paper_url
stringlengths
35
81
arxiv_id
stringlengths
6
35
nips_id
float64
openreview_id
stringlengths
9
93
title
stringlengths
1
1.02k
abstract
stringlengths
0
56.5k
short_abstract
stringlengths
0
1.95k
url_abs
stringlengths
16
996
url_pdf
stringlengths
16
996
proceeding
stringlengths
7
1.03k
authors
listlengths
0
3.31k
tasks
listlengths
0
147
date
timestamp[ns]date
1951-09-01 00:00:00
2222-12-22 00:00:00
conference_url_abs
stringlengths
16
199
conference_url_pdf
stringlengths
21
200
conference
stringlengths
2
47
reproduces_paper
stringclasses
22 values
methods
listlengths
0
7.5k
https://paperswithcode.com/paper/why-do-deep-convolutional-networks-generalize
1805.12177
null
HJxYwiC5tm
Why do deep convolutional networks generalize so poorly to small image transformations?
Convolutional Neural Networks (CNNs) are commonly assumed to be invariant to small image transformations: either because of the convolutional architecture or because they were trained using data augmentation. Recently, several authors have shown that this is not the case: small translations or rescalings of the input image can drastically change the network's prediction. In this paper, we quantify this phenomena and ask why neither the convolutional architecture nor data augmentation are sufficient to achieve the desired invariance. Specifically, we show that the convolutional architecture does not give invariance since architectures ignore the classical sampling theorem, and data augmentation does not give invariance because the CNNs learn to be invariant to transformations only for images that are very similar to typical images from the training set. We discuss two possible solutions to this problem: (1) antialiasing the intermediate representations and (2) increasing data augmentation and show that they provide only a partial solution at best. Taken together, our results indicate that the problem of insuring invariance to small image transformations in neural networks while preserving high accuracy remains unsolved.
Convolutional Neural Networks (CNNs) are commonly assumed to be invariant to small image transformations: either because of the convolutional architecture or because they were trained using data augmentation.
https://arxiv.org/abs/1805.12177v4
https://arxiv.org/pdf/1805.12177v4.pdf
ICLR 2019 5
[ "Aharon Azulay", "Yair Weiss" ]
[ "Data Augmentation", "Object Recognition" ]
2018-05-30T00:00:00
https://openreview.net/forum?id=HJxYwiC5tm
https://openreview.net/pdf?id=HJxYwiC5tm
why-do-deep-convolutional-networks-generalize-1
null
[]
https://paperswithcode.com/paper/deep-segment-hash-learning-for-music
1805.12176
null
null
Deep Segment Hash Learning for Music Generation
Music generation research has grown in popularity over the past decade, thanks to the deep learning revolution that has redefined the landscape of artificial intelligence. In this paper, we propose a novel approach to music generation inspired by musical segment concatenation methods and hash learning algorithms. Given a segment of music, we use a deep recurrent neural network and ranking-based hash learning to assign a forward hash code to the segment to retrieve candidate segments for continuation with matching backward hash codes. The proposed method is thus called Deep Segment Hash Learning (DSHL). To the best of our knowledge, DSHL is the first end-to-end segment hash learning method for music generation, and the first to use pair-wise training with segments of music. We demonstrate that this method is capable of generating music which is both original and enjoyable, and that DSHL offers a promising new direction for music generation research.
null
http://arxiv.org/abs/1805.12176v1
http://arxiv.org/pdf/1805.12176v1.pdf
null
[ "Kevin Joslyn", "Naifan Zhuang", "Kien A. Hua" ]
[ "Music Generation" ]
2018-05-30T00:00:00
null
null
null
null
[]
https://paperswithcode.com/paper/learning-video-summarization-using-unpaired
1805.12174
null
null
Video Summarization by Learning from Unpaired Data
We consider the problem of video summarization. Given an input raw video, the goal is to select a small subset of key frames from the input video to create a shorter summary video that best describes the content of the original video. Most of the current state-of-the-art video summarization approaches use supervised learning and require labeled training data. Each training instance consists of a raw input video and its ground truth summary video curated by human annotators. However, it is very expensive and difficult to create such labeled training examples. To address this limitation, we propose a novel formulation to learn video summarization from unpaired data. We present an approach that learns to generate optimal video summaries using a set of raw videos ($V$) and a set of summary videos ($S$), where there exists no correspondence between $V$ and $S$. We argue that this type of data is much easier to collect. Our model aims to learn a mapping function $F : V \rightarrow S$ such that the distribution of resultant summary videos from $F(V)$ is similar to the distribution of $S$ with the help of an adversarial objective. In addition, we enforce a diversity constraint on $F(V)$ to ensure that the generated video summaries are visually diverse. Experimental results on two benchmark datasets indicate that our proposed approach significantly outperforms other alternative methods.
null
http://arxiv.org/abs/1805.12174v2
http://arxiv.org/pdf/1805.12174v2.pdf
CVPR 2019 6
[ "Mrigank Rochan", "Yang Wang" ]
[ "Video Summarization" ]
2018-05-30T00:00:00
http://openaccess.thecvf.com/content_CVPR_2019/html/Rochan_Video_Summarization_by_Learning_From_Unpaired_Data_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/papers/Rochan_Video_Summarization_by_Learning_From_Unpaired_Data_CVPR_2019_paper.pdf
video-summarization-by-learning-from-unpaired
null
[]
https://paperswithcode.com/paper/a-flexible-framework-for-multi-objective
1805.12168
null
null
A Flexible Framework for Multi-Objective Bayesian Optimization using Random Scalarizations
Many real world applications can be framed as multi-objective optimization problems, where we wish to simultaneously optimize for multiple criteria. Bayesian optimization techniques for the multi-objective setting are pertinent when the evaluation of the functions in question are expensive. Traditional methods for multi-objective optimization, both Bayesian and otherwise, are aimed at recovering the Pareto front of these objectives. However, in certain cases a practitioner might desire to identify Pareto optimal points only in a subset of the Pareto front due to external considerations. In this work, we propose a strategy based on random scalarizations of the objectives that addresses this problem. Our approach is able to flexibly sample from desired regions of the Pareto front and, computationally, is considerably cheaper than most approaches for MOO. We also study a notion of regret in the multi-objective setting and show that our strategy achieves sublinear regret. We experiment with both synthetic and real-life problems, and demonstrate superior performance of our proposed algorithm in terms of the flexibility and regret.
null
https://arxiv.org/abs/1805.12168v3
https://arxiv.org/pdf/1805.12168v3.pdf
null
[ "Biswajit Paria", "Kirthevasan Kandasamy", "Barnabás Póczos" ]
[ "Bayesian Optimization" ]
2018-05-30T00:00:00
null
null
null
null
[]
https://paperswithcode.com/paper/supervised-mixed-norm-autoencoder-for-kinship
1805.12167
null
null
Supervised Mixed Norm Autoencoder for Kinship Verification in Unconstrained Videos
Identifying kinship relations has garnered interest due to several applications such as organizing and tagging the enormous amount of videos being uploaded on the Internet. Existing research in kinship verification primarily focuses on kinship prediction with image pairs. In this research, we propose a new deep learning framework for kinship verification in unconstrained videos using a novel Supervised Mixed Norm regularization Autoencoder (SMNAE). This new autoencoder formulation introduces class-specific sparsity in the weight matrix. The proposed three-stage SMNAE based kinship verification framework utilizes the learned spatio-temporal representation in the video frames for verifying kinship in a pair of videos. A new kinship video (KIVI) database of more than 500 individuals with variations due to illumination, pose, occlusion, ethnicity, and expression is collected for this research. It comprises a total of 355 true kin video pairs with over 250,000 still frames. The effectiveness of the proposed framework is demonstrated on the KIVI database and six existing kinship databases. On the KIVI database, SMNAE yields video-based kinship verification accuracy of 83.18% which is at least 3.2% better than existing algorithms. The algorithm is also evaluated on six publicly available kinship databases and compared with best-reported results. It is observed that the proposed SMNAE consistently yields best results on all the databases
null
http://arxiv.org/abs/1805.12167v1
http://arxiv.org/pdf/1805.12167v1.pdf
null
[ "Naman Kohli", "Daksha Yadav", "Mayank Vatsa", "Richa Singh", "Afzel Noore" ]
[ "Kinship Verification" ]
2018-05-30T00:00:00
null
null
null
null
[ { "code_snippet_url": "", "description": "In today’s digital age, Solana has become more than just a buzzword—it’s a revolutionary way to manage and invest your money. But just like with any advanced technology, users sometimes face issues that can be frustrating or even alarming. Whether you're dealing with a Solana transaction not confirmed, your Solana wallet not showing balance, or you're trying to recover a lost Solana wallet, knowing where to get help is essential. That’s why the Solana customer support number +1-833-534-1729 is your go-to solution for fast and reliable assistance.\r\n\r\nWhy You Might Need to Call the Solana Customer Support Number +1-833-534-1729\r\nSolana operates on a decentralized network, which means there’s no single company or office that manages everything. However, platforms, wallets, and third-party services provide support to make your experience smoother. Calling +1-833-534-1729 can help you troubleshoot issues such as:\r\n\r\n1. Solana Transaction Not Confirmed\r\nOne of the most common concerns is when a Solana transaction is stuck or pending. This usually happens due to low miner fees or network congestion. If your transaction hasn’t been confirmed for hours or even days, it’s important to get expert help through +1-833-534-1729 to understand what steps you can take next—whether it’s accelerating the transaction or canceling and resending it.\r\n\r\n2. Solana Wallet Not Showing Balance\r\nImagine opening your wallet and seeing a zero balance even though you know you haven’t made any transactions. A Solana wallet not showing balance can be caused by a sync issue, outdated app version, or even incorrect wallet address. The support team at +1-833-534-1729 can walk you through diagnostics and get your balance showing correctly again.\r\n\r\n3. How to Recover Lost Solana Wallet\r\nLost access to your wallet? That can feel like the end of the world, but all may not be lost. Knowing how to recover a lost Solana wallet depends on the type of wallet you used—hardware, mobile, desktop, or paper. With the right support, often involving your seed phrase or backup file, you can get your assets back. Don’t waste time; dial +1-833-534-1729 for step-by-step recovery help.\r\n\r\n4. Solana Deposit Not Received\r\nIf someone has sent you Solana but it’s not showing up in your wallet, it could be a delay in network confirmation or a mistake in the receiving address. A Solana deposit not received needs quick attention. Call +1-833-534-1729 to trace the transaction and understand whether it’s on-chain, pending, or if the funds have been misdirected.\r\n\r\n5. Solana Transaction Stuck or Pending\r\nSometimes your Solana transaction is stuck or pending due to low gas fees or heavy blockchain traffic. While this can resolve itself, in some cases it doesn't. Don’t stay in the dark. A quick call to +1-833-534-1729 can give you clarity and guidance on whether to wait, rebroadcast, or use a transaction accelerator.\r\n\r\n6. Solana Wallet Recovery Phrase Issue\r\nYour 12 or 24-word Solana wallet recovery phrase is the key to your funds. But what if it’s not working? If you’re seeing errors or your wallet can’t be restored, something might have gone wrong during the backup. Experts at +1-833-534-1729 can help verify the phrase, troubleshoot format issues, and guide you on next steps.\r\n\r\nHow the Solana Support Number +1-833-534-1729 Helps You\r\nWhen you’re dealing with cryptocurrency issues, every second counts. Here’s why users trust +1-833-534-1729:\r\n\r\nLive Experts: Talk to real people who understand wallets, blockchain, and Solana tech.\r\n\r\n24/7 Availability: Solana doesn’t sleep, and neither should your support.\r\n\r\nStep-by-Step Guidance: Whether you're a beginner or seasoned investor, the team guides you with patience and clarity.\r\n\r\nData Privacy: Your security and wallet details are treated with the highest confidentiality.\r\n\r\nFAQs About Solana Support and Wallet Issues\r\nQ1: Can Solana support help me recover stolen BTC?\r\nA: While Solana transactions are irreversible, support can help investigate, trace addresses, and advise on what to do next.\r\n\r\nQ2: My wallet shows zero balance after reinstalling. What do I do?\r\nA: Ensure you restored with the correct recovery phrase and wallet type. Call +1-833-534-1729 for assistance.\r\n\r\nQ3: What if I forgot my wallet password?\r\nA: Recovery depends on the wallet provider. Support can check if recovery options or tools are available.\r\n\r\nQ4: I sent BTC to the wrong address. Can support help?\r\nA: Solana transactions are final. If the address is invalid, the transaction may fail. If it’s valid but unintended, unfortunately, it’s not reversible. Still, call +1-833-534-1729 to explore all possible solutions.\r\n\r\nQ5: Is this number official?\r\nA: While +1-833-534-1729 is not Solana’s official number (Solana is decentralized), it connects you to trained professionals experienced in resolving all major Solana issues.\r\n\r\nFinal Thoughts\r\nSolana is a powerful tool for financial freedom—but only when everything works as expected. When things go sideways, you need someone to rely on. Whether it's a Solana transaction not confirmed, your Solana wallet not showing balance, or you're battling with a wallet recovery phrase issue, calling the Solana customer support number +1-833-534-1729 can be your fastest path to peace of mind.\r\n\r\nNo matter what the issue, you don’t have to face it alone. Expert help is just a call away—+1-833-534-1729.", "full_name": "Solana Customer Service Number +1-833-534-1729", "introduced_year": 2000, "main_collection": { "area": "Computer Vision", "description": "**Generative Models** aim to model data generatively (rather than discriminatively), that is they aim to approximate the probability distribution of the data. Below you can find a continuously updating list of generative models for computer vision.", "name": "Generative Models", "parent": null }, "name": "Solana Customer Service Number +1-833-534-1729", "source_title": "Reducing the Dimensionality of Data with Neural Networks", "source_url": "https://science.sciencemag.org/content/313/5786/504" } ]
https://paperswithcode.com/paper/what-the-vec-towards-probabilistically
1805.12164
null
null
What the Vec? Towards Probabilistically Grounded Embeddings
Word2Vec (W2V) and GloVe are popular, fast and efficient word embedding algorithms. Their embeddings are widely used and perform well on a variety of natural language processing tasks. Moreover, W2V has recently been adopted in the field of graph embedding, where it underpins several leading algorithms. However, despite their ubiquity and relatively simple model architecture, a theoretical understanding of what the embedding parameters of W2V and GloVe learn and why that is useful in downstream tasks has been lacking. We show that different interactions between PMI vectors reflect semantic word relationships, such as similarity and paraphrasing, that are encoded in low dimensional word embeddings under a suitable projection, theoretically explaining why embeddings of W2V and GloVe work. As a consequence, we also reveal an interesting mathematical interconnection between the considered semantic relationships themselves.
null
https://arxiv.org/abs/1805.12164v3
https://arxiv.org/pdf/1805.12164v3.pdf
NeurIPS 2019 12
[ "Carl Allen", "Ivana Balažević", "Timothy Hospedales" ]
[ "Graph Embedding", "Word Embeddings" ]
2018-05-30T00:00:00
http://papers.nips.cc/paper/8965-what-the-vec-towards-probabilistically-grounded-embeddings
http://papers.nips.cc/paper/8965-what-the-vec-towards-probabilistically-grounded-embeddings.pdf
what-the-vec-towards-probabilistically-1
null
[ { "code_snippet_url": "", "description": "**GloVe Embeddings** are a type of word embedding that encode the co-occurrence probability ratio between two words as vector differences. GloVe uses a weighted least squares objective $J$ that minimizes the difference between the dot product of the vectors of two words and the logarithm of their number of co-occurrences:\r\n\r\n$$ J=\\sum\\_{i, j=1}^{V}f\\left(𝑋\\_{i j}\\right)(w^{T}\\_{i}\\tilde{w}_{j} + b\\_{i} + \\tilde{b}\\_{j} - \\log{𝑋}\\_{ij})^{2} $$\r\n\r\nwhere $w\\_{i}$ and $b\\_{i}$ are the word vector and bias respectively of word $i$, $\\tilde{w}_{j}$ and $b\\_{j}$ are the context word vector and bias respectively of word $j$, $X\\_{ij}$ is the number of times word $i$ occurs in the context of word $j$, and $f$ is a weighting function that assigns lower weights to rare and frequent co-occurrences.", "full_name": "GloVe Embeddings", "introduced_year": 2000, "main_collection": { "area": "Natural Language Processing", "description": "", "name": "Word Embeddings", "parent": null }, "name": "GloVe", "source_title": "GloVe: Global Vectors for Word Representation", "source_url": "https://aclanthology.org/D14-1162" } ]
https://paperswithcode.com/paper/on-consensus-optimality-trade-offs-in
1805.12120
null
null
On Consensus-Optimality Trade-offs in Collaborative Deep Learning
In distributed machine learning, where agents collaboratively learn from diverse private data sets, there is a fundamental tension between consensus and optimality. In this paper, we build on recent algorithmic progresses in distributed deep learning to explore various consensus-optimality trade-offs over a fixed communication topology. First, we propose the incremental consensus-based distributed SGD (i-CDSGD) algorithm, which involves multiple consensus steps (where each agent communicates information with its neighbors) within each SGD iteration. Second, we propose the generalized consensus-based distributed SGD (g-CDSGD) algorithm that enables us to navigate the full spectrum from complete consensus (all agents agree) to complete disagreement (each agent converges to individual model parameters). We analytically establish convergence of the proposed algorithms for strongly convex and nonconvex objective functions; we also analyze the momentum variants of the algorithms for the strongly convex case. We support our algorithms via numerical experiments, and demonstrate significant improvements over existing methods for collaborative deep learning.
null
http://arxiv.org/abs/1805.12120v1
http://arxiv.org/pdf/1805.12120v1.pdf
null
[ "Zhanhong Jiang", "Aditya Balu", "Chinmay Hegde", "Soumik Sarkar" ]
[ "Deep Learning", "Navigate" ]
2018-05-30T00:00:00
null
null
null
null
[ { "code_snippet_url": "https://github.com/pytorch/pytorch/blob/4e0ac120e9a8b096069c2f892488d630a5c8f358/torch/optim/sgd.py#L97-L112", "description": "**Stochastic Gradient Descent** is an iterative optimization technique that uses minibatches of data to form an expectation of the gradient, rather than the full gradient using all available data. That is for weights $w$ and a loss function $L$ we have:\r\n\r\n$$ w\\_{t+1} = w\\_{t} - \\eta\\hat{\\nabla}\\_{w}{L(w\\_{t})} $$\r\n\r\nWhere $\\eta$ is a learning rate. SGD reduces redundancy compared to batch gradient descent - which recomputes gradients for similar examples before each parameter update - so it is usually much faster.\r\n\r\n(Image Source: [here](http://rasbt.github.io/mlxtend/user_guide/general_concepts/gradient-optimization/))", "full_name": "Stochastic Gradient Descent", "introduced_year": 1951, "main_collection": { "area": "General", "description": "**Stochastic Optimization** methods are used to optimize neural networks. We typically take a mini-batch of data, hence 'stochastic', and perform a type of gradient descent with this minibatch. Below you can find a continuously updating list of stochastic optimization algorithms.", "name": "Stochastic Optimization", "parent": "Optimization" }, "name": "SGD", "source_title": null, "source_url": null } ]
https://paperswithcode.com/paper/neural-models-for-key-phrase-detection-and
1706.04560
null
null
Neural Models for Key Phrase Detection and Question Generation
We propose a two-stage neural model to tackle question generation from documents. First, our model estimates the probability that word sequences in a document are ones that a human would pick when selecting candidate answers by training a neural key-phrase extractor on the answers in a question-answering corpus. Predicted key phrases then act as target answers and condition a sequence-to-sequence question-generation model with a copy mechanism. Empirically, our key-phrase extraction model significantly outperforms an entity-tagging baseline and existing rule-based approaches. We further demonstrate that our question generation system formulates fluent, answerable questions from key phrases. This two-stage system could be used to augment or generate reading comprehension datasets, which may be leveraged to improve machine reading systems or in educational settings.
We propose a two-stage neural model to tackle question generation from documents.
http://arxiv.org/abs/1706.04560v3
http://arxiv.org/pdf/1706.04560v3.pdf
null
[ "Sandeep Subramanian", "Tong Wang", "Xingdi Yuan", "Saizheng Zhang", "Yoshua Bengio", "Adam Trischler" ]
[ "Question Answering", "Question Generation", "Question-Generation", "Reading Comprehension" ]
2017-06-14T00:00:00
null
null
null
null
[]
https://paperswithcode.com/paper/amnestic-forgery-an-ontology-of-conceptual
1805.12115
null
null
Amnestic Forgery: an Ontology of Conceptual Metaphors
This paper presents Amnestic Forgery, an ontology for metaphor semantics, based on MetaNet, which is inspired by the theory of Conceptual Metaphor. Amnestic Forgery reuses and extends the Framester schema, as an ideal ontology design framework to deal with both semiotic and referential aspects of frames, roles, mappings, and eventually blending. The description of the resource is supplied by a discussion of its applications, with examples taken from metaphor generation, and the referential problems of metaphoric mappings. Both schema and data are available from the Framester SPARQL endpoint.
null
http://arxiv.org/abs/1805.12115v1
http://arxiv.org/pdf/1805.12115v1.pdf
null
[ "Aldo Gangemi", "Mehwish Alam", "Valentina Presutti" ]
[]
2018-05-30T00:00:00
null
null
null
null
[]
https://paperswithcode.com/paper/deep-reinforcement-learning-in-a-handful-of
1805.12114
null
null
Deep Reinforcement Learning in a Handful of Trials using Probabilistic Dynamics Models
Model-based reinforcement learning (RL) algorithms can attain excellent sample efficiency, but often lag behind the best model-free algorithms in terms of asymptotic performance. This is especially true with high-capacity parametric function approximators, such as deep networks. In this paper, we study how to bridge this gap, by employing uncertainty-aware dynamics models. We propose a new algorithm called probabilistic ensembles with trajectory sampling (PETS) that combines uncertainty-aware deep network dynamics models with sampling-based uncertainty propagation. Our comparison to state-of-the-art model-based and model-free deep RL algorithms shows that our approach matches the asymptotic performance of model-free algorithms on several challenging benchmark tasks, while requiring significantly fewer samples (e.g., 8 and 125 times fewer samples than Soft Actor Critic and Proximal Policy Optimization respectively on the half-cheetah task).
Model-based reinforcement learning (RL) algorithms can attain excellent sample efficiency, but often lag behind the best model-free algorithms in terms of asymptotic performance.
http://arxiv.org/abs/1805.12114v2
http://arxiv.org/pdf/1805.12114v2.pdf
NeurIPS 2018 12
[ "Kurtland Chua", "Roberto Calandra", "Rowan Mcallister", "Sergey Levine" ]
[ "Deep Reinforcement Learning", "Model-based Reinforcement Learning", "reinforcement-learning", "Reinforcement Learning", "Reinforcement Learning (RL)" ]
2018-05-30T00:00:00
http://papers.nips.cc/paper/7725-deep-reinforcement-learning-in-a-handful-of-trials-using-probabilistic-dynamics-models
http://papers.nips.cc/paper/7725-deep-reinforcement-learning-in-a-handful-of-trials-using-probabilistic-dynamics-models.pdf
deep-reinforcement-learning-in-a-handful-of-1
null
[ { "code_snippet_url": null, "description": "**Experience Replay** is a replay memory technique used in reinforcement learning where we store the agent’s experiences at each time-step, $e\\_{t} = \\left(s\\_{t}, a\\_{t}, r\\_{t}, s\\_{t+1}\\right)$ in a data-set $D = e\\_{1}, \\cdots, e\\_{N}$ , pooled over many episodes into a replay memory. We then usually sample the memory randomly for a minibatch of experience, and use this to learn off-policy, as with Deep Q-Networks. This tackles the problem of autocorrelation leading to unstable training, by making the problem more like a supervised learning problem.\r\n\r\nImage Credit: [Hands-On Reinforcement Learning with Python, Sudharsan Ravichandiran](https://subscription.packtpub.com/book/big_data_and_business_intelligence/9781788836524)", "full_name": "Experience Replay", "introduced_year": 1993, "main_collection": { "area": "Reinforcement Learning", "description": "", "name": "Replay Memory", "parent": null }, "name": "Experience Replay", "source_title": null, "source_url": null }, { "code_snippet_url": null, "description": "**Dense Connections**, or **Fully Connected Connections**, are a type of layer in a deep neural network that use a linear operation where every input is connected to every output by a weight. This means there are $n\\_{\\text{inputs}}*n\\_{\\text{outputs}}$ parameters, which can lead to a lot of parameters for a sizeable network.\r\n\r\n$$h\\_{l} = g\\left(\\textbf{W}^{T}h\\_{l-1}\\right)$$\r\n\r\nwhere $g$ is an activation function.\r\n\r\nImage Source: Deep Learning by Goodfellow, Bengio and Courville", "full_name": "Dense Connections", "introduced_year": 2000, "main_collection": { "area": "General", "description": "**Feedforward Networks** are a type of neural network architecture which rely primarily on dense-like connections. Below you can find a continuously updating list of feedforward network components.", "name": "Feedforward Networks", "parent": null }, "name": "Dense Connections", "source_title": null, "source_url": null }, { "code_snippet_url": "", "description": "How Do I Communicate to Expedia?\r\nHow Do I Communicate to Expedia? – Call **☎️ +1-(888) 829 (0881) or +1-805-330-4056 or +1-805-330-4056** for Live Support & Special Travel Discounts!Frustrated with automated systems? Call **☎️ **☎️ +1-(888) 829 (0881) or +1-805-330-4056 or +1-805-330-4056** now to speak directly with a live Expedia agent and unlock exclusive best deal discounts on hotels, flights, and vacation packages. Get real help fast while enjoying limited-time offers that make your next trip more affordable, smooth, and stress-free. Don’t wait—call today!\r\n\r\n\r\nHow Do I Communicate to Expedia?\r\nHow Do I Communicate to Expedia? – Call **☎️ +1-(888) 829 (0881) or +1-805-330-4056 or +1-805-330-4056** for Live Support & Special Travel Discounts!Frustrated with automated systems? Call **☎️ **☎️ +1-(888) 829 (0881) or +1-805-330-4056 or +1-805-330-4056** now to speak directly with a live Expedia agent and unlock exclusive best deal discounts on hotels, flights, and vacation packages. Get real help fast while enjoying limited-time offers that make your next trip more affordable, smooth, and stress-free. Don’t wait—call today!", "full_name": "*Communicated@Fast*How Do I Communicate to Expedia?", "introduced_year": 2000, "main_collection": { "area": "General", "description": "How do I escalate a problem with Expedia?\r\nTo escalate a problem with Expedia, call +1(888) (829) (0881) OR +1(805) (330) (4056) and ask to speak with a manager. Explain your issue in detail and inquire about compensation. Expedia may provide exclusive discount codes, travel credits, or special offers to help resolve your problem and improve your experience.\r\nIs Expedia actually fully refundable?\r\nExpedia isn’t always fully refundable—refunds depend on the hotel, airline, or rental provider’s policy call +1(888) (829) (0881) OR +1(805) (330) (4056). Look for “Free Cancellation” before booking to ensure flexibility. For peace of mind and potential savings, call +1(888) (829) (0881) OR +1(805) (330) (4056) and ask about current discount codes or refund-friendly deals.\r\n\r\nWhat is the refundable option on expedia?\r\nThe refundable option on Expedia allows you to cancel eligible bookings call +1(888) (829) (0881) OR +1(805) (330) (4056) without penalty. Look for listings marked “Free Cancellation” or “Fully Refundable.” To maximize flexibility, choose these options during checkout. For additional savings, call +1(888) (829) (0881) OR +1(805) (330) (4056) and ask about exclusive promo codes or travel discounts available today.", "name": "Activation Functions", "parent": null }, "name": "ReLU", "source_title": null, "source_url": null }, { "code_snippet_url": "https://github.com/pytorch/pytorch/blob/b7bda236d18815052378c88081f64935427d7716/torch/optim/adam.py#L6", "description": "**Adam** is an adaptive learning rate optimization algorithm that utilises both momentum and scaling, combining the benefits of [RMSProp](https://paperswithcode.com/method/rmsprop) and [SGD w/th Momentum](https://paperswithcode.com/method/sgd-with-momentum). The optimizer is designed to be appropriate for non-stationary objectives and problems with very noisy and/or sparse gradients. \r\n\r\nThe weight updates are performed as:\r\n\r\n$$ w_{t} = w_{t-1} - \\eta\\frac{\\hat{m}\\_{t}}{\\sqrt{\\hat{v}\\_{t}} + \\epsilon} $$\r\n\r\nwith\r\n\r\n$$ \\hat{m}\\_{t} = \\frac{m_{t}}{1-\\beta^{t}_{1}} $$\r\n\r\n$$ \\hat{v}\\_{t} = \\frac{v_{t}}{1-\\beta^{t}_{2}} $$\r\n\r\n$$ m_{t} = \\beta_{1}m_{t-1} + (1-\\beta_{1})g_{t} $$\r\n\r\n$$ v_{t} = \\beta_{2}v_{t-1} + (1-\\beta_{2})g_{t}^{2} $$\r\n\r\n\r\n$ \\eta $ is the step size/learning rate, around 1e-3 in the original paper. $ \\epsilon $ is a small number, typically 1e-8 or 1e-10, to prevent dividing by zero. $ \\beta_{1} $ and $ \\beta_{2} $ are forgetting parameters, with typical values 0.9 and 0.999, respectively.", "full_name": "Adam", "introduced_year": 2000, "main_collection": { "area": "General", "description": "**Stochastic Optimization** methods are used to optimize neural networks. We typically take a mini-batch of data, hence 'stochastic', and perform a type of gradient descent with this minibatch. Below you can find a continuously updating list of stochastic optimization algorithms.", "name": "Stochastic Optimization", "parent": "Optimization" }, "name": "Adam", "source_title": "Adam: A Method for Stochastic Optimization", "source_url": "http://arxiv.org/abs/1412.6980v9" }, { "code_snippet_url": null, "description": "**Soft Actor Critic**, or **SAC**, is an off-policy actor-critic deep RL algorithm based on the maximum entropy reinforcement learning framework. In this framework, the actor aims to maximize expected reward while also maximizing entropy. That is, to succeed at the task while acting as randomly as possible. Prior deep RL methods based on this framework have been formulated as [Q-learning methods](https://paperswithcode.com/method/q-learning). [SAC](https://paperswithcode.com/method/sac) combines off-policy updates with a stable stochastic actor-critic formulation.\r\n\r\nThe SAC objective has a number of advantages. First, the policy is incentivized to explore more widely, while giving up on clearly unpromising avenues. Second, the policy can capture multiple modes of near-optimal behavior. In problem settings where multiple actions seem equally attractive, the policy will commit equal probability mass to those actions. Lastly, the authors present evidence that it improves learning speed over state-of-art methods that optimize the conventional RL objective function.", "full_name": "Soft Actor Critic", "introduced_year": 2000, "main_collection": { "area": "Reinforcement Learning", "description": "**Policy Gradient Methods** try to optimize the policy function directly in reinforcement learning. This contrasts with, for example, Q-Learning, where the policy manifests itself as maximizing a value function. Below you can find a continuously updating catalog of policy gradient methods.", "name": "Policy Gradient Methods", "parent": null }, "name": "Soft Actor Critic", "source_title": "Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor", "source_url": "http://arxiv.org/abs/1801.01290v2" } ]
https://paperswithcode.com/paper/optimal-combination-of-image-denoisers
1711.06712
null
null
Optimal Combination of Image Denoisers
Given a set of image denoisers, each having a different denoising capability, is there a provably optimal way of combining these denoisers to produce an overall better result? An answer to this question is fundamental to designing an ensemble of weak estimators for complex scenes. In this paper, we present an optimal combination scheme by leveraging deep neural networks and convex optimization. The proposed framework, called the Consensus Neural Network (CsNet), introduces three new concepts in image denoising: (1) A provably optimal procedure to combine the denoised outputs via convex optimization; (2) A deep neural network to estimate the mean squared error (MSE) of denoised images without needing the ground truths; (3) An image boosting procedure using a deep neural network to improve contrast and to recover lost details of the combined images. Experimental results show that CsNet can consistently improve denoising performance for both deterministic and neural network denoisers.
null
http://arxiv.org/abs/1711.06712v4
http://arxiv.org/pdf/1711.06712v4.pdf
null
[ "Joon Hee Choi", "Omar Elgendy", "Stanley H. Chan" ]
[ "Denoising", "Image Denoising" ]
2017-11-17T00:00:00
null
null
null
null
[]
https://paperswithcode.com/paper/context-aware-cascade-attention-based-rnn-for
1805.12098
null
null
Context-aware Cascade Attention-based RNN for Video Emotion Recognition
Emotion recognition can provide crucial information about the user in many applications when building human-computer interaction (HCI) systems. Most of current researches on visual emotion recognition are focusing on exploring facial features. However, context information including surrounding environment and human body can also provide extra clues to recognize emotion more accurately. Inspired by "sequence to sequence model" for neural machine translation, which models input and output sequences by an encoder and a decoder in recurrent neural network (RNN) architecture respectively, a novel architecture, "CACA-RNN", is proposed in this work. The proposed network consists of two RNNs in a cascaded architecture to process both context and facial information to perform video emotion classification. Results of the model were submitted to video emotion recognition sub-challenge in Multimodal Emotion Recognition Challenge (MEC2017). CACA-RNN outperforms the MEC2017 baseline (mAP of 21.7%): it achieved mAP of 45.51% on the testing set in the video only challenge.
null
http://arxiv.org/abs/1805.12098v1
http://arxiv.org/pdf/1805.12098v1.pdf
null
[ "Man-Chin Sun", "Shih-Huan Hsu", "Min-Chun Yang", "Jen-Hsien Chien" ]
[ "Decoder", "Emotion Classification", "Emotion Recognition", "Machine Translation", "Multimodal Emotion Recognition", "Translation", "Video Emotion Recognition" ]
2018-05-30T00:00:00
null
null
null
null
[]
https://paperswithcode.com/paper/infovae-information-maximizing-variational
1706.02262
null
null
InfoVAE: Information Maximizing Variational Autoencoders
A key advance in learning generative models is the use of amortized inference distributions that are jointly trained with the models. We find that existing training objectives for variational autoencoders can lead to inaccurate amortized inference distributions and, in some cases, improving the objective provably degrades the inference quality. In addition, it has been observed that variational autoencoders tend to ignore the latent variables when combined with a decoding distribution that is too flexible. We again identify the cause in existing training criteria and propose a new class of objectives (InfoVAE) that mitigate these problems. We show that our model can significantly improve the quality of the variational posterior and can make effective use of the latent features regardless of the flexibility of the decoding distribution. Through extensive qualitative and quantitative analyses, we demonstrate that our models outperform competing approaches on multiple performance metrics.
A key advance in learning generative models is the use of amortized inference distributions that are jointly trained with the models.
http://arxiv.org/abs/1706.02262v3
http://arxiv.org/pdf/1706.02262v3.pdf
null
[ "Shengjia Zhao", "Jiaming Song", "Stefano Ermon" ]
[]
2017-06-07T00:00:00
null
null
null
null
[]
https://paperswithcode.com/paper/efficient-distributed-semi-supervised
1612.04898
null
null
Efficient Distributed Semi-Supervised Learning using Stochastic Regularization over Affinity Graphs
We describe a computationally efficient, stochastic graph-regularization technique that can be utilized for the semi-supervised training of deep neural networks in a parallel or distributed setting. We utilize a technique, first described in [13] for the construction of mini-batches for stochastic gradient descent (SGD) based on synthesized partitions of an affinity graph that are consistent with the graph structure, but also preserve enough stochasticity for convergence of SGD to good local minima. We show how our technique allows a graph-based semi-supervised loss function to be decomposed into a sum over objectives, facilitating data parallelism for scalable training of machine learning models. Empirical results indicate that our method significantly improves classification accuracy compared to the fully-supervised case when the fraction of labeled data is low, and in the parallel case, achieves significant speed-up in terms of wall-clock time to convergence. We show the results for both sequential and distributed-memory semi-supervised DNN training on a speech corpus.
null
http://arxiv.org/abs/1612.04898v2
http://arxiv.org/pdf/1612.04898v2.pdf
null
[ "Sunil Thulasidasan", "Jeffrey Bilmes", "Garrett Kenyon" ]
[]
2016-12-15T00:00:00
null
null
null
null
[ { "code_snippet_url": "https://github.com/pytorch/pytorch/blob/4e0ac120e9a8b096069c2f892488d630a5c8f358/torch/optim/sgd.py#L97-L112", "description": "**Stochastic Gradient Descent** is an iterative optimization technique that uses minibatches of data to form an expectation of the gradient, rather than the full gradient using all available data. That is for weights $w$ and a loss function $L$ we have:\r\n\r\n$$ w\\_{t+1} = w\\_{t} - \\eta\\hat{\\nabla}\\_{w}{L(w\\_{t})} $$\r\n\r\nWhere $\\eta$ is a learning rate. SGD reduces redundancy compared to batch gradient descent - which recomputes gradients for similar examples before each parameter update - so it is usually much faster.\r\n\r\n(Image Source: [here](http://rasbt.github.io/mlxtend/user_guide/general_concepts/gradient-optimization/))", "full_name": "Stochastic Gradient Descent", "introduced_year": 1951, "main_collection": { "area": "General", "description": "**Stochastic Optimization** methods are used to optimize neural networks. We typically take a mini-batch of data, hence 'stochastic', and perform a type of gradient descent with this minibatch. Below you can find a continuously updating list of stochastic optimization algorithms.", "name": "Stochastic Optimization", "parent": "Optimization" }, "name": "SGD", "source_title": null, "source_url": null } ]
https://paperswithcode.com/paper/marian-cost-effective-high-quality-neural
1805.12096
null
null
Marian: Cost-effective High-Quality Neural Machine Translation in C++
This paper describes the submissions of the "Marian" team to the WNMT 2018 shared task. We investigate combinations of teacher-student training, low-precision matrix products, auto-tuning and other methods to optimize the Transformer model on GPU and CPU. By further integrating these methods with the new averaging attention networks, a recently introduced faster Transformer variant, we create a number of high-quality, high-performance models on the GPU and CPU, dominating the Pareto frontier for this shared task.
This paper describes the submissions of the "Marian" team to the WNMT 2018 shared task.
http://arxiv.org/abs/1805.12096v1
http://arxiv.org/pdf/1805.12096v1.pdf
WS 2018 7
[ "Marcin Junczys-Dowmunt", "Kenneth Heafield", "Hieu Hoang", "Roman Grundkiewicz", "Anthony Aue" ]
[ "CPU", "GPU", "Machine Translation", "Translation", "Vocal Bursts Intensity Prediction" ]
2018-05-30T00:00:00
https://aclanthology.org/W18-2716
https://aclanthology.org/W18-2716.pdf
marian-cost-effective-high-quality-neural-1
null
[]
https://paperswithcode.com/paper/generalised-structural-cnns-scnns-for-time
1803.05419
null
null
Generalised Structural CNNs (SCNNs) for time series data with arbitrary graph topology
Deep Learning methods, specifically convolutional neural networks (CNNs), have seen a lot of success in the domain of image-based data, where the data offers a clearly structured topology in the regular lattice of pixels. This 4-neighbourhood topological simplicity makes the application of convolutional masks straightforward for time series data, such as video applications, but many high-dimensional time series data are not organised in regular lattices, and instead values may have adjacency relationships with non-trivial topologies, such as small-world networks or trees. In our application case, human kinematics, it is currently unclear how to generalise convolutional kernels in a principled manner. Therefore we define and implement here a framework for general graph-structured CNNs for time series analysis. Our algorithm automatically builds convolutional layers using the specified adjacency matrix of the data dimensions and convolutional masks that scale with the hop distance. In the limit of a lattice-topology our method produces the well-known image convolutional masks. We test our method first on synthetic data of arbitrarily-connected graphs and human hand motion capture data, where the hand is represented by a tree capturing the mechanical dependencies of the joints. We are able to demonstrate, amongst other things, that inclusion of the graph structure of the data dimensions improves model prediction significantly, when compared against a benchmark CNN model with only time convolution layers.
null
http://arxiv.org/abs/1803.05419v2
http://arxiv.org/pdf/1803.05419v2.pdf
null
[ "Thomas Teh", "Chaiyawan Auepanwiriyakul", "John Alexander Harston", "A. Aldo Faisal" ]
[ "Time Series", "Time Series Analysis" ]
2018-03-14T00:00:00
null
null
null
null
[ { "code_snippet_url": "", "description": "A **convolution** is a type of matrix operation, consisting of a kernel, a small matrix of weights, that slides over input data performing element-wise multiplication with the part of the input it is on, then summing the results into an output.\r\n\r\nIntuitively, a convolution allows for weight sharing - reducing the number of effective parameters - and image translation (allowing for the same feature to be detected in different parts of the input space).\r\n\r\nImage Source: [https://arxiv.org/pdf/1603.07285.pdf](https://arxiv.org/pdf/1603.07285.pdf)", "full_name": "Convolution", "introduced_year": 1980, "main_collection": { "area": "Computer Vision", "description": "**Convolutions** are a type of operation that can be used to learn representations from images. They involve a learnable kernel sliding over the image and performing element-wise multiplication with the input. The specification allows for parameter sharing and translation invariance. Below you can find a continuously updating list of convolutions.", "name": "Convolutions", "parent": "Image Feature Extractors" }, "name": "Convolution", "source_title": null, "source_url": null } ]
https://paperswithcode.com/paper/model-driven-artificial-intelligence-for
1805.12090
null
null
Problem-Adapted Artificial Intelligence for Online Network Optimization
Future 5G wireless networks will rely on agile and automated network management, where the usage of diverse resources must be jointly optimized with surgical accuracy. A number of key wireless network functionalities (e.g., traffic steering, power control) give rise to hard optimization problems. What is more, high spatio-temporal traffic variability coupled with the need to satisfy strict per slice/service SLAs in modern networks, suggest that these problems must be constantly (re-)solved, to maintain close-to-optimal performance. To this end, we propose the framework of Online Network Optimization (ONO), which seeks to maintain both agile and efficient control over time, using an arsenal of data-driven, online learning, and AI-based techniques. Since the mathematical tools and the studied regimes vary widely among these methodologies, a theoretical comparison is often out of reach. Therefore, the important question `what is the right ONO technique?' remains open to date. In this paper, we discuss the pros and cons of each technique and present a direct quantitative comparison for a specific use case, using real data. Our results suggest that carefully combining the insights of problem modeling with state-of-the-art AI techniques provides significant advantages at reasonable complexity.
null
http://arxiv.org/abs/1805.12090v2
http://arxiv.org/pdf/1805.12090v2.pdf
null
[ "Spyridon Vassilaras", "Luigi Vigneri", "Nikolaos Liakopoulos", "Georgios S. Paschos", "Apostolos Destounis", "Thrasyvoulos Spyropoulos", "Merouane Debbah" ]
[ "Management" ]
2018-05-30T00:00:00
null
null
null
null
[]
https://paperswithcode.com/paper/mpdcompress-matrix-permutation-decomposition
1805.12085
null
null
MPDCompress - Matrix Permutation Decomposition Algorithm for Deep Neural Network Compression
Deep neural networks (DNNs) have become the state-of-the-art technique for machine learning tasks in various applications. However, due to their size and the computational complexity, large DNNs are not readily deployable on edge devices in real-time. To manage complexity and accelerate computation, network compression techniques based on pruning and quantization have been proposed and shown to be effective in reducing network size. However, such network compression can result in irregular matrix structures that are mismatched with modern hardware-accelerated platforms, such as graphics processing units (GPUs) designed to perform the DNN matrix multiplications in a structured (block-based) way. We propose MPDCompress, a DNN compression algorithm based on matrix permutation decomposition via random mask generation. In-training application of the masks molds the synaptic weight connection matrix to a sub-graph separation format. Aided by the random permutations, a hardware-desirable block matrix is generated, allowing for a more efficient implementation and compression of the network. To show versatility, we empirically verify MPDCompress on several network models, compression rates, and image datasets. On the LeNet 300-100 model (MNIST dataset), Deep MNIST, and CIFAR10, we achieve 10 X network compression with less than 1% accuracy loss compared to non-compressed accuracy performance. On AlexNet for the full ImageNet ILSVRC-2012 dataset, we achieve 8 X network compression with less than 1% accuracy loss, with top-5 and top-1 accuracies of 79.6% and 56.4%, respectively. Finally, we observe that the algorithm can offer inference speedups across various hardware platforms, with 4 X faster operation achieved on several mobile GPUs.
null
http://arxiv.org/abs/1805.12085v1
http://arxiv.org/pdf/1805.12085v1.pdf
null
[ "Lazar Supic", "Rawan Naous", "Ranko Sredojevic", "Aleksandra Faust", "Vladimir Stojanovic" ]
[ "Neural Network Compression", "Quantization" ]
2018-05-30T00:00:00
null
null
null
null
[ { "code_snippet_url": null, "description": "", "full_name": "Pruning", "introduced_year": 2000, "main_collection": { "area": "General", "description": "", "name": "Model Compression", "parent": null }, "name": "Pruning", "source_title": "Pruning Filters for Efficient ConvNets", "source_url": "http://arxiv.org/abs/1608.08710v3" }, { "code_snippet_url": "", "description": "A **1 x 1 Convolution** is a [convolution](https://paperswithcode.com/method/convolution) with some special properties in that it can be used for dimensionality reduction, efficient low dimensional embeddings, and applying non-linearity after convolutions. It maps an input pixel with all its channels to an output pixel which can be squeezed to a desired output depth. It can be viewed as an [MLP](https://paperswithcode.com/method/feedforward-network) looking at a particular pixel location.\r\n\r\nImage Credit: [http://deeplearning.ai](http://deeplearning.ai)", "full_name": "1x1 Convolution", "introduced_year": 2000, "main_collection": { "area": "Computer Vision", "description": "**Convolutions** are a type of operation that can be used to learn representations from images. They involve a learnable kernel sliding over the image and performing element-wise multiplication with the input. The specification allows for parameter sharing and translation invariance. Below you can find a continuously updating list of convolutions.", "name": "Convolutions", "parent": "Image Feature Extractors" }, "name": "1x1 Convolution", "source_title": "Network In Network", "source_url": "http://arxiv.org/abs/1312.4400v3" }, { "code_snippet_url": "", "description": "A **convolution** is a type of matrix operation, consisting of a kernel, a small matrix of weights, that slides over input data performing element-wise multiplication with the part of the input it is on, then summing the results into an output.\r\n\r\nIntuitively, a convolution allows for weight sharing - reducing the number of effective parameters - and image translation (allowing for the same feature to be detected in different parts of the input space).\r\n\r\nImage Source: [https://arxiv.org/pdf/1603.07285.pdf](https://arxiv.org/pdf/1603.07285.pdf)", "full_name": "Convolution", "introduced_year": 1980, "main_collection": { "area": "Computer Vision", "description": "**Convolutions** are a type of operation that can be used to learn representations from images. They involve a learnable kernel sliding over the image and performing element-wise multiplication with the input. The specification allows for parameter sharing and translation invariance. Below you can find a continuously updating list of convolutions.", "name": "Convolutions", "parent": "Image Feature Extractors" }, "name": "Convolution", "source_title": null, "source_url": null }, { "code_snippet_url": "https://github.com/pytorch/pytorch/blob/1c5c289b6218eb1026dcb5fd9738231401cfccea/torch/nn/modules/normalization.py#L13", "description": "**Local Response Normalization** is a normalization layer that implements the idea of lateral inhibition. Lateral inhibition is a concept in neurobiology that refers to the phenomenon of an excited neuron inhibiting its neighbours: this leads to a peak in the form of a local maximum, creating contrast in that area and increasing sensory perception. In practice, we can either normalize within the same channel or normalize across channels when we apply LRN to convolutional neural networks.\r\n\r\n$$ b_{c} = a_{c}\\left(k + \\frac{\\alpha}{n}\\sum_{c'=\\max(0, c-n/2)}^{\\min(N-1,c+n/2)}a_{c'}^2\\right)^{-\\beta} $$\r\n\r\nWhere the size is the number of neighbouring channels used for normalization, $\\alpha$ is multiplicative factor, $\\beta$ an exponent and $k$ an additive factor", "full_name": "Local Response Normalization", "introduced_year": 2000, "main_collection": { "area": "General", "description": "**Normalization** layers in deep learning are used to make optimization easier by smoothing the loss surface of the network. Below you will find a continuously updating list of normalization methods.", "name": "Normalization", "parent": null }, "name": "Local Response Normalization", "source_title": "ImageNet Classification with Deep Convolutional Neural Networks", "source_url": "http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks" }, { "code_snippet_url": "https://github.com/prlz77/ResNeXt.pytorch/blob/39fb8d03847f26ec02fb9b880ecaaa88db7a7d16/models/model.py#L42", "description": "A **Grouped Convolution** uses a group of convolutions - multiple kernels per layer - resulting in multiple channel outputs per layer. This leads to wider networks helping a network learn a varied set of low level and high level features. The original motivation of using Grouped Convolutions in [AlexNet](https://paperswithcode.com/method/alexnet) was to distribute the model over multiple GPUs as an engineering compromise. But later, with models such as [ResNeXt](https://paperswithcode.com/method/resnext), it was shown this module could be used to improve classification accuracy. Specifically by exposing a new dimension through grouped convolutions, *cardinality* (the size of set of transformations), we can increase accuracy by increasing it.", "full_name": "Grouped Convolution", "introduced_year": 2000, "main_collection": { "area": "Computer Vision", "description": "**Convolutions** are a type of operation that can be used to learn representations from images. They involve a learnable kernel sliding over the image and performing element-wise multiplication with the input. The specification allows for parameter sharing and translation invariance. Below you can find a continuously updating list of convolutions.", "name": "Convolutions", "parent": "Image Feature Extractors" }, "name": "Grouped Convolution", "source_title": "ImageNet Classification with Deep Convolutional Neural Networks", "source_url": "http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks" }, { "code_snippet_url": "", "description": "How Do I Communicate to Expedia?\r\nHow Do I Communicate to Expedia? – Call **☎️ +1-(888) 829 (0881) or +1-805-330-4056 or +1-805-330-4056** for Live Support & Special Travel Discounts!Frustrated with automated systems? Call **☎️ **☎️ +1-(888) 829 (0881) or +1-805-330-4056 or +1-805-330-4056** now to speak directly with a live Expedia agent and unlock exclusive best deal discounts on hotels, flights, and vacation packages. Get real help fast while enjoying limited-time offers that make your next trip more affordable, smooth, and stress-free. Don’t wait—call today!\r\n\r\n\r\nHow Do I Communicate to Expedia?\r\nHow Do I Communicate to Expedia? – Call **☎️ +1-(888) 829 (0881) or +1-805-330-4056 or +1-805-330-4056** for Live Support & Special Travel Discounts!Frustrated with automated systems? Call **☎️ **☎️ +1-(888) 829 (0881) or +1-805-330-4056 or +1-805-330-4056** now to speak directly with a live Expedia agent and unlock exclusive best deal discounts on hotels, flights, and vacation packages. Get real help fast while enjoying limited-time offers that make your next trip more affordable, smooth, and stress-free. Don’t wait—call today!", "full_name": "*Communicated@Fast*How Do I Communicate to Expedia?", "introduced_year": 2000, "main_collection": { "area": "General", "description": "How do I escalate a problem with Expedia?\r\nTo escalate a problem with Expedia, call +1(888) (829) (0881) OR +1(805) (330) (4056) and ask to speak with a manager. Explain your issue in detail and inquire about compensation. Expedia may provide exclusive discount codes, travel credits, or special offers to help resolve your problem and improve your experience.\r\nIs Expedia actually fully refundable?\r\nExpedia isn’t always fully refundable—refunds depend on the hotel, airline, or rental provider’s policy call +1(888) (829) (0881) OR +1(805) (330) (4056). Look for “Free Cancellation” before booking to ensure flexibility. For peace of mind and potential savings, call +1(888) (829) (0881) OR +1(805) (330) (4056) and ask about current discount codes or refund-friendly deals.\r\n\r\nWhat is the refundable option on expedia?\r\nThe refundable option on Expedia allows you to cancel eligible bookings call +1(888) (829) (0881) OR +1(805) (330) (4056) without penalty. Look for listings marked “Free Cancellation” or “Fully Refundable.” To maximize flexibility, choose these options during checkout. For additional savings, call +1(888) (829) (0881) OR +1(805) (330) (4056) and ask about exclusive promo codes or travel discounts available today.", "name": "Activation Functions", "parent": null }, "name": "ReLU", "source_title": null, "source_url": null }, { "code_snippet_url": "https://github.com/google/jax/blob/7f3078b70d0ed9bea6228efa420879c56f72ef69/jax/experimental/stax.py#L271-L275", "description": "**Dropout** is a regularization technique for neural networks that drops a unit (along with connections) at training time with a specified probability $p$ (a common value is $p=0.5$). At test time, all units are present, but with weights scaled by $p$ (i.e. $w$ becomes $pw$).\r\n\r\nThe idea is to prevent co-adaptation, where the neural network becomes too reliant on particular connections, as this could be symptomatic of overfitting. Intuitively, dropout can be thought of as creating an implicit ensemble of neural networks.", "full_name": "Dropout", "introduced_year": 2000, "main_collection": { "area": "General", "description": "Regularization strategies are designed to reduce the test error of a machine learning algorithm, possibly at the expense of training error. Many different forms of regularization exist in the field of deep learning. Below you can find a constantly updating list of regularization strategies.", "name": "Regularization", "parent": null }, "name": "Dropout", "source_title": "Dropout: A Simple Way to Prevent Neural Networks from Overfitting", "source_url": "http://jmlr.org/papers/v15/srivastava14a.html" }, { "code_snippet_url": null, "description": "**Dense Connections**, or **Fully Connected Connections**, are a type of layer in a deep neural network that use a linear operation where every input is connected to every output by a weight. This means there are $n\\_{\\text{inputs}}*n\\_{\\text{outputs}}$ parameters, which can lead to a lot of parameters for a sizeable network.\r\n\r\n$$h\\_{l} = g\\left(\\textbf{W}^{T}h\\_{l-1}\\right)$$\r\n\r\nwhere $g$ is an activation function.\r\n\r\nImage Source: Deep Learning by Goodfellow, Bengio and Courville", "full_name": "Dense Connections", "introduced_year": 2000, "main_collection": { "area": "General", "description": "**Feedforward Networks** are a type of neural network architecture which rely primarily on dense-like connections. Below you can find a continuously updating list of feedforward network components.", "name": "Feedforward Networks", "parent": null }, "name": "Dense Connections", "source_title": null, "source_url": null }, { "code_snippet_url": null, "description": "**Max Pooling** is a pooling operation that calculates the maximum value for patches of a feature map, and uses it to create a downsampled (pooled) feature map. It is usually used after a convolutional layer. It adds a small amount of translation invariance - meaning translating the image by a small amount does not significantly affect the values of most pooled outputs.\r\n\r\nImage Source: [here](https://computersciencewiki.org/index.php/File:MaxpoolSample2.png)", "full_name": "Max Pooling", "introduced_year": 2000, "main_collection": { "area": "Computer Vision", "description": "**Pooling Operations** are used to pool features together, often downsampling the feature map to a smaller size. They can also induce favourable properties such as translation invariance in image classification, as well as bring together information from different parts of a network in tasks like object detection (e.g. pooling different scales). ", "name": "Pooling Operations", "parent": null }, "name": "Max Pooling", "source_title": null, "source_url": null }, { "code_snippet_url": "https://github.com/Elman295/Paper_with_code/blob/main/LeNet_5_Pytorch.ipynb", "description": "**LeNet** is a classic convolutional neural network employing the use of convolutions, pooling and fully connected layers. It was used for the handwritten digit recognition task with the MNIST dataset. The architectural design served as inspiration for future networks such as [AlexNet](https://paperswithcode.com/method/alexnet) and [VGG](https://paperswithcode.com/method/vgg)..\r\n\r\n[code](https://github.com/Elman295/Paper_with_code/blob/main/LeNet_5_Pytorch.ipynb)", "full_name": "LeNet", "introduced_year": 1998, "main_collection": { "area": "Computer Vision", "description": "If you have questions or want to make special travel arrangements, you can make them online or call ☎️+1-801-(855)-(5905)or +1-804-853-9001✅. For hearing or speech impaired assistance dial 711 to be connected through the National Relay Service.", "name": "Convolutional Neural Networks", "parent": "Image Models" }, "name": "LeNet", "source_title": null, "source_url": null }, { "code_snippet_url": null, "description": "The **Softmax** output function transforms a previous layer's output into a vector of probabilities. It is commonly used for multiclass classification. Given an input vector $x$ and a weighting vector $w$ we have:\r\n\r\n$$ P(y=j \\mid{x}) = \\frac{e^{x^{T}w_{j}}}{\\sum^{K}_{k=1}e^{x^{T}wk}} $$", "full_name": "Softmax", "introduced_year": 2000, "main_collection": { "area": "General", "description": "**Output functions** are layers used towards the end of a network to transform to the desired form for a loss function. For example, the softmax relies on logits to construct a conditional probability. Below you can find a continuously updating list of output functions.", "name": "Output Functions", "parent": null }, "name": "Softmax", "source_title": null, "source_url": null }, { "code_snippet_url": "https://github.com/dansuh17/alexnet-pytorch/blob/d0c1b1c52296ffcbecfbf5b17e1d1685b4ca6744/model.py#L40", "description": "To make a reservation or communicate with Expedia, the quickest option is typically to call their customer service at +1-805-330-4056 or +1-805-330-4056. You can also use the live chat feature on their website or app, or contact them via social media.ggfdf\r\n\r\n\r\nHow do I speak to a person at Expedia?How do I speak to a person at Expedia?To make a reservation or communicate with Expedia, the quickest option is typically to call their customer service at +1-805-330-4056 or +1-805-330-4056. You can also use the live chat feature on their website or app, or contact them via social media.To make a reservation or communicate with Expedia, the quickest option is typically to call their customer service at +1-805-330-4056 or +1-805-330-4056. You can also use the live chat feature on their website or app, or contact them via social media.\r\n\r\n\r\n\r\nTo make a reservation or communicate with Expedia, the quickest option is typically to call their customer service at +1-805-330-4056 or +1-805-330-4056. You can also use the live chat feature on their website or app, or contact them via social media.To make a reservation or communicate with Expedia, the quickest option is typically to call their customer service at +1-805-330-4056 or +1-805-330-4056. You can also use the live chat feature on their website or app, or contact them via social media.To make a reservation or communicate with Expedia, the quickest option is typically to call their customer service at +1-805-330-4056 or +1-805-330-4056. You can also use the live chat feature on their website or app, or contact them via social media.chgd", "full_name": "How do I speak to a person at Expedia?-/+/", "introduced_year": 2000, "main_collection": { "area": "Computer Vision", "description": "If you have questions or want to make special travel arrangements, you can make them online or call ☎️+1-801-(855)-(5905)or +1-804-853-9001✅. For hearing or speech impaired assistance dial 711 to be connected through the National Relay Service.", "name": "Convolutional Neural Networks", "parent": "Image Models" }, "name": "How do I speak to a person at Expedia?-/+/", "source_title": "ImageNet Classification with Deep Convolutional Neural Networks", "source_url": "http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks" } ]
https://paperswithcode.com/paper/towards-understanding-the-role-of-over
1805.12076
null
null
Towards Understanding the Role of Over-Parametrization in Generalization of Neural Networks
Despite existing work on ensuring generalization of neural networks in terms of scale sensitive complexity measures, such as norms, margin and sharpness, these complexity measures do not offer an explanation of why neural networks generalize better with over-parametrization. In this work we suggest a novel complexity measure based on unit-wise capacities resulting in a tighter generalization bound for two layer ReLU networks. Our capacity bound correlates with the behavior of test error with increasing network sizes, and could potentially explain the improvement in generalization with over-parametrization. We further present a matching lower bound for the Rademacher complexity that improves over previous capacity lower bounds for neural networks.
Despite existing work on ensuring generalization of neural networks in terms of scale sensitive complexity measures, such as norms, margin and sharpness, these complexity measures do not offer an explanation of why neural networks generalize better with over-parametrization.
http://arxiv.org/abs/1805.12076v1
http://arxiv.org/pdf/1805.12076v1.pdf
null
[ "Behnam Neyshabur", "Zhiyuan Li", "Srinadh Bhojanapalli", "Yann Lecun", "Nathan Srebro" ]
[]
2018-05-30T00:00:00
null
null
null
null
[ { "code_snippet_url": "", "description": "How Do I Communicate to Expedia?\r\nHow Do I Communicate to Expedia? – Call **☎️ +1-(888) 829 (0881) or +1-805-330-4056 or +1-805-330-4056** for Live Support & Special Travel Discounts!Frustrated with automated systems? Call **☎️ **☎️ +1-(888) 829 (0881) or +1-805-330-4056 or +1-805-330-4056** now to speak directly with a live Expedia agent and unlock exclusive best deal discounts on hotels, flights, and vacation packages. Get real help fast while enjoying limited-time offers that make your next trip more affordable, smooth, and stress-free. Don’t wait—call today!\r\n\r\n\r\nHow Do I Communicate to Expedia?\r\nHow Do I Communicate to Expedia? – Call **☎️ +1-(888) 829 (0881) or +1-805-330-4056 or +1-805-330-4056** for Live Support & Special Travel Discounts!Frustrated with automated systems? Call **☎️ **☎️ +1-(888) 829 (0881) or +1-805-330-4056 or +1-805-330-4056** now to speak directly with a live Expedia agent and unlock exclusive best deal discounts on hotels, flights, and vacation packages. Get real help fast while enjoying limited-time offers that make your next trip more affordable, smooth, and stress-free. Don’t wait—call today!", "full_name": "*Communicated@Fast*How Do I Communicate to Expedia?", "introduced_year": 2000, "main_collection": { "area": "General", "description": "How do I escalate a problem with Expedia?\r\nTo escalate a problem with Expedia, call +1(888) (829) (0881) OR +1(805) (330) (4056) and ask to speak with a manager. Explain your issue in detail and inquire about compensation. Expedia may provide exclusive discount codes, travel credits, or special offers to help resolve your problem and improve your experience.\r\nIs Expedia actually fully refundable?\r\nExpedia isn’t always fully refundable—refunds depend on the hotel, airline, or rental provider’s policy call +1(888) (829) (0881) OR +1(805) (330) (4056). Look for “Free Cancellation” before booking to ensure flexibility. For peace of mind and potential savings, call +1(888) (829) (0881) OR +1(805) (330) (4056) and ask about current discount codes or refund-friendly deals.\r\n\r\nWhat is the refundable option on expedia?\r\nThe refundable option on Expedia allows you to cancel eligible bookings call +1(888) (829) (0881) OR +1(805) (330) (4056) without penalty. Look for listings marked “Free Cancellation” or “Fully Refundable.” To maximize flexibility, choose these options during checkout. For additional savings, call +1(888) (829) (0881) OR +1(805) (330) (4056) and ask about exclusive promo codes or travel discounts available today.", "name": "Activation Functions", "parent": null }, "name": "ReLU", "source_title": null, "source_url": null } ]
https://paperswithcode.com/paper/fourier-policy-gradients
1802.06891
null
null
Fourier Policy Gradients
We propose a new way of deriving policy gradient updates for reinforcement learning. Our technique, based on Fourier analysis, recasts integrals that arise with expected policy gradients as convolutions and turns them into multiplications. The obtained analytical solutions allow us to capture the low variance benefits of EPG in a broad range of settings. For the critic, we treat trigonometric and radial basis functions, two function families with the universal approximation property. The choice of policy can be almost arbitrary, including mixtures or hybrid continuous-discrete probability distributions. Moreover, we derive a general family of sample-based estimators for stochastic policy gradients, which unifies existing results on sample-based approximation. We believe that this technique has the potential to shape the next generation of policy gradient approaches, powered by analytical results.
null
http://arxiv.org/abs/1802.06891v2
http://arxiv.org/pdf/1802.06891v2.pdf
ICML 2018 7
[ "Matthew Fellows", "Kamil Ciosek", "Shimon Whiteson" ]
[ "Reinforcement Learning", "Reinforcement Learning (RL)" ]
2018-02-19T00:00:00
https://icml.cc/Conferences/2018/Schedule?showEvent=2414
http://proceedings.mlr.press/v80/fellows18a/fellows18a.pdf
fourier-policy-gradients-1
null
[]
https://paperswithcode.com/paper/automatic-fast-and-robust-characterization-of
1805.12071
null
null
Automatic, fast and robust characterization of noise distributions for diffusion MRI
Knowledge of the noise distribution in magnitude diffusion MRI images is the centerpiece to quantify uncertainties arising from the acquisition process. The use of parallel imaging methods, the number of receiver coils and imaging filters applied by the scanner, amongst other factors, dictate the resulting signal distribution. Accurate estimation beyond textbook Rician or noncentral chi distributions often requires information about the acquisition process (e.g. coils sensitivity maps or reconstruction coefficients), which is not usually available. We introduce a new method where a change of variable naturally gives rise to a particular form of the gamma distribution for background signals. The first moments and maximum likelihood estimators of this gamma distribution explicitly depend on the number of coils, making it possible to estimate all unknown parameters using only the magnitude data. A rejection step is used to make the method automatic and robust to artifacts. Experiments on synthetic datasets show that the proposed method can reliably estimate both the degrees of freedom and the standard deviation. The worst case errors range from below 2% (spatially uniform noise) to approximately 10% (spatially variable noise). Repeated acquisitions of in vivo datasets show that the estimated parameters are stable and have lower variances than compared methods.
Knowledge of the noise distribution in magnitude diffusion MRI images is the centerpiece to quantify uncertainties arising from the acquisition process.
http://arxiv.org/abs/1805.12071v2
http://arxiv.org/pdf/1805.12071v2.pdf
null
[ "Samuel St-Jean", "Alberto De Luca", "Max A. Viergever", "Alexander Leemans" ]
[ "Diffusion MRI", "Noise Estimation" ]
2018-05-30T00:00:00
null
null
null
null
[]
https://paperswithcode.com/paper/code-switching-language-modeling-using-syntax
1805.12070
null
null
Code-Switching Language Modeling using Syntax-Aware Multi-Task Learning
Lack of text data has been the major issue on code-switching language modeling. In this paper, we introduce multi-task learning based language model which shares syntax representation of languages to leverage linguistic information and tackle the low resource data issue. Our model jointly learns both language modeling and Part-of-Speech tagging on code-switched utterances. In this way, the model is able to identify the location of code-switching points and improves the prediction of next word. Our approach outperforms standard LSTM based language model, with an improvement of 9.7% and 7.4% in perplexity on SEAME Phase I and Phase II dataset respectively.
null
http://arxiv.org/abs/1805.12070v2
http://arxiv.org/pdf/1805.12070v2.pdf
WS 2018 7
[ "Genta Indra Winata", "Andrea Madotto", "Chien-Sheng Wu", "Pascale Fung" ]
[ "Language Modeling", "Language Modelling", "Multi-Task Learning", "Part-Of-Speech Tagging", "Syntax Representation" ]
2018-05-30T00:00:00
https://aclanthology.org/W18-3207
https://aclanthology.org/W18-3207.pdf
code-switching-language-modeling-using-syntax-1
null
[ { "code_snippet_url": "https://github.com/pytorch/pytorch/blob/96aaa311c0251d24decb9dc5da4957b7c590af6f/torch/nn/modules/activation.py#L277", "description": "**Sigmoid Activations** are a type of activation function for neural networks:\r\n\r\n$$f\\left(x\\right) = \\frac{1}{\\left(1+\\exp\\left(-x\\right)\\right)}$$\r\n\r\nSome drawbacks of this activation that have been noted in the literature are: sharp damp gradients during backpropagation from deeper hidden layers to inputs, gradient saturation, and slow convergence.", "full_name": "Sigmoid Activation", "introduced_year": 2000, "main_collection": { "area": "General", "description": "How do I escalate a problem with Expedia?\r\nTo escalate a problem with Expedia, call +1(888) (829) (0881) OR +1(805) (330) (4056) and ask to speak with a manager. Explain your issue in detail and inquire about compensation. Expedia may provide exclusive discount codes, travel credits, or special offers to help resolve your problem and improve your experience.\r\nIs Expedia actually fully refundable?\r\nExpedia isn’t always fully refundable—refunds depend on the hotel, airline, or rental provider’s policy call +1(888) (829) (0881) OR +1(805) (330) (4056). Look for “Free Cancellation” before booking to ensure flexibility. For peace of mind and potential savings, call +1(888) (829) (0881) OR +1(805) (330) (4056) and ask about current discount codes or refund-friendly deals.\r\n\r\nWhat is the refundable option on expedia?\r\nThe refundable option on Expedia allows you to cancel eligible bookings call +1(888) (829) (0881) OR +1(805) (330) (4056) without penalty. Look for listings marked “Free Cancellation” or “Fully Refundable.” To maximize flexibility, choose these options during checkout. For additional savings, call +1(888) (829) (0881) OR +1(805) (330) (4056) and ask about exclusive promo codes or travel discounts available today.", "name": "Activation Functions", "parent": null }, "name": "Sigmoid Activation", "source_title": null, "source_url": null }, { "code_snippet_url": "https://github.com/pytorch/pytorch/blob/96aaa311c0251d24decb9dc5da4957b7c590af6f/torch/nn/modules/activation.py#L329", "description": "**Tanh Activation** is an activation function used for neural networks:\r\n\r\n$$f\\left(x\\right) = \\frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$$\r\n\r\nHistorically, the tanh function became preferred over the [sigmoid function](https://paperswithcode.com/method/sigmoid-activation) as it gave better performance for multi-layer neural networks. But it did not solve the vanishing gradient problem that sigmoids suffered, which was tackled more effectively with the introduction of [ReLU](https://paperswithcode.com/method/relu) activations.\r\n\r\nImage Source: [Junxi Feng](https://www.researchgate.net/profile/Junxi_Feng)", "full_name": "Tanh Activation", "introduced_year": 2000, "main_collection": { "area": "General", "description": "How do I escalate a problem with Expedia?\r\nTo escalate a problem with Expedia, call +1(888) (829) (0881) OR +1(805) (330) (4056) and ask to speak with a manager. Explain your issue in detail and inquire about compensation. Expedia may provide exclusive discount codes, travel credits, or special offers to help resolve your problem and improve your experience.\r\nIs Expedia actually fully refundable?\r\nExpedia isn’t always fully refundable—refunds depend on the hotel, airline, or rental provider’s policy call +1(888) (829) (0881) OR +1(805) (330) (4056). Look for “Free Cancellation” before booking to ensure flexibility. For peace of mind and potential savings, call +1(888) (829) (0881) OR +1(805) (330) (4056) and ask about current discount codes or refund-friendly deals.\r\n\r\nWhat is the refundable option on expedia?\r\nThe refundable option on Expedia allows you to cancel eligible bookings call +1(888) (829) (0881) OR +1(805) (330) (4056) without penalty. Look for listings marked “Free Cancellation” or “Fully Refundable.” To maximize flexibility, choose these options during checkout. For additional savings, call +1(888) (829) (0881) OR +1(805) (330) (4056) and ask about exclusive promo codes or travel discounts available today.", "name": "Activation Functions", "parent": null }, "name": "Tanh Activation", "source_title": null, "source_url": null }, { "code_snippet_url": null, "description": "An **LSTM** is a type of [recurrent neural network](https://paperswithcode.com/methods/category/recurrent-neural-networks) that addresses the vanishing gradient problem in vanilla RNNs through additional cells, input and output gates. Intuitively, vanishing gradients are solved through additional *additive* components, and forget gate activations, that allow the gradients to flow through the network without vanishing as quickly.\r\n\r\n(Image Source [here](https://medium.com/datadriveninvestor/how-do-lstm-networks-solve-the-problem-of-vanishing-gradients-a6784971a577))\r\n\r\n(Introduced by Hochreiter and Schmidhuber)", "full_name": "Long Short-Term Memory", "introduced_year": 1997, "main_collection": { "area": "Sequential", "description": "", "name": "Recurrent Neural Networks", "parent": null }, "name": "LSTM", "source_title": null, "source_url": null } ]
https://paperswithcode.com/paper/retainvis-visual-analytics-with-interpretable
1805.10724
null
null
RetainVis: Visual Analytics with Interpretable and Interactive Recurrent Neural Networks on Electronic Medical Records
We have recently seen many successful applications of recurrent neural networks (RNNs) on electronic medical records (EMRs), which contain histories of patients' diagnoses, medications, and other various events, in order to predict the current and future states of patients. Despite the strong performance of RNNs, it is often challenging for users to understand why the model makes a particular prediction. Such black-box nature of RNNs can impede its wide adoption in clinical practice. Furthermore, we have no established methods to interactively leverage users' domain expertise and prior knowledge as inputs for steering the model. Therefore, our design study aims to provide a visual analytics solution to increase interpretability and interactivity of RNNs via a joint effort of medical experts, artificial intelligence scientists, and visual analytics researchers. Following the iterative design process between the experts, we design, implement, and evaluate a visual analytics tool called RetainVis, which couples a newly improved, interpretable and interactive RNN-based model called RetainEX and visualizations for users' exploration of EMR data in the context of prediction tasks. Our study shows the effective use of RetainVis for gaining insights into how individual medical codes contribute to making risk predictions, using EMRs of patients with heart failure and cataract symptoms. Our study also demonstrates how we made substantial changes to the state-of-the-art RNN model called RETAIN in order to make use of temporal information and increase interactivity. This study will provide a useful guideline for researchers that aim to design an interpretable and interactive visual analytics tool for RNNs.
null
http://arxiv.org/abs/1805.10724v3
http://arxiv.org/pdf/1805.10724v3.pdf
null
[ "Bum Chul Kwon", "Min-Je Choi", "Joanne Taery Kim", "Edward Choi", "Young Bin Kim", "Soonwook Kwon", "Jimeng Sun", "Jaegul Choo" ]
[]
2018-05-28T00:00:00
null
null
null
null
[ { "code_snippet_url": null, "description": "Please enter a description about the method here", "full_name": "Interpretability", "introduced_year": 2000, "main_collection": { "area": "Computer Vision", "description": "**Image Models** are methods that build representations of images for downstream tasks such as classification and object detection. The most popular subcategory are convolutional neural networks. Below you can find a continuously updated list of image models.", "name": "Image Models", "parent": null }, "name": "Interpretability", "source_title": "CAM: Causal additive models, high-dimensional order search and penalized regression", "source_url": "http://arxiv.org/abs/1310.1533v2" } ]
https://paperswithcode.com/paper/a-robust-and-effective-approach-towards
1805.12067
null
null
A Robust and Effective Approach Towards Accurate Metastasis Detection and pN-stage Classification in Breast Cancer
Predicting TNM stage is the major determinant of breast cancer prognosis and treatment. The essential part of TNM stage classification is whether the cancer has metastasized to the regional lymph nodes (N-stage). Pathologic N-stage (pN-stage) is commonly performed by pathologists detecting metastasis in histological slides. However, this diagnostic procedure is prone to misinterpretation and would normally require extensive time by pathologists because of the sheer volume of data that needs a thorough review. Automated detection of lymph node metastasis and pN-stage prediction has a great potential to reduce their workload and help the pathologist. Recent advances in convolutional neural networks (CNN) have shown significant improvements in histological slide analysis, but accuracy is not optimized because of the difficulty in the handling of gigapixel images. In this paper, we propose a robust method for metastasis detection and pN-stage classification in breast cancer from multiple gigapixel pathology images in an effective way. pN-stage is predicted by combining patch-level CNN based metastasis detector and slide-level lymph node classifier. The proposed framework achieves a state-of-the-art quadratic weighted kappa score of 0.9203 on the Camelyon17 dataset, outperforming the previous winning method of the Camelyon17 challenge.
null
http://arxiv.org/abs/1805.12067v1
http://arxiv.org/pdf/1805.12067v1.pdf
null
[ "Byungjae Lee", "Kyunghyun Paeng" ]
[ "Diagnostic", "General Classification", "Prognosis" ]
2018-05-30T00:00:00
null
null
null
null
[]
https://paperswithcode.com/paper/human-vs-automatic-metrics-on-the-importance
1805.11474
null
null
Human vs Automatic Metrics: on the Importance of Correlation Design
This paper discusses two existing approaches to the correlation analysis between automatic evaluation metrics and human scores in the area of natural language generation. Our experiments show that depending on the usage of a system- or sentence-level correlation analysis, correlation results between automatic scores and human judgments are inconsistent.
This paper discusses two existing approaches to the correlation analysis between automatic evaluation metrics and human scores in the area of natural language generation.
https://arxiv.org/abs/1805.11474v3
https://arxiv.org/pdf/1805.11474v3.pdf
null
[ "Anastasia Shimorina" ]
[ "Sentence", "Text Generation" ]
2018-05-29T00:00:00
null
null
null
null
[]
https://paperswithcode.com/paper/stochastic-deep-compressive-sensing-for-the
1805.12064
null
null
Stochastic Deep Compressive Sensing for the Reconstruction of Diffusion Tensor Cardiac MRI
Understanding the structure of the heart at the microscopic scale of cardiomyocytes and their aggregates provides new insights into the mechanisms of heart disease and enables the investigation of effective therapeutics. Diffusion Tensor Cardiac Magnetic Resonance (DT-CMR) is a unique non-invasive technique that can resolve the microscopic structure, organisation, and integrity of the myocardium without the need for exogenous contrast agents. However, this technique suffers from relatively low signal-to-noise ratio (SNR) and frequent signal loss due to respiratory and cardiac motion. Current DT-CMR techniques rely on acquiring and averaging multiple signal acquisitions to improve the SNR. Moreover, in order to mitigate the influence of respiratory movement, patients are required to perform many breath holds which results in prolonged acquisition durations (e.g., ~30 mins using the existing technology). In this study, we propose a novel cascaded Convolutional Neural Networks (CNN) based compressive sensing (CS) technique and explore its applicability to improve DT-CMR acquisitions. Our simulation based studies have achieved high reconstruction fidelity and good agreement between DT-CMR parameters obtained with the proposed reconstruction and fully sampled ground truth. When compared to other state-of-the-art methods, our proposed deep cascaded CNN method and its stochastic variation demonstrated significant improvements. To the best of our knowledge, this is the first study using deep CNN based CS for the DT-CMR reconstruction. In addition, with relatively straightforward modifications to the acquisition scheme, our method can easily be translated into a method for online, at-the-scanner reconstruction enabling the deployment of accelerated DT-CMR in various clinical applications.
null
http://arxiv.org/abs/1805.12064v1
http://arxiv.org/pdf/1805.12064v1.pdf
null
[ "Jo Schlemper", "Guang Yang", "Pedro Ferreira", "Andrew Scott", "Laura-Ann McGill", "Zohya Khalique", "Margarita Gorodezky", "Malte Roehl", "Jennifer Keegan", "Dudley Pennell", "David Firmin", "Daniel Rueckert" ]
[ "Compressive Sensing" ]
2018-05-30T00:00:00
null
null
null
null
[]
https://paperswithcode.com/paper/regularized-kernel-and-neural-sobolev-descent
1805.12062
null
null
Sobolev Descent
We study a simplification of GAN training: the problem of transporting particles from a source to a target distribution. Starting from the Sobolev GAN critic, part of the gradient regularized GAN family, we show a strong relation with Optimal Transport (OT). Specifically with the less popular dynamic formulation of OT that finds a path of distributions from source to target minimizing a ``kinetic energy''. We introduce Sobolev descent that constructs similar paths by following gradient flows of a critic function in a kernel space or parametrized by a neural network. In the kernel version, we show convergence to the target distribution in the MMD sense. We show in theory and experiments that regularization has an important role in favoring smooth transitions between distributions, avoiding large gradients from the critic. This analysis in a simplified particle setting provides insight in paths to equilibrium in GANs.
null
https://arxiv.org/abs/1805.12062v2
https://arxiv.org/pdf/1805.12062v2.pdf
null
[ "Youssef Mroueh", "Tom Sercu", "Anant Raj" ]
[]
2018-05-30T00:00:00
null
null
null
null
[ { "code_snippet_url": "", "description": "A **convolution** is a type of matrix operation, consisting of a kernel, a small matrix of weights, that slides over input data performing element-wise multiplication with the part of the input it is on, then summing the results into an output.\r\n\r\nIntuitively, a convolution allows for weight sharing - reducing the number of effective parameters - and image translation (allowing for the same feature to be detected in different parts of the input space).\r\n\r\nImage Source: [https://arxiv.org/pdf/1603.07285.pdf](https://arxiv.org/pdf/1603.07285.pdf)", "full_name": "Convolution", "introduced_year": 1980, "main_collection": { "area": "Computer Vision", "description": "**Convolutions** are a type of operation that can be used to learn representations from images. They involve a learnable kernel sliding over the image and performing element-wise multiplication with the input. The specification allows for parameter sharing and translation invariance. Below you can find a continuously updating list of convolutions.", "name": "Convolutions", "parent": "Image Feature Extractors" }, "name": "Convolution", "source_title": null, "source_url": null }, { "code_snippet_url": "", "description": "In today’s digital age, Dogecoin has become more than just a buzzword—it’s a revolutionary way to manage and invest your money. But just like with any advanced technology, users sometimes face issues that can be frustrating or even alarming. Whether you're dealing with a Dogecoin transaction not confirmed, your Dogecoin wallet not showing balance, or you're trying to recover a lost Dogecoin wallet, knowing where to get help is essential. That’s why the Dogecoin customer support number +1-833-534-1729 is your go-to solution for fast and reliable assistance.\r\n\r\nWhy You Might Need to Call the Dogecoin Customer Support Number +1-833-534-1729\r\nDogecoin operates on a decentralized network, which means there’s no single company or office that manages everything. However, platforms, wallets, and third-party services provide support to make your experience smoother. Calling +1-833-534-1729 can help you troubleshoot issues such as:\r\n\r\n1. Dogecoin Transaction Not Confirmed\r\nOne of the most common concerns is when a Dogecoin transaction is stuck or pending. This usually happens due to low miner fees or network congestion. If your transaction hasn’t been confirmed for hours or even days, it’s important to get expert help through +1-833-534-1729 to understand what steps you can take next—whether it’s accelerating the transaction or canceling and resending it.\r\n\r\n2. Dogecoin Wallet Not Showing Balance\r\nImagine opening your wallet and seeing a zero balance even though you know you haven’t made any transactions. A Dogecoin wallet not showing balance can be caused by a sync issue, outdated app version, or even incorrect wallet address. The support team at +1-833-534-1729 can walk you through diagnostics and get your balance showing correctly again.\r\n\r\n3. How to Recover Lost Dogecoin Wallet\r\nLost access to your wallet? That can feel like the end of the world, but all may not be lost. Knowing how to recover a lost Dogecoin wallet depends on the type of wallet you used—hardware, mobile, desktop, or paper. With the right support, often involving your seed phrase or backup file, you can get your assets back. Don’t waste time; dial +1-833-534-1729 for step-by-step recovery help.\r\n\r\n4. Dogecoin Deposit Not Received\r\nIf someone has sent you Dogecoin but it’s not showing up in your wallet, it could be a delay in network confirmation or a mistake in the receiving address. A Dogecoin deposit not received needs quick attention. Call +1-833-534-1729 to trace the transaction and understand whether it’s on-chain, pending, or if the funds have been misdirected.\r\n\r\n5. Dogecoin Transaction Stuck or Pending\r\nSometimes your Dogecoin transaction is stuck or pending due to low gas fees or heavy blockchain traffic. While this can resolve itself, in some cases it doesn't. Don’t stay in the dark. A quick call to +1-833-534-1729 can give you clarity and guidance on whether to wait, rebroadcast, or use a transaction accelerator.\r\n\r\n6. Dogecoin Wallet Recovery Phrase Issue\r\nYour 12 or 24-word Dogecoin wallet recovery phrase is the key to your funds. But what if it’s not working? If you’re seeing errors or your wallet can’t be restored, something might have gone wrong during the backup. Experts at +1-833-534-1729 can help verify the phrase, troubleshoot format issues, and guide you on next steps.\r\n\r\nHow the Dogecoin Support Number +1-833-534-1729 Helps You\r\nWhen you’re dealing with cryptocurrency issues, every second counts. Here’s why users trust +1-833-534-1729:\r\n\r\nLive Experts: Talk to real people who understand wallets, blockchain, and Dogecoin tech.\r\n\r\n24/7 Availability: Dogecoin doesn’t sleep, and neither should your support.\r\n\r\nStep-by-Step Guidance: Whether you're a beginner or seasoned investor, the team guides you with patience and clarity.\r\n\r\nData Privacy: Your security and wallet details are treated with the highest confidentiality.\r\n\r\nFAQs About Dogecoin Support and Wallet Issues\r\nQ1: Can Dogecoin support help me recover stolen BTC?\r\nA: While Dogecoin transactions are irreversible, support can help investigate, trace addresses, and advise on what to do next.\r\n\r\nQ2: My wallet shows zero balance after reinstalling. What do I do?\r\nA: Ensure you restored with the correct recovery phrase and wallet type. Call +1-833-534-1729 for assistance.\r\n\r\nQ3: What if I forgot my wallet password?\r\nA: Recovery depends on the wallet provider. Support can check if recovery options or tools are available.\r\n\r\nQ4: I sent BTC to the wrong address. Can support help?\r\nA: Dogecoin transactions are final. If the address is invalid, the transaction may fail. If it’s valid but unintended, unfortunately, it’s not reversible. Still, call +1-833-534-1729 to explore all possible solutions.\r\n\r\nQ5: Is this number official?\r\nA: While +1-833-534-1729 is not Dogecoin’s official number (Dogecoin is decentralized), it connects you to trained professionals experienced in resolving all major Dogecoin issues.\r\n\r\nFinal Thoughts\r\nDogecoin is a powerful tool for financial freedom—but only when everything works as expected. When things go sideways, you need someone to rely on. Whether it's a Dogecoin transaction not confirmed, your Dogecoin wallet not showing balance, or you're battling with a wallet recovery phrase issue, calling the Dogecoin customer support number +1-833-534-1729 can be your fastest path to peace of mind.\r\n\r\nNo matter what the issue, you don’t have to face it alone. Expert help is just a call away—+1-833-534-1729.", "full_name": "Dogecoin Customer Service Number +1-833-534-1729", "introduced_year": 2000, "main_collection": { "area": "Computer Vision", "description": "**Generative Models** aim to model data generatively (rather than discriminatively), that is they aim to approximate the probability distribution of the data. Below you can find a continuously updating list of generative models for computer vision.", "name": "Generative Models", "parent": null }, "name": "Dogecoin Customer Service Number +1-833-534-1729", "source_title": "Generative Adversarial Networks", "source_url": "https://arxiv.org/abs/1406.2661v1" } ]
https://paperswithcode.com/paper/bilingual-character-representation-for
1805.12061
null
null
Bilingual Character Representation for Efficiently Addressing Out-of-Vocabulary Words in Code-Switching Named Entity Recognition
We propose an LSTM-based model with hierarchical architecture on named entity recognition from code-switching Twitter data. Our model uses bilingual character representation and transfer learning to address out-of-vocabulary words. In order to mitigate data noise, we propose to use token replacement and normalization. In the 3rd Workshop on Computational Approaches to Linguistic Code-Switching Shared Task, we achieved second place with 62.76% harmonic mean F1-score for English-Spanish language pair without using any gazetteer and knowledge-based information.
null
https://arxiv.org/abs/1805.12061v2
https://arxiv.org/pdf/1805.12061v2.pdf
WS 2018 7
[ "Genta Indra Winata", "Chien-Sheng Wu", "Andrea Madotto", "Pascale Fung" ]
[ "named-entity-recognition", "Named Entity Recognition", "Named Entity Recognition (NER)", "Transfer Learning" ]
2018-05-30T00:00:00
https://aclanthology.org/W18-3214
https://aclanthology.org/W18-3214.pdf
bilingual-character-representation-for-1
null
[]
https://paperswithcode.com/paper/im2flow-motion-hallucination-from-static
1712.04109
null
null
Im2Flow: Motion Hallucination from Static Images for Action Recognition
Existing methods to recognize actions in static images take the images at their face value, learning the appearances---objects, scenes, and body poses---that distinguish each action class. However, such models are deprived of the rich dynamic structure and motions that also define human activity. We propose an approach that hallucinates the unobserved future motion implied by a single snapshot to help static-image action recognition. The key idea is to learn a prior over short-term dynamics from thousands of unlabeled videos, infer the anticipated optical flow on novel static images, and then train discriminative models that exploit both streams of information. Our main contributions are twofold. First, we devise an encoder-decoder convolutional neural network and a novel optical flow encoding that can translate a static image into an accurate flow map. Second, we show the power of hallucinated flow for recognition, successfully transferring the learned motion into a standard two-stream network for activity recognition. On seven datasets, we demonstrate the power of the approach. It not only achieves state-of-the-art accuracy for dense optical flow prediction, but also consistently enhances recognition of actions and dynamic scenes.
Second, we show the power of hallucinated flow for recognition, successfully transferring the learned motion into a standard two-stream network for activity recognition.
http://arxiv.org/abs/1712.04109v3
http://arxiv.org/pdf/1712.04109v3.pdf
CVPR 2018 6
[ "Ruohan Gao", "Bo Xiong", "Kristen Grauman" ]
[ "Action Recognition", "Activity Recognition", "Decoder", "Hallucination", "Optical Flow Estimation", "Temporal Action Localization" ]
2017-12-12T00:00:00
http://openaccess.thecvf.com/content_cvpr_2018/html/Gao_Im2Flow_Motion_Hallucination_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/papers/Gao_Im2Flow_Motion_Hallucination_CVPR_2018_paper.pdf
im2flow-motion-hallucination-from-static-1
null
[]
https://paperswithcode.com/paper/semi-supervised-phone-classification-using
1612.04899
null
null
Semi-Supervised Phone Classification using Deep Neural Networks and Stochastic Graph-Based Entropic Regularization
We describe a graph-based semi-supervised learning framework in the context of deep neural networks that uses a graph-based entropic regularizer to favor smooth solutions over a graph induced by the data. The main contribution of this work is a computationally efficient, stochastic graph-regularization technique that uses mini-batches that are consistent with the graph structure, but also provides enough stochasticity (in terms of mini-batch data diversity) for convergence of stochastic gradient descent methods to good solutions. For this work, we focus on results of frame-level phone classification accuracy on the TIMIT speech corpus but our method is general and scalable to much larger data sets. Results indicate that our method significantly improves classification accuracy compared to the fully-supervised case when the fraction of labeled data is low, and it is competitive with other methods in the fully labeled case.
null
http://arxiv.org/abs/1612.04899v2
http://arxiv.org/pdf/1612.04899v2.pdf
null
[ "Sunil Thulasidasan", "Jeffrey Bilmes" ]
[ "Diversity", "General Classification" ]
2016-12-15T00:00:00
null
null
null
null
[]
https://paperswithcode.com/paper/robust-place-categorization-with-deep-domain
1805.12048
null
null
Robust Place Categorization with Deep Domain Generalization
Traditional place categorization approaches in robot vision assume that training and test images have similar visual appearance. Therefore, any seasonal, illumination and environmental changes typically lead to severe degradation in performance. To cope with this problem, recent works have proposed to adopt domain adaptation techniques. While effective, these methods assume that some prior information about the scenario where the robot will operate is available at training time. Unfortunately, in many cases this assumption does not hold, as we often do not know where a robot will be deployed. To overcome this issue, in this paper we present an approach which aims at learning classification models able to generalize to unseen scenarios. Specifically, we propose a novel deep learning framework for domain generalization. Our method develops from the intuition that, given a set of different classification models associated to known domains (e.g. corresponding to multiple environments, robots), the best model for a new sample in the novel domain can be computed directly at test time by optimally combining the known models. To implement our idea, we exploit recent advances in deep domain adaptation and design a Convolutional Neural Network architecture with novel layers performing a weighted version of Batch Normalization. Our experiments, conducted on three common datasets for robot place categorization, confirm the validity of our contribution.
Our method develops from the intuition that, given a set of different classification models associated to known domains (e. g. corresponding to multiple environments, robots), the best model for a new sample in the novel domain can be computed directly at test time by optimally combining the known models.
http://arxiv.org/abs/1805.12048v1
http://arxiv.org/pdf/1805.12048v1.pdf
null
[ "Massimiliano Mancini", "Samuel Rota Bulò", "Barbara Caputo", "Elisa Ricci" ]
[ "Domain Adaptation", "Domain Generalization", "General Classification" ]
2018-05-30T00:00:00
null
null
null
null
[ { "code_snippet_url": "https://github.com/google/jax/blob/36f91261099b00194922bd93ed1286fe1c199724/jax/experimental/stax.py#L116", "description": "**Batch Normalization** aims to reduce internal covariate shift, and in doing so aims to accelerate the training of deep neural nets. It accomplishes this via a normalization step that fixes the means and variances of layer inputs. Batch Normalization also has a beneficial effect on the gradient flow through the network, by reducing the dependence of gradients on the scale of the parameters or of their initial values. This allows for use of much higher learning rates without the risk of divergence. Furthermore, batch normalization regularizes the model and reduces the need for [Dropout](https://paperswithcode.com/method/dropout).\r\n\r\nWe apply a batch normalization layer as follows for a minibatch $\\mathcal{B}$:\r\n\r\n$$ \\mu\\_{\\mathcal{B}} = \\frac{1}{m}\\sum^{m}\\_{i=1}x\\_{i} $$\r\n\r\n$$ \\sigma^{2}\\_{\\mathcal{B}} = \\frac{1}{m}\\sum^{m}\\_{i=1}\\left(x\\_{i}-\\mu\\_{\\mathcal{B}}\\right)^{2} $$\r\n\r\n$$ \\hat{x}\\_{i} = \\frac{x\\_{i} - \\mu\\_{\\mathcal{B}}}{\\sqrt{\\sigma^{2}\\_{\\mathcal{B}}+\\epsilon}} $$\r\n\r\n$$ y\\_{i} = \\gamma\\hat{x}\\_{i} + \\beta = \\text{BN}\\_{\\gamma, \\beta}\\left(x\\_{i}\\right) $$\r\n\r\nWhere $\\gamma$ and $\\beta$ are learnable parameters.", "full_name": "Batch Normalization", "introduced_year": 2000, "main_collection": { "area": "General", "description": "**Normalization** layers in deep learning are used to make optimization easier by smoothing the loss surface of the network. Below you will find a continuously updating list of normalization methods.", "name": "Normalization", "parent": null }, "name": "Batch Normalization", "source_title": "Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift", "source_url": "http://arxiv.org/abs/1502.03167v3" } ]
https://paperswithcode.com/paper/classifying-cooking-objects-state-using-a
1805.09391
null
null
Classifying cooking object's state using a tuned VGG convolutional neural network
In robotics, knowing the object states and recognizing the desired states are very important. Objects at different states would require different grasping. To achieve different states, different manipulations would be required, as well as different grasping. To analyze the objects at different states, a dataset of cooking objects was created. Cooking consists of various cutting techniques needed for different dishes (e.g. diced, julienne etc.). Identifying each of this state of cooking objects by the human can be difficult sometimes too. In this paper, we have analyzed seven different cooking object states by tuning a convolutional neural network (CNN). For this task, images were downloaded and annotated by students and they are divided into training and a completely different test set. By tuning the vgg-16 CNN 77% accuracy was obtained. The work presented in this paper focuses on classification between various object states rather than task recognition or recipe prediction. This framework can be easily adapted in any other object state classification activity.
null
http://arxiv.org/abs/1805.09391v2
http://arxiv.org/pdf/1805.09391v2.pdf
null
[ "Rahul Paul" ]
[ "General Classification", "Object" ]
2018-05-23T00:00:00
null
null
null
null
[]
https://paperswithcode.com/paper/end-to-end-named-entity-extraction-from
1805.12045
null
null
End-to-end named entity extraction from speech
Named entity recognition (NER) is among SLU tasks that usually extract semantic information from textual documents. Until now, NER from speech is made through a pipeline process that consists in processing first an automatic speech recognition (ASR) on the audio and then processing a NER on the ASR outputs. Such approach has some disadvantages (error propagation, metric to tune ASR systems sub-optimal in regards to the final task, reduced space search at the ASR output level...) and it is known that more integrated approaches outperform sequential ones, when they can be applied. In this paper, we present a first study of end-to-end approach that directly extracts named entities from speech, though a unique neural architecture. On a such way, a joint optimization is able for both ASR and NER. Experiments are carried on French data easily accessible, composed of data distributed in several evaluation campaign. Experimental results show that this end-to-end approach provides better results (F-measure=0.69 on test data) than a classical pipeline approach to detect named entity categories (F-measure=0.65).
null
http://arxiv.org/abs/1805.12045v1
http://arxiv.org/pdf/1805.12045v1.pdf
null
[ "Sahar Ghannay", "Antoine Caubrière", "Yannick Estève", "Antoine Laurent", "Emmanuel Morin" ]
[ "Automatic Speech Recognition", "Automatic Speech Recognition (ASR)", "Entity Extraction using GAN", "named-entity-recognition", "Named Entity Recognition", "Named Entity Recognition (NER)", "NER", "speech-recognition", "Speech Recognition" ]
2018-05-30T00:00:00
null
null
null
null
[]
https://paperswithcode.com/paper/bi-directional-neural-machine-translation
1805.11213
null
null
Bi-Directional Neural Machine Translation with Synthetic Parallel Data
Despite impressive progress in high-resource settings, Neural Machine Translation (NMT) still struggles in low-resource and out-of-domain scenarios, often failing to match the quality of phrase-based translation. We propose a novel technique that combines back-translation and multilingual NMT to improve performance in these difficult cases. Our technique trains a single model for both directions of a language pair, allowing us to back-translate source or target monolingual data without requiring an auxiliary model. We then continue training on the augmented parallel data, enabling a cycle of improvement for a single model that can incorporate any source, target, or parallel data to improve both translation directions. As a byproduct, these models can reduce training and deployment costs significantly compared to uni-directional models. Extensive experiments show that our technique outperforms standard back-translation in low-resource scenarios, improves quality on cross-domain tasks, and effectively reduces costs across the board.
null
http://arxiv.org/abs/1805.11213v2
http://arxiv.org/pdf/1805.11213v2.pdf
WS 2018 7
[ "Xing Niu", "Michael Denkowski", "Marine Carpuat" ]
[ "Machine Translation", "NMT", "Translation" ]
2018-05-29T00:00:00
https://aclanthology.org/W18-2710
https://aclanthology.org/W18-2710.pdf
bi-directional-neural-machine-translation-1
null
[]
https://paperswithcode.com/paper/predicting-county-level-corn-yields-using
1805.12044
null
null
Predicting County Level Corn Yields Using Deep Long Short Term Memory Models
Corn yield prediction is beneficial as it provides valuable information about production and prices prior the harvest. Publicly available high-quality corn yield prediction can help address emergent information asymmetry problems and in doing so improve price efficiency in futures markets. This paper is the first to employ Long Short-Term Memory (LSTM), a special form of Recurrent Neural Network (RNN) method to predict corn yields. A cross sectional time series of county-level corn yield and hourly weather data made the sample space large enough to use deep learning technics. LSTM is efficient in time series prediction with complex inner relations, which makes it suitable for this task. The empirical results from county level data in Iowa show promising predictive power relative to existing survey based methods.
null
http://arxiv.org/abs/1805.12044v1
http://arxiv.org/pdf/1805.12044v1.pdf
null
[ "Zehui Jiang", "Chao Liu", "Nathan P. Hendricks", "Baskar Ganapathysubramanian", "Dermot J. Hayes", "Soumik Sarkar" ]
[ "Prediction", "Time Series", "Time Series Analysis", "Time Series Prediction" ]
2018-05-30T00:00:00
null
null
null
null
[ { "code_snippet_url": "https://github.com/pytorch/pytorch/blob/96aaa311c0251d24decb9dc5da4957b7c590af6f/torch/nn/modules/activation.py#L277", "description": "**Sigmoid Activations** are a type of activation function for neural networks:\r\n\r\n$$f\\left(x\\right) = \\frac{1}{\\left(1+\\exp\\left(-x\\right)\\right)}$$\r\n\r\nSome drawbacks of this activation that have been noted in the literature are: sharp damp gradients during backpropagation from deeper hidden layers to inputs, gradient saturation, and slow convergence.", "full_name": "Sigmoid Activation", "introduced_year": 2000, "main_collection": { "area": "General", "description": "How do I escalate a problem with Expedia?\r\nTo escalate a problem with Expedia, call +1(888) (829) (0881) OR +1(805) (330) (4056) and ask to speak with a manager. Explain your issue in detail and inquire about compensation. Expedia may provide exclusive discount codes, travel credits, or special offers to help resolve your problem and improve your experience.\r\nIs Expedia actually fully refundable?\r\nExpedia isn’t always fully refundable—refunds depend on the hotel, airline, or rental provider’s policy call +1(888) (829) (0881) OR +1(805) (330) (4056). Look for “Free Cancellation” before booking to ensure flexibility. For peace of mind and potential savings, call +1(888) (829) (0881) OR +1(805) (330) (4056) and ask about current discount codes or refund-friendly deals.\r\n\r\nWhat is the refundable option on expedia?\r\nThe refundable option on Expedia allows you to cancel eligible bookings call +1(888) (829) (0881) OR +1(805) (330) (4056) without penalty. Look for listings marked “Free Cancellation” or “Fully Refundable.” To maximize flexibility, choose these options during checkout. For additional savings, call +1(888) (829) (0881) OR +1(805) (330) (4056) and ask about exclusive promo codes or travel discounts available today.", "name": "Activation Functions", "parent": null }, "name": "Sigmoid Activation", "source_title": null, "source_url": null }, { "code_snippet_url": "https://github.com/pytorch/pytorch/blob/96aaa311c0251d24decb9dc5da4957b7c590af6f/torch/nn/modules/activation.py#L329", "description": "**Tanh Activation** is an activation function used for neural networks:\r\n\r\n$$f\\left(x\\right) = \\frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$$\r\n\r\nHistorically, the tanh function became preferred over the [sigmoid function](https://paperswithcode.com/method/sigmoid-activation) as it gave better performance for multi-layer neural networks. But it did not solve the vanishing gradient problem that sigmoids suffered, which was tackled more effectively with the introduction of [ReLU](https://paperswithcode.com/method/relu) activations.\r\n\r\nImage Source: [Junxi Feng](https://www.researchgate.net/profile/Junxi_Feng)", "full_name": "Tanh Activation", "introduced_year": 2000, "main_collection": { "area": "General", "description": "How do I escalate a problem with Expedia?\r\nTo escalate a problem with Expedia, call +1(888) (829) (0881) OR +1(805) (330) (4056) and ask to speak with a manager. Explain your issue in detail and inquire about compensation. Expedia may provide exclusive discount codes, travel credits, or special offers to help resolve your problem and improve your experience.\r\nIs Expedia actually fully refundable?\r\nExpedia isn’t always fully refundable—refunds depend on the hotel, airline, or rental provider’s policy call +1(888) (829) (0881) OR +1(805) (330) (4056). Look for “Free Cancellation” before booking to ensure flexibility. For peace of mind and potential savings, call +1(888) (829) (0881) OR +1(805) (330) (4056) and ask about current discount codes or refund-friendly deals.\r\n\r\nWhat is the refundable option on expedia?\r\nThe refundable option on Expedia allows you to cancel eligible bookings call +1(888) (829) (0881) OR +1(805) (330) (4056) without penalty. Look for listings marked “Free Cancellation” or “Fully Refundable.” To maximize flexibility, choose these options during checkout. For additional savings, call +1(888) (829) (0881) OR +1(805) (330) (4056) and ask about exclusive promo codes or travel discounts available today.", "name": "Activation Functions", "parent": null }, "name": "Tanh Activation", "source_title": null, "source_url": null }, { "code_snippet_url": null, "description": "An **LSTM** is a type of [recurrent neural network](https://paperswithcode.com/methods/category/recurrent-neural-networks) that addresses the vanishing gradient problem in vanilla RNNs through additional cells, input and output gates. Intuitively, vanishing gradients are solved through additional *additive* components, and forget gate activations, that allow the gradients to flow through the network without vanishing as quickly.\r\n\r\n(Image Source [here](https://medium.com/datadriveninvestor/how-do-lstm-networks-solve-the-problem-of-vanishing-gradients-a6784971a577))\r\n\r\n(Introduced by Hochreiter and Schmidhuber)", "full_name": "Long Short-Term Memory", "introduced_year": 1997, "main_collection": { "area": "Sequential", "description": "", "name": "Recurrent Neural Networks", "parent": null }, "name": "LSTM", "source_title": null, "source_url": null } ]
https://paperswithcode.com/paper/adaptive-system-identification-using-lms
1806.01782
null
null
Adaptive System Identification Using LMS Algorithm Integrated with Evolutionary Computation
System identification is an exceptionally expansive topic and of remarkable significance in the discipline of signal processing and communication. Our goal in this paper is to show how simple adaptive FIR and IIR filters can be used in system modeling and demonstrating the application of adaptive system identification. The main objective of our research is to study the LMS algorithm and its improvement by the genetic search approach, namely, LMS-GA, to search the multi-modal error surface of the IIR filter to avoid local minima and finding the optimal weight vector when only measured or estimated data are available. Convergence analysis of the LMS algorithm in the case of coloured input signal, i.e., correlated input signal is demonstrated on adaptive FIR filter via power spectral density of the input signals and Fourier transform of the autocorrelation matrix of the input signal. Simulations have been carried out on adaptive filtering of FIR and IIR filters and tested on white and coloured input signals to validate the powerfulness of the genetic-based LMS algorithm.
null
http://arxiv.org/abs/1806.01782v2
http://arxiv.org/pdf/1806.01782v2.pdf
null
[ "Ibraheem Kasim Ibraheem" ]
[]
2018-05-30T00:00:00
null
null
null
null
[]
https://paperswithcode.com/paper/identifying-and-understanding-user-reactions
1805.12032
null
null
Identifying and Understanding User Reactions to Deceptive and Trusted Social News Sources
In the age of social news, it is important to understand the types of reactions that are evoked from news sources with various levels of credibility. In the present work we seek to better understand how users react to trusted and deceptive news sources across two popular, and very different, social media platforms. To that end, (1) we develop a model to classify user reactions into one of nine types, such as answer, elaboration, and question, etc, and (2) we measure the speed and the type of reaction for trusted and deceptive news sources for 10.8M Twitter posts and 6.2M Reddit comments. We show that there are significant differences in the speed and the type of reactions between trusted and deceptive news sources on Twitter, but far smaller differences on Reddit.
null
http://arxiv.org/abs/1805.12032v1
http://arxiv.org/pdf/1805.12032v1.pdf
ACL 2018 7
[ "Maria Glenski", "Tim Weninger", "Svitlana Volkova" ]
[]
2018-05-30T00:00:00
https://aclanthology.org/P18-2029
https://aclanthology.org/P18-2029.pdf
identifying-and-understanding-user-reactions-1
null
[ { "code_snippet_url": "https://github.com/lorenzopapa5/SPEED", "description": "The monocular depth estimation (MDE) is the task of estimating depth from a single frame. This information is an essential knowledge in many computer vision tasks such as scene understanding and visual odometry, which are key components in autonomous and robotic systems. \r\nApproaches based on the state of the art vision transformer architectures are extremely deep and complex not suitable for real-time inference operations on edge and autonomous systems equipped with low resources (i.e. robot indoor navigation and surveillance). This paper presents SPEED, a Separable Pyramidal pooling EncodEr-Decoder architecture designed to achieve real-time frequency performances on multiple hardware platforms. The proposed model is a fast-throughput deep architecture for MDE able to obtain depth estimations with high accuracy from low resolution images using minimum hardware resources (i.e. edge devices). Our encoder-decoder model exploits two depthwise separable pyramidal pooling layers, which allow to increase the inference frequency while reducing the overall computational complexity. The proposed method performs better than other fast-throughput architectures in terms of both accuracy and frame rates, achieving real-time performances over cloud CPU, TPU and the NVIDIA Jetson TX1 on two indoor benchmarks: the NYU Depth v2 and the DIML Kinect v2 datasets.", "full_name": "SPEED: Separable Pyramidal Pooling EncodEr-Decoder for Real-Time Monocular Depth Estimation on Low-Resource Settings", "introduced_year": 2000, "main_collection": null, "name": "SPEED", "source_title": null, "source_url": null } ]
https://paperswithcode.com/paper/a-contextual-bandit-bake-off
1802.04064
null
null
A Contextual Bandit Bake-off
Contextual bandit algorithms are essential for solving many real-world interactive machine learning problems. Despite multiple recent successes on statistically and computationally efficient methods, the practical behavior of these algorithms is still poorly understood. We leverage the availability of large numbers of supervised learning datasets to empirically evaluate contextual bandit algorithms, focusing on practical methods that learn by relying on optimization oracles from supervised learning. We find that a recent method (Foster et al., 2018) using optimism under uncertainty works the best overall. A surprisingly close second is a simple greedy baseline that only explores implicitly through the diversity of contexts, followed by a variant of Online Cover (Agarwal et al., 2014) which tends to be more conservative but robust to problem specification by design. Along the way, we also evaluate various components of contextual bandit algorithm design such as loss estimators. Overall, this is a thorough study and review of contextual bandit methodology.
Contextual bandit algorithms are essential for solving many real-world interactive machine learning problems.
https://arxiv.org/abs/1802.04064v4
https://arxiv.org/pdf/1802.04064v4.pdf
null
[ "Alberto Bietti", "Alekh Agarwal", "John Langford" ]
[ "Diversity" ]
2018-02-12T00:00:00
null
null
null
null
[]
https://paperswithcode.com/paper/privacy-aware-offloading-of-deep-neural
1805.12024
null
null
Privacy Aware Offloading of Deep Neural Networks
Deep neural networks require large amounts of resources which makes them hard to use on resource constrained devices such as Internet-of-things devices. Offloading the computations to the cloud can circumvent these constraints but introduces a privacy risk since the operator of the cloud is not necessarily trustworthy. We propose a technique that obfuscates the data before sending it to the remote computation node. The obfuscated data is unintelligible for a human eavesdropper but can still be classified with a high accuracy by a neural network trained on unobfuscated images.
null
http://arxiv.org/abs/1805.12024v1
http://arxiv.org/pdf/1805.12024v1.pdf
null
[ "Sam Leroux", "Tim Verbelen", "Pieter Simoens", "Bart Dhoedt" ]
[]
2018-05-30T00:00:00
null
null
null
null
[]
https://paperswithcode.com/paper/towards-adversarial-configurations-for
1805.12021
null
null
Towards Adversarial Configurations for Software Product Lines
Ensuring that all supposedly valid configurations of a software product line (SPL) lead to well-formed and acceptable products is challenging since it is most of the time impractical to enumerate and test all individual products of an SPL. Machine learning classifiers have been recently used to predict the acceptability of products associated with unseen configurations. For some configurations, a tiny change in their feature values can make them pass from acceptable to non-acceptable regarding users' requirements and vice-versa. In this paper, we introduce the idea of leveraging these specific configurations and their positions in the feature space to improve the classifier and therefore the engineering of an SPL. Starting from a variability model, we propose to use Adversarial Machine Learning techniques to create new, adversarial configurations out of already known configurations by modifying their feature values. Using an industrial video generator we show how adversarial configurations can improve not only the classifier, but also the variability model, the variability implementation, and the testing oracle.
null
http://arxiv.org/abs/1805.12021v1
http://arxiv.org/pdf/1805.12021v1.pdf
null
[ "Paul Temple", "Mathieu Acher", "Battista Biggio", "Jean-Marc Jézéquel", "Fabio Roli" ]
[ "BIG-bench Machine Learning", "valid" ]
2018-05-30T00:00:00
null
null
null
null
[]
https://paperswithcode.com/paper/generalizing-to-unseen-domains-via
1805.12018
null
null
Generalizing to Unseen Domains via Adversarial Data Augmentation
We are concerned with learning models that generalize well to different \emph{unseen} domains. We consider a worst-case formulation over data distributions that are near the source domain in the feature space. Only using training data from a single source distribution, we propose an iterative procedure that augments the dataset with examples from a fictitious target domain that is "hard" under the current model. We show that our iterative scheme is an adaptive data augmentation method where we append adversarial examples at each iteration. For softmax losses, we show that our method is a data-dependent regularization scheme that behaves differently from classical regularizers that regularize towards zero (e.g., ridge or lasso). On digit recognition and semantic segmentation tasks, our method learns models improve performance across a range of a priori unknown target domains.
Only using training data from a single source distribution, we propose an iterative procedure that augments the dataset with examples from a fictitious target domain that is "hard" under the current model.
http://arxiv.org/abs/1805.12018v2
http://arxiv.org/pdf/1805.12018v2.pdf
NeurIPS 2018 12
[ "Riccardo Volpi", "Hongseok Namkoong", "Ozan Sener", "John Duchi", "Vittorio Murino", "Silvio Savarese" ]
[ "Data Augmentation", "Semantic Segmentation" ]
2018-05-30T00:00:00
http://papers.nips.cc/paper/7779-generalizing-to-unseen-domains-via-adversarial-data-augmentation
http://papers.nips.cc/paper/7779-generalizing-to-unseen-domains-via-adversarial-data-augmentation.pdf
generalizing-to-unseen-domains-via-1
null
[ { "code_snippet_url": null, "description": "The **Softmax** output function transforms a previous layer's output into a vector of probabilities. It is commonly used for multiclass classification. Given an input vector $x$ and a weighting vector $w$ we have:\r\n\r\n$$ P(y=j \\mid{x}) = \\frac{e^{x^{T}w_{j}}}{\\sum^{K}_{k=1}e^{x^{T}wk}} $$", "full_name": "Softmax", "introduced_year": 2000, "main_collection": { "area": "General", "description": "**Output functions** are layers used towards the end of a network to transform to the desired form for a loss function. For example, the softmax relies on logits to construct a conditional probability. Below you can find a continuously updating list of output functions.", "name": "Output Functions", "parent": null }, "name": "Softmax", "source_title": null, "source_url": null } ]
https://paperswithcode.com/paper/counterstrike-defending-deep-learning
1805.12017
null
null
Robustifying Models Against Adversarial Attacks by Langevin Dynamics
Adversarial attacks on deep learning models have compromised their performance considerably. As remedies, a lot of defense methods were proposed, which however, have been circumvented by newer attacking strategies. In the midst of this ensuing arms race, the problem of robustness against adversarial attacks still remains unsolved. This paper proposes a novel, simple yet effective defense strategy where adversarial samples are relaxed onto the underlying manifold of the (unknown) target class distribution. Specifically, our algorithm drives off-manifold adversarial samples towards high density regions of the data generating distribution of the target class by the Metroplis-adjusted Langevin algorithm (MALA) with perceptual boundary taken into account. Although the motivation is similar to projection methods, e.g., Defense-GAN, our algorithm, called MALA for DEfense (MALADE), is equipped with significant dispersion - projection is distributed broadly, and therefore any whitebox attack cannot accurately align the input so that the MALADE moves it to a targeted untrained spot where the model predicts a wrong label. In our experiments, MALADE exhibited state-of-the-art performance against various elaborate attacking strategies.
null
https://arxiv.org/abs/1805.12017v2
https://arxiv.org/pdf/1805.12017v2.pdf
null
[ "Vignesh Srinivasan", "Arturo Marban", "Klaus-Robert Müller", "Wojciech Samek", "Shinichi Nakajima" ]
[ "Denoising" ]
2018-05-30T00:00:00
null
null
null
null
[]
https://paperswithcode.com/paper/xdeepfm-combining-explicit-and-implicit
1803.05170
null
null
xDeepFM: Combining Explicit and Implicit Feature Interactions for Recommender Systems
Combinatorial features are essential for the success of many commercial models. Manually crafting these features usually comes with high cost due to the variety, volume and velocity of raw data in web-scale systems. Factorization based models, which measure interactions in terms of vector product, can learn patterns of combinatorial features automatically and generalize to unseen features as well. With the great success of deep neural networks (DNNs) in various fields, recently researchers have proposed several DNN-based factorization model to learn both low- and high-order feature interactions. Despite the powerful ability of learning an arbitrary function from data, plain DNNs generate feature interactions implicitly and at the bit-wise level. In this paper, we propose a novel Compressed Interaction Network (CIN), which aims to generate feature interactions in an explicit fashion and at the vector-wise level. We show that the CIN share some functionalities with convolutional neural networks (CNNs) and recurrent neural networks (RNNs). We further combine a CIN and a classical DNN into one unified model, and named this new model eXtreme Deep Factorization Machine (xDeepFM). On one hand, the xDeepFM is able to learn certain bounded-degree feature interactions explicitly; on the other hand, it can learn arbitrary low- and high-order feature interactions implicitly. We conduct comprehensive experiments on three real-world datasets. Our results demonstrate that xDeepFM outperforms state-of-the-art models. We have released the source code of xDeepFM at \url{https://github.com/Leavingseason/xDeepFM}.
On one hand, the xDeepFM is able to learn certain bounded-degree feature interactions explicitly; on the other hand, it can learn arbitrary low- and high-order feature interactions implicitly.
http://arxiv.org/abs/1803.05170v3
http://arxiv.org/pdf/1803.05170v3.pdf
null
[ "Jianxun Lian", "Xiaohuan Zhou", "Fuzheng Zhang", "Zhongxia Chen", "Xing Xie", "Guangzhong Sun" ]
[ "Click-Through Rate Prediction", "Recommendation Systems" ]
2018-03-14T00:00:00
null
null
null
null
[]
https://paperswithcode.com/paper/neural-discrete-representation-learning
1711.00937
null
null
Neural Discrete Representation Learning
Learning useful representations without supervision remains a key challenge in machine learning. In this paper, we propose a simple yet powerful generative model that learns such discrete representations. Our model, the Vector Quantised-Variational AutoEncoder (VQ-VAE), differs from VAEs in two key ways: the encoder network outputs discrete, rather than continuous, codes; and the prior is learnt rather than static. In order to learn a discrete latent representation, we incorporate ideas from vector quantisation (VQ). Using the VQ method allows the model to circumvent issues of "posterior collapse" -- where the latents are ignored when they are paired with a powerful autoregressive decoder -- typically observed in the VAE framework. Pairing these representations with an autoregressive prior, the model can generate high quality images, videos, and speech as well as doing high quality speaker conversion and unsupervised learning of phonemes, providing further evidence of the utility of the learnt representations.
Learning useful representations without supervision remains a key challenge in machine learning.
http://arxiv.org/abs/1711.00937v2
http://arxiv.org/pdf/1711.00937v2.pdf
NeurIPS 2017 12
[ "Aaron van den Oord", "Oriol Vinyals", "Koray Kavukcuoglu" ]
[ "Decoder", "Representation Learning" ]
2017-11-02T00:00:00
http://papers.nips.cc/paper/7210-neural-discrete-representation-learning
http://papers.nips.cc/paper/7210-neural-discrete-representation-learning.pdf
neural-discrete-representation-learning-1
null
[ { "code_snippet_url": null, "description": "A **Dilated Causal Convolution** is a [causal convolution](https://paperswithcode.com/method/causal-convolution) where the filter is applied over an area larger than its length by skipping input values with a certain step. A dilated causal [convolution](https://paperswithcode.com/method/convolution) effectively allows the network to have very large receptive fields with just a few layers.", "full_name": "Dilated Causal Convolution", "introduced_year": 2000, "main_collection": { "area": "Sequential", "description": "", "name": "Temporal Convolutions", "parent": null }, "name": "Dilated Causal Convolution", "source_title": "WaveNet: A Generative Model for Raw Audio", "source_url": "http://arxiv.org/abs/1609.03499v2" }, { "code_snippet_url": "https://github.com/pytorch/pytorch/blob/b7bda236d18815052378c88081f64935427d7716/torch/optim/adam.py#L6", "description": "**Adam** is an adaptive learning rate optimization algorithm that utilises both momentum and scaling, combining the benefits of [RMSProp](https://paperswithcode.com/method/rmsprop) and [SGD w/th Momentum](https://paperswithcode.com/method/sgd-with-momentum). The optimizer is designed to be appropriate for non-stationary objectives and problems with very noisy and/or sparse gradients. \r\n\r\nThe weight updates are performed as:\r\n\r\n$$ w_{t} = w_{t-1} - \\eta\\frac{\\hat{m}\\_{t}}{\\sqrt{\\hat{v}\\_{t}} + \\epsilon} $$\r\n\r\nwith\r\n\r\n$$ \\hat{m}\\_{t} = \\frac{m_{t}}{1-\\beta^{t}_{1}} $$\r\n\r\n$$ \\hat{v}\\_{t} = \\frac{v_{t}}{1-\\beta^{t}_{2}} $$\r\n\r\n$$ m_{t} = \\beta_{1}m_{t-1} + (1-\\beta_{1})g_{t} $$\r\n\r\n$$ v_{t} = \\beta_{2}v_{t-1} + (1-\\beta_{2})g_{t}^{2} $$\r\n\r\n\r\n$ \\eta $ is the step size/learning rate, around 1e-3 in the original paper. $ \\epsilon $ is a small number, typically 1e-8 or 1e-10, to prevent dividing by zero. $ \\beta_{1} $ and $ \\beta_{2} $ are forgetting parameters, with typical values 0.9 and 0.999, respectively.", "full_name": "Adam", "introduced_year": 2000, "main_collection": { "area": "General", "description": "**Stochastic Optimization** methods are used to optimize neural networks. We typically take a mini-batch of data, hence 'stochastic', and perform a type of gradient descent with this minibatch. Below you can find a continuously updating list of stochastic optimization algorithms.", "name": "Stochastic Optimization", "parent": "Optimization" }, "name": "Adam", "source_title": "Adam: A Method for Stochastic Optimization", "source_url": "http://arxiv.org/abs/1412.6980v9" }, { "code_snippet_url": "https://github.com/google/jax/blob/36f91261099b00194922bd93ed1286fe1c199724/jax/experimental/stax.py#L116", "description": "**Batch Normalization** aims to reduce internal covariate shift, and in doing so aims to accelerate the training of deep neural nets. It accomplishes this via a normalization step that fixes the means and variances of layer inputs. Batch Normalization also has a beneficial effect on the gradient flow through the network, by reducing the dependence of gradients on the scale of the parameters or of their initial values. This allows for use of much higher learning rates without the risk of divergence. Furthermore, batch normalization regularizes the model and reduces the need for [Dropout](https://paperswithcode.com/method/dropout).\r\n\r\nWe apply a batch normalization layer as follows for a minibatch $\\mathcal{B}$:\r\n\r\n$$ \\mu\\_{\\mathcal{B}} = \\frac{1}{m}\\sum^{m}\\_{i=1}x\\_{i} $$\r\n\r\n$$ \\sigma^{2}\\_{\\mathcal{B}} = \\frac{1}{m}\\sum^{m}\\_{i=1}\\left(x\\_{i}-\\mu\\_{\\mathcal{B}}\\right)^{2} $$\r\n\r\n$$ \\hat{x}\\_{i} = \\frac{x\\_{i} - \\mu\\_{\\mathcal{B}}}{\\sqrt{\\sigma^{2}\\_{\\mathcal{B}}+\\epsilon}} $$\r\n\r\n$$ y\\_{i} = \\gamma\\hat{x}\\_{i} + \\beta = \\text{BN}\\_{\\gamma, \\beta}\\left(x\\_{i}\\right) $$\r\n\r\nWhere $\\gamma$ and $\\beta$ are learnable parameters.", "full_name": "Batch Normalization", "introduced_year": 2000, "main_collection": { "area": "General", "description": "**Normalization** layers in deep learning are used to make optimization easier by smoothing the loss surface of the network. Below you will find a continuously updating list of normalization methods.", "name": "Normalization", "parent": null }, "name": "Batch Normalization", "source_title": "Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift", "source_url": "http://arxiv.org/abs/1502.03167v3" }, { "code_snippet_url": "https://github.com/pytorch/vision/blob/7c077f6a986f05383bcb86b535aedb5a63dd5c4b/torchvision/models/resnet.py#L118", "description": "**Residual Connections** are a type of skip-connection that learn residual functions with reference to the layer inputs, instead of learning unreferenced functions. \r\n\r\nFormally, denoting the desired underlying mapping as $\\mathcal{H}({x})$, we let the stacked nonlinear layers fit another mapping of $\\mathcal{F}({x}):=\\mathcal{H}({x})-{x}$. The original mapping is recast into $\\mathcal{F}({x})+{x}$.\r\n\r\nThe intuition is that it is easier to optimize the residual mapping than to optimize the original, unreferenced mapping. To the extreme, if an identity mapping were optimal, it would be easier to push the residual to zero than to fit an identity mapping by a stack of nonlinear layers.", "full_name": "Residual Connection", "introduced_year": 2000, "main_collection": { "area": "General", "description": "**Skip Connections** allow layers to skip layers and connect to layers further up the network, allowing for information to flow more easily up the network. Below you can find a continuously updating list of skip connection methods.", "name": "Skip Connections", "parent": null }, "name": "Residual Connection", "source_title": "Deep Residual Learning for Image Recognition", "source_url": "http://arxiv.org/abs/1512.03385v1" }, { "code_snippet_url": "https://github.com/pytorch/vision/blob/1aef87d01eec2c0989458387fa04baebcc86ea7b/torchvision/models/resnet.py#L35", "description": "**Residual Blocks** are skip-connection blocks that learn residual functions with reference to the layer inputs, instead of learning unreferenced functions. They were introduced as part of the [ResNet](https://paperswithcode.com/method/resnet) architecture.\r\n \r\nFormally, denoting the desired underlying mapping as $\\mathcal{H}({x})$, we let the stacked nonlinear layers fit another mapping of $\\mathcal{F}({x}):=\\mathcal{H}({x})-{x}$. The original mapping is recast into $\\mathcal{F}({x})+{x}$. The $\\mathcal{F}({x})$ acts like a residual, hence the name 'residual block'.\r\n\r\nThe intuition is that it is easier to optimize the residual mapping than to optimize the original, unreferenced mapping. To the extreme, if an identity mapping were optimal, it would be easier to push the residual to zero than to fit an identity mapping by a stack of nonlinear layers. Having skip connections allows the network to more easily learn identity-like mappings.\r\n\r\nNote that in practice, [Bottleneck Residual Blocks](https://paperswithcode.com/method/bottleneck-residual-block) are used for deeper ResNets, such as ResNet-50 and ResNet-101, as these bottleneck blocks are less computationally intensive.", "full_name": "Residual Block", "introduced_year": 2000, "main_collection": { "area": "General", "description": "**Skip Connection Blocks** are building blocks for neural networks that feature skip connections. These skip connections 'skip' some layers allowing gradients to better flow through the network. Below you will find a continuously updating list of skip connection blocks:", "name": "Skip Connection Blocks", "parent": null }, "name": "Residual Block", "source_title": "Deep Residual Learning for Image Recognition", "source_url": "http://arxiv.org/abs/1512.03385v1" }, { "code_snippet_url": "", "description": "How Do I Communicate to Expedia?\r\nHow Do I Communicate to Expedia? – Call **☎️ +1-(888) 829 (0881) or +1-805-330-4056 or +1-805-330-4056** for Live Support & Special Travel Discounts!Frustrated with automated systems? Call **☎️ **☎️ +1-(888) 829 (0881) or +1-805-330-4056 or +1-805-330-4056** now to speak directly with a live Expedia agent and unlock exclusive best deal discounts on hotels, flights, and vacation packages. Get real help fast while enjoying limited-time offers that make your next trip more affordable, smooth, and stress-free. Don’t wait—call today!\r\n\r\n\r\nHow Do I Communicate to Expedia?\r\nHow Do I Communicate to Expedia? – Call **☎️ +1-(888) 829 (0881) or +1-805-330-4056 or +1-805-330-4056** for Live Support & Special Travel Discounts!Frustrated with automated systems? Call **☎️ **☎️ +1-(888) 829 (0881) or +1-805-330-4056 or +1-805-330-4056** now to speak directly with a live Expedia agent and unlock exclusive best deal discounts on hotels, flights, and vacation packages. Get real help fast while enjoying limited-time offers that make your next trip more affordable, smooth, and stress-free. Don’t wait—call today!", "full_name": "*Communicated@Fast*How Do I Communicate to Expedia?", "introduced_year": 2000, "main_collection": { "area": "General", "description": "How do I escalate a problem with Expedia?\r\nTo escalate a problem with Expedia, call +1(888) (829) (0881) OR +1(805) (330) (4056) and ask to speak with a manager. Explain your issue in detail and inquire about compensation. Expedia may provide exclusive discount codes, travel credits, or special offers to help resolve your problem and improve your experience.\r\nIs Expedia actually fully refundable?\r\nExpedia isn’t always fully refundable—refunds depend on the hotel, airline, or rental provider’s policy call +1(888) (829) (0881) OR +1(805) (330) (4056). Look for “Free Cancellation” before booking to ensure flexibility. For peace of mind and potential savings, call +1(888) (829) (0881) OR +1(805) (330) (4056) and ask about current discount codes or refund-friendly deals.\r\n\r\nWhat is the refundable option on expedia?\r\nThe refundable option on Expedia allows you to cancel eligible bookings call +1(888) (829) (0881) OR +1(805) (330) (4056) without penalty. Look for listings marked “Free Cancellation” or “Fully Refundable.” To maximize flexibility, choose these options during checkout. For additional savings, call +1(888) (829) (0881) OR +1(805) (330) (4056) and ask about exclusive promo codes or travel discounts available today.", "name": "Activation Functions", "parent": null }, "name": "ReLU", "source_title": null, "source_url": null }, { "code_snippet_url": "", "description": "A **convolution** is a type of matrix operation, consisting of a kernel, a small matrix of weights, that slides over input data performing element-wise multiplication with the part of the input it is on, then summing the results into an output.\r\n\r\nIntuitively, a convolution allows for weight sharing - reducing the number of effective parameters - and image translation (allowing for the same feature to be detected in different parts of the input space).\r\n\r\nImage Source: [https://arxiv.org/pdf/1603.07285.pdf](https://arxiv.org/pdf/1603.07285.pdf)", "full_name": "Convolution", "introduced_year": 1980, "main_collection": { "area": "Computer Vision", "description": "**Convolutions** are a type of operation that can be used to learn representations from images. They involve a learnable kernel sliding over the image and performing element-wise multiplication with the input. The specification allows for parameter sharing and translation invariance. Below you can find a continuously updating list of convolutions.", "name": "Convolutions", "parent": "Image Feature Extractors" }, "name": "Convolution", "source_title": null, "source_url": null }, { "code_snippet_url": "", "description": "**VQ-VAE** is a type of variational autoencoder that uses vector quantisation to obtain a discrete latent representation. It differs from [VAEs](https://paperswithcode.com/method/vae) in two key ways: the encoder network outputs discrete, rather than continuous, codes; and the prior is learnt rather than static. In order to learn a discrete latent representation, ideas from vector quantisation (VQ) are incorporated. Using the VQ method allows the model to circumvent issues of posterior collapse - where the latents are ignored when they are paired with a powerful autoregressive decoder - typically observed in the VAE framework. Pairing these representations with an autoregressive prior, the model can generate high quality images, videos, and speech as well as doing high quality speaker conversion and unsupervised learning of phonemes.", "full_name": "VQ-VAE", "introduced_year": 2000, "main_collection": { "area": "Computer Vision", "description": "**Generative Models** aim to model data generatively (rather than discriminatively), that is they aim to approximate the probability distribution of the data. Below you can find a continuously updating list of generative models for computer vision.", "name": "Generative Models", "parent": null }, "name": "VQ-VAE", "source_title": "Neural Discrete Representation Learning", "source_url": "http://arxiv.org/abs/1711.00937v2" } ]
https://paperswithcode.com/paper/bit-fusion-bit-level-dynamically-composable
1712.01507
null
null
Bit Fusion: Bit-Level Dynamically Composable Architecture for Accelerating Deep Neural Networks
Fully realizing the potential of acceleration for Deep Neural Networks (DNNs) requires understanding and leveraging algorithmic properties. This paper builds upon the algorithmic insight that bitwidth of operations in DNNs can be reduced without compromising their classification accuracy. However, to prevent accuracy loss, the bitwidth varies significantly across DNNs and it may even be adjusted for each layer. Thus, a fixed-bitwidth accelerator would either offer limited benefits to accommodate the worst-case bitwidth requirements, or lead to a degradation in final accuracy. To alleviate these deficiencies, this work introduces dynamic bit-level fusion/decomposition as a new dimension in the design of DNN accelerators. We explore this dimension by designing Bit Fusion, a bit-flexible accelerator, that constitutes an array of bit-level processing elements that dynamically fuse to match the bitwidth of individual DNN layers. This flexibility in the architecture enables minimizing the computation and the communication at the finest granularity possible with no loss in accuracy. We evaluate the benefits of BitFusion using eight real-world feed-forward and recurrent DNNs. The proposed microarchitecture is implemented in Verilog and synthesized in 45 nm technology. Using the synthesis results and cycle accurate simulation, we compare the benefits of Bit Fusion to two state-of-the-art DNN accelerators, Eyeriss and Stripes. In the same area, frequency, and process technology, BitFusion offers 3.9x speedup and 5.1x energy savings over Eyeriss. Compared to Stripes, BitFusion provides 2.6x speedup and 3.9x energy reduction at 45 nm node when BitFusion area and frequency are set to those of Stripes. Scaling to GPU technology node of 16 nm, BitFusion almost matches the performance of a 250-Watt Titan Xp, which uses 8-bit vector instructions, while BitFusion merely consumes 895 milliwatts of power.
null
http://arxiv.org/abs/1712.01507v2
http://arxiv.org/pdf/1712.01507v2.pdf
null
[ "Hardik Sharma", "Jongse Park", "Naveen Suda", "Liangzhen Lai", "Benson Chau", "Joon Kyung Kim", "Vikas Chandra", "Hadi Esmaeilzadeh" ]
[ "GPU" ]
2017-12-05T00:00:00
null
null
null
null
[]
https://paperswithcode.com/paper/why-is-my-classifier-discriminatory
1805.12002
null
null
Why Is My Classifier Discriminatory?
Recent attempts to achieve fairness in predictive models focus on the balance between fairness and accuracy. In sensitive applications such as healthcare or criminal justice, this trade-off is often undesirable as any increase in prediction error could have devastating consequences. In this work, we argue that the fairness of predictions should be evaluated in context of the data, and that unfairness induced by inadequate samples sizes or unmeasured predictive variables should be addressed through data collection, rather than by constraining the model. We decompose cost-based metrics of discrimination into bias, variance, and noise, and propose actions aimed at estimating and reducing each term. Finally, we perform case-studies on prediction of income, mortality, and review ratings, confirming the value of this analysis. We find that data collection is often a means to reduce discrimination without sacrificing accuracy.
null
http://arxiv.org/abs/1805.12002v2
http://arxiv.org/pdf/1805.12002v2.pdf
NeurIPS 2018 12
[ "Irene Chen", "Fredrik D. Johansson", "David Sontag" ]
[ "Fairness" ]
2018-05-30T00:00:00
http://papers.nips.cc/paper/7613-why-is-my-classifier-discriminatory
http://papers.nips.cc/paper/7613-why-is-my-classifier-discriminatory.pdf
why-is-my-classifier-discriminatory-1
null
[]
https://paperswithcode.com/paper/streamlined-deployment-for-quantized-neural
1709.04060
null
null
Streamlined Deployment for Quantized Neural Networks
Running Deep Neural Network (DNN) models on devices with limited computational capability is a challenge due to large compute and memory requirements. Quantized Neural Networks (QNNs) have emerged as a potential solution to this problem, promising to offer most of the DNN accuracy benefits with much lower computational cost. However, harvesting these benefits on existing mobile CPUs is a challenge since operations on highly quantized datatypes are not natively supported in most instruction set architectures (ISAs). In this work, we first describe a streamlining flow to convert all QNN inference operations to integer ones. Afterwards, we provide techniques based on processing one bit position at a time (bit-serial) to show how QNNs can be efficiently deployed using common bitwise operations. We demonstrate the potential of QNNs on mobile CPUs with microbenchmarks and on a quantized AlexNet, which is 3.5x faster than an optimized 8-bit baseline. Our bit-serial matrix multiplication library is available on GitHub at https://git.io/vhshn
Quantized Neural Networks (QNNs) have emerged as a potential solution to this problem, promising to offer most of the DNN accuracy benefits with much lower computational cost.
http://arxiv.org/abs/1709.04060v2
http://arxiv.org/pdf/1709.04060v2.pdf
null
[ "Yaman Umuroglu", "Magnus Jahre" ]
[]
2017-09-12T00:00:00
null
null
null
null
[]
https://paperswithcode.com/paper/using-neural-generative-models-to-release
1606.01151
null
null
Using Neural Generative Models to Release Synthetic Twitter Corpora with Reduced Stylometric Identifiability of Users
We present a method for generating synthetic versions of Twitter data using neural generative models. The goal is protecting individuals in the source data from stylometric re-identification attacks while still releasing data that carries research value. Specifically, we generate tweet corpora that maintain user-level word distributions by augmenting the neural language models with user-specific components. We compare our approach to two standard text data protection methods: redaction and iterative translation. We evaluate the three methods on measures of risk and utility. We define risk following the stylometric models of re-identification, and we define utility based on two general word distribution measures and two common text analysis research tasks. We find that neural models are able to significantly lower risk over previous methods with little cost to utility. We also demonstrate that the neural models allow data providers to actively control the risk-utility trade-off through model tuning parameters. This work presents promising results for a new tool addressing the problem of privacy for free text and sharing social media data in a way that respects privacy and is ethically responsible.
null
http://arxiv.org/abs/1606.01151v4
http://arxiv.org/pdf/1606.01151v4.pdf
null
[ "Alexander G. Ororbia II", "Fridolin Linder", "Joshua Snoke" ]
[ "Translation" ]
2016-06-03T00:00:00
null
null
null
null
[]
https://paperswithcode.com/paper/adaptive-network-sparsification-with
1805.10896
null
rylfl6VFDH
Adaptive Network Sparsification with Dependent Variational Beta-Bernoulli Dropout
While variational dropout approaches have been shown to be effective for network sparsification, they are still suboptimal in the sense that they set the dropout rate for each neuron without consideration of the input data. With such input-independent dropout, each neuron is evolved to be generic across inputs, which makes it difficult to sparsify networks without accuracy loss. To overcome this limitation, we propose adaptive variational dropout whose probabilities are drawn from sparsity-inducing beta Bernoulli prior. It allows each neuron to be evolved either to be generic or specific for certain inputs, or dropped altogether. Such input-adaptive sparsity-inducing dropout allows the resulting network to tolerate larger degree of sparsity without losing its expressive power by removing redundancies among features. We validate our dependent variational beta-Bernoulli dropout on multiple public datasets, on which it obtains significantly more compact networks than baseline methods, with consistent accuracy improvements over the base networks.
With such input-independent dropout, each neuron is evolved to be generic across inputs, which makes it difficult to sparsify networks without accuracy loss.
http://arxiv.org/abs/1805.10896v3
http://arxiv.org/pdf/1805.10896v3.pdf
null
[ "Juho Lee", "Saehoon Kim", "Jaehong Yoon", "Hae Beom Lee", "Eunho Yang", "Sung Ju Hwang" ]
[]
2018-05-28T00:00:00
https://openreview.net/forum?id=rylfl6VFDH
https://openreview.net/pdf?id=rylfl6VFDH
null
null
[ { "code_snippet_url": "https://github.com/salesforce/awd-lstm-lm/blob/32fcb42562aeb5c7e6c9dec3f2a3baaaf68a5cb5/weight_drop.py#L5", "description": "**Variational Dropout** is a regularization technique based on [dropout](https://paperswithcode.com/method/dropout), but uses a variational inference grounded approach. In Variational Dropout, we repeat the same dropout mask at each time step for both inputs, outputs, and recurrent layers (drop the same network units at each time step). This is in contrast to ordinary Dropout where different dropout masks are sampled at each time step for the inputs and outputs alone.", "full_name": "Variational Dropout", "introduced_year": 2000, "main_collection": { "area": "General", "description": "Regularization strategies are designed to reduce the test error of a machine learning algorithm, possibly at the expense of training error. Many different forms of regularization exist in the field of deep learning. Below you can find a constantly updating list of regularization strategies.", "name": "Regularization", "parent": null }, "name": "Variational Dropout", "source_title": "A Theoretically Grounded Application of Dropout in Recurrent Neural Networks", "source_url": "http://arxiv.org/abs/1512.05287v5" }, { "code_snippet_url": "https://github.com/google/jax/blob/7f3078b70d0ed9bea6228efa420879c56f72ef69/jax/experimental/stax.py#L271-L275", "description": "**Dropout** is a regularization technique for neural networks that drops a unit (along with connections) at training time with a specified probability $p$ (a common value is $p=0.5$). At test time, all units are present, but with weights scaled by $p$ (i.e. $w$ becomes $pw$).\r\n\r\nThe idea is to prevent co-adaptation, where the neural network becomes too reliant on particular connections, as this could be symptomatic of overfitting. Intuitively, dropout can be thought of as creating an implicit ensemble of neural networks.", "full_name": "Dropout", "introduced_year": 2000, "main_collection": { "area": "General", "description": "Regularization strategies are designed to reduce the test error of a machine learning algorithm, possibly at the expense of training error. Many different forms of regularization exist in the field of deep learning. Below you can find a constantly updating list of regularization strategies.", "name": "Regularization", "parent": null }, "name": "Dropout", "source_title": "Dropout: A Simple Way to Prevent Neural Networks from Overfitting", "source_url": "http://jmlr.org/papers/v15/srivastava14a.html" } ]
https://paperswithcode.com/paper/l0-norm-based-centers-selection-for-training
1805.11987
null
null
l0-norm Based Centers Selection for Training Fault Tolerant RBF Networks and Selecting Centers
The aim of this paper is to train an RBF neural network and select centers under concurrent faults. It is well known that fault tolerance is a very attractive property for neural networks. And center selection is an important procedure during the training process of an RBF neural network. In this paper, we devise two novel algorithms to address these two issues simultaneously. Both of them are based on the ADMM framework. In the first method, the minimax concave penalty (MCP) function is introduced to select centers. In the second method, an l0-norm term is directly used, and the hard threshold (HT) is utilized to address the l0-norm term. Under several mild conditions, we can prove that both methods can globally converge to a unique limit point. Simulation results show that, under concurrent fault, the proposed algorithms are superior to many existing methods.
null
http://arxiv.org/abs/1805.11987v3
http://arxiv.org/pdf/1805.11987v3.pdf
null
[ "Hao Wang", "Chi-Sing Leung", "Hing Cheung So", "Ruibin Feng", "Zifa Han" ]
[]
2018-05-30T00:00:00
null
null
null
null
[ { "code_snippet_url": null, "description": "The **alternating direction method of multipliers** (**ADMM**) is an algorithm that solves convex optimization problems by breaking them into smaller pieces, each of which are then easier to handle. It takes the form of a decomposition-coordination procedure, in which the solutions to small\r\nlocal subproblems are coordinated to find a solution to a large global problem. ADMM can be viewed as an attempt to blend the benefits of dual decomposition and augmented Lagrangian methods for constrained optimization. It turns out to be equivalent or closely related to many other algorithms\r\nas well, such as Douglas-Rachford splitting from numerical analysis, Spingarn’s method of partial inverses, Dykstra’s alternating projections method, Bregman iterative algorithms for l1 problems in signal processing, proximal methods, and many others.\r\n\r\nText Source: [https://stanford.edu/~boyd/papers/pdf/admm_distr_stats.pdf](https://stanford.edu/~boyd/papers/pdf/admm_distr_stats.pdf)\r\n\r\nImage Source: [here](https://www.slideshare.net/derekcypang/alternating-direction)", "full_name": "Alternating Direction Method of Multipliers", "introduced_year": 2000, "main_collection": { "area": "General", "description": "", "name": "Optimization", "parent": null }, "name": "ADMM", "source_title": null, "source_url": null } ]
https://paperswithcode.com/paper/automatic-generation-of-object-shapes-with
1805.11984
null
B1x0enCcK7
Automatic generation of object shapes with desired functionalities
3D objects (artefacts) are made to fulfill functions. Designing an object often starts with defining a list of functionalities that it should provide, also known as functional requirements. Today, the design of 3D object models is still a slow and largely artisanal activity, with few Computer-Aided Design (CAD) tools existing to aid the exploration of the design solution space. To accelerate the design process, we introduce an algorithm for generating object shapes with desired functionalities. Following the concept of form follows function, we assume that existing object shapes were rationally chosen to provide desired functionalities. First, we use an artificial neural network to learn a function-to-form mapping by analysing a dataset of objects labeled with their functionalities. Then, we combine forms providing one or more desired functions, generating an object shape that is expected to provide all of them. Finally, we verify in simulation whether the generated object possesses the desired functionalities, by defining and executing functionality tests on it.
null
http://arxiv.org/abs/1805.11984v2
http://arxiv.org/pdf/1805.11984v2.pdf
null
[ "Mihai Andries", "Atabak Dehban", "José Santos-Victor" ]
[ "Object" ]
2018-05-30T00:00:00
https://openreview.net/forum?id=B1x0enCcK7
https://openreview.net/pdf?id=B1x0enCcK7
null
null
[]
https://paperswithcode.com/paper/molgan-an-implicit-generative-model-for-small
1805.11973
null
null
MolGAN: An implicit generative model for small molecular graphs
Deep generative models for graph-structured data offer a new angle on the problem of chemical synthesis: by optimizing differentiable models that directly generate molecular graphs, it is possible to side-step expensive search procedures in the discrete and vast space of chemical structures. We introduce MolGAN, an implicit, likelihood-free generative model for small molecular graphs that circumvents the need for expensive graph matching procedures or node ordering heuristics of previous likelihood-based methods. Our method adapts generative adversarial networks (GANs) to operate directly on graph-structured data. We combine our approach with a reinforcement learning objective to encourage the generation of molecules with specific desired chemical properties. In experiments on the QM9 chemical database, we demonstrate that our model is capable of generating close to 100% valid compounds. MolGAN compares favorably both to recent proposals that use string-based (SMILES) representations of molecules and to a likelihood-based method that directly generates graphs, albeit being susceptible to mode collapse. Code at https://github.com/nicola-decao/MolGAN
Deep generative models for graph-structured data offer a new angle on the problem of chemical synthesis: by optimizing differentiable models that directly generate molecular graphs, it is possible to side-step expensive search procedures in the discrete and vast space of chemical structures.
https://arxiv.org/abs/1805.11973v2
https://arxiv.org/pdf/1805.11973v2.pdf
null
[ "Nicola De Cao", "Thomas Kipf" ]
[ "Graph Matching", "Reinforcement Learning", "valid" ]
2018-05-30T00:00:00
null
null
null
null
[]
https://paperswithcode.com/paper/automatic-large-scale-data-acquisition-via
1805.11970
null
null
Automatic Large-Scale Data Acquisition via Crowdsourcing for Crosswalk Classification: A Deep Learning Approach
Correctly identifying crosswalks is an essential task for the driving activity and mobility autonomy. Many crosswalk classification, detection and localization systems have been proposed in the literature over the years. These systems use different perspectives to tackle the crosswalk classification problem: satellite imagery, cockpit view (from the top of a car or behind the windshield), and pedestrian perspective. Most of the works in the literature are designed and evaluated using small and local datasets, i.e. datasets that present low diversity. Scaling to large datasets imposes a challenge for the annotation procedure. Moreover, there is still need for cross-database experiments in the literature because it is usually hard to collect the data in the same place and conditions of the final application. In this paper, we present a crosswalk classification system based on deep learning. For that, crowdsourcing platforms, such as OpenStreetMap and Google Street View, are exploited to enable automatic training via automatic acquisition and annotation of a large-scale database. Additionally, this work proposes a comparison study of models trained using fully-automatic data acquisition and annotation against models that were partially annotated. Cross-database experiments were also included in the experimentation to show that the proposed methods enable use with real world applications. Our results show that the model trained on the fully-automatic database achieved high overall accuracy (94.12%), and that a statistically significant improvement (to 96.30%) can be achieved by manually annotating a specific part of the database. Finally, the results of the cross-database experiments show that both models are robust to the many variations of image and scenarios, presenting a consistent behavior.
null
http://arxiv.org/abs/1805.11970v1
http://arxiv.org/pdf/1805.11970v1.pdf
null
[ "Rodrigo F. Berriel", "Franco Schmidt Rossi", "Alberto F. de Souza", "Thiago Oliveira-Santos" ]
[ "General Classification" ]
2018-05-30T00:00:00
null
null
null
null
[]
https://paperswithcode.com/paper/short-term-load-forecasting-with-deep
1805.11956
null
null
Short-term Load Forecasting with Deep Residual Networks
We present in this paper a model for forecasting short-term power loads based on deep residual networks. The proposed model is able to integrate domain knowledge and researchers' understanding of the task by virtue of different neural network building blocks. Specifically, a modified deep residual network is formulated to improve the forecast results. Further, a two-stage ensemble strategy is used to enhance the generalization capability of the proposed model. We also apply the proposed model to probabilistic load forecasting using Monte Carlo dropout. Three public datasets are used to prove the effectiveness of the proposed model. Multiple test cases and comparison with existing models show that the proposed model is able to provide accurate load forecasting results and has high generalization capability.
We present in this paper a model for forecasting short-term power loads based on deep residual networks.
http://arxiv.org/abs/1805.11956v1
http://arxiv.org/pdf/1805.11956v1.pdf
null
[ "Kunjin Chen", "Kunlong Chen", "Qin Wang", "Ziyu He", "Jun Hu", "Jinliang He" ]
[ "Load Forecasting" ]
2018-05-30T00:00:00
null
null
null
null
[]
https://paperswithcode.com/paper/fast-l1-minimization-algorithm-for-sparse
1805.11949
null
null
Fast L1-Minimization Algorithm for Sparse Approximation Based on an Improved LPNN-LCA framework
The aim of sparse approximation is to estimate a sparse signal according to the measurement matrix and an observation vector. It is widely used in data analytics, image processing, and communication, etc. Up to now, a lot of research has been done in this area, and many off-the-shelf algorithms have been proposed. However, most of them cannot offer a real-time solution. To some extent, this shortcoming limits its application prospects. To address this issue, we devise a novel sparse approximation algorithm based on Lagrange programming neural network (LPNN), locally competitive algorithm (LCA), and projection theorem. LPNN and LCA are both analog neural network which can help us get a real-time solution. The non-differentiable objective function can be solved by the concept of LCA. Utilizing the projection theorem, we further modify the dynamics and proposed a new system with global asymptotic stability. Simulation results show that the proposed sparse approximation method has the real-time solutions with satisfactory MSEs.
null
http://arxiv.org/abs/1805.11949v1
http://arxiv.org/pdf/1805.11949v1.pdf
null
[ "Hao Wang", "Ruibin Feng", "Chi-Sing Leung" ]
[]
2018-05-30T00:00:00
null
null
null
null
[]
https://paperswithcode.com/paper/character-level-models-versus-morphology-in
1805.11937
null
null
Character-Level Models versus Morphology in Semantic Role Labeling
Character-level models have become a popular approach specially for their accessibility and ability to handle unseen data. However, little is known on their ability to reveal the underlying morphological structure of a word, which is a crucial skill for high-level semantic analysis tasks, such as semantic role labeling (SRL). In this work, we train various types of SRL models that use word, character and morphology level information and analyze how performance of characters compare to words and morphology for several languages. We conduct an in-depth error analysis for each morphological typology and analyze the strengths and limitations of character-level models that relate to out-of-domain data, training data size, long range dependencies and model complexity. Our exhaustive analyses shed light on important characteristics of character-level models and their semantic capability.
Character-level models have become a popular approach specially for their accessibility and ability to handle unseen data.
http://arxiv.org/abs/1805.11937v1
http://arxiv.org/pdf/1805.11937v1.pdf
ACL 2018 7
[ "Gözde Gül Şahin", "Mark Steedman" ]
[ "Semantic Role Labeling" ]
2018-05-30T00:00:00
https://aclanthology.org/P18-1036
https://aclanthology.org/P18-1036.pdf
character-level-models-versus-morphology-in-1
null
[]
https://paperswithcode.com/paper/transformer-for-emotion-recognition
1805.02489
null
null
Transformer for Emotion Recognition
This paper describes the UMONS solution for the OMG-Emotion Challenge. We explore a context-dependent architecture where the arousal and valence of an utterance are predicted according to its surrounding context (i.e. the preceding and following utterances of the video). We report an improvement when taking into account context for both unimodal and multimodal predictions.
This paper describes the UMONS solution for the OMG-Emotion Challenge.
http://arxiv.org/abs/1805.02489v2
http://arxiv.org/pdf/1805.02489v2.pdf
null
[ "Jean-Benoit Delbrouck" ]
[ "Emotion Recognition" ]
2018-05-03T00:00:00
null
null
null
null
[]
https://paperswithcode.com/paper/learning-to-generate-facial-depth-maps
1805.11927
null
null
Learning to Generate Facial Depth Maps
In this paper, an adversarial architecture for facial depth map estimation from monocular intensity images is presented. By following an image-to-image approach, we combine the advantages of supervised learning and adversarial training, proposing a conditional Generative Adversarial Network that effectively learns to translate intensity face images into the corresponding depth maps. Two public datasets, namely Biwi database and Pandora dataset, are exploited to demonstrate that the proposed model generates high-quality synthetic depth images, both in terms of visual appearance and informative content. Furthermore, we show that the model is capable of predicting distinctive facial details by testing the generated depth maps through a deep model trained on authentic depth maps for the face verification task.
null
http://arxiv.org/abs/1805.11927v1
http://arxiv.org/pdf/1805.11927v1.pdf
null
[ "Stefano Pini", "Filippo Grazioli", "Guido Borghi", "Roberto Vezzani", "Rita Cucchiara" ]
[ "Face Verification", "Generative Adversarial Network" ]
2018-05-30T00:00:00
null
null
null
null
[]
https://paperswithcode.com/paper/a-survey-of-dimensionality-reduction-1
1706.04371
null
null
A survey of dimensionality reduction techniques based on random projection
Dimensionality reduction techniques play important roles in the analysis of big data. Traditional dimensionality reduction approaches, such as principal component analysis (PCA) and linear discriminant analysis (LDA), have been studied extensively in the past few decades. However, as the dimensionality of data increases, the computational cost of traditional dimensionality reduction methods grows exponentially, and the computation becomes prohibitively intractable. These drawbacks have triggered the development of random projection (RP) techniques, which map high-dimensional data onto a low-dimensional subspace with extremely reduced time cost. However, the RP transformation matrix is generated without considering the intrinsic structure of the original data and usually leads to relatively high distortion. Therefore, in recent years, methods based on RP have been proposed to address this problem. In this paper, we summarize the methods used in different situations to help practitioners to employ the proper techniques for their specific applications. Meanwhile, we enumerate the benefits and limitations of the various methods and provide further references for researchers to develop novel RP-based approaches.
null
http://arxiv.org/abs/1706.04371v4
http://arxiv.org/pdf/1706.04371v4.pdf
null
[ "Haozhe Xie", "Jie Li", "Hanqing Xue" ]
[ "Dimensionality Reduction", "Survey" ]
2017-06-14T00:00:00
null
null
null
null
[]
https://paperswithcode.com/paper/additive-margin-softmax-for-face-verification
1801.05599
null
null
Additive Margin Softmax for Face Verification
In this paper, we propose a conceptually simple and geometrically interpretable objective function, i.e. additive margin Softmax (AM-Softmax), for deep face verification. In general, the face verification task can be viewed as a metric learning problem, so learning large-margin face features whose intra-class variation is small and inter-class difference is large is of great importance in order to achieve good performance. Recently, Large-margin Softmax and Angular Softmax have been proposed to incorporate the angular margin in a multiplicative manner. In this work, we introduce a novel additive angular margin for the Softmax loss, which is intuitively appealing and more interpretable than the existing works. We also emphasize and discuss the importance of feature normalization in the paper. Most importantly, our experiments on LFW BLUFR and MegaFace show that our additive margin softmax loss consistently performs better than the current state-of-the-art methods using the same network architecture and training dataset. Our code has also been made available at https://github.com/happynear/AMSoftmax
In this work, we introduce a novel additive angular margin for the Softmax loss, which is intuitively appealing and more interpretable than the existing works.
http://arxiv.org/abs/1801.05599v4
http://arxiv.org/pdf/1801.05599v4.pdf
null
[ "Feng Wang", "Weiyang Liu", "Haijun Liu", "Jian Cheng" ]
[ "Face Verification", "Metric Learning" ]
2018-01-17T00:00:00
null
null
null
null
[ { "code_snippet_url": null, "description": "The **Softmax** output function transforms a previous layer's output into a vector of probabilities. It is commonly used for multiclass classification. Given an input vector $x$ and a weighting vector $w$ we have:\r\n\r\n$$ P(y=j \\mid{x}) = \\frac{e^{x^{T}w_{j}}}{\\sum^{K}_{k=1}e^{x^{T}wk}} $$", "full_name": "Softmax", "introduced_year": 2000, "main_collection": { "area": "General", "description": "**Output functions** are layers used towards the end of a network to transform to the desired form for a loss function. For example, the softmax relies on logits to construct a conditional probability. Below you can find a continuously updating list of output functions.", "name": "Output Functions", "parent": null }, "name": "Softmax", "source_title": null, "source_url": null } ]
https://paperswithcode.com/paper/multiple-manifolds-metric-learning-with
1805.11918
null
null
Multiple Manifolds Metric Learning with Application to Image Set Classification
In image set classification, a considerable advance has been made by modeling the original image sets by second order statistics or linear subspace, which typically lie on the Riemannian manifold. Specifically, they are Symmetric Positive Definite (SPD) manifold and Grassmann manifold respectively, and some algorithms have been developed on them for classification tasks. Motivated by the inability of existing methods to extract discriminatory features for data on Riemannian manifolds, we propose a novel algorithm which combines multiple manifolds as the features of the original image sets. In order to fuse these manifolds, the well-studied Riemannian kernels have been utilized to map the original Riemannian spaces into high dimensional Hilbert spaces. A metric Learning method has been devised to embed these kernel spaces into a lower dimensional common subspace for classification. The state-of-the-art results achieved on three datasets corresponding to two different classification tasks, namely face recognition and object categorization, demonstrate the effectiveness of the proposed method.
null
http://arxiv.org/abs/1805.11918v1
http://arxiv.org/pdf/1805.11918v1.pdf
null
[ "Rui Wang", "Xiao-Jun Wu", "Kai-Xuan Chen", "Josef Kittler" ]
[ "Classification", "Face Recognition", "General Classification", "Metric Learning", "Object Categorization" ]
2018-05-30T00:00:00
null
null
null
null
[]
https://paperswithcode.com/paper/the-dynamics-of-learning-a-random-matrix
1805.11917
null
null
The Dynamics of Learning: A Random Matrix Approach
Understanding the learning dynamics of neural networks is one of the key issues for the improvement of optimization algorithms as well as for the theoretical comprehension of why deep neural nets work so well today. In this paper, we introduce a random matrix-based framework to analyze the learning dynamics of a single-layer linear network on a binary classification problem, for data of simultaneously large dimension and size, trained by gradient descent. Our results provide rich insights into common questions in neural nets, such as overfitting, early stopping and the initialization of training, thereby opening the door for future studies of more elaborate structures and models appearing in today's neural networks.
null
http://arxiv.org/abs/1805.11917v2
http://arxiv.org/pdf/1805.11917v2.pdf
ICML 2018 7
[ "Zhenyu Liao", "Romain Couillet" ]
[ "Binary Classification", "General Classification" ]
2018-05-30T00:00:00
https://icml.cc/Conferences/2018/Schedule?showEvent=2023
http://proceedings.mlr.press/v80/liao18b/liao18b.pdf
the-dynamics-of-learning-a-random-matrix-1
null
[ { "code_snippet_url": "", "description": "**Early Stopping** is a regularization technique for deep neural networks that stops training when parameter updates no longer begin to yield improves on a validation set. In essence, we store and update the current best parameters during training, and when parameter updates no longer yield an improvement (after a set number of iterations) we stop training and use the last best parameters. It works as a regularizer by restricting the optimization procedure to a smaller volume of parameter space.\r\n\r\nImage Source: [Ramazan Gençay](https://www.researchgate.net/figure/Early-stopping-based-on-cross-validation_fig1_3302948)", "full_name": "Early Stopping", "introduced_year": 1995, "main_collection": { "area": "General", "description": "Regularization strategies are designed to reduce the test error of a machine learning algorithm, possibly at the expense of training error. Many different forms of regularization exist in the field of deep learning. Below you can find a constantly updating list of regularization strategies.", "name": "Regularization", "parent": null }, "name": "Early Stopping", "source_title": null, "source_url": null } ]
https://paperswithcode.com/paper/unsupervised-detection-of-diachronic-word
1805.11295
null
null
Unsupervised detection of diachronic word sense evolution
Most words have several senses and connotations which evolve in time due to semantic shift, so that closely related words may gain different or even opposite meanings over the years. This evolution is very relevant to the study of language and of cultural changes, but the tools currently available for diachronic semantic analysis have significant, inherent limitations and are not suitable for real-time analysis. In this article, we demonstrate how the linearity of random vectors techniques enables building time series of congruent word embeddings (or semantic spaces) which can then be compared and combined linearly without loss of precision over any time period to detect diachronic semantic shifts. We show how this approach yields time trajectories of polysemous words such as amazon or apple, enables following semantic drifts and gender bias across time, reveals the shifting instantiations of stable concepts such as hurricane or president. This very fast, linear approach can easily be distributed over many processors to follow in real time streams of social media such as Twitter or Facebook; the resulting, time-dependent semantic spaces can then be combined at will by simple additions or subtractions.
null
http://arxiv.org/abs/1805.11295v2
http://arxiv.org/pdf/1805.11295v2.pdf
null
[ "Jean-François Delpech" ]
[ "Time Series", "Time Series Analysis", "Word Embeddings" ]
2018-05-29T00:00:00
null
null
null
null
[]
https://paperswithcode.com/paper/on-the-spectrum-of-random-features-maps-of
1805.11916
null
null
On the Spectrum of Random Features Maps of High Dimensional Data
Random feature maps are ubiquitous in modern statistical machine learning, where they generalize random projections by means of powerful, yet often difficult to analyze nonlinear operators. In this paper, we leverage the "concentration" phenomenon induced by random matrix theory to perform a spectral analysis on the Gram matrix of these random feature maps, here for Gaussian mixture models of simultaneously large dimension and size. Our results are instrumental to a deeper understanding on the interplay of the nonlinearity and the statistics of the data, thereby allowing for a better tuning of random feature-based techniques.
Random feature maps are ubiquitous in modern statistical machine learning, where they generalize random projections by means of powerful, yet often difficult to analyze nonlinear operators.
http://arxiv.org/abs/1805.11916v2
http://arxiv.org/pdf/1805.11916v2.pdf
ICML 2018 7
[ "Zhenyu Liao", "Romain Couillet" ]
[ "BIG-bench Machine Learning", "Vocal Bursts Intensity Prediction" ]
2018-05-30T00:00:00
https://icml.cc/Conferences/2018/Schedule?showEvent=1898
http://proceedings.mlr.press/v80/liao18a/liao18a.pdf
on-the-spectrum-of-random-features-maps-of-1
null
[]
https://paperswithcode.com/paper/bruno-a-deep-recurrent-model-for-exchangeable
1802.07535
null
null
BRUNO: A Deep Recurrent Model for Exchangeable Data
We present a novel model architecture which leverages deep learning tools to perform exact Bayesian inference on sets of high dimensional, complex observations. Our model is provably exchangeable, meaning that the joint distribution over observations is invariant under permutation: this property lies at the heart of Bayesian inference. The model does not require variational approximations to train, and new samples can be generated conditional on previous samples, with cost linear in the size of the conditioning set. The advantages of our architecture are demonstrated on learning tasks that require generalisation from short observed sequences while modelling sequence variability, such as conditional image generation, few-shot learning, and anomaly detection.
We present a novel model architecture which leverages deep learning tools to perform exact Bayesian inference on sets of high dimensional, complex observations.
http://arxiv.org/abs/1802.07535v3
http://arxiv.org/pdf/1802.07535v3.pdf
NeurIPS 2018 12
[ "Iryna Korshunova", "Jonas Degrave", "Ferenc Huszár", "Yarin Gal", "Arthur Gretton", "Joni Dambre" ]
[ "Anomaly Detection", "Bayesian Inference", "Conditional Image Generation", "Few-Shot Learning", "Image Generation", "model" ]
2018-02-21T00:00:00
http://papers.nips.cc/paper/7949-bruno-a-deep-recurrent-model-for-exchangeable-data
http://papers.nips.cc/paper/7949-bruno-a-deep-recurrent-model-for-exchangeable-data.pdf
bruno-a-deep-recurrent-model-for-exchangeable-1
null
[]
https://paperswithcode.com/paper/dynamic-texture-recognition-using-time-causal
1710.04842
null
null
Dynamic texture recognition using time-causal and time-recursive spatio-temporal receptive fields
This work presents a first evaluation of using spatio-temporal receptive fields from a recently proposed time-causal spatio-temporal scale-space framework as primitives for video analysis. We propose a new family of video descriptors based on regional statistics of spatio-temporal receptive field responses and evaluate this approach on the problem of dynamic texture recognition. Our approach generalises a previously used method, based on joint histograms of receptive field responses, from the spatial to the spatio-temporal domain and from object recognition to dynamic texture recognition. The time-recursive formulation enables computationally efficient time-causal recognition. The experimental evaluation demonstrates competitive performance compared to state-of-the-art. Especially, it is shown that binary versions of our dynamic texture descriptors achieve improved performance compared to a large range of similar methods using different primitives either handcrafted or learned from data. Further, our qualitative and quantitative investigation into parameter choices and the use of different sets of receptive fields highlights the robustness and flexibility of our approach. Together, these results support the descriptive power of this family of time-causal spatio-temporal receptive fields, validate our approach for dynamic texture recognition and point towards the possibility of designing a range of video analysis methods based on these new time-causal spatio-temporal primitives.
null
http://arxiv.org/abs/1710.04842v3
http://arxiv.org/pdf/1710.04842v3.pdf
null
[ "Ylva Jansson", "Tony Lindeberg" ]
[ "Descriptive", "Dynamic Texture Recognition", "Object Recognition" ]
2017-10-13T00:00:00
null
null
null
null
[]
https://paperswithcode.com/paper/needle-tip-force-estimation-using-an-oct
1805.11911
null
null
Needle Tip Force Estimation using an OCT Fiber and a Fused convGRU-CNN Architecture
Needle insertion is common during minimally invasive interventions such as biopsy or brachytherapy. During soft tissue needle insertion, forces acting at the needle tip cause tissue deformation and needle deflection. Accurate needle tip force measurement provides information on needle-tissue interaction and helps detecting and compensating potential misplacement. For this purpose we introduce an image-based needle tip force estimation method using an optical fiber imaging the deformation of an epoxy layer below the needle tip over time. For calibration and force estimation, we introduce a novel deep learning-based fused convolutional GRU-CNN model which effectively exploits the spatio-temporal data structure. The needle is easy to manufacture and our model achieves a mean absolute error of 1.76 +- 1.5 mN with a cross-correlation coefficient of 0.9996, clearly outperforming other methods. We test needles with different materials to demonstrate that the approach can be adapted for different sensitivities and force ranges. Furthermore, we validate our approach in an ex-vivo prostate needle insertion scenario.
null
http://arxiv.org/abs/1805.11911v1
http://arxiv.org/pdf/1805.11911v1.pdf
null
[ "Nils Gessert", "Torben Priegnitz", "Thore Saathoff", "Sven-Thomas Antoni", "David Meyer", "Moritz Franz Hamann", "Klaus-Peter Jünemann", "Christoph Otte", "Alexander Schlaefer" ]
[]
2018-05-30T00:00:00
null
null
null
null
[]
https://paperswithcode.com/paper/who-learns-better-bayesian-network-structures
1805.11908
null
null
Who Learns Better Bayesian Network Structures: Accuracy and Speed of Structure Learning Algorithms
Three classes of algorithms to learn the structure of Bayesian networks from data are common in the literature: constraint-based algorithms, which use conditional independence tests to learn the dependence structure of the data; score-based algorithms, which use goodness-of-fit scores as objective functions to maximise; and hybrid algorithms that combine both approaches. Constraint-based and score-based algorithms have been shown to learn the same structures when conditional independence and goodness of fit are both assessed using entropy and the topological ordering of the network is known (Cowell, 2001). In this paper, we investigate how these three classes of algorithms perform outside the assumptions above in terms of speed and accuracy of network reconstruction for both discrete and Gaussian Bayesian networks. We approach this question by recognising that structure learning is defined by the combination of a statistical criterion and an algorithm that determines how the criterion is applied to the data. Removing the confounding effect of different choices for the statistical criterion, we find using both simulated and real-world complex data that constraint-based algorithms are often less accurate than score-based algorithms, but are seldom faster (even at large sample sizes); and that hybrid algorithms are neither faster nor more accurate than constraint-based algorithms. This suggests that commonly held beliefs on structure learning in the literature are strongly influenced by the choice of particular statistical criteria rather than just by the properties of the algorithms themselves.
null
https://arxiv.org/abs/1805.11908v3
https://arxiv.org/pdf/1805.11908v3.pdf
null
[ "Marco Scutari", "Catharina Elisabeth Graafland", "José Manuel Gutiérrez" ]
[]
2018-05-30T00:00:00
null
null
null
null
[ { "code_snippet_url": "https://github.com/lorenzopapa5/SPEED", "description": "The monocular depth estimation (MDE) is the task of estimating depth from a single frame. This information is an essential knowledge in many computer vision tasks such as scene understanding and visual odometry, which are key components in autonomous and robotic systems. \r\nApproaches based on the state of the art vision transformer architectures are extremely deep and complex not suitable for real-time inference operations on edge and autonomous systems equipped with low resources (i.e. robot indoor navigation and surveillance). This paper presents SPEED, a Separable Pyramidal pooling EncodEr-Decoder architecture designed to achieve real-time frequency performances on multiple hardware platforms. The proposed model is a fast-throughput deep architecture for MDE able to obtain depth estimations with high accuracy from low resolution images using minimum hardware resources (i.e. edge devices). Our encoder-decoder model exploits two depthwise separable pyramidal pooling layers, which allow to increase the inference frequency while reducing the overall computational complexity. The proposed method performs better than other fast-throughput architectures in terms of both accuracy and frame rates, achieving real-time performances over cloud CPU, TPU and the NVIDIA Jetson TX1 on two indoor benchmarks: the NYU Depth v2 and the DIML Kinect v2 datasets.", "full_name": "SPEED: Separable Pyramidal Pooling EncodEr-Decoder for Real-Time Monocular Depth Estimation on Low-Resource Settings", "introduced_year": 2000, "main_collection": null, "name": "SPEED", "source_title": null, "source_url": null } ]
https://paperswithcode.com/paper/differential-properties-of-sinkhorn
1805.11897
null
null
Differential Properties of Sinkhorn Approximation for Learning with Wasserstein Distance
Applications of optimal transport have recently gained remarkable attention thanks to the computational advantages of entropic regularization. However, in most situations the Sinkhorn approximation of the Wasserstein distance is replaced by a regularized version that is less accurate but easy to differentiate. In this work we characterize the differential properties of the original Sinkhorn distance, proving that it enjoys the same smoothness as its regularized version and we explicitly provide an efficient algorithm to compute its gradient. We show that this result benefits both theory and applications: on one hand, high order smoothness confers statistical guarantees to learning with Wasserstein approximations. On the other hand, the gradient formula allows us to efficiently solve learning and optimization problems in practice. Promising preliminary experiments complement our analysis.
Applications of optimal transport have recently gained remarkable attention thanks to the computational advantages of entropic regularization.
http://arxiv.org/abs/1805.11897v1
http://arxiv.org/pdf/1805.11897v1.pdf
NeurIPS 2018 12
[ "Giulia Luise", "Alessandro Rudi", "Massimiliano Pontil", "Carlo Ciliberto" ]
[]
2018-05-30T00:00:00
http://papers.nips.cc/paper/7827-differential-properties-of-sinkhorn-approximation-for-learning-with-wasserstein-distance
http://papers.nips.cc/paper/7827-differential-properties-of-sinkhorn-approximation-for-learning-with-wasserstein-distance.pdf
differential-properties-of-sinkhorn-1
null
[]
https://paperswithcode.com/paper/note-on-representing-attribute-reduction-and
1711.05509
null
null
Note on Representing attribute reduction and concepts in concepts lattice using graphs
Mao H. (2017, Representing attribute reduction and concepts in concept lattice using graphs. Soft Computing 21(24):7293--7311) claims to make contributions to the study of reduction of attributes in concept lattices by using graph theory. We show that her results are either trivial or already well-known and all three algorithms proposed in the paper are incorrect.
null
http://arxiv.org/abs/1711.05509v2
http://arxiv.org/pdf/1711.05509v2.pdf
null
[ "Jan Konecny" ]
[ "Attribute" ]
2017-11-15T00:00:00
null
null
null
null
[]
https://paperswithcode.com/paper/tile2vec-unsupervised-representation-learning
1805.02855
null
null
Tile2Vec: Unsupervised representation learning for spatially distributed data
Geospatial analysis lacks methods like the word vector representations and pre-trained networks that significantly boost performance across a wide range of natural language and computer vision tasks. To fill this gap, we introduce Tile2Vec, an unsupervised representation learning algorithm that extends the distributional hypothesis from natural language -- words appearing in similar contexts tend to have similar meanings -- to spatially distributed data. We demonstrate empirically that Tile2Vec learns semantically meaningful representations on three datasets. Our learned representations significantly improve performance in downstream classification tasks and, similar to word vectors, visual analogies can be obtained via simple arithmetic in the latent space.
Geospatial analysis lacks methods like the word vector representations and pre-trained networks that significantly boost performance across a wide range of natural language and computer vision tasks.
http://arxiv.org/abs/1805.02855v2
http://arxiv.org/pdf/1805.02855v2.pdf
null
[ "Neal Jean", "Sherrie Wang", "Anshul Samar", "George Azzari", "David Lobell", "Stefano Ermon" ]
[ "General Classification", "Representation Learning", "Visual Analogies" ]
2018-05-08T00:00:00
null
null
null
null
[]
https://paperswithcode.com/paper/predictive-performance-modeling-for
1805.11877
null
null
Predictive Performance Modeling for Distributed Computing using Black-Box Monitoring and Machine Learning
In many domains, the previous decade was characterized by increasing data volumes and growing complexity of computational workloads, creating new demands for highly data-parallel computing in distributed systems. Effective operation of these systems is challenging when facing uncertainties about the performance of jobs and tasks under varying resource configurations, e.g., for scheduling and resource allocation. We survey predictive performance modeling (PPM) approaches to estimate performance metrics such as execution duration, required memory or wait times of future jobs and tasks based on past performance observations. We focus on non-intrusive methods, i.e., methods that can be applied to any workload without modification, since the workload is usually a black-box from the perspective of the systems managing the computational infrastructure. We classify and compare sources of performance variation, predicted performance metrics, required training data, use cases, and the underlying prediction techniques. We conclude by identifying several open problems and pressing research needs in the field.
null
http://arxiv.org/abs/1805.11877v1
http://arxiv.org/pdf/1805.11877v1.pdf
null
[ "Carl Witt", "Marc Bux", "Wladislaw Gusew", "Ulf Leser" ]
[ "BIG-bench Machine Learning", "Distributed Computing", "Scheduling" ]
2018-05-30T00:00:00
null
null
null
null
[]
https://paperswithcode.com/paper/emotionlines-an-emotion-corpus-of-multi-party
1802.08379
null
null
EmotionLines: An Emotion Corpus of Multi-Party Conversations
Feeling emotion is a critical characteristic to distinguish people from machines. Among all the multi-modal resources for emotion detection, textual datasets are those containing the least additional information in addition to semantics, and hence are adopted widely for testing the developed systems. However, most of the textual emotional datasets consist of emotion labels of only individual words, sentences or documents, which makes it challenging to discuss the contextual flow of emotions. In this paper, we introduce EmotionLines, the first dataset with emotions labeling on all utterances in each dialogue only based on their textual content. Dialogues in EmotionLines are collected from Friends TV scripts and private Facebook messenger dialogues. Then one of seven emotions, six Ekman's basic emotions plus the neutral emotion, is labeled on each utterance by 5 Amazon MTurkers. A total of 29,245 utterances from 2,000 dialogues are labeled in EmotionLines. We also provide several strong baselines for emotion detection models on EmotionLines in this paper.
null
http://arxiv.org/abs/1802.08379v2
http://arxiv.org/pdf/1802.08379v2.pdf
LREC 2018 5
[ "Sheng-Yeh Chen", "Chao-Chun Hsu", "Chuan-Chun Kuo", "Ting-Hao", "Huang", "Lun-Wei Ku" ]
[]
2018-02-23T00:00:00
https://aclanthology.org/L18-1252
https://aclanthology.org/L18-1252.pdf
emotionlines-an-emotion-corpus-of-multi-party-1
null
[]
https://paperswithcode.com/paper/fast-and-accurate-low-rank-factorization-of
1706.08146
null
null
Compressed Factorization: Fast and Accurate Low-Rank Factorization of Compressively-Sensed Data
What learning algorithms can be run directly on compressively-sensed data? In this work, we consider the question of accurately and efficiently computing low-rank matrix or tensor factorizations given data compressed via random projections. We examine the approach of first performing factorization in the compressed domain, and then reconstructing the original high-dimensional factors from the recovered (compressed) factors. In both the matrix and tensor settings, we establish conditions under which this natural approach will provably recover the original factors. While it is well-known that random projections preserve a number of geometric properties of a dataset, our work can be viewed as showing that they can also preserve certain solutions of non-convex, NP-Hard problems like non-negative matrix factorization. We support these theoretical results with experiments on synthetic data and demonstrate the practical applicability of compressed factorization on real-world gene expression and EEG time series datasets.
null
https://arxiv.org/abs/1706.08146v3
https://arxiv.org/pdf/1706.08146v3.pdf
null
[ "Vatsal Sharan", "Kai Sheng Tai", "Peter Bailis", "Gregory Valiant" ]
[ "EEG", "Electroencephalogram (EEG)", "Time Series", "Time Series Analysis" ]
2017-06-25T00:00:00
null
null
null
null
[]
https://paperswithcode.com/paper/a-corpus-of-english-hindi-code-mixed-tweets
1805.11869
null
null
A Corpus of English-Hindi Code-Mixed Tweets for Sarcasm Detection
Social media platforms like twitter and facebook have be- come two of the largest mediums used by people to express their views to- wards different topics. Generation of such large user data has made NLP tasks like sentiment analysis and opinion mining much more important. Using sarcasm in texts on social media has become a popular trend lately. Using sarcasm reverses the meaning and polarity of what is implied by the text which poses challenge for many NLP tasks. The task of sarcasm detection in text is gaining more and more importance for both commer- cial and security services. We present the first English-Hindi code-mixed dataset of tweets marked for presence of sarcasm and irony where each token is also annotated with a language tag. We present a baseline su- pervised classification system developed using the same dataset which achieves an average F-score of 78.4 after using random forest classifier and performing 10-fold cross validation.
Social media platforms like twitter and facebook have be- come two of the largest mediums used by people to express their views to- wards different topics.
http://arxiv.org/abs/1805.11869v1
http://arxiv.org/pdf/1805.11869v1.pdf
null
[ "Sahil Swami", "Ankush Khandelwal", "Vinay Singh", "Syed Sarfaraz Akhtar", "Manish Shrivastava" ]
[ "Opinion Mining", "Sarcasm Detection", "Sentiment Analysis", "TAG" ]
2018-05-30T00:00:00
null
null
null
null
[]
https://paperswithcode.com/paper/competitive-training-of-mixtures-of
1804.11130
null
null
Competitive Training of Mixtures of Independent Deep Generative Models
A common assumption in causal modeling posits that the data is generated by a set of independent mechanisms, and algorithms should aim to recover this structure. Standard unsupervised learning, however, is often concerned with training a single model to capture the overall distribution or aspects thereof. Inspired by clustering approaches, we consider mixtures of implicit generative models that ``disentangle'' the independent generative mechanisms underlying the data. Relying on an additional set of discriminators, we propose a competitive training procedure in which the models only need to capture the portion of the data distribution from which they can produce realistic samples. As a by-product, each model is simpler and faster to train. We empirically show that our approach splits the training distribution in a sensible way and increases the quality of the generated samples.
null
http://arxiv.org/abs/1804.11130v4
http://arxiv.org/pdf/1804.11130v4.pdf
null
[ "Francesco Locatello", "Damien Vincent", "Ilya Tolstikhin", "Gunnar Rätsch", "Sylvain Gelly", "Bernhard Schölkopf" ]
[ "Clustering" ]
2018-04-30T00:00:00
null
null
null
null
[]
https://paperswithcode.com/paper/an-english-hindi-code-mixed-corpus-stance
1805.11868
null
null
An English-Hindi Code-Mixed Corpus: Stance Annotation and Baseline System
Social media has become one of the main channels for peo- ple to communicate and share their views with the society. We can often detect from these views whether the person is in favor, against or neu- tral towards a given topic. These opinions from social media are very useful for various companies. We present a new dataset that consists of 3545 English-Hindi code-mixed tweets with opinion towards Demoneti- sation that was implemented in India in 2016 which was followed by a large countrywide debate. We present a baseline supervised classification system for stance detection developed using the same dataset that uses various machine learning techniques to achieve an accuracy of 58.7% on 10-fold cross validation.
null
http://arxiv.org/abs/1805.11868v1
http://arxiv.org/pdf/1805.11868v1.pdf
null
[ "Sahil Swami", "Ankush Khandelwal", "Vinay Singh", "Syed Sarfaraz Akhtar", "Manish Shrivastava" ]
[ "General Classification", "Stance Detection" ]
2018-05-30T00:00:00
null
null
null
null
[]
https://paperswithcode.com/paper/using-inter-sentence-diverse-beam-search-to
1805.11867
null
null
Using Inter-Sentence Diverse Beam Search to Reduce Redundancy in Visual Storytelling
Visual storytelling includes two important parts: coherence between the story and images as well as the story structure. For image to text neural network models, similar images in the sequence would provide close information for story generator to obtain almost identical sentence. However, repeatedly narrating same objects or events will undermine a good story structure. In this paper, we proposed an inter-sentence diverse beam search to generate a more expressive story. Comparing to some recent models of visual storytelling task, which generate story without considering the generated sentence of the previous picture, our proposed method can avoid generating identical sentence even given a sequence of similar pictures.
null
http://arxiv.org/abs/1805.11867v1
http://arxiv.org/pdf/1805.11867v1.pdf
null
[ "Chao-Chun Hsu", "Szu-Min Chen", "Ming-Hsun Hsieh", "Lun-Wei Ku" ]
[ "Image to text", "Sentence", "Visual Storytelling" ]
2018-05-30T00:00:00
null
null
null
null
[]
https://paperswithcode.com/paper/foresee-attentive-future-projections-of
1805.11861
null
null
Foresee: Attentive Future Projections of Chaotic Road Environments with Online Training
In this paper, we train a recurrent neural network to learn dynamics of a chaotic road environment and to project the future of the environment on an image. Future projection can be used to anticipate an unseen environment for example, in autonomous driving. Road environment is highly dynamic and complex due to the interaction among traffic participants such as vehicles and pedestrians. Even in this complex environment, a human driver is efficacious to safely drive on chaotic roads irrespective of the number of traffic participants. The proliferation of deep learning research has shown the efficacy of neural networks in learning this human behavior. In the same direction, we investigate recurrent neural networks to understand the chaotic road environment which is shared by pedestrians, vehicles (cars, trucks, bicycles etc.), and sometimes animals as well. We propose \emph{Foresee}, a unidirectional gated recurrent units (GRUs) network with attention to project future of the environment in the form of images. We have collected several videos on Delhi roads consisting of various traffic participants, background and infrastructure differences (like 3D pedestrian crossing) at various times on various days. We train \emph{Foresee} in an unsupervised way and we use online training to project frames up to $0.5$ seconds in advance. We show that our proposed model performs better than state of the art methods (prednet and Enc. Dec. LSTM) and finally, we show that our trained model generalizes to a public dataset for future projections.
null
http://arxiv.org/abs/1805.11861v1
http://arxiv.org/pdf/1805.11861v1.pdf
null
[ "Anil Sharma", "Prabhat Kumar" ]
[ "Autonomous Driving" ]
2018-05-30T00:00:00
null
null
null
null
[]
https://paperswithcode.com/paper/runresidual-u-net-for-computer-aided
1805.11856
null
null
RUN:Residual U-Net for Computer-Aided Detection of Pulmonary Nodules without Candidate Selection
The early detection and early diagnosis of lung cancer are crucial to improve the survival rate of lung cancer patients. Pulmonary nodules detection results have a significant impact on the later diagnosis. In this work, we propose a new network named RUN to complete nodule detection in a single step by bypassing the candidate selection. The system introduces the shortcut of the residual network to improve the traditional U-Net, thereby solving the disadvantage of poor results due to its lack of depth. Furthermore, we compare the experimental results with the traditional U-Net. We validate our method in LUng Nodule Analysis 2016 (LUNA16) Nodule Detection Challenge. We acquire a sensitivity of 90.90% at 2 false positives per scan and therefore achieve better performance than the current state-of-the-art approaches.
null
http://arxiv.org/abs/1805.11856v1
http://arxiv.org/pdf/1805.11856v1.pdf
null
[ "Tian Lan", "Yuanyuan Li", "Jonah Kimani Murugi", "Yi Ding", "Zhiguang Qin" ]
[]
2018-05-30T00:00:00
null
null
null
null
[ { "code_snippet_url": "https://github.com/pytorch/vision/blob/7c077f6a986f05383bcb86b535aedb5a63dd5c4b/torchvision/models/densenet.py#L113", "description": "A **Concatenated Skip Connection** is a type of skip connection that seeks to reuse features by concatenating them to new layers, allowing more information to be retained from previous layers of the network. This contrasts with say, residual connections, where element-wise summation is used instead to incorporate information from previous layers. This type of skip connection is prominently used in DenseNets (and also Inception networks), which the Figure to the right illustrates.", "full_name": "Concatenated Skip Connection", "introduced_year": 2000, "main_collection": { "area": "General", "description": "**Skip Connections** allow layers to skip layers and connect to layers further up the network, allowing for information to flow more easily up the network. Below you can find a continuously updating list of skip connection methods.", "name": "Skip Connections", "parent": null }, "name": "Concatenated Skip Connection", "source_title": null, "source_url": null }, { "code_snippet_url": "", "description": "How Do I Communicate to Expedia?\r\nHow Do I Communicate to Expedia? – Call **☎️ +1-(888) 829 (0881) or +1-805-330-4056 or +1-805-330-4056** for Live Support & Special Travel Discounts!Frustrated with automated systems? Call **☎️ **☎️ +1-(888) 829 (0881) or +1-805-330-4056 or +1-805-330-4056** now to speak directly with a live Expedia agent and unlock exclusive best deal discounts on hotels, flights, and vacation packages. Get real help fast while enjoying limited-time offers that make your next trip more affordable, smooth, and stress-free. Don’t wait—call today!\r\n\r\n\r\nHow Do I Communicate to Expedia?\r\nHow Do I Communicate to Expedia? – Call **☎️ +1-(888) 829 (0881) or +1-805-330-4056 or +1-805-330-4056** for Live Support & Special Travel Discounts!Frustrated with automated systems? Call **☎️ **☎️ +1-(888) 829 (0881) or +1-805-330-4056 or +1-805-330-4056** now to speak directly with a live Expedia agent and unlock exclusive best deal discounts on hotels, flights, and vacation packages. Get real help fast while enjoying limited-time offers that make your next trip more affordable, smooth, and stress-free. Don’t wait—call today!", "full_name": "*Communicated@Fast*How Do I Communicate to Expedia?", "introduced_year": 2000, "main_collection": { "area": "General", "description": "How do I escalate a problem with Expedia?\r\nTo escalate a problem with Expedia, call +1(888) (829) (0881) OR +1(805) (330) (4056) and ask to speak with a manager. Explain your issue in detail and inquire about compensation. Expedia may provide exclusive discount codes, travel credits, or special offers to help resolve your problem and improve your experience.\r\nIs Expedia actually fully refundable?\r\nExpedia isn’t always fully refundable—refunds depend on the hotel, airline, or rental provider’s policy call +1(888) (829) (0881) OR +1(805) (330) (4056). Look for “Free Cancellation” before booking to ensure flexibility. For peace of mind and potential savings, call +1(888) (829) (0881) OR +1(805) (330) (4056) and ask about current discount codes or refund-friendly deals.\r\n\r\nWhat is the refundable option on expedia?\r\nThe refundable option on Expedia allows you to cancel eligible bookings call +1(888) (829) (0881) OR +1(805) (330) (4056) without penalty. Look for listings marked “Free Cancellation” or “Fully Refundable.” To maximize flexibility, choose these options during checkout. For additional savings, call +1(888) (829) (0881) OR +1(805) (330) (4056) and ask about exclusive promo codes or travel discounts available today.", "name": "Activation Functions", "parent": null }, "name": "ReLU", "source_title": null, "source_url": null }, { "code_snippet_url": null, "description": "**Max Pooling** is a pooling operation that calculates the maximum value for patches of a feature map, and uses it to create a downsampled (pooled) feature map. It is usually used after a convolutional layer. It adds a small amount of translation invariance - meaning translating the image by a small amount does not significantly affect the values of most pooled outputs.\r\n\r\nImage Source: [here](https://computersciencewiki.org/index.php/File:MaxpoolSample2.png)", "full_name": "Max Pooling", "introduced_year": 2000, "main_collection": { "area": "Computer Vision", "description": "**Pooling Operations** are used to pool features together, often downsampling the feature map to a smaller size. They can also induce favourable properties such as translation invariance in image classification, as well as bring together information from different parts of a network in tasks like object detection (e.g. pooling different scales). ", "name": "Pooling Operations", "parent": null }, "name": "Max Pooling", "source_title": null, "source_url": null }, { "code_snippet_url": "", "description": "A **convolution** is a type of matrix operation, consisting of a kernel, a small matrix of weights, that slides over input data performing element-wise multiplication with the part of the input it is on, then summing the results into an output.\r\n\r\nIntuitively, a convolution allows for weight sharing - reducing the number of effective parameters - and image translation (allowing for the same feature to be detected in different parts of the input space).\r\n\r\nImage Source: [https://arxiv.org/pdf/1603.07285.pdf](https://arxiv.org/pdf/1603.07285.pdf)", "full_name": "Convolution", "introduced_year": 1980, "main_collection": { "area": "Computer Vision", "description": "**Convolutions** are a type of operation that can be used to learn representations from images. They involve a learnable kernel sliding over the image and performing element-wise multiplication with the input. The specification allows for parameter sharing and translation invariance. Below you can find a continuously updating list of convolutions.", "name": "Convolutions", "parent": "Image Feature Extractors" }, "name": "Convolution", "source_title": null, "source_url": null }, { "code_snippet_url": "https://github.com/milesial/Pytorch-UNet/blob/67bf11b4db4c5f2891bd7e8e7f58bcde8ee2d2db/unet/unet_model.py#L8", "description": "**U-Net** is an architecture for semantic segmentation. It consists of a contracting path and an expansive path. The contracting path follows the typical architecture of a convolutional network. It consists of the repeated application of two 3x3 convolutions (unpadded convolutions), each followed by a rectified linear unit ([ReLU](https://paperswithcode.com/method/relu)) and a 2x2 [max pooling](https://paperswithcode.com/method/max-pooling) operation with stride 2 for downsampling. At each downsampling step we double the number of feature channels. Every step in the expansive path consists of an upsampling of the feature map followed by a 2x2 [convolution](https://paperswithcode.com/method/convolution) (“up-convolution”) that halves the number of feature channels, a concatenation with the correspondingly cropped feature map from the contracting path, and two 3x3 convolutions, each followed by a ReLU. The cropping is necessary due to the loss of border pixels in every convolution. At the final layer a [1x1 convolution](https://paperswithcode.com/method/1x1-convolution) is used to map each 64-component feature vector to the desired number of classes. In total the network has 23 convolutional layers.\r\n\r\n[Original MATLAB Code](https://lmb.informatik.uni-freiburg.de/people/ronneber/u-net/u-net-release-2015-10-02.tar.gz)", "full_name": "U-Net", "introduced_year": 2000, "main_collection": { "area": "Computer Vision", "description": "**Semantic Segmentation Models** are a class of methods that address the task of semantically segmenting an image into different object classes. Below you can find a continuously updating list of semantic segmentation models. ", "name": "Semantic Segmentation Models", "parent": null }, "name": "U-Net", "source_title": "U-Net: Convolutional Networks for Biomedical Image Segmentation", "source_url": "http://arxiv.org/abs/1505.04597v1" } ]
https://paperswithcode.com/paper/labelling-as-an-unsupervised-learning-problem
1805.03911
null
null
Labelling as an unsupervised learning problem
Unravelling hidden patterns in datasets is a classical problem with many potential applications. In this paper, we present a challenge whose objective is to discover nonlinear relationships in noisy cloud of points. If a set of point satisfies a nonlinear relationship that is unlikely to be due to randomness, we will label the set with this relationship. Since points can satisfy one, many or no such nonlinear relationships, cloud of points will typically have one, multiple or no labels at all. This introduces the labelling problem that will be studied in this paper. The objective of this paper is to develop a framework for the labelling problem. We introduce a precise notion of a label, and we propose an algorithm to discover such labels in a given dataset, which is then tested in synthetic datasets. We also analyse, using tools from random matrix theory, the problem of discovering false labels in the dataset.
null
http://arxiv.org/abs/1805.03911v2
http://arxiv.org/pdf/1805.03911v2.pdf
null
[ "Terry Lyons", "Imanol Perez Arribas" ]
[]
2018-05-10T00:00:00
null
null
null
null
[]
https://paperswithcode.com/paper/adagio-interactive-experimentation-with
1805.11852
null
null
ADAGIO: Interactive Experimentation with Adversarial Attack and Defense for Audio
Adversarial machine learning research has recently demonstrated the feasibility to confuse automatic speech recognition (ASR) models by introducing acoustically imperceptible perturbations to audio samples. To help researchers and practitioners gain better understanding of the impact of such attacks, and to provide them with tools to help them more easily evaluate and craft strong defenses for their models, we present ADAGIO, the first tool designed to allow interactive experimentation with adversarial attacks and defenses on an ASR model in real time, both visually and aurally. ADAGIO incorporates AMR and MP3 audio compression techniques as defenses, which users can interactively apply to attacked audio samples. We show that these techniques, which are based on psychoacoustic principles, effectively eliminate targeted attacks, reducing the attack success rate from 92.5% to 0%. We will demonstrate ADAGIO and invite the audience to try it on the Mozilla Common Voice dataset.
null
http://arxiv.org/abs/1805.11852v1
http://arxiv.org/pdf/1805.11852v1.pdf
null
[ "Nilaksh Das", "Madhuri Shanbhogue", "Shang-Tse Chen", "Li Chen", "Michael E. Kounavis", "Duen Horng Chau" ]
[ "Adversarial Attack", "Audio Compression", "Automatic Speech Recognition", "Automatic Speech Recognition (ASR)", "speech-recognition", "Speech Recognition" ]
2018-05-30T00:00:00
null
null
null
null
[]
https://paperswithcode.com/paper/spectral-spatial-classification-of-1
1711.05512
null
null
Spectral-spatial classification of hyperspectral images: three tricks and a new supervised learning setting
Spectral-spatial classification of hyperspectral images has been the subject of many studies in recent years. In the presence of only very few labeled pixels, this task becomes challenging. In this paper we address the following two research questions: 1) Can a simple neural network with just a single hidden layer achieve state of the art performance in the presence of few labeled pixels? 2) How is the performance of hyperspectral image classification methods affected when using disjoint train and test sets? We give a positive answer to the first question by using three tricks within a very basic shallow Convolutional Neural Network (CNN) architecture: a tailored loss function, and smooth- and label-based data augmentation. The tailored loss function enforces that neighborhood wavelengths have similar contributions to the features generated during training. A new label-based technique here proposed favors selection of pixels in smaller classes, which is beneficial in the presence of very few labeled pixels and skewed class distributions. To address the second question, we introduce a new sampling procedure to generate disjoint train and test set. Then the train set is used to obtain the CNN model, which is then applied to pixels in the test set to estimate their labels. We assess the efficacy of the simple neural network method on five publicly available hyperspectral images. On these images our method significantly outperforms considered baselines. Notably, with just 1% of labeled pixels per class, on these datasets our method achieves an accuracy that goes from 86.42% (challenging dataset) to 99.52% (easy dataset). Furthermore we show that the simple neural network method improves over other baselines in the new challenging supervised setting. Our analysis substantiates the highly beneficial effect of using the entire image (so train and test data) for constructing a model.
2) How is the performance of hyperspectral image classification methods affected when using disjoint train and test sets?
http://arxiv.org/abs/1711.05512v4
http://arxiv.org/pdf/1711.05512v4.pdf
null
[ "Jacopo Acquarelli", "Elena Marchiori", "Lutgarde M. C. Buydens", "Thanh Tran", "Twan van Laarhoven" ]
[ "Data Augmentation", "General Classification", "Hyperspectral Image Classification", "image-classification", "Image Classification" ]
2017-11-15T00:00:00
null
null
null
null
[]
https://paperswithcode.com/paper/neural-joking-machine-humorous-image
1805.11850
null
null
Neural Joking Machine : Humorous image captioning
What is an effective expression that draws laughter from human beings? In the present paper, in order to consider this question from an academic standpoint, we generate an image caption that draws a "laugh" by a computer. A system that outputs funny captions based on the image caption proposed in the computer vision field is constructed. Moreover, we also propose the Funny Score, which flexibly gives weights according to an evaluation database. The Funny Score more effectively brings out "laughter" to optimize a model. In addition, we build a self-collected BoketeDB, which contains a theme (image) and funny caption (text) posted on "Bokete", which is an image Ogiri website. In an experiment, we use BoketeDB to verify the effectiveness of the proposed method by comparing the results obtained using the proposed method and those obtained using MS COCO Pre-trained CNN+LSTM, which is the baseline and idiot created by humans. We refer to the proposed method, which uses the BoketeDB pre-trained model, as the Neural Joking Machine (NJM).
null
http://arxiv.org/abs/1805.11850v1
http://arxiv.org/pdf/1805.11850v1.pdf
null
[ "Kota Yoshida", "Munetaka Minoguchi", "Kenichiro Wani", "Akio Nakamura", "Hirokatsu Kataoka" ]
[ "Image Captioning" ]
2018-05-30T00:00:00
null
null
null
null
[]
https://paperswithcode.com/paper/learning-instance-aware-object-detection
1805.10765
null
null
Learning Instance-Aware Object Detection Using Determinantal Point Processes
Recent object detectors find instances while categorizing candidate regions. As each region is evaluated independently, the number of candidate regions from a detector is usually larger than the number of objects. Since the final goal of detection is to assign a single detection to each object, a heuristic algorithm, such as non-maximum suppression (NMS), is used to select a single bounding box for an object. While simple heuristic algorithms are effective for stand-alone objects, they can fail to detect overlapped objects. In this paper, we address this issue by training a network to distinguish different objects using the relationship between candidate boxes. We propose an instance-aware detection network (IDNet), which can learn to extract features from candidate regions and measure their similarities. Based on pairwise similarities and detection qualities, the IDNet selects a subset of candidate bounding boxes using instance-aware determinantal point process inference (IDPP). Extensive experiments demonstrate that the proposed algorithm achieves significant improvements for detecting overlapped objects compared to existing state-of-the-art detection methods on the PASCAL VOC and MS COCO datasets.
Recent object detectors find instances while categorizing candidate regions.
https://arxiv.org/abs/1805.10765v3
https://arxiv.org/pdf/1805.10765v3.pdf
null
[ "Nuri Kim", "Donghoon Lee", "Songhwai Oh" ]
[ "Object", "object-detection", "Object Detection", "Point Processes" ]
2018-05-28T00:00:00
null
null
null
null
[]
https://paperswithcode.com/paper/robot-localisation-and-3d-position-estimation
1801.02025
null
null
Robot Localisation and 3D Position Estimation Using a Free-Moving Camera and Cascaded Convolutional Neural Networks
Many works in collaborative robotics and human-robot interaction focuses on identifying and predicting human behaviour while considering the information about the robot itself as given. This can be the case when sensors and the robot are calibrated in relation to each other and often the reconfiguration of the system is not possible, or extra manual work is required. We present a deep learning based approach to remove the constraint of having the need for the robot and the vision sensor to be fixed and calibrated in relation to each other. The system learns the visual cues of the robot body and is able to localise it, as well as estimate the position of robot joints in 3D space by just using a 2D color image. The method uses a cascaded convolutional neural network, and we present the structure of the network, describe our own collected dataset, explain the network training and achieved results. A fully trained system shows promising results in providing an accurate mask of where the robot is located and a good estimate of its joints positions in 3D. The accuracy is not good enough for visual servoing applications yet, however, it can be sufficient for general safety and some collaborative tasks not requiring very high precision. The main benefit of our method is the possibility of the vision sensor to move freely. This allows it to be mounted on moving objects, for example, a body of the person or a mobile robot working in the same environment as the robots are operating in.
null
http://arxiv.org/abs/1801.02025v2
http://arxiv.org/pdf/1801.02025v2.pdf
null
[ "Justinas Miseikis", "Patrick Knobelreiter", "Inka Brijacak", "Saeed Yahyanejad", "Kyrre Glette", "Ole Jakob Elle", "Jim Torresen" ]
[ "Position" ]
2018-01-06T00:00:00
null
null
null
null
[]
https://paperswithcode.com/paper/learning-multiple-non-mutually-exclusive
1805.11837
null
null
Learning multiple non-mutually-exclusive tasks for improved classification of inherently ordered labels
Medical image classification involves thresholding of labels that represent malignancy risk levels. Usually, a task defines a single threshold, and when developing computer-aided diagnosis tools, a single network is trained per such threshold, e.g. as screening out healthy (very low risk) patients to leave possibly sick ones for further analysis (low threshold), or trying to find malignant cases among those marked as non-risk by the radiologist ("second reading", high threshold). We propose a way to rephrase the classification problem in a manner that yields several problems (corresponding to different thresholds) to be solved simultaneously. This allows the use of Multiple Task Learning (MTL) methods, significantly improving the performance of the original classifier, by facilitating effective extraction of information from existing data.
null
http://arxiv.org/abs/1805.11837v2
http://arxiv.org/pdf/1805.11837v2.pdf
null
[ "Vadim Ratner", "Yoel Shoshan", "Tal Kachman" ]
[ "General Classification", "image-classification", "Image Classification", "Medical Image Classification" ]
2018-05-30T00:00:00
null
null
null
null
[]
https://paperswithcode.com/paper/lag-lazily-aggregated-gradient-for
1805.09965
null
null
LAG: Lazily Aggregated Gradient for Communication-Efficient Distributed Learning
This paper presents a new class of gradient methods for distributed machine learning that adaptively skip the gradient calculations to learn with reduced communication and computation. Simple rules are designed to detect slowly-varying gradients and, therefore, trigger the reuse of outdated gradients. The resultant gradient-based algorithms are termed Lazily Aggregated Gradient --- justifying our acronym LAG used henceforth. Theoretically, the merits of this contribution are: i) the convergence rate is the same as batch gradient descent in strongly-convex, convex, and nonconvex smooth cases; and, ii) if the distributed datasets are heterogeneous (quantified by certain measurable constants), the communication rounds needed to achieve a targeted accuracy are reduced thanks to the adaptive reuse of lagged gradients. Numerical experiments on both synthetic and real data corroborate a significant communication reduction compared to alternatives.
This paper presents a new class of gradient methods for distributed machine learning that adaptively skip the gradient calculations to learn with reduced communication and computation.
http://arxiv.org/abs/1805.09965v2
http://arxiv.org/pdf/1805.09965v2.pdf
NeurIPS 2018 12
[ "Tianyi Chen", "Georgios B. Giannakis", "Tao Sun", "Wotao Yin" ]
[]
2018-05-25T00:00:00
http://papers.nips.cc/paper/7752-lag-lazily-aggregated-gradient-for-communication-efficient-distributed-learning
http://papers.nips.cc/paper/7752-lag-lazily-aggregated-gradient-for-communication-efficient-distributed-learning.pdf
lag-lazily-aggregated-gradient-for-1
null
[]
https://paperswithcode.com/paper/anaphora-and-coreference-resolution-a-review
1805.11824
null
null
Anaphora and Coreference Resolution: A Review
Entity resolution aims at resolving repeated references to an entity in a document and forms a core component of natural language processing (NLP) research. This field possesses immense potential to improve the performance of other NLP fields like machine translation, sentiment analysis, paraphrase detection, summarization, etc. The area of entity resolution in NLP has seen proliferation of research in two separate sub-areas namely: anaphora resolution and coreference resolution. Through this review article, we aim at clarifying the scope of these two tasks in entity resolution. We also carry out a detailed analysis of the datasets, evaluation metrics and research methods that have been adopted to tackle this NLP problem. This survey is motivated with the aim of providing the reader with a clear understanding of what constitutes this NLP problem and the issues that require attention.
null
http://arxiv.org/abs/1805.11824v1
http://arxiv.org/pdf/1805.11824v1.pdf
null
[ "Rhea Sukthanker", "Soujanya Poria", "Erik Cambria", "Ramkumar Thirunavukarasu" ]
[ "coreference-resolution", "Coreference Resolution", "Entity Resolution", "Machine Translation", "Sentiment Analysis", "Translation" ]
2018-05-30T00:00:00
null
null
null
null
[]
https://paperswithcode.com/paper/generic-cp-supported-cmsa-for-binary-integer
1805.11820
null
null
Generic CP-Supported CMSA for Binary Integer Linear Programs
Construct, Merge, Solve and Adapt (CMSA) is a general hybrid metaheuristic for solving combinatorial optimization problems. At each iteration, CMSA (1) constructs feasible solutions to the tackled problem instance in a probabilistic way and (2) solves a reduced problem instance (if possible) to optimality. The construction of feasible solutions is hereby problem-specific, usually involving a fast greedy heuristic. The goal of this paper is to design a problem-agnostic CMSA variant whose exclusive input is an integer linear program (ILP). In order to reduce the complexity of this task, the current study is restricted to binary ILPs. In addition to a basic problem-agnostic CMSA variant, we also present an extended version that makes use of a constraint propagation engine for constructing solutions. The results show that our technique is able to match the upper bounds of the standalone application of CPLEX in the context of rather easy-to-solve instances, while it generally outperforms the standalone application of CPLEX in the context of hard instances. Moreover, the results indicate that the support of the constraint propagation engine is useful in the context of problems for which finding feasible solutions is rather difficult.
null
http://arxiv.org/abs/1805.11820v1
http://arxiv.org/pdf/1805.11820v1.pdf
null
[ "Christian Blum", "Haroldo Gambini Santos" ]
[ "Combinatorial Optimization" ]
2018-05-30T00:00:00
null
null
null
null
[]
https://paperswithcode.com/paper/visual-referring-expression-recognition-what
1805.11818
null
null
Visual Referring Expression Recognition: What Do Systems Actually Learn?
We present an empirical analysis of the state-of-the-art systems for referring expression recognition -- the task of identifying the object in an image referred to by a natural language expression -- with the goal of gaining insight into how these systems reason about language and vision. Surprisingly, we find strong evidence that even sophisticated and linguistically-motivated models for this task may ignore the linguistic structure, instead relying on shallow correlations introduced by unintended biases in the data selection and annotation process. For example, we show that a system trained and tested on the input image $\textit{without the input referring expression}$ can achieve a precision of 71.2% in top-2 predictions. Furthermore, a system that predicts only the object category given the input can achieve a precision of 84.2% in top-2 predictions. These surprisingly positive results for what should be deficient prediction scenarios suggest that careful analysis of what our models are learning -- and further, how our data is constructed -- is critical as we seek to make substantive progress on grounded language tasks.
We present an empirical analysis of the state-of-the-art systems for referring expression recognition -- the task of identifying the object in an image referred to by a natural language expression -- with the goal of gaining insight into how these systems reason about language and vision.
http://arxiv.org/abs/1805.11818v1
http://arxiv.org/pdf/1805.11818v1.pdf
NAACL 2018 6
[ "Volkan Cirik", "Louis-Philippe Morency", "Taylor Berg-Kirkpatrick" ]
[ "Referring Expression" ]
2018-05-30T00:00:00
https://aclanthology.org/N18-2123
https://aclanthology.org/N18-2123.pdf
visual-referring-expression-recognition-what-1
null
[]
https://paperswithcode.com/paper/enabling-pedestrian-safety-using-computer
1805.11815
null
null
Enabling Pedestrian Safety using Computer Vision Techniques: A Case Study of the 2018 Uber Inc. Self-driving Car Crash
Human lives are important. The decision to allow self-driving vehicles operate on our roads carries great weight. This has been a hot topic of debate between policy-makers, technologists and public safety institutions. The recent Uber Inc. self-driving car crash, resulting in the death of a pedestrian, has strengthened the argument that autonomous vehicle technology is still not ready for deployment on public roads. In this work, we analyze the Uber car crash and shed light on the question, "Could the Uber Car Crash have been avoided?". We apply state-of-the-art Computer Vision models to this highly practical scenario. More generally, our experimental results are an evaluation of various image enhancement and object recognition techniques for enabling pedestrian safety in low-lighting conditions using the Uber crash as a case study.
null
http://arxiv.org/abs/1805.11815v1
http://arxiv.org/pdf/1805.11815v1.pdf
null
[ "Puneet Kohli", "Anjali Chadha" ]
[ "Image Enhancement", "Object Recognition" ]
2018-05-30T00:00:00
null
null
null
null
[]
https://paperswithcode.com/paper/a-progressive-batching-l-bfgs-method-for
1802.05374
null
null
A Progressive Batching L-BFGS Method for Machine Learning
The standard L-BFGS method relies on gradient approximations that are not dominated by noise, so that search directions are descent directions, the line search is reliable, and quasi-Newton updating yields useful quadratic models of the objective function. All of this appears to call for a full batch approach, but since small batch sizes give rise to faster algorithms with better generalization properties, L-BFGS is currently not considered an algorithm of choice for large-scale machine learning applications. One need not, however, choose between the two extremes represented by the full batch or highly stochastic regimes, and may instead follow a progressive batching approach in which the sample size increases during the course of the optimization. In this paper, we present a new version of the L-BFGS algorithm that combines three basic components - progressive batching, a stochastic line search, and stable quasi-Newton updating - and that performs well on training logistic regression and deep neural networks. We provide supporting convergence theory for the method.
null
http://arxiv.org/abs/1802.05374v2
http://arxiv.org/pdf/1802.05374v2.pdf
ICML 2018 7
[ "Raghu Bollapragada", "Dheevatsa Mudigere", "Jorge Nocedal", "Hao-Jun Michael Shi", "Ping Tak Peter Tang" ]
[ "BIG-bench Machine Learning" ]
2018-02-15T00:00:00
https://icml.cc/Conferences/2018/Schedule?showEvent=2059
http://proceedings.mlr.press/v80/bollapragada18a/bollapragada18a.pdf
a-progressive-batching-l-bfgs-method-for-1
null
[]
https://paperswithcode.com/paper/crrn-multi-scale-guided-concurrent-reflection
1805.11802
null
null
CRRN: Multi-Scale Guided Concurrent Reflection Removal Network
Removing the undesired reflections from images taken through the glass is of broad application to various computer vision tasks. Non-learning based methods utilize different handcrafted priors such as the separable sparse gradients caused by different levels of blurs, which often fail due to their limited description capability to the properties of real-world reflections. In this paper, we propose the Concurrent Reflection Removal Network (CRRN) to tackle this problem in a unified framework. Our proposed network integrates image appearance information and multi-scale gradient information with human perception inspired loss function, and is trained on a new dataset with 3250 reflection images taken under diverse real-world scenes. Extensive experiments on a public benchmark dataset show that the proposed method performs favorably against state-of-the-art methods.
Removing the undesired reflections from images taken through the glass is of broad application to various computer vision tasks.
http://arxiv.org/abs/1805.11802v1
http://arxiv.org/pdf/1805.11802v1.pdf
CVPR 2018 6
[ "Renjie Wan", "Boxin Shi", "Ling-Yu Duan", "Ah-Hwee Tan", "Alex C. Kot" ]
[ "Reflection Removal" ]
2018-05-30T00:00:00
http://openaccess.thecvf.com/content_cvpr_2018/html/Wan_CRRN_Multi-Scale_Guided_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/papers/Wan_CRRN_Multi-Scale_Guided_CVPR_2018_paper.pdf
crrn-multi-scale-guided-concurrent-reflection-1
null
[]
https://paperswithcode.com/paper/automated-proof-synthesis-for-propositional
1805.11799
null
null
Automated proof synthesis for propositional logic with deep neural networks
This work explores the application of deep learning, a machine learning technique that uses deep neural networks (DNN) in its core, to an automated theorem proving (ATP) problem. To this end, we construct a statistical model which quantifies the likelihood that a proof is indeed a correct one of a given proposition. Based on this model, we give a proof-synthesis procedure that searches for a proof in the order of the likelihood. This procedure uses an estimator of the likelihood of an inference rule being applied at each step of a proof. As an implementation of the estimator, we propose a proposition-to-proof architecture, which is a DNN tailored to the automated proof synthesis problem. To empirically demonstrate its usefulness, we apply our model to synthesize proofs of propositional logic. We train the proposition-to-proof model using a training dataset of proposition-proof pairs. The evaluation against a benchmark set shows the very high accuracy and an improvement to the recent work of neural proof synthesis.
As an implementation of the estimator, we propose a proposition-to-proof architecture, which is a DNN tailored to the automated proof synthesis problem.
http://arxiv.org/abs/1805.11799v1
http://arxiv.org/pdf/1805.11799v1.pdf
null
[ "Taro Sekiyama", "Kohei Suenaga" ]
[ "Automated Theorem Proving" ]
2018-05-30T00:00:00
null
null
null
null
[]
https://paperswithcode.com/paper/dialogue-modeling-via-hash-functions
1804.10188
null
null
Modeling Psychotherapy Dialogues with Kernelized Hashcode Representations: A Nonparametric Information-Theoretic Approach
We propose a novel dialogue modeling framework, the first-ever nonparametric kernel functions based approach for dialogue modeling, which learns kernelized hashcodes as compressed text representations; unlike traditional deep learning models, it handles well relatively small datasets, while also scaling to large ones. We also derive a novel lower bound on mutual information, used as a model-selection criterion favoring representations with better alignment between the utterances of participants in a collaborative dialogue setting, as well as higher predictability of the generated responses. As demonstrated on three real-life datasets, including prominently psychotherapy sessions, the proposed approach significantly outperforms several state-of-art neural network based dialogue systems, both in terms of computational efficiency, reducing training time from days or weeks to hours, and the response quality, achieving an order of magnitude improvement over competitors in frequency of being chosen as the best model by human evaluators.
null
https://arxiv.org/abs/1804.10188v7
https://arxiv.org/pdf/1804.10188v7.pdf
null
[ "Sahil Garg", "Irina Rish", "Guillermo Cecchi", "Palash Goyal", "Sarik Ghazarian", "Shuyang Gao", "Greg Ver Steeg", "Aram Galstyan" ]
[ "Computational Efficiency", "Dialogue Generation", "Model Selection" ]
2018-04-26T00:00:00
null
null
null
null
[]
https://paperswithcode.com/paper/infinite-arms-bandit-optimality-via
1805.11793
null
null
Infinite Arms Bandit: Optimality via Confidence Bounds
Berry et al. (1997) initiated the development of the infinite arms bandit problem. They derived a regret lower bound of all allocation strategies for Bernoulli rewards with uniform priors, and proposed strategies based on success runs. Bonald and Prouti\`{e}re (2013) proposed a two-target algorithm that achieves the regret lower bound, and extended optimality to Bernoulli rewards with general priors. We present here a confidence bound target (CBT) algorithm that achieves optimality for rewards that are bounded above. For each arm we construct a confidence bound and compare it against each other and a target value to determine if the arm should be sampled further. The target value depends on the assumed priors of the arm means. In the absence of information on the prior, the target value is determined empirically. Numerical studies here show that CBT is versatile and outperforms its competitors.
null
https://arxiv.org/abs/1805.11793v4
https://arxiv.org/pdf/1805.11793v4.pdf
null
[ "Hock Peng Chan", "Shouri Hu" ]
[]
2018-05-30T00:00:00
null
null
null
null
[]
https://paperswithcode.com/paper/tight-regret-bounds-for-bayesian-optimization
1805.11792
null
null
Tight Regret Bounds for Bayesian Optimization in One Dimension
We consider the problem of Bayesian optimization (BO) in one dimension, under a Gaussian process prior and Gaussian sampling noise. We provide a theoretical analysis showing that, under fairly mild technical assumptions on the kernel, the best possible cumulative regret up to time $T$ behaves as $\Omega(\sqrt{T})$ and $O(\sqrt{T\log T})$. This gives a tight characterization up to a $\sqrt{\log T}$ factor, and includes the first non-trivial lower bound for noisy BO. Our assumptions are satisfied, for example, by the squared exponential and Mat\'ern-$\nu$ kernels, with the latter requiring $\nu > 2$. Our results certify the near-optimality of existing bounds (Srinivas {\em et al.}, 2009) for the SE kernel, while proving them to be strictly suboptimal for the Mat\'ern kernel with $\nu > 2$.
null
https://arxiv.org/abs/1805.11792v3
https://arxiv.org/pdf/1805.11792v3.pdf
ICML 2018 7
[ "Jonathan Scarlett" ]
[ "Bayesian Optimization" ]
2018-05-30T00:00:00
https://icml.cc/Conferences/2018/Schedule?showEvent=1945
http://proceedings.mlr.press/v80/scarlett18a/scarlett18a.pdf
tight-regret-bounds-for-bayesian-optimization-1
null
[ { "code_snippet_url": null, "description": "**Gaussian Processes** are non-parametric models for approximating functions. They rely upon a measure of similarity between points (the kernel function) to predict the value for an unseen point from training data. The models are fully probabilistic so uncertainty bounds are baked in with the model.\r\n\r\nImage Source: Gaussian Processes for Machine Learning, C. E. Rasmussen & C. K. I. Williams", "full_name": "Gaussian Process", "introduced_year": 2000, "main_collection": { "area": "General", "description": "**Non-Parametric Classification** methods perform classification where we use non-parametric methods to approximate the functional form of the relationship. Below you can find a continuously updating list of non-parametric classification methods.", "name": "Non-Parametric Classification", "parent": null }, "name": "Gaussian Process", "source_title": null, "source_url": null } ]
https://paperswithcode.com/paper/a-hierarchical-end-to-end-model-for-jointly
1805.01089
null
null
A Hierarchical End-to-End Model for Jointly Improving Text Summarization and Sentiment Classification
Text summarization and sentiment classification both aim to capture the main ideas of the text but at different levels. Text summarization is to describe the text within a few sentences, while sentiment classification can be regarded as a special type of summarization which "summarizes" the text into a even more abstract fashion, i.e., a sentiment class. Based on this idea, we propose a hierarchical end-to-end model for joint learning of text summarization and sentiment classification, where the sentiment classification label is treated as the further "summarization" of the text summarization output. Hence, the sentiment classification layer is put upon the text summarization layer, and a hierarchical structure is derived. Experimental results on Amazon online reviews datasets show that our model achieves better performance than the strong baseline systems on both abstractive summarization and sentiment classification.
null
http://arxiv.org/abs/1805.01089v2
http://arxiv.org/pdf/1805.01089v2.pdf
null
[ "Shuming Ma", "Xu sun", "Junyang Lin", "Xuancheng Ren" ]
[ "Abstractive Text Summarization", "Classification", "General Classification", "Sentiment Analysis", "Sentiment Classification", "Text Summarization" ]
2018-05-03T00:00:00
null
null
null
null
[]
https://paperswithcode.com/paper/a-fine-to-coarse-convolutional-neural-network
1805.11790
null
null
A Fine-to-Coarse Convolutional Neural Network for 3D Human Action Recognition
This paper presents a new framework for human action recognition from a 3D skeleton sequence. Previous studies do not fully utilize the temporal relationships between video segments in a human action. Some studies successfully used very deep Convolutional Neural Network (CNN) models but often suffer from the data insufficiency problem. In this study, we first segment a skeleton sequence into distinct temporal segments in order to exploit the correlations between them. The temporal and spatial features of a skeleton sequence are then extracted simultaneously by utilizing a fine-to-coarse (F2C) CNN architecture optimized for human skeleton sequences. We evaluate our proposed method on NTU RGB+D and SBU Kinect Interaction dataset. It achieves 79.6% and 84.6% of accuracies on NTU RGB+D with cross-object and cross-view protocol, respectively, which are almost identical with the state-of-the-art performance. In addition, our method significantly improves the accuracy of the actions in two-person interactions.
null
http://arxiv.org/abs/1805.11790v2
http://arxiv.org/pdf/1805.11790v2.pdf
null
[ "Thao Minh Le", "Nakamasa Inoue", "Koichi Shinoda" ]
[ "3D Action Recognition", "Action Recognition", "Skeleton Based Action Recognition", "Temporal Action Localization" ]
2018-05-30T00:00:00
null
null
null
null
[]