text
stringlengths 31
243k
| type
stringclasses 1
value | start
int64 36
275k
| end
int64 286
280k
| depth
int64 0
1
| filepath
stringlengths 85
188
| parent_class
stringclasses 3
values | class_index
int64 0
10.8k
|
---|---|---|---|---|---|---|---|
class TFSeq2SeqLMOutput(ModelOutput):
"""
Base class for sequence-to-sequence language models outputs.
Args:
loss (`tf.Tensor` of shape `(n,)`, *optional*, where n is the number of non-masked labels, returned when `labels` is provided):
Language modeling loss.
logits (`tf.Tensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
past_key_values (`List[tf.Tensor]`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
List of `tf.Tensor` of length `config.n_layers`, with each tensor of shape `(2, batch_size, num_heads,
sequence_length, embed_size_per_head)`).
Contains pre-computed hidden-states (key and values in the attention blocks) of the decoder that can be
used (see `past_key_values` input) to speed up sequential decoding.
decoder_hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape
`(batch_size, sequence_length, hidden_size)`.
Hidden-states of the decoder at the output of each layer plus the initial embedding outputs.
decoder_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the
self-attention heads.
cross_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights of the decoder's cross-attention layer, after the attention softmax, used to compute the
weighted average in the cross-attention heads.
encoder_last_hidden_state (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder of the model.
encoder_hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape
`(batch_size, sequence_length, hidden_size)`.
Hidden-states of the encoder at the output of each layer plus the initial embedding outputs.
encoder_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the
self-attention heads.
"""
loss: tf.Tensor | None = None
logits: tf.Tensor = None
past_key_values: List[tf.Tensor] | None = None
decoder_hidden_states: Tuple[tf.Tensor] | None = None
decoder_attentions: Tuple[tf.Tensor] | None = None
cross_attentions: Tuple[tf.Tensor] | None = None
encoder_last_hidden_state: tf.Tensor | None = None
encoder_hidden_states: Tuple[tf.Tensor] | None = None
encoder_attentions: Tuple[tf.Tensor] | None = None
|
class_definition
| 27,417 | 31,307 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/modeling_tf_outputs.py
| null | 300 |
class TFNextSentencePredictorOutput(ModelOutput):
"""
Base class for outputs of models predicting if two sentences are consecutive or not.
Args:
loss (`tf.Tensor` of shape `(n,)`, *optional*, where n is the number of non-masked labels, returned when `next_sentence_label` is provided):
Next sentence prediction loss.
logits (`tf.Tensor` of shape `(batch_size, 2)`):
Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation
before SoftMax).
hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape
`(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
loss: tf.Tensor | None = None
logits: tf.Tensor = None
hidden_states: Tuple[tf.Tensor] | None = None
attentions: Tuple[tf.Tensor] | None = None
|
class_definition
| 31,321 | 32,892 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/modeling_tf_outputs.py
| null | 301 |
class TFSequenceClassifierOutput(ModelOutput):
"""
Base class for outputs of sentence classification models.
Args:
loss (`tf.Tensor` of shape `(batch_size, )`, *optional*, returned when `labels` is provided):
Classification (or regression if config.num_labels==1) loss.
logits (`tf.Tensor` of shape `(batch_size, config.num_labels)`):
Classification (or regression if config.num_labels==1) scores (before SoftMax).
hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape
`(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
loss: tf.Tensor | None = None
logits: tf.Tensor = None
hidden_states: Tuple[tf.Tensor] | None = None
attentions: Tuple[tf.Tensor] | None = None
|
class_definition
| 32,906 | 34,390 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/modeling_tf_outputs.py
| null | 302 |
class TFSeq2SeqSequenceClassifierOutput(ModelOutput):
"""
Base class for outputs of sequence-to-sequence sentence classification models.
Args:
loss (`tf.Tensor` of shape `(1,)`, *optional*, returned when `label` is provided):
Classification (or regression if config.num_labels==1) loss.
logits (`tf.Tensor` of shape `(batch_size, config.num_labels)`):
Classification (or regression if config.num_labels==1) scores (before SoftMax).
past_key_values (`List[tf.Tensor]`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
List of `tf.Tensor` of length `config.n_layers`, with each tensor of shape `(2, batch_size, num_heads,
sequence_length, embed_size_per_head)`).
Contains pre-computed hidden-states (key and values in the attention blocks) of the decoder that can be
used (see `past_key_values` input) to speed up sequential decoding.
decoder_hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape
`(batch_size, sequence_length, hidden_size)`.
Hidden-states of the decoder at the output of each layer plus the initial embedding outputs.
decoder_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the
self-attention heads.
cross_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`
encoder_last_hidden_state (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder of the model.
encoder_hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape
`(batch_size, sequence_length, hidden_size)`.
Hidden-states of the encoder at the output of each layer plus the initial embedding outputs.
encoder_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the
self-attention heads.
"""
loss: tf.Tensor | None = None
logits: tf.Tensor = None
past_key_values: List[tf.Tensor] | None = None
decoder_hidden_states: Tuple[tf.Tensor] | None = None
decoder_attentions: Tuple[tf.Tensor] | None = None
cross_attentions: Tuple[tf.Tensor] | None = None
encoder_last_hidden_state: tf.Tensor | None = None
encoder_hidden_states: Tuple[tf.Tensor] | None = None
encoder_attentions: Tuple[tf.Tensor] | None = None
|
class_definition
| 34,404 | 38,103 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/modeling_tf_outputs.py
| null | 303 |
class TFSemanticSegmenterOutput(ModelOutput):
"""
Base class for outputs of semantic segmentation models.
Args:
loss (`tf.Tensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Classification (or regression if config.num_labels==1) loss.
logits (`tf.Tensor` of shape `(batch_size, config.num_labels, logits_height, logits_width)`):
Classification scores for each pixel.
<Tip warning={true}>
The logits returned do not necessarily have the same size as the `pixel_values` passed as inputs. This is
to avoid doing two interpolations and lose some quality when a user needs to resize the logits to the
original image size as post-processing. You should always check your logits shape and resize as needed.
</Tip>
hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `tf.Tensor` (one for the output of the embeddings, if the model has an embedding layer, + one for
the output of each layer) of shape `(batch_size, patch_size, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, patch_size, sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
loss: tf.Tensor | None = None
logits: tf.Tensor = None
hidden_states: Tuple[tf.Tensor] | None = None
attentions: Tuple[tf.Tensor] | None = None
|
class_definition
| 38,117 | 40,004 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/modeling_tf_outputs.py
| null | 304 |
class TFSemanticSegmenterOutputWithNoAttention(ModelOutput):
"""
Base class for outputs of semantic segmentation models that do not output attention scores.
Args:
loss (`tf.Tensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Classification (or regression if config.num_labels==1) loss.
logits (`tf.Tensor` of shape `(batch_size, config.num_labels, logits_height, logits_width)`):
Classification scores for each pixel.
<Tip warning={true}>
The logits returned do not necessarily have the same size as the `pixel_values` passed as inputs. This is
to avoid doing two interpolations and lose some quality when a user needs to resize the logits to the
original image size as post-processing. You should always check your logits shape and resize as needed.
</Tip>
hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `tf.Tensor` (one for the output of the embeddings, if the model has an embedding layer, + one for
the output of each layer) of shape `(batch_size, patch_size, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
"""
loss: tf.Tensor | None = None
logits: tf.Tensor = None
hidden_states: Tuple[tf.Tensor] | None = None
|
class_definition
| 40,018 | 41,508 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/modeling_tf_outputs.py
| null | 305 |
class TFImageClassifierOutput(ModelOutput):
"""
Base class for outputs of image classification models.
Args:
loss (`tf.Tensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Classification (or regression if config.num_labels==1) loss.
logits (`tf.Tensor` of shape `(batch_size, config.num_labels)`):
Classification (or regression if config.num_labels==1) scores (before SoftMax).
hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `tf.Tensor` (one for the output of the embeddings, if the model has an embedding layer, + one for
the output of each stage) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states (also called
feature maps) of the model at the output of each stage.
attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, patch_size, sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
loss: tf.Tensor | None = None
logits: tf.Tensor = None
hidden_states: Tuple[tf.Tensor] | None = None
attentions: Tuple[tf.Tensor] | None = None
|
class_definition
| 41,522 | 43,002 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/modeling_tf_outputs.py
| null | 306 |
class TFMultipleChoiceModelOutput(ModelOutput):
"""
Base class for outputs of multiple choice models.
Args:
loss (`tf.Tensor` of shape *(batch_size, )*, *optional*, returned when `labels` is provided):
Classification loss.
logits (`tf.Tensor` of shape `(batch_size, num_choices)`):
*num_choices* is the second dimension of the input tensors. (see *input_ids* above).
Classification scores (before SoftMax).
hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape
`(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
loss: tf.Tensor | None = None
logits: tf.Tensor = None
hidden_states: Tuple[tf.Tensor] | None = None
attentions: Tuple[tf.Tensor] | None = None
|
class_definition
| 43,016 | 44,505 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/modeling_tf_outputs.py
| null | 307 |
class TFTokenClassifierOutput(ModelOutput):
"""
Base class for outputs of token classification models.
Args:
loss (`tf.Tensor` of shape `(n,)`, *optional*, where n is the number of unmasked labels, returned when `labels` is provided) :
Classification loss.
logits (`tf.Tensor` of shape `(batch_size, sequence_length, config.num_labels)`):
Classification scores (before SoftMax).
hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape
`(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
loss: tf.Tensor | None = None
logits: tf.Tensor = None
hidden_states: Tuple[tf.Tensor] | None = None
attentions: Tuple[tf.Tensor] | None = None
|
class_definition
| 44,519 | 45,967 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/modeling_tf_outputs.py
| null | 308 |
class TFQuestionAnsweringModelOutput(ModelOutput):
"""
Base class for outputs of question answering models.
Args:
loss (`tf.Tensor` of shape `(batch_size, )`, *optional*, returned when `start_positions` and `end_positions` are provided):
Total span extraction loss is the sum of a Cross-Entropy for the start and end positions.
start_logits (`tf.Tensor` of shape `(batch_size, sequence_length)`):
Span-start scores (before SoftMax).
end_logits (`tf.Tensor` of shape `(batch_size, sequence_length)`):
Span-end scores (before SoftMax).
hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape
`(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
loss: tf.Tensor | None = None
start_logits: tf.Tensor = None
end_logits: tf.Tensor = None
hidden_states: Tuple[tf.Tensor] | None = None
attentions: Tuple[tf.Tensor] | None = None
|
class_definition
| 45,981 | 47,643 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/modeling_tf_outputs.py
| null | 309 |
class TFSeq2SeqQuestionAnsweringModelOutput(ModelOutput):
"""
Base class for outputs of sequence-to-sequence question answering models.
Args:
loss (`tf.Tensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Total span extraction loss is the sum of a Cross-Entropy for the start and end positions.
start_logits (`tf.Tensor` of shape `(batch_size, sequence_length)`):
Span-start scores (before SoftMax).
end_logits (`tf.Tensor` of shape `(batch_size, sequence_length)`):
Span-end scores (before SoftMax).
past_key_values (`List[tf.Tensor]`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
List of `tf.Tensor` of length `config.n_layers`, with each tensor of shape `(2, batch_size, num_heads,
sequence_length, embed_size_per_head)`).
Contains pre-computed hidden-states (key and values in the attention blocks) of the decoder that can be
used (see `past_key_values` input) to speed up sequential decoding.
decoder_hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape
`(batch_size, sequence_length, hidden_size)`.
Hidden-states of the decoder at the output of each layer plus the initial embedding outputs.
decoder_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the
self-attention heads.
encoder_last_hidden_state (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder of the model.
encoder_hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape
`(batch_size, sequence_length, hidden_size)`.
Hidden-states of the encoder at the output of each layer plus the initial embedding outputs.
encoder_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the
self-attention heads.
"""
loss: tf.Tensor | None = None
start_logits: tf.Tensor = None
end_logits: tf.Tensor = None
past_key_values: List[tf.Tensor] | None = None
decoder_hidden_states: Tuple[tf.Tensor] | None = None
decoder_attentions: Tuple[tf.Tensor] | None = None
encoder_last_hidden_state: tf.Tensor | None = None
encoder_hidden_states: Tuple[tf.Tensor] | None = None
encoder_attentions: Tuple[tf.Tensor] | None = None
|
class_definition
| 47,657 | 51,168 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/modeling_tf_outputs.py
| null | 310 |
class TFSequenceClassifierOutputWithPast(ModelOutput):
"""
Base class for outputs of sentence classification models.
Args:
loss (`tf.Tensor` of shape `(batch_size, )`, *optional*, returned when `labels` is provided):
Classification (or regression if config.num_labels==1) loss.
logits (`tf.Tensor` of shape `(batch_size, config.num_labels)`):
Classification (or regression if config.num_labels==1) scores (before SoftMax).
past_key_values (`List[tf.Tensor]`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
List of `tf.Tensor` of length `config.n_layers`, with each tensor of shape `(2, batch_size, num_heads,
sequence_length, embed_size_per_head)`).
Contains pre-computed hidden-states (key and values in the attention blocks) that can be used (see
`past_key_values` input) to speed up sequential decoding.
hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape
`(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
loss: tf.Tensor | None = None
logits: tf.Tensor = None
past_key_values: List[tf.Tensor] | None = None
hidden_states: Tuple[tf.Tensor] | None = None
attentions: Tuple[tf.Tensor] | None = None
|
class_definition
| 51,182 | 53,206 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/modeling_tf_outputs.py
| null | 311 |
class TFImageClassifierOutputWithNoAttention(ModelOutput):
"""
Base class for outputs of image classification models.
Args:
loss (`tf.Tensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Classification (or regression if config.num_labels==1) loss.
logits (`tf.Tensor` of shape `(batch_size, config.num_labels)`):
Classification (or regression if config.num_labels==1) scores (before SoftMax).
hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `tf.Tensor` (one for the output of the embeddings, if the model has an embedding layer, + one for
the output of each stage) of shape `(batch_size, num_channels, height, width)`. Hidden-states (also called
feature maps) of the model at the output of each stage.
"""
loss: tf.Tensor | None = None
logits: tf.Tensor = None
hidden_states: Optional[Tuple[tf.Tensor, ...]] = None
|
class_definition
| 53,220 | 54,274 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/modeling_tf_outputs.py
| null | 312 |
class TFMaskedImageModelingOutput(ModelOutput):
"""
Base class for outputs of masked image completion / in-painting models.
Args:
loss (`tf.Tensor` of shape `(1,)`, *optional*, returned when `bool_masked_pos` is provided):
Reconstruction loss.
reconstruction (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`):
Reconstructed / completed images.
hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when
`config.output_hidden_states=True`):
Tuple of `tf.Tensor` (one for the output of the embeddings, if the model has an embedding layer, + one for
the output of each stage) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states (also called
feature maps) of the model at the output of each stage.
attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when
`config.output_attentions=True`):
Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, patch_size, sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
loss: tf.Tensor | None = None
reconstruction: tf.Tensor = None
hidden_states: Tuple[tf.Tensor] | None = None
attentions: Tuple[tf.Tensor] | None = None
@property
def logits(self):
warnings.warn(
"logits attribute is deprecated and will be removed in version 5 of Transformers."
" Please use the reconstruction attribute to retrieve the final output instead.",
FutureWarning,
)
return self.reconstruction
|
class_definition
| 54,288 | 56,073 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/modeling_tf_outputs.py
| null | 313 |
class TensorFlowBenchmark(Benchmark):
args: TensorFlowBenchmarkArguments
configs: PretrainedConfig
framework: str = "TensorFlow"
@property
def framework_version(self):
return tf.__version__
def _inference_speed(self, model_name: str, batch_size: int, sequence_length: int) -> float:
# initialize GPU on separate process
strategy = self.args.strategy
if strategy is None:
raise ValueError("A device strategy has to be initialized before using TensorFlow.")
_inference = self._prepare_inference_func(model_name, batch_size, sequence_length)
return self._measure_speed(_inference)
def _train_speed(self, model_name: str, batch_size: int, sequence_length: int) -> float:
strategy = self.args.strategy
if strategy is None:
raise ValueError("A device strategy has to be initialized before using TensorFlow.")
_train = self._prepare_train_func(model_name, batch_size, sequence_length)
return self._measure_speed(_train)
def _inference_memory(
self, model_name: str, batch_size: int, sequence_length: int
) -> [Memory, Optional[MemorySummary]]:
# initialize GPU on separate process
if self.args.is_gpu:
tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx], True)
strategy = self.args.strategy
if strategy is None:
raise ValueError("A device strategy has to be initialized before using TensorFlow.")
_inference = self._prepare_inference_func(model_name, batch_size, sequence_length)
return self._measure_memory(_inference)
def _train_memory(
self, model_name: str, batch_size: int, sequence_length: int
) -> [Memory, Optional[MemorySummary]]:
if self.args.is_gpu:
tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx], True)
strategy = self.args.strategy
if strategy is None:
raise ValueError("A device strategy has to be initialized before using TensorFlow.")
_train = self._prepare_train_func(model_name, batch_size, sequence_length)
return self._measure_memory(_train)
def _prepare_inference_func(self, model_name: str, batch_size: int, sequence_length: int) -> Callable[[], None]:
config = self.config_dict[model_name]
if self.args.fp16:
raise NotImplementedError("Mixed precision is currently not supported.")
has_model_class_in_config = (
hasattr(config, "architectures")
and isinstance(config.architectures, list)
and len(config.architectures) > 0
)
if not self.args.only_pretrain_model and has_model_class_in_config:
try:
model_class = "TF" + config.architectures[0] # prepend 'TF' for tensorflow model
transformers_module = __import__("transformers", fromlist=[model_class])
model_cls = getattr(transformers_module, model_class)
model = model_cls(config)
except ImportError:
raise ImportError(
f"{model_class} does not exist. If you just want to test the pretrained model, you might want to"
" set `--only_pretrain_model` or `args.only_pretrain_model=True`."
)
else:
model = TF_MODEL_MAPPING[config.__class__](config)
# encoder-decoder has vocab size saved differently
vocab_size = config.vocab_size if hasattr(config, "vocab_size") else config.encoder.vocab_size
input_ids = random_input_ids(batch_size, sequence_length, vocab_size)
@run_with_tf_optimizations(self.args.eager_mode, self.args.use_xla)
def encoder_decoder_forward():
return model(input_ids, decoder_input_ids=input_ids, training=False)
@run_with_tf_optimizations(self.args.eager_mode, self.args.use_xla)
def encoder_forward():
return model(input_ids, training=False)
_inference = encoder_decoder_forward if config.is_encoder_decoder else encoder_forward
return _inference
def _prepare_train_func(self, model_name: str, batch_size: int, sequence_length: int) -> Callable[[], None]:
config = self.config_dict[model_name]
if self.args.eager_mode is not False:
raise ValueError("Training cannot be done in eager mode. Please make sure that `args.eager_mode = False`.")
if self.args.fp16:
raise NotImplementedError("Mixed precision is currently not supported.")
has_model_class_in_config = (
hasattr(config, "architectures")
and isinstance(config.architectures, list)
and len(config.architectures) > 0
)
if not self.args.only_pretrain_model and has_model_class_in_config:
try:
model_class = "TF" + config.architectures[0] # prepend 'TF' for tensorflow model
transformers_module = __import__("transformers", fromlist=[model_class])
model_cls = getattr(transformers_module, model_class)
model = model_cls(config)
except ImportError:
raise ImportError(
f"{model_class} does not exist. If you just want to test the pretrained model, you might want to"
" set `--only_pretrain_model` or `args.only_pretrain_model=True`."
)
else:
model = TF_MODEL_WITH_LM_HEAD_MAPPING[config.__class__](config)
# encoder-decoder has vocab size saved differently
vocab_size = config.vocab_size if hasattr(config, "vocab_size") else config.encoder.vocab_size
input_ids = random_input_ids(batch_size, sequence_length, vocab_size)
@run_with_tf_optimizations(self.args.eager_mode, self.args.use_xla)
def encoder_decoder_train():
loss = model(input_ids, decoder_input_ids=input_ids, labels=input_ids, training=True)[0]
gradients = tf.gradients(loss, model.trainable_variables)
return gradients
@run_with_tf_optimizations(self.args.eager_mode, self.args.use_xla)
def encoder_train():
loss = model(input_ids, labels=input_ids, training=True)[0]
gradients = tf.gradients(loss, model.trainable_variables)
return gradients
_train = encoder_decoder_train if config.is_encoder_decoder else encoder_train
return _train
def _measure_speed(self, func) -> float:
with self.args.strategy.scope():
try:
if self.args.is_tpu or self.args.use_xla:
# run additional 10 times to stabilize compilation for tpu
logger.info("Do inference on TPU. Running model 5 times to stabilize compilation")
timeit.repeat(func, repeat=1, number=5)
# as written in https://docs.python.org/2/library/timeit.html#timeit.Timer.repeat, min should be taken rather than the average
runtimes = timeit.repeat(
func,
repeat=self.args.repeat,
number=10,
)
return min(runtimes) / 10.0
except ResourceExhaustedError as e:
self.print_fn(f"Doesn't fit on GPU. {e}")
def _measure_memory(self, func: Callable[[], None]) -> [Memory, MemorySummary]:
logger.info(
"Note that TensorFlow allocates more memory than "
"it might need to speed up computation. "
"The memory reported here corresponds to the memory "
"reported by `nvidia-smi`, which can vary depending "
"on total available memory on the GPU that is used."
)
with self.args.strategy.scope():
try:
if self.args.trace_memory_line_by_line:
if not self.args.eager_mode:
raise ValueError(
"`args.eager_mode` is set to `False`. Make sure to run model in eager mode to measure memory"
" consumption line by line."
)
trace = start_memory_tracing("transformers")
if self.args.is_tpu:
# tpu
raise NotImplementedError(
"Memory Benchmarking is currently not implemented for TPU. Please disable memory benchmarking"
" with `args.memory=False`"
)
elif self.args.is_gpu:
# gpu
if not is_py3nvml_available():
logger.warning(
"py3nvml not installed, we won't log GPU memory usage. "
"Install py3nvml (pip install py3nvml) to log information about GPU."
)
memory = "N/A"
else:
logger.info(
"Measuring total GPU usage on GPU device. Make sure to not have additional processes"
" running on the same GPU."
)
# init nvml
nvml.nvmlInit()
func()
handle = nvml.nvmlDeviceGetHandleByIndex(self.args.device_idx)
meminfo = nvml.nvmlDeviceGetMemoryInfo(handle)
max_bytes_in_use = meminfo.used
memory = Memory(max_bytes_in_use)
# shutdown nvml
nvml.nvmlShutdown()
else:
# cpu
if self.args.trace_memory_line_by_line:
logger.info(
"When enabling line by line tracing, the max peak memory for CPU is inaccurate in"
" TensorFlow."
)
memory = None
else:
memory_bytes = measure_peak_memory_cpu(func)
memory = Memory(memory_bytes) if isinstance(memory_bytes, int) else memory_bytes
if self.args.trace_memory_line_by_line:
summary = stop_memory_tracing(trace)
if memory is None:
memory = summary.total
else:
summary = None
return memory, summary
except ResourceExhaustedError as e:
self.print_fn(f"Doesn't fit on GPU. {e}")
return "N/A", None
|
class_definition
| 2,522 | 13,245 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/benchmark/benchmark_tf.py
| null | 314 |
class PyTorchBenchmark(Benchmark):
args: PyTorchBenchmarkArguments
configs: PretrainedConfig
framework: str = "PyTorch"
@property
def framework_version(self):
return torch.__version__
def _inference_speed(self, model_name: str, batch_size: int, sequence_length: int) -> float:
_inference = self._prepare_inference_func(model_name, batch_size, sequence_length)
return self._measure_speed(_inference)
def _inference_memory(
self, model_name: str, batch_size: int, sequence_length: int
) -> [Memory, Optional[MemorySummary]]:
_inference = self._prepare_inference_func(model_name, batch_size, sequence_length)
return self._measure_memory(_inference)
def _train_speed(self, model_name: str, batch_size: int, sequence_length: int) -> float:
_train = self._prepare_train_func(model_name, batch_size, sequence_length)
return self._measure_speed(_train)
def _train_memory(
self, model_name: str, batch_size: int, sequence_length: int
) -> [Memory, Optional[MemorySummary]]:
_train = self._prepare_train_func(model_name, batch_size, sequence_length)
return self._measure_memory(_train)
def _prepare_inference_func(self, model_name: str, batch_size: int, sequence_length: int) -> Callable[[], None]:
config = self.config_dict[model_name]
if self.args.torchscript:
config.torchscript = True
has_model_class_in_config = (
hasattr(config, "architectures")
and isinstance(config.architectures, list)
and len(config.architectures) > 0
)
if not self.args.only_pretrain_model and has_model_class_in_config:
try:
model_class = config.architectures[0]
transformers_module = __import__("transformers", fromlist=[model_class])
model_cls = getattr(transformers_module, model_class)
model = model_cls(config)
except ImportError:
raise ImportError(
f"{model_class} does not exist. If you just want to test the pretrained model, you might want to"
" set `--only_pretrain_model` or `args.only_pretrain_model=True`."
)
else:
model = MODEL_MAPPING[config.__class__](config)
model.eval()
model.to(self.args.device)
# encoder-decoder has vocab size saved differently
vocab_size = config.vocab_size if hasattr(config, "vocab_size") else config.encoder.vocab_size
input_ids = torch.randint(vocab_size, (batch_size, sequence_length), dtype=torch.long, device=self.args.device)
if self.args.fp16:
logger.info("Running training in Mixed Precision...")
if not self.args.is_gpu:
raise ValueError("Mixed precision is possible only for GPU.")
# amp seems to have memory leaks so that memory usage
# is measured using .half() for now https://github.com/NVIDIA/apex/issues/439
model.half()
if self.args.torchscript:
with torch.no_grad():
inference_model = torch.jit.trace(model, input_ids)
else:
inference_model = model
def encoder_decoder_forward():
with torch.no_grad():
outputs = inference_model(input_ids, decoder_input_ids=input_ids)
return outputs
def encoder_forward():
with torch.no_grad():
outputs = inference_model(input_ids)
return outputs
_forward = encoder_decoder_forward if config.is_encoder_decoder else encoder_forward
return _forward
def _prepare_train_func(self, model_name: str, batch_size: int, sequence_length: int) -> Callable[[], None]:
config = self.config_dict[model_name]
has_model_class_in_config = (
hasattr(config, "architectures")
and isinstance(config.architectures, list)
and len(config.architectures) > 0
)
if not self.args.only_pretrain_model and has_model_class_in_config:
try:
model_class = config.architectures[0]
transformers_module = __import__("transformers", fromlist=[model_class])
model_cls = getattr(transformers_module, model_class)
model = model_cls(config)
except ImportError:
raise ImportError(
f"{model_class} does not exist. If you just want to test the pretrained model, you might want to"
" set `--only_pretrain_model` or `args.only_pretrain_model=True`."
)
else:
model = MODEL_WITH_LM_HEAD_MAPPING[config.__class__](config)
if self.args.torchscript:
raise NotImplementedError("Training for torchscript is currently not implemented")
else:
train_model = model
model.train()
model.to(self.args.device)
# encoder-decoder has vocab size saved differently
vocab_size = config.vocab_size if hasattr(config, "vocab_size") else config.encoder.vocab_size
input_ids = torch.randint(vocab_size, (batch_size, sequence_length), dtype=torch.long, device=self.args.device)
if self.args.fp16:
logger.info("Running training in Mixed Precision...")
if not self.args.is_gpu:
raise ValueError("Mixed precision is possible only for GPU.")
# amp seems to have memory leaks so that memory usage
# is measured using .half() for now https://github.com/NVIDIA/apex/issues/439
model.half()
def compute_loss_and_backprob_encoder():
loss = train_model(input_ids, labels=input_ids)[0]
loss.backward()
return loss
def compute_loss_and_backprob_encoder_decoder():
loss = train_model(input_ids, decoder_input_ids=input_ids, labels=input_ids)[0]
loss.backward()
return loss
_train = (
compute_loss_and_backprob_encoder_decoder
if config.is_encoder_decoder
else compute_loss_and_backprob_encoder
)
return _train
def _measure_speed(self, func) -> float:
try:
if self.args.is_tpu or self.args.torchscript:
# run additional 10 times to stabilize compilation for tpu and torchscript
logger.info("Do inference on TPU or torchscript. Running model 5 times to stabilize compilation")
timeit.repeat(
func,
repeat=1,
number=5,
)
# as written in https://docs.python.org/2/library/timeit.html#timeit.Timer.repeat, min should be taken rather than the average
runtimes = timeit.repeat(
func,
repeat=self.args.repeat,
number=10,
)
if self.args.is_tpu and self.args.torch_xla_tpu_print_metrics:
import torch_xla.debug.metrics as met
self.print_fn(met.metrics_report())
return min(runtimes) / 10.0
except RuntimeError as e:
self.print_fn(f"Doesn't fit on GPU. {e}")
return "N/A"
def _measure_memory(self, func: Callable[[], None]) -> [Memory, MemorySummary]:
try:
if self.args.trace_memory_line_by_line:
trace = start_memory_tracing("transformers")
if self.args.is_tpu:
# tpu
raise NotImplementedError(
"Memory Benchmarking is currently not implemented for TPU. Please disable memory benchmarking with"
" `--no-memory` or `args.memory=False`"
)
elif self.args.is_gpu:
if not is_py3nvml_available():
logger.warning(
"py3nvml not installed, we won't log GPU memory usage. "
"Install py3nvml (pip install py3nvml) to log information about GPU."
)
memory = "N/A"
else:
logger.info(
"Measuring total GPU usage on GPU device. Make sure to not have additional processes running"
" on the same GPU."
)
# init nvml
nvml.nvmlInit()
func()
handle = nvml.nvmlDeviceGetHandleByIndex(self.args.device_idx)
meminfo = nvml.nvmlDeviceGetMemoryInfo(handle)
max_bytes_in_use = meminfo.used
memory = Memory(max_bytes_in_use)
# shutdown nvml
nvml.nvmlShutdown()
else:
# cpu
memory_bytes = measure_peak_memory_cpu(func)
memory = Memory(memory_bytes) if isinstance(memory_bytes, int) else memory_bytes
if self.args.trace_memory_line_by_line:
summary = stop_memory_tracing(trace)
else:
summary = None
return memory, summary
except RuntimeError as e:
self.print_fn(f"Doesn't fit on GPU. {e}")
return "N/A", None
|
class_definition
| 1,365 | 10,746 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/benchmark/benchmark.py
| null | 315 |
class PyTorchBenchmarkArguments(BenchmarkArguments):
deprecated_args = [
"no_inference",
"no_cuda",
"no_tpu",
"no_speed",
"no_memory",
"no_env_print",
"no_multi_process",
]
def __init__(self, **kwargs):
"""
This __init__ is there for legacy code. When removing deprecated args completely, the class can simply be
deleted
"""
for deprecated_arg in self.deprecated_args:
if deprecated_arg in kwargs:
positive_arg = deprecated_arg[3:]
setattr(self, positive_arg, not kwargs.pop(deprecated_arg))
logger.warning(
f"{deprecated_arg} is depreciated. Please use --no_{positive_arg} or"
f" {positive_arg}={kwargs[positive_arg]}"
)
self.torchscript = kwargs.pop("torchscript", self.torchscript)
self.torch_xla_tpu_print_metrics = kwargs.pop("torch_xla_tpu_print_metrics", self.torch_xla_tpu_print_metrics)
self.fp16_opt_level = kwargs.pop("fp16_opt_level", self.fp16_opt_level)
super().__init__(**kwargs)
torchscript: bool = field(default=False, metadata={"help": "Trace the models using torchscript"})
torch_xla_tpu_print_metrics: bool = field(default=False, metadata={"help": "Print Xla/PyTorch tpu metrics"})
fp16_opt_level: str = field(
default="O1",
metadata={
"help": (
"For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']. "
"See details at https://nvidia.github.io/apex/amp.html"
)
},
)
@cached_property
def _setup_devices(self) -> Tuple["torch.device", int]:
requires_backends(self, ["torch"])
logger.info("PyTorch: setting up devices")
if not self.cuda:
device = torch.device("cpu")
n_gpu = 0
elif is_torch_xla_available():
device = xm.xla_device()
n_gpu = 0
elif is_torch_xpu_available():
device = torch.device("xpu")
n_gpu = torch.xpu.device_count()
else:
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
n_gpu = torch.cuda.device_count()
return device, n_gpu
@property
def is_tpu(self):
return is_torch_xla_available() and self.tpu
@property
def device_idx(self) -> int:
requires_backends(self, ["torch"])
# TODO(PVP): currently only single GPU is supported
return torch.cuda.current_device()
@property
def device(self) -> "torch.device":
requires_backends(self, ["torch"])
return self._setup_devices[0]
@property
def n_gpu(self):
requires_backends(self, ["torch"])
return self._setup_devices[1]
@property
def is_gpu(self):
return self.n_gpu > 0
|
class_definition
| 1,120 | 4,049 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/benchmark/benchmark_args.py
| null | 316 |
class BenchmarkArguments:
"""
BenchMarkArguments are arguments we use in our benchmark scripts **which relate to the training loop itself**.
Using `HfArgumentParser` we can turn this class into argparse arguments to be able to specify them on the command
line.
"""
models: List[str] = list_field(
default=[],
metadata={
"help": (
"Model checkpoints to be provided to the AutoModel classes. Leave blank to benchmark the base version"
" of all available models"
)
},
)
batch_sizes: List[int] = list_field(
default=[8], metadata={"help": "List of batch sizes for which memory and time performance will be evaluated"}
)
sequence_lengths: List[int] = list_field(
default=[8, 32, 128, 512],
metadata={"help": "List of sequence lengths for which memory and time performance will be evaluated"},
)
inference: bool = field(
default=True,
metadata={"help": "Whether to benchmark inference of model. Inference can be disabled via --no-inference."},
)
cuda: bool = field(
default=True,
metadata={"help": "Whether to run on available cuda devices. Cuda can be disabled via --no-cuda."},
)
tpu: bool = field(
default=True, metadata={"help": "Whether to run on available tpu devices. TPU can be disabled via --no-tpu."}
)
fp16: bool = field(default=False, metadata={"help": "Use FP16 to accelerate inference."})
training: bool = field(default=False, metadata={"help": "Benchmark training of model"})
verbose: bool = field(default=False, metadata={"help": "Verbose memory tracing"})
speed: bool = field(
default=True,
metadata={"help": "Whether to perform speed measurements. Speed measurements can be disabled via --no-speed."},
)
memory: bool = field(
default=True,
metadata={
"help": "Whether to perform memory measurements. Memory measurements can be disabled via --no-memory"
},
)
trace_memory_line_by_line: bool = field(default=False, metadata={"help": "Trace memory line by line"})
save_to_csv: bool = field(default=False, metadata={"help": "Save result to a CSV file"})
log_print: bool = field(default=False, metadata={"help": "Save all print statements in a log file"})
env_print: bool = field(default=False, metadata={"help": "Whether to print environment information"})
multi_process: bool = field(
default=True,
metadata={
"help": (
"Whether to use multiprocessing for memory and speed measurement. It is highly recommended to use"
" multiprocessing for accurate CPU and GPU memory measurements. This option should only be disabled"
" for debugging / testing and on TPU."
)
},
)
inference_time_csv_file: str = field(
default=f"inference_time_{round(time())}.csv",
metadata={"help": "CSV filename used if saving time results to csv."},
)
inference_memory_csv_file: str = field(
default=f"inference_memory_{round(time())}.csv",
metadata={"help": "CSV filename used if saving memory results to csv."},
)
train_time_csv_file: str = field(
default=f"train_time_{round(time())}.csv",
metadata={"help": "CSV filename used if saving time results to csv for training."},
)
train_memory_csv_file: str = field(
default=f"train_memory_{round(time())}.csv",
metadata={"help": "CSV filename used if saving memory results to csv for training."},
)
env_info_csv_file: str = field(
default=f"env_info_{round(time())}.csv",
metadata={"help": "CSV filename used if saving environment information."},
)
log_filename: str = field(
default=f"log_{round(time())}.csv",
metadata={"help": "Log filename used if print statements are saved in log."},
)
repeat: int = field(default=3, metadata={"help": "Times an experiment will be run."})
only_pretrain_model: bool = field(
default=False,
metadata={
"help": (
"Instead of loading the model as defined in `config.architectures` if exists, just load the pretrain"
" model weights."
)
},
)
def __post_init__(self):
warnings.warn(
f"The class {self.__class__} is deprecated. Hugging Face Benchmarking utils"
" are deprecated in general and it is advised to use external Benchmarking libraries "
" to benchmark Transformer models.",
FutureWarning,
)
def to_json_string(self):
"""
Serializes this instance to a JSON string.
"""
return json.dumps(dataclasses.asdict(self), indent=2)
@property
def model_names(self) -> List[str]:
if len(self.models) <= 0:
raise ValueError(
"Please make sure you provide at least one model name / model identifier, *e.g.* `--models"
" google-bert/bert-base-cased` or `args.models = ['google-bert/bert-base-cased']."
)
return self.models
@property
def do_multi_processing(self):
if not self.multi_process:
return False
elif self.is_tpu:
logger.info("Multiprocessing is currently not possible on TPU.")
return False
else:
return True
|
class_definition
| 1,002 | 6,498 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/benchmark/benchmark_args_utils.py
| null | 317 |
class Frame(NamedTuple):
"""
`Frame` is a NamedTuple used to gather the current frame state. `Frame` has the following fields:
- 'filename' (string): Name of the file currently executed
- 'module' (string): Name of the module currently executed
- 'line_number' (int): Number of the line currently executed
- 'event' (string): Event that triggered the tracing (default will be "line")
- 'line_text' (string): Text of the line in the python script
"""
filename: str
module: str
line_number: int
event: str
line_text: str
|
class_definition
| 3,544 | 4,136 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/benchmark/benchmark_utils.py
| null | 318 |
class UsedMemoryState(NamedTuple):
"""
`UsedMemoryState` are named tuples with the following fields:
- 'frame': a `Frame` namedtuple (see below) storing information on the current tracing frame (current file,
location in current file)
- 'cpu_memory': CPU RSS memory state *before* executing the line
- 'gpu_memory': GPU used memory *before* executing the line (sum for all GPUs or for only `gpus_to_trace` if
provided)
"""
frame: Frame
cpu_memory: int
gpu_memory: int
|
class_definition
| 4,139 | 4,676 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/benchmark/benchmark_utils.py
| null | 319 |
class Memory(NamedTuple):
"""
`Memory` NamedTuple have a single field `bytes` and you can get a human readable str of the number of mega bytes by
calling `__repr__`
- `byte` (integer): number of bytes,
"""
bytes: int
def __repr__(self) -> str:
return str(bytes_to_mega_bytes(self.bytes))
|
class_definition
| 4,679 | 5,009 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/benchmark/benchmark_utils.py
| null | 320 |
class MemoryState(NamedTuple):
"""
`MemoryState` are namedtuples listing frame + CPU/GPU memory with the following fields:
- `frame` (`Frame`): the current frame (see above)
- `cpu`: CPU memory consumed at during the current frame as a `Memory` named tuple
- `gpu`: GPU memory consumed at during the current frame as a `Memory` named tuple
- `cpu_gpu`: CPU + GPU memory consumed at during the current frame as a `Memory` named tuple
"""
frame: Frame
cpu: Memory
gpu: Memory
cpu_gpu: Memory
|
class_definition
| 5,012 | 5,563 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/benchmark/benchmark_utils.py
| null | 321 |
class MemorySummary(NamedTuple):
"""
`MemorySummary` namedtuple otherwise with the fields:
- `sequential`: a list of `MemoryState` namedtuple (see below) computed from the provided `memory_trace` by
subtracting the memory after executing each line from the memory before executing said line.
- `cumulative`: a list of `MemoryState` namedtuple (see below) with cumulative increase in memory for each line
obtained by summing repeated memory increase for a line if it's executed several times. The list is sorted
from the frame with the largest memory consumption to the frame with the smallest (can be negative if memory
is released)
- `total`: total memory increase during the full tracing as a `Memory` named tuple (see below). Line with
memory release (negative consumption) are ignored if `ignore_released_memory` is `True` (default).
"""
sequential: List[MemoryState]
cumulative: List[MemoryState]
current: List[MemoryState]
total: Memory
|
class_definition
| 5,566 | 6,612 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/benchmark/benchmark_utils.py
| null | 322 |
class MemoryMeasureProcess(Process):
"""
`MemoryMeasureProcess` inherits from `Process` and overwrites its `run()` method. Used to measure the
memory usage of a process
"""
def __init__(self, process_id: int, child_connection: Connection, interval: float):
super().__init__()
self.process_id = process_id
self.interval = interval
self.connection = child_connection
self.num_measurements = 1
self.mem_usage = get_cpu_memory(self.process_id)
def run(self):
self.connection.send(0)
stop = False
while True:
self.mem_usage = max(self.mem_usage, get_cpu_memory(self.process_id))
self.num_measurements += 1
if stop:
break
stop = self.connection.poll(self.interval)
# send results to parent pipe
self.connection.send(self.mem_usage)
self.connection.send(self.num_measurements)
|
class_definition
| 8,480 | 9,622 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/benchmark/benchmark_utils.py
| null | 323 |
class Benchmark(ABC):
"""
Benchmarks is a simple but feature-complete benchmarking script to compare memory and time performance of models in
Transformers.
"""
args: BenchmarkArguments
configs: PretrainedConfig
framework: str
def __init__(self, args: BenchmarkArguments = None, configs: PretrainedConfig = None):
self.args = args
if configs is None:
self.config_dict = {
model_name: AutoConfig.from_pretrained(model_name) for model_name in self.args.model_names
}
else:
self.config_dict = dict(zip(self.args.model_names, configs))
warnings.warn(
f"The class {self.__class__} is deprecated. Hugging Face Benchmarking utils"
" are deprecated in general and it is advised to use external Benchmarking libraries "
" to benchmark Transformer models.",
FutureWarning,
)
if self.args.memory and os.getenv("TRANSFORMERS_USE_MULTIPROCESSING") == 0:
logger.warning(
"Memory consumption will not be measured accurately if `args.multi_process` is set to `False.` The"
" flag 'TRANSFORMERS_USE_MULTIPROCESSING' should only be disabled for debugging / testing."
)
self._print_fn = None
self._framework_version = None
self._environment_info = None
@property
def print_fn(self):
if self._print_fn is None:
if self.args.log_print:
def print_and_log(*args):
with open(self.args.log_filename, "a") as log_file:
log_file.write("".join(args) + "\n")
print(*args)
self._print_fn = print_and_log
else:
self._print_fn = print
return self._print_fn
@property
@abstractmethod
def framework_version(self):
pass
@abstractmethod
def _inference_speed(self, model_name: str, batch_size: int, sequence_length: int) -> float:
pass
@abstractmethod
def _train_speed(self, model_name: str, batch_size: int, sequence_length: int) -> float:
pass
@abstractmethod
def _inference_memory(
self, model_name: str, batch_size: int, sequence_length: int
) -> [Memory, Optional[MemorySummary]]:
pass
@abstractmethod
def _train_memory(
self, model_name: str, batch_size: int, sequence_length: int
) -> [Memory, Optional[MemorySummary]]:
pass
def inference_speed(self, *args, **kwargs) -> float:
return separate_process_wrapper_fn(self._inference_speed, self.args.do_multi_processing)(*args, **kwargs)
def train_speed(self, *args, **kwargs) -> float:
return separate_process_wrapper_fn(self._train_speed, self.args.do_multi_processing)(*args, **kwargs)
def inference_memory(self, *args, **kwargs) -> [Memory, Optional[MemorySummary]]:
return separate_process_wrapper_fn(self._inference_memory, self.args.do_multi_processing)(*args, **kwargs)
def train_memory(self, *args, **kwargs) -> [Memory, Optional[MemorySummary]]:
return separate_process_wrapper_fn(self._train_memory, self.args.do_multi_processing)(*args, **kwargs)
def run(self):
result_dict = {model_name: {} for model_name in self.args.model_names}
inference_result_time = copy.deepcopy(result_dict)
inference_result_memory = copy.deepcopy(result_dict)
train_result_time = copy.deepcopy(result_dict)
train_result_memory = copy.deepcopy(result_dict)
for c, model_name in enumerate(self.args.model_names):
self.print_fn(f"{c + 1} / {len(self.args.model_names)}")
model_dict = {
"bs": self.args.batch_sizes,
"ss": self.args.sequence_lengths,
"result": {i: {} for i in self.args.batch_sizes},
}
inference_result_time[model_name] = copy.deepcopy(model_dict)
inference_result_memory[model_name] = copy.deepcopy(model_dict)
train_result_time[model_name] = copy.deepcopy(model_dict)
train_result_memory[model_name] = copy.deepcopy(model_dict)
inference_summary = train_summary = None
for batch_size in self.args.batch_sizes:
for sequence_length in self.args.sequence_lengths:
if self.args.inference:
if self.args.memory:
memory, inference_summary = self.inference_memory(model_name, batch_size, sequence_length)
inference_result_memory[model_name]["result"][batch_size][sequence_length] = memory
if self.args.speed:
time = self.inference_speed(model_name, batch_size, sequence_length)
inference_result_time[model_name]["result"][batch_size][sequence_length] = time
if self.args.training:
if self.args.memory:
memory, train_summary = self.train_memory(model_name, batch_size, sequence_length)
train_result_memory[model_name]["result"][batch_size][sequence_length] = memory
if self.args.speed:
time = self.train_speed(model_name, batch_size, sequence_length)
train_result_time[model_name]["result"][batch_size][sequence_length] = time
if self.args.inference:
if self.args.speed:
self.print_fn("\n" + 20 * "=" + ("INFERENCE - SPEED - RESULT").center(40) + 20 * "=")
self.print_results(inference_result_time, type_label="Time in s")
self.save_to_csv(inference_result_time, self.args.inference_time_csv_file)
if self.args.is_tpu:
self.print_fn(
"TPU was used for inference. Note that the time after compilation stabilized (after ~10"
" inferences model.forward(..) calls) was measured."
)
if self.args.memory:
self.print_fn("\n" + 20 * "=" + ("INFERENCE - MEMORY - RESULT").center(40) + 20 * "=")
self.print_results(inference_result_memory, type_label="Memory in MB")
self.save_to_csv(inference_result_memory, self.args.inference_memory_csv_file)
if self.args.trace_memory_line_by_line:
self.print_fn("\n" + 20 * "=" + ("INFERENCE - MEMOMRY - LINE BY LINE - SUMMARY").center(40) + 20 * "=")
self.print_memory_trace_statistics(inference_summary)
if self.args.training:
if self.args.speed:
self.print_fn("\n" + 20 * "=" + ("TRAIN - SPEED - RESULTS").center(40) + 20 * "=")
self.print_results(train_result_time, "Time in s")
self.save_to_csv(train_result_time, self.args.train_time_csv_file)
if self.args.is_tpu:
self.print_fn(
"TPU was used for training. Note that the time after compilation stabilized (after ~10 train"
" loss=model.forward(...) + loss.backward() calls) was measured."
)
if self.args.memory:
self.print_fn("\n" + 20 * "=" + ("TRAIN - MEMORY - RESULTS").center(40) + 20 * "=")
self.print_results(train_result_memory, type_label="Memory in MB")
self.save_to_csv(train_result_memory, self.args.train_memory_csv_file)
if self.args.trace_memory_line_by_line:
self.print_fn("\n" + 20 * "=" + ("TRAIN - MEMOMRY - LINE BY LINE - SUMMARY").center(40) + 20 * "=")
self.print_memory_trace_statistics(train_summary)
if self.args.env_print:
self.print_fn("\n" + 20 * "=" + ("ENVIRONMENT INFORMATION").center(40) + 20 * "=")
self.print_fn("\n".join([f"- {prop}: {val}" for prop, val in self.environment_info.items()]) + "\n")
if self.args.save_to_csv:
with open(self.args.env_info_csv_file, mode="w", newline="") as csv_file:
writer = csv.writer(csv_file)
for key, value in self.environment_info.items():
writer.writerow([key, value])
return BenchmarkOutput(
inference_result_time,
inference_result_memory,
train_result_time,
train_result_memory,
inference_summary,
train_summary,
)
@property
def environment_info(self):
if self._environment_info is None:
info = {}
info["transformers_version"] = version
info["framework"] = self.framework
if self.framework == "PyTorch":
info["use_torchscript"] = self.args.torchscript
if self.framework == "TensorFlow":
info["eager_mode"] = self.args.eager_mode
info["use_xla"] = self.args.use_xla
info["framework_version"] = self.framework_version
info["python_version"] = platform.python_version()
info["system"] = platform.system()
info["cpu"] = platform.processor()
info["architecture"] = platform.architecture()[0]
info["date"] = datetime.date(datetime.now())
info["time"] = datetime.time(datetime.now())
info["fp16"] = self.args.fp16
info["use_multiprocessing"] = self.args.do_multi_processing
info["only_pretrain_model"] = self.args.only_pretrain_model
if is_psutil_available():
info["cpu_ram_mb"] = bytes_to_mega_bytes(psutil.virtual_memory().total)
else:
logger.warning(
"Psutil not installed, we won't log available CPU memory. "
"Install psutil (pip install psutil) to log available CPU memory."
)
info["cpu_ram_mb"] = "N/A"
info["use_gpu"] = self.args.is_gpu
if self.args.is_gpu:
info["num_gpus"] = 1 # TODO(PVP) Currently only single GPU is supported
if is_py3nvml_available():
nvml.nvmlInit()
handle = nvml.nvmlDeviceGetHandleByIndex(self.args.device_idx)
info["gpu"] = nvml.nvmlDeviceGetName(handle)
info["gpu_ram_mb"] = bytes_to_mega_bytes(nvml.nvmlDeviceGetMemoryInfo(handle).total)
info["gpu_power_watts"] = nvml.nvmlDeviceGetPowerManagementLimit(handle) / 1000
info["gpu_performance_state"] = nvml.nvmlDeviceGetPerformanceState(handle)
nvml.nvmlShutdown()
else:
logger.warning(
"py3nvml not installed, we won't log GPU memory usage. "
"Install py3nvml (pip install py3nvml) to log information about GPU."
)
info["gpu"] = "N/A"
info["gpu_ram_mb"] = "N/A"
info["gpu_power_watts"] = "N/A"
info["gpu_performance_state"] = "N/A"
info["use_tpu"] = self.args.is_tpu
# TODO(PVP): See if we can add more information about TPU
# see: https://github.com/pytorch/xla/issues/2180
self._environment_info = info
return self._environment_info
def print_results(self, result_dict, type_label):
self.print_fn(80 * "-")
self.print_fn(
"Model Name".center(30) + "Batch Size".center(15) + "Seq Length".center(15) + type_label.center(15)
)
self.print_fn(80 * "-")
for model_name in self.args.model_names:
for batch_size in result_dict[model_name]["bs"]:
for sequence_length in result_dict[model_name]["ss"]:
result = result_dict[model_name]["result"][batch_size][sequence_length]
if isinstance(result, float):
result = round(1000 * result) / 1000
result = "< 0.001" if result == 0.0 else str(result)
else:
result = str(result)
self.print_fn(
model_name[:30].center(30) + str(batch_size).center(15),
str(sequence_length).center(15),
result.center(15),
)
self.print_fn(80 * "-")
def print_memory_trace_statistics(self, summary: MemorySummary):
self.print_fn(
"\nLine by line memory consumption:\n"
+ "\n".join(
f"{state.frame.filename}:{state.frame.line_number}: mem {state.cpu_gpu}: {state.frame.line_text}"
for state in summary.sequential
)
)
self.print_fn(
"\nLines with top memory consumption:\n"
+ "\n".join(
f"=> {state.frame.filename}:{state.frame.line_number}: mem {state.cpu_gpu}: {state.frame.line_text}"
for state in summary.cumulative[:6]
)
)
self.print_fn(
"\nLines with lowest memory consumption:\n"
+ "\n".join(
f"=> {state.frame.filename}:{state.frame.line_number}: mem {state.cpu_gpu}: {state.frame.line_text}"
for state in summary.cumulative[-6:]
)
)
self.print_fn(f"\nTotal memory increase: {summary.total}")
def save_to_csv(self, result_dict, filename):
if not self.args.save_to_csv:
return
self.print_fn("Saving results to csv.")
with open(filename, mode="w") as csv_file:
if len(self.args.model_names) <= 0:
raise ValueError(f"At least 1 model should be defined, but got {self.model_names}")
fieldnames = ["model", "batch_size", "sequence_length"]
writer = csv.DictWriter(csv_file, fieldnames=fieldnames + ["result"])
writer.writeheader()
for model_name in self.args.model_names:
result_dict_model = result_dict[model_name]["result"]
for bs in result_dict_model:
for ss in result_dict_model[bs]:
result_model = result_dict_model[bs][ss]
writer.writerow(
{
"model": model_name,
"batch_size": bs,
"sequence_length": ss,
"result": ("{}" if not isinstance(result_model, float) else "{:.4f}").format(
result_model
),
}
)
|
class_definition
| 22,684 | 37,598 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/benchmark/benchmark_utils.py
| null | 324 |
class TensorFlowBenchmarkArguments(BenchmarkArguments):
deprecated_args = [
"no_inference",
"no_cuda",
"no_tpu",
"no_speed",
"no_memory",
"no_env_print",
"no_multi_process",
]
def __init__(self, **kwargs):
"""
This __init__ is there for legacy code. When removing deprecated args completely, the class can simply be
deleted
"""
for deprecated_arg in self.deprecated_args:
if deprecated_arg in kwargs:
positive_arg = deprecated_arg[3:]
kwargs[positive_arg] = not kwargs.pop(deprecated_arg)
logger.warning(
f"{deprecated_arg} is depreciated. Please use --no-{positive_arg} or"
f" {positive_arg}={kwargs[positive_arg]}"
)
self.tpu_name = kwargs.pop("tpu_name", self.tpu_name)
self.device_idx = kwargs.pop("device_idx", self.device_idx)
self.eager_mode = kwargs.pop("eager_mode", self.eager_mode)
self.use_xla = kwargs.pop("use_xla", self.use_xla)
super().__init__(**kwargs)
tpu_name: str = field(
default=None,
metadata={"help": "Name of TPU"},
)
device_idx: int = field(
default=0,
metadata={"help": "CPU / GPU device index. Defaults to 0."},
)
eager_mode: bool = field(default=False, metadata={"help": "Benchmark models in eager model."})
use_xla: bool = field(
default=False,
metadata={
"help": "Benchmark models using XLA JIT compilation. Note that `eager_model` has to be set to `False`."
},
)
@cached_property
def _setup_tpu(self) -> Tuple["tf.distribute.cluster_resolver.TPUClusterResolver"]:
requires_backends(self, ["tf"])
tpu = None
if self.tpu:
try:
if self.tpu_name:
tpu = tf.distribute.cluster_resolver.TPUClusterResolver(self.tpu_name)
else:
tpu = tf.distribute.cluster_resolver.TPUClusterResolver()
except ValueError:
tpu = None
return tpu
@cached_property
def _setup_strategy(self) -> Tuple["tf.distribute.Strategy", "tf.distribute.cluster_resolver.TPUClusterResolver"]:
requires_backends(self, ["tf"])
if self.is_tpu:
tf.config.experimental_connect_to_cluster(self._setup_tpu)
tf.tpu.experimental.initialize_tpu_system(self._setup_tpu)
strategy = tf.distribute.TPUStrategy(self._setup_tpu)
else:
# currently no multi gpu is allowed
if self.is_gpu:
# TODO: Currently only single GPU is supported
tf.config.set_visible_devices(self.gpu_list[self.device_idx], "GPU")
strategy = tf.distribute.OneDeviceStrategy(device=f"/gpu:{self.device_idx}")
else:
tf.config.set_visible_devices([], "GPU") # disable GPU
strategy = tf.distribute.OneDeviceStrategy(device=f"/cpu:{self.device_idx}")
return strategy
@property
def is_tpu(self) -> bool:
requires_backends(self, ["tf"])
return self._setup_tpu is not None
@property
def strategy(self) -> "tf.distribute.Strategy":
requires_backends(self, ["tf"])
return self._setup_strategy
@property
def gpu_list(self):
requires_backends(self, ["tf"])
return tf.config.list_physical_devices("GPU")
@property
def n_gpu(self) -> int:
requires_backends(self, ["tf"])
if self.cuda:
return len(self.gpu_list)
return 0
@property
def is_gpu(self) -> bool:
return self.n_gpu > 0
|
class_definition
| 976 | 4,734 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/benchmark/benchmark_args_tf.py
| null | 325 |
class SelectiveScanFn(torch.autograd.Function):
@staticmethod
def forward(
ctx, u, delta, A, B, C, D=None, z=None, delta_bias=None, delta_softplus=False, return_last_state=False
):
if u.stride(-1) != 1:
u = u.contiguous()
if delta.stride(-1) != 1:
delta = delta.contiguous()
if D is not None:
D = D.contiguous()
if B.stride(-1) != 1:
B = B.contiguous()
if C.stride(-1) != 1:
C = C.contiguous()
if z is not None and z.stride(-1) != 1:
z = z.contiguous()
if B.dim() == 3:
B = rearrange(B, "b dstate l -> b 1 dstate l")
ctx.squeeze_B = True
if C.dim() == 3:
C = rearrange(C, "b dstate l -> b 1 dstate l")
ctx.squeeze_C = True
out, x, *rest = selective_scan_cuda.fwd(u, delta, A, B, C, D, z, delta_bias, delta_softplus)
ctx.delta_softplus = delta_softplus
ctx.has_z = z is not None
last_state = x[:, :, -1, 1::2] # (batch, dim, dstate)
if not ctx.has_z:
ctx.save_for_backward(u, delta, A, B, C, D, delta_bias, x)
return out if not return_last_state else (out, last_state)
else:
ctx.save_for_backward(u, delta, A, B, C, D, z, delta_bias, x, out)
out_z = rest[0]
return out_z if not return_last_state else (out_z, last_state)
@staticmethod
def backward(ctx, dout, *args):
if not ctx.has_z:
u, delta, A, B, C, D, delta_bias, x = ctx.saved_tensors
z = None
out = None
else:
u, delta, A, B, C, D, z, delta_bias, x, out = ctx.saved_tensors
if dout.stride(-1) != 1:
dout = dout.contiguous()
# The kernel supports passing in a pre-allocated dz (e.g., in case we want to fuse the
# backward of selective_scan_cuda with the backward of chunk).
# Here we just pass in None and dz will be allocated in the C++ code.
du, ddelta, dA, dB, dC, dD, ddelta_bias, *rest = selective_scan_cuda.bwd(
u,
delta,
A,
B,
C,
D,
z,
delta_bias,
dout,
x,
out,
None,
ctx.delta_softplus,
False, # option to recompute out_z, not used here
)
dz = rest[0] if ctx.has_z else None
dB = dB.squeeze(1) if getattr(ctx, "squeeze_B", False) else dB
dC = dC.squeeze(1) if getattr(ctx, "squeeze_C", False) else dC
return (
du,
ddelta,
dA,
dB,
dC,
dD if D is not None else None,
dz,
ddelta_bias if delta_bias is not None else None,
None,
None,
)
|
class_definition
| 1,336 | 4,206 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/kernels/falcon_mamba/selective_scan_with_ln_interface.py
| null | 326 |
class MambaInnerFn(torch.autograd.Function):
@staticmethod
@custom_fwd
def forward(
ctx,
xz,
conv1d_weight,
conv1d_bias,
x_proj_weight,
delta_proj_weight,
out_proj_weight,
out_proj_bias,
A,
B=None,
C=None,
D=None,
delta_bias=None,
B_proj_bias=None,
C_proj_bias=None,
delta_softplus=True,
checkpoint_lvl=1,
b_rms_weight=None,
c_rms_weight=None,
dt_rms_weight=None,
b_c_dt_rms_eps=1e-6,
):
"""
xz: (batch, dim, seqlen)
"""
assert causal_conv1d_cuda is not None, "causal_conv1d_cuda is not available. Please install causal-conv1d."
assert checkpoint_lvl in [0, 1]
L = xz.shape[-1]
delta_rank = delta_proj_weight.shape[1]
d_state = A.shape[-1] * (1 if not A.is_complex() else 2)
if torch.is_autocast_enabled():
x_proj_weight = x_proj_weight.to(dtype=torch.get_autocast_gpu_dtype())
delta_proj_weight = delta_proj_weight.to(dtype=torch.get_autocast_gpu_dtype())
out_proj_weight = out_proj_weight.to(dtype=torch.get_autocast_gpu_dtype())
out_proj_bias = (
out_proj_bias.to(dtype=torch.get_autocast_gpu_dtype()) if out_proj_bias is not None else None
)
if xz.stride(-1) != 1:
xz = xz.contiguous()
conv1d_weight = rearrange(conv1d_weight, "d 1 w -> d w")
x, z = xz.chunk(2, dim=1)
conv1d_bias = conv1d_bias.contiguous() if conv1d_bias is not None else None
conv1d_out = causal_conv1d_cuda.causal_conv1d_fwd(x, conv1d_weight, conv1d_bias, None, None, None, True)
# We're being very careful here about the layout, to avoid extra transposes.
# We want delta to have d as the slowest moving dimension
# and L as the fastest moving dimension, since those are what the ssm_scan kernel expects.
x_dbl = F.linear(rearrange(conv1d_out, "b d l -> (b l) d"), x_proj_weight) # (bl d)
delta = rearrange(delta_proj_weight @ x_dbl[:, :delta_rank].t(), "d (b l) -> b d l", l=L)
ctx.is_variable_B = B is None
ctx.is_variable_C = C is None
ctx.B_proj_bias_is_None = B_proj_bias is None
ctx.C_proj_bias_is_None = C_proj_bias is None
if B is None: # variable B
B = x_dbl[:, delta_rank : delta_rank + d_state] # (bl dstate)
if B_proj_bias is not None:
B = B + B_proj_bias.to(dtype=B.dtype)
if not A.is_complex():
# B = rearrange(B, "(b l) dstate -> b dstate l", l=L).contiguous()
B = rearrange(B, "(b l) dstate -> b 1 dstate l", l=L).contiguous()
else:
B = rearrange(B, "(b l) (dstate two) -> b 1 dstate (l two)", l=L, two=2).contiguous()
else:
if B.stride(-1) != 1:
B = B.contiguous()
if C is None: # variable C
C = x_dbl[:, -d_state:] # (bl dstate)
if C_proj_bias is not None:
C = C + C_proj_bias.to(dtype=C.dtype)
if not A.is_complex():
# C = rearrange(C, "(b l) dstate -> b dstate l", l=L).contiguous()
C = rearrange(C, "(b l) dstate -> b 1 dstate l", l=L).contiguous()
else:
C = rearrange(C, "(b l) (dstate two) -> b 1 dstate (l two)", l=L, two=2).contiguous()
else:
if C.stride(-1) != 1:
C = C.contiguous()
if D is not None:
D = D.contiguous()
if b_rms_weight is not None:
B = rearrange(B, "b 1 dstate l -> (b l) dstate", l=L).contiguous()
B = rms_norm_forward(B, b_rms_weight, bias=None, eps=b_c_dt_rms_eps)
B = rearrange(B, "(b l) dstate -> b 1 dstate l", l=L).contiguous()
if c_rms_weight is not None:
C = rearrange(C, "b 1 dstate l -> (b l) dstate", l=L).contiguous()
C = rms_norm_forward(C, c_rms_weight, bias=None, eps=b_c_dt_rms_eps)
C = rearrange(C, "(b l) dstate -> b 1 dstate l", l=L).contiguous()
if dt_rms_weight is not None:
delta = rearrange(delta, "b d l -> (b l) d", l=L).contiguous()
delta = rms_norm_forward(delta, dt_rms_weight, bias=None, eps=b_c_dt_rms_eps)
delta = rearrange(delta, "(b l) d -> b d l", l=L).contiguous()
out, scan_intermediates, out_z = selective_scan_cuda.fwd(
conv1d_out, delta, A, B, C, D, z, delta_bias, delta_softplus
)
ctx.delta_softplus = delta_softplus
ctx.out_proj_bias_is_None = out_proj_bias is None
ctx.checkpoint_lvl = checkpoint_lvl
ctx.b_rms_weight = b_rms_weight
ctx.c_rms_weight = c_rms_weight
ctx.dt_rms_weight = dt_rms_weight
ctx.b_c_dt_rms_eps = b_c_dt_rms_eps
if checkpoint_lvl >= 1: # Will recompute conv1d_out and delta in the backward pass
conv1d_out, delta = None, None
ctx.save_for_backward(
xz,
conv1d_weight,
conv1d_bias,
x_dbl,
x_proj_weight,
delta_proj_weight,
out_proj_weight,
conv1d_out,
delta,
A,
B,
C,
D,
delta_bias,
scan_intermediates,
b_rms_weight,
c_rms_weight,
dt_rms_weight,
out,
)
return F.linear(rearrange(out_z, "b d l -> b l d"), out_proj_weight, out_proj_bias)
@staticmethod
@custom_bwd
def backward(ctx, dout):
# dout: (batch, seqlen, dim)
assert causal_conv1d_cuda is not None, "causal_conv1d_cuda is not available. Please install causal-conv1d."
(
xz,
conv1d_weight,
conv1d_bias,
x_dbl,
x_proj_weight,
delta_proj_weight,
out_proj_weight,
conv1d_out,
delta,
A,
B,
C,
D,
delta_bias,
scan_intermediates,
b_rms_weight,
c_rms_weight,
dt_rms_weight,
out,
) = ctx.saved_tensors
L = xz.shape[-1]
delta_rank = delta_proj_weight.shape[1]
d_state = A.shape[-1] * (1 if not A.is_complex() else 2)
x, z = xz.chunk(2, dim=1)
if dout.stride(-1) != 1:
dout = dout.contiguous()
if ctx.checkpoint_lvl == 1:
conv1d_out = causal_conv1d_cuda.causal_conv1d_fwd(x, conv1d_weight, conv1d_bias, None, None, None, True)
delta = rearrange(delta_proj_weight @ x_dbl[:, :delta_rank].t(), "d (b l) -> b d l", l=L)
if dt_rms_weight is not None:
delta = rearrange(delta, "b d l -> (b l) d", l=L).contiguous()
delta = rms_norm_forward(delta, ctx.dt_rms_weight, None, ctx.b_c_dt_rms_eps)
delta = rearrange(delta, "(b l) d -> b d l", l=L).contiguous()
if b_rms_weight is not None:
# Recompute & RMSNorm B
B = rearrange(B, "b 1 dstate l -> (b l) dstate", l=L).contiguous()
B = rms_norm_forward(B, ctx.b_rms_weight, None, ctx.b_c_dt_rms_eps)
B = rearrange(B, "(b l) dstate -> b 1 dstate l", l=L).contiguous()
if c_rms_weight is not None:
# Recompute & RMSNorm C
C = rearrange(C, "b 1 dstate l -> (b l) dstate", l=L).contiguous()
C = rms_norm_forward(C, ctx.c_rms_weight, None, ctx.b_c_dt_rms_eps)
C = rearrange(C, "(b l) dstate -> b 1 dstate l", l=L).contiguous()
# The kernel supports passing in a pre-allocated dz (e.g., in case we want to fuse the
# backward of selective_scan_cuda with the backward of chunk).
dxz = torch.empty_like(xz) # (batch, dim, seqlen)
dx, dz = dxz.chunk(2, dim=1)
dout = rearrange(dout, "b l e -> e (b l)")
dout_y = rearrange(out_proj_weight.t() @ dout, "d (b l) -> b d l", l=L)
dconv1d_out, ddelta, dA, dB, dC, dD, ddelta_bias, dz, out_z = selective_scan_cuda.bwd(
conv1d_out,
delta,
A,
B,
C,
D,
z,
delta_bias,
dout_y,
scan_intermediates,
out,
dz,
ctx.delta_softplus,
True, # option to recompute out_z
)
dout_proj_weight = torch.einsum("eB,dB->ed", dout, rearrange(out_z, "b d l -> d (b l)"))
dout_proj_bias = dout.sum(dim=(0, 1)) if not ctx.out_proj_bias_is_None else None
dD = dD if D is not None else None
dx_dbl = torch.empty_like(x_dbl)
dB_proj_bias = None
if ctx.is_variable_B:
if not A.is_complex():
dB = rearrange(dB, "b 1 dstate l -> (b l) dstate").contiguous()
else:
dB = rearrange(dB, "b 1 dstate (l two) -> (b l) (dstate two)", two=2).contiguous()
dB_proj_bias = dB.sum(0) if not ctx.B_proj_bias_is_None else None
dx_dbl[:, delta_rank : delta_rank + d_state] = dB # (bl d)
dB = None
dC_proj_bias = None
if ctx.is_variable_C:
if not A.is_complex():
dC = rearrange(dC, "b 1 dstate l -> (b l) dstate").contiguous()
else:
dC = rearrange(dC, "b 1 dstate (l two) -> (b l) (dstate two)", two=2).contiguous()
dC_proj_bias = dC.sum(0) if not ctx.C_proj_bias_is_None else None
dx_dbl[:, -d_state:] = dC # (bl d)
dC = None
ddelta = rearrange(ddelta, "b d l -> d (b l)")
ddelta_proj_weight = torch.einsum("dB,Br->dr", ddelta, x_dbl[:, :delta_rank])
dx_dbl[:, :delta_rank] = torch.einsum("dB,dr->Br", ddelta, delta_proj_weight)
dconv1d_out = rearrange(dconv1d_out, "b d l -> d (b l)")
dx_proj_weight = torch.einsum("Br,Bd->rd", dx_dbl, rearrange(conv1d_out, "b d l -> (b l) d"))
dconv1d_out = torch.addmm(dconv1d_out, x_proj_weight.t(), dx_dbl.t(), out=dconv1d_out)
dconv1d_out = rearrange(dconv1d_out, "d (b l) -> b d l", b=x.shape[0], l=x.shape[-1])
# The kernel supports passing in a pre-allocated dx (e.g., in case we want to fuse the
# backward of conv1d with the backward of chunk).
dx, dconv1d_weight, dconv1d_bias, *_ = causal_conv1d_cuda.causal_conv1d_bwd(
x, conv1d_weight, conv1d_bias, dconv1d_out, None, None, None, dx, False, True
)
dconv1d_bias = dconv1d_bias if conv1d_bias is not None else None
dconv1d_weight = rearrange(dconv1d_weight, "d w -> d 1 w")
return (
dxz,
dconv1d_weight,
dconv1d_bias,
dx_proj_weight,
ddelta_proj_weight,
dout_proj_weight,
dout_proj_bias,
dA,
dB,
dC,
dD,
ddelta_bias if delta_bias is not None else None,
# 6-None are delta_softplus, checkpoint_lvl, b_rms_weight, c_rms_weight, dt_rms_weight, b_c_dt_rms_eps
dB_proj_bias,
dC_proj_bias,
None,
None,
None,
None,
None,
None,
)
|
class_definition
| 7,500 | 18,893 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/kernels/falcon_mamba/selective_scan_with_ln_interface.py
| null | 327 |
class PatchingSpec:
"""
Data class that holds patching specifications.
Args:
o: Module / object where the op to patch is located
name: Name of the op to monkey patch
custom_op: Custom op that patches the original op
orig_op: Original op that is being patched
op_wrapper: Wrapper (optional) that wraps both the original and custom ops.
It is useful for ops that are class or static methods for instance.
"""
o: Any
name: str
custom_op: Callable
orig_op: Optional[Callable] = None
op_wrapper: Optional[Callable] = None
|
class_definition
| 1,543 | 2,149 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/onnx/config.py
| null | 328 |
class OnnxConfig(ABC):
"""
Base class for ONNX exportable model describing metadata on how to export the model through the ONNX format.
"""
default_fixed_batch = 2
default_fixed_sequence = 8
default_fixed_num_choices = 4
torch_onnx_minimum_version = version.parse("1.8")
_tasks_to_common_outputs = {
"causal-lm": OrderedDict({"logits": {0: "batch", 1: "sequence"}}),
"default": OrderedDict({"last_hidden_state": {0: "batch", 1: "sequence"}}),
"image-classification": OrderedDict({"logits": {0: "batch", 1: "sequence"}}),
"image-segmentation": OrderedDict(
{
"logits": {0: "batch", 1: "sequence"},
"pred_boxes": {0: "batch", 1: "sequence"},
"pred_masks": {0: "batch", 1: "sequence"},
}
),
"masked-im": OrderedDict({"logits": {0: "batch", 1: "sequence"}}),
"masked-lm": OrderedDict({"logits": {0: "batch", 1: "sequence"}}),
"multiple-choice": OrderedDict({"logits": {0: "batch"}}),
"object-detection": OrderedDict(
{
"logits": {0: "batch", 1: "sequence"},
"pred_boxes": {0: "batch", 1: "sequence"},
}
),
"question-answering": OrderedDict(
{
"start_logits": {0: "batch", 1: "sequence"},
"end_logits": {0: "batch", 1: "sequence"},
}
),
"semantic-segmentation": OrderedDict({"logits": {0: "batch", 1: "num_labels", 2: "height", 3: "width"}}),
"seq2seq-lm": OrderedDict({"logits": {0: "batch", 1: "decoder_sequence"}}),
"sequence-classification": OrderedDict({"logits": {0: "batch"}}),
"token-classification": OrderedDict({"logits": {0: "batch", 1: "sequence"}}),
"vision2seq-lm": OrderedDict({"logits": {0: "batch", 1: "sequence"}}),
"speech2seq-lm": OrderedDict({"logits": {0: "batch", 1: "sequence"}}),
}
def __init__(self, config: "PretrainedConfig", task: str = "default", patching_specs: List[PatchingSpec] = None):
self._config = config
if task not in self._tasks_to_common_outputs:
raise ValueError(
f"{task} is not a supported task, supported tasks: {self._tasks_to_common_outputs.keys()}"
)
self.task = task
self._patching_specs = []
for spec in patching_specs if patching_specs is not None else []:
final_spec = spec
if spec.orig_op is None:
final_spec = dataclasses.replace(spec, orig_op=getattr(spec.o, spec.name))
self._patching_specs.append(final_spec)
@classmethod
def from_model_config(cls, config: "PretrainedConfig", task: str = "default") -> "OnnxConfig":
"""
Instantiate a OnnxConfig for a specific model
Args:
config: The model's configuration to use when exporting to ONNX
Returns:
OnnxConfig for this model
"""
return cls(config, task=task)
@property
@abstractmethod
def inputs(self) -> Mapping[str, Mapping[int, str]]:
"""
Mapping containing the axis definition of the input tensors to provide to the model
Returns:
For each input: its name associated to the axes symbolic name and the axis position within the tensor
"""
raise NotImplementedError()
@property
def outputs(self) -> Mapping[str, Mapping[int, str]]:
"""
Mapping containing the axis definition of the output tensors to provide to the model
Returns:
For each output: its name associated to the axes symbolic name and the axis position within the tensor
"""
common_outputs = self._tasks_to_common_outputs[self.task]
return copy.deepcopy(common_outputs)
@property
def values_override(self) -> Optional[Mapping[str, Any]]:
"""
Dictionary of keys to override in the model's config before exporting
Returns:
Dictionary with the keys (and their corresponding values) to override
"""
if hasattr(self._config, "use_cache"):
return {"use_cache": False}
return None
@property
def default_batch_size(self) -> int:
"""
The default batch size to use if no other indication
Returns:
Integer > 0
"""
# Using 2 avoid ONNX making assumption about single sample batch
return OnnxConfig.default_fixed_batch
@property
def default_sequence_length(self) -> int:
"""
The default sequence length to use if no other indication
Returns:
Integer > 0
"""
return OnnxConfig.default_fixed_sequence
@property
def default_num_choices(self) -> int:
"""
The default number of choices to use if no other indication
Returns:
Integer > 0
"""
return OnnxConfig.default_fixed_num_choices
@property
def default_onnx_opset(self) -> int:
"""
Which onnx opset to use when exporting the model
Returns:
Integer ONNX Opset version
"""
return DEFAULT_ONNX_OPSET
@property
def atol_for_validation(self) -> float:
"""
What absolute tolerance value to use during model conversion validation.
Returns:
Float absolute tolerance value.
"""
return 1e-5
@property
def is_torch_support_available(self) -> bool:
"""
The minimum PyTorch version required to export the model.
Returns:
`bool`: Whether the installed version of PyTorch is compatible with the model.
"""
if is_torch_available():
from transformers.utils import get_torch_version
return version.parse(get_torch_version()) >= self.torch_onnx_minimum_version
else:
return False
@staticmethod
def use_external_data_format(num_parameters: int) -> bool:
"""
Flag indicating if the model requires using external data format
Args:
num_parameters: Number of parameter on the model
Returns:
True if model.num_parameters() * size_of(float32) >= 2Gb False otherwise
"""
return (
compute_serialized_parameters_size(num_parameters, ParameterFormat.Float)
>= EXTERNAL_DATA_FORMAT_SIZE_LIMIT
)
def _generate_dummy_images(
self, batch_size: int = 2, num_channels: int = 3, image_height: int = 40, image_width: int = 40
):
images = []
for _ in range(batch_size):
data = np.random.rand(image_height, image_width, num_channels) * 255
images.append(Image.fromarray(data.astype("uint8")).convert("RGB"))
return images
def _generate_dummy_audio(
self, batch_size: int = 2, sampling_rate: int = 22050, time_duration: float = 5.0, frequency: int = 220
):
audio_data = []
for _ in range(batch_size):
# time variable
t = np.linspace(0, time_duration, int(time_duration * sampling_rate), endpoint=False)
# generate pure sine wave at `frequency` Hz
audio_data.append(0.5 * np.sin(2 * np.pi * frequency * t))
return audio_data
def generate_dummy_inputs(
self,
preprocessor: Union["PreTrainedTokenizerBase", "FeatureExtractionMixin", "ImageProcessingMixin"],
batch_size: int = -1,
seq_length: int = -1,
num_choices: int = -1,
is_pair: bool = False,
framework: Optional[TensorType] = None,
num_channels: int = 3,
image_width: int = 40,
image_height: int = 40,
sampling_rate: int = 22050,
time_duration: float = 5.0,
frequency: int = 220,
tokenizer: "PreTrainedTokenizerBase" = None,
) -> Mapping[str, Any]:
"""
Generate inputs to provide to the ONNX exporter for the specific framework
Args:
preprocessor: ([`PreTrainedTokenizerBase`], [`FeatureExtractionMixin`], or [`ImageProcessingMixin`]):
The preprocessor associated with this model configuration.
batch_size (`int`, *optional*, defaults to -1):
The batch size to export the model for (-1 means dynamic axis).
num_choices (`int`, *optional*, defaults to -1):
The number of candidate answers provided for multiple choice task (-1 means dynamic axis).
seq_length (`int`, *optional*, defaults to -1):
The sequence length to export the model for (-1 means dynamic axis).
is_pair (`bool`, *optional*, defaults to `False`):
Indicate if the input is a pair (sentence 1, sentence 2)
framework (`TensorType`, *optional*, defaults to `None`):
The framework (PyTorch or TensorFlow) that the tokenizer will generate tensors for.
num_channels (`int`, *optional*, defaults to 3):
The number of channels of the generated images.
image_width (`int`, *optional*, defaults to 40):
The width of the generated images.
image_height (`int`, *optional*, defaults to 40):
The height of the generated images.
sampling_rate (`int`, *optional* defaults to 22050)
The sampling rate for audio data generation.
time_duration (`float`, *optional* defaults to 5.0)
Total seconds of sampling for audio data generation.
frequency (`int`, *optional* defaults to 220)
The desired natural frequency of generated audio.
Returns:
Mapping[str, Tensor] holding the kwargs to provide to the model's forward function
"""
from ..feature_extraction_utils import FeatureExtractionMixin
from ..image_processing_utils import ImageProcessingMixin
from ..tokenization_utils_base import PreTrainedTokenizerBase
if isinstance(preprocessor, PreTrainedTokenizerBase) and tokenizer is not None:
raise ValueError("You cannot provide both a tokenizer and a preprocessor to generate dummy inputs.")
if tokenizer is not None:
warnings.warn(
"The `tokenizer` argument is deprecated and will be removed in version 5 of Transformers. Use"
" `preprocessor` instead.",
FutureWarning,
)
logger.warning("Overwriting the `preprocessor` argument with `tokenizer` to generate dummmy inputs.")
preprocessor = tokenizer
if isinstance(preprocessor, PreTrainedTokenizerBase):
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
batch_size = compute_effective_axis_dimension(
batch_size, fixed_dimension=OnnxConfig.default_fixed_batch, num_token_to_add=0
)
# If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX
token_to_add = preprocessor.num_special_tokens_to_add(is_pair)
seq_length = compute_effective_axis_dimension(
seq_length, fixed_dimension=OnnxConfig.default_fixed_sequence, num_token_to_add=token_to_add
)
# Generate dummy inputs according to compute batch and sequence
input_token = (
preprocessor.unk_token
if (preprocessor.unk_token is not None and len(preprocessor.unk_token) > 0)
else "0"
)
dummy_input = [" ".join([input_token]) * seq_length] * batch_size
if self.task == "multiple-choice":
# If dynamic axis (-1) we forward with a fixed dimension of 4 candidate answers to avoid optimizations
# made by ONNX
num_choices = compute_effective_axis_dimension(
num_choices, fixed_dimension=OnnxConfig.default_fixed_num_choices, num_token_to_add=0
)
dummy_input = dummy_input * num_choices
# The shape of the tokenized inputs values is [batch_size * num_choices, seq_length]
tokenized_input = preprocessor(dummy_input, text_pair=dummy_input)
# Unflatten the tokenized inputs values expanding it to the shape [batch_size, num_choices, seq_length]
for k, v in tokenized_input.items():
tokenized_input[k] = [v[i : i + num_choices] for i in range(0, len(v), num_choices)]
return dict(tokenized_input.convert_to_tensors(tensor_type=framework))
return dict(preprocessor(dummy_input, return_tensors=framework))
elif isinstance(preprocessor, ImageProcessingMixin):
if preprocessor.model_input_names[0] != "pixel_values":
raise ValueError(
f"The `preprocessor` is an image processor ({preprocessor.__class__.__name__}) and expects"
f' `model_input_names[0]` to be "pixel_values", but got {preprocessor.model_input_names[0]}'
)
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch)
dummy_input = self._generate_dummy_images(batch_size, num_channels, image_height, image_width)
return dict(preprocessor(images=dummy_input, return_tensors=framework))
elif isinstance(preprocessor, FeatureExtractionMixin) and preprocessor.model_input_names[0] == "pixel_values":
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch)
dummy_input = self._generate_dummy_images(batch_size, num_channels, image_height, image_width)
return dict(preprocessor(images=dummy_input, return_tensors=framework))
elif (
isinstance(preprocessor, FeatureExtractionMixin) and preprocessor.model_input_names[0] == "input_features"
):
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch)
dummy_input = self._generate_dummy_audio(batch_size, sampling_rate, time_duration, frequency)
return dict(preprocessor(dummy_input, return_tensors=framework))
else:
raise ValueError(
"Unable to generate dummy inputs for the model. Please provide a tokenizer or a preprocessor."
)
def generate_dummy_inputs_onnxruntime(self, reference_model_inputs: Mapping[str, Any]) -> Mapping[str, Any]:
"""
Generate inputs for ONNX Runtime using the reference model inputs. Override this to run inference with seq2seq
models which have the encoder and decoder exported as separate ONNX files.
Args:
reference_model_inputs ([`Mapping[str, Tensor]`):
Reference inputs for the model.
Returns:
`Mapping[str, Tensor]`: The mapping holding the kwargs to provide to the model's forward function
"""
return reference_model_inputs
def patch_ops(self):
for spec in self._patching_specs:
custom_op = spec.custom_op if spec.op_wrapper is None else spec.op_wrapper(spec.custom_op)
setattr(spec.o, spec.name, custom_op)
def restore_ops(self):
for spec in self._patching_specs:
orig_op = spec.orig_op if spec.op_wrapper is None else spec.op_wrapper(spec.orig_op)
setattr(spec.o, spec.name, orig_op)
@classmethod
def flatten_output_collection_property(cls, name: str, field: Iterable[Any]) -> Dict[str, Any]:
"""
Flatten any potential nested structure expanding the name of the field with the index of the element within the
structure.
Args:
name: The name of the nested structure
field: The structure to, potentially, be flattened
Returns:
(Dict[str, Any]): Outputs with flattened structure and key mapping this new structure.
"""
from itertools import chain
return {f"{name}.{idx}": item for idx, item in enumerate(chain.from_iterable(field))}
|
class_definition
| 2,152 | 18,850 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/onnx/config.py
| null | 329 |
class OnnxConfigWithPast(OnnxConfig, ABC):
def __init__(
self,
config: "PretrainedConfig",
task: str = "default",
patching_specs: List[PatchingSpec] = None,
use_past: bool = False,
):
super().__init__(config, task=task, patching_specs=patching_specs)
self.use_past = use_past
@classmethod
def with_past(cls, config: "PretrainedConfig", task: str = "default") -> "OnnxConfigWithPast":
"""
Instantiate a OnnxConfig with `use_past` attribute set to True
Args:
config: The underlying model's config to use when exporting to ONNX
Returns:
OnnxConfig with `.use_past = True`
"""
return cls(config, task=task, use_past=True)
@property
def outputs(self) -> Mapping[str, Mapping[int, str]]:
common_outputs = super().outputs
if self.use_past:
self.fill_with_past_key_values_(common_outputs, direction="outputs")
return common_outputs
@property
def values_override(self) -> Optional[Mapping[str, Any]]:
if hasattr(self._config, "use_cache"):
return {"use_cache": self.use_past}
return None
@property
def num_layers(self) -> int:
"""
The number of layers attribute retrieved from the model config. Override this for model configs where the
number of layers attribute is not called `num_layers`.
"""
if not hasattr(self._config, "num_layers"):
raise AttributeError(
"could not find the number of layers attribute in the model configuration, override the num_layers"
" property of the model OnnxConfig to solve this"
)
return self._config.num_layers
@property
def num_attention_heads(self) -> int:
"""
The number of attention heads attribute retrieved from the model config. Override this for model configs where
the number of attention heads attribute is not called `num_attention_heads`.
"""
if not hasattr(self._config, "num_attention_heads"):
raise AttributeError(
"could not find the number of attention heads attribute in the model configuration, override the"
" num_attention_heads property of the model OnnxConfig to solve this"
)
return self._config.num_attention_heads
def generate_dummy_inputs(
self,
tokenizer: "PreTrainedTokenizerBase",
batch_size: int = -1,
seq_length: int = -1,
is_pair: bool = False,
framework: Optional[TensorType] = None,
) -> Mapping[str, Any]:
# TODO: should we set seq_length = 1 when self.use_past = True?
common_inputs = super().generate_dummy_inputs(
tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair, framework=framework
)
if self.use_past:
if not is_torch_available():
raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed.")
else:
import torch
batch, seqlen = common_inputs["input_ids"].shape
# Not using the same length for past_key_values
past_key_values_length = seqlen + 2
shape = (
batch,
self.num_attention_heads,
past_key_values_length,
self._config.hidden_size // self.num_attention_heads,
)
if "attention_mask" in common_inputs:
mask_dtype = common_inputs["attention_mask"].dtype
common_inputs["attention_mask"] = torch.cat(
[common_inputs["attention_mask"], torch.ones(batch, past_key_values_length, dtype=mask_dtype)],
dim=1,
)
common_inputs["past_key_values"] = []
for _ in range(self.num_layers):
common_inputs["past_key_values"].append((torch.zeros(shape), torch.zeros(shape)))
return common_inputs
def fill_with_past_key_values_(
self, inputs_or_outputs: Mapping[str, Mapping[int, str]], direction: str, inverted_values_shape: bool = False
):
"""
Fill the input_or_outputs mapping with past_key_values dynamic axes considering.
Args:
inputs_or_outputs: The mapping to fill.
direction: either "inputs" or "outputs", it specifies whether input_or_outputs is the input mapping or the
output mapping, this is important for axes naming.
inverted_values_shape:
If `True`, store values on dynamic axis 1, else on axis 2.
"""
if direction not in ["inputs", "outputs"]:
raise ValueError(f'direction must either be "inputs" or "outputs", but {direction} was given')
name = "past_key_values" if direction == "inputs" else "present"
for i in range(self.num_layers):
inputs_or_outputs[f"{name}.{i}.key"] = {0: "batch", 2: "past_sequence + sequence"}
if inverted_values_shape:
inputs_or_outputs[f"{name}.{i}.value"] = {0: "batch", 1: "past_sequence + sequence"}
else:
inputs_or_outputs[f"{name}.{i}.value"] = {0: "batch", 2: "past_sequence + sequence"}
def _flatten_past_key_values_(self, flattened_output, name, idx, t):
flattened_output[f"{name}.{idx}.key"] = t[0]
flattened_output[f"{name}.{idx}.value"] = t[1]
def flatten_output_collection_property(self, name: str, field: Iterable[Any]) -> Dict[str, Any]:
flattened_output = {}
if name in ["present", "past_key_values"]:
for idx, t in enumerate(field):
self._flatten_past_key_values_(flattened_output, name, idx, t)
else:
flattened_output = super().flatten_output_collection_property(name, field)
return flattened_output
|
class_definition
| 18,853 | 24,825 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/onnx/config.py
| null | 330 |
class OnnxSeq2SeqConfigWithPast(OnnxConfigWithPast):
@property
def outputs(self) -> Mapping[str, Mapping[int, str]]:
common_outputs = super(OnnxConfigWithPast, self).outputs
# Renaming the outputs axes properly.
for name, axes_names in common_outputs.items():
sequence_name = "encoder_sequence" if "encoder" in name else "decoder_sequence"
for axis_idx, name in axes_names.items():
if "sequence" in name:
axes_names[axis_idx] = sequence_name
# We reset the value as the order in common_outputs (OrderedDict) is lost otherwise
else:
axes_names[axis_idx] = name
if self.use_past:
self.fill_with_past_key_values_(common_outputs, direction="outputs")
return common_outputs
@property
def num_layers(self) -> Tuple[int]:
try:
num_layers = super().num_layers
num_layers = (num_layers, num_layers)
except AttributeError:
if hasattr(self._config, "encoder_layers") and hasattr(self._config, "decoder_layers"):
num_layers = (self._config.encoder_layers, self._config.decoder_layers)
else:
raise AttributeError(
"could not find the number of encoder and decoder layers attributes in the model configuration,"
" override the num_layers property of the model OnnxConfig to solve this"
)
return num_layers
@property
def num_attention_heads(self) -> Tuple[int]:
try:
num_attention_heads = super().num_attention_heads
num_attention_heads = (num_attention_heads, num_attention_heads)
except AttributeError:
if hasattr(self._config, "encoder_attention_heads") and hasattr(self._config, "decoder_attention_heads"):
num_attention_heads = (self._config.encoder_attention_heads, self._config.decoder_attention_heads)
else:
raise AttributeError(
"could not find the number of attention heads for the encoder and the decoder attributes in the"
" model configuration, override the num_attention_heads property of the model OnnxConfig to solve"
" this"
)
return num_attention_heads
def generate_dummy_inputs(
self,
tokenizer: "PreTrainedTokenizerBase",
batch_size: int = -1,
seq_length: int = -1,
is_pair: bool = False,
framework: Optional[TensorType] = None,
) -> Mapping[str, Any]:
encoder_inputs = super(OnnxConfigWithPast, self).generate_dummy_inputs(
tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair, framework=framework
)
# Generate decoder inputs
decoder_seq_length = seq_length if not self.use_past else 1
decoder_inputs = super(OnnxConfigWithPast, self).generate_dummy_inputs(
tokenizer, batch_size=batch_size, seq_length=decoder_seq_length, is_pair=is_pair, framework=framework
)
decoder_inputs = {f"decoder_{name}": tensor for name, tensor in decoder_inputs.items()}
common_inputs = dict(**encoder_inputs, **decoder_inputs)
if self.use_past:
if not is_torch_available():
raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed.")
else:
import torch
batch = common_inputs["input_ids"].shape[0]
encoder_seq_length = common_inputs["input_ids"].shape[1]
decoder_seq_length = common_inputs["decoder_input_ids"].shape[1]
num_encoder_attention_heads, num_decoder_attention_heads = self.num_attention_heads
encoder_shape = (
batch,
num_encoder_attention_heads,
encoder_seq_length,
self._config.hidden_size // num_encoder_attention_heads,
)
decoder_shape = (
batch,
num_decoder_attention_heads,
# Not using the same length for past_key_values
decoder_seq_length + 3,
self._config.hidden_size // num_decoder_attention_heads,
)
common_inputs["past_key_values"] = []
# If the number of encoder and decoder layers are present in the model configuration, both are considered
num_encoder_layers, num_decoder_layers = self.num_layers
min_num_layers = min(num_encoder_layers, num_decoder_layers)
max_num_layers = max(num_encoder_layers, num_decoder_layers) - min_num_layers
remaining_side_name = "encoder" if num_encoder_layers > num_decoder_layers else "decoder"
for _ in range(min_num_layers):
# For encoder-decoder models, past_key_values contains pre-computed values for both the encoder and the
# decoder layers, hence a tuple of 4 tensors instead of 2
common_inputs["past_key_values"].append(
(
torch.zeros(decoder_shape),
torch.zeros(decoder_shape),
torch.zeros(encoder_shape),
torch.zeros(encoder_shape),
)
)
# TODO: test this.
shape = encoder_shape if remaining_side_name == "encoder" else decoder_shape
for _ in range(min_num_layers, max_num_layers):
common_inputs["past_key_values"].append((torch.zeros(shape), torch.zeros(shape)))
return common_inputs
def fill_with_past_key_values_(self, inputs_or_outputs: Mapping[str, Mapping[int, str]], direction: str):
if direction not in ["inputs", "outputs"]:
raise ValueError(f'direction must either be "inputs" or "outputs", but {direction} was given')
name = "past_key_values" if direction == "inputs" else "present"
# If the number of encoder and decoder layers are present in the model configuration, both are considered
num_encoder_layers, num_decoder_layers = self.num_layers
min_num_layers = min(num_encoder_layers, num_decoder_layers)
max_num_layers = max(num_encoder_layers, num_decoder_layers) - min_num_layers
remaining_side_name = "encoder" if num_encoder_layers > num_decoder_layers else "decoder"
encoder_sequence = "past_encoder_sequence"
decoder_sequence = "past_decoder_sequence" if direction == "inputs" else "past_decoder_sequence + sequence"
for i in range(min_num_layers):
inputs_or_outputs[f"{name}.{i}.decoder.key"] = {0: "batch", 2: decoder_sequence}
inputs_or_outputs[f"{name}.{i}.decoder.value"] = {0: "batch", 2: decoder_sequence}
inputs_or_outputs[f"{name}.{i}.encoder.key"] = {0: "batch", 2: encoder_sequence}
inputs_or_outputs[f"{name}.{i}.encoder.value"] = {0: "batch", 2: encoder_sequence}
for i in range(min_num_layers, max_num_layers):
if remaining_side_name == "encoder":
axes_info = {0: "batch", 2: encoder_sequence}
else:
axes_info = {0: "batch", 2: decoder_sequence}
inputs_or_outputs[f"{name}.{i}.{remaining_side_name}.key"] = axes_info
def _flatten_past_key_values_(self, flattened_output, name, idx, t):
flattened_output[f"{name}.{idx}.decoder.key"] = t[0]
flattened_output[f"{name}.{idx}.decoder.value"] = t[1]
flattened_output[f"{name}.{idx}.encoder.key"] = t[2]
flattened_output[f"{name}.{idx}.encoder.value"] = t[3]
|
class_definition
| 24,828 | 32,555 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/onnx/config.py
| null | 331 |
class FeaturesManager:
_TASKS_TO_AUTOMODELS = {}
_TASKS_TO_TF_AUTOMODELS = {}
if is_torch_available():
_TASKS_TO_AUTOMODELS = {
"default": AutoModel,
"masked-lm": AutoModelForMaskedLM,
"causal-lm": AutoModelForCausalLM,
"seq2seq-lm": AutoModelForSeq2SeqLM,
"sequence-classification": AutoModelForSequenceClassification,
"token-classification": AutoModelForTokenClassification,
"multiple-choice": AutoModelForMultipleChoice,
"object-detection": AutoModelForObjectDetection,
"question-answering": AutoModelForQuestionAnswering,
"image-classification": AutoModelForImageClassification,
"image-segmentation": AutoModelForImageSegmentation,
"masked-im": AutoModelForMaskedImageModeling,
"semantic-segmentation": AutoModelForSemanticSegmentation,
"vision2seq-lm": AutoModelForVision2Seq,
"speech2seq-lm": AutoModelForSpeechSeq2Seq,
}
if is_tf_available():
_TASKS_TO_TF_AUTOMODELS = {
"default": TFAutoModel,
"masked-lm": TFAutoModelForMaskedLM,
"causal-lm": TFAutoModelForCausalLM,
"seq2seq-lm": TFAutoModelForSeq2SeqLM,
"sequence-classification": TFAutoModelForSequenceClassification,
"token-classification": TFAutoModelForTokenClassification,
"multiple-choice": TFAutoModelForMultipleChoice,
"question-answering": TFAutoModelForQuestionAnswering,
"semantic-segmentation": TFAutoModelForSemanticSegmentation,
}
# Set of model topologies we support associated to the features supported by each topology and the factory
_SUPPORTED_MODEL_TYPE = {
"albert": supported_features_mapping(
"default",
"masked-lm",
"sequence-classification",
"multiple-choice",
"token-classification",
"question-answering",
onnx_config_cls="models.albert.AlbertOnnxConfig",
),
"bart": supported_features_mapping(
"default",
"default-with-past",
"causal-lm",
"causal-lm-with-past",
"seq2seq-lm",
"seq2seq-lm-with-past",
"sequence-classification",
"question-answering",
onnx_config_cls="models.bart.BartOnnxConfig",
),
# BEiT cannot be used with the masked image modeling autoclass, so this feature is excluded here
"beit": supported_features_mapping(
"default", "image-classification", onnx_config_cls="models.beit.BeitOnnxConfig"
),
"bert": supported_features_mapping(
"default",
"masked-lm",
"causal-lm",
"sequence-classification",
"multiple-choice",
"token-classification",
"question-answering",
onnx_config_cls="models.bert.BertOnnxConfig",
),
"big-bird": supported_features_mapping(
"default",
"masked-lm",
"causal-lm",
"sequence-classification",
"multiple-choice",
"token-classification",
"question-answering",
onnx_config_cls="models.big_bird.BigBirdOnnxConfig",
),
"bigbird-pegasus": supported_features_mapping(
"default",
"default-with-past",
"causal-lm",
"causal-lm-with-past",
"seq2seq-lm",
"seq2seq-lm-with-past",
"sequence-classification",
"question-answering",
onnx_config_cls="models.bigbird_pegasus.BigBirdPegasusOnnxConfig",
),
"blenderbot": supported_features_mapping(
"default",
"default-with-past",
"causal-lm",
"causal-lm-with-past",
"seq2seq-lm",
"seq2seq-lm-with-past",
onnx_config_cls="models.blenderbot.BlenderbotOnnxConfig",
),
"blenderbot-small": supported_features_mapping(
"default",
"default-with-past",
"causal-lm",
"causal-lm-with-past",
"seq2seq-lm",
"seq2seq-lm-with-past",
onnx_config_cls="models.blenderbot_small.BlenderbotSmallOnnxConfig",
),
"bloom": supported_features_mapping(
"default",
"default-with-past",
"causal-lm",
"causal-lm-with-past",
"sequence-classification",
"token-classification",
onnx_config_cls="models.bloom.BloomOnnxConfig",
),
"camembert": supported_features_mapping(
"default",
"masked-lm",
"causal-lm",
"sequence-classification",
"multiple-choice",
"token-classification",
"question-answering",
onnx_config_cls="models.camembert.CamembertOnnxConfig",
),
"clip": supported_features_mapping(
"default",
onnx_config_cls="models.clip.CLIPOnnxConfig",
),
"codegen": supported_features_mapping(
"default",
"causal-lm",
onnx_config_cls="models.codegen.CodeGenOnnxConfig",
),
"convbert": supported_features_mapping(
"default",
"masked-lm",
"sequence-classification",
"multiple-choice",
"token-classification",
"question-answering",
onnx_config_cls="models.convbert.ConvBertOnnxConfig",
),
"convnext": supported_features_mapping(
"default",
"image-classification",
onnx_config_cls="models.convnext.ConvNextOnnxConfig",
),
"data2vec-text": supported_features_mapping(
"default",
"masked-lm",
"sequence-classification",
"multiple-choice",
"token-classification",
"question-answering",
onnx_config_cls="models.data2vec.Data2VecTextOnnxConfig",
),
"data2vec-vision": supported_features_mapping(
"default",
"image-classification",
# ONNX doesn't support `adaptive_avg_pool2d` yet
# "semantic-segmentation",
onnx_config_cls="models.data2vec.Data2VecVisionOnnxConfig",
),
"deberta": supported_features_mapping(
"default",
"masked-lm",
"sequence-classification",
"token-classification",
"question-answering",
onnx_config_cls="models.deberta.DebertaOnnxConfig",
),
"deberta-v2": supported_features_mapping(
"default",
"masked-lm",
"sequence-classification",
"multiple-choice",
"token-classification",
"question-answering",
onnx_config_cls="models.deberta_v2.DebertaV2OnnxConfig",
),
"deit": supported_features_mapping(
"default", "image-classification", onnx_config_cls="models.deit.DeiTOnnxConfig"
),
"detr": supported_features_mapping(
"default",
"object-detection",
"image-segmentation",
onnx_config_cls="models.detr.DetrOnnxConfig",
),
"distilbert": supported_features_mapping(
"default",
"masked-lm",
"sequence-classification",
"multiple-choice",
"token-classification",
"question-answering",
onnx_config_cls="models.distilbert.DistilBertOnnxConfig",
),
"electra": supported_features_mapping(
"default",
"masked-lm",
"causal-lm",
"sequence-classification",
"multiple-choice",
"token-classification",
"question-answering",
onnx_config_cls="models.electra.ElectraOnnxConfig",
),
"flaubert": supported_features_mapping(
"default",
"masked-lm",
"causal-lm",
"sequence-classification",
"multiple-choice",
"token-classification",
"question-answering",
onnx_config_cls="models.flaubert.FlaubertOnnxConfig",
),
"gpt2": supported_features_mapping(
"default",
"default-with-past",
"causal-lm",
"causal-lm-with-past",
"sequence-classification",
"token-classification",
onnx_config_cls="models.gpt2.GPT2OnnxConfig",
),
"gptj": supported_features_mapping(
"default",
"default-with-past",
"causal-lm",
"causal-lm-with-past",
"question-answering",
"sequence-classification",
onnx_config_cls="models.gptj.GPTJOnnxConfig",
),
"gpt-neo": supported_features_mapping(
"default",
"default-with-past",
"causal-lm",
"causal-lm-with-past",
"sequence-classification",
onnx_config_cls="models.gpt_neo.GPTNeoOnnxConfig",
),
"groupvit": supported_features_mapping(
"default",
onnx_config_cls="models.groupvit.GroupViTOnnxConfig",
),
"ibert": supported_features_mapping(
"default",
"masked-lm",
"sequence-classification",
"multiple-choice",
"token-classification",
"question-answering",
onnx_config_cls="models.ibert.IBertOnnxConfig",
),
"imagegpt": supported_features_mapping(
"default", "image-classification", onnx_config_cls="models.imagegpt.ImageGPTOnnxConfig"
),
"layoutlm": supported_features_mapping(
"default",
"masked-lm",
"sequence-classification",
"token-classification",
onnx_config_cls="models.layoutlm.LayoutLMOnnxConfig",
),
"layoutlmv3": supported_features_mapping(
"default",
"question-answering",
"sequence-classification",
"token-classification",
onnx_config_cls="models.layoutlmv3.LayoutLMv3OnnxConfig",
),
"levit": supported_features_mapping(
"default", "image-classification", onnx_config_cls="models.levit.LevitOnnxConfig"
),
"longt5": supported_features_mapping(
"default",
"default-with-past",
"seq2seq-lm",
"seq2seq-lm-with-past",
onnx_config_cls="models.longt5.LongT5OnnxConfig",
),
"longformer": supported_features_mapping(
"default",
"masked-lm",
"multiple-choice",
"question-answering",
"sequence-classification",
"token-classification",
onnx_config_cls="models.longformer.LongformerOnnxConfig",
),
"marian": supported_features_mapping(
"default",
"default-with-past",
"seq2seq-lm",
"seq2seq-lm-with-past",
"causal-lm",
"causal-lm-with-past",
onnx_config_cls="models.marian.MarianOnnxConfig",
),
"mbart": supported_features_mapping(
"default",
"default-with-past",
"causal-lm",
"causal-lm-with-past",
"seq2seq-lm",
"seq2seq-lm-with-past",
"sequence-classification",
"question-answering",
onnx_config_cls="models.mbart.MBartOnnxConfig",
),
"mobilebert": supported_features_mapping(
"default",
"masked-lm",
"sequence-classification",
"multiple-choice",
"token-classification",
"question-answering",
onnx_config_cls="models.mobilebert.MobileBertOnnxConfig",
),
"mobilenet-v1": supported_features_mapping(
"default",
"image-classification",
onnx_config_cls="models.mobilenet_v1.MobileNetV1OnnxConfig",
),
"mobilenet-v2": supported_features_mapping(
"default",
"image-classification",
onnx_config_cls="models.mobilenet_v2.MobileNetV2OnnxConfig",
),
"mobilevit": supported_features_mapping(
"default",
"image-classification",
onnx_config_cls="models.mobilevit.MobileViTOnnxConfig",
),
"mt5": supported_features_mapping(
"default",
"default-with-past",
"seq2seq-lm",
"seq2seq-lm-with-past",
onnx_config_cls="models.mt5.MT5OnnxConfig",
),
"m2m-100": supported_features_mapping(
"default",
"default-with-past",
"seq2seq-lm",
"seq2seq-lm-with-past",
onnx_config_cls="models.m2m_100.M2M100OnnxConfig",
),
"owlvit": supported_features_mapping(
"default",
onnx_config_cls="models.owlvit.OwlViTOnnxConfig",
),
"perceiver": supported_features_mapping(
"image-classification",
"masked-lm",
"sequence-classification",
onnx_config_cls="models.perceiver.PerceiverOnnxConfig",
),
"poolformer": supported_features_mapping(
"default", "image-classification", onnx_config_cls="models.poolformer.PoolFormerOnnxConfig"
),
"rembert": supported_features_mapping(
"default",
"masked-lm",
"causal-lm",
"sequence-classification",
"multiple-choice",
"token-classification",
"question-answering",
onnx_config_cls="models.rembert.RemBertOnnxConfig",
),
"resnet": supported_features_mapping(
"default",
"image-classification",
onnx_config_cls="models.resnet.ResNetOnnxConfig",
),
"roberta": supported_features_mapping(
"default",
"masked-lm",
"causal-lm",
"sequence-classification",
"multiple-choice",
"token-classification",
"question-answering",
onnx_config_cls="models.roberta.RobertaOnnxConfig",
),
"roformer": supported_features_mapping(
"default",
"masked-lm",
"causal-lm",
"sequence-classification",
"token-classification",
"multiple-choice",
"question-answering",
"token-classification",
onnx_config_cls="models.roformer.RoFormerOnnxConfig",
),
"segformer": supported_features_mapping(
"default",
"image-classification",
"semantic-segmentation",
onnx_config_cls="models.segformer.SegformerOnnxConfig",
),
"squeezebert": supported_features_mapping(
"default",
"masked-lm",
"sequence-classification",
"multiple-choice",
"token-classification",
"question-answering",
onnx_config_cls="models.squeezebert.SqueezeBertOnnxConfig",
),
"swin": supported_features_mapping(
"default", "image-classification", onnx_config_cls="models.swin.SwinOnnxConfig"
),
"t5": supported_features_mapping(
"default",
"default-with-past",
"seq2seq-lm",
"seq2seq-lm-with-past",
onnx_config_cls="models.t5.T5OnnxConfig",
),
"vision-encoder-decoder": supported_features_mapping(
"vision2seq-lm", onnx_config_cls="models.vision_encoder_decoder.VisionEncoderDecoderOnnxConfig"
),
"vit": supported_features_mapping(
"default", "image-classification", onnx_config_cls="models.vit.ViTOnnxConfig"
),
"whisper": supported_features_mapping(
"default",
"default-with-past",
"speech2seq-lm",
"speech2seq-lm-with-past",
onnx_config_cls="models.whisper.WhisperOnnxConfig",
),
"xlm": supported_features_mapping(
"default",
"masked-lm",
"causal-lm",
"sequence-classification",
"multiple-choice",
"token-classification",
"question-answering",
onnx_config_cls="models.xlm.XLMOnnxConfig",
),
"xlm-roberta": supported_features_mapping(
"default",
"masked-lm",
"causal-lm",
"sequence-classification",
"multiple-choice",
"token-classification",
"question-answering",
onnx_config_cls="models.xlm_roberta.XLMRobertaOnnxConfig",
),
"yolos": supported_features_mapping(
"default",
"object-detection",
onnx_config_cls="models.yolos.YolosOnnxConfig",
),
}
AVAILABLE_FEATURES = sorted(reduce(lambda s1, s2: s1 | s2, (v.keys() for v in _SUPPORTED_MODEL_TYPE.values())))
@staticmethod
def get_supported_features_for_model_type(
model_type: str, model_name: Optional[str] = None
) -> Dict[str, Callable[[PretrainedConfig], OnnxConfig]]:
"""
Tries to retrieve the feature -> OnnxConfig constructor map from the model type.
Args:
model_type (`str`):
The model type to retrieve the supported features for.
model_name (`str`, *optional*):
The name attribute of the model object, only used for the exception message.
Returns:
The dictionary mapping each feature to a corresponding OnnxConfig constructor.
"""
model_type = model_type.lower()
if model_type not in FeaturesManager._SUPPORTED_MODEL_TYPE:
model_type_and_model_name = f"{model_type} ({model_name})" if model_name else model_type
raise KeyError(
f"{model_type_and_model_name} is not supported yet. "
f"Only {list(FeaturesManager._SUPPORTED_MODEL_TYPE.keys())} are supported. "
f"If you want to support {model_type} please propose a PR or open up an issue."
)
return FeaturesManager._SUPPORTED_MODEL_TYPE[model_type]
@staticmethod
def feature_to_task(feature: str) -> str:
return feature.replace("-with-past", "")
@staticmethod
def _validate_framework_choice(framework: str):
"""
Validates if the framework requested for the export is both correct and available, otherwise throws an
exception.
"""
if framework not in ["pt", "tf"]:
raise ValueError(
f"Only two frameworks are supported for ONNX export: pt or tf, but {framework} was provided."
)
elif framework == "pt" and not is_torch_available():
raise RuntimeError("Cannot export model to ONNX using PyTorch because no PyTorch package was found.")
elif framework == "tf" and not is_tf_available():
raise RuntimeError("Cannot export model to ONNX using TensorFlow because no TensorFlow package was found.")
@staticmethod
def get_model_class_for_feature(feature: str, framework: str = "pt") -> Type:
"""
Attempts to retrieve an AutoModel class from a feature name.
Args:
feature (`str`):
The feature required.
framework (`str`, *optional*, defaults to `"pt"`):
The framework to use for the export.
Returns:
The AutoModel class corresponding to the feature.
"""
task = FeaturesManager.feature_to_task(feature)
FeaturesManager._validate_framework_choice(framework)
if framework == "pt":
task_to_automodel = FeaturesManager._TASKS_TO_AUTOMODELS
else:
task_to_automodel = FeaturesManager._TASKS_TO_TF_AUTOMODELS
if task not in task_to_automodel:
raise KeyError(
f"Unknown task: {feature}. Possible values are {list(FeaturesManager._TASKS_TO_AUTOMODELS.values())}"
)
return task_to_automodel[task]
@staticmethod
def determine_framework(model: str, framework: str = None) -> str:
"""
Determines the framework to use for the export.
The priority is in the following order:
1. User input via `framework`.
2. If local checkpoint is provided, use the same framework as the checkpoint.
3. Available framework in environment, with priority given to PyTorch
Args:
model (`str`):
The name of the model to export.
framework (`str`, *optional*, defaults to `None`):
The framework to use for the export. See above for priority if none provided.
Returns:
The framework to use for the export.
"""
if framework is not None:
return framework
framework_map = {"pt": "PyTorch", "tf": "TensorFlow"}
exporter_map = {"pt": "torch", "tf": "tf2onnx"}
if os.path.isdir(model):
if os.path.isfile(os.path.join(model, WEIGHTS_NAME)):
framework = "pt"
elif os.path.isfile(os.path.join(model, TF2_WEIGHTS_NAME)):
framework = "tf"
else:
raise FileNotFoundError(
"Cannot determine framework from given checkpoint location."
f" There should be a {WEIGHTS_NAME} for PyTorch"
f" or {TF2_WEIGHTS_NAME} for TensorFlow."
)
logger.info(f"Local {framework_map[framework]} model found.")
else:
if is_torch_available():
framework = "pt"
elif is_tf_available():
framework = "tf"
else:
raise EnvironmentError("Neither PyTorch nor TensorFlow found in environment. Cannot export to ONNX.")
logger.info(f"Framework not requested. Using {exporter_map[framework]} to export to ONNX.")
return framework
@staticmethod
def get_model_from_feature(
feature: str, model: str, framework: str = None, cache_dir: str = None
) -> Union["PreTrainedModel", "TFPreTrainedModel"]:
"""
Attempts to retrieve a model from a model's name and the feature to be enabled.
Args:
feature (`str`):
The feature required.
model (`str`):
The name of the model to export.
framework (`str`, *optional*, defaults to `None`):
The framework to use for the export. See `FeaturesManager.determine_framework` for the priority should
none be provided.
Returns:
The instance of the model.
"""
framework = FeaturesManager.determine_framework(model, framework)
model_class = FeaturesManager.get_model_class_for_feature(feature, framework)
try:
model = model_class.from_pretrained(model, cache_dir=cache_dir)
except OSError:
if framework == "pt":
logger.info("Loading TensorFlow model in PyTorch before exporting to ONNX.")
model = model_class.from_pretrained(model, from_tf=True, cache_dir=cache_dir)
else:
logger.info("Loading PyTorch model in TensorFlow before exporting to ONNX.")
model = model_class.from_pretrained(model, from_pt=True, cache_dir=cache_dir)
return model
@staticmethod
def check_supported_model_or_raise(
model: Union["PreTrainedModel", "TFPreTrainedModel"], feature: str = "default"
) -> Tuple[str, Callable]:
"""
Check whether or not the model has the requested features.
Args:
model: The model to export.
feature: The name of the feature to check if it is available.
Returns:
(str) The type of the model (OnnxConfig) The OnnxConfig instance holding the model export properties.
"""
model_type = model.config.model_type.replace("_", "-")
model_name = getattr(model, "name", "")
model_features = FeaturesManager.get_supported_features_for_model_type(model_type, model_name=model_name)
if feature not in model_features:
raise ValueError(
f"{model.config.model_type} doesn't support feature {feature}. Supported values are: {model_features}"
)
return model.config.model_type, FeaturesManager._SUPPORTED_MODEL_TYPE[model_type][feature]
def get_config(model_type: str, feature: str) -> OnnxConfig:
"""
Gets the OnnxConfig for a model_type and feature combination.
Args:
model_type (`str`):
The model type to retrieve the config for.
feature (`str`):
The feature to retrieve the config for.
Returns:
`OnnxConfig`: config for the combination
"""
return FeaturesManager._SUPPORTED_MODEL_TYPE[model_type][feature]
|
class_definition
| 2,811 | 28,263 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/onnx/features.py
| null | 332 |
class ParameterFormat(Enum):
Float = c_float
@property
def size(self) -> int:
"""
Number of byte required for this data type
Returns:
Integer > 0
"""
return sizeof(self.value)
|
class_definition
| 822 | 1,063 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/onnx/utils.py
| null | 333 |
class ImageLoss(nn.Module):
"""
This class computes the losses for DetrForObjectDetection/DetrForSegmentation. The process happens in two steps: 1)
we compute hungarian assignment between ground truth boxes and the outputs of the model 2) we supervise each pair
of matched ground-truth / prediction (supervise class and box).
A note on the `num_classes` argument (copied from original repo in detr.py): "the naming of the `num_classes`
parameter of the criterion is somewhat misleading. It indeed corresponds to `max_obj_id` + 1, where `max_obj_id` is
the maximum id for a class in your dataset. For example, COCO has a `max_obj_id` of 90, so we pass `num_classes` to
be 91. As another example, for a dataset that has a single class with `id` 1, you should pass `num_classes` to be 2
(`max_obj_id` + 1). For more details on this, check the following discussion
https://github.com/facebookresearch/detr/issues/108#issuecomment-650269223"
Args:
matcher (`DetrHungarianMatcher`):
Module able to compute a matching between targets and proposals.
num_classes (`int`):
Number of object categories, omitting the special no-object category.
eos_coef (`float`):
Relative classification weight applied to the no-object category.
losses (`List[str]`):
List of all the losses to be applied. See `get_loss` for a list of all available losses.
"""
def __init__(self, matcher, num_classes, eos_coef, losses):
super().__init__()
self.matcher = matcher
self.num_classes = num_classes
self.eos_coef = eos_coef
self.losses = losses
empty_weight = torch.ones(self.num_classes + 1)
empty_weight[-1] = self.eos_coef
self.register_buffer("empty_weight", empty_weight)
# removed logging parameter, which was part of the original implementation
def loss_labels(self, outputs, targets, indices, num_boxes):
"""
Classification loss (NLL) targets dicts must contain the key "class_labels" containing a tensor of dim
[nb_target_boxes]
"""
if "logits" not in outputs:
raise KeyError("No logits were found in the outputs")
source_logits = outputs["logits"]
idx = self._get_source_permutation_idx(indices)
target_classes_o = torch.cat([t["class_labels"][J] for t, (_, J) in zip(targets, indices)])
target_classes = torch.full(
source_logits.shape[:2], self.num_classes, dtype=torch.int64, device=source_logits.device
)
target_classes[idx] = target_classes_o
loss_ce = nn.functional.cross_entropy(source_logits.transpose(1, 2), target_classes, self.empty_weight)
losses = {"loss_ce": loss_ce}
return losses
@torch.no_grad()
def loss_cardinality(self, outputs, targets, indices, num_boxes):
"""
Compute the cardinality error, i.e. the absolute error in the number of predicted non-empty boxes.
This is not really a loss, it is intended for logging purposes only. It doesn't propagate gradients.
"""
logits = outputs["logits"]
device = logits.device
target_lengths = torch.as_tensor([len(v["class_labels"]) for v in targets], device=device)
# Count the number of predictions that are NOT "no-object" (which is the last class)
card_pred = (logits.argmax(-1) != logits.shape[-1] - 1).sum(1)
card_err = nn.functional.l1_loss(card_pred.float(), target_lengths.float())
losses = {"cardinality_error": card_err}
return losses
def loss_boxes(self, outputs, targets, indices, num_boxes):
"""
Compute the losses related to the bounding boxes, the L1 regression loss and the GIoU loss.
Targets dicts must contain the key "boxes" containing a tensor of dim [nb_target_boxes, 4]. The target boxes
are expected in format (center_x, center_y, w, h), normalized by the image size.
"""
if "pred_boxes" not in outputs:
raise KeyError("No predicted boxes found in outputs")
idx = self._get_source_permutation_idx(indices)
source_boxes = outputs["pred_boxes"][idx]
target_boxes = torch.cat([t["boxes"][i] for t, (_, i) in zip(targets, indices)], dim=0)
loss_bbox = nn.functional.l1_loss(source_boxes, target_boxes, reduction="none")
losses = {}
losses["loss_bbox"] = loss_bbox.sum() / num_boxes
loss_giou = 1 - torch.diag(
generalized_box_iou(center_to_corners_format(source_boxes), center_to_corners_format(target_boxes))
)
losses["loss_giou"] = loss_giou.sum() / num_boxes
return losses
def loss_masks(self, outputs, targets, indices, num_boxes):
"""
Compute the losses related to the masks: the focal loss and the dice loss.
Targets dicts must contain the key "masks" containing a tensor of dim [nb_target_boxes, h, w].
"""
if "pred_masks" not in outputs:
raise KeyError("No predicted masks found in outputs")
source_idx = self._get_source_permutation_idx(indices)
target_idx = self._get_target_permutation_idx(indices)
source_masks = outputs["pred_masks"]
source_masks = source_masks[source_idx]
masks = [t["masks"] for t in targets]
# TODO use valid to mask invalid areas due to padding in loss
target_masks, valid = nested_tensor_from_tensor_list(masks).decompose()
target_masks = target_masks.to(source_masks)
target_masks = target_masks[target_idx]
# upsample predictions to the target size
source_masks = nn.functional.interpolate(
source_masks[:, None], size=target_masks.shape[-2:], mode="bilinear", align_corners=False
)
source_masks = source_masks[:, 0].flatten(1)
target_masks = target_masks.flatten(1)
target_masks = target_masks.view(source_masks.shape)
losses = {
"loss_mask": sigmoid_focal_loss(source_masks, target_masks, num_boxes),
"loss_dice": dice_loss(source_masks, target_masks, num_boxes),
}
return losses
def _get_source_permutation_idx(self, indices):
# permute predictions following indices
batch_idx = torch.cat([torch.full_like(source, i) for i, (source, _) in enumerate(indices)])
source_idx = torch.cat([source for (source, _) in indices])
return batch_idx, source_idx
def _get_target_permutation_idx(self, indices):
# permute targets following indices
batch_idx = torch.cat([torch.full_like(target, i) for i, (_, target) in enumerate(indices)])
target_idx = torch.cat([target for (_, target) in indices])
return batch_idx, target_idx
def get_loss(self, loss, outputs, targets, indices, num_boxes):
loss_map = {
"labels": self.loss_labels,
"cardinality": self.loss_cardinality,
"boxes": self.loss_boxes,
"masks": self.loss_masks,
}
if loss not in loss_map:
raise ValueError(f"Loss {loss} not supported")
return loss_map[loss](outputs, targets, indices, num_boxes)
def forward(self, outputs, targets):
"""
This performs the loss computation.
Args:
outputs (`dict`, *optional*):
Dictionary of tensors, see the output specification of the model for the format.
targets (`List[dict]`, *optional*):
List of dicts, such that `len(targets) == batch_size`. The expected keys in each dict depends on the
losses applied, see each loss' doc.
"""
outputs_without_aux = {k: v for k, v in outputs.items() if k != "auxiliary_outputs"}
# Retrieve the matching between the outputs of the last layer and the targets
indices = self.matcher(outputs_without_aux, targets)
# Compute the average number of target boxes across all nodes, for normalization purposes
num_boxes = sum(len(t["class_labels"]) for t in targets)
num_boxes = torch.as_tensor([num_boxes], dtype=torch.float, device=next(iter(outputs.values())).device)
world_size = 1
if is_accelerate_available():
if PartialState._shared_state != {}:
num_boxes = reduce(num_boxes)
world_size = PartialState().num_processes
num_boxes = torch.clamp(num_boxes / world_size, min=1).item()
# Compute all the requested losses
losses = {}
for loss in self.losses:
losses.update(self.get_loss(loss, outputs, targets, indices, num_boxes))
# In case of auxiliary losses, we repeat this process with the output of each intermediate layer.
if "auxiliary_outputs" in outputs:
for i, auxiliary_outputs in enumerate(outputs["auxiliary_outputs"]):
indices = self.matcher(auxiliary_outputs, targets)
for loss in self.losses:
if loss == "masks":
# Intermediate masks losses are too costly to compute, we ignore them.
continue
l_dict = self.get_loss(loss, auxiliary_outputs, targets, indices, num_boxes)
l_dict = {k + f"_{i}": v for k, v in l_dict.items()}
losses.update(l_dict)
return losses
|
class_definition
| 3,155 | 12,632 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/loss/loss_for_object_detection.py
| null | 334 |
class HungarianMatcher(nn.Module):
"""
This class computes an assignment between the targets and the predictions of the network.
For efficiency reasons, the targets don't include the no_object. Because of this, in general, there are more
predictions than targets. In this case, we do a 1-to-1 matching of the best predictions, while the others are
un-matched (and thus treated as non-objects).
Args:
class_cost:
The relative weight of the classification error in the matching cost.
bbox_cost:
The relative weight of the L1 error of the bounding box coordinates in the matching cost.
giou_cost:
The relative weight of the giou loss of the bounding box in the matching cost.
"""
def __init__(self, class_cost: float = 1, bbox_cost: float = 1, giou_cost: float = 1):
super().__init__()
requires_backends(self, ["scipy"])
self.class_cost = class_cost
self.bbox_cost = bbox_cost
self.giou_cost = giou_cost
if class_cost == 0 and bbox_cost == 0 and giou_cost == 0:
raise ValueError("All costs of the Matcher can't be 0")
@torch.no_grad()
def forward(self, outputs, targets):
"""
Args:
outputs (`dict`):
A dictionary that contains at least these entries:
* "logits": Tensor of dim [batch_size, num_queries, num_classes] with the classification logits
* "pred_boxes": Tensor of dim [batch_size, num_queries, 4] with the predicted box coordinates.
targets (`List[dict]`):
A list of targets (len(targets) = batch_size), where each target is a dict containing:
* "class_labels": Tensor of dim [num_target_boxes] (where num_target_boxes is the number of
ground-truth
objects in the target) containing the class labels
* "boxes": Tensor of dim [num_target_boxes, 4] containing the target box coordinates.
Returns:
`List[Tuple]`: A list of size `batch_size`, containing tuples of (index_i, index_j) where:
- index_i is the indices of the selected predictions (in order)
- index_j is the indices of the corresponding selected targets (in order)
For each batch element, it holds: len(index_i) = len(index_j) = min(num_queries, num_target_boxes)
"""
batch_size, num_queries = outputs["logits"].shape[:2]
# We flatten to compute the cost matrices in a batch
out_prob = outputs["logits"].flatten(0, 1).softmax(-1) # [batch_size * num_queries, num_classes]
out_bbox = outputs["pred_boxes"].flatten(0, 1) # [batch_size * num_queries, 4]
# Also concat the target labels and boxes
target_ids = torch.cat([v["class_labels"] for v in targets])
target_bbox = torch.cat([v["boxes"] for v in targets])
# Compute the classification cost. Contrary to the loss, we don't use the NLL,
# but approximate it in 1 - proba[target class].
# The 1 is a constant that doesn't change the matching, it can be ommitted.
class_cost = -out_prob[:, target_ids]
# Compute the L1 cost between boxes
bbox_cost = torch.cdist(out_bbox, target_bbox, p=1)
# Compute the giou cost between boxes
giou_cost = -generalized_box_iou(center_to_corners_format(out_bbox), center_to_corners_format(target_bbox))
# Final cost matrix
cost_matrix = self.bbox_cost * bbox_cost + self.class_cost * class_cost + self.giou_cost * giou_cost
cost_matrix = cost_matrix.view(batch_size, num_queries, -1).cpu()
sizes = [len(v["boxes"]) for v in targets]
indices = [linear_sum_assignment(c[i]) for i, c in enumerate(cost_matrix.split(sizes, -1))]
return [(torch.as_tensor(i, dtype=torch.int64), torch.as_tensor(j, dtype=torch.int64)) for i, j in indices]
|
class_definition
| 12,719 | 16,676 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/loss/loss_for_object_detection.py
| null | 335 |
class NestedTensor:
def __init__(self, tensors, mask: Optional[Tensor]):
self.tensors = tensors
self.mask = mask
def to(self, device):
cast_tensor = self.tensors.to(device)
mask = self.mask
if mask is not None:
cast_mask = mask.to(device)
else:
cast_mask = None
return NestedTensor(cast_tensor, cast_mask)
def decompose(self):
return self.tensors, self.mask
def __repr__(self):
return str(self.tensors)
|
class_definition
| 19,545 | 20,062 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/loss/loss_for_object_detection.py
| null | 336 |
class DeformableDetrHungarianMatcher(HungarianMatcher):
@torch.no_grad()
def forward(self, outputs, targets):
"""
Differences:
- out_prob = outputs["logits"].flatten(0, 1).sigmoid() instead of softmax
- class_cost uses alpha and gamma
"""
batch_size, num_queries = outputs["logits"].shape[:2]
# We flatten to compute the cost matrices in a batch
out_prob = outputs["logits"].flatten(0, 1).sigmoid() # [batch_size * num_queries, num_classes]
out_bbox = outputs["pred_boxes"].flatten(0, 1) # [batch_size * num_queries, 4]
# Also concat the target labels and boxes
target_ids = torch.cat([v["class_labels"] for v in targets])
target_bbox = torch.cat([v["boxes"] for v in targets])
# Compute the classification cost.
alpha = 0.25
gamma = 2.0
neg_cost_class = (1 - alpha) * (out_prob**gamma) * (-(1 - out_prob + 1e-8).log())
pos_cost_class = alpha * ((1 - out_prob) ** gamma) * (-(out_prob + 1e-8).log())
class_cost = pos_cost_class[:, target_ids] - neg_cost_class[:, target_ids]
# Compute the L1 cost between boxes
bbox_cost = torch.cdist(out_bbox, target_bbox, p=1)
# Compute the giou cost between boxes
giou_cost = -generalized_box_iou(center_to_corners_format(out_bbox), center_to_corners_format(target_bbox))
# Final cost matrix
cost_matrix = self.bbox_cost * bbox_cost + self.class_cost * class_cost + self.giou_cost * giou_cost
cost_matrix = cost_matrix.view(batch_size, num_queries, -1).cpu()
sizes = [len(v["boxes"]) for v in targets]
indices = [linear_sum_assignment(c[i]) for i, c in enumerate(cost_matrix.split(sizes, -1))]
return [(torch.as_tensor(i, dtype=torch.int64), torch.as_tensor(j, dtype=torch.int64)) for i, j in indices]
|
class_definition
| 361 | 2,240 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/loss/loss_deformable_detr.py
| null | 337 |
class DeformableDetrImageLoss(ImageLoss):
def __init__(self, matcher, num_classes, focal_alpha, losses):
nn.Module.__init__(self)
self.matcher = matcher
self.num_classes = num_classes
self.focal_alpha = focal_alpha
self.losses = losses
# removed logging parameter, which was part of the original implementation
def loss_labels(self, outputs, targets, indices, num_boxes):
"""
Classification loss (Binary focal loss) targets dicts must contain the key "class_labels" containing a tensor
of dim [nb_target_boxes]
"""
if "logits" not in outputs:
raise KeyError("No logits were found in the outputs")
source_logits = outputs["logits"]
idx = self._get_source_permutation_idx(indices)
target_classes_o = torch.cat([t["class_labels"][J] for t, (_, J) in zip(targets, indices)])
target_classes = torch.full(
source_logits.shape[:2], self.num_classes, dtype=torch.int64, device=source_logits.device
)
target_classes[idx] = target_classes_o
target_classes_onehot = torch.zeros(
[source_logits.shape[0], source_logits.shape[1], source_logits.shape[2] + 1],
dtype=source_logits.dtype,
layout=source_logits.layout,
device=source_logits.device,
)
target_classes_onehot.scatter_(2, target_classes.unsqueeze(-1), 1)
target_classes_onehot = target_classes_onehot[:, :, :-1]
loss_ce = (
sigmoid_focal_loss(source_logits, target_classes_onehot, num_boxes, alpha=self.focal_alpha, gamma=2)
* source_logits.shape[1]
)
losses = {"loss_ce": loss_ce}
return losses
|
class_definition
| 2,243 | 3,988 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/loss/loss_deformable_detr.py
| null | 338 |
class RTDetrHungarianMatcher(nn.Module):
"""This class computes an assignment between the targets and the predictions of the network
For efficiency reasons, the targets don't include the no_object. Because of this, in general, there are more
predictions than targets. In this case, we do a 1-to-1 matching of the best predictions, while the others are
un-matched (and thus treated as non-objects).
Args:
config: RTDetrConfig
"""
def __init__(self, config):
super().__init__()
requires_backends(self, ["scipy"])
self.class_cost = config.matcher_class_cost
self.bbox_cost = config.matcher_bbox_cost
self.giou_cost = config.matcher_giou_cost
self.use_focal_loss = config.use_focal_loss
self.alpha = config.matcher_alpha
self.gamma = config.matcher_gamma
if self.class_cost == self.bbox_cost == self.giou_cost == 0:
raise ValueError("All costs of the Matcher can't be 0")
@torch.no_grad()
def forward(self, outputs, targets):
"""Performs the matching
Params:
outputs: This is a dict that contains at least these entries:
"logits": Tensor of dim [batch_size, num_queries, num_classes] with the classification logits
"pred_boxes": Tensor of dim [batch_size, num_queries, 4] with the predicted box coordinates
targets: This is a list of targets (len(targets) = batch_size), where each target is a dict containing:
"class_labels": Tensor of dim [num_target_boxes] (where num_target_boxes is the number of ground-truth
objects in the target) containing the class labels
"boxes": Tensor of dim [num_target_boxes, 4] containing the target box coordinates
Returns:
A list of size batch_size, containing tuples of (index_i, index_j) where:
- index_i is the indices of the selected predictions (in order)
- index_j is the indices of the corresponding selected targets (in order)
For each batch element, it holds:
len(index_i) = len(index_j) = min(num_queries, num_target_boxes)
"""
batch_size, num_queries = outputs["logits"].shape[:2]
# We flatten to compute the cost matrices in a batch
out_bbox = outputs["pred_boxes"].flatten(0, 1) # [batch_size * num_queries, 4]
# Also concat the target labels and boxes
target_ids = torch.cat([v["class_labels"] for v in targets])
target_bbox = torch.cat([v["boxes"] for v in targets])
# Compute the classification cost. Contrary to the loss, we don't use the NLL,
# but approximate it in 1 - proba[target class].
# The 1 is a constant that doesn't change the matching, it can be ommitted.
if self.use_focal_loss:
out_prob = F.sigmoid(outputs["logits"].flatten(0, 1))
out_prob = out_prob[:, target_ids]
neg_cost_class = (1 - self.alpha) * (out_prob**self.gamma) * (-(1 - out_prob + 1e-8).log())
pos_cost_class = self.alpha * ((1 - out_prob) ** self.gamma) * (-(out_prob + 1e-8).log())
class_cost = pos_cost_class - neg_cost_class
else:
out_prob = outputs["logits"].flatten(0, 1).softmax(-1) # [batch_size * num_queries, num_classes]
class_cost = -out_prob[:, target_ids]
# Compute the L1 cost between boxes
bbox_cost = torch.cdist(out_bbox, target_bbox, p=1)
# Compute the giou cost betwen boxes
giou_cost = -generalized_box_iou(center_to_corners_format(out_bbox), center_to_corners_format(target_bbox))
# Compute the final cost matrix
cost_matrix = self.bbox_cost * bbox_cost + self.class_cost * class_cost + self.giou_cost * giou_cost
cost_matrix = cost_matrix.view(batch_size, num_queries, -1).cpu()
sizes = [len(v["boxes"]) for v in targets]
indices = [linear_sum_assignment(c[i]) for i, c in enumerate(cost_matrix.split(sizes, -1))]
return [(torch.as_tensor(i, dtype=torch.int64), torch.as_tensor(j, dtype=torch.int64)) for i, j in indices]
|
class_definition
| 1,110 | 5,300 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/loss/loss_rt_detr.py
| null | 339 |
class RTDetrLoss(nn.Module):
"""
This class computes the losses for RTDetr. The process happens in two steps: 1) we compute hungarian assignment
between ground truth boxes and the outputs of the model 2) we supervise each pair of matched ground-truth /
prediction (supervise class and box).
Args:
matcher (`DetrHungarianMatcher`):
Module able to compute a matching between targets and proposals.
weight_dict (`Dict`):
Dictionary relating each loss with its weights. These losses are configured in RTDetrConf as
`weight_loss_vfl`, `weight_loss_bbox`, `weight_loss_giou`
losses (`List[str]`):
List of all the losses to be applied. See `get_loss` for a list of all available losses.
alpha (`float`):
Parameter alpha used to compute the focal loss.
gamma (`float`):
Parameter gamma used to compute the focal loss.
eos_coef (`float`):
Relative classification weight applied to the no-object category.
num_classes (`int`):
Number of object categories, omitting the special no-object category.
"""
def __init__(self, config):
super().__init__()
self.matcher = RTDetrHungarianMatcher(config)
self.num_classes = config.num_labels
self.weight_dict = {
"loss_vfl": config.weight_loss_vfl,
"loss_bbox": config.weight_loss_bbox,
"loss_giou": config.weight_loss_giou,
}
self.losses = ["vfl", "boxes"]
self.eos_coef = config.eos_coefficient
empty_weight = torch.ones(config.num_labels + 1)
empty_weight[-1] = self.eos_coef
self.register_buffer("empty_weight", empty_weight)
self.alpha = config.focal_loss_alpha
self.gamma = config.focal_loss_gamma
def loss_labels_vfl(self, outputs, targets, indices, num_boxes, log=True):
if "pred_boxes" not in outputs:
raise KeyError("No predicted boxes found in outputs")
if "logits" not in outputs:
raise KeyError("No predicted logits found in outputs")
idx = self._get_source_permutation_idx(indices)
src_boxes = outputs["pred_boxes"][idx]
target_boxes = torch.cat([_target["boxes"][i] for _target, (_, i) in zip(targets, indices)], dim=0)
ious, _ = box_iou(center_to_corners_format(src_boxes), center_to_corners_format(target_boxes))
ious = torch.diag(ious).detach()
src_logits = outputs["logits"]
target_classes_original = torch.cat([_target["class_labels"][i] for _target, (_, i) in zip(targets, indices)])
target_classes = torch.full(
src_logits.shape[:2], self.num_classes, dtype=torch.int64, device=src_logits.device
)
target_classes[idx] = target_classes_original
target = F.one_hot(target_classes, num_classes=self.num_classes + 1)[..., :-1]
target_score_original = torch.zeros_like(target_classes, dtype=src_logits.dtype)
target_score_original[idx] = ious.to(target_score_original.dtype)
target_score = target_score_original.unsqueeze(-1) * target
pred_score = F.sigmoid(src_logits).detach()
weight = self.alpha * pred_score.pow(self.gamma) * (1 - target) + target_score
loss = F.binary_cross_entropy_with_logits(src_logits, target_score, weight=weight, reduction="none")
loss = loss.mean(1).sum() * src_logits.shape[1] / num_boxes
return {"loss_vfl": loss}
def loss_labels(self, outputs, targets, indices, num_boxes, log=True):
"""Classification loss (NLL)
targets dicts must contain the key "class_labels" containing a tensor of dim [nb_target_boxes]
"""
if "logits" not in outputs:
raise KeyError("No logits were found in the outputs")
src_logits = outputs["logits"]
idx = self._get_source_permutation_idx(indices)
target_classes_original = torch.cat([_target["class_labels"][i] for _target, (_, i) in zip(targets, indices)])
target_classes = torch.full(
src_logits.shape[:2], self.num_classes, dtype=torch.int64, device=src_logits.device
)
target_classes[idx] = target_classes_original
loss_ce = F.cross_entropy(src_logits.transpose(1, 2), target_classes, self.class_weight)
losses = {"loss_ce": loss_ce}
return losses
@torch.no_grad()
def loss_cardinality(self, outputs, targets, indices, num_boxes):
"""
Compute the cardinality error, i.e. the absolute error in the number of predicted non-empty boxes. This is not
really a loss, it is intended for logging purposes only. It doesn't propagate gradients.
"""
logits = outputs["logits"]
device = logits.device
target_lengths = torch.as_tensor([len(v["class_labels"]) for v in targets], device=device)
# Count the number of predictions that are NOT "no-object" (which is the last class)
card_pred = (logits.argmax(-1) != logits.shape[-1] - 1).sum(1)
card_err = nn.functional.l1_loss(card_pred.float(), target_lengths.float())
losses = {"cardinality_error": card_err}
return losses
def loss_boxes(self, outputs, targets, indices, num_boxes):
"""
Compute the losses related to the bounding boxes, the L1 regression loss and the GIoU loss. Targets dicts must
contain the key "boxes" containing a tensor of dim [nb_target_boxes, 4]. The target boxes are expected in
format (center_x, center_y, w, h), normalized by the image size.
"""
if "pred_boxes" not in outputs:
raise KeyError("No predicted boxes found in outputs")
idx = self._get_source_permutation_idx(indices)
src_boxes = outputs["pred_boxes"][idx]
target_boxes = torch.cat([t["boxes"][i] for t, (_, i) in zip(targets, indices)], dim=0)
losses = {}
loss_bbox = F.l1_loss(src_boxes, target_boxes, reduction="none")
losses["loss_bbox"] = loss_bbox.sum() / num_boxes
loss_giou = 1 - torch.diag(
generalized_box_iou(center_to_corners_format(src_boxes), center_to_corners_format(target_boxes))
)
losses["loss_giou"] = loss_giou.sum() / num_boxes
return losses
def loss_masks(self, outputs, targets, indices, num_boxes):
"""
Compute the losses related to the masks: the focal loss and the dice loss. Targets dicts must contain the key
"masks" containing a tensor of dim [nb_target_boxes, h, w].
"""
if "pred_masks" not in outputs:
raise KeyError("No predicted masks found in outputs")
source_idx = self._get_source_permutation_idx(indices)
target_idx = self._get_target_permutation_idx(indices)
source_masks = outputs["pred_masks"]
source_masks = source_masks[source_idx]
masks = [t["masks"] for t in targets]
target_masks, valid = nested_tensor_from_tensor_list(masks).decompose()
target_masks = target_masks.to(source_masks)
target_masks = target_masks[target_idx]
# upsample predictions to the target size
source_masks = nn.functional.interpolate(
source_masks[:, None], size=target_masks.shape[-2:], mode="bilinear", align_corners=False
)
source_masks = source_masks[:, 0].flatten(1)
target_masks = target_masks.flatten(1)
target_masks = target_masks.view(source_masks.shape)
losses = {
"loss_mask": sigmoid_focal_loss(source_masks, target_masks, num_boxes),
"loss_dice": dice_loss(source_masks, target_masks, num_boxes),
}
return losses
def loss_labels_bce(self, outputs, targets, indices, num_boxes, log=True):
src_logits = outputs["logits"]
idx = self._get_source_permutation_idx(indices)
target_classes_original = torch.cat([_target["class_labels"][i] for _target, (_, i) in zip(targets, indices)])
target_classes = torch.full(
src_logits.shape[:2], self.num_classes, dtype=torch.int64, device=src_logits.device
)
target_classes[idx] = target_classes_original
target = F.one_hot(target_classes, num_classes=self.num_classes + 1)[..., :-1]
loss = F.binary_cross_entropy_with_logits(src_logits, target * 1.0, reduction="none")
loss = loss.mean(1).sum() * src_logits.shape[1] / num_boxes
return {"loss_bce": loss}
def _get_source_permutation_idx(self, indices):
# permute predictions following indices
batch_idx = torch.cat([torch.full_like(source, i) for i, (source, _) in enumerate(indices)])
source_idx = torch.cat([source for (source, _) in indices])
return batch_idx, source_idx
def _get_target_permutation_idx(self, indices):
# permute targets following indices
batch_idx = torch.cat([torch.full_like(target, i) for i, (_, target) in enumerate(indices)])
target_idx = torch.cat([target for (_, target) in indices])
return batch_idx, target_idx
def loss_labels_focal(self, outputs, targets, indices, num_boxes, log=True):
if "logits" not in outputs:
raise KeyError("No logits found in outputs")
src_logits = outputs["logits"]
idx = self._get_source_permutation_idx(indices)
target_classes_original = torch.cat([_target["class_labels"][i] for _target, (_, i) in zip(targets, indices)])
target_classes = torch.full(
src_logits.shape[:2], self.num_classes, dtype=torch.int64, device=src_logits.device
)
target_classes[idx] = target_classes_original
target = F.one_hot(target_classes, num_classes=self.num_classes + 1)[..., :-1]
loss = sigmoid_focal_loss(src_logits, target, self.alpha, self.gamma)
loss = loss.mean(1).sum() * src_logits.shape[1] / num_boxes
return {"loss_focal": loss}
def get_loss(self, loss, outputs, targets, indices, num_boxes):
loss_map = {
"labels": self.loss_labels,
"cardinality": self.loss_cardinality,
"boxes": self.loss_boxes,
"masks": self.loss_masks,
"bce": self.loss_labels_bce,
"focal": self.loss_labels_focal,
"vfl": self.loss_labels_vfl,
}
if loss not in loss_map:
raise ValueError(f"Loss {loss} not supported")
return loss_map[loss](outputs, targets, indices, num_boxes)
@staticmethod
def get_cdn_matched_indices(dn_meta, targets):
dn_positive_idx, dn_num_group = dn_meta["dn_positive_idx"], dn_meta["dn_num_group"]
num_gts = [len(t["class_labels"]) for t in targets]
device = targets[0]["class_labels"].device
dn_match_indices = []
for i, num_gt in enumerate(num_gts):
if num_gt > 0:
gt_idx = torch.arange(num_gt, dtype=torch.int64, device=device)
gt_idx = gt_idx.tile(dn_num_group)
assert len(dn_positive_idx[i]) == len(gt_idx)
dn_match_indices.append((dn_positive_idx[i], gt_idx))
else:
dn_match_indices.append(
(
torch.zeros(0, dtype=torch.int64, device=device),
torch.zeros(0, dtype=torch.int64, device=device),
)
)
return dn_match_indices
def forward(self, outputs, targets):
"""
This performs the loss computation.
Args:
outputs (`dict`, *optional*):
Dictionary of tensors, see the output specification of the model for the format.
targets (`List[dict]`, *optional*):
List of dicts, such that `len(targets) == batch_size`. The expected keys in each dict depends on the
losses applied, see each loss' doc.
"""
outputs_without_aux = {k: v for k, v in outputs.items() if "auxiliary_outputs" not in k}
# Retrieve the matching between the outputs of the last layer and the targets
indices = self.matcher(outputs_without_aux, targets)
# Compute the average number of target boxes across all nodes, for normalization purposes
num_boxes = sum(len(t["class_labels"]) for t in targets)
num_boxes = torch.as_tensor([num_boxes], dtype=torch.float, device=next(iter(outputs.values())).device)
num_boxes = torch.clamp(num_boxes, min=1).item()
# Compute all the requested losses
losses = {}
for loss in self.losses:
l_dict = self.get_loss(loss, outputs, targets, indices, num_boxes)
l_dict = {k: l_dict[k] * self.weight_dict[k] for k in l_dict if k in self.weight_dict}
losses.update(l_dict)
# In case of auxiliary losses, we repeat this process with the output of each intermediate layer.
if "auxiliary_outputs" in outputs:
for i, auxiliary_outputs in enumerate(outputs["auxiliary_outputs"]):
indices = self.matcher(auxiliary_outputs, targets)
for loss in self.losses:
if loss == "masks":
# Intermediate masks losses are too costly to compute, we ignore them.
continue
l_dict = self.get_loss(loss, auxiliary_outputs, targets, indices, num_boxes)
l_dict = {k: l_dict[k] * self.weight_dict[k] for k in l_dict if k in self.weight_dict}
l_dict = {k + f"_aux_{i}": v for k, v in l_dict.items()}
losses.update(l_dict)
# In case of cdn auxiliary losses. For rtdetr
if "dn_auxiliary_outputs" in outputs:
if "denoising_meta_values" not in outputs:
raise ValueError(
"The output must have the 'denoising_meta_values` key. Please, ensure that 'outputs' includes a 'denoising_meta_values' entry."
)
indices = self.get_cdn_matched_indices(outputs["denoising_meta_values"], targets)
num_boxes = num_boxes * outputs["denoising_meta_values"]["dn_num_group"]
for i, auxiliary_outputs in enumerate(outputs["dn_auxiliary_outputs"]):
# indices = self.matcher(auxiliary_outputs, targets)
for loss in self.losses:
if loss == "masks":
# Intermediate masks losses are too costly to compute, we ignore them.
continue
kwargs = {}
l_dict = self.get_loss(loss, auxiliary_outputs, targets, indices, num_boxes, **kwargs)
l_dict = {k: l_dict[k] * self.weight_dict[k] for k in l_dict if k in self.weight_dict}
l_dict = {k + f"_dn_{i}": v for k, v in l_dict.items()}
losses.update(l_dict)
return losses
|
class_definition
| 5,303 | 20,263 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/loss/loss_rt_detr.py
| null | 340 |
class CompressedTensorsHfQuantizer(HfQuantizer):
"""
Quantizer for the compressed_tensors package. Loads and restores models to
quantized state with compressed_tensors
"""
requires_calibration = True
required_packages = ["compressed_tensors"]
def __init__(self, quantization_config: CompressedTensorsConfig, **kwargs):
super().__init__(quantization_config, **kwargs)
if not is_compressed_tensors_available():
raise ImportError(
"Using `compressed_tensors` quantized models requires the compressed-tensors library: "
"`pip install compressed-tensors`"
)
from compressed_tensors.compressors import ModelCompressor
self.compressor = ModelCompressor.from_compression_config(quantization_config)
self.run_compressed = quantization_config.run_compressed
self.quantization_config = quantization_config
def validate_environment(self, *args, **kwargs):
if not is_compressed_tensors_available():
raise ImportError(
"Using `compressed_tensors` quantized models requires the compressed-tensors library: "
"`pip install compressed-tensors`"
)
if not is_torch_available():
# torch already should be installed as part of compressed tensors
raise ImportError("torch is required for using compressed-tensors quantization")
def update_torch_dtype(self, torch_dtype: "torch.dtype") -> "torch.dtype":
if torch_dtype is None:
logger.info("Loading model using torch.float16 for compressed-tensors quantization")
torch_dtype = torch.float16
elif torch_dtype != torch.float16:
logger.info(
"We suggest you to set `torch_dtype=torch.float16` for better efficiency with compressed_tensors."
)
return torch_dtype
def _process_model_before_weight_loading(self, model, **kwargs):
from compressed_tensors.quantization import apply_quantization_config
ct_quantization_config = self.compressor.quantization_config
if self.run_compressed and self.is_quantization_compressed:
apply_quantization_config(model, ct_quantization_config, run_compressed=True)
elif not self.is_quantization_compressed:
apply_quantization_config(model, ct_quantization_config)
def _process_model_after_weight_loading(self, model, **kwargs):
"""Decompress loaded model if necessary - need for qat"""
if (self.is_quantization_compressed and not self.run_compressed) or self.is_sparsification_compressed:
config = kwargs.get("config", None)
cache_path = config._name_or_path
if not os.path.exists(cache_path):
from transformers.utils import cached_file
config_file_path = cached_file(cache_path, "config.json")
cache_path = os.path.sep.join(config_file_path.split(os.path.sep)[:-1])
if self.is_quantization_compressed and not self.run_compressed:
from compressed_tensors.quantization import QuantizationStatus
self.compressor.quantization_config.quantization_status = QuantizationStatus.FROZEN
self.compressor.decompress(model_path=cache_path, model=model)
@property
def is_quantization_compressed(self):
from compressed_tensors.quantization import QuantizationStatus
return (
self.quantization_config.quantization_config is not None
and self.quantization_config.quantization_config.quantization_status == QuantizationStatus.COMPRESSED
)
@property
def is_sparsification_compressed(self):
from compressed_tensors.config.base import CompressionFormat
return (
self.quantization_config.sparsity_config is not None
and self.quantization_config.sparsity_config.format != CompressionFormat.dense.value
)
@property
def is_trainable(self):
return True
def is_qat_trainable(self) -> bool:
"""Loaded Models can carry out quantization aware training"""
# models need to be decompressed carry out qat
return not self.run_compressed or not self.is_quantization_compressed
def is_serializable(self, safe_serialization=None) -> bool:
"""Models quantized using compressed tensors can be saved to disk"""
return True
|
class_definition
| 884 | 5,366 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/quantizer_compressed_tensors.py
| null | 341 |
class FbgemmFp8HfQuantizer(HfQuantizer):
"""
FP8 quantization using fbgemm kernels
"""
requires_parameters_quantization = True
requires_calibration = False
required_packages = ["fbgemm-gpu", "accelerate"]
def __init__(self, quantization_config, **kwargs):
super().__init__(quantization_config, **kwargs)
self.quantization_config = quantization_config
def validate_environment(self, *args, **kwargs):
if not is_torch_available() or version.parse(importlib.metadata.version("torch")) < version.parse("2.1.0"):
raise ImportError(
"Using fbgemm fp8 quantization requires torch > 2.1.0"
"Please install the latest version of torch ( pip install --upgrade torch )"
)
if not is_fbgemm_gpu_available():
raise ImportError(
"Using fbgemm fp8 quantization requires fbgemm-gpu library"
"Please install the latest version of fbgemm-gpu library by following : https://pytorch.org/FBGEMM/fbgemm_gpu-development/InstallationInstructions.html#fbgemm-gpu-install-libraries"
)
if not is_accelerate_available("0.32.2"):
raise ImportError(
"Loading an FP8 quantized model requires accelerate > 0.32.1 (`pip install --upgrade accelerate`)"
)
if not torch.cuda.is_available():
raise RuntimeError("Using FP8 quantized models with fbgemm kernels requires a GPU")
compute_capability = torch.cuda.get_device_capability()
major, minor = compute_capability
if major < 9:
raise ValueError(
"FP8 quantized models is only supported on GPUs with compute capability >= 9.0 (e.g H100)"
)
device_map = kwargs.get("device_map", None)
if device_map is None:
logger.warning_once(
"You have loaded an FP8 model on CPU and have a CUDA device available, make sure to set "
"your model on a GPU device in order to run your model. To remove this warning, pass device_map = 'cuda'. "
)
elif device_map is not None:
if (
not self.pre_quantized
and isinstance(device_map, dict)
and ("cpu" in device_map.values() or "disk" in device_map.values())
):
raise ValueError(
"You are attempting to load an FP8 model with a device_map that contains a CPU or disk device."
"This is not supported when the model is quantized on the fly. "
"Please use a quantized checkpoint or remove the CPU or disk device from the device_map."
)
def update_torch_dtype(self, torch_dtype: "torch.dtype") -> "torch.dtype":
if torch_dtype is None:
torch_dtype = torch.bfloat16
logger.info(
"Overriding torch_dtype=%s with `torch_dtype=torch.bloat16` due to "
"requirements of `fbgemm-gpu` to enable model loading in fp8. "
"Pass your own torch_dtype to specify the dtype of the remaining non-linear layers or pass"
" torch_dtype=torch.bfloat16 to remove this warning.",
torch_dtype,
)
elif torch_dtype == torch.float16:
raise ValueError(
"You cannot use FP8 with torch_dtype=torch.float16."
"We recommend you passing torch_dtype=torch.bfloat16"
)
return torch_dtype
def check_quantized_param(
self,
model: "PreTrainedModel",
param_value: "torch.Tensor",
param_name: str,
state_dict: Dict[str, Any],
**kwargs,
):
from ..integrations import FbgemmFp8Linear
module, tensor_name = get_module_from_name(model, param_name)
if isinstance(module, FbgemmFp8Linear):
if self.pre_quantized or tensor_name == "bias":
if tensor_name == "weight" and param_value.dtype != torch.float8_e4m3fn:
raise ValueError("Expect quantized weights but got an unquantized weight")
return False
else:
if tensor_name == "weight_scale":
raise ValueError("Expect unquantized weights but got a quantized weight_scale")
return True
return False
def create_quantized_param(
self,
model: "PreTrainedModel",
param_value: "torch.Tensor",
param_name: str,
target_device: "torch.device",
state_dict: Dict[str, Any],
unexpected_keys: Optional[List[str]] = None,
):
"""
Quantizes weights into weight and weight_scale
"""
new_value, weight_scale = torch.ops.fbgemm.quantize_fp8_per_row(param_value)
module, tensor_name = get_module_from_name(model, param_name)
module._buffers[tensor_name] = new_value.to(target_device)
# to have the right output shape -> (out_features, 1)
module._buffers["weight_scale"] = weight_scale.view(weight_scale.shape[0], 1).to(target_device)
if unexpected_keys is not None and param_name in unexpected_keys:
unexpected_keys.remove(param_name)
del param_name
def _process_model_after_weight_loading(self, model: "PreTrainedModel", **kwargs):
return model
def _process_model_before_weight_loading(
self,
model: "PreTrainedModel",
device_map,
keep_in_fp32_modules: List[str] = [],
**kwargs,
):
from ..integrations import get_keys_to_not_convert, replace_with_fbgemm_fp8_linear
self.modules_to_not_convert = get_keys_to_not_convert(model)
if self.quantization_config.modules_to_not_convert is not None:
self.modules_to_not_convert.extend(self.quantization_config.modules_to_not_convert)
model = replace_with_fbgemm_fp8_linear(
model,
modules_to_not_convert=self.modules_to_not_convert,
quantization_config=self.quantization_config,
pre_quantized=self.pre_quantized,
)
model.config.quantization_config = self.quantization_config
def update_missing_keys(self, model, missing_keys: List[str], prefix: str) -> List[str]:
from ..integrations import FbgemmFp8Linear
not_missing_keys = []
for name, module in model.named_modules():
if isinstance(module, FbgemmFp8Linear):
for missing in missing_keys:
if (
(name in missing or name in f"{prefix}.{missing}")
and not missing.endswith(".weight")
and not missing.endswith(".bias")
):
not_missing_keys.append(missing)
return [k for k in missing_keys if k not in not_missing_keys]
def is_serializable(self, safe_serialization=None):
return True
@property
def is_trainable(self) -> bool:
return False
|
class_definition
| 1,055 | 8,141 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/quantizer_fbgemm_fp8.py
| null | 342 |
class AwqQuantizer(HfQuantizer):
"""
4-bit quantization for Activation-aware Weight Quantization(AWQ) (https://arxiv.org/abs/2306.00978)
"""
# AWQ requires data callibration - we support only inference
requires_calibration = True
required_packages = ["awq", "accelerate"]
def __init__(self, quantization_config, **kwargs):
super().__init__(quantization_config, **kwargs)
def validate_environment(self, device_map, **kwargs):
if not is_auto_awq_available():
raise ImportError("Loading an AWQ quantized model requires auto-awq library (`pip install autoawq`)")
if not is_accelerate_available():
raise ImportError("Loading an AWQ quantized model requires accelerate (`pip install accelerate`)")
if self.quantization_config.version == AWQLinearVersion.GEMM and not torch.cuda.is_available():
logger.warning_once("No CUDA found, replace GEMM with IPEX version to support non-cuda AWQ model.")
self.quantization_config.version = AWQLinearVersion.IPEX
if self.quantization_config.version == AWQLinearVersion.IPEX:
if version.parse(importlib.metadata.version("autoawq")) < version.parse("0.2.6"):
raise RuntimeError(
"To use IPEX backend, you need autoawq>0.6.2. Please install the latest version or from source."
)
if device_map is None:
logger.warning_once(
"You have loaded an AWQ model without setting device_map, please set 'cpu' or 'xpu' or 'auto'"
)
elif isinstance(device_map, dict) and "disk" in device_map.values():
raise ValueError(
"You are attempting to load an IPEX version AWQ model with a device_map that contains disk device."
" This is not supported. Please make sure only cpu and xpu in the device_map."
)
else:
if not torch.cuda.is_available():
raise RuntimeError(
"GPU is required to run AWQ quantized model. You can use IPEX version AWQ if you have an Intel CPU"
)
if device_map is None:
logger.warning_once(
"You have loaded an AWQ model on CPU and have a CUDA device available, make sure to set "
"your model on a GPU device in order to run your model."
)
elif device_map is not None:
if isinstance(device_map, dict) and ("cpu" in device_map.values() or "disk" in device_map.values()):
raise ValueError(
"You are attempting to load an AWQ model with a device_map that contains a CPU or disk device."
" This is not supported. Please remove the CPU or disk device from the device_map."
)
def update_torch_dtype(self, torch_dtype):
if torch_dtype is None:
torch_dtype = torch.float16
logger.info("Loading the model in `torch.float16`. To overwrite it, set `torch_dtype` manually.")
elif torch_dtype != torch.float16:
logger.warning("We suggest you to set `torch_dtype=torch.float16` for better efficiency with AWQ.")
return torch_dtype
def _process_model_before_weight_loading(self, model: "PreTrainedModel", **kwargs):
from ..integrations import get_keys_to_not_convert, replace_quantization_scales, replace_with_awq_linear
self.modules_to_not_convert = get_keys_to_not_convert(model)
if self.quantization_config.modules_to_not_convert is not None:
self.modules_to_not_convert.extend(self.quantization_config.modules_to_not_convert)
model, has_been_replaced = replace_with_awq_linear(
model, quantization_config=self.quantization_config, modules_to_not_convert=self.modules_to_not_convert
)
model = replace_quantization_scales(model, model.config.model_type)
if not has_been_replaced:
logger.warning(
"You are loading an AWQ model but no linear modules were found in your model."
" Please double check your model architecture, or submit an issue on github if you think this is a bug."
)
def _process_model_after_weight_loading(self, model, **kwargs):
if self.quantization_config.do_fuse:
from ..integrations import fuse_awq_modules
model = fuse_awq_modules(model, self.quantization_config)
model._awq_is_fused = True # TODO: consider storing this flag in model.config instead
if self.quantization_config.version == AWQLinearVersion.EXLLAMA:
from ..integrations import post_init_awq_exllama_modules
model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config)
if self.quantization_config.version == AWQLinearVersion.IPEX:
from ..integrations import post_init_awq_ipex_modules
model = post_init_awq_ipex_modules(model)
def is_serializable(self, safe_serialization=None):
# AWQ through auto-awq has been always serializable, except if the model is fused.
if self.quantization_config.do_fuse:
logger.warning("You cannot save an AWQ model that uses fused modules!")
return False
if self.quantization_config.version == AWQLinearVersion.EXLLAMA:
logger.warning("You cannot save an AWQ model that uses Exllama backend!")
return False
return True
@property
def is_trainable(self):
# AWQ supports PEFT fine-tuning from version 0.2.0
MIN_AWQ_VERSION_FOR_PEFT = "0.2.0"
return version.parse(importlib.metadata.version("autoawq")) >= version.parse(MIN_AWQ_VERSION_FOR_PEFT)
|
class_definition
| 1,040 | 6,901 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/quantizer_awq.py
| null | 343 |
class Bnb4BitHfQuantizer(HfQuantizer):
"""
4-bit quantization from bitsandbytes.py quantization method:
before loading: converts transformer layers into Linear4bit during loading: load 16bit weight and pass to the
layer object after: quantizes individual weights in Linear4bit into 4bit at the first .cuda() call
saving:
from state dict, as usual; saves weights and `quant_state` components
loading:
need to locate `quant_state` components and pass to Param4bit constructor
"""
use_keep_in_fp32_modules = True
requires_parameters_quantization = True
requires_calibration = False
required_packages = ["bitsandbytes", "accelerate"]
def __init__(self, quantization_config, **kwargs):
super().__init__(quantization_config, **kwargs)
if self.quantization_config.llm_int8_skip_modules is not None:
self.modules_to_not_convert = self.quantization_config.llm_int8_skip_modules
def validate_environment(self, *args, **kwargs):
if not is_accelerate_available():
raise ImportError(
f"Using `bitsandbytes` 4-bit quantization requires Accelerate: `pip install 'accelerate>={ACCELERATE_MIN_VERSION}'`"
)
if not is_bitsandbytes_available():
raise ImportError(
"Using `bitsandbytes` 4-bit quantization requires the latest version of bitsandbytes: `pip install -U bitsandbytes`"
)
from ..integrations import validate_bnb_backend_availability
from ..utils import is_bitsandbytes_multi_backend_available
bnb_multibackend_is_enabled = is_bitsandbytes_multi_backend_available()
validate_bnb_backend_availability(raise_exception=True)
if kwargs.get("from_tf", False) or kwargs.get("from_flax", False):
raise ValueError(
"Converting into 4-bit or 8-bit weights from tf/flax weights is currently not supported, please make"
" sure the weights are in PyTorch format."
)
device_map = kwargs.get("device_map", None)
if (
device_map is not None
and isinstance(device_map, dict)
and not self.quantization_config.llm_int8_enable_fp32_cpu_offload
):
device_map_without_lm_head = {
key: device_map[key] for key in device_map.keys() if key not in self.modules_to_not_convert
}
if set(device_map.values()) == {"cpu"} and bnb_multibackend_is_enabled:
pass
elif "cpu" in device_map_without_lm_head.values() or "disk" in device_map_without_lm_head.values():
raise ValueError(
"Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit the "
"quantized model. If you want to dispatch the model on the CPU or the disk while keeping these modules "
"in 32-bit, you need to set `llm_int8_enable_fp32_cpu_offload=True` and pass a custom `device_map` to "
"`from_pretrained`. Check "
"https://huggingface.co/docs/transformers/main/en/main_classes/quantization#offload-between-cpu-and-gpu "
"for more details. "
)
if version.parse(importlib.metadata.version("bitsandbytes")) < version.parse("0.39.0"):
raise ValueError(
"You have a version of `bitsandbytes` that is not compatible with 4bit inference and training"
" make sure you have the latest version of `bitsandbytes` installed"
)
def adjust_target_dtype(self, target_dtype: "torch.dtype") -> "torch.dtype":
if version.parse(importlib.metadata.version("accelerate")) > version.parse("0.19.0"):
from accelerate.utils import CustomDtype
if target_dtype != torch.int8:
logger.info("target_dtype {target_dtype} is replaced by `CustomDtype.INT4` for 4-bit BnB quantization")
return CustomDtype.INT4
else:
raise ValueError(
"You are using `device_map='auto'` on a 4bit loaded version of the model. To automatically compute"
" the appropriate device map, you should upgrade your `accelerate` library,"
"`pip install --upgrade accelerate` or install it from source to support fp4 auto device map"
"calculation. You may encounter unexpected behavior, or pass your own device map"
)
def check_quantized_param(
self,
model: "PreTrainedModel",
param_value: "torch.Tensor",
param_name: str,
state_dict: Dict[str, Any],
**kwargs,
) -> bool:
import bitsandbytes as bnb
module, tensor_name = get_module_from_name(model, param_name)
if isinstance(module._parameters.get(tensor_name, None), bnb.nn.Params4bit):
# Add here check for loaded components' dtypes once serialization is implemented
return True
elif isinstance(module, bnb.nn.Linear4bit) and tensor_name == "bias":
# bias could be loaded by regular set_module_tensor_to_device() from accelerate,
# but it would wrongly use uninitialized weight there.
return True
else:
return False
def create_quantized_param(
self,
model: "PreTrainedModel",
param_value: "torch.Tensor",
param_name: str,
target_device: "torch.device",
state_dict: Dict[str, Any],
unexpected_keys: Optional[List[str]] = None,
):
"""
combines logic from _load_state_dict_into_meta_model and .integrations.bitsandbytes.py::set_module_quantized_tensor_to_device()
"""
import bitsandbytes as bnb
module, tensor_name = get_module_from_name(model, param_name)
if tensor_name not in module._parameters:
raise ValueError(f"{module} does not have a parameter or a buffer named {tensor_name}.")
old_value = getattr(module, tensor_name)
# `torch.Tensor.to(<int num>)` is not supported by `torch_npu` (see this [issue](https://github.com/Ascend/pytorch/issues/16)).
if isinstance(target_device, int) and is_torch_npu_available():
target_device = f"npu:{target_device}"
if tensor_name == "bias":
if param_value is None:
new_value = old_value.to(target_device)
else:
new_value = param_value.to(target_device)
new_value = torch.nn.Parameter(new_value, requires_grad=old_value.requires_grad)
module._parameters[tensor_name] = new_value
return
if not isinstance(module._parameters[tensor_name], bnb.nn.Params4bit):
raise ValueError("this function only loads `Linear4bit components`")
if (
old_value.device == torch.device("meta")
and target_device not in ["meta", torch.device("meta")]
and param_value is None
):
raise ValueError(f"{tensor_name} is on the meta device, we need a `value` to put in on {target_device}.")
# construct `new_value` for the module._parameters[tensor_name]:
if self.pre_quantized:
# 4bit loading. Collecting components for restoring quantized weight
# This can be expanded to make a universal call for any quantized weight loading
if not self.is_serializable:
raise ValueError(
"Detected int4 weights but the version of bitsandbytes is not compatible with int4 serialization. "
"Make sure to download the latest `bitsandbytes` version. `pip install --upgrade bitsandbytes`."
)
if (param_name + ".quant_state.bitsandbytes__fp4" not in state_dict) and (
param_name + ".quant_state.bitsandbytes__nf4" not in state_dict
):
raise ValueError(
f"Supplied state dict for {param_name} does not contain `bitsandbytes__*` and possibly other `quantized_stats` components."
)
quantized_stats = {}
for k, v in state_dict.items():
if param_name + "." in k:
quantized_stats[k] = v
if unexpected_keys is not None and k in unexpected_keys:
unexpected_keys.remove(k)
param_kwargs = {}
if self.is_bnb_supports_quant_storage_module:
param_kwargs["module"] = module
new_value = bnb.nn.Params4bit.from_prequantized(
data=param_value,
quantized_stats=quantized_stats,
requires_grad=False,
device=target_device,
**param_kwargs,
)
else:
new_value = param_value.to("cpu")
# Support models using `Conv1D` in place of `nn.Linear` (e.g. openai-community/gpt2) by transposing the weight matrix prior to quantization.
# Since weights are saved in the correct "orientation", we skip transposing when loading.
if issubclass(module.source_cls, Conv1D):
new_value = new_value.T
kwargs = old_value.__dict__
new_value = bnb.nn.Params4bit(new_value, requires_grad=False, **kwargs).to(target_device)
module._parameters[tensor_name] = new_value
# Copied from transformers.quantizers.quantizer_bnb_8bit.Bnb8BitHfQuantizer.adjust_max_memory
def adjust_max_memory(self, max_memory: Dict[str, Union[int, str]]) -> Dict[str, Union[int, str]]:
# need more space for buffers that are created during quantization
max_memory = {key: val * 0.90 for key, val in max_memory.items()}
return max_memory
# Copied from transformers.quantizers.quantizer_bnb_8bit.Bnb8BitHfQuantizer.update_torch_dtype
def update_torch_dtype(self, torch_dtype: "torch.dtype") -> "torch.dtype":
if torch_dtype is None:
# We force the `dtype` to be float16, this is a requirement from `bitsandbytes`
logger.info(
"Overriding torch_dtype=%s with `torch_dtype=torch.float16` due to "
"requirements of `bitsandbytes` to enable model loading in 8-bit or 4-bit. "
"Pass your own torch_dtype to specify the dtype of the remaining non-linear layers or pass"
" torch_dtype=torch.float16 to remove this warning.",
torch_dtype,
)
torch_dtype = torch.float16
return torch_dtype
def update_device_map(self, device_map):
if device_map is None:
if torch.cuda.is_available():
device_map = {"": torch.cuda.current_device()}
elif is_torch_npu_available():
device_map = {"": f"npu:{torch.npu.current_device()}"}
elif is_torch_xpu_available():
device_map = {"": f"xpu:{torch.xpu.current_device()}"}
else:
device_map = {"": "cpu"}
logger.info(
"The device_map was not initialized. "
f"Setting device_map to {device_map}. "
"If you want to use the model for inference, please set device_map ='auto' "
)
return device_map
# Copied from transformers.quantizers.quantizer_bnb_8bit.Bnb8BitHfQuantizer._process_model_before_weight_loading
def _process_model_before_weight_loading(
self,
model: "PreTrainedModel",
device_map,
keep_in_fp32_modules: List[str] = [],
**kwargs,
):
from ..integrations import get_keys_to_not_convert, replace_with_bnb_linear
llm_int8_enable_fp32_cpu_offload = self.quantization_config.llm_int8_enable_fp32_cpu_offload
# We keep some modules such as the lm_head in their original dtype for numerical stability reasons
if self.quantization_config.llm_int8_skip_modules is None:
self.modules_to_not_convert = get_keys_to_not_convert(model)
else:
self.modules_to_not_convert = self.quantization_config.llm_int8_skip_modules
if not isinstance(self.modules_to_not_convert, list):
self.modules_to_not_convert = [self.modules_to_not_convert]
self.modules_to_not_convert.extend(keep_in_fp32_modules)
# Extend `self.modules_to_not_convert` to keys that are supposed to be offloaded to `cpu` or `disk`
if isinstance(device_map, dict) and len(device_map.keys()) > 1:
keys_on_cpu = [key for key, value in device_map.items() if value in ["disk", "cpu"]]
if len(keys_on_cpu) > 0 and not llm_int8_enable_fp32_cpu_offload:
raise ValueError(
"If you want to offload some keys to `cpu` or `disk`, you need to set "
"`llm_int8_enable_fp32_cpu_offload=True`. Note that these modules will not be "
" converted to 8-bit but kept in 32-bit."
)
self.modules_to_not_convert.extend(keys_on_cpu)
model = replace_with_bnb_linear(
model, modules_to_not_convert=self.modules_to_not_convert, quantization_config=self.quantization_config
)
# TODO: consider bringing replace_with_bnb_linear() code from ..integrations/bitsandbyter.py to here
model.config.quantization_config = self.quantization_config
# Copied from transformers.quantizers.quantizer_bnb_8bit.Bnb8BitHfQuantizer._process_model_after_weight_loading with 8bit->4bit
def _process_model_after_weight_loading(self, model: "PreTrainedModel", **kwargs):
model.is_loaded_in_4bit = True
model.is_4bit_serializable = self.is_serializable()
return model
def is_serializable(self, safe_serialization=None):
_is_4bit_serializable = version.parse(importlib.metadata.version("bitsandbytes")) >= version.parse("0.41.3")
if not _is_4bit_serializable:
logger.warning(
"You are calling `save_pretrained` to a 4-bit converted model, but your `bitsandbytes` version doesn't support it. "
"If you want to save 4-bit models, make sure to have `bitsandbytes>=0.41.3` installed."
)
return False
return True
@cached_property
def is_bnb_supports_quant_storage_module(self) -> bool:
"""
determines if the current version of bitsandbytes supports
the `module` parameter in `Params4bit.from_prequantized`
:return:
"""
return version.parse(importlib.metadata.version("bitsandbytes")) >= version.parse("0.43.3")
@property
def is_trainable(self) -> bool:
return True
def _dequantize(self, model):
from ..integrations import dequantize_and_replace
model = dequantize_and_replace(
model, self.modules_to_not_convert, quantization_config=self.quantization_config
)
return model
|
class_definition
| 1,246 | 16,330 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/quantizer_bnb_4bit.py
| null | 344 |
class TorchAoHfQuantizer(HfQuantizer):
"""
Quantizer for torchao: https://github.com/pytorch/ao/
"""
requires_parameters_quantization = True
requires_calibration = False
required_packages = ["torchao"]
def __init__(self, quantization_config, **kwargs):
super().__init__(quantization_config, **kwargs)
def validate_environment(self, *args, **kwargs):
if not is_torchao_available():
raise ImportError("Loading an torchao quantized model requires torchao library (`pip install torchao`)")
self.offload = False
device_map = kwargs.get("device_map", None)
if isinstance(device_map, dict):
if "cpu" in device_map.values() or "disk" in device_map.values():
if self.pre_quantized:
raise ValueError(
"You are attempting to perform cpu/disk offload with a pre-quantized torchao model "
"This is not supported yet . Please remove the CPU or disk device from the device_map."
)
else:
self.offload = True
if self.pre_quantized:
weights_only = kwargs.get("weights_only", None)
if weights_only:
torch_version = version.parse(importlib.metadata.version("torch"))
if torch_version < version.parse("2.5.0"):
raise RuntimeError(
f"In order to use torchao pre-quantized model, you need to have torch>=2.5.0. However, the current version is {torch_version}."
f" You can also set with `weights_only=False` in `from_pretrained` if you don't want to update torch"
)
def update_torch_dtype(self, torch_dtype):
if self.quantization_config.quant_type == "int4_weight_only":
if torch_dtype is not None and torch_dtype != torch.bfloat16:
logger.warning_once(
f"Setting torch_dtype to {torch_dtype} for int4_weight_only quantization, but only bfloat16 is supported right now. Please set the torch_dtype to bfloat16."
)
if torch_dtype is None:
logger.warning_once(
"Setting torch_dtype to torch.bfloat16 for int4_weight_only quantization since only bfloat16 is supported right now. Please set torch_dtype=torch.bfloat16 to remove this warning."
)
torch_dtype = torch.bfloat16
if self.quantization_config.quant_type == "int8_dynamic_activation_int8_weight":
if torch_dtype is None:
logger.info(
"Setting torch_dtype to torch.float32 for int8_dynamic_activation_int8_weight quantization as no torch_dtype was specified in from_pretrained"
)
# we need to set the torch_dtype, otherwise we have dtype mismatch when performing the quantized linear op
torch_dtype = torch.float32
return torch_dtype
def adjust_target_dtype(self, target_dtype: "torch.dtype") -> "torch.dtype":
if version.parse(importlib.metadata.version("accelerate")) > version.parse("0.19.0"):
from accelerate.utils import CustomDtype
map_to_target_dtype = {
"int4_weight_only": CustomDtype.INT4,
"int8_weight_only": torch.int8,
"int8_dynamic_activation_int8_weight": torch.int8,
}
return map_to_target_dtype[self.quantization_config.quant_type]
else:
raise ValueError(
"You are using `device_map='auto'` on a torchao quantized model. To automatically compute"
" the appropriate device map, you should upgrade your `accelerate` library with "
"`pip install --upgrade accelerate`"
)
def adjust_max_memory(self, max_memory: Dict[str, Union[int, str]]) -> Dict[str, Union[int, str]]:
# need more space for the quantization parameters (e.g. scale). Tested with int4 wo and group size = 128
max_memory = {key: val * 0.9 for key, val in max_memory.items()}
return max_memory
def _process_model_before_weight_loading(self, model: "PreTrainedModel", **kwargs):
from ..integrations import get_keys_to_not_convert
self.modules_to_not_convert = get_keys_to_not_convert(model)
if self.quantization_config.modules_to_not_convert is not None:
self.modules_to_not_convert.extend(self.quantization_config.modules_to_not_convert)
return
def check_quantized_param(
self,
model: "PreTrainedModel",
param_value: "torch.Tensor",
param_name: str,
state_dict: Dict[str, Any],
**kwargs,
) -> bool:
param_device = kwargs.pop("param_device", None)
# check if the param_name is not in self.modules_to_not_convert
if any((key + "." in param_name) or (key == param_name) for key in self.modules_to_not_convert):
return False
elif param_device == "cpu" and self.offload:
# We don't quantize weights that we offload
return False
else:
# we only quantize the weight of nn.Linear
module, tensor_name = get_module_from_name(model, param_name)
return isinstance(module, torch.nn.Linear) and (tensor_name == "weight")
def create_quantized_param(
self,
model: "PreTrainedModel",
param_value: "torch.Tensor",
param_name: str,
target_device: "torch.device",
state_dict: Dict[str, Any],
unexpected_keys: List[str],
):
"""
Each nn.Linear layer that needs to be quantized is processsed here.
First, we set the value the weight tensor, then we move it to the target device. Finally, we quantize the module.
"""
from torchao.quantization import quantize_
module, tensor_name = get_module_from_name(model, param_name)
if self.pre_quantized:
module._parameters[tensor_name] = torch.nn.Parameter(param_value.to(device=target_device))
if isinstance(module, nn.Linear):
module.extra_repr = types.MethodType(_linear_extra_repr, module)
else:
module._parameters[tensor_name] = torch.nn.Parameter(param_value).to(device=target_device)
quantize_(module, self.quantization_config.get_apply_tensor_subclass())
def _process_model_after_weight_loading(self, model, **kwargs):
"""No process required for torchao quantized model"""
return
def is_serializable(self, safe_serialization=None):
if safe_serialization:
logger.warning(
"torchao quantized model does not support safe serialization, "
"please set `safe_serialization` to False"
)
return False
_is_torchao_serializable = version.parse(importlib.metadata.version("huggingface_hub")) >= version.parse(
"0.25.0"
)
if not _is_torchao_serializable:
logger.warning("torchao quantized model is only serializable after huggingface_hub >= 0.25.0 ")
if self.offload and self.quantization_config.modules_to_not_convert is None:
logger.warning(
"The model contains offloaded modules and these modules are not quantized. We don't recommend saving the model as we won't be able to reload them."
"If you want to specify modules to not quantize, please specify modules_to_not_convert in the quantization_config."
)
return False
return _is_torchao_serializable
@property
def is_trainable(self):
supported_quant_types_for_training = [
"int8_weight_only",
"int8_dynamic_activation_int8_weight",
]
return self.quantization_config.quant_type in supported_quant_types_for_training
|
class_definition
| 2,144 | 10,119 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/quantizer_torchao.py
| null | 345 |
class GptqHfQuantizer(HfQuantizer):
"""
Quantizer of the GPTQ method - for GPTQ the quantizer support calibration of the model through
`auto_gptq` or `gptqmodel` package. Quantization is done under the hood for users if they load a non-prequantized model.
"""
requires_calibration = False
required_packages = ["optimum", "auto_gptq", "gptqmodel"]
optimum_quantizer = None
def __init__(self, quantization_config: QuantizationConfigMixin, **kwargs):
super().__init__(quantization_config, **kwargs)
if not is_optimum_available():
raise ImportError("Loading a GPTQ quantized model requires optimum (`pip install optimum`)")
from optimum.gptq import GPTQQuantizer
self.optimum_quantizer = GPTQQuantizer.from_dict(self.quantization_config.to_dict_optimum())
def validate_environment(self, *args, **kwargs):
if not is_optimum_available():
raise ImportError("Loading a GPTQ quantized model requires optimum (`pip install optimum`)")
if is_auto_gptq_available() and is_gptqmodel_available():
logger.warning("Detected gptqmodel and auto-gptq, will use gptqmodel")
gptq_supports_cpu = (
is_auto_gptq_available()
and version.parse(importlib.metadata.version("auto-gptq")) > version.parse("0.4.2")
) or is_gptqmodel_available()
if not gptq_supports_cpu and not torch.cuda.is_available():
raise RuntimeError("GPU is required to quantize or run quantize model.")
elif not (is_auto_gptq_available() or is_gptqmodel_available()):
raise ImportError(
"Loading a GPTQ quantized model requires gptqmodel (`pip install gptqmodel`) or auto-gptq (`pip install auto-gptq`) library. "
)
elif is_auto_gptq_available() and version.parse(importlib.metadata.version("auto_gptq")) < version.parse(
"0.4.2"
):
raise ImportError(
"You need a version of auto_gptq >= 0.4.2 to use GPTQ: `pip install --upgrade auto-gptq` or use gptqmodel by `pip install gptqmodel>=1.4.3`."
)
elif is_gptqmodel_available() and (
version.parse(importlib.metadata.version("gptqmodel")) < version.parse("1.4.3")
or version.parse(importlib.metadata.version("optimum")) < version.parse("1.23.99")
):
raise ImportError("The gptqmodel version should be >= 1.4.3, optimum version should >= 1.24.0")
def update_torch_dtype(self, torch_dtype: "torch.dtype") -> "torch.dtype":
if torch_dtype is None:
torch_dtype = torch.float16
logger.info("Loading the model in `torch.float16`. To overwrite it, set `torch_dtype` manually.")
elif torch_dtype != torch.float16:
logger.info("We suggest you to set `torch_dtype=torch.float16` for better efficiency with GPTQ.")
return torch_dtype
def update_device_map(self, device_map):
if device_map is None:
device_map = {"": torch.device("cpu")}
# Only with auto-gptq do not support CPU, we should move the model to cuda if available.
if not is_gptqmodel_available() and device_map in ("cpu", {"": torch.device("cpu")}):
device_map == {"": 0}
return device_map
def _process_model_before_weight_loading(self, model: "PreTrainedModel", **kwargs):
if model.__class__.main_input_name != "input_ids":
raise RuntimeError("We can only quantize pure text model.")
if self.pre_quantized:
model = self.optimum_quantizer.convert_model(model, **kwargs)
def _process_model_after_weight_loading(self, model: "PreTrainedModel", **kwargs):
if self.pre_quantized:
model = self.optimum_quantizer.post_init_model(model)
else:
if self.quantization_config.tokenizer is None:
self.quantization_config.tokenizer = model.name_or_path
self.optimum_quantizer.quantize_model(model, self.quantization_config.tokenizer)
model.config.quantization_config = GPTQConfig.from_dict(self.optimum_quantizer.to_dict())
@property
def is_trainable(self, model: Optional["PreTrainedModel"] = None):
return True
def is_serializable(self, safe_serialization=None):
return True
|
class_definition
| 1,082 | 5,430 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/quantizer_gptq.py
| null | 346 |
class QuantoHfQuantizer(HfQuantizer):
"""
Quantizer for the quanto library
"""
required_packages = ["quanto", "accelerate"]
requires_parameters_quantization = True
requires_calibration = False
def __init__(self, quantization_config: QuantoConfig, **kwargs):
super().__init__(quantization_config, **kwargs)
self.post_init()
def post_init(self):
r"""
Safety checker
"""
if self.quantization_config.activations is not None and not self.pre_quantized:
raise ValueError(
"We don't support quantizing the activations with transformers library."
"Use quanto library for more complex use cases such as activations quantization, calibration and quantization aware training."
)
def validate_environment(self, *args, **kwargs):
if not is_optimum_quanto_available():
raise ImportError(
"Loading an optimum-quanto quantized model requires optimum-quanto library (`pip install optimum-quanto`)"
)
if not is_accelerate_available():
raise ImportError(
"Loading an optimum-quanto quantized model requires accelerate library (`pip install accelerate`)"
)
def update_device_map(self, device_map):
if device_map is None:
device_map = {"": "cpu"}
logger.info(
"The device_map was not initialized. "
"Setting device_map to {'':'cpu'}. "
"If you want to use the model for inference, please set device_map ='auto'"
)
return device_map
def update_torch_dtype(self, torch_dtype: "torch.dtype") -> "torch.dtype":
if torch_dtype is None:
logger.info("You did not specify `torch_dtype` in `from_pretrained`. Setting it to `torch.float32`.")
torch_dtype = torch.float32
return torch_dtype
def update_missing_keys(self, model, missing_keys: List[str], prefix: str) -> List[str]:
if is_optimum_quanto_available():
from optimum.quanto import QModuleMixin
not_missing_keys = []
for name, module in model.named_modules():
if isinstance(module, QModuleMixin):
for missing in missing_keys:
if (
(name in missing or name in f"{prefix}.{missing}")
and not missing.endswith(".weight")
and not missing.endswith(".bias")
):
not_missing_keys.append(missing)
return [k for k in missing_keys if k not in not_missing_keys]
def check_quantized_param(
self,
model: "PreTrainedModel",
param_value: "torch.Tensor",
param_name: str,
state_dict: Dict[str, Any],
**kwargs,
) -> bool:
"""
Check if a parameter needs to be quantized.
"""
if is_optimum_quanto_available():
from optimum.quanto import QModuleMixin
device_map = kwargs.get("device_map", None)
param_device = kwargs.get("param_device", None)
# we don't quantize the model if the module is going to be offloaded to the cpu
if device_map is not None and param_device is not None:
device_map_values = set(device_map.values())
if param_device == "cpu" and len(device_map_values) > 1:
if not (device_map_values == {"cpu"} or device_map_values == {"cpu", "disk"}):
return False
module, tensor_name = get_module_from_name(model, param_name)
# We only quantize the weights and the bias is not quantized.
if isinstance(module, QModuleMixin) and "weight" in tensor_name:
# if the weights are quantized, don't need to recreate it again with `create_quantized_param`
return not module.frozen
else:
return False
def adjust_max_memory(self, max_memory: Dict[str, Union[int, str]]) -> Dict[str, Union[int, str]]:
max_memory = {key: val * 0.90 for key, val in max_memory.items()}
return max_memory
def create_quantized_param(
self,
model: "PreTrainedModel",
param_value: "torch.Tensor",
param_name: str,
target_device: "torch.device",
*args,
**kwargs,
):
"""
Create the quantized parameter by calling .freeze() after setting it to the module.
"""
from accelerate.utils import set_module_tensor_to_device
set_module_tensor_to_device(model, param_name, target_device, param_value)
module, _ = get_module_from_name(model, param_name)
module.freeze()
module.weight.requires_grad = False
def adjust_target_dtype(self, target_dtype: "torch.dtype") -> "torch.dtype":
if version.parse(importlib.metadata.version("accelerate")) > version.parse("0.27.0"):
from accelerate.utils import CustomDtype
mapping = {
"int8": torch.int8,
"float8": CustomDtype.FP8,
"int4": CustomDtype.INT4,
"int2": CustomDtype.INT2,
}
target_dtype = mapping[self.quantization_config.weights]
return target_dtype
else:
raise ValueError(
"You are using `device_map='auto'` on an optimum-quanto quantized model. To automatically compute"
" the appropriate device map, you should upgrade your `accelerate` library,"
"`pip install --upgrade accelerate` or install it from source."
)
def _process_model_before_weight_loading(
self, model: "PreTrainedModel", keep_in_fp32_modules: List[str] = [], **kwargs
):
from ..integrations import get_keys_to_not_convert, replace_with_quanto_layers
# We keep some modules such as the lm_head in their original dtype for numerical stability reasons
if self.quantization_config.modules_to_not_convert is None:
self.modules_to_not_convert = get_keys_to_not_convert(model)
else:
self.modules_to_not_convert = self.quantization_config.modules_to_not_convert
if not isinstance(self.modules_to_not_convert, list):
self.modules_to_not_convert = [self.modules_to_not_convert]
self.modules_to_not_convert.extend(keep_in_fp32_modules)
model, _ = replace_with_quanto_layers(
model, modules_to_not_convert=self.modules_to_not_convert, quantization_config=self.quantization_config
)
model.config.quantization_config = self.quantization_config
def _process_model_after_weight_loading(self, model, **kwargs):
return model
@property
def is_trainable(self, model: Optional["PreTrainedModel"] = None):
return True
def is_serializable(self, safe_serialization=None):
return False
|
class_definition
| 1,139 | 8,106 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/quantizer_quanto.py
| null | 347 |
class EetqHfQuantizer(HfQuantizer):
"""
8-bit quantization from EETQ quantization method:
before loading: converts transformer layers into W8A16Linear during loading: load 16bit weight and pass to the
layer object after: quantizes individual weights in Linear8bitLt into 8bit at first .cuda() call
"""
requires_parameters_quantization = True
requires_calibration = False
required_packages = ["eetq", "accelerate"]
def __init__(self, quantization_config, **kwargs):
super().__init__(quantization_config, **kwargs)
self.quantization_config = quantization_config
def validate_environment(self, *args, **kwargs):
if not is_eetq_available():
raise ImportError(
"Using `eetq` 8-bit quantization requires eetq."
"Please install the latest version of eetq from : https://github.com/NetEase-FuXi/EETQ"
)
try:
import eetq # noqa: F401
except ImportError as exc:
if "shard_checkpoint" in str(exc):
# EETQ 1.0.0 is currently broken with the latest transformers because it tries to import the removed
# shard_checkpoint function, see https://github.com/NetEase-FuXi/EETQ/issues/34.
# TODO: Update message once eetq releases a fix
raise ImportError(
"You are using a version of EETQ that is incompatible with the current transformers version. "
"Either downgrade transformers to <= v4.46.3 or, if available, upgrade EETQ to > v1.0.0."
) from exc
else:
raise
if not is_accelerate_available():
raise ImportError("Loading an EETQ quantized model requires accelerate (`pip install accelerate`)")
if kwargs.get("from_tf", False) or kwargs.get("from_flax", False):
raise ValueError(
"Converting into 8-bit weights from tf/flax weights is currently not supported, please make"
" sure the weights are in PyTorch format."
)
if not torch.cuda.is_available():
raise RuntimeError("No GPU found. A GPU is needed for quantization.")
device_map = kwargs.get("device_map", None)
if device_map is None:
logger.warning_once(
"You have loaded an EETQ model on CPU and have a CUDA device available, make sure to set "
"your model on a GPU device in order to run your model."
)
elif device_map is not None:
if isinstance(device_map, dict) and ("cpu" in device_map.values() or "disk" in device_map.values()):
raise ValueError(
"You are attempting to load an EETQ model with a device_map that contains a CPU or disk device."
" This is not supported. Please remove the CPU or disk device from the device_map."
)
def update_torch_dtype(self, torch_dtype: "torch.dtype") -> "torch.dtype":
if torch_dtype is None:
torch_dtype = torch.float16
logger.info(
"Overriding torch_dtype=%s with `torch_dtype=torch.float16` due to "
"requirements of `eetq` to enable model loading in 8-bit. "
"Pass your own torch_dtype to specify the dtype of the remaining non-linear layers or pass"
" torch_dtype=torch.float16 to remove this warning.",
torch_dtype,
)
elif torch_dtype != torch.float16:
logger.info("We suggest you to set `torch_dtype=torch.float16` for better efficiency with EETQ.")
return torch_dtype
def check_quantized_param(
self,
model: "PreTrainedModel",
param_value: "torch.Tensor",
param_name: str,
state_dict: Dict[str, Any],
**kwargs,
):
from eetq import EetqLinear
module, tensor_name = get_module_from_name(model, param_name)
if isinstance(module, EetqLinear):
if self.pre_quantized or tensor_name == "bias":
if tensor_name == "weight" and param_value.dtype != torch.int8:
raise ValueError("Expect quantized weights but got an unquantized weight")
return False
else:
if tensor_name == "weight_scale":
raise ValueError("Expect unquantized weights but got a quantized weight_scale")
return True
return False
def create_quantized_param(
self,
model: "PreTrainedModel",
param_value: "torch.Tensor",
param_name: str,
target_device: "torch.device",
state_dict: Dict[str, Any],
unexpected_keys: Optional[List[str]] = None,
):
"""
quantizes weights into qweight and weight_scales
"""
from eetq import quantize_and_preprocess_weights
module, tensor_name = get_module_from_name(model, param_name)
new_value, weight_scale = quantize_and_preprocess_weights(param_value)
module._buffers[tensor_name] = new_value.to(target_device)
module.register("weight_scales", weight_scale.to(target_device))
def _process_model_after_weight_loading(self, model: "PreTrainedModel", **kwargs):
return model
def _process_model_before_weight_loading(
self,
model: "PreTrainedModel",
device_map,
keep_in_fp32_modules: List[str] = [],
**kwargs,
):
from ..integrations import get_keys_to_not_convert, replace_with_eetq_linear
self.modules_to_not_convert = get_keys_to_not_convert(model)
if self.quantization_config.modules_to_not_convert is not None:
self.modules_to_not_convert.extend(self.quantization_config.modules_to_not_convert)
model = replace_with_eetq_linear(
model,
modules_to_not_convert=self.modules_to_not_convert,
quantization_config=self.quantization_config,
pre_quantized=self.pre_quantized,
)
model.config.quantization_config = self.quantization_config
def is_serializable(self, safe_serialization=None):
return True
@property
def is_trainable(self) -> bool:
return True
|
class_definition
| 1,001 | 7,325 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/quantizer_eetq.py
| null | 348 |
class BitNetHfQuantizer(HfQuantizer):
"""
1.58-bit quantization from BitNet quantization method:
Before loading: it converts the linear layers into BitLinear layers during loading.
Checkout the paper introducing this method : https://arxiv.org/pdf/2402.17764
"""
requires_parameters_quantization = False
requires_calibration = True
required_packages = ["accelerate"]
def __init__(self, quantization_config, **kwargs):
super().__init__(quantization_config, **kwargs)
self.quantization_config = quantization_config
def validate_environment(self, *args, **kwargs):
if not is_accelerate_available():
raise ImportError("Loading a BitNet quantized model requires accelerate (`pip install accelerate`)")
if kwargs.get("from_tf", False) or kwargs.get("from_flax", False):
raise ValueError(
"Loading ternary weights from tf/flax is currently not supported, please make"
" sure the weights are in PyTorch format."
)
if not torch.cuda.is_available():
logger.warning_once(
"You don't have a GPU available to load the model, the inference will be slow because of weight unpacking"
)
return
device_map = kwargs.get("device_map", None)
if device_map is None:
logger.warning_once(
"You have loaded a BitNet model on CPU and have a CUDA device available, make sure to set "
"your model on a GPU device in order to run your model."
)
elif device_map is not None:
if isinstance(device_map, dict) and ("cpu" in device_map.values() or "disk" in device_map.values()):
raise ValueError(
"You are attempting to load a BitNet model with a device_map that contains a CPU or disk device."
"This is not supported. Please remove the CPU or disk device from the device_map."
)
def _process_model_after_weight_loading(self, model: "PreTrainedModel", **kwargs):
return model
def _process_model_before_weight_loading(
self,
model: "PreTrainedModel",
device_map,
keep_in_fp32_modules: List[str] = [],
**kwargs,
):
from ..integrations import get_keys_to_not_convert, replace_with_bitnet_linear
self.modules_to_not_convert = get_keys_to_not_convert(model)
if self.quantization_config.modules_to_not_convert is not None:
self.modules_to_not_convert.extend(self.quantization_config.modules_to_not_convert)
model = replace_with_bitnet_linear(
model,
modules_to_not_convert=self.modules_to_not_convert,
quantization_config=self.quantization_config,
pre_quantized=self.pre_quantized,
)
def adjust_max_memory(self, max_memory: Dict[str, Union[int, str]]) -> Dict[str, Union[int, str]]:
max_memory = {key: val * 0.90 for key, val in max_memory.items()}
return max_memory
def adjust_target_dtype(self, target_dtype: "torch.dtype") -> "torch.dtype":
target_dtype = torch.int8
return target_dtype
def is_serializable(self, safe_serialization=None):
return True
@property
def is_trainable(self) -> bool:
return False
|
class_definition
| 923 | 4,301 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/quantizer_bitnet.py
| null | 349 |
class AqlmHfQuantizer(HfQuantizer):
"""
Quantizer of the AQLM method. Enables the loading of prequantized models.
"""
requires_calibration = True
required_packages = ["aqlm"]
optimum_quantizer = None
def __init__(self, quantization_config: QuantizationConfigMixin, **kwargs):
super().__init__(quantization_config, **kwargs)
self.quantization_config = quantization_config
def validate_environment(self, *args, **kwargs):
if not is_accelerate_available():
raise ImportError("Using `aqlm` quantization requires Accelerate: `pip install accelerate`")
if not is_aqlm_available():
raise ImportError("Using `aqlm` quantization requires AQLM: `pip install aqlm[gpu,cpu]`")
def update_torch_dtype(self, torch_dtype: "torch.dtype") -> "torch.dtype":
if torch_dtype is None:
if torch.cuda.is_available():
torch_dtype = torch.float16
logger.info(
"CUDA available. Assuming AQLM inference on GPU and loading the model in `torch.float16`. To overwrite it, set `torch_dtype` manually."
)
else:
torch_dtype = torch.float32
logger.info(
"CUDA is unavailable. Assuming AQLM inference on CPU and loading the model in `torch.float32`. To overwrite it, set `torch_dtype` manually."
)
return torch_dtype
def _process_model_before_weight_loading(
self,
model: "PreTrainedModel",
**kwargs,
):
replace_with_aqlm_linear(
model,
quantization_config=self.quantization_config,
linear_weights_not_to_quantize=self.quantization_config.linear_weights_not_to_quantize,
)
model.config.quantization_config = self.quantization_config
def _process_model_after_weight_loading(self, model: "PreTrainedModel", **kwargs):
return model
@property
def is_trainable(self, model: Optional["PreTrainedModel"] = None):
aqlm_supports_training = version.parse(importlib.metadata.version("aqlm")) >= version.parse("1.0.2")
if aqlm_supports_training:
return True
else:
logger.warning(
f"Currently installed `aqlm` version ({importlib.metadata.version('aqlm')}) doesn't support training. If you wish to train a quantized model, please update `aqlm` with `pip install aqlm>=1.0.2`"
)
return False
def is_serializable(self, safe_serialization=None):
return True
|
class_definition
| 1,096 | 3,691 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/quantizer_aqlm.py
| null | 350 |
class HqqHfQuantizer(HfQuantizer):
"""
HQQ quantizer base HF class.
nn.Linear modules are first tagged with quant_config in _process_model_before_weight_loading().
The actual quantization and offloading to the GPU is done in check_quantized_param().
"""
use_keep_in_fp32_modules = False
requires_parameters_quantization = True
requires_calibration = False
required_packages = ["hqq"]
def __init__(self, quantization_config, **kwargs):
super().__init__(quantization_config, **kwargs)
self.torch_dtype = None
self.using_multi_gpu = False
def validate_environment(self, *args, **kwargs):
if not (is_hqq_available()):
raise ImportError(
"A valid HQQ version (>=0.2.1) is not available. Please follow the instructions to install it: `https://github.com/mobiusml/hqq/`."
)
if kwargs.get("from_tf", False) or kwargs.get("from_flax", False):
raise ValueError(
"Converting weights from tf/flax weights is currently not supported, please make"
" sure the weights are in PyTorch format."
)
if not torch.cuda.is_available():
raise RuntimeError("No GPU found. A GPU is needed for quantization.")
if self.torch_dtype is None:
if "torch_dtype" in kwargs:
self.torch_dtype = kwargs["torch_dtype"]
else:
self.torch_dtype = torch.float32
logger.info("Setting torch_dtype to torch.float32 as the default value since it was not specified.")
device_map = kwargs.get("device_map", None)
if isinstance(device_map, dict):
if "cpu" in device_map.values() or "disk" in device_map.values():
raise ValueError(
"You are attempting to use an HQQ model with a device_map that contains a CPU or disk device."
" This is not supported. Please remove the CPU or disk device from the device_map."
)
else:
self.using_multi_gpu = len(set(device_map.values())) > 1
def update_missing_keys(
self, model: "PreTrainedModel", missing_keys: List[str], prefix: str, **kwargs
) -> List[str]:
if self.pre_quantized:
return [key for key in missing_keys if ("weight" not in key)]
else:
return missing_keys
# Adds missing keys for HQQLinear modules that are loaded but the model with initialized with torch.nn.Linear
def update_expected_keys(
self, model: "PreTrainedModel", expected_keys: List[str], loaded_keys: List[str]
) -> List[str]:
if not self.pre_quantized:
return expected_keys
# Collects all quantizable (linear) layers
def _find_hqq_quantizable_layers(model, layers):
for name, module in model.named_children():
if isinstance(module, (torch.nn.Linear)):
layers.add(module.name)
_find_hqq_quantizable_layers(module, layers)
new_keys = set(expected_keys)
if is_hqq_available():
from hqq.core.quantize import HQQLinear
# Name modules
for name, module in model.named_modules():
module.name = name
# valid modules are Linear layers that have HQQLinear state_dict. We ignore skip_modules and any layers with Linear state_dict() params
_valid_modules = set()
_find_hqq_quantizable_layers(model, _valid_modules)
_valid_modules -= set(model.config.quantization_config["skip_modules"])
# Append new expected layers based on _ref_keys
_ref_keys = HQQLinear(
linear_layer=None, quant_config=None, compute_dtype=torch.float16, device="cpu"
).state_dict_keys() - {"bias"}
# Clean-up
_rm_keys = set()
for key in new_keys:
if any(_module in key for _module in _valid_modules):
_rm_keys.add(key)
new_keys -= _rm_keys
# At this point, new_keys contains all the keys of the layers that are NOT HQQLinear or torch.nn.Linear
# Re-populate Linear/HQQLinear
for _module in _valid_modules:
if _module + ".weight" in loaded_keys:
new_keys.add(_module + ".weight")
else:
new_keys.update({_module + "." + _ref_key for _ref_key in _ref_keys})
if _module + ".bias" in loaded_keys:
new_keys.add(_module + ".bias")
return list(new_keys)
def check_quantized_param(
self,
model: "PreTrainedModel",
param_value: "torch.Tensor",
param_name: str,
state_dict: Dict[str, Any],
**kwargs,
) -> bool:
if is_hqq_available():
from hqq.core.quantize import HQQLinear
module, tensor_name = get_module_from_name(model, param_name)
if self.pre_quantized:
return (
(isinstance(module, torch.nn.Linear) or isinstance(module, HQQLinear))
and tensor_name != "weight"
and tensor_name != "bias"
)
else:
return isinstance(module, torch.nn.Linear) and tensor_name == "weight"
def create_quantized_param(
self,
model: "PreTrainedModel",
param_value: "torch.Tensor",
param_name: str,
target_device: "torch.device",
state_dict: Dict[str, Any],
unexpected_keys: List[str],
):
"""
Each nn.Linear layer is processsed here.
We first check if the corresponding module state_dict contains already HQQ quantized parameters.
If not, we create a temp linear layer with the module state_dict params and use it for quantization
"""
if is_hqq_available():
from hqq.core.quantize import HQQLinear
module, tensor_name = get_module_from_name(model, param_name)
layer_name = ".".join(param_name.split(".")[:-1])
parent_module = find_parent(model, layer_name)
node = layer_name.split(".")[-1]
# set module state_dict
module_state_dict = {}
for k, v in state_dict.items():
if layer_name + "." in k:
module_state_dict[k.split(".")[-1]] = v
if unexpected_keys is not None and k in unexpected_keys:
unexpected_keys.remove(k)
if self.pre_quantized:
if isinstance(module, HQQLinear):
return
else:
hqq_layer = HQQLinear(
linear_layer=None,
quant_config=None,
compute_dtype=self.torch_dtype,
device=target_device,
)
hqq_layer.load_state_dict(module_state_dict)
if hqq_layer.bias is not None and isinstance(hqq_layer.bias, torch.Tensor):
hqq_layer.bias = torch.nn.Parameter(hqq_layer.bias)
if self.using_multi_gpu:
hqq_layer = self._patch_layer_for_multigpu(hqq_layer)
setattr(parent_module, node, hqq_layer)
# cleanup
del module.__dict__, module
torch.cuda.empty_cache()
return
# Step 1: populate module with weight/bias from module state dict
for key in module_state_dict:
setattr(module, key, torch.nn.Parameter(module_state_dict[key]))
# Step 2: Replace module with either HQQLinear or move it to device. We do this via setattr on the parent as doing on it on the module
# directly doesn't work.
if hasattr(module, "quant_config"):
hqq_layer = HQQLinear(
module,
module.quant_config,
compute_dtype=self.torch_dtype,
device=target_device,
del_orig=True,
)
if hqq_layer.bias is not None and isinstance(hqq_layer.bias, torch.Tensor):
hqq_layer.bias = torch.nn.Parameter(hqq_layer.bias)
if self.using_multi_gpu:
hqq_layer = self._patch_layer_for_multigpu(hqq_layer)
setattr(parent_module, node, hqq_layer)
else:
module = module.to(dtype=self.torch_dtype, device=target_device)
setattr(parent_module, node, module)
torch.cuda.empty_cache()
# Remove accelerate hook and uses a simpler forward pass. Otherwise, this breaks with multi-gpu
def _patch_layer_for_multigpu(self, hqq_layer):
hqq_layer = remove_hook_from_module(hqq_layer)
def forward_with_device(self, x):
out = torch.matmul(x.to(self.device), self.dequantize().t())
if self.bias is not None:
out += self.bias
return out
hqq_layer.forward = lambda x: forward_with_device(hqq_layer, x)
return hqq_layer
def _process_model_before_weight_loading(
self,
model: "PreTrainedModel",
device_map,
keep_in_fp32_modules: List[str] = None,
**kwargs,
):
keep_in_fp32_modules = keep_in_fp32_modules if keep_in_fp32_modules is not None else []
# Add the corresponding quant_config to each valid module. This allows us to do the actual nn.Linear -> HQQLinear conversion in create_quantized_param().
# prepare_for_hqq_linear() also sets the right quantization config inside the model (model.config.quantization_config) and the layers (hqq_layer.quant_config)
model = prepare_for_hqq_linear(model, quantization_config=self.quantization_config)
def _process_model_after_weight_loading(self, model: "PreTrainedModel", **kwargs):
model.is_hqq_quantized = True
model.is_hqq_serializable = self.is_serializable()
return model
def is_serializable(self, safe_serialization=None):
return True
@property
def is_trainable(self) -> bool:
return True
|
class_definition
| 1,341 | 11,437 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/quantizer_hqq.py
| null | 351 |
class VptqHfQuantizer(HfQuantizer):
"""
Quantizer of the VPTQ method. Enables the loading of prequantized models.
"""
requires_calibration = True
required_packages = ["vptq"]
def __init__(self, quantization_config: QuantizationConfigMixin, **kwargs):
super().__init__(quantization_config, **kwargs)
self.quantization_config = quantization_config
def validate_environment(self, *args, **kwargs):
if not is_accelerate_available():
raise ImportError("Using `vptq` quantization requires Accelerate: `pip install accelerate`")
if not is_vptq_available():
raise ImportError("Using `vptq` quantization requires VPTQ>=0.0.4: `pip install -U vptq`")
def update_torch_dtype(self, torch_dtype: "torch.dtype") -> "torch.dtype":
if torch_dtype is None:
if torch.cuda.is_available():
torch_dtype = torch.float16
logger.info(
"CUDA available. Assuming VPTQ inference on GPU and loading the model in `torch.float16`. To overwrite it, set `torch_dtype` manually."
)
else:
import vptq
device_availability = getattr(vptq, "device_availability", lambda device: False)
if device_availability("cpu") is True:
raise RuntimeError("No GPU found. Please wait for the next release of VPTQ to use CPU inference")
torch_dtype = torch.float32
logger.info("No GPU found. Assuming VPTQ inference on CPU and loading the model in `torch.float32`.")
return torch_dtype
def _process_model_before_weight_loading(
self,
model: "PreTrainedModel",
**kwargs,
):
"""
we don't have param like modules_to_not_convert to indicate which layers should not be quantized
because `quantization_config` include the layers that should be quantized
"""
from ..integrations import replace_with_vptq_linear
modules_to_not_convert = kwargs.get("modules_to_not_convert", []) + (
self.quantization_config.modules_to_not_convert or []
)
replace_with_vptq_linear(
model,
quantization_config=self.quantization_config,
modules_to_not_convert=modules_to_not_convert,
)
model.config.quantization_config = self.quantization_config
def _process_model_after_weight_loading(self, model: "PreTrainedModel", **kwargs):
return model
@property
def is_trainable(self, model: Optional["PreTrainedModel"] = None):
return False
def is_serializable(self, safe_serialization=None):
return True
|
class_definition
| 996 | 3,719 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/quantizer_vptq.py
| null | 352 |
class Bnb8BitHfQuantizer(HfQuantizer):
"""
8-bit quantization from bitsandbytes quantization method:
before loading: converts transformer layers into Linear8bitLt during loading: load 16bit weight and pass to the
layer object after: quantizes individual weights in Linear8bitLt into 8bit at fitst .cuda() call
saving:
from state dict, as usual; saves weights and 'SCB' component
loading:
need to locate SCB component and pass to the Linear8bitLt object
"""
use_keep_in_fp32_modules = True
requires_parameters_quantization = True
requires_calibration = False
required_packages = ["bitsandbytes", "accelerate"]
def __init__(self, quantization_config, **kwargs):
super().__init__(quantization_config, **kwargs)
if self.quantization_config.llm_int8_skip_modules is not None:
self.modules_to_not_convert = self.quantization_config.llm_int8_skip_modules
def validate_environment(self, *args, **kwargs):
if not is_accelerate_available():
raise ImportError(
f"Using `bitsandbytes` 8-bit quantization requires Accelerate: `pip install 'accelerate>={ACCELERATE_MIN_VERSION}'`"
)
if not is_bitsandbytes_available():
raise ImportError(
"Using `bitsandbytes` 8-bit quantization requires the latest version of bitsandbytes: `pip install -U bitsandbytes`"
)
from ..integrations import validate_bnb_backend_availability
from ..utils import is_bitsandbytes_multi_backend_available
bnb_multibackend_is_enabled = is_bitsandbytes_multi_backend_available()
validate_bnb_backend_availability(raise_exception=True)
if kwargs.get("from_tf", False) or kwargs.get("from_flax", False):
raise ValueError(
"Converting into 4-bit or 8-bit weights from tf/flax weights is currently not supported, please make"
" sure the weights are in PyTorch format."
)
device_map = kwargs.get("device_map", None)
if (
device_map is not None
and isinstance(device_map, dict)
and not self.quantization_config.llm_int8_enable_fp32_cpu_offload
):
device_map_without_lm_head = {
key: device_map[key] for key in device_map.keys() if key not in self.modules_to_not_convert
}
if set(device_map.values()) == {"cpu"} and bnb_multibackend_is_enabled:
pass
elif "cpu" in device_map_without_lm_head.values() or "disk" in device_map_without_lm_head.values():
raise ValueError(
"Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit the "
"quantized model. If you want to dispatch the model on the CPU or the disk while keeping these modules "
"in 32-bit, you need to set `llm_int8_enable_fp32_cpu_offload=True` and pass a custom `device_map` to "
"`from_pretrained`. Check "
"https://huggingface.co/docs/transformers/main/en/main_classes/quantization#offload-between-cpu-and-gpu "
"for more details. "
)
if version.parse(importlib.metadata.version("bitsandbytes")) < version.parse("0.37.2"):
raise ValueError(
"You have a version of `bitsandbytes` that is not compatible with 8bit inference and training"
" make sure you have the latest version of `bitsandbytes` installed"
)
def adjust_max_memory(self, max_memory: Dict[str, Union[int, str]]) -> Dict[str, Union[int, str]]:
# need more space for buffers that are created during quantization
max_memory = {key: val * 0.90 for key, val in max_memory.items()}
return max_memory
def update_torch_dtype(self, torch_dtype: "torch.dtype") -> "torch.dtype":
if torch_dtype is None:
# We force the `dtype` to be float16, this is a requirement from `bitsandbytes`
logger.info(
"Overriding torch_dtype=%s with `torch_dtype=torch.float16` due to "
"requirements of `bitsandbytes` to enable model loading in 8-bit or 4-bit. "
"Pass your own torch_dtype to specify the dtype of the remaining non-linear layers or pass"
" torch_dtype=torch.float16 to remove this warning.",
torch_dtype,
)
torch_dtype = torch.float16
return torch_dtype
def update_device_map(self, device_map):
if device_map is None:
if torch.cuda.is_available():
device_map = {"": torch.cuda.current_device()}
elif is_torch_xpu_available():
device_map = {"": f"xpu:{torch.xpu.current_device()}"}
else:
device_map = {"": "cpu"}
logger.info(
"The device_map was not initialized. "
f"Setting device_map to {device_map}. "
"If you want to use the model for inference, please set device_map ='auto' "
)
return device_map
def adjust_target_dtype(self, target_dtype: "torch.dtype") -> "torch.dtype":
if target_dtype != torch.int8:
logger.info("target_dtype {target_dtype} is replaced by `torch.int8` for 8-bit BnB quantization")
return torch.int8
def check_quantized_param(
self,
model: "PreTrainedModel",
param_value: "torch.Tensor",
param_name: str,
state_dict: Dict[str, Any],
**kwargs,
):
import bitsandbytes as bnb
module, tensor_name = get_module_from_name(model, param_name)
if isinstance(module._parameters.get(tensor_name, None), bnb.nn.Int8Params):
if self.pre_quantized:
if param_name.replace("weight", "SCB") not in state_dict.keys():
raise ValueError("Missing quantization component `SCB`")
if param_value.dtype != torch.int8:
raise ValueError(
f"Incompatible dtype `{param_value.dtype}` when loading 8-bit prequantized weight. Expected `torch.int8`."
)
return True
return False
def create_quantized_param(
self,
model: "PreTrainedModel",
param_value: "torch.Tensor",
param_name: str,
target_device: "torch.device",
state_dict: Dict[str, Any],
unexpected_keys: Optional[List[str]] = None,
):
"""
combines logic from _load_state_dict_into_meta_model and .integrations.bitsandbytes.py::set_module_quantized_tensor_to_device()
needs aux items from state dicts, if found - removes them from unexpected_keys
"""
import bitsandbytes as bnb
fp16_statistics_key = param_name.replace("weight", "SCB")
fp16_weights_format_key = param_name.replace("weight", "weight_format")
fp16_statistics = state_dict.get(fp16_statistics_key, None)
fp16_weights_format = state_dict.get(fp16_weights_format_key, None)
module, tensor_name = get_module_from_name(model, param_name)
if tensor_name not in module._parameters:
raise ValueError(f"{module} does not have a parameter or a buffer named {tensor_name}.")
old_value = getattr(module, tensor_name)
if not isinstance(module._parameters[tensor_name], bnb.nn.Int8Params):
raise ValueError(f"Parameter `{tensor_name}` should only be a `bnb.nn.Int8Params` instance.")
if (
old_value.device == torch.device("meta")
and target_device not in ["meta", torch.device("meta")]
and param_value is None
):
raise ValueError(f"{tensor_name} is on the meta device, we need a `value` to put in on {target_device}.")
new_value = param_value.to("cpu")
if self.pre_quantized and not self.is_serializable():
raise ValueError(
"Detected int8 weights but the version of bitsandbytes is not compatible with int8 serialization. "
"Make sure to download the latest `bitsandbytes` version. `pip install --upgrade bitsandbytes`."
)
# Support models using `Conv1D` in place of `nn.Linear` (e.g. openai-community/gpt2) by transposing the weight matrix prior to quantization.
# Since weights are saved in the correct "orientation", we skip transposing when loading.
if issubclass(module.source_cls, Conv1D):
if fp16_statistics is None:
new_value = new_value.T
kwargs = old_value.__dict__
new_value = bnb.nn.Int8Params(new_value, requires_grad=False, **kwargs).to(target_device)
module._parameters[tensor_name] = new_value
if fp16_statistics is not None:
setattr(module.weight, "SCB", fp16_statistics.to(target_device))
if unexpected_keys is not None:
unexpected_keys.remove(fp16_statistics_key)
# We just need to pop the `weight_format` keys from the state dict to remove unneeded
# messages. The correct format is correctly retrieved during the first forward pass.
if fp16_weights_format is not None and unexpected_keys is not None:
unexpected_keys.remove(fp16_weights_format_key)
def _process_model_after_weight_loading(self, model: "PreTrainedModel", **kwargs):
model.is_loaded_in_8bit = True
model.is_8bit_serializable = self.is_serializable()
return model
def _process_model_before_weight_loading(
self,
model: "PreTrainedModel",
device_map,
keep_in_fp32_modules: List[str] = [],
**kwargs,
):
from ..integrations import get_keys_to_not_convert, replace_with_bnb_linear
llm_int8_enable_fp32_cpu_offload = self.quantization_config.llm_int8_enable_fp32_cpu_offload
# We keep some modules such as the lm_head in their original dtype for numerical stability reasons
if self.quantization_config.llm_int8_skip_modules is None:
self.modules_to_not_convert = get_keys_to_not_convert(model)
else:
self.modules_to_not_convert = self.quantization_config.llm_int8_skip_modules
if not isinstance(self.modules_to_not_convert, list):
self.modules_to_not_convert = [self.modules_to_not_convert]
self.modules_to_not_convert.extend(keep_in_fp32_modules)
# Extend `self.modules_to_not_convert` to keys that are supposed to be offloaded to `cpu` or `disk`
if isinstance(device_map, dict) and len(device_map.keys()) > 1:
keys_on_cpu = [key for key, value in device_map.items() if value in ["disk", "cpu"]]
if len(keys_on_cpu) > 0 and not llm_int8_enable_fp32_cpu_offload:
raise ValueError(
"If you want to offload some keys to `cpu` or `disk`, you need to set "
"`llm_int8_enable_fp32_cpu_offload=True`. Note that these modules will not be "
" converted to 8-bit but kept in 32-bit."
)
self.modules_to_not_convert.extend(keys_on_cpu)
model = replace_with_bnb_linear(
model, modules_to_not_convert=self.modules_to_not_convert, quantization_config=self.quantization_config
)
# TODO: consider bringing replace_with_bnb_linear() code from ..integrations/bitsandbyter.py to here
model.config.quantization_config = self.quantization_config
def is_serializable(self, safe_serialization=None):
_bnb_supports_8bit_serialization = version.parse(importlib.metadata.version("bitsandbytes")) > version.parse(
"0.37.2"
)
if not _bnb_supports_8bit_serialization:
logger.warning(
"You are calling `save_pretrained` to a 8-bit converted model, but your `bitsandbytes` version doesn't support it. "
"If you want to save 8-bit models, make sure to have `bitsandbytes>0.37.2` installed. You will most likely face errors or"
" unexpected behaviours."
)
return False
return True
@property
def is_trainable(self) -> bool:
return version.parse(importlib.metadata.version("bitsandbytes")) >= version.parse("0.37.0")
def _dequantize(self, model):
from ..integrations import dequantize_and_replace
model = dequantize_and_replace(
model, self.modules_to_not_convert, quantization_config=self.quantization_config
)
return model
|
class_definition
| 1,180 | 13,893 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/quantizer_bnb_8bit.py
| null | 353 |
class HfQuantizer(ABC):
"""
Abstract class of the HuggingFace quantizer. Supports for now quantizing HF transformers models for inference and/or quantization.
This class is used only for transformers.PreTrainedModel.from_pretrained and cannot be easily used outside the scope of that method
yet.
Attributes
quantization_config (`transformers.utils.quantization_config.QuantizationConfigMixin`):
The quantization config that defines the quantization parameters of your model that you want to quantize.
modules_to_not_convert (`List[str]`, *optional*):
The list of module names to not convert when quantizing the model.
required_packages (`List[str]`, *optional*):
The list of required pip packages to install prior to using the quantizer
requires_calibration (`bool`):
Whether the quantization method requires to calibrate the model before using it.
requires_parameters_quantization (`bool`):
Whether the quantization method requires to create a new Parameter. For example, for bitsandbytes, it is
required to create a new xxxParameter in order to properly quantize the model.
"""
requires_calibration = False
required_packages = None
requires_parameters_quantization = False
def __init__(self, quantization_config: QuantizationConfigMixin, **kwargs):
self.quantization_config = quantization_config
# -- Handle extra kwargs below --
self.modules_to_not_convert = kwargs.pop("modules_to_not_convert", [])
self.pre_quantized = kwargs.pop("pre_quantized", True)
if not self.pre_quantized and self.requires_calibration:
raise ValueError(
f"The quantization method {quantization_config.quant_method} does require the model to be pre-quantized."
f" You explicitly passed `pre_quantized=False` meaning your model weights are not quantized. Make sure to "
f"pass `pre_quantized=True` while knowing what you are doing."
)
def update_torch_dtype(self, torch_dtype: "torch.dtype") -> "torch.dtype":
"""
Some quantization methods require to explicitly set the dtype of the model to a
target dtype. You need to override this method in case you want to make sure that behavior is
preserved
Args:
torch_dtype (`torch.dtype`):
The input dtype that is passed in `from_pretrained`
"""
return torch_dtype
def update_device_map(self, device_map: Optional[Dict[str, Any]]) -> Optional[Dict[str, Any]]:
"""
Override this method if you want to pass a override the existing device map with a new
one. E.g. for bitsandbytes, since `accelerate` is a hard requirement, if no device_map is
passed, the device_map is set to `"auto"``
Args:
device_map (`Union[dict, str]`, *optional*):
The device_map that is passed through the `from_pretrained` method.
"""
return device_map
def adjust_target_dtype(self, torch_dtype: "torch.dtype") -> "torch.dtype":
"""
Override this method if you want to adjust the `target_dtype` variable used in `from_pretrained`
to compute the device_map in case the device_map is a `str`. E.g. for bitsandbytes we force-set `target_dtype`
to `torch.int8` and for 4-bit we pass a custom enum `accelerate.CustomDtype.int4`.
Args:
torch_dtype (`torch.dtype`, *optional*):
The torch_dtype that is used to compute the device_map.
"""
return torch_dtype
def update_missing_keys(self, model, missing_keys: List[str], prefix: str) -> List[str]:
"""
Override this method if you want to adjust the `missing_keys`.
Args:
missing_keys (`List[str]`, *optional*):
The list of missing keys in the checkpoint compared to the state dict of the model
"""
return missing_keys
def update_expected_keys(self, model, expected_keys: List[str], loaded_keys: List[str]) -> List[str]:
"""
Override this method if you want to adjust the `update_expected_keys`.
Args:
expected_keys (`List[str]`, *optional*):
The list of the expected keys in the initialized model.
loaded_keys (`List[str]`, *optional*):
The list of the loaded keys in the checkpoint.
"""
return expected_keys
def get_special_dtypes_update(self, model, torch_dtype: "torch.dtype") -> Dict[str, "torch.dtype"]:
"""
returns dtypes for modules that are not quantized - used for the computation of the device_map in case
one passes a str as a device_map. The method will use the `modules_to_not_convert` that is modified
in `_process_model_before_weight_loading`.
Args:
model (`~transformers.PreTrainedModel`):
The model to quantize
torch_dtype (`torch.dtype`):
The dtype passed in `from_pretrained` method.
"""
return {
name: torch_dtype
for name, _ in model.named_parameters()
if any(m in name for m in self.modules_to_not_convert)
}
def adjust_max_memory(self, max_memory: Dict[str, Union[int, str]]) -> Dict[str, Union[int, str]]:
"""adjust max_memory argument for infer_auto_device_map() if extra memory is needed for quantization"""
return max_memory
def check_quantized_param(
self,
model: "PreTrainedModel",
param_value: "torch.Tensor",
param_name: str,
state_dict: Dict[str, Any],
**kwargs,
) -> bool:
"""
checks if a loaded state_dict component is part of quantized param + some validation; only defined if
requires_parameters_quantization == True for quantization methods that require to create a new parameters
for quantization.
"""
return False
def create_quantized_param(self, *args, **kwargs) -> "torch.nn.Parameter":
"""
takes needed components from state_dict and creates quantized param; only applicable if
requires_parameters_quantization == True
"""
if not self.requires_parameters_quantization:
raise AttributeError(
f"`.create_quantized_param()` method is not supported by quantizer class {self.__class__.__name__}."
)
def validate_environment(self, *args, **kwargs):
"""
This method is used to potentially check for potential conflicts with arguments that are
passed in `from_pretrained`. You need to define it for all future quantizers that are integrated with transformers.
If no explicit check are needed, simply return nothing.
"""
return
def preprocess_model(self, model: "PreTrainedModel", **kwargs):
"""
Setting model attributes and/or converting model before weights loading. At this point
the model should be initialized on the meta device so you can freely manipulate the skeleton
of the model in order to replace modules in-place. Make sure to override the abstract method `_process_model_before_weight_loading`.
Args:
model (`~transformers.PreTrainedModel`):
The model to quantize
kwargs (`dict`, *optional*):
The keyword arguments that are passed along `_process_model_before_weight_loading`.
"""
model.is_quantized = True
model.quantization_method = self.quantization_config.quant_method
return self._process_model_before_weight_loading(model, **kwargs)
def postprocess_model(self, model: "PreTrainedModel", **kwargs):
"""
Post-process the model post weights loading.
Make sure to override the abstract method `_process_model_after_weight_loading`.
Args:
model (`~transformers.PreTrainedModel`):
The model to quantize
kwargs (`dict`, *optional*):
The keyword arguments that are passed along `_process_model_after_weight_loading`.
"""
return self._process_model_after_weight_loading(model, **kwargs)
def dequantize(self, model):
"""
Potentially dequantize the model to retrive the original model, with some loss in accuracy / performance.
Note not all quantization schemes support this.
"""
model = self._dequantize(model)
# Delete quantizer and quantization config
del model.hf_quantizer
del model.config.quantization_config
del model.config._pre_quantization_dtype
model.is_quantized = False
return model
def _dequantize(self, model):
raise NotImplementedError(
f"{self.quantization_config.quant_method} has no implementation of `dequantize`, please raise an issue on GitHub."
)
@property
def is_qat_trainable(self) -> bool:
"""Flag indicating whether the quantized model can carry out quantization aware training"""
return False
@abstractmethod
def _process_model_before_weight_loading(self, model, **kwargs): ...
@abstractmethod
def _process_model_after_weight_loading(self, model, **kwargs): ...
@abstractmethod
def is_serializable(self, safe_serialization=None): ...
@property
@abstractmethod
def is_trainable(self): ...
|
class_definition
| 932 | 10,501 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/base.py
| null | 354 |
class HiggsHfQuantizer(HfQuantizer):
"""
Quantizer of the HIGGS method. Enables the loading of prequantized models and in-flight quantization of full-precision models.
"""
requires_calibration = False
requires_parameters_quantization = True
required_packages = ["flute-kernel", "fast_hadamard_transform"]
def __init__(self, quantization_config: QuantizationConfigMixin, **kwargs):
super().__init__(quantization_config, **kwargs)
self.quantization_config = quantization_config
def validate_environment(self, device_map, **kwargs):
if not torch.cuda.is_available():
raise NotImplementedError("HIGGS quantization is only supported on GPU. Please use a different quantizer.")
if not is_accelerate_available():
raise ImportError("Using `higgs` quantization requires Accelerate: `pip install accelerate`")
if not is_flute_available():
raise ImportError("Using `higgs` quantization requires FLUTE: `pip install flute-kernel>=0.3.0`")
if not is_hadamard_available():
raise ImportError(
"Using `higgs` quantization requires fast_hadamard_transform: `pip install fast_hadamard_transform`"
)
if device_map is None:
raise ValueError(
"You are attempting to load a HIGGS model without setting device_map."
" Please set device_map comprised of 'cuda' devices."
)
elif isinstance(device_map, dict) and ("cpu" in device_map.values() or "disk" in device_map.values()):
raise ValueError(
"You are attempting to load a HIGGS model with a device_map that contains a CPU or disk device."
" This is not supported. Please remove the CPU or disk device from the device_map."
)
def update_torch_dtype(self, torch_dtype: "torch.dtype") -> "torch.dtype":
if torch_dtype is None:
logger.info("`torch_dtype` is None. Setting `torch_dtype=torch.float16` for FLUTE compatibility.")
torch_dtype = torch.float16
elif torch_dtype != torch.float16 and torch_dtype != torch.bfloat16:
raise ValueError(
f"Invalid `torch_dtype` {torch_dtype}. HIGGS quantization only supports `torch_dtype=torch.float16` or `torch_dtype=torch.bfloat16`."
)
return torch_dtype
def create_quantized_param(
self,
model: "PreTrainedModel",
param_value: "torch.Tensor",
param_name: str,
target_device: "torch.device",
state_dict: Dict[str, Any],
unexpected_keys: Optional[List[str]] = None,
):
from ..integrations import quantize_with_higgs
"""
Quantizes weights into weight and weight_scale
"""
flute_dict = quantize_with_higgs(
param_value.to(target_device),
self.quantization_config.bits,
self.quantization_config.p,
self.quantization_config.group_size,
self.quantization_config.hadamard_size,
)
del param_value
module, tensor_name = get_module_from_name(model, param_name)
for key, value in flute_dict.items():
if key in module._parameters:
module._parameters[key] = torch.nn.Parameter(value, requires_grad=False)
elif key in module._buffers:
module._buffers[key] = torch.nn.Buffer(value)
else:
raise ValueError(f"Unexpected key {key} in module {module}")
if unexpected_keys is not None and param_name in unexpected_keys:
unexpected_keys.remove(param_name)
module.num_sms_packed = torch.nn.Parameter(
torch.tensor(get_num_sms_from_device(target_device), device=target_device, dtype=torch.int32),
requires_grad=False,
)
def _process_model_before_weight_loading(
self,
model: "PreTrainedModel",
**kwargs,
):
from ..integrations import replace_with_higgs_linear
replace_with_higgs_linear(
model,
quantization_config=self.quantization_config,
)
model.config.quantization_config = self.quantization_config
def _process_model_after_weight_loading(self, model: "PreTrainedModel", **kwargs):
import flute.utils
from ..integrations import HiggsLinear
flute_workspaces = {}
for name, module in model.named_modules():
if isinstance(module, HiggsLinear):
# Every HiggsLinear needs a "workspace": a buffer for the unpacking operation.
# This buffer needs to be on the same device as the weights, but can be reused across modules otherwise.
if module.weight.device not in flute_workspaces:
flute_workspaces[module.weight.device] = flute.utils.make_workspace_streamk(
device=module.weight.device
)
module.workspace = flute_workspaces[module.weight.device]
# FLUTE weights are packed in a way that is optimized for a specific number of SMs (GPU streaming multiprocessors).
# If the model is loaded on a different device than the one it was saved on, we need to repack the weights.
if module.num_sms_packed.item() != get_num_sms_from_device(module.weight.device):
new_device = module.weight.device
new_num_sms = get_num_sms_from_device(new_device)
module.weight.data = flute.utils.pack(
flute.utils.unpack(
weight=module.weight.data,
scales=module.scales.data,
workspace=module.workspace,
num_bits=module.num_bits,
group_size=module.group_size,
num_sms_packed=module.num_sms_packed.item(),
).T.contiguous(),
module.num_bits,
module.group_size,
)
module.num_sms_packed = torch.nn.Parameter(
torch.tensor(new_num_sms, device=new_device, dtype=torch.int32),
requires_grad=False,
)
def update_missing_keys(self, model, missing_keys: List[str], prefix: str) -> List[str]:
from ..integrations import HiggsLinear
not_missing_keys = []
for name, module in model.named_modules():
if isinstance(module, HiggsLinear):
for missing in missing_keys:
if (
(name in missing or name in f"{prefix}.{missing}")
and not missing.endswith(".weight")
and not missing.endswith(".bias")
):
not_missing_keys.append(missing)
return [k for k in missing_keys if k not in not_missing_keys]
@property
def is_trainable(self, model: Optional["PreTrainedModel"] = None):
return False
def is_serializable(self, safe_serialization=None):
return True
def check_quantized_param(
self,
model: "PreTrainedModel",
param_value: "torch.Tensor",
param_name: str,
state_dict: Dict[str, Any],
**kwargs,
) -> bool:
from ..integrations import HiggsLinear
module, tensor_name = get_module_from_name(model, param_name)
if isinstance(module, HiggsLinear) and tensor_name == "weight" and param_value.dtype != torch.int16:
# Only quantize weights of HiggsLinear modules that are not already quantized
return True
else:
return False
def _dequantize(self, model):
from ..integrations import dequantize_higgs
model = dequantize_higgs(model)
return model
|
class_definition
| 1,583 | 9,576 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/quantizer_higgs.py
| null | 355 |
class AutoQuantizationConfig:
"""
The Auto-HF quantization config class that takes care of automatically dispatching to the correct
quantization config given a quantization config stored in a dictionary.
"""
@classmethod
def from_dict(cls, quantization_config_dict: Dict):
quant_method = quantization_config_dict.get("quant_method", None)
# We need a special care for bnb models to make sure everything is BC ..
if quantization_config_dict.get("load_in_8bit", False) or quantization_config_dict.get("load_in_4bit", False):
suffix = "_4bit" if quantization_config_dict.get("load_in_4bit", False) else "_8bit"
quant_method = QuantizationMethod.BITS_AND_BYTES + suffix
elif quant_method is None:
raise ValueError(
"The model's quantization config from the arguments has no `quant_method` attribute. Make sure that the model has been correctly quantized"
)
if quant_method not in AUTO_QUANTIZATION_CONFIG_MAPPING.keys():
raise ValueError(
f"Unknown quantization type, got {quant_method} - supported types are:"
f" {list(AUTO_QUANTIZER_MAPPING.keys())}"
)
target_cls = AUTO_QUANTIZATION_CONFIG_MAPPING[quant_method]
return target_cls.from_dict(quantization_config_dict)
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path, **kwargs):
model_config = AutoConfig.from_pretrained(pretrained_model_name_or_path, **kwargs)
if getattr(model_config, "quantization_config", None) is None:
raise ValueError(
f"Did not found a `quantization_config` in {pretrained_model_name_or_path}. Make sure that the model is correctly quantized."
)
quantization_config_dict = model_config.quantization_config
quantization_config = cls.from_dict(quantization_config_dict)
# Update with potential kwargs that are passed through from_pretrained.
quantization_config.update(**kwargs)
return quantization_config
|
class_definition
| 2,727 | 4,829 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/auto.py
| null | 356 |
class AutoHfQuantizer:
"""
The Auto-HF quantizer class that takes care of automatically instantiating to the correct
`HfQuantizer` given the `QuantizationConfig`.
"""
@classmethod
def from_config(cls, quantization_config: Union[QuantizationConfigMixin, Dict], **kwargs):
# Convert it to a QuantizationConfig if the q_config is a dict
if isinstance(quantization_config, dict):
quantization_config = AutoQuantizationConfig.from_dict(quantization_config)
quant_method = quantization_config.quant_method
# Again, we need a special care for bnb as we have a single quantization config
# class for both 4-bit and 8-bit quantization
if quant_method == QuantizationMethod.BITS_AND_BYTES:
if quantization_config.load_in_8bit:
quant_method += "_8bit"
else:
quant_method += "_4bit"
if quant_method not in AUTO_QUANTIZER_MAPPING.keys():
raise ValueError(
f"Unknown quantization type, got {quant_method} - supported types are:"
f" {list(AUTO_QUANTIZER_MAPPING.keys())}"
)
target_cls = AUTO_QUANTIZER_MAPPING[quant_method]
return target_cls(quantization_config, **kwargs)
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path, **kwargs):
quantization_config = AutoQuantizationConfig.from_pretrained(pretrained_model_name_or_path, **kwargs)
return cls.from_config(quantization_config)
@classmethod
def merge_quantization_configs(
cls,
quantization_config: Union[dict, QuantizationConfigMixin],
quantization_config_from_args: Optional[QuantizationConfigMixin],
):
"""
handles situations where both quantization_config from args and quantization_config from model config are present.
"""
if quantization_config_from_args is not None:
warning_msg = (
"You passed `quantization_config` or equivalent parameters to `from_pretrained` but the model you're loading"
" already has a `quantization_config` attribute. The `quantization_config` from the model will be used."
)
else:
warning_msg = ""
if isinstance(quantization_config, dict):
quantization_config = AutoQuantizationConfig.from_dict(quantization_config)
if (
isinstance(quantization_config, (GPTQConfig, AwqConfig, FbgemmFp8Config, CompressedTensorsConfig))
and quantization_config_from_args is not None
):
# special case for GPTQ / AWQ / FbgemmFp8 config collision
loading_attr_dict = quantization_config_from_args.get_loading_attributes()
for attr, val in loading_attr_dict.items():
setattr(quantization_config, attr, val)
warning_msg += f"However, loading attributes (e.g. {list(loading_attr_dict.keys())}) will be overwritten with the one you passed to `from_pretrained`. The rest will be ignored."
if warning_msg != "":
warnings.warn(warning_msg)
return quantization_config
|
class_definition
| 4,832 | 8,014 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/auto.py
| null | 357 |
class ImageQuestionAnsweringTool(PipelineTool):
default_checkpoint = "dandelin/vilt-b32-finetuned-vqa"
description = (
"This is a tool that answers a question about an image. It "
"returns a text that is the answer to the question."
)
name = "image_qa"
pre_processor_class = AutoProcessor
model_class = AutoModelForVisualQuestionAnswering
inputs = {
"image": {
"type": "image",
"description": "The image containing the information. Can be a PIL Image or a string path to the image.",
},
"question": {"type": "string", "description": "The question in English"},
}
output_type = "string"
def __init__(self, *args, **kwargs):
requires_backends(self, ["vision"])
super().__init__(*args, **kwargs)
def encode(self, image: "Image", question: str):
return self.pre_processor(image, question, return_tensors="pt")
def forward(self, inputs):
with torch.no_grad():
return self.model(**inputs).logits
def decode(self, outputs):
idx = outputs.argmax(-1).item()
return self.model.config.id2label[idx]
|
class_definition
| 835 | 2,003 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/agents/image_question_answering.py
| null | 358 |
class Problem:
"""
A class regrouping all the information to solve a problem on which we will evaluate agents.
Args:
task (`str` ou `list[str]`):
One or several descriptions of the task to perform. If a list, it should contain variations on the
phrasing, but for the same task.
inputs (`list[str]` or `dict[str, str]`):
The inputs that will be fed to the tools. For this testing environment, only strings are accepted as
values. Pass along a dictionary when you want to specify the values of each inputs, or just the list of
inputs expected (the value used will be `<<input_name>>` in this case).
answer (`str` or `list[str]`):
The theoretical answer (or list of possible valid answers) to the problem, as code.
"""
def __init__(self, task, inputs, answer):
self.task = task
self.inputs = inputs
self.answer = answer
|
class_definition
| 2,931 | 3,889 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/agents/evaluate_agent.py
| null | 359 |
class ChatMessage:
def __init__(self, role, content, metadata=None):
self.role = role
self.content = content
self.metadata = metadata
|
class_definition
| 943 | 1,152 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/agents/monitoring.py
| null | 360 |
class ChatMessage:
def __init__(self, role, content, metadata=None):
self.role = role
self.content = content
self.metadata = metadata
|
class_definition
| 2,409 | 2,618 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/agents/monitoring.py
| null | 361 |
class Monitor:
def __init__(self, tracked_llm_engine):
self.step_durations = []
self.tracked_llm_engine = tracked_llm_engine
if getattr(self.tracked_llm_engine, "last_input_token_count", "Not found") != "Not found":
self.total_input_token_count = 0
self.total_output_token_count = 0
def update_metrics(self, step_log):
step_duration = step_log["step_duration"]
self.step_durations.append(step_duration)
logger.info(f"Step {len(self.step_durations)}:")
logger.info(f"- Time taken: {step_duration:.2f} seconds (valid only if step succeeded)")
if getattr(self.tracked_llm_engine, "last_input_token_count", None) is not None:
self.total_input_token_count += self.tracked_llm_engine.last_input_token_count
self.total_output_token_count += self.tracked_llm_engine.last_output_token_count
logger.info(f"- Input tokens: {self.total_input_token_count}")
logger.info(f"- Output tokens: {self.total_output_token_count}")
|
class_definition
| 3,628 | 4,683 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/agents/monitoring.py
| null | 362 |
class Tool:
"""
A base class for the functions used by the agent. Subclass this and implement the `__call__` method as well as the
following class attributes:
- **description** (`str`) -- A short description of what your tool does, the inputs it expects and the output(s) it
will return. For instance 'This is a tool that downloads a file from a `url`. It takes the `url` as input, and
returns the text contained in the file'.
- **name** (`str`) -- A performative name that will be used for your tool in the prompt to the agent. For instance
`"text-classifier"` or `"image_generator"`.
- **inputs** (`Dict[str, Dict[str, Union[str, type]]]`) -- The dict of modalities expected for the inputs.
It has one `type`key and a `description`key.
This is used by `launch_gradio_demo` or to make a nice space from your tool, and also can be used in the generated
description for your tool.
- **output_type** (`type`) -- The type of the tool output. This is used by `launch_gradio_demo`
or to make a nice space from your tool, and also can be used in the generated description for your tool.
You can also override the method [`~Tool.setup`] if your tool as an expensive operation to perform before being
usable (such as loading a model). [`~Tool.setup`] will be called the first time you use your tool, but not at
instantiation.
"""
name: str
description: str
inputs: Dict[str, Dict[str, Union[str, type]]]
output_type: type
def __init__(self, *args, **kwargs):
self.is_initialized = False
def __init_subclass__(cls, **kwargs):
super().__init_subclass__(**kwargs)
validate_after_init(cls, do_validate_forward=False)
def validate_arguments(self, do_validate_forward: bool = True):
required_attributes = {
"description": str,
"name": str,
"inputs": dict,
"output_type": str,
}
authorized_types = ["string", "integer", "number", "image", "audio", "any", "boolean"]
for attr, expected_type in required_attributes.items():
attr_value = getattr(self, attr, None)
if attr_value is None:
raise TypeError(f"You must set an attribute {attr}.")
if not isinstance(attr_value, expected_type):
raise TypeError(
f"Attribute {attr} should have type {expected_type.__name__}, got {type(attr_value)} instead."
)
for input_name, input_content in self.inputs.items():
assert isinstance(input_content, dict), f"Input '{input_name}' should be a dictionary."
assert (
"type" in input_content and "description" in input_content
), f"Input '{input_name}' should have keys 'type' and 'description', has only {list(input_content.keys())}."
if input_content["type"] not in authorized_types:
raise Exception(
f"Input '{input_name}': type '{input_content['type']}' is not an authorized value, should be one of {authorized_types}."
)
assert getattr(self, "output_type", None) in authorized_types
if do_validate_forward:
if not isinstance(self, PipelineTool):
signature = inspect.signature(self.forward)
if not set(signature.parameters.keys()) == set(self.inputs.keys()):
raise Exception(
"Tool's 'forward' method should take 'self' as its first argument, then its next arguments should match the keys of tool attribute 'inputs'."
)
def forward(self, *args, **kwargs):
return NotImplemented("Write this method in your subclass of `Tool`.")
def __call__(self, *args, **kwargs):
args, kwargs = handle_agent_inputs(*args, **kwargs)
outputs = self.forward(*args, **kwargs)
return handle_agent_outputs(outputs, self.output_type)
def setup(self):
"""
Overwrite this method here for any operation that is expensive and needs to be executed before you start using
your tool. Such as loading a big model.
"""
self.is_initialized = True
def save(self, output_dir):
"""
Saves the relevant code files for your tool so it can be pushed to the Hub. This will copy the code of your
tool in `output_dir` as well as autogenerate:
- a config file named `tool_config.json`
- an `app.py` file so that your tool can be converted to a space
- a `requirements.txt` containing the names of the module used by your tool (as detected when inspecting its
code)
You should only use this method to save tools that are defined in a separate module (not `__main__`).
Args:
output_dir (`str`): The folder in which you want to save your tool.
"""
os.makedirs(output_dir, exist_ok=True)
# Save module file
if self.__module__ == "__main__":
raise ValueError(
f"We can't save the code defining {self} in {output_dir} as it's been defined in __main__. You "
"have to put this code in a separate module so we can include it in the saved folder."
)
module_files = custom_object_save(self, output_dir)
module_name = self.__class__.__module__
last_module = module_name.split(".")[-1]
full_name = f"{last_module}.{self.__class__.__name__}"
# Save config file
config_file = os.path.join(output_dir, "tool_config.json")
if os.path.isfile(config_file):
with open(config_file, "r", encoding="utf-8") as f:
tool_config = json.load(f)
else:
tool_config = {}
tool_config = {
"tool_class": full_name,
"description": self.description,
"name": self.name,
"inputs": self.inputs,
"output_type": str(self.output_type),
}
with open(config_file, "w", encoding="utf-8") as f:
f.write(json.dumps(tool_config, indent=2, sort_keys=True) + "\n")
# Save app file
app_file = os.path.join(output_dir, "app.py")
with open(app_file, "w", encoding="utf-8") as f:
f.write(APP_FILE_TEMPLATE.format(module_name=last_module, class_name=self.__class__.__name__))
# Save requirements file
requirements_file = os.path.join(output_dir, "requirements.txt")
imports = []
for module in module_files:
imports.extend(get_imports(module))
imports = list(set(imports))
with open(requirements_file, "w", encoding="utf-8") as f:
f.write("\n".join(imports) + "\n")
@classmethod
def from_hub(
cls,
repo_id: str,
token: Optional[str] = None,
**kwargs,
):
"""
Loads a tool defined on the Hub.
<Tip warning={true}>
Loading a tool from the Hub means that you'll download the tool and execute it locally.
ALWAYS inspect the tool you're downloading before loading it within your runtime, as you would do when
installing a package using pip/npm/apt.
</Tip>
Args:
repo_id (`str`):
The name of the repo on the Hub where your tool is defined.
token (`str`, *optional*):
The token to identify you on hf.co. If unset, will use the token generated when running
`huggingface-cli login` (stored in `~/.huggingface`).
kwargs (additional keyword arguments, *optional*):
Additional keyword arguments that will be split in two: all arguments relevant to the Hub (such as
`cache_dir`, `revision`, `subfolder`) will be used when downloading the files for your tool, and the
others will be passed along to its init.
"""
hub_kwargs_names = [
"cache_dir",
"force_download",
"resume_download",
"proxies",
"revision",
"repo_type",
"subfolder",
"local_files_only",
]
hub_kwargs = {k: v for k, v in kwargs.items() if k in hub_kwargs_names}
# Try to get the tool config first.
hub_kwargs["repo_type"] = get_repo_type(repo_id, **hub_kwargs)
resolved_config_file = cached_file(
repo_id,
TOOL_CONFIG_FILE,
token=token,
**hub_kwargs,
_raise_exceptions_for_gated_repo=False,
_raise_exceptions_for_missing_entries=False,
_raise_exceptions_for_connection_errors=False,
)
is_tool_config = resolved_config_file is not None
if resolved_config_file is None:
resolved_config_file = cached_file(
repo_id,
CONFIG_NAME,
token=token,
**hub_kwargs,
_raise_exceptions_for_gated_repo=False,
_raise_exceptions_for_missing_entries=False,
_raise_exceptions_for_connection_errors=False,
)
if resolved_config_file is None:
raise EnvironmentError(
f"{repo_id} does not appear to provide a valid configuration in `tool_config.json` or `config.json`."
)
with open(resolved_config_file, encoding="utf-8") as reader:
config = json.load(reader)
if not is_tool_config:
if "custom_tool" not in config:
raise EnvironmentError(
f"{repo_id} does not provide a mapping to custom tools in its configuration `config.json`."
)
custom_tool = config["custom_tool"]
else:
custom_tool = config
tool_class = custom_tool["tool_class"]
tool_class = get_class_from_dynamic_module(tool_class, repo_id, token=token, **hub_kwargs)
if len(tool_class.name) == 0:
tool_class.name = custom_tool["name"]
if tool_class.name != custom_tool["name"]:
logger.warning(
f"{tool_class.__name__} implements a different name in its configuration and class. Using the tool "
"configuration name."
)
tool_class.name = custom_tool["name"]
if len(tool_class.description) == 0:
tool_class.description = custom_tool["description"]
if tool_class.description != custom_tool["description"]:
logger.warning(
f"{tool_class.__name__} implements a different description in its configuration and class. Using the "
"tool configuration description."
)
tool_class.description = custom_tool["description"]
if tool_class.inputs != custom_tool["inputs"]:
tool_class.inputs = custom_tool["inputs"]
if tool_class.output_type != custom_tool["output_type"]:
tool_class.output_type = custom_tool["output_type"]
if not isinstance(tool_class.inputs, dict):
tool_class.inputs = ast.literal_eval(tool_class.inputs)
return tool_class(**kwargs)
def push_to_hub(
self,
repo_id: str,
commit_message: str = "Upload tool",
private: Optional[bool] = None,
token: Optional[Union[bool, str]] = None,
create_pr: bool = False,
) -> str:
"""
Upload the tool to the Hub.
For this method to work properly, your tool must have been defined in a separate module (not `__main__`).
For instance:
```
from my_tool_module import MyTool
my_tool = MyTool()
my_tool.push_to_hub("my-username/my-space")
```
Parameters:
repo_id (`str`):
The name of the repository you want to push your tool to. It should contain your organization name when
pushing to a given organization.
commit_message (`str`, *optional*, defaults to `"Upload tool"`):
Message to commit while pushing.
private (`bool`, *optional*):
Whether to make the repo private. If `None` (default), the repo will be public unless the organization's default is private. This value is ignored if the repo already exists.
token (`bool` or `str`, *optional*):
The token to use as HTTP bearer authorization for remote files. If unset, will use the token generated
when running `huggingface-cli login` (stored in `~/.huggingface`).
create_pr (`bool`, *optional*, defaults to `False`):
Whether or not to create a PR with the uploaded files or directly commit.
"""
repo_url = create_repo(
repo_id=repo_id,
token=token,
private=private,
exist_ok=True,
repo_type="space",
space_sdk="gradio",
)
repo_id = repo_url.repo_id
metadata_update(repo_id, {"tags": ["tool"]}, repo_type="space")
with tempfile.TemporaryDirectory() as work_dir:
# Save all files.
self.save(work_dir)
logger.info(f"Uploading the following files to {repo_id}: {','.join(os.listdir(work_dir))}")
return upload_folder(
repo_id=repo_id,
commit_message=commit_message,
folder_path=work_dir,
token=token,
create_pr=create_pr,
repo_type="space",
)
@staticmethod
def from_space(
space_id: str, name: str, description: str, api_name: Optional[str] = None, token: Optional[str] = None
):
"""
Creates a [`Tool`] from a Space given its id on the Hub.
Args:
space_id (`str`):
The id of the Space on the Hub.
name (`str`):
The name of the tool.
description (`str`):
The description of the tool.
api_name (`str`, *optional*):
The specific api_name to use, if the space has several tabs. If not precised, will default to the first available api.
token (`str`, *optional*):
Add your token to access private spaces or increase your GPU quotas.
Returns:
[`Tool`]:
The Space, as a tool.
Examples:
```
image_generator = Tool.from_space(
space_id="black-forest-labs/FLUX.1-schnell",
name="image-generator",
description="Generate an image from a prompt"
)
image = image_generator("Generate an image of a cool surfer in Tahiti")
```
```
face_swapper = Tool.from_space(
"tuan2308/face-swap",
"face_swapper",
"Tool that puts the face shown on the first image on the second image. You can give it paths to images.",
)
image = face_swapper('./aymeric.jpeg', './ruth.jpg')
```
"""
from gradio_client import Client, handle_file
from gradio_client.utils import is_http_url_like
class SpaceToolWrapper(Tool):
def __init__(
self,
space_id: str,
name: str,
description: str,
api_name: Optional[str] = None,
token: Optional[str] = None,
):
self.client = Client(space_id, hf_token=token)
self.name = name
self.description = description
space_description = self.client.view_api(return_format="dict", print_info=False)["named_endpoints"]
# If api_name is not defined, take the first of the available APIs for this space
if api_name is None:
api_name = list(space_description.keys())[0]
logger.warning(
f"Since `api_name` was not defined, it was automatically set to the first avilable API: `{api_name}`."
)
self.api_name = api_name
try:
space_description_api = space_description[api_name]
except KeyError:
raise KeyError(f"Could not find specified {api_name=} among available api names.")
self.inputs = {}
for parameter in space_description_api["parameters"]:
if not parameter["parameter_has_default"]:
parameter_type = parameter["type"]["type"]
if parameter_type == "object":
parameter_type = "any"
self.inputs[parameter["parameter_name"]] = {
"type": parameter_type,
"description": parameter["python_type"]["description"],
}
output_component = space_description_api["returns"][0]["component"]
if output_component == "Image":
self.output_type = "image"
elif output_component == "Audio":
self.output_type = "audio"
else:
self.output_type = "any"
def sanitize_argument_for_prediction(self, arg):
if isinstance(arg, ImageType):
temp_file = tempfile.NamedTemporaryFile(suffix=".png", delete=False)
arg.save(temp_file.name)
arg = temp_file.name
if (isinstance(arg, (str, Path)) and Path(arg).exists() and Path(arg).is_file()) or is_http_url_like(
arg
):
arg = handle_file(arg)
return arg
def forward(self, *args, **kwargs):
# Preprocess args and kwargs:
args = list(args)
for i, arg in enumerate(args):
args[i] = self.sanitize_argument_for_prediction(arg)
for arg_name, arg in kwargs.items():
kwargs[arg_name] = self.sanitize_argument_for_prediction(arg)
output = self.client.predict(*args, api_name=self.api_name, **kwargs)
if isinstance(output, tuple) or isinstance(output, list):
return output[
0
] # Sometime the space also returns the generation seed, in which case the result is at index 0
return output
return SpaceToolWrapper(space_id, name, description, api_name=api_name, token=token)
@staticmethod
def from_gradio(gradio_tool):
"""
Creates a [`Tool`] from a gradio tool.
"""
import inspect
class GradioToolWrapper(Tool):
def __init__(self, _gradio_tool):
self.name = _gradio_tool.name
self.description = _gradio_tool.description
self.output_type = "string"
self._gradio_tool = _gradio_tool
func_args = list(inspect.signature(_gradio_tool.run).parameters.items())
self.inputs = {
key: {"type": CONVERSION_DICT[value.annotation], "description": ""} for key, value in func_args
}
self.forward = self._gradio_tool.run
return GradioToolWrapper(gradio_tool)
@staticmethod
def from_langchain(langchain_tool):
"""
Creates a [`Tool`] from a langchain tool.
"""
class LangChainToolWrapper(Tool):
def __init__(self, _langchain_tool):
self.name = _langchain_tool.name.lower()
self.description = _langchain_tool.description
self.inputs = _langchain_tool.args.copy()
for input_content in self.inputs.values():
if "title" in input_content:
input_content.pop("title")
input_content["description"] = ""
self.output_type = "string"
self.langchain_tool = _langchain_tool
def forward(self, *args, **kwargs):
tool_input = kwargs.copy()
for index, argument in enumerate(args):
if index < len(self.inputs):
input_key = next(iter(self.inputs))
tool_input[input_key] = argument
return self.langchain_tool.run(tool_input)
return LangChainToolWrapper(langchain_tool)
|
class_definition
| 3,043 | 23,689 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/agents/tools.py
| null | 363 |
class SpaceToolWrapper(Tool):
def __init__(
self,
space_id: str,
name: str,
description: str,
api_name: Optional[str] = None,
token: Optional[str] = None,
):
self.client = Client(space_id, hf_token=token)
self.name = name
self.description = description
space_description = self.client.view_api(return_format="dict", print_info=False)["named_endpoints"]
# If api_name is not defined, take the first of the available APIs for this space
if api_name is None:
api_name = list(space_description.keys())[0]
logger.warning(
f"Since `api_name` was not defined, it was automatically set to the first avilable API: `{api_name}`."
)
self.api_name = api_name
try:
space_description_api = space_description[api_name]
except KeyError:
raise KeyError(f"Could not find specified {api_name=} among available api names.")
self.inputs = {}
for parameter in space_description_api["parameters"]:
if not parameter["parameter_has_default"]:
parameter_type = parameter["type"]["type"]
if parameter_type == "object":
parameter_type = "any"
self.inputs[parameter["parameter_name"]] = {
"type": parameter_type,
"description": parameter["python_type"]["description"],
}
output_component = space_description_api["returns"][0]["component"]
if output_component == "Image":
self.output_type = "image"
elif output_component == "Audio":
self.output_type = "audio"
else:
self.output_type = "any"
def sanitize_argument_for_prediction(self, arg):
if isinstance(arg, ImageType):
temp_file = tempfile.NamedTemporaryFile(suffix=".png", delete=False)
arg.save(temp_file.name)
arg = temp_file.name
if (isinstance(arg, (str, Path)) and Path(arg).exists() and Path(arg).is_file()) or is_http_url_like(
arg
):
arg = handle_file(arg)
return arg
def forward(self, *args, **kwargs):
# Preprocess args and kwargs:
args = list(args)
for i, arg in enumerate(args):
args[i] = self.sanitize_argument_for_prediction(arg)
for arg_name, arg in kwargs.items():
kwargs[arg_name] = self.sanitize_argument_for_prediction(arg)
output = self.client.predict(*args, api_name=self.api_name, **kwargs)
if isinstance(output, tuple) or isinstance(output, list):
return output[
0
] # Sometime the space also returns the generation seed, in which case the result is at index 0
return output
|
class_definition
| 18,293 | 21,668 | 1 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/agents/tools.py
|
Tool
| 364 |
class GradioToolWrapper(Tool):
def __init__(self, _gradio_tool):
self.name = _gradio_tool.name
self.description = _gradio_tool.description
self.output_type = "string"
self._gradio_tool = _gradio_tool
func_args = list(inspect.signature(_gradio_tool.run).parameters.items())
self.inputs = {
key: {"type": CONVERSION_DICT[value.annotation], "description": ""} for key, value in func_args
}
self.forward = self._gradio_tool.run
|
class_definition
| 21,919 | 22,502 | 1 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/agents/tools.py
|
Tool
| 365 |
class LangChainToolWrapper(Tool):
def __init__(self, _langchain_tool):
self.name = _langchain_tool.name.lower()
self.description = _langchain_tool.description
self.inputs = _langchain_tool.args.copy()
for input_content in self.inputs.values():
if "title" in input_content:
input_content.pop("title")
input_content["description"] = ""
self.output_type = "string"
self.langchain_tool = _langchain_tool
def forward(self, *args, **kwargs):
tool_input = kwargs.copy()
for index, argument in enumerate(args):
if index < len(self.inputs):
input_key = next(iter(self.inputs))
tool_input[input_key] = argument
return self.langchain_tool.run(tool_input)
|
class_definition
| 22,692 | 23,636 | 1 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/agents/tools.py
|
Tool
| 366 |
class PipelineTool(Tool):
"""
A [`Tool`] tailored towards Transformer models. On top of the class attributes of the base class [`Tool`], you will
need to specify:
- **model_class** (`type`) -- The class to use to load the model in this tool.
- **default_checkpoint** (`str`) -- The default checkpoint that should be used when the user doesn't specify one.
- **pre_processor_class** (`type`, *optional*, defaults to [`AutoProcessor`]) -- The class to use to load the
pre-processor
- **post_processor_class** (`type`, *optional*, defaults to [`AutoProcessor`]) -- The class to use to load the
post-processor (when different from the pre-processor).
Args:
model (`str` or [`PreTrainedModel`], *optional*):
The name of the checkpoint to use for the model, or the instantiated model. If unset, will default to the
value of the class attribute `default_checkpoint`.
pre_processor (`str` or `Any`, *optional*):
The name of the checkpoint to use for the pre-processor, or the instantiated pre-processor (can be a
tokenizer, an image processor, a feature extractor or a processor). Will default to the value of `model` if
unset.
post_processor (`str` or `Any`, *optional*):
The name of the checkpoint to use for the post-processor, or the instantiated pre-processor (can be a
tokenizer, an image processor, a feature extractor or a processor). Will default to the `pre_processor` if
unset.
device (`int`, `str` or `torch.device`, *optional*):
The device on which to execute the model. Will default to any accelerator available (GPU, MPS etc...), the
CPU otherwise.
device_map (`str` or `dict`, *optional*):
If passed along, will be used to instantiate the model.
model_kwargs (`dict`, *optional*):
Any keyword argument to send to the model instantiation.
token (`str`, *optional*):
The token to use as HTTP bearer authorization for remote files. If unset, will use the token generated when
running `huggingface-cli login` (stored in `~/.huggingface`).
hub_kwargs (additional keyword arguments, *optional*):
Any additional keyword argument to send to the methods that will load the data from the Hub.
"""
pre_processor_class = AutoProcessor
model_class = None
post_processor_class = AutoProcessor
default_checkpoint = None
description = "This is a pipeline tool"
name = "pipeline"
inputs = {"prompt": str}
output_type = str
def __init__(
self,
model=None,
pre_processor=None,
post_processor=None,
device=None,
device_map=None,
model_kwargs=None,
token=None,
**hub_kwargs,
):
if not is_torch_available():
raise ImportError("Please install torch in order to use this tool.")
if not is_accelerate_available():
raise ImportError("Please install accelerate in order to use this tool.")
if model is None:
if self.default_checkpoint is None:
raise ValueError("This tool does not implement a default checkpoint, you need to pass one.")
model = self.default_checkpoint
if pre_processor is None:
pre_processor = model
self.model = model
self.pre_processor = pre_processor
self.post_processor = post_processor
self.device = device
self.device_map = device_map
self.model_kwargs = {} if model_kwargs is None else model_kwargs
if device_map is not None:
self.model_kwargs["device_map"] = device_map
self.hub_kwargs = hub_kwargs
self.hub_kwargs["token"] = token
super().__init__()
def setup(self):
"""
Instantiates the `pre_processor`, `model` and `post_processor` if necessary.
"""
if isinstance(self.pre_processor, str):
self.pre_processor = self.pre_processor_class.from_pretrained(self.pre_processor, **self.hub_kwargs)
if isinstance(self.model, str):
self.model = self.model_class.from_pretrained(self.model, **self.model_kwargs, **self.hub_kwargs)
if self.post_processor is None:
self.post_processor = self.pre_processor
elif isinstance(self.post_processor, str):
self.post_processor = self.post_processor_class.from_pretrained(self.post_processor, **self.hub_kwargs)
if self.device is None:
if self.device_map is not None:
self.device = list(self.model.hf_device_map.values())[0]
else:
self.device = PartialState().default_device
if self.device_map is None:
self.model.to(self.device)
super().setup()
def encode(self, raw_inputs):
"""
Uses the `pre_processor` to prepare the inputs for the `model`.
"""
return self.pre_processor(raw_inputs)
def forward(self, inputs):
"""
Sends the inputs through the `model`.
"""
with torch.no_grad():
return self.model(**inputs)
def decode(self, outputs):
"""
Uses the `post_processor` to decode the model output.
"""
return self.post_processor(outputs)
def __call__(self, *args, **kwargs):
args, kwargs = handle_agent_inputs(*args, **kwargs)
if not self.is_initialized:
self.setup()
encoded_inputs = self.encode(*args, **kwargs)
tensor_inputs = {k: v for k, v in encoded_inputs.items() if isinstance(v, torch.Tensor)}
non_tensor_inputs = {k: v for k, v in encoded_inputs.items() if not isinstance(v, torch.Tensor)}
encoded_inputs = send_to_device(tensor_inputs, self.device)
outputs = self.forward({**encoded_inputs, **non_tensor_inputs})
outputs = send_to_device(outputs, "cpu")
decoded_outputs = self.decode(outputs)
return handle_agent_outputs(decoded_outputs, self.output_type)
|
class_definition
| 24,882 | 31,025 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/agents/tools.py
| null | 367 |
class EndpointClient:
def __init__(self, endpoint_url: str, token: Optional[str] = None):
self.headers = {
**build_hf_headers(token=token),
"Content-Type": "application/json",
}
self.endpoint_url = endpoint_url
@staticmethod
def encode_image(image):
_bytes = io.BytesIO()
image.save(_bytes, format="PNG")
b64 = base64.b64encode(_bytes.getvalue())
return b64.decode("utf-8")
@staticmethod
def decode_image(raw_image):
if not is_vision_available():
raise ImportError(
"This tool returned an image but Pillow is not installed. Please install it (`pip install Pillow`)."
)
from PIL import Image
b64 = base64.b64decode(raw_image)
_bytes = io.BytesIO(b64)
return Image.open(_bytes)
def __call__(
self,
inputs: Optional[Union[str, Dict, List[str], List[List[str]]]] = None,
params: Optional[Dict] = None,
data: Optional[bytes] = None,
output_image: bool = False,
) -> Any:
# Build payload
payload = {}
if inputs:
payload["inputs"] = inputs
if params:
payload["parameters"] = params
# Make API call
response = get_session().post(self.endpoint_url, headers=self.headers, json=payload, data=data)
# By default, parse the response for the user.
if output_image:
return self.decode_image(response.content)
else:
return response.json()
|
class_definition
| 35,377 | 36,954 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/agents/tools.py
| null | 368 |
class ToolCollection:
"""
Tool collections enable loading all Spaces from a collection in order to be added to the agent's toolbox.
> [!NOTE]
> Only Spaces will be fetched, so you can feel free to add models and datasets to your collection if you'd
> like for this collection to showcase them.
Args:
collection_slug (str):
The collection slug referencing the collection.
token (str, *optional*):
The authentication token if the collection is private.
Example:
```py
>>> from transformers import ToolCollection, ReactCodeAgent
>>> image_tool_collection = ToolCollection(collection_slug="huggingface-tools/diffusion-tools-6630bb19a942c2306a2cdb6f")
>>> agent = ReactCodeAgent(tools=[*image_tool_collection.tools], add_base_tools=True)
>>> agent.run("Please draw me a picture of rivers and lakes.")
```
"""
def __init__(self, collection_slug: str, token: Optional[str] = None):
self._collection = get_collection(collection_slug, token=token)
self._hub_repo_ids = {item.item_id for item in self._collection.items if item.item_type == "space"}
self.tools = {Tool.from_hub(repo_id) for repo_id in self._hub_repo_ids}
|
class_definition
| 36,957 | 38,198 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/agents/tools.py
| null | 369 |
class SpecificTool(Tool):
name = parameters["name"]
description = parameters["description"]
inputs = parameters["parameters"]["properties"]
output_type = parameters["return"]["type"]
@wraps(tool_function)
def forward(self, *args, **kwargs):
return tool_function(*args, **kwargs)
|
class_definition
| 38,825 | 39,164 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/agents/tools.py
| null | 370 |
class MessageRole(str, Enum):
USER = "user"
ASSISTANT = "assistant"
SYSTEM = "system"
TOOL_CALL = "tool-call"
TOOL_RESPONSE = "tool-response"
@classmethod
def roles(cls):
return [r.value for r in cls]
|
class_definition
| 920 | 1,157 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/agents/llm_engine.py
| null | 371 |
class HfEngine:
def __init__(self, model_id: Optional[str] = None):
self.last_input_token_count = None
self.last_output_token_count = None
if model_id is None:
model_id = "HuggingFaceTB/SmolLM2-1.7B-Instruct"
logger.warning(f"Using default model for token counting: '{model_id}'")
try:
self.tokenizer = AutoTokenizer.from_pretrained(model_id)
except Exception as e:
logger.warning(f"Failed to load tokenizer for model {model_id}: {e}. Loading default tokenizer instead.")
self.tokenizer = AutoTokenizer.from_pretrained("HuggingFaceTB/SmolLM2-1.7B-Instruct")
def get_token_counts(self):
return {
"input_token_count": self.last_input_token_count,
"output_token_count": self.last_output_token_count,
}
def generate(
self, messages: List[Dict[str, str]], stop_sequences: Optional[List[str]] = None, grammar: Optional[str] = None
):
raise NotImplementedError
def __call__(
self, messages: List[Dict[str, str]], stop_sequences: Optional[List[str]] = None, grammar: Optional[str] = None
) -> str:
"""Process the input messages and return the model's response.
This method sends a list of messages to the Hugging Face Inference API, optionally with stop sequences and grammar customization.
Parameters:
messages (`List[Dict[str, str]]`):
A list of message dictionaries to be processed. Each dictionary should have the structure `{"role": "user/system", "content": "message content"}`.
stop_sequences (`List[str]`, *optional*):
A list of strings that will stop the generation if encountered in the model's output.
grammar (`str`, *optional*):
The grammar or formatting structure to use in the model's response.
Returns:
`str`: The text content of the model's response.
Example:
```python
>>> engine = HfApiEngine(
... model="meta-llama/Meta-Llama-3.1-8B-Instruct",
... token="your_hf_token_here",
... max_tokens=2000
... )
>>> messages = [{"role": "user", "content": "Explain quantum mechanics in simple terms."}]
>>> response = engine(messages, stop_sequences=["END"])
>>> print(response)
"Quantum mechanics is the branch of physics that studies..."
```
"""
if not isinstance(messages, List):
raise ValueError("Messages should be a list of dictionaries with 'role' and 'content' keys.")
if stop_sequences is None:
stop_sequences = []
response = self.generate(messages, stop_sequences, grammar)
self.last_input_token_count = len(self.tokenizer.apply_chat_template(messages, tokenize=True))
self.last_output_token_count = len(self.tokenizer.encode(response))
# Remove stop sequences from LLM output
for stop_seq in stop_sequences:
if response[-len(stop_seq) :] == stop_seq:
response = response[: -len(stop_seq)]
return response
|
class_definition
| 2,356 | 5,573 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/agents/llm_engine.py
| null | 372 |
class HfApiEngine(HfEngine):
"""A class to interact with Hugging Face's Inference API for language model interaction.
This engine allows you to communicate with Hugging Face's models using the Inference API. It can be used in both serverless mode or with a dedicated endpoint, supporting features like stop sequences and grammar customization.
Parameters:
model (`str`, *optional*, defaults to `"meta-llama/Meta-Llama-3.1-8B-Instruct"`):
The Hugging Face model ID to be used for inference. This can be a path or model identifier from the Hugging Face model hub.
token (`str`, *optional*):
Token used by the Hugging Face API for authentication.
If not provided, the class will use the token stored in the Hugging Face CLI configuration.
max_tokens (`int`, *optional*, defaults to 1500):
The maximum number of tokens allowed in the output.
timeout (`int`, *optional*, defaults to 120):
Timeout for the API request, in seconds.
Raises:
ValueError:
If the model name is not provided.
"""
def __init__(
self,
model: str = "meta-llama/Meta-Llama-3.1-8B-Instruct",
token: Optional[str] = None,
max_tokens: Optional[int] = 1500,
timeout: Optional[int] = 120,
):
super().__init__(model_id=model)
self.model = model
self.client = InferenceClient(self.model, token=token, timeout=timeout)
self.max_tokens = max_tokens
def generate(
self, messages: List[Dict[str, str]], stop_sequences: Optional[List[str]] = None, grammar: Optional[str] = None
) -> str:
# Get clean message list
messages = get_clean_message_list(messages, role_conversions=llama_role_conversions)
# Send messages to the Hugging Face Inference API
if grammar is not None:
response = self.client.chat_completion(
messages, stop=stop_sequences, max_tokens=self.max_tokens, response_format=grammar
)
else:
response = self.client.chat_completion(messages, stop=stop_sequences, max_tokens=self.max_tokens)
response = response.choices[0].message.content
return response
|
class_definition
| 5,576 | 7,837 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/agents/llm_engine.py
| null | 373 |
class TransformersEngine(HfEngine):
"""This engine uses a pre-initialized local text-generation pipeline."""
def __init__(self, pipeline: Pipeline, model_id: Optional[str] = None):
super().__init__(model_id)
self.pipeline = pipeline
def generate(
self,
messages: List[Dict[str, str]],
stop_sequences: Optional[List[str]] = None,
grammar: Optional[str] = None,
max_length: int = 1500,
) -> str:
# Get clean message list
messages = get_clean_message_list(messages, role_conversions=llama_role_conversions)
# Get LLM output
if stop_sequences is not None and len(stop_sequences) > 0:
stop_strings = stop_sequences
else:
stop_strings = None
output = self.pipeline(
messages,
stop_strings=stop_strings,
max_length=max_length,
tokenizer=self.pipeline.tokenizer,
)
response = output[0]["generated_text"][-1]["content"]
return response
|
class_definition
| 7,840 | 8,887 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/agents/llm_engine.py
| null | 374 |
class SpeechToTextTool(PipelineTool):
default_checkpoint = "distil-whisper/distil-large-v3"
description = "This is a tool that transcribes an audio into text. It returns the transcribed text."
name = "transcriber"
pre_processor_class = WhisperProcessor
model_class = WhisperForConditionalGeneration
inputs = {"audio": {"type": "audio", "description": "The audio to transcribe"}}
output_type = "string"
def encode(self, audio):
return self.pre_processor(audio, return_tensors="pt")
def forward(self, inputs):
return self.model.generate(inputs["input_features"])
def decode(self, outputs):
return self.pre_processor.batch_decode(outputs, skip_special_tokens=True)[0]
|
class_definition
| 763 | 1,495 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/agents/speech_to_text.py
| null | 375 |
class CustomFormatter(logging.Formatter):
grey = "\x1b[38;20m"
bold_yellow = "\x1b[33;1m"
red = "\x1b[31;20m"
green = "\x1b[32;20m"
bold_green = "\x1b[32;20;1m"
bold_red = "\x1b[31;1m"
bold_white = "\x1b[37;1m"
orange = "\x1b[38;5;214m"
bold_orange = "\x1b[38;5;214;1m"
reset = "\x1b[0m"
format = "%(message)s"
FORMATS = {
logging.DEBUG: grey + format + reset,
logging.INFO: format,
logging.WARNING: bold_yellow + format + reset,
logging.ERROR: red + format + reset,
logging.CRITICAL: bold_red + format + reset,
31: reset + format + reset,
32: green + format + reset,
33: bold_green + format + reset,
34: bold_white + format + reset,
35: orange + format + reset,
36: bold_orange + format + reset,
}
def format(self, record):
log_fmt = self.FORMATS.get(record.levelno)
formatter = logging.Formatter(log_fmt)
return formatter.format(record)
|
class_definition
| 1,827 | 2,835 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/agents/agents.py
| null | 376 |
class Toolbox:
"""
The toolbox contains all tools that the agent can perform operations with, as well as a few methods to
manage them.
Args:
tools (`List[Tool]`):
The list of tools to instantiate the toolbox with
add_base_tools (`bool`, defaults to `False`, *optional*, defaults to `False`):
Whether to add the tools available within `transformers` to the toolbox.
"""
def __init__(self, tools: List[Tool], add_base_tools: bool = False):
self._tools = {tool.name: tool for tool in tools}
if add_base_tools:
self.add_base_tools()
self._load_tools_if_needed()
def add_base_tools(self, add_python_interpreter: bool = False):
global _tools_are_initialized
global HUGGINGFACE_DEFAULT_TOOLS
if not _tools_are_initialized:
HUGGINGFACE_DEFAULT_TOOLS = setup_default_tools(logger)
_tools_are_initialized = True
for tool in HUGGINGFACE_DEFAULT_TOOLS.values():
if tool.name != "python_interpreter" or add_python_interpreter:
self.add_tool(tool)
self._load_tools_if_needed()
@property
def tools(self) -> Dict[str, Tool]:
"""Get all tools currently in the toolbox"""
return self._tools
def show_tool_descriptions(self, tool_description_template: str = None) -> str:
"""
Returns the description of all tools in the toolbox
Args:
tool_description_template (`str`, *optional*):
The template to use to describe the tools. If not provided, the default template will be used.
"""
return "\n".join(
[get_tool_description_with_args(tool, tool_description_template) for tool in self._tools.values()]
)
def add_tool(self, tool: Tool):
"""
Adds a tool to the toolbox
Args:
tool (`Tool`):
The tool to add to the toolbox.
"""
if tool.name in self._tools:
raise KeyError(f"Error: tool '{tool.name}' already exists in the toolbox.")
self._tools[tool.name] = tool
def remove_tool(self, tool_name: str):
"""
Removes a tool from the toolbox
Args:
tool_name (`str`):
The tool to remove from the toolbox.
"""
if tool_name not in self._tools:
raise KeyError(
f"Error: tool {tool_name} not found in toolbox for removal, should be instead one of {list(self._tools.keys())}."
)
del self._tools[tool_name]
def update_tool(self, tool: Tool):
"""
Updates a tool in the toolbox according to its name.
Args:
tool (`Tool`):
The tool to update to the toolbox.
"""
if tool.name not in self._tools:
raise KeyError(
f"Error: tool {tool.name} not found in toolbox for update, should be instead one of {list(self._tools.keys())}."
)
self._tools[tool.name] = tool
def clear_toolbox(self):
"""Clears the toolbox"""
self._tools = {}
def _load_tools_if_needed(self):
for name, tool in self._tools.items():
if not isinstance(tool, Tool):
task_or_repo_id = tool.task if tool.repo_id is None else tool.repo_id
self._tools[name] = load_tool(task_or_repo_id)
def __repr__(self):
toolbox_description = "Toolbox contents:\n"
for tool in self._tools.values():
toolbox_description += f"\t{tool.name}: {tool.description}\n"
return toolbox_description
|
class_definition
| 6,369 | 10,031 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/agents/agents.py
| null | 377 |
class AgentError(Exception):
"""Base class for other agent-related exceptions"""
def __init__(self, message):
super().__init__(message)
self.message = message
|
class_definition
| 10,034 | 10,217 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/agents/agents.py
| null | 378 |
class AgentParsingError(AgentError):
"""Exception raised for errors in parsing in the agent"""
pass
|
class_definition
| 10,220 | 10,328 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/agents/agents.py
| null | 379 |
class AgentExecutionError(AgentError):
"""Exception raised for errors in execution in the agent"""
pass
|
class_definition
| 10,331 | 10,443 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/agents/agents.py
| null | 380 |
class AgentMaxIterationsError(AgentError):
"""Exception raised for errors in execution in the agent"""
pass
|
class_definition
| 10,446 | 10,562 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/agents/agents.py
| null | 381 |
class AgentGenerationError(AgentError):
"""Exception raised for errors in generation in the agent"""
pass
|
class_definition
| 10,565 | 10,679 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/agents/agents.py
| null | 382 |
class Agent:
def __init__(
self,
tools: Union[List[Tool], Toolbox],
llm_engine: Callable = None,
system_prompt: Optional[str] = None,
tool_description_template: Optional[str] = None,
additional_args: Dict = {},
max_iterations: int = 6,
tool_parser: Optional[Callable] = None,
add_base_tools: bool = False,
verbose: int = 0,
grammar: Optional[Dict[str, str]] = None,
managed_agents: Optional[List] = None,
step_callbacks: Optional[List[Callable]] = None,
monitor_metrics: bool = True,
):
if system_prompt is None:
system_prompt = DEFAULT_REACT_CODE_SYSTEM_PROMPT
if tool_parser is None:
tool_parser = parse_json_tool_call
self.agent_name = self.__class__.__name__
self.llm_engine = llm_engine
self.system_prompt_template = system_prompt
self.tool_description_template = (
tool_description_template if tool_description_template else DEFAULT_TOOL_DESCRIPTION_TEMPLATE
)
self.additional_args = additional_args
self.max_iterations = max_iterations
self.logger = logger
self.tool_parser = tool_parser
self.grammar = grammar
self.managed_agents = None
if managed_agents is not None:
self.managed_agents = {agent.name: agent for agent in managed_agents}
if isinstance(tools, Toolbox):
self._toolbox = tools
if add_base_tools:
if not is_torch_available():
raise ImportError("Using the base tools requires torch to be installed.")
self._toolbox.add_base_tools(add_python_interpreter=(self.__class__ == ReactJsonAgent))
else:
self._toolbox = Toolbox(tools, add_base_tools=add_base_tools)
self._toolbox.add_tool(FinalAnswerTool())
self.system_prompt = format_prompt_with_tools(
self._toolbox, self.system_prompt_template, self.tool_description_template
)
self.system_prompt = format_prompt_with_managed_agents_descriptions(self.system_prompt, self.managed_agents)
self.prompt = None
self.logs = []
self.task = None
if verbose == 0:
logger.setLevel(logging.WARNING)
elif verbose == 1:
logger.setLevel(logging.INFO)
elif verbose == 2:
logger.setLevel(logging.DEBUG)
# Initialize step callbacks
self.step_callbacks = step_callbacks if step_callbacks is not None else []
# Initialize Monitor if monitor_metrics is True
self.monitor = None
if monitor_metrics:
self.monitor = Monitor(self.llm_engine)
self.step_callbacks.append(self.monitor.update_metrics)
@property
def toolbox(self) -> Toolbox:
"""Get the toolbox currently available to the agent"""
return self._toolbox
def initialize_for_run(self):
self.token_count = 0
self.system_prompt = format_prompt_with_tools(
self._toolbox,
self.system_prompt_template,
self.tool_description_template,
)
self.system_prompt = format_prompt_with_managed_agents_descriptions(self.system_prompt, self.managed_agents)
if hasattr(self, "authorized_imports"):
self.system_prompt = format_prompt_with_imports(
self.system_prompt, list(set(LIST_SAFE_MODULES) | set(self.authorized_imports))
)
self.logs = [{"system_prompt": self.system_prompt, "task": self.task}]
self.logger.log(33, "======== New task ========")
self.logger.log(34, self.task)
self.logger.debug("System prompt is as follows:")
self.logger.debug(self.system_prompt)
def write_inner_memory_from_logs(self, summary_mode: Optional[bool] = False) -> List[Dict[str, str]]:
"""
Reads past llm_outputs, actions, and observations or errors from the logs into a series of messages
that can be used as input to the LLM.
"""
prompt_message = {"role": MessageRole.SYSTEM, "content": self.logs[0]["system_prompt"]}
task_message = {
"role": MessageRole.USER,
"content": "Task: " + self.logs[0]["task"],
}
if summary_mode:
memory = [task_message]
else:
memory = [prompt_message, task_message]
for i, step_log in enumerate(self.logs[1:]):
if "llm_output" in step_log and not summary_mode:
thought_message = {"role": MessageRole.ASSISTANT, "content": step_log["llm_output"].strip()}
memory.append(thought_message)
if "facts" in step_log:
thought_message = {
"role": MessageRole.ASSISTANT,
"content": "[FACTS LIST]:\n" + step_log["facts"].strip(),
}
memory.append(thought_message)
if "plan" in step_log and not summary_mode:
thought_message = {"role": MessageRole.ASSISTANT, "content": "[PLAN]:\n" + step_log["plan"].strip()}
memory.append(thought_message)
if "tool_call" in step_log and summary_mode:
tool_call_message = {
"role": MessageRole.ASSISTANT,
"content": f"[STEP {i} TOOL CALL]: " + str(step_log["tool_call"]).strip(),
}
memory.append(tool_call_message)
if "task" in step_log:
tool_call_message = {
"role": MessageRole.USER,
"content": "New task:\n" + step_log["task"],
}
memory.append(tool_call_message)
if "error" in step_log or "observation" in step_log:
if "error" in step_log:
message_content = (
f"[OUTPUT OF STEP {i}] -> Error:\n"
+ str(step_log["error"])
+ "\nNow let's retry: take care not to repeat previous errors! If you have retried several times, try a completely different approach.\n"
)
elif "observation" in step_log:
message_content = f"[OUTPUT OF STEP {i}] -> Observation:\n{step_log['observation']}"
tool_response_message = {"role": MessageRole.TOOL_RESPONSE, "content": message_content}
memory.append(tool_response_message)
return memory
def get_succinct_logs(self):
return [{key: value for key, value in log.items() if key != "agent_memory"} for log in self.logs]
def extract_action(self, llm_output: str, split_token: str) -> str:
"""
Parse action from the LLM output
Args:
llm_output (`str`): Output of the LLM
split_token (`str`): Separator for the action. Should match the example in the system prompt.
"""
try:
split = llm_output.split(split_token)
rationale, action = (
split[-2],
split[-1],
) # NOTE: using indexes starting from the end solves for when you have more than one split_token in the output
except Exception as e:
self.logger.error(e, exc_info=1)
raise AgentParsingError(
f"Error: No '{split_token}' token provided in your output.\nYour output:\n{llm_output}\n. Be sure to include an action, prefaced with '{split_token}'!"
)
return rationale.strip(), action.strip()
def execute_tool_call(self, tool_name: str, arguments: Dict[str, str]) -> Any:
"""
Execute tool with the provided input and returns the result.
This method replaces arguments with the actual values from the state if they refer to state variables.
Args:
tool_name (`str`): Name of the Tool to execute (should be one from self.toolbox).
arguments (Dict[str, str]): Arguments passed to the Tool.
"""
available_tools = self.toolbox.tools
if self.managed_agents is not None:
available_tools = {**available_tools, **self.managed_agents}
if tool_name not in available_tools:
error_msg = f"Error: unknown tool {tool_name}, should be instead one of {list(available_tools.keys())}."
self.logger.error(error_msg, exc_info=1)
raise AgentExecutionError(error_msg)
try:
if isinstance(arguments, str):
observation = available_tools[tool_name](arguments)
elif isinstance(arguments, dict):
for key, value in arguments.items():
# if the value is the name of a state variable like "image.png", replace it with the actual value
if isinstance(value, str) and value in self.state:
arguments[key] = self.state[value]
observation = available_tools[tool_name](**arguments)
else:
raise AgentExecutionError(
f"Arguments passed to tool should be a dict or string: got a {type(arguments)}."
)
return observation
except Exception as e:
if tool_name in self.toolbox.tools:
raise AgentExecutionError(
f"Error in tool call execution: {e}\nYou should only use this tool with a correct input.\n"
f"As a reminder, this tool's description is the following:\n{get_tool_description_with_args(available_tools[tool_name])}"
)
elif tool_name in self.managed_agents:
raise AgentExecutionError(
f"Error in calling team member: {e}\nYou should only ask this team member with a correct request.\n"
f"As a reminder, this team member's description is the following:\n{available_tools[tool_name]}"
)
def log_rationale_code_action(self, rationale: str, code_action: str) -> None:
self.logger.warning("=== Agent thoughts:")
self.logger.log(31, rationale)
self.logger.warning(">>> Agent is executing the code below:")
if is_pygments_available():
self.logger.log(
31, highlight(code_action, PythonLexer(ensurenl=False), Terminal256Formatter(style="nord"))
)
else:
self.logger.log(31, code_action)
self.logger.warning("====")
def run(self, **kwargs):
"""To be implemented in the child class"""
raise NotImplementedError
|
class_definition
| 12,433 | 23,079 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/agents/agents.py
| null | 383 |
class CodeAgent(Agent):
"""
A class for an agent that solves the given task using a single block of code. It plans all its actions, then executes all in one shot.
"""
def __init__(
self,
tools: List[Tool],
llm_engine: Optional[Callable] = None,
system_prompt: Optional[str] = None,
tool_description_template: Optional[str] = None,
grammar: Optional[Dict[str, str]] = None,
additional_authorized_imports: Optional[List[str]] = None,
**kwargs,
):
if llm_engine is None:
llm_engine = HfApiEngine()
if system_prompt is None:
system_prompt = DEFAULT_CODE_SYSTEM_PROMPT
if tool_description_template is None:
tool_description_template = DEFAULT_TOOL_DESCRIPTION_TEMPLATE
super().__init__(
tools=tools,
llm_engine=llm_engine,
system_prompt=system_prompt,
tool_description_template=tool_description_template,
grammar=grammar,
**kwargs,
)
if not is_pygments_available():
transformers_logging.warning_once(
logger,
"pygments isn't installed. Installing pygments will enable color syntax highlighting in the "
"CodeAgent.",
)
self.python_evaluator = evaluate_python_code
self.additional_authorized_imports = additional_authorized_imports if additional_authorized_imports else []
self.authorized_imports = list(set(LIST_SAFE_MODULES) | set(self.additional_authorized_imports))
self.system_prompt = self.system_prompt.replace("<<authorized_imports>>", str(self.authorized_imports))
def parse_code_blob(self, result: str) -> str:
"""
Override this method if you want to change the way the code is
cleaned in the `run` method.
"""
return parse_code_blob(result)
def run(self, task: str, return_generated_code: bool = False, **kwargs):
"""
Runs the agent for the given task.
Args:
task (`str`): The task to perform
return_generated_code (`bool`, *optional*, defaults to `False`): Whether to return the generated code instead of running it
kwargs (additional keyword arguments, *optional*):
Any keyword argument to send to the agent when evaluating the code.
Example:
```py
from transformers.agents import CodeAgent
agent = CodeAgent(tools=[])
agent.run("What is the result of 2 power 3.7384?")
```
"""
self.task = task
if len(kwargs) > 0:
self.task += f"\nYou have been provided with these initial arguments: {str(kwargs)}."
self.state = kwargs.copy()
self.initialize_for_run()
# Run LLM
prompt_message = {"role": MessageRole.SYSTEM, "content": self.system_prompt}
task_message = {
"role": MessageRole.USER,
"content": "Task: " + self.task,
}
self.prompt = [prompt_message, task_message]
self.logger.info("====Executing with this prompt====")
self.logger.info(self.prompt)
additional_args = {"grammar": self.grammar} if self.grammar is not None else {}
llm_output = self.llm_engine(self.prompt, stop_sequences=["<end_action>"], **additional_args)
if return_generated_code:
return llm_output
# Parse
try:
rationale, code_action = self.extract_action(llm_output=llm_output, split_token="Code:")
except Exception as e:
self.logger.debug(
f"Error in extracting action, trying to parse the whole output as code. Error trace: {e}"
)
rationale, code_action = "", llm_output
try:
code_action = self.parse_code_blob(code_action)
except Exception as e:
error_msg = f"Error in code parsing: {e}. Be sure to provide correct code"
self.logger.error(error_msg, exc_info=1)
return error_msg
# Execute
self.log_rationale_code_action(rationale, code_action)
try:
available_tools = {**BASE_PYTHON_TOOLS.copy(), **self.toolbox.tools}
output = self.python_evaluator(
code_action,
static_tools=available_tools,
custom_tools={},
state=self.state,
authorized_imports=self.authorized_imports,
)
self.logger.info(self.state["print_outputs"])
return output
except Exception as e:
error_msg = f"Error in execution: {e}. Be sure to provide correct code."
self.logger.error(error_msg, exc_info=1)
return error_msg
|
class_definition
| 23,082 | 27,909 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/agents/agents.py
| null | 384 |
class ReactAgent(Agent):
"""
This agent that solves the given task step by step, using the ReAct framework:
While the objective is not reached, the agent will perform a cycle of thinking and acting.
The action will be parsed from the LLM output: it consists in calls to tools from the toolbox, with arguments chosen by the LLM engine.
"""
def __init__(
self,
tools: List[Tool],
llm_engine: Optional[Callable] = None,
system_prompt: Optional[str] = None,
tool_description_template: Optional[str] = None,
grammar: Optional[Dict[str, str]] = None,
plan_type: Optional[str] = None,
planning_interval: Optional[int] = None,
**kwargs,
):
if llm_engine is None:
llm_engine = HfApiEngine()
if system_prompt is None:
system_prompt = DEFAULT_REACT_CODE_SYSTEM_PROMPT
if tool_description_template is None:
tool_description_template = DEFAULT_TOOL_DESCRIPTION_TEMPLATE
if plan_type is None:
plan_type = SUPPORTED_PLAN_TYPES[0]
else:
assert plan_type in SUPPORTED_PLAN_TYPES, f"plan type {plan_type} is not supported"
super().__init__(
tools=tools,
llm_engine=llm_engine,
system_prompt=system_prompt,
tool_description_template=tool_description_template,
grammar=grammar,
**kwargs,
)
self.planning_interval = planning_interval
self.plan_type = plan_type
def provide_final_answer(self, task) -> str:
"""
This method provides a final answer to the task, based on the logs of the agent's interactions.
"""
self.prompt = [
{
"role": MessageRole.SYSTEM,
"content": "An agent tried to answer an user query but it got stuck and failed to do so. You are tasked with providing an answer instead. Here is the agent's memory:",
}
]
self.prompt += self.write_inner_memory_from_logs()[1:]
self.prompt += [
{
"role": MessageRole.USER,
"content": f"Based on the above, please provide an answer to the following user request:\n{task}",
}
]
try:
return self.llm_engine(self.prompt)
except Exception as e:
return f"Error in generating final llm output: {e}."
def run(self, task: str, stream: bool = False, reset: bool = True, **kwargs):
"""
Runs the agent for the given task.
Args:
task (`str`): The task to perform
Example:
```py
from transformers.agents import ReactCodeAgent
agent = ReactCodeAgent(tools=[])
agent.run("What is the result of 2 power 3.7384?")
```
"""
self.task = task
if len(kwargs) > 0:
self.task += f"\nYou have been provided with these initial arguments: {str(kwargs)}."
self.state = kwargs.copy()
if reset:
self.initialize_for_run()
else:
self.logs.append({"task": task})
if stream:
return self.stream_run(task)
else:
return self.direct_run(task)
def stream_run(self, task: str):
"""
Runs the agent in streaming mode, yielding steps as they are executed: should be launched only in the `run` method.
"""
final_answer = None
iteration = 0
while final_answer is None and iteration < self.max_iterations:
step_start_time = time.time()
step_log_entry = {"iteration": iteration, "start_time": step_start_time}
try:
self.step(step_log_entry)
if "final_answer" in step_log_entry:
final_answer = step_log_entry["final_answer"]
except AgentError as e:
self.logger.error(e, exc_info=1)
step_log_entry["error"] = e
finally:
step_end_time = time.time()
step_log_entry["step_end_time"] = step_end_time
step_log_entry["step_duration"] = step_end_time - step_start_time
self.logs.append(step_log_entry)
for callback in self.step_callbacks:
callback(step_log_entry)
iteration += 1
yield step_log_entry
if final_answer is None and iteration == self.max_iterations:
error_message = "Reached max iterations."
final_step_log = {"error": AgentMaxIterationsError(error_message)}
self.logs.append(final_step_log)
self.logger.error(error_message, exc_info=1)
final_answer = self.provide_final_answer(task)
final_step_log["final_answer"] = final_answer
final_step_log["step_duration"] = 0
for callback in self.step_callbacks:
callback(final_step_log)
yield final_step_log
yield final_answer
def direct_run(self, task: str):
"""
Runs the agent in direct mode, returning outputs only at the end: should be launched only in the `run` method.
"""
final_answer = None
iteration = 0
while final_answer is None and iteration < self.max_iterations:
step_start_time = time.time()
step_log_entry = {"iteration": iteration, "start_time": step_start_time}
try:
if self.planning_interval is not None and iteration % self.planning_interval == 0:
self.planning_step(task, is_first_step=(iteration == 0), iteration=iteration)
self.step(step_log_entry)
if "final_answer" in step_log_entry:
final_answer = step_log_entry["final_answer"]
except AgentError as e:
self.logger.error(e, exc_info=1)
step_log_entry["error"] = e
finally:
step_end_time = time.time()
step_log_entry["step_end_time"] = step_end_time
step_log_entry["step_duration"] = step_end_time - step_start_time
self.logs.append(step_log_entry)
for callback in self.step_callbacks:
callback(step_log_entry)
iteration += 1
if final_answer is None and iteration == self.max_iterations:
error_message = "Reached max iterations."
final_step_log = {"error": AgentMaxIterationsError(error_message)}
self.logs.append(final_step_log)
self.logger.error(error_message, exc_info=1)
final_answer = self.provide_final_answer(task)
final_step_log["final_answer"] = final_answer
final_step_log["step_duration"] = 0
for callback in self.step_callbacks:
callback(final_step_log)
return final_answer
def planning_step(self, task, is_first_step: bool = False, iteration: int = None):
"""
Used periodically by the agent to plan the next steps to reach the objective.
Args:
task (`str`): The task to perform
is_first_step (`bool`): If this step is not the first one, the plan should be an update over a previous plan.
iteration (`int`): The number of the current step, used as an indication for the LLM.
"""
if is_first_step:
message_prompt_facts = {"role": MessageRole.SYSTEM, "content": SYSTEM_PROMPT_FACTS}
message_prompt_task = {
"role": MessageRole.USER,
"content": f"""Here is the task:
```
{task}
```
Now begin!""",
}
answer_facts = self.llm_engine([message_prompt_facts, message_prompt_task])
message_system_prompt_plan = {
"role": MessageRole.SYSTEM,
"content": PROMPTS_FOR_INITIAL_PLAN[self.plan_type]["system"],
}
message_user_prompt_plan = {
"role": MessageRole.USER,
"content": PROMPTS_FOR_INITIAL_PLAN[self.plan_type]["user"].format(
task=task,
tool_descriptions=self._toolbox.show_tool_descriptions(self.tool_description_template),
managed_agents_descriptions=(
show_agents_descriptions(self.managed_agents) if self.managed_agents is not None else ""
),
answer_facts=answer_facts,
),
}
answer_plan = self.llm_engine(
[message_system_prompt_plan, message_user_prompt_plan], stop_sequences=["<end_plan>"]
)
final_plan_redaction = f"""Here is the plan of action that I will follow to solve the task:
```
{answer_plan}
```"""
final_facts_redaction = f"""Here are the facts that I know so far:
```
{answer_facts}
```""".strip()
self.logs.append({"plan": final_plan_redaction, "facts": final_facts_redaction})
self.logger.log(36, "===== Initial plan =====")
self.logger.log(35, final_plan_redaction)
else: # update plan
agent_memory = self.write_inner_memory_from_logs(
summary_mode=False
) # This will not log the plan but will log facts
# Redact updated facts
facts_update_system_prompt = {
"role": MessageRole.SYSTEM,
"content": SYSTEM_PROMPT_FACTS_UPDATE,
}
facts_update_message = {
"role": MessageRole.USER,
"content": USER_PROMPT_FACTS_UPDATE,
}
facts_update = self.llm_engine([facts_update_system_prompt] + agent_memory + [facts_update_message])
# Redact updated plan
plan_update_message = {
"role": MessageRole.SYSTEM,
"content": PROMPTS_FOR_PLAN_UPDATE[self.plan_type]["system"].format(task=task),
}
plan_update_message_user = {
"role": MessageRole.USER,
"content": PROMPTS_FOR_PLAN_UPDATE[self.plan_type]["user"].format(
task=task,
tool_descriptions=self._toolbox.show_tool_descriptions(self.tool_description_template),
managed_agents_descriptions=(
show_agents_descriptions(self.managed_agents) if self.managed_agents is not None else ""
),
facts_update=facts_update,
remaining_steps=(self.max_iterations - iteration),
),
}
plan_update = self.llm_engine(
[plan_update_message] + agent_memory + [plan_update_message_user], stop_sequences=["<end_plan>"]
)
# Log final facts and plan
final_plan_redaction = PLAN_UPDATE_FINAL_PLAN_REDACTION.format(task=task, plan_update=plan_update)
final_facts_redaction = f"""Here is the updated list of the facts that I know:
```
{facts_update}
```"""
self.logs.append({"plan": final_plan_redaction, "facts": final_facts_redaction})
self.logger.log(36, "===== Updated plan =====")
self.logger.log(35, final_plan_redaction)
|
class_definition
| 27,912 | 39,268 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/agents/agents.py
| null | 385 |
class ReactJsonAgent(ReactAgent):
"""
This agent that solves the given task step by step, using the ReAct framework:
While the objective is not reached, the agent will perform a cycle of thinking and acting.
The tool calls will be formulated by the LLM in JSON format, then parsed and executed.
"""
def __init__(
self,
tools: List[Tool],
llm_engine: Optional[Callable] = None,
system_prompt: Optional[str] = None,
tool_description_template: Optional[str] = None,
grammar: Optional[Dict[str, str]] = None,
planning_interval: Optional[int] = None,
**kwargs,
):
if llm_engine is None:
llm_engine = HfApiEngine()
if system_prompt is None:
system_prompt = DEFAULT_REACT_JSON_SYSTEM_PROMPT
if tool_description_template is None:
tool_description_template = DEFAULT_TOOL_DESCRIPTION_TEMPLATE
super().__init__(
tools=tools,
llm_engine=llm_engine,
system_prompt=system_prompt,
tool_description_template=tool_description_template,
grammar=grammar,
planning_interval=planning_interval,
**kwargs,
)
def step(self, log_entry: Dict[str, Any]):
"""
Perform one step in the ReAct framework: the agent thinks, acts, and observes the result.
The errors are raised here, they are caught and logged in the run() method.
"""
agent_memory = self.write_inner_memory_from_logs()
self.prompt = agent_memory
self.logger.debug("===== New step =====")
# Add new step in logs
log_entry["agent_memory"] = agent_memory.copy()
self.logger.info("===== Calling LLM with this last message: =====")
self.logger.info(self.prompt[-1])
try:
additional_args = {"grammar": self.grammar} if self.grammar is not None else {}
llm_output = self.llm_engine(
self.prompt, stop_sequences=["<end_action>", "Observation:"], **additional_args
)
except Exception as e:
raise AgentGenerationError(f"Error in generating llm output: {e}.")
self.logger.debug("===== Output message of the LLM: =====")
self.logger.debug(llm_output)
log_entry["llm_output"] = llm_output
# Parse
self.logger.debug("===== Extracting action =====")
rationale, action = self.extract_action(llm_output=llm_output, split_token="Action:")
try:
tool_name, arguments = self.tool_parser(action)
except Exception as e:
raise AgentParsingError(f"Could not parse the given action: {e}.")
log_entry["rationale"] = rationale
log_entry["tool_call"] = {"tool_name": tool_name, "tool_arguments": arguments}
# Execute
self.logger.warning("=== Agent thoughts:")
self.logger.log(31, rationale)
self.logger.warning(f">>> Calling tool: '{tool_name}' with arguments: {arguments}")
if tool_name == "final_answer":
if isinstance(arguments, dict):
if "answer" in arguments:
answer = arguments["answer"]
if (
isinstance(answer, str) and answer in self.state.keys()
): # if the answer is a state variable, return the value
answer = self.state[answer]
else:
answer = arguments
else:
answer = arguments
log_entry["final_answer"] = answer
return answer
else:
if arguments is None:
arguments = {}
observation = self.execute_tool_call(tool_name, arguments)
observation_type = type(observation)
if observation_type in [AgentImage, AgentAudio]:
if observation_type == AgentImage:
observation_name = "image.png"
elif observation_type == AgentAudio:
observation_name = "audio.mp3"
# TODO: observation naming could allow for different names of same type
self.state[observation_name] = observation
updated_information = f"Stored '{observation_name}' in memory."
else:
updated_information = str(observation).strip()
self.logger.info(updated_information)
log_entry["observation"] = updated_information
return log_entry
|
class_definition
| 39,271 | 43,831 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/agents/agents.py
| null | 386 |
class ReactCodeAgent(ReactAgent):
"""
This agent that solves the given task step by step, using the ReAct framework:
While the objective is not reached, the agent will perform a cycle of thinking and acting.
The tool calls will be formulated by the LLM in code format, then parsed and executed.
"""
def __init__(
self,
tools: List[Tool],
llm_engine: Optional[Callable] = None,
system_prompt: Optional[str] = None,
tool_description_template: Optional[str] = None,
grammar: Optional[Dict[str, str]] = None,
additional_authorized_imports: Optional[List[str]] = None,
planning_interval: Optional[int] = None,
**kwargs,
):
if llm_engine is None:
llm_engine = HfApiEngine()
if system_prompt is None:
system_prompt = DEFAULT_REACT_CODE_SYSTEM_PROMPT
if tool_description_template is None:
tool_description_template = DEFAULT_TOOL_DESCRIPTION_TEMPLATE
super().__init__(
tools=tools,
llm_engine=llm_engine,
system_prompt=system_prompt,
tool_description_template=tool_description_template,
grammar=grammar,
planning_interval=planning_interval,
**kwargs,
)
if not is_pygments_available():
transformers_logging.warning_once(
logger,
"pygments isn't installed. Installing pygments will enable color syntax highlighting in the "
"ReactCodeAgent.",
)
self.python_evaluator = evaluate_python_code
self.additional_authorized_imports = additional_authorized_imports if additional_authorized_imports else []
self.authorized_imports = list(set(LIST_SAFE_MODULES) | set(self.additional_authorized_imports))
self.system_prompt = self.system_prompt.replace("<<authorized_imports>>", str(self.authorized_imports))
self.custom_tools = {}
def step(self, log_entry: Dict[str, Any]):
"""
Perform one step in the ReAct framework: the agent thinks, acts, and observes the result.
The errors are raised here, they are caught and logged in the run() method.
"""
agent_memory = self.write_inner_memory_from_logs()
self.prompt = agent_memory.copy()
self.logger.debug("===== New step =====")
# Add new step in logs
log_entry["agent_memory"] = agent_memory.copy()
self.logger.info("===== Calling LLM with these last messages: =====")
self.logger.info(self.prompt[-2:])
try:
additional_args = {"grammar": self.grammar} if self.grammar is not None else {}
llm_output = self.llm_engine(
self.prompt, stop_sequences=["<end_action>", "Observation:"], **additional_args
)
except Exception as e:
raise AgentGenerationError(f"Error in generating llm output: {e}.")
self.logger.debug("=== Output message of the LLM:")
self.logger.debug(llm_output)
log_entry["llm_output"] = llm_output
# Parse
self.logger.debug("=== Extracting action ===")
try:
rationale, raw_code_action = self.extract_action(llm_output=llm_output, split_token="Code:")
except Exception as e:
self.logger.debug(f"Error in extracting action, trying to parse the whole output. Error trace: {e}")
rationale, raw_code_action = llm_output, llm_output
try:
code_action = parse_code_blob(raw_code_action)
except Exception as e:
error_msg = f"Error in code parsing: {e}. Make sure to provide correct code"
raise AgentParsingError(error_msg)
log_entry["rationale"] = rationale
log_entry["tool_call"] = {"tool_name": "code interpreter", "tool_arguments": code_action}
# Execute
self.log_rationale_code_action(rationale, code_action)
try:
static_tools = {
**BASE_PYTHON_TOOLS.copy(),
**self.toolbox.tools,
}
if self.managed_agents is not None:
static_tools = {**static_tools, **self.managed_agents}
result = self.python_evaluator(
code_action,
static_tools=static_tools,
custom_tools=self.custom_tools,
state=self.state,
authorized_imports=self.authorized_imports,
)
self.logger.warning("Print outputs:")
self.logger.log(32, self.state["print_outputs"])
observation = "Print outputs:\n" + self.state["print_outputs"]
if result is not None:
self.logger.warning("Last output from code snippet:")
self.logger.log(32, str(result))
observation += "Last output from code snippet:\n" + str(result)[:100000]
log_entry["observation"] = observation
except Exception as e:
error_msg = f"Code execution failed due to the following error:\n{str(e)}"
if "'dict' object has no attribute 'read'" in str(e):
error_msg += "\nYou get this error because you passed a dict as input for one of the arguments instead of a string."
raise AgentExecutionError(error_msg)
for line in code_action.split("\n"):
if line[: len("final_answer")] == "final_answer":
self.logger.log(33, "Final answer:")
self.logger.log(32, result)
log_entry["final_answer"] = result
return result
|
class_definition
| 43,834 | 49,471 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/agents/agents.py
| null | 387 |
class ManagedAgent:
def __init__(self, agent, name, description, additional_prompting=None, provide_run_summary=False):
self.agent = agent
self.name = name
self.description = description
self.additional_prompting = additional_prompting
self.provide_run_summary = provide_run_summary
def write_full_task(self, task):
full_task = f"""You're a helpful agent named '{self.name}'.
You have been submitted this task by your manager.
---
Task:
{task}
---
You're helping your manager solve a wider task: so make sure to not provide a one-line answer, but give as much information as possible so that they have a clear understanding of the answer.
Your final_answer WILL HAVE to contain these parts:
### 1. Task outcome (short version):
### 2. Task outcome (extremely detailed version):
### 3. Additional context (if relevant):
Put all these in your final_answer tool, everything that you do not pass as an argument to final_answer will be lost.
And even if your task resolution is not successful, please return as much context as possible, so that your manager can act upon this feedback.
<<additional_prompting>>"""
if self.additional_prompting:
full_task = full_task.replace("\n<<additional_prompting>>", self.additional_prompting).strip()
else:
full_task = full_task.replace("\n<<additional_prompting>>", "").strip()
return full_task
def __call__(self, request, **kwargs):
full_task = self.write_full_task(request)
output = self.agent.run(full_task, **kwargs)
if self.provide_run_summary:
answer = f"Here is the final answer from your managed agent '{self.name}':\n"
answer += str(output)
answer += f"\n\nFor more detail, find below a summary of this agent's work:\nSUMMARY OF WORK FROM AGENT '{self.name}':\n"
for message in self.agent.write_inner_memory_from_logs(summary_mode=True):
content = message["content"]
if len(str(content)) < LENGTH_TRUNCATE_REPORTS or "[FACTS LIST]" in str(content):
answer += "\n" + str(content) + "\n---"
else:
answer += (
"\n"
+ str(content)[:LENGTH_TRUNCATE_REPORTS]
+ "\n(...Step was truncated because too long)...\n---"
)
answer += f"\nEND OF SUMMARY OF WORK FROM AGENT '{self.name}'."
return answer
else:
return output
|
class_definition
| 49,507 | 52,065 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/agents/agents.py
| null | 388 |
class TextToSpeechTool(PipelineTool):
default_checkpoint = "microsoft/speecht5_tts"
description = (
"This is a tool that reads an English text out loud. It returns a waveform object containing the sound."
)
name = "text_to_speech"
pre_processor_class = SpeechT5Processor
model_class = SpeechT5ForTextToSpeech
post_processor_class = SpeechT5HifiGan
inputs = {"text": {"type": "string", "description": "The text to read out loud (in English)"}}
output_type = "audio"
def setup(self):
if self.post_processor is None:
self.post_processor = "microsoft/speecht5_hifigan"
super().setup()
def encode(self, text, speaker_embeddings=None):
inputs = self.pre_processor(text=text, return_tensors="pt", truncation=True)
if speaker_embeddings is None:
if not is_datasets_available():
raise ImportError("Datasets needs to be installed if not passing speaker embeddings.")
embeddings_dataset = load_dataset(
"Matthijs/cmu-arctic-xvectors", split="validation", trust_remote_code=True
)
speaker_embeddings = torch.tensor(embeddings_dataset[7305]["xvector"]).unsqueeze(0)
return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings}
def forward(self, inputs):
with torch.no_grad():
return self.model.generate_speech(**inputs)
def decode(self, outputs):
with torch.no_grad():
return self.post_processor(outputs).cpu().detach()
|
class_definition
| 898 | 2,467 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/agents/text_to_speech.py
| null | 389 |
class DocumentQuestionAnsweringTool(PipelineTool):
default_checkpoint = "naver-clova-ix/donut-base-finetuned-docvqa"
description = "This is a tool that answers a question about an document (pdf). It returns a string that contains the answer to the question."
name = "document_qa"
pre_processor_class = AutoProcessor
model_class = VisionEncoderDecoderModel
inputs = {
"document": {
"type": "image",
"description": "The image containing the information. Can be a PIL Image or a string path to the image.",
},
"question": {"type": "string", "description": "The question in English"},
}
output_type = "string"
def __init__(self, *args, **kwargs):
if not is_vision_available():
raise ValueError("Pillow must be installed to use the DocumentQuestionAnsweringTool.")
super().__init__(*args, **kwargs)
def encode(self, document: "Image", question: str):
task_prompt = "<s_docvqa><s_question>{user_input}</s_question><s_answer>"
prompt = task_prompt.replace("{user_input}", question)
decoder_input_ids = self.pre_processor.tokenizer(
prompt, add_special_tokens=False, return_tensors="pt"
).input_ids
if isinstance(document, str):
img = Image.open(document).convert("RGB")
img_array = np.array(img).transpose(2, 0, 1)
document = torch.from_numpy(img_array)
pixel_values = self.pre_processor(document, return_tensors="pt").pixel_values
return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values}
def forward(self, inputs):
return self.model.generate(
inputs["pixel_values"].to(self.device),
decoder_input_ids=inputs["decoder_input_ids"].to(self.device),
max_length=self.model.decoder.config.max_position_embeddings,
early_stopping=True,
pad_token_id=self.pre_processor.tokenizer.pad_token_id,
eos_token_id=self.pre_processor.tokenizer.eos_token_id,
use_cache=True,
num_beams=1,
bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]],
return_dict_in_generate=True,
).sequences
def decode(self, outputs):
sequence = self.pre_processor.batch_decode(outputs)[0]
sequence = sequence.replace(self.pre_processor.tokenizer.eos_token, "")
sequence = sequence.replace(self.pre_processor.tokenizer.pad_token, "")
sequence = re.sub(r"<.*?>", "", sequence, count=1).strip() # remove first task start token
sequence = self.pre_processor.token2json(sequence)
return sequence["answer"]
|
class_definition
| 931 | 3,633 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/agents/document_question_answering.py
| null | 390 |
class TranslationTool(PipelineTool):
"""
Example:
```py
from transformers.agents import TranslationTool
translator = TranslationTool()
translator("This is a super nice API!", src_lang="English", tgt_lang="French")
```
"""
lang_to_code = LANGUAGE_CODES
default_checkpoint = "facebook/nllb-200-distilled-600M"
description = (
"This is a tool that translates text from a language to another."
f"Both `src_lang`and `tgt_lang` should belong to this list of languages: {list(lang_to_code.keys())}."
)
name = "translator"
pre_processor_class = AutoTokenizer
model_class = AutoModelForSeq2SeqLM
inputs = {
"text": {"type": "string", "description": "The text to translate"},
"src_lang": {
"type": "string",
"description": "The language of the text to translate. Written in plain English, such as 'Romanian', or 'Albanian'",
},
"tgt_lang": {
"type": "string",
"description": "The language for the desired ouput language. Written in plain English, such as 'Romanian', or 'Albanian'",
},
}
output_type = "string"
def encode(self, text, src_lang, tgt_lang):
if src_lang not in self.lang_to_code:
raise ValueError(f"{src_lang} is not a supported language.")
if tgt_lang not in self.lang_to_code:
raise ValueError(f"{tgt_lang} is not a supported language.")
src_lang = self.lang_to_code[src_lang]
tgt_lang = self.lang_to_code[tgt_lang]
return self.pre_processor._build_translation_inputs(
text, return_tensors="pt", src_lang=src_lang, tgt_lang=tgt_lang
)
def forward(self, inputs):
return self.model.generate(**inputs)
def decode(self, outputs):
return self.post_processor.decode(outputs[0].tolist(), skip_special_tokens=True)
|
class_definition
| 6,764 | 8,670 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/agents/translation.py
| null | 391 |
class PreTool:
name: str
inputs: Dict[str, str]
output_type: type
task: str
description: str
repo_id: str
|
class_definition
| 2,141 | 2,270 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/agents/default_tools.py
| null | 392 |
class PythonInterpreterTool(Tool):
name = "python_interpreter"
description = "This is a tool that evaluates python code. It can be used to perform calculations."
output_type = "string"
def __init__(self, *args, authorized_imports=None, **kwargs):
if authorized_imports is None:
self.authorized_imports = list(set(LIST_SAFE_MODULES))
else:
self.authorized_imports = list(set(LIST_SAFE_MODULES) | set(authorized_imports))
self.inputs = {
"code": {
"type": "string",
"description": (
"The code snippet to evaluate. All variables used in this snippet must be defined in this same snippet, "
f"else you will get an error. This code can only import the following python libraries: {authorized_imports}."
),
}
}
super().__init__(*args, **kwargs)
def forward(self, code):
output = str(
evaluate_python_code(code, static_tools=BASE_PYTHON_TOOLS, authorized_imports=self.authorized_imports)
)
return output
|
class_definition
| 3,828 | 4,959 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/agents/default_tools.py
| null | 393 |
class FinalAnswerTool(Tool):
name = "final_answer"
description = "Provides a final answer to the given problem."
inputs = {"answer": {"type": "any", "description": "The final answer to the problem"}}
output_type = "any"
def forward(self, answer):
return answer
|
class_definition
| 4,962 | 5,251 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/agents/default_tools.py
| null | 394 |
class DuckDuckGoSearchTool(Tool):
name = "web_search"
description = """Perform a web search based on your query (think a Google search) then returns the top search results as a list of dict elements.
Each result has keys 'title', 'href' and 'body'."""
inputs = {"query": {"type": "string", "description": "The search query to perform."}}
output_type = "any"
def forward(self, query: str) -> str:
try:
from duckduckgo_search import DDGS
except ImportError:
raise ImportError(
"You must install package `duckduckgo_search` to run this tool: for instance run `pip install duckduckgo-search`."
)
results = DDGS().text(query, max_results=7)
return results
|
class_definition
| 752 | 1,511 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/agents/search.py
| null | 395 |
class VisitWebpageTool(Tool):
name = "visit_webpage"
description = "Visits a webpage at the given url and returns its content as a markdown string."
inputs = {
"url": {
"type": "string",
"description": "The url of the webpage to visit.",
}
}
output_type = "string"
def forward(self, url: str) -> str:
try:
from markdownify import markdownify
except ImportError:
raise ImportError(
"You must install package `markdownify` to run this tool: for instance run `pip install markdownify`."
)
try:
# Send a GET request to the URL
response = requests.get(url)
response.raise_for_status() # Raise an exception for bad status codes
# Convert the HTML content to Markdown
markdown_content = markdownify(response.text).strip()
# Remove multiple line breaks
markdown_content = re.sub(r"\n{3,}", "\n\n", markdown_content)
return markdown_content
except RequestException as e:
return f"Error fetching the webpage: {str(e)}"
except Exception as e:
return f"An unexpected error occurred: {str(e)}"
|
class_definition
| 1,514 | 2,776 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/agents/search.py
| null | 396 |
class InterpreterError(ValueError):
"""
An error raised when the interpretor cannot evaluate a Python expression, due to syntax error or unsupported
operations.
"""
pass
|
class_definition
| 933 | 1,123 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/agents/python_interpreter.py
| null | 397 |
class BreakException(Exception):
pass
|
class_definition
| 1,571 | 1,612 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/agents/python_interpreter.py
| null | 398 |
class ContinueException(Exception):
pass
|
class_definition
| 1,615 | 1,659 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/agents/python_interpreter.py
| null | 399 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.