text
stringlengths 1
1.02k
| class_index
int64 0
271
| source
stringclasses 76
values |
---|---|---|
def _check_legacy_cache2(self, dataset_module: "DatasetModule") -> Optional[str]:
"""Check for the old cache directory template {cache_dir}/{namespace}___{dataset_name}/{config_name}-xxx from 2.14 and 2.15"""
if (
self.__module__.startswith("datasets.")
and not is_remote_url(self._cache_dir_root)
and not (set(self.config_kwargs) - {"data_files", "data_dir"})
):
from .packaged_modules import _PACKAGED_DATASETS_MODULES_2_15_HASHES
from .utils._dill import Pickler
| 54 |
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
|
def update_hash_with_config_parameters(hash: str, config_parameters: dict) -> str:
"""
Used to update hash of packaged modules which is used for creating unique cache directories to reflect
different config parameters which are passed in metadata from readme.
"""
params_to_exclude = {"config_name", "version", "description"}
params_to_add_to_hash = {
param: value
for param, value in sorted(config_parameters.items())
if param not in params_to_exclude
}
m = Hasher()
m.update(hash)
m.update(params_to_add_to_hash)
return m.hexdigest()
| 54 |
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
|
namespace = self.repo_id.split("/")[0] if self.repo_id and self.repo_id.count("/") > 0 else None
with patch.object(Pickler, "_legacy_no_dict_keys_sorting", True):
config_id = self.config.name + "-" + Hasher.hash({"data_files": self.config.data_files})
hash = _PACKAGED_DATASETS_MODULES_2_15_HASHES.get(self.name, "missing")
if (
dataset_module.builder_configs_parameters.metadata_configs
and self.config.name in dataset_module.builder_configs_parameters.metadata_configs
):
hash = update_hash_with_config_parameters(
hash, dataset_module.builder_configs_parameters.metadata_configs[self.config.name]
)
legacy_relative_data_dir = posixpath.join(
self.dataset_name if namespace is None else f"{namespace}___{self.dataset_name}",
config_id,
"0.0.0",
hash,
)
| 54 |
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
|
legacy_cache_dir = posixpath.join(self._cache_dir_root, legacy_relative_data_dir)
if os.path.isdir(legacy_cache_dir):
return legacy_relative_data_dir
| 54 |
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
|
@classmethod
def get_all_exported_dataset_infos(cls) -> DatasetInfosDict:
"""Empty dict if doesn't exist
Example:
| 54 |
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
|
```py
>>> from datasets import load_dataset_builder
>>> ds_builder = load_dataset_builder('vivos')
>>> ds_builder.get_all_exported_dataset_infos()
{'default': DatasetInfo(description='', citation='', homepage='', license='', features={'speaker_id': Value(dtype='string', id=None), 'path': Value(dtype='string', id=None), 'audio': Audio(sampling_rate=16000, mono=True, decode=True, id=None), 'sentence': Value(dtype='string', id=None)}, post_processed=None, supervised_keys=None, builder_name=None, dataset_name=None, config_name='default', version=None, splits={'train': SplitInfo(name='train', num_bytes=1722002133, num_examples=11660, shard_lengths=None, dataset_name=None), 'test': SplitInfo(name='test', num_bytes=86120227, num_examples=760, shard_lengths=None, dataset_name=None)}, download_checksums=None, download_size=1475540500, post_processing_size=None, dataset_size=1808122360, size_in_bytes=None)}
```
"""
| 54 |
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
|
return DatasetInfosDict.from_directory(cls.get_imported_module_dir())
| 54 |
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
|
def get_exported_dataset_info(self) -> DatasetInfo:
"""Empty `DatasetInfo` if doesn't exist
Example:
| 54 |
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
|
```py
>>> from datasets import load_dataset_builder
>>> ds_builder = load_dataset_builder('rotten_tomatoes')
>>> ds_builder.get_exported_dataset_info()
DatasetInfo(description='', citation='', homepage='', license='', features={'speaker_id': Value(dtype='string', id=None), 'path': Value(dtype='string', id=None), 'audio': Audio(sampling_rate=16000, mono=True, decode=True, id=None), 'sentence': Value(dtype='string', id=None)}, post_processed=None, supervised_keys=None, builder_name=None, dataset_name=None, config_name='default', version=None, splits={'train': SplitInfo(name='train', num_bytes=1722002133, num_examples=11660, shard_lengths=None, dataset_name=None), 'test': SplitInfo(name='test', num_bytes=86120227, num_examples=760, shard_lengths=None, dataset_name=None)}, download_checksums=None, download_size=1475540500, post_processing_size=None, dataset_size=1808122360, size_in_bytes=None)
```
"""
| 54 |
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
|
return self.get_all_exported_dataset_infos().get(self.config.name, DatasetInfo())
| 54 |
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
|
def _create_builder_config(
self, config_name=None, custom_features=None, **config_kwargs
) -> Tuple[BuilderConfig, str]:
"""Create and validate BuilderConfig object as well as a unique config id for this config.
Raises ValueError if there are multiple builder configs and config_name and DEFAULT_CONFIG_NAME are None.
config_kwargs override the defaults kwargs in config
"""
builder_config = None
| 54 |
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
|
# try default config
if config_name is None and self.BUILDER_CONFIGS:
if self.DEFAULT_CONFIG_NAME is not None:
builder_config = self.builder_configs.get(self.DEFAULT_CONFIG_NAME)
logger.info(f"No config specified, defaulting to: {self.dataset_name}/{builder_config.name}")
else:
if len(self.BUILDER_CONFIGS) > 1:
if not config_kwargs:
example_of_usage = (
f"load_dataset('{self.repo_id or self.dataset_name}', '{self.BUILDER_CONFIGS[0].name}')"
)
raise ValueError(
"Config name is missing."
f"\nPlease pick one among the available configs: {list(self.builder_configs.keys())}"
+ f"\nExample of usage:\n\t`{example_of_usage}`"
)
else:
| 54 |
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
|
builder_config = self.BUILDER_CONFIGS[0]
logger.info(
f"No config specified, defaulting to the single config: {self.dataset_name}/{builder_config.name}"
)
| 54 |
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
|
# try to get config by name
if isinstance(config_name, str):
builder_config = self.builder_configs.get(config_name)
if builder_config is None and self.BUILDER_CONFIGS:
raise ValueError(
f"BuilderConfig '{config_name}' not found. Available: {list(self.builder_configs.keys())}"
)
# if not using an existing config, then create a new config on the fly
if not builder_config:
if config_name is not None:
config_kwargs["name"] = config_name
elif self.DEFAULT_CONFIG_NAME and not config_kwargs:
# Use DEFAULT_CONFIG_NAME only if no config_kwargs are passed
config_kwargs["name"] = self.DEFAULT_CONFIG_NAME
if "version" not in config_kwargs and hasattr(self, "VERSION") and self.VERSION:
config_kwargs["version"] = self.VERSION
builder_config = self.BUILDER_CONFIG_CLASS(**config_kwargs)
| 54 |
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
|
# otherwise use the config_kwargs to overwrite the attributes
else:
builder_config = copy.deepcopy(builder_config) if config_kwargs else builder_config
for key, value in config_kwargs.items():
if value is not None:
if not hasattr(builder_config, key):
raise ValueError(f"BuilderConfig {builder_config} doesn't have a '{key}' key.")
setattr(builder_config, key, value)
if not builder_config.name:
raise ValueError(f"BuilderConfig must have a name, got {builder_config.name}")
# resolve data files if needed
builder_config._resolve_data_files(
base_path=self.base_path,
download_config=DownloadConfig(token=self.token, storage_options=self.storage_options),
)
| 54 |
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
|
# compute the config id that is going to be used for caching
config_id = builder_config.create_config_id(
config_kwargs,
custom_features=custom_features,
)
is_custom = (config_id not in self.builder_configs) and config_id != "default"
if is_custom:
logger.info(f"Using custom data configuration {config_id}")
else:
if (
builder_config.name in self.builder_configs
and builder_config != self.builder_configs[builder_config.name]
):
raise ValueError(
"Cannot name a custom BuilderConfig the same as an available "
f"BuilderConfig. Change the name. Available BuilderConfigs: {list(self.builder_configs.keys())}"
)
if not builder_config.version:
raise ValueError(f"BuilderConfig {builder_config.name} must have a version")
return builder_config, config_id
| 54 |
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
|
@classproperty
@classmethod
@memoize()
def builder_configs(cls) -> Dict[str, BuilderConfig]:
"""Dictionary of pre-defined configurations for this builder class."""
configs = {config.name: config for config in cls.BUILDER_CONFIGS}
if len(configs) != len(cls.BUILDER_CONFIGS):
names = [config.name for config in cls.BUILDER_CONFIGS]
raise ValueError(f"Names in BUILDER_CONFIGS must not be duplicated. Got {names}")
return configs
@property
def cache_dir(self):
return self._cache_dir
def _use_legacy_cache_dir_if_possible(self, dataset_module: "DatasetModule"):
# Check for the legacy cache directory template (datasets<3.0.0)
self._legacy_relative_data_dir = (
self._check_legacy_cache2(dataset_module) or self._check_legacy_cache() or None
)
self._cache_dir = self._build_cache_dir()
self._output_dir = self._cache_dir
| 54 |
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
|
def _relative_data_dir(self, with_version=True, with_hash=True) -> str:
"""Relative path of this dataset in cache_dir:
Will be:
self.dataset_name/self.config.version/self.hash/
or if a repo_id with a namespace has been specified:
self.namespace___self.dataset_name/self.config.version/self.hash/
If any of these element is missing or if ``with_version=False`` the corresponding subfolders are dropped.
"""
if self._legacy_relative_data_dir is not None and with_version and with_hash:
return self._legacy_relative_data_dir
| 54 |
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
|
namespace = self.repo_id.split("/")[0] if self.repo_id and self.repo_id.count("/") > 0 else None
builder_data_dir = self.dataset_name if namespace is None else f"{namespace}___{self.dataset_name}"
builder_data_dir = posixpath.join(builder_data_dir, self.config_id)
if with_version:
builder_data_dir = posixpath.join(builder_data_dir, str(self.config.version))
if with_hash and self.hash and isinstance(self.hash, str):
builder_data_dir = posixpath.join(builder_data_dir, self.hash)
return builder_data_dir
def _build_cache_dir(self):
"""Return the data directory for the current version."""
builder_data_dir = posixpath.join(self._cache_dir_root, self._relative_data_dir(with_version=False))
version_data_dir = posixpath.join(self._cache_dir_root, self._relative_data_dir(with_version=True))
| 54 |
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
|
def _other_versions_on_disk():
"""Returns previous versions on disk."""
if not os.path.exists(builder_data_dir):
return []
version_dirnames = []
for dir_name in os.listdir(builder_data_dir):
try:
version_dirnames.append((utils.Version(dir_name), dir_name))
except ValueError: # Invalid version (ex: incomplete data dir)
pass
version_dirnames.sort(reverse=True)
return version_dirnames
| 54 |
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
|
# Check and warn if other versions exist
if not is_remote_url(builder_data_dir):
version_dirs = _other_versions_on_disk()
if version_dirs:
other_version = version_dirs[0][0]
if other_version != self.config.version:
warn_msg = (
f"Found a different version {str(other_version)} of dataset {self.dataset_name} in "
f"cache_dir {self._cache_dir_root}. Using currently defined version "
f"{str(self.config.version)}."
)
logger.warning(warn_msg)
return version_data_dir
@abc.abstractmethod
def _info(self) -> DatasetInfo:
"""Construct the DatasetInfo object. See `DatasetInfo` for details.
Warning: This function is only called once and the result is cached for all
following .info() calls.
| 54 |
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
|
Returns:
info: (DatasetInfo) The dataset information
"""
raise NotImplementedError
@classmethod
def get_imported_module_dir(cls):
"""Return the path of the module of this class or subclass."""
return os.path.dirname(inspect.getfile(inspect.getmodule(cls)))
def _rename(self, src: str, dst: str):
rename(self._fs, src, dst)
| 54 |
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
|
def download_and_prepare(
self,
output_dir: Optional[str] = None,
download_config: Optional[DownloadConfig] = None,
download_mode: Optional[Union[DownloadMode, str]] = None,
verification_mode: Optional[Union[VerificationMode, str]] = None,
dl_manager: Optional[DownloadManager] = None,
base_path: Optional[str] = None,
file_format: str = "arrow",
max_shard_size: Optional[Union[int, str]] = None,
num_proc: Optional[int] = None,
storage_options: Optional[dict] = None,
**download_and_prepare_kwargs,
):
"""Downloads and prepares dataset for reading.
Args:
output_dir (`str`, *optional*):
Output directory for the dataset.
Default to this builder's `cache_dir`, which is inside `~/.cache/huggingface/datasets` by default.
| 54 |
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
|
<Added version="2.5.0"/>
download_config (`DownloadConfig`, *optional*):
Specific download configuration parameters.
download_mode ([`DownloadMode`] or `str`, *optional*):
Select the download/generate mode, default to `REUSE_DATASET_IF_EXISTS`.
verification_mode ([`VerificationMode`] or `str`, defaults to `BASIC_CHECKS`):
Verification mode determining the checks to run on the downloaded/processed dataset information (checksums/size/splits/...).
| 54 |
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
|
<Added version="2.9.1"/>
dl_manager (`DownloadManager`, *optional*):
Specific `DownloadManger` to use.
base_path (`str`, *optional*):
Base path for relative paths that are used to download files. This can be a remote url.
If not specified, the value of the `base_path` attribute (`self.base_path`) will be used instead.
file_format (`str`, *optional*):
Format of the data files in which the dataset will be written.
Supported formats: "arrow", "parquet". Default to "arrow" format.
If the format is "parquet", then image and audio data are embedded into the Parquet files instead of pointing to local files.
| 54 |
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
|
<Added version="2.5.0"/>
max_shard_size (`Union[str, int]`, *optional*):
Maximum number of bytes written per shard, default is "500MB".
The size is based on uncompressed data size, so in practice your shard files may be smaller than
`max_shard_size` thanks to Parquet compression for example.
<Added version="2.5.0"/>
num_proc (`int`, *optional*, defaults to `None`):
Number of processes when downloading and generating the dataset locally.
Multiprocessing is disabled by default.
<Added version="2.7.0"/>
storage_options (`dict`, *optional*):
Key/value pairs to be passed on to the caching file-system backend, if any.
<Added version="2.5.0"/>
**download_and_prepare_kwargs (additional keyword arguments): Keyword arguments.
Example:
| 54 |
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
|
Download and prepare the dataset as Arrow files that can be loaded as a Dataset using `builder.as_dataset()`:
```py
>>> from datasets import load_dataset_builder
>>> builder = load_dataset_builder("rotten_tomatoes")
>>> builder.download_and_prepare()
```
Download and prepare the dataset as sharded Parquet files locally:
```py
>>> from datasets import load_dataset_builder
>>> builder = load_dataset_builder("rotten_tomatoes")
>>> builder.download_and_prepare("./output_dir", file_format="parquet")
```
Download and prepare the dataset as sharded Parquet files in a cloud storage:
| 54 |
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
|
```py
>>> from datasets import load_dataset_builder
>>> storage_options = {"key": aws_access_key_id, "secret": aws_secret_access_key}
>>> builder = load_dataset_builder("rotten_tomatoes")
>>> builder.download_and_prepare("s3://my-bucket/my_rotten_tomatoes", storage_options=storage_options, file_format="parquet")
```
"""
output_dir = output_dir if output_dir is not None else self._cache_dir
# output_dir can be a remote bucket on GCS or S3
fs, output_dir = url_to_fs(output_dir, **(storage_options or {}))
self._fs = fs
self._output_dir = output_dir if not is_remote_filesystem(self._fs) else self._fs.unstrip_protocol(output_dir)
download_mode = DownloadMode(download_mode or DownloadMode.REUSE_DATASET_IF_EXISTS)
verification_mode = VerificationMode(verification_mode or VerificationMode.BASIC_CHECKS)
base_path = base_path if base_path is not None else self.base_path
| 54 |
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
|
if file_format is not None and file_format not in ["arrow", "parquet"]:
raise ValueError(f"Unsupported file_format: {file_format}. Expected 'arrow' or 'parquet'")
self._file_format = file_format
if self._fs._strip_protocol(self._output_dir) == "":
# We don't support the root directory, because it has no dirname,
# and we need a dirname to use a <dirname>.incomplete directory
# when the dataset is being written
raise RuntimeError(
f"Unable to download and prepare the dataset at the root {self._output_dir}. "
f"Please specify a subdirectory, e.g. '{self._output_dir + self.dataset_name}'"
)
| 54 |
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
|
if dl_manager is None:
if download_config is None:
download_config = DownloadConfig(
cache_dir=self._cache_downloaded_dir,
force_download=download_mode == DownloadMode.FORCE_REDOWNLOAD,
force_extract=download_mode == DownloadMode.FORCE_REDOWNLOAD,
use_etag=False,
num_proc=num_proc,
token=self.token,
storage_options=self.storage_options,
) # We don't use etag for data files to speed up the process
dl_manager = DownloadManager(
dataset_name=self.dataset_name,
download_config=download_config,
data_dir=self.config.data_dir,
base_path=base_path,
record_checksums=(self._record_infos or verification_mode == VerificationMode.ALL_CHECKS),
)
| 54 |
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
|
is_local = not is_remote_filesystem(self._fs)
self.dl_manager = dl_manager
# Prevent parallel local disk operations
if is_local:
# Create parent directory of the output_dir to put the lock file in there
Path(self._output_dir).parent.mkdir(parents=True, exist_ok=True)
lock_path = self._output_dir + "_builder.lock"
| 54 |
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
|
# File locking only with local paths; no file locking on GCS or S3
with FileLock(lock_path) if is_local else contextlib.nullcontext():
# Check if the data already exists
data_exists = self._fs.exists(posixpath.join(self._output_dir, config.DATASET_INFO_FILENAME))
if data_exists and download_mode == DownloadMode.REUSE_DATASET_IF_EXISTS:
logger.info(f"Found cached dataset {self.dataset_name} ({self._output_dir})")
# We need to update the info in case some splits were added in the meantime
# for example when calling load_dataset from multiple workers.
self.info = self._load_info()
self.download_post_processing_resources(dl_manager)
return
| 54 |
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
|
logger.info(f"Generating dataset {self.dataset_name} ({self._output_dir})")
if is_local: # if cache dir is local, check for available space
if not has_sufficient_disk_space(
self.info.size_in_bytes or 0, directory=Path(self._output_dir).parent
):
raise OSError(
f"Not enough disk space. Needed: {size_str(self.info.size_in_bytes or 0)} (download: {size_str(self.info.download_size or 0)}, generated: {size_str(self.info.dataset_size or 0)}, post-processed: {size_str(self.info.post_processing_size or 0)})"
)
| 54 |
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
|
@contextlib.contextmanager
def incomplete_dir(dirname):
"""Create temporary dir for dirname and rename on exit."""
if not is_local:
self._fs.makedirs(dirname, exist_ok=True)
yield dirname
else:
tmp_dir = dirname + ".incomplete"
os.makedirs(tmp_dir, exist_ok=True)
try:
yield tmp_dir
if os.path.isdir(dirname):
shutil.rmtree(dirname)
# LocalFileSystem.mv does copy + rm, it is more efficient to simply rename a local directory
shutil.move(tmp_dir, dirname)
finally:
if os.path.exists(tmp_dir):
shutil.rmtree(tmp_dir)
| 54 |
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
|
# Print is intentional: we want this to always go to stdout so user has
# information needed to cancel download/preparation if needed.
# This comes right before the progress bar.
if self.info.size_in_bytes:
logger.info(
f"Downloading and preparing dataset {self.dataset_name}/{self.config.name} "
f"(download: {size_str(self.info.download_size)}, generated: {size_str(self.info.dataset_size)}, "
f"post-processed: {size_str(self.info.post_processing_size)}, "
f"total: {size_str(self.info.size_in_bytes)}) to {self._output_dir}..."
)
else:
_dest = self._fs._strip_protocol(self._output_dir) if is_local else self._output_dir
logger.info(f"Downloading and preparing dataset {self.dataset_name}/{self.config.name} to {_dest}...")
self._check_manual_download(dl_manager)
| 54 |
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
|
# Create a tmp dir and rename to self._output_dir on successful exit.
with incomplete_dir(self._output_dir) as tmp_output_dir:
# Temporarily assign _output_dir to tmp_data_dir to avoid having to forward
# it to every sub function.
with temporary_assignment(self, "_output_dir", tmp_output_dir):
prepare_split_kwargs = {"file_format": file_format}
if max_shard_size is not None:
prepare_split_kwargs["max_shard_size"] = max_shard_size
if num_proc is not None:
prepare_split_kwargs["num_proc"] = num_proc
self._download_and_prepare(
dl_manager=dl_manager,
verification_mode=verification_mode,
**prepare_split_kwargs,
**download_and_prepare_kwargs,
)
# Sync info
| 54 |
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
|
self.info.dataset_size = sum(split.num_bytes for split in self.info.splits.values())
self.info.download_checksums = dl_manager.get_recorded_sizes_checksums()
if self.info.download_size is not None:
self.info.size_in_bytes = self.info.dataset_size + self.info.download_size
# Save info
self._save_info()
| 54 |
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
|
# Download post processing resources
self.download_post_processing_resources(dl_manager)
logger.info(
f"Dataset {self.dataset_name} downloaded and prepared to {self._output_dir}. "
f"Subsequent calls will reuse this data."
)
def _check_manual_download(self, dl_manager):
if self.manual_download_instructions is not None and dl_manager.manual_dir is None:
raise ManualDownloadError(
textwrap.dedent(
f"""\
The dataset {self.dataset_name} with config {self.config.name} requires manual data.
Please follow the manual download instructions:
{self.manual_download_instructions}
Manual data can be loaded with:
datasets.load_dataset("{self.repo_id or self.dataset_name}", data_dir="<path/to/manual/data>")"""
)
)
| 54 |
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
|
def _download_and_prepare(self, dl_manager, verification_mode, **prepare_split_kwargs):
"""Downloads and prepares dataset for reading.
This is the internal implementation to overwrite called when user calls
`download_and_prepare`. It should download all required data and generate
the pre-processed datasets files.
| 54 |
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
|
Args:
dl_manager ([`DownloadManager`]):
`DownloadManager` used to download and cache data.
verification_mode ([`VerificationMode`]):
if `ALL_CHECKS`, perform all the verifications including checksums.
if `BASIC_CHECKS`, do not perform checksums, only perform split tests.
if `NO_CHECKS`, do not perform any verification.
prepare_split_kwargs: Additional options, such as `file_format`, `max_shard_size`
"""
# Generating data for all splits
split_dict = SplitDict(dataset_name=self.dataset_name)
split_generators_kwargs = self._make_split_generators_kwargs(prepare_split_kwargs)
split_generators = self._split_generators(dl_manager, **split_generators_kwargs)
| 54 |
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
|
# Checksums verification
if verification_mode == VerificationMode.ALL_CHECKS and dl_manager.record_checksums:
verify_checksums(
self.info.download_checksums, dl_manager.get_recorded_sizes_checksums(), "dataset source files"
)
# Build splits
for split_generator in split_generators:
if str(split_generator.split_info.name).lower() == "all":
raise ValueError(
"`all` is a special split keyword corresponding to the "
"union of all splits, so cannot be used as key in "
"._split_generator()."
)
logger.info(f"Generating {split_generator.split_info.name} split")
split_dict.add(split_generator.split_info)
| 54 |
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
|
try:
# Prepare split will record examples associated to the split
self._prepare_split(split_generator, **prepare_split_kwargs)
except OSError as e:
raise OSError(
"Cannot find data file. "
+ (self.manual_download_instructions or "")
+ "\nOriginal error:\n"
+ str(e)
) from None
# If check_duplicates is set to True , then except DuplicatedKeysError
except DuplicatedKeysError as e:
raise DuplicatedKeysError(
e.key,
e.duplicate_key_indices,
fix_msg=f"To avoid duplicate keys, please fix the dataset script {self.name}.py",
) from None
dl_manager.manage_extracted_files()
| 54 |
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
|
if verification_mode == VerificationMode.BASIC_CHECKS or verification_mode == VerificationMode.ALL_CHECKS:
verify_splits(self.info.splits, split_dict)
# Update the info object with the splits.
self.info.splits = split_dict
self.info.download_size = dl_manager.downloaded_size
| 54 |
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
|
def download_post_processing_resources(self, dl_manager):
for split in self.info.splits or []:
for resource_name, resource_file_name in self._post_processing_resources(split).items():
if not not is_remote_filesystem(self._fs):
raise NotImplementedError(f"Post processing is not supported on filesystem {self._fs}")
if os.sep in resource_file_name:
raise ValueError(f"Resources shouldn't be in a sub-directory: {resource_file_name}")
resource_path = os.path.join(self._output_dir, resource_file_name)
if not os.path.exists(resource_path):
downloaded_resource_path = self._download_post_processing_resources(
split, resource_name, dl_manager
)
if downloaded_resource_path:
logger.info(f"Downloaded post-processing resource {resource_name} as {resource_file_name}")
| 54 |
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
|
shutil.move(downloaded_resource_path, resource_path)
| 54 |
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
|
def _load_info(self) -> DatasetInfo:
return DatasetInfo.from_directory(self._output_dir, storage_options=self._fs.storage_options)
def _save_info(self):
file_lock = (
FileLock(self._output_dir + "_info.lock")
if not is_remote_filesystem(self._fs)
else contextlib.nullcontext()
)
with file_lock:
self.info.write_to_directory(self._output_dir, storage_options=self._fs.storage_options)
def _save_infos(self):
file_lock = (
FileLock(self._output_dir + "_infos.lock")
if not is_remote_filesystem(self._fs)
else contextlib.nullcontext()
)
with file_lock:
DatasetInfosDict(**{self.config.name: self.info}).write_to_directory(self.get_imported_module_dir())
def _make_split_generators_kwargs(self, prepare_split_kwargs):
"""Get kwargs for `self._split_generators()` from `prepare_split_kwargs`."""
del prepare_split_kwargs
return {}
| 54 |
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
|
def as_dataset(
self,
split: Optional[Split] = None,
run_post_process=True,
verification_mode: Optional[Union[VerificationMode, str]] = None,
in_memory=False,
) -> Union[Dataset, DatasetDict]:
"""Return a Dataset for the specified split.
Args:
split (`datasets.Split`):
Which subset of the data to return.
run_post_process (`bool`, defaults to `True`):
Whether to run post-processing dataset transforms and/or add
indexes.
verification_mode ([`VerificationMode`] or `str`, defaults to `BASIC_CHECKS`):
Verification mode determining the checks to run on the
downloaded/processed dataset information (checksums/size/splits/...).
<Added version="2.9.1"/>
in_memory (`bool`, defaults to `False`):
Whether to copy the data in-memory.
Returns:
datasets.Dataset
Example:
| 54 |
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
|
```py
>>> from datasets import load_dataset_builder
>>> builder = load_dataset_builder('rotten_tomatoes')
>>> builder.download_and_prepare()
>>> ds = builder.as_dataset(split='train')
>>> ds
Dataset({
features: ['text', 'label'],
num_rows: 8530
})
```
"""
if self._file_format is not None and self._file_format != "arrow":
raise FileFormatError('Loading a dataset not written in the "arrow" format is not supported.')
if is_remote_filesystem(self._fs):
raise NotImplementedError(f"Loading a dataset cached in a {type(self._fs).__name__} is not supported.")
if not os.path.exists(self._output_dir):
raise FileNotFoundError(
f"Dataset {self.dataset_name}: could not find data in {self._output_dir}. Please make sure to call "
"builder.download_and_prepare(), or use "
| 54 |
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
|
"datasets.load_dataset() before trying to access the Dataset object."
)
| 54 |
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
|
logger.debug(f"Constructing Dataset for split {split or ', '.join(self.info.splits)}, from {self._output_dir}")
# By default, return all splits
if split is None:
split = {s: s for s in self.info.splits}
verification_mode = VerificationMode(verification_mode or VerificationMode.BASIC_CHECKS)
# Create a dataset for each of the given splits
datasets = map_nested(
partial(
self._build_single_dataset,
run_post_process=run_post_process,
verification_mode=verification_mode,
in_memory=in_memory,
),
split,
map_tuple=True,
disable_tqdm=True,
)
if isinstance(datasets, dict):
datasets = DatasetDict(datasets)
return datasets
| 54 |
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
|
def _build_single_dataset(
self,
split: Union[str, ReadInstruction, Split],
run_post_process: bool,
verification_mode: VerificationMode,
in_memory: bool = False,
):
"""as_dataset for a single split."""
if not isinstance(split, ReadInstruction):
split = str(split)
if split == "all":
split = "+".join(self.info.splits.keys())
split = Split(split)
| 54 |
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
|
# Build base dataset
ds = self._as_dataset(
split=split,
in_memory=in_memory,
)
if run_post_process:
for resource_file_name in self._post_processing_resources(split).values():
if os.sep in resource_file_name:
raise ValueError(f"Resources shouldn't be in a sub-directory: {resource_file_name}")
resources_paths = {
resource_name: os.path.join(self._output_dir, resource_file_name)
for resource_name, resource_file_name in self._post_processing_resources(split).items()
}
post_processed = self._post_process(ds, resources_paths)
if post_processed is not None:
ds = post_processed
recorded_checksums = {}
record_checksums = False
for resource_name, resource_path in resources_paths.items():
size_checksum = get_size_checksum_dict(resource_path)
| 54 |
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
|
recorded_checksums[resource_name] = size_checksum
if verification_mode == VerificationMode.ALL_CHECKS and record_checksums:
if self.info.post_processed is None or self.info.post_processed.resources_checksums is None:
expected_checksums = None
else:
expected_checksums = self.info.post_processed.resources_checksums.get(split)
verify_checksums(expected_checksums, recorded_checksums, "post processing resources")
if self.info.post_processed is None:
self.info.post_processed = PostProcessedInfo()
if self.info.post_processed.resources_checksums is None:
self.info.post_processed.resources_checksums = {}
self.info.post_processed.resources_checksums[str(split)] = recorded_checksums
self.info.post_processing_size = sum(
checksums_dict["num_bytes"]
| 54 |
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
|
for split_checksums_dicts in self.info.post_processed.resources_checksums.values()
for checksums_dict in split_checksums_dicts.values()
)
if self.info.dataset_size is not None and self.info.download_size is not None:
self.info.size_in_bytes = (
self.info.dataset_size + self.info.download_size + self.info.post_processing_size
)
self._save_info()
ds._info.post_processed = self.info.post_processed
ds._info.post_processing_size = self.info.post_processing_size
ds._info.size_in_bytes = self.info.size_in_bytes
if self.info.post_processed.features is not None:
if self.info.post_processed.features.type != ds.features.type:
raise ValueError(
| 54 |
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
|
f"Post-processed features info don't match the dataset:\nGot\n{self.info.post_processed.features}\nbut expected something like\n{ds.features}"
)
else:
ds.info.features = self.info.post_processed.features
| 54 |
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
|
return ds
def _as_dataset(self, split: Union[ReadInstruction, Split] = Split.TRAIN, in_memory: bool = False) -> Dataset:
"""Constructs a `Dataset`.
This is the internal implementation to overwrite called when user calls
`as_dataset`. It should read the pre-processed datasets files and generate
the `Dataset` object.
Args:
split (`datasets.Split`):
which subset of the data to read.
in_memory (`bool`, defaults to `False`):
Whether to copy the data in-memory.
| 54 |
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
|
Returns:
`Dataset`
"""
cache_dir = self._fs._strip_protocol(self._output_dir)
dataset_name = self.dataset_name
if self._check_legacy_cache():
dataset_name = self.name
dataset_kwargs = ArrowReader(cache_dir, self.info).read(
name=dataset_name,
instructions=split,
split_infos=self.info.splits.values(),
in_memory=in_memory,
)
fingerprint = self._get_dataset_fingerprint(split)
return Dataset(fingerprint=fingerprint, **dataset_kwargs)
| 54 |
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
|
def _get_dataset_fingerprint(self, split: Union[ReadInstruction, Split]) -> str:
"""The dataset fingerprint is the hash of the relative directory dataset_name/config_name/version/hash, as well as the split specs."""
hasher = Hasher()
hasher.update(Path(self._relative_data_dir()).as_posix())
hasher.update(str(split)) # for example: train, train+test, train[:10%], test[:33%](pct1_dropremainder)
fingerprint = hasher.hexdigest()
return fingerprint
def as_streaming_dataset(
self,
split: Optional[str] = None,
base_path: Optional[str] = None,
) -> Union[Dict[str, IterableDataset], IterableDataset]:
if is_remote_filesystem(self._fs):
raise NotImplementedError(
f"Loading a streaming dataset cached in a {type(self._fs).__name__} is not supported yet."
)
| 54 |
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
|
dl_manager = StreamingDownloadManager(
base_path=base_path or self.base_path,
download_config=DownloadConfig(token=self.token, storage_options=self.storage_options),
dataset_name=self.dataset_name,
data_dir=self.config.data_dir,
)
self._check_manual_download(dl_manager)
splits_generators = {sg.name: sg for sg in self._split_generators(dl_manager)}
# By default, return all splits
if split is None:
splits_generator = splits_generators
elif split in splits_generators:
splits_generator = splits_generators[split]
else:
raise ValueError(f"Bad split: {split}. Available splits: {list(splits_generators)}")
| 54 |
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
|
# Create a dataset for each of the given splits
datasets = map_nested(
self._as_streaming_dataset_single,
splits_generator,
map_tuple=True,
)
if isinstance(datasets, dict):
datasets = IterableDatasetDict(datasets)
return datasets
def _as_streaming_dataset_single(
self,
splits_generator,
) -> IterableDataset:
ex_iterable = self._get_examples_iterable_for_split(splits_generator)
# add auth to be able to access and decode audio/image files from private repositories.
token_per_repo_id = {self.repo_id: self.token} if self.repo_id else {}
return IterableDataset(
ex_iterable, info=self.info, split=splits_generator.name, token_per_repo_id=token_per_repo_id
)
def _post_process(self, dataset: Dataset, resources_paths: Mapping[str, str]) -> Optional[Dataset]:
"""Run dataset transforms or add indexes"""
return None
| 54 |
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
|
def _post_processing_resources(self, split: str) -> Dict[str, str]:
"""Mapping resource_name -> resource_file_name"""
return {}
def _download_post_processing_resources(
self, split: str, resource_name: str, dl_manager: DownloadManager
) -> Optional[str]:
"""Download the resource using the download manager and return the downloaded path."""
return None
@abc.abstractmethod
def _split_generators(self, dl_manager: Union[DownloadManager, StreamingDownloadManager]):
"""Specify feature dictionary generators and dataset splits.
This function returns a list of `SplitGenerator`s defining how to generate
data and what splits to use.
Example:
| 54 |
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
|
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={'file': 'train_data.zip'},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={'file': 'test_data.zip'},
),
]
The above code will first call `_generate_examples(file='train_data.zip')`
to write the train data, then `_generate_examples(file='test_data.zip')` to
write the test data.
Datasets are typically split into different subsets to be used at various
stages of training and evaluation.
Note that for datasets without a `VALIDATION` split, you can use a
fraction of the `TRAIN` data for evaluation as you iterate on your model
so as not to overfit to the `TEST` data.
| 54 |
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
|
For downloads and extractions, use the given `download_manager`.
Note that the `DownloadManager` caches downloads, so it is fine to have each
generator attempt to download the source data.
A good practice is to download all data in this function, and then
distribute the relevant parts to each split with the `gen_kwargs` argument
Args:
dl_manager (`Union[DownloadManager, StreamingDownloadManager]`):
Download manager to download the data
Returns:
`list<SplitGenerator>`.
"""
raise NotImplementedError()
@abc.abstractmethod
def _prepare_split(
self,
split_generator: SplitGenerator,
file_format: str = "arrow",
max_shard_size: Optional[Union[str, int]] = None,
num_proc: Optional[int] = None,
**kwargs,
):
"""Generate the examples and record them on disk.
| 54 |
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
|
Args:
split_generator (`SplitGenerator`):
Split generator to process
file_format (`str`, *optional*):
format of the data files in which the dataset will be written.
Supported formats: "arrow", "parquet". Default to "arrow" format.
max_shard_size (`Union[str, int]`, *optional*):
Maximum number of bytes written per shard, default is "500MB".
The size is based on uncompressed data size, so in practice your shard files may be smaller than
`max_shard_size` thanks to Parquet compression for example.
num_proc (`int`, *optional*, defaults to `None`):
Number of processes when downloading and generating the dataset locally.
Multiprocessing is disabled by default.
<Added version="2.7.0"/>
**kwargs: Additional kwargs forwarded from _download_and_prepare
"""
raise NotImplementedError()
| 54 |
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
|
def _get_examples_iterable_for_split(self, split_generator: SplitGenerator) -> ExamplesIterable:
"""Generate the examples on the fly.
Args:
split_generator (`SplitGenerator`):
Split generator to process
"""
raise NotImplementedError()
| 54 |
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
|
class GeneratorBasedBuilder(DatasetBuilder):
"""Base class for datasets with data generation based on dict generators.
`GeneratorBasedBuilder` is a convenience class that abstracts away much
of the data writing and reading of `DatasetBuilder`. It expects subclasses to
implement generators of feature dictionaries across the dataset splits
(`_split_generators`). See the method docstrings for details.
"""
@abc.abstractmethod
def _generate_examples(self, **kwargs):
"""Default function generating examples for each `SplitGenerator`.
This function preprocess the examples from the raw data to the preprocessed
dataset files.
This function is called once for each `SplitGenerator` defined in
`_split_generators`. The examples yielded here will be written on
disk.
Args:
**kwargs (additional keyword arguments):
Arguments forwarded from the SplitGenerator.gen_kwargs
| 55 |
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
|
Yields:
key: `str` or `int`, a unique deterministic example identification key.
* Unique: An error will be raised if two examples are yield with the
same key.
* Deterministic: When generating the dataset twice, the same example
should have the same key.
Good keys can be the image id, or line number if examples are extracted
from a text file.
The key will be hashed and sorted to shuffle examples deterministically,
such as generating the dataset multiple times keep examples in the
same order.
example: `dict<str feature_name, feature_value>`, a feature dictionary
ready to be encoded and written to disk. The example will be
encoded with `self.info.features.encode_example({...})`.
"""
raise NotImplementedError()
| 55 |
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
|
def _prepare_split(
self,
split_generator: SplitGenerator,
check_duplicate_keys: bool,
file_format="arrow",
num_proc: Optional[int] = None,
max_shard_size: Optional[Union[int, str]] = None,
):
max_shard_size = convert_file_size_to_int(max_shard_size or config.MAX_SHARD_SIZE)
if self.info.splits is not None:
split_info = self.info.splits[split_generator.name]
else:
split_info = split_generator.split_info
SUFFIX = "-JJJJJ-SSSSS-of-NNNNN"
fname = f"{self.dataset_name}-{split_generator.name}{SUFFIX}.{file_format}"
fpath = posixpath.join(self._output_dir, fname)
| 55 |
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
|
if num_proc and num_proc > 1:
num_input_shards = _number_of_shards_in_gen_kwargs(split_generator.gen_kwargs)
if num_input_shards <= 1:
logger.warning(
f"Setting num_proc from {num_proc} back to 1 for the {split_info.name} split to disable multiprocessing as it only contains one shard."
)
num_proc = 1
elif num_input_shards < num_proc:
logger.warning(
f"Setting num_proc from {num_proc} to {num_input_shards} for the {split_info.name} split as it only contains {num_input_shards} shards."
)
num_proc = num_input_shards
pbar = hf_tqdm(
unit=" examples",
total=split_info.num_examples,
desc=f"Generating {split_info.name} split",
)
| 55 |
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
|
_prepare_split_args = {
"fpath": fpath,
"file_format": file_format,
"max_shard_size": max_shard_size,
"split_info": split_info,
"check_duplicate_keys": check_duplicate_keys,
}
| 55 |
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
|
if num_proc is None or num_proc == 1:
result = None
gen_kwargs = split_generator.gen_kwargs
job_id = 0
with pbar:
for job_id, done, content in self._prepare_split_single(
gen_kwargs=gen_kwargs, job_id=job_id, **_prepare_split_args
):
if done:
result = content
else:
pbar.update(content)
# wrapping everything into lists for consistency with the multiprocessed code path
assert result is not None, "Failed to retrieve results from prepare_split"
examples_per_job, bytes_per_job, features_per_job, shards_per_job, shard_lengths_per_job = [
[item] for item in result
]
else:
kwargs_per_job = [
{"gen_kwargs": gen_kwargs, "job_id": job_id, **_prepare_split_args}
for job_id, gen_kwargs in enumerate(
| 55 |
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
|
_split_gen_kwargs(split_generator.gen_kwargs, max_num_jobs=num_proc)
)
]
num_jobs = len(kwargs_per_job)
| 55 |
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
|
examples_per_job = [None] * num_jobs
bytes_per_job = [None] * num_jobs
features_per_job = [None] * num_jobs
shards_per_job = [None] * num_jobs
shard_lengths_per_job = [None] * num_jobs
| 55 |
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
|
with Pool(num_proc) as pool:
with pbar:
for job_id, done, content in iflatmap_unordered(
pool, self._prepare_split_single, kwargs_iterable=kwargs_per_job
):
if done:
# the content is the result of the job
(
examples_per_job[job_id],
bytes_per_job[job_id],
features_per_job[job_id],
shards_per_job[job_id],
shard_lengths_per_job[job_id],
) = content
else:
# the content is the number of examples progress update
pbar.update(content)
| 55 |
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
|
assert None not in examples_per_job, (
f"Failed to retrieve results from prepare_split: result list {examples_per_job} still contains None - at least one worker failed to return its results"
)
total_shards = sum(shards_per_job)
total_num_examples = sum(examples_per_job)
total_num_bytes = sum(bytes_per_job)
features = features_per_job[0]
split_generator.split_info.num_examples = total_num_examples
split_generator.split_info.num_bytes = total_num_bytes
# should rename everything at the end
logger.debug(f"Renaming {total_shards} shards.")
if total_shards > 1:
# use the -SSSSS-of-NNNNN pattern
| 55 |
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
|
def _rename_shard(shard_and_job: Tuple[int]):
shard_id, job_id = shard_and_job
global_shard_id = sum(shards_per_job[:job_id]) + shard_id
self._rename(
fpath.replace("SSSSS", f"{shard_id:05d}").replace("JJJJJ", f"{job_id:05d}"),
fpath.replace("JJJJJ-SSSSS", f"{global_shard_id:05d}").replace("NNNNN", f"{total_shards:05d}"),
)
shards_and_jobs = [
(shard_id, job_id)
for job_id, num_shards in enumerate(shards_per_job)
for shard_id in range(num_shards)
]
thread_map(_rename_shard, shards_and_jobs, disable=True, max_workers=64)
| 55 |
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
|
split_generator.split_info.shard_lengths = [
shard_length for shard_lengths in shard_lengths_per_job for shard_length in shard_lengths
]
else:
# don't use any pattern
shard_id, job_id = 0, 0
self._rename(
fpath.replace("SSSSS", f"{shard_id:05d}").replace("JJJJJ", f"{job_id:05d}"),
fpath.replace(SUFFIX, ""),
)
if self.info.features is None:
self.info.features = features
| 55 |
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
|
def _prepare_split_single(
self,
gen_kwargs: dict,
fpath: str,
file_format: str,
max_shard_size: int,
split_info: SplitInfo,
check_duplicate_keys: bool,
job_id: int,
) -> Iterable[Tuple[int, bool, Union[int, tuple]]]:
generator = self._generate_examples(**gen_kwargs)
writer_class = ParquetWriter if file_format == "parquet" else ArrowWriter
embed_local_files = file_format == "parquet"
shard_lengths = []
total_num_examples, total_num_bytes = 0, 0
| 55 |
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
|
shard_id = 0
num_examples_progress_update = 0
try:
writer = writer_class(
features=self.info.features,
path=fpath.replace("SSSSS", f"{shard_id:05d}").replace("JJJJJ", f"{job_id:05d}"),
writer_batch_size=self._writer_batch_size,
hash_salt=split_info.name,
check_duplicates=check_duplicate_keys,
storage_options=self._fs.storage_options,
embed_local_files=embed_local_files,
)
try:
_time = time.time()
for key, record in generator:
if max_shard_size is not None and writer._num_bytes > max_shard_size:
num_examples, num_bytes = writer.finalize()
writer.close()
shard_lengths.append(num_examples)
total_num_examples += num_examples
total_num_bytes += num_bytes
| 55 |
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
|
shard_id += 1
writer = writer_class(
features=writer._features,
path=fpath.replace("SSSSS", f"{shard_id:05d}").replace("JJJJJ", f"{job_id:05d}"),
writer_batch_size=self._writer_batch_size,
hash_salt=split_info.name,
check_duplicates=check_duplicate_keys,
storage_options=self._fs.storage_options,
embed_local_files=embed_local_files,
)
example = self.info.features.encode_example(record) if self.info.features is not None else record
writer.write(example, key)
num_examples_progress_update += 1
if time.time() > _time + config.PBAR_REFRESH_TIME_INTERVAL:
_time = time.time()
yield job_id, False, num_examples_progress_update
| 55 |
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
|
num_examples_progress_update = 0
finally:
yield job_id, False, num_examples_progress_update
num_shards = shard_id + 1
num_examples, num_bytes = writer.finalize()
writer.close()
shard_lengths.append(num_examples)
total_num_examples += num_examples
total_num_bytes += num_bytes
except Exception as e:
# Ignore the writer's error for no examples written to the file if this error was caused by the error in _generate_examples before the first example was yielded
if isinstance(e, SchemaInferenceError) and e.__context__ is not None:
e = e.__context__
raise DatasetGenerationError("An error occurred while generating the dataset") from e
| 55 |
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
|
yield job_id, True, (total_num_examples, total_num_bytes, writer._features, num_shards, shard_lengths)
def _download_and_prepare(self, dl_manager, verification_mode, **prepare_splits_kwargs):
super()._download_and_prepare(
dl_manager,
verification_mode,
check_duplicate_keys=verification_mode == VerificationMode.BASIC_CHECKS
or verification_mode == VerificationMode.ALL_CHECKS,
**prepare_splits_kwargs,
)
def _get_examples_iterable_for_split(self, split_generator: SplitGenerator) -> ExamplesIterable:
return ExamplesIterable(self._generate_examples, split_generator.gen_kwargs)
| 55 |
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
|
class ArrowBasedBuilder(DatasetBuilder):
"""Base class for datasets with data generation based on Arrow loading functions (CSV/JSON/Parquet)."""
@abc.abstractmethod
def _generate_tables(self, **kwargs):
"""Default function generating examples for each `SplitGenerator`.
This function preprocess the examples from the raw data to the preprocessed
dataset files.
This function is called once for each `SplitGenerator` defined in
`_split_generators`. The examples yielded here will be written on
disk.
Args:
**kwargs (additional keyword arguments):
Arguments forwarded from the SplitGenerator.gen_kwargs
| 56 |
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
|
Yields:
key: `str` or `int`, a unique deterministic example identification key.
* Unique: An error will be raised if two examples are yield with the
same key.
* Deterministic: When generating the dataset twice, the same example
should have the same key.
Good keys can be the image id, or line number if examples are extracted
from a text file.
The key will be hashed and sorted to shuffle examples deterministically,
such as generating the dataset multiple times keep examples in the
same order.
example: `pyarrow.Table`, a feature table
ready to be encoded and written to disk.
"""
raise NotImplementedError()
| 56 |
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
|
def _prepare_split(
self,
split_generator: SplitGenerator,
file_format: str = "arrow",
num_proc: Optional[int] = None,
max_shard_size: Optional[Union[str, int]] = None,
):
max_shard_size = convert_file_size_to_int(max_shard_size or config.MAX_SHARD_SIZE)
try:
split_info = self.info.splits[split_generator.name]
except Exception:
split_info = split_generator.split_info
SUFFIX = "-JJJJJ-SSSSS-of-NNNNN"
fname = f"{self.dataset_name}-{split_generator.name}{SUFFIX}.{file_format}"
fpath = posixpath.join(self._output_dir, fname)
| 56 |
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
|
if num_proc and num_proc > 1:
num_input_shards = _number_of_shards_in_gen_kwargs(split_generator.gen_kwargs)
if num_input_shards <= 1:
logger.warning(
f"Setting num_proc from {num_proc} back to 1 for the {split_info.name} split to disable multiprocessing as it only contains one shard."
)
num_proc = 1
elif num_input_shards < num_proc:
logger.warning(
f"Setting num_proc from {num_proc} to {num_input_shards} for the {split_info.name} split as it only contains {num_input_shards} shards."
)
num_proc = num_input_shards
pbar = hf_tqdm(
unit=" examples",
total=split_info.num_examples,
desc=f"Generating {split_info.name} split",
)
_prepare_split_args = {
"fpath": fpath,
"file_format": file_format,
"max_shard_size": max_shard_size,
}
| 56 |
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
|
if num_proc is None or num_proc == 1:
result = None
gen_kwargs = split_generator.gen_kwargs
job_id = 0
with pbar:
for job_id, done, content in self._prepare_split_single(
gen_kwargs=gen_kwargs, job_id=job_id, **_prepare_split_args
):
if done:
result = content
else:
pbar.update(content)
# wrapping everything into lists for consistency with the multiprocessed code path
assert result is not None, "Failed to retrieve results from prepare_split"
examples_per_job, bytes_per_job, features_per_job, shards_per_job, shard_lengths_per_job = [
[item] for item in result
]
else:
kwargs_per_job = [
{"gen_kwargs": gen_kwargs, "job_id": job_id, **_prepare_split_args}
for job_id, gen_kwargs in enumerate(
| 56 |
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
|
_split_gen_kwargs(split_generator.gen_kwargs, max_num_jobs=num_proc)
)
]
num_jobs = len(kwargs_per_job)
| 56 |
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
|
examples_per_job = [None] * num_jobs
bytes_per_job = [None] * num_jobs
features_per_job = [None] * num_jobs
shards_per_job = [None] * num_jobs
shard_lengths_per_job = [None] * num_jobs
| 56 |
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
|
with Pool(num_proc) as pool:
with pbar:
for job_id, done, content in iflatmap_unordered(
pool, self._prepare_split_single, kwargs_iterable=kwargs_per_job
):
if done:
# the content is the result of the job
(
examples_per_job[job_id],
bytes_per_job[job_id],
features_per_job[job_id],
shards_per_job[job_id],
shard_lengths_per_job[job_id],
) = content
else:
# the content is the number of examples progress update
pbar.update(content)
| 56 |
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
|
assert None not in examples_per_job, (
f"Failed to retrieve results from prepare_split: result list {examples_per_job} still contains None - at least one worker failed to return its results"
)
total_shards = sum(shards_per_job)
total_num_examples = sum(examples_per_job)
total_num_bytes = sum(bytes_per_job)
features = features_per_job[0]
split_generator.split_info.num_examples = total_num_examples
split_generator.split_info.num_bytes = total_num_bytes
# should rename everything at the end
logger.debug(f"Renaming {total_shards} shards.")
if total_shards > 1:
# use the -SSSSS-of-NNNNN pattern
| 56 |
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
|
def _rename_shard(shard_id_and_job: Tuple[int]):
shard_id, job_id = shard_id_and_job
global_shard_id = sum(shards_per_job[:job_id]) + shard_id
self._rename(
fpath.replace("SSSSS", f"{shard_id:05d}").replace("JJJJJ", f"{job_id:05d}"),
fpath.replace("JJJJJ-SSSSS", f"{global_shard_id:05d}").replace("NNNNN", f"{total_shards:05d}"),
)
shard_ids_and_jobs = [
(shard_id, job_id)
for job_id, num_shards in enumerate(shards_per_job)
for shard_id in range(num_shards)
]
thread_map(_rename_shard, shard_ids_and_jobs, disable=True, max_workers=64)
| 56 |
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
|
split_generator.split_info.shard_lengths = [
shard_length for shard_lengths in shard_lengths_per_job for shard_length in shard_lengths
]
else:
# don't use any pattern
shard_id, job_id = 0, 0
self._rename(
fpath.replace("SSSSS", f"{shard_id:05d}").replace("JJJJJ", f"{job_id:05d}"),
fpath.replace(SUFFIX, ""),
)
if self.info.features is None:
self.info.features = features
| 56 |
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
|
def _prepare_split_single(
self, gen_kwargs: dict, fpath: str, file_format: str, max_shard_size: int, job_id: int
) -> Iterable[Tuple[int, bool, Union[int, tuple]]]:
gen_kwargs = {k: tracked_list(v) if isinstance(v, list) else v for k, v in gen_kwargs.items()}
generator = self._generate_tables(**gen_kwargs)
writer_class = ParquetWriter if file_format == "parquet" else ArrowWriter
embed_local_files = file_format == "parquet"
shard_lengths = []
total_num_examples, total_num_bytes = 0, 0
| 56 |
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
|
shard_id = 0
num_examples_progress_update = 0
try:
writer = writer_class(
features=self.info.features,
path=fpath.replace("SSSSS", f"{shard_id:05d}").replace("JJJJJ", f"{job_id:05d}"),
writer_batch_size=self._writer_batch_size,
storage_options=self._fs.storage_options,
embed_local_files=embed_local_files,
)
try:
_time = time.time()
for _, table in generator:
if max_shard_size is not None and writer._num_bytes > max_shard_size:
num_examples, num_bytes = writer.finalize()
writer.close()
shard_lengths.append(num_examples)
total_num_examples += num_examples
total_num_bytes += num_bytes
shard_id += 1
writer = writer_class(
| 56 |
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
|
features=writer._features,
path=fpath.replace("SSSSS", f"{shard_id:05d}").replace("JJJJJ", f"{job_id:05d}"),
writer_batch_size=self._writer_batch_size,
storage_options=self._fs.storage_options,
embed_local_files=embed_local_files,
)
try:
writer.write_table(table)
except CastError as cast_error:
raise DatasetGenerationCastError.from_cast_error(
cast_error=cast_error,
builder_name=self.info.builder_name,
gen_kwargs=gen_kwargs,
token=self.token,
)
num_examples_progress_update += len(table)
if time.time() > _time + config.PBAR_REFRESH_TIME_INTERVAL:
_time = time.time()
| 56 |
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
|
yield job_id, False, num_examples_progress_update
num_examples_progress_update = 0
finally:
yield job_id, False, num_examples_progress_update
num_shards = shard_id + 1
num_examples, num_bytes = writer.finalize()
writer.close()
shard_lengths.append(num_examples)
total_num_examples += num_examples
total_num_bytes += num_bytes
except Exception as e:
# Ignore the writer's error for no examples written to the file if this error was caused by the error in _generate_examples before the first example was yielded
if isinstance(e, SchemaInferenceError) and e.__context__ is not None:
e = e.__context__
if isinstance(e, DatasetGenerationError):
raise
raise DatasetGenerationError("An error occurred while generating the dataset") from e
| 56 |
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
|
yield job_id, True, (total_num_examples, total_num_bytes, writer._features, num_shards, shard_lengths)
def _get_examples_iterable_for_split(self, split_generator: SplitGenerator) -> ExamplesIterable:
return ArrowExamplesIterable(self._generate_tables, kwargs=split_generator.gen_kwargs)
| 56 |
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/builder.py
|
class SplitsNotFoundError(ValueError):
pass
| 57 |
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/inspect.py
|
class MissingIndex(Exception):
pass
| 58 |
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/search.py
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.