text
stringlengths
1
1.02k
class_index
int64
0
271
source
stringclasses
76 values
def _check_legacy_cache2(self, dataset_module: "DatasetModule") -> Optional[str]: """Check for the old cache directory template {cache_dir}/{namespace}___{dataset_name}/{config_name}-xxx from 2.14 and 2.15""" if ( self.__module__.startswith("datasets.") and not is_remote_url(self._cache_dir_root) and not (set(self.config_kwargs) - {"data_files", "data_dir"}) ): from .packaged_modules import _PACKAGED_DATASETS_MODULES_2_15_HASHES from .utils._dill import Pickler
54
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
def update_hash_with_config_parameters(hash: str, config_parameters: dict) -> str: """ Used to update hash of packaged modules which is used for creating unique cache directories to reflect different config parameters which are passed in metadata from readme. """ params_to_exclude = {"config_name", "version", "description"} params_to_add_to_hash = { param: value for param, value in sorted(config_parameters.items()) if param not in params_to_exclude } m = Hasher() m.update(hash) m.update(params_to_add_to_hash) return m.hexdigest()
54
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
namespace = self.repo_id.split("/")[0] if self.repo_id and self.repo_id.count("/") > 0 else None with patch.object(Pickler, "_legacy_no_dict_keys_sorting", True): config_id = self.config.name + "-" + Hasher.hash({"data_files": self.config.data_files}) hash = _PACKAGED_DATASETS_MODULES_2_15_HASHES.get(self.name, "missing") if ( dataset_module.builder_configs_parameters.metadata_configs and self.config.name in dataset_module.builder_configs_parameters.metadata_configs ): hash = update_hash_with_config_parameters( hash, dataset_module.builder_configs_parameters.metadata_configs[self.config.name] ) legacy_relative_data_dir = posixpath.join( self.dataset_name if namespace is None else f"{namespace}___{self.dataset_name}", config_id, "0.0.0", hash, )
54
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
legacy_cache_dir = posixpath.join(self._cache_dir_root, legacy_relative_data_dir) if os.path.isdir(legacy_cache_dir): return legacy_relative_data_dir
54
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
@classmethod def get_all_exported_dataset_infos(cls) -> DatasetInfosDict: """Empty dict if doesn't exist Example:
54
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
```py >>> from datasets import load_dataset_builder >>> ds_builder = load_dataset_builder('vivos') >>> ds_builder.get_all_exported_dataset_infos() {'default': DatasetInfo(description='', citation='', homepage='', license='', features={'speaker_id': Value(dtype='string', id=None), 'path': Value(dtype='string', id=None), 'audio': Audio(sampling_rate=16000, mono=True, decode=True, id=None), 'sentence': Value(dtype='string', id=None)}, post_processed=None, supervised_keys=None, builder_name=None, dataset_name=None, config_name='default', version=None, splits={'train': SplitInfo(name='train', num_bytes=1722002133, num_examples=11660, shard_lengths=None, dataset_name=None), 'test': SplitInfo(name='test', num_bytes=86120227, num_examples=760, shard_lengths=None, dataset_name=None)}, download_checksums=None, download_size=1475540500, post_processing_size=None, dataset_size=1808122360, size_in_bytes=None)} ``` """
54
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
return DatasetInfosDict.from_directory(cls.get_imported_module_dir())
54
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
def get_exported_dataset_info(self) -> DatasetInfo: """Empty `DatasetInfo` if doesn't exist Example:
54
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
```py >>> from datasets import load_dataset_builder >>> ds_builder = load_dataset_builder('rotten_tomatoes') >>> ds_builder.get_exported_dataset_info() DatasetInfo(description='', citation='', homepage='', license='', features={'speaker_id': Value(dtype='string', id=None), 'path': Value(dtype='string', id=None), 'audio': Audio(sampling_rate=16000, mono=True, decode=True, id=None), 'sentence': Value(dtype='string', id=None)}, post_processed=None, supervised_keys=None, builder_name=None, dataset_name=None, config_name='default', version=None, splits={'train': SplitInfo(name='train', num_bytes=1722002133, num_examples=11660, shard_lengths=None, dataset_name=None), 'test': SplitInfo(name='test', num_bytes=86120227, num_examples=760, shard_lengths=None, dataset_name=None)}, download_checksums=None, download_size=1475540500, post_processing_size=None, dataset_size=1808122360, size_in_bytes=None) ``` """
54
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
return self.get_all_exported_dataset_infos().get(self.config.name, DatasetInfo())
54
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
def _create_builder_config( self, config_name=None, custom_features=None, **config_kwargs ) -> Tuple[BuilderConfig, str]: """Create and validate BuilderConfig object as well as a unique config id for this config. Raises ValueError if there are multiple builder configs and config_name and DEFAULT_CONFIG_NAME are None. config_kwargs override the defaults kwargs in config """ builder_config = None
54
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
# try default config if config_name is None and self.BUILDER_CONFIGS: if self.DEFAULT_CONFIG_NAME is not None: builder_config = self.builder_configs.get(self.DEFAULT_CONFIG_NAME) logger.info(f"No config specified, defaulting to: {self.dataset_name}/{builder_config.name}") else: if len(self.BUILDER_CONFIGS) > 1: if not config_kwargs: example_of_usage = ( f"load_dataset('{self.repo_id or self.dataset_name}', '{self.BUILDER_CONFIGS[0].name}')" ) raise ValueError( "Config name is missing." f"\nPlease pick one among the available configs: {list(self.builder_configs.keys())}" + f"\nExample of usage:\n\t`{example_of_usage}`" ) else:
54
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
builder_config = self.BUILDER_CONFIGS[0] logger.info( f"No config specified, defaulting to the single config: {self.dataset_name}/{builder_config.name}" )
54
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
# try to get config by name if isinstance(config_name, str): builder_config = self.builder_configs.get(config_name) if builder_config is None and self.BUILDER_CONFIGS: raise ValueError( f"BuilderConfig '{config_name}' not found. Available: {list(self.builder_configs.keys())}" ) # if not using an existing config, then create a new config on the fly if not builder_config: if config_name is not None: config_kwargs["name"] = config_name elif self.DEFAULT_CONFIG_NAME and not config_kwargs: # Use DEFAULT_CONFIG_NAME only if no config_kwargs are passed config_kwargs["name"] = self.DEFAULT_CONFIG_NAME if "version" not in config_kwargs and hasattr(self, "VERSION") and self.VERSION: config_kwargs["version"] = self.VERSION builder_config = self.BUILDER_CONFIG_CLASS(**config_kwargs)
54
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
# otherwise use the config_kwargs to overwrite the attributes else: builder_config = copy.deepcopy(builder_config) if config_kwargs else builder_config for key, value in config_kwargs.items(): if value is not None: if not hasattr(builder_config, key): raise ValueError(f"BuilderConfig {builder_config} doesn't have a '{key}' key.") setattr(builder_config, key, value) if not builder_config.name: raise ValueError(f"BuilderConfig must have a name, got {builder_config.name}") # resolve data files if needed builder_config._resolve_data_files( base_path=self.base_path, download_config=DownloadConfig(token=self.token, storage_options=self.storage_options), )
54
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
# compute the config id that is going to be used for caching config_id = builder_config.create_config_id( config_kwargs, custom_features=custom_features, ) is_custom = (config_id not in self.builder_configs) and config_id != "default" if is_custom: logger.info(f"Using custom data configuration {config_id}") else: if ( builder_config.name in self.builder_configs and builder_config != self.builder_configs[builder_config.name] ): raise ValueError( "Cannot name a custom BuilderConfig the same as an available " f"BuilderConfig. Change the name. Available BuilderConfigs: {list(self.builder_configs.keys())}" ) if not builder_config.version: raise ValueError(f"BuilderConfig {builder_config.name} must have a version") return builder_config, config_id
54
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
@classproperty @classmethod @memoize() def builder_configs(cls) -> Dict[str, BuilderConfig]: """Dictionary of pre-defined configurations for this builder class.""" configs = {config.name: config for config in cls.BUILDER_CONFIGS} if len(configs) != len(cls.BUILDER_CONFIGS): names = [config.name for config in cls.BUILDER_CONFIGS] raise ValueError(f"Names in BUILDER_CONFIGS must not be duplicated. Got {names}") return configs @property def cache_dir(self): return self._cache_dir def _use_legacy_cache_dir_if_possible(self, dataset_module: "DatasetModule"): # Check for the legacy cache directory template (datasets<3.0.0) self._legacy_relative_data_dir = ( self._check_legacy_cache2(dataset_module) or self._check_legacy_cache() or None ) self._cache_dir = self._build_cache_dir() self._output_dir = self._cache_dir
54
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
def _relative_data_dir(self, with_version=True, with_hash=True) -> str: """Relative path of this dataset in cache_dir: Will be: self.dataset_name/self.config.version/self.hash/ or if a repo_id with a namespace has been specified: self.namespace___self.dataset_name/self.config.version/self.hash/ If any of these element is missing or if ``with_version=False`` the corresponding subfolders are dropped. """ if self._legacy_relative_data_dir is not None and with_version and with_hash: return self._legacy_relative_data_dir
54
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
namespace = self.repo_id.split("/")[0] if self.repo_id and self.repo_id.count("/") > 0 else None builder_data_dir = self.dataset_name if namespace is None else f"{namespace}___{self.dataset_name}" builder_data_dir = posixpath.join(builder_data_dir, self.config_id) if with_version: builder_data_dir = posixpath.join(builder_data_dir, str(self.config.version)) if with_hash and self.hash and isinstance(self.hash, str): builder_data_dir = posixpath.join(builder_data_dir, self.hash) return builder_data_dir def _build_cache_dir(self): """Return the data directory for the current version.""" builder_data_dir = posixpath.join(self._cache_dir_root, self._relative_data_dir(with_version=False)) version_data_dir = posixpath.join(self._cache_dir_root, self._relative_data_dir(with_version=True))
54
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
def _other_versions_on_disk(): """Returns previous versions on disk.""" if not os.path.exists(builder_data_dir): return [] version_dirnames = [] for dir_name in os.listdir(builder_data_dir): try: version_dirnames.append((utils.Version(dir_name), dir_name)) except ValueError: # Invalid version (ex: incomplete data dir) pass version_dirnames.sort(reverse=True) return version_dirnames
54
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
# Check and warn if other versions exist if not is_remote_url(builder_data_dir): version_dirs = _other_versions_on_disk() if version_dirs: other_version = version_dirs[0][0] if other_version != self.config.version: warn_msg = ( f"Found a different version {str(other_version)} of dataset {self.dataset_name} in " f"cache_dir {self._cache_dir_root}. Using currently defined version " f"{str(self.config.version)}." ) logger.warning(warn_msg) return version_data_dir @abc.abstractmethod def _info(self) -> DatasetInfo: """Construct the DatasetInfo object. See `DatasetInfo` for details. Warning: This function is only called once and the result is cached for all following .info() calls.
54
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
Returns: info: (DatasetInfo) The dataset information """ raise NotImplementedError @classmethod def get_imported_module_dir(cls): """Return the path of the module of this class or subclass.""" return os.path.dirname(inspect.getfile(inspect.getmodule(cls))) def _rename(self, src: str, dst: str): rename(self._fs, src, dst)
54
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
def download_and_prepare( self, output_dir: Optional[str] = None, download_config: Optional[DownloadConfig] = None, download_mode: Optional[Union[DownloadMode, str]] = None, verification_mode: Optional[Union[VerificationMode, str]] = None, dl_manager: Optional[DownloadManager] = None, base_path: Optional[str] = None, file_format: str = "arrow", max_shard_size: Optional[Union[int, str]] = None, num_proc: Optional[int] = None, storage_options: Optional[dict] = None, **download_and_prepare_kwargs, ): """Downloads and prepares dataset for reading. Args: output_dir (`str`, *optional*): Output directory for the dataset. Default to this builder's `cache_dir`, which is inside `~/.cache/huggingface/datasets` by default.
54
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
<Added version="2.5.0"/> download_config (`DownloadConfig`, *optional*): Specific download configuration parameters. download_mode ([`DownloadMode`] or `str`, *optional*): Select the download/generate mode, default to `REUSE_DATASET_IF_EXISTS`. verification_mode ([`VerificationMode`] or `str`, defaults to `BASIC_CHECKS`): Verification mode determining the checks to run on the downloaded/processed dataset information (checksums/size/splits/...).
54
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
<Added version="2.9.1"/> dl_manager (`DownloadManager`, *optional*): Specific `DownloadManger` to use. base_path (`str`, *optional*): Base path for relative paths that are used to download files. This can be a remote url. If not specified, the value of the `base_path` attribute (`self.base_path`) will be used instead. file_format (`str`, *optional*): Format of the data files in which the dataset will be written. Supported formats: "arrow", "parquet". Default to "arrow" format. If the format is "parquet", then image and audio data are embedded into the Parquet files instead of pointing to local files.
54
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
<Added version="2.5.0"/> max_shard_size (`Union[str, int]`, *optional*): Maximum number of bytes written per shard, default is "500MB". The size is based on uncompressed data size, so in practice your shard files may be smaller than `max_shard_size` thanks to Parquet compression for example. <Added version="2.5.0"/> num_proc (`int`, *optional*, defaults to `None`): Number of processes when downloading and generating the dataset locally. Multiprocessing is disabled by default. <Added version="2.7.0"/> storage_options (`dict`, *optional*): Key/value pairs to be passed on to the caching file-system backend, if any. <Added version="2.5.0"/> **download_and_prepare_kwargs (additional keyword arguments): Keyword arguments. Example:
54
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
Download and prepare the dataset as Arrow files that can be loaded as a Dataset using `builder.as_dataset()`: ```py >>> from datasets import load_dataset_builder >>> builder = load_dataset_builder("rotten_tomatoes") >>> builder.download_and_prepare() ``` Download and prepare the dataset as sharded Parquet files locally: ```py >>> from datasets import load_dataset_builder >>> builder = load_dataset_builder("rotten_tomatoes") >>> builder.download_and_prepare("./output_dir", file_format="parquet") ``` Download and prepare the dataset as sharded Parquet files in a cloud storage:
54
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
```py >>> from datasets import load_dataset_builder >>> storage_options = {"key": aws_access_key_id, "secret": aws_secret_access_key} >>> builder = load_dataset_builder("rotten_tomatoes") >>> builder.download_and_prepare("s3://my-bucket/my_rotten_tomatoes", storage_options=storage_options, file_format="parquet") ``` """ output_dir = output_dir if output_dir is not None else self._cache_dir # output_dir can be a remote bucket on GCS or S3 fs, output_dir = url_to_fs(output_dir, **(storage_options or {})) self._fs = fs self._output_dir = output_dir if not is_remote_filesystem(self._fs) else self._fs.unstrip_protocol(output_dir) download_mode = DownloadMode(download_mode or DownloadMode.REUSE_DATASET_IF_EXISTS) verification_mode = VerificationMode(verification_mode or VerificationMode.BASIC_CHECKS) base_path = base_path if base_path is not None else self.base_path
54
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
if file_format is not None and file_format not in ["arrow", "parquet"]: raise ValueError(f"Unsupported file_format: {file_format}. Expected 'arrow' or 'parquet'") self._file_format = file_format if self._fs._strip_protocol(self._output_dir) == "": # We don't support the root directory, because it has no dirname, # and we need a dirname to use a <dirname>.incomplete directory # when the dataset is being written raise RuntimeError( f"Unable to download and prepare the dataset at the root {self._output_dir}. " f"Please specify a subdirectory, e.g. '{self._output_dir + self.dataset_name}'" )
54
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
if dl_manager is None: if download_config is None: download_config = DownloadConfig( cache_dir=self._cache_downloaded_dir, force_download=download_mode == DownloadMode.FORCE_REDOWNLOAD, force_extract=download_mode == DownloadMode.FORCE_REDOWNLOAD, use_etag=False, num_proc=num_proc, token=self.token, storage_options=self.storage_options, ) # We don't use etag for data files to speed up the process dl_manager = DownloadManager( dataset_name=self.dataset_name, download_config=download_config, data_dir=self.config.data_dir, base_path=base_path, record_checksums=(self._record_infos or verification_mode == VerificationMode.ALL_CHECKS), )
54
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
is_local = not is_remote_filesystem(self._fs) self.dl_manager = dl_manager # Prevent parallel local disk operations if is_local: # Create parent directory of the output_dir to put the lock file in there Path(self._output_dir).parent.mkdir(parents=True, exist_ok=True) lock_path = self._output_dir + "_builder.lock"
54
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
# File locking only with local paths; no file locking on GCS or S3 with FileLock(lock_path) if is_local else contextlib.nullcontext(): # Check if the data already exists data_exists = self._fs.exists(posixpath.join(self._output_dir, config.DATASET_INFO_FILENAME)) if data_exists and download_mode == DownloadMode.REUSE_DATASET_IF_EXISTS: logger.info(f"Found cached dataset {self.dataset_name} ({self._output_dir})") # We need to update the info in case some splits were added in the meantime # for example when calling load_dataset from multiple workers. self.info = self._load_info() self.download_post_processing_resources(dl_manager) return
54
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
logger.info(f"Generating dataset {self.dataset_name} ({self._output_dir})") if is_local: # if cache dir is local, check for available space if not has_sufficient_disk_space( self.info.size_in_bytes or 0, directory=Path(self._output_dir).parent ): raise OSError( f"Not enough disk space. Needed: {size_str(self.info.size_in_bytes or 0)} (download: {size_str(self.info.download_size or 0)}, generated: {size_str(self.info.dataset_size or 0)}, post-processed: {size_str(self.info.post_processing_size or 0)})" )
54
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
@contextlib.contextmanager def incomplete_dir(dirname): """Create temporary dir for dirname and rename on exit.""" if not is_local: self._fs.makedirs(dirname, exist_ok=True) yield dirname else: tmp_dir = dirname + ".incomplete" os.makedirs(tmp_dir, exist_ok=True) try: yield tmp_dir if os.path.isdir(dirname): shutil.rmtree(dirname) # LocalFileSystem.mv does copy + rm, it is more efficient to simply rename a local directory shutil.move(tmp_dir, dirname) finally: if os.path.exists(tmp_dir): shutil.rmtree(tmp_dir)
54
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
# Print is intentional: we want this to always go to stdout so user has # information needed to cancel download/preparation if needed. # This comes right before the progress bar. if self.info.size_in_bytes: logger.info( f"Downloading and preparing dataset {self.dataset_name}/{self.config.name} " f"(download: {size_str(self.info.download_size)}, generated: {size_str(self.info.dataset_size)}, " f"post-processed: {size_str(self.info.post_processing_size)}, " f"total: {size_str(self.info.size_in_bytes)}) to {self._output_dir}..." ) else: _dest = self._fs._strip_protocol(self._output_dir) if is_local else self._output_dir logger.info(f"Downloading and preparing dataset {self.dataset_name}/{self.config.name} to {_dest}...") self._check_manual_download(dl_manager)
54
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
# Create a tmp dir and rename to self._output_dir on successful exit. with incomplete_dir(self._output_dir) as tmp_output_dir: # Temporarily assign _output_dir to tmp_data_dir to avoid having to forward # it to every sub function. with temporary_assignment(self, "_output_dir", tmp_output_dir): prepare_split_kwargs = {"file_format": file_format} if max_shard_size is not None: prepare_split_kwargs["max_shard_size"] = max_shard_size if num_proc is not None: prepare_split_kwargs["num_proc"] = num_proc self._download_and_prepare( dl_manager=dl_manager, verification_mode=verification_mode, **prepare_split_kwargs, **download_and_prepare_kwargs, ) # Sync info
54
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
self.info.dataset_size = sum(split.num_bytes for split in self.info.splits.values()) self.info.download_checksums = dl_manager.get_recorded_sizes_checksums() if self.info.download_size is not None: self.info.size_in_bytes = self.info.dataset_size + self.info.download_size # Save info self._save_info()
54
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
# Download post processing resources self.download_post_processing_resources(dl_manager) logger.info( f"Dataset {self.dataset_name} downloaded and prepared to {self._output_dir}. " f"Subsequent calls will reuse this data." ) def _check_manual_download(self, dl_manager): if self.manual_download_instructions is not None and dl_manager.manual_dir is None: raise ManualDownloadError( textwrap.dedent( f"""\ The dataset {self.dataset_name} with config {self.config.name} requires manual data. Please follow the manual download instructions: {self.manual_download_instructions} Manual data can be loaded with: datasets.load_dataset("{self.repo_id or self.dataset_name}", data_dir="<path/to/manual/data>")""" ) )
54
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
def _download_and_prepare(self, dl_manager, verification_mode, **prepare_split_kwargs): """Downloads and prepares dataset for reading. This is the internal implementation to overwrite called when user calls `download_and_prepare`. It should download all required data and generate the pre-processed datasets files.
54
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
Args: dl_manager ([`DownloadManager`]): `DownloadManager` used to download and cache data. verification_mode ([`VerificationMode`]): if `ALL_CHECKS`, perform all the verifications including checksums. if `BASIC_CHECKS`, do not perform checksums, only perform split tests. if `NO_CHECKS`, do not perform any verification. prepare_split_kwargs: Additional options, such as `file_format`, `max_shard_size` """ # Generating data for all splits split_dict = SplitDict(dataset_name=self.dataset_name) split_generators_kwargs = self._make_split_generators_kwargs(prepare_split_kwargs) split_generators = self._split_generators(dl_manager, **split_generators_kwargs)
54
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
# Checksums verification if verification_mode == VerificationMode.ALL_CHECKS and dl_manager.record_checksums: verify_checksums( self.info.download_checksums, dl_manager.get_recorded_sizes_checksums(), "dataset source files" ) # Build splits for split_generator in split_generators: if str(split_generator.split_info.name).lower() == "all": raise ValueError( "`all` is a special split keyword corresponding to the " "union of all splits, so cannot be used as key in " "._split_generator()." ) logger.info(f"Generating {split_generator.split_info.name} split") split_dict.add(split_generator.split_info)
54
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
try: # Prepare split will record examples associated to the split self._prepare_split(split_generator, **prepare_split_kwargs) except OSError as e: raise OSError( "Cannot find data file. " + (self.manual_download_instructions or "") + "\nOriginal error:\n" + str(e) ) from None # If check_duplicates is set to True , then except DuplicatedKeysError except DuplicatedKeysError as e: raise DuplicatedKeysError( e.key, e.duplicate_key_indices, fix_msg=f"To avoid duplicate keys, please fix the dataset script {self.name}.py", ) from None dl_manager.manage_extracted_files()
54
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
if verification_mode == VerificationMode.BASIC_CHECKS or verification_mode == VerificationMode.ALL_CHECKS: verify_splits(self.info.splits, split_dict) # Update the info object with the splits. self.info.splits = split_dict self.info.download_size = dl_manager.downloaded_size
54
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
def download_post_processing_resources(self, dl_manager): for split in self.info.splits or []: for resource_name, resource_file_name in self._post_processing_resources(split).items(): if not not is_remote_filesystem(self._fs): raise NotImplementedError(f"Post processing is not supported on filesystem {self._fs}") if os.sep in resource_file_name: raise ValueError(f"Resources shouldn't be in a sub-directory: {resource_file_name}") resource_path = os.path.join(self._output_dir, resource_file_name) if not os.path.exists(resource_path): downloaded_resource_path = self._download_post_processing_resources( split, resource_name, dl_manager ) if downloaded_resource_path: logger.info(f"Downloaded post-processing resource {resource_name} as {resource_file_name}")
54
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
shutil.move(downloaded_resource_path, resource_path)
54
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
def _load_info(self) -> DatasetInfo: return DatasetInfo.from_directory(self._output_dir, storage_options=self._fs.storage_options) def _save_info(self): file_lock = ( FileLock(self._output_dir + "_info.lock") if not is_remote_filesystem(self._fs) else contextlib.nullcontext() ) with file_lock: self.info.write_to_directory(self._output_dir, storage_options=self._fs.storage_options) def _save_infos(self): file_lock = ( FileLock(self._output_dir + "_infos.lock") if not is_remote_filesystem(self._fs) else contextlib.nullcontext() ) with file_lock: DatasetInfosDict(**{self.config.name: self.info}).write_to_directory(self.get_imported_module_dir()) def _make_split_generators_kwargs(self, prepare_split_kwargs): """Get kwargs for `self._split_generators()` from `prepare_split_kwargs`.""" del prepare_split_kwargs return {}
54
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
def as_dataset( self, split: Optional[Split] = None, run_post_process=True, verification_mode: Optional[Union[VerificationMode, str]] = None, in_memory=False, ) -> Union[Dataset, DatasetDict]: """Return a Dataset for the specified split. Args: split (`datasets.Split`): Which subset of the data to return. run_post_process (`bool`, defaults to `True`): Whether to run post-processing dataset transforms and/or add indexes. verification_mode ([`VerificationMode`] or `str`, defaults to `BASIC_CHECKS`): Verification mode determining the checks to run on the downloaded/processed dataset information (checksums/size/splits/...). <Added version="2.9.1"/> in_memory (`bool`, defaults to `False`): Whether to copy the data in-memory. Returns: datasets.Dataset Example:
54
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
```py >>> from datasets import load_dataset_builder >>> builder = load_dataset_builder('rotten_tomatoes') >>> builder.download_and_prepare() >>> ds = builder.as_dataset(split='train') >>> ds Dataset({ features: ['text', 'label'], num_rows: 8530 }) ``` """ if self._file_format is not None and self._file_format != "arrow": raise FileFormatError('Loading a dataset not written in the "arrow" format is not supported.') if is_remote_filesystem(self._fs): raise NotImplementedError(f"Loading a dataset cached in a {type(self._fs).__name__} is not supported.") if not os.path.exists(self._output_dir): raise FileNotFoundError( f"Dataset {self.dataset_name}: could not find data in {self._output_dir}. Please make sure to call " "builder.download_and_prepare(), or use "
54
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
"datasets.load_dataset() before trying to access the Dataset object." )
54
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
logger.debug(f"Constructing Dataset for split {split or ', '.join(self.info.splits)}, from {self._output_dir}") # By default, return all splits if split is None: split = {s: s for s in self.info.splits} verification_mode = VerificationMode(verification_mode or VerificationMode.BASIC_CHECKS) # Create a dataset for each of the given splits datasets = map_nested( partial( self._build_single_dataset, run_post_process=run_post_process, verification_mode=verification_mode, in_memory=in_memory, ), split, map_tuple=True, disable_tqdm=True, ) if isinstance(datasets, dict): datasets = DatasetDict(datasets) return datasets
54
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
def _build_single_dataset( self, split: Union[str, ReadInstruction, Split], run_post_process: bool, verification_mode: VerificationMode, in_memory: bool = False, ): """as_dataset for a single split.""" if not isinstance(split, ReadInstruction): split = str(split) if split == "all": split = "+".join(self.info.splits.keys()) split = Split(split)
54
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
# Build base dataset ds = self._as_dataset( split=split, in_memory=in_memory, ) if run_post_process: for resource_file_name in self._post_processing_resources(split).values(): if os.sep in resource_file_name: raise ValueError(f"Resources shouldn't be in a sub-directory: {resource_file_name}") resources_paths = { resource_name: os.path.join(self._output_dir, resource_file_name) for resource_name, resource_file_name in self._post_processing_resources(split).items() } post_processed = self._post_process(ds, resources_paths) if post_processed is not None: ds = post_processed recorded_checksums = {} record_checksums = False for resource_name, resource_path in resources_paths.items(): size_checksum = get_size_checksum_dict(resource_path)
54
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
recorded_checksums[resource_name] = size_checksum if verification_mode == VerificationMode.ALL_CHECKS and record_checksums: if self.info.post_processed is None or self.info.post_processed.resources_checksums is None: expected_checksums = None else: expected_checksums = self.info.post_processed.resources_checksums.get(split) verify_checksums(expected_checksums, recorded_checksums, "post processing resources") if self.info.post_processed is None: self.info.post_processed = PostProcessedInfo() if self.info.post_processed.resources_checksums is None: self.info.post_processed.resources_checksums = {} self.info.post_processed.resources_checksums[str(split)] = recorded_checksums self.info.post_processing_size = sum( checksums_dict["num_bytes"]
54
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
for split_checksums_dicts in self.info.post_processed.resources_checksums.values() for checksums_dict in split_checksums_dicts.values() ) if self.info.dataset_size is not None and self.info.download_size is not None: self.info.size_in_bytes = ( self.info.dataset_size + self.info.download_size + self.info.post_processing_size ) self._save_info() ds._info.post_processed = self.info.post_processed ds._info.post_processing_size = self.info.post_processing_size ds._info.size_in_bytes = self.info.size_in_bytes if self.info.post_processed.features is not None: if self.info.post_processed.features.type != ds.features.type: raise ValueError(
54
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
f"Post-processed features info don't match the dataset:\nGot\n{self.info.post_processed.features}\nbut expected something like\n{ds.features}" ) else: ds.info.features = self.info.post_processed.features
54
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
return ds def _as_dataset(self, split: Union[ReadInstruction, Split] = Split.TRAIN, in_memory: bool = False) -> Dataset: """Constructs a `Dataset`. This is the internal implementation to overwrite called when user calls `as_dataset`. It should read the pre-processed datasets files and generate the `Dataset` object. Args: split (`datasets.Split`): which subset of the data to read. in_memory (`bool`, defaults to `False`): Whether to copy the data in-memory.
54
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
Returns: `Dataset` """ cache_dir = self._fs._strip_protocol(self._output_dir) dataset_name = self.dataset_name if self._check_legacy_cache(): dataset_name = self.name dataset_kwargs = ArrowReader(cache_dir, self.info).read( name=dataset_name, instructions=split, split_infos=self.info.splits.values(), in_memory=in_memory, ) fingerprint = self._get_dataset_fingerprint(split) return Dataset(fingerprint=fingerprint, **dataset_kwargs)
54
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
def _get_dataset_fingerprint(self, split: Union[ReadInstruction, Split]) -> str: """The dataset fingerprint is the hash of the relative directory dataset_name/config_name/version/hash, as well as the split specs.""" hasher = Hasher() hasher.update(Path(self._relative_data_dir()).as_posix()) hasher.update(str(split)) # for example: train, train+test, train[:10%], test[:33%](pct1_dropremainder) fingerprint = hasher.hexdigest() return fingerprint def as_streaming_dataset( self, split: Optional[str] = None, base_path: Optional[str] = None, ) -> Union[Dict[str, IterableDataset], IterableDataset]: if is_remote_filesystem(self._fs): raise NotImplementedError( f"Loading a streaming dataset cached in a {type(self._fs).__name__} is not supported yet." )
54
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
dl_manager = StreamingDownloadManager( base_path=base_path or self.base_path, download_config=DownloadConfig(token=self.token, storage_options=self.storage_options), dataset_name=self.dataset_name, data_dir=self.config.data_dir, ) self._check_manual_download(dl_manager) splits_generators = {sg.name: sg for sg in self._split_generators(dl_manager)} # By default, return all splits if split is None: splits_generator = splits_generators elif split in splits_generators: splits_generator = splits_generators[split] else: raise ValueError(f"Bad split: {split}. Available splits: {list(splits_generators)}")
54
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
# Create a dataset for each of the given splits datasets = map_nested( self._as_streaming_dataset_single, splits_generator, map_tuple=True, ) if isinstance(datasets, dict): datasets = IterableDatasetDict(datasets) return datasets def _as_streaming_dataset_single( self, splits_generator, ) -> IterableDataset: ex_iterable = self._get_examples_iterable_for_split(splits_generator) # add auth to be able to access and decode audio/image files from private repositories. token_per_repo_id = {self.repo_id: self.token} if self.repo_id else {} return IterableDataset( ex_iterable, info=self.info, split=splits_generator.name, token_per_repo_id=token_per_repo_id ) def _post_process(self, dataset: Dataset, resources_paths: Mapping[str, str]) -> Optional[Dataset]: """Run dataset transforms or add indexes""" return None
54
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
def _post_processing_resources(self, split: str) -> Dict[str, str]: """Mapping resource_name -> resource_file_name""" return {} def _download_post_processing_resources( self, split: str, resource_name: str, dl_manager: DownloadManager ) -> Optional[str]: """Download the resource using the download manager and return the downloaded path.""" return None @abc.abstractmethod def _split_generators(self, dl_manager: Union[DownloadManager, StreamingDownloadManager]): """Specify feature dictionary generators and dataset splits. This function returns a list of `SplitGenerator`s defining how to generate data and what splits to use. Example:
54
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={'file': 'train_data.zip'}, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={'file': 'test_data.zip'}, ), ] The above code will first call `_generate_examples(file='train_data.zip')` to write the train data, then `_generate_examples(file='test_data.zip')` to write the test data. Datasets are typically split into different subsets to be used at various stages of training and evaluation. Note that for datasets without a `VALIDATION` split, you can use a fraction of the `TRAIN` data for evaluation as you iterate on your model so as not to overfit to the `TEST` data.
54
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
For downloads and extractions, use the given `download_manager`. Note that the `DownloadManager` caches downloads, so it is fine to have each generator attempt to download the source data. A good practice is to download all data in this function, and then distribute the relevant parts to each split with the `gen_kwargs` argument Args: dl_manager (`Union[DownloadManager, StreamingDownloadManager]`): Download manager to download the data Returns: `list<SplitGenerator>`. """ raise NotImplementedError() @abc.abstractmethod def _prepare_split( self, split_generator: SplitGenerator, file_format: str = "arrow", max_shard_size: Optional[Union[str, int]] = None, num_proc: Optional[int] = None, **kwargs, ): """Generate the examples and record them on disk.
54
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
Args: split_generator (`SplitGenerator`): Split generator to process file_format (`str`, *optional*): format of the data files in which the dataset will be written. Supported formats: "arrow", "parquet". Default to "arrow" format. max_shard_size (`Union[str, int]`, *optional*): Maximum number of bytes written per shard, default is "500MB". The size is based on uncompressed data size, so in practice your shard files may be smaller than `max_shard_size` thanks to Parquet compression for example. num_proc (`int`, *optional*, defaults to `None`): Number of processes when downloading and generating the dataset locally. Multiprocessing is disabled by default. <Added version="2.7.0"/> **kwargs: Additional kwargs forwarded from _download_and_prepare """ raise NotImplementedError()
54
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
def _get_examples_iterable_for_split(self, split_generator: SplitGenerator) -> ExamplesIterable: """Generate the examples on the fly. Args: split_generator (`SplitGenerator`): Split generator to process """ raise NotImplementedError()
54
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
class GeneratorBasedBuilder(DatasetBuilder): """Base class for datasets with data generation based on dict generators. `GeneratorBasedBuilder` is a convenience class that abstracts away much of the data writing and reading of `DatasetBuilder`. It expects subclasses to implement generators of feature dictionaries across the dataset splits (`_split_generators`). See the method docstrings for details. """ @abc.abstractmethod def _generate_examples(self, **kwargs): """Default function generating examples for each `SplitGenerator`. This function preprocess the examples from the raw data to the preprocessed dataset files. This function is called once for each `SplitGenerator` defined in `_split_generators`. The examples yielded here will be written on disk. Args: **kwargs (additional keyword arguments): Arguments forwarded from the SplitGenerator.gen_kwargs
55
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
Yields: key: `str` or `int`, a unique deterministic example identification key. * Unique: An error will be raised if two examples are yield with the same key. * Deterministic: When generating the dataset twice, the same example should have the same key. Good keys can be the image id, or line number if examples are extracted from a text file. The key will be hashed and sorted to shuffle examples deterministically, such as generating the dataset multiple times keep examples in the same order. example: `dict<str feature_name, feature_value>`, a feature dictionary ready to be encoded and written to disk. The example will be encoded with `self.info.features.encode_example({...})`. """ raise NotImplementedError()
55
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
def _prepare_split( self, split_generator: SplitGenerator, check_duplicate_keys: bool, file_format="arrow", num_proc: Optional[int] = None, max_shard_size: Optional[Union[int, str]] = None, ): max_shard_size = convert_file_size_to_int(max_shard_size or config.MAX_SHARD_SIZE) if self.info.splits is not None: split_info = self.info.splits[split_generator.name] else: split_info = split_generator.split_info SUFFIX = "-JJJJJ-SSSSS-of-NNNNN" fname = f"{self.dataset_name}-{split_generator.name}{SUFFIX}.{file_format}" fpath = posixpath.join(self._output_dir, fname)
55
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
if num_proc and num_proc > 1: num_input_shards = _number_of_shards_in_gen_kwargs(split_generator.gen_kwargs) if num_input_shards <= 1: logger.warning( f"Setting num_proc from {num_proc} back to 1 for the {split_info.name} split to disable multiprocessing as it only contains one shard." ) num_proc = 1 elif num_input_shards < num_proc: logger.warning( f"Setting num_proc from {num_proc} to {num_input_shards} for the {split_info.name} split as it only contains {num_input_shards} shards." ) num_proc = num_input_shards pbar = hf_tqdm( unit=" examples", total=split_info.num_examples, desc=f"Generating {split_info.name} split", )
55
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
_prepare_split_args = { "fpath": fpath, "file_format": file_format, "max_shard_size": max_shard_size, "split_info": split_info, "check_duplicate_keys": check_duplicate_keys, }
55
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
if num_proc is None or num_proc == 1: result = None gen_kwargs = split_generator.gen_kwargs job_id = 0 with pbar: for job_id, done, content in self._prepare_split_single( gen_kwargs=gen_kwargs, job_id=job_id, **_prepare_split_args ): if done: result = content else: pbar.update(content) # wrapping everything into lists for consistency with the multiprocessed code path assert result is not None, "Failed to retrieve results from prepare_split" examples_per_job, bytes_per_job, features_per_job, shards_per_job, shard_lengths_per_job = [ [item] for item in result ] else: kwargs_per_job = [ {"gen_kwargs": gen_kwargs, "job_id": job_id, **_prepare_split_args} for job_id, gen_kwargs in enumerate(
55
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
_split_gen_kwargs(split_generator.gen_kwargs, max_num_jobs=num_proc) ) ] num_jobs = len(kwargs_per_job)
55
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
examples_per_job = [None] * num_jobs bytes_per_job = [None] * num_jobs features_per_job = [None] * num_jobs shards_per_job = [None] * num_jobs shard_lengths_per_job = [None] * num_jobs
55
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
with Pool(num_proc) as pool: with pbar: for job_id, done, content in iflatmap_unordered( pool, self._prepare_split_single, kwargs_iterable=kwargs_per_job ): if done: # the content is the result of the job ( examples_per_job[job_id], bytes_per_job[job_id], features_per_job[job_id], shards_per_job[job_id], shard_lengths_per_job[job_id], ) = content else: # the content is the number of examples progress update pbar.update(content)
55
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
assert None not in examples_per_job, ( f"Failed to retrieve results from prepare_split: result list {examples_per_job} still contains None - at least one worker failed to return its results" ) total_shards = sum(shards_per_job) total_num_examples = sum(examples_per_job) total_num_bytes = sum(bytes_per_job) features = features_per_job[0] split_generator.split_info.num_examples = total_num_examples split_generator.split_info.num_bytes = total_num_bytes # should rename everything at the end logger.debug(f"Renaming {total_shards} shards.") if total_shards > 1: # use the -SSSSS-of-NNNNN pattern
55
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
def _rename_shard(shard_and_job: Tuple[int]): shard_id, job_id = shard_and_job global_shard_id = sum(shards_per_job[:job_id]) + shard_id self._rename( fpath.replace("SSSSS", f"{shard_id:05d}").replace("JJJJJ", f"{job_id:05d}"), fpath.replace("JJJJJ-SSSSS", f"{global_shard_id:05d}").replace("NNNNN", f"{total_shards:05d}"), ) shards_and_jobs = [ (shard_id, job_id) for job_id, num_shards in enumerate(shards_per_job) for shard_id in range(num_shards) ] thread_map(_rename_shard, shards_and_jobs, disable=True, max_workers=64)
55
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
split_generator.split_info.shard_lengths = [ shard_length for shard_lengths in shard_lengths_per_job for shard_length in shard_lengths ] else: # don't use any pattern shard_id, job_id = 0, 0 self._rename( fpath.replace("SSSSS", f"{shard_id:05d}").replace("JJJJJ", f"{job_id:05d}"), fpath.replace(SUFFIX, ""), ) if self.info.features is None: self.info.features = features
55
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
def _prepare_split_single( self, gen_kwargs: dict, fpath: str, file_format: str, max_shard_size: int, split_info: SplitInfo, check_duplicate_keys: bool, job_id: int, ) -> Iterable[Tuple[int, bool, Union[int, tuple]]]: generator = self._generate_examples(**gen_kwargs) writer_class = ParquetWriter if file_format == "parquet" else ArrowWriter embed_local_files = file_format == "parquet" shard_lengths = [] total_num_examples, total_num_bytes = 0, 0
55
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
shard_id = 0 num_examples_progress_update = 0 try: writer = writer_class( features=self.info.features, path=fpath.replace("SSSSS", f"{shard_id:05d}").replace("JJJJJ", f"{job_id:05d}"), writer_batch_size=self._writer_batch_size, hash_salt=split_info.name, check_duplicates=check_duplicate_keys, storage_options=self._fs.storage_options, embed_local_files=embed_local_files, ) try: _time = time.time() for key, record in generator: if max_shard_size is not None and writer._num_bytes > max_shard_size: num_examples, num_bytes = writer.finalize() writer.close() shard_lengths.append(num_examples) total_num_examples += num_examples total_num_bytes += num_bytes
55
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
shard_id += 1 writer = writer_class( features=writer._features, path=fpath.replace("SSSSS", f"{shard_id:05d}").replace("JJJJJ", f"{job_id:05d}"), writer_batch_size=self._writer_batch_size, hash_salt=split_info.name, check_duplicates=check_duplicate_keys, storage_options=self._fs.storage_options, embed_local_files=embed_local_files, ) example = self.info.features.encode_example(record) if self.info.features is not None else record writer.write(example, key) num_examples_progress_update += 1 if time.time() > _time + config.PBAR_REFRESH_TIME_INTERVAL: _time = time.time() yield job_id, False, num_examples_progress_update
55
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
num_examples_progress_update = 0 finally: yield job_id, False, num_examples_progress_update num_shards = shard_id + 1 num_examples, num_bytes = writer.finalize() writer.close() shard_lengths.append(num_examples) total_num_examples += num_examples total_num_bytes += num_bytes except Exception as e: # Ignore the writer's error for no examples written to the file if this error was caused by the error in _generate_examples before the first example was yielded if isinstance(e, SchemaInferenceError) and e.__context__ is not None: e = e.__context__ raise DatasetGenerationError("An error occurred while generating the dataset") from e
55
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
yield job_id, True, (total_num_examples, total_num_bytes, writer._features, num_shards, shard_lengths) def _download_and_prepare(self, dl_manager, verification_mode, **prepare_splits_kwargs): super()._download_and_prepare( dl_manager, verification_mode, check_duplicate_keys=verification_mode == VerificationMode.BASIC_CHECKS or verification_mode == VerificationMode.ALL_CHECKS, **prepare_splits_kwargs, ) def _get_examples_iterable_for_split(self, split_generator: SplitGenerator) -> ExamplesIterable: return ExamplesIterable(self._generate_examples, split_generator.gen_kwargs)
55
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
class ArrowBasedBuilder(DatasetBuilder): """Base class for datasets with data generation based on Arrow loading functions (CSV/JSON/Parquet).""" @abc.abstractmethod def _generate_tables(self, **kwargs): """Default function generating examples for each `SplitGenerator`. This function preprocess the examples from the raw data to the preprocessed dataset files. This function is called once for each `SplitGenerator` defined in `_split_generators`. The examples yielded here will be written on disk. Args: **kwargs (additional keyword arguments): Arguments forwarded from the SplitGenerator.gen_kwargs
56
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
Yields: key: `str` or `int`, a unique deterministic example identification key. * Unique: An error will be raised if two examples are yield with the same key. * Deterministic: When generating the dataset twice, the same example should have the same key. Good keys can be the image id, or line number if examples are extracted from a text file. The key will be hashed and sorted to shuffle examples deterministically, such as generating the dataset multiple times keep examples in the same order. example: `pyarrow.Table`, a feature table ready to be encoded and written to disk. """ raise NotImplementedError()
56
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
def _prepare_split( self, split_generator: SplitGenerator, file_format: str = "arrow", num_proc: Optional[int] = None, max_shard_size: Optional[Union[str, int]] = None, ): max_shard_size = convert_file_size_to_int(max_shard_size or config.MAX_SHARD_SIZE) try: split_info = self.info.splits[split_generator.name] except Exception: split_info = split_generator.split_info SUFFIX = "-JJJJJ-SSSSS-of-NNNNN" fname = f"{self.dataset_name}-{split_generator.name}{SUFFIX}.{file_format}" fpath = posixpath.join(self._output_dir, fname)
56
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
if num_proc and num_proc > 1: num_input_shards = _number_of_shards_in_gen_kwargs(split_generator.gen_kwargs) if num_input_shards <= 1: logger.warning( f"Setting num_proc from {num_proc} back to 1 for the {split_info.name} split to disable multiprocessing as it only contains one shard." ) num_proc = 1 elif num_input_shards < num_proc: logger.warning( f"Setting num_proc from {num_proc} to {num_input_shards} for the {split_info.name} split as it only contains {num_input_shards} shards." ) num_proc = num_input_shards pbar = hf_tqdm( unit=" examples", total=split_info.num_examples, desc=f"Generating {split_info.name} split", ) _prepare_split_args = { "fpath": fpath, "file_format": file_format, "max_shard_size": max_shard_size, }
56
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
if num_proc is None or num_proc == 1: result = None gen_kwargs = split_generator.gen_kwargs job_id = 0 with pbar: for job_id, done, content in self._prepare_split_single( gen_kwargs=gen_kwargs, job_id=job_id, **_prepare_split_args ): if done: result = content else: pbar.update(content) # wrapping everything into lists for consistency with the multiprocessed code path assert result is not None, "Failed to retrieve results from prepare_split" examples_per_job, bytes_per_job, features_per_job, shards_per_job, shard_lengths_per_job = [ [item] for item in result ] else: kwargs_per_job = [ {"gen_kwargs": gen_kwargs, "job_id": job_id, **_prepare_split_args} for job_id, gen_kwargs in enumerate(
56
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
_split_gen_kwargs(split_generator.gen_kwargs, max_num_jobs=num_proc) ) ] num_jobs = len(kwargs_per_job)
56
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
examples_per_job = [None] * num_jobs bytes_per_job = [None] * num_jobs features_per_job = [None] * num_jobs shards_per_job = [None] * num_jobs shard_lengths_per_job = [None] * num_jobs
56
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
with Pool(num_proc) as pool: with pbar: for job_id, done, content in iflatmap_unordered( pool, self._prepare_split_single, kwargs_iterable=kwargs_per_job ): if done: # the content is the result of the job ( examples_per_job[job_id], bytes_per_job[job_id], features_per_job[job_id], shards_per_job[job_id], shard_lengths_per_job[job_id], ) = content else: # the content is the number of examples progress update pbar.update(content)
56
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
assert None not in examples_per_job, ( f"Failed to retrieve results from prepare_split: result list {examples_per_job} still contains None - at least one worker failed to return its results" ) total_shards = sum(shards_per_job) total_num_examples = sum(examples_per_job) total_num_bytes = sum(bytes_per_job) features = features_per_job[0] split_generator.split_info.num_examples = total_num_examples split_generator.split_info.num_bytes = total_num_bytes # should rename everything at the end logger.debug(f"Renaming {total_shards} shards.") if total_shards > 1: # use the -SSSSS-of-NNNNN pattern
56
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
def _rename_shard(shard_id_and_job: Tuple[int]): shard_id, job_id = shard_id_and_job global_shard_id = sum(shards_per_job[:job_id]) + shard_id self._rename( fpath.replace("SSSSS", f"{shard_id:05d}").replace("JJJJJ", f"{job_id:05d}"), fpath.replace("JJJJJ-SSSSS", f"{global_shard_id:05d}").replace("NNNNN", f"{total_shards:05d}"), ) shard_ids_and_jobs = [ (shard_id, job_id) for job_id, num_shards in enumerate(shards_per_job) for shard_id in range(num_shards) ] thread_map(_rename_shard, shard_ids_and_jobs, disable=True, max_workers=64)
56
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
split_generator.split_info.shard_lengths = [ shard_length for shard_lengths in shard_lengths_per_job for shard_length in shard_lengths ] else: # don't use any pattern shard_id, job_id = 0, 0 self._rename( fpath.replace("SSSSS", f"{shard_id:05d}").replace("JJJJJ", f"{job_id:05d}"), fpath.replace(SUFFIX, ""), ) if self.info.features is None: self.info.features = features
56
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
def _prepare_split_single( self, gen_kwargs: dict, fpath: str, file_format: str, max_shard_size: int, job_id: int ) -> Iterable[Tuple[int, bool, Union[int, tuple]]]: gen_kwargs = {k: tracked_list(v) if isinstance(v, list) else v for k, v in gen_kwargs.items()} generator = self._generate_tables(**gen_kwargs) writer_class = ParquetWriter if file_format == "parquet" else ArrowWriter embed_local_files = file_format == "parquet" shard_lengths = [] total_num_examples, total_num_bytes = 0, 0
56
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
shard_id = 0 num_examples_progress_update = 0 try: writer = writer_class( features=self.info.features, path=fpath.replace("SSSSS", f"{shard_id:05d}").replace("JJJJJ", f"{job_id:05d}"), writer_batch_size=self._writer_batch_size, storage_options=self._fs.storage_options, embed_local_files=embed_local_files, ) try: _time = time.time() for _, table in generator: if max_shard_size is not None and writer._num_bytes > max_shard_size: num_examples, num_bytes = writer.finalize() writer.close() shard_lengths.append(num_examples) total_num_examples += num_examples total_num_bytes += num_bytes shard_id += 1 writer = writer_class(
56
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
features=writer._features, path=fpath.replace("SSSSS", f"{shard_id:05d}").replace("JJJJJ", f"{job_id:05d}"), writer_batch_size=self._writer_batch_size, storage_options=self._fs.storage_options, embed_local_files=embed_local_files, ) try: writer.write_table(table) except CastError as cast_error: raise DatasetGenerationCastError.from_cast_error( cast_error=cast_error, builder_name=self.info.builder_name, gen_kwargs=gen_kwargs, token=self.token, ) num_examples_progress_update += len(table) if time.time() > _time + config.PBAR_REFRESH_TIME_INTERVAL: _time = time.time()
56
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
yield job_id, False, num_examples_progress_update num_examples_progress_update = 0 finally: yield job_id, False, num_examples_progress_update num_shards = shard_id + 1 num_examples, num_bytes = writer.finalize() writer.close() shard_lengths.append(num_examples) total_num_examples += num_examples total_num_bytes += num_bytes except Exception as e: # Ignore the writer's error for no examples written to the file if this error was caused by the error in _generate_examples before the first example was yielded if isinstance(e, SchemaInferenceError) and e.__context__ is not None: e = e.__context__ if isinstance(e, DatasetGenerationError): raise raise DatasetGenerationError("An error occurred while generating the dataset") from e
56
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
yield job_id, True, (total_num_examples, total_num_bytes, writer._features, num_shards, shard_lengths) def _get_examples_iterable_for_split(self, split_generator: SplitGenerator) -> ExamplesIterable: return ArrowExamplesIterable(self._generate_tables, kwargs=split_generator.gen_kwargs)
56
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
class SplitsNotFoundError(ValueError): pass
57
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/inspect.py
class MissingIndex(Exception): pass
58
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/search.py