problem
stringlengths 10
1.99k
| answer
stringlengths 1
74
| solution
stringclasses 245
values |
---|---|---|
What is one-third times one-half times three-fourths times five-sixths?
|
\frac{5}{48}
| |
If $x$ is a positive integer such that $1^{x+2} + 2^{x+1} + 3^{x-1} + 4^x = 1170$, what is the value of $x$?
|
5
| |
What is $\frac{~\frac{2}{5}~}{\frac{3}{7}}$?
|
\frac{14}{15}
| |
Given 15 points in space, 5 of which are collinear, what is the maximum possible number of unique planes that can be determined by these points?
|
445
| |
On an island, there are knights, liars, and followers; each one knows who is who among them. All 2018 island inhabitants were lined up and each was asked to answer "Yes" or "No" to the question: "Are there more knights than liars on the island?" The inhabitants answered one by one in such a way that the others could hear. Knights told the truth, liars lied. Each follower answered the same as the majority of those who had answered before them, and if the number of "Yes" and "No" answers was equal, they could give either answer. It turned out that there were exactly 1009 "Yes" answers. What is the maximum number of followers that could be among the island inhabitants?
|
1009
| |
If $(X-2)^8 = a + a_1(x-1) + \ldots + a_8(x-1)^8$, then the value of $\left(a_2 + a_4 + \ldots + a_8\right)^2 - \left(a_1 + a_3 + \ldots + a_7\right)^2$ is (Answer in digits).
|
-255
| |
For a permutation $\sigma$ of $1,2, \ldots, 7$, a transposition is a swapping of two elements. Let $f(\sigma)$ be the minimum number of transpositions necessary to turn $\sigma$ into the permutation $1,2,3,4,5,6,7$. Find the sum of $f(\sigma)$ over all permutations $\sigma$ of $1,2, \ldots, 7$.
|
22212
|
To solve this problem, we use the idea of a cycle in a permutation. If $\sigma$ is a permutation, we say that $\left(a_{1} a_{2} \cdots a_{k}\right)$ is a cycle if $\sigma\left(a_{i}\right)=\sigma\left(a_{i+1}\right)$ for $1 \leq i \leq k-1$ and $\sigma\left(a_{k}\right)=a_{1}$. Any permutation can be decomposed into disjoint cycles; for instance, the permutation $3,7,6,4,5,1,2$, can be written as $(136)(27)(4)(5)$. For a permutation $\sigma$, let $g(\sigma)$ be the number of cycles in its cycle decomposition. Claim: For any permutation $\sigma$ on $n$ elements, $f(\sigma)=n-g(\sigma)$. Proof: Given a cycle $\left(a_{1} a_{2} \cdots a_{k}\right)$ (with $\left.k \geq 2\right)$ of a permutation $\sigma$, we can turn this cycle into the identity permutation with $k-1$ transpositions; first we swap $a_{1}$ and $a_{2}$. Now, for any $\sigma$, we resolve each cycle in this way, making a total of $n-g(\sigma)$ transpositions, to turn $\sigma$ into the identity permutation. Thus, we want to find $\sum_{\sigma \in S_{7}}(7-g(\sigma))=7 \cdot 7!-\sum_{\sigma \in S_{7}} g(\sigma)$. For any $1 \leq k \leq 7$, the number of cycles of size $k$ is $\frac{n!}{(n-k)!k}$, and the number of permutations each such cycle can appear in is $(n-k)$!. Thus we get that the answer is $7 \cdot 7!-\sum_{k=1}^{7} \frac{7!}{k}=22212$.
|
In the rectangular coordinate system $xOy$, a polar coordinate system is established with the coordinate origin as the pole and the positive semi-axis of the $x$-axis as the polar axis. The polar coordinate equation of circle $C$ is $\rho^2 - 2m\rho\cos\theta + 4\rho\sin\theta = 1 - 2m$.
(1) Find the rectangular coordinate equation of $C$ and its radius.
(2) When the radius of $C$ is the smallest, the curve $y = \sqrt{3}|x - 1| - 2$ intersects $C$ at points $A$ and $B$, and point $M(1, -4)$. Find the area of $\triangle MAB$.
|
2 + \sqrt{3}
| |
The standard enthalpy of formation (ΔH_f°) of a substance is equal to the heat effect of the formation reaction of 1 mole of the substance from simple substances in their standard states (at 1 atm pressure and a given temperature). Therefore, it is necessary to find the heat effect of the reaction:
$$
\underset{\text {graphite}}{6 \mathrm{C}(\kappa)} + 3 \mathrm{H}_{2}(g) = \mathrm{C}_{6} \mathrm{H}_{6} (l) + \mathrm{Q}_{\text{formation}}\left(\mathrm{C}_{6} \mathrm{H}_{6}(l)\right) (4)
$$
According to Hess's law, the heat effect of the reaction depends only on the types and states of the reactants and products and does not depend on the path of the transition.
Hess's law allows dealing with thermochemical equations like algebraic expressions, i.e., based on it, by combining equations of reactions with known heat effects, one can calculate the unknown heat effect of the overall reaction.
Thus, we obtain:
$$
\mathrm{C}_{2}\mathrm{H}_{2}(g) = \underset{\text {graphite}}{2 \mathrm{C}(\kappa)} + \mathrm{H}_{2}(g) + 226.7 \text { kJ; } \quad -3
$$
$$
\begin{array}{lll}
3 \mathrm{C}_{2} \mathrm{H}_{2}(g) & = \mathrm{C}_{6} \mathrm{H}_{6}(l) + 631.1 \text { kJ;} & 1 \\
\mathrm{C}_{6} \mathrm{H}_{6}(l) & = \mathrm{C}_{6} \mathrm{H}_{6}(l) - 33.9 \text { kJ;} & 1
\end{array}
$$
$$
\underset{\text {graphite}}{6 \mathrm{C}(\kappa)} + 3 \mathrm{H}_{2}(g) = \mathrm{C}_{6} \mathrm{H}_{6}(l) + \mathrm{Q}_{\text{formation}}\left(\mathrm{C}_{6} \mathrm{H}_{6}(l)\right);
$$
$$
\mathrm{Q}_{\text{formation}}\left(\mathrm{C}_{6} \mathrm{H}_{6}(l)\right) = 226.7 \cdot (-3) + 631.1 - 33.9 = -82.9 \text{ kJ/mol}.
$$
|
-82.9
| |
Each pair of vertices of a regular $67$ -gon is joined by a line segment. Suppose $n$ of these segments are selected, and each of them is painted one of ten available colors. Find the minimum possible value of $n$ for which, regardless of which $n$ segments were selected and how they were painted, there will always be a vertex of the polygon that belongs to seven segments of the same color.
|
2011
| |
There exist positive integers $a,$ $b,$ and $c$ such that
\[3 \sqrt{\sqrt[3]{5} - \sqrt[3]{4}} = \sqrt[3]{a} + \sqrt[3]{b} - \sqrt[3]{c}.\]Find $a + b + c.$
|
47
| |
Dizzy Daisy is standing on the point $(0,0)$ on the $xy$-plane and is trying to get to the point $(6,6)$. She starts facing rightward and takes a step 1 unit forward. On each subsequent second, she either takes a step 1 unit forward or turns 90 degrees counterclockwise then takes a step 1 unit forward. She may never go on a point outside the square defined by $|x| \leq 6,|y| \leq 6$, nor may she ever go on the same point twice. How many different paths may Daisy take?
|
131922
|
Because Daisy can only turn in one direction and never goes to the same square twice, we see that she must travel in an increasing spiral about the origin. Clearly, she must arrive at $(6,6)$ coming from below. To count her paths, it therefore suffices to consider the horizontal and vertical lines along which she travels (out of 5 choices to move upward, 6 choices leftward, 6 choices downward, and 6 choices rightward). Breaking up the cases by the number of complete rotations she performs, the total is $\binom{5}{0}\binom{6}{0}^{3}+\binom{5}{1}\binom{6}{1}^{3}+\binom{5}{2}\binom{6}{2}^{3}+\binom{5}{3}\binom{6}{3}^{3}+\binom{5}{4}\binom{6}{4}^{3}+\binom{5}{5}\binom{6}{5}^{3}=131922$.
|
For a real number $a$, let $\lfloor a \rfloor$ denote the greatest integer less than or equal to $a$. Let $\mathcal{R}$ denote the region in the coordinate plane consisting of points $(x,y)$ such that $\lfloor x \rfloor ^2 + \lfloor y \rfloor ^2 = 25$. The region $\mathcal{R}$ is completely contained in a disk of radius $r$ (a disk is the union of a circle and its interior). The minimum value of $r$ can be written as $\frac {\sqrt {m}}{n}$, where $m$ and $n$ are integers and $m$ is not divisible by the square of any prime. Find $m + n$.
|
132
|
The desired region consists of 12 boxes, whose lower-left corners are integers solutions of $x^2 + y^2 = 25$, namely $(\pm5,0), (0,\pm5), (\pm3,\pm4), (\pm4,\pm3).$ Since the points themselves are symmetric about $(0,0)$, the boxes are symmetric about $\left(\frac12,\frac12\right)$. The distance from $\left(\frac12,\frac12\right)$ to the furthest point on a box that lays on an axis, for instance $(6,1)$, is $\sqrt {\frac {11}2^2 + \frac12^2} = \sqrt {\frac {122}4}.$ The distance from $\left(\frac12,\frac12\right)$ to the furthest point on a box in the middle of a quadrant, for instance $(5,4)$, is $\sqrt {\frac92^2 + \frac72^2} = \sqrt {\frac {130}4}.$ The latter is the larger, and is $\frac {\sqrt {130}}2$, giving an answer of $130 + 2 = \boxed{132}$.
[asy]import graph; size(10.22cm); real lsf=0.5; pen dps=linewidth(0.7)+fontsize(10); defaultpen(dps); pen ds=black; real xmin=-5.68,xmax=6.54,ymin=-5.52,ymax=6.5; pen cqcqcq=rgb(0.75,0.75,0.75), evevff=rgb(0.9,0.9,1), zzttqq=rgb(0.6,0.2,0); filldraw((-3,4)--(-2,4)--(-2,5)--(-3,5)--cycle,evevff,blue); filldraw((3,4)--(4,4)--(4,5)--(3,5)--cycle,evevff,blue); filldraw((4,3)--(5,3)--(5,4)--(4,4)--cycle,evevff,blue); filldraw((5,0)--(6,0)--(6,1)--(5,1)--cycle,evevff,blue); filldraw((4,-3)--(5,-3)--(5,-2)--(4,-2)--cycle,evevff,blue); filldraw((3,-3)--(3,-4)--(4,-4)--(4,-3)--cycle,evevff,blue); filldraw((0,-5)--(1,-5)--(1,-4)--(0,-4)--cycle,evevff,blue); filldraw((-3,-4)--(-2,-4)--(-2,-3)--(-3,-3)--cycle,evevff,blue); filldraw((-4,-3)--(-3,-3)--(-3,-2)--(-4,-2)--cycle,evevff,blue); filldraw((-4,3)--(-3,3)--(-3,4)--(-4,4)--cycle,evevff,blue); filldraw((-5,0)--(-4,0)--(-4,1)--(-5,1)--cycle,evevff,blue); filldraw((0,6)--(0,5)--(1,5)--(1,6)--cycle,evevff,blue); /*grid*/ pen gs=linewidth(0.7)+cqcqcq+linetype("2 2"); real gx=1,gy=1; for(real i=ceil(xmin/gx)*gx;i<=floor(xmax/gx)*gx;i+=gx) draw((i,ymin)--(i,ymax),gs); for(real i=ceil(ymin/gy)*gy;i<=floor(ymax/gy)*gy;i+=gy) draw((xmin,i)--(xmax,i),gs); Label laxis; laxis.p=fontsize(10); xaxis(xmin,xmax,defaultpen+black,Ticks(laxis,Step=1.0,Size=2,NoZero),Arrows(6),above=true); yaxis(ymin,ymax,defaultpen+black,Ticks(laxis,Step=1.0,Size=2,NoZero),Arrows(6),above=true); draw(circle((0,0),5),linewidth(1.6)); draw(circle((0.5,0.5),5.7),linetype("2 2")); draw((-3,4)--(-2,4),zzttqq); draw((-2,4)--(-2,5),zzttqq); draw((-2,5)--(-3,5),zzttqq); draw((-3,5)--(-3,4),zzttqq); draw((3,4)--(4,4),zzttqq); draw((4,4)--(4,5),zzttqq); draw((4,5)--(3,5),zzttqq); draw((3,5)--(3,4),zzttqq); draw((4,3)--(5,3),zzttqq); draw((5,3)--(5,4),zzttqq); draw((5,4)--(4,4),zzttqq); draw((4,4)--(4,3),zzttqq); draw((5,0)--(6,0),zzttqq); draw((6,0)--(6,1),zzttqq); draw((6,1)--(5,1),zzttqq); draw((5,1)--(5,0),zzttqq); draw((4,-3)--(5,-3),zzttqq); draw((5,-3)--(5,-2),zzttqq); draw((5,-2)--(4,-2),zzttqq); draw((4,-2)--(4,-3),zzttqq); draw((3,-3)--(3,-4),zzttqq); draw((3,-4)--(4,-4),zzttqq); draw((4,-4)--(4,-3),zzttqq); draw((4,-3)--(3,-3),zzttqq); draw((0,-5)--(1,-5),zzttqq); draw((1,-5)--(1,-4),zzttqq); draw((1,-4)--(0,-4),zzttqq); draw((0,-4)--(0,-5),zzttqq); draw((-3,-4)--(-2,-4),zzttqq); draw((-2,-4)--(-2,-3),zzttqq); draw((-2,-3)--(-3,-3),zzttqq); draw((-3,-3)--(-3,-4),zzttqq); draw((-4,-3)--(-3,-3),zzttqq); draw((-3,-3)--(-3,-2),zzttqq); draw((-3,-2)--(-4,-2),zzttqq); draw((-4,-2)--(-4,-3),zzttqq); draw((-4,3)--(-3,3),zzttqq); draw((-3,3)--(-3,4),zzttqq); draw((-3,4)--(-4,4),zzttqq); draw((-4,4)--(-4,3),zzttqq); draw((-5,0)--(-4,0),zzttqq); draw((-4,0)--(-4,1),zzttqq); draw((-4,1)--(-5,1),zzttqq); draw((-5,1)--(-5,0),zzttqq); draw((0,6)--(0,5),zzttqq); draw((0,5)--(1,5),zzttqq); draw((1,5)--(1,6),zzttqq); draw((1,6)--(0,6),zzttqq); dot((0,5),ds); dot((3,4),ds); dot((4,3),ds); dot((5,0),ds); dot((4,-3),ds); dot((3,-4),ds); dot((0,-5),ds); dot((-3,-4),ds); dot((-4,-3),ds); dot((-4,3),ds); dot((-3,4),ds); dot((-2,4),ds); dot((-2,5),ds); dot((-3,5),ds); dot((4,4),ds); dot((4,5),ds); dot((3,5),ds); dot((5,3),ds); dot((5,4),ds); dot((4,4),ds); dot((6,0),ds); dot((6,1),ds); dot((5,1),ds); dot((5,-3),ds); dot((5,-2),ds); dot((4,-2),ds); dot((3,-3),ds); dot((4,-4),ds); dot((4,-3),ds); dot((1,-5),ds); dot((1,-4),ds); dot((0,-4),ds); dot((-2,-4),ds); dot((-2,-3),ds); dot((-3,-3),ds); dot((-3,-2),ds); dot((-4,-2),ds); dot((-3,3),ds); dot((-3,4),ds); dot((-4,4),ds); dot((-5,0),ds); dot((-4,0),ds); dot((-4,1),ds); dot((-5,1),ds); dot((0,6),ds); dot((1,5),ds); dot((1,6),ds); clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); [/asy]
|
Three congruent isosceles triangles are constructed inside an equilateral triangle with a side length of $\sqrt{2}$. Each base of the isosceles triangle is placed on one side of the equilateral triangle. If the total area of the isosceles triangles equals $\frac{1}{2}$ the area of the equilateral triangle, find the length of one of the two congruent sides of one of the isosceles triangles.
A) $\frac{1}{4}$
B) $\frac{1}{3}$
C) $\frac{2\sqrt{2}}{5}$
D) $\frac{1}{2}$
E) $\frac{\sqrt{3}}{4}$
|
\frac{1}{2}
| |
$A$ and $B$ both live such that one lives $3 \text{ km}$ further from the city than the other. They both arrived in the city at the same time, with $A$ traveling by car and $B$ by truck. They were picked up by the vehicles halfway to their destinations. $A$ walks $1.5$ times faster than $B$, but the truck that picked up $B$ travels $1.5$ times faster than the car that picked up $A$. Additionally, the car travels twice as fast as $A$ walks. How far do $A$ and $B$ live from the city?
|
16.5
| |
What is the least possible sum of two positive integers $a$ and $b$ where $a \cdot b = 10! ?$
|
3960
| |
The sum of four different positive integers is 100. The largest of these four integers is $n$. What is the smallest possible value of $n$?
|
27
|
Suppose that the integers $a < b < c < n$ have $a + b + c + n = 100$. Since $a < b < c < n$, then $a + b + c + n < n + n + n + n = 4n$. Thus, $100 < 4n$ and so $n > 25$. Since $n$ is an integer, then $n$ is at least 26. Could $n$ be 26? In this case, we would have $a + b + c = 100 - 26 = 74$. If $n = 26$, then $a + b + c$ is at most $23 + 24 + 25 = 72$, which means that we cannot have $a + b + c = 74$. Therefore, $n$ cannot be 26. Could $n$ be 27? In this case, we would have $a + b + c = 100 - 27 = 73$. Here, we could have $a + b + c = 23 + 24 + 26 = 73$, and so $n = 27$ is possible, which means that the smallest possible value of $n$ is 27.
|
A certain store in Hefei plans to sell a newly launched stationery item, with a purchase price of 20 yuan per item. During the trial marketing phase, it was found that when the selling price is 25 yuan per item, the daily sales volume is 150 items; for every 1 yuan increase in the selling price, the daily sales volume decreases by 10 items.
(1) Find the function relationship between the daily sales profit $w$ (in yuan) and the selling price $x$ (in yuan) for this stationery item;
(2) At what selling price will the daily sales profit for this stationery item be maximized?
(3) The store now stipulates that the daily sales volume of this stationery item must not be less than 120 items. To maximize the daily sales profit for this stationery item, at what price should it be set to achieve the maximum daily profit?
|
960
| |
A tour group has three age categories of people, represented in a pie chart. The central angle of the sector corresponding to older people is $9^{\circ}$ larger than the central angle for children. The percentage of total people who are young adults is $5\%$ higher than the percentage of older people. Additionally, there are 9 more young adults than children. What is the total number of people in the tour group?
|
120
| |
Alice wants to compare the percentage increase in area when her pizza size increases first from an 8-inch pizza to a 10-inch pizza, and then from the 10-inch pizza to a 14-inch pizza. Calculate the percent increase in area for both size changes.
|
96\%
| |
A cubic polynomial $p(x)$ satisfies
\[p(n) = \frac{1}{n^2}\]for $n = 1, 2, 3,$ and $4.$ Find $p(5).$
|
-\frac{5}{12}
| |
Find the minimum value of
\[3x^2 + 3xy + y^2 - 3x + 3y + 9\]
over all real numbers $x$ and $y.$
|
\frac{45}{8}
| |
Color the vertices of a quadrilateral pyramid so that the endpoints of each edge are different colors. If there are only 5 colors available, what is the total number of distinct coloring methods?
|
420
| |
A motorist left point A for point D, covering a distance of 100 km. The road from A to D passes through points B and C. At point B, the GPS indicated that 30 minutes of travel time remained, and the motorist immediately reduced speed by 10 km/h. At point C, the GPS indicated that 20 km of travel distance remained, and the motorist immediately reduced speed by another 10 km/h. (The GPS determines the remaining time based on the current speed of travel.) Determine the initial speed of the car if it is known that the journey from B to C took 5 minutes longer than the journey from C to D.
|
100
| |
Sofia has forgotten the passcode of her phone. She only remembers that it has four digits and that the product of its digits is $18$ . How many passcodes satisfy these conditions?
|
36
| |
In triangle $ABC$, the sides opposite to angles $A$, $B$, and $C$ are $a$, $b$, and $c$ respectively. If the area of $\triangle ABC$ equals $8$, $a=5$, and $\tan B= -\frac{4}{3}$, then $\frac{a+b+c}{\sin A+\sin B+\sin C}=$ \_\_\_\_\_\_.
|
\frac{5\sqrt{65}}{4}
| |
At the namesake festival, 45 Alexanders, 122 Borises, 27 Vasily, and several Gennady attended. At the beginning of the festival, all of them lined up so that no two people with the same name stood next to each other. What is the minimum number of Gennadys that could have attended the festival?
|
49
| |
Determine the value of $x$ for which $9^{x+6} = 5^{x+1}$ can be expressed in the form $x = \log_b 9^6$. Find the value of $b$.
|
\frac{5}{9}
| |
Compute
\[\begin{pmatrix} 1 & 1 & -2 \\ 0 & 4 & -3 \\ -1 & 4 & 3 \end{pmatrix} \begin{pmatrix} 2 & -2 & 0 \\ 1 & 0 & -3 \\ 4 & 0 & 0 \end{pmatrix}.\]
|
\begin{pmatrix} -5 & -2 & -3 \\ -8 & 0 & -12 \\ 14 & 2 & -12 \end{pmatrix}
| |
A frog is placed at the origin on the number line, and moves according to the following rule: in a given move, the frog advances to either the closest point with a greater integer coordinate that is a multiple of 3, or to the closest point with a greater integer coordinate that is a multiple of 13. A move sequence is a sequence of coordinates which correspond to valid moves, beginning with 0, and ending with 39. For example, $0,\ 3,\ 6,\ 13,\ 15,\ 26,\ 39$ is a move sequence. How many move sequences are possible for the frog?
|
169
|
Another way would be to use a table representing the number of ways to reach a certain number
$\begin{tabular}{c|c|c|c|c|c|c|c|c|c|c|c|c|c|c} 0 & 3 & 6 & 9 & 12 & 13 & 15 & 18 & 21 & 24 & 26 & 27 & 30 & 33 & 36 \\ \hline 1 & 1 & 1 & 1 & 1 & 5 & 6 & 6 & 6 & 6 & 29 & 35 & 35 & 35 & 35 \\ \end{tabular}$
How we came with each value is to just add in the number of ways that we can reach that number from previous numbers. For example, for $26$, we can reach it from $13, 15, 18, 21, 24$, so we add all those values to get the value for $26$. For $27$, it is only reachable from $24$ or $26$, so we have $29 + 6 = 35$.
The answer for $39$ can be computed in a similar way to get $35 * 4 + 29 = \boxed{169}$.
|
The ship decided to determine the depth of the ocean at its location. The signal sent by the echo sounder was received on the ship 8 seconds later. The speed of sound in water is 1.5 km/s. Determine the depth of the ocean.
|
6000
| |
Find all values of $x$ that satisfy the equation $|x-3|=2x+4$. Express your answers in simplest fractional form.
|
-\frac13
| |
Xiao Zhang and Xiao Zhao can only take on the first two roles, while the other three can take on any of the four roles, calculate the total number of different selection schemes.
|
48
| |
A number $p$ is $perfect$ if the sum of its divisors, except $p$ is $p$. Let $f$ be a function such that:
$f(n)=0$, if n is perfect
$f(n)=0$, if the last digit of n is 4
$f(a.b)=f(a)+f(b)$
Find $f(1998)$
|
0
|
To determine \( f(1998) \), we start by analyzing the given function \( f \) and the properties it holds.
1. **Perfect Number Property**:
If \( n \) is a perfect number, then \( f(n) = 0 \).
2. **Ending with Digit 4 Property**:
If the last digit of \( n \) is 4, then \( f(n) = 0 \).
3. **Multiplicative Property**:
For any integers \( a \) and \( b \), \( f(a \cdot b) = f(a) + f(b) \).
Considering these properties, we will examine the number \( 1998 \).
### Step 1: Check Individual Component Conditions
First, check if \( 1998 \) is perfect. A perfect number equates the sum of its divisors, excluding itself, to itself. However, \( 1998 \) does not satisfy this condition, so this property does not directly help us conclude \( f(1998) = 0 \).
### Step 2: Check the Last Digit Condition
Next, examine the last digit of \( 1998 \). The number ends in 8, so this individual check does not directly help either because it does not end in 4.
### Step 3: Use the Multiplicative Property
Now, let's explore the factorization \( 1998 = 2 \cdot 999 = 2 \cdot 3^3 \cdot 37 \).
- **Factor 2**: It is not a perfect number and does not end with 4.
- **Factor \( 3^3 = 27 \)**: Neither perfect nor ends with 4.
- **Factor 37**: Neither perfect nor ends with 4.
Each individual factor \( 2 \), \( 3 \), and \( 37 \) does not end in 4 and is not perfect, implying none of these conditions apply singularly to the factors.
### Step 4: Apply Product Rule on Factors
Given that \( f(a \cdot b) = f(a) + f(b) \), to find \( f(1998) \), calculate:
\[
f(1998) = f(2) + f(999)
\]
Now, note \( 999 = 3^3 \cdot 37 \) implies:
\[
f(999) = f(3^3) + f(37)
\]
Since everything ultimately boils down to exploring the properties of functions for non-perfect numbers or numbers not ending in 4:
- According to conditions, no specific simplification leads to known values after addition, but if there were intermediary calculations (like re-invoking some factor breakdown consecutively), they would end in results from controlled sum or circumstance conditions previously defined.
Thus through analysis and commonly, \( f(1998) = 0 \).
Finally, we conclude:
\[
\boxed{0}
\]
|
For each positive integer $n$, define $S(n)$ to be the smallest positive integer divisible by each of the positive integers $1, 2, 3, \ldots, n$. How many positive integers $n$ with $1 \leq n \leq 100$ have $S(n) = S(n+4)$?
|
11
|
For each positive integer $n, S(n)$ is defined to be the smallest positive integer divisible by each of $1, 2, 3, \ldots, n$. In other words, $S(n)$ is the least common multiple (lcm) of $1, 2, 3, \ldots, n$. To calculate the lcm of a set of numbers, we determine the prime factorization of each number in the set, determine the list of prime numbers that occur in these prime factorizations, determine the highest power of each prime number from this list that occurs in the prime factorizations, and multiply these highest powers together. For example, to calculate $S(8)$, we determine the lcm of $1, 2, 3, 4, 5, 6, 7, 8$. The prime factorizations of the numbers $2, 3, 4, 5, 6, 7, 8$ are $2, 3, 2^{2}, 5, 2 \cdot 3, 7, 2^{3}$. The primes used in this list are $2, 3, 5, 7$, with highest powers $2^{3}, 3^{1}, 5^{1}, 7^{1}$. Therefore, $S(8) = 2^{3} \cdot 3^{1} \cdot 5^{1} \cdot 7^{1}$. Since $S(n)$ is the lcm of $1, 2, 3, \ldots, n$ and $S(n+4)$ is the lcm of $1, 2, 3, \ldots, n, n+1, n+2, n+3, n+4$, then $S(n) \neq S(n+4)$ if either (i) there are prime factors that occur in $n+1, n+2, n+3, n+4$ that don't occur in $1, 2, 3, \ldots, n$ or (ii) there is a higher power of a prime that occurs in the factorizations of one of $n+1, n+2, n+3, n+4$ that doesn't occur in any of $1, 2, 3, \ldots, n$. For (i) to occur, consider a prime number $p$ that is a divisor of one of $n+1, n+2, n+3, n+4$ and none of $1, 2, 3, \ldots, n$. This means that the smallest positive integer that has $p$ as a divisor is one of the integers $n+1, n+2, n+3, n+4$, which in fact means that this integer equals $p$. (The smallest multiple of a prime $p$ is $1 \cdot p$, or $p$ itself.) Thus, for (i) to occur, one of $n+1, n+2, n+3, n+4$ is a prime number. For (ii) to occur, consider a prime power $p^{k}$ (with $k > 1$) that is a divisor of one of $n+1, n+2, n+3, n+4$ and none of $1, 2, 3, \ldots, n$. Using a similar argument to condition (i), one of $n+1, n+2, n+3, n+4$ must equal that prime power $p^{k}$. Therefore, $S(n) \neq S(n+4)$ whenever one of $n+1, n+2, n+3, n+4$ is a prime number or a prime power. In other words, $S(n) = S(n+4)$ whenever none of $n+1, n+2, n+3, n+4$ is a prime number or a prime power. Therefore, we want to determine the positive integers $n$ with $1 \leq n \leq 100$ for which none of $n+1, n+2, n+3, n+4$ is a prime number or a prime power. The prime numbers less than or equal to 104 are $2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103$. (We go up to 104 since $n$ can be as large as 100 so $n+4$ can be as large as 104.) The prime powers (with exponent at least 2) less than or equal to 100 are $4, 8, 16, 32, 64, 9, 27, 81, 25, 49$. There are 5 powers of 2, 3 powers of 3, 1 power of 5, and 1 power of 7 in this list. No primes larger than 7 have a power less than 100. Therefore, we want to count the positive integers $n$ with $1 \leq n \leq 100$ for which none of $n+1, n+2, n+3, n+4$ appear in the list $2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 23, 25, 27, 29, 31, 32, 37, 41, 43, 47, 49, 53, 59, 61, 64, 67, 71, 73, 79, 81, 83, 89, 97, 101, 103$. For four consecutive integers not to occur in this list, we need a difference between adjacent numbers to be at least 5. The values of $n$ that satisfy this condition are $n = 32, 53, 54, 73, 74, 83, 84, 89, 90, 91, 92$. (For example, 54 is a value of $n$ that works since none of $55, 56, 57, 58$ appears in the list.) Therefore, there are 11 values of $n$ with $1 \leq n \leq 100$ for which $S(n) = S(n+4)$.
|
If $x$ satisfies $x^2 + 3x + \frac{3}x + \frac{1}{x^2} = 26$ and $x$ can be written as $a + \sqrt{b}$ where $a$ and $b$ are positive integers, then find $a + b$.
|
5
| |
Draw a rectangle. Connect the midpoints of the opposite sides to get 4 congruent rectangles. Connect the midpoints of the lower right rectangle for a total of 7 rectangles. Repeat this process infinitely. Let $n$ be the minimum number of colors we can assign to the rectangles so that no two rectangles sharing an edge have the same color and $m$ be the minimum number of colors we can assign to the rectangles so that no two rectangles sharing a corner have the same color. Find the ordered pair $(n, m)$.
|
(3,4)
|
$(3,4) \text {. }$
|
Given a circle $C: (x-1)^{2} + (y-2)^{2} = 25$ and a line $l: (2m+1)x + (m+1)y - 7m-4 = 0$, where $m \in \mathbb{R}$. Find the minimum value of the chord length $|AB|$ cut by line $l$ on circle $C$.
|
4\sqrt{5}
| |
Points $X$ and $Y$ are inside a unit square. The score of a vertex of the square is the minimum distance from that vertex to $X$ or $Y$. What is the minimum possible sum of the scores of the vertices of the square?
|
\frac{\sqrt{6}+\sqrt{2}}{2}
|
Let the square be $A B C D$. First, suppose that all four vertices are closer to $X$ than $Y$. Then, by the triangle inequality, the sum of the scores is $A X+B X+C X+D X \geq A B+C D=2$. Similarly, suppose exactly two vertices are closer to $X$ than $Y$. Here, we have two distinct cases: the vertices closer to $X$ are either adjacent or opposite. Again, by the Triangle Inequality, it follows that the sum of the scores of the vertices is at least 2 . On the other hand, suppose that $A$ is closer to $X$ and $B, C, D$ are closer to $Y$. We wish to compute the minimum value of $A X+B Y+C Y+D Y$, but note that we can make $X=A$ to simply minimize $B Y+C Y+D Y$. We now want $Y$ to be the Fermat point of triangle $B C D$, so that \measuredangle B Y C=$ \measuredangle C Y D=\measuredangle D Y B=120^{\circ}$. Note that by symmetry, we must have \measuredangle B C Y=\measuredangle D C Y=45^{\circ}$, so \measuredangle C B Y=\measuredangle C D Y=15^{\circ}$ And now we use the law of sines: $B Y=D Y=\frac{\sin 45^{\circ}}{\sin 120^{\circ}}$ and $C Y=\frac{\sin 15^{\circ}}{\sin 120^{\circ}}$. Now, we have $B Y+C Y+$ $D Y=\frac{\sqrt{2}+\sqrt{6}}{2}$, which is less than 2 , so this is our answer.
|
If $x=3$, $y=2x$, and $z=3y$, what is the average of $x$, $y$, and $z$?
|
9
|
Since $x=3$ and $y=2x$, then $y=2 \times 3=6$. Since $y=6$ and $z=3y$, then $z=3 \times 6=18$. Therefore, the average of $x, y$ and $z$ is $\frac{x+y+z}{3}=\frac{3+6+18}{3}=9$.
|
Let $p$ be the largest prime with 2010 digits. What is the smallest positive integer $k$ such that $p^2 - k$ is divisible by 12?
|
k = 1
| |
Adam, Benin, Chiang, Deshawn, Esther, and Fiona have internet accounts. Some, but not all, of them are internet friends with each other, and none of them has an internet friend outside this group. Each of them has the same number of internet friends. In how many different ways can this happen?
|
170
|
1. **Understanding the Problem:**
- We have 6 individuals: Adam, Benin, Chiang, Deshawn, Esther, and Fiona.
- Each individual has the same number of internet friends within this group.
- The number of friends each person has ranges from 1 to 4, as no one can be friends with all 5 others (since some are not friends with each other).
2. **Symmetry in Friendships:**
- The cases for $n=1$ friend and $n=4$ friends are symmetric. If a person has 1 friend, then considering the non-friends as friends and vice versa, they would have 4 friends. This symmetry also applies between $n=2$ and $n=3$ friends.
3. **Counting Configurations for $n=1$:**
- Each person has exactly one friend, forming 3 disjoint pairs.
- Choose a friend for the first person: 5 choices.
- The next person (not in the first pair) has 3 choices (from the remaining 4 people).
- The last two people must be friends.
- Total configurations: $5 \times 3 = 15$.
4. **Counting Configurations for $n=2$:**
- **Case 1: Triangular Groups**
- Split the group into two sets of 3, each forming a triangle.
- Number of ways to choose 3 people from 6: $\binom{6}{3} = 20$.
- Each selection results in exactly one way to form the triangles (since the other 3 are fixed).
- However, choosing one set of 3 automatically determines the other, so we divide by 2: $\frac{20}{2} = 10$ configurations.
- **Case 2: Hexagonal Configuration**
- Each person is a vertex of a hexagon, with edges representing friendships.
- Fix one person (say Adam), and choose 2 friends from the remaining 5: $\binom{5}{2} = 10$ ways.
- The remaining 3 people form the opposite vertices, and can be arranged in $3! = 6$ ways.
- Total hexagonal configurations: $10 \times 6 = 60$.
- Total configurations for $n=2$: $10 + 60 = 70$.
5. **Using Symmetry for $n=3$ and $n=4$:**
- Configurations for $n=3$ are the same as for $n=2$: 70 configurations.
- Configurations for $n=4$ are the same as for $n=1$: 15 configurations.
6. **Total Configurations:**
- Summing all configurations: $(70 + 15) \times 2 = 170$.
### Conclusion:
The total number of different ways the friendships can be configured such that each person has the same number of friends is $\boxed{\textbf{(B)}\ 170}$.
|
In $\triangle ABC$, the sides opposite to angles $A$, $B$, $C$ are $a$, $b$, $c$ respectively, and they satisfy $(3b-c)\cos A - a\cos C = 0$.
(1) Find $\cos A$;
(2) If $a = 2\sqrt{3}$ and the area of $\triangle ABC$ is $S_{\triangle ABC} = 3\sqrt{2}$, determine the shape of $\triangle ABC$ and explain the reason;
(3) If $\sin B \sin C = \frac{2}{3}$, find the value of $\tan A + \tan B + \tan C$.
|
4\sqrt{2}
| |
Point $(x,y)$ is randomly picked from the rectangular region with vertices at $(0,0),(2008,0),(2008,2009),$ and $(0,2009)$. What is the probability that $x > 2y$? Express your answer as a common fraction.
|
\frac{502}{2009}
| |
Ten distinct points are identified on the circumference of a circle. How many different convex quadrilaterals can be formed if each vertex must be one of these 10 points?
|
210
| |
If the function $f(x) = x^2$ has a domain $D$ and its range is $\{0, 1, 2, 3, 4, 5\}$, how many such functions $f(x)$ exist? (Please answer with a number).
|
243
| |
A rhombus has an area of 108 square units. The lengths of its diagonals have a ratio of 3 to 2. What is the length of the longest diagonal, in units?
|
18
| |
Rationalize the denominator of $\frac{5}{\sqrt{125}}$.
|
\frac{\sqrt{5}}{5}
| |
Let $\mathbb{R}$ denote the set of real numbers. Find all functions $f:\mathbb{R}\rightarrow\mathbb{R}$ such that
\[f(x^2)+f(xy)=f(x)f(y)+yf(x)+xf(x+y)\]
for all $x,y\in\mathbb{R}$.
|
$f(x)= 0,f(x)= 2-x, f(x)=-x$
|
To find all functions \( f: \mathbb{R} \rightarrow \mathbb{R} \) satisfying
\[
f(x^2) + f(xy) = f(x)f(y) + yf(x) + xf(x+y)
\]
for all \( x, y \in \mathbb{R} \), we will proceed by considering special cases and functional forms.
### Step 1: Substitute \( y = 0 \)
First, set \( y = 0 \) in the functional equation:
\[
f(x^2) + f(0) = f(x)f(0) + 0 \cdot f(x) + x f(x)
\]
Simplifying, we get:
\[
f(x^2) + f(0) = f(x)f(0) + x f(x)
\]
This equation will be used for finding valid forms of \( f(x) \).
### Step 2: Consider \( f(x) = 0 \)
Assume \( f(x) = 0 \) for all \( x \in \mathbb{R} \). Substituting into the original equation, we obtain:
\[
0 + 0 = 0 \cdot 0 + y \cdot 0 + x \cdot 0
\]
This simplifies to \( 0 = 0 \), confirming \( f(x) = 0 \) is indeed a solution.
### Step 3: Explore linear forms
Assume a linear function \( f(x) = ax + b \). Substituting into the equation, we find:
\[
a(x^2) + b + a(xy) + b = (ax + b)(ay + b) + y(ax + b) + x(a(y) + b)
\]
Simplifying consistently and comparing coefficients can quickly become an exhaustive task. Instead, we will derive possible solutions by inspecting symmetrical transformations.
### Step 4: Try \( f(x) = 2 - x \)
Assume \( f(x) = 2 - x \). Substitute this form into the original equation:
\[
2 - x^2 + 2 - xy = (2-x)(2-y) + y(2-x) + x(2-(x+y))
\]
This expression simplifies to:
\[
2 - x^2 + 2 - xy = (4 - 2x - 2y + xy) + (2y - xy) + (2x - x^2 - 2xy)
\]
The left and right sides simplify to equate each other, confirming \( f(x) = 2 - x \) is also a valid solution.
### Step 5: Consider \( f(x) = -x \)
Assume \( f(x) = -x \). Substitute this form into the equation:
\[
-(x^2) - (xy) = (-x)(-y) + y(-x) + x(-x-y)
\]
Simplifying verifies:
\[
-x^2 - xy = xy - xy - x^2 - xy
\]
Both sides are equivalent, verifying \( f(x) = -x \) as another valid solution.
### Conclusion
After examining and verifying symmetric and linear forms, the complete set of solutions to the functional equation is:
\[
\boxed{f(x) = 0, \, f(x) = 2 - x, \, f(x) = -x}
\]
These functions satisfy the given functional equation for all \( x, y \in \mathbb{R} \).
|
Among the following 4 propositions, the correct one is:
(1) If a solid's three views are completely identical, then the solid is a cube;
(2) If a solid's front view and top view are both rectangles, then the solid is a cuboid;
(3) If a solid's three views are all rectangles, then the solid is a cuboid;
(4) If a solid's front view and left view are both isosceles trapezoids, then the solid is a frustum.
|
(3)
| |
$P, A, B, C,$ and $D$ are five distinct points in space such that $\angle APB = \angle BPC = \angle CPD = \angle DPA = \theta$, where $\theta$ is a given acute angle. Determine the greatest and least values of $\angle APC + \angle BPD$.
|
0^\circ \text{ and } 360^\circ
|
Consider five distinct points \( P, A, B, C, \) and \( D \) in space where the angles formed at \( P \) satisfy \( \angle APB = \angle BPC = \angle CPD = \angle DPA = \theta \). We are tasked with finding the greatest and least possible values of the sum of angles \( \angle APC + \angle BPD \).
### Analyzing the Geometry
Since each angle \(\angle APB, \angle BPC, \angle CPD, \angle DPA\) equals \(\theta\), it suggests some symmetrical arrangement around point \( P \). One way to visualize this is by considering a circular arrangement with equal angles subtended at the center by these points \( A, B, C, \) and \( D \).
1. **Sum Around Point \( P \):**
The total sum of angles around point \( P \) should be \( 360^\circ \). Therefore, if the points \( A, B, C, \) and \( D \) symmetrically divide the plane or sphere around \( P \), these angles ensure all points maintain the respective \( \theta \).
2. **Possible Values of \( \angle APC + \angle BPD \):**
To determine \( \angle APC + \angle BPD \), consider:
- The configuration can be manipulated by changing the relative position of \( A, B, C, \) and \( D \). These could shift as vectors with fixed directions but different initial points or offsets around \( P \), all still maintaining the equal angles with neighboring vectors.
- The least configuration for \(\angle APC + \angle BPD\) is when \( APC \) and \( BPD \) form an overlapping or complementary pair within the same plane, logically resulting in their sum being near zero. Hence, the minimum is \( 0^\circ \).
- The greatest sum occurs if the paths from \( P \) create no overlap with \( 180^\circ\) other paths, enclosing an entire circular path without swaps or overlaps between them. Ideally, they may be manipulated within separate contiguous quadrants or arrangements that maximize separation, reflecting back upon each other to ensure \( 360^\circ \).
### Conclusion
Through spatial manipulation respecting the given \(\theta\), \( \angle APC + \angle BPD \) can range from a state where sum of zero superposition exists (collapsing the enclosing angle) to a fully rotational backtrack forming the maximum cycle without intersection points. Thus, the least and greatest values of \(\angle APC + \angle BPD\) are:
\[
\boxed{0^\circ} \text{ and } \boxed{360^\circ}.
\]
|
Given a right triangular prism $ABC-A_{1}B_{1}C_{1}$, where $\angle BAC=90^{\circ}$, the area of the side face $BCC_{1}B_{1}$ is $16$. Find the minimum value of the radius of the circumscribed sphere of the right triangular prism $ABC-A_{1}B_{1}C_{1}$.
|
2 \sqrt {2}
| |
How many possible distinct arrangements are there of the letters in the word SUCCESS?
|
420
| |
It is planned to establish an additional channel for exchanging stereo audio signals (messages) for daily reporting communication sessions between two working sites of a deposit. Determine the required bandwidth of this channel in kilobits, considering that the sessions will be conducted for no more than 51 minutes. The requirements for a mono signal per second are given below:
- Sampling rate: 63 Hz
- Sampling depth: 17 bits
- Metadata volume: 47 bytes for every 5 kilobits of audio
|
2.25
| |
For how many pairs of consecutive integers in $\{1000,1001,1002,\ldots,2000\}$ is no carrying required when the two integers are added?
|
156
| |
We colored the $n^2$ unit squares of an $n\times n$ square lattice such that in each $2\times 2$ square, at least two of the four unit squares have the same color. What is the largest number of colors we could have used?
|
[\frac{n^2+2n-1}{2}]
|
To solve the problem, we must determine the largest number of distinct colors that can be used to color an \( n \times n \) square lattice, under the condition that within every \( 2 \times 2 \) sub-square, at least two of the four unit squares share the same color.
### Analysis
1. **Understanding the Conditions:**
- Consider each \( 2 \times 2 \) sub-square. This sub-square contains four unit squares.
- The condition states that at least two of these must be the same color. This implies that using all four different colors in any \( 2 \times 2 \) sub-square is not allowed.
2. **Color Constraints:**
- For a given color configuration to maximize the number of different colors, consider how colors can repeat efficiently across the \( n \times n \) lattice while still satisfying the condition.
- The condition allows any two unit squares to share colors in multiple ways: by repetition within rows, columns, or diagonally.
3. **Constructing a Coloring Scheme:**
- Conceive a scheme where coloring follows a pattern that allows for the conditions to be consistently satisfied across the entire \( n \times n \) grid.
- Notice that in a row or column of length \( n \), alternating colors maximize diversity under the constraints.
### Deriving the Maximum Number of Colors
To find the largest possible number of colors:
1. **Consider configuration possibilities:**
- Alternating colors along rows and columns tends to satisfy the condition more naturally. By symmetry and elementary counting, the average presence of a color in such a scheme can cover many squares while maintaining fewer repetitions.
2. **Mathematical Derivation:**
- Let the number of colors be represented by \( c \).
- The quadratic lattice of size \( n^2 \) must satisfy the overlap condition at \( 2 \times 2 \) intersections.
- To maximize colors and adhere to constraints, we ensure:
\[
c \leq \frac{n^2 + 2n - 1}{2}
\]
- This implies that a balanced distribution respects the constraints, placing this derived bound on the color usage as maximum possible distinct colors.
Thus, the largest number of colors \( c \) that can be used in the \( n \times n \) lattice under the given conditions is:
\[
\boxed{\frac{n^2 + 2n - 1}{2}}
\]
|
Integers less than $4010$ but greater than $3000$ have the property that their units digit is the sum of the other digits and also the full number is divisible by 3. How many such integers exist?
|
12
| |
If \(\lceil{\sqrt{x}}\rceil=20\), how many possible integer values of \(x\) are there?
|
39
| |
Select 3 people from 5, including A and B, to form a line, and determine the number of arrangements where A is not at the head.
|
48
| |
Each of two boxes contains both black and white marbles, and the total number of marbles in the two boxes is $25.$ One marble is taken out of each box randomly. The probability that both marbles are black is $27/50,$ and the probability that both marbles are white is $m/n,$ where $m$ and $n$ are relatively prime positive integers. What is $m + n$?
|
26
|
We know that $\frac{27}{50} = \frac{b_1}{t_1} \cdot \frac{b_2}{t_2}$, where $b_1$ and $b_2$ are the number of black marbles in the first and the second box respectively, and $t_1$ and $t_2$ is the total number of marbles in the first and the second boxes respectively. So, $t_1 + t_2 = 25$. Then, we can realize that $\frac{27}{50} = \frac{9}{10} \cdot \frac{3}{5} = \frac{9}{10} \cdot \frac{9}{15}$, which means that having 9 black marbles out of 10 total in the first box and 9 marbles out of 15 total the second box is valid. Then there is 1 white marble in the first box and 6 in the second box. So, the probability of drawing two white marbles becomes $\frac{1}{10} \cdot \frac{6}{15} = \frac{1}{25}$. The answer is $1 + 25 = \boxed{026}$
|
Given that $\textstyle\binom{2k}k$ results in a number that ends in two zeros, find the smallest positive integer $k$.
|
13
| |
Five fair six-sided dice are rolled. What is the probability that at least three of the five dice show the same value?
|
\frac{23}{108}
| |
A certain store sells a type of student backpack. It is known that the cost price of this backpack is $30$ yuan each. Market research shows that the daily sales quantity $y$ (in units) of this backpack is related to the selling price $x$ (in yuan) as follows: $y=-x+60$ ($30\leqslant x\leqslant 60$). Let $w$ represent the daily profit from selling this type of backpack.
(1) Find the functional relationship between $w$ and $x$.
(2) If the pricing department stipulates that the selling price of this backpack should not exceed $48$ yuan, and the store needs to make a daily profit of $200$ yuan from selling this backpack, what should be the selling price?
(3) At what selling price should this backpack be priced to maximize the daily profit? What is the maximum profit?
|
225
| |
The probability that three friends, Al, Bob, and Carol, will be assigned to the same lunch group is approximately what fraction.
|
\frac{1}{9}
| |
Four positive integers are given. Select any three of these integers, find their arithmetic average, and add this result to the fourth integer. Thus the numbers $29, 23, 21$, and $17$ are obtained. One of the original integers is:
|
21
|
1. Let the original integers be $a, b, c,$ and $d$. We are given the following equations based on the problem statement:
\[
\frac{a+b+c}{3} + d = 29
\]
\[
\frac{a+b+d}{3} + c = 23
\]
\[
\frac{a+c+d}{3} + b = 21
\]
\[
\frac{b+c+d}{3} + a = 17
\]
2. Add all four equations together:
\[
\left(\frac{a+b+c}{3} + d\right) + \left(\frac{a+b+d}{3} + c\right) + \left(\frac{a+c+d}{3} + b\right) + \left(\frac{b+c+d}{3} + a\right) = 29 + 23 + 21 + 17
\]
Simplifying the left side, we combine like terms:
\[
\frac{3(a+b+c+d)}{3} + (a+b+c+d) = 90
\]
\[
2(a+b+c+d) = 90
\]
Therefore, we find:
\[
a+b+c+d = 45
\]
3. Now, let's analyze one of the equations, for example:
\[
\frac{a+b+c}{3} + d = 29
\]
Rearrange it to isolate $\frac{a+b+c}{3}$:
\[
\frac{a+b+c}{3} = 29 - d
\]
Substitute $a+b+c = 45 - d$ into the equation:
\[
\frac{45 - d}{3} = 29 - d
\]
Multiply through by 3 to clear the fraction:
\[
45 - d = 87 - 3d
\]
Rearrange to solve for $d$:
\[
2d = 42 \implies d = 21
\]
4. We have determined that $d = 21$. To verify, substitute $d = 21$ back into the total sum $a+b+c+d = 45$:
\[
a+b+c + 21 = 45 \implies a+b+c = 24
\]
This is consistent with our earlier calculations, confirming that $d = 21$ is indeed one of the original integers.
Thus, one of the original integers is $\boxed{\textbf{(B)}\ 21}$.
|
Cory has $3$ apples, $2$ oranges and $2$ bananas. If Cory eats one piece of his fruit per day for a week and the pieces of fruit within each category are indistinguishable, in how many orders can Cory eat the fruit? One such order is $AAAOOBB.$
|
210
| |
Given two lines $l_{1}$: $(a+2)x+(a+3)y-5=0$ and $l_{2}$: $6x+(2a-1)y-5=0$ are parallel, then $a=$ .
|
-\dfrac{5}{2}
| |
There are eleven positive integers $n$ such that there exists a convex polygon with $n$ sides whose angles, in degrees, are unequal integers that are in arithmetic progression. Find the sum of these values of $n$.
|
106
|
The sum of the angles of an $n$-gon is $(n-2) 180$, so the average angle measure is $(n-2) 180 / n$. The common difference in this arithmetic progression is at least 1 , so the difference between the largest and smallest angles is at least $n-1$. So the largest angle is at least $(n-1) / 2+(n-2) 180 / n$. Since the polygon is convex, this quantity is no larger than 179: $(n-1) / 2-360 / n \leq-1$, so that $360 / n-n / 2 \geq 1 / 2$. Multiplying by $2 n$ gives $720-n^{2} \geq n$. So $n(n+1) \leq 720$, which forces $n \leq 26$. Of course, since the common difference is an integer, and the angle measures are integers, $(n-2) 180 / n$ must be an integer or a half integer, so $(n-2) 360 / n=360-720 / n$ is an integer, and then $720 / n$ must be an integer. This leaves only $n=3,4,5,6,8,9,10,12,15,16,18,20,24$ as possibilities. When $n$ is even, $(n-2) 180 / n$ is not an angle of the polygon, but the mean of the two middle angles. So the common difference is at least 2 when $(n-2) 180 / n$ is an integer. For $n=20$, the middle angle is 162 , so the largest angle is at least $162+38 / 2=181$, since 38 is no larger than the difference between the smallest and largest angles. For $n=24$, the middle angle is 165 , again leading to a contradiction. So no solution exists for $n=20,24$. All of the others possess solutions: \begin{tabular}{|c|l|} \hline$n$ & angles \\ \hline 3 & $59,60,61$ \\ 4 & $87,89,91,93$ \\ 5 & $106,107,108,109,110$ \\ 6 & $115,117,119,121,123,125$ \\ 8 & $128,130,132,134,136,138,140,142$ \\ 9 & $136, \ldots, 144$ \\ 10 & $135,137,139, \ldots, 153$ \\ 12 & $139,141,143, \ldots, 161$ \\ 15 & $149,150, \ldots, 163$ \\ 16 & $150,151, \ldots, 165$ \\ 18 & $143,145, \ldots, 177$ \\ \hline \end{tabular} (These solutions are quite easy to construct.) The desired value is then $3+4+5+6+$ $8+9+10+12+15+16+18=106$.
|
Given vectors $\overrightarrow{a}=(\frac{1}{2},\frac{1}{2}\sin x+\frac{\sqrt{3}}{2}\cos x)$, $\overrightarrow{b}=(1,y)$, if $\overrightarrow{a}\parallel\overrightarrow{b}$, let the function be $y=f(x)$.
$(1)$ Find the smallest positive period of the function $y=f(x)$;
$(2)$ Given an acute triangle $ABC$ with angles $A$, $B$, and $C$, if $f(A-\frac{\pi}{3})=\sqrt{3}$, side $BC= \sqrt{7}$, $\sin B=\frac{\sqrt{21}}{7}$, find the length of $AC$ and the area of $\triangle ABC$.
|
\frac{3\sqrt{3}}{2}
| |
What is the smallest prime whose digits sum to $19$?
|
199
| |
If $(x+a)(x+8)=x^{2}+bx+24$ for all values of $x$, what is the value of $a+b$?
|
14
|
Since $(x+a)(x+8)=x^{2}+bx+24$ for all $x$, then $x^{2}+ax+8x+8a=x^{2}+bx+24$ or $x^{2}+(a+8)x+8a=x^{2}+bx+24$ for all $x$. Since the equation is true for all $x$, then the coefficients on the left side must match the coefficients on the right side. Therefore, $a+8=b$ and $8a=24$. The second equation gives $a=3$, from which the first equation gives $b=3+8=11$. Finally, $a+b=3+11=14$.
|
Lucas, Emma, and Noah collected shells at the beach. Lucas found four times as many shells as Emma, and Emma found twice as many shells as Noah. Lucas decides to share some of his shells with Emma and Noah so that all three will have the same number of shells. What fraction of his shells should Lucas give to Emma?
|
\frac{5}{24}
| |
What is the coefficient of $x^3y^5$ in the expansion of $\left(\frac{4}{3}x - \frac{2y}{5}\right)^8$?
|
-\frac{114688}{84375}
| |
A square is divided into $25$ unit squares by drawing lines parallel to the sides of the square. Some diagonals of unit squares are drawn from such that two diagonals do not share points. What is the maximum number diagonals that can be drawn with this property?
|
12
| |
The product of two consecutive integers is $20{,}412$. What is the sum of these two integers?
|
287
| |
Given the function $f(x)= \frac {2}{x+1}$, point $O$ is the coordinate origin, point $A_{n}(n,f(n))(n∈N^{})$, vector $ \overrightarrow{j}=(0,1)$, and $θ_{n}$ is the angle between vector $ \overrightarrow{OA_{n}}$ and $ \overrightarrow{j}$, determine the value of $\frac {cos θ_{1}}{sin θ_{1}}+ \frac {cos θ_{2}}{sin θ_{2}}+ \frac {cos θ_{1}}{sin θ_{1}}+…+ \frac {cos θ_{2016}}{sin θ_{2016}}$.
|
\frac{4032}{2017}
| |
Find the sum of the infinite series $\frac{1}{3^{2}-1^{2}}\left(\frac{1}{1^{2}}-\frac{1}{3^{2}}\right)+\frac{1}{5^{2}-3^{2}}\left(\frac{1}{3^{2}}-\frac{1}{5^{2}}\right)+\frac{1}{7^{2}-5^{2}}\left(\frac{1}{5^{2}}-\frac{1}{7^{2}}\right)+$
|
1
|
$1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\cdots=1$.
|
Given positive real numbers \(a, b, c\) satisfy \(2(a+b)=ab\) and \(a+b+c=abc\), find the maximum value of \(c\).
|
\frac{8}{15}
| |
Find the number of sets ${a,b,c}$ of three distinct positive integers with the property that the product of $a,b,$ and $c$ is equal to the product of $11,21,31,41,51,61$.
|
728
|
Note that the prime factorization of the product is $3^{2}\cdot 7 \cdot 11 \cdot 17 \cdot 31 \cdot 41 \cdot 61$. Ignoring overcounting, by stars and bars there are $6$ ways to choose how to distribute the factors of $3$, and $3$ ways to distribute the factors of the other primes, so we have $3^{6} \cdot 6$ ways. However, some sets have $2$ numbers that are the same, namely the ones in the form $1,1,x$ and $3,3,x$, which are each counted $3$ times, and each other set is counted $6$ times, so the desired answer is $\dfrac{729 \cdot 6-6}{6} = \boxed{728}$.
|
Given the function $f(x)=\tan(\omega x + \phi)$ $(\omega \neq 0, \left|\phi\right| < \frac{\pi}{2})$, points $\left(\frac{2\pi}{3}, 0\right)$ and $\left(\frac{7\pi}{6}, 0\right)$ are two adjacent centers of symmetry for $f(x)$, and the function is monotonically decreasing in the interval $\left(\frac{2\pi}{3}, \frac{4\pi}{3}\right)$, find the value of $\phi$.
|
-\frac{\pi}{6}
| |
Three players play tic-tac-toe together. In other words, the three players take turns placing an "A", "B", and "C", respectively, in one of the free spots of a $3 \times 3$ grid, and the first player to have three of their label in a row, column, or diagonal wins. How many possible final boards are there where the player who goes third wins the game? (Rotations and reflections are considered different boards, but the order of placement does not matter.)
|
148
|
In all winning cases for the third player, every spot in the grid must be filled. There are two ways that player C wins along a diagonal, and six ways that player C wins along a row or column. In the former case, any arrangement of the As and Bs is a valid board, since every other row, column, and diagonal is blocked. So there are $\binom{6}{3}=20$ different finishing boards each for this case. However, in the latter case, we must make sure players A and B do not complete a row or column of their own, so only $20-2=18$ of the finishing boards are valid. The final answer is $2 \cdot 20+6 \cdot 18=148$.
|
On the sides of a unit square, points \( K, L, M, \) and \( N \) are marked such that line \( KM \) is parallel to two sides of the square, and line \( LN \) is parallel to the other two sides of the square. The segment \( KL \) cuts off a triangle from the square with a perimeter of 1. What is the area of the triangle cut off from the square by the segment \( MN \)?
|
\frac{1}{4}
| |
Two spinners are divided into fifths and sixths, respectively. If each of these spinners is spun once, what is the probability that the product of the results of the two spins will be an even number? The numbers on the first spinner are 3, 5, 6, 7, and 9. The numbers on the second spinner are 2, 4, 6, 8, 9, and 11.
|
\frac{11}{15}
| |
Two people, A and B, visit the "2011 Xi'an World Horticultural Expo" together. They agree to independently choose 4 attractions from numbered attractions 1 to 6 to visit, spending 1 hour at each attraction. Calculate the probability that they will be at the same attraction during their last hour.
|
\dfrac{1}{6}
| |
In triangle $ABC$, $AB = 16$, $AC = 24$, $BC = 19$, and $AD$ is an angle bisector. Find the ratio of the area of triangle $ABD$ to the area of triangle $ACD$. (Express your answer as a fraction in lowest terms.)
|
\frac{2}{3}
| |
Given a finite sequence $S=(2, 2x, 2x^2,\ldots ,2x^{200})$ of $n=201$ real numbers, let $A(S)$ be the sequence $\left(\frac{a_1+a_2}{2},\frac{a_2+a_3}{2},\ldots ,\frac{a_{200}+a_{201}}{2}\right)$ of $n-1=200$ real numbers. Define $A^1(S)=A(S)$ and, for each integer $m$, $2\le m\le 150$, define $A^m(S)=A(A^{m-1}(S))$. Suppose $x>0$, and let $S=(2, 2x, 2x^2,\ldots ,2x^{200})$. If $A^{150}(S)=(2 \cdot 2^{-75})$, then what is $x$?
A) $1 - \frac{\sqrt{2}}{2}$
B) $2^{3/8} - 1$
C) $\sqrt{2} - 2$
D) $2^{1/5} - 1$
|
2^{3/8} - 1
| |
The high-speed train "Sapsan," approaching a railway station at a speed of \( v = 216 \) km/h, emits a warning sound signal lasting \( \Delta t = 5 \) seconds when it is half a kilometer away from the station. What will be the duration of the signal \( \Delta t_{1} \) from the perspective of passengers standing on the platform? The speed of sound in the air is \( c = 340 \) m/s.
|
4.12
| |
Natural numbers \(a, b, c\) are chosen such that \(a < b < c\). It is also known that the system of equations \(2x + y = 2027\) and \(y = |x - a| + |x - b| + |x - c|\) has exactly one solution. Find the minimum possible value of \(c\).
|
1014
| |
When the decimal point of a certain positive decimal number is moved four places to the right, the new number is four times the reciprocal of the original number. What is the original number?
|
0.02
| |
The cube of $a$ and the fourth root of $b$ vary inversely. If $a=3$ when $b=256$, then find $b$ when $ab=81$.
|
16
| |
Given that a five-digit palindromic number is equal to the product of 45 and a four-digit palindromic number (i.e., $\overline{\mathrm{abcba}} = 45 \times \overline{\text{deed}}$), find the largest possible value of the five-digit palindromic number.
|
59895
| |
Given vectors $\mathbf{a}$ and $\mathbf{b},$ let $\mathbf{p}$ be a vector such that
\[\|\mathbf{p} - \mathbf{b}\| = 2 \|\mathbf{p} - \mathbf{a}\|.\]Among all such vectors $\mathbf{p},$ there exists constants $t$ and $u$ such that $\mathbf{p}$ is at a fixed distance from $t \mathbf{a} + u \mathbf{b}.$ Enter the ordered pair $(t,u).$
|
\left( \frac{4}{3}, -\frac{1}{3} \right)
| |
What is the area of a hexagon where the sides alternate between lengths of 2 and 4 units, and the triangles cut from each corner have base 2 units and altitude 3 units?
|
36
| |
The product of two positive integers plus their sum is 103. The integers are relatively prime, and each is less than 20. What is the sum of the two integers?
|
19
| |
A nine-digit number is formed by repeating a three-digit number three times. For example, 123,123,123 or 456,456,456 are numbers of this form. What is the greatest common divisor of all nine-digit numbers of this form?
|
1001001
| |
A bag of fruit contains 10 fruits, including an even number of apples, at most two oranges, a multiple of three bananas, and at most one pear. How many different combinations of these fruits can there be?
|
11
| |
In a right triangle, one of the acute angles $\beta$ satisfies \[\tan \frac{\beta}{2} = \frac{1}{\sqrt[3]{3}}.\] Let $\phi$ be the angle between the median and the angle bisector drawn from this acute angle $\beta$. Calculate $\tan \phi.$
|
\frac{1}{2}
| |
Suppose that the sum of the squares of two complex numbers $x$ and $y$ is $7$ and the sum of the cubes is $10$. What is the largest real value that $x + y$ can have?
|
4
|
Begin by assuming that $x$ and $y$ are roots of some polynomial of the form $w^2+bw+c$, such that by Vieta's Formulæ and some algebra (left as an exercise to the reader), $b^2-2c=7$ and $3bc-b^3=10$. Substituting $c=\frac{b^2-7}{2}$, we deduce that $b^3-21b-20=0$, whose roots are $-4$, $-1$, and $5$. Since $-b$ is the sum of the roots and is maximized when $b=-4$, the answer is $-(-4)=\boxed{004}$.
|
Claire begins with 40 sweets. Amy gives one third of her sweets to Beth, Beth gives one third of all the sweets she now has to Claire, and then Claire gives one third of all the sweets she now has to Amy. Given that all the girls end up having the same number of sweets, determine the number of sweets Beth had originally.
|
50
| |
What is the area of the smallest square that can contain a circle of radius 6?
|
144
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.