max_stars_repo_path
stringlengths
4
182
max_stars_repo_name
stringlengths
6
116
max_stars_count
int64
0
191k
id
stringlengths
7
7
content
stringlengths
100
10k
size
int64
100
10k
mopidy/internal/versioning.py
grdorin/mopidy
6,700
2173372
import os import subprocess import mopidy def get_version(): try: return get_git_version() except OSError: return mopidy.__version__ def get_git_version(): project_dir = os.path.abspath( os.path.join(os.path.dirname(mopidy.__file__), "..") ) process = subprocess.Popen( ["git", "describe"], stdout=subprocess.PIPE, stderr=subprocess.PIPE, cwd=project_dir, ) if process.wait() != 0: raise OSError('Execution of "git describe" failed') version = process.stdout.read().strip().decode() if version.startswith("v"): version = version[1:] return version
665
manage_it/services/forms.py
ShangShungInstitute/django-manage-it
1
2172259
from django.forms import ModelForm from django.forms.models import inlineformset_factory from models import SLA, Document class SLAForm(ModelForm): class Meta: model = SLA #fields = ['pub_date', 'headline', 'content', 'reporter'] exclude = ("created_at", "created_by", "service", "terminated") DocumentFormSet = inlineformset_factory( SLA, Document, max_num=2, exclude=("created_at", "created_by"))
443
experiment.py
crossopt/polar-exp
0
2172543
""" Runs the main experiment, ie various BP strategies, on generated inputs. """ from graph import Graph from initialize import get_all_possible_configs, get_p_list from propagate import Counter, default_stopping_condition, successive_cancellation_propagate,\ naive_propagate, flooding_propagate, scheduling_conventional_propagate, scheduling_round_trip_propagate import matplotlib.pyplot as plt from datetime import datetime class ExperimentResult: """ Class to store the results of an experiment for all propagation methods. """ def __init__(self, naive_result=None, flooding_result=None, conventional_scheduling_result=None, round_trip_scheduling_result=None, successive_cancellation_result=None): self.naive_result = naive_result self.flooding_result = flooding_result self.conventional_scheduling_result = conventional_scheduling_result self.round_trip_scheduling_result = round_trip_scheduling_result self.successive_cancellation_result = successive_cancellation_result def print(self): """ Outputs the result in a human-readable format. """ print('''naive: {:.2f}/{:.2f} flooding: {:.2f}/{:.2f} conventional scheduling: {:.2f}/{:.2f}''' ''' round trip scheduling: {:.2f}/{:.2f} successive cancellation {:.2f}/{:.2f}'''.format( self.naive_result.steps, self.naive_result.parallel_steps, self.flooding_result.steps, self.flooding_result.parallel_steps, self.conventional_scheduling_result.steps, self.conventional_scheduling_result.parallel_steps, self.round_trip_scheduling_result.steps, self.round_trip_scheduling_result.parallel_steps, self.successive_cancellation_result.steps, self.successive_cancellation_result.parallel_steps, )) def get_average_steps(method, graph_list, stopping_conditions): """ Returns the average (over all graphs in a given list) step amount a BP method performs until termination. """ counter = Counter() results = [method(graph.get_copy(), condition) for graph, condition in zip(graph_list, stopping_conditions)] counter.steps = sum([result.steps for result in results]) / max(len(graph_list), 1) counter.parallel_steps = sum([result.parallel_steps for result in results]) / max(len(graph_list), 1) return counter def perform_average_computation_random(k, p, repeats): """ Returns an ExperimentResult containing the average step amount for running various BP methods. The propagation methods are run on repeats randomly generated graphs with k start nodes and probability of error p. The same graphs are used for all propagation methods. The propagation methods currently being run are naive_propagate, scheduling_conventional_propagate and scheduling_round_trip_propagate. """ graph_list = [] condition_list = [] for _ in range(repeats): graph = Graph(k, p) graph_list.append(graph) condition_list.append(default_stopping_condition(graph)) return ExperimentResult( naive_result=get_average_steps(naive_propagate, graph_list, condition_list), flooding_result=get_average_steps(flooding_propagate, graph_list, condition_list), conventional_scheduling_result=get_average_steps(scheduling_conventional_propagate, graph_list, condition_list), round_trip_scheduling_result=get_average_steps(scheduling_round_trip_propagate, graph_list, condition_list), successive_cancellation_result=get_average_steps(successive_cancellation_propagate, graph_list, condition_list), ) def perform_average_computation_all(k, p): """ Returns an ExperimentResult containing the average step amount for running various BP methods. The propagation methods are run on all possible generated graphs with k start nodes and probability of error p. The propagation methods currently being run are naive_propagate, scheduling_conventional_propagate and scheduling_round_trip_propagate. """ graph_list = [] condition_list = [] for end_node_config in get_all_possible_configs(k, p): graph = Graph(k, p) graph.update_end_nodes(end_node_config) graph_list.append(graph) condition_list.append(default_stopping_condition(graph)) return ExperimentResult( naive_result=get_average_steps(naive_propagate, graph_list, condition_list), flooding_result=get_average_steps(flooding_propagate, graph_list, condition_list), conventional_scheduling_result=get_average_steps(scheduling_conventional_propagate, graph_list, condition_list), round_trip_scheduling_result=get_average_steps(scheduling_round_trip_propagate, graph_list, condition_list), successive_cancellation_result=get_average_steps(successive_cancellation_propagate, graph_list, condition_list), ) def plot_graph(name, k, p_skip, results): passed_amounts = [i for i in range(2 ** k + 1)] passed_amounts = passed_amounts[::p_skip] fig, (step, parallel_step) = plt.subplots(2, 1) step.plot(passed_amounts, [result.naive_result.steps for result in results], 'r', label='Naive propagation') step.plot(passed_amounts, [result.flooding_result.steps for result in results], 'k', label='Flooding propagation') step.plot(passed_amounts, [result.conventional_scheduling_result.steps for result in results], 'b', label='Conventional scheduling') step.plot(passed_amounts, [result.round_trip_scheduling_result.steps for result in results], 'g', label='Round-trip scheduling') step.plot(passed_amounts, [result.successive_cancellation_result.steps for result in results], 'y', label='Successive cancellation') fig.suptitle(name) step.set(ylabel='Average number of\noperations') parallel_step.plot(passed_amounts, [result.naive_result.parallel_steps for result in results], 'r', label='Naive propagation') parallel_step.plot(passed_amounts, [result.flooding_result.parallel_steps for result in results], 'k', label='Flooding propagation') parallel_step.plot(passed_amounts, [result.conventional_scheduling_result.parallel_steps for result in results], 'b', label='Conventional scheduling') parallel_step.plot(passed_amounts, [result.round_trip_scheduling_result.parallel_steps for result in results], 'g', label='Round-trip scheduling') parallel_step.plot(passed_amounts, [result.successive_cancellation_result.parallel_steps for result in results], 'y', label='Successive cancellation') parallel_step.set(xlabel='Number of non-frozen (informative) bits', ylabel='Average number of\nparallel steps') lines, labels = fig.axes[-1].get_legend_handles_labels() legend = fig.legend(lines, labels, bbox_to_anchor=(1.0, 1.0), loc='upper left') plt.savefig('results/graph_{}.png'.format(datetime.now()),bbox_extra_artists=(legend,), bbox_inches='tight') plt.clf() print(datetime.now()) # A rough idea of the execution time. def print_average_result_all(k, dbg=False): """ Outputs the average step amount dependent on probabilities that generate different amounts of frozen bits. """ results = [] probs = get_p_list(k) for prob in probs: results.append(perform_average_computation_all(k, prob)) if dbg: results[-1].print() plot_graph('Polar decoding with block size {}'.format(2 ** k), k, 1, results) def print_average_result_random(k, repeats, p_skip=1, dbg=False): """ Outputs the average step amount dependent on probabilities that generate different amounts of frozen bits. """ results = [] probs = get_p_list(k)[::p_skip] print(probs, '\n', len(probs)) for prob in probs: print(prob) results.append(perform_average_computation_random(k, prob, repeats)) if dbg: results[-1].print() plot_graph('Polar decoding with block size {}, {} runs'.format(2 ** k, repeats), k, p_skip, results) if __name__ == '__main__': print(datetime.now()) print_average_result_all(3) print_average_result_random(5, repeats=200) print_average_result_random(8, repeats=200, p_skip=1)
8,356
image-tools/detection/detection.py
flegac/deep-experiments
0
2173128
import glob import os from pathlib import Path import cv2 import numpy as np from skimage import img_as_float from skimage import transform from skimage.measure import compare_ssim as ssim # Histogram of Oriented Gradients # https://www.learnopencv.com/histogram-of-oriented-gradients/ from image_clustering.image_utils import contrast_stretching, adaptive_equalization # structural similarity # histogram matching # http://paulbourke.net/miscellaneous/equalisation/ def detection(x1, x2, win_size=1, power=2, treshold=.5): x1 = img_as_float(x1) x2 = img_as_float(x2) w, h, _ = x1.shape s, out = ssim(x1, x2, win_size=2 * win_size + 1, multichannel=True, full=True) mask = (np.average(1 - out, axis=2) ** power) return mask # return (mask > treshold).astype(mask.dtype) def im_resize(img, scale): width = int(img.shape[1] * scale) height = int(img.shape[0] * scale) dim = (width, height) # resize image return cv2.resize(img, dim, interpolation=cv2.INTER_AREA) def do_all(name, label, x1, x2, equalizer=None): if equalizer: x1 = equalizer(x1) x2 = equalizer(x2) cv2.imwrite('{}_{}_x1.png'.format(name, label), im_resize(x1, 2.)) cv2.imwrite('{}_{}_x2.png'.format(name, label), im_resize(x2, 2.)) y_pred = detection(x1, x2) cv2.imwrite('{}_y_pred_{}.png'.format(name, label), im_resize(y_pred, 2.) * 255) def main(): path = os.path.abspath(os.path.join(os.curdir, 'images')) dataset = glob.glob(os.path.join(path, '*_mask.tif')) for _ in dataset: name = Path(_).name.replace('_mask.tif', '') x1 = cv2.imread(_.replace('_mask.tif', '_0.tif')) x2 = cv2.imread(_.replace('_mask.tif', '_1.tif')) y = cv2.imread(os.path.join(_), cv2.IMREAD_GRAYSCALE) cv2.imwrite('{}_x1.png'.format(name), im_resize(x1, 2.)) cv2.imwrite('{}_x2.png'.format(name), im_resize(x2, 2.)) cv2.imwrite('{}_y.png'.format(name), im_resize(y, 2.) * 255) x1 = transform.match_histograms(x1, x2, multichannel=True) do_all(name, 'basic', x1, x2) do_all(name, 'stretch', x1, x2, contrast_stretching) do_all(name, 'adapt_eq', x1, x2, adaptive_equalization) if __name__ == "__main__": main()
2,260
days/day04/part2.py
jaredbancroft/aoc2021
0
2171184
from submarine.systems.bingo import BingoSubsystem def solution(day): b = BingoSubsystem(f"inputs/{day}.txt") score = b.play("lose") return score
160
backend/bitcoin_arbitrage/apps.py
landdafku11/cryptocurrencybot
1
2173443
from django.apps import AppConfig class BitcoinArbitrageConfig(AppConfig): name = 'bitcoin_arbitrage'
108
Python_PI/Clase23.py
Alex8Navas/PythonPI
0
2172930
# Clase 23. Curso Píldoras Informáticas. # Control de Flujo. Excepciones 3. # Excepciones propias: Raise. def evalEdad(edad): if edad < 0: raise TypeError("No se permiten edades negativas") # Mensaje personalizado. if edad < 20: return "Joven." elif edad < 40: return "Joven Adulto." elif edad < 65: return "Adulto." elif edad < 100: return "Signore." print(evalEdad(99)) # print(evalEdad(-66)) import math print("\nPrograma de Cálculo de Raíces") def Calcularoot(number1): if number1 < 0: raise ValueError("No se puede calcular la raíz de un número negativo.") else: return math.sqrt(number1) numberint = int(input("Introduce un número: ")) try: print(Calcularoot(numberint)) except ValueError as RootNegativa: print(RootNegativa) print("Programa Finalizado.")
856
samples/human_interaction/SendSMSChallenge/__init__.py
sebastianburckhardt/azure-functions-durable-python
78
2173433
import json import random random.seed(10) def main(phoneNumber, message): code = random.randint(0, 10000) payload = { "body": f"Your verification code is {code}", "to": phoneNumber } message.set(json.dumps(payload)) code_str = str(code) return code_str
276
Integrations/HelloWorldSimple/HelloWorldSimple_test.py
TBE-Comp/content
0
2173318
from HelloWorldSimple import say_hello_command def test_say_hello(): args = { 'name': 'Dbot' } result = say_hello_command(args) assert result == '## Hello Dbot'
188
tests/test_replacer.py
joshua-s/punch
0
2169704
import six import pytest import io from punch import replacer def file_like(file_content): if six.PY2: return io.StringIO(unicode(file_content)) # NOQA else: return io.StringIO(file_content) def test_replace_content_without_config(): with pytest.raises(TypeError): replacer.Replacer() def test_replace_content(): current_version = { 'major': 1, 'minor': 0, 'patch': 0 } new_version = { 'major': 1, 'minor': 0, 'patch': 1 } file_content = """# Just a comment __version__ = "1.0.0" """ updated_file_content = """# Just a comment __version__ = "1.0.1" """ serializer = "__version__ = \"{{major}}.{{minor}}.{{patch}}\"" rep = replacer.Replacer(serializer) new_file_content = rep.replace(file_content, current_version, new_version) assert new_file_content == updated_file_content def test_get_versions(): current_version = { 'major': 1, 'minor': 0, 'patch': 0 } new_version = { 'major': 1, 'minor': 0, 'patch': 1 } serializer = "__version__ = \"{{major}}.{{minor}}.{{patch}}\"" rep = replacer.Replacer(serializer) list_of_versions = rep.run_all_serializers(current_version, new_version) assert list_of_versions == [ ("__version__ = \"1.0.0\"", "__version__ = \"1.0.1\"") ] def test_get_versions_with_multiple_serializers(): current_version = { 'major': 1, 'minor': 0, 'patch': 0 } new_version = { 'major': 1, 'minor': 0, 'patch': 1 } serializers = [ "__version__ = \"{{major}}.{{minor}}.{{patch}}\"", "__api_abi__ = \"{{major}}.{{minor}}\"" ] rep = replacer.Replacer(serializers) list_of_versions = rep.run_all_serializers(current_version, new_version) assert list_of_versions == [ ("__version__ = \"1.0.0\"", "__version__ = \"1.0.1\""), ("__api_abi__ = \"1.0\"", "__api_abi__ = \"1.0\"") ] def test_get_main_version_change_with_multiple_serializers(): current_version = { 'major': 1, 'minor': 0, 'patch': 0 } new_version = { 'major': 1, 'minor': 0, 'patch': 1 } serializers = [ "__version__ = \"{{major}}.{{minor}}.{{patch}}\"", "__api_abi__ = \"{{major}}.{{minor}}\"" ] rep = replacer.Replacer(serializers) current, new = rep.run_main_serializer(current_version, new_version) assert current, new == ( "__version__ = \"1.0.0\"", "__version__ = \"1.0.1\"" ) def test_replace_content_with_multiple_serializers(): current_version = { 'major': 1, 'minor': 0, 'patch': 0 } new_version = { 'major': 1, 'minor': 0, 'patch': 1 } file_content = """# Just a comment __version__ = "1.0.0" __api_abi__ = "1.0" """ updated_file_content = """# Just a comment __version__ = "1.0.1" __api_abi__ = "1.0" """ serializers = [ "__version__ = \"{{major}}.{{minor}}.{{patch}}\"", "__api_abi__ = \"{{major}}.{{minor}}\"" ] rep = replacer.Replacer(serializers) new_file_content = rep.replace(file_content, current_version, new_version) assert new_file_content == updated_file_content def test_replace_content_without_using_all_parts(): current_version = { 'major': 1, 'minor': 0, 'patch': 0 } new_version = { 'major': 1, 'minor': 1, 'patch': 0 } file_content = """# Just a comment __version__ = "1.0" """ updated_file_content = """# Just a comment __version__ = "1.1" """ serializer = "__version__ = \"{{major}}.{{minor}}\"" rep = replacer.Replacer(serializer) new_file_content = rep.replace(file_content, current_version, new_version) assert new_file_content == updated_file_content
3,999
Diena_16_misc/my_tk_gui.py
edzya/Python_RTU_08_20
8
2172693
import tkinter as tk # this is in standard library class Application(tk.Frame): count = 5 def __init__(self, master=None): super().__init__(master) self.master = master self.pack() self.create_widgets() def create_widgets(self): self.hi_there = tk.Button(self) self.hi_there["text"] = "Hello World\n(click me)" self.hi_there["command"] = self.say_hi #binding say_hi method to click self.hi_there.pack(side="top") self.quit = tk.Button(self, text="QUIT", fg="red", command=self.master.destroy) self.quit.pack(side="bottom") self.result = tk.Label(self) self.result["text"] = f"Result {self.count}" self.result.pack(side="bottom") def say_hi(self): print("hi there, everyone!") self.count += 1 self.result["text"] = f"Result {self.count}" # hand made binding of hi button and result label root = tk.Tk() app = Application(master=root) app.mainloop()
1,030
plugins/Lima/limaFAI.py
yugangzhang/pyFAI
45
2172115
#!/usr/bin/env python # coding: utf-8 from __future__ import with_statement, print_function """ LImA ProcessLib example of pyFAI azimuthal integrator Link and Sink """ __author__ = "<NAME>" __contact__ = "<EMAIL>" __license__ = "GPLv3+" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" __date__ = "03/08/2016" __status__ = "beta" __docformat__ = 'restructuredtext' import threading import logging import numpy import sys import os import distutils.util from os.path import dirname logger = logging.getLogger("lima.pyfai") # set loglevel at least at INFO if logger.getEffectiveLevel() > logging.INFO: logger.setLevel(logging.INFO) from Lima import Core try: import pyFAI except ImportError: cwd = dirname(dirname(dirname(os.path.abspath(__file__)))) sys.path.append(os.path.join(cwd, "build", "lib.%s-%i.%i" % (distutils.util.get_platform(), sys.version_info[0], sys.version_info[1]))) import pyFAI class StartAcqCallback(Core.SoftCallback): """ Class managing the connection from a Lima.Core.CtControl.prepareAcq() to the configuration of the various tasks Example of usage: cam = Basler.Camera(ip) iface = Basler.Interface(cam) ctrl = Core.CtControl(iface) processLink = LinkPyFAI(worker, writer) extMgr = ctrl.externalOperation() myOp = self.extMgr.addOp(Core.USER_LINK_TASK, "pyFAILink", 0) myOp.setLinkTask(processLink) callback = StartAcqCallback(ctrl, processLink) myOp.registerCallback(callback) acq.setAcqNbFrames(0) acq.setAcqExpoTime(1.0) ctrl.prepareAcq() #Configuration called here !!!! ctrl.startAcq() """ def __init__(self, control, task=None): """ :param control: Lima.Core.CtControl instance :param task: The task one wants to parametrize at startup. Can be a Core.Processlib.LinkTask or a Core.Processlib.SinkTask """ Core.SoftCallback.__init__(self) self._control = control self._task = task def prepare(self): """ Called with prepareAcq() """ im = self._control.image() imdim = im.getImageDim().getSize() x = imdim.getWidth() y = imdim.getHeight() bin = im.getBin() binX = bin.getX() binY = bin.getY() lima_cfg = {"dimX":x, "dimY":y, "binX":binX, "binY":binY} saving = self._control.saving() sav_parms = saving.getParameters() lima_cfg["directory"]=sav_parms.directory lima_cfg["prefix"] = sav_parms.prefix lima_cfg["start_index"] = sav_parms.nextNumber lima_cfg["indexFormat"] = sav_parms.indexFormat # number of images ... acq = self._control.acquisition() lima_cfg["number_of_frames"] = acq.getAcqNbFrames() #to check. lima_cfg["exposure_time"] = acq.getAcqExpoTime() #ROI see: https://github.com/esrf-bliss/Lima/blob/master/control/include/CtAcquisition.h print("self._task._worker: %s" % self._task._worker) if (self._task._worker) is None : centerX = x // 2 centerY = y // 2 ai = pyFAI.AzimuthalIntegrator() ai.setFit2D(1000, centerX=centerX, centerY=centerY, pixelX=1, pixelY=1) worker = pyFAI.worker.Worker(ai) worker.unit = "r_mm" worker.method = "lut_ocl_gpu" worker.nbpt_azim = 360 worker.nbpt_rad = 500 worker.output = "numpy" print("Worker updated") self._task._worker = worker else: worker = self._task._worker worker.reconfig(shape=(y, x), sync=True) if self._task._writer: config = self._task._worker.get_config() self._task._writer.init(fai_cfg=config, lima_cfg=lima_cfg) self._task._writer.flush(worker.radial, worker.azimuthal) class LinkPyFAI(Core.Processlib.LinkTask): """ This is a ProcessLib task which is a link: it modifies the image for further processing. It processes every acquired frame with the pyFAI-worker and can optionally save data as HDF5 or EDF """ def __init__(self, worker=None, writer=None): """ :param worker: pyFAI.worker.Worker instance :param writer: pyFAI.io.Writer instance """ Core.Processlib.LinkTask.__init__(self) self._worker = worker self._writer = writer def process(self, data) : """ Callback function Called for every frame in a different C++ thread. """ rData = Core.Processlib.Data() rData.frameNumber = data.frameNumber rData.buffer = self._worker.process(data.buffer) if self._writer: #optional HDF5 writer self._writer.write(rData.buffer, rData.frameNumber) return rData def __repr__(self): """ pretty print of myself """ lstout = [ "LinkPyFAI Processlib instance","Worker:",self._worker.__repr__(),"Writer:",self._writer.__repr__()] return os.linesep.join(lstout) class SinkPyFAI(Core.Processlib.SinkTaskBase): """ This is a ProcessLib task which is a sink: it processes the image and saves it. It processes every acquired frame with the pyFAI-worker. If no writer is provided, processed data are lost. """ def __init__(self, worker=None, writer=None): Core.Processlib.SinkTaskBase.__init__(self) self._worker = worker self._writer = writer if writer is None: logger.error("Without a writer, SinkPyFAI will just dump all data") def __repr__(self): """ pretty print of myself """ lstout = [ "SinkPyFAI Processlib instance","Worker:",self._worker.__repr__(),"Writer:",self._writer.__repr__()] return os.linesep.join(lstout) def reset(self): """ this is just to force the integrator to initialize """ self.ai.reset() def reconfig(self, shape=(2048, 2048)): """ this is just to force the integrator to initialize with a given input image shape """ self.shapeIn = shape self.ai.reset() if self.do_2D(): threading.Thread(target=self.ai.integrate2d, name="init2d", args=(numpy.zeros(self.shapeIn, dtype=numpy.float32), self.nbpt_rad, self.nbpt_azim), kwargs=dict(method="lut", unit=self.unit) ).start() else: threading.Thread(target=self.ai.integrate1d, name="init1d", args=(numpy.zeros(self.shapeIn, dtype=numpy.float32), self.nbpt_rad), kwargs=dict(method="lut", unit=self.unit) ).start() def process(self, data) : """ Callback function Called for every frame in a different C++ thread. """ rData = Core.Processlib.Data() rData.frameNumber = data.frameNumber rData.buffer = self._worker.process(data.buffer) if self._writer: #optional HDF5 writer self._writer.write(rData.buffer, rData.frameNumber) # # ctControl = _control_ref() # saving = ctControl.saving() # sav_parms = saving.getParameters() # if not self.subdir: # directory = sav_parms.directory # elif self.subdir.startswith("/"): # directory = self.subdir # else: # directory = os.path.join(sav_parms.directory, self.subdir) # if not os.path.exists(directory): # logger.error("Ouput directory does not exist !!! %s", directory) # try: # os.makedirs(directory) # except: # No luck withthreads # pass # ## directory = sav_parms.directory # prefix = sav_parms.prefix # nextNumber = sav_parms.nextNumber # indexFormat = sav_parms.indexFormat # kwarg["filename"] = os.path.join(directory, prefix + indexFormat % (nextNumber + data.frameNumber)) # if self.do_2D(): # kwarg["npt_rad"] = self.nbpt_rad # kwarg["npt_azim"] = self.nbpt_azim # if self.extension: # kwarg["filename"] += self.extension # else: # kwarg["filename"] += ".azim" # else: # kwarg["npt"] = self.nbpt_rad # if self.extension: # kwarg["filename"] += self.extension # else: # kwarg["filename"] += ".xy" # if self.do_poisson: # kwarg["error_model"] = "poisson" # else: # kwarg["error_model"] = "None" # # try: # if self.do_2D(): # self.ai.integrate2d(**kwarg) # else: # self.ai.integrate1d(**kwarg) # except: # print data.buffer.shape, data.buffer.size # print self.ai # print self.ai._lut_integrator # print self.ai._lut_integrator.size # raise # # return rData def setSubdir(self, path): """ Set the relative or absolute path for processed data """ self.writer.subdir = path def setExtension(self, ext): """ enforce the extension of the processed data file written """ if ext: self._writer.extension = ext else: self._writer.extension = None def setJsonConfig(self, jsonconfig): self._worker.setJsonConfig(jsonconfig)
9,787
lexer.py
gsedometov/KR580-compiler
0
2172219
import ply.lex as lex from symbols import cmds, rg_names, tokens def t_DECLARATION(t): r'[A-Za-z]+[0-9]*\:' line = t.lexer.counter if line - t.lexer.last_declaration == 1: line -= 1 t.lexer.symtable[t.value[:-1]] = line t.lexer.last_declaration = t.lexer.counter def t_CMD(t): r'([A-Z]|[a-z])+\b' if t.value in cmds: t.type = 'CMD' elif t.value in rg_names: t.type = 'RG_NAME' else: t.type = 'ID' t.lexer.counter += 1 return t t_ID = r'[A-Za-z]*[0-9]+' def t_WORD(t): r'([\da-f0-9]{2}){1}' t.value = int(t.value, 16) t.lexer.counter += 1 return t def t_NEWLINE(t): r'\n+' t.lexer.lineno += len(t.value) t_ignore = '\t, ' # Error handling rule def t_error(t): print("Illegal character '%s'" % t.value[0]) t.lexer.skip(1) # Build the lexer lexer = lex.lex() lexer.symtable = {} lexer.last_declaration = 0 lexer.counter = 0
939
sandy-disaster-recovery/messaging.py
toddjcrane/crisiscleanup-legacy
1
2170536
#!/usr/bin/env python # # Copyright 2013 <NAME> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import logging import os from google.appengine.api import app_identity, mail import jinja2 from config_key_db import get_config_key from admin_handler.admin_identity import get_global_admins, get_event_admins import aws # jinja jinja_environment = jinja2.Environment( loader=jinja2.FileSystemLoader( os.path.join( os.path.dirname(__file__), 'templates', 'email' ) ) ) # functions def get_application_id(): return app_identity.get_application_id() def get_default_version_hostname(): return app_identity.get_default_version_hostname() def get_base_url(): configured_base_url = get_config_key('system_base_url') if configured_base_url: return configured_base_url else: # return http as the scheme and assume requests redirected return "http://" + get_default_version_hostname() def get_appengine_default_system_email_address(): return "%s <<EMAIL>>" % ( app_identity.get_service_account_name(), app_identity.get_application_id() ) def get_aws_ses_default_system_email_address(): " From configuration " return get_config_key('system_email_address') def send_email_via_appengine(sender, to, subject, body, cc=None, bcc=None, html_body=None): send_mail_args = { 'sender': sender, 'to': to, 'subject': subject, 'body': body, } if cc: send_mail_args['cc'] = cc if bcc: send_mail_args['bcc'] = bcc if html_body: send_mail_args['html'] = html_body return mail.send_mail(**send_mail_args) def send_email_via_aws_ses( sender, to, subject, body, cc=None, bcc=None, html_body=None, aws_ses_region=None, aws_ses_access_key_id=None, aws_ses_secret_access_key=None, ): return aws.ses_send_email( source=sender, to_addresses=to, subject=subject, body=body, cc=cc, bcc=bcc, html_body=html_body, aws_region=aws_ses_region, aws_access_key_id=aws_ses_access_key_id, aws_secret_access_key=aws_ses_secret_access_key, ) def can_send_by_aws_ses( aws_ses_region, aws_ses_access_key_id, aws_ses_secret_access_key, sender_address ): keys_available = bool( aws_ses_region and aws_ses_access_key_id and aws_ses_secret_access_key ) if keys_available: verified_addresses = aws.ses_get_verified_email_addresses( aws_ses_region, aws_ses_access_key_id, aws_ses_secret_access_key ) sender_ok = (sender_address in verified_addresses) if sender_ok: return True else: logging.warning( "Tried to send by AWS SES but %s is not verified." % ( sender_address)) return False def send_email_by_service(to, subject, body, cc=None, bcc=None, html_body=None): " Send by AWS SES if available, otherwise GAE. " assert not isinstance(to, basestring), "'to' must be a list or iterable" # check for AWS API keys aws_ses_region = get_config_key('aws_ses_region') aws_ses_access_key_id = get_config_key('aws_ses_access_key_id') aws_ses_secret_access_key = get_config_key('aws_ses_secret_access_key') # lookup addresses(s) to send from gae_sender_address = get_appengine_default_system_email_address() aws_sender_address = get_aws_ses_default_system_email_address() # send by AWS or fall back to GAE # catch & log all exceptions to prevent blowing up requests due to email try: if can_send_by_aws_ses(aws_ses_region, aws_ses_access_key_id, aws_ses_secret_access_key, aws_sender_address): logging.error(aws_ses_secret_access_key) return send_email_via_aws_ses( aws_sender_address, to, subject, body, cc=cc, bcc=bcc, html_body=html_body, aws_ses_region=aws_ses_region, aws_ses_access_key_id=aws_ses_access_key_id, aws_ses_secret_access_key=aws_ses_secret_access_key ) else: return send_email_via_appengine( gae_sender_address, to, subject, body, cc=cc, bcc=bcc, html_body=html_body ) except: logging.exception("Exception caused generating email.") def friendly_email_address(contact): return u"%s <%s>" % (contact.full_name, contact.email) def email_contacts(event, contacts, subject, body, html=None, bcc_contacts=None): prefixed_subject = "[%s] %s" % (get_application_id(), subject) to_addresses = map( friendly_email_address, (contact for contact in contacts if contact.email) ) bcc_addresses = map( friendly_email_address, (contact for contact in bcc_contacts if contact.email) ) if bcc_contacts else [] send_email_by_service( to_addresses, prefixed_subject, body, bcc=bcc_addresses, html_body=html, ) def email_contacts_using_templates( event, contacts, subject_template_name, body_template_name, **kwargs): """ Email contacts using Jinja2 templates. """ subject_template = jinja_environment.get_template(subject_template_name) body_template = jinja_environment.get_template(body_template_name) kwargs.update({'event': event}) rendered_subject = subject_template.render(kwargs) rendered_body = body_template.render(kwargs) email_contacts(event, contacts, rendered_subject, rendered_body) def email_administrators(event, subject, body, html=None, include_local=True): admin_orgs = get_event_admins(event) if include_local else get_global_admins() admin_contacts = reduce( lambda x, y: list(x) + list(y), (org.contacts for org in admin_orgs) ) email_contacts(event, admin_contacts, subject, body, html=html) def email_administrators_using_templates( event, subject_template_name, body_template_name, include_local=True, **kwargs): """ Email all relevant administrators for event, using Jinja2 templates. """ admin_orgs = get_event_admins(event) if include_local else get_global_admins() admin_contacts = reduce( lambda x, y: list(x) + list(y), (org.contacts for org in admin_orgs) ) email_contacts_using_templates( event, admin_contacts, subject_template_name, body_template_name, **kwargs ) # # Specific email convenience functions # def send_activation_emails(org_for_activation): activation_url = "%s/activate?code=%s" % ( get_base_url(), org_for_activation.activation_code) email_contacts_using_templates( None, org_for_activation.primary_contacts, 'activation.subject.txt', 'activation.body.txt', org=org_for_activation, activation_url=activation_url, bcc_contacts=get_global_admins()[0].contacts ) def send_activated_emails(org_activated): email_contacts_using_templates( org_activated.incidents[0], org_activated.primary_contacts, 'activated.subject.txt', 'activated.body.txt', org=org_activated, bcc_contacts=get_global_admins()[0].contacts ) # # Test Handler # import base import key GLOBAL_ADMIN_NAME = "Admin" class EmailTestHandler(base.RequestHandler): def get(self): org, event = key.CheckAuthorization(self.request) if not (org and org.name == GLOBAL_ADMIN_NAME): self.response.out.write("Must be global admin.") return to_addr = self.request.get("to") from_addr = self.request.get("from") if to_addr and from_addr: send_email_by_service( sender=from_addr, to=[to_addr], subject=u"Test email", body=u"This is a test email." ) self.response.out.write("Test email sent.") else: self.response.out.write("Need to and from addresses")
8,723
BrewMe.py
AdamPrimak/BrewMe
4
2172945
#Setup import glob import time import RPi.GPIO as GPIO GPIO.setmode(GPIO.BCM) GPIO.setwarnings(False) GPIO.setup(18,GPIO.OUT) #Green LED GPIO.setup(12,GPIO.OUT) #RED LED GPIO.setup(13,GPIO.OUT) #Yellow LED GPIO.setup(23,GPIO.OUT) #Buzzer base_dir = '/sys/bus/w1/devices/' device_folder = glob.glob(base_dir + '28*')[0] device_file = device_folder + '/w1_slave' def read_temp_raw(): f = open(device_file, 'r') lines = f.readlines() f.close() return lines def read_temp(): lines = read_temp_raw() while lines[0].strip()[-3:] != 'YES': time.sleep(0.2) lines = read_temp_raw() equals_pos = lines[1].find('t=') if equals_pos != -1: temp_string = lines[1][equals_pos+2:] temp_c = float(temp_string) / 1000.0 temp_f = temp_c * 9.0 / 5.0 + 32.0 return temp_c, temp_f def LED_color(): #hard coded limits on temperature - Green = within limits, Yellow = near limits, Red = outside limits temp = read_temp() if temp[0] < 5 or temp[0] > 30: GPIO.output(18,GPIO.LOW) GPIO.output(13,GPIO.LOW) GPIO.output(12,GPIO.HIGH) GPIO.output(23,GPIO.HIGH) time.sleep(0.75) return "Temprature is outside of limits" if temp[0] < 15 and temp[0] > 5 or temp[0] < 30 and temp[0] > 20: GPIO.output(12,GPIO.LOW) GPIO.output(18,GPIO.LOW) GPIO.output(13,GPIO.HIGH) GPIO.output(23,GPIO.HIGH) time.sleep(0.25) GPIO.output(23,GPIO.LOW) time.sleep(0.25) GPIO.output(23,GPIO.HIGH) time.sleep(0.25) GPIO.output(23,GPIO.LOW) return "Temperature is near the limits" if temp[0] < 20 and temp[0] > 15: GPIO.output(12,GPIO.LOW) GPIO.output(13,GPIO.LOW) GPIO.output(23,GPIO.LOW) GPIO.output(18,GPIO.HIGH) time.sleep(0.75) return "Temperature is within the range" while True: temp = 0 print(read_temp()) print(LED_color()) time.sleep(1)
2,002
sddip/sddip/parameters.py
leoschleier/sddip
0
2171334
import os import numpy as np import pandas as pd from sddip import utils, config class Parameters: def __init__( self, test_case_name: str, n_stages: int, n_realizations: int, raw_directory: str = "raw", bus_file="bus_data.txt", branch_file="branch_data.txt", gen_file="gen_data.txt", gen_cost_file="gen_cost_data.txt", gen_sup_file="gen_sup_data.txt", renewables_file="ren_data.txt", storage_file="storage_data.txt", scenario_file="scenario_data.txt", ): raw_data_dir = os.path.join( config.test_cases_dir, test_case_name, raw_directory ) scenario_str = f"t{str(n_stages).zfill(2)}_n{str(n_realizations).zfill(2)}" scenario_data_dir = os.path.join( config.test_cases_dir, test_case_name, scenario_str ) raw_data_importer = DataImporter(raw_data_dir) scenario_data_importer = DataImporter(scenario_data_dir) # DataFrames self.bus_df = raw_data_importer.dataframe_from_csv(bus_file) self.branch_df = raw_data_importer.dataframe_from_csv(branch_file) self.gen_df = raw_data_importer.dataframe_from_csv(gen_file) self.gen_cost_df = raw_data_importer.dataframe_from_csv(gen_cost_file) self.ren_df = raw_data_importer.dataframe_from_csv(renewables_file) self.storage_df = raw_data_importer.dataframe_from_csv(storage_file) self.gen_sup_df = scenario_data_importer.dataframe_from_csv(gen_sup_file) self.scenario_df = scenario_data_importer.dataframe_from_csv(scenario_file) # Structural data self.ptdf = None self.incidence_matrix = None self.n_lines = None self.n_buses = None self.n_gens = None self.gens_at_bus = None self.n_storages = None self.storages_at_bus = None # Cost data self.gc = None self.suc = None self.sdc = None self.cost_coeffs = None # Power generation limits self.pg_min = None self.pg_max = None # Generator ramp rates self.r_up = None self.r_down = None self.r_su = None self.r_sd = None # Min up- and down-times self.min_up_time = None self.min_down_time = None self.backsight_periods = None # Storage charge/discharge rate limits self.rc_max = None self.rdc_min = None # Maximum state of charge self.soc_max = None # Charge/discharge efficiencies self.eff_c = None self.eff_dc = None # Line capacity self.pl_max = None # Stochastic problem parameters self.n_stages = None self.n_realizations_per_stage = None self.n_scenarios = None # Nodal probability self.prob = None # Power demand self.p_d = None # Renewable generation self.re = None # Cut constraints lower bound self.cut_lb = None # Frist stage trial points self.init_x_trial_point = None self.init_y_trial_point = None self.init_x_bs_trial_point = None self.init_soc_trial_point = None self.initialize() def initialize(self): """Triggers the initialization of all parameters based on the corresponding data frames """ self._calc_ptdf() self._init_deterministic_parameters() self._init_stochastic_parameters() self._init_initial_trial_points() def _calc_ptdf(self): """Calculates the Power Transmission Distribution Factor and infers the number of buses and lines """ nodes = self.bus_df.bus_i.values.tolist() edges = self.branch_df[["fbus", "tbus"]].values.tolist() ref_bus = self.bus_df.loc[self.bus_df.type == 3].bus_i.values[0] graph = utils.Graph(nodes, edges) self.incidence_matrix = graph.incidence_matrix() b_l = ( -self.branch_df.x / (self.branch_df.r ** 2 + self.branch_df.x ** 2) ).tolist() b_diag = np.diag(b_l) m1 = b_diag.dot(self.incidence_matrix) m2 = self.incidence_matrix.T.dot(b_diag).dot(self.incidence_matrix) m1 = np.delete(m1, ref_bus - 1, 1) m2 = np.delete(m2, ref_bus - 1, 0) m2 = np.delete(m2, ref_bus - 1, 1) ptdf = m1.dot(np.linalg.inv(m2)) self.ptdf = np.insert(ptdf, ref_bus - 1, 0, axis=1) self.ptdf[abs(self.ptdf) < 10 ** -10] = 0 self.n_lines, self.n_buses = self.ptdf.shape def _init_deterministic_parameters(self): """Initializes all deterministic parameters """ self.gen_cost_df self.gen_df self.branch_df gc_positive = np.where(self.gen_cost_df.c1 > 0, self.gen_cost_df.c1, 1) suc_positive = np.where( self.gen_cost_df.startup > 0, self.gen_cost_df.startup, 1 ) sdc_positive = np.where( self.gen_cost_df.shutdown > 0, self.gen_cost_df.shutdown, 1 ) costs_log10 = np.concatenate( [ np.log10(gc_positive), np.log10(suc_positive), np.log10(sdc_positive), np.zeros(1), ] ) scaling_digits = int(np.max(costs_log10)) + 1 self.cost_div = 10 ** (max(scaling_digits - 2, 0)) self.gc = np.array(self.gen_cost_df.c1) / self.cost_div self.suc = np.array(self.gen_cost_df.startup) / self.cost_div self.sdc = np.array(self.gen_cost_df.shutdown) / self.cost_div # Storages storage_buses = self.storage_df.bus.values.tolist() self.n_storages = len(storage_buses) self.storages_at_bus = [[] for _ in range(self.n_buses)] s = 0 for b in storage_buses: self.storages_at_bus[b - 1].append(s) s += 1 self.rc_max = self.storage_df["Rc"].values.tolist() self.rdc_max = self.storage_df["Rdc"].values.tolist() self.soc_max = self.storage_df["SOC"].values.tolist() self.eff_c = self.storage_df["Effc"].values.tolist() self.eff_dc = self.storage_df["Effdc"].values.tolist() # TODO Adjust penalty for slack variables self.penalty = 10 ** 2 self.cost_coeffs = ( self.gc.tolist() + self.suc.tolist() + self.sdc.tolist() + [self.penalty] * 2 ) print(f"Cost coefficients: {self.cost_coeffs}") self.pg_min = self.gen_df.Pmin.values.tolist() self.pg_max = self.gen_df.Pmax.values.tolist() self.pl_max = self.branch_df.rateA.values.tolist() self.n_gens = len(self.gc) # TODO Add ramp rate limits self.r_up = self.gen_sup_df["R_up"].values.tolist() self.r_down = self.gen_sup_df["R_down"].values.tolist() self.r_su = [max(r, p) for r, p in zip(self.r_up, self.pg_min)] self.r_sd = [max(r, p) for r, p in zip(self.r_down, self.pg_min)] # TODO add min up and down times to probelm data self.min_up_time = self.gen_sup_df["UT"].values.tolist() self.min_down_time = self.gen_sup_df["DT"].values.tolist() self.backsight_periods = [ max(ut, dt) for ut, dt in zip(self.min_up_time, self.min_down_time) ] # Lists of generators at each bus # # Example: [[0,1], [], [2]] # Generator 1 & 2 are located at bus 1 # No Generator is located at bus 2 # Generator 3 is located at bus 3 gen_buses = self.gen_df.bus.values.tolist() gens_at_bus = [[] for _ in range(self.n_buses)] g = 0 for b in gen_buses: gens_at_bus[b - 1].append(g) g += 1 self.gens_at_bus = gens_at_bus def _init_stochastic_parameters(self): """Initializes all stochastic parameters """ scenario_df = self.scenario_df self.n_realizations_per_stage = scenario_df.groupby("t")["n"].nunique().tolist() self.n_stages = len(self.n_realizations_per_stage) self.n_scenarios = np.prod(self.n_realizations_per_stage) prob = [] p_d = [] re = [] for t in range(self.n_stages): stage_df = scenario_df[scenario_df["t"] == t + 1] p_d.append( stage_df[ scenario_df.columns[ scenario_df.columns.to_series().str.contains("Pd") ] ].values.tolist() ) re.append( stage_df[ scenario_df.columns[ scenario_df.columns.to_series().str.contains("Re") ] ].values.tolist() ) prob.append(stage_df["p"].values.tolist()) self.prob = prob self.p_d = p_d self.re = re self.cut_lb = [0] * self.n_stages def _init_initial_trial_points(self): """Initializes the first stage trial points """ self.init_x_trial_point = [0] * self.n_gens self.init_y_trial_point = [0] * self.n_gens self.init_x_bs_trial_point = [ [0] * n_periods for n_periods in self.backsight_periods ] self.init_soc_trial_point = [0.5 * soc for soc in self.soc_max] class DataImporter: def __init__(self, data_directory: str = None): self.data_directory = data_directory if data_directory else "" def dataframe_from_csv( self, file_path: str, delimiter: str = "\s+" ) -> pd.DataFrame: path = os.path.join(self.data_directory, file_path) df = pd.read_csv(path, sep=delimiter) return df
9,803
2_semester/Quiz_animation.py
Winterpuma/bmstu_python
5
2173460
# Контрольная по Python. # <NAME> ИУ7-25 from pygame import * import sys clock = time.Clock() size = width, height = 800, 600 screen = display.set_mode(size) display.set_caption('KR') WHITE = 255, 255, 255 BLACK = 0, 0, 0 YELLOW = 255, 255, 100 BLUE = 0, 0, 255 UFO_x, UFO_y = 600, 500 UFO_w, UFO_h = 150, 80 while 1: clock.tick(5) for e in event.get(): if e.type == QUIT: quit() sys.exit() screen.fill(WHITE) draw.line(screen, BLACK, (0, 400), (400, 400), 2) draw.line(screen, BLACK, (400, 540), (800, 540), 2) draw.line(screen, BLACK, (400, 400),(400, 540), 2) # UFO draw.ellipse(screen, BLACK, (UFO_x-(UFO_w/2), UFO_y-(UFO_h/2), UFO_w, UFO_h), 2) draw.circle(screen, BLACK, (UFO_x, UFO_y-int((5/6)*UFO_h)), int(UFO_h/3), 2) UFO_w *= 0.98 UFO_h *= 0.975 UFO_x += 3 UFO_y -= 5 # House draw.rect(screen, BLUE, (270, 80, 20, 100)) draw.polygon(screen, YELLOW, ((70, 200), (320, 200), (195, 100))) draw.rect(screen, BLACK, (70, 200, 250, 200), 2) draw.rect(screen, BLACK, (100, 240, 70, 70), 2) draw.rect(screen, BLACK, (220, 300, 70, 70), 2) draw.line(screen, BLACK, (100, 275),(170, 275), 2) draw.line(screen, BLACK, (220, 335), (290, 335), 2) draw.line(screen, BLACK, (135, 275),(135, 310), 2) draw.line(screen, BLACK, (255, 335), (255, 370), 2) display.flip()
1,483
stopcovid/drill_progress/aws_lambdas/schedule_next_drills_to_trigger.py
celestinosalim/dialog-engine
0
2173473
from stopcovid.drill_progress.drill_scheduler import DrillScheduler from stopcovid.drill_progress.drill_progress import DrillProgressRepository from stopcovid.utils.logging import configure_logging from stopcovid.utils.verify_deploy_stage import verify_deploy_stage configure_logging() INACTIVITY_THRESHOLD_MINUTES = 720 SCHEDULING_WINDOW_MINUTES = 180 def handler(event, context): verify_deploy_stage() DrillScheduler().schedule_drills_to_trigger( DrillProgressRepository().get_progress_for_users_who_need_drills( INACTIVITY_THRESHOLD_MINUTES ), SCHEDULING_WINDOW_MINUTES, ) return {"statusCode": 200}
660
Source/JackFramework/Evaluation/listhandler.py
Archaic-Atom/JackFramework
13
2171694
# -*- coding: utf-8 -*- class ListHandler(object): """docstring for ListHandler""" def __init__(self): super().__init__() @staticmethod def list_add(list_A: list, list_B: list) -> list: assert len(list_A) == len(list_B) return [item + list_B[i] for i, item in enumerate(list_A)] @staticmethod def list_div(list_A: list, num: float) -> list: return [item / num for _, item in enumerate(list_A)] @staticmethod def list_mean(list_A: list) -> list: return [item for _, item in enumerate(list_A)] @staticmethod def double_list_add(list_A: list, list_B: list = None) -> list: assert type(list_A) == list assert type(list_A[0]) == list if list_B is None: return list_A for i, item in enumerate(list_A): list_A[i] = ListHandler.list_add(item, list_B[i]) return list_A @staticmethod def double_list_div(list_A: list, num: float) -> None: res = [] for item in list_A: tem_res = ListHandler.list_div(item, num) res.append(tem_res) return res
1,140
Modules/TrianglesCircles/first_vectors.py
hillegass/sequence
10
2173266
import numpy as np # Create two vectors v = np.array([2,3,4]) u = np.array([-1,-2,3]) print(f"u = {u}, v = {v}") # Add them w = v + u print(f"u + v = {w}") # Multiply by a scalar w = v * 3 print(f"v * 3 = {w}") # Get the magnitude mv = np.linalg.norm(v) mu = np.linalg.norm(u) print(f"|v| = {mv:.2f}, |u| = {mu:.2f}") # Take the dot product d = v @ u print("v @ u =", d) # Get the angle between the vectors a = np.arccos(d / (mv * mu)) print(f"The angle between u and v is {a * 180 / np.pi:.2f} degrees")
512
src/pyplot_template.py
clovadev/opencv-python
0
2171793
from matplotlib import pyplot as plt # 이미지 표시 그래프의 구조를 만드는 함수 def plt_arch(plot_number, title, src): plt.subplot(plot_number), plt.imshow(src, cmap='gray') plt.title(title), plt.xticks([]), plt.yticks([])
215
Part 1/Chapter 9/exercise_9.15.py
kg55555/pypractice
0
2173040
from random import randint, choice import string class Lottery(): def __init__(self): self.winner = self.number_draw() def number_draw(self): winner = "" lottery = [randint(10, 99) for number in range(1, 11)] for number in range(1, 6): lottery.append(choice(string.ascii_lowercase)) return lottery def chance(self, entry): count = 0 while True: winner = "" for number in range(1, 5): winner += str(choice(self.winner)) count += 1 if winner == entry: return count lotto = Lottery() while True: wrong_char = False all_num = '' for v in lotto.winner: all_num += str(v) guess = input(f"Today's lottery numbers are: {lotto.winner}\nPlace your bets!\n") for index in range(len(guess)): if guess[index] not in all_num: wrong_char = True if wrong_char: continue print(lotto.chance(guess))
1,017
tests/__init__.py
snickell/wiz_light
338
2173420
"""Tests for the WiZ Light integration.""" import json from homeassistant.components.wiz_light.const import DOMAIN from homeassistant.const import CONF_IP_ADDRESS, CONF_NAME from homeassistant.helpers.typing import HomeAssistantType from tests.common import MockConfigEntry FAKE_BULB_CONFIG = json.loads( '{"method":"getSystemConfig","env":"pro","result":\ {"mac":"ABCABCABCABC",\ "homeId":653906,\ "roomId":989983,\ "moduleName":"ESP_0711_STR",\ "fwVersion":"1.21.0",\ "groupId":0,"drvConf":[20,2],\ "ewf":[255,0,255,255,0,0,0],\ "ewfHex":"ff00ffff000000",\ "ping":0}}' ) REAL_BULB_CONFIG = json.loads( '{"method":"getSystemConfig","env":"pro","result":\ {"mac":"ABCABCABCABC",\ "homeId":653906,\ "roomId":989983,\ "moduleName":"ESP01_SHRGB_03",\ "fwVersion":"1.21.0",\ "groupId":0,"drvConf":[20,2],\ "ewf":[255,0,255,255,0,0,0],\ "ewfHex":"ff00ffff000000",\ "ping":0}}' ) TEST_SYSTEM_INFO = {"id": "ABCABCABCABC", "name": "Test Bulb"} TEST_CONNECTION = {CONF_IP_ADDRESS: "1.1.1.1", CONF_NAME: "Test Bulb"} async def setup_integration( hass: HomeAssistantType, ) -> MockConfigEntry: """Mock ConfigEntry in Home Assistant.""" entry = MockConfigEntry( domain=DOMAIN, unique_id=TEST_SYSTEM_INFO["id"], data={ CONF_IP_ADDRESS: "127.0.0.1", CONF_NAME: TEST_SYSTEM_INFO["name"], }, ) entry.add_to_hass(hass) await hass.config_entries.async_setup(entry.entry_id) await hass.async_block_till_done() return entry
1,586
surrogate/estimator/tests/test_neural_network.py
liujiamingustc/phd
3
2173338
# Copyright 2016 <NAME> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Author: <NAME> <<EMAIL>> # License: Apache License, Version 2.0 # Create: 2016-12-02 # import itertools # import unittest # # from numpy import array, linspace, sin, cos, pi from sklearn.neural_network import MLPRegressor from surrogate.estimator import ANNSurrogate if __name__ == "__main__": X = [[0., 0.], [1., 1.], [10., 10.]] y = [0.0, 1.0, 10.0] x_pred = [[5., 5.], [-10., -2.]] surrogate = ANNSurrogate(algorithm='l-bfgs', alpha=1e-5, hidden_layer_sizes=(5, 2), random_state=1) surrogate.fit(X, y) y_pred = surrogate.predict(X) # print surrogate.regressor # print y_pred regressor = MLPRegressor(algorithm='l-bfgs', alpha=1e-5, hidden_layer_sizes=(5, 2), random_state=1) regressor.fit(X, y) y_pred = regressor.predict(X) print regressor print y_pred
1,391
nambaone/bot.py
erjanmx/python-nambaone-bot
0
2168576
import requests from . chat import Chat from os.path import exists from . message import Message from . event_handler import EventHandler from . exceptions import ClientException, FileDownloadException, FileUploadException class Bot: def __init__(self, token, base_url=None, base_file_url=None, error_handler=None, user_follow_handler=None, user_unfollow_handler=None, message_new_handler=None, message_update_handler=None, chat_new_handler=None): self._base_url = base_url or 'https://api.namba1.co' self._base_file_url = base_file_url or 'https://files.namba1.co' self._token = token self.handler = EventHandler( self, error_handler, user_follow_handler, user_unfollow_handler, message_new_handler, message_update_handler, chat_new_handler ) self._response = { 'code': 200, 'success': True, } @property def response(self): self._response['success'] = self._response['code'] == 200 return self._response @property def header(self): return { 'X-Namba-Auth-Token': self._token } def run(self, request): event = str(request['event']).replace('/', '_') try: update = getattr(self.handler, 'event_{}'.format(event))(request['data']) self.__call_handler(event, update) except Exception as e: self.__call_handler('error', {'event': event, 'error': repr(e)}) self._response['code'] = 520 def __call_handler(self, event, update): if hasattr(self.handler, event) and callable(getattr(self.handler, event)): getattr(self.handler, event)(self, update) def _parse_response(self, response_raw): response = response_raw.json() if 'success' not in response: raise ClientException('No valid response returned') if not response['success']: error_msg = 'Unknown error' if 'message' not in response else response['message'] error_msg += ' in "{}" request'.format(response_raw.url) raise ClientException(error_msg) return response def _get(self, url, params=()): return self._parse_response( requests.get(url, params=params, headers=self.header) ) def _post(self, url, params=()): return self._parse_response( requests.post(url, data=params, headers=self.header) ) def send_message(self, chat_id, content, content_type): params = { 'type': content_type, 'content': content, } url = '{}/chats/{}/write'.format(self._base_url, chat_id) response = self._post(url, params) return Message.from_dict(response['data']) def create_chat(self, user_id, name='', image=''): params = { 'name': name, 'image': image, 'members[]': user_id, } url = '{}/chats/create'.format(self._base_url) response = self._post(url, params) return Chat.from_dict(response['data']) def typing_start(self, chat_id): url = '{}/chats/{}/typing'.format(self._base_url, chat_id) return self._get(url) def typing_stop(self, chat_id): url = '{}/chats/{}/stoptyping'.format(self._base_url, chat_id) return self._get(url) def get_file(self, token): """Use this method to download file by token""" params = {'token': token} response = requests.get(self._base_file_url, params=params) try: message = response.json() # if no errors occured and valid json returned # then file was not found raise FileDownloadException(message['message']) except ValueError: return response.content def send_file(self, file_path): """Use this method to upload file""" if not exists(file_path): raise FileUploadException('File does not exist') response = None with open(file_path, 'rb') as content: files = {'file': content} response = requests.post(self._base_file_url, files=files) content = response.json() if not content['success'] or 'file' not in content: error_msg = content['message'] if 'message' in content else 'Unknown error' raise FileUploadException(error_msg) return content['file']
4,692
build/lib/jwringcentral/exportdata.py
MIKEJW08/Python-Package-and-Flask-Dashboard
0
2173500
import pandas as pd import sqlite3 def ExportDB(df): con = sqlite3.connect("/Users/jiayiwang08/Desktop/sqlite/test.db") df.to_sql('new_table', con, if_exists='replace', index=False)
194
datasets/bn/recreate-bn-transcript3.py
belambert/asr_tools
2
2173133
#!/usr/bin/python import sys import re import string import itertools sphinx_file=sys.argv[1] ldc_file=sys.argv[2] ldc_lines = [] sphinx_lines = [] ldc_tokens = [] sphinx_tokens = [] def noise_token_p(str): if len(str) > 1 and str[0] == '+' and str[1] == '+' and str[-1] == '+' and str[-2] == '+': return True if str[0] == '{' and str[-1] == '}': return True if str[0] == '[' and str[-1] == ']': return True if str[0] == '#' and str[-1] == '#': return True if str == "EH" or str == "UH" or str == "UM" or str == "((" or str == "))": return True def remove_alt_pron(str): if str[-1] == ')' and str[-3] == '(': str = str[:-3] return str # Read the LDC file for line in open(ldc_file).readlines(): if not line[0] == "<": line = line[:-1] line = line.upper() line = line.replace("_", " ") line = line.replace("-", " ") line = line.replace("{", " ") line = line.replace("}", " ") line = line.replace("[", " ") line = line.replace("]", " ") tokens = line.split() tokens = filter(lambda x: not noise_token_p(x), tokens) ldc_lines.append(line) ldc_tokens.extend(tokens) # Read the Sphinx file -- try #2 for line in open(sphinx_file).readlines(): m = re.match("(.*)\((.+)\)", line) trans = m.group(1) id = m.group(2) id_tokens = id.split("_") id_tokens[1] = int(id_tokens[1]) id_tokens[2] = int(id_tokens[2]) trans = trans.replace("<s> ", "") trans = trans.replace("<sil> ", "") trans = trans.replace(" </s>", "") trans = trans.upper() trans = trans.replace("-", " ") trans_tokens = trans.split() trans_tokens = filter(lambda x: not noise_token_p(x), trans_tokens) trans_tokens = map(remove_alt_pron, trans_tokens) sphinx_lines.append([id_tokens[0], id_tokens[1], id_tokens[2], id, trans_tokens]) sphinx_lines.sort(key=lambda x: x[1]) sphinx_lines.sort(key=lambda x: x[0]) prev_end = 0 prev_filename = None print "BEFORE: %d"%len(sphinx_lines) #for line in sphinx_lines: for i in range(len(sphinx_lines)): line = sphinx_lines[i] filename = line[0] begin = line[1] end = line[2] if begin + 4 < prev_end and filename == prev_filename: #print prev_end #print prev_filename #print line #sphinx_lines.remove(line) sphinx_lines[i] = None else: prev_end = end prev_filename = filename sphinx_lines = filter(lambda x: x != None, sphinx_lines) print "AFTER: %d"%len(sphinx_lines) sphinx_tokens = map(lambda x: x[4], sphinx_lines) print sphinx_tokens[0:10] sphinx_tokens = list(itertools.chain(*sphinx_tokens)) print "LDC tokens: %d"%len(ldc_tokens) print "Sphinx tokens: %d"%len(sphinx_tokens) print "LDC tokens: %s"%ldc_tokens[0:10] print "Sphinx tokens: %s"%sphinx_tokens[0:10] remove_char_set = ["@", "*", "\"", "!", "^", ",", ".", "%", "?", "+", "'"] def fuzzy_string_match(str1, str2): for char in remove_char_set: str1 = str1.replace(char, "") str2 = str2.replace(char, "") return str1 == str2 ldc_matches=[None]*len(sphinx_tokens) error_token = None ldc_index = 0 sphinx_index = 0 count_limit = 1597896 non_match_limit = 5000 sphinx_total = len(sphinx_tokens) while ldc_index < count_limit: sphinx_token = sphinx_tokens[sphinx_index] ldc_token = ldc_tokens[ldc_index] if fuzzy_string_match(ldc_token, sphinx_token): ldc_index += 1 sphinx_index += 1 ldc_matches[sphinx_index] = ldc_token print " MATCH: %25s == %25s (%d of %d)"%(sphinx_token, ldc_token, sphinx_index, sphinx_total) else: non_match_counter = 0 while not fuzzy_string_match(ldc_token, sphinx_token) and ldc_index < count_limit: print "NO MATCH: %25s != %25s (%d of %d)"%(sphinx_token, ldc_token, sphinx_index, sphinx_total) ldc_index += 1 ldc_token = ldc_tokens[ldc_index] non_match_counter += 1 if non_match_counter > non_match_limit: print "Stopping due to more than %d consecutive non-matches!"%non_match_limit quit() print " MATCH: %25s == %25s (%d of %d)"%(sphinx_token, ldc_token, sphinx_index, sphinx_total) sphinx_index += 1 ldc_index += 1 ldc_matches[sphinx_index] = ldc_token print "LDC index: %d"%ldc_index print "Sphinx index: %d"%sphinx_index
4,488
backend/histocat/api/check/controller.py
BodenmillerGroup/histocat-web
4
2172817
import dramatiq from fastapi import APIRouter, Depends from pydantic import EmailStr from histocat.api.security import get_admin from histocat.core.utils import send_test_email from .dto import MsgDto router = APIRouter() @router.post("/test-worker/", response_model=MsgDto, status_code=201) def test_worker(msg: MsgDto, user=Depends(get_admin)): """ Test worker """ broker = dramatiq.get_broker() message = dramatiq.Message( actor_name="test_worker", queue_name="default", args=(), kwargs={"word": msg.msg}, options={}, ) broker.enqueue(message) return {"msg": "Word received"} @router.post("/test-email/", response_model=MsgDto, status_code=201) def test_email( email_to: EmailStr, user=Depends(get_admin), ): """ Test emails """ send_test_email(email_to=email_to) return {"msg": "Test email submitted"}
913
send_email.py
brian-cummings/jira_grabber
0
2172910
from sparkpost import SparkPost import configparser import jira_model import argparse import logging import json logger = logging.getLogger("jiraLogger") #parser = argparse.ArgumentParser(__file__) #parser.add_argument('-u', dest='user', help='User id', type=str) #parser.add_argument('-n', dest='user_name', help='User name', type=str) #parser.add_argument('-e', dest='email', help='User email', type=str) #parser.add_argument('-d', dest='days', help='Days to query', type=int) #args = parser.parse_args() sp_config = configparser.ConfigParser() sp_config.read('config.ini') sp_apikey = sp_config['sparkpost']['key'] sp_email = sp_config['sparkpost']['email'] sp_noreply = sp_config['sparkpost']['noreply'] sp_base_uri = sp_config['sparkpost']['base_uri'] sp = SparkPost(sp_apikey, base_uri=sp_base_uri) def send_recap_email(user,username,email,days=None): table = "" results = jira_model.return_worklogs(user, days) email_body = '<p>Hello ' + username + ',</p>' if days is None: results_intro_text = '<p>This is your first email! Here are your results since you started tracking:</p>' subject_text = 'Your First Worklog Summary' else: results_intro_text = '<p>Here are your results for the past ' + str(days) + ' days:</p>' subject_text = 'Your ' + str(days) + ' day Jira Worklog' result_count = sum(1 for i in results) if result_count > 1: for date, amount in results: amount_str = ('%f' % amount).rstrip('0').rstrip('.') final_string = '<tr><td align="center" valign="top">' + date.strftime("%B %d, %Y") \ + '</td><td align="center" valign="top">' + amount_str +'</td></tr>' table = table + final_string email_body = email_body + results_intro_text \ + '<table border="1" cellpadding="0" cellspacing="0" width="50%" >' \ '<tr> <th bgcolor="#D3D3D3">Date</th><th bgcolor="#D3D3D3">Hours</th>' \ + table + '</table>' else: email_body = email_body + '<p>You have no worklogs for the past ' + str(days) + ' days.</p>' response = sp.transmissions.send( recipients=[ { 'address': { 'email': email, 'name': username }, "metadata" : { "binding" : "dedicated1" } }, ], html=email_body, from_email=sp_email, subject=subject_text, track_opens=True, track_clicks=True, reply_to=sp_noreply ) accepted_recipients = response['total_accepted_recipients'] if accepted_recipients >= 1: jira_model.update_user_emailedate(user) #if __name__ == "__main__": # send_recap_email(args.user, args.user_name, args.email, args.days)
2,845
drawer/src/dnn.py
franneck94/Digits-Recognition-Tensorflow
16
2172103
import os import numpy as np from tensorflow.keras.datasets import mnist from tensorflow.keras.layers import Activation from tensorflow.keras.layers import Dense from tensorflow.keras.models import Sequential from tensorflow.keras.optimizers import Adam from tensorflow.keras.utils import to_categorical FILE_PATH = os.path.abspath(__file__) PROJECT_PATH = os.path.dirname(os.path.dirname(FILE_PATH)) MODEL_PATH = os.path.join(PROJECT_PATH, "ressources", "weights", "dnn_mnist.h5") def create_model() -> Sequential: # Model params num_features = 784 num_classes = 10 learning_rate = 0.001 optimizer = Adam(learning_rate=learning_rate) model = Sequential() model.add(Dense(units=500, input_shape=(num_features,))) model.add(Activation("relu")) model.add(Dense(units=300)) model.add(Activation("relu")) model.add(Dense(units=100)) model.add(Activation("relu")) model.add(Dense(units=num_classes)) model.add(Activation("softmax")) model.compile( loss="categorical_crossentropy", optimizer=optimizer, metrics=["accuracy"] ) return model def nn_predict(model: Sequential, image: np.ndarray = None) -> int: if image is not None and model is not None: pred = model.predict(image.reshape(1, 784))[0] pred = np.argmax(pred, axis=0) return pred else: return -1 def nn_train() -> None: # Dataset (x_train, y_train), (x_test, y_test) = mnist.load_data() # Cast to np.float32 x_train = x_train.astype(np.float32) y_train = y_train.astype(np.float32) x_test = x_test.astype(np.float32) y_test = y_test.astype(np.float32) # Dataset variables train_size = x_train.shape[0] test_size = x_test.shape[0] num_features = 784 num_classes = 10 # Compute the categorical classes y_train = to_categorical(y_train, num_classes=num_classes) y_test = to_categorical(y_test, num_classes=num_classes) # Reshape the input data x_train = x_train.reshape(train_size, num_features) x_test = x_test.reshape(test_size, num_features) epochs = 10 batch_size = 256 model = create_model() model.fit( x=x_train, y=y_train, epochs=epochs, batch_size=batch_size, validation_data=(x_test, y_test), ) model.save_weights(MODEL_PATH) if __name__ == "__main__": nn_train()
2,418
tests/unittesting/tasks/memory/test_subscribers.py
shepilov-vladislav/aiotasks
462
2172518
import time import uuid import asyncio import msgpack from aiotasks import build_manager def test_memory_subscribers_oks(event_loop): manager = build_manager(dsn="memory://", loop=event_loop) globals()["test_memory_subscribers_oks_finished"] = False @manager.subscribe("hello") async def task_test_memory_subscribers_oks(topic, data): if topic == "hello" and data == "world": globals()["test_memory_subscribers_oks_finished"] = True async def run(): manager.run() await manager.publish("hello", "world") await manager.wait(timeout=0.2, wait_timeout=0.1) event_loop.run_until_complete(run()) manager.stop() assert globals()["test_memory_subscribers_oks_finished"] is True del globals()["test_memory_subscribers_oks_finished"] def test_memory_subscribers_no_topics(event_loop): manager = build_manager(dsn="memory://", loop=event_loop) async def run(): manager.run() await manager.publish("hello", "world") await manager.wait(timeout=0.2, exit_on_finish=True, wait_timeout=0.2) event_loop.run_until_complete(run()) manager.stop() assert len(manager.topics_subscribers) == 0 def test_memory_subscribers_empty_topics(event_loop): import logging logger = logging.getLogger("aiotasks") class CustomLogger(logging.StreamHandler): def __init__(self): super(CustomLogger, self).__init__() self.content = [] def emit(self, record): self.content.append(record.msg) custom = CustomLogger() logger.addHandler(custom) manager = build_manager(dsn="memory://", loop=event_loop) @manager.subscribe() async def task_test_memory_subscribers_oks(topic, data): if topic == "hello" and data == "world": globals()["test_memory_subscribers_oks_finished"] = True async def run(): manager.run() await manager.publish("hello", "world") await manager.wait(timeout=0.2, exit_on_finish=True, wait_timeout=0.2) event_loop.run_until_complete(run()) manager.stop() assert len(manager.topics_subscribers) == 0 assert "Empty topic fount in function 'task_test_memory_subscribers_oks'. Skipping it." in custom.content def test_memory_subscribers_duplicated_topics(event_loop): manager = build_manager(dsn="memory://", loop=event_loop) @manager.subscribe("hello") async def task_test_memory_subscribers_oks(topic, data): pass @manager.subscribe("hello") async def task_test_memory_subscribers_oks_2(topic, data): pass async def run(): manager.run() await manager.publish("hello", "world") await manager.wait(timeout=0.2, exit_on_finish=True, wait_timeout=0.1) event_loop.run_until_complete(run()) manager.stop() assert len(manager.topics_subscribers) == 1 def test_memory_subscribers_timeout_raises(event_loop): manager = build_manager(dsn="memory://", loop=event_loop) globals()["test_memory_subscribers_timeout_raises_finished_tasks"] = False @manager.subscribe("hello") async def task_test_memory_subscribers_oks(topic, data): if topic == "hello": await asyncio.sleep(data, loop=event_loop) globals()["test_memory_subscribers_timeout_raises_finished_tasks"] = True async def run(): manager.run() await manager.publish("hello", 5) await manager.wait(timeout=0.5, exit_on_finish=True, wait_timeout=0.1) event_loop.run_until_complete(run()) manager.stop() assert globals()["test_memory_subscribers_timeout_raises_finished_tasks"] is False del globals()["test_memory_subscribers_timeout_raises_finished_tasks"]
3,771
models/develset/src/utils/test_path.py
phdyang007/pytorch-CycleGAN-and-pix2pix
1
2171138
''' Author: <NAME> @ CUHK-CSE Homepage: https://dekura.github.io/ Date: 2021-01-24 16:24:55 LastEditTime: 2021-01-24 19:34:03 Contact: <EMAIL> Description: test the pathlib ''' import shutil from pathlib import Path # bimage_path = Path('/home/guojin/projects/develset_opc/levelset_net/binary_images') # d_path = Path('/home/guojin/data/datasets/iccad_2013/targets') # d_path = Path('/home/guojin/data/datasets/iccad_2013/ls_params') # for test_dir in sorted(bimage_path.iterdir()): # print(test_dir) # for png in test_dir.glob('*.pt'): # # print(png) # # png_path = test_dir / png # out_path = d_path / png.name # shutil.copy(str(png), str(out_path)) t_path = Path('/home/guojin/data/datasets/iccad_2013/targets') for t in sorted(t_path.glob('*.png')): print(Path(t.stem).stem)
831
simconnect/cli.py
patricksurry/pysimconnect
3
2173168
import typer from . import _typerpatch import json from typing import List, Optional from textwrap import fill from enum import Enum from lunr.index import Index from simconnect import SimConnect import os import re app = typer.Typer() thisdir = os.path.dirname(__file__) with open(os.path.join(thisdir, 'scvars.json')) as f: scvars = json.load(f) for k in ['EVENTS', 'VARIABLES', 'UNITS']: for d in scvars[k].values(): d['name_'] = d['name' if k != 'UNITS' else 'name_std'].replace(' ', '_') class MetadataKind(str, Enum): variable = 'variable' event = 'event' unit = 'unit' def floatfmt(v, width=12, precision=3): s = f"{v:{width}.{precision}f}".rstrip('0').rstrip('.') s += ' ' * (width - len(s)) return s def labelfmt(s, width=2*12): label = s if len(s) < width else s[:width-4] + '...' return f"{label:{width}s}" def matchcase(s: str, prefix: str) -> Optional[str]: if not prefix: return s elif not s.upper().startswith(prefix.upper()): return None elif len(prefix) == len(s): return prefix else: tail = s[len(prefix):] return prefix + (tail.upper() if prefix[-1].isupper() else tail.lower()) def scoped_autocomplete(kind: str, max_results=10): def _complete(incomplete: str): return sorted( list(filter(None, (matchcase(d['name_'], incomplete) for d in scvars[kind].values()))), key=lambda s: (len(s), s) )[:max_results] return _complete simvardef = typer.Argument(..., autocompletion=scoped_autocomplete('VARIABLES')) eventdef = typer.Argument(..., autocompletion=scoped_autocomplete('EVENTS')) unitsdef = typer.Option(None, autocompletion=scoped_autocomplete('UNITS')) def canonicalvars(simvars: List[str]) -> List[str]: # appear to be case insenstive but ' ' vs '_' is important return [s.upper().replace('_', ' ') for s in simvars] @app.command() def get(simvars: List[str] = simvardef, units: Optional[str] = unitsdef): simvars = canonicalvars(simvars) unitdesc = f" ({units})" if units else '' for s in simvars: with SimConnect(name='cli') as sc: v = sc.get_simdatum(s.replace('_,', ' '), units) typer.echo(f"{s}{unitdesc} = {v}") @app.command() def watch(simvars: List[str] = simvardef, units: Optional[str] = unitsdef, interval: Optional[int] = 1): simvars = canonicalvars(simvars) typer.echo(f"Watching {', '.join(simvars)} every {interval} seconds") with SimConnect(name='cli') as sc: dd = sc.subscribe_simdata( [dict(name=sv, units=units) for sv in simvars], interval=interval ) latest = 0 headings = None while True: # consume incoming messages, waiting up to a second sc.receive(timeout_seconds=1) if not headings: # show staggered header across two lines headings = list(dd.simdata.keys()) # even cols typer.echo(''.join(labelfmt(headings[i]) for i in range(0, len(headings), 2))) # odd cols typer.echo(' '*12 + ''.join(labelfmt(headings[i]) for i in range(1, len(headings), 2))) changed = list(dd.simdata.changedsince(latest).keys()) latest = dd.simdata.latest() values = [ typer.style( floatfmt(dd.simdata[k]), fg=typer.colors.BLUE if k in changed else typer.colors.WHITE ) for k in headings ] typer.echo(''.join(values)) @app.command() def set(simvar: str = simvardef, value: float = typer.Argument(...), units: Optional[str] = unitsdef): simvar = canonicalvars([simvar])[0] typer.echo(f"Setting {simvar} = {value}" + (f" ({units})" if units else '')) with SimConnect(name='cli') as sc: sc.set_simdatum(simvar, value, units) @app.command() def send(event: str = eventdef, value: Optional[float] = None): event = event.upper() typer.echo(f"Sending {event}({value})") with SimConnect(name='cli') as sc: sc.send_event(event, value or 0) @app.command() def search(name: List[str], kind: Optional[MetadataKind] = None, max_results: int = 10, brief: bool = False): q = ' '.join(name) if kind: q += f" +kind:{kind.name.upper()}S" with open(os.path.join(thisdir, 'scvars_idx.json')) as f: scvarsidx = Index.load(json.load(f)) styles = dict( # in mac terminal some double-width emoji need a trailing space to display correctly # but this seems fine on windows terminal VARIABLES=dict(color=typer.colors.BLUE, symbol="🧭"), EVENTS=dict(color=typer.colors.GREEN, symbol="⚙️"), # or maybe? 🔔 UNITS=dict(color=typer.colors.RED, symbol="📐"), DIMENSIONS=dict(color=typer.colors.MAGENTA, symbol="📏"), ) indent = ' ' * 4 refs = scvarsidx.search(q) if not refs and not q.endswith('*'): # Try implicit wildcard if not results refs = scvarsidx.search(q.rstrip() + '*') docs = [] for r in refs[:max_results]: k, name = r['ref'].split('_', 1) docs.append(dict(scvars[k][name], kind=k)) typer.echo( 'Showing ' + typer.style(f"{len(docs)}/{len(refs)}", fg=typer.colors.BLUE) + ' results' ) if not docs: typer.echo(fill(""" Perhaps try wildcard 'alti*', fuzzy match 'alti~2' or advanced options at https://lunr.readthedocs.io/en/latest/usage.html """.strip())) else: if len(docs) < len(refs): typer.echo('Increase --max-results for more') typer.echo('') for d in docs: name = d['name_std'] if ',' in d['name'] else d['name'] style = styles[d['kind']] label = typer.style(f"{name}", fg=style['color'], bold=True) typer.echo(style['symbol'] + ' ' + label + f"{' ✏️' if d.get('settable') else ''}") if brief: continue desc = d.get('description') if desc: s = re.sub(r'\s*\n\s*', ' ', desc).strip() typer.echo(fill(s, initial_indent=indent, subsequent_indent=indent)) loc = '; '.join(filter(None, [d['page'], d['section'] or None])).lower() typer.echo(f"{indent}Category: {loc}") if d.get('units'): lines = [s for s in d['units'].split('\n') if s.rstrip()] lines[0] = f"{indent}Default units: {lines[0]} [{d['dimensions']}]" typer.echo('\n'.join(lines)) if __name__ == "__main__": app()
6,659
src/sf_network_discovery_initialize.py
SPSCommerce/carve
1
2173054
# import pylab as plt import lambdavars from aws import * def lambda_handler(event, context): ''' discovers AWS accounts/regions in use in an Org and returns the results as a dict ''' # need to purge S3 discovery folder before starting new discovery aws_purge_s3_path('discovery/') # get list of accounts/regions in use in the Org accounts = aws_discover_org_accounts() regions = aws_all_regions() discovery_targets = [] for account_id, account_name in accounts.items(): discovery_targets.append({ "account_id": account_id, "account_name": account_name }) print(f"discovered {len(accounts)} accounts") # return discovery_targets result = {'accounts': discovery_targets, 'regions': regions} return result if __name__ == "__main__": event = {} result = lambda_handler(event, None) print(json.dumps(result))
926
lib/dga_models/controller.py
sibeiyang/sgmn
130
2172780
import torch import torch.nn as nn from torch.nn.parameter import Parameter import math import torch.nn.functional as F class Controller(nn.Module): def __init__(self, dim_word_output, T_ctrl): super(Controller, self).__init__() ctrl_dim = dim_word_output # define c_0 and reset_parameters self.c_init = Parameter(torch.FloatTensor(1, ctrl_dim)) self.reset_parameters() # define fc operators self.encode_que_list = nn.ModuleList([nn.Sequential(nn.Linear(ctrl_dim, ctrl_dim), nn.Tanh(), nn.Linear(ctrl_dim, ctrl_dim))]) for i in range(T_ctrl - 1): self.encode_que_list.append(nn.Sequential(nn.Linear(ctrl_dim, ctrl_dim), nn.Tanh(), nn.Linear(ctrl_dim, ctrl_dim))) self.fc1 = nn.Linear(2*ctrl_dim, ctrl_dim) self.fc2 = nn.Linear(ctrl_dim, 1) self.fc3 = nn.Linear(2*ctrl_dim, ctrl_dim) self.T_ctrl = T_ctrl def reset_parameters(self): stdv = 1.0 / math.sqrt(self.c_init.size(1)) self.c_init.data.uniform_(-stdv, stdv) def forward(self, lstm_seq, q_encoding, attn_mask): c_prev = self.c_init.expand(q_encoding.size(0), self.c_init.size(1)) words_weight_list = [] control_vector_list = [] for t in range(self.T_ctrl): q_i = self.encode_que_list[t](q_encoding) q_i_c = torch.cat([q_i, c_prev], dim=1) cq_i = self.fc1(q_i_c) cq_i_reshape = cq_i.unsqueeze(1).expand(-1, lstm_seq.size(1), -1) interactions = cq_i_reshape * lstm_seq interactions = torch.cat([interactions, lstm_seq], dim=2) interactions = F.tanh(self.fc3(interactions)) logits = self.fc2(interactions).squeeze(2) mask = (1.0 - attn_mask.float()) * (-1e30) logits = logits + mask logits = F.softmax(logits, dim=1) norm_cv_i = logits * attn_mask.float() norm_cv_i_sum = torch.sum(norm_cv_i, dim=1).unsqueeze(1).expand(logits.size(0), logits.size(1)) norm_cv_i[norm_cv_i_sum != 0] = norm_cv_i[norm_cv_i_sum != 0] / norm_cv_i_sum[norm_cv_i_sum != 0] words_weight_list.append(norm_cv_i) c_i = torch.sum( norm_cv_i.unsqueeze(2).expand(norm_cv_i.size(0), norm_cv_i.size(1), lstm_seq.size(2)) * lstm_seq, dim=1) c_prev = c_i control_vector_list.append(c_prev) return words_weight_list, control_vector_list
2,707
main4.py
AjsonZ/E04a-Sprites
0
2172807
#!/usr/bin/env python3 import utils, os, random, time, open_color, arcade utils.check_version((3,7)) SCREEN_WIDTH = 800 SCREEN_HEIGHT = 600 SCREEN_TITLE = "Sprites Example" class MyGame(arcade.Window): def __init__(self): super().__init__(SCREEN_WIDTH, SCREEN_HEIGHT, SCREEN_TITLE) file_path = os.path.dirname(os.path.abspath(__file__)) os.chdir(file_path) arcade.set_background_color(open_color.white) self.car_list = arcade.SpriteList() def setup(self): cars = ['bus','kart','police','buggy','ambulance','bus_school','hotdog','scooter','station','cycle'] for i in range(20): car = random.choice(cars) for i in range(10): x = random.randint(0,i) y = random.randint(0,600) self.car_sprite = arcade.Sprite("Cars/{car}.png".format(car=car), 2) self.car_sprite.center_x = x self.car_sprite.center_y = y self.car_list.append(self.car_sprite) def on_draw(self): arcade.start_render() self.car_list.draw() pass def update(self, delta_time): pass def on_mouse_motion(self, x, y, dx, dy): for i in self.car_list: self.car_sprite.center_x = x self.car_sprite.center_y = y pass def main(): """ Main method """ window = MyGame() window.setup() arcade.run() if __name__ == "__main__": main()
1,501
Probabillity/code.py
swantikag/ga-learner-dsb-repo
0
2172661
# -------------- import numpy as np import pandas as pd import matplotlib.pyplot as plt # code starts here df = pd.read_csv(path) total = len(df) p_a = len(df[df["fico"]>700])/total p_b = len(df[df["purpose"]=="debt_consolidation"])/total df1 = df[df["purpose"]=="debt_consolidation"] p_a_and_b = len(df[(df["fico"]>700) & (df["purpose"]=="debt_consolidation")])/total p_a_b = p_a_and_b/p_a p_b_a = p_a_and_b/p_b result = p_b_a == p_a print(result) # code ends here # -------------- # code starts here total = len(df) new_df = df[df["paid.back.loan"]=="Yes"] prob_lp = len(new_df)/total df2 = df[df["credit.policy"]=="Yes"] prob_cs = len(df2)/total df_lp_cs = df[(df["paid.back.loan"]=="Yes") & (df["credit.policy"]=="Yes")] prob_lp_a_cs = len(df_lp_cs)/total # prob_pd_cs = prob_lp_a_cs/prob_cs prob_pd_cs = new_df[new_df['credit.policy'] == 'Yes'].shape[0] / new_df.shape[0] bayes = (prob_pd_cs * prob_lp) / prob_cs print(bayes) # code ends here # -------------- # code starts here df_purpose = df["purpose"].value_counts() df_purpose.plot(kind="bar") df1 = df[df["paid.back.loan"]=="No"] df1["purpose"].value_counts().plot(kind="bar") # code ends here # -------------- # code starts here inst_median = df["installment"].median() inst_mean = df.installment.mean() df.installment.hist() df["log.annual.inc"].hist() # code ends here
1,342
experiments/interferometer/coherence_length.py
jackerschott/AP21
0
2171343
import matplotlib.pyplot as plt import numpy as np from numpy import pi, sqrt, exp import os import scipy.constants as cs from scipy.optimize import curve_fit from scipy.signal import find_peaks_cwt import datproc.print as dpr import datproc.plot as dpl ## General output = __name__ == '__main__' def gauss(t, A, mu, sigma): return A * exp(-0.5 * (t - mu)**2 / sigma**2) / sqrt(2 * pi * sigma**2) ## Data lda = 532.0 * cs.nano d_lda = 1.0 * cs.nano v_mov = 0.1 * cs.milli data = np.genfromtxt('data/interferometer/signal.csv', delimiter=',', skip_header=18) t = data[:,3] U = data[:,4] ## Evaluation t_range = [-0.035, 0.065] if output: plt.subplots(num=2) plt.xlabel(r'$t$ / s') plt.ylabel(r'$U$ / V') plt.xlim(*t_range) plt.plot(t, U) i_U_max = find_peaks_cwt(U, range(1,30), noise_perc=20) i_U_max = i_U_max[U[i_U_max] > 0.0] i_U_max = i_U_max[t[i_U_max] > t_range[0]] i_U_max = i_U_max[t[i_U_max] < t_range[1]] popt, pcov = curve_fit(gauss, t[i_U_max], U[i_U_max], p0=(2.5e-3, 0.015, 0.015)) d_popt = sqrt(np.diag(pcov)) if output: x_fit = dpl.x_fit_like(t[i_U_max]) y_fit = gauss(x_fit, *popt) data_pts, *_ = plt.plot(t[i_U_max], U[i_U_max], marker='o', ls='None') plt.plot(x_fit, y_fit, color=data_pts.get_color()) if output: print(dpr.val(popt[2], d_popt[2], name='Δt', unit='s')) delta_s = v_mov * popt[2] d_delta_s = v_mov * d_popt[2] if output: print(dpr.val(delta_s, d_delta_s, name='Δs', unit='m')) L = 2 * pi * delta_s d_L = L * d_delta_s / delta_s if output: print(dpr.val(L, d_L, name='L', unit='m')) if output: fig_folder_path = 'figures/interferometer' if not os.path.exists(fig_folder_path): os.makedirs(fig_folder_path) for i in plt.get_fignums(): plt.figure(i).savefig(os.path.join(fig_folder_path, 'fig' + str(i) + '.pgf'), bbox_inches='tight', pad_inches=0.0) plt.figure(i).savefig(os.path.join(fig_folder_path, 'fig' + str(i) + '.pdf')) plt.show()
1,932
nmf/datasets/lfw_people.py
nssuperx/irl334-research-srcs
0
2172555
import numpy as np import matplotlib.pyplot as plt from sklearn.datasets import fetch_lfw_people # lfw_people = fetch_lfw_people(data_home='./face', slice_=(slice(70, 195), slice(78, 172))) lfw_people = fetch_lfw_people(data_home='./face', slice_=(slice(90, 170), slice(85, 165)), resize=0.2375) # 19 x 19 px print(lfw_people.images.shape) images_num = lfw_people.images.shape[0] img_h = lfw_people.images[0].shape[0] img_w = lfw_people.images[0].shape[1] out_images = lfw_people.images.reshape(images_num, img_h * img_w).T np.save('./face_images', out_images) print(out_images.shape) img = out_images.T[0].reshape(img_h, img_w) print(img.shape) plt.imshow(img) plt.show() # img = lfw_people.images[2] # plt.imshow(img) # plt.show()
741
pasa/dict/idiom/case.py
sonoisa/pasa
5
2171680
# -*- coding: utf-8 -*- from pasa.utils import get_or_else class Case(object): def __init__(self, yaml): self.base = get_or_else(yaml, 'base', "") self.read = get_or_else(yaml, 'read', "") self.pos = get_or_else(yaml, 'pos', "") def __repr__(self): return "{{base={}, read={}, pos={}}}".format(self.base, self.read, self.pos)
370
cerenkov3_data/edge_GTEx.py
ramseylab/cerenkov3
0
2173453
import os from functools import reduce import pandas as pd from util_path import get_path from util_ensembl import map_Ensembl_IDs_to_Entrez def read_snp_df(fn): return pd.read_csv(fn, header=None, sep="\t", usecols=[3], names=["rs_id"]) def list_files(directory, fn_suffix): """ list all files in a certain directory ending with a suffix """ return [f for f in os.listdir(directory) if f.endswith(fn_suffix)] def read_eqtl_df(fn): eqtl_df = pd.read_csv(fn, sep="\t", usecols=["gene_id", "gene_name", "rs_id_dbSNP147_GRCh37p13", "pval_perm", "pval_beta"]) eqtl_df = eqtl_df.rename({"gene_id": "gene_ensembl_id", "rs_id_dbSNP147_GRCh37p13": "rs_id"}, axis=1) return eqtl_df def gen_snp_egene_map(snp_df, eqtl_dir, eqtl_suffix): eqtl_fn_list = list_files(eqtl_dir, eqtl_suffix) for eqtl_fn in eqtl_fn_list: eqtl_path = os.path.join(eqtl_dir, eqtl_fn) eqtl_df = read_eqtl_df(eqtl_path) snp_egene_map = snp_df.merge(eqtl_df, on="rs_id", how="inner") eqtl_source = eqtl_fn.split(eqtl_suffix)[0] snp_egene_map = snp_egene_map.assign(eqtl_source = eqtl_source) yield snp_egene_map if __name__ == "__main__": snp_dir = get_path("vertex/SNP") snp_fn = "osu19_SNP.bed" snp_df = read_snp_df(os.path.join(snp_dir, snp_fn)) res_dir = get_path("resource/GTEx") eqtl_dir = os.path.join(res_dir, "GTEx_Analysis_v7_eQTL") eqtl_suffix = ".v7.egenes.txt" snp_egene_map = pd.concat(gen_snp_egene_map(snp_df, eqtl_dir, eqtl_suffix), ignore_index=True) # Get rid of version numbers snp_egene_map.loc[:, "gene_ensembl_id"] = snp_egene_map.loc[:, "gene_ensembl_id"].apply(lambda x: x.split(".")[0]) snp_egene_map.to_csv(os.path.join(res_dir, "p1_SNP_x_GTEx.tsv"), sep="\t", index=False) snp_egene_el = snp_egene_map.loc[:, ["rs_id", "gene_ensembl_id"]].drop_duplicates() snp_egene_el = map_Ensembl_IDs_to_Entrez(snp_egene_el, ensembl_colname="gene_ensembl_id", new_colname="gene_id", keep_unmapped=True) snp_egene_el.sort_values(by="gene_id", inplace=True) output_dir = get_path("edge/snp-gene") snp_egene_el.to_csv(os.path.join(output_dir, "SNP_x_GTEx.edgelist"), sep="\t", index=False, header=False)
2,308
scripts/element_search.py
mou3adb/spread_the_particle
4
2172418
import time, datetime import numpy as np import matplotlib.pyplot as pp from interpolation_linear import psi1, psi2, psi3 #============================================================================== def is_in_element(position, element, allNodes): """ This function tests the inclusion of a point in an element. It calculates the form functions. If one if negative, it means that the point is outside. NOTE: We substract 1 from element.nodes since node ids start from 1, like element ids. example of allNodes array: allNodes = np.array(list(zip(flow.nodes_X[0],flow.nodes_Y[0]))) """ nodes_coords = allNodes[element.nodes - 1] p1, p2, p3 = nodes_coords[[0, 1, 2]] N1 = psi1(position, p1, p2, p3) N2 = psi2(position, p1, p2, p3) N3 = psi3(position, p1, p2, p3) # It suffices that one interpolation function takes a negative value to # deduce that the point is not inside the element. if (N1 >= 0) and (N2 >= 0) and (N3 >= 0): return True else: return False def find_element(position, elements, allNodes): for element in elements: if is_in_element(position, element, allNodes): return element def find_opposite_neighbor(node, element, elements): """ This function returns the neighbor of 'element' that doesn't contain the node 'node'. NOTE: Valid only for triangular elements. """ neighbors = elements[element.neighbors - 1] for neighbor in neighbors: if node not in neighbor.nodes: return neighbor def find_element_partrack(position, current_element, elements, allNodes): """ This function implements the particle tracer algorithm of Lohner and Ambrosiano (1990) """ nodes_coords = allNodes[current_element.nodes - 1] p1, p2, p3 = nodes_coords[[0, 1, 2]] N1 = psi1(position, p1, p2, p3) N2 = psi2(position, p1, p2, p3) N3 = psi3(position, p1, p2, p3) if (N1 >= 0) and (N2 >= 0) and (N3 >= 0): # In this case, the particle is still inside 'current_element'. return current_element else: # e.g. # If N3 has the most negative value, then index_smallest = 2. # Thus point_id_smallest (>= 0) is the farthest node from 'position'. index_smallest = np.argmin([N1, N2, N3]) point_id_smallest = current_element.nodes[index_smallest] next_element = find_opposite_neighbor(point_id_smallest, current_element, elements) return find_element_partrack(position, next_element, elements, allNodes) def find_neighbors_aux(element, elements): """ This function finds the neighbors of 'element'. """ nodes = element.nodes[[0, 1, 2]] for e in elements: temp_nodes = e.nodes[[0, 1, 2]] # check = [node1_in_or_out?, node2_in_or_out?, node3_in_or_out?] check = [] for node in nodes: if node in temp_nodes: check.append(True) else: check.append(False) # When an edge is shared by two elements, they have two nodes in # common. if check.count(True) == 2: element.neighbors = np.concatenate([element.neighbors, [e.id]]) def find_neighbors(elements): # This function may take a lot of time, since it explores the whole domain, # and checks element by element. t1 = time.time() print('Searching neighbors of every element in the domain.') for e in elements: find_neighbors_aux(e, elements) cpu_time = time.time() - t1 print('Done!') print('CPU_TIME = %.2f SECONDS = %s (HH:MM:SS)' \ % (cpu_time, datetime.timedelta(seconds=cpu_time))) #============================================================================== # Section relating to element drawing def draw_element(element, allNodes): nodes_coords = allNodes[element.nodes - 1] print(nodes_coords) plot_params = {'linestyle':'-', 'color' :'olive'} pp.plot(nodes_coords[[0,1,2,0],0], nodes_coords[[0,1,2,0],1], **plot_params) def draw_elements(elements, allNodes, color): for element in elements: draw_element(element, allNodes, color)
4,302
masque/playground/pwa.py
dfdx/masque
3
2173250
from operator import itemgetter import itertools as it import random import matplotlib.delaunay as triang from masque.datasets import CKDataset from masque.utils import implot, ij2xy import pwa def get_random_faces(datadir='data/CK', n_samples=4): dataset = CKDataset(datadir) data = [series for series in dataset.data if series.label != -1] random_idxs = random.sample(range(len(data)), n_samples) random_series = itemgetter(*random_idxs)(data) images = [series.images[-1] for series in random_series] shapes = [series.landmarks[-1] for series in random_series] mean_shape = data[10].landmarks[0] return images, shapes, mean_shape def pwa_demo(datadir='data/CK'): images, shapes, mean_shape = get_random_faces(datadir) transformed = [pwa.warp(im, shape, mean_shape) for im, shape in zip(images, shapes)] # implot(zip(images, transformed)) # interlieve, not zip! implot(images + transformed)
971
tests/test_pdf.py
MartinThoma/edapy
17
2173497
# Third party import pkg_resources # First party import edapy.pdf def test_make_path_absolute(): path = "examples/book.pdf" # always use slash filepath = pkg_resources.resource_filename("edapy", path) edapy.pdf.get_pdf_info(filepath)
250
lib/python/qmk/tests/test_qmk_path.py
jskelcy/qmk_toolbox
0
2169688
import os import qmk.path def test_keymap_onekey_pytest(): path = qmk.path.keymap('handwired/onekey/pytest') assert path == 'keyboards/handwired/onekey/keymaps' def test_normpath(): path = qmk.path.normpath('lib/python') assert path == os.path.join(os.environ['ORIG_CWD'], 'lib/python')
308
swiper/user/apis.py
Han-spros/swiper
0
2173271
from common import errors from common.utils import is_phone_num from libs.http import render_json from user import logics def verify_phone(request): """ 验证手机号码 生成验证码 保存验证码 发送 """ phone_num = request.POST.get('phone_num') if is_phone_num(phone_num): # 号码格式正确 if logics.send_verify_code(phone_num): # 验证码生成发送 return render_json() else: return render_json(code = errors.SMS_SEND_ERR) # 返回错误码 else: return render_json(code=errors.PHONE_NUM_ERR) # 返回错误码
574
piprot/piprot.py
emichal/piprot
0
2172539
import asyncio import logging from dataclasses import astuple from datetime import timedelta, date from itertools import chain from piprot.models import Requirement, PackageInfo, Messages from piprot.utils.pypi import PypiPackageInfoDownloader from piprot.utils.requirements_parser import RequirementsParser from typing import Optional, Tuple, List logger: logging.Logger = logging.getLogger(__name__) loop: asyncio.AbstractEventLoop = asyncio.get_event_loop() class Piprot: def __init__(self, req_files: List[str], delay_in_days: int = 5) -> None: self.pypi = PypiPackageInfoDownloader() self.delay_timedelta = timedelta(days=delay_in_days) self.requirements = list( chain.from_iterable([RequirementsParser(req_file).parse() for req_file in req_files]) ) def main(self) -> int: tasks = [self._handle_single_requirement(requirement) for requirement in self.requirements] has_outdated_packages = loop.run_until_complete(asyncio.gather(*tasks)) if any(has_outdated_packages): return 1 return 0 async def _handle_single_requirement(self, requirement: Requirement) -> bool: current_version, current_release_date = await self.pypi.version_and_release_date( requirement ) latest_version, latest_release_date = await self.pypi.version_and_release_date( Requirement(requirement.package) ) package_info = PackageInfo( name=requirement.package, latest_version=latest_version, latest_release_date=latest_release_date, current_version=current_version, current_release_date=current_release_date, ) is_outdated, message = self.__handle_single_requirement(package_info, requirement) logger.error(message) return is_outdated def __handle_single_requirement( self, package: PackageInfo, requirement: Requirement ) -> Tuple[bool, str]: package_name, latest_version, _, current_version, _ = astuple(package) if requirement.ignore: message = Messages.IGNORED.format(package=requirement.package) return False, message if not all([latest_version, current_version]): message = Messages.CANNOT_FETCH.format( package=package_name, version=requirement.version ) return False, message if latest_version > current_version: return self._is_rotten(package) message = Messages.NOT_ROTTEN.format( package=requirement.package, version=str(current_version) ) return False, message def _is_rotten(self, package: PackageInfo) -> Tuple[bool, str]: if not package.latest_version.is_direct_successor(package.current_version): return self._is_not_direct_successor_rotten(package) return self._is_direct_successor_rotten(package) def _is_direct_successor_rotten(self, package: PackageInfo) -> Tuple[bool, str]: rotten_time = self.calculate_rotten_time(package.latest_release_date) if rotten_time > self.delay_timedelta: message = Messages.ROTTEN_DIRECT_SUCCESSOR.format( package=package.name, current_version=str(package.current_version), rotten_days=rotten_time.days, latest_version=str(package.latest_version), ) return True, message message = Messages.NOT_ROTTEN.format( package=package.name, version=str(package.current_version) ) return False, message def _is_not_direct_successor_rotten(self, package: PackageInfo) -> Tuple[bool, str]: if not all([package.latest_release_date, package.current_release_date]): # since we cannot calculate if it's actually rotten, we assume it is message = Messages.NO_DELAY_INFO.format( package=package.name, current_version=str(package.current_version), latest_version=str(package.latest_version), ) return True, message rotten_time = self.calculate_rotten_time( package.latest_release_date, package.current_release_date ) if rotten_time > self.delay_timedelta: timedelta_since_last_release = self.calculate_rotten_time(package.latest_release_date) message = Messages.ROTTEN_NOT_DIRECT_SUCCESSOR.format( package=package.name, current_version=str(package.current_version), rotten_days=rotten_time.days, latest_version=str(package.latest_version), days_since_last_release=timedelta_since_last_release.days, ) return True, message message = Messages.NOT_ROTTEN.format( package=package.name, version=str(package.current_version) ) return False, message @staticmethod def calculate_rotten_time( latest_release_date: date, current_release_date: Optional[date] = None ) -> timedelta: if current_release_date: return latest_release_date - current_release_date return date.today() - latest_release_date
5,283
sensor/bme280_sensor.py
alrock/meteopi
0
2173340
from datetime import datetime import smbus2 import bme280 from sensor.sensor import Sensor class BME280Sensor(Sensor): CACHE_UPDATE_INTERVAL = 5 # in seconds def __init__(self, port=1, address=0x76): super().__init__('BME280') self.address = address self.bus = smbus2.SMBus(port) self.calibration_params = bme280.load_calibration_params(self.bus, self.address) self.data_cache = None @property def sample(self): if not self.data_cache or (datetime.now() - self.data_cache['timestamp']).seconds > self.CACHE_UPDATE_INTERVAL: sample = bme280.sample(self.bus, self.address, self.calibration_params) self.data_cache = {'temperature': sample.temperature, 'humidity': sample.humidity, 'pressure': sample.pressure, 'timestamp': sample.timestamp} return self.data_cache @property def temperature(self): return self.sample['temperature'] @property def humidity(self): return self.sample['humidity']
1,060
buildList1.py
prodotiscus/llsh-posts
0
2171197
#!/usr/bin/python3 import re, json members_html = open('List1.html', 'r').read() members_json = {'List1Members': []} members = re.finditer( r'<li><b>\s*([А-ЯЁа-яё]+)\s*<\/b>\s+([А-ЯЁа-яё]+)\s+\(\s*([А-ЯЁа-яё\-]+)\s*\)(\s+\[\*\])?<\/li>', members_html ) for member in members: members_json['List1Members'].append({ "name": member.group(2) + " " + member.group(1), "location": member.group(3) }) with open('List1.json', 'w') as list1: list1.write(json.dumps(members_json)) list1.close()
525
palsbet/urls.py
denis254/xpredict
0
2171961
from django.urls import path, include from palsbet import views from . views import rolloverh, play, information, register, punterpick, homeviptips, payment, homevip, timeofsending, modeofsending, home, viewolderesults, androidapp, rollover, viptips, guide, howmanyodds, privacy urlpatterns = [ path('', home), path('play/', play), path('privacy/', privacy), path('home/', home), path('information/', information), path('register/', register), path('crafttechsolution/', views.optout, name = "optout"), path('viewolderesults/', viewolderesults), path('androidapp/', androidapp), path('rollover/', rollover), path('viptips/', viptips), path('guide/', guide), path('howmanyodds/', howmanyodds), path('modeofsending/', modeofsending), path('timeofsending/', timeofsending), path('accounts/', include('django.contrib.auth.urls')), path('home_vip/', homevip), path('payment/', payment), path('homevip/', homevip), path('homeviptips/', homeviptips), path('homepunterpicks/', punterpick), path('homerollover/', rolloverh), ]
1,131
2017/d04.py
m1el/advent-of-code
0
2172911
from collections import defaultdict with open('04.txt') as fd: data = [line.strip().split(' ') for line in fd.readlines()] valid = 0 for l in data: counts = defaultdict(int) for w in l: counts[''.join(sorted(w))] += 1 if not [w for w in counts.values() if w > 1]: valid += 1 print(valid)
319
behave_django/runner.py
richardARPANET/behave-django
0
2172644
try: from django.test.runner import DiscoverRunner except ImportError: from django.test.simple import DjangoTestSuiteRunner as DiscoverRunner from behave_django.environment import BehaveHooksMixin from behave_django.testcase import (BehaviorDrivenTestCase, ExistingDatabaseTestCase) class BehaviorDrivenTestRunner(DiscoverRunner, BehaveHooksMixin): """Test runner that uses the BehaviorDrivenTestCase""" testcase_class = BehaviorDrivenTestCase class ExistingDatabaseTestRunner(DiscoverRunner, BehaveHooksMixin): """Test runner that uses the ExistingDatabaseTestCase This test runner nullifies Django's test database setup methods. Using this test runner would make your tests run with the default configured database in settings.py. """ testcase_class = ExistingDatabaseTestCase def setup_databases(*args, **kwargs): pass def teardown_databases(*args, **kwargs): pass
978
mdi/migrations/0068_survey_to_models_manytomany.py
inclusive-design/coop-map-directory-index
1
2173469
# Generated by Django 3.0.3 on 2020-05-17 22:33 from django.db import migrations from django.core.exceptions import ObjectDoesNotExist from mdi.models import Organization, LegalStatus, Sector, Challenge from surveys.models import Ecosystem2020 from django.contrib.auth import get_user_model def forward(apps, schema_editor): for organization in Organization.objects.filter(created_at__gt='2020-03-14 22:43:01.000000'): print("\nname: {} email: {}".format(organization.name, organization.admin_email)) survey = Ecosystem2020.objects.filter(a__range=(organization.created_at,organization.created_at)).get(f=organization.name) # LegalStatus for legal_status in survey.y.split(', '): if legal_status != '' and legal_status != None: l = '' try: l = LegalStatus.objects.get(name=legal_status) print(" status_id: {} status: {}".format(l.id, l.name)) organization.legal_status.add(l) except ObjectDoesNotExist: print(" status_huh? {}".format(legal_status)) l = LegalStatus(name=legal_status, order=9999) l.save() organization.legal_status.add(l) # Sector for sector in survey.al.split(', '): if sector != '' and sector != None and sector != 'fundraising' and sector != 'Technology': sector = sector.replace('Technology-', 'Technology:') sector = sector.replace('Art/Artistic Production', 'Art') s = '' try: s = Sector.objects.get(name=sector) print(" sector_id: {} sector: {}".format(s.id, s.name)) organization.sectors.add(s) except ObjectDoesNotExist: print(" sector_huh? {}".format(sector)) # Challenges challenge = survey.ae if challenge != '' and challenge != None: c = '' try: c = Challenge.objects.get(name=challenge) print(" challenge_id: {} challenge: {}".format(c.id, c.name)) except ObjectDoesNotExist: print(" challenge_huh? {}".format(challenge)) c = Challenge(name=challenge, order=9999) c.save() organization.challenges.add(c) class Migration(migrations.Migration): dependencies = [ ('mdi', '0067_auto_20200517_0503'), ] operations = [ migrations.RunPython(forward) ]
2,603
early-immature-ideas/idea-1/step01_try_train_with_elegantrl.py
guang384/my-hft-thesis-2022
0
2173057
import gym from elegantrl.agent import AgentModSAC from elegantrl.config import get_gym_env_args, Arguments from elegantrl.run import train_and_evaluate, train_and_evaluate_mp import os ''' 安装ElegantRL pip install git+https://github.com/AI4Finance-LLC/ElegantRL.git 解决中间关于“swig”的报错 conda install swig ''' os.environ['KMP_DUPLICATE_LIB_OK'] = 'True' gym.logger.set_level(40) # Block warning get_gym_env_args(gym.make("LunarLanderContinuous-v2"), if_print=True) env_func = gym.make env_args = { "env_num": 1, "env_name": "LunarLanderContinuous-v2", "max_step": 1000, "state_dim": 8, "action_dim": 2, "if_discrete": False, "target_return": 200, "id": "LunarLanderContinuous-v2", } args = Arguments(AgentModSAC, env_func=env_func, env_args=env_args) args.target_step = args.max_step args.gamma = 0.99 args.eval_times = 2 ** 5 args.if_remove = False if __name__ == '__main__': train_and_evaluate_mp(args)
947
rook/catalog/__init__.py
roocs/roocs-wps-demo
0
2172746
from roocs_utils.exceptions import InvalidCollection from .db import DBCatalog from rook import CONFIG def get_catalog(project): if CONFIG[f"project:{project}"].get("use_catalog"): try: catalog = DBCatalog(project) return catalog except Exception: raise InvalidCollection() __all__ = [ "get_catalog", "DBCatalog", ]
385
evaluate/previous_works/HoHoNet/lib/model/horizon_refinement/linear.py
Syniez/Joint_360depth
11
2172903
import torch import torch.nn as nn import torch.nn.functional as F def conv1dbnrelu(in_channels, out_channels, **kwargs): return nn.Sequential( nn.Conv1d(in_channels, out_channels, **kwargs), nn.BatchNorm1d(out_channels), nn.ReLU(inplace=True), ) class Linear(nn.Module): def __init__(self, c_mid, base_ch=256): super(Linear, self).__init__() self.conv_1x1 = conv1dbnrelu(c_mid, base_ch*4, kernel_size=1, bias=False) self.out_channels = base_ch*4 def forward(self, feat): feat = feat['1D'] feat = self.conv_1x1(feat) return {'1D': feat}
629
other/export.py
2xx4ever/cmdb
1
2172641
#!/usr/bin/env python # _*_ coding: utf-8 _*_ from import_export import resources from app01.models import Host, Asset class HostResource(resources.ModelResource): class Meta: model = Host fields = ('ip_pub', 'ip_prv', 'pwd_<PASSWORD>', '<PASSWORD>') class AssetResource(resources.ModelResource): class Meta: model = Asset fields = ('ip_pub', 'hostname', 'os', 'cpu_model', 'cpu', 'mem', 'disk', 'update_time')
477
utils/patrons.py
varghesejose2020/2021
6
2173181
import sys, csv, json print("Generating patrons.json from Eventyay.com order list csv file. Source: "+sys.argv[1]) json_out = [] with open(sys.argv[1], 'r', encoding="utf-8") as csvfile: datareader = csv.reader(csvfile) for row in datareader: if(row[2]=='completed' and row[5]=='Donation Ticket'): json_out.append({ "name": "{} {}".format(row[15], row[16]), "org_and_title": "{} @ {}".format(row[20], row[18]), "donated_at": row[1] }) output = json.dumps(json_out) with open('patrons.json', 'w', encoding="utf-8") as f: f.write(output) print("Done, Check out patrons.json")
667
scripts/android/devices.py
appcelerator-archive/titanium_mobile_tooling
2
2172064
#!/usr/bin/env python import os, sys from androidsdk import * if len(sys.argv) == 1: print "Usage: %s <android-sdk>" % sys.argv[0] sys.exit(1) sdk = AndroidSDK(sys.argv[1]) devices = sdk.list_devices() json = "[" for device in devices: json += "{\"name\": \"%s\", \"port\": %d, \"is_emulator\": %s, \"is_offline\": %s}" % (device.get_name(), device.get_port(), str(device.is_emulator()).lower(), str(device.is_offline()).lower()) json += "]" print json
462
HR.py
mauriciomani/HRM-and-Machine-Learning
1
2173427
# -*- coding: utf-8 -*- """ Created on Tue Aug 14 21:19:20 2018 @author: <NAME> """ """I am using scikit-learn library to find DECISION RULES from the decision trees. So we can make decisions""" import pandas as pd from sklearn.tree import DecisionTreeClassifier from sklearn.model_selection import train_test_split from sklearn import tree import numpy as np import matplotlib.pyplot as plt plt.style.use('bmh') # This is a simulated dataset df = pd.read_csv("C:/Users/mauri/Desktop/Big Data/kaggle/HR_kaggle.csv") df.head() # Size of the dataset df.shape df.dtypes # There are no null values df.isnull().sum() # create dummy variables """ When modeling is very important to preprocess the data. However right know I will just use the model I was given with. """ df = pd.get_dummies(df, columns = ['salary', 'sales'], drop_first = True) x = df.drop(labels = 'left', axis = 1) y = df['left'] feature_name = x.columns #Train and test to check out the score of our model x_train, x_test, y_train, y_test = train_test_split(x, y, test_size = 0.35) """ When modeling, picking an easy algorithm is way better than a more colpex. Just follow the Occam's Razor or lex parsimonaie law. In other words, the simplest solution tends to be the right one. So if we have a simple hypothesis we should select one with simple assumptions. This of course it is not an irrefutable principle. That is why we will select as less complexity as possible. In other words, a small tree (few nodes) might work well. It will also be more simple to extract some rules.""" # Fit the decision tree algorithm clf = DecisionTreeClassifier(max_depth = 5) clf.fit(x_train, y_train) # Print the score of the model print(clf.score(x_test, y_test)) tree.export_graphviz(clf, out_file='C:/Users/mauri/Desktop/d_tree.dot', feature_names=feature_name, class_names = ["left", "in"]) """ It will also be relevant to understant how important is each feature to the model we built. We can say that those variables are important to the decision making of the employees. """ importances = clf.feature_importances_ rel = [e for e in importances if e > 0.001] indices = np.argsort(rel) plt.figure() plt.title('Importance of the features', fontdict = {'fontsize': 20, 'weight': 'bold','alpha': 0.67}) plt.barh(range(len(indices)), importances[indices], color='#5CD1BD', align='center') plt.yticks(range(len(indices)), feature_name[indices]) plt.xlabel('Relative Importance')
2,441
TrippyMain/Garrisson/warehousemain.py
py-ranoid/Trippy
0
2172963
from Warehouse.Scripts.deets import generate_place_details from Warehouse.Scripts.graphgen import mutualGen from Warehouse.Scripts.normalizedata import normalize from Warehouse.Scripts.bing_image import BingWebSearch from Warehouse.Scripts.AudioRektnika import withPickle, withText from wardogs import City, Attraction import pandas as pd def pusher(data): images = BingWebSearch(search = data["CityName"]) desc = data["Description"] helplines = dict() helplines['police'] = data["HelplinePolice"] helplines['fire'] = data["HelplineFire"] helplines['ambulance'] = data["HelplineAmbulance"] helplines['tourism'] = data["HelplineTourism"] if pd.notna(desc): (en, enurl, hin, hinurl, spa, spaurl) = withText(desc, city + "Desc") else: desc = None city = City(name = data["CityName"], helplines = helplines, lat = data["Latitude"], lng = data["Longitude"], images = images, desc = desc) city.fire() def addCity(city="Chennai"): cities = pd.read_excel("Cities.xlsx") cities = cities.set_index("CityCode") cities = cities[pd.notnull(cities.index)] cities = cities.set_index("CityName") try: data = cities.loc[city] except KeyError as e: print "That city is not yet supported" print "Stacktrace: " print e quit() pusher(data) ''' mutualGen(city) generate_place_details(city) normalize(city) This script requires attraction descriptions withPickle(city) This script requires attraction descriptions ''' def addAllCities(): cities = pd.read_excel("Cities.xlsx") cities = cities.set_index("CityCode") cities = cities[pd.notnull(cities.index)] for i in cities.index: print "LOG: Adding city:", data["CityName"] data = cities.loc[i] pusher(data) ''' mutualGen(city) generate_place_details(city) normalize(city) This script requires attraction descriptions withPickle(city) This script requires attraction descriptions '''
2,076
examples/errors2/components/filemode/component.py
risclog-solution/batou
34
2172324
from batou.component import Component from batou.lib.file import File class FileMode(Component): def configure(self): self += File('new-file.txt', mode='wrongmode')
180
src/generate_snapshot_data/Corpus.py
saheel1115/szz-
9
2173402
#!/usr/bin/python import argparse import os, sys, inspect import os.path import shutil import logging import datetime from Config import Config from DbEdits import DbEdits from GitRepo import GitRepo from OutDir import OutDir from SnapShot import SnapShot sys.path.append("src/util") import Log from Util import cd import Util class Corpus: def __init__(self, projectPath, language, outDir, configFile, debug=True): self.src_path = projectPath self.language = language self.out_path = outDir self.cfg = configFile self.debug = debug proj_path = self.src_path.rstrip(os.sep) self.project_name = proj_path.split(os.sep)[-1] logging.info("project = %s\n", self.project_name) self.snapshots = [] self.changed_files_per_date = {} #commit_date -> set(file_name) self.edit_to_snapshot = {} self.snapshot2edit = {} #self.initEdits() self.edits = self.fetchEdits() self.initSnapshots() def __str__(self): retStr = "project : " + self.project_name + "\n" retStr += "SnapShots : \n" for s in self.snapshots: retStr += str(s) + " " return retStr def printSnapshots(self): for s in self.snapshots: print s def initEdits(self): self.edits = self.fetchEdits() # for e in self.edits: # #print e.file_name, e.sha, e.commit_date # file_name = e.file_name.replace(os.sep,'_') # if not self.changed_files_per_date.has_key(e.commit_date): # self.changed_files_per_date[e.commit_date] = set() # self.changed_files_per_date[e.commit_date].add(file_name) # if self.debug: # for key in sorted(self.changed_files_per_date): # print key, self.changed_files_per_date[key] def fetchEdits(self): logging.info("Going to fetch edits for project : %s", self.project_name) db_config = self.cfg.ConfigSectionMap("Database") logging.debug("Database configuration = %r\n", db_config) db_edits = DbEdits(self.project_name, self.language) db_edits.connectDb(db_config['database'], db_config['user'], db_config['host'], db_config['port']) db_edits.fetchEditsFromTable(db_config['table']) #logging.debug(db_edits) return db_edits.edits @staticmethod def minKey(commitDate, snapshot): if commitDate >= snapshot.date: return (commitDate - snapshot.date).days else: return 9999 def mapEditToSnapshot(self): for e in self.edits: cd = e.commit_date snap = min(self.snapshots, key=lambda sd : self.minKey(cd,sd)) if cd < snap.date: print("---> skipping: commit_date %s: snapshot %s" % (cd, snap.date)) continue self.edit_to_snapshot[e] = snap snap.addEdit(e) logging.debug("mapEditToSnapshot : <edit> : <snapshot>") for key in self.edit_to_snapshot: logging.debug("%s:%s" % (key, self.edit_to_snapshot[key])) def initSnapshots(self): snaps = [snap for snap in os.listdir(self.src_path)] # 'ss_sha_info.txt' is not a snapshot directory, hence can be removed # ...it actually contains some metadata about the commit SHAs of each snapshot # ...which is used by `src/generate_asts_and_type_data/gather_typedata_into_csv.py` snaps.remove('ss_sha_info.txt') snaps.sort() for snap in snaps: s = SnapShot(self.src_path, snap, self.out_path) self.snapshots.append(s) self.mapEditToSnapshot() def dump(self): Util.cleanup(self.out_path + "/*") for snap in self.snapshots: snap.dumpTestFiles() snap.dumpTrainFiles()
3,912
main.py
islandhuynh/snake
0
2172215
from scoreboard import Scoreboard from turtle import Screen from snake import Snake from food import Food import time screen = Screen() screen.setup(width=600, height=600) screen.bgcolor("black") screen.title("Snake Game by <NAME>") screen.tracer(0) snake = Snake() food = Food() score = Scoreboard() screen.onkey(snake.move_up, "w") screen.onkey(snake.move_down, "s") screen.onkey(snake.move_left, "a") screen.onkey(snake.move_right, "d") screen.listen() game_is_on = True while game_is_on: if snake.head.xcor() > 290 or snake.head.xcor() < -290 or snake.head.ycor() > 290 or snake.head.ycor() < -290: score.reset() snake.reset() screen.update() time.sleep(0.1) snake.move() if snake.head.distance(food) < 20: food.refresh() snake.extend() score.increase_score() for seg in snake.segments[1:]: if snake.head.distance(seg) < 10: score.reset() snake.reset() screen.exitonclick()
931
ratelib/nucleus.py
kompoth/raterlib
0
2173237
import os import re import numpy as np # Create element vs Z dictationary PYRLIB_PATH = os.path.dirname(os.path.abspath(__file__)) DATA_PATH = os.path.join(PYRLIB_PATH, "data") EL_VS_Z = {} Z_VS_EL = ["n"] with open(os.path.join(DATA_PATH, "elements.txt")) as fd: for line in fd: Z, element = line.split() EL_VS_Z[element.lower()] = int(Z) Z_VS_EL.append(element.lower()) class MetaStableError(ValueError): """ Exception for meta stable states that are temporarily unsupported """ pass class Nucleus: """ Class for nucleus participating in reaction """ def __init__(self, name=None, A=None, Z=None, N=None): self._A = np.nan self._Z = np.nan if name is not None: # Default initialisation by name string self.__init_by_descr(name) elif A is not None or Z is not None or N is not None: # Initialization with numbers self.__init_by_numbers(A=A, Z=Z, N=N) else: raise ValueError("Provide nucleus name or nuclear numbers.") def __init_by_descr(self, descr): re_str = r'^([A-Za-z]{1,2})([-\*]*)(\d{0,3})$' descr = descr.replace(' ', '') parse_results = re.search(re_str, descr) if not parse_results: # Undiscovered elements re_str = r'^([Cc]\d)([-\*]*)(\d{3})' parse_results = re.search(re_str, descr) if not parse_results: raise ValueError("Failed to parse: '{}'".format(descr)) if parse_results.group(2) != "": msg = "Meta stable states are not supported: '{}'.".format(descr) raise MetaStableError(msg) element = parse_results.group(1).lower() # TODO: refactor if parse_results.group(3): self._Z = EL_VS_Z[element] self._A = int(parse_results.group(3)) elif element == "n": self._Z = 0 self._A = 1 elif element == "p": self._Z = 1 self._A = 1 elif element == "d": self._Z = 1 self._A = 2 elif element == "t": self._Z = 1 self._A = 3 else: raise ValueError("A was not provided: '{}'".format(descr)) def __init_by_numbers(self, A=None, Z=None, N=None): none_num = (A, Z, N).count(None) if none_num > 1: raise ValueError("Provide at least 2 values: A, Z or N") self._A = A if A is not None else Z + N self._Z = Z if Z is not None else A - N if self._A < self._Z or self.Z < 0: raise ValueError("Mass number too small:" "A = {}, Z = {}".format(self._A, self._Z)) def __repr__(self): if self.Z > 1 or self.A > 3: return "{}{}".format(Z_VS_EL[self.Z], self.A) elif self.A == 1: return "n" if self.Z == 0 else "p" elif self.A == 2 and self.Z == 1: return "d" elif self.A == 3 and self.Z == 1: return "t" else: raise ValueError("Unknown nucleus with A = {} and " "Z = {}.".format(self.A, self.Z)) def __hash__(self): return hash(self.__repr__()) def __eq__(self, other): return (self.A == other.A) and (self.Z == other.Z) def __lt__(self, other): if not self.Z == other.Z: return self.Z < other.Z else: return self.A < other.A @property def A(self): return self._A @property def Z(self): return self._Z @property def N(self): return self.A - self.Z @property def element(self): return Z_VS_EL[self.Z] @property def name(self): return self.__repr__() def relative(self, dZ=0, dN=0): """ Return Nucleus relative to self. """ Z = self.Z + dZ N = self.N + dN return Nucleus(Z=Z, N=N) def neighbours(self): """ Get array of 8 nearest nuclei """ rez = [] for dZ in range(-1, 2): for dN in range(-1, 2): if dZ == 0 and dN == 0: continue rez.append(self.relative(dZ=dZ, dN=dN)) return np.array(rez)
4,335
argentina/util/functions.py
emibap/dataviz
0
2170051
from datetime import datetime from datetime import date # Returns the percentage of the year that passed given a date string in YYYY-mm-dd format # Min and max percentages are optional parameters (to improve visuals) def get_date_year_percentage(date_str, min_pcn = 0.12, max_pcn = 0.88): date_time_obj = datetime.strptime(date_str, "%Y-%m-%d") year = date_time_obj.year date_year = datetime.combine(date(year, 1, 1), datetime.min.time()) date_year_plus = datetime.combine(date(year + 1, 1, 1), datetime.min.time()) days_passed = (date_time_obj - date_year).days return min(max((days_passed / (date_year_plus - date_year).days), min_pcn), max_pcn) def get_year_from_datestr(date_str): date_time_obj = datetime.strptime(date_str, "%Y-%m-%d") return date_time_obj.year # https://www.geeksforgeeks.org/insert-row-at-given-position-in-pandas-dataframe/ # Function to insert row in the dataframe def insert_row(row_number, df, row_value): # Starting value of upper half start_upper = 0 # End value of upper half end_upper = row_number # Start value of lower half start_lower = row_number # End value of lower half end_lower = df.shape[0] # Create a list of upper_half index upper_half = [*range(start_upper, end_upper, 1)] # Create a list of lower_half index lower_half = [*range(start_lower, end_lower, 1)] # Increment the value of lower half by 1 lower_half = [x.__add__(1) for x in lower_half] # Combine the two lists index_ = upper_half + lower_half # Update the index of the dataframe df.index = index_ # Insert a row at the end df.loc[row_number] = row_value # Sort the index labels df = df.sort_index() # return the dataframe return df # Let's create a row which we want to insert # row_number = 2 # row_value = ['11/2/2011', 'Wrestling', 12000] # if row_number > df.index.max()+1: # print("Invalid row_number") # else: ## Let's call the function and insert the row ## at the second position #df = Insert_row(row_number, df, row_value) # Print the updated dataframe #print(df)
2,103
tests/test_parsing.py
chriscardillo/gusty
103
2173395
import pytest from airflow import DAG from datetime import datetime, timedelta from airflow.utils.dates import days_ago from gusty import create_dag from gusty.parsing import parse ############## ## FIXTURES ## ############## @pytest.fixture(scope="session") def parsing_dag_dir(): return "tests/dags/parsing" @pytest.fixture(scope="session") def dag(parsing_dag_dir): dag = create_dag( parsing_dag_dir, description="A dag with some custom parsing functions.", schedule_interval="0 0 * * *", default_args={ "owner": "gusty", "depends_on_past": False, "start_date": days_ago(1), "email": "<EMAIL>", "email_on_failure": False, "email_on_retry": False, "retries": 3, "retry_delay": timedelta(minutes=5), }, ignore_subfolders=True, parse_hooks={ ".py": lambda file_path: { "operator": "airflow.operators.python.PythonOperator", "python_callable": lambda: "this was custom", }, }, ) return dag @pytest.fixture(scope="session") def custom_task(dag): custom_task = dag.task_dict["a_parse_hook_task"] return custom_task @pytest.fixture(scope="session") def sql_task(dag): custom_task = dag.task_dict["sql_task"] return custom_task ########### ## Tests ## ########### def test_read_yaml_spec(): yaml_spec = parse("tests/dags/no_metadata/top_level_task.yml") assert yaml_spec["task_id"] == "top_level_task" assert yaml_spec["file_path"] == "tests/dags/no_metadata/top_level_task.yml" assert "operator" in yaml_spec.keys() assert "bash_command" in yaml_spec.keys() def test_parse_hooks(custom_task): callable = custom_task.__dict__["python_callable"] res = callable() assert res == "this was custom" def test_sql_parse(sql_task): assert sql_task.sql == "SELECT *\nFROM gusty_table"
1,972
ll/environment.bzl
qogecoin/rules_ll
5
2171495
"""# `//ll:environment.bzl` Action environments. """ def compile_object_environment(ctx, toolchain_type): if toolchain_type == "//ll:toolchain_type": return { "LLVM_SYMBOLIZER_PATH": ctx.toolchains[toolchain_type].symbolizer.path, "LINK": ctx.toolchains[toolchain_type].bitcode_linker.path, "LLD": ctx.toolchains[toolchain_type].linker.path, "PATH": "$PATH:" + ctx.toolchains[toolchain_type].linker_executable.dirname, "LD_LIBRARY_PATH": "$LD_LIBRARY_PATH:" + "/usr/local/cuda/lib64", } elif toolchain_type == "//ll:heterogeneous_toolchain_type": return { "LLVM_SYMBOLIZER_PATH": ctx.toolchains[toolchain_type].symbolizer.path, "CLANG_OFFLOAD_BUNDLER": ctx.toolchains[toolchain_type].offload_bundler.path, "LINK": ctx.toolchains[toolchain_type].bitcode_linker.path, "LLD": ctx.toolchains[toolchain_type].linker.path, "PATH": "$PATH:" + ctx.toolchains[toolchain_type].linker_executable.dirname, "LD_LIBRARY_PATH": "$LD_LIBRARY_PATH:" + "/usr/local/cuda/lib64", } elif toolchain_type == "//ll:bootstrap_toolchain_type": return { "CPLUS_INCLUDE_PATH": Label("@llvm-project").workspace_root + "/libcxx/src", } else: fail("Unregognized toolchain type. rules_ll supports " + "//ll:toolchain_type and //ll:bootstrap_toolchain_type.")
1,458
tests/components/broadlink/test_helpers.py
tbarbette/core
30,023
2172651
"""Tests for Broadlink helper functions.""" import pytest import voluptuous as vol from homeassistant.components.broadlink.helpers import data_packet, mac_address async def test_padding(hass): """Verify that non padding strings are allowed.""" assert data_packet("Jg") == b"&" assert data_packet("Jg=") == b"&" assert data_packet("Jg==") == b"&" async def test_valid_mac_address(hass): """Test we convert a valid MAC address to bytes.""" valid = [ "A1B2C3D4E5F6", "a1b2c3d4e5f6", "A1B2-C3D4-E5F6", "a1b2-c3d4-e5f6", "A1B2.C3D4.E5F6", "a1b2.c3d4.e5f6", "A1-B2-C3-D4-E5-F6", "a1-b2-c3-d4-e5-f6", "A1:B2:C3:D4:E5:F6", "a1:b2:c3:d4:e5:f6", ] for mac in valid: assert mac_address(mac) == b"\xa1\xb2\xc3\xd4\xe5\xf6" async def test_invalid_mac_address(hass): """Test we do not accept an invalid MAC address.""" invalid = [ None, 123, ["a", "b", "c"], {"abc": "def"}, "a1b2c3d4e5f", "a1b2.c3d4.e5f", "a1-b2-c3-d4-e5-f", "a1b2c3d4e5f66", "a1b2.c3d4.e5f66", "a1-b2-c3-d4-e5-f66", "a1b2c3d4e5fg", "a1b2.c3d4.e5fg", "a1-b2-c3-d4-e5-fg", "a1b.2c3d4.e5fg", "a1b-2-c3-d4-e5-fg", ] for mac in invalid: with pytest.raises((ValueError, vol.Invalid)): mac_address(mac)
1,434
students/K33402/Krivoshapkina_Aitalina/LR_3/hospital_app/admin.py
aytakr/ITMO_ICT_WebDevelopment_2021-2022
0
2171249
from django.contrib import admin from .models import * # Register your models here. admin.site.register(Patient) admin.site.register(Specialization) # admin.site.register(Schedule) admin.site.register(Doctor) admin.site.register(ScheduleOfDoctor) admin.site.register(Cabinet) admin.site.register(CabinetOfficer) admin.site.register(ScheduleOfCabinet) admin.site.register(PriceList) admin.site.register(Visit) # admin.site.register(VisitOfPatient) admin.site.register(MedicalCard)
481
zanza/__init__.py
fogasl/zanza
0
2173536
""" This script obfuscates the input string by the following algorithm: - Takes the first character of the input string, and gets its Unicode code point (character code) - Sets this char code as a reference value - Initializes a *list* in which stores the digits of the previous value as a *list* - Continues to the next character by calculating its code point and the delta to the previous character's code point. - Sets the current code point as the next reference value - Adds this delta value to the return list and repeats the steps above to the input strings length. """ def zanza(source): """Obfuscate the input string. Args: source (str): Input string """ if len(source) == 0: raise ValueError("Invalid input: zero-length string") ret = [] prev = ord(source[0]) first = map(int, str(prev)) ret.append(list(first)) for s in source[1:]: curr = ord(s) ret.append(curr - prev) prev = curr return ret
1,000
pneumonia_xray_testing.py
alleetw101/pneumonia-xray
1
2173531
# Name: pneumonia_xray_testing # Author: <NAME> <<EMAIL>> # Version: Testing import pathlib import tensorflow as tf from tensorflow.keras import layers import numpy as np from datetime import datetime import time import matplotlib.pyplot as plt # Importing data train_data_dir = pathlib.Path('train') test_data_dir = pathlib.Path('test') # Verifying datasets were loaded correctly. Counts number of jpeg files in folder/directory train_image_count = len(list(train_data_dir.glob('*/*.jpeg'))) test_image_count = len(list(test_data_dir.glob('*/*.jpeg'))) print(train_image_count, test_image_count) # Testing Variables img_width = 720 img_height = 540 val_size = int(train_image_count * 0.2) test_size = int(train_image_count * 0.1) BATCH_SIZE = 64 ACTIVATION = 'relu' regularizer = tf.keras.regularizers.l2(0.01) optimizer = tf.keras.optimizers.Adam(learning_rate=0.001) callback = [tf.keras.callbacks.EarlyStopping(monitor='val_loss', patience=3)] EPOCHS = 50 # Max Epoch w/ EarlyStopping STEPS_PER_EPOCH = 16 # Variable names for log file REGULARIZER = 'l2(0.01)' OPTIMIZER = 'adam' CALLBACK = 'EarlyStopping(val_loss, 2)' COMMENTS = '(training) shuffle, repeat, batch' # Obtaining categorical names with folder names class_names = np.array(sorted([item.name for item in train_data_dir.glob('*') if item.name != '.DS_Store'])) print(class_names) # Functions to create image, label pair in dataset def get_label(file_path): parts = tf.strings.split(file_path, sep='/') temp = parts[-2] == class_names return tf.argmax(temp) def decode_img(img): img = tf.io.decode_jpeg(img, channels=1) return tf.image.resize_with_pad(img, img_height, img_width) def process_path(file_path): label = get_label(file_path) img = tf.io.read_file(file_path) img = decode_img(img) return img, label # Configures datasets for use in models def configure_performance(ds, dataset=''): ds = ds.shuffle(1000) if dataset == 'train': ds = ds.repeat() ds = ds.batch(BATCH_SIZE) ds = ds.cache() ds = ds.prefetch(AUTOTUNE) return ds average_acc = [] average_loss = [] for _ in range(8): # Time variables for log file date = datetime.now().strftime("%Y%m%d_%H%M") starttime = time.time() # Loads datasets into tensorflow dataset with verification list_ds = tf.data.Dataset.list_files(str(train_data_dir / '*/*'), shuffle=True) # list_ds = list_ds.shuffle(train_image_count, reshuffle_each_iteration=False) test_ds = tf.data.Dataset.list_files(str(test_data_dir / '*/*'), shuffle=False) # for i in list_ds.take(1): # print(i.numpy()) # example = i # Splitting training dataset into train and validation datasets train_ds = list_ds.skip(val_size) val_ds = list_ds.take(val_size) print(tf.data.experimental.cardinality(train_ds).numpy(), tf.data.experimental.cardinality(val_ds).numpy()) # Creates image/label pair for datasets with verification AUTOTUNE = tf.data.experimental.AUTOTUNE train_ds = train_ds.map(process_path, num_parallel_calls=AUTOTUNE) val_ds = val_ds.map(process_path, num_parallel_calls=AUTOTUNE) test_ds = test_ds.map(process_path, num_parallel_calls=AUTOTUNE) # for image, label in train_ds.take(1): # print("Image shape: ", image.numpy().shape) # print("Label: ", label.numpy()) # Configure datasets for model train_ds = configure_performance(train_ds, dataset='train') val_ds = configure_performance(val_ds) test_ds = configure_performance(test_ds) # Create and compile model model = tf.keras.Sequential([ layers.experimental.preprocessing.Rescaling(1. / 255), layers.Conv2D(32, 3, activation=ACTIVATION, kernel_regularizer=regularizer), layers.MaxPooling2D(), layers.Dropout(0.2), layers.Conv2D(32, 3, activation=ACTIVATION, kernel_regularizer=regularizer), layers.MaxPooling2D(), layers.Dropout(0.2), layers.Conv2D(32, 3, activation=ACTIVATION, kernel_regularizer=regularizer), layers.MaxPooling2D(), layers.Dropout(0.2), layers.Conv2D(32, 3, activation=ACTIVATION, kernel_regularizer=regularizer), layers.MaxPooling2D(), layers.Dropout(0.2), layers.Flatten(), layers.Dense(512, activation=ACTIVATION, kernel_regularizer=regularizer), layers.Dropout(0.2), layers.Dense(512, activation=ACTIVATION, kernel_regularizer=regularizer), layers.Dropout(0.2), layers.Dense(128, activation=ACTIVATION, kernel_regularizer=regularizer), layers.Dense(2) ]) model.compile(optimizer=optimizer, loss=tf.losses.SparseCategoricalCrossentropy(from_logits=True), metrics=['accuracy']) # Update log file variables if metric is changed # Train model on testing dataset train_history = model.fit(train_ds, validation_data=val_ds, epochs=EPOCHS, verbose=1, steps_per_epoch=STEPS_PER_EPOCH, callbacks=callback) # Time variables for log file endtime = time.time() traintime = (endtime-starttime) # Evaluate trained model on test dataset loss, acc = model.evaluate(test_ds, verbose=1) # Saves entire model in SavedModel format model.save(f'PneSavedModels/Pne{date}', overwrite=False) # Update log file with open('PneSavedModels/PneLog.txt', 'r') as f: tempfile = f.read() with open('PneSavedModels/PneLog.txt', 'w') as f: f.write('###############\n') f.write(f'Run: {date}, train_time: {traintime}\n') f.write(f'Img_width: {img_width}, Img_height: {img_height}, Val_size: {val_size}\n') f.write(f'Batch_size: {BATCH_SIZE}, Activation: {ACTIVATION}, Optimizer: {OPTIMIZER}, Regularizer: {REGULARIZER}\n') f.write(f'Epochs: {EPOCHS}, Steps_per_epoch: {STEPS_PER_EPOCH}, Callback(s): {CALLBACK}\n\n') for runs in range(len(train_history.history['loss'])): f.write(f'Epoch {runs+1}- Loss: {train_history.history["loss"][runs]}, ') f.write(f'Acc: {train_history.history["accuracy"][runs]}, ') f.write(f'Val_loss: {train_history.history["val_loss"][runs]}, ') f.write(f'Val_acc: {train_history.history["val_accuracy"][runs]}\n') f.write(f'\nComments: {COMMENTS}\n\n') f.write(f'Test_loss: {loss}, Test_accuracy: {acc}\n\n') model.summary(print_fn=lambda x: f.write(x + '\n')) f.write('###############\n\n') f.write(tempfile) average_acc.append(acc) average_loss.append(loss) print(f'Average accuracy: {np.average(average_acc)}') print(f'Average loss: {np.average(average_loss)}') print(average_acc) print(average_loss)
6,725
purchase/models.py
FreeGodCode/store
0
2173296
import datetime from django.db import models class PurchaseContract(models.Model): """采购合同""" PC_STATUS_CHOICES = ( (0, '草稿'), (1, '已审批') ) id = models.AutoField(primary_key=True) pc_identify = models.CharField(max_length=15, verbose_name='合同编号') pc_serial = models.CharField(max_length=4, verbose_name='合同流水号') organization = models.ForeignKey('base.Organization', verbose_name='组织', related_name='org_pc', on_delete=models.CASCADE) pc_name = models.CharField(max_length=20, verbose_name='合同名称') supplier = models.ForeignKey('base.Supplier', verbose_name='供应商', related_name='supplier_pc', on_delete=models.CASCADE) pc_date = models.DateTimeField(default=datetime.datetime.now, verbose_name='合同签订日期') pc_sum = models.DecimalField(max_digits=10, decimal_places=2, verbose_name='合同总额') pc_remarks = models.TextField(max_length=400, verbose_name='合同备注', null=True) pc_status = models.IntegerField(choices=PC_STATUS_CHOICES, default=0, verbose_name='合同状态') pc_creator = models.CharField(max_length=20, verbose_name='合同创建者名字') pc_creator_identify = models.CharField(max_length=20, verbose_name='合同创建者工号') pc_created_at= models.DateTimeField(auto_now_add=True, verbose_name='合同创建时间') class Meta: db_table = 'db_purchase_contract' verbose_name = "采购合同" verbose_name_plural = verbose_name def __str__(self): return self.pc_name class PurchaseContractDetail(models.Model): """合同物料明细""" PCD_USE_STATUS_CHOICES = ( (0, '未使用'), (1, '已使用') ) id = models.AutoField(primary_key=True) purchase_contract = models.ForeignKey('PurchaseContract', verbose_name='采购合同', related_name='pc_pcd', on_delete=models.CASCADE) material = models.ForeignKey('base.Material', verbose_name='物料', related_name='material_pcd', on_delete=models.CASCADE) pcd_num = models.IntegerField(verbose_name='物料数量') pcd_taxRate = models.IntegerField(default=13, verbose_name='税率', null=True) pcd_tax_unitPrice = models.DecimalField(max_digits=10, decimal_places=2, verbose_name='含税单价', null=True) pcd_unitPrice = models.DecimalField(max_digits=10, decimal_places=2, verbose_name='无税单价', null=True) pcd_tax_sum = models.DecimalField(max_digits=10, decimal_places=2, verbose_name='含税总额', null=True) pcd_sum = models.DecimalField(max_digits=10, decimal_places=2, verbose_name='无税总额', null=True) pcd_tax_price = models.DecimalField(max_digits=10, decimal_places=2, verbose_name='税额', null=True) pcd_pr_identify = models.CharField(max_length=15, verbose_name='请购单编号') pcd_prd_remarks = models.TextField(max_length=400, verbose_name='物料备注', null=True) pcd_used = models.IntegerField(choices=PCD_USE_STATUS_CHOICES, default=0, verbose_name='明细单是否使用') class Meta: db_table = 'db_purchase_contract_detail' verbose_name = "合同物料明细" verbose_name_plural = verbose_name def __str__(self): return self.pcd_num class PurchaseContractPayDetail(models.Model): """合同付款协议""" PAY_PREPAY_CHOICES = ( (0, '否'), (1, '是') ) id = models.AutoField(primary_key=True) purchase_contract = models.ForeignKey('PurchaseContract', verbose_name='采购合同', related_name='pc_pay', on_delete=models.CASCADE) pay_batch = models.IntegerField(verbose_name='付款批次') pay_rate = models.IntegerField(verbose_name='付款比率') pay_price = models.DecimalField(max_digits=10, decimal_places=2, verbose_name='付款金额') pay_planDate = models.DateField(verbose_name='计划付款日期') pay_prepay = models.IntegerField(choices=PAY_PREPAY_CHOICES, verbose_name='是否预付款') pay_remarks = models.TextField(max_length=400, verbose_name='付款备注', null=True) class Meta: db_table = 'db_purchase_contract_pay_detail' verbose_name = "合同付款协议" verbose_name_plural = verbose_name def __str__(self): return self.pay_batch class PurchaseOrder(models.Model): """采购订单""" PO_STATUS_CHOICES = ( (0, '草稿'), (1, '已审批') ) id = models.AutoField(primary_key=True) po_identify = models.CharField(max_length=15, verbose_name='采购订单编号') po_serial = models.CharField(max_length=4, verbose_name='采购订单流水号') organization = models.ForeignKey('base.Organization', verbose_name='组织', related_name='org_po', on_delete=models.CASCADE) supplier = models.ForeignKey('base.Supplier', verbose_name='供应商', related_name='supplier_po', on_delete=models.CASCADE) po_date = models.DateTimeField(default=datetime.datetime.now,verbose_name='采购订单生效日期') po_sum = models.IntegerField(verbose_name='采购订单总额') po_remarks = models.TextField(max_length=400, verbose_name='采购订单备注') purchase_contract = models.ForeignKey('PurchaseContract', verbose_name='采购合同', related_name='pc_po', on_delete=models.CASCADE) purchase_request = models.ForeignKey('purchaseRequest.PurchaseRequest', verbose_name='请购单', related_name='pr_po', on_delete=models.Model) pc_identify = models.CharField(max_length=15, verbose_name='采购合同编号', null=True) po_status = models.IntegerField(choices=PO_STATUS_CHOICES, default=0, verbose_name='采购订单状态') po_creator = models.CharField(max_length=20, verbose_name='采购订单创建者名字') po_creator_identify = models.CharField(max_length=20, verbose_name='采购订单创建者编号') po_created_at= models.DateTimeField(auto_now_add=True, verbose_name='采购订单创建时间') class Meta: db_table = 'db_purchase_order' verbose_name = "采购订单" verbose_name_plural = verbose_name def __str__(self): return self.po_identify class OrderDetail(models.Model): """采购订单明细""" id = models.AutoField(primary_key=True) purchase_order = models.ForeignKey('PurchaseOrder', verbose_name='采购订单', related_name='po_od', on_delete=models.CASCADE) # pr_detail = models.ForeignKey('purchaseRequest.PurchaseRequest', verbose_name='请购单物料明细', related_name='pr_od', on_delete=models.CASCADE) # pcd_detail = models.ForeignKey('PurchaseContractDetail', verbose_name='合同物料明细', related_name='pcd_od', on_delete=models.CASCADE) material = models.ForeignKey('base.Material', verbose_name='物料', related_name='material_od', on_delete=models.CASCADE) od_num = models.IntegerField(verbose_name='采购数量') od_taxRate = models.IntegerField(default=13, verbose_name='税率') od_tax_unitPrice = models.DecimalField(max_digits=10, decimal_places=2, verbose_name='含税单价') od_unitPrice = models.DecimalField(max_digits=10, decimal_places=2, verbose_name='无税单价') od_tax_sum = models.DecimalField(max_digits=10, decimal_places=2, verbose_name='含税总额') od_tax_price = models.DecimalField(max_digits=10, decimal_places=2, verbose_name='税额') od_sum = models.DecimalField(max_digits=10, decimal_places=2, verbose_name='无税总额') od_pr_identify = models.CharField(max_length=15, verbose_name='请购单编号') od_prd_remarks = models.TextField(max_length=400, verbose_name='物料备注') class Meta: db_table = 'db_order_detail' verbose_name = "采购订单详情" verbose_name_plural = verbose_name
7,081
app/requester.py
mateuszbaranczyk/portfolio
0
2172814
import datetime import json import requests import typing as T class ExchangeRateRequester: def __init__(self): self.api_url = "http://api.nbp.pl/api/exchangerates/rates/c/{currency_code}/{start_date}/{end_date}/" def get_rate( self, currency_code="EUR", start_date=str(datetime.date.today()), end_date=str(datetime.date.today()), ) -> list: api_url = self.api_url.format(currency_code=currency_code, start_date=start_date, end_date=end_date) response = requests.get(api_url).text data = json.loads(response) return data @staticmethod def extract_todays_bid(rest_response: dict) -> float: todays_rates = rest_response["rates"][0] todays_bid = todays_rates["bid"] return todays_bid @staticmethod def extract_historical_bids(rest_response: dict) -> T.Dict[str, float]: historical_rates = rest_response["rates"] historical_bids = {} for rate in historical_rates: historical_rate = rate["bid"] historical_date = rate["effectiveDate"] historical_bids[historical_date] = historical_rate return historical_bids def get_todays_rate(self) -> float: rest_response = self.get_rate() todays_bid = self.extract_todays_bid(rest_response) return todays_bid def get_historical_bids(self, start_date: str, end_date: str = str(datetime.date.today())) -> T.Dict[str, float]: rest_response = self.get_rate(start_date=start_date, end_date=end_date) historocal_bids = self.extract_historical_bids(rest_response) return historocal_bids
1,720
PyKeydown/keydown.py
aheadlead/PyTetris
2
2173530
# coding=utf-8 __author__ = 'weiyulan' from threading import Thread import termios import fcntl import sys import os from select import select from time import sleep import keyvalue class Keydown(object): def __init__(self, callback): self.callback = callback self.oldflags = None self.oldterm = None self.daemon_thread = Thread(target=self.daemon) self.daemon_thread.setDaemon(True) self.fsm = {} self.state = self.fsm self.stop_flag = False # 从 keyvalue 里面的键值建立自动机 # 这里使用了 Python 自省的特性 for key in dir(keyvalue): if key[:2] == "__": # 跳过一些变量,如 __author__ 、 __builtins__ 等。 return last_pointer = None pointer = self.fsm # print '$' + str(getattr(keyvalue, key)) value = None for value in getattr(keyvalue, key): if value not in pointer: pointer[value] = {} last_pointer = pointer pointer = pointer[value] # print '#'+str(self.fsm) last_pointer[value] = getattr(keyvalue, key) # print '*' + str(self.fsm) def start(self): self.daemon_thread.start() def daemon(self): fd = sys.stdin.fileno() self.oldterm = termios.tcgetattr(fd) newattr = termios.tcgetattr(fd) newattr[3] = newattr[3] & ~termios.ICANON & ~termios.ECHO termios.tcsetattr(fd, termios.TCSANOW, newattr) self.oldflags = fcntl.fcntl(fd, fcntl.F_GETFL, 0) fcntl.fcntl(fd, fcntl.F_SETFL, self.oldflags | os.O_NONBLOCK) while 1: if self.stop_flag is True: self.stop_flag = False break try: while 1: c = sys.stdin.read(1) print ord(c) if isinstance(self.state, dict): if ord(c) in self.state: # print '-> ', ord(c) self.state = self.state[ord(c)] else: # 不支持此按键 # print 'no support' self.state = self.fsm # print self.state if isinstance(self.state, tuple): # print "hehe" if not hasattr(self.callback, '__call__'): raise Exception("回调函数不能被调用。") self.callback(self.state) self.state = self.fsm break except IOError: pass def stop(self): termios.tcsetattr(fd, termios.TCSAFLUSH, oldterm) fcntl.fcntl(fd, fcntl.F_SETFL, oldflags) self.stop_flag = True
2,849
auto_trapezium.py
fjchange/Data_Analyze
0
2173327
import math class auto_trap: def __init__(self,a,b,func,limit=0.00001): self.a=a self.b=b self.h=(b-a)/2.0 self.limit=limit self.func=func self.T1=(func(a)+func(b))*self.h def cal(self): n=2 while (1): self.T0=self.T1 S=0 for i in range(1,n): t=self.a+(2*i-1)*self.h/n S=S+self.func(t) self.T1=self.T0/2.0+S*self.h/n if abs(self.T1-self.T0)<3*self.limit: return self.T1 else:n=2*n
581
run_model.py
wfclark5/hamlet
2
2172647
import sys from subprocess import call, Popen call("python get_cyclone_members.py", shell = True) call("python geoprocess_members.py", shell = True) call("python drop_members.py", shell = True) call("python exposure_summary.py", shell = True)
251
merge_py.py
bhavaniravi/mergepy
1
2172463
import ast from collections import namedtuple import sys, inspect, importlib import astunparse import glob imports = [] classes = [] class_names = [] def get_imports(path): with open(path) as fh: root = ast.parse(fh.read(), path) for node in ast.iter_child_nodes(root): print (node) if isinstance(node, ast.Import): module = [] elif isinstance(node, ast.ImportFrom): module = node.module.split('.') elif isinstance(node, ast.ClassDef): class_names.append(node.name) source = astunparse.unparse(node) classes.append(source) continue else: continue for n in node.names: if not module: statement = f"import {n.name}" else: statement = f"from {'.'.join(module)} import {n.name}" if n.asname: statement = statement + f"as {n.asname}" imports.append(statement) return classes input_folder_path = input("Input folder path: ") or "example/input" output_file_path = input("Output file path with .py extension: ") or "example/output/eg.py" print (glob.glob(f"{input_folder_path}/*.py")) for f in glob.glob(f"{input_folder_path}/*.py"): print (f"Processing file :: {f}") get_imports(f) with open(output_file_path, "w") as f: for i in imports: print(i, file=f) for c in classes: print(c.replace("\\n", "\n"), file=f)
1,539
src/main/resources/spigot/event.py
True-cc/SPYgotUtils
4
2169998
from org.bukkit.event import EventPriority from org.bukkit.event.player import AsyncPlayerChatEvent def test(event): """ :type event: AsyncPlayerChatEvent """ msg = event.getMessage() # type: str if msg.startswith("p!"): event.setCancelled(True) event.getPlayer().sendMessage("Hewwo fwom jythwon!") # Events registered on enable, not load. def on_enable(): register_event(AsyncPlayerChatEvent, EventPriority.MONITOR, test)
468
problem0391.py
kmarcini/Project-Euler-Python
0
2172600
########################### # # #391 Hopping Game - Project Euler # https://projecteuler.net/problem=391 # # Code by <NAME> # ###########################
154
sorting_algs/cocktail_shaker_sort.py
shrijaltamrakar/Descent_py
2
2173486
from __future__ import print_function from inspect.TimeIt import timeit @timeit def cocktail_shaker_sort(unsorted): """ implementation of cocktail shaker sort algo in pure python :param unsorted: unsorted list :return: sorted list """ for i in range(len(unsorted)-1,0,-1): swapped = False for j in range(i,0,-1): if unsorted[j] < unsorted[j-1]: unsorted[j], unsorted[j-1] = unsorted[j-1], unsorted[j] swapped = True for j in range(i): if unsorted[j] > unsorted[j+1]: unsorted[j], unsorted[j+1] = unsorted[j+1], unsorted[j] swapped = True if not swapped: return unsorted if __name__=="__main__": try: raw_input # python 2 except NameError: raw_input = input user_input = raw_input('Enters a numbers seperated by comma : \n').strip() unsorted = [int(item) for item in user_input.split(',')] cocktail_shaker_sort(unsorted) print(unsorted)
1,047
vectorize.py
jmkinder1/code-samples
5
2173364
# vectorize.py # ------------------------------------------------------------------------- # Use vectorized operations to generate multiple solutions to the # quadratic equation. # ------------------------------------------------------------------------- import numpy as np b, c = 2, -1 a = np.arange(-1, 2, 0.3) x = (-b + np.sqrt(b**2 - 4*a*c)) / (2*a)
356
guests/migrations/0018_auto_20191124_0058.py
pop/wedding-website
0
2172793
# Generated by Django 2.2.6 on 2019-11-24 00:58 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('guests', '0017_auto_20191123_2318'), ] operations = [ migrations.RemoveField( model_name='party', name='category', ), migrations.RemoveField( model_name='party', name='save_the_date_opened', ), migrations.RemoveField( model_name='party', name='save_the_date_sent', ), migrations.RemoveField( model_name='party', name='type', ), ]
658
pycoder/model/inference.py
himanshu-dutta/pycoder
1
2173174
from pycoder.utils import formatter from pycoder.model.transformer import load_transformers, save_transformers from pycoder.imports import ( pipeline, Union, Path, List, GPT2LMHeadModel, AutoTokenizer, rmtree, ) class CodeInference: def __init__( self, model_path: Union[Path, str], tokenizer_path: Union[Path, str], control_tokens: dict, max_length: int, cuda: bool = False, verbose: bool = False, ) -> None: check_load_from_model_hub(model_path, tokenizer_path) model, tokenizer = load_transformers(model_path, tokenizer_path, verbose) model.config.task_specific_params["text-generation"]["max_length"] = max_length self.coder = pipeline( "text-generation", model=model, tokenizer=tokenizer, config={"max_length": max_length}, device=0 if cuda else -1, ) self.control_tokens = control_tokens def __call__( self, topics: Union[List[str], str], description: str, code_prefix: str = "" ) -> List[str]: """ sends in input: <|TOP|>TOPICS<|DES|>DESCRIPTION<|CODE|> hopes for the output as: <|TOP|>TOPICS<|DES|>DESCRIPTION<|CODE|>CODE<|EOS|> """ if isinstance(topics, list): topics = ",".join(topics) inp = ( self.control_tokens["topics_token"] + topics + self.control_tokens["description_token"] + description + self.control_tokens["code_token"] + code_prefix ) out = self.coder(inp) out = list( map( lambda x: x["generated_text"].split(self.control_tokens["code_token"])[ 1 ], out, ) ) return out def check_load_from_model_hub( model_path: Union[Path, str], tokenizer_path: Union[Path, str] ) -> None: from pycoder.config import HF_HUB_NAME, CACHE_DIR model_path = Path(model_path) tokenizer_path = Path(tokenizer_path) if not model_path.exists() or not tokenizer_path.exists(): print( formatter( "\nModel and Tokenizer being downloaded and saved from ModelHub (once only)...\n", color="g", ) ) model = GPT2LMHeadModel.from_pretrained( HF_HUB_NAME, cache_dir=CACHE_DIR / "tokenizer" ) tokenizer = AutoTokenizer.from_pretrained( HF_HUB_NAME, cache_dir=CACHE_DIR / "model" ) save_transformers(model_path, tokenizer_path, model, tokenizer, verbose=False) print( formatter("\nModel and Tokenizer saved.", color="g", bold=True, tick=True) + "\n" ) rmtree(CACHE_DIR)
2,876
Ago-Dic-2017/Enrique Castillo/Práctica1/Cliente.py
Andremm303/DAS_Sistemas
0
2173083
from Persona import Persona class Cliente(Persona): def __init__(self, nombre, apellidos, edad, direccion, telefono, idCliente): Persona.__init__(self, nombre, apellidos, edad, direccion, telefono) self.idCliente = idCliente def getIdCliente(self): return self.idCliente def setidCliente(self): self.idCliente = idCliente def atribCliente(self): return "Nombre: {}\nApellidos: {}\nEdad: {}\nDirección {}\nTeléfono: {}\nNúmero de Cliente: {}\n".format(self.nombre, self.apellidos, self.edad, self.direccion, self.telefono, self.idCliente)
604
test/eutilities_test/e_utilities_test.py
BrianPulfer/AuthorNameDisambiguation
8
2172659
import unittest from main.eutilities import e_utilities class TestQueries(unittest.TestCase): def test_query_class(self): """Tests all the Query class methods: construction, parameters settings/adding and 'to string' method""" # Creating an empty query and filling it afterwards q1 = e_utilities.Query() q1.add_mesh_term('mt1') q1.add_mesh_term('mt2') q1.set_pubblication_date('2011') # Testing that the query is correctly created for the REST request self.assertEqual('mt1[mesh]+AND+mt2[mesh]+AND+2011[pdat]', q1.to_string()) # Testing that the set_mesh_terms method overwrites the older ones q1.set_mesh_terms(['mt3', 'mt4']) self.assertEqual('mt3[mesh]+AND+mt4[mesh]+AND+2011[pdat]', q1.to_string()) # Testing query creation with all parameters q2 = e_utilities.Query('2009', ['cancer', 'asthma']) self.assertEqual('cancer[mesh]+AND+asthma[mesh]+AND+2009[pdat]', q2.to_string()) q2.add_any_terms(20180383) self.assertEqual('20180383+AND+cancer[mesh]+AND+asthma[mesh]+AND+2009[pdat]', q2.to_string()) def test_search(self): """Tests that a valid result is returned for a valid GET request.""" # IMPORTANT: This tests fails when executed with all the other tests. Run the test alone to check if successful. q = e_utilities.Query() q.set_pubblication_date('2009') q.add_mesh_term('asthma') q.add_mesh_term('leukotrienes') result = e_utilities.search(e_utilities.DATABASES.PubMed, q) self.assertIsNotNone(result) # Checking that at least 10 articles are found self.assertTrue(10 < len(result.content.decode('utf-8').split('<Id>'))) def test_fetch(self): """Tests that data is fetched giving only a query""" # Creating the query q = e_utilities.Query(pdat="2009", mesh=['asthma', 'leukotrienes']) # Fetching result from PubMed database based on the query result = e_utilities.fetch(e_utilities.DATABASES.PubMed, q) # Checking that the fetched data's content is longer that 109'000 characters (109'286 when checked manually) self.assertTrue(len(str(result.content)) > 109000) # Creating a query that only specifies the PMID q2 = e_utilities.Query(any_terms=["20113659"]) # Fetching result with new query result2 = e_utilities.fetch(e_utilities.DATABASES.PubMed, q2) # Checking that the result's content only contains one publication self.assertEqual(2, len(str(result2.content).split('[Indexed for MEDLINE]'))) # Checking that the result is what's excpected to be self.assertTrue("OBJECTIVE: Cysteinyl leukotriene (CysLTs) plays an important role in airway" in str(result2.content).split('[Indexed for MEDLINE]')[0]) def test_fetch_articles(self): """Tests that article can be retrieved correctly""" # Creating a query that only contains the PubMed ID q = e_utilities.Query(any_terms=["20113659"]) # Fetching articles articles = e_utilities.fetch_articles(e_utilities.DATABASES.PubMed, q) # Checking that fetched article is what expected (checked manually via browser) self.assertEqual(1, len(articles)) self.assertTrue("Zhongguo Dang Dai Er Ke Za Zhi" in articles[0].get_raw_text()) def test_search_by_pmid(self): """Tests that method 'search_with_pmid(pmid)' returns the correct data""" # Retrieving the response from searching an article given it's ID response = e_utilities.search_by_pmid(20180383) # Verifying that the response only contains one result self.assertTrue("<eSearchResult><Count>1</Count>" in str(response.content)) # Verifying that the response's content only contains the selected response's ID self.assertTrue("<IdList>\n<Id>20180383</Id>\n</IdList>" in response.content.decode('utf-8')) def test_extract_ids(self): """Tests that 'extract_ids(response)' correctly returns a list of denotation IDs given a request's response""" # Creating the query q = e_utilities.Query('2009', ['cancer', 'asthma']) # Getting the response response = e_utilities.search(e_utilities.DATABASES.PubMed, q) # Extracting the IDs given the response's content ids = e_utilities.extract_ids(str(response.content)) # Testing that the response contains all expected ids (verified manually via browser) expected_response = [20180383, 20128434, 20110007, 20044861, 20016028, 19995140, 19960035, 19926424, 19917947, 19863293, 19858390, 19851534, 19831405, 19817310, 19812684, 19808918, 19757309, 19737788, 19735105] for elem in expected_response: self.assertTrue(elem in ids) if __name__ == '__main__': unittest.main()
4,969
ia870/iaregmax.py
rdenadai/ia870p3
5
2172844
# -*- encoding: utf-8 -*- # Module iaregmax from numpy import * from ia870.iasecross import iasecross def iaregmax(f, Bc=iasecross()): from ia870.iasubm import iasubm from ia870.iahmax import iahmax from ia870.iabinary import iabinary from ia870.iaregmin import iaregmin from ia870.ianeg import ianeg y = iasubm(f, iahmax(f,1,Bc)) return iabinary(y) #return iaregmin( ianeg(f),Bc)
417
hw3/asp_ex.py
D-denHeijer/KRR-course
0
2172859
import clingo def print_answer_sets(program): # Load the answer set program, and call the grounder control = clingo.Control(); control.add("base", [], program); control.ground([("base", [])]); # Define a function that will be called when an answer set is found # This function sorts the answer set alphabetically, and prints it def on_model(model): sorted_model = [str(atom) for atom in model.symbols(shown=True)]; sorted_model.sort(); print("Answer set: {{{}}}".format(", ".join(sorted_model))); # Ask clingo to find all models (using an upper bound of 0 gives all models) control.configuration.solve.models = 0; # Call the clingo solver, passing on the function on_model for when an answer set is found answer = control.solve(on_model=on_model) # Print a message when no answer set was found if answer.satisfiable == False: print("No answer sets"); print_answer_sets(""" step(1..9). block(1..9). init(3,2). init(6,5). init(9,8). init(2,1). init(5,4). init(8,7). init(1,0). init(4,0). init(7,0). goal(8,6). goal(5,7). goal(6,4). goal(7,3). goal(4,2). goal(3,9). goal(2,1). location(0). location(B) :- block(B). { move(B,L,T) } :- block(B), location(L), step(T), B != L. object(B,T) :- move(B,_,T). target(B,T) :- move(_,B,T). :- step(T), 2 #count { object(B,T) : object(B,T) }. :- step(T), 2 #count { target(B,T) : target(B,T) }. on(B,L,0) :- init(B,L). on(B,L,T) :- move(B,L,T). on(B,L,T) :- on(B,L,T-1), step(T), not object(B,T). blocked(B,T) :- on(_,B,T), block(B), step(T+1). :- object(B,T), blocked(B,T -1). :- target(B,T), blocked(B,T -1). :- goal(B,L), step(T), not step(T+1), not on(B,L,T). #show move /3. """)
1,814
src/08_multiprocessing/child_cpu.py
rurumimic/concurrency-python
0
2171772
import multiprocessing import os class WorkerProcess(multiprocessing.Process): def __init__(self): super(WorkerProcess, self).__init__() def run(self): print(f'Child PID: {multiprocessing.current_process().pid}') def main(): print(f'Main PID: {multiprocessing.current_process().pid}') processes = [] count = os.cpu_count() if count == None: return print(f'os.cpu: {count}') for i in range(count): process = WorkerProcess() # 0 processes.append(process) process.start() for process in processes: process.join() if __name__ == '__main__': main() ''' Main PID: 77701 os.cpu: 8 Child PID: 77714 Child PID: 77712 Child PID: 77713 Child PID: 77715 Child PID: 77716 Child PID: 77717 Child PID: 77718 Child PID: 77719 '''
824
setup.py
wikimedia/research-recommendation-api
3
2173483
from setuptools import setup, find_packages setup( name='recommendation', version='0.3.2', url='https://github.com/wikimedia/research-recommendation-api', license='Apache Software License', maintainer='Wikimedia Research', maintainer_email='<EMAIL>', description='Provide recommendations in Wikimedia projects', long_description='', packages=find_packages(exclude=['test', 'test.*', '*.test']), install_requires=['flask', 'flask-restplus', 'requests', 'numpy', 'scipy', 'sklearn', # https://github.com/noirbizarre/flask-restplus/issues/777 'Werkzeug==0.16.0'], package_data={'recommendation.web': ['static/*.*', 'static/i18n/*', 'static/images/*', 'static/suggest-searches/*', 'templates/*'], 'recommendation': ['data/*']}, zip_safe=False, setup_requires=['pytest-runner', 'setuptools_scm < 2.0.0'], tests_require=['pytest', 'responses', 'memory_profiler', 'psutil'])
1,338
forte/data/base_store.py
KGerring/forte
0
2173222
# Copyright 2019 The Forte Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from abc import abstractmethod from typing import List, Iterator, Tuple, Any __all__ = ["BaseStore"] class BaseStore: r"""The base class which will be used by :class: `~forte.data.data_store.DataStore`.""" def __init__(self): r""" This is a base class for the efficient underlying data structure. A current implementation of `BaseStore` is `DataStore`. A `BaseStore` contains a collection of Forte entries. Each entry type contains some subtypes, which could have various fields stored in entry lists. """ @abstractmethod def add_annotation_raw(self, type_name: str, begin: int, end: int) -> int: r"""This function adds an annotation entry with `begin` and `end` indices to the `type_name` sortedlist in `self.__elements`, returns the `tid` for the inserted entry. Args: type_name (str): The index of Annotation sortedlist in `self.__elements`. begin (int): Begin index of the entry. end (int): End index of the entry. Returns: `tid` of the entry. """ raise NotImplementedError @abstractmethod def add_link_raw( self, type_name: str, parent_tid: int, child_tid: int ) -> Tuple[int, int]: r"""This function adds a link entry with `parent_tid` and `child_tid` to the `type_name` list in `self.__elements`, returns the `tid` and the `index_id` for the inserted entry in the list. This `index_id` is the index of the entry in the `type_name` list. Args: type_name (str): The index of Link list in `self.__elements`. parent_tid (int): `tid` of the parent entry. child_tid (int): `tid` of the child entry. Returns: `tid` of the entry and its index in the `type_name` list. """ raise NotImplementedError @abstractmethod def add_group_raw( self, type_name: str, member_type: str ) -> Tuple[int, int]: r"""This function adds a group entry with `member_type` to the `type_name` list in `self.__elements`, returns the `tid` and the `index_id` for the inserted entry in the list. This `index_id` is the index of the entry in the `type_name` list. Args: type_name (str): The index of Group list in `self.__elements`. member_type (str): Fully qualified name of its members. Returns: `tid` of the entry and its index in the `type_name` list. """ raise NotImplementedError @abstractmethod def set_attribute(self, tid: int, attr_name: str, attr_value: Any): r"""This function locates the entry data with `tid` and sets its `attr_name` with `attr_value`. Args: tid (int): Unique Id of the entry. attr_name (str): Name of the attribute. attr_value (any): Value of the attribute. """ raise NotImplementedError @abstractmethod def set_attr(self, tid: int, attr_id: int, attr_value: Any): r"""This function locates the entry data with `tid` and sets its attribute `attr_id` with value `attr_value`. Called by `set_attribute()`. Args: tid (int): Unique id of the entry. attr_id (int): Id of the attribute. attr_value: value of the attribute. """ raise NotImplementedError @abstractmethod def get_attribute(self, tid: int, attr_name: str): r"""This function finds the value of `attr_name` in entry with `tid`. Args: tid (int): Unique id of the entry. attr_name (str): Name of the attribute. Returns: The value of `attr_name` for the entry with `tid`. """ raise NotImplementedError @abstractmethod def get_attr(self, tid: int, attr_id: int): r"""This function locates the entry data with `tid` and gets the value of `attr_id` of this entry. Called by `get_attribute()`. Args: tid (int): Unique id of the entry. attr_id (int): Id of the attribute. Returns: The value of `attr_id` for the entry with `tid`. """ raise NotImplementedError @abstractmethod def delete_entry(self, tid: int): r"""This function removes the entry with `tid` from the data store. Args: tid (int): Unique id of the entry. """ raise NotImplementedError @abstractmethod def get_entry(self, tid: int) -> Tuple[List, int, int]: r"""Look up the entry_dict with key `tid`. Return the entry, its `type_name`, and its `index_id` in the `entry_type` list. Args: tid (int): Unique id of the entry. Returns: The entry which `tid` corresponds to, its `type_name` and its index in the `entry_type` list. """ raise NotImplementedError @abstractmethod def get(self, type_name: str, include_sub_type: bool) -> Iterator[List]: r"""This function fetches entries from the data store of type `type_name`. Args: type_name (str): The index of the list in `self.__elements`. include_sub_type: A boolean to indicate whether get its subclass. Returns: An iterator of the entries matching the provided arguments. """ raise NotImplementedError @abstractmethod def next_entry(self, tid: int) -> List: r"""Get the next entry of the same type as the `tid` entry. Args: tid (int): Unique id of the entry. Returns: The next entry of the same type as the `tid` entry. """ raise NotImplementedError @abstractmethod def prev_entry(self, tid: int) -> List: r"""Get the previous entry of the same type as the `tid` entry. Args: tid (int): Unique id of the entry. Returns: The previous entry of the same type as the `tid` entry. """ raise NotImplementedError
6,796
schoolport/app_core/migrations/0009_tb_price_standards_price_currency.py
yotink522/schoolport
0
2172987
# Generated by Django 3.1.7 on 2021-05-09 13:17 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('app_core', '0008_tb_price_standards'), ] operations = [ migrations.AddField( model_name='tb_price_standards', name='price_currency', field=models.CharField(max_length=20, null=True), ), ]
416
AssertGen.py
sardarr/AutoGrade
0
2172526
import os def main(arg): ind=1 runner='' asserts=open('Asserts/'+arg+'.txt').readlines() for lines in asserts: if 'assert' not in lines: runner+=lines[:-1]+'\n' print(lines[:-1]) else: runner+='try {\n\t'+lines+'\tSystem.out.println(\"Passed '+str(ind)+'"); \n}\n'+'catch(Exception |AssertionError e ) {\n\tSystem.out.println(\"Failed '+str(ind)+'\");\n}' print('try {\n\t'+lines+'\tSystem.out.println(\"Passed '+str(ind)+'"); \n}\n'+'catch(Exception |AssertionError e ) {\n\tSystem.out.println(\"Failed '+str(ind)+'\");\n}') ind+=1 if not os.path.isdir(os.path.join('Resources', arg)): os.makedirs(os.path.join('Resources', arg)) with open(os.path.join('Resources',arg)+'/runner.java','w') as file: file.writelines(runner) file.close() if __name__ == '__main__': HWID='hw5' main(HWID)
921
src/mabot/ui/progressbar.py
jussimalinen/robotframework-mabot
8
2173391
# Copyright 2009 Nokia Siemens Networks Oyj # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from Tkinter import * import thread import time class ProgressBar(Toplevel): def __init__(self, parent, title): self._parent = parent self._title = title self.not_created = False self._init_progress_bar() def _init_progress_bar(self): if os.name != 'nt': self.not_created = True return Toplevel.__init__(self, self._parent) self.title(self._title) self.protocol("WM_DELETE_WINDOW", lambda: True) self.width = 200 self.height = 10 self.geometry(self._get_location(self._parent)) self.progress_bar_view = ProgressBarView(self, self.width, self.height) self.progress_bar_view.pack() self._parent.update() self._running = thread.allocate_lock() thread.start_new_thread(self._update, ()) def add_ask_method(self, method): self._ask_method = method def call_ask_method(self, *args): self.destroy() result = self._ask_method(*args) self._init_progress_bar() return result def _get_location(self, parent): x = parent.winfo_rootx() + parent.winfo_width()/2 - self.width/2 y = parent.winfo_rooty() + parent.winfo_height()/2 - self.height/2 return "+%d+%d" % (x, y) def _update(self): while self._running.acquire(0): self.progress_bar_view.update_progress() time.sleep(0.1) self._running.release() def destroy(self): if self.not_created: return self._running.acquire() Toplevel.destroy(self) class ProgressBarView: def __init__(self, master, width, height): self.master=master self.value = 0 self.width = width self.height = height #TODO: Test with Ubuntu self.fill_color = 'blue' self.background = 'white' self.frame = Frame(self.master, bd=2, width=self.width, height=self.height) self.canvas = Canvas(self.frame, background=self.background, width=self.width, height=self.height) self.scale = self.canvas.create_rectangle(0, 0, self.width, self.height, fill=self.fill_color) self.canvas.pack(fill=BOTH, expand=YES) self.update() def update_progress(self): self.value += self.width / 20 if self.value > self.width: self.value -= self.width self.update() def pack(self, *args, **kw): self.frame.pack(*args, **kw) def update(self): start = (float(self.value) / self.width * self.width) - self.width / 4 end = float(self.value) / self.width * self.width self.canvas.coords(self.scale, start, 0, end, self.height) self.canvas.update_idletasks()
3,451
examples/basic/merge_instance.py
souviksaha97/spydrnet-physical
0
2172551
""" =================================== Merging two instances in the design =================================== This example demonstrate how to merge two instance of the design """ from os import path import spydrnet as sdn import spydrnet_physical as sdnphy # TODO print("NotImplemented")
293
train_mnist.py
yjhuangcd/local-lipschitz
15
2172366
### basic modules import numpy as np import time, pickle, os, sys, json, PIL, tempfile, warnings, importlib, math, copy, shutil, setproctitle from datetime import datetime ### torch modules import torch import torch.nn as nn import torch.optim as optim from torch.optim.lr_scheduler import StepLR, MultiStepLR import torch.nn.functional as F import data_load import utils import Local_bound as Local if __name__ == "__main__": args = utils.argparser(data='mnist',epochs=300,warmup=0,rampup=150,batch_size=256,epsilon=1.58,epsilon_train=1.58) print(datetime.now()) print(args) print('saving file to {}'.format(args.prefix)) setproctitle.setproctitle(args.prefix) train_log = open(args.prefix + "_train.log", "w") test_log = open(args.prefix + "_test.log", "w") train_loader, test_loader = data_load.data_loaders(args.data, args.batch_size, args.test_batch_size, augmentation=args.augmentation, normalization=args.normalization, drop_last=args.drop_last, shuffle=args.shuffle) torch.manual_seed(args.seed) torch.cuda.manual_seed(args.seed) best_err = 1 err = 1 model = utils.select_model(args.data, args.model, args.init) # compute the feature size at each layer input_size = [] depth = len(model) x = torch.randn(1,1,28,28).cuda() for i, layer in enumerate(model.children()): if i < depth-1: input_size.append(x.size()[1:]) x = layer(x) # create u on cpu to store singular vector for every input at every layer u_train = [] u_test = [] for i in range(len(input_size)): print(i) if not model[i].__class__.__name__=='ReLU_x' and not model[i].__class__.__name__=='Flatten' and not isinstance(model[i], nn.ReLU): u_train.append(torch.randn((len(train_loader.dataset), *(input_size[i])), pin_memory=True)) u_test.append(torch.randn((len(test_loader.dataset), *(input_size[i])), pin_memory=True)) else: u_train.append(None) u_test.append(None) if args.opt == 'adam': opt = optim.Adam(model.parameters(), lr=args.lr) elif args.opt == 'sgd': opt = optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay) print(opt) if args.lr_scheduler == 'step': lr_scheduler = optim.lr_scheduler.StepLR(opt, step_size=args.step_size, gamma=args.gamma) elif args.lr_scheduler =='multistep': lr_scheduler = MultiStepLR(opt, milestones=args.wd_list, gamma=args.gamma) elif (args.lr_scheduler == 'exp'): lr_scheduler = torch.optim.lr_scheduler.LambdaLR( opt, lr_lambda=lambda step: utils.lr_exp(args.lr, args.end_lr, step, args.epochs)) print(lr_scheduler) eps_schedule = np.linspace(args.starting_epsilon, args.epsilon_train, args.schedule_length) kappa_schedule = np.linspace(args.starting_kappa, args.kappa, args.kappa_schedule_length) u_list = None for t in range(args.epochs): # set up epsilon and kappa scheduling if t < args.warmup: epsilon = 0 epsilon_next = 0 elif args.warmup <= t < args.warmup+len(eps_schedule) and args.starting_epsilon is not None: epsilon = float(eps_schedule[t-args.warmup]) epsilon_next = float(eps_schedule[np.min((t+1-args.warmup, len(eps_schedule)-1))]) else: epsilon = args.epsilon_train epsilon_next = args.epsilon_train if t < args.warmup: kappa = 1 kappa_next = 1 elif args.warmup <= t < args.warmup+len(kappa_schedule): kappa = float(kappa_schedule[t-args.warmup]) kappa_next = float(kappa_schedule[np.min((t+1-args.warmup, len(kappa_schedule)-1))]) else: kappa = args.kappa kappa_next = args.kappa print('%.f th epoch: epsilon: %.7f - %.7f, kappa: %.4f - %.4f, lr: %.7f'%(t,epsilon,epsilon_next,kappa,kappa_next,opt.state_dict()['param_groups'][0]['lr'])) # begin training if t < args.warmup: utils.train(train_loader, model, opt, t, train_log, args.verbose) _ = utils.evaluate(test_loader, model, t, test_log, args.verbose) elif args.warmup <= t: st = time.time() u_list, u_train, robust_losses_train, robust_errors_train, losses_train, errors_train = Local.train(train_loader, model, opt, epsilon, kappa, t, train_log, args.verbose, args, u_list, u_train) print('Taken', time.time()-st, 's/epoch') u_test, err, robust_losses_test, losses_test, errors_test = Local.evaluate(test_loader, model, epsilon_next, t, test_log, args.verbose, args, u_list, u_test) if args.lr_scheduler == 'step': if max(t - (args.rampup + args.warmup - 1) + 1, 0): print("LR DECAY STEP") lr_scheduler.step(epoch=max(t - (args.rampup + args.warmup - 1) + 1, 0)) elif args.lr_scheduler =='multistep' or args.lr_scheduler =='exp': print("LR DECAY STEP") lr_scheduler.step() else: raise ValueError("Wrong LR scheduler") # Save the best model after epsilon has been the largest if t>=args.warmup+len(eps_schedule): if err < best_err and args.save: print('Best Error Found! %.3f'%err) best_err = err torch.save({ 'state_dict' : model.state_dict(), 'err' : best_err, 'epoch' : t }, args.prefix + "_best.pth") torch.save({ 'state_dict': model.state_dict(), 'err' : err, 'epoch' : t }, args.prefix + "_checkpoint.pth") args.print = True trained = torch.load(args.prefix + "_best.pth")['state_dict'] model_eval = utils.select_model(args.data, args.model, args.init) model_eval.load_state_dict(trained) print('std testing ...') std_err = utils.evaluate(test_loader, model_eval, t, test_log, args.verbose) print('pgd testing ...') pgd_err = utils.evaluate_pgd(test_loader, model_eval, args) print('verification testing ...') u_test, last_err, robust_losses_test, losses_test, errors_test = Local.evaluate(test_loader, model_eval, args.epsilon, t, test_log, args.verbose, args, u_list, u_test) print('Best model evaluation:', std_err.item(), pgd_err.item(), last_err.item())
6,867
healthyways/maps_api.py
frederiksemmel/euvsvirus-healthyways
0
2171175
import googlemaps import os def dir_deptime(start, dest, dep_time): api = os.environ["GOOGLE_API_KEY"] gmaps = googlemaps.Client(key=api) route = gmaps.directions( start, dest, mode="transit", departure_time=dep_time, alternatives=True ) return route def dir_arrtime(start, dest, arr_time): api = os.environ["GOOGLE_API_KEY"] gmaps = googlemaps.Client(key=api) route = gmaps.directions( start, dest, mode="transit", arrival_time=arr_time, alternatives=True ) return route
536
whois/rest_api/router.py
we-race-here/wrh-bot
0
2173309
from rest_framework.routers import DefaultRouter from whois.rest_api import viewset router = DefaultRouter() router.register('WRHDiscordServers', viewset.WRHDiscordServersView)
177
otter/plugins/common/ClickableLabel.py
andrsd/otter
0
2173575
from PyQt5 import QtWidgets, QtCore class ClickableLabel(QtWidgets.QLabel): clicked = QtCore.pyqtSignal() def __init__(self, parent=None): super().__init__(parent) def enterEvent(self, event): f = self.font() f.setUnderline(True) self.setFont(f) def leaveEvent(self, event): f = self.font() f.setUnderline(False) self.setFont(f) def mouseReleaseEvent(self, event): self.clicked.emit()
476
data_tools/validators.py
AfricasVoices/Experimental-UnitChart
0
2172569
from datetime import datetime def validate_string(s, variable_name=""): assert isinstance(s, str), "{} not a string".format(variable_name) assert s != "", "{} is empty".format(variable_name) return s def validate_int(i, variable_name=""): assert isinstance(i, int), "{} not an int".format(variable_name) return i def validate_double(d, variable_name=""): assert isinstance(d, float), "{} not a double".format(variable_name) return d def validate_bool(b, variable_name=""): assert isinstance(b, bool), "{} not a bool".format(variable_name) return b def validate_list(l, variable_name=""): assert isinstance(l, list), "{} not a list".format(variable_name) return l def validate_hexcolor(c, variable_name=""): assert isinstance(c, str), "{} not a color".format(variable_name) assert c.startswith("#") assert len(c) == 7 return c def validate_datetime(d, variable_name=""): assert isinstance(d, datetime), "{} not a datetime".format(variable_name) return d
1,035