 | 490 | 0.1718 | 0.9342 |
| 0.1504 | 2.14 | 500 | 0.1770 | 0.9361 |
| 0.1704 | 2.18 | 510 | 0.1721 | 0.9363 |
| 0.1597 | 2.22 | 520 | 0.1711 | 0.9345 |
| 0.1283 | 2.27 | 530 | 0.1775 | 0.9361 |
| 0.1697 | 2.31 | 540 | 0.1722 | 0.9361 |
| 0.1541 | 2.35 | 550 | 0.1729 | 0.9366 |
| 0.1466 | 2.4 | 560 | 0.1708 | 0.9369 |
| 0.1604 | 2.44 | 570 | 0.1720 | 0.9371 |
| 0.1798 | 2.48 | 580 | 0.1718 | 0.9382 |
| 0.134 | 2.52 | 590 | 0.1733 | 0.9371 |
| 0.1215 | 2.57 | 600 | 0.1749 | 0.9369 |
| 0.1284 | 2.61 | 610 | 0.1760 | 0.9358 |
| 0.1449 | 2.65 | 620 | 0.1745 | 0.9361 |
| 0.214 | 2.7 | 630 | 0.1729 | 0.9382 |
| 0.1684 | 2.74 | 640 | 0.1724 | 0.9369 |
| 0.143 | 2.78 | 650 | 0.1737 | 0.9377 |
| 0.1491 | 2.82 | 660 | 0.1753 | 0.9366 |
| 0.1636 | 2.87 | 670 | 0.1743 | 0.9371 |
| 0.1672 | 2.91 | 680 | 0.1724 | 0.9377 |
| 0.1501 | 2.95 | 690 | 0.1720 | 0.9374 |
### Framework versions
- Transformers 4.35.0
- Pytorch 1.12.1+cu116
- Datasets 2.4.0
- Tokenizers 0.14.1
|
[
"not_people",
"people"
] |
hkivancoral/hushem_1x_deit_tiny_rms_lr001_fold1
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# hushem_1x_deit_tiny_rms_lr001_fold1
This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co/facebook/deit-tiny-patch16-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 1.6888
- Accuracy: 0.3778
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 6 | 5.6136 | 0.2667 |
| 3.3911 | 2.0 | 12 | 1.9975 | 0.2444 |
| 3.3911 | 3.0 | 18 | 1.6108 | 0.2444 |
| 1.8768 | 4.0 | 24 | 1.5122 | 0.2667 |
| 1.5956 | 5.0 | 30 | 1.5150 | 0.2444 |
| 1.5956 | 6.0 | 36 | 1.8016 | 0.2444 |
| 1.4916 | 7.0 | 42 | 1.5690 | 0.4444 |
| 1.4916 | 8.0 | 48 | 1.4991 | 0.2667 |
| 1.4756 | 9.0 | 54 | 1.4574 | 0.2444 |
| 1.4478 | 10.0 | 60 | 1.4022 | 0.2444 |
| 1.4478 | 11.0 | 66 | 1.4406 | 0.2667 |
| 1.421 | 12.0 | 72 | 1.3666 | 0.2444 |
| 1.421 | 13.0 | 78 | 1.3200 | 0.2667 |
| 1.4101 | 14.0 | 84 | 1.4311 | 0.2444 |
| 1.366 | 15.0 | 90 | 1.5240 | 0.4 |
| 1.366 | 16.0 | 96 | 1.1533 | 0.5333 |
| 1.3311 | 17.0 | 102 | 1.1480 | 0.4667 |
| 1.3311 | 18.0 | 108 | 1.5207 | 0.2444 |
| 1.1912 | 19.0 | 114 | 1.6588 | 0.2889 |
| 1.1923 | 20.0 | 120 | 1.4947 | 0.4667 |
| 1.1923 | 21.0 | 126 | 1.3281 | 0.2444 |
| 1.1796 | 22.0 | 132 | 1.3569 | 0.3333 |
| 1.1796 | 23.0 | 138 | 1.7298 | 0.2444 |
| 1.1031 | 24.0 | 144 | 1.6401 | 0.3556 |
| 1.2056 | 25.0 | 150 | 1.3732 | 0.2889 |
| 1.2056 | 26.0 | 156 | 1.8651 | 0.3333 |
| 1.1039 | 27.0 | 162 | 1.2494 | 0.4667 |
| 1.1039 | 28.0 | 168 | 1.4459 | 0.2889 |
| 1.0659 | 29.0 | 174 | 1.4875 | 0.3333 |
| 1.0534 | 30.0 | 180 | 1.4599 | 0.3556 |
| 1.0534 | 31.0 | 186 | 1.3781 | 0.3556 |
| 1.0466 | 32.0 | 192 | 1.7266 | 0.4 |
| 1.0466 | 33.0 | 198 | 1.5340 | 0.4222 |
| 0.973 | 34.0 | 204 | 1.5429 | 0.3111 |
| 1.0226 | 35.0 | 210 | 1.6233 | 0.3111 |
| 1.0226 | 36.0 | 216 | 1.7204 | 0.3111 |
| 0.9676 | 37.0 | 222 | 1.7918 | 0.4 |
| 0.9676 | 38.0 | 228 | 1.6933 | 0.3333 |
| 0.8379 | 39.0 | 234 | 1.6708 | 0.4222 |
| 0.8938 | 40.0 | 240 | 1.6748 | 0.4 |
| 0.8938 | 41.0 | 246 | 1.6963 | 0.3778 |
| 0.8462 | 42.0 | 252 | 1.6888 | 0.3778 |
| 0.8462 | 43.0 | 258 | 1.6888 | 0.3778 |
| 0.8764 | 44.0 | 264 | 1.6888 | 0.3778 |
| 0.8676 | 45.0 | 270 | 1.6888 | 0.3778 |
| 0.8676 | 46.0 | 276 | 1.6888 | 0.3778 |
| 0.8418 | 47.0 | 282 | 1.6888 | 0.3778 |
| 0.8418 | 48.0 | 288 | 1.6888 | 0.3778 |
| 0.8647 | 49.0 | 294 | 1.6888 | 0.3778 |
| 0.872 | 50.0 | 300 | 1.6888 | 0.3778 |
### Framework versions
- Transformers 4.35.0
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1
|
[
"01_normal",
"02_tapered",
"03_pyriform",
"04_amorphous"
] |
hkivancoral/hushem_1x_deit_tiny_rms_lr001_fold2
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# hushem_1x_deit_tiny_rms_lr001_fold2
This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co/facebook/deit-tiny-patch16-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2600
- Accuracy: 0.3556
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 6 | 2.0874 | 0.2444 |
| 4.6196 | 2.0 | 12 | 2.3422 | 0.2444 |
| 4.6196 | 3.0 | 18 | 1.7914 | 0.2444 |
| 1.8086 | 4.0 | 24 | 1.6082 | 0.2667 |
| 1.5901 | 5.0 | 30 | 1.5144 | 0.2444 |
| 1.5901 | 6.0 | 36 | 1.6190 | 0.2444 |
| 1.5211 | 7.0 | 42 | 1.5231 | 0.2444 |
| 1.5211 | 8.0 | 48 | 1.5027 | 0.2444 |
| 1.4477 | 9.0 | 54 | 1.4266 | 0.2444 |
| 1.4394 | 10.0 | 60 | 1.4345 | 0.2444 |
| 1.4394 | 11.0 | 66 | 1.3152 | 0.4444 |
| 1.3604 | 12.0 | 72 | 1.3376 | 0.2444 |
| 1.3604 | 13.0 | 78 | 1.3260 | 0.2667 |
| 1.3864 | 14.0 | 84 | 1.5120 | 0.2444 |
| 1.3555 | 15.0 | 90 | 1.2685 | 0.3556 |
| 1.3555 | 16.0 | 96 | 1.1751 | 0.4444 |
| 1.3501 | 17.0 | 102 | 1.2648 | 0.4444 |
| 1.3501 | 18.0 | 108 | 1.3992 | 0.3778 |
| 1.2496 | 19.0 | 114 | 1.4208 | 0.2889 |
| 1.2587 | 20.0 | 120 | 1.1782 | 0.4444 |
| 1.2587 | 21.0 | 126 | 1.2882 | 0.4444 |
| 1.2321 | 22.0 | 132 | 1.3142 | 0.4444 |
| 1.2321 | 23.0 | 138 | 1.1784 | 0.4222 |
| 1.1985 | 24.0 | 144 | 1.2247 | 0.3778 |
| 1.234 | 25.0 | 150 | 1.2329 | 0.3778 |
| 1.234 | 26.0 | 156 | 1.2482 | 0.3556 |
| 1.1913 | 27.0 | 162 | 1.4153 | 0.3111 |
| 1.1913 | 28.0 | 168 | 1.2994 | 0.3333 |
| 1.1911 | 29.0 | 174 | 1.1400 | 0.4667 |
| 1.1955 | 30.0 | 180 | 1.2156 | 0.3778 |
| 1.1955 | 31.0 | 186 | 1.2232 | 0.4 |
| 1.1751 | 32.0 | 192 | 1.3853 | 0.2889 |
| 1.1751 | 33.0 | 198 | 1.2309 | 0.3333 |
| 1.1328 | 34.0 | 204 | 1.2338 | 0.3333 |
| 1.195 | 35.0 | 210 | 1.2383 | 0.3333 |
| 1.195 | 36.0 | 216 | 1.2991 | 0.3778 |
| 1.1661 | 37.0 | 222 | 1.3228 | 0.3556 |
| 1.1661 | 38.0 | 228 | 1.2550 | 0.3778 |
| 1.0748 | 39.0 | 234 | 1.2591 | 0.3556 |
| 1.1122 | 40.0 | 240 | 1.2234 | 0.3778 |
| 1.1122 | 41.0 | 246 | 1.2608 | 0.3556 |
| 1.102 | 42.0 | 252 | 1.2600 | 0.3556 |
| 1.102 | 43.0 | 258 | 1.2600 | 0.3556 |
| 1.0792 | 44.0 | 264 | 1.2600 | 0.3556 |
| 1.1126 | 45.0 | 270 | 1.2600 | 0.3556 |
| 1.1126 | 46.0 | 276 | 1.2600 | 0.3556 |
| 1.0704 | 47.0 | 282 | 1.2600 | 0.3556 |
| 1.0704 | 48.0 | 288 | 1.2600 | 0.3556 |
| 1.1302 | 49.0 | 294 | 1.2600 | 0.3556 |
| 1.0797 | 50.0 | 300 | 1.2600 | 0.3556 |
### Framework versions
- Transformers 4.35.0
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1
|
[
"01_normal",
"02_tapered",
"03_pyriform",
"04_amorphous"
] |
hkivancoral/hushem_1x_deit_tiny_rms_lr001_fold3
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# hushem_1x_deit_tiny_rms_lr001_fold3
This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co/facebook/deit-tiny-patch16-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 1.7042
- Accuracy: 0.2791
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 6 | 3.1061 | 0.2326 |
| 4.0184 | 2.0 | 12 | 1.7666 | 0.2558 |
| 4.0184 | 3.0 | 18 | 1.6279 | 0.2558 |
| 1.7385 | 4.0 | 24 | 1.9636 | 0.2558 |
| 1.583 | 5.0 | 30 | 1.6503 | 0.2558 |
| 1.583 | 6.0 | 36 | 1.4630 | 0.2326 |
| 1.4859 | 7.0 | 42 | 3.2936 | 0.2326 |
| 1.4859 | 8.0 | 48 | 2.0073 | 0.2558 |
| 2.0303 | 9.0 | 54 | 1.4859 | 0.2326 |
| 1.4062 | 10.0 | 60 | 1.6529 | 0.2326 |
| 1.4062 | 11.0 | 66 | 1.4259 | 0.2791 |
| 1.359 | 12.0 | 72 | 1.3892 | 0.2558 |
| 1.359 | 13.0 | 78 | 1.4650 | 0.3023 |
| 1.3464 | 14.0 | 84 | 1.4368 | 0.2558 |
| 1.262 | 15.0 | 90 | 1.4241 | 0.2558 |
| 1.262 | 16.0 | 96 | 1.6562 | 0.3023 |
| 1.2521 | 17.0 | 102 | 1.3729 | 0.3023 |
| 1.2521 | 18.0 | 108 | 1.5241 | 0.2093 |
| 1.2212 | 19.0 | 114 | 1.5032 | 0.3023 |
| 1.1882 | 20.0 | 120 | 1.4178 | 0.2558 |
| 1.1882 | 21.0 | 126 | 1.8156 | 0.3023 |
| 1.1382 | 22.0 | 132 | 1.5280 | 0.2558 |
| 1.1382 | 23.0 | 138 | 1.5037 | 0.2326 |
| 1.0802 | 24.0 | 144 | 1.5058 | 0.3488 |
| 1.1083 | 25.0 | 150 | 1.5421 | 0.2791 |
| 1.1083 | 26.0 | 156 | 1.5398 | 0.2558 |
| 1.0555 | 27.0 | 162 | 1.8560 | 0.2791 |
| 1.0555 | 28.0 | 168 | 1.9193 | 0.2558 |
| 1.0051 | 29.0 | 174 | 1.5934 | 0.3256 |
| 0.958 | 30.0 | 180 | 1.6481 | 0.2791 |
| 0.958 | 31.0 | 186 | 1.5950 | 0.2791 |
| 0.9855 | 32.0 | 192 | 1.5539 | 0.2558 |
| 0.9855 | 33.0 | 198 | 1.6644 | 0.2791 |
| 0.9482 | 34.0 | 204 | 1.6743 | 0.2326 |
| 0.9401 | 35.0 | 210 | 1.6352 | 0.3023 |
| 0.9401 | 36.0 | 216 | 1.6896 | 0.2791 |
| 0.9225 | 37.0 | 222 | 1.7369 | 0.2326 |
| 0.9225 | 38.0 | 228 | 1.6916 | 0.2558 |
| 0.8891 | 39.0 | 234 | 1.6919 | 0.2791 |
| 0.8732 | 40.0 | 240 | 1.7104 | 0.2791 |
| 0.8732 | 41.0 | 246 | 1.7028 | 0.2791 |
| 0.8715 | 42.0 | 252 | 1.7042 | 0.2791 |
| 0.8715 | 43.0 | 258 | 1.7042 | 0.2791 |
| 0.8826 | 44.0 | 264 | 1.7042 | 0.2791 |
| 0.8986 | 45.0 | 270 | 1.7042 | 0.2791 |
| 0.8986 | 46.0 | 276 | 1.7042 | 0.2791 |
| 0.8589 | 47.0 | 282 | 1.7042 | 0.2791 |
| 0.8589 | 48.0 | 288 | 1.7042 | 0.2791 |
| 0.9236 | 49.0 | 294 | 1.7042 | 0.2791 |
| 0.8539 | 50.0 | 300 | 1.7042 | 0.2791 |
### Framework versions
- Transformers 4.35.0
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1
|
[
"01_normal",
"02_tapered",
"03_pyriform",
"04_amorphous"
] |
hkivancoral/hushem_1x_deit_tiny_rms_lr001_fold4
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# hushem_1x_deit_tiny_rms_lr001_fold4
This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co/facebook/deit-tiny-patch16-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1726
- Accuracy: 0.4524
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 6 | 5.8408 | 0.2619 |
| 4.7138 | 2.0 | 12 | 1.8632 | 0.2381 |
| 4.7138 | 3.0 | 18 | 1.9369 | 0.2619 |
| 1.8439 | 4.0 | 24 | 1.7584 | 0.2381 |
| 1.6449 | 5.0 | 30 | 1.4723 | 0.2619 |
| 1.6449 | 6.0 | 36 | 1.7187 | 0.2381 |
| 1.5171 | 7.0 | 42 | 1.4960 | 0.2381 |
| 1.5171 | 8.0 | 48 | 1.3962 | 0.2619 |
| 1.4701 | 9.0 | 54 | 1.4942 | 0.2619 |
| 1.4652 | 10.0 | 60 | 1.3642 | 0.2381 |
| 1.4652 | 11.0 | 66 | 1.4490 | 0.2619 |
| 1.4547 | 12.0 | 72 | 1.1912 | 0.4524 |
| 1.4547 | 13.0 | 78 | 1.4737 | 0.2857 |
| 1.3944 | 14.0 | 84 | 1.2170 | 0.4286 |
| 1.3536 | 15.0 | 90 | 1.3540 | 0.2381 |
| 1.3536 | 16.0 | 96 | 1.0819 | 0.6190 |
| 1.2835 | 17.0 | 102 | 1.1640 | 0.4286 |
| 1.2835 | 18.0 | 108 | 1.2309 | 0.3333 |
| 1.306 | 19.0 | 114 | 1.3288 | 0.2857 |
| 1.2522 | 20.0 | 120 | 1.4561 | 0.2857 |
| 1.2522 | 21.0 | 126 | 1.0774 | 0.4762 |
| 1.2491 | 22.0 | 132 | 1.1807 | 0.4286 |
| 1.2491 | 23.0 | 138 | 1.1668 | 0.3810 |
| 1.1882 | 24.0 | 144 | 1.2075 | 0.4286 |
| 1.2028 | 25.0 | 150 | 1.2635 | 0.3333 |
| 1.2028 | 26.0 | 156 | 1.1653 | 0.3810 |
| 1.1822 | 27.0 | 162 | 1.1741 | 0.4048 |
| 1.1822 | 28.0 | 168 | 1.4014 | 0.2619 |
| 1.1086 | 29.0 | 174 | 1.0259 | 0.5476 |
| 1.1111 | 30.0 | 180 | 1.1225 | 0.5238 |
| 1.1111 | 31.0 | 186 | 1.1813 | 0.5 |
| 1.0458 | 32.0 | 192 | 1.1678 | 0.4286 |
| 1.0458 | 33.0 | 198 | 1.1915 | 0.4048 |
| 1.1348 | 34.0 | 204 | 1.3148 | 0.5 |
| 0.9776 | 35.0 | 210 | 1.0082 | 0.5238 |
| 0.9776 | 36.0 | 216 | 0.9144 | 0.6190 |
| 0.9456 | 37.0 | 222 | 1.0677 | 0.4762 |
| 0.9456 | 38.0 | 228 | 1.0695 | 0.5238 |
| 0.8714 | 39.0 | 234 | 1.1982 | 0.4762 |
| 0.8643 | 40.0 | 240 | 1.1143 | 0.4048 |
| 0.8643 | 41.0 | 246 | 1.1270 | 0.4524 |
| 0.7971 | 42.0 | 252 | 1.1726 | 0.4524 |
| 0.7971 | 43.0 | 258 | 1.1726 | 0.4524 |
| 0.7662 | 44.0 | 264 | 1.1726 | 0.4524 |
| 0.7801 | 45.0 | 270 | 1.1726 | 0.4524 |
| 0.7801 | 46.0 | 276 | 1.1726 | 0.4524 |
| 0.7773 | 47.0 | 282 | 1.1726 | 0.4524 |
| 0.7773 | 48.0 | 288 | 1.1726 | 0.4524 |
| 0.7728 | 49.0 | 294 | 1.1726 | 0.4524 |
| 0.7828 | 50.0 | 300 | 1.1726 | 0.4524 |
### Framework versions
- Transformers 4.35.0
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1
|
[
"01_normal",
"02_tapered",
"03_pyriform",
"04_amorphous"
] |
hkivancoral/hushem_1x_deit_tiny_rms_lr001_fold5
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# hushem_1x_deit_tiny_rms_lr001_fold5
This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co/facebook/deit-tiny-patch16-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0599
- Accuracy: 0.5366
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 6 | 2.6067 | 0.2439 |
| 4.0909 | 2.0 | 12 | 1.8085 | 0.2439 |
| 4.0909 | 3.0 | 18 | 1.7809 | 0.2439 |
| 2.0948 | 4.0 | 24 | 1.7586 | 0.2439 |
| 1.6719 | 5.0 | 30 | 1.5135 | 0.2439 |
| 1.6719 | 6.0 | 36 | 1.7849 | 0.2683 |
| 1.5694 | 7.0 | 42 | 1.4636 | 0.3902 |
| 1.5694 | 8.0 | 48 | 1.4809 | 0.2683 |
| 1.519 | 9.0 | 54 | 1.3587 | 0.3415 |
| 1.5241 | 10.0 | 60 | 1.3823 | 0.2439 |
| 1.5241 | 11.0 | 66 | 1.3645 | 0.3415 |
| 1.4557 | 12.0 | 72 | 1.2525 | 0.3659 |
| 1.4557 | 13.0 | 78 | 1.2955 | 0.3171 |
| 1.3674 | 14.0 | 84 | 1.3174 | 0.3415 |
| 1.3868 | 15.0 | 90 | 1.2787 | 0.3415 |
| 1.3868 | 16.0 | 96 | 1.6408 | 0.2683 |
| 1.3152 | 17.0 | 102 | 1.2750 | 0.3171 |
| 1.3152 | 18.0 | 108 | 1.0560 | 0.5366 |
| 1.2693 | 19.0 | 114 | 1.3256 | 0.4878 |
| 1.2554 | 20.0 | 120 | 1.3190 | 0.3902 |
| 1.2554 | 21.0 | 126 | 1.2498 | 0.3902 |
| 1.1813 | 22.0 | 132 | 1.2514 | 0.3902 |
| 1.1813 | 23.0 | 138 | 1.0907 | 0.5366 |
| 1.1113 | 24.0 | 144 | 1.2821 | 0.3415 |
| 1.1728 | 25.0 | 150 | 1.1433 | 0.4878 |
| 1.1728 | 26.0 | 156 | 1.0143 | 0.5366 |
| 1.1037 | 27.0 | 162 | 0.9542 | 0.5854 |
| 1.1037 | 28.0 | 168 | 1.1443 | 0.5122 |
| 1.0914 | 29.0 | 174 | 1.0904 | 0.4878 |
| 1.1385 | 30.0 | 180 | 1.1995 | 0.4146 |
| 1.1385 | 31.0 | 186 | 0.9746 | 0.6098 |
| 1.0636 | 32.0 | 192 | 1.1104 | 0.4634 |
| 1.0636 | 33.0 | 198 | 0.9890 | 0.6098 |
| 1.0129 | 34.0 | 204 | 1.2113 | 0.3902 |
| 0.999 | 35.0 | 210 | 1.0001 | 0.6098 |
| 0.999 | 36.0 | 216 | 1.0972 | 0.5122 |
| 0.9802 | 37.0 | 222 | 1.1639 | 0.4390 |
| 0.9802 | 38.0 | 228 | 1.0730 | 0.5122 |
| 0.9625 | 39.0 | 234 | 1.0471 | 0.4878 |
| 0.9424 | 40.0 | 240 | 1.0692 | 0.5366 |
| 0.9424 | 41.0 | 246 | 1.0654 | 0.5366 |
| 0.9521 | 42.0 | 252 | 1.0599 | 0.5366 |
| 0.9521 | 43.0 | 258 | 1.0599 | 0.5366 |
| 0.9184 | 44.0 | 264 | 1.0599 | 0.5366 |
| 0.9335 | 45.0 | 270 | 1.0599 | 0.5366 |
| 0.9335 | 46.0 | 276 | 1.0599 | 0.5366 |
| 0.9251 | 47.0 | 282 | 1.0599 | 0.5366 |
| 0.9251 | 48.0 | 288 | 1.0599 | 0.5366 |
| 0.9168 | 49.0 | 294 | 1.0599 | 0.5366 |
| 0.8964 | 50.0 | 300 | 1.0599 | 0.5366 |
### Framework versions
- Transformers 4.35.0
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1
|
[
"01_normal",
"02_tapered",
"03_pyriform",
"04_amorphous"
] |
hkivancoral/hushem_1x_deit_tiny_rms_lr0001_fold1
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# hushem_1x_deit_tiny_rms_lr0001_fold1
This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co/facebook/deit-tiny-patch16-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 3.0724
- Accuracy: 0.5778
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 6 | 1.7581 | 0.2444 |
| 2.2176 | 2.0 | 12 | 1.4575 | 0.2444 |
| 2.2176 | 3.0 | 18 | 1.4070 | 0.2444 |
| 1.4625 | 4.0 | 24 | 1.4089 | 0.2444 |
| 1.4303 | 5.0 | 30 | 1.4530 | 0.2667 |
| 1.4303 | 6.0 | 36 | 1.3605 | 0.3778 |
| 1.3759 | 7.0 | 42 | 1.4068 | 0.3778 |
| 1.3759 | 8.0 | 48 | 1.3279 | 0.2889 |
| 1.3199 | 9.0 | 54 | 1.5997 | 0.2444 |
| 1.2335 | 10.0 | 60 | 1.5834 | 0.2444 |
| 1.2335 | 11.0 | 66 | 1.6144 | 0.3333 |
| 1.0406 | 12.0 | 72 | 1.1266 | 0.5111 |
| 1.0406 | 13.0 | 78 | 1.6894 | 0.3556 |
| 0.851 | 14.0 | 84 | 1.8080 | 0.4444 |
| 0.5856 | 15.0 | 90 | 2.0552 | 0.3778 |
| 0.5856 | 16.0 | 96 | 1.3379 | 0.4889 |
| 0.3402 | 17.0 | 102 | 1.4787 | 0.4889 |
| 0.3402 | 18.0 | 108 | 2.2439 | 0.4222 |
| 0.233 | 19.0 | 114 | 1.7239 | 0.4889 |
| 0.1016 | 20.0 | 120 | 2.5401 | 0.4222 |
| 0.1016 | 21.0 | 126 | 1.5433 | 0.5778 |
| 0.0994 | 22.0 | 132 | 1.8891 | 0.5333 |
| 0.0994 | 23.0 | 138 | 1.9405 | 0.4889 |
| 0.0839 | 24.0 | 144 | 1.5418 | 0.5778 |
| 0.0282 | 25.0 | 150 | 2.4010 | 0.5778 |
| 0.0282 | 26.0 | 156 | 2.6175 | 0.5778 |
| 0.0011 | 27.0 | 162 | 2.7024 | 0.5778 |
| 0.0011 | 28.0 | 168 | 2.7954 | 0.5778 |
| 0.0007 | 29.0 | 174 | 2.8362 | 0.5778 |
| 0.0006 | 30.0 | 180 | 2.8852 | 0.5778 |
| 0.0006 | 31.0 | 186 | 2.9050 | 0.5778 |
| 0.0005 | 32.0 | 192 | 2.9414 | 0.5778 |
| 0.0005 | 33.0 | 198 | 2.9746 | 0.5778 |
| 0.0005 | 34.0 | 204 | 2.9947 | 0.5778 |
| 0.0004 | 35.0 | 210 | 3.0141 | 0.5778 |
| 0.0004 | 36.0 | 216 | 3.0300 | 0.5778 |
| 0.0004 | 37.0 | 222 | 3.0447 | 0.5778 |
| 0.0004 | 38.0 | 228 | 3.0565 | 0.5778 |
| 0.0003 | 39.0 | 234 | 3.0642 | 0.5778 |
| 0.0003 | 40.0 | 240 | 3.0696 | 0.5778 |
| 0.0003 | 41.0 | 246 | 3.0717 | 0.5778 |
| 0.0003 | 42.0 | 252 | 3.0724 | 0.5778 |
| 0.0003 | 43.0 | 258 | 3.0724 | 0.5778 |
| 0.0003 | 44.0 | 264 | 3.0724 | 0.5778 |
| 0.0003 | 45.0 | 270 | 3.0724 | 0.5778 |
| 0.0003 | 46.0 | 276 | 3.0724 | 0.5778 |
| 0.0003 | 47.0 | 282 | 3.0724 | 0.5778 |
| 0.0003 | 48.0 | 288 | 3.0724 | 0.5778 |
| 0.0003 | 49.0 | 294 | 3.0724 | 0.5778 |
| 0.0003 | 50.0 | 300 | 3.0724 | 0.5778 |
### Framework versions
- Transformers 4.35.0
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1
|
[
"01_normal",
"02_tapered",
"03_pyriform",
"04_amorphous"
] |
hkivancoral/hushem_1x_deit_tiny_rms_lr0001_fold2
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# hushem_1x_deit_tiny_rms_lr0001_fold2
This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co/facebook/deit-tiny-patch16-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 1.7300
- Accuracy: 0.6889
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 6 | 3.0363 | 0.2444 |
| 2.6477 | 2.0 | 12 | 1.6954 | 0.2444 |
| 2.6477 | 3.0 | 18 | 1.4980 | 0.2444 |
| 1.482 | 4.0 | 24 | 1.3454 | 0.3556 |
| 1.4166 | 5.0 | 30 | 1.3094 | 0.4 |
| 1.4166 | 6.0 | 36 | 1.6095 | 0.2444 |
| 1.3414 | 7.0 | 42 | 1.9023 | 0.2444 |
| 1.3414 | 8.0 | 48 | 1.3957 | 0.2222 |
| 1.2396 | 9.0 | 54 | 1.1738 | 0.4 |
| 1.2068 | 10.0 | 60 | 1.2312 | 0.4889 |
| 1.2068 | 11.0 | 66 | 1.0903 | 0.6 |
| 0.9263 | 12.0 | 72 | 0.9211 | 0.5778 |
| 0.9263 | 13.0 | 78 | 1.1912 | 0.4444 |
| 0.8539 | 14.0 | 84 | 1.2631 | 0.5333 |
| 0.6672 | 15.0 | 90 | 1.2596 | 0.5111 |
| 0.6672 | 16.0 | 96 | 1.3999 | 0.4889 |
| 0.5299 | 17.0 | 102 | 1.2988 | 0.5556 |
| 0.5299 | 18.0 | 108 | 1.3328 | 0.5333 |
| 0.3853 | 19.0 | 114 | 1.0485 | 0.6222 |
| 0.332 | 20.0 | 120 | 1.1428 | 0.5778 |
| 0.332 | 21.0 | 126 | 1.0486 | 0.6444 |
| 0.1829 | 22.0 | 132 | 1.0866 | 0.6667 |
| 0.1829 | 23.0 | 138 | 1.7727 | 0.5778 |
| 0.111 | 24.0 | 144 | 1.2950 | 0.6889 |
| 0.0444 | 25.0 | 150 | 1.4579 | 0.7111 |
| 0.0444 | 26.0 | 156 | 1.4269 | 0.6889 |
| 0.0017 | 27.0 | 162 | 1.4804 | 0.6889 |
| 0.0017 | 28.0 | 168 | 1.5281 | 0.6889 |
| 0.0007 | 29.0 | 174 | 1.5658 | 0.6667 |
| 0.0005 | 30.0 | 180 | 1.5943 | 0.6667 |
| 0.0005 | 31.0 | 186 | 1.6212 | 0.6667 |
| 0.0004 | 32.0 | 192 | 1.6444 | 0.6667 |
| 0.0004 | 33.0 | 198 | 1.6608 | 0.6667 |
| 0.0003 | 34.0 | 204 | 1.6759 | 0.6667 |
| 0.0003 | 35.0 | 210 | 1.6896 | 0.6667 |
| 0.0003 | 36.0 | 216 | 1.7018 | 0.6667 |
| 0.0003 | 37.0 | 222 | 1.7108 | 0.6889 |
| 0.0003 | 38.0 | 228 | 1.7185 | 0.6889 |
| 0.0003 | 39.0 | 234 | 1.7237 | 0.6889 |
| 0.0002 | 40.0 | 240 | 1.7275 | 0.6889 |
| 0.0002 | 41.0 | 246 | 1.7295 | 0.6889 |
| 0.0003 | 42.0 | 252 | 1.7300 | 0.6889 |
| 0.0003 | 43.0 | 258 | 1.7300 | 0.6889 |
| 0.0002 | 44.0 | 264 | 1.7300 | 0.6889 |
| 0.0002 | 45.0 | 270 | 1.7300 | 0.6889 |
| 0.0002 | 46.0 | 276 | 1.7300 | 0.6889 |
| 0.0002 | 47.0 | 282 | 1.7300 | 0.6889 |
| 0.0002 | 48.0 | 288 | 1.7300 | 0.6889 |
| 0.0002 | 49.0 | 294 | 1.7300 | 0.6889 |
| 0.0002 | 50.0 | 300 | 1.7300 | 0.6889 |
### Framework versions
- Transformers 4.35.0
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1
|
[
"01_normal",
"02_tapered",
"03_pyriform",
"04_amorphous"
] |
hkivancoral/hushem_1x_deit_tiny_rms_lr0001_fold3
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# hushem_1x_deit_rms_lr0001_fold3
This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co/facebook/deit-tiny-patch16-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 2.7920
- Accuracy: 0.4651
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 6 | 1.3959 | 0.2558 |
| 2.0191 | 2.0 | 12 | 1.4540 | 0.2791 |
| 2.0191 | 3.0 | 18 | 1.5040 | 0.3721 |
| 1.4688 | 4.0 | 24 | 1.3687 | 0.3256 |
| 1.3397 | 5.0 | 30 | 1.3082 | 0.4186 |
| 1.3397 | 6.0 | 36 | 1.3917 | 0.3256 |
| 1.1986 | 7.0 | 42 | 1.4209 | 0.3256 |
| 1.1986 | 8.0 | 48 | 1.4510 | 0.3721 |
| 1.0698 | 9.0 | 54 | 1.4225 | 0.3023 |
| 0.8214 | 10.0 | 60 | 1.5289 | 0.4186 |
| 0.8214 | 11.0 | 66 | 1.4884 | 0.4419 |
| 0.5823 | 12.0 | 72 | 2.0101 | 0.3256 |
| 0.5823 | 13.0 | 78 | 1.6036 | 0.5349 |
| 0.4001 | 14.0 | 84 | 1.6332 | 0.4186 |
| 0.2362 | 15.0 | 90 | 2.0095 | 0.4884 |
| 0.2362 | 16.0 | 96 | 1.8563 | 0.5581 |
| 0.1078 | 17.0 | 102 | 2.1555 | 0.5116 |
| 0.1078 | 18.0 | 108 | 2.0019 | 0.5581 |
| 0.0769 | 19.0 | 114 | 2.3852 | 0.4884 |
| 0.0351 | 20.0 | 120 | 2.4880 | 0.5349 |
| 0.0351 | 21.0 | 126 | 2.5950 | 0.4884 |
| 0.001 | 22.0 | 132 | 2.5992 | 0.4884 |
| 0.001 | 23.0 | 138 | 2.6117 | 0.4884 |
| 0.0006 | 24.0 | 144 | 2.6223 | 0.4884 |
| 0.0005 | 25.0 | 150 | 2.6443 | 0.4884 |
| 0.0005 | 26.0 | 156 | 2.6672 | 0.4884 |
| 0.0004 | 27.0 | 162 | 2.6883 | 0.4884 |
| 0.0004 | 28.0 | 168 | 2.6994 | 0.4884 |
| 0.0003 | 29.0 | 174 | 2.7093 | 0.4884 |
| 0.0003 | 30.0 | 180 | 2.7225 | 0.4884 |
| 0.0003 | 31.0 | 186 | 2.7350 | 0.4884 |
| 0.0003 | 32.0 | 192 | 2.7468 | 0.4651 |
| 0.0003 | 33.0 | 198 | 2.7564 | 0.4651 |
| 0.0003 | 34.0 | 204 | 2.7644 | 0.4651 |
| 0.0002 | 35.0 | 210 | 2.7717 | 0.4651 |
| 0.0002 | 36.0 | 216 | 2.7756 | 0.4651 |
| 0.0002 | 37.0 | 222 | 2.7805 | 0.4651 |
| 0.0002 | 38.0 | 228 | 2.7848 | 0.4651 |
| 0.0002 | 39.0 | 234 | 2.7876 | 0.4651 |
| 0.0002 | 40.0 | 240 | 2.7903 | 0.4651 |
| 0.0002 | 41.0 | 246 | 2.7917 | 0.4651 |
| 0.0002 | 42.0 | 252 | 2.7920 | 0.4651 |
| 0.0002 | 43.0 | 258 | 2.7920 | 0.4651 |
| 0.0002 | 44.0 | 264 | 2.7920 | 0.4651 |
| 0.0002 | 45.0 | 270 | 2.7920 | 0.4651 |
| 0.0002 | 46.0 | 276 | 2.7920 | 0.4651 |
| 0.0002 | 47.0 | 282 | 2.7920 | 0.4651 |
| 0.0002 | 48.0 | 288 | 2.7920 | 0.4651 |
| 0.0002 | 49.0 | 294 | 2.7920 | 0.4651 |
| 0.0002 | 50.0 | 300 | 2.7920 | 0.4651 |
### Framework versions
- Transformers 4.35.0
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1
|
[
"01_normal",
"02_tapered",
"03_pyriform",
"04_amorphous"
] |
hkivancoral/hushem_1x_deit_tiny_rms_lr0001_fold4
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# hushem_1x_deit_tiny_rms_lr0001_fold4
This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co/facebook/deit-tiny-patch16-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2563
- Accuracy: 0.7619
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 6 | 1.5375 | 0.2619 |
| 2.1724 | 2.0 | 12 | 2.0732 | 0.2381 |
| 2.1724 | 3.0 | 18 | 1.4131 | 0.2619 |
| 1.6782 | 4.0 | 24 | 1.3425 | 0.4524 |
| 1.4417 | 5.0 | 30 | 1.3458 | 0.2857 |
| 1.4417 | 6.0 | 36 | 1.2594 | 0.6429 |
| 1.3676 | 7.0 | 42 | 1.1740 | 0.4762 |
| 1.3676 | 8.0 | 48 | 1.2511 | 0.3571 |
| 1.2512 | 9.0 | 54 | 0.8438 | 0.6190 |
| 0.8279 | 10.0 | 60 | 1.0096 | 0.5 |
| 0.8279 | 11.0 | 66 | 0.7631 | 0.6667 |
| 0.5322 | 12.0 | 72 | 0.6526 | 0.7857 |
| 0.5322 | 13.0 | 78 | 0.6963 | 0.7143 |
| 0.257 | 14.0 | 84 | 0.7429 | 0.7619 |
| 0.1198 | 15.0 | 90 | 0.9632 | 0.6905 |
| 0.1198 | 16.0 | 96 | 1.2325 | 0.7143 |
| 0.0178 | 17.0 | 102 | 1.2090 | 0.7381 |
| 0.0178 | 18.0 | 108 | 1.1054 | 0.7619 |
| 0.0016 | 19.0 | 114 | 1.2184 | 0.7143 |
| 0.0009 | 20.0 | 120 | 1.1716 | 0.7619 |
| 0.0009 | 21.0 | 126 | 1.1784 | 0.7619 |
| 0.0004 | 22.0 | 132 | 1.1866 | 0.7619 |
| 0.0004 | 23.0 | 138 | 1.1935 | 0.7619 |
| 0.0003 | 24.0 | 144 | 1.1995 | 0.7619 |
| 0.0003 | 25.0 | 150 | 1.2046 | 0.7619 |
| 0.0003 | 26.0 | 156 | 1.2111 | 0.7619 |
| 0.0003 | 27.0 | 162 | 1.2169 | 0.7619 |
| 0.0003 | 28.0 | 168 | 1.2218 | 0.7619 |
| 0.0002 | 29.0 | 174 | 1.2261 | 0.7619 |
| 0.0002 | 30.0 | 180 | 1.2318 | 0.7619 |
| 0.0002 | 31.0 | 186 | 1.2354 | 0.7619 |
| 0.0002 | 32.0 | 192 | 1.2392 | 0.7619 |
| 0.0002 | 33.0 | 198 | 1.2423 | 0.7619 |
| 0.0002 | 34.0 | 204 | 1.2453 | 0.7619 |
| 0.0002 | 35.0 | 210 | 1.2477 | 0.7619 |
| 0.0002 | 36.0 | 216 | 1.2499 | 0.7619 |
| 0.0002 | 37.0 | 222 | 1.2519 | 0.7619 |
| 0.0002 | 38.0 | 228 | 1.2534 | 0.7619 |
| 0.0002 | 39.0 | 234 | 1.2547 | 0.7619 |
| 0.0002 | 40.0 | 240 | 1.2556 | 0.7619 |
| 0.0002 | 41.0 | 246 | 1.2562 | 0.7619 |
| 0.0002 | 42.0 | 252 | 1.2563 | 0.7619 |
| 0.0002 | 43.0 | 258 | 1.2563 | 0.7619 |
| 0.0002 | 44.0 | 264 | 1.2563 | 0.7619 |
| 0.0002 | 45.0 | 270 | 1.2563 | 0.7619 |
| 0.0002 | 46.0 | 276 | 1.2563 | 0.7619 |
| 0.0002 | 47.0 | 282 | 1.2563 | 0.7619 |
| 0.0002 | 48.0 | 288 | 1.2563 | 0.7619 |
| 0.0002 | 49.0 | 294 | 1.2563 | 0.7619 |
| 0.0002 | 50.0 | 300 | 1.2563 | 0.7619 |
### Framework versions
- Transformers 4.35.0
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1
|
[
"01_normal",
"02_tapered",
"03_pyriform",
"04_amorphous"
] |
hkivancoral/hushem_1x_deit_tiny_rms_lr0001_fold5
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# hushem_1x_deit_tiny_rms_lr0001_fold5
This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co/facebook/deit-tiny-patch16-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 2.1537
- Accuracy: 0.5610
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 6 | 1.5741 | 0.2683 |
| 1.8922 | 2.0 | 12 | 1.3978 | 0.2683 |
| 1.8922 | 3.0 | 18 | 1.4032 | 0.2439 |
| 1.5101 | 4.0 | 24 | 1.4021 | 0.2683 |
| 1.38 | 5.0 | 30 | 2.1528 | 0.2439 |
| 1.38 | 6.0 | 36 | 1.4141 | 0.2439 |
| 1.4096 | 7.0 | 42 | 1.2484 | 0.4390 |
| 1.4096 | 8.0 | 48 | 1.2607 | 0.4390 |
| 1.2381 | 9.0 | 54 | 0.9950 | 0.5366 |
| 1.1539 | 10.0 | 60 | 1.0350 | 0.5610 |
| 1.1539 | 11.0 | 66 | 1.2716 | 0.3415 |
| 0.9039 | 12.0 | 72 | 1.0596 | 0.5854 |
| 0.9039 | 13.0 | 78 | 1.5972 | 0.4146 |
| 0.6191 | 14.0 | 84 | 1.9855 | 0.4390 |
| 0.4358 | 15.0 | 90 | 1.2403 | 0.4878 |
| 0.4358 | 16.0 | 96 | 2.3374 | 0.4390 |
| 0.2291 | 17.0 | 102 | 1.5475 | 0.4390 |
| 0.2291 | 18.0 | 108 | 1.2789 | 0.6341 |
| 0.1203 | 19.0 | 114 | 1.8441 | 0.4390 |
| 0.0604 | 20.0 | 120 | 1.7948 | 0.4878 |
| 0.0604 | 21.0 | 126 | 2.0211 | 0.4634 |
| 0.0322 | 22.0 | 132 | 1.8178 | 0.5366 |
| 0.0322 | 23.0 | 138 | 2.0950 | 0.4878 |
| 0.017 | 24.0 | 144 | 2.0410 | 0.5122 |
| 0.0011 | 25.0 | 150 | 2.0405 | 0.5122 |
| 0.0011 | 26.0 | 156 | 2.0495 | 0.5122 |
| 0.0007 | 27.0 | 162 | 2.0594 | 0.5122 |
| 0.0007 | 28.0 | 168 | 2.0747 | 0.5122 |
| 0.0006 | 29.0 | 174 | 2.0825 | 0.5610 |
| 0.0005 | 30.0 | 180 | 2.0915 | 0.5610 |
| 0.0005 | 31.0 | 186 | 2.1017 | 0.5610 |
| 0.0004 | 32.0 | 192 | 2.1110 | 0.5610 |
| 0.0004 | 33.0 | 198 | 2.1199 | 0.5610 |
| 0.0004 | 34.0 | 204 | 2.1276 | 0.5610 |
| 0.0004 | 35.0 | 210 | 2.1335 | 0.5610 |
| 0.0004 | 36.0 | 216 | 2.1398 | 0.5610 |
| 0.0004 | 37.0 | 222 | 2.1439 | 0.5610 |
| 0.0004 | 38.0 | 228 | 2.1473 | 0.5610 |
| 0.0003 | 39.0 | 234 | 2.1497 | 0.5610 |
| 0.0003 | 40.0 | 240 | 2.1519 | 0.5610 |
| 0.0003 | 41.0 | 246 | 2.1532 | 0.5610 |
| 0.0003 | 42.0 | 252 | 2.1537 | 0.5610 |
| 0.0003 | 43.0 | 258 | 2.1537 | 0.5610 |
| 0.0003 | 44.0 | 264 | 2.1537 | 0.5610 |
| 0.0003 | 45.0 | 270 | 2.1537 | 0.5610 |
| 0.0003 | 46.0 | 276 | 2.1537 | 0.5610 |
| 0.0003 | 47.0 | 282 | 2.1537 | 0.5610 |
| 0.0003 | 48.0 | 288 | 2.1537 | 0.5610 |
| 0.0003 | 49.0 | 294 | 2.1537 | 0.5610 |
| 0.0003 | 50.0 | 300 | 2.1537 | 0.5610 |
### Framework versions
- Transformers 4.35.0
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1
|
[
"01_normal",
"02_tapered",
"03_pyriform",
"04_amorphous"
] |
hkivancoral/hushem_1x_deit_tiny_rms_lr00001_fold1
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# hushem_1x_deit_tiny_rms_lr00001_fold1
This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co/facebook/deit-tiny-patch16-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2449
- Accuracy: 0.6889
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 6 | 1.2771 | 0.4 |
| 1.263 | 2.0 | 12 | 1.0784 | 0.5556 |
| 1.263 | 3.0 | 18 | 0.9616 | 0.5556 |
| 0.5461 | 4.0 | 24 | 1.0339 | 0.6889 |
| 0.2446 | 5.0 | 30 | 0.9939 | 0.6667 |
| 0.2446 | 6.0 | 36 | 1.2442 | 0.4889 |
| 0.0817 | 7.0 | 42 | 0.7980 | 0.6222 |
| 0.0817 | 8.0 | 48 | 0.8675 | 0.6444 |
| 0.0302 | 9.0 | 54 | 0.8969 | 0.6889 |
| 0.009 | 10.0 | 60 | 0.9399 | 0.6222 |
| 0.009 | 11.0 | 66 | 1.0591 | 0.7111 |
| 0.0037 | 12.0 | 72 | 1.0283 | 0.6667 |
| 0.0037 | 13.0 | 78 | 1.0855 | 0.6667 |
| 0.0025 | 14.0 | 84 | 1.1121 | 0.6667 |
| 0.0019 | 15.0 | 90 | 1.1082 | 0.6667 |
| 0.0019 | 16.0 | 96 | 1.1158 | 0.6667 |
| 0.0015 | 17.0 | 102 | 1.1382 | 0.6667 |
| 0.0015 | 18.0 | 108 | 1.1574 | 0.6667 |
| 0.0013 | 19.0 | 114 | 1.1739 | 0.6667 |
| 0.0011 | 20.0 | 120 | 1.1736 | 0.6667 |
| 0.0011 | 21.0 | 126 | 1.1594 | 0.6889 |
| 0.001 | 22.0 | 132 | 1.1738 | 0.6889 |
| 0.001 | 23.0 | 138 | 1.1962 | 0.6667 |
| 0.0009 | 24.0 | 144 | 1.1951 | 0.6889 |
| 0.0008 | 25.0 | 150 | 1.2004 | 0.6889 |
| 0.0008 | 26.0 | 156 | 1.1996 | 0.6889 |
| 0.0008 | 27.0 | 162 | 1.2076 | 0.6889 |
| 0.0008 | 28.0 | 168 | 1.2144 | 0.6889 |
| 0.0007 | 29.0 | 174 | 1.2117 | 0.6889 |
| 0.0007 | 30.0 | 180 | 1.2204 | 0.6889 |
| 0.0007 | 31.0 | 186 | 1.2217 | 0.6889 |
| 0.0006 | 32.0 | 192 | 1.2270 | 0.6889 |
| 0.0006 | 33.0 | 198 | 1.2321 | 0.6889 |
| 0.0006 | 34.0 | 204 | 1.2307 | 0.6889 |
| 0.0006 | 35.0 | 210 | 1.2313 | 0.6889 |
| 0.0006 | 36.0 | 216 | 1.2374 | 0.6889 |
| 0.0006 | 37.0 | 222 | 1.2446 | 0.6889 |
| 0.0006 | 38.0 | 228 | 1.2471 | 0.6889 |
| 0.0005 | 39.0 | 234 | 1.2452 | 0.6889 |
| 0.0006 | 40.0 | 240 | 1.2458 | 0.6889 |
| 0.0006 | 41.0 | 246 | 1.2454 | 0.6889 |
| 0.0005 | 42.0 | 252 | 1.2449 | 0.6889 |
| 0.0005 | 43.0 | 258 | 1.2449 | 0.6889 |
| 0.0005 | 44.0 | 264 | 1.2449 | 0.6889 |
| 0.0005 | 45.0 | 270 | 1.2449 | 0.6889 |
| 0.0005 | 46.0 | 276 | 1.2449 | 0.6889 |
| 0.0005 | 47.0 | 282 | 1.2449 | 0.6889 |
| 0.0005 | 48.0 | 288 | 1.2449 | 0.6889 |
| 0.0005 | 49.0 | 294 | 1.2449 | 0.6889 |
| 0.0005 | 50.0 | 300 | 1.2449 | 0.6889 |
### Framework versions
- Transformers 4.35.0
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1
|
[
"01_normal",
"02_tapered",
"03_pyriform",
"04_amorphous"
] |
hkivancoral/hushem_1x_deit_tiny_rms_lr00001_fold2
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# hushem_1x_deit_tiny_rms_lr00001_fold2
This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co/facebook/deit-tiny-patch16-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1351
- Accuracy: 0.6889
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 6 | 1.2498 | 0.4444 |
| 1.3042 | 2.0 | 12 | 1.0549 | 0.6222 |
| 1.3042 | 3.0 | 18 | 1.0499 | 0.6444 |
| 0.513 | 4.0 | 24 | 1.0344 | 0.6444 |
| 0.1791 | 5.0 | 30 | 1.0697 | 0.5333 |
| 0.1791 | 6.0 | 36 | 1.0207 | 0.6889 |
| 0.0528 | 7.0 | 42 | 0.9620 | 0.6889 |
| 0.0528 | 8.0 | 48 | 1.0015 | 0.6444 |
| 0.0178 | 9.0 | 54 | 0.9911 | 0.6667 |
| 0.0068 | 10.0 | 60 | 1.0253 | 0.6667 |
| 0.0068 | 11.0 | 66 | 1.0141 | 0.6889 |
| 0.0039 | 12.0 | 72 | 1.0366 | 0.6444 |
| 0.0039 | 13.0 | 78 | 1.0348 | 0.6889 |
| 0.0028 | 14.0 | 84 | 1.0325 | 0.6889 |
| 0.0023 | 15.0 | 90 | 1.0525 | 0.6889 |
| 0.0023 | 16.0 | 96 | 1.0555 | 0.6889 |
| 0.0019 | 17.0 | 102 | 1.0728 | 0.6667 |
| 0.0019 | 18.0 | 108 | 1.0773 | 0.6889 |
| 0.0016 | 19.0 | 114 | 1.0791 | 0.6667 |
| 0.0014 | 20.0 | 120 | 1.0906 | 0.6667 |
| 0.0014 | 21.0 | 126 | 1.0852 | 0.6889 |
| 0.0013 | 22.0 | 132 | 1.0885 | 0.7111 |
| 0.0013 | 23.0 | 138 | 1.1009 | 0.6889 |
| 0.0012 | 24.0 | 144 | 1.1078 | 0.6889 |
| 0.001 | 25.0 | 150 | 1.1057 | 0.7111 |
| 0.001 | 26.0 | 156 | 1.1088 | 0.7111 |
| 0.001 | 27.0 | 162 | 1.1100 | 0.7111 |
| 0.001 | 28.0 | 168 | 1.1174 | 0.6889 |
| 0.0009 | 29.0 | 174 | 1.1173 | 0.6889 |
| 0.0009 | 30.0 | 180 | 1.1217 | 0.6889 |
| 0.0009 | 31.0 | 186 | 1.1218 | 0.6889 |
| 0.0008 | 32.0 | 192 | 1.1230 | 0.6889 |
| 0.0008 | 33.0 | 198 | 1.1264 | 0.6889 |
| 0.0008 | 34.0 | 204 | 1.1266 | 0.6889 |
| 0.0008 | 35.0 | 210 | 1.1281 | 0.6889 |
| 0.0008 | 36.0 | 216 | 1.1299 | 0.6889 |
| 0.0007 | 37.0 | 222 | 1.1316 | 0.6889 |
| 0.0007 | 38.0 | 228 | 1.1339 | 0.6889 |
| 0.0007 | 39.0 | 234 | 1.1344 | 0.6889 |
| 0.0007 | 40.0 | 240 | 1.1349 | 0.6889 |
| 0.0007 | 41.0 | 246 | 1.1350 | 0.6889 |
| 0.0007 | 42.0 | 252 | 1.1351 | 0.6889 |
| 0.0007 | 43.0 | 258 | 1.1351 | 0.6889 |
| 0.0007 | 44.0 | 264 | 1.1351 | 0.6889 |
| 0.0007 | 45.0 | 270 | 1.1351 | 0.6889 |
| 0.0007 | 46.0 | 276 | 1.1351 | 0.6889 |
| 0.0007 | 47.0 | 282 | 1.1351 | 0.6889 |
| 0.0007 | 48.0 | 288 | 1.1351 | 0.6889 |
| 0.0007 | 49.0 | 294 | 1.1351 | 0.6889 |
| 0.0007 | 50.0 | 300 | 1.1351 | 0.6889 |
### Framework versions
- Transformers 4.35.0
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1
|
[
"01_normal",
"02_tapered",
"03_pyriform",
"04_amorphous"
] |
hkivancoral/hushem_1x_deit_tiny_rms_lr00001_fold3
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# hushem_1x_deit_tiny_rms_lr00001_fold3
This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co/facebook/deit-tiny-patch16-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7349
- Accuracy: 0.6977
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 6 | 1.2207 | 0.4419 |
| 1.2147 | 2.0 | 12 | 0.9891 | 0.6047 |
| 1.2147 | 3.0 | 18 | 0.7510 | 0.7209 |
| 0.576 | 4.0 | 24 | 0.7741 | 0.7209 |
| 0.2188 | 5.0 | 30 | 0.7926 | 0.6279 |
| 0.2188 | 6.0 | 36 | 0.8648 | 0.6047 |
| 0.0657 | 7.0 | 42 | 0.9083 | 0.6279 |
| 0.0657 | 8.0 | 48 | 0.6744 | 0.7209 |
| 0.024 | 9.0 | 54 | 0.6865 | 0.6744 |
| 0.0081 | 10.0 | 60 | 0.7121 | 0.7209 |
| 0.0081 | 11.0 | 66 | 0.7038 | 0.6279 |
| 0.0043 | 12.0 | 72 | 0.6990 | 0.6977 |
| 0.0043 | 13.0 | 78 | 0.6958 | 0.6744 |
| 0.003 | 14.0 | 84 | 0.7014 | 0.6744 |
| 0.0024 | 15.0 | 90 | 0.6973 | 0.6744 |
| 0.0024 | 16.0 | 96 | 0.7050 | 0.6744 |
| 0.002 | 17.0 | 102 | 0.7045 | 0.6512 |
| 0.002 | 18.0 | 108 | 0.7008 | 0.6512 |
| 0.0017 | 19.0 | 114 | 0.7130 | 0.6744 |
| 0.0015 | 20.0 | 120 | 0.7143 | 0.6744 |
| 0.0015 | 21.0 | 126 | 0.7112 | 0.6744 |
| 0.0013 | 22.0 | 132 | 0.7160 | 0.6744 |
| 0.0013 | 23.0 | 138 | 0.7131 | 0.6744 |
| 0.0012 | 24.0 | 144 | 0.7144 | 0.6744 |
| 0.0011 | 25.0 | 150 | 0.7160 | 0.6744 |
| 0.0011 | 26.0 | 156 | 0.7202 | 0.6977 |
| 0.001 | 27.0 | 162 | 0.7225 | 0.6977 |
| 0.001 | 28.0 | 168 | 0.7211 | 0.6744 |
| 0.001 | 29.0 | 174 | 0.7237 | 0.6977 |
| 0.0009 | 30.0 | 180 | 0.7265 | 0.6977 |
| 0.0009 | 31.0 | 186 | 0.7272 | 0.6977 |
| 0.0008 | 32.0 | 192 | 0.7283 | 0.6977 |
| 0.0008 | 33.0 | 198 | 0.7304 | 0.6977 |
| 0.0008 | 34.0 | 204 | 0.7314 | 0.6977 |
| 0.0008 | 35.0 | 210 | 0.7309 | 0.6977 |
| 0.0008 | 36.0 | 216 | 0.7324 | 0.6977 |
| 0.0008 | 37.0 | 222 | 0.7325 | 0.6977 |
| 0.0008 | 38.0 | 228 | 0.7335 | 0.6977 |
| 0.0007 | 39.0 | 234 | 0.7342 | 0.6977 |
| 0.0007 | 40.0 | 240 | 0.7346 | 0.6977 |
| 0.0007 | 41.0 | 246 | 0.7348 | 0.6977 |
| 0.0007 | 42.0 | 252 | 0.7349 | 0.6977 |
| 0.0007 | 43.0 | 258 | 0.7349 | 0.6977 |
| 0.0007 | 44.0 | 264 | 0.7349 | 0.6977 |
| 0.0007 | 45.0 | 270 | 0.7349 | 0.6977 |
| 0.0007 | 46.0 | 276 | 0.7349 | 0.6977 |
| 0.0007 | 47.0 | 282 | 0.7349 | 0.6977 |
| 0.0007 | 48.0 | 288 | 0.7349 | 0.6977 |
| 0.0007 | 49.0 | 294 | 0.7349 | 0.6977 |
| 0.0007 | 50.0 | 300 | 0.7349 | 0.6977 |
### Framework versions
- Transformers 4.35.0
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1
|
[
"01_normal",
"02_tapered",
"03_pyriform",
"04_amorphous"
] |
hkivancoral/hushem_1x_deit_tiny_rms_lr00001_fold4
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# hushem_1x_deit_tiny_rms_lr00001_fold4
This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co/facebook/deit-tiny-patch16-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6971
- Accuracy: 0.7619
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 6 | 1.1869 | 0.4762 |
| 1.3589 | 2.0 | 12 | 1.4321 | 0.2381 |
| 1.3589 | 3.0 | 18 | 0.8086 | 0.7143 |
| 0.7587 | 4.0 | 24 | 0.7860 | 0.6667 |
| 0.3552 | 5.0 | 30 | 0.6443 | 0.7143 |
| 0.3552 | 6.0 | 36 | 0.6345 | 0.7381 |
| 0.1624 | 7.0 | 42 | 0.6029 | 0.7381 |
| 0.1624 | 8.0 | 48 | 0.6145 | 0.6667 |
| 0.0655 | 9.0 | 54 | 0.6448 | 0.6905 |
| 0.0257 | 10.0 | 60 | 0.6084 | 0.7381 |
| 0.0257 | 11.0 | 66 | 0.5594 | 0.7143 |
| 0.0099 | 12.0 | 72 | 0.6088 | 0.7381 |
| 0.0099 | 13.0 | 78 | 0.6402 | 0.7619 |
| 0.0054 | 14.0 | 84 | 0.6319 | 0.7381 |
| 0.0038 | 15.0 | 90 | 0.6323 | 0.7619 |
| 0.0038 | 16.0 | 96 | 0.6432 | 0.7381 |
| 0.0029 | 17.0 | 102 | 0.6446 | 0.7381 |
| 0.0029 | 18.0 | 108 | 0.6470 | 0.7381 |
| 0.0023 | 19.0 | 114 | 0.6562 | 0.7381 |
| 0.002 | 20.0 | 120 | 0.6656 | 0.7381 |
| 0.002 | 21.0 | 126 | 0.6696 | 0.7381 |
| 0.0017 | 22.0 | 132 | 0.6739 | 0.7381 |
| 0.0017 | 23.0 | 138 | 0.6722 | 0.7619 |
| 0.0015 | 24.0 | 144 | 0.6705 | 0.7619 |
| 0.0014 | 25.0 | 150 | 0.6761 | 0.7619 |
| 0.0014 | 26.0 | 156 | 0.6768 | 0.7619 |
| 0.0012 | 27.0 | 162 | 0.6844 | 0.7619 |
| 0.0012 | 28.0 | 168 | 0.6843 | 0.7619 |
| 0.0012 | 29.0 | 174 | 0.6854 | 0.7619 |
| 0.0011 | 30.0 | 180 | 0.6913 | 0.7619 |
| 0.0011 | 31.0 | 186 | 0.6928 | 0.7619 |
| 0.001 | 32.0 | 192 | 0.6912 | 0.7619 |
| 0.001 | 33.0 | 198 | 0.6912 | 0.7619 |
| 0.001 | 34.0 | 204 | 0.6924 | 0.7619 |
| 0.0009 | 35.0 | 210 | 0.6912 | 0.7619 |
| 0.0009 | 36.0 | 216 | 0.6935 | 0.7619 |
| 0.0009 | 37.0 | 222 | 0.6948 | 0.7619 |
| 0.0009 | 38.0 | 228 | 0.6957 | 0.7619 |
| 0.0009 | 39.0 | 234 | 0.6966 | 0.7619 |
| 0.0009 | 40.0 | 240 | 0.6969 | 0.7619 |
| 0.0009 | 41.0 | 246 | 0.6971 | 0.7619 |
| 0.0009 | 42.0 | 252 | 0.6971 | 0.7619 |
| 0.0009 | 43.0 | 258 | 0.6971 | 0.7619 |
| 0.0008 | 44.0 | 264 | 0.6971 | 0.7619 |
| 0.0009 | 45.0 | 270 | 0.6971 | 0.7619 |
| 0.0009 | 46.0 | 276 | 0.6971 | 0.7619 |
| 0.0008 | 47.0 | 282 | 0.6971 | 0.7619 |
| 0.0008 | 48.0 | 288 | 0.6971 | 0.7619 |
| 0.0009 | 49.0 | 294 | 0.6971 | 0.7619 |
| 0.0009 | 50.0 | 300 | 0.6971 | 0.7619 |
### Framework versions
- Transformers 4.35.0
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1
|
[
"01_normal",
"02_tapered",
"03_pyriform",
"04_amorphous"
] |
hkivancoral/hushem_1x_deit_tiny_rms_lr00001_fold5
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# hushem_1x_deit_tiny_rms_lr00001_fold5
This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co/facebook/deit-tiny-patch16-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8230
- Accuracy: 0.7073
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 6 | 1.1737 | 0.4634 |
| 1.1816 | 2.0 | 12 | 0.8675 | 0.5366 |
| 1.1816 | 3.0 | 18 | 0.8079 | 0.6341 |
| 0.5246 | 4.0 | 24 | 0.8632 | 0.5854 |
| 0.2225 | 5.0 | 30 | 0.7815 | 0.5610 |
| 0.2225 | 6.0 | 36 | 0.6787 | 0.6585 |
| 0.0792 | 7.0 | 42 | 0.7052 | 0.6585 |
| 0.0792 | 8.0 | 48 | 0.7120 | 0.6341 |
| 0.029 | 9.0 | 54 | 0.8373 | 0.6585 |
| 0.0096 | 10.0 | 60 | 0.6713 | 0.7317 |
| 0.0096 | 11.0 | 66 | 0.7185 | 0.7073 |
| 0.0045 | 12.0 | 72 | 0.7237 | 0.6829 |
| 0.0045 | 13.0 | 78 | 0.7062 | 0.6829 |
| 0.0033 | 14.0 | 84 | 0.7203 | 0.7073 |
| 0.0025 | 15.0 | 90 | 0.7207 | 0.7073 |
| 0.0025 | 16.0 | 96 | 0.7400 | 0.7073 |
| 0.002 | 17.0 | 102 | 0.7337 | 0.6829 |
| 0.002 | 18.0 | 108 | 0.7527 | 0.6829 |
| 0.0017 | 19.0 | 114 | 0.7553 | 0.6829 |
| 0.0015 | 20.0 | 120 | 0.7631 | 0.6829 |
| 0.0015 | 21.0 | 126 | 0.7684 | 0.6829 |
| 0.0014 | 22.0 | 132 | 0.7730 | 0.6829 |
| 0.0014 | 23.0 | 138 | 0.7803 | 0.6829 |
| 0.0012 | 24.0 | 144 | 0.7869 | 0.6829 |
| 0.0011 | 25.0 | 150 | 0.7854 | 0.6829 |
| 0.0011 | 26.0 | 156 | 0.7958 | 0.6829 |
| 0.001 | 27.0 | 162 | 0.7899 | 0.6829 |
| 0.001 | 28.0 | 168 | 0.7956 | 0.6829 |
| 0.001 | 29.0 | 174 | 0.8038 | 0.6829 |
| 0.0009 | 30.0 | 180 | 0.8059 | 0.6829 |
| 0.0009 | 31.0 | 186 | 0.8121 | 0.6829 |
| 0.0008 | 32.0 | 192 | 0.8137 | 0.6829 |
| 0.0008 | 33.0 | 198 | 0.8161 | 0.6829 |
| 0.0008 | 34.0 | 204 | 0.8136 | 0.6829 |
| 0.0008 | 35.0 | 210 | 0.8158 | 0.6829 |
| 0.0008 | 36.0 | 216 | 0.8175 | 0.7073 |
| 0.0007 | 37.0 | 222 | 0.8190 | 0.7073 |
| 0.0007 | 38.0 | 228 | 0.8213 | 0.7073 |
| 0.0007 | 39.0 | 234 | 0.8222 | 0.7073 |
| 0.0007 | 40.0 | 240 | 0.8227 | 0.7073 |
| 0.0007 | 41.0 | 246 | 0.8228 | 0.7073 |
| 0.0007 | 42.0 | 252 | 0.8230 | 0.7073 |
| 0.0007 | 43.0 | 258 | 0.8230 | 0.7073 |
| 0.0007 | 44.0 | 264 | 0.8230 | 0.7073 |
| 0.0007 | 45.0 | 270 | 0.8230 | 0.7073 |
| 0.0007 | 46.0 | 276 | 0.8230 | 0.7073 |
| 0.0007 | 47.0 | 282 | 0.8230 | 0.7073 |
| 0.0007 | 48.0 | 288 | 0.8230 | 0.7073 |
| 0.0007 | 49.0 | 294 | 0.8230 | 0.7073 |
| 0.0007 | 50.0 | 300 | 0.8230 | 0.7073 |
### Framework versions
- Transformers 4.35.0
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1
|
[
"01_normal",
"02_tapered",
"03_pyriform",
"04_amorphous"
] |
hkivancoral/hushem_1x_deit_tiny_sgd_lr00001_fold1
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# hushem_1x_deit_tiny_sgd_lr00001_fold1
This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co/facebook/deit-tiny-patch16-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 1.6574
- Accuracy: 0.2667
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 6 | 1.6633 | 0.2667 |
| 1.6088 | 2.0 | 12 | 1.6630 | 0.2667 |
| 1.6088 | 3.0 | 18 | 1.6627 | 0.2667 |
| 1.5763 | 4.0 | 24 | 1.6624 | 0.2667 |
| 1.6076 | 5.0 | 30 | 1.6621 | 0.2667 |
| 1.6076 | 6.0 | 36 | 1.6618 | 0.2667 |
| 1.5951 | 7.0 | 42 | 1.6616 | 0.2667 |
| 1.5951 | 8.0 | 48 | 1.6613 | 0.2667 |
| 1.5898 | 9.0 | 54 | 1.6611 | 0.2667 |
| 1.5905 | 10.0 | 60 | 1.6609 | 0.2667 |
| 1.5905 | 11.0 | 66 | 1.6606 | 0.2667 |
| 1.5785 | 12.0 | 72 | 1.6604 | 0.2667 |
| 1.5785 | 13.0 | 78 | 1.6602 | 0.2667 |
| 1.623 | 14.0 | 84 | 1.6600 | 0.2667 |
| 1.5698 | 15.0 | 90 | 1.6598 | 0.2667 |
| 1.5698 | 16.0 | 96 | 1.6596 | 0.2667 |
| 1.5831 | 17.0 | 102 | 1.6594 | 0.2667 |
| 1.5831 | 18.0 | 108 | 1.6593 | 0.2667 |
| 1.6234 | 19.0 | 114 | 1.6591 | 0.2667 |
| 1.605 | 20.0 | 120 | 1.6589 | 0.2667 |
| 1.605 | 21.0 | 126 | 1.6588 | 0.2667 |
| 1.6023 | 22.0 | 132 | 1.6586 | 0.2667 |
| 1.6023 | 23.0 | 138 | 1.6585 | 0.2667 |
| 1.5903 | 24.0 | 144 | 1.6584 | 0.2667 |
| 1.5877 | 25.0 | 150 | 1.6583 | 0.2667 |
| 1.5877 | 26.0 | 156 | 1.6582 | 0.2667 |
| 1.5697 | 27.0 | 162 | 1.6581 | 0.2667 |
| 1.5697 | 28.0 | 168 | 1.6580 | 0.2667 |
| 1.6252 | 29.0 | 174 | 1.6579 | 0.2667 |
| 1.6032 | 30.0 | 180 | 1.6578 | 0.2667 |
| 1.6032 | 31.0 | 186 | 1.6577 | 0.2667 |
| 1.6035 | 32.0 | 192 | 1.6577 | 0.2667 |
| 1.6035 | 33.0 | 198 | 1.6576 | 0.2667 |
| 1.5747 | 34.0 | 204 | 1.6575 | 0.2667 |
| 1.5966 | 35.0 | 210 | 1.6575 | 0.2667 |
| 1.5966 | 36.0 | 216 | 1.6575 | 0.2667 |
| 1.5685 | 37.0 | 222 | 1.6574 | 0.2667 |
| 1.5685 | 38.0 | 228 | 1.6574 | 0.2667 |
| 1.5973 | 39.0 | 234 | 1.6574 | 0.2667 |
| 1.5951 | 40.0 | 240 | 1.6574 | 0.2667 |
| 1.5951 | 41.0 | 246 | 1.6574 | 0.2667 |
| 1.5959 | 42.0 | 252 | 1.6574 | 0.2667 |
| 1.5959 | 43.0 | 258 | 1.6574 | 0.2667 |
| 1.6121 | 44.0 | 264 | 1.6574 | 0.2667 |
| 1.5823 | 45.0 | 270 | 1.6574 | 0.2667 |
| 1.5823 | 46.0 | 276 | 1.6574 | 0.2667 |
| 1.5911 | 47.0 | 282 | 1.6574 | 0.2667 |
| 1.5911 | 48.0 | 288 | 1.6574 | 0.2667 |
| 1.6171 | 49.0 | 294 | 1.6574 | 0.2667 |
| 1.5945 | 50.0 | 300 | 1.6574 | 0.2667 |
### Framework versions
- Transformers 4.35.0
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1
|
[
"01_normal",
"02_tapered",
"03_pyriform",
"04_amorphous"
] |
hkivancoral/hushem_1x_deit_tiny_sgd_lr00001_fold2
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# hushem_1x_deit_tiny_sgd_lr00001_fold2
This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co/facebook/deit-tiny-patch16-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 1.6351
- Accuracy: 0.1333
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 6 | 1.6407 | 0.1333 |
| 1.6149 | 2.0 | 12 | 1.6404 | 0.1333 |
| 1.6149 | 3.0 | 18 | 1.6401 | 0.1333 |
| 1.588 | 4.0 | 24 | 1.6398 | 0.1333 |
| 1.6243 | 5.0 | 30 | 1.6396 | 0.1333 |
| 1.6243 | 6.0 | 36 | 1.6393 | 0.1333 |
| 1.6041 | 7.0 | 42 | 1.6390 | 0.1333 |
| 1.6041 | 8.0 | 48 | 1.6388 | 0.1333 |
| 1.5784 | 9.0 | 54 | 1.6386 | 0.1333 |
| 1.61 | 10.0 | 60 | 1.6383 | 0.1333 |
| 1.61 | 11.0 | 66 | 1.6381 | 0.1333 |
| 1.5857 | 12.0 | 72 | 1.6379 | 0.1333 |
| 1.5857 | 13.0 | 78 | 1.6377 | 0.1333 |
| 1.6282 | 14.0 | 84 | 1.6375 | 0.1333 |
| 1.5739 | 15.0 | 90 | 1.6373 | 0.1333 |
| 1.5739 | 16.0 | 96 | 1.6372 | 0.1333 |
| 1.5784 | 17.0 | 102 | 1.6370 | 0.1333 |
| 1.5784 | 18.0 | 108 | 1.6368 | 0.1333 |
| 1.6525 | 19.0 | 114 | 1.6367 | 0.1333 |
| 1.5978 | 20.0 | 120 | 1.6365 | 0.1333 |
| 1.5978 | 21.0 | 126 | 1.6364 | 0.1333 |
| 1.6239 | 22.0 | 132 | 1.6362 | 0.1333 |
| 1.6239 | 23.0 | 138 | 1.6361 | 0.1333 |
| 1.581 | 24.0 | 144 | 1.6360 | 0.1333 |
| 1.597 | 25.0 | 150 | 1.6359 | 0.1333 |
| 1.597 | 26.0 | 156 | 1.6358 | 0.1333 |
| 1.5864 | 27.0 | 162 | 1.6357 | 0.1333 |
| 1.5864 | 28.0 | 168 | 1.6356 | 0.1333 |
| 1.6236 | 29.0 | 174 | 1.6355 | 0.1333 |
| 1.6201 | 30.0 | 180 | 1.6354 | 0.1333 |
| 1.6201 | 31.0 | 186 | 1.6354 | 0.1333 |
| 1.6018 | 32.0 | 192 | 1.6353 | 0.1333 |
| 1.6018 | 33.0 | 198 | 1.6352 | 0.1333 |
| 1.5711 | 34.0 | 204 | 1.6352 | 0.1333 |
| 1.6003 | 35.0 | 210 | 1.6352 | 0.1333 |
| 1.6003 | 36.0 | 216 | 1.6351 | 0.1333 |
| 1.5762 | 37.0 | 222 | 1.6351 | 0.1333 |
| 1.5762 | 38.0 | 228 | 1.6351 | 0.1333 |
| 1.5979 | 39.0 | 234 | 1.6351 | 0.1333 |
| 1.6035 | 40.0 | 240 | 1.6351 | 0.1333 |
| 1.6035 | 41.0 | 246 | 1.6351 | 0.1333 |
| 1.5976 | 42.0 | 252 | 1.6351 | 0.1333 |
| 1.5976 | 43.0 | 258 | 1.6351 | 0.1333 |
| 1.5981 | 44.0 | 264 | 1.6351 | 0.1333 |
| 1.5912 | 45.0 | 270 | 1.6351 | 0.1333 |
| 1.5912 | 46.0 | 276 | 1.6351 | 0.1333 |
| 1.5981 | 47.0 | 282 | 1.6351 | 0.1333 |
| 1.5981 | 48.0 | 288 | 1.6351 | 0.1333 |
| 1.6158 | 49.0 | 294 | 1.6351 | 0.1333 |
| 1.593 | 50.0 | 300 | 1.6351 | 0.1333 |
### Framework versions
- Transformers 4.35.0
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1
|
[
"01_normal",
"02_tapered",
"03_pyriform",
"04_amorphous"
] |
hkivancoral/hushem_1x_deit_tiny_sgd_lr00001_fold3
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# hushem_1x_deit_tiny_sgd_lr00001_fold3
This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co/facebook/deit-tiny-patch16-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 1.5383
- Accuracy: 0.3023
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 6 | 1.5437 | 0.3023 |
| 1.6283 | 2.0 | 12 | 1.5434 | 0.3023 |
| 1.6283 | 3.0 | 18 | 1.5431 | 0.3023 |
| 1.63 | 4.0 | 24 | 1.5428 | 0.3023 |
| 1.6367 | 5.0 | 30 | 1.5426 | 0.3023 |
| 1.6367 | 6.0 | 36 | 1.5423 | 0.3023 |
| 1.6273 | 7.0 | 42 | 1.5421 | 0.3023 |
| 1.6273 | 8.0 | 48 | 1.5419 | 0.3023 |
| 1.6489 | 9.0 | 54 | 1.5417 | 0.3023 |
| 1.5924 | 10.0 | 60 | 1.5414 | 0.3023 |
| 1.5924 | 11.0 | 66 | 1.5412 | 0.3023 |
| 1.6227 | 12.0 | 72 | 1.5411 | 0.3023 |
| 1.6227 | 13.0 | 78 | 1.5409 | 0.3023 |
| 1.6367 | 14.0 | 84 | 1.5407 | 0.3023 |
| 1.622 | 15.0 | 90 | 1.5405 | 0.3023 |
| 1.622 | 16.0 | 96 | 1.5403 | 0.3023 |
| 1.621 | 17.0 | 102 | 1.5401 | 0.3023 |
| 1.621 | 18.0 | 108 | 1.5400 | 0.3023 |
| 1.6386 | 19.0 | 114 | 1.5398 | 0.3023 |
| 1.6207 | 20.0 | 120 | 1.5397 | 0.3023 |
| 1.6207 | 21.0 | 126 | 1.5395 | 0.3023 |
| 1.6152 | 22.0 | 132 | 1.5394 | 0.3023 |
| 1.6152 | 23.0 | 138 | 1.5393 | 0.3023 |
| 1.6503 | 24.0 | 144 | 1.5392 | 0.3023 |
| 1.6219 | 25.0 | 150 | 1.5390 | 0.3023 |
| 1.6219 | 26.0 | 156 | 1.5389 | 0.3023 |
| 1.6152 | 27.0 | 162 | 1.5389 | 0.3023 |
| 1.6152 | 28.0 | 168 | 1.5388 | 0.3023 |
| 1.6192 | 29.0 | 174 | 1.5387 | 0.3023 |
| 1.6111 | 30.0 | 180 | 1.5386 | 0.3023 |
| 1.6111 | 31.0 | 186 | 1.5386 | 0.3023 |
| 1.6114 | 32.0 | 192 | 1.5385 | 0.3023 |
| 1.6114 | 33.0 | 198 | 1.5384 | 0.3023 |
| 1.6361 | 34.0 | 204 | 1.5384 | 0.3023 |
| 1.6146 | 35.0 | 210 | 1.5384 | 0.3023 |
| 1.6146 | 36.0 | 216 | 1.5383 | 0.3023 |
| 1.6254 | 37.0 | 222 | 1.5383 | 0.3023 |
| 1.6254 | 38.0 | 228 | 1.5383 | 0.3023 |
| 1.6124 | 39.0 | 234 | 1.5383 | 0.3023 |
| 1.6367 | 40.0 | 240 | 1.5383 | 0.3023 |
| 1.6367 | 41.0 | 246 | 1.5383 | 0.3023 |
| 1.6229 | 42.0 | 252 | 1.5383 | 0.3023 |
| 1.6229 | 43.0 | 258 | 1.5383 | 0.3023 |
| 1.6506 | 44.0 | 264 | 1.5383 | 0.3023 |
| 1.6148 | 45.0 | 270 | 1.5383 | 0.3023 |
| 1.6148 | 46.0 | 276 | 1.5383 | 0.3023 |
| 1.6242 | 47.0 | 282 | 1.5383 | 0.3023 |
| 1.6242 | 48.0 | 288 | 1.5383 | 0.3023 |
| 1.6087 | 49.0 | 294 | 1.5383 | 0.3023 |
| 1.6097 | 50.0 | 300 | 1.5383 | 0.3023 |
### Framework versions
- Transformers 4.35.0
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1
|
[
"01_normal",
"02_tapered",
"03_pyriform",
"04_amorphous"
] |
hkivancoral/hushem_1x_deit_tiny_sgd_lr00001_fold4
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# hushem_1x_deit_tiny_sgd_lr00001_fold4
This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co/facebook/deit-tiny-patch16-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 1.5565
- Accuracy: 0.1905
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 6 | 1.5632 | 0.1905 |
| 1.6067 | 2.0 | 12 | 1.5628 | 0.1905 |
| 1.6067 | 3.0 | 18 | 1.5625 | 0.1905 |
| 1.6234 | 4.0 | 24 | 1.5621 | 0.1905 |
| 1.6412 | 5.0 | 30 | 1.5618 | 0.1905 |
| 1.6412 | 6.0 | 36 | 1.5615 | 0.1905 |
| 1.6304 | 7.0 | 42 | 1.5612 | 0.1905 |
| 1.6304 | 8.0 | 48 | 1.5609 | 0.1905 |
| 1.6339 | 9.0 | 54 | 1.5606 | 0.1905 |
| 1.6208 | 10.0 | 60 | 1.5604 | 0.1905 |
| 1.6208 | 11.0 | 66 | 1.5601 | 0.1905 |
| 1.599 | 12.0 | 72 | 1.5598 | 0.1905 |
| 1.599 | 13.0 | 78 | 1.5596 | 0.1905 |
| 1.6454 | 14.0 | 84 | 1.5594 | 0.1905 |
| 1.5993 | 15.0 | 90 | 1.5591 | 0.1905 |
| 1.5993 | 16.0 | 96 | 1.5589 | 0.1905 |
| 1.6104 | 17.0 | 102 | 1.5587 | 0.1905 |
| 1.6104 | 18.0 | 108 | 1.5585 | 0.1905 |
| 1.5995 | 19.0 | 114 | 1.5584 | 0.1905 |
| 1.6359 | 20.0 | 120 | 1.5582 | 0.1905 |
| 1.6359 | 21.0 | 126 | 1.5580 | 0.1905 |
| 1.5868 | 22.0 | 132 | 1.5579 | 0.1905 |
| 1.5868 | 23.0 | 138 | 1.5577 | 0.1905 |
| 1.67 | 24.0 | 144 | 1.5576 | 0.1905 |
| 1.5662 | 25.0 | 150 | 1.5575 | 0.1905 |
| 1.5662 | 26.0 | 156 | 1.5573 | 0.1905 |
| 1.6118 | 27.0 | 162 | 1.5572 | 0.1905 |
| 1.6118 | 28.0 | 168 | 1.5571 | 0.1905 |
| 1.6163 | 29.0 | 174 | 1.5570 | 0.1905 |
| 1.6392 | 30.0 | 180 | 1.5569 | 0.1905 |
| 1.6392 | 31.0 | 186 | 1.5568 | 0.1905 |
| 1.6602 | 32.0 | 192 | 1.5568 | 0.1905 |
| 1.6602 | 33.0 | 198 | 1.5567 | 0.1905 |
| 1.5354 | 34.0 | 204 | 1.5567 | 0.1905 |
| 1.6205 | 35.0 | 210 | 1.5566 | 0.1905 |
| 1.6205 | 36.0 | 216 | 1.5566 | 0.1905 |
| 1.6201 | 37.0 | 222 | 1.5565 | 0.1905 |
| 1.6201 | 38.0 | 228 | 1.5565 | 0.1905 |
| 1.5923 | 39.0 | 234 | 1.5565 | 0.1905 |
| 1.6521 | 40.0 | 240 | 1.5565 | 0.1905 |
| 1.6521 | 41.0 | 246 | 1.5565 | 0.1905 |
| 1.6177 | 42.0 | 252 | 1.5565 | 0.1905 |
| 1.6177 | 43.0 | 258 | 1.5565 | 0.1905 |
| 1.6437 | 44.0 | 264 | 1.5565 | 0.1905 |
| 1.5948 | 45.0 | 270 | 1.5565 | 0.1905 |
| 1.5948 | 46.0 | 276 | 1.5565 | 0.1905 |
| 1.6236 | 47.0 | 282 | 1.5565 | 0.1905 |
| 1.6236 | 48.0 | 288 | 1.5565 | 0.1905 |
| 1.6168 | 49.0 | 294 | 1.5565 | 0.1905 |
| 1.6032 | 50.0 | 300 | 1.5565 | 0.1905 |
### Framework versions
- Transformers 4.35.0
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1
|
[
"01_normal",
"02_tapered",
"03_pyriform",
"04_amorphous"
] |
hkivancoral/hushem_1x_deit_tiny_sgd_lr00001_fold5
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# hushem_1x_deit_tiny_sgd_lr00001_fold5
This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co/facebook/deit-tiny-patch16-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 1.6421
- Accuracy: 0.1220
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 6 | 1.6490 | 0.1220 |
| 1.6062 | 2.0 | 12 | 1.6487 | 0.1220 |
| 1.6062 | 3.0 | 18 | 1.6483 | 0.1220 |
| 1.6229 | 4.0 | 24 | 1.6480 | 0.1220 |
| 1.5995 | 5.0 | 30 | 1.6477 | 0.1220 |
| 1.5995 | 6.0 | 36 | 1.6474 | 0.1220 |
| 1.5906 | 7.0 | 42 | 1.6470 | 0.1220 |
| 1.5906 | 8.0 | 48 | 1.6468 | 0.1220 |
| 1.609 | 9.0 | 54 | 1.6465 | 0.1220 |
| 1.6018 | 10.0 | 60 | 1.6462 | 0.1220 |
| 1.6018 | 11.0 | 66 | 1.6459 | 0.1220 |
| 1.5944 | 12.0 | 72 | 1.6457 | 0.1220 |
| 1.5944 | 13.0 | 78 | 1.6454 | 0.1220 |
| 1.6013 | 14.0 | 84 | 1.6452 | 0.1220 |
| 1.5987 | 15.0 | 90 | 1.6449 | 0.1220 |
| 1.5987 | 16.0 | 96 | 1.6447 | 0.1220 |
| 1.5899 | 17.0 | 102 | 1.6445 | 0.1220 |
| 1.5899 | 18.0 | 108 | 1.6443 | 0.1220 |
| 1.626 | 19.0 | 114 | 1.6441 | 0.1220 |
| 1.5972 | 20.0 | 120 | 1.6439 | 0.1220 |
| 1.5972 | 21.0 | 126 | 1.6437 | 0.1220 |
| 1.5649 | 22.0 | 132 | 1.6436 | 0.1220 |
| 1.5649 | 23.0 | 138 | 1.6434 | 0.1220 |
| 1.6699 | 24.0 | 144 | 1.6433 | 0.1220 |
| 1.5696 | 25.0 | 150 | 1.6431 | 0.1220 |
| 1.5696 | 26.0 | 156 | 1.6430 | 0.1220 |
| 1.5743 | 27.0 | 162 | 1.6429 | 0.1220 |
| 1.5743 | 28.0 | 168 | 1.6427 | 0.1220 |
| 1.6236 | 29.0 | 174 | 1.6426 | 0.1220 |
| 1.5936 | 30.0 | 180 | 1.6426 | 0.1220 |
| 1.5936 | 31.0 | 186 | 1.6425 | 0.1220 |
| 1.5875 | 32.0 | 192 | 1.6424 | 0.1220 |
| 1.5875 | 33.0 | 198 | 1.6423 | 0.1220 |
| 1.6171 | 34.0 | 204 | 1.6423 | 0.1220 |
| 1.5897 | 35.0 | 210 | 1.6422 | 0.1220 |
| 1.5897 | 36.0 | 216 | 1.6422 | 0.1220 |
| 1.5725 | 37.0 | 222 | 1.6421 | 0.1220 |
| 1.5725 | 38.0 | 228 | 1.6421 | 0.1220 |
| 1.6227 | 39.0 | 234 | 1.6421 | 0.1220 |
| 1.5924 | 40.0 | 240 | 1.6421 | 0.1220 |
| 1.5924 | 41.0 | 246 | 1.6421 | 0.1220 |
| 1.5811 | 42.0 | 252 | 1.6421 | 0.1220 |
| 1.5811 | 43.0 | 258 | 1.6421 | 0.1220 |
| 1.6072 | 44.0 | 264 | 1.6421 | 0.1220 |
| 1.5938 | 45.0 | 270 | 1.6421 | 0.1220 |
| 1.5938 | 46.0 | 276 | 1.6421 | 0.1220 |
| 1.6243 | 47.0 | 282 | 1.6421 | 0.1220 |
| 1.6243 | 48.0 | 288 | 1.6421 | 0.1220 |
| 1.5633 | 49.0 | 294 | 1.6421 | 0.1220 |
| 1.6091 | 50.0 | 300 | 1.6421 | 0.1220 |
### Framework versions
- Transformers 4.35.0
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1
|
[
"01_normal",
"02_tapered",
"03_pyriform",
"04_amorphous"
] |
zbbg1111/swin-tiny-patch4-window7-224-finetuned-eurosat
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# swin-tiny-patch4-window7-224-finetuned-eurosat
This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0170
- Accuracy: 1.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 0.8 | 3 | 0.1346 | 1.0 |
| No log | 1.87 | 7 | 0.0209 | 1.0 |
| No log | 2.4 | 9 | 0.0170 | 1.0 |
### Framework versions
- Transformers 4.35.0
- Pytorch 2.1.0+cpu
- Datasets 2.14.6
- Tokenizers 0.14.1
|
[
"oilstorage",
"residential"
] |
anirudhmu/swin-tiny-patch4-window7-224-finetuned-soccer-binary
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# swin-tiny-patch4-window7-224-finetuned-soccer-binary
This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1138
- Accuracy: 0.9714
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.1286 | 0.96 | 12 | 0.1138 | 0.9714 |
| 0.1267 | 2.0 | 25 | 0.1283 | 0.9657 |
| 0.121 | 2.96 | 37 | 0.1124 | 0.9657 |
| 0.1142 | 4.0 | 50 | 0.1151 | 0.9657 |
| 0.1069 | 4.96 | 62 | 0.1063 | 0.96 |
| 0.1038 | 6.0 | 75 | 0.1210 | 0.96 |
| 0.0935 | 6.96 | 87 | 0.1150 | 0.96 |
| 0.1042 | 8.0 | 100 | 0.1038 | 0.9657 |
| 0.0945 | 8.96 | 112 | 0.1071 | 0.96 |
| 0.0891 | 9.6 | 120 | 0.1077 | 0.96 |
### Framework versions
- Transformers 4.35.0
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1
|
[
"closeup",
"overview"
] |
dwiedarioo/vit-base-patch16-224-in21k-finalmultibrainmri
|
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# dwiedarioo/vit-base-patch16-224-in21k-finalmultibrainmri
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.1240
- Train Accuracy: 0.9989
- Train Top-3-accuracy: 1.0
- Validation Loss: 0.2638
- Validation Accuracy: 0.9568
- Validation Top-3-accuracy: 0.9892
- Epoch: 10
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'inner_optimizer': {'module': 'transformers.optimization_tf', 'class_name': 'AdamWeightDecay', 'config': {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 3e-05, 'decay_steps': 8200, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.8999999761581421, 'beta_2': 0.9990000128746033, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}, 'registered_name': 'AdamWeightDecay'}, 'dynamic': True, 'initial_scale': 32768.0, 'dynamic_growth_steps': 2000}
- training_precision: mixed_float16
### Training results
| Train Loss | Train Accuracy | Train Top-3-accuracy | Validation Loss | Validation Accuracy | Validation Top-3-accuracy | Epoch |
|:----------:|:--------------:|:--------------------:|:---------------:|:-------------------:|:-------------------------:|:-----:|
| 2.2501 | 0.3937 | 0.6346 | 1.8763 | 0.5551 | 0.8035 | 0 |
| 1.5448 | 0.6808 | 0.8732 | 1.3666 | 0.7127 | 0.8812 | 1 |
| 1.0471 | 0.8324 | 0.9439 | 0.9732 | 0.8402 | 0.9568 | 2 |
| 0.7074 | 0.9385 | 0.9828 | 0.7078 | 0.9266 | 0.9849 | 3 |
| 0.4854 | 0.9748 | 0.9924 | 0.5190 | 0.9374 | 0.9892 | 4 |
| 0.3465 | 0.9905 | 0.9962 | 0.4126 | 0.9482 | 0.9935 | 5 |
| 0.2571 | 0.9950 | 0.9981 | 0.3267 | 0.9719 | 0.9957 | 6 |
| 0.2031 | 0.9962 | 0.9992 | 0.2788 | 0.9741 | 0.9957 | 7 |
| 0.1667 | 0.9985 | 1.0 | 0.2484 | 0.9698 | 0.9957 | 8 |
| 0.1398 | 0.9992 | 1.0 | 0.2225 | 0.9719 | 0.9957 | 9 |
| 0.1240 | 0.9989 | 1.0 | 0.2638 | 0.9568 | 0.9892 | 10 |
### Framework versions
- Transformers 4.35.0
- TensorFlow 2.14.0
- Datasets 2.14.6
- Tokenizers 0.14.1
|
[
"schwannoma",
"germinoma",
"tuberculoma",
"oligodendroglioma",
"meningioma",
"_normal",
"ganglioglioma",
"glioblastoma",
"meduloblastoma",
"neurocitoma",
"papiloma",
"astrocitoma",
"carcinoma",
"ependimoma",
"granuloma"
] |
arieg/4_100_s_clr
|
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# arieg/4_100_s_clr
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0378
- Validation Loss: 0.0380
- Train Accuracy: 1.0
- Epoch: 19
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'clipnorm': 1.0, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 3e-05, 'decay_steps': 7200, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Validation Loss | Train Accuracy | Epoch |
|:----------:|:---------------:|:--------------:|:-----:|
| 0.9829 | 0.7003 | 0.875 | 0 |
| 0.5404 | 0.3962 | 0.975 | 1 |
| 0.3221 | 0.2131 | 0.975 | 2 |
| 0.2120 | 0.1755 | 1.0 | 3 |
| 0.1496 | 0.1308 | 1.0 | 4 |
| 0.1181 | 0.1103 | 1.0 | 5 |
| 0.0998 | 0.0973 | 1.0 | 6 |
| 0.0878 | 0.0845 | 1.0 | 7 |
| 0.0790 | 0.0793 | 1.0 | 8 |
| 0.0721 | 0.0709 | 1.0 | 9 |
| 0.0665 | 0.0657 | 1.0 | 10 |
| 0.0614 | 0.0602 | 1.0 | 11 |
| 0.0571 | 0.0565 | 1.0 | 12 |
| 0.0534 | 0.0538 | 1.0 | 13 |
| 0.0501 | 0.0499 | 1.0 | 14 |
| 0.0472 | 0.0473 | 1.0 | 15 |
| 0.0445 | 0.0445 | 1.0 | 16 |
| 0.0421 | 0.0423 | 1.0 | 17 |
| 0.0398 | 0.0397 | 1.0 | 18 |
| 0.0378 | 0.0380 | 1.0 | 19 |
### Framework versions
- Transformers 4.35.0
- TensorFlow 2.14.0
- Datasets 2.14.6
- Tokenizers 0.14.1
|
[
"10",
"140",
"2",
"5"
] |
arieg/4_00_s_200
|
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# arieg/4_100_s_200
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0155
- Validation Loss: 0.0151
- Train Accuracy: 1.0
- Epoch: 19
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'clipnorm': 1.0, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 3e-05, 'decay_steps': 14400, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Validation Loss | Train Accuracy | Epoch |
|:----------:|:---------------:|:--------------:|:-----:|
| 0.6483 | 0.2667 | 1.0 | 0 |
| 0.1768 | 0.1322 | 1.0 | 1 |
| 0.1096 | 0.0960 | 1.0 | 2 |
| 0.0850 | 0.0781 | 1.0 | 3 |
| 0.0710 | 0.0663 | 1.0 | 4 |
| 0.0612 | 0.0576 | 1.0 | 5 |
| 0.0534 | 0.0506 | 1.0 | 6 |
| 0.0472 | 0.0448 | 1.0 | 7 |
| 0.0420 | 0.0400 | 1.0 | 8 |
| 0.0376 | 0.0359 | 1.0 | 9 |
| 0.0339 | 0.0324 | 1.0 | 10 |
| 0.0306 | 0.0294 | 1.0 | 11 |
| 0.0278 | 0.0267 | 1.0 | 12 |
| 0.0253 | 0.0244 | 1.0 | 13 |
| 0.0232 | 0.0223 | 1.0 | 14 |
| 0.0212 | 0.0205 | 1.0 | 15 |
| 0.0196 | 0.0189 | 1.0 | 16 |
| 0.0180 | 0.0175 | 1.0 | 17 |
| 0.0167 | 0.0162 | 1.0 | 18 |
| 0.0155 | 0.0151 | 1.0 | 19 |
### Framework versions
- Transformers 4.35.0
- TensorFlow 2.14.0
- Datasets 2.14.6
- Tokenizers 0.14.1
|
[
"10",
"140",
"2",
"5"
] |
arieg/4_01_s_200
|
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# arieg/4_01_s_200
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0156
- Validation Loss: 0.0151
- Train Accuracy: 1.0
- Epoch: 19
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'clipnorm': 1.0, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 3e-05, 'decay_steps': 14400, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Validation Loss | Train Accuracy | Epoch |
|:----------:|:---------------:|:--------------:|:-----:|
| 0.7193 | 0.2997 | 1.0 | 0 |
| 0.2007 | 0.1391 | 1.0 | 1 |
| 0.1164 | 0.0981 | 1.0 | 2 |
| 0.0881 | 0.0788 | 1.0 | 3 |
| 0.0724 | 0.0664 | 1.0 | 4 |
| 0.0618 | 0.0573 | 1.0 | 5 |
| 0.0537 | 0.0502 | 1.0 | 6 |
| 0.0474 | 0.0445 | 1.0 | 7 |
| 0.0421 | 0.0397 | 1.0 | 8 |
| 0.0377 | 0.0357 | 1.0 | 9 |
| 0.0339 | 0.0322 | 1.0 | 10 |
| 0.0307 | 0.0292 | 1.0 | 11 |
| 0.0279 | 0.0266 | 1.0 | 12 |
| 0.0254 | 0.0243 | 1.0 | 13 |
| 0.0233 | 0.0223 | 1.0 | 14 |
| 0.0214 | 0.0205 | 1.0 | 15 |
| 0.0197 | 0.0189 | 1.0 | 16 |
| 0.0182 | 0.0175 | 1.0 | 17 |
| 0.0168 | 0.0162 | 1.0 | 18 |
| 0.0156 | 0.0151 | 1.0 | 19 |
### Framework versions
- Transformers 4.35.0
- TensorFlow 2.14.0
- Datasets 2.14.6
- Tokenizers 0.14.1
|
[
"141",
"190",
"193",
"194"
] |
dima806/vehicle_10_types_image_detection
|
Return a vehicle type probability based on an image with about 93% accuracy.
See https://www.kaggle.com/code/dima806/vehicle-10-types-detection-vit for more details.
```
Classification report:
precision recall f1-score support
SUV 0.8780 0.9000 0.8889 40
bus 1.0000 1.0000 1.0000 40
family sedan 0.8571 0.9000 0.8780 40
fire engine 0.8444 0.9500 0.8941 40
heavy truck 0.9459 0.8750 0.9091 40
jeep 0.9512 0.9750 0.9630 40
minibus 0.9500 0.9500 0.9500 40
racing car 1.0000 0.9500 0.9744 40
taxi 0.9750 0.9750 0.9750 40
truck 0.9722 0.8750 0.9211 40
accuracy 0.9350 400
macro avg 0.9374 0.9350 0.9354 400
weighted avg 0.9374 0.9350 0.9354 400
```
|
[
"suv",
"bus",
"family sedan",
"fire engine",
"heavy truck",
"jeep",
"minibus",
"racing car",
"taxi",
"truck"
] |
ArtificialMargoles/vit-base-patch16-224-finetuned-flower
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# vit-base-patch16-224-finetuned-flower
This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the imagefolder dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
### Framework versions
- Transformers 4.24.0
- Pytorch 2.1.0+cu118
- Datasets 2.7.1
- Tokenizers 0.13.3
|
[
"daisy",
"dandelion",
"roses",
"sunflowers",
"tulips"
] |
dwiedarioo/vit-base-patch16-224-in21k-final2multibrainmri
|
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# dwiedarioo/vit-base-patch16-224-in21k-final2multibrainmri
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0072
- Train Accuracy: 1.0
- Train Top-3-accuracy: 1.0
- Validation Loss: 0.1111
- Validation Accuracy: 0.9719
- Validation Top-3-accuracy: 0.9914
- Epoch: 49
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'inner_optimizer': {'module': 'transformers.optimization_tf', 'class_name': 'AdamWeightDecay', 'config': {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 3e-05, 'decay_steps': 8200, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.8999999761581421, 'beta_2': 0.9990000128746033, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}, 'registered_name': 'AdamWeightDecay'}, 'dynamic': True, 'initial_scale': 32768.0, 'dynamic_growth_steps': 2000}
- training_precision: mixed_float16
### Training results
| Train Loss | Train Accuracy | Train Top-3-accuracy | Validation Loss | Validation Accuracy | Validation Top-3-accuracy | Epoch |
|:----------:|:--------------:|:--------------------:|:---------------:|:-------------------:|:-------------------------:|:-----:|
| 2.2742 | 0.3856 | 0.6522 | 1.8596 | 0.6112 | 0.8337 | 0 |
| 1.5673 | 0.6919 | 0.8778 | 1.3120 | 0.7883 | 0.9136 | 1 |
| 1.0377 | 0.8622 | 0.9576 | 0.9078 | 0.8661 | 0.9611 | 2 |
| 0.6816 | 0.9511 | 0.9859 | 0.6497 | 0.9222 | 0.9849 | 3 |
| 0.4698 | 0.9805 | 0.9939 | 0.5104 | 0.9395 | 0.9870 | 4 |
| 0.3375 | 0.9897 | 0.9973 | 0.3975 | 0.9590 | 0.9892 | 5 |
| 0.2554 | 0.9966 | 0.9992 | 0.3107 | 0.9676 | 0.9978 | 6 |
| 0.2346 | 0.9905 | 0.9992 | 0.3804 | 0.9287 | 0.9914 | 7 |
| 0.1976 | 0.9935 | 0.9989 | 0.3250 | 0.9546 | 0.9914 | 8 |
| 0.1686 | 0.9939 | 0.9992 | 0.4980 | 0.8920 | 0.9762 | 9 |
| 0.1423 | 0.9969 | 0.9996 | 0.2129 | 0.9654 | 0.9957 | 10 |
| 0.1073 | 0.9992 | 1.0 | 0.1840 | 0.9741 | 0.9978 | 11 |
| 0.0925 | 0.9992 | 1.0 | 0.1714 | 0.9719 | 0.9978 | 12 |
| 0.0809 | 0.9992 | 1.0 | 0.1595 | 0.9719 | 0.9978 | 13 |
| 0.0715 | 0.9992 | 1.0 | 0.1503 | 0.9719 | 0.9978 | 14 |
| 0.0637 | 1.0 | 1.0 | 0.1426 | 0.9762 | 0.9978 | 15 |
| 0.0573 | 0.9996 | 1.0 | 0.1361 | 0.9784 | 0.9978 | 16 |
| 0.0516 | 1.0 | 1.0 | 0.1325 | 0.9784 | 0.9957 | 17 |
| 0.0469 | 1.0 | 1.0 | 0.1279 | 0.9784 | 0.9957 | 18 |
| 0.0427 | 1.0 | 1.0 | 0.1248 | 0.9784 | 0.9957 | 19 |
| 0.0392 | 1.0 | 1.0 | 0.1224 | 0.9784 | 0.9957 | 20 |
| 0.0359 | 1.0 | 1.0 | 0.1191 | 0.9784 | 0.9957 | 21 |
| 0.0331 | 1.0 | 1.0 | 0.1178 | 0.9762 | 0.9914 | 22 |
| 0.0306 | 1.0 | 1.0 | 0.1162 | 0.9784 | 0.9957 | 23 |
| 0.0284 | 1.0 | 1.0 | 0.1144 | 0.9784 | 0.9957 | 24 |
| 0.0264 | 1.0 | 1.0 | 0.1143 | 0.9741 | 0.9957 | 25 |
| 0.0246 | 1.0 | 1.0 | 0.1126 | 0.9762 | 0.9957 | 26 |
| 0.0230 | 1.0 | 1.0 | 0.1104 | 0.9784 | 0.9957 | 27 |
| 0.0215 | 1.0 | 1.0 | 0.1110 | 0.9762 | 0.9935 | 28 |
| 0.0201 | 1.0 | 1.0 | 0.1091 | 0.9762 | 0.9957 | 29 |
| 0.0189 | 1.0 | 1.0 | 0.1101 | 0.9741 | 0.9957 | 30 |
| 0.0178 | 1.0 | 1.0 | 0.1099 | 0.9762 | 0.9914 | 31 |
| 0.0167 | 1.0 | 1.0 | 0.1091 | 0.9762 | 0.9935 | 32 |
| 0.0158 | 1.0 | 1.0 | 0.1091 | 0.9762 | 0.9914 | 33 |
| 0.0149 | 1.0 | 1.0 | 0.1094 | 0.9741 | 0.9914 | 34 |
| 0.0141 | 1.0 | 1.0 | 0.1088 | 0.9719 | 0.9914 | 35 |
| 0.0134 | 1.0 | 1.0 | 0.1089 | 0.9762 | 0.9914 | 36 |
| 0.0127 | 1.0 | 1.0 | 0.1084 | 0.9741 | 0.9935 | 37 |
| 0.0120 | 1.0 | 1.0 | 0.1087 | 0.9741 | 0.9914 | 38 |
| 0.0114 | 1.0 | 1.0 | 0.1078 | 0.9741 | 0.9914 | 39 |
| 0.0109 | 1.0 | 1.0 | 0.1088 | 0.9719 | 0.9914 | 40 |
| 0.0104 | 1.0 | 1.0 | 0.1087 | 0.9719 | 0.9914 | 41 |
| 0.0099 | 1.0 | 1.0 | 0.1094 | 0.9719 | 0.9935 | 42 |
| 0.0094 | 1.0 | 1.0 | 0.1095 | 0.9719 | 0.9914 | 43 |
| 0.0090 | 1.0 | 1.0 | 0.1099 | 0.9719 | 0.9914 | 44 |
| 0.0086 | 1.0 | 1.0 | 0.1112 | 0.9719 | 0.9914 | 45 |
| 0.0082 | 1.0 | 1.0 | 0.1104 | 0.9719 | 0.9914 | 46 |
| 0.0079 | 1.0 | 1.0 | 0.1107 | 0.9719 | 0.9914 | 47 |
| 0.0075 | 1.0 | 1.0 | 0.1102 | 0.9741 | 0.9914 | 48 |
| 0.0072 | 1.0 | 1.0 | 0.1111 | 0.9719 | 0.9914 | 49 |
### Framework versions
- Transformers 4.35.0
- TensorFlow 2.14.0
- Datasets 2.14.6
- Tokenizers 0.14.1
|
[
"schwannoma",
"germinoma",
"tuberculoma",
"oligodendroglioma",
"meningioma",
"_normal",
"ganglioglioma",
"glioblastoma",
"meduloblastoma",
"neurocitoma",
"papiloma",
"astrocitoma",
"carcinoma",
"ependimoma",
"granuloma"
] |
arieg/bw_spec_cls_4_01_noise_200
|
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# arieg/bw_spec_cls_4_01_noise_200
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0370
- Train Categorical Accuracy: 0.2486
- Validation Loss: 0.0349
- Validation Categorical Accuracy: 0.2625
- Epoch: 9
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'clipnorm': 1.0, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 3e-05, 'decay_steps': 7200, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Train Categorical Accuracy | Validation Loss | Validation Categorical Accuracy | Epoch |
|:----------:|:--------------------------:|:---------------:|:-------------------------------:|:-----:|
| 0.6021 | 0.2458 | 0.2372 | 0.2625 | 0 |
| 0.1654 | 0.2486 | 0.1210 | 0.2625 | 1 |
| 0.1042 | 0.2486 | 0.0902 | 0.2625 | 2 |
| 0.0819 | 0.2486 | 0.0741 | 0.2625 | 3 |
| 0.0688 | 0.2486 | 0.0634 | 0.2625 | 4 |
| 0.0595 | 0.2486 | 0.0553 | 0.2625 | 5 |
| 0.0522 | 0.2486 | 0.0488 | 0.2625 | 6 |
| 0.0462 | 0.2486 | 0.0434 | 0.2625 | 7 |
| 0.0412 | 0.2486 | 0.0388 | 0.2625 | 8 |
| 0.0370 | 0.2486 | 0.0349 | 0.2625 | 9 |
### Framework versions
- Transformers 4.35.0
- TensorFlow 2.14.0
- Datasets 2.14.6
- Tokenizers 0.14.1
|
[
"141",
"190",
"193",
"194"
] |
parisapouya/vit-base-beans
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# vit-base-beans
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the beans dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0146
- Accuracy: 1.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.1021 | 1.54 | 100 | 0.0688 | 0.9774 |
| 0.0438 | 3.08 | 200 | 0.0146 | 1.0 |
### Framework versions
- Transformers 4.35.0
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1
|
[
"angular_leaf_spot",
"bean_rust",
"healthy"
] |
ger99/ger-vit-model
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# ger-vit-model
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the beans dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0070
- Accuracy: 1.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.1419 | 3.85 | 500 | 0.0070 | 1.0 |
### Framework versions
- Transformers 4.35.0
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1
|
[
"angular_leaf_spot",
"bean_rust",
"healthy"
] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.