paper_url
stringlengths
35
81
arxiv_id
stringlengths
6
35
nips_id
float64
openreview_id
stringlengths
9
93
title
stringlengths
1
1.02k
abstract
stringlengths
0
56.5k
short_abstract
stringlengths
0
1.95k
url_abs
stringlengths
16
996
url_pdf
stringlengths
16
996
proceeding
stringlengths
7
1.03k
authors
listlengths
0
3.31k
tasks
listlengths
0
147
date
timestamp[ns]date
1951-09-01 00:00:00
2222-12-22 00:00:00
conference_url_abs
stringlengths
16
199
conference_url_pdf
stringlengths
21
200
conference
stringlengths
2
47
reproduces_paper
stringclasses
22 values
methods
listlengths
0
7.5k
https://paperswithcode.com/paper/vhu-net-variational-hadamard-u-net-for-body
2506.19181
null
null
VHU-Net: Variational Hadamard U-Net for Body MRI Bias Field Correction
Bias field artifacts in magnetic resonance imaging (MRI) scans introduce spatially smooth intensity inhomogeneities that degrade image quality and hinder downstream analysis. To address this challenge, we propose a novel variational Hadamard U-Net (VHU-Net) for effective body MRI bias field correction. The encoder comprises multiple convolutional Hadamard transform blocks (ConvHTBlocks), each integrating convolutional layers with a Hadamard transform (HT) layer. Specifically, the HT layer performs channel-wise frequency decomposition to isolate low-frequency components, while a subsequent scaling layer and semi-soft thresholding mechanism suppress redundant high-frequency noise. To compensate for the HT layer's inability to model inter-channel dependencies, the decoder incorporates an inverse HT-reconstructed transformer block, enabling global, frequency-aware attention for the recovery of spatially consistent bias fields. The stacked decoder ConvHTBlocks further enhance the capacity to reconstruct the underlying ground-truth bias field. Building on the principles of variational inference, we formulate a new evidence lower bound (ELBO) as the training objective, promoting sparsity in the latent space while ensuring accurate bias field estimation. Comprehensive experiments on abdominal and prostate MRI datasets demonstrate the superiority of VHU-Net over existing state-of-the-art methods in terms of intensity uniformity, signal fidelity, and tissue contrast. Moreover, the corrected images yield substantial downstream improvements in segmentation accuracy. Our framework offers computational efficiency, interpretability, and robust performance across multi-center datasets, making it suitable for clinical deployment.
null
https://arxiv.org/abs/2506.19181v1
https://arxiv.org/pdf/2506.19181v1.pdf
null
[ "Xin Zhu" ]
[ "Computational Efficiency", "Decoder", "Variational Inference" ]
2025-06-23T00:00:00
null
null
null
null
[]
https://paperswithcode.com/paper/a-deep-learning-based-method-for-fast
2506.19167
null
null
A Deep Learning Based Method for Fast Registration of Cardiac Magnetic Resonance Images
Image registration is used in many medical image analysis applications, such as tracking the motion of tissue in cardiac images, where cardiac kinematics can be an indicator of tissue health. Registration is a challenging problem for deep learning algorithms because ground truth transformations are not feasible to create, and because there are potentially multiple transformations that can produce images that appear correlated with the goal. Unsupervised methods have been proposed to learn to predict effective transformations, but these methods take significantly longer to predict than established baseline methods. For a deep learning method to see adoption in wider research and clinical settings, it should be designed to run in a reasonable time on common, mid-level hardware. Fast methods have been proposed for the task of image registration but often use patch-based methods which can affect registration accuracy for a highly dynamic organ such as the heart. In this thesis, a fast, volumetric registration model is proposed for the use of quantifying cardiac strain. The proposed Deep Learning Neural Network (DLNN) is designed to utilize an architecture that can compute convolutions incredibly efficiently, allowing the model to achieve registration fidelity similar to other state-of-the-art models while taking a fraction of the time to perform inference. The proposed fast and lightweight registration (FLIR) model is used to predict tissue motion which is then used to quantify the non-uniform strain experienced by the tissue. For acquisitions taken from the same patient at approximately the same time, it would be expected that strain values measured between the acquisitions would have very small differences. Using this metric, strain values computed using the FLIR method are shown to be very consistent.
null
https://arxiv.org/abs/2506.19167v1
https://arxiv.org/pdf/2506.19167v1.pdf
null
[ "Benjamin Graham" ]
[ "Image Registration", "Medical Image Analysis" ]
2025-06-23T00:00:00
null
null
null
null
[]
https://paperswithcode.com/paper/staining-normalization-in-histopathology
2506.19106
null
null
Staining normalization in histopathology: Method benchmarking using multicenter dataset
Hematoxylin and Eosin (H&E) has been the gold standard in tissue analysis for decades, however, tissue specimens stained in different laboratories vary, often significantly, in appearance. This variation poses a challenge for both pathologists' and AI-based downstream analysis. Minimizing stain variation computationally is an active area of research. To further investigate this problem, we collected a unique multi-center tissue image dataset, wherein tissue samples from colon, kidney, and skin tissue blocks were distributed to 66 different labs for routine H&E staining. To isolate staining variation, other factors affecting the tissue appearance were kept constant. Further, we used this tissue image dataset to compare the performance of eight different stain normalization methods, including four traditional methods, namely, histogram matching, Macenko, Vahadane, and Reinhard normalization, and two deep learning-based methods namely CycleGAN and Pixp2pix, both with two variants each. We used both quantitative and qualitative evaluation to assess the performance of these methods. The dataset's inter-laboratory staining variation could also guide strategies to improve model generalizability through varied training data
null
https://arxiv.org/abs/2506.19106v1
https://arxiv.org/pdf/2506.19106v1.pdf
null
[ "Umair Khan", "Jouni Härkönen", "Marjukka Friman", "Leena Latonen", "Teijo Kuopio", "Pekka Ruusuvuori" ]
[ "Benchmarking" ]
2025-06-23T00:00:00
null
null
null
null
[]
https://paperswithcode.com/paper/temporal-neural-cellular-automata-application
2506.18720
null
null
Temporal Neural Cellular Automata: Application to modeling of contrast enhancement in breast MRI
Synthetic contrast enhancement offers fast image acquisition and eliminates the need for intravenous injection of contrast agent. This is particularly beneficial for breast imaging, where long acquisition times and high cost are significantly limiting the applicability of magnetic resonance imaging (MRI) as a widespread screening modality. Recent studies have demonstrated the feasibility of synthetic contrast generation. However, current state-of-the-art (SOTA) methods lack sufficient measures for consistent temporal evolution. Neural cellular automata (NCA) offer a robust and lightweight architecture to model evolving patterns between neighboring cells or pixels. In this work we introduce TeNCA (Temporal Neural Cellular Automata), which extends and further refines NCAs to effectively model temporally sparse, non-uniformly sampled imaging data. To achieve this, we advance the training strategy by enabling adaptive loss computation and define the iterative nature of the method to resemble a physical progression in time. This conditions the model to learn a physiologically plausible evolution of contrast enhancement. We rigorously train and test TeNCA on a diverse breast MRI dataset and demonstrate its effectiveness, surpassing the performance of existing methods in generation of images that align with ground truth post-contrast sequences.
Synthetic contrast enhancement offers fast image acquisition and eliminates the need for intravenous injection of contrast agent.
https://arxiv.org/abs/2506.18720v1
https://arxiv.org/pdf/2506.18720v1.pdf
null
[ "Daniel M. Lang", "Richard Osuala", "Veronika Spieker", "Karim Lekadir", "Rickmer Braren", "Julia A. Schnabel" ]
[]
2025-06-23T00:00:00
null
null
null
null
[ { "code_snippet_url": "", "description": "In the ALIGN method, visual and language representations are jointly trained from noisy image alt-text data. The image and text encoders are learned via contrastive loss (formulated as normalized softmax) that pushes the embeddings of the matched image-text pair together and pushing those of non-matched image-text pair apart. The model learns to align visual and language representations of the image and text pairs using the contrastive loss. The representations can be used for vision-only or vision-language task transfer. Without any fine-tuning, ALIGN powers zero-shot visual classification and cross-modal search including image-to-text search, text-to image search and even search with joint image+text queries.", "full_name": "ALIGN", "introduced_year": 2000, "main_collection": { "area": "Computer Vision", "description": "Involves models that adapt pre-training to the field of Vision-and-Language (V-L) learning and improve the performance on downstream tasks like visual question answering and visual captioning.\r\n\r\nAccording to [Du et al. (2022)](https://arxiv.org/pdf/2202.10936.pdf), information coming from the different modalities can be encoded in three ways: fusion encoder, dual encoder, and a combination of both. \r\n\r\nReferences:\r\n\r\n- [A Survey of Vision-Language Pre-Trained Models](https://arxiv.org/pdf/2202.10936.pdf)\r\n- [Vision Language models: towards multi-modal deep learning](https://theaisummer.com/vision-language-models/)", "name": "Vision and Language Pre-Trained Models", "parent": null }, "name": "ALIGN", "source_title": "Scaling Up Visual and Vision-Language Representation Learning With Noisy Text Supervision", "source_url": "https://arxiv.org/abs/2102.05918v2" } ]
https://paperswithcode.com/paper/medtvt-r1-a-multimodal-llm-empowering-medical
2506.18512
null
null
MedTVT-R1: A Multimodal LLM Empowering Medical Reasoning and Diagnosis
Accurate and interpretable multi-disease diagnosis remains a critical challenge in medical research, particularly when leveraging heterogeneous multimodal medical data. Current approaches often rely on single-modal data, limiting their ability to comprehensively understand complex diseases. To address this, we propose MedTVT-R1, a novel Multimodal Large Language Model (MLLM) framework designed to integrate clinical multimodal data for reasoning and diagnosing multiple diseases. We construct MedTVT-QA, a curated instruction dataset that provides question-answer pairs for physiological-level interpretations and disease-level diagnoses with a Chain of Evidence approach. MedTVT-R1 incorporates a modality perception layer to capture inter-modal dependencies and adaptively weight modality contributions. Additionally, we employ Group Relative Policy Optimization (GRPO)-based Reinforcement Fine-Tuning with a Jaccard Reward function to enhance diagnostic reasoning. Experimental results demonstrate MedTVT-R1's superiority in multimodal feature utilization and multi-disease diagnosis, offering significant potential for clinical applications such as diagnostic report generation and comorbidity reasoning. The dataset and code are available at https://github.com/keke-nice/MedTVT-R1.
Accurate and interpretable multi-disease diagnosis remains a critical challenge in medical research, particularly when leveraging heterogeneous multimodal medical data.
https://arxiv.org/abs/2506.18512v1
https://arxiv.org/pdf/2506.18512v1.pdf
null
[ "Yuting Zhang", "Kaishen Yuan", "Hao Lu", "Yutao Yue", "Jintai Chen", "Kaishun Wu" ]
[ "Diagnostic", "Large Language Model", "Multimodal Large Language Model" ]
2025-06-23T00:00:00
null
null
null
null
[]
https://paperswithcode.com/paper/gans-vs-diffusion-models-for-virtual-staining
2506.18484
null
null
GANs vs. Diffusion Models for virtual staining with the HER2match dataset
Virtual staining is a promising technique that uses deep generative models to recreate histological stains, providing a faster and more cost-effective alternative to traditional tissue chemical staining. Specifically for H&E-HER2 staining transfer, despite a rising trend in publications, the lack of sufficient public datasets has hindered progress in the topic. Additionally, it is currently unclear which model frameworks perform best for this particular task. In this paper, we introduce the HER2match dataset, the first publicly available dataset with the same breast cancer tissue sections stained with both H&E and HER2. Furthermore, we compare the performance of several Generative Adversarial Networks (GANs) and Diffusion Models (DMs), and implement a novel Brownian Bridge Diffusion Model for H&E-HER2 translation. Our findings indicate that, overall, GANs perform better than DMs, with only the BBDM achieving comparable results. Furthermore, we emphasize the importance of data alignment, as all models trained on HER2match produced vastly improved visuals compared to the widely used consecutive-slide BCI dataset. This research provides a new high-quality dataset ([available upon publication acceptance]), improving both model training and evaluation. In addition, our comparison of frameworks offers valuable guidance for researchers working on the topic.
null
https://arxiv.org/abs/2506.18484v1
https://arxiv.org/pdf/2506.18484v1.pdf
null
[ "Pascal Klöckner", "José Teixeira", "Diana Montezuma", "Jaime S. Cardoso", "Hugo M. Horlings", "Sara P. Oliveira" ]
[ "Virtual Staining" ]
2025-06-23T00:00:00
null
null
null
null
[ { "code_snippet_url": null, "description": "Diffusion models generate samples by gradually\r\nremoving noise from a signal, and their training objective can be expressed as a reweighted variational lower-bound (https://arxiv.org/abs/2006.11239).", "full_name": "Diffusion", "introduced_year": 2000, "main_collection": { "area": "Computer Vision", "description": "", "name": "Image Generation Models", "parent": null }, "name": "Diffusion", "source_title": "Denoising Diffusion Probabilistic Models", "source_url": "https://arxiv.org/abs/2006.11239v2" } ]
https://paperswithcode.com/paper/a-deep-convolutional-neural-network-based-1
2506.18474
null
null
A Deep Convolutional Neural Network-Based Novel Class Balancing for Imbalance Data Segmentation
Retinal fundus images provide valuable insights into the human eye's interior structure and crucial features, such as blood vessels, optic disk, macula, and fovea. However, accurate segmentation of retinal blood vessels can be challenging due to imbalanced data distribution and varying vessel thickness. In this paper, we propose BLCB-CNN, a novel pipeline based on deep learning and bi-level class balancing scheme to achieve vessel segmentation in retinal fundus images. The BLCB-CNN scheme uses a Convolutional Neural Network (CNN) architecture and an empirical approach to balance the distribution of pixels across vessel and non-vessel classes and within thin and thick vessels. Level-I is used for vessel/non-vessel balancing and Level-II is used for thick/thin vessel balancing. Additionally, pre-processing of the input retinal fundus image is performed by Global Contrast Normalization (GCN), Contrast Limited Adaptive Histogram Equalization (CLAHE), and gamma corrections to increase intensity uniformity as well as to enhance the contrast between vessels and background pixels. The resulting balanced dataset is used for classification-based segmentation of the retinal vascular tree. We evaluate the proposed scheme on standard retinal fundus images and achieve superior performance measures, including an area under the ROC curve of 98.23%, Accuracy of 96.22%, Sensitivity of 81.57%, and Specificity of 97.65%. We also demonstrate the method's efficacy through external cross-validation on STARE images, confirming its generalization ability.
null
https://arxiv.org/abs/2506.18474v1
https://arxiv.org/pdf/2506.18474v1.pdf
null
[ "Atifa Kalsoom", "M. A. Iftikhar", "Amjad Ali", "Zubair Shah", "Shidin Balakrishnan", "Hazrat Ali" ]
[ "Specificity" ]
2025-06-23T00:00:00
null
null
null
null
[]
https://paperswithcode.com/paper/safeclick-error-tolerant-interactive
2506.18404
null
null
SafeClick: Error-Tolerant Interactive Segmentation of Any Medical Volumes via Hierarchical Expert Consensus
Foundation models for volumetric medical image segmentation have emerged as powerful tools in clinical workflows, enabling radiologists to delineate regions of interest through intuitive clicks. While these models demonstrate promising capabilities in segmenting previously unseen anatomical structures, their performance is strongly influenced by prompt quality. In clinical settings, radiologists often provide suboptimal prompts, which affects segmentation reliability and accuracy. To address this limitation, we present SafeClick, an error-tolerant interactive segmentation approach for medical volumes based on hierarchical expert consensus. SafeClick operates as a plug-and-play module compatible with foundation models including SAM 2 and MedSAM 2. The framework consists of two key components: a collaborative expert layer (CEL) that generates diverse feature representations through specialized transformer modules, and a consensus reasoning layer (CRL) that performs cross-referencing and adaptive integration of these features. This architecture transforms the segmentation process from a prompt-dependent operation to a robust framework capable of producing accurate results despite imperfect user inputs. Extensive experiments across 15 public datasets demonstrate that our plug-and-play approach consistently improves the performance of base foundation models, with particularly significant gains when working with imperfect prompts. The source code is available at https://github.com/yifangao112/SafeClick.
null
https://arxiv.org/abs/2506.18404v1
https://arxiv.org/pdf/2506.18404v1.pdf
null
[ "Yifan Gao", "Jiaxi Sheng", "Wenbin Wu", "Haoyue Li", "Yaoxian Dong", "Chaoyang Ge", "Feng Yuan", "Xin Gao" ]
[ "Image Segmentation", "Interactive Segmentation", "Medical Image Segmentation", "Segmentation", "Semantic Segmentation", "Volumetric Medical Image Segmentation" ]
2025-06-23T00:00:00
null
null
null
null
[ { "code_snippet_url": null, "description": "", "full_name": "Segment Anything Model", "introduced_year": 2000, "main_collection": { "area": "Computer Vision", "description": "", "name": "Image Segmentation Models", "parent": null }, "name": "SAM", "source_title": "Segment Anything", "source_url": "https://arxiv.org/abs/2304.02643v1" }, { "code_snippet_url": null, "description": "", "full_name": "Balanced Selection", "introduced_year": 2000, "main_collection": { "area": "General", "description": "", "name": "Active Learning", "parent": null }, "name": "BASE", "source_title": "Active Learning at the ImageNet Scale", "source_url": "https://arxiv.org/abs/2111.12880v1" } ]
https://paperswithcode.com/paper/taming-vision-language-models-for-medical
2506.18378
null
null
Taming Vision-Language Models for Medical Image Analysis: A Comprehensive Review
Modern Vision-Language Models (VLMs) exhibit unprecedented capabilities in cross-modal semantic understanding between visual and textual modalities. Given the intrinsic need for multi-modal integration in clinical applications, VLMs have emerged as a promising solution for a wide range of medical image analysis tasks. However, adapting general-purpose VLMs to medical domain poses numerous challenges, such as large domain gaps, complicated pathological variations, and diversity and uniqueness of different tasks. The central purpose of this review is to systematically summarize recent advances in adapting VLMs for medical image analysis, analyzing current challenges, and recommending promising yet urgent directions for further investigations. We begin by introducing core learning strategies for medical VLMs, including pretraining, fine-tuning, and prompt learning. We then categorize five major VLM adaptation strategies for medical image analysis. These strategies are further analyzed across eleven medical imaging tasks to illustrate their current practical implementations. Furthermore, we analyze key challenges that impede the effective adaptation of VLMs to clinical applications and discuss potential directions for future research. We also provide an open-access repository of related literature to facilitate further research, available at https://github.com/haonenglin/Awesome-VLM-for-MIA. It is anticipated that this article can help researchers who are interested in harnessing VLMs in medical image analysis tasks have a better understanding on their capabilities and limitations, as well as current technical barriers, to promote their innovative, robust, and safe application in clinical practice.
It is anticipated that this article can help researchers who are interested in harnessing VLMs in medical image analysis tasks have a better understanding on their capabilities and limitations, as well as current technical barriers, to promote their innovative, robust, and safe application in clinical practice.
https://arxiv.org/abs/2506.18378v1
https://arxiv.org/pdf/2506.18378v1.pdf
null
[ "Haoneng Lin", "Cheng Xu", "Jing Qin" ]
[ "Medical Image Analysis", "Prompt Learning" ]
2025-06-23T00:00:00
null
null
null
null
[]
https://paperswithcode.com/paper/transforming-h-e-images-into-ihc-a-variance
2506.18371
null
null
Transforming H&E images into IHC: A Variance-Penalized GAN for Precision Oncology
The overexpression of the human epidermal growth factor receptor 2 (HER2) in breast cells is a key driver of HER2-positive breast cancer, a highly aggressive subtype requiring precise diagnosis and targeted therapy. Immunohistochemistry (IHC) is the standard technique for HER2 assessment but is costly, labor-intensive, and highly dependent on antibody selection. In contrast, hematoxylin and eosin (H&E) staining, a routine histopathological procedure, offers broader accessibility but lacks HER2 specificity. This study proposes an advanced deep learning-based image translation framework to generate highfidelity IHC images from H&E-stained tissue samples, enabling cost-effective and scalable HER2 assessment. By modifying the loss function of pyramid pix2pix, we mitigate mode collapse, a fundamental limitation in generative adversarial networks (GANs), and introduce a novel variance-based penalty that enforces structural diversity in generated images. Our model particularly excels in translating HER2-positive (IHC 3+) images, which have remained challenging for existing methods due to their complex morphological variations. Extensive evaluations on the BCI histopathological dataset demonstrate that our model surpasses state-of-the-art methods in terms of peak signal-tonoise ratio (PSNR), structural similarity index (SSIM), and Frechet Inception Distance (FID), particularly in accurately translating HER2-positive (IHC 3+) images. Beyond medical imaging, our model exhibits superior performance in general image-to-image translation tasks, showcasing its potential across multiple domains. This work marks a significant step toward AI-driven precision oncology, offering a reliable and efficient alternative to traditional HER2 diagnostics.
null
https://arxiv.org/abs/2506.18371v1
https://arxiv.org/pdf/2506.18371v1.pdf
null
[ "Sara Rehmat", "Hafeez Ur Rehman" ]
[ "Image-to-Image Translation", "Specificity", "SSIM" ]
2025-06-23T00:00:00
null
null
null
null
[]
https://paperswithcode.com/paper/rethinking-decoder-design-improving-biomarker-1
2506.18335
null
null
Rethinking Decoder Design: Improving Biomarker Segmentation Using Depth-to-Space Restoration and Residual Linear Attention
Segmenting biomarkers in medical images is crucial for various biotech applications. Despite advances, Transformer and CNN based methods often struggle with variations in staining and morphology, limiting feature extraction. In medical image segmentation, where datasets often have limited sample availability, recent state-of-the-art (SOTA) methods achieve higher accuracy by leveraging pre-trained encoders, whereas end-to-end methods tend to underperform. This is due to challenges in effectively transferring rich multiscale features from encoders to decoders, as well as limitations in decoder efficiency. To address these issues, we propose an architecture that captures multi-scale local and global contextual information and a novel decoder design, which effectively integrates features from the encoder, emphasizes important channels and regions, and reconstructs spatial dimensions to enhance segmentation accuracy. Our method, compatible with various encoders, outperforms SOTA methods, as demonstrated by experiments on four datasets and ablation studies. Specifically, our method achieves absolute performance gains of 2.76% on MoNuSeg, 3.12% on DSB, 2.87% on Electron Microscopy, and 4.03% on TNBC datasets compared to existing SOTA methods. Code: https://github.com/saadwazir/MCADS-Decoder
Our method, compatible with various encoders, outperforms SOTA methods, as demonstrated by experiments on four datasets and ablation studies.
https://arxiv.org/abs/2506.18335v1
https://arxiv.org/pdf/2506.18335v1.pdf
CVPR 2025 1
[ "Saad Wazir", "Daeyoung Kim" ]
[ "Decoder", "Image Segmentation", "Medical Image Segmentation", "Semantic Segmentation" ]
2025-06-23T00:00:00
http://openaccess.thecvf.com//content/CVPR2025/html/Wazir_Rethinking_Decoder_Design_Improving_Biomarker_Segmentation_Using_Depth-to-Space_Restoration_and_CVPR_2025_paper.html
http://openaccess.thecvf.com//content/CVPR2025/papers/Wazir_Rethinking_Decoder_Design_Improving_Biomarker_Segmentation_Using_Depth-to-Space_Restoration_and_CVPR_2025_paper.pdf
rethinking-decoder-design-improving-biomarker
null
[ { "code_snippet_url": "https://github.com/CyberZHG/torch-layer-normalization/blob/89f405b60f53f85da6f03fe685c190ef394ce50c/torch_layer_normalization/layer_normalization.py#L8", "description": "Unlike [batch normalization](https://paperswithcode.com/method/batch-normalization), **Layer Normalization** directly estimates the normalization statistics from the summed inputs to the neurons within a hidden layer so the normalization does not introduce any new dependencies between training cases. It works well for [RNNs](https://paperswithcode.com/methods/category/recurrent-neural-networks) and improves both the training time and the generalization performance of several existing RNN models. More recently, it has been used with [Transformer](https://paperswithcode.com/methods/category/transformers) models.\r\n\r\nWe compute the layer normalization statistics over all the hidden units in the same layer as follows:\r\n\r\n$$ \\mu^{l} = \\frac{1}{H}\\sum^{H}\\_{i=1}a\\_{i}^{l} $$\r\n\r\n$$ \\sigma^{l} = \\sqrt{\\frac{1}{H}\\sum^{H}\\_{i=1}\\left(a\\_{i}^{l}-\\mu^{l}\\right)^{2}} $$\r\n\r\nwhere $H$ denotes the number of hidden units in a layer. Under layer normalization, all the hidden units in a layer share the same normalization terms $\\mu$ and $\\sigma$, but different training cases have different normalization terms. Unlike batch normalization, layer normalization does not impose any constraint on the size of the mini-batch and it can be used in the pure online regime with batch size 1.", "full_name": "Layer Normalization", "introduced_year": 2000, "main_collection": { "area": "General", "description": "**Normalization** layers in deep learning are used to make optimization easier by smoothing the loss surface of the network. Below you will find a continuously updating list of normalization methods.", "name": "Normalization", "parent": null }, "name": "Layer Normalization", "source_title": "Layer Normalization", "source_url": "http://arxiv.org/abs/1607.06450v1" }, { "code_snippet_url": "https://github.com/google/jax/blob/7f3078b70d0ed9bea6228efa420879c56f72ef69/jax/experimental/stax.py#L271-L275", "description": "**Dropout** is a regularization technique for neural networks that drops a unit (along with connections) at training time with a specified probability $p$ (a common value is $p=0.5$). At test time, all units are present, but with weights scaled by $p$ (i.e. $w$ becomes $pw$).\r\n\r\nThe idea is to prevent co-adaptation, where the neural network becomes too reliant on particular connections, as this could be symptomatic of overfitting. Intuitively, dropout can be thought of as creating an implicit ensemble of neural networks.", "full_name": "Dropout", "introduced_year": 2000, "main_collection": { "area": "General", "description": "Regularization strategies are designed to reduce the test error of a machine learning algorithm, possibly at the expense of training error. Many different forms of regularization exist in the field of deep learning. Below you can find a constantly updating list of regularization strategies.", "name": "Regularization", "parent": null }, "name": "Dropout", "source_title": "Dropout: A Simple Way to Prevent Neural Networks from Overfitting", "source_url": "http://jmlr.org/papers/v15/srivastava14a.html" }, { "code_snippet_url": "", "description": "**Absolute Position Encodings** are a type of position embeddings for [[Transformer](https://paperswithcode.com/method/transformer)-based models] where positional encodings are added to the input embeddings at the bottoms of the encoder and decoder stacks. The positional encodings have the same dimension $d\\_{model}$ as the embeddings, so that the two can be summed. In the original implementation, sine and cosine functions of different frequencies are used:\r\n\r\n$$ \\text{PE}\\left(pos, 2i\\right) = \\sin\\left(pos/10000^{2i/d\\_{model}}\\right) $$\r\n\r\n$$ \\text{PE}\\left(pos, 2i+1\\right) = \\cos\\left(pos/10000^{2i/d\\_{model}}\\right) $$\r\n\r\nwhere $pos$ is the position and $i$ is the dimension. That is, each dimension of the positional encoding corresponds to a sinusoid. The wavelengths form a geometric progression from $2\\pi$ to $10000 \\dot 2\\pi$. This function was chosen because the authors hypothesized it would allow the model to easily learn to attend by relative positions, since for any fixed offset $k$, $\\text{PE}\\_{pos+k}$ can be represented as a linear function of $\\text{PE}\\_{pos}$.\r\n\r\nImage Source: [D2L.ai](https://d2l.ai/chapter_attention-mechanisms/self-attention-and-positional-encoding.html)", "full_name": "Absolute Position Encodings", "introduced_year": 2000, "main_collection": { "area": "General", "description": "", "name": "Position Embeddings", "parent": null }, "name": "Absolute Position Encodings", "source_title": "Attention Is All You Need", "source_url": "https://arxiv.org/abs/1706.03762v7" }, { "code_snippet_url": null, "description": "**Dense Connections**, or **Fully Connected Connections**, are a type of layer in a deep neural network that use a linear operation where every input is connected to every output by a weight. This means there are $n\\_{\\text{inputs}}*n\\_{\\text{outputs}}$ parameters, which can lead to a lot of parameters for a sizeable network.\r\n\r\n$$h\\_{l} = g\\left(\\textbf{W}^{T}h\\_{l-1}\\right)$$\r\n\r\nwhere $g$ is an activation function.\r\n\r\nImage Source: Deep Learning by Goodfellow, Bengio and Courville", "full_name": "Dense Connections", "introduced_year": 2000, "main_collection": { "area": "General", "description": "**Feedforward Networks** are a type of neural network architecture which rely primarily on dense-like connections. Below you can find a continuously updating list of feedforward network components.", "name": "Feedforward Networks", "parent": null }, "name": "Dense Connections", "source_title": null, "source_url": null }, { "code_snippet_url": null, "description": "**Byte Pair Encoding**, or **BPE**, is a subword segmentation algorithm that encodes rare and unknown words as sequences of subword units. The intuition is that various word classes are translatable via smaller units than words, for instance names (via character copying or transliteration), compounds (via compositional translation), and cognates and loanwords (via phonological and morphological transformations).\r\n\r\n[Lei Mao](https://leimao.github.io/blog/Byte-Pair-Encoding/) has a detailed blog post that explains how this works.", "full_name": "Byte Pair Encoding", "introduced_year": 2000, "main_collection": { "area": "Natural Language Processing", "description": "", "name": "Subword Segmentation", "parent": null }, "name": "BPE", "source_title": "Neural Machine Translation of Rare Words with Subword Units", "source_url": "http://arxiv.org/abs/1508.07909v5" }, { "code_snippet_url": null, "description": "The **Softmax** output function transforms a previous layer's output into a vector of probabilities. It is commonly used for multiclass classification. Given an input vector $x$ and a weighting vector $w$ we have:\r\n\r\n$$ P(y=j \\mid{x}) = \\frac{e^{x^{T}w_{j}}}{\\sum^{K}_{k=1}e^{x^{T}wk}} $$", "full_name": "Softmax", "introduced_year": 2000, "main_collection": { "area": "General", "description": "**Output functions** are layers used towards the end of a network to transform to the desired form for a loss function. For example, the softmax relies on logits to construct a conditional probability. Below you can find a continuously updating list of output functions.", "name": "Output Functions", "parent": null }, "name": "Softmax", "source_title": null, "source_url": null }, { "code_snippet_url": "", "description": "**Label Smoothing** is a regularization technique that introduces noise for the labels. This accounts for the fact that datasets may have mistakes in them, so maximizing the likelihood of $\\log{p}\\left(y\\mid{x}\\right)$ directly can be harmful. Assume for a small constant $\\epsilon$, the training set label $y$ is correct with probability $1-\\epsilon$ and incorrect otherwise. Label Smoothing regularizes a model based on a [softmax](https://paperswithcode.com/method/softmax) with $k$ output values by replacing the hard $0$ and $1$ classification targets with targets of $\\frac{\\epsilon}{k}$ and $1-\\frac{k-1}{k}\\epsilon$ respectively.\r\n\r\nSource: Deep Learning, Goodfellow et al\r\n\r\nImage Source: [When Does Label Smoothing Help?](https://arxiv.org/abs/1906.02629)", "full_name": "Label Smoothing", "introduced_year": 1985, "main_collection": { "area": "General", "description": "Regularization strategies are designed to reduce the test error of a machine learning algorithm, possibly at the expense of training error. Many different forms of regularization exist in the field of deep learning. Below you can find a constantly updating list of regularization strategies.", "name": "Regularization", "parent": null }, "name": "Label Smoothing", "source_title": null, "source_url": null }, { "code_snippet_url": "https://github.com/tunz/transformer-pytorch/blob/e7266679f0b32fd99135ea617213f986ceede056/model/transformer.py#L201", "description": "A **Transformer** is a model architecture that eschews recurrence and instead relies entirely on an [attention mechanism](https://paperswithcode.com/methods/category/attention-mechanisms-1) to draw global dependencies between input and output. Before Transformers, the dominant sequence transduction models were based on complex recurrent or convolutional neural networks that include an encoder and a decoder. The Transformer also employs an encoder and decoder, but removing recurrence in favor of [attention mechanisms](https://paperswithcode.com/methods/category/attention-mechanisms-1) allows for significantly more parallelization than methods like [RNNs](https://paperswithcode.com/methods/category/recurrent-neural-networks) and [CNNs](https://paperswithcode.com/methods/category/convolutional-neural-networks).", "full_name": "Transformer", "introduced_year": 2000, "main_collection": { "area": "Natural Language Processing", "description": "**Transformers** are a type of neural network architecture that have several properties that make them effective for modeling data with long-range dependencies. They generally feature a combination of multi-headed attention mechanisms, residual connections, layer normalization, feedforward connections, and positional embeddings.", "name": "Transformers", "parent": "Language Models" }, "name": "Transformer", "source_title": "Attention Is All You Need", "source_url": "https://arxiv.org/abs/1706.03762v7" } ]
https://paperswithcode.com/paper/a-multi-scale-spatial-attention-based-zero
2506.18323
null
null
A Multi-Scale Spatial Attention-Based Zero-Shot Learning Framework for Low-Light Image Enhancement
Low-light image enhancement remains a challenging task, particularly in the absence of paired training data. In this study, we present LucentVisionNet, a novel zero-shot learning framework that addresses the limitations of traditional and deep learning-based enhancement methods. The proposed approach integrates multi-scale spatial attention with a deep curve estimation network, enabling fine-grained enhancement while preserving semantic and perceptual fidelity. To further improve generalization, we adopt a recurrent enhancement strategy and optimize the model using a composite loss function comprising six tailored components, including a novel no-reference image quality loss inspired by human visual perception. Extensive experiments on both paired and unpaired benchmark datasets demonstrate that LucentVisionNet consistently outperforms state-of-the-art supervised, unsupervised, and zero-shot methods across multiple full-reference and no-reference image quality metrics. Our framework achieves high visual quality, structural consistency, and computational efficiency, making it well-suited for deployment in real-world applications such as mobile photography, surveillance, and autonomous navigation.
null
https://arxiv.org/abs/2506.18323v1
https://arxiv.org/pdf/2506.18323v1.pdf
null
[ "Muhammad Azeem Aslam", "Hassan Khalid", "Nisar Ahmed" ]
[ "Autonomous Navigation", "Computational Efficiency", "Image Enhancement", "Low-Light Image Enhancement", "Zero-Shot Learning" ]
2025-06-23T00:00:00
null
null
null
null
[ { "code_snippet_url": null, "description": "Please enter a description about the method here", "full_name": "ADaptive gradient method with the OPTimal convergence rate", "introduced_year": 2000, "main_collection": { "area": "General", "description": "**Stochastic Optimization** methods are used to optimize neural networks. We typically take a mini-batch of data, hence 'stochastic', and perform a type of gradient descent with this minibatch. Below you can find a continuously updating list of stochastic optimization algorithms.", "name": "Stochastic Optimization", "parent": "Optimization" }, "name": "ADOPT", "source_title": "ADOPT: Modified Adam Can Converge with Any $β_2$ with the Optimal Rate", "source_url": "https://arxiv.org/abs/2411.02853v3" } ]
https://paperswithcode.com/paper/adaptive-mask-guided-k-space-diffusion-for
2506.18270
null
null
Adaptive Mask-guided K-space Diffusion for Accelerated MRI Reconstruction
As the deep learning revolution marches on, masked modeling has emerged as a distinctive approach that involves predicting parts of the original data that are proportionally masked during training, and has demonstrated exceptional performance in multiple fields. Magnetic Resonance Imaging (MRI) reconstruction is a critical task in medical imaging that seeks to recover high-quality images from under-sampled k-space data. However, previous MRI reconstruction strategies usually optimized the entire image domain or k-space, without considering the importance of different frequency regions in the k-space This work introduces a diffusion model based on adaptive masks (AMDM), which utilizes the adaptive adjustment of frequency distribution based on k-space data to develop a hybrid masks mechanism that adapts to different k-space inputs. This enables the effective separation of high-frequency and low-frequency components, producing diverse frequency-specific representations. Additionally, the k-space frequency distribution informs the generation of adaptive masks, which, in turn, guide a closed-loop diffusion process. Experimental results verified the ability of this method to learn specific frequency information and thereby improved the quality of MRI reconstruction, providing a flexible framework for optimizing k-space data using masks in the future.
null
https://arxiv.org/abs/2506.18270v1
https://arxiv.org/pdf/2506.18270v1.pdf
null
[ "Qinrong Cai", "Yu Guan", "Zhibo Chen", "Dong Liang", "Qiuyun Fan", "Qiegen Liu" ]
[ "MRI Reconstruction" ]
2025-06-23T00:00:00
null
null
null
null
[ { "code_snippet_url": null, "description": "Diffusion models generate samples by gradually\r\nremoving noise from a signal, and their training objective can be expressed as a reweighted variational lower-bound (https://arxiv.org/abs/2006.11239).", "full_name": "Diffusion", "introduced_year": 2000, "main_collection": { "area": "Computer Vision", "description": "", "name": "Image Generation Models", "parent": null }, "name": "Diffusion", "source_title": "Denoising Diffusion Probabilistic Models", "source_url": "https://arxiv.org/abs/2006.11239v2" } ]
https://paperswithcode.com/paper/a-prior-guided-joint-diffusion-model-in
2506.16733
null
null
A Prior-Guided Joint Diffusion Model in Projection Domain for PET Tracer Conversion
Positron emission tomography (PET) is widely used to assess metabolic activity, but its application is limited by the availability of radiotracers. 18F-labeled fluorodeoxyglucose (18F-FDG) is the most commonly used tracer but shows limited effectiveness for certain tumors. In contrast, 6-18F-fluoro-3,4-dihydroxy-L-phenylalanine (18F-DOPA) offers higher specificity for neuroendocrine tumors and neurological disorders. However, the complexity of its synthesis process and constraints on transportation time have limited its clinical application. Among different forms of raw data acquired by the scanner, sinogram is a commonly used representation in PET imaging. Therefore, modeling in projection domain enables more direct utilization of the original information, potentially reducing the accumulation errors during the image reconstruction process. Inspired by these factors, this study proposes a prior-guided joint diffusion model (PJDM) for transforming 18F-FDG PET sinograms into 18F-DOPA PET sinograms. During inference, an initial synthetic 18F-DOPA PET sinogram is first generated using a higher-order hybrid sampler. This sinogram is then degraded and serves as an additional condition to guide the iterative refinement process. Experimental results demonstrated that PJDM effectively improved both sinogram quality and the final synthetic outcomes. The code is available at: https://github.com/yqx7150/PJDM.
null
https://arxiv.org/abs/2506.16733v2
https://arxiv.org/pdf/2506.16733v2.pdf
null
[ "Fang Chen", "Weifeng Zhang", "Xingyu Ai", "Bingxuan Li", "An Li", "Qiegen Liu" ]
[ "Image Reconstruction", "Specificity" ]
2025-06-20T00:00:00
null
null
null
null
[ { "code_snippet_url": null, "description": "Diffusion models generate samples by gradually\r\nremoving noise from a signal, and their training objective can be expressed as a reweighted variational lower-bound (https://arxiv.org/abs/2006.11239).", "full_name": "Diffusion", "introduced_year": 2000, "main_collection": { "area": "Computer Vision", "description": "", "name": "Image Generation Models", "parent": null }, "name": "Diffusion", "source_title": "Denoising Diffusion Probabilistic Models", "source_url": "https://arxiv.org/abs/2006.11239v2" } ]
https://paperswithcode.com/paper/stact-time-spatio-temporal-cross-attention
2506.18172
null
null
STACT-Time: Spatio-Temporal Cross Attention for Cine Thyroid Ultrasound Time Series Classification
Thyroid cancer is among the most common cancers in the United States. Thyroid nodules are frequently detected through ultrasound (US) imaging, and some require further evaluation via fine-needle aspiration (FNA) biopsy. Despite its effectiveness, FNA often leads to unnecessary biopsies of benign nodules, causing patient discomfort and anxiety. To address this, the American College of Radiology Thyroid Imaging Reporting and Data System (TI-RADS) has been developed to reduce benign biopsies. However, such systems are limited by interobserver variability. Recent deep learning approaches have sought to improve risk stratification, but they often fail to utilize the rich temporal and spatial context provided by US cine clips, which contain dynamic global information and surrounding structural changes across various views. In this work, we propose the Spatio-Temporal Cross Attention for Cine Thyroid Ultrasound Time Series Classification (STACT-Time) model, a novel representation learning framework that integrates imaging features from US cine clips with features from segmentation masks automatically generated by a pretrained model. By leveraging self-attention and cross-attention mechanisms, our model captures the rich temporal and spatial context of US cine clips while enhancing feature representation through segmentation-guided learning. Our model improves malignancy prediction compared to state-of-the-art models, achieving a cross-validation precision of 0.91 (plus or minus 0.02) and an F1 score of 0.89 (plus or minus 0.02). By reducing unnecessary biopsies of benign nodules while maintaining high sensitivity for malignancy detection, our model has the potential to enhance clinical decision-making and improve patient outcomes.
null
https://arxiv.org/abs/2506.18172v1
https://arxiv.org/pdf/2506.18172v1.pdf
null
[ "Irsyad Adam", "Tengyue Zhang", "Shrayes Raman", "Zhuyu Qiu", "Brandon Taraku", "Hexiang Feng", "Sile Wang", "Ashwath Radhachandran", "Shreeram Athreya", "Vedrana Ivezic", "Peipei Ping", "Corey Arnold", "William Speier" ]
[ "Time Series", "Time Series Classification" ]
2025-06-22T00:00:00
null
null
null
null
[]
https://paperswithcode.com/paper/ct-radiomics-based-explainable-machine
2506.18106
null
null
CT Radiomics-Based Explainable Machine Learning Model for Accurate Differentiation of Malignant and Benign Endometrial Tumors: A Two-Center Study
Aimed to develop and validate a CT radiomics-based explainable machine learning model for diagnosing malignancy and benignity specifically in endometrial cancer (EC) patients. A total of 83 EC patients from two centers, including 46 with malignant and 37 with benign conditions, were included, with data split into a training set (n=59) and a testing set (n=24). The regions of interest (ROIs) were manually segmented from pre-surgical CT scans, and 1132 radiomic features were extracted from the pre-surgical CT scans using Pyradiomics. Six explainable machine learning modeling algorithms were implemented respectively, for determining the optimal radiomics pipeline. The diagnostic performance of the radiomic model was evaluated by using sensitivity, specificity, accuracy, precision, F1 score, confusion matrices, and ROC curves. To enhance clinical understanding and usability, we separately implemented SHAP analysis and feature mapping visualization, and evaluated the calibration curve and decision curve. By comparing six modeling strategies, the Random Forest model emerged as the optimal choice for diagnosing EC, with a training AUC of 1.00 and a testing AUC of 0.96. SHAP identified the most important radiomic features, revealing that all selected features were significantly associated with EC (P < 0.05). Radiomics feature maps also provide a feasible assessment tool for clinical applications. DCA indicated a higher net benefit for our model compared to the "All" and "None" strategies, suggesting its clinical utility in identifying high-risk cases and reducing unnecessary interventions. In conclusion, the CT radiomics-based explainable machine learning model achieved high diagnostic performance, which could be used as an intelligent auxiliary tool for the diagnosis of endometrial cancer.
null
https://arxiv.org/abs/2506.18106v1
https://arxiv.org/pdf/2506.18106v1.pdf
null
[ "Tingrui Zhang", "Honglin Wu", "Zekun Jiang", "Yingying Wang", "Rui Ye", "Huiming Ni", "Chang Liu", "Jin Cao", "Xuan Sun", "Rong Shao", "Xiaorong Wei", "Yingchun Sun" ]
[ "Diagnostic", "Specificity" ]
2025-06-22T00:00:00
null
null
null
null
[ { "code_snippet_url": null, "description": "Dynamic Sparse Training method where weight mask is updated randomly periodically", "full_name": "Sparse Evolutionary Training", "introduced_year": 2000, "main_collection": { "area": "General", "description": "", "name": "Sparsity", "parent": null }, "name": "SET", "source_title": "Scalable Training of Artificial Neural Networks with Adaptive Sparse Connectivity inspired by Network Science", "source_url": "http://arxiv.org/abs/1707.04780v2" } ]
https://paperswithcode.com/paper/multimodal-medical-image-binding-via-shared
2506.18072
null
null
Multimodal Medical Image Binding via Shared Text Embeddings
Medical image analysis increasingly relies on the integration of multiple imaging modalities to capture complementary anatomical and functional information, enabling more accurate diagnosis and treatment planning. Achieving aligned feature representations across these diverse modalities is therefore important for effective multimodal analysis. While contrastive language-image pre-training (CLIP) and its variant have enabled image-text alignments, they require explicitly paired data between arbitrary two modalities, which is difficult to acquire in medical contexts. To address the gap, we present Multimodal Medical Image Binding with Text (M\textsuperscript{3}Bind), a novel pre-training framework that enables seamless alignment of multiple medical imaging modalities through a shared text representation space without requiring explicit paired data between any two medical image modalities. Specifically, based on the insight that different images can naturally bind with text, M\textsuperscript{3}Bind first fine-tunes pre-trained CLIP-like image-text models to align their modality-specific text embedding space while preserving their original image-text alignments. Subsequently, we distill these modality-specific text encoders into a unified model, creating a shared text embedding space. Experiments on X-ray, CT, retina, ECG, and pathological images on multiple downstream tasks demonstrate that M\textsuperscript{3}Bind achieves state-of-the-art performance in zero-shot, few-shot classification and cross-modal retrieval tasks compared to its CLIP-like counterparts. These results validate M\textsuperscript{3}Bind's effectiveness in achieving cross-image-modal alignment for medical analysis.
null
https://arxiv.org/abs/2506.18072v1
https://arxiv.org/pdf/2506.18072v1.pdf
null
[ "Yunhao Liu", "SuYang Xi", "Shiqi Liu", "Hong Ding", "Chicheng Jin", "Chenxi Yang", "Junjun He", "Yiqing Shen" ]
[ "Cross-Modal Retrieval", "Medical Image Analysis" ]
2025-06-22T00:00:00
null
null
null
null
[ { "code_snippet_url": "", "description": "In the ALIGN method, visual and language representations are jointly trained from noisy image alt-text data. The image and text encoders are learned via contrastive loss (formulated as normalized softmax) that pushes the embeddings of the matched image-text pair together and pushing those of non-matched image-text pair apart. The model learns to align visual and language representations of the image and text pairs using the contrastive loss. The representations can be used for vision-only or vision-language task transfer. Without any fine-tuning, ALIGN powers zero-shot visual classification and cross-modal search including image-to-text search, text-to image search and even search with joint image+text queries.", "full_name": "ALIGN", "introduced_year": 2000, "main_collection": { "area": "Computer Vision", "description": "Involves models that adapt pre-training to the field of Vision-and-Language (V-L) learning and improve the performance on downstream tasks like visual question answering and visual captioning.\r\n\r\nAccording to [Du et al. (2022)](https://arxiv.org/pdf/2202.10936.pdf), information coming from the different modalities can be encoded in three ways: fusion encoder, dual encoder, and a combination of both. \r\n\r\nReferences:\r\n\r\n- [A Survey of Vision-Language Pre-Trained Models](https://arxiv.org/pdf/2202.10936.pdf)\r\n- [Vision Language models: towards multi-modal deep learning](https://theaisummer.com/vision-language-models/)", "name": "Vision and Language Pre-Trained Models", "parent": null }, "name": "ALIGN", "source_title": "Scaling Up Visual and Vision-Language Representation Learning With Noisy Text Supervision", "source_url": "https://arxiv.org/abs/2102.05918v2" } ]
https://paperswithcode.com/paper/mobile-image-analysis-application-for-mantoux
2506.17954
null
null
Mobile Image Analysis Application for Mantoux Skin Test
This paper presents a newly developed mobile application designed to diagnose Latent Tuberculosis Infection (LTBI) using the Mantoux Skin Test (TST). Traditional TST methods often suffer from low follow-up return rates, patient discomfort, and subjective manual interpretation, particularly with the ball-point pen method, leading to misdiagnosis and delayed treatment. Moreover, previous developed mobile applications that used 3D reconstruction, this app utilizes scaling stickers as reference objects for induration measurement. This mobile application integrates advanced image processing technologies, including ARCore, and machine learning algorithms such as DeepLabv3 for robust image segmentation and precise measurement of skin indurations indicative of LTBI. The system employs an edge detection algorithm to enhance accuracy. The application was evaluated against standard clinical practices, demonstrating significant improvements in accuracy and reliability. This innovation is crucial for effective tuberculosis management, especially in resource-limited regions. By automating and standardizing TST evaluations, the application enhances the accessibility and efficiency of TB di-agnostics. Future work will focus on refining machine learning models, optimizing measurement algorithms, expanding functionalities to include comprehensive patient data management, and enhancing ARCore's performance across various lighting conditions and operational settings.
null
https://arxiv.org/abs/2506.17954v1
https://arxiv.org/pdf/2506.17954v1.pdf
null
[ "Liong Gele", "Tan Chye Cheah" ]
[ "3D Reconstruction", "Edge Detection", "Image Segmentation", "Management", "Semantic Segmentation" ]
2025-06-22T00:00:00
null
null
null
null
[ { "code_snippet_url": null, "description": "", "full_name": "Focus", "introduced_year": 2000, "main_collection": { "area": "Natural Language Processing", "description": "**Transformers** are a type of neural network architecture that have several properties that make them effective for modeling data with long-range dependencies. They generally feature a combination of multi-headed attention mechanisms, residual connections, layer normalization, feedforward connections, and positional embeddings.", "name": "Transformers", "parent": "Language Models" }, "name": "Focus", "source_title": "Focus Your Attention (with Adaptive IIR Filters)", "source_url": "https://arxiv.org/abs/2305.14952v2" } ]
https://paperswithcode.com/paper/cloud-aware-sar-fusion-for-enhanced-optical
2506.17885
null
null
Cloud-Aware SAR Fusion for Enhanced Optical Sensing in Space Missions
Cloud contamination significantly impairs the usability of optical satellite imagery, affecting critical applications such as environmental monitoring, disaster response, and land-use analysis. This research presents a Cloud-Attentive Reconstruction Framework that integrates SAR-optical feature fusion with deep learning-based image reconstruction to generate cloud-free optical imagery. The proposed framework employs an attention-driven feature fusion mechanism to align complementary structural information from Synthetic Aperture Radar (SAR) with spectral characteristics from optical data. Furthermore, a cloud-aware model update strategy introduces adaptive loss weighting to prioritize cloud-occluded regions, enhancing reconstruction accuracy. Experimental results demonstrate that the proposed method outperforms existing approaches, achieving a PSNR of 31.01 dB, SSIM of 0.918, and MAE of 0.017. These outcomes highlight the framework's effectiveness in producing high-fidelity, spatially and spectrally consistent cloud-free optical images.
Cloud contamination significantly impairs the usability of optical satellite imagery, affecting critical applications such as environmental monitoring, disaster response, and land-use analysis.
https://arxiv.org/abs/2506.17885v1
https://arxiv.org/pdf/2506.17885v1.pdf
null
[ "Trong-An Bui", "Thanh-Thoai Le" ]
[ "Disaster Response", "Image Reconstruction", "SSIM" ]
2025-06-22T00:00:00
null
null
null
null
[ { "code_snippet_url": null, "description": "", "full_name": "Masked autoencoder", "introduced_year": 2000, "main_collection": { "area": "General", "description": "**Self-Supervised Learning** refers to a category of methods where we learn representations in a self-supervised way (i.e without labels). These methods generally involve a pretext task that is solved to learn a good representation and a loss function to learn with. Below you can find a continuously updating list of self-supervised methods.", "name": "Self-Supervised Learning", "parent": null }, "name": "MAE", "source_title": "Masked Autoencoders Are Scalable Vision Learners", "source_url": "https://arxiv.org/abs/2111.06377v2" }, { "code_snippet_url": "", "description": "In the ALIGN method, visual and language representations are jointly trained from noisy image alt-text data. The image and text encoders are learned via contrastive loss (formulated as normalized softmax) that pushes the embeddings of the matched image-text pair together and pushing those of non-matched image-text pair apart. The model learns to align visual and language representations of the image and text pairs using the contrastive loss. The representations can be used for vision-only or vision-language task transfer. Without any fine-tuning, ALIGN powers zero-shot visual classification and cross-modal search including image-to-text search, text-to image search and even search with joint image+text queries.", "full_name": "ALIGN", "introduced_year": 2000, "main_collection": { "area": "Computer Vision", "description": "Involves models that adapt pre-training to the field of Vision-and-Language (V-L) learning and improve the performance on downstream tasks like visual question answering and visual captioning.\r\n\r\nAccording to [Du et al. (2022)](https://arxiv.org/pdf/2202.10936.pdf), information coming from the different modalities can be encoded in three ways: fusion encoder, dual encoder, and a combination of both. \r\n\r\nReferences:\r\n\r\n- [A Survey of Vision-Language Pre-Trained Models](https://arxiv.org/pdf/2202.10936.pdf)\r\n- [Vision Language models: towards multi-modal deep learning](https://theaisummer.com/vision-language-models/)", "name": "Vision and Language Pre-Trained Models", "parent": null }, "name": "ALIGN", "source_title": "Scaling Up Visual and Vision-Language Representation Learning With Noisy Text Supervision", "source_url": "https://arxiv.org/abs/2102.05918v2" } ]
https://paperswithcode.com/paper/stainpidr-a-pathological-image-decouplingand
2506.17879
null
null
StainPIDR: A Pathological Image Decouplingand Reconstruction Method for Stain Normalization Based on Color Vector Quantization and Structure Restaining
The color appearance of a pathological image is highly related to the imaging protocols, the proportion of different dyes, and the scanning devices. Computer-aided diagnostic systems may deteriorate when facing these color-variant pathological images. In this work, we propose a stain normalization method called StainPIDR. We try to eliminate this color discrepancy by decoupling the image into structure features and vector-quantized color features, restaining the structure features with the target color features, and decoding the stained structure features to normalized pathological images. We assume that color features decoupled by different images with the same color should be exactly the same. Under this assumption, we train a fixed color vector codebook to which the decoupled color features will map. In the restaining part, we utilize the cross-attention mechanism to efficiently stain the structure features. As the target color (decoupled from a selected template image) will also affect the performance of stain normalization, we further design a template image selection algorithm to select a template from a given dataset. In our extensive experiments, we validate the effectiveness of StainPIDR and the template image selection algorithm. All the results show that our method can perform well in the stain normalization task. The code of StainPIDR will be publicly available later.
null
https://arxiv.org/abs/2506.17879v1
https://arxiv.org/pdf/2506.17879v1.pdf
null
[ "Zheng Chen" ]
[ "Diagnostic", "Quantization" ]
2025-06-22T00:00:00
null
null
null
null
[]
https://paperswithcode.com/paper/robust-foreground-background-separation-for
2506.17838
null
null
Robust Foreground-Background Separation for Severely-Degraded Videos Using Convolutional Sparse Representation Modeling
This paper proposes a foreground-background separation (FBS) method with a novel foreground model based on convolutional sparse representation (CSR). In order to analyze the dynamic and static components of videos acquired under undesirable conditions, such as hardware, environmental, and power limitations, it is essential to establish an FBS method that can handle videos with low frame rates and various types of noise. Existing FBS methods have two limitations that prevent us from accurately separating foreground and background components from such degraded videos. First, they only capture either data-specific or general features of the components. Second, they do not include explicit models for various types of noise to remove them in the FBS process. To this end, we propose a robust FBS method with a CSR-based foreground model. This model can adaptively capture specific spatial structures scattered in imaging data. Then, we formulate FBS as a constrained multiconvex optimization problem that incorporates CSR, functions that capture general features, and explicit noise characterization functions for multiple types of noise. Thanks to these functions, our method captures both data-specific and general features to accurately separate the components from various types of noise even under low frame rates. To obtain a solution of the optimization problem, we develop an algorithm that alternately solves its two convex subproblems by newly established algorithms. Experiments demonstrate the superiority of our method over existing methods using two types of degraded videos: infrared and microscope videos.
null
https://arxiv.org/abs/2506.17838v1
https://arxiv.org/pdf/2506.17838v1.pdf
null
[ "Kazuki Naganuma", "Shunsuke Ono" ]
[]
2025-06-21T00:00:00
null
null
null
null
[]
https://paperswithcode.com/paper/model-agnostic-temperature-informed-sampling
2506.12885
null
null
Model-Agnostic, Temperature-Informed Sampling Enhances Cross-Year Crop Mapping with Deep Learning
Conventional benchmarks for crop type classification from optical satellite time series typically assume access to labeled data from the same year and rely on fixed calendar-day sampling. This limits generalization across seasons, where crop phenology shifts due to interannual climate variability, and precludes real-time application when current-year labels are unavailable. Furthermore, uncertainty quantification is often neglected, making such approaches unreliable for crop monitoring applications. Inspired by ecophysiological principles of plant growth, we propose a simple, model-agnostic sampling strategy that leverages growing degree days (GDD), based on daily average temperature, to replace calendar time with thermal time. By uniformly subsampling time series in this biologically meaningful domain, the method emphasizes phenologically active growth stages while reducing temporal redundancy and noise. We evaluate the method on a multi-year Sentinel-2 dataset spanning all of Switzerland, training on one growing season and testing on other seasons. Compared to state-of-the-art baselines, our method delivers substantial gains in classification accuracy and, critically, produces more calibrated uncertainty estimates. Notably, our method excels in low-data regimes and enables significantly more accurate early-season classification. With only 10 percent of the training data, our method surpasses the state-of-the-art baseline in both predictive accuracy and uncertainty estimation, and by the end of June, it achieves performance similar to a baseline trained on the full season. These results demonstrate that leveraging temperature data not only improves predictive performance across seasons but also enhances the robustness and trustworthiness of crop-type mapping in real-world applications.
null
https://arxiv.org/abs/2506.12885v2
https://arxiv.org/pdf/2506.12885v2.pdf
null
[ "Mehmet Ozgur Turkoglu", "Selene Ledain", "Helge Aasen" ]
[ "Crop Type Mapping", "Time Series", "Uncertainty Quantification" ]
2025-06-15T00:00:00
null
null
null
null
[]
https://paperswithcode.com/paper/mtsic-multi-stage-transformer-based-gan-for
2506.17540
null
null
MTSIC: Multi-stage Transformer-based GAN for Spectral Infrared Image Colorization
Thermal infrared (TIR) images, acquired through thermal radiation imaging, are unaffected by variations in lighting conditions and atmospheric haze. However, TIR images inherently lack color and texture information, limiting downstream tasks and potentially causing visual fatigue. Existing colorization methods primarily rely on single-band images with limited spectral information and insufficient feature extraction capabilities, which often result in image distortion and semantic ambiguity. In contrast, multiband infrared imagery provides richer spectral data, facilitating the preservation of finer details and enhancing semantic accuracy. In this paper, we propose a generative adversarial network (GAN)-based framework designed to integrate spectral information to enhance the colorization of infrared images. The framework employs a multi-stage spectral self-attention Transformer network (MTSIC) as the generator. Each spectral feature is treated as a token for self-attention computation, and a multi-head self-attention mechanism forms a spatial-spectral attention residual block (SARB), achieving multi-band feature mapping and reducing semantic confusion. Multiple SARB units are integrated into a Transformer-based single-stage network (STformer), which uses a U-shaped architecture to extract contextual information, combined with multi-scale wavelet blocks (MSWB) to align semantic information in the spatial-frequency dual domain. Multiple STformer modules are cascaded to form MTSIC, progressively optimizing the reconstruction quality. Experimental results demonstrate that the proposed method significantly outperforms traditional techniques and effectively enhances the visual quality of infrared images.
null
https://arxiv.org/abs/2506.17540v1
https://arxiv.org/pdf/2506.17540v1.pdf
null
[ "Tingting Liu", "YuAn Liu", "Jinhui Tang", "Liyin Yuan", "Chengyu Liu", "Chunlai LI", "Xiubao Sui", "Qian Chen" ]
[ "Colorization", "Generative Adversarial Network", "Image Colorization" ]
2025-06-21T00:00:00
null
null
null
null
[ { "code_snippet_url": "", "description": "How Do I Communicate to Expedia?\r\nHow Do I Communicate to Expedia? – Call **☎️ +1-(888) 829 (0881) or +1-805-330-4056 or +1-805-330-4056** for Live Support & Special Travel Discounts!Frustrated with automated systems? Call **☎️ **☎️ +1-(888) 829 (0881) or +1-805-330-4056 or +1-805-330-4056** now to speak directly with a live Expedia agent and unlock exclusive best deal discounts on hotels, flights, and vacation packages. Get real help fast while enjoying limited-time offers that make your next trip more affordable, smooth, and stress-free. Don’t wait—call today!\r\n\r\n\r\nHow Do I Communicate to Expedia?\r\nHow Do I Communicate to Expedia? – Call **☎️ +1-(888) 829 (0881) or +1-805-330-4056 or +1-805-330-4056** for Live Support & Special Travel Discounts!Frustrated with automated systems? Call **☎️ **☎️ +1-(888) 829 (0881) or +1-805-330-4056 or +1-805-330-4056** now to speak directly with a live Expedia agent and unlock exclusive best deal discounts on hotels, flights, and vacation packages. Get real help fast while enjoying limited-time offers that make your next trip more affordable, smooth, and stress-free. Don’t wait—call today!", "full_name": "*Communicated@Fast*How Do I Communicate to Expedia?", "introduced_year": 2000, "main_collection": { "area": "General", "description": "How do I escalate a problem with Expedia?\r\nTo escalate a problem with Expedia, call +1(888) (829) (0881) OR +1(805) (330) (4056) and ask to speak with a manager. Explain your issue in detail and inquire about compensation. Expedia may provide exclusive discount codes, travel credits, or special offers to help resolve your problem and improve your experience.\r\nIs Expedia actually fully refundable?\r\nExpedia isn’t always fully refundable—refunds depend on the hotel, airline, or rental provider’s policy call +1(888) (829) (0881) OR +1(805) (330) (4056). Look for “Free Cancellation” before booking to ensure flexibility. For peace of mind and potential savings, call +1(888) (829) (0881) OR +1(805) (330) (4056) and ask about current discount codes or refund-friendly deals.\r\n\r\nWhat is the refundable option on expedia?\r\nThe refundable option on Expedia allows you to cancel eligible bookings call +1(888) (829) (0881) OR +1(805) (330) (4056) without penalty. Look for listings marked “Free Cancellation” or “Fully Refundable.” To maximize flexibility, choose these options during checkout. For additional savings, call +1(888) (829) (0881) OR +1(805) (330) (4056) and ask about exclusive promo codes or travel discounts available today.", "name": "Activation Functions", "parent": null }, "name": "ReLU", "source_title": null, "source_url": null }, { "code_snippet_url": "https://github.com/CyberZHG/torch-layer-normalization/blob/89f405b60f53f85da6f03fe685c190ef394ce50c/torch_layer_normalization/layer_normalization.py#L8", "description": "Unlike [batch normalization](https://paperswithcode.com/method/batch-normalization), **Layer Normalization** directly estimates the normalization statistics from the summed inputs to the neurons within a hidden layer so the normalization does not introduce any new dependencies between training cases. It works well for [RNNs](https://paperswithcode.com/methods/category/recurrent-neural-networks) and improves both the training time and the generalization performance of several existing RNN models. More recently, it has been used with [Transformer](https://paperswithcode.com/methods/category/transformers) models.\r\n\r\nWe compute the layer normalization statistics over all the hidden units in the same layer as follows:\r\n\r\n$$ \\mu^{l} = \\frac{1}{H}\\sum^{H}\\_{i=1}a\\_{i}^{l} $$\r\n\r\n$$ \\sigma^{l} = \\sqrt{\\frac{1}{H}\\sum^{H}\\_{i=1}\\left(a\\_{i}^{l}-\\mu^{l}\\right)^{2}} $$\r\n\r\nwhere $H$ denotes the number of hidden units in a layer. Under layer normalization, all the hidden units in a layer share the same normalization terms $\\mu$ and $\\sigma$, but different training cases have different normalization terms. Unlike batch normalization, layer normalization does not impose any constraint on the size of the mini-batch and it can be used in the pure online regime with batch size 1.", "full_name": "Layer Normalization", "introduced_year": 2000, "main_collection": { "area": "General", "description": "**Normalization** layers in deep learning are used to make optimization easier by smoothing the loss surface of the network. Below you will find a continuously updating list of normalization methods.", "name": "Normalization", "parent": null }, "name": "Layer Normalization", "source_title": "Layer Normalization", "source_url": "http://arxiv.org/abs/1607.06450v1" }, { "code_snippet_url": "https://github.com/google/jax/blob/7f3078b70d0ed9bea6228efa420879c56f72ef69/jax/experimental/stax.py#L271-L275", "description": "**Dropout** is a regularization technique for neural networks that drops a unit (along with connections) at training time with a specified probability $p$ (a common value is $p=0.5$). At test time, all units are present, but with weights scaled by $p$ (i.e. $w$ becomes $pw$).\r\n\r\nThe idea is to prevent co-adaptation, where the neural network becomes too reliant on particular connections, as this could be symptomatic of overfitting. Intuitively, dropout can be thought of as creating an implicit ensemble of neural networks.", "full_name": "Dropout", "introduced_year": 2000, "main_collection": { "area": "General", "description": "Regularization strategies are designed to reduce the test error of a machine learning algorithm, possibly at the expense of training error. Many different forms of regularization exist in the field of deep learning. Below you can find a constantly updating list of regularization strategies.", "name": "Regularization", "parent": null }, "name": "Dropout", "source_title": "Dropout: A Simple Way to Prevent Neural Networks from Overfitting", "source_url": "http://jmlr.org/papers/v15/srivastava14a.html" }, { "code_snippet_url": "", "description": "**Absolute Position Encodings** are a type of position embeddings for [[Transformer](https://paperswithcode.com/method/transformer)-based models] where positional encodings are added to the input embeddings at the bottoms of the encoder and decoder stacks. The positional encodings have the same dimension $d\\_{model}$ as the embeddings, so that the two can be summed. In the original implementation, sine and cosine functions of different frequencies are used:\r\n\r\n$$ \\text{PE}\\left(pos, 2i\\right) = \\sin\\left(pos/10000^{2i/d\\_{model}}\\right) $$\r\n\r\n$$ \\text{PE}\\left(pos, 2i+1\\right) = \\cos\\left(pos/10000^{2i/d\\_{model}}\\right) $$\r\n\r\nwhere $pos$ is the position and $i$ is the dimension. That is, each dimension of the positional encoding corresponds to a sinusoid. The wavelengths form a geometric progression from $2\\pi$ to $10000 \\dot 2\\pi$. This function was chosen because the authors hypothesized it would allow the model to easily learn to attend by relative positions, since for any fixed offset $k$, $\\text{PE}\\_{pos+k}$ can be represented as a linear function of $\\text{PE}\\_{pos}$.\r\n\r\nImage Source: [D2L.ai](https://d2l.ai/chapter_attention-mechanisms/self-attention-and-positional-encoding.html)", "full_name": "Absolute Position Encodings", "introduced_year": 2000, "main_collection": { "area": "General", "description": "", "name": "Position Embeddings", "parent": null }, "name": "Absolute Position Encodings", "source_title": "Attention Is All You Need", "source_url": "https://arxiv.org/abs/1706.03762v7" }, { "code_snippet_url": "", "description": "A **convolution** is a type of matrix operation, consisting of a kernel, a small matrix of weights, that slides over input data performing element-wise multiplication with the part of the input it is on, then summing the results into an output.\r\n\r\nIntuitively, a convolution allows for weight sharing - reducing the number of effective parameters - and image translation (allowing for the same feature to be detected in different parts of the input space).\r\n\r\nImage Source: [https://arxiv.org/pdf/1603.07285.pdf](https://arxiv.org/pdf/1603.07285.pdf)", "full_name": "Convolution", "introduced_year": 1980, "main_collection": { "area": "Computer Vision", "description": "**Convolutions** are a type of operation that can be used to learn representations from images. They involve a learnable kernel sliding over the image and performing element-wise multiplication with the input. The specification allows for parameter sharing and translation invariance. Below you can find a continuously updating list of convolutions.", "name": "Convolutions", "parent": "Image Feature Extractors" }, "name": "Convolution", "source_title": null, "source_url": null }, { "code_snippet_url": null, "description": "**Dense Connections**, or **Fully Connected Connections**, are a type of layer in a deep neural network that use a linear operation where every input is connected to every output by a weight. This means there are $n\\_{\\text{inputs}}*n\\_{\\text{outputs}}$ parameters, which can lead to a lot of parameters for a sizeable network.\r\n\r\n$$h\\_{l} = g\\left(\\textbf{W}^{T}h\\_{l-1}\\right)$$\r\n\r\nwhere $g$ is an activation function.\r\n\r\nImage Source: Deep Learning by Goodfellow, Bengio and Courville", "full_name": "Dense Connections", "introduced_year": 2000, "main_collection": { "area": "General", "description": "**Feedforward Networks** are a type of neural network architecture which rely primarily on dense-like connections. Below you can find a continuously updating list of feedforward network components.", "name": "Feedforward Networks", "parent": null }, "name": "Dense Connections", "source_title": null, "source_url": null }, { "code_snippet_url": null, "description": "**Byte Pair Encoding**, or **BPE**, is a subword segmentation algorithm that encodes rare and unknown words as sequences of subword units. The intuition is that various word classes are translatable via smaller units than words, for instance names (via character copying or transliteration), compounds (via compositional translation), and cognates and loanwords (via phonological and morphological transformations).\r\n\r\n[Lei Mao](https://leimao.github.io/blog/Byte-Pair-Encoding/) has a detailed blog post that explains how this works.", "full_name": "Byte Pair Encoding", "introduced_year": 2000, "main_collection": { "area": "Natural Language Processing", "description": "", "name": "Subword Segmentation", "parent": null }, "name": "BPE", "source_title": "Neural Machine Translation of Rare Words with Subword Units", "source_url": "http://arxiv.org/abs/1508.07909v5" }, { "code_snippet_url": null, "description": "The **Softmax** output function transforms a previous layer's output into a vector of probabilities. It is commonly used for multiclass classification. Given an input vector $x$ and a weighting vector $w$ we have:\r\n\r\n$$ P(y=j \\mid{x}) = \\frac{e^{x^{T}w_{j}}}{\\sum^{K}_{k=1}e^{x^{T}wk}} $$", "full_name": "Softmax", "introduced_year": 2000, "main_collection": { "area": "General", "description": "**Output functions** are layers used towards the end of a network to transform to the desired form for a loss function. For example, the softmax relies on logits to construct a conditional probability. Below you can find a continuously updating list of output functions.", "name": "Output Functions", "parent": null }, "name": "Softmax", "source_title": null, "source_url": null }, { "code_snippet_url": "https://github.com/pytorch/vision/blob/1aef87d01eec2c0989458387fa04baebcc86ea7b/torchvision/models/resnet.py#L35", "description": "**Residual Blocks** are skip-connection blocks that learn residual functions with reference to the layer inputs, instead of learning unreferenced functions. They were introduced as part of the [ResNet](https://paperswithcode.com/method/resnet) architecture.\r\n \r\nFormally, denoting the desired underlying mapping as $\\mathcal{H}({x})$, we let the stacked nonlinear layers fit another mapping of $\\mathcal{F}({x}):=\\mathcal{H}({x})-{x}$. The original mapping is recast into $\\mathcal{F}({x})+{x}$. The $\\mathcal{F}({x})$ acts like a residual, hence the name 'residual block'.\r\n\r\nThe intuition is that it is easier to optimize the residual mapping than to optimize the original, unreferenced mapping. To the extreme, if an identity mapping were optimal, it would be easier to push the residual to zero than to fit an identity mapping by a stack of nonlinear layers. Having skip connections allows the network to more easily learn identity-like mappings.\r\n\r\nNote that in practice, [Bottleneck Residual Blocks](https://paperswithcode.com/method/bottleneck-residual-block) are used for deeper ResNets, such as ResNet-50 and ResNet-101, as these bottleneck blocks are less computationally intensive.", "full_name": "Residual Block", "introduced_year": 2000, "main_collection": { "area": "General", "description": "**Skip Connection Blocks** are building blocks for neural networks that feature skip connections. These skip connections 'skip' some layers allowing gradients to better flow through the network. Below you will find a continuously updating list of skip connection blocks:", "name": "Skip Connection Blocks", "parent": null }, "name": "Residual Block", "source_title": "Deep Residual Learning for Image Recognition", "source_url": "http://arxiv.org/abs/1512.03385v1" }, { "code_snippet_url": "", "description": "**Colorization** is a self-supervision approach that relies on colorization as the pretext task in order to learn image representations.", "full_name": "Colorization", "introduced_year": 2000, "main_collection": { "area": "General", "description": "**Self-Supervised Learning** refers to a category of methods where we learn representations in a self-supervised way (i.e without labels). These methods generally involve a pretext task that is solved to learn a good representation and a loss function to learn with. Below you can find a continuously updating list of self-supervised methods.", "name": "Self-Supervised Learning", "parent": null }, "name": "Colorization", "source_title": "Colorful Image Colorization", "source_url": "http://arxiv.org/abs/1603.08511v5" }, { "code_snippet_url": "", "description": "**Label Smoothing** is a regularization technique that introduces noise for the labels. This accounts for the fact that datasets may have mistakes in them, so maximizing the likelihood of $\\log{p}\\left(y\\mid{x}\\right)$ directly can be harmful. Assume for a small constant $\\epsilon$, the training set label $y$ is correct with probability $1-\\epsilon$ and incorrect otherwise. Label Smoothing regularizes a model based on a [softmax](https://paperswithcode.com/method/softmax) with $k$ output values by replacing the hard $0$ and $1$ classification targets with targets of $\\frac{\\epsilon}{k}$ and $1-\\frac{k-1}{k}\\epsilon$ respectively.\r\n\r\nSource: Deep Learning, Goodfellow et al\r\n\r\nImage Source: [When Does Label Smoothing Help?](https://arxiv.org/abs/1906.02629)", "full_name": "Label Smoothing", "introduced_year": 1985, "main_collection": { "area": "General", "description": "Regularization strategies are designed to reduce the test error of a machine learning algorithm, possibly at the expense of training error. Many different forms of regularization exist in the field of deep learning. Below you can find a constantly updating list of regularization strategies.", "name": "Regularization", "parent": null }, "name": "Label Smoothing", "source_title": null, "source_url": null }, { "code_snippet_url": "https://github.com/tunz/transformer-pytorch/blob/e7266679f0b32fd99135ea617213f986ceede056/model/transformer.py#L201", "description": "A **Transformer** is a model architecture that eschews recurrence and instead relies entirely on an [attention mechanism](https://paperswithcode.com/methods/category/attention-mechanisms-1) to draw global dependencies between input and output. Before Transformers, the dominant sequence transduction models were based on complex recurrent or convolutional neural networks that include an encoder and a decoder. The Transformer also employs an encoder and decoder, but removing recurrence in favor of [attention mechanisms](https://paperswithcode.com/methods/category/attention-mechanisms-1) allows for significantly more parallelization than methods like [RNNs](https://paperswithcode.com/methods/category/recurrent-neural-networks) and [CNNs](https://paperswithcode.com/methods/category/convolutional-neural-networks).", "full_name": "Transformer", "introduced_year": 2000, "main_collection": { "area": "Natural Language Processing", "description": "**Transformers** are a type of neural network architecture that have several properties that make them effective for modeling data with long-range dependencies. They generally feature a combination of multi-headed attention mechanisms, residual connections, layer normalization, feedforward connections, and positional embeddings.", "name": "Transformers", "parent": "Language Models" }, "name": "Transformer", "source_title": "Attention Is All You Need", "source_url": "https://arxiv.org/abs/1706.03762v7" }, { "code_snippet_url": "", "description": "In the ALIGN method, visual and language representations are jointly trained from noisy image alt-text data. The image and text encoders are learned via contrastive loss (formulated as normalized softmax) that pushes the embeddings of the matched image-text pair together and pushing those of non-matched image-text pair apart. The model learns to align visual and language representations of the image and text pairs using the contrastive loss. The representations can be used for vision-only or vision-language task transfer. Without any fine-tuning, ALIGN powers zero-shot visual classification and cross-modal search including image-to-text search, text-to image search and even search with joint image+text queries.", "full_name": "ALIGN", "introduced_year": 2000, "main_collection": { "area": "Computer Vision", "description": "Involves models that adapt pre-training to the field of Vision-and-Language (V-L) learning and improve the performance on downstream tasks like visual question answering and visual captioning.\r\n\r\nAccording to [Du et al. (2022)](https://arxiv.org/pdf/2202.10936.pdf), information coming from the different modalities can be encoded in three ways: fusion encoder, dual encoder, and a combination of both. \r\n\r\nReferences:\r\n\r\n- [A Survey of Vision-Language Pre-Trained Models](https://arxiv.org/pdf/2202.10936.pdf)\r\n- [Vision Language models: towards multi-modal deep learning](https://theaisummer.com/vision-language-models/)", "name": "Vision and Language Pre-Trained Models", "parent": null }, "name": "ALIGN", "source_title": "Scaling Up Visual and Vision-Language Representation Learning With Noisy Text Supervision", "source_url": "https://arxiv.org/abs/2102.05918v2" } ]
https://paperswithcode.com/paper/trans-2-cbct-a-dual-transformer-framework-for
2506.17425
null
null
Trans${^2}$-CBCT: A Dual-Transformer Framework for Sparse-View CBCT Reconstruction
Cone-beam computed tomography (CBCT) using only a few X-ray projection views enables faster scans with lower radiation dose, but the resulting severe under-sampling causes strong artifacts and poor spatial coverage. We address these challenges in a unified framework. First, we replace conventional UNet/ResNet encoders with TransUNet, a hybrid CNN-Transformer model. Convolutional layers capture local details, while self-attention layers enhance global context. We adapt TransUNet to CBCT by combining multi-scale features, querying view-specific features per 3D point, and adding a lightweight attenuation-prediction head. This yields Trans-CBCT, which surpasses prior baselines by 1.17 dB PSNR and 0.0163 SSIM on the LUNA16 dataset with six views. Second, we introduce a neighbor-aware Point Transformer to enforce volumetric coherence. This module uses 3D positional encoding and attention over k-nearest neighbors to improve spatial consistency. The resulting model, Trans$^2$-CBCT, provides an additional gain of 0.63 dB PSNR and 0.0117 SSIM. Experiments on LUNA16 and ToothFairy show consistent gains from six to ten views, validating the effectiveness of combining CNN-Transformer features with point-based geometry reasoning for sparse-view CBCT reconstruction.
null
https://arxiv.org/abs/2506.17425v1
https://arxiv.org/pdf/2506.17425v1.pdf
null
[ "Minmin Yang", "Huantao Ren", "Senem Velipasalar" ]
[ "SSIM" ]
2025-06-20T00:00:00
null
null
null
null
[ { "code_snippet_url": "https://github.com/CyberZHG/torch-layer-normalization/blob/89f405b60f53f85da6f03fe685c190ef394ce50c/torch_layer_normalization/layer_normalization.py#L8", "description": "Unlike [batch normalization](https://paperswithcode.com/method/batch-normalization), **Layer Normalization** directly estimates the normalization statistics from the summed inputs to the neurons within a hidden layer so the normalization does not introduce any new dependencies between training cases. It works well for [RNNs](https://paperswithcode.com/methods/category/recurrent-neural-networks) and improves both the training time and the generalization performance of several existing RNN models. More recently, it has been used with [Transformer](https://paperswithcode.com/methods/category/transformers) models.\r\n\r\nWe compute the layer normalization statistics over all the hidden units in the same layer as follows:\r\n\r\n$$ \\mu^{l} = \\frac{1}{H}\\sum^{H}\\_{i=1}a\\_{i}^{l} $$\r\n\r\n$$ \\sigma^{l} = \\sqrt{\\frac{1}{H}\\sum^{H}\\_{i=1}\\left(a\\_{i}^{l}-\\mu^{l}\\right)^{2}} $$\r\n\r\nwhere $H$ denotes the number of hidden units in a layer. Under layer normalization, all the hidden units in a layer share the same normalization terms $\\mu$ and $\\sigma$, but different training cases have different normalization terms. Unlike batch normalization, layer normalization does not impose any constraint on the size of the mini-batch and it can be used in the pure online regime with batch size 1.", "full_name": "Layer Normalization", "introduced_year": 2000, "main_collection": { "area": "General", "description": "**Normalization** layers in deep learning are used to make optimization easier by smoothing the loss surface of the network. Below you will find a continuously updating list of normalization methods.", "name": "Normalization", "parent": null }, "name": "Layer Normalization", "source_title": "Layer Normalization", "source_url": "http://arxiv.org/abs/1607.06450v1" }, { "code_snippet_url": "https://github.com/google/jax/blob/7f3078b70d0ed9bea6228efa420879c56f72ef69/jax/experimental/stax.py#L271-L275", "description": "**Dropout** is a regularization technique for neural networks that drops a unit (along with connections) at training time with a specified probability $p$ (a common value is $p=0.5$). At test time, all units are present, but with weights scaled by $p$ (i.e. $w$ becomes $pw$).\r\n\r\nThe idea is to prevent co-adaptation, where the neural network becomes too reliant on particular connections, as this could be symptomatic of overfitting. Intuitively, dropout can be thought of as creating an implicit ensemble of neural networks.", "full_name": "Dropout", "introduced_year": 2000, "main_collection": { "area": "General", "description": "Regularization strategies are designed to reduce the test error of a machine learning algorithm, possibly at the expense of training error. Many different forms of regularization exist in the field of deep learning. Below you can find a constantly updating list of regularization strategies.", "name": "Regularization", "parent": null }, "name": "Dropout", "source_title": "Dropout: A Simple Way to Prevent Neural Networks from Overfitting", "source_url": "http://jmlr.org/papers/v15/srivastava14a.html" }, { "code_snippet_url": "", "description": "**Absolute Position Encodings** are a type of position embeddings for [[Transformer](https://paperswithcode.com/method/transformer)-based models] where positional encodings are added to the input embeddings at the bottoms of the encoder and decoder stacks. The positional encodings have the same dimension $d\\_{model}$ as the embeddings, so that the two can be summed. In the original implementation, sine and cosine functions of different frequencies are used:\r\n\r\n$$ \\text{PE}\\left(pos, 2i\\right) = \\sin\\left(pos/10000^{2i/d\\_{model}}\\right) $$\r\n\r\n$$ \\text{PE}\\left(pos, 2i+1\\right) = \\cos\\left(pos/10000^{2i/d\\_{model}}\\right) $$\r\n\r\nwhere $pos$ is the position and $i$ is the dimension. That is, each dimension of the positional encoding corresponds to a sinusoid. The wavelengths form a geometric progression from $2\\pi$ to $10000 \\dot 2\\pi$. This function was chosen because the authors hypothesized it would allow the model to easily learn to attend by relative positions, since for any fixed offset $k$, $\\text{PE}\\_{pos+k}$ can be represented as a linear function of $\\text{PE}\\_{pos}$.\r\n\r\nImage Source: [D2L.ai](https://d2l.ai/chapter_attention-mechanisms/self-attention-and-positional-encoding.html)", "full_name": "Absolute Position Encodings", "introduced_year": 2000, "main_collection": { "area": "General", "description": "", "name": "Position Embeddings", "parent": null }, "name": "Absolute Position Encodings", "source_title": "Attention Is All You Need", "source_url": "https://arxiv.org/abs/1706.03762v7" }, { "code_snippet_url": null, "description": "**Dense Connections**, or **Fully Connected Connections**, are a type of layer in a deep neural network that use a linear operation where every input is connected to every output by a weight. This means there are $n\\_{\\text{inputs}}*n\\_{\\text{outputs}}$ parameters, which can lead to a lot of parameters for a sizeable network.\r\n\r\n$$h\\_{l} = g\\left(\\textbf{W}^{T}h\\_{l-1}\\right)$$\r\n\r\nwhere $g$ is an activation function.\r\n\r\nImage Source: Deep Learning by Goodfellow, Bengio and Courville", "full_name": "Dense Connections", "introduced_year": 2000, "main_collection": { "area": "General", "description": "**Feedforward Networks** are a type of neural network architecture which rely primarily on dense-like connections. Below you can find a continuously updating list of feedforward network components.", "name": "Feedforward Networks", "parent": null }, "name": "Dense Connections", "source_title": null, "source_url": null }, { "code_snippet_url": null, "description": "**Byte Pair Encoding**, or **BPE**, is a subword segmentation algorithm that encodes rare and unknown words as sequences of subword units. The intuition is that various word classes are translatable via smaller units than words, for instance names (via character copying or transliteration), compounds (via compositional translation), and cognates and loanwords (via phonological and morphological transformations).\r\n\r\n[Lei Mao](https://leimao.github.io/blog/Byte-Pair-Encoding/) has a detailed blog post that explains how this works.", "full_name": "Byte Pair Encoding", "introduced_year": 2000, "main_collection": { "area": "Natural Language Processing", "description": "", "name": "Subword Segmentation", "parent": null }, "name": "BPE", "source_title": "Neural Machine Translation of Rare Words with Subword Units", "source_url": "http://arxiv.org/abs/1508.07909v5" }, { "code_snippet_url": null, "description": "The **Softmax** output function transforms a previous layer's output into a vector of probabilities. It is commonly used for multiclass classification. Given an input vector $x$ and a weighting vector $w$ we have:\r\n\r\n$$ P(y=j \\mid{x}) = \\frac{e^{x^{T}w_{j}}}{\\sum^{K}_{k=1}e^{x^{T}wk}} $$", "full_name": "Softmax", "introduced_year": 2000, "main_collection": { "area": "General", "description": "**Output functions** are layers used towards the end of a network to transform to the desired form for a loss function. For example, the softmax relies on logits to construct a conditional probability. Below you can find a continuously updating list of output functions.", "name": "Output Functions", "parent": null }, "name": "Softmax", "source_title": null, "source_url": null }, { "code_snippet_url": "", "description": "**Label Smoothing** is a regularization technique that introduces noise for the labels. This accounts for the fact that datasets may have mistakes in them, so maximizing the likelihood of $\\log{p}\\left(y\\mid{x}\\right)$ directly can be harmful. Assume for a small constant $\\epsilon$, the training set label $y$ is correct with probability $1-\\epsilon$ and incorrect otherwise. Label Smoothing regularizes a model based on a [softmax](https://paperswithcode.com/method/softmax) with $k$ output values by replacing the hard $0$ and $1$ classification targets with targets of $\\frac{\\epsilon}{k}$ and $1-\\frac{k-1}{k}\\epsilon$ respectively.\r\n\r\nSource: Deep Learning, Goodfellow et al\r\n\r\nImage Source: [When Does Label Smoothing Help?](https://arxiv.org/abs/1906.02629)", "full_name": "Label Smoothing", "introduced_year": 1985, "main_collection": { "area": "General", "description": "Regularization strategies are designed to reduce the test error of a machine learning algorithm, possibly at the expense of training error. Many different forms of regularization exist in the field of deep learning. Below you can find a constantly updating list of regularization strategies.", "name": "Regularization", "parent": null }, "name": "Label Smoothing", "source_title": null, "source_url": null }, { "code_snippet_url": "https://github.com/tunz/transformer-pytorch/blob/e7266679f0b32fd99135ea617213f986ceede056/model/transformer.py#L201", "description": "A **Transformer** is a model architecture that eschews recurrence and instead relies entirely on an [attention mechanism](https://paperswithcode.com/methods/category/attention-mechanisms-1) to draw global dependencies between input and output. Before Transformers, the dominant sequence transduction models were based on complex recurrent or convolutional neural networks that include an encoder and a decoder. The Transformer also employs an encoder and decoder, but removing recurrence in favor of [attention mechanisms](https://paperswithcode.com/methods/category/attention-mechanisms-1) allows for significantly more parallelization than methods like [RNNs](https://paperswithcode.com/methods/category/recurrent-neural-networks) and [CNNs](https://paperswithcode.com/methods/category/convolutional-neural-networks).", "full_name": "Transformer", "introduced_year": 2000, "main_collection": { "area": "Natural Language Processing", "description": "**Transformers** are a type of neural network architecture that have several properties that make them effective for modeling data with long-range dependencies. They generally feature a combination of multi-headed attention mechanisms, residual connections, layer normalization, feedforward connections, and positional embeddings.", "name": "Transformers", "parent": "Language Models" }, "name": "Transformer", "source_title": "Attention Is All You Need", "source_url": "https://arxiv.org/abs/1706.03762v7" } ]
https://paperswithcode.com/paper/vmra-mar-an-asymmetry-aware-temporal
2506.17412
null
null
VMRA-MaR: An Asymmetry-Aware Temporal Framework for Longitudinal Breast Cancer Risk Prediction
Breast cancer remains a leading cause of mortality worldwide and is typically detected via screening programs where healthy people are invited in regular intervals. Automated risk prediction approaches have the potential to improve this process by facilitating dynamically screening of high-risk groups. While most models focus solely on the most recent screening, there is growing interest in exploiting temporal information to capture evolving trends in breast tissue, as inspired by clinical practice. Early methods typically relied on two time steps, and although recent efforts have extended this to multiple time steps using Transformer architectures, challenges remain in fully harnessing the rich temporal dynamics inherent in longitudinal imaging data. In this work, we propose to instead leverage Vision Mamba RNN (VMRNN) with a state-space model (SSM) and LSTM-like memory mechanisms to effectively capture nuanced trends in breast tissue evolution. To further enhance our approach, we incorporate an asymmetry module that utilizes a Spatial Asymmetry Detector (SAD) and Longitudinal Asymmetry Tracker (LAT) to identify clinically relevant bilateral differences. This integrated framework demonstrates notable improvements in predicting cancer onset, especially for the more challenging high-density breast cases and achieves superior performance at extended time points (years four and five), highlighting its potential to advance early breast cancer recognition and enable more personalized screening strategies. Our code is available at https://github.com/Mortal-Suen/VMRA-MaR.git.
Breast cancer remains a leading cause of mortality worldwide and is typically detected via screening programs where healthy people are invited in regular intervals.
https://arxiv.org/abs/2506.17412v1
https://arxiv.org/pdf/2506.17412v1.pdf
null
[ "Zijun Sun", "Solveig Thrun", "Michael Kampffmeyer" ]
[ "Mamba" ]
2025-06-20T00:00:00
null
null
null
null
[ { "code_snippet_url": "https://github.com/CyberZHG/torch-layer-normalization/blob/89f405b60f53f85da6f03fe685c190ef394ce50c/torch_layer_normalization/layer_normalization.py#L8", "description": "Unlike [batch normalization](https://paperswithcode.com/method/batch-normalization), **Layer Normalization** directly estimates the normalization statistics from the summed inputs to the neurons within a hidden layer so the normalization does not introduce any new dependencies between training cases. It works well for [RNNs](https://paperswithcode.com/methods/category/recurrent-neural-networks) and improves both the training time and the generalization performance of several existing RNN models. More recently, it has been used with [Transformer](https://paperswithcode.com/methods/category/transformers) models.\r\n\r\nWe compute the layer normalization statistics over all the hidden units in the same layer as follows:\r\n\r\n$$ \\mu^{l} = \\frac{1}{H}\\sum^{H}\\_{i=1}a\\_{i}^{l} $$\r\n\r\n$$ \\sigma^{l} = \\sqrt{\\frac{1}{H}\\sum^{H}\\_{i=1}\\left(a\\_{i}^{l}-\\mu^{l}\\right)^{2}} $$\r\n\r\nwhere $H$ denotes the number of hidden units in a layer. Under layer normalization, all the hidden units in a layer share the same normalization terms $\\mu$ and $\\sigma$, but different training cases have different normalization terms. Unlike batch normalization, layer normalization does not impose any constraint on the size of the mini-batch and it can be used in the pure online regime with batch size 1.", "full_name": "Layer Normalization", "introduced_year": 2000, "main_collection": { "area": "General", "description": "**Normalization** layers in deep learning are used to make optimization easier by smoothing the loss surface of the network. Below you will find a continuously updating list of normalization methods.", "name": "Normalization", "parent": null }, "name": "Layer Normalization", "source_title": "Layer Normalization", "source_url": "http://arxiv.org/abs/1607.06450v1" }, { "code_snippet_url": "https://github.com/google/jax/blob/7f3078b70d0ed9bea6228efa420879c56f72ef69/jax/experimental/stax.py#L271-L275", "description": "**Dropout** is a regularization technique for neural networks that drops a unit (along with connections) at training time with a specified probability $p$ (a common value is $p=0.5$). At test time, all units are present, but with weights scaled by $p$ (i.e. $w$ becomes $pw$).\r\n\r\nThe idea is to prevent co-adaptation, where the neural network becomes too reliant on particular connections, as this could be symptomatic of overfitting. Intuitively, dropout can be thought of as creating an implicit ensemble of neural networks.", "full_name": "Dropout", "introduced_year": 2000, "main_collection": { "area": "General", "description": "Regularization strategies are designed to reduce the test error of a machine learning algorithm, possibly at the expense of training error. Many different forms of regularization exist in the field of deep learning. Below you can find a constantly updating list of regularization strategies.", "name": "Regularization", "parent": null }, "name": "Dropout", "source_title": "Dropout: A Simple Way to Prevent Neural Networks from Overfitting", "source_url": "http://jmlr.org/papers/v15/srivastava14a.html" }, { "code_snippet_url": "", "description": "**Absolute Position Encodings** are a type of position embeddings for [[Transformer](https://paperswithcode.com/method/transformer)-based models] where positional encodings are added to the input embeddings at the bottoms of the encoder and decoder stacks. The positional encodings have the same dimension $d\\_{model}$ as the embeddings, so that the two can be summed. In the original implementation, sine and cosine functions of different frequencies are used:\r\n\r\n$$ \\text{PE}\\left(pos, 2i\\right) = \\sin\\left(pos/10000^{2i/d\\_{model}}\\right) $$\r\n\r\n$$ \\text{PE}\\left(pos, 2i+1\\right) = \\cos\\left(pos/10000^{2i/d\\_{model}}\\right) $$\r\n\r\nwhere $pos$ is the position and $i$ is the dimension. That is, each dimension of the positional encoding corresponds to a sinusoid. The wavelengths form a geometric progression from $2\\pi$ to $10000 \\dot 2\\pi$. This function was chosen because the authors hypothesized it would allow the model to easily learn to attend by relative positions, since for any fixed offset $k$, $\\text{PE}\\_{pos+k}$ can be represented as a linear function of $\\text{PE}\\_{pos}$.\r\n\r\nImage Source: [D2L.ai](https://d2l.ai/chapter_attention-mechanisms/self-attention-and-positional-encoding.html)", "full_name": "Absolute Position Encodings", "introduced_year": 2000, "main_collection": { "area": "General", "description": "", "name": "Position Embeddings", "parent": null }, "name": "Absolute Position Encodings", "source_title": "Attention Is All You Need", "source_url": "https://arxiv.org/abs/1706.03762v7" }, { "code_snippet_url": null, "description": "**Dense Connections**, or **Fully Connected Connections**, are a type of layer in a deep neural network that use a linear operation where every input is connected to every output by a weight. This means there are $n\\_{\\text{inputs}}*n\\_{\\text{outputs}}$ parameters, which can lead to a lot of parameters for a sizeable network.\r\n\r\n$$h\\_{l} = g\\left(\\textbf{W}^{T}h\\_{l-1}\\right)$$\r\n\r\nwhere $g$ is an activation function.\r\n\r\nImage Source: Deep Learning by Goodfellow, Bengio and Courville", "full_name": "Dense Connections", "introduced_year": 2000, "main_collection": { "area": "General", "description": "**Feedforward Networks** are a type of neural network architecture which rely primarily on dense-like connections. Below you can find a continuously updating list of feedforward network components.", "name": "Feedforward Networks", "parent": null }, "name": "Dense Connections", "source_title": null, "source_url": null }, { "code_snippet_url": null, "description": "**Byte Pair Encoding**, or **BPE**, is a subword segmentation algorithm that encodes rare and unknown words as sequences of subword units. The intuition is that various word classes are translatable via smaller units than words, for instance names (via character copying or transliteration), compounds (via compositional translation), and cognates and loanwords (via phonological and morphological transformations).\r\n\r\n[Lei Mao](https://leimao.github.io/blog/Byte-Pair-Encoding/) has a detailed blog post that explains how this works.", "full_name": "Byte Pair Encoding", "introduced_year": 2000, "main_collection": { "area": "Natural Language Processing", "description": "", "name": "Subword Segmentation", "parent": null }, "name": "BPE", "source_title": "Neural Machine Translation of Rare Words with Subword Units", "source_url": "http://arxiv.org/abs/1508.07909v5" }, { "code_snippet_url": null, "description": "The **Softmax** output function transforms a previous layer's output into a vector of probabilities. It is commonly used for multiclass classification. Given an input vector $x$ and a weighting vector $w$ we have:\r\n\r\n$$ P(y=j \\mid{x}) = \\frac{e^{x^{T}w_{j}}}{\\sum^{K}_{k=1}e^{x^{T}wk}} $$", "full_name": "Softmax", "introduced_year": 2000, "main_collection": { "area": "General", "description": "**Output functions** are layers used towards the end of a network to transform to the desired form for a loss function. For example, the softmax relies on logits to construct a conditional probability. Below you can find a continuously updating list of output functions.", "name": "Output Functions", "parent": null }, "name": "Softmax", "source_title": null, "source_url": null }, { "code_snippet_url": "", "description": "**Label Smoothing** is a regularization technique that introduces noise for the labels. This accounts for the fact that datasets may have mistakes in them, so maximizing the likelihood of $\\log{p}\\left(y\\mid{x}\\right)$ directly can be harmful. Assume for a small constant $\\epsilon$, the training set label $y$ is correct with probability $1-\\epsilon$ and incorrect otherwise. Label Smoothing regularizes a model based on a [softmax](https://paperswithcode.com/method/softmax) with $k$ output values by replacing the hard $0$ and $1$ classification targets with targets of $\\frac{\\epsilon}{k}$ and $1-\\frac{k-1}{k}\\epsilon$ respectively.\r\n\r\nSource: Deep Learning, Goodfellow et al\r\n\r\nImage Source: [When Does Label Smoothing Help?](https://arxiv.org/abs/1906.02629)", "full_name": "Label Smoothing", "introduced_year": 1985, "main_collection": { "area": "General", "description": "Regularization strategies are designed to reduce the test error of a machine learning algorithm, possibly at the expense of training error. Many different forms of regularization exist in the field of deep learning. Below you can find a constantly updating list of regularization strategies.", "name": "Regularization", "parent": null }, "name": "Label Smoothing", "source_title": null, "source_url": null }, { "code_snippet_url": "https://github.com/tunz/transformer-pytorch/blob/e7266679f0b32fd99135ea617213f986ceede056/model/transformer.py#L201", "description": "A **Transformer** is a model architecture that eschews recurrence and instead relies entirely on an [attention mechanism](https://paperswithcode.com/methods/category/attention-mechanisms-1) to draw global dependencies between input and output. Before Transformers, the dominant sequence transduction models were based on complex recurrent or convolutional neural networks that include an encoder and a decoder. The Transformer also employs an encoder and decoder, but removing recurrence in favor of [attention mechanisms](https://paperswithcode.com/methods/category/attention-mechanisms-1) allows for significantly more parallelization than methods like [RNNs](https://paperswithcode.com/methods/category/recurrent-neural-networks) and [CNNs](https://paperswithcode.com/methods/category/convolutional-neural-networks).", "full_name": "Transformer", "introduced_year": 2000, "main_collection": { "area": "Natural Language Processing", "description": "**Transformers** are a type of neural network architecture that have several properties that make them effective for modeling data with long-range dependencies. They generally feature a combination of multi-headed attention mechanisms, residual connections, layer normalization, feedforward connections, and positional embeddings.", "name": "Transformers", "parent": "Language Models" }, "name": "Transformer", "source_title": "Attention Is All You Need", "source_url": "https://arxiv.org/abs/1706.03762v7" }, { "code_snippet_url": "https://github.com/state-spaces/mamba", "description": "Foundation models, now powering most of the exciting applications in deep learning, are almost universally based on the Transformer architecture and its core attention module. Many subquadratic-time architectures such as linear attention, gated convolution and recurrent models, and structured state space models (SSMs) have been developed to address Transformers’ computational inefficiency on long sequences, but they have not performed as well as attention on important modalities such as language. We identify that a key weakness of such models is their inability to perform content-based reasoning, and make several improvements. First, simply letting the SSM parameters be functions of the input addresses their weakness with discrete modalities, allowing the model to selectively propagate or forget information along the sequence length dimension depending on the current token. Second, even though this change prevents the use of efficient convolutions, we design a hardware-aware parallel algorithm in recurrent mode. We integrate these selective SSMs into a simplified end-to-end neural network architecture without attention or even MLP blocks (Mamba). Mamba enjoys fast inference (5× higher throughput than Transformers) and linear scaling in sequence length, and its performance improves on real data up to million-length sequences. As a general sequence model backbone, Mamba achieves state-of-the-art performance across several modalities such as language, audio, and genomics. On language modeling, our Mamba-3B model outperforms Transformers of the same size and matches Transformers twice its size, both in pre-training and downstream evaluation.", "full_name": "Mamba: Linear-Time Sequence Modeling with Selective State Spaces", "introduced_year": 2000, "main_collection": null, "name": "Mamba", "source_title": "Mamba: Linear-Time Sequence Modeling with Selective State Spaces", "source_url": "https://arxiv.org/abs/2312.00752v2" }, { "code_snippet_url": null, "description": "", "full_name": "Focus", "introduced_year": 2000, "main_collection": { "area": "Natural Language Processing", "description": "**Transformers** are a type of neural network architecture that have several properties that make them effective for modeling data with long-range dependencies. They generally feature a combination of multi-headed attention mechanisms, residual connections, layer normalization, feedforward connections, and positional embeddings.", "name": "Transformers", "parent": "Language Models" }, "name": "Focus", "source_title": "Focus Your Attention (with Adaptive IIR Filters)", "source_url": "https://arxiv.org/abs/2305.14952v2" } ]
https://paperswithcode.com/paper/proportional-sensitivity-in-generative
2506.17165
null
null
Proportional Sensitivity in Generative Adversarial Network (GAN)-Augmented Brain Tumor Classification Using Convolutional Neural Network
Generative Adversarial Networks (GAN) have shown potential in expanding limited medical imaging datasets. This study explores how different ratios of GAN-generated and real brain tumor MRI images impact the performance of a CNN in classifying healthy vs. tumorous scans. A DCGAN was used to create synthetic images which were mixed with real ones at various ratios to train a custom CNN. The CNN was then evaluated on a separate real-world test set. Our results indicate that the model maintains high sensitivity and precision in tumor classification, even when trained predominantly on synthetic data. When only a small portion of GAN data was added, such as 900 real images and 100 GAN images, the model achieved excellent performance, with test accuracy reaching 95.2%, and precision, recall, and F1-score all exceeding 95%. However, as the proportion of GAN images increased further, performance gradually declined. This study suggests that while GANs are useful for augmenting limited datasets especially when real data is scarce, too much synthetic data can introduce artifacts that affect the model's ability to generalize to real world cases.
null
https://arxiv.org/abs/2506.17165v1
https://arxiv.org/pdf/2506.17165v1.pdf
null
[ "Mahin Montasir Afif", "Abdullah Al Noman", "K. M. Tahsin Kabir", "Md. Mortuza Ahmmed", "Md. Mostafizur Rahman", "Mufti Mahmud", "Md. Ashraful Babu" ]
[ "Brain Tumor Classification", "Generative Adversarial Network", "Sensitivity" ]
2025-06-20T00:00:00
null
null
null
null
[]
https://paperswithcode.com/paper/medi-metadata-guided-diffusion-models-for
2506.17140
null
null
MeDi: Metadata-Guided Diffusion Models for Mitigating Biases in Tumor Classification
Deep learning models have made significant advances in histological prediction tasks in recent years. However, for adaptation in clinical practice, their lack of robustness to varying conditions such as staining, scanner, hospital, and demographics is still a limiting factor: if trained on overrepresented subpopulations, models regularly struggle with less frequent patterns, leading to shortcut learning and biased predictions. Large-scale foundation models have not fully eliminated this issue. Therefore, we propose a novel approach explicitly modeling such metadata into a Metadata-guided generative Diffusion model framework (MeDi). MeDi allows for a targeted augmentation of underrepresented subpopulations with synthetic data, which balances limited training data and mitigates biases in downstream models. We experimentally show that MeDi generates high-quality histopathology images for unseen subpopulations in TCGA, boosts the overall fidelity of the generated images, and enables improvements in performance for downstream classifiers on datasets with subpopulation shifts. Our work is a proof-of-concept towards better mitigating data biases with generative models.
null
https://arxiv.org/abs/2506.17140v1
https://arxiv.org/pdf/2506.17140v1.pdf
null
[ "David Jacob Drexlin", "Jonas Dippel", "Julius Hense", "Niklas Prenißl", "Grégoire Montavon", "Frederick Klauschen", "Klaus-Robert Müller" ]
[]
2025-06-20T00:00:00
null
null
null
null
[ { "code_snippet_url": null, "description": "Diffusion models generate samples by gradually\r\nremoving noise from a signal, and their training objective can be expressed as a reweighted variational lower-bound (https://arxiv.org/abs/2006.11239).", "full_name": "Diffusion", "introduced_year": 2000, "main_collection": { "area": "Computer Vision", "description": "", "name": "Image Generation Models", "parent": null }, "name": "Diffusion", "source_title": "Denoising Diffusion Probabilistic Models", "source_url": "https://arxiv.org/abs/2006.11239v2" } ]
https://paperswithcode.com/paper/robust-training-with-data-augmentation-for
2506.17133
null
null
Robust Training with Data Augmentation for Medical Imaging Classification
Deep neural networks are increasingly being used to detect and diagnose medical conditions using medical imaging. Despite their utility, these models are highly vulnerable to adversarial attacks and distribution shifts, which can affect diagnostic reliability and undermine trust among healthcare professionals. In this study, we propose a robust training algorithm with data augmentation (RTDA) to mitigate these vulnerabilities in medical image classification. We benchmark classifier robustness against adversarial perturbations and natural variations of RTDA and six competing baseline techniques, including adversarial training and data augmentation approaches in isolation and combination, using experimental data sets with three different imaging technologies (mammograms, X-rays, and ultrasound). We demonstrate that RTDA achieves superior robustness against adversarial attacks and improved generalization performance in the presence of distribution shift in each image classification task while maintaining high clean accuracy.
null
https://arxiv.org/abs/2506.17133v1
https://arxiv.org/pdf/2506.17133v1.pdf
null
[ "Josué Martínez-Martínez", "Olivia Brown", "Mostafa Karami", "Sheida Nabavi" ]
[ "Data Augmentation", "Diagnostic", "image-classification", "Image Classification", "Medical Image Classification" ]
2025-06-20T00:00:00
null
null
null
null
[]
https://paperswithcode.com/paper/unsupervised-image-super-resolution
2506.17027
null
null
Unsupervised Image Super-Resolution Reconstruction Based on Real-World Degradation Patterns
The training of real-world super-resolution reconstruction models heavily relies on datasets that reflect real-world degradation patterns. Extracting and modeling degradation patterns for super-resolution reconstruction using only real-world low-resolution (LR) images remains a challenging task. When synthesizing datasets to simulate real-world degradation, relying solely on degradation extraction methods fails to capture both blur and diverse noise characteristics across varying LR distributions, as well as more implicit degradations such as color gamut shifts. Conversely, domain translation alone cannot accurately approximate real-world blur characteristics due to the significant degradation domain gap between synthetic and real data. To address these challenges, we propose a novel TripleGAN framework comprising two strategically designed components: The FirstGAN primarily focuses on narrowing the domain gap in blur characteristics, while the SecondGAN performs domain-specific translation to approximate target-domain blur properties and learn additional degradation patterns. The ThirdGAN is trained on pseudo-real data generated by the FirstGAN and SecondGAN to reconstruct real-world LR images. Extensive experiments on the RealSR and DRealSR datasets demonstrate that our method exhibits clear advantages in quantitative metrics while maintaining sharp reconstructions without over-smoothing artifacts. The proposed framework effectively learns real-world degradation patterns from LR observations and synthesizes aligned datasets with corresponding degradation characteristics, thereby enabling the trained network to achieve superior performance in reconstructing high-quality SR images from real-world LR inputs.
null
https://arxiv.org/abs/2506.17027v1
https://arxiv.org/pdf/2506.17027v1.pdf
null
[ "Yiyang Tie", "Hong Zhu", "Yunyun Luo", "Jing Shi" ]
[ "Image Super-Resolution", "Super-Resolution", "Translation" ]
2025-06-20T00:00:00
null
null
null
null
[]
https://paperswithcode.com/paper/reversing-flow-for-image-restoration-1
2506.16961
null
null
Reversing Flow for Image Restoration
Image restoration aims to recover high-quality (HQ) images from degraded low-quality (LQ) ones by reversing the effects of degradation. Existing generative models for image restoration, including diffusion and score-based models, often treat the degradation process as a stochastic transformation, which introduces inefficiency and complexity. In this work, we propose ResFlow, a novel image restoration framework that models the degradation process as a deterministic path using continuous normalizing flows. ResFlow augments the degradation process with an auxiliary process that disambiguates the uncertainty in HQ prediction to enable reversible modeling of the degradation process. ResFlow adopts entropy-preserving flow paths and learns the augmented degradation flow by matching the velocity field. ResFlow significantly improves the performance and speed of image restoration, completing the task in fewer than four sampling steps. Extensive experiments demonstrate that ResFlow achieves state-of-the-art results across various image restoration benchmarks, offering a practical and efficient solution for real-world applications.
null
https://arxiv.org/abs/2506.16961v1
https://arxiv.org/pdf/2506.16961v1.pdf
CVPR 2025 1
[ "Haina Qin", "Wenyang Luo", "Libin Wang", "Dandan Zheng", "Jingdong Chen", "Ming Yang", "Bing Li", "Weiming Hu" ]
[ "Image Restoration" ]
2025-06-20T00:00:00
http://openaccess.thecvf.com//content/CVPR2025/html/Qin_Reversing_Flow_for_Image_Restoration_CVPR_2025_paper.html
http://openaccess.thecvf.com//content/CVPR2025/papers/Qin_Reversing_Flow_for_Image_Restoration_CVPR_2025_paper.pdf
reversing-flow-for-image-restoration
null
[ { "code_snippet_url": null, "description": "Diffusion models generate samples by gradually\r\nremoving noise from a signal, and their training objective can be expressed as a reweighted variational lower-bound (https://arxiv.org/abs/2006.11239).", "full_name": "Diffusion", "introduced_year": 2000, "main_collection": { "area": "Computer Vision", "description": "", "name": "Image Generation Models", "parent": null }, "name": "Diffusion", "source_title": "Denoising Diffusion Probabilistic Models", "source_url": "https://arxiv.org/abs/2006.11239v2" }, { "code_snippet_url": "https://github.com/lorenzopapa5/SPEED", "description": "The monocular depth estimation (MDE) is the task of estimating depth from a single frame. This information is an essential knowledge in many computer vision tasks such as scene understanding and visual odometry, which are key components in autonomous and robotic systems. \r\nApproaches based on the state of the art vision transformer architectures are extremely deep and complex not suitable for real-time inference operations on edge and autonomous systems equipped with low resources (i.e. robot indoor navigation and surveillance). This paper presents SPEED, a Separable Pyramidal pooling EncodEr-Decoder architecture designed to achieve real-time frequency performances on multiple hardware platforms. The proposed model is a fast-throughput deep architecture for MDE able to obtain depth estimations with high accuracy from low resolution images using minimum hardware resources (i.e. edge devices). Our encoder-decoder model exploits two depthwise separable pyramidal pooling layers, which allow to increase the inference frequency while reducing the overall computational complexity. The proposed method performs better than other fast-throughput architectures in terms of both accuracy and frame rates, achieving real-time performances over cloud CPU, TPU and the NVIDIA Jetson TX1 on two indoor benchmarks: the NYU Depth v2 and the DIML Kinect v2 datasets.", "full_name": "SPEED: Separable Pyramidal Pooling EncodEr-Decoder for Real-Time Monocular Depth Estimation on Low-Resource Settings", "introduced_year": 2000, "main_collection": null, "name": "SPEED", "source_title": null, "source_url": null } ]
https://paperswithcode.com/paper/pet-tracer-separation-using-conditional
2506.16934
null
null
PET Tracer Separation Using Conditional Diffusion Transformer with Multi-latent Space Learning
In clinical practice, single-radiotracer positron emission tomography (PET) is commonly used for imaging. Although multi-tracer PET imaging can provide supplementary information of radiotracers that are sensitive to physiological function changes, enabling a more comprehensive characterization of physiological and pathological states, the gamma-photon pairs generated by positron annihilation reactions of different tracers in PET imaging have the same energy, making it difficult to distinguish the tracer signals. In this study, a multi-latent space guided texture conditional diffusion transformer model (MS-CDT) is proposed for PET tracer separation. To the best of our knowledge, this is the first attempt to use texture condition and multi-latent space for tracer separation in PET imaging. The proposed model integrates diffusion and transformer architectures into a unified optimization framework, with the novel addition of texture masks as conditional inputs to enhance image details. By leveraging multi-latent space prior derived from different tracers, the model captures multi-level feature representations, aiming to balance computational efficiency and detail preservation. The texture masks, serving as conditional guidance, help the model focus on salient structural patterns, thereby improving the extraction and utilization of fine-grained image textures. When combined with the diffusion transformer backbone, this conditioning mechanism contributes to more accurate and robust tracer separation. To evaluate its effectiveness, the proposed MS-CDT is compared with several advanced methods on two types of 3D PET datasets: brain and chest scans. Experimental results indicate that MS-CDT achieved competitive performance in terms of image quality and preservation of clinically relevant information. Code is available at: https://github.com/yqx7150/MS-CDT.
null
https://arxiv.org/abs/2506.16934v1
https://arxiv.org/pdf/2506.16934v1.pdf
null
[ "Bin Huang", "Feihong Xu", "Xinchong Shi", "Shan Huang", "Binxuan Li", "Fei Li", "Qiegen Liu" ]
[ "Computational Efficiency" ]
2025-06-20T00:00:00
null
null
null
null
[ { "code_snippet_url": null, "description": "Diffusion models generate samples by gradually\r\nremoving noise from a signal, and their training objective can be expressed as a reweighted variational lower-bound (https://arxiv.org/abs/2006.11239).", "full_name": "Diffusion", "introduced_year": 2000, "main_collection": { "area": "Computer Vision", "description": "", "name": "Image Generation Models", "parent": null }, "name": "Diffusion", "source_title": "Denoising Diffusion Probabilistic Models", "source_url": "https://arxiv.org/abs/2006.11239v2" }, { "code_snippet_url": null, "description": "", "full_name": "Focus", "introduced_year": 2000, "main_collection": { "area": "Natural Language Processing", "description": "**Transformers** are a type of neural network architecture that have several properties that make them effective for modeling data with long-range dependencies. They generally feature a combination of multi-headed attention mechanisms, residual connections, layer normalization, feedforward connections, and positional embeddings.", "name": "Transformers", "parent": "Language Models" }, "name": "Focus", "source_title": "Focus Your Attention (with Adaptive IIR Filters)", "source_url": "https://arxiv.org/abs/2305.14952v2" } ]
https://paperswithcode.com/paper/efficient-feedback-gate-network-for
2506.17361
null
null
Efficient Feedback Gate Network for Hyperspectral Image Super-Resolution
Even without auxiliary images, single hyperspectral image super-resolution (SHSR) methods can be designed to improve the spatial resolution of hyperspectral images. However, failing to explore coherence thoroughly along bands and spatial-spectral information leads to the limited performance of the SHSR. In this study, we propose a novel group-based SHSR method termed the efficient feedback gate network, which uses various feedbacks and gate operations involving large kernel convolutions and spectral interactions. In particular, by providing different guidance for neighboring groups, we can learn rich band information and hierarchical hyperspectral spatial information using channel shuffling and dilatation convolution in shuffled and progressive dilated fusion module(SPDFM). Moreover, we develop a wide-bound perception gate block and a spectrum enhancement gate block to construct the spatial-spectral reinforcement gate module (SSRGM) and obtain highly representative spatial-spectral features efficiently. Additionally, we apply a three-dimensional SSRGM to enhance holistic information and coherence for hyperspectral data. The experimental results on three hyperspectral datasets demonstrate the superior performance of the proposed network over the state-of-the-art methods in terms of spectral fidelity and spatial content reconstruction.
null
https://arxiv.org/abs/2506.17361v1
https://arxiv.org/pdf/2506.17361v1.pdf
null
[ "Xufei Wang", "Mingjian Zhang", "Fei Ge", "Jinchen Zhu", "Wen Sha", "Jifen Ren", "Zhimeng Hou", "Shouguo Zheng", "Ling Zheng", "Shizhuang Weng" ]
[ "Hyperspectral Image Super-Resolution", "Image Super-Resolution", "Super-Resolution" ]
2025-06-20T00:00:00
null
null
null
null
[ { "code_snippet_url": "", "description": "A **convolution** is a type of matrix operation, consisting of a kernel, a small matrix of weights, that slides over input data performing element-wise multiplication with the part of the input it is on, then summing the results into an output.\r\n\r\nIntuitively, a convolution allows for weight sharing - reducing the number of effective parameters - and image translation (allowing for the same feature to be detected in different parts of the input space).\r\n\r\nImage Source: [https://arxiv.org/pdf/1603.07285.pdf](https://arxiv.org/pdf/1603.07285.pdf)", "full_name": "Convolution", "introduced_year": 1980, "main_collection": { "area": "Computer Vision", "description": "**Convolutions** are a type of operation that can be used to learn representations from images. They involve a learnable kernel sliding over the image and performing element-wise multiplication with the input. The specification allows for parameter sharing and translation invariance. Below you can find a continuously updating list of convolutions.", "name": "Convolutions", "parent": "Image Feature Extractors" }, "name": "Convolution", "source_title": null, "source_url": null } ]
https://paperswithcode.com/paper/temperature-calibration-of-surface
2506.16803
null
null
Temperature calibration of surface emissivities with an improved thermal image enhancement network
Infrared thermography faces persistent challenges in temperature accuracy due to material emissivity variations, where existing methods often neglect the joint optimization of radiometric calibration and image degradation. This study introduces a physically guided neural framework that unifies temperature correction and image enhancement through a symmetric skip-CNN architecture and an emissivity-aware attention module. The pre-processing stage segments the ROIs of the image and and initially corrected the firing rate. A novel dual-constrained loss function strengthens the statistical consistency between the target and reference regions through mean-variance alignment and histogram matching based on Kullback-Leibler dispersion. The method works by dynamically fusing thermal radiation features and spatial context, and the model suppresses emissivity artifacts while recovering structural details. After validating the industrial blower system under different conditions, the improved network realizes the dynamic fusion of thermal radiation characteristics and spatial background, with accurate calibration results in various industrial conditions.
null
https://arxiv.org/abs/2506.16803v1
https://arxiv.org/pdf/2506.16803v1.pdf
null
[ "Ning Chu", "Siya Zheng", "Shanqing Zhang", "Li Li", "Caifang Cai", "Ali Mohammad-Djafari", "Feng Zhao", "Yuanbo Song" ]
[ "Image Enhancement" ]
2025-06-20T00:00:00
null
null
null
null
[]
https://paperswithcode.com/paper/3deeprep-3d-deep-low-rank-tensor
2506.16735
null
null
3DeepRep: 3D Deep Low-rank Tensor Representation for Hyperspectral Image Inpainting
Recent approaches based on transform-based tensor nuclear norm (TNN) have demonstrated notable effectiveness in hyperspectral image (HSI) inpainting by leveraging low-rank structures in latent representations. Recent developments incorporate deep transforms to improve low-rank tensor representation; however, existing approaches typically restrict the transform to the spectral mode, neglecting low-rank properties along other tensor modes. In this paper, we propose a novel 3-directional deep low-rank tensor representation (3DeepRep) model, which performs deep nonlinear transforms along all three modes of the HSI tensor. To enforce low-rankness, the model minimizes the nuclear norms of mode-i frontal slices in the corresponding latent space for each direction (i=1,2,3), forming a 3-directional TNN regularization. The outputs from the three directional branches are subsequently fused via a learnable aggregation module to produce the final result. An efficient gradient-based optimization algorithm is developed to solve the model in a self-supervised manner. Extensive experiments on real-world HSI datasets demonstrate that the proposed method achieves superior inpainting performance compared to existing state-of-the-art techniques, both qualitatively and quantitatively.
null
https://arxiv.org/abs/2506.16735v1
https://arxiv.org/pdf/2506.16735v1.pdf
null
[ "Yunshan Li", "Wenwu Gong", "Qianqian Wang", "Chao Wang", "Lili Yang" ]
[ "Hyperspectral Image Inpainting", "Image Inpainting" ]
2025-06-20T00:00:00
null
null
null
null
[ { "code_snippet_url": "", "description": "Train a convolutional neural network to generate the contents of an arbitrary image region conditioned on its surroundings.", "full_name": "Inpainting", "introduced_year": 2000, "main_collection": { "area": "General", "description": "**Self-Supervised Learning** refers to a category of methods where we learn representations in a self-supervised way (i.e without labels). These methods generally involve a pretext task that is solved to learn a good representation and a loss function to learn with. Below you can find a continuously updating list of self-supervised methods.", "name": "Self-Supervised Learning", "parent": null }, "name": "Inpainting", "source_title": "Context Encoders: Feature Learning by Inpainting", "source_url": "http://arxiv.org/abs/1604.07379v2" } ]
https://paperswithcode.com/paper/privacy-preserving-chest-x-ray-classification
2506.15258
null
null
Privacy-Preserving Chest X-ray Classification in Latent Space with Homomorphically Encrypted Neural Inference
Medical imaging data contain sensitive patient information requiring strong privacy protection. Many analytical setups require data to be sent to a server for inference purposes. Homomorphic encryption (HE) provides a solution by allowing computations to be performed on encrypted data without revealing the original information. However, HE inference is computationally expensive, particularly for large images (e.g., chest X-rays). In this study, we propose an HE inference framework for medical images that uses VQGAN to compress images into latent representations, thereby significantly reducing the computational burden while preserving image quality. We approximate the activation functions with lower-degree polynomials to balance the accuracy and efficiency in compliance with HE requirements. We observed that a downsampling factor of eight for compression achieved an optimal balance between performance and computational cost. We further adapted the squeeze and excitation module, which is known to improve traditional CNNs, to enhance the HE framework. Our method was tested on two chest X-ray datasets for multi-label classification tasks using vanilla CNN backbones. Although HE inference remains relatively slow and introduces minor performance differences compared with unencrypted inference, our approach shows strong potential for practical use in medical images
null
https://arxiv.org/abs/2506.15258v2
https://arxiv.org/pdf/2506.15258v2.pdf
null
[ "Jonghun Kim", "Gyeongdeok Jo", "Sinyoung Ra", "HyunJin Park" ]
[ "Multi-Label Classification", "MUlTI-LABEL-ClASSIFICATION", "Privacy Preserving", "X-ray Classification" ]
2025-06-18T00:00:00
null
null
null
null
[]
https://paperswithcode.com/paper/overfitting-in-histopathology-model-training
2506.16631
null
null
Overfitting in Histopathology Model Training: The Need for Customized Architectures
This study investigates the critical problem of overfitting in deep learning models applied to histopathology image analysis. We show that simply adopting and fine-tuning large-scale models designed for natural image analysis often leads to suboptimal performance and significant overfitting when applied to histopathology tasks. Through extensive experiments with various model architectures, including ResNet variants and Vision Transformers (ViT), we show that increasing model capacity does not necessarily improve performance on histopathology datasets. Our findings emphasize the need for customized architectures specifically designed for histopathology image analysis, particularly when working with limited datasets. Using Oesophageal Adenocarcinomas public dataset, we demonstrate that simpler, domain-specific architectures can achieve comparable or better performance while minimizing overfitting.
null
https://arxiv.org/abs/2506.16631v1
https://arxiv.org/pdf/2506.16631v1.pdf
null
[ "Saghir Alfasly", "Ghazal Alabtah", "H. R. Tizhoosh" ]
[]
2025-06-19T00:00:00
null
null
null
null
[]
https://paperswithcode.com/paper/metaqap-a-meta-learning-approach-for-quality
2506.16601
null
null
MetaQAP -- A Meta-Learning Approach for Quality-Aware Pretraining in Image Quality Assessment
Image Quality Assessment (IQA) is a critical task in a wide range of applications but remains challenging due to the subjective nature of human perception and the complexity of real-world image distortions. This study proposes MetaQAP, a novel no-reference IQA model designed to address these challenges by leveraging quality-aware pre-training and meta-learning. The model performs three key contributions: pre-training Convolutional Neural Networks (CNNs) on a quality-aware dataset, implementing a quality-aware loss function to optimize predictions, and integrating a meta-learner to form an ensemble model that effectively combines predictions from multiple base models. Experimental evaluations were conducted on three benchmark datasets: LiveCD, KonIQ-10K, and BIQ2021. The proposed MetaQAP model achieved exceptional performance with Pearson Linear Correlation Coefficient (PLCC) and Spearman Rank Order Correlation Coefficient (SROCC) scores of 0.9885/0.9812 on LiveCD, 0.9702/0.9658 on KonIQ-10K, and 0.884/0.8765 on BIQ2021, outperforming existing IQA methods. Cross-dataset evaluations further demonstrated the generalizability of the model, with PLCC and SROCC scores ranging from 0.6721 to 0.8023 and 0.6515 to 0.7805, respectively, across diverse datasets. The ablation study confirmed the significance of each model component, revealing substantial performance degradation when critical elements such as the meta-learner or quality-aware loss function were omitted. MetaQAP not only addresses the complexities of authentic distortions but also establishes a robust and generalizable framework for practical IQA applications. By advancing the state-of-the-art in no-reference IQA, this research provides valuable insights and methodologies for future improvements and extensions in the field.
null
https://arxiv.org/abs/2506.16601v1
https://arxiv.org/pdf/2506.16601v1.pdf
null
[ "Muhammad Azeem Aslam", "Muhammad Hamza", "Nisar Ahmed", "Gulshan Saleem", "Zhu Shuangtong", "Hu Hongfei", "Xu Wei", "Saba Aslam", "Wang Jun" ]
[ "Image Quality Assessment", "Meta-Learning" ]
2025-06-19T00:00:00
null
null
null
null
[ { "code_snippet_url": null, "description": "", "full_name": "Balanced Selection", "introduced_year": 2000, "main_collection": { "area": "General", "description": "", "name": "Active Learning", "parent": null }, "name": "BASE", "source_title": "Active Learning at the ImageNet Scale", "source_url": "https://arxiv.org/abs/2111.12880v1" } ]
https://paperswithcode.com/paper/hybrid-attention-network-for-accurate-breast
2506.16592
null
null
Hybrid Attention Network for Accurate Breast Tumor Segmentation in Ultrasound Images
Breast ultrasound imaging is a valuable tool for early breast cancer detection, but automated tumor segmentation is challenging due to inherent noise, variations in scale of lesions, and fuzzy boundaries. To address these challenges, we propose a novel hybrid attention-based network for lesion segmentation. Our proposed architecture integrates a pre-trained DenseNet121 in the encoder part for robust feature extraction with a multi-branch attention-enhanced decoder tailored for breast ultrasound images. The bottleneck incorporates Global Spatial Attention (GSA), Position Encoding (PE), and Scaled Dot-Product Attention (SDPA) to learn global context, spatial relationships, and relative positional features. The Spatial Feature Enhancement Block (SFEB) is embedded at skip connections to refine and enhance spatial features, enabling the network to focus more effectively on tumor regions. A hybrid loss function combining Binary Cross-Entropy (BCE) and Jaccard Index loss optimizes both pixel-level accuracy and region-level overlap metrics, enhancing robustness to class imbalance and irregular tumor shapes. Experiments on public datasets demonstrate that our method outperforms existing approaches, highlighting its potential to assist radiologists in early and accurate breast cancer diagnosis.
null
https://arxiv.org/abs/2506.16592v1
https://arxiv.org/pdf/2506.16592v1.pdf
null
[ "Muhammad Azeem Aslam", "Asim Naveed", "Nisar Ahmed" ]
[ "Breast Cancer Detection", "Decoder", "Lesion Segmentation", "Tumor Segmentation" ]
2025-06-19T00:00:00
null
null
null
null
[ { "code_snippet_url": null, "description": "", "full_name": "Focus", "introduced_year": 2000, "main_collection": { "area": "Natural Language Processing", "description": "**Transformers** are a type of neural network architecture that have several properties that make them effective for modeling data with long-range dependencies. They generally feature a combination of multi-headed attention mechanisms, residual connections, layer normalization, feedforward connections, and positional embeddings.", "name": "Transformers", "parent": "Language Models" }, "name": "Focus", "source_title": "Focus Your Attention (with Adaptive IIR Filters)", "source_url": "https://arxiv.org/abs/2305.14952v2" } ]
https://paperswithcode.com/paper/diffo-single-step-diffusion-for-image
2506.16572
null
null
DiffO: Single-step Diffusion for Image Compression at Ultra-Low Bitrates
Although image compression is fundamental to visual data processing and has inspired numerous standard and learned codecs, these methods still suffer severe quality degradation at extremely low bits per pixel. While recent diffusion based models provided enhanced generative performance at low bitrates, they still yields limited perceptual quality and prohibitive decoding latency due to multiple denoising steps. In this paper, we propose the first single step diffusion model for image compression (DiffO) that delivers high perceptual quality and fast decoding at ultra low bitrates. DiffO achieves these goals by coupling two key innovations: (i) VQ Residual training, which factorizes a structural base code and a learned residual in latent space, capturing both global geometry and high frequency details; and (ii) rate adaptive noise modulation, which tunes denoising strength on the fly to match the desired bitrate. Extensive experiments show that DiffO surpasses state of the art compression performance while improving decoding speed by about 50x compared to prior diffusion-based methods, greatly improving the practicality of generative codecs. The code will be available at https://github.com/Freemasti/DiffO.
Although image compression is fundamental to visual data processing and has inspired numerous standard and learned codecs, these methods still suffer severe quality degradation at extremely low bits per pixel.
https://arxiv.org/abs/2506.16572v1
https://arxiv.org/pdf/2506.16572v1.pdf
null
[ "Chanung Park", "Joo Chan Lee", "Jong Hwan Ko" ]
[ "Denoising", "Image Compression" ]
2025-06-19T00:00:00
null
null
null
null
[ { "code_snippet_url": null, "description": "Diffusion models generate samples by gradually\r\nremoving noise from a signal, and their training objective can be expressed as a reweighted variational lower-bound (https://arxiv.org/abs/2006.11239).", "full_name": "Diffusion", "introduced_year": 2000, "main_collection": { "area": "Computer Vision", "description": "", "name": "Image Generation Models", "parent": null }, "name": "Diffusion", "source_title": "Denoising Diffusion Probabilistic Models", "source_url": "https://arxiv.org/abs/2006.11239v2" }, { "code_snippet_url": null, "description": "", "full_name": "Balanced Selection", "introduced_year": 2000, "main_collection": { "area": "General", "description": "", "name": "Active Learning", "parent": null }, "name": "BASE", "source_title": "Active Learning at the ImageNet Scale", "source_url": "https://arxiv.org/abs/2111.12880v1" }, { "code_snippet_url": "https://github.com/lorenzopapa5/SPEED", "description": "The monocular depth estimation (MDE) is the task of estimating depth from a single frame. This information is an essential knowledge in many computer vision tasks such as scene understanding and visual odometry, which are key components in autonomous and robotic systems. \r\nApproaches based on the state of the art vision transformer architectures are extremely deep and complex not suitable for real-time inference operations on edge and autonomous systems equipped with low resources (i.e. robot indoor navigation and surveillance). This paper presents SPEED, a Separable Pyramidal pooling EncodEr-Decoder architecture designed to achieve real-time frequency performances on multiple hardware platforms. The proposed model is a fast-throughput deep architecture for MDE able to obtain depth estimations with high accuracy from low resolution images using minimum hardware resources (i.e. edge devices). Our encoder-decoder model exploits two depthwise separable pyramidal pooling layers, which allow to increase the inference frequency while reducing the overall computational complexity. The proposed method performs better than other fast-throughput architectures in terms of both accuracy and frame rates, achieving real-time performances over cloud CPU, TPU and the NVIDIA Jetson TX1 on two indoor benchmarks: the NYU Depth v2 and the DIML Kinect v2 datasets.", "full_name": "SPEED: Separable Pyramidal Pooling EncodEr-Decoder for Real-Time Monocular Depth Estimation on Low-Resource Settings", "introduced_year": 2000, "main_collection": null, "name": "SPEED", "source_title": null, "source_url": null } ]
https://paperswithcode.com/paper/vesselsdf-distance-field-priors-for-vascular
2506.16556
null
null
VesselSDF: Distance Field Priors for Vascular Network Reconstruction
Accurate segmentation of vascular networks from sparse CT scan slices remains a significant challenge in medical imaging, particularly due to the thin, branching nature of vessels and the inherent sparsity between imaging planes. Existing deep learning approaches, based on binary voxel classification, often struggle with structural continuity and geometric fidelity. To address this challenge, we present VesselSDF, a novel framework that leverages signed distance fields (SDFs) for robust vessel reconstruction. Our method reformulates vessel segmentation as a continuous SDF regression problem, where each point in the volume is represented by its signed distance to the nearest vessel surface. This continuous representation inherently captures the smooth, tubular geometry of blood vessels and their branching patterns. We obtain accurate vessel reconstructions while eliminating common SDF artifacts such as floating segments, thanks to our adaptive Gaussian regularizer which ensures smoothness in regions far from vessel surfaces while producing precise geometry near the surface boundaries. Our experimental results demonstrate that VesselSDF significantly outperforms existing methods and preserves vessel geometry and connectivity, enabling more reliable vascular analysis in clinical settings.
null
https://arxiv.org/abs/2506.16556v1
https://arxiv.org/pdf/2506.16556v1.pdf
null
[ "Salvatore Esposito", "Daniel Rebain", "Arno Onken", "Changjian Li", "Oisin Mac Aodha" ]
[]
2025-06-19T00:00:00
null
null
null
null
[]
https://paperswithcode.com/paper/efficient-transformations-in-deep-learning
2506.16418
null
null
Efficient Transformations in Deep Learning Convolutional Neural Networks
This study investigates the integration of signal processing transformations -- Fast Fourier Transform (FFT), Walsh-Hadamard Transform (WHT), and Discrete Cosine Transform (DCT) -- within the ResNet50 convolutional neural network (CNN) model for image classification. The primary objective is to assess the trade-offs between computational efficiency, energy consumption, and classification accuracy during training and inference. Using the CIFAR-100 dataset (100 classes, 60,000 images), experiments demonstrated that incorporating WHT significantly reduced energy consumption while improving accuracy. Specifically, a baseline ResNet50 model achieved a testing accuracy of 66%, consuming an average of 25,606 kJ per model. In contrast, a modified ResNet50 incorporating WHT in the early convolutional layers achieved 74% accuracy, and an enhanced version with WHT applied to both early and late layers achieved 79% accuracy, with an average energy consumption of only 39 kJ per model. These results demonstrate the potential of WHT as a highly efficient and effective approach for energy-constrained CNN applications.
null
https://arxiv.org/abs/2506.16418v1
https://arxiv.org/pdf/2506.16418v1.pdf
null
[ "Berk Yilmaz", "Daniel Fidel Harvey", "Prajit Dhuri" ]
[ "Computational Efficiency", "Deep Learning", "image-classification", "Image Classification" ]
2025-06-19T00:00:00
null
null
null
null
[ { "code_snippet_url": null, "description": "**Discrete Cosine Transform (DCT)** is an orthogonal transformation method that decomposes an\r\nimage to its spatial frequency spectrum. It expresses a finite sequence of data points in terms of a sum of cosine functions oscillating at different frequencies. It is used a lot in compression tasks, e..g image compression where for example high-frequency components can be discarded. It is a type of Fourier-related Transform, similar to discrete fourier transforms (DFTs), but only using real numbers.\r\n\r\nImage Credit: [Wikipedia](https://en.wikipedia.org/wiki/Discrete_cosine_transform#/media/File:Example_dft_dct.svg)", "full_name": "Discrete Cosine Transform", "introduced_year": 2000, "main_collection": { "area": "General", "description": "**Fourier-related Transforms** are transforms related to Fourier Analysis. Below you can find a continuously updating list of transforms.", "name": "Fourier-related Transforms", "parent": null }, "name": "Discrete Cosine Transform", "source_title": null, "source_url": null } ]
https://paperswithcode.com/paper/learning-multi-scale-spatial-frequency
2506.16307
null
null
Learning Multi-scale Spatial-frequency Features for Image Denoising
Recent advancements in multi-scale architectures have demonstrated exceptional performance in image denoising tasks. However, existing architectures mainly depends on a fixed single-input single-output Unet architecture, ignoring the multi-scale representations of pixel level. In addition, previous methods treat the frequency domain uniformly, ignoring the different characteristics of high-frequency and low-frequency noise. In this paper, we propose a novel multi-scale adaptive dual-domain network (MADNet) for image denoising. We use image pyramid inputs to restore noise-free results from low-resolution images. In order to realize the interaction of high-frequency and low-frequency information, we design an adaptive spatial-frequency learning unit (ASFU), where a learnable mask is used to separate the information into high-frequency and low-frequency components. In the skip connections, we design a global feature fusion block to enhance the features at different scales. Extensive experiments on both synthetic and real noisy image datasets verify the effectiveness of MADNet compared with current state-of-the-art denoising approaches.
null
https://arxiv.org/abs/2506.16307v1
https://arxiv.org/pdf/2506.16307v1.pdf
null
[ "Xu Zhao", "Chen Zhao", "Xiantao Hu", "Hongliang Zhang", "Ying Tai", "Jian Yang" ]
[ "Denoising", "Image Denoising" ]
2025-06-19T00:00:00
null
null
null
null
[]
https://paperswithcode.com/paper/age-us-automated-gestational-age-estimation
2506.16256
null
null
AGE-US: automated gestational age estimation based on fetal ultrasound images
Being born small carries significant health risks, including increased neonatal mortality and a higher likelihood of future cardiac diseases. Accurate estimation of gestational age is critical for monitoring fetal growth, but traditional methods, such as estimation based on the last menstrual period, are in some situations difficult to obtain. While ultrasound-based approaches offer greater reliability, they rely on manual measurements that introduce variability. This study presents an interpretable deep learning-based method for automated gestational age calculation, leveraging a novel segmentation architecture and distance maps to overcome dataset limitations and the scarcity of segmentation masks. Our approach achieves performance comparable to state-of-the-art models while reducing complexity, making it particularly suitable for resource-constrained settings and with limited annotated data. Furthermore, our results demonstrate that the use of distance maps is particularly suitable for estimating femur endpoints.
null
https://arxiv.org/abs/2506.16256v1
https://arxiv.org/pdf/2506.16256v1.pdf
null
[ "César Díaz-Parga", "Marta Nuñez-Garcia", "Maria J. Carreira", "Gabriel Bernardino", "Nicolás Vila-Blanco" ]
[ "Age Estimation" ]
2025-06-19T00:00:00
null
null
null
null
[]
https://paperswithcode.com/paper/cf-seg-counterfactuals-meet-segmentation
2506.16213
null
null
CF-Seg: Counterfactuals meet Segmentation
Segmenting anatomical structures in medical images plays an important role in the quantitative assessment of various diseases. However, accurate segmentation becomes significantly more challenging in the presence of disease. Disease patterns can alter the appearance of surrounding healthy tissues, introduce ambiguous boundaries, or even obscure critical anatomical structures. As such, segmentation models trained on real-world datasets may struggle to provide good anatomical segmentation, leading to potential misdiagnosis. In this paper, we generate counterfactual (CF) images to simulate how the same anatomy would appear in the absence of disease without altering the underlying structure. We then use these CF images to segment structures of interest, without requiring any changes to the underlying segmentation model. Our experiments on two real-world clinical chest X-ray datasets show that the use of counterfactual images improves anatomical segmentation, thereby aiding downstream clinical decision-making.
null
https://arxiv.org/abs/2506.16213v1
https://arxiv.org/pdf/2506.16213v1.pdf
null
[ "Raghav Mehta", "Fabio De Sousa Ribeiro", "Tian Xia", "Melanie Roschewitz", "Ainkaran Santhirasekaram", "Dominic C. Marshall", "Ben Glocker" ]
[ "Anatomy", "counterfactual", "Decision Making", "Segmentation" ]
2025-06-19T00:00:00
null
null
null
null
[]
https://paperswithcode.com/paper/can-common-vlms-rival-medical-vlms-evaluation
2506.17337
null
null
Can Common VLMs Rival Medical VLMs? Evaluation and Strategic Insights
Medical vision-language models (VLMs) leverage large-scale pretraining for diverse imaging tasks but require substantial computational and data resources. Meanwhile, common or general-purpose VLMs (e.g., CLIP, LLaVA), though not trained for medical use, show promise with fine-tuning. This raises a key question: Can efficient fine-tuned common VLMs rival generalist medical VLMs for solving specific medical imaging tasks? This study systematically evaluates common and medical VLMs across disease diagnosis and visual question answering (VQA). Using CLIP-based and LLaVA-based models, we examine (1) off-the-shelf performance gaps in in-domain (ID) settings, (2) whether fine-tuning bridges these gaps, and (3) generalization to out-of-domain (OOD) tasks on unseen medical modalities. While medical-specific pretraining provides advantages in ID settings, common VLMs match or surpass medical-specific models after lightweight fine-tuning, with LoRA-based adaptation proving highly effective among different tasks. In OOD tasks, common VLMs demonstrate strong adaptability in some tasks, challenging the assumption that medical-specific pre-training is essential. These findings suggest that leveraging common VLMs with fine-tuning offers a scalable and cost-effective alternative to developing large-scale medical VLMs, providing crucial insights for future research in the medical imaging field.
null
https://arxiv.org/abs/2506.17337v1
https://arxiv.org/pdf/2506.17337v1.pdf
null
[ "Yuan Zhong", "Ruinan Jin", "Xiaoxiao Li", "Qi Dou" ]
[ "Question Answering", "Visual Question Answering", "Visual Question Answering (VQA)" ]
2025-06-19T00:00:00
null
null
null
null
[ { "code_snippet_url": "https://github.com/OpenAI/CLIP", "description": "**Contrastive Language-Image Pre-training** (**CLIP**), consisting of a simplified version of ConVIRT trained from scratch, is an efficient method of image representation learning from natural language supervision. , CLIP jointly trains an image encoder and a text encoder to predict the correct pairings of a batch of (image, text) training examples. At test time the learned text encoder synthesizes a zero-shot linear classifier by embedding the names or descriptions of the target dataset’s classes. \r\n\r\nFor pre-training, CLIP is trained to predict which of the $N X N$ possible (image, text) pairings across a batch actually occurred. CLIP learns a multi-modal embedding space by jointly training an image encoder and text encoder to maximize the cosine similarity of the image and text embeddings of the $N$ real pairs in the batch while minimizing the cosine similarity of the embeddings of the $N^2 - N$ incorrect pairings. A symmetric cross entropy loss is optimized over these similarity scores. \r\n\r\nImage credit: [Learning Transferable Visual Models From Natural Language Supervision](https://arxiv.org/pdf/2103.00020.pdf)", "full_name": "Contrastive Language-Image Pre-training", "introduced_year": 2000, "main_collection": { "area": "Computer Vision", "description": "", "name": "Image Representations", "parent": null }, "name": "CLIP", "source_title": "Learning Transferable Visual Models From Natural Language Supervision", "source_url": "https://arxiv.org/abs/2103.00020v1" } ]
https://paperswithcode.com/paper/fast-training-free-perceptual-image
2506.16102
null
null
Fast Training-free Perceptual Image Compression
Training-free perceptual image codec adopt pre-trained unconditional generative model during decoding to avoid training new conditional generative model. However, they heavily rely on diffusion inversion or sample communication, which take 1 min to intractable amount of time to decode a single image. In this paper, we propose a training-free algorithm that improves the perceptual quality of any existing codec with theoretical guarantee. We further propose different implementations for optimal perceptual quality when decoding time budget is $\approx 0.1$s, $0.1-10$s and $\ge 10$s. Our approach: 1). improves the decoding time of training-free codec from 1 min to $0.1-10$s with comparable perceptual quality. 2). can be applied to non-differentiable codec such as VTM. 3). can be used to improve previous perceptual codecs, such as MS-ILLM. 4). can easily achieve perception-distortion trade-off. Empirically, we show that our approach successfully improves the perceptual quality of ELIC, VTM and MS-ILLM with fast decoding. Our approach achieves comparable FID to previous training-free codec with significantly less decoding time. And our approach still outperforms previous conditional generative model based codecs such as HiFiC and MS-ILLM in terms of FID. The source code is provided in the supplementary material.
null
https://arxiv.org/abs/2506.16102v1
https://arxiv.org/pdf/2506.16102v1.pdf
null
[ "Ziran Zhu", "Tongda Xu", "Minye Huang", "Dailan He", "Xingtong Ge", "Xinjie Zhang", "Ling Li", "Yan Wang" ]
[ "Image Compression" ]
2025-06-19T00:00:00
null
null
null
null
[ { "code_snippet_url": null, "description": "Diffusion models generate samples by gradually\r\nremoving noise from a signal, and their training objective can be expressed as a reweighted variational lower-bound (https://arxiv.org/abs/2006.11239).", "full_name": "Diffusion", "introduced_year": 2000, "main_collection": { "area": "Computer Vision", "description": "", "name": "Image Generation Models", "parent": null }, "name": "Diffusion", "source_title": "Denoising Diffusion Probabilistic Models", "source_url": "https://arxiv.org/abs/2006.11239v2" }, { "code_snippet_url": null, "description": "Please enter a description about the method here", "full_name": "ADaptive gradient method with the OPTimal convergence rate", "introduced_year": 2000, "main_collection": { "area": "General", "description": "**Stochastic Optimization** methods are used to optimize neural networks. We typically take a mini-batch of data, hence 'stochastic', and perform a type of gradient descent with this minibatch. Below you can find a continuously updating list of stochastic optimization algorithms.", "name": "Stochastic Optimization", "parent": "Optimization" }, "name": "ADOPT", "source_title": "ADOPT: Modified Adam Can Converge with Any $β_2$ with the Optimal Rate", "source_url": "https://arxiv.org/abs/2411.02853v3" } ]
https://paperswithcode.com/paper/moirexnet-adaptive-multi-scale-demoireing
2506.15929
null
null
MoiréXNet: Adaptive Multi-Scale Demoiréing with Linear Attention Test-Time Training and Truncated Flow Matching Prior
This paper introduces a novel framework for image and video demoir\'eing by integrating Maximum A Posteriori (MAP) estimation with advanced deep learning techniques. Demoir\'eing addresses inherently nonlinear degradation processes, which pose significant challenges for existing methods. Traditional supervised learning approaches either fail to remove moir\'e patterns completely or produce overly smooth results. This stems from constrained model capacity and scarce training data, which inadequately represent the clean image distribution and hinder accurate reconstruction of ground-truth images. While generative models excel in image restoration for linear degradations, they struggle with nonlinear cases such as demoir\'eing and often introduce artifacts. To address these limitations, we propose a hybrid MAP-based framework that integrates two complementary components. The first is a supervised learning model enhanced with efficient linear attention Test-Time Training (TTT) modules, which directly learn nonlinear mappings for RAW-to-sRGB demoir\'eing. The second is a Truncated Flow Matching Prior (TFMP) that further refines the outputs by aligning them with the clean image distribution, effectively restoring high-frequency details and suppressing artifacts. These two components combine the computational efficiency of linear attention with the refinement abilities of generative models, resulting in improved restoration performance.
null
https://arxiv.org/abs/2506.15929v1
https://arxiv.org/pdf/2506.15929v1.pdf
null
[ "Liangyan Li", "Yimo Ning", "Kevin Le", "Wei Dong", "Yunzhe Li", "Jun Chen", "Xiaohong Liu" ]
[ "Computational Efficiency", "Image Restoration" ]
2025-06-19T00:00:00
null
null
null
null
[]
https://paperswithcode.com/paper/dream-on-hallucinations-in-ai-generated
2506.13995
null
null
DREAM: On hallucinations in AI-generated content for nuclear medicine imaging
Artificial intelligence-generated content (AIGC) has shown remarkable performance in nuclear medicine imaging (NMI), offering cost-effective software solutions for tasks such as image enhancement, motion correction, and attenuation correction. However, these advancements come with the risk of hallucinations, generating realistic yet factually incorrect content. Hallucinations can misrepresent anatomical and functional information, compromising diagnostic accuracy and clinical trust. This paper presents a comprehensive perspective of hallucination-related challenges in AIGC for NMI, introducing the DREAM report, which covers recommendations for definition, representative examples, detection and evaluation metrics, underlying causes, and mitigation strategies. This position statement paper aims to initiate a common understanding for discussions and future research toward enhancing AIGC applications in NMI, thereby supporting their safe and effective deployment in clinical practice.
null
https://arxiv.org/abs/2506.13995v2
https://arxiv.org/pdf/2506.13995v2.pdf
null
[ "Menghua Xia", "Reimund Bayerlein", "Yanis Chemli", "Xiaofeng Liu", "Jinsong Ouyang", "Georges El Fakhri", "Ramsey D. Badawi", "Quanzheng Li", "Chi Liu" ]
[ "Diagnostic", "Hallucination", "Image Enhancement", "Position" ]
2025-06-16T00:00:00
null
null
null
null
[]
https://paperswithcode.com/paper/cross-modality-learning-for-predicting-ihc
2506.15853
null
null
Cross-Modality Learning for Predicting IHC Biomarkers from H&E-Stained Whole-Slide Images
Hematoxylin and Eosin (H&E) staining is a cornerstone of pathological analysis, offering reliable visualization of cellular morphology and tissue architecture for cancer diagnosis, subtyping, and grading. Immunohistochemistry (IHC) staining provides molecular insights by detecting specific proteins within tissues, enhancing diagnostic accuracy, and improving treatment planning. However, IHC staining is costly, time-consuming, and resource-intensive, requiring specialized expertise. To address these limitations, this study proposes HistoStainAlign, a novel deep learning framework that predicts IHC staining patterns directly from H&E whole-slide images (WSIs) by learning joint representations of morphological and molecular features. The framework integrates paired H&E and IHC embeddings through a contrastive training strategy, capturing complementary features across staining modalities without patch-level annotations or tissue registration. The model was evaluated on gastrointestinal and lung tissue WSIs with three commonly used IHC stains: P53, PD-L1, and Ki-67. HistoStainAlign achieved weighted F1 scores of 0.735 [95% Confidence Interval (CI): 0.670-0.799], 0.830 [95% CI: 0.772-0.886], and 0.723 [95% CI: 0.607-0.836], respectively for these three IHC stains. Embedding analyses demonstrated the robustness of the contrastive alignment in capturing meaningful cross-stain relationships. Comparisons with a baseline model further highlight the advantage of incorporating contrastive learning for improved stain pattern prediction. This study demonstrates the potential of computational approaches to serve as a pre-screening tool, helping prioritize cases for IHC staining and improving workflow efficiency.
null
https://arxiv.org/abs/2506.15853v1
https://arxiv.org/pdf/2506.15853v1.pdf
null
[ "Amit Das", "Naofumi Tomita", "Kyle J. Syme", "Weijie Ma", "Paige O'Connor", "Kristin N. Corbett", "Bing Ren", "Xiaoying Liu", "Saeed Hassanpour" ]
[ "Contrastive Learning", "Diagnostic", "whole slide images" ]
2025-06-18T00:00:00
null
null
null
null
[ { "code_snippet_url": null, "description": "", "full_name": null, "introduced_year": 2000, "main_collection": { "area": "Graphs", "description": "", "name": "Graph Representation Learning", "parent": null }, "name": "Contrastive Learning", "source_title": null, "source_url": null } ]
https://paperswithcode.com/paper/optimized-cerebral-blood-flow-measurement-in
2506.15843
null
null
Optimized cerebral blood flow measurement in speckle contrast optical spectroscopy via refinement of noise calibration
Speckle contrast optical spectroscopy (SCOS) offers a non-invasive and cost-effective method for monitoring cerebral blood flow (CBF). However, extracting accurate CBF from SCOS necessitates precise noise pre-calibration. Errors from this can degrade CBF measurement fidelity, particularly when the overall signal level is low. Such errors primarily stem from residual speckle contrast associated with camera and shot noise, whose fluctuations exhibit a temporal structure that mimics cerebral blood volume (CBV) waveforms. We propose an optimization-based framework that performs an adaptive refinement of noise calibration, mitigating the CBV-mimicking artifacts by reducing the CBF-CBV waveform correlation. Validated on 10 human subjects, our approach effectively lowered the signal threshold for reliable CBF signal from 97 to 26 electrons per pixel for a 1920x1200 pixels SCOS system. This improvement enables more accurate and robust CBF measurements in SCOS, especially at large source-detector (SD) distances for deeper tissue interrogation.
null
https://arxiv.org/abs/2506.15843v1
https://arxiv.org/pdf/2506.15843v1.pdf
null
[ "Ninghe Liu", "Yu Xi Huang", "Simon Mahler", "Changhuei Yang" ]
[]
2025-06-18T00:00:00
null
null
null
null
[]
https://paperswithcode.com/paper/automated-mri-tumor-segmentation-using-hybrid
2506.15562
null
null
Automated MRI Tumor Segmentation using hybrid U-Net with Transformer and Efficient Attention
Cancer is an abnormal growth with potential to invade locally and metastasize to distant organs. Accurate auto-segmentation of the tumor and surrounding normal tissues is required for radiotherapy treatment plan optimization. Recent AI-based segmentation models are generally trained on large public datasets, which lack the heterogeneity of local patient populations. While these studies advance AI-based medical image segmentation, research on local datasets is necessary to develop and integrate AI tumor segmentation models directly into hospital software for efficient and accurate oncology treatment planning and execution. This study enhances tumor segmentation using computationally efficient hybrid UNet-Transformer models on magnetic resonance imaging (MRI) datasets acquired from a local hospital under strict privacy protection. We developed a robust data pipeline for seamless DICOM extraction and preprocessing, followed by extensive image augmentation to ensure model generalization across diverse clinical settings, resulting in a total dataset of 6080 images for training. Our novel architecture integrates UNet-based convolutional neural networks with a transformer bottleneck and complementary attention modules, including efficient attention, Squeeze-and-Excitation (SE) blocks, Convolutional Block Attention Module (CBAM), and ResNeXt blocks. To accelerate convergence and reduce computational demands, we used a maximum batch size of 8 and initialized the encoder with pretrained ImageNet weights, training the model on dual NVIDIA T4 GPUs via checkpointing to overcome Kaggle's runtime limits. Quantitative evaluation on the local MRI dataset yielded a Dice similarity coefficient of 0.764 and an Intersection over Union (IoU) of 0.736, demonstrating competitive performance despite limited data and underscoring the importance of site-specific model development for clinical deployment.
null
https://arxiv.org/abs/2506.15562v1
https://arxiv.org/pdf/2506.15562v1.pdf
null
[ "Syed Haider Ali", "Asrar Ahmad", "Muhammad Ali", "Asifullah Khan", "Muhammad Shahban", "Nadeem Shaukat" ]
[ "Image Augmentation", "Image Segmentation", "Medical Image Segmentation", "Segmentation", "Semantic Segmentation", "Tumor Segmentation" ]
2025-06-18T00:00:00
null
null
null
null
[ { "code_snippet_url": "", "description": "How Do I Communicate to Expedia?\r\nHow Do I Communicate to Expedia? – Call **☎️ +1-(888) 829 (0881) or +1-805-330-4056 or +1-805-330-4056** for Live Support & Special Travel Discounts!Frustrated with automated systems? Call **☎️ **☎️ +1-(888) 829 (0881) or +1-805-330-4056 or +1-805-330-4056** now to speak directly with a live Expedia agent and unlock exclusive best deal discounts on hotels, flights, and vacation packages. Get real help fast while enjoying limited-time offers that make your next trip more affordable, smooth, and stress-free. Don’t wait—call today!\r\n\r\n\r\nHow Do I Communicate to Expedia?\r\nHow Do I Communicate to Expedia? – Call **☎️ +1-(888) 829 (0881) or +1-805-330-4056 or +1-805-330-4056** for Live Support & Special Travel Discounts!Frustrated with automated systems? Call **☎️ **☎️ +1-(888) 829 (0881) or +1-805-330-4056 or +1-805-330-4056** now to speak directly with a live Expedia agent and unlock exclusive best deal discounts on hotels, flights, and vacation packages. Get real help fast while enjoying limited-time offers that make your next trip more affordable, smooth, and stress-free. Don’t wait—call today!", "full_name": "*Communicated@Fast*How Do I Communicate to Expedia?", "introduced_year": 2000, "main_collection": { "area": "General", "description": "How do I escalate a problem with Expedia?\r\nTo escalate a problem with Expedia, call +1(888) (829) (0881) OR +1(805) (330) (4056) and ask to speak with a manager. Explain your issue in detail and inquire about compensation. Expedia may provide exclusive discount codes, travel credits, or special offers to help resolve your problem and improve your experience.\r\nIs Expedia actually fully refundable?\r\nExpedia isn’t always fully refundable—refunds depend on the hotel, airline, or rental provider’s policy call +1(888) (829) (0881) OR +1(805) (330) (4056). Look for “Free Cancellation” before booking to ensure flexibility. For peace of mind and potential savings, call +1(888) (829) (0881) OR +1(805) (330) (4056) and ask about current discount codes or refund-friendly deals.\r\n\r\nWhat is the refundable option on expedia?\r\nThe refundable option on Expedia allows you to cancel eligible bookings call +1(888) (829) (0881) OR +1(805) (330) (4056) without penalty. Look for listings marked “Free Cancellation” or “Fully Refundable.” To maximize flexibility, choose these options during checkout. For additional savings, call +1(888) (829) (0881) OR +1(805) (330) (4056) and ask about exclusive promo codes or travel discounts available today.", "name": "Activation Functions", "parent": null }, "name": "ReLU", "source_title": null, "source_url": null }, { "code_snippet_url": "https://github.com/pytorch/vision/blob/1aef87d01eec2c0989458387fa04baebcc86ea7b/torchvision/models/resnet.py#L75", "description": "A **ResNeXt Block** is a type of [residual block](https://paperswithcode.com/method/residual-block) used as part of the [ResNeXt](https://paperswithcode.com/method/resnext) CNN architecture. It uses a \"split-transform-merge\" strategy (branched paths within a single module) similar to an [Inception module](https://paperswithcode.com/method/inception-module), i.e. it aggregates a set of transformations. Compared to a Residual Block, it exposes a new dimension, *cardinality* (size of set of transformations) $C$, as an essential factor in addition to depth and width. \r\n\r\nFormally, a set of aggregated transformations can be represented as: $\\mathcal{F}(x)=\\sum_{i=1}^{C}\\mathcal{T}_i(x)$, where $\\mathcal{T}_i(x)$ can be an arbitrary function. Analogous to a simple neuron, $\\mathcal{T}_i$ should project $x$ into an (optionally low-dimensional) embedding and then transform it.", "full_name": "ResNeXt Block", "introduced_year": 2000, "main_collection": { "area": "General", "description": "**Skip Connection Blocks** are building blocks for neural networks that feature skip connections. These skip connections 'skip' some layers allowing gradients to better flow through the network. Below you will find a continuously updating list of skip connection blocks:", "name": "Skip Connection Blocks", "parent": null }, "name": "ResNeXt Block", "source_title": "Aggregated Residual Transformations for Deep Neural Networks", "source_url": "http://arxiv.org/abs/1611.05431v2" }, { "code_snippet_url": "https://github.com/pytorch/vision/blob/baa592b215804927e28638f6a7f3318cbc411d49/torchvision/models/resnet.py#L157", "description": "**Global Average Pooling** is a pooling operation designed to replace fully connected layers in classical CNNs. The idea is to generate one feature map for each corresponding category of the classification task in the last mlpconv layer. Instead of adding fully connected layers on top of the feature maps, we take the average of each feature map, and the resulting vector is fed directly into the [softmax](https://paperswithcode.com/method/softmax) layer. \r\n\r\nOne advantage of global [average pooling](https://paperswithcode.com/method/average-pooling) over the fully connected layers is that it is more native to the [convolution](https://paperswithcode.com/method/convolution) structure by enforcing correspondences between feature maps and categories. Thus the feature maps can be easily interpreted as categories confidence maps. Another advantage is that there is no parameter to optimize in the global average pooling thus overfitting is avoided at this layer. Furthermore, global average pooling sums out the spatial information, thus it is more robust to spatial translations of the input.", "full_name": "Global Average Pooling", "introduced_year": 2000, "main_collection": { "area": "Computer Vision", "description": "**Pooling Operations** are used to pool features together, often downsampling the feature map to a smaller size. They can also induce favourable properties such as translation invariance in image classification, as well as bring together information from different parts of a network in tasks like object detection (e.g. pooling different scales). ", "name": "Pooling Operations", "parent": null }, "name": "Global Average Pooling", "source_title": "Network In Network", "source_url": "http://arxiv.org/abs/1312.4400v3" }, { "code_snippet_url": "", "description": "A **convolution** is a type of matrix operation, consisting of a kernel, a small matrix of weights, that slides over input data performing element-wise multiplication with the part of the input it is on, then summing the results into an output.\r\n\r\nIntuitively, a convolution allows for weight sharing - reducing the number of effective parameters - and image translation (allowing for the same feature to be detected in different parts of the input space).\r\n\r\nImage Source: [https://arxiv.org/pdf/1603.07285.pdf](https://arxiv.org/pdf/1603.07285.pdf)", "full_name": "Convolution", "introduced_year": 1980, "main_collection": { "area": "Computer Vision", "description": "**Convolutions** are a type of operation that can be used to learn representations from images. They involve a learnable kernel sliding over the image and performing element-wise multiplication with the input. The specification allows for parameter sharing and translation invariance. Below you can find a continuously updating list of convolutions.", "name": "Convolutions", "parent": "Image Feature Extractors" }, "name": "Convolution", "source_title": null, "source_url": null }, { "code_snippet_url": "", "description": "A **1 x 1 Convolution** is a [convolution](https://paperswithcode.com/method/convolution) with some special properties in that it can be used for dimensionality reduction, efficient low dimensional embeddings, and applying non-linearity after convolutions. It maps an input pixel with all its channels to an output pixel which can be squeezed to a desired output depth. It can be viewed as an [MLP](https://paperswithcode.com/method/feedforward-network) looking at a particular pixel location.\r\n\r\nImage Credit: [http://deeplearning.ai](http://deeplearning.ai)", "full_name": "1x1 Convolution", "introduced_year": 2000, "main_collection": { "area": "Computer Vision", "description": "**Convolutions** are a type of operation that can be used to learn representations from images. They involve a learnable kernel sliding over the image and performing element-wise multiplication with the input. The specification allows for parameter sharing and translation invariance. Below you can find a continuously updating list of convolutions.", "name": "Convolutions", "parent": "Image Feature Extractors" }, "name": "1x1 Convolution", "source_title": "Network In Network", "source_url": "http://arxiv.org/abs/1312.4400v3" }, { "code_snippet_url": "https://github.com/prlz77/ResNeXt.pytorch/blob/39fb8d03847f26ec02fb9b880ecaaa88db7a7d16/models/model.py#L42", "description": "A **Grouped Convolution** uses a group of convolutions - multiple kernels per layer - resulting in multiple channel outputs per layer. This leads to wider networks helping a network learn a varied set of low level and high level features. The original motivation of using Grouped Convolutions in [AlexNet](https://paperswithcode.com/method/alexnet) was to distribute the model over multiple GPUs as an engineering compromise. But later, with models such as [ResNeXt](https://paperswithcode.com/method/resnext), it was shown this module could be used to improve classification accuracy. Specifically by exposing a new dimension through grouped convolutions, *cardinality* (the size of set of transformations), we can increase accuracy by increasing it.", "full_name": "Grouped Convolution", "introduced_year": 2000, "main_collection": { "area": "Computer Vision", "description": "**Convolutions** are a type of operation that can be used to learn representations from images. They involve a learnable kernel sliding over the image and performing element-wise multiplication with the input. The specification allows for parameter sharing and translation invariance. Below you can find a continuously updating list of convolutions.", "name": "Convolutions", "parent": "Image Feature Extractors" }, "name": "Grouped Convolution", "source_title": "ImageNet Classification with Deep Convolutional Neural Networks", "source_url": "http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks" }, { "code_snippet_url": "https://github.com/pytorch/vision/blob/6db1569c89094cf23f3bc41f79275c45e9fcb3f3/torchvision/models/resnet.py#L124", "description": "A **ResNeXt** repeats a building block that aggregates a set of transformations with the same topology. Compared to a [ResNet](https://paperswithcode.com/method/resnet), it exposes a new dimension, *cardinality* (the size of the set of transformations) $C$, as an essential factor in addition to the dimensions of depth and width. \r\n\r\nFormally, a set of aggregated transformations can be represented as: $\\mathcal{F}(x)=\\sum_{i=1}^{C}\\mathcal{T}_i(x)$, where $\\mathcal{T}_i(x)$ can be an arbitrary function. Analogous to a simple neuron, $\\mathcal{T}_i$ should project $x$ into an (optionally low-dimensional) embedding and then transform it.", "full_name": "ResNeXt", "introduced_year": 2000, "main_collection": { "area": "Computer Vision", "description": "If you have questions or want to make special travel arrangements, you can make them online or call ☎️+1-801-(855)-(5905)or +1-804-853-9001✅. For hearing or speech impaired assistance dial 711 to be connected through the National Relay Service.", "name": "Convolutional Neural Networks", "parent": "Image Models" }, "name": "ResNeXt", "source_title": "Aggregated Residual Transformations for Deep Neural Networks", "source_url": "http://arxiv.org/abs/1611.05431v2" } ]
https://paperswithcode.com/paper/construction-of-an-organ-shape-atlas-using-a
2506.15557
null
null
Construction of an Organ Shape Atlas Using a Hierarchical Mesh Variational Autoencoder
An organ shape atlas, which represents the shape and position of the organs and skeleton of a living body using a small number of parameters, is expected to have a wide range of clinical applications, including intraoperative guidance and radiotherapy. Because the shape and position of soft organs vary greatly among patients, it is difficult for linear models to reconstruct shapes that have large local variations. Because it is difficult for conventional nonlinear models to control and interpret the organ shapes obtained, deep learning has been attracting attention in three-dimensional shape representation. In this study, we propose an organ shape atlas based on a mesh variational autoencoder (MeshVAE) with hierarchical latent variables. To represent the complex shapes of biological organs and nonlinear shape differences between individuals, the proposed method maintains the performance of organ shape reconstruction by hierarchizing latent variables and enables shape representation using lower-dimensional latent variables. Additionally, templates that define vertex correspondence between different resolutions enable hierarchical representation in mesh data and control the global and local features of the organ shape. We trained the model using liver and stomach organ meshes obtained from 124 cases and confirmed that the model reconstructed the position and shape with an average distance between vertices of 1.5 mm and mean distance of 0.7 mm for the liver shape, and an average distance between vertices of 1.4 mm and mean distance of 0.8 mm for the stomach shape on test data from 19 of cases. The proposed method continuously represented interpolated shapes, and by changing latent variables at different hierarchical levels, the proposed method hierarchically separated shape features compared with PCA.
null
https://arxiv.org/abs/2506.15557v1
https://arxiv.org/pdf/2506.15557v1.pdf
null
[ "Zijie Wang", "Ryuichi Umehara", "Mitsuhiro Nakamura", "Megumi Nakao" ]
[ "Position" ]
2025-06-18T00:00:00
null
null
null
null
[ { "code_snippet_url": null, "description": "**Principle Components Analysis (PCA)** is an unsupervised method primary used for dimensionality reduction within machine learning. PCA is calculated via a singular value decomposition (SVD) of the design matrix, or alternatively, by calculating the covariance matrix of the data and performing eigenvalue decomposition on the covariance matrix. The results of PCA provide a low-dimensional picture of the structure of the data and the leading (uncorrelated) latent factors determining variation in the data.\r\n\r\nImage Source: [Wikipedia](https://en.wikipedia.org/wiki/Principal_component_analysis#/media/File:GaussianScatterPCA.svg)", "full_name": "Principal Components Analysis", "introduced_year": 2000, "main_collection": { "area": "General", "description": "**Dimensionality Reduction** methods transform data from a high-dimensional space into a low-dimensional space so that the low-dimensional space retains the most important properties of the original data. Below you can find a continuously updating list of dimensionality reduction methods.", "name": "Dimensionality Reduction", "parent": null }, "name": "PCA", "source_title": null, "source_url": null } ]
https://paperswithcode.com/paper/advanced-cervical-cancer-classification
2506.15489
null
null
Advanced cervical cancer classification: enhancing pap smear images with hybrid PMD Filter-CLAHE
Cervical cancer remains a significant health problem, especially in developing countries. Early detection is critical for effective treatment. Convolutional neural networks (CNN) have shown promise in automated cervical cancer screening, but their performance depends on Pap smear image quality. This study investigates the impact of various image preprocessing techniques on CNN performance for cervical cancer classification using the SIPaKMeD dataset. Three preprocessing techniques were evaluated: perona-malik diffusion (PMD) filter for noise reduction, contrast-limited adaptive histogram equalization (CLAHE) for image contrast enhancement, and the proposed hybrid PMD filter-CLAHE approach. The enhanced image datasets were evaluated on pretrained models, such as ResNet-34, ResNet-50, SqueezeNet-1.0, MobileNet-V2, EfficientNet-B0, EfficientNet-B1, DenseNet-121, and DenseNet-201. The results show that hybrid preprocessing PMD filter-CLAHE can improve the Pap smear image quality and CNN architecture performance compared to the original images. The maximum metric improvements are 13.62% for accuracy, 10.04% for precision, 13.08% for recall, and 14.34% for F1-score. The proposed hybrid PMD filter-CLAHE technique offers a new perspective in improving cervical cancer classification performance using CNN architectures.
null
https://arxiv.org/abs/2506.15489v1
https://arxiv.org/pdf/2506.15489v1.pdf
null
[ "Ach Khozaimi", "Isnani Darti", "Syaiful Anam", "Wuryansari Muharini Kusumawinahyu" ]
[ "Cancer Classification" ]
2025-06-18T00:00:00
null
null
null
null
[ { "code_snippet_url": null, "description": "Diffusion models generate samples by gradually\r\nremoving noise from a signal, and their training objective can be expressed as a reweighted variational lower-bound (https://arxiv.org/abs/2006.11239).", "full_name": "Diffusion", "introduced_year": 2000, "main_collection": { "area": "Computer Vision", "description": "", "name": "Image Generation Models", "parent": null }, "name": "Diffusion", "source_title": "Denoising Diffusion Probabilistic Models", "source_url": "https://arxiv.org/abs/2006.11239v2" } ]
https://paperswithcode.com/paper/a-real-time-endoscopic-image-denoising-system
2506.15395
null
null
A Real-time Endoscopic Image Denoising System
Endoscopes featuring a miniaturized design have significantly enhanced operational flexibility, portability, and diagnostic capability while substantially reducing the invasiveness of medical procedures. Recently, single-use endoscopes equipped with an ultra-compact analogue image sensor measuring less than 1mm x 1mm bring revolutionary advancements to medical diagnosis. They reduce the structural redundancy and large capital expenditures associated with reusable devices, eliminate the risk of patient infections caused by inadequate disinfection, and alleviate patient suffering. However, the limited photosensitive area results in reduced photon capture per pixel, requiring higher photon sensitivity settings to maintain adequate brightness. In high-contrast medical imaging scenarios, the small-sized sensor exhibits a constrained dynamic range, making it difficult to simultaneously capture details in both highlights and shadows, and additional localized digital gain is required to compensate. Moreover, the simplified circuit design and analog signal transmission introduce additional noise sources. These factors collectively contribute to significant noise issues in processed endoscopic images. In this work, we developed a comprehensive noise model for analog image sensors in medical endoscopes, addressing three primary noise types: fixed-pattern noise, periodic banding noise, and mixed Poisson-Gaussian noise. Building on this analysis, we propose a hybrid denoising system that synergistically combines traditional image processing algorithms with advanced learning-based techniques for captured raw frames from sensors. Experiments demonstrate that our approach effectively reduces image noise without fine detail loss or color distortion, while achieving real-time performance on FPGA platforms and an average PSNR improvement from 21.16 to 33.05 on our test dataset.
null
https://arxiv.org/abs/2506.15395v1
https://arxiv.org/pdf/2506.15395v1.pdf
null
[ "Yu Xing", "Shishi Huang", "Meng Lv", "Guo Chen", "Huailiang Wang", "Lingzhi Sui" ]
[ "Denoising", "Diagnostic", "Image Denoising", "Medical Diagnosis" ]
2025-06-18T00:00:00
null
null
null
null
[]
https://paperswithcode.com/paper/fedwsidd-federated-whole-slide-image
2506.15365
null
null
FedWSIDD: Federated Whole Slide Image Classification via Dataset Distillation
Federated learning (FL) has emerged as a promising approach for collaborative medical image analysis, enabling multiple institutions to build robust predictive models while preserving sensitive patient data. In the context of Whole Slide Image (WSI) classification, FL faces significant challenges, including heterogeneous computational resources across participating medical institutes and privacy concerns. To address these challenges, we propose FedWSIDD, a novel FL paradigm that leverages dataset distillation (DD) to learn and transmit synthetic slides. On the server side, FedWSIDD aggregates synthetic slides from participating centres and distributes them across all centres. On the client side, we introduce a novel DD algorithm tailored to histopathology datasets which incorporates stain normalisation into the distillation process to generate a compact set of highly informative synthetic slides. These synthetic slides, rather than model parameters, are transmitted to the server. After communication, the received synthetic slides are combined with original slides for local tasks. Extensive experiments on multiple WSI classification tasks, including CAMELYON16 and CAMELYON17, demonstrate that FedWSIDD offers flexibility for heterogeneous local models, enhances local WSI classification performance, and preserves patient privacy. This makes it a highly effective solution for complex WSI classification tasks. The code is available at FedWSIDD.
null
https://arxiv.org/abs/2506.15365v1
https://arxiv.org/pdf/2506.15365v1.pdf
null
[ "Haolong Jin", "Shenglin Liu", "Cong Cong", "Qingmin Feng", "Yongzhi Liu", "Lina Huang", "Yingzi Hu" ]
[ "Classification", "Dataset Distillation", "Federated Learning", "image-classification", "Image Classification", "Medical Image Analysis" ]
2025-06-18T00:00:00
null
null
null
null
[ { "code_snippet_url": null, "description": "Dynamic Sparse Training method where weight mask is updated randomly periodically", "full_name": "Sparse Evolutionary Training", "introduced_year": 2000, "main_collection": { "area": "General", "description": "", "name": "Sparsity", "parent": null }, "name": "SET", "source_title": "Scalable Training of Artificial Neural Networks with Adaptive Sparse Connectivity inspired by Network Science", "source_url": "http://arxiv.org/abs/1707.04780v2" } ]
https://paperswithcode.com/paper/brain-stroke-classification-using-wavelet
2506.15364
null
null
Brain Stroke Classification Using Wavelet Transform and MLP Neural Networks on DWI MRI Images
This paper presents a lightweight framework for classifying brain stroke types from Diffusion-Weighted Imaging (DWI) MRI scans, employing a Multi-Layer Perceptron (MLP) neural network with Wavelet Transform for feature extraction. Accurate and timely stroke detection is critical for effective treatment and improved patient outcomes in neuroimaging. While Convolutional Neural Networks (CNNs) are widely used for medical image analysis, their computational complexity often hinders deployment in resource-constrained clinical settings. In contrast, our approach combines Wavelet Transform with a compact MLP to achieve efficient and accurate stroke classification. Using the "Brain Stroke MRI Images" dataset, our method yields classification accuracies of 82.0% with the "db4" wavelet (level 3 decomposition) and 86.00% with the "Haar" wavelet (level 2 decomposition). This analysis highlights a balance between diagnostic accuracy and computational efficiency, offering a practical solution for automated stroke diagnosis. Future research will focus on enhancing model robustness and integrating additional MRI modalities for comprehensive stroke assessment.
null
https://arxiv.org/abs/2506.15364v1
https://arxiv.org/pdf/2506.15364v1.pdf
null
[ "Mana Mohammadi", "Amirhesam Jafari Rad", "Ashkan Behrouzi" ]
[ "Computational Efficiency", "Diagnostic", "Medical Image Analysis", "Stroke Classification" ]
2025-06-18T00:00:00
null
null
null
null
[ { "code_snippet_url": null, "description": "", "full_name": "Focus", "introduced_year": 2000, "main_collection": { "area": "Natural Language Processing", "description": "**Transformers** are a type of neural network architecture that have several properties that make them effective for modeling data with long-range dependencies. They generally feature a combination of multi-headed attention mechanisms, residual connections, layer normalization, feedforward connections, and positional embeddings.", "name": "Transformers", "parent": "Language Models" }, "name": "Focus", "source_title": "Focus Your Attention (with Adaptive IIR Filters)", "source_url": "https://arxiv.org/abs/2305.14952v2" } ]
https://paperswithcode.com/paper/pro-projection-domain-synthesis-for-ct
2506.13443
null
null
PRO: Projection Domain Synthesis for CT Imaging
Synthesizing high quality CT projection data remains a significant challenge due to the limited availability of annotated data and the complex nature of CT imaging. In this work, we present PRO, a projection domain synthesis foundation model for CT imaging. To the best of our knowledge, this is the first study that performs CT synthesis in the projection domain. Unlike previous approaches that operate in the image domain, PRO learns rich structural representations from raw projection data and leverages anatomical text prompts for controllable synthesis. This projection domain strategy enables more faithful modeling of underlying imaging physics and anatomical structures. Moreover, PRO functions as a foundation model, capable of generalizing across diverse downstream tasks by adjusting its generative behavior via prompt inputs. Experimental results demonstrated that incorporating our synthesized data significantly improves performance across multiple downstream tasks, including low-dose and sparse-view reconstruction. These findings underscore the versatility and scalability of PRO in data generation for various CT applications. These results highlight the potential of projection domain synthesis as a powerful tool for data augmentation and robust CT imaging. Our source code is publicly available at: https://github.com/yqx7150/PRO.
null
https://arxiv.org/abs/2506.13443v2
https://arxiv.org/pdf/2506.13443v2.pdf
null
[ "Kang Chen", "Bin Huang", "Xuebin Yang", "Junyan Zhang", "Qiegen Liu" ]
[ "Data Augmentation" ]
2025-06-16T00:00:00
null
null
null
null
[]
https://paperswithcode.com/paper/classification-of-multi-parametric-body-mri
2506.15182
null
null
Classification of Multi-Parametric Body MRI Series Using Deep Learning
Multi-parametric magnetic resonance imaging (mpMRI) exams have various series types acquired with different imaging protocols. The DICOM headers of these series often have incorrect information due to the sheer diversity of protocols and occasional technologist errors. To address this, we present a deep learning-based classification model to classify 8 different body mpMRI series types so that radiologists read the exams efficiently. Using mpMRI data from various institutions, multiple deep learning-based classifiers of ResNet, EfficientNet, and DenseNet are trained to classify 8 different MRI series, and their performance is compared. Then, the best-performing classifier is identified, and its classification capability under the setting of different training data quantities is studied. Also, the model is evaluated on the out-of-training-distribution datasets. Moreover, the model is trained using mpMRI exams obtained from different scanners in two training strategies, and its performance is tested. Experimental results show that the DenseNet-121 model achieves the highest F1-score and accuracy of 0.966 and 0.972 over the other classification models with p-value$<$0.05. The model shows greater than 0.95 accuracy when trained with over 729 studies of the training data, whose performance improves as the training data quantities grew larger. On the external data with the DLDS and CPTAC-UCEC datasets, the model yields 0.872 and 0.810 accuracy for each. These results indicate that in both the internal and external datasets, the DenseNet-121 model attains high accuracy for the task of classifying 8 body MRI series types.
null
https://arxiv.org/abs/2506.15182v1
https://arxiv.org/pdf/2506.15182v1.pdf
null
[ "Boah Kim", "Tejas Sudharshan Mathai", "Kimberly Helm", "Peter A. Pinto", "Ronald M. Summers" ]
[]
2025-06-18T00:00:00
null
null
null
null
[]
https://paperswithcode.com/paper/d2diff-a-dual-domain-diffusion-model-for
2506.15750
null
null
D2Diff : A Dual Domain Diffusion Model for Accurate Multi-Contrast MRI Synthesis
Multi contrast MRI synthesis is inherently challenging due to the complex and nonlinear relationships among different contrasts. Each MRI contrast highlights unique tissue properties, but their complementary information is difficult to exploit due to variations in intensity distributions and contrast specific textures. Existing methods for multi contrast MRI synthesis primarily utilize spatial domain features, which capture localized anatomical structures but struggle to model global intensity variations and distributed patterns. Conversely, frequency domain features provide structured inter contrast correlations but lack spatial precision, limiting their ability to retain finer details. To address this, we propose a dual domain learning framework that integrates spatial and frequency domain information across multiple MRI contrasts for enhanced synthesis. Our method employs two mutually trained denoising networks, one conditioned on spatial domain and the other on frequency domain contrast features through a shared critic network. Additionally, an uncertainty driven mask loss directs the models focus toward more critical regions, further improving synthesis accuracy. Extensive experiments show that our method outperforms SOTA baselines, and the downstream segmentation performance highlights the diagnostic value of the synthetic results.
null
https://arxiv.org/abs/2506.15750v1
https://arxiv.org/pdf/2506.15750v1.pdf
null
[ "Sanuwani Dayarathna", "Himashi Peiris", "Kh Tohidul Islam", "Tien-Tsin Wong", "Zhaolin Chen" ]
[ "Denoising", "Diagnostic" ]
2025-06-18T00:00:00
null
null
null
null
[ { "code_snippet_url": null, "description": "", "full_name": "Focus", "introduced_year": 2000, "main_collection": { "area": "Natural Language Processing", "description": "**Transformers** are a type of neural network architecture that have several properties that make them effective for modeling data with long-range dependencies. They generally feature a combination of multi-headed attention mechanisms, residual connections, layer normalization, feedforward connections, and positional embeddings.", "name": "Transformers", "parent": "Language Models" }, "name": "Focus", "source_title": "Focus Your Attention (with Adaptive IIR Filters)", "source_url": "https://arxiv.org/abs/2305.14952v2" } ]
https://paperswithcode.com/paper/diffusion-based-counterfactual-augmentation
2506.15748
null
null
Diffusion-based Counterfactual Augmentation: Towards Robust and Interpretable Knee Osteoarthritis Grading
Automated grading of Knee Osteoarthritis (KOA) from radiographs is challenged by significant inter-observer variability and the limited robustness of deep learning models, particularly near critical decision boundaries. To address these limitations, this paper proposes a novel framework, Diffusion-based Counterfactual Augmentation (DCA), which enhances model robustness and interpretability by generating targeted counterfactual examples. The method navigates the latent space of a diffusion model using a Stochastic Differential Equation (SDE), governed by balancing a classifier-informed boundary drive with a manifold constraint. The resulting counterfactuals are then used within a self-corrective learning strategy to improve the classifier by focusing on its specific areas of uncertainty. Extensive experiments on the public Osteoarthritis Initiative (OAI) and Multicenter Osteoarthritis Study (MOST) datasets demonstrate that this approach significantly improves classification accuracy across multiple model architectures. Furthermore, the method provides interpretability by visualizing minimal pathological changes and revealing that the learned latent space topology aligns with clinical knowledge of KOA progression. The DCA framework effectively converts model uncertainty into a robust training signal, offering a promising pathway to developing more accurate and trustworthy automated diagnostic systems. Our code is available at https://github.com/ZWang78/DCA.
Automated grading of Knee Osteoarthritis (KOA) from radiographs is challenged by significant inter-observer variability and the limited robustness of deep learning models, particularly near critical decision boundaries.
https://arxiv.org/abs/2506.15748v1
https://arxiv.org/pdf/2506.15748v1.pdf
null
[ "Zhe Wang", "Yuhua Ru", "Aladine Chetouani", "Tina Shiang", "Fang Chen", "Fabian Bauer", "Liping Zhang", "Didier Hans", "Rachid Jennane", "William Ewing Palmer", "Mohamed Jarraya", "Yung Hsin Chen" ]
[ "Clinical Knowledge", "counterfactual", "Diagnostic" ]
2025-06-18T00:00:00
null
null
null
null
[ { "code_snippet_url": null, "description": "", "full_name": "Counterfactuals Explanations", "introduced_year": 2000, "main_collection": { "area": "Reinforcement Learning", "description": "", "name": "Exploration Strategies", "parent": null }, "name": "Counterfactuals", "source_title": "Counterfactual Explanations without Opening the Black Box: Automated Decisions and the GDPR", "source_url": "http://arxiv.org/abs/1711.00399v3" }, { "code_snippet_url": null, "description": "Diffusion models generate samples by gradually\r\nremoving noise from a signal, and their training objective can be expressed as a reweighted variational lower-bound (https://arxiv.org/abs/2006.11239).", "full_name": "Diffusion", "introduced_year": 2000, "main_collection": { "area": "Computer Vision", "description": "", "name": "Image Generation Models", "parent": null }, "name": "Diffusion", "source_title": "Denoising Diffusion Probabilistic Models", "source_url": "https://arxiv.org/abs/2006.11239v2" } ]
https://paperswithcode.com/paper/a-strong-view-free-baseline-approach-for
2506.15747
null
null
A Strong View-Free Baseline Approach for Single-View Image Guided Point Cloud Completion
The single-view image guided point cloud completion (SVIPC) task aims to reconstruct a complete point cloud from a partial input with the help of a single-view image. While previous works have demonstrated the effectiveness of this multimodal approach, the fundamental necessity of image guidance remains largely unexamined. To explore this, we propose a strong baseline approach for SVIPC based on an attention-based multi-branch encoder-decoder network that only takes partial point clouds as input, view-free. Our hierarchical self-fusion mechanism, driven by cross-attention and self-attention layers, effectively integrates information across multiple streams, enriching feature representations and strengthening the networks ability to capture geometric structures. Extensive experiments and ablation studies on the ShapeNet-ViPC dataset demonstrate that our view-free framework performs superiorly to state-of-the-art SVIPC methods. We hope our findings provide new insights into the development of multimodal learning in SVIPC. Our demo code will be available at https://github.com/Zhang-VISLab.
null
https://arxiv.org/abs/2506.15747v1
https://arxiv.org/pdf/2506.15747v1.pdf
null
[ "Fangzhou Lin", "Zilin Dai", "Rigved Sanku", "Songlin Hou", "Kazunori D Yamada", "Haichong K. Zhang", "Ziming Zhang" ]
[ "Decoder", "Point Cloud Completion" ]
2025-06-18T00:00:00
null
null
null
null
[]
https://paperswithcode.com/paper/pixel-wise-modulated-dice-loss-for-medical
2506.15744
null
null
Pixel-wise Modulated Dice Loss for Medical Image Segmentation
Class imbalance and the difficulty imbalance are the two types of data imbalance that affect the performance of neural networks in medical segmentation tasks. In class imbalance the loss is dominated by the majority classes and in difficulty imbalance the loss is dominated by easy to classify pixels. This leads to an ineffective training. Dice loss, which is based on a geometrical metric, is very effective in addressing the class imbalance compared to the cross entropy (CE) loss, which is adopted directly from classification tasks. To address the difficulty imbalance, the common approach is employing a re-weighted CE loss or a modified Dice loss to focus the training on difficult to classify areas. The existing modification methods are computationally costly and with limited success. In this study we propose a simple modification to the Dice loss with minimal computational cost. With a pixel level modulating term, we take advantage of the effectiveness of Dice loss in handling the class imbalance to also handle the difficulty imbalance. Results on three commonly used medical segmentation tasks show that the proposed Pixel-wise Modulated Dice loss (PM Dice loss) outperforms other methods, which are designed to tackle the difficulty imbalance problem.
null
https://arxiv.org/abs/2506.15744v1
https://arxiv.org/pdf/2506.15744v1.pdf
null
[ "Seyed Mohsen Hosseini" ]
[ "Image Segmentation", "Medical Image Segmentation", "Semantic Segmentation" ]
2025-06-17T00:00:00
null
null
null
null
[ { "code_snippet_url": "", "description": "\\begin{equation}\r\nDiceLoss\\left( y, \\overline{p} \\right) = 1 - \\dfrac{\\left( 2y\\overline{p} + 1 \\right)} {\\left( y+\\overline{p } + 1 \\right)}\r\n\\end{equation}", "full_name": "Dice Loss", "introduced_year": 2000, "main_collection": { "area": "General", "description": "**Loss Functions** are used to frame the problem to be optimized within deep learning. Below you will find a continuously updating list of (specialized) loss functions for neutral networks.", "name": "Loss Functions", "parent": null }, "name": "Dice Loss", "source_title": "Generalised Dice overlap as a deep learning loss function for highly unbalanced segmentations", "source_url": "http://arxiv.org/abs/1707.03237v3" }, { "code_snippet_url": null, "description": "", "full_name": "Focus", "introduced_year": 2000, "main_collection": { "area": "Natural Language Processing", "description": "**Transformers** are a type of neural network architecture that have several properties that make them effective for modeling data with long-range dependencies. They generally feature a combination of multi-headed attention mechanisms, residual connections, layer normalization, feedforward connections, and positional embeddings.", "name": "Transformers", "parent": "Language Models" }, "name": "Focus", "source_title": "Focus Your Attention (with Adaptive IIR Filters)", "source_url": "https://arxiv.org/abs/2305.14952v2" } ]
https://paperswithcode.com/paper/neuromoe-a-transformer-based-mixture-of
2506.14970
null
null
NeuroMoE: A Transformer-Based Mixture-of-Experts Framework for Multi-Modal Neurological Disorder Classification
The integration of multi-modal Magnetic Resonance Imaging (MRI) and clinical data holds great promise for enhancing the diagnosis of neurological disorders (NDs) in real-world clinical settings. Deep Learning (DL) has recently emerged as a powerful tool for extracting meaningful patterns from medical data to aid in diagnosis. However, existing DL approaches struggle to effectively leverage multi-modal MRI and clinical data, leading to suboptimal performance. To address this challenge, we utilize a unique, proprietary multi-modal clinical dataset curated for ND research. Based on this dataset, we propose a novel transformer-based Mixture-of-Experts (MoE) framework for ND classification, leveraging multiple MRI modalities-anatomical (aMRI), Diffusion Tensor Imaging (DTI), and functional (fMRI)-alongside clinical assessments. Our framework employs transformer encoders to capture spatial relationships within volumetric MRI data while utilizing modality-specific experts for targeted feature extraction. A gating mechanism with adaptive fusion dynamically integrates expert outputs, ensuring optimal predictive performance. Comprehensive experiments and comparisons with multiple baselines demonstrate that our multi-modal approach significantly enhances diagnostic accuracy, particularly in distinguishing overlapping disease states. Our framework achieves a validation accuracy of 82.47\%, outperforming baseline methods by over 10\%, highlighting its potential to improve ND diagnosis by applying multi-modal learning to real-world clinical data.
null
https://arxiv.org/abs/2506.14970v1
https://arxiv.org/pdf/2506.14970v1.pdf
null
[ "Wajih Hassan Raza", "Aamir Bader Shah", "Yu Wen", "Yidan Shen", "Juan Diego Martinez Lemus", "Mya Caryn Schiess", "Timothy Michael Ellmore", "Renjie Hu", "Xin Fu" ]
[ "Diagnostic", "Mixture-of-Experts" ]
2025-06-17T00:00:00
null
null
null
null
[ { "code_snippet_url": null, "description": "Diffusion models generate samples by gradually\r\nremoving noise from a signal, and their training objective can be expressed as a reweighted variational lower-bound (https://arxiv.org/abs/2006.11239).", "full_name": "Diffusion", "introduced_year": 2000, "main_collection": { "area": "Computer Vision", "description": "", "name": "Image Generation Models", "parent": null }, "name": "Diffusion", "source_title": "Denoising Diffusion Probabilistic Models", "source_url": "https://arxiv.org/abs/2006.11239v2" } ]
https://paperswithcode.com/paper/xray2xray-world-model-from-chest-x-rays-with
2506.19055
null
null
Xray2Xray: World Model from Chest X-rays with Volumetric Context
Chest X-rays (CXRs) are the most widely used medical imaging modality and play a pivotal role in diagnosing diseases. However, as 2D projection images, CXRs are limited by structural superposition, which constrains their effectiveness in precise disease diagnosis and risk prediction. To address the limitations of 2D CXRs, this study introduces Xray2Xray, a novel World Model that learns latent representations encoding 3D structural information from chest X-rays. Xray2Xray captures the latent representations of the chest volume by modeling the transition dynamics of X-ray projections across different angular positions with a vision model and a transition model. We employed the latent representations of Xray2Xray for downstream risk prediction and disease diagnosis tasks. Experimental results showed that Xray2Xray outperformed both supervised methods and self-supervised pretraining methods for cardiovascular disease risk estimation and achieved competitive performance in classifying five pathologies in CXRs. We also assessed the quality of Xray2Xray's latent representations through synthesis tasks and demonstrated that the latent representations can be used to reconstruct volumetric context.
null
https://arxiv.org/abs/2506.19055v1
https://arxiv.org/pdf/2506.19055v1.pdf
null
[ "Zefan Yang", "Xinrui Song", "Xuanang Xu", "Yongyi Shi", "Ge Wang", "Mannudeep K. Kalra", "Pingkun Yan" ]
[]
2025-06-17T00:00:00
null
null
null
null
[]
https://paperswithcode.com/paper/recursive-variational-autoencoders-for-3d
2506.14914
null
null
Recursive Variational Autoencoders for 3D Blood Vessel Generative Modeling
Anatomical trees play an important role in clinical diagnosis and treatment planning. Yet, accurately representing these structures poses significant challenges owing to their intricate and varied topology and geometry. Most existing methods to synthesize vasculature are rule based, and despite providing some degree of control and variation in the structures produced, they fail to capture the diversity and complexity of actual anatomical data. We developed a Recursive variational Neural Network (RvNN) that fully exploits the hierarchical organization of the vessel and learns a low-dimensional manifold encoding branch connectivity along with geometry features describing the target surface. After training, the RvNN latent space can be sampled to generate new vessel geometries. By leveraging the power of generative neural networks, we generate 3D models of blood vessels that are both accurate and diverse, which is crucial for medical and surgical training, hemodynamic simulations, and many other purposes. These results closely resemble real data, achieving high similarity in vessel radii, length, and tortuosity across various datasets, including those with aneurysms. To the best of our knowledge, this work is the first to utilize this technique for synthesizing blood vessels.
null
https://arxiv.org/abs/2506.14914v1
https://arxiv.org/pdf/2506.14914v1.pdf
null
[ "Paula Feldman", "Miguel Fainstein", "Viviana Siless", "Claudio Delrieux", "Emmanuel Iarussi" ]
[]
2025-06-17T00:00:00
null
null
null
null
[]
https://paperswithcode.com/paper/foundation-artificial-intelligence-models-for
2506.14909
null
null
Foundation Artificial Intelligence Models for Health Recognition Using Face Photographs (FAHR-Face)
Background: Facial appearance offers a noninvasive window into health. We built FAHR-Face, a foundation model trained on >40 million facial images and fine-tuned it for two distinct tasks: biological age estimation (FAHR-FaceAge) and survival risk prediction (FAHR-FaceSurvival). Methods: FAHR-FaceAge underwent a two-stage, age-balanced fine-tuning on 749,935 public images; FAHR-FaceSurvival was fine-tuned on 34,389 photos of cancer patients. Model robustness (cosmetic surgery, makeup, pose, lighting) and independence (saliency mapping) was tested extensively. Both models were clinically tested in two independent cancer patient datasets with survival analyzed by multivariable Cox models and adjusted for clinical prognostic factors. Findings: For age estimation, FAHR-FaceAge had the lowest mean absolute error of 5.1 years on public datasets, outperforming benchmark models and maintaining accuracy across the full human lifespan. In cancer patients, FAHR-FaceAge outperformed a prior facial age estimation model in survival prognostication. FAHR-FaceSurvival demonstrated robust prediction of mortality, and the highest-risk quartile had more than triple the mortality of the lowest (adjusted hazard ratio 3.22; P<0.001). These findings were validated in the independent cohort and both models showed generalizability across age, sex, race and cancer subgroups. The two algorithms provided distinct, complementary prognostic information; saliency mapping revealed each model relied on distinct facial regions. The combination of FAHR-FaceAge and FAHR-FaceSurvival improved prognostic accuracy. Interpretation: A single foundation model can generate inexpensive, scalable facial biomarkers that capture both biological ageing and disease-related mortality risk. The foundation model enabled effective training using relatively small clinical datasets.
null
https://arxiv.org/abs/2506.14909v1
https://arxiv.org/pdf/2506.14909v1.pdf
null
[ "Fridolin Haugg", "Grace Lee", "John He", "Leonard Nürnberg", "Dennis Bontempi", "Danielle S. Bitterman", "Paul Catalano", "Vasco Prudente", "Dmitrii Glubokov", "Andrew Warrington", "Suraj Pai", "Dirk De Ruysscher", "Christian Guthier", "Benjamin H. Kann", "Vadim N. Gladyshev", "Hugo JWL Aerts", "Raymond H. Mak" ]
[ "Age Estimation" ]
2025-06-17T00:00:00
null
null
null
null
[]
https://paperswithcode.com/paper/optimization-based-image-restoration-under
2506.14624
null
null
Optimization-Based Image Restoration under Implementation Constraints in Optical Analog Circuits
Optical analog circuits have attracted attention as promising alternatives to traditional electronic circuits for signal processing tasks due to their potential for low-latency and low-power computations. However, implementing iterative algorithms on such circuits presents challenges, particularly due to the difficulty of performing division operations involving dynamically changing variables and the additive noise introduced by optical amplifiers. In this study, we investigate the feasibility of implementing image restoration algorithms using total variation regularization on optical analog circuits. Specifically, we design the circuit structures for the image restoration with widely used alternating direction method of multipliers (ADMM) and primal dual splitting (PDS). Our design avoids division operations involving dynamic variables and incorporate the impact of additive noise introduced by optical amplifiers. Simulation results show that the effective denoising can be achieved in terms of peak signal to noise ratio (PSNR) and structural similarity index measure (SSIM) even when the circuit noise at the amplifiers is taken into account.
null
https://arxiv.org/abs/2506.14624v1
https://arxiv.org/pdf/2506.14624v1.pdf
null
[ "Taisei Kato", "Ryo Hayakawa", "Soma Furusawa", "Kazunori Hayashi", "Youji Iiguni" ]
[ "Denoising", "Image Restoration", "SSIM" ]
2025-06-17T00:00:00
null
null
null
null
[]
https://paperswithcode.com/paper/breaking-the-multi-enhancement-bottleneck
2506.14152
null
null
Breaking the Multi-Enhancement Bottleneck: Domain-Consistent Quality Enhancement for Compressed Images
Quality enhancement methods have been widely integrated into visual communication pipelines to mitigate artifacts in compressed images. Ideally, these quality enhancement methods should perform robustly when applied to images that have already undergone prior enhancement during transmission. We refer to this scenario as multi-enhancement, which generalizes the well-known multi-generation scenario of image compression. Unfortunately, current quality enhancement methods suffer from severe degradation when applied in multi-enhancement. To address this challenge, we propose a novel adaptation method that transforms existing quality enhancement models into domain-consistent ones. Specifically, our method enhances a low-quality compressed image into a high-quality image within the natural domain during the first enhancement, and ensures that subsequent enhancements preserve this quality without further degradation. Extensive experiments validate the effectiveness of our method and show that various existing models can be successfully adapted to maintain both fidelity and perceptual quality in multi-enhancement scenarios.
null
https://arxiv.org/abs/2506.14152v1
https://arxiv.org/pdf/2506.14152v1.pdf
null
[ "Qunliang Xing", "Mai Xu", "Jing Yang", "Shengxi Li" ]
[ "Image Compression" ]
2025-06-17T00:00:00
null
null
null
null
[]
https://paperswithcode.com/paper/finding-optimal-kernel-size-and-dimension-in
2506.14846
null
null
Finding Optimal Kernel Size and Dimension in Convolutional Neural Networks An Architecture Optimization Approach
Kernel size selection in Convolutional Neural Networks (CNNs) is a critical but often overlooked design decision that affects receptive field, feature extraction, computational cost, and model accuracy. This paper proposes the Best Kernel Size Estimation Function (BKSEF), a mathematically grounded and empirically validated framework for optimal, layer-wise kernel size determination. BKSEF balances information gain, computational efficiency, and accuracy improvements by integrating principles from information theory, signal processing, and learning theory. Extensive experiments on CIFAR-10, CIFAR-100, ImageNet-lite, ChestX-ray14, and GTSRB datasets demonstrate that BKSEF-guided architectures achieve up to 3.1 percent accuracy improvement and 42.8 percent reduction in FLOPs compared to traditional models using uniform 3x3 kernels. Two real-world case studies further validate the approach: one for medical image classification in a cloud-based setup, and another for traffic sign recognition on edge devices. The former achieved enhanced interpretability and accuracy, while the latter reduced latency and model size significantly, with minimal accuracy trade-off. These results show that kernel size can be an active, optimizable parameter rather than a fixed heuristic. BKSEF provides practical heuristics and theoretical support for researchers and developers seeking efficient and application-aware CNN designs. It is suitable for integration into neural architecture search pipelines and real-time systems, offering a new perspective on CNN optimization.
null
https://arxiv.org/abs/2506.14846v1
https://arxiv.org/pdf/2506.14846v1.pdf
null
[ "Shreyas Rajeev", "B Sathish Babu" ]
[ "Computational Efficiency", "image-classification", "Image Classification", "Learning Theory", "Medical Image Classification", "Neural Architecture Search", "Traffic Sign Recognition" ]
2025-06-16T00:00:00
null
null
null
null
[]
https://paperswithcode.com/paper/improving-prostate-gland-segmenting-using
2506.14844
null
null
Improving Prostate Gland Segmenting Using Transformer based Architectures
Inter reader variability and cross site domain shift challenge the automatic segmentation of prostate anatomy using T2 weighted MRI images. This study investigates whether transformer models can retain precision amid such heterogeneity. We compare the performance of UNETR and SwinUNETR in prostate gland segmentation against our previous 3D UNet model [1], based on 546 MRI (T2weighted) volumes annotated by two independent experts. Three training strategies were analyzed: single cohort dataset, 5 fold cross validated mixed cohort, and gland size based dataset. Hyperparameters were tuned by Optuna. The test set, from an independent population of readers, served as the evaluation endpoint (Dice Similarity Coefficient). In single reader training, SwinUNETR achieved an average dice score of 0.816 for Reader#1 and 0.860 for Reader#2, while UNETR scored 0.8 and 0.833 for Readers #1 and #2, respectively, compared to the baseline UNets 0.825 for Reader #1 and 0.851 for Reader #2. SwinUNETR had an average dice score of 0.8583 for Reader#1 and 0.867 for Reader#2 in cross-validated mixed training. For the gland size-based dataset, SwinUNETR achieved an average dice score of 0.902 for Reader#1 subset and 0.894 for Reader#2, using the five-fold mixed training strategy (Reader#1, n=53; Reader#2, n=87) at larger gland size-based subsets, where UNETR performed poorly. Our findings demonstrate that global and shifted-window self-attention effectively reduces label noise and class imbalance sensitivity, resulting in improvements in the Dice score over CNNs by up to five points while maintaining computational efficiency. This contributes to the high robustness of SwinUNETR for clinical deployment.
null
https://arxiv.org/abs/2506.14844v1
https://arxiv.org/pdf/2506.14844v1.pdf
null
[ "Shatha Abudalou" ]
[ "Anatomy", "Computational Efficiency" ]
2025-06-16T00:00:00
null
null
null
null
[ { "code_snippet_url": "", "description": "How Do I Communicate to Expedia?\r\nHow Do I Communicate to Expedia? – Call **☎️ +1-(888) 829 (0881) or +1-805-330-4056 or +1-805-330-4056** for Live Support & Special Travel Discounts!Frustrated with automated systems? Call **☎️ **☎️ +1-(888) 829 (0881) or +1-805-330-4056 or +1-805-330-4056** now to speak directly with a live Expedia agent and unlock exclusive best deal discounts on hotels, flights, and vacation packages. Get real help fast while enjoying limited-time offers that make your next trip more affordable, smooth, and stress-free. Don’t wait—call today!\r\n\r\n\r\nHow Do I Communicate to Expedia?\r\nHow Do I Communicate to Expedia? – Call **☎️ +1-(888) 829 (0881) or +1-805-330-4056 or +1-805-330-4056** for Live Support & Special Travel Discounts!Frustrated with automated systems? Call **☎️ **☎️ +1-(888) 829 (0881) or +1-805-330-4056 or +1-805-330-4056** now to speak directly with a live Expedia agent and unlock exclusive best deal discounts on hotels, flights, and vacation packages. Get real help fast while enjoying limited-time offers that make your next trip more affordable, smooth, and stress-free. Don’t wait—call today!", "full_name": "*Communicated@Fast*How Do I Communicate to Expedia?", "introduced_year": 2000, "main_collection": { "area": "General", "description": "How do I escalate a problem with Expedia?\r\nTo escalate a problem with Expedia, call +1(888) (829) (0881) OR +1(805) (330) (4056) and ask to speak with a manager. Explain your issue in detail and inquire about compensation. Expedia may provide exclusive discount codes, travel credits, or special offers to help resolve your problem and improve your experience.\r\nIs Expedia actually fully refundable?\r\nExpedia isn’t always fully refundable—refunds depend on the hotel, airline, or rental provider’s policy call +1(888) (829) (0881) OR +1(805) (330) (4056). Look for “Free Cancellation” before booking to ensure flexibility. For peace of mind and potential savings, call +1(888) (829) (0881) OR +1(805) (330) (4056) and ask about current discount codes or refund-friendly deals.\r\n\r\nWhat is the refundable option on expedia?\r\nThe refundable option on Expedia allows you to cancel eligible bookings call +1(888) (829) (0881) OR +1(805) (330) (4056) without penalty. Look for listings marked “Free Cancellation” or “Fully Refundable.” To maximize flexibility, choose these options during checkout. For additional savings, call +1(888) (829) (0881) OR +1(805) (330) (4056) and ask about exclusive promo codes or travel discounts available today.", "name": "Activation Functions", "parent": null }, "name": "ReLU", "source_title": null, "source_url": null }, { "code_snippet_url": "", "description": "A **convolution** is a type of matrix operation, consisting of a kernel, a small matrix of weights, that slides over input data performing element-wise multiplication with the part of the input it is on, then summing the results into an output.\r\n\r\nIntuitively, a convolution allows for weight sharing - reducing the number of effective parameters - and image translation (allowing for the same feature to be detected in different parts of the input space).\r\n\r\nImage Source: [https://arxiv.org/pdf/1603.07285.pdf](https://arxiv.org/pdf/1603.07285.pdf)", "full_name": "Convolution", "introduced_year": 1980, "main_collection": { "area": "Computer Vision", "description": "**Convolutions** are a type of operation that can be used to learn representations from images. They involve a learnable kernel sliding over the image and performing element-wise multiplication with the input. The specification allows for parameter sharing and translation invariance. Below you can find a continuously updating list of convolutions.", "name": "Convolutions", "parent": "Image Feature Extractors" }, "name": "Convolution", "source_title": null, "source_url": null }, { "code_snippet_url": "", "description": "A **1 x 1 Convolution** is a [convolution](https://paperswithcode.com/method/convolution) with some special properties in that it can be used for dimensionality reduction, efficient low dimensional embeddings, and applying non-linearity after convolutions. It maps an input pixel with all its channels to an output pixel which can be squeezed to a desired output depth. It can be viewed as an [MLP](https://paperswithcode.com/method/feedforward-network) looking at a particular pixel location.\r\n\r\nImage Credit: [http://deeplearning.ai](http://deeplearning.ai)", "full_name": "1x1 Convolution", "introduced_year": 2000, "main_collection": { "area": "Computer Vision", "description": "**Convolutions** are a type of operation that can be used to learn representations from images. They involve a learnable kernel sliding over the image and performing element-wise multiplication with the input. The specification allows for parameter sharing and translation invariance. Below you can find a continuously updating list of convolutions.", "name": "Convolutions", "parent": "Image Feature Extractors" }, "name": "1x1 Convolution", "source_title": "Network In Network", "source_url": "http://arxiv.org/abs/1312.4400v3" }, { "code_snippet_url": "", "description": "**UNETR**, or **UNet Transformer**, is a [Transformer](https://paperswithcode.com/methods/category/transformers)-based architecture for [medical image segmentation](https://paperswithcode.com/task/medical-image-segmentation) that utilizes a pure [transformer](https://paperswithcode.com/method/transformer) as the encoder to learn sequence representations of the input volume -- effectively capturing the global multi-scale information. The transformer encoder is directly connected to a decoder via [skip connections](https://paperswithcode.com/methods/category/skip-connections) at different resolutions like a [U-Net](https://paperswithcode.com/method/u-net) to compute the final semantic segmentation output.", "full_name": "UNet Transformer", "introduced_year": 2000, "main_collection": { "area": "Computer Vision", "description": "", "name": "Medical Image Models", "parent": null }, "name": "UNETR", "source_title": "UNETR: Transformers for 3D Medical Image Segmentation", "source_url": "https://arxiv.org/abs/2103.10504v3" } ]
https://paperswithcode.com/paper/overcoming-occlusions-in-the-wild-a-multi
2506.13445
null
null
Overcoming Occlusions in the Wild: A Multi-Task Age Head Approach to Age Estimation
Facial age estimation has achieved considerable success under controlled conditions. However, in unconstrained real-world scenarios, which are often referred to as 'in the wild', age estimation remains challenging, especially when faces are partially occluded, which may obscure their visibility. To address this limitation, we propose a new approach integrating generative adversarial networks (GANs) and transformer architectures to enable robust age estimation from occluded faces. We employ an SN-Patch GAN to effectively remove occlusions, while an Attentive Residual Convolution Module (ARCM), paired with a Swin Transformer, enhances feature representation. Additionally, we introduce a Multi-Task Age Head (MTAH) that combines regression and distribution learning, further improving age estimation under occlusion. Experimental results on the FG-NET, UTKFace, and MORPH datasets demonstrate that our proposed approach surpasses existing state-of-the-art techniques for occluded facial age estimation by achieving an MAE of $3.00$, $4.54$, and $2.53$ years, respectively.
null
https://arxiv.org/abs/2506.13445v1
https://arxiv.org/pdf/2506.13445v1.pdf
null
[ "Waqar Tanveer", "Laura Fernández-Robles", "Eduardo Fidalgo", "Víctor González-Castro", "Enrique Alegre" ]
[ "Age Estimation", "MORPH" ]
2025-06-16T00:00:00
null
null
null
null
[ { "code_snippet_url": "https://github.com/CyberZHG/torch-layer-normalization/blob/89f405b60f53f85da6f03fe685c190ef394ce50c/torch_layer_normalization/layer_normalization.py#L8", "description": "Unlike [batch normalization](https://paperswithcode.com/method/batch-normalization), **Layer Normalization** directly estimates the normalization statistics from the summed inputs to the neurons within a hidden layer so the normalization does not introduce any new dependencies between training cases. It works well for [RNNs](https://paperswithcode.com/methods/category/recurrent-neural-networks) and improves both the training time and the generalization performance of several existing RNN models. More recently, it has been used with [Transformer](https://paperswithcode.com/methods/category/transformers) models.\r\n\r\nWe compute the layer normalization statistics over all the hidden units in the same layer as follows:\r\n\r\n$$ \\mu^{l} = \\frac{1}{H}\\sum^{H}\\_{i=1}a\\_{i}^{l} $$\r\n\r\n$$ \\sigma^{l} = \\sqrt{\\frac{1}{H}\\sum^{H}\\_{i=1}\\left(a\\_{i}^{l}-\\mu^{l}\\right)^{2}} $$\r\n\r\nwhere $H$ denotes the number of hidden units in a layer. Under layer normalization, all the hidden units in a layer share the same normalization terms $\\mu$ and $\\sigma$, but different training cases have different normalization terms. Unlike batch normalization, layer normalization does not impose any constraint on the size of the mini-batch and it can be used in the pure online regime with batch size 1.", "full_name": "Layer Normalization", "introduced_year": 2000, "main_collection": { "area": "General", "description": "**Normalization** layers in deep learning are used to make optimization easier by smoothing the loss surface of the network. Below you will find a continuously updating list of normalization methods.", "name": "Normalization", "parent": null }, "name": "Layer Normalization", "source_title": "Layer Normalization", "source_url": "http://arxiv.org/abs/1607.06450v1" }, { "code_snippet_url": "https://github.com/google/jax/blob/7f3078b70d0ed9bea6228efa420879c56f72ef69/jax/experimental/stax.py#L271-L275", "description": "**Dropout** is a regularization technique for neural networks that drops a unit (along with connections) at training time with a specified probability $p$ (a common value is $p=0.5$). At test time, all units are present, but with weights scaled by $p$ (i.e. $w$ becomes $pw$).\r\n\r\nThe idea is to prevent co-adaptation, where the neural network becomes too reliant on particular connections, as this could be symptomatic of overfitting. Intuitively, dropout can be thought of as creating an implicit ensemble of neural networks.", "full_name": "Dropout", "introduced_year": 2000, "main_collection": { "area": "General", "description": "Regularization strategies are designed to reduce the test error of a machine learning algorithm, possibly at the expense of training error. Many different forms of regularization exist in the field of deep learning. Below you can find a constantly updating list of regularization strategies.", "name": "Regularization", "parent": null }, "name": "Dropout", "source_title": "Dropout: A Simple Way to Prevent Neural Networks from Overfitting", "source_url": "http://jmlr.org/papers/v15/srivastava14a.html" }, { "code_snippet_url": "", "description": "**Absolute Position Encodings** are a type of position embeddings for [[Transformer](https://paperswithcode.com/method/transformer)-based models] where positional encodings are added to the input embeddings at the bottoms of the encoder and decoder stacks. The positional encodings have the same dimension $d\\_{model}$ as the embeddings, so that the two can be summed. In the original implementation, sine and cosine functions of different frequencies are used:\r\n\r\n$$ \\text{PE}\\left(pos, 2i\\right) = \\sin\\left(pos/10000^{2i/d\\_{model}}\\right) $$\r\n\r\n$$ \\text{PE}\\left(pos, 2i+1\\right) = \\cos\\left(pos/10000^{2i/d\\_{model}}\\right) $$\r\n\r\nwhere $pos$ is the position and $i$ is the dimension. That is, each dimension of the positional encoding corresponds to a sinusoid. The wavelengths form a geometric progression from $2\\pi$ to $10000 \\dot 2\\pi$. This function was chosen because the authors hypothesized it would allow the model to easily learn to attend by relative positions, since for any fixed offset $k$, $\\text{PE}\\_{pos+k}$ can be represented as a linear function of $\\text{PE}\\_{pos}$.\r\n\r\nImage Source: [D2L.ai](https://d2l.ai/chapter_attention-mechanisms/self-attention-and-positional-encoding.html)", "full_name": "Absolute Position Encodings", "introduced_year": 2000, "main_collection": { "area": "General", "description": "", "name": "Position Embeddings", "parent": null }, "name": "Absolute Position Encodings", "source_title": "Attention Is All You Need", "source_url": "https://arxiv.org/abs/1706.03762v7" }, { "code_snippet_url": null, "description": "**Dense Connections**, or **Fully Connected Connections**, are a type of layer in a deep neural network that use a linear operation where every input is connected to every output by a weight. This means there are $n\\_{\\text{inputs}}*n\\_{\\text{outputs}}$ parameters, which can lead to a lot of parameters for a sizeable network.\r\n\r\n$$h\\_{l} = g\\left(\\textbf{W}^{T}h\\_{l-1}\\right)$$\r\n\r\nwhere $g$ is an activation function.\r\n\r\nImage Source: Deep Learning by Goodfellow, Bengio and Courville", "full_name": "Dense Connections", "introduced_year": 2000, "main_collection": { "area": "General", "description": "**Feedforward Networks** are a type of neural network architecture which rely primarily on dense-like connections. Below you can find a continuously updating list of feedforward network components.", "name": "Feedforward Networks", "parent": null }, "name": "Dense Connections", "source_title": null, "source_url": null }, { "code_snippet_url": null, "description": "**Byte Pair Encoding**, or **BPE**, is a subword segmentation algorithm that encodes rare and unknown words as sequences of subword units. The intuition is that various word classes are translatable via smaller units than words, for instance names (via character copying or transliteration), compounds (via compositional translation), and cognates and loanwords (via phonological and morphological transformations).\r\n\r\n[Lei Mao](https://leimao.github.io/blog/Byte-Pair-Encoding/) has a detailed blog post that explains how this works.", "full_name": "Byte Pair Encoding", "introduced_year": 2000, "main_collection": { "area": "Natural Language Processing", "description": "", "name": "Subword Segmentation", "parent": null }, "name": "BPE", "source_title": "Neural Machine Translation of Rare Words with Subword Units", "source_url": "http://arxiv.org/abs/1508.07909v5" }, { "code_snippet_url": null, "description": "The **Softmax** output function transforms a previous layer's output into a vector of probabilities. It is commonly used for multiclass classification. Given an input vector $x$ and a weighting vector $w$ we have:\r\n\r\n$$ P(y=j \\mid{x}) = \\frac{e^{x^{T}w_{j}}}{\\sum^{K}_{k=1}e^{x^{T}wk}} $$", "full_name": "Softmax", "introduced_year": 2000, "main_collection": { "area": "General", "description": "**Output functions** are layers used towards the end of a network to transform to the desired form for a loss function. For example, the softmax relies on logits to construct a conditional probability. Below you can find a continuously updating list of output functions.", "name": "Output Functions", "parent": null }, "name": "Softmax", "source_title": null, "source_url": null }, { "code_snippet_url": "", "description": "**Label Smoothing** is a regularization technique that introduces noise for the labels. This accounts for the fact that datasets may have mistakes in them, so maximizing the likelihood of $\\log{p}\\left(y\\mid{x}\\right)$ directly can be harmful. Assume for a small constant $\\epsilon$, the training set label $y$ is correct with probability $1-\\epsilon$ and incorrect otherwise. Label Smoothing regularizes a model based on a [softmax](https://paperswithcode.com/method/softmax) with $k$ output values by replacing the hard $0$ and $1$ classification targets with targets of $\\frac{\\epsilon}{k}$ and $1-\\frac{k-1}{k}\\epsilon$ respectively.\r\n\r\nSource: Deep Learning, Goodfellow et al\r\n\r\nImage Source: [When Does Label Smoothing Help?](https://arxiv.org/abs/1906.02629)", "full_name": "Label Smoothing", "introduced_year": 1985, "main_collection": { "area": "General", "description": "Regularization strategies are designed to reduce the test error of a machine learning algorithm, possibly at the expense of training error. Many different forms of regularization exist in the field of deep learning. Below you can find a constantly updating list of regularization strategies.", "name": "Regularization", "parent": null }, "name": "Label Smoothing", "source_title": null, "source_url": null }, { "code_snippet_url": "", "description": "A **convolution** is a type of matrix operation, consisting of a kernel, a small matrix of weights, that slides over input data performing element-wise multiplication with the part of the input it is on, then summing the results into an output.\r\n\r\nIntuitively, a convolution allows for weight sharing - reducing the number of effective parameters - and image translation (allowing for the same feature to be detected in different parts of the input space).\r\n\r\nImage Source: [https://arxiv.org/pdf/1603.07285.pdf](https://arxiv.org/pdf/1603.07285.pdf)", "full_name": "Convolution", "introduced_year": 1980, "main_collection": { "area": "Computer Vision", "description": "**Convolutions** are a type of operation that can be used to learn representations from images. They involve a learnable kernel sliding over the image and performing element-wise multiplication with the input. The specification allows for parameter sharing and translation invariance. Below you can find a continuously updating list of convolutions.", "name": "Convolutions", "parent": "Image Feature Extractors" }, "name": "Convolution", "source_title": null, "source_url": null }, { "code_snippet_url": "https://github.com/tunz/transformer-pytorch/blob/e7266679f0b32fd99135ea617213f986ceede056/model/transformer.py#L201", "description": "A **Transformer** is a model architecture that eschews recurrence and instead relies entirely on an [attention mechanism](https://paperswithcode.com/methods/category/attention-mechanisms-1) to draw global dependencies between input and output. Before Transformers, the dominant sequence transduction models were based on complex recurrent or convolutional neural networks that include an encoder and a decoder. The Transformer also employs an encoder and decoder, but removing recurrence in favor of [attention mechanisms](https://paperswithcode.com/methods/category/attention-mechanisms-1) allows for significantly more parallelization than methods like [RNNs](https://paperswithcode.com/methods/category/recurrent-neural-networks) and [CNNs](https://paperswithcode.com/methods/category/convolutional-neural-networks).", "full_name": "Transformer", "introduced_year": 2000, "main_collection": { "area": "Natural Language Processing", "description": "**Transformers** are a type of neural network architecture that have several properties that make them effective for modeling data with long-range dependencies. They generally feature a combination of multi-headed attention mechanisms, residual connections, layer normalization, feedforward connections, and positional embeddings.", "name": "Transformers", "parent": "Language Models" }, "name": "Transformer", "source_title": "Attention Is All You Need", "source_url": "https://arxiv.org/abs/1706.03762v7" }, { "code_snippet_url": null, "description": "", "full_name": "Masked autoencoder", "introduced_year": 2000, "main_collection": { "area": "General", "description": "**Self-Supervised Learning** refers to a category of methods where we learn representations in a self-supervised way (i.e without labels). These methods generally involve a pretext task that is solved to learn a good representation and a loss function to learn with. Below you can find a continuously updating list of self-supervised methods.", "name": "Self-Supervised Learning", "parent": null }, "name": "MAE", "source_title": "Masked Autoencoders Are Scalable Vision Learners", "source_url": "https://arxiv.org/abs/2111.06377v2" } ]
https://paperswithcode.com/paper/zero-shot-solving-of-imaging-inverse-problems
2506.13391
null
null
Zero-Shot Solving of Imaging Inverse Problems via Noise-Refined Likelihood Guided Diffusion Models
Diffusion models have achieved remarkable success in imaging inverse problems owing to their powerful generative capabilities. However, existing approaches typically rely on models trained for specific degradation types, limiting their generalizability to various degradation scenarios. To address this limitation, we propose a zero-shot framework capable of handling various imaging inverse problems without model retraining. We introduce a likelihood-guided noise refinement mechanism that derives a closed-form approximation of the likelihood score, simplifying score estimation and avoiding expensive gradient computations. This estimated score is subsequently utilized to refine the model-predicted noise, thereby better aligning the restoration process with the generative framework of diffusion models. In addition, we integrate the Denoising Diffusion Implicit Models (DDIM) sampling strategy to further improve inference efficiency. The proposed mechanism can be applied to both optimization-based and sampling-based schemes, providing an effective and flexible zero-shot solution for imaging inverse problems. Extensive experiments demonstrate that our method achieves superior performance across multiple inverse problems, particularly in compressive sensing, delivering high-quality reconstructions even at an extremely low sampling rate (5%).
null
https://arxiv.org/abs/2506.13391v1
https://arxiv.org/pdf/2506.13391v1.pdf
null
[ "Zhen Wang", "Hongyi Liu", "Zhihui Wei" ]
[ "Compressive Sensing", "Denoising" ]
2025-06-16T00:00:00
null
null
null
null
[ { "code_snippet_url": null, "description": "Diffusion models generate samples by gradually\r\nremoving noise from a signal, and their training objective can be expressed as a reweighted variational lower-bound (https://arxiv.org/abs/2006.11239).", "full_name": "Diffusion", "introduced_year": 2000, "main_collection": { "area": "Computer Vision", "description": "", "name": "Image Generation Models", "parent": null }, "name": "Diffusion", "source_title": "Denoising Diffusion Probabilistic Models", "source_url": "https://arxiv.org/abs/2006.11239v2" } ]
https://paperswithcode.com/paper/susep-net-simulation-supervised-and
2506.13293
null
null
SUSEP-Net: Simulation-Supervised and Contrastive Learning-based Deep Neural Networks for Susceptibility Source Separation
Quantitative susceptibility mapping (QSM) provides a valuable tool for quantifying susceptibility distributions in human brains; however, two types of opposing susceptibility sources (i.e., paramagnetic and diamagnetic), may coexist in a single voxel, and cancel each other out in net QSM images. Susceptibility source separation techniques enable the extraction of sub-voxel information from QSM maps. This study proposes a novel SUSEP-Net for susceptibility source separation by training a dual-branch U-net with a simulation-supervised training strategy. In addition, a contrastive learning framework is included to explicitly impose similarity-based constraints between the branch-specific guidance features in specially-designed encoders and the latent features in the decoders. Comprehensive experiments were carried out on both simulated and in vivo data, including healthy subjects and patients with pathological conditions, to compare SUSEP-Net with three state-of-the-art susceptibility source separation methods (i.e., APART-QSM, \c{hi}-separation, and \c{hi}-sepnet). SUSEP-Net consistently showed improved results compared with the other three methods, with better numerical metrics, improved high-intensity hemorrhage and calcification lesion contrasts, and reduced artifacts in brains with pathological conditions. In addition, experiments on an agarose gel phantom data were conducted to validate the accuracy and the generalization capability of SUSEP-Net.
null
https://arxiv.org/abs/2506.13293v1
https://arxiv.org/pdf/2506.13293v1.pdf
null
[ "Min Li", "Chen Chen", "Zhenghao Li", "Yin Liu", "Shanshan Shan", "Peng Wu", "Pengfei Rong", "Feng Liu", "G. Bruce Pike", "Alan H. Wilman", "Hongfu Sun", "Yang Gao" ]
[ "Contrastive Learning" ]
2025-06-16T00:00:00
null
null
null
null
[ { "code_snippet_url": null, "description": "", "full_name": null, "introduced_year": 2000, "main_collection": { "area": "Graphs", "description": "", "name": "Graph Representation Learning", "parent": null }, "name": "Contrastive Learning", "source_title": null, "source_url": null } ]
https://paperswithcode.com/paper/monetv2-enhanced-motion-network-for-freehand
2506.15835
null
null
MoNetV2: Enhanced Motion Network for Freehand 3D Ultrasound Reconstruction
Three-dimensional (3D) ultrasound (US) aims to provide sonographers with the spatial relationships of anatomical structures, playing a crucial role in clinical diagnosis. Recently, deep-learning-based freehand 3D US has made significant advancements. It reconstructs volumes by estimating transformations between images without external tracking. However, image-only reconstruction poses difficulties in reducing cumulative drift and further improving reconstruction accuracy, particularly in scenarios involving complex motion trajectories. In this context, we propose an enhanced motion network (MoNetV2) to enhance the accuracy and generalizability of reconstruction under diverse scanning velocities and tactics. First, we propose a sensor-based temporal and multi-branch structure that fuses image and motion information from a velocity perspective to improve image-only reconstruction accuracy. Second, we devise an online multi-level consistency constraint that exploits the inherent consistency of scans to handle various scanning velocities and tactics. This constraint exploits both scan-level velocity consistency, path-level appearance consistency, and patch-level motion consistency to supervise inter-frame transformation estimation. Third, we distill an online multi-modal self-supervised strategy that leverages the correlation between network estimation and motion information to further reduce cumulative errors. Extensive experiments clearly demonstrate that MoNetV2 surpasses existing methods in both reconstruction quality and generalizability performance across three large datasets.
null
https://arxiv.org/abs/2506.15835v1
https://arxiv.org/pdf/2506.15835v1.pdf
null
[ "Mingyuan Luo", "Xin Yang", "Zhongnuo Yan", "Yan Cao", "Yuanji Zhang", "Xindi Hu", "Jin Wang", "Haoxuan Ding", "Wei Han", "Litao Sun", "Dong Ni" ]
[]
2025-06-16T00:00:00
null
null
null
null
[]
https://paperswithcode.com/paper/adagent-llm-agent-for-alzheimer-s-disease
2506.11150
null
null
ADAgent: LLM Agent for Alzheimer's Disease Analysis with Collaborative Coordinator
Alzheimer's disease (AD) is a progressive and irreversible neurodegenerative disease. Early and precise diagnosis of AD is crucial for timely intervention and treatment planning to alleviate the progressive neurodegeneration. However, most existing methods rely on single-modality data, which contrasts with the multifaceted approach used by medical experts. While some deep learning approaches process multi-modal data, they are limited to specific tasks with a small set of input modalities and cannot handle arbitrary combinations. This highlights the need for a system that can address diverse AD-related tasks, process multi-modal or missing input, and integrate multiple advanced methods for improved performance. In this paper, we propose ADAgent, the first specialized AI agent for AD analysis, built on a large language model (LLM) to address user queries and support decision-making. ADAgent integrates a reasoning engine, specialized medical tools, and a collaborative outcome coordinator to facilitate multi-modal diagnosis and prognosis tasks in AD. Extensive experiments demonstrate that ADAgent outperforms SOTA methods, achieving significant improvements in accuracy, including a 2.7% increase in multi-modal diagnosis, a 0.7% improvement in multi-modal prognosis, and enhancements in MRI and PET diagnosis tasks.
null
https://arxiv.org/abs/2506.11150v2
https://arxiv.org/pdf/2506.11150v2.pdf
null
[ "Wenlong Hou", "Guangqian Yang", "Ye Du", "Yeung Lau", "Lihao Liu", "Junjun He", "Ling Long", "Shujun Wang" ]
[ "AI Agent", "Large Language Model", "Prognosis" ]
2025-06-11T00:00:00
null
null
null
null
[ { "code_snippet_url": null, "description": "Dynamic Sparse Training method where weight mask is updated randomly periodically", "full_name": "Sparse Evolutionary Training", "introduced_year": 2000, "main_collection": { "area": "General", "description": "", "name": "Sparsity", "parent": null }, "name": "SET", "source_title": "Scalable Training of Artificial Neural Networks with Adaptive Sparse Connectivity inspired by Network Science", "source_url": "http://arxiv.org/abs/1707.04780v2" } ]
https://paperswithcode.com/paper/predicting-genetic-mutations-from-single-cell
2506.12798
null
null
Predicting Genetic Mutations from Single-Cell Bone Marrow Images in Acute Myeloid Leukemia Using Noise-Robust Deep Learning Models
In this study, we propose a robust methodology for identification of myeloid blasts followed by prediction of genetic mutation in single-cell images of blasts, tackling challenges associated with label accuracy and data noise. We trained an initial binary classifier to distinguish between leukemic (blasts) and non-leukemic cells images, achieving 90 percent accuracy. To evaluate the models generalization, we applied this model to a separate large unlabeled dataset and validated the predictions with two haemato-pathologists, finding an approximate error rate of 20 percent in the leukemic and non-leukemic labels. Assuming this level of label noise, we further trained a four-class model on images predicted as blasts to classify specific mutations. The mutation labels were known for only a bag of cell images extracted from a single slide. Despite the tumor label noise, our mutation classification model achieved 85 percent accuracy across four mutation classes, demonstrating resilience to label inconsistencies. This study highlights the capability of machine learning models to work with noisy labels effectively while providing accurate, clinically relevant mutation predictions, which is promising for diagnostic applications in areas such as haemato-pathology.
null
https://arxiv.org/abs/2506.12798v1
https://arxiv.org/pdf/2506.12798v1.pdf
null
[ "Garima Jain", "Ravi Kant Gupta", "Priyansh Jain", "Abhijeet Patil", "Ardhendu Sekhar", "Gajendra Smeeta", "Sanghamitra Pati", "Amit Sethi" ]
[ "Diagnostic" ]
2025-06-15T00:00:00
null
null
null
null
[]
https://paperswithcode.com/paper/gm-ldm-latent-diffusion-model-for-brain
2506.12719
null
null
GM-LDM: Latent Diffusion Model for Brain Biomarker Identification through Functional Data-Driven Gray Matter Synthesis
Generative models based on deep learning have shown significant potential in medical imaging, particularly for modality transformation and multimodal fusion in MRI-based brain imaging. This study introduces GM-LDM, a novel framework that leverages the latent diffusion model (LDM) to enhance the efficiency and precision of MRI generation tasks. GM-LDM integrates a 3D autoencoder, pre-trained on the large-scale ABCD MRI dataset, achieving statistical consistency through KL divergence loss. We employ a Vision Transformer (ViT)-based encoder-decoder as the denoising network to optimize generation quality. The framework flexibly incorporates conditional data, such as functional network connectivity (FNC) data, enabling personalized brain imaging, biomarker identification, and functional-to-structural information translation for brain diseases like schizophrenia.
null
https://arxiv.org/abs/2506.12719v1
https://arxiv.org/pdf/2506.12719v1.pdf
null
[ "Hu Xu", "Yang Jingling", "Jia Sihan", "Bi Yuda", "Calhoun Vince" ]
[ "Decoder", "Denoising" ]
2025-06-15T00:00:00
null
null
null
null
[ { "code_snippet_url": "https://github.com/google/jax/blob/7f3078b70d0ed9bea6228efa420879c56f72ef69/jax/experimental/stax.py#L271-L275", "description": "**Dropout** is a regularization technique for neural networks that drops a unit (along with connections) at training time with a specified probability $p$ (a common value is $p=0.5$). At test time, all units are present, but with weights scaled by $p$ (i.e. $w$ becomes $pw$).\r\n\r\nThe idea is to prevent co-adaptation, where the neural network becomes too reliant on particular connections, as this could be symptomatic of overfitting. Intuitively, dropout can be thought of as creating an implicit ensemble of neural networks.", "full_name": "Dropout", "introduced_year": 2000, "main_collection": { "area": "General", "description": "Regularization strategies are designed to reduce the test error of a machine learning algorithm, possibly at the expense of training error. Many different forms of regularization exist in the field of deep learning. Below you can find a constantly updating list of regularization strategies.", "name": "Regularization", "parent": null }, "name": "Dropout", "source_title": "Dropout: A Simple Way to Prevent Neural Networks from Overfitting", "source_url": "http://jmlr.org/papers/v15/srivastava14a.html" }, { "code_snippet_url": "", "description": "**Absolute Position Encodings** are a type of position embeddings for [[Transformer](https://paperswithcode.com/method/transformer)-based models] where positional encodings are added to the input embeddings at the bottoms of the encoder and decoder stacks. The positional encodings have the same dimension $d\\_{model}$ as the embeddings, so that the two can be summed. In the original implementation, sine and cosine functions of different frequencies are used:\r\n\r\n$$ \\text{PE}\\left(pos, 2i\\right) = \\sin\\left(pos/10000^{2i/d\\_{model}}\\right) $$\r\n\r\n$$ \\text{PE}\\left(pos, 2i+1\\right) = \\cos\\left(pos/10000^{2i/d\\_{model}}\\right) $$\r\n\r\nwhere $pos$ is the position and $i$ is the dimension. That is, each dimension of the positional encoding corresponds to a sinusoid. The wavelengths form a geometric progression from $2\\pi$ to $10000 \\dot 2\\pi$. This function was chosen because the authors hypothesized it would allow the model to easily learn to attend by relative positions, since for any fixed offset $k$, $\\text{PE}\\_{pos+k}$ can be represented as a linear function of $\\text{PE}\\_{pos}$.\r\n\r\nImage Source: [D2L.ai](https://d2l.ai/chapter_attention-mechanisms/self-attention-and-positional-encoding.html)", "full_name": "Absolute Position Encodings", "introduced_year": 2000, "main_collection": { "area": "General", "description": "", "name": "Position Embeddings", "parent": null }, "name": "Absolute Position Encodings", "source_title": "Attention Is All You Need", "source_url": "https://arxiv.org/abs/1706.03762v7" }, { "code_snippet_url": null, "description": "**Byte Pair Encoding**, or **BPE**, is a subword segmentation algorithm that encodes rare and unknown words as sequences of subword units. The intuition is that various word classes are translatable via smaller units than words, for instance names (via character copying or transliteration), compounds (via compositional translation), and cognates and loanwords (via phonological and morphological transformations).\r\n\r\n[Lei Mao](https://leimao.github.io/blog/Byte-Pair-Encoding/) has a detailed blog post that explains how this works.", "full_name": "Byte Pair Encoding", "introduced_year": 2000, "main_collection": { "area": "Natural Language Processing", "description": "", "name": "Subword Segmentation", "parent": null }, "name": "BPE", "source_title": "Neural Machine Translation of Rare Words with Subword Units", "source_url": "http://arxiv.org/abs/1508.07909v5" }, { "code_snippet_url": null, "description": "The **Softmax** output function transforms a previous layer's output into a vector of probabilities. It is commonly used for multiclass classification. Given an input vector $x$ and a weighting vector $w$ we have:\r\n\r\n$$ P(y=j \\mid{x}) = \\frac{e^{x^{T}w_{j}}}{\\sum^{K}_{k=1}e^{x^{T}wk}} $$", "full_name": "Softmax", "introduced_year": 2000, "main_collection": { "area": "General", "description": "**Output functions** are layers used towards the end of a network to transform to the desired form for a loss function. For example, the softmax relies on logits to construct a conditional probability. Below you can find a continuously updating list of output functions.", "name": "Output Functions", "parent": null }, "name": "Softmax", "source_title": null, "source_url": null }, { "code_snippet_url": "", "description": "**Label Smoothing** is a regularization technique that introduces noise for the labels. This accounts for the fact that datasets may have mistakes in them, so maximizing the likelihood of $\\log{p}\\left(y\\mid{x}\\right)$ directly can be harmful. Assume for a small constant $\\epsilon$, the training set label $y$ is correct with probability $1-\\epsilon$ and incorrect otherwise. Label Smoothing regularizes a model based on a [softmax](https://paperswithcode.com/method/softmax) with $k$ output values by replacing the hard $0$ and $1$ classification targets with targets of $\\frac{\\epsilon}{k}$ and $1-\\frac{k-1}{k}\\epsilon$ respectively.\r\n\r\nSource: Deep Learning, Goodfellow et al\r\n\r\nImage Source: [When Does Label Smoothing Help?](https://arxiv.org/abs/1906.02629)", "full_name": "Label Smoothing", "introduced_year": 1985, "main_collection": { "area": "General", "description": "Regularization strategies are designed to reduce the test error of a machine learning algorithm, possibly at the expense of training error. Many different forms of regularization exist in the field of deep learning. Below you can find a constantly updating list of regularization strategies.", "name": "Regularization", "parent": null }, "name": "Label Smoothing", "source_title": null, "source_url": null }, { "code_snippet_url": "https://github.com/tunz/transformer-pytorch/blob/e7266679f0b32fd99135ea617213f986ceede056/model/transformer.py#L201", "description": "A **Transformer** is a model architecture that eschews recurrence and instead relies entirely on an [attention mechanism](https://paperswithcode.com/methods/category/attention-mechanisms-1) to draw global dependencies between input and output. Before Transformers, the dominant sequence transduction models were based on complex recurrent or convolutional neural networks that include an encoder and a decoder. The Transformer also employs an encoder and decoder, but removing recurrence in favor of [attention mechanisms](https://paperswithcode.com/methods/category/attention-mechanisms-1) allows for significantly more parallelization than methods like [RNNs](https://paperswithcode.com/methods/category/recurrent-neural-networks) and [CNNs](https://paperswithcode.com/methods/category/convolutional-neural-networks).", "full_name": "Transformer", "introduced_year": 2000, "main_collection": { "area": "Natural Language Processing", "description": "**Transformers** are a type of neural network architecture that have several properties that make them effective for modeling data with long-range dependencies. They generally feature a combination of multi-headed attention mechanisms, residual connections, layer normalization, feedforward connections, and positional embeddings.", "name": "Transformers", "parent": "Language Models" }, "name": "Transformer", "source_title": "Attention Is All You Need", "source_url": "https://arxiv.org/abs/1706.03762v7" }, { "code_snippet_url": null, "description": "Diffusion models generate samples by gradually\r\nremoving noise from a signal, and their training objective can be expressed as a reweighted variational lower-bound (https://arxiv.org/abs/2006.11239).", "full_name": "Diffusion", "introduced_year": 2000, "main_collection": { "area": "Computer Vision", "description": "", "name": "Image Generation Models", "parent": null }, "name": "Diffusion", "source_title": "Denoising Diffusion Probabilistic Models", "source_url": "https://arxiv.org/abs/2006.11239v2" }, { "code_snippet_url": null, "description": "Diffusion models applied to latent spaces, which are normally built with (Variational) Autoencoders.", "full_name": "Latent Diffusion Model", "introduced_year": 2000, "main_collection": { "area": "General", "description": "**Dimensionality Reduction** methods transform data from a high-dimensional space into a low-dimensional space so that the low-dimensional space retains the most important properties of the original data. Below you can find a continuously updating list of dimensionality reduction methods.", "name": "Dimensionality Reduction", "parent": null }, "name": "Latent Diffusion Model", "source_title": "High-Resolution Image Synthesis with Latent Diffusion Models", "source_url": "https://arxiv.org/abs/2112.10752v2" }, { "code_snippet_url": null, "description": "**Dense Connections**, or **Fully Connected Connections**, are a type of layer in a deep neural network that use a linear operation where every input is connected to every output by a weight. This means there are $n\\_{\\text{inputs}}*n\\_{\\text{outputs}}$ parameters, which can lead to a lot of parameters for a sizeable network.\r\n\r\n$$h\\_{l} = g\\left(\\textbf{W}^{T}h\\_{l-1}\\right)$$\r\n\r\nwhere $g$ is an activation function.\r\n\r\nImage Source: Deep Learning by Goodfellow, Bengio and Courville", "full_name": "Dense Connections", "introduced_year": 2000, "main_collection": { "area": "General", "description": "**Feedforward Networks** are a type of neural network architecture which rely primarily on dense-like connections. Below you can find a continuously updating list of feedforward network components.", "name": "Feedforward Networks", "parent": null }, "name": "Dense Connections", "source_title": null, "source_url": null }, { "code_snippet_url": "https://github.com/CyberZHG/torch-layer-normalization/blob/89f405b60f53f85da6f03fe685c190ef394ce50c/torch_layer_normalization/layer_normalization.py#L8", "description": "Unlike [batch normalization](https://paperswithcode.com/method/batch-normalization), **Layer Normalization** directly estimates the normalization statistics from the summed inputs to the neurons within a hidden layer so the normalization does not introduce any new dependencies between training cases. It works well for [RNNs](https://paperswithcode.com/methods/category/recurrent-neural-networks) and improves both the training time and the generalization performance of several existing RNN models. More recently, it has been used with [Transformer](https://paperswithcode.com/methods/category/transformers) models.\r\n\r\nWe compute the layer normalization statistics over all the hidden units in the same layer as follows:\r\n\r\n$$ \\mu^{l} = \\frac{1}{H}\\sum^{H}\\_{i=1}a\\_{i}^{l} $$\r\n\r\n$$ \\sigma^{l} = \\sqrt{\\frac{1}{H}\\sum^{H}\\_{i=1}\\left(a\\_{i}^{l}-\\mu^{l}\\right)^{2}} $$\r\n\r\nwhere $H$ denotes the number of hidden units in a layer. Under layer normalization, all the hidden units in a layer share the same normalization terms $\\mu$ and $\\sigma$, but different training cases have different normalization terms. Unlike batch normalization, layer normalization does not impose any constraint on the size of the mini-batch and it can be used in the pure online regime with batch size 1.", "full_name": "Layer Normalization", "introduced_year": 2000, "main_collection": { "area": "General", "description": "**Normalization** layers in deep learning are used to make optimization easier by smoothing the loss surface of the network. Below you will find a continuously updating list of normalization methods.", "name": "Normalization", "parent": null }, "name": "Layer Normalization", "source_title": "Layer Normalization", "source_url": "http://arxiv.org/abs/1607.06450v1" }, { "code_snippet_url": "https://github.com/google-research/vision_transformer", "description": "The **Vision Transformer**, or **ViT**, is a model for image classification that employs a [Transformer](https://paperswithcode.com/method/transformer)-like architecture over patches of the image. An image is split into fixed-size patches, each of them are then linearly embedded, position embeddings are added, and the resulting sequence of vectors is fed to a standard [Transformer](https://paperswithcode.com/method/transformer) encoder. In order to perform classification, the standard approach of adding an extra learnable “classification token” to the sequence is used.", "full_name": "Vision Transformer", "introduced_year": 2000, "main_collection": { "area": "Computer Vision", "description": "**Image Models** are methods that build representations of images for downstream tasks such as classification and object detection. The most popular subcategory are convolutional neural networks. Below you can find a continuously updated list of image models.", "name": "Image Models", "parent": null }, "name": "Vision Transformer", "source_title": "An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale", "source_url": "https://arxiv.org/abs/2010.11929v2" } ]
https://paperswithcode.com/paper/combining-self-attention-and-dilation
2506.12712
null
null
Combining Self-attention and Dilation Convolutional for Semantic Segmentation of Coal Maceral Groups
The segmentation of coal maceral groups can be described as a semantic segmentation process of coal maceral group images, which is of great significance for studying the chemical properties of coal. Generally, existing semantic segmentation models of coal maceral groups use the method of stacking parameters to achieve higher accuracy. It leads to increased computational requirements and impacts model training efficiency. At the same time, due to the professionalism and diversity of coal maceral group images sampling, obtaining the number of samples for model training requires a long time and professional personnel operation. To address these issues, We have innovatively developed an IoT-based DA-VIT parallel network model. By utilizing this model, we can continuously broaden the dataset through IoT and achieving sustained improvement in the accuracy of coal maceral groups segmentation. Besides, we decouple the parallel network from the backbone network to ensure the normal using of the backbone network during model data updates. Secondly, DCSA mechanism of DA-VIT is introduced to enhance the local feature information of coal microscopic images. This DCSA can decompose the large kernels of convolutional attention into multiple scales and reduce 81.18% of parameters.Finally, we performed the contrast experiment and ablation experiment between DA-VIT and state-of-the-art methods at lots of evaluation metrics. Experimental results show that DA-VIT-Base achieves 92.14% pixel accuracy and 63.18% mIoU. Params and FLOPs of DA-VIT-Tiny are 4.95M and 8.99G, respectively. All of the evaluation metrics of the proposed DA-VIT are better than other state-of-the-art methods.
null
https://arxiv.org/abs/2506.12712v1
https://arxiv.org/pdf/2506.12712v1.pdf
null
[ "Zhenghao Xi", "Zhengnan Lv", "Yang Zheng", "Xiang Liu", "Zhuang Yu", "Junran Chen", "Jing Hu", "Yaqi Liu" ]
[ "Segmentation", "Semantic Segmentation" ]
2025-06-15T00:00:00
null
null
null
null
[]
https://paperswithcode.com/paper/deploying-and-evaluating-multiple-deep
2506.14834
null
null
Deploying and Evaluating Multiple Deep Learning Models on Edge Devices for Diabetic Retinopathy Detection
Diabetic Retinopathy (DR), a leading cause of vision impairment in individuals with diabetes, affects approximately 34.6% of diabetes patients globally, with the number of cases projected to reach 242 million by 2045. Traditional DR diagnosis relies on the manual examination of retinal fundus images, which is both time-consuming and resource intensive. This study presents a novel solution using Edge Impulse to deploy multiple deep learning models for real-time DR detection on edge devices. A robust dataset of over 3,662 retinal fundus images, sourced from the Kaggle EyePACS dataset, was curated, and enhanced through preprocessing techniques, including augmentation and normalization. Using TensorFlow, various Convolutional Neural Networks (CNNs), such as MobileNet, ShuffleNet, SqueezeNet, and a custom Deep Neural Network (DNN), were designed, trained, and optimized for edge deployment. The models were converted to TensorFlowLite and quantized to 8-bit integers to reduce their size and enhance inference speed, with minimal trade-offs in accuracy. Performance evaluations across different edge hardware platforms, including smartphones and microcontrollers, highlighted key metrics such as inference speed, accuracy, precision, and resource utilization. MobileNet achieved an accuracy of 96.45%, while SqueezeNet demonstrated strong real-time performance with a small model size of 176 KB and latency of just 17 ms on GPU. ShuffleNet and the custom DNN achieved moderate accuracy but excelled in resource efficiency, making them suitable for lower-end devices. This integration of edge AI technology into healthcare presents a scalable, cost-effective solution for early DR detection, providing timely and accurate diagnosis, especially in resource-constrained and remote healthcare settings.
null
https://arxiv.org/abs/2506.14834v1
https://arxiv.org/pdf/2506.14834v1.pdf
null
[ "Akwasi Asare", "Dennis Agyemanh Nana Gookyi", "Derrick Boateng", "Fortunatus Aabangbio Wulnye" ]
[ "Diabetic Retinopathy Detection", "GPU" ]
2025-06-14T00:00:00
null
null
null
null
[ { "code_snippet_url": "", "description": "How Do I Communicate to Expedia?\r\nHow Do I Communicate to Expedia? – Call **☎️ +1-(888) 829 (0881) or +1-805-330-4056 or +1-805-330-4056** for Live Support & Special Travel Discounts!Frustrated with automated systems? Call **☎️ **☎️ +1-(888) 829 (0881) or +1-805-330-4056 or +1-805-330-4056** now to speak directly with a live Expedia agent and unlock exclusive best deal discounts on hotels, flights, and vacation packages. Get real help fast while enjoying limited-time offers that make your next trip more affordable, smooth, and stress-free. Don’t wait—call today!\r\n\r\n\r\nHow Do I Communicate to Expedia?\r\nHow Do I Communicate to Expedia? – Call **☎️ +1-(888) 829 (0881) or +1-805-330-4056 or +1-805-330-4056** for Live Support & Special Travel Discounts!Frustrated with automated systems? Call **☎️ **☎️ +1-(888) 829 (0881) or +1-805-330-4056 or +1-805-330-4056** now to speak directly with a live Expedia agent and unlock exclusive best deal discounts on hotels, flights, and vacation packages. Get real help fast while enjoying limited-time offers that make your next trip more affordable, smooth, and stress-free. Don’t wait—call today!", "full_name": "*Communicated@Fast*How Do I Communicate to Expedia?", "introduced_year": 2000, "main_collection": { "area": "General", "description": "How do I escalate a problem with Expedia?\r\nTo escalate a problem with Expedia, call +1(888) (829) (0881) OR +1(805) (330) (4056) and ask to speak with a manager. Explain your issue in detail and inquire about compensation. Expedia may provide exclusive discount codes, travel credits, or special offers to help resolve your problem and improve your experience.\r\nIs Expedia actually fully refundable?\r\nExpedia isn’t always fully refundable—refunds depend on the hotel, airline, or rental provider’s policy call +1(888) (829) (0881) OR +1(805) (330) (4056). Look for “Free Cancellation” before booking to ensure flexibility. For peace of mind and potential savings, call +1(888) (829) (0881) OR +1(805) (330) (4056) and ask about current discount codes or refund-friendly deals.\r\n\r\nWhat is the refundable option on expedia?\r\nThe refundable option on Expedia allows you to cancel eligible bookings call +1(888) (829) (0881) OR +1(805) (330) (4056) without penalty. Look for listings marked “Free Cancellation” or “Fully Refundable.” To maximize flexibility, choose these options during checkout. For additional savings, call +1(888) (829) (0881) OR +1(805) (330) (4056) and ask about exclusive promo codes or travel discounts available today.", "name": "Activation Functions", "parent": null }, "name": "ReLU", "source_title": null, "source_url": null }, { "code_snippet_url": "", "description": "**Depthwise Convolution** is a type of convolution where we apply a single convolutional filter for each input channel. In the regular 2D [convolution](https://paperswithcode.com/method/convolution) performed over multiple input channels, the filter is as deep as the input and lets us freely mix channels to generate each element in the output. In contrast, depthwise convolutions keep each channel separate. To summarize the steps, we:\r\n\r\n1. Split the input and filter into channels.\r\n2. We convolve each input with the respective filter.\r\n3. We stack the convolved outputs together.\r\n\r\nImage Credit: [Chi-Feng Wang](https://towardsdatascience.com/a-basic-introduction-to-separable-convolutions-b99ec3102728)", "full_name": "Depthwise Convolution", "introduced_year": 2016, "main_collection": { "area": "Computer Vision", "description": "**Convolutions** are a type of operation that can be used to learn representations from images. They involve a learnable kernel sliding over the image and performing element-wise multiplication with the input. The specification allows for parameter sharing and translation invariance. Below you can find a continuously updating list of convolutions.", "name": "Convolutions", "parent": "Image Feature Extractors" }, "name": "Depthwise Convolution", "source_title": null, "source_url": null }, { "code_snippet_url": "https://github.com/google/jax/blob/7f3078b70d0ed9bea6228efa420879c56f72ef69/jax/experimental/stax.py#L271-L275", "description": "**Dropout** is a regularization technique for neural networks that drops a unit (along with connections) at training time with a specified probability $p$ (a common value is $p=0.5$). At test time, all units are present, but with weights scaled by $p$ (i.e. $w$ becomes $pw$).\r\n\r\nThe idea is to prevent co-adaptation, where the neural network becomes too reliant on particular connections, as this could be symptomatic of overfitting. Intuitively, dropout can be thought of as creating an implicit ensemble of neural networks.", "full_name": "Dropout", "introduced_year": 2000, "main_collection": { "area": "General", "description": "Regularization strategies are designed to reduce the test error of a machine learning algorithm, possibly at the expense of training error. Many different forms of regularization exist in the field of deep learning. Below you can find a constantly updating list of regularization strategies.", "name": "Regularization", "parent": null }, "name": "Dropout", "source_title": "Dropout: A Simple Way to Prevent Neural Networks from Overfitting", "source_url": "http://jmlr.org/papers/v15/srivastava14a.html" }, { "code_snippet_url": "https://github.com/pytorch/pytorch/blob/0adb5843766092fba584791af76383125fd0d01c/torch/nn/init.py#L289", "description": "**Xavier Initialization**, or **Glorot Initialization**, is an initialization scheme for neural networks. Biases are initialized be 0 and the weights $W\\_{ij}$ at each layer are initialized as:\r\n\r\n$$ W\\_{ij} \\sim U\\left[-\\frac{\\sqrt{6}}{\\sqrt{fan_{in} + fan_{out}}}, \\frac{\\sqrt{6}}{\\sqrt{fan_{in} + fan_{out}}}\\right] $$\r\n\r\nWhere $U$ is a uniform distribution and $fan_{in}$ is the size of the previous layer (number of columns in $W$) and $fan_{out}$ is the size of the current layer.", "full_name": "Xavier Initialization", "introduced_year": 2000, "main_collection": { "area": "General", "description": "**Initialization** methods are used to initialize the weights in a neural network. Below can you find a continuously updating list of initialization methods.", "name": "Initialization", "parent": null }, "name": "Xavier Initialization", "source_title": null, "source_url": null }, { "code_snippet_url": "", "description": "A **1 x 1 Convolution** is a [convolution](https://paperswithcode.com/method/convolution) with some special properties in that it can be used for dimensionality reduction, efficient low dimensional embeddings, and applying non-linearity after convolutions. It maps an input pixel with all its channels to an output pixel which can be squeezed to a desired output depth. It can be viewed as an [MLP](https://paperswithcode.com/method/feedforward-network) looking at a particular pixel location.\r\n\r\nImage Credit: [http://deeplearning.ai](http://deeplearning.ai)", "full_name": "1x1 Convolution", "introduced_year": 2000, "main_collection": { "area": "Computer Vision", "description": "**Convolutions** are a type of operation that can be used to learn representations from images. They involve a learnable kernel sliding over the image and performing element-wise multiplication with the input. The specification allows for parameter sharing and translation invariance. Below you can find a continuously updating list of convolutions.", "name": "Convolutions", "parent": "Image Feature Extractors" }, "name": "1x1 Convolution", "source_title": "Network In Network", "source_url": "http://arxiv.org/abs/1312.4400v3" }, { "code_snippet_url": "https://github.com/pytorch/vision/blob/baa592b215804927e28638f6a7f3318cbc411d49/torchvision/models/resnet.py#L157", "description": "**Global Average Pooling** is a pooling operation designed to replace fully connected layers in classical CNNs. The idea is to generate one feature map for each corresponding category of the classification task in the last mlpconv layer. Instead of adding fully connected layers on top of the feature maps, we take the average of each feature map, and the resulting vector is fed directly into the [softmax](https://paperswithcode.com/method/softmax) layer. \r\n\r\nOne advantage of global [average pooling](https://paperswithcode.com/method/average-pooling) over the fully connected layers is that it is more native to the [convolution](https://paperswithcode.com/method/convolution) structure by enforcing correspondences between feature maps and categories. Thus the feature maps can be easily interpreted as categories confidence maps. Another advantage is that there is no parameter to optimize in the global average pooling thus overfitting is avoided at this layer. Furthermore, global average pooling sums out the spatial information, thus it is more robust to spatial translations of the input.", "full_name": "Global Average Pooling", "introduced_year": 2000, "main_collection": { "area": "Computer Vision", "description": "**Pooling Operations** are used to pool features together, often downsampling the feature map to a smaller size. They can also induce favourable properties such as translation invariance in image classification, as well as bring together information from different parts of a network in tasks like object detection (e.g. pooling different scales). ", "name": "Pooling Operations", "parent": null }, "name": "Global Average Pooling", "source_title": "Network In Network", "source_url": "http://arxiv.org/abs/1312.4400v3" }, { "code_snippet_url": "", "description": "A **convolution** is a type of matrix operation, consisting of a kernel, a small matrix of weights, that slides over input data performing element-wise multiplication with the part of the input it is on, then summing the results into an output.\r\n\r\nIntuitively, a convolution allows for weight sharing - reducing the number of effective parameters - and image translation (allowing for the same feature to be detected in different parts of the input space).\r\n\r\nImage Source: [https://arxiv.org/pdf/1603.07285.pdf](https://arxiv.org/pdf/1603.07285.pdf)", "full_name": "Convolution", "introduced_year": 1980, "main_collection": { "area": "Computer Vision", "description": "**Convolutions** are a type of operation that can be used to learn representations from images. They involve a learnable kernel sliding over the image and performing element-wise multiplication with the input. The specification allows for parameter sharing and translation invariance. Below you can find a continuously updating list of convolutions.", "name": "Convolutions", "parent": "Image Feature Extractors" }, "name": "Convolution", "source_title": null, "source_url": null }, { "code_snippet_url": "https://github.com/pytorch/vision/blob/6db1569c89094cf23f3bc41f79275c45e9fcb3f3/torchvision/models/squeezenet.py#L37", "description": "**SqueezeNet** is a convolutional neural network that employs design strategies to reduce the number of parameters, notably with the use of fire modules that \"squeeze\" parameters using 1x1 convolutions.", "full_name": "SqueezeNet", "introduced_year": 2000, "main_collection": { "area": "Computer Vision", "description": "If you have questions or want to make special travel arrangements, you can make them online or call ☎️+1-801-(855)-(5905)or +1-804-853-9001✅. For hearing or speech impaired assistance dial 711 to be connected through the National Relay Service.", "name": "Convolutional Neural Networks", "parent": "Image Models" }, "name": "SqueezeNet", "source_title": "SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size", "source_url": "http://arxiv.org/abs/1602.07360v4" }, { "code_snippet_url": "", "description": "**Pointwise Convolution** is a type of [convolution](https://paperswithcode.com/method/convolution) that uses a 1x1 kernel: a kernel that iterates through every single point. This kernel has a depth of however many channels the input image has. It can be used in conjunction with [depthwise convolutions](https://paperswithcode.com/method/depthwise-convolution) to produce an efficient class of convolutions known as [depthwise-separable convolutions](https://paperswithcode.com/method/depthwise-separable-convolution).\r\n\r\nImage Credit: [Chi-Feng Wang](https://towardsdatascience.com/a-basic-introduction-to-separable-convolutions-b99ec3102728)", "full_name": "Pointwise Convolution", "introduced_year": 2016, "main_collection": { "area": "Computer Vision", "description": "**Convolutions** are a type of operation that can be used to learn representations from images. They involve a learnable kernel sliding over the image and performing element-wise multiplication with the input. The specification allows for parameter sharing and translation invariance. Below you can find a continuously updating list of convolutions.", "name": "Convolutions", "parent": "Image Feature Extractors" }, "name": "Pointwise Convolution", "source_title": null, "source_url": null }, { "code_snippet_url": null, "description": "**Max Pooling** is a pooling operation that calculates the maximum value for patches of a feature map, and uses it to create a downsampled (pooled) feature map. It is usually used after a convolutional layer. It adds a small amount of translation invariance - meaning translating the image by a small amount does not significantly affect the values of most pooled outputs.\r\n\r\nImage Source: [here](https://computersciencewiki.org/index.php/File:MaxpoolSample2.png)", "full_name": "Max Pooling", "introduced_year": 2000, "main_collection": { "area": "Computer Vision", "description": "**Pooling Operations** are used to pool features together, often downsampling the feature map to a smaller size. They can also induce favourable properties such as translation invariance in image classification, as well as bring together information from different parts of a network in tasks like object detection (e.g. pooling different scales). ", "name": "Pooling Operations", "parent": null }, "name": "Max Pooling", "source_title": null, "source_url": null }, { "code_snippet_url": null, "description": "The **Softmax** output function transforms a previous layer's output into a vector of probabilities. It is commonly used for multiclass classification. Given an input vector $x$ and a weighting vector $w$ we have:\r\n\r\n$$ P(y=j \\mid{x}) = \\frac{e^{x^{T}w_{j}}}{\\sum^{K}_{k=1}e^{x^{T}wk}} $$", "full_name": "Softmax", "introduced_year": 2000, "main_collection": { "area": "General", "description": "**Output functions** are layers used towards the end of a network to transform to the desired form for a loss function. For example, the softmax relies on logits to construct a conditional probability. Below you can find a continuously updating list of output functions.", "name": "Output Functions", "parent": null }, "name": "Softmax", "source_title": null, "source_url": null }, { "code_snippet_url": null, "description": "**Dense Connections**, or **Fully Connected Connections**, are a type of layer in a deep neural network that use a linear operation where every input is connected to every output by a weight. This means there are $n\\_{\\text{inputs}}*n\\_{\\text{outputs}}$ parameters, which can lead to a lot of parameters for a sizeable network.\r\n\r\n$$h\\_{l} = g\\left(\\textbf{W}^{T}h\\_{l-1}\\right)$$\r\n\r\nwhere $g$ is an activation function.\r\n\r\nImage Source: Deep Learning by Goodfellow, Bengio and Courville", "full_name": "Dense Connections", "introduced_year": 2000, "main_collection": { "area": "General", "description": "**Feedforward Networks** are a type of neural network architecture which rely primarily on dense-like connections. Below you can find a continuously updating list of feedforward network components.", "name": "Feedforward Networks", "parent": null }, "name": "Dense Connections", "source_title": null, "source_url": null }, { "code_snippet_url": "https://github.com/osmr/imgclsmob/blob/c03fa67de3c9e454e9b6d35fe9cbb6b15c28fda7/pytorch/pytorchcv/models/shufflenet.py#L18", "description": "A **ShuffleNet Block** is an image model block that utilises a [channel shuffle](https://paperswithcode.com/method/channel-shuffle) operation, along with depthwise convolutions, for an efficient architectural design. It was proposed as part of the [ShuffleNet](https://paperswithcode.com/method/shufflenet) architecture. The starting point is the [Residual Block](https://paperswithcode.com/method/residual-block) unit from [ResNets](https://paperswithcode.com/method/resnet), which is then modified with a pointwise group [convolution](https://paperswithcode.com/method/convolution) and a channel shuffle operation.", "full_name": "ShuffleNet Block", "introduced_year": 2000, "main_collection": { "area": "Computer Vision", "description": "**Image Model Blocks** are building blocks used in image models such as convolutional neural networks. Below you can find a continuously updating list of image model blocks.", "name": "Image Model Blocks", "parent": null }, "name": "ShuffleNet Block", "source_title": "ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices", "source_url": "http://arxiv.org/abs/1707.01083v2" }, { "code_snippet_url": "https://github.com/mindspore-ecosystem/mindcv/blob/main/mindcv/models/shufflenetv1.py", "description": "**ShuffleNet** is a convolutional neural network designed specially for mobile devices with very limited computing power. The architecture utilizes two new operations, pointwise group [convolution](https://paperswithcode.com/method/convolution) and [channel shuffle](https://paperswithcode.com/method/channel-shuffle), to reduce computation cost while maintaining accuracy.", "full_name": "ShuffleNet", "introduced_year": 2000, "main_collection": { "area": "Computer Vision", "description": "If you have questions or want to make special travel arrangements, you can make them online or call ☎️+1-801-(855)-(5905)or +1-804-853-9001✅. For hearing or speech impaired assistance dial 711 to be connected through the National Relay Service.", "name": "Convolutional Neural Networks", "parent": "Image Models" }, "name": "ShuffleNet", "source_title": "ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices", "source_url": "http://arxiv.org/abs/1707.01083v2" } ]
https://paperswithcode.com/paper/efficient-star-distillation-attention-network
2506.12475
null
null
Efficient Star Distillation Attention Network for Lightweight Image Super-Resolution
In recent years, the performance of lightweight Single-Image Super-Resolution (SISR) has been improved significantly with the application of Convolutional Neural Networks (CNNs) and Large Kernel Attention (LKA). However, existing information distillation modules for lightweight SISR struggle to map inputs into High-Dimensional Non-Linear (HDNL) feature spaces, limiting their representation learning. And their LKA modules possess restricted ability to capture the multi-shape multi-scale information for long-range dependencies while encountering a quadratic increase in the computational burden with increasing convolutional kernel size of its depth-wise convolutional layer. To address these issues, we firstly propose a Star Distillation Module (SDM) to enhance the discriminative representation learning via information distillation in the HDNL feature spaces. Besides, we present a Multi-shape Multi-scale Large Kernel Attention (MM-LKA) module to learn representative long-range dependencies while incurring low computational and memory footprints, leading to improving the performance of CNN-based self-attention significantly. Integrating SDM and MM-LKA, we develop a Residual Star Distillation Attention Module (RSDAM) and take it as the building block of the proposed efficient Star Distillation Attention Network (SDAN) which possesses high reconstruction efficiency to recover a higher-quality image from the corresponding low-resolution (LR) counterpart. When compared with other lightweight state-of-the-art SISR methods, extensive experiments show that our SDAN with low model complexity yields superior performance quantitatively and visually.
null
https://arxiv.org/abs/2506.12475v1
https://arxiv.org/pdf/2506.12475v1.pdf
null
[ "Fangwei Hao", "Ji Du", "Desheng Kong", "Jiesheng Wu", "Jing Xu", "Ping Li" ]
[ "Image Super-Resolution", "Representation Learning", "Super-Resolution" ]
2025-06-14T00:00:00
null
null
null
null
[]
https://paperswithcode.com/paper/adaptive-multi-resolution-hash-encoding
2506.12471
null
null
Adaptive Multi-resolution Hash-Encoding Framework for INR-based Dental CBCT Reconstruction with Truncated FOV
Implicit neural representation (INR), particularly in combination with hash encoding, has recently emerged as a promising approach for computed tomography (CT) image reconstruction. However, directly applying INR techniques to 3D dental cone-beam CT (CBCT) with a truncated field of view (FOV) is challenging. During the training process, if the FOV does not fully encompass the patient's head, a discrepancy arises between the measured projections and the forward projections computed within the truncated domain. This mismatch leads the network to estimate attenuation values inaccurately, producing severe artifacts in the reconstructed images. In this study, we propose a computationally efficient INR-based reconstruction framework that leverages multi-resolution hash encoding for 3D dental CBCT with a truncated FOV. To mitigate truncation artifacts, we train the network over an expanded reconstruction domain that fully encompasses the patient's head. For computational efficiency, we adopt an adaptive training strategy that uses a multi-resolution grid: finer resolution levels and denser sampling inside the truncated FOV, and coarser resolution levels with sparser sampling outside. To maintain consistent input dimensionality of the network across spatially varying resolutions, we introduce an adaptive hash encoder that selectively activates the lower-level features of the hash hierarchy for points outside the truncated FOV. The proposed method with an extended FOV effectively mitigates truncation artifacts. Compared with a naive domain extension using fixed resolution levels and a fixed sampling rate, the adaptive strategy reduces computational time by over 60% for an image volume of 800x800x600, while preserving the PSNR within the truncated FOV.
null
https://arxiv.org/abs/2506.12471v1
https://arxiv.org/pdf/2506.12471v1.pdf
null
[ "Hyoung Suk Park", "Kiwan Jeon" ]
[ "Computational Efficiency", "Computed Tomography (CT)", "Image Reconstruction" ]
2025-06-14T00:00:00
null
null
null
null
[ { "code_snippet_url": null, "description": "Please enter a description about the method here", "full_name": "ADaptive gradient method with the OPTimal convergence rate", "introduced_year": 2000, "main_collection": { "area": "General", "description": "**Stochastic Optimization** methods are used to optimize neural networks. We typically take a mini-batch of data, hence 'stochastic', and perform a type of gradient descent with this minibatch. Below you can find a continuously updating list of stochastic optimization algorithms.", "name": "Stochastic Optimization", "parent": "Optimization" }, "name": "ADOPT", "source_title": "ADOPT: Modified Adam Can Converge with Any $β_2$ with the Optimal Rate", "source_url": "https://arxiv.org/abs/2411.02853v3" } ]
https://paperswithcode.com/paper/shape-aware-sampling-matters-in-the-modeling
2506.12395
null
null
Shape-aware Sampling Matters in the Modeling of Multi-Class Tubular Structures
Accurate multi-class tubular modeling is critical for precise lesion localization and optimal treatment planning. Deep learning methods enable automated shape modeling by prioritizing volumetric overlap accuracy. However, the inherent complexity of fine-grained semantic tubular shapes is not fully emphasized by overlap accuracy, resulting in reduced topological preservation. To address this, we propose the Shapeaware Sampling (SAS), which optimizes patchsize allocation for online sampling and extracts a topology-preserved skeletal representation for the objective function. Fractal Dimension-based Patchsize (FDPS) is first introduced to quantify semantic tubular shape complexity through axis-specific fractal dimension analysis. Axes with higher fractal complexity are then sampled with smaller patchsizes to capture fine-grained features and resolve structural intricacies. In addition, Minimum Path-Cost Skeletonization (MPC-Skel) is employed to sample topologically consistent skeletal representations of semantic tubular shapes for skeleton-weighted objective functions. MPC-Skel reduces artifacts from conventional skeletonization methods and directs the focus to critical topological regions, enhancing tubular topology preservation. SAS is computationally efficient and easily integrable into optimization pipelines. Evaluation on two semantic tubular datasets showed consistent improvements in both volumetric overlap and topological integrity metrics.
null
https://arxiv.org/abs/2506.12395v1
https://arxiv.org/pdf/2506.12395v1.pdf
null
[ "Minghui Zhang", "Yaoyu Liu", "Xin You", "Hanxiao Zhang", "Yun Gu" ]
[]
2025-06-14T00:00:00
null
null
null
null
[ { "code_snippet_url": null, "description": "", "full_name": "Focus", "introduced_year": 2000, "main_collection": { "area": "Natural Language Processing", "description": "**Transformers** are a type of neural network architecture that have several properties that make them effective for modeling data with long-range dependencies. They generally feature a combination of multi-headed attention mechanisms, residual connections, layer normalization, feedforward connections, and positional embeddings.", "name": "Transformers", "parent": "Language Models" }, "name": "Focus", "source_title": "Focus Your Attention (with Adaptive IIR Filters)", "source_url": "https://arxiv.org/abs/2305.14952v2" } ]
https://paperswithcode.com/paper/mri-core-a-foundation-model-for-magnetic
2506.12186
null
null
MRI-CORE: A Foundation Model for Magnetic Resonance Imaging
The widespread use of Magnetic Resonance Imaging (MRI) and the rise of deep learning have enabled the development of powerful predictive models for a wide range of diagnostic tasks in MRI, such as image classification or object segmentation. However, training models for specific new tasks often requires large amounts of labeled data, which is difficult to obtain due to high annotation costs and data privacy concerns. To circumvent this issue, we introduce MRI-CORE (MRI COmprehensive Representation Encoder), a vision foundation model pre-trained using more than 6 million slices from over 110,000 MRI volumes across 18 main body locations. Experiments on five diverse object segmentation tasks in MRI demonstrate that MRI-CORE can significantly improve segmentation performance in realistic scenarios with limited labeled data availability, achieving an average gain of 6.97% 3D Dice Coefficient using only 10 annotated slices per task. We further demonstrate new model capabilities in MRI such as classification of image properties including body location, sequence type and institution, and zero-shot segmentation. These results highlight the value of MRI-CORE as a generalist vision foundation model for MRI, potentially lowering the data annotation resource barriers for many applications.
null
https://arxiv.org/abs/2506.12186v1
https://arxiv.org/pdf/2506.12186v1.pdf
null
[ "Haoyu Dong", "YuWen Chen", "Hanxue Gu", "Nicholas Konz", "Yaqian Chen", "Qihang Li", "Maciej A. Mazurowski" ]
[ "Diagnostic", "image-classification", "Image Classification", "Segmentation", "Semantic Segmentation", "Zero Shot Segmentation" ]
2025-06-13T00:00:00
null
null
null
null
[]
https://paperswithcode.com/paper/mindgrab-for-brainchop-fast-and-accurate
2506.11860
null
null
MindGrab for BrainChop: Fast and Accurate Skull Stripping for Command Line and Browser
We developed MindGrab, a parameter- and memory-efficient deep fully-convolutional model for volumetric skull-stripping in head images of any modality. Its architecture, informed by a spectral interpretation of dilated convolutions, was trained exclusively on modality-agnostic synthetic data. MindGrab was evaluated on a retrospective dataset of 606 multimodal adult-brain scans (T1, T2, DWI, MRA, PDw MRI, EPI, CT, PET) sourced from the SynthStrip dataset. Performance was benchmarked against SynthStrip, ROBEX, and BET using Dice scores, with Wilcoxon signed-rank significance tests. MindGrab achieved a mean Dice score of 95.9 with standard deviation (SD) 1.6 across modalities, significantly outperforming classical methods (ROBEX: 89.1 SD 7.7, P < 0.05; BET: 85.2 SD 14.4, P < 0.05). Compared to SynthStrip (96.5 SD 1.1, P=0.0352), MindGrab delivered equivalent or superior performance in nearly half of the tested scenarios, with minor differences (<3% Dice) in the others. MindGrab utilized 95% fewer parameters (146,237 vs. 2,566,561) than SynthStrip. This efficiency yielded at least 2x faster inference, 50% lower memory usage on GPUs, and enabled exceptional performance (e.g., 10-30x speedup, and up to 30x memory reduction) and accessibility on a wider range of hardware, including systems without high-end GPUs. MindGrab delivers state-of-the-art accuracy with dramatically lower resource demands, supported in brainchop-cli (https://pypi.org/project/brainchop/) and at brainchop.org.
null
https://arxiv.org/abs/2506.11860v1
https://arxiv.org/pdf/2506.11860v1.pdf
null
[ "Armina Fani", "Mike Doan", "Isabelle Le", "Alex Fedorov", "Malte Hoffmann", "Chris Rorden", "Sergey Plis" ]
[ "Skull Stripping" ]
2025-06-13T00:00:00
null
null
null
null
[]
https://paperswithcode.com/paper/3d-skin-segmentation-methods-in-medical
2506.11852
null
null
3D Skin Segmentation Methods in Medical Imaging: A Comparison
Automatic segmentation of anatomical structures is critical in medical image analysis, aiding diagnostics and treatment planning. Skin segmentation plays a key role in registering and visualising multimodal imaging data. 3D skin segmentation enables applications in personalised medicine, surgical planning, and remote monitoring, offering realistic patient models for treatment simulation, procedural visualisation, and continuous condition tracking. This paper analyses and compares algorithmic and AI-driven skin segmentation approaches, emphasising key factors to consider when selecting a strategy based on data availability and application requirements. We evaluate an iterative region-growing algorithm and the TotalSegmentator, a deep learning-based approach, across different imaging modalities and anatomical regions. Our tests show that AI segmentation excels in automation but struggles with MRI due to its CT-based training, while the graphics-based method performs better for MRIs but introduces more noise. AI-driven segmentation also automates patient bed removal in CT, whereas the graphics-based method requires manual intervention.
null
https://arxiv.org/abs/2506.11852v1
https://arxiv.org/pdf/2506.11852v1.pdf
null
[ "Martina Paccini", "Giuseppe Patanè" ]
[ "Medical Image Analysis", "Segmentation" ]
2025-06-13T00:00:00
null
null
null
null
[]
https://paperswithcode.com/paper/structural-similarity-inspired-unfolding-for
2506.11823
null
null
Structural Similarity-Inspired Unfolding for Lightweight Image Super-Resolution
Major efforts in data-driven image super-resolution (SR) primarily focus on expanding the receptive field of the model to better capture contextual information. However, these methods are typically implemented by stacking deeper networks or leveraging transformer-based attention mechanisms, which consequently increases model complexity. In contrast, model-driven methods based on the unfolding paradigm show promise in improving performance while effectively maintaining model compactness through sophisticated module design. Based on these insights, we propose a Structural Similarity-Inspired Unfolding (SSIU) method for efficient image SR. This method is designed through unfolding an SR optimization function constrained by structural similarity, aiming to combine the strengths of both data-driven and model-driven approaches. Our model operates progressively following the unfolding paradigm. Each iteration consists of multiple Mixed-Scale Gating Modules (MSGM) and an Efficient Sparse Attention Module (ESAM). The former implements comprehensive constraints on features, including a structural similarity constraint, while the latter aims to achieve sparse activation. In addition, we design a Mixture-of-Experts-based Feature Selector (MoE-FS) that fully utilizes multi-level feature information by combining features from different steps. Extensive experiments validate the efficacy and efficiency of our unfolding-inspired network. Our model outperforms current state-of-the-art models, boasting lower parameter counts and reduced memory consumption. Our code will be available at: https://github.com/eezkni/SSIU
This method is designed through unfolding an SR optimization function constrained by structural similarity, aiming to combine the strengths of both data-driven and model-driven approaches.
https://arxiv.org/abs/2506.11823v1
https://arxiv.org/pdf/2506.11823v1.pdf
null
[ "Zhangkai Ni", "Yang Zhang", "Wenhan Yang", "Hanli Wang", "Shiqi Wang", "Sam Kwong" ]
[ "Image Super-Resolution", "Mixture-of-Experts", "Super-Resolution" ]
2025-06-13T00:00:00
null
null
null
null
[ { "code_snippet_url": null, "description": "", "full_name": "Focus", "introduced_year": 2000, "main_collection": { "area": "Natural Language Processing", "description": "**Transformers** are a type of neural network architecture that have several properties that make them effective for modeling data with long-range dependencies. They generally feature a combination of multi-headed attention mechanisms, residual connections, layer normalization, feedforward connections, and positional embeddings.", "name": "Transformers", "parent": "Language Models" }, "name": "Focus", "source_title": "Focus Your Attention (with Adaptive IIR Filters)", "source_url": "https://arxiv.org/abs/2305.14952v2" } ]
https://paperswithcode.com/paper/framework-of-a-multiscale-data-driven-digital
2506.11821
null
null
Framework of a multiscale data-driven digital twin of the muscle-skeletal system
Musculoskeletal disorders (MSDs) are a leading cause of disability worldwide, requiring advanced diagnostic and therapeutic tools for personalised assessment and treatment. Effective management of MSDs involves the interaction of heterogeneous data sources, making the Digital Twin (DT) paradigm a valuable option. This paper introduces the Musculoskeletal Digital Twin (MS-DT), a novel framework that integrates multiscale biomechanical data with computational modelling to create a detailed, patient-specific representation of the musculoskeletal system. By combining motion capture, ultrasound imaging, electromyography, and medical imaging, the MS-DT enables the analysis of spinal kinematics, posture, and muscle function. An interactive visualisation platform provides clinicians and researchers with an intuitive interface for exploring biomechanical parameters and tracking patient-specific changes. Results demonstrate the effectiveness of MS-DT in extracting precise kinematic and dynamic tissue features, offering a comprehensive tool for monitoring spine biomechanics and rehabilitation. This framework provides high-fidelity modelling and real-time visualization to improve patient-specific diagnosis and intervention planning.
null
https://arxiv.org/abs/2506.11821v1
https://arxiv.org/pdf/2506.11821v1.pdf
null
[ "Martina Paccini", "Simone Cammarasana", "Giuseppe Patanè" ]
[ "Diagnostic" ]
2025-06-13T00:00:00
null
null
null
null
[]
https://paperswithcode.com/paper/difffusr-super-resolution-of-all-sentinel-2
2506.11764
null
null
DiffFuSR: Super-Resolution of all Sentinel-2 Multispectral Bands using Diffusion Models
This paper presents DiffFuSR, a modular pipeline for super-resolving all 12 spectral bands of Sentinel-2 Level-2A imagery to a unified ground sampling distance (GSD) of 2.5 meters. The pipeline comprises two stages: (i) a diffusion-based super-resolution (SR) model trained on high-resolution RGB imagery from the NAIP and WorldStrat datasets, harmonized to simulate Sentinel-2 characteristics; and (ii) a learned fusion network that upscales the remaining multispectral bands using the super-resolved RGB image as a spatial prior. We introduce a robust degradation model and contrastive degradation encoder to support blind SR. Extensive evaluations of the proposed SR pipeline on the OpenSR benchmark demonstrate that the proposed method outperforms current SOTA baselines in terms of reflectance fidelity, spectral consistency, spatial alignment, and hallucination suppression. Furthermore, the fusion network significantly outperforms classical pansharpening approaches, enabling accurate enhancement of Sentinel-2's 20 m and 60 m bands. This study underscores the power of harmonized learning with generative priors and fusion strategies to create a modular framework for Sentinel-2 SR. Our code and models can be found at https://github.com/NorskRegnesentral/DiffFuSR.
This paper presents DiffFuSR, a modular pipeline for super-resolving all 12 spectral bands of Sentinel-2 Level-2A imagery to a unified ground sampling distance (GSD) of 2. 5 meters.
https://arxiv.org/abs/2506.11764v1
https://arxiv.org/pdf/2506.11764v1.pdf
null
[ "Muhammad Sarmad", "Arnt-Børre Salberg", "Michael Kampffmeyer" ]
[ "All", "Hallucination", "Pansharpening", "Super-Resolution" ]
2025-06-13T00:00:00
null
null
null
null
[]
https://paperswithcode.com/paper/exploring-the-effectiveness-of-deep-features
2506.11753
null
null
Exploring the Effectiveness of Deep Features from Domain-Specific Foundation Models in Retinal Image Synthesis
The adoption of neural network models in medical imaging has been constrained by strict privacy regulations, limited data availability, high acquisition costs, and demographic biases. Deep generative models offer a promising solution by generating synthetic data that bypasses privacy concerns and addresses fairness by producing samples for under-represented groups. However, unlike natural images, medical imaging requires validation not only for fidelity (e.g., Fr\'echet Inception Score) but also for morphological and clinical accuracy. This is particularly true for colour fundus retinal imaging, which requires precise replication of the retinal vascular network, including vessel topology, continuity, and thickness. In this study, we in-vestigated whether a distance-based loss function based on deep activation layers of a large foundational model trained on large corpus of domain data, colour fundus imaging, offers advantages over a perceptual loss and edge-detection based loss functions. Our extensive validation pipeline, based on both domain-free and domain specific tasks, suggests that domain-specific deep features do not improve autoen-coder image generation. Conversely, our findings highlight the effectiveness of con-ventional edge detection filters in improving the sharpness of vascular structures in synthetic samples.
null
https://arxiv.org/abs/2506.11753v1
https://arxiv.org/pdf/2506.11753v1.pdf
null
[ "Zuzanna Skorniewska", "Bartlomiej W. Papiez" ]
[ "Edge Detection", "Fairness", "Image Generation" ]
2025-06-13T00:00:00
null
null
null
null
[]
https://paperswithcode.com/paper/agripotential-a-novel-multi-spectral-and
2506.11740
null
null
AgriPotential: A Novel Multi-Spectral and Multi-Temporal Remote Sensing Dataset for Agricultural Potentials
Remote sensing has emerged as a critical tool for large-scale Earth monitoring and land management. In this paper, we introduce AgriPotential, a novel benchmark dataset composed of Sentinel-2 satellite imagery spanning multiple months. The dataset provides pixel-level annotations of agricultural potentials for three major crop types - viticulture, market gardening, and field crops - across five ordinal classes. AgriPotential supports a broad range of machine learning tasks, including ordinal regression, multi-label classification, and spatio-temporal modeling. The data covers diverse areas in Southern France, offering rich spectral information. AgriPotential is the first public dataset designed specifically for agricultural potential prediction, aiming to improve data-driven approaches to sustainable land use planning. The dataset and the code are freely accessible at: https://zenodo.org/records/15556484
null
https://arxiv.org/abs/2506.11740v1
https://arxiv.org/pdf/2506.11740v1.pdf
null
[ "Mohammad El Sakka", "Caroline De Pourtales", "Lotfi Chaari", "Josiane Mothe" ]
[ "Management", "Multi-Label Classification", "MUlTI-LABEL-ClASSIFICATION" ]
2025-06-13T00:00:00
null
null
null
null
[]
https://paperswithcode.com/paper/brain-network-analysis-based-on-fine-tuned
2506.11671
null
null
Brain Network Analysis Based on Fine-tuned Self-supervised Model for Brain Disease Diagnosis
Functional brain network analysis has become an indispensable tool for brain disease analysis. It is profoundly impacted by deep learning methods, which can characterize complex connections between ROIs. However, the research on foundation models of brain network is limited and constrained to a single dimension, which restricts their extensive application in neuroscience. In this study, we propose a fine-tuned brain network model for brain disease diagnosis. It expands brain region representations across multiple dimensions based on the original brain network model, thereby enhancing its generalizability. Our model consists of two key modules: (1)an adapter module that expands brain region features across different dimensions. (2)a fine-tuned foundation brain network model, based on self-supervised learning and pre-trained on fMRI data from thousands of participants. Specifically, its transformer block is able to effectively extract brain region features and compute the inter-region associations. Moreover, we derive a compact latent representation of the brain network for brain disease diagnosis. Our downstream experiments in this study demonstrate that the proposed model achieves superior performance in brain disease diagnosis, which potentially offers a promising approach in brain network analysis research.
null
https://arxiv.org/abs/2506.11671v1
https://arxiv.org/pdf/2506.11671v1.pdf
null
[ "Yifei Tang", "Hongjie Jiang", "Changhong Jing", "Hieu Pham", "Shuqiang Wang" ]
[ "Self-Supervised Learning" ]
2025-06-13T00:00:00
null
null
null
null
[ { "code_snippet_url": null, "description": "", "full_name": "Adapter", "introduced_year": 2000, "main_collection": { "area": "General", "description": "**Feedforward Networks** are a type of neural network architecture which rely primarily on dense-like connections. Below you can find a continuously updating list of feedforward network components.", "name": "Feedforward Networks", "parent": null }, "name": "Adapter", "source_title": "Trankit: A Light-Weight Transformer-based Toolkit for Multilingual Natural Language Processing", "source_url": "https://arxiv.org/abs/2101.03289v5" } ]
https://paperswithcode.com/paper/enhancing-privacy-the-utility-of-stand-alone
2506.12106
null
null
Enhancing Privacy: The Utility of Stand-Alone Synthetic CT and MRI for Tumor and Bone Segmentation
AI requires extensive datasets, while medical data is subject to high data protection. Anonymization is essential, but poses a challenge for some regions, such as the head, as identifying structures overlap with regions of clinical interest. Synthetic data offers a potential solution, but studies often lack rigorous evaluation of realism and utility. Therefore, we investigate to what extent synthetic data can replace real data in segmentation tasks. We employed head and neck cancer CT scans and brain glioma MRI scans from two large datasets. Synthetic data were generated using generative adversarial networks and diffusion models. We evaluated the quality of the synthetic data using MAE, MS-SSIM, Radiomics and a Visual Turing Test (VTT) performed by 5 radiologists and their usefulness in segmentation tasks using DSC. Radiomics indicates high fidelity of synthetic MRIs, but fall short in producing highly realistic CT tissue, with correlation coefficient of 0.8784 and 0.5461 for MRI and CT tumors, respectively. DSC results indicate limited utility of synthetic data: tumor segmentation achieved DSC=0.064 on CT and 0.834 on MRI, while bone segmentation a mean DSC=0.841. Relation between DSC and correlation is observed, but is limited by the complexity of the task. VTT results show synthetic CTs' utility, but with limited educational applications. Synthetic data can be used independently for the segmentation task, although limited by the complexity of the structures to segment. Advancing generative models to better tolerate heterogeneous inputs and learn subtle details is essential for enhancing their realism and expanding their application potential.
null
https://arxiv.org/abs/2506.12106v1
https://arxiv.org/pdf/2506.12106v1.pdf
null
[ "André Ferreira", "Kunpeng Xie", "Caroline Wilpert", "Gustavo Correia", "Felix Barajas Ordonez", "Tiago Gil Oliveira", "Maike Bode", "Robert Siepmann", "Frank Hölzle", "Rainer Röhrig", "Jens Kleesiek", "Daniel Truhn", "Jan Egger", "Victor Alves", "Behrus Puladi" ]
[ "MS-SSIM", "Segmentation", "SSIM", "Tumor Segmentation" ]
2025-06-13T00:00:00
null
null
null
null
[ { "code_snippet_url": null, "description": "Diffusion models generate samples by gradually\r\nremoving noise from a signal, and their training objective can be expressed as a reweighted variational lower-bound (https://arxiv.org/abs/2006.11239).", "full_name": "Diffusion", "introduced_year": 2000, "main_collection": { "area": "Computer Vision", "description": "", "name": "Image Generation Models", "parent": null }, "name": "Diffusion", "source_title": "Denoising Diffusion Probabilistic Models", "source_url": "https://arxiv.org/abs/2006.11239v2" }, { "code_snippet_url": null, "description": "", "full_name": "Masked autoencoder", "introduced_year": 2000, "main_collection": { "area": "General", "description": "**Self-Supervised Learning** refers to a category of methods where we learn representations in a self-supervised way (i.e without labels). These methods generally involve a pretext task that is solved to learn a good representation and a loss function to learn with. Below you can find a continuously updating list of self-supervised methods.", "name": "Self-Supervised Learning", "parent": null }, "name": "MAE", "source_title": "Masked Autoencoders Are Scalable Vision Learners", "source_url": "https://arxiv.org/abs/2111.06377v2" } ]
https://paperswithcode.com/paper/eyesim-vqa-a-free-energy-guided-eye
2506.11549
null
null
EyeSim-VQA: A Free-Energy-Guided Eye Simulation Framework for Video Quality Assessment
Free-energy-guided self-repair mechanisms have shown promising results in image quality assessment (IQA), but remain under-explored in video quality assessment (VQA), where temporal dynamics and model constraints pose unique challenges. Unlike static images, video content exhibits richer spatiotemporal complexity, making perceptual restoration more difficult. Moreover, VQA systems often rely on pre-trained backbones, which limits the direct integration of enhancement modules without affecting model stability. To address these issues, we propose EyeSimVQA, a novel VQA framework that incorporates free-energy-based self-repair. It adopts a dual-branch architecture, with an aesthetic branch for global perceptual evaluation and a technical branch for fine-grained structural and semantic analysis. Each branch integrates specialized enhancement modules tailored to distinct visual inputs-resized full-frame images and patch-based fragments-to simulate adaptive repair behaviors. We also explore a principled strategy for incorporating high-level visual features without disrupting the original backbone. In addition, we design a biologically inspired prediction head that models sweeping gaze dynamics to better fuse global and local representations for quality prediction. Experiments on five public VQA benchmarks demonstrate that EyeSimVQA achieves competitive or superior performance compared to state-of-the-art methods, while offering improved interpretability through its biologically grounded design.
null
https://arxiv.org/abs/2506.11549v1
https://arxiv.org/pdf/2506.11549v1.pdf
null
[ "Zhaoyang Wang", "Wen Lu", "Jie Li", "Lihuo He", "Maoguo Gong", "Xinbo Gao" ]
[ "Image Quality Assessment", "Video Quality Assessment", "Visual Question Answering (VQA)" ]
2025-06-13T00:00:00
null
null
null
null
[]
https://paperswithcode.com/paper/fca2-frame-compression-aware-autoencoder-for
2506.11545
null
null
FCA2: Frame Compression-Aware Autoencoder for Modular and Fast Compressed Video Super-Resolution
State-of-the-art (SOTA) compressed video super-resolution (CVSR) models face persistent challenges, including prolonged inference time, complex training pipelines, and reliance on auxiliary information. As video frame rates continue to increase, the diminishing inter-frame differences further expose the limitations of traditional frame-to-frame information exploitation methods, which are inadequate for addressing current video super-resolution (VSR) demands. To overcome these challenges, we propose an efficient and scalable solution inspired by the structural and statistical similarities between hyperspectral images (HSI) and video data. Our approach introduces a compression-driven dimensionality reduction strategy that reduces computational complexity, accelerates inference, and enhances the extraction of temporal information across frames. The proposed modular architecture is designed for seamless integration with existing VSR frameworks, ensuring strong adaptability and transferability across diverse applications. Experimental results demonstrate that our method achieves performance on par with, or surpassing, the current SOTA models, while significantly reducing inference time. By addressing key bottlenecks in CVSR, our work offers a practical and efficient pathway for advancing VSR technology. Our code will be publicly available at https://github.com/handsomewzy/FCA2.
null
https://arxiv.org/abs/2506.11545v1
https://arxiv.org/pdf/2506.11545v1.pdf
null
[ "Zhaoyang Wang", "Jie Li", "Wen Lu", "Lihuo He", "Maoguo Gong", "Xinbo Gao" ]
[ "Dimensionality Reduction", "Super-Resolution", "Video Super-Resolution" ]
2025-06-13T00:00:00
null
null
null
null
[]
https://paperswithcode.com/paper/taming-stable-diffusion-for-computed
2506.11496
null
null
Taming Stable Diffusion for Computed Tomography Blind Super-Resolution
High-resolution computed tomography (CT) imaging is essential for medical diagnosis but requires increased radiation exposure, creating a critical trade-off between image quality and patient safety. While deep learning methods have shown promise in CT super-resolution, they face challenges with complex degradations and limited medical training data. Meanwhile, large-scale pre-trained diffusion models, particularly Stable Diffusion, have demonstrated remarkable capabilities in synthesizing fine details across various vision tasks. Motivated by this, we propose a novel framework that adapts Stable Diffusion for CT blind super-resolution. We employ a practical degradation model to synthesize realistic low-quality images and leverage a pre-trained vision-language model to generate corresponding descriptions. Subsequently, we perform super-resolution using Stable Diffusion with a specialized controlling strategy, conditioned on both low-resolution inputs and the generated text descriptions. Extensive experiments show that our method outperforms existing approaches, demonstrating its potential for achieving high-quality CT imaging at reduced radiation doses. Our code will be made publicly available.
null
https://arxiv.org/abs/2506.11496v1
https://arxiv.org/pdf/2506.11496v1.pdf
null
[ "Chunlei Li", "Yilei Shi", "Haoxi Hu", "Jingliang Hu", "Xiao Xiang Zhu", "Lichao Mou" ]
[ "Blind Super-Resolution", "Computed Tomography (CT)", "Language Modeling", "Language Modelling", "Medical Diagnosis", "Super-Resolution" ]
2025-06-13T00:00:00
null
null
null
null
[ { "code_snippet_url": null, "description": "Diffusion models generate samples by gradually\r\nremoving noise from a signal, and their training objective can be expressed as a reweighted variational lower-bound (https://arxiv.org/abs/2006.11239).", "full_name": "Diffusion", "introduced_year": 2000, "main_collection": { "area": "Computer Vision", "description": "", "name": "Image Generation Models", "parent": null }, "name": "Diffusion", "source_title": "Denoising Diffusion Probabilistic Models", "source_url": "https://arxiv.org/abs/2006.11239v2" } ]
https://paperswithcode.com/paper/fad-net-frequency-domain-attention-guided
2506.11454
null
null
FAD-Net: Frequency-Domain Attention-Guided Diffusion Network for Coronary Artery Segmentation using Invasive Coronary Angiography
Background: Coronary artery disease (CAD) remains one of the leading causes of mortality worldwide. Precise segmentation of coronary arteries from invasive coronary angiography (ICA) is critical for effective clinical decision-making. Objective: This study aims to propose a novel deep learning model based on frequency-domain analysis to enhance the accuracy of coronary artery segmentation and stenosis detection in ICA, thereby offering robust support for the stenosis detection and treatment of CAD. Methods: We propose the Frequency-Domain Attention-Guided Diffusion Network (FAD-Net), which integrates a frequency-domain-based attention mechanism and a cascading diffusion strategy to fully exploit frequency-domain information for improved segmentation accuracy. Specifically, FAD-Net employs a Multi-Level Self-Attention (MLSA) mechanism in the frequency domain, computing the similarity between queries and keys across high- and low-frequency components in ICAs. Furthermore, a Low-Frequency Diffusion Module (LFDM) is incorporated to decompose ICAs into low- and high-frequency components via multi-level wavelet transformation. Subsequently, it refines fine-grained arterial branches and edges by reintegrating high-frequency details via inverse fusion, enabling continuous enhancement of anatomical precision. Results and Conclusions: Extensive experiments demonstrate that FAD-Net achieves a mean Dice coefficient of 0.8717 in coronary artery segmentation, outperforming existing state-of-the-art methods. In addition, it attains a true positive rate of 0.6140 and a positive predictive value of 0.6398 in stenosis detection, underscoring its clinical applicability. These findings suggest that FAD-Net holds significant potential to assist in the accurate diagnosis and treatment planning of CAD.
null
https://arxiv.org/abs/2506.11454v1
https://arxiv.org/pdf/2506.11454v1.pdf
null
[ "Nan Mu", "Ruiqi Song", "Xiaoning Li", "Zhihui Xu", "Jingfeng Jiang", "Chen Zhao" ]
[ "Coronary Artery Segmentation", "FAD", "Segmentation" ]
2025-06-13T00:00:00
null
null
null
null
[ { "code_snippet_url": "", "description": "_**Independent component analysis** (ICA) is a statistical and computational technique for revealing hidden factors that underlie sets of random variables, measurements, or signals._\r\n\r\n_ICA defines a generative model for the observed multivariate data, which is typically given as a large database of samples. In the model, the data variables are assumed to be linear mixtures of some unknown latent variables, and the mixing system is also unknown. The latent variables are assumed nongaussian and mutually independent, and they are called the independent components of the observed data. These independent components, also called sources or factors, can be found by ICA._\r\n\r\n_ICA is superficially related to principal component analysis and factor analysis. ICA is a much more powerful technique, however, capable of finding the underlying factors or sources when these classic methods fail completely._\r\n\r\n\r\nExtracted from (https://www.cs.helsinki.fi/u/ahyvarin/whatisica.shtml)\r\n\r\n**Source papers**:\r\n\r\n[Blind separation of sources, part I: An adaptive algorithm based on neuromimetic architecture](https://doi.org/10.1016/0165-1684(91)90079-X)\r\n\r\n[Independent component analysis, A new concept?](https://doi.org/10.1016/0165-1684(94)90029-9)\r\n\r\n[Independent component analysis: algorithms and applications](https://doi.org/10.1016/S0893-6080(00)00026-5)", "full_name": "Independent Component Analysis", "introduced_year": 2000, "main_collection": { "area": "General", "description": "**Dimensionality Reduction** methods transform data from a high-dimensional space into a low-dimensional space so that the low-dimensional space retains the most important properties of the original data. Below you can find a continuously updating list of dimensionality reduction methods.", "name": "Dimensionality Reduction", "parent": null }, "name": "ICA", "source_title": null, "source_url": null }, { "code_snippet_url": null, "description": "Diffusion models generate samples by gradually\r\nremoving noise from a signal, and their training objective can be expressed as a reweighted variational lower-bound (https://arxiv.org/abs/2006.11239).", "full_name": "Diffusion", "introduced_year": 2000, "main_collection": { "area": "Computer Vision", "description": "", "name": "Image Generation Models", "parent": null }, "name": "Diffusion", "source_title": "Denoising Diffusion Probabilistic Models", "source_url": "https://arxiv.org/abs/2006.11239v2" } ]
https://paperswithcode.com/paper/hadamard-encoded-row-column-ultrasonic
2506.11443
null
null
Hadamard Encoded Row Column Ultrasonic Expansive Scanning (HERCULES) with Bias-Switchable Row-Column Arrays
Top-Orthogonal-to-Bottom-Electrode (TOBE) arrays, also known as bias-switchable row-column arrays (RCAs), allow for imaging techniques otherwise impossible for non-bias-switachable RCAs. Hadamard Encoded Row Column Ultrasonic Expansive Scanning (HERCULES) is a novel imaging technique that allows for expansive 3D scanning by transmitting plane or cylindrical wavefronts and receiving using Hadamard-Encoded-Read-Out (HERO) to perform beamforming on what is effectively a full 2D synthetic receive aperture. This allows imaging beyond the shadow of the aperture of the RCA array, potentially allows for whole organ imaging and 3D visualization of tissue morphology. It additionally enables view large volumes through limited windows. In this work we demonstrated with simulation that we are able to image at comparable resolution to existing RCA imaging methods at hundreds of frames per second. We validated these simulations by demonstrating an experimental implementation of HERCULES using a custom fabricated TOBE array, custom biasing electronics, and a research ultrasound system. Furthermore, we assess our imaging capabilities by imaging a commercial phantom, and comparing our results to those taken with traditional RCA imaging methods. Finally, we verified our ability to image real tissue by imaging a xenograft mouse model.
null
https://arxiv.org/abs/2506.11443v1
https://arxiv.org/pdf/2506.11443v1.pdf
null
[ "Darren Olufemi Dahunsi", "Randy Palmar", "Tyler Henry", "Mohammad Rahim Sobhani", "Negar Majidi", "Joy Wang", "Afshin Kashani Ilkhechi", "Jeremy Brown", "Roger Zemp" ]
[]
2025-06-13T00:00:00
null
null
null
null
[]
https://paperswithcode.com/paper/hybiomass-global-hyperspectral-imagery
2506.11314
null
null
HyBiomass: Global Hyperspectral Imagery Benchmark Dataset for Evaluating Geospatial Foundation Models in Forest Aboveground Biomass Estimation
Comprehensive evaluation of geospatial foundation models (Geo-FMs) requires benchmarking across diverse tasks, sensors, and geographic regions. However, most existing benchmark datasets are limited to segmentation or classification tasks, and focus on specific geographic areas. To address this gap, we introduce a globally distributed dataset for forest aboveground biomass (AGB) estimation, a pixel-wise regression task. This benchmark dataset combines co-located hyperspectral imagery (HSI) from the Environmental Mapping and Analysis Program (EnMAP) satellite and predictions of AGB density estimates derived from the Global Ecosystem Dynamics Investigation lidars, covering seven continental regions. Our experimental results on this dataset demonstrate that the evaluated Geo-FMs can match or, in some cases, surpass the performance of a baseline U-Net, especially when fine-tuning the encoder. We also find that the performance difference between the U-Net and Geo-FMs depends on the dataset size for each region and highlight the importance of the token patch size in the Vision Transformer backbone for accurate predictions in pixel-wise regression tasks. By releasing this globally distributed hyperspectral benchmark dataset, we aim to facilitate the development and evaluation of Geo-FMs for HSI applications. Leveraging this dataset additionally enables research into geographic bias and generalization capacity of Geo-FMs. The dataset and source code will be made publicly available.
null
https://arxiv.org/abs/2506.11314v1
https://arxiv.org/pdf/2506.11314v1.pdf
null
[ "Aaron Banze", "Timothée Stassin", "Nassim Ait Ali Braham", "Rıdvan Salih Kuzu", "Simon Besnard", "Michael Schmitt" ]
[ "Benchmarking" ]
2025-06-12T00:00:00
null
null
null
null
[ { "code_snippet_url": "https://github.com/google/jax/blob/7f3078b70d0ed9bea6228efa420879c56f72ef69/jax/experimental/stax.py#L271-L275", "description": "**Dropout** is a regularization technique for neural networks that drops a unit (along with connections) at training time with a specified probability $p$ (a common value is $p=0.5$). At test time, all units are present, but with weights scaled by $p$ (i.e. $w$ becomes $pw$).\r\n\r\nThe idea is to prevent co-adaptation, where the neural network becomes too reliant on particular connections, as this could be symptomatic of overfitting. Intuitively, dropout can be thought of as creating an implicit ensemble of neural networks.", "full_name": "Dropout", "introduced_year": 2000, "main_collection": { "area": "General", "description": "Regularization strategies are designed to reduce the test error of a machine learning algorithm, possibly at the expense of training error. Many different forms of regularization exist in the field of deep learning. Below you can find a constantly updating list of regularization strategies.", "name": "Regularization", "parent": null }, "name": "Dropout", "source_title": "Dropout: A Simple Way to Prevent Neural Networks from Overfitting", "source_url": "http://jmlr.org/papers/v15/srivastava14a.html" }, { "code_snippet_url": "", "description": "**Absolute Position Encodings** are a type of position embeddings for [[Transformer](https://paperswithcode.com/method/transformer)-based models] where positional encodings are added to the input embeddings at the bottoms of the encoder and decoder stacks. The positional encodings have the same dimension $d\\_{model}$ as the embeddings, so that the two can be summed. In the original implementation, sine and cosine functions of different frequencies are used:\r\n\r\n$$ \\text{PE}\\left(pos, 2i\\right) = \\sin\\left(pos/10000^{2i/d\\_{model}}\\right) $$\r\n\r\n$$ \\text{PE}\\left(pos, 2i+1\\right) = \\cos\\left(pos/10000^{2i/d\\_{model}}\\right) $$\r\n\r\nwhere $pos$ is the position and $i$ is the dimension. That is, each dimension of the positional encoding corresponds to a sinusoid. The wavelengths form a geometric progression from $2\\pi$ to $10000 \\dot 2\\pi$. This function was chosen because the authors hypothesized it would allow the model to easily learn to attend by relative positions, since for any fixed offset $k$, $\\text{PE}\\_{pos+k}$ can be represented as a linear function of $\\text{PE}\\_{pos}$.\r\n\r\nImage Source: [D2L.ai](https://d2l.ai/chapter_attention-mechanisms/self-attention-and-positional-encoding.html)", "full_name": "Absolute Position Encodings", "introduced_year": 2000, "main_collection": { "area": "General", "description": "", "name": "Position Embeddings", "parent": null }, "name": "Absolute Position Encodings", "source_title": "Attention Is All You Need", "source_url": "https://arxiv.org/abs/1706.03762v7" }, { "code_snippet_url": null, "description": "**Byte Pair Encoding**, or **BPE**, is a subword segmentation algorithm that encodes rare and unknown words as sequences of subword units. The intuition is that various word classes are translatable via smaller units than words, for instance names (via character copying or transliteration), compounds (via compositional translation), and cognates and loanwords (via phonological and morphological transformations).\r\n\r\n[Lei Mao](https://leimao.github.io/blog/Byte-Pair-Encoding/) has a detailed blog post that explains how this works.", "full_name": "Byte Pair Encoding", "introduced_year": 2000, "main_collection": { "area": "Natural Language Processing", "description": "", "name": "Subword Segmentation", "parent": null }, "name": "BPE", "source_title": "Neural Machine Translation of Rare Words with Subword Units", "source_url": "http://arxiv.org/abs/1508.07909v5" }, { "code_snippet_url": null, "description": "The **Softmax** output function transforms a previous layer's output into a vector of probabilities. It is commonly used for multiclass classification. Given an input vector $x$ and a weighting vector $w$ we have:\r\n\r\n$$ P(y=j \\mid{x}) = \\frac{e^{x^{T}w_{j}}}{\\sum^{K}_{k=1}e^{x^{T}wk}} $$", "full_name": "Softmax", "introduced_year": 2000, "main_collection": { "area": "General", "description": "**Output functions** are layers used towards the end of a network to transform to the desired form for a loss function. For example, the softmax relies on logits to construct a conditional probability. Below you can find a continuously updating list of output functions.", "name": "Output Functions", "parent": null }, "name": "Softmax", "source_title": null, "source_url": null }, { "code_snippet_url": "", "description": "**Label Smoothing** is a regularization technique that introduces noise for the labels. This accounts for the fact that datasets may have mistakes in them, so maximizing the likelihood of $\\log{p}\\left(y\\mid{x}\\right)$ directly can be harmful. Assume for a small constant $\\epsilon$, the training set label $y$ is correct with probability $1-\\epsilon$ and incorrect otherwise. Label Smoothing regularizes a model based on a [softmax](https://paperswithcode.com/method/softmax) with $k$ output values by replacing the hard $0$ and $1$ classification targets with targets of $\\frac{\\epsilon}{k}$ and $1-\\frac{k-1}{k}\\epsilon$ respectively.\r\n\r\nSource: Deep Learning, Goodfellow et al\r\n\r\nImage Source: [When Does Label Smoothing Help?](https://arxiv.org/abs/1906.02629)", "full_name": "Label Smoothing", "introduced_year": 1985, "main_collection": { "area": "General", "description": "Regularization strategies are designed to reduce the test error of a machine learning algorithm, possibly at the expense of training error. Many different forms of regularization exist in the field of deep learning. Below you can find a constantly updating list of regularization strategies.", "name": "Regularization", "parent": null }, "name": "Label Smoothing", "source_title": null, "source_url": null }, { "code_snippet_url": "https://github.com/tunz/transformer-pytorch/blob/e7266679f0b32fd99135ea617213f986ceede056/model/transformer.py#L201", "description": "A **Transformer** is a model architecture that eschews recurrence and instead relies entirely on an [attention mechanism](https://paperswithcode.com/methods/category/attention-mechanisms-1) to draw global dependencies between input and output. Before Transformers, the dominant sequence transduction models were based on complex recurrent or convolutional neural networks that include an encoder and a decoder. The Transformer also employs an encoder and decoder, but removing recurrence in favor of [attention mechanisms](https://paperswithcode.com/methods/category/attention-mechanisms-1) allows for significantly more parallelization than methods like [RNNs](https://paperswithcode.com/methods/category/recurrent-neural-networks) and [CNNs](https://paperswithcode.com/methods/category/convolutional-neural-networks).", "full_name": "Transformer", "introduced_year": 2000, "main_collection": { "area": "Natural Language Processing", "description": "**Transformers** are a type of neural network architecture that have several properties that make them effective for modeling data with long-range dependencies. They generally feature a combination of multi-headed attention mechanisms, residual connections, layer normalization, feedforward connections, and positional embeddings.", "name": "Transformers", "parent": "Language Models" }, "name": "Transformer", "source_title": "Attention Is All You Need", "source_url": "https://arxiv.org/abs/1706.03762v7" }, { "code_snippet_url": null, "description": "**Dense Connections**, or **Fully Connected Connections**, are a type of layer in a deep neural network that use a linear operation where every input is connected to every output by a weight. This means there are $n\\_{\\text{inputs}}*n\\_{\\text{outputs}}$ parameters, which can lead to a lot of parameters for a sizeable network.\r\n\r\n$$h\\_{l} = g\\left(\\textbf{W}^{T}h\\_{l-1}\\right)$$\r\n\r\nwhere $g$ is an activation function.\r\n\r\nImage Source: Deep Learning by Goodfellow, Bengio and Courville", "full_name": "Dense Connections", "introduced_year": 2000, "main_collection": { "area": "General", "description": "**Feedforward Networks** are a type of neural network architecture which rely primarily on dense-like connections. Below you can find a continuously updating list of feedforward network components.", "name": "Feedforward Networks", "parent": null }, "name": "Dense Connections", "source_title": null, "source_url": null }, { "code_snippet_url": "https://github.com/CyberZHG/torch-layer-normalization/blob/89f405b60f53f85da6f03fe685c190ef394ce50c/torch_layer_normalization/layer_normalization.py#L8", "description": "Unlike [batch normalization](https://paperswithcode.com/method/batch-normalization), **Layer Normalization** directly estimates the normalization statistics from the summed inputs to the neurons within a hidden layer so the normalization does not introduce any new dependencies between training cases. It works well for [RNNs](https://paperswithcode.com/methods/category/recurrent-neural-networks) and improves both the training time and the generalization performance of several existing RNN models. More recently, it has been used with [Transformer](https://paperswithcode.com/methods/category/transformers) models.\r\n\r\nWe compute the layer normalization statistics over all the hidden units in the same layer as follows:\r\n\r\n$$ \\mu^{l} = \\frac{1}{H}\\sum^{H}\\_{i=1}a\\_{i}^{l} $$\r\n\r\n$$ \\sigma^{l} = \\sqrt{\\frac{1}{H}\\sum^{H}\\_{i=1}\\left(a\\_{i}^{l}-\\mu^{l}\\right)^{2}} $$\r\n\r\nwhere $H$ denotes the number of hidden units in a layer. Under layer normalization, all the hidden units in a layer share the same normalization terms $\\mu$ and $\\sigma$, but different training cases have different normalization terms. Unlike batch normalization, layer normalization does not impose any constraint on the size of the mini-batch and it can be used in the pure online regime with batch size 1.", "full_name": "Layer Normalization", "introduced_year": 2000, "main_collection": { "area": "General", "description": "**Normalization** layers in deep learning are used to make optimization easier by smoothing the loss surface of the network. Below you will find a continuously updating list of normalization methods.", "name": "Normalization", "parent": null }, "name": "Layer Normalization", "source_title": "Layer Normalization", "source_url": "http://arxiv.org/abs/1607.06450v1" }, { "code_snippet_url": null, "description": "", "full_name": "Focus", "introduced_year": 2000, "main_collection": { "area": "Natural Language Processing", "description": "**Transformers** are a type of neural network architecture that have several properties that make them effective for modeling data with long-range dependencies. They generally feature a combination of multi-headed attention mechanisms, residual connections, layer normalization, feedforward connections, and positional embeddings.", "name": "Transformers", "parent": "Language Models" }, "name": "Focus", "source_title": "Focus Your Attention (with Adaptive IIR Filters)", "source_url": "https://arxiv.org/abs/2305.14952v2" }, { "code_snippet_url": "https://github.com/google-research/vision_transformer", "description": "The **Vision Transformer**, or **ViT**, is a model for image classification that employs a [Transformer](https://paperswithcode.com/method/transformer)-like architecture over patches of the image. An image is split into fixed-size patches, each of them are then linearly embedded, position embeddings are added, and the resulting sequence of vectors is fed to a standard [Transformer](https://paperswithcode.com/method/transformer) encoder. In order to perform classification, the standard approach of adding an extra learnable “classification token” to the sequence is used.", "full_name": "Vision Transformer", "introduced_year": 2000, "main_collection": { "area": "Computer Vision", "description": "**Image Models** are methods that build representations of images for downstream tasks such as classification and object detection. The most popular subcategory are convolutional neural networks. Below you can find a continuously updated list of image models.", "name": "Image Models", "parent": null }, "name": "Vision Transformer", "source_title": "An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale", "source_url": "https://arxiv.org/abs/2010.11929v2" } ]
https://paperswithcode.com/paper/score-based-generative-diffusion-models-to
2506.11297
null
null
Score-based Generative Diffusion Models to Synthesize Full-dose FDG Brain PET from MRI in Epilepsy Patients
Fluorodeoxyglucose (FDG) PET to evaluate patients with epilepsy is one of the most common applications for simultaneous PET/MRI, given the need to image both brain structure and metabolism, but is suboptimal due to the radiation dose in this young population. Little work has been done synthesizing diagnostic quality PET images from MRI data or MRI data with ultralow-dose PET using advanced generative AI methods, such as diffusion models, with attention to clinical evaluations tailored for the epilepsy population. Here we compared the performance of diffusion- and non-diffusion-based deep learning models for the MRI-to-PET image translation task for epilepsy imaging using simultaneous PET/MRI in 52 subjects (40 train/2 validate/10 hold-out test). We tested three different models: 2 score-based generative diffusion models (SGM-Karras Diffusion [SGM-KD] and SGM-variance preserving [SGM-VP]) and a Transformer-Unet. We report results on standard image processing metrics as well as clinically relevant metrics, including congruency measures (Congruence Index and Congruency Mean Absolute Error) that assess hemispheric metabolic asymmetry, which is a key part of the clinical analysis of these images. The SGM-KD produced the best qualitative and quantitative results when synthesizing PET purely from T1w and T2 FLAIR images with the least mean absolute error in whole-brain specific uptake value ratio (SUVR) and highest intraclass correlation coefficient. When 1% low-dose PET images are included in the inputs, all models improve significantly and are interchangeable for quantitative performance and visual quality. In summary, SGMs hold great potential for pure MRI-to-PET translation, while all 3 model types can synthesize full-dose FDG-PET accurately using MRI and ultralow-dose PET.
null
https://arxiv.org/abs/2506.11297v1
https://arxiv.org/pdf/2506.11297v1.pdf
null
[ "Jiaqi Wu", "Jiahong Ouyang", "Farshad Moradi", "Mohammad Mehdi Khalighi", "Greg Zaharchuk" ]
[ "Diagnostic" ]
2025-06-12T00:00:00
null
null
null
null
[ { "code_snippet_url": null, "description": "Diffusion models generate samples by gradually\r\nremoving noise from a signal, and their training objective can be expressed as a reweighted variational lower-bound (https://arxiv.org/abs/2006.11239).", "full_name": "Diffusion", "introduced_year": 2000, "main_collection": { "area": "Computer Vision", "description": "", "name": "Image Generation Models", "parent": null }, "name": "Diffusion", "source_title": "Denoising Diffusion Probabilistic Models", "source_url": "https://arxiv.org/abs/2006.11239v2" } ]
https://paperswithcode.com/paper/joint-denoising-of-cryo-em-projection-images
2506.11283
null
null
Joint Denoising of Cryo-EM Projection Images using Polar Transformers
Deep neural networks (DNNs) have proven powerful for denoising, but they are ultimately of limited use in high-noise settings, such as for cryogenic electron microscopy (cryo-EM) projection images. In this setting, however, datasets contain a large number of projections of the same molecule, each taken from a different viewing direction. This redundancy of information is useful in traditional denoising techniques known as class averaging methods, where images are clustered, aligned, and then averaged to reduce the noise level. We present a neural network architecture based on transformers that extends these class averaging methods by simultaneously clustering, aligning, and denoising cryo-EM images. Results on synthetic data show accurate denoising performance using this architecture, reducing the relative mean squared error (MSE) single-image DNNs by $45\%$ at a signal-to-noise (SNR) of $0.03$.
null
https://arxiv.org/abs/2506.11283v1
https://arxiv.org/pdf/2506.11283v1.pdf
null
[ "Joakim andén", "Justus Sagemüller" ]
[ "Cryogenic Electron Microscopy (cryo-EM)", "Denoising" ]
2025-06-12T00:00:00
null
null
null
null
[]