max_stars_repo_path
stringlengths
4
182
max_stars_repo_name
stringlengths
6
116
max_stars_count
int64
0
191k
id
stringlengths
7
7
content
stringlengths
100
10k
size
int64
100
10k
lacusCloud_app/lacus_middleware/lacus_node/implementation/registerNode.py
tavog96/distribuidosProyecto
0
2172595
from ...lacus_common.infrastructure.configFileController.configFileController import configFileController from ...lacus_common.infrastructure.networkManagement.restClient import restClientController def RegisterNode(trackerHostIP): configFile=configFileController() configFile.scanConfigFile() restClient = restClientController(configFile.appTcpPort, trackerHostIP) nodeInfo = {} nodeInfo['ip'] = configFile.localHostIP nodeInfo['uid'] = configFile.localHostUid result = restClient.postRegisterNewNode(nodeInfo) if (result!= False): return True return False
602
django_dynamic_forms/migrations/0016_auto_20180726_2035.py
lalfaro1704/django_dynamic_forms
0
2171864
# Generated by Django 2.0.7 on 2018-07-27 00:35 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('django_dynamic_forms', '0015_dynamicattribute_tag_name'), ] operations = [ migrations.AlterField( model_name='dynamicattribute', name='parameters', field=models.ManyToManyField(blank=True, to='django_dynamic_forms.DynamicParameter', verbose_name='parameters'), ), migrations.AlterField( model_name='dynamicform', name='parameters', field=models.ManyToManyField(blank=True, to='django_dynamic_forms.DynamicParameter', verbose_name='parameters'), ), ]
730
mlp.py
Creling/DM-GAN
0
2172815
# coding=utf8 ''' Author: Creling Date: 2021-11-29 23:15:19 LastEditors: Creling LastEditTime: 2021-11-30 09:31:32 Description: file content ''' import torch from tqdm import tqdm M, input_size, hidden_size, output_size = 32, 1000, 100, 10 learning_rate = 0.001 x = torch.rand((M, input_size)) y = torch.rand((M, output_size)) w1 = torch.rand((input_size, hidden_size), requires_grad=True) w2 = torch.rand((hidden_size, hidden_size), requires_grad=True) w3 = torch.rand((hidden_size, output_size), requires_grad=True) b1 = torch.rand((1, hidden_size), requires_grad=True) b2 = torch.rand((1, hidden_size), requires_grad=True) b3 = torch.rand((1, output_size), requires_grad=True) def model(x, w1, w2, b1, b2, w3, b3): h1 = x.mm(w1) + b1 h1 = h1.clamp(min=0) h2 = h1.mm(w2) + b2 h2 = h2.clamp(min=0) output = h2.mm(w3) + b3 return output def loss_fn(y_pred, y): return (y - y_pred).pow(2).sum() def train(x, w1, w2, b1, b2, w3, b3): for i in tqdm(range(5000)): output = model(x, w1, w2, b1, b2, w3, b3) loss = loss_fn(output, y) if i % 100 == 0: print("") print(loss.item()) loss.backward() w1.data -= learning_rate * w1.grad.data w2.data -= learning_rate * w2.grad.data w3.data -= learning_rate * w3.grad.data b1.data -= learning_rate * b1.grad.data b2.data -= learning_rate * b2.grad.data b3.data -= learning_rate * b3.grad.data w1.grad.zero_() w2.grad.zero_() w3.grad.zero_() b1.grad.zero_() b2.grad.zero_() b3.grad.zero_() print(w1) train(x, w1, w2, b1, b2, w3, b3) print(w1)
1,679
InspectorMini.roboFontExt/lib/inspectorMini.py
mrecord/InspectorMini
0
2171905
# -*- coding: UTF-8 -*- """ A basic version of the Inspector. Glyph | Width | Unicode """ #import vanilla from vanilla import * from mojo.events import addObserver, removeObserver from defconAppKit.windows.baseWindow import BaseWindowController from mojo.UI import OpenGlyphWindow class inspectorMini(BaseWindowController): def __init__(self): # layout self.windowWidth = 240 self.windowHeight = 80 self.windowHeightMax = self.windowHeight * 3.75 # # # # # # Window # # # # # self.w = FloatingWindow((self.windowWidth, self.windowHeight), "inspectorMini", minSize=(self.windowWidth, self.windowHeight), maxSize=(300, self.windowHeightMax)) self.w.info = List((10, 10, -10, -28), [], columnDescriptions=[{"title": "Name", "editable":True}, {"title": "Width", "editable":True}, {"title": "Unicode", "editable":True}], doubleClickCallback = self.selectGlyph, ) self.w.clear = Button((10, -24, -10, 20), "clear", callback=self.clear) # GO! self.setUpBaseWindowBehavior() self.w.open() self.run() # # # # # # # # # # FUNCTIONS # # # # # # # # # def run(self): addObserver(self, "setInfo", "currentGlyphChanged") self.setInfo("hello") def windowCloseCallback(self, sender): removeObserver(self, "currentGlyphChanged") super(inspectorMini, self).windowCloseCallback(sender) def clear(self, sender): self.w.info.set([]) self.w.resize(self.w.getPosSize()[2], self.windowHeight) #self.setInfo(sender) def uniName(self, sender, uniValue): return '%s' % (format((uniValue), 'x').zfill(4).upper()) def setInfo(self, sender): l = self.w.info.get() if CurrentFont() != None: if CurrentGlyph() != None: g = ({"Name": CurrentGlyph().name, "Width": CurrentGlyph().width, "Unicode": ', '.join(map(str, [self.uniName(sender, x) for x in CurrentGlyph().unicodes]))}) if g in l: l.remove(g) l.append(g) else: for i in CurrentFont().selectedGlyphNames: uni = [str(self.uniName(sender, x)) for x in CurrentFont()[i].unicodes] g = ({"Name": i, "Width": CurrentFont()[i].width, "Unicode": ", ".join(uni)}) if g in l: l.remove(g) l.append(g) self.w.info.set(l) newHeight = self.windowHeight + (len(l)*18) if newHeight > self.windowHeightMax: newHeight = self.windowHeightMax self.w.resize(self.w.getPosSize()[2], newHeight) self.w.info.setSelection([len(l)-1]) self.w.info.scrollToSelection() def selectGlyph(self, sender): g = self.w.info.get() if self.w.info.getSelection() != []: gs = self.w.info.getSelection()[0] if CurrentFont() != None: OpenGlyphWindow(CurrentFont()[g[gs]["Name"]], newWindow=False) if __name__ == "__main__": inspectorMini()
2,730
pythonAlgorithm/highlevel/Largest Rectangle in Histogram.py
Sky-zzt/lintcodePractice
1
2171892
class Solution: """ @param height: A list of integer @return: The area of largest rectangle in the histogram )。维护一个单调递增栈,逐个将元素 push 到栈里。push 进去之前先把 >= 自己的元素 pop 出来。 每次从栈中 pop 出一个数的时候,就找到了往左数比它小的第一个数(当前栈顶)和往右数比它小的第一个数(即将入栈的数), 从而可以计算出这两个数中间的部分宽度 * 被pop出的数,就是以这个被pop出来的数为最低的那个直方向两边展开的最大矩阵面积。 因为要计算两个数中间的宽度,因此放在 stack 里的是每个数的下标。 """ # 找出左右两边离他最近的最小值,每个位置i能形成的最大的矩形=heights(i) * ((i-leftnearminIndex)+(rightnearmin-i)) # todo 和Trapping rain water 对比看 # todo 下次想不起来就重写一遍吧 呵呵 def largestRectangleArea(self, heights): # todo 左边和右边的离他最近的最大最小值 Monotonous stack heights.insert(0, 0) leftmin, rightmin = self.MonotonousStack(heights + [0]) # todo 右边加个 0 好处理 maxArea = 0 for i in range(len(heights)): ans = 0 # if rightmin[i]==-1: # ans+=heights[i]*(len(heights)-i) # if leftmin[i]==-1: # ans+=heights[i]*(i+1) if i == len(heights) - 1: ans = heights[i] * (rightmin[i] - leftmin[i]) else: ans = heights[i] * (rightmin[i] - leftmin[i] + 1) # ans = heights[i] * ((i - leftmin[i]) + (rightmin[i] - i)) ## todo 这不就是 rightmin[i]-leftmin[i] 呵呵 maxArea = max(maxArea, ans) # 不能处理相等的情况,想等的话,stack.append([3,3]) 这样做 def MonotonousStack(self, heights): stack = [] leftmin = [0] * len(heights) rightmin = [0] * len(heights) for i in range(len(heights)): while len(stack) != 0 and heights[stack[-1]] > heights[i]: idx = stack.pop() rightmin[idx] = i if len(stack) > 0: leftmin[idx] = stack[-1] stack.append(i) while len(stack) > 0: idx = stack.pop() if len(stack) > 0: leftmin[idx] = stack[-1] # print(leftmin) # print(rightmin) return leftmin, rightmin def MonotonousStack1(self, heights): # todo heights右边加个 0 或者其他好处理 stack = [] heights.append(-1) leftmin = [-1] * len(heights) rightmin = [1] * len(heights) for i in range(len(heights)): while len(stack) != 0 and heights[stack[-1]] > heights[i]: idx = stack.pop() rightmin[idx] = heights[i] if len(stack) > 0: leftmin[idx] = heights[stack[-1]] stack.append(i) print(leftmin) print(rightmin) return leftmin, rightmin s = Solution() s.MonotonousStack1([1, 2, 4]) a = [1, 2] a.insert(1, 0) print(a)
2,583
setup.py
kallewesterling/django-licensing
3
2171170
import os from setuptools import setup README = open(os.path.join(os.path.dirname(__file__), 'README.rst')).read() # allow setup.py to be run from any path os.chdir(os.path.normpath(os.path.join(os.path.abspath(__file__), os.pardir))) setup( name='django-licensing', version='1.0.2', packages=['licensing'], include_package_data=True, license='Public Domain', description='A Django model and data for adding licensing info to data.', long_description=README, url='http://github.com/editorsnotes/django-licensing', download_url='http://github.com/editorsnotes/django-licensing/tarball/1.0.2', author='<NAME>', author_email='<EMAIL>', keywords = ['django', 'licenses', 'licences'], classifiers=[ 'Environment :: Web Environment', 'Framework :: Django', 'Intended Audience :: Developers', 'License :: Public Domain', 'Operating System :: OS Independent', 'Programming Language :: Python', 'Programming Language :: Python :: 2.7', 'Topic :: Internet :: WWW/HTTP', 'Topic :: Internet :: WWW/HTTP :: Dynamic Content', ], )
1,148
main.py
ege-kaya/booksync
0
2172983
import sys import threading from threading import * import json import socket import netifaces as ni import time import select import os import bisect import base64 from ebook import open_book from datetime import datetime, timedelta PORT = 12345 BUFFER_SIZE = 10240 HOSTNAME = socket.gethostname() x = ni.gateways() y = x['default'][2][1] LOCAL_IP = ni.ifaddresses(y)[ni.AF_INET][0]['addr'] TYPE1_DICT_HEAD = {"type": 1, "name": HOSTNAME, "IP": LOCAL_IP} TYPE2_DICT = {"type": 2, "name": HOSTNAME, "IP": LOCAL_IP} TYPE2_JSTR = json.dumps(TYPE2_DICT).encode("utf-8") ACKS = {} CHARS = {} RECEIVED = [] contacts = {} contact_names = [] responded_stamps = [] READING_SPEED = .1 escape = True def discover(): with socket.socket(socket.AF_INET, socket.SOCK_DGRAM) as s: s.bind(('', 0)) s.setsockopt(socket.SOL_SOCKET, socket.SO_BROADCAST, 1) timestamp = int(time.time()) TYPE1_DICT = TYPE1_DICT_HEAD TYPE1_DICT["ID"] = timestamp TYPE1_JSTR = json.dumps(TYPE1_DICT).encode("utf-8") for i in range(10): s.sendto(TYPE1_JSTR, ('<broadcast>', PORT)) def print_char(char): print_cyan(char) def listen_udp(): with socket.socket(socket.AF_INET, socket.SOCK_DGRAM) as s: s.bind(('', PORT)) result = select.select([s], [], []) while True: received = result[0][0].recv(BUFFER_SIZE) decoded = received.decode("utf-8") data_json = json.loads(decoded) if data_json["type"] == 1: if data_json["ID"] not in responded_stamps \ and data_json["IP"] != LOCAL_IP \ and data_json["name"] not in contact_names: responded_stamps.append(data_json["ID"]) contacts[data_json["name"]] = data_json["IP"] contact_names.append(data_json["name"]) destination_ip = data_json["IP"] with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s: try: s.connect((destination_ip, PORT)) s.sendall(TYPE2_JSTR) except: pass elif data_json["type"] == 4: char = data_json["body"] sender_name = data_json["name"] sender_ip = contacts[sender_name] timestamp = data_json["timestamp"] time_to_show = datetime.strptime(data_json["time_to_show"], '%Y-%m-%d %H:%M:%S.%f') if timestamp not in RECEIVED: delay = (time_to_show - datetime.now()).total_seconds() threading.Timer(delay, print_char, [char]).start() RECEIVED.append(timestamp) for i in range(10): send_ack(sender_ip, timestamp) elif data_json["type"] == 5: timestamp = data_json["timestamp"] ACKS[timestamp] = True def send_ack(recipient_ip, timestamp): with socket.socket(socket.AF_INET, socket.SOCK_DGRAM) as s: s.sendto(type5_wrapper(timestamp), (recipient_ip, PORT)) def print_red(*message): print('\033[91m' + " ".join(message) + '\033[0m') def print_green(*message): print('\033[92m' + " ".join(message) + '\033[0m') def print_yellow(*message): print('\033[93m' + " ".join(message) + '\033[0m') def print_cyan(*message): print('\033[96m' + " ".join(message) + '\033[0m', flush=True, end="") def listen_tcp(): with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s: s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) s.bind((LOCAL_IP, PORT)) while True: s.listen() received = b'' conn, addr = s.accept() with conn: while True: data = conn.recv(BUFFER_SIZE) received += data if not data: break decoded = received.decode("utf-8") data_json = json.loads(decoded) if data_json["type"] == 2: contacts[data_json["name"]] = data_json["IP"] contact_names.append(data_json["name"]) elif data_json["type"] == 3: print_red(data_json["name"] + ": " + data_json["body"]) def type3_wrapper(message): msg_dict = {"type": 3, "name": HOSTNAME, "body": message} msg_jstr = json.dumps(msg_dict).encode("utf-8") return msg_jstr def type4_wrapper(char, now): timestamp = now.timestamp() CHARS[timestamp] = char time_to_show = now + timedelta(milliseconds=100) msg_dict = {"type": 4, "name": HOSTNAME, "body": char, "timestamp": timestamp, "time_to_show": time_to_show} msg_jstr = json.dumps(msg_dict, default=str).encode("utf-8") return msg_jstr def write(message, recipient): global escape with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s: try: s.connect((contacts["{}".format(recipient)], PORT)) s.sendall(type3_wrapper(message)) except (KeyError, ConnectionRefusedError): contacts.pop(recipient) contact_names.remove(recipient) print_yellow("{} seems to have gone offline. Returning to the main menu.".format(recipient)) escape = False return def display_contacts(): if not contacts.keys(): print_yellow("There are no online contacts.") return for key in contacts.keys(): print_yellow(key) def chat(recipient): global escape print_yellow("chatting with", recipient) print_yellow("(type --exit to exit a chat)") while escape: msg = input() if msg == "--exit": return else: write(msg, recipient) escape = True def type5_wrapper(timestamp): msg_dict = {"type": 5, "name": HOSTNAME, "timestamp": timestamp} msg_jstr = json.dumps(msg_dict).encode("utf-8") return msg_jstr def read_book(book, recipient_ip): with socket.socket(socket.AF_INET, socket.SOCK_DGRAM) as s: for char in book: timestamp = datetime.now() msg = type4_wrapper(char, timestamp) for i in range(10): s.sendto(msg, (recipient_ip, PORT)) delay = (timestamp + timedelta(milliseconds=100) - datetime.now()).total_seconds() threading.Timer(delay, print_char, [char]).start() time.sleep(READING_SPEED) def main_menu(): while True: try: print_green("What would you like to do?") print_green("contacts: see online contacts") print_green("chat: start a chat with a user") print_green("quit: exit the program") print_green("read: read with someone") inp = input() if inp == 'contacts': display_contacts() elif inp == 'quit': try: print_yellow("Goodbye.") sys.exit() except KeyError: print_yellow("Goodbye.") sys.exit() elif inp == 'read': print_green("Who would you like to read with?") inp = input() while inp not in contact_names: print_yellow("Please enter the name of an online user, or type --exit to return to the main menu.") inp = input() if inp == '--exit': break if inp != '--exit': recipient_ip = contacts[inp] print_yellow("Please enter the absolute path of the epub file you would like to read.") pathinp = input() book = open_book(pathinp) read_book(book, recipient_ip) elif inp == 'chat': print_green("Who would you like to chat with?") inp = input() while inp not in contact_names: print_yellow("Please enter the name of an online user, or type --exit to return to the main menu.") inp = input() if inp == '--exit': break if inp != '--exit': chat(inp) while inp not in contact_names: print_yellow("Please enter the name of an online user, or type --exit to return to the main menu.") inp = input() if inp == '--exit': break if inp != '--exit': chat(inp) else: print_yellow("Invalid input.") except KeyboardInterrupt: main_menu() def main(): listener_daemon = Thread(target=listen_tcp) listener_daemon.setDaemon(True) listener_daemon.start() udp_listener_daemon = Thread(target=listen_udp) udp_listener_daemon.setDaemon(True) udp_listener_daemon.start() discover() main_menu() if __name__ == "__main__": main()
9,193
test/versioning_test.py
YoSTEALTH/Liburing
41
2171237
from liburing import skip_os def test_skip_os(): assert not skip_os('5.1') assert skip_os('10-10.0', 'Windows') assert skip_os('15.3.0', 'Darwin') assert not skip_os('5.11', 'linux') assert not skip_os('5.11', 'LINUx') assert skip_os('5.10004', 'LINUx')
280
lib/googlecloudsdk/command_lib/essential_contacts/util.py
google-cloud-sdk-unofficial/google-cloud-sdk
2
2173001
# -*- coding: utf-8 -*- # # Copyright 2020 Google LLC. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Arg parsing and other utilities for Essential Contacts commands.""" from __future__ import absolute_import from __future__ import division from __future__ import unicode_literals import re from googlecloudsdk.calliope import exceptions from googlecloudsdk.command_lib.util.apis import arg_utils from googlecloudsdk.core import properties def GetContactName(args): """Returns the full contact name from the args or raises an exception.""" c = GetContactId(args) p = GetParent(args) return '{}/contacts/{}'.format(p, c) def GetContactId(args): _ValidateContact(args.CONTACT_ID) return args.CONTACT_ID def _ValidateContact(flag_value): if not re.match('^[0-9]+$', flag_value): raise exceptions.InvalidArgumentException('contact', flag_value) def GetParent(args): """Returns the parent resource from args or the active gcloud project.""" if 0 == sum(bool(x) for x in (args.project, args.folder, args.organization)): # if neither project, folder, org was specified default to the # current project if available. args.project = properties.VALUES.core.project.GetOrFail() parent = None if args.project: _ValidateProject(args.project) parent = 'projects/%s' % args.project elif args.folder: _ValidateFolder(args.folder) parent = 'folders/%s' % args.folder else: _ValidateOrganization(args.organization) parent = 'organizations/%s' % args.organization return parent def _ValidateProject(flag_value): if not re.match('^[a-z0-9-]+$', flag_value): raise exceptions.InvalidArgumentException('project', flag_value) def _ValidateFolder(flag_value): if not re.match('^[0-9]+$', flag_value): raise exceptions.InvalidArgumentException('folder', flag_value) def _ValidateOrganization(flag_value): if not re.match('^[0-9]+$', flag_value): raise exceptions.InvalidArgumentException('organization', flag_value) def GetNotificationCategories(args, notification_category_enum_message): if not args.notification_categories: return [] return [ arg_utils.ChoiceToEnum(category_choice, notification_category_enum_message) for category_choice in args.notification_categories ]
2,830
multiese2.py
obrmmk/multiese-1
0
2172072
import re import csv import sys import pegtree as pg from naming import type_augmentation from multiese2_test import test_code from multiese2_da import multiese_da, encode_text_code # naming GRAMMAR = ''' Sentense = { (Block / . )* } Block = { { (!LF .)+ #Code } LF QUOTE LF { (!QUOTE (!LF .)* LF)+ #Doc } QUOTE LF #Pair } QUOTE = '\\'\\'\\'' _ / '"""' _ LF = '\\r'? '\\n' / !. ''' parse_as_tree = pg.generate(pg.grammar(GRAMMAR)) # prefix BEGIN = '([^A-Za-z0-9]|^)' #END = ('(?![A-Za-z0-9\\[\\{]|$)') END = ('(?![A-Za-z0-9]|$)') VARPAT = re.compile(BEGIN+r'([a-z]+)(\d?)'+END) PREFIX = { 's': ('文字列', ''), 'element': ('[文字列|オブジェクト|]', ''), 'obj': ('[オブジェクト|]', ''), 'alist': ('リスト', ''), 'atuple': ('タプル', ''), 'aset': ('セット', ''), 'adict': ('辞書', ''), 'ty': ('型', '型'), 'fin': ('[ファイル[入力|]|入力[|ストリーム]]', ''), 'fout': ('[ファイル[出力|]|出力[|ストリーム]]', ''), 'iterable': ('[[リスト|タプル|配列]|列|イテラブル|]', ''), } def _ta(name, number, prefixdic): prefix, suffix = prefixdic.get(name, ('', '')) if prefix == '' and suffix == '': if name.endswith('func'): prefix = '関数' suffix = '関数' if '|' not in prefix: prefix = f'[{prefix}|]' if suffix != '' and '|' not in suffix: suffix = f'[{suffix}|]' var = f'{name}{number}' if suffix == '': return var, f'{prefix}{var}' return var, f'[{prefix}{var}|{var}{suffix}]' def type_augmentation(doc, prefixdic): names = [_ta(x[1], x[2], prefixdic) for x in VARPAT.findall(doc + ' ')] doc = re.sub(VARPAT, r'\1@\2\3@', doc + ' ') # @s@ for old, new in names: if old != new: doc = doc.replace(f'@{old}@', new) return doc.replace('@', '').strip() def _split(s): if ';' in s: return s.split(';') if ',' in s and '|' not in s: return [x.strip() for x in s.split(',')] return s.split('|') def read_settings(docs, settings): ss = [] settings['option'] = {} for line in docs: if line.startswith('@'): name, _, argument = line.strip().partition('(') if argument.endswith(')'): argument = argument[:-1] if name == '@alt': key, _, other = argument.partition('|') if key in other: argument = other argument = argument.replace('_', '') settings['alt'][key] = f'[{argument}]' elif name == '@X': settings['X'] = _split(argument) elif name == '@Y': settings['Y'] = _split(argument) elif name == '@prefix': t = _split(argument) if len(t) == 2: t.append('') settings['prefix'][t[0]] = tuple(t[1:]) #print('@', settings['prefix']) else: settings['option'][name] = argument else: if line.count('[') != line.count(']') or line.count('{') != line.count('}'): print('SyntaxError:', line) ss.append(line) return ss def replace_with_rules(s, altdic, prefixdic): s = type_augmentation(s, prefixdic) for old, new in altdic.items(): if old in s: #print('=>', old, new) s = s.replace(old, new) return s def augment_doc(code, docs, altdic, prefixdic): docs2 = [] for i, doc in enumerate(docs): doc = replace_with_rules(doc, altdic, prefixdic) docs2.append(doc) return code, docs2 T5PREFIX = 'trans: ' def make_triple(ss, code, docs, settings): option = settings['option'] altdic = settings['alt'] prefixdic = settings['prefix'] code, docs = augment_doc(code, docs, altdic, prefixdic) test_with = option.get('@test', '$$') result = test_code(code, test_with) for doc in docs: text = multiese_da(doc) ss.append((T5PREFIX + doc, code, T5PREFIX + text, test_with, result)) print(encode_text_code(doc, code), result) def scaleXY(ss, code, docs, settings): if '__X__' not in code: make_triple(ss, code, docs, settings) return for x, y in zip(settings['X'], settings['Y']): codeX = code.replace('__X__', x) docYs = [doc.replace('__Y__', y) for doc in docs] make_triple(ss, codeX, docYs, settings) def new_altdic(): return { 'に変換する': 'に[変換|]する', 'に設定する': '[に設定する|に変更する|に[セット|指定]する|にする]', 'に代入する': '[に[代入|]する|とする]', 'が_': '[が|は]', 'で_': '[で|として|を[用いて|使って]]', 'の中の': '[[|の][中|内]の|の]', 'の中に': '[[|の][中|内]に|に]', '中で': '[[の|][中|内]で|で]', '全ての': '[全ての|すべての|全|]', 'の名前': '[名|の名前]', 'まとめて': '[まとめて|一度に|]', '一つ': '[ひとつ|一つ]', '二つ': '[ふたつ|二つ]', '1': '[一|1|1]', '2': '[二|2|2]', '3': '[三|3|3]', 'かどうか': '[か[|どうか][調べる||[確認|判定|テスト]する]|]', '、': '[、|]', '求める': '[求める|計算する|算出する]', '見る': '[見る|確認する|調べる]', '使う': '[使う|用いる|使用する]', '得る': '[使う|見る|求める]', '新たに': '[新しく|新たに|]', '作る': '[[作る|作成する]|[|新規]生成する|[用意|準備]する]', '作って': '[[作って|作成して]|[|新規]生成して|[用意|準備]して]', 'プリントする': '[表示する|出力する|プリントする]', 'コピーする': '[コピーする|複製する]' } def read_corpus(filename): ss = [] settings = {'alt': new_altdic(), 'prefix': PREFIX.copy()} with open(filename) as f: tree = parse_as_tree(f.read()) for t in tree: code = str(t[0]).strip() docs = str(t[1]).splitlines() docs = read_settings(docs, settings) scaleXY(ss, code, docs, settings) return ss def main(): tuples = [] for file in sys.argv[1:]: tuples.extend(read_corpus(file)) with open('kogi_trans.tsv', 'w') as f: f = csv.writer(f, delimiter="\t") for tuple in tuples: f.writerow(tuple) if __name__ == '__main__': main()
5,929
app/helpers/cloudflare.py
NewShadesDAO/api
1
2171235
import json import logging from typing import List, Optional import aiohttp from aiohttp import FormData from fastapi import UploadFile from app.config import get_settings logger = logging.getLogger(__name__) CLOUDFLARE_IMAGES_URL = "https://api.cloudflare.com/client/v4/accounts/%s/images/v1" async def upload_image_url(image_url, prefix: Optional[str] = "", metadata: Optional[dict] = None): filename = image_url async with aiohttp.ClientSession() as session: async with session.get(image_url) as response: if not response.ok: response.raise_for_status() content_type = response.headers.get("content-type", "") content = await response.read() image_data = await upload_content( content=content, filename=filename, content_type=content_type, prefix=prefix, metadata=metadata ) return image_data async def upload_images(files: List[UploadFile], prefix: Optional[str] = "", metadata: Optional[dict] = None): images = [] for file in files: content = await file.read() image_data = await upload_content( content=content, filename=file.filename, content_type=file.content_type, prefix=prefix, metadata=metadata ) images.append(image_data) return images async def upload_content( content, filename: str, content_type: str, metadata: Optional[dict] = None, prefix: Optional[str] = "", ) -> dict: settings = get_settings() account_id = settings.cloudflare_account_id url = CLOUDFLARE_IMAGES_URL % account_id headers = {"Authorization": f"Bearer {settings.cloudflare_images_api_token}"} if settings.testing: if not metadata: metadata = {"environment": "test"} else: metadata["environment"] = "test" async with aiohttp.ClientSession(headers=headers) as session: data = FormData() if prefix: filename = f"{prefix}.{filename}" data.add_field("file", value=content, filename=filename, content_type=content_type) if metadata: data.add_field("metadata", value=json.dumps(metadata)) async with session.post(url, data=data) as resp: if not resp.ok: text = await resp.text() logger.warning(f"problem storing file {filename}: {resp.status} {text}") resp.raise_for_status() json_resp = await resp.json() result = json_resp["result"] image_data = {"id": result["id"], "filename": result["filename"], "variants": result["variants"]} return image_data
2,676
codes/Classic_models/KNN.py
jswanglp/MyML
7
2171640
# KNN 类 import numpy as np class KNN: def __init__(self, X_train, y_train, n_neighbors=3, p=2): """ parameter: n_neighbors 临近点个数, 最好选奇数 parameter: p 距离度量 """ if n_neighbors % 2 == 0: print('n_neighbors 最好为奇数!') self.n = n_neighbors self.p = p self.X_train = X_train self.y_train = y_train.flatten() def predict(self, X): # 取出n个点 knn_list = [] for i in range(self.n): dist = np.linalg.norm(X - self.X_train[i], ord=self.p) knn_list.append((dist, self.y_train[i])) # 遍历得到距离最近的 n 个点 for i in range(self.n, len(self.X_train)): max_index = knn_list.index(max(knn_list, key=lambda x: x[0])) dist = np.linalg.norm(X - self.X_train[i], ord=self.p) if knn_list[max_index][0] > dist: knn_list[max_index] = (dist, self.y_train[i]) # 预测类别 knn = np.array([k[-1] for k in knn_list]) return np.sign(knn.sum()) if knn.sum() != 0 else 1 def score(self, X_test, y_test): y_test = y_test.flatten() right_count = 0 for X, y in zip(X_test, y_test): label = self.predict(X) if label == y: right_count += 1 return right_count / X_test.shape[0]
1,375
cbv/management/commands/populate_cbv.py
classy-python/ccbv
24
2173027
import django from django.conf import settings from django.core.management.base import BaseCommand from cbv.importer.importers import InspectCodeImporter from cbv.importer.storages import DBStorage class Command(BaseCommand): args = "" help = "Wipes and populates the CBV inspection models." def handle(self, *args, **options): module_paths = settings.CBV_SOURCES.keys() importer = InspectCodeImporter(module_paths=module_paths) DBStorage().import_project_version( importer=importer, project_name="Django", project_version=django.get_version(), )
632
zeva12can/bms12.py
sectioncritical/zeva12can
0
2172298
import struct import time import can class BMS12(object): """Zeva BMS12 Communications Library. This class provides an abstraction of the Zeva BMS-12 CAN protocol. An instance of the class represents one Zeva BMS-12 unit on the bus. This class provides many methods, but only a few are needed to get updates from the BMS hardware. Here is a typical example: :: # initialize a CAN bus bus = can.interface.Bus(...) # create a bms12 unit unit1 = BMS12(1, shuntmv=3800, canbus=bus) # check if unit is present if not unit1.probe(): # process error # update the voltage readings unit1.update() # read a cell voltage (in millivolts) cell1 = unit1.cellmv[1] # change the shunt voltage unit1.shuntmv = 3700 # change to 3.7 V # need to run update in order for new value to take effect unit1.update() # will also update voltage readings """ def __init__(self, unit: int, shuntmv: int=0, canbus=None): """Create a new bms12 instance. :param unit: the unit number (0-15) :param shuntmv: the initial shunt voltage in millivolts :param canbus: a :meth:`can.interface.Bus` object from the ``can`` module If ``shuntmv`` is 0 or not specied, then shunting is disabled. The shunt level can be changed at any time using the property :meth:`shuntmv`. The ``canbus`` does not need to be specified to create the object, but it must be set using the property :meth:`canbus` before any operations can be performed. """ self._unit = unit self._shuntlvl = shuntmv self._bus = canbus self._cellmv = [0] * 12 self._temps = [0, 0] @property def unit(self) -> int: """Get the unit number.""" return self._unit @property def shuntmv(self) -> int: """Get the current shunt level, in millivolts.""" return self._shuntlvl @shuntmv.setter def shuntmv(self, mv: int): """Set a new shunt level, in millivolts. You need to update the BMS unit by using :meth:`send_query()` before the new setting will take effect. """ self._shuntlvl = mv @property def canbus(self): """Get the current CAN bus object.""" return self._bus @canbus.setter def canbus(self, bus): """Set a new CAN bus object to use for communication.""" self._bus = bus @property def cellmv(self): """Get the list of 12 cell voltages, in millivolts. You can add an index to get the value for a specific cell. For example ``bmsunit.cellmv[2]``, to get the third cell value. Valid indexes are 0-11. """ return self._cellmv @property def temperature(self): """Get the list of two temperatures, in C.""" return self._temps def send_query(self): """Send query packet with shunt level to unit. Sends the query message to the unit. This also sets the shunt level. The shunt level should already be set using the `shuntmv` property. """ arbid = 300 + (self._unit * 10) payload = struct.pack(">H", self._shuntlvl) msg = can.Message(arbitration_id=arbid, is_extended_id=True, data=payload) self._bus.send(msg) def get_msgs(self): """Return a list of all pending received messsages. This function is used when it is expected that messages are received on the CAN bus (such as after a query). It will return a list of all received can messages. The list may be empty if there are no messages received. """ msgs =[] while True: msg = self._bus.recv(timeout=0.1) if msg: msgs = msgs + [msg] else: break return msgs @staticmethod def unit_from_arbid(arbid): """Decode the unit number from an abritration ID. :param arbid: a CAN arbitration ID used for BMS communication :returns: the unit number or ``None`` if error """ # valid range to get a reasonable unit number if arbid < 300 or arbid > 454: return None arbid -= 300 arbid = int(arbid / 10) return arbid @staticmethod def type_from_arbid(arbid): """Decode the message type from the arbitration ID. :param arbid: a CAN arbitration ID used for BMS communication :returns: the message type or ``None`` if error """ # valid range to get a reasonable unit number if arbid < 300 or arbid > 454: return None return int(arbid % 10) @staticmethod def decode_mv(mvbytes): """Return 4-tuple of millivolts from 8 byte input. :param mvbytes: a bytes-like of length 8 from BMS reply message :returns: 4-tuple with cell voltages as millivolts or ``None`` if error This function converts the 8-bytes received from a BMS message and converts it to millivolts. Each 8-byte message represents 4 cells so 4 voltages are returned as a tuple. The units are millivolts (int). If the input is not a bytes-like of length 8, then ``None`` is returned. """ if not isinstance(mvbytes, (bytes, bytearray)): return None if len(mvbytes) != 8: return None return struct.unpack(">HHHH", mvbytes) @staticmethod def decode_temp(tempbytes): """Return 2-tuple of temperature from 2 byte input. :param tempbytes: a bytes-like of length 2 from BMS reply temp message :returns: 2-tuple with temperature in C or ``None`` if error This function converts the 2-bytes received from a BMS temperature message and converts it to temperature in C. Each 2-byte message represents 2 temperature sensors so 2 temperatures are returned as a tuple. If the input is not a bytes-like of length 2, then ``None`` is returned. """ if not isinstance(tempbytes, (bytes, bytearray)): return None if len(tempbytes) != 2: return None return (int(tempbytes[0] - 40), int(tempbytes[1] - 40)) def decode_msg(self, msg): """Decode a message meant for this unit. :param msg: the message to decode This function will decode a message for this unit and will update the object data values (voltages and temperatures) with the new decoded data. If the message is not for this unit, then it is ignored. """ arbid = msg.arbitration_id unit = self.unit_from_arbid(msg.arbitration_id) if unit != self._unit: return msgtype = self.type_from_arbid(msg.arbitration_id) if msgtype == 0: return elif msgtype < 4: if msg.dlc == 8: mv = self.decode_mv(msg.data) offset = (msgtype - 1) * 4 for idx in range(4): self._cellmv[offset + idx] = mv[idx] elif msgtype == 4: if msg.dlc == 2: temps = self.decode_temp(msg.data) self._temps[0] = temps[0] self._temps[1] = temps[1] def probe(self): """Determine if unit is present on the CAN bus. The CAN bus object must already be set with the `canbus` property. This function sends a query message on the bus to this unit and checks for an expected response. It returns ``True`` if the unit is present, otherwise ``False``. """ self.send_query() msgs = self.get_msgs() return len(msgs) > 0 def update(self): """Query the unit on the bus and update values. Sends a query on the bus for this unit and processes all reply messages, decoding and storing the data values for cell voltage and temperature sensors. """ self.send_query() msgs = self.get_msgs() for msg in msgs: self.decode_msg(msg)
8,240
anuga/file_conversion/tests/test_grd2array.py
samcom12/anuga_core
136
2172618
from builtins import str import unittest import copy import os import numpy as num from anuga.file_conversion.grd2array import grd2array #Aux for fit_interpolate.fit example def linear_function(point): point = num.array(point) return point[:,0]+3*point[:,1] #return point[:,1] def axes2points(x, y): """Generate all combinations of grid point coordinates from x and y axes Args: * x: x coordinates (array) * y: y coordinates (array) Returns: * P: Nx2 array consisting of coordinates for all grid points defined by x and y axes. The x coordinate will vary the fastest to match the way 2D numpy arrays are laid out by default ('C' order). That way, the x and y coordinates will match a corresponding 2D array A when flattened (A.flat[:] or A.reshape(-1)) Note: Example x = [1, 2, 3] y = [10, 20] P = [[1, 10], [2, 10], [3, 10], [1, 20], [2, 20], [3, 20]] """ import numpy # Reverse y coordinates to have them start at bottom of array y = numpy.flipud(y) # Repeat x coordinates for each y (fastest varying) X = numpy.kron(numpy.ones(len(y)), x) # Repeat y coordinates for each x (slowest varying) Y = numpy.kron(y, numpy.ones(len(x))) # Check N = len(X) assert len(Y) == N # Create Nx2 array of x and y coordinates X = numpy.reshape(X, (N, 1)) Y = numpy.reshape(Y, (N, 1)) P = numpy.concatenate((X, Y), axis=1) # Return return P class Test_grd2array(unittest.TestCase): def test_grd2array_1(self): """ Format of asc file ncols 11 nrows 12 xllcorner 240000 yllcorner 7620000 cellsize 6000 NODATA_value -9999 """ x0 = 0.0 y0 = 0.0 ncols = 11 # Nx nrows = 12 # Ny xllcorner = x0 yllcorner = y0 cellsize = 1.0 NODATA_value = -9999 #Create .asc file #txt_file = tempfile.mktemp(".asc")from anuga.config import netcdf_float root = 'test_asc_1' txt_file = root+'.asc' datafile = open(txt_file,"w") datafile.write('ncols '+str(ncols)+"\n") datafile.write('nrows '+str(nrows)+"\n") datafile.write('xllcorner '+str(xllcorner)+"\n") datafile.write('yllcorner '+str(yllcorner)+"\n") datafile.write('cellsize '+str(cellsize)+"\n") datafile.write('NODATA_value '+str(NODATA_value)+"\n") x_ex = num.linspace(xllcorner, xllcorner+(ncols-1)*cellsize, ncols) y_ex = num.linspace(yllcorner, yllcorner+(nrows-1)*cellsize, nrows) points = axes2points(x_ex, y_ex) #print points #print x.shape, x #print y.shape, y datavalues = linear_function(points) #print datavalues datavalues = datavalues.reshape(nrows,ncols) #print datavalues #print datavalues.shape for row in datavalues: #print row datafile.write(" ".join(str(elem) for elem in row) + "\n") datafile.close() #print quantity.vertex_values #print quantity.centroid_values x,y,Z = grd2array(txt_file) #print x #print y #print Z answer = [[ 0., 3., 6., 9., 12., 15., 18., 21., 24., 27., 30., 33.], [ 1., 4., 7., 10., 13., 16., 19., 22., 25., 28., 31., 34.], [ 2., 5., 8., 11., 14., 17., 20., 23., 26., 29., 32., 35.], [ 3., 6., 9., 12., 15., 18., 21., 24., 27., 30., 33., 36.], [ 4., 7., 10., 13., 16., 19., 22., 25., 28., 31., 34., 37.], [ 5., 8., 11., 14., 17., 20., 23., 26., 29., 32., 35., 38.], [ 6., 9., 12., 15., 18., 21., 24., 27., 30., 33., 36., 39.], [ 7., 10., 13., 16., 19., 22., 25., 28., 31., 34., 37., 40.], [ 8., 11., 14., 17., 20., 23., 26., 29., 32., 35., 38., 41.], [ 9., 12., 15., 18., 21., 24., 27., 30., 33., 36., 39., 42.], [ 10., 13., 16., 19., 22., 25., 28., 31., 34., 37., 40., 43.]] #print quantity.vertex_values assert num.allclose(Z, answer) assert num.allclose(x,x_ex) assert num.allclose(y,y_ex) os.remove(root + '.asc') def test_grd2array_2(self): """ Format of asc file ncols 11 nrows 12 xllcorner 240000 yllcorner 7620000 cellsize 6000 NODATA_value -9999 """ x0 = 240000.0 y0 = 7620000.0 ncols = 11 # Nx nrows = 12 # Ny xllcorner = x0 yllcorner = y0 cellsize = 6000.0 NODATA_value = -9999 #Create .asc file #txt_file = tempfile.mktemp(".asc")from anuga.config import netcdf_float root = 'test_asc_2' txt_file = root+'.asc' datafile = open(txt_file,"w") datafile.write('ncols '+str(ncols)+"\n") datafile.write('nrows '+str(nrows)+"\n") datafile.write('xllcorner '+str(xllcorner)+"\n") datafile.write('yllcorner '+str(yllcorner)+"\n") datafile.write('cellsize '+str(cellsize)+"\n") datafile.write('NODATA_value '+str(NODATA_value)+"\n") x_ex = num.linspace(xllcorner, xllcorner+(ncols-1)*cellsize, ncols) y_ex = num.linspace(yllcorner, yllcorner+(nrows-1)*cellsize, nrows) points = axes2points(x_ex, y_ex) #print points #print x_ex.shape, x_ex #print y_ex.shape, y_ex datavalues = linear_function(points) #print datavalues datavalues = datavalues.reshape(nrows,ncols) #print datavalues #print datavalues.shape for row in datavalues: #print row datafile.write(" ".join(str(elem) for elem in row) + "\n") datafile.close() #print quantity.vertex_values #print quantity.centroid_values x,y,Z = grd2array(txt_file) #print x #print y #print Z answer = [[ 23100000., 23118000., 23136000., 23154000., 23172000., 23190000., 23208000., 23226000., 23244000., 23262000., 23280000., 23298000.], [ 23106000., 23124000., 23142000., 23160000., 23178000., 23196000., 23214000., 23232000., 23250000., 23268000., 23286000., 23304000.], [ 23112000., 23130000., 23148000., 23166000., 23184000., 23202000., 23220000., 23238000., 23256000., 23274000., 23292000., 23310000.], [ 23118000., 23136000., 23154000., 23172000., 23190000., 23208000., 23226000., 23244000., 23262000., 23280000., 23298000., 23316000.], [ 23124000., 23142000., 23160000., 23178000., 23196000., 23214000., 23232000., 23250000., 23268000., 23286000., 23304000., 23322000.], [ 23130000., 23148000., 23166000., 23184000., 23202000., 23220000., 23238000., 23256000., 23274000., 23292000., 23310000., 23328000.], [ 23136000., 23154000., 23172000., 23190000., 23208000., 23226000., 23244000., 23262000., 23280000., 23298000., 23316000., 23334000.], [ 23142000., 23160000., 23178000., 23196000., 23214000., 23232000., 23250000., 23268000., 23286000., 23304000., 23322000., 23340000.], [ 23148000., 23166000., 23184000., 23202000., 23220000., 23238000., 23256000., 23274000., 23292000., 23310000., 23328000., 23346000.], [ 23154000., 23172000., 23190000., 23208000., 23226000., 23244000., 23262000., 23280000., 23298000., 23316000., 23334000., 23352000.], [ 23160000., 23178000., 23196000., 23214000., 23232000., 23250000., 23268000., 23286000., 23304000., 23322000., 23340000., 23358000.]] #print quantity.vertex_values assert num.allclose(Z, answer) assert num.allclose(x,x_ex) assert num.allclose(y,y_ex) os.remove(root + '.asc') ################################################################################# if __name__ == "__main__": suite = unittest.makeSuite(Test_grd2array, 'test') runner = unittest.TextTestRunner(verbosity=1) runner.run(suite)
8,914
examples/run_back_health_posture.py
YasheshSavani/sense
0
2172285
#!/usr/bin/env python """ Run a back health posture detector to notify user every 10 seconds to straighten up their back if not. Usage: run_back_health_posture.py --custom_classifier=PATH [--camera_id=CAMERA_ID] [--path_in=FILENAME] [--path_out=FILENAME] [--title=TITLE] [--use_gpu] run_back_health_posture.py (-h | --help) Options: --custom_classifier=PATH Path to the custom classifier to use --path_in=FILENAME Video file to stream from --path_out=FILENAME Video file to stream to --title=TITLE This adds a title to the window display """ import json import os import time from docopt import docopt import numpy as np import torch import sense.display from sense.downstream_tasks.nn_utils import LogisticRegression from sense.downstream_tasks.nn_utils import Pipe from sense.downstream_tasks.postprocess import PostprocessClassificationOutput from sense.loading import build_backbone_network from sense.loading import load_backbone_model_from_config from sense.loading import update_backbone_weights from sense.controller import Controller global_timer = time.perf_counter() class MyBackHealthController(Controller): def display_prediction(self, img: np.ndarray, prediction_postprocessed: dict): super().display_prediction(img, prediction_postprocessed) global global_timer local_timer = time.perf_counter() print(local_timer, global_timer, global_timer + 60) if local_timer > global_timer + 10: prediction, prob = prediction_postprocessed['sorted_predictions'][0] print(prediction, prob) if 'unhealthy' in prediction: os.system("notify-send 'Warning!' 'Time to straighten your back!' -t 5000") os.system("zenity --error --text='Time to straighten your back!' --title='Warning!'") global_timer = time.perf_counter() if __name__ == "__main__": # Parse arguments args = docopt(__doc__) camera_id = int(args['--camera_id'] or 0) path_in = args['--path_in'] or None path_out = args['--path_out'] or None custom_classifier = args['--custom_classifier'] or None title = args['--title'] or None use_gpu = args['--use_gpu'] # Load backbone network according to config file backbone_model_config, backbone_weights = load_backbone_model_from_config(custom_classifier) # Load custom classifier checkpoint_classifier = torch.load(os.path.join(custom_classifier, 'best_classifier.checkpoint')) # Update original weights in case some intermediate layers have been finetuned update_backbone_weights(backbone_weights, checkpoint_classifier) # Create backbone network backbone_network = build_backbone_network(backbone_model_config, backbone_weights) with open(os.path.join(custom_classifier, 'label2int.json')) as file: class2int = json.load(file) INT2LAB = {value: key for key, value in class2int.items()} gesture_classifier = LogisticRegression(num_in=backbone_network.feature_dim, num_out=len(INT2LAB)) gesture_classifier.load_state_dict(checkpoint_classifier) gesture_classifier.eval() # Concatenate feature extractor and met converter net = Pipe(backbone_network, gesture_classifier) postprocessor = [ PostprocessClassificationOutput(INT2LAB, smoothing=4) ] display_ops = [ sense.display.DisplayFPS(expected_camera_fps=net.fps, expected_inference_fps=net.fps / net.step_size), sense.display.DisplayTopKClassificationOutputs(top_k=1, threshold=0.1), ] display_results = sense.display.DisplayResults(title=title, display_ops=display_ops) # Run live inference controller = MyBackHealthController( neural_network=net, post_processors=postprocessor, results_display=display_results, callbacks=[], camera_id=camera_id, path_in=path_in, path_out=path_out, use_gpu=use_gpu ) controller.run_inference()
4,214
testes e exercícios/exercicios/script_076.py
LightSnow17/exercicios-Python
0
2167408
lista = ('Pão', 1.50, 'Lápis', 2.10, 'Carne', 8.30, 'Lapiseira', 7.80) preço = aux1 = aux2 = 0 produto = '' print('-' * 30) print('Listagem de preço') print('-' * 30) for pos in range(1, len(lista), 2): preço = lista[pos] for pos2 in range(aux1, 1): produto = lista[pos2+aux2] aux2 += 2 print(f'{produto}......R$ {preço}')
350
parse.py
Darlight/AFN_AFD
0
2172639
""" Universidad del Valle de Guatemala CC---- thompson.py Proposito: Orden y consumo de los inputs """ from lexer import Lexer from token import Token class Parser: def __init__(self, pattern): self.lexer = Lexer(pattern) self.tokens = [] self.next_token = self.lexer.get_token() def parse(self): self.exp() return self.tokens def consume(self, name): if self.next_token.name == name: self.next_token = self.lexer.get_token() elif self.next_token.name != name: pass #orden de jerarquia, los parentesis son priorirdad #1 def primary(self): if self.next_token.name == 'LEFT': self.consume('LEFT') self.exp() self.consume('RIGHT') elif self.next_token.name == 'CHAR': self.tokens.append(self.next_token) self.consume('CHAR') #Esto permite que vaya leyendo la expresion desde el primer parentesis # ademas, def term(self): self.factor() if self.next_token.value not in ')|': self.term() self.tokens.append(Token('CONCAT', '\x08')) def exp(self): self.term() if self.next_token.name == 'ALT': t = self.next_token # t = token self.consume('ALT') self.exp() self.tokens.append(t) def factor(self): self.primary() # Las divisiones para cada AFN se clasifican desde aqui if self.next_token.name in ['STAR', 'PLUS', 'QMARK']: self.tokens.append(self.next_token) self.consume(self.next_token.name)
1,671
stream/forms.py
Gavin-Kariuki/HyperStream
0
2170807
from django import forms from django.contrib.auth.forms import UserCreationForm from django.contrib.auth.models import User from django.forms import fields from stream.models import NewPost, Profile class RegistrationForm(UserCreationForm): barua = forms.EmailField() class Meta: model = User fields = ['username','first_name','email','password'] #primary att for the user are username,password,email,first_name and last_name class UpdateUserForm(forms.ModelForm): email = forms.EmailField() class Meta: model = User fields = ['username','email'] class UpdateProfileForm(forms.ModelForm): class Meta: model = Profile fields = ['photo', 'bio'] class PostForm(forms.Form): image = forms.ImageField() image_name = forms.CharField() image_caption = forms.CharField(widget=forms.Textarea()) class Meta: model = NewPost fields = ['image'] class CommentForm(forms.Form): body = forms.CharField(widget = forms.TextInput(attrs = {"class": "form-control", "placeholder": "Add a comment"}))
1,092
backend/project/conversations/admin.py
winoutt/winoutt-django
0
2170358
# Models Imports from .models import Chat, Message, LastMessage, ChatArchive # Utility Imports from django.contrib import admin admin.site.register(Chat) admin.site.register(Message) admin.site.register(LastMessage) admin.site.register(ChatArchive)
261
pyart/tests/base.py
Youddha/pyart
3
2171386
from __future__ import absolute_import from unittest import TestCase as BaseTestCase class TestCase(BaseTestCase): pass
128
gosling/examples/between_link_pandas.py
gosling-lang/gos
32
2172586
""" Between Links Using Pandas ========================== """ # category: skip import gosling as gos import pandas as pd """ Data Transform Using Pandas """ df = pd.read_csv( "https://raw.githubusercontent.com/vigsterkr/circos/master/data/5/segdup.txt", sep=" ", header=0, names=["id", "chr", "start", "end"] ) # Use chromosome names that are interpretable in gos df.chr = df.chr.apply(lambda x: x.replace("hs", "chr")) # Select ids that occur exact two times df = df[df.groupby("id")["id"].transform("size") == 2] # Long to wide (i.e., "chr, start, end" --> "first_chr, first_start, first_end, second_chr, second_start, second_end") df["cumcnt"] = df.groupby("id").cumcount() df = pd.DataFrame(df.pivot(index="id", columns="cumcnt")[["chr", "start", "end"]].to_records()) df = df.rename(columns={ "('chr', 0)": "first_chr", "('chr', 1)": "second_chr", "('start', 0)": "first_start", "('start', 1)": "second_start", "('end', 0)": "first_end", "('end', 1)": "second_end" }) df_bg = df[(df.first_chr == 'chr1') | (df.second_chr == 'chr1')] df_hl = df[(df.first_chr != 'chr1') & (df.second_chr != 'chr1')] column_info = [ {"chromosomeField": "first_chr", "genomicFields": ["first_start", "first_end"]}, {"chromosomeField": "second_chr", "genomicFields": ["second_start", "second_end"]} ] data_bg = df_bg.gos.csv(genomicFieldsToConvert=column_info) data_hl = df_hl.gos.csv(genomicFieldsToConvert=column_info) """ Encoding """ def set_encoding(track): return track.mark_withinLink().encode( x=gos.Channel("first_start:G"), xe=gos.Channel("second_end:G"), opacity=gos.value(0.2) ) gos.overlay( set_encoding(gos.Track(data_bg)).encode(stroke=gos.value("lightgray")), set_encoding(gos.Track(data_hl)).encode(stroke=gos.Channel("second_chr:N")) ).properties( width=600, height=200 )
1,886
tests/test_aeval.py
chris-chambers/aeval
0
2172891
from inspect import trace from textwrap import dedent import sys import pytest from aeval import __version__, aeval def test_version(): assert __version__ == '0.1.1' @pytest.mark.asyncio async def test_simple_value(): scope = dict(items=[]) value = await aeval(dedent(''' 10 '''), scope, None) assert value == 10 @pytest.mark.asyncio async def test_sync_for(): scope = dict(items=[]) await aeval(dedent(''' for i in range(3): items.append(i) '''), scope, None) assert scope['items'] == [0, 1, 2] @pytest.mark.asyncio async def test_async_def(): scope = dict() await aeval(dedent(''' async def foo(): await sleep(1) '''), scope, None) assert callable(scope['foo']) @pytest.mark.asyncio async def test_simple_await(): scope = dict() await aeval(dedent(''' import asyncio await asyncio.sleep(0) '''), scope, None) @pytest.mark.asyncio async def test_async_for(): items = [] async def gen(): import asyncio for i in range(3): await asyncio.sleep(0) yield i scope = dict(items=items, gen=gen) await aeval(dedent(''' async for i in gen(): items.append(i) '''), scope, None) assert items == [0, 1, 2] @pytest.mark.asyncio async def test_async_with(): import contextlib @contextlib.asynccontextmanager async def mgr(): import asyncio await asyncio.sleep(0) yield 7 scope = dict(mgr=mgr) await aeval(dedent(''' async with mgr() as num: x = num '''), scope, None) assert scope['x'] == 7 @pytest.mark.asyncio async def test_await_in_for(): async def foo(): return 3 scope = dict(foo=foo) await aeval(dedent(''' for _ in range(1): x = await foo() '''), scope, None) assert scope['x'] == 3 @pytest.mark.asyncio async def test_await_in_for(): import contextlib @contextlib.contextmanager def foo(): yield 1 scope = dict(foo=foo) await aeval(dedent(''' with foo() as f: import asyncio await asyncio.sleep(0) x = f '''), scope, None) assert scope['x'] == 1 @pytest.mark.asyncio async def test_del(): scope = dict(x=1) await aeval(dedent(''' del x '''), scope, None) assert 'x' not in scope @pytest.mark.asyncio async def test_exposed_annotated_name(): scope = dict() await aeval(dedent(''' foo: int foo = 7 '''), scope, None) assert scope['foo'] == 7 @pytest.mark.asyncio async def test_exposed_annotated_assign(): scope = dict() await aeval(dedent(''' foo: int = 10 '''), scope, None) assert scope['foo'] == 10 @pytest.mark.asyncio async def test_exposed_aug_assign(): scope = dict(foo=1) await aeval(dedent(''' foo += 10 '''), scope, None) assert scope['foo'] == 11 @pytest.mark.asyncio async def test_exposed_class(): scope = dict() await aeval(dedent(''' class Foo(): ... '''), scope, None) assert isinstance(scope['Foo'], type) @pytest.mark.asyncio async def test_unexposed_class_annotated_assign(): scope = dict() await aeval(dedent(''' class Foo(): x: int y: str = 'abc' ... '''), scope, None) assert scope['Foo'].__annotations__['x'] is int assert scope['Foo'].__annotations__['y'] is str assert scope['Foo'].y == 'abc' @pytest.mark.asyncio async def test_raise(): with pytest.raises(Exception): await aeval(dedent(''' raise Exception('ha') '''), dict(), None)
3,640
mutual_funds_dashboard/dashboard.py
ace-racer/shared-apps
0
2172482
import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns from typing import List from datetime import datetime, timedelta import streamlit as st import joblib import src.utils as utils from src.india_mf_nav_obtainer import IndiaMFNavObtainer india_mf_nav_obtainer = IndiaMFNavObtainer() st.title("Indian Mutual funds dashboard") # Get the name of the mutual fund from the user st.subheader("Mutual fund details") fund_name = st.text_input('Mutual fund name') # Show the results sorted by score funds_df = india_mf_nav_obtainer.fuzzy_search_mf_by_name(fund_name) st.dataframe(funds_df) # Get Id of the mutual fund to find fund_id = st.text_input('Scheme code for the fund (from above table)') fund_df = india_mf_nav_obtainer.get_historical_nav_for_mf(fund_id) # Show the NAV values since inception if fund_df is not None: st.subheader('NAV values') fund_df_transformed = utils.transform_mutual_fund_df(fund_df) st.line_chart(fund_df_transformed['nav']) # Returns for 1, 3 and 5 years one_year_return = utils.get_annualized_returns_for_fund(fund_df, 1) three_year_return = utils.get_annualized_returns_for_fund(fund_df, 3) five_year_return = utils.get_annualized_returns_for_fund(fund_df, 5) st.text(f'Annualized 1 year return: {one_year_return}%. 3 year return: {three_year_return}% and 5 year return {five_year_return}%.') # Metrics - variance, SD, Min, max, average and median NAV values metrics = utils.get_nav_metrics(fund_df, 3) print(metrics)
1,543
tests/basic_engine_test.py
TinkerEdgeT/mendel-edgetpu
0
2172906
# Copyright 2019 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math import unittest from . import test_utils from edgetpu.basic import edgetpu_utils from edgetpu.basic.basic_engine import BasicEngine class TestBasicEnginePythonAPI(unittest.TestCase): def testDebugInfo(self): engine = BasicEngine( test_utils.TestDataPath('mobilenet_v1_1.0_224_quant.tflite')) # Check model's input format. input_tensor_shape = engine.get_input_tensor_shape() self.assertListEqual([1, 224, 224, 3], input_tensor_shape.tolist()) self.assertEqual(224 * 224 * 3, engine.required_input_array_size()) # Check model's output. output_tensors_sizes = engine.get_all_output_tensors_sizes() self.assertListEqual([1001], output_tensors_sizes.tolist()) self.assertEqual(1, engine.get_num_of_output_tensors()) self.assertEqual(1001, engine.get_output_tensor_size(0)) self.assertEqual(1001, engine.total_output_array_size()) # Check SSD model. ssd_engine = BasicEngine( test_utils.TestDataPath( 'mobilenet_ssd_v1_coco_quant_postprocess.tflite')) # Check model's input format. input_tensor_shape = ssd_engine.get_input_tensor_shape() self.assertListEqual([1, 300, 300, 3], input_tensor_shape.tolist()) self.assertEqual(300 * 300 * 3, ssd_engine.required_input_array_size()) # Check model's output. output_tensors_sizes = ssd_engine.get_all_output_tensors_sizes() self.assertListEqual([80, 20, 20, 1], output_tensors_sizes.tolist()) self.assertEqual(4, ssd_engine.get_num_of_output_tensors()) self.assertEqual(80, ssd_engine.get_output_tensor_size(0)) self.assertEqual(20, ssd_engine.get_output_tensor_size(1)) self.assertEqual(20, ssd_engine.get_output_tensor_size(2)) self.assertEqual(1, ssd_engine.get_output_tensor_size(3)) self.assertEqual(121, ssd_engine.total_output_array_size()) def testRunInference(self): for model in test_utils.GetModelList(): print('Testing model :', model) engine = BasicEngine(test_utils.TestDataPath(model)) input_data = test_utils.GenerateRandomInput( 1, engine.required_input_array_size()) latency, ret = engine.RunInference(input_data) self.assertEqual(ret.size, engine.total_output_array_size()) # Check debugging functions. self.assertLess(math.fabs(engine.get_inference_time() - latency), 0.001) raw_output = engine.get_raw_output() self.assertEqual(ret.size, raw_output.size) for i in range(ret.size): if math.isnan(ret[i]) and math.isnan(raw_output[i]): continue self.assertLess(math.fabs(ret[i] - raw_output[i]), 0.001) def testDevicePath(self): all_edgetpu_paths = edgetpu_utils.ListEdgeTpuPaths( edgetpu_utils.EDGE_TPU_STATE_NONE) engine = BasicEngine( test_utils.TestDataPath('mobilenet_v1_1.0_224_quant.tflite'), all_edgetpu_paths[0]) self.assertEqual(engine.device_path(), all_edgetpu_paths[0]) if __name__ == '__main__': unittest.main()
3,558
baseline_svr/baseline_svr.py
cliffrwong/quality_estimation
9
2171720
import pickle import math import numpy as np import optunity import optunity.metrics import sklearn.svm from sklearn.externals import joblib from sklearn import svm, datasets from sklearn.model_selection import GridSearchCV from sklearn.metrics import mean_squared_error, mean_absolute_error from scipy.stats import pearsonr optimal_model_file = "optimal.pkl" data_dir = '/Users/cliff/Documents/data/qe/' train_features_file = 'task1_en-de_training.baseline17.features' train_target_file = 'train.hter' dev_features_file = 'task1_en-de_dev.baseline17_dev.features' dev_target_file = 'dev.hter' test_features_file = 'task1_en-de_test.baseline17.features' test_target_file = 'test.hter' train_features = np.loadtxt(data_dir+train_features_file, dtype=np.float32) train_target = np.loadtxt(data_dir+train_target_file, dtype=np.float32) dev_features = np.loadtxt(data_dir+dev_features_file, dtype=np.float32) dev_target = np.loadtxt(data_dir+dev_target_file, dtype=np.float32) features = np.vstack((train_features, dev_features)) target = np.hstack((train_target, dev_target)) # score function: twice iterated 10-fold cross-validated accuracy @optunity.cross_validated(x=features, y=target, num_folds=10) def svr_mse(x_train, y_train, x_test, y_test, logC, logGamma, logEpsilon): model = sklearn.svm.SVR(C=10 ** logC, gamma=10 ** logGamma, epsilon=10 ** logEpsilon).fit(x_train, y_train) decision_values = model.predict(x_test) return optunity.metrics.mse(y_test, decision_values) # Model selection/Hyperparameter Optimization def model_selection(): numparticles = 30 num_generations = 10 hpConstraints = {'logC':[-4, 3], 'logGamma':[-6, 0], 'logEpsilon':[-2, 1]} solver = optunity.solvers.ParticleSwarm.ParticleSwarm(num_particles, num_generations, max_speed=None, phi1=2.0, phi2=2.0, hpConstraints) optimal_pars, _, _ = optunity.optimize(solver, svr_mse, maximize = False, max_evals=300) print(optimal_pars) optimal_model = sklearn.svm.SVR(C=10 ** optimal_pars['logC'], gamma=10 ** optimal_pars['logGamma'], epsilon=10 ** optimal_pars['logEpsilon'] ).fit(features, target) joblib.dump(optimal_model, optimal_model_file) # Get scores for test file. # Should be Pearson’s r = 0.3510, MAE = 0.1353, RMSE = 0.1839 def test(features_file, target_file): clf = joblib.load(optimal_model_file) features = np.loadtxt(features_file, dtype=np.float32) target = np.loadtxt(target_file, dtype=np.float32) prediction = clf.predict(features) print('Pearson\'s r:', pearsonr(target, prediction)) print('RMSE:', math.sqrt(mean_squared_error(target, prediction))) print('MAE:', mean_absolute_error(target, prediction)) def main(): # Cross validation to optimize hyperparameters model_selection() # Score model on test set # test(data_dir+test_features_file, data_dir+test_target_file) if __name__ == "__main__": main()
3,356
apps/mds_auth/permissions.py
schocco/mds-web
0
2172847
from django.contrib.auth.models import User, Permission, Group from django.contrib.contenttypes.models import ContentType from django.db.models.signals import post_save DEFAULT_GROUP_NAME = "default_user" def get_or_create_default_group(): ''' Returns the default user group. Creates a new group with permissions for UDHscale UXCscale and Trail if no such group exists. ''' group, created = Group.objects.get_or_create(name=DEFAULT_GROUP_NAME) if(created): trail_ct = ContentType.objects.get(app_label="trails", model="trail") udh_ct = ContentType.objects.get(app_label="muni_scales", model="udhscale") uxc_ct = ContentType.objects.get(app_label="muni_scales", model="uxcscale") udh_perms = Permission.objects.filter(content_type=udh_ct) uxc_perms = Permission.objects.filter(content_type=uxc_ct) trail_perms = Permission.objects.filter(content_type=trail_ct) group.permissions.add(*udh_perms) group.permissions.add(*uxc_perms) group.permissions.add(*trail_perms) group.save() return group def set_permissions(sender, **kw): user = kw["instance"] if kw.pop("created", False): user = kw.pop("instance") default_group = get_or_create_default_group() user.groups.add(default_group) user.save()
1,356
setup.py
slaclab/pystand
0
2171262
import versioneer from setuptools import (setup, find_packages) setup(name= 'detrot', version=versioneer.get_version(), cmdclass=versioneer.get_cmdclass(), author='SLAC National Accelerator Laboratory', packages=find_packages(), description='Python framework for manipulating the CXI detector stands', classifiers=[ 'Programming Language :: Python :: 3.4', 'Topic :: Robotics, EPICS' ], )
458
heap/glibc/_2_12/__init__.py
dsanders11/gdb-heapanalyzer
1
2172919
""""glibc 2.12 specific heap implementation""" from .. import BaseGlibcHeapAnalyzer class GlibcHeapAnalyzer(BaseGlibcHeapAnalyzer): def get_heap_description(self): return "GNU libc 2.12 Heap Implementation"
221
scripts/disdownload.py
Bensmuth/DisWeb
0
2171843
import requests import os def urlspliter(index): ##removes first backslash and makes first level dir TODO: add more dir levels support print("splitter") slash = 0 index = index[1:] for y in range(0, len(index)): if index[y] == "/": slash = y if not os.path.exists("scripts/WebServer/" + index[:slash]): os.makedirs("scripts/WebServer/" + index[:slash]) return index def pagegrab(host, index, x): print("pagegrab") url = ("http://" + str(host[x]) + "/" + str(index)) r = requests.get(url, allow_redirects=True) open('scripts/WebServer/' + index, 'wb').write(r.content) print("A Host was found at: " + url) def hostgrab(host, x): ##get hosts file print("hostgrab") url = ("http://" + str(host[x]) + "/hosts.txt") h = requests.get(url, allow_redirects=True) open('files/hosts.txt', 'wb').write(h.content) def download(index): didconnect = False hosts = open("files/hosts.txt",'r') host = hosts.readline().splitlines() #removes \n at line end (also makes it easier to read from in later for loop) for x in range(len(host)): try: index = urlspliter(index) for x in range(len(host)): pagegrab(host,index,x) hostgrab(host,x) except Exception as e: print(e) pass hosts.close()
1,386
content_sync/api.py
mitodl/ocw-studio
2
2172710
""" Syncing API """ import logging from typing import List, Optional from django.conf import settings from django.utils.module_loading import import_string from content_sync import tasks from content_sync.backends.base import BaseSyncBackend from content_sync.decorators import is_publish_pipeline_enabled, is_sync_enabled from content_sync.models import ContentSyncState from content_sync.pipelines.base import BaseSyncPipeline from websites.models import Website, WebsiteContent log = logging.getLogger() def upsert_content_sync_state(content: WebsiteContent): """ Create or update the content sync state """ ContentSyncState.objects.update_or_create( content=content, defaults=dict(current_checksum=content.calculate_checksum()) ) def get_sync_backend(website: Website) -> BaseSyncBackend: """ Get the configured sync backend """ return import_string(settings.CONTENT_SYNC_BACKEND)(website) def get_sync_pipeline(website: Website) -> BaseSyncPipeline: """ Get the configured sync publishing pipeline """ return import_string(settings.CONTENT_SYNC_PIPELINE)(website) @is_sync_enabled def sync_content(sync_state: ContentSyncState): """ Sync a piece of content based on its sync state """ backend = get_sync_backend(sync_state.content.website) backend.sync_content_to_backend(sync_state) @is_sync_enabled def create_website_backend(website: Website): """ Create the backend for a website""" tasks.create_website_backend.delay(website.name) @is_publish_pipeline_enabled def create_website_publishing_pipeline(website: Website): """ Create the publish pipeline for a website""" tasks.upsert_website_publishing_pipeline.delay(website.name) @is_publish_pipeline_enabled def unpause_publishing_pipeline(website: Website, version: str): """Unpause the publishing pipeline""" pipeline = get_sync_pipeline(website) pipeline.unpause_pipeline(version) @is_sync_enabled def update_website_backend(website: Website): """ Update the backend content for a website""" tasks.sync_website_content.delay(website.name) @is_sync_enabled def preview_website(website: Website): """ Create a preview for the website on the backend""" tasks.preview_website_backend.delay(website.name, website.draft_publish_date) @is_sync_enabled def publish_website(website: Website): """ Publish the website on the backend""" tasks.publish_website_backend.delay(website.name, website.publish_date) def sync_github_website_starters( url: str, files: List[str], commit: Optional[str] = None ): """ Sync website starters from github """ tasks.sync_github_site_configs.delay(url, files, commit=commit)
2,698
openpype/hosts/maya/plugins/publish/validate_muster_connection.py
Tilix4/OpenPype
1
2172578
import os import json import appdirs import pyblish.api from openpype.lib import requests_get from openpype.plugin import contextplugin_should_run import openpype.hosts.maya.api.action class ValidateMusterConnection(pyblish.api.ContextPlugin): """ Validate Muster REST API Service is running and we have valid auth token """ label = "Validate Muster REST API Service" order = pyblish.api.ValidatorOrder hosts = ["maya"] families = ["renderlayer"] token = None if not os.environ.get("MUSTER_REST_URL"): active = False actions = [openpype.api.RepairAction] def process(self, context): # Workaround bug pyblish-base#250 if not contextplugin_should_run(self, context): return # test if we have environment set (redundant as this plugin shouldn' # be active otherwise). try: MUSTER_REST_URL = os.environ["MUSTER_REST_URL"] except KeyError: self.log.error("Muster REST API url not found.") raise ValueError("Muster REST API url not found.") # Load credentials try: self._load_credentials() except RuntimeError: self.log.error("invalid or missing access token") assert self._token is not None, "Invalid or missing token" # We have token, lets do trivial query to web api to see if we can # connect and access token is valid. params = { 'authToken': self._token } api_entry = '/api/pools/list' response = requests_get( MUSTER_REST_URL + api_entry, params=params) assert response.status_code == 200, "invalid response from server" assert response.json()['ResponseData'], "invalid data in response" def _load_credentials(self): """ Load Muster credentials from file and set `MUSTER_USER`, `MUSTER_PASSWORD`, `MUSTER_REST_URL` is loaded from settings. .. todo:: Show login dialog if access token is invalid or missing. """ app_dir = os.path.normpath( appdirs.user_data_dir('pype-app', 'pype') ) file_name = 'muster_cred.json' fpath = os.path.join(app_dir, file_name) file = open(fpath, 'r') muster_json = json.load(file) self._token = muster_json.get('token', None) if not self._token: raise RuntimeError("Invalid access token for Muster") file.close() self.MUSTER_REST_URL = os.environ.get("MUSTER_REST_URL") if not self.MUSTER_REST_URL: raise AttributeError("Muster REST API url not set") @classmethod def repair(cls, instance): """ Renew authentication token by logging into Muster """ api_url = "{}/muster/show_login".format( os.environ["OPENPYPE_WEBSERVER_URL"]) cls.log.debug(api_url) response = requests_get(api_url, timeout=1) if response.status_code != 200: cls.log.error('Cannot show login form to Muster') raise Exception('Cannot show login form to Muster')
3,144
src/pyai/nn/layers/linear.py
lab-a1/pyai
0
2172812
from pyai import Tensor from pyai.nn.layers.base import BaseLayer import numpy as np class Linear(BaseLayer): """ Equation: y = x*W + b Shapes: x: (batch_size, input_size) y: (batch_size, output_size) """ def __init__(self, input_size: int, output_size: int) -> None: super().__init__() self.params["w"] = np.random.rand(input_size, output_size) self.params["b"] = np.random.rand(output_size) def forward(self, x: Tensor) -> Tensor: self.x = x return x @ self.params["w"] + self.params["b"] def backward(self, gradients: Tensor) -> Tensor: self.gradients["b"] = np.sum(gradients, axis=0) self.gradients["w"] = self.x.T @ gradients return gradients @ self.params["w"].T
783
sameproject/objects/json_serializable_object.py
js-ts/fix-same-dataset-tests
0
2172386
from __future__ import annotations from typing import Any from abc import ABC import json class JSONSerializableObject(ABC): """Abstract class that provides a mechanism to convert to/from JSON format. This must only be used for classes where all the fields are JSON serializable. Ref: https://medium.com/python-pandemonium/json-the-python-way-91aac95d4041 """ @classmethod def to_dict(cls, obj: Any) -> dict: """Takes in a custom object and returns a dictionary representation of the object. This dict representation includes metadata such as the object's module and class names. """ # Populate the dictionary with object metadata obj_dict = { "__class__": obj.__class__.__name__, "__module__": obj.__module__ } # Populate the dictionary with object properties obj_dict.update(obj.__dict__) return obj_dict @classmethod def from_dict(cls, obj_dict: dict) -> Any: """Takes in a dict and returns a custom object associated with the dict. This function makes use of the "__module__" and "__class__" metadata in the dictionary to verify if the correct dictionary is being provided. """ if "__class__" in obj_dict: # Pop ensures we remove metadata from the dict to leave only the instance arguments class_name = obj_dict.pop("__class__") # Get the module name from the dict and import it module_name = obj_dict.pop("__module__") # We use the built in __import__ function since the module name is not yet known at runtime module = __import__(module_name, fromlist=[None]) # Get the class from the module class_ = getattr(module, class_name) obj = class_() for attribute_name, attribute_value in obj_dict.items(): setattr(obj, attribute_name, attribute_value) return obj else: # Input is not of the appropriate type to be converted into a Step object raise TypeError(f"Object cannot be converted to an object of type: {cls.__name__}") @classmethod def to_json(cls, obj): json_obj = json.dumps(obj, default=cls.to_dict) return json_obj @classmethod def from_json(cls, json_obj): obj = json.loads(json_obj, object_hook=cls.from_dict) return obj
2,438
check-diff/check-diff.py
bgilbert/actions-lib
0
2172286
#!/usr/bin/python3 # Compare two directories (maybe only a subdirectory of them) and add # GitHub annotations where they're different. import argparse import difflib import io import itertools import os.path import sys def annotate_file(output, path, severity, message): print( f'::{severity} file={path},title=File::{message}', file=output ) def annotate_line(output, path, start_line, end_line, severity, message): '''start_line is zero-indexed; end_line is zero-indexed and points to the first line not matched.''' if end_line == start_line + 1: title = f'Line {start_line + 1}' else: title = f'Lines {start_line + 1}-{end_line}' print( f'::{severity} file={path},line={start_line + 1},endLine={end_line},title={title}::{message}', file=output ) def diff(canon_path, left_lines, right_lines, severity, output=sys.stdout): seq = difflib.SequenceMatcher(a=left_lines, b=right_lines, autojunk=False) ok = True matching = seq.get_matching_blocks() # Add sentinel at the beginning, corresponding to the sentinel at the # end, to simplify handling of disjoint files where one of them is empty matching.insert(0, difflib.Match(0, 0, 0)) for first, second in itertools.pairwise(matching): left_end = first.a + first.size right_end = first.b + first.size left_start = second.a right_start = second.b if right_end != right_start and left_end != left_start: annotate_line(output, canon_path, right_end, right_start, severity, 'Unexpected change') ok = False elif right_end != right_start: annotate_line(output, canon_path, right_end, right_start, severity, 'Unexpected addition') ok = False elif left_end != left_start: # message before the removal is a bit more obvious than after it annotate_line(output, canon_path, right_start - 1, right_start, severity, 'Unexpected removal on next line') ok = False return ok def recursive_diff(left_root, right_root, subpath, severity): def handle_error(e): raise e subroot = os.path.join(right_root, subpath) if os.path.isdir(subroot): iter = os.walk(subroot, onerror=handle_error) else: iter = [(os.path.dirname(subroot), [], [os.path.basename(subroot)])] # walk right tree ok = True for (dirpath, dirnames, filenames) in iter: if os.path.relpath(dirpath, right_root) == '.git': # stop descent and ignore dirnames[:] = [] continue for filename in filenames: right_path = os.path.join(dirpath, filename) canon_path = os.path.relpath(right_path, right_root) left_path = os.path.join(left_root, canon_path) try: with open(left_path) as fh: left = fh.readlines() except FileNotFoundError: annotate_file(sys.stdout, canon_path, severity, 'Unexpected file addition') ok = False continue with open(right_path) as fh: right = fh.readlines() ok = diff(canon_path, left, right, severity) and ok # check left tree for files missing from right subroot = os.path.join(left_root, subpath) for (dirpath, dirnames, filenames) in os.walk(subroot, onerror=handle_error): if os.path.relpath(dirpath, left_root) == '.git': # stop descent and ignore dirnames[:] = [] continue for filename in filenames: left_path = os.path.join(dirpath, filename) canon_path = os.path.relpath(left_path, left_root) right_path = os.path.join(right_root, canon_path) if not os.path.isfile(right_path): annotate_file(sys.stdout, canon_path, severity, 'Unexpected file removal') ok = False return ok def selftest_one(left, right, expected): buf = io.StringIO() diff('a/b/c', left, right, 'alert!', buf) if buf.getvalue() != expected: raise Exception(f'Selftest returned unexpected value:\n{buf.getvalue()}') def selftest(): selftest_one( ['one', 'two', 'three', 'four', 'five', 'seven', 'eight', 'nine'], ['one', 'two', 'none', 'not', 'four', 'five', 'six', 'seven', 'nine'], '''::alert! file=a/b/c,line=3,endLine=4,title=Lines 3-4::Unexpected change ::alert! file=a/b/c,line=7,endLine=7,title=Line 7::Unexpected addition ::alert! file=a/b/c,line=8,endLine=8,title=Line 8::Unexpected removal on next line ''') # Check disjoint files selftest_one( ['a', 'b', 'c'], ['d', 'e', 'f'], '::alert! file=a/b/c,line=1,endLine=3,title=Lines 1-3::Unexpected change\n' ) selftest_one( ['a', 'b', 'c'], [], '::alert! file=a/b/c,line=0,endLine=0,title=Line 0::Unexpected removal on next line\n' ) selftest_one( [], ['d', 'e', 'f'], '::alert! file=a/b/c,line=1,endLine=3,title=Lines 1-3::Unexpected addition\n' ) selftest_one( [], [], '', ) # Check EOF behavior selftest_one( ['one', 'two', 'three', 'four'], ['one', 'two', 'five', 'six'], '::alert! file=a/b/c,line=3,endLine=4,title=Lines 3-4::Unexpected change\n' ) selftest_one( ['one', 'two'], ['one', 'two', 'three', 'four'], '::alert! file=a/b/c,line=3,endLine=4,title=Lines 3-4::Unexpected addition\n' ) selftest_one( ['one', 'two', 'three', 'four'], ['one', 'two'], '::alert! file=a/b/c,line=2,endLine=2,title=Line 2::Unexpected removal on next line\n' ) def main(): selftest() parser = argparse.ArgumentParser(description='Compare genericized diffs and add GitHub annotations.') parser.add_argument('basedir', help='unmodified source tree (left side of comparison)') parser.add_argument('patchdir', nargs='?', default='.', help='modified source tree (right side of comparison)') parser.add_argument('path', nargs='?', default='.', help='file or subdirectory within tree') parser.add_argument('--severity', default='warning', choices=['notice', 'warning', 'error'], help='annotation severity (default: warning)') parser.add_argument('--selftest', action='store_true', help='only run self-test') args = parser.parse_args() if args.selftest: return 0 ok = recursive_diff(args.basedir, args.patchdir, args.path, args.severity) return 0 if ok else 1 if __name__ == '__main__': sys.exit(main())
6,744
Continuous_Optimization/optimizer.py
Rohit-Kundu/Pneumonia-Detection-Local-Search-aided-SCA
4
2173003
''' The codes have been taken from the following repository: https://github.com/7ossam81/EvoloPy ''' from pathlib import Path import optimizers.AbHCSCA as abhcsca import benchmarks import csv import numpy import time import warnings import os import plot_convergence as conv_plot warnings.simplefilter(action="ignore") def selector(algo, func_details, popSize, Iter): function_name = func_details[0] lb = func_details[1] ub = func_details[2] dim = func_details[3] if algo == "AbHCSCA": x = abhcsca.AbHCSCA(getattr(benchmarks, function_name), lb, ub, dim, popSize, Iter) else: x = None return x def run(optimizer, objectivefunc, NumOfRuns, params, export_flags): # Select general parameters for all optimizers (population size, number of iterations) .... PopulationSize = params["PopulationSize"] Iterations = params["Iterations"] # Export results ? Export = export_flags["Export_avg"] Export_convergence = export_flags["Export_convergence"] Flag = False Flag_details = False # CSV Header for for the c0nvergence CnvgHeader = [] algo_names = '+'.join(optimizer) + "_" results_directory = algo_names + str(time.strftime("%Y-%m-%d-%H-%M-%S")) + "/" Path(results_directory).mkdir(parents=True, exist_ok=True) for l in range(0, Iterations): CnvgHeader.append("Iter" + str(l + 1)) for i in range(0, len(optimizer)): for j in range(0, len(objectivefunc)): convergence = [0] * NumOfRuns executionTime = [0] * NumOfRuns for k in range(0, NumOfRuns): func_details = benchmarks.getFunctionDetails(objectivefunc[j]) x = selector(optimizer[i], func_details, PopulationSize, Iterations) convergence[k] = x.convergence optimizerName = x.optimizer objfname = x.objfname if Export == True: ExportToFile = results_directory + "experiment.csv" with open(ExportToFile, "a", newline="\n") as out: writer = csv.writer(out, delimiter=",") if ( Flag == False ): # just one time to write the header of the CSV file header = numpy.concatenate( [["Optimizer", "objfname", "ExecutionTime"], CnvgHeader] ) writer.writerow(header) Flag = True avgExecutionTime = float("%0.2f" % (sum(executionTime) / NumOfRuns)) avgConvergence = numpy.around( numpy.mean(convergence, axis=0, dtype=numpy.float64), decimals=2 ).tolist() a = numpy.concatenate( [[optimizerName, objfname, avgExecutionTime], avgConvergence] ) writer.writerow(a) out.close() if Export_convergence == True: conv_plot.run(results_directory, optimizer, objectivefunc, Iterations) print("Execution completed")
3,239
ambry_client/library.py
CivicKnowledge/ambry-client
0
2172076
""" Library Object for the Ambry Web Client The Library is a subclass of the CLient, with more interfaces. Copyright (c) 2015 Civic Knowledge. This file is licensed under the terms of the Revised BSD License, included in this distribution as LICENSE.txt """ from . import Client class Library(Client): remotes_t = "{base_url}/config/remotes" accounts_t = "{base_url}/config/accounts" checkin_t = "{base_url}/bundles/{vid}/checkin" checkout_t = "{base_url}/bundles/{vid}/checkout" remove_t = "{base_url}/bundles/{ref}" @property def remotes(self): """Return a list of all of the remotes""" return self._get(self.remotes_t)['remotes'] @remotes.setter def remotes(self, new_remotes): return self._put(self.remotes_t, data=new_remotes)['remotes'] @property def accounts(self): """Return a list of all of the accounts, minus the secrets""" # Decrypt the passwords, then re-encrypt them. return self._get(self.accounts_t)['accounts'] @accounts.setter def accounts(self, new_accounts): """Return a list of all of the accounts, minus the secrets""" return self._put(self.accounts_t, data=new_accounts)['accounts'] def checkin(self, package, checkin_partitions=True, force=False, cb=None): from ambry.orm.exc import NotFoundError import os.path if not os.path.exists(package.path): raise NotFoundError("Database is not packaged. Create one by building, or run 'bambry package' " ) if cb: def cb_one_arg(n): cb('Uploading bundle', n) else: cb_one_arg = None ds = package.package_dataset self._post_file(package.path, self.checkin_t, vid=ds.identity.vid) if False and package.library: from ambry.orm import Bundle bundle = Bundle(ds, package.library) for p in bundle.partitions: if force: pass # FIXME! If Force is false, check if the partition exists and don't upload it, self._put_partition_fs(remote, p, cb=cb) return self, package.path def remove(self, ref, cb=None): from ambry.orm.exc import NotFoundError import os.path return self._delete(self.remove_t, ref=ref) def __str__(self): return self._url
2,417
challenge/agoda_cancellation_estimator.py
roizhv22/IML.HUJI
0
2172383
from __future__ import annotations from typing import NoReturn import sklearn.tree from sklearn.linear_model import LogisticRegression, SGDClassifier from sklearn.metrics import f1_score from sklearn.neighbors import KNeighborsClassifier from sklearn.preprocessing import StandardScaler, MinMaxScaler from sklearn.svm import LinearSVC from sklearn.tree import DecisionTreeClassifier from IMLearn.base import BaseEstimator import numpy as np import pandas as pd from IMLearn.metrics import misclassification_error class AgodaCancellationEstimator(BaseEstimator): """ An estimator for solving the Agoda Cancellation challenge """ model = "" def __init__(self) -> AgodaCancellationEstimator: """ Instantiate an estimator for solving the Agoda Cancellation challenge Parameters ---------- Attributes ---------- """ super().__init__() def _fit(self, X: np.ndarray, y: np.ndarray) -> NoReturn: """ Fit an estimator for given samples Parameters ---------- X : ndarray of shape (n_samples, n_features) Input data to fit an estimator for y : ndarray of shape (n_samples, ) Responses of input data to fit to Notes ----- """ self.model = sklearn.tree.DecisionTreeClassifier(max_depth=7) self.model.fit(X,y) def _predict(self, X: np.ndarray) -> np.ndarray: """ Predict responses for given ####samples using fitted estimator Parameters ---------- X : ndarray of shape (n_samples, n_features) Input data to predict responses for Returns ------- responses : ndarray of shape (n_samples, ) Predicted responses of given samples """ return self.model.predict(X) def _loss(self, X: np.ndarray, y: np.ndarray) -> float: """ Evaluate performance under loss function Parameters ---------- X : ndarray of shape (n_samples, n_features) Test samples y : ndarray of shape (n_samples, ) True labels of test samples Returns ------- loss : float Performance under loss function """ return 1-sklearn.metrics.f1_score(y, self.predict(X), average="macro")
2,387
contrib/goodies/dsl_interface.py
electronicvisions/pyplusplus
9
2171581
# Copyright 2004-2008 <NAME>. # Distributed under the Boost Software License, Version 1.0. (See # accompanying file LICENSE_1_0.txt or copy at # http://www.boost.org/LICENSE_1_0.txt) # # Authors: # <NAME> # # Dictionary of this module. Useful for adding symbols mod_dict = globals() # Bring in the module builder and alias it import pyplusplus.module_builder ModuleBuilder = pyplusplus.module_builder.module_builder_t set_logger_level = pyplusplus.module_builder.set_logger_level # Bring in all call policy symbols from pyplusplus.module_builder.call_policies import * from pyplusplus.decl_wrappers import print_declarations # Type traits # - just import them all. This isn't pretty, but it will work for now from pygccxml.declarations.type_traits import * # cpptypes # - import them all and leave them named X_t because they are "types" and # this seems like a good way to keep that in mind. # This may end up being a bad idea. I don't know yet, so for now we will # try it and see what happens. from pygccxml.declarations.cpptypes import * from pygccxml.declarations.calldef import * # Matchers # - Bring in all matchers but rename then without the '_t' at the end import pygccxml.declarations.matchers #for n in ["matcher_base_t","or_matcher_t","and_matcher_t","not_matcher_t", # "declaration_matcher_t","calldef_matcher_t","namespace_matcher_t", # "variable_matcher_t","regex_matcher_t","access_type_matcher_t", # "operator_matcher_t","custom_matcher_t","virtuality_type_matcher_t"]: # mod_dict[n[:-2]] = pygccxml.declarations.matchers.__dict__[n] from pygccxml.declarations import (or_matcher, and_matcher, not_matcher, declaration_matcher, calldef_matcher, namespace_matcher, variable_matcher, regex_matcher, access_type_matcher, operator_matcher, custom_matcher, virtuality_type_matcher)
1,950
dlapp/apps/user_management/views.py
edv862/dlapp
0
2171857
from django.shortcuts import render from django.urls import reverse_lazy from django.views.generic import CreateView from django.contrib.auth.models import User from .forms import UserRegisterForm class UserRegisterView(CreateView): model = User template_name = 'user-register.html' form_class = UserRegisterForm success_url = reverse_lazy('home')
367
archive/SerialComPythonCUI.py
kayrlas/ArduinoSerialComPythonCUI
0
2172139
#! /usr/bin/env python3.7 # -*- coding: utf-8 -*- # Created by kayrlas on Jul 18, 2019 (https://github.com/kayrlas) # SerialComPythonCUI.py import signal import time import threading from serial import Serial from serial.tools import list_ports class SerialCom(object): """Class of serial communication""" def __init__(self): self.device = None # select_comport() self.serial = None # open_comport() self.thread_sread = None # start_thread() for serial_read self.thread_swrite = None # start_thread() for serial_write def select_comport(self) -> bool: """Select comports from a list and save to self.device""" # making comports list _ports = list_ports.comports() _devices = [info for info in _ports] # select comport if len(_devices) == 0: # No device print("Device not found.") return False elif len(_devices) == 1: # Only one device print("Only found %s." % _devices[0]) self.device = _devices[0].device return True else: # Some devices print("Connected comports are as follows:") for i in range(len(_devices)): print("%d : %s" % (i, _devices[i])) # Select device inp_num = input("Input the number of your target port >> ") if not inp_num.isdecimal(): print("%s is not a number!" % inp_num) return False elif int(inp_num) in range(len(_devices)): self.device = _devices[int(inp_num)].device return True else: print("%s is out of the number!" % inp_num) return False def open_comport(self, baudrate, timeout) -> bool: """After select_comport, open the comport""" self.serial = Serial(baudrate=baudrate, timeout=timeout) if self.device is None: print("Device has not been specified yet! select_comport first.") return False else: self.serial.port = self.device inp_yn = input("Open %s ? [Yes/No] >> " % self.device).lower() if inp_yn in ["y", "yes"]: print("Opening...") try: self.serial.open() except Exception as e: print(e) return False else: return True elif inp_yn in ["n", "no"]: print("Canceled.") return False else: print("Oops, you didn't enter [Yes/No]. Please try again.") return False def serial_read(self): """Read line from serial port and print with time""" _format = "%Y/%m/%d %H:%M:%S" while self.serial.is_open: _t1 = time.strftime(_format, time.localtime()) _recv_data = self.serial.readline() if _recv_data != b'': print(_t1 + " (RX) : " + _recv_data.strip().decode("utf-8")) time.sleep(1) def serial_write(self): """Write strings to serial port""" _format = "%Y/%m/%d %H:%M:%S" while self.serial.is_open: _t1 = time.strftime(_format, time.localtime()) #_send_data = input(_t1 + " (TX) >> ") _send_data = input() self.serial.write(_send_data.encode("utf-8")) time.sleep(1) def start_thread(self): """Start serial communication thread""" self.thread_sread = threading.Thread(target=self.serial_read) self.thread_swrite = threading.Thread(target=self.serial_write) self.thread_sread.start() self.thread_swrite.start() def close_comport(self): self.serial.close() def stop_thread(self): self.thread_sread.join() if __name__ == "__main__": signal.signal(signal.SIGINT, signal.SIG_DFL) com = SerialCom() if com.select_comport(): if com.open_comport(9600, 0.1): com.start_thread()
4,078
sea/extensions.py
yangtt0509/sea
0
2171483
import abc class AbstractExtension(metaclass=abc.ABCMeta): @abc.abstractmethod def init_app(self, app): raise NotImplementedError
149
digital-twin/deviceManager/db/controllers/ServidorController.py
matbmoser/SOTA
0
2173015
from datetime import datetime from datetime import datetime from db.controllers.BaseController import BaseController from db.controllers.UniversidadController import UniversidadController class ServidorController(BaseController): def __init__(self) -> None: self.tableName = 'Servidor' super().__init__() self.externalTable = UniversidadController() def add(self, serverid, socketKey, siglaUni): time = str(datetime.now()) self.tipos = self.externalTable.getValues() if(siglaUni not in self.tipos): return None self.conn.insertTableElement(elem=(serverid, socketKey, self.tipos[siglaUni], time, time), table=self.tableName) return True def deleteByServerId(self, serverid): return self.conn.deleteTableElement(table=self.tableName, where="serverid='"+str(serverid)+"'") def get(self, where): return self.conn.fetchAll(table=self.tableName, where=where) def getBySocketKey(self, socketKey): return self.conn.fetchAll(table=self.tableName,where="socketKey='"+str(socketKey)+"'") def getByServerId(self, serverid): return self.conn.fetchAll(table=self.tableName,where="serverid='"+str(serverid)+"'") def getById(self, id): return self.conn.fetchAll(table=self.tableName,where="id="+str(id)+"") def getAll(self): return self.conn.fetchAll(table=self.tableName) def getValues(self): self.values = self.conn.getValueIdDict(id="id", value="serverid", table=self.tableName) return self.values def getValuesBySocketKey(self): self.values = self.conn.getValueIdDict(id="id", value="socketKey", table=self.tableName) return self.values def update(self, where="all", *args, **kwargs): if(kwargs["siglaUni"] != None): self.tipos = self.externalTable.getValues() if(kwargs["siglaUni"] not in self.tipos): return None idUniversidad = self.tipos[kwargs["siglaUni"]] kwargs["idUniversidad"] = idUniversidad ignore = ["siglaUni", "self.tipos", "self.externalTable"] if where == "all": where=None setList = [] for var in kwargs: if var in ignore: continue if(kwargs[var] != None): setList.append((var, kwargs[var])) self.conn.updateTableElement(table=self.tableName, set=setList, where=where) return True
2,548
spark_auto_mapper_fhir/value_sets/language_ability_mode.py
imranq2/SparkAutoMapper.FHIR
1
2172948
from __future__ import annotations from spark_auto_mapper_fhir.fhir_types.uri import FhirUri from spark_auto_mapper_fhir.value_sets.generic_type import GenericTypeCode from spark_auto_mapper.type_definitions.defined_types import AutoMapperTextInputType # This file is auto-generated by generate_classes so do not edit manually # noinspection PyPep8Naming class LanguageAbilityMode(GenericTypeCode): """ v3.LanguageAbilityMode From: http://terminology.hl7.org/ValueSet/v3-LanguageAbilityMode in v3-codesystems.xml A value representing the method of expression of the language. Example: Expressed spoken, expressed written, expressed signed, received spoken, received written, received signed. OpenIssue: Description copied from Concept Domain of same name. Must be verified. """ def __init__(self, value: AutoMapperTextInputType): super().__init__(value=value) """ http://terminology.hl7.org/CodeSystem/v3-LanguageAbilityMode """ codeset: FhirUri = "http://terminology.hl7.org/CodeSystem/v3-LanguageAbilityMode" class LanguageAbilityModeValues: """ Expressed signed From: http://terminology.hl7.org/CodeSystem/v3-LanguageAbilityMode in v3-codesystems.xml """ ExpressedSigned = LanguageAbilityMode("ESGN") """ Expressed spoken From: http://terminology.hl7.org/CodeSystem/v3-LanguageAbilityMode in v3-codesystems.xml """ ExpressedSpoken = LanguageAbilityMode("ESP") """ Expressed written From: http://terminology.hl7.org/CodeSystem/v3-LanguageAbilityMode in v3-codesystems.xml """ ExpressedWritten = LanguageAbilityMode("EWR") """ Received signed From: http://terminology.hl7.org/CodeSystem/v3-LanguageAbilityMode in v3-codesystems.xml """ ReceivedSigned = LanguageAbilityMode("RSGN") """ Received spoken From: http://terminology.hl7.org/CodeSystem/v3-LanguageAbilityMode in v3-codesystems.xml """ ReceivedSpoken = LanguageAbilityMode("RSP") """ Received written From: http://terminology.hl7.org/CodeSystem/v3-LanguageAbilityMode in v3-codesystems.xml """ ReceivedWritten = LanguageAbilityMode("RWR")
2,195
setup.py
sdtblck/image-dl
0
2171412
from setuptools import setup, find_packages with open("README.md", "r") as f: long_description = f.read() with open("requirements.txt") as f: requirements = [r.strip() for r in f.readlines()] print(requirements) name = 'image-dl' setup( name=name, packages=find_packages(), version='0.0.2', license='MIT', description='A fast and simple image downloader in python', long_description=long_description, long_description_content_type="text/markdown", url=f'https://github.com/sdtblck/{name}', author='<NAME>', author_email='<EMAIL>', install_requires=[], classifiers=[ 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', 'Programming Language :: Python :: 3.9', 'Programming Language :: Python :: 3.10' ], )
929
wowa/tracker/migrations/0011_character_realm.py
arruda/wowa
0
2172027
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations class Migration(migrations.Migration): dependencies = [ ('tracker', '0010_character_renaming_real_realmname'), ] operations = [ migrations.AddField( model_name='character', name='realm', field=models.ForeignKey(related_name='characters', to='tracker.Realm', null=True), preserve_default=True, ), ]
496
999Asciigen.py
Nycz-lab/999AsciiGen
0
2172831
from PIL import Image, ImageDraw, ImageFont import random import sys def main(): filename = sys.argv[1] def converter(filename, block=99, char = '9', char_size_mult=1.5): img = Image.open(filename) img = img.convert("RGBA") pix = img.load() print(img.size) block_size_x = int(img.size[0] / block) block_size_y = int(img.size[1] / block) new_img = Image.new(mode = "RGBA", size=img.size, color=(0,0,0,0)) d1 = ImageDraw.Draw(new_img) font = ImageFont.truetype(font="glitch.otf", size=int(block_size_x*char_size_mult), index=0, encoding="unic") img.show() for x in range(0, img.size[0], block_size_x): for y in range(0, img.size[1], block_size_y): R = pix[x,y][0] G = pix[x,y][1] B = pix[x,y][2] A = pix[x,y][3] if A > 0: d1.text((x, y), char, fill =(R, G, B, A),font=font) #print(x,"/",img.size[0], y,"/",img.size[1]) new_img.save(filename + ".ascii.png") new_img.show() if __name__ == "__main__": if(len(sys.argv) > 4): filename = sys.argv[1] converter(filename, int(sys.argv[2]), sys.argv[3], float(sys.argv[4])) elif(len(sys.argv) > 1): filename = sys.argv[1] converter(filename) else: print("Error wrong format") print("usage: ", sys.argv[0], "[input_file: String] [block_size: int] [char: char/String] [char_size_mult: float/int]")
1,470
backend/tests/endpoints/test_category_route_integration.py
zelaznymarek/shopping-list
0
2171906
import pytest def test_get_categories_returns_all(client, category_meat, token): res = client.get('/categories', headers={'Authorization': f'Bearer {token}'}) assert len(res.json()) == 1 response_category = res.json()[0] assert res.status_code == 200 assert response_category['id'] == category_meat.id assert response_category['name'] == category_meat.name @pytest.mark.parametrize('headers', [ {'Authorization': 'Bearer invalid'}, {'Authorization': 'invalid'}, {'X-Custom': 'Bearer invalid'}, {} ]) def test_get_categories_unavailable_for_unauthorised(client, headers): res = client.get('/categories', headers=headers) assert res.status_code == 401 def test_get_category_returns_one(client, category_meat, token): res = client.get(f'/categories/{category_meat.id}', headers={'Authorization': f'Bearer {token}'}) response_category = res.json() assert res.status_code == 200 assert response_category['id'] == category_meat.id assert response_category['name'] == category_meat.name def test_get_category_returns_not_found(client, token): res = client.get(f'/categories/1', headers={'Authorization': f'Bearer {token}'}) assert res.status_code == 404 @pytest.mark.parametrize('headers', [ {'Authorization': 'Bearer invalid'}, {'Authorization': 'invalid'}, {'X-Custom': 'Bearer invalid'}, {} ]) def test_get_category_unavailable_for_unauthorised(client, headers): res = client.get('/categories/1', headers=headers) assert res.status_code == 401 def test_add_category(client, token): category_data = { 'name': 'sweets' } res = client.post( '/categories', json=category_data, headers={'Authorization': f'Bearer {token}'}, allow_redirects=True ) assert res.status_code == 200 returned_category = res.json() assert returned_category['id'] == 1 assert returned_category['name'] == category_data['name'] def test_add_category_returns_unprocessable_entity(client, token): res = client.post( '/categories', json={}, headers={'Authorization': f'Bearer {token}'}, allow_redirects=True ) assert res.status_code == 422 def test_add_category_returns_bad_request_if_category_exists(client, token): category_data = { 'name': 'sweets' } client.post( '/categories', json=category_data, headers={'Authorization': f'Bearer {token}'}, allow_redirects=True ) res = client.post( '/categories', json=category_data, headers={'Authorization': f'Bearer {token}'}, allow_redirects=True ) assert res.status_code == 400 error_detail = res.json().get('detail') assert error_detail == f'The category "{category_data.get("name")}" already exists in the system.' @pytest.mark.parametrize('headers', [ {'Authorization': 'Bearer invalid'}, {'Authorization': 'invalid'}, {'X-Custom': 'Bearer invalid'}, {} ]) def test_add_category_unavailable_for_unauthorised(client, headers): res = client.post('/categories', json={}, headers=headers, allow_redirects=True) assert res.status_code == 401 def test_remove_category(client, category_meat, token): res = client.delete(f'/categories/{category_meat.id}', headers={'Authorization': f'Bearer {token}'}) assert res.status_code == 200 assert res.json() is None def test_remove_category_returns_not_found(client, token): res = client.delete('/categories/1', headers={'Authorization': f'Bearer {token}'}) assert res.status_code == 404 @pytest.mark.parametrize('headers', [ {'Authorization': 'Bearer invalid'}, {'Authorization': 'invalid'}, {'X-Custom': 'Bearer invalid'}, {} ]) def test_remove_category_unavailable_for_unauthorised(client, headers): res = client.delete('/categories/1', headers=headers) assert res.status_code == 401 def test_update_category(client, category_meat, token): category_to_update = { 'name': 'changed' } res = client.put( f'/categories/{category_meat.id}', json=category_to_update, headers={'Authorization': f'Bearer {token}'} ) assert res.status_code == 200 updated = res.json() assert updated['id'] == category_meat.id assert updated['name'] == category_to_update['name'] def test_update_category_returns_not_found(client, token): category_to_update = { 'name': 'changed' } res = client.put( '/categories/1', json=category_to_update, headers={'Authorization': f'Bearer {token}'} ) assert res.status_code == 404 @pytest.mark.parametrize('headers', [ {'Authorization': 'Bearer invalid'}, {'Authorization': 'invalid'}, {'X-Custom': 'Bearer invalid'}, {} ]) def test_update_category_unavailable_for_unauthorised(client, headers): category_to_update = { 'name': 'changed' } res = client.put('/categories/1', json=category_to_update, headers=headers) assert res.status_code == 401
5,111
test.py
joshua2352-cmis/joshua2352-cmis-cs2
1
2172665
#PART 1: Terminology #1) Give 3 examples of boolean expressions. #a)3==3 #b)3>3 #c)3<3 # #2) What does 'return' do? #uses the given information and spits something back out # # # #3) What are 2 ways indentation is important in python code? #a)it tells you where the function definition ends #b)It is needed to run the function or it will get indent error thing # # #PART 2: Reading #Type the values for 9 of the 12 of the variables below. # #problem1_a)36 #problem1_b)1 #problem1_c)0 #problem1_d)5 # #problem2_a)True #problem2_b)True #problem2_c)False #problem2_d)False # #problem3_a)0.3 #problem3_b)0.5 #problem3_c)0.5 #problem3_d)0.5 # #problem4_a) #problem4_b) #problem4_c) #problem4_d) import math def main(a,b,c): print "type in three different numbers decimals work too:" a=raw_input("A:") b=raw_input("B:") c=raw_input("C:") if int(a) == int(b) return "you did not follow instructions" if int(a) == int(c) return "you did not follow instructions" if int(c) == int(b) return "you did not follow instructions" if int(c) == int(a) return "you did not follow instructions" if int(b) == int(c) return "you did not follow instructions" if int(b) == int(a) return "you did not follow instructions" if int(a) < int(b) and int(a) < int(c) return "The largest number was"int(a)"." if int(b) < int(c) and int(a) < int(c) return "The largest number was"int(b)"." if int(c) < int(b) and int(a) < int(c) return "The largest number was"int(c)"."
1,587
12/problem1.py
muztanger/aoc2018
0
2171174
""" --- Day 12: Subterranean Sustainability --- The year 518 is significantly more underground than your history books implied. Either that, or you've arrived in a vast cavern network under the North Pole. After exploring a little, you discover a long tunnel that contains a row of small pots as far as you can see to your left and right. A few of them contain plants - someone is trying to grow things in these geothermally-heated caves. The pots are numbered, with 0 https://adventofcode.com/2018/day/12 """ # import aoc import os # import re # import sys # from operator import add # from operator import mul # from itertools import combinations # from collections import Counter import re from pprint import pprint debug = False if debug: lines = [ "initial state: #..#.#..##......###...###", "", "...## => #", "..#.. => #", ".#... => #", ".#.#. => #", ".#.## => #", ".##.. => #", ".#### => #", "#.#.# => #", "#.### => #", "##.#. => #", "##.## => #", "###.. => #", "###.# => #", "####. => #", ] if os.path.exists('input_debug'): with open('input_debug', 'r') as f: lines = f.readlines() else: lines = [] with open('input', 'r') as f: lines = f.readlines() # print(len(lines[0])) N = 180 state = "." * (N * 2) init = lines[0][len("initial state: "):].strip() state = state[:N] + init + state[len(init) + N:] print(" " + "-" * N + "0" + "-" * (N - 1)) # print(state) lines = lines[2:] patterns = {} for line in lines: arr = re.split(" => ", line) pattern = arr[0] result = arr[1][0] patterns[pattern] = result print("{:2d}: {}".format(0, state)) for gen in range(20): next = ["."] * (N * 2) for i in range(N * 2 - 5): key = "".join(state[i:i+5]) try: if key in patterns: # print(type(next[i + 1])) # print(type(patterns[key])) next[i + 2] = patterns[key] except TypeError as e: print(e) raise state = next print("{:2d}: {}".format(gen + 1, "".join(state))) s = 0 for i, x in enumerate(state): if x == "#": s += i - N print(s) # 2612 is too low
2,331
bookwyrm/views/list/list_item.py
mouse-reeve/fedireads
270
2172581
""" book list views""" from django.contrib.auth.decorators import login_required from django.shortcuts import get_object_or_404, redirect from django.utils.decorators import method_decorator from django.views import View from bookwyrm import forms, models from bookwyrm.views.status import to_markdown # pylint: disable=no-self-use @method_decorator(login_required, name="dispatch") class ListItem(View): """book list page""" def post(self, request, list_id, list_item): """Edit a list item's notes""" list_item = get_object_or_404(models.ListItem, id=list_item, book_list=list_id) list_item.raise_not_editable(request.user) form = forms.ListItemForm(request.POST, instance=list_item) if form.is_valid(): item = form.save(commit=False) item.notes = to_markdown(item.notes) item.save() else: raise Exception(form.errors) return redirect("list", list_item.book_list.id)
984
api.py
hariganesan/music-tracker
0
2172475
# <NAME> 12/21/13 # main file for track-music import os import logging import json import webapp2 ######################### # Static Handlers ######################### # main routes to static pages class MainPageHandler(webapp2.RequestHandler): def get(self): with open("templates/index.html") as index_file: html = index_file.read() self.response.write(html) app = webapp2.WSGIApplication([ ('/.*$', MainPageHandler) ], debug=True)
448
fix_mrc.py
milliams/proof
0
2170593
import sys def fix_file(filename: str) -> None: """ Take an MRC file which was written by MotionCor2 and fix it so that it has the correct string, ie.e. a space character, not a NUL character. """ with open(filename, "r+b") as f: f.seek(208) map_id = f.read(4) if map_id == b"MAP\x00": f.seek(211) f.write(b"\x20") if __name__ == "__main__": filenames = sys.argv[1:] for filename in filenames: fix_file(filename)
502
models.py
dkumazaw/mobilenets-tpu
12
2172870
# This project incorporates material from the project listed above, and it # is accessible under their original license terms (Apache License 2.0) # ============================================================================== """Creates the ConvNet""" import re import tensorflow as tf import numpy as np from defs import GlobalParams import model_def def build_model(images, model_name, training, override_params=None): """A helper functiion to creates a ConvNet model and returns predicted logits. Args: images: input images tensor. model_name: string, the model name (either MobileNetV3Large or MobileNetV3Small). training: boolean, whether the model is constructed for training. override_params: A dictionary of params for overriding. Fields must exist in EvalGlobalParams. Returns: logits: the logits tensor of classes. endpoints: the endpoints for each layer. Raises: When model_name specified an undefined model, raises NotImplementedError. When override_params has invalid fields, raises ValueError. """ assert isinstance(images, tf.Tensor) global_params = GlobalParams( batch_norm_momentum=0.99, batch_norm_epsilon=1e-3, dropout_rate=0.2, data_format='channels_last', num_classes=1000, depth_multiplier=None, depth_divisor=8, min_depth=None) if override_params: # ValueError will be raised here if override_params has fields not included # in global_params. global_params = global_params._replace(**override_params) if model_name.lower() == 'mobilenetv3small': with tf.variable_scope(model_name): model = model_def.MobileNetV3Small(global_params) logits = model(images, training=training) elif model_name.lower() == 'mobilenetv3large': with tf.variable_scope(model_name): model = model_def.MobileNetV3Large(global_params) logits = model(images, training=training) else: raise NotImplementedError logits = tf.identity(logits, 'logits') return logits, model.endpoints
2,174
multiplayer/client.py
adkinsj/Hi-Snake
0
2170864
import asyncore import asynchat import socket import json import hashlib import controllers import event_manager import events import view import tkinter import tkinter.messagebox as messagebox class Login: def __init__(self, caller): self._caller = caller self._login = tkinter.Tk() self._login.title("Login") self._login.geometry('190x70') self._center(self._login) self._usernameLabel = tkinter.Label(self._login, text = "Username:") self._userEntry = tkinter.Entry(self._login) self._passwordLabel = tkinter.Label(self._login, text = "Password:") self._passEntry = tkinter.Entry(self._login, show="*") self._connectButton = tkinter.Button(self._login, text = "Connect", command = self._connect) self._usernameLabel.grid(row = 0, column = 0) self._userEntry.grid(row = 0, column = 1) self._passwordLabel.grid(row = 1, column = 0) self._passEntry.grid(row = 1, column = 1) self._connectButton.grid(row = 2, column = 1) self._passEntry.bind('<Return>', self._connect) self._username = "" self._login.mainloop() def _center(self, toplevel): toplevel.update_idletasks() w = toplevel.winfo_screenwidth() h = toplevel.winfo_screenheight() size = tuple(int(_) for _ in toplevel.geometry().split('+')[0].split('x')) x = w/2 - size[0]/2 y = h/2 - size[1]/2 toplevel.geometry("%dx%d+%d+%d" % (size + (x, y))) def _connect(self, *args): self._username = self._userEntry.get() self._caller.push(bytes("LOGIN_ATTEMPT " + json.dumps(dict([("username", self._username), ("password", hashlib.sha512(bytes(self._passEntry.get(), 'UTF-8')).hexdigest())])) + "\n", 'UTF-8')) self._login.destroy() def get_user(self): return self._username def _login_fail(self): messagebox.showerror("Error", "Wrong Password!") return True class Lobby: def __init__(self, caller): self._caller = caller self._lobby = tkinter.Tk() self._lobby.title("Lobby") self._lobby.geometry('200x150') self._center(self._lobby) self._welcomeLabel = tkinter.Label(self._lobby, text = "Welcome " + caller._username + "!") self._create = tkinter.Button(self._lobby, text = "Create", command = self._create) self._join = tkinter.Button(self._lobby, text = "Join", command = self._join) self._entry = tkinter.Entry(self._lobby) self._message = tkinter.Label(self._lobby, text = "Create a new game \n or join an existing game \n by typing in a username!") self._welcomeLabel.pack() self._create.pack() self._entry.pack() self._join.pack() self._message.pack() self._lobby.mainloop() def _center(self, toplevel): toplevel.update_idletasks() w = toplevel.winfo_screenwidth() h = toplevel.winfo_screenheight() size = tuple(int(_) for _ in toplevel.geometry().split('+')[0].split('x')) x = w/2 - size[0]/2 y = h/2 - size[1]/2 toplevel.geometry("%dx%d+%d+%d" % (size + (x, y))) def _create(self): self._create.config(text = "Start", command = self._start) self._join.config(state = 'disable') self._caller.push(bytes("NEW_GAME" + "\n", 'UTF-8')) self._message.config(text = "New game created \n press start when ready to play!") def _start(self): self._caller.push(bytes("GAME_START" + "\n", 'UTF-8')) self._lobby.destroy() def _join(self): self._caller.push(bytes("JOIN_GAME " + self._entry.get() + "\n", 'UTF-8')) self._lobby.destroy() class Client(asynchat.async_chat): def __init__(self, host, port, eventManager): asynchat.async_chat.__init__(self) self.create_socket(socket.AF_INET, socket.SOCK_STREAM) self.connect((host, port)) self._event_manager = eventManager self._event_manager.register_listener(self) self.set_terminator(b'\n') self._received_data = "" self._pygame_view = None self._login_screen = True self._username = "" def handle_connect(self): login = Login(self) self._username = login.get_user() def collect_incoming_data(self, data): self._received_data += data.decode('UTF-8') def found_terminator(self): self._received_data.strip('\n') split_string = self._received_data.split(' ', 1) key = split_string[0] if key == "UPDATE": data = split_string[1] self._event_manager.post(events.ServerUpdateReceived(data)) elif key == "LOGIN_REQUEST": login = Login(self) self._username = login.get_user() elif key == "LOGIN_FAIL": print("LOGIN FAILED") root = tkinter.Tk() root.withdraw() messagebox.showerror("Error", "Wrong Password!") root.destroy() login = Login(self) self._username = login.get_user() elif key == "LOGIN_SUCCESS": self._pygame_view = view.PygameView(self._event_manager) lobby = Lobby(self) elif key == "USER_CREATED": self._pygame_view = view.PygameView(self._event_manager) lobby = Lobby(self) elif key == "GAME_OVER": self._event_manager.post(events.GameOverEvent()) self._received_data = "" def notify(self, event): if isinstance(event, events.QuitEvent): self.push(bytes("QUIT\n",'UTF-8')) self.close() elif isinstance(event, events.MoveEvent): print("Message: {} sent".format(event.get_direction())) self.push(bytes("MOVE " + json.dumps(dict([("username", self._username), ("direction", event.get_direction())])) + "\n", 'UTF-8')) elif isinstance(event, events.RestartEvent): self.push(bytes("RESTART\n", 'UTF-8')) def check_ip_addr(ip_addr): try: socket.inet_pton(socket.AF_INET, ip_addr) return True except socket.error: return False def main(): try: eventManager = event_manager.EventManager() ip_addr = "" while not check_ip_addr(ip_addr): ip_addr = input("Please input server's IP address: ") port = "" while not port.isdigit(): port = input("Please input server's port: ") controller = controllers.Controller(eventManager) client = Client(ip_addr, int(port), eventManager) asyncore.loop(timeout=1) except: pass if __name__ == "__main__": main()
6,835
tests/test_pim.py
klauer/pcdsdevices
1
2172044
import logging import pytest from unittest.mock import Mock from ophyd.device import Component as Cpt from ophyd.signal import Signal from ophyd.sim import make_fake_device from pcdsdevices.areadetector.detectors import PCDSDetector from pcdsdevices.pim import PIM, PIMMotor from conftest import HotfixFakeEpicsSignal logger = logging.getLogger(__name__) # OK, we have to screw with the class def here. I'm sorry. It's ophyd's fault # for checking an epics signal value in the __init__ statement. for comp in (PCDSDetector.image, PCDSDetector.stats): plugin_class = comp.cls plugin_class.plugin_type = Cpt(Signal, value=plugin_class._plugin_type) @pytest.fixture(scope='function') def fake_pim(): FakePIM = make_fake_device(PIMMotor) FakePIM.state.cls = HotfixFakeEpicsSignal pim = FakePIM('Test:Yag', name='test') pim.state.sim_put(0) pim.state.sim_set_enum_strs(['Unknown'] + PIMMotor.states_list) return pim @pytest.mark.timeout(5) def test_pim_stage(fake_pim): logger.debug('test_pim_stage') pim = fake_pim # Should return to original position on unstage pim.move('OUT', wait=True) assert pim.removed pim.stage() pim.move('IN', wait=True) assert pim.inserted pim.unstage() assert pim.removed pim.move('IN', wait=True) assert pim.inserted pim.stage() pim.move('OUT', wait=True) assert pim.removed pim.unstage() assert pim.inserted @pytest.mark.timeout(5) def test_pim_det(): logger.debug('test_pim_det') FakePIM = make_fake_device(PIM) FakePIM('Test:Yag', name='test', prefix_det='potato') FakePIM('Test:Yag', name='test') @pytest.mark.timeout(5) def test_pim_subscription(fake_pim): logger.debug('test_pim_subscription') pim = fake_pim cb = Mock() pim.subscribe(cb, event_type=pim.SUB_STATE, run=False) pim.state.sim_put(2) assert cb.called
1,899
Mobile Devices UI/Message App UI/config.py
WithSJ/UI-Templates-for-Kivy
5
2172718
# Set Global variables name global APP_NAME global COMPANY_NAME APP_NAME = "Pigeon" COMPANY_NAME = "<EMAIL>"
109
setup.py
samuelstanton/upcycle
0
2169333
#!/usr/bin/env python from os import path from setuptools import find_packages, setup AUTHOR = "<NAME>" NAME = "upcycle" PACKAGES = find_packages() REQUIREMENTS_FILE = "requirements.txt" REQUIREMENTS_PATH = path.join(path.abspath(__file__), REQUIREMENTS_FILE) with open(REQUIREMENTS_FILE) as f: requirements = f.read().splitlines() requirements.append("python-randomnames @ git+https://github.com/concentricsky/python-randomnames.git@master") setup( name=NAME, version='0.0.1', description='Reusable code snippets', author=AUTHOR, author_email='<EMAIL>', url='https://github.com/samuelstanton/upcycle', install_requires=requirements, packages=PACKAGES, )
695
rot13/rot13.py
bradagy/rot13
0
2173042
#!/usr/bin/env python3 import string def encrypt(text, n): in_tab = string.ascii_lowercase out_tab = in_tab[n % 26:] + in_tab[:n % 26] trans_tab = str.maketrans(in_tab, out_tab) return text.translate(trans_tab) def rot13(): while True: user_input = input('Please enter the text here: ') if not user_input.isalpha(): print('The input you entered was not correct. Numbers are also ' 'not accepted. Please try again.') continue else: print(f"The encryption is {encrypt(user_input, 13)}.") break rot13()
619
third_party/VeriNet/example/example.py
nathzi1505/DNNV
33
2170717
import numpy as np import torch import gurobipy as grb import torch.nn as nn from src.neural_networks.verinet_nn import VeriNetNN from src.algorithm.verinet import VeriNet from src.data_loader.input_data_loader import load_neurify_mnist from src.data_loader.nnet import NNET from src.algorithm.verification_objectives import LocalRobustnessObjective from src.algorithm.verinet_util import Status def create_input_bounds(image: np.array, eps: int): """ Creates the l-infinity input bounds from the given image and epsilon """ input_bounds = np.zeros((*image.shape, 2), dtype=np.float32) input_bounds[:, 0] = image - eps input_bounds[:, 1] = image + eps return input_bounds def local_robustnes_nnet(): """ An example run of the local robustness verification objective using nnet. """ print("\nRunning example run for local robustness verification objective:") # Load the nnet and convert to VeriNetNN (Found in src/neural_networks/verinet_nn.py nnet = NNET("../data/models_nnet/neurify/mnist24.nnet") model = nnet.from_nnet_to_verinet_nn() # Initialize the solver solver = VeriNet(model, max_procs=20) # Load the image and use the predicted class as correct class image = load_neurify_mnist("../data/mnist_neurify/test_images_100/", img_nums=[0]).reshape(-1) correct_class = int(model(torch.Tensor(image)).argmax(dim=1)) for eps in [8, 15]: # Create the input bounds input_bounds = create_input_bounds(image, eps) input_bounds = nnet.normalize_input(input_bounds) # Initialize the verification objective and solve the problem objective = LocalRobustnessObjective(correct_class, input_bounds, output_size=10) solver.verify(objective, timeout=3600, no_split=False, verbose=False) # Store the counter example if Unsafe. Status enum is defined in src.algorithm.verinet_util if solver.status == Status.Unsafe: _ = solver.counter_example print("") print(f"Statistics for epsilon = {eps}:") print(f"Verification results: {solver.status}") print(f"Branches explored: {solver.branches_explored}") print(f"Maximum depth reached: {solver.max_depth}") def verinet_nn_example(): """ An example run of how to use the VeriNetNN class to create a neural network instead of reading from nnet file. The VeriNetNN class accepts a list of layers arg in init. The forward function should not be modified and it is assumed that each object in the layers list is applied sequentially. """ print("\nRunning example run with custom VeriNetNN and the local robustness verification objective:") torch.manual_seed(0) layers = [nn.Linear(2, 2), nn.ReLU(), nn.Linear(2, 2), nn.ReLU(), nn.Linear(2, 2)] model = VeriNetNN(layers) input_bounds = np.array([[-10, 10], [-10, 10]]) solver = VeriNet(model, max_procs=20) objective = LocalRobustnessObjective(correct_class=1, input_bounds=input_bounds, output_size=2) solver.verify(objective, timeout=3600, no_split=False, verbose=False) # Store the counter example if Unsafe. Status enum is defined in src.algorithm.verinet_util if solver.status == Status.Unsafe: _ = solver.counter_example print("") print(f"Verification results: {solver.status}") print(f"Branches explored: {solver.branches_explored}") print(f"Maximum depth reached: {solver.max_depth}") if __name__ == '__main__': # Get the "Academic license" print from gurobi at the beginning grb.Model() local_robustnes_nnet() verinet_nn_example()
3,728
examples/speech_semantics/datasets/prepare_cgn.py
qmeeus/fairseq
0
2172753
#!/usr/bin/env python import os from pathlib import Path import pandas as pd from bs4 import BeautifulSoup import gzip import argparse import torch import torchaudio import torch.functional as F from logger import logger """ Prepare the CGN dataset and extract spoken sentences representations (either the raw waveform, the logmel or the MFCC) with their written transcription. The script expects a CSV file as input that contains the paths to the audio recordings (WAV) and orthographic transcriptions (XML). """ def parse_args(): parser = argparse.ArgumentParser("Converts raw audio files to torch tensors") parser.add_argument("--input-file", type=Path, help="File that contains all the paths to the audiofiles and transcriptions") parser.add_argument("--data-dir", type=Path, help="Path from which the paths in input-file descend") parser.add_argument("--dest-dir", type=Path, help="Where to save the data") parser.add_argument("--features", type=str, default="MFCC", help="The kind of features, one of MFCC or logmels") parser.add_argument("--n-features", type=int, default=40, help="Number of mel filterbanks") parser.add_argument("--max-sequence-length", type=int, default=0, help="Pad or truncate sequence (0 = no padding)") return parser.parse_args() def common_path(path_a, path_b): """ Compute the deepest common path between path_a and path_b :path_a,path_b: pathlib.PurePath objects returns pathlib.PurePath object that represent the deepest common subpath """ return Path(*os.path.commonprefix([path_a.parts, path_b.parts])) def spoken_sentence_generator(audiofile, textfile, min_sequence_length=0, max_sequence_length=0, feature_type="MFCC", n_features=40, **options): """ Generator to extract sentences from a text transcription of audio file and spoken sentences features from the corresponding audio file. The features can be one of None (raw waveform), MFCC or logmel. :textfile: the path to the text file :audiofile: the path to the audio file :min_sequence_length: int, minimim number of millisecond for an utterance to be valid :max_sequence_length: int, the length of the sequence :Preprocessor: class from torchaudio.transform :preprocessor_options: dict with options to initialise the preprocessor returns a generator of tuples (sentence_id features, speaker, sentence) where features is a torch.Tensor, speaker is a string identifier and sentence is a text. """ # logger.debug(f"Loading {textfile}") with gzip.open(textfile, encoding='latin-1', mode='rt') as f: tree = BeautifulSoup(f, "lxml") # Load the first channel of the wav file waveform, sample_rate = torchaudio.load(audiofile) waveform = waveform[None, :1, :] logger.debug(f"{audiofile} loaded: size: {tuple(waveform.size())} rate: {sample_rate}") options.update({"sample_rate": sample_rate}) if feature_type.lower() == "mfcc": options.update({"n_mfcc": n_features}) f = torchaudio.transforms.MFCC(**options) elif feature_type == "logmel": options = {"n_mels": n_features} f = torchaudio.transforms.MelSpectrogram(**options) else: f = None sentence_id = 0 for utterance in tree.find_all("tau"): speaker = utterance.get("s") start = float(utterance.get("tb")) end = float(utterance.get("te")) if (end - start) * 1000 < min_sequence_length: logger.debug(f"Ignoring utterance {sentence_id} (length: {end-start:.2f})") continue sentence = " ".join([word.get("w") for word in utterance.find_all("tw")]) logger.debug(f"Found utterance from {start} to {end}: {sentence}") start, end = (int(t * sample_rate) for t in (start, end)) feats = waveform[:, :, start:end] logger.debug(f"Truncating signal from {start} to {end}, size: {tuple(feats.size())}") if f is not None: feats = f(feats) yield sentence_id, feats, speaker, sentence sentence_id += 1 def pad_sequence(seq, maxlen): """ Pad / truncate the last axis of a sequence to the specified length :seq: torch.Tensor, the sequence to be padded :maxlen: int, the length of the sequence returns torch.Tensor, the padded sequence """ padding = [0] * (seq.ndim - 1) + [maxlen - seq.size(-1)] return F.pad(seq, padding) def filter_dataframe(dataframe, exclude=False, **filters): """ Apply filters to a pandas.DataFrame. Can either include or exclude the given values :dataframe: pd.DataFrame, data to be filtered :exclude: boolean, whether to include (default) or exclude the given values :filters: key-value pairs, key is the same of a column in the dataframe and value can be one value or a list of values to include/exclude returns a filtered dataframe """ for key, value in filters.items(): if type(value) is list: mask = dataframe[key].isin(value) else: mask = dataframe[key] == value if exclude: mask = ~mask dataframe = dataframe[mask] return dataframe def generate_data_from_file(filename, root=None, include=None, exclude=None, **options): """ Generator to bulk create the datasets from a CSV with 4 columns: - comp (comp-[a-z]): the component to which the file exists (see CGN) - lang ([nl|vl]): the language of the recording - name (f[n|v]\d{6}): the identifier of the recording - audio (path-like): the path to the audio recording (wav) - text (path-like): the path to the orthographical retranscription (skp.gz) :filename: the path to the csv file :root: the path from which the filenames should be considered. (None = same dir as filename) :include,exclude: dict-like, key-value pairs to filter the csv (keys must be one of comp/name) :options: additional options to pass to spoken_sentence_generator returns a generator of tuples (comp, lang, name, sentence_id, features, speaker, sentence) where features is a torch.Tensor, speaker is a string identifier and sentence is a text. """ paths = pd.read_csv(filename) assert all(col in paths for col in ("comp", "lang", "name", "audio", "text")), "Invalid CSV" assert len(paths), "Empty CSV" logger.debug(f"Loaded {filename} with {len(paths)} target recordings") for flag, filters in enumerate([include, exclude]): if filters: paths = filter_dataframe(paths, exclude=flag, **filters) assert len(paths), "No more results, filters might be too stricts." logger.debug(f"{len(paths)} target files remaining after filtering") for _, comp, lang, name, audiofile, textfile in paths.itertuples(): if root is not None: audiofile, textfile = (Path(root, fn) for fn in (audiofile, textfile)) for retval in spoken_sentence_generator(audiofile, textfile, **options): yield tuple([comp, lang, name] + list(retval)) def main(): args = parse_args() # OPTIONS # determines how files are found and which to include INPUT_FILE = args.input_file ROOT = args.data_dir INCLUDE_FILTERS = None EXCLUDE_FILTERS = None # where to save the files SAVE_DIRECTORY = args.dest_dir TEXT_OUTPUT_FILE = "sentences.txt" # to be passed to spoken_sentence_generator FEATURES_OPTS = { 'min_sequence_length': 2000, 'max_sequence_length': args.max_sequence_length, 'feature_type': args.features, 'n_features': args.n_features, } # Sanity check if not INPUT_FILE.exists(): raise FileNotFoundError(INPUT_FILE) os.makedirs(SAVE_DIRECTORY, exist_ok=True) with open(Path(SAVE_DIRECTORY, TEXT_OUTPUT_FILE), 'w') as txtfile: for comp, lang, name, sent_id, feats, spkr, sent in generate_data_from_file( INPUT_FILE, ROOT, INCLUDE_FILTERS, EXCLUDE_FILTERS, **FEATURES_OPTS): output_file = Path(comp, lang, f"{name}.{sent_id:06d}.pt") output_path = Path(SAVE_DIRECTORY, output_file) txtfile.write(f"{output_file}\t{sent}\n") os.makedirs(output_path.parent, exist_ok=True) torch.save(feats, output_path) txtfile.flush() if __name__ == '__main__': main()
8,739
global_var/global_param.py
spiderkiller13/elevator_gateway
3
2173036
import os import yaml from global_var.global_logger import logger from pprint import pprint, pformat # Load parameters f = open(os.path.join(os.path.dirname(__file__), "../param.yaml") ,'r') params_raw = f.read() f.close() param_dict = yaml.load(params_raw) # Load parameters table = param_dict['table'] AMR_URI = param_dict['AMR_URI'] AMR_MQTT_NAME = param_dict['AMR_MQTT_NAME'] CLIENT_NAME = param_dict['CLIENT_NAME'] BROKER_IP = param_dict['BROKER_IP'] NOTIFY_MAX_RETRY_TIME = param_dict['NOTIFY_MAX_RETRY_TIME'] REC_TIMEOUT = param_dict['REC_TIMEOUT'] IS_VERBOSE = param_dict['IS_VERBOSE'] IS_SIMULATION = param_dict['IS_SIMULATION'] DOOR_OPEN_LIMIT_TIME = param_dict['DOOR_OPEN_LIMIT_TIME'] WAIT_REACH_LIMIT_TIME = param_dict['WAIT_REACH_LIMIT_TIME'] SLIENCE_MIN_COUNTER = param_dict['SLIENCE_MIN_COUNTER'] FLOOR_LED_CONFIRMATION_MAX_TIME = param_dict['FLOOR_LED_CONFIRMATION_MAX_TIME'] FLOOR_LED_CONFIRMATION_MIN_TIME = param_dict['FLOOR_LED_CONFIRMATION_MIN_TIME'] WAIT_DOOR_LIMIT = param_dict['WAIT_DOOR_LIMIT'] is_using_rss = param_dict['is_using_rss'] IS_USING_MQTT = param_dict['IS_USING_MQTT'] IS_USING_HTTP = param_dict['IS_USING_HTTP'] CORP_ID = param_dict['CORP_ID'] CORP_SECRET = param_dict['CORP_SECRET'] AGENT_ID = param_dict['AGENT_ID'] ENABLE_VERIFY_DOOR_STATUS = param_dict['ENABLE_VERIFY_DOOR_STATUS'] CLOSE_EYE_WAIT_DOOR_SEC = param_dict['CLOSE_EYE_WAIT_DOOR_SEC'] IS_USING_XBEE = param_dict['IS_USING_XBEE'] XBEE_HOST_IP = param_dict['XBEE_HOST_IP'] # Print out parameters logger.info("[param_loader] table = " + pformat(table)) logger.info("[param_loader] AMR_URI = " + str(AMR_URI)) logger.info("[param_loader] AMR_MQTT_NAME = " + str(AMR_MQTT_NAME)) logger.info("[param_loader] AMR_MQTT_NAME = " + str(CLIENT_NAME)) logger.info("[param_loader] BROKER_IP = " + str(BROKER_IP)) logger.info("[param_loader] NOTIFY_MAX_RETRY_TIME = " + str(NOTIFY_MAX_RETRY_TIME)) logger.info("[param_loader] REC_TIMEOUT = " + str(REC_TIMEOUT)) logger.info("[param_loader] IS_VERBOSE = " + str(IS_VERBOSE)) logger.info("[param_loader] IS_SIMULATION = " + str(IS_SIMULATION)) logger.info("[param_loader] DOOR_OPEN_LIMIT_TIME = " + str(DOOR_OPEN_LIMIT_TIME)) logger.info("[param_loader] WAIT_REACH_LIMIT_TIME = " + str(WAIT_REACH_LIMIT_TIME)) logger.info("[param_loader] SLIENCE_MIN_COUNTER = " + str(SLIENCE_MIN_COUNTER)) logger.info("[param_loader] FLOOR_LED_CONFIRMATION_MAX_TIME = " + str(FLOOR_LED_CONFIRMATION_MAX_TIME)) logger.info("[param_loader] FLOOR_LED_CONFIRMATION_MIN_TIME = " + str(FLOOR_LED_CONFIRMATION_MIN_TIME)) logger.info("[param_loader] WAIT_DOOR_LIMIT = " + str(WAIT_DOOR_LIMIT)) logger.info("[param_loader] is_using_rss = " + str(is_using_rss)) logger.info("[param_loader] IS_USING_MQTT = " + str(IS_USING_MQTT)) logger.info("[param_loader] IS_USING_HTTP = " + str(IS_USING_HTTP)) logger.info("[param_loader] IS_USING_XBEE = " + str(IS_USING_XBEE)) logger.info("[param_loader] CORP_ID = " + str(CORP_ID)) logger.info("[param_loader] CORP_SECRET = " + str(CORP_SECRET)) logger.info("[param_loader] AGENT_ID = " + str(AGENT_ID)) logger.info("[param_loader] ENABLE_VERIFY_DOOR_STATUS = " + str(ENABLE_VERIFY_DOOR_STATUS)) logger.info("[param_loader] CLOSE_EYE_WAIT_DOOR_SEC = " + str(CLOSE_EYE_WAIT_DOOR_SEC)) logger.info("[param_loader] XBEE_HOST_IP = " + str(XBEE_HOST_IP))
3,308
image_rotate/image_rotate.py
WangHongshuo/Image_Algorithms
5
2172966
import cv2 as cv import numpy as np import math def rotateKernel(x,y,cosine,sine): x1 = x * cosine - y * sine y1 = x * sine + y * cosine return (x1, y1) def iRotateKernel(x,y,cosine,sine): x1 = x * cosine + y * sine y1 = -x * sine + y * cosine return (x1, y1) # 线性插值 def linear(x,y,src): srcX = math.floor(x) srcY = math.floor(y) if(srcX >= 0 and srcX < src.shape[1] and srcY >= 0 and srcY < src.shape[0]): u = x - srcX v = y - srcY srcX1 = min(srcX + 1,src.shape[1] - 1) srcY1 = min(srcY + 1,src.shape[0] - 1) res = 0 # f(sX+u,sY+v) = (1-u)(1-v)f(sX,sY) + (1-u)vf(sX,sY+1) + u(1-v)f(sX+1,sY) + uvf(sX+1,sY+1) res = res + (1 - u)*(1-v)*src[srcY][srcX] res = res + (1 - u)*v*src[srcY1][srcX] res = res + u*(1 - v)*src[srcY][srcX1] res = res + u*v*src[srcY1][srcX1] for i in range(0,len(res)): res[i] = min(res[i],255) return res else: return (-1,) def rotateFunc(image,center,angle,isExpand,method): ## opencv坐标系为(row, col),对应图像坐标系(y, x) ## 旋转公式坐标系为(x, y) theta = -angle / 180 * math.pi cosine = math.cos(theta) sine = math.sin(theta) # 旋转中心(a, b),原点平移到(a, b) a = center[1] # x - col b = center[0] # y - row srcRow = image.shape[0] # row - height - y srcCol = image.shape[1] # col - width - x # 左上点 x1 = -a y1 = b # 右上点 x2 = srcCol - 1 - a y2 = b # 右下点 x3 = srcCol -1 - a y3 = b - srcRow + 1 # 左下点 x4 = -a y4 = b - srcRow + 1 ## 计算以(a, b)为坐标原点旋转后的角点并得出旋转后图像尺寸 (x1, y1) = rotateKernel(x1,y1,cosine,sine) (x2, y2) = rotateKernel(x2,y2,cosine,sine) (x3, y3) = rotateKernel(x3,y3,cosine,sine) (x4, y4) = rotateKernel(x4,y4,cosine,sine) if (isExpand == 1): dstRow = round(max(abs(y1 - y3),abs(y2 - y4))) # row - height - y dstCol = round(max(abs(x1 - x3),abs(x2 - x4))) # col - width - x else: dstRow = srcRow dstCol = srcCol dst = np.zeros((dstRow,dstCol,image.shape[2]),image.dtype) # 旋转后的中心 if(isExpand == 1): c = dstCol // 2 d = dstRow // 2 else: c = a d = b f1 = -c * cosine + d * sine + a f2 = -c * sine - d * cosine + b for x in range(0,dstCol - 1): for y in range(0,dstRow - 1): (srcX ,srcY) = rotateKernel(x,y,cosine,sine) srcX = srcX + f1 srcY = srcY + f2 # 0 - nearest, 1 - linear if(method == 1): pixelVal = linear(srcX,srcY,image) srcX = math.floor(srcX) srcY = math.floor(srcY) if(not(len(pixelVal) == 1 and pixelVal[0] <= 0)): dst[y][x] = pixelVal else: srcX = round(srcX) srcY = round(srcY) if(srcX >= 0 and srcX < srcCol and srcY >= 0 and srcY < srcRow): dst[y][x] = image[srcY][srcX] return dst input = cv.imread("H://lena.jpg") # @fn 图像旋转 # @param image 输入图像 # @param center 旋转中心(row, col) # @param angle 旋转角度,顺时针为正 # @param isExpand 0 - 保持和原图像一样大小,1 - 扩充图像 # @param method 0 - nearest, 1 - linear # @return 旋转后的图像 res = rotateFunc(input,(input.shape[0] // 2, input.shape[1] // 2),45,1,1) cv.imshow("input",input) cv.imshow("rotated",res) cv.waitKey(0)
3,472
models_temp.py
WesGtoX/gestao-clientes
0
2171246
# ./manage.py inspectdb > models_temp.py # # This is an auto-generated Django model module. # You'll have to do the following manually to clean this up: # * Rearrange models' order # * Make sure each model has one field with primary_key=True # * Make sure each ForeignKey has `on_delete` set to the desired behavior. # * Remove `managed = False` lines if you wish to allow Django to create, modify, and delete the table # Feel free to rename the models, but don't rename db_table values or field names. from django.db import models class Minhatabela(models.Model): nome = models.TextField() salario = models.FloatField() class Meta: managed = False db_table = 'MinhaTabela' class Tabela1(models.Model): nome = models.TextField() salario = models.FloatField() class Meta: managed = False db_table = 'Tabela1' class Tabela2(models.Model): nome = models.TextField() salario = models.FloatField() class Meta: managed = False db_table = 'Tabela2' class Tabela3(models.Model): nome = models.TextField() salario = models.FloatField() class Meta: managed = False db_table = 'Tabela3' class AccountEmailaddress(models.Model): verified = models.BooleanField() primary = models.BooleanField() user = models.ForeignKey('AuthUser', models.DO_NOTHING) email = models.CharField(unique=True, max_length=254) class Meta: managed = False db_table = 'account_emailaddress' class AccountEmailconfirmation(models.Model): created = models.DateTimeField() sent = models.DateTimeField(blank=True, null=True) key = models.CharField(unique=True, max_length=64) email_address = models.ForeignKey(AccountEmailaddress, models.DO_NOTHING) class Meta: managed = False db_table = 'account_emailconfirmation' class AuthGroup(models.Model): name = models.CharField(unique=True, max_length=150) class Meta: managed = False db_table = 'auth_group' # Unable to inspect table 'auth_group_permissions' # The error was: list index out of range class AuthPermission(models.Model): content_type = models.ForeignKey('DjangoContentType', models.DO_NOTHING) codename = models.CharField(max_length=100) name = models.CharField(max_length=255) class Meta: managed = False db_table = 'auth_permission' unique_together = (('content_type', 'codename'),) class AuthUser(models.Model): password = <PASSWORD>(max_length=128) last_login = models.DateTimeField(blank=True, null=True) is_superuser = models.BooleanField() username = models.CharField(unique=True, max_length=150) first_name = models.CharField(max_length=30) email = models.CharField(max_length=254) is_staff = models.BooleanField() is_active = models.BooleanField() date_joined = models.DateTimeField() last_name = models.CharField(max_length=150) class Meta: managed = False db_table = 'auth_user' # Unable to inspect table 'auth_user_groups' # The error was: list index out of range # Unable to inspect table 'auth_user_user_permissions' # The error was: list index out of range class ClientesDocumento(models.Model): num_doc = models.CharField(max_length=50) class Meta: managed = False db_table = 'clientes_documento' class ClientesPerson(models.Model): first_name = models.CharField(max_length=30) last_name = models.CharField(max_length=30) age = models.IntegerField() salary = models.DecimalField(max_digits=10, decimal_places=5) # max_digits and decimal_places have been guessed, as this database handles decimal fields as float bio = models.TextField() photo = models.CharField(max_length=100, blank=True, null=True) doc = models.ForeignKey(ClientesDocumento, models.DO_NOTHING, unique=True, blank=True, null=True) class Meta: managed = False db_table = 'clientes_person' class DashboardUserdashboardmodule(models.Model): title = models.CharField(max_length=255) module = models.CharField(max_length=255) app_label = models.CharField(max_length=255, blank=True, null=True) user = models.PositiveIntegerField() column = models.PositiveIntegerField() order = models.IntegerField() settings = models.TextField() children = models.TextField() collapsed = models.BooleanField() class Meta: managed = False db_table = 'dashboard_userdashboardmodule' class DjangoAdminLog(models.Model): action_time = models.DateTimeField() object_id = models.TextField(blank=True, null=True) object_repr = models.CharField(max_length=200) change_message = models.TextField() content_type = models.ForeignKey('DjangoContentType', models.DO_NOTHING, blank=True, null=True) user = models.ForeignKey(AuthUser, models.DO_NOTHING) action_flag = models.PositiveSmallIntegerField() class Meta: managed = False db_table = 'django_admin_log' class DjangoContentType(models.Model): app_label = models.CharField(max_length=100) model = models.CharField(max_length=100) class Meta: managed = False db_table = 'django_content_type' unique_together = (('app_label', 'model'),) class DjangoMigrations(models.Model): app = models.CharField(max_length=255) name = models.CharField(max_length=255) applied = models.DateTimeField() class Meta: managed = False db_table = 'django_migrations' class DjangoSession(models.Model): session_key = models.CharField(primary_key=True, max_length=40) session_data = models.TextField() expire_date = models.DateTimeField() class Meta: managed = False db_table = 'django_session' class DjangoSite(models.Model): name = models.CharField(max_length=50) domain = models.CharField(unique=True, max_length=100) class Meta: managed = False db_table = 'django_site' class JetBookmark(models.Model): url = models.CharField(max_length=200) title = models.CharField(max_length=255) user = models.PositiveIntegerField() date_add = models.DateTimeField() class Meta: managed = False db_table = 'jet_bookmark' class JetPinnedapplication(models.Model): app_label = models.CharField(max_length=255) user = models.PositiveIntegerField() date_add = models.DateTimeField() class Meta: managed = False db_table = 'jet_pinnedapplication' class ProdutosProduto(models.Model): descricao = models.CharField(max_length=100) preco = models.DecimalField(max_digits=10, decimal_places=5) # max_digits and decimal_places have been guessed, as this database handles decimal fields as float class Meta: managed = False db_table = 'produtos_produto' class SocialaccountSocialaccount(models.Model): provider = models.CharField(max_length=30) uid = models.CharField(max_length=191) last_login = models.DateTimeField() date_joined = models.DateTimeField() user = models.ForeignKey(AuthUser, models.DO_NOTHING) extra_data = models.TextField() class Meta: managed = False db_table = 'socialaccount_socialaccount' unique_together = (('provider', 'uid'),) class SocialaccountSocialapp(models.Model): provider = models.CharField(max_length=30) name = models.CharField(max_length=40) client_id = models.CharField(max_length=191) key = models.CharField(max_length=191) secret = models.CharField(max_length=191) class Meta: managed = False db_table = 'socialaccount_socialapp' class SocialaccountSocialappSites(models.Model): socialapp = models.ForeignKey(SocialaccountSocialapp, models.DO_NOTHING) site = models.ForeignKey(DjangoSite, models.DO_NOTHING) class Meta: managed = False db_table = 'socialaccount_socialapp_sites' unique_together = (('socialapp', 'site'),) class SocialaccountSocialtoken(models.Model): token = models.TextField() token_secret = models.TextField() expires_at = models.DateTimeField(blank=True, null=True) account = models.ForeignKey(SocialaccountSocialaccount, models.DO_NOTHING) app = models.ForeignKey(SocialaccountSocialapp, models.DO_NOTHING) class Meta: managed = False db_table = 'socialaccount_socialtoken' unique_together = (('app', 'account'),) class VendasItemdopedido(models.Model): desconto = models.DecimalField(max_digits=10, decimal_places=5) # max_digits and decimal_places have been guessed, as this database handles decimal fields as float produto = models.ForeignKey(ProdutosProduto, models.DO_NOTHING) venda = models.ForeignKey('VendasVenda', models.DO_NOTHING) quantidade = models.FloatField() class Meta: managed = False db_table = 'vendas_itemdopedido' class VendasVenda(models.Model): numero = models.CharField(max_length=7) valor = models.DecimalField(max_digits=10, decimal_places=5) # max_digits and decimal_places have been guessed, as this database handles decimal fields as float desconto = models.DecimalField(max_digits=10, decimal_places=5) # max_digits and decimal_places have been guessed, as this database handles decimal fields as float nfe_emitida = models.BooleanField() pessoa = models.ForeignKey(ClientesPerson, models.DO_NOTHING, blank=True, null=True) impostos = models.DecimalField(max_digits=10, decimal_places=5) # max_digits and decimal_places have been guessed, as this database handles decimal fields as float class Meta: managed = False db_table = 'vendas_venda'
9,768
dataset.py
zhoufengfan/heavy-weight-network
0
2173029
from torch.utils.data import Dataset import torch class Dataset2(Dataset): def __init__(self, item_of_single_class=10, noise_scope_list=None, data_vector_dim=20, k=2): if noise_scope_list is None: noise_scope_list = [1, 1, 1, 1, 1, 1, 1] self.noise_scope_list = noise_scope_list self.item_of_single_class = item_of_single_class self.dataset_list = [] self.data_vector_dim = data_vector_dim self.k = k self.creat_dataset_list() def __getitem__(self, item): return self.dataset_list[item][0], self.dataset_list[item][1] def __len__(self): return self.item_of_single_class * len(self.noise_scope_list) def creat_dataset_list(self): self.dataset_list = [] for i, noise_scope in enumerate(self.noise_scope_list): for j in range(self.item_of_single_class): self.dataset_list.append( [(i - 0.5) * self.k + noise_scope * torch.rand(self.data_vector_dim), i])
1,021
plotter.py
abcd-source/CarND-PID-Control-Project
0
2173069
import matplotlib.pyplot as plt import csv hand_tuned_data = [] with open('results-hand-tuned.csv', newline='') as f: reader = csv.DictReader(f) for r in reader: if (None not in r.values()): hand_tuned_data.append(r) optimized_data = [] with open('results-optimized.csv', newline='') as f: reader = csv.DictReader(f) for r in reader: if (None not in r.values()): optimized_data.append(r) plt.subplot(2,1,1) plt.title("Comparison Between Hand Tuned and Optimized Coefficients") plt.scatter([float(d['dt']) for d in hand_tuned_data], [float(d['cte']) for d in hand_tuned_data], label="Hand Tuned") plt.scatter([float(d['dt']) for d in optimized_data], [float(d['cte']) for d in optimized_data], label="Optimized") plt.legend() plt.ylabel("Cross Track Error") plt.subplot(2,1,2) plt.scatter([float(d['dt']) for d in hand_tuned_data], [float(d['cte_sum']) for d in hand_tuned_data], label="Hand Tuned") plt.scatter([float(d['dt']) for d in optimized_data], [float(d['cte_sum']) for d in optimized_data], label="Optimized") plt.legend() plt.ylabel("Average Cross Track Error") plt.xlabel("Elapsed Time (seconds)") plt.show()
1,185
pyLogStd.py
LolexUK/pyStdLogLib
0
2171992
import logging, sys logging_enabled = False old_input = input old_print = print old_stderr = sys.stderr.write def stderr_write(string=""): old_stderr(string) if logging_enabled: logging.error(string) sys.stderr.write = stderr_write def input(string=""): string_in = old_input(string) if logging_enabled: logging.info("STRING IN " + string_in) return string_in logging.basicConfig(level=logging.DEBUG, filename='./OUT.txt') ### Print does not get overridden for some reason and sys.stdout.write needs redirecting. Perhaps redirect print function to sys.stdout.write func call with "\n" (or whatever sep) chosen. Also need to account for file being supplied :face_in_hands: def print(*objects, sep=" ", end="\n", file=sys.stdout, flush=False): # type: (object, string, string, file_object, boolean) -> None old_print(*objects, sep = sep, end=end, file=file, flush=flush) if logging_enabled: for i in range(0, len(objects) - 1): ## Necessary else the logging module will not convert the tuple into the relevant strings if i == len(objects): break logging.info(objects[i])
1,093
scripts/scripting_utils.py
uerceg/unity_sdk
111
2171703
## ## Various utility methods. ## import os, shutil, glob, time, sys, platform, subprocess # ------------------------------------------------------------------ # Windows specific paths. nuget_dir = 'C:/nuget' devenv_dir = 'C:/Program Files (x86)/Microsoft Visual Studio 14.0/Common7/IDE' def set_log_tag(t): global TAG TAG = t # ------------------------------------------------------------------ # Colors for terminal (does not work in Windows). CEND = '\033[0m' CBOLD = '\33[1m' CITALIC = '\33[3m' CURL = '\33[4m' CBLINK = '\33[5m' CBLINK2 = '\33[6m' CSELECTED = '\33[7m' CBLACK = '\33[30m' CRED = '\33[31m' CGREEN = '\33[32m' CYELLOW = '\33[33m' CBLUE = '\33[34m' CVIOLET = '\33[35m' CBEIGE = '\33[36m' CWHITE = '\33[37m' CBLACKBG = '\33[40m' CREDBG = '\33[41m' CGREENBG = '\33[42m' CYELLOWBG = '\33[43m' CBLUEBG = '\33[44m' CVIOLETBG = '\33[45m' CBEIGEBG = '\33[46m' CWHITEBG = '\33[47m' CGREY = '\33[90m' CRED2 = '\33[91m' CGREEN2 = '\33[92m' CYELLOW2 = '\33[93m' CBLUE2 = '\33[94m' CVIOLET2 = '\33[95m' CBEIGE2 = '\33[96m' CWHITE2 = '\33[97m' CGREYBG = '\33[100m' CREDBG2 = '\33[101m' CGREENBG2 = '\33[102m' CYELLOWBG2 = '\33[103m' CBLUEBG2 = '\33[104m' CVIOLETBG2 = '\33[105m' CBEIGEBG2 = '\33[106m' CWHITEBG2 = '\33[107m' # ------------------------------------------------------------------ # File system methods. def copy_file(sourceFile, destFile): debug('Copying from {0} to {1}'.format(sourceFile, destFile)) shutil.copyfile(sourceFile, destFile) def copy_files(fileNamePattern, sourceDir, destDir): for file in glob.glob(sourceDir + '/' + fileNamePattern): debug('Copying from {0} to {1}'.format(file, destDir)) shutil.copy(file, destDir) def remove_files(fileNamePattern, sourceDir, log=True): for file in glob.glob(sourceDir + '/' + fileNamePattern): if log: debug('Deleting ' + file) os.remove(file) def rename_file(fileNamePattern, newFileName, sourceDir): for file in glob.glob(sourceDir + '/' + fileNamePattern): debug('Renaming file {0} to {1}'.format(file, newFileName)) os.rename(file, sourceDir + '/' + newFileName) def clear_dir(dir): shutil.rmtree(dir) os.mkdir(dir) def recreate_dir(dir): if os.path.exists(dir): shutil.rmtree(dir) os.mkdir(dir) def remove_dir_if_exists(path): shutil.rmtree(path) def change_dir(dir): os.chdir(dir) def check_submodule_dir(platform, submodule_dir): if not os.path.isdir(submodule_dir) or not os.listdir(submodule_dir): error('Submodule [{0}] folder empty.') error('Did you forget to run \'git submodule update --init --recursive\' ?'.format(platform)) exit() # ------------------------------------------------------------------ # Debug messages methods. def debug(msg): if not is_windows(): print(('{0}[{1}][INFO]:{2} {3}').format(CBOLD, TAG, CEND, msg)) else: print(('[{0}][INFO]: {1}').format(TAG, msg)) def debug_green(msg): if not is_windows(): print(('{0}[{1}][INFO]:{2} {3}{4}{5}').format(CBOLD, TAG, CEND, CGREEN, msg, CEND)) else: print(('[{0}][INFO]: {1}').format(TAG, msg)) def debug_blue(msg): if not is_windows(): print(('{0}[{1}][INFO]:{2} {3}{4}{5}').format(CBOLD, TAG, CEND, CBLUE, msg, CEND)) else: print(('[{0}][INFO]: {1}').format(TAG, msg)) def error(msg): if not is_windows(): print(('{0}[{1}][ERROR]:{2} {3}{4}{5}').format(CBOLD, TAG, CEND, CRED, msg, CEND)) else: print(('[{0}][ERROR]: {1}').format(TAG, msg)) # ------------------------------------------------------------------ # Execution and platform methods. def is_windows(): return platform.system().lower() == 'windows'; def execute_command(cmd_params, log=True): if log: debug_blue('Executing ' + str(cmd_params)) subprocess.call(cmd_params) def xcode_build_debug(target): execute_command(['xcodebuild', '-target', target, '-configuration', 'Debug', '-UseModernBuildSystem=NO' 'clean', 'build']) def xcode_build_release(target): execute_command(['xcodebuild', '-target', target, '-configuration', 'Release', '-UseModernBuildSystem=NO' 'clean', 'build']) def gradle_make_sdk_jar_debug(): execute_command(['./gradlew', 'clean', 'adjustCoreJarDebug']) def gradle_make_sdk_jar_release(): execute_command(['./gradlew', 'clean', 'adjustCoreJarRelease']) def gradle_make_test_jar_debug(): execute_command(['./gradlew', 'clean', ':test-library:adjustTestLibraryJarDebug']) def gradle_make_test_jar_release(): execute_command(['./gradlew', 'clean', ':test-library:adjustTestLibraryJarRelease']) def gradle_make_test_library_aar_debug(): execute_command(['./gradlew', 'clean', ':test-library:assembleDebug']) def gradle_make_test_library_aar_release(): execute_command(['./gradlew', 'clean', ':test-library:assembleRelease']) def gradle_make_test_options_aar_debug(): execute_command(['./gradlew', 'clean', ':test-options:assembleDebug']) def gradle_make_test_options_aar_release(): execute_command(['./gradlew', 'clean', ':test-options:assembleRelease']) def gradle_make_oaid_jar_release(): execute_command(['./gradlew', 'clean', ':sdk-plugin-oaid:adjustOaidAndroidJar']) def nuget_restore(project_path): execute_command(['{0}/nuget.exe'.format(nuget_dir), 'restore', project_path]) def devenv_build(solution_path, configuration='Release'): execute_command(['{0}/devenv.exe'.format(devenv_dir), solution_path, '/build', configuration])
5,586
backend/routers/users.py
okynas/Sworkout
0
2168878
from typing import List from config.middleware import get_current_user from fastapi import APIRouter, Depends, status import database from schema import UserView, UserCreate, UserUpdate from sqlalchemy.orm import Session from repository import UserRepository router = APIRouter( prefix="/users", tags=['Users'] ) get_db = database.get_db # get all @router.get("/", response_model=List[UserView]) def show_all(db: Session = Depends(get_db) , get_currrent_user: UserView = Depends(get_current_user)): return UserRepository.get_all(db) @router.get("/id/{id}" , response_model = UserView) def show_one(id: int, db: Session = Depends(get_db) , get_current_user: UserView = Depends(get_current_user)): return UserRepository.get_one_user(id, db) @router.get("/username/{username}" , response_model = UserView) def show_one_by_username(username: str, db: Session = Depends(get_db), get_current_user: UserView = Depends(get_current_user)): return UserRepository.get_one_user_by_username(username, db) # delete @router.delete("/me", status_code=status.HTTP_204_NO_CONTENT) def delete(db: Session = Depends(get_db), get_current_user: UserView = Depends(get_current_user)): return UserRepository.destroy(get_current_user, db)
1,248
test_conanRunner.py
odant/test_versions_conan_packages
0
2173010
#!/usr/bin/env python import unittest from removeAll import removeAll from pathlib import Path from conans import tools from conanRunner import conanRunner currentDir = Path.cwd() conanHome = currentDir / "FAKE_CONAN_HOME" class Test_conanRunner(unittest.TestCase): def setUp(self): removeAll(conanHome) conanHome.mkdir() def test_1_conanRunner_normal(self): print("\n") with tools.environment_append({"CONAN_USER_HOME": str(conanHome)}): args = ["help"] result = conanRunner(args) self.assertFalse(not result) print("\nOutput 'conan help':") for s in result: print(s) def test_2_conanRunner_bad(self): print("\n") with tools.environment_append({"CONAN_USER_HOME": str(conanHome)}): args = ["bad_command"] self.assertRaises(Exception, conanRunner, args) if __name__ == "__main__": unittest.main()
973
saleor/rest/serializers/account/newsletter_subscription.py
Chaoslecion123/Diver
0
2172977
from django.apps import apps from rest_flex_fields import FlexFieldsModelSerializer __all__ = [ 'NewsletterSubscriptionSerializer', ] NewsletterSubscription = apps.get_model(*'account.NewsletterSubscription'.split()) class NewsletterSubscriptionSerializer(FlexFieldsModelSerializer): """Serializer for :model:`account.NewsletterSubscription`: `**Fields:**` 01. `customer` : `OneToOneField` [:model:`account.User`] 02. `email` : `CharField` 03. `id` : `AutoField` 04. `is_active` : `BooleanField` `**Reverse Fields:**` """ class Meta: model = NewsletterSubscription fields = [ # Fields 'customer', 'email', 'id', 'is_active', # Reverse Fields ] read_only_fields = [] # def create(self, validated_data): # return super().create(validated_data) # def update(self, instance, validated_data): # return super().update(instance, validated_data)
1,116
fabfile/testbeds/testbed_vcenter_esxi.py
GaryGaryWU/contrail_fabric_util
0
2172637
from fabric.api import env #Management ip addresses of hosts in the cluster host1 = '[email protected]' controller = '[email protected]' #openstack = '[email protected]' #host2 = '[email protected]' #External routers if any #for eg. #ext_routers = [('mx1', '10.204.216.253')] ext_routers = [] #Autonomous system number router_asn = 64512 #Host from which the fab commands are triggered to install and provision host_build = '[email protected]' #Role definition of the hosts. env.roledefs = { # 'all': [host1,host2], 'all': [host1], 'cfgm': [controller], 'openstack': [controller], 'control': [controller], 'compute': [host1], 'collector': [controller], 'webui': [controller], 'database': [controller], 'build': [controller], } #Openstack admin password env.openstack_admin_password = '<PASSWORD>' env.ostypes = { host1:'ubuntu' } #Hostnames env.hostnames = { # 'all': ['nodec22', 'nodeg17'] 'all': ['nodec22'] } env.password = '<PASSWORD>' #Passwords of each host env.passwords = { host1: 'c0ntrail123', controller: 'c0ntrail123', # host2: 'c0ntrail123', host_build: 'secret', } vcenter = { 'server':'10.84.24.111', 'username': 'admin', 'password': '<PASSWORD>!', 'datacenter': 'kiran_dc', 'cluster': 'kiran_cluster', 'dv_switch': { 'dv_switch_name': 'kiran_dvswitch', 'nic': 'vmnic1', }, 'dv_port_group': { 'dv_portgroup_name': 'kiran_portgroup', 'number_of_ports': '3', }, } compute_vm = { host1: { 'esxi': {'esx_ip': '10.84.24.61', 'esx_username': 'root', 'esx_password': '<PASSWORD>', 'esx_uplink_nic': 'vmnic0', 'esx_fab_vswitch' : 'vSwitch0', 'esx_fab_port_group' : 'contrail-fab-pg', 'esx_ssl_thumbprint' : "62:49:C2:D4:F7:3A:AF:0F:DE:01:FB:52:7C:36:03:B2:33:CC:DC:EE", }, 'server_mac' : "00:50:56:00:BA:BA", 'server_ip': "10.84.24.222", 'esx_vm_name' : "ContrailVM", #'esx_datastore' : "/vmfs/volumes/b4s4-root/", 'esx_datastore' : "/vmfs/volumes/datastore1/", #'esx_vmdk' : '/cs-shared/contrail_fcs_images/v1.10/ubuntu/havana/ContrailVM-disk1.vmdk', 'esx_vmdk' : '/users/kirand/vmware_integ/ContrailVM-disk1.vmdk', 'vm' : "ContrailVM", 'vmdk' : "ContrailVM-disk1", 'vm_deb' : '/cs-shared/contrail_fcs_images/v1.10/ubuntu/havana/contrail-install-packages_1.10-34~havana_all.deb', 'esx_vm_vswitch': 'vSwitch1', 'esx_vm_port_group' : 'contrail-vm-pg', 'server_id' : 'contrail-vm', 'password' : '<PASSWORD>', 'domain' : 'englab.juniper.net', }, } #OPTIONAL BONDING CONFIGURATION #============================== #Inferface Bonding #bond= { # host1 : { 'name': 'bond0', 'member': ['p2p0p0','p2p0p1','p2p0p2','p2p0p3'], 'mode':'balance-xor' }, #} #OPTIONAL SEPARATION OF MANAGEMENT AND CONTROL + DATA #==================================================== #Control Interface #control = { # host1 : { 'ip': '192.168.10.1/24', 'gw' : '192.168.10.254', 'device':'eth0' }, #} #Data Interface #data = { # host1 : { 'ip': '172.16.17.32/24', 'gw' : '172.16.58.3', 'device':'bond0' }, #} #To disable installing contrail interface rename package #env.interface_rename = False #To use existing service_token #service_token = 'your_token' #Specify keystone IP #keystone_ip = '1.1.1.1' #Specify Region Name #region_name = 'RegionName' #To enable multi-tenancy feature #multi_tenancy = True #To enable haproxy feature #haproxy = True #To Enable prallel execution of task in multiple nodes #do_parallel = True env.test_repo_dir='/homes/vjoshi/node22-17/test' env.mail_from='<EMAIL>' env.mail_to='<EMAIL>' env.log_scenario='Single-Node Sanity'
3,932
test/test_add_contact.py
Byelenka/studying_python
0
2173062
# -*- coding: utf-8 -*- from model.contact import Contact def test_add_contact(app): old_contacts = app.contact.get_contact_list() contact = Contact(firstname="First", middlename="Middle", lastname="Last", nickname="Nickname", title="Title", company="Company", address="address", home_phone="123", mobile_phone="222", work_phone="333", fax="444", email="<EMAIL>", email2="<EMAIL>", email3="<EMAIL>", homepage="google.com", bday="1", bmonth="January", byear="1999", address2="secondary address", phone2="456", notes="some text") app.contact.create(contact) new_contacts = app.contact.get_contact_list() assert len(old_contacts) + 1 == len(new_contacts) old_contacts.append(contact) assert sorted(old_contacts, key=Contact.id_or_max) == sorted(new_contacts, key=Contact.id_or_max) def test_add_empty_contact(app): old_contacts = app.contact.get_contact_list() contact = Contact(firstname="", middlename="", lastname="", nickname="", title="", company="", address="", home_phone="", mobile_phone="", work_phone="", fax="", email="", email2="", email3="", homepage="", bday="", bmonth="-", byear="", address2="", phone2="", notes="") app.contact.create(contact) new_contacts = app.contact.get_contact_list() assert len(old_contacts) + 1 == len(new_contacts) old_contacts.append(contact) assert sorted(old_contacts, key=Contact.id_or_max) == sorted(new_contacts, key=Contact.id_or_max)
1,694
util/layer.py
silentspring2/Network_Calculator
3
2172105
############################################################################################## # Created by <NAME> at 2018-12/18 # MIT License # Contain definition of different layer ############################################################################################## import math import numpy as np import util.util as utils # Basic Layer Class # All Layer inherit from this class Layer: def __init__(self, name='layer', input_k=0, input_channel=0): self.input_k = utils.make_double(input_k) self.input_channel = input_channel self.name = name # Pass the output structure of former layer to the latter one as input structure def inherit(self, prev): self.input_k = prev.output_k self.input_channel = prev.output_channel # Re-initialize input parameters def reinit(self, input_k, input_channel): self.input_k = utils.make_double(input_k) self.input_channel = input_channel # Pooling layer class PoolLayer(Layer): def __init__(self, name='pooling', input_k=0, input_channel=0, \ kernel=1, stride=1, padding=0, dilation=1): super(PoolLayer, self).__init__(name, input_k, input_channel) self.output_channel = self.input_channel self.kernel = utils.make_double(kernel) self.stride = utils.make_double(stride) self.padding = utils.make_double(padding) self.dilation = utils.make_double(dilation) self.params = 0 # Calculation Formula comes from PyTorch documentation # https://pytorch.org/docs/stable/nn.html?highlight=pool#torch.nn.MaxPool2d def calculate_output(self): self.output_k = [1,1] self.output_k[0] = int(math.floor((self.input_k[0]-self.dilation[0]*(self.kernel[0]-1)\ +2*self.padding[0]-1)/float(self.stride[0]) + 1.0)) self.output_k[1] = int(math.floor((self.input_k[1]-self.dilation[1]*(self.kernel[1]-1)\ +2*self.padding[1]-1)/float(self.stride[1]) + 1.0)) self.output_channel = self.input_channel # Compare to convolution and fully-connected layers, pooling layer can be ignored def calculate_FLOPs(self): self.add_ops = 0 self.times_ops = 0 self.FLOPs = 0 def calculate_all(self): self.calculate_output() self.calculate_FLOPs() # Convolutional Layer, current version only contain 2d # 1d and 3d will be added later class ConvLayer(Layer): def __init__(self, name='conv', input_k=0, input_channel=0, kernel=1,\ output_channel=0, stride=1, padding=0, dilation=1, bias=True): super(ConvLayer, self).__init__(name, input_k, input_channel) self.kernel = utils.make_double(kernel) self.output_channel = output_channel self.stride = utils.make_double(stride) self.padding = utils.make_double(padding) self.dilation = utils.make_double(dilation) self.bias = bias # Calculation Formula comes from PyTorch documentation # https://pytorch.org/docs/stable/nn.html?highlight=conv#torch.nn.Conv2d def calculate_output(self): self.output_k = [1,1] self.output_k[0] = int(math.floor((self.input_k[0]-self.dilation[0]*(self.kernel[0]-1)\ +2*self.padding[0]-1)/float(self.stride[0]) + 1.0)) self.output_k[1] = int(math.floor((self.input_k[1]-self.dilation[1]*(self.kernel[1]-1)\ +2*self.padding[1]-1)/float(self.stride[1]) + 1.0)) def calculate_parameters(self): self.params = float(np.multiply.reduce(self.kernel)) * self.input_channel * self.output_channel if self.bias == True: self.params += self.output_channel def calculate_FLOPs(self): self.times_ops = float(np.multiply.reduce(self.kernel)) * self.input_channel *\ np.multiply.reduce(self.output_k) * self.output_channel if self.bias == True: self.add_ops = self.times_ops else: self.add_ops = (float(np.multiply.reduce(self.kernel)) * self.input_channel - 1) *\ np.multiply.reduce(self.output_k) * self.output_channel self.FLOPs = self.times_ops + self.add_ops def calculate_all(self): self.calculate_output() self.calculate_parameters() self.calculate_FLOPs() # Fully-Connected Layer class FCLayer(Layer): def __init__(self, name='FC', input_k=0, input_channel=0, output_k = 1): super(FCLayer, self).__init__(name, input_k, input_channel) self.output_k = output_k def calculate_parameters(self): self.params = 2 * np.multiply.reduce(self.input_k) * self.input_channel * self.output_k def calculate_FLOPs(self): self.times_ops = self.params self.add_ops = self.params self.FLOPs = self.times_ops + self.add_ops def calculate_all(self): self.calculate_parameters() self.calculate_FLOPs() # Concatenation, defined as layer for utility class ConcateLayer(Layer): def __init__(self, name='ConcateLayer', layer_list=[]): self.output_k = layer_list[0].output_k self.output_channel = 0 for i,l in enumerate(layer_list): self.output_channel += l.output_channel #Qprint(self.output_channel)
4,900
kattis/tenkinds.py
calebclark/competition
0
2173028
#!/usr/bin/env python # 10 Kinds of People from math import * from sys import * grid = [] paths = [] getset = {} def getkind(p): return grid[p[0]][p[1]] def recadd(p, id, lastkind="42"): if p in getset: #print (p,1) return if (p[0] not in range(rows)) or (p[1] not in range(cols)): #print (p,2) return kind = getkind(p) #print ("kind",kind) if (lastkind == "42") or (kind == lastkind): getset[p] = id recadd((p[0]+1,p[1]),id,kind) recadd((p[0]-1,p[1]),id,kind) recadd((p[0],p[1]+1),id,kind) recadd((p[0],p[1]-1),id,kind) #line0 = stdin.readline().split() #rows = int(line0[0]) #cols = int(line0[1]) #don't be a scrub rows,cols=map(int,stdin.readline().split()) for i in range(rows): grid.append(list(stdin.readline())) n = int(stdin.readline()) setnum = 0 for i in range(n): data = map(int,stdin.readline().split()) paths.append([(data[0]-1,data[1]-1),(data[2]-1,data[3]-1)]) for i in range(rows): for j in range(cols): p = (i,j) recadd(p,setnum) setnum += 1 print getset for [p1,p2] in paths: if getset[p1] is getset[p2]: if getkind(p1) is "1": print "decimal" if getkind(p1) is "0": print "binary" else: print "neither"
1,329
configs/bc.py
rjgpinel/rlbc
43
2171600
from sacred import Ingredient from sacred.settings import SETTINGS model_ingredient = Ingredient('model') dataset_ingredient = Ingredient('dataset', ingredients=[model_ingredient]) train_ingredient = Ingredient('train', ingredients=[dataset_ingredient]) collect_ingredient = Ingredient('collect', ingredients=[model_ingredient]) SETTINGS.CONFIG.READ_ONLY_CONFIG = False @model_ingredient.config def cfg_model(): # name of the model (will be saved in "$RLBC_MODELS/name") name = '' # name of the architecture archi = 'resnet_18_narrow32' # mode, flat or skills mode = 'flat' # number of frames taken as input num_frames = 3 # number of scalar signals taken as input num_signals = 0 # dimension of signal dim_signal = 7 # type of conv layers normalization normalization = 'batchnorm' # model input type input_type = 'depth' # model action space action_space = 'tool_lin' # timesteps of actions in the future to predict steps_action = (1, 10, 20, 30) # number of skill heads num_skills = 1 # device to load the model on device = 'cuda' # flag to resume training resume = True # flag to resume training using stored optimizer load_optimizer = True # epoch to resume training epoch = 'current' @dataset_ingredient.config def cfg_dataset(): # name of the dataset (will be saved in "$RLBC_DATA/name") name = '' # max number of demos to train on max_demos = None # number of cameras used during data loading num_cameras = 1 # name of data augmentation to apply image_augmentation = '' # name of the signals to load signal_keys = ['target_position'] # list of signals dimension signal_lengths = [2] # flag to load mask, needed for data augmentation load_masks = True @train_ingredient.config def cfg_train(): # gripper loss coefficient lam_grip = 0.1 # master pretraining loss coefficient lam_master = 0.0 # mini-batch size batch_size = 64 # optimizer learning rate learning_rate = 1e-3 # number of epochs to train the model epochs = 101 # number of workers to load data workers = 16 # number of epochs between two evaluations eval_interval = 4 # proportion of the dataset withold for evaluation eval_proportion = 0.05 # first epoch to start evaluation eval_first_epoch = 0 @collect_ingredient.config def cfg_collect(): # folder to save data or report (will be saved in "$RLBC_DATA/folder") folder = '' # agent type: script, bc or rl agent = 'script' # dir of the pickle file containing pre-recorded demos if the agent is replay replay_dir = '' # database type: demos, video or evaluation db_type = 'demos' # environment to record or evaluate on env = 'UR5-PickCamEnv-v0' # starting seed seed = 0 # number of episodes to record episodes = 1 # override environment max number of steps max_steps = -1 # skills timescale or a list of them timescale = 60 # list of skills sequence skill_sequence = [] # first epoch to evaluate: first_epoch = None # last epoch to evaluate last_epoch = None # epochs interval between two evaluations iter_epoch = 2 # number of workers to use workers = 1 # flag to rewrite the dataset rewrite = True # flag to record trajectories even when they are failed # used for skills data collection record_failed = False # flag for skill data collection skill_collection = False # flag to use dask dask = False # flag to render the environment, used for debug render = False # flag to stop data collection when the environment returns done enforce_stop_when_done = False # flag to overlay attention maps on top of depth maps attention_maps = False # flag to add data augmentation to collected images # the augmentation flag is used only for BC agent. RL agent reads the RL args image_augmentation = ''
4,051
bit/find_missing_number.py
javyxu/algorithms-python
8
2172886
def find_missing_number(nums): """Returns the missing number from a sequence of unique integers in range [0..n] in O(n) time and space. The difference between consecutive integers cannot be more than 1. If the sequence is already complete, the next integer in the sequence will be returned. >>> find_missing_number(i for i in range(0, 10000) if i != 1234) 1234 >>> find_missing_number([4, 1, 3, 0, 6, 5, 2]) 7 """ missing = 0 for i, num in enumerate(nums): missing ^= num missing ^= i + 1 return missing
571
test/Access/test_md5size.py
gareth-j/acquire
21
2170261
from Acquire.Access import get_filesize_and_checksum import pytest import os from hashlib import md5 def _get_size(filename): """Return the file size in bytes""" return os.path.getsize(filename) def _get_md5(filename): """Return the MD5 checksum of the passed file""" data = open(filename, "rb").read() r = md5(data) return r.hexdigest() def test_md5size(): # test by calculating sizes and md5s of all files in # the current directory for filename in os.listdir("."): if os.path.isfile(filename): (filesize, md5) = get_filesize_and_checksum(filename) checksize = _get_size(filename) checkmd5 = _get_md5(filename) assert(filesize == checksize) assert(md5 == checkmd5)
781
youtube.py
kikeelectronico/comments-to-speech
0
2172952
from gtts import gTTS import os import pytchat youtube_id = os.environ['YOUTUBE_ID'] youtube = pytchat.create(video_id=youtube_id) def speech(text): t2s = gTTS(text=text, lang='es', slow=False) t2s.save("youtube.mp3") os.system("mpg321 --stereo youtube.mp3") if __name__ == '__main__': while True: for comment in youtube.get().sync_items(): speech(str(comment.author.name) + ' dice ' + str(comment.message) + ' desde YouTube') print(str(comment.author.name) + ' dice ' + str(comment.message) + ' desde YouTube')
570
tests/test_config.py
pytask-dev/pytask-stata
1
2172829
import pytest from pytask import main from pytask_stata.config import _nonnegative_nonzero_integer @pytest.mark.end_to_end def test_marker_is_configured(tmp_path): session = main({"paths": tmp_path}) assert "stata" in session.config assert "stata" in session.config["markers"] @pytest.mark.unit @pytest.mark.parametrize("x, expected", [(None, None), (1, 1), ("1", 1), (1.5, 1)]) def test_nonnegative_nonzero_integer(x, expected): assert _nonnegative_nonzero_integer(x) == expected @pytest.mark.unit @pytest.mark.parametrize( "x, expectation", [ ( -1, pytest.raises(ValueError, match="'stata_check_log_lines' must be greater"), ), ( "-1", pytest.raises(ValueError, match="'stata_check_log_lines' must be greater"), ), (0, pytest.raises(ValueError, match="'stata_check_log_lines' must be greater")), ( "0", pytest.raises(ValueError, match="'stata_check_log_lines' must be greater"), ), ( "1.5", pytest.raises(ValueError, match="'stata_check_log_lines' must be a"), ), ], ) def test_nonnegative_nonzero_integer_raises_error(x, expectation): with expectation: _nonnegative_nonzero_integer(x)
1,303
setup.py
cdfbdex/hciVisualGesture
0
2172493
from setuptools import setup, find_packages def parse_requirements(filename): """ load requirements from a pip requirements file """ lineiter = (line.strip() for line in open(filename)) return [line for line in lineiter if line and not line.startswith("#")] setup(name='hcivisualgesture', version='0.1.0', description='HCI based on Computer Vision', url='', author='Project: Asistente Virtual (Unicatolica Lumen Gentium)', author_email='<EMAIL>', license='BSD (3-clause)', packages=find_packages(), install_requires=parse_requirements('requirements.txt'), zip_safe=False)
640
carmesi/tenant/views.py
RedGranatum/Carmesi
0
2172754
# Django from rest_framework import serializers, status from rest_framework.response import Response from rest_framework.views import APIView from rest_framework.permissions import AllowAny, IsAuthenticated # Models Serializers from tenant.models import Client # Selectors # Services from tenant.services import( cliente_crear ) from nucleo.services.email import email_enviar_prealta_cliente from nucleo.services.token import token_verification_email_new_client class RegistroListadoApi(APIView): permission_classes = (AllowAny,) class OutputSerializer(serializers.ModelSerializer): class Meta: model = Client fields = ('schema_name','email','owner_name') def get(self, request): clientes = Client.objects.listado_clientes() serializer = self.OutputSerializer(clientes, many=True) return Response(serializer.data) class RegistroApi(APIView): permission_classes = (AllowAny,) class InputSerializer(serializers.Serializer): email = serializers.EmailField() owner_name = serializers.CharField() def post(self, request): serializer = self.InputSerializer(data=request.data) serializer.is_valid(raise_exception=True) email_enviar_prealta_cliente(**serializer.validated_data) return Response(serializer.data,status=status.HTTP_200_OK) class RegistroVericarNuevoClienteApi(APIView): permission_classes = (AllowAny,) class InputSerializer(serializers.Serializer): token = serializers.CharField() def post(self, request): serializer = self.InputSerializer(data=request.data) serializer.is_valid(raise_exception=True) payload = token_verification_email_new_client(**serializer.validated_data) return Response(payload, status=status.HTTP_200_OK) class RegistroCrearNuevoClienteApi(APIView): permission_classes = (AllowAny,) class InputSerializer(serializers.Serializer): token = serializers.CharField(required=True) client_name = serializers.CharField(required=True,max_length=500) password = serializers.CharField(required=True, write_only=True) class OutputSerializer(serializers.ModelSerializer): class Meta: model = Client fields = ('schema_name','email','owner_name') def post(self, request): serializer = self.InputSerializer(data=request.data) serializer.is_valid(raise_exception=True) # para obtener el domain_url tambien se puede usar request.META['HTTP_HOST'] serializer.validated_data['domain_url'] = request.tenant.domain_url client = cliente_crear(**serializer.validated_data) serializer_out = self.OutputSerializer(client) return Response(serializer_out.data, status=status.HTTP_200_OK)
2,826
PaycomUz/migrations/0001_initial.py
Sardor99/PaycomUz
5
2170367
# Generated by Django 2.1.2 on 2018-11-18 15:43 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='StatusTransaction', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('text', models.CharField(max_length=255)), ], ), migrations.CreateModel( name='Transaction', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('_id', models.CharField(max_length=255)), ('request_id', models.CharField(max_length=255)), ('account_id', models.IntegerField()), ('account_type', models.CharField(blank=True, max_length=255, null=True)), ('amount', models.DecimalField(decimal_places=2, max_digits=10)), ('state', models.IntegerField(blank=True, null=True)), ('time', models.CharField(max_length=255)), ('date', models.DateTimeField(auto_now_add=True)), ('error', models.TextField(blank=True, default='None', max_length=255, null=True)), ('status', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, to='PaycomUz.StatusTransaction')), ], ), ]
1,555
src/common/logger.py
muxer-dev/event-pipeline
1
2172649
"""This logger is setup to replace the default logging, so that all custom logging is stored in json format. Example: Code: logger.info('Event Action') Default output: [INFO] 2019-01-22 11:53:42,670Z 5e2ae11b-0dd3-4c5b-8d84-bdfb3dc1a5a2' Event Action Logger output: { "levelname": "INFO", "asctime": "2019-01-01 00:00:00,000", "msecs": 500.0000000000000, "aws_request_id": "5e2ae11b-0dd3-4c5b-8d84-bdfb3dc1a5a2'", "message": "Event Action" } """ import logging import os from pythonjsonlogger import jsonlogger from src.common.exceptions import InvalidLogLevel # This is the default pattern aws lambdas use, # so all logging information is available in json object. pattern = "[%(levelname)-8s]\t%(asctime)s.%(msecs)dZ\t%(aws_request_id)s\t%(message)s\n" logger = logging.getLogger() formatter = jsonlogger.JsonFormatter(pattern) for h in logger.handlers: h.setFormatter(formatter) log_level = os.environ.get("LOG_LEVEL", "INFO") log_values = [name for name in logging._levelToName.values()] if log_level not in log_values: message = f"Invalid log level set: {log_level}" raise InvalidLogLevel(message) logger.setLevel(log_level)
1,262
pygeoid/reduction/atmosphere.py
ioshchepkov/pygeoid
21
2172974
"""Calculate atmospheric correction for the gravity anomalies. """ import os import numpy as np from typing import Callable from scipy.interpolate import interp1d from scipy.integrate import trapz import astropy.units as u from pygeoid.constants import G @u.quantity_input def ussa76_density(alt_arr: u.km = 0.0 * u.km) -> u.kg / u.m**3: """Return atmospheric density from USSA76 model. Refer to the following document (2 doc codes) for details of this model: NOAA-S/T 76-1562 NASA-TM-X-74335 All assumptions are the same as those in the source documents. Derived from: https://github.com/mattljc/atmosphere-py Parameters ---------- alt_arr : ~astropy.units.Quantity Altitude above sea level. """ # Constants g0 = 9.80665 * u.m / u.s**2 Rstar = 8.31432e3 * u.newton * u.m / u.kilomole / u.K # Model Parameters altitude_max = 84852 * u.m base_alt = np.array([0.0, 11.0, 20.0, 32.0, 47.0, 51.0, 71.0]) * u.km base_lapse = np.array([-6.5, 0.0, 1.0, 2.8, 0.0, -2.8, -2.0]) * u.K / u.km base_temp = np.array([288.15, 216.65, 216.650, 228.650, 270.650, 270.650, 214.650]) * u.K base_press = np.array([1.01325e3, 2.2632e2, 5.4748e1, 8.6801, 1.1090, 6.6938e-1, 3.9564e-2]) * u.mbar M0 = 28.9644 * u.kg / u.kilomole # Initialize Outputs alt_arr = np.atleast_1d(alt_arr) dens_arr = np.zeros(alt_arr.size) * u.kg / u.m**3 for idx in range(alt_arr.size): alt = alt_arr[idx] if alt > altitude_max: msg = 'Altitude exceeds the model: h > hmax = {} m'.format( altitude_max) raise ValueError(msg) # Figure out base height if alt <= 0.0: base_idx = 0 elif alt > base_alt[-1]: base_idx = len(base_alt) - 1 else: base_idx = np.searchsorted(base_alt, alt, side='left') - 1 alt_base = base_alt[base_idx] temp_base = base_temp[base_idx] lapse_base = base_lapse[base_idx] press_base = base_press[base_idx] temp = temp_base + lapse_base * (alt_arr[idx] - alt_base) if lapse_base == 0.0: press = press_base * \ np.exp(-g0 * M0 * (alt_arr[idx] - alt_base) / Rstar / temp_base) else: press = press_base * \ (temp_base / temp) ** (g0 * M0 / Rstar / lapse_base) dens_arr[idx] = press * M0 / Rstar / temp return dens_arr @u.quantity_input def iag_atm_corr_sph(density_function: Callable[[u.Quantity], u.Quantity], height: u.m, height_max: u.m, samples=1e4) -> u.mGal: r"""Return atmospheric correction to the gravity anomalies by IAG approach. This function numerically integrates samples from density function by trapezoidal rule. The spherical layering of the atmosphere is considered. IAG approach: g_atm = G*M(r) / r**2 inf / M(r) = 4*pi*| rho(r) * r**2 dr / r Parameters ---------- density_function : callable The `density_funtion` is called for all height samples to calculate density of the atmosphere. height : ~astropy.units.Quantity Height above sea level. height_max : ~astropy.units.Quantity Maximum height of the atmosphere layer above sea level. samples : float Number of samples for integration. Default is 1e4. ~astropy.units.Quantity Atmospheric correction. """ Rearth = 6378e3 * u.m r2 = (Rearth + height)**2 hinf = np.linspace(height, height_max, samples) density = density_function(hinf) * r2 M = 4 * np.pi * trapz(density.to('kg / m').value, hinf.to('m').value) * u.kg gc = (G * M / r2) return gc @u.quantity_input def grs80_atm_corr_interp(height: u.m, kind: str = 'linear') -> u.mGal: """Return GRS 80 atmospheric correction, in mGal. Interpolated from the table data [1]_. Note: If height < 0 m or height > 40000 m, then correction is extrapolated Parameters ---------- height : ~astropy.units.Quantity Height above sea level. kind : str or int, optional Specifies the kind of interpolation as a string ('linear', 'nearest', 'zero', 'slinear', 'quadratic', 'cubic' where 'zero', 'slinear', 'quadratic' and 'cubic' refer to a spline interpolation of zeroth, first, second or third order) or as an integer specifying the order of the spline interpolator to use. Default is 'linear'. Returns ------- ~astropy.units.Quantity Atmospheric correction. References ---------- .. [1] <NAME>. (1980). Geodetic reference system 1980. Bulletin Géodésique, 54(3), 395-405 """ fname = os.path.join(os.path.dirname(__file__), 'data/IAG_atmosphere_correction_table.txt') table_heights, corr = np.loadtxt(fname, unpack=True, delimiter=',', skiprows=4, dtype=float) interp = interp1d(table_heights * 1000, corr, kind=kind, fill_value='extrapolate', assume_sorted=True) return interp(height.to('m').value) * u.mGal @u.quantity_input def wenzel_atm_corr(height: u.m) -> u.mGal: """Return atmospheric correction by Wenzel, in mGal. Parameters ---------- height : ~astropy.units.Quantity Height above sea level. Returns ------- ~astropy.units.Quantity Atmospheric correction. References ---------- .. [1] <NAME>., 1985, Hochauflosende Kugelfunktionsmodelle fur des Gravitationspotential der Erde [1]: Wissenschaftliche arbeiten der Fachrichtung Vermessungswesen der Universitat Hannover, 137 """ height = height.to('m').value return (0.874 - 9.9e-5 * height + 3.56e-9 * height**2) * u.mGal @u.quantity_input def pz90_atm_corr(height: u.m) -> u.mGal: """Return PZ-90 atmospheric correction, in mGal. Parameters ---------- height : ~astropy.units.Quantity Height above sea level. Returns ------- ~astropy.units.Quantity Atmospheric correction. """ height = height.to('km').value return 0.87 * np.exp(-0.116 * (height)**(1.047)) * u.mGal
6,397
src/blip_sdk/extensions/artificial_intelligence/intents/uri_templates.py
mirlarof/blip-sdk-python
2
2170947
class UriTemplates: """Entities uri templates.""" INTENTIONS = '/intentions' INTENTION = '/intentions/{0}' INTENTION_ANSWERS = '/intentions/{0}/answers' INTENTION_ANSWER = '/intentions/{0}/answers/{1}' INTENTION_QUESTIONS = '/intentions/{0}/questions' INTENTION_QUESTION = '/intentions/{0}/questions/{1}'
339
evo/influx_utils.py
andrew-blake/evohome-utils
1
2171396
from datetime import datetime from influxdb import InfluxDBClient from influxdb.client import InfluxDBClientError try: from influx_config import ( db_name, influx_host, influx_port, influx_user, influx_password, write_to_influx, ) except ImportError: print("Please configure influx_config.py") exit(1) def log_to_influx(zone_details): influx_client = InfluxDBClient( influx_host, influx_port, influx_user, influx_password, db_name ) data = [] ts = datetime.utcnow() ts = ts.replace(microsecond=0) for zone in zone_details: temp_actual = zone["temp"] temp_target = zone["setpoint"] zone_name = zone["name"] record_actual, record_target, record_delta = prep_record( ts, zone_name, temp_actual, temp_target ) if record_actual: data.append(record_actual) if record_target: data.append(record_target) if record_delta: data.append(record_delta) print("%s : %s (%s, %s)" % (ts, zone_name, temp_actual, temp_target)) try: if write_to_influx: influx_client.write_points(data) except InfluxDBClientError as e: print(e) def prep_record(time, zone, actual, target): record_actual = None record_target = None record_delta = None if actual is not None and actual != "": try: record_actual = { "measurement": "zone_temp.actual", "tags": { "zone": zone, }, "time": time, "fields": {"value": float(actual)}, } except Exception as e: print(e) if target is not None and target != "": try: record_target = { "measurement": "zone_temp.target", "tags": { "zone": zone, }, "time": time, "fields": {"value": float(target)}, } except Exception as e: print(e) if record_actual is not None and record_target is not None: record_delta = { "measurement": "zone_temp.delta", "tags": { "zone": zone, }, "time": time, "fields": {"value": float(actual) - float(target)}, } return record_actual, record_target, record_delta
2,484
submodules/qdpy/qdpy/metrics.py
JiangZehua/control-pcgrl3D
0
2171938
# This file is part of qdpy. # # qdpy is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as # published by the Free Software Foundation, either version 3 of # the License, or (at your option) any later version. # # qdpy is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public # License along with qdpy. If not, see <http://www.gnu.org/licenses/>. """TODO""" import numpy as np #from scipy.spatial.distance import euclidean #from itertools import starmap from typing import Sequence, Callable, Tuple from qdpy.phenotype import * from qdpy.base import * ########### METRICS ########### {{{1 #@jit(nopython=True) def features_distances(individual: IndividualLike, container: Sequence, dist: Union[str, Callable] = "euclidean") -> Sequence: distances = np.zeros(len(container)) ind_features = individual.features if isinstance(dist, str): if dist == "euclidean": for i, other in enumerate(container): other_features = other.features for j in range(len(ind_features.values)): distances[i] += pow(ind_features.values[j] - other_features.values[j], 2.) distances = np.power(distances, 1./2.) else: raise ValueError(f"Unknown `dist` type: '{dist}'.") else: for i, ind in enumerate(container): distances[i] = dist(ind_features, ind.features) return distances def novelty(individual: IndividualLike, container: Sequence, k: int = 1, dist: Union[str, Callable] = "euclidean", ignore_first: bool = False, default_novelty: float = 0.1) -> float: """Returns the novelty score of ``individual`` in ``container``. Novelty is defined as the average distance to the ``k``-nearest neighbours of ``individual``. If ``container`` is empty, return ``default_novelty``.""" if len(container) == 0: return default_novelty n_k = min(len(container), k) distances: Sequence = features_distances(individual, container, dist) if ignore_first: nearest_neighbours_dists: Sequence = sorted(distances)[1:n_k+1] else: nearest_neighbours_dists = sorted(distances)[:n_k] return np.mean(nearest_neighbours_dists) def novelty_nn(individual: IndividualLike, container: Sequence, k: int = 1, nn_size: int = 1, dist: Union[str, Callable] = "euclidean", ignore_first: bool = False, default_novelty: float = 0.1) -> Tuple[float, Sequence]: """Returns the novelty score of ``individual`` in ``container`` and the indexes of its ``nn_size`` nearest neighbours. Novelty is defined as the average distance to the ``k``-nearest neighbours of ``individual``. If ``container`` is empty, return ``default_novelty``.""" if len(container) == 0: return default_novelty, [] n_k = min(len(container), k) n_nn_size = min(len(container), nn_size) distances: Sequence = features_distances(individual, container, dist) idx_container = list(range(len(container))) if ignore_first: nearest_neighbours_dists: Sequence = sorted(distances)[1:n_k+1] nn: Sequence = sorted(zip(distances, idx_container))[1:n_nn_size+1] else: nearest_neighbours_dists = sorted(distances)[:n_k] nn = sorted(zip(distances, idx_container))[:n_nn_size] novelty: float = np.mean(nearest_neighbours_dists) nearest_neighbours_idx: Sequence _, nearest_neighbours_idx = tuple(zip(*nn)) return novelty, nearest_neighbours_idx def novelty_local_competition(individual: IndividualLike, container: Sequence, k: int = 1, dist: Union[str, Callable] = "euclidean", ignore_first: bool = False, default_novelty: float = 0.1, default_local_competition: float = 1.0) -> Tuple[float, float]: """Returns the novelty and normalised local competition scores of ``individual`` in ``container``. Novelty is defined as the average distance to the ``k``-nearest neighbours of ``individual``. Local competition is defined as the number of ``k``-nearest neighbours of ``individual`` that are outperformed by ``individual``. This value is normalised by ``k`` to be in domain [0., 1.]. If ``container`` is empty, return ``default_novelty`` and ``default_local_competition``.""" if len(container) == 0: return default_novelty, default_local_competition distances: Sequence = features_distances(individual, container, dist) nearest_neighbours_dists: Sequence nearest_neighbours: Sequence if ignore_first: nn: Sequence = sorted(zip(distances, container))[1:k+1] else: nn = sorted(zip(distances, container))[:k] nearest_neighbours_dists, nearest_neighbours = tuple(zip(*nn)) novelty: float = np.mean(nearest_neighbours_dists) local_competition: float = sum((individual.fitness.dominates(ind.fitness) for ind in nearest_neighbours)) / float(k) return novelty, local_competition # MODELINE "{{{1 # vim:expandtab:softtabstop=4:shiftwidth=4:fileencoding=utf-8 # vim:foldmethod=marker
5,292
default_profile/util/timer.py
farisachugthai/dynamic_ipython
5
2173072
#!/usr/bin/env python # -*- coding: utf-8 -*- """ =================================== Timer --- Create a timer decorator. =================================== Largely this module was simply practice on writing decorators. Might need to review logging best practices. I don't want the logger from this module to emit anything, but it seems tedious to place that burden on any module that imports from here. .. seealso:: :mod:`cProfile` :mod:`pstats` :mod:`timeit` :magic:`timeit` """ import datetime import functools import logging from os import scandir from runpy import run_path import time from timeit import Timer from IPython.core.getipython import get_ipython # noinspection PyProtectedMember from IPython.core.magics.execution import _format_time as format_delta logging.basicConfig(level=logging.INFO) def timer(func): """Print the runtime of the decorated function. Utilizes `time.perf_counter`. .. todo:: Begin using the :mod:`timeit` module. There are more specialized ways of profiling things in other modules; however, this works for a rough estimate. Parameters ---------- func : function Function to profile Returns ------- value : float Output of function :func:`time.perf_counter()`. """ @functools.wraps(func) def wrapper_timer(*args, **kwargs): start_time = time.perf_counter() value = func(*args, **kwargs) end_time = time.perf_counter() run_time = end_time - start_time logging.info(f"Finished {func.__name__!r} in {run_time:.4f} secs") return value return wrapper_timer # class ModuleTimer() # I mean while we're practicing decorators throw this in the mix def debug(func): """Print the function signature and return value""" @functools.wraps(func) def wrapper_debug(*args, **kwargs): args_repr = [repr(a) for a in args] # 1 kwargs_repr = [f"{k}={v!r}" for k, v in kwargs.items()] # 2 signature = ", ".join(args_repr + kwargs_repr) # 3 print(f"Calling {func.__name__}({signature})") value = func(*args, **kwargs) print(f"{func.__name__!r} returned {value!r}") # 4 return value return wrapper_debug def exc_timer(statement, setup=None): """A non-decorator implementation that uses `timeit`.""" t = Timer(stmt=statement, setup=setup) # outside the try/except try: return t.timeit() except Exception: # noqa E722 t.print_exc() class ArgReparser: """Class decorator that echoes out the arguments a function was called with.""" def __init__(self, func): """Initialize the reparser with the function it wraps.""" self.func = func def __call__(self, *args, **kwargs): print("entering function " + self.func.__name__) i = 0 for arg in args: print("arg {0}: {1}".format(i, arg)) i = i + 1 return self.func(*args, **kwargs) def time_dir(directory=None): """How long does it take to exec(compile(file)) every file in the startup dir?""" if directory is None: directory = get_ipython().startup_dir result = [] for i in scandir("."): if i.name.endswith(".py"): file = i.name print(file) print(time.time()) start_time = time.time() exec(compile(open(file).read(), "timer", "exec")) end = time.time() diff = end - start_time print(f"{diff}") result.append((file, diff)) return result class LineWatcher: """Class that implements a basic timer. Registers the `start` and `stop` methods with the IPython events API. """ def __init__(self): """Define the classes start_time parameter.""" self.start_time = self.start() def start(self): """Return `time.time`.""" return time.time() def __repr__(self): return f"{self.__class__.__name__} {self.start_time}" def stop(self): """Determine the difference between start time and end time.""" stop_time = time.time() diff = abs(stop_time - self.start_time) print("time: {}".format(format_delta(diff))) return diff def load_ipython_extension(ip=None, line_watcher=None): """Initialize a `LineWatcher` and register start and stop with IPython.""" if ip is None: ip = get_ipython() if ip is None: return if line_watcher is None: line_watcher = LineWatcher() ip.events.register("pre_run_cell", line_watcher.start) ip.events.register("post_run_cell", line_watcher.stop) def unload_ipython_extension(ip=None, line_watcher=None): if ip is None: ip = get_ipython() if ip is None: return if line_watcher is None: line_watcher = LineWatcher() ip.events.unregister("pre_run_cell", line_watcher.start) ip.events.unregister("post_run_cell", line_watcher.stop)
5,023
setup.py
wuchangsheng951/NOTIONPY
0
2170951
from setuptools import setup, find_packages setup( name='nopynotion', version='0.2.5', packages=['nopynotion'], description='a warpper for notion to update data', author='<NAME>', author_email='<EMAIL>', install_requires=[ 'requests', ], url='https://github.com/wuchangsheng951/nopynotion', classifiers=[ "Programming Language :: Python :: 3", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", ], package_dir={"": "src"}, # entry_points=''' # [console_scripts] # gas=gpugo:main # ''', )
632
009HistogramByGroup.py
AlbertZhaoz/albertpython
1
2173037
import pandas as pd import matplotlib.pyplot as plt books = pd.read_excel('./TestExcel/output009.xlsx') print(books) books.sort_values(by=2021, inplace=True, ascending=False) books.plot.bar(x='Field', y=[2020, 2021],color=['orange','blue']) plt.title('National Books', fontsize=16, fontweight='bold') plt.xlabel('Field', fontweight='bold') plt.ylabel('Number', fontweight='bold') # 自定义X轴样式:斜45° 文字最末端-对齐 ax = plt.gca() ax.set_xticklabels(books.Field, rotation=45, ha='right') # 将图片左边和底部固定 figures = plt.gcf() figures.subplots_adjust(left=0.2,bottom=0.42) # plt.tight_layout() plt.show()
588
resources/lib/borntogrill/kodi_notification_handler.py
BornToGrill/nfo-watch-status-updater
0
2172962
# -*- coding: utf-8 -*- from resources.lib.borntogrill import kodi_utils from resources.lib.borntogrill.kodi_json_rpc import VideoLibrary from resources.lib.borntogrill.kodi_nfo_updater import update_nfo from resources.lib.borntogrill.kodi_monitor import MonitorMethod import logging import os import xbmcaddon # pylint: disable=import-error ADDON = xbmcaddon.Addon() ADDON_NAME = ADDON.getAddonInfo('name') ADDON_ID = ADDON.getAddonInfo('id') logger = logging.getLogger(ADDON_ID) class VideoInfo(): def __init__(self, id, type, playcount): self.id = id self.type = type self.playcount = playcount class KodiNotificationHandler(): def __init__(self, monitor): self.monitor = monitor self.monitor.on( MonitorMethod.VIDEO_LIBRARY_ON_UPDATE, self.on_video_library_update ) def run_till_abort(self, wait_time): self.monitor.run_till_abort(wait_time) @staticmethod def _video_info_from_notification(msg): if not msg.has_key('item') or not msg.has_key('playcount'): return None item = msg['item'] playcount = msg['playcount'] if not item.has_key('id') or not item.has_key('type'): return None id = item['id'] video_type = item['type'] return VideoInfo(id, video_type, playcount) def on_video_library_update(self, obj): logger.info("Video library updated: %s", str(obj)) video_info = self._video_info_from_notification(obj) if video_info is None: logger.warn('Could not parse video info from update notification') return fetch_strategies = { u'movie': { 'fetch': VideoLibrary.get_movie_details, 'file_path': lambda x: x['moviedetails']['file'] }, u'episode': { 'fetch': VideoLibrary.get_episode_details, 'file_path': lambda x: x['episodedetails']['file'] } } try: strategy = fetch_strategies[video_info.type] video_details = strategy['fetch'](video_info.id) video_file_path = strategy['file_path'](video_details) nfo_file_path = video_file_path.replace(os.path.splitext(video_file_path)[1], '.nfo') except: error_message = 'Failed to get video info' logger.exception(error_message) kodi_utils.notification(ADDON_NAME, error_message) try: update_nfo(nfo_file_path, video_info.playcount) except IOError: error_message = 'Failed to update NFO. File could not be found' logger.exception(error_message) kodi_utils.notification(ADDON_NAME, error_message) except: error_message = 'Failed to update NFO. Check logs for more information' logger.exception(error_message) kodi_utils.notification(ADDON_NAME, error_message)
3,019
components/jk_bms_ble/binary_sensor.py
magnetus26/esphome-jk-bms
0
2170801
import esphome.codegen as cg from esphome.components import binary_sensor import esphome.config_validation as cv from esphome.const import CONF_ICON, CONF_ID from . import CONF_JK_BMS_BLE_ID, JkBmsBle DEPENDENCIES = ["jk_bms_ble"] CODEOWNERS = ["@syssi"] CONF_CHARGING = "charging" CONF_DISCHARGING = "discharging" CONF_BALANCING = "balancing" ICON_CHARGING = "mdi:battery-charging" ICON_DISCHARGING = "mdi:power-plug" ICON_BALANCING = "mdi:battery-heart-variant" BINARY_SENSORS = [ CONF_CHARGING, CONF_DISCHARGING, CONF_BALANCING, ] CONFIG_SCHEMA = cv.Schema( { cv.GenerateID(CONF_JK_BMS_BLE_ID): cv.use_id(JkBmsBle), cv.Optional(CONF_CHARGING): binary_sensor.BINARY_SENSOR_SCHEMA.extend( { cv.GenerateID(): cv.declare_id(binary_sensor.BinarySensor), cv.Optional(CONF_ICON, default=ICON_CHARGING): cv.icon, } ), cv.Optional(CONF_DISCHARGING): binary_sensor.BINARY_SENSOR_SCHEMA.extend( { cv.GenerateID(): cv.declare_id(binary_sensor.BinarySensor), cv.Optional(CONF_ICON, default=ICON_DISCHARGING): cv.icon, } ), cv.Optional(CONF_BALANCING): binary_sensor.BINARY_SENSOR_SCHEMA.extend( { cv.GenerateID(): cv.declare_id(binary_sensor.BinarySensor), cv.Optional(CONF_ICON, default=ICON_BALANCING): cv.icon, } ), } ) async def to_code(config): hub = await cg.get_variable(config[CONF_JK_BMS_BLE_ID]) for key in BINARY_SENSORS: if key in config: conf = config[key] sens = cg.new_Pvariable(conf[CONF_ID]) await binary_sensor.register_binary_sensor(sens, conf) cg.add(getattr(hub, f"set_{key}_binary_sensor")(sens))
1,826
Python/biopsy/families.py
JohnReid/biopsy
0
2172344
# # Copyright <NAME> 2006 # from graph import * def read_families_file( f ): """Reads a paralog file generated from ensembl_homologies.pl subtypes can contain a list of paralog subtypes we are interested in Yields sequences of genes that form families""" if isinstance( f, str ): f = open( f, 'r' ) for l in f: yield l.strip().split(',') if '__main__' == __name__: family_graph = graph_generate( read_families_file( 'C:/Data/Ensembl/mouse_families.txt' ) ) graph_print_info( family_graph ) print graph_are_connected( family_graph, graph_vertex( family_graph, 'ENSMUSG00000000103' ), graph_vertex( family_graph, 'ENSMUSG00000049576' ) ) print graph_are_connected( family_graph, graph_vertex( family_graph, 'ENSMUSG00000000001' ), graph_vertex( family_graph, 'ENSMUSG00000000149' ) ) print graph_are_connected( family_graph, graph_vertex( family_graph, 'ENSMUSG00000049576' ), graph_vertex( family_graph, 'ENSMUSG00000000149' ) )
1,116
data.py
angelikakw/predicting-the-movie-genre
0
2172785
import pandas as pd import re import os FOOTNOTE_RE = re.compile(r'\[[0-9]+\]') NUMBER_RE = re.compile(r'[0-9]+') NEW_LINE_RE = re.compile(r'\r\n') NEW_LINE_2_RE = re.compile(r'\n\n') def read_data(file_name): """Reading and limiting data to the 100 most common genres""" if not os.path.isfile(file_name): raise ValueError("No file") if not file_name[-3:] == 'csv': raise ValueError("No csv") data = pd.read_csv(file_name) genre_counts = data[data['Genre'] != 'unknown']['Genre'].value_counts() popular_genre = [] for name, count in genre_counts.iteritems(): if count > 100: popular_genre.append(name) bools = [] for elem in data['Genre']: if elem in popular_genre: bools.append(True) else: bools.append(False) popular_genre_with_plot = data[bools] popular_genre_with_plot_rnd = popular_genre_with_plot.sample(frac=1) return popular_genre_with_plot_rnd def clean(plot): plot = re.sub( FOOTNOTE_RE, '', plot ) plot = re.sub( NEW_LINE_RE, ' ', plot ) plot = re.sub( NEW_LINE_2_RE, ' ', plot ) plot = re.sub( NUMBER_RE, ' ', plot ) return plot.replace('\'', '')
1,332
ARRAYS/Easy/Richest Customer Wealth/Code.py
HassanRahim26/LEETCODE
3
2172805
#PROBLEM LINK:- https://leetcode.com/problems/richest-customer-wealth/submissions/ class Solution: def maximumWealth(self, accounts: List[List[int]]) -> int: accounts = [sum(wealth) for wealth in accounts] return max(accounts)
248
Packs/CommonScripts/Scripts/WordTokenizeTest/WordTokenizeTest.py
diCagri/content
799
2173076
import demistomock as demisto from CommonServerPython import * import nltk import re from html.parser import HTMLParser from html import unescape html_parser = HTMLParser() CLEAN_HTML = (demisto.args().get('cleanHtml', 'yes') == 'yes') REMOVE_LINE_BREAKS = (demisto.args().get('removeLineBreaks', 'yes') == 'yes') TOKENIZE_TYPE = demisto.args().get('type', 'word') TEXT_ENCODE = demisto.args().get('zencoding', 'utf-8') HASH_SEED = demisto.args().get('hashWordWithSeed') REMOVE_HTML_PATTERNS = [ re.compile(r"(?is)<(script|style).*?>.*?(</\1>)"), re.compile(r"(?s)<!--(.*?)-->[\n]?"), re.compile(r"(?s)<.*?>"), re.compile(r"&nbsp;"), re.compile(r" +") ] def clean_html(text): if not CLEAN_HTML: return text cleaned = text for pattern in REMOVE_HTML_PATTERNS: cleaned = pattern.sub(" ", cleaned) return unescape(cleaned).strip() def tokenize_text(text): if not text: return '' text = text.lower() if TOKENIZE_TYPE == 'word': word_tokens = nltk.word_tokenize(text) elif TOKENIZE_TYPE == 'punkt': word_tokens = nltk.wordpunct_tokenize(text) else: raise Exception("Unsupported tokenize type: %s" % TOKENIZE_TYPE) if HASH_SEED: word_tokens = map(str, map(lambda x: hash_djb2(x, int(HASH_SEED)), word_tokens)) return (' '.join(word_tokens)).strip() def remove_line_breaks(text): if not REMOVE_LINE_BREAKS: return text return text.replace("\r", "").replace("\n", "") def main(): text = demisto.args()['value'] if type(text) is not list: text = [text] result = list(map(remove_line_breaks, map(tokenize_text, map(clean_html, text)))) if len(result) == 1: result = result[0] demisto.results({ 'Contents': result, 'ContentsFormat': formats['json'] if type(result) is list else formats['text'], 'EntryContext': { 'WordTokenizeOutput': result } }) # python2 uses __builtin__ python3 uses builtins if __name__ == "__builtin__" or __name__ == "builtins": main()
2,089
all_functions/configs/proxy_scraper/hide_my_python-master/hide_my_python.py
Heroku-elasa/-heroku-buildpack-python-ieee-new
0
2172207
#!/usr/bin/env python3 # -*- coding: utf8 -*- # # HideMyPython! - A parser for the free proxy list on HideMyAss! # # This file contains the main function of the HideMyPython! script. # It parses the arguments, creates a database, and save the proxies. # # Copyright (C) 2013 <NAME> <useless (at) utouch (dot) fr> # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. import sys import arguments import parser import database def main(): # We create an argument parser arg_parser = arguments.create_argument_parser() # We parse the arguments args = arg_parser.parse_args(sys.argv[1:]) arguments.process_arguments(args, arg_parser) # If the verbose mode is on, we display the arguments if args.verbose: arguments.print_arguments(args) # We open the database file where the proxies will be stored connection, cursor = database.initialize_database(args.database_file) try: # We generate the proxies for proxy in parser.generate_proxy(args): # And we store them in the database database.insert_in_database(cursor, proxy) except KeyboardInterrupt: if args.verbose: print('') print('[warn] received interruption signal') # We save the changes made to the database, and close the file connection.commit() connection.close() return 0 if __name__ == '__main__': main() #~/app-root/runtime/srv/python/bin/python hide_my_python.py -p 80 8080 443 -o ..//..//configs//sites_proxy//all_proxies_list//scraped_list.txt
2,050
students/k3342/laboratory_works/Shaidullina_Regina/laboratory_work_1/leaderboard/urls.py
TonikX/ITMO_ICT_-WebProgramming_2020
10
2172039
from django.contrib import admin from django.urls import path from leaderboard import views from django.contrib.auth.views import LoginView #, LogoutView urlpatterns = [ path('', views.main, name='main'), path('leaderboard/', views.leaderboard_view, name='leaderboard'), path('comments/', views.comments, name='comments'), path('register/', views.reg, name='register'), path('login/', LoginView.as_view(), name='login'), path('logout/', views.LogoutFormView.as_view(), name='logout'), ]
495
utils/R.py
liangzimiao/miyubot
0
2171531
import os from urllib.parse import urljoin from urllib.request import pathname2url from nonebot import logger from nonebot.adapters.onebot.v11 import MessageSegment from PIL import Image from utils import pic2b64 import utils from configs.path_config import PCR_PATH # 当QQ客户端与bot端不在同一台计算机时,可用http协议 RES_PROTOCOL = 'file' # 资源库文件夹,需可读可写,windows下注意反斜杠转义 RES_DIR = PCR_PATH # 使用http协议时需填写,原则上该url应指向RES_DIR目录 RES_URL = 'http://127.0.0.1:5000/static/' RES_DIR = os.path.expanduser(RES_DIR) assert RES_PROTOCOL in ('http', 'file', 'base64') class ResObj: def __init__(self, res_path): res_dir = os.path.expanduser(RES_DIR) fullpath = os.path.abspath(os.path.join(res_dir, res_path)) if not fullpath.startswith(os.path.abspath(res_dir)): raise ValueError('Cannot access outside RESOUCE_DIR') self.__path = os.path.normpath(res_path) @property def url(self): """资源文件的url,供Onebot(或其他远程服务)使用""" return urljoin(RES_URL, pathname2url(self.__path)) @property def path(self): """资源文件的路径,供Hoshino内部使用""" return os.path.join(RES_DIR, self.__path) @property def exist(self): return os.path.exists(self.path) class ResImg(ResObj): @property def cqcode(self) -> MessageSegment: if RES_PROTOCOL == 'http': return MessageSegment.image(self.url) elif RES_PROTOCOL == 'file': return MessageSegment.image(f'file:///{os.path.abspath(self.path)}') else: try: return MessageSegment.image(utils.pic2b64(self.open())) except Exception as e: logger.exception(e) return MessageSegment.text('[图片出错]') def open(self) -> Image: try: return Image.open(self.path) except FileNotFoundError: logger.error(f'缺少图片资源:{self.path}') raise def get(path, *paths): return ResObj(os.path.join(path, *paths)) def img(path, *paths): return ResImg(os.path.join('img', path, *paths))
2,052