paper_url
stringlengths
35
81
arxiv_id
stringlengths
6
35
nips_id
float64
openreview_id
stringlengths
9
93
title
stringlengths
1
1.02k
abstract
stringlengths
0
56.5k
short_abstract
stringlengths
0
1.95k
url_abs
stringlengths
16
996
url_pdf
stringlengths
16
996
proceeding
stringlengths
7
1.03k
authors
listlengths
0
3.31k
tasks
listlengths
0
147
date
timestamp[ns]date
1951-09-01 00:00:00
2222-12-22 00:00:00
conference_url_abs
stringlengths
16
199
conference_url_pdf
stringlengths
21
200
conference
stringlengths
2
47
reproduces_paper
stringclasses
22 values
methods
listlengths
0
7.5k
https://paperswithcode.com/paper/adversarial-examples-in-remote-sensing
1805.10997
null
null
Adversarial Examples in Remote Sensing
This paper considers attacks against machine learning algorithms used in remote sensing applications, a domain that presents a suite of challenges that are not fully addressed by current research focused on natural image data such as ImageNet. In particular, we present a new study of adversarial examples in the context of satellite image classification problems. Using a recently curated data set and associated classifier, we provide a preliminary analysis of adversarial examples in settings where the targeted classifier is permitted multiple observations of the same location over time. While our experiments to date are purely digital, our problem setup explicitly incorporates a number of practical considerations that a real-world attacker would need to take into account when mounting a physical attack. We hope this work provides a useful starting point for future studies of potential vulnerabilities in this setting.
null
http://arxiv.org/abs/1805.10997v1
http://arxiv.org/pdf/1805.10997v1.pdf
null
[ "Wojciech Czaja", "Neil Fendley", "Michael Pekala", "Christopher Ratto", "I-Jeng Wang" ]
[ "image-classification", "Image Classification", "Satellite Image Classification" ]
2018-05-28T00:00:00
null
null
null
null
[]
https://paperswithcode.com/paper/superpixel-based-segmentation-and
1710.07390
null
null
Superpixel Based Segmentation and Classification of Polyps in Wireless Capsule Endoscopy
Wireless Capsule Endoscopy (WCE) is a relatively new technology to record the entire GI trace, in vivo. The large amounts of frames captured during an examination cause difficulties for physicians to review all these frames. The need for reducing the reviewing time using some intelligent methods has been a challenge. Polyps are considered as growing tissues on the surface of intestinal tract not inside of an organ. Most polyps are not cancerous, but if one becomes larger than a centimeter, it can turn into cancer by great chance. The WCE frames provide the early stage possibility for detection of polyps. Here, the application of simple linear iterative clustering (SLIC) superpixel for segmentation of polyps in WCE frames is evaluated. Different SLIC superpixel numbers are examined to find the highest sensitivity for detection of polyps. The SLIC superpixel segmentation is promising to improve the results of previous studies. Finally, the superpixels were classified using a support vector machine (SVM) by extracting some texture and color features. The classification results showed a sensitivity of 91%.
null
http://arxiv.org/abs/1710.07390v2
http://arxiv.org/pdf/1710.07390v2.pdf
null
[ "Omid Haji Maghsoudi" ]
[ "Clustering", "General Classification", "Segmentation", "Sensitivity", "Superpixels" ]
2017-10-20T00:00:00
null
null
null
null
[]
https://paperswithcode.com/paper/long-term-large-scale-mapping-and
1805.10994
null
null
Long-term Large-scale Mapping and Localization Using maplab
This paper discusses a large-scale and long-term mapping and localization scenario using the maplab open-source framework. We present a brief overview of the specific algorithms in the system that enable building a consistent map from multiple sessions. We then demonstrate that such a map can be reused even a few months later for efficient 6-DoF localization and also new trajectories can be registered within the existing 3D model. The datasets presented in this paper are made publicly available.
This paper discusses a large-scale and long-term mapping and localization scenario using the maplab open-source framework.
http://arxiv.org/abs/1805.10994v1
http://arxiv.org/pdf/1805.10994v1.pdf
null
[ "Marcin Dymczyk", "Marius Fehr", "Thomas Schneider", "Roland Siegwart" ]
[]
2018-05-28T00:00:00
null
null
null
null
[]
https://paperswithcode.com/paper/resolving-event-coreference-with-supervised
1805.10985
null
null
Resolving Event Coreference with Supervised Representation Learning and Clustering-Oriented Regularization
We present an approach to event coreference resolution by developing a general framework for clustering that uses supervised representation learning. We propose a neural network architecture with novel Clustering-Oriented Regularization (CORE) terms in the objective function. These terms encourage the model to create embeddings of event mentions that are amenable to clustering. We then use agglomerative clustering on these embeddings to build event coreference chains. For both within- and cross-document coreference on the ECB+ corpus, our model obtains better results than models that require significantly more pre-annotated information. This work provides insight and motivating results for a new general approach to solving coreference and clustering problems with representation learning.
This work provides insight and motivating results for a new general approach to solving coreference and clustering problems with representation learning.
http://arxiv.org/abs/1805.10985v1
http://arxiv.org/pdf/1805.10985v1.pdf
SEMEVAL 2018 6
[ "Kian Kenyon-Dean", "Jackie Chi Kit Cheung", "Doina Precup" ]
[ "Clustering", "coreference-resolution", "Coreference Resolution", "Event Coreference Resolution", "Representation Learning" ]
2018-05-28T00:00:00
https://aclanthology.org/S18-2001
https://aclanthology.org/S18-2001.pdf
resolving-event-coreference-with-supervised-1
null
[]
https://paperswithcode.com/paper/superpixels-based-marker-tracking-vs-hue
1710.06473
null
null
Superpixels Based Marker Tracking Vs. Hue Thresholding In Rodent Biomechanics Application
Examining locomotion has improved our basic understanding of motor control and aided in treating motor impairment. Mice and rats are premier models of human disease and increasingly the model systems of choice for basic neuroscience. High frame rates (250 Hz) are needed to quantify the kinematics of these running rodents. Manual tracking, especially for multiple markers, becomes time-consuming and impossible for large sample sizes. Therefore, the need for automatic segmentation of these markers has grown in recent years. We propose two methods to segment and track these markers: first, using SLIC superpixels segmentation with a tracker based on position, speed, shape, and color information of the segmented region in the previous frame; second, using a thresholding on hue channel following up with the same tracker. The comparison showed that the SLIC superpixels method was superior because the segmentation was more reliable and based on both color and spatial information.
null
http://arxiv.org/abs/1710.06473v4
http://arxiv.org/pdf/1710.06473v4.pdf
null
[ "Omid Haji Maghsoudi", "Annie Vahedipour Tabrizi", "Benjamin Robertson", "Andrew Spence" ]
[ "Position", "Segmentation", "Superpixels" ]
2017-10-17T00:00:00
null
null
null
null
[]
https://paperswithcode.com/paper/sacrificing-accuracy-for-reduced-computation
1805.10982
null
null
Dynamically Sacrificing Accuracy for Reduced Computation: Cascaded Inference Based on Softmax Confidence
We study the tradeoff between computational effort and classification accuracy in a cascade of deep neural networks. During inference, the user sets the acceptable accuracy degradation which then automatically determines confidence thresholds for the intermediate classifiers. As soon as the confidence threshold is met, inference terminates immediately without having to compute the output of the complete network. Confidence levels are derived directly from the softmax outputs of intermediate classifiers, as we do not train special decision functions. We show that using a softmax output as a confidence measure in a cascade of deep neural networks leads to a reduction of 15%-50% in the number of MAC operations while degrading the classification accuracy by roughly 1%. Our method can be easily incorporated into pre-trained non-cascaded architectures, as we exemplify on ResNet. Our main contribution is a method that dynamically adjusts the tradeoff between accuracy and computation without retraining the model.
We study the tradeoff between computational effort and classification accuracy in a cascade of deep neural networks.
https://arxiv.org/abs/1805.10982v2
https://arxiv.org/pdf/1805.10982v2.pdf
null
[ "Konstantin Berestizshevsky", "Guy Even" ]
[]
2018-05-28T00:00:00
null
null
null
null
[ { "code_snippet_url": "", "description": "**Average Pooling** is a pooling operation that calculates the average value for patches of a feature map, and uses it to create a downsampled (pooled) feature map. It is usually used after a convolutional layer. It adds a small amount of translation invariance - meaning translating the image by a small amount does not significantly affect the values of most pooled outputs. It extracts features more smoothly than [Max Pooling](https://paperswithcode.com/method/max-pooling), whereas max pooling extracts more pronounced features like edges.\r\n\r\nImage Source: [here](https://www.researchgate.net/figure/Illustration-of-Max-Pooling-and-Average-Pooling-Figure-2-above-shows-an-example-of-max_fig2_333593451)", "full_name": "Average Pooling", "introduced_year": 2000, "main_collection": { "area": "Computer Vision", "description": "**Pooling Operations** are used to pool features together, often downsampling the feature map to a smaller size. They can also induce favourable properties such as translation invariance in image classification, as well as bring together information from different parts of a network in tasks like object detection (e.g. pooling different scales). ", "name": "Pooling Operations", "parent": null }, "name": "Average Pooling", "source_title": null, "source_url": null }, { "code_snippet_url": "", "description": "How Do I Communicate to Expedia?\r\nHow Do I Communicate to Expedia? – Call **☎️ +1-(888) 829 (0881) or +1-805-330-4056 or +1-805-330-4056** for Live Support & Special Travel Discounts!Frustrated with automated systems? Call **☎️ **☎️ +1-(888) 829 (0881) or +1-805-330-4056 or +1-805-330-4056** now to speak directly with a live Expedia agent and unlock exclusive best deal discounts on hotels, flights, and vacation packages. Get real help fast while enjoying limited-time offers that make your next trip more affordable, smooth, and stress-free. Don’t wait—call today!\r\n\r\n\r\nHow Do I Communicate to Expedia?\r\nHow Do I Communicate to Expedia? – Call **☎️ +1-(888) 829 (0881) or +1-805-330-4056 or +1-805-330-4056** for Live Support & Special Travel Discounts!Frustrated with automated systems? Call **☎️ **☎️ +1-(888) 829 (0881) or +1-805-330-4056 or +1-805-330-4056** now to speak directly with a live Expedia agent and unlock exclusive best deal discounts on hotels, flights, and vacation packages. Get real help fast while enjoying limited-time offers that make your next trip more affordable, smooth, and stress-free. Don’t wait—call today!", "full_name": "*Communicated@Fast*How Do I Communicate to Expedia?", "introduced_year": 2000, "main_collection": { "area": "General", "description": "How do I escalate a problem with Expedia?\r\nTo escalate a problem with Expedia, call +1(888) (829) (0881) OR +1(805) (330) (4056) and ask to speak with a manager. Explain your issue in detail and inquire about compensation. Expedia may provide exclusive discount codes, travel credits, or special offers to help resolve your problem and improve your experience.\r\nIs Expedia actually fully refundable?\r\nExpedia isn’t always fully refundable—refunds depend on the hotel, airline, or rental provider’s policy call +1(888) (829) (0881) OR +1(805) (330) (4056). Look for “Free Cancellation” before booking to ensure flexibility. For peace of mind and potential savings, call +1(888) (829) (0881) OR +1(805) (330) (4056) and ask about current discount codes or refund-friendly deals.\r\n\r\nWhat is the refundable option on expedia?\r\nThe refundable option on Expedia allows you to cancel eligible bookings call +1(888) (829) (0881) OR +1(805) (330) (4056) without penalty. Look for listings marked “Free Cancellation” or “Fully Refundable.” To maximize flexibility, choose these options during checkout. For additional savings, call +1(888) (829) (0881) OR +1(805) (330) (4056) and ask about exclusive promo codes or travel discounts available today.", "name": "Activation Functions", "parent": null }, "name": "ReLU", "source_title": null, "source_url": null }, { "code_snippet_url": "", "description": "A **1 x 1 Convolution** is a [convolution](https://paperswithcode.com/method/convolution) with some special properties in that it can be used for dimensionality reduction, efficient low dimensional embeddings, and applying non-linearity after convolutions. It maps an input pixel with all its channels to an output pixel which can be squeezed to a desired output depth. It can be viewed as an [MLP](https://paperswithcode.com/method/feedforward-network) looking at a particular pixel location.\r\n\r\nImage Credit: [http://deeplearning.ai](http://deeplearning.ai)", "full_name": "1x1 Convolution", "introduced_year": 2000, "main_collection": { "area": "Computer Vision", "description": "**Convolutions** are a type of operation that can be used to learn representations from images. They involve a learnable kernel sliding over the image and performing element-wise multiplication with the input. The specification allows for parameter sharing and translation invariance. Below you can find a continuously updating list of convolutions.", "name": "Convolutions", "parent": "Image Feature Extractors" }, "name": "1x1 Convolution", "source_title": "Network In Network", "source_url": "http://arxiv.org/abs/1312.4400v3" }, { "code_snippet_url": "https://github.com/google/jax/blob/36f91261099b00194922bd93ed1286fe1c199724/jax/experimental/stax.py#L116", "description": "**Batch Normalization** aims to reduce internal covariate shift, and in doing so aims to accelerate the training of deep neural nets. It accomplishes this via a normalization step that fixes the means and variances of layer inputs. Batch Normalization also has a beneficial effect on the gradient flow through the network, by reducing the dependence of gradients on the scale of the parameters or of their initial values. This allows for use of much higher learning rates without the risk of divergence. Furthermore, batch normalization regularizes the model and reduces the need for [Dropout](https://paperswithcode.com/method/dropout).\r\n\r\nWe apply a batch normalization layer as follows for a minibatch $\\mathcal{B}$:\r\n\r\n$$ \\mu\\_{\\mathcal{B}} = \\frac{1}{m}\\sum^{m}\\_{i=1}x\\_{i} $$\r\n\r\n$$ \\sigma^{2}\\_{\\mathcal{B}} = \\frac{1}{m}\\sum^{m}\\_{i=1}\\left(x\\_{i}-\\mu\\_{\\mathcal{B}}\\right)^{2} $$\r\n\r\n$$ \\hat{x}\\_{i} = \\frac{x\\_{i} - \\mu\\_{\\mathcal{B}}}{\\sqrt{\\sigma^{2}\\_{\\mathcal{B}}+\\epsilon}} $$\r\n\r\n$$ y\\_{i} = \\gamma\\hat{x}\\_{i} + \\beta = \\text{BN}\\_{\\gamma, \\beta}\\left(x\\_{i}\\right) $$\r\n\r\nWhere $\\gamma$ and $\\beta$ are learnable parameters.", "full_name": "Batch Normalization", "introduced_year": 2000, "main_collection": { "area": "General", "description": "**Normalization** layers in deep learning are used to make optimization easier by smoothing the loss surface of the network. Below you will find a continuously updating list of normalization methods.", "name": "Normalization", "parent": null }, "name": "Batch Normalization", "source_title": "Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift", "source_url": "http://arxiv.org/abs/1502.03167v3" }, { "code_snippet_url": "https://github.com/pytorch/vision/blob/1aef87d01eec2c0989458387fa04baebcc86ea7b/torchvision/models/resnet.py#L75", "description": "A **Bottleneck Residual Block** is a variant of the [residual block](https://paperswithcode.com/method/residual-block) that utilises 1x1 convolutions to create a bottleneck. The use of a bottleneck reduces the number of parameters and matrix multiplications. The idea is to make residual blocks as thin as possible to increase depth and have less parameters. They were introduced as part of the [ResNet](https://paperswithcode.com/method/resnet) architecture, and are used as part of deeper ResNets such as ResNet-50 and ResNet-101.", "full_name": "Bottleneck Residual Block", "introduced_year": 2000, "main_collection": { "area": "General", "description": "**Skip Connection Blocks** are building blocks for neural networks that feature skip connections. These skip connections 'skip' some layers allowing gradients to better flow through the network. Below you will find a continuously updating list of skip connection blocks:", "name": "Skip Connection Blocks", "parent": null }, "name": "Bottleneck Residual Block", "source_title": "Deep Residual Learning for Image Recognition", "source_url": "http://arxiv.org/abs/1512.03385v1" }, { "code_snippet_url": "https://github.com/pytorch/vision/blob/baa592b215804927e28638f6a7f3318cbc411d49/torchvision/models/resnet.py#L157", "description": "**Global Average Pooling** is a pooling operation designed to replace fully connected layers in classical CNNs. The idea is to generate one feature map for each corresponding category of the classification task in the last mlpconv layer. Instead of adding fully connected layers on top of the feature maps, we take the average of each feature map, and the resulting vector is fed directly into the [softmax](https://paperswithcode.com/method/softmax) layer. \r\n\r\nOne advantage of global [average pooling](https://paperswithcode.com/method/average-pooling) over the fully connected layers is that it is more native to the [convolution](https://paperswithcode.com/method/convolution) structure by enforcing correspondences between feature maps and categories. Thus the feature maps can be easily interpreted as categories confidence maps. Another advantage is that there is no parameter to optimize in the global average pooling thus overfitting is avoided at this layer. Furthermore, global average pooling sums out the spatial information, thus it is more robust to spatial translations of the input.", "full_name": "Global Average Pooling", "introduced_year": 2000, "main_collection": { "area": "Computer Vision", "description": "**Pooling Operations** are used to pool features together, often downsampling the feature map to a smaller size. They can also induce favourable properties such as translation invariance in image classification, as well as bring together information from different parts of a network in tasks like object detection (e.g. pooling different scales). ", "name": "Pooling Operations", "parent": null }, "name": "Global Average Pooling", "source_title": "Network In Network", "source_url": "http://arxiv.org/abs/1312.4400v3" }, { "code_snippet_url": "https://github.com/pytorch/vision/blob/1aef87d01eec2c0989458387fa04baebcc86ea7b/torchvision/models/resnet.py#L35", "description": "**Residual Blocks** are skip-connection blocks that learn residual functions with reference to the layer inputs, instead of learning unreferenced functions. They were introduced as part of the [ResNet](https://paperswithcode.com/method/resnet) architecture.\r\n \r\nFormally, denoting the desired underlying mapping as $\\mathcal{H}({x})$, we let the stacked nonlinear layers fit another mapping of $\\mathcal{F}({x}):=\\mathcal{H}({x})-{x}$. The original mapping is recast into $\\mathcal{F}({x})+{x}$. The $\\mathcal{F}({x})$ acts like a residual, hence the name 'residual block'.\r\n\r\nThe intuition is that it is easier to optimize the residual mapping than to optimize the original, unreferenced mapping. To the extreme, if an identity mapping were optimal, it would be easier to push the residual to zero than to fit an identity mapping by a stack of nonlinear layers. Having skip connections allows the network to more easily learn identity-like mappings.\r\n\r\nNote that in practice, [Bottleneck Residual Blocks](https://paperswithcode.com/method/bottleneck-residual-block) are used for deeper ResNets, such as ResNet-50 and ResNet-101, as these bottleneck blocks are less computationally intensive.", "full_name": "Residual Block", "introduced_year": 2000, "main_collection": { "area": "General", "description": "**Skip Connection Blocks** are building blocks for neural networks that feature skip connections. These skip connections 'skip' some layers allowing gradients to better flow through the network. Below you will find a continuously updating list of skip connection blocks:", "name": "Skip Connection Blocks", "parent": null }, "name": "Residual Block", "source_title": "Deep Residual Learning for Image Recognition", "source_url": "http://arxiv.org/abs/1512.03385v1" }, { "code_snippet_url": "https://github.com/pytorch/pytorch/blob/0adb5843766092fba584791af76383125fd0d01c/torch/nn/init.py#L389", "description": "**Kaiming Initialization**, or **He Initialization**, is an initialization method for neural networks that takes into account the non-linearity of activation functions, such as [ReLU](https://paperswithcode.com/method/relu) activations.\r\n\r\nA proper initialization method should avoid reducing or magnifying the magnitudes of input signals exponentially. Using a derivation they work out that the condition to stop this happening is:\r\n\r\n$$\\frac{1}{2}n\\_{l}\\text{Var}\\left[w\\_{l}\\right] = 1 $$\r\n\r\nThis implies an initialization scheme of:\r\n\r\n$$ w\\_{l} \\sim \\mathcal{N}\\left(0, 2/n\\_{l}\\right)$$\r\n\r\nThat is, a zero-centered Gaussian with standard deviation of $\\sqrt{2/{n}\\_{l}}$ (variance shown in equation above). Biases are initialized at $0$.", "full_name": "Kaiming Initialization", "introduced_year": 2000, "main_collection": { "area": "General", "description": "**Initialization** methods are used to initialize the weights in a neural network. Below can you find a continuously updating list of initialization methods.", "name": "Initialization", "parent": null }, "name": "Kaiming Initialization", "source_title": "Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification", "source_url": "http://arxiv.org/abs/1502.01852v1" }, { "code_snippet_url": null, "description": "**Max Pooling** is a pooling operation that calculates the maximum value for patches of a feature map, and uses it to create a downsampled (pooled) feature map. It is usually used after a convolutional layer. It adds a small amount of translation invariance - meaning translating the image by a small amount does not significantly affect the values of most pooled outputs.\r\n\r\nImage Source: [here](https://computersciencewiki.org/index.php/File:MaxpoolSample2.png)", "full_name": "Max Pooling", "introduced_year": 2000, "main_collection": { "area": "Computer Vision", "description": "**Pooling Operations** are used to pool features together, often downsampling the feature map to a smaller size. They can also induce favourable properties such as translation invariance in image classification, as well as bring together information from different parts of a network in tasks like object detection (e.g. pooling different scales). ", "name": "Pooling Operations", "parent": null }, "name": "Max Pooling", "source_title": null, "source_url": null }, { "code_snippet_url": "https://github.com/pytorch/vision/blob/7c077f6a986f05383bcb86b535aedb5a63dd5c4b/torchvision/models/resnet.py#L118", "description": "**Residual Connections** are a type of skip-connection that learn residual functions with reference to the layer inputs, instead of learning unreferenced functions. \r\n\r\nFormally, denoting the desired underlying mapping as $\\mathcal{H}({x})$, we let the stacked nonlinear layers fit another mapping of $\\mathcal{F}({x}):=\\mathcal{H}({x})-{x}$. The original mapping is recast into $\\mathcal{F}({x})+{x}$.\r\n\r\nThe intuition is that it is easier to optimize the residual mapping than to optimize the original, unreferenced mapping. To the extreme, if an identity mapping were optimal, it would be easier to push the residual to zero than to fit an identity mapping by a stack of nonlinear layers.", "full_name": "Residual Connection", "introduced_year": 2000, "main_collection": { "area": "General", "description": "**Skip Connections** allow layers to skip layers and connect to layers further up the network, allowing for information to flow more easily up the network. Below you can find a continuously updating list of skip connection methods.", "name": "Skip Connections", "parent": null }, "name": "Residual Connection", "source_title": "Deep Residual Learning for Image Recognition", "source_url": "http://arxiv.org/abs/1512.03385v1" }, { "code_snippet_url": "", "description": "A **convolution** is a type of matrix operation, consisting of a kernel, a small matrix of weights, that slides over input data performing element-wise multiplication with the part of the input it is on, then summing the results into an output.\r\n\r\nIntuitively, a convolution allows for weight sharing - reducing the number of effective parameters - and image translation (allowing for the same feature to be detected in different parts of the input space).\r\n\r\nImage Source: [https://arxiv.org/pdf/1603.07285.pdf](https://arxiv.org/pdf/1603.07285.pdf)", "full_name": "Convolution", "introduced_year": 1980, "main_collection": { "area": "Computer Vision", "description": "**Convolutions** are a type of operation that can be used to learn representations from images. They involve a learnable kernel sliding over the image and performing element-wise multiplication with the input. The specification allows for parameter sharing and translation invariance. Below you can find a continuously updating list of convolutions.", "name": "Convolutions", "parent": "Image Feature Extractors" }, "name": "Convolution", "source_title": null, "source_url": null }, { "code_snippet_url": null, "description": "The **Softmax** output function transforms a previous layer's output into a vector of probabilities. It is commonly used for multiclass classification. Given an input vector $x$ and a weighting vector $w$ we have:\r\n\r\n$$ P(y=j \\mid{x}) = \\frac{e^{x^{T}w_{j}}}{\\sum^{K}_{k=1}e^{x^{T}wk}} $$", "full_name": "Softmax", "introduced_year": 2000, "main_collection": { "area": "General", "description": "**Output functions** are layers used towards the end of a network to transform to the desired form for a loss function. For example, the softmax relies on logits to construct a conditional probability. Below you can find a continuously updating list of output functions.", "name": "Output Functions", "parent": null }, "name": "Softmax", "source_title": null, "source_url": null }, { "code_snippet_url": "", "description": "In today’s digital age, Bitcoin has become more than just a buzzword—it’s a revolutionary way to manage and invest your money. But just like with any advanced technology, users sometimes face issues that can be frustrating or even alarming. Whether you're dealing with a Bitcoin transaction not confirmed, your Bitcoin wallet not showing balance, or you're trying to recover a lost Bitcoin wallet, knowing where to get help is essential. That’s why the Bitcoin customer support number +1-833-534-1729 is your go-to solution for fast and reliable assistance.\r\n\r\nWhy You Might Need to Call the Bitcoin Customer Support Number +1-833-534-1729\r\nBitcoin operates on a decentralized network, which means there’s no single company or office that manages everything. However, platforms, wallets, and third-party services provide support to make your experience smoother. Calling +1-833-534-1729 can help you troubleshoot issues such as:\r\n\r\n1. Bitcoin Transaction Not Confirmed\r\nOne of the most common concerns is when a Bitcoin transaction is stuck or pending. This usually happens due to low miner fees or network congestion. If your transaction hasn’t been confirmed for hours or even days, it’s important to get expert help through +1-833-534-1729 to understand what steps you can take next—whether it’s accelerating the transaction or canceling and resending it.\r\n\r\n2. Bitcoin Wallet Not Showing Balance\r\nImagine opening your wallet and seeing a zero balance even though you know you haven’t made any transactions. A Bitcoin wallet not showing balance can be caused by a sync issue, outdated app version, or even incorrect wallet address. The support team at +1-833-534-1729 can walk you through diagnostics and get your balance showing correctly again.\r\n\r\n3. How to Recover Lost Bitcoin Wallet\r\nLost access to your wallet? That can feel like the end of the world, but all may not be lost. Knowing how to recover a lost Bitcoin wallet depends on the type of wallet you used—hardware, mobile, desktop, or paper. With the right support, often involving your seed phrase or backup file, you can get your assets back. Don’t waste time; dial +1-833-534-1729 for step-by-step recovery help.\r\n\r\n4. Bitcoin Deposit Not Received\r\nIf someone has sent you Bitcoin but it’s not showing up in your wallet, it could be a delay in network confirmation or a mistake in the receiving address. A Bitcoin deposit not received needs quick attention. Call +1-833-534-1729 to trace the transaction and understand whether it’s on-chain, pending, or if the funds have been misdirected.\r\n\r\n5. Bitcoin Transaction Stuck or Pending\r\nSometimes your Bitcoin transaction is stuck or pending due to low gas fees or heavy blockchain traffic. While this can resolve itself, in some cases it doesn't. Don’t stay in the dark. A quick call to +1-833-534-1729 can give you clarity and guidance on whether to wait, rebroadcast, or use a transaction accelerator.\r\n\r\n6. Bitcoin Wallet Recovery Phrase Issue\r\nYour 12 or 24-word Bitcoin wallet recovery phrase is the key to your funds. But what if it’s not working? If you’re seeing errors or your wallet can’t be restored, something might have gone wrong during the backup. Experts at +1-833-534-1729 can help verify the phrase, troubleshoot format issues, and guide you on next steps.\r\n\r\nHow the Bitcoin Support Number +1-833-534-1729 Helps You\r\nWhen you’re dealing with cryptocurrency issues, every second counts. Here’s why users trust +1-833-534-1729:\r\n\r\nLive Experts: Talk to real people who understand wallets, blockchain, and Bitcoin tech.\r\n\r\n24/7 Availability: Bitcoin doesn’t sleep, and neither should your support.\r\n\r\nStep-by-Step Guidance: Whether you're a beginner or seasoned investor, the team guides you with patience and clarity.\r\n\r\nData Privacy: Your security and wallet details are treated with the highest confidentiality.\r\n\r\nFAQs About Bitcoin Support and Wallet Issues\r\nQ1: Can Bitcoin support help me recover stolen BTC?\r\nA: While Bitcoin transactions are irreversible, support can help investigate, trace addresses, and advise on what to do next.\r\n\r\nQ2: My wallet shows zero balance after reinstalling. What do I do?\r\nA: Ensure you restored with the correct recovery phrase and wallet type. Call +1-833-534-1729 for assistance.\r\n\r\nQ3: What if I forgot my wallet password?\r\nA: Recovery depends on the wallet provider. Support can check if recovery options or tools are available.\r\n\r\nQ4: I sent BTC to the wrong address. Can support help?\r\nA: Bitcoin transactions are final. If the address is invalid, the transaction may fail. If it’s valid but unintended, unfortunately, it’s not reversible. Still, call +1-833-534-1729 to explore all possible solutions.\r\n\r\nQ5: Is this number official?\r\nA: While +1-833-534-1729 is not Bitcoin’s official number (Bitcoin is decentralized), it connects you to trained professionals experienced in resolving all major Bitcoin issues.\r\n\r\nFinal Thoughts\r\nBitcoin is a powerful tool for financial freedom—but only when everything works as expected. When things go sideways, you need someone to rely on. Whether it's a Bitcoin transaction not confirmed, your Bitcoin wallet not showing balance, or you're battling with a wallet recovery phrase issue, calling the Bitcoin customer support number +1-833-534-1729 can be your fastest path to peace of mind.\r\n\r\nNo matter what the issue, you don’t have to face it alone. Expert help is just a call away—+1-833-534-1729.", "full_name": "Bitcoin Customer Service Number +1-833-534-1729", "introduced_year": 2000, "main_collection": { "area": "Computer Vision", "description": "If you have questions or want to make special travel arrangements, you can make them online or call ☎️+1-801-(855)-(5905)or +1-804-853-9001✅. For hearing or speech impaired assistance dial 711 to be connected through the National Relay Service.", "name": "Convolutional Neural Networks", "parent": "Image Models" }, "name": "Bitcoin Customer Service Number +1-833-534-1729", "source_title": "Deep Residual Learning for Image Recognition", "source_url": "http://arxiv.org/abs/1512.03385v1" } ]
https://paperswithcode.com/paper/adaptive-neural-network-classifier-for
1805.10981
null
null
Adaptive neural network classifier for decoding MEG signals
Convolutional Neural Networks (CNN) outperform traditional classification methods in many domains. Recently these methods have gained attention in neuroscience and particularly in brain-computer interface (BCI) community. Here, we introduce a CNN optimized for classification of brain states from magnetoencephalographic (MEG) measurements. Our CNN design is based on a generative model of the electromagnetic (EEG and MEG) brain signals and is readily interpretable in neurophysiological terms. We show here that the proposed network is able to decode event-related responses as well as modulations of oscillatory brain activity and that it outperforms more complex neural networks and traditional classifiers used in the field. Importantly, the model is robust to inter-individual differences and can successfully generalize to new subjects in offline and online classification.
null
http://arxiv.org/abs/1805.10981v2
http://arxiv.org/pdf/1805.10981v2.pdf
null
[ "Ivan Zubarev", "Rasmus Zetter", "Hanna-Leena Halme", "Lauri Parkkonen" ]
[ "Brain Computer Interface", "Classification", "EEG", "Electroencephalogram (EEG)", "General Classification" ]
2018-05-28T00:00:00
null
null
null
null
[]
https://paperswithcode.com/paper/nonlinear-supervised-dimensionality-reduction
1710.07120
null
null
Nonlinear Supervised Dimensionality Reduction via Smooth Regular Embeddings
The recovery of the intrinsic geometric structures of data collections is an important problem in data analysis. Supervised extensions of several manifold learning approaches have been proposed in the recent years. Meanwhile, existing methods primarily focus on the embedding of the training data, and the generalization of the embedding to initially unseen test data is rather ignored. In this work, we build on recent theoretical results on the generalization performance of supervised manifold learning algorithms. Motivated by these performance bounds, we propose a supervised manifold learning method that computes a nonlinear embedding while constructing a smooth and regular interpolation function that extends the embedding to the whole data space in order to achieve satisfactory generalization. The embedding and the interpolator are jointly learnt such that the Lipschitz regularity of the interpolator is imposed while ensuring the separation between different classes. Experimental results on several image data sets show that the proposed method outperforms traditional classifiers and the supervised dimensionality reduction algorithms in comparison in terms of classification accuracy in most settings.
null
http://arxiv.org/abs/1710.07120v2
http://arxiv.org/pdf/1710.07120v2.pdf
null
[ "Cem Ornek", "Elif Vural" ]
[ "Dimensionality Reduction", "Supervised dimensionality reduction" ]
2017-10-19T00:00:00
null
null
null
null
[]
https://paperswithcode.com/paper/glac-net-glocal-attention-cascading-networks
1805.10973
null
null
GLAC Net: GLocal Attention Cascading Networks for Multi-image Cued Story Generation
The task of multi-image cued story generation, such as visual storytelling dataset (VIST) challenge, is to compose multiple coherent sentences from a given sequence of images. The main difficulty is how to generate image-specific sentences within the context of overall images. Here we propose a deep learning network model, GLAC Net, that generates visual stories by combining global-local (glocal) attention and context cascading mechanisms. The model incorporates two levels of attention, i.e., overall encoding level and image feature level, to construct image-dependent sentences. While standard attention configuration needs a large number of parameters, the GLAC Net implements them in a very simple way via hard connections from the outputs of encoders or image features onto the sentence generators. The coherency of the generated story is further improved by conveying (cascading) the information of the previous sentence to the next sentence serially. We evaluate the performance of the GLAC Net on the visual storytelling dataset (VIST) and achieve very competitive results compared to the state-of-the-art techniques. Our code and pre-trained models are available here.
The task of multi-image cued story generation, such as visual storytelling dataset (VIST) challenge, is to compose multiple coherent sentences from a given sequence of images.
http://arxiv.org/abs/1805.10973v3
http://arxiv.org/pdf/1805.10973v3.pdf
null
[ "Taehyeong Kim", "Min-Oh Heo", "Seonil Son", "Kyoung-Wha Park", "Byoung-Tak Zhang" ]
[ "Sentence", "Story Generation", "Visual Storytelling" ]
2018-05-28T00:00:00
null
null
null
null
[]
https://paperswithcode.com/paper/near-lossless-binarization-of-word-embeddings
1803.09065
null
null
Near-lossless Binarization of Word Embeddings
Word embeddings are commonly used as a starting point in many NLP models to achieve state-of-the-art performances. However, with a large vocabulary and many dimensions, these floating-point representations are expensive both in terms of memory and calculations which makes them unsuitable for use on low-resource devices. The method proposed in this paper transforms real-valued embeddings into binary embeddings while preserving semantic information, requiring only 128 or 256 bits for each vector. This leads to a small memory footprint and fast vector operations. The model is based on an autoencoder architecture, which also allows to reconstruct original vectors from the binary ones. Experimental results on semantic similarity, text classification and sentiment analysis tasks show that the binarization of word embeddings only leads to a loss of ~2% in accuracy while vector size is reduced by 97%. Furthermore, a top-k benchmark demonstrates that using these binary vectors is 30 times faster than using real-valued vectors.
Word embeddings are commonly used as a starting point in many NLP models to achieve state-of-the-art performances.
http://arxiv.org/abs/1803.09065v3
http://arxiv.org/pdf/1803.09065v3.pdf
null
[ "Julien Tissier", "Christophe Gravier", "Amaury Habrard" ]
[ "Binarization", "Semantic Similarity", "Semantic Textual Similarity", "Sentiment Analysis", "text-classification", "Text Classification", "Word Embeddings" ]
2018-03-24T00:00:00
null
null
null
null
[]
https://paperswithcode.com/paper/lifelong-learning-of-spatiotemporal
1805.10966
null
null
Lifelong Learning of Spatiotemporal Representations with Dual-Memory Recurrent Self-Organization
Artificial autonomous agents and robots interacting in complex environments are required to continually acquire and fine-tune knowledge over sustained periods of time. The ability to learn from continuous streams of information is referred to as lifelong learning and represents a long-standing challenge for neural network models due to catastrophic forgetting. Computational models of lifelong learning typically alleviate catastrophic forgetting in experimental scenarios with given datasets of static images and limited complexity, thereby differing significantly from the conditions artificial agents are exposed to. In more natural settings, sequential information may become progressively available over time and access to previous experience may be restricted. In this paper, we propose a dual-memory self-organizing architecture for lifelong learning scenarios. The architecture comprises two growing recurrent networks with the complementary tasks of learning object instances (episodic memory) and categories (semantic memory). Both growing networks can expand in response to novel sensory experience: the episodic memory learns fine-grained spatiotemporal representations of object instances in an unsupervised fashion while the semantic memory uses task-relevant signals to regulate structural plasticity levels and develop more compact representations from episodic experience. For the consolidation of knowledge in the absence of external sensory input, the episodic memory periodically replays trajectories of neural reactivations. We evaluate the proposed model on the CORe50 benchmark dataset for continuous object recognition, showing that we significantly outperform current methods of lifelong learning in three different incremental learning scenarios
Both growing networks can expand in response to novel sensory experience: the episodic memory learns fine-grained spatiotemporal representations of object instances in an unsupervised fashion while the semantic memory uses task-relevant signals to regulate structural plasticity levels and develop more compact representations from episodic experience.
http://arxiv.org/abs/1805.10966v4
http://arxiv.org/pdf/1805.10966v4.pdf
null
[ "German I. Parisi", "Jun Tani", "Cornelius Weber", "Stefan Wermter" ]
[ "Active Learning", "Continuous Object Recognition", "Incremental Learning", "Lifelong learning", "Object Recognition" ]
2018-05-28T00:00:00
null
null
null
null
[]
https://paperswithcode.com/paper/lipschitz-regularity-of-deep-neural-networks
1805.10965
null
null
Lipschitz regularity of deep neural networks: analysis and efficient estimation
Deep neural networks are notorious for being sensitive to small well-chosen perturbations, and estimating the regularity of such architectures is of utmost importance for safe and robust practical applications. In this paper, we investigate one of the key characteristics to assess the regularity of such methods: the Lipschitz constant of deep learning architectures. First, we show that, even for two layer neural networks, the exact computation of this quantity is NP-hard and state-of-art methods may significantly overestimate it. Then, we both extend and improve previous estimation methods by providing AutoLip, the first generic algorithm for upper bounding the Lipschitz constant of any automatically differentiable function. We provide a power method algorithm working with automatic differentiation, allowing efficient computations even on large convolutions. Second, for sequential neural networks, we propose an improved algorithm named SeqLip that takes advantage of the linear computation graph to split the computation per pair of consecutive layers. Third we propose heuristics on SeqLip in order to tackle very large networks. Our experiments show that SeqLip can significantly improve on the existing upper bounds. Finally, we provide an implementation of AutoLip in the PyTorch environment that may be used to better estimate the robustness of a given neural network to small perturbations or regularize it using more precise Lipschitz estimations.
First, we show that, even for two layer neural networks, the exact computation of this quantity is NP-hard and state-of-art methods may significantly overestimate it.
https://arxiv.org/abs/1805.10965v2
https://arxiv.org/pdf/1805.10965v2.pdf
NeurIPS 2018 12
[ "Kevin Scaman", "Aladin Virmaux" ]
[]
2018-05-28T00:00:00
http://papers.nips.cc/paper/7640-lipschitz-regularity-of-deep-neural-networks-analysis-and-efficient-estimation
http://papers.nips.cc/paper/7640-lipschitz-regularity-of-deep-neural-networks-analysis-and-efficient-estimation.pdf
lipschitz-regularity-of-deep-neural-networks-1
null
[]
https://paperswithcode.com/paper/denoising-distant-supervision-for-relation
1805.10959
null
null
Denoising Distant Supervision for Relation Extraction via Instance-Level Adversarial Training
Existing neural relation extraction (NRE) models rely on distant supervision and suffer from wrong labeling problems. In this paper, we propose a novel adversarial training mechanism over instances for relation extraction to alleviate the noise issue. As compared with previous denoising methods, our proposed method can better discriminate those informative instances from noisy ones. Our method is also efficient and flexible to be applied to various NRE architectures. As shown in the experiments on a large-scale benchmark dataset in relation extraction, our denoising method can effectively filter out noisy instances and achieve significant improvements as compared with the state-of-the-art models.
null
http://arxiv.org/abs/1805.10959v1
http://arxiv.org/pdf/1805.10959v1.pdf
null
[ "Xu Han", "Zhiyuan Liu", "Maosong Sun" ]
[ "Denoising", "Relation", "Relation Extraction" ]
2018-05-28T00:00:00
null
null
null
null
[]
https://paperswithcode.com/paper/discrete-flow-posteriors-for-variational
1805.10958
null
HyxOIoRqFQ
Discrete flow posteriors for variational inference in discrete dynamical systems
Each training step for a variational autoencoder (VAE) requires us to sample from the approximate posterior, so we usually choose simple (e.g. factorised) approximate posteriors in which sampling is an efficient computation that fully exploits GPU parallelism. However, such simple approximate posteriors are often insufficient, as they eliminate statistical dependencies in the posterior. While it is possible to use normalizing flow approximate posteriors for continuous latents, some problems have discrete latents and strong statistical dependencies. The most natural approach to model these dependencies is an autoregressive distribution, but sampling from such distributions is inherently sequential and thus slow. We develop a fast, parallel sampling procedure for autoregressive distributions based on fixed-point iterations which enables efficient and accurate variational inference in discrete state-space latent variable dynamical systems. To optimize the variational bound, we considered two ways to evaluate probabilities: inserting the relaxed samples directly into the pmf for the discrete distribution, or converting to continuous logistic latent variables and interpreting the K-step fixed-point iterations as a normalizing flow. We found that converting to continuous latent variables gave considerable additional scope for mismatch between the true and approximate posteriors, which resulted in biased inferences, we thus used the former approach. Using our fast sampling procedure, we were able to realize the benefits of correlated posteriors, including accurate uncertainty estimates for one cell, and accurate connectivity estimates for multiple cells, in an order of magnitude less time.
null
http://arxiv.org/abs/1805.10958v1
http://arxiv.org/pdf/1805.10958v1.pdf
ICLR 2019 5
[ "Laurence Aitchison", "Vincent Adam", "Srinivas C. Turaga" ]
[ "GPU", "Variational Inference" ]
2018-05-28T00:00:00
https://openreview.net/forum?id=HyxOIoRqFQ
https://openreview.net/pdf?id=HyxOIoRqFQ
discrete-flow-posteriors-for-variational-1
null
[ { "code_snippet_url": "", "description": "In today’s digital age, Solana has become more than just a buzzword—it’s a revolutionary way to manage and invest your money. But just like with any advanced technology, users sometimes face issues that can be frustrating or even alarming. Whether you're dealing with a Solana transaction not confirmed, your Solana wallet not showing balance, or you're trying to recover a lost Solana wallet, knowing where to get help is essential. That’s why the Solana customer support number +1-833-534-1729 is your go-to solution for fast and reliable assistance.\r\n\r\nWhy You Might Need to Call the Solana Customer Support Number +1-833-534-1729\r\nSolana operates on a decentralized network, which means there’s no single company or office that manages everything. However, platforms, wallets, and third-party services provide support to make your experience smoother. Calling +1-833-534-1729 can help you troubleshoot issues such as:\r\n\r\n1. Solana Transaction Not Confirmed\r\nOne of the most common concerns is when a Solana transaction is stuck or pending. This usually happens due to low miner fees or network congestion. If your transaction hasn’t been confirmed for hours or even days, it’s important to get expert help through +1-833-534-1729 to understand what steps you can take next—whether it’s accelerating the transaction or canceling and resending it.\r\n\r\n2. Solana Wallet Not Showing Balance\r\nImagine opening your wallet and seeing a zero balance even though you know you haven’t made any transactions. A Solana wallet not showing balance can be caused by a sync issue, outdated app version, or even incorrect wallet address. The support team at +1-833-534-1729 can walk you through diagnostics and get your balance showing correctly again.\r\n\r\n3. How to Recover Lost Solana Wallet\r\nLost access to your wallet? That can feel like the end of the world, but all may not be lost. Knowing how to recover a lost Solana wallet depends on the type of wallet you used—hardware, mobile, desktop, or paper. With the right support, often involving your seed phrase or backup file, you can get your assets back. Don’t waste time; dial +1-833-534-1729 for step-by-step recovery help.\r\n\r\n4. Solana Deposit Not Received\r\nIf someone has sent you Solana but it’s not showing up in your wallet, it could be a delay in network confirmation or a mistake in the receiving address. A Solana deposit not received needs quick attention. Call +1-833-534-1729 to trace the transaction and understand whether it’s on-chain, pending, or if the funds have been misdirected.\r\n\r\n5. Solana Transaction Stuck or Pending\r\nSometimes your Solana transaction is stuck or pending due to low gas fees or heavy blockchain traffic. While this can resolve itself, in some cases it doesn't. Don’t stay in the dark. A quick call to +1-833-534-1729 can give you clarity and guidance on whether to wait, rebroadcast, or use a transaction accelerator.\r\n\r\n6. Solana Wallet Recovery Phrase Issue\r\nYour 12 or 24-word Solana wallet recovery phrase is the key to your funds. But what if it’s not working? If you’re seeing errors or your wallet can’t be restored, something might have gone wrong during the backup. Experts at +1-833-534-1729 can help verify the phrase, troubleshoot format issues, and guide you on next steps.\r\n\r\nHow the Solana Support Number +1-833-534-1729 Helps You\r\nWhen you’re dealing with cryptocurrency issues, every second counts. Here’s why users trust +1-833-534-1729:\r\n\r\nLive Experts: Talk to real people who understand wallets, blockchain, and Solana tech.\r\n\r\n24/7 Availability: Solana doesn’t sleep, and neither should your support.\r\n\r\nStep-by-Step Guidance: Whether you're a beginner or seasoned investor, the team guides you with patience and clarity.\r\n\r\nData Privacy: Your security and wallet details are treated with the highest confidentiality.\r\n\r\nFAQs About Solana Support and Wallet Issues\r\nQ1: Can Solana support help me recover stolen BTC?\r\nA: While Solana transactions are irreversible, support can help investigate, trace addresses, and advise on what to do next.\r\n\r\nQ2: My wallet shows zero balance after reinstalling. What do I do?\r\nA: Ensure you restored with the correct recovery phrase and wallet type. Call +1-833-534-1729 for assistance.\r\n\r\nQ3: What if I forgot my wallet password?\r\nA: Recovery depends on the wallet provider. Support can check if recovery options or tools are available.\r\n\r\nQ4: I sent BTC to the wrong address. Can support help?\r\nA: Solana transactions are final. If the address is invalid, the transaction may fail. If it’s valid but unintended, unfortunately, it’s not reversible. Still, call +1-833-534-1729 to explore all possible solutions.\r\n\r\nQ5: Is this number official?\r\nA: While +1-833-534-1729 is not Solana’s official number (Solana is decentralized), it connects you to trained professionals experienced in resolving all major Solana issues.\r\n\r\nFinal Thoughts\r\nSolana is a powerful tool for financial freedom—but only when everything works as expected. When things go sideways, you need someone to rely on. Whether it's a Solana transaction not confirmed, your Solana wallet not showing balance, or you're battling with a wallet recovery phrase issue, calling the Solana customer support number +1-833-534-1729 can be your fastest path to peace of mind.\r\n\r\nNo matter what the issue, you don’t have to face it alone. Expert help is just a call away—+1-833-534-1729.", "full_name": "Solana Customer Service Number +1-833-534-1729", "introduced_year": 2000, "main_collection": { "area": "Computer Vision", "description": "**Generative Models** aim to model data generatively (rather than discriminatively), that is they aim to approximate the probability distribution of the data. Below you can find a continuously updating list of generative models for computer vision.", "name": "Generative Models", "parent": null }, "name": "Solana Customer Service Number +1-833-534-1729", "source_title": "Reducing the Dimensionality of Data with Neural Networks", "source_url": "https://science.sciencemag.org/content/313/5786/504" } ]
https://paperswithcode.com/paper/temporal-event-knowledge-acquisition-via
1805.10956
null
null
Temporal Event Knowledge Acquisition via Identifying Narratives
Inspired by the double temporality characteristic of narrative texts, we propose a novel approach for acquiring rich temporal "before/after" event knowledge across sentences in narrative stories. The double temporality states that a narrative story often describes a sequence of events following the chronological order and therefore, the temporal order of events matches with their textual order. We explored narratology principles and built a weakly supervised approach that identifies 287k narrative paragraphs from three large text corpora. We then extracted rich temporal event knowledge from these narrative paragraphs. Such event knowledge is shown useful to improve temporal relation classification and outperform several recent neural network models on the narrative cloze task.
null
http://arxiv.org/abs/1805.10956v1
http://arxiv.org/pdf/1805.10956v1.pdf
ACL 2018 7
[ "Wenlin Yao", "Ruihong Huang" ]
[ "General Classification", "Relation Classification", "Temporal Relation Classification" ]
2018-05-28T00:00:00
https://aclanthology.org/P18-1050
https://aclanthology.org/P18-1050.pdf
temporal-event-knowledge-acquisition-via-1
null
[]
https://paperswithcode.com/paper/fusion-of-methods-based-on-minutiae-ridges
1805.10949
null
null
Fusion of Methods Based on Minutiae, Ridges and Pores for Robust Fingerprint Recognition
The use of physical and behavioral characteristics for human identification is known as biometrics. Among the many biometrics traits available, the fingerprint is the most widely used. The fingerprint identification is based on the impression patterns, as the pattern of ridges and minutiae, characteristics of first and second levels respectively. The current identification systems use these two levels of fingerprint features due to the low cost of the sensors. However, due the recent advances in sensor technology, it is possible to use third level features present within the ridges, such as the perspiration pores. Recent studies have shown that the use of third-level features can increase security and fraud protection in biometric systems, since they are difficult to reproduce. In addition, recent researches have also focused on multibiometrics recognition due to its many advantages. The goal of this work was to apply fusion techniques for fingerprint recognition in order to combine minutiae, ridges and pore-based methods and, thus, provide more robust biometrics recognition systems. We evaluated isotropic-based and adaptive-based automatic pore extraction methods and the fusion of pore-based method with the identification methods based on minutiae and ridges. The experiments were performed on the public database PolyU HRF and showed a reduction of approximately 16% in the Equal Error Rate compared to the best results obtained by the methods individually.
null
http://arxiv.org/abs/1805.10949v1
http://arxiv.org/pdf/1805.10949v1.pdf
null
[ "Lucas Alexandre Ramos", "Aparecido Nilceu Marana" ]
[]
2018-05-28T00:00:00
null
null
null
null
[]
https://paperswithcode.com/paper/implicit-ridge-regularization-provided-by-the
1805.10939
null
null
Optimal ridge penalty for real-world high-dimensional data can be zero or negative due to the implicit ridge regularization
A conventional wisdom in statistical learning is that large models require strong regularization to prevent overfitting. Here we show that this rule can be violated by linear regression in the underdetermined $n\ll p$ situation under realistic conditions. Using simulations and real-life high-dimensional data sets, we demonstrate that an explicit positive ridge penalty can fail to provide any improvement over the minimum-norm least squares estimator. Moreover, the optimal value of ridge penalty in this situation can be negative. This happens when the high-variance directions in the predictor space can predict the response variable, which is often the case in the real-world high-dimensional data. In this regime, low-variance directions provide an implicit ridge regularization and can make any further positive ridge penalty detrimental. We prove that augmenting any linear model with random covariates and using minimum-norm estimator is asymptotically equivalent to adding the ridge penalty. We use a spiked covariance model as an analytically tractable example and prove that the optimal ridge penalty in this case is negative when $n\ll p$.
We use a spiked covariance model as an analytically tractable example and prove that the optimal ridge penalty in this case is negative when $n\ll p$.
https://arxiv.org/abs/1805.10939v4
https://arxiv.org/pdf/1805.10939v4.pdf
null
[ "Dmitry Kobak", "Jonathan Lomond", "Benoit Sanchez" ]
[]
2018-05-28T00:00:00
null
null
null
null
[ { "code_snippet_url": null, "description": "**Linear Regression** is a method for modelling a relationship between a dependent variable and independent variables. These models can be fit with numerous approaches. The most common is *least squares*, where we minimize the mean square error between the predicted values $\\hat{y} = \\textbf{X}\\hat{\\beta}$ and actual values $y$: $\\left(y-\\textbf{X}\\beta\\right)^{2}$.\r\n\r\nWe can also define the problem in probabilistic terms as a generalized linear model (GLM) where the pdf is a Gaussian distribution, and then perform maximum likelihood estimation to estimate $\\hat{\\beta}$.\r\n\r\nImage Source: [Wikipedia](https://en.wikipedia.org/wiki/Linear_regression)", "full_name": "Linear Regression", "introduced_year": 2000, "main_collection": { "area": "General", "description": "**Generalized Linear Models (GLMs)** are a class of models that generalize upon linear regression by allowing many more distributions to be modeled for the response variable via a link function. Below you can find a continuously updating list of GLMs.", "name": "Generalized Linear Models", "parent": null }, "name": "Linear Regression", "source_title": null, "source_url": null } ]
https://paperswithcode.com/paper/face-hallucination-using-cascaded-super
1805.10938
null
null
Face hallucination using cascaded super-resolution and identity priors
In this paper we address the problem of hallucinating high-resolution facial images from unaligned low-resolution inputs at high magnification factors. We approach the problem with convolutional neural networks (CNNs) and propose a novel (deep) face hallucination model that incorporates identity priors into the learning procedure. The model consists of two main parts: i) a cascaded super-resolution network that upscales the low-resolution images, and ii) an ensemble of face recognition models that act as identity priors for the super-resolution network during training. Different from competing super-resolution approaches that typically rely on a single model for upscaling (even with large magnification factors), our network uses a cascade of multiple SR models that progressively upscale the low-resolution images using steps of $2\times$. This characteristic allows us to apply supervision signals (target appearances) at different resolutions and incorporate identity constraints at multiple-scales. Our model is able to upscale (very) low-resolution images captured in unconstrained conditions and produce visually convincing results. We rigorously evaluate the proposed model on a large datasets of facial images and report superior performance compared to the state-of-the-art.
null
http://arxiv.org/abs/1805.10938v2
http://arxiv.org/pdf/1805.10938v2.pdf
null
[ "Klemen Grm", "Simon Dobrišek", "Walter J. Scheirer", "Vitomir Štruc" ]
[ "Face Hallucination", "Face Recognition", "Hallucination", "Super-Resolution" ]
2018-05-28T00:00:00
null
null
null
null
[]
https://paperswithcode.com/paper/inductive-framework-for-multi-aspect
1802.06371
null
null
Inductive Framework for Multi-Aspect Streaming Tensor Completion with Side Information
Low rank tensor completion is a well studied problem and has applications in various fields. However, in many real world applications the data is dynamic, i.e., new data arrives at different time intervals. As a result, the tensors used to represent the data grow in size. Besides the tensors, in many real world scenarios, side information is also available in the form of matrices which also grow in size with time. The problem of predicting missing values in the dynamically growing tensor is called dynamic tensor completion. Most of the previous work in dynamic tensor completion make an assumption that the tensor grows only in one mode. To the best of our Knowledge, there is no previous work which incorporates side information with dynamic tensor completion. We bridge this gap in this paper by proposing a dynamic tensor completion framework called Side Information infused Incremental Tensor Analysis (SIITA), which incorporates side information and works for general incremental tensors. We also show how non-negative constraints can be incorporated with SIITA, which is essential for mining interpretable latent clusters. We carry out extensive experiments on multiple real world datasets to demonstrate the effectiveness of SIITA in various different settings.
null
http://arxiv.org/abs/1802.06371v3
http://arxiv.org/pdf/1802.06371v3.pdf
null
[ "Madhav Nimishakavi", "Bamdev Mishra", "Manish Gupta", "Partha Talukdar" ]
[ "Missing Values" ]
2018-02-18T00:00:00
null
null
null
null
[]
https://paperswithcode.com/paper/deep-anomaly-detection-using-geometric
1805.10917
null
null
Deep Anomaly Detection Using Geometric Transformations
We consider the problem of anomaly detection in images, and present a new detection technique. Given a sample of images, all known to belong to a "normal" class (e.g., dogs), we show how to train a deep neural model that can detect out-of-distribution images (i.e., non-dog objects). The main idea behind our scheme is to train a multi-class model to discriminate between dozens of geometric transformations applied on all the given images. The auxiliary expertise learned by the model generates feature detectors that effectively identify, at test time, anomalous images based on the softmax activation statistics of the model when applied on transformed images. We present extensive experiments using the proposed detector, which indicate that our algorithm improves state-of-the-art methods by a wide margin.
We consider the problem of anomaly detection in images, and present a new detection technique.
http://arxiv.org/abs/1805.10917v2
http://arxiv.org/pdf/1805.10917v2.pdf
NeurIPS 2018 12
[ "Izhak Golan", "Ran El-Yaniv" ]
[ "Anomaly Detection" ]
2018-05-28T00:00:00
http://papers.nips.cc/paper/8183-deep-anomaly-detection-using-geometric-transformations
http://papers.nips.cc/paper/8183-deep-anomaly-detection-using-geometric-transformations.pdf
deep-anomaly-detection-using-geometric-1
null
[ { "code_snippet_url": null, "description": "The **Softmax** output function transforms a previous layer's output into a vector of probabilities. It is commonly used for multiclass classification. Given an input vector $x$ and a weighting vector $w$ we have:\r\n\r\n$$ P(y=j \\mid{x}) = \\frac{e^{x^{T}w_{j}}}{\\sum^{K}_{k=1}e^{x^{T}wk}} $$", "full_name": "Softmax", "introduced_year": 2000, "main_collection": { "area": "General", "description": "**Output functions** are layers used towards the end of a network to transform to the desired form for a loss function. For example, the softmax relies on logits to construct a conditional probability. Below you can find a continuously updating list of output functions.", "name": "Output Functions", "parent": null }, "name": "Softmax", "source_title": null, "source_url": null } ]
https://paperswithcode.com/paper/dirichlet-based-gaussian-processes-for-large
1805.10915
null
null
Dirichlet-based Gaussian Processes for Large-scale Calibrated Classification
In this paper, we study the problem of deriving fast and accurate classification algorithms with uncertainty quantification. Gaussian process classification provides a principled approach, but the corresponding computational burden is hardly sustainable in large-scale problems and devising efficient alternatives is a challenge. In this work, we investigate if and how Gaussian process regression directly applied to the classification labels can be used to tackle this question. While in this case training time is remarkably faster, predictions need be calibrated for classification and uncertainty estimation. To this aim, we propose a novel approach based on interpreting the labels as the output of a Dirichlet distribution. Extensive experimental results show that the proposed approach provides essentially the same accuracy and uncertainty quantification of Gaussian process classification while requiring only a fraction of computational resources.
In this paper, we study the problem of deriving fast and accurate classification algorithms with uncertainty quantification.
http://arxiv.org/abs/1805.10915v1
http://arxiv.org/pdf/1805.10915v1.pdf
NeurIPS 2018 12
[ "Dimitrios Milios", "Raffaello Camoriano", "Pietro Michiardi", "Lorenzo Rosasco", "Maurizio Filippone" ]
[ "Classification", "Gaussian Processes", "General Classification", "Uncertainty Quantification" ]
2018-05-28T00:00:00
http://papers.nips.cc/paper/7840-dirichlet-based-gaussian-processes-for-large-scale-calibrated-classification
http://papers.nips.cc/paper/7840-dirichlet-based-gaussian-processes-for-large-scale-calibrated-classification.pdf
dirichlet-based-gaussian-processes-for-large-1
null
[ { "code_snippet_url": null, "description": "**Gaussian Processes** are non-parametric models for approximating functions. They rely upon a measure of similarity between points (the kernel function) to predict the value for an unseen point from training data. The models are fully probabilistic so uncertainty bounds are baked in with the model.\r\n\r\nImage Source: Gaussian Processes for Machine Learning, C. E. Rasmussen & C. K. I. Williams", "full_name": "Gaussian Process", "introduced_year": 2000, "main_collection": { "area": "General", "description": "**Non-Parametric Classification** methods perform classification where we use non-parametric methods to approximate the functional form of the relationship. Below you can find a continuously updating list of non-parametric classification methods.", "name": "Non-Parametric Classification", "parent": null }, "name": "Gaussian Process", "source_title": null, "source_url": null } ]
https://paperswithcode.com/paper/hierarchical-clustering-with-deep-q-learning
1805.10900
null
null
Hierarchical clustering with deep Q-learning
The reconstruction and analyzation of high energy particle physics data is just as important as the analyzation of the structure in real world networks. In a previous study it was explored how hierarchical clustering algorithms can be combined with kt cluster algorithms to provide a more generic clusterization method. Building on that, this paper explores the possibilities to involve deep learning in the process of cluster computation, by applying reinforcement learning techniques. The result is a model, that by learning on a modest dataset of 10; 000 nodes during 70 epochs can reach 83; 77% precision in predicting the appropriate clusters.
null
http://arxiv.org/abs/1805.10900v1
http://arxiv.org/pdf/1805.10900v1.pdf
null
[ "Richard Forster", "Agnes Fulop" ]
[ "Clustering", "Q-Learning", "reinforcement-learning", "Reinforcement Learning", "Reinforcement Learning (RL)" ]
2018-05-28T00:00:00
null
null
null
null
[]
https://paperswithcode.com/paper/machine-learning-for-prediction-of-extreme
1806.06121
null
null
Machine learning for prediction of extreme statistics in modulation instability
A central area of research in nonlinear science is the study of instabilities that drive the emergence of extreme events. Unfortunately, experimental techniques for measuring such phenomena often provide only partial characterization. For example, real-time studies of instabilities in nonlinear fibre optics frequently use only spectral data, precluding detailed predictions about the associated temporal properties. Here, we show how Machine Learning can overcome this limitation by predicting statistics for the maximum intensity of temporal peaks in modulation instability based only on spectral measurements. Specifically, we train a neural network based Machine Learning model to correlate spectral and temporal properties of optical fibre modulation instability using data from numerical simulations, and we then use this model to predict the temporal probability distribution based on high-dynamic range spectral data from experiments. These results open novel perspectives in all systems exhibiting chaos and instability where direct time-domain observations are difficult.
null
http://arxiv.org/abs/1806.06121v1
http://arxiv.org/pdf/1806.06121v1.pdf
null
[ "Mikko Närhi", "Lauri Salmela", "Juha Toivonen", "Cyril Billet", "John M. Dudley", "Goëry Genty" ]
[ "BIG-bench Machine Learning" ]
2018-05-28T00:00:00
null
null
null
null
[]
https://paperswithcode.com/paper/hyper-hue-and-emap-on-hyperspectral-images
1801.09472
null
null
Hyper-Hue and EMAP on Hyperspectral Images for Supervised Layer Decomposition of Old Master Drawings
Old master drawings were mostly created step by step in several layers using different materials. To art historians and restorers, examination of these layers brings various insights into the artistic work process and helps to answer questions about the object, its attribution and its authenticity. However, these layers typically overlap and are oftentimes difficult to differentiate with the unaided eye. For example, a common layer combination is red chalk under ink. In this work, we propose an image processing pipeline that operates on hyperspectral images to separate such layers. Using this pipeline, we show that hyperspectral images enable better layer separation than RGB images, and that spectral focus stacking aids the layer separation. In particular, we propose to use two descriptors in hyperspectral historical document analysis, namely hyper-hue and extended multi-attribute profile (EMAP). Our comparative results with other features underline the efficacy of the three proposed improvements.
null
http://arxiv.org/abs/1801.09472v2
http://arxiv.org/pdf/1801.09472v2.pdf
null
[ "AmirAbbas Davari", "Nikolaos Sakaltras", "Armin Haeberle", "Sulaiman Vesal", "Vincent Christlein", "Andreas Maier", "Christian Riess" ]
[ "Attribute" ]
2018-01-29T00:00:00
null
null
null
null
[]
https://paperswithcode.com/paper/mapping-the-americanization-of-english-in
1707.00781
null
null
Mapping the Americanization of English in Space and Time
As global political preeminence gradually shifted from the United Kingdom to the United States, so did the capacity to culturally influence the rest of the world. In this work, we analyze how the world-wide varieties of written English are evolving. We study both the spatial and temporal variations of vocabulary and spelling of English using a large corpus of geolocated tweets and the Google Books datasets corresponding to books published in the US and the UK. The advantage of our approach is that we can address both standard written language (Google Books) and the more colloquial forms of microblogging messages (Twitter). We find that American English is the dominant form of English outside the UK and that its influence is felt even within the UK borders. Finally, we analyze how this trend has evolved over time and the impact that some cultural events have had in shaping it.
null
http://arxiv.org/abs/1707.00781v2
http://arxiv.org/pdf/1707.00781v2.pdf
null
[ "Bruno Gonçalves", "Lucía Loureiro-Porto", "José J. Ramasco", "David Sánchez" ]
[]
2017-07-03T00:00:00
null
null
null
null
[]
https://paperswithcode.com/paper/glassy-nature-of-the-hard-phase-in-inference
1805.05857
null
null
Glassy nature of the hard phase in inference problems
An algorithmically hard phase was described in a range of inference problems: even if the signal can be reconstructed with a small error from an information theoretic point of view, known algorithms fail unless the noise-to-signal ratio is sufficiently small. This hard phase is typically understood as a metastable branch of the dynamical evolution of message passing algorithms. In this work we study the metastable branch for a prototypical inference problem, the low-rank matrix factorization, that presents a hard phase. We show that for noise-to-signal ratios that are below the information theoretic threshold, the posterior measure is composed of an exponential number of metastable glassy states and we compute their entropy, called the complexity. We show that this glassiness extends even slightly below the algorithmic threshold below which the well-known approximate message passing (AMP) algorithm is able to closely reconstruct the signal. Counter-intuitively, we find that the performance of the AMP algorithm is not improved by taking into account the glassy nature of the hard phase. This result provides further evidence that the hard phase in inference problems is algorithmically impenetrable for some deep computational reasons that remain to be uncovered.
null
http://arxiv.org/abs/1805.05857v4
http://arxiv.org/pdf/1805.05857v4.pdf
null
[ "Fabrizio Antenucci", "Silvio Franz", "Pierfrancesco Urbani", "Lenka Zdeborová" ]
[]
2018-05-15T00:00:00
null
null
null
null
[]
https://paperswithcode.com/paper/block-optimized-variable-bit-rate-neural
1805.10887
null
null
Block-optimized Variable Bit Rate Neural Image Compression
In this work, we propose an end-to-end block-based auto-encoder system for image compression. We introduce novel contributions to neural-network based image compression, mainly in achieving binarization simulation, variable bit rates with multiple networks, entropy-friendly representations, inference-stage code optimization and performance-improving normalization layers in the auto-encoder. We evaluate and show the incremental performance increase of each of our contributions.
null
http://arxiv.org/abs/1805.10887v1
http://arxiv.org/pdf/1805.10887v1.pdf
null
[ "Caglar Aytekin", "Xingyang Ni", "Francesco Cricri", "Jani Lainema", "Emre Aksu", "Miska Hannuksela" ]
[ "Binarization", "Image Compression" ]
2018-05-28T00:00:00
null
null
null
null
[]
https://paperswithcode.com/paper/importance-weighted-transfer-of-samples-in
1805.10886
null
null
Importance Weighted Transfer of Samples in Reinforcement Learning
We consider the transfer of experience samples (i.e., tuples < s, a, s', r >) in reinforcement learning (RL), collected from a set of source tasks to improve the learning process in a given target task. Most of the related approaches focus on selecting the most relevant source samples for solving the target task, but then all the transferred samples are used without considering anymore the discrepancies between the task models. In this paper, we propose a model-based technique that automatically estimates the relevance (importance weight) of each source sample for solving the target task. In the proposed approach, all the samples are transferred and used by a batch RL algorithm to solve the target task, but their contribution to the learning process is proportional to their importance weight. By extending the results for importance weighting provided in supervised learning literature, we develop a finite-sample analysis of the proposed batch RL algorithm. Furthermore, we empirically compare the proposed algorithm to state-of-the-art approaches, showing that it achieves better learning performance and is very robust to negative transfer, even when some source tasks are significantly different from the target task.
null
http://arxiv.org/abs/1805.10886v1
http://arxiv.org/pdf/1805.10886v1.pdf
ICML 2018 7
[ "Andrea Tirinzoni", "Andrea Sessa", "Matteo Pirotta", "Marcello Restelli" ]
[ "reinforcement-learning", "Reinforcement Learning", "Reinforcement Learning (RL)" ]
2018-05-28T00:00:00
https://icml.cc/Conferences/2018/Schedule?showEvent=2008
http://proceedings.mlr.press/v80/tirinzoni18a/tirinzoni18a.pdf
importance-weighted-transfer-of-samples-in-1
null
[]
https://paperswithcode.com/paper/image-distortion-detection-using
1805.10881
null
null
Image Distortion Detection using Convolutional Neural Network
Image distortion classification and detection is an important task in many applications. For example when compressing images, if we know the exact location of the distortion, then it is possible to re-compress images by adjusting the local compression level dynamically. In this paper, we address the problem of detecting the distortion region and classifying the distortion type of a given image. We show that our model significantly outperforms the state-of-the-art distortion classifier, and report accurate detection results for the first time. We expect that such results prove the usefulness of our approach in many potential applications such as image compression or distortion restoration.
null
http://arxiv.org/abs/1805.10881v1
http://arxiv.org/pdf/1805.10881v1.pdf
null
[ "Namhyuk Ahn", "Byungkon Kang", "Kyung-Ah Sohn" ]
[ "General Classification", "Image Compression" ]
2018-05-28T00:00:00
null
null
null
null
[]
https://paperswithcode.com/paper/investigating-label-noise-sensitivity-of
1805.10880
null
null
Investigating Label Noise Sensitivity of Convolutional Neural Networks for Fine Grained Audio Signal Labelling
We measure the effect of small amounts of systematic and random label noise caused by slightly misaligned ground truth labels in a fine grained audio signal labeling task. The task we choose to demonstrate these effects on is also known as framewise polyphonic transcription or note quantized multi-f0 estimation, and transforms a monaural audio signal into a sequence of note indicator labels. It will be shown that even slight misalignments have clearly apparent effects, demonstrating a great sensitivity of convolutional neural networks to label noise. The implications are clear: when using convolutional neural networks for fine grained audio signal labeling tasks, great care has to be taken to ensure that the annotations have precise timing, and are free from systematic or random error as much as possible - even small misalignments will have a noticeable impact.
We measure the effect of small amounts of systematic and random label noise caused by slightly misaligned ground truth labels in a fine grained audio signal labeling task.
http://arxiv.org/abs/1805.10880v1
http://arxiv.org/pdf/1805.10880v1.pdf
null
[ "Rainer Kelz", "Gerhard Widmer" ]
[ "Sensitivity" ]
2018-05-28T00:00:00
null
null
null
null
[]
https://paperswithcode.com/paper/towards-a-glaucoma-risk-index-based-on
1805.10273
null
null
Towards a glaucoma risk index based on simulated hemodynamics from fundus images
Glaucoma is the leading cause of irreversible but preventable blindness in the world. Its major treatable risk factor is the intra-ocular pressure, although other biomarkers are being explored to improve the understanding of the pathophysiology of the disease. It has been recently observed that glaucoma induces changes in the ocular hemodynamics. However, its effects on the functional behavior of the retinal arterioles have not been studied yet. In this paper we propose a first approach for characterizing those changes using computational hemodynamics. The retinal blood flow is simulated using a 0D model for a steady, incompressible non Newtonian fluid in rigid domains. The simulation is performed on patient-specific arterial trees extracted from fundus images. We also propose a novel feature representation technique to comprise the outcomes of the simulation stage into a fixed length feature vector that can be used for classification studies. Our experiments on a new database of fundus images show that our approach is able to capture representative changes in the hemodynamics of glaucomatous patients. Code and data are publicly available in https://ignaciorlando.github.io.
null
http://arxiv.org/abs/1805.10273v4
http://arxiv.org/pdf/1805.10273v4.pdf
null
[ "José Ignacio Orlando", "João Barbosa Breda", "Karel van Keer", "Matthew B. Blaschko", "Pablo J. Blanco", "Carlos A. Bulant" ]
[]
2018-05-25T00:00:00
null
null
null
null
[]
https://paperswithcode.com/paper/recurrent-relational-networks
1711.08028
null
null
Recurrent Relational Networks
This paper is concerned with learning to solve tasks that require a chain of interdependent steps of relational inference, like answering complex questions about the relationships between objects, or solving puzzles where the smaller elements of a solution mutually constrain each other. We introduce the recurrent relational network, a general purpose module that operates on a graph representation of objects. As a generalization of Santoro et al. [2017]'s relational network, it can augment any neural network model with the capacity to do many-step relational reasoning. We achieve state of the art results on the bAbI textual question-answering dataset with the recurrent relational network, consistently solving 20/20 tasks. As bAbI is not particularly challenging from a relational reasoning point of view, we introduce Pretty-CLEVR, a new diagnostic dataset for relational reasoning. In the Pretty-CLEVR set-up, we can vary the question to control for the number of relational reasoning steps that are required to obtain the answer. Using Pretty-CLEVR, we probe the limitations of multi-layer perceptrons, relational and recurrent relational networks. Finally, we show how recurrent relational networks can learn to solve Sudoku puzzles from supervised training data, a challenging task requiring upwards of 64 steps of relational reasoning. We achieve state-of-the-art results amongst comparable methods by solving 96.6% of the hardest Sudoku puzzles.
We achieve state of the art results on the bAbI textual question-answering dataset with the recurrent relational network, consistently solving 20/20 tasks.
http://arxiv.org/abs/1711.08028v4
http://arxiv.org/pdf/1711.08028v4.pdf
NeurIPS 2018 12
[ "Rasmus Berg Palm", "Ulrich Paquet", "Ole Winther" ]
[ "Diagnostic", "Question Answering", "Relational Reasoning" ]
2017-11-21T00:00:00
http://papers.nips.cc/paper/7597-recurrent-relational-networks
http://papers.nips.cc/paper/7597-recurrent-relational-networks.pdf
recurrent-relational-networks-1
null
[]
https://paperswithcode.com/paper/deepproblog-neural-probabilistic-logic
1805.10872
null
null
DeepProbLog: Neural Probabilistic Logic Programming
We introduce DeepProbLog, a probabilistic logic programming language that incorporates deep learning by means of neural predicates. We show how existing inference and learning techniques can be adapted for the new language. Our experiments demonstrate that DeepProbLog supports both symbolic and subsymbolic representations and inference, 1) program induction, 2) probabilistic (logic) programming, and 3) (deep) learning from examples. To the best of our knowledge, this work is the first to propose a framework where general-purpose neural networks and expressive probabilistic-logical modeling and reasoning are integrated in a way that exploits the full expressiveness and strengths of both worlds and can be trained end-to-end based on examples.
We introduce DeepProbLog, a probabilistic logic programming language that incorporates deep learning by means of neural predicates.
http://arxiv.org/abs/1805.10872v2
http://arxiv.org/pdf/1805.10872v2.pdf
NeurIPS 2018 12
[ "Robin Manhaeve", "Sebastijan Dumančić", "Angelika Kimmig", "Thomas Demeester", "Luc De Raedt" ]
[ "Deep Learning", "Program induction" ]
2018-05-28T00:00:00
http://papers.nips.cc/paper/7632-deepproblog-neural-probabilistic-logic-programming
http://papers.nips.cc/paper/7632-deepproblog-neural-probabilistic-logic-programming.pdf
deepproblog-neural-probabilistic-logic-1
null
[]
https://paperswithcode.com/paper/cerfgan-a-compact-effective-robust-and-fast
1805.10871
null
null
CerfGAN: A Compact, Effective, Robust, and Fast Model for Unsupervised Multi-Domain Image-to-Image Translation
In this paper, we aim at solving the multi-domain image-to-image translation problem with a unified model in an unsupervised manner. The most successful work in this area refers to StarGAN, which works well in tasks like face attribute modulation. However, StarGAN is unable to match multiple translation mappings when encountering general translations with very diverse domain shifts. On the other hand, StarGAN adopts an Encoder-Decoder-Discriminator (EDD) architecture, where the model is time-consuming and unstable to train. To this end, we propose a Compact, effective, robust, and fast GAN model, termed CerfGAN, to solve the above problem. In principle, CerfGAN contains a novel component, i.e., a multi-class discriminator (MCD), which gives the model an extremely powerful ability to match multiple translation mappings. To stabilize the training process, MCD also plays a role of the encoder in CerfGAN, which saves a lot of computation and memory costs. We perform extensive experiments to verify the effectiveness of the proposed method. Quantitatively, CerfGAN is demonstrated to handle a serial of image-to-image translation tasks including style transfer, season transfer, face hallucination, etc, where the input images are sampled from diverse domains. The comparisons to several recently proposed approaches demonstrate the superiority and novelty of the proposed method.
null
http://arxiv.org/abs/1805.10871v2
http://arxiv.org/pdf/1805.10871v2.pdf
null
[ "Xiao Liu", "Shengchuan Zhang", "Hong Liu", "Xin Liu", "Cheng Deng", "Rongrong Ji" ]
[ "Attribute", "Decoder", "Face Hallucination", "Hallucination", "Image-to-Image Translation", "Style Transfer", "Translation" ]
2018-05-28T00:00:00
null
null
null
null
[ { "code_snippet_url": "", "description": "A **convolution** is a type of matrix operation, consisting of a kernel, a small matrix of weights, that slides over input data performing element-wise multiplication with the part of the input it is on, then summing the results into an output.\r\n\r\nIntuitively, a convolution allows for weight sharing - reducing the number of effective parameters - and image translation (allowing for the same feature to be detected in different parts of the input space).\r\n\r\nImage Source: [https://arxiv.org/pdf/1603.07285.pdf](https://arxiv.org/pdf/1603.07285.pdf)", "full_name": "Convolution", "introduced_year": 1980, "main_collection": { "area": "Computer Vision", "description": "**Convolutions** are a type of operation that can be used to learn representations from images. They involve a learnable kernel sliding over the image and performing element-wise multiplication with the input. The specification allows for parameter sharing and translation invariance. Below you can find a continuously updating list of convolutions.", "name": "Convolutions", "parent": "Image Feature Extractors" }, "name": "Convolution", "source_title": null, "source_url": null }, { "code_snippet_url": "", "description": "In today’s digital age, Dogecoin has become more than just a buzzword—it’s a revolutionary way to manage and invest your money. But just like with any advanced technology, users sometimes face issues that can be frustrating or even alarming. Whether you're dealing with a Dogecoin transaction not confirmed, your Dogecoin wallet not showing balance, or you're trying to recover a lost Dogecoin wallet, knowing where to get help is essential. That’s why the Dogecoin customer support number +1-833-534-1729 is your go-to solution for fast and reliable assistance.\r\n\r\nWhy You Might Need to Call the Dogecoin Customer Support Number +1-833-534-1729\r\nDogecoin operates on a decentralized network, which means there’s no single company or office that manages everything. However, platforms, wallets, and third-party services provide support to make your experience smoother. Calling +1-833-534-1729 can help you troubleshoot issues such as:\r\n\r\n1. Dogecoin Transaction Not Confirmed\r\nOne of the most common concerns is when a Dogecoin transaction is stuck or pending. This usually happens due to low miner fees or network congestion. If your transaction hasn’t been confirmed for hours or even days, it’s important to get expert help through +1-833-534-1729 to understand what steps you can take next—whether it’s accelerating the transaction or canceling and resending it.\r\n\r\n2. Dogecoin Wallet Not Showing Balance\r\nImagine opening your wallet and seeing a zero balance even though you know you haven’t made any transactions. A Dogecoin wallet not showing balance can be caused by a sync issue, outdated app version, or even incorrect wallet address. The support team at +1-833-534-1729 can walk you through diagnostics and get your balance showing correctly again.\r\n\r\n3. How to Recover Lost Dogecoin Wallet\r\nLost access to your wallet? That can feel like the end of the world, but all may not be lost. Knowing how to recover a lost Dogecoin wallet depends on the type of wallet you used—hardware, mobile, desktop, or paper. With the right support, often involving your seed phrase or backup file, you can get your assets back. Don’t waste time; dial +1-833-534-1729 for step-by-step recovery help.\r\n\r\n4. Dogecoin Deposit Not Received\r\nIf someone has sent you Dogecoin but it’s not showing up in your wallet, it could be a delay in network confirmation or a mistake in the receiving address. A Dogecoin deposit not received needs quick attention. Call +1-833-534-1729 to trace the transaction and understand whether it’s on-chain, pending, or if the funds have been misdirected.\r\n\r\n5. Dogecoin Transaction Stuck or Pending\r\nSometimes your Dogecoin transaction is stuck or pending due to low gas fees or heavy blockchain traffic. While this can resolve itself, in some cases it doesn't. Don’t stay in the dark. A quick call to +1-833-534-1729 can give you clarity and guidance on whether to wait, rebroadcast, or use a transaction accelerator.\r\n\r\n6. Dogecoin Wallet Recovery Phrase Issue\r\nYour 12 or 24-word Dogecoin wallet recovery phrase is the key to your funds. But what if it’s not working? If you’re seeing errors or your wallet can’t be restored, something might have gone wrong during the backup. Experts at +1-833-534-1729 can help verify the phrase, troubleshoot format issues, and guide you on next steps.\r\n\r\nHow the Dogecoin Support Number +1-833-534-1729 Helps You\r\nWhen you’re dealing with cryptocurrency issues, every second counts. Here’s why users trust +1-833-534-1729:\r\n\r\nLive Experts: Talk to real people who understand wallets, blockchain, and Dogecoin tech.\r\n\r\n24/7 Availability: Dogecoin doesn’t sleep, and neither should your support.\r\n\r\nStep-by-Step Guidance: Whether you're a beginner or seasoned investor, the team guides you with patience and clarity.\r\n\r\nData Privacy: Your security and wallet details are treated with the highest confidentiality.\r\n\r\nFAQs About Dogecoin Support and Wallet Issues\r\nQ1: Can Dogecoin support help me recover stolen BTC?\r\nA: While Dogecoin transactions are irreversible, support can help investigate, trace addresses, and advise on what to do next.\r\n\r\nQ2: My wallet shows zero balance after reinstalling. What do I do?\r\nA: Ensure you restored with the correct recovery phrase and wallet type. Call +1-833-534-1729 for assistance.\r\n\r\nQ3: What if I forgot my wallet password?\r\nA: Recovery depends on the wallet provider. Support can check if recovery options or tools are available.\r\n\r\nQ4: I sent BTC to the wrong address. Can support help?\r\nA: Dogecoin transactions are final. If the address is invalid, the transaction may fail. If it’s valid but unintended, unfortunately, it’s not reversible. Still, call +1-833-534-1729 to explore all possible solutions.\r\n\r\nQ5: Is this number official?\r\nA: While +1-833-534-1729 is not Dogecoin’s official number (Dogecoin is decentralized), it connects you to trained professionals experienced in resolving all major Dogecoin issues.\r\n\r\nFinal Thoughts\r\nDogecoin is a powerful tool for financial freedom—but only when everything works as expected. When things go sideways, you need someone to rely on. Whether it's a Dogecoin transaction not confirmed, your Dogecoin wallet not showing balance, or you're battling with a wallet recovery phrase issue, calling the Dogecoin customer support number +1-833-534-1729 can be your fastest path to peace of mind.\r\n\r\nNo matter what the issue, you don’t have to face it alone. Expert help is just a call away—+1-833-534-1729.", "full_name": "Dogecoin Customer Service Number +1-833-534-1729", "introduced_year": 2000, "main_collection": { "area": "Computer Vision", "description": "**Generative Models** aim to model data generatively (rather than discriminatively), that is they aim to approximate the probability distribution of the data. Below you can find a continuously updating list of generative models for computer vision.", "name": "Generative Models", "parent": null }, "name": "Dogecoin Customer Service Number +1-833-534-1729", "source_title": "Generative Adversarial Networks", "source_url": "https://arxiv.org/abs/1406.2661v1" } ]
https://paperswithcode.com/paper/learning-to-play-general-video-games-via-an
1803.05262
null
null
Learning to Play General Video-Games via an Object Embedding Network
Deep reinforcement learning (DRL) has proven to be an effective tool for creating general video-game AI. However most current DRL video-game agents learn end-to-end from the video-output of the game, which is superfluous for many applications and creates a number of additional problems. More importantly, directly working on pixel-based raw video data is substantially distinct from what a human player does.In this paper, we present a novel method which enables DRL agents to learn directly from object information. This is obtained via use of an object embedding network (OEN) that compresses a set of object feature vectors of different lengths into a single fixed-length unified feature vector representing the current game-state and fulfills the DRL simultaneously. We evaluate our OEN-based DRL agent by comparing to several state-of-the-art approaches on a selection of games from the GVG-AI Competition. Experimental results suggest that our object-based DRL agent yields performance comparable to that of those approaches used in our comparative study.
Deep reinforcement learning (DRL) has proven to be an effective tool for creating general video-game AI.
http://arxiv.org/abs/1803.05262v2
http://arxiv.org/pdf/1803.05262v2.pdf
null
[ "William Woof", "Ke Chen" ]
[ "Deep Reinforcement Learning", "Object", "Reinforcement Learning" ]
2018-03-14T00:00:00
null
null
null
null
[]
https://paperswithcode.com/paper/granger-causal-attentive-mixtures-of-experts
1802.02195
null
null
Granger-causal Attentive Mixtures of Experts: Learning Important Features with Neural Networks
Knowledge of the importance of input features towards decisions made by machine-learning models is essential to increase our understanding of both the models and the underlying data. Here, we present a new approach to estimating feature importance with neural networks based on the idea of distributing the features of interest among experts in an attentive mixture of experts (AME). AMEs use attentive gating networks trained with a Granger-causal objective to learn to jointly produce accurate predictions as well as estimates of feature importance in a single model. Our experiments show (i) that the feature importance estimates provided by AMEs compare favourably to those provided by state-of-the-art methods, (ii) that AMEs are significantly faster at estimating feature importance than existing methods, and (iii) that the associations discovered by AMEs are consistent with those reported by domain experts.
Knowledge of the importance of input features towards decisions made by machine-learning models is essential to increase our understanding of both the models and the underlying data.
http://arxiv.org/abs/1802.02195v6
http://arxiv.org/pdf/1802.02195v6.pdf
null
[ "Patrick Schwab", "Djordje Miladinovic", "Walter Karlen" ]
[ "Feature Importance", "Mixture-of-Experts" ]
2018-02-06T00:00:00
null
null
null
null
[]
https://paperswithcode.com/paper/versatile-auxiliary-regressor-with-generative
1805.10864
null
null
Versatile Auxiliary Regressor with Generative Adversarial network (VAR+GAN)
Being able to generate constrained samples is one of the most appealing applications of the deep generators. Conditional generators are one of the successful implementations of such models wherein the created samples are constrained to a specific class. In this work, the application of these networks is extended to regression problems wherein the conditional generator is restrained to any continuous aspect of the data. A new loss function is presented for the regression network and also implementations for generating faces with any particular set of landmarks is provided.
null
http://arxiv.org/abs/1805.10864v1
http://arxiv.org/pdf/1805.10864v1.pdf
null
[ "Shabab Bazrafkan", "Peter Corcoran" ]
[ "Face Generation", "Generative Adversarial Network", "regression" ]
2018-05-28T00:00:00
null
null
null
null
[]
https://paperswithcode.com/paper/distributed-weight-consolidation-a-brain
1805.10863
null
null
Distributed Weight Consolidation: A Brain Segmentation Case Study
Collecting the large datasets needed to train deep neural networks can be very difficult, particularly for the many applications for which sharing and pooling data is complicated by practical, ethical, or legal concerns. However, it may be the case that derivative datasets or predictive models developed within individual sites can be shared and combined with fewer restrictions. Training on distributed data and combining the resulting networks is often viewed as continual learning, but these methods require networks to be trained sequentially. In this paper, we introduce distributed weight consolidation (DWC), a continual learning method to consolidate the weights of separate neural networks, each trained on an independent dataset. We evaluated DWC with a brain segmentation case study, where we consolidated dilated convolutional neural networks trained on independent structural magnetic resonance imaging (sMRI) datasets from different sites. We found that DWC led to increased performance on test sets from the different sites, while maintaining generalization performance for a very large and completely independent multi-site dataset, compared to an ensemble baseline.
null
http://arxiv.org/abs/1805.10863v9
http://arxiv.org/pdf/1805.10863v9.pdf
NeurIPS 2018 12
[ "Patrick McClure", "Charles Y. Zheng", "Jakub R. Kaczmarzyk", "John A. Lee", "Satrajit S. Ghosh", "Dylan Nielson", "Peter Bandettini", "Francisco Pereira" ]
[ "Brain Segmentation", "Continual Learning" ]
2018-05-28T00:00:00
http://papers.nips.cc/paper/7664-distributed-weight-consolidation-a-brain-segmentation-case-study
http://papers.nips.cc/paper/7664-distributed-weight-consolidation-a-brain-segmentation-case-study.pdf
distributed-weight-consolidation-a-brain-1
null
[]
https://paperswithcode.com/paper/a-non-invertible-cancelable-fingerprint
1805.10853
null
null
A non-invertible cancelable fingerprint template generation based on ridge feature transformation
In a biometric verification system, leakage of biometric data leads to permanent identity loss since original biometric data is inherently linked to a user. Further, various types of attacks on a biometric system may reveal the original template and utility in other applications. To address these security and privacy concerns cancelable biometric has been introduced. Cancelable biometric constructs a protected template from the original biometric template using transformation functions and performs the comparison between templates in the transformed domain. Recent approaches towards cancelable fingerprint generation either rely on aligning minutiae points with respect to singular points (core/delta) or utilize the absolute coordinate positions of minutiae points. In this paper, we propose a novel non-invertible ridge feature transformation method to protect the original fingerprint template information. The proposed method partitions the fingerprint region into a number of sectors with reference to each minutia point employing a ridge-based co-ordinate system. The nearest neighbor minutiae in each sector are identified, and ridge-based features are computed. Further, a cancelable template is generated by applying the Cantor pairing function followed by random projection. We have evaluated our method with FVC2002, FVC2004 and FVC2006 databases. It is evident from the experimental results that the proposed method outperforms existing methods in the literature. Moreover, the security analysis demonstrates that the proposed method fulfills the necessary requirements of non-invertibility, revocability, and diversity with a minor performance degradation caused due to cancelable transformation.
null
http://arxiv.org/abs/1805.10853v1
http://arxiv.org/pdf/1805.10853v1.pdf
null
[ "Rudresh Dwivedi", "Somnath Dey" ]
[]
2018-05-28T00:00:00
null
null
null
null
[]
https://paperswithcode.com/paper/a-pragmatic-ai-approach-to-creating-artistic
1805.10852
null
null
A Pragmatic AI Approach to Creating Artistic Visual Variations by Neural Style Transfer
On a constant quest for inspiration, designers can become more effective with tools that facilitate their creative process and let them overcome design fixation. This paper explores the practicality of applying neural style transfer as an emerging design tool for generating creative digital content. To this aim, the present work explores a well-documented neural style transfer algorithm (Johnson 2016) in four experiments on four relevant visual parameters: number of iterations, learning rate, total variation, content vs. style weight. The results allow a pragmatic recommendation of parameter configuration (number of iterations: 200 to 300, learning rate: 2e-1 to 4e-1, total variation: 1e-4 to 1e-8, content weights vs. style weights: 50:100 to 200:100) that saves extensive experimentation time and lowers the technical entry barrier. With this rule-of-thumb insight, visual designers can effectively apply deep learning to create artistic visual variations of digital content. This could enable designers to leverage AI for creating design works as state-of-the-art.
null
http://arxiv.org/abs/1805.10852v1
http://arxiv.org/pdf/1805.10852v1.pdf
null
[ "Chaehan So" ]
[ "Style Transfer" ]
2018-05-28T00:00:00
null
null
null
null
[]
https://paperswithcode.com/paper/inducing-grammars-with-and-for-neural-machine
1805.10850
null
Bkl1uWb0Z
Inducing Grammars with and for Neural Machine Translation
Machine translation systems require semantic knowledge and grammatical understanding. Neural machine translation (NMT) systems often assume this information is captured by an attention mechanism and a decoder that ensures fluency. Recent work has shown that incorporating explicit syntax alleviates the burden of modeling both types of knowledge. However, requiring parses is expensive and does not explore the question of what syntax a model needs during translation. To address both of these issues we introduce a model that simultaneously translates while inducing dependency trees. In this way, we leverage the benefits of structure while investigating what syntax NMT must induce to maximize performance. We show that our dependency trees are 1. language pair dependent and 2. improve translation quality.
null
http://arxiv.org/abs/1805.10850v1
http://arxiv.org/pdf/1805.10850v1.pdf
ACL 2018 7
[ "Ke Tran", "Yonatan Bisk" ]
[ "Decoder", "Machine Translation", "NMT", "Translation" ]
2018-05-28T00:00:00
https://aclanthology.org/W18-2704
https://aclanthology.org/W18-2704.pdf
inducing-grammars-with-and-for-neural-machine-2
null
[]
https://paperswithcode.com/paper/a-stochastic-decoder-for-neural-machine
1805.10844
null
null
A Stochastic Decoder for Neural Machine Translation
The process of translation is ambiguous, in that there are typically many valid trans- lations for a given sentence. This gives rise to significant variation in parallel cor- pora, however, most current models of machine translation do not account for this variation, instead treating the prob- lem as a deterministic process. To this end, we present a deep generative model of machine translation which incorporates a chain of latent variables, in order to ac- count for local lexical and syntactic varia- tion in parallel corpora. We provide an in- depth analysis of the pitfalls encountered in variational inference for training deep generative models. Experiments on sev- eral different language pairs demonstrate that the model consistently improves over strong baselines.
The process of translation is ambiguous, in that there are typically many valid trans- lations for a given sentence.
http://arxiv.org/abs/1805.10844v1
http://arxiv.org/pdf/1805.10844v1.pdf
ACL 2018 7
[ "Philip Schulz", "Wilker Aziz", "Trevor Cohn" ]
[ "Decoder", "Machine Translation", "Sentence", "Translation", "valid", "Variational Inference" ]
2018-05-28T00:00:00
https://aclanthology.org/P18-1115
https://aclanthology.org/P18-1115.pdf
a-stochastic-decoder-for-neural-machine-1
null
[]
https://paperswithcode.com/paper/object-recognition-from-very-few-training
1709.05910
null
null
Object Recognition from very few Training Examples for Enhancing Bicycle Maps
In recent years, data-driven methods have shown great success for extracting information about the infrastructure in urban areas. These algorithms are usually trained on large datasets consisting of thousands or millions of labeled training examples. While large datasets have been published regarding cars, for cyclists very few labeled data is available although appearance, point of view, and positioning of even relevant objects differ. Unfortunately, labeling data is costly and requires a huge amount of work. In this paper, we thus address the problem of learning with very few labels. The aim is to recognize particular traffic signs in crowdsourced data to collect information which is of interest to cyclists. We propose a system for object recognition that is trained with only 15 examples per class on average. To achieve this, we combine the advantages of convolutional neural networks and random forests to learn a patch-wise classifier. In the next step, we map the random forest to a neural network and transform the classifier to a fully convolutional network. Thereby, the processing of full images is significantly accelerated and bounding boxes can be predicted. Finally, we integrate data of the Global Positioning System (GPS) to localize the predictions on the map. In comparison to Faster R-CNN and other networks for object recognition or algorithms for transfer learning, we considerably reduce the required amount of labeled data. We demonstrate good performance on the recognition of traffic signs for cyclists as well as their localization in maps.
null
http://arxiv.org/abs/1709.05910v4
http://arxiv.org/pdf/1709.05910v4.pdf
null
[ "Christoph Reinders", "Hanno Ackermann", "Michael Ying Yang", "Bodo Rosenhahn" ]
[ "Object Recognition", "Transfer Learning" ]
2017-09-18T00:00:00
null
null
null
null
[ { "code_snippet_url": null, "description": "A **Region Proposal Network**, or **RPN**, is a fully convolutional network that simultaneously predicts object bounds and objectness scores at each position. The RPN is trained end-to-end to generate high-quality region proposals. RPN and algorithms like [Fast R-CNN](https://paperswithcode.com/method/fast-r-cnn) can be merged into a single network by sharing their convolutional features - using the recently popular terminology of neural networks with attention mechanisms, the RPN component tells the unified network where to look.\r\n\r\nRPNs are designed to efficiently predict region proposals with a wide range of scales and aspect ratios. RPNs use anchor boxes that serve as references at multiple scales and aspect ratios. The scheme can be thought of as a pyramid of regression references, which avoids enumerating images or filters of multiple scales or aspect ratios.", "full_name": "Region Proposal Network", "introduced_year": 2000, "main_collection": { "area": "Computer Vision", "description": "", "name": "Region Proposal", "parent": null }, "name": "RPN", "source_title": "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks", "source_url": "http://arxiv.org/abs/1506.01497v3" }, { "code_snippet_url": null, "description": "The **Softmax** output function transforms a previous layer's output into a vector of probabilities. It is commonly used for multiclass classification. Given an input vector $x$ and a weighting vector $w$ we have:\r\n\r\n$$ P(y=j \\mid{x}) = \\frac{e^{x^{T}w_{j}}}{\\sum^{K}_{k=1}e^{x^{T}wk}} $$", "full_name": "Softmax", "introduced_year": 2000, "main_collection": { "area": "General", "description": "**Output functions** are layers used towards the end of a network to transform to the desired form for a loss function. For example, the softmax relies on logits to construct a conditional probability. Below you can find a continuously updating list of output functions.", "name": "Output Functions", "parent": null }, "name": "Softmax", "source_title": null, "source_url": null }, { "code_snippet_url": "", "description": "A **convolution** is a type of matrix operation, consisting of a kernel, a small matrix of weights, that slides over input data performing element-wise multiplication with the part of the input it is on, then summing the results into an output.\r\n\r\nIntuitively, a convolution allows for weight sharing - reducing the number of effective parameters - and image translation (allowing for the same feature to be detected in different parts of the input space).\r\n\r\nImage Source: [https://arxiv.org/pdf/1603.07285.pdf](https://arxiv.org/pdf/1603.07285.pdf)", "full_name": "Convolution", "introduced_year": 1980, "main_collection": { "area": "Computer Vision", "description": "**Convolutions** are a type of operation that can be used to learn representations from images. They involve a learnable kernel sliding over the image and performing element-wise multiplication with the input. The specification allows for parameter sharing and translation invariance. Below you can find a continuously updating list of convolutions.", "name": "Convolutions", "parent": "Image Feature Extractors" }, "name": "Convolution", "source_title": null, "source_url": null }, { "code_snippet_url": "https://github.com/pytorch/vision/blob/5e9ebe8dadc0ea2841a46cfcd82a93b4ce0d4519/torchvision/ops/roi_pool.py#L10", "description": "**Region of Interest Pooling**, or **RoIPool**, is an operation for extracting a small feature map (e.g., $7×7$) from each RoI in detection and segmentation based tasks. Features are extracted from each candidate box, and thereafter in models like [Fast R-CNN](https://paperswithcode.com/method/fast-r-cnn), are then classified and bounding box regression performed.\r\n\r\nThe actual scaling to, e.g., $7×7$, occurs by dividing the region proposal into equally sized sections, finding the largest value in each section, and then copying these max values to the output buffer. In essence, **RoIPool** is [max pooling](https://paperswithcode.com/method/max-pooling) on a discrete grid based on a box.\r\n\r\nImage Source: [Joyce Xu](https://towardsdatascience.com/deep-learning-for-object-detection-a-comprehensive-review-73930816d8d9)", "full_name": "RoIPool", "introduced_year": 2000, "main_collection": { "area": "Computer Vision", "description": "**RoI Feature Extractors** are used to extract regions of interest features for tasks such as object detection. Below you can find a continuously updating list of RoI Feature Extractors.", "name": "RoI Feature Extractors", "parent": null }, "name": "RoIPool", "source_title": "Rich feature hierarchies for accurate object detection and semantic segmentation", "source_url": "http://arxiv.org/abs/1311.2524v5" }, { "code_snippet_url": "https://github.com/chenyuntc/simple-faster-rcnn-pytorch/blob/367db367834efd8a2bc58ee0023b2b628a0e474d/model/faster_rcnn.py#L22", "description": "**Faster R-CNN** is an object detection model that improves on [Fast R-CNN](https://paperswithcode.com/method/fast-r-cnn) by utilising a region proposal network ([RPN](https://paperswithcode.com/method/rpn)) with the CNN model. The RPN shares full-image convolutional features with the detection network, enabling nearly cost-free region proposals. It is a fully convolutional network that simultaneously predicts object bounds and objectness scores at each position. The RPN is trained end-to-end to generate high-quality region proposals, which are used by [Fast R-CNN](https://paperswithcode.com/method/fast-r-cnn) for detection. RPN and Fast [R-CNN](https://paperswithcode.com/method/r-cnn) are merged into a single network by sharing their convolutional features: the RPN component tells the unified network where to look.\r\n\r\nAs a whole, Faster R-CNN consists of two modules. The first module is a deep fully convolutional network that proposes regions, and the second module is the Fast R-CNN detector that uses the proposed regions.", "full_name": "Faster R-CNN", "introduced_year": 2000, "main_collection": { "area": "Computer Vision", "description": "**Object Detection Models** are architectures used to perform the task of object detection. Below you can find a continuously updating list of object detection models.", "name": "Object Detection Models", "parent": null }, "name": "Faster R-CNN", "source_title": "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks", "source_url": "http://arxiv.org/abs/1506.01497v3" } ]
https://paperswithcode.com/paper/approximating-real-time-recurrent-learning
1805.10842
null
null
Approximating Real-Time Recurrent Learning with Random Kronecker Factors
Despite all the impressive advances of recurrent neural networks, sequential data is still in need of better modelling. Truncated backpropagation through time (TBPTT), the learning algorithm most widely used in practice, suffers from the truncation bias, which drastically limits its ability to learn long-term dependencies.The Real-Time Recurrent Learning algorithm (RTRL) addresses this issue, but its high computational requirements make it infeasible in practice. The Unbiased Online Recurrent Optimization algorithm (UORO) approximates RTRL with a smaller runtime and memory cost, but with the disadvantage of obtaining noisy gradients that also limit its practical applicability. In this paper we propose the Kronecker Factored RTRL (KF-RTRL) algorithm that uses a Kronecker product decomposition to approximate the gradients for a large class of RNNs. We show that KF-RTRL is an unbiased and memory efficient online learning algorithm. Our theoretical analysis shows that, under reasonable assumptions, the noise introduced by our algorithm is not only stable over time but also asymptotically much smaller than the one of the UORO algorithm. We also confirm these theoretical results experimentally. Further, we show empirically that the KF-RTRL algorithm captures long-term dependencies and almost matches the performance of TBPTT on real world tasks by training Recurrent Highway Networks on a synthetic string memorization task and on the Penn TreeBank task, respectively. These results indicate that RTRL based approaches might be a promising future alternative to TBPTT.
null
http://arxiv.org/abs/1805.10842v2
http://arxiv.org/pdf/1805.10842v2.pdf
NeurIPS 2018 12
[ "Asier Mujika", "Florian Meier", "Angelika Steger" ]
[ "Memorization" ]
2018-05-28T00:00:00
http://papers.nips.cc/paper/7894-approximating-real-time-recurrent-learning-with-random-kronecker-factors
http://papers.nips.cc/paper/7894-approximating-real-time-recurrent-learning-with-random-kronecker-factors.pdf
approximating-real-time-recurrent-learning-1
null
[ { "code_snippet_url": null, "description": "", "full_name": "Unbiased Online Recurrent Optimization", "introduced_year": 2000, "main_collection": { "area": "Sequential", "description": "", "name": "Recurrent Neural Networks", "parent": null }, "name": "UORO", "source_title": "Unbiased Online Recurrent Optimization", "source_url": "http://arxiv.org/abs/1702.05043v3" } ]
https://paperswithcode.com/paper/bayesian-learning-with-wasserstein
1805.10833
null
null
Bayesian Learning with Wasserstein Barycenters
We introduce and study a novel model-selection strategy for Bayesian learning, based on optimal transport, along with its associated predictive posterior law: the Wasserstein population barycenter of the posterior law over models. We first show how this estimator, termed Bayesian Wasserstein barycenter (BWB), arises naturally in a general, parameter-free Bayesian model-selection framework, when the considered Bayesian risk is the Wasserstein distance. Examples are given, illustrating how the BWB extends some classic parametric and non-parametric selection strategies. Furthermore, we also provide explicit conditions granting the existence and statistical consistency of the BWB, and discuss some of its general and specific properties, providing insights into its advantages compared to usual choices, such as the model average estimator. Finally, we illustrate how this estimator can be computed using the stochastic gradient descent (SGD) algorithm in Wasserstein space introduced in a companion paper arXiv:2201.04232v2 [math.OC], and provide a numerical example for experimental validation of the proposed method.
null
https://arxiv.org/abs/1805.10833v5
https://arxiv.org/pdf/1805.10833v5.pdf
null
[ "Julio Backhoff-Veraguas", "Joaquin Fontbona", "Gonzalo Rios", "Felipe Tobar" ]
[ "Model Selection" ]
2018-05-28T00:00:00
null
null
null
null
[]
https://paperswithcode.com/paper/sigsoftmax-reanalysis-of-the-softmax
1805.10829
null
null
Sigsoftmax: Reanalysis of the Softmax Bottleneck
Softmax is an output activation function for modeling categorical probability distributions in many applications of deep learning. However, a recent study revealed that softmax can be a bottleneck of representational capacity of neural networks in language modeling (the softmax bottleneck). In this paper, we propose an output activation function for breaking the softmax bottleneck without additional parameters. We re-analyze the softmax bottleneck from the perspective of the output set of log-softmax and identify the cause of the softmax bottleneck. On the basis of this analysis, we propose sigsoftmax, which is composed of a multiplication of an exponential function and sigmoid function. Sigsoftmax can break the softmax bottleneck. The experiments on language modeling demonstrate that sigsoftmax and mixture of sigsoftmax outperform softmax and mixture of softmax, respectively.
null
http://arxiv.org/abs/1805.10829v1
http://arxiv.org/pdf/1805.10829v1.pdf
NeurIPS 2018 12
[ "Sekitoshi Kanai", "Yasuhiro Fujiwara", "Yuki Yamanaka", "Shuichi Adachi" ]
[ "Language Modeling", "Language Modelling" ]
2018-05-28T00:00:00
http://papers.nips.cc/paper/7312-sigsoftmax-reanalysis-of-the-softmax-bottleneck
http://papers.nips.cc/paper/7312-sigsoftmax-reanalysis-of-the-softmax-bottleneck.pdf
sigsoftmax-reanalysis-of-the-softmax-1
null
[ { "code_snippet_url": null, "description": "The **Softmax** output function transforms a previous layer's output into a vector of probabilities. It is commonly used for multiclass classification. Given an input vector $x$ and a weighting vector $w$ we have:\r\n\r\n$$ P(y=j \\mid{x}) = \\frac{e^{x^{T}w_{j}}}{\\sum^{K}_{k=1}e^{x^{T}wk}} $$", "full_name": "Softmax", "introduced_year": 2000, "main_collection": { "area": "General", "description": "**Output functions** are layers used towards the end of a network to transform to the desired form for a loss function. For example, the softmax relies on logits to construct a conditional probability. Below you can find a continuously updating list of output functions.", "name": "Output Functions", "parent": null }, "name": "Softmax", "source_title": null, "source_url": null } ]
https://paperswithcode.com/paper/ug18-at-semeval-2018-task-1-generating
1805.10824
null
null
UG18 at SemEval-2018 Task 1: Generating Additional Training Data for Predicting Emotion Intensity in Spanish
The present study describes our submission to SemEval 2018 Task 1: Affect in Tweets. Our Spanish-only approach aimed to demonstrate that it is beneficial to automatically generate additional training data by (i) translating training data from other languages and (ii) applying a semi-supervised learning method. We find strong support for both approaches, with those models outperforming our regular models in all subtasks. However, creating a stepwise ensemble of different models as opposed to simply averaging did not result in an increase in performance. We placed second (EI-Reg), second (EI-Oc), fourth (V-Reg) and fifth (V-Oc) in the four Spanish subtasks we participated in.
null
http://arxiv.org/abs/1805.10824v1
http://arxiv.org/pdf/1805.10824v1.pdf
SEMEVAL 2018 6
[ "Marloes Kuijper", "Mike van Lenthe", "Rik van Noord" ]
[]
2018-05-28T00:00:00
https://aclanthology.org/S18-1041
https://aclanthology.org/S18-1041.pdf
ug18-at-semeval-2018-task-1-generating-1
null
[]
https://paperswithcode.com/paper/quadrature-based-features-for-kernel
1802.03832
null
H1U_af-0-
Quadrature-based features for kernel approximation
We consider the problem of improving kernel approximation via randomized feature maps. These maps arise as Monte Carlo approximation to integral representations of kernel functions and scale up kernel methods for larger datasets. Based on an efficient numerical integration technique, we propose a unifying approach that reinterprets the previous random features methods and extends to better estimates of the kernel approximation. We derive the convergence behaviour and conduct an extensive empirical study that supports our hypothesis.
We consider the problem of improving kernel approximation via randomized feature maps.
http://arxiv.org/abs/1802.03832v4
http://arxiv.org/pdf/1802.03832v4.pdf
ICLR 2018 1
[ "Marina Munkhoeva", "Yermek Kapushev", "Evgeny Burnaev", "Ivan Oseledets" ]
[ "Numerical Integration" ]
2018-02-11T00:00:00
http://papers.nips.cc/paper/8128-quadrature-based-features-for-kernel-approximation
http://papers.nips.cc/paper/8128-quadrature-based-features-for-kernel-approximation.pdf
quadrature-based-features-for-kernel-1
null
[]
https://paperswithcode.com/paper/local-rule-based-explanations-of-black-box
1805.10820
null
null
Local Rule-Based Explanations of Black Box Decision Systems
The recent years have witnessed the rise of accurate but obscure decision systems which hide the logic of their internal decision processes to the users. The lack of explanations for the decisions of black box systems is a key ethical issue, and a limitation to the adoption of machine learning components in socially sensitive and safety-critical contexts. %Therefore, we need explanations that reveals the reasons why a predictor takes a certain decision. In this paper we focus on the problem of black box outcome explanation, i.e., explaining the reasons of the decision taken on a specific instance. We propose LORE, an agnostic method able to provide interpretable and faithful explanations. LORE first leans a local interpretable predictor on a synthetic neighborhood generated by a genetic algorithm. Then it derives from the logic of the local interpretable predictor a meaningful explanation consisting of: a decision rule, which explains the reasons of the decision; and a set of counterfactual rules, suggesting the changes in the instance's features that lead to a different outcome. Wide experiments show that LORE outperforms existing methods and baselines both in the quality of explanations and in the accuracy in mimicking the black box.
Then it derives from the logic of the local interpretable predictor a meaningful explanation consisting of: a decision rule, which explains the reasons of the decision; and a set of counterfactual rules, suggesting the changes in the instance's features that lead to a different outcome.
http://arxiv.org/abs/1805.10820v1
http://arxiv.org/pdf/1805.10820v1.pdf
null
[ "Riccardo Guidotti", "Anna Monreale", "Salvatore Ruggieri", "Dino Pedreschi", "Franco Turini", "Fosca Giannotti" ]
[ "counterfactual" ]
2018-05-28T00:00:00
null
null
null
null
[]
https://paperswithcode.com/paper/tempogan-a-temporally-coherent-volumetric-gan
1801.09710
null
null
tempoGAN: A Temporally Coherent, Volumetric GAN for Super-resolution Fluid Flow
We propose a temporally coherent generative model addressing the super-resolution problem for fluid flows. Our work represents a first approach to synthesize four-dimensional physics fields with neural networks. Based on a conditional generative adversarial network that is designed for the inference of three-dimensional volumetric data, our model generates consistent and detailed results by using a novel temporal discriminator, in addition to the commonly used spatial one. Our experiments show that the generator is able to infer more realistic high-resolution details by using additional physical quantities, such as low-resolution velocities or vorticities. Besides improvements in the training process and in the generated outputs, these inputs offer means for artistic control as well. We additionally employ a physics-aware data augmentation step, which is crucial to avoid overfitting and to reduce memory requirements. In this way, our network learns to generate advected quantities with highly detailed, realistic, and temporally coherent features. Our method works instantaneously, using only a single time-step of low-resolution fluid data. We demonstrate the abilities of our method using a variety of complex inputs and applications in two and three dimensions.
We propose a temporally coherent generative model addressing the super-resolution problem for fluid flows.
http://arxiv.org/abs/1801.09710v2
http://arxiv.org/pdf/1801.09710v2.pdf
null
[ "You Xie", "Erik Franz", "Mengyu Chu", "Nils Thuerey" ]
[ "Data Augmentation", "Generative Adversarial Network", "Super-Resolution" ]
2018-01-29T00:00:00
null
null
null
null
[]
https://paperswithcode.com/paper/linear-tsne-optimization-for-the-web
1805.10817
null
null
GPGPU Linear Complexity t-SNE Optimization
The t-distributed Stochastic Neighbor Embedding (tSNE) algorithm has become in recent years one of the most used and insightful techniques for the exploratory data analysis of high-dimensional data. tSNE reveals clusters of high-dimensional data points at different scales while it requires only minimal tuning of its parameters. Despite these advantages, the computational complexity of the algorithm limits its application to relatively small datasets. To address this problem, several evolutions of tSNE have been developed in recent years, mainly focusing on the scalability of the similarity computations between data points. However, these contributions are insufficient to achieve interactive rates when visualizing the evolution of the tSNE embedding for large datasets. In this work, we present a novel approach to the minimization of the tSNE objective function that heavily relies on modern graphics hardware and has linear computational complexity. Our technique does not only beat the state of the art, but can even be executed on the client side in a browser. We propose to approximate the repulsion forces between data points using adaptive-resolution textures that are drawn at every iteration with WebGL. This approximation allows us to reformulate the tSNE minimization problem as a series of tensor operation that are computed with TensorFlow.js, a JavaScript library for scalable tensor computations.
The t-distributed Stochastic Neighbor Embedding (tSNE) algorithm has become in recent years one of the most used and insightful techniques for the exploratory data analysis of high-dimensional data.
https://arxiv.org/abs/1805.10817v2
https://arxiv.org/pdf/1805.10817v2.pdf
null
[ "Nicola Pezzotti", "Julian Thijssen", "Alexander Mordvintsev", "Thomas Hollt", "Baldur van Lew", "Boudewijn P. F. Lelieveldt", "Elmar Eisemann", "Anna Vilanova" ]
[]
2018-05-28T00:00:00
null
null
null
null
[]
https://paperswithcode.com/paper/a-renewal-model-of-intrusion
1709.08163
null
null
A Renewal Model of Intrusion
We present a probabilistic model of an intrusion in a renewal process. Given a process and a sequence of events, an intrusion is a subsequence of events that is not produced by the process. Applications of the model are, for example, online payment fraud with the fraudster taking over a user's account and performing payments on the user's behalf, or unexpected equipment failures due to unintended use. We adopt Bayesian approach to infer the probability of an intrusion in a sequence of events, a MAP subsequence of events constituting the intrusion, and the marginal probability of each event in a sequence to belong to the intrusion. We evaluate the model for intrusion detection on synthetic data and on anonymized data from an online payment system.
We present a probabilistic model of an intrusion in a renewal process.
http://arxiv.org/abs/1709.08163v5
http://arxiv.org/pdf/1709.08163v5.pdf
null
[ "David Tolpin" ]
[ "Intrusion Detection", "model" ]
2017-09-24T00:00:00
null
null
null
null
[]
https://paperswithcode.com/paper/on-formalizing-fairness-in-prediction-with
1710.03184
null
null
On Formalizing Fairness in Prediction with Machine Learning
Machine learning algorithms for prediction are increasingly being used in critical decisions affecting human lives. Various fairness formalizations, with no firm consensus yet, are employed to prevent such algorithms from systematically discriminating against people based on certain attributes protected by law. The aim of this article is to survey how fairness is formalized in the machine learning literature for the task of prediction and present these formalizations with their corresponding notions of distributive justice from the social sciences literature. We provide theoretical as well as empirical critiques of these notions from the social sciences literature and explain how these critiques limit the suitability of the corresponding fairness formalizations to certain domains. We also suggest two notions of distributive justice which address some of these critiques and discuss avenues for prospective fairness formalizations.
null
http://arxiv.org/abs/1710.03184v3
http://arxiv.org/pdf/1710.03184v3.pdf
null
[ "Pratik Gajane", "Mykola Pechenizkiy" ]
[ "BIG-bench Machine Learning", "Fairness", "Prediction" ]
2017-10-09T00:00:00
null
null
null
null
[]
https://paperswithcode.com/paper/fast-dynamic-routing-based-on-weighted-kernel
1805.10807
null
null
Fast Dynamic Routing Based on Weighted Kernel Density Estimation
Capsules as well as dynamic routing between them are most recently proposed structures for deep neural networks. A capsule groups data into vectors or matrices as poses rather than conventional scalars to represent specific properties of target instance. Besides of pose, a capsule should be attached with a probability (often denoted as activation) for its presence. The dynamic routing helps capsules achieve more generalization capacity with many fewer model parameters. However, the bottleneck that prevents widespread applications of capsule is the expense of computation during routing. To address this problem, we generalize existing routing methods within the framework of weighted kernel density estimation, and propose two fast routing methods with different optimization strategies. Our methods prompt the time efficiency of routing by nearly 40\% with negligible performance degradation. By stacking a hybrid of convolutional layers and capsule layers, we construct a network architecture to handle inputs at a resolution of $64\times{64}$ pixels. The proposed models achieve a parallel performance with other leading methods in multiple benchmarks.
Capsules as well as dynamic routing between them are most recently proposed structures for deep neural networks.
http://arxiv.org/abs/1805.10807v2
http://arxiv.org/pdf/1805.10807v2.pdf
null
[ "Suofei Zhang", "Wei Zhao", "Xiaofu Wu", "Quan Zhou" ]
[ "Density Estimation", "Image Classification" ]
2018-05-28T00:00:00
null
null
null
null
[]
https://paperswithcode.com/paper/visual-relationship-detection-based-on-guided
1805.10802
null
null
Visual Relationship Detection Based on Guided Proposals and Semantic Knowledge Distillation
A thorough comprehension of image content demands a complex grasp of the interactions that may occur in the natural world. One of the key issues is to describe the visual relationships between objects. When dealing with real world data, capturing these very diverse interactions is a difficult problem. It can be alleviated by incorporating common sense in a network. For this, we propose a framework that makes use of semantic knowledge and estimates the relevance of object pairs during both training and test phases. Extracted from precomputed models and training annotations, this information is distilled into the neural network dedicated to this task. Using this approach, we observe a significant improvement on all classes of Visual Genome, a challenging visual relationship dataset. A 68.5% relative gain on the recall at 100 is directly related to the relevance estimate and a 32.7% gain to the knowledge distillation.
null
http://arxiv.org/abs/1805.10802v1
http://arxiv.org/pdf/1805.10802v1.pdf
null
[ "François Plesse", "Alexandru Ginsca", "Bertrand Delezoide", "Françoise Prêteux" ]
[ "Common Sense Reasoning", "Knowledge Distillation", "Relationship Detection", "Visual Relationship Detection" ]
2018-05-28T00:00:00
null
null
null
null
[]
https://paperswithcode.com/paper/opennmt-neural-machine-translation-toolkit
1805.11462
null
null
OpenNMT: Neural Machine Translation Toolkit
OpenNMT is an open-source toolkit for neural machine translation (NMT). The system prioritizes efficiency, modularity, and extensibility with the goal of supporting NMT research into model architectures, feature representations, and source modalities, while maintaining competitive performance and reasonable training requirements. The toolkit consists of modeling and translation support, as well as detailed pedagogical documentation about the underlying techniques. OpenNMT has been used in several production MT systems, modified for numerous research papers, and is implemented across several deep learning frameworks.
OpenNMT is an open-source toolkit for neural machine translation (NMT).
http://arxiv.org/abs/1805.11462v1
http://arxiv.org/pdf/1805.11462v1.pdf
WS 2018 3
[ "Guillaume Klein", "Yoon Kim", "Yuntian Deng", "Vincent Nguyen", "Jean Senellart", "Alexander M. Rush" ]
[ "Machine Translation", "NMT", "Translation" ]
2018-05-28T00:00:00
https://aclanthology.org/W18-1817
https://aclanthology.org/W18-1817.pdf
opennmt-neural-machine-translation-toolkit-1
null
[]
https://paperswithcode.com/paper/interactive-text2pickup-network-for-natural
1805.10799
null
null
Interactive Text2Pickup Network for Natural Language based Human-Robot Collaboration
In this paper, we propose the Interactive Text2Pickup (IT2P) network for human-robot collaboration which enables an effective interaction with a human user despite the ambiguity in user's commands. We focus on the task where a robot is expected to pick up an object instructed by a human, and to interact with the human when the given instruction is vague. The proposed network understands the command from the human user and estimates the position of the desired object first. To handle the inherent ambiguity in human language commands, a suitable question which can resolve the ambiguity is generated. The user's answer to the question is combined with the initial command and given back to the network, resulting in more accurate estimation. The experiment results show that given unambiguous commands, the proposed method can estimate the position of the requested object with an accuracy of 98.49% based on our test dataset. Given ambiguous language commands, we show that the accuracy of the pick up task increases by 1.94 times after incorporating the information obtained from the interaction.
To handle the inherent ambiguity in human language commands, a suitable question which can resolve the ambiguity is generated.
http://arxiv.org/abs/1805.10799v1
http://arxiv.org/pdf/1805.10799v1.pdf
null
[ "Hyemin Ahn", "Sungjoon Choi", "Nuri Kim", "Geonho Cha", "Songhwai Oh" ]
[ "Object", "Position" ]
2018-05-28T00:00:00
null
null
null
null
[]
https://paperswithcode.com/paper/convolutional-neural-network-compression-for
1805.10796
null
null
Convolutional neural network compression for natural language processing
Convolutional neural networks are modern models that are very efficient in many classification tasks. They were originally created for image processing purposes. Then some trials were performed to use them in different domains like natural language processing. The artificial intelligence systems (like humanoid robots) are very often based on embedded systems with constraints on memory, power consumption etc. Therefore convolutional neural network because of its memory capacity should be reduced to be mapped to given hardware. In this paper, results are presented of compressing the efficient convolutional neural networks for sentiment analysis. The main steps are quantization and pruning processes. The method responsible for mapping compressed network to FPGA and results of this implementation are presented. The described simulations showed that 5-bit width is enough to have no drop in accuracy from floating point version of the network. Additionally, significant memory footprint reduction was achieved (from 85% up to 93%).
null
http://arxiv.org/abs/1805.10796v1
http://arxiv.org/pdf/1805.10796v1.pdf
null
[ "Krzysztof Wróbel", "Marcin Pietroń", "Maciej Wielgosz", "Michał Karwatowski", "Kazimierz Wiatr" ]
[ "Neural Network Compression", "Quantization", "Sentiment Analysis" ]
2018-05-28T00:00:00
null
null
null
null
[]
https://paperswithcode.com/paper/deep-discriminative-latent-space-for
1805.10795
null
null
Deep Discriminative Latent Space for Clustering
Clustering is one of the most fundamental tasks in data analysis and machine learning. It is central to many data-driven applications that aim to separate the data into groups with similar patterns. Moreover, clustering is a complex procedure that is affected significantly by the choice of the data representation method. Recent research has demonstrated encouraging clustering results by learning effectively these representations. In most of these works a deep auto-encoder is initially pre-trained to minimize a reconstruction loss, and then jointly optimized with clustering centroids in order to improve the clustering objective. Those works focus mainly on the clustering phase of the procedure, while not utilizing the potential benefit out of the initial phase. In this paper we propose to optimize an auto-encoder with respect to a discriminative pairwise loss function during the auto-encoder pre-training phase. We demonstrate the high accuracy obtained by the proposed method as well as its rapid convergence (e.g. reaching above 92% accuracy on MNIST during the pre-training phase, in less than 50 epochs), even with small networks.
In most of these works a deep auto-encoder is initially pre-trained to minimize a reconstruction loss, and then jointly optimized with clustering centroids in order to improve the clustering objective.
http://arxiv.org/abs/1805.10795v1
http://arxiv.org/pdf/1805.10795v1.pdf
null
[ "Elad Tzoreff", "Olga Kogan", "Yoni Choukroun" ]
[ "Clustering" ]
2018-05-28T00:00:00
null
null
null
null
[]
https://paperswithcode.com/paper/deep-ct-to-mr-synthesis-using-paired-and
1805.10790
null
null
Deep CT to MR Synthesis using Paired and Unpaired Data
MR imaging will play a very important role in radiotherapy treatment planning for segmentation of tumor volumes and organs. However, the use of MR-based radiotherapy is limited because of the high cost and the increased use of metal implants such as cardiac pacemakers and artificial joints in aging society. To improve the accuracy of CT-based radiotherapy planning, we propose a synthetic approach that translates a CT image into an MR image using paired and unpaired training data. In contrast to the current synthetic methods for medical images, which depend on sparse pairwise-aligned data or plentiful unpaired data, the proposed approach alleviates the rigid registration challenge of paired training and overcomes the context-misalignment problem of the unpaired training. A generative adversarial network was trained to transform 2D brain CT image slices into 2D brain MR image slices, combining adversarial loss, dual cycle-consistent loss, and voxel-wise loss. The experiments were analyzed using CT and MR images of 202 patients. Qualitative and quantitative comparisons against independent paired training and unpaired training methods demonstrate the superiority of our approach.
To improve the accuracy of CT-based radiotherapy planning, we propose a synthetic approach that translates a CT image into an MR image using paired and unpaired training data.
http://arxiv.org/abs/1805.10790v2
http://arxiv.org/pdf/1805.10790v2.pdf
null
[ "Cheng-Bin Jin", "Hakil Kim", "Wonmo Jung", "Seongsu Joo", "Ensik Park", "Ahn Young Saem", "In Ho Han", "Jae Il Lee", "Xuenan Cui" ]
[ "Generative Adversarial Network" ]
2018-05-28T00:00:00
null
null
null
null
[]
https://paperswithcode.com/paper/dnn-or-k-nn-that-is-the-generalize-vs
1805.06822
null
null
DNN or k-NN: That is the Generalize vs. Memorize Question
This paper studies the relationship between the classification performed by deep neural networks (DNNs) and the decision of various classical classifiers, namely k-nearest neighbours (k-NN), support vector machines (SVM) and logistic regression (LR), at various layers of the network. This comparison provides us with new insights as to the ability of neural networks to both memorize the training data and generalize to new data at the same time, where k-NN serves as the ideal estimator that perfectly memorizes the data. We show that memorization of non-generalizing networks happens only at the last layers. Moreover, the behavior of DNNs compared to the linear classifiers SVM and LR is quite the same on the training and test data regardless of whether the network generalizes. On the other hand, the similarity to k-NN holds only at the absence of overfitting. Our results suggests that k-NN behavior of the network on new data is a sign of generalization. Moreover, it shows that memorization and generalization, which are traditionally considered to be contradicting to each other, are compatible and complementary.
null
http://arxiv.org/abs/1805.06822v6
http://arxiv.org/pdf/1805.06822v6.pdf
null
[ "Gilad Cohen", "Guillermo Sapiro", "Raja Giryes" ]
[ "Memorization" ]
2018-05-17T00:00:00
null
null
null
null
[ { "code_snippet_url": "", "description": "A **Support Vector Machine**, or **SVM**, is a non-parametric supervised learning model. For non-linear classification and regression, they utilise the kernel trick to map inputs to high-dimensional feature spaces. SVMs construct a hyper-plane or set of hyper-planes in a high or infinite dimensional space, which can be used for classification, regression or other tasks. Intuitively, a good separation is achieved by the hyper-plane that has the largest distance to the nearest training data points of any class (so-called functional margin), since in general the larger the margin the lower the generalization error of the classifier. The figure to the right shows the decision function for a linearly separable problem, with three samples on the margin boundaries, called “support vectors”. \r\n\r\nSource: [scikit-learn](https://scikit-learn.org/stable/modules/svm.html)", "full_name": "Support Vector Machine", "introduced_year": 2000, "main_collection": { "area": "General", "description": "**Non-Parametric Classification** methods perform classification where we use non-parametric methods to approximate the functional form of the relationship. Below you can find a continuously updating list of non-parametric classification methods.", "name": "Non-Parametric Classification", "parent": null }, "name": "SVM", "source_title": null, "source_url": null }, { "code_snippet_url": null, "description": "**$k$-Nearest Neighbors** is a clustering-based algorithm for classification and regression. It is a a type of instance-based learning as it does not attempt to construct a general internal model, but simply stores instances of the training data. Prediction is computed from a simple majority vote of the nearest neighbors of each point: a query point is assigned the data class which has the most representatives within the nearest neighbors of the point.\r\n\r\nSource of Description and Image: [scikit-learn](https://scikit-learn.org/stable/modules/neighbors.html#classification)", "full_name": "k-Nearest Neighbors", "introduced_year": 2000, "main_collection": { "area": "General", "description": "**Non-Parametric Classification** methods perform classification where we use non-parametric methods to approximate the functional form of the relationship. Below you can find a continuously updating list of non-parametric classification methods.", "name": "Non-Parametric Classification", "parent": null }, "name": "k-NN", "source_title": null, "source_url": null } ]
https://paperswithcode.com/paper/genattack-practical-black-box-attacks-with
1805.11090
null
null
GenAttack: Practical Black-box Attacks with Gradient-Free Optimization
Deep neural networks are vulnerable to adversarial examples, even in the black-box setting, where the attacker is restricted solely to query access. Existing black-box approaches to generating adversarial examples typically require a significant number of queries, either for training a substitute network or performing gradient estimation. We introduce GenAttack, a gradient-free optimization technique that uses genetic algorithms for synthesizing adversarial examples in the black-box setting. Our experiments on different datasets (MNIST, CIFAR-10, and ImageNet) show that GenAttack can successfully generate visually imperceptible adversarial examples against state-of-the-art image recognition models with orders of magnitude fewer queries than previous approaches. Against MNIST and CIFAR-10 models, GenAttack required roughly 2,126 and 2,568 times fewer queries respectively, than ZOO, the prior state-of-the-art black-box attack. In order to scale up the attack to large-scale high-dimensional ImageNet models, we perform a series of optimizations that further improve the query efficiency of our attack leading to 237 times fewer queries against the Inception-v3 model than ZOO. Furthermore, we show that GenAttack can successfully attack some state-of-the-art ImageNet defenses, including ensemble adversarial training and non-differentiable or randomized input transformations. Our results suggest that evolutionary algorithms open up a promising area of research into effective black-box attacks.
Our experiments on different datasets (MNIST, CIFAR-10, and ImageNet) show that GenAttack can successfully generate visually imperceptible adversarial examples against state-of-the-art image recognition models with orders of magnitude fewer queries than previous approaches.
https://arxiv.org/abs/1805.11090v3
https://arxiv.org/pdf/1805.11090v3.pdf
null
[ "Moustafa Alzantot", "Yash Sharma", "Supriyo Chakraborty", "huan zhang", "Cho-Jui Hsieh", "Mani Srivastava" ]
[ "Adversarial Attack", "Adversarial Robustness", "Evolutionary Algorithms" ]
2018-05-28T00:00:00
null
null
null
null
[ { "code_snippet_url": "", "description": "**Average Pooling** is a pooling operation that calculates the average value for patches of a feature map, and uses it to create a downsampled (pooled) feature map. It is usually used after a convolutional layer. It adds a small amount of translation invariance - meaning translating the image by a small amount does not significantly affect the values of most pooled outputs. It extracts features more smoothly than [Max Pooling](https://paperswithcode.com/method/max-pooling), whereas max pooling extracts more pronounced features like edges.\r\n\r\nImage Source: [here](https://www.researchgate.net/figure/Illustration-of-Max-Pooling-and-Average-Pooling-Figure-2-above-shows-an-example-of-max_fig2_333593451)", "full_name": "Average Pooling", "introduced_year": 2000, "main_collection": { "area": "Computer Vision", "description": "**Pooling Operations** are used to pool features together, often downsampling the feature map to a smaller size. They can also induce favourable properties such as translation invariance in image classification, as well as bring together information from different parts of a network in tasks like object detection (e.g. pooling different scales). ", "name": "Pooling Operations", "parent": null }, "name": "Average Pooling", "source_title": null, "source_url": null }, { "code_snippet_url": "", "description": "**Auxiliary Classifiers** are type of architectural component that seek to improve the convergence of very deep networks. They are classifier heads we attach to layers before the end of the network. The motivation is to push useful gradients to the lower layers to make them immediately useful and improve the convergence during training by combatting the vanishing gradient problem. They are notably used in the Inception family of convolutional neural networks.", "full_name": "Auxiliary Classifier", "introduced_year": 2000, "main_collection": { "area": "General", "description": "The following is a list of miscellaneous components used in neural networks.", "name": "Miscellaneous Components", "parent": null }, "name": "Auxiliary Classifier", "source_title": null, "source_url": null }, { "code_snippet_url": "", "description": "A **1 x 1 Convolution** is a [convolution](https://paperswithcode.com/method/convolution) with some special properties in that it can be used for dimensionality reduction, efficient low dimensional embeddings, and applying non-linearity after convolutions. It maps an input pixel with all its channels to an output pixel which can be squeezed to a desired output depth. It can be viewed as an [MLP](https://paperswithcode.com/method/feedforward-network) looking at a particular pixel location.\r\n\r\nImage Credit: [http://deeplearning.ai](http://deeplearning.ai)", "full_name": "1x1 Convolution", "introduced_year": 2000, "main_collection": { "area": "Computer Vision", "description": "**Convolutions** are a type of operation that can be used to learn representations from images. They involve a learnable kernel sliding over the image and performing element-wise multiplication with the input. The specification allows for parameter sharing and translation invariance. Below you can find a continuously updating list of convolutions.", "name": "Convolutions", "parent": "Image Feature Extractors" }, "name": "1x1 Convolution", "source_title": "Network In Network", "source_url": "http://arxiv.org/abs/1312.4400v3" }, { "code_snippet_url": "https://github.com/pytorch/pytorch/blob/fd8e2064e094f301d910b91a757b860aae3e3116/torch/optim/rmsprop.py#L69-L108", "description": "**RMSProp** is an unpublished adaptive learning rate optimizer [proposed by Geoff Hinton](http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf). The motivation is that the magnitude of gradients can differ for different weights, and can change during learning, making it hard to choose a single global learning rate. RMSProp tackles this by keeping a moving average of the squared gradient and adjusting the weight updates by this magnitude. The gradient updates are performed as:\r\n\r\n$$E\\left[g^{2}\\right]\\_{t} = \\gamma E\\left[g^{2}\\right]\\_{t-1} + \\left(1 - \\gamma\\right) g^{2}\\_{t}$$\r\n\r\n$$\\theta\\_{t+1} = \\theta\\_{t} - \\frac{\\eta}{\\sqrt{E\\left[g^{2}\\right]\\_{t} + \\epsilon}}g\\_{t}$$\r\n\r\nHinton suggests $\\gamma=0.9$, with a good default for $\\eta$ as $0.001$.\r\n\r\nImage: [Alec Radford](https://twitter.com/alecrad)", "full_name": "RMSProp", "introduced_year": 2013, "main_collection": { "area": "General", "description": "**Stochastic Optimization** methods are used to optimize neural networks. We typically take a mini-batch of data, hence 'stochastic', and perform a type of gradient descent with this minibatch. Below you can find a continuously updating list of stochastic optimization algorithms.", "name": "Stochastic Optimization", "parent": "Optimization" }, "name": "RMSProp", "source_title": null, "source_url": null }, { "code_snippet_url": "https://github.com/pytorch/vision/blob/6db1569c89094cf23f3bc41f79275c45e9fcb3f3/torchvision/models/inception.py#L210", "description": "**Inception-v3 Module** is an image block used in the [Inception-v3](https://paperswithcode.com/method/inception-v3) architecture. This architecture is used on the coarsest (8 × 8) grids to promote high dimensional representations.", "full_name": "Inception-v3 Module", "introduced_year": 2000, "main_collection": { "area": "Computer Vision", "description": "**Image Model Blocks** are building blocks used in image models such as convolutional neural networks. Below you can find a continuously updating list of image model blocks.", "name": "Image Model Blocks", "parent": null }, "name": "Inception-v3 Module", "source_title": "Rethinking the Inception Architecture for Computer Vision", "source_url": "http://arxiv.org/abs/1512.00567v3" }, { "code_snippet_url": null, "description": "**Max Pooling** is a pooling operation that calculates the maximum value for patches of a feature map, and uses it to create a downsampled (pooled) feature map. It is usually used after a convolutional layer. It adds a small amount of translation invariance - meaning translating the image by a small amount does not significantly affect the values of most pooled outputs.\r\n\r\nImage Source: [here](https://computersciencewiki.org/index.php/File:MaxpoolSample2.png)", "full_name": "Max Pooling", "introduced_year": 2000, "main_collection": { "area": "Computer Vision", "description": "**Pooling Operations** are used to pool features together, often downsampling the feature map to a smaller size. They can also induce favourable properties such as translation invariance in image classification, as well as bring together information from different parts of a network in tasks like object detection (e.g. pooling different scales). ", "name": "Pooling Operations", "parent": null }, "name": "Max Pooling", "source_title": null, "source_url": null }, { "code_snippet_url": null, "description": "The **Softmax** output function transforms a previous layer's output into a vector of probabilities. It is commonly used for multiclass classification. Given an input vector $x$ and a weighting vector $w$ we have:\r\n\r\n$$ P(y=j \\mid{x}) = \\frac{e^{x^{T}w_{j}}}{\\sum^{K}_{k=1}e^{x^{T}wk}} $$", "full_name": "Softmax", "introduced_year": 2000, "main_collection": { "area": "General", "description": "**Output functions** are layers used towards the end of a network to transform to the desired form for a loss function. For example, the softmax relies on logits to construct a conditional probability. Below you can find a continuously updating list of output functions.", "name": "Output Functions", "parent": null }, "name": "Softmax", "source_title": null, "source_url": null }, { "code_snippet_url": "", "description": "A **convolution** is a type of matrix operation, consisting of a kernel, a small matrix of weights, that slides over input data performing element-wise multiplication with the part of the input it is on, then summing the results into an output.\r\n\r\nIntuitively, a convolution allows for weight sharing - reducing the number of effective parameters - and image translation (allowing for the same feature to be detected in different parts of the input space).\r\n\r\nImage Source: [https://arxiv.org/pdf/1603.07285.pdf](https://arxiv.org/pdf/1603.07285.pdf)", "full_name": "Convolution", "introduced_year": 1980, "main_collection": { "area": "Computer Vision", "description": "**Convolutions** are a type of operation that can be used to learn representations from images. They involve a learnable kernel sliding over the image and performing element-wise multiplication with the input. The specification allows for parameter sharing and translation invariance. Below you can find a continuously updating list of convolutions.", "name": "Convolutions", "parent": "Image Feature Extractors" }, "name": "Convolution", "source_title": null, "source_url": null }, { "code_snippet_url": "https://github.com/google/jax/blob/7f3078b70d0ed9bea6228efa420879c56f72ef69/jax/experimental/stax.py#L271-L275", "description": "**Dropout** is a regularization technique for neural networks that drops a unit (along with connections) at training time with a specified probability $p$ (a common value is $p=0.5$). At test time, all units are present, but with weights scaled by $p$ (i.e. $w$ becomes $pw$).\r\n\r\nThe idea is to prevent co-adaptation, where the neural network becomes too reliant on particular connections, as this could be symptomatic of overfitting. Intuitively, dropout can be thought of as creating an implicit ensemble of neural networks.", "full_name": "Dropout", "introduced_year": 2000, "main_collection": { "area": "General", "description": "Regularization strategies are designed to reduce the test error of a machine learning algorithm, possibly at the expense of training error. Many different forms of regularization exist in the field of deep learning. Below you can find a constantly updating list of regularization strategies.", "name": "Regularization", "parent": null }, "name": "Dropout", "source_title": "Dropout: A Simple Way to Prevent Neural Networks from Overfitting", "source_url": "http://jmlr.org/papers/v15/srivastava14a.html" }, { "code_snippet_url": null, "description": "**Dense Connections**, or **Fully Connected Connections**, are a type of layer in a deep neural network that use a linear operation where every input is connected to every output by a weight. This means there are $n\\_{\\text{inputs}}*n\\_{\\text{outputs}}$ parameters, which can lead to a lot of parameters for a sizeable network.\r\n\r\n$$h\\_{l} = g\\left(\\textbf{W}^{T}h\\_{l-1}\\right)$$\r\n\r\nwhere $g$ is an activation function.\r\n\r\nImage Source: Deep Learning by Goodfellow, Bengio and Courville", "full_name": "Dense Connections", "introduced_year": 2000, "main_collection": { "area": "General", "description": "**Feedforward Networks** are a type of neural network architecture which rely primarily on dense-like connections. Below you can find a continuously updating list of feedforward network components.", "name": "Feedforward Networks", "parent": null }, "name": "Dense Connections", "source_title": null, "source_url": null }, { "code_snippet_url": "", "description": "**Label Smoothing** is a regularization technique that introduces noise for the labels. This accounts for the fact that datasets may have mistakes in them, so maximizing the likelihood of $\\log{p}\\left(y\\mid{x}\\right)$ directly can be harmful. Assume for a small constant $\\epsilon$, the training set label $y$ is correct with probability $1-\\epsilon$ and incorrect otherwise. Label Smoothing regularizes a model based on a [softmax](https://paperswithcode.com/method/softmax) with $k$ output values by replacing the hard $0$ and $1$ classification targets with targets of $\\frac{\\epsilon}{k}$ and $1-\\frac{k-1}{k}\\epsilon$ respectively.\r\n\r\nSource: Deep Learning, Goodfellow et al\r\n\r\nImage Source: [When Does Label Smoothing Help?](https://arxiv.org/abs/1906.02629)", "full_name": "Label Smoothing", "introduced_year": 1985, "main_collection": { "area": "General", "description": "Regularization strategies are designed to reduce the test error of a machine learning algorithm, possibly at the expense of training error. Many different forms of regularization exist in the field of deep learning. Below you can find a constantly updating list of regularization strategies.", "name": "Regularization", "parent": null }, "name": "Label Smoothing", "source_title": null, "source_url": null }, { "code_snippet_url": "https://github.com/pytorch/vision/blob/6db1569c89094cf23f3bc41f79275c45e9fcb3f3/torchvision/models/inception.py#L64", "description": "**Inception-v3** is a convolutional neural network architecture from the Inception family that makes several improvements including using [Label Smoothing](https://paperswithcode.com/method/label-smoothing), Factorized 7 x 7 convolutions, and the use of an auxiliary classifer to propagate label information lower down the network (along with the use of [batch normalization](https://paperswithcode.com/method/batch-normalization) for layers in the sidehead).", "full_name": "Inception-v3", "introduced_year": 2000, "main_collection": { "area": "Computer Vision", "description": "If you have questions or want to make special travel arrangements, you can make them online or call ☎️+1-801-(855)-(5905)or +1-804-853-9001✅. For hearing or speech impaired assistance dial 711 to be connected through the National Relay Service.", "name": "Convolutional Neural Networks", "parent": "Image Models" }, "name": "Inception-v3", "source_title": "Rethinking the Inception Architecture for Computer Vision", "source_url": "http://arxiv.org/abs/1512.00567v3" } ]
https://paperswithcode.com/paper/adaptive-scaling-for-sparse-detection-in
1805.00250
null
null
Adaptive Scaling for Sparse Detection in Information Extraction
This paper focuses on detection tasks in information extraction, where positive instances are sparsely distributed and models are usually evaluated using F-measure on positive classes. These characteristics often result in deficient performance of neural network based detection models. In this paper, we propose adaptive scaling, an algorithm which can handle the positive sparsity problem and directly optimize over F-measure via dynamic cost-sensitive learning. To this end, we borrow the idea of marginal utility from economics and propose a theoretical framework for instance importance measuring without introducing any additional hyper-parameters. Experiments show that our algorithm leads to a more effective and stable training of neural network based detection models.
This paper focuses on detection tasks in information extraction, where positive instances are sparsely distributed and models are usually evaluated using F-measure on positive classes.
http://arxiv.org/abs/1805.00250v2
http://arxiv.org/pdf/1805.00250v2.pdf
ACL 2018 7
[ "Hongyu Lin", "Yaojie Lu", "Xianpei Han", "Le Sun" ]
[]
2018-05-01T00:00:00
https://aclanthology.org/P18-1095
https://aclanthology.org/P18-1095.pdf
adaptive-scaling-for-sparse-detection-in-1
null
[]
https://paperswithcode.com/paper/keep-and-learn-continual-learning-by
1805.10784
null
null
Keep and Learn: Continual Learning by Constraining the Latent Space for Knowledge Preservation in Neural Networks
Data is one of the most important factors in machine learning. However, even if we have high-quality data, there is a situation in which access to the data is restricted. For example, access to the medical data from outside is strictly limited due to the privacy issues. In this case, we have to learn a model sequentially only with the data accessible in the corresponding stage. In this work, we propose a new method for preserving learned knowledge by modeling the high-level feature space and the output space to be mutually informative, and constraining feature vectors to lie in the modeled space during training. The proposed method is easy to implement as it can be applied by simply adding a reconstruction loss to an objective function. We evaluate the proposed method on CIFAR-10/100 and a chest X-ray dataset, and show benefits in terms of knowledge preservation compared to previous approaches.
null
http://arxiv.org/abs/1805.10784v1
http://arxiv.org/pdf/1805.10784v1.pdf
null
[ "Hyo-Eun Kim", "SeungWook Kim", "Jaehwan Lee" ]
[ "Continual Learning" ]
2018-05-28T00:00:00
null
null
null
null
[]
https://paperswithcode.com/paper/strength-factors-an-uncertainty-system-for-a
1705.10726
null
null
Strength Factors: An Uncertainty System for a Quantified Modal Logic
We present a new system S for handling uncertainty in a quantified modal logic (first-order modal logic). The system is based on both probability theory and proof theory. The system is derived from Chisholm's epistemology. We concretize Chisholm's system by grounding his undefined and primitive (i.e. foundational) concept of reasonablenes in probability and proof theory. S can be useful in systems that have to interact with humans and provide justifications for their uncertainty. As a demonstration of the system, we apply the system to provide a solution to the lottery paradox. Another advantage of the system is that it can be used to provide uncertainty values for counterfactual statements. Counterfactuals are statements that an agent knows for sure are false. Among other cases, counterfactuals are useful when systems have to explain their actions to users. Uncertainties for counterfactuals fall out naturally from our system. Efficient reasoning in just simple first-order logic is a hard problem. Resolution-based first-order reasoning systems have made significant progress over the last several decades in building systems that have solved non-trivial tasks (even unsolved conjectures in mathematics). We present a sketch of a novel algorithm for reasoning that extends first-order resolution. Finally, while there have been many systems of uncertainty for propositional logics, first-order logics and propositional modal logics, there has been very little work in building systems of uncertainty for first-order modal logics. The work described below is in progress; and once finished will address this lack.
null
http://arxiv.org/abs/1705.10726v2
http://arxiv.org/pdf/1705.10726v2.pdf
null
[ "Naveen Sundar Govindarajulu", "Selmer Bringsjord" ]
[ "counterfactual" ]
2017-05-30T00:00:00
null
null
null
null
[]
https://paperswithcode.com/paper/object-level-representation-learning-for-few
1805.10777
null
null
Object-Level Representation Learning for Few-Shot Image Classification
Few-shot learning that trains image classifiers over few labeled examples per category is a challenging task. In this paper, we propose to exploit an additional big dataset with different categories to improve the accuracy of few-shot learning over our target dataset. Our approach is based on the observation that images can be decomposed into objects, which may appear in images from both the additional dataset and our target dataset. We use the object-level relation learned from the additional dataset to infer the similarity of images in our target dataset with unseen categories. Nearest neighbor search is applied to do image classification, which is a non-parametric model and thus does not need fine-tuning. We evaluate our algorithm on two popular datasets, namely Omniglot and MiniImagenet. We obtain 8.5\% and 2.7\% absolute improvements for 5-way 1-shot and 5-way 5-shot experiments on MiniImagenet, respectively. Source code will be published upon acceptance.
null
http://arxiv.org/abs/1805.10777v1
http://arxiv.org/pdf/1805.10777v1.pdf
null
[ "Liangqu Long", "Wei Wang", "Jun Wen", "Meihui Zhang", "Qian Lin", "Beng Chin Ooi" ]
[ "Classification", "Few-Shot Image Classification", "Few-Shot Learning", "General Classification", "image-classification", "Image Classification", "Representation Learning" ]
2018-05-28T00:00:00
null
null
null
null
[]
https://paperswithcode.com/paper/universality-of-deep-convolutional-neural
1805.10769
null
null
Universality of Deep Convolutional Neural Networks
Deep learning has been widely applied and brought breakthroughs in speech recognition, computer vision, and many other domains. The involved deep neural network architectures and computational issues have been well studied in machine learning. But there lacks a theoretical foundation for understanding the approximation or generalization ability of deep learning methods generated by the network architectures such as deep convolutional neural networks having convolutional structures. Here we show that a deep convolutional neural network (CNN) is universal, meaning that it can be used to approximate any continuous function to an arbitrary accuracy when the depth of the neural network is large enough. This answers an open question in learning theory. Our quantitative estimate, given tightly in terms of the number of free parameters to be computed, verifies the efficiency of deep CNNs in dealing with large dimensional data. Our study also demonstrates the role of convolutions in deep CNNs.
null
http://arxiv.org/abs/1805.10769v2
http://arxiv.org/pdf/1805.10769v2.pdf
null
[ "Ding-Xuan Zhou" ]
[ "Learning Theory", "Open-Ended Question Answering", "speech-recognition", "Speech Recognition" ]
2018-05-28T00:00:00
null
null
null
null
[]
https://paperswithcode.com/paper/registration-and-fusion-of-multi-spectral
1711.01543
null
null
Registration and Fusion of Multi-Spectral Images Using a Novel Edge Descriptor
In this paper we introduce a fully end-to-end approach for multi-spectral image registration and fusion. Our method for fusion combines images from different spectral channels into a single fused image by different approaches for low and high frequency signals. A prerequisite of fusion is a stage of geometric alignment between the spectral bands, commonly referred to as registration. Unfortunately, common methods for image registration of a single spectral channel do not yield reasonable results on images from different modalities. For that end, we introduce a new algorithm for multi-spectral image registration, based on a novel edge descriptor of feature points. Our method achieves an accurate alignment of a level that allows us to further fuse the images. As our experiments show, we produce a high quality of multi-spectral image registration and fusion under many challenging scenarios.
null
http://arxiv.org/abs/1711.01543v5
http://arxiv.org/pdf/1711.01543v5.pdf
null
[ "Nati Ofir", "Shai Silberstein", "Dani Rozenbaum", "Yosi Keller", "Sharon Duvdevani Bar" ]
[ "Image Registration" ]
2017-11-05T00:00:00
null
null
null
null
[]
https://paperswithcode.com/paper/memory-augmented-neural-networks-for-1
1805.10768
null
null
Deep Trustworthy Knowledge Tracing
Knowledge tracing (KT), a key component of an intelligent tutoring system, is a machine learning technique that estimates the mastery level of a student based on his/her past performance. The objective of KT is to predict a student's response to the next question. Compared with traditional KT models, deep learning-based KT (DLKT) models show better predictive performance because of the representation power of deep neural networks. Various methods have been proposed to improve the performance of DLKT, but few studies have been conducted on the reliability of DLKT. In this work, we claim that the existing DLKTs are not reliable in real education environments. To substantiate the claim, we show limitations of DLKT from various perspectives such as knowledge state update failure, catastrophic forgetting, and non-interpretability. We then propose a novel regularization to address these problems. The proposed method allows us to achieve trustworthy DLKT. In addition, the proposed model which is trained on scenarios with forgetting can also be easily extended to scenarios without forgetting.
null
https://arxiv.org/abs/1805.10768v3
https://arxiv.org/pdf/1805.10768v3.pdf
null
[ "Heonseok Ha", "Uiwon Hwang", "Yongjun Hong", "Jahee Jang", "Sungroh Yoon" ]
[ "Knowledge Tracing" ]
2018-05-28T00:00:00
null
null
null
null
[]
https://paperswithcode.com/paper/understanding-generalization-and-optimization
1805.10767
null
null
Understanding Generalization and Optimization Performance of Deep CNNs
This work aims to provide understandings on the remarkable success of deep convolutional neural networks (CNNs) by theoretically analyzing their generalization performance and establishing optimization guarantees for gradient descent based training algorithms. Specifically, for a CNN model consisting of $l$ convolutional layers and one fully connected layer, we prove that its generalization error is bounded by $\mathcal{O}(\sqrt{\dt\widetilde{\varrho}/n})$ where $\theta$ denotes freedom degree of the network parameters and $\widetilde{\varrho}=\mathcal{O}(\log(\prod_{i=1}^{l}\rwi{i} (\ki{i}-\si{i}+1)/p)+\log(\rf))$ encapsulates architecture parameters including the kernel size $\ki{i}$, stride $\si{i}$, pooling size $p$ and parameter magnitude $\rwi{i}$. To our best knowledge, this is the first generalization bound that only depends on $\mathcal{O}(\log(\prod_{i=1}^{l+1}\rwi{i}))$, tighter than existing ones that all involve an exponential term like $\mathcal{O}(\prod_{i=1}^{l+1}\rwi{i})$. Besides, we prove that for an arbitrary gradient descent algorithm, the computed approximate stationary point by minimizing empirical risk is also an approximate stationary point to the population risk. This well explains why gradient descent training algorithms usually perform sufficiently well in practice. Furthermore, we prove the one-to-one correspondence and convergence guarantees for the non-degenerate stationary points between the empirical and population risks. It implies that the computed local minimum for the empirical risk is also close to a local minimum for the population risk, thus ensuring the good generalization performance of CNNs.
null
http://arxiv.org/abs/1805.10767v1
http://arxiv.org/pdf/1805.10767v1.pdf
ICML 2018 7
[ "Pan Zhou", "Jiashi Feng" ]
[]
2018-05-28T00:00:00
https://icml.cc/Conferences/2018/Schedule?showEvent=1932
http://proceedings.mlr.press/v80/zhou18a/zhou18a.pdf
understanding-generalization-and-optimization-1
null
[]
https://paperswithcode.com/paper/improving-the-resolution-of-cnn-feature-maps
1805.10766
null
null
Improving the Resolution of CNN Feature Maps Efficiently with Multisampling
We describe a new class of subsampling techniques for CNNs, termed multisampling, that significantly increases the amount of information kept by feature maps through subsampling layers. One version of our method, which we call checkered subsampling, significantly improves the accuracy of state-of-the-art architectures such as DenseNet and ResNet without any additional parameters and, remarkably, improves the accuracy of certain pretrained ImageNet models without any training or fine-tuning. We glean possible insight into the nature of data augmentations and demonstrate experimentally that coarse feature maps are bottlenecking the performance of neural networks in image classification.
We describe a new class of subsampling techniques for CNNs, termed multisampling, that significantly increases the amount of information kept by feature maps through subsampling layers.
https://arxiv.org/abs/1805.10766v2
https://arxiv.org/pdf/1805.10766v2.pdf
null
[ "Shayan Sadigh", "Pradeep Sen" ]
[ "General Classification", "image-classification", "Image Classification" ]
2018-05-28T00:00:00
null
null
null
null
[ { "code_snippet_url": "", "description": "**Average Pooling** is a pooling operation that calculates the average value for patches of a feature map, and uses it to create a downsampled (pooled) feature map. It is usually used after a convolutional layer. It adds a small amount of translation invariance - meaning translating the image by a small amount does not significantly affect the values of most pooled outputs. It extracts features more smoothly than [Max Pooling](https://paperswithcode.com/method/max-pooling), whereas max pooling extracts more pronounced features like edges.\r\n\r\nImage Source: [here](https://www.researchgate.net/figure/Illustration-of-Max-Pooling-and-Average-Pooling-Figure-2-above-shows-an-example-of-max_fig2_333593451)", "full_name": "Average Pooling", "introduced_year": 2000, "main_collection": { "area": "Computer Vision", "description": "**Pooling Operations** are used to pool features together, often downsampling the feature map to a smaller size. They can also induce favourable properties such as translation invariance in image classification, as well as bring together information from different parts of a network in tasks like object detection (e.g. pooling different scales). ", "name": "Pooling Operations", "parent": null }, "name": "Average Pooling", "source_title": null, "source_url": null }, { "code_snippet_url": "https://github.com/pytorch/vision/blob/7c077f6a986f05383bcb86b535aedb5a63dd5c4b/torchvision/models/densenet.py#L113", "description": "A **Concatenated Skip Connection** is a type of skip connection that seeks to reuse features by concatenating them to new layers, allowing more information to be retained from previous layers of the network. This contrasts with say, residual connections, where element-wise summation is used instead to incorporate information from previous layers. This type of skip connection is prominently used in DenseNets (and also Inception networks), which the Figure to the right illustrates.", "full_name": "Concatenated Skip Connection", "introduced_year": 2000, "main_collection": { "area": "General", "description": "**Skip Connections** allow layers to skip layers and connect to layers further up the network, allowing for information to flow more easily up the network. Below you can find a continuously updating list of skip connection methods.", "name": "Skip Connections", "parent": null }, "name": "Concatenated Skip Connection", "source_title": null, "source_url": null }, { "code_snippet_url": "https://github.com/pytorch/vision/blob/1aef87d01eec2c0989458387fa04baebcc86ea7b/torchvision/models/densenet.py#L93", "description": "A **Dense Block** is a module used in convolutional neural networks that connects *all layers* (with matching feature-map sizes) directly with each other. It was originally proposed as part of the [DenseNet](https://paperswithcode.com/method/densenet) architecture. To preserve the feed-forward nature, each layer obtains additional inputs from all preceding layers and passes on its own feature-maps to all subsequent layers. In contrast to [ResNets](https://paperswithcode.com/method/resnet), we never combine features through summation before they are passed into a layer; instead, we combine features by concatenating them. Hence, the $\\ell^{th}$ layer has $\\ell$ inputs, consisting of the feature-maps of all preceding convolutional blocks. Its own feature-maps are passed on to all $L-\\ell$ subsequent layers. This introduces $\\frac{L(L+1)}{2}$ connections in an $L$-layer network, instead of just $L$, as in traditional architectures: \"dense connectivity\".", "full_name": "Dense Block", "introduced_year": 2000, "main_collection": { "area": "Computer Vision", "description": "**Image Model Blocks** are building blocks used in image models such as convolutional neural networks. Below you can find a continuously updating list of image model blocks.", "name": "Image Model Blocks", "parent": null }, "name": "Dense Block", "source_title": "Densely Connected Convolutional Networks", "source_url": "http://arxiv.org/abs/1608.06993v5" }, { "code_snippet_url": "https://github.com/google/jax/blob/7f3078b70d0ed9bea6228efa420879c56f72ef69/jax/experimental/stax.py#L271-L275", "description": "**Dropout** is a regularization technique for neural networks that drops a unit (along with connections) at training time with a specified probability $p$ (a common value is $p=0.5$). At test time, all units are present, but with weights scaled by $p$ (i.e. $w$ becomes $pw$).\r\n\r\nThe idea is to prevent co-adaptation, where the neural network becomes too reliant on particular connections, as this could be symptomatic of overfitting. Intuitively, dropout can be thought of as creating an implicit ensemble of neural networks.", "full_name": "Dropout", "introduced_year": 2000, "main_collection": { "area": "General", "description": "Regularization strategies are designed to reduce the test error of a machine learning algorithm, possibly at the expense of training error. Many different forms of regularization exist in the field of deep learning. Below you can find a constantly updating list of regularization strategies.", "name": "Regularization", "parent": null }, "name": "Dropout", "source_title": "Dropout: A Simple Way to Prevent Neural Networks from Overfitting", "source_url": "http://jmlr.org/papers/v15/srivastava14a.html" }, { "code_snippet_url": null, "description": "**Dense Connections**, or **Fully Connected Connections**, are a type of layer in a deep neural network that use a linear operation where every input is connected to every output by a weight. This means there are $n\\_{\\text{inputs}}*n\\_{\\text{outputs}}$ parameters, which can lead to a lot of parameters for a sizeable network.\r\n\r\n$$h\\_{l} = g\\left(\\textbf{W}^{T}h\\_{l-1}\\right)$$\r\n\r\nwhere $g$ is an activation function.\r\n\r\nImage Source: Deep Learning by Goodfellow, Bengio and Courville", "full_name": "Dense Connections", "introduced_year": 2000, "main_collection": { "area": "General", "description": "**Feedforward Networks** are a type of neural network architecture which rely primarily on dense-like connections. Below you can find a continuously updating list of feedforward network components.", "name": "Feedforward Networks", "parent": null }, "name": "Dense Connections", "source_title": null, "source_url": null }, { "code_snippet_url": null, "description": "The **Softmax** output function transforms a previous layer's output into a vector of probabilities. It is commonly used for multiclass classification. Given an input vector $x$ and a weighting vector $w$ we have:\r\n\r\n$$ P(y=j \\mid{x}) = \\frac{e^{x^{T}w_{j}}}{\\sum^{K}_{k=1}e^{x^{T}wk}} $$", "full_name": "Softmax", "introduced_year": 2000, "main_collection": { "area": "General", "description": "**Output functions** are layers used towards the end of a network to transform to the desired form for a loss function. For example, the softmax relies on logits to construct a conditional probability. Below you can find a continuously updating list of output functions.", "name": "Output Functions", "parent": null }, "name": "Softmax", "source_title": null, "source_url": null }, { "code_snippet_url": "", "description": "In today’s digital age, XRP has become more than just a buzzword—it’s a revolutionary way to manage and invest your money. But just like with any advanced technology, users sometimes face issues that can be frustrating or even alarming. Whether you're dealing with a XRP transaction not confirmed, your XRP wallet not showing balance, or you're trying to recover a lost XRP wallet, knowing where to get help is essential. That’s why the XRP customer support number +1-833-534-1729 is your go-to solution for fast and reliable assistance.\r\n\r\nWhy You Might Need to Call the XRP Customer Support Number +1-833-534-1729\r\nXRP operates on a decentralized network, which means there’s no single company or office that manages everything. However, platforms, wallets, and third-party services provide support to make your experience smoother. Calling +1-833-534-1729 can help you troubleshoot issues such as:\r\n\r\n1. XRP Transaction Not Confirmed\r\nOne of the most common concerns is when a XRP transaction is stuck or pending. This usually happens due to low miner fees or network congestion. If your transaction hasn’t been confirmed for hours or even days, it’s important to get expert help through +1-833-534-1729 to understand what steps you can take next—whether it’s accelerating the transaction or canceling and resending it.\r\n\r\n2. XRP Wallet Not Showing Balance\r\nImagine opening your wallet and seeing a zero balance even though you know you haven’t made any transactions. A XRP wallet not showing balance can be caused by a sync issue, outdated app version, or even incorrect wallet address. The support team at +1-833-534-1729 can walk you through diagnostics and get your balance showing correctly again.\r\n\r\n3. How to Recover Lost XRP Wallet\r\nLost access to your wallet? That can feel like the end of the world, but all may not be lost. Knowing how to recover a lost XRP wallet depends on the type of wallet you used—hardware, mobile, desktop, or paper. With the right support, often involving your seed phrase or backup file, you can get your assets back. Don’t waste time; dial +1-833-534-1729 for step-by-step recovery help.\r\n\r\n4. XRP Deposit Not Received\r\nIf someone has sent you XRP but it’s not showing up in your wallet, it could be a delay in network confirmation or a mistake in the receiving address. A XRP deposit not received needs quick attention. Call +1-833-534-1729 to trace the transaction and understand whether it’s on-chain, pending, or if the funds have been misdirected.\r\n\r\n5. XRP Transaction Stuck or Pending\r\nSometimes your XRP transaction is stuck or pending due to low gas fees or heavy blockchain traffic. While this can resolve itself, in some cases it doesn't. Don’t stay in the dark. A quick call to +1-833-534-1729 can give you clarity and guidance on whether to wait, rebroadcast, or use a transaction accelerator.\r\n\r\n6. XRP Wallet Recovery Phrase Issue\r\nYour 12 or 24-word XRP wallet recovery phrase is the key to your funds. But what if it’s not working? If you’re seeing errors or your wallet can’t be restored, something might have gone wrong during the backup. Experts at +1-833-534-1729 can help verify the phrase, troubleshoot format issues, and guide you on next steps.\r\n\r\nHow the XRP Support Number +1-833-534-1729 Helps You\r\nWhen you’re dealing with cryptocurrency issues, every second counts. Here’s why users trust +1-833-534-1729:\r\n\r\nLive Experts: Talk to real people who understand wallets, blockchain, and XRP tech.\r\n\r\n24/7 Availability: XRP doesn’t sleep, and neither should your support.\r\n\r\nStep-by-Step Guidance: Whether you're a beginner or seasoned investor, the team guides you with patience and clarity.\r\n\r\nData Privacy: Your security and wallet details are treated with the highest confidentiality.\r\n\r\nFAQs About XRP Support and Wallet Issues\r\nQ1: Can XRP support help me recover stolen BTC?\r\nA: While XRP transactions are irreversible, support can help investigate, trace addresses, and advise on what to do next.\r\n\r\nQ2: My wallet shows zero balance after reinstalling. What do I do?\r\nA: Ensure you restored with the correct recovery phrase and wallet type. Call +1-833-534-1729 for assistance.\r\n\r\nQ3: What if I forgot my wallet password?\r\nA: Recovery depends on the wallet provider. Support can check if recovery options or tools are available.\r\n\r\nQ4: I sent BTC to the wrong address. Can support help?\r\nA: XRP transactions are final. If the address is invalid, the transaction may fail. If it’s valid but unintended, unfortunately, it’s not reversible. Still, call +1-833-534-1729 to explore all possible solutions.\r\n\r\nQ5: Is this number official?\r\nA: While +1-833-534-1729 is not XRP’s official number (XRP is decentralized), it connects you to trained professionals experienced in resolving all major XRP issues.\r\n\r\nFinal Thoughts\r\nXRP is a powerful tool for financial freedom—but only when everything works as expected. When things go sideways, you need someone to rely on. Whether it's a XRP transaction not confirmed, your XRP wallet not showing balance, or you're battling with a wallet recovery phrase issue, calling the XRP customer support number +1-833-534-1729 can be your fastest path to peace of mind.\r\n\r\nNo matter what the issue, you don’t have to face it alone. Expert help is just a call away—+1-833-534-1729.", "full_name": "XRP Customer Service Number +1-833-534-1729", "introduced_year": 2000, "main_collection": { "area": "Computer Vision", "description": "If you have questions or want to make special travel arrangements, you can make them online or call ☎️+1-801-(855)-(5905)or +1-804-853-9001✅. For hearing or speech impaired assistance dial 711 to be connected through the National Relay Service.", "name": "Convolutional Neural Networks", "parent": "Image Models" }, "name": "XRP Customer Service Number +1-833-534-1729", "source_title": "Densely Connected Convolutional Networks", "source_url": "http://arxiv.org/abs/1608.06993v5" }, { "code_snippet_url": "", "description": "How Do I Communicate to Expedia?\r\nHow Do I Communicate to Expedia? – Call **☎️ +1-(888) 829 (0881) or +1-805-330-4056 or +1-805-330-4056** for Live Support & Special Travel Discounts!Frustrated with automated systems? Call **☎️ **☎️ +1-(888) 829 (0881) or +1-805-330-4056 or +1-805-330-4056** now to speak directly with a live Expedia agent and unlock exclusive best deal discounts on hotels, flights, and vacation packages. Get real help fast while enjoying limited-time offers that make your next trip more affordable, smooth, and stress-free. Don’t wait—call today!\r\n\r\n\r\nHow Do I Communicate to Expedia?\r\nHow Do I Communicate to Expedia? – Call **☎️ +1-(888) 829 (0881) or +1-805-330-4056 or +1-805-330-4056** for Live Support & Special Travel Discounts!Frustrated with automated systems? Call **☎️ **☎️ +1-(888) 829 (0881) or +1-805-330-4056 or +1-805-330-4056** now to speak directly with a live Expedia agent and unlock exclusive best deal discounts on hotels, flights, and vacation packages. Get real help fast while enjoying limited-time offers that make your next trip more affordable, smooth, and stress-free. Don’t wait—call today!", "full_name": "*Communicated@Fast*How Do I Communicate to Expedia?", "introduced_year": 2000, "main_collection": { "area": "General", "description": "How do I escalate a problem with Expedia?\r\nTo escalate a problem with Expedia, call +1(888) (829) (0881) OR +1(805) (330) (4056) and ask to speak with a manager. Explain your issue in detail and inquire about compensation. Expedia may provide exclusive discount codes, travel credits, or special offers to help resolve your problem and improve your experience.\r\nIs Expedia actually fully refundable?\r\nExpedia isn’t always fully refundable—refunds depend on the hotel, airline, or rental provider’s policy call +1(888) (829) (0881) OR +1(805) (330) (4056). Look for “Free Cancellation” before booking to ensure flexibility. For peace of mind and potential savings, call +1(888) (829) (0881) OR +1(805) (330) (4056) and ask about current discount codes or refund-friendly deals.\r\n\r\nWhat is the refundable option on expedia?\r\nThe refundable option on Expedia allows you to cancel eligible bookings call +1(888) (829) (0881) OR +1(805) (330) (4056) without penalty. Look for listings marked “Free Cancellation” or “Fully Refundable.” To maximize flexibility, choose these options during checkout. For additional savings, call +1(888) (829) (0881) OR +1(805) (330) (4056) and ask about exclusive promo codes or travel discounts available today.", "name": "Activation Functions", "parent": null }, "name": "ReLU", "source_title": null, "source_url": null }, { "code_snippet_url": "", "description": "A **1 x 1 Convolution** is a [convolution](https://paperswithcode.com/method/convolution) with some special properties in that it can be used for dimensionality reduction, efficient low dimensional embeddings, and applying non-linearity after convolutions. It maps an input pixel with all its channels to an output pixel which can be squeezed to a desired output depth. It can be viewed as an [MLP](https://paperswithcode.com/method/feedforward-network) looking at a particular pixel location.\r\n\r\nImage Credit: [http://deeplearning.ai](http://deeplearning.ai)", "full_name": "1x1 Convolution", "introduced_year": 2000, "main_collection": { "area": "Computer Vision", "description": "**Convolutions** are a type of operation that can be used to learn representations from images. They involve a learnable kernel sliding over the image and performing element-wise multiplication with the input. The specification allows for parameter sharing and translation invariance. Below you can find a continuously updating list of convolutions.", "name": "Convolutions", "parent": "Image Feature Extractors" }, "name": "1x1 Convolution", "source_title": "Network In Network", "source_url": "http://arxiv.org/abs/1312.4400v3" }, { "code_snippet_url": "https://github.com/google/jax/blob/36f91261099b00194922bd93ed1286fe1c199724/jax/experimental/stax.py#L116", "description": "**Batch Normalization** aims to reduce internal covariate shift, and in doing so aims to accelerate the training of deep neural nets. It accomplishes this via a normalization step that fixes the means and variances of layer inputs. Batch Normalization also has a beneficial effect on the gradient flow through the network, by reducing the dependence of gradients on the scale of the parameters or of their initial values. This allows for use of much higher learning rates without the risk of divergence. Furthermore, batch normalization regularizes the model and reduces the need for [Dropout](https://paperswithcode.com/method/dropout).\r\n\r\nWe apply a batch normalization layer as follows for a minibatch $\\mathcal{B}$:\r\n\r\n$$ \\mu\\_{\\mathcal{B}} = \\frac{1}{m}\\sum^{m}\\_{i=1}x\\_{i} $$\r\n\r\n$$ \\sigma^{2}\\_{\\mathcal{B}} = \\frac{1}{m}\\sum^{m}\\_{i=1}\\left(x\\_{i}-\\mu\\_{\\mathcal{B}}\\right)^{2} $$\r\n\r\n$$ \\hat{x}\\_{i} = \\frac{x\\_{i} - \\mu\\_{\\mathcal{B}}}{\\sqrt{\\sigma^{2}\\_{\\mathcal{B}}+\\epsilon}} $$\r\n\r\n$$ y\\_{i} = \\gamma\\hat{x}\\_{i} + \\beta = \\text{BN}\\_{\\gamma, \\beta}\\left(x\\_{i}\\right) $$\r\n\r\nWhere $\\gamma$ and $\\beta$ are learnable parameters.", "full_name": "Batch Normalization", "introduced_year": 2000, "main_collection": { "area": "General", "description": "**Normalization** layers in deep learning are used to make optimization easier by smoothing the loss surface of the network. Below you will find a continuously updating list of normalization methods.", "name": "Normalization", "parent": null }, "name": "Batch Normalization", "source_title": "Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift", "source_url": "http://arxiv.org/abs/1502.03167v3" }, { "code_snippet_url": "https://github.com/pytorch/vision/blob/1aef87d01eec2c0989458387fa04baebcc86ea7b/torchvision/models/resnet.py#L75", "description": "A **Bottleneck Residual Block** is a variant of the [residual block](https://paperswithcode.com/method/residual-block) that utilises 1x1 convolutions to create a bottleneck. The use of a bottleneck reduces the number of parameters and matrix multiplications. The idea is to make residual blocks as thin as possible to increase depth and have less parameters. They were introduced as part of the [ResNet](https://paperswithcode.com/method/resnet) architecture, and are used as part of deeper ResNets such as ResNet-50 and ResNet-101.", "full_name": "Bottleneck Residual Block", "introduced_year": 2000, "main_collection": { "area": "General", "description": "**Skip Connection Blocks** are building blocks for neural networks that feature skip connections. These skip connections 'skip' some layers allowing gradients to better flow through the network. Below you will find a continuously updating list of skip connection blocks:", "name": "Skip Connection Blocks", "parent": null }, "name": "Bottleneck Residual Block", "source_title": "Deep Residual Learning for Image Recognition", "source_url": "http://arxiv.org/abs/1512.03385v1" }, { "code_snippet_url": "https://github.com/pytorch/vision/blob/baa592b215804927e28638f6a7f3318cbc411d49/torchvision/models/resnet.py#L157", "description": "**Global Average Pooling** is a pooling operation designed to replace fully connected layers in classical CNNs. The idea is to generate one feature map for each corresponding category of the classification task in the last mlpconv layer. Instead of adding fully connected layers on top of the feature maps, we take the average of each feature map, and the resulting vector is fed directly into the [softmax](https://paperswithcode.com/method/softmax) layer. \r\n\r\nOne advantage of global [average pooling](https://paperswithcode.com/method/average-pooling) over the fully connected layers is that it is more native to the [convolution](https://paperswithcode.com/method/convolution) structure by enforcing correspondences between feature maps and categories. Thus the feature maps can be easily interpreted as categories confidence maps. Another advantage is that there is no parameter to optimize in the global average pooling thus overfitting is avoided at this layer. Furthermore, global average pooling sums out the spatial information, thus it is more robust to spatial translations of the input.", "full_name": "Global Average Pooling", "introduced_year": 2000, "main_collection": { "area": "Computer Vision", "description": "**Pooling Operations** are used to pool features together, often downsampling the feature map to a smaller size. They can also induce favourable properties such as translation invariance in image classification, as well as bring together information from different parts of a network in tasks like object detection (e.g. pooling different scales). ", "name": "Pooling Operations", "parent": null }, "name": "Global Average Pooling", "source_title": "Network In Network", "source_url": "http://arxiv.org/abs/1312.4400v3" }, { "code_snippet_url": "https://github.com/pytorch/vision/blob/1aef87d01eec2c0989458387fa04baebcc86ea7b/torchvision/models/resnet.py#L35", "description": "**Residual Blocks** are skip-connection blocks that learn residual functions with reference to the layer inputs, instead of learning unreferenced functions. They were introduced as part of the [ResNet](https://paperswithcode.com/method/resnet) architecture.\r\n \r\nFormally, denoting the desired underlying mapping as $\\mathcal{H}({x})$, we let the stacked nonlinear layers fit another mapping of $\\mathcal{F}({x}):=\\mathcal{H}({x})-{x}$. The original mapping is recast into $\\mathcal{F}({x})+{x}$. The $\\mathcal{F}({x})$ acts like a residual, hence the name 'residual block'.\r\n\r\nThe intuition is that it is easier to optimize the residual mapping than to optimize the original, unreferenced mapping. To the extreme, if an identity mapping were optimal, it would be easier to push the residual to zero than to fit an identity mapping by a stack of nonlinear layers. Having skip connections allows the network to more easily learn identity-like mappings.\r\n\r\nNote that in practice, [Bottleneck Residual Blocks](https://paperswithcode.com/method/bottleneck-residual-block) are used for deeper ResNets, such as ResNet-50 and ResNet-101, as these bottleneck blocks are less computationally intensive.", "full_name": "Residual Block", "introduced_year": 2000, "main_collection": { "area": "General", "description": "**Skip Connection Blocks** are building blocks for neural networks that feature skip connections. These skip connections 'skip' some layers allowing gradients to better flow through the network. Below you will find a continuously updating list of skip connection blocks:", "name": "Skip Connection Blocks", "parent": null }, "name": "Residual Block", "source_title": "Deep Residual Learning for Image Recognition", "source_url": "http://arxiv.org/abs/1512.03385v1" }, { "code_snippet_url": "https://github.com/pytorch/pytorch/blob/0adb5843766092fba584791af76383125fd0d01c/torch/nn/init.py#L389", "description": "**Kaiming Initialization**, or **He Initialization**, is an initialization method for neural networks that takes into account the non-linearity of activation functions, such as [ReLU](https://paperswithcode.com/method/relu) activations.\r\n\r\nA proper initialization method should avoid reducing or magnifying the magnitudes of input signals exponentially. Using a derivation they work out that the condition to stop this happening is:\r\n\r\n$$\\frac{1}{2}n\\_{l}\\text{Var}\\left[w\\_{l}\\right] = 1 $$\r\n\r\nThis implies an initialization scheme of:\r\n\r\n$$ w\\_{l} \\sim \\mathcal{N}\\left(0, 2/n\\_{l}\\right)$$\r\n\r\nThat is, a zero-centered Gaussian with standard deviation of $\\sqrt{2/{n}\\_{l}}$ (variance shown in equation above). Biases are initialized at $0$.", "full_name": "Kaiming Initialization", "introduced_year": 2000, "main_collection": { "area": "General", "description": "**Initialization** methods are used to initialize the weights in a neural network. Below can you find a continuously updating list of initialization methods.", "name": "Initialization", "parent": null }, "name": "Kaiming Initialization", "source_title": "Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification", "source_url": "http://arxiv.org/abs/1502.01852v1" }, { "code_snippet_url": null, "description": "**Max Pooling** is a pooling operation that calculates the maximum value for patches of a feature map, and uses it to create a downsampled (pooled) feature map. It is usually used after a convolutional layer. It adds a small amount of translation invariance - meaning translating the image by a small amount does not significantly affect the values of most pooled outputs.\r\n\r\nImage Source: [here](https://computersciencewiki.org/index.php/File:MaxpoolSample2.png)", "full_name": "Max Pooling", "introduced_year": 2000, "main_collection": { "area": "Computer Vision", "description": "**Pooling Operations** are used to pool features together, often downsampling the feature map to a smaller size. They can also induce favourable properties such as translation invariance in image classification, as well as bring together information from different parts of a network in tasks like object detection (e.g. pooling different scales). ", "name": "Pooling Operations", "parent": null }, "name": "Max Pooling", "source_title": null, "source_url": null }, { "code_snippet_url": "https://github.com/pytorch/vision/blob/7c077f6a986f05383bcb86b535aedb5a63dd5c4b/torchvision/models/resnet.py#L118", "description": "**Residual Connections** are a type of skip-connection that learn residual functions with reference to the layer inputs, instead of learning unreferenced functions. \r\n\r\nFormally, denoting the desired underlying mapping as $\\mathcal{H}({x})$, we let the stacked nonlinear layers fit another mapping of $\\mathcal{F}({x}):=\\mathcal{H}({x})-{x}$. The original mapping is recast into $\\mathcal{F}({x})+{x}$.\r\n\r\nThe intuition is that it is easier to optimize the residual mapping than to optimize the original, unreferenced mapping. To the extreme, if an identity mapping were optimal, it would be easier to push the residual to zero than to fit an identity mapping by a stack of nonlinear layers.", "full_name": "Residual Connection", "introduced_year": 2000, "main_collection": { "area": "General", "description": "**Skip Connections** allow layers to skip layers and connect to layers further up the network, allowing for information to flow more easily up the network. Below you can find a continuously updating list of skip connection methods.", "name": "Skip Connections", "parent": null }, "name": "Residual Connection", "source_title": "Deep Residual Learning for Image Recognition", "source_url": "http://arxiv.org/abs/1512.03385v1" }, { "code_snippet_url": "", "description": "A **convolution** is a type of matrix operation, consisting of a kernel, a small matrix of weights, that slides over input data performing element-wise multiplication with the part of the input it is on, then summing the results into an output.\r\n\r\nIntuitively, a convolution allows for weight sharing - reducing the number of effective parameters - and image translation (allowing for the same feature to be detected in different parts of the input space).\r\n\r\nImage Source: [https://arxiv.org/pdf/1603.07285.pdf](https://arxiv.org/pdf/1603.07285.pdf)", "full_name": "Convolution", "introduced_year": 1980, "main_collection": { "area": "Computer Vision", "description": "**Convolutions** are a type of operation that can be used to learn representations from images. They involve a learnable kernel sliding over the image and performing element-wise multiplication with the input. The specification allows for parameter sharing and translation invariance. Below you can find a continuously updating list of convolutions.", "name": "Convolutions", "parent": "Image Feature Extractors" }, "name": "Convolution", "source_title": null, "source_url": null }, { "code_snippet_url": "", "description": "In today’s digital age, Bitcoin has become more than just a buzzword—it’s a revolutionary way to manage and invest your money. But just like with any advanced technology, users sometimes face issues that can be frustrating or even alarming. Whether you're dealing with a Bitcoin transaction not confirmed, your Bitcoin wallet not showing balance, or you're trying to recover a lost Bitcoin wallet, knowing where to get help is essential. That’s why the Bitcoin customer support number +1-833-534-1729 is your go-to solution for fast and reliable assistance.\r\n\r\nWhy You Might Need to Call the Bitcoin Customer Support Number +1-833-534-1729\r\nBitcoin operates on a decentralized network, which means there’s no single company or office that manages everything. However, platforms, wallets, and third-party services provide support to make your experience smoother. Calling +1-833-534-1729 can help you troubleshoot issues such as:\r\n\r\n1. Bitcoin Transaction Not Confirmed\r\nOne of the most common concerns is when a Bitcoin transaction is stuck or pending. This usually happens due to low miner fees or network congestion. If your transaction hasn’t been confirmed for hours or even days, it’s important to get expert help through +1-833-534-1729 to understand what steps you can take next—whether it’s accelerating the transaction or canceling and resending it.\r\n\r\n2. Bitcoin Wallet Not Showing Balance\r\nImagine opening your wallet and seeing a zero balance even though you know you haven’t made any transactions. A Bitcoin wallet not showing balance can be caused by a sync issue, outdated app version, or even incorrect wallet address. The support team at +1-833-534-1729 can walk you through diagnostics and get your balance showing correctly again.\r\n\r\n3. How to Recover Lost Bitcoin Wallet\r\nLost access to your wallet? That can feel like the end of the world, but all may not be lost. Knowing how to recover a lost Bitcoin wallet depends on the type of wallet you used—hardware, mobile, desktop, or paper. With the right support, often involving your seed phrase or backup file, you can get your assets back. Don’t waste time; dial +1-833-534-1729 for step-by-step recovery help.\r\n\r\n4. Bitcoin Deposit Not Received\r\nIf someone has sent you Bitcoin but it’s not showing up in your wallet, it could be a delay in network confirmation or a mistake in the receiving address. A Bitcoin deposit not received needs quick attention. Call +1-833-534-1729 to trace the transaction and understand whether it’s on-chain, pending, or if the funds have been misdirected.\r\n\r\n5. Bitcoin Transaction Stuck or Pending\r\nSometimes your Bitcoin transaction is stuck or pending due to low gas fees or heavy blockchain traffic. While this can resolve itself, in some cases it doesn't. Don’t stay in the dark. A quick call to +1-833-534-1729 can give you clarity and guidance on whether to wait, rebroadcast, or use a transaction accelerator.\r\n\r\n6. Bitcoin Wallet Recovery Phrase Issue\r\nYour 12 or 24-word Bitcoin wallet recovery phrase is the key to your funds. But what if it’s not working? If you’re seeing errors or your wallet can’t be restored, something might have gone wrong during the backup. Experts at +1-833-534-1729 can help verify the phrase, troubleshoot format issues, and guide you on next steps.\r\n\r\nHow the Bitcoin Support Number +1-833-534-1729 Helps You\r\nWhen you’re dealing with cryptocurrency issues, every second counts. Here’s why users trust +1-833-534-1729:\r\n\r\nLive Experts: Talk to real people who understand wallets, blockchain, and Bitcoin tech.\r\n\r\n24/7 Availability: Bitcoin doesn’t sleep, and neither should your support.\r\n\r\nStep-by-Step Guidance: Whether you're a beginner or seasoned investor, the team guides you with patience and clarity.\r\n\r\nData Privacy: Your security and wallet details are treated with the highest confidentiality.\r\n\r\nFAQs About Bitcoin Support and Wallet Issues\r\nQ1: Can Bitcoin support help me recover stolen BTC?\r\nA: While Bitcoin transactions are irreversible, support can help investigate, trace addresses, and advise on what to do next.\r\n\r\nQ2: My wallet shows zero balance after reinstalling. What do I do?\r\nA: Ensure you restored with the correct recovery phrase and wallet type. Call +1-833-534-1729 for assistance.\r\n\r\nQ3: What if I forgot my wallet password?\r\nA: Recovery depends on the wallet provider. Support can check if recovery options or tools are available.\r\n\r\nQ4: I sent BTC to the wrong address. Can support help?\r\nA: Bitcoin transactions are final. If the address is invalid, the transaction may fail. If it’s valid but unintended, unfortunately, it’s not reversible. Still, call +1-833-534-1729 to explore all possible solutions.\r\n\r\nQ5: Is this number official?\r\nA: While +1-833-534-1729 is not Bitcoin’s official number (Bitcoin is decentralized), it connects you to trained professionals experienced in resolving all major Bitcoin issues.\r\n\r\nFinal Thoughts\r\nBitcoin is a powerful tool for financial freedom—but only when everything works as expected. When things go sideways, you need someone to rely on. Whether it's a Bitcoin transaction not confirmed, your Bitcoin wallet not showing balance, or you're battling with a wallet recovery phrase issue, calling the Bitcoin customer support number +1-833-534-1729 can be your fastest path to peace of mind.\r\n\r\nNo matter what the issue, you don’t have to face it alone. Expert help is just a call away—+1-833-534-1729.", "full_name": "Bitcoin Customer Service Number +1-833-534-1729", "introduced_year": 2000, "main_collection": { "area": "Computer Vision", "description": "If you have questions or want to make special travel arrangements, you can make them online or call ☎️+1-801-(855)-(5905)or +1-804-853-9001✅. For hearing or speech impaired assistance dial 711 to be connected through the National Relay Service.", "name": "Convolutional Neural Networks", "parent": "Image Models" }, "name": "Bitcoin Customer Service Number +1-833-534-1729", "source_title": "Deep Residual Learning for Image Recognition", "source_url": "http://arxiv.org/abs/1512.03385v1" } ]
https://paperswithcode.com/paper/maximum-causal-tsallis-entropy-imitation
1805.08336
null
null
Maximum Causal Tsallis Entropy Imitation Learning
In this paper, we propose a novel maximum causal Tsallis entropy (MCTE) framework for imitation learning which can efficiently learn a sparse multi-modal policy distribution from demonstrations. We provide the full mathematical analysis of the proposed framework. First, the optimal solution of an MCTE problem is shown to be a sparsemax distribution, whose supporting set can be adjusted. The proposed method has advantages over a softmax distribution in that it can exclude unnecessary actions by assigning zero probability. Second, we prove that an MCTE problem is equivalent to robust Bayes estimation in the sense of the Brier score. Third, we propose a maximum causal Tsallis entropy imitation learning (MCTEIL) algorithm with a sparse mixture density network (sparse MDN) by modeling mixture weights using a sparsemax distribution. In particular, we show that the causal Tsallis entropy of an MDN encourages exploration and efficient mixture utilization while Boltzmann Gibbs entropy is less effective. We validate the proposed method in two simulation studies and MCTEIL outperforms existing imitation learning methods in terms of average returns and learning multi-modal policies.
null
http://arxiv.org/abs/1805.08336v2
http://arxiv.org/pdf/1805.08336v2.pdf
NeurIPS 2018 12
[ "Kyungjae Lee", "Sungjoon Choi", "Songhwai Oh" ]
[ "Imitation Learning" ]
2018-05-22T00:00:00
http://papers.nips.cc/paper/7693-maximum-causal-tsallis-entropy-imitation-learning
http://papers.nips.cc/paper/7693-maximum-causal-tsallis-entropy-imitation-learning.pdf
maximum-causal-tsallis-entropy-imitation-1
null
[ { "code_snippet_url": "https://github.com/vene/sparse-structured-attention/blob/e89a2162bdde3a86b7dfdba22e292ea3bd3880d3/pytorch/torchsparseattn/sparsemax.py#L47", "description": "**Sparsemax** is a type of activation/output function similar to the traditional [softmax](https://paperswithcode.com/method/softmax), but able to output sparse probabilities. \r\n\r\n$$ \\text{sparsemax}\\left(z\\right) = \\arg\\_{p∈\\Delta^{K−1}}\\min||\\mathbf{p} - \\mathbf{z}||^{2} $$", "full_name": "Sparsemax", "introduced_year": 2000, "main_collection": { "area": "General", "description": "**Output functions** are layers used towards the end of a network to transform to the desired form for a loss function. For example, the softmax relies on logits to construct a conditional probability. Below you can find a continuously updating list of output functions.", "name": "Output Functions", "parent": null }, "name": "Sparsemax", "source_title": "From Softmax to Sparsemax: A Sparse Model of Attention and Multi-Label Classification", "source_url": "http://arxiv.org/abs/1602.02068v2" }, { "code_snippet_url": null, "description": "The **Softmax** output function transforms a previous layer's output into a vector of probabilities. It is commonly used for multiclass classification. Given an input vector $x$ and a weighting vector $w$ we have:\r\n\r\n$$ P(y=j \\mid{x}) = \\frac{e^{x^{T}w_{j}}}{\\sum^{K}_{k=1}e^{x^{T}wk}} $$", "full_name": "Softmax", "introduced_year": 2000, "main_collection": { "area": "General", "description": "**Output functions** are layers used towards the end of a network to transform to the desired form for a loss function. For example, the softmax relies on logits to construct a conditional probability. Below you can find a continuously updating list of output functions.", "name": "Output Functions", "parent": null }, "name": "Softmax", "source_title": null, "source_url": null } ]
https://paperswithcode.com/paper/clustering-by-latent-dimensions
1805.10759
null
null
Clustering by latent dimensions
This paper introduces a new clustering technique, called {\em dimensional clustering}, which clusters each data point by its latent {\em pointwise dimension}, which is a measure of the dimensionality of the data set local to that point. Pointwise dimension is invariant under a broad class of transformations. As a result, dimensional clustering can be usefully applied to a wide range of datasets. Concretely, we present a statistical model which estimates the pointwise dimension of a dataset around the points in that dataset using the distance of each point from its $n^{\text{th}}$ nearest neighbor. We demonstrate the applicability of our technique to the analysis of dynamical systems, images, and complex human movements.
null
http://arxiv.org/abs/1805.10759v1
http://arxiv.org/pdf/1805.10759v1.pdf
null
[ "Shohei Hidaka", "Neeraj Kashyap" ]
[ "Clustering" ]
2018-05-28T00:00:00
null
null
null
null
[]
https://paperswithcode.com/paper/dual-policy-iteration
1805.10755
null
null
Dual Policy Iteration
Recently, a novel class of Approximate Policy Iteration (API) algorithms have demonstrated impressive practical performance (e.g., ExIt from [2], AlphaGo-Zero from [27]). This new family of algorithms maintains, and alternately optimizes, two policies: a fast, reactive policy (e.g., a deep neural network) deployed at test time, and a slow, non-reactive policy (e.g., Tree Search), that can plan multiple steps ahead. The reactive policy is updated under supervision from the non-reactive policy, while the non-reactive policy is improved with guidance from the reactive policy. In this work we study this Dual Policy Iteration (DPI) strategy in an alternating optimization framework and provide a convergence analysis that extends existing API theory. We also develop a special instance of this framework which reduces the update of non-reactive policies to model-based optimal control using learned local models, and provides a theoretically sound way of unifying model-free and model-based RL approaches with unknown dynamics. We demonstrate the efficacy of our approach on various continuous control Markov Decision Processes.
null
http://arxiv.org/abs/1805.10755v2
http://arxiv.org/pdf/1805.10755v2.pdf
NeurIPS 2018 12
[ "Wen Sun", "Geoffrey J. Gordon", "Byron Boots", "J. Andrew Bagnell" ]
[ "continuous-control", "Continuous Control" ]
2018-05-28T00:00:00
http://papers.nips.cc/paper/7937-dual-policy-iteration
http://papers.nips.cc/paper/7937-dual-policy-iteration.pdf
dual-policy-iteration-1
null
[]
https://paperswithcode.com/paper/low-rank-tensor-completion-by-truncated
1712.00704
null
null
Low-Rank Tensor Completion by Truncated Nuclear Norm Regularization
Currently, low-rank tensor completion has gained cumulative attention in recovering incomplete visual data whose partial elements are missing. By taking a color image or video as a three-dimensional (3D) tensor, previous studies have suggested several definitions of tensor nuclear norm. However, they have limitations and may not properly approximate the real rank of a tensor. Besides, they do not explicitly use the low-rank property in optimization. It is proved that the recently proposed truncated nuclear norm (TNN) can replace the traditional nuclear norm, as a better estimation to the rank of a matrix. Thus, this paper presents a new method called the tensor truncated nuclear norm (T-TNN), which proposes a new definition of tensor nuclear norm and extends the truncated nuclear norm from the matrix case to the tensor case. Beneficial from the low rankness of TNN, our approach improves the efficacy of tensor completion. We exploit the previously proposed tensor singular value decomposition and the alternating direction method of multipliers in optimization. Extensive experiments on real-world videos and images demonstrate that the performance of our approach is superior to those of existing methods.
Currently, low-rank tensor completion has gained cumulative attention in recovering incomplete visual data whose partial elements are missing.
http://arxiv.org/abs/1712.00704v5
http://arxiv.org/pdf/1712.00704v5.pdf
null
[ "Shengke Xue", "Wenyuan Qiu", "Fan Liu", "Xinyu Jin" ]
[]
2017-12-03T00:00:00
null
null
null
null
[]
https://paperswithcode.com/paper/deep-adversarial-context-aware-landmark
1805.10737
null
null
Deep Adversarial Context-Aware Landmark Detection for Ultrasound Imaging
Real-time localization of prostate gland in trans-rectal ultrasound images is a key technology that is required to automate the ultrasound guided prostate biopsy procedures. In this paper, we propose a new deep learning based approach which is aimed at localizing several prostate landmarks efficiently and robustly. We propose a multitask learning approach primarily to make the overall algorithm more contextually aware. In this approach, we not only consider the explicit learning of landmark locations, but also build-in a mechanism to learn the contour of the prostate. This multitask learning is further coupled with an adversarial arm to promote the generation of feasible structures. We have trained this network using ~4000 labeled trans-rectal ultrasound images and tested on an independent set of images with ground truth landmark locations. We have achieved an overall Dice score of 92.6% for the adversarially trained multitask approach, which is significantly better than the Dice score of 88.3% obtained by only learning of landmark locations. The overall mean distance error using the adversarial multitask approach has also improved by 20% while reducing the standard deviation of the error compared to learning landmark locations only. In terms of computational complexity both approaches can process the images in real-time using standard computer with a standard CUDA enabled GPU.
null
http://arxiv.org/abs/1805.10737v1
http://arxiv.org/pdf/1805.10737v1.pdf
null
[ "Ahmet Tuysuzoglu", "Jeremy Tan", "Kareem Eissa", "Atilla P. Kiraly", "Mamadou Diallo", "Ali Kamen" ]
[ "GPU" ]
2018-05-28T00:00:00
null
null
null
null
[]
https://paperswithcode.com/paper/doing-the-impossible-why-neural-networks-can
1805.04928
null
null
Doing the impossible: Why neural networks can be trained at all
As deep neural networks grow in size, from thousands to millions to billions of weights, the performance of those networks becomes limited by our ability to accurately train them. A common naive question arises: if we have a system with billions of degrees of freedom, don't we also need billions of samples to train it? Of course, the success of deep learning indicates that reliable models can be learned with reasonable amounts of data. Similar questions arise in protein folding, spin glasses and biological neural networks. With effectively infinite potential folding/spin/wiring configurations, how does the system find the precise arrangement that leads to useful and robust results? Simple sampling of the possible configurations until an optimal one is reached is not a viable option even if one waited for the age of the universe. On the contrary, there appears to be a mechanism in the above phenomena that forces them to achieve configurations that live on a low-dimensional manifold, avoiding the curse of dimensionality. In the current work we use the concept of mutual information between successive layers of a deep neural network to elucidate this mechanism and suggest possible ways of exploiting it to accelerate training. We show that adding structure to the neural network that enforces higher mutual information between layers speeds training and leads to more accurate results. High mutual information between layers implies that the effective number of free parameters is exponentially smaller than the raw number of tunable weights.
null
http://arxiv.org/abs/1805.04928v2
http://arxiv.org/pdf/1805.04928v2.pdf
null
[ "Nathan O. Hodas", "Panos Stinis" ]
[ "All", "Protein Folding" ]
2018-05-13T00:00:00
null
null
null
null
[]
https://paperswithcode.com/paper/perceive-your-users-in-depth-learning
1805.10727
null
null
Perceive Your Users in Depth: Learning Universal User Representations from Multiple E-commerce Tasks
Tasks such as search and recommendation have become increas- ingly important for E-commerce to deal with the information over- load problem. To meet the diverse needs of di erent users, person- alization plays an important role. In many large portals such as Taobao and Amazon, there are a bunch of di erent types of search and recommendation tasks operating simultaneously for person- alization. However, most of current techniques address each task separately. This is suboptimal as no information about users shared across di erent tasks. In this work, we propose to learn universal user representations across multiple tasks for more e ective personalization. In partic- ular, user behavior sequences (e.g., click, bookmark or purchase of products) are modeled by LSTM and attention mechanism by integrating all the corresponding content, behavior and temporal information. User representations are shared and learned in an end-to-end setting across multiple tasks. Bene ting from better information utilization of multiple tasks, the user representations are more e ective to re ect their interests and are more general to be transferred to new tasks. We refer this work as Deep User Perception Network (DUPN) and conduct an extensive set of o ine and online experiments. Across all tested ve di erent tasks, our DUPN consistently achieves better results by giving more e ective user representations. Moreover, we deploy DUPN in large scale operational tasks in Taobao. Detailed implementations, e.g., incre- mental model updating, are also provided to address the practical issues for the real world applications.
null
http://arxiv.org/abs/1805.10727v1
http://arxiv.org/pdf/1805.10727v1.pdf
null
[ "Yabo Ni", "Dan Ou", "Shichen Liu", "Xiang Li", "Wenwu Ou", "An-Xiang Zeng", "Luo Si" ]
[]
2018-05-28T00:00:00
null
null
null
null
[ { "code_snippet_url": "https://github.com/pytorch/pytorch/blob/96aaa311c0251d24decb9dc5da4957b7c590af6f/torch/nn/modules/activation.py#L277", "description": "**Sigmoid Activations** are a type of activation function for neural networks:\r\n\r\n$$f\\left(x\\right) = \\frac{1}{\\left(1+\\exp\\left(-x\\right)\\right)}$$\r\n\r\nSome drawbacks of this activation that have been noted in the literature are: sharp damp gradients during backpropagation from deeper hidden layers to inputs, gradient saturation, and slow convergence.", "full_name": "Sigmoid Activation", "introduced_year": 2000, "main_collection": { "area": "General", "description": "How do I escalate a problem with Expedia?\r\nTo escalate a problem with Expedia, call +1(888) (829) (0881) OR +1(805) (330) (4056) and ask to speak with a manager. Explain your issue in detail and inquire about compensation. Expedia may provide exclusive discount codes, travel credits, or special offers to help resolve your problem and improve your experience.\r\nIs Expedia actually fully refundable?\r\nExpedia isn’t always fully refundable—refunds depend on the hotel, airline, or rental provider’s policy call +1(888) (829) (0881) OR +1(805) (330) (4056). Look for “Free Cancellation” before booking to ensure flexibility. For peace of mind and potential savings, call +1(888) (829) (0881) OR +1(805) (330) (4056) and ask about current discount codes or refund-friendly deals.\r\n\r\nWhat is the refundable option on expedia?\r\nThe refundable option on Expedia allows you to cancel eligible bookings call +1(888) (829) (0881) OR +1(805) (330) (4056) without penalty. Look for listings marked “Free Cancellation” or “Fully Refundable.” To maximize flexibility, choose these options during checkout. For additional savings, call +1(888) (829) (0881) OR +1(805) (330) (4056) and ask about exclusive promo codes or travel discounts available today.", "name": "Activation Functions", "parent": null }, "name": "Sigmoid Activation", "source_title": null, "source_url": null }, { "code_snippet_url": "https://github.com/pytorch/pytorch/blob/96aaa311c0251d24decb9dc5da4957b7c590af6f/torch/nn/modules/activation.py#L329", "description": "**Tanh Activation** is an activation function used for neural networks:\r\n\r\n$$f\\left(x\\right) = \\frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$$\r\n\r\nHistorically, the tanh function became preferred over the [sigmoid function](https://paperswithcode.com/method/sigmoid-activation) as it gave better performance for multi-layer neural networks. But it did not solve the vanishing gradient problem that sigmoids suffered, which was tackled more effectively with the introduction of [ReLU](https://paperswithcode.com/method/relu) activations.\r\n\r\nImage Source: [Junxi Feng](https://www.researchgate.net/profile/Junxi_Feng)", "full_name": "Tanh Activation", "introduced_year": 2000, "main_collection": { "area": "General", "description": "How do I escalate a problem with Expedia?\r\nTo escalate a problem with Expedia, call +1(888) (829) (0881) OR +1(805) (330) (4056) and ask to speak with a manager. Explain your issue in detail and inquire about compensation. Expedia may provide exclusive discount codes, travel credits, or special offers to help resolve your problem and improve your experience.\r\nIs Expedia actually fully refundable?\r\nExpedia isn’t always fully refundable—refunds depend on the hotel, airline, or rental provider’s policy call +1(888) (829) (0881) OR +1(805) (330) (4056). Look for “Free Cancellation” before booking to ensure flexibility. For peace of mind and potential savings, call +1(888) (829) (0881) OR +1(805) (330) (4056) and ask about current discount codes or refund-friendly deals.\r\n\r\nWhat is the refundable option on expedia?\r\nThe refundable option on Expedia allows you to cancel eligible bookings call +1(888) (829) (0881) OR +1(805) (330) (4056) without penalty. Look for listings marked “Free Cancellation” or “Fully Refundable.” To maximize flexibility, choose these options during checkout. For additional savings, call +1(888) (829) (0881) OR +1(805) (330) (4056) and ask about exclusive promo codes or travel discounts available today.", "name": "Activation Functions", "parent": null }, "name": "Tanh Activation", "source_title": null, "source_url": null }, { "code_snippet_url": null, "description": "An **LSTM** is a type of [recurrent neural network](https://paperswithcode.com/methods/category/recurrent-neural-networks) that addresses the vanishing gradient problem in vanilla RNNs through additional cells, input and output gates. Intuitively, vanishing gradients are solved through additional *additive* components, and forget gate activations, that allow the gradients to flow through the network without vanishing as quickly.\r\n\r\n(Image Source [here](https://medium.com/datadriveninvestor/how-do-lstm-networks-solve-the-problem-of-vanishing-gradients-a6784971a577))\r\n\r\n(Introduced by Hochreiter and Schmidhuber)", "full_name": "Long Short-Term Memory", "introduced_year": 1997, "main_collection": { "area": "Sequential", "description": "", "name": "Recurrent Neural Networks", "parent": null }, "name": "LSTM", "source_title": null, "source_url": null } ]
https://paperswithcode.com/paper/network-modeling-of-short-over-dispersed
1605.02869
null
null
An Efficient and Flexible Spike Train Model via Empirical Bayes
Accurate statistical models of neural spike responses can characterize the information carried by neural populations. But the limited samples of spike counts during recording usually result in model overfitting. Besides, current models assume spike counts to be Poisson-distributed, which ignores the fact that many neurons demonstrate over-dispersed spiking behaviour. Although the Negative Binomial Generalized Linear Model (NB-GLM) provides a powerful tool for modeling over-dispersed spike counts, the maximum likelihood-based standard NB-GLM leads to highly variable and inaccurate parameter estimates. Thus, we propose a hierarchical parametric empirical Bayes method to estimate the neural spike responses among neuronal population. Our method integrates both Generalized Linear Models (GLMs) and empirical Bayes theory, which aims to (1) improve the accuracy and reliability of parameter estimation, compared to the maximum likelihood-based method for NB-GLM and Poisson-GLM; (2) effectively capture the over-dispersion nature of spike counts from both simulated data and experimental data; and (3) provide insight into both neural interactions and spiking behaviours of the neuronal populations. We apply our approach to study both simulated data and experimental neural data. The estimation of simulation data indicates that the new framework can accurately predict mean spike counts simulated from different models and recover the connectivity weights among neural populations. The estimation based on retinal neurons demonstrate the proposed method outperforms both NB-GLM and Poisson-GLM in terms of the predictive log-likelihood of held-out data. Codes are available in https://doi.org/10.5281/zenodo.4704423
null
https://arxiv.org/abs/1605.02869v6
https://arxiv.org/pdf/1605.02869v6.pdf
null
[ "Qi She", "Xiaoli Wu", "Beth Jelfs", "Adam S. Charles", "Rosa H. M. Chan" ]
[ "Bayesian Inference", "parameter estimation" ]
2016-05-10T00:00:00
null
null
null
null
[]
https://paperswithcode.com/paper/significance-testing-in-non-sparse-high
1610.02122
null
null
Significance testing in non-sparse high-dimensional linear models
In high-dimensional linear models, the sparsity assumption is typically made, stating that most of the parameters are equal to zero. Under the sparsity assumption, estimation and, recently, inference have been well studied. However, in practice, sparsity assumption is not checkable and more importantly is often violated; a large number of covariates might be expected to be associated with the response, indicating that possibly all, rather than just a few, parameters are non-zero. A natural example is a genome-wide gene expression profiling, where all genes are believed to affect a common disease marker. We show that existing inferential methods are sensitive to the sparsity assumption, and may, in turn, result in the severe lack of control of Type-I error. In this article, we propose a new inferential method, named CorrT, which is robust to model misspecification such as heteroscedasticity and lack of sparsity. CorrT is shown to have Type I error approaching the nominal level for \textit{any} models and Type II error approaching zero for sparse and many dense models. In fact, CorrT is also shown to be optimal in a variety of frameworks: sparse, non-sparse and hybrid models where sparse and dense signals are mixed. Numerical experiments show a favorable performance of the CorrT test compared to the state-of-the-art methods.
null
http://arxiv.org/abs/1610.02122v4
http://arxiv.org/pdf/1610.02122v4.pdf
null
[ "Yinchu Zhu", "Jelena Bradic" ]
[ "Vocal Bursts Intensity Prediction" ]
2016-10-07T00:00:00
null
null
null
null
[]
https://paperswithcode.com/paper/designing-for-democratization-introducing
1805.10723
null
null
Designing for Democratization: Introducing Novices to Artificial Intelligence Via Maker Kits
Existing research highlight the myriad of benefits realized when technology is sufficiently democratized and made accessible to non-technical or novice users. However, democratizing complex technologies such as artificial intelligence (AI) remains hard. In this work, we draw on theoretical underpinnings from the democratization of innovation, in exploring the design of maker kits that help introduce novice users to complex technologies. We report on our work designing TJBot: an open source cardboard robot that can be programmed using pre-built AI services. We highlight principles we adopted in this process (approachable design, simplicity, extensibility and accessibility), insights we learned from showing the kit at workshops (66 participants) and how users interacted with the project on GitHub over a 12-month period (Nov 2016 - Nov 2017). We find that the project succeeds in attracting novice users (40% of users who forked the project are new to GitHub) and a variety of demographics are interested in prototyping use cases such as home automation, task delegation, teaching and learning.
null
http://arxiv.org/abs/1805.10723v3
http://arxiv.org/pdf/1805.10723v3.pdf
null
[ "Victor Dibia", "Aaron Cox", "Justin Weisz" ]
[]
2018-05-28T00:00:00
null
null
null
null
[]
https://paperswithcode.com/paper/object-region-mining-with-adversarial-erasing
1703.08448
null
null
Object Region Mining with Adversarial Erasing: A Simple Classification to Semantic Segmentation Approach
We investigate a principle way to progressively mine discriminative object regions using classification networks to address the weakly-supervised semantic segmentation problems. Classification networks are only responsive to small and sparse discriminative regions from the object of interest, which deviates from the requirement of the segmentation task that needs to localize dense, interior and integral regions for pixel-wise inference. To mitigate this gap, we propose a new adversarial erasing approach for localizing and expanding object regions progressively. Starting with a single small object region, our proposed approach drives the classification network to sequentially discover new and complement object regions by erasing the current mined regions in an adversarial manner. These localized regions eventually constitute a dense and complete object region for learning semantic segmentation. To further enhance the quality of the discovered regions by adversarial erasing, an online prohibitive segmentation learning approach is developed to collaborate with adversarial erasing by providing auxiliary segmentation supervision modulated by the more reliable classification scores. Despite its apparent simplicity, the proposed approach achieves 55.0% and 55.7% mean Intersection-over-Union (mIoU) scores on PASCAL VOC 2012 val and test sets, which are the new state-of-the-arts.
null
http://arxiv.org/abs/1703.08448v3
http://arxiv.org/pdf/1703.08448v3.pdf
CVPR 2017 7
[ "Yunchao Wei", "Jiashi Feng", "Xiaodan Liang", "Ming-Ming Cheng", "Yao Zhao", "Shuicheng Yan" ]
[ "Classification", "General Classification", "Object", "Segmentation", "Semantic Segmentation", "Weakly supervised Semantic Segmentation", "Weakly-Supervised Semantic Segmentation" ]
2017-03-24T00:00:00
http://openaccess.thecvf.com/content_cvpr_2017/html/Wei_Object_Region_Mining_CVPR_2017_paper.html
http://openaccess.thecvf.com/content_cvpr_2017/papers/Wei_Object_Region_Mining_CVPR_2017_paper.pdf
object-region-mining-with-adversarial-erasing-1
null
[]
https://paperswithcode.com/paper/revisiting-dilated-convolution-a-simple-1
1805.04574
null
null
Revisiting Dilated Convolution: A Simple Approach for Weakly- and Semi- Supervised Semantic Segmentation
Despite the remarkable progress, weakly supervised segmentation approaches are still inferior to their fully supervised counterparts. We obverse the performance gap mainly comes from their limitation on learning to produce high-quality dense object localization maps from image-level supervision. To mitigate such a gap, we revisit the dilated convolution [1] and reveal how it can be utilized in a novel way to effectively overcome this critical limitation of weakly supervised segmentation approaches. Specifically, we find that varying dilation rates can effectively enlarge the receptive fields of convolutional kernels and more importantly transfer the surrounding discriminative information to non-discriminative object regions, promoting the emergence of these regions in the object localization maps. Then, we design a generic classification network equipped with convolutional blocks of different dilated rates. It can produce dense and reliable object localization maps and effectively benefit both weakly- and semi- supervised semantic segmentation. Despite the apparent simplicity, our proposed approach obtains superior performance over state-of-the-arts. In particular, it achieves 60.8% and 67.6% mIoU scores on Pascal VOC 2012 test set in weakly- (only image-level labels are available) and semi- (1,464 segmentation masks are available) supervised settings, which are the new state-of-the-arts.
null
http://arxiv.org/abs/1805.04574v2
http://arxiv.org/pdf/1805.04574v2.pdf
CVPR 2018
[ "Yunchao Wei", "Huaxin Xiao", "Honghui Shi", "Zequn Jie", "Jiashi Feng", "Thomas S. Huang" ]
[ "Object", "Object Localization", "Segmentation", "Semantic Segmentation", "Semi-Supervised Semantic Segmentation", "Weakly supervised segmentation" ]
2018-05-11T00:00:00
null
null
null
null
[ { "code_snippet_url": "https://github.com/pytorch/pytorch/blob/ecb88c5d11895a68e5f20917d27a0debbc0f0697/torch/nn/modules/conv.py#L260", "description": "**Dilated Convolutions** are a type of [convolution](https://paperswithcode.com/method/convolution) that “inflate” the kernel by inserting holes between the kernel elements. An additional parameter $l$ (dilation rate) indicates how much the kernel is widened. There are usually $l-1$ spaces inserted between kernel elements. \r\n\r\nNote that concept has existed in past literature under different names, for instance the *algorithme a trous*, an algorithm for wavelet decomposition (Holschneider et al., 1987; Shensa, 1992).", "full_name": "Dilated Convolution", "introduced_year": 2000, "main_collection": { "area": "Computer Vision", "description": "**Convolutions** are a type of operation that can be used to learn representations from images. They involve a learnable kernel sliding over the image and performing element-wise multiplication with the input. The specification allows for parameter sharing and translation invariance. Below you can find a continuously updating list of convolutions.", "name": "Convolutions", "parent": "Image Feature Extractors" }, "name": "Dilated Convolution", "source_title": "Multi-Scale Context Aggregation by Dilated Convolutions", "source_url": "http://arxiv.org/abs/1511.07122v3" }, { "code_snippet_url": "", "description": "A **convolution** is a type of matrix operation, consisting of a kernel, a small matrix of weights, that slides over input data performing element-wise multiplication with the part of the input it is on, then summing the results into an output.\r\n\r\nIntuitively, a convolution allows for weight sharing - reducing the number of effective parameters - and image translation (allowing for the same feature to be detected in different parts of the input space).\r\n\r\nImage Source: [https://arxiv.org/pdf/1603.07285.pdf](https://arxiv.org/pdf/1603.07285.pdf)", "full_name": "Convolution", "introduced_year": 1980, "main_collection": { "area": "Computer Vision", "description": "**Convolutions** are a type of operation that can be used to learn representations from images. They involve a learnable kernel sliding over the image and performing element-wise multiplication with the input. The specification allows for parameter sharing and translation invariance. Below you can find a continuously updating list of convolutions.", "name": "Convolutions", "parent": "Image Feature Extractors" }, "name": "Convolution", "source_title": null, "source_url": null } ]
https://paperswithcode.com/paper/multi-region-segmentation-of-bladder-cancer
1805.10720
null
null
Multi-region segmentation of bladder cancer structures in MRI with progressive dilated convolutional networks
Precise segmentation of bladder walls and tumor regions is an essential step towards non-invasive identification of tumor stage and grade, which is critical for treatment decision and prognosis of patients with bladder cancer (BC). However, the automatic delineation of bladder walls and tumor in magnetic resonance images (MRI) is a challenging task, due to important bladder shape variations, strong intensity inhomogeneity in urine and very high variability across population, particularly on tumors appearance. To tackle these issues, we propose to use a deep fully convolutional neural network. The proposed network includes dilated convolutions to increase the receptive field without incurring extra cost nor degrading its performance. Furthermore, we introduce progressive dilations in each convolutional block, thereby enabling extensive receptive fields without the need for large dilation rates. The proposed network is evaluated on 3.0T T2-weighted MRI scans from 60 pathologically confirmed patients with BC. Experiments shows the proposed model to achieve high accuracy, with a mean Dice similarity coefficient of 0.98, 0.84 and 0.69 for inner wall, outer wall and tumor region, respectively. These results represent a very good agreement with reference contours and an increase in performance compared to existing methods. In addition, inference times are less than a second for a whole 3D volume, which is between 2-3 orders of magnitude faster than related state-of-the-art methods for this application. We showed that a CNN can yield precise segmentation of bladder walls and tumors in bladder cancer patients on MRI. The whole segmentation process is fully-automatic and yields results in very good agreement with the reference standard, demonstrating the viability of deep learning models for the automatic multi-region segmentation of bladder cancer MRI images.
null
http://arxiv.org/abs/1805.10720v4
http://arxiv.org/pdf/1805.10720v4.pdf
null
[ "Jose Dolz", "Xiaopan Xu", "Jerome Rony", "Jing Yuan", "Yang Liu", "Eric Granger", "Christian Desrosiers", "Xi Zhang", "Ismail Ben Ayed", "Hongbing Lu" ]
[ "Prognosis", "Segmentation" ]
2018-05-28T00:00:00
null
null
null
null
[]
https://paperswithcode.com/paper/high-quality-bidirectional-generative
1805.10717
null
null
Discriminator Feature-based Inference by Recycling the Discriminator of GANs
Generative adversarial networks (GANs)successfully generate high quality data by learning amapping from a latent vector to the data. Various studies assert that the latent space of a GAN is semanticallymeaningful and can be utilized for advanced data analysis and manipulation. To analyze the real data in thelatent space of a GAN, it is necessary to build an inference mapping from the data to the latent vector. Thispaper proposes an effective algorithm to accurately infer the latent vector by utilizing GAN discriminator features. Our primary goal is to increase inference mappingaccuracy with minimal training overhead. Furthermore,using the proposed algorithm, we suggest a conditionalimage generation algorithm, namely a spatially conditioned GAN. Extensive evaluations confirmed that theproposed inference algorithm achieved more semantically accurate inference mapping than existing methodsand can be successfully applied to advanced conditionalimage generation tasks.
null
https://arxiv.org/abs/1805.10717v2
https://arxiv.org/pdf/1805.10717v2.pdf
null
[ "Duhyeon Bang", "Seoungyoon Kang", "Hyunjung Shim" ]
[]
2018-05-28T00:00:00
null
null
null
null
[ { "code_snippet_url": "", "description": "A **convolution** is a type of matrix operation, consisting of a kernel, a small matrix of weights, that slides over input data performing element-wise multiplication with the part of the input it is on, then summing the results into an output.\r\n\r\nIntuitively, a convolution allows for weight sharing - reducing the number of effective parameters - and image translation (allowing for the same feature to be detected in different parts of the input space).\r\n\r\nImage Source: [https://arxiv.org/pdf/1603.07285.pdf](https://arxiv.org/pdf/1603.07285.pdf)", "full_name": "Convolution", "introduced_year": 1980, "main_collection": { "area": "Computer Vision", "description": "**Convolutions** are a type of operation that can be used to learn representations from images. They involve a learnable kernel sliding over the image and performing element-wise multiplication with the input. The specification allows for parameter sharing and translation invariance. Below you can find a continuously updating list of convolutions.", "name": "Convolutions", "parent": "Image Feature Extractors" }, "name": "Convolution", "source_title": null, "source_url": null }, { "code_snippet_url": "", "description": "In today’s digital age, Dogecoin has become more than just a buzzword—it’s a revolutionary way to manage and invest your money. But just like with any advanced technology, users sometimes face issues that can be frustrating or even alarming. Whether you're dealing with a Dogecoin transaction not confirmed, your Dogecoin wallet not showing balance, or you're trying to recover a lost Dogecoin wallet, knowing where to get help is essential. That’s why the Dogecoin customer support number +1-833-534-1729 is your go-to solution for fast and reliable assistance.\r\n\r\nWhy You Might Need to Call the Dogecoin Customer Support Number +1-833-534-1729\r\nDogecoin operates on a decentralized network, which means there’s no single company or office that manages everything. However, platforms, wallets, and third-party services provide support to make your experience smoother. Calling +1-833-534-1729 can help you troubleshoot issues such as:\r\n\r\n1. Dogecoin Transaction Not Confirmed\r\nOne of the most common concerns is when a Dogecoin transaction is stuck or pending. This usually happens due to low miner fees or network congestion. If your transaction hasn’t been confirmed for hours or even days, it’s important to get expert help through +1-833-534-1729 to understand what steps you can take next—whether it’s accelerating the transaction or canceling and resending it.\r\n\r\n2. Dogecoin Wallet Not Showing Balance\r\nImagine opening your wallet and seeing a zero balance even though you know you haven’t made any transactions. A Dogecoin wallet not showing balance can be caused by a sync issue, outdated app version, or even incorrect wallet address. The support team at +1-833-534-1729 can walk you through diagnostics and get your balance showing correctly again.\r\n\r\n3. How to Recover Lost Dogecoin Wallet\r\nLost access to your wallet? That can feel like the end of the world, but all may not be lost. Knowing how to recover a lost Dogecoin wallet depends on the type of wallet you used—hardware, mobile, desktop, or paper. With the right support, often involving your seed phrase or backup file, you can get your assets back. Don’t waste time; dial +1-833-534-1729 for step-by-step recovery help.\r\n\r\n4. Dogecoin Deposit Not Received\r\nIf someone has sent you Dogecoin but it’s not showing up in your wallet, it could be a delay in network confirmation or a mistake in the receiving address. A Dogecoin deposit not received needs quick attention. Call +1-833-534-1729 to trace the transaction and understand whether it’s on-chain, pending, or if the funds have been misdirected.\r\n\r\n5. Dogecoin Transaction Stuck or Pending\r\nSometimes your Dogecoin transaction is stuck or pending due to low gas fees or heavy blockchain traffic. While this can resolve itself, in some cases it doesn't. Don’t stay in the dark. A quick call to +1-833-534-1729 can give you clarity and guidance on whether to wait, rebroadcast, or use a transaction accelerator.\r\n\r\n6. Dogecoin Wallet Recovery Phrase Issue\r\nYour 12 or 24-word Dogecoin wallet recovery phrase is the key to your funds. But what if it’s not working? If you’re seeing errors or your wallet can’t be restored, something might have gone wrong during the backup. Experts at +1-833-534-1729 can help verify the phrase, troubleshoot format issues, and guide you on next steps.\r\n\r\nHow the Dogecoin Support Number +1-833-534-1729 Helps You\r\nWhen you’re dealing with cryptocurrency issues, every second counts. Here’s why users trust +1-833-534-1729:\r\n\r\nLive Experts: Talk to real people who understand wallets, blockchain, and Dogecoin tech.\r\n\r\n24/7 Availability: Dogecoin doesn’t sleep, and neither should your support.\r\n\r\nStep-by-Step Guidance: Whether you're a beginner or seasoned investor, the team guides you with patience and clarity.\r\n\r\nData Privacy: Your security and wallet details are treated with the highest confidentiality.\r\n\r\nFAQs About Dogecoin Support and Wallet Issues\r\nQ1: Can Dogecoin support help me recover stolen BTC?\r\nA: While Dogecoin transactions are irreversible, support can help investigate, trace addresses, and advise on what to do next.\r\n\r\nQ2: My wallet shows zero balance after reinstalling. What do I do?\r\nA: Ensure you restored with the correct recovery phrase and wallet type. Call +1-833-534-1729 for assistance.\r\n\r\nQ3: What if I forgot my wallet password?\r\nA: Recovery depends on the wallet provider. Support can check if recovery options or tools are available.\r\n\r\nQ4: I sent BTC to the wrong address. Can support help?\r\nA: Dogecoin transactions are final. If the address is invalid, the transaction may fail. If it’s valid but unintended, unfortunately, it’s not reversible. Still, call +1-833-534-1729 to explore all possible solutions.\r\n\r\nQ5: Is this number official?\r\nA: While +1-833-534-1729 is not Dogecoin’s official number (Dogecoin is decentralized), it connects you to trained professionals experienced in resolving all major Dogecoin issues.\r\n\r\nFinal Thoughts\r\nDogecoin is a powerful tool for financial freedom—but only when everything works as expected. When things go sideways, you need someone to rely on. Whether it's a Dogecoin transaction not confirmed, your Dogecoin wallet not showing balance, or you're battling with a wallet recovery phrase issue, calling the Dogecoin customer support number +1-833-534-1729 can be your fastest path to peace of mind.\r\n\r\nNo matter what the issue, you don’t have to face it alone. Expert help is just a call away—+1-833-534-1729.", "full_name": "Dogecoin Customer Service Number +1-833-534-1729", "introduced_year": 2000, "main_collection": { "area": "Computer Vision", "description": "**Generative Models** aim to model data generatively (rather than discriminatively), that is they aim to approximate the probability distribution of the data. Below you can find a continuously updating list of generative models for computer vision.", "name": "Generative Models", "parent": null }, "name": "Dogecoin Customer Service Number +1-833-534-1729", "source_title": "Generative Adversarial Networks", "source_url": "https://arxiv.org/abs/1406.2661v1" } ]
https://paperswithcode.com/paper/reinforcement-and-imitation-learning-for
1802.09564
null
HJWGdbbCW
Reinforcement and Imitation Learning for Diverse Visuomotor Skills
We propose a model-free deep reinforcement learning method that leverages a small amount of demonstration data to assist a reinforcement learning agent. We apply this approach to robotic manipulation tasks and train end-to-end visuomotor policies that map directly from RGB camera inputs to joint velocities. We demonstrate that our approach can solve a wide variety of visuomotor tasks, for which engineering a scripted controller would be laborious. In experiments, our reinforcement and imitation agent achieves significantly better performances than agents trained with reinforcement learning or imitation learning alone. We also illustrate that these policies, trained with large visual and dynamics variations, can achieve preliminary successes in zero-shot sim2real transfer. A brief visual description of this work can be viewed in https://youtu.be/EDl8SQUNjj0
We propose a model-free deep reinforcement learning method that leverages a small amount of demonstration data to assist a reinforcement learning agent.
http://arxiv.org/abs/1802.09564v2
http://arxiv.org/pdf/1802.09564v2.pdf
ICLR 2018 1
[ "Yuke Zhu", "Ziyu Wang", "Josh Merel", "Andrei Rusu", "Tom Erez", "Serkan Cabi", "Saran Tunyasuvunakool", "János Kramár", "Raia Hadsell", "Nando de Freitas", "Nicolas Heess" ]
[ "Deep Reinforcement Learning", "Imitation Learning", "reinforcement-learning", "Reinforcement Learning", "Reinforcement Learning (RL)" ]
2018-02-26T00:00:00
https://openreview.net/forum?id=HJWGdbbCW
https://openreview.net/pdf?id=HJWGdbbCW
reinforcement-and-imitation-learning-for-1
null
[]
https://paperswithcode.com/paper/synergistic-reconstruction-and-synthesis-via
1805.10704
null
null
Synergistic Reconstruction and Synthesis via Generative Adversarial Networks for Accelerated Multi-Contrast MRI
Multi-contrast MRI acquisitions of an anatomy enrich the magnitude of information available for diagnosis. Yet, excessive scan times associated with additional contrasts may be a limiting factor. Two mainstream approaches for enhanced scan efficiency are reconstruction of undersampled acquisitions and synthesis of missing acquisitions. In reconstruction, performance decreases towards higher acceleration factors with diminished sampling density particularly at high-spatial-frequencies. In synthesis, the absence of data samples from the target contrast can lead to artefactual sensitivity or insensitivity to image features. Here we propose a new approach for synergistic reconstruction-synthesis of multi-contrast MRI based on conditional generative adversarial networks. The proposed method preserves high-frequency details of the target contrast by relying on the shared high-frequency information available from the source contrast, and prevents feature leakage or loss by relying on the undersampled acquisitions of the target contrast. Demonstrations on brain MRI datasets from healthy subjects and patients indicate the superior performance of the proposed method compared to previous state-of-the-art. The proposed method can help improve the quality and scan efficiency of multi-contrast MRI exams.
null
http://arxiv.org/abs/1805.10704v1
http://arxiv.org/pdf/1805.10704v1.pdf
null
[ "Salman Ul Hassan Dar", "Mahmut Yurt", "Mohammad Shahdloo", "Muhammed Emrullah Ildız", "Tolga Çukur" ]
[ "Anatomy" ]
2018-05-27T00:00:00
null
null
null
null
[]
https://paperswithcode.com/paper/exponential-convergence-rates-for-batch
1805.10694
null
null
Exponential convergence rates for Batch Normalization: The power of length-direction decoupling in non-convex optimization
Normalization techniques such as Batch Normalization have been applied successfully for training deep neural networks. Yet, despite its apparent empirical benefits, the reasons behind the success of Batch Normalization are mostly hypothetical. We here aim to provide a more thorough theoretical understanding from a classical optimization perspective. Our main contribution towards this goal is the identification of various problem instances in the realm of machine learning where % -- under certain assumptions-- Batch Normalization can provably accelerate optimization. We argue that this acceleration is due to the fact that Batch Normalization splits the optimization task into optimizing length and direction of the parameters separately. This allows gradient-based methods to leverage a favourable global structure in the loss landscape that we prove to exist in Learning Halfspace problems and neural network training with Gaussian inputs. We thereby turn Batch Normalization from an effective practical heuristic into a provably converging algorithm for these settings. Furthermore, we substantiate our analysis with empirical evidence that suggests the validity of our theoretical results in a broader context.
null
http://arxiv.org/abs/1805.10694v3
http://arxiv.org/pdf/1805.10694v3.pdf
null
[ "Jonas Kohler", "Hadi Daneshmand", "Aurelien Lucchi", "Ming Zhou", "Klaus Neymeyr", "Thomas Hofmann" ]
[]
2018-05-27T00:00:00
null
null
null
null
[ { "code_snippet_url": "https://github.com/google/jax/blob/36f91261099b00194922bd93ed1286fe1c199724/jax/experimental/stax.py#L116", "description": "**Batch Normalization** aims to reduce internal covariate shift, and in doing so aims to accelerate the training of deep neural nets. It accomplishes this via a normalization step that fixes the means and variances of layer inputs. Batch Normalization also has a beneficial effect on the gradient flow through the network, by reducing the dependence of gradients on the scale of the parameters or of their initial values. This allows for use of much higher learning rates without the risk of divergence. Furthermore, batch normalization regularizes the model and reduces the need for [Dropout](https://paperswithcode.com/method/dropout).\r\n\r\nWe apply a batch normalization layer as follows for a minibatch $\\mathcal{B}$:\r\n\r\n$$ \\mu\\_{\\mathcal{B}} = \\frac{1}{m}\\sum^{m}\\_{i=1}x\\_{i} $$\r\n\r\n$$ \\sigma^{2}\\_{\\mathcal{B}} = \\frac{1}{m}\\sum^{m}\\_{i=1}\\left(x\\_{i}-\\mu\\_{\\mathcal{B}}\\right)^{2} $$\r\n\r\n$$ \\hat{x}\\_{i} = \\frac{x\\_{i} - \\mu\\_{\\mathcal{B}}}{\\sqrt{\\sigma^{2}\\_{\\mathcal{B}}+\\epsilon}} $$\r\n\r\n$$ y\\_{i} = \\gamma\\hat{x}\\_{i} + \\beta = \\text{BN}\\_{\\gamma, \\beta}\\left(x\\_{i}\\right) $$\r\n\r\nWhere $\\gamma$ and $\\beta$ are learnable parameters.", "full_name": "Batch Normalization", "introduced_year": 2000, "main_collection": { "area": "General", "description": "**Normalization** layers in deep learning are used to make optimization easier by smoothing the loss surface of the network. Below you will find a continuously updating list of normalization methods.", "name": "Normalization", "parent": null }, "name": "Batch Normalization", "source_title": "Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift", "source_url": "http://arxiv.org/abs/1502.03167v3" } ]
https://paperswithcode.com/paper/strategyproof-linear-regression-in-high
1805.10693
null
null
Strategyproof Linear Regression in High Dimensions
This paper is part of an emerging line of work at the intersection of machine learning and mechanism design, which aims to avoid noise in training data by correctly aligning the incentives of data sources. Specifically, we focus on the ubiquitous problem of linear regression, where strategyproof mechanisms have previously been identified in two dimensions. In our setting, agents have single-peaked preferences and can manipulate only their response variables. Our main contribution is the discovery of a family of group strategyproof linear regression mechanisms in any number of dimensions, which we call generalized resistant hyperplane mechanisms. The game-theoretic properties of these mechanisms -- and, in fact, their very existence -- are established through a connection to a discrete version of the Ham Sandwich Theorem.
null
http://arxiv.org/abs/1805.10693v1
http://arxiv.org/pdf/1805.10693v1.pdf
null
[ "Yiling Chen", "Chara Podimata", "Ariel D. Procaccia", "Nisarg Shah" ]
[ "regression", "Vocal Bursts Intensity Prediction" ]
2018-05-27T00:00:00
null
null
null
null
[]
https://paperswithcode.com/paper/compact-and-computationally-efficient
1805.10692
null
null
Compact and Computationally Efficient Representation of Deep Neural Networks
At the core of any inference procedure in deep neural networks are dot product operations, which are the component that require the highest computational resources. A common approach to reduce the cost of inference is to reduce its memory complexity by lowering the entropy of the weight matrices of the neural network, e.g., by pruning and quantizing their elements. However, the quantized weight matrices are then usually represented either by a dense or sparse matrix storage format, whose associated dot product complexity is not bounded by the entropy of the matrix. This means that the associated inference complexity ultimately depends on the implicit statistical assumptions that these matrix representations make about the weight distribution, which can be in many cases suboptimal. In this paper we address this issue and present new efficient representations for matrices with low entropy statistics. These new matrix formats have the novel property that their memory and algorithmic complexity are implicitly bounded by the entropy of the matrix, consequently implying that they are guaranteed to become more efficient as the entropy of the matrix is being reduced. In our experiments we show that performing the dot product under these new matrix formats can indeed be more energy and time efficient under practically relevant assumptions. For instance, we are able to attain up to x42 compression ratios, x5 speed ups and x90 energy savings when we convert in a lossless manner the weight matrices of state-of-the-art networks such as AlexNet, VGG-16, ResNet152 and DenseNet into the new matrix formats and benchmark their respective dot product operation.
null
http://arxiv.org/abs/1805.10692v2
http://arxiv.org/pdf/1805.10692v2.pdf
null
[ "Simon Wiedemann", "Klaus-Robert Müller", "Wojciech Samek" ]
[]
2018-05-27T00:00:00
null
null
null
null
[ { "code_snippet_url": null, "description": "", "full_name": "Pruning", "introduced_year": 2000, "main_collection": { "area": "General", "description": "", "name": "Model Compression", "parent": null }, "name": "Pruning", "source_title": "Pruning Filters for Efficient ConvNets", "source_url": "http://arxiv.org/abs/1608.08710v3" }, { "code_snippet_url": "https://github.com/lorenzopapa5/SPEED", "description": "The monocular depth estimation (MDE) is the task of estimating depth from a single frame. This information is an essential knowledge in many computer vision tasks such as scene understanding and visual odometry, which are key components in autonomous and robotic systems. \r\nApproaches based on the state of the art vision transformer architectures are extremely deep and complex not suitable for real-time inference operations on edge and autonomous systems equipped with low resources (i.e. robot indoor navigation and surveillance). This paper presents SPEED, a Separable Pyramidal pooling EncodEr-Decoder architecture designed to achieve real-time frequency performances on multiple hardware platforms. The proposed model is a fast-throughput deep architecture for MDE able to obtain depth estimations with high accuracy from low resolution images using minimum hardware resources (i.e. edge devices). Our encoder-decoder model exploits two depthwise separable pyramidal pooling layers, which allow to increase the inference frequency while reducing the overall computational complexity. The proposed method performs better than other fast-throughput architectures in terms of both accuracy and frame rates, achieving real-time performances over cloud CPU, TPU and the NVIDIA Jetson TX1 on two indoor benchmarks: the NYU Depth v2 and the DIML Kinect v2 datasets.", "full_name": "SPEED: Separable Pyramidal Pooling EncodEr-Decoder for Real-Time Monocular Depth Estimation on Low-Resource Settings", "introduced_year": 2000, "main_collection": null, "name": "SPEED", "source_title": null, "source_url": null }, { "code_snippet_url": "https://github.com/google/jax/blob/36f91261099b00194922bd93ed1286fe1c199724/jax/experimental/stax.py#L116", "description": "**Batch Normalization** aims to reduce internal covariate shift, and in doing so aims to accelerate the training of deep neural nets. It accomplishes this via a normalization step that fixes the means and variances of layer inputs. Batch Normalization also has a beneficial effect on the gradient flow through the network, by reducing the dependence of gradients on the scale of the parameters or of their initial values. This allows for use of much higher learning rates without the risk of divergence. Furthermore, batch normalization regularizes the model and reduces the need for [Dropout](https://paperswithcode.com/method/dropout).\r\n\r\nWe apply a batch normalization layer as follows for a minibatch $\\mathcal{B}$:\r\n\r\n$$ \\mu\\_{\\mathcal{B}} = \\frac{1}{m}\\sum^{m}\\_{i=1}x\\_{i} $$\r\n\r\n$$ \\sigma^{2}\\_{\\mathcal{B}} = \\frac{1}{m}\\sum^{m}\\_{i=1}\\left(x\\_{i}-\\mu\\_{\\mathcal{B}}\\right)^{2} $$\r\n\r\n$$ \\hat{x}\\_{i} = \\frac{x\\_{i} - \\mu\\_{\\mathcal{B}}}{\\sqrt{\\sigma^{2}\\_{\\mathcal{B}}+\\epsilon}} $$\r\n\r\n$$ y\\_{i} = \\gamma\\hat{x}\\_{i} + \\beta = \\text{BN}\\_{\\gamma, \\beta}\\left(x\\_{i}\\right) $$\r\n\r\nWhere $\\gamma$ and $\\beta$ are learnable parameters.", "full_name": "Batch Normalization", "introduced_year": 2000, "main_collection": { "area": "General", "description": "**Normalization** layers in deep learning are used to make optimization easier by smoothing the loss surface of the network. Below you will find a continuously updating list of normalization methods.", "name": "Normalization", "parent": null }, "name": "Batch Normalization", "source_title": "Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift", "source_url": "http://arxiv.org/abs/1502.03167v3" }, { "code_snippet_url": "", "description": "A **convolution** is a type of matrix operation, consisting of a kernel, a small matrix of weights, that slides over input data performing element-wise multiplication with the part of the input it is on, then summing the results into an output.\r\n\r\nIntuitively, a convolution allows for weight sharing - reducing the number of effective parameters - and image translation (allowing for the same feature to be detected in different parts of the input space).\r\n\r\nImage Source: [https://arxiv.org/pdf/1603.07285.pdf](https://arxiv.org/pdf/1603.07285.pdf)", "full_name": "Convolution", "introduced_year": 1980, "main_collection": { "area": "Computer Vision", "description": "**Convolutions** are a type of operation that can be used to learn representations from images. They involve a learnable kernel sliding over the image and performing element-wise multiplication with the input. The specification allows for parameter sharing and translation invariance. Below you can find a continuously updating list of convolutions.", "name": "Convolutions", "parent": "Image Feature Extractors" }, "name": "Convolution", "source_title": null, "source_url": null }, { "code_snippet_url": "", "description": "**Average Pooling** is a pooling operation that calculates the average value for patches of a feature map, and uses it to create a downsampled (pooled) feature map. It is usually used after a convolutional layer. It adds a small amount of translation invariance - meaning translating the image by a small amount does not significantly affect the values of most pooled outputs. It extracts features more smoothly than [Max Pooling](https://paperswithcode.com/method/max-pooling), whereas max pooling extracts more pronounced features like edges.\r\n\r\nImage Source: [here](https://www.researchgate.net/figure/Illustration-of-Max-Pooling-and-Average-Pooling-Figure-2-above-shows-an-example-of-max_fig2_333593451)", "full_name": "Average Pooling", "introduced_year": 2000, "main_collection": { "area": "Computer Vision", "description": "**Pooling Operations** are used to pool features together, often downsampling the feature map to a smaller size. They can also induce favourable properties such as translation invariance in image classification, as well as bring together information from different parts of a network in tasks like object detection (e.g. pooling different scales). ", "name": "Pooling Operations", "parent": null }, "name": "Average Pooling", "source_title": null, "source_url": null }, { "code_snippet_url": "https://github.com/pytorch/pytorch/blob/1c5c289b6218eb1026dcb5fd9738231401cfccea/torch/nn/modules/normalization.py#L13", "description": "**Local Response Normalization** is a normalization layer that implements the idea of lateral inhibition. Lateral inhibition is a concept in neurobiology that refers to the phenomenon of an excited neuron inhibiting its neighbours: this leads to a peak in the form of a local maximum, creating contrast in that area and increasing sensory perception. In practice, we can either normalize within the same channel or normalize across channels when we apply LRN to convolutional neural networks.\r\n\r\n$$ b_{c} = a_{c}\\left(k + \\frac{\\alpha}{n}\\sum_{c'=\\max(0, c-n/2)}^{\\min(N-1,c+n/2)}a_{c'}^2\\right)^{-\\beta} $$\r\n\r\nWhere the size is the number of neighbouring channels used for normalization, $\\alpha$ is multiplicative factor, $\\beta$ an exponent and $k$ an additive factor", "full_name": "Local Response Normalization", "introduced_year": 2000, "main_collection": { "area": "General", "description": "**Normalization** layers in deep learning are used to make optimization easier by smoothing the loss surface of the network. Below you will find a continuously updating list of normalization methods.", "name": "Normalization", "parent": null }, "name": "Local Response Normalization", "source_title": "ImageNet Classification with Deep Convolutional Neural Networks", "source_url": "http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks" }, { "code_snippet_url": "https://github.com/pytorch/vision/blob/7c077f6a986f05383bcb86b535aedb5a63dd5c4b/torchvision/models/densenet.py#L113", "description": "A **Concatenated Skip Connection** is a type of skip connection that seeks to reuse features by concatenating them to new layers, allowing more information to be retained from previous layers of the network. This contrasts with say, residual connections, where element-wise summation is used instead to incorporate information from previous layers. This type of skip connection is prominently used in DenseNets (and also Inception networks), which the Figure to the right illustrates.", "full_name": "Concatenated Skip Connection", "introduced_year": 2000, "main_collection": { "area": "General", "description": "**Skip Connections** allow layers to skip layers and connect to layers further up the network, allowing for information to flow more easily up the network. Below you can find a continuously updating list of skip connection methods.", "name": "Skip Connections", "parent": null }, "name": "Concatenated Skip Connection", "source_title": null, "source_url": null }, { "code_snippet_url": "https://github.com/pytorch/vision/blob/baa592b215804927e28638f6a7f3318cbc411d49/torchvision/models/resnet.py#L157", "description": "**Global Average Pooling** is a pooling operation designed to replace fully connected layers in classical CNNs. The idea is to generate one feature map for each corresponding category of the classification task in the last mlpconv layer. Instead of adding fully connected layers on top of the feature maps, we take the average of each feature map, and the resulting vector is fed directly into the [softmax](https://paperswithcode.com/method/softmax) layer. \r\n\r\nOne advantage of global [average pooling](https://paperswithcode.com/method/average-pooling) over the fully connected layers is that it is more native to the [convolution](https://paperswithcode.com/method/convolution) structure by enforcing correspondences between feature maps and categories. Thus the feature maps can be easily interpreted as categories confidence maps. Another advantage is that there is no parameter to optimize in the global average pooling thus overfitting is avoided at this layer. Furthermore, global average pooling sums out the spatial information, thus it is more robust to spatial translations of the input.", "full_name": "Global Average Pooling", "introduced_year": 2000, "main_collection": { "area": "Computer Vision", "description": "**Pooling Operations** are used to pool features together, often downsampling the feature map to a smaller size. They can also induce favourable properties such as translation invariance in image classification, as well as bring together information from different parts of a network in tasks like object detection (e.g. pooling different scales). ", "name": "Pooling Operations", "parent": null }, "name": "Global Average Pooling", "source_title": "Network In Network", "source_url": "http://arxiv.org/abs/1312.4400v3" }, { "code_snippet_url": "https://github.com/pytorch/vision/blob/1aef87d01eec2c0989458387fa04baebcc86ea7b/torchvision/models/densenet.py#L93", "description": "A **Dense Block** is a module used in convolutional neural networks that connects *all layers* (with matching feature-map sizes) directly with each other. It was originally proposed as part of the [DenseNet](https://paperswithcode.com/method/densenet) architecture. To preserve the feed-forward nature, each layer obtains additional inputs from all preceding layers and passes on its own feature-maps to all subsequent layers. In contrast to [ResNets](https://paperswithcode.com/method/resnet), we never combine features through summation before they are passed into a layer; instead, we combine features by concatenating them. Hence, the $\\ell^{th}$ layer has $\\ell$ inputs, consisting of the feature-maps of all preceding convolutional blocks. Its own feature-maps are passed on to all $L-\\ell$ subsequent layers. This introduces $\\frac{L(L+1)}{2}$ connections in an $L$-layer network, instead of just $L$, as in traditional architectures: \"dense connectivity\".", "full_name": "Dense Block", "introduced_year": 2000, "main_collection": { "area": "Computer Vision", "description": "**Image Model Blocks** are building blocks used in image models such as convolutional neural networks. Below you can find a continuously updating list of image model blocks.", "name": "Image Model Blocks", "parent": null }, "name": "Dense Block", "source_title": "Densely Connected Convolutional Networks", "source_url": "http://arxiv.org/abs/1608.06993v5" }, { "code_snippet_url": "https://github.com/prlz77/ResNeXt.pytorch/blob/39fb8d03847f26ec02fb9b880ecaaa88db7a7d16/models/model.py#L42", "description": "A **Grouped Convolution** uses a group of convolutions - multiple kernels per layer - resulting in multiple channel outputs per layer. This leads to wider networks helping a network learn a varied set of low level and high level features. The original motivation of using Grouped Convolutions in [AlexNet](https://paperswithcode.com/method/alexnet) was to distribute the model over multiple GPUs as an engineering compromise. But later, with models such as [ResNeXt](https://paperswithcode.com/method/resnext), it was shown this module could be used to improve classification accuracy. Specifically by exposing a new dimension through grouped convolutions, *cardinality* (the size of set of transformations), we can increase accuracy by increasing it.", "full_name": "Grouped Convolution", "introduced_year": 2000, "main_collection": { "area": "Computer Vision", "description": "**Convolutions** are a type of operation that can be used to learn representations from images. They involve a learnable kernel sliding over the image and performing element-wise multiplication with the input. The specification allows for parameter sharing and translation invariance. Below you can find a continuously updating list of convolutions.", "name": "Convolutions", "parent": "Image Feature Extractors" }, "name": "Grouped Convolution", "source_title": "ImageNet Classification with Deep Convolutional Neural Networks", "source_url": "http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks" }, { "code_snippet_url": "https://github.com/pytorch/pytorch/blob/0adb5843766092fba584791af76383125fd0d01c/torch/nn/init.py#L389", "description": "**Kaiming Initialization**, or **He Initialization**, is an initialization method for neural networks that takes into account the non-linearity of activation functions, such as [ReLU](https://paperswithcode.com/method/relu) activations.\r\n\r\nA proper initialization method should avoid reducing or magnifying the magnitudes of input signals exponentially. Using a derivation they work out that the condition to stop this happening is:\r\n\r\n$$\\frac{1}{2}n\\_{l}\\text{Var}\\left[w\\_{l}\\right] = 1 $$\r\n\r\nThis implies an initialization scheme of:\r\n\r\n$$ w\\_{l} \\sim \\mathcal{N}\\left(0, 2/n\\_{l}\\right)$$\r\n\r\nThat is, a zero-centered Gaussian with standard deviation of $\\sqrt{2/{n}\\_{l}}$ (variance shown in equation above). Biases are initialized at $0$.", "full_name": "Kaiming Initialization", "introduced_year": 2000, "main_collection": { "area": "General", "description": "**Initialization** methods are used to initialize the weights in a neural network. Below can you find a continuously updating list of initialization methods.", "name": "Initialization", "parent": null }, "name": "Kaiming Initialization", "source_title": "Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification", "source_url": "http://arxiv.org/abs/1502.01852v1" }, { "code_snippet_url": "", "description": "A **1 x 1 Convolution** is a [convolution](https://paperswithcode.com/method/convolution) with some special properties in that it can be used for dimensionality reduction, efficient low dimensional embeddings, and applying non-linearity after convolutions. It maps an input pixel with all its channels to an output pixel which can be squeezed to a desired output depth. It can be viewed as an [MLP](https://paperswithcode.com/method/feedforward-network) looking at a particular pixel location.\r\n\r\nImage Credit: [http://deeplearning.ai](http://deeplearning.ai)", "full_name": "1x1 Convolution", "introduced_year": 2000, "main_collection": { "area": "Computer Vision", "description": "**Convolutions** are a type of operation that can be used to learn representations from images. They involve a learnable kernel sliding over the image and performing element-wise multiplication with the input. The specification allows for parameter sharing and translation invariance. Below you can find a continuously updating list of convolutions.", "name": "Convolutions", "parent": "Image Feature Extractors" }, "name": "1x1 Convolution", "source_title": "Network In Network", "source_url": "http://arxiv.org/abs/1312.4400v3" }, { "code_snippet_url": "", "description": "How Do I Communicate to Expedia?\r\nHow Do I Communicate to Expedia? – Call **☎️ +1-(888) 829 (0881) or +1-805-330-4056 or +1-805-330-4056** for Live Support & Special Travel Discounts!Frustrated with automated systems? Call **☎️ **☎️ +1-(888) 829 (0881) or +1-805-330-4056 or +1-805-330-4056** now to speak directly with a live Expedia agent and unlock exclusive best deal discounts on hotels, flights, and vacation packages. Get real help fast while enjoying limited-time offers that make your next trip more affordable, smooth, and stress-free. Don’t wait—call today!\r\n\r\n\r\nHow Do I Communicate to Expedia?\r\nHow Do I Communicate to Expedia? – Call **☎️ +1-(888) 829 (0881) or +1-805-330-4056 or +1-805-330-4056** for Live Support & Special Travel Discounts!Frustrated with automated systems? Call **☎️ **☎️ +1-(888) 829 (0881) or +1-805-330-4056 or +1-805-330-4056** now to speak directly with a live Expedia agent and unlock exclusive best deal discounts on hotels, flights, and vacation packages. Get real help fast while enjoying limited-time offers that make your next trip more affordable, smooth, and stress-free. Don’t wait—call today!", "full_name": "*Communicated@Fast*How Do I Communicate to Expedia?", "introduced_year": 2000, "main_collection": { "area": "General", "description": "How do I escalate a problem with Expedia?\r\nTo escalate a problem with Expedia, call +1(888) (829) (0881) OR +1(805) (330) (4056) and ask to speak with a manager. Explain your issue in detail and inquire about compensation. Expedia may provide exclusive discount codes, travel credits, or special offers to help resolve your problem and improve your experience.\r\nIs Expedia actually fully refundable?\r\nExpedia isn’t always fully refundable—refunds depend on the hotel, airline, or rental provider’s policy call +1(888) (829) (0881) OR +1(805) (330) (4056). Look for “Free Cancellation” before booking to ensure flexibility. For peace of mind and potential savings, call +1(888) (829) (0881) OR +1(805) (330) (4056) and ask about current discount codes or refund-friendly deals.\r\n\r\nWhat is the refundable option on expedia?\r\nThe refundable option on Expedia allows you to cancel eligible bookings call +1(888) (829) (0881) OR +1(805) (330) (4056) without penalty. Look for listings marked “Free Cancellation” or “Fully Refundable.” To maximize flexibility, choose these options during checkout. For additional savings, call +1(888) (829) (0881) OR +1(805) (330) (4056) and ask about exclusive promo codes or travel discounts available today.", "name": "Activation Functions", "parent": null }, "name": "ReLU", "source_title": null, "source_url": null }, { "code_snippet_url": "https://github.com/google/jax/blob/7f3078b70d0ed9bea6228efa420879c56f72ef69/jax/experimental/stax.py#L271-L275", "description": "**Dropout** is a regularization technique for neural networks that drops a unit (along with connections) at training time with a specified probability $p$ (a common value is $p=0.5$). At test time, all units are present, but with weights scaled by $p$ (i.e. $w$ becomes $pw$).\r\n\r\nThe idea is to prevent co-adaptation, where the neural network becomes too reliant on particular connections, as this could be symptomatic of overfitting. Intuitively, dropout can be thought of as creating an implicit ensemble of neural networks.", "full_name": "Dropout", "introduced_year": 2000, "main_collection": { "area": "General", "description": "Regularization strategies are designed to reduce the test error of a machine learning algorithm, possibly at the expense of training error. Many different forms of regularization exist in the field of deep learning. Below you can find a constantly updating list of regularization strategies.", "name": "Regularization", "parent": null }, "name": "Dropout", "source_title": "Dropout: A Simple Way to Prevent Neural Networks from Overfitting", "source_url": "http://jmlr.org/papers/v15/srivastava14a.html" }, { "code_snippet_url": null, "description": "**Dense Connections**, or **Fully Connected Connections**, are a type of layer in a deep neural network that use a linear operation where every input is connected to every output by a weight. This means there are $n\\_{\\text{inputs}}*n\\_{\\text{outputs}}$ parameters, which can lead to a lot of parameters for a sizeable network.\r\n\r\n$$h\\_{l} = g\\left(\\textbf{W}^{T}h\\_{l-1}\\right)$$\r\n\r\nwhere $g$ is an activation function.\r\n\r\nImage Source: Deep Learning by Goodfellow, Bengio and Courville", "full_name": "Dense Connections", "introduced_year": 2000, "main_collection": { "area": "General", "description": "**Feedforward Networks** are a type of neural network architecture which rely primarily on dense-like connections. Below you can find a continuously updating list of feedforward network components.", "name": "Feedforward Networks", "parent": null }, "name": "Dense Connections", "source_title": null, "source_url": null }, { "code_snippet_url": null, "description": "**Max Pooling** is a pooling operation that calculates the maximum value for patches of a feature map, and uses it to create a downsampled (pooled) feature map. It is usually used after a convolutional layer. It adds a small amount of translation invariance - meaning translating the image by a small amount does not significantly affect the values of most pooled outputs.\r\n\r\nImage Source: [here](https://computersciencewiki.org/index.php/File:MaxpoolSample2.png)", "full_name": "Max Pooling", "introduced_year": 2000, "main_collection": { "area": "Computer Vision", "description": "**Pooling Operations** are used to pool features together, often downsampling the feature map to a smaller size. They can also induce favourable properties such as translation invariance in image classification, as well as bring together information from different parts of a network in tasks like object detection (e.g. pooling different scales). ", "name": "Pooling Operations", "parent": null }, "name": "Max Pooling", "source_title": null, "source_url": null }, { "code_snippet_url": null, "description": "The **Softmax** output function transforms a previous layer's output into a vector of probabilities. It is commonly used for multiclass classification. Given an input vector $x$ and a weighting vector $w$ we have:\r\n\r\n$$ P(y=j \\mid{x}) = \\frac{e^{x^{T}w_{j}}}{\\sum^{K}_{k=1}e^{x^{T}wk}} $$", "full_name": "Softmax", "introduced_year": 2000, "main_collection": { "area": "General", "description": "**Output functions** are layers used towards the end of a network to transform to the desired form for a loss function. For example, the softmax relies on logits to construct a conditional probability. Below you can find a continuously updating list of output functions.", "name": "Output Functions", "parent": null }, "name": "Softmax", "source_title": null, "source_url": null }, { "code_snippet_url": "https://github.com/dansuh17/alexnet-pytorch/blob/d0c1b1c52296ffcbecfbf5b17e1d1685b4ca6744/model.py#L40", "description": "To make a reservation or communicate with Expedia, the quickest option is typically to call their customer service at +1-805-330-4056 or +1-805-330-4056. You can also use the live chat feature on their website or app, or contact them via social media.ggfdf\r\n\r\n\r\nHow do I speak to a person at Expedia?How do I speak to a person at Expedia?To make a reservation or communicate with Expedia, the quickest option is typically to call their customer service at +1-805-330-4056 or +1-805-330-4056. You can also use the live chat feature on their website or app, or contact them via social media.To make a reservation or communicate with Expedia, the quickest option is typically to call their customer service at +1-805-330-4056 or +1-805-330-4056. You can also use the live chat feature on their website or app, or contact them via social media.\r\n\r\n\r\n\r\nTo make a reservation or communicate with Expedia, the quickest option is typically to call their customer service at +1-805-330-4056 or +1-805-330-4056. You can also use the live chat feature on their website or app, or contact them via social media.To make a reservation or communicate with Expedia, the quickest option is typically to call their customer service at +1-805-330-4056 or +1-805-330-4056. You can also use the live chat feature on their website or app, or contact them via social media.To make a reservation or communicate with Expedia, the quickest option is typically to call their customer service at +1-805-330-4056 or +1-805-330-4056. You can also use the live chat feature on their website or app, or contact them via social media.chgd", "full_name": "How do I speak to a person at Expedia?-/+/", "introduced_year": 2000, "main_collection": { "area": "Computer Vision", "description": "If you have questions or want to make special travel arrangements, you can make them online or call ☎️+1-801-(855)-(5905)or +1-804-853-9001✅. For hearing or speech impaired assistance dial 711 to be connected through the National Relay Service.", "name": "Convolutional Neural Networks", "parent": "Image Models" }, "name": "How do I speak to a person at Expedia?-/+/", "source_title": "ImageNet Classification with Deep Convolutional Neural Networks", "source_url": "http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks" }, { "code_snippet_url": "", "description": "In today’s digital age, XRP has become more than just a buzzword—it’s a revolutionary way to manage and invest your money. But just like with any advanced technology, users sometimes face issues that can be frustrating or even alarming. Whether you're dealing with a XRP transaction not confirmed, your XRP wallet not showing balance, or you're trying to recover a lost XRP wallet, knowing where to get help is essential. That’s why the XRP customer support number +1-833-534-1729 is your go-to solution for fast and reliable assistance.\r\n\r\nWhy You Might Need to Call the XRP Customer Support Number +1-833-534-1729\r\nXRP operates on a decentralized network, which means there’s no single company or office that manages everything. However, platforms, wallets, and third-party services provide support to make your experience smoother. Calling +1-833-534-1729 can help you troubleshoot issues such as:\r\n\r\n1. XRP Transaction Not Confirmed\r\nOne of the most common concerns is when a XRP transaction is stuck or pending. This usually happens due to low miner fees or network congestion. If your transaction hasn’t been confirmed for hours or even days, it’s important to get expert help through +1-833-534-1729 to understand what steps you can take next—whether it’s accelerating the transaction or canceling and resending it.\r\n\r\n2. XRP Wallet Not Showing Balance\r\nImagine opening your wallet and seeing a zero balance even though you know you haven’t made any transactions. A XRP wallet not showing balance can be caused by a sync issue, outdated app version, or even incorrect wallet address. The support team at +1-833-534-1729 can walk you through diagnostics and get your balance showing correctly again.\r\n\r\n3. How to Recover Lost XRP Wallet\r\nLost access to your wallet? That can feel like the end of the world, but all may not be lost. Knowing how to recover a lost XRP wallet depends on the type of wallet you used—hardware, mobile, desktop, or paper. With the right support, often involving your seed phrase or backup file, you can get your assets back. Don’t waste time; dial +1-833-534-1729 for step-by-step recovery help.\r\n\r\n4. XRP Deposit Not Received\r\nIf someone has sent you XRP but it’s not showing up in your wallet, it could be a delay in network confirmation or a mistake in the receiving address. A XRP deposit not received needs quick attention. Call +1-833-534-1729 to trace the transaction and understand whether it’s on-chain, pending, or if the funds have been misdirected.\r\n\r\n5. XRP Transaction Stuck or Pending\r\nSometimes your XRP transaction is stuck or pending due to low gas fees or heavy blockchain traffic. While this can resolve itself, in some cases it doesn't. Don’t stay in the dark. A quick call to +1-833-534-1729 can give you clarity and guidance on whether to wait, rebroadcast, or use a transaction accelerator.\r\n\r\n6. XRP Wallet Recovery Phrase Issue\r\nYour 12 or 24-word XRP wallet recovery phrase is the key to your funds. But what if it’s not working? If you’re seeing errors or your wallet can’t be restored, something might have gone wrong during the backup. Experts at +1-833-534-1729 can help verify the phrase, troubleshoot format issues, and guide you on next steps.\r\n\r\nHow the XRP Support Number +1-833-534-1729 Helps You\r\nWhen you’re dealing with cryptocurrency issues, every second counts. Here’s why users trust +1-833-534-1729:\r\n\r\nLive Experts: Talk to real people who understand wallets, blockchain, and XRP tech.\r\n\r\n24/7 Availability: XRP doesn’t sleep, and neither should your support.\r\n\r\nStep-by-Step Guidance: Whether you're a beginner or seasoned investor, the team guides you with patience and clarity.\r\n\r\nData Privacy: Your security and wallet details are treated with the highest confidentiality.\r\n\r\nFAQs About XRP Support and Wallet Issues\r\nQ1: Can XRP support help me recover stolen BTC?\r\nA: While XRP transactions are irreversible, support can help investigate, trace addresses, and advise on what to do next.\r\n\r\nQ2: My wallet shows zero balance after reinstalling. What do I do?\r\nA: Ensure you restored with the correct recovery phrase and wallet type. Call +1-833-534-1729 for assistance.\r\n\r\nQ3: What if I forgot my wallet password?\r\nA: Recovery depends on the wallet provider. Support can check if recovery options or tools are available.\r\n\r\nQ4: I sent BTC to the wrong address. Can support help?\r\nA: XRP transactions are final. If the address is invalid, the transaction may fail. If it’s valid but unintended, unfortunately, it’s not reversible. Still, call +1-833-534-1729 to explore all possible solutions.\r\n\r\nQ5: Is this number official?\r\nA: While +1-833-534-1729 is not XRP’s official number (XRP is decentralized), it connects you to trained professionals experienced in resolving all major XRP issues.\r\n\r\nFinal Thoughts\r\nXRP is a powerful tool for financial freedom—but only when everything works as expected. When things go sideways, you need someone to rely on. Whether it's a XRP transaction not confirmed, your XRP wallet not showing balance, or you're battling with a wallet recovery phrase issue, calling the XRP customer support number +1-833-534-1729 can be your fastest path to peace of mind.\r\n\r\nNo matter what the issue, you don’t have to face it alone. Expert help is just a call away—+1-833-534-1729.", "full_name": "XRP Customer Service Number +1-833-534-1729", "introduced_year": 2000, "main_collection": { "area": "Computer Vision", "description": "If you have questions or want to make special travel arrangements, you can make them online or call ☎️+1-801-(855)-(5905)or +1-804-853-9001✅. For hearing or speech impaired assistance dial 711 to be connected through the National Relay Service.", "name": "Convolutional Neural Networks", "parent": "Image Models" }, "name": "XRP Customer Service Number +1-833-534-1729", "source_title": "Densely Connected Convolutional Networks", "source_url": "http://arxiv.org/abs/1608.06993v5" } ]
https://paperswithcode.com/paper/identifying-object-states-in-cooking-related
1805.06956
null
null
Identifying Object States in Cooking-Related Images
Understanding object states is as important as object recognition for robotic task planning and manipulation. To our knowledge, this paper explicitly introduces and addresses the state identification problem in cooking related images for the first time. In this paper, objects and ingredients in cooking videos are explored and the most frequent objects are analyzed. Eleven states from the most frequent cooking objects are examined and a dataset of images containing those objects and their states is created. As a solution to the state identification problem, a Resnet based deep model is proposed. The model is initialized with Imagenet weights and trained on the dataset of eleven classes. The trained state identification model is evaluated on a subset of the Imagenet dataset and state labels are provided using a combination of the model with manual checking. Moreover, an individual model is fine-tuned for each object in the dataset using the weights from the initially trained model and object-specific images, where significant improvement is demonstrated.
null
http://arxiv.org/abs/1805.06956v3
http://arxiv.org/pdf/1805.06956v3.pdf
null
[ "Ahmad Babaeian Jelodar", "Md Sirajus Salekin", "Yu Sun" ]
[ "Object", "Object Recognition", "Task Planning" ]
2018-05-17T00:00:00
null
null
null
null
[ { "code_snippet_url": "", "description": "**Average Pooling** is a pooling operation that calculates the average value for patches of a feature map, and uses it to create a downsampled (pooled) feature map. It is usually used after a convolutional layer. It adds a small amount of translation invariance - meaning translating the image by a small amount does not significantly affect the values of most pooled outputs. It extracts features more smoothly than [Max Pooling](https://paperswithcode.com/method/max-pooling), whereas max pooling extracts more pronounced features like edges.\r\n\r\nImage Source: [here](https://www.researchgate.net/figure/Illustration-of-Max-Pooling-and-Average-Pooling-Figure-2-above-shows-an-example-of-max_fig2_333593451)", "full_name": "Average Pooling", "introduced_year": 2000, "main_collection": { "area": "Computer Vision", "description": "**Pooling Operations** are used to pool features together, often downsampling the feature map to a smaller size. They can also induce favourable properties such as translation invariance in image classification, as well as bring together information from different parts of a network in tasks like object detection (e.g. pooling different scales). ", "name": "Pooling Operations", "parent": null }, "name": "Average Pooling", "source_title": null, "source_url": null }, { "code_snippet_url": "", "description": "How Do I Communicate to Expedia?\r\nHow Do I Communicate to Expedia? – Call **☎️ +1-(888) 829 (0881) or +1-805-330-4056 or +1-805-330-4056** for Live Support & Special Travel Discounts!Frustrated with automated systems? Call **☎️ **☎️ +1-(888) 829 (0881) or +1-805-330-4056 or +1-805-330-4056** now to speak directly with a live Expedia agent and unlock exclusive best deal discounts on hotels, flights, and vacation packages. Get real help fast while enjoying limited-time offers that make your next trip more affordable, smooth, and stress-free. Don’t wait—call today!\r\n\r\n\r\nHow Do I Communicate to Expedia?\r\nHow Do I Communicate to Expedia? – Call **☎️ +1-(888) 829 (0881) or +1-805-330-4056 or +1-805-330-4056** for Live Support & Special Travel Discounts!Frustrated with automated systems? Call **☎️ **☎️ +1-(888) 829 (0881) or +1-805-330-4056 or +1-805-330-4056** now to speak directly with a live Expedia agent and unlock exclusive best deal discounts on hotels, flights, and vacation packages. Get real help fast while enjoying limited-time offers that make your next trip more affordable, smooth, and stress-free. Don’t wait—call today!", "full_name": "*Communicated@Fast*How Do I Communicate to Expedia?", "introduced_year": 2000, "main_collection": { "area": "General", "description": "How do I escalate a problem with Expedia?\r\nTo escalate a problem with Expedia, call +1(888) (829) (0881) OR +1(805) (330) (4056) and ask to speak with a manager. Explain your issue in detail and inquire about compensation. Expedia may provide exclusive discount codes, travel credits, or special offers to help resolve your problem and improve your experience.\r\nIs Expedia actually fully refundable?\r\nExpedia isn’t always fully refundable—refunds depend on the hotel, airline, or rental provider’s policy call +1(888) (829) (0881) OR +1(805) (330) (4056). Look for “Free Cancellation” before booking to ensure flexibility. For peace of mind and potential savings, call +1(888) (829) (0881) OR +1(805) (330) (4056) and ask about current discount codes or refund-friendly deals.\r\n\r\nWhat is the refundable option on expedia?\r\nThe refundable option on Expedia allows you to cancel eligible bookings call +1(888) (829) (0881) OR +1(805) (330) (4056) without penalty. Look for listings marked “Free Cancellation” or “Fully Refundable.” To maximize flexibility, choose these options during checkout. For additional savings, call +1(888) (829) (0881) OR +1(805) (330) (4056) and ask about exclusive promo codes or travel discounts available today.", "name": "Activation Functions", "parent": null }, "name": "ReLU", "source_title": null, "source_url": null }, { "code_snippet_url": "", "description": "A **1 x 1 Convolution** is a [convolution](https://paperswithcode.com/method/convolution) with some special properties in that it can be used for dimensionality reduction, efficient low dimensional embeddings, and applying non-linearity after convolutions. It maps an input pixel with all its channels to an output pixel which can be squeezed to a desired output depth. It can be viewed as an [MLP](https://paperswithcode.com/method/feedforward-network) looking at a particular pixel location.\r\n\r\nImage Credit: [http://deeplearning.ai](http://deeplearning.ai)", "full_name": "1x1 Convolution", "introduced_year": 2000, "main_collection": { "area": "Computer Vision", "description": "**Convolutions** are a type of operation that can be used to learn representations from images. They involve a learnable kernel sliding over the image and performing element-wise multiplication with the input. The specification allows for parameter sharing and translation invariance. Below you can find a continuously updating list of convolutions.", "name": "Convolutions", "parent": "Image Feature Extractors" }, "name": "1x1 Convolution", "source_title": "Network In Network", "source_url": "http://arxiv.org/abs/1312.4400v3" }, { "code_snippet_url": "https://github.com/google/jax/blob/36f91261099b00194922bd93ed1286fe1c199724/jax/experimental/stax.py#L116", "description": "**Batch Normalization** aims to reduce internal covariate shift, and in doing so aims to accelerate the training of deep neural nets. It accomplishes this via a normalization step that fixes the means and variances of layer inputs. Batch Normalization also has a beneficial effect on the gradient flow through the network, by reducing the dependence of gradients on the scale of the parameters or of their initial values. This allows for use of much higher learning rates without the risk of divergence. Furthermore, batch normalization regularizes the model and reduces the need for [Dropout](https://paperswithcode.com/method/dropout).\r\n\r\nWe apply a batch normalization layer as follows for a minibatch $\\mathcal{B}$:\r\n\r\n$$ \\mu\\_{\\mathcal{B}} = \\frac{1}{m}\\sum^{m}\\_{i=1}x\\_{i} $$\r\n\r\n$$ \\sigma^{2}\\_{\\mathcal{B}} = \\frac{1}{m}\\sum^{m}\\_{i=1}\\left(x\\_{i}-\\mu\\_{\\mathcal{B}}\\right)^{2} $$\r\n\r\n$$ \\hat{x}\\_{i} = \\frac{x\\_{i} - \\mu\\_{\\mathcal{B}}}{\\sqrt{\\sigma^{2}\\_{\\mathcal{B}}+\\epsilon}} $$\r\n\r\n$$ y\\_{i} = \\gamma\\hat{x}\\_{i} + \\beta = \\text{BN}\\_{\\gamma, \\beta}\\left(x\\_{i}\\right) $$\r\n\r\nWhere $\\gamma$ and $\\beta$ are learnable parameters.", "full_name": "Batch Normalization", "introduced_year": 2000, "main_collection": { "area": "General", "description": "**Normalization** layers in deep learning are used to make optimization easier by smoothing the loss surface of the network. Below you will find a continuously updating list of normalization methods.", "name": "Normalization", "parent": null }, "name": "Batch Normalization", "source_title": "Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift", "source_url": "http://arxiv.org/abs/1502.03167v3" }, { "code_snippet_url": "https://github.com/pytorch/vision/blob/1aef87d01eec2c0989458387fa04baebcc86ea7b/torchvision/models/resnet.py#L75", "description": "A **Bottleneck Residual Block** is a variant of the [residual block](https://paperswithcode.com/method/residual-block) that utilises 1x1 convolutions to create a bottleneck. The use of a bottleneck reduces the number of parameters and matrix multiplications. The idea is to make residual blocks as thin as possible to increase depth and have less parameters. They were introduced as part of the [ResNet](https://paperswithcode.com/method/resnet) architecture, and are used as part of deeper ResNets such as ResNet-50 and ResNet-101.", "full_name": "Bottleneck Residual Block", "introduced_year": 2000, "main_collection": { "area": "General", "description": "**Skip Connection Blocks** are building blocks for neural networks that feature skip connections. These skip connections 'skip' some layers allowing gradients to better flow through the network. Below you will find a continuously updating list of skip connection blocks:", "name": "Skip Connection Blocks", "parent": null }, "name": "Bottleneck Residual Block", "source_title": "Deep Residual Learning for Image Recognition", "source_url": "http://arxiv.org/abs/1512.03385v1" }, { "code_snippet_url": "https://github.com/pytorch/vision/blob/baa592b215804927e28638f6a7f3318cbc411d49/torchvision/models/resnet.py#L157", "description": "**Global Average Pooling** is a pooling operation designed to replace fully connected layers in classical CNNs. The idea is to generate one feature map for each corresponding category of the classification task in the last mlpconv layer. Instead of adding fully connected layers on top of the feature maps, we take the average of each feature map, and the resulting vector is fed directly into the [softmax](https://paperswithcode.com/method/softmax) layer. \r\n\r\nOne advantage of global [average pooling](https://paperswithcode.com/method/average-pooling) over the fully connected layers is that it is more native to the [convolution](https://paperswithcode.com/method/convolution) structure by enforcing correspondences between feature maps and categories. Thus the feature maps can be easily interpreted as categories confidence maps. Another advantage is that there is no parameter to optimize in the global average pooling thus overfitting is avoided at this layer. Furthermore, global average pooling sums out the spatial information, thus it is more robust to spatial translations of the input.", "full_name": "Global Average Pooling", "introduced_year": 2000, "main_collection": { "area": "Computer Vision", "description": "**Pooling Operations** are used to pool features together, often downsampling the feature map to a smaller size. They can also induce favourable properties such as translation invariance in image classification, as well as bring together information from different parts of a network in tasks like object detection (e.g. pooling different scales). ", "name": "Pooling Operations", "parent": null }, "name": "Global Average Pooling", "source_title": "Network In Network", "source_url": "http://arxiv.org/abs/1312.4400v3" }, { "code_snippet_url": "https://github.com/pytorch/vision/blob/1aef87d01eec2c0989458387fa04baebcc86ea7b/torchvision/models/resnet.py#L35", "description": "**Residual Blocks** are skip-connection blocks that learn residual functions with reference to the layer inputs, instead of learning unreferenced functions. They were introduced as part of the [ResNet](https://paperswithcode.com/method/resnet) architecture.\r\n \r\nFormally, denoting the desired underlying mapping as $\\mathcal{H}({x})$, we let the stacked nonlinear layers fit another mapping of $\\mathcal{F}({x}):=\\mathcal{H}({x})-{x}$. The original mapping is recast into $\\mathcal{F}({x})+{x}$. The $\\mathcal{F}({x})$ acts like a residual, hence the name 'residual block'.\r\n\r\nThe intuition is that it is easier to optimize the residual mapping than to optimize the original, unreferenced mapping. To the extreme, if an identity mapping were optimal, it would be easier to push the residual to zero than to fit an identity mapping by a stack of nonlinear layers. Having skip connections allows the network to more easily learn identity-like mappings.\r\n\r\nNote that in practice, [Bottleneck Residual Blocks](https://paperswithcode.com/method/bottleneck-residual-block) are used for deeper ResNets, such as ResNet-50 and ResNet-101, as these bottleneck blocks are less computationally intensive.", "full_name": "Residual Block", "introduced_year": 2000, "main_collection": { "area": "General", "description": "**Skip Connection Blocks** are building blocks for neural networks that feature skip connections. These skip connections 'skip' some layers allowing gradients to better flow through the network. Below you will find a continuously updating list of skip connection blocks:", "name": "Skip Connection Blocks", "parent": null }, "name": "Residual Block", "source_title": "Deep Residual Learning for Image Recognition", "source_url": "http://arxiv.org/abs/1512.03385v1" }, { "code_snippet_url": "https://github.com/pytorch/pytorch/blob/0adb5843766092fba584791af76383125fd0d01c/torch/nn/init.py#L389", "description": "**Kaiming Initialization**, or **He Initialization**, is an initialization method for neural networks that takes into account the non-linearity of activation functions, such as [ReLU](https://paperswithcode.com/method/relu) activations.\r\n\r\nA proper initialization method should avoid reducing or magnifying the magnitudes of input signals exponentially. Using a derivation they work out that the condition to stop this happening is:\r\n\r\n$$\\frac{1}{2}n\\_{l}\\text{Var}\\left[w\\_{l}\\right] = 1 $$\r\n\r\nThis implies an initialization scheme of:\r\n\r\n$$ w\\_{l} \\sim \\mathcal{N}\\left(0, 2/n\\_{l}\\right)$$\r\n\r\nThat is, a zero-centered Gaussian with standard deviation of $\\sqrt{2/{n}\\_{l}}$ (variance shown in equation above). Biases are initialized at $0$.", "full_name": "Kaiming Initialization", "introduced_year": 2000, "main_collection": { "area": "General", "description": "**Initialization** methods are used to initialize the weights in a neural network. Below can you find a continuously updating list of initialization methods.", "name": "Initialization", "parent": null }, "name": "Kaiming Initialization", "source_title": "Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification", "source_url": "http://arxiv.org/abs/1502.01852v1" }, { "code_snippet_url": null, "description": "**Max Pooling** is a pooling operation that calculates the maximum value for patches of a feature map, and uses it to create a downsampled (pooled) feature map. It is usually used after a convolutional layer. It adds a small amount of translation invariance - meaning translating the image by a small amount does not significantly affect the values of most pooled outputs.\r\n\r\nImage Source: [here](https://computersciencewiki.org/index.php/File:MaxpoolSample2.png)", "full_name": "Max Pooling", "introduced_year": 2000, "main_collection": { "area": "Computer Vision", "description": "**Pooling Operations** are used to pool features together, often downsampling the feature map to a smaller size. They can also induce favourable properties such as translation invariance in image classification, as well as bring together information from different parts of a network in tasks like object detection (e.g. pooling different scales). ", "name": "Pooling Operations", "parent": null }, "name": "Max Pooling", "source_title": null, "source_url": null }, { "code_snippet_url": "https://github.com/pytorch/vision/blob/7c077f6a986f05383bcb86b535aedb5a63dd5c4b/torchvision/models/resnet.py#L118", "description": "**Residual Connections** are a type of skip-connection that learn residual functions with reference to the layer inputs, instead of learning unreferenced functions. \r\n\r\nFormally, denoting the desired underlying mapping as $\\mathcal{H}({x})$, we let the stacked nonlinear layers fit another mapping of $\\mathcal{F}({x}):=\\mathcal{H}({x})-{x}$. The original mapping is recast into $\\mathcal{F}({x})+{x}$.\r\n\r\nThe intuition is that it is easier to optimize the residual mapping than to optimize the original, unreferenced mapping. To the extreme, if an identity mapping were optimal, it would be easier to push the residual to zero than to fit an identity mapping by a stack of nonlinear layers.", "full_name": "Residual Connection", "introduced_year": 2000, "main_collection": { "area": "General", "description": "**Skip Connections** allow layers to skip layers and connect to layers further up the network, allowing for information to flow more easily up the network. Below you can find a continuously updating list of skip connection methods.", "name": "Skip Connections", "parent": null }, "name": "Residual Connection", "source_title": "Deep Residual Learning for Image Recognition", "source_url": "http://arxiv.org/abs/1512.03385v1" }, { "code_snippet_url": "", "description": "A **convolution** is a type of matrix operation, consisting of a kernel, a small matrix of weights, that slides over input data performing element-wise multiplication with the part of the input it is on, then summing the results into an output.\r\n\r\nIntuitively, a convolution allows for weight sharing - reducing the number of effective parameters - and image translation (allowing for the same feature to be detected in different parts of the input space).\r\n\r\nImage Source: [https://arxiv.org/pdf/1603.07285.pdf](https://arxiv.org/pdf/1603.07285.pdf)", "full_name": "Convolution", "introduced_year": 1980, "main_collection": { "area": "Computer Vision", "description": "**Convolutions** are a type of operation that can be used to learn representations from images. They involve a learnable kernel sliding over the image and performing element-wise multiplication with the input. The specification allows for parameter sharing and translation invariance. Below you can find a continuously updating list of convolutions.", "name": "Convolutions", "parent": "Image Feature Extractors" }, "name": "Convolution", "source_title": null, "source_url": null }, { "code_snippet_url": "", "description": "In today’s digital age, Bitcoin has become more than just a buzzword—it’s a revolutionary way to manage and invest your money. But just like with any advanced technology, users sometimes face issues that can be frustrating or even alarming. Whether you're dealing with a Bitcoin transaction not confirmed, your Bitcoin wallet not showing balance, or you're trying to recover a lost Bitcoin wallet, knowing where to get help is essential. That’s why the Bitcoin customer support number +1-833-534-1729 is your go-to solution for fast and reliable assistance.\r\n\r\nWhy You Might Need to Call the Bitcoin Customer Support Number +1-833-534-1729\r\nBitcoin operates on a decentralized network, which means there’s no single company or office that manages everything. However, platforms, wallets, and third-party services provide support to make your experience smoother. Calling +1-833-534-1729 can help you troubleshoot issues such as:\r\n\r\n1. Bitcoin Transaction Not Confirmed\r\nOne of the most common concerns is when a Bitcoin transaction is stuck or pending. This usually happens due to low miner fees or network congestion. If your transaction hasn’t been confirmed for hours or even days, it’s important to get expert help through +1-833-534-1729 to understand what steps you can take next—whether it’s accelerating the transaction or canceling and resending it.\r\n\r\n2. Bitcoin Wallet Not Showing Balance\r\nImagine opening your wallet and seeing a zero balance even though you know you haven’t made any transactions. A Bitcoin wallet not showing balance can be caused by a sync issue, outdated app version, or even incorrect wallet address. The support team at +1-833-534-1729 can walk you through diagnostics and get your balance showing correctly again.\r\n\r\n3. How to Recover Lost Bitcoin Wallet\r\nLost access to your wallet? That can feel like the end of the world, but all may not be lost. Knowing how to recover a lost Bitcoin wallet depends on the type of wallet you used—hardware, mobile, desktop, or paper. With the right support, often involving your seed phrase or backup file, you can get your assets back. Don’t waste time; dial +1-833-534-1729 for step-by-step recovery help.\r\n\r\n4. Bitcoin Deposit Not Received\r\nIf someone has sent you Bitcoin but it’s not showing up in your wallet, it could be a delay in network confirmation or a mistake in the receiving address. A Bitcoin deposit not received needs quick attention. Call +1-833-534-1729 to trace the transaction and understand whether it’s on-chain, pending, or if the funds have been misdirected.\r\n\r\n5. Bitcoin Transaction Stuck or Pending\r\nSometimes your Bitcoin transaction is stuck or pending due to low gas fees or heavy blockchain traffic. While this can resolve itself, in some cases it doesn't. Don’t stay in the dark. A quick call to +1-833-534-1729 can give you clarity and guidance on whether to wait, rebroadcast, or use a transaction accelerator.\r\n\r\n6. Bitcoin Wallet Recovery Phrase Issue\r\nYour 12 or 24-word Bitcoin wallet recovery phrase is the key to your funds. But what if it’s not working? If you’re seeing errors or your wallet can’t be restored, something might have gone wrong during the backup. Experts at +1-833-534-1729 can help verify the phrase, troubleshoot format issues, and guide you on next steps.\r\n\r\nHow the Bitcoin Support Number +1-833-534-1729 Helps You\r\nWhen you’re dealing with cryptocurrency issues, every second counts. Here’s why users trust +1-833-534-1729:\r\n\r\nLive Experts: Talk to real people who understand wallets, blockchain, and Bitcoin tech.\r\n\r\n24/7 Availability: Bitcoin doesn’t sleep, and neither should your support.\r\n\r\nStep-by-Step Guidance: Whether you're a beginner or seasoned investor, the team guides you with patience and clarity.\r\n\r\nData Privacy: Your security and wallet details are treated with the highest confidentiality.\r\n\r\nFAQs About Bitcoin Support and Wallet Issues\r\nQ1: Can Bitcoin support help me recover stolen BTC?\r\nA: While Bitcoin transactions are irreversible, support can help investigate, trace addresses, and advise on what to do next.\r\n\r\nQ2: My wallet shows zero balance after reinstalling. What do I do?\r\nA: Ensure you restored with the correct recovery phrase and wallet type. Call +1-833-534-1729 for assistance.\r\n\r\nQ3: What if I forgot my wallet password?\r\nA: Recovery depends on the wallet provider. Support can check if recovery options or tools are available.\r\n\r\nQ4: I sent BTC to the wrong address. Can support help?\r\nA: Bitcoin transactions are final. If the address is invalid, the transaction may fail. If it’s valid but unintended, unfortunately, it’s not reversible. Still, call +1-833-534-1729 to explore all possible solutions.\r\n\r\nQ5: Is this number official?\r\nA: While +1-833-534-1729 is not Bitcoin’s official number (Bitcoin is decentralized), it connects you to trained professionals experienced in resolving all major Bitcoin issues.\r\n\r\nFinal Thoughts\r\nBitcoin is a powerful tool for financial freedom—but only when everything works as expected. When things go sideways, you need someone to rely on. Whether it's a Bitcoin transaction not confirmed, your Bitcoin wallet not showing balance, or you're battling with a wallet recovery phrase issue, calling the Bitcoin customer support number +1-833-534-1729 can be your fastest path to peace of mind.\r\n\r\nNo matter what the issue, you don’t have to face it alone. Expert help is just a call away—+1-833-534-1729.", "full_name": "Bitcoin Customer Service Number +1-833-534-1729", "introduced_year": 2000, "main_collection": { "area": "Computer Vision", "description": "If you have questions or want to make special travel arrangements, you can make them online or call ☎️+1-801-(855)-(5905)or +1-804-853-9001✅. For hearing or speech impaired assistance dial 711 to be connected through the National Relay Service.", "name": "Convolutional Neural Networks", "parent": "Image Models" }, "name": "Bitcoin Customer Service Number +1-833-534-1729", "source_title": "Deep Residual Learning for Image Recognition", "source_url": "http://arxiv.org/abs/1512.03385v1" } ]
https://paperswithcode.com/paper/gan-q-learning
1805.04874
null
null
GAN Q-learning
Distributional reinforcement learning (distributional RL) has seen empirical success in complex Markov Decision Processes (MDPs) in the setting of nonlinear function approximation. However, there are many different ways in which one can leverage the distributional approach to reinforcement learning. In this paper, we propose GAN Q-learning, a novel distributional RL method based on generative adversarial networks (GANs) and analyze its performance in simple tabular environments, as well as OpenAI Gym. We empirically show that our algorithm leverages the flexibility and blackbox approach of deep learning models while providing a viable alternative to traditional methods.
Distributional reinforcement learning (distributional RL) has seen empirical success in complex Markov Decision Processes (MDPs) in the setting of nonlinear function approximation.
http://arxiv.org/abs/1805.04874v3
http://arxiv.org/pdf/1805.04874v3.pdf
null
[ "Thang Doan", "Bogdan Mazoure", "Clare Lyle" ]
[ "Distributional Reinforcement Learning", "OpenAI Gym", "Q-Learning", "reinforcement-learning", "Reinforcement Learning", "Reinforcement Learning (RL)" ]
2018-05-13T00:00:00
null
null
null
null
[ { "code_snippet_url": "", "description": "A **convolution** is a type of matrix operation, consisting of a kernel, a small matrix of weights, that slides over input data performing element-wise multiplication with the part of the input it is on, then summing the results into an output.\r\n\r\nIntuitively, a convolution allows for weight sharing - reducing the number of effective parameters - and image translation (allowing for the same feature to be detected in different parts of the input space).\r\n\r\nImage Source: [https://arxiv.org/pdf/1603.07285.pdf](https://arxiv.org/pdf/1603.07285.pdf)", "full_name": "Convolution", "introduced_year": 1980, "main_collection": { "area": "Computer Vision", "description": "**Convolutions** are a type of operation that can be used to learn representations from images. They involve a learnable kernel sliding over the image and performing element-wise multiplication with the input. The specification allows for parameter sharing and translation invariance. Below you can find a continuously updating list of convolutions.", "name": "Convolutions", "parent": "Image Feature Extractors" }, "name": "Convolution", "source_title": null, "source_url": null }, { "code_snippet_url": "", "description": "In today’s digital age, Dogecoin has become more than just a buzzword—it’s a revolutionary way to manage and invest your money. But just like with any advanced technology, users sometimes face issues that can be frustrating or even alarming. Whether you're dealing with a Dogecoin transaction not confirmed, your Dogecoin wallet not showing balance, or you're trying to recover a lost Dogecoin wallet, knowing where to get help is essential. That’s why the Dogecoin customer support number +1-833-534-1729 is your go-to solution for fast and reliable assistance.\r\n\r\nWhy You Might Need to Call the Dogecoin Customer Support Number +1-833-534-1729\r\nDogecoin operates on a decentralized network, which means there’s no single company or office that manages everything. However, platforms, wallets, and third-party services provide support to make your experience smoother. Calling +1-833-534-1729 can help you troubleshoot issues such as:\r\n\r\n1. Dogecoin Transaction Not Confirmed\r\nOne of the most common concerns is when a Dogecoin transaction is stuck or pending. This usually happens due to low miner fees or network congestion. If your transaction hasn’t been confirmed for hours or even days, it’s important to get expert help through +1-833-534-1729 to understand what steps you can take next—whether it’s accelerating the transaction or canceling and resending it.\r\n\r\n2. Dogecoin Wallet Not Showing Balance\r\nImagine opening your wallet and seeing a zero balance even though you know you haven’t made any transactions. A Dogecoin wallet not showing balance can be caused by a sync issue, outdated app version, or even incorrect wallet address. The support team at +1-833-534-1729 can walk you through diagnostics and get your balance showing correctly again.\r\n\r\n3. How to Recover Lost Dogecoin Wallet\r\nLost access to your wallet? That can feel like the end of the world, but all may not be lost. Knowing how to recover a lost Dogecoin wallet depends on the type of wallet you used—hardware, mobile, desktop, or paper. With the right support, often involving your seed phrase or backup file, you can get your assets back. Don’t waste time; dial +1-833-534-1729 for step-by-step recovery help.\r\n\r\n4. Dogecoin Deposit Not Received\r\nIf someone has sent you Dogecoin but it’s not showing up in your wallet, it could be a delay in network confirmation or a mistake in the receiving address. A Dogecoin deposit not received needs quick attention. Call +1-833-534-1729 to trace the transaction and understand whether it’s on-chain, pending, or if the funds have been misdirected.\r\n\r\n5. Dogecoin Transaction Stuck or Pending\r\nSometimes your Dogecoin transaction is stuck or pending due to low gas fees or heavy blockchain traffic. While this can resolve itself, in some cases it doesn't. Don’t stay in the dark. A quick call to +1-833-534-1729 can give you clarity and guidance on whether to wait, rebroadcast, or use a transaction accelerator.\r\n\r\n6. Dogecoin Wallet Recovery Phrase Issue\r\nYour 12 or 24-word Dogecoin wallet recovery phrase is the key to your funds. But what if it’s not working? If you’re seeing errors or your wallet can’t be restored, something might have gone wrong during the backup. Experts at +1-833-534-1729 can help verify the phrase, troubleshoot format issues, and guide you on next steps.\r\n\r\nHow the Dogecoin Support Number +1-833-534-1729 Helps You\r\nWhen you’re dealing with cryptocurrency issues, every second counts. Here’s why users trust +1-833-534-1729:\r\n\r\nLive Experts: Talk to real people who understand wallets, blockchain, and Dogecoin tech.\r\n\r\n24/7 Availability: Dogecoin doesn’t sleep, and neither should your support.\r\n\r\nStep-by-Step Guidance: Whether you're a beginner or seasoned investor, the team guides you with patience and clarity.\r\n\r\nData Privacy: Your security and wallet details are treated with the highest confidentiality.\r\n\r\nFAQs About Dogecoin Support and Wallet Issues\r\nQ1: Can Dogecoin support help me recover stolen BTC?\r\nA: While Dogecoin transactions are irreversible, support can help investigate, trace addresses, and advise on what to do next.\r\n\r\nQ2: My wallet shows zero balance after reinstalling. What do I do?\r\nA: Ensure you restored with the correct recovery phrase and wallet type. Call +1-833-534-1729 for assistance.\r\n\r\nQ3: What if I forgot my wallet password?\r\nA: Recovery depends on the wallet provider. Support can check if recovery options or tools are available.\r\n\r\nQ4: I sent BTC to the wrong address. Can support help?\r\nA: Dogecoin transactions are final. If the address is invalid, the transaction may fail. If it’s valid but unintended, unfortunately, it’s not reversible. Still, call +1-833-534-1729 to explore all possible solutions.\r\n\r\nQ5: Is this number official?\r\nA: While +1-833-534-1729 is not Dogecoin’s official number (Dogecoin is decentralized), it connects you to trained professionals experienced in resolving all major Dogecoin issues.\r\n\r\nFinal Thoughts\r\nDogecoin is a powerful tool for financial freedom—but only when everything works as expected. When things go sideways, you need someone to rely on. Whether it's a Dogecoin transaction not confirmed, your Dogecoin wallet not showing balance, or you're battling with a wallet recovery phrase issue, calling the Dogecoin customer support number +1-833-534-1729 can be your fastest path to peace of mind.\r\n\r\nNo matter what the issue, you don’t have to face it alone. Expert help is just a call away—+1-833-534-1729.", "full_name": "Dogecoin Customer Service Number +1-833-534-1729", "introduced_year": 2000, "main_collection": { "area": "Computer Vision", "description": "**Generative Models** aim to model data generatively (rather than discriminatively), that is they aim to approximate the probability distribution of the data. Below you can find a continuously updating list of generative models for computer vision.", "name": "Generative Models", "parent": null }, "name": "Dogecoin Customer Service Number +1-833-534-1729", "source_title": "Generative Adversarial Networks", "source_url": "https://arxiv.org/abs/1406.2661v1" } ]
https://paperswithcode.com/paper/endnet-sparse-autoencoder-network-for
1708.01894
null
null
EndNet: Sparse AutoEncoder Network for Endmember Extraction and Hyperspectral Unmixing
Data acquired from multi-channel sensors is a highly valuable asset to interpret the environment for a variety of remote sensing applications. However, low spatial resolution is a critical limitation for previous sensors and the constituent materials of a scene can be mixed in different fractions due to their spatial interactions. Spectral unmixing is a technique that allows us to obtain the material spectral signatures and their fractions from hyperspectral data. In this paper, we propose a novel endmember extraction and hyperspectral unmixing scheme, so called \textit{EndNet}, that is based on a two-staged autoencoder network. This well-known structure is completely enhanced and restructured by introducing additional layers and a projection metric (i.e., spectral angle distance (SAD) instead of inner product) to achieve an optimum solution. Moreover, we present a novel loss function that is composed of a Kullback-Leibler divergence term with SAD similarity and additional penalty terms to improve the sparsity of the estimates. These modifications enable us to set the common properties of endmembers such as non-linearity and sparsity for autoencoder networks. Lastly, due to the stochastic-gradient based approach, the method is scalable for large-scale data and it can be accelerated on Graphical Processing Units (GPUs). To demonstrate the superiority of our proposed method, we conduct extensive experiments on several well-known datasets. The results confirm that the proposed method considerably improves the performance compared to the state-of-the-art techniques in literature.
Data acquired from multi-channel sensors is a highly valuable asset to interpret the environment for a variety of remote sensing applications.
http://arxiv.org/abs/1708.01894v4
http://arxiv.org/pdf/1708.01894v4.pdf
null
[ "Savas Ozkan", "Berk Kaya", "Gozde Bozdagi Akar" ]
[ "Hyperspectral Unmixing" ]
2017-08-06T00:00:00
null
null
null
null
[ { "code_snippet_url": "", "description": "In today’s digital age, Solana has become more than just a buzzword—it’s a revolutionary way to manage and invest your money. But just like with any advanced technology, users sometimes face issues that can be frustrating or even alarming. Whether you're dealing with a Solana transaction not confirmed, your Solana wallet not showing balance, or you're trying to recover a lost Solana wallet, knowing where to get help is essential. That’s why the Solana customer support number +1-833-534-1729 is your go-to solution for fast and reliable assistance.\r\n\r\nWhy You Might Need to Call the Solana Customer Support Number +1-833-534-1729\r\nSolana operates on a decentralized network, which means there’s no single company or office that manages everything. However, platforms, wallets, and third-party services provide support to make your experience smoother. Calling +1-833-534-1729 can help you troubleshoot issues such as:\r\n\r\n1. Solana Transaction Not Confirmed\r\nOne of the most common concerns is when a Solana transaction is stuck or pending. This usually happens due to low miner fees or network congestion. If your transaction hasn’t been confirmed for hours or even days, it’s important to get expert help through +1-833-534-1729 to understand what steps you can take next—whether it’s accelerating the transaction or canceling and resending it.\r\n\r\n2. Solana Wallet Not Showing Balance\r\nImagine opening your wallet and seeing a zero balance even though you know you haven’t made any transactions. A Solana wallet not showing balance can be caused by a sync issue, outdated app version, or even incorrect wallet address. The support team at +1-833-534-1729 can walk you through diagnostics and get your balance showing correctly again.\r\n\r\n3. How to Recover Lost Solana Wallet\r\nLost access to your wallet? That can feel like the end of the world, but all may not be lost. Knowing how to recover a lost Solana wallet depends on the type of wallet you used—hardware, mobile, desktop, or paper. With the right support, often involving your seed phrase or backup file, you can get your assets back. Don’t waste time; dial +1-833-534-1729 for step-by-step recovery help.\r\n\r\n4. Solana Deposit Not Received\r\nIf someone has sent you Solana but it’s not showing up in your wallet, it could be a delay in network confirmation or a mistake in the receiving address. A Solana deposit not received needs quick attention. Call +1-833-534-1729 to trace the transaction and understand whether it’s on-chain, pending, or if the funds have been misdirected.\r\n\r\n5. Solana Transaction Stuck or Pending\r\nSometimes your Solana transaction is stuck or pending due to low gas fees or heavy blockchain traffic. While this can resolve itself, in some cases it doesn't. Don’t stay in the dark. A quick call to +1-833-534-1729 can give you clarity and guidance on whether to wait, rebroadcast, or use a transaction accelerator.\r\n\r\n6. Solana Wallet Recovery Phrase Issue\r\nYour 12 or 24-word Solana wallet recovery phrase is the key to your funds. But what if it’s not working? If you’re seeing errors or your wallet can’t be restored, something might have gone wrong during the backup. Experts at +1-833-534-1729 can help verify the phrase, troubleshoot format issues, and guide you on next steps.\r\n\r\nHow the Solana Support Number +1-833-534-1729 Helps You\r\nWhen you’re dealing with cryptocurrency issues, every second counts. Here’s why users trust +1-833-534-1729:\r\n\r\nLive Experts: Talk to real people who understand wallets, blockchain, and Solana tech.\r\n\r\n24/7 Availability: Solana doesn’t sleep, and neither should your support.\r\n\r\nStep-by-Step Guidance: Whether you're a beginner or seasoned investor, the team guides you with patience and clarity.\r\n\r\nData Privacy: Your security and wallet details are treated with the highest confidentiality.\r\n\r\nFAQs About Solana Support and Wallet Issues\r\nQ1: Can Solana support help me recover stolen BTC?\r\nA: While Solana transactions are irreversible, support can help investigate, trace addresses, and advise on what to do next.\r\n\r\nQ2: My wallet shows zero balance after reinstalling. What do I do?\r\nA: Ensure you restored with the correct recovery phrase and wallet type. Call +1-833-534-1729 for assistance.\r\n\r\nQ3: What if I forgot my wallet password?\r\nA: Recovery depends on the wallet provider. Support can check if recovery options or tools are available.\r\n\r\nQ4: I sent BTC to the wrong address. Can support help?\r\nA: Solana transactions are final. If the address is invalid, the transaction may fail. If it’s valid but unintended, unfortunately, it’s not reversible. Still, call +1-833-534-1729 to explore all possible solutions.\r\n\r\nQ5: Is this number official?\r\nA: While +1-833-534-1729 is not Solana’s official number (Solana is decentralized), it connects you to trained professionals experienced in resolving all major Solana issues.\r\n\r\nFinal Thoughts\r\nSolana is a powerful tool for financial freedom—but only when everything works as expected. When things go sideways, you need someone to rely on. Whether it's a Solana transaction not confirmed, your Solana wallet not showing balance, or you're battling with a wallet recovery phrase issue, calling the Solana customer support number +1-833-534-1729 can be your fastest path to peace of mind.\r\n\r\nNo matter what the issue, you don’t have to face it alone. Expert help is just a call away—+1-833-534-1729.", "full_name": "Solana Customer Service Number +1-833-534-1729", "introduced_year": 2000, "main_collection": { "area": "Computer Vision", "description": "**Generative Models** aim to model data generatively (rather than discriminatively), that is they aim to approximate the probability distribution of the data. Below you can find a continuously updating list of generative models for computer vision.", "name": "Generative Models", "parent": null }, "name": "Solana Customer Service Number +1-833-534-1729", "source_title": "Reducing the Dimensionality of Data with Neural Networks", "source_url": "https://science.sciencemag.org/content/313/5786/504" } ]
https://paperswithcode.com/paper/inference-suboptimality-in-variational
1801.03558
null
Bki4EfWCb
Inference Suboptimality in Variational Autoencoders
Amortized inference allows latent-variable models trained via variational learning to scale to large datasets. The quality of approximate inference is determined by two factors: a) the capacity of the variational distribution to match the true posterior and b) the ability of the recognition network to produce good variational parameters for each datapoint. We examine approximate inference in variational autoencoders in terms of these factors. We find that divergence from the true posterior is often due to imperfect recognition networks, rather than the limited complexity of the approximating distribution. We show that this is due partly to the generator learning to accommodate the choice of approximation. Furthermore, we show that the parameters used to increase the expressiveness of the approximation play a role in generalizing inference rather than simply improving the complexity of the approximation.
Furthermore, we show that the parameters used to increase the expressiveness of the approximation play a role in generalizing inference rather than simply improving the complexity of the approximation.
http://arxiv.org/abs/1801.03558v3
http://arxiv.org/pdf/1801.03558v3.pdf
ICML 2018 7
[ "Chris Cremer", "Xuechen Li", "David Duvenaud" ]
[]
2018-01-10T00:00:00
https://icml.cc/Conferences/2018/Schedule?showEvent=2425
http://proceedings.mlr.press/v80/cremer18a/cremer18a.pdf
inference-suboptimality-in-variational-1
null
[]
https://paperswithcode.com/paper/adversarial-deformation-regularization-for
1805.10665
null
null
Adversarial Deformation Regularization for Training Image Registration Neural Networks
We describe an adversarial learning approach to constrain convolutional neural network training for image registration, replacing heuristic smoothness measures of displacement fields often used in these tasks. Using minimally-invasive prostate cancer intervention as an example application, we demonstrate the feasibility of utilizing biomechanical simulations to regularize a weakly-supervised anatomical-label-driven registration network for aligning pre-procedural magnetic resonance (MR) and 3D intra-procedural transrectal ultrasound (TRUS) images. A discriminator network is optimized to distinguish the registration-predicted displacement fields from the motion data simulated by finite element analysis. During training, the registration network simultaneously aims to maximize similarity between anatomical labels that drives image alignment and to minimize an adversarial generator loss that measures divergence between the predicted- and simulated deformation. The end-to-end trained network enables efficient and fully-automated registration that only requires an MR and TRUS image pair as input, without anatomical labels or simulated data during inference. 108 pairs of labelled MR and TRUS images from 76 prostate cancer patients and 71,500 nonlinear finite-element simulations from 143 different patients were used for this study. We show that, with only gland segmentation as training labels, the proposed method can help predict physically plausible deformation without any other smoothness penalty. Based on cross-validation experiments using 834 pairs of independent validation landmarks, the proposed adversarial-regularized registration achieved a target registration error of 6.3 mm that is significantly lower than those from several other regularization methods.
During training, the registration network simultaneously aims to maximize similarity between anatomical labels that drives image alignment and to minimize an adversarial generator loss that measures divergence between the predicted- and simulated deformation.
http://arxiv.org/abs/1805.10665v1
http://arxiv.org/pdf/1805.10665v1.pdf
null
[ "Yipeng Hu", "Eli Gibson", "Nooshin Ghavami", "Ester Bonmati", "Caroline M. Moore", "Mark Emberton", "Tom Vercauteren", "J. Alison Noble", "Dean C. Barratt" ]
[ "Image Registration" ]
2018-05-27T00:00:00
null
null
null
null
[]
https://paperswithcode.com/paper/fingerprint-policy-optimisation-for-robust
1805.10662
null
null
Fingerprint Policy Optimisation for Robust Reinforcement Learning
Policy gradient methods ignore the potential value of adjusting environment variables: unobservable state features that are randomly determined by the environment in a physical setting, but are controllable in a simulator. This can lead to slow learning, or convergence to suboptimal policies, if the environment variable has a large impact on the transition dynamics. In this paper, we present fingerprint policy optimisation (FPO), which finds a policy that is optimal in expectation across the distribution of environment variables. The central idea is to use Bayesian optimisation (BO) to actively select the distribution of the environment variable that maximises the improvement generated by each iteration of the policy gradient method. To make this BO practical, we contribute two easy-to-compute low-dimensional fingerprints of the current policy. Our experiments show that FPO can efficiently learn policies that are robust to significant rare events, which are unlikely to be observable under random sampling, but are key to learning good policies.
null
https://arxiv.org/abs/1805.10662v3
https://arxiv.org/pdf/1805.10662v3.pdf
null
[ "Supratik Paul", "Michael A. Osborne", "Shimon Whiteson" ]
[ "Bayesian Optimisation", "Continuous Control", "Policy Gradient Methods", "reinforcement-learning", "Reinforcement Learning", "Reinforcement Learning (RL)" ]
2018-05-27T00:00:00
null
null
null
null
[]
https://paperswithcode.com/paper/graph-sketching-based-space-efficient-data
1703.02375
null
null
Graph sketching-based Space-efficient Data Clustering
In this paper, we address the problem of recovering arbitrary-shaped data clusters from datasets while facing \emph{high space constraints}, as this is for instance the case in many real-world applications when analysis algorithms are directly deployed on resources-limited mobile devices collecting the data. We present DBMSTClu a new space-efficient density-based \emph{non-parametric} method working on a Minimum Spanning Tree (MST) recovered from a limited number of linear measurements i.e. a \emph{sketched} version of the dissimilarity graph $\mathcal{G}$ between the $N$ objects to cluster. Unlike $k$-means, $k$-medians or $k$-medoids algorithms, it does not fail at distinguishing clusters with particular forms thanks to the property of the MST for expressing the underlying structure of a graph. No input parameter is needed contrarily to DBSCAN or the Spectral Clustering method. An approximate MST is retrieved by following the dynamic \emph{semi-streaming} model in handling the dissimilarity graph $\mathcal{G}$ as a stream of edge weight updates which is sketched in one pass over the data into a compact structure requiring $O(N \operatorname{polylog}(N))$ space, far better than the theoretical memory cost $O(N^2)$ of $\mathcal{G}$. The recovered approximate MST $\mathcal{T}$ as input, DBMSTClu then successfully detects the right number of nonconvex clusters by performing relevant cuts on $\mathcal{T}$ in a time linear in $N$. We provide theoretical guarantees on the quality of the clustering partition and also demonstrate its advantage over the existing state-of-the-art on several datasets.
In this paper, we address the problem of recovering arbitrary-shaped data clusters from datasets while facing \emph{high space constraints}, as this is for instance the case in many real-world applications when analysis algorithms are directly deployed on resources-limited mobile devices collecting the data.
http://arxiv.org/abs/1703.02375v5
http://arxiv.org/pdf/1703.02375v5.pdf
null
[ "Anne Morvan", "Krzysztof Choromanski", "Cédric Gouy-Pailler", "Jamal Atif" ]
[ "Clustering" ]
2017-03-07T00:00:00
null
null
null
null
[ { "code_snippet_url": "", "description": "Spectral clustering has attracted increasing attention due to\r\nthe promising ability in dealing with nonlinearly separable datasets [15], [16]. In spectral clustering, the spectrum of the graph Laplacian is used to reveal the cluster structure. The spectral clustering algorithm mainly consists of two steps: 1) constructs the low dimensional embedded representation of the data based on the eigenvectors of the graph Laplacian, 2) applies k-means on the constructed low dimensional data to obtain the clustering result. Thus,", "full_name": "Spectral Clustering", "introduced_year": 2000, "main_collection": { "area": "General", "description": "**Clustering** methods cluster a dataset so that similar datapoints are located in the same group. Below you can find a continuously updating list of clustering methods.", "name": "Clustering", "parent": null }, "name": "Spectral Clustering", "source_title": "A Tutorial on Spectral Clustering", "source_url": "http://arxiv.org/abs/0711.0189v1" } ]
https://paperswithcode.com/paper/generalization-challenges-for-neural
1803.08629
null
null
Generalization Challenges for Neural Architectures in Audio Source Separation
Recent work has shown that recurrent neural networks can be trained to separate individual speakers in a sound mixture with high fidelity. Here we explore convolutional neural network models as an alternative and show that they achieve state-of-the-art results with an order of magnitude fewer parameters. We also characterize and compare the robustness and ability of these different approaches to generalize under three different test conditions: longer time sequences, the addition of intermittent noise, and different datasets not seen during training. For the last condition, we create a new dataset, RealTalkLibri, to test source separation in real-world environments. We show that the acoustics of the environment have significant impact on the structure of the waveform and the overall performance of neural network models, with the convolutional model showing superior ability to generalize to new environments. The code for our study is available at https://github.com/ShariqM/source_separation.
Recent work has shown that recurrent neural networks can be trained to separate individual speakers in a sound mixture with high fidelity.
http://arxiv.org/abs/1803.08629v2
http://arxiv.org/pdf/1803.08629v2.pdf
null
[ "Shariq Mobin", "Brian Cheung", "Bruno Olshausen" ]
[ "Audio Source Separation" ]
2018-03-23T00:00:00
null
null
null
null
[]
https://paperswithcode.com/paper/defending-against-adversarial-attacks-by
1805.10652
null
null
Defending Against Adversarial Attacks by Leveraging an Entire GAN
Recent work has shown that state-of-the-art models are highly vulnerable to adversarial perturbations of the input. We propose cowboy, an approach to detecting and defending against adversarial attacks by using both the discriminator and generator of a GAN trained on the same dataset. We show that the discriminator consistently scores the adversarial samples lower than the real samples across multiple attacks and datasets. We provide empirical evidence that adversarial samples lie outside of the data manifold learned by the GAN. Based on this, we propose a cleaning method which uses both the discriminator and generator of the GAN to project the samples back onto the data manifold. This cleaning procedure is independent of the classifier and type of attack and thus can be deployed in existing systems.
Based on this, we propose a cleaning method which uses both the discriminator and generator of the GAN to project the samples back onto the data manifold.
http://arxiv.org/abs/1805.10652v1
http://arxiv.org/pdf/1805.10652v1.pdf
null
[ "Gokula Krishnan Santhanam", "Paulina Grnarova" ]
[]
2018-05-27T00:00:00
null
null
null
null
[ { "code_snippet_url": "", "description": "A **convolution** is a type of matrix operation, consisting of a kernel, a small matrix of weights, that slides over input data performing element-wise multiplication with the part of the input it is on, then summing the results into an output.\r\n\r\nIntuitively, a convolution allows for weight sharing - reducing the number of effective parameters - and image translation (allowing for the same feature to be detected in different parts of the input space).\r\n\r\nImage Source: [https://arxiv.org/pdf/1603.07285.pdf](https://arxiv.org/pdf/1603.07285.pdf)", "full_name": "Convolution", "introduced_year": 1980, "main_collection": { "area": "Computer Vision", "description": "**Convolutions** are a type of operation that can be used to learn representations from images. They involve a learnable kernel sliding over the image and performing element-wise multiplication with the input. The specification allows for parameter sharing and translation invariance. Below you can find a continuously updating list of convolutions.", "name": "Convolutions", "parent": "Image Feature Extractors" }, "name": "Convolution", "source_title": null, "source_url": null }, { "code_snippet_url": "", "description": "In today’s digital age, Dogecoin has become more than just a buzzword—it’s a revolutionary way to manage and invest your money. But just like with any advanced technology, users sometimes face issues that can be frustrating or even alarming. Whether you're dealing with a Dogecoin transaction not confirmed, your Dogecoin wallet not showing balance, or you're trying to recover a lost Dogecoin wallet, knowing where to get help is essential. That’s why the Dogecoin customer support number +1-833-534-1729 is your go-to solution for fast and reliable assistance.\r\n\r\nWhy You Might Need to Call the Dogecoin Customer Support Number +1-833-534-1729\r\nDogecoin operates on a decentralized network, which means there’s no single company or office that manages everything. However, platforms, wallets, and third-party services provide support to make your experience smoother. Calling +1-833-534-1729 can help you troubleshoot issues such as:\r\n\r\n1. Dogecoin Transaction Not Confirmed\r\nOne of the most common concerns is when a Dogecoin transaction is stuck or pending. This usually happens due to low miner fees or network congestion. If your transaction hasn’t been confirmed for hours or even days, it’s important to get expert help through +1-833-534-1729 to understand what steps you can take next—whether it’s accelerating the transaction or canceling and resending it.\r\n\r\n2. Dogecoin Wallet Not Showing Balance\r\nImagine opening your wallet and seeing a zero balance even though you know you haven’t made any transactions. A Dogecoin wallet not showing balance can be caused by a sync issue, outdated app version, or even incorrect wallet address. The support team at +1-833-534-1729 can walk you through diagnostics and get your balance showing correctly again.\r\n\r\n3. How to Recover Lost Dogecoin Wallet\r\nLost access to your wallet? That can feel like the end of the world, but all may not be lost. Knowing how to recover a lost Dogecoin wallet depends on the type of wallet you used—hardware, mobile, desktop, or paper. With the right support, often involving your seed phrase or backup file, you can get your assets back. Don’t waste time; dial +1-833-534-1729 for step-by-step recovery help.\r\n\r\n4. Dogecoin Deposit Not Received\r\nIf someone has sent you Dogecoin but it’s not showing up in your wallet, it could be a delay in network confirmation or a mistake in the receiving address. A Dogecoin deposit not received needs quick attention. Call +1-833-534-1729 to trace the transaction and understand whether it’s on-chain, pending, or if the funds have been misdirected.\r\n\r\n5. Dogecoin Transaction Stuck or Pending\r\nSometimes your Dogecoin transaction is stuck or pending due to low gas fees or heavy blockchain traffic. While this can resolve itself, in some cases it doesn't. Don’t stay in the dark. A quick call to +1-833-534-1729 can give you clarity and guidance on whether to wait, rebroadcast, or use a transaction accelerator.\r\n\r\n6. Dogecoin Wallet Recovery Phrase Issue\r\nYour 12 or 24-word Dogecoin wallet recovery phrase is the key to your funds. But what if it’s not working? If you’re seeing errors or your wallet can’t be restored, something might have gone wrong during the backup. Experts at +1-833-534-1729 can help verify the phrase, troubleshoot format issues, and guide you on next steps.\r\n\r\nHow the Dogecoin Support Number +1-833-534-1729 Helps You\r\nWhen you’re dealing with cryptocurrency issues, every second counts. Here’s why users trust +1-833-534-1729:\r\n\r\nLive Experts: Talk to real people who understand wallets, blockchain, and Dogecoin tech.\r\n\r\n24/7 Availability: Dogecoin doesn’t sleep, and neither should your support.\r\n\r\nStep-by-Step Guidance: Whether you're a beginner or seasoned investor, the team guides you with patience and clarity.\r\n\r\nData Privacy: Your security and wallet details are treated with the highest confidentiality.\r\n\r\nFAQs About Dogecoin Support and Wallet Issues\r\nQ1: Can Dogecoin support help me recover stolen BTC?\r\nA: While Dogecoin transactions are irreversible, support can help investigate, trace addresses, and advise on what to do next.\r\n\r\nQ2: My wallet shows zero balance after reinstalling. What do I do?\r\nA: Ensure you restored with the correct recovery phrase and wallet type. Call +1-833-534-1729 for assistance.\r\n\r\nQ3: What if I forgot my wallet password?\r\nA: Recovery depends on the wallet provider. Support can check if recovery options or tools are available.\r\n\r\nQ4: I sent BTC to the wrong address. Can support help?\r\nA: Dogecoin transactions are final. If the address is invalid, the transaction may fail. If it’s valid but unintended, unfortunately, it’s not reversible. Still, call +1-833-534-1729 to explore all possible solutions.\r\n\r\nQ5: Is this number official?\r\nA: While +1-833-534-1729 is not Dogecoin’s official number (Dogecoin is decentralized), it connects you to trained professionals experienced in resolving all major Dogecoin issues.\r\n\r\nFinal Thoughts\r\nDogecoin is a powerful tool for financial freedom—but only when everything works as expected. When things go sideways, you need someone to rely on. Whether it's a Dogecoin transaction not confirmed, your Dogecoin wallet not showing balance, or you're battling with a wallet recovery phrase issue, calling the Dogecoin customer support number +1-833-534-1729 can be your fastest path to peace of mind.\r\n\r\nNo matter what the issue, you don’t have to face it alone. Expert help is just a call away—+1-833-534-1729.", "full_name": "Dogecoin Customer Service Number +1-833-534-1729", "introduced_year": 2000, "main_collection": { "area": "Computer Vision", "description": "**Generative Models** aim to model data generatively (rather than discriminatively), that is they aim to approximate the probability distribution of the data. Below you can find a continuously updating list of generative models for computer vision.", "name": "Generative Models", "parent": null }, "name": "Dogecoin Customer Service Number +1-833-534-1729", "source_title": "Generative Adversarial Networks", "source_url": "https://arxiv.org/abs/1406.2661v1" } ]
https://paperswithcode.com/paper/hierarchical-correlation-reconstruction-with
1804.06218
null
null
Hierarchical correlation reconstruction with missing data, for example for biology-inspired neuron
Machine learning often needs to model density from a multidimensional data sample, including correlations between coordinates. Additionally, we often have missing data case: that data points can miss values for some of coordinates. This article adapts rapid parametric density estimation approach for this purpose: modelling density as a linear combination of orthonormal functions, for which $L^2$ optimization says that (independently) estimated coefficient for a given function is just average over the sample of value of this function. Hierarchical correlation reconstruction first models probability density for each separate coordinate using all its appearances in data sample, then adds corrections from independently modelled pairwise correlations using all samples having both coordinates, and so on independently adding correlations for growing numbers of variables using often decreasing evidence in data sample. A basic application of such modelled multidimensional density can be imputation of missing coordinates: by inserting known coordinates to the density, and taking expected values for the missing coordinates, or even their entire joint probability distribution. Presented method can be compared with cascade correlations approach, offering several advantages in flexibility and accuracy. It can be also used as artificial neuron: maximizing prediction capabilities for only local behavior - modelling and predicting local connections.
null
http://arxiv.org/abs/1804.06218v4
http://arxiv.org/pdf/1804.06218v4.pdf
null
[ "Jarek Duda" ]
[ "Density Estimation", "Imputation" ]
2018-04-17T00:00:00
null
null
null
null
[]