problem
stringlengths 10
1.99k
| answer
stringlengths 1
74
| solution
stringclasses 245
values |
---|---|---|
Given a pair of concentric circles, chords $AB,BC,CD,\dots$ of the outer circle are drawn such that they all touch the inner circle. If $\angle ABC = 75^{\circ}$ , how many chords can be drawn before returning to the starting point ?

|
24
| |
What is the sum and product of the distinct prime factors of 420?
|
210
| |
What will be the length of the strip if a cubic kilometer is cut into cubic meters and laid out in a single line?
|
1000000
| |
A triangle $\bigtriangleup ABC$ has vertices lying on the parabola defined by $y = x^2 + 4$. Vertices $B$ and $C$ are symmetric about the $y$-axis and the line $\overline{BC}$ is parallel to the $x$-axis. The area of $\bigtriangleup ABC$ is $100$. $A$ is the point $(2,8)$. Determine the length of $\overline{BC}$.
|
10
| |
Given that \( A \), \( B \), and \( C \) are any three non-collinear points on a plane, and point \( O \) is inside \( \triangle ABC \) such that:
\[
\angle AOB = \angle BOC = \angle COA = 120^\circ.
\]
Find the maximum value of \( \frac{OA + OB + OC}{AB + BC + CA} \).
|
\frac{\sqrt{3}}{3}
| |
Kadin makes a snowman by stacking snowballs of radius 2 inches, 3 inches, and 5 inches. Assuming all his snowballs are spherical, what is the total volume of snow he uses, in cubic inches? Express your answer in terms of $\pi$.
|
\frac{640}{3}\pi
| |
For the pair of positive integers \((x, y)\) such that \(\frac{x^{2}+y^{2}}{11}\) is an integer and \(\frac{x^{2}+y^{2}}{11} \leqslant 1991\), find the number of such pairs \((x, y)\) (where \((a, b)\) and \((b, a)\) are considered different pairs if \(a \neq b\)).
|
131
| |
Quadrilateral $PQRS$ is a square. A circle with center $S$ has arc $PXC$. A circle with center $R$ has arc $PYC$. If $PQ = 3$ cm, what is the total number of square centimeters in the football-shaped area of regions II and III combined? Express your answer as a decimal to the nearest tenth.
|
5.1
| |
In triangle $ABC$ , $AB=13$ , $BC=14$ and $CA=15$ . Segment $BC$ is split into $n+1$ congruent segments by $n$ points. Among these points are the feet of the altitude, median, and angle bisector from $A$ . Find the smallest possible value of $n$ .
*Proposed by Evan Chen*
|
27
| |
Consider a 4x4 grid with points that are equally spaced horizontally and vertically, where the distance between two neighboring points is 1 unit. Two triangles are formed: Triangle A connects points at (0,0), (3,2), and (2,3), while Triangle B connects points at (0,3), (3,3), and (3,0). What is the area, in square units, of the region where these two triangles overlap?
|
0.5
| |
Divide an $m$-by-$n$ rectangle into $m n$ nonoverlapping 1-by-1 squares. A polyomino of this rectangle is a subset of these unit squares such that for any two unit squares $S, T$ in the polyomino, either (1) $S$ and $T$ share an edge or (2) there exists a positive integer $n$ such that the polyomino contains unit squares $S_{1}, S_{2}, S_{3}, \ldots, S_{n}$ such that $S$ and $S_{1}$ share an edge, $S_{n}$ and $T$ share an edge, and for all positive integers $k<n, S_{k}$ and $S_{k+1}$ share an edge. We say a polyomino of a given rectangle spans the rectangle if for each of the four edges of the rectangle the polyomino contains a square whose edge lies on it. What is the minimum number of unit squares a polyomino can have if it spans a 128-by343 rectangle?
|
470
|
To span an $a \times b$ rectangle, we need at least $a+b-1$ squares. Indeed, consider a square of the polyomino bordering the left edge of the rectangle and one bordering the right edge. There exists a path connecting these squares; suppose it runs through $c$ different rows. Then the path requires at least $b-1$ horizontal and $c-1$ vertical steps, so it uses at least $b+c-1$ different squares. However, since the polyomino also hits the top and bottom edges of the rectangle, it must run into the remaining $a-c$ rows as well, so altogether we need at least $a+b-1$ squares. On the other hand, this many squares suffice - just consider all the squares bordering the lower or right edges of the rectangle. So, in our case, the answer is $128+343-1=470$.
|
For $n \geq 1$ , let $a_n$ be the number beginning with $n$ $9$ 's followed by $744$ ; eg., $a_4=9999744$ . Define $$ f(n)=\text{max}\{m\in \mathbb{N} \mid2^m ~ \text{divides} ~ a_n \} $$ , for $n\geq 1$ . Find $f(1)+f(2)+f(3)+ \cdots + f(10)$ .
|
75
| |
Inside a cube with edge length 1, an inscribed sphere \( O_1 \) is drawn. Another smaller sphere \( O_2 \) is drawn inside the cube such that it is externally tangent to the larger sphere and simultaneously tangent to three faces of the cube. What is the surface area of the smaller sphere \( O_2 \)?
|
(7-4\sqrt{3})\pi
| |
Approximate the number $0.00356$ to the nearest ten-thousandth: $0.00356 \approx$____.
|
0.0036
| |
All of the triangles in the diagram below are similar to isosceles triangle $ABC$, in which $AB=AC$. Each of the $7$ smallest triangles has area $1,$ and $\triangle ABC$ has area $40$. What is the area of trapezoid $DBCE$?
|
20
|
1. **Identify the relationship between the triangles**: All of the triangles in the diagram are similar to isosceles triangle $ABC$, where $AB = AC$. Each of the 7 smallest triangles has an area of 1, and $\triangle ABC$ has an area of 40.
2. **Express the area of trapezoid $DBCE$**: We know that the area of trapezoid $DBCE$ can be found by subtracting the area of triangle $ADE$ from the area of triangle $ABC$:
\[
[DBCE] = [ABC] - [ADE]
\]
3. **Determine the scale factor**: Since all triangles are similar and the smallest triangles have an area of 1, let's consider the base of these smallest triangles as $x$. The base of $\triangle ADE$ is composed of 4 such smallest triangles, hence the base of $\triangle ADE$ is $4x$.
4. **Relate the areas through similarity ratio**: The area of a triangle scales with the square of the similarity ratio. Given that the area of $\triangle ADE$ is a scaled version of the area of the smallest triangle, we have:
\[
\left(\frac{DE}{BC}\right)^2 = \frac{[ADE]}{[ABC]}
\]
Since $[ADE]$ is composed of 4 smallest triangles each with area 1, $[ADE] = 4$. Plugging in the areas:
\[
\left(\frac{DE}{BC}\right)^2 = \frac{4}{40} = \frac{1}{10}
\]
Therefore, $\frac{DE}{BC} = \frac{1}{\sqrt{10}}$.
5. **Calculate the base of $\triangle ADE$ in terms of $BC$**: Since $DE = 4x$ and $\frac{DE}{BC} = \frac{1}{\sqrt{10}}$, we have:
\[
4x = \frac{BC}{\sqrt{10}}
\]
6. **Calculate the area of $\triangle ADE$**: The area of $\triangle ADE$ can be expressed in terms of the area of $\triangle ABC$:
\[
[ADE] = \left(\frac{DE}{BC}\right)^2 \cdot [ABC] = \left(\frac{1}{\sqrt{10}}\right)^2 \cdot 40 = \frac{1}{10} \cdot 40 = 4
\]
7. **Calculate the area of trapezoid $DBCE$**:
\[
[DBCE] = [ABC] - [ADE] = 40 - 4 = 36
\]
8. **Correct the calculation error**: The area of $\triangle ADE$ should be calculated using the correct scale factor. Since $\triangle ADE$ is composed of 4 smallest triangles, and each smallest triangle has an area of 1, the area of $\triangle ADE$ is indeed 4. However, the calculation of the area of trapezoid $DBCE$ should be:
\[
[DBCE] = [ABC] - [ADE] = 40 - 4 \times 5 = 40 - 20 = 20
\]
The error in the original solution was in the multiplication of the area of $\triangle ADE$ by 5 instead of 4.
9. **Final answer**:
\[
\boxed{20}
\]
|
Alex thought of a two-digit number (from 10 to 99). Grisha tries to guess it by naming two-digit numbers. It is considered that he guessed the number if he correctly guessed one digit, and the other digit is off by no more than one (for example, if the number thought of is 65, then 65, 64, and 75 are acceptable, but 63, 76, and 56 are not). Devise a method that guarantees Grisha's success in 22 attempts (regardless of the number Alex thought of).
|
22
| |
The perpendicular bisectors of the sides of triangle $DEF$ meet its circumcircle at points $D'$, $E'$, and $F'$, respectively. If the perimeter of triangle $DEF$ is 42 and the radius of the circumcircle is 10, find the area of hexagon $DE'F'D'E'F$.
|
105
| |
18. Given the function $f(x)=x^3+ax^2+bx+5$, the equation of the tangent line to the curve $y=f(x)$ at the point $x=1$ is $3x-y+1=0$.
Ⅰ. Find the values of $a$ and $b$;
Ⅱ. Find the maximum and minimum values of $y=f(x)$ on the interval $[-3,1]$.
|
\frac{95}{27}
| |
Let $f(x)$ have a domain of $R$, $f(x+1)$ be an odd function, and $f(x+2)$ be an even function. When $x\in [1,2]$, $f(x)=ax^{2}+b$. If $f(0)+f(3)=6$, then calculate the value of $f\left(\frac{9}{2}\right)$.
|
\frac{5}{2}
| |
Compute
\[\begin{vmatrix} 2 & 0 & -1 \\ 7 & 4 & -3 \\ 2 & 2 & 5 \end{vmatrix}.\]
|
46
| |
Given that the function $f(x)=\sin x+a\cos x$ has a symmetry axis on $x=\frac{5π}{3}$, determine the maximum value of the function $g(x)=a\sin x+\cos x$.
|
\frac {2\sqrt {3}}{3}
| |
From 6 students, 4 are to be selected to undertake four different tasks labeled A, B, C, and D. If two of the students, named A and B, cannot be assigned to task A, calculate the total number of different assignment plans.
|
240
| |
In triangle \( ABC \), the sides \( AC = 14 \) and \( AB = 6 \) are known. A circle with center \( O \), constructed on side \( AC \) as the diameter, intersects side \( BC \) at point \( K \). It turns out that \( \angle BAK = \angle ACB \). Find the area of triangle \( BOC \).
|
21
| |
The time right now is exactly midnight. What time will it be in 1234 minutes?
|
8\!:\!34 \text{ p.m.}
| |
Anton has two species of ants, Species A and Species B, in his ant farm. The two species are identical in appearance, but Anton knows that every day, there are twice as many ants of Species A than before, while there are three times as many ants of Species B. On Day 0, Anton counts that there are 30 ants in his ant farm. On Day 5, Anton counts that there are 3281 ants in his ant farm. How many of these are of Species A?
|
608
| |
Machines A, B, and C operate independently and are supervised by a single worker, who cannot attend to two or more machines simultaneously. Given that the probabilities of these machines operating without needing supervision are 0.9, 0.8, and 0.85 respectively, calculate the probability that during a certain period,
(1) all three machines operate without needing supervision;
(2) the worker is unable to supervise effectively, leading to a shutdown.
|
0.059
| |
Given \( x_{1}, x_{2}, \cdots, x_{1993} \) satisfy:
\[
\left|x_{1}-x_{2}\right|+\left|x_{2}-x_{3}\right|+\cdots+\left|x_{1992}-x_{1993}\right|=1993,
\]
and
\[
y_{k}=\frac{x_{1}+x_{2}+\cdots+x_{k}}{k} \quad (k=1,2,\cdots,1993),
\]
what is the maximum possible value of \( \left|y_{1}-y_{2}\right|+\left|y_{2}-y_{3}\right|+\cdots+\left|y_{1992}-y_{1993}\right| \)?
|
1992
| |
Given the function $f(x)=\frac{1}{2}x^{2}+(2a^{3}-a^{2})\ln x-(a^{2}+2a-1)x$, and $x=1$ is its extreme point, find the real number $a=$ \_\_\_\_\_\_.
|
-1
| |
If point \( P \) is the circumcenter of \(\triangle ABC\) and \(\overrightarrow{PA} + \overrightarrow{PB} + \lambda \overrightarrow{PC} = \mathbf{0}\), where \(\angle C = 120^\circ\), then find the value of the real number \(\lambda\).
|
-1
| |
Let $p, q, r$ be primes such that $2 p+3 q=6 r$. Find $p+q+r$.
|
7
|
First, it is known that $3 q=6 r-2 p=2(3 r-p)$, thus $q$ is even. The only even prime is 2 so $q=2$. Further, $2 p=6 r-3 q=3(2 r-q)$, which means that $p$ is a multiple of 3 and thus $p=3$. This means that $2 \cdot 3+3 \cdot 2=6 r \Longrightarrow r=2$. Therefore, $p+q+r=3+2+2=7$.
|
In triangle $ABC$, $AB = 3$, $BC = 4$, $AC = 5$, and $BD$ is the angle bisector from vertex $B$. If $BD = k \sqrt{2}$, then find $k$.
|
\frac{12}{7}
| |
In the Cartesian coordinate system $xOy$, the sum of distances from point $P$ to the two points $\left(0, -\sqrt{3}\right)$ and $\left(0, \sqrt{3}\right)$ is $4$. Let the trajectory of point $P$ be $C$.
(Ⅰ) Find the equation of curve $C$;
(Ⅱ) Find the coordinates of the vertices, the lengths of the major and minor axes, and the eccentricity of the ellipse.
|
\dfrac{\sqrt{3}}{2}
| |
Among all polynomials $P(x)$ with integer coefficients for which $P(-10)=145$ and $P(9)=164$, compute the smallest possible value of $|P(0)|$.
|
25
|
Since $a-b \mid P(a)-P(b)$ for any integer polynomial $P$ and integers $a$ and $b$, we require that $10 \mid P(0)-P(-10)$ and $9 \mid P(0)-P(9)$. So, we are looking for an integer $a$ near 0 for which $$a \equiv 5 \bmod 10, a \equiv 2 \bmod 9$$ The smallest such positive integer is 65, and the smallest such negative integer is -25. This is achievable, for example, if $P(x)=2 x^{2}+3 x-25$, so our answer is 25.
|
In triangle ABC, the altitude, angle bisector and median from C divide the angle C into four equal angles. Find angle B.
|
45
| |
The average of the numbers $1, 2, 3,\dots, 98, 99,$ and $x$ is $100x$. What is $x$?
|
\frac{50}{101}
| |
A circle with center $O$ has radius $5,$ and has two points $A,B$ on the circle such that $\angle AOB = 90^{\circ}.$ Rays $OA$ and $OB$ are extended to points $C$ and $D,$ respectively, such that $AB$ is parallel to $CD,$ and the length of $CD$ is $200\%$ more than the radius of circle $O.$ Determine the length of $AC.$
|
5 + \frac{15\sqrt{2}}{2}
| |
What is the smallest integer that can be placed in the box so that $\frac{1}{2} < \frac{\square}{9}$?
|
5
|
We know that $\frac{1}{2} = 0.5$. Since $\frac{4}{9} \approx 0.44$ is less than $\frac{1}{2} = 0.5$, then 4 cannot be placed in the box. (No integer smaller than 4 can be placed in the box either.) Since $\frac{5}{9} \approx 0.56$ is greater than $\frac{1}{2} = 0.5$, then the smallest integer that can be placed in the box is 5.
|
Given that $F$ is the right focus of the hyperbola $C$: ${{x}^{2}}-\dfrac{{{y}^{2}}}{8}=1$, and $P$ is a point on the left branch of $C$, $A(0,4)$. When the perimeter of $\Delta APF$ is minimized, the area of this triangle is \_\_\_.
|
\dfrac{36}{7}
| |
Ahn chooses a two-digit integer, subtracts it from 200, and doubles the result. What is the largest number Ahn can get?
|
380
|
1. **Identify the operation**: Ahn performs the operation $2(200 - n)$, where $n$ is a two-digit integer.
2. **Determine the range of $n$**: Since $n$ is a two-digit integer, $10 \leq n \leq 99$.
3. **Maximize the expression**: To maximize $2(200 - n)$, we need to minimize $n$ because subtracting a smaller number from $200$ results in a larger number, and doubling a larger number results in an even larger number.
4. **Calculate with the smallest $n$**: The smallest two-digit integer is $10$. Substitute $n = 10$ into the expression:
\[
2(200 - 10) = 2 \times 190 = 380
\]
5. **Conclusion**: The largest number Ahn can get by performing this operation with any two-digit integer is $380$.
$\boxed{\textbf{(D)}\ 380}$
|
Given two points $A(-2,0)$ and $B(0,2)$, and point $C$ is any point on the circle $x^{2}+y^{2}-2x=0$, find the minimum area of $\triangle ABC$.
|
3 - \sqrt{2}
| |
In the diagram below, $ABCD$ is a trapezoid such that $\overline{AB}\parallel \overline{CD}$ and $\overline{AC}\perp\overline{CD}$. If $CD = 20$, $\tan D = 2$, and $\tan B = 2.5$, then what is $BC$?
[asy]
pair A,B,C,D;
C = (0,0);
D = (20,0);
A = (20,40);
B= (30,40);
draw(A--B--C--D--A);
label("$A$",A,N);
label("$B$",B,N);
label("$C$",C,S);
label("$D$",D,S);
[/asy]
|
4\sqrt{116}
| |
Given an arithmetic sequence $\{a\_n\}$, where $a\_1=\tan 225^{\circ}$ and $a\_5=13a\_1$, let $S\_n$ denote the sum of the first $n$ terms of the sequence $\{(-1)^na\_n\}$. Determine the value of $S\_{2015}$.
|
-3022
| |
A certain high school encourages students to spontaneously organize various sports competitions. Two students, A and B, play table tennis matches in their spare time. The competition adopts a "best of seven games" format (i.e., the first player to win four games wins the match and the competition ends). Assuming that the probability of A winning each game is $\frac{1}{3}$. <br/>$(1)$ Find the probability that exactly $5$ games are played when the match ends; <br/>$(2)$ If A leads with a score of $3:1$, let $X$ represent the number of games needed to finish the match. Find the probability distribution and expectation of $X$.
|
\frac{19}{9}
| |
(1) The definite integral $\int_{-1}^{1}(x^{2}+\sin x)dx=$ ______.
(2) There are 2 red balls, 1 white ball, and 1 blue ball in a box. The probability of drawing two balls with at least one red ball is ______.
(3) Given the function $f(x)=\begin{cases}1-\log_{a}(x+2), & x\geqslant 0 \\ g(x), & x < 0\end{cases}$ is an odd function, then the root of the equation $g(x)=2$ is ______.
(4) Given the ellipse $M: \frac{x^{2}}{a^{2}}+ \frac{y^{2}}{b^{2}}=1(0 < b < a < \sqrt{2}b)$, its foci are $F_{1}$ and $F_{2}$ respectively. Circle $N$ has $F_{2}$ as its center, and its minor axis length as the diameter. A tangent line to circle $N$ passing through point $F_{1}$ touches it at points $A$ and $B$. If the area of quadrilateral $F_{1}AF_{2}B$ is $S= \frac{2}{3}a^{2}$, then the eccentricity of ellipse $M$ is ______.
|
\frac{\sqrt{3}}{3}
| |
Given that $\alpha, \beta, \gamma$ are all acute angles and $\cos^{2} \alpha + \cos^{2} \beta + \cos^{2} \gamma = 1$, find the minimum value of $\tan \alpha \cdot \tan \beta \cdot \tan \gamma$.
|
2\sqrt{2}
| |
Reading material: In class, the teacher explained the following two problems on the blackboard:
Problem 1: Calculate: $77.7\times 11-77.7\times 5+77.7\times 4$.
Solution: $77.7\times 11-77.7\times 5+77.7\times 4=77.7\times \left(11-5+4\right)=777$.
This problem uses the distributive property of multiplication.
Problem 2: Calculate $(\frac{1}{2}×\frac{3}{2})×(\frac{2}{3}×\frac{4}{3})×(\frac{3}{4}×\frac{5}{4})\times …×(\frac{18}{19}×\frac{20}{19})$.
Solution: The original expression $=\frac{1}{2}×(\frac{3}{2}×\frac{2}{3})×(\frac{4}{3}×\frac{3}{4})×…×(\frac{19}{18}×\frac{18}{19})×\frac{20}{19}=\frac{1}{2}×\frac{20}{19}=\frac{10}{19}$.
This problem uses the commutative and associative properties of multiplication.
Attempt to solve: (1) Calculate: $99\times 118\frac{4}{5}+99×(-\frac{1}{5})-99×18\frac{3}{5}$.
Application of solution: (2) Subtract $\frac{1}{2}$ from $24$, then subtract $\frac{1}{3}$ from the remaining, then subtract $\frac{1}{4}$ from the remaining, and so on, until subtracting the remaining $\frac{1}{24}$. What is the final result?
(3) Given a rational number $a\neq 1$, calling $\frac{1}{1-a}$ the reciprocal difference of $a$, such as the reciprocal difference of $a=2$ is $\frac{1}{1-2}=-1$, the reciprocal difference of $-1$ is $\frac{1}{1-(-1)}=\frac{1}{2}$. If $a_{1}=-2$, $a_{1}$'s reciprocal difference is $a_{2}$, $a_{2}$'s reciprocal difference is $a_{3}$, $a_{3}$'s reciprocal difference is $a_{4}$, and so on. Find the value of $a_{1}+a_{2}+a_{3}-2a_{4}-2a_{5}-2a_{6}+3a_{7}+3a_{8}+3a_{9}$.
|
-\frac{1}{3}
| |
Find the $2019$ th strictly positive integer $n$ such that $\binom{2n}{n}$ is not divisible by $5$ .
|
37805
| |
$D$ is a point on side $AB$ of triangle $ABC$, satisfying $AD=2$ and $DB=8$. Let $\angle ABC=\alpha$ and $\angle CAB=\beta$. <br/>$(1)$ When $CD\perp AB$ and $\beta =2\alpha$, find the value of $CD$; <br/>$(2)$ If $α+\beta=\frac{π}{4}$, find the maximum area of triangle $ACD$.
|
5(\sqrt{2} - 1)
| |
The distance between two vectors is the magnitude of their difference. Find the value of $t$ for which the vector
\[\bold{v} = \begin{pmatrix} 2 \\ -3 \\ -3 \end{pmatrix} + t \begin{pmatrix} 7 \\ 5 \\ -1 \end{pmatrix}\]is closest to
\[\bold{a} = \begin{pmatrix} 4 \\ 4 \\ 5 \end{pmatrix}.\]
|
\frac{41}{75}
| |
Given that Sia and Kira count sequentially, where Sia skips every fifth number, find the 45th number said in this modified counting game.
|
54
| |
Given the function \( f(x) = \sqrt{1 + x \sqrt{1 + (x+1) \sqrt{1 + (x+2) \sqrt{1 + (x+3) \sqrt{\cdots}}}}} \) for \( x > 1 \), \( x \in \mathbf{N}^{*} \), find \( f(2008) \).
|
2009
| |
Given an ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 (a > b > 0)$, its left focus is $F$, left vertex is $A$, and point $B$ is a point on the ellipse in the first quadrant. The line $OB$ intersects the ellipse at another point $C$. If the line $BF$ bisects the line segment $AC$, find the eccentricity of the ellipse.
|
\frac{1}{3}
| |
If $\frac{x^2-bx}{ax-c}=\frac{m-1}{m+1}$ has roots which are numerically equal but of opposite signs, the value of $m$ must be:
|
\frac{a-b}{a+b}
|
1. **Cross-multiplying the given equation:**
\[
\frac{x^2 - bx}{ax - c} = \frac{m-1}{m+1}
\]
Cross-multiplying gives:
\[
(m+1)(x^2 - bx) = (m-1)(ax - c)
\]
Expanding both sides:
\[
(m+1)x^2 - (m+1)bx = (m-1)ax - (m-1)c
\]
Rearranging terms:
\[
(m+1)x^2 - (m+1)bx - (m-1)ax + (m-1)c = 0
\]
Simplifying further:
\[
(m+1)x^2 - (bm + am + b - a)x + c(m-1) = 0
\]
2. **Using Vieta's Formulas:**
Since the roots are numerically equal but of opposite signs, their sum is zero. According to Vieta's formulas, the sum of the roots of the quadratic equation $Ax^2 + Bx + C = 0$ is given by $-\frac{B}{A}$. For our equation:
\[
-\frac{-(bm + am + b - a)}{m+1} = 0
\]
Simplifying this:
\[
bm + am + b - a = 0
\]
3. **Solving for $m$:**
Rearrange the equation:
\[
bm + am = a - b
\]
Factor out $m$:
\[
m(b + a) = a - b
\]
Solving for $m$:
\[
m = \frac{a - b}{a + b}
\]
4. **Conclusion:**
The value of $m$ that satisfies the condition that the roots of the given equation are numerically equal but of opposite signs is:
\[
\boxed{\textbf{(A)}\ \frac{a-b}{a+b}}
\]
|
A right rectangular prism $P$ (i.e., a rectangular parallelpiped) has sides of integral length $a, b, c,$ with $a\le b\le c.$ A plane parallel to one of the faces of $P$ cuts $P$ into two prisms, one of which is similar to $P,$ and both of which have nonzero volume. Given that $b=1995,$ for how many ordered triples $(a, b, c)$ does such a plane exist?
|
40
| |
Let $A B C$ be a triangle with $A B=4, B C=8$, and $C A=5$. Let $M$ be the midpoint of $B C$, and let $D$ be the point on the circumcircle of $A B C$ so that segment $A D$ intersects the interior of $A B C$, and $\angle B A D=\angle C A M$. Let $A D$ intersect side $B C$ at $X$. Compute the ratio $A X / A D$.
|
$\frac{9}{41}$
|
Let $E$ be the intersection of $A M$ with the circumcircle of $A B C$. We note that, by equal angles $A D C \sim A B M$, so that $$A D=A C\left(\frac{A B}{A M}\right)=\frac{20}{A M}$$ Using the law of cosines on $A B C$, we get that $$\cos B=\frac{4^{2}+8^{2}-5^{2}}{2(4)(8)}=\frac{55}{64}$$ Then, using the law of cosines on $A B M$, we get that $$A M=\sqrt{4^{2}+4^{2}-2(4)(4) \cos B}=\frac{3}{\sqrt{2}} \Rightarrow A D=\frac{20 \sqrt{2}}{3}$$ Applying Power of a Point on $M$, $$(A M)(M E)=(B M)(M C) \Rightarrow M E=\frac{16 \sqrt{2}}{3} \Rightarrow A E=\frac{41 \sqrt{2}}{6}$$ Then, we note that $A X B \sim A C E$, so that $$A X=A B\left(\frac{A C}{A E}\right)=\frac{60 \sqrt{2}}{41} \Rightarrow \frac{A X}{A D}=\frac{9}{41}$$
|
Given that Steve's empty swimming pool holds 30,000 gallons of water when full and will be filled by 5 hoses, each supplying 2.5 gallons of water per minute, calculate the time required to fill the pool.
|
40
| |
In a regular hexagon $ABCDEF$, points $P$, $Q$, $R$, and $S$ are chosen on sides $\overline{AB}$, $\overline{CD}$, $\overline{DE}$, and $\overline{FA}$ respectively, so that lines $PC$ and $RA$, as well as $QS$ and $EB$, are parallel. Moreover, the distances between these parallel lines are equal and constitute half of the altitude of the triangles formed by drawing diagonals from the vertices $B$ and $D$ to the opposite side. Calculate the ratio of the area of hexagon $APQRSC$ to the area of hexagon $ABCDEF$.
|
\frac{3}{4}
| |
Find $\sec \frac{5 \pi}{3}.$
|
2
| |
Let the real numbers \(a_{1}, a_{2}, \cdots, a_{100}\) satisfy the following conditions: (i) \(a_{1} \geqslant a_{2} \geqslant \cdots \geqslant a_{100} \geqslant 0\); (ii) \(a_{1}+a_{2} \leqslant 100\); (iii) \(a_{3}+a_{4} + \cdots + a_{100} \leqslant 100\). Find the maximum value of \(a_{1}^{2}+a_{2}^{2}+\cdots+a_{100}^{2}\) and the values of \(a_{1}, a_{2}, \cdots, a_{100}\) when the maximum value is reached.
|
10000
| |
Find the largest real \( k \) such that if \( a, b, c, d \) are positive integers such that \( a + b = c + d \), \( 2ab = cd \) and \( a \geq b \), then \(\frac{a}{b} \geq k\).
|
3 + 2\sqrt{2}
| |
Given a set of data: $2$, $x$, $4$, $6$, $10$, with an average value of $5$, find the standard deviation of this data set.
|
2\sqrt{2}
| |
Let $ABC$ be a triangle such that $AB=2$ , $CA=3$ , and $BC=4$ . A semicircle with its diameter on $BC$ is tangent to $AB$ and $AC$ . Compute the area of the semicircle.
|
\frac{27\pi}{40}
| |
Given an ellipse $\frac {x^{2}}{a^{2}} + \frac {y^{2}}{b^{2}} = 1$ ($a > b > 0$) and a line $l: y = -\frac { \sqrt {3}}{3}x + b$ intersect at two distinct points P and Q. The distance from the origin to line $l$ is $\frac { \sqrt {3}}{2}$, and the eccentricity of the ellipse is $\frac { \sqrt {6}}{3}$.
(Ⅰ) Find the equation of the ellipse;
(Ⅱ) Determine whether there exists a real number $k$ such that the line $y = kx + 2$ intersects the ellipse at points P and Q, and the circle with diameter PQ passes through point D(1, 0). If it exists, find the value of $k$; if not, explain why.
|
-\frac {7}{6}
| |
There are $5$ different books to be distributed among three students, with each student receiving at least $1$ book and at most $2$ books. The number of different distribution methods is $\_\_\_\_\_\_\_\_$.
|
90
| |
A point $(x,y)$ is randomly and uniformly chosen inside the square with vertices (0,0), (0,2), (2,2), and (2,0). What is the probability that $x+y < 3$?
|
\dfrac{7}{8}
| |
An iterative average of the numbers 1, 2, 3, 4, and 5 is computed the following way. Arrange the five numbers in some order. Find the mean of the first two numbers, then find the mean of that with the third number, then the mean of that with the fourth number, and finally the mean of that with the fifth number. What is the difference between the largest and smallest possible values that can be obtained using this procedure?
|
\frac{17}{8}
|
To solve this problem, we need to understand how the iterative average process works and how the order of numbers affects the final result. The iterative average process can be thought of as a weighted average where numbers added later in the sequence have a greater influence on the final average.
#### Step 1: Understanding the iterative average process
Given a sequence of numbers, the iterative average is calculated as follows:
1. Start with the first two numbers and calculate their average.
2. Take the average from step 1 and calculate the new average with the next number in the sequence.
3. Continue this process until all numbers are included.
#### Step 2: Calculate the iterative average for the sequence $5, 4, 3, 2, 1$
- First average: $\frac{5 + 4}{2} = \frac{9}{2}$
- Second average: $\frac{\frac{9}{2} + 3}{2} = \frac{15}{4}$
- Third average: $\frac{\frac{15}{4} + 2}{2} = \frac{23}{8}$
- Fourth average: $\frac{\frac{23}{8} + 1}{2} = \frac{31}{16}$
Thus, the final iterative average for the sequence $5, 4, 3, 2, 1$ is $\boxed{\frac{31}{16}}$.
#### Step 3: Calculate the iterative average for the sequence $1, 2, 3, 4, 5$
- First average: $\frac{1 + 2}{2} = \frac{3}{2}$
- Second average: $\frac{\frac{3}{2} + 3}{2} = \frac{9}{4}$
- Third average: $\frac{\frac{9}{4} + 4}{2} = \frac{25}{8}$
- Fourth average: $\frac{\frac{25}{8} + 5}{2} = \frac{65}{16}$
Thus, the final iterative average for the sequence $1, 2, 3, 4, 5$ is $\boxed{\frac{65}{16}}$.
#### Step 4: Calculate the difference between the maximum and minimum values
The difference between the largest and smallest possible values is:
$$ \frac{65}{16} - \frac{31}{16} = \frac{34}{16} = \frac{17}{8} $$
Thus, the difference between the largest and smallest possible values that can be obtained using this procedure is $\boxed{\textbf{(C)}\ \frac{17}{8}}$.
|
Let $p$, $q$, $r$, $s$, and $t$ be distinct integers such that $(8-p)(8-q)(8-r)(8-s)(8-t) = -120$. Calculate the sum $p+q+r+s+t$.
|
27
| |
In a kindergarten, each child was given three cards, each of which has either "MA" or "NY" written on it. It turned out that 20 children can arrange their cards to spell the word "MAMA", 30 children can arrange their cards to spell the word "NYANYA", and 40 children can arrange their cards to spell the word "MANYA". How many children have all three cards that are the same?
|
10
| |
3000 people each go into one of three rooms randomly. What is the most likely value for the maximum number of people in any of the rooms? Your score for this problem will be 0 if you write down a number less than or equal to 1000. Otherwise, it will be $25-27 \frac{|A-C|}{\min (A, C)-1000}$.
|
1019
|
To get a rough approximation, we can use the fact that a sum of identical random variables converges to a Gaussian distribution in this case with a mean of 1000 and a variance of $3000 \cdot \frac{2}{9}=667$. Since $\sqrt{667} \approx 26,1026$ is a good guess, as Gaussians tend to differ from their mean by approximately their variance. The actual answer was computed with the following python program: ``` facts = [0]*3001 facts[0]=1 for a in range(1,3001): facts[a]=a*facts[a-1] def binom(n,k): return facts[n]/(facts[k]*facts[n-k]) maxes = [0]*3001 M = 1075 for a in range(0,3001): for b in range(0,3001-a): c = 3000-a-b m = max (a,max (b,c)) if m < M: maxes[m] += facts[3000]/(facts[a]*facts[b]*facts[c]) print [a,b] best = 1000 for a in range(1000,1050): print maxes[a],a if maxes[best] <= maxes[a]: best = a print maxes [best] print best ``` We can use arguments involving the Chernoff bound to show that the answer is necessarily less than 1075. Alternately, if we wanted to be really careful, we could just set $M=3001$, but then we'd have to wait a while for the script to finish.
|
The sides of rhombus \( EFGH \) are the hypotenuses of the isosceles right triangles \( EAF, FDG, GCH, \) and \( HBE \), and all these triangles have common interior points with the rhombus \( EFGH \). The sum of the areas of quadrilateral \( ABCD \) and rhombus \( EFGH \) is 12. Find \( GH \).
|
2\sqrt{3}
| |
A workshop has fewer than $60$ employees. When these employees are grouped in teams of $8$, $5$ employees remain without a team. When arranged in teams of $6$, $3$ are left without a team. How many employees are there in the workshop?
|
45
| |
The equation \(x^{2}+5x+1=0\) has roots \(x_{1}\) and \(x_{2}\). Find the value of the expression
\[
\left(\frac{x_{1} \sqrt{6}}{1+x_{2}}\right)^{2}+\left(\frac{x_{2} \sqrt{6}}{1+x_{1}}\right)^{2}
\]
|
220
| |
Sasha and Masha each picked a natural number and communicated them to Vasya. Vasya wrote the sum of these numbers on one piece of paper and their product on another piece, then hid one of the pieces and showed the other (on which the number 2002 was written) to Sasha and Masha. Seeing this number, Sasha said he did not know the number Masha had picked. Upon hearing this, Masha said she did not know the number Sasha had picked. What number did Masha pick?
|
1001
| |
Find the maximum value of the expression \( x + y \) if \( (2 \sin x - 1)(2 \cos y - \sqrt{3}) = 0 \), \( x \in [0, \frac{3\pi}{2}] \), \( y \in [\pi, 2\pi] \).
|
\frac{8\pi}{3}
| |
Convex quadrilateral $ABCD$ has $AB = 10$ and $CD = 15$. Diagonals $AC$ and $BD$ intersect at $E$, where $AC = 18$, and $\triangle AED$ and $\triangle BEC$ have equal perimeters. Calculate the length of $AE$.
**A)** $6$
**B)** $7.2$
**C)** $7.5$
**D)** $9$
**E)** $10$
|
7.2
| |
Round $3.45$ to the nearest tenth.
|
3.5
| |
Let $\mathbf{Z}$ denote the set of all integers. Find all real numbers $c > 0$ such that there exists a labeling of the lattice points $ ( x, y ) \in \mathbf{Z}^2$ with positive integers for which:
[list]
[*] only finitely many distinct labels occur, and
[*] for each label $i$, the distance between any two points labeled $i$ is at least $c^i$.
[/list]
[i]
|
c < \sqrt{2}
|
To solve this problem, we need to determine all real numbers \( c > 0 \) such that there exists a labeling of the lattice points \( (x, y) \in \mathbf{Z}^2 \) with positive integers while satisfying the given conditions:
- Only finitely many distinct labels occur.
- For each label \( i \), the distance between any two points labeled \( i \) is at least \( c^i \).
Given the reference answer, we are looking for \( c \) such that \( c < \sqrt{2} \). Let's see why this holds:
1. **Understanding Distances in the Lattice:**
Consider the Euclidean distance between two lattice points \( (x_1, y_1) \) and \( (x_2, y_2) \) in \( \mathbf{Z}^2 \). This distance is given by:
\[
d((x_1, y_1), (x_2, y_2)) = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}.
\]
2. **Labeling with Condition on Distances:**
For a fixed label \( i \), the distance between any two points with this label must be \( \geq c^i \). We need infinitely many points since the lattice \( \mathbf{Z}^2 \) is infinite, but only finitely many distinct labels. Thus, the labeling for each label \( i \) inherently restricts possible distances between pairs of points.
3. **Bounding \( c \):**
- If \( c \geq \sqrt{2} \), consider any two adjacent lattice points, say \( (x, y) \) and \( (x+1, y) \) or \( (x, y+1) \). For sufficiently large \( i \), \( c^i \) will exceed any possible finite maximum distance between these pairs using distinct labels, contradicting the need for only finitely many labels.
- If \( c < \sqrt{2} \), then for any integer \( i \), \( c^i \) can be smaller than the shortest distance \((\sqrt{2})\) between two adjacent lattice points. Therefore, it becomes possible to find suitable points and repeatedly assign the same labels within these constraints.
4. **Conclusion:**
The condition \( c < \sqrt{2} \) ensures that the labeling can satisfy both criteria provided: controlling the finite number of labels and maintaining the required distances between points with the same label.
Thus, the values of \( c \) that satisfy the problem's conditions are indeed:
\[
\boxed{c < \sqrt{2}}
\]
This completes the correctness validation of the initial reference answer by logically confirming the constraints outlined in the labeling problem.
|
A city adopts a lottery system for "price-limited housing," where winning families can randomly draw a house number from the available housing in a designated community. It is known that two friendly families, Family A and Family B, have both won the lottery and decided to go together to a certain community to draw their house numbers. Currently, there are $5$ houses left in this community, spread across the $4^{th}$, $5^{th}$, and $6^{th}$ floors of a building, with $1$ house on the $4^{th}$ floor and $2$ houses each on the $5^{th}$ and $6^{th}$ floors.
(Ⅰ) Calculate the probability that Families A and B will live on the same floor.
(Ⅱ) Calculate the probability that Families A and B will live on adjacent floors.
|
\dfrac{3}{5}
| |
How many integer values of $x$ satisfy $|x|<3\pi$?
|
19
|
1. **Convert the inequality involving absolute value**: The inequality $|x| < 3\pi$ can be rewritten as $-3\pi < x < 3\pi$.
2. **Approximate $\pi$ and calculate $3\pi$**: Since $\pi \approx 3.14$, we calculate $3\pi \approx 3 \times 3.14 = 9.42$.
3. **Determine the integer bounds**: The inequality $-3\pi < x < 3\pi$ translates to $-9.42 < x < 9.42$. Since $x$ must be an integer, we consider the nearest integers within this range, which are $-9$ and $9$ respectively.
4. **Count the integers within the range**: The integers from $-9$ to $9$ inclusive are $-9, -8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9$.
5. **Calculate the total number of integers**: The total number of integers from $-9$ to $9$ is calculated by the formula for the count of consecutive integers, which is the upper bound minus the lower bound plus one. Thus, the count is $9 - (-9) + 1 = 19$.
6. **Conclude with the final answer**: The number of integer values of $x$ that satisfy the inequality $|x| < 3\pi$ is $\boxed{\textbf{(D)} ~19}$.
|
When simplified, what is the value of $$(10^{0.5})(10^{0.3})(10^{0.2})(10^{0.1})(10^{0.9})?$$
|
100
| |
In $\triangle ABC$, $\angle ABC=45^\circ$. Point $D$ is on $\overline{BC}$ so that $2 \cdot BD=CD$ and $\angle DAB=15^\circ$. Find $\angle ACB.$
|
75^\circ
|
1. **Given Information and Setup:**
- In $\triangle ABC$, $\angle ABC = 45^\circ$.
- Point $D$ is on $\overline{BC}$ such that $2 \cdot BD = CD$.
- $\angle DAB = 15^\circ$.
- Let $\angle ACB = \theta$.
2. **Using the Angle Bisector Theorem:**
- Since $2 \cdot BD = CD$, $D$ is the midpoint of $BC$.
- Therefore, $\angle ADB = 120^\circ$ and $\angle ADC = 60^\circ$.
3. **Applying the Law of Sines in $\triangle ABD$ and $\triangle ACD$:**
- $\frac{CD}{\sin(120^\circ - \theta)} = \frac{AD}{\sin \theta}$.
- $\frac{BD}{\sin 15^\circ} = \frac{AD}{\sin 45^\circ}$.
4. **Manipulating the Ratios:**
- $\frac{BD}{CD} \cdot \frac{\sin(120^\circ - \theta)}{\sin 15^\circ} = \frac{\sin \theta}{\sin 45^\circ}$.
- Since $\frac{BD}{CD} = \frac{1}{2}$, we have:
\[
\frac{1}{2} \cdot \frac{\sin(120^\circ - \theta)}{\sin 15^\circ} = \frac{\sin \theta}{\sin 45^\circ}.
\]
5. **Using the Triple-angle Identities:**
- $\sin 45^\circ = \frac{\sqrt{2}}{2}$.
- $\sin 15^\circ = \frac{\sqrt{6} - \sqrt{2}}{4}$.
- Substitute these values:
\[
\frac{\sin(120^\circ - \theta)}{2} = \frac{\sin \theta}{\frac{\sqrt{2}}{2}}.
\]
6. **Simplifying the Equation:**
- $\sin(120^\circ - \theta) = \sin 120^\circ \cos \theta - \cos 120^\circ \sin \theta = \frac{\sqrt{3}}{2} \cos \theta + \frac{1}{2} \sin \theta$.
- $\frac{\sin \theta}{\frac{\sqrt{3}}{2} \cos \theta + \frac{1}{2} \sin \theta} = \frac{1+\sqrt{3}}{2}$.
7. **Solving for $\theta$:**
- $\frac{\sqrt{3}}{2} \cot \theta = \frac{2}{1+\sqrt{3}} - \frac{1}{2}$.
- $\cot \theta = \frac{\sqrt{3} - 1}{\sqrt{3} + 1}$.
- $\sin \theta = \frac{\sqrt{3} + 1}{2 \sqrt{2}}$, $\cos \theta = \frac{\sqrt{3} - 1}{2 \sqrt{2}}$.
8. **Finding $\theta$:**
- $\sin 2\theta = 2 \sin \theta \cos \theta = \frac{1}{2}$.
- $2\theta = 150^\circ$ or $30^\circ$. Since $\cos \theta$ is positive, $2\theta = 150^\circ$.
- $\theta = 75^\circ$.
9. **Conclusion:**
- $\angle ACB = \boxed{\textbf{(D) } 75^\circ}$.
|
Let $a$ and $b$ be the numbers obtained by rolling a pair of dice twice. The probability that the equation $x^{2}-ax+2b=0$ has two distinct real roots is $\_\_\_\_\_\_$.
|
\frac{1}{4}
| |
Find the smallest positive real $\alpha$, such that $$\frac{x+y} {2}\geq \alpha\sqrt{xy}+(1 - \alpha)\sqrt{\frac{x^2+y^2}{2}}$$ for all positive reals $x, y$.
|
\frac{1}{2}
|
To solve the problem of finding the smallest positive real \(\alpha\) such that
\[
\frac{x+y}{2} \geq \alpha\sqrt{xy} + (1 - \alpha)\sqrt{\frac{x^2 + y^2}{2}}
\]
for all positive reals \(x\) and \(y\), we proceed as follows:
### Step 1: Analyze Special Cases
1. **Case \(x = y\):**
If \(x = y\), then both sides of the inequality are equal to \(x\). Therefore, the inequality holds for any \(\alpha\).
2. **Case \(y = 0\):**
Note that for \(y\) approaching 0, the expressions involving \(\sqrt{xy}\) and \(\sqrt{\frac{x^2 + y^2}{2}}\) are tending to zero and \(\frac{x}{\sqrt{2}}\), respectively. Thus, as \(y\) approaches 0, the inequality simplifies to:
\[
\frac{x}{2} \geq \alpha \cdot 0 + (1-\alpha) \cdot \frac{x}{\sqrt{2}}
\]
This simplifies to:
\[
\frac{1}{2} \geq \frac{1-\alpha}{\sqrt{2}}
\]
Solving for \(\alpha\), we require:
\[
\alpha \geq 1 - \frac{\sqrt{2}}{2}
\]
### Step 2: General Case
For general \(x\) and \(y\), consider normalizing by letting \(x = 1\) and \(y = t\). Then the inequality becomes:
\[
\frac{1+t}{2} \geq \alpha\sqrt{t} + (1 - \alpha)\sqrt{\frac{1 + t^2}{2}}
\]
### Step 3: Find the Critical Value of \(\alpha\)
The smallest \(\alpha\) should satisfy the inequality in the extreme cases. From the previous case analysis, we found that:
\[
\alpha = \frac{1}{2}
\]
It turns out that \(\alpha = \frac{1}{2}\) works because it satisfies both the general and special cases without violating the inequality for any positive \(x\) and \(y\).
Thus, the smallest positive real \(\alpha\) is:
\[
\boxed{\frac{1}{2}}
\]
|
At a hypothetical school, there are three departments in the faculty of sciences: biology, physics and chemistry. Each department has three male and one female professor. A committee of six professors is to be formed containing three men and three women, and each department must be represented by two of its members. Every committee must include at least one woman from the biology department. Find the number of possible committees that can be formed subject to these requirements.
|
27
| |
The points $A$ , $B$ , $C$ , $D$ , and $E$ lie in one plane and have the following properties: $AB = 12, BC = 50, CD = 38, AD = 100, BE = 30, CE = 40$ .
Find the length of the segment $ED$ .
|
74
| |
Five years ago, Tim was three times as old as his sister Sarah, and three years before that, Tim was five times as old as Sarah. Determine the number of years it will take for the ratio of their ages to be 3 : 2.
|
13
| |
The domain of the function \( f(x) \) is \( D \). If for any \( x_{1}, x_{2} \in D \), when \( x_{1} < x_{2} \), it holds that \( f(x_{1}) \leq f(x_{2}) \), then \( f(x) \) is called a non-decreasing function on \( D \). Suppose that the function \( f(x) \) is non-decreasing on \( [0,1] \) and satisfies the following three conditions:
1. \( f(0)=0 \);
2. \( f\left(\frac{x}{3}\right)=\frac{1}{2}f(x) \);
3. \( f(1-x)=1-f(x) \).
What is \( f\left(\frac{5}{12}\right) + f\left(\frac{1}{8}\right) \)?
|
\frac{3}{4}
| |
Given 2017 lines separated into three sets such that lines in the same set are parallel to each other, what is the largest possible number of triangles that can be formed with vertices on these lines?
|
673 * 672^2
| |
Shown below is a clock face with no hands. What is the degree measure of the smaller angle formed by the hands of a clock at 10 o'clock? [asy]
/* AMC8 1999 #2 Problem*/
draw(circle((0,0),10),linewidth(1));
/* Hands
draw((25,0)--8dir(-18)+(25,0),linewidth(2));
draw((25,0)--5dir(111)+(25,0),linewidth(2));
draw((25,0)--10dir(90)+(25,0),linewidth(.5));
*/
dot((0,0));
label("1",8dir(60));
label("2",8dir(30));
label("3",8dir(0));
label("4",8dir(-30));
label("5",8dir(-60));
label("6",8dir(-90));
label("7",8dir(-120));
label("8",8dir(-150));
label("9",8dir(180));
label("10",8dir(150));
label("11",8dir(120));
label("12",8dir(90));
for(int i = 1; i< 13; ++i)
{
draw(9dir(30i)--10dir(30i));
}
[/asy]
|
60^\circ
| |
Given the function $f(x) = x^3 - ax^2 + 3x$, and $x=3$ is an extremum of $f(x)$.
(Ⅰ) Determine the value of the real number $a$;
(Ⅱ) Find the equation of the tangent line $l$ to the graph of $y=f(x)$ at point $P(1, f(1))$;
(Ⅲ) Find the minimum and maximum values of $f(x)$ on the interval $[1, 5]$.
|
15
| |
The integers \( m \) and \( n \) satisfy the equation \( 3^{m} \times n = 7! + 8! + 9! \). What is the smallest possible value for \( n \)?
|
560
| |
Given the set $\{-25, -4, -1, 3, 5, 9\}$, find the largest quotient and the smallest product that can be formed using two numbers chosen from the set.
|
-225
| |
Complex number $\omega$ satisfies $\omega^{5}=2$. Find the sum of all possible values of $\omega^{4}+\omega^{3}+\omega^{2}+\omega+1$.
|
5
|
The value of $\omega^{4}+\omega^{3}+\omega^{2}+\omega+1=\frac{\omega^{5}-1}{\omega-1}=\frac{1}{\omega-1}$. The sum of these values is therefore the sum of $\frac{1}{\omega-1}$ over the five roots $\omega$. Substituting $z=\omega-1$, we have that $(z+1)^{5}=2$, so $z^{5}+5 z^{4}+10 z^{3}+10 z^{2}+5 z-1=0$. The sum of the reciprocals of the roots of this equation is $-\frac{5}{-1}=5$ by Vieta's.
|
Given the regression line equation obtained from a certain sample data is $y=1.5x+45$, where $x\in\{1,7,10,13,19\}$, find the value of $\overline{y}$.
|
60
| |
If $P$ is the product of $n$ quantities in Geometric Progression, $S$ their sum, and $S'$ the sum of their reciprocals, then $P$ in terms of $S, S'$, and $n$ is
|
$(S/S')^{\frac{1}{2}n}$
|
To solve the problem, we first need to understand the properties of a geometric progression (GP). Let the first term of the GP be $a$ and the common ratio be $r$. Then the $n$ terms of the GP are $a, ar, ar^2, \ldots, ar^{n-1}$.
1. **Calculate the Product $P$:**
The product of the terms in the GP is:
\[
P = a \cdot ar \cdot ar^2 \cdot \ldots \cdot ar^{n-1} = a^n r^{0+1+2+\ldots+(n-1)} = a^n r^{\frac{n(n-1)}{2}}
\]
2. **Calculate the Sum $S$:**
The sum of the terms in the GP is:
\[
S = a + ar + ar^2 + \ldots + ar^{n-1} = a \left(\frac{1-r^n}{1-r}\right) \quad \text{(using the sum formula for a GP)}
\]
3. **Calculate the Sum of Reciprocals $S'$:**
The sum of the reciprocals of the terms in the GP is:
\[
S' = \frac{1}{a} + \frac{1}{ar} + \frac{1}{ar^2} + \ldots + \frac{1}{ar^{n-1}} = \frac{1}{a} \left(\frac{1-(1/r)^n}{1-(1/r)}\right)
\]
Simplifying, we get:
\[
S' = \frac{1}{a} \left(\frac{r^n-1}{r-1}\right) r^{1-n} = \frac{r^n-1}{a(r-1)}
\]
4. **Relate $P$, $S$, and $S'$:**
We need to find a relationship between $P$, $S$, and $S'$ that matches one of the given choices. We can start by examining the expressions for $S$ and $S'$:
\[
S \cdot S' = \left(a \frac{1-r^n}{1-r}\right) \left(\frac{r^n-1}{a(r-1)}\right) = \frac{(1-r^n)(r^n-1)}{(1-r)(r-1)}
\]
Simplifying, since $(1-r^n)(r^n-1) = -(r^n-1)^2$ and $(1-r)(r-1) = -(r-1)^2$, we get:
\[
S \cdot S' = \frac{(r^n-1)^2}{(r-1)^2}
\]
Taking the square root and considering $n$ terms:
\[
(S \cdot S')^{\frac{1}{2}} = \frac{r^n-1}{r-1}
\]
Raising this to the power $n$:
\[
(S \cdot S')^{\frac{n}{2}} = \left(\frac{r^n-1}{r-1}\right)^n
\]
This expression does not directly match any of the choices, so we need to check the specific case given in the problem statement.
5. **Check with the Specific Case:**
For $a=1, r=2, n=4$, we have $P=64, S=15, S'=\frac{15}{8}$. Plugging these into the choices:
\[
\left(\frac{S}{S'}\right)^{\frac{n}{2}} = \left(\frac{15}{\frac{15}{8}}\right)^2 = 64
\]
This matches the product $P$, confirming that the correct answer is:
\[
\boxed{\textbf{(B) }(S/S')^{\frac{1}{2}n}}
\]
|
Given the function $f(x)=2\ln(3x)+8x$, calculate the value of $\lim_{\triangle x \to 0} \frac{f(1-2\triangle x)-f(1)}{\triangle x}$.
|
-20
| |
The sum of the lengths of all the edges of a cube is 60 cm. Find the number of cubic centimeters in the volume of the cube.
|
125
| |
Given the set \( A=\left\{\left.\frac{a_{1}}{9}+\frac{a_{2}}{9^{2}}+\frac{a_{3}}{9^{3}}+\frac{a_{4}}{9^{4}} \right\rvert\, a_{i} \in\{0,1,2, \cdots, 8\}, i=1, 2, 3, 4\} \), arrange the numbers in \( A \) in descending order and find the 1997th number.
|
\frac{6}{9} + \frac{2}{81} + \frac{3}{729} + \frac{1}{6561}
| |
The minimum value of the polynomial $x^2 + y^2 - 6x + 8y + 7$ is ______.
|
-18
| |
A triangle has sides of lengths 30, 70, and 80. When an altitude is drawn to the side of length 80, the longer segment of this side that is intercepted by the altitude is:
|
65
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.