text
stringlengths
1
1.02k
class_index
int64
0
1.38k
source
stringclasses
431 values
extra_loras = unet._load_ip_adapter_loras(state_dicts) if extra_loras != {}: if not USE_PEFT_BACKEND: logger.warning("PEFT backend is required to load these weights.") else: # apply the IP Adapter Face ID LoRA weights peft_config = getattr(unet, "peft_config", {}) for k, lora in extra_loras.items(): if f"faceid_{k}" not in peft_config: self.load_lora_weights(lora, adapter_name=f"faceid_{k}") self.set_adapters([f"faceid_{k}"], adapter_weights=[1.0]) def set_ip_adapter_scale(self, scale): """ Set IP-Adapter scales per-transformer block. Input `scale` could be a single config or a list of configs for granular control over each IP-Adapter behavior. A config can be a float or a dictionary. Example:
1,273
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/ip_adapter.py
```py # To use original IP-Adapter scale = 1.0 pipeline.set_ip_adapter_scale(scale) # To use style block only scale = { "up": {"block_0": [0.0, 1.0, 0.0]}, } pipeline.set_ip_adapter_scale(scale) # To use style+layout blocks scale = { "down": {"block_2": [0.0, 1.0]}, "up": {"block_0": [0.0, 1.0, 0.0]}, } pipeline.set_ip_adapter_scale(scale) # To use style and layout from 2 reference images scales = [{"down": {"block_2": [0.0, 1.0]}}, {"up": {"block_0": [0.0, 1.0, 0.0]}}] pipeline.set_ip_adapter_scale(scales) ``` """ unet = getattr(self, self.unet_name) if not hasattr(self, "unet") else self.unet if not isinstance(scale, list): scale = [scale] scale_configs = _maybe_expand_lora_scales(unet, scale, default_scale=0.0)
1,273
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/ip_adapter.py
for attn_name, attn_processor in unet.attn_processors.items(): if isinstance( attn_processor, (IPAdapterAttnProcessor, IPAdapterAttnProcessor2_0, IPAdapterXFormersAttnProcessor) ): if len(scale_configs) != len(attn_processor.scale): raise ValueError( f"Cannot assign {len(scale_configs)} scale_configs to " f"{len(attn_processor.scale)} IP-Adapter." ) elif len(scale_configs) == 1: scale_configs = scale_configs * len(attn_processor.scale) for i, scale_config in enumerate(scale_configs): if isinstance(scale_config, dict): for k, s in scale_config.items(): if attn_name.startswith(k): attn_processor.scale[i] = s else: attn_processor.scale[i] = scale_config
1,273
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/ip_adapter.py
def unload_ip_adapter(self): """ Unloads the IP Adapter weights Examples: ```python >>> # Assuming `pipeline` is already loaded with the IP Adapter weights. >>> pipeline.unload_ip_adapter() >>> ... ``` """ # remove CLIP image encoder if hasattr(self, "image_encoder") and getattr(self, "image_encoder", None) is not None: self.image_encoder = None self.register_to_config(image_encoder=[None, None]) # remove feature extractor only when safety_checker is None as safety_checker uses # the feature_extractor later if not hasattr(self, "safety_checker"): if hasattr(self, "feature_extractor") and getattr(self, "feature_extractor", None) is not None: self.feature_extractor = None self.register_to_config(feature_extractor=[None, None])
1,273
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/ip_adapter.py
# remove hidden encoder self.unet.encoder_hid_proj = None self.unet.config.encoder_hid_dim_type = None # Kolors: restore `encoder_hid_proj` with `text_encoder_hid_proj` if hasattr(self.unet, "text_encoder_hid_proj") and self.unet.text_encoder_hid_proj is not None: self.unet.encoder_hid_proj = self.unet.text_encoder_hid_proj self.unet.text_encoder_hid_proj = None self.unet.config.encoder_hid_dim_type = "text_proj"
1,273
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/ip_adapter.py
# restore original Unet attention processors layers attn_procs = {} for name, value in self.unet.attn_processors.items(): attn_processor_class = ( AttnProcessor2_0() if hasattr(F, "scaled_dot_product_attention") else AttnProcessor() ) attn_procs[name] = ( attn_processor_class if isinstance( value, (IPAdapterAttnProcessor, IPAdapterAttnProcessor2_0, IPAdapterXFormersAttnProcessor) ) else value.__class__() ) self.unet.set_attn_processor(attn_procs)
1,273
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/ip_adapter.py
class FluxIPAdapterMixin: """Mixin for handling Flux IP Adapters.""" @validate_hf_hub_args def load_ip_adapter( self, pretrained_model_name_or_path_or_dict: Union[str, List[str], Dict[str, torch.Tensor]], weight_name: Union[str, List[str]], subfolder: Optional[Union[str, List[str]]] = "", image_encoder_pretrained_model_name_or_path: Optional[str] = "image_encoder", image_encoder_subfolder: Optional[str] = "", image_encoder_dtype: torch.dtype = torch.float16, **kwargs, ): """ Parameters: pretrained_model_name_or_path_or_dict (`str` or `List[str]` or `os.PathLike` or `List[os.PathLike]` or `dict` or `List[dict]`): Can be either:
1,274
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/ip_adapter.py
- A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on the Hub. - A path to a *directory* (for example `./my_model_directory`) containing the model weights saved with [`ModelMixin.save_pretrained`]. - A [torch state dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict). subfolder (`str` or `List[str]`): The subfolder location of a model file within a larger model repository on the Hub or locally. If a list is passed, it should have the same length as `weight_name`. weight_name (`str` or `List[str]`): The name of the weight file to load. If a list is passed, it should have the same length as `weight_name`. image_encoder_pretrained_model_name_or_path (`str`, *optional*, defaults to `./image_encoder`):
1,274
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/ip_adapter.py
Can be either:
1,274
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/ip_adapter.py
- A string, the *model id* (for example `openai/clip-vit-large-patch14`) of a pretrained model hosted on the Hub. - A path to a *directory* (for example `./my_model_directory`) containing the model weights saved with [`ModelMixin.save_pretrained`]. cache_dir (`Union[str, os.PathLike]`, *optional*): Path to a directory where a downloaded pretrained model configuration is cached if the standard cache is not used. force_download (`bool`, *optional*, defaults to `False`): Whether or not to force the (re-)download of the model weights and configuration files, overriding the cached versions if they exist.
1,274
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/ip_adapter.py
proxies (`Dict[str, str]`, *optional*): A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request. local_files_only (`bool`, *optional*, defaults to `False`): Whether to only load local model weights and configuration files or not. If set to `True`, the model won't be downloaded from the Hub. token (`str` or *bool*, *optional*): The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from `diffusers-cli login` (stored in `~/.huggingface`) is used. revision (`str`, *optional*, defaults to `"main"`): The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier allowed by Git.
1,274
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/ip_adapter.py
low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`): Speed up model loading only loading the pretrained weights and not initializing the weights. This also tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model. Only supported for PyTorch >= 1.9.0. If you are using an older version of PyTorch, setting this argument to `True` will raise an error. """
1,274
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/ip_adapter.py
# handle the list inputs for multiple IP Adapters if not isinstance(weight_name, list): weight_name = [weight_name] if not isinstance(pretrained_model_name_or_path_or_dict, list): pretrained_model_name_or_path_or_dict = [pretrained_model_name_or_path_or_dict] if len(pretrained_model_name_or_path_or_dict) == 1: pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict * len(weight_name) if not isinstance(subfolder, list): subfolder = [subfolder] if len(subfolder) == 1: subfolder = subfolder * len(weight_name) if len(weight_name) != len(pretrained_model_name_or_path_or_dict): raise ValueError("`weight_name` and `pretrained_model_name_or_path_or_dict` must have the same length.") if len(weight_name) != len(subfolder): raise ValueError("`weight_name` and `subfolder` must have the same length.")
1,274
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/ip_adapter.py
# Load the main state dict first. cache_dir = kwargs.pop("cache_dir", None) force_download = kwargs.pop("force_download", False) proxies = kwargs.pop("proxies", None) local_files_only = kwargs.pop("local_files_only", None) token = kwargs.pop("token", None) revision = kwargs.pop("revision", None) low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT) if low_cpu_mem_usage and not is_accelerate_available(): low_cpu_mem_usage = False logger.warning( "Cannot initialize model with low cpu memory usage because `accelerate` was not found in the" " environment. Defaulting to `low_cpu_mem_usage=False`. It is strongly recommended to install" " `accelerate` for faster and less memory-intense model loading. You can do so with: \n```\npip" " install accelerate\n```\n." )
1,274
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/ip_adapter.py
if low_cpu_mem_usage is True and not is_torch_version(">=", "1.9.0"): raise NotImplementedError( "Low memory initialization requires torch >= 1.9.0. Please either update your PyTorch version or set" " `low_cpu_mem_usage=False`." )
1,274
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/ip_adapter.py
user_agent = { "file_type": "attn_procs_weights", "framework": "pytorch", } state_dicts = [] for pretrained_model_name_or_path_or_dict, weight_name, subfolder in zip( pretrained_model_name_or_path_or_dict, weight_name, subfolder ): if not isinstance(pretrained_model_name_or_path_or_dict, dict): model_file = _get_model_file( pretrained_model_name_or_path_or_dict, weights_name=weight_name, cache_dir=cache_dir, force_download=force_download, proxies=proxies, local_files_only=local_files_only, token=token, revision=revision, subfolder=subfolder, user_agent=user_agent, ) if weight_name.endswith(".safetensors"): state_dict = {"image_proj": {}, "ip_adapter": {}}
1,274
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/ip_adapter.py
with safe_open(model_file, framework="pt", device="cpu") as f: image_proj_keys = ["ip_adapter_proj_model.", "image_proj."] ip_adapter_keys = ["double_blocks.", "ip_adapter."] for key in f.keys(): if any(key.startswith(prefix) for prefix in image_proj_keys): diffusers_name = ".".join(key.split(".")[1:]) state_dict["image_proj"][diffusers_name] = f.get_tensor(key) elif any(key.startswith(prefix) for prefix in ip_adapter_keys): diffusers_name = ( ".".join(key.split(".")[1:]) .replace("ip_adapter_double_stream_k_proj", "to_k_ip") .replace("ip_adapter_double_stream_v_proj", "to_v_ip") .replace("processor.", "")
1,274
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/ip_adapter.py
) state_dict["ip_adapter"][diffusers_name] = f.get_tensor(key) else: state_dict = load_state_dict(model_file) else: state_dict = pretrained_model_name_or_path_or_dict
1,274
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/ip_adapter.py
keys = list(state_dict.keys()) if keys != ["image_proj", "ip_adapter"]: raise ValueError("Required keys are (`image_proj` and `ip_adapter`) missing from the state dict.") state_dicts.append(state_dict)
1,274
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/ip_adapter.py
# load CLIP image encoder here if it has not been registered to the pipeline yet if hasattr(self, "image_encoder") and getattr(self, "image_encoder", None) is None: if image_encoder_pretrained_model_name_or_path is not None: if not isinstance(pretrained_model_name_or_path_or_dict, dict): logger.info(f"loading image_encoder from {image_encoder_pretrained_model_name_or_path}") image_encoder = ( CLIPVisionModelWithProjection.from_pretrained( image_encoder_pretrained_model_name_or_path, subfolder=image_encoder_subfolder, low_cpu_mem_usage=low_cpu_mem_usage, cache_dir=cache_dir, local_files_only=local_files_only, ) .to(self.device, dtype=image_encoder_dtype)
1,274
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/ip_adapter.py
.eval() ) self.register_modules(image_encoder=image_encoder) else: raise ValueError( "`image_encoder` cannot be loaded because `pretrained_model_name_or_path_or_dict` is a state dict." ) else: logger.warning( "image_encoder is not loaded since `image_encoder_folder=None` passed. You will not be able to use `ip_adapter_image` when calling the pipeline with IP-Adapter." "Use `ip_adapter_image_embeds` to pass pre-generated image embedding instead." )
1,274
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/ip_adapter.py
# create feature extractor if it has not been registered to the pipeline yet if hasattr(self, "feature_extractor") and getattr(self, "feature_extractor", None) is None: # FaceID IP adapters don't need the image encoder so it's not present, in this case we default to 224 default_clip_size = 224 clip_image_size = ( self.image_encoder.config.image_size if self.image_encoder is not None else default_clip_size ) feature_extractor = CLIPImageProcessor(size=clip_image_size, crop_size=clip_image_size) self.register_modules(feature_extractor=feature_extractor) # load ip-adapter into transformer self.transformer._load_ip_adapter_weights(state_dicts, low_cpu_mem_usage=low_cpu_mem_usage)
1,274
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/ip_adapter.py
def set_ip_adapter_scale(self, scale: Union[float, List[float], List[List[float]]]): """ Set IP-Adapter scales per-transformer block. Input `scale` could be a single config or a list of configs for granular control over each IP-Adapter behavior. A config can be a float or a list. `float` is converted to list and repeated for the number of blocks and the number of IP adapters. `List[float]` length match the number of blocks, it is repeated for each IP adapter. `List[List[float]]` must match the number of IP adapters and each must match the number of blocks. Example: ```py # To use original IP-Adapter scale = 1.0 pipeline.set_ip_adapter_scale(scale) def LinearStrengthModel(start, finish, size): return [(start + (finish - start) * (i / (size - 1))) for i in range(size)]
1,274
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/ip_adapter.py
ip_strengths = LinearStrengthModel(0.3, 0.92, 19) pipeline.set_ip_adapter_scale(ip_strengths) ``` """ transformer = self.transformer if not isinstance(scale, list): scale = [[scale] * transformer.config.num_layers] elif isinstance(scale, list) and isinstance(scale[0], int) or isinstance(scale[0], float): if len(scale) != transformer.config.num_layers: raise ValueError(f"Expected list of {transformer.config.num_layers} scales, got {len(scale)}.") scale = [scale] scale_configs = scale
1,274
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/ip_adapter.py
key_id = 0 for attn_name, attn_processor in transformer.attn_processors.items(): if isinstance(attn_processor, (FluxIPAdapterJointAttnProcessor2_0)): if len(scale_configs) != len(attn_processor.scale): raise ValueError( f"Cannot assign {len(scale_configs)} scale_configs to " f"{len(attn_processor.scale)} IP-Adapter." ) elif len(scale_configs) == 1: scale_configs = scale_configs * len(attn_processor.scale) for i, scale_config in enumerate(scale_configs): attn_processor.scale[i] = scale_config[key_id] key_id += 1 def unload_ip_adapter(self): """ Unloads the IP Adapter weights Examples:
1,274
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/ip_adapter.py
```python >>> # Assuming `pipeline` is already loaded with the IP Adapter weights. >>> pipeline.unload_ip_adapter() >>> ... ``` """ # remove CLIP image encoder if hasattr(self, "image_encoder") and getattr(self, "image_encoder", None) is not None: self.image_encoder = None self.register_to_config(image_encoder=[None, None]) # remove feature extractor only when safety_checker is None as safety_checker uses # the feature_extractor later if not hasattr(self, "safety_checker"): if hasattr(self, "feature_extractor") and getattr(self, "feature_extractor", None) is not None: self.feature_extractor = None self.register_to_config(feature_extractor=[None, None]) # remove hidden encoder self.transformer.encoder_hid_proj = None self.transformer.config.encoder_hid_dim_type = None
1,274
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/ip_adapter.py
# restore original Transformer attention processors layers attn_procs = {} for name, value in self.transformer.attn_processors.items(): attn_processor_class = FluxAttnProcessor2_0() attn_procs[name] = ( attn_processor_class if isinstance(value, (FluxIPAdapterJointAttnProcessor2_0)) else value.__class__() ) self.transformer.set_attn_processor(attn_procs)
1,274
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/ip_adapter.py
class SD3IPAdapterMixin: """Mixin for handling StableDiffusion 3 IP Adapters.""" @property def is_ip_adapter_active(self) -> bool: """Checks if IP-Adapter is loaded and scale > 0. IP-Adapter scale controls the influence of the image prompt versus text prompt. When this value is set to 0, the image context is irrelevant. Returns: `bool`: True when IP-Adapter is loaded and any layer has scale > 0. """ scales = [ attn_proc.scale for attn_proc in self.transformer.attn_processors.values() if isinstance(attn_proc, SD3IPAdapterJointAttnProcessor2_0) ] return len(scales) > 0 and any(scale > 0 for scale in scales)
1,275
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/ip_adapter.py
@validate_hf_hub_args def load_ip_adapter( self, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], weight_name: str = "ip-adapter.safetensors", subfolder: Optional[str] = None, image_encoder_folder: Optional[str] = "image_encoder", **kwargs, ) -> None: """ Parameters: pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`): Can be either: - A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on the Hub. - A path to a *directory* (for example `./my_model_directory`) containing the model weights saved with [`ModelMixin.save_pretrained`]. - A [torch state dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict).
1,275
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/ip_adapter.py
weight_name (`str`, defaults to "ip-adapter.safetensors"): The name of the weight file to load. If a list is passed, it should have the same length as `subfolder`. subfolder (`str`, *optional*): The subfolder location of a model file within a larger model repository on the Hub or locally. If a list is passed, it should have the same length as `weight_name`. image_encoder_folder (`str`, *optional*, defaults to `image_encoder`): The subfolder location of the image encoder within a larger model repository on the Hub or locally. Pass `None` to not load the image encoder. If the image encoder is located in a folder inside `subfolder`, you only need to pass the name of the folder that contains image encoder weights, e.g. `image_encoder_folder="image_encoder"`. If the image encoder is located in a folder other than
1,275
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/ip_adapter.py
`subfolder`, you should pass the path to the folder that contains image encoder weights, for example, `image_encoder_folder="different_subfolder/image_encoder"`. cache_dir (`Union[str, os.PathLike]`, *optional*): Path to a directory where a downloaded pretrained model configuration is cached if the standard cache is not used. force_download (`bool`, *optional*, defaults to `False`): Whether or not to force the (re-)download of the model weights and configuration files, overriding the cached versions if they exist. proxies (`Dict[str, str]`, *optional*): A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request. local_files_only (`bool`, *optional*, defaults to `False`):
1,275
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/ip_adapter.py
Whether to only load local model weights and configuration files or not. If set to `True`, the model won't be downloaded from the Hub. token (`str` or *bool*, *optional*): The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from `diffusers-cli login` (stored in `~/.huggingface`) is used. revision (`str`, *optional*, defaults to `"main"`): The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier allowed by Git. low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`): Speed up model loading only loading the pretrained weights and not initializing the weights. This also tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model.
1,275
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/ip_adapter.py
Only supported for PyTorch >= 1.9.0. If you are using an older version of PyTorch, setting this argument to `True` will raise an error. """ # Load the main state dict first cache_dir = kwargs.pop("cache_dir", None) force_download = kwargs.pop("force_download", False) proxies = kwargs.pop("proxies", None) local_files_only = kwargs.pop("local_files_only", None) token = kwargs.pop("token", None) revision = kwargs.pop("revision", None) low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT)
1,275
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/ip_adapter.py
if low_cpu_mem_usage and not is_accelerate_available(): low_cpu_mem_usage = False logger.warning( "Cannot initialize model with low cpu memory usage because `accelerate` was not found in the" " environment. Defaulting to `low_cpu_mem_usage=False`. It is strongly recommended to install" " `accelerate` for faster and less memory-intense model loading. You can do so with: \n```\npip" " install accelerate\n```\n." ) if low_cpu_mem_usage is True and not is_torch_version(">=", "1.9.0"): raise NotImplementedError( "Low memory initialization requires torch >= 1.9.0. Please either update your PyTorch version or set" " `low_cpu_mem_usage=False`." ) user_agent = { "file_type": "attn_procs_weights", "framework": "pytorch", }
1,275
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/ip_adapter.py
if not isinstance(pretrained_model_name_or_path_or_dict, dict): model_file = _get_model_file( pretrained_model_name_or_path_or_dict, weights_name=weight_name, cache_dir=cache_dir, force_download=force_download, proxies=proxies, local_files_only=local_files_only, token=token, revision=revision, subfolder=subfolder, user_agent=user_agent, ) if weight_name.endswith(".safetensors"): state_dict = {"image_proj": {}, "ip_adapter": {}} with safe_open(model_file, framework="pt", device="cpu") as f: for key in f.keys(): if key.startswith("image_proj."): state_dict["image_proj"][key.replace("image_proj.", "")] = f.get_tensor(key) elif key.startswith("ip_adapter."):
1,275
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/ip_adapter.py
state_dict["ip_adapter"][key.replace("ip_adapter.", "")] = f.get_tensor(key) else: state_dict = load_state_dict(model_file) else: state_dict = pretrained_model_name_or_path_or_dict
1,275
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/ip_adapter.py
keys = list(state_dict.keys()) if "image_proj" not in keys and "ip_adapter" not in keys: raise ValueError("Required keys are (`image_proj` and `ip_adapter`) missing from the state dict.") # Load image_encoder and feature_extractor here if they haven't been registered to the pipeline yet if hasattr(self, "image_encoder") and getattr(self, "image_encoder", None) is None: if image_encoder_folder is not None: if not isinstance(pretrained_model_name_or_path_or_dict, dict): logger.info(f"loading image_encoder from {pretrained_model_name_or_path_or_dict}") if image_encoder_folder.count("/") == 0: image_encoder_subfolder = Path(subfolder, image_encoder_folder).as_posix() else: image_encoder_subfolder = Path(image_encoder_folder).as_posix()
1,275
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/ip_adapter.py
# Commons args for loading image encoder and image processor kwargs = { "low_cpu_mem_usage": low_cpu_mem_usage, "cache_dir": cache_dir, "local_files_only": local_files_only, }
1,275
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/ip_adapter.py
self.register_modules( feature_extractor=SiglipImageProcessor.from_pretrained(image_encoder_subfolder, **kwargs).to( self.device, dtype=self.dtype ), image_encoder=SiglipVisionModel.from_pretrained(image_encoder_subfolder, **kwargs).to( self.device, dtype=self.dtype ), ) else: raise ValueError( "`image_encoder` cannot be loaded because `pretrained_model_name_or_path_or_dict` is a state dict." ) else: logger.warning( "image_encoder is not loaded since `image_encoder_folder=None` passed. You will not be able to use `ip_adapter_image` when calling the pipeline with IP-Adapter." "Use `ip_adapter_image_embeds` to pass pre-generated image embedding instead." )
1,275
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/ip_adapter.py
# Load IP-Adapter into transformer self.transformer._load_ip_adapter_weights(state_dict, low_cpu_mem_usage=low_cpu_mem_usage) def set_ip_adapter_scale(self, scale: float) -> None: """ Set IP-Adapter scale, which controls image prompt conditioning. A value of 1.0 means the model is only conditioned on the image prompt, and 0.0 only conditioned by the text prompt. Lowering this value encourages the model to produce more diverse images, but they may not be as aligned with the image prompt. Example: ```python >>> # Assuming `pipeline` is already loaded with the IP Adapter weights. >>> pipeline.set_ip_adapter_scale(0.6) >>> ... ``` Args: scale (float): IP-Adapter scale to be set.
1,275
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/ip_adapter.py
""" for attn_processor in self.transformer.attn_processors.values(): if isinstance(attn_processor, SD3IPAdapterJointAttnProcessor2_0): attn_processor.scale = scale def unload_ip_adapter(self) -> None: """ Unloads the IP Adapter weights. Example: ```python >>> # Assuming `pipeline` is already loaded with the IP Adapter weights. >>> pipeline.unload_ip_adapter() >>> ... ``` """ # Remove image encoder if hasattr(self, "image_encoder") and getattr(self, "image_encoder", None) is not None: self.image_encoder = None self.register_to_config(image_encoder=None) # Remove feature extractor if hasattr(self, "feature_extractor") and getattr(self, "feature_extractor", None) is not None: self.feature_extractor = None self.register_to_config(feature_extractor=None)
1,275
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/ip_adapter.py
# Remove image projection self.transformer.image_proj = None # Restore original attention processors layers attn_procs = { name: ( JointAttnProcessor2_0() if isinstance(value, SD3IPAdapterJointAttnProcessor2_0) else value.__class__() ) for name, value in self.transformer.attn_processors.items() } self.transformer.set_attn_processor(attn_procs)
1,275
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/ip_adapter.py
class AttnProcsLayers(torch.nn.Module): def __init__(self, state_dict: Dict[str, torch.Tensor]): super().__init__() self.layers = torch.nn.ModuleList(state_dict.values()) self.mapping = dict(enumerate(state_dict.keys())) self.rev_mapping = {v: k for k, v in enumerate(state_dict.keys())} # .processor for unet, .self_attn for text encoder self.split_keys = [".processor", ".self_attn"] # we add a hook to state_dict() and load_state_dict() so that the # naming fits with `unet.attn_processors` def map_to(module, state_dict, *args, **kwargs): new_state_dict = {} for key, value in state_dict.items(): num = int(key.split(".")[1]) # 0 is always "layers" new_key = key.replace(f"layers.{num}", module.mapping[num]) new_state_dict[new_key] = value return new_state_dict
1,276
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/utils.py
def remap_key(key, state_dict): for k in self.split_keys: if k in key: return key.split(k)[0] + k raise ValueError( f"There seems to be a problem with the state_dict: {set(state_dict.keys())}. {key} has to have one of {self.split_keys}." ) def map_from(module, state_dict, *args, **kwargs): all_keys = list(state_dict.keys()) for key in all_keys: replace_key = remap_key(key, state_dict) new_key = key.replace(replace_key, f"layers.{module.rev_mapping[replace_key]}") state_dict[new_key] = state_dict[key] del state_dict[key] self._register_state_dict_hook(map_to) self._register_load_state_dict_pre_hook(map_from, with_module=True)
1,276
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/utils.py
class FluxTransformer2DLoadersMixin: """ Load layers into a [`FluxTransformer2DModel`]. """ def _convert_ip_adapter_image_proj_to_diffusers(self, state_dict, low_cpu_mem_usage=False): if low_cpu_mem_usage: if is_accelerate_available(): from accelerate import init_empty_weights else: low_cpu_mem_usage = False logger.warning( "Cannot initialize model with low cpu memory usage because `accelerate` was not found in the" " environment. Defaulting to `low_cpu_mem_usage=False`. It is strongly recommended to install" " `accelerate` for faster and less memory-intense model loading. You can do so with: \n```\npip" " install accelerate\n```\n." )
1,277
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/transformer_flux.py
if low_cpu_mem_usage is True and not is_torch_version(">=", "1.9.0"): raise NotImplementedError( "Low memory initialization requires torch >= 1.9.0. Please either update your PyTorch version or set" " `low_cpu_mem_usage=False`." ) updated_state_dict = {} image_projection = None init_context = init_empty_weights if low_cpu_mem_usage else nullcontext if "proj.weight" in state_dict: # IP-Adapter num_image_text_embeds = 4 if state_dict["proj.weight"].shape[0] == 65536: num_image_text_embeds = 16 clip_embeddings_dim = state_dict["proj.weight"].shape[-1] cross_attention_dim = state_dict["proj.weight"].shape[0] // num_image_text_embeds
1,277
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/transformer_flux.py
with init_context(): image_projection = ImageProjection( cross_attention_dim=cross_attention_dim, image_embed_dim=clip_embeddings_dim, num_image_text_embeds=num_image_text_embeds, ) for key, value in state_dict.items(): diffusers_name = key.replace("proj", "image_embeds") updated_state_dict[diffusers_name] = value if not low_cpu_mem_usage: image_projection.load_state_dict(updated_state_dict, strict=True) else: load_model_dict_into_meta(image_projection, updated_state_dict, device=self.device, dtype=self.dtype) return image_projection def _convert_ip_adapter_attn_to_diffusers(self, state_dicts, low_cpu_mem_usage=False): from ..models.attention_processor import ( FluxIPAdapterJointAttnProcessor2_0, )
1,277
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/transformer_flux.py
if low_cpu_mem_usage: if is_accelerate_available(): from accelerate import init_empty_weights else: low_cpu_mem_usage = False logger.warning( "Cannot initialize model with low cpu memory usage because `accelerate` was not found in the" " environment. Defaulting to `low_cpu_mem_usage=False`. It is strongly recommended to install" " `accelerate` for faster and less memory-intense model loading. You can do so with: \n```\npip" " install accelerate\n```\n." ) if low_cpu_mem_usage is True and not is_torch_version(">=", "1.9.0"): raise NotImplementedError( "Low memory initialization requires torch >= 1.9.0. Please either update your PyTorch version or set" " `low_cpu_mem_usage=False`." )
1,277
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/transformer_flux.py
# set ip-adapter cross-attention processors & load state_dict attn_procs = {} key_id = 0 init_context = init_empty_weights if low_cpu_mem_usage else nullcontext for name in self.attn_processors.keys(): if name.startswith("single_transformer_blocks"): attn_processor_class = self.attn_processors[name].__class__ attn_procs[name] = attn_processor_class() else: cross_attention_dim = self.config.joint_attention_dim hidden_size = self.inner_dim attn_processor_class = FluxIPAdapterJointAttnProcessor2_0 num_image_text_embeds = [] for state_dict in state_dicts: if "proj.weight" in state_dict["image_proj"]: num_image_text_embed = 4 if state_dict["image_proj"]["proj.weight"].shape[0] == 65536: num_image_text_embed = 16
1,277
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/transformer_flux.py
# IP-Adapter num_image_text_embeds += [num_image_text_embed]
1,277
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/transformer_flux.py
with init_context(): attn_procs[name] = attn_processor_class( hidden_size=hidden_size, cross_attention_dim=cross_attention_dim, scale=1.0, num_tokens=num_image_text_embeds, dtype=self.dtype, device=self.device, ) value_dict = {} for i, state_dict in enumerate(state_dicts): value_dict.update({f"to_k_ip.{i}.weight": state_dict["ip_adapter"][f"{key_id}.to_k_ip.weight"]}) value_dict.update({f"to_v_ip.{i}.weight": state_dict["ip_adapter"][f"{key_id}.to_v_ip.weight"]}) value_dict.update({f"to_k_ip.{i}.bias": state_dict["ip_adapter"][f"{key_id}.to_k_ip.bias"]}) value_dict.update({f"to_v_ip.{i}.bias": state_dict["ip_adapter"][f"{key_id}.to_v_ip.bias"]})
1,277
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/transformer_flux.py
if not low_cpu_mem_usage: attn_procs[name].load_state_dict(value_dict) else: device = self.device dtype = self.dtype load_model_dict_into_meta(attn_procs[name], value_dict, device=device, dtype=dtype) key_id += 1 return attn_procs def _load_ip_adapter_weights(self, state_dicts, low_cpu_mem_usage=False): if not isinstance(state_dicts, list): state_dicts = [state_dicts] self.encoder_hid_proj = None attn_procs = self._convert_ip_adapter_attn_to_diffusers(state_dicts, low_cpu_mem_usage=low_cpu_mem_usage) self.set_attn_processor(attn_procs)
1,277
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/transformer_flux.py
image_projection_layers = [] for state_dict in state_dicts: image_projection_layer = self._convert_ip_adapter_image_proj_to_diffusers( state_dict["image_proj"], low_cpu_mem_usage=low_cpu_mem_usage ) image_projection_layers.append(image_projection_layer) self.encoder_hid_proj = MultiIPAdapterImageProjection(image_projection_layers) self.config.encoder_hid_dim_type = "ip_image_proj" self.to(dtype=self.dtype, device=self.device)
1,277
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/transformer_flux.py
class SASolverScheduler(SchedulerMixin, ConfigMixin): """ `SASolverScheduler` is a fast dedicated high-order solver for diffusion SDEs. This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic methods the library implements for all schedulers such as loading and saving.
1,278
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_sasolver.py
Args: num_train_timesteps (`int`, defaults to 1000): The number of diffusion steps to train the model. beta_start (`float`, defaults to 0.0001): The starting `beta` value of inference. beta_end (`float`, defaults to 0.02): The final `beta` value. beta_schedule (`str`, defaults to `"linear"`): The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from `linear`, `scaled_linear`, or `squaredcos_cap_v2`. trained_betas (`np.ndarray`, *optional*): Pass an array of betas directly to the constructor to bypass `beta_start` and `beta_end`. predictor_order (`int`, defaults to 2): The predictor order which can be `1` or `2` or `3` or '4'. It is recommended to use `predictor_order=2` for guided sampling, and `predictor_order=3` for unconditional sampling. corrector_order (`int`, defaults to 2):
1,278
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_sasolver.py
The corrector order which can be `1` or `2` or `3` or '4'. It is recommended to use `corrector_order=2` for guided sampling, and `corrector_order=3` for unconditional sampling. prediction_type (`str`, defaults to `epsilon`, *optional*): Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process), `sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen Video](https://imagen.research.google/video/paper.pdf) paper). tau_func (`Callable`, *optional*): Stochasticity during the sampling. Default in init is `lambda t: 1 if t >= 200 and t <= 800 else 0`. SA-Solver will sample from vanilla diffusion ODE if tau_func is set to `lambda t: 0`. SA-Solver will sample from vanilla diffusion SDE if tau_func is set to `lambda t: 1`. For more details, please check https://arxiv.org/abs/2309.05019
1,278
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_sasolver.py
thresholding (`bool`, defaults to `False`): Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such as Stable Diffusion. dynamic_thresholding_ratio (`float`, defaults to 0.995): The ratio for the dynamic thresholding method. Valid only when `thresholding=True`. sample_max_value (`float`, defaults to 1.0): The threshold value for dynamic thresholding. Valid only when `thresholding=True` and `algorithm_type="dpmsolver++"`. algorithm_type (`str`, defaults to `data_prediction`): Algorithm type for the solver; can be `data_prediction` or `noise_prediction`. It is recommended to use `data_prediction` with `solver_order=2` for guided sampling like in Stable Diffusion. lower_order_final (`bool`, defaults to `True`): Whether to use lower-order solvers in the final steps. Default = True.
1,278
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_sasolver.py
use_karras_sigmas (`bool`, *optional*, defaults to `False`): Whether to use Karras sigmas for step sizes in the noise schedule during the sampling process. If `True`, the sigmas are determined according to a sequence of noise levels {σi}. use_exponential_sigmas (`bool`, *optional*, defaults to `False`): Whether to use exponential sigmas for step sizes in the noise schedule during the sampling process. use_beta_sigmas (`bool`, *optional*, defaults to `False`): Whether to use beta sigmas for step sizes in the noise schedule during the sampling process. Refer to [Beta Sampling is All You Need](https://huggingface.co/papers/2407.12173) for more information. lambda_min_clipped (`float`, defaults to `-inf`): Clipping threshold for the minimum value of `lambda(t)` for numerical stability. This is critical for the cosine (`squaredcos_cap_v2`) noise schedule. variance_type (`str`, *optional*):
1,278
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_sasolver.py
Set to "learned" or "learned_range" for diffusion models that predict variance. If set, the model's output contains the predicted Gaussian variance. timestep_spacing (`str`, defaults to `"linspace"`): The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information. steps_offset (`int`, defaults to 0): An offset added to the inference steps, as required by some model families. """
1,278
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_sasolver.py
_compatibles = [e.name for e in KarrasDiffusionSchedulers] order = 1
1,278
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_sasolver.py
@register_to_config def __init__( self, num_train_timesteps: int = 1000, beta_start: float = 0.0001, beta_end: float = 0.02, beta_schedule: str = "linear", trained_betas: Optional[Union[np.ndarray, List[float]]] = None, predictor_order: int = 2, corrector_order: int = 2, prediction_type: str = "epsilon", tau_func: Optional[Callable] = None, thresholding: bool = False, dynamic_thresholding_ratio: float = 0.995, sample_max_value: float = 1.0, algorithm_type: str = "data_prediction", lower_order_final: bool = True, use_karras_sigmas: Optional[bool] = False, use_exponential_sigmas: Optional[bool] = False, use_beta_sigmas: Optional[bool] = False, use_flow_sigmas: Optional[bool] = False, flow_shift: Optional[float] = 1.0, lambda_min_clipped: float = -float("inf"), variance_type: Optional[str] = None,
1,278
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_sasolver.py
timestep_spacing: str = "linspace", steps_offset: int = 0, ): if self.config.use_beta_sigmas and not is_scipy_available(): raise ImportError("Make sure to install scipy if you want to use beta sigmas.") if sum([self.config.use_beta_sigmas, self.config.use_exponential_sigmas, self.config.use_karras_sigmas]) > 1: raise ValueError( "Only one of `config.use_beta_sigmas`, `config.use_exponential_sigmas`, `config.use_karras_sigmas` can be used." ) if trained_betas is not None: self.betas = torch.tensor(trained_betas, dtype=torch.float32) elif beta_schedule == "linear": self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. self.betas = ( torch.linspace( beta_start**0.5,
1,278
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_sasolver.py
beta_end**0.5, num_train_timesteps, dtype=torch.float32, ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule self.betas = betas_for_alpha_bar(num_train_timesteps) else: raise NotImplementedError(f"{beta_schedule} is not implemented for {self.__class__}")
1,278
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_sasolver.py
self.alphas = 1.0 - self.betas self.alphas_cumprod = torch.cumprod(self.alphas, dim=0) # Currently we only support VP-type noise schedule self.alpha_t = torch.sqrt(self.alphas_cumprod) self.sigma_t = torch.sqrt(1 - self.alphas_cumprod) self.lambda_t = torch.log(self.alpha_t) - torch.log(self.sigma_t) self.sigmas = ((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 # standard deviation of the initial noise distribution self.init_noise_sigma = 1.0 if algorithm_type not in ["data_prediction", "noise_prediction"]: raise NotImplementedError(f"{algorithm_type} is not implemented for {self.__class__}")
1,278
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_sasolver.py
# setable values self.num_inference_steps = None timesteps = np.linspace(0, num_train_timesteps - 1, num_train_timesteps, dtype=np.float32)[::-1].copy() self.timesteps = torch.from_numpy(timesteps) self.timestep_list = [None] * max(predictor_order, corrector_order - 1) self.model_outputs = [None] * max(predictor_order, corrector_order - 1) if tau_func is None: self.tau_func = lambda t: 1 if t >= 200 and t <= 800 else 0 else: self.tau_func = tau_func self.predict_x0 = algorithm_type == "data_prediction" self.lower_order_nums = 0 self.last_sample = None self._step_index = None self._begin_index = None self.sigmas = self.sigmas.to("cpu") # to avoid too much CPU/GPU communication @property def step_index(self): """ The index counter for current timestep. It will increase 1 after each scheduler step. """ return self._step_index
1,278
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_sasolver.py
@property def begin_index(self): """ The index for the first timestep. It should be set from pipeline with `set_begin_index` method. """ return self._begin_index # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.set_begin_index def set_begin_index(self, begin_index: int = 0): """ Sets the begin index for the scheduler. This function should be run from pipeline before the inference. Args: begin_index (`int`): The begin index for the scheduler. """ self._begin_index = begin_index def set_timesteps(self, num_inference_steps: int = None, device: Union[str, torch.device] = None): """ Sets the discrete timesteps used for the diffusion chain (to be run before inference).
1,278
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_sasolver.py
Args: num_inference_steps (`int`): The number of diffusion steps used when generating samples with a pre-trained model. device (`str` or `torch.device`, *optional*): The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. """ # Clipping the minimum of all lambda(t) for numerical stability. # This is critical for cosine (squaredcos_cap_v2) noise schedule. clipped_idx = torch.searchsorted(torch.flip(self.lambda_t, [0]), self.config.lambda_min_clipped) last_timestep = ((self.config.num_train_timesteps - clipped_idx).numpy()).item() # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": timesteps = ( np.linspace(0, last_timestep - 1, num_inference_steps + 1).round()[::-1][:-1].copy().astype(np.int64) )
1,278
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_sasolver.py
elif self.config.timestep_spacing == "leading": step_ratio = last_timestep // (num_inference_steps + 1) # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 timesteps = (np.arange(0, num_inference_steps + 1) * step_ratio).round()[::-1][:-1].copy().astype(np.int64) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": step_ratio = self.config.num_train_timesteps / num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 timesteps = np.arange(last_timestep, 0, -step_ratio).round().copy().astype(np.int64) timesteps -= 1 else: raise ValueError(
1,278
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_sasolver.py
f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'." )
1,278
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_sasolver.py
sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5) log_sigmas = np.log(sigmas) if self.config.use_karras_sigmas: sigmas = np.flip(sigmas).copy() sigmas = self._convert_to_karras(in_sigmas=sigmas, num_inference_steps=num_inference_steps) timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas]).round() sigmas = np.concatenate([sigmas, sigmas[-1:]]).astype(np.float32) elif self.config.use_exponential_sigmas: sigmas = np.flip(sigmas).copy() sigmas = self._convert_to_exponential(in_sigmas=sigmas, num_inference_steps=num_inference_steps) timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas]) sigmas = np.concatenate([sigmas, sigmas[-1:]]).astype(np.float32) elif self.config.use_beta_sigmas: sigmas = np.flip(sigmas).copy()
1,278
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_sasolver.py
sigmas = self._convert_to_beta(in_sigmas=sigmas, num_inference_steps=num_inference_steps) timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas]) sigmas = np.concatenate([sigmas, sigmas[-1:]]).astype(np.float32) elif self.config.use_flow_sigmas: alphas = np.linspace(1, 1 / self.config.num_train_timesteps, num_inference_steps + 1) sigmas = 1.0 - alphas sigmas = np.flip(self.config.flow_shift * sigmas / (1 + (self.config.flow_shift - 1) * sigmas))[:-1].copy() timesteps = (sigmas * self.config.num_train_timesteps).copy() sigmas = np.concatenate([sigmas, sigmas[-1:]]).astype(np.float32) else: sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas) sigma_last = ((1 - self.alphas_cumprod[0]) / self.alphas_cumprod[0]) ** 0.5 sigmas = np.concatenate([sigmas, [sigma_last]]).astype(np.float32)
1,278
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_sasolver.py
self.sigmas = torch.from_numpy(sigmas) self.timesteps = torch.from_numpy(timesteps).to(device=device, dtype=torch.int64) self.num_inference_steps = len(timesteps) self.model_outputs = [ None, ] * max(self.config.predictor_order, self.config.corrector_order - 1) self.lower_order_nums = 0 self.last_sample = None # add an index counter for schedulers that allow duplicated timesteps self._step_index = None self._begin_index = None self.sigmas = self.sigmas.to("cpu") # to avoid too much CPU/GPU communication
1,278
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_sasolver.py
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler._threshold_sample def _threshold_sample(self, sample: torch.Tensor) -> torch.Tensor: """ "Dynamic thresholding: At each sampling step we set s to a certain percentile absolute pixel value in xt0 (the prediction of x_0 at timestep t), and if s > 1, then we threshold xt0 to the range [-s, s] and then divide by s. Dynamic thresholding pushes saturated pixels (those near -1 and 1) inwards, thereby actively preventing pixels from saturation at each step. We find that dynamic thresholding results in significantly better photorealism as well as better image-text alignment, especially when using very large guidance weights." https://arxiv.org/abs/2205.11487 """ dtype = sample.dtype batch_size, channels, *remaining_dims = sample.shape
1,278
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_sasolver.py
if dtype not in (torch.float32, torch.float64): sample = sample.float() # upcast for quantile calculation, and clamp not implemented for cpu half # Flatten sample for doing quantile calculation along each image sample = sample.reshape(batch_size, channels * np.prod(remaining_dims)) abs_sample = sample.abs() # "a certain percentile absolute pixel value" s = torch.quantile(abs_sample, self.config.dynamic_thresholding_ratio, dim=1) s = torch.clamp( s, min=1, max=self.config.sample_max_value ) # When clamped to min=1, equivalent to standard clipping to [-1, 1] s = s.unsqueeze(1) # (batch_size, 1) because clamp will broadcast along dim=0 sample = torch.clamp(sample, -s, s) / s # "we threshold xt0 to the range [-s, s] and then divide by s" sample = sample.reshape(batch_size, channels, *remaining_dims) sample = sample.to(dtype) return sample
1,278
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_sasolver.py
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._sigma_to_t def _sigma_to_t(self, sigma, log_sigmas): # get log sigma log_sigma = np.log(np.maximum(sigma, 1e-10)) # get distribution dists = log_sigma - log_sigmas[:, np.newaxis] # get sigmas range low_idx = np.cumsum((dists >= 0), axis=0).argmax(axis=0).clip(max=log_sigmas.shape[0] - 2) high_idx = low_idx + 1 low = log_sigmas[low_idx] high = log_sigmas[high_idx] # interpolate sigmas w = (low - log_sigma) / (low - high) w = np.clip(w, 0, 1) # transform interpolation to time range t = (1 - w) * low_idx + w * high_idx t = t.reshape(sigma.shape) return t
1,278
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_sasolver.py
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler._sigma_to_alpha_sigma_t def _sigma_to_alpha_sigma_t(self, sigma): if self.config.use_flow_sigmas: alpha_t = 1 - sigma sigma_t = sigma else: alpha_t = 1 / ((sigma**2 + 1) ** 0.5) sigma_t = sigma * alpha_t return alpha_t, sigma_t # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_karras def _convert_to_karras(self, in_sigmas: torch.Tensor, num_inference_steps) -> torch.Tensor: """Constructs the noise schedule of Karras et al. (2022).""" # Hack to make sure that other schedulers which copy this function don't break # TODO: Add this logic to the other schedulers if hasattr(self.config, "sigma_min"): sigma_min = self.config.sigma_min else: sigma_min = None
1,278
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_sasolver.py
if hasattr(self.config, "sigma_max"): sigma_max = self.config.sigma_max else: sigma_max = None sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item() sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item() rho = 7.0 # 7.0 is the value used in the paper ramp = np.linspace(0, 1, num_inference_steps) min_inv_rho = sigma_min ** (1 / rho) max_inv_rho = sigma_max ** (1 / rho) sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho return sigmas # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_exponential def _convert_to_exponential(self, in_sigmas: torch.Tensor, num_inference_steps: int) -> torch.Tensor: """Constructs an exponential noise schedule."""
1,278
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_sasolver.py
# Hack to make sure that other schedulers which copy this function don't break # TODO: Add this logic to the other schedulers if hasattr(self.config, "sigma_min"): sigma_min = self.config.sigma_min else: sigma_min = None if hasattr(self.config, "sigma_max"): sigma_max = self.config.sigma_max else: sigma_max = None sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item() sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item() sigmas = np.exp(np.linspace(math.log(sigma_max), math.log(sigma_min), num_inference_steps)) return sigmas
1,278
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_sasolver.py
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_beta def _convert_to_beta( self, in_sigmas: torch.Tensor, num_inference_steps: int, alpha: float = 0.6, beta: float = 0.6 ) -> torch.Tensor: """From "Beta Sampling is All You Need" [arXiv:2407.12173] (Lee et. al, 2024)""" # Hack to make sure that other schedulers which copy this function don't break # TODO: Add this logic to the other schedulers if hasattr(self.config, "sigma_min"): sigma_min = self.config.sigma_min else: sigma_min = None if hasattr(self.config, "sigma_max"): sigma_max = self.config.sigma_max else: sigma_max = None sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item() sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()
1,278
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_sasolver.py
sigmas = np.array( [ sigma_min + (ppf * (sigma_max - sigma_min)) for ppf in [ scipy.stats.beta.ppf(timestep, alpha, beta) for timestep in 1 - np.linspace(0, 1, num_inference_steps) ] ] ) return sigmas def convert_model_output( self, model_output: torch.Tensor, *args, sample: torch.Tensor = None, **kwargs, ) -> torch.Tensor: """ Convert the model output to the corresponding type the data_prediction/noise_prediction algorithm needs. Noise_prediction is designed to discretize an integral of the noise prediction model, and data_prediction is designed to discretize an integral of the data prediction model. <Tip> The algorithm and model type are decoupled. You can use either data_prediction or noise_prediction for both noise prediction and data prediction models.
1,278
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_sasolver.py
</Tip> Args: model_output (`torch.Tensor`): The direct output from the learned diffusion model. sample (`torch.Tensor`): A current instance of a sample created by the diffusion process. Returns: `torch.Tensor`: The converted model output. """ timestep = args[0] if len(args) > 0 else kwargs.pop("timestep", None) if sample is None: if len(args) > 1: sample = args[1] else: raise ValueError("missing `sample` as a required keyward argument") if timestep is not None: deprecate( "timesteps", "1.0.0", "Passing `timesteps` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`", )
1,278
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_sasolver.py
sigma = self.sigmas[self.step_index] alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma) # SA-Solver_data_prediction needs to solve an integral of the data prediction model. if self.config.algorithm_type in ["data_prediction"]: if self.config.prediction_type == "epsilon": # SA-Solver only needs the "mean" output. if self.config.variance_type in ["learned", "learned_range"]: model_output = model_output[:, :3] x0_pred = (sample - sigma_t * model_output) / alpha_t elif self.config.prediction_type == "sample": x0_pred = model_output elif self.config.prediction_type == "v_prediction": x0_pred = alpha_t * sample - sigma_t * model_output elif self.config.prediction_type == "flow_prediction": sigma_t = self.sigmas[self.step_index] x0_pred = sample - sigma_t * model_output else:
1,278
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_sasolver.py
raise ValueError( f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, " "`v_prediction`, or `flow_prediction` for the SASolverScheduler." )
1,278
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_sasolver.py
if self.config.thresholding: x0_pred = self._threshold_sample(x0_pred) return x0_pred
1,278
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_sasolver.py
# SA-Solver_noise_prediction needs to solve an integral of the noise prediction model. elif self.config.algorithm_type in ["noise_prediction"]: if self.config.prediction_type == "epsilon": # SA-Solver only needs the "mean" output. if self.config.variance_type in ["learned", "learned_range"]: epsilon = model_output[:, :3] else: epsilon = model_output elif self.config.prediction_type == "sample": epsilon = (sample - alpha_t * model_output) / sigma_t elif self.config.prediction_type == "v_prediction": epsilon = alpha_t * model_output + sigma_t * sample else: raise ValueError( f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or" " `v_prediction` for the SASolverScheduler." )
1,278
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_sasolver.py
if self.config.thresholding: alpha_t, sigma_t = self.alpha_t[timestep], self.sigma_t[timestep] x0_pred = (sample - sigma_t * epsilon) / alpha_t x0_pred = self._threshold_sample(x0_pred) epsilon = (sample - alpha_t * x0_pred) / sigma_t return epsilon def get_coefficients_exponential_negative(self, order, interval_start, interval_end): """ Calculate the integral of exp(-x) * x^order dx from interval_start to interval_end """ assert order in [0, 1, 2, 3], "order is only supported for 0, 1, 2 and 3"
1,278
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_sasolver.py
if order == 0: return torch.exp(-interval_end) * (torch.exp(interval_end - interval_start) - 1) elif order == 1: return torch.exp(-interval_end) * ( (interval_start + 1) * torch.exp(interval_end - interval_start) - (interval_end + 1) ) elif order == 2: return torch.exp(-interval_end) * ( (interval_start**2 + 2 * interval_start + 2) * torch.exp(interval_end - interval_start) - (interval_end**2 + 2 * interval_end + 2) ) elif order == 3: return torch.exp(-interval_end) * ( (interval_start**3 + 3 * interval_start**2 + 6 * interval_start + 6) * torch.exp(interval_end - interval_start) - (interval_end**3 + 3 * interval_end**2 + 6 * interval_end + 6) )
1,278
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_sasolver.py
def get_coefficients_exponential_positive(self, order, interval_start, interval_end, tau): """ Calculate the integral of exp(x(1+tau^2)) * x^order dx from interval_start to interval_end """ assert order in [0, 1, 2, 3], "order is only supported for 0, 1, 2 and 3" # after change of variable(cov) interval_end_cov = (1 + tau**2) * interval_end interval_start_cov = (1 + tau**2) * interval_start
1,278
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_sasolver.py
if order == 0: return ( torch.exp(interval_end_cov) * (1 - torch.exp(-(interval_end_cov - interval_start_cov))) / (1 + tau**2) ) elif order == 1: return ( torch.exp(interval_end_cov) * ( (interval_end_cov - 1) - (interval_start_cov - 1) * torch.exp(-(interval_end_cov - interval_start_cov)) ) / ((1 + tau**2) ** 2) ) elif order == 2: return ( torch.exp(interval_end_cov) * ( (interval_end_cov**2 - 2 * interval_end_cov + 2) - (interval_start_cov**2 - 2 * interval_start_cov + 2) * torch.exp(-(interval_end_cov - interval_start_cov)) ) / ((1 + tau**2) ** 3) ) elif order == 3: return ( torch.exp(interval_end_cov) * (
1,278
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_sasolver.py
(interval_end_cov**3 - 3 * interval_end_cov**2 + 6 * interval_end_cov - 6) - (interval_start_cov**3 - 3 * interval_start_cov**2 + 6 * interval_start_cov - 6) * torch.exp(-(interval_end_cov - interval_start_cov)) ) / ((1 + tau**2) ** 4) )
1,278
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_sasolver.py
def lagrange_polynomial_coefficient(self, order, lambda_list): """ Calculate the coefficient of lagrange polynomial """
1,278
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_sasolver.py
assert order in [0, 1, 2, 3] assert order == len(lambda_list) - 1 if order == 0: return [[1]] elif order == 1: return [ [ 1 / (lambda_list[0] - lambda_list[1]), -lambda_list[1] / (lambda_list[0] - lambda_list[1]), ], [ 1 / (lambda_list[1] - lambda_list[0]), -lambda_list[0] / (lambda_list[1] - lambda_list[0]), ], ] elif order == 2: denominator1 = (lambda_list[0] - lambda_list[1]) * (lambda_list[0] - lambda_list[2]) denominator2 = (lambda_list[1] - lambda_list[0]) * (lambda_list[1] - lambda_list[2]) denominator3 = (lambda_list[2] - lambda_list[0]) * (lambda_list[2] - lambda_list[1]) return [ [ 1 / denominator1, (-lambda_list[1] - lambda_list[2]) / denominator1,
1,278
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_sasolver.py
lambda_list[1] * lambda_list[2] / denominator1, ], [ 1 / denominator2, (-lambda_list[0] - lambda_list[2]) / denominator2, lambda_list[0] * lambda_list[2] / denominator2, ], [ 1 / denominator3, (-lambda_list[0] - lambda_list[1]) / denominator3, lambda_list[0] * lambda_list[1] / denominator3, ], ] elif order == 3: denominator1 = ( (lambda_list[0] - lambda_list[1]) * (lambda_list[0] - lambda_list[2]) * (lambda_list[0] - lambda_list[3]) ) denominator2 = ( (lambda_list[1] - lambda_list[0]) * (lambda_list[1] - lambda_list[2]) * (lambda_list[1] - lambda_list[3]) ) denominator3 = (
1,278
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_sasolver.py
(lambda_list[2] - lambda_list[0]) * (lambda_list[2] - lambda_list[1]) * (lambda_list[2] - lambda_list[3]) ) denominator4 = ( (lambda_list[3] - lambda_list[0]) * (lambda_list[3] - lambda_list[1]) * (lambda_list[3] - lambda_list[2]) ) return [ [ 1 / denominator1, (-lambda_list[1] - lambda_list[2] - lambda_list[3]) / denominator1, ( lambda_list[1] * lambda_list[2] + lambda_list[1] * lambda_list[3] + lambda_list[2] * lambda_list[3] ) / denominator1, (-lambda_list[1] * lambda_list[2] * lambda_list[3]) / denominator1, ], [ 1 / denominator2,
1,278
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_sasolver.py
(-lambda_list[0] - lambda_list[2] - lambda_list[3]) / denominator2, ( lambda_list[0] * lambda_list[2] + lambda_list[0] * lambda_list[3] + lambda_list[2] * lambda_list[3] ) / denominator2, (-lambda_list[0] * lambda_list[2] * lambda_list[3]) / denominator2, ], [ 1 / denominator3, (-lambda_list[0] - lambda_list[1] - lambda_list[3]) / denominator3, ( lambda_list[0] * lambda_list[1] + lambda_list[0] * lambda_list[3] + lambda_list[1] * lambda_list[3] ) / denominator3, (-lambda_list[0] * lambda_list[1] * lambda_list[3]) / denominator3, ], [ 1 / denominator4,
1,278
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_sasolver.py
(-lambda_list[0] - lambda_list[1] - lambda_list[2]) / denominator4, ( lambda_list[0] * lambda_list[1] + lambda_list[0] * lambda_list[2] + lambda_list[1] * lambda_list[2] ) / denominator4, (-lambda_list[0] * lambda_list[1] * lambda_list[2]) / denominator4, ], ]
1,278
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_sasolver.py
def get_coefficients_fn(self, order, interval_start, interval_end, lambda_list, tau): assert order in [1, 2, 3, 4] assert order == len(lambda_list), "the length of lambda list must be equal to the order" coefficients = [] lagrange_coefficient = self.lagrange_polynomial_coefficient(order - 1, lambda_list) for i in range(order): coefficient = 0 for j in range(order): if self.predict_x0: coefficient += lagrange_coefficient[i][j] * self.get_coefficients_exponential_positive( order - 1 - j, interval_start, interval_end, tau ) else: coefficient += lagrange_coefficient[i][j] * self.get_coefficients_exponential_negative( order - 1 - j, interval_start, interval_end ) coefficients.append(coefficient)
1,278
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_sasolver.py
assert len(coefficients) == order, "the length of coefficients does not match the order" return coefficients
1,278
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_sasolver.py
def stochastic_adams_bashforth_update( self, model_output: torch.Tensor, *args, sample: torch.Tensor, noise: torch.Tensor, order: int, tau: torch.Tensor, **kwargs, ) -> torch.Tensor: """ One step for the SA-Predictor. Args: model_output (`torch.Tensor`): The direct output from the learned diffusion model at the current timestep. prev_timestep (`int`): The previous discrete timestep in the diffusion chain. sample (`torch.Tensor`): A current instance of a sample created by the diffusion process. order (`int`): The order of SA-Predictor at this timestep.
1,278
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_sasolver.py
Returns: `torch.Tensor`: The sample tensor at the previous timestep. """ prev_timestep = args[0] if len(args) > 0 else kwargs.pop("prev_timestep", None) if sample is None: if len(args) > 1: sample = args[1] else: raise ValueError(" missing `sample` as a required keyward argument") if noise is None: if len(args) > 2: noise = args[2] else: raise ValueError(" missing `noise` as a required keyward argument") if order is None: if len(args) > 3: order = args[3] else: raise ValueError(" missing `order` as a required keyward argument") if tau is None: if len(args) > 4: tau = args[4] else: raise ValueError(" missing `tau` as a required keyward argument") if prev_timestep is not None: deprecate(
1,278
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_sasolver.py